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Abstract 

This dissertation investigates the growth and magnetic properties of magnetic thin films 

deposited on semiconductor GaAs and the insulator MgO, which could be useful for 

devices such as Spin-FET and MRAM. 

CoFeB amorphous films were grown on both GaAs and MgO. We have studied the 

origin of the uniaxial magnetic anisotropy (UMA) and perpendicular magnetic 

anisotropy (PMA) with TEM, VSM and XMCD. Our results demonstrated that the 

orbital moment of Co atoms play an important role to both UMA and PMA. 

The origin of UMA in Fe/GaAs (100) system with Cr interlayers is explored. The 

values of UMA in the Fe/GaAs systems were found to be dependent on the thickness of 

Cr interlayer by the SQUID-VSM measurements. RHEED patterns and TEM images 

offered the morphology and crystalline structure information of different layers in the 

samples. Our results show that the UMA disappears when the interlayer Cr forms 

continuous film of around 5 ML. This offers direct evidence for the first time that the 

origin of UMA is from the interface bonding rather than the lattice mismatch related 

film stress. 

Finally, Fe films were deposited onto GaAs (100) substrate with a heavy metal element 

Au interface layer. The enhancement of UMA was found in the Fe/Au/GaAs system by 

the VSM measurements. The XMCD results show that the orbital moment of Fe is 

enhanced when the Au interlayer is under 0.5 ML, which leads to the enhancement of 

the UMA in the Fe/Au/GaAs system. 

Results from the three different systems provide an important understanding of the 

research into the interface magnetic properties of ferromagnetic metal/semiconductors. 

These interesting discoveries are very useful for the development of next generation 

electronic devices like MRAM and SpinFET.   
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Chapter 1 Introduction 

1.1 The Evolution of Electronic Devices 

The success of semiconductor-based electronics has been built on the nature of the 

charge freedom of electrons found in semiconductors. Electronic devices began in 1947 

with the discovery of transistor action in Bell Labs[1]. Following this, many 

semiconductor devices such as field-effect-transistors (FET), light emitting diodes 

(LED) and integrated circuits (IC) have become popular topic areas over the last seven 

decades. These revolutions have supported the enormous development of the 

computational industry whilst simultaneously – and constantly – demanding higher 

performance. After decades of development, the industry might hit the wall of Moore’s 

Law in the near future, meaning that requirements for higher speed, lower energy 

dissipation and denser medium and components are now at the top of the priority 

research list.  

The next generation of electronic devices will be smaller, more robust and have lower 

energy consumption. One possibility to improve the function of electronic devices may 

be to use the intrinsic angular momentum or the spin of an electron as an extra degree of 

freedom. This new field of research has triggered the development of a series of new 

multidisciplinary researches in which the aim is to integrate spin dependent effects with 

semiconductor functionalities which have already been developed. The term 

“spintronics” is used in general to encompass the ideas of coupling electronic spin and 

charge in physics.  

1.2 Definition and Application of Spintronics 

Spintronics, also known as “spin electronics” or “magnetoelectronics”, is the study of 

the spin of the electron and its associated magnetic moment, in addition to its 

fundamental electronic charge, in solid-state devices. Spintronics fundamentally differs 
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from traditional electronics in that, in addition to its charge state, electron spins are 

exploited as a further degree of freedom, with implications in terms of the efficiency of 

data storage and transfer. 

Spintronics emerged from discoveries in the 1980s concerning spin-dependent electron 

transport phenomena in solid-state devices. This includes the observation of 

spin-polarised electron injection from a ferromagnetic metal to a normal metal by 

Johnson and Silsbee[1] in 1985, and the independent discovery of giant 

magnetoresistance (GMR) by French and German physicists [2] in 1988, both of whom 

were awarded the Nobel Prize. It results in spin dependent conduction in magnetic thin 

films, which cause phenomenon changes in resistivity when the magnetisation state is 

changed. The best-known application of this effect was the read head incorporating 

GMR material in hard-disk drives, which would be able to sense much smaller 

magnetic field changes and greatly increase the storage density on each hard disk. 

The simplest method for generating a spin-polarised current in a metal is to pass the 

current through a ferromagnetic material. The most common application of this effect is 

GMR devices. A typical GMR device consists of at least two layers of ferromagnetic 

materials separated by a spacer layer. When the two magnetisation vectors of the 

ferromagnetic layers are aligned, the electrical resistance will be lower than if the 

ferromagnetic layers are anti-parallel. This constitutes a magnetic field sensor. Two 

GMR models have been used in devices: (1) The current -in-plane (CIP) model, where 

the electric current flows parallel to the layers; and (2) the 

current-perpendicular-to-plane (CPP) model, where the electric current flows in a 

direction perpendicular to the layers. The other metal-based spintronics devices include 

Tunnel magnetoresistance (TMR) and Spin-transfer torque (STT). TMR, where CPP 

transport is achieved by using quantum-mechanical tunnelling of electrons through a 

thin insulator separating ferromagnetic layers. STT is where a current of spin-polarised 

electrons is used to control the magnetisation direction of ferromagnetic electrodes in 

the device.   
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Other spintronic applications are spintronic-logic devices and semiconductor-based 

spintronic devices. Spin-transfer, torque-based logic devices that use spin and magnets 

for information processing have been proposed. Logic-in-memory applications are in 

the development stage, with many articles having been written on this over the last 

decade[3] . Doped semiconductor materials display dilute ferromagnetism. In recent 

years, dilute magnetic oxides (DMOs), including ZnO based DMOs and TiO2 based 

DMOs, have been the subject of numerous experimental and computational 

investigations. Non-oxide ferromagnetic semiconductor sources (like 

manganese-doped gallium arsenide GaMnAs), increase the interface resistance with a 

tunnel barrier, or by using hot-electron injection. 

Metallic spintronic devices, such as hard disk read heads and magnetic random-access 

memory (MRAM) have been one of the most successful technologies of the last decade. 

However, hybrid spintronic devices consisting of both magnetic metals and 

semiconductors offer an opportunity to unify processing, communication, and storage 

within the same technology[3]. Hybrid ferromagnetic and semiconductor structures 

have demonstrated their theoretical and experimental potential for highly-efficient spin 

injection at room temperatures by employing a Schottky tunnelling barrier between 

ferromagnetic metals and semiconductors[4, 5]. 

1.3 Aims of this PhD Work 

To improve the transfer process and storage functions of semiconductor devices, the 

control of the magnetic properties during thin film growth and understanding uniaxial 

magnetic anisotropy (UMA) and interface interaction effects within hybrid 

ferromagnetic (FM)/semiconductor devices are critical issues in current spintronics. 

This PhD work aims to grow various thicknesses of interlayers with different materials 

to study the surface structures between the interface and interlayers. An in-situ RHEED 

(reflection high energy electron diffraction) measurement has been established to 

monitor the morphology, structure and surface quality during MBE (molecular beam 
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epitaxy) growth of magnetic thin films on semiconductor substrates. TEM 

(transmission electron microscopy) measurement is subsequently used for the key 

samples, which have the potential to form TEM images from specimens. TEM images 

can evidence the thickness of samples and obtain a high resolution of the sample 

structure and interface surface situation. 

Another important aim is to use VSM (vibrating Sample Magnetometer) measurement 

to research the origin of UMA and the magnetic properties of interlayers or interface 

interaction. From VSM observations, the change of magnetic properties or uniaxial 

magnetic anisotropy can be performed intuitively, meaning that these results can be 

compared with previous researches. Finding that changes of magnetic properties from 

the interlayer or interface means that the interface interaction and the origin of uniaxial 

magnetic anisotropy can be fully researched and explained. 

Last but not least, XMCD centred projects were included as a contribution. This part of 

my PhD project uses synchrotron radiation as a powerful tool for analysing the 

magnetic moment information for individual elements in magnetic films. The values of 

spin moment, orbital moment and spin to orbital ratios can be calculated using sum 

rules. These data can be used to understand the atomic scale mechanism of the uniaxial 

magnetic anisotropy and perpendicular magnetic anisotropy in an amorphous film and 

the uniaxial magnetic anisotropy in the Fe-GaAs system. 

1.4 Thesis Overview  

Chapter 2 reviews magnetic ordering, the origin of magnetic anisotropy, and the 

different structures of the Fe-GaAs and CoFeB systems. The experimental methods 

used for this project will be described in Chapter 3, which will cover the preparation, 

fabrication and characterisation of the magnetic thin film samples. In Chapter 4, UMA 

and PMA effects are studied for the CoFeB-GaAs (100) sample and CoFeB/MgO 

structures, respectively. The magnetic moment of both Co and Fe elements were 
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separately analysed in terms of the XMCD spectra, and the results are supported by 

VSM and TEM cross-section inspections to identify the contribution of these two 

elements. In Chapter 4, the two systems with various thicknesses of Cr interlayer 

between Fe and GaAs (100) substrate were studied using RHEED, VSM and XMCD 

measurements. This work has investigated the origins of UMA by engineering the 

Fe-GaAs interface with the Cr interlayer. In Chapter 6, the heavy metal (Au) interlayer 

was inserted between Fe and GaAs (100) with various thicknesses. The large 

spin-orbital coupling of the interface Au might affect the UMA and orbital moment of 

Fe in the Fe/Au/GaAs system. 

The final chapter presents conclusions for my PhD project, and makes 

recommendations about future work or complementary experiments which could be 

done using the knowledge generated in this project. 
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Chapter 2 Theoretical Background and 

Literature Review 

2.1 Introduction 

Spintronics is to exploit the fact that electrons have spin as well as charge, whereby 

electrons’ spins and not just their electrical charge can be manipulated within electronic 

circuits. It is anticipated that spintronic devices will be non-volatile, versatile, fast, and 

capable of simultaneous data storage and processing, whilst also consuming less energy. 

Already, they play an increasingly significant role in high-density data storage, 

microelectronics, magnetic sensors, quantum computing and biomedical applications, 

amongst other applications. 

The main purpose of this chapter is to provide useful background information 

concerning the understanding of the experimental work presented in this thesis. 

Initially, a brief review of magnetic ordering and domains will be presented, which will 

include studies connected to ferromagnetism and antiferromagnetism. Following this 

will be discussions concerning recent technological advancements in magnetic 

anisotropy. Finally, the two magnetic heterostructure systems, namely Fe/GaAs system 

and CoFeB system, both of which are highly relevant to my projects, will be reviewed. 

2.2 Magnetic Ordering and Domains 

The term ‘magnetic materials’ is generally used to refer to materials where spontaneous 

magnetic ordering takes place. The stability of the ordered state is due to the ‘exchange 

interaction’, which can be defined as a quantum mechanical effect that describes the 

change in energy and distance of multiple particles when their wave functions overlap. 

Indeed, models of magnetic systems and experiments on materials which are well 

described by such models are central in the study of critical phenomena. This section 
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will, therefore, focus on the types of order and the interaction models that bring about 

the ordered states. 

The simple classification of ordered states into ferromagnets, antiferromagnets and 

ferrimagnets does not do justice to the rich variety of possible ordered patterns of 

three-dimensional vectors at the sites of all the crystal lattices which are possible in 

three dimensions. Initially, these magnets are associated with collinear structures, 

,  and . However, the angle between neighbouring magnetic 

moments is not limited to zero and π, and the orientation of moments with respect to the 

crystal axes is also an important variable – a variable which can vary with the 

temperature. Aside from the exchange interaction, magneto crystalline anisotropy is 

also an important factor in determining the nature of the ordered state. 

In the rare earth to transition metal ferromagnets, the anisotropy energy of the rare earth 

component is much larger than that of the transition metal because the spin-orbit 

coupling is an order of magnitude stronger. Given that the orientations preferred by 

these anisotropy energies are different, so too are their temperature dependences. The 

result of this is that the overall effect is also temperature dependent, meaning that the 

orientation of the net ferromagnetic moment changes with temperature. Similar effects 

in antiferromagnets are not conspicuous because there is no net magnetisation, 

although it should be noted that some, most notably α-Fe2O3, MnCO3 and CrF3, do 

show a small magnetic moment (“weak ferromagnets”), which signals a slight 

noncollinearity of oppositely oriented moments due to an anisotropic super exchange 

interaction.  

When the exchange interaction between two spins has a positive value, the spins will be 

aligned in the same direction regardless of whether there is an external field. 

Spontaneous magnetisation occurs when the material is below its Curie temperature, a 

type of magnetic ordering known as ferromagnetism. At the microscopic level, these 

aligned spins should generate a magnetic moment which points in a certain direction, 
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but in fact most macroscopic ferromagnetic materials do not show a net magnetisation 

unless an external field is applied. This can be explained by introducing the concept of 

domains.  

The domain hypothesis was one of the two concepts introduced by Weiss in 1906, the 

other being the molecular field. In 1949 came a clear understanding of the domain 

structure of a real material through Williams, Bozorth and Shockley[6], whose work 

was undertaken at the Bell Telephone Laboratories on domains in silicon-iron single 

crystals. Since that time, domain theory has been central to any discussion of the 

magnetisation processes. However, because Weiss still had to account for the 

spontaneous alignment of atomic moments within a ferromagnetic material, he 

developed the so-called Weiss mean field. Here, he assumed that a given magnetic 

moment in a material experienced a very high effective magnetic field due to the 

magnetisation of its neighbours. In the original Weiss theory[7], the mean field was 

proportional to the bulk magnetisation 𝑀, so that 

𝐻𝑒 =  𝛼 𝑀 (2.1) 

Where, 𝛼 is the mean field constant. However, this is not applicable to ferromagnets 

because of the variation of magnetisation from domain to domain. In this case, the 

interaction field is 

𝐻𝑒 =  𝛼𝑀𝑠 (2.2) 

Where, 𝑀𝑠 is the saturation magnetisation. 

Quantum theory made it possible to understand the microscopic origin of the Weiss 

field, in which the exchange interaction between localised spins favoured a parallel (in 

ferromagnets) or an anti-parallel (in antiferromagnets) state of neighbouring magnetic 

moments. 

Domains are formed because their configuration minimises the total stray field energy 

of the bulk material, which is a more energetically favourable state for the coupled 
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spins. When a macroscopic material has all its spins aligned, the magnetostatic energy 

reaches its maximum value, which is an unfavourable state. To enter a favourable state 

(the lowest magnetostatic energy), a single domain must break into multiple small units 

that all contain strongly coupled and aligned spins, but which point in different 

directions. In the absence of an external field, the preferential directions of each domain 

are determined by magnetic anisotropy. At the boundary regions of the domains, the 

direction of the magnetisation is gradually rotated to align with the neighbouring 

domain. Depending on the thickness of the material, the rotation of the magnetisation 

can take place on a plane which is either parallel or perpendicular to the domain wall 

plane. In thin films, it is usually a Néel wall[8], and a Block wall for thick films. The 

widths of the domain walls are usually within tens of nanometres, and are determined 

by the exchange and anisotropy energy.  

 

Figure 2.1 Typical hysteresis loop. 

If a large magnetic field is applied to a ferromagnetic material, the magnetisation 

direction of domains will be forced to align, thereby producing a net magnetisation 

vector. At first, the magnetisation increases significantly, but then as more and more 

domains are aligned along the field direction, the speed will decrease until all the 
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domains are aligned. Eventually, the magnetisation will reach its maximum value, 

which is known as its saturation point (𝑀𝑆). When the magnetic field is decreased, the 

magnetisation decreases more slowly than the magnetic field, meaning that when the 

magnetic field reaches zero, the magnetisation does not. The remaining magnetisation 

is called remanent magnetisation (𝑀𝑟). To bring any remanent magnetisation back to 

zero, a negative magnetic field is needed. A small negative field will change the 

direction of domains, forcing them to be non-aligned. This will result in all the domains 

summing to zero, meaning the net magnetisation will return to zero. The field required 

to accomplish this is called coercivity (𝐻𝑐), and it is considered a very important 

property of any ferromagnetic material. It is strongly affected by not only the 

crystalline structure of the material, but also the deposition conditions and processes. If 

the magnetic field further decreases, the domains will be re-aligned in the opposite 

direction, and a negative saturation point will eventually be reached. A negative 

remanence and coercivity will also be present should the field be increased back to zero, 

and then again when the domain is re-randomised. In general cases, the negative and 

positive 𝑀𝑠, 𝑀𝑟 and 𝐻𝑐 are expected to be of the same value, thus the plot of 

magnetisation against the applied field on the positive and negative regions should be 

symmetrical and form a closed loop, which is known as the Hysteresis loop. 

The alignment of the spins or spontaneous magnetisation can only occur when 

ferromagnetic materials are below their Curie temperature. The Curie temperature is 

different for various materials, and it is also dependent on the exchange interaction 

between spins. If the materials are above the Curie temperature, the thermal energy will 

exceed the exchange energy. This causes the coupled spin to break up, leading to the 

ferromagnetic materials eventually becoming paramagnetic. 

2.2.1 Ferromagnetism 

The term ferromagnetism is used to characterise strongly magnetic behaviour, such as 

the strong attraction of a material to a permanent magnet. The origin of this strong 
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magnetism is the presence of a spontaneous magnetisation produced by a parallel 

alignment of spins due to exchange interaction.  

Magnetisation curves of iron, cobalt and nickel are shown below in figure 2.2[9]. These 

curves are presented to emphasise that the shape of curve from M = 0 to M = 𝑀𝑆 and 

the strength of the field at which saturation is attained are both structure-sensitive 

properties, whereas the magnitude of 𝑀𝑆 is not. 

 

Figure 2.2 Magnetisation curves of iron, cobalt, and nickel at room temperature[9]. 

A single crystal of pure iron can be brought to near saturation in a field of less than 50 

Oe or 4 kA/m along easy axis. Each cubic centimetre then has a magnetic moment of 

about 1700 emu (or each cubic metre a moment of about 1.7 MAm2 or MJ/T). In the 

same field, a typical paramagnet will have a magnetisation of about 1023 emu/cm3 or 1 

A/m. Ferromagnetism, therefore, involves an effect which is at least a million times as 

strong as any which has yet been considered. 

The mechanism for the appearance of spontaneous magnetisation was first clarified in 

1906 in Weiss[10], where it was assumed that there must be an effective field in a 

ferromagnetic material, which he called the molecular field. It was thought that this 

field aligned the neighbouring spins which were parallel to one another. The ensemble 
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of non-interacting spins is subject to thermal agitation, and can be magnetised only if an 

extremely high magnetic field is applied. Weiss thought that a molecular field could be 

produced at the site of one spin through the interaction of the neighbouring spins, and 

that the intensity of the molecular field is proportional to the magnetisation, or 

𝐻𝑚 =  γ ×  Μ (2.3) 

where γ is the molecular field coefficient, 𝐻𝑚 is the molecular field and M is the 

magnetisation. 

The Curie-Weiss law describe the magnetic susceptibility χ of a ferromagnet in the 

paramagnetic region above the Curie point: 

χ =  
𝐶

𝑇 − 𝜃
(2.4) 

where C is a material-specific Curie constant, T is absolute temperature, measured in 

kelvins, θ is directly related to the molecular field (because θ =  ργC, where ρ is the 

density, and 𝐻𝑚 =  γM. If θ is positive then so is γ, which means that either 𝐻𝑚 and 

M are in the same direction or the molecular field is helping the applied field in 

magnetising the substance. 

When higher than its Curie temperature, 𝑇𝐶 (a ferromagnet) becomes paramagnetic, 

and its susceptibility then follows the Curie-Weiss law, where the value of θ is 

approximately equal to 𝑇𝐶. The value of θ is therefore large and positive (over 1000K 

for iron), meaning that the molecular field is coefficient. This fact led Weiss to make 

the bold and brilliant assumption that a molecular field acts on a ferromagnetic 

substance when it is both above and below its Curie temperature, and that because this 

field is so strong, it can magnetise the substance to saturation even when no applied 

field is present. On such occasions, the substance is self-saturating, or is 

“spontaneously magnetised”. For example, if iron is self-saturating, the explanation 

previously given regarding the introduction of domains holds. The Weiss theory 

therefore contains two essential postulates: (1) spontaneous magnetisation; and (2) 
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division into domains. Subsequent developments have shown that the postulates are 

correct, and that magnetisation is affected by changes of temperature. Figure 2.3 was 

plotted with ɑ rather than 𝐻𝑚 as a variable in order to observe magnetisation behaviour 

in temperature. 

ɑ =  
𝜇𝐻

𝑘𝑇
(2.5) 

where 𝜇 is the magnetic moment, H is the magnetic field, k is the Boltzmann 

constant[11], and T is temperature. Following Weiss, let us suppose that the relative 

magnetisation is given by the Langevin function[12]: 

𝑀

𝑀0
= L(ɑ) =  coth(ɑ) −

1

ɑ
 (2.6) 

When the applied field is zero, this means 

ɑ =  
𝜇𝐻𝑚

𝑘𝑇
=  

𝜇𝛾𝑀

𝑘𝑇
=

𝜇𝛾𝑀

𝑘𝑇

𝑀0

𝑀0

(2.7) 

𝑀

𝑀0
=  (

𝑘𝑇

𝜇𝛾𝑀0
) ɑ (2.8) 

𝑀 𝑀0⁄ is therefore a linear function of ɑ with a slope proportional to the absolute 

temperature. In Figure 2.3[13], curve 1 is the Langevin function and line 2 is a plot of 

Equation 2.8 for temperature T2. Their intersection at P gives the spontaneous 

magnetisation achieved at this temperature, which is expressed as a fraction 𝑀𝑠 𝑀0⁄  of 

the saturation magnetisation 𝑀0. An increase in temperature above T2 has the effect of 

rotating line 2 anticlockwise about the origin. This rotation causes P and the 

corresponding magnetisation to move lower and lower on the Langevin curve. The 

spontaneous magnetisation vanishes at temperature T3 when the line is in position 3, 

tangential to the Langevin curve at the origin. T3 is therefore equal to the Curie 

temperature Tc. At any higher temperature, such as T4, the substance is paramagnetic 

because it is not spontaneously magnetised. 
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Figure 2.3 Effect of temperature on the value of spontaneous magnetisation. Curve 1 is the Langevin 

function[13]. 

The Curie temperature can be evaluated from the fact that the slope of line 3 is the same 

as the slope of the Langevin curve at the origin, which is 1 3⁄ . Replacing T with TC 

results in 

𝑘𝑇𝑐

𝜇𝛾𝑀0
=  

1

3
(2.9) 

𝑇𝑐  =  
𝜇𝛾𝑀0

3𝑘
(2.10) 

Therefore, the slope of the straight line representing the molecular field is, at any 

temperature 

𝑘𝑇𝑐

𝜇𝛾𝑀
 =  

𝑇

3𝑇𝐶

(2.11) 

However, the slope of the line determines the point of intersection P with the Langevin 

curve, hence the value of 𝑀𝑠 𝑀0⁄ . Given this, 𝑀𝑠 𝑀0⁄  is determined solely by the ratio 

𝑇 𝑇𝐶⁄ . This means that all ferromagnetic materials, which naturally have different 

values of 𝑀0 and 𝑇𝐶, have the same value of 𝑀𝑠 𝑀0⁄  for any value of 𝑇 𝑇𝐶⁄ . This is 

known as the law of corresponding states. 
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This statement of the law is very nearly, but not exactly, correct. In arriving at the 

Langevin law in Equation 2.6, the number n of atoms per unit volume which is set as  

𝑛𝜇 =  𝑀0 must be considered. But since n changes with temperature due to thermal 

expansion, the values of 𝑀 =  𝑀0 at different temperatures are not strictly 

comparable since they refer to different numbers of atoms. When dealing with 

magnetisation as a function of temperature, a more natural quantity to use is the specific 

magnetisation 𝜎, which is the magnetic moment per unit mass, because thermal 

expansion would then not affect the result. 

If 𝑛𝑔 is the number of atoms per gram, and 𝜇̅ the average component of magnetic 

moment in the direction of the field, Equation 2.6 can be written as 

𝑛𝑔𝜇̅

𝑛𝑔𝜇
=  

𝜎

𝜎0
=  coth(ɑ) −

1

ɑ
 (2.12) 

If 𝜎𝑆 and 𝜎0 are then defined as being the saturation magnetisations for a 

ferromagnetic material at TK and 0K respectively, an exact statement of the law of 

corresponding states is that all materials have the same value of 𝜎𝑠 𝜎0⁄  for the same 

value of 𝑇 𝑇𝐶⁄ . The relation between the 𝜎 and M value is  

𝜎𝑠

𝜎0
=  

𝑀𝑠 𝜌𝑠⁄

𝑀0 𝜌0⁄
=  

𝑀𝑠𝜌0

𝑀0𝜌𝑠

(2.13) 

where 𝜌𝑠 and 𝜌0 are the densities at TK and 0K respectively. A change from M to 𝜎 

also involves a change in the molecular field constant γ. 

𝐻𝑚 =  γ𝑀 =  γρ (
𝑀

ρ
) = (𝛾𝜌)𝜎 (2.14) 

Thus (γρ) becomes the molecular field constant, and Equation 2.10 and 2.11 become 

𝑇𝐶 =  
𝜇𝛾𝜌𝜎0

3𝑘
(2.15) 

And  
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𝑘𝑇

𝜇𝛾𝜌𝜎0
=  

𝑇

3𝑇𝐶

(2.16) 

Equation 2.8 therefore becomes 

𝜎

𝜎0
=  (

𝑘𝑇

𝜇𝛾𝜌𝜎0
) ɑ =  (

𝑇

3𝑇𝐶
) ɑ (2.17) 

when the magnetisation in expressed in terms of 𝜎. 

Experimental data on the variation of the saturation magnetisation 𝜎𝑠 of Fe, Co, and Ni 

with temperature are shown in figure 2.4[14]. The temperature scales shown in figure 

2.5[15] provide the Curie points and the temperatures of phase changes and 

recrystallization for the three metals. The recrystallization temperatures are the 

approximate minimum temperatures at which heavily cold-worked specimens 

recrystallise. It therefore follows that iron and cobalt can be recrystallised while still 

ferromagnetic but nickel cannot. 

 

Figure 2.4 Saturation magnetisation of iron, cobalt and nickel as a function of temperature[14]. 
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Figure 2.5 Curie points (𝑇𝐶), recrystallisation temperatures [R], and phase changes in Fe, Co, and Ni. 

BCC = body-centred cubic; FCC = face-centred cubic; HCP = hexagonal close packed. Ni is FCC at all 

temperatures[15]. 

The Weiss theory of the molecular field says nothing about the physical origin of this 

field. However, the hypothesis that 𝐻𝑚 is proportional to the existing magnetisation 

implies that the phenomenon involved is cooperative. This suggests that the greater the 

degree of spin alignment in a crystal’s region, the greater the force tending to align any 

one spin in that region.  

It was not until 1928 that the physical origin of the molecular field was understood, 

when Heisenberg[16] showed it was caused by exchange interaction. A year or so 

earlier, new wave mechanics had been applied to the problem of the hydrogen molecule, 

i.e., the problem of explaining why two hydrogen atoms come together to form a stable 

molecule. Each of these atoms consists of a single electron moving about the simplest 

kind of nucleus, i.e. a single proton. For a particular pair of atoms, situated at a certain 

distance apart, there are certain electrostatic attractive forces (between the electrons and 

protons) and repulsive forces (between the two electrons and between the two protons) 

which can be calculated using Coulomb’s law. However, there remains another force, 
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entirely non-classical, which depends on the relative orientation of the spins by the two 

electrons. This is the exchange force. If the spins are antiparallel, the sum of all the 

forces is attractive and a stable molecule is formed. In such cases, the total energy of the 

atoms is then less for a particular distance of separation than it is for smaller or larger 

distances. If the spins are parallel, the two atoms repel one another.  

The exchange interaction is a consequence of the Pauli exclusion principle, applied to 

the two atoms. This principle states that two electrons can have the same energy only if 

they have opposite spins. This means that two hydrogen atoms can come so close 

together that their two electrons have the same velocity and occupy very nearly the 

same small region of space (i.e. they have the same energy) provided these electrons 

have opposite spin. If their spins are parallel, the two electrons will tend to remain far 

apart. The ordinary (Coulomb) electrostatic energy is therefore modified by the spin 

orientations, which means that the exchange force is fundamentally electrostatic in 

origin. 

The term “exchange” arises as follows. When the two atoms are adjacent, electron 1 

can move about proton 1, and similarly electron 2 about proton 2. Electrons, however, 

are indistinguishable, and so the possibility that the two electrons exchange places must 

also be considered, whereby electron 1 can move about proton 2 and similarly electron 

2 about proton 1. This consideration introduces an additional term – the exchange 

energy – into the expression for the total energy of the two atoms. This interchange of 

electrons takes place at a very high frequency, approximately 1018 times per second in 

the hydrogen molecule. 

