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Abstract

This thesis introduces a novel deposition technique, Plasma-Enhanced Pulsed Laser De-

position (PE-PLD) that attempts to overcome limitations in traditional PLD by combining

it with a background oxygen RF plasma instead of a neutral gas. Advantages of this novel

technique for the deposition of metal-oxide films include, the use of simple, pure metal targets

instead of metal-oxide composite targets and the lack of the necessity for substrate heating

and post-annealing to obtain high-quality films. The feasibility of this method was studied

both numerically and experimentally. Numerical simulations of the laser ablation process

and an Inductively Coupled Plasma (ICP), i.e. the oxygen RF plasma, using different 2D

hydrodynamic codes, found that the densities of the Cu plume and ICP were similar in front

of the substrate, allowing the necessary interaction between them to oxidise the Cu and

deposit a CuO film.

Time-resolved optical emission spectroscopy provided electron temperatures and densities

that were used to benchmark the modelling results as well as provide some insight into the

process of slowing down of the plume due to the background gas. Also, the assumption of

Local Thermodynamic Equilibrium (LTE), commonly used in these diagnostic techniques,

was investigated and found to not be strictly fulfilled for most of the ablation process,

meaning that further investigations are needed to confirm the validity of these diagnostics.

Finally, copper oxide thin films were deposited using PE-PLD. Analysis of the compo-

sition showed that high-quality films could be formed and that at a low oxygen pressure

stoichiometric, polycrystalline CuO was formed, while at a higher pressure stoichiometric,

polycrystalline Cu2O was deposited.
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Chapter 1

Introduction

1.1 Motivation

Plasma and its applications have made our modern life more sophisticated. However, under-

standing the properties of plasmas will not only help with improving our modern technology,

it also connects directly with nature for a better understanding of our solar system and

universe. One common way to classify plasmas is into thermal and non-thermal plasmas.

In the case of thermal plasma, electrons, neutrals and ions in the plasma can be

described using a single temperature. This is the most common type of plasma that can

be found in nature (eg: sun, lightning etc). On the other hand, in the case of non-thermal

plasmas, species in the plasmas are not in thermodynamical equilibrium. The electrons

in such plasmas are hotter than ions and these hotter electrons can effectively dissociates

neutral chemical species. These types of plasma play a major role in industrial applications,

e.g. in surface modification of plastics, etching of computer chips, treating biological samples

and deposition of thin films. This last application is the focus of this thesis.

In recent years, semiconductor thin films plays a vital role in modern life. They are

16



1.2. THESIS OUTLINE 17

essential for the production of micro-electronics and novel energy harvesting and storage de-

vices such as solar cells and super capacitors. For these applications, high-quality thin films

are required and researchers have developed various fabrication techniques to produce suit-

able thin films for various applications like solar cells [2], super capacitors [3], bio-sensors [4]

and high-Tc superconductors [5]. A range of deposition techniques like molecular beam

epitaxy [6], reactive magnetron sputtering [7], pulsed laser deposition [8], [9], thermal evap-

oration [10] and e-beam evaporation techniques have been developed in the past and are

widely used in research and applications today. However, controlling the stoichiometry and

obtaining good quality thin film has been an ongoing challenge.

The work in this is mainly focused on combining a thermal and a non-thermal

plasma to deposit a thin film. In particular, we look at adding an Inductively Coupled

Plasma (ICP) background plasma to a standard Pulsed Laser Deposition setup, creating our

novel technique: Plasma-Enhanced Pulsed Laser Deposition (PE-PLD). This novel method

introduces more reactive species during the deposition process. Therefore depending on the

properties of the non-thermal ICP plasma in the chamber, the stoichiometry of the thin

film can be controlled. Moreover, conventional deposition techniques use elevated substrate

temperatures and post-annealing to obtain the required degree of oxidation. In our new

technique, there is no substrate heating or post-annealing needed to deposit stoichiometric

thin films. In the upcoming chapters, I will discuss the details of this technique as well as

the results and discussion of our investigations. In this thesis I investigate the feasibility of

the new PE-PLD technique by looking at the deposition of copper oxide thin films.

1.2 Thesis Outline

Chapter 2. Copper oxide thin films: This chapter is focused on a literature

view of copper oxide thin films; their applications as well as the available deposition tech-

niques. In particular, the two different crystal structures, CuO and Cu2O, and their crystal
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properties are introduced.

Chapter 3. Pulsed Laser Deposition: This chapter contains the physics behind

laser plasma interaction for different materials and discusses the different stages of laser

ablation: plasma formation and plasma expansion in vacuum and background gas. Finally,

it discusses the different growth modes of thin films and the experimental parameters that

influence the deposition process.

Chapter 4. Plasma-Enhanced Pulsed Laser Deposition: This chapter describes

the pulsed laser deposition and plasma enhanced pulsed laser deposition techniques in detail.

It includes the detailed experimental design used for our PE-PLD technique.

Chapter 5. Thin film characterisation techniques: This chapter describes the

experimental designs and concepts of thin film characterisation techniques relevant for the

thesis.

Chapter 6. POLLUX and HPEM simulations: This chapter presents a mod-

elling study to investigate the feasibility of our PE-PLD technique. The laser ablation part

is modelled using the code POLLUX while the reactive oxygen ICP is described using the

code HPEM.

Chapter 7. Time resolved spectroscopy of a laser produced plasma: In this

chapter an experimental investigation of the laser ablation plasma plume is presented. Time-

resolved optical emission spectroscopy is used to determine electron temperatures and den-

sities in the plasma. Extra attention is given to the assumptions and limitations of the ex-

perimental technique, especially deviations from Local Thermodynamic Equilibrium (LTE),

a necessary criterion for the diagnostic method, are investigated in detail.

Chapter 8. Proof-of-concept: Thin film deposition using PE-PLD: This

chapter presents the first results of thin film deposition using the PE-PLD technique. Films

are deposited under different experimental conditions and are characterised using a range of
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surface analysis techniques, giving information about stoichiometry, crystal phase, morphol-

ogy and film thickness.

Chapter 9. Conclusions: This chapter summarises and discusses the main results

of this thesis.



Chapter 2

Copper oxide thin films

2.1 Introduction

Thin film technology has contributed to developments in a wide variety of semiconductor

device applications, e.g. transparent conducting electrodes for touch screens, ferromagnetic

films for computer memory, ceramic films for piezoelectric sensors and nanostructured solar

cells. The physical properties of most films are determined by the material characteristics.

This allows the development of a range of deposition techniques for the same types of films.

Each deposition technique has its own advantages and limitations.

A class of films that is widely studied are metal oxides. For example SnO2, ZnO

and TiO2 are n-type transparent semiconductors used as Transparent Conductive Oxide

(TCO) [11], in gas sensing applications, solar cells and touch screens. ITO (Indium-Tin

oxide), with an optical band gap of >3.4eV [12], is the most commonly used Transparent

Conductive Electrode. However, since indium is a rare earth metal and that is scarce,

alternatives such as doped-ZnO and SnO2 are being investigated. These materials have

similar band gaps as ITO but are far more commonly available. Similarly CuO is a p-type

semiconductor with a band gap of 2.1eV and is mostly used for solar cell applications. When

20
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CuO is doped with yttrium and barium it acts as a superconductor [13]. In the section

below, I will discuss CuO and Cu2O crystal structure, properties and applications, as well

as the different deposition techniques for these films.

2.2 CuO and Cu2O thin films?

Copper (Cu) is the 29th element in the periodic table and when it is oxidised it exhibits three

different forms of oxide: (i) CuO (tenorite) (ii) Cu2O (cuprite) and (iii) Cu4O3 (paramela-

conite). Of these three oxide forms, Cu4O3 is an unstable form which means it is found less

in applications and is studied less in the literature and its physical properties are not very

well-known.

Cu4O3 was first discovered in late 1870s [14] [JCPDS card no: 9000603] and

several techniques have been used to deposit Cu4O3 thin films. A. Thober et al [15], deposited

Cu4O3 thin film on quartz thin film using reactive magnetron sputtering in Ar-O2 mixtures,

where the electrical resistivity and optical band gap could be measured at 6.2x108µΩ cm and

2.47 eV. However, from other studies it is clear that a small rise in the temperature changes

Cu4O3 to CuO quickly [16] [17]. Therefore, the focus in my work will be on the CuO and

Cu2O phases. Table 2.1 shows the different crystallographic properties of these two different

form of copper oxides.
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Crystallographic parameters CuO Cu2O

Lattice constant a=4.6837Å, b=3.4288 Å, c=5.1297Å a=b=c=4.2520Å

Space Group C 1 2/c 1(15) P n -3 m:1(224)

Bond length

dCu−O

dO−O

dCu−Cu

1.95Å

2.62Å

2.90 Å

1.84Å

3.68Å

3.02 Å

Density 6.515 g/cc 5.749 g/cc

Table 2.1: Crystallographic properties of two different form of copper oxides

Even though CuO and Cu2O are both oxides of Cu, their structure and physical

properties are very different. Depending on bond length, lattice constant and space group,

the structure of the crystal systems varies.

2.2.1 Cu2O structural properties, method of deposition and application

Cuprite (Cu2O) is a stable oxide p-type semiconductor with a band gap of 2.17 eV [18] [19]

in a simple cubic structure as shown in a fig (2.1). From fig (2.1) can be seen that, in a single

unit cell, there are six atoms in which four copper atoms are placed in the fcc sub-lattice and

each copper (Cu:Blue) atom is linearly attached to the two oxygen (O:Red) atoms which are

in the tetrahedral sites of the BCC lattice with respect to the Cu atoms [20].
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Figure 2.1: Crystal structure of Cu2O (Cuprite) drawn using VESTA (visualization for

electronic and structural analysis) software.

Cu2O is non-toxic, abundant and is used for photovoltaic conversion [2], thin film

hetro-junction solar cells [21], catalytic properties and thin film transistors [22] The bulk

form of Cu2O can be prepared by oxidising copper sheets [18], by hydrothermal processes,

or by a seed growth (float-zone) process. However, for many applications, a thin film of

Cu2O is required. These films can be deposited using a range of techniques, e.g. evaporation

[16], sputtering [17] [23], electro-deposition and chemical deposition [24]. Depending on the

different deposition techniques and the substrate, the growth orientation of the film varies,

altering the physical properties of the thin film.

A.A. Ogwu et al., [25] deposited CuO, Cu2O and mixed phase of CuO + Cu2O

thin films using a copper target in an rf magnetron sputtering set-up. By varying the oxygen

and argon gas ratio they could change the sheet resistance of the films. Films deposited at

200 W show 4.5x105 Ω /square whereas increasing the power to 800 W decreases the sheet

resistance to around 20 Ω/square.

Similarly, Valladares et al., [26] deposited Cu2O and CuO thin film using a thermal

oxidation method, They noticed CuO, Cu2O and a mixed Cu oxide phase depending on

their experimental conditions. Deposited films showed a sheet resistance that increased for
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increasing annealing temperatures; from 0.06 - 1.3x1014 Ω/square.

Muslem F.Jawad et al., [27] deposited Cu2O thin films by pulsed laser deposition

on glass substrates using a 532nm Nd:YAG laser at 300°C and 500°C substrate temperature.

In their studies, at 300°C the major plain orientation in the film is (111) and (200) where

increasing the substrate temperature changes the major plain orientation to (111) and (020).

The measured optical band gaps for Cu2O and CuO thin films are 2.04 and 1.35 eV.

2.2.2 CuO structural properties, applications and method of deposition

CuO is a p-type semiconductor with a band gap of 1.2eV [20] [28] belonging to the monoclinic

structure. CuO is naturally available in the form of a mineral called tenorite [18]. CuO has

a unit cell, where a single Cu atom is attached with four oxygen atoms in a square planar

configuration [28] as shown in the figure (2.2).

Figure 2.2: Crystal structure of CuO (tenorite)

It can be deposited using a range of deposition techniques; Yil-Hwan et al., [29]

deposited CuO thin film using rf magnetron sputtering on Si wafers. At low pressure, the

electrical resistivity as found to be very low (6.73x10−2 Ω cm) while increasing the pressure

showed high resistivity (698 Ω cm).
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M.A. Awad et al., [30] also deposited CuO thin films using dc magnetron sputtering.

Their films were subjected to thermal treatment at 350°C, 450°C and 500°C for 3 hours. They

show that at 450°C there is a mixed phase of CuO and the electrical resistivity is 2.92 x 101

Wcm. The sample at 500°C shows higher resistivity (8.16 x 102 Wcm) than thermally treated

samples at low temperatures.

Forming different shapes during materials synthesis can also enhance the physical

properties. E.g. Ahmad Umar et al., [31] synthesised CuO nano sheets by chemical methods

which shows potential for gas sensing applications due to the (110) lattice plane growth.

In the section below, different thin-film deposition techniques will be discussed.

2.3 Classification of deposition techniques

Over the last century, many different thin film deposition techniques have been developed.

These can be broadly classified as shown in Figure 2.3:

� Physical Vapor Deposition (PVD)

� Chemical Vapor Deposition (CVD)

� Electrochemical Deposition (ECD)
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Figure 2.3: Classification of thin film deposition techniques

Independent of what type of deposition technique is used, they all need to satisfy

certain requirements such as, uniformity, a very good control over film thickness, good adhe-

sion between coating and substrate, so that the coating does not peel off from the substrate

and most importantly the crystal structure of the film deposited must be pure because it

will affect the properties of the film.

2.3.1 Physical vapour deposition

In physical vapor deposition techniques, the material which is to be deposited is taken in

solid state and deposited as atoms on the substrate without any chemical reaction. The

physical processes used in these PVD techniques can be classified as athermal and thermal

processes. During athermal processes, externally ionised gas is fed into the chamber, where

these ionised gas atoms strike the target material which is vaporised and then deposits as

thin film [32]. Thermal PVD processes involve thermal heating of the target material For

example: laser irradiation of targets. The common types of PVD techniques are evaporation,

sputtering and molecular beam epitaxy, which will be discussed briefly below.
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2.3.1.1 Evaporation

Evaporation is one of the most straightforward physical vapour deposition techniques. In

this method, an evaporation source (eg: thermal, e-beam or both) is used to evaporate the

target material, which then deposits as a thin film on the substrate. The whole process is

carried out in a vacuum chamber to avoid contamination of the thin film. The schematic

set-up is shown in fig 2.4. Based on the source used for evaporating the material, types of

evaporation can be classified into

� Thermal evaporation

� Electron beam evaporation

� Pulsed laser ablation

A description of PLD and experimental set-up relevant for the thesis will be discussed in the

chapter 4.

Figure 2.4: Schematic of standard evaporation techniques

The desired material for deposition is placed on a stage and heated by means of

electrodes. The pressure inside the chamber is maintained in the range 1Ö10−8 – 0.1 Pa.

Upon heating, the target material goes through a liquid phase to a vapour phase.
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This vapour gets deposited on the substrate, which is placed parallel to the target. Depending

on pressure, the mean free path of the vapour material varies and hence the stoichiometry

and thickness of the film varies. A limitation of the evaporation technique is problems

achieving conformal coatings, because the vapour atoms/molecules are transported in a

straight line from target to substrate. In order to overcome this, various strategies such as

usage of multiple sources, revolving substrates, and utilizing laser beams have been developed

http://nptel.ac.in. Y.H.Navalea [33] deposited CuO thin films on glass substrates using

a thermal evaporation technique. Deposited without annealing, these films showed poor

response for gas sensing applications. However, annealing the film up to 700oC improved the

response considerably.

2.3.1.2 Sputtering

Sputtering is one of the most utilized PVD techniques. It involves dislodgement and ejection

of source material from a solid surface and deposition on a substrate. Fig 2.5 illustrates the

sputtering process schematically.

Generally, the sputtering process takes place in an inert atmosphere, where inert

gases like Ar or He are used at a low pressure of around 15 Pa. Upon applying a high

electric field of typically 10 kV/cm, free electrons are accelerated and the Ar/He atoms can

be ionized. The generated Ar+ or He+ ions strike the source electrode and ejects the target

atoms. These ejected target atoms are deposited on the substrate which is kept parallel to

the cathode (target). It is to be noted that along with neutral target atoms other charged

species will also interact with the substrate surface and the grown film. Such interaction

between the grown film and the charged species would lead to simultaneous sputtering of

the grown film. In order to prevent such simultaneous sputtering, the target is capacitively

coupled to a generator, applying a DC bias to the target, preventing the charged ions from

reaching the target.
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Figure 2.5: Schematic representation of sputtering technique in a vacuum chamber

Advantages of sputtering processes are (i) wider choice of materials, (ii) better ad-

hesion to substrate, (iii) complex stoichiometry can be deposited, (iv) films can be deposited

over large surface (process can be scaled), (v) deposition rate is proportional to yield for

a given plasma energy. While the disadvantages of sputtering technique are high cost of

equipment, substrate heating due to electron (secondary) bombardment and slow deposition

rate (1 atomic layer/sec).

2.3.2 Chemical vapour deposition

Chemical vapour deposition (CVD) is the process in which thin films are deposited through

chemical reactions during the deposition process. Usually, a chemically reactive volatile

compound will be used as feed gas, which subsequently reacts with other gases to produce

a non-volatile product that is deposited on the substrate as a film. The main application

area of the CVD technique is the electronics industry, where this technique is used for the

fabrication of various micro-electro mechanical structures (MEMS).
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Figure 2.6: Schematic of chemical vapour deposition process

The working principle of the CVD technique can be found in Fig 2.6. Precursor

gases are pumped into the reaction chamber. These precursor gases are transported to the

substrate surface, were they get adsorbed, react and diffuse to nucleate the thin film growth.

All by-products other than the required thin film product are pumped out. It should be noted

that the CVD process is an intricate combination of both gas phase and surface chemical

reactions. Too high concentrations of reactants in the CVD process can make the gas phase

reactions dominant, which leads to homogeneous nucleation, which will not provide good

quality films. Therefore, careful control of the concentration of precursor gases, temperature

and pressure are needed in the CVD technique.

Several variations on the CVD technique have been developed for specific appli-

cations. This includes techniques that provide additional energy to activate the reactions

(plasma-enhanced CVD, laser-enhanced CVD), and techniques that allow non-volatile pre-

cursors (aerosol-assisted CVD).

