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ABSTRACT 

 

The Cretaceous-Paleogene mass extinction event occurred 66 million years ago 

and had a profound effect on the course of evolutionary history, with the 

extinction of up to 75% of life and larger effects on the broader Earth system.  A 

number of studies posit that the severity of this extinction event may have been 

amplified by climate variability and destabilisation in the latest Cretaceous – 

immediately prior to the extinction event.  The strong seasonal forcing in the 

polar high latitudes is likely to have enhanced any such effects during this time 

period; additionally, the historical mismatch between late Cretaceous proxy data 

and climate simulations is particularly pronounced at high latitudes and both 

the effects of a stronger seasonal cycle on proxy temperature conversions, and 

misrepresentation of seasonality in climate models have been suggested as factors 

in the mismatch.  This makes the Antarctic an extremely valuable location to 

study with regards to seasonality from a proxy- and model- based perspective.  

Seymour Island is a rare and valuable Antarctic K-Pg boundary site with a good 

framework of fossil, stratigraphic and sedimentological study, which makes fossil 

material ideal for investigation of the effects and impacts of seasonality and 

environmental change across the mass extinction interval. 

 

This thesis presents a detailed study focusing on using fossil bivalve shell material 

from the Seymour Island section to reconstruct records of Antarctic climate and 

seasonality across the K-Pg mass extinction event.  New data were obtained 

about the seasonal growth patterns of these bivalves to understand their growth 

and ontogenetic response to potential climate variability and the effects of the 

mass extinction.  For the first time, sub-annual resolution stable carbon and 

oxygen isotopic data were produced from Seymour Island’s bivalve shells to show 

seasonal changes in temperatures and detect changes in biogeochemical cycling 

and methane influence through the section.  These data were integrated with a 

series of oxygen isotope enabled climate simulations to address potential issues 

converting from isotopic to temperature data in a highly seasonal environment 

and provide further information regarding the influence of sea ice.  Combining 

new proxy- and model- based knowledge in a series of sensitivity experiments, it 

was shown that both sets of data display good agreement under realistic sets of 

parameters, suggesting that seasonality was important for the development of 

polar ecosystems.  Warm summer temperatures may have been key in permitting 

the ecological strategy in these bivalves of slow growth to large sizes, which in 

turn may have contributed to survivorship across the K-Pg boundary.  
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rate of mature growth, even if long-lived. This shows that the size 

distribution is more likely to have been linked to growth rate and maturity 

rather than changes in mortality which is unlikely to have changed the 

maturation cycle. ................................................................................... 274 
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CHAPTER 1 

7  

INTRODUCTION 
 

 

1.1 Introduction 

 

The Cretaceous-Paleogene (K-Pg) mass extinction event of 66 million years ago 

(Ma) is the most studied of the major mass extinction events of Earth history 

and is famed not only for its high-profile victims, including non-avian dinosaurs, 

marine reptiles and ammonites (MacLeod et al. 1997; Brusatte et al. 2014) but 

for the fundamental restructuring of global ecosystems it caused. These 

environmental and ecological changes may have ultimately contributed to the 

rise of modern fauna and flora (Alroy 1998; Krug et al. 2009). 

 

There is still considerable debate over the cause of the K-Pg mass extinction with 

two principal hypotheses for the triggering event. The leading hypothesis is the 

impact of a major bolide (Alvarez et al. 1980) linked to the Chicxulub crater in 

Yucatan peninsula (Hildebrand et al. 1991; Arenillas et al. 2006). This would 

have led to rapid and severe global environmental changes (Schulte et al. 2010) 

and food chain collapse due to a reduction in available sunlight (Esmeray-Senlet 

et al. 2015). The most prominent alternative hypothesis is volcanism from the 

Deccan Traps large igneous province (LIP) in continental India (Schoene et al. 

2015; Font et al. 2016). Although two of the three main phases occur before and 

after the K-Pg mass extinction, the largest phase is co-incident with the mass 

extinction (Chenet et al. 2009). Major volcanism would have released large 

volumes of CO2 and other volatiles leading to alteration of atmospheric 

chemistry, short-term warming and longer-term cooling. Cause-and-effect 

relationships have also been proposed whereby the second phase of Deccan Traps 

volcanism may have been triggered by the seismic impact of a major bolide 

collision (Renne et al. 2015; Richards et al. 2015). 

 

The proximate environmental killing mechanisms are also widely debated. 

Survivor taxa in the immediate post-extinction recovery period can be used to 

gauge the ecological effects. The effects of the mass extinction were 

geographically widespread, with even the middle to high-palaeolatitude oceanic 
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shelf sites far from either the Chicxulub impact site or Deccan Traps affected by 

a reduction in primary productivity (Aberhan et al. 2007). Multiple sites show a 

prevalence of starvation-resistant low-nutrient-adapted benthic species in the 

recovery faunas and the preferential extinction of groups dependent on 

photosynthetic organisms (Rhodes & Thayer 1991; Sheehan et al. 1996; Aberhan 

et al. 2007). There was also a change in ecospace occupation, particularly within 

molluscs with an overall decrease in suspension feeding and increase in deposit 

feeding across the K-Pg boundary (Aberhan & Kiessling 2015).  

 

The impact of an asteroid at Chixulub was likely to have been the cause of the 

observed crisis in primary productivity and the collapse of photosynthesis-

dependent food webs (e.g. Rhodes & Thayer 1991; Sheehan et al. 1996; Aberhan 

et al. 2007; Esmeray-Senlet et al. 2015). There is also evidence for additional 

environmental effects including metal poisoning (Jiang et al. 2010), surface water 

acidification (Alegret et al. 2012) and short-lived global cooling (Vellekoop et al. 

2014). Deccan Trap volcanism may have provided additional stressors due to 

changes in the global carbon cycle and the resultant global warming followed by 

cooling, increased continental weathering, and run-off leading to changes in ocean 

chemistry (Kump & Arthur 1999; Renne et al. 2013). 

 

It has been hypothesised that long-term environmental stresses, such as climate 

destabilisation and variability in the lead up to the K-Pg mass extinction may 

have primed environments and increased the severity of the extinction event 

itself (e.g. Arens & West 2008). The geological period across the K-Pg boundary 

from the latest Cretaceous Maastrichtian Stage (72.1 to 66 Ma) to the earliest 

Paleogene Danian Stage (66 to 61.6 Ma) has long been highlighted as a time of 

extreme temperature seasonality and variability on a scale unseen in modern 

temperate climates in contrast to more equable Cretaceous conditions (Barrera 

et al. 1987; Wolfe & Upchurch 1987; Pirrie & Marshall 1990; Barrera 1994; 

Ditchfield et al. 1994; Huber et al. 1995; Li & Keller 1998; Dingle & Lavelle 2000; 

Francis & Poole 2002; Gallagher et al. 2008).  

 

The high latitudes in particular have the potential for heightened seasonal 

variability compared to lower latitudes due to strong forcing from the annual 

insolation regime which can involve long periods of continuous darkness or 

sunlight. Existing studies highlight the potential for strong seasonality around 

the Antarctic continent during the latest Cretaceous, including indicators of sea 

ice (Bowman et al. 2013; Petersen et al. 2016) in apparent contrast to the lush 

cool-temperate rainforests, large reptiles and abundant diverse marine life found 



 

3 

in the fossil record which are indicative of much warmer temperatures (Francis 

& Poole 2002; Martin & Crame 2006). There is no modern ecological analogue 

for a warm vegetated high latitude setting with an extremely seasonal light 

regime and energy budget, however it is expected that seasonality is likely to 

have played an important role in the evolution of high latitude environments and 

biotas, even during warmer periods of climate. This makes it extremely valuable 

to look in the Antarctic fossil record for evidence of the effects of high latitude 

seasonality and climate variability with regards to the K-Pg mass extinction and 

because of the key role that the continent played, and continues to play, in 

modulating global climate.  

 

Annual seasonal temperature change driven by insolation provides one of the 

largest sources of climate variability on one of the shortest timescales. This is 

particularly important in the high latitudes, where the change in insolation is 

extremely large over the course of a year. Temperature seasonality and intra-

annual climate change may be more important to understand from a 

palaeoecological angle than longer timescale mean-state climate conditions (e.g. 

Guthrie 1984) as seasonal temperature changes drive physical systems such as 

ocean currents and nutrient cycling (Marshall & Speer 2012). The amount of 

seasonality experienced by organisms may even affect global patterns of evolution 

and extinction (Bartlein & Prentice 1989; Sheldon 1996; Li & Keller 1998; Davis 

et al. 2005) with some studies suggesting that seasonal temperatures may have 

a stronger effect than mean annual temperatures on evolution and diversification 

(Parmesan et al. 2000; Archibald et al. 2010). Yet very little work has been done 

to examine the records and effects of seasonality in the geological record as it is 

extremely difficult to quantify seasonality in deep time due to a reliance on the 

ability to discern sub-annual temperature variations 

 

The potential for heightened seasonal variability – in both the Maastrichtian to 

Danian and at high latitudes in general – is largely overlooked in interpretations 

of geochemical proxy records which often use modern calibrations to middle- and 

low-latitude mean annual temperatures and may result in misleading 

palaeoenvironment reconstructions (Wolfe 1993; Markwick 1996; Price et al. 

1997; Pearson et al. 2001; Huber et al. 2002). In spite of a rich fossil and proxy 

data record, Late Cretaceous climate models often fail to match the conditions 

expected, with mean annual temperatures often predicted by models to be several 

degrees cooler than the proxy data suggest (Donnadieu et al. 2006). The effect 

of seasonality in the proxy interpretation of data may be an important source of 

data-model discrepancy and accurately quantifying past Antarctic climate 
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behaviour on a sub-annual scale is therefore important for assessing the veracity 

of palaeoclimate models.  

 

 

 

 

 

Figure 1.1: Maastrichtian palaeogeographic reconstruction showing the 

approximate palaeolocation of Seymour Island (yellow star). And map of 

modern locations of key K-Pg boundary data locations. Reconstruction based 

on Markwick & Valdes (2004), locations from Schulte et al. (2010). Note that 

maps are not centred on the same line of longitude; the present-day location 

of Seymour Island shows little movement from its Cretaceous location. 
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The effects of the mass extinction event have long been thought to have been 

muted at high latitudes (e.g. Barrera & Keller 1994), however, the latest studies 

suggest that the extinction event was probably just as rapid and severe in 

Antarctica as it was in lower latitudes (Witts et al. 2016). Studies from 

Cretaceous to Paleogene sections around the Antarctic Peninsula have proved 

particularly important in adding to the discussion of the climate and effects of 

the mass extinction event. This region of the Antarctic is an area which has been 

identified as being both sensitive to environmental change, and an important 

location for both deep-water formation, and upwelling during the Late 

Cretaceous and Paleogene.  

 

Within the region of the Antarctic Peninsula, Seymour Island contains a rare 

and extremely scientifically important high latitude K/Pg boundary locality. The 

island possesses a near-continuous section of shallow marine sedimentary deposits 

ranging from the latest Cretaceous to Eocene with abundant well-preserved fossil 

material. Palaeogeographic reconstructions (Figure 1.1) and 

magnetostratigraphic data place the depositional basin at around 65°S during 

the events of the K-Pg mass extinction (e.g. Lawver et al. 1992; Hay et al. 1999). 

These outcrops therefore represent a true high latitude record of events during 

this critical period of time as well as the only outcropping marine rocks of these 

ages in Antarctica (Marvin & Post 1982; Schulte et al. 2010) and the highest-

latitude continuous K/Pg boundary section (Figure 1.1). Fossil material from 

this section is therefore ideal for examining records of high latitude seasonality 

during the boundary interval. 

 

There are a large number of intact macrofossil specimens collected from traverses 

across the Seymour Island K-Pg boundary section available to study, and the 

basic framework of species identification, broad palaeoenvironment and 

sedimentology is available evidence (Macellari 1988; Zinsmeister & Macellari 

1988; Crame et al. 2004; Thorn et al. 2009; Olivero 2012), so more detailed 

analysis can be undertaken without the need to start entirely blind. Infaunal 

bivalves have been particularly important in previous studies; several genera of 

large-shelled infaunal bivalves are abundant in pre- and post- extinction faunas 

and have the potential to both record and respond to changes in environmental 

conditions (e.g. Zolotarev 1980; Jones et al. 1989; Buick & Ivany 2004; Butler et 

al. 2010, 2013). Bivalve specimens from the Eocene of this area have been found 

to be preserved sufficiently well for sub-annual stable isotopic analysis (Buick & 

Ivany 2004), and attempts have been made to produce clumped isotopic data 

from shell material across the boundary section including broad estimates of 
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minimum seasonality from differences between juvenile and mature mean 

recorded temperatures (Petersen et al. 2016). However, specimens from the K-

Pg boundary have not been well studied on sub-annual timescales, and the data 

produced by such analysis is likely to provide a useful understanding of processes 

that affected the high latitudes during a climatologically important time period. 

 

1.2 Aims and Objectives 

 

The aim of this thesis is to understand the nature of seasonality in Cretaceous 

and early Cenozoic Antarctic climates and the impact of seasonality and 

environmental variability on the growth and survival of polar marine bivalves 

across the K-Pg boundary interval. Specifically, this thesis will aim to answer 

the following research questions: 

 

• What were the climate conditions of the marine environment in the James 

Ross Basin during the late Maastrichtian and early Paleogene; how 

seasonal and climatologically variable was it and what were the likely 

drivers of variability. What is the potential for seasonal bias in temperature 

proxies at high latitudes 

• Can high resolution stable carbon and oxygen isotopic data be used to 

detect changes in biogeochemical cycling throughout this time period? 

• How do global patterns of seasonality from climate models and data 

throughout the Maastrichtian compare to the data from Seymour Island? 

• How did infaunal bivalves respond to climate variability, seasonality and 

environmental changes in the lead up to and aftermath of the K-Pg mass 

extinction? 

 

 

In order to answer these questions, this thesis is divided into 7 chapters as follows, 

each drawing on the work done in the previous chapters. The remainder of 

Chapter 1 provides an overview of the thesis rationale and structure. 

 

Chapter 2 presents a summary of the geological setting of the marine sedimentary 

sequence on Seymour Island, which presents a rare Antarctic Cretaceous and 

early Paleogene boundary succession and fossil material with which to look for 

evidence for seasonal effects on marine fauna.  
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Chapter 3 identifies the suitable bivalves in the Seymour Island section to use to 

look for signals of seasonality and presents the results of morphometric analysis 

of several species of bivalves through the stratigraphic section. Also included are 

the results of preservation tests to determine suitability of these specimens for 

geochemical analysis, along with tests for growth ring periodicity and analysis of 

ontogenetic trends in species where annual growth rings can be confirmed.  

 

Chapter 4 focuses on geochemical analysis, using well preserved fossil specimens 

to reconstruct sub-annual temperature records using stable isotopic and clumped 

isotopes. These results have been compared to oxygen isotope enabled model 

data under a number of different CO2 and river output conditions.  

 

In Chapter 5, seasonality and climate variability are examined in shell-derived 

data through stratigraphy and compared to modelled seasonal temperature 

outputs under different boundary conditions. 

 

The biogeochemical conditions of the Late Cretaceous and early Paleogene and 

their potential impact on local and global climate are considered in Chapter 6, 

where seasonal stable carbon isotopic data is used to examine the marine 

sedimentary carbon cycle under low sulfate conditions. This chapter has been 

formatted for publication. 

 

Chapter 7 brings together these results and additional data from other terrestrial 

and marine proxies for seasonal climate conditions into an overall discussion of 

the effects of seasonality within the Seymour Island section and in the context of 

global Maastrichtian conditions, and summarises the findings related to each of 

the research questions detailed above. 
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CHAPTER 2 

2  

GEOLOGICAL SETTING AND MATERIALS 

 

 

2.1 Introduction 

 

This chapter presents the stratigraphic, sedimentological and 

palaeoenvironmental context for the fossil bivalve specimens studied in the 

following chapters. It begins with a discussion of the evolution and tectonic 

history of the Antarctic Peninsula and the eastern back-arc basin where Seymour 

Island’s sediments were deposited followed by an overview of the Cretaceous to 

Paleogene sedimentary succession from which the fossil bivalve material was 

collected. An overview of existing records of marine and terrestrial 

palaeoenvironmental conditions around the Antarctic Peninsula over this 

interval of sedimentation is also presented. Fossil collection methods, locality 

specifics, and nomenclature used within this study are described, and the chapter 

concludes with the results of initial preservation tests to determine the suitability 

of these specimens for the geochemical analysis which forms the basis of the 

following chapters. 

 

 

2.2 Regional Tectonics and Palaeogeography 

 

The rocks outcropping on modern-day Seymour Island were deposited in the 

James Ross basin; the northernmost sub-basin of the much larger Larsen Basin 

which developed in the back-arc of the Antarctic Peninsula (del Valle et al. 1992; 

Hathway 2000). From the Jurassic to the Eocene, the Antarctic Peninsula was 

an active and evolving volcanic arc, fed by the subduction of the proto-Pacific 

to the west under the Antarctic plate (Figure 2.3, Elliot 1988). Crustal extension 

is likely to have formed a number of basins along the margins of the tectonic 

remnants of the break-up of Gondwana during this period (Zinsmeister 1982) 
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and subduction led to the formation of basins in the fore-arc to the west of the 

Antarctic Peninsula, and back-arc basins such as the Larsen Basin to the East. 

 

 
 
Figure 2.1: Tectonic and subduction regime of the early rifting between East and 

West Gondwana (Late Jurassic to Cretaceous), modified from Hathway (2000). 

Inset; the approximate position and extent of Seymour Island and the James Ross 

Basin (red dashed line) within the larger Larsen Basin, modified from del Valle 

et al. (1992). 

 

 

During the Late Cretaceous to Paleocene which is the focus of this study, the 

Larsen basin was open to the east and bounded to the west by the coastal plains 

and flanks of the volcanically active and emergent Antarctic Peninsula, with a 

shoreline trending roughly NNE – SSW. A southern limit to the Larsen Basin 

has tentatively been placed along the 69°S parallel (Macdonald et al. 1988), with 

the James Ross basin within it bounded at roughly the 65°S parallel (Figure 2.1, 

del Valle et al. 1992). Rivers flowing ESE from the Antarctic Peninsula provided 

the main clastic source to the basin and delivered siliciclastic sediments to the 

deltaic or estuarine systems offshore (Pirrie 1989; Scasso et al. 1991; Olivero et 

al. 1992). Analysis of the distribution of fossil invertebrates and trace fossils 

suggest that Seymour Island was located in a relatively central part of the basin 

some 150 km to the southeast of the principal magmatic arc, and approximately 

300 km from the trench (Figure 2.6) (Elliot 1997; Olivero et al. 2008). 
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During the deposition of the Maastrichtian to Danian succession, 

palaeogeographic reconstruction suggests that the northern tip of the Antarctic 

Peninsula was connected via a shallow water archipelago to the southern tip of 

the Fugeian Andes of South America (Figure 2.2, Markwick & Valdes 2004; 

Markwick 2007). This allowed ocean contact into the Weddell sea, but there is 

no evidence for a deep circumpolar flow until the earliest Oligocene (Katz et al. 

2011). 

 

 
 

Figure 2.2: Palaeogeographical map of the south polar region and oceanic 

connectivity during the Maastrichtian (Base map from Markwick 2007, ocean 

circulation based on the top 450m of currents modelled using HadCM3L (Hunter 

2009). 
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Figure 2.3: Geological evolution of the Antarctic Peninsula (western volcanics) 

and Larsen Basin (eastern marine sequences), from the Late Jurassic onset of 

rifting to the Late Cretaceous deposition of basin fill sediments, altered from 

Hathway (2000). 
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2.3 General Stratigraphy of the James Ross Basin 

 

The islands of the modern James Ross basin preserve a thick and relatively 

complete volcaniclastic succession throughout the evolution of the basin from the 

Late Cretaceous (approximately Aptian Stage 125 Ma) to the Late Eocene (33.9 

Ma). The sedimentary basin-fill of the James Ross Basin has been classified as a 

regressive megasequence (Macdonald et al. 1988) and can be divided into three 

main sequences; the Aptian to Coniacian Gustav group (Riding & Crame 2002; 

Crame et al. 2006; Kennedy et al. 2007), the latest Coniacian to Paleocene 

Marambio Group (Rinaldi et al. 1978; Crame et al. 1991; McArthur et al. 2000; 

Olivero 2012) and the Paleocene to Eocene Seymour Island Group (Elliot & 

Trautman 1982; Marenssi et al. 1998). These groups are divided by major 

regional unconformities representing a change in palaeoenvironment and basin 

configuration; likely driven by a mixture of tectonic changes, global sea-level 

regressions or potentially glacioeustatic sea level change (Pirrie et al. 1991; 

Crame et al. 2004; Olivero et al. 2008; Olivero 2012). 

 

The similar and homogeneous nature of much of the fine-grained sedimentary 

succession has led to difficulties correlating smaller units across the basin. This 

is of particular issue for members of the Marambio Group, which has key 

outcrops spread over a wide area on disparate small islands of the James Ross 

Basin. Macrofossils (e.g. ammonites, Olivero & Medina 2000) and microfossils 

(e.g. dinoflagellates, Pirrie et al. 1997; Riding & Crame 2002; Bowman et al. 

2012) have been used to define the stratigraphy and correlate well with 

sedimentological features such as major unconformities (Crame et al. 1991). 

Recent additions of absolute age controls in the form of strontium iotope 

chemostratigraphy (McArthur et al. 2000) and magnetostratigraphy (Tobin et 

al. 2012; Milanese et al. 2013, 2017) to the existing biostratigraphic and 

sedimentological framework has provided much more precise age constraints to 

the basin succession. Each megasequence broadly represents a different set of 

environmental and depositional conditions within the evolution of the James 

Ross Basin, and the associated environments and compositions are briefly 

detailed below. 
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Figure 2.4: Geographical setting (A) and geological map (B) of the James Ross 

Island cluster within the James Ross basin showing the distribution of the main 

sedimentary groups. K-Pg boundary position is indicated on Seymour Island in 

the upper layers of the López de Bertodano Formation. Line of section refers to 

Figure 2.5. Modified from Witts (2016).
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Figure 2.5 Correlation cross section based on line in Figure 2.4. Includes correlations made using magnetostratigraphy (MS), ammonite 

assemblage biostratigraphy (AA) and lithostratigraphy from multiple sources. Taken from Witts (2016). 
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2.3.1 Gustav Group 

 

The Gustav Group was deposited in the Aptian to Coniacian (Riding & Crame 

2002; Crame et al. 2006; Kennedy et al. 2007) and includes the Lagrelius Point 

Formation, Kotick Point Formation, Whiskey Bay Formation and Hidden Lake 

Formation. These can all be found as outcrops along the northwest coast of the 

James Ross Island and are thought to represent the deepest marine 

sedimentation in the basin. During the period of deposition, rapid basin extension 

and uplift of the Antarctic Peninsula volcanic arc produced high sedimentation 

rates, resulting in a basin-infill sequence roughly 3000m thick (Whitham et al. 

2006). The sedimentary deposits are largely fine grained sandstones and 

mudstones, with volcaniclastics including pyroclastic flows and fragments of 

pumice and volcanic bombs present in the Coniacian strata (Hathway 2000; 

Whitham et al. 2006). 

 

2.3.2 Marambio Group 

 

The Marambio Group was deposited from the latest Coniacian to the Paleocene 

and its members are exposed across a much larger geographical area than the 

Gustav Group. It consists of the Santa Marta Formation, present in several 

locations across James Ross Island, the Snow Hill Island Formation, found across 

James Ross Island, Snow Hill Island, Vega Island and Humps Island, the López 

de Bertodano Formation on Vega Island, Snow Hill Island and Seymour Island, 

and the Sobral Formation, which only outcrops on Seymour Island (Rinaldi et 

al. 1978; Crame et al. 1991; McArthur et al. 2000; Olivero 2012). The increased 

number of outcrops and locations display some environmental difference across 

the roughly 80 km of the modern-day James Ross island chain, which has made 

correlating the units and members within the Marambio Group quite challenging. 

The overall sedimentological environment is interpreted as a shallower marine 

environment than the Gustav Group, with the Marambio Group representing an 

overall regressive megasequence prograding East from the Antarctic Peninsula 

towards the Weddell Sea. Consequently, the northwest parts of the James Ross 

island chain (e.g. Vega Island and northern James Ross Island) represent 

proximal deposition, whereas the southeast parts of the section (e.g. south James 

Ross Island, Snow Hill Island and Seymour Island) represent more distal 

deposition near the centre of the basin. In addition, the change from crustal 

extension to a compressional tectonic regimen produced reverse faulting along 
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the western edge of the Larsen Basin, causing uplift in the James Ross Basin 

(Hathway 2000). As a result, the stratigraphically older Santa Marta Formation 

deposited in the outer margins of a deep water delta shows shallowing upwards 

to finer grained inner shelf deposits (Olivero 2012). The Snow Hill Island 

Formation, López de Bertodano Formation and Sobral Formation all represent 

more upper slope to inner shelf environments (Macellari 1988; Pirrie et al. 1997; 

Crame et al. 2004, 2014). The exact palaeoenvironments of the López de 

Bertodano and Sobral Formations on Seymour Island are discussed further in 

Sections 2.4.2 and 2.4.3. 

 

 
 
Figure 2.6: Simplified geomorphology and facies distribution scheme of a typical 

tide-dominated estuary similar to the proposed palaeogeographical setting of 

Seymour Island during deposition of the Marambio Group based on sedimentology 

and palaeocurrent data. Taken from Olivero et al (2008). 

 

2.3.3 Seymour Island Group 

 

The Seymour Island Group was deposited in the Paleocene and Eocene and is 

comprised of the Cross Valley Formation and the La Meseta Formation which 

crop out on Seymour Island and Cockburn Island, which are in the southeast of 

the James Ross island cluster (Figure 2.4). These represent further shallowing of 

the inverting basin with sedimentation mainly influenced by eustatic sea level 
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changes (Marenssi 2006). The sedimentology consists of fluvial and shallow 

marine shelf successions and includes conglomerates and channel flows with some 

volcaniclastic units. Further details of these units as they appear on Seymour 

Island are also discussed in Section 2.4. 

 

 

2.4 Stratigraphy and Palaeoenvironments of Seymour Island  

 

Seymour Island has been studied extensively since the early 20th century 

(Andersson 1906; Zinsmeister 1988) with many expeditions undertaken to 

document and sample the sedimentary and macro- and micro-fossil material. The 

island is ice-free during Austral summers, but is unvegetated and has close to 

100% rock exposure. As a result, the succession has been dated and correlated 

via a number of methods including magnetostratigraphy (Tobin et al. 2012), 

palynology (Elliot et al. 1994; Bowman et al. 2012) and strontium isotopes 

(McArthur et al. 1998; Crame et al. 2004) and a detailed geological map exists 

(Montes et al. 2010). The palaeontology has also been studied extensively, with 

reasonably well defined marine vertebrate and invertebrate faunal taxonomy 

(Blake & Zinsmeister 1988; Feldmann & Woodburne 1988; Zinsmeister & 

Macellari 1988) and stratigraphic ranges (Witts et al. 2016). Several studies have 

been made using floral, faunal and sedimentological evidence to produce 

interpretations of the palaeoenvironmental conditions throughout the succession 

(Feldmann & Woodburne 1988, summarised in Bowman et al 2012).  
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Figure 2.7: Geological map of Seymour Island. Modified from Crame et al 2014; 

based on work by Montes et al (2010). 

 

 

The sedimentary succession on Seymour Island consists of five main formations, 

the oldest three of which form part of the larger Coniacian to Danian Marambio 

Group, while the younger of two comprise the Seymour Island Group. The overall 

stratigraphy has a dip of roughly 10° towards the southeast with older units 

exposed on the western side of the island and younger units in the north and east 

and represents an overall prograding palaeo-shoreline oriented roughly NE – SW 

(Figure 2.1). 

 

This thesis focuses predominantly on the fossils of the López de Bertodano 

Formation, which contains the Cretaceous-Paleogene boundary sequence; 

covering both the pre-and post-extinction faunas. Specimens from the Paleocene 

Sobral and Eocene La Meseta formations are also included. The Haslum Crag 
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Member, and Cross Valley Formation have been excluded due to the potential 

for fossil reworking (Marenssi et al. 2012).  

 

2.4.1 Haslum Crag Member 

 

The Haslum Crag Member is a 200m thick layer of glauconitic sandstone with 

prominent lenticular bedding, described predominantly from Snow Hill Island 

(Pirrie et al. 1997). On Snow Hill Island, it has been interpreted as a set of deep 

sub-tidal channels in an estuarine environment (Olivero et al. 2008), and contains 

abundant eastward directed sedimentary structures including coarse grained 

sandstone-filled channels which grade into finer sandstones and mudstones. A 

small area of the member, roughly 68m thick is visible on the stratigraphically 

oldest western shore of Seymour Island (Crame et al. 2004; Olivero et al. 2008), 

where it has been interpreted as a shallow marine to tidal deposit with potential 

for reworked deposits. As a result, fossils from this formation are not suitable for 

this study. 

 

2.4.2 López de Bertodano Formation 

 

The López de Bertodano Formation (Rinaldi et al. 1978) is comprised of 

approximately 1100m of near-uniform sedimentary deposits unconformably 

overlying the Haslum Crag Member. It extends over most of the southern half of 

Seymour Island as a continuous sedimentary succession of a similar mix of clayey 

silts to silty clays with additional fine to medium sands which have been 

extensively bioturbated (Macellari 1988). This Maastrichtian to Danian 

Formation represents a unit deposited during a major transgression onto a pre-

existing fluvially or tidally scoured topographic depression (Olivero et al. 2008). 

The sedimentary deposits have been interpreted as predominantly shallow-

marine deltaic to estuarine, with sedimentology and faunal assemblage suggesting 

a fully marine continental shelf setting, with water depths of between 50−200m 

(Macellari 1988; Crame et al. 2004). The formation is thought to record a period 

of deposition during a marine transgression with little volcanic activity (Olivero 

et al. 2008). The uppermost levels of the formation, including the Danian 

sediments, have been interpreted as recording a weak regression based on slight 

grain-size changes, macrofossil and palynological evidence (Macellari 1988; 
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Crame et al. 2004; Thorn et al. 2009; Olivero 2012) but shallow-water facies and 

structures are absent, indicating sub-wave-base depths. 

 

 
 

Figure 2.8: A) K-Pg Boundary on Seymour Island (dotted line) as it appears in 

the field. Note visible green colour of glauconite-rich interval immediately below 

marked line. B) carbonate concretions containing a variety of macrofossil material. 

Photography from the British Antarctic Survey. 

 

 

This formation contains the exceptionally complete and expanded Cretaceous-

Paleogene boundary sequence (Zinsmeister et al. 1989), which is the focus of this 

body of work. The K-Pg boundary is found near the top of the formation and is 

marked by a laterally continuous 40cm thick glauconite-rich interval which is 

clearly visible in the field (Figure 2.8). A minor iridium anomaly has been 

detected, marking the base of the Paleogene, however the boundary layer lacks 

the ash and clay material commonly found in lower latitude boundary sites 

(Elliot et al. 1994). The boundary is defined by the disappearance of many groups 

of fossil marine fauna, including the loss of all vertebrates, ammonites and many 

species of bivalves and gastropods.  

 

The López de Bertodano Formation has many well-described locally fossiliferous 

layers, containing invertebrate and vertebrate macrofaunal and macroflora in the 

form of calcified wood (e.g. Zinsmeister et al. 1989; Zinsmeister 1998; Tobin et 

al. 2012; Witts et al. 2016). The uppermost 500m of this formation (termed KLB7 

to KLB9, see discussion below) in particular contain large amounts of abundant 

and diverse well-preserved marine macrofossil material, including complete and 

articulated infaunal bivalves. Fossil material is often found within metre-scale 

A B 
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early-diagenetic carbonate concretions which occur at roughly 10m intervals 

(Tobin et al. 2012) and are heavily bioturbated with Taenidium and 

Thalassinoides burrows. The macrofossil record has been well defined and the 

stratigraphic representation is remarkably complete, with many species persisting 

up to the K-Pg boundary (Figure 2.9, Witts et al. 2016). The microfossil record 

has also been well described, including foraminifera (Huber 1988), silicoflagellates 

and marine and terrestrial palynomorphs (e.g. Askin 1988; Thorn et al. 2009; 

Bowman et al. 2012). The marine faunal assemblage contains many species 

endemic to the Antarctic Peninsula, which has historically made dating and 

subdivision of the formation difficult.  

 

A number of attempts have been made to subdivide the sedimentary deposits of 

the López de Bertodano Formation based on sedimentology and fossil content. 

Early studies (Sadler 1988b) divided the formation into 10 informal units, but 

the oldest (KLB1) has since been assigned to the Haslum Crag Member (Crame 

et al. 2004). The lower units (KLB2 to KLB6) were called the Rotularia Units 

based on the abundance of Rotularia; a genus of polychaete worm. The upper 

Maastrichtian units (KLB7 to KLB9) have been termed the Molluscan Units and 

are subdivided based on the appearance and abundance of various bivalve 

species, and the Danian sedimentary deposits (KPLB10) described as the 

recovery unit was bounded by the K-Pg boundary (Macellari 1988). This sub-

division based on fossil data has recently been challenged (Pirrie et al. 1997; 

Crame et al. 2004; Bowman et al. 2012). Subsequent studies across the Island 

have highlighted the lateral variation of sedimentology within the formation, and 

it may be more meaningful to subdivide the formation based on ammonite zones 

(e.g. Crame et al. 2004) or palynology (Bowman et al. 2012). However, this study 

will continue to use the informal definitions of Units 7-9 (KLB 789) to denote 

the immediate pre-extinction and Unit 10 (KPLB 10) to denote the recovery 

interval. Further details of the correlation and nomenclature used are described 

in detail in Figure 2.10 and Section 2.6.1 
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Figure 2.9: Stratigraphic ranges of macrofossil fauna across the K-Pg boundary section on Seymour 

Island showing a remarkably complete stratigraphic representation of many species up to and across 

the boundary. Modified from Witts et al (2016). 

 

 
 
Figure 2.10: Age model and sedimentation rates for the López de Bertodano Formation. Taken from 

Witts et al (2016). 
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Palaeomagnetic dating of the succession suggests a relatively rapid 0.01 to 0.02 

cm/year sedimentation rate (Figure 2.10, Tobin et al. 2012), likely driven by 

volcanic activity and uplift in the Antarctic Penninsula, directly to the west of 

the basin (Pirrie et al. 1991). The great thickness of the formation indicates 

formation during high-frequency sea-level changes and an increased subsidence 

rate driven by tectonic activity (Olivero et al. 2008). Numerous glauconite-rich 

beds prominent in the uppermost 100m of the Maastrichtian units may indicate 

temporary reductions in the rate of deposition leading to sediment starvation 

(Zinsmeister 1998), but no major hiatus.  

 

A homoclinal tilt of 5-7° to the strata with little additional deformation suggests 

minimal tectonic activity has occurred during the intervening time (Hathway 

2000). As a result, the rocks and fossils of the López de Bertodano Formation 

provide an ideal unit to examine in order to determine the biotic effects of climate 

variability. 

 

2.4.3 Sobral Formation 

 

The Sobral Formation is present above the López de Bertodano Formation on 

the southern east coast of Seymour Island. It is roughly 250 to 400m thick and 

separated from the underlying López de Bertodano formation by an erosional 

unconformity surface marked by phosphatic nodules (Macellari 1988; Sadler 

1988a; Marenssi et al. 2012; Olivero 2012). The presence of channelised relief of 

up to 50m along the erosional surface indicates scouring along a storm-weather 

wave base and a more significant fall in sea level during the beginning of the 

Danian (Stilwell et al. 2004). There are few changes in the benthic faunal 

composition from the uppermost López de Bertodano Formation into the Sobral 

Formation, which suggests that the time period of the discontinuity was a brief 

one (Stilwell et al. 2004). 

 

The Sobral Formation consists of clay-rich silts, sands and subordinate 

sandstones (Macellari 1988). Sedimentary deposits show an overall coarsening-

upward regressive trend, reflecting eastward progradation of a marine delta fed 

from the Antarctic Peninsula to the west (Macellari 1988; Marenssi et al. 2012). 

Tuff beds produced by the active Antarctic Peninsula volcanism are common in 

the lower part of the section, with glauconite beds becoming more common above 
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the basal 60m, indicating periods of slow deposition. The depositional setting is 

interpreted to have been wave dominated; produced in a shallower marine 

environment than the López de Bertodano Formation, and influenced by tidal 

processes (Macellari 1988).  It is thought to represent a regressional sequence 

from a mid-shelf setting to a more proximal delta-front depositional environment. 

As a result, analysis of fossils from this formation may be influenced by terrestrial 

or riverine processes to a greater extent than in the marine-dominated López de 

Bertodano Formation, although trace fossil evidence does indicate an 

environment that is still marine. 

 

Marine fauna are notably less abundant in the Sobral Formation than the López 

de Bertodano Formation, and the entire succession is heavily bioturbated with a 

number of identifiable trace fossils including Teichichnus, Helminthopsis, 

Diplocraterion, Chondrites, Taenidium and Thalassinoides in the lower 200m 

which also support the interpretation of a shoreline to shelf facies environment. 

A switch to higher energy shore-face to foreshore characteristic trace fossils 

including Ophiomorpha nodosa, Skolithos, Arenicolites, Rhizocorallium and 

Thalassinoides supports the interpretation of upper units as being much 

shallower and proximal to the delta-front. Fossil wood and pollen are abundant 

throughout the sequence, and foraminifera and dinoflagellates have been used to 

date the formation to the early Paleocene (Danian to Thanetian age; 66 to 56 

Ma) (Bowman et al. 2016)(Askin 1988a). The Sobral Formation has been divided 

into 7 depositional environments (Ineson et al. in prep). 

 

2.4.4 Cross Valley Formation 

 

Two formations of younger strata crop out on the north end of Seymour Island 

from Cross valley to Cape Winman, unconformably overlying the Marambio 

Group sediments (Figure 2.7). The Cross Valley Formation (formalised by Elliot 

& Trautman 1982) outcrops in a small area at the head of the Cross Valley and 

has been interpreted as a prograding non-marine delta (Elliot & Trautman 1982) 

or channel-fill (Sadler 1988b) which incises into both the Sobral Formation and 

López de Bertodano Formation. 

 

The Cross Valley Formation consists of between 100 to 200m of poorly sorted 

silty sandstones and pebbly sandstones with a high proportion of volcanic 

tuffaceous material, including both volcanic glass and pumice (Elliot et al. 1975, 
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Marenssi et al. 2012, Ineson et al in prep). The lowest strata are composed of 

immature sandstones, which coarsen upwards into gravelly to pebbly sandstones 

which suggest terrestrial deposition, potentially deposited rapidly by a high-

energy surge or lahar (Doktor et al. 1988). The upper strata contain finer grained 

sandy material with mudstone units indicating a return to marine environments 

which is also reflected by the presence of marine oyster fossils and Skolithos 

burrows (Ineson et al. in prep). Charcoalified wood and lignite logs are common 

in the lower strata, while the finer grained upper layers preserve abundant leaf 

and plant debris. 

 

Palynological data indicate that the formation is late Paleocene in age (Wrenn 

& Hart 1988), however, it has a distinctive sedimentology, including diagenetic 

dolomite infill (Larkin 2014)and fossil content, including fossils potentially 

reworked from stratigraphically older units (Macellari 1988; Sadler 1988b). 

Sedimentology and fossil content also indicates that the environment of 

deposition was not fully marine, as a result, specimens from this formation will 

not be examined by this body of work. 

 

7.1.1 La Meseta Formation 

 

The Eocene La Meseta Formation (Elliot & Trautman 1982) rests unconformably 

on top of both the Marambio Group, and the Cross Valley Formation and is 

present in the northeastern prominence of Seymour Island. The sedimentology 

consists of approximately 700m of loosely consolidated sandstones and silty 

sandstones with interbedded pebbly conglomerates. The formation is floored by 

an erosional surface which intersects all of the older units of the island in a 

complex system of incised valleys (Marenssi et al. 2015). This topography is 

interpreted as erosion into the emerged shelf of Marambio Group and Cross-

Valley sedimentary deposits (Sadler 1988b; Marenssi et al. 1998) infilled mostly 

within a northwest to southeast trending valley with clastic material sourced 

from the Antarctic Peninsula (Marenssi et al. 2002). 

 

Fossil content includes abundant plant wood and leaf material (e.g. Case 1988); 

indicative of the more proximal shoreline. Marine macrofaunal fossils occur in a 

number of fossiliferous horizons and include shark and fish teeth and bones, and 

diverse and abundant molluscs, crabs, echinoderms and brachiopods (e.g. 

Zinsmeister 1977; Feldmann & Zinsmeister 1984; Doktor et al. 1996). Terrestrial 

mammal and bird bones are also found and have been used in addition to marine 
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faunas to define the age and as indicators of relative sea level throughout the 

formation (Marenssi et al. 2015).  

 

The formation has been variously divided into a number of informal groups, 

known as Telms (Tertiary Eocene La Meseta, Sadler 1988b) based on 

unconformities. The number of attempts to formalise the stratigraphy (Sadler 

1988b; Marenssi et al. 2002, 2015) is a testament to the complexity of the 

sedimentology, which consists of a mix of sandstones, mudstones, and both 

reworked (Zinsmeister 1984) and in-situ (Elliot & Trautman 1982) shell banks, 

thought to represent a shallow marine succession or deltaic environment (Elliot 

1988; Macellari 1988). There is still debate regarding the exact Eocene age of the 

La Meseta Formation (Ivany et al. 2008; Pross et al. 2012), and the depositional 

setting (Sadler 1988b; Porebski 1995, 2000, Marenssi et al. 1998, 2002). As a 

result, specimens from this formation will not be separated by stratigraphy, but 

will predominantly be used to present a generic Eocene “warmer world scenario” 

(Figure 2.11) in comparison with specimens from the cooler main 

Cretaceous/Paleogene boundary section. 

 

 

2.5 Palaeoclimate Records 

 

Global marine proxy evidence suggests that Maastrichtian climates were 

considerably less warm and equable than the preceding mid and Late Cretaceous 

(Wolfe & Upchurch 1987; Barrera et al. 1987; Pirrie & Marshall 1990; Barrera 

1994; Ditchfield et al. 1994; Huber et al. 1995, 2002; Barrera & Savin 1999; Dingle 

& Lavelle 2000; Francis & Poole 2002; Gallagher et al. 2008; Friedrich et al. 

2012). Following a thermal maximum during the Cenomanian to Turonian 

interval, proxy records indicate a distinct global cooling trend recorded in marine 

and terrestrial sections worldwide (Friedrich et al. 2012; Ando et al. 2013; Linnert 

et al. 2014). This cooling trend reached a peak during the Campanian to 

Maastrichtian interval, but was interrupted several times by episodes of 

geologically rapid global cooling and warming (e.g. Li & Keller 1998b; Barrera & 

Savin 1999; Bowman et al. 2013; Thibault et al. 2016). These intervals of climate 

instability highlight the potential for variability in the latest Cretaceous and 

early Paleogene. 

 

The Antarctic Peninsula is an area of specific interest to modern and past 

climatic studies, as it appears particularly sensitive to change (e.g. Bowman et 
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al. 2013). It is also a key location for changes in circulation, with studies 

proposing that climate shifts through the Maastrichtian may have driven changes 

in ocean circulation and bottom-water formation around Antarctica (Robinson 

et al. 2010; Jung et al. 2013) or that the changes in global climate may have even 

been driven by circulation changes (Barrera & Savin 1999; Frank & Arthur 1999; 

Friedrich et al. 2009; Jung et al. 2013). However, there appears to be a disparity 

between Late Cretaceous Antarctic climate records from marine and terrestrial 

proxies which will be reviewed in the following section. 

 

2.5.1 Antarctic Marine Records 

 

Most of the evidence for increased climate variability and seasonality in the 

Antarctic Peninsula region during the Late Cretaceous is from the marine realm. 

However, with the exception of the Seymour Island section, high-resolution 

marine temperature data from around Antarctica are limited, with few well-

studied sections.  

 

Planktic and benthic foraminiferal ±18O data show an overall cooling trend of 

approximately 4.3℃ at high southern latitudes during the Maastrichtian (Barrera 

1994; Barrera et al. 1997) accompanied by falling sea levels (Miller et al. 2005; 

Kominz et al. 2008). A distinct pulse of warming is observed in the latest 

Maastrichtian, close to chron C30N, less than 0.5 Ma prior to the K-Pg event 

(Wilf et al. 2003; Bowman et al. 2013). Benthic foraminiferal compilations from 

a number of high latitude Antarctic marine sites show similar short-interval 

warming in high southern latitudes at the K-Pg boundary against a relatively 

cool Maastrichtian–Paleocene background state followed by a warmer early 

Eocene (Cramer et al. 2009; Hollis et al. 2012).  

 

Analysis of ±18O of fossil shell material from the James Ross Basin has been used 

to estimate sea surface and seafloor temperatures (Tobin et al. 2012, Peter Frost 

unpublished). But uncertainties have recently arisen in the choice of the correct 

±18O seawater value in the calibration of molluscan temperature data (e.g. Ivany 

et al. 2008; Petersen et al. 2016). This will be examined further in the rest of this 

thesis. 
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2.5.2 Antarctic Terrestrial Records 

 

Current knowledge of continental Antarctic Late Cretaceous and Paleogene 

climate conditions is poorer than marine conditions due to the generally lower 

temporal resolution of terrestrial records. Continental terrestrial records have 

been generated from material washed into the James Ross Basin using both the 

MBT′/CBT thermometer in fossil soils (Kemp et al. 2014), and palaeofloral 

analysis (Greenwood & Wing 1995; Francis & Poole 2002; Poole et al. 2005) and 

terrestrial palynology (Bowman et al. 2013, 2014). These proxies tend to indicate 

a relatively stable, persistently cool temperate climate on the Antarctic Peninsula 

across the Cretaceous-Paleogene boundary with temperatures averaging 7 to 

14℃ (Figure 2.11). Chemical weathering and compositional maturity of 

sediments also suggest probable cool to subantarctic temperatures for the 

Antarctic interior during the Maastrichtian (Dingle & Lavelle 1998). 

 

The absence of climate variability in Antarctic terrestrial soil records could be 

affected by an inherent bias towards summer month temperatures at high 

latitudes using the MBT′/CBT thermometer (e.g. Pross et al. 2012) or could be 

a result of aliasing due to the sparse stratigraphic resolution of terrestrial data 

compared to a marine record. Given the apparent disparity between the marine 

and terrestrial records, it is likely that studying the effects of seasonality and 

continentality may give a better reflection of the dynamical causes of climate 

change, rather than the simple observation that the Earth warmed or cooled on 

average through a geological interval. 

 

There is also mixed evidence for ephemeral high latitude ice sheets in the 

Antarctic during the latest Maastrichtian, both from eustatic studies (Miller et 

al. 2005), latitudinal temperature gradients (Amiot et al. 2004) and palynological 

studies (Bowman et al. 2013, 2014). Some of the lower CO2 estimates also allow 

the formation of Maastrichtian Antarctic ice (Hong & Lee 2012). However, there 

are no records of glacial sedimentary deposits of this age, and climate models 

have been unable to reproduce seasonal ice under the suggested boundary 

conditions (Otto-Bliesner & Upchurch 1997; Hunter et al. 2008, 2013). Evidence 

for sea ice influence around the James Ross Basin will also be examined in this 

thesis. 

 



 

35 

 
 

Figure 2.11: Summary figure of existing palaeoclimate temperature proxies from 

the James Ross Basin area. Showing the difference between relatively low 

temperatures in the Lopez de Bertodano Formation and the much warmer 

Paleocene and Eocene temperatures. Taken from Kemp et al. (2014).
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2.6 Specimen Collection 

 

This study focuses on several taxa of infaunal bivalves; examples of the genera 

Lahillia, Cucullaea and Leionucula. The rationale for the selection of each taxon 

is detailed in Section 3.3. This body of work makes use of a large number of pre-

collected fossil bivalves of these taxa taken from stratigraphic sections measured 

perpendicular to strike using a Jacob’s staff and tape measure during three field 

seasons across southern Seymour Island (Figure 2.12). The sections have been 

correlated by using several stratigraphic tie-points, including the well-defined K-

Pg boundary layer and a prominent glauconitic horizon ~170 m below as a datum 

(Figure 2.10). For correlations planar bedding along strike is assumed, as is the 

absence of significant hiatuses in the Maastrichtian, based on field observation 

and previous studies (Bowman et al. 2013; Witts et al. 2015). A robust age model 

exists for the López de Bertodano Formation based on strontium isotope 

chemostratigraphy (McArthur et al. 1998; Crame et al. 2004), marine palynology 

(Elliot et al. 1994; Bowman et al. 2012) and magnetostratigraphy (Tobin et al. 

2012) (see Bowman et al. 2013, Witts et al. 2016 and references therein for 

details).  

 

Macrofossil collections were made at varying scales during each field excursion 

with topography in the field area preventing standardization of bin size or 

collecting time. Sample bins ranged from 1 m to 15 m thickness and stratigraphic 

height of each specimen is taken as the mid-point of each bin. Sample numbers 

of all specimens examined are catalogued in Dataset S1. Additional specimens 

from the Zinsmeister Collection have also been used. Details of all collections and 

field seasons are presented in Table 2.1 and Appendix A. 
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Figure 2.12: Modern geographic index map and geologic map of Seymour Island 

showing major stratigraphic units: (A) Eocene, La Meseta Formation; (B), 

Paleocene, Cross Valley Formation; (C) Paleocene, Sobral Formation; (D) 

Maastrichtian to lower Paleocene, López de Bertodano Formation; (E)– K-Pg 

Boundary. Section lines; A– AFI 2004 composite D5.251 (Bowman et al. 2014); 

B– BAS 1999 composite DJ.959-957-953-952 (Crame et al. 2004); C– D9 BAS 

2010 composite D9.205-206-207-209-210-211 (Crame et al. 2014). 
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Table 2.1: Specimens have been referred to by number throughout this work. 

These numbers correspond to the different field seasons and section locations and 

collection types. Lists of specimens used for specific geochemical, preservation or 

morphometric tests are available in Appendix A. 

 

Year of 
Field 
Season 

Sites / Sub-
sections used 

Naming convention Focus Collection 
bin sizes 

1999 DJ.959, 
DJ.957, 
DJ.952, 
DJ.953 

e.g. DJ.953.533 

DJ = location 
(Seymour Island) 

953 = Site 

335 = Fossil number 
from that site 

Maastrichtian 

López de 
Bertodano Fm 

0.75 – 34.5 m 

2006 D5.212, 
D5.215, 
D5.218, 
D5.219, 
D5.220, 
D5.222, 
D5.229 

e.g. D5.220.1223.2 

D5 = year (2005/6) 

220 = Site 

1226 = Overall fossil 
number 

2 = Macrofossil 

Maastrichtan 

López de 
Bertodano Fm 
to Paleocene 
Sobral Fm 

1 m 

2010 D9.205, 
D9.206 
D9.207 

e.g. D9.207.1 

D9 = year (2009/10) 

207 = Site 

1 = Fossil number from 
that site 

Boundary 

interval López 
de Bertodano 
Fm, Soral Fm 
and La Meseta 
Fm 

 0.5 – 27 m 

Zinsmeister 
Collection 

PRI Ithaca 

3 decades of 
spot 
collections 
(see 
Appendix A 
for details) 

 Maastrichtian 

López de 
Bertodano Fm, 
Sobral Fm and 
La Meseta Fm 

N/A  

spot 
collections 
only 

 

 

2.6.1 Stratigraphic Nomenclature 

 

In order to directly compare trends between collections made by different field 

groups from different section lines using different methods of sampling and 

unequal bin widths, the stratigraphic section was divided into stratigraphic 

intervals at approximately 50m spacing. These 50m bins represent between 250 

and 500 kyr of sedimentation (Tobin et al. 2012). 

 

For the Maastrichtian López de Bertodano formation, stratigraphic intervals 

were calculated down-stratigraphy using the K-Pg boundary as a baseline. The 
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Danian López de Bertodano formation was divided up-stratigraphy using the K-

Pg boundary as a baseline to account for the uneven stratigraphic boundary with 

the overlying Sobral formation. Intervals in the Sobral Formation were calculated 

from the base of the succession where it was observed in each individual section 

line. Specimens from the La Meseta were considered as a single group. A visual 

representation of this division strategy is visible below (Figure 2.13). 

 

In addition, this work uses the informal division of the López de Bertodano 

formation into pre-and post-extinction units for ease of referral when discussing 

the effects of the Mass Extinction and recovery interval. The pre-extinction unit 

is referred to as KLB789, and the post-extinction as KPLB10. Similarly, the 

Sobral Formation and La Meseta Formation are often referred to as SOB and 

TELM in figures. 
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Figure 2.13: Details of informal subdivisions used in this work (Stratigraphic Units 

KLB789, KPLB10, SOB and TELM, and Stratigraphic intervals M1-9, D1-2, S1-

5 and E1) and distribution of specimen collection intervals within the subdivisions. 

Each measured section is represented with a bold vertical line. In the 1999 (DJ) 

and 2010 (D9) sections, each collection interval is marked with a horizontal stroke 

on the vertical section line. In the 2006 (D5) section, collections were more densely 

spaced, so only the collections closest to each stratigraphic interval boundary are 

marked.  
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2.6.2 Collection Bias 

 

Seymour Island’s rocks are sufficiently fossiliferous that not all of the samples 

within a horizon were able to be collected (J.E. Francis Pers. Comm. 2013). It is 

possible that some bimodality can be introduced from sampling bias if (for 

example) very small and very large specimens are favoured for collection. Data 

pooled for this research were therefore tested by examining morphometric and 

size trends in representative Lahillia in order to get a rough estimate as to 

whether certain collections may have been subject to poor practices. 

 

The morphometric trends within each collection’s Lahillia (Figure 2.14) are very 

similar, and can be accounted for by the difference in the number of specimens 

collected from each stratigraphic unit. These results suggest that the patterns 

visible in the data are unlikely to be a result of sampling bias, and the samples 

examined are likely to represent real trends in the fossil record. 

 

 
. 

Figure 2.14: External Lahillia shell dimension Length/Height and Length/Width 

against Length plots separated by specimen collection. Regression lines from each 

section show no significant difference, and suggest that all collections have a 

similar distribution of specimens. 
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2.7 Specimen Preservation 

 

Only specimens of Lahillia and Cucullaea were tested to determine their 

preservation, as modern members of these clades are known to mineralise 

aragonitic shells, which have a well-defined relationship between ±18O and 

temperature (Grossman & Ku 1986). Leionucula however mineralise shells with 

a nacre structure, which although composed primarily of aragonite, contains a 

much higher proportion of shell organics and may be more prone to diagenesis.  

 

Preservation tests were designed to test the suitability of shells for stable isotopic 

analysis. Diagenetically altered or recrystallized shell material will tend to form 

in equilibrium with pore water, obliterating any previously preserved geochemical 

signals within the shells. 

 

Several bivalves of both genera were examined using a scanning electron 

microscope (SEM), cathodoluminescence microscope (CL) and x-ray diffraction 

(XRD) of shell material to confirm preservation of the original microstructure 

and aragonitic mineralogy. Full details of each technique are found in Appendix 

A. A summary of the results of all the preservation tests carried out is presented 

below.  
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Figure 2.15: Scanning electron microscope images on the microstructures and 

diagenetic textures of Lahillia (A-E) and Cucullaea (F-I). (A) Overview image of 

pristine aragonite crossed lamellae. (B) Prismatic growth line between first order 

crossed-lamellar chevron domains. (C) Etched surface and interior myostracal 

prismatic layers. (D) Recrystallised calcite in algal borings. (E) Algal borings 

(arrows) estimated at 1.3% of typical surface area; in line with XRD data. (F) 

Crossed-lamellar aragonite with both calcite filled and hollow tubules. (G) Inner 

complex crossed-lamellar aragonite in inner shell with periodic prismatic growth 

lines. (H) Intermittent Mg rich outer shell layer; possible periostracal remnants 

(P), Resin (R) and crossed lamellar layer (XL). (I) Magnification of intermittent 

outer layer showing possible calcite crystals. 
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Figure 2.16: Cathodoluminescence microscope images of Cucullaea (A) and 

Lahillia (B-C). (A) Bright luminescence of intermittent surface layer. (B) Bright 

luminescence of thin surface layer. (C) Surface sampling pits and bright 

luminescence of Mg-rich diagenetic infilling within a crack in shell. 

 

 

Table 2.2: XRD Results from sampled shell layers. The periostracal layers and 

samples from the whole shell including surface contained the highest percentage 

calcite. All other samples from the top 1 mm of shells contained less than 3% 

calcite and the remainder aragonite. 

 

Specimen Sample Details wt% Calcite 

D5.219.1185.2 upper 0.2 mm of outer layer of valve 1.37 

D5.219.1185.2 upper 0.2 mm of lower layer of valve 1.95 

D5.219.1185.2 
whole shell sample (from surface to 2.5 mm 

depth) 
7.22 

D9.207.1 Upper 1 mm 2.93 

Fragment Internal crossed lamellar layer 2.37 

DJ.952.516 surface layer 1.22 

DJ.952.529 surface layer 2.31 

D5.219.1185.2 Periostracal remnants 14.03 
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Figure 2.17: Bulk and average shell carbon-oxygen stable isotope cross-plot of 

Lahillia (triangles) and Cucullaea (diamonds). Range bars with filled markers 

represent the mean and range of microsampled data points produced within one 

shell. Hollow markers represent bulk data from a single shell. Analytical 

reproducibilities of ±0.06‰ for ±13C and ±0.08‰ for ±18O do not plot at this 

resolution. 

 

 

SEM observations of Lahillia cross sections (Figure 2.15) show a well preserved 

inner crossed-lamellar layer typical of heterodont bivalves with a thin layer of 

prismatic crystals visible at growth lines and the outer shell layer (Bieler et al. 

2014). The crossed-lamellar layer in some specimens was observed to contain up 

to 1 to 2% algal boreholes filled with recrystallized calcite, calculated by area 

coverage of representative sections. Cucullaea sections show an outer layer of 

crossed-lamellar aragonite with clearly visible tubules, similar to the typical 

structure of modern arcoids (Bieler et al. 2014). The inner shell has a complex 

crossed-lamellar structure with periodic fine layers of prisms; an intermittent 

layer which may be periostracal remnants is present on the surface of some 

specimens and appears to have been replaced with calcite. Preservation of the 

internal microstructures alone suggests that the shell microstructure is 

diagenetically un-altered; the micron-scale crystals have no spaces for authigenic 
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calcite precipitation and would be an early casualty to overprinting by calcite 

diagenesis (Figure 2.15.D).  

 

Cold cathode CL images confirmed SEM observations, with the only evidence for 

alteration confined to a thin strongly luminescent Mg-rich coating near the 

external surface of a small number of valves and in some large cracks (Figure 

2.16) which were avoided by subsequent sampling.  

 

X-Ray diffraction analysis of the non-luminescing crossed-lamellar layers of 

Lahillia indicate predominantly aragonite mineralogy in all specimens. A 

maximum of 3% calcite was observed in the internal layers. Material from the 

outer layer in Lahillia which fluoresced visibly under CL was also sampled and 

found by XRD to be only 85% aragonite. This was considered too diagenetically 

altered to produce reliable stable isotope data and was removed by grinding prior 

to geochemical sampling in all specimens. 

 

Cross-plot comparisons of stable isotope values (Figure 2.17) show no significant 

statistical trends (Appendix Figure B.2) for either species and are consistent with 

a fully marine environment. Therefore, any stable isotope signals produced are 

likely to be original signals.  

 

The preservation is suitable to allow these shells to be used for further 

geochemical analysis. Combined observations strongly indicate that the original 

aragonitic mineralogy is intact in both Lahillia and Cucullaea. Small areas of 

surface alteration detected during the preservation testing process were able to 

be identified and avoided or removed by grinding or sectioning prior to 

geochemical work. The reliability of the stable isotopic signals is supported by 

the presence of annual cycles visible in both the oxygen and carbon data, which 

suggest that no isotopic resetting has occurred. Cross-plots of the stable isotope 

values (Figure 2.17) are consistent with a fully marine environment without 

substantial riverine input. 

 

 

2.8 Summary 

 

Fossil infaunal bivalve shells are present in sedimentary deposits from the James 

Ross Basin with several species surviving across the K-Pg boundary. Bivalve 

shells are abundant in the López de Bertodano Formation and Sobral Formation 
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on Seymour Island where they are likely to have lived under normal marine 

continental shelf conditions making them ideal for study of environmental 

conditions across the K-Pg boundary. Similar fossils are also present in the La 

Meseta Formation, but this portion of stratigraphy lacks the well-defined 

chronology of the former units. 

 

Seymour Island’s sedimentary deposits have been well correlated and defined 

within regional stratigraphy, although stratigraphic subdivision of units has not 

always been formalised, making it necessary to use an informal naming system 

throughout this thesis for the López de Bertodano Formation, Sobral Formation 

and La Meseta Formation. 

 

During the Late Cretaceous and Early Paleogene, Antarctic palaeoclimate shows 

evidence for increased climate variability and temperature seasonality with 

potential ephemeral ice sheets, and short-lived warming and cooling periods in 

the late Maastrichtian particularly in the marine realm. 

 

Specimens of Lahillia and Cucullaea from a number of traverses across Seymour 

Island have been compared and suggest little evidence for potential collection 

bias meaning measurements and observations from shells across the island and 

through stratigraphy can be consolidated. 

 

Combined observations of shell preservation in Lahillia and Cucullaea suggest 

that much of the original aragonite microstructure is preserved, and stable carbon 

and oxygen isotope ratios are likely to be original. Initial stable isotopic results 

also support the interpretation of a normal marine sedimentary environment 

without significant freshwater input. 
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CHAPTER 3 

3  

GROWTH PATTERNS AND LONGEVITY 

 

 

 

The aim of this chapter is to determine whether environmental or biological 

change exerts a major control on growth of bivalve specimens from Seymour 

Island and investigate changes in growth rate and morphology of high latitude 

marine bivalves in response to the Cretaceous-Paleogene mass extinction event. 