The exchange energy forms an important part of the total energy of many molecules 

and the covalent bond in many solids. Heisenberg showed that it also plays a decisive 

role in ferromagnetism. If two atoms i and j have spin angular momentum 𝑆𝑖ℎ 2𝜋⁄  and 

𝑆𝑗ℎ 2𝜋⁄  respectively, then the exchange energy between them is given by 

𝐸𝑒𝑥 =  −2𝐽𝑒𝑥𝑆𝑖𝑆𝑗 =  −2𝐽𝑆𝑖𝑆𝑗 cos Ф (2.18) 
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where 𝐸𝑒𝑥 is the value of exchange energy,  𝐽𝑒𝑥 is a particular integral known as the 

exchange integral, which occurs in the calculation of the exchange effect, and f is the 

angle between the spins. If 𝐽𝑒𝑥 is positive, the minimum value of 𝐸𝑒𝑥 is found when 

the spins are parallel (cos Ф = 1) and the maximum when they are antiparallel (cos Ф = 

-1). If 𝐽𝑒𝑥 is negative, the lowest energy state results from antiparallel spins. As has 

already been seen, ferromagnetism arises due to the alignment of spin moments on 

adjacent atoms. Given this, it is a necessary condition for the exchange interval to have 

a positive value for ferromagnetism to occur. However, since 𝐽𝑒𝑥 is commonly 

negative (as in the hydrogen molecule), this is a rare condition. 

According to Weiss’ theory, ferromagnetism is caused by a powerful “molecular field” 

which aligns the atomic moments. In modern nomenclature, this would be described as 

“exchange forces” causing the spins to be parallel, although it would be incorrect to 

conclude that this terminological change has removed all the mystery from 

ferromagnetism. The step from a hydrogen molecule to a crystal of iron is enormous, 

and the problem of calculating the exchange energy of iron is so formidable that it has 

yet to be solved. Expressions such as Equation 2.18, which is itself something of a 

simplification and applies only to two atoms, must be calculated using all the atom pairs 

in the crystal. Exchange forces decrease rapidly with distance, meaning that some 

simplification is possible by restricting the calculation to nearest-neighbour pairs; this 

simplification, however, does not yield an exact solution of the problem. As such, given 

the existing state of knowledge, it is impossible to make predictions from first 

principles. 

Nevertheless, the knowledge that exchange interaction is responsible for 

ferromagnetism and, as argued below, similarly for antiferromagnetism and 

ferrimagnetism, has resulted in many conclusions of significant value. For example, it 

has been possible to rationalise the appearance of ferromagnetism in some metals and 

not in others. The curve of Figure 2.6, usually called the Bethe–Slater curve[17], shows 

the postulated variation of the exchange integral with the ratio 𝑟𝑎 𝑟3𝑑⁄ , where 𝑟𝑎 is the 
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radius of an atom and 𝑟3𝑑 is the radius of its 3d shell of electrons. In passing, it should 

be noted that the immediate cause of ferromagnetism in Fe, Co, and Ni is the spin 

alignment of some of the 3d electrons. The diameter of the atom is 2𝑟𝑎, which is also 

the distance between the centres of the atoms since the atoms of a solid are regarded as 

being in contact with one another. If two atoms of the same kind are brought 

increasingly close together without any change in the radius 𝑟3𝑑 of their 3d shells, the 

ratio 𝑟𝑎 𝑟3𝑑⁄  decreases. When this ratio is large, 𝐽𝑒𝑥 is small and positive. As the ratio 

decreases and the 3d electrons approach one another more closely, the positive 

exchange interaction, which favours parallel spins, becomes stronger before decreasing 

to zero. A further decrease in the interatomic distance brings the 3d electrons so close 

together that their spins inevitably become antiparallel (negative 𝐽𝑒𝑥), a condition 

which is called antiferromagnetism. 

 

Figure 2.6 Bethe-Slater curve[17]. 

The curve in Figure 2.6 can be applied to a series of different elements if 𝑟𝑎 𝑟3𝑑⁄  is 

computed from their known atom diameters and shell radii. The resultant points which 

are found lie on the curve as shown. The curve also correctly separates Fe, Co, and Ni 

from Mn and the subsequent lighter elements in the first transition series. It should be 

noted that Mn is antiferromagnetic below 95K, and Cr, the next lighter element, is 

antiferromagnetic below 37°C; above these temperatures both are paramagnetic. When 
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𝐽𝑒𝑥 is positive, its magnitude is proportional to the Curie temperature (see below) 

because spins which are held parallel to each other by strong exchange forces can be 

disordered only by large amounts of thermal energy. The positions of Fe, Co, and Ni on 

the curve concur with the notion that of the three, Co has the highest and Ni the lowest 

Curie temperature. 

2.2.2 Antiferromagnetism 

Antiferromagnetic substances have a small positive susceptibility at all temperatures, 

but their susceptibilities vary in a peculiar way with temperature. Chiefly it was Néel, in 

a series of paper beginning in 1932[18], who developed the theory of 

antiferromagnetism by applying the Weiss molecular field theory to the problem. 

The way in which the susceptibility of an antiferromagnetic varies with temperature is 

shown in figure 2.7[19]. As the temperature decreases, χ increases but reaches its 

maximum at a critical temperature, TN, which is known as the Néel temperature. The 

substance is paramagnetic above TN and antiferromagnetic below it. TN often lies far 

below room temperature, which means that it may be necessary to carry susceptibility 

measurements down to quite low temperatures in order to discover if a given substance 

which is paramagnetic at room temperature is antiferromagnetic at some lower 

temperature. Most, but not all, antiferromagnetics are ionic compounds – oxides, 

sulphides, chlorides, and the like – and a very large number are known, which makes 

them much more common than ferromagnetics. 
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Figure 2.7 Temperature dependence of susceptibility χ and inverse susceptibility 1 𝜒⁄  for an 

antiferromagnetic material. AF = antiferromagnetic, P = paramagnetic[19]. 

Figure 2.7 shows that a plot of 1 𝜒⁄  vs T is a straight line above TN, and that this line 

extrapolates to a negative temperature at 1 𝜒⁄ = 0. The equation of the line is 

1

𝜒
=  

𝑇 + 𝜃

𝐶
(2.19) 

or 

χ =  
𝐶

𝑇 +  𝜃
=  

𝐶

𝑇 − (−𝜃)
(2.20) 

In other words, it can be said that the material obeys the Curie–Weiss law, but with a 

negative value of θ. Since θ is proportional to the molecular field coefficient γ, the 

molecular field 𝐻𝑚, in the paramagnetic region, is opposed to the applied field H. 

Whereas H acts to align the ionic moments, 𝐻𝑚 acts to dis-align them. When viewed 

on a very localised scale, the molecular field shows that any tendency for an ionic 

moment to point in one direction is immediately counteracted by a tendency for the 

moment on an adjacent ion to point in the opposite direction. In other words, the 

exchange force is negative. Furthermore, when below the critical temperature TN, this 

tendency towards an antiparallel alignment of moments is strong enough to act even in 

the absence of an applied field because the randomising effect of thermal energy is so 
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low. The lattice of magnetic ions in the crystal subsequently breaks into two sublattices, 

designated A and B, the moments of which are more or less opposed. The tendency 

toward anti-parallelism becomes stronger as the temperature is lowered below TN. 

Upon reaching 0K, the antiparallel arrangement is perfect, as shown in Figure 2.8[20, 

21]. Only the magnetic metal ions are presented here since at this stage other ions (such 

as oxygen or sulphur) are nonmagnetic and do need not be considered. 

Thus, it can now be seen that at 0K an antiferromagnetic consists of two 

interpenetrating and identical sublattices of magnetic ions. Each spontaneously 

magnetised to saturation in the zero-applied field, in opposite directions, just as the 

single lattice of a ferromagnetic is spontaneously magnetised. It can be deduced that an 

antiferromagnetic has no net spontaneous moment and can acquire a moment only 

when a strong field is applied, and further that the Néel temperature TN plays the same 

role as the Curie temperature TC in that each divides the temperature scale into a 

magnetically ordered region below and a disordered (paramagnetic) region above. Thus, 

several similarities to ferromagnetism are apparent, meaning that the descriptive term 

“antiferromagnetism” is entirely appropriate. 

 

Figure 2.8 Antiferromagnetic arrangement of A and B sublattices[20, 21]. 

  



41 

 

2.3 Magnetic Anisotropy 

One factor which may strongly affect the shape of the M-H curve and indeed the shape 

of the hysteresis loop, is magnetic anisotropy. This term simply means that the 

magnetic properties depend on the direction in which they are measured. This subject is 

of considerable practical interest because anisotropy is exploited in the design of most 

magnetic materials of commercial importance. As such, a thorough knowledge of 

anisotropy is important to fully understand these materials. There are several kinds of 

anisotropies, namely: 

1. Magnetocrystalline anisotropy (crystal anisotropy); 

2. Shape anisotropy; 

3. Stress anisotropy; 

4. Anisotropy induced by: 

a. Magnetic annealing; 

b. Plastic deformation; 

c. Irradiation. 

5. Exchange anisotropy; 

6. Magnetic elastic anisotropy 

Of these, only magnetocrystalline anisotropy is intrinsic to the material, meaning that, 

strictly speaking, all the others are extrinsic or “induced.” All the anisotropies 

identified above (with the exception of 4c) are important in practice, and any one may 

become predominant in particular circumstances. In this section, only 

magnetocrystalline and shape anisotropy will be considered. 

  



42 

 

2.3.1 Magnetocrystalline Anisotropy 

A ferromagnetic crystal exhibits different behaviour depending on the direction along 

which it has been magnetised. This effect indicates that different crystalline directions 

are not magnetically equivalent, something which can be observed in magnetisation 

curves by applying an external field along different directions. The results for iron, 

which has a body-cantered cubic (BCC) structure, are shown in Figure 2.9.  

 

Figure 2.9 Magnetisation curves for single crystals of iron[22]. 

Iron measurements show that saturation can be achieved with relatively low fields in 

the 〈100〉 direction. Accordingly, this is known as the “easy direction” of 

magnetisation, and tells us something about domains in iron in their demagnetised state. 

As discussed below, a domain wall separating two domains in a crystal can be moved 

by a small applied field. Were domains in demagnetised iron spontaneously magnetised 

to saturation in directions of the form 〈100〉, then a possible domain structure for a 

demagnetised crystal disk cut parallel to (001) would be that shown in Figure 2.10 (a). 

Here are shown four kinds of domains, which are magnetised parallel to four of the six 

possible easy directions, namely, [010], [100], [01̅0], and [1̅00].  
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Were this the case, it would still be true that all these domains would be of only four 

kinds, namely those with 𝑀𝑆 vectors in the [010], [100], [01̅0], and [1̅00] directions. If 

a field H is now applied in the [010] direction, the [010] domain will grow in volume by 

the mechanism of domain-wall motion, as indicated in Figure 2.10 (b). It does so 

because the magnetic potential energy of the crystal is lowered. A continued 

application of the field eliminates all but the favoured domain, and the crystal is now 

saturated (Figure 2.10 (c)). This has been accomplished simply by applying the low 

field required for domain wall motion. Since the experiment shows that only a low field 

is needed to saturate iron in a 〈100〉 direction, it can be concluded that the domain 

structure postulated is essentially correct and that, more generally, the direction of easy 

magnetisation of a crystal is the direction of spontaneous domain magnetisation in a 

demagnetised state. 

 

Figure 2.10 Domain structure in a single-crystal disk of iron. The field H is applied in the [010] 

direction[23]. 

Figure 2.11 shows the domain structure changes within a field saturating iron in a 

〈110〉 direction. In a low field, domain wall motion occurs until there are only two 



44 

 

domains left (Figure 2.11 (c)), each with the same potential energy. The only way in 

which the magnetisation can increase further is through the rotation of the 𝑀𝑆 vector of 

each domain until it is parallel with the applied field. This process is called domain 

rotation. The domain itself, which is a group of atoms, does not rotate; rather, it is the 

net magnetic moment of each atom which rotates. Domain rotation occurs only in high 

fields because in this situation the field is then acting against the force of crystal 

anisotropy, which is usually fairly strong. Crystal anisotropy may therefore be regarded 

as a force which tends to hold the magnetisation in certain equivalent crystallographic 

directions in a crystal. When the rotation process is complete (Figure 2.11(d)), the 

domain wall in Figure 2.11 (c) disappears and the crystal is saturated. 

 

Figure 2.11 Domains structure in a single crystal of iron. The field H is applied in the [110] 

direction[24]. 

Given that the applied field must work against the anisotropy force in order to turn the 

magnetisation vector away from an easy direction, it must be the case that energy stored 

in any crystal in which 𝑀𝑆 points in a noneasy direction. This is known as crystal 

anisotropy energy E, which the Russian physicist Akulov demonstrated in 1929 could 

be expressed in terms of a series expansion of the direction cosines of 𝑀𝑆 relative to 

the crystal axes[25, 26]. In a cubic crystal, let 𝑀𝑆 make angles a, b, c with the crystal 
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axes, and let 𝛼1, 𝛼2, 𝛼3 be the cosines of these angles, which are called direction 

cosines. Then 

E =  𝐾0 +  𝐾1 (𝛼1
2𝛼2

2 + 𝛼2
2𝛼3

2 +  𝛼3
2𝛼1

2) + 𝐾2(𝛼1
2𝛼2

2𝛼3
2) + ⋯ (2.21) 

where K0, K1, K2, . . . are constants for a particular material at a particular temperature, 

and can be expressed in erg/cm3 or J/m3. Higher powers are generally not needed, and 

indeed K2 is sometimes so small that the term using it can be neglected. The first term, 

K0, is independent of angle and usually ignored because generally speaking only the 

change in the energy E when the 𝑀𝑆 vector rotates from one direction to another is 

relevant. The in-plane uniaxial magnetic anisotropy and the surface magnetic 

anisotropy included in the magnetocrystalline anisotropy are now introduced. 

In-Plane Uniaxial Magnetic Anisotropy 

Strain, oblique deposition, and in-situ magnetic field during growth may induce an 

in-plane uniaxial anisotropy in a thin film sample. It can be seen in magnetisation 

curves that a smaller field is required to saturate the sample along one in-plane direction 

than along others. The axis along which the sample is easily saturated is called the easy 

in-plane uniaxial axis, while the axis along which the sample is difficult to saturate is 

called the hard in-plane uniaxial axis. The energy of the in-plane uniaxial anisotropy 

has the form 

𝐸𝑢 =  −𝐾𝑢𝑐𝑜𝑠2(𝜃𝐾 −  𝜃) (2.22) 

where 𝐾𝑢 is the uniaxial anisotropy constant, 𝜃𝑘 is the angle between the easy 

in-plane uniaxial anisotropy axis and the static field H, and θ is the angle between M 

and H. In a bulk material, the magnetisation tends to lie along certain crystallographic 

axes due to the spin-orbit interaction.  

Surface Magnetic Anisotropy 

A typical expression for the dominant anisotropy energy in thin film is 
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E =  −K 𝑐𝑜𝑠2𝜃 (2.23) 

where E is the orientation-dependent energy of the magnetisation, θ is the angle 

between the magnetisation and the normal of the film, and K is an anisotropy 

constant[23, 27]. K is positive when the magnetisation prefers to be perpendicular to 

the plane of film. The second-order uniaxial term K2cos4θ is usually very small. In 

order to distinguish the contributions from the surface or interface from the volume or 

bulk, 𝐾𝑆 is defined as surface anisotropy energy per unit area, while 𝐾𝑉 is defined as 

volume anisotropy energy per unit volume. For a magnetic layer where its thickness t is 

much smaller than its exchange length, the average magnetic anisotropy energy can be 

written as 

𝐾𝑒𝑓𝑓 =  𝐾𝑉 + 2 𝐾𝑆 𝑡⁄ (2.24) 

Equation (2.24) is often used when analysing experiments, and 𝐾𝑉 and 𝐾𝑆 can be 

obtained by plotting the product 𝐾𝑡 versus thickness t. Below a certain thickness, the 

surface anisotropy contribution outweighs the volume anisotropy contribution, which 

results in perpendicular magnetisation. 

2.3.2 Shape Anisotropy 

Due to long-range dipole interaction, shape anisotropy senses the outer boundaries of 

the sample. It is the main contribution to 𝐾𝑉 in equation (2.24). Shape effect can be 

described via a demagnetising field. For a thin film, the corresponding anisotropy 

energy per unit volume is  

𝐸𝑑 = 2𝜋𝑀𝑠
2𝑐𝑜𝑠2𝜃 (2.25) 

where θ is the angle between the magnetisation and the normal of the film[28]. As 

shown in equation (2.25), this contribution favours an in-plane magnetisation rather 

than a perpendicular one, and is independent of thickness This means that this 

anisotropy energy only contributes to 𝐾𝑉. 
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2.4 Fe/GaAs and Fe/InAs systems  

The growth of epitaxial FM/SC hybrid structures was first demonstrated in Fe/GaAs by 

Prinz’s group in the Naval Research Laboratory[29]. In part, this is likely due to the fact 

that the lattice constant of bcc Fe (2.866 Å) is almost exactly half that of GaAs (5.654 

Å). Since then, Fe/GaAs has continued to be a model system for the epitaxial growth of 

FM metals on SCs. Another interesting system is the Fe/InAs hybrid structure, in which 

metals on narrow gap SCs, such as InAs which has a direct bandgap as small as 0.36 eV 

at room temperature (RT), form low resistance contacts[30]. Although the lattice 

mismatch of Fe and InAs (6.058 Å) at 5.4% is much larger than that of Fe/GaAs (1.3%), 

high-quality bcc Fe has been demonstrated on InAs (001) by Xu et al.[31].  

Molecular-beam epitaxy (MBE) is the most commonly used growth technique to 

synthesise high-quality hybrid FM/SC structures. It is crucial that there is clean and 

well-ordered SC substrate prior to the growth. As regards the FM/SC systems discussed 

below, typical substrate cleaning procedures include ex-situ chemical cleaning 

followed by in-situ thermal annealing, with or without argon ion sputtering. 

Alternatively, to have a well-ordered surface with a specific reconstruction, it is also 

common to use substrates with an As capping layer; in such cases, the surface 

reconstructions tend to be controlled by the annealing temperatures[32]. In many 

earlier studies, the FM layers were grown at elevated temperatures of around 470–500 

K. This high temperature growth usually ended up with the formation of a magnetic 

dead layer at the hybrid interface. In order to reduce – or even eliminate – the 

intermixing of Fe with Ga, In, or As at the interface, Xu et al. were able to demonstrate 

the epitaxial growth at room temperature (RT). 
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Figure 2.12 LEED patterns of GaAs (001)-(4×6) substrate after As desorption and Fe deposition at 

room temperature[33]. 

Growth processes are usually monitored in-situ by either reflection high-energy 

electron diffraction (RHEED) or low-energy electron diffraction (LEED). Figure 2.12 

shows the LEED patterns of Fe/GaAs (001) following the deposition of Fe at RT[33]. 

These LEED observations demonstrate that the Fe grows epitaxially on GaAs (001) at 

RT with an epitaxial relationship of Fe(001)<100>||GaAs(001)<100>, and that the lack 

of Fe LEED patterns for the first 4 ML suggests a 3D Volmer-Weber growth mode. The 

epitaxial growth of Fe/InAs, as monitored by LEED, indicates an epitaxial relationship 

of Fe(001)<001>||InAs(001)<001>, similar to that of the Fe/GaAs(001)[34]. 

The most distinctive feature of a clean SC surface is the formation of a variety of 

reconstructions and associated atomic scale structures[35-37]. To demonstrate how 
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these atomic scale structures affect the lattice relaxation, the epitaxial growth in 

Fe/InAs(001)-(4×2) has been studied in detail, using dynamic RHEED, by Xu et 

al.[34]. 

Zega et al. compared the atomic structures of two types of Fe/AlGaAs interface using 

high-resolution transmission electron microscopy (TEM) (see Figure 2.13): one for an 

as-grown interface showing an injected spin polarisation of 18% in a full spin-LED 

device structure, and the other for an annealed interface exhibiting an improved spin 

polarisation of 26%[38]. An interfacial region ~0.7 nm thick with some disorders was 

identified for the as-grown sample, whereas the annealed interface was thinner (~0.5 

nm) and had no distinguishable disorder. Further measurements using high-angle 

annular-dark-field microscopy indicated the existence of an atomic layer of intermixed 

Fe and As for the annealed interface. Through density functional theory (DFT) 

calculations, it was suggested that the mild annealing step could sharpen the Fe/GaAs 

interface, which was attributed to a restructuring of the interface into a lower-energy 

state, thereby reducing the extent of the mixing. LeBeau et al.[39] and Fleet et al.[40-42] 

also reported several other types of interfacial atomic structures for the Fe/GaAs 

system. 

 

Figure 2.13 High-resolution TEM images of an Fe/AlGaAs spin-LED structure. (a) As-grown, and (b) 

post-annealed at 500 K for 10 minutes. Scale bar is 1.0 nm[42]. 
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Many researchers have reported the high-quality epitaxial growth of Fe on GaAs, 

where they have contributed to the long-lasting debate over the presence of a magnetic 

dead layer at the Fe/GaAs interface[43]. This detrimental effect was historically 

attributed to the formation of antiferromagnetic Fe2As[44] and half-magnetised 

Fe3Ga2xAsx[43] in the vicinity of the interface, until a bulk-like magnetic moment of 

RT-grown Fe on GaAs (001)-(4 × 6) and its corresponding magnetic phase 

evolution[33] (see Figure 2.14) were demonstrated. The former result was further 

confirmed with unambiguous X-ray magnetic circular dichroism (XMCD) down to the 

ML regime[45]. 

 

Figure 2.14 Evolution of the magnetic phase of Fe/GaAs, corresponding to the growth 

morphology[33]. 

Another open issue over the past two decades concerns the origin of uniaxial magnetic 

anisotropy (UMA), unexpected based on the crystal symmetry of bcc Fe. It was first 

observed in the Fe/GaAs (001). The evolution of the hysteresis loops of Fe/GaAs 

(001)-(4 × 2) and Fe/InAs(001)-(4 × 2) are shown in Figure 2.15[46], where the Fe 

films grown on both substrates show the existence of UMA, dominating the global 

magnetic anisotropy in the ultrathin regions. However, when above the critical 
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thickness of about 50 ML for Fe/GaAs and 16 ML for Fe/InAs, cubic anisotropy takes 

over.  

There are three possible mechanisms responsible for the UMA observed in Fe/GaAs 

and Fe/InAs: (1) shape anisotropy, since the films show 3D island growth; (2) intrinsic 

anisotropy due to the unidirectional nature of Fe-As, Fe-Ga and Fe-In bonds; (3) 

magnetoelastic interactions due to strain in the ultrathin epitaxial films caused by lattice 

mismatch. STM study shows no evidence of shape anisotropy due to 3D island 

growth[34]. The so-called ‘nearly half-magnetised’ phase at the interface can also be 

excluded since this phase does not exist in the samples grown at RT[33]. It is now 

generally believed that the atomic scale structure related to the SC surface is 

responsible for this UMA. 

 

Figure 2.15 MOKE hysteresis loops of Fe/GaAs (001)-(4×2)(left panel) in the thickness range of 5 to 

140 ML grown at RT with the magnetic field applied along four major axes, and that of Fe/InAs 

(001)-(4×2)(right panel)[46]. 

Based on an examination of magnetic anisotropy of the Fe films deposited on GaAs 

substrates with different reconstructions, Kneedler et al. proposed that the 

unidirectional nature of Fe-As or Fe-Ga bonds is responsible for the UMA[47]. This 

might be understood as a “chemical” effect, in which the electronic structure of the Fe 

atoms near the interface differs distinctly from “normal” bcc Fe. Measurements of the 

thickness dependence of the anisotropies in Fe/GaAs by Brockmann et al. 
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demonstrated that the UMA is a pure interface term which originates exclusively from 

the Fe/GaAs interface. This favours the picture of “unidirectional chemical bonding” at 

the interface[48]. In another study, Tivakornsasithorn et al. reported the epitaxial Fe 

films on GaAs, ZnSe, and Ge, and their results seem to suggest that by controlling 

surface reconstructions of the semiconductor substrates, it is possible to engineer 

magnetic anisotropy in the magnetic over-layers[28].  

2.5 CoFeB system 

CMOS is currently the dominating technology for logic circuits, allowing for fast and 

powerful microprocessors [49]. However, it is quickly approaching its scaling limits 

due to increased problems with power dissipation at scaled technology nodes. In this 

context, the next-generation memory device is required allowing for continued scaling 

with improved energy efficiency by eliminating static power dissipation. The 

integration of a fast, energy-efficient non-volatile memory technology with CMOS can 

help alleviate this problem [50] 

The most important three kinds of memories in the memory hierarchy are static 

random-access memories (SRAM), dynamic random-access memories (DRAM) and 

NOR Flash. SRAM, it the fastest of the three, but is volatile with a very low density. 

DRAM has a higher density compared with SRAM, but it is also volatile and needs 

periodic refresh, which results in power consumption. The NOR flash memories have 

the highest density among the three and are non-volatile. However, they have very slow 

write speed and very limited endurance. They also use high power for writing data and 

high internal voltages are needed for their operation. 

Spintronic devices, which exploit the exchange interaction of the electron spins, where 

magnetic and transport properties are coupled, are strong candidates for non-volatile 

memory due to the inherent hysteresis in ferromagnetic materials, and the compatibility 

of some of these materials with the standard CMOS process [51-53]. Magnetoresistive 
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RAM (MRAM) has exhibited significant advantages as a fast, fairly low-power, 

high-endurance, radiation-resistant non-volatile memory, which can be integrated to 

the CMOS as a back-end of line (BEOL) process [54]. The read-out process of the 

MRAM bits is reliably performed via the tunnelling magnetoresistance (TMR) effect 

[55, 56] in magnetic tunnel junctions (MTJs). As for the writing process, the first 

generations of MRAM utilized the Oersted fields generated by running currents in 

adjacent conducting lines of memory cells to switch the magnetization. The latest 

technology to switch magnetization of MRAM bits using spin-polarized currents via 

the spin transfer torque (STT) effect [57, 58] , has a better performance in terms of 

energy efficiency, scalability and density compared with Oersted fields. 

 

Figure 2.16 Typical architecture for a 1 transistor-1 MTJ (1T-1R) memory cell. The MTJ is composed 

of a bi-stable free layer and a pinned layer separated by a tunnelling oxide. The device is fabricated as 

part of the back-end (BEOL) process, compatible with CMOS logic processes [50]. 

Figure 2.16 shows a typical simplified STT-RAM structure which consists of a free 

layer which can take two states (parallel or antiparallel) to a pinned (fixed) layer. Both 

of the layers are separated by a tunnelling oxide, which is usually MgO to allow for 

read-out via the TMR effect [54, 59]. The writing process is performed by passing a 
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spin-polarized current, which transfers some of its momentum to the nanomagnet, 

inducing a torque that can result in switching depending on the direction of the current.  

The magnetization of the magnetic layers can be either in-plane (IP) or perpendicular to 

the plane (PP). The simplest and most studied IP and PP STT-MRAM designs are 

sketched in figure 2.17. 

 

Figure 2.17 (a) In-plane and (b) perpendicular STT-MRAM cell designs [60]. 

For the in-plane configuration, the switching current density is given by [61]  

𝐽𝑐0 = (
2𝑒𝛼𝑀𝑠𝑡

ℏ𝜂
) (𝐻𝑘 +

𝐻𝑑

2
) , (2.26) 

where 𝛼 is the free layer Gilbert damping factor, 𝜂 is the spin-transfer efficiency, 𝑀𝑠 

and 𝑡 are the free layer saturation magnetization and thickness, 𝐻𝑘 is the in-plane 

shape-induced anisotropy field and 𝐻𝑑 is the out-of-plane demagnetizing field. 

Scaling of STT devices generally requires a trade-off between the switching current 

density 𝐽𝑐0 and the thermal stability factor Δ, where the goal is to minimize the ratio 

𝐽𝑐0/Δ while preserving a given goal for the thermal stability factor. Specifically, the 

switching current to thermal stability figure of merit is given by  

𝐼𝑐0

Δ
= (4𝑒𝛼𝑘𝑇 ℏ𝜂⁄ )(1 + 𝐻𝑑 2𝐻𝑘⁄ ), (2.27) 
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Where it can be observed that the switching current is dominated by the out-of-plane 

demagnetizing field 𝐻𝑑, which typically does not determine the thermal stability, given 

that 𝐻𝑘 ≪ 𝐻𝑑. 