In plasma enhanced chemical vapour deposition, plasmas operating with frequen-

cies ranging from 100 kHZ to 40 MHz are used as an energy source to instigate reactions.

Whereas, in the case of low pressure-CVD techniques, a low pressure of 0.1 kPa is used for

depositing thin films, as the low pressure can enhance the mass flux of reactant and products.
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Recently, lasers were also used to assist the chemical reactions or deposition by pyrolytic pro-

cesses, where the laser heats the substrate and induces gas decomposition, which increases

the rates of chemical reactions. Finally, the aerosol assisted CVD has been developed for

systems without gaseous precursors, low vapour pressures and low solid precursors. In this

process, tiny droplets of liquid precursors are diffused in a carrier gas, where the precursor

droplets diffuse with the background gas to react and grow as thin films.

2.3.3 Electrochemical deposition

Electrochemical deposition is a versatile technique that involves cations as a growth species

during thin film deposition. This technique is mainly used for electrically conductive mate-

rials such as metals, alloys, semiconductor and conductive polymers. It is popularly known

as electroplating.

During the electrochemical deposition process, an anode and cathode are immersed

into an electrolyte solution and these electrodes are connected to an electric circuit. When

the current is applied, the positive ions from the electrolyte solution are attracted towards

the cathode, whereas, the negative ions move towards the anode. Thereby, the electrodes

undergo oxidation and reduction processes, that gradually dissolves the anode into the elec-

trolyte solution and deposits on the cathode (coating). Fig 2.7 shows an example of an

electrochemical deposition process. It is the deposition of Ni-Gr by Zhaodi Ren and co

workers [34] .



2.3. CLASSIFICATION OF DEPOSITION TECHNIQUES 32

Figure 2.7: Electrochemical deposition Ni-Gr composites [34]



Chapter 3

Pulsed Laser Deposition

3.1 Introduction

Since the discovery of the laser in the 1960’s, lasers are widely used in various fields of

application. In particular, the development of high-power pulsed laser has impacted the

field of thin film deposition. Pulsed Laser deposition (PLD) is a versatile thin film deposition

technique that is widely used in semiconductor industry, metallurgy and material science,

for instance for the production of solar cell thin film [35], photovoltaics [36] and transparent

conducting films [37]. The principle of PLD is straightforward: A high power laser is focussed

on a target, ablating solid material, turning it into a plasma. This plasma plume moves away

from the target and deposits on a substrate as a thin film with the same stoichiometry as

the target material. This process is schematically shown figure (3.1).

The phenomenon of PLD has been reviewed by several authors [38] [39] [40] [41].

In summary, when a high power laser is focused onto a solid target five different stages

of interaction take place. First: the solid surface starts to absorb the energy of the laser

light. Second, the absorbed energy results in the heating of the target. Once it reaches the

melting temperature, the target starts to melt and subsequently vaporise if heating continues.

33
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Next, the gas is turned into a plasma; the ionisation occurring through a combination of

multiphoton ionisation and electron impact ionisation. Plasma heating occurs via inverse

bremsstrahlung absorption of the laser light by the free electrons and subsequent collisional

thermalisation with ions and neutrals [42]. The fourth stage is expansion of the hot plasma

away from the target, and the final stage is the deposition on the substrate surface a as thin

film. Fig (3.2) gives a schematic overview of laser-target interaction, i.e the first 3 stages of

PLD. In the remainder of this chapter, the physics behind the different stages of the PLD

process will be discussed in more detail.

Figure 3.1: The schematic representation of PLD process

3.2 Laser energy absorption in solid materials

The absorption of laser energy in the target strongly depends on the type of material used

for ablation. During initial laser-solid target interaction, photon energy is directly coupled

with the excited and vibrational states of the material [43]. Based on the freely available

electrons and the bandgap materials, and the laser energy absorption, into the material can

be classified as metals, semiconductors and insulators.



3.2. LASER ENERGY ABSORPTION IN SOLID MATERIALS 35

Figure 3.2: Schematic representation of laser target interaction

In metals, the absorption of energy is initiated by the free electrons which involves

inverse bremsstrahlung absorption. The absorbed energy is eventually transferred to the

conduction electrons in the gas. Subsequently, the electron energy is transferred to the

atoms present in the lattice. It can be shown that the thermal diffusivity of to the metal

will be of the order of
√
Dt [44] where t is the laser irradiation time and D is the thermal

diffusivity. Typical thermal energy transfer times between hot electrons and lattice phonon

is order of 10−12−10−10s [43]. This means that for nanosecond lasers it is possible to explain

the details of phase transformation (i.e thermal vaporization from the heated surface to the

liquid phase) in a classical way. On the other hand, the energy absorption and relaxation time

is different for picosecond and femtosecond lasers. During the short pulse energy absorption,

energy distribution among the particles is slow so the heating of the lattice will be different

and relatively slow for picosecond lasers.

Another important parameter for energy absorption in a laser-solid interaction is
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plasma frequency ωp [43] [45]

ωp =
√
Nee2/meε0 (3.1)

where, Ne, me and ε0 are the electron density, mass of the electron and permittivity of free

space.

Only light with a frequency higher than the plasma frequency can pass through a

plasma. Since all frequencies lower than the plasma frequency will cause the electrons in the

plasma to oscillate and take energy from the light beam, i.e. absorbing it. In case, if the

incident light frequency is less than the plasma frequency, electrons in the plasma response

to the incident radiation and absorb energy from it. Particularly in metals due to the high

conduction electrons and plasma frequency, the absorption of energy will be high.

For example, the solid density Cu, ρ is 8.96 g / cm3, the density of atoms (and

therefore electrons) is of the order of 1029 m−3. The corresponding plasma frequency for this

density is 100 nm. This means that the light from almost all common lasers is at longer

wavelengths than the plasma frequency and therefore will be absorbed very efficiently. For

532 nm, the laser wavelength used in this thesis, the critical density, i.e. the density at which

the plasma frequency is equal to the laser frequency, is about 4 x 1027 m−3. So, very close to

the there will be a layer of high density plasma, falling from solid density toa typical plasma

density of say 1024m−3 in the plume. In that case, the 532 nm laser will not get to the solid

surface any more, but the light will be absorbed by the plasma at the critical density, i.e.in

the plasma just in front of the target. Still, the actual plume is below critical density and

even though it will absorb laser energy via inverse bremsstrahlung, the majority of the laser

beam will pass through this part of the plasma.

In metals, due to the overlap of valence and conduction band and therefore the

availability of free electrons, the energy absorption is relatively high. Whereas, in semi-

conductors, the energy gap between valence band and conduction band is significant. Laser

photons will therefore create electron-hole pairs (if the photon energy is sufficient), instead of
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heating free electrons through Inverse Bremsstrahlung absorption. The creation of electron-

hole pairs leads to the transfer of an electron from the valence band to the conduction band

with the electron having a kinetic energy of hν − Eg [44].

For insulators, even more photon energy is required to free an electron, In very

intense lasers, the multiphoton absorption process can produce a conduction electron. These

conduction electrons start to collide with lattice atoms and can knock out an electron from

the atom which creates hole.

3.3 Heating, melting and vaporisation of target

The absorption of laser light through the different mechanisms described before, all lead to

increased lattice vibrations of the material, i.e. heating of the target.

The details of the heating of the targets strongly depend on the properties of the

laser pulse. The heat equation (3.2) [46] is used to calculate the target temperature at various

depths where no phase change occurs in the material. When the incident laser intensity is

low (< 108 W/cm2), no phase change of the target material is encountered, instead the only

process to take place is heating.

The next phase is melting of the target, that is if the absorbed energy is high enough

that the temperature of the target reaches its melting point. This is one of the important

criteria for welding application, where one needs the surface to be melted rather evaporated.

However, for the Q-switched, pulsed laser used in this thesis, melting of the target is often

no completely achieved due to the short pulse and high flux densities. In this case, change

of phase from solid to liquid is small in comparison to the phase change between liquid to

vapour.

The next important stage before the plasma formation is vaporization of target.
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During the laser target interaction, when the surface of the target reaches it boiling point it

starts to vaporize. Therefore, the thermal conductivity and specific heat capacity of latent

heat of the material are very important.

∂T (x, t)

∂t
=

∂

∂x

[(
κ

Cpρs

)
∂T (x, t)

∂x

]
+

α

Cpρs
I(x, t) (3.2)

Material with low thermal conductivity will vaporize more material at low flux density,

since the energy absorbed near the focal point can not easily diffuse to nearby areas which

significantly raises the temperature of the target and more amount of material is vaporized

than for material with high thermal conductivity.

Other than thermal conductivity, another important parameter is heat capacity of

the material, since, heat capacity determines the time tv taken by the surface to reach its

boiling point. This can be calculated from a 1-D heat flow equation (3.3) [44]. Where κ is

the thermal conductivity of the material, ∆T is temperature required to raise the surface to

its boiling point, F is the laser flux density and Cp is the heat capacity per unit mass.

tv =
πκρCp

4F 2
∆T (3.3)

V =
F

c∆T + Lv
(3.4)

Once when the material vaporises, the rate of vaporization (g cm−2s−1) can be

approximated by equation (3.4),

3.4 Plasma formation

For nanosecond-duration lasers, the plasma formation is initiated by a combination of mul-

tiphoton ionisation and electron impact ionisation. This plasma is further heated by inverse

bremsstrahlung.
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3.4.1 Multiphoton Ionisation

In the photo-ionisation process, an atoms or molecules absorbs a photon from the laser. If

the energy of this photon is above the ionisation potential of the atom/molecule, it will be

ionised.

However, in practice, for most materials and lasers used in PLD this photo-ionisation

process do not occur. Typical materials e.g Cu, Zn, have ionisation potentials of 5-10eV

while the most commonly used lasers have photon energies ranging from 1.1eV(1064nm) to

5.48eV(226nm) or 6.42eV excimer laser ArF (193nm).

However, at high photon fluxes the process of multi-photon ionisation can be-

come significant. In this process more than one photon is absorbed simultaneously by the

atom/molecule. If the cumulative energy of these photons is more than the ionisation po-

tential the atom/molecules will be ionised. The cross-section for multi-photon ionisation

processes rapidly decreases with increasing number of required photons.

M + n(hν) −→M+ + e− (3.5)

where, n is the number of photons, hν is the energy of the photon. An example relevant

to this thesis, is a target of Cu, ablated by a 532 nm Nd:YAG laser. The first ionisation

potential of Cu is 7.7268 eV and the laser photon energy is 2.33 eV which means that in

order for the multiphoton ionisation mechanism to occur we need 4 photons to initiate the

ionisation process. The cross-section for the simultaneous absorption of 4 photons is very

small, making the process of multi-photon ionisation for our conditions of minor importance.
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3.4.2 Electron impact ionisation

In the electron impact ionization process, an electron collides with a neutral gas particle. If

the transferred kinetic energy is above the ionisation potential of the gas particle, it will be

ionised:

e+M −→ 2e− +M (3.6)

As can be seen from Eq. 3.6, there are two free electrons after the collision which means there

is a multiplication of free electrons. If the free electrons can gain energy in between collision

processes, e.g. through inverse Bremsstrahlung, then both electrons can cause new electron

impact ionisation processes and an electron cascade can form. The initial seed electrons

needed for such an electron cascade can come from either naturally available electrons in the

atmosphere (102 − 103cm−3) [42] or from multi-photon ionisation processes.

The relative importance of multi-photon ionisation and electron-impact ionisation

depend strongly on the properties of the laser pulse (e.g. wavelength, duration, intensity)

and the gas particle density. For short wavelengths and low particle densities, multiphoton

ionization dominates. Whereas, for longer wavelengths and higher gas densities, electron

impact ionisation and inverse bremsstrahlung are more important.

3.4.3 Plasma heating by Inverse Bremsstrahlung

Inverse bremsstrahlung absorption is a process in which a free electron interacts with the

incoming laser light, absorbing energy and increasing its kinetic energy.

In the inverse bremsstrahlung absorption process, for high ion densities, the electron-

neutral interaction is relatively small when compared with electron-ion interaction. There-

fore, inverse the bremsstrahlung absorption coefficient due to electron-ion interaction is given



3.5. PLASMA EXPANSION 41

by:

αIB(cm−1) =

[
4e6λ3Z2neni

3hc4me
×
√

2π

3mekBTe

]
×

[
1− exp

(
− hc

λkBTe

)]
(3.7)

Rearranging equation (3.7) gives:

αIB(cm−1) = 3.69× 108
Z2neniλ

3

T
1/2
e

[
1− exp

(
−hc
λkBTe

)]
(3.8)

where, ne and ni are densities of electron and ion in cm−3, λ is a laser wavelength used, Z

is the average ion charge, c, h and Te are the speed of light, Planck’s constant and electron

temperature. If we consider our plasma to be in thermodynamic equilibrium, then ne = niZ

and eq (3.8) further simplifies to,

αIB(cm−1) = 3.69× 108
Z2n2eλ

3

T
1/2
e

[
1− exp

(
−hc
λkBTe

)]
(3.9)

IB absorption results in further ionisation and therefore ne increase such that ne goes above

the critical density and therefore IB stops for that part of the plasma. Then, because it keeps

expanding, the density goes down again (because of the expansion) therefore ne drops below

critical again and IB starts again for that part of the plasma. In this trend, self regulation

of the plasma takes place and it expands throughout the entire laser pulse.

3.5 Plasma expansion

The next stage of PLD is plasma expansion. This phase describes the expansion of the

plasma that is created by the laser-target interaction. The time scales are of the order of

microseconds which is significantly longer than the (sub-) nanosecond duration of the laser

pulse and therefore laser-target interaction. Zeng et.al [47] shows that the plume shape and

expansion velocity depend strongly on the characteristics of the laser pulse forming the plume

(e.g. laser duration, wavelength, energy). In the following section, both plasma expansion
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in vacuum and background gas will be discussed.

3.5.1 Plasma expansion in vacuum

Plasma expansion in a vacuum is a well-studied problem, both from a fundamental physics

point of view as well as for applications, e.g. think film deposition. Recently, there has been

a renewed interest in this area for applications in the field of space thrusters [48] and laser

produced nanoplasma [49]. During a typical ns laser ablation, the ablation rate is greater

than 0.1 monolayer/sec and a density of the order of (1018 − 1020cm−3) is initiated near the

front of the target. Since, the particles are in a vacuum, the expansion of the plasma can be

considered to be adiabatic which means that there will be no transfer of heat or mass from

the plasma to the environment.

Figure 3.3: Laser produced plasma plume expansion at 13 Pa and 20 Pa at 100ns

The particles close to the target show an anisotropic velocity distribution, but due

to a scattering between the plasma particles, the anisotropic velocity distribution will be

modified into an isotropic velocity distribution in order to maintain a thermal equilibrium

in the plasma. This kind of transition layer is called as Knudsen layer. Once the Knudsen

layer is formed, due to a limited number of collision in the vacuum, the velocity distribution

of the particles can be fitted using a shifted Maxwell-Boltzmann distribution eq (3.10): [50]

f(v) = A

(
m

2πk

) 3
2

exp

(
−m(v − u)2

2kT

)
dv (3.10)
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Here, u and v are the expansion velocity and speed along propagation direction, m and k is

the mass of the particle and Boltzmann constant [46].

3.5.2 Plasma expansion in background gas

When the plasma plume does not expand into a vacuum but into a gas background, there can

be a significant change to the expansion process. Exactly what the differences are depends on

the pressure of the background gas. When the pressure is low, (< 1Pa), the plasma species

behave like the species in a vacuum. Whereas, for pressures in the range (10Pa − 100Pa)

the dynamics of the plasma plume will be influenced by the gas background in the form of

a shock wave and the plasma plume is significantly slowed down due to the compression of

the background gas. Fig (3.3) is an ICCD image of a laser produced Cu plasma expansion

at 13Pa and 20 Pa; showing a compressed front edge of the expanding plume in the 20 Pa

case compared to the 13 Pa case.

The expansion distance D as a function of time t can be calculated using Sedov’s

blast wave theory equation (3.11),

D = λ0

(
E0

ρ1

)1/2+d

t2/2+d (3.11)

where d represent the shape of the plasma during expansion, for a spherical shape d = 3, for

cylindrical d = 2 and for planar propagation d = 1 . E0 and ρ1 are the laser energy per area

and ambient gas density, λ0 is a dimensionless constant which depends on the specific heat

capacity of material [46]. Fig (3.4) represent the time resolved images of stainless steel laser

ablation for femtosecond (fs) and nanosecond laser (ns). From the images we can see that,

for fs laser, the expansion of the plume is predominantly perpendicular to the substrate,

While for ns laser the lateral expansion is gradually increasing with increasing time. Based

on Sedov’s blast wave theory, the expansion of plasma plume for fs laser is proportional to
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Figure 3.4: (a) Shock wave image for femtosecond and nanosecond laser ablation (b) Per-
pendicular plume expansion distance for femtosecond and nanosecond laser ablation driven
shockwave [46], [47]

t
2
3 and for ns laser ablation it is proportional to t0.4.

3.6 Thin film growth mechanisms

In the final phase of PLD, plasma consisting of target atoms and electrons moves towards

the substrate to deposit and grow as thin film. Based on the growth dimension this process

can be classified into three modes, 1. Frank-van der Merwer (layer-by-layer growth), 2.

Volmer-Weber (island growth), 3. Stranski-Krastinow(combination of layer-by-layer and

island growth). These different modes will be discussed in more detail in the next section.

Figure(3.5) shows the range of atomic processes that can happen on the substrate during

thin film growth. An important one determining the growth mechanism is the diffusion of

atoms along the surface.
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Figure 3.5: Schematic of possible atomic process happen on substrate during thin film de-

position [51]

The energy of the atoms arriving at the substrate depends strongly on the experi-

mental conditions. Therefore, atoms arriving and diffusing on the surface can start growing

in three different modes. In the section below these three different ways of thin film growth

modes will be discussed.

3.6.1 Frank-van der Merwe growth mode

This mode is the preferred growth mode for uniform thin films. A monolayer of atoms is

formed on the substrate and followed by single layer of atoms on top of each monolayer as

shown in the figure 3.6.

Figure 3.6: Frank-van der merwe: Layer-by layer growth mode

The condition for layer-by-layer growth to occur is expressed in equation (3.12).