 

 

3.1 Introduction 

 

The previous two chapters have outlined the importance of understanding 

seasonality, climate variability and their potential effects on organisms over the 

Cretaceous to Paleogene interval of the Seymour Island section. In addition to 

the effects of the mass extinction itself, it is likely that marine organisms would 

have reacted the environmental stress of the purportedly variable climate of the 

late Maastrichtian. 

 

Changes in temperature, primary productivity and water salinity can all affect 

the growth patterns of marine organisms (e.g. Brown & Hartwick 1988; Schone 

et al. 2002). The K-Pg boundary has long been associated with temperature 

fluctuations and the potential for anoxia and regional primary productivity 

collapse (Arthur et al. 1987; Smith et al. 1998; Aberhan et al. 2007; Alegret et 

al. 2012). It is likely that the effects of this will have caused a size difference in 

survivor taxa. 

 

Studies of morphometric changes across major mass extinctions have reported 

significant dwarfing in an effect known as the Lilliput effect (Urbanek 1993). 

The Lilliput effect is a general description for a temporary decrease in body size 

among post-extinction organisms. The effect has been widely reported in many 

animal groups, both in holdover taxa and long-term survivors in the aftermaths 

of all five past mass extinction events including the K-Pg mass extinction 
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(Hansen et al. 1993; Smith & Jeffery 1998; Jeffery 2001; Lockwood 2005; 

Aberhan et al. 2007).  

 

Some studies of the K-Pg and other mass extinction events dispute the 

ubiquity of the Lilliput effect; particularly in within-lineage size studies (e.g. 

Brayard et al. 2010; Sogot et al. 2014). Increases in body size of some clades 

due to reduced competition and predation by other organisms has also been 

reported (e.g. Case 1978; McClain et al. 2006; Harries & Knorr 2009). It is 

becoming more and more accepted that size change at mass extinction horizons 

is likely to be complex and it cannot be expected that all clades will respond in 

the same manner, or that all mass extinctions will have the same effects 

(Harries & Knorr 2009; Friedman & Sallan 2012).  

 

It is therefore useful to examine the environmental and biological context for 

size change in order to understand the variability of behaviour between clades 

and extinction events. The K-Pg succession on Seymour Island is ideal for such 

investigations into morphological change as it contains an abundance of largely 

intact skeletal fossils and several species which survive and can be compared 

across the mass extinction event. Patterns of change can be examined across 

several taxa in order to determine whether environmental or biological change 

is likely to exert a major control on shell size and growth. 

 

It is also likely that mean-state climates around the Antarctic Peninsula during 

this period were warmer than present high latitude areas, with annual 

temperature estimates between 6 and 14℃ (Figure 2.11; Poole et al. 2005; 

Tobin et al. 2012; Kemp et al. 2014). Body size is important for generation 

times, energy demands and population sizes (Pianka 1970; Heim et al. 2015) 

and the effect of such a climate regime on biological groups has received 

relatively little attention, with high latitude fossil taxa, even from warmer 

global climate states, often directly compared to modern taxa (e.g. Moss et al. 

2016).  

 

This chapter addresses both the change in size across the K-Pg boundary and 

the changes in growth rates which may result from differences in climate. Size 

and growth rate of 3 taxa of fossil bivalves from the lead up to and the 

aftermath of the Cretaceous-Paleogene mass extinction interval on Seymour 

Island were studied in order to determine whether significant changes that may 

have been associated with environmental fluctuations across this interval are 

observable. 
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Morphology and size were compared in specimens at intervals through the 

stratigraphic section and from each side of the boundary, to look for signs of 

dwarfing which could relate to environmental instability across the mass 

extinction period. The periodicity of visible growth lines in shells was also 

tested using stable oxygen isotope analysis to determine the seasonality of 

growth ring formation. This allowed the longevity and growth rate of 

specimens from the Maastrichtian and Danian to be compared. 

 

As each method of analysis of these bivalves directly allows for the subsequent 

method to be used, the methodology, results and a brief discussion of the 

implications of the growth seasonality, shell morphometrics and then shell 

growth rates will be presented before being discussed within the context of the 

K-Pg mass extinction even. 

 

 

3.2 Objectives 

 

• Assess the evidence for annual seasonal signals in bivalve shell material 

and the periodicity of internal and external shell growth rings. 

 

• Study morphometrics and growth patterns in order to determine whether 

there are significant size changes or dwarfing in groups that survived the 

mass extinction and to determine whether size changes are due to 

changes in juvenile growth duration or growth rate. 

 

• Comparison with modern data in order to determine whether Seymour 

Island’s bivalves are consistent with the established trends of increased 

longevity at high latitudes, during a time when the high latitudes were 

significantly warmer than modern. 

 

 

3.3 Rationale of Taxon Choice 

 

The Seymour Island section is fossil rich with abundant and well-described 

skeletal material as discussed in Chapter 2. This study focuses on several taxa 
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of infaunal bivalves; examples of the genera Lahillia, Cucullaea and Leionucula 

(Figure 3.1). Infaunal bivalves were chosen because they had a greater 

survivorship across the Cretaceous-Paleogene boundary than epifaunal taxa. 

They also mineralise aragonitic shells which are more susceptible to diagenetic 

effects than calcite shells, and easier to discern areas of the shell which have 

been affected by diagenesis (refer to Section 2.7 for details).  

 

Examples of these genera were chosen because they produced large sized robust 

shells and are abundant as fossils throughout the stratigraphic sections, with 

many specimens collected in an intact or near-intact condition. A number of 

species from these genera are present in Seymour Island’s succession; the 

taxonomic classifications and faunal ranges of the species examined are 

summarised in Figure 3.1, with full details available in Appendix B. Lahillia 

larseni, and Leionucula suboblongata are both examples of species which 

survive and thrive across the mass extinction, whereas Cucullaea is represented 

by Cucullaea antarctica in the pre-extinction Maastrichtian fauna, and 

Cucullaea elliotti in the post-extinction Danian. Lahillia are likely to have been 

shallow-burrowing mobile infaunal suspension feeders; Cucullaea were likely 

endobyssally infaunal suspension feeders (Zinsmeister & Macellari 1988); and 

Leionucula are likely to have been deposit feeders. This choice of genera 

therefore provides a range of feeding strategies and responses to the effects of 

the mass extinction event. 
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Figure 3.1: Biostratigraphic ranges of bivalve species used for morphometric 

analysis. Range data based on Crame et al 2014 and Witts et al 2016.  

 

 

Lahillia are also notable for their clearly visible external growth lines which are 

extremely advantageous for measuring rates of growth and ontogenetic 

trajectories. Many species of bivalve produce visible external or internal growth 

lines, with a distinct periodicity (e.g. annual, monthly or daily) which can be 

used to determine the relative age of shell material and compare rates of shell 

accretion (Schöne et al. 2004; Immenhauser et al. 2016).  
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Bivalves are among the most long-lived animals on the planet, with several 

species exhibiting lifespans of over 100 years (Buick & Ivany 2004; Butler et al. 

2013a). As a result, the shells produce long continuous records of the 

environmental factors affecting shell production (e.g. Zolotarev 1980; Jones et 

al. 1989; Buick & Ivany 2004; Butler et al. 2010, 2013). Shell growth rates are 

recorders of secondary productivity (Jones et al. 1989), and have been found in 

several species of modern bivalves to be strongly regulated by temperature (e.g. 

Schöne et al. 2004 and many more). A pattern of increasing longevity and 

slower growth rates towards the high latitudes has also been noted across 

studies of many modern taxa (Moss et al. 2016).  

 

Bivalve molluscs are also excellent archives for seasonal climate data because 

they grow carbonate shells by periodic accretion, which can incorporate a 

number of ambient water signals during growth, such as stable isotopes and 

trace elements which can be used as palaeoenvironmental proxies. These can be 

used to determine the period and season of active growing and growth pauses. 

 

 

3.4 Seasonality of Growth 

 

Most bivalves do not grow continuously year-around. Most species have been 

observed to pause growth for spawning or when water temperatures exceed a 

tolerated threshold range. This causes production of a visible – often 

macroscopic – growth-check line in the entire valve and tooth. This line may 

possess a different microstructure or incorporate a higher proportion of organic 

material, making it easily discernible from small scale accretionary banding 

(Shirai et al. 2014). These internal or external growth rings are produced by 

many species of bivalve during periods of slower growth or metabolism, 

however some species are prone to producing “false” growth lines (e.g. Lutz & 

Rhoads 1980; Thompson et al. 1980; Ropes 1984), or ridges as surface 

ornamentation.  

 

The season and periodicity of growth can be identified in fossil material using 

geochemical temperature proxies, which will show cuspate data where records 

have been truncated across growth checks (Figure 3.2). Here, ±18O 

measurements have been used to establish whether the ornamentations of 

Lahillia and Cucullaea (Figure 3.4) are produced with regular periodicity and if 
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growth lines can be used as a source of age data to compare the growth of 

different specimens. 

 

 
 

Figure 3.2: Examples of ±18O shell data for uninterrupted shell growth (left) and 

winter and summer shutdowns (right), modified from Goodwin et al. 2003. 

 

 

3.4.1 Methods 

 

Once preservation was confirmed to be suitable for geochemical analysis, high 

resolution ±18O measurements were carried out to determine the periodicity of 

internal and external growth lines in Lahillia and Cucullaea specimens.  

 

This chapter uses ±18O variation as a rough indicator of relative water temperature, 

and therefore a method to determine the approximate periodicity of shell growth 

between visible structural growth features. Seminal papers from around the mid-

century (Urey 1947; Urey et al. 1951; Epstein et al. 1953) showed that oxygen 

isotopes in biogenic carbonates are a function of temperature and isotopic 

composition of the water. The amount of biological fractionation has been 

experimentally determined in aragonitic (Grossman & Ku 1986) and calcitic 

(Anderson & Arthur 1983) molluscs. Further details of this process and factors 

affecting the relationship between shell ±18O composition and temperature are 

discussed in Chapter 4.  
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Figure 3.3: Representative diagram of bivalve shell (left) and shell cross section 

(right) taken along dashed line. Diagrams show the main anatomical features 

including growth lines, growth increments and shell layers with aproximate 

microsampling pathways (red lines).  

 

 

High resolution stable carbon and oxygen isotope microanalysis was performed 

for 29 specimens. The specimens chosen for stable isotope analysis have 

extremely well preserved original aragonite shell mineralogy which was 

microsampled following standard procedures (Dettman & Lohmann 1995 and 

Appendix B). Microsampling was undertaken using a Merchantek MicroMill at 

a resolution of between 5 and 10 samples per visible growth increment. Lahillia 

were polished by Dremel to remove any of the previously identified altered 

surface layers and sampled on the outer surface. Cucullaea were sectioned along 

the line of maximum growth and sampled from the cut face to avoid the 

intermittent periostracal layer identified by SEM (Figure 2.15) and shell 

ornamentations which tended to obscure the external position of true growth 

lines (Figure 3.4). Additional bulk shell powders produced by grinding shell 

fragments were also tested for stable isotope composition. Full methodology for 

this stable isotopic analysis is presented in Section 4.4.1. 

 

Leionucula mineralise shells in aragonitic nacre, which has finer crystals than 

those found in the crossed-lamellar layers of Lahillia and Cucullaea and has a 

much greater organic component. As a result, their shells may be more 

susceptible to the effects of diagenesis than the other two genera, and have not 

been sampled for stable isotope measurements. 
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Figure 3.4: Photographs showing details of shell ornamentation and sampling 

paths; scale bar = 5mm. (A) Cucullaea fragment showing true growth lines 

(arrows) and shell ornamentations (lines) which are shallower and can be 

weathered off. (B) less weathered Cucullaea shell showing the crenulated 

pattern of this ornamentation and the obscuration of the growth lines by the 

shell crenulations. (C, D) Lahillia shell showing growth lines (black lines) and 

rows of microdrilled sample pits drilled to avoid cracks and potential alteration. 

(E) Cucullaea section showing shell layers, growth lines (black lines) and 

location of microdrilled sample pits. (F) SEM image of Lahillia shell surface 

showing growth line and sub-annual microgrowth lines (periodicity unknown) 
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3.4.2 Results 

 

Nineteen specimens were successfully microsampled to produce high resolution 

seasonal data. Ten did not have sufficient preservation of continuous wide 

growth line sections without cracks to produce seasonal time-series, results from 

these specimens were averaged to produce additional bulk data points 

(Appendix B). In order to remove obvious outliers which may be a result of 

sampling small patches of diagenetically altered material in microborings or 

cracks, mean and 3σ values were calculated for the oxygen isotope data from 

each specimen and any outliers were disregarded during further analysis. This 

removed a total of 5 data points out of the 564 stable isotope samples. 

 

Measurements of isotopic data are presented in Appendix B. The data have 

been plotted here as graphs in Figure 3.5 to Figure 3.7. Many of these graphs 

show cuspate trajectories truncated against visible external or internal shell 

lines (grey vertical bars).  

 

In Lahillia from the López de Bertodano Formation (Figure 3.5), the growth 

increments incorporate more negative ±18O signals, whereas the growth check 

lines incorporate more positive ±18O signals. A characteristic concave-up shape 

of the trend in ±18O data throughout the growth increment between growth 

lines indicates shell production in warmer temperatures with the growth line 

forming in cooler temperatures. 

 

Cucullaea have a highly ornamented external valve surface (Figure 3.4:) with 

evidence for alteration of the outer layers (Figure 2.16), so were sampled only 

in cross-section.  Due to the lower sampling resolution in Cucullaea, the 

concave-up pattern of temperature data between growth lines is not as clear as 

in Lahillia, but the oxygen isotopic trend in Cucullaea from the López de 

Bertodano Formation (Figure 3.6) is very similar. Cucullaea show generally 

more positive ±18O signals near the growth lines indicating lower temperatures 

during growth cessations, and more negative ±18O signals within the growth 

increment indicating warmer temperatures during the active growing season.  

 

In addition to the ±18O cyclicity, the high resolution ±13C data in Lahillia and 

Cucullaea shows interesting seasonal trends which will be discussed in further 

detail in Chapter 6. 
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Figure 3.5A: ±18O (red) and approximate converted temperature (black) in López de Bertodano 

Formation Lahillia labelled with relative height to the K-Pg boundary. Distance axis begins at an 

arbitrary point within shells. Vertical grey bars locate positions of growth lines. 
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Figure 3.5B: ±18O (red) and approximate converted temperature (black) in López de Bertodano 

Formation Lahillia labelled with relative height to the K-Pg boundary. Distance axis begins at an 

arbitrary point within shells. Vertical grey bars locate positions of growth lines. 
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Figure 3.6: ±18O (red) and approximate converted temperature (black) in López de Bertodano 

Formation Cucullaea labelled with relative height to the K-Pg boundary. Distance axis begins at 

an arbitrary point within shells. Vertical grey bars locate positions of growth lines. 
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All of the specimens in Figures 3.5 and 3.6 were collected from the López de 

Bertodano formation, however some of the specimens from stratigraphically 

higher rock units displayed a reversed trend of ±18O and temperatures. These 

specimens show the highest relative temperatures during the growth pause, and 

grow during periods of low temperatures (Figure 3.7).  

 

 

  
 

Figure 3.7: ±18O (red) and approximate converted temperature (black) in specimens of Cucullaea 

from the Sobral Formation (A) and Lahillia from the La Meseta Formation (B). Distance axis 

begins at an arbitrary point within the shell. Vertical grey bars locate positions of growth lines.  

 

 

3.4.3 Discussion 

 

In species of Lahillia, SEM imagery (Figure 2.15) shows visible growth rings of 

short prisms on the inside and surface of the valve. Stable isotope results 

(Figure 3.5Figure 3.6) show cuspate trajectories truncated against these shell 

lines (grey vertical bars). The concave-up shape to the ±18O data between 

growth lines in Lahillia indicates active shell production throughout the warmer 

seasons, whereas a more positive ±18O signal on the growth lines suggests that 

growth lines incorporate cooler water signals from colder seasons.  

  

The presence of microgrowth rings visible in SEM imagery (Figure 3.4F) 

suggests that higher resolution (e.g. tidal, daily or lunar cycle related) growth 
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patterns are also present, which also supports the conclusion that the larger 

macrogrowth rings are produced with annual cyclicity rather than a shorter 

period of temperature cyclicity.  

 

Combining results from microstructure and geochemistry strongly suggests that 

the periodicity of the growth rings is annual, with each growth line 

representing the pause in shell production in the winter following one cycle of 

shell growth during the spring and summer. As a result, external growth rings 

can be used as an indication of shell age in Lahillia for the analysis 

reconstructing growth rates and trajectories in Section 3.5.3. 

 

It appears that internal growth lines in Cucullaea are also produced annually, 

as in Lahillia, but because the valve surface is heavily ornamented, it is difficult 

to discern the annual growth rings from ornaments without destructively 

sectioning individuals. As a result, only Lahillia have been used for growth rate 

analysis from external growth rings in Section 3.5.3. 

 

Some of the specimens from stratigraphically higher Danian and Eocene rock 

units displayed a reversed trend of ±18O and temperatures. These specimens 

show the highest relative temperatures during the growth pause, and grew 

during low-temperature portions of the year. This is an interesting trend, as it 

suggests that the season of growth of bivalves was temperature related. It has 

also been reported that Seymour Island’s Eocene Cucullaea raea have a cold-

temperature growing season and warm temperature growth pause (Buick & 

Ivany 2004). It is possible that this may be related to elevated mean-annual 

temperatures during these times compared to the cooler Maastrichtian and 

Danian (Figure 2.11). 

 

The season during which bivalves produce this annual growth check shows 

potential as a temperature indicator; modern day bivalves tend to grow during 

the summer at the poles and during the winter near the equator, even within 

the same species at different latitudes along the same coast (Jones & Quitmyer 

1996). It is possible this effect is being shown by the species living during the 

generally warmer Eocene epoch at the same latitude (Buick & Ivany 2004). 
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3.5 Morphometrics 

 

3.5.1 Methods 

 

Specimens from Seymour Island collections were examined and measured using 

Vernier callipers to the nearest 0.01mm. All 3 major axes were measured where 

possible on all specimens (Figure 3.8). The shells of around 30% of these 

specimens were broken to reveal an internal mould either by taphonomic 

processes, or through previous destructive geochemical analyses (e.g. Witts et 

al. 2018). Major axis dimensions of internal moulds were also measured and 

catalogued separately from the intact specimens. Measurements from internal 

moulds are not included in data presented in the chapter, but have been 

presented separately in Appendix B. 

 

 
 
Figure 3.8: Major axis dimensions measured in species of Lahillia, Cucullaea and 

Leionucula 

 

 

3.5.2 Results: Ontogeny and Allometry 

 

Major axis dimensions were compiled from over 600 specimens from Seymour 

Island fossil collections. This data set includes measurements taken by E. M. 

Harper and J.L.O Hall in 2012 and presented in Hall 2013 (MNatSci 

dissertation). The collection details and measurements taken for each 

stratigraphic unit and genus are presented in Appendix B. A census summary 

of the specimens measured from each stratigraphic unit within each collection 

is presented in Figure 3.9. 
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Figure 3.9: Due to the section lines chosen, collections have different numbers of specimens per genus from each stratigraphic interval. 

Counts for each character may vary within a set as some incomplete specimens were measured. 
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Bivariate allometry is the analysis of change in shape as size increases and has 

been used to study morphological measurements from the early 17th century 

(see Gould 1966 for a review). Bivariate allometry uses the two-parameter 

allometric equation 𝑦 = 𝑎𝑥𝑏 (Huxley 1932) which is typically rearranged as 

log 𝑦 = log 𝑎 + 𝑏 log 𝑥 in order to compute values of b; the ratio of the growth 

rates of each trait y and x.  

 

In isometric growth, all body parts grow at the same rate and body proportions 

remain the same throughout the growth of the organism. Therefore, where b=1 

where comparing two linear body measurements, and the ratio of two linear 

measurements remains the same throughout growth. Establishing isometric or 

near-isometric growth allows the use of one-dimensional measurements of a 

single character, such as shell length to be used as an indicator of overall shell 

growth. 

 

Bivariate plots (Figure 3.10) have been used to determine whether the equation 

𝑦 = 𝑎𝑥𝑏 is a good fit to linear regression models (ie where b=1). Variance 

analysis (ANOVA) was used to calculate the R-squared and P values of each of 

the Maastrichtian and Danian species from the López de Bertodano Formation. 

 

Ontogenetic growth ratios have also been calculated; here shell length (L) has 

been chosen as the scaling variable and appropriate plots of L against shell 

height (H) and width (W) have been made to examine change in shell shape 

over time (Figure 3.10). The change in L/W and L/H ratios with increasing 

shell length were plotted for individuals from each stratigraphic unit in order to 

determine whether shell growth was isometric or allometric (Figure 3.11 to 

Figure 3.13). These ontogenetic plots allow visual trends to be interpreted 

easily by linear regression analysis; a straight flat line trend (Allometry = 0) 

shows isometric growth, and a sloped or curved line (Allometry ≠ 0) shows 

positive or negative growth allometry. These tests also give an indication of 

whether the specimens examined are likely to be the same or different species 

across each stratigraphic unit, as the formal taxonomy of some groups is 

contentious (R. J Whittle, pers. comm. 2015) 
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Figure 3.10: Bivariate plots for Length/Width and Length/Height in each genus. Data is colour 

coded by stratigraphic unit. Trend lines and R-squared values (R2) were calculated by linear 

regression for all data from the López de Bertodano Formation (black) as well as Maastrichtian 

and Danian LdB specimens separately (green and orange). P-values (P) and standard error (s.e.) 

were calculated from ANOVA variance analysis. 
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L/H         L/W 
 

  
 

Figure 3.11: Lahillia ontogenetic plots of Length/Height and Length/Width against Length coloured by lithostratigraphic unit. Showing number of 

specimens measured (n) and ontogenetic trend line (black) and 2 standard deviations (grey) from data from the López de Bertodano Formation. Trend 

for specimens from the Maastrichtian López de Bertodano Formation (green) and Danian López de Bertodano Formation (yellow) are also presented for 

comparison; trend lines for L/H against L are close to horizontal and have similar trends, trend lines for L/W against L are different although the data 

plots in a similar location. 
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L/H         L/W 
 

  
 

Figure 3.12: Cucullaea ontogenetic plots of Length/Height and Length/Width against Length coloured by lithostratigraphic unit. Showing number of 

specimens measured (n) and ontogenetic trend line for all data points (black) and 3 standard deviations (grey) from data from the López de Bertodano 

Formation. Trend for specimens from the Maastrichtian López de Bertodano Formation (green) and Danian López de Bertodano Formation (yellow) are 

also presented for comparison. These trend lines in L/H and L/W have clear slopes and plot with slightly different trends. 
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L/H         L/W 

 

  
 
Figure 3.13: Leionucula ontogenetic plots of Length/Height and Length/Width against Length coloured by lithostratigraphic unit. Showing number of 

specimens measured (n) and ontogenetic trend line for all data points (black) and 3 standard deviations (grey) from data from the López de Bertodano 

Formation. Trend for specimens from the Maastrichtian López de Bertodano Formation (green) and Danian López de Bertodano Formation (yellow) are 

also presented for comparison; these trend lines are close to horizontal and have similar trends. No specimens of Leionucula from the La Meseta 

Formation were measured. 
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Linear regression was used to calculate the values of b in each plot, while 

variance analysis (ANOVA) was used to calculate the R-squared and P values 

of each of the Maastrichtian and Danian species from the López de Bertodano 

Formation.  

 

In order to confirm whether the change in shell dimension ratios obtained by 

linear regressions were significantly different from the isometric value, a T-test 

at a 95% confidence level was used to test the null hypothesis of isometric 

growth (gradient = 0) according to methods in Sokal & Rohlf (1987). The 

results of this analysis are presented in Table 3.1. 

 

 

Table 3.1: Isometry tests for bivalve specimens from the López de Bertodano 

Formation 

 

Length/Height Length/Width 

 

gradient 
Relationship  (T-

Test) 
gradient 

Relationship 

(T-Test) 

Lahillia     

Combined Maastrichtian 

and Danian Species 
-0.002 Allometric -0.001 Isometric 

Maastrichtian L. larseni/ 

huberi 
-0.001 Allometric -0.003 Allometric 

Danian L. larseni/ huberi -0.001 Allometric 0.003 Allometric 

Cucullaea 
    

Combined Maastrichtian 

and Danian Species 
0.003 Allometric -0.006 Isometric 

Maastrichtian C. antarctica 0.006 Allometric -0.012 Isometric 

Danian C. ellioti 0.005 Allometric -0.005 Isometric 

Leionucula 
    

Combined Maastrichtian 

and Danian Species 
0.003 Isometric 0.001 Isometric 

Maastrichtian L. 

suboblongata 
0.003 Isometric -0.006 Isometric 

Danian L. suboblongata/ 

hunickeni 
-0.001 Isometric -0.002 Isometric 
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3.5.3 Discussion: Ontogeny and Allometry 

 

The results from the bivariate and ontogenetic ratio plots allow patterns of 

isometric or allometric growth to be determined in each species of bivalve. 

From the analysis of ontogenetic ratios, only Leionucula showed statistically 

significant isometric growth, although values of b are very close to isometric in 

several species. However, due to the limited numbers of fossil specimens 

compared to modern studies, P-values are all reasonably high which suggests 

these results are not definitive.  

 

Direct bivariate comparisons do have reasonably good R-squared correlations, 

with all species except for Danian Cucullaea ellioti having R2≥0.8. This is 

consistent with previous assertions that fossils have retained an undeformed 

three-dimensional shape in the rock (Tobin et al. 2012). 

 

Specimens of Lahillia from the López de Bertodano Formation plot with 

slightly different trends in shell width across the K-Pg boundary (Figure 3.10), 

with specimens in the Danian tending to grow wider for the same height than 

Maastrichtian specimens of the same species (Lahillia larseni). Specimens of 

Lahillia from the Sobral Formation plot within the same range of shell 

geometry as the Maastrichtian and Danian Lahillia (Figure 3.11), this supports 

the proposal that the Lahillia larseni described from the López de Bertodano 

Formation, and the Lahillia huberi described from the Sobral Formation may 

be the same species (R. J Whittle, pers. comm. 2015). 

 

For specimens of Cucullaea (Figure 3.12), the species distinction is far clearer 

than in Lahillia. Both Cucullaea antarctica from the Maastrichtian and 

Cucullaea elliotti from the Danian López de Bertodano and Sobral Formations 

show allometric growth in both shell L/H and L/W ratios, and appear to plot 

with different trends, which supports the differentiation of the two species. 

Eocene Cucullaea raea plot at a larger size than each of the previous species 

and with a different shell length to height allometry. 

 

Leionucula (Figure 3.13) consist of a single species; L. suboblongata from the 

Maastrichtian to the Danian, with the addition of a co-existing species; L. 

hunickeni in the Sobral Formation. Leionucula from all stratigraphic intervals 

show clear isometric growth, with near-flat trend lines produced for L/H and 

L/W ratios against length. Little to no change was found between the 
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morphology of Maastrichtian and Danian specimens from the López de 

Bertodano Formation, however Maastrichtian specimens appeared to reach 

larger body sizes. This will be discussed further in Section 3.5.4. 

 

3.5.4 Results: Size changes through stratigraphy 

 

As isometric growth could only reliably be established in species of Leionucula 

(Section 3.5.3), all major axes must be examined as indicators of overall shell 

growth in the other species (Figure 3.14). However, change in shell major axis 

ratios was found to be sufficiently small that no immature specimens needed to 

be removed from analysis of size change through stratigraphy. Average and 

maximum shell dimensions in each species and collection are presented in 

Figure 3.14. A comparison of the maximum shell size is considered to be more 

meaningful than average size where populations are unable to be sampled 

equally (Ridgway et al. 2011). 

 

As the trends for each dimension are similar in each collection, for the 

remainder of this analysis specimens from measured collections have been 

combined using the stratigraphic correlation detailed in Section 2.6. Box plots 

have been constructed using size data from each 50 m stratigraphic interval as 

described in Figure 2.13 in order to show the change in size and distribution 

through stratigraphy (Figure 3.15 to Figure 3.17) 
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█ BAS █ Leeds █ Ithaca 

 
Figure 3.14: Plots of average and maximum shell dimensions measured from 

each genus coloured by collection (key at base) plotted by lithostratigraphic unit 

(labelled along x axis). The trends are very similar by collection, which indicates 

that combining these data sets will not introduce additional bias. Maximum size 

is a better metric than average size where populations cannot be sampled 

equally (see text for discussion). Size trends through stratigraphy are discussed 

further in Section 3.5.5. 
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Lahillia Cucullaea Leionucula 

 

 

 

 

Figure 3.15: External shell length of bivalves within each stratigraphic interval. Left: Lahillia; centre: Cucullaea; right: Leionucula. M1-M9: Maastrichtian López 

de Bertodano Formation; D1-D2: Danian López de Bertodano Formation; S1-S5: Sobral Formation; E1: La Meseta Formation 
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Lahillia Cucullaea Leionucula 

 

 

 

 
Figure 3.16: External shell height of bivalves within each stratigraphic interval. Left: Lahillia; centre: Cucullaea; right: Leionucula. M1-M9: Maastrichtian López 

de Bertodano Formation; D1-D2: Danian López de Bertodano Formation; S1-S5: Sobral Formation; E1: La Meseta Formation 
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Lahillia Cucullaea Leionucula 

 

 

 

 
Figure 3.17: External shell width of bivalves within each stratigraphic interval. Left: Lahillia; centre: Cucullaea; right: Leionucula. M1-M9: Maastrichtian López 

de Bertodano Formation; D1-D2: Danian López de Bertodano Formation; S1-S5: Sobral Formation; E1: La Meseta Formation 
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3.5.5 Discussion: Size Changes Through Stratigraphy 

 

The similarity of the trends for the change in major axis dimensions within 

each species supports the observations made in Section 3.5.3 that shell 

morphometry is fairly consistent throughout the López de Bertodano 

Formation. 

 

In all species, the main change in maximum shell size is at the K-Pg boundary. 

In Lahillia, the maximum size increases from the Maastrichtian to the Danian, 

whereas in Cucullaea and Leionucula the maximum shell size decreases. A 

change in the width of the interquartile range shown by a change in box size 

also indicates a change in the distribution of shell sizes at the K-Pg boundary. 

This will be discussed further in Section 3.7.2 

 

In addition, in all species the smallest specimens tend to be found in the middle 

to upper levels of the Sobral Formation. This could reflect the shallowing of 

water in the Sobral Formation compared to the López de Bertodano 

Formation. Modern marine bivalves can show a marked reduction in maximum 

size, growth rate and longevity when living in shallower waters (Jones et al 

1978), although these specimens of Spisula solidissima were found in much 

shallower waters than the bivalves examined here (15-28m vs 50-200m) and a 

depth/growth relationship has not been firmly established from studies of other 

species (e.g. Antsulevich et al. 1999).  

 

During the Eocene, the Lahillia wilckensi grew to slightly smaller sizes than the 

Lahillia larseni of the Maastrichtian and Danian López de Bertodano 

Formation, whereas Eocene Cucullaea raea grew to much larger sizes than 

either the Maastrichtian Cucullaea antarctica or Danian Cucullaea ellioti. 

Interestingly, Lahillia became extinct from Antarctic faunas during the Eocene, 

whereas species of Cucullaea are still extant (Huber 2010). 

 

Cucullaea size decreases dramatically during interval M5 (between 

approximately 760 and 810m in stratigraphy). This interval is before the 

earliest known occurrence of Lahillia in the section, and during a period from 

630 to 850m in stratigraphy where Leionucula occurrence was also extremely 

limited, so it is not possible to determine the cause of this size decrease. The 

maximum shell size during this interval remains similar to the rest of the 

Maastrichtian, so it is possible the low average size may be due to collection of 
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younger individuals. Other species of bivalve remained abundant throughout 

this interval (Witts et al. 2016).  

 

 

3.6 Growth Rates and Longevity 

 

3.6.1 Methods 

 

In Section 3.4 the external and internal growth lines of Lahillia and Cucullaea 

were determined to have been produced with annual periodicity. This means 

that the number and spacing of growth lines can be measured to reconstruct 

age-at-size histories throughout each specimen’s life. In order to do this, major 

external growth lines were measured using a combination of tiled scaled 

photographs taken perpendicular to the shell surface and calliper measurements 

(Valentine et al. 2011). Only Lahillia were used for this analysis due to the 

shell surface ornamentation which obscured the location of true growth lines in 

specimens of Cucullaea. 

 

In addition, Lahillia specimens possessing an intact cardinal tooth (Figure 3.3) 

but incomplete shell were sectioned for study of internal shell growth lines. 

Acetate peels and thin sections were used to examine sectioned teeth under 

optical microscopy, details of tooth preparation are given in Appendix B. The 

tooth was used rather than the valve section because the growth lines are most 

condensed and easiest to visualise. The hinge and tooth are grown under 

maximum environmental shielding so are less susceptible to abrasion and 

removal of juvenile shell layers. The tooth is also less likely to record 

environmental noise than the valve, where several modern species are known to 

produce extra growth lines during times of environmental stress, as a result of 

interaction between the periostracum and secreting mantle lobe (e.g. Lutz & 

Rhoads 1980; Thompson et al. 1980; Ropes 1984). 

 

In order to determine the age vs size growth curves for these specimens, the 

distance between successive external growth lines were plotted against total 

shell size, and internal growth lines were plotted against tooth size. Von 

Bertalanffy growth functions (von Bertalanffy 1938) were fitted to this data 

using least squares regression analysis. The von Bertalanffy function (see 

Section 3.6.3) gives a growth parameter (k) which represents the rate at which 
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growth rate changes over the course of an organism’s lifespan. This growth 

parameter was then compared in specimens before and after the mass 

extinction. Some authors have reported issues when applying this function to 

long-lived organisms with indeterminate as opposed to determinate growth, 

such as several species of bivalves. These issues will be discussed in Section 

3.7.3. 

 

3.6.2 Results 

 

Growth trajectories were constructed from 18 whole-shell Lahillia (Figure 3.18) 

and 22 sectioned hinge-teeth (Figure 3.19). These were distributed fairly evenly 

between specimens from the Maastrichtian (López de Bertodano Formation) 

and Danian (López de Bertodano and Sobral Formation) and each Age has 

been plotted on a separate graph. These trends were used to calculate growth 

functions (Section 3.6.3) in order to compare the trends in the pre-and post- 

extinction data sets. 
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Figure 3.18: Growth trajectories for Lahillia valves in Maastrichtian (green), 

Danian López de Berdotano (orange) and Sobral Formation specimens (purple) 

showing size at age data determined from visible shell growth lines  
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Figure 3.19: Growth trajectories for sectioned Lahillia hinge teeth. in 

Maastrichtian (green), Danian López de Berdotano (orange) and Sobral 

Formation specimens (purple) showing size at age data determined from visible 

internal growth lines  
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3.6.3 Discussion 

 

These size-at-age curves can be used to calculate growth functions, which are 

equations used to parametrically describe the growth of organisms and compare 

the growth parameters. The “von Bertalanffy Growth Function” (VBGF) (von 

Bertalanffy 1938) and variations based on this function have been commonly 

used to fit growth patterns in bivalves and other organisms and is widely used 

among fisheries science, due to the ease of its use, and the clear biological 

interpretability of its parameters, which are described below. 

 

𝐿𝑡 =  𝐿𝑚𝑎𝑥 (1 − 𝑒−𝑘𝑡) 

 

The equation relates the length at time t (𝐿𝑡) to a theoretical maximum length 

(𝐿𝑚𝑎𝑥) and the constant k; a one-dimensional description of the rate at which 

the organism reaches 𝐿𝑚𝑎𝑥 in units of years-1. k values can be used as a way of 

comparing growth characteristics of populations and allows for comparison of 

growth measurements in the hinge plate as well as whole shell sizes. 

 

A nonlinear least squares regression model was used to fit this function to the 

above growth trajectories (Figure 3.18 and Figure 3.19) and generate values of 

L, k and t for each Lahillia specimen. The results from whole shells and teeth 

from each side of the K-Pg boundary have been compiled in Figure 3.20. Data 

from each regression model are available in Appendix B. 
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Figure 3.20: Box plots of growth parameters derived from the von Bertalanffy 

growth function in Lahillia from the Maastrichtian López de Berdotano 

Formation (green) Danian López de Berdotano Formation (yellow) and Sobral 

Formation (blue). Data produced from hinge teeth and valves over the K-Pg 

mass extinction interval. 

 

 

Growth functions are not typically calculated from hinge teeth, but were 

produced here in order to examine whether the trends were consistent between 

the valve and the tooth due to the limited numbers able to be examined of 

each. Size trends are not likely to be reliable in hinge teeth, as in many cases 

broken or isolated hinges were used and were likely to have come from a 

mixture of left and right valves which tend to produce different sized teeth. 

The growth rate (k) increases in both teeth and whole shells across the K-Pg 

boundary, while t shows no significant change across the boundary. As only 

two shells from the Sobral Formation were sampled it is difficult to infer 

trends, however it appears that behaviour was similar to Maastrichtian 

Lahillia. 
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3.7 Discussion 

 

3.7.1 Morphometric Changes at the K-Pg Boundary 

 

Morphometric data from specimens of Lahillia, Cucullaea and Leionucula from 

the Maastrichtian Units 7, 8 and 9 of the López de Bertodano Formation have 

been compared to specimens from the Danian Unit 10 in order to look for 

changes in shape or size that may have been caused by ecological stress or 

restructuring across the boundary. Lahillia larseni and Leionucula suboblongata 

survive the boundary, whereas Maastrichtian Cucullaea antarctica are replaced 

by Cucullaea elliotti during the Danian. Summary figures of this data are 

presented in Figure 3.21 to Figure 3.23 with the full numerical data presented 

in Appendix B. 

 

These pairwise analysis plots have been constructed to compare each major 

axis dimension with every other dimension and represent the change in each 

dimension in pre- and post- K-Pg faunas. The types of plots include bivariate 

plots of each pair of major axes, as used in section 3.5.2, the correlation 

coefficient (R2 value) for each analysis, frequency curves of size data for each 

trait in pre- and post- extinction faunas, combined box plots for each 

dimension and histograms showing the count of each size category and relative 

proportions of specimens examined overall. 

 

Morphometric data is conventionally examined in log-transformed format, 

however in these specimens it did not improve the coefficients of fit. This is 

likely to be due to the close to isometric growth in all genera (ie where b = 1 in 

the equation 𝑦 = 𝑎𝑥𝑏, no log transformation is required to fit a straight line 

with slope a).  

 

These plots highlight the difference in size and size distribution in each species 

of bivalve across the K-Pg boundary. The range of sizes recorded by each 

species at the K-Pg boundary is different and does not appear to follow any 

consistent trend across the three genera analysed. 
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Figure 3.21: Lahillia pairwise comparisons of specimen morphology and size distribution from the 

between pre- and post- extinction López de Bertodano Formation specimens. 

This summary figure uses different plot types to compare corresponding Length (L), width (W), 

height (H) and frequency data. Each sub-plot compares the relationship between two sets of 

variables in both the Maastrichtian (green) and the Danian (orange). The pairs used for each grid-

wise comparison are listed on the top and right-hand size axis. Size measurements are in mm and 

frequency measurements in count with corresponding scales along the left and bottom axes of the 

figure.  

Pairwise morphometric comparisons (e.g. L against H) have been previously presented in Figure 

3.10 and the corresponding pair (e.g. H against L) shows the correlation coefficient for the 

comparison. Graphs along the diagonal show frequency distribution of each character, bottom row 

and right column shows frequency distribution and the bottom right plot represents the total 

number of specimens examined from KLB789 vs KPLB10. 
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Figure 3.22: Cucullaea pairwise comparisons of specimen morphology and size distribution from 

the between pre- and post- extinction López de Bertodano Formation specimens. 

This summary figure uses different plot types to compare corresponding Length (L), width (W), 

height (H) and frequency data. Each sub-plot compares the relationship between two sets of 

variables in both the Maastrichtian (green) and the Danian (orange). The pairs used for each grid-

wise comparison are listed on the top and right-hand size axis. Size measurements are in mm and 

frequency measurements in count with corresponding scales along the left and bottom axes of the 

figure.  

Pairwise morphometric comparisons (e.g. L against H) have been previously presented in Figure 

3.10 and the corresponding pair (e.g. H against L) shows the correlation coefficient for the 

comparison. Graphs along the diagonal show frequency distribution of each character, bottom row 

and right column shows frequency distribution and the bottom right plot represents the total 

number of specimens examined from KLB789 vs KPLB10. 
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Figure 3.23: Leionucula pairwise comparisons of specimen morphology and size distribution from 

the between pre- and post- extinction López de Bertodano Formation specimens. 

This summary figure uses different plot types to compare corresponding Length (L), width (W), 

height (H) and frequency data. Each sub-plot compares the relationship between two sets of 

variables in both the Maastrichtian (green) and the Danian (orange). The pairs used for each grid-

wise comparison are listed on the top and right-hand size axis. Size measurements are in mm and 

frequency measurements in count with corresponding scales along the left and bottom axes of the 

figure.  

Pairwise morphometric comparisons (e.g. L against H) have been previously presented in Figure 

3.10 and the corresponding pair (e.g. H against L) shows the correlation coefficient for the 

comparison. Graphs along the diagonal show frequency distribution of each character, bottom row 

and right column shows frequency distribution and the bottom right plot represents the total 

number of specimens examined from KLB789 vs KPLB10. 
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Table 3.2: Welch’s t-test results comparing major axis dimensions in shells from 

the Cretaceous and Paleogene López de Bertodano Formation. This test is to 

investigate whether the difference in box plots along the right-hand columns of 

Figure 3.21-Figure 3.23 are likely to have been produced by statistically 

different distributions at the 95% confidence level 

 

  Mean Size (mm) Welch's t-test Coefficients 95% 
Significant 

difference in 
means 

Species Dimens
ion 

K Pg t degrees 
of 

freedom 

p-value 

Lahillia Length 73.80 79.62 1.70 75.22 0.093 N 

 Height 68.01 72.89 1.84 97.41 0.069 N 

 Width 50.05 54.02 2.17 159.11 0.031 Y 

Cucullaea Length 55.19 44.84 -3.00 33.71 0.005 Y 

 Height 34.62 27.01 -3.61 26.45 0.001 Y 

 Width 44.02 35.19 -2.41 21.29 0.025 Y 

Leionucula Length 38.16 31.15 -2.26 12.29 0.043 Y 

 Height 28.17 23.69 -1.99 14.72 0.065 N 

 Width 21.53 17.51 -2.13 14.67 0.051 N 

 

 

Size change in marine bivalves through the Seymour Island K-Pg boundary 

section was originally investigated in order to determine whether any 

significant size changes were observable that may have been associated with 

environmental fluctuations in the latest Maastrichtian or ecosystem-level 

changes across the mass extinction event itself.  

 

The results of this morphometric study do not show agreement with the 

Lilliput hypothesis, which predicts significant within-lineage size decrease 

across the K–Pg boundary. Of the three taxa studied here, the size change was 

only found to be significant in Cucullaea, which change species across the 

boundary. Whereas of the two species which survive the boundary, in 

Leionucula, the size decrease was only statistically significant in one axis; and 

in Lahillia a significant size increase was found in shell width. The potential for 

environmental and climate changes across the K-Pg boundary to have 

influenced size changes in the Seymour Island section will be discussed in 

greater detail in Chapter 7. 
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3.7.2 Size Distribution Changes at the K-Pg Boundary 

 

The difference in interquartile ranges of shell dimensions across the Cretaceous-

Paleogene boundary in both Lahillia and Cucullaea is extremely pronounced 

(Figure 3.15). It is possible that this broader distribution might be influenced 

by the larger number of specimens from the Danian part of the López de 

Bertodano Formation collected than Maastrichtian part (130 individuals vs 62), 

producing a broader range. However, the opposite trend is present in the 

Cucullaea examined; with a broader size range during the Maastrichtian and a 

far narrower size range during the post-extinction López de Bertodano 

Formation, even though more Danian Cucullaea were also measured (43 vs 32) 

 

The Kolmogorov–Smirnov test, Hartigans’ diptest and Shapiro-Wilkes test were 

used to numerically test the morphometric measurement data from each 

specimen and age bracket (Maastrichtian López de Bertodano Formation, 

Danian López de Bertodano Formation, Sobral Formation and Eocene La 

Meseta Formation) for either bimodality or unimodality. Results and 

interpretations of these tests are presented in Table 3.3 and Table 3.4. 

 

 

Table 3.3: P-Value from Shapiro Wilk Test for Normality. Bold values indicate 

shell length data are not likely to be from a normally distributed population 

 

 

 
KLB789 KPLB10 Sobral La Meseta 

Lahillia 0.011 0.000 0.181 0.509 

Cucullaea 0.001 0.003 0.007 0.802 

Leionucula 0.546 0.022 0.827 NA 
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Table 3.4: HDS Value from Hartigan's Dip Test for Bimodality. Bold values 

indicate shell length data show significant bimodality 

 

 

 
KLB789 KPLB10 Sobral La Meseta 

Lahillia 0.672 0.014 0.762 0.554 

Cucullaea 0.038 0.988 0.956 0.462 

Leionucula 0.561 0.485 0.990 NA 

 

 

Multimodal finite-mixture models were used to produce a graphical and 

numerical interpretation of the size data by modelling the observed frequency 

distribution as a mixture of two normally-distributed data sets (Scrucca et al. 

2016). The comparison of the original frequency distribution with the modelled 

normal distributions. This approach is commonly used in biological populations 

to allow comparison of means in populations where the data is not normally 

distributed (e.g. Woods et al. 2012). 
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Figure 3.24: Lahillia Multimodal finite mixture models for external shell length. Histograms represent the size data split into size categories 10mm wide. 

The black dashed line represents the size frequency distribution constructed from the discrete data and the red and green curves represent the two 

modelled normal distributions which best combine to fit the black dashed curve. The colouring of each curve is arbitrary and is just to visually 

distinguish the two normal distributions. Hartigan’s dip test identified Lahillia from the Danian López de Bertodano Formation as significantly bimodal, 

this test confirms that the bimodality fits an even mixture of two normal distributions with equal numbers of specimens clustered around means at 50-

60 mm and 90-100 mm. 
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Figure 3.25: Cucullaea Multimodal finite mixture models for external shell length. Histograms represent the size data split into size categories 10mm 

wide. The black dashed line represents the size frequency distribution constructed from the discrete data and the red and green curves represent the 

two modelled normal distributions which best combine to fit the black dashed curve. The colouring of each curve is arbitrary and is just to visually 

distinguish the two normal distributions. Hartigan’s dip test identified Cucullaea from the Maastrichtian López de Bertodano Formation as significantly 

bimodal, this test confirms that the bimodality fits a dual-peaked distribution clustered around means of 30 mm and 60-70 mm. 
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Figure 3.26: Leionucula Multimodal finite mixture models for external shell length. Histograms represent the size data split into size categories 10mm 

wide. The black dashed line represents the size frequency distribution constructed from the discrete data and the red and green curves represent the 

two modelled normal distributions which best combine to fit the black dashed curve. The colouring of each curve is arbitrary and is just to visually 

distinguish the two normal distributions. No significant bimodality was found by the Hartigan’s dip test and on the whole, size ranges best fit a single 

peaked distribution.  
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Lahillia show an increase in mean shell length and maximum shell size across 

the K-Pg boundary, with maximum shell sizes increasing from 97.3 to 120.8 

mm. There is also an increase in the range of shell sizes collected and the 

population appears to shift from a single-peaked distribution in the 

Maastrichtian with a dominant mean shell length of 80-90 mm to a roughly 

even mix of 2 similar distributions during the Danian, with equal numbers of 

specimens clustered around means at 50-60 mm and 90-100 mm. By the time of 

the Sobral, this size distribution becomes dominated by the smaller size 

individuals, with a dominant mean at 60-70mm and a minor component of 

larger sized individuals. Shell sizes of Eocene Lahillia wilckensi are similar to 

the larger Danian specimens. 

 

In Cucullaea there is little change in mean shell size across the boundary, 

however almost the opposite trend to Lahillia is observed in the size 

distribution. The size range decreases at the boundary, changing from a dual-

peaked distribution in the Maastrichtian clustered around means of 30 mm and 

60-70 mm to a normal distribution in unit 10 dominated by specimens 45-50 

mm in length. Mean shell length decreases in the 50 m interval immediately 

prior to the K-Pg boundary, which may reflect changes in environmental 

conditions during the latest Maastrichtian. Maximum shell length decreases 

significantly across the boundary from 75.0 mm to 57.0 mm, which is in line 

with the change in dominant means of the size distribution. Through the 

Sobral Formation, range and means are similar to the Danian, with a similar 

single-peaked distribution with a mean of 40-50 mm and a max shell length of 

60.2 mm. All distributions from the Maastrichtian to the Sobral Formation 

have a minor peak centered between 20-30m. In the Eocene, the Cucullaea raea 

produce much larger shells than specimens from the López de Berotodano or 

Sobral, with a maximum length of 113.6 mm, which could reflect generally 

warmer climate conditions. 

 

In Leionucula the range of sizes is very similar across the K-Pg boundary, like 

Cucullaea the shells reach a much larger maximum size during the 

Maatrichtian (56.8 mm) than the Danian (max 40.9). There is no obvious 

change in size distribution across the boundary, unlike Lahillia and Cucullaea. 

Far more Danian specimens than Maastrichtian were measured (121 Danian 

compared to 23 Maastrichtian), although this does not appear to have affected 

the spread or range of data collected. Specimens measured from the Sobral 

Formation grow much smaller than any from the López de Bertodano 

Formation with a maximum size of 31.7 mm. 
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Table 3.5: Summary table of size changes across the K-Pg boundary from the 

Maastrichtian to Danian López de Bertodano Formation  

 

 

Lahillia Cucullaea Leionucula 

Species No species change Species change No species change 

Shell ratios 
significant increase 

in width 

no significant 
change in 
dimension 

significant 
decrease in length 

Overall size 
change 

larger max size smaller max size smaller max size 

Max length 
Maas (mm) 

97.3 75.3 56.8 

Max length 
Danian (mm) 

120.8 57 40.9 

bimodality 
change from 
unimodal to 

bimodal 

change from 
bimodal to 
unimodal 

change from 
normal to 
unimodal 

Mean length 
Maas (mm) 

80-90 30 and 60-70 30-40 and 50-60 

Mean length 
Danian (mm) 

50-60 and 90-100 45-50 20-25 and 30-35 

     

 

The lack of a consistent size-change across a boundary has been noted in 

several within-lineage studies across mass-extinctions; even closely related taxa 

have been found to respond differently (Huang et al. 2010).  

 

There are many factors which contribute to a bimodal size distribution among 

living populations of animals (Huston & DeAngelis 1987), and bimodal 

distributions have been found in many species of modern bivalves. However, in 

the fossil record it is difficult to determine whether the change in size 

distribution is a reflection of the composition of the living population or the 

size at mortality.  

 

It is therefore useful to consider these morphometric changes in conjunction 

with analysis of growth patterns and maturation rates in order to examine the 

potential causes. A further discussion of this bimodality with regards to 

ecosystem-level predation patterns and sedimentary environment is presented 

in Chapter 7. 
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3.7.3 Growth Rate and Longevity 

 

In specimens where growth patterns were examined in the tooth, modelled 

values of Lmax (the theoretical maximum shell size) have a narrower range in 

the Maastrichtian López de Bertodano Formation and a wider range in the 

Danian with similar means for specimens on each side of the boundary (Figure 

3.20). This is consistent with the increase in morphometric size distribution of 

whole specimens across the K-Pg boundary. However, where growth patterns 

were measured from the valve surface, specimens from the Maastrichtian 

produce far larger modelled Lmax values than specimens from the Paleocene, and 

have a much larger size range. This difference between modelled growth 

behaviour and observations from morphometric data may be due to a sampling 

bias; only shells with little umbonal abrasion, and clear visible growth rings 

were chosen for external growth rate studies. This may produce a bias against 

older or larger specimens, where there is a greater chance that young growth 

layers may have been abraded. Sedimentological studies suggest that the 

environment is likely to have been shallower in the Danian than the 

Maastrichtian, so abrasion may have a larger effect and bias sampling against 

larger individuals during this interval. 
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Figure 3.27: Plot of measured or modelled von Bertallanffy Lmax (maximum 

mature length) values against latitude for modern species of non-photosymbiotic 

cardiida and arcida. An inverse trend has been noted by several authors (data 

from Moss et al 2016). Data points from bivalves in this study presented with 

black outlines and labelled with the respective stratigraphic units; KLB789 for 

pre- and KPLB10 for post- extinction specimens. 

 

 

The maximum size of both Lahillia and Cucullaea are very different to the 

maximum sizes of bivalves of the same order (cardiida and arcida respectively) 

from similar modern high southern latitudes (Figure 3.27). Lahillia reached 

sizes larger than almost all modern cardiida, whereas Cucullaea were nearly an 

order of magnitude larger than modern arcids from the same latitude. Both 

groups were more similar to modern specimens from Latitudes between 40°S 

and 55°N. Figure 3.28 highlights this latitude range and shows the annual 

range of sea surface temperatures predicted from modern model data. This will 

be compared with the Cretaceous temperature data produced from geochemical 
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analysis of these shells in Chapter 4 and 5 in order to determine whether 

temperature is likely to have been a restricting factor in the ability for shells to 

grow to large sizes. 

 

 
 
Figure 3.28 Modern simulated warm and cold month mean sea surface 

temperatures. Orange shading highlights the latitudes at which bivalves with 

large shell sizes (between 50 and 100 mm) become common in modern oceans 

 

 

The k-values (representing the rate at which the organism reaches Lmax) are 

also relatively different between measurements taken from the tooth and the 

valve, although they do show a consistent trend across the boundary, with 

Danian values generally higher than Maastrichtian. This suggests that Danian 

Lahillia may have grown at a faster rate than Maastrichtian specimens. Growth 

rate has been linked to metabolic rate (Klein et al. 1996) and changes across 

the K-Pg boundary interval could reflect an increase in nutrient availability, or 

reduced competition for food as a result of the K-Pg mass extinction’s effect on 

competitor species (Harper et al. in prep). 
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Figure 3.29: Plot of modelled von Bertalanffy k values (rate at which the 

organism reaches mature size) against latitude for modern species of cardiida 

and arcida (data from Moss et al 2016). Data points from bivalves presented in 

this study have black outlines and are labelled with the respective stratigraphic 

units; KLB789 for pre- and KPLB10 for post- extinction specimens. 

 

 

A slight trend towards decreased growth rates at higher latitudes has been 

found for several species of modern bivalve (e.g. Moss et al. 2016). The k-values 

produced by this study are lower than expected for this latitude (Figure 3.29).  

 

Although this may initially suggest that Lahillia may have been growing more 

slowly than bivalves at modern high latitudes, the difference in size between 

modern and Cretaceous Antarctic bivalves must be taken into account. The 

lower k-values are likely to be a result of Lahillia spending a long period of life 

in the juvenile growth phase before growing at a slower mature rate. This 

would have allowed them to attain their large adult shell sizes, at the expense 

of short generation times and rapid recruitment. Smaller k-values are associated 
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with larger shell sizes (Figure 3.30) and longer juvenile growth phases. This 

pattern of growth behaviour is also more common in modern lower latitudes, 

whereas modern high latitudes tend to favour faster maturation rates and 

smaller shell sizes.  

 

 

 
 
Figure 3.30: Comparison of shell length and k-values in modern arcids and 

cardiids. Size of each data point represents the approximate value of latitude. 

Square data points represent Lahillia from this study. 

 

 

Modelled k-values may also have been affected by the relatively poor fit that 

many of the model calculations produced for the shell data, which will be 

discussed next. 

 

In spite of the wide application of the von Bertalanffy growth function to 

invertebrate growth, no explicit validation exists for the legitimacy of its use to 

parametrise the growth of bivalves in terms of maximum size and rate of 

growth to this size. However, in organisms with indeterminate growth, such as 

bivalves, a maximum size may not actually be biologically appropriate. A 
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number of authors have questioned the applicability of the growth function in 

bivalves (Knight 1968; Roff 1980) or the assumptions made by von Bertalanffy 

to construct this model (e.g. Beverton & Holt 1957; Ursin 1967; Ricker 1979).  

 

 
Figure 3.31 examples of poor fit in von Bertalanffy models in specimens of 

Lahillia with a long period of mature growth (A) in which the age of maturation 

is overestimated and the maximum size is underestimated. S-shaped juvenile 

growth (B) in which maturation age is underestimated. This illustrates some of 

the shortcomings of the model. 

 

 

The model has particular difficulty fitting specimens, such as Lahillia, which 

are long-lived (Roff 1980). In these specimens, rather than growing towards an 

asymptotic size, as is typical for the VBGF model, bivalves appear to continue 

growing at a constant rate post-maturity leading to indefinite size (e.g. Figure 

3.31). This has led some authors (e.g. Day & Taylor 1997) to suggest that the 

VBGF should not be used to model growth trajectory and should instead be 

separated into a pre-maturity and post-maturity equation. This interpretation 

is more consistent with the energy balance determining the growth rate of 

bivalve molluscs and gives a more accurate reflection of the effects of 

postponing maturity (Day & Taylor 1997). The application of a discontinuous 

function containing separate descriptions of prematurity and post-maturity 

growth is therefore preferable for comparing the effect of the K-Pg mass 

extinction on long-lived bivalve specimens, such as Lahillia, where there may be 

great value in postponing maturity during climatically inopportune years. 
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A number of authors have suggested alternatives to the VBGF in order to deal 

with its shortcomings, including the Gompertz equation, which includes an 

early sigmoid growth stage at small size, exhibited in scallops (Orensanz et al. 

1991) and in slow growing mussels (Seed & Suchanek 1992). Alternatives such 

as polynomials have also been suggested, but the factors lack the immediate 

biological interpretability of the VBGF.  

 

The problem appears to be in attempting to fit a single function to a curve 

which is in fact governed by two separate functions depending on age; one for 

pre-maturity and one for post-maturity growth, with a period where the 

functions combine during maturation. The VBGF is a reasonable fit for the 

pre-maturity growth curve, however, the point at which each bivalve reaches 

maturity appears to change from specimen to specimen, and can’t be fixed. 

Beyond this point, a linear fit appears to match the data best. 

 

It may be possible to develop a modified function which fits to pre-maturity 

and post-maturity growth using statistical techniques such as break function 

regression (Mudelsee 2009) or least-squares regression in order to produce 

growth curves with even more biologically relevant parameters, such as mature 

growth rate, age and duration of maturation, and size at maturation. However, 

such an undertaking is beyond the scope of this project. 

 

 

3.8 Summary 

 

Seasonal ±18O signals are present in shells of both species, and suggest annual 

periodicity of external and internal shell rings in Lahillia and internal rings in 

Cucullaea. Shell growth occurred during the warmer portions of the year, with 

a hiatus during cooler months. This trend is present in all specimens examined 

from the López de Bertodano Formation, but may be reversed for specimens in 

the Sobral and La Meseta Formations. 

 

Morphometric data suggest that shell growth in Lahillia and Leionucula is 

isometric or near-isometric, and shell growth is similar either side of the K-Pg 

boundary. Cucullaea shell growth appears to be allometric, and changes with 

stratigraphy. This is consistent with taxonomical studies suggesting Lahillia 

larseni and Leionucula suboblongata continued across the K-Pg boundary, 

whereas Cucullaea antarctica are replaced by Cucullaea elliotti. 
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Lahillia show a general increase in mean size across the K-Pg boundary, as well 

as an increased range of sizes in the Danian compared to the Maastrichtian 

whereas Cucullaea show the opposite trend, with a decrease in range and mean 

size across the boundary. Leionucula show a reduction in size and slight 

decrease in size range. Cucullaea show significant size reduction in all major 

axes across the boundary, however this is not a within-species change, as there 

is a species change across the K-Pg boundary; supported by changes in 

ontogenetic ratios. Lahillia and Leionucula do not show significant size change 

across the K-Pg boundary and are therefore not consistent with the Lilliput 

effect. 

 

Non-normality tests suggest the change is a result of changing population 

distributions in Lahillia and Cucullaea, the biological implications of which will 

be discussed in greater detail in Chapter 7. 

 

Investigation of whether the size changes in Lahillia across the boundary may 

have been due to changes in juvenile growth duration or rate suggests that 

Lahillia may have been growing faster in the Danian than the Maastrichtian, 

but tend to grow much more slowly than modern high latitude bivalves, 

favouring a growth strategy of a long period of slow juvenile growth to reach 

large body sizes more commonly found in modern mid to low latitude bivalves. 

 

The extended period of non-determinate mature growth in Lahillia also causes 

inaccuracies in the common method of using the von Bertalanffy growth 

equation to model shell growth. But the fact that it is a good fit to many other 

species of bivalve suggests that Lahillia may have an unusual mode of life or 

ecological strategy in comparison. 
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CHAPTER 4 

4  

 

CLIMATE OF THE JAMES ROSS BASIN 

 

 

 

The aim of this chapter is to determine the correlation between model 

simulations of Maastrichtian climate with geochemically derived proxy 

temperature estimates and examine whether this provides evidence for or 

against local ice influence. 

 

 

4.1 Introduction 

 

Stable oxygen isotopic records from shell carbonates are commonly used to 

characterize palaeoenvironments and track climate change (see Section 3.3 for 

further details).  Constraining high southern latitude palaeotemperatures is 

critical for understanding the role of the polar regions in regulating global 

climate and potentially driving evolutionary change (Bowman et al. 2013).   

 

Some previous temperature reconstructions based on ±18O proxies have assumed 

a seawater ±18O for an ice-free world of a constant -1‰ VSMOW (Shackleton & 

Kennett 1975), whereas the range in ±18Osw in the modern ocean is very large, 

−3 to +2‰ (LeGrande & Schmidt 2006) due to equatorial evaporation and 

polar ice melt.  Recently a number of observations from sedimentology and 

palynology studies (e.g. Miller et al. 2005; Bowman et al. 2013) have suggested 

the presence of ephemeral continental Antarctic ice sheets during the latest 

Cretaceous which through the contribution of isotopically light meltwater could 

bias ±18O records in the high latitudes. 