CoFeB is the most studied material for MTJ structures due to its high MR value [62] 

and low Gilbert damping [63]. The value of TMR effect has been reported as high as 

138%~604% [62, 64-66] in the CoFeB/MgO/CoFeB pseudo-spin-valve MTJ. 

However, all of these CoFeB-based MTJ is of in-plane configuration. If the 

perpendicular anisotropy creates an anisotropy field 𝐻𝑘⊥, the switching current over 

thermal stability ratio can become much smaller 

𝐼𝑐0

Δ
= (4𝑒𝛼𝑘𝑇 ℏ𝜂⁄ )(1 + (𝐻𝑑 − 𝐻𝑘⊥) 2𝐻𝑘⁄ ), (2.18) 

If the perpendicular anisotropy of the free and fixed layers are large enough to 

overcome their respective demagnetizing fields (i.e. 𝐻𝑘⊥ > 𝐻𝑑), the magnetizations of 

the layers become perpendicular, giving rise to a fully perpendicular configuration. In 

this configuration, the demagnetizing field is fully cancelled and therefore, the 

switching current density would be given by 𝐽𝑐0 = 2𝑒𝛼𝑀𝑠𝐻𝑘𝑡/ℏ𝜂, while the switching 

current over thermal stability figure of merit will be given by  

𝐼𝑐0

Δ
= 4𝑒𝛼𝑘𝑇 ℏ𝜂⁄ . (2.19) 

Recently, a significant interface-induced perpendicular anisotropy has been observed in 

CoFeB/MgO junctions while keeping large TMR values while the CoFeB thickness is 

very thin [67]. This exciting discovery satisfy high thermal stability at reduced 

dimension, low-current current-induced magnetization switching and high tunnel 

magnetoresistance ratio all at the same time. The key to achieve a 

perpendicular-anisotropy CoFeB/MgO MTJ is the very thin thickness of CoFeB layer 

as seen in Figure 2.18. The PMA was attributed entirely to the CoFeB-MgO interfacial 

anisotropy in ref. [67], while the Ta seed layer, not just the MgO at the top interface, is 

demonstrated to be critical to achieving perpendicular magnetic anisotropy [68]. The 
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origin of the PMA in CoFeB/MgO structure is far from clear and this is why this topic is 

still of widely interest. 

 

Figure 2.18 In-plane and out-of-plane magnetization curves for CoFeB/MgO. (a), thickness of 

CoFeB=2.0 nm. (b), thickness of CoFeB=1.3 nm [67].  
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Chapter 3 Experimental Techniques 

3.1 Introduction 

Magnetic thin films have been the subject of much study over the last two decades due 

to the interest from the data storage industry in such materials, both for writing and 

storing information. There is a wide range of systems regarding the practical 

applications of these films. Materials suitable for magnetic tapes and hard disks, which 

are required to display high coercivity and form distinct granules, and lacking 

inter-granular exchange coupling, have been developed and refined over the last 20 

years. Meanwhile, the highly-advanced spin valves of GMR read and write heads, 

which can store huge amounts of data, have been developed since the mid-1990s. In 

recent years, next generation spintronic devices, such as magnetic random-access 

memory (MRAM) and the spin field effect transistor (spinFET), have become very 

popular, and there have been many studies in this emerging area. A wealth of research 

has been undertaken and a wide range of experimental techniques have been 

established and used to fabricate and characterise the sampled studies in all projects. 

Some of these techniques can be found in York, or in the Diamond Light Source. This 

chapter will present a description of various experimental techniques that have been 

utilised in these works, and is divided into three main sections. The film growth 

machine and techniques are introduced in Section 3.2. Section 3.3 introduces the wafer 

information and cleanroom facilities, and Section 3.4 discusses the various ex-situ 

structural characterisation methods. 
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3.2 Room Temperature Growth Techniques 

3.2.1 Molecular Beam Epitaxy (MBE) 

The advantages of ultrahigh vacuum (UHV) technology over the last two decades have 

allowed the development of accurate growth methods like MBE[69-73]. This growth 

method, by reducing the growth rate to a few atom layers per minute, can grow the 

sample one monolayer by one monolayer., meaning that the film can be grown with a 

crystallographic relationship to the substrate. In my project, the MBE system was the 

predominant growth technique for fabricating samples.  

The MBE system has a growth chamber equipped with a load lock chamber and a 

transfer arm for loading samples, a sample manipulator with a heating filament for 

annealing samples, a penning gauge and an iron gauge for pressure measurement, a 

tube with argon for ion milling, as well as an electron gun and a phosphorescent screen 

for reflection high energy electron diffraction (RHEED). There are three kinds of pump, 

each for different pressures: the rotary pump, turbo pump and titanium sublimation 

pumps (TSPs), as shown in figure 3.1. 

 

Figure 3.1 The Spintronics Group molecular beam epitaxy vacuum system. 
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3.2.1.1 Vacuum Pumps and Ultra-High Vacuum  

The different pumps are necessary due to the varying range of the pressure. The rotary 

pump works by reducing the pressure from atmospheric to 1×10-3 mbar. The 

uninterrupted contact of the vanes with the wall of the outer drum allows air to be 

trapped and, beyond a critical pressure, ejected through oil. The next stage in the 

pumping system is the molecular pump, which begins pumping from 1×10-2 mbar and, 

depending the system, can achieve chamber pressure around 1×10-9 mbar. The speed of 

the turbo is from 20,000 to 50,000 rpm. If the turbo pump arrives the full speed, any gas 

molecule or atom which hits the blades have a slight chance of escaping back into the 

vacuum chamber[74]. Normally, there is another process after turbo pumping: bake-out. 

The growth chamber is heated to 100˚C, which boils the H2O molecules in the chamber 

to a gaseous product, turning the water to steam, and then allows that to leave the 

chamber through the turbo pump. After this process, the pressure of chamber can 

achieve 1×10-10 mbar. Finally, to reduce the pressure from 1×10-10 mbar to 1×10-11 

mbar, a Ti sublimation pump is used. This pump works by passing current through a Ti 

filament to raise its temperature to the point of sublimation. The Ti pump traps active 

elements such as O, N and diatomic H2, which can then be taken out the chamber, again 

through the turbo pump. TSPs are not be used when growing the samples, as this 

process would contaminate the sample. 

To arrive at UHV conditions is necessary as it provides good conditions for sample 

growth, and can result in a high-quality single crystalline film without contamination 

and oxidization. High quality films are important for the interface structure research 

and fundamental thin film growth research.    

3.2.1.2 Evaporator Design 

This MBE system is equipped with three water cooling e-beam evaporators and a large 

protective shutter. There are two kinds of evaporators: liner driver and crucible (see 

figure 3.2). That which is chosen depends on the different materials. A crucible design 
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is recommended for materials which easily sublimate, such as Au or Cr, while a 

material with higher thermal inertia, including Fe, Co, Ni, is suitable to melt from the 

trip and hence are compatible with a liner driver mechanism. Both design options 

operate by heating the source material with the top tungsten filament carrying a 

controlled current at high voltage.  Direct current administered via the filament results 

in an electronic cloud around the filament. After this, high voltage is connected from 

the bottom and, this time, the point discharge effect being at the top of the materials, the 

high energy required to heat the materials is produced. When the temperature arrives at 

the melt point, the materials will evaporate from the rod or crucible. Varying the high 

voltage and applied current alters the rate of evaporation from the source, which is 

monitored by means of a calibrated emission current, defined as the current between the 

evaporator filament and source rod. The major difference between the liner driver 

design and crucible design is the mechanism for maintaining the emission current. In 

line drivers this is controlled by the distance between the filament and source: when the 

distance decreases, the emission current has a high value, which means the rate of 

evaporation becomes faster than before. In the crucible evaporator, the emission current 

is controlled by the power supply alone. 

 

Figure 3.2 Crucible and liner drive evaporators. 
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The detailed specifications of an e-beam evaporator are shown in figure 3.3. These 

include the size of flange, source material, cooling jacket and so on. This kind of 

evaporators are also used by our collaborators in the Nanjing University, China. This 

design has been proven to be simple and reliable to grow thin film samples. 

 

Figure 3.3 The evaporator used in Nanjing University MBE system designed by York team. 
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The sources are essentially degassed to minimise the impurities released into the 

vacuum chamber during evaporation. Degassing is carried out by applying a small 

current and voltage, increasing gently until the high voltage required for evaporation 

may be applied without a substantial rise in pressure. 

3.2.1.3 Sample Holder and Annealing Design 

There are three grooves on the sample holder, as seen in figure 3.4. The top grove is for 

the sample transfer arm, which runs the sample holder from the load lock chamber to 

the growth chamber. The ancipital two grooves are equipped for landing sample holder 

to the manipulator. This setup ensures that the sample holder transfers from the load 

lock chamber to the main chamber without running the risk of it dropping into the main 

chamber. 

 

Figure 3.4 3D vision sample holder design. 

The sample loading and annealing setup are shown in figure 3.5. There is a clamp with 

a screw on the sampler holder. This ensures the sample is trapped on the sample holder 

so that the sample cannot move position. Two tungsten filaments, positioned on both 

the top and bottom of the sample holder, are controlled by the DC current source and 
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generate thermionic electrons. When the system runs the annealing progress, the 5A 

current is set on the filament, and the DC voltage source gives a 700V high voltage on 

the sample holder through the manipulator. After that, with the heating energy focused 

on the sample holder, the annealing temperature can normally achieve 600 ˚C, and 

retain this temperature for one hour.  

The annealing process is chosen after the iron milling process. There is a sputter ion 

gun in the front of the MBE system, which ions and electrons are accelerated towards 

onto the substrate surface. The iron milling process can remove contamination from the 

substrate surface, but there is a problem. This process will slightly damage the substrate 

surface, which could make a few small grooves on the substrate. In short, the substrate 

surface will no longer be a flat surface. The next annealing process is essential for 

sample growth, not only to remove the surface contamination, but also to prevent a 

subsequent magnetic dead layer at the surface after film growth[34].  Annealing also 

forces the substrate to experience a reconstruction process. Reconstruction makes the 

substrate surface flat and afterwards grow a sample (like iron). Following this, it would 

display a 4×2 or 4×6 lattice structure on the RHEED pattern[46]. That means this 

process creates a high-quality sample surface, and as such is very useful for research 

into surface and interlayer effects. 

 

Figure 3.5 Sample holder and annealing setup.  



64 

 

3.2.2 Thermal Evaporator 

Thermal evaporation is one of the simplest and most popular method for thin film 

deposition. The principle of the thermal evaporator is to heat the source material to a 

high temperature to create vapour, let it be condensed on top of a cool and clean 

substrate, and then form a layer of thin film. The heating is usually carried out by 

applying a large current through a filament boat, which has a certain finite resistivity. 

Tungsten is widely used for the filament because it is chemically stable, meaning that it 

can easily rise to and withstand temperatures of over 3000˚C. As with most commercial 

thermal evaporators, the two in the clean room of York University have a distance 

between the source boat and substrate holder of over 20cm. This requires the vacuum to 

be sufficient to form a clear path for vapour deposition.   

 

Figure 3.6 system diagram of resistive thermal evaporator.[75] 
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The growth thickness is monitored by a quartz crystal rate meter. This is a commercial 

model, which has computer software to control the data analysis from the sensor. 

Normally, the growth temperature is room temperature (around 25˚C) and the 

minimum pressure requirement for evaporation is below the 10-5 Torr level. The better 

the vacuum, the better the sample growth, because the contaminations from outside 

(like water or dust) will be removed, when samples is in a high vacuum situation. 

3.3 Cleaning Room Facility 

In the Department of Electronics at the University of York, sample fabrication and 

preparations depend on the availability of a well-equipped class 1000 clean room. In 

this section, a sample preparation process and the selection of substrate wafer are 

briefly introduced. 

3.3.1 Semiconductor Substrate Preparation 

In this project, all the chemical treatments for the samples are performed on the wet 

bench. The commercial GaAs wafers used were all cleaned using a series of 

pre-defined chemical etches, by using a mixture of acids and other chemicals as 

detailed in Table 3.1.   

Table 3.1 Substrate preparation process. 

Cleaning Process Duration 

RBS, Acetone, Isopropanol ultrasonic bath 5 minutes respectively 

Acid etching H2SO4:H2O2: H2O = 4:1:1 45 seconds  

DI water rinse and Nitrogen Blow Thoroughly and blown dry 

Outgassing at 200°C 12 hours 
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Ion-milling at 5x10-6mbar 30 minutes 

Annealing at 500°C 60 minutes 

All substrates were cleaved from the commercial wafer and cleaned with detergent 

(RBS), action and isopropanol for 5 minutes respectively. The next step is acid etching. 

The substrate is placed into the H2SO4:H2O2: H2O (4:1:1) solution for 45 seconds and 

the beaker is shaken. The residual solutions were rinsed off with DI water and 

substrates were blown dry using filtered Nitrogen. All operations were performed in a 

level 100 clean room and a class 100 wet-bench to prevent any dust particle 

contamination. The etched substrates were immediately transferred to an MBE 

chamber with a base pressure of 2x10-9 mbar, and heated to 200°C for 12 hours to 

completely remove any water molecules or gas attached to the surface. After that, low 

energy Argon ion beams were sputtered onto the substrate surface for 30 minutes to 

gently remove the contamination from the surface. Finally, the substrates were further 

required to be annealed at 500°C for 60 minutes to remove natural oxides and create 

unified surface reconstruction as seen in table 3.1. 

3.3.2 GaAs (100) Wafer Selection  

The most widely used wafer in this project is the commercial epi-ready GaAs (100). 

These wafers can be purchased from Wafer Technology UK, IDB Technology and 

Good Fellow Ltd. When purchased, it is vital to confirm how the suppliers classify the 

product in terms of the substrate crystallography, i.e. EJ or US, as this defines the 

direction of the main crystallographic axes. According to the EJ definition, the major 

flat of the wafer refers to [0-11] axes, while for the US it is [011] direction. The 

definitions of the crystallographic directions are illustrated in Fig 3.7. How the axis is 

marked will vary with different suppliers.  
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Figure 3.7 GaAs wafer with different crystallographic direction defined with EJ and US option[76]. 

3.4 Characterisation Measurement Techniques 

3.4.1 Reflection High Energy Electron Diffraction (RHEED) 

Growth quality in the main chamber was monitored by RHEED. This technique is used 

to characterise the flatness and surface crystalline structure of a sample or substrate 

material. An electron gun with a high energy range, from 10 to 50 keV, provides a beam 

of electronics which impinges upon a given sample surface at an angle of about 1°, and 

is diffracted and reflected onto the fluorescent screen, as shown on figure 3.8. 
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Figure 3.8 RHEED structure. A high energy beam from the electronic gun accelerates electrons onto 

the sample surface at a very small angle and gets diffracted to form a diffraction pattern on a 

fluorescent screen. 

Typical static RHEED patterns, as in figure 3.10, were recorded in my experiments, and 

give an immediate indication concerning the structural quality of the film. As noted 

before, the iron milling process will cause slight damage the substrate surface, so it is 

expected that the surface would display roughness. Thus, from the RHEED pattern, the 

spotty model can be seen on the screen, as in figure 3.9. However, if the substrate has 

gone through the annealing process, the roughness will be fixed due to the surface 

reconstruction. In this case the whole sample surface will revert to a flat condition, and 

so the straight line RHEED pattern can be found on the screen. After surface 

reconstruction, the substrate not only removes the dead layer, which could put off the 

formation of single crystalline structure, but it also forms a high quality 4×2 lattice 

structure[31, 34], as in figure 3.10. This could achieve a high-quality single crystalline 

film. In general, a spotty RHEED pattern indicates a rough three-dimensional (3D) 

growth, whereas a streaky RHEED pattern indicates smooth two-dimensional (2D) 

growth. 
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Figure 3.9 GaAs (100) substrate with iron milling process only formed the roughness surface. From the 

RHEED pattern, a spotty model is shown. 

 

Figure 3.10 GaAs (100) substrate with the iron milling and annealing process formed the flat surface. 

From the RHEED pattern, a crystalline structure is shown. 

 

Figure 3.11 RHEED pattern for different crystalline structure. (a) is the 7ML Fe on GaAs (100) 

substrate, RHEED pattern shows the standard single crystalline structure; (b) is the 7ML Fe on 5nm Au 

interlayer on GaAs (100) substrate, RHEED pattern shows the typical polycrystalline structure.   

The RHEED measurement indicates the crystalline structure of the films. There are two 

common types of structure seen from RHEED: the single crystalline structure and the 
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polycrystalline structure. Let us take Fe film on GaAs (100) surface as an example. 

Because the lattice constant of 2.87Å for Fe is almost exactly to half of GaAs (5.65 Å), 

it is easier to form the single crystalline film when Fe thickness is from 5ML to 20ML, 

as shown in figure 3.11(a). However, there is a large lattice mismatch between Fe 

(2.87Å) and Au (4.07Å), so when the same thickness Fe film (7ML) grows on an Au 

interlayer, the RHEED pattern shows the polycrystalline structure, as shown in figure 

3.11(b). Fe films on GaAs substrate should be a single crystalline film when Fe film 

thickness is between 5ML and 20ML. However, if the GaAs substrate is rough, and the 

Fe atoms land on the rough GaAs substrate, this will enlarge the lattice mismatch 

between the GaAs and Fe, so the Fe film could be a polycrystalline structure. The 

RHEED measure, especially with Fe under 20ML, can let us know the quality of film 

growth. Fe film over 20ML is different, as the volume contribution will influence the 

form of the crystalline structure and make the single crystalline structure turn to the 

polycrystalline structure.    

3.4.2 Atomic Force Microscopy (AFM)  

Atomic Force Microscopy is a surface technique widely used for investigating surface 

morphology and thickness. In figure 3.12 we can see a schematic diagram of an AFM 

system. The AFM image is performed in either contact or tapping mode, using the 

repulsive Van der Waal force between the atoms at the tip and those of the surface. A 

laser beam focuses onto the cantilever, and then reflection of the beam from the 

cantilever is collected by a photodetector consisting of two photodiodes. 

For this work, a JEOL Scanning Probe Microscope 5200 was used with a commercial 

Si tip of 10 to 20 nm radius. The 3D information collected is displayed as a topographic 

image. AFM can also be used for MBE system film thickness calibration, but in this 

case, there should be an obvious sharp step on the sample surface, so that when the tip 

scans the area around the step the thickness data can be derived from the measurement. 

One way to create such a sharp step when growing a sample in an MBE system is 
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shown in figure 3.13(c). The polished sides of two GaAs substrates are joined face to 

face, then tightened using a clamp from the sample holder. After the growth process, 

the sample is removed from the chamber immediately. The top substrate, which was the 

smaller substrate, started the AFM measurement. The obvious step can be seen in the 

2D and 3D diagrams from figure 3.13(a) and 3.13(b). The tip can then be moved to the 

step area to measure the Z-axis direction. Figure 3.13(d) indicates the height of the step, 

and also the thickness of growth sample. 

 

Figure 3.12 Schematic diagram of an atomic force microscopy (AFM). A laser beam is focused onto 

the cantilever and reflection of the beam from the cantilever is collected by a photodetector consisting 

of two photo-diodes, A and B respectively, during the raster scan of AFM tip on slightly top of the 

sample surface. 
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Figure 3.13 (a) and (b) indicate the film morphology with 2D and 3D diagrams respectively; (c) shows 

the creating sample setup; (d) displays the value of height of the step from Z axis (the film thickness). 

The amount of the material deposited on the substrate surface needs to be monitored for 

steady growth rate and thickness calculation. In my project, the growth rate is measured 

by a quartz crystal microbalance sensor. Quartz crystal is a type of thin and fragile 

material which has the property of generating an electrical current with a fixed 

oscillation frequency when electrically energised. When source material is being 

deposited on the sample, it is also applied to the sensor surface, which means that the 

total mass of the crystal is increased, which thus decreases the resonant frequency. 

The quartz crystal frequency is 6 MHz, and the digital controller offers a precision of 

0.01 Hz. This is a very sensitive measurement device and has the virtue of always being 

stable. Since the signal from the quartz crystal is very small, the connection wire is 

equipped in the MBE chamber, which is on the shutter in front of the sample holder. 

The growth rate of the e-beam evaporator is controlled by monitoring the emission 

current of the source material. This makes the thickness monitor calibration easier, as 

the calculation can be expressed as the equation: 
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Growth rate = ∆thickness/time 

Relation between QTM and thickness = ∆actual thickness/∆frequency 

The calibration data for different sources calculated by AFM measurement and quartz 

crystal frequency are all shown in Table 3.2. 

Table 3.2 Growth Rate for various sources from the MBE system 

 High 

Voltage 

Filament 

Current 

Emission 

Current 

Growth Rate Calibration 

data 

Bcc Fe (1ML = 1.43 Å) 750 V 4.8 A 10.6 mA 6.13 Hz/min 6.85 Hz/ML 

Hcp Co (1ML = 1.26 

Å) 

750V 5.4 A 17.5 mA 6.31 Hz/min 7.26 Hz/ML 

Fcc Ni (1ML = 1.44 Å) 800V 5.1 A 13.2 mA 6.2 Hz/min 7.80 Hz/ML 

Bcc Cr (1ML = 1.44 

Å) 

900V 5.2 A 30.2 mA 6.0 Hz/min 6.25 Hz/ML 

Fcc Au (1ML = 2.04 

Å) 

700V 4.8 A 21.3 mA 7.0 Hz/min 16.10 Hz/ML 

 

3.4.3 Transmission Electron Microscopy (TEM) 

3.4.3.1 Introduction 

The TEM is a very significant invention, and is the first electron microscope to break 

through the limits of the optical light microscope and bring us to the world of Nano 
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scales. The TEM has a very high electron beam which transmits through a very thin 

specimen and projects onto a fluorescent screen. The biggest advantage of the TEM is 

the high resolution it can achieve. The detailed structure of the TEM is complicated, 

and so is presented here in more detail. The general layout is illustrated in figure 3.14. 

 

Figure 3.14 Layout of components in a basic TEM[77]. 

3.4.3.2 Sample Preparation 

TEM measurements usually investigate the cross section of the sample, and structure 

information and thickness data is derived from the TEM image. Because the 

penetration depth of the beam is under 1μm, a very thin specimen with a small polished 

hole from the polished cross section of the sample (around 1μm) is required.  
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The first step is to cut the sample and referential substrate using a Diamond saw blade, 

then to glue two pieces of sample and substrate together (with substrates as the outside 

part, the inside part being the sample). This is shown in figure 3.15. 

 

Figure 3.15 the gluing substrates and samples. 

The next step is to polish the back and front side of the specimen with Diamond lapping 

paper (using 1,3 and 6μm polishing pads to give a high quality polished surface and a 

glue line free from asperities) and the polishing table. When the sample undergoes the 

polishing process, it is very important to keep the tap open a little bit, which will allow 

the polishing disks to clean and wash away the polished dropped part. The finished, 

polished sample cross section surface should look like figure 3.16 (b), which used the 

silicon substrate and shows a sliver grey colour. If the preferred substrate chosen is the 

GaAs, then an orange colour would be seen from the reflectance light microscope. 

After polishing process, the specimen should be mounted on the sample holder for 

precision ion polishing system (PIPS). 
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(a)                                       (b) 

Figure 3.16 shows the different processes of Si substrates and samples polishing patterns. (a) shows the 

un-polished sample surface with black and white part on the roughness surface; (b) indicates the 

polished samples and substrates with the sliver grey colour on flat surface from reflectance light 

microscope. 

PIPS guns could achieve 20μA at 3.5Kev, although a higher value is desirable. PIPS 

should be run in double mode for x-sections at 3.5Kev with both guns at ±6° until a 

small hole is visible in the glue line. Once a hole is seen in the glue line, PIPS should be 

adjusted at 1.0KeV for 3 minutes with guns at both ±8° followed by PIPS at 0.3KeV for 

10 minutes with guns at ±8°. The PIPS process helps to polish the cross-section of a 

small area and form a small hole with several steps on it, which is helpful for 

monitoring the cross-section on the TEM image. The PIPS polished sample can be seen 

in figure 3.17 (a) and (b). 

 

(a)                     (b) 

Figure 3.17 shows the substrate fringes, glue fringes and the hole which experienced the PIPS process 

on the polished surface. 
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3.4.3.3 The TEM Image  

The Electron Source is at the top of the TEM. It formed with a filament, a Wehnelt cap 

and an anode. The filament can be made of LaB6, and it connects to a negative power 

supply. LaB6 filament sources have a special design, which uses a heating coil to heat 

the LaB6 rod to generate electrons. This type of filament generates more electrons at 

the same temperature, and hence offers a brighter image at high resolutions. When 

heated, the Lab6 electron beam is pumped out from the filament surface and forms an 

electron cloud. The Wehnelt cylinder is cap-shaped, made of metal and covers the 

filament. As it is also heavily negatively biased, the aperture in the middle can help 

focus the electron cloud to form an electron beam with a small crossover diameter. The 

anode plate works like an electron extractor since it is grounded or positively biased 

compared to the filament. 

 

Figure 3.18 Cross-sectional TEM of CoFeB on GaAs (110). The thickness values of CoFeB and Ta are 

4.8nm and 3.3nm respectively. 
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The TEM image has two major functions for the different structure samples. First, the 

different structure of the sample can be seen from the TEM image, whether it is single 

crystalline, amorphous or polycrystalline. As can be seen in figure 3.18, it is easy to 

find the different layers and structures of the sample: the GaAs substrate is the bottom 

part with a single crystalline structure; the mid grey part is the CoFeB film with the 

typical amorphous structure; the top area is the Ta capping layer, which has a 

polycrystalline structure. Another important function is the recalibration of the film 

thickness. The fundamental thickness calibration measurement is the AFM 

measurement, with the TEM acting as a secondary means. It can also double check the 

calibration data compared with the AFM thickness data. From the TEM image, the 

thickness values of CoFeB and Ta are 4.8nm and 3.3nm respectively, and this thickness 

data is well matched with the growth settings. 

3.4.4 Vibrating Sample Magnetometer (VSM) and Magnetic - Optic 

Kerr Effect (MOKE) 

3.4.4.1 VSM Measurement 

A vibrating sample magnetometer (VSM) measures magnetic properties. Simon Foner 

invented the VSM in 1955, and reported it in 1959[78, 79]. A sample is first magnetized 

in a uniform magnetic field - commercial systems use linear actuators of some form.  

In my experiments, the Vector Magnetometer Model 10 VSM machine was used for the 

measurement. Historically, these systems were developed using modified audio 

speakers, although this approach was dropped due to the interference caused by the 

produced in-phase magnetic noise due to the variance in magnetic flux through a 

nearby pickup coil. The induced voltage in the pickup coil is proportional to the 

sample's magnetic moment, but does not depend on the strength of the applied 

magnetic field. In a typical setup, the induced voltage is measured with a lock-in 
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amplifier using the piezoelectric signal as a frequency reference. It is also possible to 

record the hysteresis curve of a material by sweeping the magnetic field.  

The structure of a VSM is shown in figure 3.19. The magnetic field applies from -2T to 

2T. The sample holder can be rotated through all angles and it also can measure the 

temperature from 77 K to 773 K. 

 

Figure 3.19 VSM internal structure which has two electromagnets, transfer arm, sample holder and 

coils. 

 

3.4.4.2 The Origin of MOKE 

The Magneto-Optic Kerr Effect (MOKE) has been widely used for determining 

magnetic properties. It observes the optical reflection on a static magnetic material, 

traces the polarisation rotation as a function of the varying magnetic field applied, and 

plots the hysteresis loop as the output for studies. The MOKE was discovered by John 

Kerr in 1877, who while studying the light reflected from a sample subjected to a 

magnetic field, observed changes in the polarisation and ellipticity of the reflected light. 

Analogous to the transmission mode Faraday effect, the reflection mode MOKE is now 

a popular tool in the magnetic characterisation of magnetic thin films[80, 81]. 
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3.4.4.3 Ex-situ MOKE and In-situ MOKE Setup 

Both in-situ and ex-situ MOKEs have a similar setup, as shown in figure 3.20 (A) and 

(C) respectively. The magnetometer utilises a diode laser with a wavelength of 670 nm 

and an output energy if about 5mW. The laser beam first passes a polariser and is 

subsequently reflected from a sample surface. Following an aperture for beam path 

alignment, the reflected beam passes the focus lens and then enters an analyser on the 

photodiode with an embedded amplifier powered by a pair of 9V batteries. The optical 

signal collected by the photodiode is converted into an electrical signal by an analogue 

to digital converter and subsequently sent to a computer.  