Here, in the equation (3.12), ΓF , ΓS , ΓI are free energies of film, substrate and interface. In
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case, ΓI = 0 and ΓF = ΓS , i.e plane orientation and free energies of the film and the surface

are the same, If the film is deposited on clean surface the conditions for monolayer growth

are easily satisfied. Whereas, to achieve a layer-by-layer growth throughout the deposition

for different substrate and film plane orientations, the free energies of the substrate should

be high compared to the free energy of the film and interface. Under such conditions the

bonding between the substrate and the film will be strong, initiating monolayer formation.

ΓI + ΓF ≤ ΓS (3.12)

Layer-by-layer formation does not necessarily mean a single layer of atoms across the whole

substrate, followed by another single layer. It is possible to nucleate several islands, which

each grow layer-by-layer and eventually fuse with nearby islands into a continuous film. In

this way, layer-by-layer formation can be achieved for lattice mismatched substrates and thin

films.

3.6.2 Volmer-Weber growth mode

This type of thin film growth mode, also known as island growth, is characterised by the

formation of several small islands of several monolayers thickness. It is initiated when the

vaporized target atoms start to diffuse onto the substrate or on the pre-existing thin film

cluster.

Figure 3.7: Volmer-Weber growth: Island growth mode
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As indicated in eq (3.13), this growth mode occurs when the sum of free energies

of the film and interface is larger than the free energy of the substrate. This allows the

vaporised atoms to start to diffuse onto the substrate surface to form clusters. During the

cluster growth, the free energy of the cluster is increased by the addition of small atoms.

Once the cluster reaches a critical size, any further addition of atoms results in a decrease

of free energy. The result is that a steady state is reached and the cluster growth become

small. It is now more favourable to start a new cluster on a free position on the substrate.

This process continues until the substrate surface is completely covered.

ΓI + ΓF > ΓS (3.13)

Hoseok Heo et al., [52] showed the difference between layer-by-layer growth and

island growth for Bi2 Te3/Sb2Te3 thin film on h-BN and SiO2/Si substrates. Due to the

lattice mismatch, the stacking of Bi2 Te3 and Sb2Te3 on two different substrates induces

strain on the growth substrate and changes the growth modes and the film properties.

3.6.3 Stranski-Krastinov growth mode

A combination of both monolayer and island growth is known as Stranski-Krastinov growth,

as schematically indicated in figure 3.8.

Figure 3.8: Stranski-Krastinov growth: combination of layer-by-layer and island growth
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In this mode, typically 1-5 monolayers [51] are formed on the substrate followed by

the formation of island growth. This type of growth is initiated due to the increase in the

stress between substrate and film. This stress in relieved by forming a monolayer followed

by the cluster nucleation and island growth. This kind of growth is mostly seen for lattice

mismatch greater than 2%.

Michael A. Fusella et al., [53] grown rubrene thin films on ITO substrates and by

varying the growth rate and substrate temperature they saw a clear transition from layer-

by-layer to island growth. The first 10nm was observed to be layer-by-layer growth, followed

by island growth due to large lattice mismatches.

3.7 Factors influencing deposition process

It is clear that the properties of the deposited thin film depend strongly on the parameters of

the deposition process [54], [55]. In this section, I will discuss several important operational

PLD parameters and how they affect the ablation and deposition processes.

3.7.1 Laser Irradiance, laser pulse width, pulse shape and laser wavelength

Laser irradiance (laser irradiance = pulse energy/(focal spot area × pulse width)) is one

of the important parameters during thin film deposition process. Mostly during laser in-

teraction, the laser irradiance could be either below or above the ablation threshold of the

material. If the laser irradiance is below the ablation threshold, inverse bremsstrahlung

becomes significant in the forming plasma. On the other hand, if the incoming laser irra-

diance is close to the ablation threshold, multiphoton ionisation plays a role in the process

of initiating plasma. Equation 3.14 describes the threshold intensity as function of material

parameters. It will undergo shock wave formation in two different ways; one for the species

travelling normal to the target under background atmosphere and the other will be inside
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the target [56] .

Ith =
Tb
α

√
κρcp
tp

(3.14)

where Tb , α, κ, ρ and cp are material dependent properties which represent the

boiling temperature, absorption co-efficient of the material, thermal conductivity, density

and specific heat capacity of the material. tp is the pulse width which is a laser property.

Equation (3.14) shows that, in order to evaporate material before the laser pulse ends, the

incoming laser irradiance (I) should be greater than the threshold irradiance (I > Ith).

It is also clear that the amount of material leaving target surface depends on threshold,

melting point and boiling point of the material. Therefore, for higher incoming laser, the

kinetic energy of low ablation threshold will be faster than the high ablation threshold of the

material. It is also important to note that for a high irradiance on a low-ablation threshold

target, a plasma will be created with a high temperature, i.e. there is a large amount of laser

energy available to heat the plasma after ablation. It also means that even though with a

higher irradiance you can ablate more material, the plasma that is formed will have a higher

temperature, which is known to change the deposition behaviour [57]. In other words, the

two effects are couples and not independent, complicating the control of the process.

V.J. Rico et al., [57] carried out an experiment by varying the laser irradiance

to control the plasma heating and ablation process efficiently so they were able to achieve

uniform Cu2O / CuO smooth layered thin film.

Furthermore, other laser parameters, e.g. such as pulse duration has a significant

impact on the ablation and deposition process. The main point is that the underpinning

physics is very different. For ns pulses, there is mainly melting and then evaporation and

plasma heating, For fs pulses there is no time for that and there is limited melting and this

then has an impact on the average temperature (or kinetic energy) of the plume.

J.Perrie and co-workers [58] carried out experiments growing ZnO thin film using
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fs and ns lasers. For ns pulsed laser deposition, they were able to produce good quality

single crystalline thin film. The thin films deposited using fs laser showed poor quality thin

film due to the high kinetic energy of the plume.

Another important parameter considered to be important during thin film deposi-

tion and applications like drilling and welding is the laser wavelength. One of the reasons

is that the absorption coefficient of the target is different for different laser wavelengths.

Furthermore, the plasma heating by inverse bremsstrahlung is proportional to λ3 as shown

in equation 3.10. Hence, the plasma generated using IR lasers tends to have high temper-

ature compared to UV lasers. Second, the contribution of multiphoton ionisation to the

plasma formation depends strongly on the laser wavelength. For high photon energies (UV

wavelengths), fewer photons, typically 1-2 for most metals are needed for photo-ionisation,

while for IR wavelengths often 4 or more photons are need to bridge the ionisation threshold.

The cross section for these processes scales strongly with the number of photons required to

ionise an atom.



Chapter 4

Plasma enhanced pulsed laser

deposition (PE-PLD)

4.1 Introduction

This chapter first introduces the experimental details of the Pulsed Laser Deposition (PLD)

technique, after which our novel Plasma-Enhanced PLD technique is described.

4.1.1 Pulsed laser deposition

Pulsed laser deposition is one of the physical vapour deposition techniques and it was first

established by Smith and Turner in 1965 [59]. It has been a popular technique for growing

semiconductor thin film [60], ferroelectric materials [61], high temperature superconducting

films [13], thin films for studying optical band gaps (CuO) [27], gas sensing [62] applications

and as transparent conducting oxide films (ZnO) [63].

51
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Figure 4.1: Schematic of PLD set-up

A schematic diagram of the standard PLD setup that was used for the work in

this thesis is shown in Fig (4.1). It consist of a 6-arm vacuum cross with 200 mm outer

diameter conflat flanges (Model: CF160); the front port is used for the diagnostic purpose.

The pressure inside the vacuum chamber is maintained using a two-pump system. Initially,

an oil-free scroll pump (Edwards nxDS 15i) is used as a backing pump and a turbo pump

(Pfeiffer TPU 170) is used to achieve base pressure. If required, a flow of oxygen gas is

introduced into the chamber to create a background gas pressure of 4-20 Pa. Then, a Q-

switched 532nm Nd-YAG laser (Continuum Minilite II) with 5ns pulse width is focused by

a lens through a quartz window on the Cu target (Testbourne, 99.99% purity).

In our experiment, for the standard pulsed laser deposition conditions, the distance

between the target to the substrate is kept at 40 mm and the background oxygen gas is

varied between 4Pa to 20Pa. Quartz is used as substrate for the thin film growth. This

quartz substrate is initially cleaned using acetone and then kept in a 40°C heated ultrasonic

ethanol bath for 20 min. Once it is taken from the ultrasonic bath, it is blow dried. This

quartz substrate is loaded on to the substrate holder which is kept parallel to the rotatable

target holder. During each deposition, a layer of target material is coated on the surface



4.1. INTRODUCTION 53

of the top quartz electrode and this material is removed each time before the deposition

by cleaning the window using acetone. Finally, the tightly focused laser from a 500mm

lens impinges on to the target material and the subsequent thin film deposition on to the

substrate takes place.The laser spot size was estimated to be 492 µm diameter from SEM

images (as shown in figure 4.2). This gives a typical irradiance of 1767 MW/cm2 and a

fluence of 9.4 J/cm2. The results and discussion of thin films deposited with the standard

PLD set-up are discussed in chapter 8.

Figure 4.2: (a) Scanned image of Cu target and (b) spot size diameter of the laser shot

calculated from scanning electron microscope

4.1.2 Advantages of pulsed laser deposition

Advantages of the PLD technique over other deposition techniques include:

(1) The technique itself is very simple to operate and compared with other sophisticated

deposition techniques that need ultra high vacuum to deposit thin film e.g. (MBE)

(2) Deposition rates can be controlled by varying laser energy, laser wavelength, pulse width,

pulse shape and target material(i.e the deposition rates are different for oxides and metal
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target).

(3) Confinement of the laser-target interaction in the chamber attributes a clean process

of deposition. Whereas, in sputtering techniques, plasma interacts with surfaces inside the

chamber and this can contaminate the sample.

(4) A laser can be tightly focussed, which means that a small target is sufficient for deposition.

This is an advantage when using complex or expensive targets.

4.1.3 Limitations of pulsed laser deposition

On the other hand, standard PLD also suffers from some limitations. Most notably, the two

main limiations of PLD are [64]

(i) Material dependant limitations:

(a) Substrate heating and post annealing are often needed for depositing high-quality films.

(b) Difficult to use heat-sensitive substrates, e.g. plastics.

(c) PLD control parameters such as laser energy, wavelength, gas pressure are not indepen-

dent, i.e. not ideal for controlling the process. For example, making CuO and Cu2O requires

different targets, this variation in stoichiometry cannot be controlled with background gas

pressure.

(ii) Particulates:

(a) Creation of particulates in the plasma plume that can end up incorporated in the thin

film, leading to low-quality films. During the deposition process, the size of the particulates
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ranges from < 0.1 µm to 10 µm, and depends strongly on the laser energy and wavelength

used.

(b) Furthermore, it is possible to create asymmetric fragmented particulates from the target

that will affect the uniformity of the film.

(c) If the laser energy is too high, there will be heating and melting of the sub-surface, which

leads to formation of molten droplets in the sub-surface, which in turn leads to splashing of

the target material. These macroscopic droplets will be incorporated in the deposited film,

leading to a non-uniform film.

(iii) Angular distribution of laser produced plasma species [64]: The angular distribution

of the plume is in a forwarded direction and it is related to the (cos α)n where α is the

angle normal to the target (distance between target to the substrate and spot dimension)

determines the uniformity of the thin film. It is known that for PLD n 5-25 [64], i.e. the

plume is strongly in the forward direction. The need for this high directionality for good

films is an issue with mixed targets, where the wider distribution of the plume leads to

non-stoichiometric films.

4.2 Plasma enhanced Pulsed laser deposition (PE-PLD)

The main idea of PE-PLD is to produce metal oxide films from a metal target and a back-

ground oxygen plasma. I.e. all metal comes from the target, all the oxygen in the film comes

from the background plasma, not just a small correction to the stoichiometry as is the case

in standard PLD. In other words, the sources of metal and oxygen are separated, allowing

independent control over both, enhancing the overall control of the thin films deposition

process. In order to achieve this, a standard PLD setup needs to be extended to incorporate
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Figure 4.3: Schematic diagram of (a) Capacitively Coupled Plasma and (b) Inductively
Coupled Plasma

an additional electrically-produced plasma source for reactive oxygen. The reasons for the

choice for an Inductively Coupled Plasma (ICP) are discussed in some detail below.

4.2.1 Low-pressure processing plasmas

Plasma processing, etching and deposition, of large wafers is common practice in the semicon-

ductor industry. Here, plasmas are needed that can generate high densities at low pressures,

remain at a low temperature and are extremely uniform across the treated wafer surface.

Radio-frequency-driven low-pressure plasmas have been identified as meeting these needs.

Depending on the electrode configuration, these RF plasmas can be classified as Capacitively

Coupled Plasmas (CCP), with 2 parallel metal electrodes, or Inductively Coupled Plasmas

(ICP) where one electrode is replaced by an antenna, external to the plasma volume.

Figure 4.3 shows schematic diagrams of both the CCP and ICP configurations. For

the CCP, 13.56 MHz RF generator is connected, via a matching network, to one of the

electrodes, while the other electrode is grounded. The RF voltage sets up an (ac) electric

field between the electrodes, which causes the electrons to accelerate and ionise feed gas

atoms in the chamber via electron impact collisions. The ions are too heavy to respond to
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the fast-changing electric field and therefore remain (almost) stationary at low temperatures.

Excitation of atoms and molecules by electron impact collisions also results in light emission

that can be observed.

In an ICP, the power coupling is inductive, via an external coil. In particular, ICP

plasmas with a planar coil gained interest from the microelectronics industry because it

can generate higher density plasmas than CCPs and have superior uniformity compared to

traditional coil configurations. It is worth noting that depending on the details of the power

coupling, ICP plasmas can be operated in a low-power E-mode or a high-power H-mode.

This classification of low-pressure RF discharges is schematically shown in Fig 4.4 Further

details will be discussed in the next sections.

4.3 Operating modes in Inductively coupled plasma

A typical ICP set-up (GEC reference cell [65]) is shown in the figure 4.3(b). Based on the

power supplied to the coil it can be operated in two different modes (E-mode and H-mode).

These two different modes can be identified visually from the brightness of the plasma

emission. At low power in E-mode, the visible plasma emission is relatively dim. An increase

of RF power results in a sudden transition to the H-mode, which is much brighter. This can

be clearly seen in the figure 4.5

Figure 4.4: Classification of RF discharge
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Figure 4.5: Operating ICP in E-mode (left) and H-mode (right)

The reasons behind the two distinct modes that are observed are the following: at low

power, the current induced in the plasma by the coil is limited. At the same time, there

is a voltage difference, and hence electric field, between the spiral coil and the grounded

electrode. This electric field can generate a plasma in exactly the same way as in a CCP.

In other words, in E-mode, the coil acts as the powered electrode of a standard CCP. Since

this mode can only exist at low powers, the plasma density is low compared to H-mode.

In H-mode, at high power, the capacitive coupling of power is overshadowed by the

inductive coupling. In other words, the coil acts as the primary coil of a transformer, with

the plasma acting as the secondary coil. I.e. the current through the spiral coil initiates

a magnetic field (Faraday’s law) which induces and electric field (and current) in the bulk

plasma. The coil and plasma are seperated by a dielectric material, typically quartz. Heating

of electrons is more effective in H-mode since they respond twice per RF cycle to the field

whereas in E-mode heating of electrons happens only once per RF cycle due to the capacitive

coupling. Hence the energy transfer to the electrons is more effective for H-mode. Compared

to E-mode, H-mode has high plasma density, typically between 1011 and 1012 cm−3, and

hence higher ion and reactive species densities. Also, the ion flux and reactive species

densities will be higher in this mode. The energy of the ions bombarding a sample are
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generally lower in ICPs than in CCPS, because the sheath voltages in ICPs are lower than

in CCPs. For thin film deposition we require a high-density plasma with relatively low ion

energies (to avoid sputtering of the newly formed films). Hence, the choice for an ICP as

the electrically-produced plasma in our PE-PLD technique was made.

Figure 4.6: Comparison of (a) standard PLD and (b) Plasma enhanced PLD

4.4 Experimental design of PE-PLD

The experimental set-up of PE-PLD is indicated in Fig 4.6. The ICP design chosen is the

GEC reference cell [65], a standardized ICP design that is widely used in the plasma pro-

cessing community. This means it is a plasma that is well characterised and well understood,

taking away the need to separately charactise the ICP source before incorporating it in our

PE-PLD set-up. Fig 4.6 also shows the differences between the conventional PLD and the

GEC-reference-cell-incorporated PE-PLD set-up. In this set-up, a 5-turn copper coil, as

shown in figure 4.7, is used as top electrode. The coil is separated from the plasma using a

2.54 cm thick quartz window.
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Figure 4.7: Antenna set-up

The bottom electrode and substrate holder were grounded. The distance between bottom

electrode and quartz window is 40 mm. The bottom electrode is 165 mm in diameter and

made of stainless steel. The RF coil is connected to a 13.56 MHz power supply (Ceasar 1330

RF generator), via an impedance matching network (Meiden made japan). The RF power

supply is operated in a pulsed mode (duty cycle of 10% on and 90% off) to maximise the

power input during the plasma on phase, but limit the overall heating of the setup. The RF

pulse is synchronised with the laser pulse using a delay generator (Stanford research system

DG535).

The target and substrate are kept in the centre of the two electrodes. The rest of the

set-up is the same as in the standard PLD setup, described in section 4.1.1. For diagnostic

purposes, the light emission from the plasma is focused through a lens which is at a 450

angle to the laser beam, onto a 0.6mm diameter optical fibre, connected to a spectrograph

(Princeton 320 PI) and ICCD camera (Princeton PI-MAX). This system enables time- and

space-resolved optical emission spectroscopy of both the plasma plume and the background

ICP. A mass flow controller is used to control the oxygen flow into the chamber. A pressure

between 4Pa and 25Pa of oxygen gas used for all PE-PLD experiments as well as for the

spectroscopic studies.
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4.5 Potential advantages of PE-PLD

The main potential advantages that the PE-PLD technique can offer are:

(1) The target is a pure metal, not a metal oxide target. Not only are these targets cheaper,

but they are also much easier to ablate due to a lower melting temperature. This means

that a lower laser power is needed, reducing the requirements for the laser used.