 

Chapters 2 and 3 established the excellent preservation of Seymour Island’s 

fossil Cucullaea and Lahillia shells and used the presence of cyclic signals in the 

stable oxygen isotopic data to determine the periodicity of growth line 

formation.  This chapter will convert the geochemical ±18O data to 
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temperatures using additional clumped isotope data and isotope enabled 

modelling of riverine inputs to refine the conversion.  Temperature data will be 

used to examine changes in the shell-derived temperature data through 

geological time rather than just within single specimens.   

 

Temperature and ±18O data will then be compared with models of the 

Maastrichtian climate in order to examine whether simulations are capable of 

producing similar temperature conditions under reasonable parameters. The 

combination of proxy data and computer models will allow further information 

to be gathered about the main processes influencing the stable oxygen isotope 

data trends through this time, and whether they are likely to have been caused 

by seasonal changes in water temperature or indicate that additional factors 

such as freshwater runoff or ice are likely to have been required to produce the 

data patterns observed. 

 

 

4.2 Objectives 

 

• Examination of the assumptions made in converting from isotopic data 

to palaeotemperatures to assess the accuracy of temperatures 

reconstructed from ±18O data using additional clumped isotopic data and 

oxygen isotope enabled models. 

• Reconstruction of Maastrichtian climate conditions through geological 

time using mean annual temperatures derived from stable oxygen isotope 

and clumped isotope data. 

• Comparison of stable oxygen-derived temperature data with climate 

simulations over a range of scenarios in order to test which model 

scenario best fits the geological evidence. 

• Assess the potential for sea ice formation around the James Ross basin 

using both proxy and model data. 
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4.3 Background to Techniques 

 

Stable oxygen isotope and clumped isotope geochemistry were used as proxies 

for temperature for this study and compared to outputs from isotope-enabled 

climate models.  This section outlines the types of information captured by 

each proxy, and the details of the models and simulations used.  Details of 

analytical methodology used in this chapter are covered in Section 4.4. 

 

4.3.1 Stable Oxygen Isotope Geochemistry 

(Urey 1947; Urey et al. 1951; Epstein et al. 1953) 

Seminal papers by Urey (1947) Urey et al (1951) and Epstein et al (1953) 

showed that oxygen isotope levels in biogenic carbonates are a function of 

temperature and isotopic composition of the water.  Isotopes of oxygen are 

fractionated as metabolic processes thermodynamically favour the lighter 16O 

isotope over the heavier 18O.  The ratio of 16O to 18O atoms in carbonate 

compounds, such as the calcium carbonate that makes up aragonite and calcite 

can be measured using mass spectrometry and calculated to give a ±18O 

composition.  The amount of fractionation shows strong temperature 

dependence due to entropy effects in addition to recording source water 

composition. 

 

𝛿18𝑂 = 

(

 
 
(
𝛿18𝑂
𝛿16𝑂

)
𝑠𝑎𝑚𝑝𝑙𝑒

(
𝛿18𝑂
𝛿16𝑂

)
𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑

− 1

)

 
 
∗ 1000 ‰ 

 

The amount of biological fractionation has been experimentally determined in 

aragonitic (Grossman & Ku 1986) and calcitic (Anderson & Arthur 1983) 

molluscs.  These formulas allow for conversion between the measured ±18O of 

shell carbonates to the temperature of water they were mineralised in.   
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Mollusc Calcite (Anderson & Arthur 1983) 

 

𝑇 (°𝐶) = 16.0 − 4.14 [ (𝛿18𝑂𝑐𝑎𝑙𝑐𝑖𝑡𝑒 − 𝛿
18𝑂𝑤𝑎𝑡𝑒𝑟]

+  0.13 [  (𝛿18𝑂𝑐𝑎𝑙𝑐𝑖𝑡𝑒 − 𝛿
18𝑂𝑤𝑎𝑡𝑒𝑟] 

2 

 

Inorganic Calcite (Kim & O’Neil 1997) 

 

𝑇 (°𝐶) =  
18.03 𝐸 3

1000 lnα (𝛿18𝑂𝑐𝑎𝑙𝑐𝑖𝑡𝑒 − 𝛿18𝑂𝑤𝑎𝑡𝑒𝑟) + 32.42
 

 

Mollusc Aragonite (Grossman & Ku 1986, modified by Schöne et al. 2005) 

 

𝑇 (°𝐶) = 20.6 − 4.36 (𝛿18𝑂𝑎𝑟𝑎𝑔𝑜𝑛𝑖𝑡𝑒 − (𝛿
18𝑂𝑤𝑎𝑡𝑒𝑟 − 0.20)) 

  

 

These experimentally-derived relationships have been corroborated with many 

modern high-resolution studies in a number of species and environments, (e.g. 

(Wefer & Killingley 1980; Krantz et al. 1987; Jones et al. 1989; Jones & 

Quitmyer 1996; Dettman et al. 1999; Toland et al. 2000; Goodwin et al. 2001; 

Schöne et al. 2003; Lorrain et al. 2004; Schöne et al. 2005; Carré et al. 2005; 

Fenger et al. 2007), which show clear annual cycles of isotopes in the shell and 

a high level of correlation between recorded water or air temperature and 

temperatures predicted from the ±18Oshell record. 
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Figure 4.1: Comparison of apparent water temperatures from ±18O of modern 

Argentinian Diplodon (Unionida) bivalve shell (bold dot-point line) and 

recorded monthly air temperature records from the same location (solid grey 

line) indicating that the two records show strong correspondence.  From Soldati 

et al 2008. 

 

Fossil bivalve shells have been used to reconstruct seasonal palaeotemperatures 

in the Pliocene (Jones & Quitmyer 1996; Williams et al. 2010; Valentine et al. 

2011), Pleistocene (Krantz et al. 1987), Eocene (Buick & Ivany 2004) and 

further back into the Mesozoic (Jones & Quitmyer 1996; Steuber 1996, 

Zacharov et al 2005).  However, there are several sources of error which may 

affect the temperatures reconstructed from ±18O of fossil shell carbonates.  It is 

therefore important to account for the external factors that can affect 

interpretation of data. 

 

 

Sources of Error 

 

In fossil studies, the ±18Owater composition is not known and thus is a key source 

of uncertainty in palaeotemperature conversions.  The processes of evaporation 

and ice formation cause additional fractionation of the 16O and 18O in ambient 

water.  Ice melt water and freshwater from continental runoff tends to have a 

more negative ±18O signature than ocean water.  In ice-free geological systems, 
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ocean water ±18O is conventionally taken as -1‰ (Zachos et al. 2001), provided 

the body of water is considered to have been well-mixed and without significant 

freshwater input. However, in ice-present conditions or near-shore environments 

with significant freshwater input, it can be more difficult to deconvolve the 

effects of water composition and temperature. 

 

This chapter will combine oxygen isotope enabled models with clumped isotope 

data to attempt to constrain the effect of water ±18O on palaeotemperature 

reconstructions. 

 

There are also issues reconstructing palaeotemperatures from marine ±18O due 

to the thermal gradients within the water column.  This means that organisms 

mineralising at different water depths may record drastically different 

temperatures.  Determination of depth habits in extinct organisms can also be 

difficult, as pelagic organisms may migrate within a large vertical section of the 

water column (e.g. Kobashi et al. 2001). Even for infaunal organisms, the water 

depth must be estimated from sedimentology and the range is often large 

compared with typical thermal gradients. 

 

Diagenetic alteration usually changes the composition of the crystals, 

destroying any original data produced by fractionation and organic processes in 

the shell or incorporated from environmental conditions attenuating any 

seasonal data (Ivany 2012).  This process occurs by a number of mechanisms 

and can begin while the organism is still alive (Lécuyer et al. 2004).  Alteration 

causes recrystallization of metastable minerals such as aragonite and high-Mg 

calcite as more stable minerals.   

 

Depending on the shell microstructure, some areas may undergo diagenesis 

while other areas retain their original composition.  Once identified, structures 

which have been altered can be mechanically removed prior to chemical 

analysis.  Concerns about the heat generated during high-speed abrasion or 

microsampling techniques causing transition to calcite when sampling 

aragonitic material (Waite & Swart 2008) have been addressed and found to be 

insignificant for oxygen isotopic analysis (Foster et al. 2008).  However, 

rigorous testing is required to verify preservation of original signals particularly 

in fossil material. Preservation can be tested in a number of ways, depending 

on the composition of the original shell material. 
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Preservation tests were conducted for a number of representative specimens of 

Lahillia and Cucullaea; details about tests and the results are described in 

Section 2.7 and Appendix A.  

 

4.3.2 Clumped Isotope Geochemistry 

 

Clumped isotope thermometry can be used to calculate palaeotemperatures 

without the need to assume a ±18Osw value (Ghosh et al. 2006).  This means 

that in combination with stable isotope ±18O values measured simultaneously 

±18Osw can be independently determined.  The clumped isotope 

palaeothermometer is a recent addition to the suite of temperature proxies 

available to bivalve shell studies.  It uses the distribution of 12C and 13C as well 

as 16O and 18O isotopes in different configurations within isotopologues 

(molecules with different isotopes) in the carbonate lattice.  Clumping of heavy 

isotopes within carbonate molecules is thermodynamically favourable for the 

relative stability of the 13C-18O bond at low temperatures, but at high 

temperatures, entropy effects cause a decrease in clumping leading to a 

stochastic distribution at high temperatures. 

 

𝐶𝑎 13𝐶 16𝑂3 + 𝐶𝑎 
12𝐶 18𝑂 16𝑂2  ⇌  𝐶𝑎 

13𝐶 18𝑂 16𝑂2 + 𝐶𝑎 
12𝐶 16𝑂3 

 

This reaction is driven to the right with decreasing temperature, producing 

proportionally more Ca13C18O16O.  The ∆47 clumped isotope thermometer 

measures the atomic mass of CO2 produced by acid digestion of carbonates and 

uses the measured abundance of the most common CO2 isotopologue 

(13C18O16O) with a 13C{18O bond, which is energetically favoured at lower 

temperatures.  A quantitative value (∆47) indicates the excess or depletion of 

mass 47 isotopologues (of which the 13C18O16O accounts for approximately 97%) 

relative to a stochastic distribution of all possible isotopologues. This 

relationship can be described in the below equation, where Rn is the abundance 

ratio of mass n relative to mass 44 in the sample and Rn
* is the theoretical 

stochastically distributed ratio. 

 

∆47 =  [(
𝑅47
𝑅47

∗ − 1) − (
𝑅46
𝑅46

∗ − 1) − (
𝑅45
𝑅45

∗ − 1)] ∗ 1000 
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∆47 can be calibrated to carbonate standards precipitated at known 

temperatures as well as to theoretical predictions.  The thermometer is 

extremely precise and studies across multiple taxonomic orders of carbonate 

biomineralisers show that the vast majority of species follow the same 

calibration with little apparent influence from vital effects (e.g. Affek & Zaarur 

2014; Tang et al. 2014) so these calibrations can be used with a greater degree 

of confidence in extinct lineages (Dennis & Schrag 2010).  

 

The temperatures produced are also independent of the ±18O composition of the 

source water, making clumped isotope geochemistry an independent constraint 

on both water ±18O and temperature.  In the production of clumped isotope 

data, ±18O and ±13C are measured simultaneously to ∆47 in the same sample.  

This can allow clumped isotopes to be used in addition to stable isotopes to 

deconvolve temperature and water ±18O. 

 

 

 
 
Figure 4.2: Clumped isotope thermometry calibration from synthetic calcite 

(left) and a variety of biogenic carbonates (right) showing the difference 

between some of the ∆47 to temperature calibrations that have been used. 

Taken from Affek (2012). 

 

 

Current technology requires large sample amounts – an order of magnitude 

heavier than is required for stable isotope work (Dennis et al. 2013).  Machine 

precisions are also around 0.01‰, roughly equalling a temperature resolution of 

2℃).  These factors make clumped isotopes an unsuitable palaeothermometer 

for high resolution inter-annual temperatures in bivalves.  However it is likely 
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that equipment will improve to allow smaller samples to be analysed in future 

studies (Zaarur et al. 2011). 

 

 

Sources of Error 

 

Carbonate clumped isotope thermometry is a relatively new proxy, and as such, 

some of the limitations are clear, but others have yet to be quantified.  There 

are three main sources of error to clumped isotope thermometry; alteration, 

calibration and vital or disequilibrium effects. 

 

∆47 data is far more sensitive to diagenetic alteration than other 

palaeotemperature proxies (e.g. ±18O or Mg/Ca) (Eiler 2011).  Diagenetic re-

equilibration of isotopes during diagenesis will overprint the original 

temperature data with the diagenetic temperature, even without bulk 

recrystallization (Dennis & Schrag 2010).  This makes the presence of original 

aragonite insufficient to establish the authenticity of the ∆47 data.  It is also 

possible that the standard method of microdrilling may produce heat and shear 

friction sufficient to alter the aragonite structure (Larkin, 2014).  Clumped 

isotopes have an additional unique alteration pattern; solid state diffusion of 

the atoms over time within the carbonate lattice, which may be caused by 

heating or deformation but does not include dissolution or re-precipitation.  

This makes solid state reordering extremely difficult to detect, although in the 

absence of high temperatures, solid-state reordering is sufficiently slow to allow 

use of clumped isotope thermometry on timescales of hundreds of millions of 

years (Dennis & Schrag 2010).   

 

The calibration of the clumped isotope thermometer for biogenic carbonates is 

ongoing.  Many temperature conversions and calibrations are currently used; 

each covering different temperature and pressure ranges (Figure 4.2).  Using an 

unsuitable calibration may cause the temperature estimates to vary by more 

than the standard error of an individual measurement.  Differences in 

equipment configuration or vital effects within different organism groups have 

also been suggested to cause discrepancies in temperature calibrations (Eagle et 

al. 2013; Kelson et al. 2016).  The use of an absolute reference frame and 

correction procedures helps to correct for some fractionation and recombination 

effects and improve inter laboratory correlation, but does not account for all 

artefacts (Huntington et al. 2009; Dennis et al. 2011).  Some laboratory 

practices introduce additional sources of error related to instrumental 
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instability, or noise due to sample preparation and contaminants which can 

raise the uncertainty of an individual analysis to 0.02‰ (equivalent to 4 to 

5℃).  This amount of potential error highlights the need to replicate the 

analysis of each sample to obtain climate-relevant data (Zaarur et al. 2013).  

 

Although the calibrations appear to work for many organisms (Figure 4.2), ∆47 

temperature dependence may not be assumed if the carbonate is not 

crystallised in isotopic equilibrium.  Speleothems display clumped isotopic 

disequilibrium and ∆47 does not reflect cave temperatures (Affek et al. 2008).  

This effect has also been found in some species of deep sea and shallow water 

corals and several species of mollusc and brachiopod, which all show large 

deviations towards lower ∆47 values, particularly at low temperatures 

(Thiagarajan et al. 2011; Zaarur et al. 2011; Saenger et al. 2012; Henkes et al. 

2013).  This can cause an underestimation of temperature by up to 8℃ 

(Saenger et al. 2012).  It is possible that it may reflect differences in laboratory 

protocols alternatively there may be a systematic difference between these taxa 

and standard calibrations.   

 

Recent descriptions of anti-clumping (where more than one heavy isotope 

occurs in a molecule at a frequency that is lower than the predicted abundance 

for that temperature) have also drawn doubt over the reliability of clumped 

isotope-derived temperature data from biological sources.  Anti-clumping 

results from enzyme activity controlling the formation of biological compounds 

away from thermodynamic equilibrium and has been described in CO2 of 

exhaled breath, photosynthetic oxygen and microbial methane (Wang et al. 

2015; Yeung et al. 2015).  Anticlumping produces clumped isotope signatures 

corresponding to lower temperatures than the true formation temperature of 

the biomineral and may be the cause of some of the vital effects discussed 

above.  However, many biominerals show only minor departures from 

equilibrium isotope fractionation (e.g. Guo et al. 2009; Affek & Zaarur 2014; 

Tang et al. 2014) and the contribution of biological influence and 

thermodynamic effects to the clumped isotopic composition is not yet known.   

 

4.3.3 Computer Models 

 

The Maastrichtian is generally well-constrained in the model realm compared 

to earlier time-periods with several high-resolution palaeogeographic 
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reconstructions available (e.g. Scotese 1991; Markwick & Valdes 2004) and 

reasonably well-defined boundary conditions (Hunter et al. 2013).  As a result, 

the Maastrichtian has been the subject of numerous model and data studies at 

a global scale (e.g. Horrell 1991; Upchurch et al. 1999; Markwick 2007; Hunter 

et al. 2008). 

 

Using different types of climate models has afforded a great deal of information 

about Cretaceous and early Cenozoic climates and patterns of circulation.  This 

is particularly important at the high latitudes where data from these times is 

extremely limited, and the use of models can help fit data results from a single 

location such as Seymour Island into a broader regional climate context.  

Climate models come in a number of different forms producing different data, 

but with different errors associated.  This study uses the Hadley Centre 

Coupled Climate Model version 3 with the lower resolution ocean (HadCM3L) 

(see Section 4.4.3 for further details).  HadCM3L is a general circulation model 

(GCM), but the principles of various climate models are described briefly 

below. 

 

The simplest climate models are zero-dimensional thermodynamical energy 

balance models which model the earth as a single box and balance incoming 

solar radiation against outgoing terrestrial radiation to obtain an estimate of 

global surface temperature.  Various parameters can be added to these models 

to include layers of atmosphere to provide more accurate estimates of 

temperatures and heat flux, but little other data can be produced without 

adding detail to the model. 

 

The principles of these energy balance models can be applied to single-column 

models which simulate a one-dimensional column through the atmosphere to 

produce a vertical profile of temperatures and associated radiative and 

convective fluxes.  These models can be produced with a number of vertical 

layers with physical parameters.  However, these can still only represent a 

small portion of the climate system and any horizontal interactions must be 

prescribed, which makes them less useful for palaeoclimate studies. 

 

Statistical dynamical models attempt to incorporate atmospheric motions and 

dynamics to single column models, usually in a two-dimensional plane 

representing vertical height and latitude, occasionally using a third (time) 

dimension to track annual changes (Budyko 1969; Sellers 1969).  These models 
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are of limited use and have largely become obsolete when compared to general 

circulation models. 

 

General circulation models are sophisticated three-dimensional models that 

attempt to simulate many parts and processes within a climate system.  They 

include elements of energy balance models and consist of a number of vertically 

layered columns, similar to the single-column energy balance models, 

distributed around a representation of the surface of the Earth.  Energy flow 

and transport between these boxes or cells is calculated using a variety of fluid 

dynamical, chemical and sometimes biological physical behaviours and 

parameters. 

 

 
 

Figure 4.3: Schematic of a numerical model “box” in a model for chemical 

changes showing the processes that can change the chemical composition within 

the box.  In this case only longitudinal transport is shown, whereas in reality, 

transport is 3-dimensional and involves thermal changes governed by 

thermodynamic physics in addition to chemical changes. 

 

 

GCMs can be used to model the behaviour of the atmosphere (AGCMs) and 

ocean (OGCMs), or can be coupled together to form an atmosphere-ocean or 

fully coupled general circulation model.  These models include three-

dimensional ocean bathymetry and topography, and are extremely useful for 

simulating past climate conditions.   
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Figure 4.4: Schematic of a typical numerical GCM showing the division of the 

atmosphere and ocean into a series of grid boxes which are then processed in a 

manner similar to Figure 4.3.  From NOAA 

 

 

Climate simulations of Cretaceous conditions often feature strong climate 

equability – a term used to describe reduced seasonal extremes and shallow 

equator-to-pole thermal gradients.  Climate models for the Maastrichtian have 

also been used to determine the likely patterns of circulation (Bowman et al. 

2012; Jung et al. 2013) examine potential for sea ice (Otto-Bliesner & 

Upchurch 1997; Hunter et al. 2008; Hunter et al. 2013) and the effects of 

vegetation (Upchurch et al. 1998), hydrology (Markwick et al. 2002) among 

many other aspects of the Maastrichtian climate system. 

 

Sources of Error 

 

The sources of uncertainty in palaeoclimate modelling can be broadly grouped 

into three categories.  First are structural model uncertainties – differences 

between different climate models and the ways they are constructed including 

gridding and resolution, the number of ocean and atmospheric levels, timesteps 

and differences in computer processing.  Secondly are the uncertainties in 

physical parameters used in the model, including the complexity of physical 

processes and the way they are simulated.  Third are the boundary conditions 
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used by the simulation including physical parameters, palaeogeography and 

atmospheric chemistry. 

 

The uncertainty and performance of climate models are conventionally tested 

by comparison with real modern data.  Some of the deficiencies noted in 

HadCM3L under modern conditions include a general overestimation of global 

precipitation, weakness in modelled ocean overturning circulation as well as 

limitations in the treatment of eddy circulation and upwelling.  HadAM3, the 

atmospheric model used by HadCM3 does predict mean annual surface air 

temperatures with good correlation with real-world datasets where observations 

are well-constrained and topology is accurately represented.  However, it is 

difficult to compare the performance of climate models in polar regions due to 

the sparse coverage of observational and historical data sets.  The uneven 

Antarctic topography with rapid elevation changes are also difficult to 

represent in GCMs, particularly low-resolution models such as HadCM3L which 

can lead to further issues assessing model uncertainty. 

 

Currently HadCM3L is one of the best climate models for use in deep time 

scenarios.  It is stable across multiple platforms and has a relatively fast spin-

up, although this comes as a trade-off in terms of model resolution and 

complexity.  However, in deep time the palaeogeography is a key source of 

model uncertainty, so use of a higher resolution simulation may not provide 

more accurate results, except in cases where circulation or flow is restricted by 

bathymetry.  As a result, uncertainty in deep time modelling is more likely to 

be introduced by physical processes representation within the model and by 

boundary condition uncertainties rather than by any structural model 

uncertainty. 

 

Some uncertainty lies in the tuning of model parameters and physical 

properties to present-day climatology.  It is unknown how robust these 

parametrizations may be under significantly difficult boundary conditions, such 

as those found in the Maastrichtian.  Clouds in particular are a major source of 

model inaccuracy, as they play a significant role in the transmission and 

reflectance of solar radiation (Solomon et al. 2007), but there is no proxy data 

for their behaviour in past climates, and as a result parametrization in 

palaeoclimate models must be entirely based on modern data. 

 

Perhaps the most significant source of uncertainty in deep time palaeoclimate 

modelling is the error associated with estimates of boundary conditions.  CO2 is 
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a large source of error, as it affects climate warming (Forster et al. 2007).  In 

this work, multiple proxies have been used to estimate atmospheric CO2 

concentration and experiments have been run to account for several potential 

CO2 concentrations as a variable.  These proxies are discussed further in 

Section 7.3.4.  Other greenhouse gases are also important in the modern 

atmosphere and have fewer or no proxies in the geological past, including CH4, 

N2O and O3, while CFCs which are important greenhouse gas contributors in 

the modern atmosphere were not present until the 1980s (Forster et al. 2007).  

CH4 and N2O in particular have atmospheric chemistry feedbacks with the CO2 

cycle: oxidation of methane is the main source of water vapour to the upper 

stratosphere (e.g. Figure 4.9), which in turn has feedbacks into climate 

including destruction of stratospheric ozone through radical formation, which 

leads to additional warming of the troposphere and Earth surface (Blake & 

Rowland 1988).  Without accurate boundary conditions for CH4 and N2O 

concentrations, these chemical processes are extremely difficult to model. Other 

model boundary conditions such as solar insolation, the solar constant and 

ocean heat flux also have uncertainties associated, but are better constrained 

relative to the other sources of error discussed here. 
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Figure 4.5: Schematic of modern day tropospheric odd-oxygen chemistry and 

ozone formation showing the interdependence of various atmospheric 

components to greenhouse gas formation.  Taken from Feng et al. (2015). 

 

 

Palaeogeography is a considerable source of uncertainty and exerts a profound 

effect on the strength of climate cycles, particularly seasonal cycles  as well as 

climate sensitivity and ocean-atmosphere circulation patterns (e.g. Valdes et al. 

1996; Poulsen et al. 1999).  Both the accuracy of the reconstruction and the 

representation of the palaeogeography within the model can cause issues. 

 

Flow can only occur between grid cells linked by a vertical or horizontal edge, 

therefore palaeogeography must be gridded in order to represent the open 

channels of flow and prevent restriction.  Alternatively, in some cases energy 

flow may be parametrised and forced to move between cells where the 

palaeogeography prohibits circulation in order to achieve more realistic results.  

Within the Maastrichtian palaeogeography used (Markwick & Valdes 2004) 

there are no regions where flow is specified, aside from the redirection of a river 

in some experiments. 

 

Sea level and land exposure is also important, as land has less thermal inertia 

than ocean (Barron et al. 1993; Donnadieu et al. 2006).  HadCM3L models the 
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ocean as a fixed volume with a rigid lid and the Maastrichtian model has been 

specified as free from permanent ice caps.  Potential modelling of effects such 

as glacioeustatic sea level change is limited by the fidelity of the 

palaeogeography which does not resolve the shelf or shallow sea bathymetry 

around the edges of continents.   

 

 

4.4 Methods 

 

4.4.1 Stable Isotopes 

 

This chapter uses the high resolution and bulk shell carbonate ±18O data sets 

used in Chapter 3 to define the seasonality and periodicity of bivalve shell 

growth.   

 

High resolution stable carbon and oxygen isotope microanalysis was attempted 

for 29 specimens. The specimens chosen for stable isotope analysis have 

extremely well preserved original aragonite shell mineralogy which was 

microsampled following standard procedures (Dettman & Lohmann 1995). 

Microsampling was undertaken using a Merchantek MicroMill at a resolution of 

between 5 and 10 samples per visible growth band using an adaptive sampling 

strategy, i.e. low sampling resolution in fast-growing shell portions, higher 

resolution in slow-growing portions to give approximately monthly resolution 

data. Lahillia were polished by dremel to remove any of the previously 

identified altered surface layers and sampled on the outer surface. Cucullaea 

were sectioned along the line of maximum growth and sampled from the cut 

face to avoid the intermittent periostracal layer identified by SEM. The stable 

oxygen and carbon isotope compositions of the resulting powders were 

determined using a Micromass Multicarb Sample Preparation System attached 

to a VG SIRA Mass Spectrometer at the Godwin Laboratory, University of 

Cambridge. Each run of samples was accompanied by 10 reference carbonates 

and 2 control samples. The results are reported with reference to the 

international standard VPDB and the precision is better than +/-0.06‰ for 

±13C and +/-0.08‰ for ±18O. 
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Additional bulk shell carbonate powders from Lahillia and Cucullaea were also 

examined.  These were prepared by James Witts for carbon associated sulfate 

analysis (Witts et al. 2018).  Shells were first visually screened for preservation, 

then crushed whole and washed in an ultrasonic bath to remove the 

sedimentary matrix from the shell fragments which were hand-crushed into 

powders.  This method of extraction incorporates layers from the entire shell, 

whereas the high resolution microdrilled specimens sample only the well-

preserved outer shell layers.  Preservation tests including XRD and trace 

elemental analysis carried out on bulk powders and shells do confirm the same 

excellent preservation as in the microdrilled specimens, and the proportion of 

altered material incorporated appears to be negligible (Appendix A and Witts 

et al. 2018). 

 

4.4.2 Clumped Isotopes 

(Schmid & Bernasconi 2010) 

Two clumped isotope datasets from Seymour Island have been used to provide 

further constraints on seawater ±18O composition and temperatures.  The first 

is a published clumped isotope dataset produced by Petersen et al. (2016) using 

specimens from the Zinsmeister collection of Seymour Island fossils  

(Zinsmeister & Macellari 1988).  Also presented are unpublished data produced 

by Christina Larkin in 2014 using some of the same Lahillia and Cucullaea 

specimens that have been used for high resolution stable isotope thermometry.   

 

The methodology for clumped isotopic analysis is presented modified from 

Larkin (2014).  The automated method from Schmid & Bernasconi (2010) was 

used coupling a Thermo Scientific Kiel IV Carbonate Device (automated 

sample preparation device) with a Thermo Scientific MAT 253 Mass 

Spectrometer.  This method used repeated measurements of 160-180 μg aliquots 

(10 per sample, 8 per standard).  The sample gas was fed into the mass 

spectrometer in 10 cycles against the reference gas.  The integration time for 

measurements was 26 seconds; 10 seconds idle time, with an ion counting time 

of 288 seconds for 8 cycles per acquisition.  This process took approximately 24 

hours per sample and the long counting time allowed for shot-noise limit 

minimisation.  Samples weighed 160-180 μg to produce an initial intensity of 

∼20V on mass 44, where results are more stable (Huntington et al. 2009).  

Anomalous cycles (where the initial mass 44 intensity was lower than ∼12V) 

were discarded and attributed to problems with the acid drop counter. 
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Corrections were applied following calculation of ∆47 (Huntington et al. 2009; 

Dennis et al. 2011).  An ‘in-house’ calibration specific to the instrumentation 

used was also applied to the data (Figure 4.6). 

 

 

Figure 4.6: Empirical temperature calibration ∆47 is plotted against growing or 

precipitation temperature with standard error. Linear regression and 95% 

confidence interval shown in black. 

 

The direct comparison of specimens from the Zinsmeister collections with the 

specimens presented in this thesis may be problematic due to differences in 

collection methods.  Specimens in Petersen et al. 2016 used point collections 

which were collected only at GPS points and not from a stratigraphic section, 

with the relative stratigraphic position of each specimen calculated using the 

plane projection method (Zinsmeister 2001).  This is in contrast to the 

specimens from the BAS and AFI collections presented here which were taken 

directly from a measured section in addition to GPS location data.  As a result, 

the stratigraphic heights of the specimens in the clumped isotope dataset 

(Petersen et al. 2016) are much less reliable than the specimens from measured 

sections. 

 

In order to determine the extent of this issue when attempting to compare the 

two datasets, a basic comparison of the stratigraphic ranges of specimens was 

performed.  Taking the K-Pg boundary as a datum and comparing the 
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stratigraphic ranges of each species used for geochemical analysis with well-

established stratigraphic ranges from measured sections (Witts et al. 2016) 

(Figure 4.7) it becomes evident that the stratigraphic range for several species 

used for clumped isotopic analysis are not well correlated.  Lahillia appear 

around 80m lower, and Cucullaea ellioti roughly 30m lower in the stratigraphy 

constructed by plane projection than the measured stratigraphic section, 

whereas Dozyia extend roughly 60m higher than expected.   

 

The faunal range data, particularly for Lahillia and Cucullaea have been 

reliably established in the measured stratigraphy (Zinsmeister 1998; Witts et 

al. 2016).  Therefore, the occurrence of these taxa considerably outside their 

expected ranges significantly reduces confidence in the plane projection method 

and the reconstructed heights of the clumped isotope data set.  As a result, this 

dataset is considered less reliable and less useful and will be used only for broad 

trends and constraining seawater ±18O. 

 

 
 

Figure 4.7 Stratigraphic ranges of bivalve species in the measured section (solid 

line) compared to plane projection reconstructed spot collections (dotted line) 

showing the large difference in stratigraphic occurrence in species of Lahillia, 

Cucullaea and Dozyia which suggests the correlation between sections is not 

particularly good.  Stratigraphic heights of each section have been collated using 

the K-Pg boundary as a datum.  Measured section range data from Witts et al. 

(2016), plane projected section range data from Petersen et al. (2016). 
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4.4.3 Climate Simulations 

 

Climate simulations for the Maastrichtian were run using the HadCM3L 

General Circulation Model (GCM), which is a version of the UKMO-HadCM3 

Atmosphere-Ocean GCM consisting of a dynamic atmosphere and ocean, with 

a variety of other optional modules (Gordon et al. 2000).  HadCM3L uses a 

lower resolution ocean model than HadCM3, with a horizontal resolution of 

2.5° in latitude by 3.75° in longitude, which is equivalent to a spatial resolution 

of 278 km north-south by 417 km east-west at the equator and approximately 

278 km by 176 km at Seymour Island’s palaeolatitude of 60-65°S.  In the 

vertical dimension, there are 19 atmospheric levels and 20 oceanic levels, which 

are processed with a time step of 30 minutes and coupled once every simulated 

day.  HadCM3L uses identical atmospheric and ocean physics to HadCM3 with 

modifications to take the reduced spatial resolution into account (Gent & 

McWilliams 1990) but this trade-off in resolution makes model spin-up times 

much faster and contributes to the model’s stability across multiple platforms. 

 

In this study, climate simulations were performed using parameters selected 

using the existing palaeoenvironmental data.  The model used a Maastrichtian 

palaeogeography and orography created by Paul Markwick (Markwick & 

Valdes 2004) which was scaled to the HadCM3L grid (Figure 4.8).  Seymour 

Island’s location relative to the Maastrichtian palaeogeography used in the 

model was calculated by plate rotation from its modern-day position.  This 

gave a palaeolatitude of -59.8 and palaeolongitude of -69.7, which corresponds 

to cell 16-6 in the schematic illustrated in Figure 4.8.  This location is slightly 

different from the palaeolatitude given from other plate reconstructions (65°S; 

Lawver et al. 1992; Hay et al. 1999), which would correspond to cell 15-8.  

Data from both cells have been considered in this chapter, as they encompass 

the range of possible palaeolatitudes and slightly different modelled water 

depths (16-6 reaches a depth of 1500m, whereas 15-8 is a shallower 666m). 

 

The majority of experiments used a modern orbit (Table 4.1) but in order to 

explore the potential temporal variability in sea ice formation around the 

Larsen Basin, an alternative orbit was used to favour southern hemisphere ice 

formation.  This orbit used insolation and orbital parameters from 207 ka, and 

was derived to produce the most southern hemisphere sea ice (S.J. Hunter 

Pers. Comm.).  In both cases the model uses modern months as a frame of 

reference for annual data, with December to February corresponding to 
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Southern Hemisphere summer, and June to August corresponding to Southern 

Hemisphere winter.  A solar constant of 1358.2 W/m2 was predicted by stellar 

evolution models (Gough 1981).  The simulation incorporated a static land-ice 

and dynamic sea ice component (Cattle & Crossley 1995) as well as a tracer 

scheme that simulates the oxygen isotopic composition throughout the 

hydrological cycle (Tindall et al. 2009, 2010).  Vegetation was predicted 

dynamically by the interactive vegetation model with HadCM3L. 

 

 
 
Figure 4.8: Maastrichtian Antarctic Peninsula palaeogeography grid used by 

HadCM3L, from Markwick and Valdes 2004.  Orography (greens) and 

bathymetry (blues) are labelled with height above and below sea level in metres.  

Grid references (bold numbers across top and left) are consistent throughout.  

Two possible palaeolocations for Seymour Island are marked in red at 60°S (16-

6) and 65°S (15-8). 

 

 

Variations of this model set-up were chosen to explore various climate scenarios 

for the Antarctic Peninsula.  Atmospheric CO2 levels are thought to have been 

variable throughout the Late Cretaceous and Early Paleocene.  Estimates of 

Maastrichtian atmospheric CO2 vary depending on the proxy record examined, 

but there is a broad agreement that CO2 levels during this interval dropped 

much lower than during the previous ages of the Cretaceous.  Stomatal indices 

give estimates of approximately 500 ppmv (Beerling et al 2002), whereas 
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pedogenic carbonates give values between 0 and 840 ppmv (Cojan et al 2000, 

Ghosh et al 2001, Nordt et al 2002, 2003), although the proxy is unlikely to be 

accurate below 500 ppmv (Ekart et al 1999).  More detailed paleosol carbonate 

records (e.g. Huang et al 2013) suggest variable CO2 levels throughout the K-

Pg boundary interval, with values rising rapidly from around 300 to over 800 

ppmv between 69 and 66 Ma and continuing to fluctuate through the early 

Paleocene.  For this set of climate simulations, equilibrium CO2 levels of 2, 4 

and 6x preindustrial concentrations were chosen (560, 1120 and 1680 ppmv).  

This range of concentrations covers most of the range suggested by proxy data, 

and the 6xCO2 concentration simulation is useful to consider the potential 

effect on atmospheric CO2 of the Deccan Traps volcanism active immediately 

prior to the K-Pg (Self et al 2006).  The records and effects of different CO2 

concentrations are discussed in more detail in Section 7.3.4. 

 

Initial examinations of model data during spin-up allowed positions of river 

output to oceans and the drainage basins to be checked, as these are calculated 

by the model from the palaeogeography and orography rather than being user-

defined.  Evidence from alternative higher resolution palaeogeographic and 

basin level reconstruction suggest that the Larsen basin received a large 

amount of river input from rivers flowing from the Antarctic Peninsula which 

would have provided the main clastic source for the López de Bertodano 

Formation (Pirrie 1989; Scasso et al. 1991; Olivero et al. 1992). There is also 

evidence from sedimentology and palaeontology that Seymour Island was 

relatively proximal to the source of this clastic input, producing shallow marine 

deltaic to estuarine deposits with abundant plant material (e.g. Hathway 2000; 

Francis & Poole 2002; Olivero et al. 2008). 

 

The original modelled drainage produced river output to cell 15-8, but no 

output to cell 16-6.  This may have been caused by uncertainties in 

palaeogeography which can often lead to differences between modelled and 

expected drainage patterns.  In this case, the drainage basin covering a large 

amount of the Eastern Antarctic Peninsula was being discharged off the west 

coast of the peninsula into the Pacific rather than into the Larsen Basin.  In 

order to account for this, the drainage basin covering the Eastern Antarctic 

Peninsula was rerouted into cell 16-6 in a number of model simulations to 

provide more realistic results for this location (Figure 4.9).   

 



 

145 

 
 
Figure 4.9 Maastrichtian Antarctic Peninsula bathymetry (blues) and orography 

(greens) from Figure 4.8 with positions of continental drainage marked with 

arrows.  River draining into 13-6 in original simulation (white) was manually re-

routed (black) to drain into Seymour Island’s approximate palaeolocation at 16-

6 in some simulations. 

 

 

A summary of the combinations of models and conditions used are presented 

with the designated names that the scenarios have been refered to throughout 

the remainder of this thesis.  This work also only used model outputs from an 

area surrounding the Antarctic Peninsula (Figure 4.8), although the model was 

run to simulate the entire globe. 
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Table 4.1: List of model parameter combinations used in this study with 

designated names and the model outputs produced.   

 2 x CO2 4 x CO2 6 x CO2 

Markwick & Valdes 
2004 Maastrichtian 

palaeogeography and 

modern orbit 

Maas2 

 

Temperature 

and ±18O 

Maas4 

 

Temperature 

and ±18O 

Maas6 

 

Temperature 

Markwick & Valdes 

2004 

palaeogeography and 

modern orbit with 

river redirected to 

drain into Seymour 

Island’s grid location 

Maas2 riv 

 

Temperature 

and ±18O 

Maas4 riv 

 

Temperature 

and ±18O 

 

Markwick & Valdes 

2004 

palaeogeography 

with redirected river 

and southern-

hemisphere 

favourable sea-ice 

orbit (207k) 

Maas2 riv 207 

 

Temperature 

and ±18O 

  

 

 

 

4.5 Results 

 

4.5.1 Oxygen Isotope Data 

 

This chapter focuses on the stratigraphic context of the sub-annual scale 

oxygen isotopic data presented in Chapter 3 which were used to determine the 

seasonality and periodicity of bivalve shell growth. 

 

The range and means of these data have been plotted through the stratigraphic 

section alongside bulk ±18O data from a number of additional Cucullaea and 

Lahillia shells and other calcifying organisms (Figure 4.10).  Also presented are 

existing climate interpretations from palynology (Bowman et al. 2013) and in 

particular the Impletosphaeridium clavus dinoflagellate record, which has been 

used as a proxy for the presence of sea ice in the Seymour Island section. 
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Bulk shell ±18O data were extremely similar to the microsampled shells.   The 

mean ±18O of each sub-annually sampled microdrilled shell ranged from 1.68 to 

-0.61‰, while bulk shell ±18O was between 1.88 and -0.35‰. 

 

There appears to be little variation in the broad trend of ±18O through 

stratigraphy which remains at approximately 0.8‰, even across intervals of 

changing climate suggested from the palynological data.  Specimens from below 

the 750m level in the section have the most positive ±18O, which suggests that 

they may have been recording slightly cooler temperatures.  From 750 to 830m, 

there is a large amount of variation in the bulk temperature data, although the 

single specimen examined at sub annual resolutions from this interval suggests 

that seasonal temperature variation may have been lower than in specimens 

from the other climate intervals.  Bivalve shells from the K-Pg recovery 

interval do appear to show a slight trend towards more positive ±18O 

compositions into the Danian, and less variability within the interval with 

values clustered between 1.53 and 0.08‰. 

 

Data from aragonitic gastropods through the section show a systematic trend 

towards more positive ±18O compositions than bivalves from the same 

stratigraphic height with an average shell ±18O of between 1.0 and 1.6‰ 

throughout and slightly more variation through stratigraphy (Tobin et al. 2012 

and Figure 4.10).  The potential causes of this apparent discrepancy will be 

discussed in Chapter 7. 
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Figure 4.10: Stratigraphic ±18O and climate trends.  Microdrilled shell data from Cucullaea (diamonds) and Lahillia (triangles) with red horizontal bars 

representing the range of values found within each shell.  Bulk data from Cucullaea (red diamonds) and Lahillia (red triangles) and additional aragonitic 

bivalves (filled circles) calcitic bivalves (gray circles) and gastropods (hollow circles) from Tobin et al 2012.  Curves are Loess fits for bivalves (blue) and 

gastropods (green).  Blue field indicates I. clavus abundance from Bowman et al 2013 and is used as a proxy for sea ice presence. 
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Work in Chapter 3 established that the shell material in Lahillia and Cucullaea 

from the Lopez de Bertodano formation was largely produced during the warm 

spring to summer period.  This means that the peak temperature from the 

growth increment between each visible growth line gives an indication of the 

temperature conditions during the warmest months.  Similarly, averaging 

temperature data from readings taken on the growth line will allow an estimate 

of cool season temperature, allowing the minimum mean seasonality to be 

determined. 

 

For each specimen with high resolution data, the peak temperatures from each 

year of shell growth were averaged to give an indication of warm month mean 

temperature (WMMT) and measurements on each annual growth line were also 

averaged to estimate cold month mean temperature (CMMT).  This raw ±18O 

data is presented in Table 4.2. 
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Table 4.2: ±18O data from microsampled shells showing the mean ±18O, winter average ±18O calculated from the average of ±18O at each growth line, 

summer average temperature calculated from the average of peak summer ±18O during each subsequent growth year increment (Y1-Y7) 

 

Specimen Species Section Height 
Mean 

δ18O 

Winter_Avg 

δ18O 

Summer_Avg 

δ18O 

Peak  

δ18O 

Y1 

 

 

Y2 

 

 

Y3 

 

 

Y4 

 

 

Y5 

 

 

Y6 

 

 

Y7 

D9.207.1 Lahillia 1026.4 -0.37 0.27 -0.65 -0.50 -0.43 -0.69 -0.78 -0.71 -0.75 
 

D9.206.152 Lahillia 1011 1.06 1.20 0.92 0.84 1.27 0.77 0.86 0.88 
  

D5.229.1301.2 Lahillia 1010 -0.65 0.81 -1.77 -1.86 -3.06 -1.07 -1.07 
   

DJ.953.746 Lahillia 1005.75 1.60 1.77 1.44 1.45 1.44 
     

D5.222.1248.2 Cucullaea 975 0.56 0.58 0.40 0.40 
      

DJ.953.335 Lahillia 959.25 1.03 1.35 0.91 1.15 0.80 0.91 0.77 
   

DJ.953.456 Lahillia 959.25 1.12 1.28 0.95 0.92 0.92 0.96 0.91 1.06 
  

DJ.953.459-464 Cucullaea 959.25 1.10 1.48 0.77 0.98 0.57 0.75 
    

D5.222.1234.2 Lahillia 951 -0.12 0.56 -0.56 0.09 -0.60 -1.18 
    

D5.220.1226.2 Lahillia 941 -0.61 0.63 -1.39 -1.41 -1.37 
     

D5.220.1214.2 Lahillia 915 1.36 1.47 1.10 1.08 1.13 
     

D5.220.1229.2 Cucullaea 885.5 -0.33 -0.14 -0.44 -0.37 -0.51 
     

DJ.952.523 Lahillia 870.05 1.68 2.01 1.48 1.53 1.33 1.67 1.41 
   

D5.219.1185.2 Lahillia 865 0.81 1.04 0.70 0.93 0.86 0.68 0.33 
   

D5.219.1182.2 Lahillia 859 0.78 1.28 0.43 0.68 0.43 0.24 0.52 0.41 0.39 0.32 

DJ.957.490 Cucullaea 773.75 0.47 0.58 0.38 0.28 0.48 
     

D5.218.1011.2 Cucullaea 629 0.54 0.82 0.02 0.02 
      

DJ.959.93 Cucullaea 615.25 0.67 0.92 -0.86 -1.87 0.14 
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4.5.2 Clumped Isotope Data 

 

Temperatures calculated from clumped isotopes have also ben plotted through 

stratigraphy to examine the broad trends and compare them with the ±18O 

record.  However, as discussed in Section 4.4.2, the clumped isotope data points 

taken from Petersen et al. (2016) may not be well correlated with the 

stratigraphic section used in this study. 

 

The existing clumped isotopic record has been interpreted to show a period of 

cooling in the last million years of the Maastrichtian and no clear trend of 

warming or cooling in the K-Pg recovery interval (Petersen et al. 2016).  

Cooler temperatures in the lower portions of stratigraphy and a slight warming 

trend to approximately 200m below the K-Pg boundary are also suggested. 

 

The addition of several clumped isotopic data points from specimens collected 

from measured sections (Larkin 2014) compares fairly well with the original 

data set.  These additional points do appear to corroborate with the 

observations of temperatures near freezing in the latest Maastrichtian. 

 

Clumped isotope data were also used to constrain seawater ±18O.  Estimates of 

±18O varied hugely both through the section, and by species ranging from -3.42 

to 1.05 overall (Figure 4.11).  Average ±18O appears to be more positive in the 

Maastrichtian Lopez de Bertodano Formation, becoming more negative during 

the Danian Lopez de Bertodano Formation (Table 4.3).  
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Figure 4.11: (A) Stratigraphic ranges of each bivalve species used for clumped 

isotopic analysis (see Figure 4.7 for details). (B) Full clumped isotopic 

temperature data set from Petersen et al. (2016) (no outline) and Larkin (2014) 

(black outline) colour and shape coded by species using the same key as the 

stratigraphic range diagram.  Filled and open points represent average 

temperatures with analytical errors plotted as horizontal error bars. 

 

Clumped isotope derived 

A B 
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Table 4.3: Average oxygen isotopic composition of shells used for clumped 

isotopic analysis temperature by species and stratigraphy (data from Petersen et 

al. (2016) and Larkin (2014).  Average ±18Osw is variable between species, but 

appears to become more negative from the Maastrichtian to the Danian. 

 

Maastrichtian Lopez de Bertodano 

Formation 

Danian Lopez de Bertodano 

Formation 

Species 

Average 

±18Osw 

(‰ PDB) 

Average 

∆47 

Temp. 

(℃) 

n 

Average 

±18Osw 

(‰ PDB) 

Average 

∆47 

Temp. 

(℃) 

n 

Cucullaea -1.26 9.0 63 -2.00 10.1 16 

Eselaevitrigonia -1.22 6.5 21 
 

 
 

Lahillia -1.24 7.2 59 -1.60 8.3 15 

Nordenskjoldia -1.58 6.5 22 
 

 
 

All Species -1.29  165 -1.80  31 

 

  



 

154 

4.5.3 Model Results 

 

The primary outputs of the modelling work were the water temperature and 

±18O in the two potential grid cells (16-6 and 15-8) identified in Section 4.4.3 as 

being representative of Seymour Island’s palaeolocation.  16-6 is at a 

palaeolatitude of 59.8°S, but in the James Ross Basin’s correct relative 

palaeogeographic location, whereas 15-8 is closer to the palaeolatitude reported 

from other plate reconstructions (65°S; Lawver et al. 1992; Hay et al. 1999) but 

with slightly different relative palaeogeography (Figure 4.8).  This chapter also 

only examines model outputs from an area surrounding the Antarctic Peninsula 

(Figure 4.8), although the model was run to simulate the entire globe. A 

summary of the combinations of models and conditions used are presented in 

Table 4.1.   

 

Data were recorded from the final 450 months of the spun-up simulation under 

each set of model parameters.  Figures 4.12 to 4.14 show the average annual 

variation in temperature through the top 300m of the water column for each 

grid location and parameter combination.  Maximum temperatures at the 

surface are reached between January and April, with minimum surface 

temperatures between July and November.  Under all sets of parameters, there 

is negligible annual temperature variation at water depths greater than 200m. 

 

Figures 4.15 and 4.16 show the annual variation in water ±18O for each isotope 

enabled simulation.  These show little evidence for seasonal behaviour at any 

water depth, however there is a marked gradient from more negative surface 

waters to less negative deep waters, particularly in simulations with direct river 

output to the cell. 

 

In order to examine the contribution of 18O enriched river water to these 

trends, the seasonal average outputs of both rivers were also recorded (Figure 

4.17).  Riverine ±18O also appears to be seasonally variable, with the most 

negative compositions between September and February, and less negative 

compositions between March and June 

 

Modelled air temperatures show a range similar to surface water temperatures, 

and mean annual temperatures similar to mean annual water temperatures for 

each model (Figure 4.18). 
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16-6 Maas2 16-6 Maas4 16-6 Maas6 

   
 
Figure 4.12: Monthly water column temperature profiles at 16-6 modelled using different atmospheric CO2 concentrations. 

Temperatures are presented in degrees C using equivalent colour scales. 

 

16-6 Maas2 riv 16-6 Maas2 riv 207 16-6 Maas4 riv 

   
 
Figure 4.13: Monthly water column temperature profiles at 16-6 modelled using the rerouted drainage to produce river output to 16-6 

under different atmospheric CO2 concentrations and orbital conditions.  Temperatures are presented in degrees C using equivalent 

colour scales. 
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15-8 Maas2 15-8 Maas4 15-8 Maas6 

   

 

15-8 Maas2 207 

  

 

  

 

Figure 4.14: Monthly water column temperature profiles 15-8 at Seymour Island’s grid location modelled using different atmospheric 

CO2 concentrations.  Temperatures are presented in degrees C using equivalent colour scales. 
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16-6 Maas2 16-6 Maas2 riv 16-6 Maas2 riv 207 

   

 

16-6 Maas4 

 

16-6 Maas4 riv 

 

  

 

 
Figure 4.15: Monthly water column ±18O profiles at 16-6 modelled using different atmospheric CO2 concentrations, drainage patterns 

and orbital conditions.  ±18O presented in ‰ relative to V-SMOW. 
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15-8 Maas2 15-8 Maas2 207 15-8 Maas4 

   

 
Figure 4.16: Monthly water column ±18O profiles at 15-8 modelled using different atmospheric CO2 concentrations, drainage patterns 

and orbital conditions.  ±18O presented in ‰ relative to V-SMOW. 
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Figure 4.17: Modelled ±18O of rerouted river water redirected into 16-6 and 

draining into 15-8 under different atmospheric CO2 concentrations and orbital 

conditions. 
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Figure 4.18: Modelled annual and mean annual surface air temperatures under 

different atmospheric CO2 concentrations and orbital conditions. 
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4.6 Discussion 

 

4.6.1 Proxy conversions and assumptions 

 

As discussed in Section 4.3.1, one of the largest sources of error to temperatures 

reconstructed from shell ±18O data is the uncertainty in the ±18O composition of 

the ambient water.  Conventionally, in conditions that can be assumed to be 

ice-free, ±18Osw is taken as −1.0‰ (Zachos et al. 2001) but it is likely that at 

high latitudes where there is existing evidence for sea ice (see Section 2.5) that 

±18O is unlikely to have been constant throughout the section.  Additional data 

from clumped isotopes and isotope enabled modelling allowed approximate 

upper and lower estimates of ±18O to be estimated in order to produce a range 

of more accurate potential temperatures from shell ±18O data.   

 

Seawater ±18O calculated from clumped isotope data ranged from {3.42 to 

1.05‰ in specimens of Lahillia and Cucullaea.  Both species suggest more 

negative ±18Osw compositions in the Danian than the Maastrichtian, however 

only around 25% of the number of specimens were measured from the Danian 

than the Maastrichtian in each species (Table 4.3).  This large range 

emphasises the potential variability of water ±18O compared to the assumption 

that seawater ±18O in ice-free conditions can be taken as −1‰ (Zachos et al. 

2001).  Previous studies have noted a correlation between low clumped isotope 

temperature and reduced ±18O of seawater, which has been suggested to be due 

to seasonal runoff, precipitation or even ice melt (Petersen et al. 2016). This 

relationship is highlighted by Figure 4.19. 
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Figure 4.19: Box plots of (A) clumped-isotope derived temperatures and (B) 

±18Osw values calculated from the difference between clumped-isotope derived 

temperature and ±18O derived temperature from the same samples (data from 

Petersen et al. 2016 and Larkin, 2014). Separated into 50m stratigraphic 

intervals M8 to D2 (see Figure 2.13). Blue shading represents maximum and 

minimum values of T and ±18Osw generated across the top 300m in both location 

cells and all simulation conditions.   

 

In models, the range of seawater ±18O was lower than predicted by clumped 

isotopic data, with all simulations falling between −0.9 and −1.6‰ and a trend 

of more negative ±18O in surface waters becoming less negative with depth.  

Experiments at 2xCO2 showed less of a range than experiments at 4xCO2, and 

the addition of riverine freshwater input caused the compositions of surface 

waters to become more enriched in 16O, but had little effect on the composition 

of modelled waters deeper than approximately 50 m. 

 

The difference between the clumped isotopic and modelled data may arise from 

a number of issues.  Firstly, the model may be overestimating ±18O; the water 

depth in the modelled cells are deeper than the 70 to 200 m shelf location of 

Seymour Island was likely to have been (Macellari 1988; Crame et al. 2004), 

which can result in a dilution of a freshwater signal as it is mixed with a larger 

volume of marine water than would have been present in real life.  However, 

examination of the modelled ±18O of the river water only produces ±18O as low 

as −8.5‰ in cell 16-6 and −10.0‰ in cell 15-8 (Figure 4.17).  This means that 

in order to produce ±18O compositions as negative as the clumped isotopic data, 

a mixture of between 25% and 35% river water in seawater would be required.  

This amount of freshwater input would produce brackish water conditions, 

which there is no evidence for in the Lopez de Bertodano Formation on 

Seymour Island (Crame et al. 2004).  It is possible that the model may be 

underestimating riverine ±18O, factors such as high-altitude glaciation and 
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meltwater runoff may produce significant volumes of freshwater enriched in 

16O.  These processes are difficult to model due to the large elevation changes 

in the mountains of the Antarctic Peninsula, and uncertainties in 

reconstructing palaeogeographic elevation.   

 

Conversely, the clumped isotopic data may be producing temperature 

estimations that are too low compared to the temperatures reconstructed from 

±18O.  This could occur due to several mechanisms discussed in section 4.3.2; 

the bivalves could be growing under non-equilibrated conditions; an effect 

which has been observed in some species of bivalve, particularly under low 

temperature conditions (e.g. Saenger et al. 2012) such as those found in 

Seymour Island.  The effects of anticlumping can also produce a bias towards 

lower temperatures, and although this effect has not been directly observed in 

marine bivalves, it has been found in biogenic methane, which may have been a 

major contributor to shell DIC (see Chapters 6 and 7 for further discussion).  

Section 4.6.4 uses climate models more to explore the potential for the lower 

temperatures predicted by clumped isotope data and potential for sea ice 

formation in the models. 

 

As a result of the uncertainty in seawater composition, a range of water ±18O 

from −1 to −2‰ was used for temperature conversion of ±18Oshell data.  Seawater 

of −1 was taken as a conventional top end estimate (Zachos et al. 2001), and a 

most negative composition of −2 was chosen as it was the lowest average 

±18Oseawater derived from clumped isotopes in Lahillia and Cucullaea.  This range 

also encompasses the majority of modelled water conditions. 

 

Raw ±18O data from each specimen were converted to temperature data using 

standard aragonite conversions (Grossman & Ku 1986; Schöne et al. 2002) 

using two variations of the temperature conversion equation with two values 

for seawater ±18O (−1 and −2‰). This produces an approximate upper and 

lower estimate of each point of temperature data for each shell (Table 4.4).   

 

These data have been plotted through stratigraphy, but do not appear to show 

any major changes between the climate intervals previously defined by 

palynology, and little change in WMMT or CMMT over the K-Pg boundary.  

However, the amount of annual temperature seasonality does appear to 

increase over the mass extinction.  Changes in seasonality will be discussed 

further in Chapter 5. 
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Table 4.4: Seasonal temperature data from bivalve specimens sampled at high resolution calculated from ±18O using two variations of conversion equation 

to produce a “maximum” and “minimum” temperature estimate under a range of potential water ±18O conditions 

   

High Temperature Estimate 

 

Aragonite Mollusc (Grossman and Ku 1986) 

±18O sw = –1 

 

T (℃) = 21.8 – 4.69 * (±18O shell – (–±18O sw – 0.2)) 

Low Temperature Estimate 

 

Aragonite General (Grossman and Ku 1986) 

±18O sw = –2 

 

T (℃) = 20.6 – 4.34 * (±18O shell – (–±18O sw – 0.2)) 

Specimen Species Section Height Seasonal Range 
Winter 

Avg 

Summer 

Avg 
Seasonal Range 

Winter 

Avg 

Summer 

Avg 

D9.207.1 Lahillia 1026.4 4.29 14.91 19.20 3.97 9.88 13.85 

D9.206.152 Lahillia 1011 1.32 10.52 11.84 1.22 5.82 7.05 

D5.229.1301.2 Lahillia 1010 12.07 12.38 24.45 11.17 7.54 18.72 

DJ.953.746 Lahillia 1005.75 1.55 7.85 9.40 1.43 3.35 4.78 

D5.222.1248.2 Cucullaea 975 0.86 13.46 14.32 0.79 8.55 9.34 

DJ.953.335 Lahillia 959.25 2.07 9.85 11.92 1.92 5.21 7.12 

DJ.953.456 Lahillia 959.25 1.53 10.17 11.70 1.41 5.50 6.91 

DJ.953.459-464 Cucullaea 959.25 3.35 9.23 12.58 3.10 4.62 7.73 

D5.222.1234.2 Lahillia 951 5.29 13.53 18.82 4.89 8.61 13.50 

D5.220.1226.2 Lahillia 941 9.45 13.22 22.68 8.75 8.32 17.07 

D5.220.1214.2 Lahillia 915 1.73 9.26 10.99 1.60 4.66 6.26 

D5.220.1229.2 Cucullaea 885.5 1.40 16.83 18.23 1.29 11.66 12.96 

DJ.952.523 Lahillia 870.05 2.49 6.72 9.21 2.30 2.31 4.61 

D5.219.1185.2 Lahillia 865 1.61 11.29 12.89 1.49 6.53 8.02 

D5.219.1182.2 Lahillia 859 4.00 10.16 14.16 3.70 5.49 9.19 

DJ.957.490 Cucullaea 773.75 0.95 13.44 14.38 0.88 8.52 9.40 

D5.218.1011.2 Cucullaea 629 3.76 12.33 16.09 3.48 7.50 10.98 

DJ.959.93 Cucullaea 615.25 8.38 11.84 20.23 7.76 7.05 14.80 
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Figure 4.20: High estimate and low estimate ±18O-derived temperature box plots 

illustrating the data from Table 4.4 separated into broad intervals defined by 

the local palynological climate interpretation.  The changes in the amount of 

temperature seasonality through stratigraphy will be discussed further in 

Chapter 5 
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Figure 4.21 Comparison of temperature estimates produced from ±18O data using 

the same high and low conversion as Table 4.4 (grey horizontal bars) and 

clumped isotope data in the same samples of Lahillia (red triangles) or 

Cucullaea (blue diamonds).  Black trendline represents a 0.3 Loess fit to the 

midpoints of temperature data converted from ±18O.  Data from Petersen et al. 

(2016) in smaller points with no outline, data from Larkin et al. (2014) in larger 

points with black outline.  Stratigraphic heights are approximate and may not 

be directly comparable with other data from this study (for further details see 

discussion in the text).   

 

 

4.6.2 Maastrichtian climate conditions 

 

Although the stratigraphic heights of the data from Petersen et al. (2016) may 

be difficult to compare directly with the new data sets presented in this study, 

useful information can still be gained by examining the broad trends.  Figure 

4.22 shows the temperature trends in both correlated and plane projected 
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sections in a number of ±18O bulk data sets converted using the high estimate 

and low estimate equations in Table 4.4.  The measured section consists of bulk 

data from Lahillia and Cucullaea produced in this study, as well as aragonitic 

bivalves from Tobin et al 2012 (raw ±18O data shown in Figure 4.10).  The 

plane projected section consists of data from Petersen et al 2016. 

 

From the ±18O data, the stratigraphic trends show a great deal of consistency in 

bulk temperature on the whole, with statistical fit curves in both sections 

showing average temperatures of roughly 10℃ throughout the Cretaceous.  

Most ±18O data falls within ± 5℃ of this 10℃ average with a little evidence for 

increasing temperatures at the very end of the Cretaceous.  Both sections also 

show a trend towards slightly lower temperatures throughout the Danian K-Pg 

recovery interval, beginning from the K-Pg boundary.  A few anomalously high 

temperatures are present, with 4 specimens producing mean annual 

temperature ranges greater than 20℃, but these are a minority and may be 

due to alteration rather than a record of actual temperature conditions. 

 

Clumped isotopic data however show a different trend, with distinctive cooling 

beginning at a stratigraphic height of approximately 900 m.  This is in contrast 

to the slight warming observed from roughly the same interval in the ±18O 

record.  Temperatures from ∆47 below this level are in general in good 

agreement with the ranges calculated from ±18O.  It is possible that seawater 

±18O may have dropped in the latest Maastrichtian, causing temperature 

estimates to be too high.  Or it is possible that the clumped isotope pool was 

out of equilibrium (see Section 7.2 for details).  The cooling trend beginning at 

the K-Pg boundary does however appear to continue into the Danian, in ∆47 as 

in ±18O records, although again, ∆47 temperatures can be several degrees lower 

than the associated ±18O temperature ranges. 