 

Figure 3.20 (a) and (c) indicate the in-situ and ex-situ MOKE setup; (b) shows the details concerning 

the laser line, focusing lens, magnet position and so on. 

The controlling software used for the MOKE measurement is a LabView programme. 

The major function of this programme is to output a given voltage to the 1000W 
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amplifier which is used to set the field in the electromagnet and capable of generating a 

maximum field of 1800 Oe. Another advantage of this setting is the rotating sample 

holder, which allows for a 360° rotation for ex-situ MOKE and a 180° rotation for 

in-situ MOKE (using a manipulator). This is particularly convenient for studying the 

in-plane magnetic anisotropy of samples. 

The difference between ex-situ and in-situ MOKE is clear. The ex-situ MOKE needs a 

sample with a capping layer, which the in-situ MOKE does not require. Some samples, 

such as Fe, Ni, Co and so on, easily form an oxide layer without a capping layer when 

samples are taken out of the vacuum. Given this, these samples need an Au or Cr 

capping layer for ex-situ measurement. Some capping layers like Cr, which is an 

antiferromagnetic material, will make some impact on the magnetic properties of the 

sample. This means that the data from ex-situ MOKE slightly differs from the sample’s 

original magnetic properties. The advantages of in-situ MOKE is that the sample can be 

measured in the UHV chamber without a capping layer, and there are no concerns about 

oxidisation. Generally, in-situ MOKE is more accurate; its setup is shown in figure 

3.20(B). 

3.4.4.4 MOKE Configuration  

Depending on the various shapes and magnetic orientations of the samples, there are 

three commonly used configurations for the MOKE set-up: Polar, longitudinal and 

transverse, each of which is shown in figure 3.21. Polar MOKE measures the 

magnetisation component vector perpendicular to the reflecting surface plane but 

parallel to the plane of incidence. Generally, it provides the largest rotation angle and 

thus the strongest signal, but it also requires a considerably large external field to 

saturate the films out of the plane. Unlike the polar MOKE, longitudinal MOKE has the 

magnetic field applied in the same plane of the reflecting surface, measuring the 

components within the plane parallel to the sample surface. Longitudinal MOKE is the 

form predominantly used for the author’s research as it offers a strong and rather 
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unified magnetic field, which is ideal for thin film properties studies. For the transverse 

MOKE set up, the magnetic field is applied perpendicularly to the plane of incidence. 

This configuration measures the reflectivity change which is proportional to the change 

of magnetisation components within the plane of reflectivity, but normal to the plane of 

incidence. 

The ex-situ longitudinal MOKE systems used in my studies were as follows. The 

sample holder is adjustable both horizontally (in the plane of the magnetic field) and 

vertically (perpendicular to both the plane of incidence and applied field), while fine 

adjustment by three screws is available to ensure precise position in the third axis, about 

which the sample is also rotatable. 

 

Figure 3.21 Three kinds of MOKE measurements. The top is the polar MOKE, the middle is the 

longitudinal MOKE and the bottom is the transverse MOKE. 
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3.4.4.5 Hysteresis Loop 

Magnetic hysteresis refers to the irreversibility of the magnetisation and 

demagnetisation process. When an external magnetic field is applied to a ferromagnetic 

sample, the domain which is aligned to the axis closest to the field will increase in 

volume, and will tend to exceed all other domains and form a single domain. If this 

external field is removed, the single domain will tend to form closure domains, thus 

reducing any stray magnetic field. A large demagnetising field will be formed due to 

single domain. Domain walls can be pinned by crystal defects. Without an external 

reversing field, the domain walls can never be fully reversed when pinning sites exist. 

This results in the hysteresis phenomenon[82]. 

 

Figure 3.22 Typical hysteresis loops. Bs is the saturation magnetization, Br is the remanent 

magnetization, and Hc is the coercivity field[83].  

The typical hysteresis loop, shown in figure 3.22, illustrates the different parameters 

obtained from the loop. These data indicate the magnetic properties of the film, and are 

extremely useful.  
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3.4.5 X-ray Magnetic circular dichroism (XMCD) 

3.4.5.1 Diamond Light Source Station 

The Diamond Light Source station has been serving the global research community for 

over a decade. The research potential of the synchrotron is based on a linear accelerator 

and 33 electron beam lines, as shown in figure 3.23. Each beam line has a different 

beam energy range to allow various fields of study. In my experiments, stations I06 and 

I10 are used to study the electronic and magnetic structure using soft X-ray resonant 

scattering (reflection and diffraction) and X-ray absorption. Both beam lines allow a 

broad range of studies focused on the spectroscopic properties and magnetic ordering 

of novel nanostructured systems. The only slight difference between them is the energy 

range. In I06 the energy ranges from 106 to 1300 eV, and the magnet can achieve 6T, 

while in I10 station, the beam line energy is from 500 to 1600 eV, and it is equipped 

with the 14T superconducting magnetic[84]. In fact, this has no influence on my 

experiment since Cr and Fe elements are used, which can be detected in a range from 

500 to 800 eV. Even a 2T magnetic field could saturate all my films. 

 

Figure 3.23 Diamond Light Source different energy beam lines. the sample colour beam lines indicate 

similar energy range[84]. 
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The Diamond Light Source uses an Elliptically Polarizing Undulator (EPU) light 

source to produce X-ray beams of variable polarisation state. The beam line delivers 

high flux and the brightness of X-ray light, covering the L-edges of 3d elements, and is 

therefore the best suited for this project. The analysis station located at the end of the 

beam line is designated the ‘Octupole end station’. An octupole UHV chamber contains 

eight water-cooled electromagnets which have been specifically engineered to offer 

unlimited optical access for the X-ray beam. These eight electromagnetic cores were 

spaced equidistantly over the surface of a sphere, and the effective magnetic field 

region in the central region is the vector sum of the magnetic field generated by each 

magnetic pole. This setup allows the magnetic field to be rotated freely without 

obstructing the X-ray beam path. Working in conjunction with a 5-axis manipulator, 

and having the option of rotating the entire chamber, allows for the measuring of the 

magnetic properties with effectively limitless geometry of applied field, X-ray and 

sample orientation. 

3.4.5.2 XMCD Introduction  

XMCD is a unique technique that uses X-ray to study magnetism. It offers 

element-specificity and allows one to identify the origin of the magnetic signal in each 

material ranging from simple elemental films to complex alloys and compounds. 

For the 3d transition metals, on which this work focuses, it is necessary to understand 

the dichroic effect for the 𝐿3 and 𝐿2 edges, which correspond to the 2𝑝1 2⁄  and 2𝑝3 2⁄  

levels observed in the context of a р to d transition. It is possible to view the situation in 

terms of energy level diagrams, as seen in figure 3.24.  Figure 3.24 (a) shows a 

non-magnetic material in the no magnetic field. This material demonstrates equal levels 

of spin up and spin down in its population. In figure 3.24 (b) it can be seen how 

applying an external magnetic field, H, to magnetic materials provokes a disparity 

between the population of spin up and spin down bands. The result of this is a 

configuration where some empty 3d spin up states exist which may only be filled by 
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spin up 2p electrons, meaning that the empty 3d states can act as spin dependent 

detectors. The situation is complicated by the spin-orbit interaction which causes the 2p 

core state to split into two components, the 2𝑝1 2⁄  and 2𝑝3 2⁄  states[85]. As well as the 

energy separation of these components, which amounts to a few eV in this case, the 

effect is important because these spin sub-states are now also coupled to the orbital 

moment. This orbital moment adds to the complication by coupling both parallel and 

antiparallel to the spin moment in the 𝐿3 and 𝐿2 edges respectively[86, 87]. 

 

Figure 3.24 Band illustrations of (a) a non-magnetic material and (b) a magnetic material with an 

external field. 

The incident circularly polarised photons have an angular moment of negative for right 

and positive for left circular polarisation. As such, when illuminating the sample with 

circularly polarised light, the probability of excitation will be greater if the angular 

momentum of the x-ray photons is coherent with that of the orbital momentum. A spin 

up 2𝑝1 2⁄  electron is most likely to be excited by left circularly polarised light. The 

difference in detected absorption between left and right circularly polarised light shows 

the XMCD signal.  
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3.4.5.3 Preparation for sample measurement 

The samples for XMCD measurement should use the sliver pants to glue them to the 

sample holder. The sliver pants allow some samples (such as two-dimensional 

materials) to have a good electro-conductive property when glued to the sample holder. 

After the gluing process, the sample conductivity should be tested by a mustimeter, to 

make sure the sample surface is conductive, and then the position of the samples can be 

marked on the sample holder, as in figure 3.25 (a). The position of samples is very 

important for the later measurement because the sample position should be locked at 

beginning of the measurement by scanning the horizontal and vertical axis, as in figure 

3.25 (b). There are three clear stages in figure 3.25 (b) shown by measuring the vertical 

axis, and then the beam line can focus on the accurate positions. 

 

Figure 3.25 Sample preparations for measurement. (a) indicates the sliver paint glued around the 

samples for electro-conductive property; (b) shows the sample positions from the sample holder 

measured by scanning the vertical axis, and the horizontal axis shows the distance between three 

samples (the units is mm). 

 

3.4.5.4 Obtain XMCD Spectra 

If one makes two XAS measurements of a magnetic sample exposed to an applied 

magnetic field for opposite photon polarisations, 𝐼+ and 𝐼−, and then monitors the 

sample drain current while the photon energy is scanned over an absorption edge, a 
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clear difference in line shape between the two spectra is revealed. Normally the 𝐿3 and 

𝐿2 absorption edges are chosen as these are within a convenient energy range for most 

transition metals, are strong in nature and are well understood theoretically[88]. The 

difference between the two spectra from the XMCD opposing polarisations can be 

clearly seen by subtracting one spectrum from other. For spectra of a suitable shape and 

quality the sum rules can yield site and element specific values for the magnetic spin 

and orbital moments on a per atom basis. 

In an XMCD experiment, a beam line with the ability to output circularly polarised 

light is fitted with an end station which allows the sample to be exposed simultaneously 

to the synchrotron beam and to an applied magnetic field, such as the system shows in 

figure 3.26. In this type of configuration, the magnetic field is applied parallel to the 

direction of the incident beam, and the end chamber is precisely positioned to ensure 

that the beam passes through holes drilled through the core of the magnet pole pieces. 

Other configurations for measuring XMCD spectra also exist. With third-generation 

light sources, such as the ESRF, the standard method of measurement uses 

superconducting magnetic from 1 to 14 Tesla. Here the field is flipped at the end of 

each entire energy scan, and the procedure repeated for the opposite polarisation. The 

resulting spectra is then averaged to minimise error. This is made possible by the high 

quality and intensity of the beam from the source, enabling the same measurement to be 

made in a fraction of the time. 
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Figure 3.26 X-ray absorption spectroscopy (XAS) and XMCD experiments at the 𝐿2 and 𝐿3 

absorption edges were performed at beam line I06 and I10 of the UK National Synchrotron Radiation 

Laboratory. The XAS experiments were carried out at 300K under an applied field ranging at 1T with 

total electron yield (TEY) detection. Circularly polarised X-rays with 100% degree of polarisation were 

used in normal incidence with respect to the sample plane and a 60-degree angle along the 

perpendicular direction. 

All the chamber systems used in my work are equipped with the total electron yield 

(TEY) mechanism for the detection of the absorption spectra. This equipment measures 

the drain current between the sample on the sample holder and the chamber. The 

sample holder is a copper plate which is electrically isolated from the main body of the 

chamber and the manipulator to which it is attached. Copper is a convenient material 

for using in these studies as its absorption edges lie far outside of our regions of interest 

and thus our signals can be more easily identified. 

3.4.5.5 Methods of XMCD Analysis 

There is one major way for XMCD analysis: The Sum Rules analysis, which is widely 

used in XMCD measurement. Sum Rules analysis is a well-established quantitative 

approach, developed from a rigorous theoretical understanding of electromagnetism 

and the quantum world, which gives precise measurements of spin and orbital moments 

for the 3d transition materials. The theoretical approach had been pioneered by 

researchers in the early 1990s[89, 90]. By 1995, when Chen et al published their 
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experimental confirmation[91], a definite method of applying the Sum Rules was 

developed. According to the Sum Rules, the orbital and spin magnetic moments can be 

determined from the XAS and XMCD spectra using the following equations:[92] 

𝑚𝑜𝑟𝑏 = −
4 ∫

 

𝐿3+𝐿2
(𝜇+ − 𝜇−)𝑑𝜔

3 ∫
 

𝐿3+𝐿2
(𝜇+ + 𝜇−)𝑑𝜔

(10 − 𝑛3𝑑) (3.1) 

𝑚𝑠𝑝𝑖𝑛 = −
6 ∫

 

𝐿3
(𝜇+ − 𝜇−)𝑑𝜔 − 4 ∫

 

𝐿3+𝐿2
(𝜇+ − 𝜇−)𝑑𝜔

∫
 

𝐿3+𝐿2
(𝜇+ + 𝜇−)𝑑𝜔

(10 − 𝑛3𝑑) (1 +
7⟨𝑇𝑧⟩

2⟨𝑆𝑧⟩
)

−1

(3.2) 

𝑚𝑟𝑎𝑡𝑖𝑜 =  
𝑚𝑜𝑟𝑏

𝑚𝑠𝑝𝑖𝑛

(3.3) 

𝑚𝑡𝑜𝑡𝑎𝑙 =  𝑚𝑜𝑟𝑏 +  𝑚𝑠𝑝𝑖𝑛 (3.4) 

 

Where 𝑚𝑜𝑟𝑏, 𝑚𝑠𝑝𝑖𝑛, 𝑚𝑟𝑎𝑡𝑖𝑜 and 𝑚𝑡𝑜𝑡𝑎𝑙 are the orbital magnetic moment, spin 

magnetic moments, orbital to spin ratio and total magnetic moment in units of 

𝑢𝑏 𝑎𝑡𝑜𝑚⁄ ; 𝑛3𝑑 is the 3d electron occupation number of the respective transition metal 

atom. The 𝐿3 and 𝐿2 denotes the integration range. 〈𝑇𝑧〉 is the expectation value of the 

magnetic dipole operator and 〈𝑆𝑧〉 is equal to half of 𝑚𝑠𝑝𝑖𝑛 in Hartree atomic units. To 

assist in the understanding and evaluation of the required XMCD integrals, Fig 3.27 

gives an example that consists of three new terms p, q, and r, as the replacement of 

integrations in the above equations. 
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Figure 3.27 Graphs illustrating the practical application of the Sum Rules constants p, q and r which 

correspond to the integral of the dichroism spectra for the L3 edge, the integral of the dichroism spectra 

over both the 𝐿3 and 𝐿2 edges and the area of the summed XAS signal after removal of a stepped 

background respectively[91]. 

The dotted lines in figure 3.27 indicates the integration area of XMCD and XAS spectra, 

whereas 

𝑝 = ∫
 

𝐿3

(𝜇+ − 𝜇−)𝑑𝜔 (3.5) 

𝑞 = ∫
 

𝐿3+𝐿2

(𝜇+ − 𝜇−)𝑑𝜔 (3.6) 

𝑟 = ∫
 

𝐿3+𝐿2

(𝜇+ + 𝜇−)𝑑𝜔 (3.7) 
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To further eliminate sources of error, the XMCD measurement normally performs a 

complete measurement of each sample a minimum of three times, and sometimes five 

times or more, so as to reduce the effects of any beam irregularities. The values 

calculated from these spectra can then be found and the standard deviation between the 

values quoted as the error. This error does not consider the margin of error within the 

sum rules themselves, such as the limitations in possible allowed transitions covered by 

the theory, j-j coupling and radial matrix elements[88], or the overlap between 𝐿3 and 

𝐿2 edges. The uncertainty of these features is generally expected to fall within a 10% 

margin of error. Since there is, as yet, no mathematical way of accurately deriving the 

degree of error it generally thought safest to sum the standard deviation between spectra 

with the 10% expected error. 
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Chapter 4 Magnetic Properties of CoFeB 

Amorphous Films 

4.1 CoFeB Amorphous Film on GaAs (100) Substrate  

In this section, the CoFeB amorphous films have been synthesised on GaAs (100) and 

studied with both X-ray magnetic circular dichroism (XMCD) and transmission 

electron microscopy (TEM). As a result of this, we found that the ratios of the orbital to 

spin magnetic moments of both the Co and Fe in the ultrathin amorphous film were 

enhanced by more than 300% compared with those of the bulk crystalline Co and Fe. 

Specifically, a large orbital moment of 0.56 𝑢𝐵 from the Co atoms was observed. 

Simultaneously, the spin moment of the Co atoms was comparable to that of the bulk 

hcp Co. These results indicate that the large uniaxial magnetic anisotropy (UMA) 

observed in the ultrathin CoFeB film on GaAs (100) is related to the enhanced 

spin-orbital coupling of the Co atoms in the CoFeB. This work offers experimental 

evidence of the correlation between the UMA and the element specific spin and orbital 

moments in the CoFeB amorphous film on the GaAs (100) substrate.  

4.1.1 Introduction 

Owing to the development of next generation spintronics devices, such as magnetic 

random access memory (MRAM)[28-30] and spin field effect transistor (SpinFET)[31, 

32], magnetic CoFeB amorphous alloys have attracted renewed interest. The structure 

and magnetic properties of various ferromagnetic (FM) thin films on top of 

semiconductors (SC), such as GaAs and Si, have been extensively studied over the last 

two decades, aiding the development of SpinFET[33, 93-96]. One of the most 

interesting discoveries is uniaxial magnetic anisotropy (UMA), observed in several 

FM/SC[31, 97], when the thickness of the FM layer is reduced to a nanometre scale. 

For example, the bcc Fe films on GaAs (100) substrates display the UMA from 1.4 nm 
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to 11.5 nm[98], and for bcc CoFe on GaAs(100), the UMA has been found between 1.1 

and 1.7 nm[99]. In the crystalline FM/SC systems, the magnetocrystalline anisotropy 

(MCA) might also change with the reduction of the film thickness[100]. Generally 

speaking, the UMA and MCA have been found to co-exist in most of the common 

FM/SC film systems[34]. To exclude the contribution from MCA, and thus focus on the 

UMA in the FM/SC film system, one effective method would be to alloy the 

ferromagnetic film with metalloid material to create an amorphous magnetic thin film. 

Approximately 20% Boron, alloyed with a CoFe compound, has been proven desirable. 

The additional Boron only slightly reduces the film’s Curie temperature and saturation 

field, while destroy its crystallinity[101].  

Recent research has proven that amorphous CoFeB films deposited on top of GaAs still 

exhibit the UMA[102, 103]. Several models have been proposed in order to explain the 

origin of the UMA in CoFeB/GaAs. These include bond-orientational anisotropy 

(BOA)[93, 104], Neel-Taniguchi directional pair-ordering model and random 

anisotropy model[105]. According to the BOA model, a medium-to-long range 

microstructural anisotropy is responsible for the UMA. The Neel-Taniguchi directional 

pair-ordering model introduces anisotropy via the dipole-like coupling between 

individual atom-pairs, leading to the anisotropic chemical ordering of near-neighbour 

atoms in a randomly oriented coordination. The random anisotropy model emphasises 

the break of the rotational symmetry of the Hamiltonian, which gives rise to the 

hard-magnetic behaviour even in random amorphous magnets. The origin of the UMA, 

it has been suggested, is due to the enhanced spin-orbit coupling and interface 

interaction[106], which is controlled by the orbital moment and the substrate crystal 

lattice[107].  

The orbital moment has been found to have a more important role than the spin moment 

in giving rise to uniaxial magnetic anisotropy[108, 109]. Hindmarch et al [106] 

compared the UMA of CoFeB on different substrates of AlGaAs/GaAs and AlGaAs. 

They found a far stronger UMA (50 Oe) for AlGaAs/GaAs substrate, associated with 
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an enhancement of the orbital to spin magnetic moments ratios m𝑟𝑎𝑡𝑖𝑜 of both the Fe 

and Co sites. The uniaxial magnetic anisotropy field 𝐻𝐾 of the UMA was found to be 

proportional to the m𝑟𝑎𝑡𝑖𝑜. Very recently, a larger 𝐻𝐾 has been found, up to 270 Oe, in 

a CoFeB/GaAs (100) system, which is far stronger than any previously reported 

values[110]. In this project, I have studied the spin and orbital moments for a 

CoFeB/GaAs (100) system, using XMCD along with TEM and VSM. The large UMA 

observed in the CoFeB/GaAs (100) calls for a closer study of the spin and orbital 

moments and the spin-orbital coupling, which may play an important role in this system. 

It is well known that the orbital angular moment plays a dominant role in determining 

the strength of magnetocrystalline and uniaxial magnetic anisotropy[109]. The XMCD 

technique is capable of directly probing the element specific orbital and spin 

moments[108, 111-113]. 

4.1.2 Sample Growth 

The Co56Fe24B20 films were grown on GaAs (100) substrates by our collaborators in 

Nanjing University, China. Before the deposition of the CoFeB film, the substrate 

surface was etched and cleaned. First the substrate surface contaminants were removed 

using acetone, ethanol and deionized water. The second step was to remove the oxide 

layer by immersing the substrate into an HCl/H2O (1:1) solution for 50 seconds. The 

third step was to create a flat surface for film deposition, which was achieved by 

inducing substrate surface reconstruction. The cleaned substrate was loaded into an 

ultrahigh-vacuum chamber with a base pressure lower than 8×10-9 mbar and heated to 

450 °C for 15 minutes, and a further 30 minutes at 580 °C (with the annealing pressure 

lower than 8× 10-8 mbar) to achieve a clean and smooth surface[103]. The surface then 

cools to room temperature prior to film growth. The CoFeB films were prepared using 

DC magnetron sputtering deposition in 0.3 Pa argon (99.99%) at room temperature, 

with a base pressure lower than 8× 10-6 Pa. A target containing Co56Fe24B20 was used 

to deposit the magnetic CoFeB layer, with a thickness of 3.5 nm. Finally, a 2 nm Ta 
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film was deposited as a capping layer to prevent the CoFeB film oxidising. 

4.1.3 TEM Measurement results and Analysis 

Structural properties of the grown films were studied using a JEOL 2200FS double 

aberration corrected (scanning) transmission electron microscope (S) TEM. 

Cross-sectional TEM specimens were prepared using conventional methods, including 

mechanical thinning and polishing, followed by Ar ion milling to achieve electron 

transparency[114].  

 

Figure 4.1 Cross-sectional bright-field scanning TEM micrograph of CoFeB/GaAs (100) in [110] view. 

The amorphous nature of the CoFeB is clearly shown by the inset digital diffractogram calculated from 

the film area in contrast to single crystal structure of the GaAs shown by atomic planes cross fringes 

and Bragg reflection in digital diffractogram (inset). 

A high resolution cross-sectional TEM image of the structure is shown in Fig 4.1. The 

film thicknesses, of 3.5 nm for CoFeB and 2 nm for Ta, matches well the growth 
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settings. The missing lattice fringes and the lack of distinctive rings or diffraction spots 

in the digital diffractogram from the film area show that the CoFeB film structure is 

amorphous. We also note, similarly to[115], that the formation of CoFeB crystalline 

monolayers at the very interface cannot be ruled out. Due to mass contrast, a clear 

distinction between the Ta and CoFeB can be observed, as well as between the CoFeB 

and GaAs, owing to the single crystal structure of the GaAs substrate and the 

amorphous structure of the CoFeB. 

4.1.4 VSM Measurement results and Analysis 

The in-plane magnetic hysteresis (M-H) loops were measured using a Vector 

Magnetometer Model 10 VSM and Vector measurement system. As a strong uniaxial 

anisotropy field (𝐻𝐾), as large as 270 Oe, was expected[110], the VSM measurement 

was conducted using a maximum magnetic field of 400 Oe, to ensure the samples were 

fully saturated. The samples were measured at angles 0° and 90°, i.e. along the hard and 

easy axis. The magnetisation hysteresis loop of the CoFeB film along the out-of-plane 

direction was measured using a Polar MOKE. The saturation field was found be to as 

high as 12000 Oe. 

 

Figure 4.2 (a) In-plane M-H loops along both the EA (easy axis) and HA (hard axis) for the CoFeB 

film deposited on GaAs (100) substrates by VSM measurement. M and H represent the magnetic 

moment and applied magnetic field respectively. Figure 4.2 (b) shows the Polar MOKE loop for the out 

of plane direction of the CoFeB film. 
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Fig 4.2(a) shows the in-plane magnetic hysteresis (M-H) loop measured by VSM along 

the EA (easy axis) and HA (hard axis) axis of the CoFeB/GaAs (100) sample. The 

figure shows a clear UMA with a well-defined EA and HA. The value of the UMA field 

(𝐻𝐾) can be obtained from the saturation field along the HA. Furthermore, the effective 

uniaxial anisotropy constant 𝐾𝑢
𝑒𝑓𝑓

can be calculated by 

𝐾𝑢
𝑒𝑓𝑓

=  
𝐻𝐾 ∙ 𝑀𝑆

2
(4.1) 

where 𝑀𝑆 is saturation magnetisation and 𝐻𝐾 is the saturation field along the HA. It 

can be seen from the Fig 4.1(a) that 𝐻𝐾 has a value of 270 Oe, confirming our previous 

observation of a large UMA in the CoFeB/GaAs (100) system. According to the 

saturation moment and thickness measurement, the value of 𝑀𝑆 is estimated to be 977 

emu/cm3. The value of 𝐾𝑢
𝑒𝑓𝑓

 is thus determined to be 1.3 × 105 erg/cm3, which is much 

larger than the values of 2 × 104 erg/cm3 and 8 × 104 erg/cm3 respectively reported by 

[101, 116]. It is also worth noting that the 𝐾𝑢
𝑒𝑓𝑓

 value of the CoFeB films on GaAs (100) 

achieved the largest value when compared to films grown on GaAs (110) and GaAs 

(111) substrate orientations, which achieved values of 1 × 104 erg/cm3 and 6 × 103 

erg/cm3 respectively[96, 106, 117]. As Fig 4.1(b) indicates, the hysteresis loop for the 

CoFeB/GaAs (100) sample along the perpendicular (out of plane) direction, measured 

by a Polar MOKE, shows that the hard magnetisation axis is along this direction. As 

stated above, when making the XMCD measurement along the perpendicular direction, 

the applied magnetic field of 2000 Oe was not high enough to saturate the sample. From 

the perpendicular loop shown in figure 4.1(b), the saturation magnetic field is 

determined to be far higher at 10189 Oe. Hence, the data of spin and orbital moments 

from the XMCD have been scaled up by a factor of 5.09, as based on a comparison of 

the magnetisation at 2000 Oe and that at saturation. These figures are included in Table 

4.1. 
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4.1.5 XMCD Measurement results and Analysis 

XMCD measurements were performed at normal incidence to the Ta/CoFeB/GaAs 

(100) sample in the MAX Lab I1011 station. The XMCD spectra were measured at both 

positive and negative applied fields[91]. The data was collected by a Total Electron 

Yield (TEY) detector in the analysis chamber under a magnetic field of 2000 Oe. This 

was the operational limit of the magnet in the station, as the magnetic field should be set 

at a relatively low value in order to prevent the magnet overheating[118]. It is apparent, 

from Fig 4.1(b), that for the out-of-plane direction, the magnetic field used during the 

XMCD measurements was not sufficient to saturate the sample. It is for this reason that 

the spin and orbital moments obtained from the XMCD were scaled up to achieve the 

saturation value. During this work, all the measurements were performed at room 

temperature. 

X-ray absorption spectra (XAS) of the Co and Fe L2 and L3 edges for CoFeB on GaAs 

(100) are shown in Fig 4.3(a) and (c) respectively. In this, u+ and u- are the absorption 

coefficients under magnetic fields antiparallel and parallel to the photon incident 

direction. Figure 4.3 shows the XMCD spectra for the Fe and Co L-edges of the CoFeB 

film. According to XMCD sum rules, the orbital (𝑚𝑜𝑟𝑏) and spin (𝑚𝑠𝑝𝑖𝑛) magnetic 

moments and the ratio (𝑚𝑟𝑎𝑡𝑖𝑜) of 𝑚𝑜𝑟𝑏 to 𝑚𝑠𝑝𝑖𝑛 can be determined from XAS and 

XMCD spectra using the equations from 3.1 to 3.7, mentioned previously in chapter 3. 

The spin and orbital moments are also dependent on the d-band hole density in CoFeB 

and the intensity of the polarised x-ray in the XMCD measurement.  