(2) Having all the oxygen being delivered by the ICP provides a far greater range of sto-

ichiometry control. I.e. stoichiometry can be varied from CuO all the way to Cu2O (and

beyond) using the same Cu target, but only changing the ICP settings.

(3) Unlike traditional PLD, there is no substrate heating or post-annealing needed. The

energy needed for good thin film formation is provided by the ICP instead of external heating.

4.6 Limitations of PE-PLD

Limitations that the PE-PLD technique will have are:

(1) Added complexity, both in experimental hardware (ICP setup) as well as increased

operational parameters (ICP settings as well as laser settings).

(2) The ICP will constantly interact with the target, potentially causing target poisoning

(as known from magnetron sputtering).

(3) The interaction between the plasma plume and the background ICP is poorly understood,

adding complexity to the process.
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The PLD plume is indeed expected to influence the ICP discharge during the deposition.

That is metal atoms and ions from the PLD plume will interact with the ICP discharge

creating metal-oxide molecules. Furthermore, energetic electrons from the ICP can excite the

metal atoms/ions, resulting in additional light emission. The exact details of this interaction

is difficult to quantify without a detailed study into the plasma chemistry for which a link

between the two models, POLLUX and HPEM, is needed. This is beyond the scope of this

thesis. However, it is important to note that for the deposition these effects are expected

to be of minor importance. I.e. the time between laser pulses is 100 ms, which means that

the ICP has some time to “recover”, through gas flow, and become a mostly oxygen plasma

again, certainly in the path of the new plume



Chapter 5

Thin film characterisation

techniques

5.1 Introduction

Thin film characterisation techniques are used to investigate the different properties of thin

films. This chapter is mainly focused on the principles and design of the X-Ray Diffraction

(XRD), Scanning Electron Microscope (SEM) and four point probe which are used to un-

derstand the phase identification, surface image, stoichiometry of the thin film and electrical

properties of the thin film.

5.2 X-Ray Diffraction (XRD)

Since the discovery of X-rays by Röntgen in 1895, X-rays have been widely used in medical

[66] and material science applications [67]. X-rays are produced when fast moving electrons

from a hot cathode hits a heavy target metal. X-rays cover the range of electromagnetic

radiation between ∼ 0.01-10nm which is shorter than ultraviolet light. Within this range

63
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Figure 5.1: Schematic of XRD instrumental set-up

(∼ 0.01-10nm) a further classified into soft X-rays (0.6-10nm) and hard X-rays (0.01-0.6nm)

can be made. Since soft x-rays are in the range of longer wavelength they have low energy,

hence they are mostly used to take image of bones and organs [66]. Whereas, hard x-rays,

due its shorter wavelength and high energy, are able to penetrate through small spacings in

the unit cell. By combining the physics of x-rays and crystal orientation of the materials von

Laue put forward the phenomenon of X-ray diffraction in 1912 [68].

Von Laue attempted his first X-ray diffraction experiment on copper sulfate crystal. and

a diffracted x-ray pattern on a photographic plate was evidence for a regular arrangement of

atoms in the crystal. Therefore, this idea of diffraction of x-rays in a regular pattern, became

a pioneering idea for crystallographers to study and understand the atomic arrangement in

the crystal. Figure (5.1) shows photographs of the x-ray diffraction machine used in this

thesis.

Later in 1912, Idea of Von Laue’s idea of x-ray diffraction gathered interest from W.H.Bragg

and his son W.L.Bragg and they further simplified Von Laue mathematical expressions to

study the structure of NaCl, KCl, KBr, KI [68]. Furthermore, the simplified mathematical

form, now know as Bragg’s law, can be used to estimate several crystal parameters. Bragg’s

law will be discussed in some detail in the next section.
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5.2.1 Bragg’s law

Figure 5.2 illustrates the general concept of Bragg reflection. W.H.Bragg and W.L.Bragg

derived an expression for x-ray diffraction of crystals, based on the wavelength of the x-rays

and atoms in the crystal plane. When x-rays pass through a crystal plane where the atoms

positions are periodically arranged, they are scattered. x-rays scattered from many atoms

can constructively interfere to get a diffracted beam in a particular orientation. In all other

directions, there will be destructive interference, meaning there is no diffraction beam in

that direction.

The shape of the diffraction pattern can give information about the crystal structure

of the the material under study. To understand the link between an observed diffraction

pattern and the crystal structure, we consider figure 5.2. Here, we consider n crystal planes

parallel to the surface, with a distance d (interplanar spacing) between them.

Figure 5.2: Bragg’s diffraction on the crystal [68].

A monochromatic X-ray beam with wavelength (λ) is incident on to the crystal. When

an X-ray hits an atom in the crystal it is reflected at angle θ. Rays A and B show two

examples of reflections. The reflected rays A’ and B’ have a path difference of PQ + QS
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constructive interference occurs. Figure (5.2), shows that rays A and B are scattered by the

X and Q atoms and the path difference for the 0 and 1 plane is given as,

PQ+QS = dsinθ + dsinθ (5.1)

Constructive interference occurs when the path difference is an integer number of wavelength,

nλ. Rearranging the equation (5.1), results in

nλ = 2dsinθ (5.2)

The equation 5.2 is known as Bragg’s law which is the necessary criteria for diffraction to

occur. By changing the angle θ, it is possible to determine d for an unknown crystal (as long

as λ of the x-rays is known). In practice, rather than moving x-ray source and detector the

Figure 5.3: Sample stage in X-ray spectrometer

sample is rotated to achieve the necessary angle of scanning and we use Bragg’s law in XRD

to determine an unknown crystal structure. E.g. by measuring angles θ for which there is a

maximum diffraction, d can be determined.

Based on the atoms present in the unit cell the diffraction angle for a set of planes will

be different. In order to determine the diffraction angle for any crystal system having a set
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of planes, we use Bragg’s law (equation 5.2), In equation 5.2, d is an interplanar distance

and it is different for different crystal system. consider a cubic crystal,

d2 =
a2

(h2 + k2 + l2)
(5.3)

Here, (h,k,l) are the miller indices and it represents planes in the lattice which means it

does not represent one particular plane instead it a represents set of parallel planes which

corresponds to the crystal plane direction. Substituting equation 7.3 in Bragg’s law (equation

7.2) we get,

sin2θ =
λ2

4a2
(h2 + k2 + l2) (5.4)

Therefore for Miller indices of e.g. (1,1,1) the diffraction angle of a cubic system of Cu2O is,

sin2θ =
3λ2

4a2
(5.5)

The lattice parameter for Cu2O is a= 4.2520Å, therefore d is 2.454Å and sin θ111 = 1.54Å/2(2.454Å)=

0.3137, θ111= sin−1(0.3137)=18.287 and 2θ111=36.573. This means that a peak at 36.573

degrees will be observed as a result of the (111) phase of Cu2O.
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Figure 5.4: Cu2O showing (111) plane in both JCPDS and experimental results. The calcu-

lation for 2θ value is shown above

Similarly for orthorhombic system,

sin2θ =
λ2(h2 + k2 + l2)

4(a2 + b2 + c2)
(5.6)

As mentioned earlier (h,k,l) are miller indices, λ is the wavelength of X-ray (Å), (a,b,c) are

the lattice constant.
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5.2.2 Crystal size calculation

Another important parameter we can get from XRD is crystal size. If the material is amor-

phous we get a broadened peak due to the missing long range order in the material. Figure

7.5 schematically shows this effect. The first image is a broadened peak with a FWHM of

(2θ1 - 2θ2) as a result of a decrease in crystal size compared to a perfectly crystalline sample

in the second image.

Figure 5.5: Diffraction pattern for change in crystal size

Therefore to derive the crystal size formula, let us consider a crystal system having

thickness �t�and �n�planes for the atoms in the crystal and θ the Bragg’s angle. The crystal

size will be considered to have a spherical in shape. For example, in the figure (5.2), let us

consider the nth plane, where the x-rays arrive from two different diffraction angles θ1 and

θ2 (which are named as ray L and ray N) for which the obtained reflected angles are either

higher((n+ 1)λ or lower((n− 1)λ than the nth plane.

βt =
1

2
(2θ1 − 2θ2) (5.7)

In the equation (5.7), β is the FWHM of the diffraction peak where at 2θ1 and 2θ2 are the

broadening angles. Rewriting Bragg’s law equation (5.2) for two different angle and t=nd,
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let us consider n=1 and therefore d=t. Substituting this in equation (5.2) we get,

(n+ 1)λ = 2t sinθ1 (5.8)

(n− 1)λ = 2t sinθ2 (5.9)

and the difference in the two equation gives,

t(sinθ1 − sinθ2) = λ (5.10)

sinθ1 − sinθ2 = 2cos

(
θ1 + θ2

2

)
sin

(
θ1 − θ2

2

)
(5.11)

substituting equation (5.11) in equation (5.10) gives,

2t cos

(
θ1 + θ2

2

)
sin

(
θ1 − θ2

2

)
= λ (5.12)

For most cases θ1 and θ2 are close to θB,

θ1 + θ2 ≈ 2θB (5.13)

Similarly, making the approximations sinθ ≈ θ,

sin

(
θ1 − θ2

2

)
≈
(
θ1 − θ2

2

)
(5.14)

gives,

2t

(
θ1 − θ2

2

)
cosθB = λ (5.15)

t =
λ

βt cosθB
(5.16)

where the (equation5.17) is the simple Scherrer equation, which gives the crystal size assum-

ing there are no other sources of broadening. To take account of the geometry of the crystal,
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(equation5.17) is multiplied by a factor K. This factor varies between 1.0 and 0.89, where

0.89 is for a perfectly spherical crystal. This leads to the following equation for crystal size:

t =
Kλ

βt cosθB
(5.17)

5.3 Scanning electron microscope (SEM)

Scanning electron microscope (SEM) is an imaging technique where a beam of electrons

acts as a probe that is scanned along the sample. The incident electron release secondary

electrons from the sample which are collected by the secondary electron detector and are

further transformed into an image.

Figure 5.6: Construction of SEM [69]

The first SEM was built by Knoll in 1935. Because no magnifying lens was used in this

design, the magnification was limited to 100 µm. This has been improved over time and

modern SEMs can get down to a resolution of about 0.5 nm.
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Fig (5.6) a schematic of the components of an SEM. Electrons from a cathode (electron

gun: thermionic, Schottky or field emission) are generated and move towards an anode by

applying a voltage difference of 1-30 kV depending on sample condition. The electrons from

the electron gun are focused using electrodes which are placed between the cathode and

anode. The electron beam is further focused using a condenser lens and an objective lens

which are right below the electron gun. These lenses play a major role in narrowing the

diameter of the electron beam to 1-10nm. The electron current that is focussed onto the

sample is in the order of 10−9 − 10−12A [69] allowing high resolution image. Generally,

voltages below 5 kV is considered as a low beam energy which is mostly used for biological

and less conducting sample to avoid charge accumulation and sample damage. High beam

energy, coupled with EDX, can be used to quantify the elements present in the sample. In the

below section, the principles of the SEM and the different imaging modes will be discussed.

5.3.1 Principles and imaging modes in scanning electron microscopy

When a beam of electrons penetrates into the sample, depending on electron energy, atomic

number and density of the atoms in the sample, several elastic and inelastic scattering process

take place. The signals collected from these scattering processes are used to form images.

Based on the signals collected, the imaging modes of SEM are classified into five modes:

1. Secondary electron (SE), 2. Backscatter electron imaging (BSE), 3. Electron beam

induced current (EBIC), 4. Cathodoluminescence (CL), and 5. Auger electron (AE). The

incident electron beam penetrates the sample and interacts in a volume determined by the

electron energy. Figure (5.7), shows the size of the interaction volumes for different imaging

mode. They are pear shaped since the electron beam slowly penetrates side ways due to the

scattering effects. Of these techniques, SE and BSE are commonly used.

The SE mode utilises those electrons emitted from the specimen whose energy is less

than 50eV. Most of the emitted secondary electrons are produced within the first few nm of
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Figure 5.7: SEM depth and information profile (http://www.jeol.com/)

the surface, hence this mode can provide high spatial depth resolution images. Usually, this

imaging mode is used to get the topographical information of a specimen.

In BSE mode, the incoming electrons that are scattered through a large angle, due to

collisions near the nucleus of an atom, are used for imaging purposes. These backscattered

electrons typically have energies greater than 50 eV. The higher the atomic number of the

sample the more likely it is to get backscattered electrons and therefore a better contrast in

the image. Since these backscattered electrons are produced from slightly deeper inside the

specimen, the image resolution is lower than it is in SE mode and this clearly seen in the

figure (5.8).

Unlike SE and BSE mode, the EBIC imaging mode utilizes the electron-hole pair gen-

erated in the specimen for imaging purpose. In this mode, an electric field is applied to

separate the electrons and holes before their recombination, forming a p-n junction. The

formation of this p-n junction induces a current to flow between anode (electron) and cath-

ode (hole). This current flow depends on the conductivity of the specimen and the lifetime

of electrons and holes.

http://www.jeol.com/
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Figure 5.8: SE and BSE modes of image for copper thin film deposited at 13 Pa

Similar to EBIC mode, the CL mode also uses the generated electron-hole pair for imaging

purpose. However, in this mode the recombination of electron-hole pair is not prevented by

applying an electric field, as applied in the EBIC mode. On the contrary, the electron-hole

pair recombination, which emits light is detected, The wavelength of the emitted light due

to this recombination depends on the bandgap energy of the specimen. Therefore, this mode

reveals the composition of the material along with the information on defects which degrade

the radiative properties.

Auger electron imaging is an SEM imaging mode in which Auger electrons are emitted

from the few atomic layers closest to surface, Therefore, this mode is used to provide infor-

mation about surface chemistry. Generally, during imaging only a few Auger electrons are

emitted. Since there are only very few Auger electrons are emitted meaning signals are low

and detection requires very sensitive instruments.

5.4 Four point probe technique

The resistivity of a material is an important property for applications. It is known to depend

on multiple factors such as temperature, defects dopants. Measuring the resistivity of the

material is therefore important and the four-point probe is a widely used technique. In 1915,
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Wenner [70] [71] was the first person to demonstrate this technique to calculate the earth’s

resistivity.

Figure 5.9: Schematic of four point probe used to measure the sheet resistance

Later in 1954, Valdes [72] used the same principle to calculate the sheet resistance of

a semiconductor wafer. Advantages of the four point probe over simple voltage (V) and

current (I) measurement is the four point probe method not only measures the resistivity

but also gives the sheet resistance of thin films. Figure (5.9) shows the schematic of the four

point probe technique. In this technique, four thin probes that are equally spaced at s1, s2

and s3 touch the sample surface. A current flows between the two outer probes (1 and 4)

and the inner probes 2,3 measure the potential difference as shown in the figure (5.9).

In order to understand the mathematical derivation for the four point probe method

consider a single probe interaction on the surface. Figure (5.10) shows the current flow for a

single probe. The current I entering the surface is assumed to distribute homogeneously in

a semi-sphere from a single point. The current density in the sample in point P is therefore

given by J = I
2πr2

, where r is the distance from P to the point were the probe tip touches. The

electric field in the sample is described by E = -dVdr = Jρ where V is the voltage difference

between P and the tip of the probe and ρ is the resistivity of the sample, which will be

assumed to be homogeneous. The voltage for the point P is given by,
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Figure 5.10: current flow for one point probe [71]

E =
dV

dr
= −ρ

(
I

2πr2

)
(5.18)

V =

∫ r

0

(
dV

dr

)
= ρ

(
I

2πr

)
(5.19)

Considering this in the four point probe, the spacing of the probes (s1,s2,s3) is taken into

account, and the voltage at probe 2 (see Fig: 5.9) is:

V2 =
Iρ

2π

(
1

s1
− 1

s2 + s3

)
(5.20)

Similarly at probe 3,

V3 =
Iρ

2π

(
1

s1 + s2
− 1

s3

)
(5.21)

Therefore, the potential difference (V) between probe 2 and 3 are,

V =
Iρ

2π

[(
1

s1
− 1

s2 + s3

)
−
(

1

s1 + s2
− 1

s3

)]
(5.22)

Since the probes are equally spaced, s1 = s2 = s3 = s, then equation (5.22) becomes,

Rs =

(
V

I

)
× 2πs (5.23)

The equation (5.23), applies only for the semi-infinite case and does not apply directly for
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thin films. However for thin films, one of the dimensions is finite and this is corrected by the

factor (F ) for finite geometries

ρ = 2πs× F
(
V

I

)
(5.24)

This correction factor was calculated by Albers and Berkowitz in 1985 [73] for film thicknesses

less than the prove spacing:

F =
π

ln(2)
× d (5.25)

probe spacing (d≤s/2). For thicknesses greater than probe spacing, the correction factor is

not taken into account and the infinite materials are assumed.

Therefore, based on the correction factor for the films equation (5.24) becomes,

Rs = 4.532× V

I
(5.26)

Therefore, by measuring the change in voltage across the inner probe and the current applied

to the two outer probe, the sheet resistance of the thin film can be calculated. In my case,

in order to calculate the electrical resistivity (Q) of the thin film, I measured the sheet

resistance from the four point probe and then multiply with the fillm thickness (determined

by AFM) to get resistivity of the thin films, as described by:

Electrical resistivity (Q) = Rs × d (5.27)



Chapter 6

POLLUX and HPEM simulations

6.1 Introduction to the models

In order to investigate the feasibility of the PE-PLD technique, I performed a modelling

investigation of both the laser ablation process of a Cu target and the plasma properties of

the ICP discharge in oxygen. For the PE-PLD process to work, the plasma plume density at

the substrate needs to be roughly similar to the density of relevant species in the ICP. This

because we need the plume to interact with the ICP plasma to make sure the Cu oxidises

and deposits as copper oxide. If the density of the Cu plume is many orders of magnitude

higher, this interaction is unlikely to happen, or at least will be insufficient for full oxidation

of the plume, leading to non-stoichiometric copper oxide films.