 

Given the interdependence of these two proxies it is not clear which provides 

the most accurate representation of climate conditions around the K-Pg 

boundary interval.  Therefore, it will be useful to examine these records against 

temperature data derived from other proxies from the nearby area (see Section 

7.1 for further discussion). 
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Figure 4.22: Comparison of temperature trends in specimens collected from the correlated section and spot collections with stratigraphic heights 

reconstructed using the plane projection method (Section 4.4.2).  Each panel shows temperature ranges from ±18O data (grey horizontal bars) and 

temperature estimates from ∆47 data in Lahillia (red triangles) or Cucullaea (blue diamonds).  Black curves represent a 0.3 Loess fit to the midpoints of 

temperature data converted from ±18O. Data from this study, Tobin et al 2012, Larkin 2014 and Petersen et al. 2016. 
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The temperature data from Lahillia and Cucullaea can be compared with other 

±18O data in order to determine whether vital effects or similar phenomena may 

have been affecting clumped isotope temperatures, or if there is additional 

evidence for colder temperatures or freshwater runoff in the ±18O record. 

 

There are several sets of ±18O records from calcite-shelled bivalves from the 

Lopez de Bertodano formation (Figure 4.10) which show generally more 

negative ±18O compositions than the aragonite-shelled bivalves, but this 

discrepancy is more likely to be due to the different fractionation relationship 

for calcite versus aragonite.  When converted to temperatures using the same 

−1 to −2‰ range of seawater ±18O, calcite bivalves give temperatures between 

14.4 and 2.6℃ with an average temperature of 6.0℃.  However, these bivalves 

are likely to be producing similar vital effects to aragonite secreting bivalves, as 

both forms of mineralisation use biologically-mediated pathways and the same 

seawater DIC pool to construct their shells. 

 

Gastropods produce aragonitic shells, but the ±18O data shows a systematic bias 

towards cooler temperatures (less negative ±18O) than those recorded in 

aragonitic bivalves (Figure 4.10).  This is however, likely to have been due to 

the production of shell material in Lahillia and Cucullaea during the warm 

spring and summer period, with an extended period of growth hiatus during 

the cold winter months.  This may result in a bias towards warmer 

temperatures in the bulk ±18O data from bivalves compared to gastropods from 

the same section. 

 

Overall, the bivalve ±18O and ∆47 records suggest that Maastrichtian climates 

on Seymour Island were fairly stable with little variation at seafloor depths.  

There may have been some cooling and freshwater input during the very latest 

Maastrichtian interval, or it is possible that other effects were influencing the 

equilibrium of the clumped isotope proxy record.  A slight cooling across the K-

Pg boundary has also been noted.  The implications of this cooling for the 

growth trends discussed in Chapter 3 will be expanded upon in the discussion 

in Chapter 7.  The larger scope of Seymour Island’s climate conditions within a 

global climate context will be discussed in Chapter 5. 

 

In the last portion of this chapter, we will attempt to use climate models to 

explore the potential for seawater and runoff ±18O variability, as well as the 
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potential for the colder temperatures predicted from clumped isotopic data to 

produce sea ice in the models.  

 

4.6.3 Data and Model Comparisons 

 

The work in the previous section suggests that ±18O temperature estimates are 

likely to be accurate, and a seawater ±18O of between −1 and −2 gives a 

reasonable conversion from shell ±18O to temperature. 

 

At the predicted depth range of 50-200m that these bivalves were living at 

(refer to Section 2.4.2 for details), all model scenarios show good agreement 

with the data, producing mean annual water temperatures of between 10 and 

13℃ in cell 16-6 and between 6 and 12℃ in cell 15-8 slightly further south 

(Figures 4.12 to 4.14 and Figure 4.23).  Both of these estimates are within the 

range of temperature trends through the Maastrichtian (Figure 4.22) 
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Figure 4.23: Mean annual temperatures around the Antarctic Peninnsula at 

water depths of 50m and 200m which represent the upper and lower estimates 

of water depth during the Maastrichtian to Danian deposition of the López de 

Bertodano Formation on Seymour Island. 

 

 

Coolest and warmest temperatures within each simulation were found in the 

surface waters, with less temperature variation lower down.  In waters deeper 

than around 200m in all model scenarios, almost no annual variation in 

temperature was produced.  The coolest bottom water temperatures were found 

in 2xCO2 experiments, whereas the warmest bottom waters were produced 
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under 4xCO2 conditions (Figures 4.12  to 4.14).  This suggests that in this 

location, water temperature does not increase linearly with increasing CO2, and 

other factors such as circulation affect marine temperatures.   

 

Rerouting riverine input to cell 16-6 did not produce a discernible effect on 

water temperatures, which does suggest that freshwater input could have 

occurred without an associated change in temperature.  This behaviour 

conflicts with the interpretation of the ∆47 record, which suggests that 

significant temperature change occurred during the latest Maastrichtian in 

addition to enough freshwater input to produce a negative ±18O signal in the 

seawater (Petersen et al 2016).  A comparison of the modelled temperature 

profiles with the ±18O seawater profiles suggests that this may be because the 

influence of freshwater was confined to the uppermost water layers (e.g. Maas2 

riv and Maas4 riv, Figure 4.15); which could be a result of stratification 

between the two water sources. 

 

Comparison of bulk temperature data alone does not produce enough data to 

favour a certain set of model conditions, but the close agreement of mean 

annual temperature data from ±18O with terrestrial proxies and modelled data 

is a good indication of their veracity.  In the following chapter, seasonal trends 

will be examined in order to test the model simulations further. 

 

4.6.4 Evidence for Sea Ice 

 

Recent evidence from palaeoenvironmental proxies have suggested that 

ephemeral continental and sea ice may have been present during the Late 

Cretaceous, with particular prominence at high latitudes.  The proxy record 

evidence for the presence of sea ice near to the Seymour Island section comes 

from the dinoflagellate Impletosphaeridium clavus record which suggests 

periodic sea ice influence between 500 and 830m in the section and from the 

clumped isotopic data in the upper part of the section between 900 and 1050m 

which gives both low temperatures and 18O depleted seawater results.  

 

But temperatures from the ±18O record throughout both of these intervals are 

not low enough to allow sea-ice formation and the temperature ranges inferred 

are a good fit to many proxies and model scenarios without the need for an 

additional source of water with more negative ±18O caused by meltwater input. 
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Models have been used to examine the potential for sea ice formation in surface 

waters around the Antarctic Peninsula to see whether it is possible for surface 

water to be cold enough for sea ice formation when temperatures at depth are 

much warmer.  The Maas2 riv 207 experiment was used to produce a lowest 

temperature, maximum Antarctic sea ice scenario.  This model produced the 

most cells with sea ice coverage of all of the experiments tested, and the lowest 

latitude sea ice around the Antarctic Peninsula with ice down to 70°S (Figure 

4.24) 

 

 
 
Figure 4.24: Plot of the Antarctic Peninsula area showing cells producing any 

sea ice in lighter blues annotated with maximum monthly sea ice coverage in 

percent.  Data taken from the Maas2 riv 207 simulation with Seymour Island’s 

possible locations highlighted in red.  No sea ice formation was simulated near 

to either of Seymour Island’s potential locations. 

 

 

However, there was no sea ice produced in either of the grid locations for 

Seymour Island even under the most ice-favourable conditions tested.  The 560 

ppmv CO2 levels led to sea surface temperatures that were too warm at the 

latitude of the Antarctic Peninsula, and in general, sea ice only formed in cells 

around the Antarctic contintent at latitudes higher than 72°S or with restricted 
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waters (e.g. around Australia and the Western Antarctic area, Figure 4.25). 

Modelled sea surface temperatures also change rapidly through the annual 

cycle, with even locations with high peak sea ice formation experiencing several 

ice-free months during the peak of Antarctic summer (Figure 4.26). 

 

As the models do not support the presence of sea ice near to the Antarctic 

Peninsula, the results from palynology and clumped isotopic data are more 

likely to be attributed to other effects.  Others have suggested that these 

Impletosphaeridium clavus blooms may be related to periods of higher 

continental nutrient influx and eutrophication, without the need to invoke sea 

ice formation (Amenábar et al. 2014). Models are not particularly good at 

recreating the formation and impact of high-elevation ice, due to the inability 

of low-resolution models to render the rapid changes in elevation over 

mountainous terrain, but it is possible that high elevation ice on the mountains 

Antarctic Peninsula may have been a source of depleted freshwater and 

potential nutrient influx in the absence of evidence for sea ice. 
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Figure 4.25: Orthographic Austral polar centered projection of Maas2 simulation 

showing 3-month averaged surface-water temperatures during southern 

hemisphere winter (September-October-November).  Temperatures cold enough 

to allow sea-ice formation are only found in waters with restricted flow around 

the Antarctic continent at latitudes greater than 70°S. 
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Figure 4.26: Seasonal surface water temperatures around the Antarctic 

Peninsula in the Maas2 simulation in December-January-February, March-

April-May, June-July-August, and September-October-November.  

 

 

4.7 Summary 

 

Bulk shell ±18O data from Lahillia and Cucullaea compares well with the 

average ±18O calculated from high resolution sampled shells and with other 

aragonitic bivalves from the same section.  Aragonitic bivalve ±18O is generally 

0.5 to 1‰ more negative than gastropod data, which is could be due to a 

summer bias of temperatures in bivalve shells and a reduction in the recording 

of winter temperatures during the growth hiatus discussed in Chapter 3. 
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Clumped isotopic data suggest that in the latest Maastrichtian, ±18O may have 

been considerably more negative than the −1‰ that standard ice-free 

conversions from shell ±18O to water temperatures suggest.  Isotope enabled 

models also corroborate these findings, leading to a range of seawater ±18O 

compositions from −1 to −2‰ being used for temperature conversions of bulk 

and seasonal shell ±18O data. 

 

When examined through stratigraphy, trends in bulk temperatures from ±18O 

data show little variation throughout the late Maastrichtian, with indications 

for a slight temperature decrease from the Maastrichtian to the Danian.  

Average water temperatures for the Maastrichtian remained around 10℃, with 

most mean annual ±18O data falling within ±5 degrees throughout.  Comparison 

with gastropod data suggest that the recorded temperatures are likely to have 

been between 2 and 4 degrees higher than the actual mean temperatures due to 

the discussed warm temperature bias of bivalve growth. 

 

Clumped isotopic data are similar to the ±18O data at stratigraphic heights 

lower than 900m.  At stratigraphic heights above 900m, the clumped isotope 

temperatures tend to be much lower than the ±18O temperatures, in several 

cases close to 0℃, which has been used to suggest the presence of sea ice. 

 

Climate model scenarios showed good agreement with the mean annual 

temperatures produced from ±18O data, with modelled water temperatures of 

between 6 and 13℃ across all simulations at the water depths bivalves are 

thought to have lived in.  Due to the uncertainty in the exact water depth, the 

comparison of temperature means was not sufficient to favour a certain set of 

model conditions, however extending the comparison to seasonal temperatures 

in Chapter 5 is likely to provide additional constraints. 

 

The climate simulations did not produce any sea ice near to Seymour Island’s 

palaeolocation at atmospheric CO2 concentrations of 560ppmv (2xPI CO2).  

This could be due to misrepresentation of Antarctic conditions by the models, 

lower CO2 conditions than were accounted for, or that the potential proxy 

evidence for sea ice may have been caused by other effects  
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CHAPTER 5 

5  

REGIONAL TEMPERATURE SEASONALITY 

AND VARIABILITY 

 

 

This chapter’s aim is to expand the work in Chapter 4 to include seasonality 

and climate variability data expressed in bivalve shells in order to look for 

patterns of change during the K-Pg boundary interval and examine the ability 

of general Maastrichtian climate simulations to replicate this data. 

 

 

5.1 Introduction 

 

The Maastrichtian to Danian interval has long been highlighted as a time of 

extreme temperature seasonality and variability on a scale unseen in modern 

temperate climates in contrast to more equable Cretaceous conditions (Barrera 

et al. 1987; Wolfe & Upchurch 1987; Pirrie & Marshall 1990; Barrera 1994; 

Ditchfield et al. 1994; Huber et al. 1995; Li & Keller 1998; Dingle & Lavelle 

2000; Francis & Poole 2002; Gallagher et al. 2008). This potential for 

heightened seasonal variability is largely overlooked in interpretations of 

geochemical proxy records which often use modern calibrations to mean annual 

temperatures and may result in misleading palaeoenvironment reconstructions 

(Wolfe 1993; Markwick 1996; Price et al. 1997; Pearson et al.a 2001; Huber et 

al. 2002). In spite of a rich fossil and proxy data record, late Cretaceous climate 

models often fail to match the conditions expected, with mean annual 

temperatures often predicted by models to be several degrees cooler than the 

proxy data suggest (Donnadieu et al. 2006). The effect of seasonality in the 

proxy interpretation of data may therefore be an important source of data-

model discrepancy. 

 

Chapter 3 established the presence of cyclic signals in the stable oxygen 

isotopic data of Cucullaea and Lahillia shells, and Chapter 4 expanded on this 

work to produce estimates of summer temperatures and seasonality from these 

shells and examine the extent to which the seasonal climate variability can be 
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accounted for by climate models. In this chapter, the seasonal temperature 

trends in bivalve shells will be examined through stratigraphy and compared 

with other local records of seasonality and temperature during the Late 

Cretaceous and Early Paleocene. 

 

Climate variability can be considered on a number of timescales, from 

atmospheric evolution taking hundreds of millions of years to tectonic changes 

and insolation cycles. Annual seasonal temperature change provides one of the 

largest sources of climate variability on one of the shortest timescales (Figure 

5.1). This temperature seasonality is driven largely by changes in solar 

insolation due to the Earth’s axial tilt as it completes each yearly orbit of the 

sun. Many aspects of the earth climate system are affected by changes in 

seasonality and extreme temperatures, including ice formation and melt, 

precipitation extremes, cloud formation and changes in the distribution and 

albedo of vegetation (Foley et al. 1994; Crowley & Zachos 2000; Bauer et al. 

2003; Gerber et al. 2003; Reichstein et al. 2013). This is particularly important 

in the high latitudes, where the change in insolation is extremely large over the 

course of a year. 

 

Seasonal temperature variation is also an important driver of physical systems 

such as ocean currents and nutrient cycling (Marshall & Speer 2012). These 

systems are important to understand from both a biological and climatic 

perspective particularly in deep time where changes in temperature extremes 

have been postulated as a mechanism to drive global patterns of evolution and 

extinction (Bartlein & Prentice 1989; Sheldon 1996; Li & Keller 1998; Davis et 

al. 2005). 

 

It has been suggested that seasonality and intra-annual climate change is more 

important to understand from a palaeoecological angle than longer timescale 

mean-state climate conditions (e.g. Guthrie 1984). Some studies suggest that 

seasonal temperatures may have a stronger effect than mean annual 

temperatures on evolution and diversification (Parmesan et al. 2000; Archibald 

et al. 2010). Changes to the climate system on longer timescales can alter the 

magnitude of seasonality and seasonal behaviours. This chapter will aim to 

examine changes in seasonality recorded in bivalve shell carbonates and other 

proxies, and look for evidence of seasonal climate variability over the K-Pg 

boundary interval. 
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Figure 5.1: Timescales of climate variability, showing the large impact that 

annual solar forcing (bright red) has on climate compared to other variables. 

Based on Murray Mitchell (1976). 

 

 

5.2 Objectives 

 

• To examine how seasonality is expressed in Seymour Island’s shell 

material in terms of stable and clumped isotopes  

• To determine how well modelled data is able to fit the patterns of 

seasonality recorded in shells from Seymour Island 

• To examine whether the differences between these two geological time 

intervals can be reliably detected 

• Use of combined mean annual and seasonal temperature data to compare 

with model simulations over a range of scenarios in order to reconcile the 

differences between proxy systems. 

 

 

5.3 Seasonality around Seymour Island 

 

In Chapter 4, the seasonal variation of temperature in shells was used to 

compare data and models (e.g. Figure 4.19 and Figure 4.22). In this chapter, 

these trends will be examined through the latest Maastrichtian in the context 

of local and global climate change. 
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5.3.1 Methods 

 

This section of the chapter builds on the methods, clumped and stable isotopic 

proxy data and HadCM3 model data and outputs detailed in Chapter 4. 

 

As shell material in Lahillia from the López de Bertodano Formation was 

established to have a seasonally-determined periodicity (Chapter 3), peak 

summer temperatures (WMMT) were able to be calculated from the growth 

increment, and an estimate of winter temperatures (CMMT) gathered from 

readings at the growth line (Table 4.2). The difference between the two 

resulting temperatures is an estimate of the maximum seasonality.  

 

In addition, the clumped isotope dataset from Petersen et al. 2016 used in 

Chapter 4 in comparison with ±18O-derived temperatures also has the ability to 

give seasonal information. Samples from each specimen were taken from 

juvenile shell (near the umbo) and more mature shell (near the margin). As 

bivalves tend to grow for shorter periods of time as they mature, recording a 

smaller representative section of annual seasonality (Figure 5.2). As a result, 

the difference between mature and juvenile mean recorded temperatures can 

give an indication of minimum seasonality (Figure 5.4). 

 

 

 
Figure 5.2 Goodwin et al 2003 ±18O models of predicted annual shell growth 

showing the change in average recorded temperatures between juvenile and 

mature shell growth.  

 

 

Juvenile   Mature Juvenile   Mature 
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This interpretation does, however assume that mature bivalves are growing for 

a shorter period of time than the juveniles, and assumes there is little change in 

conditions year-on year within the lifespan of one bivalve, which can be up to 

80 years (Chapter 3). The amount of expected year-to-year temperature 

variability will be tested using model data in Section 5.4. 

 

5.3.2 Results 

 

A maximum estimate of seasonality was calculated from the stable isotopic 

dataset (Figure 5.3) and compared with shells of Lahillia and Cucullaea within 

Petersen et al. 2016 (Figure 5.4). The assumptions and potential pitfalls of 

comparisons made between these two datasets have been discussed in Section 

4.4.2. Temperature seasonality from stable isotopic data is fairly constant, 

remaining at approximately 2 to 4℃ throughout the stratigraphic section, with 

a few occurrences of higher seasonality of between 5 and 10℃ below 650m and 

between 930 and 960m with an additional potential spike near the K-Pg 

boundary, although this is only recorded by a single bivalve with shells at a 

similar stratigraphic height recording low seasonality. 

 

The summer and winter temperatures derived from ±18O shell data are 

presented in Figure 5.3, these temperature estimates include both the warm 

and cool estimate temperature conversions set out in Section 4.6.1. The 

seasonality estimate (Figure 5.3 A) assumes a constant water ±18O. Clumped 

isotopic data has suggested that water ±18O may be seasonally variable, in 

which case the temperature seasonality experienced will have been several 

degrees larger than presented here (up to 4 to 5℃ greater).  

 

The temperature difference and inferred seasonality from the clumped isotope 

data within one shell are slightly higher than the average annual seasonality 

derived from ±18O data (Figure 5.4 A and B). Seasonality in clumped isotope-

derived data remains approximately 5℃ through the lower part of the section, 

falling to between 2 and 3℃ across the K-Pg boundary interval from 

approximately 980m in stratigraphy. However, there does not appear to be a 

consistent relationship between which temperature conditions are being 

favoured by mature or juvenile growth in each species of bivalve. 

 

 



 

193 

 

 

Figure 5.3: Seasonality (A) and warm and cool estimates of temperature from ±18O data through the stratigraphic section. (B and C). Blue curve 

represents cool month mean temperature (CMMT) from each shell, red curve represents warm month mean temperature (WMMT). Black curve is the 

3-point moving average of bulk ±18O data, grey polygon shows the amount of intra-annual seasonality, i.e. the difference between WMMT and CMMT. 

A B C 
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Figure 5.4: Temperature seasonality data from Lahillia and Cucullaea shells 

inferred from ±18O data (left column) and clumped isotope data (middle 

column). Also showing the clumped isotopic data from mature (hollow) and 

juvenile (filled) Lahillia (red) and Cucullaea (blue). Dotted or solid lines 

between corresponding pairs of data from the same shell represent whether 

temperatures recorded by the mature growth are cooler (dashed) or warmer 

(solid) than juvenile growth. This graph shows that there does not appear to be 

a consistent pattern of temperature change as shells mature e.g. Figure 5.2. 

Data from this study and Petersen et al. (2016). 

 

 

5.3.3 Discussion 

 

Information relating to seasonality appears to be present in the ±18O data; 

temperatures taken from the growth line are consistently lower than 

temperatures from the peak of the growing interval. The difference appears to 

be on the order of 2 to 3℃, although this seasonality estimate (Figure 5.4 A) 

assumes a constant water ±18O. Clumped isotopic data have suggested that 

water ±18O may be seasonally variable, with more negative water ±18O occurring 

in summer months (Figure 4.18). If this was a significant factor in changing the 

±18O of water, the temperature seasonality experienced may have been up to 4 

to 5℃ lower than presented here. 

A B C 
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The temperatures reconstructed from clumped isotopes were found to be in 

broad agreement with temperatures from ±18O data below approximately 900m 

in the stratigraphy. Above this stratigraphic level, it is likely that clumped 

isotopic temperatures show a cold bias although the effect of this potential bias 

on seasonality data is unknown and depends on the mechanism (this is 

discussed further in Sections 4.6.1 and 7.1). 

 

There is, however, a lack of a consistent pattern of temperature change as 

shells mature (Figure 5.4 C). For example, in Cucullaea, mature specimens 

record warmer temperatures than juveniles in the lower part of the succession; 

below 850m in the stratigraphy. This suggests that mature specimens could be 

recording the expected effects of a longer winter shutdown (e.g. Figure 5.2). 

However, above 850m in the stratigraphy, this trend is largely reversed, with 

most, but not all mature specimens recording cooler temperatures than the 

juveniles. Lahillia mostly record cooler temperatures in mature specimens than 

juvenile specimens as well, with the exception of a pair of specimens 

immediately prior-to and following the mass extinction horizon. 

 

Bivalves are known to change the seasonality of shell growth and spawning 

under changing temperature and nutrition conditions (Jones & Quitmyer 1996), 

and commonly pause shell growth under non-ideal temperature conditions 

(Schöne et al. 2002, 2003). The changes described above could be a result of 

the cool-temperature bias noticed in the clumped isotopic record during the 

latest Maastrichtian, or could reflect a change in growth habits as a response to 

the generally warmer temperatures recorded by juvenile specimens where this 

behaviour is exhibited. However, the lack of a consistent pattern may also 

support the tentative conclusion from Chapter 4 that clumped isotope data is 

not recording an accurate temperature signal through the entire section. 

 

The seasonality data produced from clumped isotopic data is also likely to 

include some temperature variation on longer temporal scales than just intra-

annual temperatures. As a result, these clumped-isotope derived temperatures 

represent a different type of seasonality than the ±18O data and are not reliable 

enough indicators of intra-annual seasonality for comparison with models, 

although could provide a ballpark estimate of climate variability over longer 

timescales (Figure 5.5). 
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Figure 5.5: Schematic diagram of (A) inter-annual variability data produced from comparison between juvenile and more mature shell-

derived temperature data and (B) high and low seasonal intra-annual variability from consecutive-year measurements. Grey curve 

represents water temperature data recorded by geochemical proxies in the shell. Green lines are MAT estimates from bulk 

temperature data, red and blue lines are warm month mean temperature (WMMT) and cold month mean temperature (CMMT) 

estimates from high resolution temperature data. Each method produces different information about climate variability and can be 

useful in combination.  
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Other seasonal proxies for temperature have been produced from Seymour 

Island’s fossil material, such as analyses of fossil wood physiognomy and 

coexistence of flora (Poole et al. 2005). The range of seasonalities predicted 

from floral analyses is between 11.1 and 15.9℃, however, the comparison of 

terrestrial and marine seasonal data is not as good as the comparison between 

terrestrial and marine mean annual temperature data. Although the MAT 

conditions on land are often similar to the MAT conditions of marine surface 

waters (as discussed in Chapter 4), seasonality tends to be much larger and 

more variable on land than in water, due to the high specific heat capacity of 

water buffering temperature changes. As a result, terrestrial proxy data is 

unlikely to provide useful constraints on the amount of seasonality in marine 

data or models. 

 

 

5.4 Climate Variability 

 

Climate variability refers to the natural short-timescale changes in atmospheric 

conditions which cause temperature and weather fluctuations on scales of 

months to up to 30 years (Figure 5.6). This is as opposed to climate change 

which describes the changes over much longer periods, of over 30 years (as 

defined by the World Meteorological Organization). The combination of models 

and high temporal resolution data from bivalves through geological time can 

give insights on both climate variability and climate change scales. 

 

Climate variability is important to study from a palaeontological point of view, 

as it represents the distribution of extreme values around the mean value of 

climate. Climate extremes have the potential to affect biology and ecosystems 

to a greater extent than mean state climate (Guthrie 1984; Parmesan et al. 

2000; Archibald et al. 2010). 
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Figure 5.6: Temporal scales of key variations in the Earth’s climate system. 

From the Pacific Climate Change Science Program. 

 

 

5.4.1 Methods 

 

This section of the chapter compares the monthly temperature data from the 

final spun-up years of the climate models described in Section 4.4.3 with the 

sub-annual resolution ±18O data produced from shells through the geological 

stratigraphy of Seymour Island presented in Chapter 3. In order to visually 

confirm whether the models produce temperature variability of a similar 

timescale and magnitude to the signals preserved in fossil bivalve shells. 

 

Shell data were processed from spatial data (temperature against distance) to 

temporal data (temperature against approximate time) by splitting the data 

into annual blocks at each visible growth line. These blocks of data were 

linearly scaled so that each block of data spanned the same amount of time; 

representing a year of shell growth. As it has been established that bivalves 

were not producing shell all year around, each block was then reduced by 70% 

to represent an active growing period of approximately 8 months out of the 

entire year, which is in line with estimates for modern bivalves (e.g. Goodwin 

et al. 2003). This method assumes shell growth was linear with no skewness 

caused by variable growth rates (Goodwin et al. 2003). 
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5.4.2 Results 

 

The scaled temporal shell data from the shells which cover several years of 

growth are presented in Figures 5.7 and 5.8 in stratigraphic order and 

separated into the 50m stratigraphic intervals used in previous chapters. These 

clearly show the cycles of annual temperature change and the magnitude of the 

temperature peaks through the section. In many cases, the amount of 

temperature variability is greater than the uncertainty in the temperature 

conversion due to potential changes in water ±18O, which is likely to heighten 

the observed seasonality. 

 

Temperature data from the simulations have been plotted to the same 

temporal and temperature scale as the proxy data for ease of comparison. This 

includes the data from each simulated marine depth slice between 15 and 

138.9m. Water depths greater than this range were not investigated due to the 

small amount of annual variation present at greater depths. 

 

In the northernmost cell (16-6), mean annual temperature and average 

seasonality generally decreased with depth, whereas in the slightly more 

southerly cell (15-8), mean temperatures were generally higher with increasing 

depth, while seasonality decreased. 

 



 

200 

 
 

Figure 5.7 Temperature data from pre-extinction Maastrichtian bivalves of the Lopez de 

Bertodano Formation. Data have been separated at each visible growth line and linearly scaled 

such that each horizontal grid square represents a year of growth. Each shell has been presented 

in stratigraphic order with vertical error bands representing the warm and cool temperature 

conversions in Lahillia (red) and Cucullaea (blue). M1-M3 represent 50m stratigraphic intervals 

defined in Figure 2.13 

 

 
 

Figure 5.8: Temperature data from post-extinction Danian and Eocene bivalves of Seymour Island. 

Data have been separated at each visible growth line and linearly scaled such that each horizontal 

grid square represents a year of growth. Each shell has been presented in stratigraphic order with 

vertical error bands representing the warm and cool temperature conversions in Lahillia (red) and 

Cucullaea (blue). D1, S1 and E1 represent stratigraphic intervals of the post-extinction sediments 

defined in Figure 2.13 
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Figure 5.9: Monthly model data from each marine depth slice (colour code in key) at grid square 

16-6 under different CO2 conditions. Temperature data plotted to the same vertical and horizontal 

scale as shell data in Figures 5.7 and 5.8; each vertical grid line represents one year of data.  
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Figure 5.10: Monthly model data from each marine depth slice (colour code in key) at grid square 

15-8 under different CO2 conditions. Temperature data plotted to the same vertical and horizontal 

scale as shell data in Figures 5.7 and 5.8; each vertical grid line represents one year of data.  
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5.4.3 Discussion 

 

In general, this comparison shows that the models demonstrate a clear seasonal 

temperature cycle that has a number of similarities to the temperature data 

reconstructed in fossils. It is remarkable to see how well the time-scaled proxy 

data correlate with simulated temperature data, especially because the data 

capture short snapshots across a span of several million years of geological time 

but are largely reasonable in comparison to the model. Most of the shells match 

up with at least one of the experiments within the 25-50m range. 

 

The good fit of the model results to data produced over a large spread of 

geological time, and likely under different orbital forcing conditions, could 

imply that orbitally driven variations in seasonality are a second order effect 

compared to the overall strength of the seasonal cycle at this latitude.  

 

The bivalves and sedimentary deposits are thought to have been produced at 

water depths between 50-200m (Macellari 1988; Crame et al. 2004), which is 

slightly deeper than the 20-50m range that is the best fit to the model data. 

However, this is not to say that the correlation between modelled temperatures 

and shell data at these depths demonstrates that water depth was actually 20-

50m. This is partly a shortcoming of HadCM3L, which has a coarse lateral 

resolution (3.75 by 2.5°) and supports a minimum water depth of 200m due to 

model instabilities in shallower conditions. But climate models do have 

deficiencies in representing shelf systems in general as they lack a physical 

representation of barotropic scale processes, tides and coastal eddy currents, 

which are an important driver of bottom-water flow and mixing through 

turbulent processes (Holt et al. 2017).  

 

Unfortunately, it is difficult to produce more than a visual comparison of 

individual shell data to show that the amplitude and variability of the proxy 

data can be simulated fairly well by climate models. The comparison between 

data and models through geological time will be discussed further in Section 

5.5. 
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5.5 Data Model Comparisons 

 

The uncertainty in the water depth conditions recorded by bivalve shells is 

high enough that mean annual temperature alone is insufficient to favour a 

certain set of model conditions (Section 4.6.3). However, the amount of 

seasonal temperature change did vary greatly with modelled water depth and 

can provide additional constraints to the data model comparison. 

 

Due to shortcomings in the way HadCM3L handles shelf sections, it is not 

possible to constrain water depth conditions using climate simulations (Section 

5.4.3). It is reasonable however, to compare the modelled temperatures of 

surface waters to the shell proxy data, even if in reality they were likely to 

have been produced in deeper waters. 

 

Seasonal temperature variation from ±18O data were found to be fairly 

consistent throughout the section (Figure 5.4) and can provide a rough 

constraint on the performance of each climate experiment (Figure 5.11 and 

Figure 5.12). This shows that in the northernmost location (16-6), modelled 

mean summer temperatures in all models were a good match to data at water 

depths between 30 and 70m, but the seasonality behaviour produced the best 

match for all model conditions between 30 and 40 m water depth. The highest 

CO2 simulation (Maas6) produced the most similar amount of seasonality at 

deeper water depths, however the addition of riverine input (Maas2 riv, Maas2 

riv 207k and Maas4 riv) muted the amount of temperature seasonality in the 

water at depths greater than 30m. This may be a result of temperature or 

freshwater causing stratification as mentioned in Section 4.6.3. 

 

In the southernmost location (15-8), which was also modelled with a shallower 

overall water depth of 666 m compared to the 1500 m water depth in 16-6, 

simulated mean annual temperatures are a good match to proxy data at all 

shallow water depths. Seasonality, however is greatest in the low CO2 (Maas2 

and Maas2 207k) experiments and is the best match to data 40 m water depth. 

In addition, the 207k orbit experiment; designed to produce the coolest 

southern hemisphere temperatures and maximum sea ice formation produced 

higher warm month mean (WMMT) temperatures and higher seasonality at 

this location than the modern-day orbit experiment.  
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Figure 5.11: Comparison shell ±18O-derived seasonality and mean summer 

temperature data with depth slice data from cell 16-6 under different model 

scenarios. Box plots represent high and low temperature estimates from all ±18O 

data across all Maastrichtian and Danian specimens. Vertical dotted lines show 

the mean of each box plot as well as lower quartiles of the low temperature 

estimate and upper quartile of the upper temperature estimate from shell data 

for comparison with the model data in the lower section of the diagram. Model 

data has been interpolated into 10m depth slices and each model scenario is 

colour coded using the key at the bottom.  
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Figure 5.12: Comparison shell ±18O-derived seasonality and mean summer 

temperature data with depth slice data from cell 15-8 under different model 

scenarios. Box plots represent high and low temperature estimates from all ±18O 

data across all Maastrichtian and Danian specimens. Vertical dotted lines show 

the mean of each box plot as well as lower quartiles of the low temperature 

estimate and upper quartile of the upper temperature estimate from shell data 

for comparison with the model data in the lower section of the diagram. Model 

data has been interpolated into 10m depth slices and each model scenario is 

colour coded using the key at the bottom.  
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Depending on the latitude chosen for comparison, either the high CO2 

experiment (Maas6) or the low CO2 experiment (Maas2) offers the best overall 

comparison to data from the entire Lopez de Bertodano formation. Proxy 

information about potential CO2 conditions throughout this interval will be 

examined in Chapter 7. Redirecting river input through cell 16-6 does not 

improve the model’s comparison with seasonal variation at reasonable water 

depths. This study also appears to corroborate with the observation in Section 

5.4.3 that orbital conditions do not make much of an impact on either the 

amount of seasonal variation, or temperatures at this latitude as the signal is 

dominated by the seasonal cycle. 

 

Although the model is generic for the Maastrichtian within the defined orbital 

and CO2 parameters and will not represent changes in conditions over 

geological time, it is still useful to examine the patterns of data that best fit 

certain model snapshots. Separating the temperature data through geological 

time across the K-Pg boundary interval allows a comparison of the variability 

of the proxy and model data. This is a way of representing and comparing the 

climate variability data presented in Section 5.4.2.  
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Figure 5.13: Box plots showing high-estimate (red outline) and low estimate 

(blue outline) seasonal temperature variation in bivalves from stratigraphic 

intervals around the K-Pg boundary (green) compared to simulated data in grid 

cells 16-6 (left column) and 15-8 (right column) under different CO2 

concentration conditions and water depths. Dotted vertical lines show the range 

between the lowest and highest mean amount of seasonal temperature variation 

found in the data. 
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Figure 5.14: Box plots showing high-estimate (red outline) and low estimate 

(blue outline) CMMT in bivalves from stratigraphic intervals around the K-Pg 

boundary (blue fill) compared to simulated CMMT data in grid cells 16-6 (left 

column) and 15-8 (right column) under different CO2 concentration conditions 

and water depths. Dotted vertical lines show the range between the lowest and 

highest average CMMT from shell data. 
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Figure 5.15: Box plots showing high-estimate (red outline) and low estimate 

(blue outline) WMMT in bivalves from stratigraphic intervals around the K-Pg 

boundary (red fill) compared to simulated WMMT data in grid cells 16-6 (left 

column) and 15-8 (right column) under different CO2 concentration conditions 

and water depths. Dotted vertical lines show the range between the lowest and 

highest average WMMT from shell data. 
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The proxy data show that the variability between CMMT and WMMT in each 

stratigraphic interval around the K-Pg boundary is on a similar scale to the 

uncertainty in the temperature conversion due to variable water ±18O. As a 

result, it is difficult to track any changes in temperature through stratigraphy 

and correlate it with changes in model conditions.  

 

The highest amounts of seasonality (e.g. shells in D1 and M2) were only able to 

be produced in the very shallowest waters in the model, which is likely to have 

been unrealistically shallow, even with the caveat that the models may not 

represent shelf environments perfectly. Layers this shallow are predominantly 

influenced by insolation and atmospheric temperatures and are unlikely to be 

as affected by the cool deeper water column present in the model bathymetry 

compared to a shallower, warmer real-life shelf bathymetry. This means that 

the amount of seasonality recorded here by shells may have been affected by 

factors such as freshwater runoff, causing the amount of seasonality to be 

overestimated, even in the ±18O data, which generally shows a far lower amount 

of temperature seasonality than clumped isotope-derived temperature data 

(Figure 5.4). 

 

Overall, all simulations at any CO2 level were capable of producing seasonality 

and temperatures within the range of the proxy data at reasonable water 

depths. This suggests either that CO2 is unlikely to have been a driving factor 

in any changes in high latitude seasonality and climate conditions during the 

Maastrichtian and Danian, or alternatively that HadCM3L underestimates the 

impact of CO2 on temperatures at this location. 

 

The model experiment at 2xCO2 produced a range of WMMT, CMMT and 

seasonality conditions closest to the distribution of the proxy data, and was 

able to produce these results at water depths within the 50-200m depth 

suggested for these bivalves, regardless of the restrictions of the model in 

simulating shelf environments.  

 

The low CO2 experiments produced the largest overall range and variance of 

WMMT and CMMT at most shallow-water depths in both study locations, 

however the mean year-to-year seasonality in each depth layer was still broadly 

similar to the higher CO2 experiments. This suggests that in simulations with 

lower CO2, longer timescale climate variability may have a larger effect on 

temperature than intra-annual seasonality. 
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The simulations taken at the lower latitude location (16-6) show generally 

better agreement with proxy data than the higher latitude location (15-8). This 

is reasonable given that 16-6 is the location that corresponds to the 

palaeogeographic position of Seymour Island with respect to the global 

Maastrichtian palaeogeography (Markwick & Valdes 2004). Whereas 15-8 is a 

similar location given the palaeomagnetic latitude of Seymour Island’s 

sedimentary deposits (Lawver et al. 1992) but will be in a different relative 

palaeogeographic location and circulatory regime in the model. 

 

 

5.6 Summary 

 

The ±18O composition of shells of Lahillia and Cucullaea can be used to produce 

CMMT and WMMT data as well as a measure of the intra-annual seasonality. 

Estimates suggest seasonality of between 2 and 4℃ through the section, with 

the potential for intervals with slightly higher seasonality between 

approximately 930 and 960m in stratigraphy; around the height of the latest 

Maastrichtian C30N to C29R geomagnetic reversal. 

 

Due to the method of collecting seasonality data from shells using clumped 

isotopic data, it is likely that the difference in temperatures found will 

incorporate longer timescale climate variability in addition to seasonal 

behaviour. Data from climate simulations suggests that this variability may be 

larger than the degree of seasonality, depending on the amount of atmospheric 

CO2. This means that the estimates of seasonality produced from shells 

measured several years apart are unlikely to be as reliable as in shells sampled 

continuously across consecutive growth lines. 

 

As only a limited number of shells from the recovery interval of the Lopez de 

Bertodano formation were able to be sampled for seasonality data, it is not 

possible to determine whether there were any changes in seasonal climate 

behaviour in the aftermath of the K-Pg mass extinction. It is possible that the 

amount of seasonality increased as a result of warmer summer temperatures 

while winter temperatures remained similar to Maastrichtian conditions, but 

too few shells were sampled to conclude this definitively. 
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Modelled data appears to be a remarkably good fit to the ±18O derived proxy 

data, provided slightly shallower depth slices (between 30 and 50m) are 

considered compared to the suggested living depth for the infaunal bivalves. 

This does not suggest that the waters were actually these shallow depths in the 

Seymour Island section, but is more likely to be a reflection on the ability of 

the model to accurately represent shallow shelf environments. The fact that a 

general model covering the whole Maastrichtian is capable of producing data 

comparable to geological data recorded over several million years of geological 

time, under different orbital conditions could imply that orbitally driven 

variations in seasonality and temperature are a second order effect compared to 

the strength of the seasonal cycle at this location. 

 

Models 2xCO2 produced the range of WMMT, CMMT and seasonality 

conditions closest to the distribution of ±18O derived proxy data at the water 

depths most similar to the likely shelf environment. This model also produced 

the largest amount of climate variability on timescales longer than annual 

seasonality, giving a good match to the larger-amplitude (i.e. 4 to 6℃), longer 

frequency variability shown in the clumped isotopic data. 

 

The 4xCO2 and 6xCO2 experiments were also capable of producing seasonality 

and temperature data within the range of the proxy data at reasonable, if 

slightly shallower water depths, suggesting that changes in CO2 do not have a 

driving effect on temperature in this location.  
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CHAPTER 6 

6  

SULFATE AND SEASONALITY: 

BIOGEOCHEMICAL CYCLES 

 

 

6.1 Abstract 

 

In addition to ±18O data which have been used to reconstruct past temperature 

conditions in Chapters 3, 4 and 5, bivalve shells can also record ±13C data and 

give information about bottom water productivity and redox conditions.  These 

conditions are themselves affected by seasonal variations, as well as major 

seawater chemistry and biogeochemical cycling. 

 

The late Cretaceous period is likely to have fallen within a period in which marine 

sulfate concentrations were significantly lower than modern oceans.  As sulfate 

has a major controlling effect on sedimentary carbon cycling, particularly the 

processes of methane production and oxidation, lower sulfate levels may have led 

to an increase in sedimentary methane production; the oxidation products of 

which can conceivably be detected in the carbonate carbon and organic carbon 

isotopic records of marine organisms. 

 

Here we present the results of high resolution carbonate-carbon isotope records 

from two species of well-preserved shallow infaunal marine bivalves collected 

from the marine shelf succession across the Cretaceous-Paleogene (K-Pg) 

boundary in Seymour Island, Antarctica.  Shell carbonate-carbon isotope records 

vary widely: at one extreme, shells have unremarkable average values and small 

ranges compatible with a contemporaneous marine dissolved inorganic carbon 

(DIC) source and modern sedimentary carbon cycling. At the other, the shells 

have large-amplitude annual cycles of carbon isotopic variability of up to −23.8‰ 

within a single year of growth and shell carbonate ±13C compositions as negative 

as −34‰. Shells with these increased ranges and unusually negative average 

values are found at discrete intervals within the 3-4 Myr K-Pg boundary sequence 

and are present in both species of bivalve examined. Mass balance calculations 
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suggest that these unusual records can only be explained by enhanced supply of 

sedimentary methane derived DIC. However, a corresponding carbon isotopic 

depletion is not found in the organic carbon isotopic record which remained 

between −26.1 and −21.7‰ throughout the sedimentary sequence, suggesting a 

localized bottom-water signal. We therefore interpret these intervals as periods 

where carbon derived from the oxidation of methane entered the bottom-water 

dissolved inorganic carbon pool. 

 

Based on further mass balance calculations, the contribution of methane required 

to explain the most negative carbonate-carbon isotopic values in the bivalve 

shells is extremely high (between 30 to 85% of bottom-water DIC). The lack of 

authigenic carbonate in the section suggests that methane oxidation progressed 

aerobically. Given the large calculated contribution of methane, this could 

provide a substantial driver for transient bottom water deoxygenation and 

introduce seasonality into the bottom water oxygen budget. The seasonality of 

the carbonate-carbon isotope signal indicates that the system of methane 

production or oxidation must have been sensitive to environmental variables on 

annual time scales. This sensitivity precludes control by methane-hydrates and 

we instead argue that these combined data indicate the shallowing and increased 

importance of methanogenesis in the sediments enabled by lower ocean sulfate 

concentrations in the Late Cretaceous.  The tendency towards a more dynamic 

role for marine methane production and oxidation is likely to apply to other 

times of low marine sulfate in Earth’s history. 

 

 

6.2 Introduction 

 

The sedimentary production and release of methane is largely a function of the 

depth of penetration of various oxidants into marine sediments, of which sulfate 

plays a particularly important role.  Given the importance of sulfate in 

sedimentary biogeochemistry, remarkably little is known of the behavior of the 

marine methane cycle under the lower marine sulfate concentrations that 

dominated the majority of the Phanerozoic (Horita et al. 2002; Holt et al. 2014)  

 

In the modern ocean, sulfate plays a key role in the oxidation of organic carbon 

in ocean sediments via microbial sulfate reduction (MSR), which can account for 

up to ~80% of organic carbon oxidation (Jørgensen & Kasten 2006). Only organic 
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carbon that survives oxidation by MSR to sedimentary depths where sulfate 

concentrations have been reduced to zero is then available for methanogenesis.  

Ocean sulfate concentrations will, therefore, exert a first order control on 

methane production; by affecting both the amount of organic carbon available 

for methanogenesis and the sedimentary depth at which methanogenesis becomes 

the dominant fate for this carbon. 

 

It is therefore reasonable to hypothesize that lower sulfate oceans of the past 

would have been characterized by greater methane production, with 

methanogenesis occurring at shallower depths in the sediment. The result of this 

is likely to be an increased flux of methane across the sediment-water interface 

(Wortmann & Chernyavsky 2007; Wortmann & Paytan 2012), and the potential 

for methane-derived dissolved inorganic carbon (DIC) with a characteristic 

negative ±13C signature in bottom-waters during these times. This DIC signal can 

be preserved in the fossil record by biomineralizing organisms which incorporate 

carbon from the ambient DIC pool into biological compounds such as shell 

carbonate (McConnaughey & Gillikin 2008).  

 

Infaunal bivalves such as Lahillia and Cucullaea examined in this thesis represent 

ideal archives in which to search for the signals of methane oxidation in the 

benthic boundary layer of the water column. The active pumping of water by 

bivalves to supply food particles, oxygen, and ions for biomineralization means 

that the isotope signatures produced in modern shells are dominated by bottom 

water rather than sedimentary signatures (Klein et al. 1996). Some species do 

incorporate a small amount of respired organic carbon into their shell carbonate; 

however, the majority is precipitated from the DIC in inhalant seawater with 

little carbon isotope fractionation (McConnaughey et al. 1997; Poulain et al. 

2010). Even bivalves which derive nutrition from chemosymbiotic methane 

oxidizing bacteria at modern seeps, have shell-carbonate carbon isotope 

compositions dominated by DIC from the ambient seawater, with the main 

isotopic effect of their food source confined to the 13C-depleted signal of their soft 

tissues. (Paull et al. 1989; Fisher 1995). 

 

Some muted indicators of methane production and oxidation have also been 

observed at discrete levels within the Lopez de Bertodano Formation, including 

the appearance of thyasirid, lucinid and solemyid bivalves, which are taxa known 

to host chemosymbiotic bacteria and occur at sites of modern and Cretaceous 

methane seepage (Kauffman et al. 1996). Burrow-filling carbonates can also be 

found concurrent with these bivalve occurrences, and have been found to have 
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distinctly negative carbon isotope compositions (−24 to −58‰, Little et al. 2015). 

However, the López de Bertodano formation lacks the abundant authigenic 

carbonate which characterizes many modern sites of focused marine methane 

seepage, and which can be found in stratigraphically older early Maastrichtian 

sediments on nearby Snow Hill Island (Little et al. 2015).  This makes it an ideal 

location to look for the potential effects of late Cretaceous low marine sulfate 

concentrations on the methane cycle. 

 

Estimates of marine geochemistry from fluid inclusions, proxies and geochemical 

models suggest that the Late Cretaceous is likely to have been characterized by 

ocean sulfate concentrations far lower than modern seawater (29 mM).  Fluid 

inclusions in well-preserved halite have been used to extrapolate sulfate 

concentrations across the Late Cretaceous.  The records closest in time to the 

Maastrichtian are from the Aptian and Albian-Cenomanian (125 to 93.9 Ma); 

spanning a range of 5-16 mM (Lowenstein et al. 2003; Timofeeff et al. 2006), and 

the Eocene and Oligocene (56 to 23 Ma); which spans 14-23 mM (Horita et al. 

2002). Studies of sulfate-sulfur isotopic rate of change during OAE-2 in the 

Cenomanian-Turonian (100.5 to 89.8 Ma) suggest sulfate concentrations of 2-7 

mM (Adams et al. 2010; Owens et al. 2013). Modelling studies using a variety of 

methods also suggest low marine sulfate concentrations for the Maastrichtian 

with estimates of ~5 mM; (Wortmann & Paytan 2012), ~11 mM (Berner 2004) 

and ~15 mM (Demicco et al. 2005). Taken together, these lines of evidence 

strongly suggest that while the exact concentration of sulfate in the Late 

Cretaceous is debatable, concentrations were likely to have been less than half 

that of modern seawater (i.e. less than 14 mM). 

 

 

6.3 Methods 

 

6.3.1 Stable Isotopic Analysis 

 

This chapter focuses on examining the high-resolution ±13C records presented in 

Chapter 3 and Appendix A.  These records were produced by microsampling 

Lahillia and Cucullaea shells (refer to Section 3.4.1 for methodology) and the 
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±13C  data were recorded concurrently with the ±18O records which have been the 

focus of Chapter 3, 4 and 5. 

 

6.3.2 Sedimentary Analysis 

 

A total of 133 samples of bulk sediment from composite section D5.251 were 

analysed for organic carbon isotope content, total organic carbon (TOC) and 

carbonate content.  

 

Samples were prepared by acidification following standard techniques to remove 

all carbonate and non-organic material (Appendix C) and analysed using a 

Micromass Isoprime continuous flow mass spectrometer coupled to a Eurovector 

or Elementar Pyrocube elemental analyser. 13C/12C ratios were calibrated using 

the international standards ANU-sucrose and IAEA-CH7 to the V-PDB scale 

with a precision of better than ±0.25‰ for repeat analysis of standard materials 

during the runs. Calculation of weight percent organic carbon was either derived 

from the mass spectrometer traces or analysed on a LECO elemental analyser, 

and corrected for weight loss during the acidification process. Weight percent 

carbonate was either calculated from weight loss during acidification or from 

analysing total carbon on the LECO and then calculating total inorganic carbon 

(TIC) by deducting TOC. TIC was then converted to weight percent carbonate 

by assuming that it was all present as CaCO3. 

 

 

6.4 Results 

 

The stable isotopic analysis results are presented in Figures 6.1 to 6.3, with the 

raw data in Appendix C.  These data were processed with the d18O data to 

remove obvious outliers (Section 3.5.2). 

 

Oxygen isotopic values in all specimens range from 2.84 to −4.44‰, and were 

used to establish the seasonality of the carbon isotope signals (see Section 3.4.3). 

More negative carbonate-±18O is a common feature of the mid to late portion of 

the growth increment in both species and smooth cuspate trajectories truncated 

against visible major growth lines are distinguishable (Figures 6.1 to 6.3).  
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Carbonate-carbon isotopic records in the nineteen bivalves across both species 

sampled at high resolution range from +6.3 to −34.2‰ (Figure 6.1 to Figure 6.3 

and data in Appendix). Regular patterns of change within growth increments are 

observed with lower carbonate-±13C generally observed in earlier part of the 

growth period and more positive ±13C towards each dark growth ring. The 

average and range of carbonate- ±13C within each shell varies markedly (average 

from +4.2 to −23.8, range from 0.4 to 23.5‰). The shells with the most negative 

mean and the largest ranges of carbonate-carbon isotope composition appear to 

be clustered around particular stratigraphic intervals (notably 930-970 and 1000-

1040m). 

 

Percentages of total organic carbon range between between 0.14 and 0.65% 

throughout the succession (Figure 6.4 and Appendix C) with an average value 

of 0.38 wt%. Organic-carbon ±13C ranges from −21.7 to −26.1‰ with an average 

of −24.8‰ with no clear stratigraphic trend. Weight percent carbonate varies 

between 6.3 and 22.0% with a particularly carbonate-rich horizon at the 

Cretaceous-Paleogene boundary, which is likely to be related to a glauconite rich 

layer at the same position (Zinsmeister 1998).  
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Figure 6.1 A: Stable carbon (black) and oxygen isotope data (red) in specimens of Lahillia 

from the López de Bertodano Formation.  Distance axis begins at an arbitrary point within 

the shell. Vertical gray bars locate positions of annual growth lines.  ±13C data presented to 

the same scale on the top/left axis and an expanded scale (dotted line) on the right axis to 

show lower amplitude trends and variability 
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Figure 6.1 B: Stable carbon (black) and oxygen isotope data (red) in specimens of Lahillia 

from the López de Bertodano Formation.  Distance axis begins at an arbitrary point within 

the shell. Vertical gray bars locate positions of annual growth lines.  ±13C data presented to 

the same scale on the top/left axis and an expanded scale (dotted line) on the right axis to 

show lower amplitude trends and variability 
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Figure 6.2: Stable carbon (black) and oxygen isotope data (red) in specimens of Cucullaea 

from the López de Bertodano Formation.  Distance axis begins at an arbitrary point within 

the shell. Vertical gray bars locate positions of annual growth lines.  ±13C data presented to 

the same scale on the top/left axis and an expanded scale (dotted line) on the right axis to 

show lower amplitude trends and variability 

 

   

 
Figure 6.3: Oxygen isotope graphs (red) with approximate temperature conversions (black) 

in specimens of Cucullaea from the Sobral Formation (A) and Lahillia from the La Meseta 

Formation (B).  Distance axis begins at an arbitrary point within the shell. Vertical gray 

bars locate positions of annual growth lines. ±13C data presented to the same scale on the 

top/left axis and an expanded scale (dotted line) on the right axis to show lower amplitude 

trends and variability 
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Figure 6.4. Compilation of stable isotope and sedimentary data from Seymour Island.  Stratigraphic ranges for selected bivalve species 

including recorded horizons of chemosymbiotic-associated lucinids, thyasirids and solemyids (Little et al. 2015). (A and B) δ18O and δ13C data 

respectively from Lahillia (triangles) and Cucullaea (diamonds), horizontal bars with black markers indicate seasonal range and mean values 

from specimens sampled at high resolution and are not error bars; shaded line in (A) represents the Loess fit through data; shaded field in (B) 

represents the values within the range of expected shell δ13C depletion due to metabolic carbon incorporation; dashed vertical lines represent 

shell δ13C values calculated for normal (10%) and extreme (37%) fractional incorporation.  (C to E) Sedimentary results from composite section 

D5.251; (C) organic carbon δ13C; (D) weight percent total organic; (E) weight percent carbonate. (F) Synchronus marine bulk carbonate δ13C 

values from Voigt et al. (2012); Dinarès-Turell et al. (2014); Thibault et al. (2012). 
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6.5 Discussion 

 

Notable within the shell ±13C data are two interesting trends.  Firstly the 

remarkable variation in ±13C between annual growth lines in several specimens, 

and secondly the apparent clustering of shells displaying this large variation 

within the section.  The origin of each of these apsects of the data set will be 

discussed below. 

 

6.5.1 Origins of the Shell Carbonate ±13C Signal 

 

The carbonate-±13C results at the upper end of the end of our reported range of 

+6.3 to −34.2‰ are typical of modern marine heterotrophic bivalves (Toland et 

al. 2000; Carré et al. 2005; Schöne et al. 2005) whilst the much more negative 

data are difficult to explain under normal marine conditions. We used a simple 

isotopic mass balance (details in supplementary material) incorporating generally 

accepted values for metabolic carbon contribution to bivalve shells (0 to 10%, 

McConnaughey et al. 1997; Poulain et al. 2010), isotope compositions of the 

particulate organic carbon (POC) food source (−28 to −20‰, Mook & Tan 1991), 

and Cretaceous ambient dissolved inorganic carbon (DIC) (0 to +2.5‰, Voigt et 

al. 2012), to identify an expected range of ±13Cshell compositions (+2.5 to −2.8‰) 

for this latitude and geological time period. 

 

Nine of the nineteen bivalves sampled produced several carbonate-±13C values 

significantly more negative than this expected range.  Within this set of nine 

bivalve shells, the mean average shell ±13C ranges from −23.8 to −0.5‰. Large 

seasonal cycles in carbon isotopes are an additional remarkable feature of this 

subset of shells.  As a result of this cyclicity, the range of ±13C data within a 

single shell is also high and varies between 3.3 and 23.5‰ with the most negative 

annual carbonate-±13C compositions occurring at the beginning of each growth 

phase and a gradual return to less negative values throughout each growing 

period.  

 

The remaining ten shells sampled have much more typical ±13C averages of 

between −2.3 and +4.2‰, and while seasonal variability is still present, the range 

of values present within the whole shell is much lower; between 0.4 and 5.8‰.  
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In these shells, there appears to be a slight anticorrelation between ±18O and ±13C  

(i.e. low ±13C and high ±18O at each growth line in comparison to the growing 

increment).  This is typical of a marine productivity signal, where summer 

productivity causes water ±13C to become more positive while warm water 

temperatures produce a more negative ±18O signal (e.g. Toland et al. 2000; Carré 

et al. 2005; Schone et al. 2005).  A few shells record some anomalously high ±13C 

compositions, which may reflect periods of high biological productivity (Alcala´-

Herrera et al. 1992; Gillikin et al. 2006) or local diagenetic effects due to cracks or 

microborings (e.g. Figures 2.15 and 2.16) 

 

Given that preservation tests (Section 2.7) and ±18O observations show that post-

depositional alteration is not a credible explanation for the seasonal ±13C 

variability, we need to consider alternate hypotheses for their origin. Most shell 

carbonate-carbon is derived from bottom water DIC but some metabolic carbon 

can be incorporated from the organism’s POC food source. The isotopic mass 

balance used earlier to distinguish between expected and abnormal shell ±13C 

compositions used an accepted typical value of metabolic carbon contribution, 

although repeating the calculation using the most extreme metabolic 

fractionation factor reported in modern bivalves (37%, Gillikin et al. 2007) still 

only accounts for ±13C more positive than −10.4‰ by incorporation of metabolic 

carbon alone.  Six of the bivalve shells we report gave at least two ±13C 

compositions too negative to have been produced by even this exceptional 

incorporation of metabolic carbon, and the most negative ±13C compositions we 

report are unable to be attained by incorporation of POC with ±13C in the range 

we observe in the sediments. Instead, we suggest that the most likely source of 

the 13C-depleted carbon in the affected bivalve shells is methane-derived carbon, 

since methane can provide a much more negative range of ±13C signatures than 

photosynthetic-derived POC (Whiticar 1999).  

 

The distinct stratigraphic intervals characterized by bivalves with extremely 

negative shell-±13C occur close to, or overlap occurrences of putatively 

chemosymbiotic bivalves (Figure 6.4, Little et al. 2015). This provides further 

support for the idea that the ±13C signals in shells are indicative of an enhanced 

abundance of shallow sedimentary methane.  

 

Observations of bulk sedimentary TOC, organic-±13C, and weight percent 

carbonate from the López de Bertodano formation (Figure 6.4) reveal no 

corresponding negative carbon isotope excursions concurrent with the episodes 
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of extreme carbonate-±13C behaviour. This suggests that the bivalves are 

recording a signal localized in bottom-water DIC without propagation into the 

upper water column.  

 

Shell ±13C values of the magnitude we observe have not been recorded in any 

modern heterotrophic bivalves.  Even chemosymbiotic bivalves from modern and 

ancient methane seep sites show little 13C depletion in their shell material 

(Kauffman et al. 1996; Hein et al. 2006; Lartaud et al. 2010). The most negative 

±13C signatures in seep bivalves appear in their soft tissues, suggesting that in 

modern seep environments the methane signal is typically incorporated from 

metabolic carbon rather than from methane-derived DIC (Paull et al. 1989; 

Fisher 1995).  Comparison of ±18O and ±13C cross plots from a range of modern 

cold seep bivalves (Figure 6.5) also show differences in the behaviour recorded 

by many of Seymour Island’s bivalves, suggesting a different environment and 

scheme for methane release.
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Figure 6.5: Bulk and average shell carbon-oxygen stable isotope cross-plot of ±18O and ±13C produced by this study (red) from Lahillia (triangles) 

and Cucullaea (diamonds).  Horizontal bars with filled markers represent the mean and range of microsampled data points produced within one 

shell.  Hollow markers represent bulk data from a single shell.  This data is compared to modern bivalves from cold seeps (black circles, Lartaud 

et al. 2010) and modern marine heterotrophs (grey circles with range bars, Krantz et al. 1987; Toland et al. 2000).  ±18O data from this study 

have been shifted by +1.2‰ to account for the difference beteen modern seawater (0‰) and Cretaceous conditions (taken as –1.2‰).  This shows 

that some of Seymour Island’s bivalves display a similar isotopic pattern to normal marine bivalves, however the ±18O suggests temperatures far 

warmer than  most modern cold seep environments.
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6.5.2 Extreme Seasonality in bottom water DIC-±13C 

 

One of the most remarkable features of the shell-carbonate data is the magnitude 

of the seasonal fluctuations in ±13C, which reflect a similar variability in the 

bottom water DIC. Seasonal ±13C variability of DIC may be introduced by 

variation of the ±13C of the methane itself, or by seasonal modulation of the rate 

of methane production or methane release. Winter ±13C depletion of up to 10‰ 

has been observed in biogenic methane from marine sediments (Martens et al. 

1986), but this is insufficient to explain the seasonal variations reported here, 

which can be as great as 23.5‰, even within the truncated period of spring-

summer shell growth.  

 

Since variability of methane ±13C is unlikely to fully explain the observed signals, 

we consider mechanisms by which methane flux may be pulsed annually. Annual 

temperature changes are known to trigger seasonal methane release from 

methane hydrates in modern high latitude marine settings (Berndt et al. 2014). 

However, the sedimentology and faunal assemblage of the López de Bertodano 

Formation suggest a continental shelf setting with water depths of between 

70−200m (Macellari 1988; Crame et al. 2004). Under these conditions, sea-bed 

hydrates would only have been stable at mean-annual temperatures lower than 

−2℃ (Kvenvolden 1993). This is far lower than the existing temperature 

estimates from this region (Kemp et al. 2014) or the temperatures derived from 

the carbonate-±18O data reported here (19.0 to 5.1℃, see Chapter 4 and 5).  

 

Recent work covering the same latest Cretaceous to Paleogene interval of the 

Lopez de Bertodano Formation (Petersen et al. 2016) has given evidence for 

cooler temperatures than produced by this study.  Further one-dimensional 

sedimentary geotherm modelling (Appendix C) was carried out to determine 

whether the lower temperature estimates produced by the clumped isotope proxy 

would have been sufficient to allow sedimentary hydrate formation.  The results 

of this investigation (Appendix C) show that even at the lowest temperatures 

recorded by Lahillia and Cucullaea of −0.2℃ no hydrate formation could be 

replicated at depths which could realistically be affected by seasonal variations 

in temperature and pressure.  From this we can conclude that hydrates were not 

likely to have been involved in the seasonality of the methane signal. 
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In addition, the stratigraphic occurrences of the putatively chemosymbiotic fauna 

(Figure 6.4) occur in multiple section lines spaced between 2-6 km apart. 