It should be noted that there is a degree of controversy regarding the 3d hole numbers of 

Fe and Co in magnetic amorphous films. While Cui et al [92] use the 𝑚𝑜𝑟𝑏 𝑛ℎ⁄  to 

present their data, Kanai et al [119] have calculated the hole numbers of Co and Fe in 

the amorphous films by first-principles calculations, and have found the similar values 

to those of the bulk Fe and Co films[117, 119]. In this work, we have used the values of 

𝑛3𝑑 for Fe as 6.61 and Co as 7.51, taken from [119], to calculate the spin and orbital 
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moment of Co and Fe in the CoFeB film. 

 

Figure 4.3 XAS and XMCD spectra of the Co and Fe atoms at the 𝐿2 and 𝐿3 edges in the 

CoFeB/GaAs (100): (a) and (c) are the XAS absorption spectra and (b) and (d) are the XMCD for Co 

and Fe, respectively. 
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Table 4.1 Orbital moments, spin moments and orbit to spin ratio of the Fe and Co from various CoFeB 

samples (the first one is my sample, and the others are from literature) in units of 𝑢𝐵 𝑎𝑡𝑜𝑚⁄ . 

Sample Saturation 

magnetic 

field for 

HA (𝑂𝑒) 

Element 𝑚𝑜𝑟𝑏(𝑢𝐵) 𝑚𝑠𝑝𝑖𝑛(𝑢𝐵) 𝑚𝑟𝑎𝑡𝑖𝑜 

Ta/Co56Fe24B20(3.5nm)/

GaAs (100)   

 

270 

Fe 0.30 ± 0.03 1.17 ± 0.03 0.26 

Co 0.56 ± 0.03 1.53 ± 0.03 0.36 

Ta/Co40Fe40B20(3.5nm)/

GaAs (100)/AlGaAs 

(100) (Ref.[120]) 

 

50 

Fe   0.45 

Co   0.38 

Ta/Co40Fe40B20(3.5nm)/

AlGaAs (100) 

(Ref.[120]) 

 

25 

Fe   0.34 

Co   0.19 

Ta/Co40Fe40B20(2.0nm)/

MgO (Ref.[119]) 

 Fe 0.27 ± 0.03 1.77 ± 0.03 0.15 

Co 0.17 ± 0.03 0.90 ± 0.03 0.19 

Bulk bcc Fe (Ref.[121, 

122]) 

100 Fe 0.09 ± 0.05 1.98 ± 0.05 0.04 

Bulk hcp Co (Ref.[121, 

122]) 

450 Co 0.15 ± 0.05 1.55 ± 0.05 0.10 

The values of 𝑚𝑜𝑟𝑏, 𝑚𝑠𝑝𝑖𝑛 and 𝑚𝑟𝑎𝑡𝑖𝑜 are all determined from the XMCD data, and 

the results are listed in Table 4.1, along with those reported in the literature. Firstly, by 

comparing the amorphous films and the crystalline elements, one result can be 

confirmed: the orbital moments of the Fe and Co in the amorphous films are larger than 

that of the crystalline bcc Fe and hcp Co. While the spin moment of the Fe atoms in the 
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CoFeB is much reduced, compared with that of bcc Fe, the spin moment of the Co 

atoms remains as large as 1.53𝑢𝐵, which is almost the same as that of the hcp Co. As 

shown in Table 4.1, the orbital to spin ratios 𝑚𝑟𝑎𝑡𝑖𝑜 of the Co and Fe in the amorphous 

CoFeB film have been enhanced by 300%, compared with those of the hcp Co and the 

bcc Fe. Previous work indicates that the stronger UMA for CoFeB on 

GaAs(100)/AlGaAs(100) is due to the enhancement of the 𝑚𝑟𝑎𝑡𝑖𝑜, as it was found that 

the 𝑚𝑟𝑎𝑡𝑖𝑜 increased from 0.19 to 0.38 for Co and 0.34 to 0.45 for Fe when the UMA 

was increased from 25 Oe to 50 Oe[101, 110, 119]. Though the UMA in our sample 

was found to be as large as 270 Oe, the values of the 𝑚𝑟𝑎𝑡𝑖𝑜 show a comparable 

enhancement of 0.36 for Co and 0.26 for Fe. This shows that the UMA is associated 

with the enhancement of the orbital moments, but does not vary linearly with the 

𝑚𝑟𝑎𝑡𝑖𝑜. 

One of the most striking results observed from the measurement (as shown in Table 4.1) 

is that the spin and orbital moments of the Co atoms are significantly larger than those 

of the Fe atoms. When considering the value of the 𝑚𝑟𝑎𝑡𝑖𝑜, we can see that the Co 

atoms also have a larger value than that of the Fe atoms. The orbital moment of the Co 

atom in the CoFeB has been enhanced by more than 370%, in comparison to the orbital 

moment of the crystalline hcp Co. This suggests that in the CoFeB (100) amorphous 

film, the Co atoms at the interface with the GaAs contribute more than Fe to the UMA. 

Our results indicate that the large UMA observed in the CoFeB (100)/GaAs (100) 

system comes from the large spin-orbit coupling of the Co atoms. 

Spin-orbital coupling is a desired property in terms of the controllability by an electric 

field in spintronic operation. The orbital moment of the Co atoms in the CoFeB/GaAs 

(100) was found to be as large as 0.56𝑢𝐵, which is the largest orbital moment reported 

in any amorphous magnetic alloys, to the best of our knowledge. 
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4.1.6 Summary of Findings 

In this part, we have investigated the uniaxial magnetic anisotropy and the element 

specific spin and orbital moments in the CoFeB/GaAs (100) system by way of 

magnetisation measurement, XMCD measurement and sum rule calculations. The 

results obtained by VSM measurements confirmed that the UMA can rise as high as 

270 Oe, which is among the largest UMA observed in any CoFeB amorphous alloys. 

XMCD measurements revealed that the UMA correlates with a strong spin-orbit 

coupling, related to the enhanced orbital to spin moment ratios of both Fe and Co in the 

CoFeB. More importantly, the spin moment of the Co was found to remain as large as 

that of the crystalline hcp Co, and the orbital moment is enhanced by more than 370%. 

This suggests the dominant contribution of the spin-orbit coupling of the Co atoms to 

the UMA in the CoFeB/GaAs (100) amorphous film. These results would be useful for 

understanding the fundamental magnetic properties of the amorphous CoFeB films, 

which could be important for the application of this class of materials in next generation 

spintronic devices, including MRAM and SpinFET. 

4.2 Magnetic Properties of CoFeB/MgO Structure  

In this section, the structure of CoFeB/MgO has been researched using X-ray magnetic 

circular dichroism (XMCD) and vibrating sample magnetometer (VSM). We have 

observed that the ratios of the orbital to spin magnetic moments of Co atoms in 

CoFeB/MgO structure films with PMA have been enhanced by more than 200%, 

compared with those of the samples without PMA or a MgO layer. More importantly, a 

large orbital moment of 0.30𝑢𝐵 from Co atoms has been observed and, at same time, 

the orbital moment of the Fe atoms remains comparable to others. The results indicate 

that the origin of PMA observed in CoFeB/MgO structure is related to the increased 

spin-orbital coupling of Co atoms. This work offers experimental evidence of the 
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correlation between PMA and the element specific spin and orbital moments in 

CoFeB/MgO systems. 

4.2.1 Introduction 

A major breakthrough in MRAM is the discovery of perpendicular magnetised CoFeB 

films, sandwiched by MgO and Ta layers, which exhibit not only the perpendicular 

magnetic anisotropy, but also strong orbital moment and spin-orbital coupling[123, 

124]. At the same time, current-induced spin-transfer torque (STT) is very important in 

high density magnetic media and spintronics devices[125-129]. Because of the 

importance of lowering the energy consumption, it is necessary to discover a method to 

reduce the critical current required to switch the spin direction in STT-MRAM 

application. The perpendicular magnetic anisotropy (PMA) materials, integrated into a 

magnetic tunnel junction (MTJ)[130-132], allow for a small critical current density for 

current-induced magnetisation switching[133-135]. These materials are found to have a 

good balance of thermal stability and low magnetic anisotropy energy. In this part of 

the project, I have studied the effect of the layered structure and in particularly the role 

of the element-specific orbital moments on the PMA in Ta/CoFeB/MgO structures.  

4.2.2 Sample Growth 

We prepared three samples, these three samples were prepared by our collaborators in 

Beijing Institute of Physics, China. The first was substrate/Ta (5)/MgO (3)/CoFeB 

(1.2)/Ta (5) named sample A. The second was substrate/Ta (5)/CoFeB (1.2)/MgO 

(3)/CoFeB (1.2)/Ta (5) named sample B. The last was substrate/Ta (5)/CoFeB (1.2)/Ta 

(5) named sample C. All the numbers indicate thickness in nanometres. 

The capping layer and Co40Fe40B20 films were deposited on Si (001)/SiO2 substrate by 

dc sputtering, whereas the MgO layer was deposited using RF sputtering. The 

background vacuum was about 4 × 10-5 Pa and the working argon pressure was 0.5 Pa. 
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After the thin film was deposited, a post-annealing process, at 300 °C in a vacuum at 4 

× 10-5 Pa, was performed for half an hour on both samples. 

4.2.3 VSM Measurement and Analysis 

The magnetic hysteresis loops of all the samples were measured with both the in-plane 

and perpendicular magnetic fields using a Vector Magnetometer Model 10 VSM, 

shown in figure 4.4. The PMA effect was observed in sample A and B: the in-plane 

loops show the hard axis and the perpendicular loops show the easy axis. Meanwhile, in 

sample C, the film without the MgO layer, there is no PMA effect. The VSM 

measurement was conducted using a maximum magnetic field of 15000 Oe to ensure 

the samples were fully saturated.  

 

Figure 4.4 Both in-plane [011] and perpendicular hysteresis loops of all three samples. (a), (c) and (e) 

are the in-plane hysteresis loops for A, B and C, respectively. (b), (d) and (f) are the perpendicular 

hysteresis loops for A, B and C, respectively. 
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Figure 4.4(b), (d) and (f) show the perpendicular hysteresis loops for A, B and C. The 

figures show the clear difference between the samples. The loops for samples A and B 

show the easy axis on perpendicular direction, and the saturation field along the sample 

hard axis is 6500 Oe and 8000 Oe for A and B, respectively. The loop for sample C, the 

CoFeB without the MgO layer, shows the hard axis on perpendicular direction, and the 

saturation field is 13000 Oe. Furthermore, the effective magnetic anisotropy 𝐾𝑢
𝑒𝑓𝑓

can 

be calculated by equation 4.1. According to the saturation moment and thickness 

measurement, the saturation magnetisation 𝑀𝑆 can be calculated using [136] 

                                          𝑀𝑆 =  𝑀 𝑉⁄                                                                            (4.2)  

where M is the saturated magnetic moment and V is the volume of samples. 

Table 4.2 the values of saturation field, saturation magnetisation and the effective magnetic anisotropy 

are shown for three samples. 

Sample Saturation field 

for HA 

𝑀𝑆 𝐾𝑢
𝑒𝑓𝑓

 

Ta/MgO/CoFeB/Ta (A) 6500 Oe 381 𝑒𝑚𝑢 𝑐𝑚3⁄  +1.24 𝑀𝑒𝑟𝑔 𝑐𝑚3⁄  

Ta/CoFeB/MgO/CoFeB/Ta (B) 8000 Oe 456 𝑒𝑚𝑢 𝑐𝑚3⁄  +1.60 𝑀𝑒𝑟𝑔 𝑐𝑚3⁄  

Ta/CoFeB/Ta (C) 13000 Oe 309 𝑒𝑚𝑢 𝑐𝑚3⁄  -2.01 𝑀𝑒𝑟𝑔 𝑐𝑚3⁄  

It can be seen from Table 4.2 that the values of the saturation field, saturation 

magnetisation and effective magnetic anisotropy for sample A are 6500 Oe, 381 

𝑒𝑚𝑢 𝑐𝑚3⁄  and 1.24 𝑀𝑒𝑟𝑔 𝑐𝑚3⁄  respectively, which are very similar values to the 

previous report[137]. There are two layers of CoFeB separated by the MgO layer in 

sample B, yet it still shows the PMA. According to the previous results, there are two 

key points needed to form the PMA with CoFeB[132]. One is a very thin CoFeB film, 

under 1.5 nm and the other is the MgO layer, which has induced the CoFeB to form the 

PMA. The thickness of CoFeB in sample B is 2.2nm, so, according to previous 

researches[119], it cannot form the PMA. However, when the CoFeB layer was divided 
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into two parts, the PMA was shown, as in figure 4.4 (c) and (d), and the 𝑀𝑆 and 𝐾𝑢
𝑒𝑓𝑓

 

are both slightly enhanced in sample B. It should be noted that the value of  𝐾𝑢
𝑒𝑓𝑓

 for 

sample C marked as the negative value, which because the sample C has not formed the 

PMA, the values of effective magnetic anisotropy were calculated for researching the 

PMA, so for distinguishing the samples with and without PMA, the value of  𝐾𝑢
𝑒𝑓𝑓

 for 

sample A and B marked as the positive value and sample C marked as the negative 

value. The values of the saturation field, saturation magnetisation and effective 

magnetic anisotropy for sample C are similar to the values reported before[117]. When 

comparing samples A and B, it is apparent that the saturation field, 𝑀𝑆 and 𝐾𝑢
𝑒𝑓𝑓

 

values for sample B were enhanced. The saturation field along perpendicular direction 

increased from 6500 to 7000 Oe, and the 𝑀𝑆 and 𝐾𝑢
𝑒𝑓𝑓

 improved by 20%. 

4.2.4 XMCD Measurement Results and Analysis 

XMCD measurements were performed at normal incidence on the CoFeB/MgO 

structure samples in the I06 station of the Diamond Light Source. The XMCD spectra 

were measured at both the positive and negative applied fields. The data were collected 

by a Total Electron Yield (TEY) detector in the analysis chamber at a magnetic field of 

2T. The 2T magnetic field used during the XMCD measurement fully saturated the 

samples. During this work, all measurements were performed at 300K. 

X-ray absorption spectra (XAS) of the Co and Fe L2 and L3 edges for CoFeB/MgO 

structure are shown in Fig 4.5. In this, u+ and u- are the absorption coefficients under 

antiparallel and parallel magnetic fields to the photon incident direction. Figure 4.5 

shows the XMCD spectra for the Fe and Co L-edges of the various CoFeB films. Figure 

4.5 (a), (c) and (e) indicate the Co element XMCD diagrams, where the L3 photon 

energy of Co is around 778.4 eV. Figure 4.5 (b), (d) and (f) give the XMCD diagrams 

for Fe, where the L3 photon energy of Fe is around 707.4 eV. According to XMCD sum 
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rules, the orbital (𝑚𝑜𝑟𝑏) and spin (𝑚𝑠𝑝𝑖𝑛) magnetic moments and the ratio (𝑚𝑟𝑎𝑡𝑖𝑜) of 

𝑚𝑜𝑟𝑏 to 𝑚𝑠𝑝𝑖𝑛 can be determined from XAS and XMCD spectra by the equations from 

3.1 to 3.7, which were previously illustrated in chapter 3. The spin and orbital moments 

are also dependent on the d-band hole density in CoFeB and the intensity of the 

polarised x-ray in the XMCD measurement. In this work, we have used the 𝑛3𝑑 values 

from [60] - 6.61 for Fe and and 7.51 for Co - to calculate the spin and orbital moment of 

Co and Fe in the CoFeB film. 

Table 4.3 Orbital moments, spin moments and orbit to spin ratio of the Fe and Co from various CoFeB 

samples in units of 𝑢𝐵 𝑎𝑡𝑜𝑚⁄  

Sample Element 𝑚𝑜𝑟𝑏(𝑢𝐵) 𝑚𝑠𝑝𝑖𝑛(𝑢𝐵) 𝑚𝑟𝑎𝑡𝑖𝑜 

Ta/MgO/Co40Fe40B20(1.2nm)/Ta 

(A) 

Fe 0.31 ± 0.02 1.69 ± 0.02 0.19 

Co 0.30 ± 0.04 0.59 ± 0.01 0.52 

Ta/Co40Fe40B20(1.2nm)/MgO/Co

FeB(1nm)/Ta (B) 

Fe 0.26 ± 0.03 1.61 ± 0.03 0.16 

Co 0.30 ± 0.01 0.58 ± 0.02 0.51 

Ta/Co40Fe40B20(1.2nm)/Ta (C) Fe 0.20 ± 0.04 1.68 ± 0.02 0.12 

Co 0.17 ± 0.05 0.60 ± 0.03 0.28 

Ta/Co40Fe40B20(2.0nm)/MgO/Ta 

(Ref.[119]) 

Fe 0.27 ± 0.03 1.77 ± 0.03 0.15 

Co 0.17 ± 0.03 0.90 ± 0.03 0.19 
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Figure 4.5 XAS and XMCD spectra of the Co and Fe atoms at the 𝐿2 and 𝐿3 edges in the CoFeB 

various films: (a), (c) and (e) are the XMCD for Co; (b), (d) and (f) are the XMCD for Fe. 

The values of 𝑚𝑜𝑟𝑏, 𝑚𝑠𝑝𝑖𝑛 and 𝑚𝑟𝑎𝑡𝑖𝑜 are all determined from the XMCD data, and 

the results are listed in Table 4.3, along with some reported in the literature. Firstly, by 

drawing a comparison between the films with MgO (A and B) that formed PMA and 

the film (C) without MgO, one result can be confirmed: the orbital moments of the Fe 

and Co elements in both samples with the MgO layer which formed PMA are larger 

than those of sample C (without the MgO layer). This is especially pronounced in the 

orbital moment of Co, which is shows an almost 200% enhancement in samples A and 

B compared with sample C. The spin moments of both Co and Fe in the three samples 
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do not show such dramatic changes, with values around 1.68𝑢𝐵 for Fe and 0.58𝑢𝐵 for 

Co. 

Previous research has indicated that a CoFeB layer in CoFeB/MgO as thick as 2nm 

would not be able form the PMA, and gave the value of orbital and spin moments. 

However, in my work, the CoFeB layer was 2.2nm, but when divided into two parts it 

did form the PMA. By comparing the value of moments of sample B with previous 

work[119], it can be seen that the orbital moments of Fe have not dramatically changed, 

but the orbital moments of Co have increased from 0.17𝑢𝐵 to 0.30𝑢𝐵. It should be 

noted that the value for the Co orbital moment from Shun Kanai el is 0.17𝑢𝐵, which is 

the same as the value from sample C. Neither of these two samples have the PMA, and 

the one with MgO has only slightly increased the orbital moment of Fe, but not changed 

the orbital moment of Co. This suggests that the enhancement of Co orbital moments is 

associated with the origin of PMA in the CoFeB/MgO system. 

Spin-orbital coupling is a desired property in terms of the ability to use an electric field 

to control spintronic operation. One of the most striking results from the measurement 

(as shown in Table 4.3) is that the orbital moments and 𝑚𝑟𝑎𝑡𝑖𝑜 of Co atoms are 

significantly larger than those of Fe atoms. This suggests the Co atoms at the interface 

with MgO have more contribution than Fe atoms in spin-orbital couplings. The spin to 

orbital ratio of Co atoms in samples A and B (which formed the PMA) is 0.52𝑢𝐵. This 

shows an enhancement by more than 200% compared to those of sample C and 

previous work which did not form the PMA, while the spin to orbital ratios of Fe have 

not shown significant change in all samples. This study suggests that the strong PMA in 

the CoFeB/MgO system is related to the large enhancement of the orbital moment of 

Co element rather than Fe. This is consistent with what observed in the CoFeB/GaAs 

system, where the strong UMA is related to the enhanced orbital moment of Co. 
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4.2.5 Summary of Findings 

In conclusion, we have investigated perpendicular magnetic anisotropy and the element 

specific spin and orbital moments in the CoFeB/MgO system by using magnetisation 

measurement, XMCD measurement and sum rule calculations. The results obtained by 

VSM measurements confirmed that the PMA can be found in a split layer of 2.2 nm 

CoFeB, with a MgO layer, and the saturation field along perpendicular direction can 

rise as high as 7000 Oe, which enhanced 10% compared with sample A, while the 𝑀𝑆 

and 𝐾𝑢
𝑒𝑓𝑓

are enhanced by 20%. XMCD measurement revealed that the PMA is 

correlated with the strong spin-orbital coupling of Co atoms, related to the enhanced 

orbital to spin moment ratios of Co atoms in CoFeB. More importantly, compared with 

the samples without PMA (sample C and previous work), the sample with the PMA 

(sample A and B) shows the orbital moment of Co atoms enhanced from 0.17𝑢𝐵 in 

sample C to 0.30𝑢𝐵 in samples A and B. Meanwhile the orbital moment of Fe atoms 

has not shown significant change, suggesting the dominant contribution of spin-orbital 

moment coupling of Co atoms to PMA in CoFeB/MgO structure. According to our 

findings, these results would be very useful for understanding the origin of PMA in 

CoFeB/MgO films, which could, in turn, be very important for later researches into 

new generation spintronics devices like STT- MRAM. 
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Chapter 5 Growth, Structure and Magnetic 

properties of Fe/Cr/GaAs (100) Systems 

5.1 Cr/Fe/Cr/GaAs (100)  

5.1.1 Introduction 

Interface magnetism in ferromagnetic metal (FM)/ semiconductor(SC) heterostructures 

is still an important topic for the study of fundamental magnetic properties of ultrathin 

films, and for the development of next generation magnetoelectronic devices[138-143]. 

At present, semiconductor device technology is only used for the presence or the 

absence of charge, whereas in the future, electronic spin application, in particular spin 

injection, will be important for performance promotion. As such, it is necessary to 

investigate the interface magnetism between FM and SC[144-146].  

An Fe/GaAs structure is used in a device because the lattice mismatch between Fe and 

GaAs is very small compared to other transition metal-III-V semiconductor 

combinations; at present, GaAs is the most popular semiconductor in use[47, 147]. In 

previous research,  high quality single crystalline Fe on GaAs substrate were grown 

without any dead layer[46, 148]. Xu et al [33] used in situ magneto-optical Kerr effect 

measurements to find that the earliest UMA was shown when Fe was 4.8ML on GaAs 

substrate. One issue which has not yet been clarified with regards to the Fe/GaAs 

system, is the origin of in-plane uniaxial magnetic anisotropy. Some researchers have 

indicated that UMA originates from a volume effect induced by the angle of incidence 

of Fe atomics flux, and that the lattice mismatch related film stress might be important 

for magnetic behaviour close to the interface[149-153]. Another research, however, 

presented results which postulated that the Fe-As chemical bonding is the key factor 

which influences UMA. In this case, the Fe and As atom densities which are present 

appear to be large enough to overcome the problems which potentially arise from the 
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presence of Fe-As bonds. This would cause the quenching of the Fe moment were there 

to be two or more As bonds per Fe atom, irrespective of the number of Fe nearest 

neighbours[32, 45, 112, 154]. 

In this work, to determine the origin of UMA, Cr films of different thicknesses were 

inserted between the GaAs substrate and 10ML Fe films. Cr layer is an 

antiferromagnetic film which is normally used in the investigation of antiparallel 

coupling[155-157]. Fe and Cr have a similar lattice constant, meaning the Cr interlayer 

only slightly affects the formation of the Fe structure, meaning that if the lattice 

mismatch related film stress existed and induced UMA, the Cr interlayer would slightly 

influence UMA. We have carried out the XMCD, RHEED, SQUID-VSM and TEM 

investigations into the properties of ultrathin films grown on substrate with various Cr 

interlayers. Lattice mismatch or film stain will induce the formation of poly-crystalline 

structure, but from TEM image, it is a clear evidence that both Cr interlayer and 10 ML 

Fe film are all single-crystalline structure. From our studies, we conclude that UMA is 

from the interface interaction between Fe and As atoms, and rule out the reason from 

either lattice mismatch or film stain.  

5.1.2 Sample Growth 

10 ML Fe films with Cr interlayers of different thickness were grown on GaAs (100) 

substrates. Before the deposition of the Cr interlayer, the substrate surface was etched 

and cleaned. Firstly, any contaminants on the substrate surface were removed using 

acetone, iso-propyl alcohol (IPA) and deionized water. The second step was to remove 

the oxide layer by immersing the substrate into an H2SO4/H2O2/H2O (4:1:1) solution 

for 45 seconds. All these were performed in a level 100 clean room to prevent any 

contamination by dust particles. The third step was to create a flat surface for film 

deposition. The etched substrate was immediately transferred into an MBE chamber 

with a base pressure of 2.3 × 10-10 mbar, before the substrate was treated with 

ion-milling before annealing (low energy Argon ion beams were sputtered onto the 
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substrate surface for 30 minutes so that they gently removed a thin layer of surface 

material, exposing the virgin layer of the substrate). The final step is annealing, 

whereby the substrate was required to be annealed at 480◦C (at an annealing pressure 

lower than 8 × 10-9 mbar) for 60 minutes to further remove natural oxides and create 

the surface reconstruction[93]. The surface then cooled to room temperature prior to 

film growth. The Cr interlayer and 10 ML Fe layers were grown by the two different 

source evaporators in the MBE system, where the pressure was lower than 2.1× 10-9 

mbar. Finally, a 3 nm Cr capping layer was deposited to prevent the Fe film from 

oxidisation. 

5.1.3 RHEED Patterns and Analysis 

Since the substrates remain in a UHV environment, only way to examine the surface 

quality in our MBE system is to observe the RHEED (Reflection High Energy Electron 

Diffraction) patterns. The advantages of RHEED are mainly that it is in-situ, fast, and 

surface sensitive. Multiple RHEED patterns were recorded throughout the film 

deposition for monitoring purposes. 

 

Figure 5.1 (a) and (b) indicate the RHEED patterns for [01̅1] and [011] directions of GaAs (100) 

substrate respectively. There is a well-ordered (4×6) reconstruction. 



115 

 

Figure 5.1 (a) and (b) show the GaAs (100) substrate patterns from [01̅1] and [011] 

directions respectively. All GaAs (100) substrates experienced the cleaning, 

ion-milling and annealing process. The same setting processes ensure that all substrates 

have formed the similar reconstruction. Figure 5.1 (a) shows four short lines between 

the two major lines, and Figure 5.1 (b) shows six short lines. From this two-directional 

observation, it can be confirmed that the substrate indicates the typical 4×6 Ga 

diffusion reconstruction[33]. Kneedler et al [47] demonstrated that the onset of 

ferromagnetism occurred at 6 ML when Fe was grown on both GaAs (001)-(2×4) and 

(4×4) substrates. 4×6 GaAs reconstruction may have some benefits compared to the 

other reconstructions: first, it removed the dead layer between the GaAs substrate and 

film, and second, when the Fe film grows on this substrate it will form UMA as early as 

4.8 ML. 
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Figure 5.2 shows the RHEED patterns from GaAs (100) substrates ([01̅1] view), and the substrate 

RHEED patterns are slightly different, but they are all the single crystalline structure. The various 

thickness Cr interlayers and 10 ML Fe films which grow on the Cr interlayer. The thickness of the Cr 

interlayer ranges from 0ML to 20ML while the Fe thickness remains at 10ML. 
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Figure 5.2 shows the RHEED images of GaAs (100) substrates, the different 

thicknesses of Cr interlayer and 10 ML Fe films which grow on the Cr interlayer. From 

the RHEED patterns of all 10 ML Fe films, one result which can be confirmed is that 

the all 10 ML Fe films have a single crystalline structure, and the different thicknesses 

of Cr have not changed the structure of 10 ML Fe films. The lattice constant of 2.87Å 

for Fe is almost exactly equal to half of GaAs (5.65 Å). The lattice constant of Cr is 2.88 

Å, which is almost no different to the Fe value, meaning that the lattice mismatch 

between Fe and Cr is very small. Even when the thickness of the Cr interlayer is 20 ML, 

10 ML Fe remains as a single crystalline structure, and the Cr interlayer makes no 

contribution to the formation of a Fe single crystalline structure[31, 158]. The RHEED 

patterns for the various thicknesses of Cr interlayer are also very interesting. Between 

0.5 ML and 1 ML, the RHEED images show a single crystalline structure, which might 

come from the substrate. When the thickness achieved is 2 ML, the RHEED pattern 

disappears, showing the island growth. Finally, between 5 ML and 20 ML, the RHEED 

images show a single crystalline structure again, especially when the Cr thickness was 

at 5 ML, the point at which the RHEED pattern changed to a single crystalline structure, 

showing that the Cr films are continuous after 5 ML.  