A full model of the PE-PLD process is challenging and currently not available since

it involves many different physical processes and time scales. Developing such a model is

beyond the scope of this thesis. In this chapter the laser ablation process and the ICP

plasma are modelled separately and the results compared to investigate the feasibility of

the PE-PLD deposition process. For the modelling of the laser-target interactions we use

the 2D hydrodynamics code POLLUX, a code that has been developed at the University

78
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of York over the last few decades. Full details of the code can be found in [74], a brief

description of the main features is presented in section 5.1.1. This code will be used to study

the laser-produced copper plasma.

Secondly, we use the 2D Hybrid code HPEM to calculate the plasma properties of the

inductively coupled RF oxygen plasma. This code has been developed by Kushner et al and

a detailed description of the code can be found in [75]. A brief overview of the main idea of

the code is presented in section 5.1.2.

6.1.1 Description of POLLUX

Even though the laser ablation process is conceptually simple, there are many different

physical processes that need to be taken into account. The first is that during the ablation

process, the solid target absorbs the laser energy and changes from solid to liquid and

from liquid to gas state before becoming a plasma. This involves energy transport through

conduction and radiation, resulting in phase changes in the target material (at non-ambient

pressures) as well as dissociation and ionisation and the formation of shock waves [74].

The code that is used to describe the laser ablation of a copper target by a high-power

nanosecond laser is POLLUX [76]. It is a 2D Euler a hydrodynamic code that was written

by Pert et al [74] at the University of York. This code solves the three first-order quasilinear

partial differential equation of hydrodynamics [1] by utilizing the flux corrected transport

(FCT) algorithm developed by Boris and Book [76] [77]. The flux corrected transport algo-

rithm in the code is used for solving the gas dynamics using the continuity equation and it

is particularly used for solving the laser plasma interaction, vaporization and heat transport

into the solid when shock waves are formed [76].

In order to describe the thermodynamic properties of the target material, a combination

of Chart-D Equation-Of-State (EOS) [78] and a Thomas-Fermi ionisation model [79] are
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included. The Chart-D EOS (developed by Sandia National Laboratories [78]) is used to

calculate the phase changes during the ablation process. Four types of phase boundaries are

included in this code, (i.e solid-liquid, liquid-vapour, solid-vapour and solid-solid transitions).

Absorption of radiation in the plasma plume is by inverse bremsstrahlung. A Thomas-Fermi

model is used to estimate the ionisation of the plasma. This model is particularly applicable

for high density states. Whereas, for low density, by excluding the detailed shell structure

validates this model [76]. Furthermore, a ray tracing module takes into account the refraction

of the laser beam by the plasma that is formed.

The code considers a cylindrically symmetric geometry, where the target surface is aligned

perpendicular to the laser direction. The laser pulse is modelled as a Gaussian beam, i.e.

a Gaussian spatial and temporal profile where the FWHM of beam diameter and duration

can be set by the user.

6.1.2 Description of HPEM

This model calculates the plasma properties in three steps [80]. First, electromagnetic fields

within the discharge volume are calculated by solving the Maxwell equation. Next, based

on these electromagnetic fields, the electron density, electron temperature, electron energy

distribution function, electron impact reaction rates are calculated by a Monte Carlo module.

Finally, plasma chemistry reactions in the reactor volume are determined from the reaction

rates, the continuity equation and the local electric field strength, determined from Poisson’s

equation. This gives a map of the densities of the different plasma species. This is compared

to the initial densities. When there is a discrepancy, the initial densities are modified and

the same loop is repeated until convergence is reached.

An important part of running this model is the plasma chemistry and this chemistry

was constructed based on Tinck and Bogaerts [80] and further modified by Gibson et al

[81]. In our case we include electrons and seven different oxygen species in this model.
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i.e. O2(X
3Σ−g ), O2(a

1∆g), O2(b
1Σ+

g ), O(3P), O(1D), O+
2 , O+, O− represents ground state

molecular oxygen, two excited states of molecular oxygen, ground state atomic oxygen,

atomic metastable oxygen, molecular positive oxygen ions, atomic positive oxygen ions and

atomic negative oxygen ions. The reaction mechanism that are included in this model are

taken from [80] [81] and given in the table 6.1. Here in the table 6.1, O∗2(1S) refers to

O2(X
3Σ−g ), O∗ refers to O(1D), O refers to O(3P), O∗2 refers to O2(a

1∆g) and O2(b
1Σ+

g ).
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Table 6.1: Reaction mechanism

No Reaction Rate Coefficienta,b Reference

R1 e + O2(X
3Σ−g ) �e + O2(X

3Σ−g ) f(ε) [82] [83]

R2 e + O2(a
1∆g) �e + O2(a

1∆g) f(ε) [84]

R3 e + O2(b
1Σ+

g ) �e + O2(b
1Σ+

g ) f(ε) [84]

R4 e + O(3P) �e + O(3P) f(ε) [85]

R5 e + O(1D) �e + O(1D) f(ε) c

R6 e + O2(X
3Σ−g ) �e + O2(a

1∆g) f(ε) [82] [83]

R7 e + O2(X
3Σ−g ) �e + O2(b

1Σ+
g ) f(ε) [82] [83]

R8 e + O2(a
1∆g) �e + O2(b

1Σ+
g ) f(ε) [86]

R9 e + O2(b
1Σ+

g ) �O2(a
1∆g) + e f(ε) d

R10 e + O2(a
1∆g) �O2(X

3Σ−g ) + e f(ε) d

R11 e + O2(b
1Σ+

g ) �O2(X
3Σ−g ) + e f(ε) d

R12 e + O2(X
3Σ−g ) �O+

2 + e + e f(ε) [82] [83]

R13 e + O2(a
1∆g) �O+

2 + e + e f(ε) e

R14 e + O2(b
1Σ+

g ) �O+
2 + e + e f(ε) e

R15 e + O2(X
3Σ−g ) �O(3P) + O− f(ε) [82] [83]

R16 e + O2(a
1∆g) �O(3P) + O− f(ε) [87]

R17 e + O2(b
1Σ+

g ) �O(3P) + O− f(ε) f

R18 e + O2(X
3Σ−g ) �O(3P) + O(3P) + e f(ε) [82] [83]

R19 e + O2(a
1∆g) �O(3P) + O(3P) + e f(ε) e

R20 e + O2(b
1Σ+

g ) �O(3P) + O(3P) + e f(ε) e

R21 e + O2(X
3Σ−g ) �O(3P) + O(1D) + e f(ε) [82] [83]

R22 e + O2(a
1∆g) �O(3P) + O(1D) + e f(ε) e

R23 e + O2(b
1Σ+

g ) �O(3P) + O(1D) + e f(ε) e

R24 e + O(3P) �e + O(1D) f(ε) [88]

R25 e + O(1D) �e + O(3P) f(ε) d

R26 e + O(3P) �e + O+ + e + e f(ε) [88]

R27 e + O(1D) �e + O+ + e + e f(ε) e
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No Reaction Rate

Coefficienta,b

Reference

R28 e + O− �O(3P) + e + e f(ε) [89]

R29 e + O+
2 �O(3P) + O(3P) 3.72 ×10−9 T−e 0.7 [90] [91]

R30 e + O+
2 �O(3P) + O(1D) 7.44 ×10−9 T−e 0.7 [90] [91]

R31 e + O+
2 �O(1D) + O(1D) 7.44 ×10−9 T−e 0.7 [90] [91]

R32 O+
2 + O−�O2(X

3Σ−g ) + O(3P) 2.60 ×10−8

T−0 0.44

[92]

R33 O+
2 + O− �O(3P) + O(3P) + O(3P) 2.60 ×10−8

T−0 0.44

[92]

R34 O+ + O− �O(3P) + O(3P) 4.00 ×10−8

T−0 0.43

[92]

R35 O(3P) + O− �O2(X
3Σ−g ) + e 1.50 ×10−10

T−0 1.30

[93]

R36 O2(a
1∆g) + O− �O2(X

3Σ−g ) + O(3P) + e 1.10 ×10−10 [94]

R37 O2(b
1Σ+

g ) + O− �O2(X
3Σ−g ) + O(3P) + e 6.90 ×10−10 [95]

R38 O+ + O2(X
3Σ−g ) �O+

2 + O(3P) 2.30 ×10−11 [96]

R39 O+ + O2(a
1∆g) �O+

2 + O(3P) 1.00 ×10−11 [96]

R40 O+ + O2(b
1Σ+

g ) �O+
2 + O(3P) 1.00 ×10−11 h

R41 O+
2 + O2(X

3Σ−g ) �O2(X
3Σ−g ) + O+

2 4.00 ×10−10 [97]

R42 O+
2 + O2(a

1∆g) �O2(X
3Σ−g ) + O+

2 2.00 ×10−10 i

R43 O+
2 + O2(b

1Σ+
g ) �O2(X

3Σ−g ) + O+
2 2.00 ×10−10 i

R44 O(3P) + O(1D) �O(3P) + O(3P) 8.00 ×10−12 [73]

R45 O2(X
3Σ−g ) + O(1D) �O2(X

3Σ−g ) + O(3P) 0.32 ×10−11 exp

(67/Tg)

[98] [99] [100]

R46 O2(X
3Σ−g ) + O(1D) �O2(a

1∆g) + O(3P) 0.32 ×10−11 exp

(67/Tg)

[98] [99] [100]

R47 O2(X
3Σ−g ) + O(1D) �O2(b

1Σ+
g ) + O(3P) 2.56 ×10−11 exp

(67/Tg)

[98] [99] [100]
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No Reaction Rate

Coefficienta,b

Reference

R48 O2(a
1∆g) + O(3P) �O2(X

3Σ−g ) + O(3P) 2.00 ×10−16 [101] [102]

R49 O2(a
1∆g) + O2(X

3Σ−g ) �O2(X
3Σ−g ) + O2(X

3Σ−g ) 3.60 ×10−18

exp (-220/Tg)

[102]

R50 O2(a
1∆g) + O2(a

1∆g) �O2(X
3Σ−g ) + O2(b

1Σ+
g ) 1.81 ×10−18

T 0.38
0 exp

(-220/Tg)

[103]

R51 O2(b
1Σ+

g ) + O(3P) �O2(X
3Σ−g ) + O(3P) 8.00 ×10−14 [103]

R52 O2(b
1Σ+

g ) + O2(X
3Σ−g ) �O2(a

1∆g) + O2(X
3Σ−g ) 3.90 ×10−17 [103]

6.2 Results and discussion

6.2.1 Laser ablation model: POLLUX

The laser pulse that is modelled here has a laser wavelength of 532 nm, pulse duration of

5 ns and focal spot radius of 0.5 mm. This leads to a laser fluence of about 3 J/cm2 and

an intensity of 6x108 W/cm2, both are typical values for PLD processes. The axial velocity,

electron temperature and densities for 13Pa and 20Pa background gas pressure at different

time scales were calculated.
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Figure 6.1: Axial velocity along the plume symmetry axis 13Pa and 20Pa from POLLUX at

6×108 W/cm2

Figure 6.1 shows the axial velocity of the ablated Cu material moving away from the

target surface at 13Pa and 20Pa background gas pressure between 20ns to 100ns with 20ns

time steps. For 13Pa, the peak velocity is about constant around 1.5 x 106 m/s for all times

between 20 and 100 ns. In addition, for all times, the highest velocities are found near the

front of the expanding plume. Increasing the background pressure to 20 Pa leads to a similar

temporal pattern, but the peak velocity is slightly lower at about 1.4x106 m/s, leading to a

maxmium plume size of 1.33 mm at 100 ns, compared to 1.47 mm at 100 ns for 13 Pa.

Figure 6.2: Electron temperature at 13Pa and 20Pa from POLLUX at 6×108 W/cm2

Therefore, increasing the pressure, increases the life time of the plasma plume due to the
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background gas compressing the plume both radially and axially. This compression effect

in the expansion of the plume is similar to what has been seem experimentally by e.g. Atif

Hussain et al. [104]. They experimentally showed the expansion of an Al plume between 0.1

mbar to 10 mbar, in which increasing the pressure confines the plasma plume due to the

background gas effect.

Figure 6.2, shows the evolution of the electron temperature of the Cu plasma at 13Pa and

20Pa. At 13Pa, the electron temperature slowly decreases from 1.41eV to 1.29eV between

20ns to 100ns. Whereas, at 20Pa, the temperature is slightly higher and varies between

1.49eV to 1.38eV. The slight increase in temperature for 20Pa when compared to 13Pa is

mainly due to the background pressure. Increasing the background pressure, compresses the

plasma plume, limiting its expansion and therefore cooling, leading to higher temperatures.

Compression in the plasma plume increases the particle collisions within the plasma plume

which in turn increases the electron density.

Figure 6.3: Electron density calculated from simulation at 13Pa and 20Pa at 100ns

In both cases for axial velocity and electron temperature, the background pressure in-

fluences the expansion and the temperature of the plasma plume. After 100ns, the plasma

plume has expanded over at distance of 1.47mm for 13 Pa and 1.33 mm for 20 Pa. At this

point, the axial velocity close to the target is close to zero. This shows that no new target
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material is ejected from the target surface. In a standard PLD deposition process, the rep-

etition rate of the laser is typically 10-50 Hz, which means that PLD is not a continuous

deposition process, but rather a pulsed process. Material is only removed and deposited

shortly after the laser shot, after which a relatively long period occurs during which there is

no plasma. [1].

Figure 6.3 shows the 2D graph of electron density simulated at 100ns for 13Pa and 20Pa.

A density of 9 × 1017 cm−3 is found near the front of the plume and densities of order of 2-6 ×

1017 cm−3 are observed behind the expanding plume. Whereas, the densities near the target

are high, however these particles have near-zero velocities which means that this material

will re-solidify on the target after the laser pulse and will not take part in the deposition

process on the substrate. Our simulations show that in a single laser pulse about 1 Ö 1017

Cu ions are formed. When this plume expands towards a substrate, about 4 cm away, the

typical density at the substrate will be in the order of 1014 cm−3. The PE-PLD process relies

on an interaction between this expanding Cu plume and the oxygen background plasma. For

this we need the densities of the plume, close to the substrate, to be close to the densities of

reactive oxygen found in the background plasma. The next section focusses on calculating

these densities.

6.2.2 Reactive oxygen plasma

Figure 6.4 shows the schematic of the modelled reactor geometry. It is following the design

of the rf GEC reference cell [65]. A reactor geometry that is extensively used geometry to

study the plasma properties for both experimental and modelling conditions.
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Figure 6.4: Schematic representation of the inductively coupled plasma. The design is

following the standardised GEC reference cell [1]

Here in this geometry, the top electrode is made up of a 5-turn copper coil which is

separated from the vacuum vessel by a quartz window. The bottom electrode is a metal

electrode inside the vacuum vessel. The distance between the quartz window and bottom

electrode is 40 mm. Electrical power from the coil is coupled inductively into the plasma.

The coil is driven by a 13.56 MHz RF voltage with the power supplied to the coil set at 500

W for this simulation. The oxygen pressure is varied between 4 and 100 Pa.

Figures 6.5 and 6.6 show the results of the HPEM modelling of our plasma geometry for

4 and 100 Pa respectively. The low-pressure case (figure 6.5) shows that the main positive

ion is O+
2 and not O+. The charged particle densities are on the order of 2x1011 cm−3 with

a maximum in middle between the electrode and the quartz window. Notably, the neutral

species (O∗2, O∗, O and O∗2(1S)) have peak densities which are 2-3 order magnitude greater

than the charged particles.

It can be seen that the neutral species densities across the top and bottom electrode
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are more homogeneous than the charged particle distribution. In the case of PE-PLD, the

substrate is placed in or close to this electrode gap which means there will be 2-3 orders of

magnitude more neutral species impinging the substrate compared to charged particles. This

highlights the importance of reactive neutral species for the deposition process, compared

to ionic species which are traditionally mainly considered. It is well known that atomic

oxygen (O) and singlet delta oxygen (O∗2) are chemically highly reactive and play a major

role during thin film deposition for O2 background gas. Therefore, it seems highly likely

that these reactive species will interact with the expanding plasma plume, oxidising the

copper plume before depositing as a copper oxide thin film. Having a separate control over

the reactive neutral densities, provides an additional control parameter for the thin film

deposition process.

Figure 6.6 shows the HPEM simulation run for 100Pa pressure at 500W input power.

By comparing the 4Pa pressure with 100Pa pressure, We can see that the charged species e

and O+
2 are more confined and look like a doughnut shape in front of the quartz cylinder.

Peak densities of the charged species are slightly greater for 100Pa than 4Pa and are in the

order of 2.5×1011cm−3. Furthermore, the reactive neutral species are 2-5 order magnitude

greater than the charged species densities, however, the O∗2 and O distributions are no longer

homogeneous across the electrodes but show a maximum where the charged particle densities

peak. Nevertheless, the difference in reactive neutral densities for different pressures can be

used as a control parameter to optimise the deposition process.

Figure 6.7 shows the densities of O and O∗2 as a function of pressure between 3 Pa and

100 Pa. Results from fig 6.7 show that, the density of O∗2 increases between 3Pa to 100Pa

pressures and the densities ranges from 4×1013cm−3 to 1×1015cm−3. Whereas, the atomic

oxygen densities O increases from 3Pa to 10Pa and then gradually decreases until 100Pa. This

density trend of O and O∗2 is opposite to each other and this gives a wide range of optimisation

of two different reactive species densities interacting with the expanding plume during thin

film deposition. The main production mechanism for O∗2 is electron impact excitation. With
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increasing pressure, the electron temperature decreases, or more accurately, the number of

high-energy electrons decreases and the number of low energy electrons increases. Since the

energy needed for the excitation of O∗2 is relatively low, i.e. 0.98 eV, compared to other

processes, e.g. dissociation of O2, requiring 4.5 eV, there is an increase in the O∗2 density

and a decrease in O density with decreasing electron temperature.

This change in the type of reactive oxygen species can have an influence on the deposited

thin film properties, depending on the exact chemistry of the PLD deposition process. Such

an effect would be similar to what Blackwell et al. observed in their molecular dynamics and

on-the-fly kinetic Monte Carlo simulations [105]. They found that the O/O2 ratio influenced

the stoichiometry, crystal structure and quality of the deposited ZnO films [105].