Specimens displaying the unusually negative carbon isotopic compositions and 

large seasonal variability are also sourced from both sections. The spatial 

distribution of these methane-related signals across several kilometres of the shelf 

environment also favors a mechanism generated by a wider change in sediment 

biogeochemistry rather than a localized occurrence of focused gas seepage.  We 

conclude that the bivalve shells are most likely recording a direct signal of 

enhanced springtime methane input to bottom-water DIC directly from the 

sediment. 

 

This bottom-water DIC signal must be due to some combination of methane 

production or release and eventual oxidation to DIC, but the seasonality is likely 

to have been driven by factors other than temperature, as there is no observable 

correlation between temperature and these signals (Figure 6.5).   Modern areas 

of prolific seasonal methane production and release tend to occur in shallow 

waters such as swamps and marginal marine sites with extremely high organic 

carbon sedimentation, many of which also have sulfate concentrations lower than 

marine environments (Crill & Martens 1983; Van der Nat & Middelburg 2000; 

Zhang et al. 2008). However, to find evidence for seasonal methane release in a 

high-biodiversity fully marine environment with relatively low sedimentary TOC 

is extremely unusual. 

 

Annually variable marine methane production could be controlled by organic 

matter supply or temperature variation; high latitude vegetated continents with 

temperate summer climates are likely to have experienced a spring pulse of runoff 

into coastal waters prompting an initial spring bloom and subsequent increase in 

organic matter delivery to the sediment. Whether these or the associated 

temperature changes could propagate into the sediment sufficiently quickly to 

produce an effect on methane production is debatable.  The ability for such a 

signal to be transported fast enough into sediment without being smeared out 

requires consideration.  The presence of anticorrelated seasonal ±18O and ±13C 

patterns in some specimens that do not show methane signals (Figures 6.1 to 

6.3) could be the result of a marine productivity signal, which does indicate that 

seasonal changes in productivity are able to propagate to bottom-water depths.  

This could be investigated further using trace elemental analysis such as Ba/Ca 

or Mo/Ca, which have been used as indicators of palaeoproductivity in bivalve 

shell material (e.g. Gillikin et al. 2008; ThÉbault et al. 2009; Barats et al. 2010; 

Goodwin et al. 2013). 
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An alternative to a seasonal control on the production of marine methane would 

be a seasonal modulation of its release and oxidation by some physical 

disturbance, perhaps by changing storm frequency. Whilst it is unfortunately not 

possible to distinguish between these mechanisms with the available data, a low 

sulfate ocean and shallowing of the methanogenic zone would make all 

mechanisms more conceivable by bringing methanogenesis and its products closer 

to the influence of processes operating at the sediment-water interface. 

 

6.5.3 Contribution of methane to bottom water DIC 

 

Extending the mass balance approach introduced earlier allows us to produce an 

estimate of the amount of methane-derived carbon required to produce shell 

carbonate signals as depleted as we observe here. A similar mass balance equation 

(below) was used to determine the amount of methane derived DIC required to 

produce the bottom-water DIC signal we infer from our ±13Cshell data. Using 

typical ±13C for biogenic methane of −50 to −110‰ (Whiticar 1999), these 

calculations suggest that between 30−85% methane derived DIC is required to 

account for the most extreme negative shell values. Further details and results 

tables for all calculations are available in the supplementary material (Tables S1-

S3).  

 

δ13
Cbottom water DIC= F δ13

Cmethane-derived DIC +(1-F)δ13
Coceanic DIC  

 

The strength of the isotopic signals is consistent with our original hypothesis that 

the low-sulfate conditions of the Cretaceous-Paleocene allowed for a greatly 

increased flux of methane-derived DIC to bottom-waters. A conceptual model of 

the normal modern and hypothetical low-sulfate conditions is proposed in Figure 

6.6. The inferred isotopically depleted carbon in bottom-water DIC recorded by 

the bivalve shells is likely to result from some combination of enhanced methane 

production or release, and its oxidation to bottom-water DIC, but it would be 

challenging to decouple these effects. 
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Figure 6.6. Conceptual model of sedimentary carbon cycle under high and low sulfate conditions.  Showing fluxes of POC (red), DIC (blue) 

and methane (green) under (A) modern high sulfate conditions (B) Cretaceous lower sulfate conditions. Thickness of arrows represents relative 

strength of flux to each reservoir (not to scale). Depth scales are arbitrary; bottom-water reservoir refers to the benthic boundary layer 

sampled by bivalves and is likely to be only 5-10cm in depth. The depth to the sulfate reduction zone is variable in modern marine sediments 

depending on factors such as porewater flow and bioturbation. The proportion of pore water DIC that diffuses into bottom water versus burial 

as authigenic carbonate is unknown, but likely to relate to depth of DIC production, and pore fluid flux from the sediment to bottom water, 

thus is likely to be faster in low sulfate systems. No significant accumulations of authigenic carbonate have been found at horizons where we 

see evidence for increased methane flux to bottom-water DIC 
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In the modern ocean the vast majority of methane produced in sediment is 

oxidized anaerobically by sulfate (sulfate driven AOM, Reeburgh 2007). 

Although we calculate a large contribution of oxidised methane to bottom-water 

DIC, it would be challenging to determine the proportion of this methane-derived 

DIC produced by AOM versus aerobic oxidation of methane. It has also recently 

been shown that AOM can be facilitated by other electron acceptors such as iron 

(e.g. Scheller et al, 2011; Ettwig et al, 2016) further complicating the issue. We 

can reason that AOM yields only small amounts of energy when compared to 

bacterial processes fuelled by other electron acceptors (Dale et al. 2006), and in 

a lower sulfate ocean the shallowing of methane production will bring reactive 

sedimentary organic matter into competition with methane as a substrate, 

making it likely that the AOM community would be become outcompeted or 

marginalized. Alternatively, we could argue that this shallowing of production 

will bring methane into contact with a greater supply of reactive iron oxides 

making iron-driven AOM more likely in a low sulfate ocean. The lack of 

significant authigenic carbonate throughout the López de Bertodano formation 

perhaps supports a reduced or minor role for either variety of AOM in total 

methane oxidation since AOM promotes authigenic carbonate precipitation 

whilst aerobic oxidation does not (Reeburgh 2007). If most of the oxidation is 

being driven by oxygen, then the large proportion of methane derived DIC we 

calculate has significant implications for the bottom water oxygen budget, and 

may indicate that low sulfate conditions indirectly provide a substantial driver 

for bottom water de-oxygenation. Clearly the continued presence of a diverse 

benthic fauna throughout the Lopez de Bertodano Formation limits the 

significance of this process in our study section over long time scales, but is 

consistent with the presence of indications of transient sedimentary anoxia from 

geochemical proxies (Witts et al. 2016; Schoepfer et al. 2017). 

 

The episodic nature of seasonal methane release throughout the stratigraphic 

section is difficult to explain, as an increased methane flux due to a low sulfate 

biogeochemical regime might be expected to operate throughout the whole mid-

Cretaceous to Eocene low-sulfate interval. It is possible that the onset of 

increased methane flux to DIC may have been influenced by a period of local 

climate warming observed through the very latest Maastrichtian of this section 

(Tobin et al. 2012; Bowman et al. 2013; Kemp et al. 2014; Petersen et al. 2016). 

Periods of elevated sedimentation rate could also increase pore fluid flux; recent 

studies of modern passive margins (Prouty et al. 2016) suggest that high 

sedimentation rates, such as those present in the Cretaceous-Paleocene James 

Ross Basin (up to 0.1–0.2 mm/yr), may enhance pore space compaction and 
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allow more methane or methane derived DIC to be expelled from sediments. It 

is also possible that the system in this location is sensitive enough that small 

changes in the regional sulfate concentration of the ocean may have been enough 

to drive the change in regime seen here. The development of regional differences 

in sulfate sulfur isotope composition, with implied spatial differences in sulfate 

concentration have been indicated for time intervals in the Cretaceous (Owens 

et al. 2013) and early Jurassic (Newton et al. 2011). 

  

Given the prevalence of low sulfate conditions through the Phanerozoic, the 

question arises as to why similar extreme shell carbon values have not been 

documented in previous studies. It is likely that there will have been a tendency 

to discount unusual isotopic signals from single analyses of bulk shell material as 

the result of poor preservation, preparation or a productivity signal (Lartaud et 

al. 2010; Tobin & Ward 2015), especially if, as is seen here, the signals are 

sporadic in nature and only present in a subset of shells analyzed. Indeed, 

similarly negative ±13C data have been reported from the bulk shell carbonate of 

a number of ammonites, gastropods, and calcitic and aragonitic bivalves from 

Seymour Island and dismissed as sample preparation error (Tobin & Ward 2015). 

Our method of micro-analysis lends confidence to the primary nature of the 

signals and allows the repetitive seasonal patterns within shells to be identified, 

discriminating between our proposed mechanism and others involving hydrate 

dissociation. This approach is rarely used for fossil shell material, but may be 

required in order to detect the extreme seasonal signals which we have used in 

our calculations to provide diagnostic indicators of methanogenic input to bottom 

water DIC. 

 

 

6.6 Conclusions 

 

These isotopic records from latest Cretaceous−early Paleocene bivalves from 

Antarctica represent the first time that negative carbon isotope signals of this 

nature have been documented in the fossil record and resolved on a sub-annual 

scale, revealing both their seasonal and stratigraphically-pulsed characteristics. 

The shell carbonate-carbon signals are likely to be reflective of localized DIC 

composition, with extreme springtime carbon isotope depletion suggesting a very 

large contribution to bottom-water DIC by methane oxidation products. Bulk 

sediment organic-carbon isotopes indicate that the influence of this process did 

not extend to the upper water column. The presence of pronounced annual 
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cyclicity suggests intervals of strong environmental control on the flux of 

methane derived carbon to the bottom-water DIC pool. A methane hydrate 

mechanism appears unlikely at the temperatures and water depths indicated for 

this site, so the signal must be due to some combination of enhanced methane 

production or release and its subsequent oxidation, facilitated by the low sulfate 

concentrations of the Cretaceous-Paleocene ocean and the shallowing of the 

methanogenic zone. The lack of substantial authigenic carbonate supports an 

aerobic oxidation pathway for the methane and if correct this has significant 

implications for bottom water oxygen budgets. If low sulfate is indeed the driver 

for these unusual isotopic records then similar seasonal signals in shell carbonate 

are likely to be present in other low sulfate intervals of the Phanerozoic, and 

signify a fundamental difference in marine sedimentary carbon cycling.  
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CHAPTER 7 

7  

 

DISCUSSION AND CONCLUSIONS 

 

 

This chapter will bring together and discuss the main findings of each of the 

preceding data-focused chapters and integrate the data and conclusions with 

existing evidence for environmental change over the K-Pg mass extinction 

interval. 

 

The overall aims of this thesis can be expressed in terms of the following research 

questions: 

 

 

• What were the climate conditions of the marine environment in the James 

Ross Basin during the late Maastrichtian and early Paleogene; how 

seasonal and climatologically variable was it and what were the likely 

drivers of variability? What is the potential for seasonal bias in 

temperature proxies at high latitude? 

• Can high resolution stable carbon and oxygen isotopic data be used to 

detect changes in biogeochemical cycling throughout this time period? 

• How do global patterns of seasonality from climate models and data 

throughout the Maastrichtian compare to the data from Seymour Island? 

• How did infaunal bivalves respond to climate variability, seasonality and 

environmental changes in the lead up to and during the aftermath of the 

K-Pg mass extinction? 
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7.1 Climate and Palaeoenvironment of the James Ross 

Basin 

 

7.1.1 Evidence for Seasonal Bias 

 

The potential for seasonal bias in high latitude proxies for temperature has been 

long recognised (Goodwin et al. 2003; Herman & Spicer 2010). Data produced 

here in Chapters 4 and 5 show that the bivalve data does indeed show a warm 

temperature and warm season bias due to shell growth occurring mainly in spring 

and summer. Use of summer and winter temperatures derived from bivalve shells 

was considered to be more accurate than a mean annual temperature for 

comparison with model data. 

 

 

7.1.1 Mean State Climate Conditions 

 

Shell data (presented in Chapter 4 and 5) allowed estimates of climate conditions 

from ±18O incorporating the potential for ranges of water ±18O predicted from 

model simulations and clumped isotope data. A summary figure of these results 

through stratigraphy is presented below (Figure 7.1) with additional temperature 

proxy data from Seymour Island.  
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Figure 7.1: Palaeotemperatures in the latest Maastrichtian and early Paleocene recorded 

through multiple proxies. Box plots of temperature data produced from ∆47, and high and low 

estimate conversions of cool month mean temperature (CMMT) and warm month mean 

temperature (WMMT) from ±18O separated into 50 m stratigraphic intervals (M3 to D1) 

compared to temperature estimates from MBT’/CBT in soil bacteria (yellow) and Palaeofloral 

(green) analysis. This figure shows that ±18O-derived marine temperatures were within the 

range of 5 to 15℃ during the winter and may have reached as high as 18 to 25℃ during 

summers. This range has good agreement to broad continental temperatures from fossil plants 

and soil algae. 
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Belemnites collected from approximately 580m below the K-Pg boundary at the 

López de Bertodano belemnite horizon record rostrum growth at temperatures 

between 4 and 10℃ and mean annual temperature ranges between 2 and 6℃ 

(Dutton et al. 2007).  This temperature growth range is slightly lower than 

bivalve ±18O estimates from higher up in stratigraphy presented in this study but 

in line with some of the clumped isotope estimates (Larkin 2014; Petersen et al. 

2016). However, belemnites live in deeper waters than bivalves, so tend to record 

a slightly different water temperature signal, around 1 to 2℃ cooler than bivalves 

from the same location (Anderson et al. 1994). When this difference is accounted 

for, belemnite temperatures are very similar to those predicted by both stable 

and clumped isotopes, and as no belemnites have been found from the very latest 

Maastrichtian they cannot be used to look for evidence of freshwater input or 

cooler annual temperatures during this interval. 

 

Palynological data provides an alternative source of climate information, and one 

that is not affected by marine ±18O. The palynological climate interpretation 

(Bowman et al. 2013, 2014) suggests warming through the latest Maastrichtian 

which is not convincingly found in either the ±18O or ∆47 temperature records. 

This may be due to the bivalves recording temperatures from more thermally 

insulated deeper water conditions than the dinoflagellates and pollen that the 

palynological temperature record is based on. The fall in temperatures following 

the K-Pg mass extinction is, however, found in the ±18O and palynological 

interpretation, and to some extent in the ∆47 record which supports the 

conclusion that climate cooling occurred just after the K-Pg boundary. 

 

The palynological data, in particular the Impletosphaeridium clavus 

dinoflagellate record, have also been used as a proxy for the presence of sea ice 

as well as temperature records according to Bowman et al. (2012). These records 

suggest sea ice may have been present during the cooler periods of the late 

Maastrichtian, with coldest events recorded at around 650 and 740 m in the 

section. This is in contrast with the ∆47 record, which indicates the lowest 

temperatures and most depleted freshwater input to seawater occurred during 

the latest Maastrichtian, with warmer temperatures below the 900m level in 

stratigraphy.  

 

In addition to these marine proxy data sources, two terrestrial climate data sets 

have also been produced using sedimentary deposits from Seymour Island (Figure 

7.1). Temperature estimates from palaeofloral analyses of plant material from 
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the Maastrichtian Lopez de Bertodano Formation suggest mean annual 

temperatures of 11.1 to 18.1℃ and cool month mean temperature (CMMT) of 

8.2℃ and estimates of warm month mean temperature (WMMT) between 18.5 

and 25℃ (Poole et al. 2005). The MBT’/CBT thermometer has also been used 

to reconstruct terrestrial mean annual temperatures using membrane lipids from 

soil bacteria and produces temperature estimates of 12℃, although the error bars 

are large with uncertainty of +/- 5℃ (Kemp et al. 2014).  

 

These proxies both give estimate of terrestrial air temperatures and the averages 

are often comparable with shallow-water annual temperatures recorded by 

bivalves (e.g. Figure 4.1 and Keating-Bitonti et al. 2011). Modelled mean annual 

terrestrial temperatures are similar to mean annual marine temperatures (Figure 

4.22), although the seasonal CMMT and WMMT are likely to be more extreme 

in terrestrial proxies than the marine record due to the higher thermal capacity 

of water compared to air.  

 

Overall, the bivalve ±18O and some ∆47 records, in addition to other proxy data 

suggest that Maastrichtian climates on Seymour Island were fairly stable with 

little variation at seafloor depths. There may have been some cooling and 

freshwater input during the very latest Maastrichtian interval, which is 

supported by the ±18O-enabled models, or it is possible that other effects (such 

as anticlumping, which will be discussed below) were influencing the equilibrium 

of the clumped isotope proxy record. 

 

Data examined in Chapters 4 and 5 showed that temperatures from ±18O are 

likely to have been affected by the ±18O composition of the water. However, the 

clumped isotope proxy, which was hoped could be used to determine the seawater 

±18O, appeared to produce inaccurate results at stratigraphic heights above 900m 

(Figure 7.2). Clumped isotope-derived temperatures above this height are 

consistently lower than both models and proxies suggest. This may be linked to 

the domination of marine dissolved inorganic carbon (DIC) by methane-derived 

carbon which begins at approximately 930m in stratigraphy; roughly the level of 

the C30N to C29R reversal and continues through into the Danian.  
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Figure 7.2: Stratigraphic summary of bivalve shell data from Seymour Island. Comparing trends in temperature from (A) correlated measured 

sections (this study; chapter 4 see discussion for Figures 4.22 and 5.3, with additional data from Tobin et al 2012 and Lakin 2013), (B) spot 

collected specimens (data from Petersen et al 2016, see discussion for Figure 4.22) and (C) ±13C (this study; Chapter 6, see discussion for Figure 

6.4). Green shading represents intervals with likely methane influence. Light grey dashed lines represent informal stratigraphic intervals with a 

spacing of approximately 50m. These are used for comparison with growth trends presented in Section 3.5.4.

A B C 
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Microbial methanogenesis has been found to cause anti-clumping in the methane 

products; i.e. the production of clumped isotope signatures corresponding to 

lower temperatures than the true formation temperature of the compound (Wang 

et al. 2015). Calculations in Chapter 6 show that during certain stratigraphic 

intervals, the majority of DIC incorporated into bivalve shells was derived from 

the products of methane oxidation. If correct, this implies that the bivalve shells 

will incorporate an anti-clumped signature from the methane-derived DIC, and 

therefore the temperatures and water ±18O composition data produced using this 

∆47 data will not reflect the growing conditions of the shell. Anti-clumping is a 

relatively novel observation, and the exact impact of processes such as 

methanogenesis on the clumped isotopic thermometer is not well defined, and 

due to the periodic nature of the methane-related signal throughout the section, 

it is possible that not all shells within the section will have been affected by 

methane. 

 

The ±18O data is not likely to have been affected by increased methane input to 

the water column, which affects DIC rather than carbonate ions. Therefore, the 

±18O data is likely to produce the best estimates of temperature, in spite of the 

large error bars due to uncertainty in water ±18O, which was determined to have 

a likely composition between −1 and −2‰, in contrast to the constant value of 

−1.2 ‰ assumed in ice free conditions (Zachos et al. 2001). This translates to a 

temperature error of approximately ±2℃ and a potential seasonal error of up to 

4℃, which will be discussed in Section 7.1.3. 

 

To summarise the most likely mean state climate conditions experienced in the 

marine Seymour Island section, the late Maastrichtian pre-extinction period 

appears to have been stable and reasonably uniform throughout with mean 

annual temperatures of approximately 10℃ ±5 recorded in bivalves from bulk 

d18O data. This temperature range is in agreement with ∆47-derived 

temperatures below the 900 m level of the section (M3-M5; Figure 7.2 C and M3; 

Figure 7.1) which also average around 10℃ ±5. However, above this stratigraphic 

height, the effects of methane incorporation into shells can be seen in the ±13C 

record (M2-D1; Figure 7.2 C) and the clumped isotopic record cannot be 

considered to be reliable. Terrestrial temperature unaffected by water ±18O 

estimates are in agreement with the range of ±18O and reliable clumped isotope 

data produced from marine bivalve shells (Figure 7.1). The synthesis of this 

proxy data concludes that there is no evidence for direct ice influence or water 

±18O compositions more negative than the −1 to −2‰ range considered here. 
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7.1.2 Evidence for Climate Variability and Seasonality: 

 

Data presented in Chapter 5 show that microsampled ±18O data can be used to 

produce estimates of annual seasonality between adjacent years of bivalve shell 

growth while the method used by Petersen et al 2016 of comparing samples from 

the umbo and back of the valve is more likely to produce estimates of longer 

timescale climate variability. Additional data from models presented in chapter 

5 suggest that this climate variability is likely to be dependent on CO2, with 

lower CO2 atmospheres producing more inter-annual variability than higher CO2 

conditions. This has been discussed fully in Section 5.4.3. 

 

A comparison of seasonal data from proxies through the section shows that there 

is little correlation between the amount of intra-annual seasonality (from 

consecutive-year ±18O seasonality data presented in Chapter 5) and inter-annual 

variation (from comparison of umbonal and shell-back ±18O and ∆47 temperatures 

Petersen et al. 2016). The amount of variability in water ±18O compositions 

predicted from clumped isotopic data (Figure 7.3 D) is also unreasonably large 

compared to model simulations which typically show between 0.1 and 0.2‰ in 

water column simulations (Figures 4.14 to 4.15). The variability and water ±18O 

data is likely to have been affected by the cold-temperature bias in the clumped 

isotopic data discussed in Section 7.1.2. 
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Figure 7.3: Summary figure of shell-derived seasonality and climate variability data (A-C), reported water ± 18O variability (D) and shell ±13C 

variability (E) with dark green shading across all panels to indicate periods of potential methane influence. This shows the difference between 

intra-annual seasonality, which tends to be approximately 2 to 3℃ (A) and inter-annual variability of between 3 and 6℃ (B and C). 
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7.2 Biogeochemical Cycling 

 

Use of bivalve shell data to give information about biogeochemical cycles was 

prompted by the growing number of studies suggesting that sulfate 

concentrations were much lower across the Cretaceous to Paleogene interval than 

in modern environments (Reeburgh 2007). Methane production and oxidation in 

particular are controlled by sulfate in modern oceans. Lower sulfate 

concentrations may have permitted a stronger and more active methane cycle, 

the products of which may be recorded in shells. The Seymour Island section is 

known to have some evidence for local methane release in the form of putatively 

chemosymbiotic thyasirid, lucinid and solemyid bivalves (Little et al. 2015) but 

the López de Bertodano formation lacks the abundant authigenic carbonate 

found in stratigraphically older early Maastrichtian units (Little et al. 2015). 

 

The data presented in Chapter 6 showed that sub-annual resolution ±18O and 

±13C data can be produced from Lahillia and Cucullaea to give information about 

biogeochemical cycling on seasonal and geological timescales. The ±13C data were 

determined to most likely be reflective of localised DIC composition rather than 

caused by metabolic or vital effects in the bivalves, which allowed the data 

produced from their shells to be used as a proxy for water geochemistry. 

 

Shell-derived ±13C data showed evidence of periods in which methane oxidation 

products contributed large amounts of DIC to bottom-waters while bulk 

sediment organic-carbon isotopes indicated that the influence of this process did 

not extend to the upper water column. These isotopic records represent the first 

time that negative carbon isotope signals diagnostic of methane release have been 

documented in the fossil record and resolved sub-annually, revealing both their 

seasonal and stratigraphically-pulsed characteristics and the scale of their 

influence.  

 

This approach would not have been possible without the use of the high 

resolution microsampling method. Taking only a bulk shell composition resulted 

in a ±13C signal that was averaged across multiple years of shell growth producing 

values that could not be diagnostically linked to methane (Figure 6.4). Indeed, 

several existing bulk shell data sets from the Seymour Island section have 

reported negative but not diagnostically methane-influenced ±13C data and 

accredited it to sample preparation error (e.g. Tobin & Ward 2015; Petersen et 

al. 2016). 
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The incorporation of temperature data from shell ±18O discussed in Chapters 3 

and 4 and the addition of sedimentary geothermal modelling results in Chapter 

6 allowed a methane hydrate mechanism to be ruled out for the depths and 

pressures suggested for deposition in the James Ross Basin (Macellari 1988; 

Crame et al. 2004). A more likely mechanism to produce the seasonal methane-

influenced signal in bivalve shells was a combination of enhanced methane 

production or release and its subsequent oxidation. This mechanism was likely 

to have been facilitated by the low sulfate concentrations of the Cretaceous-

Paleocene ocean (Schoepfer et al. 2017). However, as methane signals are only 

present during certain stratigraphic horizons, it is possible that the sediment 

system in the Seymour Island region was sensitive enough that small changes in 

sulfate concentration (e.g. Newton et al. 2011; Owens et al. 2013), organic matter 

or sedimentary supply may have been enough to drive changes in sedimentary 

methane production or release. 

 

The potential for large amounts of methane-derived DIC in bottom waters 

provides information about the geochemical processes in the James Ross Basin. 

This observation also reveals anticlumping introduced from methane-derived 

DIC used to mineralise shells as a potential mechanism for the large difference 

between the clumped isotopic record and other temperature proxies from the 

immediate pre- and post- extinction interval on Seymour Island, as discussed in 

Section 7.1.2.  

 

The lack of substantial authigenic carbonate in the Lopez de Bertodano 

Formation supports an aerobic oxidation pathway for the methane which would 

have significant implications for bottom water oxygen budgets. Despite this 

assumption that the Lopez de Bertodano Formation was deposited in a fully 

oxygenated setting, studies of the size range of pyrite framboids provide some 

evidence for short-term redox fluctuations throughout the section (Witts et al. 

2016; Schoepfer et al. 2017), which may be linked to the oxidation of methane. 
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Figure 7.4: Framboid size distribution plot for samples from the Lopez de 

Bertodano Formation. Symbols represent samples from each stratigraphic 

height as shown in the column on the right. Dotted line separates redox 

conditions based on modern calibration (Wilkin et al. 1996). The position of 

samples on both sides of the line from intermittent stratigraphic heights 

indicates rapid fluctuations of redox conditions throughout the section rather 

than in one consistent part of the section. (Figure modified from Witts et al 

2016). 

 

Dysoxia in sediments is an environmental stressor for infaunal benthic organisms 

that are unable to migrate from the affected area. This may have controlled early 

Maastrichtian diversity, with evidence for recurrence throughout the section 

(Witts et al. 2016). In bivalves, dysoxia can also reduce individual feeding rates 

(Sagasti et al. 2001; Riedel et al. 2014) and antipredator responses (Wang et al. 

2010, Riedel et al 2014), the potential effects of which will be discussed in Section 

7.4. 

 

Estimates of marine seawater sulfate concentrations are variable, but proxy data 

(e.g. Lowenstein et al. 2003; Timofeeff et al. 2006, Horita et al. 2002, Adams et 

al. 2010; Owens et al. 2013) and geochemical models (e.g. Berner 2004; Demicco 

et al. 2005; Wortmann & Paytan 2012) suggest sulfate concentrations were likely 

to have been approximately half of modern seawater (i.e. 28 mmol/kg), and 

potentially lower during the interval covered by the Seymour Island section 

(Figure 7.5). There are no indications that Seymour Island was a particularly 
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singular environment; sedimentation rates of 0.01 to 0.02cm/a (Tobin et al. 2012) 

are high compared to modern marine shelf deposits, but not unusually so (Ibach 

1982). Therefore, if low sulfate is indeed the driver for these unusual isotopic 

records then similar seasonal signals in shell carbonate are likely to have been 

present during many other periods of the Phanerozoic with lower than modern 

marine sulfate (Figure 7.5).  

 

 
 
Figure 7.5: Phanerozoic variation in concentrations of marine Ca2+ and 

SO4
2+ estimated from fluid inclusions in marine halite (vertical bars) and 

geochemical models (curves), highlighting conditions around the time 

interval covered by this study (red vertical line). Many intervals of the 

Phanerozoic have SO4
2+ concentrations lower than during the K-Pg boundary 

interval and may show undiscovered evidence for similar biogeochemical 

processes. Figure from Holt et al. (2014). 

 

 

7.3 Global Climate Context 

 

As the use of models was important for the interpretation of the data in Chapters 

4 and 5, it is useful to test the model performance, particularly with regards to 

seasonality of temperatures. The new model and proxy data produced in this 

study were tested by comparison with a database of global seasonal and mean 
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annual temperature proxies from the Maastrichtian which is available in 

Appendix D. 

 

7.3.1 Records of Global Temperature and Seasonality 

 

Seasonality is hard to quantify in deep time as it relies on the ability to discern 

sub-annual variations. Some proxy systems do provide estimates of seasonal 

(winter and summer) temperature range, such as leaf margin analysis (LMA) 

and climate leaf analysis multivariate program (CLAMP) (Wolfe 1993, 1995; 

Spicer et al. 2004; Royer 2012). Some sources provide; for example, warm month 

temperatures, such as paleosol carbonate nodules (Passey 2012) crocodilian and 

plant assemblage distributions (Greenwood & Wing 1995; Markwick 1998; 

Eldrett et al. 2009). These proxies tend to be limited to the terrestrial realm; in 

marine systems seasonal data can be obtained by high-resolution sampling across 

annual growth in marine organisms, such as the approach taken with bivalves in 

this study, or from the temperature range gathered from organisms that grow 

during a short window of time, such as fish tooth enamel, each of which grows 

over several weeks to months depending on species (Pucéat et al. 2007). 

 

This study collates and expands upon a number of previous global databases 

(Goswami 2012; Upchurch et al. 2015) focused on quantitative indicators of 

Maastrichtian mean annual and seasonal temperatures from marine and 

terrestrial realms (Figure 7.6). Marine temperatures were based on sedimentary 

TEX 86 and ±18O of well-preserved skeletal carbonate from molluscs, belemnites 

and brachiopods. A limited number of data points from foraminifera with very 

good preservation were included from data-sparse latitudes (Upchurch et al. 

2015) but foraminiferal data were generally excluded due to issues with 

preservation (e.g. Bernard et al. 2017). Terrestrial seasonal temperatures were 

based on plant macrofossils, with additional mean annual temperature estimates 

from ±18O of vertebrate tooth enamel and pedogenic carbonate. Palaeobotanical 

temperatures are based on multiple calibration techniques including LMA, digital 

leaf physiognomy and CLAMP. 

 

Where appropriate, the temperature calibration was re-calculated to standardise 

all data sets and allow for more reliable comparisons between similar data. 

Aragonitic shell data was recalibrated to Grossman & Ku (1986), calcitic shell 

data was recalibrated to Kim & O’Neil (1997). Two calibrations exist for fish 

tooth data, in this case both calibrations have been used to account for a range 
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of seawater ±18O compositions (Pucéat et al. 2007). TEX used the H calibration 

which has been widely viewed as the most appropriate for greenhouse climates 

(Kim et al. 2010; Hollis et al. 2012). 

 

 
 
Figure 7.6: Mean annual temperature data for the Maastrichtian from 

different source organisms and proxies by palaeolatitude. See Appendix D 

for data sources 

 

 

Mean annual temperature data from a range of sources for the Maastrichtian is 

presented in Figures 7.6 and 7.7. There is little difference between mean annual 

temperature trends from terrestrial and marine proxies at most latitudes, 

although there is a potential increase in terrestrial MAT recorded in the high 

northern latitudes (Figure 7.7). This is in line with observations of modern 

marine and air temperature trends (e.g. Figure 4.1) and supports the assumptions 

used in Section 7.1.2 for comparisons of Seymour Island’s bivalve data with floral 

temperature proxies. 
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7.3.2 HadCM3L Simulations of Global Temperatures 

 

Global temperature data from model experiments presented in Chapters 4 and 5 

show a number of similarities with the proxy data, including an equatorial 

temperature peak of around 30 to 35℃ and a smooth latitudinal temperature 

gradient to approximately 8 to 12℃ at 60°N and 60°S. Mean annual 

temperatures show little variation over surface water depths between 5 and 100m 

(Figure 7.8) and are not particularly dependent on CO2 concentrations, with only 

the equatorial latitudes showing a small increase in MAT at experiments with 

4x and 6x CO2 compared to 2x CO2 experiments (different coloured curves in 

Figure 7.8). 

 

The lack of any significant change in modelled temperature under a range of 

different atmospheric CO2 concentrations is in contrast to recent studies which 

suggest the CO2 produced by the Deccan Traps was a driver of significant high 

latitude climate change during Chron 29R (Petersen et al. 2016). Data presented 

here do not produce any evidence, for either the significant warming reported, or 

the potential for any significant CO2 driven warming at these latitudes.  
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Figure 7.7: Mean annual temperature data for the Maastrichtian from 

shallow marine (blue) and terrestrial (green) proxy data with the 

error bars associated with each method of calibration (see Appendix 

D for details). This dataset omits data from Lowenstam and Epstein 

1953 due to calibration discrepancies. See Appendix D for data 

sources 

 

Figure 7.8: Modelled mean annual temperature data for the 

Maastrichtian from surface marine (greens) and shallow marine 

(purples) under the 3 different CO2 concentrations presented in Chapter 

4 and 5 (2x, 4x, 6x) 
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A) Cold Month Mean       B) Warm Month Mean 

 
 

Figure 7.9: Comparison of (A) Maastrichtian cold month mean temperatures and (B) warm month mean temperatures from different proxy 

systems and organisms by latitude compared to surface water temperatures from climate simulations at different atmospheric CO2 concentrations. 

There is insufficient data coverage to give meaningful results when marine and terrestrial data points are separated, which may cause mismatch 

when compared to modelled data (see text for details). See Appendix D for data sources
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The seasonal data available for the Maastrichtian also give latitudinal trends 

that generally compare well to surface-water temperature simulations (Figure 

7.9), showing similar trends at equatorial and high southern latitudes in both the 

warm and cool seasons. The model does however predict high northern latitude 

summer temperatures between 10 and 15℃ cooler than the proxy record 

suggests.  

 

Unfortunately, the proxy data distribution was too sparse to allow seasonal data 

to be separated into marine and terrestrial trends like the mean annual data in 

Figure 7.7, so marine and terrestrial temperatures were plotted together in Figure 

7.9. The availability of proxy data sets was also dependent on latitude, with little 

spatial overlap between data sets from different organisms and methods. The 

high northern latitudes were dominated by data produced from plant proxies, 

which are notoriously dependent on modern calibrations (Spicer & Herman 

2010). It is also possible that the difference may be caused by terrestrial data 

recording air temperature conditions, which may be subject to greater seasonal 

variation than even surface water temperatures (Spicer et al. 2013). 

 

7.3.3 Evidence for Seasonal Ice 

 

Model results presented in Chapter 4 suggest that high latitude seasonal sea ice 

may have formed at latitudes above 72°S. It is likely that this coincided with the 

formation of continental Antarctic ice sheets, although these were not explicitly 

included in the model. The potential for high latitude ice formation is in line 

with terrestrial proxy records from the Southern Hemisphere, (e.g. Francis & 

Poole 2002; Amiot et al. 2004) which suggest latitudinal temperature gradients 

resulting in freezing conditions above 80°S, which are reflected in the global 

CMMT curves constructed in Figure 7.9. Other proxy records for example sea 

level curves which show a global 40m drop in sea level between Chron 30N and 

Chron 28R (Miller et al. 2005) also suggest the existence of Antarctic Ice sheets 

through the Cretaceous and Paleocene. Although modelling and ±18O results in 

this study suggest that ice sheets were not a major influence on marine systems 

in the Seymour Island area. 

 



 

264 

7.3.4 The Influence of Atmospheric CO2 

 

As seen in Chapters 4 and 5, variations in the modelled amount of atmospheric 

CO2 between 2 and 6x CO2 did not appear to have a large effect on either 

seasonality or mean annual temperatures at any latitude. Data from chapter 5 

suggest that the largest effect CO2 has on modelled climate is in the inter-annual 

variability of peak seasonal temperatures rather than on the 30-year average 

climate conditions at any given latitude. 

 

As there was such a small difference between the mean state temperatures 

predicted by each CO2 experiment, a comparison of model and proxy data in 

Chapter 4 did not favour a certain set of conditions. However, both the large 

range of seasonal temperature variation produced from bivalves sampled across 

consecutive years of growth in this study, and the amount of longer timescale 

variability predicted from the shell umbo and shell back dataset produced by 

Petersen et al. 2016 are a far better match with the 560ppm experiment than the 

higher CO2 versions. 

 

Proxy data for atmospheric CO2 as far back as the Maastrichtian are limited to 

±13C from pedogenic paleosol carbonates (Cerling et al. 1989; Ekart et al. 1999) 

and the stomatal density index (Gray et al. 2000; Boucot & Gray 2001). The 

limitations of these proxy records have been discussed in the literature (e.g. 

Royer et al. 2001). In general, stomatal indices are thought to provide the highest 

precision data (Beerling et al. 2002), while paleosol-derived results are thought 

to represent a lower end estimate of atmospheric CO2 concentration particularly 

for values below 500ppmv (Ekart et al. 1999). A summary of atmospheric CO2 

estimates from these two proxy methods is presented in Figure 7.10 (Royer 2014). 
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Figure 7.10: Global proxy-derived atmospheric CO2 record through the Maastrichtian and Danian. Data from paleosols (white 

squares) and stomatal index data (green circles), data compilation from Royer 2014, for individual data sources see abridged 

table in Appendix D. Paleosol values below 500ppm (red line) are considered to be unreliable due to proxy limitations (Ekart et 

al 1999). Atmospheric CO2 scale is presented at intervals of 0.5xPre-Ind CO2 for ease of comparison to the experiments used in 

this study. The maximum 6xCO2 concentration used for model experiments is off this scale at 1680ppmv. 

4xCO2 
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Proxy data also suggests that atmospheric CO2 during the time interval 

immediately prior to and after the K-Pg mass extinction at 66 Ma was likely to 

have been towards the lower end of the range of model experiments presented in 

this study. Only three proxy data points in the Maastrichtian suggest CO2 

concentrations higher than 560ppmv (2x Pre-Industrial CO2). However, as the 

majority of Maastrichtian data points are derived from pedogenic carbonates 

(Cojan et al. 2000; Ghosh & Bhattacharya 2001; Nordt et al. 2002, 2003), these 

estimates may be lower than the actual CO2 levels, particularly at a range so 

close to the lower limit of the proxy (Ekart et al. 1999). Models of atmospheric 

CO2 conditions suggest end-Cretaceous CO2 conditions slightly higher than those 

suggested by the proxy record, with records for the Maastrichtian (e.g. Wallmann 

2001) suggesting CO2 levels between 450 and 650ppm with a general increasing 

trend from the Maastrichtian through to the Paleocene. 

 

Additional modelling of the effect of the Deccan Traps on atmospheric CO2 

(Henehan et al. 2016) suggest a significant increase in CO2 concentrations caused 

by a pulse of volcanism at Chron 29R, which may have released a pulse of 

between 270 to 900ppm of CO2 on top of baseline Maastrichtian conditions (Self 

et al. 2006). The proxy data points in Figure 7.10 with the highest CO2 levels 

occur temporally close to the onset of this volcanism. This increase in CO2 

through the last 400ka of the Maastrichtian has been linked to an increase in 

temperature recorded by benthic foraminifera during this interval of up to 3℃ 

and a temperature drop through the final 100ka of the stage as carbon was 

scrubbed from the atmosphere by silicate weathering (Barrera 1994; Abramovich 

& Keller 2003; Colbourn et al. 2015; Henehan et al. 2016).  

 

A similar warming and cooling trend has been seen in the ±18O-derived 

temperature data from Seymour Island produced from spot-collected bivalves 

(e.g. Petersen et al. 2016) but is not reflected in the considerably larger number 

of specimens examined from the measured section in this study (Figure 7.2) or 

in the palynological climate interpretation (Bowman et al. 2013, 2014) which 

shows warming immediately prior to the K-Pg. Other proxy records from 

Seymour Island do not possess the temporal resolution to be able to discern 

trends during the few hundred thousand years immediately prior to the mass 

extinction event. 

 

The HadCM3 climate simulations performed in this study show little 

temperature change at shallow water depths across all latitudes, even with CO2 
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concentrations increasing from 540 to 1680ppmv (Figure 7.8); a far greater 

change than the Deccan Traps eruption is likely to have caused (Self et al. 2006). 

The changes to bottom-water temperatures recorded by benthic foraminifera may 

be larger than the changes in surface waters, but overall the models suggest that 

increased CO2 alone is unlikely to have caused the warming suggested by these 

records. The climate models in this study do not include the effects of potential 

volcanically-introduced greenhouse gases such as SO4 and CH4 due to the great 

uncertainty in concentrations, it is possible that their inclusion could account for 

some of the warming, or that the foraminiferal records are recording an effect 

that is convoluting the temperature record, such as water ±18O changes. 

Unfortunately, in the Seymour Island section, the interval prior to the extinction 

contains the largest signals of methane influence (Chapter 6) which prevents the 

use of clumped isotopic data to deconvolve the temperature and water ±18O 

records. 

 

The press-pulse extinction hypothesis suggests that long-term environmental 

stresses such as climate destabilization in the run-up to the geologically 

instantaneous disruption of the Chicxulub impact may have caused the severity 

of the K-Pg mass extinction event (e.g. Arens & West 2008). Climate change 

and variability have both been suggested as sources of long-term stress to the 

environment. The combination of CO2 proxy observations, drawdown models and 

climate models suggests that the increase in atmospheric CO2 caused by the 

Deccan Traps eruption at the beginning of Chron 29R is more likely to have 

reduced short-term climate variability than caused it. This is tentatively 

supported by ±18O data from Petersen et al. (2016), which shows a decrease in 

inter-annual temperature variability close to the level of Chron 29R (Figure 7.3). 

As CO2 drawdown occurred and atmospheric CO2 levels dropped to the levels 

suggested in the proxy record for the several hundred-thousand-year interval 

either side of the K-Pg boundary (Figure 7.10) climate variability may have 

increased again, but it is not logistically possible to examine the sub-annual fossil 

record at this resolution, even in an expanded section such as on Seymour Island. 

 

 

7.4 Bivalve Responses to Environmental Effects 

 

Combined observations of the climate and environmental conditions in the 

Seymour Island region over the K-Pg boundary interval presented in Chapters 

4, 5 and 6 and expanded upon in this chapter suggest generally stable climates 
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throughout the latest Maastrichtian. Little climate variability or evidence of 

rapid temperature or seasonality fluctuations was detected throughout the 

boundary section with the exception of a couple of spikes in intra-annual 

seasonality found in single specimens (Figure 7.3). Both warm and cool month 

temperatures showed less variation through the section than the amount of 

uncertainty due to potential changes in water composition. Inter-annual 

variability was found to account for much more variability than annual 

seasonality Section 5.4.3, particularly during times of low atmospheric CO2. As 

a result, it is unlikely that bivalves will have had much of a growth response to 

changes in the run-up to the K-Pg mass extinction. The molluscan temperature 

data do however suggest a slight cooling throughout the Danian recovery interval 

which may be responsible for some of the growth trends presented in Chapter 3. 

 

7.4.1 Size Changes 

 

New data from ±18O analyses and models allowed reconstruction of seasonal 

temperature curves for Maastrichtian surface waters (Figure 7.11). When 

compared to modern latitudinal temperature gradients and the distribution of 

larger shelled species of bivalves around the mid to low latitudes, it appears that 

summer temperatures may provide a constraint on the life strategy of producing 

large sized shells, as large-shelled species of cardiid and arcoids do not tend to be 

found at modern latitudes where summer temperatures average less than 

approximately 12℃ (Figure 7.11). However, even the 2 to 3℃ drop in mean 

annual temperatures through the Danian part of the Lopez de Bertodano 

Formation is unlikely to have pushed temperatures below this tentatively defined 

threshold. 
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Figure 7.11: Modelled SST data from modern (black) and Maastrichtian 

simulations in this study (WMMT at each CO2 concentration in reds, 

CMMT in blues). Also marked is the modern latitudinal range of arcoid and 

cardiid bivalves able to produce maximum shell sizes of greater than 50 mm 

(orange field) and the Maastrichtian latitude at which specimens of the large 

bivalves Lahillia and Cucullaea lived (dashed grey line). It appears that 

summer temperatures may provide a constraint on the strategy of large shell 

size in certain bivalves, as these species do not tend to be found at latitudes 

where summer temperatures average less than 12℃ (dotted grey line).  

 

Size and morphometric analyses of the shells of Lahillia, Cucullaea and 

Leionucula presented in Chapter 3 did not show any evidence for within-lineage 

size decrease across the K-Pg boundary, and were not consistent with the Lilliput 

effect of smaller shell sizes following the K-Pg. It is possible that shell sizes prior 

to the K-Pg mass extinction were smaller than typical for the environmental 

conditions due to environmental stresses. Pre-extinction dwarfing has been 

observed in other taxa (He et al. 2007; Wade & Olsson 2009; O’Dea et al. 2011) 

where it has been attributed to temperature changes in the latest Maastrichtian, 

however there was little evidence for similar temperature variability or 

environmental stressors through the Seymour Island section. Most of the changes 

in shell dimensions across the K-Pg boundary were morphometric changes, for 

instance; Danian Lahillia larseni growing significantly wider for the same shell 



 

270 

length than Maastrichtian specimens. It is useful to consider such morphometric 

changes in conjunction with analysis of growth patterns and maturation rates. 

Other changes in size distribution were also found and will be discussed later in 

this section. 

 

The Lilliput effect (Urbanek 1993) is a general description for a temporary 

decrease in body size among post-extinction organisms. The effect has been 

widely reported in many animal groups, both in holdover taxa and long-term 

survivors in the aftermaths of all five past mass extinction events including the 

K-Pg mass extinction (Hansen et al. 1993; Smith & Jeffery 1998; Jeffery 2001; 

Lockwood 2005; Aberhan et al. 2007). However, many studies of the K-Pg and 

other mass extinction events dispute the ubiquity of the Lilliput effect; 

particularly in within-lineage size studies (e.g. Brayard et al. 2010; Sogot et al. 

2014). It is becoming more and more accepted that size change at mass extinction 

horizons is likely to be complex and it cannot be expected that all clades will 

respond in the same manner, or that all mass extinctions will have the same 

effects (Harries & Knorr 2009; Friedman & Sallan 2012).  

 

It is therefore useful to examine the environmental and biological context for size 

change in order to understand the variability of behaviour between clades and 

extinction events. A reduction in primary productivity following the K-Pg event 

has been hypothesised as a cause for small organism size (e.g. Smith & Jeffery 

1998; Aberhan et al. 2007), although an array of other environmental stresses 

have been suggested to induce Lilliput effects at mass extinction events, including 

anoxia, shallow seas and basin restriction, changes in temperature and salinity 

(Twitchett 2007; Keller et al. 2009). Several other effects have also been 

hypothesised which may induce the opposite effect; such as changes in ecosystem 

level predation, food supply and competition (Case 1978; McClain et al. 2006; 

Harries & Knorr 2009). This study found that changes in temperature across the 

K-Pg boundary were likely to have been small at the latitude of Seymour Island. 

However, evidence for anoxia (Witts et al. 2016; Schoepfer et al. 2017), changes 

in predator distribution (Harper et al. 2018), and food supply (Zachos et al. 1989; 

D’Hondt 2005; Esmeray-Senlet et al. 2015; Birch et al. 2016) have all been 

described across the K-Pg boundary and have the potential to affect the mode 

of life and growth response of infaunal marine bivalves. 
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7.4.2 Population Distribution and Bimodality 

 

Work in Chapter 3 showed that the most obvious change in bivalve population 

size-structure across the K-Pg boundary was the change in Lahillia between a 

normally distributed population structure in the Maastrichtian to a bimodally 

peaked distribution in the Danian, whereas in Cucullaea this apparent trend was 

reversed. 

 

Bivalve populations are known to be extremely unstable, with both short and 

long-term changes in abundance (Beukema et al. 2010), population size-structure 

(Strayer & Malcom 2006), and spatial distribution (Herlyn et al. 2008), but the 

factors governing these fluctuations are still poorly understood, even in modern 

ecosystems. However, box-plots representing the size distribution of each species 

of bivalve at several time intervals through stratigraphy (Figures 3.15 to 3.17) 

do suggest that this trend is more than just a transient anomaly. 

 

Bimodality in population sizes can be produced by a number of interactive and 

non-interactive inherent and imposed factors (Table 7.1: Biological mechanisms 

that can produce bimodality annotated with tick and cross marks indicating 

whether each mechanism is likely to apply to Lahillia or Cucullaea in this study. 

Modified from Huston & DeAngelis (1987). It is possible that preservation biases 

in the fossil record could have introduced additional changes in the preserved 

versus actual record. Bimodality in the fossil record could come from a 

combination of several effects; the live population exhibiting a bimodal size 

distribution, or from time averaging during more transient periods of unimodal 

smaller and larger shell size, or from the lack of preservation of fossil specimens 

of intermediate size. However, for relatively long-lived bivalves in modern 

environments the size frequency distribution of the live populations does tend to 

be well-reflected in the distribution of dead shells, (e.g. Skazina et al. 2013) so 

the likelihood is that the patterns observed in the fossil record do represent a 

real change in population structure across the K-Pg boundary. The most likely 

causes of such an effect have been marked in Table 7.1 and will be discussed further 

below. 
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Table 7.1: Biological mechanisms that can produce bimodality annotated 

with tick and cross marks indicating whether each mechanism is likely to 

apply to Lahillia or Cucullaea in this study. Modified from Huston & 

DeAngelis (1987). 

 Non-interactive  Interactive  

Inherent Sexual dimorphism 

Genetic variation 

Maximum size limits 

X 

✔ 

X 

Sex change 

Sexual/asexual 
shifts 

Morphometric 
change 

X 

X 

 

X 

 

Imposed Temporal heterogeneity 

Hatching/germination 

Cohorts 

Temperature 

 

Spatial heterogeneity 

Abiotic resources 

Food availability 

Temperature 

 

Mortality 

Predation 

Density-independent 

X 

 

 

 

✔ 

 

 

 

✔ 

Competition 

Symmetrical 

Asymmetrical 

 

Mortality 

Cannibalism 

Density-
dependent 

X 

 

 

 

X 

 

 

 

It is unlikely that the stratigraphic intervals captured relatively short-term 

effects such as temporal or spatial heterogeneity, as such effects would likely 

average out over such long periods of time (Fürsich & Aberhan 1990; Albano & 

Sabelli 2011). Sexually dimorphic shell size is also not particularly common 

among marine bivalves, aside from cases of extreme male dwarfing in commensal 

species. 

 

Predation is capable of producing a bimodal distribution between smaller dead 

shells in the sediment and living shells capable of growing to larger size extremes. 

Size-selective predation is thought to be less of a selection pressure among 

infaunal and semi-infaunal bivalves (West & Williams 1986) than epifaunal 

species, although this situation does occur for infaunal bivalves preyed on by 

naticid gastropods (Kitchell et al. 1981). This scenario is plausible for the 

Seymour Island section, given that main predation in the post-extinction interval 

was boring gastropods. Once these bivalves reached sexual maturity, body size 

increase slowed and shell production thickened the shell rather than increasing 
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internal volume. This means older and larger sized individuals will be less cost-

efficient to predate than smaller, younger ones.  

 

It is, unfortunately not possible to determine the drilling frequencies in Seymour 

Island’s specimens due to the collection methods used, however studies of drilled 

fossil material from Seymour Island by Harper et al. (2018) show significant 

correlation between prey size and successful predatory drill hole diameter. This 

suggests that a size or shell thickness refuge may not have been an effective 

defence against borers. 

 

Comparisons of shell size frequency distributions and patterns of maturation 

(Figure 7.12) also suggest that the difference in size distribution is more likely to 

have been linked to age at maturity, rather than changes in predation or 

mortality.  

 

In the Maastrichtian part of the López de Bertodano Formation, the juvenile 

growth rate did not affect the age at which maturity was reached, with even the 

specimens with the slowest initial growth rates maturing at similar sizes to the 

fastest growing juveniles. Whereas for Lahillia in the Danian part of the López 

de Bertodano Formation, some specimens matured at a considerably larger size 

and later age than other specimens which matured much earlier and at a smaller 

shell size than any Maastrichtian specimens. Two Danian individuals were found 

to have reached maturity by 8 years of growth with heights below 45 mm, 

compared to the youngest Maastrichtian specimen to mature at 10 years of 

growth with a shell height of over 75 mm. This early maturation appears to have 

created a bimodal size distribution in the Danian, as few specimens which 

matured early would be able to reach the larger shell sizes of later-maturing 

specimens at the slower rate of mature shell growth, even if, as suggested by the 

data, they were able to survive to similarly advanced ages. 

 

In bivalves, a reasonable relationship has been found between later maturation 

and longevity, as well as slower growth rate and longevity (e.g. Haag & Rypel 

2011; Ridgway et al. 2011). This trend does, however explain less of the variation 

in longevity than in some other taxonomic groups (de Magalhaes et al. 2007) 

which may be due to confounding factors such as shell thickness and burrowing 

depth that reduce vulnerability to predation and extrinsic hazards (Kirby 2001). 

 

As growth trajectories were unable to be produced from Cucullaea due to the 

need to destructively section shells, it is not possible to determine whether a 
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similar, reversed change in maturation sizes occurred at the K-Pg boundary in 

order to produce the change in size distribution from bimodal in the 

Maastrichtian to normally distributed in the Danian. 

 

 

 

 

Figure 7.12: Maastrichtian (left) and Danian (right) comparisons of Lahillia 

growth trajectories (curves on lower scale) and frequency distribution 

(histograms, relative scale). Specimens from the Maastrichtian all show 

growth trajectories with the potential to reach the size of the peak frequency. 

Whereas specimens from the Danian show maturity at a smaller size and will 

only reach the size of the lower frequency peak at the slower rate of mature 

growth, even if long-lived. This shows that the size distribution is more likely 

to have been linked to growth rate and maturity rather than changes in 

mortality which is unlikely to have changed the maturation cycle. 

 

 

7.4.3 Productivity and Food Supply after the K-Pg 

 

A significant body of evidence suggests that the K-Pg mass extinction event was 

accompanied by a decrease in primary and export productivity in the oceans (e.g. 

(Zachos et al. 1989; Kump 1991; D’Hondt 2005; Esmeray-Senlet et al. 2015; Birch 

et al. 2016). This decrease in productivity was particularly pronounced in lower 

latitudes (e.g., Barrera & Keller 1994) but may have also been experienced in 

the higher latitudes.  
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A lower food supply in the recovery interval may have caused problems for more 

metabolically-active organisms dependent on organic matter supply from surface 

waters. Feeding strategy has been found to be a significant factor in the 

probability of surviving the K-Pg boundary in groups such as echinoids (Smith 

& Jeffery 1998; Jeffery 2001) and bivalves, where there is evidence that 

suspension-feeding bivalves suffered much higher rates of extinction than deposit 

feeders across the K-Pg boundary (61% extinction compared to only 30%). Some 

of this, however may be attributed to the extinction-resistant characteristics of 

nuculoids and lucinoids biasing the data (Jablonski & Raup 1995). Species of 

modern bivalve are known to respond to variations in food supply by changing 

the timing and rate of shell growth and energy put into reproductive development 

(e.g. Thompson & Nichols 1988). The increase in shell growth rate in Lahillia 

(VBGF parameter k, see discussion in Section 3.7.3) across the K-Pg boundary 

may reflect the lower competition for food in post-extinction ecosystems. 

 

7.4.4 Redox and Oxygen Availability 

 

Evidence for hypoxia and euxinia has been found in sedimentary deposits from 

Seymour Island (see section 7.2 for further details) throughout the Lopez de 

Bertodano Formation on both sides of the K-Pg boundary. Basinal euxinia does 

not appear to have increased either across the boundary, or in the pre-extinction 

period of Deccan Traps eruption, which suggests it played only a minor role in 

the mass extinction event (Schoepfer et al. 2017). There is little evidence that 

euxinia was a major driver of marine diversity in the James Ross Basin during 

deposition of the Molluscan units of the Cretaceous Lopez de Bertodano 

Formation which are the focus of this study. Euxinic periods may have played a 

partial role in restricting diversity in the underlying Rotularia units at the base 

of the section (Schoepfer et al. 2017). Periodic euxinia throughout the upper 

strata of the Lopez de Bertodano Formation could still have provided an 

environmental stressor for infaunal benthic organisms unable to migrate away, 

as hypoxia is known to reduce feeding, reproduction and metabolic rates in 

benthic fauna (Davis 1975; Herreid 1980; Wang & Widdows 1993; Wiklund & 

Sundelin 2001).  

 

The presence of long-lived bivalves such as Lahillia and Cucullaea throughout 

the section suggests that the infaunal bivalve community was tolerant of short-

lived euxinic events in the water column. In general mollusc communities are 

among the most tolerant of hypoxia, particularly in cooler waters (Gray et al. 
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2002; Vaquer-Sunyer & Duarte 2008). It is possible that widespread dysoxia in 

the pre-extinction sediments could have opened up ecological space for Lahillia, 

Cucullaea and other benthic fauna that were better able to survive due to their 

slower metabolisms. 

 

Oxygen concentrations also increase logarithmically with height above the 

seafloor in modern sediments (Jørgensen 1980; Diaz & Rosenberg 1995), such 

that the ability to access the water column a few centimetres above the 

sedimentary surface could have meant the difference between tolerable and lethal 

conditions during an anoxic event. This may have favoured the survival of larger 

species of bivalve that had the ability to raise the shell above the sediment 

surface, or extend siphons or palps higher into the more oxygenated water column 

(e.g. Sagasti et al. 2001). 

 

7.4.5 Overall Growth Strategy 

 

The low growth rates and slow maturation of Lahillia and Cucullaea would have 

allowed them to reach larger body sizes before the growth rate slowed. This 

strategy is well-suited to an environment with external factors controlling food 

availability and metabolic rate, such as the periodic anoxia of the pre-extinction 

times. This tolerance for low food availability may have contributed to their 

ability to survive the potential productivity collapse of the post-extinction 

interval. In addition, the thick shells produced by this growth strategy may have 

shielded them from hazards such as predation and temperature fluctuations 

during this interval (Kirby 2001). It is possible that the pattern of younger 

maturation at smaller sizes seen in Danian Lahillia could have been due to a 

reduction in the need to produce such large shells for environmental protection, 

in favour of shorter generation times. 

 

Deposit feeders such as Leionucula tended to survive better across the K-Pg 

boundary and associated productivity collapse (Jablonski & Raup 1995). 

However, Leionucula is the only taxon analysed here which shows a decrease in 

overall body size from the Maastrichtian into the Danian, with maximum shell 

length decreasing significantly by approximately 10%. Relative abundance was 

greatly increased following the mass extinction (R.J Whittle, pers. comm.), which 

could suggest that size is not necessarily a good indicator of the success of a 

species.  
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Overall, it appears that the lack of a clear trend across the K-Pg boundary within 

each of these clades of bivalves may be related to their ecological strategy to deal 

with selective pressures in the pre-extinction ecosystem, more than any 

environmental effects caused by the K-Pg mass extinction. It appears that for 

the three taxa of bivalves observed here, there may have been advantages to 

both increasing or decreasing size in the aftermath of the K-Pg boundary. 

 

 

7.5 Conclusions 

 

To summarise the main conclusions of this body of work: 

 

• The climate of the James Ross Basin was likely to have been stable and 

reasonably uniform throughout the late Maastrichtian pre-extinction 

period with average temperatures of approximately 10℃ ± 5 recorded in 

bivalves throughout with a 2℃ temperature decrease during the post-

extinction interval. 

 

• New sub-annual resolution temperature data show that Lahillia and 

Cucullaea bivalves produced their shells during warmer seasons. Use of 

summer and winter temperatures from high resolution bivalve records is 

likely to be more reliable than bulk or mean temperatures. 

 

• Annual seasonality of approximately 2 to 5℃ produces less temperature 

variation than year-to-year temperature variability; an effect which 

appears to be enhanced by potentially lower atmospheric CO2 conditions 

than have been explored by models in this study. 

 

• No evidence for the influence of nearby sea ice was produced from either 

new proxy data or model analyses, or re-evaluation of pre-existing proxy 

data sets in light of new concerns about their reliability. 

 

• For the first time, seasonal ±13C signals diagnostic of methane-derived 

carbon have been found in bivalve shells from several discrete intervals 

throughout the late Maastrichtian and early Danian. The seasonal nature 

of the signal allows methane hydrates to be ruled out as a potential cause, 

and links it to a mechanism likely to have been facilitated by the low 
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marine sulfate conditions at the time of deposition and could also be related 

to observations of periodic bottom water anoxia through the section. 

 

• The identification of a significant methane-related signal in a number of 

bivalve shells provides evidence to suggest that clumped isotopic data 

produced from these shells may be unreliable and the low temperatures 

described by previous data sets unrealistic. 

 

• New and compiled seasonal temperature data produce a good fit to 

modelled latitudinal data showing that both seasonal behaviour and the 

high southern latitudes are well-represented by behaviour in the climate 

simulations. In the high northern latitudes, CMMTs are congruent but 

floral proxies are consistently between 10 and 15℃ warmer than simulated 

WMMT conditions, potentially due to methods of proxy calibration or 

continental temperature differences.  

 

• 2xCO2 model experiments give the best fit to temperature and temperature 

variability data as well as the estimates of atmospheric CO2 during the K-

Pg boundary interval.  Although both sets of experiments with higher 

atmospheric CO2 were also capable of producing seasonality and 

temperature data within the range of the proxy data at reasonable, if 

slightly shallower water depths. This suggests that changes in CO2, for 

example due to active volcanism in the Deccan Traps do not have a driving 

effect on high southern latitude temperatures 

 

• Good agreement between proxy data recorded over several million years of 

geological time and the general climate model covering the entire 

Maastrichtian could imply that orbitally driven variations in seasonality 

and temperature are a second order effect compared to the strength of the 

seasonal cycle and year-to year temperature variability at this location. 