In order to research the change of the Cr interlayer RHEED patterns in detail, especially 

when the thickness of the Cr interlayer is 5 ML, we grew a special sample, where the Cr 

interlayer was developed half monolayer by half monolayer, and which focused around 

5 ML, before growing to 10 ML Fe on the Cr layer. The RHEED patterns can be found 

in Figure 5.3. For the interlayer from 0.5 ML to 1 ML Cr, only a small area of GaAs 

(100) substrate is covered, meaning that from the screen the substrate RHEED pattern 

can still be seen, but these two RHEED patterns become blurry due to the increased Cr 

interlayer. From 2 ML to 4.5 ML, the RHEED patterns from the screen is fully dark, 

and the Cr interlayer should be in progress, which is from an island film to be a 

continuous film (a single crystalline film). This means the RHEED patterns are not 

evident. It is not until the Cr interlayer grows to 5 ML that the single crystalline 
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RHEED pattern of Cr can be seen from the screen, and even then the pattern is week on 

the screen. The interlayer Cr become a single crystalline film from 5 ML, and it fully 

covers the GaAs (100) substrate, blocking UMA from interface. That UMA in Fe-GaAs 

(100) is from the interface interaction and not from the stress induced is an important 

discovery. It is easy to see that the Cr interlayer films (from 5.5 to 7 ML) are all single 

crystalline due to the clear RHEED patterns, and these RHEED patterns become clearer 

compared to the RHEED pattern from the 5 ML Cr interlayer. The last RHEED pattern 

is from 10 ML Fe growth on 5 ML Cr interlayer, which shows this 10 ML Fe film is still 

a single crystalline film from the RHEED pattern. 

 

Figure 5.3 indicates the RHEED patterns of Cr thickness change from 0.5 ML to 7 ML, and then grow 

a 10 ML Fe film on it. The 10 ML Fe shows the single crystalline structure from the RHEED pattern. 
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The reason for using Cr as an interlayer is that the lattice mismatch between Fe and Cr 

is quite small, and so Cr cannot be a major reason which influences the Fe lattice 

structure. Thus, the origin of UMA is not from the stress induced because the structure 

of Fe is not change compared to the 0 ML Cr interlayer RHEED pattern. This means the 

only reason that UMA can be changed is from the interface, meaning that interface 

bonding is the only reason for the formation of UMA. 

5.1.4 VSM Measurement and Analysis 

The in-plane magnetic hysteresis (𝑀-𝐻) loops were measured using a superconducting 

quantum interference device-vibrating sample magnetometer (SQUID-VSM; Quantum 

Design) system. It measured at 4000 Oe to ensure the film saturated. A decreased trend 

in the uniaxial magnetic anisotropy field (𝐻𝑘) was found, wherein the value of the 

saturation field dropped from 1799.295 Oe to 56.804 Oe by the increasing Cr interlayer 

thickness (from 0 ML to 5 ML). Table 5.1 shows that when the thickness of the Cr 

interlayer is from 0 ML to 5 ML, there is a sharp decreased drop, but when the Cr 

interlayer reaches 20 ML, the value of the saturation field shows a tiny change. This 

result indicates that when the thickness of Cr interlayer reaches 5 ML, the Cr interlayer 

is from an island film to a continue film, and fully blocks UMA above 5 ML. 

Table 5.1 The saturation fields of the Cr interlayers at different thickness for 10 ML Fe single 

crystalline film and GaAs (100) substrate. 

Sample Saturation field (Oe) 

Cr(3nm)/Fe(10ML)/GaAs (100) 1799.295± 20.586 

Cr(3nm)/Fe(10ML)/Cr(0.5ML)/GaAs (100) 1326.698± 13.274 

Cr(3nm)/Fe(10ML)/Cr(1ML)/GaAs (100) 1022.284± 11.231 

Cr(3nm)/Fe(10ML)/Cr(2ML)/GaAs (100) 910.212± 14.057 

Cr (3nm)/Fe(10ML)/Cr(3ML)/GaAs (100) 599.732 ± 10.873 
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Cr(3nm)/Fe(10ML)/Cr(5ML)/GaAs (100) 56.804± 3.792 

Cr(3nm)/Fe(10ML)/Cr(15ML)/GaAs (100) 59.901 ± 3.572 

Cr(3nm)/Fe(10ML)/Cr(20ML)/GaAs (100) 52.352± 3.281 

The 10ML Fe films grown on the different thicknesses of Cr interlayer, shows the 

existence of uniaxial magnetic anisotropy. Figure 1, especially when the Cr is 0 ML, 

clearly shows that UMA is large from the [011] direction (hard axis). From the 0.5 ML 

Cr interlayer to 5 ML, UMA decreased quickly, and when it reached 5ML UMA almost 

disappeared entirely (there is no clear difference between the easy and hard axis). This 

shows that the increased Cr interlayer has a huge influence on UMA. Comparing the 5 

ML and 0 ML hard axis loop, it can be seen that while the loop displays no difference, 

the saturation field shows a slight change. This result indicates that when the Cr 

interlayer reaches 5 ML, it fully blocks UMA, although when the thickness of the Cr 

interlayer is increased to 20 ML, it does not change significantly.  
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Figure 5.4 SQUID-VSM hysteresis loops from Cr(3nm)/Fe(10ML)/Cr(0-20ML)/GaAs (100) samples. 

These loops are all measured at room temperature with the 4000 Oe magnetic field applied along [011] 

and [01̅1] (the hard axis and easy axis respectively). 

Figure 5.4 shows the in-plane magnetic hysteresis (𝑀-𝐻) loops measured by 

SQUID-VSM along the EA and HA for Cr(3nm)/Fe(10ML)/Cr (different 

thickness)/GaAs (100) sample. The figure shows a clear UMA with a well-defined EA 

and HA axis. According to the 15 ML of Cr interlayer thickness from the VSM data, 

there is a 45-degree rotation from the bulk anisotropy, but the reason for rotation is not 

clear now. The value of the UMA field (𝐻𝑘) can be obtained from the saturation field 

along the HA direction. Furthermore, the effective uniaxial anisotropy constant 

𝐾𝑢
𝑒𝑓𝑓

can be calculated using equation 4.1, which is described in chapter 4. 
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Figure 5.5 (a) indicates the saturation field from HA (hard axis) for 10 ML Fe film deposited on 

different thickness Cr interlayers. Figure (b) shows the tendency of the effective uniaxial anisotropy 

constant. 

20 ML 
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Figure 5.5 (a) and (b) show that the trend of 𝐻𝑘 and 𝐾𝑢
𝑒𝑓𝑓

 is almost identical as 

expected. When the Cr interlayer became thicker, the values of 𝐻𝑘 and 𝐾𝑢
𝑒𝑓𝑓

 dropped 

almost until 5 ML, but from 5 ML to 20 ML, the values only decreased slightly. This 

means that the 5 ML Cr interlayer represents the end of the decreased trend, and that 

after 5 ML it does not drop too much. In previous research, Xu et al[33] showed a 

transition from a superparamagnetic to ferromagnetic phase at around 4.8 ML Fe, at 

which point the structure begins to change from a large island into a continuous film. 

The lattice constant of 2.87Å for Fe is almost exactly half of GaAs (5.65 Å). Since Cr 

(2.884 Å) and Fe have the similar lattice constant[45], 5 ML Cr might be the point 

where Cr becomes a single crystalline film, and that after 5 ML the substrate is fully 

occupied with Cr. This is a reasonable explanation why the Cr interlayer from 5 ML to 

20 ML did not change significantly, and why from 0 ML to 5 ML it dropped sharply. 
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Figure 5.6 The value of 𝑀𝑠 from 0ML Cr interlayer to 20ML. These data are calculated from the 

value of the saturated magnetic moment and the volume of samples. 

The saturation magnetisation 𝑀𝑠 can by calculated using equation 4.2, which was 

described in chapter 4. From Figure 5.6, especially when the thickness of Cr is 0 ML, 

the value of 𝑀𝑠 is 1664.32 emu/cm3, a value which matches the previous results of 

other researches[136, 159]. From 0 ML to 5 ML, with the increase of Cr interlayer 
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thickness, the value of 𝑀𝑠 rose to 2158.78 emu/cm3, almost a 50% improvement. 

However, from 5 ML to 20 ML, the value of 𝑀𝑠 decreased slightly. The 15 ML and 20 

ML Cr films are the bulk films, and compared to single crystalline Cr films, the spin 

moment of Cr increased from -1.32𝑢𝐵 (single crystalline Cr) to -0.49𝑢𝐵 (bulk 

Cr)[160]. This is why the 𝑚𝑠𝑝𝑖𝑛, 𝑚𝑡𝑜𝑡𝑎𝑙 of Fe and saturation magnetisation decreased 

after 5ML. Detailed information pertaining to this will be discussed in section 5.2. 

5.1.5 XMCD Measurement and Analysis 

X-ray absorption spectroscopy (XAS) and XMCD experiments at the Fe 𝐿2,3 

absorption edges were performed at beamline I06 of the UK National Synchrotron 

Radiation Laboratory. The XAS experiments were carried out at 300K under an applied 

field ranging at 1T, with total electron yield (TEY) detection. Circularly polarised 

X-rays with a 100% degree of polarisation were used in normal incidence with respect 

to the sample plane, and a 60-degree angle along the perpendicular direction[161]. 

XAS and XMCD spectra of Fe 𝐿2 and 𝐿3 edges for 10 ML Fe film with different 

thicknesses of the Cr interlayer on GaAs (100) are shown in Figure 5.7 from (a) to (i). 

For XAS, 𝑢+ and 𝑢− are the absorption coefficients under antiparallel and parallel 

magnetic fields to the photon incident direction. For XMCD, the value of 𝑢+ − 𝑢− and 

the integrated value of 𝑢+ − 𝑢− are shown; these data are used for calculating XMCD 

sum rules. According to XMCD sum rules, the orbital (𝑚𝑜𝑟𝑏) and spin (𝑚𝑠𝑝𝑖𝑛) 

magnetic moments as well as the ratio (𝑚𝑟𝑎𝑡𝑖𝑜) of 𝑚𝑜𝑟𝑏 to 𝑚𝑠𝑝𝑖𝑛 can be determined 

from XAS and XMCD spectra using equations 3.1 to 3.7, which were described in 

chapter 3. Because these films are all single crystalline films, according to Chen et 

al[91, 116], the value of 𝑛3𝑑 for Fe of 6.61 to calculate all results has been used. 
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Figure 5.7 XAS and XMCD spectra of Fe atoms at 𝐿2 and  𝐿3 edges in Cr(3nm)/Fe(10ML)/Cr/GaAs 

(100) from (a) to (h): (a), (b), (c) are the thickness of Cr interlayer for 0ML, 0.5 ML and 1 ML films 
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respectively. (d), (e), (f), (g), (h) are the thickness of Cr interlayer for 2 ML, 3 ML, 5 ML, 15 ML and 

20 ML films. 
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Figure 5.8 (a) and (b) show the spin moment and orbital moment of Fe atoms with different Cr 

interlayer thickness respectively. (c) and (d) present data about the total moment and orbital to spin 

ratio respectively. 

Figure 5.8 clearly shows that (a) and (c) follow the same trend, and that (b) and (d) have 

a similar tendency. Since the total moment is equal to the orbital moment plus the spin 

moment, the values of spin moment are clearly much larger than the orbital moment, 

meaning that the trend of the total moment should follow the spin moment. 𝑀𝑠 is the 

saturated magnetic moment which has a close connection with the total moment, 

meaning that the trend of 𝑀𝑠 should be similar to the total moment. When comparing 

Figure 5.6 and Figure 5.8 (c), these two figures show a similar tendency, suggesting 

that all the experimental results are right and reasonable.  
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One interesting point to note is that when the interlayer Cr was 0ML, the value of 10 

ML Fe of spin moment was smaller than the regular value (1.98µB). In comparison with 

previous results (Cr capping layer on Fe/GaAs), this value is similar, and symmetry 

breaking makes the contribution inside. To be more specific, magnetic films that are in 

contact with an antiferromagnetic layer capping layer often show large two-magnon 

scattering because of spatially inhomogeneous exchange bias[162-165]. In the case of 

the 3nm Cr capping layer on 10 ML Fe film, these defects are caused by step induced 

magnetic frustration between the magnetic moment of Fe and the spin density waves in 

Cr film[28, 162]. This effect will decrease the spin moment with only a 3nm Cr capping 

layer, but when the Cr interlayer is from 0 ML to 5 ML, this symmetry breaking is 

repaired. At this point the Fe spin moment values were enhanced. Finally, when the Cr 

was a continuous film (5 ML), the symmetry breaking was fully repaired, resulting in 

the 10 ML Fe spin moment values (1.893𝜇𝐵) being restored to their regular value. The 

spin moment value of 10 ML Fe with a 20 ML Cr interlayer does not change to much, 

and is also very close to the regular 10 ML Fe spin moment value.   

Concerning (b) and (d), Figure 5.8(b) is the orbital moment while Figure 5.8(d) is the 

orbital to spin ratio. Many previous researches presented the results that the orbital 

moment is the key point which influences UMA, and that the orbital to spin ratio 

(spin-orbital coupling) has a relationship with interface interaction. Out results seem to 

fully match these data. Compared with UMA and orbital moment (Figure 5.5(a) and 

Figure 5.8(b) respectively), a similar trend can be identified: when the Cr interlayer was 

0 ML, they all had the highest value, and when the Cr interlayer is increased, there was 

a similar decreased tendency, and when the Cr interlayer reached 20 ML, they were all 

at their lowest point. This reflects the fact that the orbital moment dropped when 

increasing the Cr interlayer, and that UMA and orbital moment were all blocked by the 

5 ML Cr interlayer. Figure 5.8 shows the decreased trend of orbital to spin ratio, which 

indicates that the interface interaction effect is also weakened by increasing the Cr 

interlayer. The Cr interlayer impairs UMA and the interface interaction by the Cr area 
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on GaAs (100) substrate when Cr reaches 5 ML. At this point, this layer cut all 

connections between the substrate and Fe, meaning that Fe and As atoms cannot have 

any chemical bonding, which is the reason why UMA disappeared. 

Table 5.2 Orbital moment, spin moment, total moment and orbital to spin ratio of Fe atom from various 

Fe single crystalline samples in units of 𝑢𝐵/atom. 

Sample 𝑚𝑜𝑟𝑏(𝑢B) 𝑚𝑠𝑝𝑖𝑛(𝑢B) 𝑚𝑡𝑜𝑡𝑎𝑙(𝑢B) 𝑚𝑟𝑎𝑡𝑖𝑜 

Cr(3nm)/Fe(10ML)/GaAs 

(100) 

0.216±0.010 1.549 ±0.03 1.765±0.04 0.140 

Cr(3nm)/Fe(10ML)/Cr(0.5

ML)/GaAs (100) 

0.159±0.003 1.658±0.02 1.817±0.02 0.085 

Cr(3nm)/Fe(10ML)/Cr(1M

L)/GaAs (100) 

0.154±0.004 1.773±0.01 1.927±0.01 0.083 

Cr(3nm)/Fe(10ML)/Cr(2M

L)/GaAs (100) 

0.143±0.002 1.796±0.01 1.940±0.01 0.080 

Cr(3nm)/Fe(10ML)/Cr(3M

L)/GaAs (100) 

0.129±0.005 1.837±0.01 1.966+0.02 0.070 

Cr(3nm)/Fe(10ML)/Cr(5M

L)/GaAs (100) 

0.108±0.001 1.893±0.02 2.001±0.02 0.057 

Cr(3nm)/Fe(10ML)/Cr(15

ML)/GaAs (100) 

0.105±0.009 1.861±0.01 1.966±0.02 0.056 

Cr(3nm)/Fe(10ML)/Cr(20

ML)/GaAs (100) 

0.093±0.003 1.845±0.02 1.937±0.02 0.050 

Au(20ML)/Fe(8ML)/GaAs 

(100)[112] 

0.26±0.030 2.03±0.14 2.29±0.17 0.128 

Cr(15ML)/Fe(7ML)/GaAs 

(100)[32] 

0.184±0.025 1.43±0.18 1.614±0.21 0.129 

Bulk bcc Fe[91] 0.085 1.98 2.065 0.043 
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The values of the spin and orbital moments are found using the sum rule analysis whilst 

those of the other research values are described in Table II. It is well known that the 

orbital angular moment plays a dominant role in determining the uniaxial magnetic 

anisotropy[109]. It can be seen from orbital moment that the Fe single crystalline 

samples without Cr interlayer were all significantly enhanced compared to the Fe with 

Cr interlayer, but compared to the Fe single crystalline film and Fe bulk film, it is 

shown that the Fe bulk film dramatically decreased, a result confirming previous 

researches.  

The situation of spin to orbital ratio is similar to the orbital moment. The values of spin 

to orbital ratio on the three samples Cr(3nm)/Fe(10ML)/GaAs (100), 

Au(20ML)/Fe(8ML)/GaAs (100) and Cr(15ML)/Fe(7ML)/GaAs (100) are all around 

0.13µB, and larger than bulk Fe film and 10 ML Fe with Cr interlayer. The spin moment 

indicates that the Cr as a capping layer can decrease the spin moment, as noted 

previously. When the Cr interlayer rose from 0 ML to 5 ML, the spin moments were 

significantly enhanced. Up until 5 ML, symmetry breaking was fully repaired, so that 

the value of the spin moment on 5 ML and 20 ML Cr interlayer samples recover and 

return to the regular 10 ML Fe spin moment value (around 1.98𝑢𝐵). 

5.1.6 TEM Measurement and Analysis 

Structural properties of the grown films were studied using a JEOL 2200FS double 

aberration corrected (scanning) transmission electron microscope (S) TEM. 

Cross-sectional TEM specimens were prepared using conventional methods, including 

mechanical thinning and polishing, followed by Ar ion milling to achieve electron 

transparency. 
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Figure 5.9 Cross-sectional bright-field scanning TEM of Cr(3nm)/Fe(10ML)/Cr(5ML)/GaAs (100) 

sample in [110] view. 

A high-resolution cross-section TEM image of the structure is shown in figure 5.9. The 

film thickness, of 0.8 nm for Cr interlayer, 1.5 nm for Fe, matched with the growth 

settings. The 3.5 nm Cr capping layer is a little thicker than the set value, which because 

the oxidation of Cr capping layer. Due to the mass contrast, a clear distinction between 

GaAs and Cr can be observed, as well as between Fe and Cr interlayer or the Cr capping 

layer. This image evidenced the 5 ML Cr interlayer is the single crystal structure and 

the Cr interlayer formed the continuous film at 5 ML, and then the 10 ML Fe film 

remained the single crystal structure due to the lattice mismatch is very small between 

Fe and Cr atoms, which could support our conclusion. 
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5.1.7 Summary of Findings 

Figure 5.10 shows the model of our conclusion. At the start, as shown in Figure 5.10(a), 

Fe film grows on the GaAs substrate, and it has Fe-As bonding and UMA, so the 

spin-orbital coupling from the interface is strong, and the orbital moment of Fe is as 

large as 0.22𝑢𝐵. As shown in Figure 5.10(b), in several island Cr interlayer films there 

is growth between the Fe layer and GaAs substrate. The island Cr interlayer films 

blocked Fe-As bonding, meaning that the orbital moments of Fe and the values of 

spin-orbital ratio and UMA were decreased. Finally, as can be seen in Figure 5.10(c), 

when the Cr interlayer reached 5 ML, the Cr interlayer formed a continuous film. This 

fully blocked UMA and completely cut Fe-As bonding, resulting in values of Fe orbital 

moments and spin-orbital ratio declining to their lowest value, before UMA 

disappeared completely. 

 

Figure 5.10 indicates the influence of the Cr interlayer between the Fe-As bonding. 
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In conclusion, we have investigated UMA and the element specific spin and orbital 

moments in the Fe-Cr-GaAs (100) system through magnetisation measurement, 

RHEED measurement, XMCD measurement and sum rule calculation. The result 

obtained through SQUID-VSM measurement confirmed that UMA was decreased by 

the increasing Cr interlayer. RHEED measurement reveals that when Cr reaches 5 ML 

on GaAs (100) substrate, it goes from being an island film to a continuous film, and 

shows the Cr single crystalline structure on the screen. XMCD measurements indicate 

two points: firstly, that 10 ML Fe with a Cr interlayer and Cr capping layer can adjust 

the spin moment of Fe, which is due to symmetry breaking; secondly, that UMA is 

correlated with orbital moment and spin to orbital ratio, which is due to the Cr 

interlayer having no relationship to the spin moment of Fe. 

The origin of UMA is a controversial issue, as outlined in previous research. Our 

experiment shows that the notion of stress being induced by interface lattice mismatch 

can be ruled out because Cr has a similar lattice structure as Fe film, meaning that the 

stress induced cannot be a major factor influencing UMA. It therefore seems that the 

chemical bonding between As and Fe atoms is how UMA originates, when the Cr 

interlayer is between 0 ML and 5 ML and the area of Cr on GaAs substrate was 

increasing. This lead to UMA decreasing sharply, but at 5 ML Cr displayed a single 

crystalline structure and fully covered all areas on GaAs substrate. 5 ML Cr cut the 

bonding between As and Fe atoms, meaning that when Cr reached 5 ML, UMA 

disappeared. This indicates that the origin of UMA in the Fe-GaAs system is from 

chemical bonding: if the chemical bonding between Fe and GaAs is full cut, UMA 

would not exist.  

These results are useful for understanding the fundamental magnetic properties in the 

Fe-GaAs system, which could be important for future researchers and applications of 

this structure in next generation spintronic devices like MRAM, where the detailed 

functions of data process and storage could be integrated in a single device. 



134 

 

5.2 Au/Fe/Cr/GaAs System 

5.2.1 Introduction 

For studying the films with Au as the capping layer, the magnetic property of Cr 

interlayer can be measured by XMCD measurement, the spin and orbital moment can 

be calculated by sum rule, thus UMA changed by the thickness of Cr interlayer can be 

observed deeply and directly, and it also can remove the influence from Cr capping 

layer. 

X-ray magnetic circular dichroism (XMCD) combines the abilities of spectroscopy and 

magnetometry. The success of the XMCD technique is not only due the element 

specificity with sub-monolayer sensitivity, but also the development of the integral 

sum-rules[89, 166-170]. Many researches have focused on the ferromagnets like Fe, Co 

and Ni, but little work has been done on XMCD for the early 3d transition metals 

(TMs)[171, 172] because of two major drawbacks: (1) These metals are either 

non-magnetic (Ti, V) or antiferromagnetic (Cr, Mn) in their bulk configuration, and 

thus reveal no XMCD signal; (2) For spin-polarized early TMs, the circular dichroism 

is much smaller compared to the ferromagnets Fe, Co and Ni. When demonstrating 

early 3d TMs, it is difficult to extract the circular dichroism even without the attendant 

noise. 

Over the last two decades, major studies for Fe/Cr structure have focused on the Fe/Cr 

alloy[173-175] or the Fe/Cr multilayers[176-181], while much less work has focused 

on Cr moments in Fe/Cr on the GaAs substrate, in particular on very thin Cr interlayer 

films. To determine the influence of UMA when using a very thin Cr interlayer, in this 

work different thicknesses of Cr film were inserted between GaAs substrate and 10ML 

Fe films. The Cr layer is an antiferromagnetic film, which would normally be used in 

the investigation of antiparallel coupling[155-157, 182]. Fe and Cr have a similar 

lattice constant, meaning that the Cr interlayer could make only a slight contribution to 
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the formation of a strain induced UMA. However, no UMA was observed. 

Subsequently, we undertook room temperature XMCD, RHEED and SQUID-VSM 

investigations into the properties of ultrathin films grown on substrate with various Cr 

interlayer. From our studies, we were able to confirm the results from section 5.1. 

When the thickness of Cr reached 5 ML, the Fe-As bonding was fully blocked, so UMA 

disappeared; in addition, the Cr orbital moment decreased significantly from 0.5 ML to 

5 ML, although above 5 ML the values of the Cr orbital moment were similar to the 

Fe/Cr multilayer. Secondly, there are two different valence states for both Fe and Cr 

atoms, which exist in the Fe-Cr-As compound layer (the thickness of Cr is under 0.5 

ML), and slightly increase UMA. More importantly, the Cr atoms transferred from the 

antiferromagnetic property to the ferromagnetic property in the compound layer. 

5.2.2 Sample Growth 

The 10 ML Fe films with different thicknesses of Cr interlayer were grown on GaAs 

(100) substrates. Before deposition on the Cr interlayer, the substrate surface was 

etched and cleaned. The first step was to remove any contaminants on the substrate 

surface by using acetone, iso-propyl alcohol (IPA) and deionized water. The second 

step was to remove the oxide layer through the immersion of the substrate into an 

H2SO4/H2O2/H2O (4:1:1) solution for 45 seconds. Both steps were performed in a level 

100 clean room so as to prevent any dust particles contamination. The third step was to 

create a flat surface for film deposition. The etched substrate was immediately 

transferred into an MBE chamber with a base pressure of 2.3 × 10-10 mbar. The 

substrate was then treated with ion-milling before annealing (low energy Argon ion 

beams were sputtered onto the substrate surface for 30 minutes and gently removed a 

thin layer of surface material, exposing the virgin layer of the substrate). The final step 

is annealing, where the substrate was required to be annealed at 480◦C (at an annealing 

pressure lower than 8 × 10-9 mbar) for 60 minutes to further remove natural oxides and 

create the surface reconstruction[93]. The surface must cool to room temperature prior 
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to film growth. The Cr interlayer and 10 ML Fe layers were grown using the two 

different source evaporators in the MBE system, where the pressure was lower than 

2.1× 10-9 mbar. Finally, a 3 nm Au capping layer was deposited to prevent the Fe film 

from oxidisation. 

5.2.3 RHEED Patterns and Analysis 

Since the substrates or samples remain in a UHV environment, the only way to examine 

the surface quality or morphology is to observe the RHEED (Reflection High Energy 

Electron Diffraction) patterns. The main advantages of RHEED patterns are that they 

are in-situ, fast, and surface-sensitive. Multiple RHEED patterns were recorded 

throughout the film deposition for monitoring purposes. 

The GaAs (100) substrate were cleaned following the same processes. Figure 5.11 

shows the RHEED images of the GaAs (100) substrates, various thicknesses of Cr 

interlayer and 10 ML Fe films. From the RHEED patterns of all 10 ML Fe films, one 

result which can be confirmed is that all the 10 ML Fe films have a single crystalline 

structure, and the different thickness of Cr have not changed the structure of 10 ML Fe 

films. The lattice constant of 2.87Å for Fe is almost exactly half of GaAs (5.65 Å). The 

lattice constant of Cr is 2.88 Å, which is almost no different to the Fe value, which 

means the lattice mismatch between Fe and Cr is very small. Even when the thickness 

of then Cr interlayer reaches 20 ML, 10 ML Fe remains a single crystalline structure, 

and the Cr interlayer does not make any contribution to the formation of Fe single 

crystalline structure[31, 158]. The RHEED patterns for various thickness of Cr 

interlayer are similar to those in section 5.1, meaning that our experiments are 

repeatable and that the MBE system is stable. From 0.1 ML to 1 ML, the Cr RHEED 

images show the single crystalline structure, but because the Cr interlayer in these 

thicknesses is an island film and covers only a small area of the GaAs substrate, the 0.1 

ML to 1 ML Cr RHEED patterns actually indicate the structures from GaAs substrate. 

When the thickness reaches 2 ML, there is no signal from the RHEED screen. Finally, 
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from 5 ML to 20 ML, the RHEED images indicate the single crystalline structure again, 

in particular when the Cr thickness was at 5 ML, when the RHEED pattern converted 

from no single to a single crystalline structure. 

 

Figure 5.11 shows the RHEED patterns related to GaAs (100) substrates ([01̅1] view and substrates are 

all 1×1 single crystalline structure), the various thickness Cr interlayers and 10 ML Fe films which 

grow on the Cr interlayer. The thickness of the Cr interlayer is from 0ML to 20ML, and the thickness 

of Fe remains at 10ML. 
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5.2.4 VSM Measurement and Analysis 

The in-plane magnetic hysteresis loops of all the samples were measured on both the 

[01̅1](easy axis) and [011] (hard axis) using a Vector Magnetometer Model 10 VSM 

and Vector measurement system at room temperature (300K), as shown in Figure 5.12. 

Since a strong uniaxial magnetic anisotropy field, potentially as large as 949.7 Oe, was 

expected in the Au(3nm)/Fe(10 ML)/GaAs (100) sample along hard axis, the VSM 

measurement was conducted using a maximum magnetic field of 3000 Oe so as to 

ensure all the samples were definitely saturated.  

None of the easy axis hysteresis loops from Figure 5.12 change according to the 

different thicknesses of the Cr interlayer, so one result can be confirmed: the various 

thickness of the Cr interlayers does not influence the easy axis, and so all the easy axis 

loops have the similar coercivity and saturation fields around 50 Oe. This result also 

confirmed the previous researches in section 5.1. 