6.3 Conclusion

Finally, looking at the feasibility of PE-PLD as a deposition technique, we need to verify

that the ICP plasma densities are similar to the Cu plume densities so that an interaction

between the two can occur. The Pollux modelling showed that in front of the substrate the

Cu density is on the order of 1014 cm−3. The oxygen ion density is typically only 1011 cm−3

, however, the densities at a substrate surface of neutral reactive oxygen species, e.g. O and

O∗2, are in the order of 1014 cm−3 , like the Cu ions. Therefore, the ratio of reactive Cu to

reactive oxygen in front of the substrate will be close to unity. Furthermore, the absolute

values of these densities are very comparable to the densities found in other plasma-based

CuO deposition techniques, e.g. magnetron plasma sputtering, where operating pressures

of 0.1–1.0 Pa are used and ionisation is believed to be close to 100%, leading to particle

densities of 1013–1014 cm−3. In conclusion, in PE-PLD we can have equal densities of Cu

and oxygen arriving at a substrate so we could envisage deposition of a good quality copper

oxide film with reasonable stoichiometry. Also, the fact that the absolute value of the particle

densities in our PE-PLD technique are similar to those observed in traditional high-quality
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CuO deposition methods, is encouraging for the feasibility of our proposed technique. The

prospect of depositing metal-oxide films from separate metal and O sources seems feasible

based on the modelling investigations presented in this chapter.
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Figure 6.5: HPEM simulation result for 4Pa pressure run at 500W
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Figure 6.6: HPEM simulation result for 100Pa pressure run at 500W
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Figure 6.7: Modelled densities of O and O∗2 as a function of pressure in front of the centre

metal electrode



Chapter 7

Time-resolved optical emission

spectroscopy of laser-produced

copper plasmas

7.1 Thermodynamic equilibrium

The laser-produced copper plasma that is used for the proof-of-concept study of PE-PLD is

characterised using time-resolved optical emission spectroscopy. This technique allows the

derivation of electron temperatures and densities, the assumption of Local Thermodynamic

Equilibrium (LTE) can be made. I will first introduce the concept of LTE, and then derive

how electron temperature and density can deduced from emission line intensities and widths.

Subsequently, this method is applied to monitor the evolution of temperature and density

in a laser-produced copper plasma that is expanding in vacuum, a background oxygen gas

or a background oxygen plasma. Particular emphasis is placed on the validity of the LTE

assumption and therefore the reliability of the measured plasma parameters.

95
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7.1.1 Complete thermodynamic equilibrium (CLTE)

A uniform, homogeneous plasma in a closed system is considered to be CTE, when it obeys

the principle of detailed balance for every process (i.e. each forward process is balanced by

the reverse process). However, this needs to be valid for both collisional as well as radiative

processes. If a plasma is in CTE, it exhibits the following properties: [106],

1. Equillibrium in temperature : All particles in the plasma, electrons, ions, atoms

and molecules, have the same temperature, i.e. Te=Ti=Ta=Tm=T.

2. Maxwell − Boltzmann velocity distribution : The velocity distribution of all par-

ticles in the plasma obeys a Maxwell-Boltzmann velocity distribution. [107]

f(v) = n
4v2

√
π

(
2KBT
m

) 3
2

exp

(
−mv2

2KBT

)
(7.1)

Here, v is the velocity and m is the mass of the species in the plasma, T is the plasma

temperature (which is same for all the species in the plasma) for complete thermodynamic

equilibrium condition, n is the density of the plasma and KB is the Boltzmann constant. As

can be seen, the velocity distribution for a given species only depends on the temperature T of

the plasma. Therefore, if the velocity distribution can be measured, the plasma temperature

could be derived. However, in practice, it is not straightforward to measure the velocity

distribution of particles in a plasma.

3. Boltzmann distribution of excited states : The density of the excited particles in

upper state j compared to the lower state i follows a Boltzmann distribution given by:

nj
ni

=
gj
gi
exp

(
−∆Eji
KBT

)

)
(7.2)

where, nj , ni, gj and gi are the densities and statistical weights of the species in the upper
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level (j) and lower level (i) respectively. ∆Eji is the energy difference between levels j and

i. KB is the Boltzmann constant and T is the plasma temperature. Again, the distribution

only depends on the plasma temperature. Therefore, if the density distribution of excited

states can be measured, the plasma temperature can be derived.

4. Saha − Boltzmann distribution for ionised species : [42] The ionisation state

of a plasma species is described by the Saha-Boltzmann distribution. For a plasma in ther-

modynamically equilibrium, from the densities of two different ionization stages of same

element, the electron density (ne) can be calculated:,

ni+1ne
ni

=
2

λ3
gi+1

gi
exp
−Ei+1 + Ei

KBT
(7.3)

where, ni+1 and ni are the densities in ionisation stages i+1 and i, respectively. Ei+1 and

Ei are the ionisation energies of ionisation stages i+1 and i respectively. ne is the electron

density, λ is the thermal de Broglie wavelength.

5. Planck function : Blackbody radiation [108] The emission of radiation follows

the Planck distribution:

Iv =
2h

c2
ν3

e
hν
KBT − 1

(7.4)

Here, ν, c, h and KB denotes the frequency, speed of light, Planck’s constant. The radiation

temperature is the same as the plasma temperature.

Only when all five conditions are met, a plasma can be considered to be in CTE. In

practice, in laboratory plasmas there are almost always radiation losses due to the limited

size of the plasma which means that condition 5 is not met and the plasma is not in CTE.
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7.1.2 Local thermodynamic equilibrium (LTE)

Nevertheless, even if the radiation processes are not in equilibirum, the collisional processes

can still be in equilibrium. If this is the case, i.e. conditions 1-4 are satisfied, but not 5, then

the plasma can be considered to be in Local Thermodynamic Equilibrium (LTE). For LTE

to be valid, we need to consider the following:

1. For all the collisional processes to be in equilibrium, we need a high number of electron

collisions and therefore a high electron density. The McWhirter criterion describes the

minimum electron density needed to achieve LTE:

ne ≥ 1.6× 1012
√
Te(Ej − Ei)3cm−3 (7.5)

where ne is in cm−3, Te, Ei and Ej in eV. The Mc Whirter criterion is based on the assump-

tion that collisional processes are 10 times larger than corresponding radiative processes [109].

2. The equilibrium is only local, i.e. in a specific point in space. It can change with spatial

coordinates [106] as long as the variation is sufficiently small such that the equilibrium is

completely determined by the *local* values of temperature, density and composition of the

plasma [110]

3. Many LTE models assume that the plasma is optically thin, which means that radiative

processes can be excluded from balances in the plasma. This clearly breaks the principle of

detailed balancing for radiative processes and CTE is not satisfied..

7.1.3 Partial thermodynamic equilibrium (PLTE)

Partial thermodynamic equilibrium (PLTE) is a situation where the electron density is too

low for all energy levels in an atom to be in equilibrium. The McWhirter criterion (eq. 7.5)
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shows that the ground state of an atom is most likely to be no longer in equilibrium with

excited states since these have the largest energy gaps. For many applications, it is still useful

to consider only (part of) the excited states, which do still meet the equilibrium condition set

by McWhirter. This is known as Partial Local Thermodynamic Equilibrium (pLTE). Using

pLTE models, it is possible to derive information such as the electron temperature for the

excited states under consideration. However, the assumption that the electron temperature

is equal to the ion temperature is often no longer valid since due to the low electron density,

electrons gain more energy per unit time, compared to the ions due to their lower mass.

Therefore the electron temperature will be higher than the ion temperature. The PLTE

condition between excited energy states can be verified using the McWhirter criterion to

find the minimum electron required electron density.

7.1.4 Collisional radiative model

In order to study plasmas that are not in equilibrium (CTE, LTE or pLTE), a model known

as a collisional-radiatve model can often be used. These models are widely used for studies

of astrophysical plasmas, inertial confinement fusion plasmas, magnetic confinement fusion

plasmas [111]. Ionisation and excitation in such plasmas strongly depends on radiative pro-

cess as well as collisional processes. Therefore by considering the electron collision processes

for excited states and also considering radiation processes in the plasma interior with appro-

priate conditions (i.e escape of radiation without trapping inside the plasma) [110], densities

of different species can be calculated if the following assumptions are made:

1. Free electrons still follow a Maxwellian velocity distribution as given in the equation (7.1),

provided the plasma is optically thin [110].

2. Radiation emitted between bound states should spontaneously decay, i.e. excluding the

photoexcitation process(reverse process).
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Provided a set of rate-coefficients is known, the population of atomic states can be cal-

culated based on the above conditions, using the following equation (taken from [108]):

0 =
∑
j 6=i

[niAij − njAji + (niBij − njBji)ρ(νij) + neni
〈
σijv

〉
− nenj

〈
σijv

〉
] (7.6)

(niAij − njAji), (niBij − njBji)ρ(νij) terms in the above equation represents the radiative

processes of transitions between bound states and free-bound transitions due to the recombi-

nation / photo-ionisation processes. Whereas, the term, neni
〈
σijv

〉
− nenj

〈
σijv

〉
represents

the collisional processes. Equation 7.6 gives the steady-state solution of the atomic state

distribution i, based on the assumptions described. The full set of equations for every level i

needs to be solved simultaneously to find the atomic state distribution in the plasma. In this

thesis I will focus on plasmas that are in LTE or pLTE, which means that full CR models

are not needed.

7.2 Deriving plasma temperature from line intensities in an

LTE plasma

As described in section 6.1, if a plasma is in LTE, one can derive the plasma temperature

from the distribution of excited states in an atom. If the plasma is also optically thin, then

the excited state distributions can be assumed to be related to the optical emission of lines

which have this state as their upper level. In other words, intensities of emission lines from

different upper levels can be used to derive the temperature of the plasma. In the next

section I will derive the equation linking line intensities to plasma temperature. Then I

will present measurements of plasma temperature using this technique on a laser-produced

copper plasma. Similarly, from the line width of the emission line, densities are calculated

and this will be discussed in the section below.
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7.2.1 Theory linking line intensities to plasma temperatures

As described before, using peak intensity of emission lines originating from bound-bound

transitions, the temperature T of the plasma can be calculated using the Boltzmann distri-

bution by assuming the LTE condition is valid. The intensity of an emission line is given

by,

Ii = nEigiAi (7.7)

In the equation (7.7) the intensity of the emitted line, Ii, is directly proportional to the

population density of the excited state (nEi) , transition probability (Ai) and statistical

weight (gi), According to the Boltzmann distribution, for a plasma in LTE, the population

density of excited state i, nEi , is given by,

nEi = n0 exp

(
−Ei
KT

)
(7.8)

where n0 is the ground-state density of the atom, K is the Boltzmann constant, Ei the

excitation energy of the level i. Substituting equation (7.8) in (7.7) we get,

Ii = n0 exp

(
−Ei
KT

)
giAi (7.9)

Re-writing the equation (7.9) we get,

Ii
giAi

= n0 exp

(
−Ei
KT

)
(7.10)

Taking the natural logarithm on both sides in order to cancel the exponential term on the

right hand side.

ln

(
Ii
giAi

)
=

(
−Ei
KT

)
+ ln(n0) (7.11)

The electron temperature can be derived by plotting the left hand side equation against the

excitation energy of the levels Ei which gives a slope of (-1/KT). From the slope we can
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calculate the plasma temperature T.

A simplified form of this method is known as the line ratio method in which you only

look at two emission lines. Using equation (7.9) we can see that the intensity ratio of these

two lines, Ii and Ij is given by:

Ii
Ij

=
giAi
giAi

exp

(
Ej − Ei
KTe

)
(7.12)

However, the line ratio method is based on only two emission intensity values, i.e. effectively

a Boltzmann plot with only two values, and this does not show any non-LTE effects. An

electron temperature calculation using the Boltzmann plot with more than two points can

show non-LTE effects by deviations from a straight line in the plot. This allows a better

understanding of the LTE condition.

Spectroscopic constants gi and Ai used for calculating the electron temperature are taken

from the NIST database (http://www.nist.gov/pml/data/asd.cfm ).

7.2.2 Electron temperature measurement

In the present work, time resolved spectra of laser produced copper plasmas in vacuum;

background gas and background ICP plasma were studied to derive electron temperature

and densities. Both for background gas and ICP plasma, 13Pa and 20Pa oxygen background

pressures were used. Using equation 7.11 for selected neutral copper lines a Boltzmann plot

is plotted and the electron temperature is calculated at different times as given in the table

(6.1)
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Figure 7.1: schematic representation of standard PLD for spectroscopy studies

The schematic representation of the set-up used for the spectroscopic studies is shown in

figure 7.1. The plasma plume from the target is imaged onto an optical fibre (0.6mm diam-

eter) using a 500mm lens. This optical fibre is attached to a Princeton 320PI spectrograph

with an ICCD camera (Princeton PI-MAX).

A programmable timing generator (PTG) is used to set the delay time between the laser

and the gating pulse of the ICCD. Software (Winspec/32) controls both the ICCD camera

and spectrometer. The spectrometer covers the wavelength range between 300nm and 900nm

with the grating line density of 150 lines/mm and the blaze wavelength is 300nm.

In order to obtain the original intensity of the emission line from the measured emission

line intensity, left hand denominator of the equation (6.11) was multiplied by the Quan-

tum emission (QE) of the spectrometer and grating efficiency (GE) (I.e) ln(Ii/(giAi ×%QE

×%GE)) Which is plotted against the left side of the Boltzmann plot against excitation
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energy Ei to obtain electron temperature.

Gate delay(td) Gate width(ts)

50 -100 ns 10ns

100 -1000 ns 100ns

0 -100 µs 20 µs

Table 7.1: Gate widths and gate delays used in the experiment

Figure 7.2: The copper emission spectrum for 20 Pa gas at 100ns gate width and 100ns gate

delay(Red arrows indicate the lines used for this study)

Figure (7.2) shows an example of a measured emission spectrum at 100 ns delay for 20

Pa oxygen gas background. The emission lines used for the Boltzmann plot are 437.37nm,

450.344nm, 453.457nm, 458.123 nm, 510.437 nm, 515.093 nm, 521.301 nm, 569.872 nm and

577.614 nm Further details of the lines used in this study can be found in table 6.2. The

electron temperatures derived from the Boltzmann plots (fig 6.3 shows an example) as a

function of time for the different background conditions are shown in figures (7.4) (vacuum

and gas) and (7.5) (plasma).
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In graph (7.4), for the first 100ns, the plasma temperature for the vacuum case is slightly

greater than for 13Pa and 20 Pa oxygen background gas cases, but the difference are very

small. For vacuum the electron temperature is 1.64eV whereas for 13Pa and 20Pa electron

temperature is around 1.51eV The temperature for the plume in the ICP plasma could not

be determined for times before 50 ns since there was a large amount of continuum emission,

obscuring the lines. However, after 100ns, all measurements show a similar temperature

profile. In all cases (vacuum and background pressure), the temperature decays roughly

exponentially as a function of time.

Figure 7.3: Boltzmann plot for 13Pa background gas at 100ns

The temperature calculated for ablation in an ICP plasma at 13Pa and 20Pa (figure 7.5)

varies between 2eV to 0.7 eV for 50ns until 1µs. The temperature before 50ns can not be

calculated using the Boltzmann method. For the plume in vacuum, plasma temperature

exponentially decays between 50ns to 1µs and the temperature ranges between 1.64eV to

0.7eV. Whereas, for background gas, plasma temperature is less than both vacuum and ICP

plasma, the temperature varies between 1.5eV to 0.54eV for 50ns until 100µs. In vacuum,

the emission line decays quickly and after 1000ns there is no measurable emission, whereas

for 13 Pa gas and 20 Pa oxygen gas the emission line exist until 100µ s.
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Wavelength(nm) Elower level/ eV Eupper level/ eV g Aij

437.37 4.973 7.805 6 1.31e+07
450.34 5.575 8.325 6 2.50e+07
453.45 5.153 7.884 4 2.55e+07
458.12 5.102 7.885 6 2.56e+07
510.43 1.389 3.816 4 1.94e+6
515.09 3.786 6.191 4 1.03e+8
521.30 3.816 6.192 6 1.22e+8
569.87 1.642 3.816 4 2.501e+5
577.61 1.642 3.786 2 1.900e+6

Table 7.2: spectroscopic constant values used for calculating the electron temperature and
electron density

Figure 7.4: Electron Temperature as a function of delay time in (a) vacuum, (b) 13Pa oxygen

gas, (c) 20Pa oxygen gas
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Figure 7.5: Electron Temperature as a function of delay time for (a) 13Pa plasma, (b) 20Pa

plasmas (Red circles in the graph are not reliable because of deviations from LTE)

The reason for the fast decay of the plasma emission in the vacuum case compared to

the background gas case is that expansion into a vacuum is faster than expansion into a gas

environment. Expansion into a vacuum is a free expansion while into a gas initiates shock

waves, slowing down the expansion. The faster expansion of the vacuum case means that

the observed plume intensity falls quicker than for the case with a gas background.

Similar spectroscopical studies were carried out by [112] Unnikrishnan et al, for abla-

tion with a 355nm Nd:YAG laser in air atmospheric pressure for copper target. Electron

temperature calculated in their experiment decays exponentially between 300ns to 2000ns

(i.e. 0.78eV-0.69eV). However, the temperature measured from our experimental condition

is slightly greater than that. But the electron temperature decays exponentially in a similar

way.

By comparing the experimental electron temperature with POLLUX simulation peak

temperature, it can be seen that the experimental electron temperature values matches
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very well with simulation values for the first 100ns. Temperature values for the first 100ns

are 1.41eV-1.29eV at 13Pa and 1.49eV-1.38eV at 20Pa from POLLUX simulation. Whereas,

experimental electron temperatures for the first 100ns are 1.51eV-1.20eV and 1.53eV-1.25eV.

Figure (7.5) shows that the electron temperatures measured for background ICP are

higher than for background gas, for both 13 and 20 Pa pressures. It can be seen from

HPEM simulations that the electron temperature in the ICP set at 500W is about 2.6-2.4

eV. This means that early in the plasma plume expansion, there are additional hot electrons

available that can collide with the expanding plume, adding additional energy to the plasma

plume, leading to a higher temperature. Since the densities in the early plume are very

high, collisions are very frequent and the electrons very rapidly equilibrate to a Maxwellian

distribution which leads to a Boltzmann distribution of the excited states in Cu atoms.