 

• No evidence for Lilliput effect style post-extinction dwarfing was found in 

any of the three genera of bivalves examined. Size and growth patterns 

showed a variable response to the mass extinction which may be linked to 

the ecological strategy of slow growth to large mature shell sizes making 

these species particularly tolerant of pre- and post-extinction conditions. 
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Data generated over the course of this thesis have raised several questions which 

could be explored with further work. 

 

• The development of a more relevant and accurate growth function for 

indeterminate growth, as found in slow growing long-lived bivalve species. 

This study is one of a long line which highlights the inadequacies of the 

commonly used von Bertalanffy Growth Function. It would be more 

biologically relevant and useful for comparison between taxa to be able to 

consider juvenile and mature growth trajectories separately, and produce 

a mathematical function to parametrise the duration and period of overlap 

of each trajectory. 

 

• Further investigation into changing of bivalve growth patterns and 

seasonality across major episodes of climate change. A few shells from the 

Eocene were examined in this thesis, and it was found that these specimens 

appear to grow with opposite seasonality to specimens of the same taxa 

from the cooler K-Pg section. It would be interesting to see whether this 

trend is linked to the warmer climate of the Eocene and is present across 

other periods of climate change. 

 

• This work only examined a range of atmospheric CO2 from 2 to 4 times 

pre-industrial levels, however a large number of estimates from pedogenic 

carbonates and some from stomatal indices suggest that Maastrichtian CO2 

levels may have been lower than 500ppmv. It would be interesting to 

examine model results from 1 and 0.5 times pre-industrial concentrations 

of CO2 and see whether the effects of seasonal and inter-annual variability 

were amplified further. 

 

• Examining longer records of seasonal variability from climate simulations 

in order to look for evidence of regular cyclicity on longer than annual 

temporal scales. Climate variability caused large temperature differences, 

particularly in the lower CO2 experiments and finding cyclicity in these 

cycles may shed light on their origin and effects on Antarctic ecosystems. 

 

• A similar approach using microsampling could be taken to examine for 

evidence of methane-related signals in other periods with low marine 

sulfate concentrations. 
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• Potential drivers of methane production in the Seymour Island section 

could be investigated using trace elemental analysis of bivalve shells to 

measure seasonal changes in Ba/Ca and Mo/Ca which are generally 

accepted to be linked to changes in productivity. This could allow the 

propagation of productivity-based changes through the water column to 

be determined. 
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APPENDIX A 

 

Field Seasons and Collection Data 

 

Zinsmeister Collection 

 

Additional measurements and specimens were acquired from the W. J. Zinsmeister Collection 

housed in the Palaeontological Research Institution, NY.   The collection was assembled from three 

decades of spot collections, mapped by location rather than collected along a continuous 

stratigraphic section.   In order to back-calculate the approximate stratigraphic height of specimens, 

dip correction calculations must be utilised from accurate geological maps (e.g. Petersen et al. 

2016).   These calculations involve a large amount of extrapolation, and have been known to yield 

stratigraphic heights for fossils which are well outside of the stratigraphic ranges established from 

other sections (Figure 4.10).   As a result, specimens from this collection may only be positioned 

approximately within stratigraphy. 

 

 

Preservation Test Methods 

 

Scanning Electron Microscopy 

 

Shell fragments were prepared for SEM in cross section within polyester resin blocks which were 

polished to P1000 grade and etched in 1% HCl for 20 seconds before being ultrasonically cleaned 

and mounted on stubs. Fractured surfaces were also prepared similarly by etching, cleaning and 

mounting. All specimens were gold-coated using an Emitech K550 sputter coater and viewed with 

a Jeol JSM 820 electron microscope at the University of Cambridge. 

 

Cathodoluminescence 

 

Cold cathode CL work to image uncovered shell sections was undertaken at the University of 

Edinburgh using a CITL 8200 Mk 3A mounted on a Nikon Optiphot petrological microscope. 

 

X-Ray Diffraction 

 

Shell powders collected by micromilling were prepared for XRD by grinding dry, then with acetone 

in a pestle and mortar to produce a uniform powder which was wetted with acetone to form a thin 

paste and spread onto glass sample discs to produce a uniform flat surface when air-dried. XRD 

analyses at the University of Cambridge used a Bruker D8 diffractometer scanning from 20° to 60° 

with a 0.02° step size. Results were interpreted using Topas software. Analysis of the crossed-

lamellar layers show strong peaks at diffraction angles (2θ) of 26.2° and 27.2° and minor peaks at 

angles of 33.2° and 36.2°, indicative of aragonite mineralogy.  
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Dataset A.1: Specimens used for experimental analysis 

Specimen No. Species 

Height 

relative to 

KPB (m) 

Height on composite 

section (m) 
Preservation tests Longevity 

Stable Isotope 

Analysis 

Number of 

microsamples 

analysed 

DJ.953.1025 L. larseni/huberi 29.25 1036.8  Acetate Peel Bulk 4 

D5.229.1320.2 L. larseni/huberi 24.5 1032  Acetate Peel Bulk 5 

DJ.953.745 L. larseni/huberi -1.75 1005.8  Acetate Peel Bulk 4 

DJ.953.663 L. larseni/huberi -17.5 990  Acetate Peel Bulk 4 

D5.222.1226.2B L. larseni/huberi -66.5 941   Bulk 3 

D5.220.1217.2 L. larseni/huberi -86.5 921 SEM Acetate Peel Bulk 3 

DJ.952.516 L. larseni/huberi -137.45 870.1 SEM, XRD  Bulk 30 

DJ.952.529 L. larseni/huberi -137.45 870.1 XRD  Bulk 30 

D5.218.1011.2 C. antarctica -378.5 629   Bulk 7 

D9.211.457 C. ellioti 99.3 1106.8 SEM  Micro 12 

D9.207.1 L. larseni/huberi 18.9 1026.4 XRD  Micro 52 

D5.229.1301.2 L. larseni/huberi 5.5 1013   Micro 30 

D9.206.152 L. larseni/huberi 3.5 1011   Micro 41 

DJ.953.746 L. larseni/huberi -1.75 1005.8   Micro 42 

D5.222.1248.2 C. antarctica -32.5 975   Micro 6 

DJ.953.335 L. larseni/huberi -48.25 959.3   Micro 28 

DJ.953.456 L. larseni/huberi -48.25 959.3 CL  Micro 49 

DJ.953.459 C. antarctica -48.25 959.3   Micro 18 

D5.222.1234.2 L. larseni/huberi -56.5 951   Micro 13 

D5.222.1226.2A L. larseni/huberi -66.5 941   Micro 12 

D5.222.1223.2 C. antarctica -74.5 933 SEM  Micro 5 

D5.220.1214.2 L. larseni/huberi -92.5 915  Acetate Peel Micro 7 

D5.220.1229.2 C. antarctica -122 885.5   Micro 8 

DJ.952.523 L. larseni/huberi -137.45 870.1   Micro 37 
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Specimen No. Species 

Height 

relative to 

KPB (m) 

Height on composite 

section (m) 
Preservation tests Longevity 

Stable Isotope 

Analysis 

Number of 

microsamples 

analysed 

D5.219.1185.2 L. larseni/huberi -142.5 865 SEM, XRD  Micro 21 

D5.219.1182.2 L. larseni/huberi -148.5 859   Micro 61 

DJ.957.490 C. antarctica -233.75 773.8   Micro 10 

DJ.959.93 C. antarctica -392.25 615.3   Micro 11 

D5.229.1334.2 L. larseni/huberi 39.5 1047  Thin section   

D5.229.1351.2 L. larseni/huberi 48 1055.5  Acetate peel   

D5. 229.1361.2 L. larseni/huberi 55.5 1063     

D5.229.1361.2 L. larseni/huberi 55.5 1063  Acetate peel   

D5.229.1361.2 L. larseni/huberi 55.5 1063  Acetate peel   

D5.229.1363.2 L. larseni/huberi 56.5 1064  Acetate peel   

DJ.953.915 L. larseni/huberi 29.25 1036.75  Thin section   

D9.206.95 L. larseni/huberi -1.5 1006 CL Thin Section   

DJ.953.799 L. larseni/huberi 2.5 1010  Acetate peel   

DJ.953.334 L. larseni/huberi -48.25 959.25  Acetate peel   

DJ.953.452 L. larseni/huberi -48.25 959.25  Acetate peel   

DJ.952.712 L. larseni/huberi -98.75 908.75  Acetate peel   

DJ.952.755 L. larseni/huberi -98.75 908.75  Acetate peel   

D5.219.1185.2 B L. larseni/huberi -142.5 865 SEM, XRD Thin Section   

3 Danian Hinges 
D001-D003 

L. larseni/huberi Unknown N/A  Acetate Peel   
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APPENDIX B 

 

 

Taxonomy 

 

Antarctic examples of Lahillia (Classification: Mollusca, Bivalvia, Cardiida, Cardiidae) have 

traditionally been split into two species although taxonomy is currently under review (R.J. Whittle 

pers. comm. 2015) – Lahillia larseni (Sharman & Newton 1897) for specimens in the Lopez de 

Bertodano Formation and L. huberi (Zinsmeister & Macellari 1988) in the Sobral Formation.    

 

Cucullaea (Classification: Mollusca, Bivalvia, Arcoida) are more definitively split.   Cucullaea 

antarctica (Wilckens 1907) is present in the upper Maastrichtian of the Lopez de Bertodano 

Formation.   Cucullaea elliotti (Zinsmeister & Macellari 1988) which has been found shortly after 

the boundary, in the Danian of the Lopez de Bertodano Formation and into the Sobral Formation.   

Cucullaea raea (Zinsmeister 1984) and Cucullaea donaldi   (Sharman and Newton 1894) are found 

in the lower (I and II) and upper (III) Eocene La Meseta formations respectively. 

 

Leionucula taxa (Classification: Mollusca, Bivalvia, Palaeotaxodonta, Nuculoida, Nuculoidea, 

Nuculidae, Nuculinae, Nucula (Stilwell et al. 2004) are also easily distinguished; Leionucula 

suboblongata (Wilckens 1907) are present from the Lopez de Bertodano molluscan units to the 

middle of unit 1 of the Sobral formation, Leionucula hunickeni (Zinsmeister & Macellari 1988) are 

also present in the middle part of unit 1 of the Sobral Formation. Leionucula nova (Wilckens 1911) 

and Leionucula palmeri (Zinsmeister 1984) occur in the Eocene La Meseta, the former has been 

found in units I-II and the latter only from unit I.  

 

 

Acetate Peels Method 

 

Hinges were embedded in polyester resin for stabilization and each specimen was sectioned along 

the axis of maximum growth, ground and polished for production of acetate peels following the 

procedure described by Kennish et al (1980) with the modification of etching with a 1% HCl 

solution for 20 seconds.   The acetate peels were examined under transmitted light microscope and 

photographed to produce composites to visualise the entire tooth at high magnification.   Sucessive 

growth lines were marked and measured along the path of maximum tooth growth using ImageJ.  

 



296 

 

 

 
Figure B.1: Example of growth line measurements produced from an acetate peel of a bivalve 

tooth.  
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Dataset B.1: Summary of stable isotope data and high and low estimate converted temperatures from bulk and microsampled specimens 
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DJ.953.1025 L. larseni /huberi 29.25 1036.8 Bulk 4 0.7 1.03  0.87 1.37 1.72  1.54 9.4 12.1  

D5.229.1320.2 L. larseni /huberi 24.5 1032 Bulk 5 0.6 0.76  0.68 1.66 2.43  2.01 10.3 13.0  

DJ.953.745 L. larseni /huberi -1.75 1005.8 Bulk 4 0.79 1.23  1.06 -1.11 2.74  1.29 8.6 11.2  

DJ.953.663 L. larseni /huberi -17.5 990 Bulk 4 1.13 1.31  1.21 2.51 2.7  2.6 8.0 10.5  
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D9.207.1 L. larseni /huberi 18.9 1026.4 Micro 52 -0.78 0.03 0.81 -0.41 -7.81 2.13 9.94 -2.74 15.0 18.1  

D5.229.1301.2 L. larseni /huberi 5.5 1013 Micro 30 0.77 1.53 0.76 1.08 -12.01 0 12.01 -6.33 8.5 11.1  

D9.206.152 L. larseni /huberi 3.5 1011 Micro 41 -3.06 1.05 4.11 -0.52 0.57 6.35 5.77 4.23 15.5 18.6  

DJ.953.746 L. larseni /huberi -1.75 1005.8 Micro 42 1.39 1.89 0.5 1.6 0.9 1.68 0.78 1.24 6.3 8.7  

D5.222.1248.2 C. antarctica -32.5 975 Micro 6 0.4 0.67 0.28 0.56 -1.79 13.68 15.46 -1.4 10.8 13.5  

DJ.953.335 L. larseni /huberi -48.25 959.3 Micro 28 0.77 1.46 0.69 1.13 -18.14 -2.42 15.72 -10.67 8.3 10.9  

DJ.953.456 L. larseni /huberi -48.25 959.3 Micro 49 0.91 1.38 0.47 1.12 -34.18 -10.7 23.48 -23.78 8.4 10.9  

DJ.953.459 C. antarctica -48.25 959.3 Micro 18 0.57 1.71 1.14 1.1 -22.82 -1.8 21.02 -11.26 8.4 11.0  

D5.222.1234.2 L. larseni /huberi -56.5 951 Micro 13 -1.18 0.67 1.84 -0.12 -15.26 2.66 17.92 -2.84 13.7 16.7  

D5.222.1226.2A L. larseni /huberi -66.5 941 Micro 12 -1.41 0.92 2.32 -0.61 -26.27 -4.93 21.34 -17.29 15.9 19.0  
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D5.222.1223.2 C. antarctica -74.5 933 Micro 5 0.72 1.1 0.38 0.86 1.8 2.39 0.59 2.12 9.5 12.1  

D5.220.1214.2 L. larseni /huberi -92.5 915 Micro 7 1.08 1.55 0.47 1.36 -1.38 -0.56 0.81 -1.03 7.3 9.8  

D5.220.1229.2 C. antarctica -122 885.5 Micro 8 -0.59 -0.09 0.5 -0.33 -0.84 -0.29 0.55 -0.54 14.7 17.7  

DJ.952.523 L. larseni /huberi -137.45 870.1 Micro 37 1.33 2.12 0.8 1.68 -0.71 1.511 2.223 0.313 5.9 8.3  

D5.219.1185.2 L. larseni /huberi -142.5 865 Micro 21 0.33 1.21 0.88 0.81 -0.97 1.85 2.82 0.69 9.7 12.4  

D5.219.1182.2 L. larseni /huberi -148.5 859 Micro 61 -0.89 1.59 2.49 0.73 0.29 2.43 2.139 1.57 10.1 12.7  

DJ.957.490 C. antarctica -233.75 773.8 Micro 10 0.28 0.58 0.3 0.47 -2.55 -2.12 0.425 -2.3 11.2 14.0  

DJ.959.93 C. antarctica -392.25 615.3 Micro 11 0.14 1.05 0.91 0.71 -3.06 0.26 3.325 -0.45 10.1 12.8  
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Figure B.2: Micromilled shell δ18O and δ13C data. 

Stable carbon (black) and oxygen isotope data (red).   Distance axis begins at an arbitrary 

point within the shell. Vertical gray bars locate positions of annual growth lines.   δ13C data 

presented to the same scale on the top/left axis and an expanded scale (dotted black line) on 

the right axis to show lower amplitude trends and variability where appropriate.    

Cross plots and first difference plots of δ18O and δ13C data from each shell have also been 

plotted and show little evidence for either consistent correlation or anticorrelation patterns 

across the entire set of shells. Specimen number, height relative to the K-Pg boundary and 

taxon has been labelled for each specimen.
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Dataset B.2: High resolution microsampled bivalve stable isotope raw data set 

 

D5.219.1182.2 Lahillia -148.5 

SIRA_Number Distance Number d18OCalcite d18O_Raw d18O d13C TMollusc 

G14 1643 0 1 0.605 9.670481 0.684336 1.6434 12.96246 

G14 1644 0.5811 2 0.7032 9.769571 0.782544 1.275 12.50187 

G14 1645 1.3818 3 0.7316 9.798228 0.810946 1.2406 12.36866 

G14 1646 2.2548 4 0.8954 9.963512 0.974759 1.1784 11.60038 

G14 1647 3.3428 5 0.874 9.941918 0.953357 1.5436 11.70075 

G14 1648 4.1049 6 0.9708 10.0396 1.050165 0.9496 11.24673 

G14 1649 4.9756 7 1.044 10.11346 1.123371 0.4556 10.90339 

G14 1650 5.8101 8 1.2368 10.30801 1.316186 0.2874 9.999087 

G14 1651 6.1182 9 0.4936 9.558072 0.572927 1.197 13.48497 

G14 1652 6.4263 10 0.5762 9.64142 0.655534 1.3388 13.09755 

G14 1653 7.0436 11 0.71 9.776433 0.789344 1.4972 12.46998 

G14 1654 7.9143 12 0.6126 9.67815 0.691937 1.3566 12.92682 

G14 1655 8.6402 13 0.3552 9.418418 0.434516 1.1128 14.13412 

G14 1656 9.2575 14 0.5876 9.652924 0.666935 1.2916 13.04408 

G14 1657 9.911 15 0.6166 9.682186 0.695937 1.3764 12.90806 

G14 1658 10.4559 16 0.516 9.580675 0.595329 1.1918 13.37991 

G14 1659 11.0732 17 0.6032 9.668665 0.682536 1.5958 12.97091 

G14 1660 11.8739 18 0.9634 10.03213 1.042764 1.3052 11.28144 

G14 1661 12.1661 19 0.1596 9.221046 0.238901 1.563 15.05156 

G14 1662 12.6026 20 0.3054 9.368167 0.384712 1.7534 14.3677 

G14 1663 13.1114 21 0.421 9.484814 0.500321 1.4282 13.82549 

G14 1666 13.9459 24 0.3102 9.37301 0.389513 2.3106 14.34519 

S14 1051 14.2741 25 0.342414 9.405516 0.421729 2.248895 14.19409 

S14 1052 14.4382 26 0.259269 9.321618 0.338578 2.211712 14.58407 

S14 1053 14.6023 27 1.11595 10.18606 1.195327 1.404372 10.56592 

S14 1054 14.9798 28 1.022811 10.09208 1.102181 1.709966 11.00277 

S14 1055 15.3441 29 0.539737 9.604628 0.619068 1.932432 13.26857 

S14 1056 15.5289 30 0.696552 9.762863 0.775896 1.962046 12.53305 

S14 1057 15.9342 31 0.443433 9.507451 0.522756 1.8664 13.72027 

S14 1058 16.6026 32 0.46027 9.52444 0.539595 1.718822 13.6413 

S14 1059 17.3064 33 0.477108 9.54143 0.556433 1.699661 13.56233 

S14 1060 17.8965 34 0.713915 9.780383 0.79326 1.65166 12.45161 

S14 1061 18.3449 35 1.004405 10.0735 1.083772 1.254315 11.08911 

S14 1062 18.7092 36 0.751275 9.818081 0.830622 1.46901 12.27638 

S14 1063 19.3617 37 0.618129 9.68373 0.697466 1.636845 12.90088 

S14 1064 19.7967 38 0.764956 9.831886 0.844304 1.602587 12.21221 

S14 1065 20.4502 39 0.421827 9.485648 0.501148 1.713311 13.82162 

S14 1066 20.6677 40 0.578652 9.643895 0.657986 1.742925 13.08604 

S14 1067 21.2839 41 0.33551 9.39855 0.414825 1.967988 14.22647 

S14 1068 21.5014 42 0.672325 9.738416 0.751666 1.595555 12.64669 

S14 1069 21.8296 43 1.259129 10.33054 1.338517 0.882916 9.894355 

S14 1070 22.4821 44 0.756 9.82285 0.835348 1.384311 12.25422 

S14 1071 22.9909 45 0.306536 9.369313 0.385848 1.707585 14.36237 

S14 1072 23.3534 46 0.643364 9.709193 0.722703 1.806028 12.78252 

S14 1073 24.1155 47 1.500186 10.57378 1.579593 1.972511 8.763709 

S14 1074 24.6604 48 2.167022 11.24666 2.246482 0.775568 5.635999 
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SIRA_Number Distance Number d18OCalcite d18O_Raw d18O d13C TMollusc 

S14 1075 24.9141 49 1.513876 10.58759 1.593284 1.442572 8.6995 

S14 1076 25.5666 50 0.57072 9.635891 0.650053 1.605686 13.12325 

S14 1077 26.1115 51 0.237556 9.299708 0.316862 1.341504 14.68592 

 

 

D5.219.1185.2 Lahillia -142.5 

SIRA_Number Distance Number d18OCalcite d18O_Raw d18O d13C TMollusc 

S12 2471 0 1 1.13 10.20024 1.209378 0.96 10.50002 

S12 2472 0.3732 2 1.08 10.14978 1.159374 1.14 10.73454 

S12 2473 0.6902 3 0.85 9.917701 0.929355 1.41 11.81332 

S12 2474 1.2009 4 0.94 10.00852 1.019363 1.38 11.39119 

S12 2475 1.6008 5 0.92 9.988335 0.999361 1.59 11.485 

S12 2476 2.0558 6 0.8 9.867248 0.879351 1.67 12.04784 

S12 2477 2.4833 7 0.78 9.847067 0.85935 1.62 12.14165 

S12 2478 2.897 8 0.73 9.796614 0.809346 1.77 12.37617 

S12 2479 3.7663 9 0.66 9.72598 0.73934 1.72 12.70449 

S12 2480 4.1111 10 0.74 9.806704 0.819347 1.69 12.32926 

S12 2481 4.635 11 0.65 9.715889 0.72934 1.83 12.7514 

S12 2482 5.0494 12 0.71 9.776433 0.789344 1.85 12.46998 

S12 2483 6.1987 14 0.7 9.766342 0.779343 0.02 12.51688 

S12 2484 6.5856 15 0.72 9.786523 0.799345 0.04 12.42307 

S12 2485 6.9442 16 0.66 9.72598 0.73934 -0.42 12.70449 

S12 2486 7.4411 17 0.6 9.665436 0.679336 -0.9 12.98592 

S12 2487 7.9403 18 0.86 9.927792 0.939356 -0.12 11.76642 

S12 2488 8.3547 19 0.57 9.635164 0.649333 -0.76 13.12663 

S12 2489 8.9205 20 0.57 9.635164 0.649333 -0.43 13.12663 

S12 2490 9.4169 21 0.25 9.312265 0.329308 -0.65 14.62755 

S12 2491 9.8995 22 0.45 9.514077 0.529324 -0.97 13.68947 

 

 

D5.220.1214.2 Lahillia -92.5 

SIRA_Number Distance Number d18OCalcite d18O_Raw d18O d13C TMollusc 

G14 2276 0 1 1.466 10.53928 1.545404 -0.975 8.924054 

G14 2277 2.2023 2 1.3632 10.43555 1.442596 -1.3582 9.406224 

G14 2273 4.8336 3 1.358 10.4303 1.437396 -0.5628 9.430614 

G14 2278 5.7819 4 1.3588 10.43111 1.438196 -1.2634 9.426862 

G14 2279 6.3331 5 0.9972 10.06623 1.076567 -1.0824 11.1229 

G14 2274 7.0981 6 1.3894 10.46199 1.468798 -0.5812 9.283337 

G14 2275 7.7402 7 1.0522 10.12173 1.131571 -1.3754 10.86493 

 

 

D5.220.1226.2 Lahillia -66.5 

SIRA_Number Distance Number d18OCalcite d18O_Raw d18O d13C TMollusc 

G14 2293 0 1 0.8364 9.903978 0.915754 -4.9258 11.87711 

G14 2294 0.5416 2 -0.8706 8.181512 -0.79138 -19.6424 19.88358 

G14 2295 1.2021 3 -1.4398 7.607155 -1.36063 -25.901 22.55334 

G14 2296 2.0972 4 -1.4862 7.560335 -1.40703 -26.27 22.77097 

G14 2297 2.6429 5 -1.2156 7.833387 -1.13641 -23.1236 21.50176 

G14 2298 3.5762 6 -0.66 8.39402 -0.58076 -15.2836 18.89578 

G14 2299 4.3518 7 0.2748 9.33729 0.35411 -7.0304 14.51123 
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G14 2300 6.4148 8 -1.446 7.600899 -1.36683 -22.9602 22.58242 

G14 2301 6.9224 9 -1.31662 7.731451 -1.23744 -21.3176 21.97558 

G14 2302 7.7028 10 -1.23858 7.810198 -1.15939 -20.9548 21.60954 

G14 2303 8.9856 11 0.53758 9.60245 0.616911 -7.8718 13.27869 

G14 2304 9.8105 12 -0.21054 8.847553 -0.13127 -12.2112 16.78765 

 

 

D5.222.1223.2 Cucullaea -74.5 

SIRA_Number Distance Number d18OCalcite d18O_Raw d18O d13C TMollusc 

S14 3079 0.442 1 0.642535 9.708356 0.721874 1.798516 12.78641 

S14 3078 0.884 2 0.918658 9.986981 0.998019 2.182913 11.49129 

S14 3077 1.326 3 0.664855 9.730879 0.744196 2.103657 12.68172 

S14 3076 1.768 4 1.020964 10.09021 1.100333 2.132201 11.01144 

S14 3075 2.21 5 0.657179 9.723134 0.73652 2.388408 12.71772 

 

 

D5.222.1234.2 Lahillia -56.5 

SIRA_Number Distance Number d18OCalcite d18O_Raw d18O d13C TMollusc 

G14 2280 0 1 0.1388 9.200058 0.218099 1.0564 15.14912 

G14 2281 0.5 2 0.0092 9.069283 0.088489 1.5836 15.75699 

G14 2282 0.9319 3 0.0396 9.099959 0.118891 1.0388 15.6144 

G14 2283 1.474 4 0.5862 9.651511 0.665534 -0.768 13.05064 

G14 2284 1.8644 5 -0.251 8.806726 -0.17173 -2.9632 16.97742 

G14 2285 2.4329 6 -0.5978 8.456784 -0.51856 -5.6982 18.60404 

G14 2286 2.8922 7 -0.192 8.86626 -0.11273 -1.6996 16.70069 

G14 2287 3.5361 8 -0.3142 8.742953 -0.23494 -7.4612 17.27385 

G14 2288 4.0262 9 -0.68 8.373839 -0.60077 -6.6216 18.98959 

G14 2289 4.6979 10 -0.1578 8.90077 -0.07852 1.6484 16.54028 

G14 2290 4.9794 11 0.3822 9.445663 0.461518 2.6644 14.00748 

G14 2291 5.3984 12 -0.333 8.723983 -0.25374 -4.4758 17.36203 

G14 2292 5.7493 13 -1.2584 7.790199 -1.17921 -15.2592 21.7025 

 

 

D5.222.1248.2 Cucullaea -32.5 

SIRA_Number Distance Number d18OCalcite d18O_Raw d18O d13C TMollusc 

S14 3074 0 1 0.593351 9.658727 0.672686 -1.04681 13.0171 

S14 3073 0.7509 2 0.509526 9.574143 0.588855 -0.99268 13.41027 

S14 3072 1.7254 3 0.31572 9.378581 0.395033 -1.4164 14.31929 

S14 3071 2.412 4 0.471857 9.536132 0.551182 -1.72353 13.58696 

S14 3070 3.1076 5 0.530332 9.595137 0.609662 -1.78566 13.31268 

S14 3069 4.1367 6 0.486502 9.55091 0.565829 -1.41186 13.51826 

 

 

D5.229.1301.2 Lahillia 5.5 

SIRA_Number Distance Number d18OCalcite d18O_Raw d18O d13C TMollusc 

S14 0961 0 1 -1.94155 7.100861 -1.86241 6.345252 24.90672 

S14 0962 0.254 2 -1.57658 7.469134 -1.49742 4.644428 23.19489 

S14 0963 0.6614 3 -0.07181 8.987542 0.007475 2.830156 16.13694 

S14 0964 1.1842 4 0.523133 9.587873 0.602463 2.373599 13.34645 

S14 0965 1.6493 5 0.078249 9.138957 0.157543 2.465855 15.43312 
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S14 0966 2.2286 6 0.012 9.072109 0.091289 2.896 15.74385 

S14 0967 2.6732 7 -1.25147 7.797194 -1.17228 4.987446 21.66999 

S14 0968 3.1371 8 -3.13616 5.895429 -3.05712 3.887015 30.50988 

S14 0969 3.7361 9 -0.70148 8.352167 -0.62225 4.577527 19.09033 

S14 0970 4.3183 10 0.293423 9.356082 0.372734 5.241803 14.42388 

S14 0971 4.7834 11 0.538518 9.603397 0.617849 2.393852 13.27429 

S14 0972 5.2087 12 0.873522 9.941436 0.95288 1.443099 11.70299 

S14 0973 5.8086 13 -0.82124 8.231315 -0.74202 2.455135 19.65208 

S14 0974 6.2339 14 -0.8862 8.165769 -0.80698 5.338371 19.95676 

S14 0975 6.7364 15 -1.15114 7.898431 -1.07194 5.981037 21.19941 

S14 0976 7.2003 16 -1.07611 7.974138 -0.99691 6.194849 20.84751 

S14 0977 7.6642 17 -1.05 8.000487 -0.9708 6.123 20.72503 

S14 0978 8.1474 18 -1.02605 8.024656 -0.94684 6.090772 20.61269 

S14 0979 8.5916 19 -1.03101 8.019646 -0.95181 5.99694 20.63597 

S14 0980 9.0169 20 -2.59586 6.440622 -2.51678 0.57286 27.97569 

S14 0981 9.5194 21 0.549028 9.614002 0.62836 2.763653 13.22499 

S14 0982 10.0412 22 -0.67586 8.378016 -0.59663 2.272274 18.97018 

S14 0983 10.7966 23 -1.1508 7.898773 -1.0716 5.59751 21.19782 

S14 0984 11.2798 24 -0.17581 8.882595 -0.09654 4.518083 16.62476 

S14 0985 11.6858 25 -4.5206 4.498447 -4.44167 3.875319 37.00342 

S14 0986 12.2076 26 -0.64572 8.408431 -0.56648 5.020179 18.8288 

S14 0987 12.8066 27 0.969268 10.03805 1.048633 4.815547 11.25391 

S14 0988 13.2319 28 0.563 9.628101 0.642333 4.756 13.15946 

S14 0989 13.6567 29 0.0554 9.115902 0.134692 5.014 15.54029 

S14 0990 14.1974 30 -0.88557 8.166406 -0.80635 5.09105 19.9538 

 

 

D9.206.152 Lahillia 3.5 

SIRA_Number Distance Number d18OCalcite d18O_Raw d18O d13C TMollusc 

S13 2153 0 1 1.07 10.13969 1.149373 -2.02 10.78144 

S13 2152 0.5998 2 1.05 10.11951 1.129371 -1.13 10.87525 

S13 2151 1.1991 3 1.02 10.08924 1.099369 -1.38 11.01596 

S13 2150 1.6855 4 0.76 9.826886 0.839348 -0.98 12.23546 

S13 2157 2.1042 5 1.45 10.52314 1.529403 -1.99 8.9991 

S13 2149 2.6019 6 1.4 10.47268 1.479399 -12.01 9.233619 

S13 2148 3.1447 7 0.02 9.080181 0.09929 -13.17 15.70633 

S13 2147 3.586 8 1.4 10.47268 1.479399 -11.74 9.233619 

S13 2146 4.0042 9 1.24 10.31123 1.319386 -10.77 9.984078 

S13 2145 4.3786 10 1.19 10.26078 1.269382 -8.19 10.2186 

S13 2144 4.7968 11 1.22 10.29105 1.299385 -7.6 10.07789 

S13 2143 5.2606 12 1.2 10.27087 1.279383 -5.09 10.17169 

S13 2142 5.6567 13 1.29 10.36169 1.36939 -2.83 9.74956 

S13 2158 6.1889 14 1.19 10.26078 1.269382 -0.8 10.2186 

S13 2141 6.449 15 1.23 10.30114 1.309386 -11.45 10.03098 

S13 1993 10.2179 23 0.894253 9.962355 0.973612 -9.38581 11.60576 

S13 1994 10.8508 24 0.690489 9.756745 0.769832 -10.8004 12.56149 

S13 1995 11.3086 25 0.936671 10.00516 1.016034 -9.72593 11.4068 

S13 1996 11.6363 26 0.922884 9.991246 1.002246 -8.33236 11.47147 

S13 1997 12.0099 27 0.949093 10.01769 1.028456 -7.17557 11.34854 

S13 1998 12.4168 28 0.845314 9.912973 0.924669 -6.56017 11.8353 

S13 1999 12.7447 29 0.851525 9.919239 0.93088 -6.98657 11.80617 

S13 2000 13.0613 30 0.877733 9.945686 0.957091 -7.1568 11.68324 
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S13 2001 13.389 31 0.80637 9.873676 0.885722 -5.59696 12.01796 

S13 2002 13.8524 32 0.832579 9.900122 0.911933 -4.19401 11.89504 

S13 2003 14.1577 33 0.778792 9.845848 0.858141 -2.64923 12.14732 

S13 2004 14.4628 34 1.114986 10.18509 1.194363 -0.00462 10.57044 

S13 2005 14.8471 35 0.971204 10.04 1.050569 -3.55091 11.24483 

S13 2006 15.1183 36 0.977415 10.04627 1.05678 -8.00125 11.2157 

S13 2007 15.5596 37 0.953626 10.02227 1.03299 -9.06876 11.32728 

S13 2008 15.8655 38 0.79984 9.867086 0.879191 -8.29113 12.04859 

S13 2009 16.2955 39 0.926047 9.994437 1.005409 -6.15311 11.45663 

S13 2010 16.7137 40 0.862258 9.93007 0.941615 -5.05746 11.75583 

S13 2011 16.9738 41 0.810887 9.878234 0.890239 -5.67078 11.99678 

S13 2012 17.3699 42 0.937098 10.00559 1.016461 -6.00492 11.4048 

S13 2013 17.8224 43 0.873307 9.941219 0.952664 -4.62031 11.70401 

S13 2014 18.1503 44 1.019521 10.08876 1.098889 -0.8348 11.01821 

S13 2015 18.4788 45 0.945728 10.0143 1.025091 -6.96275 11.36432 

S13 2016 18.8862 46 0.971939 10.04074 1.051304 -11.0714 11.24138 

S13 2017 19.3839 47 0.968149 10.03692 1.047514 -10.9838 11.25916 

S13 2018 19.8925 48 0.934357 10.00282 1.013719 -10.4242 11.41766 

 

 

D9.207.1 Lahillia 18.9 

SIRA_Number Distance Number d18OCalcite d18O_Raw d18O d13C TMollusc 

S12 2151 0 1 -0.18 8.878369 -0.10073 -3.04 16.64441 

S12 2152 0.4693 2 -0.29 8.767373 -0.21074 -7.81 17.16035 

S12 2153 0.9083 3 -0.23 8.827916 -0.15073 -7.64 16.87892 

S12 2154 1.3171 4 -0.26 8.797644 -0.18073 -6.76 17.01964 

S12 2155 1.7132 5 -0.25 8.807735 -0.17073 -6.96 16.97273 

S12 2156 2.1649 6 -0.28 8.777463 -0.20073 -6.75 17.11344 

S12 2157 2.6771 7 -0.48 8.575651 -0.40075 -5.46 18.05152 

S12 2158 3.2196 8 -0.58 8.474745 -0.50076 -3.44 18.52055 

S12 2159 3.7874 9 -0.51 8.545379 -0.43075 -1.59 18.19223 

S12 2160 4.2138 10 -0.51 8.545379 -0.43075 -0.36 18.19223 

S12 2161 4.6831 11 -0.05 9.009547 0.029284 0.36 16.03466 

S12 2162 5.1953 12 -0.33 8.72701 -0.25074 -2.11 17.34796 

S12 2163 5.7075 13 -0.32 8.737101 -0.24074 -6.29 17.30106 

S12 2164 6.2197 14 -0.28 8.777463 -0.20073 -6.87 17.11344 

S12 2165 6.9338 15 -0.28 8.777463 -0.20073 -7.23 17.11344 

S12 2166 7.5494 16 -0.33 8.72701 -0.25074 -6.3 17.34796 

S12 2167 8.049 17 -0.4 8.656376 -0.32074 -5.28 17.67629 

S12 2168 8.6168 18 -0.42 8.636195 -0.34075 -4.35 17.7701 

S12 2169 9.2451 19 -0.51 8.545379 -0.43075 -1.36 18.19223 

S12 2170 9.7144 20 -0.47 8.585742 -0.39075 1.71 18.00461 

S12 2171 10.5622 21 -0.36 8.696738 -0.28074 -1.39 17.48867 

S12 2172 11.2939 22 -0.42 8.636195 -0.34075 -4.44 17.7701 

S12 2173 12.013 23 -0.67 8.38393 -0.59077 -2.44 18.94269 

S12 2174 12.5681 24 -0.74 8.313296 -0.66077 -1.42 19.27101 

S13 1992 12.9925 25 -0.77174 8.281269 -0.69251 -0.96266 19.41988 

S13 2020 13.5535 26 -0.60333 8.451207 -0.52409 -4.6642 18.62997 

S13 2051 13.8013 27 -0.41759 8.638628 -0.33833 -3.95609 17.75879 

S13 2052 14.1458 28 -0.56782 8.487035 -0.48858 -1.7688 18.46343 

S13 2053 14.2963 29 -0.59807 8.456515 -0.51883 0.949521 18.6053 

S13 2054 14.927 30 -0.32835 8.728673 -0.24909 2.127351 17.34023 
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S13 2055 15.885 31 -0.59857 8.456009 -0.51933 -3.8574 18.60764 

S13 2056 16.5417 32 -0.36885 8.68781 -0.28959 -3.33102 17.53017 

S13 2057 17.0344 33 -0.85904 8.193182 -0.77982 -1.00382 19.82933 

S13 2058 17.4449 34 -0.69931 8.354358 -0.62007 -0.92455 19.08015 

S13 2059 18.1979 35 -0.55957 8.495355 -0.48033 -0.04198 18.42475 

S13 2060 18.5673 36 -0.61982 8.434567 -0.54058 -0.10509 18.70731 

S13 2061 19.0599 37 -0.51058 8.544791 -0.43134 1.290309 18.19497 

S13 2062 19.3475 38 -0.40085 8.65552 -0.32159 1.424779 17.68027 

S13 2160 19.6895 39 0.55 9.614983 0.629332 -0.79 13.22043 

S13 2063 20.4148 40 -0.15113 8.907499 -0.07186 -2.73682 16.509 

S13 2064 20.921 41 -0.47134 8.58439 -0.39209 -3.49744 18.0109 

S13 2065 21.489 42 -0.79155 8.26128 -0.71232 -3.43405 19.5128 

S13 2066 21.9544 43 -0.54183 8.513259 -0.46259 -3.60395 18.34153 

S13 2067 22.4538 44 -0.50209 8.553363 -0.42284 -3.22098 18.15512 

S13 2068 22.7961 45 -0.56233 8.492575 -0.48309 -3.15567 18.43768 

S13 2069 23.3023 46 -0.35261 8.704197 -0.27335 -1.76179 17.454 

S13 2159 23.9592 47 0.59 9.655345 0.669335 -1.34 13.03282 

S13 2070 24.6455 48 -0.7928 8.260017 -0.71358 -3.04273 19.51867 

S13 2071 25.2772 49 -0.81355 8.23908 -0.73433 -1.94259 19.61599 

S13 2072 25.7563 50 -0.8338 8.218649 -0.75458 -0.50885 19.71096 

S13 2073 26.2655 51 -0.72406 8.329378 -0.64483 0.492442 19.19626 

S13 2074 26.7452 52 -0.75431 8.298857 -0.67508 1.220223 19.33813 

 

 

D9.211.457-480 Cucullaea 99.3 

SIRA_Number Distance Number d18OCalcite d18O_Raw d18O d13C TMollusc 

S14 1951 0 1 0.115361 9.176407 0.194659 3.358187 15.25905 

S14 1952 0.6261 2 0.098988 9.159885 0.178284 3.863544 15.33585 

S14 1953 1.3038 3 -0.21743 8.840597 -0.13816 3.28754 16.81998 

S14 1954 2.0868 4 0.026229 9.086466 0.105519 3.580784 15.67712 

S14 1955 2.6678 5 0.029853 9.090123 0.109143 4.010543 15.66012 

S14 1956 3.1494 6 0.063482 9.124057 0.142775 4.043358 15.50238 

S14 1957 3.9288 7 -0.15295 8.905665 -0.07367 3.945515 16.51753 

S14 1958 4.6486 8 -0.20935 8.848754 -0.13008 3.146743 16.78206 

S14 1959 5.3426 9 -0.05569 9.003805 0.023593 3.978028 16.06135 

S14 1960 6.1241 10 0.127984 9.189143 0.207282 4.722682 15.19985 

S14 1961 6.7922 11 0.018795 9.078965 0.098084 6.347573 15.71198 

S14 1962 7.4396 12 -0.31773 8.739391 -0.23847 5.900677 17.29041 

 

 

DJ.952.523 Lahillia -137.45 

SIRA_Number Distance Number d18OCalcite d18O_Raw d18O d13C TMollusc 

S14 1911 0 1 1.4608 10.53403 1.540203 0.766528 8.948446 

S14 1912 0.7097 2 1.445927 10.51903 1.52533 0.590219 9.018204 

S14 1913 0.984 3 1.781027 10.85716 1.860456 0.166625 7.446461 

S14 1914 1.3944 4 1.416182 10.48901 1.495582 -0.44736 9.157721 

G14 1591 1.7493 5 1.5007 10.5743 1.580107 -0.4924 8.761298 

G14 1592 2.0496 6 1.606 10.68055 1.685415 -0.712 8.267402 

G14 1593 2.4591 7 1.6345 10.70931 1.713918 -0.6412 8.133727 

G14 1594 3.1694 8 1.435 10.508 1.514402 -0.2966 9.069456 

G14 1596 4.4803 10 1.5318 10.60568 1.611209 0.3782 8.615428 

G14 1598 6.2009 12 1.2472 10.3185 1.326587 0.5092 9.950308 
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G14 1599 6.8839 13 1.3983 10.47097 1.477699 0.3844 9.241592 

G14 1550 7.3488 14 1.3804 10.45291 1.459797 0.3792 9.32555 

G14 0691 7.6503 15 1.5612 10.63534 1.640612 0.4622 8.477531 

G14 0692 7.979 16 1.868 10.94492 1.947436 0.6196 7.038525 

G14 0693 8.4166 17 2.0454 11.12393 2.12485 0.5052 6.206453 

G14 0694 9.074 18 1.8628 10.93968 1.942236 0.2912 7.062915 

G14 0695 9.5934 19 1.7318 10.80749 1.811225 0.343 7.677353 

G14 0696 10.2764 20 1.6286 10.70336 1.708017 0.551 8.1614 

G14 0697 10.823 21 1.6388 10.71365 1.718218 0.3714 8.113558 

G14 0698 11.4242 22 1.6324 10.70719 1.711817 0.308 8.143576 

G14 0699 12.136 23 1.6888 10.7641 1.768222 0.271 7.879039 

G14 0700 12.873 24 1.589 10.6634 1.668414 0.4438 8.347138 

G14 0701 13.5833 25 1.9668 11.04462 2.046244 0.8346 6.575116 

G14 0702 14.43 26 1.7866 10.86279 1.86603 0.466 7.420321 

G14 0703 15.0033 27 1.7312 10.80688 1.810625 0.0866 7.680168 

G14 1631 15.1159 28 1.3354 10.4075 1.414794 -0.0708 9.536617 

G14 1632 15.4435 29 1.5196 10.59337 1.599008 0.1096 8.67265 

G14 1633 15.8811 30 1.531 10.60487 1.610409 0.1796 8.61918 

G14 1634 16.5143 31 1.533 10.60689 1.61241 0.3708 8.609799 

G14 1635 17.1475 32 1.4402 10.51325 1.519602 0.3378 9.045066 

G14 1636 17.6116 33 1.4594 10.53262 1.538804 0.4956 8.955011 

G14 1637 18.0765 34 1.6064 10.68095 1.685815 0.4872 8.265526 

G14 1638 18.6231 35 1.54 10.61395 1.61941 0.4656 8.576967 

G14 1639 19.2515 36 1.6038 10.67833 1.683215 0.4424 8.277721 

G14 1640 19.9633 37 1.3816 10.45412 1.460998 0.4496 9.319922 

G14 1641 20.512 38 1.9462 11.02383 2.025642 1.5108 6.671738 

G14 1642 20.9224 39 1.5738 10.64806 1.653213 0.668 8.418432 

 

 

DJ.953.335 Lahillia -48.25 

SIRA_Number Distance Number d18OCalcite d18O_Raw d18O d13C TMollusc 

S14 1081 0 1 1.162197 10.23273 1.241577 -8.99456 10.34901 

S14 1082 0.4854 2 -0.35141 8.705408 -0.27215 -10.0101 17.44837 

S14 1083 0.8428 3 1.374401 10.44685 1.453798 -4.85358 9.353689 

S14 1084 1.1987 4 1.190554 10.26134 1.269936 -7.51919 10.216 

S14 1085 1.7847 5 1.066694 10.13636 1.146067 -12.8942 10.79695 

S14 1086 2.465 6 1.192794 10.2636 1.272177 -11.9534 10.20549 

S14 1087 3.1476 7 1.15892 10.22942 1.2383 -12.409 10.36437 

S14 1088 3.73 8 1.245028 10.31631 1.324415 -9.2623 9.960496 

S14 1089 4.183 9 -0.50861 8.546784 -0.42936 -9.15679 18.1857 

S14 1090 4.7007 10 1.217273 10.2883 1.296657 -2.41639 10.09068 

S14 1930 4.9596 11 0.88843 9.956479 0.967788 -12.3252 11.63307 

S14 1931 5.6399 12 0.723791 9.790349 0.803136 -13.1821 12.40529 

S14 1932 6.1253 13 1.058925 10.12852 1.138297 -13.9697 10.83339 

S14 1915 7.1289 14 1.08133 10.15113 1.160704 -13.2525 10.7283 

S14 1916 7.5185 15 1.096454 10.16639 1.175829 -9.82317 10.65736 

S14 1917 8.0686 16 0.851592 9.919307 0.930948 -3.99829 11.80586 

S14 1918 8.554 17 0.976708 10.04556 1.056074 -6.2985 11.21901 

S14 1919 9.1688 18 0.841838 9.909465 0.921193 -12.6784 11.85161 

S14 1920 10.1072 19 0.826961 9.894454 0.906315 -12.6086 11.92138 

S14 1921 10.9485 20 0.852328 9.92005 0.931684 -9.62955 11.8024 

S14 1922 11.6604 21 1.057446 10.12703 1.136818 -10.5412 10.84032 



313 

 

S14 1923 12.4046 22 1.382564 10.45509 1.461962 -5.22767 9.315399 

S14 1924 13.1172 23 1.097693 10.16764 1.177068 -13.2724 10.65155 

S14 1925 13.8291 24 1.012817 10.08199 1.092185 -15.48 11.04965 

S14 1926 14.4763 25 0.687941 9.754174 0.767283 -15.8279 12.57344 

S14 1927 15.1267 26 1.053063 10.1226 1.132435 -15.1716 10.86088 

S14 1928 15.8393 27 1.198188 10.26904 1.277571 -5.6883 10.18019 

S14 1929 16.4226 28 1.08331 10.15313 1.162684 -18.138 10.71901 

 

 

DJ.953.456 Lahillia -48.25 

SIRA_Number Distance Number d18OCalcite d18O_Raw d18O d13C TMollusc 

S12 2501 0 1 1.08 10.14978 1.159374 -25.17 10.73454 

S12 2502 0.3358 2 1.06 10.1296 1.139372 -24.95 10.82835 

S12 2503 0.7248 3 1.13 10.20024 1.209378 -24.57 10.50002 

S12 2504 1.0414 4 1.08 10.14978 1.159374 -23.82 10.73454 

S12 2505 1.3853 5 1.13 10.20024 1.209378 -18 10.50002 

S12 2506 1.9917 6 1.06 10.1296 1.139372 -24.74 10.82835 

S12 2507 2.3899 7 0.99 10.05897 1.069366 -29.02 11.15667 

S12 2508 2.8968 8 0.97 10.03879 1.049365 -28.89 11.25048 

S12 2509 3.2859 9 0.9 9.968154 0.979359 -26.96 11.5788 

S12 2510 3.7657 10 0.84 9.90761 0.919355 -23.66 11.86023 

S12 2511 4.2634 11 0.88 9.947973 0.959358 -20.57 11.67261 

S12 2512 4.9334 12 0.94 10.00852 1.019363 -16.72 11.39119 

S12 2513 5.368 13 0.91 9.978245 0.98936 -17.95 11.5319 

S12 2514 5.9111 14 1.02 10.08924 1.099369 -15.42 11.01596 

S12 2515 6.3049 15 1.14 10.21033 1.219378 -10.7 10.45312 

S12 2516 6.9292 16 1.19 10.26078 1.269382 -28.4 10.2186 

S12 2517 7.3909 17 1.25 10.32133 1.329387 -33.9 9.937174 

S12 2518 7.8795 18 1.16 10.23051 1.23938 -33.4 10.35931 

S12 2519 8.3236 19 1.17 10.2406 1.249381 -31.66 10.3124 

S12 2520 8.8122 20 0.84 9.90761 0.919355 -28.4 11.86023 

S12 2521 9.2739 21 1.03 10.09933 1.10937 -25.44 10.96906 

S12 2522 9.7444 22 1.05 10.11951 1.129371 -23.67 10.87525 

S12 2523 10.1787 23 1.3 10.37178 1.379391 -21.59 9.702656 

S12 2524 10.6314 24 1.05 10.11951 1.129371 -16.17 10.87525 

S12 2525 11.0929 25 1 10.06906 1.079367 -20.94 11.10977 

S12 2526 11.4643 26 1.03 10.09933 1.10937 -30.53 10.96906 

S12 2527  27 1 10.06906 1.079367 -29.38 11.10977 

S12 2528 11.9529 28 1.04 10.10942 1.11937 -34.18 10.92215 

S12 2529 12.3465 29 1.16 10.23051 1.23938 -33.27 10.35931 

S12 2530 12.8622 30 0.99 10.05897 1.069366 -31.26 11.15667 

S12 2492 13.3418 31 0.9 9.968154 0.979359 -28.85 11.5788 

S12 2493 13.8395 32 0.88 9.947973 0.959358 -28.66 11.67261 

S12 2494 14.2466 33 0.99 10.05897 1.069366 -28.29 11.15667 

S12 2495 14.699 34 1.01 10.07915 1.089368 -27.99 11.06286 

S12 2496 15.2692 35 1.16 10.23051 1.23938 -13.07 10.35931 

S12 2497 15.7125 36 0.97 10.03879 1.049365 -27.93 11.25048 

S12 2631 16.17463 37 1.23 10.30114 1.309386 -26.71 10.03098 

S12 2632 16.63676 38 1.11 10.18006 1.189376 -23.75 10.59383 

S12 2633 17.0989 39 1.06 10.1296 1.139372 -21.01 10.82835 

S12 2634 17.56103 40 0.83 9.89752 0.909354 -17.67 11.90713 

S12 2635 18.02316 41 1.12 10.19015 1.199377 -17.25 10.54692 
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S12 2636 18.48529 42 1.22 10.29105 1.299385 -24.46 10.07789 

S12 2637 18.94743 43 1.05 10.11951 1.129371 -23.7 10.87525 

S12 2638 19.40956 44 1.02 10.08924 1.099369 -21.25 11.01596 

S12 2639 19.87169 45 1.04 10.10942 1.11937 -18.29 10.92215 

S12 2640 20.33382 46 1.09 10.15988 1.169374 -17.74 10.68763 

S12 2641 20.79596 47 0.98 10.04888 1.059366 -16.83 11.20357 

S12 2642 21.25809 48 1.04 10.10942 1.11937 -13.74 10.92215 

S12 2643 22.18235 49 1.14 10.21033 1.219378 -14.6 10.45312 

 

 

DJ.953.459 Cucullaea -48.25 

SIRA_Number Distance Number d18OCalcite d18O_Raw d18O d13C TMollusc 

S14 1950 0 1 0.984499 10.05342 1.063865 -2.53043 11.18248 

S14 1949 0.5786 2 1.290848 10.36254 1.370238 -2.67111 9.745582 

S14 1948 1.3483 3 1.077189 10.14695 1.156562 -1.9167 10.74772 

S14 1947 1.9288 4 0.983534 10.05244 1.0629 -1.90474 11.187 

S14 1946 2.4672 5 0.899882 9.968035 0.979241 -1.7968 11.57936 

S14 1945 3.0817 6 0.926224 9.994615 1.005585 -2.57014 11.45581 

S14 1944 3.5262 7 1.002557 10.07164 1.081925 -11.971 11.09777 

S14 1943 4.0848 8 1.018894 10.08813 1.098263 -12.8083 11.02115 

S14 1942 4.4436 9 1.015233 10.08443 1.094601 -6.80627 11.03832 

S14 1941 4.8079 10 1.061561 10.13118 1.140933 -11.4225 10.82102 

S14 1940 5.4057 11 0.489862 9.5543 0.569189 -22.8158 13.50251 

S14 1939 5.7596 12 1.284801 10.35644 1.364191 -21.103 9.773943 

S14 1938 6.3771 13 1.019659 10.0889 1.099028 -20.6281 11.01756 

S14 1937 6.8549 14 0.924531 9.992907 1.003892 -20.3194 11.46375 

S14 1936 7.3017 15 0.669394 9.735458 0.748735 -17.3295 12.66043 

S14 1935 7.6996 16 1.36431 10.43667 1.443707 -6.54717 9.401016 

S14 1934 8.2012 17 1.629199 10.70396 1.708616 -17.0402 8.15859 

S14 1933 8.5564 18 0.804037 9.871322 0.883389 -20.4746 12.02891 

 

 

DJ.953.746 Lahillia -1.75 

SIRA_Number Distance Number d18OCalcite d18O_Raw d18O d13C TMollusc 

S14 1079 0.6347 2 1.351251 10.42349 1.430646 1.148948 9.46227 

S14 1080 1.1667 3 1.308093 10.37994 1.387485 1.292343 9.664696 

G14 0641 1.4995 4 1.46 10.53323 1.539404 1.1 8.952196 

G14 0642 2.1342 5 1.59 10.66441 1.669414 1.31 8.342448 

G14 0643 2.641 6 1.57 10.64422 1.649412 1.4 8.436255 

G14 0644 3.049 7 1.48 10.55341 1.559405 1.52 8.858389 

G14 0645 3.7089 8 1.56 10.63413 1.639412 1.44 8.483159 

G14 0646 4.1925 9 1.6 10.6745 1.679415 1.39 8.295544 

G14 0647 4.4217 10 1.78 10.85613 1.859429 0.99 7.451277 

G14 0648 4.6748 11 1.81 10.8864 1.889432 0.94 7.310566 

G14 0649 5.3347 12 1.5 10.57359 1.579407 1.31 8.764582 

G14 0650 5.9441 13 1.51 10.58368 1.589408 1.32 8.717678 

G14 0651 6.3996 14 1.62 10.69468 1.699416 1.27 8.201737 

G14 0652 7.0075 15 1.47 10.54332 1.549405 1.37 8.905293 

G14 0653 7.5648 16 1.52 10.59377 1.599409 1.33 8.670774 

G14 0654 8.0734 17 1.54 10.61395 1.61941 1.47 8.576967 

G14 0655 8.7585 18 1.48 10.55341 1.559405 1.39 8.858389 

G14 0656 9.3175 19 1.55 10.62404 1.629411 0.99 8.530063 
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G14 0657 9.8261 20 1.5 10.57359 1.579407 1.25 8.764582 

G14 0658 10.3599 21 1.47 10.54332 1.549405 1.28 8.905293 

G14 0659 10.8161 22 1.37 10.44241 1.449397 1.19 9.37433 

G14 0660 11.247 23 1.38 10.4525 1.459397 1.08 9.327426 

G14 0661 11.5265 24 1.43 10.50296 1.509401 1.21 9.092908 

G14 0662 11.8817 25 1.53 10.60386 1.609409 1.19 8.62387 

G14 0663 12.1864 26 1.55 10.62404 1.629411 1.28 8.530063 

G14 0664 12.4407 27 1.45 10.52314 1.529403 1.27 8.9991 

G14 0665 12.7454 28 1.69 10.76531 1.769422 1.08 7.873411 

G14 0666 13.1511 29 1.69 10.76531 1.769422 0.94 7.873411 

G14 0667 13.5063 30 1.62 10.69468 1.699416 0.92 8.201737 

G14 0668 14.4177 31 1.5 10.57359 1.579407 1.21 8.764582 

G14 0669 14.8992 32 1.45 10.52314 1.529403 1.2 8.9991 

G14 0670 15.3807 33 1.57 10.64422 1.649412 1.28 8.436255 

G14 0671 16.0139 34 1.47 10.54332 1.549405 1.1 8.905293 

G14 0672 16.4701 35 1.36 10.43232 1.439396 1.29 9.421234 

G14 0673 17.105 36 1.51 10.58368 1.589408 1.53 8.717678 

G14 0674 17.5865 37 1.36 10.43232 1.439396 1.68 9.421234 

G14 0675 18.1203 38 1.48 10.55341 1.559405 1.32 8.858389 

G14 0676 18.526 39 1.56 10.63413 1.639412 1.04 8.483159 

G14 0677 19.0328 40 1.7 10.7754 1.779423 1.33 7.826507 

G14 0678 19.5666 41 1.62 10.69468 1.699416 0.9 8.201737 

G14 0679 20.1508 42 1.62 10.69468 1.699416 1.21 8.201737 

G14 0680 20.584 43 1.47 10.54332 1.549405 1.39 8.905293 

 

 

DJ.957.490 Cucullaea -233.75 

SIRA_Number Distance Number d18OCalcite d18O_Raw d18O d13C TMollusc 

S14 3090 0 1 0.202469 9.264303 0.281773 -2.54545 14.85049 

S14 3091 0.9619 2 0.46 9.524168 0.539324 -2.35 13.64257 

S14 3092 1.6858 3 0.504114 9.568681 0.583442 -2.23521 13.43566 

S14 3093 2.3546 4 0.416777 9.480553 0.496098 -2.14538 13.8453 

S14 3094 2.987 5 0.439423 9.503404 0.518746 -2.17697 13.73908 

S14 3095 3.7753 6 0.402079 9.465721 0.481398 -2.12093 13.91424 

S14 3096 4.6824 7 0.304742 9.367503 0.384054 -2.50161 14.37078 

 

 

DJ.959.93 Cucullaea -392.25 

SIRA_Number Distance Number d18OCalcite d18O_Raw d18O d13C TMollusc 

S14 1976 0 1 -1.94545 7.096923 -1.86632 -1.97013 24.92503 

S14 1977 0.6403 2 0.722694 9.789241 0.802039 -0.28059 12.41044 

S14 1978 1.348 3 0.970711 10.03951 1.050076 -0.69252 11.24715 

S14 1979 2.0087 4 0.758695 9.825569 0.838043 -0.28623 12.24158 

S14 1980 2.7844 5 0.626683 9.692361 0.706021 -3.06127 12.86076 

S14 1981 3.4138 6 0.370649 9.434007 0.449967 -0.26057 14.06166 

S14 1982 3.9597 7 0.058608 9.119139 0.137901 -0.24689 15.52525 

S14 1983 4.7198 8 0.716685 9.783178 0.796029 0.258431 12.43862 

S14 1984 5.4118 9 0.644673 9.710514 0.724012 0.264003 12.77638 

S14 1985 6.1065 10 0.682676 9.748861 0.762018 -0.00171 12.59813 

S14 1986 6.6524 11 2.760987 11.846 2.840494 -0.48621 2.850084 

S14 1987 7.3315 12 0.768685 9.83565 0.848034 -0.20169 12.19472 
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D5.220.1229.2 Cucullaea -122 

SIRA_Number Distance Number d18OCalcite d18O_Raw d18O d13C TMollusc 

S14 3105 0 1 -0.666 8.387963 -0.58677 -0.53925 18.92394 

S14 3106 0.5968 2 -0.33339 8.723585 -0.25413 -0.45291 17.36388 

S14 3107 1.1646 3 -0.45073 8.605182 -0.37148 -0.57608 17.91425 

S14 3108 1.8399 4 -0.16812 8.890359 -0.08884 -0.38103 16.58867 

S14 3109 2.4728 5 -0.36545 8.69124 -0.28619 -0.84395 17.51423 

S14 3110 3.2524 6 -0.47279 8.582926 -0.39354 -0.52871 18.0177 

S14 3111 3.7521 7 -0.58484 8.469863 -0.5056 -0.67092 18.54325 

S14 3112 4.3801 8 -0.27222 8.785313 -0.19295 -0.29496 17.07696 

 

 

D5.218.1011.2 Cucullaea -378.5 

SIRA_Number Distance Number d18OCalcite d18O_Raw d18O d13C TMollusc 

S14 3084 0 1 1.103191 10.17319 1.182567 -11.3302 10.62576 

S14 3085 0.03399 2 0.929371 9.997791 1.008732 -13.7665 11.44105 

S14 3083 0.14399 3 -0.02436 9.03542 0.054926 -10.6544 15.91439 

S14 3082 0.18124 4 0.461747 9.525931 0.541072 -10.0417 13.63437 

S14 3081 0.25238 5 -0.06203 8.997412 0.017257 -9.78001 16.09106 

S14 3080 0.34042 6 0.376409 9.439819 0.455727 -11.0642 14.03464 
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Dataset B.3: Morphometric Data: Lahillia External Shells 