The hysteresis loops along the hard axis are more interesting. The Cr interlayer from 0 

ML to 0.2 ML, compared with the sample without a Cr layer, saw the magnetic 

saturation field along the hard axis enhance by 10% and 20% (at 0.1 ML and 0.2 ML Cr 

interlayer respectively). From 0.5 ML to 5 ML, the value of the saturation field 

decreased significantly, and uniaxial magnetic anisotropy disappeared at 5 ML. Finally, 

the hysteresis loops along the hard axis from the 15 ML and 20 ML Cr interlayer remain 

in the same saturation field (around 50 Oe) when the Cr interlayer is 5 ML: these films 

did not indicate uniaxial magnetic anisotropy. This result confirmed my previous 

results in section 5.1: the 5 ML Cr continuous interlayer fully blocked the uniaxial 

magnetic anisotropy, and cut the Fe-As bonding by the occupation area from the 

interface between the Fe film and GaAs substrate. 
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Figure 5.12 VSM hysteresis loops of various Cr interlayer thicknesses (from 0 to 20 ML) between 

GaAs (100) substrate and 10 ML Fe. These loops are all measured at room temperature with the 3000 

Oe magnetic field applied along [011] and [01̅1] (hard axis and easy axis respectively). 

The value of the UMA field (𝐻𝐾) can be obtained from the saturation field along the 

hard axis direction. Furthermore, the effective uniaxial anisotropy constant (𝐾𝑢
𝑒𝑓𝑓

) and 

the saturation magnetisation (𝑀𝑠) can be calculated using equations 4.1 and 4.2, as 

described in chapter 4. 

Table 5.3 presents detailed data about the values of the saturation field, the effective 

uniaxial anisotropy constant and saturation magnetisation. Since the values of the 

effective uniaxial anisotropy constant and saturation magnetisation are in direct 

proportion to the change in the saturation field, these two kinds of values have a similar 

tendency in terms of the value of the saturation field. In this case, it increased for the 0.1 

ML and 0.2 ML Cr interlayers, and dropped for the 0.5 ML to 5 ML Cr interlayers, and 

for thicknesses for the 5 ML to 20 ML Cr interlayers, it had the similar value. 

The tendency charts for the saturation field, effective uniaxial anisotropy constant and 

saturation magnetisation are shown in Figure 5.13 (a), (b) and (c) respectively. 

Compared with the previous results in section 5.1, the tendency charts for the saturation 

field and effective uniaxial anisotropy are very similar, whilst the values for saturation 

magnetisation are clearly different. From the last section, the values of saturation 

magnetisation are at their peak at 5 ML Cr interlayer, and then decrease from 5 ML to 

20 ML. In this experiment, however, the values of saturation magnetisation increased 

20 ML 
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from the 0 ML to 5 ML Cr interlayer, and then fluctuated around 1640 𝑒𝑟𝑔 𝑐𝑚3⁄  from 

the 5 ML to 20 ML Cr interlayer. In this part, Au was used for the capping layer as it has 

three main advantages: 1) The Au capping layer has a slight influence with spin and 

orbital moments, while the Cr capping layer or interlayer decreased the orbital and spin 

moments. 2) Using Au as a capping layer would rule out the effect of symmetry 

breaking between the two different thickness Cr layers. 3) The spin and orbital 

moments of the Cr interlayers can be obtained from XMCD without the Cr capping 

layer, which means the influence of the Cr interlayer can be intuitively shown from 

XMCD calculations. The saturation magnetisation has the correlation with the total 

moment, and the spin moment leads major role in the total moment, meaning that the 

saturation magnetisation is influenced by the spin moment. This detailed relationship 

will be discussed in the next section (XMCD analysis). The difference from the two 

tendency charts of saturation magnetisation is caused by symmetry breaking. In this 

project, the values of saturation magnetisation decreased at the beginning and then 

remained from 5 ML.  
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Table 5.3 The values of the saturation field, effective uniaxial anisotropy constant and saturation 

magnetisation for various thicknesses of Cr interlayers between 10 ML Fe single crystalline film and 

GaAs (100) substrate. 

Sample Saturation 

field (Oe) 

𝐾𝑢
𝑒𝑓𝑓

(𝑘𝐽 𝑚3⁄ ) 𝑀𝑆 (emu/cm3) 

Au(3nm)/Fe(10ML)/GaAs (100) 949.7 ± 25.3 141.5 ± 5.4 1858.9 ± 25.3 

Au(3nm)/Fe(10ML)/Cr(0.1ML)/GaAs 

(100) 

1050.1 ± 23.1 158.8 ± 6.1 1859.7 ± 20.6 

Au(3nm)/Fe(10ML)/Cr(0.2ML)/GaAs 

(100) 

1150.2± 22.4 171.1 ± 4.6 1863.9 ± 20.9 

Au(3nm)/Fe(10ML)/Cr(0.5ML)/GaAs 

(100) 

749.9± 14.1 98.3 ± 4.9 1784.6 ± 24.6 

Au(3nm)/Fe(10ML)/Cr(1ML)/GaAs 

(100) 

550.2 ± 10.3 82.9 ± 5.2 1736.1 ± 23.3 

Au(3nm)/Fe(10ML)/Cr(2ML)/GaAs 

(100) 

340.1 ± 10.5 66.4 ± 5.6 1688.7 ± 21.5 

Au(3nm)/Fe(10ML)/Cr(5ML)/GaAs 

(100) 

55.5 ± 3.5 6.9 ± 2.1 1634.5 ± 26.6 

Au(3nm)/Fe(10ML)/Cr(15ML)/GaAs 

(100) 

50.9 ± 4.4  5.8 ± 2.5 1641.5 ± 20.3 

Au(3nm)/Fe(10ML)/Cr(20ML)/GaAs 

(100) 

49.9 ± 5.8 5.4 ± 2.3 1638.2 ± 20.1 
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Figure 5.13 (a), (b)and (c) are the tendency charts for the saturation field, effective uniaxial anisotropy 

constant and saturation magnetisation respectively. 
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5.2.5 XMCD Measurement and Analysis 

XMCD measurements were performed at normal incidence to the Au(3nm)/Fe(10 

ML)/Cr/GaAs (100) samples in the I06 station of Diamond Light Source. The XMCD 

spectra were measured at both positive and negative applied fields for Fe and Cr 

elements. The data were collected by a Total Electron Yield (TEY) detector in the 

analysis chamber under a magnetic field of 1T. All the samples were measured with a 

60-degree angle along the perpendicular direction. 

The XAS and XMCD spectra of Fe 𝐿2 and 𝐿3 edges for 10 ML Fe films with various 

thicknesses of Cr interlayers on GaAs (100) substrate are shown in Figure 5.14 from (a) 

to (i). Figure 5.15 (a) to (h) indicate the XAS and XMCD spectra of Cr 𝐿2 and  𝐿3 

edges for different thicknesses of Cr interlayers. In the XAS part, 𝑢+ and 𝑢− are the 

absorption coefficients under antiparallel and parallel magnetic fields to the photon 

incident direction. In the XMCD part, the value of 𝑢+ − 𝑢− and the integrated value 

from 𝑢+ − 𝑢− are shown; these data are used for calculating XMCD sum rules. 

According to the XMCD sum rules, the orbital (𝑚𝑜𝑟𝑏) and spin (𝑚𝑠𝑝𝑖𝑛) magnetic 

moments and the ratio (𝑚𝑟𝑎𝑡𝑖𝑜) of 𝑚𝑜𝑟𝑏 to 𝑚𝑠𝑝𝑖𝑛 can be determined from XAS and 

XMCD spectra using equations 3.1 to 3.7, mentioned in chapter 3. According to Chen 

et al and Scgerz et al[91, 116, 183, 184], we have used the value of 𝑛3𝑑 for Fe and Cr 

element of 6.61 and 5.45 respectively to calculate all the results. 
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Figure 5.14 XAS and XMCD spectra of Fe atoms at 𝐿2 and 𝐿3 edges in 

Au(3nm)/Fe(10ML)/Cr/GaAs (100) from (a) to (i): (a), (b), (c) are the thickness of Cr interlayer for 

0ML, 0.1 ML and 0.2 ML films respectively. (d), (e), (f), (g), (h) and (i) are the thickness of Cr 

interlayer for 0.5 ML, 1 ML, 2 ML, 5ML, 15 ML and 20 ML films respectively. 

Figure 5.14 clearly shows that (b) and (c) have two different peaks on both the 𝐿3 and 

𝐿2 edges of Fe atoms, while the other figures have one peak on the 𝐿3 and 𝐿2 edges 

around 707 eV and 720 eV. Figure 5.14 (b) and (c) are the 0.1 ML and 0.2 ML thickness 

of Cr interlayers, and the enhancements of the saturation field for 0.1 and 0.2 ML Cr 

interlayers were obtained from VSM analysis results. There are two peaks in Figure (b) 

and (c), the major peak on the 𝐿3 edge (the higher one) is similar to others around 707 

eV, but the secondary peak on 𝐿3 (the lower one) is at 709 eV, according to the XAS 

figures. The two different peaks on the 𝐿3 and 𝐿2 edges refer to the two different 

valence states for Fe atoms. From previous research on Fe oxidisation XMCD, the 

reason for different valence states caused by the oxidation for Fe atoms can be ruled 

out[108, 185-189].  

There are three important differences between this project and the iron oxidisation 

films: 1) In this project, we used the MBE system to grow all layers, and when the 

different layers grow, the pressure of the MBE system was always under 5.1 × 10-9 

mbar during growth, which is impossible for the samples’ oxidation. 2) The Fe 

oxidisation films should not have their edge jump from the secondary peak in XAS 

figures, while in my project, there are obvious edge jumps on the secondary peak of the 

𝐿3 edge, as shown in Figure 5.14 (b) and (c) in XAS images. 3) The values of orbital 
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moment from Fe oxidisation films are almost double my orbital moment values in this 

project. This means that a kind of chemical compound layer is formed when the 

thickness of Cr interlayer is around 0.1 and 0.2 ML, and this chemical compound layer 

induced a kind of valence state for Fe atoms. Compared with Figure 5.14 (b) and (c), 

the edge jump in the XAS image from 0.2 ML Cr interlayer film is larger than the edge 

jump from 0.1 ML on both the 𝐿3 and 𝐿2 edges. This refers to the fact that the 0.2 ML 

Cr interlayer made a greater contribution on the interface than the 0.1 ML Cr interlayer. 

We suggest the chemical compound layer is slightly enhanced UMA, and this layer is 

formed from the 0.1 ML Cr interlayer and disappeared at the 0.5 ML Cr interlayer.  
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Figure 5.15 XAS and XMCD spectra of Cr atoms at 𝐿2 and 𝐿3 edges in 

Au(3nm)/Fe(10ML)/Cr/GaAs (100) films from (a) to (h). Figure (a) and (b) are the thicknesses of the 

Cr interlayer for the 0.1 ML and 0.2 ML films respectively. (c), (d), (e), (f), (g) and (h) are the 

thicknesses of the Cr interlayer for the 0.5 ML, 1 ML, 2 ML, 5ML, 15 ML and 20 ML films 

respectively. 

Figure 5.15 indicate the XAS and XMCD spectra of Cr 𝐿2 and 𝐿3 edges from various 

thickness of Cr interlayers between 10 ML Fe layer and GaAs (100) substrate. Figure 

5.15 (a) (0.1 ML Cr interlayer) and (b) (0.2 ML Cr interlayer) shows there are also two 

different peaks on both 𝐿2 and  𝐿3 edges, which is similar with the result from the Fe 

element; the Cr element has two different valence states in these two films. This means 

the Cr element is involved in the chemical compound layer. Comparing (a) and (b) with 

other configurations in Figure 5.15, 0.1 ML and 0.2 ML Cr interlayers show 

ferromagnetic properties in the XMCD part, while other thicknesses of Cr interlayers 

indicate antiferromagnetic properties.  

As is known, the bulk Cr layer is the antiferromagnetic property[160], while in this 

project 0.1 and 0.2 ML Cr interlayers between 10 ML Fe layer and GaAs (100) 

substrate formed a chemical compound layer, allowing the magnetic property of Cr to 

change from antiferromagnetic to ferromagnetic. This suggests that ferromagnetic Cr 

was involved in the chemical compound layer, and enhanced the spin-orbital coupling 

from interface and increased UMA in the film. Comparing Figure 5.15 (a) with Figure 

5.15 (b), the edge jump from both 𝐿2 and  𝐿3 edges is larger in the 0.2 ML Cr 

interlayer than 0.1 ML Cr interlayer, which suggests that the 0.2 ML Cr interlayer has a 

stronger ferromagnetic property than 0.1 ML Cr. We suggest the strong or weak 

ferromagnetic property in a compound layer depends on the percentage of Cr in this 

layer, for when the Cr achieved a fixed value in this chemical compound layer, it had 

the largest edge jump and strongest ferromagnetic property. If slightly over or under 

this value, this layer still indicated a ferromagnetic property, but one which was not as 

strong as that fixed value. It could then reach 0.5 ML due to too many Cr atoms on the 

interface; when the balance of this chemical compound layer broke, the chemical 
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compound layer disappeared. From the XMCD part of Figure 5.15 (c) to 5.15 (h), the 

antiferromagnetic property is slightly amplified by the increased thickness of the Cr 

interlayer. 

Table 5.4 Orbital moment, spin moment, total moment and orbital to spin ratio of both Fe and Cr atoms 

from various samples in units of 𝑢𝐵/atom. 

Sample Element 𝑚𝑜𝑟𝑏(𝑢𝐵) 𝑚𝑠𝑝𝑖𝑛(𝑢𝐵) 𝑚𝑟𝑎𝑡𝑖𝑜(𝑢𝐵) 

Au(3nm)/Fe(10ML)/GaAs (100) Fe 0.201±0.002 1.96±0.02 0.103 

Au/Fe/Cr(0.1ML)/GaAs  Fe 0.208±0.004 1.99±0.02 0.105 

Cr 0.036±0.015 0.81±0.13  

Au/Fe/Cr(0.2ML)/GaAs Fe 0.229±0.009 2.11±0.03 0.109 

Cr 0.075±0.018 1.26±0.11  

Au/Fe/Cr(0.5ML)/GaAs Fe 0.173±0.010 1.87±0.01 0.093 

Cr -0.013±0.021 -1.01±0.09  

Au/Fe/Cr(1ML)/GaAs Fe 0.161±0.005 1.76±0.02 0.091 

Cr -0.048±0.013 -1.22±0.06  

Au/Fe/Cr(2ML)/GaAs Fe 0.148±0.003 1.68±0.01 0.088 

Cr -0.061±0.011 -1.25±0.04  

Au/Fe/Cr(5ML)/GaAs Fe 0.111±0.003 1.64±0.01 0.067 

Cr -0.092±0.014 -1.33±0.08  

Au/Fe/Cr(15ML)/GaAs Fe 0.108±0.006 1.69±0.01 0.064 

Cr -0.089±0.016 -0.51±0.16  

Au/Fe/Cr(20ML)/GaAs Fe 0.111±0.008 1.73±0.02 0.063 

Cr -0.085±0.017 -0.48±0.11  

Bulk Fe[91] Fe 0.085±0.002 1.98±0.02 0.043 
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Bulk Cr[160] Cr -0.08±0.002 -0.49±0.02  

5ML Cr[160] Cr -0.108±0.002 -1.32±0.02  

Fe85Cr15 Alloy[190]  Fe 0.063±0.004 2.32±0.02 0.037 

Cr 0.023±0.009 2.48±0.13  

Fe/Cr Multilayers[177] Fe 0.143±0.004 1.95±0.02 0.073 

Cr -0.088±0.015 -1.28±0.13  
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Figure 5.16 (a) and (b) show the orbital moment and spin moment of Fe atoms with different 

thicknesses of Cr interlayer respectively. Figure (c) gives the values for orbital to spin ratio. 
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Figure 5.17 (a) and (b) indicate the orbital moment and spin moment of Cr atoms with different 

thicknesses of Cr interlayer between 10 ML Fe films and GaAs (100) substrate respectively. 

The detailed values of spin moments, orbital moments, and spin to orbital ratios for 

both Cr and Fe elements are shown in Table 5.4. This table also includes the values 

from previous researches. The tendency charts for orbital moment, spin moment and 

spin to orbital ratio of Fe atoms are shown in Figure 5.16(a), (b) and (c), respectively. 

Firstly, the spin moment of Fe atoms in the film without a Cr interlayer are as large as 

1.96𝑢𝐵, which is higher than the value in the Au(3nm)/Fe(10ML)/GaAs (100) film 

(1.549𝑢𝐵) and similar to the value of bulk Fe (1.98𝑢𝐵). Because of using Cr for the 

capping layer, this will decrease the spin moment; as such, in this project, the spin 

moments of Fe (using Au as a capping layer) are larger than the last project at the 

beginning. The spin moment and orbital moment of Fe then experienced a small 

enhancement from 0 ML Cr interlayer film to 0.2 ML Cr interlayer film. This 

enhancement was caused by the chemical compound layer, which induced the 

formation of second valence state of Fe atoms in this layer. This chemical compound 

layer then increased the values of both the orbital moment and spin moment of Fe 

atoms.  

When the thickness of the Cr interlayer is 0.5 ML, the Cr atoms changed from having a 

ferromagnetic property to being antiferromagnetic, and the chemical compound layer 

did not exist. As such, the orbital moment and spin moment of Fe experienced a sharp 

decrease. From 0.5 ML to 5 ML, the orbital moment and spin moment of Fe atoms 
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dropped significantly. The decreased situation from the orbital moment of Fe atoms is 

similar to the last project, where the results were similar: UMA decreased by the 

increased Cr interlayer thickness, and until the Cr interlayer is 5 ML, UMA is fully 

blocked by the continuous Cr interlayer. However, the values of spin moment of Fe 

atoms from 0.5 ML to 5 ML Cr interlayer are different to the last project in section 5.1. 

In this project, the Au capping layer was used for all samples, meaning the symmetry 

breaking effect will not influence the spin moment of Fe atoms[191, 192]. In section 5.1, 

the spin moment of Fe atoms increased from the 0.5 ML to 5 ML Cr interlayer, while in 

this project, due to the enhancement from the Cr antiferromagnetic property, the spin 

moment of Fe atoms decreased. From the 5 ML to 20 ML Cr interlayer, the orbital 

moments of Fe atoms retain a similar value, around 0.11𝑢𝐵, which confirmed the 

conclusion from section 5.1: the 5 ML Cr interlayer formed a continuous film and fully 

blocked UMA. Spin moments of Fe atoms increased from the 5 ML to 20 ML Cr 

interlayer, which is influenced by the decrease from the antiferromagnetic property of 

Cr atoms. In research by Paduani et al[160], the value of the spin moment of Cr atoms 

in bulk Cr film is much smaller than that in the 5 ML Cr layer. The 15 ML and 20 ML 

Cr interlayers are closed to the bulk Cr film, so the spin moment of Cr was enhanced, 

and the spin moment of Fe influenced by the interface Cr layer also improved slightly. 

According to equation 3.3, the value of the spin to orbital ratio is in direct proportion to 

the orbital moment and inversely proportional to the spin moment, so from the 0 ML to 

5 ML Cr interlayer, the spin to orbital ratio of Fe atoms has the same tendency with the 

orbital moment, while from the 5 ML to 20 ML Cr interlayer, there is a small decrease 

caused by the enhancement from the spin moment of Fe atoms. 

The tendency charts for the orbital moment and spin moment of Cr atoms are shown in 

Figure 5.17(a) and (b), respectively. From 0.1 ML to 0.2 ML, the Cr atoms in the 

chemical compound layer indicated a ferromagnetic property, so the values of the 

orbital moment are positive. From 0.5 ML to 20 ML, those values are negative. Due to 

the increased thickness of the Cr interlayer, the antiferromagnetic property of Cr atoms 
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was enhanced until 5 ML, so the values of both the spin moment and orbital moment 

dropped sharply. When the Cr interlayer was at 5 ML, the value of the orbital moment 

of Cr was similar to previous research[160]. Then, when the thickness of Cr reached 15 

ML and 20 ML, the orbital moment moved around -0.087𝑢𝐵, which is closer to the 

value for bulk Cr.  

The spin moments of Cr atoms for several monolayer films and the bulk films display 

an enormous difference. The spin moment for bulk films are obviously higher than the 

several monolayer films, so from 5 ML to 20 ML, the spin moment of Cr atoms was 

enhanced. Comparing the 0.1 ML and 0.2 ML Cr interlayer with the other Cr structure 

researches, the FeCr alloy structure or the Fe-Cr multilayers structure can be ruled out 

in this layer[177, 190]. There are two major differences: 1) In this layer, the Fe and Cr 

elements both indicate two different valence states, but in other structures, there is only 

one valence state from XMCD observation. 2) In this layer, the values of both spin and 

orbital moments for Cr and Fe atoms are significantly larger than other structures. We 

suggest 0.1 ML or 0.2 ML Cr interlayer mixed with the As atoms and Fe atoms on the 

interface, which form a kind of Cr-Fe-As chemical compound layer. 
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5.2.6 Summary of Findings 

In conclusion, we have investigated UMA, chemical compound layer and the element 

specific spin and orbital moments in Fe-Cr-GaAs (100) samples with an Au capping 

layer using magnetisation measurement, RHEED measurement, XMCD measurement 

and sum rule calculation. The result obtained by VSM measurement confirmed that the 

UMA decreased with increasing Cr interlayer, and we found a 10% enhancement when 

the thickness of Cr interlayer is around 0.2 ML. The RHEED measurement reveals that 

when Cr reaches 5 ML on GaAs (100) substrate, it goes from being an island film to a 

continuous film, and shows a Cr single crystalline structure. XMCD measurements 

present two results: firstly, a chemical compound layer is observed when the thickness 

of the Cr interlayer is 0.1 or 0.2 ML, which results in the Cr magnetic property 

changing from antiferromagnetic to ferromagnetic; secondly, this compound layer 

increases the spin and orbital moments for both Cr and Fe atoms, and Cr and Fe atoms 

have two valence states in this layer. 

In the final section the origin of UMA was discussed. The conclusion from section 5.1 

was confirmed. The key point is the chemical compound layer. In this layer, Cr atoms 

transferred from being antiferromagnetic to being ferromagnetic, and there was a 

stronger exchange coupling on the interface with the Fe layer and GaAs substrate. The 

orbital and spin moment of Fe atoms are increased in this layer, and UMA is slightly 

enhanced in this process. 

These results would be useful for understanding the fundamental Cr element magnetic 

properties, which could be important for subsequent researchers as well as for 

applications of this chemical compound layer in the next generation of spintronic 

devices such as Spin-FET. 
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Chapter 6 Fe/Au/GaAs system  

6.1 Introduction 

As from the above studies of CoFeB/GaAs, CoFeB/MgO and Fe/Cr/GaAs, the orbital 

moments play an important role in determining the magnetic anisotropies. The heavy 

metals, such as Au, have a large spin-orbital coupling. If one can introduce the Au to 

the magnetic interface, the orbital moments and thus the magnetic anisotropies of the 

magnetic hetero-structures might be changed. The UMA might be influenced by the Au 

interlayer, and it also can confirm the previous result about the origin of UMA. 

At the same time, the synthesis and structural studies of various Fe-bimetal alloys have 

spurred renewed interest in possible applications for recording media, magnetic 

microsystems and biomedicines. Recently, pure gold materials doped with iron have 

been extensively studied because of their unique physical and chemical 

properties[193-199]. Furthermore, there has been considerable recent attention about 

Fe-Pt alloys have because of their various technological applications, including data 

storage[200]. The magnetic and crystallographic properties of bulk alloys and 

nanoscale particles have also been studied[201, 202]. 

FeAu is recognized as a potential medium due to its large magneto-crystalline 

anisotropy via compositional and dimensional tuning[203, 204], so understanding the 

structures and their magnetic properties are necessary for improving the functions in 

application. Previous studies indicate that the room-temperature bulk structure and 

magnetic properties of FeAu adopt cubic[205] and tetragonal structures[206] 

respectively.  

In order to tune the orbital moments and also understand the ultrathin FeAu structure 

and magnetic properties, we have performed VSM, RHEED and XMCD measurements 
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on the films, using different thicknesses of ultrathin Au layers between the 10 ML Fe 

and GaAs (100) substrate. 

6.2 Sample Growth 

10 ML Fe films with different thicknesses of Au interlayer were grown on GaAs (100) 

substrates. Before deposition on the Au interlayer, the substrate surface was etched and 

cleaned. Firstly, the contaminants of the substrate surface were removed using acetone, 

iso-propyl alcohol (IPA) and deionized water. The second step was to remove the oxide 

layer by immersing the substrate in an H2SO4/H2O2/H2O (4:1:1) solution for 45 seconds. 

Both steps were performed in a level 100 clean room to prevent any dust particle 

contamination. The third step was to create a flat surface for film deposition. The 

etched substrate was immediately transferred into a MBE chamber with a base pressure 

of 2.3 × 10-10 mbar, before the substrate was treated with ion-milling before annealing. 

It should be noted that low energy Argon ion beams were sputtered onto the substrate 

surface for 30 minutes, so that they gently removed a thin layer of surface material, 

exposing the virgin layer of the substrate. The penultimate step is annealing: the 

substrate was required to be annealed at 480◦C (at an annealing pressure lower than 8 

× 10-9 mbar) for 60 minutes in order to further remove natural oxides and create 

surface reconstruction. The surface is allowed to cool to room temperature prior to film 

growth. The Au interlayer and 10 ML Fe layers were grown by the two different source 

evaporators in the MBE system at a pressure lower than 2.1× 10-9 mbar. Finally, a 3 nm 

Cr capping layer was deposited to prevent the 10 ML Fe film from oxidisation. 

6.3 RHEED Patterns and Analysis 

Since the substrates or samples are located within an UHV environment, the most 

effective mechanism for examining the surface quality and morphology in our system 

is the RHEED pattern. The main advantages of RHEED are that it is in-situ, fast, and 

surface sensitive. An electron gun with a high energy range between 10 and 50 keV 
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provides an electron beam which impinges upon a given sample surface at an angle 

about 1°, and is diffracted on the fluorescent screen. This means detailed surface 

information can be observer from the screen.  

Figure 6.1 shows the RHEED patterns from GaAs (100) substrates, the Au interlayers 

of various thicknesses and 10 ML Fe films. From the RHEED patterns for 10 ML Fe 

films, when the thickness of the Au interlayer is from 0 ML to 0.5 ML, the RHEED 

pattern for Fe films show a single crystalline structure. When the Cr interlayer is from 1 

ML to 2 ML, the RHEED patterns show a combination of single crystalline and 

polycrystalline structures. Finally, when the Au interlayer reaches 5 ML, the 10 ML Fe 

film preformed the fully polycrystalline structure.  

Lattice mismatch is the main reason that the structure formed by the Fe film was 

polycrystalline. The lattice constant of 2.87Å for Fe is almost exactly half that of GaAs 

(5.65 Å), meaning it is easy to form a single crystalline structure on GaAs substrate. 

However, the lattice constant for Au is 4.065 Å – a huge difference when compared to 

GaAs or Fe – meaning that when the Au interlayer grew on the GaAs substrate, the 

lattice mismatch was amplified alongside the increasing thickness of the Au interlayer. 

In addition, when the Au interlayer formed a continuous film, the 10 ML Fe layer 

indicated a polycrystalline structure. The large lattice mismatch between Au and GaAs 

formed a rough surface morphology. As for the 0.2 ML to 0.5 ML Au interlayer 

RHEED patterns, there were a few points on the screen, meaning that the films were 

island films and the surface morphology was rough. As for the 1 ML to 2 ML Au 

interlayer, although the surface remained rough, there were more points on the screen 

and the formation tendency were close to the line (single crystalline structure). Finally, 

the 5 ML Au interlayer formed a single crystalline structure and there was a flat 

continuous film. 
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Figure 6.1 shows the RHEED patterns from GaAs (100) substrates ([01̅1] view), the various 

thicknesses of Au interlayers and 10 ML Fe films which grew on the Au interlayer. The thickness of 

the Au interlayer is from 0ML to 5ML, and the thickness of Fe remains 10ML. 
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6.4 VSM Measurement and Analysis 

The in-plane magnetic hysteresis loops of all the samples were measured with both 

[01̅1](easy axis) and [011] (hard axis) using a Vector Magnetometer Model 10 VSM 

and Vector measurement system at room temperature (300K), as shown in Figure 6.2. 