The electron density in the plume is much higher than in the ICP plasma, explaining the

only moderate increase in electron temperature, still well below the value found in the ICP

itself. This higher initial temperature leads to an overall higher temperature throughout the

expansion phase of the plume.
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Figure 7.6: Emission spectrum for 10 Pa ICP plasma at (a) 1µs, (b) 20µs, (c) 40µs and (d)

80µs delay time

For the background oxygen gas environment, the Boltzmann plot fits perfectly to a

straight line until 100µs therefore making the method reliable up until 100µs. However,

in the ICP plasma after 1µs, the 515.093nm and 521.301nm line starts to deviate from the

straight line in the Boltzmann plot which can be clearly seen from figure (7.7). This indicates

a deviation from LTE for late times, 1-100 us.
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Figure 7.7: Boltzmann plot for (a) 20Pa ICP plasma and (b) 20 Pa gas for time 20 us

Even though the exact reasons for the deviation from LTE are not clear from these

measurements, a indication can be found when looking at the 777 and 844 nm oxygen lines.

As shown in Fig 6.6, these lines start to increase significantly after 1 us, whereas the neutral

copper lines decay over the same time scales. The intensity of the 777 and 844 nm lines rises

to a level well above what is observed in the ICP alone, indicating some interaction between

the expansing plume and the oxygen ICP. Even though the exact mechanisms are unclear,

it seems clear that there is some interaction and even chemistry occurring between the

plume (electrons) and the background ICP. With the apparent result of significant increase

in oxygen emission lines and a deviation from LTE for the neutral copper atoms. Further

investigations are needed to further clarify this process. In particular, direct measurements

of the O density via Two-photon Absorption Laser Induced Fluorescence would clarify if

there is an increase in O density or only an increase in excited O states. Nevertheless, this is

a first indication that there is an interaction between the laser-produced plasma plume and

the background ICP, a necessary process for PE-PLD to work as intended.
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7.3 Electron densities from line widths

From the the width of the emitted spectral lines, plasma parameters can be derived. This

section deals with the different broadening mechanisms that affects the width of a spectral

line.

7.3.1 Natural line broadening

Natural broadening in an emission line profile arises due to the effect of Heisenberg uncer-

tainty principle,

∆E∆t ∼ ~ (7.13)

In quantum mechanics, an excited state of an atom will have a life time after which it decays

spontaneously to a lower state. However, the uncertainty principle states that due to the

finite life time of the upper state, there will be an uncertainty in the energy of the state.

This in turn leads to a spread of the wavelengths emitted, i.e. a broadening of the emission

line observed. The resulting line profile can be fitted using a Lorentzian profile [108],

φ(ν) =
γ

4π2
1

(ν − ν0)2(γ/4π)2
(7.14)

γ =
∑
j

Aij (7.15)

In the equation (7.14), γ is the spontaneous decay rate, Aij is the transition probability of

upper state (i) and lower state (j). Typically, natural broadening is a small effect in most

plasmas, much smaller than other broadening mechanisms.
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7.3.2 Doppler broadening

Thermal motion of the radiating particles will have a small variation in the emitted frequency

from those of the atoms at rest due to the Doppler shift. The particles moving away from

the observer are red shifted (longer wavelength) and moving towards the observer are seen

as blue shifted (shorter wavelength). Hence a higher plasma temperature leads to a wider

velocity distribution and therefore a wider spectral profile.

The Doppler shift is given by,

ν = ν0
(
1± vs

c

)
(7.16)

∆ν = ν − ν0 = ν0
vs
c

(7.17)

In Equation (7.16), we calculate the observed frequency (ν) from the unshifted frequency

(ν0) multiplied by the radiating particle velocity (vs) travelling in a parallel direction to the

observer.

At a given temperature, the velocities of the atoms will be distributed based on a

Maxwellian velocity distribution. To estimate this broadening effect, in LTE, the line shape

of the photon flux φ is given by a Gaussian profile [108],

φ(ν) = φ(ν0)exp
(−(ν − ν0)2

ν20
c2

mi

2kTi

)
(7.18)

Therefore fitting the peak to the Gaussian profile, we get the FWHM of the peak, which is

given by,

∆λ1/2 = 2λ
√

2KT ln 2/mc2 (7.19)

In the equation (7.19),∆ λ1/2 is the FWHM; λ is the wavelength of the emission line (nm),

k is the Boltzmann constant (JK−1), T(K) is the temperature, m (Kg) is the atomic mass

and c is the speed of the light (ms−1). FWHM from equation (7.19) for the Cu I emission line
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of 515.093 nm at a temperature of 20000 (K) is 0.00588nm, which is small when compared

with the experiments we carried out. Therefore, broadening due to the Doppler effect is

negligible for our experimental condition.

7.3.3 Stark broadening

For the laser-produced plasmas under study in this thesis, the dominant line broadening

mechanism is Stark broadening. The high density of charged particles in the plasma induces

electric fields that disturb the energy levels in atoms and ions via the Stark effect. This

perturbation of the energy level structure of an atom/ion results in broadening of emission

lines.

For plasma in LTE, the electron density can be calculated from the FWHM of the Stark-

broadened emission line using the expression [113] [114],

∆λ1/2(nm) = 2ω

(
Ne

1016

)
+ 3.5A

(
Ne

1016

)5/4[
1− 3

4
N
−1/3
D

]
ω (7.20)

The second term on the right hand side in this expression is due to ion-ion collisions.

In our case the ion-ion collision effect is very small so the second term of this expression is

negligible. This simplifies equation (7.20) to

∆λ1/2(nm) = 2ω

(
Ne

1016

)
(7.21)

ω is the electron impact parameter, Ne is the electron density, ∆ λ1/2 (nm) is the FWHM

of the broadened emission line. By measuring the Stark broadening of emission lines, the

electron density can be determined.



7.3. ELECTRON DENSITIES FROM LINE WIDTHS 114

Figure 7.8: Instrumental broadening calculated from Nd:YAG 532nm laser

7.3.4 Electron density measurements in a laser-produced copper plasma

In an experiment, there is also instrumental line broadening to be considered, i.e. the

broadening of emission lines due to the measurement instrument used. The instrumental

line width in our experiment was determined by measuring the line width of a narrow-band

laser line with the same diagnostic setup. This instrumental line width is subtracted from all

further measurements to obtain the Stark broadening of emission lines. The line measured

from a 532 nm Nd-YAG laser is fitted with a Gaussian peak as shown in the figure (7.8) and

the FWHM of the peak in measured to be 1.33nm

Using equation (7.21), the electron density as a function of time was determined from

the FWHM of the 521.301nm Cu line. Figures (7.9), (7.10), and (7.11) show the measured

electron densities for the laser-produced plasma in different backgrounds: vacuum, gas and

plasma. For all cases, we observe a density of a few times 1018 cm−3 after 50 ns. This density

rapidly decreases to below 1017 cm−3 at 100 ns and below 1016 cm−3 after 1µs. Between 1

and 100 us, the density remains roughly constant. This is in line with the plume expansion

that was already observed in the temperature. The case with a vacuum background shows
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Figure 7.9: Electron density measurements in vacuum and calculations of densities required
for LTE and pLTE

a faster expansion, i.e. drop in density than the cases with a background gas or plasma.

This can again be explained by the free expansion in vacuum compared to the expansion

in a gas / plasma where shock waves will be formed, slowing down the expansion. These

observed densities when compared to Unnikrishnan et al [112] experimental condition for

Cu target at 355nm Nd:YAG laser is two orders of magnitude less than our experimental

condition. However, the electron density decay exponentially between 300 ns to 2000 ns (i.e

electron density varies between (2.0x1014 - 4.5x1013 cm−3) which is same as our experimental

condition.

For the cases with a background gas, the experiments can be compared to the POLLUX

modelling from chapter 5. Fig (6.3), (7.10) and 7.11 shows this comparison. It can be seen

that observed density from Pollux at 13Pa and 20Pa near the front of the target are of the

order of 8x1017 cm−3 whereas, experimentally observed electron density for 13Pa and 20Pa

are order of 3.16x1016 cm−3 and 4.77x1016 cm−3 which is a reasonable agreement to the

POLLUX simulation.

From the literature [92] and our HPEM modelling in chapter 5, it is shown that the

reactive oxygen density of the ICP plasma is in the order of 1014 cm−3. The observed

densities in the laser produced plasma are several order of magnitude larger during the

initial expansion phase. However, after about 1 us, they have decreased to below 1016 cm−3,
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Figure 7.10: Electron density calculation for background gas at 13Pa and 20Pa for pLTE
and LTE condition

not too far off what is observed in an ICP, making an interaction between the two plasmas

feasible. Moreover, after 1µs densities of cu plume is decreased and some evidence of this

interaction can possibly be found in the observed strong increase in intensity of the 777 nm

adn 844 nm OI lines (see fig. 7.6) as well as the deviation from LTE conditions found in the

Boltzmann plots (fig. 6.7).

7.4 Validation of LTE condition

Figures 6.8 - 6.10 also show the calculated values for the minimum electron density to satisfy

the LTE condition (McWhirter criterion). The left hand figures show the LTE condition,

the right hand figures the pLTE condition (between the energy levels of the emission line).

It is clear that the plasma was not in full LTE for most of the ablation process, i.e. ¿70

ns. However, the more relaxed concept of pLTE was met for almost all of the measurements.
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This highlights an important point about the LTE assumption in that even though pLTE

is observed (e.g. via a Boltzmann plot), this does not necessarily mean the plasma is in

full LTE which means that further investigations are needed to verify the accuracy of these

widely used techniques in these types of experiments.

Moreover, the observed deviations from a straight line in the Boltzmann plots for ICP

background measurements after 1 µs can possibly be evidence of the interaction of a non-

LTE ICP plasma with the relatively low-density plume. This interaction transfers energy

from the ICP to the plume via collisions and reactions, possibly populating specific levels

preferentially.

Figure 7.11: Electron density calculation and Mc Whirter criterion for ICP plasma at 13Pa

and 20Pa condition for pLTE condition

However, this energy is not equilibrated completely because the electron density is too

low at this point (i.e. below the McWhirter criterion). To further quantify this possible
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explanation, further measurements are required.

7.5 Conclusion

In conclusion, this chapter results estimate the electron temperature and electron density of

the laser produced Cu plasma at different background pressure condition using time resolved

optical emission spectroscopy. Plasma emission from Cu plume at vacuum expands faster

than background pressure and background ICP plasma condition. In a same way, electron

temperature and electron density measured from the experiments are in good agreement

with POLLUX simulation. Further, the electron density of the plasma was calculated using

stark broadening and the electron temperature of the Cu plasma at different time scale was

calculated from the Boltzmann plot. Both electron temperature and density are good in

agreement with POLLUX simulation. Furthermore, the measured electron temperature and

electron density is verified with MC Whriter criterion (eq 6.5) to check the assumption of

LTE. However for the plasma emission > ∼ 70ns was not in full LTE. Hence, the concept of

pLTE was verified for all measurement.



Chapter 8

Proof of concept - Thin film

deposition using PE-PLD

In this chapter a proof-of-concept study of thin-film deposition using our novel PE-PLD

techniques is presented. As well as characterizing the properties of the films deposited with

PE-PLD, we also compare these films to traditional PLD films as well as perform additional

experiments to shed light on the plasma mechanisms underpinning PE-PLD (e.g. E-mode

ICP operation and de-synchronised ICP and laser experiments) A schematic description

of all the different experiments is shown in figure 8.1 The proof-of-concept experiments

Figure 8.1: Experimental classification based on two different approach
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are for PE-PLD with a synchronised set up and with a H-mode ICP. The others, non-

synchronised and E-mode are to better understand the underpinning processes and both

standard PLD experiments are for benchmarking the PE-PLD films. A detailed description

of the experimental set-up, as well as a discussion on E-mode and H-mode in ICPs can be

found in chapter 4. The films deposited will be characterised using the following techniques:

XRD, SEM-EDX, AFM and four-point-probe under different experimental conditions More

details on these surface analysis techniques can be found in chapter 7.

8.1 Crystal size calculation and phase identification using X-

ray diffraction

First, a standard PLD technique was used to provide a benchmark for the new PE-PLD

experiments. Next, the results of the PE-PLD experiments will be presented. It should be

noted that in neither of the experiments there was any substrate heating or post-annealing

of the films (as is common in standard PLD techniques).

8.1.1 Standard PLD experiment

Standard PLD experiments were carried out using Cu metal targets with 99.99% purity

(Testbourne Ltd) and CuO targets (99.9%, Mi-Net Technology Ltd) to deposit thin films in

a background oxygen pressure of 4Pa to 20Pa. The films were deposited on quartz substrates

and analysed using X-ray diffraction to determine the phase of the films. The distance

between target and substrate were kept at 4 cm. The laser usedwas a Continuum Minilite

II, frequency-doubled (532 nm), Q-switched Nd:YAG laser. The pulse length was 5 ns, pulse

energy was 35 mJ and focal spot 0.5 mm. Further, the experimental details are discussed in

chapter 4. The gas pressures used in these experiments were 4Pa to 20 Pa. The deposition

time was 1hr 30 min.
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Figure (8.2) shows the X-ray diffraction patterns of CuO thin films deposited using a

Cu target at two different background gas pressures of 13Pa and 20Pa, respectively. A θ/2θ

scan was carried out between 20-80 degrees where the step size was 0.05 degree for all films.

The diffraction patterns of both these thin films showed prominent peaks at 32.4°, 35.5°,

38.8°, 53.6°, 65.9°, 68.2°, which corresponds to the < −110 >, < 002 >, < 111 >, < 020 >,

< 310 >, and < 220 > planes of monoclinic CuO according to JCPDS card no.045 0955

(http://www.crystallography.net/cod/).

Figure 8.2: CuO thin film at background gas pressures 13 Pa (top), and 20 Pa (middle) Cu

target

The intensities of all these peaks are found to be higher at 13Pa background gas pressure

compared to 20Pa background gas pressure, indicating a higher degree of crystallinity for the

13 Pa case. Nevertheless, at both pressures it is clear that some CuO forms. It is known that

neutral O2 does not interact with a pure copper film, hence these experiments are evidence

http://www.crystallography.net/cod/
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that the Cu plume interacts with the O2 gas and dissociates some of the gas to form O which

subsequently reacts with the plume and/or film to form some CuO.

Figure 8.3: CuO thin film deposited using CuO target at two different pressure 13Pa and

20Pa

Next, similar PLD experiments were carried out for a CuO target and Fig (8.3) shows

the XRD pattern of CuO thin film deposited at 13Pa and 20Pa. The XRD peaks from these

two experiments matches with CuO thin film standard JCPDS card no 045-0955 and the

major orientation of the crystals are < 002 > and < 111 >. The particle growth along

< 002 > is not surprising since this has the lowest surface energy [115]. When comparing

films grown from CuO targets to the ones grown from Cu targets, we see low index facets

< 002 >, < 111 > and < 222 >. This can be explained by the fact that the metal target has

a lower melting point when compared to the oxide target. Hence, the thermal properties of



8.1. CRYSTAL SIZE CALCULATION AND PHASE IDENTIFICATION USING X-RAY
DIFFRACTION 123

the target material affect the orientation of the thin film that is grown.

Figure 8.4: CuO thin film deposition using CuO target at 13 and 20 Pa

Fig 8.4 is an SEM image of the CuO thin films deposited using CuO targets. It is clear

that there are no particular defined crystal orientations and the film shows bigger blobs

of particles formed on the surface. Furthermore, the four point probe tests show a high

resistivity of the the film (out of range ), indicating a poor quality of the film. This is likely

due to the absence of substrate heating and post-annealing in our set-up. As mentioned in

chapters 2-4, it is known that this is a critical step in traditional PLD.

8.1.2 Plasma enhanced PLD

The PE-PLD experimental setup is described in detail in chapter 4. Here, we perform proof-

of-concept experiments for the PE-PLD technnique using an H-mode ICP (see chapter 4

for details) and a synchronisation between laser and ICP . In addition, experiments using

an E-mode ICP and experiments with a non-synchronised laser and ICP were performed in

order to gain a better understanding of the relevant physics processes of PE-PLD.
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Figure 8.5: Laser and Plasma pulsing time (a) Synchronised: Plasma is ON for 10ms and

off for 90ms and the laser is fired at 8ms (b) Non-Synchronised: Plasma ON for 10ms and

OFF for 90ms and the laser is fired at 95ms (i.e) 5ms before the plasma is ON

More details about the synchronised and non-synchronised experiments can be found in

figure 8.5. The overall repetition rate of the set-up is 10 Hz. Within 1 cycle of this, the

ICP is on for 10 ms (i.e. 10% duty cycle). In the synchronised experiments, the laser is

fired during the plasma on phase, more specifically at 8 ms after the start of the ICP pulse,

leaving 2 ms of ICP plasma after the laser pulse. In the non-synchronised case, the laser is

fired when the plasma is off. I.e. 95 ms after the ICP pulse, which is 5 ms before the next

ICP pulse. This allows the study of thin film oxidation by the ICP plasma after a Cu plume

passes through a neutral gas background. As mentioned before, there is no direct heating of

the substrate in these experiments. However, the ICP plasma will provide some heat to the

substrate. To monitor this heating by the ICP, a thermocouple was inserted in the middle

of the substrate holder.

At the highest ICP power of 700 W the temperature measured was 30°C ±4°C. For

all other experiments, the temperature did not rise above room temperature. This means

that the heating by the ICP is a very limited effect, compared to typical substrate heating

temperatures of several hundreds of degrees. CuO thin films were deposited at 4Pa, 7.3Pa,

13Pa and 20Pa pressures. In H-mode, the power used to operate the ICP at 4Pa, 7.3Pa and

13Pa was 500W and for 20Pa it was 700W, since a higher power was needed at that pressure

to achieve H-mode. In E-mode the power was 200 W for pressures of 4, 7.3 and 13 Pa.