Collection Station /Section Full Code KPBHeight L H W 

Cambridge 957 DJ.957.408 -265.25 47.64 40.61  

Cambridge 951 DJ.951.15 -199.75 87.77 78.05 62.25 

Cambridge 952 DJ.952.517 -137.45  77.08 45.78 

Cambridge 952 DJ.952.518 -137.45   51.80 

Cambridge 952 DJ.952.520 -137.45   55.43 

Cambridge 952 DJ.952.521 -137.45 37.12 30.03  

Cambridge 952 DJ.952.522 -137.45  73.30 49.76 

Cambridge 952 DJ.952.523 -137.45 78.44 69.74 49.77 

Cambridge 952 DJ.952.527 -137.45   58.53 

Cambridge 952 DJ.952.578 -128.2 82.85 70.06 45.78 

Cambridge 952 DJ.952.579 -128.2 78.50 71.10  

Cambridge 952 DJ.952.580 -128.2   49.50 

Cambridge 952 DJ.952.581 -128.2 89.12 71.37 49.42 

Cambridge 952 DJ.952.582 -128.2 97.23 90.13 64.80 

Cambridge 952 DJ.952.583 -128.2   53.22 

Cambridge 952 DJ.952.584 -128.2 83.40 71.63 51.73 

Cambridge 952 DJ.952.585 -128.2  72.06 43.38 

Cambridge 952 DJ.952.586 -128.2 71.31 62.90 44.22 

Cambridge 952 DJ.952.587 -128.2 81.97 73.65 50.20 

Cambridge 952 DJ.952.588 -128.2  75.40 52.66 

Cambridge 952 DJ.952.589 -128.2 87.55 79.98 53.56 

Cambridge 952 DJ.952.591 -128.2 82.82 74.66 49.94 

Cambridge 952 DJ.952.592 -128.2 81.68 67.77 46.89 

Cambridge 952 DJ.952.593 -128.2  63.67 42.88 

Cambridge 952 DJ.952.673 -117   42.69 

Cambridge 953 DJ.953.87 -76  73.39 56.21 

Cambridge 953 DJ.953.171 -64.75 78.36 72.62 53.93 

Cambridge 953 DJ.953.208 -53.5 71.92 65.18 50.08 

Cambridge 953 DJ.953.209 -53.5   64.87 

Cambridge 953 DJ.953.332 -48.25 71.30  53.56 

Cambridge 953 DJ.953.335 -48.25 93.88 80.76 56.45 

Cambridge 953 DJ.953.451 -48.25 86.67 73.03 58.81 

Cambridge 953 DJ.953.454 -48.25 78.51 68.47 49.56 

Cambridge 953 DJ.953.455 -48.25  67.98 58.72 

Cambridge 953 DJ.953.456 -48.25 86.50 78.82 55.02 

Cambridge 205 D9.205.297 -8.85   45.14 

Cambridge 953 DJ.953.697 -4.5   54.42 

Cambridge 953 DJ.953.699 -4.5   45.90 

Cambridge 953 DJ.953.741 -1.75 60.00 53.88 39.93 

Cambridge 953 DJ.953.744 -1.75 73.56 76.37 54.80 

Cambridge 953 DJ.953.746 -1.75  71.18 52.18 

Cambridge 953 DJ.953.747 -1.75 71.32 65.34 48.05 

Cambridge 953 DJ.953.748 -1.75   46.66 

Cambridge 206 D9.206.12 -1.5 75.41   

Cambridge 953 DJ.953.795 2.5  83.63  

Cambridge 206 D9.206.169 3.5   11.99 

Cambridge 953 DJ.953.810 4.125   61.90 

Cambridge 953 DJ.953.811 4.125   64.19 

Cambridge 953 DJ.953.812 4.125  84.22 62.27 

Cambridge 953 DJ.953.813 4.125  82.74 61.74 
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Cambridge 953 DJ.953.814 4.125  72.17 55.41 

Cambridge 953 DJ.953.815 4.125  78.03 62.40 

Cambridge 953 DJ.953.816 4.125   71.36 

Cambridge 953 DJ.953.817 4.125  89.00 66.36 

Cambridge 953 DJ.953.818 4.125  88.81 67.91 

Cambridge 953 DJ.953.819 4.125   65.55 

Cambridge 953 DJ.953.825 8.25 96.68 82.64 64.95 

Cambridge 953 DJ.953.826 8.25 94.20 89.02 63.50 

Cambridge 953 DJ.953.827 8.25 103.44 90.09 65.29 

Cambridge 953 DJ.953.828 8.25 87.60 80.47 57.91 

Cambridge 953 DJ.953.829 8.25 110.14 98.76 72.98 

Cambridge 206 D9.206.183 10  52.74 40.00 

Cambridge 953 DJ.953.934 29.25 47.65 42.10 30.28 

Cambridge 953 DJ.953.941 29.25   60.60 

Cambridge 953 DJ.953.943 29.25   63.99 

Cambridge 953 DJ.953.944 29.25   73.21 

Cambridge 953 DJ.953.946 29.25 97.85 79.09 57.89 

Cambridge 953 DJ.953.947 29.25 75.72 76.70 53.75 

Cambridge 953 DJ.953.948 29.25 89.55 79.70 59.47 

Cambridge 953 DJ.953.1033 29.25 57.44 51.80 37.53 

Cambridge 953 DJ.953.1035 29.25 47.07 39.85 27.82 

Cambridge 953 DJ.953.1036 29.25 56.17 51.25 36.30 

Cambridge 953 DJ.953.1037 29.25 51.71 47.74 33.82 

Cambridge 953 DJ.953.1038 29.25 55.27 59.90 41.58 

Cambridge 953 DJ.953.1039 29.25 59.30 50.75 36.24 

Cambridge 953 DJ.953.1040 29.25 67.06 53.81 34.69 

Cambridge 953 DJ.953.1078 29.25  98.61  

Cambridge 953 DJ.953.1079 29.25 102.99 91.78 71.54 

Cambridge 953 DJ.953.1080 29.25   72.80 

Cambridge 953 DJ.953.1081 29.25   65.00 

Cambridge 953 DJ.953.1087 29.25  78.33 55.75 

Cambridge 207 D9.207.117 42.5 59.42 48.18 33.82 

Cambridge 953 DJ.953.1088 51 98.06 90.45 71.21 

Cambridge 953 DJ.953.1089 51 103.41 85.65  

Cambridge 953 DJ.953.1090 51 107.67 91.53 70.77 

Cambridge 953 DJ.953.1092 51 87.12 71.04 52.11 

Cambridge 953 DJ.953.1092 51 84.10 72.75 51.79 

Cambridge 953 DJ.953.1093 51 96.55 82.00 57.26 

Cambridge 953 DJ.953.1094 51 94.11 85.64 59.56 

Cambridge 953 DJ.953.1095 51 86.41 73.33 52.77 

Cambridge 953 DJ.953.1096 51 75.60 69.75 47.25 

Cambridge 953 DJ.953.1097 51 84.06 68.91 47.58 

Cambridge 953 DJ.953.1098 51 87.46 77.37  

Cambridge 953 DJ.953.1099 51   39.29 

Cambridge 953 DJ.953.1100 51 64.34 54.15 40.16 

Cambridge 953 DJ.953.1101 51 69.30 61.46 43.37 

Cambridge 953 DJ.953.1102 51 69.00 61.06 46.11 

Cambridge 953 DJ.953.1103 51 59.42 53.45 39.51 

Cambridge 953 DJ.953.1104 51 63.82 56.27 38.87 

Cambridge 953 DJ.953.1105 51 57.86 51.67 40.95 

Cambridge 953 DJ.953.1106 51  49.18 33.02 

Cambridge 953 DJ.953.1107 51  50.69 37.67 

Cambridge 953 DJ.953.1108 51  41.42 28.78 
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Cambridge 953 DJ.953.1175 51  47.96 36.50 

Cambridge 953 DJ.953.1176 51 45.03 39.00 24.46 

Cambridge 953 DJ.953.1195 60.75 97.45 82.92  

Cambridge 953 DJ.953.1200 60.75 55.80 49.48 36.76 

Cambridge 953 DJ.953.1201 60.75  90.85 70.64 

Cambridge 209 D9.209.284 76.1   59.62 

Cambridge 209 D9.209.451 121.8 49.51 40.67  

Cambridge 211 D9.211.330 123.3   21.00 

Cambridge 211 D9.211.331 123.3 62.16 50.52  

Cambridge 211 D9.211.333 123.3 66.21 53.17  

Cambridge 209 D9.209.721 141.3  57.99  

Cambridge 209 D9.209.732 157.8    

Cambridge 209 D9.209.782 174.3 43.10 36.81 24.87 

Cambridge 209 D9.209.783 174.3 46.25 41.37 28.91 

Cambridge 209 D9.209.872 190.8  55.51 39.46 

Cambridge 209 D9.209.875 190.8    

Cambridge 209 D9.209.877 190.8 56.27   

Cambridge 209 D9.209.957 203.55 42.09 39.65 28.84 

Cambridge 209 D9.209.959 203.55 62.60 49.70  

Cambridge 209 D9.209.960 203.55  57.65  

Cambridge 209 D9.209.1021 218.55 71.91  40.51 

Cambridge 209 D9.209.1025 218.55  41.91  

Ithaca 477 62030  92.21 87.41 66.29 

Ithaca 1133 62025  100.74 100.11 78.56 

Ithaca 1134 62017  99.39 92.88 72.83 

Ithaca 1134 62017  91.61 89.30  

Ithaca 1134 62017  120.79   

Ithaca 1134 62017  97.03   

Ithaca 1134 62017  93.19   

Ithaca 1135 62028  94.62 87.27  

Ithaca 1135 62028  63.28   

Ithaca 1135 62028  69.05   

Ithaca 1135 62018  95.79 92.77 74.40 

Ithaca 1135 62018  66.50 57.75 42.31 

Ithaca 1135 62018  100.80 96.96 77.00 

Ithaca 1135 62018  81.64 73.29 52.63 

Ithaca 1135 62018  50.83 45.74  

Ithaca 1135 62018  63.78 55.22  

Ithaca 1430 60944  68.52 59.47 44.77 

Ithaca 1430 60944  65.18 53.10 39.73 

Ithaca 1430 60944  50.56 50.48 35.11 

Ithaca 1430 60944  47.18 41.06 28.73 

Ithaca 1430 60944  56.29 48.11  

Ithaca 1430 60944  57.95 49.53  

Ithaca 1473 61778   61.04 43.66 

Ithaca 1501 61737  53.38 47.90 31.54 

Ithaca 1430 (4458) 65729  54.67 48.51  

Ithaca PU 1532 61788  52.80   

Ithaca PU 477 (4346) 58774   79.15 57.33 

Ithaca PU 477 (4346) 58774   72.78 55.90 

Ithaca PU 477 (4346) 58774  97.50 87.25 61.53 

Ithaca PU 477 (4346) 58774   85.46 66.87 

Ithaca PU 477 (4346) 58774  85.44 77.40 54.41 
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Ithaca PU 477 (4346) 58774  95.10 86.18 68.33 

Ithaca PU 477 (4346) 58774   84.09 60.29 

Ithaca PU 477 (4346) 58774   79.46 61.33 

Ithaca PU 477 (4346) 58774  93.46 84.56 69.03 

Ithaca PU 477 (4346) 58774  89.75 85.16 68.25 

Ithaca PU 477 (4346) 58774   80.67 61.32 

Ithaca PU 477 (4346) 58774  88.24 82.27 58.78 

Ithaca 40 58499  90.05 81.41 60.29 

Ithaca 189 58451  52.75  37.93 

Ithaca 360 58185  62.83 57.60 40.67 

Ithaca 1119 58784  96.61 85.03 67.21 

Ithaca 1406 60879  27.28 23.90 19.91 

Ithaca 1499 60631  50.37 43.46 31.19 

Ithaca K - 119 58613  56.81   

Ithaca K - 119 58610  68.90 62.00 44.94 

Ithaca Z - 40 58592  81.96 71.57 52.45 

Ithaca 9 58840  61.24 50.71 37.10 

Ithaca 9 58840  73.70   

Ithaca 9 58840  57.33   

Ithaca 9 58840  67.63   

Ithaca 9 58840  57.25   

Ithaca 746 62029  109.47 97.90  

Ithaca 746 62029  96.78 89.09  

Ithaca 746 62029  84.25 73.31  

Ithaca 1192 62277  61.22 52.01  

Ithaca 1510 60614  95.10 82.60 64.70 

Ithaca 1414 (4743) 60890  94.84 83.27 56.47 

Ithaca 19 59408  89.08 72.48 47.72 

Ithaca 19 59408  66.71 56.24 39.87 

Ithaca 1676 62905  88.45 73.55  

Ithaca IPS - 443V 59686  97.72 88.09  

Ithaca IPS - 460-V1 63574  104.16 87.18  

Ithaca 1161 58785  91.52 77.07 57.01 

Ithaca 1161 58785  81.90 69.99 53.20 

Ithaca 1523 60538  90.98 74.01 60.53 

Ithaca 1852   65.21 59.88 40.65 

Leeds 219 1179.2 -154.5   45.52 

Leeds 219 1179.2 -154.5  68.22  

Leeds 219 1182.2 -148.5  73.75  

Leeds 219 1182.2 -148.5   48.33 

Leeds 219 1185.2 -142.5   42.87 

Leeds 219 1185.2 -142.5  73.93 52.81 

Leeds 219 1185.2 -142.5 61.68  42.05 

Leeds 220 1202.2 -111.5 39.42 30.2  

Leeds 220 1214.2 -92.5 96.25 85.6 62.61 

Leeds 220 1214.2 -92.5  79.43  

Leeds 222  -59.5 84.57 77.88  

Leeds 229 1426.2 -33.5 104.56 100.6 86.53 

Leeds 222 1255.2 -20.5  54.46 45.4 

Leeds 229 1307.2 14.5 85.65 78.16 52.42 

Leeds 229 1313.2 17.5 107.52   

Leeds 229 1327.2 29.5 86.93 81.19 57.69 

Leeds 229 1327.2 29.5 85.9 81.91 63.26 
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Leeds 229 1327.2 29.5 90.65 85.97 60.21 

Leeds 229 1329.2 33.5  61.85  

Leeds 229 1333.3A 38.5 104.31 95.11 76.91 

Leeds 229 1343.2 46.5 92.48  60.88 

Leeds 229 1351.2 50.5 106.4 97.62  

Leeds 229 1355.2 52.5 87.35 87.35  

Leeds 229 1355.2 52.5 91.34 91.46 67.09 

Leeds 229 1353.2 52.5  87.82 61.51 

Leeds 229 1359.2 54.5  81.09 60.81 

Leeds 229 1359.2 54.5  85.28 63.86 

Leeds 229 1359.2 54.5  80.98  

Leeds 229 1359.2 54.5 93.03 81.31  

Leeds 229 1361.2 55.5    

Leeds 229 1361.2 55.5 95.14 88.65  

Leeds 229 1361.2 55.5 81.3 80.05 79.85 

Leeds 229 1361.2 55.5 56.64 50.19 36.2 

Leeds 229 1361.2 55.5 95.11 87.16 66.29 

Leeds 229 1361.2 55.5 95.37 85.61  

Leeds 229 1361.2 55.5 93.15 88.44 72.35 

Leeds 229 1361.2 55.5 53.43 43.63 30.91 

Leeds 229 1361.2 55.5  95.97 73.74 

Leeds 229 1361.2 55.5  80.08 64.56 

Leeds 229 1361.2 55.5 63.68 56.6 38.89 

Leeds 229 1363.2 56.5  82.65 59.47 

Leeds 229 1363.2 56.5 102.58 92.98 65.63 

Leeds 229 1375.2 62.5 80.84 78.46  

Leeds 229 1375.2 62.5 56.19  31.63 

Leeds 229 1375.2 62.5 70.64 68.09  

Leeds 229 1375.2 62.5 63.57 52.55 38.18 

Leeds 229 1375.2 62.5 62.07 51.32 38.91 

Leeds 229 1375.2 62.5  81.54  

Leeds 229 1375.2 62.5  84.8  

Leeds 229 1379.2 72.5   62.7 

Leeds 229 1379.2 72.5  83.35 65.26 

Leeds 229 1379.2 72.5 91.82 92.22 70.89 

Leeds 229 1379.2 72.5 86.61 81.88 58.17 

Leeds 230 1333.3A  88.2 85.85 68.1 

 

 

Dataset B.4: Morphometric Data Set: Lahillia Internal Moulds 

Collection Station/Section Full Code KPBHeight L H W 

Cambridge 952 DJ.952.526 -137.45 97.25 84.44 57.99 

Cambridge 952 DJ.952.528 -137.45 68.03 61.93 47.32 

Cambridge 952 DJ.952.530 -137.45 67.83 57.05 38.14 

Cambridge 952 DJ.952.670 -117  70.48 49.56 

Cambridge 952 DJ.952.670 -117    

Cambridge 952 DJ.952.671 -117   46.31 

Cambridge 952 DJ.952.672 -117  65.85 47.49 

Cambridge 952 DJ.952.674 -117  54.53 38.16 

Cambridge 952 DJ.952.711 -98.75 88.63 81.75  

Cambridge 952 DJ.952.712 -98.75 95.16 83.26 56.38 

Cambridge 952 DJ.952.713 -98.75 82.04 73.49 52.65 
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Cambridge 952 DJ.952.714 -98.75 81.4 70.95 47.61 

Cambridge 953 DJ.953.34 -84.25 83.75 72.73  

Cambridge 953 DJ.953.35 -84.25  53.92 41.02 

Cambridge 953 DJ.953.88 -76 84.02 73.14 51.45 

Cambridge 953 DJ.953.169 -64.75 61.53 55.1  

Cambridge 953 DJ.953.207 -53.5 87.88 72.63  

Cambridge 953 DJ.953.210 -53.5 84.13 76.08 55.18 

Cambridge 953 DJ.953.211 -53.5 69.95 59.65 46.72 

Cambridge 953 DJ.953.452 -48.25 79.02 69.6 53.48 

Cambridge 953 DJ.953.656 -17.5 68.63 64.18 42.49 

Cambridge 953 DJ.953.660 -17.5 71.28 61.5 46.95 

Cambridge 205 D9.205.249 -8.85 64.26 60.93 42.15 

Cambridge 205 D9.205.251 -8.85   43.22 

Cambridge 205 D9.205.252 -8.85 82.75   

Cambridge 205 D9.205.296 -8.85 68.83  50.31 

Cambridge 953 DJ.953.696 -4.5  62.32 46.8 

Cambridge 953 DJ.953.698 -4.5 70.62 62.38 46.08 

Cambridge 953 DJ.953.700 -4.5   45.24 

Cambridge 953 DJ.953.742 -1.75 42.23 36.83  

Cambridge 953 DJ.953.743 -1.75 83.22 68.58 49.16 

Cambridge 953 DJ.953.793 2.5 93.55 76.91 50.28 

Cambridge 953 DJ.953.794 2.5 74.27 67.92 50.68 

Cambridge 206 D9.206.151 3.5 78.18  46.39 

Cambridge 206 D9.206.181 10   74.19 

Cambridge 206 D9.206.185 10  75.02 61.75 

Cambridge 207 D9.207.2 18.9 53.58 43.44 29.14 

Cambridge 207 D9.207.3 18.9 56.18 45.62 29.68 

Cambridge 207 D9.207.4 18.9 60.53 50.6 35.41 

Cambridge 207 D9.207.5 18.9 33.28 29.4 19.4 

Cambridge 207 D9.207.53 18.9 36.1 29.53 20.57 

Cambridge 953 DJ.953.942 29.25 81.19  59.69 

Cambridge 953 DJ.953.945 29.25 95.11 87.39 62.57 

Cambridge 953 DJ.953.1031 29.25  45.14 33.21 

Cambridge 953 DJ.953.1034 29.25 47.73 45.11 28.88 

Cambridge 953 DJ.953.1082 29.25  72.96 47.29 

Cambridge 207 D9.207.55 30.15 101.21  61.13 

Cambridge 207 D9.207.129 42.5  50.45 35.31 

Cambridge 953 DJ.953.1173 51 56.71 50.74 36.18 

Cambridge 207 D9.207.178 55.25 69.85 58.43 42.41 

Cambridge 953 DJ.953.1198 60.75 58.57 49.21 33.74 

Cambridge 953 DJ.953.1199 60.75 59.15 56.16 34.3 

Cambridge 953 DJ.953.1292 69 94.5 89.81 69.13 

Cambridge 211 D9.211.456 99.3 76.06 60.69  

Cambridge 211 D9.211.332 123.3 62.85 56.16 38.13 

Cambridge 211 D9.211.139 136.8  41.12 26.94 

Cambridge 211 D9.211.41 138.3 64.97 54.23 35.4 

Cambridge 209 D9.209.611 141.3   43.06 

Cambridge 209 D9.209.612 141.3 76.95 64.48  

Cambridge 209 D9.209.733 157.8  42.99 27.97 

Cambridge 209 D9.209.1024 218.55  51.37  

Cambridge 209 D9.209.1123 273.3   70.44 

Cambridge 209 D9.209.1136 287.55   45.5 

Cambridge 209 D9.209.1138 287.55 94.46 88.08 66.63 
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Cambridge 210  351.8 34.2 24.5 15.35 

Cambridge 200 D9.200.9  77.3 67.17 48.44 

Cambridge 212 D9.212.31  110.46  58.4 

Leeds 220 1200.2 -111.5 79.87 71.38 40 

Leeds 220 1223.2A -80.5  78.7  

Leeds 222 1245.2 -38.5 82.96 76.26 55.4 

Leeds 229 1307.2 14.5 97.95 88.3 57.34 

Leeds 229 1307.2 14.5 91.69 81.32 52.68 

Leeds 229 1313.2 17.5 85.44 80.65  

Leeds 229 1313.2 17.5 100.01 86.96  

Leeds 229 1320.2 24.5 78.62 73.01 51.48 

Leeds 229 1320.2 24.5 83.48 76.85  

Leeds 229 1320.2 24.5 70.16 63.41  

Leeds 229 1320.2 24.5 79.36 75.01 57.08 

Leeds 229 1320.2 24.5 75.1 66.95 51.45 

Leeds 229 1320.2 24.5 91.36  62.38 

Leeds 229 1334.2 39.5 91.01 83.55  

Leeds 229 1351.2 50.5 57.47 49.7 35.22 

Leeds 229 1359.2 54.5 56.14  38.44 

Leeds 229 1359.2 54.5 83.7 80.82 60.21 

Leeds 229 1359.2 54.5 72.57 73.7  

Leeds 229 1361.2 55.5 92.45 75.46 54.95 

Leeds 229 1361.2 55.5 53.58 51.5 34.63 

Leeds 229 1363.2 56.5 79.55 76.99 78.38 

Leeds 229 1379.2 72.5 90.65 85.38 71.54 

 

 

Dataset B.5: Morphometric Data Set: Cucullaea External Shells 

Collection Section Specimen # KPBHeight L H to Plate H to Umbo W 

Cambridge 203 43 -8.85 27.74  19.37 15.76 

Cambridge 206 130 0.5 27.72 19.06   

Cambridge 206 189 10 45.84 29.85 36.5  

Cambridge 206 197 10 37.09 21.32   

Cambridge 207 62 30.15 46.35 26.82   

Cambridge 207 63 30.15 30.62 18.32 19.1  

Cambridge 207 165-170 55.25 47.47  35.51 29.85 

Cambridge 207 165-170 55.25 44.29  32.97  

Cambridge 207 165-170 55.25 38.06  28.63  

Cambridge 207 165-170 55.25 49.02  37.45  

Cambridge 209 730 157.8 46.01 26.8 31.9  

Cambridge 209 1027 273.3 56.8 37.84   

Cambridge 209 1028 273.3 48.4 34.98 39.66  

Cambridge 209 803-814 174.3 42.29 25.41 32.46 32.85 

Cambridge 209 803-814 174.3 44.82  32.06 30.7 

Cambridge 209 803-814 174.3 23.17 13.43 16.37  

Cambridge 209 878-883 190.8 11.96 6.26   

Cambridge 209 962-964 203.55 24.36 16.99 18.7  

Cambridge 209 962-964 203.55 24.22 16.88   

Cambridge 211 142 136.8 49.5 28.2 33.85 16.78 

Cambridge 211 143 136.8 50.49 31.48 38.47 35.02 

Cambridge 211 144 136.8 39.25 22.83 27.38 22.68 

Cambridge 211 145 136.8 50.45 30.73 37.76 17.48 
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Cambridge 211 146 136.8 41.06 29.44 34.11 27.42 

Cambridge 211 148 136.8 47.09 29.75 35.49 35.2 

Cambridge 211 149 136.8 60.22  38.75  

Cambridge 211 150 136.8 45.93 28.22 34.02  

Cambridge 211 151 136.8 31.9 18.79 22.07 21.32 

Cambridge 211 152 136.8 50.12 28.23 33.82 33.1 

Cambridge 211 154 136.8 42.05  34.95  

Cambridge 211 158 136.8 47.46 31.94 36.83 33.72 

Cambridge 211 159 136.8 46.25 27.01 32.71 29.2 

Cambridge 211 161 136.8 43.68 30.55 33.29  

Cambridge 211 164 136.8 31.8 20.57 23.74 15.88 

Cambridge 211 165 136.8 45.6 27.61 35.51 30.98 

Cambridge 211 356 123.3 11.88  8.04  

Cambridge 211 363 A-F 123.3 52.76 30.64 38.48  

Cambridge 211 363 A-F 123.3 49.16 27.69   

Cambridge 211 363 A-F 123.3 35.34  25  

Cambridge 211 363 A-F 123.3 26.26  19.45 15.68 

Cambridge 211 363 A-F 123.3 56.47 31.89   

Cambridge 211 94-98 138.3 49.82   35.4 

Cambridge 212 2748  72.31 53.5 64.84  

Cambridge 214 2  100.6 67.09 83.44  

Cambridge 214 4  83.53 56.79 66.05 56.72 

Cambridge 214 5  113.6 68.98  90.82 

Cambridge 214 7  76.76 51.22  47.06 

Cambridge 215 4-16  81.52 58.39 64.61  

Cambridge 215 4-16  96.3 63.66 71.72 71.1 

Cambridge 215 4-16  93.69 57.92 66.04 68.06 

Cambridge 215 4-16  100.6 62.83  74.9 

Cambridge 952 280 -165.5 67.55 41.51 60.23 62.24 

Cambridge 952 534 -137.45 31.98 22.16 27.68  

Cambridge 953 164 -64.75 63.52  48.64  

Cambridge 953 248 -53.5 70.21 47.28 59.17  

Cambridge 953 252 -53.5 35.54  27.23  

Cambridge 953 253 -53.5 26.11 19.07 22.8  

Cambridge 953 345 -48.25 67.11 38.32 54.3 61.42 

Cambridge 953 717 -4.5 29.94    

Cambridge 953 754 -1.75 59.26 38.92 45.51 46 

Cambridge 953 765 -1.75 35.63 21.84 26.19  

Cambridge 953 798 2.5 56.98 33.28   

Cambridge 953 822 4.125 48.1 29.14 38.36 41.72 

Cambridge 953 1145-1152 51 46.68 27.77 35.36  

Cambridge 953 1145-1152 51 41.24 26.7 30.39  

Cambridge 953 1145-1152 51 45.17 27.51 33.58 33.01 

Cambridge 953 1145-1152 51 45.65 27.82 36.39 33.56 

Cambridge 953 1145-1152 51 37.95 24.9   

Cambridge 953 1221-1237 60.75 43.06 30.83   

Cambridge 953 1221-1237 60.75 42.41   29 

Cambridge 953 1221-1237 60.75 27.28 17.27 19.67  

Cambridge 953 1221-1237 60.75 24.11 14.63 17.44  

Cambridge 953 866-882 29.25 52.42 31.71 39.24 41.28 

Cambridge 953 866-882 29.25 50.86 29.23 40.63 42.44 

Cambridge 953 866-882 29.25 54.38 33.48 42.1 43.9 

Cambridge 953 866-882 29.25 46.95 29.76 37.57 34.6 
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Cambridge 953 866-882 29.25 49.96 28.17 35.31 38 

Cambridge 953 866-882 29.25 50.02 27.65 34.32 36.8 

Cambridge 953 866-882 29.25 46.77 28 35.17 18.87 

Cambridge 953 866-882 29.25 42.82 27.64 33.86 42.44 

Cambridge 953 866-882 29.25 51.69 28.51 36.52  

Cambridge 953 866-882 29.25 47.89 28.35  17.18 

Cambridge 953 866-882 29.25 45.72 27.77 33.68 34.98 

Cambridge 953 883-893 29.25 42.08 25.69 33.96 37.48 

Cambridge 953 883-893 29.25 48.18 29.07 36.44 38 

Cambridge 953 883-893 29.25 49.93 26.96 35.44 40.54 

Cambridge 953 883-893 29.25 47.61 29.64 37.2 41 

Cambridge 953 883-893 29.25 53.58 31.82 38.42 41.22 

Cambridge 953 883-893 29.25 49.38 30.57 39.67 45.18 

Cambridge 953 883-893 29.25 44.32 24.94 30.31 35.64 

Cambridge 953 883-893 29.25 50.33 28.95 36.19 36.08 

Cambridge 953 894-896 29.25 54.06 28.77 33.9 37.55 

Cambridge 953 894-896 29.25 36.75 21.43 25.08 24.13 

Cambridge 957 41 -322.25 75.29  60.96  

Cambridge 957 409 -265.25 57.09 37.26 51.82 57.06 

Cambridge 957 486 -233.75 27.38 16.84 22.15 20.52 

Cambridge 957 495 -220.5 72.55  65.72  

Cambridge 957 536 -206.5 25.23 17.65 20.62  

Cambridge 959 87 -392.25 55.66 37.64 44.95 36.7 

Cambridge 959 92 -392.25 66.07 37.68 42.77 40.3 

Cambridge 959 95 -392.25 63.89 38.96 45.61  

Cambridge 959 142 -381.25 74.47 39.65 48.79 50.96 

Cambridge 959 183-186 -369.75 59.08 35.81 42.1 36.68 

Cambridge 959 183-186 -369.75 64.02 36.96 44.09 38.68 

Cambridge 959 190-194 -369.75 65 37.37 44.45 50.46 

Cambridge 959 190-194 -369.75 65.34 35.06 46.53 49.62 

Cambridge 959 190-194 -369.75 58.2 32.67 44.49 38.4 

Cambridge 959 96-99 -392.25 56.32 34.34 42.2 41.52 

Leeds 215 672.2 -423 74.95 48.47   

Leeds 219 1182.2 -149 70.18 46.12 57.8 57.97 

Leeds 229 1359.2 54.5 42.39 25.92 32.56 20.61 

 

 

Dataset B.6: Morphometric Data Set: Cucullaea Internal Moulds 

Collection Section Specimen # KPBHeight L H to Plate H to Umbo W 

Leeds 215 686.2 -408 62.86  40.96 26 

Leeds 215 332.2A -495 53.71 26.81  31.9 

Leeds 218 1027.2 -364 63.65 40.76  42 

Leeds 220 1226.2 65.5  35.12 45.89 50.2 

Leeds 229 1301 5.5  37.29 43.03 39.22 

Leeds 229 1301 5.5 56.96 23.78 30.74 35.62 

Leeds 215 672.2 -423 68.39 43.25 51.31 54.06 

 

 

Dataset B.7: Morphometric Data Set: Leionucula External Shells 

Collection Section Specimen # KPBHeight L H W 
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Cambridge 959 101-108 -392.25 42.07 30.6 23.89 

Cambridge 959 101-108 -392.25 44.17 32.3 24.4 

Cambridge 959 130 -381.25 44.38 30.67 24.89 

Cambridge 959 130-134 -381.25 38.58 30.44  

Cambridge 959 210-213 -369.75  28.23 21.59 

Cambridge 959 326-330 -347.5 35.83 26.42 18.82 

Cambridge 952 499-505 -146 26.19 21.06 15.24 

Cambridge 952 499-505 -146 29.93 17.54 14.6 

Cambridge 952 499-505 -146 24.26 18.72 16.16 

Cambridge 203 11 -8.85 31.16 22 15.27 

Cambridge 203 12 -8.85 30.64 22.87 14.7 

Cambridge 207 11 18.9 34.6 26.65 18.7 

Cambridge 207 24 18.9 31.63   

Cambridge 207 28 18.9 34.8 26.47  

Cambridge 207 47 18.9 37.53 26.53  

Cambridge 953 1066-1076 29.25 23.28 18.55 12.4 

Cambridge 953 1066-1076 29.25 20.31  10.28 

Cambridge 953 897-911 29.25 35.6 26.58 23.67 

Cambridge 953 897-911 29.25 34.45 28.88 21.48 

Cambridge 953 897-911 29.25 28.39 20.14 18.82 

Cambridge 953 912-914 29.25 36.42 27.35 20.34 

Cambridge 953 949-972 29.25 28 22.74 15.8 

Cambridge 953 949-972 29.25 31.59 24.75 17.49 

Cambridge 953 949-972 29.25 29.97 22.27 20.5 

Cambridge 953 949-972 29.25 33.97 26.17 18.46 

Cambridge 953 972-999 29.25 25.04 20.21 14.48 

Cambridge 953 972-999 29.25 24.41 20 13.1 

Cambridge 953 972-999 29.25 30.5 26.24 17.12 

Cambridge 953 972-999 29.25 31.37 21.89  

Cambridge 207 69 30.15 38.38 29.54  

Cambridge 207 110 42.5 26.4 16.89 13.49 

Cambridge 207 111 42.5 32.4 25.9  

Cambridge 207 112 42.5 35.52 25.95  

Cambridge 953 1110-1144 51 38.05 29.2 21.27 

Cambridge 953 1110-1144 51 31.82 22.72 18.85 

Cambridge 953 1110-1144 51 31.86 24.16  

Cambridge 953 1110-1144 51 32.31 23.91 18.84 

Cambridge 953 1110-1144 51 34.75 25 20.11 

Cambridge 953 1110-1144 51 36.04 27.32 22.45 

Cambridge 953 1110-1144 51 37.65  20.24 

Cambridge 953 1110-1144 51 28.85 21.9 13.7 

Cambridge 953 1110-1144 51 34.63 26.37  

Cambridge 953 1110-1144 51 33.26 24.05  

Cambridge 953 1110-1144 51 33.21 25.3  

Cambridge 207 136 55.25 39.33 30.39  

Cambridge 207 137 55.25 30.45 21.78  

Cambridge 207 138 55.25 31.59 21.77  

Cambridge 207 139 55.25 40.93   

Cambridge 207 140 55.25 37.83 27.99  

Cambridge 207 144 55.25 22.84 15.6  

Cambridge 207 154 55.25 31.95 22.97  

Cambridge 207 156 55.25 21.87 17.43  

Cambridge 207 157 55.25 32 23.82 17.67 
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Cambridge 953 1204-1220 60.75 36.17 26.86 20.04 

Cambridge 953 1204-1220 60.75 23.65 18.55  

Cambridge 953 1204-1220 60.75 32.31 22.32 18.54 

Cambridge 953 1204-1220 60.75 32.48 25.88 17.06 

Cambridge 953 1204-1220 60.75 24.56  20.72 

Cambridge 953 1204-1220 60.75 19.96 15.02 9.74 

Cambridge 953 1204-1220 60.75 32.35 23.5 19.22 

Cambridge 953 1204-1220 60.75 19.93 14.98 9.6 

Cambridge 953 1204-1220 60.75 23.54 17.87  

Cambridge 953 1204-1220 60.75 34.77 25.84 20.86 

Cambridge 953 1204-1220 60.75 35.5 26.88 18.2 

Cambridge 953 1204-1220 60.75 30.76 24.02 18.05 

Cambridge 953 1204-1220 60.75 31.71 24.78 17.26 

Cambridge 953 1204-1220 60.75 35.19 26.57 19.94 

Cambridge 207 223 64 31.71 25.28  

Cambridge 953 1310-1319 69 32.4  18.34 

Cambridge 953 1310-1319 69 36.45 24.88 19.43 

Cambridge 209 444-446 121.8 18.72 13.91 9.12 

Cambridge 211 366 123.3 28 21.34 12.95 

Cambridge 211 367 123.3 25.53 20.16 13.64 

Cambridge 211 370 123.3 23.69 18.33  

Cambridge 211 371 123.3 25.81 19.34 13.7 

Cambridge 211 386 123.3 24.88 17.99  

Leeds 215 667.2 -428  30.01 27.43 

Leeds 218 1066 -324 53.9 33.5 27.13 

Leeds 219 1185.2 -145 56.81 50 35.79 

Leeds 229 1336.2 41.5 18.18 12.34 11.87 

Leeds 229 1336.2 41.5 28.76 24.55 16.52 

Leeds 229 1336.2 41.5 25.56 23.55 14.57 

Leeds 229 1351.2 50.5 24.66 20.96 13.7 

Leeds 229 1351.2 50.5 24.93 23.87  

Leeds 229 1361.2 55.5 21.08 17.83  

Leeds 229 1361.2 55.5 37.46 31.31 22.66 

 

 

Dataset B.8: Morphometric Data Set: Leionucula Internal Moulds 

Collection Section Specimen # KPBHeight L H W 

Cambridge 959 101-108 -392.25 43.06 31.5 24.28 

Cambridge 959 101-108 -392.25 35.67 28.25 20.7 

Cambridge 959 101-108 -392.25 37.53 27.21  

Cambridge 959 130-134 -381.25 36.92 25.45 19.02 

Cambridge 959 130-134 -381.25 40.7 26.92  

Cambridge 959 130-134 -381.25 40.15 28.9  

Cambridge 959 210 -369.75 35.65 27.15 17.3 

Cambridge 959 210-213 -369.75 28.02 23.32 14.5 

Cambridge 959 326-330 -347.5 38.22 28.49 18.99 

Cambridge 959 326-330 -347.5 34.07 23.83  

Cambridge 959 326-330 -347.5 38.29 28.79 20.04 

Cambridge 953 359-361 -48.25 18.91 15.12 11.66 

Cambridge 207 25 18.9 31.85 23.36  

Cambridge 207 27 18.9 33.1 23.13 15.8 

Cambridge 207 31 18.9 34.13 23.59 16.44 
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Cambridge 207 21a 18.9 24.98 18.42 11.58 

Cambridge 207 33-45 18.9 38.2 27.73 18.48 

Cambridge 953 1043 29.25 29.52 23.17 16.98 

Cambridge 953 1044 29.25 22.5 17.3 11.55 

Cambridge 953 1066-1076 29.25 26.06 20.86 14.03 

Cambridge 953 1066-1076 29.25 28.69 20.31 12.66 

Cambridge 953 897-911 29.25 29.46 21.19 14.6 

Cambridge 953 897-911 29.25 23.92 18.12 13.42 

Cambridge 953 897-911 29.25 24.42 19.72 10.11 

Cambridge 953 897-911 29.25 24.43 17.48  

Cambridge 953 897-911 29.25 28.05 21.54 14.44 

Cambridge 953 897-911 29.25 29.45 22.58 14.92 

Cambridge 953 949-972 29.25 24.82 19.62 11.59 

Cambridge 953 949-972 29.25 29.72 20.78 16.26 

Cambridge 953 949-972 29.25 34.24 23.78 17.37 

Cambridge 953 949-972 29.25 34.32 24.02 19.88 

Cambridge 953 949-972 29.25 29.8 22.1 15.73 

Cambridge 953 972-999 29.25 19.56 14.52 9.59 

Cambridge 953 972-999 29.25 29.38 21.81 15.71 

Cambridge 953 972-999 29.25 33.03 22.99  

Cambridge 953 972-999 29.25 27.49 19.19 13.02 

Cambridge 953 972-999 29.25 24.91 19.34 12.9 

Cambridge 953 972-999 29.25 26.5 21.16 14.58 

Cambridge 953 972-999 29.25 26.79 19.83 13.03 

Cambridge 207 130 42.5 26.04 15.11 12.28 

Cambridge 953 1110-1144 51 31.71 24.31 17.42 

Cambridge 953 1110-1144 51 31.77 24.42 16.44 

Cambridge 953 1110-1144 51 25.27 18.6 12.88 

Cambridge 953 1110-1144 51 33.48 26.48  

Cambridge 953 1110-1144 51 32.19 23.64 15.71 

Cambridge 953 1110-1144 51 31.48 24.67  

Cambridge 207 145 55.25 29.69 20.49 13.58 

Cambridge 207 158a 55.25 31.84  14.82 

Cambridge 953 1204-1220 60.75 28.61  15.29 

Cambridge 953 1204-1220 60.75 33.29  17.44 

Cambridge 953 1204-1220 60.75 30.52  16.95 

Cambridge 953 1204-1220 60.75 21.6 14.63 11.5 

Cambridge 953 1204-1220 60.75 31.28  17.25 

Cambridge 953 1204-1220 60.75 31.3 24.2 18 

Cambridge 953 1204-1220 60.75 33.46 23.68 18.1 

Cambridge 953 1204-1220 60.75 34.24 26.32 17.18 

Cambridge 953 1204-1220 60.75 21.21 14.8 12.4 

Cambridge 953 1204-1220 60.75 33.28 23.55 17.47 

Cambridge 953 1204-1220 60.75 33.37 23.35 17.92 

Cambridge 953 1204-1220 60.75 34.26 23.71 17.25 

Cambridge 953 1204-1220 60.75 31.21 21.77 17.63 

Cambridge 953 1204-1220 60.75 31.48 23.65 17.25 

Cambridge 953 1204-1220 60.75 23.7 30.77 26.85 

Cambridge 953 1204-1220 60.75 32.64 25.21 17.68 

Cambridge 953 1310-1319 69 33.8 24.45 19.7 

Cambridge 953 1310-1319 69 34.9 25.41 16.74 

Cambridge 953 1310-1319 69 33.3 26.55 17.79 

Cambridge 209 283 76.1 15.97 14.18 8.29 
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Cambridge 211 488-490 99.3 30.24 22.71 14.08 

Cambridge 209 444-446 121.8 18.37 13.27 7.29 

Cambridge 211 368 123.3 24.81 20.7 12.65 

Cambridge 211 369 123.3 25.24 18.63 12.1 

Cambridge 211 372 123.3 18.55 14.35 8.33 

Cambridge 211 375 123.3 24.14 17.86 10.64 

Cambridge 211 324 136.8 27.67 21.69 14.54 

Cambridge 211 327 136.8 17.34 13.82 8.89 

Cambridge 211 58 138.3 21.24 16.15  

Cambridge 209 794 174.3 21.11 16.61 9.24 

Leeds 237 1428.2   22.13 15.54 

Leeds 237 1432.2  34.87 23.48 18.24 
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Table B.1 A-C: Summary of morphometric measurements in Datasets B3 to B8 analysed by 

collection and stratigraphy.   Measurements are in mm 

 

A) Lahillia KLB789 KLB10 SOB TELM 

 Average Max Average Max Average Max Average Max 

Cambridge         

L 76.8 97.3 74.6 110.1 60.6 94.5 110.5 110.5 

H 68.0 90.1 66.4 98.8 50.4 88.1   

W 50.0 64.9 49.3 74.2 38.3 70.4 58.4 58.4 

Ithaca                 

L 65.3 96.6 78.6 120.8 78.1 109.5 89.2 104.2 

H 60.7 85.0 72.6 100.1 75.6 97.9 75.5 88.1 

W 44.3 67.2 57.2 78.6 52.8 64.7 43.8 47.7 

Leeds                 

L 74.1 96.3 82.4 107.5 93.4 104.6   

H 70.0 85.6 77.3 97.6 88.7 100.6   

W 48.3 62.6 55.9 79.9 69.2 86.5   

Overall L 74.9 97.3 78.1 120.8 71.4 109.5 92.8 110.5 

Overall H 67.6 90.1 71.1 100.1 61.9 100.6 75.5 88.1 

Overall W 49.2 67.2 52.3 79.9 47.4 86.5 48.7 58.4 

 
 

B) Cucullaea KLB789 KLB10 SOB TELM 

 Average Max Average Max Average Max Average Max 

Cambridge         

L 53.9 75.3 44.9 57.0 41.5 60.2 91.0 113.6 

H to Umbo 42.3 65.7 33.8 42.1 30.6 39.7 69.5 83.4 

W 43.1 62.2 35.8 45.2 27.1 35.4 68.1 90.8 

Leeds                 

L 65.6 75.0 49.7 57.0     

H to Umbo 49.0 57.8 35.4 43.0     

W 43.7 58.0 31.8 39.2     

Overall L 56.1 75.3 45.1 57.0 41.5 60.2 91.0 113.6 

Overall H to Umbo 43.3 65.7 34.0 43.0 30.6 39.7 69.5 83.4 

Overall W 43.3 62.2 35.4 45.2 27.1 35.4 68.1 90.8 

 
 

C) Leionucula KLB789 KLB10 SOB 

 Average Max Average Max Average Max 

Cambridge       

L 36.0 44.4 30.5 40.9 23.5 31.7 

H 26.4 32.3 22.8 30.8 18.1 25.3 

W 19.1 24.9 16.4 26.9 11.1 14.5 

Leeds       

L 55.4 56.8 25.8 37.5   

H 37.8 50.0 22.1 31.3   

W 30.1 35.8 15.9 22.7   

Overall L 37.7 56.8 30.2 40.9 23.5 31.7 

Overall H 27.8 50.0 22.7 31.3 18.1 25.3 

Overall W 20.7 35.8 16.4 26.9 11.1 14.5 
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Dataset B.9: Acetate peel ontogenetic data from Maastrichtian bivalve teeth (measurements in mm) 

Specimen 
DJ.953. 

663 
D5.220. 
1214.2 

D5.220. 
1214.2.A 

DJ.952. 
712.A 

DJ.952. 
712.B 

DJ.953. 
452A 

DJ.953. 
452B 

DJ.952. 
755 

DJ.953. 
745 

D5.220. 
1217.2 

D5.219. 
1185.2 

Year            

1 0.8891 0.3479 0.6892 0.4246 0.3559 0.2598 0.2191 0.392 0.1582 0.0974 0.3564 

2 1.7602 1.0127 1.2988 1.2927 0.6577 0.6728 0.6856 0.7104 0.5715 0.5602 0.7611 

3 2.3142 1.6938 1.874 1.8125 1.0324 1.2669 1.1294 1.0787 1.0981 1.5081 1.3878 

4 2.8467 2.3711 2.3626 2.293 1.4416 1.7396 1.6628 1.6044 1.9939 2.6105 1.7575 

5 3.4755 3.2065 2.8419 2.8149 1.8557 2.2252 2.5603 2.2443 2.8098 3.4642 2.1357 

6 4.1016 4.0383 3.3722 3.2695 2.2585 2.7763 3.4532 2.8476 3.7013 4.0298 2.5802 

7 4.7134 4.363 3.6847 3.6989 2.6181 3.4624 4.483 3.2541 4.5616 4.495 2.9061 

8 5.3627 4.8553 4.0028 3.9043 2.9594 4.112 5.6311 3.6268 5.367 4.971 3.2776 

9 5.7249 5.1146 4.3349 4.1604 3.3404 4.4716 6.1534 3.9359 6.2031 5.4502 3.5393 

10 6.1695 5.4906 4.6691 4.5226 3.6469 4.8505 6.6072 4.2861 6.8545 5.7487 3.7304 

11 6.6065 5.8644 4.9853 4.8727 3.9425 5.3524 7.1571 4.5584 7.3248 6.1093 4.0254 

12 7.016 6.2832 5.1975 5.1803 4.2078 5.9104 7.8426 4.7642 7.8272 6.6398 4.2114 

13 7.374 6.628 5.4796 5.4219 4.4348 6.2633 8.2561 4.9391 8.1836 7.2075 4.4925 

14 7.6926 6.8649 5.7367 5.6611 4.6729 6.6721 8.6656 5.0991 8.5655 7.7135 4.6524 

15 7.9978 7.1931 5.9627 5.8954 4.9243 7.0252 9.0038 5.2226 8.8972 8.2018 4.9741 

16 8.2942 7.4885 6.2877 6.1408 5.1677 7.1397 9.1501 5.3269 9.1885 8.7157 5.3597 

17 8.5587 7.729 6.5418 6.3358 5.374 7.2017 9.2576 5.4816 9.4767 9.06 5.7417 

18 8.7425 8.0796 6.7777 6.5023 5.5292 7.3666 9.3497 5.6297 9.7829 9.3426 6.151 

19 8.8869 8.3522 7.0062 6.6147 5.6338 7.5216 9.4666 5.7468 10.023 9.6654 6.5262 

20 9.0201 8.6252 7.1971 6.7799 5.807 7.6316 9.537 5.8252 10.294 9.8478 6.8689 

21 9.1402 8.8509 7.427 6.887 5.8776 7.7213 9.6172 5.8863 10.552 9.9964 7.1837 

22 9.2708 9.0683 7.5557 6.9982 6.0174 7.8077 9.7199 5.9321 10.754 10.175 7.5096 

23 9.382 9.2451 7.6366 7.1774 6.1799 7.9234 9.7835 5.9981  10.294 7.8271 

24 9.5195 9.3759 7.7318 7.3123 6.3527 8.0404 9.8439 6.0177  10.447 8.3807 
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Specimen 
DJ.953. 

663 
D5.220. 
1214.2 

D5.220. 
1214.2.A 

DJ.952. 
712.A 

DJ.952. 
712.B 

DJ.953. 
452A 

DJ.953. 
452B 

DJ.952. 
755 

DJ.953. 
745 

D5.220. 
1217.2 

D5.219. 
1185.2 

Year            

25 9.6363 9.4576 7.8268 7.4125 6.4557 8.0912 9.8944 6.0741  10.558 8.6283 

26 9.7426 9.5225 7.9277 7.5077 6.5615 8.1485 9.9397 6.1447  10.775 8.8861 

27 9.8841 9.6242 8.0283 7.6212 6.6729 8.1847  6.2067  10.986 9.0824 

28 10.032 9.7201 8.1086 7.7351 6.776 8.2276  6.296  11.13 9.2789 

29 10.139 9.8146 8.179 7.8451 6.8498   6.3485  11.238 9.6421 

30 10.223 9.8823 8.2492 8.0078 6.9407   6.4779  11.362 9.7847 

31 10.27 9.9347 8.312 8.1066 7.0368   6.5904  11.473 9.9346 

32 10.328 9.9826 8.3597 8.1797 7.1401     11.517 10.056 

33 10.385 10.042 8.4074 8.2442 7.2216     11.599 10.175 

34 10.443 10.108 8.4451 8.3015 7.2957     11.668 10.306 

35 10.535 10.183 8.4852 8.3745 7.3562      10.36 

36 10.576 10.24 8.5003 8.4395 7.4308      10.466 

37 10.61 10.291 8.5355 8.5071 7.5034      10.597 

38 10.657 10.373 8.5782 8.543 7.5638      10.748 

39 10.7 10.409 8.631 8.605 7.6023      10.864 

40 10.721 10.519 8.6686 8.6613 7.6315      11.017 

41 10.752 10.583 8.7063 8.699 7.6786       

42 10.813 10.69 8.7314 8.7186 7.7272       

43 10.858 10.766 8.7565 8.7478 7.7727       

44 10.893 10.806 8.7916 8.7827 7.8007       

45 10.936 10.895 8.8217 8.7976 7.8221       

46 10.999 10.986 8.8719 8.8444 7.8749       

47 11.037 11.052 8.9021 8.8927 7.9115       

48 11.078 11.097 8.9297 8.9491 7.9694       

49 11.127 11.208 8.9523 9.0166 8.0083       

50 11.194 11.303 8.9924 9.0548 8.0335       
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Specimen 
DJ.953. 

663 
D5.220. 
1214.2 

D5.220. 
1214.2.A 

DJ.952. 
712.A 

DJ.952. 
712.B 

DJ.953. 
452A 

DJ.953. 
452B 

DJ.952. 
755 

DJ.953. 
745 

D5.220. 
1217.2 

D5.219. 
1185.2 

Year            

51 11.224  9.0225 9.0986 8.0599       

52 11.272  9.0476 9.1583 8.1001       

53 11.321  9.0728 9.1886 8.129       

54 11.358  9.1181 9.2144 8.1518       

55 11.39  9.1713 9.2447 8.1722       

56 11.418  9.2139 9.2861 8.1929       

57 11.433  9.2716 9.3178 8.2301       

58 11.47  9.3169 9.3504 8.2636       

59 11.489  9.3671 9.4012 8.3097       

60 11.53  9.3973 9.4553 8.3464       

61 11.56  9.4275 9.4823 8.3734       

62 11.612  9.4551 9.5172 8.4036       

63 11.649  9.4852 9.5397 8.4374       

64 11.675  9.4956 9.5588 8.4786       

65 11.713  9.5059 9.5993 8.5078       

66 11.744  9.521 9.632 8.5432       

67   9.5387 9.6722 8.5945       

68   9.5538 9.7044 8.644       

69   9.5666 9.7388 8.6842       

70   9.5893 9.7762 8.7069       

71   9.6244 9.8212 8.7392       

72   9.6621 9.8628 8.7894       

73   9.6922 9.9009 8.8433       

74   9.7173 9.9357 8.8905       

75   9.7475 9.9622 8.9275       

76   9.7777 9.9929 8.9651       
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Specimen 
DJ.953. 

663 
D5.220. 
1214.2 

D5.220. 
1214.2.A 

DJ.952. 
712.A 

DJ.952. 
712.B 

DJ.953. 
452A 

DJ.953. 
452B 

DJ.952. 
755 

DJ.953. 
745 

D5.220. 
1217.2 

D5.219. 
1185.2 

Year            

77   9.7953 10.028 9.0175       

78   9.828 10.062 9.0566       

79   9.8556 10.112 9.094       

80   9.8758 10.17 9.1181       

81   9.8961 10.215 9.1428       

82   9.9136 10.257 9.1841       

83   9.9363 10.295 9.2045       

84   9.9639 10.33 9.2294       

85   9.9865 10.356 9.2676       

86   10.012 10.387 9.3125       

87   10.024 10.422 9.3477       

88   10.045 10.456 9.3807       

89    10.506 9.4371       

90     9.4716       

91     9.5097       

92     9.5315       

93     9.5607       

94     9.5921       

95     9.6236       
 

 

 

 

Dataset B.10: Acetate peel ontogenetic data from Danian bivalve teeth (measurements in mm) 
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Specimen D001 D001e 
D5.229. 
1363.2 

D5.229. 
1361.2 

D5.229. 
1351.2 

D5.229. 
1334.2.A 

D5.229. 
1334.2.B 

DJ.953. 
799.II 

D5.229. 
1320.2 

D002 D003 
D5.229. 
1361.2.8 

Year             

1 0.4481 0.4481 0.6014 0.3798 0.507 0.4904 0.5277 0.1837 0.558 0.6763 0.431 0.4878 

2 1.0024 1.0024 2.1705 0.7499 0.9381 0.927 1.5783 0.4911 1.49 1.3179 0.9535 1.013 

3 1.4915 1.4915 3.7514 1.1383 1.4288 1.5537 2.5824 0.6942 2.2574 2.139 1.6535 1.739 

4 1.9931 1.9931 4.3797 1.7551 1.8192 2.2565 3.4509 0.9576 2.9723 2.8097 2.293 2.4692 

5 2.4111 2.4111 5.1048 2.519 2.2276 3.4039 4.0636 1.3547 3.7469 3.091 3.041 3.1451 

6 2.6524 2.9263 5.7954 3.2748 2.5418 4.5369 4.7033 1.8952 4.7532 3.2981 3.6565 3.7831 

7 2.9263 3.2695 6.3656 4.2306 2.886 5.5379 5.3437 2.2592 5.5735 3.7976 4.1882 4.3143 

8 3.2695 3.7232 6.8864 5.0621 3.172 6.4712 5.9132 2.7615 6.3204 4.2293 5.0683 4.8476 

9 3.7232 4.159 7.5019 5.8102 3.4387 7.1966 6.338 3.2707 7.015 4.5997 5.8287 5.3246 

10 4.159 4.6515 7.8243 6.4814 3.6875 7.9501 6.7317 3.7655 7.628 4.9404 6.6297 5.8262 

11 4.6515 5.0149 8.0887 7.0566 3.9079 8.685 7.095 4.2004 8.2636 5.058 7.252 6.2929 

12 5.0149 5.3334 8.6389 7.4932 4.1238 9.3621 7.3651 4.714 8.8958  7.7437 6.6908 

13 5.3334 5.6227 9.2639 7.8537 4.2904 9.9347 7.5728 5.2288 9.3921  8.2061 7.1358 

14 5.6227 5.8954 9.6343 8.1689 4.5104 10.408 7.8779 5.6443 9.8119  8.5902 7.5611 

15 5.8954 6.1281 10.085 8.435 4.7376 10.846 8.2512 6.0283 10.073  9.055 7.9263 

16 6.1281 6.3071 10.332 8.758 4.9151 11.207 8.5421 6.4422 10.414  9.3906 8.2768 

17 6.3071 6.3935 10.54 9.2096 5.0572 11.582 8.7089 6.7658 10.668  9.739 8.5435 

18 6.3935 6.5004 10.753 9.6276 5.1797 11.996 8.8565 7.1436 10.813  10.071 8.75 

19 6.5004 6.5473 10.998 10.029 5.3054 12.488 8.9783 7.4423 11.016  10.265 8.8581 

20 6.5473 6.5878 11.216 10.267 5.4404 12.902 9.0961 7.6938 11.25  10.427 8.9615 

21 6.5878 6.635 11.409 10.514 5.5508 13.232 9.1889 7.9195 11.501  10.649 9.054 

22 6.635 6.6852 11.527 10.702 5.6286 13.458 9.3267 8.1064 11.686  10.955 9.1081 

23 6.6852 6.736 11.73 10.83 5.701 13.621 9.4359 8.2358 11.831   9.1938 

24 6.736 6.7905 11.917 10.89 5.7539 13.78 9.5628 8.3789 11.912   9.3119 

25 6.7905 6.8218 12.177 10.94 5.8049 13.906 9.7038 8.4522 12.015   9.4119 

26 6.8218 6.8469 12.465 11.032 5.8504 14.077 9.8071 8.5394 12.069   9.4949 
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Specimen D001 D001e 
D5.229. 
1363.2 

D5.229. 
1361.2 

D5.229. 
1351.2 

D5.229. 
1334.2.A 

D5.229. 
1334.2.B 

DJ.953. 
799.II 

D5.229. 
1320.2 

D002 D003 
D5.229. 
1361.2.8 

Year             

27 6.8469 6.8736 12.633 11.09 5.8849 14.216 9.9008 8.6211 12.11   9.549 

28 6.8736 6.9016 12.804 11.175 5.9545 14.393 10.01 8.6962 12.17   9.6077 

29 6.9016 6.9208 12.931 11.285 6.0354 14.547 10.098 8.7658 12.2   9.6649 

30 6.9208 6.94 13.111 11.356 6.0952 14.665 10.227 8.8243 12.214    

31 6.94 6.9592 13.287 11.415 6.1475 14.818 10.326 8.8772 12.236    

32 6.9592 6.9872 13.387 11.456 6.1969 14.996 10.42 8.8983 12.304    

33 6.9872 6.9961 13.489 11.485 6.2513 15.127 10.492 8.9253 12.445    

34 6.9961 7.014 13.603 11.512 6.325 15.256 10.534 8.9464 12.463    

35 7.014 7.0348 13.71 11.535  15.361 10.618 8.9679 12.519    

36 7.0348 7.0586 13.788 11.576  15.478 10.687 9.0023     

37 7.0586 7.0661 13.861 11.625  15.578 10.753 9.0234     

38 7.0661 7.0749 13.923 11.702  15.648 10.82 9.0736     

39 7.0749 7.0975 13.967 11.755  15.753 10.895 9.107     

40 7.0975 7.1079 14.031 11.845  15.825 10.945 9.2045     

41 7.1079 7.1204 14.092   15.877 10.985 9.227     

42 7.1204 7.1297 14.157   15.941 11.045 9.2767     

43 7.1297 7.1523 14.213   15.991 11.098 9.2947     

44 7.1523 7.176 14.254   16.038 11.159 9.3281     

45 7.176 7.1894 14.314   16.075 11.192 9.3493     

46 7.1894 7.1987 14.371   16.11 11.28 9.3688     

47 7.1987 7.2398 14.415   16.177 11.313 9.4144     

48 7.2398 7.2594 14.449   16.24 11.363 9.4357     

49 7.2594 7.2757 14.481   16.289 11.439 9.4605     

50 7.2757 7.2904 14.504   16.335 11.483 9.4748     

51 7.2904 7.3008 14.538   16.382 11.527 9.5059     

52 7.3008 7.3188 14.596   16.426 11.567 9.5352     
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Specimen D001 D001e 
D5.229. 
1363.2 

D5.229. 
1361.2 

D5.229. 
1351.2 

D5.229. 
1334.2.A 

D5.229. 
1334.2.B 

DJ.953. 
799.II 

D5.229. 
1320.2 

D002 D003 
D5.229. 
1361.2.8 

Year             

53 7.3188 7.3338 14.636   16.467 11.605 9.5621     

54 7.3338 7.3488 14.671   16.509 11.642 9.5934     

55 7.3488 7.3684 14.702   16.563 11.685 9.6114     

56 7.3684 7.3935 14.736   16.612 11.721      

57 7.3935 7.4086 14.771   16.672       

58 7.4086 7.419 14.796   16.71       

59 7.419 7.4561 14.826   16.765       

60 7.4561 7.4757 14.846   16.796       

61 7.4757 7.5029 14.879   16.83       

62 7.5029 7.5262 14.905   16.892       

63 7.5262 7.5487 14.949   16.92       

64 7.5487 7.5812 14.973   16.998       

65 7.5812 7.5999 14.996   17.036       

66 7.5999 7.6265 15.026   17.082       

67 7.6265  15.059   17.148       

68   15.09   17.19       

69   15.135   17.236       

70   15.18   17.267       

71   15.211   17.308       

72   15.23   17.371       

73   15.262   17.417       

74   15.282          

75   15.302          

76   15.337          

77   15.354          
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Dataset B.11: Valve surface ontogenetic data from Maastrichtian, Danian KLB10 and Sobral bivalve shells (measurements in mm) 

Specimen 
DJ.952. 