Since a strong uniaxial magnetic anisotropy field as large as 1790.8 Oe was expected in 

the Cr(3nm)/Fe(10 ML)/GaAs (100) sample along the hard axis, the VSM 

measurement was conducted using a maximum magnetic field of 3000 Oe to ensure 

that all samples were fully saturated. 

All the easy axis loops from Figure 6.2 have a similar shape, which means that the easy 

axis cannot be influenced by the Au interlayer. As can be seen in the hard axis loops in 

Figure 6.2, the saturation field changed according to the varying thickness of the Au 

interlayers. For the 0 ML to 0.5 ML Au interlayers, the values of the saturation field 

along the hard axis were enhanced, while at the 0.5 ML Au interlayer, the saturation 

field achieved its highest value of 1950.6 Oe. This was enhanced by almost 10% 

compared with the sample which did not have an Au interlayer. From 0.5 ML to 5 ML, 

the saturation field decreased from 1950.6 Oe to 59.3 Oe, which is a significant drop. 

When the Au interlayer reached 5 ML, UMA disappeared (easy and hard axis loops 

have a similar shape), thereby confirming the results identified in chapter 5, namely that 

UMA originates via Fe-As chemical bonding. When the interlayer film formed a 

continuous film, the bonding was cut by the interlayer, and so the UMA was blocked.  
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Figure 6.2 VSM hysteresis loops of various Au interlayer thickness (from 0 to 5ML) between GaAs 

(100) substrate and 10 ML Fe. These loops are all measured at room temperature with the 3000 Oe 

magnetic field applied along [011] and [01̅1] (hard axis and easy axis respectively). 
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Figure 6.3 (a) and (b) are the tendency charts for the saturation field and effective uniaxial anisotropy 

constant respectively. 

Table 6.1 The values of the saturation field and effective uniaxial anisotropy constant for various 

thicknesses of Au interlayers between 10 ML Fe single crystalline film and GaAs (100) substrate. 

Sample Saturation field (Oe) 𝐾𝑢
𝑒𝑓𝑓

(𝑘𝐽 𝑚3⁄ ) 

Cr(3nm)/Fe(10ML)/GaAs (100) 1790.8 ± 25.3 196.6 ± 8.2 

Cr(3nm)/Fe(10ML)/Au(0.2ML)/GaAs (100) 1899.9± 25.4 211.3± 6.5 

Cr(3nm)/Fe(10ML)/Au(0.5ML)/GaAs (100) 1950.6± 24.5 229.9 ± 9.6 

Cr(3nm)/Fe(10ML)/Au(1ML)/GaAs (100) 1440.6 ± 25.5 143.5 ± 7.5 

Cr(3nm)/Fe(10ML)/Au(2ML)/GaAs (100) 1050.1 ± 26.4 97.5 ± 8.4 

Cr(3nm)/Fe(10ML)/Au(5ML)/GaAs (100) 59.3 ± 10.5 16.1 ± 9.9 

The value of the UMA field (𝐻𝐾) can be obtained from the saturation field in the hard 

axis direction. Furthermore, the effective uniaxial anisotropy constant (𝐾𝑢
𝑒𝑓𝑓

) can be 

calculated using equation 4.1, which was mentioned in chapter 4. Table 6.1 presents the 

detailed data for the values of the saturation field and the effective uniaxial anisotropy 

constant. The trend-lines for the saturation field and effective uniaxial anisotropy 

constant are shown in Figure 6.3 (a) and (b) respectively. The starting point in this 

project contains similar values for the saturation field and effective uniaxial anisotropy 

constant, with the same sample in Section 5.1. This indicates our growth and 
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measurement equipment are stable and that the experiments are repeatable. Because the 

values of effective uniaxial anisotropy constant are in direct proportion to changes in 

the saturation field, this value has a similar tendency with to the value of saturation field, 

which increased in the Au interlayer from 0 ML to 0.5 ML and which dropped in the Au 

interlayer from 0.5 ML to 5 ML. It is suggested that the reason for the enhancement of 

the saturation field and the effective uniaxial anisotropy constant in the 0 ML to 0.5 ML 

Au interlayer is the kind of FeAu alloy formed on the GaAs (100) substrate. This has 

the effect of slightly increasing the saturation field along the hard axis. Detailed 

discussions on this are presented below in Section 6.5. 

6.5 XMCD Measurements and Analysis 

XMCD measurements were performed at normal incidence to the Cr(3nm)/Fe(10 

ML)/Au/GaAs (100) samples in the I10 station from Diamond Light Source. The 

XMCD spectra were measured at both positive and negative applied fields for Fe atoms. 

The data were collected by a Total Electron Yield (TEY) detector in the analysis 

chamber under a magnetic field of 1T. The samples were measured at a 60-degree angle 

along the perpendicular direction and all in room temperature (300K). 

The XAS and XMCD spectra of Fe 𝐿2 and  𝐿3 edges for 10 ML Fe films with various 

thicknesses of Au interlayers on GaAs (100) substrate are shown in Figure 6.4 from (a) 

to (f). Au atoms have a no-magnetic property, meaning that it is not necessary make an 

XMCD measurement for Au atoms. As regards XAS, 𝑢+ and 𝑢− are the absorption 

coefficients under antiparallel and parallel magnetic fields to the photon incident 

direction. XMCD shows the value of 𝑢+ − 𝑢− and the integrated value from 𝑢+ − 𝑢−, 

data which are used for calculating using XMCD sum rules. According to XMCD sum 

rules, the orbital (𝑚𝑜𝑟𝑏) and spin (𝑚𝑠𝑝𝑖𝑛) magnetic moments and the ratio (𝑚𝑟𝑎𝑡𝑖𝑜) of 

𝑚𝑜𝑟𝑏 to 𝑚𝑠𝑝𝑖𝑛 can be determined from XAS and XMCD spectra using equations from 

3.1 to 3.7, which were described in chapter 3. Following Chen et al[91], the value of 

𝑛3𝑑 for the Fe element of 6.61 was used to calculate all the results. 
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Figure 6.4 XAS and XMCD spectra of Fe atoms at 𝐿2 and  𝐿3 edges in 

Cr(3nm)/Fe(10ML)/Au/GaAs (100) from (a) to (f): (a), (b), (c) are the thickness of Au interlayer for 

0ML, 0.2 ML and 0.5 ML respectively. (d), (e), (f), are the thickness of Au interlayer for 1 ML, 2 ML 

and 5ML respectively. 
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Figure 6.5 presents black and red lines which show the orbital moment and spin moment of Fe atoms 

with different thicknesses of Au interlayers. The green line gives the values for the orbital to spin ratio. 

Table 6.2 indicates the orbital moment, spin moment and orbital to spin ratio of Fe atoms from various 

samples in units of 𝑢𝐵/atom. 

Sample 𝑚𝑜𝑟𝑏(𝑢B) 𝑚𝑠𝑝𝑖𝑛(𝑢B) 𝑚𝑟𝑎𝑡𝑖𝑜(𝑢B) 

Cr(3nm)/Fe(10ML)/GaAs (100) 0.215±0.005 1.58 ±0.04 0.136 

Cr(3nm)/Fe(10ML)/Au(0.2ML)/GaAs (100) 0.219±0.004 1.43±0.02 0.153 

Cr(3nm)/Fe(10ML)/Au(0.5ML)/GaAs (100) 0.230±0.004 1.37±0.01 0.167 

Cr(3nm)/Fe(10ML)/Au(1ML)/GaAs (100) 0.153±0.004 1.58±0.03 0.096 

Cr(3nm)/Fe(10ML)/Au(2ML)/GaAs (100) 0.151±0.005 1.57±0.01 0.096 

Cr(3nm)/Fe(10ML)/Au(5ML)/GaAs (100) 0.102±0.006 1.59±0.01 0.063 

Fe90Au10 alloy[207] 0.243±0.003 1.63±0.02 0.149 

Fe/Au multilayers[208] 0.108±0.002 1.92±0.02 0.056 

Bulk bcc Fe[91] 0.085 1.98 0.043 

The values for the orbital moment, spin moment and orbital to spin ratio of Fe atoms are 

shown in Table 6.2, and the values for FeAu alloy, Fe/Au multilayers and bulk Fe films 
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are also included in this table for comparison purposes. The tendency charts for the 

orbital moment, spin moment and spin to orbital ratio of Fe atoms are shown in Figure 

6.5, using black, red and green lines respectively. With the exception of the 0.2 and 0.5 

ML Au interlayer, the spin moment of Fe retains a very similar value, which is slightly 

lower than the value for bulk bcc structure Fe film (1.98𝑢𝐵). Since the 3 nm Cr capping 

layer was used for all samples, and the Cr layer decreased the spin moment, the Fe spin 

moment decreased to 1.58𝑢𝐵 for all samples which did not have 0.2 and 0.5 ML Au 

interlayer samples.  

The red line in Figure 6.5 shows that the spin moment experienced a sharp decrease in 

the Au interlayer from 0 to 0.5 ML, before it reversed for the 0.5 to 1 ML Au interlayer. 

The Fe/Au multilayer film had a similar spin moment value (1.92𝑢𝐵) as the bulk Fe 

film, while the value for the FeAu alloy film was much lower, meaning that the 

formation of the FeAu alloy decreases the Fe spin moment. Because the Cr capping 

layer also influenced the Fe spin moment, so the values of the spin moment for 0.2 and 

0.5 ML Au interlayer films are even lower than 1.63𝑢𝐵. This might suggest the 0.2 and 

0.5 ML Au formed the FeAu alloy with Fe atoms on the surface, and that this alloy 

layer decreased the spin moment of Fe atoms.  

Comparing the tendency for the spin moment, orbital moment and UMA, one result can 

be confirmed: the spin moment has no relationship to UMA, but the orbital moment has 

a strong connection with UMA. The orbital moment of Fe atoms was enhanced from 0 

to 0.5 ML Au interlayer, and then dropped for the 0.5 to 5 ML Au interlayer. For the 1 

to 5 ML Au interlayer, the orbital moment of Fe atoms dropped by increasing the Au 

interlayer. If the Fe polycrystalline structure became increasingly obvious on the 

RHEED screen, the Fe orbital moment decreased sharply, especially when the 

thickness of the Au interlayer was 5 ML (the Au interlayer was a single crystalline 

structure while the Fe film was a fully polycrystalline structure), the orbital moment of 

Fe significantly decreased and was at its lowest value (0.102𝑢𝐵).  
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This result also confirmed our previous conclusion in chapter 5: when the interlayer 

film formed the continuous film, UMA was fully blocked, and that since the origin of 

UMA is from the chemical bonding between Fe and As atoms, if this bonding is cut by 

the appropriate thickness of interlayer, UMA would not be formed in the Fe-GaAs 

system. In addition, compared to the sample without the Au interlayer, the 0.5 ML Au 

interlayer was enhanced by 7%, and then as the thickness of Au interlayer increased, 

the orbital moment decreased significantly. The values of the Fe orbital moment in the 

samples with the 0.2 and 0.5 ML Au interlayer are close to the value of the FeAu alloy 

(0.24𝑢𝐵), and almost double the value of the Fe/Au multilayers (0.11𝑢𝐵), which could 

rule out the Fe/Au multilayers structure formed on the GaAs surface. From Figure 6.4, 

it can be seen that there is only one peak on the XAS spectra of Fe atoms for both 𝐿2 

and  𝐿3 edges, so the possibility of a chemical compound layer can be ruled out. We 

suggest that the 0.2 and 0.5 ML Au formed the FeAu alloy with Fe atoms on the GaAs 

(100) surface, and this FeAu alloy enhanced the orbital moment of Fe atoms but 

decreased the spin moment of Fe atoms. 

According to equation 3.3, the value of the spin to orbital ratio is in direct proportion to 

the orbital moment and inversely proportional to the spin moment, so for the Au 

interlayer from 0 ML to 5 ML Au, the spin to orbital ratio of Fe atoms has the same 

tendency as the orbital moment, meaning the FeAu alloy has a stronger spin-orbital 

exchange coupling than the ultrathin Fe film on GaAs (100) substrate. 

6.6 Summary of Findings 

In conclusion, we have investigated UMA and the element specific spin and orbital 

moments for Fe atoms in Fe/Au/GaAs (100) samples with a Cr capping layer using 

magnetisation measurement, RHEED measurement, XMCD measurement and sum 

rule calculation. RHEED patterns indicate the surface morphology for Au atoms grows 

on the GaAs substrate and 10 ML Fe layer on the various Au interlayer. We found that 

large lattice constant Au atoms grow on the GaAs (100) substrate and the sample 
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surface is rough, and formed a single crystalline structure at 5 ML; the Fe RHEED 

patterns show the single crystalline structure from the 0 to 0.5 ML Au interlayer, while 

when the thickness of the Au interlayer is 1 or 2 ML, the Fe RHHED pattern indicates 

the combination of a single crystalline and polycrystalline structure. Finally, when the 

Au interlayer is 5 ML, the RHEED patterns for Fe yielded a fully polycrystalline 

structure. The result obtained by VSM measurement found that UMA increased when 

the thickness of the Au interlayer is 0.2 or 0.5 ML, and then decreased when the Au 

interlayer was thicker. XMCD data evidenced the 0.1 and 0.2 Au interlayer formed an 

FeAu alloy on the GaAs (100) surface, and this FeAu alloy interlayer enhanced the 

orbital moment of Fe atoms but decreased the spin moment. 

The origin of UMA was discussed in the previous chapter, and the conclusions from 

Section 5.1 and 5.2 are also confirmed in this chapter. One aspect of particular note is 

that the FeAu alloy might be formed in the interlayer. In this alloy layer, Fe atoms had 

stronger exchange coupling on the interface with the Fe layer and GaAs substrate. The 

values of the Fe orbital moment are increased in this layer, which also resulted in the 

slight enhancement of UMA. Compared with Cr interlayer system, the Cr interlayer 

will decrease the spin moment of Fe, so the spin-orbital ratio got increased, and the very 

thin Cr interlayer (0.1 or 0.2 ML Cr) formed a kind of chemical compound layer with 

Fe and As, and this compound layer slightly increased the UMA and spin to orbital 

coupling. 

These results will be useful for understanding the interface interaction from the heavy 

metal element interlayer and the influence from Fe-bimetal alloys on the UMA, which 

is necessary for improving the functions in magnetic recording applications. 
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Chapter 7 Conclusions and Future Work 

7.1 Conclusions 

In my thesis, I have studied the growth, structure and magnetic properties of several 

magnetic heterostructures with GaAs and MgO. The main conclusions drawn from the 

results for each system are as follows: 

CoFeB /GaAs (100) 

The CoFeB sample was prepared using magnetron sputtering growth on the GaAs (100) 

substrate. The in-plane and out-of-plane magnetic properties were studied using VSM 

and polar MOKE measurements respectively. The results obtained using VSM and 

MOKE measurements confirmed that UMA can achieve as large as 270 Oe, which is 

among the largest UMA observed in any CoFeB amorphous alloy.  

The XAS and XMCD data were systematically analysed using integration and the sum 

rules approach. The processed data gave an indication of the magnetic orbital and spin 

moments of both the Fe and Co elements within the film. XMCD measurements 

revealed that the UMA is correlated with a strong spin-orbit coupling related to the 

enhanced orbital to spin moment ratios of both Fe and Co in the CoFeB. More 

importantly, the spin moment of the Co was found to remain as large as that of the 

crystalline hcp Co, and the orbital moments were enhanced by more than 370%, 

suggesting the dominant contribution of the spin-orbit coupling of the Co atoms to the 

UMA in the CoFeB/GaAs (100) amorphous film. 

TEM cross section inspections indicated that the film structure was as expected, and 

that the interface between the CoFeB film and GaAs substrate were clear. The surface 

roughness was kept at a minimum, and there was no strong sign of deep inter-fusion 

between the two materials. The images also showed no evidence of shape anisotropy 

since the film was clearly amorphous. The one remaining reason for its large UMA 
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behaviour was presumably that it came from interface bonding. This also matches 

previous research results published elsewhere. We conclude that this sample 

composition and preparation technique can be used to better control, and indeed 

enhance, the UMA interface. Ultimately this will enable the fabrication of more 

efficient spintronic devices.  

CoFeB/MgO structure 

The CoFeB/MgO structure samples on Si (001)/SiO2 substrate were prepared by DC 

and RF sputtering evaporators. Both in-plane and out-of-plane magnetic hysteresis 

loops were measured using VSM measurement. The PMA effect was found on sample 

A (Ta (5)/MgO (3)/CoFeB (1.2)/Ta (5)) and B (Ta (5)/CoFeB (1.2)/MgO (3)/CoFeB 

(1.2)/Ta (5)) whilst there was no PMA effect in this film without the MgO layer in 

sample C (Ta (5)/CoFeB (1.2)/Ta (5)). The spin moment and orbital moment of both 

the Fe and Co elements were measured using XMCD and calculated by the sum rule. 

XMCD measurement reveals that the PMA is correlated with a strong spin-orbital 

coupling of Co atoms related to the enhanced orbital to spin moment ratios of Co atoms 

in the CoFeB/MgO structure. More importantly, comparing the samples which have a 

PMA effect with those which do not, the values of the Co orbital moment is almost 

double the sample with PMA, and the orbital moment of Fe atoms show no significant 

change. This suggests the dominant contribution to PMA in the CoFeB/MgO structure 

is the orbital moment of Co atoms. We conclude that the PMA is correlated with the 

orbital moment of Co, and Co atoms play the important role on the interface. This 

discovery would improve the fabrication of electronic device based on MRAM 

structure. 

Cr/Fe/Cr/GaAs (100) 

Various thicknesses of Cr interlayer were grown between the 10 ML Fe layer and GaAs 

substrate by the MBE system. Through the Cr RHEED patterns, the single crystalline 

structure of Cr was shown when the thickness of Cr was at 5 ML, which formed a 
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continuous film. As the Fe and Cr have a similar lattice constant, so the lattice 

mismatch between Fe and Co atoms would not influence the structure of Fe 10 ML, 

meaning that all Fe layers presented a single crystalline structure. 

Through the VSM results, when the Cr interlayer was from 0.5 ML to 2 ML, the values 

of UMA decreased significantly. When the Cr interlayer was from 5 to 20 ML, the 

saturation field along the hard axis moved around 56 Oe, and the UMA disappeared. In 

particular, when the Cr interlayer was 5 ML, the Cr interlayer formed a continuous film 

and cut the bonding between the Fe and As atoms, meaning it fully blocked UMA from 

the 5 ML Cr interlayer. 

The XMCD measurements indicate two points: firstly, that the Cr interlayer and Cr 

capping layer can adjust the Fe spin moment because of the symmetry breaking; 

secondly, that UMA is correlated with orbital moment and spin to orbital ratio, which is 

due to the thickness of the Cr interlayer. It has no relationship with the spin moment of 

Fe. These results refer to the origin of UMA. It appears that the chemical bonding 

between As and Fe atoms is the major reason for UMA, and if this bonding were to be 

cut by the interlayer, UMA would not exist. This evidence of the origin of UMA is from 

the interface bonding rather than the lattice mismatch related film stress. 

In conclusion, the origin of UMA in Fe-GaAs system is from interface interaction or 

interface chemical bonding between Fe and As atoms. This important result would be 

helpful for understanding the basic knowledge of Fe-GaAs system and enable the 

fabrication of electronic device based on spinFET structure.  

Au/Fe/Cr/GaAs (100) 

The Au/Fe/Cr/GaAs (100) samples were prepared using an MBE system. There were 

three different sources in the evaporator, with the various thicknesses of interlayers 

deposited by a Cr source. The results from RHEED were very similar to the 

Cr/Fe/Cr/GaAs (100) system: Cr formed a continuous film with a single crystalline 
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structure at 5 ML, while the structure for the 10 ML Fe films remained as a single 

crystalline structure. The results obtained using VSM measurement confirmed the 

results in the Cr/Fe/Cr/GaAs (100) system, namely that the UMA was decreased when 

the Cr interlayer increased (from 0.5 to 20 ML), and when the thickness of Cr was 5ML, 

the UMA was fully blocked. When the thickness of the Cr interlayer was around 0.2 

ML, a 10% increase in UMA was found in the film. 

Through XMCD measurement, there were two different valence states on both Fe and 

Cr atoms from XAS spectra when the Cr interlayer was 0.1 or 0.2 ML, meaning the 

chemical compound layer formed on the GaAs surface. In this chemical compound 

layer, the magnetic property of Cr changed from being antiferromagnetic to 

ferromagnetic. The spin and orbital moments for both Cr and Fe atoms increased in this 

layer. 

The origin of UMA has been discussed in the Cr/Fe/Cr/GaAs (100) system. The 

conclusion concerning the Cr/Fe/Cr/GaAs (100) system can also be confirmed in this 

system. The more interesting point concerns the chemical compound layer. In this layer, 

Cr atoms transformed from being antiferromagnetic to ferromagnetic, and had a 

stronger exchange coupling on the interface. The orbital and spin moment of Fe atoms 

were increased in this layer, and the UMA was slightly enhanced in the process. We 

conclude that the chemical compound layer was found on the interface. This chemical 

compound layer enhanced UMA, and in this process, the magnetic property of Cr 

interlayer changed from antiferromagnetic to ferromagnetic. This result will be useful 

for understanding the magnetic property of Cr element in Fe-GaAs system.  

Cr/Fe/Au/GaAs (100) 

The 10 ML Fe films with different thicknesses of Au interlayer were grown on GaAs 

(100) substrates by an MBE system equipped with a RHEED gun. Due to the large 

lattice constant of Au atoms, the RHEED patterns for the Au interlayer from 0.2 to 2 

ML were rough, and when the Au interlayer reached 5 ML, the RHEED pattern 
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indicated a single crystalline structure, meaning that the Au had already formed a 

continuous film at 5 ML. The RHEED patterns for the Fe layer remained as a single 

crystalline structure for the 0 to 0.5 ML Au interlayer, while from 1 to 2 ML, the 

combination of a single crystalline and polycrystalline structure was displayed on the 

RHEED screen. When the Cr interlayer reached 5 ML, the Fe layer formed a fully 

polycrystalline structure. 

Through VSM measurement, UMA increased when the thickness of the Au interlayer 

was 0.2 or 0.5 ML, and then decreased by the thicker Au interlayer. When the Au 

interlayer reached 5 ML, the UMA and effective uniaxial anisotropy constant received 

the smallest values. 

XMCD data provided evidence that the 0.1 and 0.2 Au interlayer formed an FeAu alloy 

on the GaAs (100) surface, and this FeAu alloy interlayer enhanced the orbital moment 

of Fe atoms but decreased the spin moment. In the FeAu alloy layer, Fe atoms had a 

stronger exchange coupling on interface. The values of the Fe orbital moment were 

increased in this layer, which influenced the enhancement for UMA. In conclusion, 

there is an FeAu alloy which might have formed on the interface, and this alloy 

structure may have slightly increased the UMA by an interface interaction with the 

GaAs (100) substrate. This result gives the influence of alloy layer on the 

semiconductor substrate, and it will be helpful for the research of interface magnetic 

properties with alloy structure.   

In summary, the CoFeB/GaAs(100) and CoFeB/MgO systems evidenced the Co atoms 

play important role on the interface, and Co atoms have a large influence on both UMA 

and PMA in CoFeB system. Ultimately this will enable the fabrication of next 

generation electronic devices based on the MRAM structure. In the later three systems 

(Cr/Fe/Cr/GaAs(100), Au/Fe/Cr/GaAs(100) and Cr/Fe/Au/GaAs(100)), they all 

evidenced the UMA in Fe-GaAs system is from the Fe-As chemical bonding, if an 

interlayer formed a continuous film and cut this bonding, the UMA would not have 
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existed. In the Au/Fe/Cr/GaAs(100) system, the Fe-Cr-As chemical compound 

interlayer was found in this system and enhanced the UMA; in Cr/Fe/Au/GaAs(100) 

system, the FeAu alloy interlayer might form on the GaAs substrate, and this alloy 

structure may have enhanced UMA. From results of these three systems, it could be 

seen that the interface is very important for the UMA, and with the different structures, 

the UMA was influenced significantly. Research of the UMA in Fe-GaAs system 

would be very useful for fabrication of electronic devices based on spinFET structure. 

7.2 Future Work 

Further to the conclusions drawn in this thesis, there are still many open questions. For 

further research purposes, the following ideas are suggested as consideration. 

For the XMCD measurements of CoFeB on the GaAs (100) sample, a further 

measurement could be done in order to strengthen the results. The samples could be 

measured at a much larger magnetic field, one that is big enough to reach the saturation 

point. The spectra taken at that point would give confirmed data to calculate the orbital 

and spin magnetic moments of each element. 

For the CoFeB/ MgO structure researches, more samples could be designed for 

comparing, for example Ta(5)/MgO(3)/CoFeB(1.2)/MgO(3)/Ta(5), 

Ta(5)/CoFeB(0.6)/MgO(1.2)/CoFeB(0.6)/Ta(5) and 

Ta(5)/CoFeB(0.4)/MgO(1.2)/CoFeB(0.8)/Ta(5). These multilayer samples have very 

interesting combinations which could help us research the PMA effect from the 

CoFeB/MgO structure more deeply. 

For the Au/Fe/Cr/GaAs (100) and Cr/Fe/Cr/GaAs (100) systems, more TEM images 

could be measured for these samples to strengthen the results, and more specific sample 

structure and morphology could be compared to the RHEED results. In the 

Au/Fe/Cr/GaAs (100) system, the XPS (X-ray photoelectron spectroscopy) 

measurement could be done for 0.1 and 0.2 Cr interlayer samples, which could analyse 
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the specific valence states for Cr and Fe atoms, thus the type of compounds layer could 

be confirmed from the results. In the Au/Fe/Cr/GaAs (100) system, it is better to get the 

STM (scanning tunnelling microscope) images in a vacuum chamber when growing the 

Cr interlayer from 0 to 5 ML. This could help us understand the formation process of a 

Cr single crystalline structure, and would be very useful for researching the Cr atoms on 

the GaAs surface. 

For the Cr/Fe/Au/GaAs (100) system, there are some measurements which could be 

undertaken to strengthen the results. More Au interlayers of different could be inserted 

between Fe and the GaAs (100) substrate, such as 0.1, 0.3, 3, 7, 10, 15 ML Au 

interlayers. These Au interlayers could let us study the generated and disappeared 

conditions of the FeAu alloy and provide clearer results. TEM measurement could also 

be undertaken on this project, with TEM images providing evidence concerning the 

formation of FeAu alloy structure on the GaAs surface. 

Last but not least, since all the experiments are heavily dependent on the performance 

and condition of the equipment, any improvements done to them are welcome so as to 

ease the difficulties of the operator. Powerful processing capabilities, the reliable and 

reasonable design of the hardware and a clearer design of user interface could further 

improve the lab efficiency, thereby bringing more opportunities for greater discoveries. 
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List of Abbreviations 

AFM   Atomic Force Microscopy 

BCC Bulk centred cubic 

BOA   Bond orientational anisotropy 

CVD Chemical Vapour deposition 

CIP    Current in plane 

CPP    Current perpendicular to plane 

DC     Direct current 

DI  De-ionized (water) 

DFT    Density functional theory 

DMO   Dilute magnetic oxides 

DW  Domain Wall 

EA    Easy axis 

FCC   Face Centred Cubic 

FET Field Effect Transistor 

FM  Ferromagnetic 

GMR Giant Magneto resistance 

HA    Hard axis 

HV    High Voltage 

HM  Half-Metallic 
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HCP   Hexagonal close packed 

IC     Integrated circuits 

IT  Information Technology 

IPA  Iso-Propyl Alcohol 

LED Light Emitting Diode 

LEED Low-Energy Electron Diffraction 

MCA   Magnetocrystalline anisotropy 

MTJ    Magnetic tunnel junction 

MBE Molecule Beam Epitaxy 

MOKE Magneto-Optical Kerr Effect 

ML  Monolayer 

MR  Magneto resistance 

PLD Pulse Laser Deposition 

PIPS   Precision ion polishing system  

RHEED Reflection High-Energy Electron Diffraction 

RAM Random Access Memory 

RT  Room Temperature 

SC    Semiconductor 

SQUID Superconducting Quantum Interference Device 

STT   Spin transfer torque 
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STM   Scanning tunnelling microscope 

TM    Transition metal 

TEM Transmitting Electron Microscope 

TSP  Titanium Sublimation Pumps 

TEY   Total electron yield 

TMR Tunnel Magneto resistance 

UHV Ultra-High Vacuum 

VSM Vibrating Sample Magnetometer 

XAS X-ray Absorption Spectra 

XPS   X-ray photoelectron spectroscopy 

XMCD X-ray Magnetic Circular Dichroism 
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