8.2. INDUCTIVELY COUPLED PLASMA IN H-MODE 125

8.2 Inductively coupled plasma in H-mode

Fig (8.6) shows the XRD analysis of films deposited with PE-PLD with an inductively

coupled plasma operated at H-mode at 4Pa, 7.3Pa, 13Pa and 20Pa. The thin films produced

with the PE-PLD method show two different oxide forms of copper as identified by a standard

JCPDS cards no CuO: 1011148, Cu2O: 05-0667. The relatively good peak heigths compared

to the background indicate that there is a significant amount of crystalline material in the

films compared to amorphous.

Figure 8.6: XRD pattern for Inductively coupled plasma (H-mode) at different pressures

The first observation is that; we no longer exclusively see CuO phases, but now we

see Cu2O peaks in the XRD spectrum, most notably, the < 211 > plane in the 7.3 Pa case.

Furthermore, in contrast to the films deposited with standard PLD, i.e. in a gas background,
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these films do not show a dominant < 002 > plane, but a < 112 > plane CuO at low pressure,

changing to < 211 > in Cu2O for 7.3 Pa, changing to < 020 > in CuO for pressures 13 and

20 Pa. The < 020 > plane requires more energy to grow than the < 002 > plane that

is observed in normal PLD, however, it is more desirable for most of the semiconductor

applications. In our case this is mainly because, increasing the oxygen pressure in H-mode

increases the atomic oxygen due to electron impact dissociation [80] and the reactive oxygen

and atomic oxygen provides energy to grow the high index plane < 020 >. Similarly, Jean-

Pierre [6] showed activated deposition with an RF plasma oxygen source leads to the growth

of the < 020 > plane, which is considered more active for catalytic applications due to its

low packing density.

Figure 8.7: Stoichiometry of the thin film using SEM-EDX

8.2.1 Stoichiometry of the thin film SEM-EDX

Figure 8.7 shows the SEM-EDX analysis of the PE-PLD thin films produced at different

pressures. As can be expected, an increase in ICP pressure leads to an increase in O content

in the films, increasing from 20% at 4 Pa to 80% at 20 Pa. However, at 4Pa, 80% of the

film is Cu, nevertheless, the XRD results show a CuO peak. This indicates that there are
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small areas of crystalline CuO in the film, which are surrounded by very Cu-rich, or pure

Cu areas. At 7.3 Pa, the ratio Cu:O is 2:1, indicating stoichiometric Cu2O and at 13 Pa

the ratio Cu:O is 1:1, indicating stoichiometric CuO. This is in line with the XRD findings

which shows a major Cu2O peak < 211 > for 7.3 Pa and a CuO peak < 020 > for 13 Pa.

At 13Pa we see stoichiometric CuO which is predominantly in the (020) phase, however,

there are also well defined extra peaks, indicating < 110 >, < 111 >, < 310 >, < 220 >

phases. The transition from Cu2O films to CuO films has been observed before in the

literature, Z H Gan and co workers [116] deposited CuO thin film by filtered cathodic vacuum

arc method and from this technique they found that extra oxygen with high substrate bias

leads to the formation of CuO from Cu2O and the reaction process is given as Cu2O +

O�2CuO.

Also, the growth of the high index < 020 > plane of CuO has been seen before. By

e.g. Jean-Pierre et al [6] when they used an oxygen RF plasma the CuO< 020 > plane

was seen in their result. Finally, further increasing the pressure to 20Pa did not make any

change in the plane orientation from < 020 >, however the EDX results show 22.36% of

Cu and 77.60% O content , indicating a not stoichiometric film. Similarly, O. Daoudi et

al., [117] deposited CuO thin film by modified SILAR method, EDX results of the thin

film confirms the existence of copper and oxygen. Samples deposited for different cycles

shows different atomic concentration (%) of Cu and O from the thin film deposited. Sample

deposited at 30 cycles confirms the atomic concentration (%) is similar to my experiments

(i.e) ( Cu(25.78%); O(74.22%). Likewise, K.P.Muthe et al., [118] showed that in reactive

oxygen conditions, formation of Cu2O phase is much faster when compared with CuO phase

and this is clearly seen in our experimental conditions as well.
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8.3 Inductively coupled plasma in E-mode

Figure 8.8: XRD pattern for Inductively coupled RF plasma (E-mode) at different pressures

Next, another set of experiments was carried out with the ICP at low power, in E-mode. As

described in chapter 4, the plasma density as well as the density of reactive oxygen species

is much lower in E-mode than it is in H-mode. Figure 8.8 shows that these films show a

peak shift from < 112 > �< 020 > in CuO to < 211 > in Cu2O at 4Pa, 7.3Pa and 13Pa.

However, the main peak in the spectrum is from < 020 > in CuO for all pressures.

Again, at 7.3 Pa we see the high index (020) plane of CuO being deposited. The additional

energy provided by the background ICP can explain why this phase can be grown in the

PE-PLD case, but not in the standard PLD case (without substrate heating). Nevertheless,

the quality of these films is not very good since they are not stoichiometric. EDX results
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show that for all pressures the films are Cu-rich. This can be understood from the fact that

an E-mode plasma has a lowe density of reactive oxygen species compared to the H-mode. In

other words, it is the reactive oxygen that is active in the deposition process, simply having

O2 molecules (i.e. the same pressure) is not enough to incorporate enough O in the films; a

high density of reactive oxygen, e.g. O and O2∗ is essential.
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8.4 Thin film depositied at non-synchronised plasma condi-

tion

Figure 8.9: CuO thin film deposited at 7.3Pa, 13Pa and 20Pa with a de-synchronised PE-

PLD set-up

In order to investigate the underpinning physics of the PE-PLD process, experiments were

performed where the laser and ICP plasma were intentionally de-synchronised. These exper-

iments will show whether in normal, synchronised PE-PLD there is an interaction between

the Cu plume and the oxygen ICP, depositing CuO, or that there is a normal Cu deposition,

which is subsequently oxidised by the ICP plasma. In these non-synchronised experiments,
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only the latter process will happen. Details of the de-synchronisation timings can be found

in figure 8.5.

The primary XRD peaks that can be observed for all pressures in Fig 8.9 are the < 002 >,

< 111 > and < 020 > peaks of CuO, with the < 002 > peak having the maximum intensity.

These XRD patterns are very similar to what is found in the standard PLD case (fig 8.2) and

distinctly different from the synchronised PE-PLD case (fig 8.6). This implies that there is

very little (if any) oxidation of the already deposited films by the ICP plasma. The oxidation

of the Cu happens when the Cu plume interacts with the ICP background plasma/gas. In

the case of synchronised PE-PLD this is the background ICP, in the case of standard PLD

and non-synchronised PE-PLD, this is neutral background gas.

8.5 Crystal size and surface morphology of the thin film

Figure 8.10: Crystal size calculation using Scherrer formula for Inductively coupled plasma

at H-mode and E-mode



8.5. CRYSTAL SIZE AND SURFACE MORPHOLOGY OF THE THIN FILM 132

From the line broadening in the XRD experiments, the average crystal size can be calculated

from the Scherrer equation.

t =
Kλ

βt cosθB
(8.1)

where, t is the average crystallite size, λ is the wavelength of X-rays, βt is the FWHM of the

most intense peak for corresponding θ, K is the Scherrer constant which varies between 1.0<

K >0.89. Figure (8.10) shows the crystal sizes for the films deposited in the proof-of-concept

PE-PLD experiments, i.e. H-mode ICP and synchronised laser and ICP. The crystal size

increases with increasing pressure from 5.87 nm at 4 Pa to 22.4 nm at 25 Pa. As will be

shown in the next section, the increase in crystal size also affects the electrical resistivity of

the films, one of the main figures of merit of these types of films.

Figure 8.11: SEM image of PE-PLD thin film at different pressure (a) 4Pa (b) 7.3Pa (c)

13Pa (d) 20Pa. Increasing pressure increases the surface roughness

The calculated crystal sizes for the films deposited in E-mode at 4, 7.3 and 13 Pas are

4.25, 5.65 and 8.94 nm respectively. This is less than the crystal sizes obtained with the

H-mode experiments. Whereas, the crystal sizes calculated from films in the gas background

at 13Pa and 20Pa are 15nm and 20nm which is bigger than crystal sizes calculated from
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both E-mode and H-mode.

The surface morphology of the films is studied using a SEM (JEOL JSM7800F FE).

Figure (8.11) shows the SEM images for the H-mode PE-PLD films at different pressures.

It clearly shows that an increase in pressure decreases the surface smoothness. A possible

reason for the increased roughness could be the increased exposure to bombarding ions from

the ICP (with increasing pressure). To test this hypothesis, a film deposited with standard

PLD from a CuO target at 7.3Pa was subjected to a post-treatment with an ICP plasma at

varying powers from 200W to 800W, i.e. varying levels of ion bombardment. The results of

these experiments are shown in figure 8.12.

Figure 8.12: Thin film deposited using CuO target at 13Pa and post treatment of film at (a)

200W, (b) 500W and (c) 800W

The results in fig (8.12) show only a minor increase in the surface roughness of the films

with increasing ICP post-treatment power, i.e. increasing ion bombardment. Regardless, all
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the post-treated films have a very different morphology than the standard PE-PLD films (fig

(8.4)). This leads to the conclusion that the increased roughness observed in the PE-PLD

films is not due to the ion bombardment from the ICP.

8.6 Deposition rate and electrical resistivity measurement

As well as the quality of the deposited thin film, another important parameter for practical

applications is the deposition rate of the film. In order to calculate the deposition rate,

thin films were deposited for 90min and then analysed with an AFM (Bruker). For these

experiments, part of the deposited film was removed using ethanol and the step between

the film and the cleaned surface was measured. Running the AFM in tapping mode, the

cantilever is scanned along the sample surface and the depth difference between the deposited

film and the cleaned surface gives the thickness of the film. Film thicknesses were calculated

for both the standard H-mode ICP and the low-power E-mode for different pressures. The

results are shown in figure (8.13). It shows deposition rates ranging from 1.3 nm/min to 3.3

nm/min. Overall, these deposition rate are in line with what has been observed typically

for standard PLD [119]. Interestingly, figure (8.13) also shows that the deposition rate of

E-mode is always greater than H-mode.
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Figure 8.13: Thin film deposition rate at E-mode and H-mode

A possible explanation for this is that in H-mode the density of both ions and reactive

neutral species is much higher than in E-mode, increasing the interactions between the plume

and the background, slowing down the expanding plume and reducing the amount of material

that will reach the substrate. This explanation is further strengthened by the observation

that the deposition rate goes down with increasing pressure for both E-mode and H-mode.

In other words, increasing pressure leads to higher plasma densities, increased interaction

with the plume and a reduction in material deposited. Of course, it should be noted that

despite a higher deposition rate in E-mode, the quality of these films, i.e. stoichiometry and

crystal structure, is not very good, limiting the practical applications for E-mode deposited

films.
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Figure 8.14: Electrical resistivity of thin film calculated using four point probe at H-mode

and E-mode

Finally, the electrical properties of the films were studied using a four point probe tech-

nique Jandel RM3 AR instrument. Together with the film thickness (from AFM measure-

ments), the electrical resistivity of the films can be calculated as follows:

Electrical resistivity (Q) = Rs × d (8.2)

Where Rs is the sheet resistance and d is the thickness of the film.

Fig (8.14) shows the electrical resistivity of films deposited at E-mode and H-mode. At

4Pa and 7.3Pa, for both E-mode and H-mode the resistivity of the film are nearly the same

and at 13Pa there is a sudden variation in the electrical resistivity of the film for E-mode and

H-mode. The resistivity of the film at H-mode is 7.6 x 10−3 Ω-m whereas, at E-mode it is 0.2

Ω-m. Electrical resistivity calculated calculated for 20Pa plasma background (E-mode, H-

mode), plasma non-synchronised, gas environment for Cu and CuO target are highly resistive

and it is out of range.
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In conclusion, the PE-PLD proof-of-concept experiments have shown the potential of

the PE-PLD technique to produce high-quality, i.e. stoichiometric and polycrystalline films

from a Cu target without substrate heating or post-annealing. The deposition rates are

comparable to standard PLD and the measured electrical resistivity is also good compared

to PLD films. Interestingly, it is possible to tune the composition of the film from CuO to

Cu2O (both stoichiometric) using just the pressure in the ICP. The additional experiments

have shown that there is indeed a clear interaction between the expanding Cu plume and

the background ICP plasma. I.e. oxidation of the Cu happens in the travelling plume, not

after the Cu is deposited. Furthermore, it is shown that the density of reactive oxygen in

the ICP is critical for achieving a high quality film, i.e. a high-density H-mode is needed.



Chapter 9

Conclusion

The main focus of this thesis is an introduction and feasibility study of a novel thin film

deposition technique: Plasma-Enhanced Pulsed Laser Deposition. The main idea is to incor-

porate an inductively coupled oxygen RF plasma in a standard PLD set-up for the deposition

of metal-oxide thin films. Advantages of this novel technique include the use of simple pure

metal targets instead of metal-oxide composite targets and the lack of the necessity for

substrate heating and post-annealing to obtain high-quality films.

First, the feasibility of the PE-PLD technique is investigated using numerical simulations

(chapter 5). Two different numerical models were used for understanding the laser ablation

process and the inductively coupled oxygen plasma, respectively. Modelling of laser ablation

of copper at 13Pa and 20Pa were used to estimate the electron temperature and the axial

velocity of the expanding copper plume. At 13Pa, the peak velocity of the Cu plume is

around 1.5 × 106 m/s for all times between 20 and 100ns. Further, increasing the background

pressure to 20Pa leads to the decrease in the peak velocity to around 1.4 × 106 m/s. In both

cases, the highest peak velocities are found near the front of the expanding plume.

On the other hand, the estimated electron temperature for 13Pa slowly decreases from

1.41eV to 1.29eV between 20ns to 100ns and at 20Pa, the temperature decreases from 1.49eV

138
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to 1.3eV. This change in electron temperature and axial velocity shows that the small varia-

tion in the background pressure has an influence on the plume properties and plume dynam-

ics, meaning that background pressure cannot be used as in independent control parameter

for stoichiometry. The electron densities found in the laser ablation of Cu for 13Pa and 20Pa

were around 9 × 1017 cm−3 near the front of the expanding plume and the densities on the

order of 2-6 × 1017 cm−3 are found behind the front. Based on the modelling results, the

density of Cu at the substrate surface (4 cm from target) can be estimated to be in the order

of 1014 cm−3.

Second, different numerical simulations of (only) the inductively coupled oxygen plasma

showed that electrons and O+
2 ions were the main charged species at densities around 1011

cm−3. However, reactive neutral species, in particular O and O∗2, were found to have den-

sities 2-5 orders of magnitude higher than the charged species. It is known from the PLD

studies that the neutral reactive species O and O∗2 plays a major role in interacting with

the expanding plume during thin film growth. Therefore, it is likely that the interaction

of the Cu plume with the background plasma will involve reactive neutral species and not

ionic species. Also, the densities of these reactive species are on the order of 1014 cm−3,

i.e. similar as the Cu plume in front of the substrate, obtaining conditions that allow a ef-

fective interactions between the two plasmas. Moreover, the modelling shows that the ratio

of the two reactive oxygen species can be controlled with the pressure, enabling a further,

independent control over the oxidation process in PE-PLD.

The first experimental results, presented in chapter 6, involve the use of time-resolved

optical emission spectroscopy to measure the electron temperature and electron densities. A

laser produced Cu plasma in vacuum, background oxygen gas and oxygen ICP plasma. It

was found that plasma emission from the Cu plume expands faster in the vacuum compared

to the background gas environment, because the gas initiates shock waves, slowing down

the expansion. Overall, there was a good agreement between the POLLUX simulations and

these experimental results. I.e. temperatures calculated from the experiments for 13Pa for
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the first 100ns are 1.51eV-1.20eV and 1.53eV-1.25eV for 20Pa. Whereas, from POLLUX

simulation, the temperature varies between 1.41eV-1.2eV for 13Pa and 1.49eV-1.38eV for

20Pa. In addition, line broadening studies were done to calculate the electron densities from

the measured Stark broadening. Densities in the order of 1018 cm−3 were measured for times

30-50 ns, which subsequently decrease rapidly to ∼1015 - 1016 cm−3 for times greater than

100 ns. The same general trend was found for all scenarios, i.e. vacuum, gas or ICP plasma

background. Furthermore, since both the temperature and density diagnostic relies on an

assumption of LTE for the plasma under study, some effort was made to verify the accuracy

of this assumption. In particular, the McWhirter criterion (equation (7.5)) was used to

determine whether the measured electron density was indeed high enough to assume LTE.

It was found that the plasma was not in full LTE for most of the ablation process, i.e. >∼70

ns. However, the more relaxed concept of pLTE was met for almost all of the measurements.

This highlights an important point about the LTE assumption in that even though pLTE

is observed (e.g. via a Boltzmann plot), this does not necessarily mean the plasma is in

full LTE which means that further investigations are needed to verify the accuracy of these

widely used techniques in these types of experiments.

Finally, in chapter 8, the full PE-PLD proof-of-concept experiments were presented. The

thin films we deposited in 4Pa, 7.3Pa, 13Pa and 20Pa H-mode ICP backgrounds. Within

this narrow pressure range we can observe a transition between CuO and Cu2O films, both

in stoichiometry and crystal structure. In addition, the CuO films have a highly active

(020) structure compared to the normal (002) structure. These experiments show that

high-quality copper oxide films can be grown from pure copper targets with the PE-PLD

technique without the need for substrate heating or post-annealing. The exact composition

can be tuned with the pressure of the ICP.

In order to gain a better understanding of the underlying processes of the PE-PLD de-

position, experiments were performed with the ICP in a low-power E-mode and experiments

where the laser and ICP were de-synchronised. These experiments show that there is a
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definite interaction between the Cu plume and the oxygen ICP, i.e. Cu deposition with sub-

sequent oxygen plasma exposure does not give good films. Also, high densities are needed

in the ICP; the low-power E-mode characterised by lower plasma densities and higher ion

bombardment energies, again results in poor quality, non-stoichiometric films.

In conclusion, this work has introduced the novel PE-PLD technique and shown its

potential in a proof-of-concept study on copper oxide. I found that using this technique I

can deposit high-quality copper oxide films from a pure Cu target and without substrate

heating or post-annealing. In addition, the ICP can be used to tune the composition and

crystal structure of the films, going from stoichiometric CuO to stoichiometric Cu2O.
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