578 
DJ.952. 

585 
DJ.952. 

584 
DJ.952. 

517 
D5. 

1214.2 
DJ.953. 

451 
DJ.952. 

581 
D5. 

1361.2 
DJ.953. 

1102 
DJ.953. 

1175 
DJ.953. 

1088 
DJ.953. 

1093 
D9.209. 

872 
D9.211. 

140 

Stage Maa Maa Maa Maa Maa Maa Maa Dan Dan Dan Dan Dan Sob Sob 

Year               

1 3.0157 NA 0.9301 6.366 NA 4.8464 2.423 NA NA 1.3957 NA NA NA NA 

2 6.7944 4.931166 10.171 14.14 7.72 12.45 6.8153 NA 9.8623 6.0622 NA NA NA NA 

3 8.9075 7.384096 19.5331 21.4 10.09 20.08 12.6299 17.5568 15.097 12.9584 NA 23.7733 NA 11.9061 

4 11.8379 9.905646 26.6533 29.56 14.33 28 19.2568 25.01 19.8894 22.8945 28.1743 30.7623 18.96 15.1952 

5 17.211 11.45185 35.0993 35.84 20.06 32.33 26.0007 31.2 26.2584 29.4167 32.914 37.6116 22.6 20.1698 

6 22.0864 13.75645 42.5513 44.16 23.3 36.67 31.7804 38.95 32.5662 34.605 38.4102 44.7501 27.43 24.1197 

7 28.8996 16.85958 47.6917 51.2 27.6 40.19 36.7465 43.52 37.4923 39.5307 43.3674 50.27 31.57 26.4661 

8 36.0108 19.38404 53.1061 58.94 30.59 45.01 41.148 47.71 41.5447 42.5514 48.071 54.2369 35.81 30.247 

9 41.764 21.49556 57.5581 65.7 32.53 49.24 45.6122 51.17 43.2464 44.0857 53.1394 58.1149 39.62 34.5978 

10 46.3594 25.36677 61.1335 69.97 34.78 52.11 48.3889 53.32 44.3791 45.71 57.2815 61.9725 42.67 39.0295 

11 51.5199 29.77612 64.7586 73.7 37.34 54.93 50.1606 54.38 45.4139 46.8638 60.9401 64.0279 46.47 41.9 

12 53.7593 34.80766 66.5914 75.19 38.34 58.19 51.5858 55.49 46.5972 48.2317 63.8288 66.0548 49.65 42.8754 

13 56.4946 41.92628 68.1915 76.92 41.39 60.53 52.7861 56.39 47.1006  67.3073 67.8932 51.53 43.6958 

14 57.961 47.48741 69.604  43.58 62.68 54.2717  47.7094  70.8697 69.9614 53.3 44.7183 

15 59.3725 51.88229 70.061  45.83 64.19 55.4938  48.5886  74.4685 72.08 54.69 45.7808 

16 60.4291 54.75417 70.3713  47.32 66.05 56.2271  48.9945  77.7622  56.08 46.547 

17 61.3102 56.98752 70.6091  48.88 67.6 57.1024  49.4483  79.7851  57.35 47.2952 

18 62.0159 59.35942 71.0039  50.26 69.16 57.6862  49.8542  81.9927   47.7202 

19 63.2481 62.37767 71.3033  51.51 70.5 58.27  50.7441  83.0919   48.2006 

20 64.5961 64.99829 71.5659  52.84 71.78   51.4219  84.3161   48.5324 

21 65.6527 65.56239 71.878  53.84    51.9529  85.0118   48.7921 

22 66.9474 66.18222 72.23  54.43    52.6737  85.535   49.246 

23 68.1196 66.62149   55.28    53.303  86.3026    
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Specimen 
DJ.952. 

578 
DJ.952. 

585 
DJ.952. 

584 
DJ.952. 

517 
D5. 

1214.2 
DJ.953. 

451 
DJ.952. 

581 
D5. 

1361.2 
DJ.953. 

1102 
DJ.953. 

1175 
DJ.953. 

1088 
DJ.953. 

1093 
D9.209. 

872 
D9.211. 

140 

Stage Maa Maa Maa Maa Maa Maa Maa Dan Dan Dan Dan Dan Sob Sob 

Year               

24 69.5895 67.20288   55.93    53.9447  87.6283    

25 70.41 68.43982   56.64    54.6011  88.433    

26  69.52101   57.29    55.1321  89.0553    

27  70.55868   57.8    55.7116  89.611    

28  71.55       56.3893  90.18    

29         56.9876      

30         57.6169      

31         58.476      

32         59.1538      

33         59.76      
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Table B.2: Summary of coeffecients (L, k and t) of the von Bertalanffy growth equation 

generated by least squares regression analysis of annual growth data (Datasets B.9 to B.11) 

Shell Specimen Species Unit L k t 

Tooth D001 Lahillia KPLB10 7.394 0.1 -0.851 

Tooth D001e Lahillia KPLB10 7.357 0.11 -0.881 

Tooth D5.229.1363.2 Lahillia KPLB10 15.159 0.066 0.804 

Tooth D5.229.1361.2 Lahillia KPLB10 12.437 0.086 -1.62 

Tooth D5.229.1351.2 Lahillia KPLB10 6.704 0.081 -10.1 

Tooth D5.229.1334.2.A Lahillia KPLB10 17.056 0.071 -1.295 

Tooth D5.229.1334.2.B Lahillia KPLB10 11.476 0.08 0.265 

Tooth DJ.953.799.II Lahillia KPLB10 9.92 0.073 -2.231 

Tooth D5.229.1320.2 Lahillia KPLB10 13.125 0.1 -1.036 

Tooth D002 Lahillia KPLB10 7.057 0.117 -0.09 

Tooth D003 Lahillia KPLB10 15.816 0.059 -1.047 

Tooth D5.229.1361.2.8 Lahillia KPLB10 10.755 0.089 -0.925 

Valve S_D5.1361.2 Lahillia KPLB10 62.159 0.222 -1.604 

Valve S_DJ.953.1102 Lahillia KPLB10 56.505 0.153 -0.747 

Valve S_DJ.953.1175 Lahillia KPLB10 57.729 0.18 -1.141 

Valve S_DJ.953.1088 Lahillia KPLB10 98.252 0.098 -0.849 

Valve S_DJ.953.1093 Lahillia KPLB10 80.468 0.156 -0.835 

Valve S_D9.209.872 Lahillia KPLB10 72.438 0.103 -1.258 

Valve S_D9.211.140 Lahillia Sobral 52.59 0.148 -1.604 

Tooth DJ.953.663 Lahillia KLB789 11.496 0.075 0.124 

Tooth D5.220.1214.2 Lahillia KLB789 11.306 0.072 -0.53 

Tooth D5.220.1214.2.A Lahillia KLB789 9.713 0.061 0.686 

Tooth DJ.952.712.A Lahillia KLB789 10.112 0.049 1.513 

Tooth DJ.952.712.B Lahillia KLB789 9.237 0.045 0.514 

Tooth D5.220.1217.2 Lahillia KLB789 13.111 0.07 -1.084 

Tooth DJ.953.452A Lahillia KLB789 9.327 0.089 -1.319 

Tooth DJ.953.452B Lahillia KLB789 11.164 0.106 -1.65 

Tooth DJ.952.755 Lahillia KLB789 6.669 0.108 -0.92 

Tooth DJ.953.745 Lahillia KLB789 13.779 0.076 -1.486 

Tooth D5.219.1185.2 Lahillia KLB789 19.169 0.023 -0.172 

Valve S_DJ.952.578 Lahillia KLB789 80.221 0.092 -2.422 

Valve S_DJ.952.585 Lahillia KLB789 116.673 0.041 -3.244 

Valve S_DJ.952.584 Lahillia KLB789 75.81 0.175 -1.153 

Valve S_DJ.952.517 Lahillia KLB789 124.362 0.083 -0.569 

Valve S_D5.1214.2 Lahillia KLB789 65.652 0.083 -0.729 

Valve S_DJ.953.451 Lahillia KLB789 81.565 0.107 -0.373 

Valve S_DJ.952.581 Lahillia KLB789 64.468 0.142 -2.112 
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APPENDIX C 

 

 

Organic Carbon Analysis 

 

Samples of bulk sediment from composite section D5.251 were analysed for their organic carbon 

isotope content. Approximately 1 g of bulk sediment was weighed and then reacted for 24 hours 

with ~5 ml of 10% HCl to remove all carbonate and non-organic material. Excess liquid was drawn 

off and the samples washed 3 times with milli-Q de-ionised water to remove residual acid and 

dissolved species. Samples were then dried at 85℃ in a heating cabinet for 36 hours and reweighed 

to establish the mass of carbonate removed. 4-5 mg of this acid-washed sediment was then weighed 

out into tin cups and run in sequence with standards on a Micromass Isoprime continous flow mass 

spectrometer coupled to a Eurovector or Elementar Pyrocube Elemental Analyser. Organic carbon 

was completely combusted at 1020℃ to CO2 in a medium of pure oxygen injected into a stream of 

helium. Excess oxygen was removed by reaction with metallic copper heated to 650℃, H2O was 

removed in a magnesium perchlorate trap and the CO2 separated from other impurities using a 

chromatographic column. 13C/12C is derived from the integrated mass 44, 45 and 46 signals from 

the pulse of sample CO2, compared to those in an independently introduced pulse of CO2 reference 

gas. These ratios are then calibrated using the international standards ANU-sucrose (-10.47‰) and 

IAEA-CH7 (polyethylene film, -31.83‰) to the Vienna-Pee Dee Belemnite (V-PDB) scale in per 

mille notation (‰). The precision obtained for repeat analysis of standard materials during the 

runs performed was less than 0.25‰ (1 standard deviation). Calculation of weight percent organic 

carbon was either derived from the mass spectrometer traces or analysed on a LECO elemental 

analyser, and corrected for weight loss during the acidification process. Weight percent carbonate 

was either calculated from weight loss during acidification or from analyzing total carbon on the 

LECO and then calculating total inorganic carbon (TIC) by deducting TOC. TIC was then 

converted to weight percent carbonate by assuming that it was all present as CaCO3.  

 

 

Carbon Isotope Mass Balance Calculations 

 

It is well known that mollusc shells can incorporate carbon both from the dissolved inorganic carbon 

pool and from organic carbon metabolized as a food source. To explore whether our shell carbon 

isotope compositions could be explained by metabolic input we used a simple isotope mass balance 

equation (S1), where F is the proportion of metabolic carbon incorporated into shells, ±13Cshell ±13CDIC 

±13CPOC are the ±13C values of the aragonite shell, the dissolved inorganic carbon incorporated 

directly into the shell and the particulate organic carbon incorporated from metabolic processes 

respectively. 

 

δ13
Carag= F δ13

CDIC +(1-F)δ13
CPOC  
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[S1] 

 

The normal contribution of respired carbon to bivalve shell carbonate (F) is around 10% 

(McConnaughey et al. 1997), which typically produces a ±13C depletion in shells of less than 2‰ 

relative to seawater under modern oceanic conditions. Cretaceous surface ocean DIC values can be 

estimated from marine bulk carbonate (Figure 6.4) ±13CDIC and produce a late Cretaceous average 

of around +2.5‰ (Voigt et al. 2012; Dinarès-Turell et al. 2014; Thibault et al. 2012).   Bottom 

waters are likely to be depleted relative surface waters so we used a value of 0‰ to represent a 

lower limit on the DIC experienced by the organism. Modern temperate marine phytoplankton 

produces organic carbon with a ±13C of around −20‰, whereas Antarctic phytoplankton produces 

a greater depletion of around −28‰, (Mook & Tan 1991).   This range of values of ±13CPOC 

encompasses the observed bulk ±13Corg data presented in the main body of the thesis, so low and 

high estimates have both been included in the calculation. Applying these values to equation 1 

produces expected shell carbonate values of between +2.5 and -2.8‰. This range covers 8 of the 

19 shells sampled at high resolution.   2 shells have some carbon isotopic values more positive than 

this range.   The 9 shells we define as “extreme” have values more negative than this range, and all 

have a seasonal δ13C range of greater than 3‰. 

 

The maximum contribution (F) of metabolically derived carbon into bivalve shells has been 

calculated as 37% (Gillikin et al. 2007). With this extreme value for the fraction of metabolized 

carbon, our calculations still only produce a minimum shell values of −10.4‰. This is still ~24‰ 

heavier than our most negative recorded value. These calculations demonstrate that we must invoke 

a highly 13C depleted carbon source to explain our data. Methane derived DIC provides the only 

credible explanation for our carbon isotope data with values of less than −11‰. Since there is not 

a mechanism to incorporate methane directly into shell carbonate, methane carbon must have. 

 

To explore the contribution of methane derived DIC to the total DIC pool we first applied equation 

1 again, this time using shell values of −10 and −34‰ and solving for ±13CDIC to produce an estimate 

of bottom water DIC that accounts for any contribution of metabolized carbon in the shell. The 

shell values of −34‰ observed in this study require oceanic DIC with a carbon isotope composition 

at least as depleted as the shell carbonate, even assuming no contribution of metabolic carbon. 

Using contributions of metabolized carbon from 0 to 37% to explain our most negative shell value 

produces bottom water DIC estimates of between −35‰ and −42.2‰   (Table C.1-C.3).   For a 

shell value of −10‰ we can only produce a DIC value in the range expected for the late Cretaceous 

(0 to +2.5‰) if we have the most extreme value of 37% incorporation of metabolic carbon and the 

most depleted particulate organic carbon value (-28‰).   Other combinations of variables used to 

achieve a shell composition of −10‰ produce estimates of bottom water DIC between −4 and −10‰ 

 

δ13
Cbottom water DIC= F δ13

Cmethane-derived DIC +(1-F)δ13
Coceanic DIC  

[S2] 
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If we assume that local bottom water DIC is produced by combining ocean DIC in our expected 

isotopic range (0 to +2.5‰) with DIC derived from the oxidation of methane (equation S2), we 

can work out the fraction of each component that is required to account for the range of bottom 

water DIC isotope values produce by the calculation above.   The full range of biogenic methane 

±13C spans −50 to −110‰ (Whiticar 1999).   For the most extreme negative shell values, between 

30-85% methane derived DIC is required, depending on its isotopic composition.   Carbon isotope 

values from authigenic carbonate in burrow fills from stratigraphically lower in the same section of 

−58.0 and −24.6‰ (Little et al. 2015) are indicative of sedimentary methane and the most negative 

of these provide a possible estimate of our methane source carbon isotope composition. Using a 

value of −60‰ in our calculation produces a fraction of methane-derived DIC contribution to 

bottom-water in the range of 57 to 71%.    

 

 

Hydrate Modelling 

 

Down-column hydrate stability modelling was used to examine the possibility of seasonally 

influenced shallow hydrates as the source of seasonal methane-derived DIC. Estimates of 

representative mean annual bottom water temperatures of 0 to 20℃ in 5℃ steps were derived from 

shell ±18O data using a standard conversion (Grossman & Ku 1986).   For bottom-water depths 

shallower than 200 m, sea-bed methane hydrates are unstable at mean annual temperatures less 

than −2℃ (Kvenvolden 1993). To explore the effect of bottom-water depths deeper than 200m, the 

top and bottom of the hydrate stability zone were computed following the methods described in 

(Hunter et al., 2013) using the empirical 3-phase hydrate stability solution of (Tishchenko et al. 

2005). We performed a sensitivity analysis with this model that incorporated uncertainty in the 

geothermal gradient (20, 30, 40, 50℃ km-1), water depth (200 to 240 m in 10 m steps). The 

sensitivity analysis identified that the only conditions which allowed for a hydrate stability zone 

within the sediment column was at a bottom-water temperature lower than −0.2℃ under the lowest 

geothermal gradient (20℃ km-1) and deepest water depth (240 m). Even then, the minimum 

hydrate zone depth was 28.8 m below the sea-bed, which is too deep for a response to annual 

fluctuations in bottom-water temperature to drive seasonal release of methane.  

 

Temperatures down to −3℃ were also considered following recent work covering the same section 

(Petersen et al. 2016) which suggests shell ±18O   derived temperatures may produce a warm bias. 

However, even minimum clumped-isotope derived temperatures of −0.2℃ from Lahillia and 

Cucullaea and −2.8℃ from other bivalve species are likely to have been too warm for shallow 

hydrate formation at water depths of 70-200 m suggested from the sedimentology and faunal 

assemblage of the López de Bertodano Formation (Macellari 1988; Crame et al. 2004). 
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Dataset C.1:   Bulk sedimentary weight percent organic carbon and carbon isotope data from 

sedimentary section D5.251 used in Figure 6.4  

  wt% Corganic δ¹³C organic (‰V-PDB) 

Specimen No. Height on composite section (m) (1) (2) (average) (1) (2) (average) 

D5.229.1377.1 1072 0.45  0.45 -26.14  -26.14 

D5.229.1373.1 1069 0.29  0.29 -25.98  -25.98 

D5.229.1363.1 1064 0.27  0.27 -26.04  -26.04 

D5.229.1353.1 1059 0.14 0.12 0.13 -26.07 -26.09 -26.08 

D5.229.1347.1 1056 0.27  0.27 -25.77  -25.77 

D5.229.1339.1 1052 0.44  0.44 -25.62  -25.62 

D5.229.1331.1 1044 0.33 0.53 0.43 -24.65 -25.28 -24.96 

D5.229.1320.1 1034 0.30  0.30 -24.81  -24.81 

D5.229.1318.1 1032 0.41  0.41 -24.86  -24.86 

D5.229.1312.1 1027 0.22  0.22 -25.16  -25.16 

D5.229.1307.1 1022 0.34  0.34 -24.73  -24.73 

D5.229.1304.1 1019 0.16 0.17 0.16 -25.65 -25.82 -25.73 

D5.229.1298.1 1013 0.17 0.11 0.14 -24.15 -25.86 -25.00 

D5.229.1297.1 1012 0.36  0.36 -23.98  -23.98 

D5.229.1296.1 1011 0.26  0.26 -24.94  -24.94 

D5.229.1294.1 1009 0.14  0.14 -24.77  -24.77 

D5.229.1293.1 1008 0.43  0.43 -22.37  -22.37 

D5.229.1292.1 1007 0.39  0.39 -24.70  -24.70 

D5.229.1291.1 1006 0.29  0.29 -24.29  -24.29 

D5.229.1290.1 1005 0.36  0.36 -24.98  -24.98 

D5.229.1289.1 1004 0.40  0.40 -25.30  -25.30 

D5.229.1288.1 1003 0.37  0.37 -24.61  -24.61 

D5.229.1285.1 1000 0.26 0.22 0.24 -25.17 -25.24 -25.20 

D5.229.1280.1 995 0.37  0.37 -24.32  -24.32 

D5.229.1275.1 990 0.57  0.57 -25.10  -25.10 

D5.229.1274.1 989 0.38  0.38 -24.75  -24.75 

D5.229.1269.1 985 0.27  0.27 -24.86  -24.86 

D5.229.1264.1 980 0.17 0.22 0.20 -25.57 -25.27 -25.42 

D5.229.1259.1 975 0.32  0.32 -25.06  -25.06 

D5.229.1258.1 974 0.38 0.21 0.29 -25.03 -24.89 -24.96 

D5.222.1244.1 970 
   -25.23 -25.53 -25.38 

D5.222.1241.1 966 0.27 0.32 0.30 -25.66 -25.35 -25.50 

D5.222.1240.1 963 0.21  0.21 -25.11  -25.11 

D5.222.1238.1 960 0.37  0.37 -24.54  -24.54 

D5.222.1234.1 954 0.23 0.33 0.28 -23.50 -23.19 -23.35 

D5.222.1232.1 950 0.24 0.21 0.22 -25.00 -24.45 -24.72 

D5.220.1227.1 944 0.29  0.29 -24.83  -24.83 

D5.220.1225.1 940 0.29 0.12 0.21 -21.52 -24.34 -22.93 

D5.220.1222.1 934 0.25 0.18 0.22 -23.61 -23.87 -23.74 

D5.220.1220.1 930 0.15 0.13 0.14 -24.70 -24.98 -24.84 
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  wt% Corganic δ¹³C organic (‰V-PDB) 

Specimen No. Height on composite section (m) (1) (2) (average) (1) (2) (average) 

D5.220.1218.1 926 0.32 0.12 0.22 -23.64 -24.92 -24.28 

D5.220.1217.1 924 0.30  0.30 -22.36  -22.36 

D5.220.1215.1 920 0.19 0.17 0.18 -25.46 -25.43 -25.45 

D5.220.1212.1 914 0.31  0.31 -24.34  -24.34 

D5.220.1210.1 910 0.19 0.17 0.18 -25.33 -25.19 -25.26 

D5.220.1207.1 904 0.33  0.33 -23.96  -23.96 

D5.220.1205.1 900 0.21 0.21 0.21 -25.39 -25.13 -25.26 

D5.220.1198.1 890 0.21  0.21 -23.81  -23.81 

D5.220.1196.1 886 0.25  0.25 -25.04  -25.04 

D5.220.1194.1 883 0.33  0.33 -25.05  -25.05 

D5.220.1192.1 880 0.27  0.27 -25.13  -25.13 

D5.220.1190.1 876 0.24 0.52 0.38 -24.67 -24.68 -24.68 

D5.219.1183.1 864 0.42  0.42 -24.48  -24.48 

D5.219.1173.1 844 0.17  0.17 -25.09  -25.09 

D5.219.1169.1 837 0.27  0.27 -24.70  -24.70 

D5.219.1166.2 834 0.22  0.22 -24.95  -24.95 

D5.219.1164.1 832 0.27  0.27 -25.54  -25.54 

D5.219.1163.1 831 0.19  0.19 -24.26  -24.26 

D5.219.1162.1 830 0.19  0.19 -24.63  -24.63 

D5.219.1159.1 824 0.24  0.24 -25.04  -25.04 

D5.219.1150.1 800 0.26  0.26 -25.10  -25.10 

D5.219.1141.1 784 0.34  0.34 -24.63  -24.63 

D5.219.1131.1 764 0.42  0.42 -23.84  -23.84 

D5.219.1120.1 744 0.53  0.53 -24.24  -24.24 

D5.219.1104.1 724 0.35  0.35 -24.78  -24.78 

D5.219.1103.1 723 0.41  0.41 -24.87  -24.87 

D5.219.1102.1 722 0.50  0.50 -24.60  -24.60 

D5.219.1101.1 721 0.34  0.34 -24.81  -24.81 

D5.219.1100.1 720 0.45  0.45 -24.94  -24.94 

D5.219.1099.1 719 0.49  0.49 -21.74  -21.74 

D5.219.1098.1 718 0.28  0.28 -23.85  -23.85 

D5.219.1097.1 717 0.31  0.31 -24.66  -24.66 

D5.219.1096.1 716 0.27  0.27 -23.22  -23.22 

D5.219.1085.1 704 0.24  0.24 -24.52  -24.52 

D5.218.1063.1 683 0.32  0.32 -24.67  -24.67 

D5.218.1042.1 663 0.30  0.30 -24.50  -24.50 

D5.218.1033.1 654 0.32  0.32 -24.91  -24.91 

D5.218.1032.1 653 0.28  0.28 -24.70  -24.70 

D5.218.1031.1 651 
   -24.37  -24.37 

D5.218.1030.1 649 0.39  0.39 -23.70  -23.70 

D5.218.1029.1 648 0.36  0.36 -24.85  -24.85 

D5.218.1028.1 647 0.26  0.26 -23.72  -23.72 

D5.218.1027.1 646 0.28  0.28 -24.57  -24.57 
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  wt% Corganic δ¹³C organic (‰V-PDB) 

Specimen No. Height on composite section (m) (1) (2) (average) (1) (2) (average) 

D5.218.1026.1 645 0.26 0.22 0.24 -23.94 -24.92 -24.43 

D5.218.1025.1 644 
   -24.25  -24.25 

D5.218.1024.1 643 0.29  0.29 -24.83  -24.83 

D5.218.1004.1 624 0.44  0.44 -24.63  -24.63 

D5.218.1003.1 623 0.32  0.32 -24.24  -24.24 

D5.218.1002.1 622 0.45  0.45 -24.50  -24.50 

D5.218.1001.1 621 0.34  0.34 -24.82  -24.82 

D5.215.704.1 620 0.69  0.69 -23.59  -23.59 

D5.215.703.1 619 0.68  0.68 -24.57  -24.57 

D5.215.702.1 618 0.50  0.50 -24.49  -24.49 

D5.215.701.1 617 0.62  0.62 -24.59  -24.59 

D5.215.687.1 603 0.48  0.48 -24.29  -24.29 

D5.215.668.1 583 0.51  0.51 -25.09  -25.09 

D5.215.384.1 563 0.65  0.65 -25.00  -25.00 

D5.215.364.1 543 0.60  0.60 -25.14  -25.14 

D5.215.348.1 528 0.52  0.52 -24.89  -24.89 

D5.215.347.1 527 0.56  0.56 -25.10  -25.10 

D5.215.346.1 526 0.51  0.51 -24.35  -24.35 

D5.215.345.1 525 0.61  0.61 -25.37  -25.37 

D5.215.344.1 524 0.57  0.57 -25.14  -25.14 

D5.215.343.1 523 0.58  0.58 -25.41 -25.48 -25.45 

D5.215.342.1 522 0.66  0.66 -25.30  -25.30 

D5.215.341.1 521 0.63  0.63 -25.38  -25.38 

D5.215.340.1 520 0.62  0.62 -25.38  -25.38 

D5.215.323.1 503 0.45  0.45 -24.96  -24.96 

D5.215.303.1 481 0.57  0.57 -25.39  -25.39 

D5.215.984.1 461 0.47  0.47 -25.35  -25.35 

D5.215.966.1 443 0.65  0.65 -25.60  -25.60 

D5.215.961.1 438 0.09  0.09 -25.00  -25.00 

D5.215.956.1 433 0.09  0.09 -25.33  -25.33 

D5.215.951.1 428 0.81  0.81 -25.31  -25.31 

D5.215.946.1 423 0.77  0.77 -24.94  -24.94 

D5.215.941.1 418 0.79  0.79 -25.16  -25.16 

D5.215.936.1 413 0.47  0.47 -24.76  -24.76 

D5.215.931.1 408 0.48  0.48 -25.16  -25.16 

D5.215.926.1 403 0.82  0.82 -25.04  -25.04 

D5.215.921.1 398 0.66  0.66 -25.04  -25.04 

D5.215.916.1 393 0.51  0.51 -24.88  -24.88 

D5.215.913.2 390 0.97  0.97 -25.24  -25.24 

D5.215.910.11 387 0.53  0.53 -24.70  -24.70 

D5.212.889.1 366 0.53  0.53 -25.44  -25.44 

D5.212.879.1 356 0.52  0.52 -25.02  -25.02 

D5.212.869.1 346 0.39  0.39 -25.46  -25.46 
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  wt% Corganic δ¹³C organic (‰V-PDB) 

Specimen No. Height on composite section (m) (1) (2) (average) (1) (2) (average) 

D5.212.860.1 337 0.24  0.24 -25.05  -25.05 

D5.212.839.1 316 0.37  0.37 -25.36  -25.36 

D5.212.832.1 309 0.45  0.45 -25.95  -25.95 

D5.212.570.1 246 0.28  0.28 -25.67  -25.67 

D5.212.528.1 206 0.50  0.50 -25.03  -25.03 

D5.212.489.3 165 0.24  0.24 -25.73  -25.73 

 

 

 

Dataset C.2   Bulk sedimentary weight percent carbonate used in Figure 6.4 

Specimen No. 
Height 

(m) 

wt% 

Carbonate 

D5.229.1377.1 1072 8 

D5.229.1339.1 1052 8 

D5.229.1318.1 1032 6.6 

D5.229.1307.1 1022 7.9 

D5.229.1297.1 1012 6.7 

D5.229.1296.1 1011 12.2 

D5.229.1294.1 1009 59.4 

D5.229.1293.1 1008 9.5 

D5.229.1292.1 1007 7.9 

D5.229.1291.1 1006 22 

D5.229.1290.1 1005 8.9 

D5.229.1289.1 1004 8.5 

D5.229.1288.1 1003 6.5 

D5.229.1274.1 989 9 

D5.229.1259.1 975 10.1 

D5.222.1240.1 963 6.9 

D5.220.1227.1 944 7.7 

D5.220.1217.1 924 13.2 

Specimen No. 
Height 

(m) 

wt% 

Carbonate 

D5.220.1207.1 904 7.1 

D5.220.1194.1 883 19 

D5.219.1173.1 844 8.6 

D5.219.1159.1 824 6.3 

D5.219.1150.1 800 6.5 

D5.219.1141.1 784 6.3 

D5.219.1131.1 764 9.5 

D5.219.1120.1 744 10.5 

D5.219.1104.1 724 12.2 

D5.219.1085.1 704 10.2 

D5.218.1063.1 683 9.3 

D5.218.1042.1 663 8.8 

D5.218.1024.1 643 9.5 

D5.218.1003.1 623 12.1 

D5.215.687.1 603 9.2 

D5.215.668.1 583 11 

D5.215.384.1 563 9.2 

D5.215.364.1 543 12.8 
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Table C.1: Mass balance calculations using equation [S1] solving for modelled shell δ13C 

ocean DIC POC Calculated shell 

δ13C (‰) fraction δ13C (‰) fraction δ13C (‰) 

No incorporation of metabolic carbon 

2.5 1 -28 0 2.5 

0 1 -28 0 0.0 

2.5 1 -20 0 2.5 

0 1 -20 0 0.0 

10% contribution of metabolic carbon 

2.5 0.9 -28 0.1 -0.6 

0 0.9 -28 0.1 -2.8 

2.5 0.9 -20 0.1 0.3 

0 0.9 -20 0.1 -2.0 

37% contribution of metabolic carbon 

2.5 0.63 -28 0.37 -8.8 

0 0.63 -28 0.37 -10.4 

2.5 0.63 -20 0.37 -5.8 

0 0.63 -20 0.37 -7.4 

 

 

Table C.2: Mass balance calculation using equation [S1]   solving for δ13C of bottom water DIC 

bottom water DIC POC shell 

calculated  

δ13C (‰) 

fraction δ13C (‰) fraction δ13C (‰) 

0.6 0.63 -28 0.37 -10.0 

-8.0 0.9 -28 0.1 -10.0 

-10.0 1 -28 0 -10.0 

-4.1 0.63 -20 0.37 -10.0 

-8.9 0.9 -20 0.1 -10.0 

-10.0 1 -20 0 -10.0 

-37.5 0.63 -28 0.37 -34.0 

-34.7 0.9 -28 0.1 -34.0 

-34.0 1 -28 0 -34.0 

-42.2 0.63 -20 0.37 -34.0 

-35.6 0.9 -20 0.1 -34.0 

-34.0 1 -20 0 -34.0 

 

 



349 

 

Table C.3: Mass balance calculation using equation [S2] solving for fractions of methane 

derived DIC and oceanic DIC required to recreate modeled local bottom water conditions. 

bottom water DIC Methane DIC Ocean DIC 
 

δ13C (‰) δ13C (‰) calculated 

fraction 
δ13C (‰) calculated 

fraction 

-34.0 -50 0.70 2.5 0.30 

-34.0 -50 0.68 0.0 0.32 

-34.0 -60 0.58 2.5 0.42 

-34.0 -60 0.57 0.0 0.43 

-34.0 -110 0.32 2.5 0.68 

-34.0 -110 0.31 0.0 0.69 

-42.0 -50 0.85 2.5 0.15 

-42.0 -50 0.84 0.0 0.16 

-42.0 -60 0.71 2.5 0.29 

-42.0 -60 0.70 0.0 0.30 

-42.0 -110 0.40 2.5 0.60 

-42.0 -110 0.38 0.0 0.62 
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APPENDIX D 

 

Dataset D.1: Maastrichtian global seasonal and mean annual temperature proxy-derived data set. 

Organism Method Reference Year Pal_Lat Local_Name Country MAT MAT error CMMT WMMT 

Belemnite Belemnite d18O Lowenstam & Epstein 1954 35.49 Macon USA 16.3 1.6   

Belemnite Belemnite d18O Lowenstam & Epstein 1954 37.23 Starkville USA 19.9 1.6   

Belemnite Belemnite d18O Lowenstam & Epstein 1954 37.23 Starkville USA 18.8 1.6   

Belemnite Belemnite d18O Lowenstam & Epstein 1954 37.23 Starkville USA 16.8 1.6   

Belemnite Belemnite d18O Lowenstam & Epstein 1954 37.15 Cape Fear River USA 18.6 1.6   

Belemnite Belemnite d18O Lowenstam & Epstein 1954 35.49 Macon USA 19.5 1.6   

Belemnite Belemnite d18O Lowenstam & Epstein 1954 35.49 Macon USA 17.5 1.6   

Belemnite Belemnite d18O Lowenstam & Epstein 1954 35.49 Macon USA 16.4 1.6   

Belemnite Belemnite d18O Lowenstam & Epstein 1954 35.49 Macon USA 22.9 1.6   

Belemnite Belemnite d18O Lowenstam & Epstein 1954 36.76 Pee Dee River USA 19.2 1.6   

Belemnite Belemnite d18O Lowenstam & Epstein 1954 36.76 Pee Dee River USA 18 1.6   

Belemnite Belemnite d18O Lowenstam & Epstein 1954 36.76 Pee Dee River USA 19.5 1.6   

Belemnite Belemnite d18O Lowenstam & Epstein 1954 36.76 Pee Dee River USA 18.1 1.6   

Belemnite Belemnite d18O Lowenstam & Epstein 1954 36.76 Pee Dee River USA 18.6 1.6   

Belemnite Belemnite d18O Lowenstam & Epstein 1954 36.76 Pee Dee River USA 18.6 1.6   

Belemnite Belemnite d18O Lowenstam & Epstein 1954 36.76 Pee Dee River USA 18.7 1.6   

Belemnite Belemnite d18O Lowenstam & Epstein 1954 36.76 Pee Dee River USA 18.2 1.6   

Belemnite Belemnite d18O Lowenstam & Epstein 1954 36.76 Pee Dee River USA 18 1.6   

Belemnite Belemnite d18O Lowenstam & Epstein 1954 36.76 Pee Dee River USA 19 1.6   

Belemnite Belemnite d18O Lowenstam & Epstein 1954 36.76 Pee Dee River USA 19.7 1.6   

Belemnite Belemnite d18O Lowenstam & Epstein 1954 36.76 Pee Dee River USA 17.3 1.6   

Belemnite Belemnite d18O Lowenstam & Epstein 1954 37.15 Cape Fear River USA 17.7 1.6   
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Belemnite Belemnite d18O Lowenstam & Epstein 1954 40.46 Cream Ridge USA 17.3 1.6   

Belemnite Belemnite d18O Lowenstam & Epstein 1954 40.46 Cream Ridge USA 18 1.6   

Belemnite Belemnite d18O Lowenstam & Epstein 1954 40.46 Cream Ridge USA 16.7 1.6   

Belemnite Belemnite d18O Lowenstam & Epstein 1954 40.46 Cream Ridge USA 17.2 1.6   

Belemnite Belemnite d18O Lowenstam & Epstein 1954 63.42 Hornerstown USA 17.9 1.6   

Belemnite Belemnite d18O Lowenstam & Epstein 1954 63.42 Hornerstown USA 18.6 1.6   

Belemnite Belemnite d18O Lowenstam & Epstein 1954 63.42 Hornerstown USA 17.4 1.6   

Belemnite Belemnite d18O Lowenstam & Epstein 1954 63.42 Hornerstown USA 18.9 1.6   

Belemnite Belemnite d18O Lowenstam & Epstein 1954 63.42 Hornerstown USA 17.9 1.6   

Belemnite Belemnite d18O Lowenstam & Epstein 1954 63.42 Hornerstown USA 19.1 1.6   

Belemnite Belemnite d18O Lowenstam & Epstein 1954 63.42 Hornerstown USA 17.8 1.6   

Belemnite Belemnite d18O Lowenstam & Epstein 1954 63.42 Hornerstown USA 18.1 1.6   

Belemnite Belemnite d18O Lowenstam & Epstein 1954 63.42 Hornerstown USA 16.2 1.6   

Belemnite Belemnite d18O Lowenstam & Epstein 1954 63.42 Hornerstown USA 19.3 1.6   

Belemnite Belemnite d18O Lowenstam & Epstein 1954 40.24 Mullica Hill USA 20.4 1.6   

Belemnite Belemnite d18O Lowenstam & Epstein 1954 40.24 Mullica Hill USA 18.4 1.6   

Belemnite Belemnite d18O Lowenstam & Epstein 1954 40.24 Mullica Hill USA 19.8 1.6   

Belemnite Belemnite d18O Lowenstam & Epstein 1954 40.24 Mullica Hill USA 20.2 1.6   

Belemnite Belemnite d18O Lowenstam & Epstein 1954 40.24 Mullica Hill USA 20.4 1.6   

Belemnite Belemnite d18O Lowenstam & Epstein 1954 40.24 Mullica Hill USA 19.8 1.6   

Belemnite Belemnite d18O Lowenstam & Epstein 1954 54 Bjernum Sweden 17.7 1.6   

Belemnite Belemnite d18O Lowenstam & Epstein 1954 54 Bjernum Sweden 17.2 1.6   

Belemnite Belemnite d18O Lowenstam & Epstein 1954 54 Bjernum Sweden 17.4 1.6   

Belemnite Belemnite d18O Lowenstam & Epstein 1954 54 Bjernum Sweden 17.7 1.6   

Belemnite Belemnite d18O Lowenstam & Epstein 1954 47.03 Moens Klint Denmark 15.2 1.6   

Belemnite Belemnite d18O Lowenstam & Epstein 1954 47.03 Moens Klint Denmark 15.4 1.6   

Belemnite Belemnite d18O Lowenstam & Epstein 1954 47.03 Moens Klint Denmark 16.4 1.6   

Belemnite Belemnite d18O Lowenstam & Epstein 1954 47.03 Moens Klint Denmark 14.8 1.6   
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Belemnite Belemnite d18O Lowenstam & Epstein 1954 47.03 Moens Klint Denmark 15.9 1.6   

Belemnite Belemnite d18O Lowenstam & Epstein 1954 47.03 Moens Klint Denmark 15.3 1.6   

Belemnite Belemnite d18O Lowenstam & Epstein 1954 47.03 Moens Klint Denmark 14.7 1.6   

Belemnite Belemnite d18O Lowenstam & Epstein 1954 44.21 St. Pietersberg Holland 19.6 1.6   

Belemnite Belemnite d18O Lowenstam & Epstein 1954 45.04 Trimingham England 17.4 1.6   

Soil 
Carbonate 

d18O 
Lowenstam & Epstein 1954 35.49 Macon USA 26.8 0.5   

Soil 
Carbonate 

d18O 
Lowenstam & Epstein 1954 36.76 Pee Dee River USA 23.1 0.5   

Soil 
Carbonate 

d18O 
Lowenstam & Epstein 1954 37.15 Cape Fear River USA 19.1 0.5   

Soil 
Carbonate 

d18O 
Lowenstam & Epstein 1954 37.11 Columbus USA 27.4 0.5   

Soil 
Carbonate 

d18O 
Lowenstam & Epstein 1954 47.03 Moens Klint Denmark 24.1 0.5   

Soil 
Carbonate 

d18O 
Lowenstam & Epstein 1954 47.03 Moens Klint Denmark 27 0.5   

Soil 
Carbonate 

d18O 
Lowenstam & Epstein 1954 45.04 Trimingham England 24.5 0.5   

Soil 
Carbonate 

d18O 
Lowenstam & Epstein 1954 45.04 Trimingham England 25.4 0.5   

Soil 
Carbonate 

d18O 
Lowenstam & Epstein 1954 45.04 Trimingham England 27.5 0.5   

Belemnite Belemnite d18O Bowen 1961 42.68  Belgium 20 1.6   

Belemnite Belemnite d18O Bowen 1961 42.68  Belgium 20.2 1.6   

Belemnite Belemnite d18O Bowen 1961 42.68  Belgium 18.4 1.6   

Belemnite Belemnite d18O Bowen 1961 42.68  Belgium 18.5 1.6   

Belemnite Belemnite d18O Bowen 1961 42.68  Belgium 20 1.6   

Veg  Spicer 1987 81 Prince Creek Formation USA 2.5 0   

Veg 
Macroflora Life 
Form Analysis 

Parrish and Spicer 1988 81 Prince Creek Formation USA 5 3   

Belemnite Belemnite d18O Pirrie and Marshall 1990 -63 Vega Island Antarctica 9.9 1.6   

Bivalve Bivalve d18O Pirrie and Marshall 1990 -63 Vega Island Antarctica 12 1.6   

Bivalve Bivalve d18O Pirrie and Marshall 1990 -63 Vega Island Antarctica 10.3 1.6   

Bivalve Bivalve d18O Pirrie and Marshall 1990 -63 Vega Island Antarctica 12.6 1.6   

Bivalve Bivalve d18O Pirrie and Marshall 1990 -63 Vega Island Antarctica 10.9 1.6   
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Bivalve Bivalve d18O Pirrie and Marshall 1990 -63 Vega Island Antarctica 11.4 1.6   

Bivalve Bivalve d18O Pirrie and Marshall 1990 -63 Vega Island Antarctica 9 1.6   

Bivalve Bivalve d18O Pirrie and Marshall 1990 -63 Vega Island Antarctica 14.9 1.6   

Bivalve Bivalve d18O Pirrie and Marshall 1990 -63 Vega Island Antarctica 11.6 1.6   

Bivalve Bivalve d18O Pirrie and Marshall 1990 -63 Vega Island Antarctica 15 1.6   

Bivalve Bivalve d18O Pirrie and Marshall 1990 -63 Vega Island Antarctica 16.6 1.6   

Cephalopod 
Ammonoid 

d18O 
Pirrie and Marshall 1990 -63 Vega Island Antarctica 16.6 1.6   

Cephalopod 
Ammonoid 

d18O 
Pirrie and Marshall 1990 -63 Vega Island Antarctica 15.9 1.6   

Cephalopod 
Ammonoid 

d18O 
Pirrie and Marshall 1990 -63 Vega Island Antarctica 10.8 1.6   

Cephalopod 
Ammonoid 

d18O 
Pirrie and Marshall 1990 -63 Vega Island Antarctica 13.7 1.6   

Cephalopod 
Ammonoid 

d18O 
Pirrie and Marshall 1990 -63 Vega Island Antarctica 12.5 1.6   

Cephalopod 
Ammonoid 

d18O 
Pirrie and Marshall 1990 -63 Vega Island Antarctica 10.6 1.6   

Cephalopod 
Ammonoid 

d18O 
Pirrie and Marshall 1990 -63 Vega Island Antarctica 10.8 1.6   

Cephalopod 
Ammonoid 

d18O 
Pirrie and Marshall 1990 -63 Vega Island Antarctica 13.2 1.6   

Cephalopod 
Ammonoid 

d18O 
Pirrie and Marshall 1990 -63 Vega Island Antarctica 9.8 1.6   

Cephalopod 
Ammonoid 

d18O 
Pirrie and Marshall 1990 -63 Vega Island Antarctica 10 1.6   

Cephalopod 
Ammonoid 

d18O 
Pirrie and Marshall 1990 -63 Vega Island Antarctica 11.9 1.6   

Cephalopod 
Ammonoid 

d18O 
Pirrie and Marshall 1990 -63 Vega Island Antarctica 11.9 1.6   

Cephalopod 
Ammonoid 

d18O 
Pirrie and Marshall 1990 -63 Vega Island Antarctica 11.4 1.6   

Cephalopod 
Ammonoid 

d18O 
Pirrie and Marshall 1990 -63 Vega Island Antarctica 11.8 1.6   

Cephalopod 
Ammonoid 

d18O 
Pirrie and Marshall 1990 -63 Vega Island Antarctica 10.4 1.6   

Cephalopod 
Ammonoid 

d18O 
Pirrie and Marshall 1990 -63 Vega Island Antarctica 12.8 1.6   

Veg CLAMP Wolfe 1990 49 Lance  16.2 2.8   

Veg CLAMP Wolfe 1990 48 Medicine Bow 16.5 2.8   
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Veg CLAMP Wolfe 1990 46 Laramie  17.2 2.8   

Veg CLAMP Wolfe 1990 46 Littleton  17.3 2.8   

Veg CLAMP Wolfe 1990 45 Rockdale  17.6 2.8   

Veg CLAMP Wolfe 1990 43 Lower Raton 18.1 2.8   

Veg CLAMP Wolfe 1990 43 Vermejo  18.2 2.8   

Bivalve Bivalve d18O Wilson and Opdyke 1996 0 Wodejebato PACIFIC  1.6 28 32 

Bivalve Bivalve d18O Wilson and Opdyke 1996 0 Wodejebato PACIFIC  1.6 24 28 

Veg CLAMP Golovneva 2000 38 Ripley Fm USA 17 2.8 11 23 

Veg CLAMP Golovneva 2000 75 Rarytkin NE Asia 11 2.8 4 19 

Veg CLAMP Golovneva 2000 49 Lance USA 14 2.8 8 21 

Veg CLAMP Golovneva 2000 52 Hell Creek USA 12 2.8 6 19 

Veg CLAMP Golovneva 2000 48 Medicine Bow Fm USA 17 2.8 13 23 

Veg CLAMP Golovneva 2000 52 Lance Fm USA 14 2.8   

Veg CLAMP Golovneva 2000 53 Sakhalin Russia 14 2.8 8 20 

Veg CLAMP Golovneva 2000 60 Edmonton Fm Canada 12 2.8 5 19 

Veg CLAMP Golovneva 2000 45 Zaisan Fm Russia 11 2.8 4 19 

Veg CLAMP Golovneva 2000 75 Kakanaut NE Asia 10 2.8 3 19 

Veg 
multivariate 
physignomics 

Golovneva 2000 76 Koryak Kakanaut Flora Russia 10 2 3  

Foram Foram d18O Pearson et al 2001 -21  Tanzania 31 2.9   

Veg CLAMP Kennedy et al 2002 -59 Pakawau Gp New Zealand 12.3 2.8   

Veg CLAMP Kennedy et al 2002 -58 Pakawu Bush Road New Zealand 13.8 2.8  20.5 

Veg CLAMP Kennedy et al 2002 -58 Pakawu Bush Road New Zealand 12.7 2.8  22 

Veg CLAMP Kennedy et al 2002 -58 Pakawu Bush Road New Zealand 12.3 2.8  22.2 

Veg CLAMP Kennedy et al 2002 -55 Taratu Fm New Zealand 10.1 2.8   

Veg LMA Kennedy et al 2002 -59 Pakawau Gp New Zealand 14.8 2   

Veg 
LMA (NH 

scale) 
Kennedy et al 2002 -58 Pakawu Bush Road New Zealand 14.8 0.8   

Veg LMA (SH scale) Kennedy et al 2002 -58 Pakawu Bush Road New Zealand 13.5 2   
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Veg Wood Francis & Poole 2002 -60 Lopez de Bertodano Fm Antarctica 3.4 4   

Fish 
Fish Otolith 

d18O 
Carpenter et al 2003 50 Fox Hills USA 18 1.6   

Foram Foram d18O Maestas et al 2003 36 Rosario Fm USA 26 2.9  30 

Veg LMA Wilf et al 2003 49 Fort Union Formation USA 10 2   

Veg LMA Wilf et al 2003 52 Hell Creek Formation USA 7 2  18 

Veg LMA Wilf et al 2003 52.7 Hell Creek North Dakota 12 2   

Veg LMA Wilf et al 2003 52.7 Hell Creek North Dakota 15 2   

Veg LMA Wilf et al 2003 52.7 Hell Creek North Dakota 9 2   

Bone Crocodile d18O Amiot et al 2004 36 France France 21 1   

Bone Crocodile d18O Amiot et al 2004 36 Texas USA 19 1.1   

Bone Crocodile d18O Amiot et al 2004 -33  Madagascar 27 2.1   

Bone Crocodile d18O Amiot et al 2004 -25 Lameta Fm India 18 2.5   

Bone Crocodile d18O Amiot et al 2004 -21  Bolivia 25 2.75   

Bone Dinosaur d18O Amiot et al 2004 36 France France 23 2.1   

Bone Dinosaur d18O Amiot et al 2004 36 Texas USA 20 1.1   

Bone Dinosaur d18O Amiot et al 2004 -33  Madagascar 28 2.3   

TEX TEX H86H Jenkyns et al 2004 78 Alpha Ridge    17 

Rudist Bivalve d18O Steuber et al 2005 18 Marchmont Jamaica  1.6 29.8 35.9 

Rudist Bivalve d18O Steuber et al 2005 18 Jerusalem Mt, Jamaica  1.6 29.8 34.0 

Rudist Bivalve d18O Steuber et al 2005 7.7 Jebel Rawdah Oman  1.6 36.3 39.6 

Rudist Bivalve d18O Steuber et al 2005 7.7 Jebel Rawdah Oman  1.6 32.6 37.3 

Soil 
Carbonate 

d18O 
Dworkin et al 2005 36.3 Big Bend  16 0.5   

Soil 
Carbonate 

d18O 
Dworkin et al 2005 36.3 Big Bend  23 0.5   

Soil 
Soil Carbonate 

d18O 
Dworkin et al 2005 36 Big Bend USA 15 0.5   

Soil 
Soil Carbonate 

d18O 
Dworkin et al 2005 36 Big Bend USA 22 0.5   

Veg CLAMP Wolfe 2005 33 Olmos  24 2.8   

Veg CLAMP Moiseeva 2005 70 Koryak Russia 4 2.8   
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Veg 
Coexistence 
Intervals 

Poole et al 2005 -60.9 King George Island James Ross Basin 14 0   

Veg 
Coexistence 
Intervals 

Poole et al 2005 -60.9 King George Island James Ross Basin 18 0   

Veg Wood Poole et al 2005 -63 Lopez de Bertodano Fm Antarctica 9.9 5.4   

Veg Wood Poole et al 2005 -60.9 King George Island James Ross Basin 11 0   

Bivalve Bivalve d18O Zakharov et al 2006 44 South Netherlands Netherlands 19.8 1.6   

Bivalve Bivalve d18O Zakharov et al 2006 50 Deway Fm Fox Hills USA 17.6 1.6   

Brachiopod Brach d18O Zakharov et al 2006 51 Naiba River Russia 10.8 1.6   

Brachiopod Brach d18O Zakharov et al 2006 51 Naiba River Russia 11.2 1.6   

Cephalopod 
Ammonoid 

d18O 
Zakharov et al 2006 51 Naiba River Russia 8.4 1.6   

Cephalopod 
Ammonoid 

d18O 
Zakharov et al 2006 51 Naiba River Russia 8.4 1.6   

Cephalopod 
Ammonoid 

d18O 
Zakharov et al 2006 51 Naiba River Russia 7.1 1.6   

Cephalopod 
Ammonoid 

d18O 
Zakharov et al 2006 51 Naiba River Russia 9.3 1.6   

Cephalopod 
Ammonoid 

d18O 
Zakharov et al 2006 50 Deway Fm Fox Hills USA 17.6 1.6   

Cephalopod 
Ammonoid 

d18O 
Zakharov et al 2006 50 Deway Fm Fox Hills USA 21.3 1.6   

Cephalopod 
Ammonoid 

d18O 
Zakharov et al 2006 50 Deway Fm Fox Hills USA 20.7 1.6   

Cephalopod 
Ammonoid 

d18O 
Zakharov et al 2006 51 Naiba River Russia 7.6 1.6   

Cephalopod 
Ammonoid 

d18O 
Zakharov et al 2006 51 Naiba River Russia 9.3 1.6   

Cephalopod 
Ammonoid 

d18O 
Zakharov et al 2006 51 Naiba River Russia 7.6 1.6   

Belemnite Belemnite d18O Dutton et al 2007 -64 Seymour Island Antarctica  1.6 8.9 10.6 

Belemnite Belemnite d18O Dutton et al 2007 -64 Seymour Island Antarctica  1.6 7.9 10.1 

Belemnite Belemnite d18O Dutton et al 2007 -64 Seymour Island Antarctica  1.6 7.7 10.5 

Fish 
Fish Tooth 

Enamel d18O 
Puceat et al 2007 -30 Las Tablas Chile 21 1.2   

Fish 
Fish Tooth 

Enamel d18O 
Puceat et al 2007 -30 Las Tablas Chile 25 2.7   

Fish 
Fish Tooth 

Enamel d18O 
Puceat et al 2007 -35 Algarrobo Chile 20 1.2   
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Fish 
Fish Tooth 

Enamel d18O 
Puceat et al 2007 -35 Algarrobo Chile 24 2.7   

Fish 
Fish Tooth 

Enamel d18O 
Puceat et al 2007 44 Maastricht Netherlands 14 1.2   

Fish 
Fish Tooth 

Enamel d18O 
Puceat et al 2007 44 Maastricht Netherlands 18 2.7   

Fish 
Fish Tooth 

Enamel d18O 
Puceat et al 2007 44 Nasilov Poland 17 1.2 15 20 

Fish 
Fish Tooth 

Enamel d18O 
Puceat et al 2007 44 Nasilov Poland 20 2.7 19 23 

Fish 
Fish Tooth 

Enamel d18O 
Puceat et al 2007 40 New Jersey 19 1.2 14 29 

Fish 
Fish Tooth 

Enamel d18O 
Puceat et al 2007 40 New Jersey 22 2.7 17 32 

Fish 
Fish Tooth 

Enamel d18O 
Puceat et al 2007 23  Morocco 28 1.2 24 31 

Fish 
Fish Tooth 

Enamel d18O 
Puceat et al 2007 23  Morocco 31 2.7 27 34 

Fish 
Fish Tooth 

Enamel d18O 
Puceat et al 2007 18  Israel 21 1.2 19 22 

Fish 
Fish Tooth 

Enamel d18O 
Puceat et al 2007 18  Israel 24 2.7 23 25 

Fish 
Fish Tooth 

Enamel d18O 
Ounis et al 2008 25  Tunisia 27 1.2 24 30 

Fish 
Fish Tooth 

Enamel d18O 
Ounis et al 2008 25  Tunisia 30 2.7 28 33 

Veg LMA Estrada-Ruiz et al 2008 33 Olmos  25 2   

Veg LMA Estrada-Ruiz et al 2008 33.7 Olmos  23 2   

Veg CLAMP Spicer and Herman 2010 40 Ripley Fm USA 14.7 2.8 5.3 25.3 

Veg CLAMP Tomsich et al 2010 74 Cantwell Alaska 7.4 2.8 -2.3 17.1 

Veg CLAMP Tomsich et al 2010 50 Hell Creek USA 12 2.8 6 19 

Veg CLAMP Spicer & Herman 2010 65 Vilui Russia 11 2.8   

Veg CLAMP Tomsich et al 2010 76 Koryak, Russia 3.5 2.8   

Veg CLAMP Tomsich et al 2010 81 Prince Creek 5.5 2.8 3 11 

Veg CLAMP Spicer and Herman 2010 52 Lance USA 13.3 2.8 5.3 22.2 

Veg CLAMP Spicer and Herman 2010 36 Cooper Pit USA 14.7 2.8 5.3 25.3 

Veg CLAMP Spicer and Herman 2010 51 Medicine Bow Fm USA 17.2 2.8 11.2 23.6 

Veg CLAMP Tomsich et al 2010 54 Edmonton Canada 12 2.8 5 19 



358 

 

Organism Method Reference Year Pal_Lat Local_Name Country MAT MAT error CMMT WMMT 

Veg CLAMP Tomsich et al 2010 75 Kakanaut Russia 10 2.8 3 19 

Veg Extrapolated Spicer & Herman 2010 81 Prince Creek 5.7 2.8   

Veg LMA Tomisch, McCarthy et al 2010 74 Cantwell Fm Alaska 8 2   

Veg CLAMP Hofmann et al 2011 63 Chirimyi Fm Russia 13.1 2.8   

Veg 
Digital Leaf 
Physiognomy 

Peppe et al 2011 52 Fox Hills USA 17 3.3   

TEX TEX H86H Alsenz et al 2013 19 Aderet 1 Israel    28 

TEX TEX H86H Alsenz et al 2013 19 PAMA Quarry Israel    27 

Foram Foram d18O Ashckenazi Polivoda et al 2014 36 Falls County USA 27 2.9   

Soil MBT/CBT Kemp et al 2014 -63 Seymour Island Antarctica 12 5 10 14 

TEX TEX H86H Linnert et al 2014 36 Shuqualak Core USA    30 

TEX TEX H86H Vellekoop et al 2014 36 Corsicana Fm    30 

Veg CLAMP Arens and Allen 2014 49 Hell Creek Formation 11.3 2.8 2.6 20.5 

Veg CLAMP Arens and Allen 2014 49 Hell Creek Formation 11.6 2.8 2.6 20.1 

Veg LMA Upchurch et al 2015 40 McRae Fm Jose Creek Member 22 2.3   

Veg LMA Upchurch et al 2015 38 Ripley Cooper 22 2.4   

Veg LMA Upchurch et al 2015 38 Ripley Perry 23 2.1   

Veg LMA Upchurch et al 2015 48 Medicine Bow Fm USA 20 2.4   

Veg LMA Upchurch et al 2015 49 Lance Fm USA 20 2.4   

Veg LMA Upchurch et al 2015 46 Littleton  22 2   

Veg LMA Upchurch et al 2015 46 Laramie lower 26 2   

Veg LMA Upchurch et al 2015 46 Laramie broomfield 23 3.1   

Veg LMA Upchurch et al 2015 43 Vermejo  23 2   

Veg LMA Upchurch et al 2015 43 Lower Raton 23 2.1   

Veg LMA Upchurch et al 2015 61 Lower Atanikerdluk Greenland 24 2   
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Dataset D.2: Paleosol pedogenic carbonate-derived Maastrichtian atmospheric CO2 data set. 

Reference Age Age Age CO2 CO2 low CO2 high CO2 low err CO2 high err 

  (Ma) old young (ppm) (ppm) (ppm)     

Ekart et al., 1999 61 62.2 59.2 0 0 84 0 84 

Huang et al., 2013 64   399 320 478 79 79 

Huang et al., 2013 64   341 238 444 103 103 

Huang et al., 2013 65   326 235 417 91 91 

Huang et al., 2013 65   456 297 615 159 159 

Nordt et al., 2002 65 65.0 64.7 400 320 480 80 80 

Huang et al., 2013 65   286 208 364 78 78 

Huang et al., 2013 65   584 425 743 159 159 

Huang et al., 2013 65   451 325 577 126 126 

Nordt et al., 2003 65 66.2 64.2 178 148 208 30 30 

Huang et al., 2013 65   569 298 840 271 271 

Nordt et al., 2003 65 66.2 64.2 163 136 190 27 27 

Nordt et al., 2002 65 65.7 65.0 340 280 400 60 60 

Nordt et al., 2003 65 66.4 64.4 88 73 103 15 15 

Huang et al., 2013 65   470 310 630 160 160 

Nordt et al., 2003 66 66.6 64.6 111 93 130 19 19 

Nordt et al., 2003 66 66.8 64.8 178 148 207 30 30 

Nordt et al., 2002 66 66.3 65.5 300 240 360 60 60 

Nordt et al., 2003 66 66.9 64.9 54 45 63 9 9 

Nordt et al., 2003 66 67.1 65.1 183 153 214 31 31 

Nordt et al., 2003 66 67.2 65.2 277 231 324 46 46 

Nordt et al., 2003 66 67.4 65.4 90 75 105 15 15 

Nordt et al., 2003 67 67.5 65.5 0 0 0 0 0 

Nordt et al., 2003 67 67.5 65.5 42 35 50 7 7 

Huang et al., 2013 67   837 673 1001 164 164 

Nordt et al., 2003 67 67.6 65.6 15 12 17 2 2 

Nordt et al., 2003 67 67.6 65.6 263 219 307 44 44 

Nordt et al., 2003 67 67.7 65.7 453 377 528 75 75 

Nordt et al., 2003 67 67.9 65.9 426 355 497 71 71 

Nordt et al., 2003 67 67.9 65.9 265 221 310 44 44 

Nordt et al., 2003 67 68.0 66.0 219 183 256 37 37 

Nordt et al., 2003 67 68.0 66.0 128 107 150 21 21 

Nordt et al., 2002 67 68.1 66.3 560 440 680 120 120 

Nordt et al., 2002 67 68.1 66.3 300 240 360 60 60 

Huang et al., 2013 68   277 162 392 115 115 

Nordt et al., 2003 69 69.5 67.5 10 9 12 2 2 

Nordt et al., 2003 69 69.7 67.7 171 142 199 28 28 

Nordt et al., 2003 69 69.8 67.8 110 91 128 18 18 

Nordt et al., 2003 69 70.0 68.0 158 132 185 26 26 

Andrews et al., 1995 69 72.1 66.0 60 0 260 60 200 

Ekart et al., 1999 69 72.1 66.0 328 208 448 120 120 

Ekart et al., 1999 69 72.1 66.0 172 52 292 120 120 

Ekart et al., 1999 69 72.1 66.0 252 132 372 120 120 

Nordt et al., 2003 69 70.1 68.1 138 115 161 23 23 

Nordt et al., 2003 69 70.3 68.3 202 169 236 34 34 

Nordt et al., 2003 69 70.4 68.4 145 121 169 24 24 

Nordt et al., 2003 70 70.5 68.5 345 287 402 57 57 

Nordt et al., 2003 70 70.7 68.7 204 170 238 34 34 

Nordt et al., 2003 70 70.9 68.9 309 258 361 52 52 
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Nordt et al., 2003 70 71.0 69.0 375 313 438 63 63 

Nordt et al., 2003 70 71.1 69.1 329 274 383 55 55 

Nordt et al., 2003 70 71.2 69.2 122 101 142 20 20 

Nordt et al., 2003 70 71.3 69.3 38 32 45 6 6 

Nordt et al., 2003 70 71.5 69.5 126 105 147 21 21 

Nordt et al., 2003 71 72.4 70.4 254 212 297 42 42 

Nordt et al., 2003 71 72.5 70.5 289 241 337 48 48 

Nordt et al., 2003 72 72.6 70.6 294 245 343 49 49 

 

 

Dataset D.3: Stomatal index proxy-derived Maastrichtian atmospheric CO2 data set. 

Reference Age Age Age CO2 CO2 low CO2 high 

  (Ma) old young (ppm) (ppm) (ppm) 

Royer, 2003 (updated by Beerling et al., 2009) 61.1 64.8 57.4 317 308 330 

Beerling et al., 2002 (updated by Beerling et al., 2009) 63.8 66.0 61.6 367 324 707 

Beerling et al., 2002 (updated by Beerling et al., 2009) 64.1 64.3 63.9 330 317 448 

Beerling et al., 2002 (updated by Beerling et al., 2009) 65.4 66.0 64.8 343 323 673 

Beerling et al., 2002 (updated by Beerling et al., 2009) 65.4 66.0 64.8 470 327 757 

Beerling et al., 2002 (updated by Beerling et al., 2009) 66.5 67.0 66.0 539 340 786 
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