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Abstract

Speaker recognition technology is becoming more available to forensic speech

analysts to help to arrive at conclusions around how likely the speech in mul-

tiple recordings was produced by the same speaker. However, there is not

currently a suitable technological tool that could assist with speaker profil-

ing tasks (i.e. tasks where we wish to deduce information about an unknown

speaker). Accent recognition technology could play a role in speaker profiling

tasks. This thesis therefore presents numerous automatic accent recognition

experiments that have been motivated by forensic applications.

This thesis conducts a detailed examination of one automatic accent recog-

nition system in particular, the York ACCDIST-based automatic accent recog-

nition system (the Y-ACCDIST system). It is trained to assign an accent label

to a speaker’s speech sample. Unlike other accent recognition system architec-

tures, Y-ACCDIST takes a segmental approach by forming models of speakers’

accents using representations of individual phonemes. Implementing a segmen-

tation phase comes at a practical cost, but it is expected that Y-ACCDIST’s

segmental approach captures a more detailed reflection of a speaker’s accent

than other accent recognition systems. When classifying speech samples into

one of four categories, Y-ACCDIST achieved a recognition rate of 86.7% cor-

rect, while the best-performing text-independent system obtained 47.5%.

This thesis also shows Y-ACCDIST’s performance on spontaneous speech

data. On a three-way classification task on Northern English accents, we wit-

ness a recognition rate of 86.7% correct. Additionally, we achieved 63.1%

correct when classifying recordings into one of seven non-native English cate-

gories. The latter task is also a demonstration of Y-ACCDIST’s capabilities

on telephone data.
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Introduction

Thanks to a combination of court rulings (e.g. Daubert v Merrell Dow Phar-

maceuticals [1993]) and academic literature (e.g. Saks and Koehler (2005)), we

no longer take a forensic expert’s testimony at face value. There has been a

change in attitude towards how we view evidence presented by an expert wit-

ness and, instead, we are much more likely to question the methods he or she

has used. This comes under the so-called “paradigm shift” in forensic science

(Saks and Koehler, 2005: 283; Kuhn, 1962). Some forensic sciences are more

advanced than others in the methods that they standardly use, and which are

accepted by the court. DNA typing, for example, has well-established meth-

ods and technologies that are now widely accepted by judicial systems, albeit

after a lengthy course of scrutiny (Jobling and Gill, 2004).

The area of forensic speech science, on the other hand, has not advanced

in the same way as DNA typing. Forensic speech science is the forensic sub-

discipline that is largely concerned with speech recordings when they occur

as evidence in a case. Forensic speaker comparison cases make up the ma-

jority of a forensic speech analyst’s workload (French, Harrison, Kirchhübel,

Rhodes and Womald, 2017). These are cases where we have an unknown

speaker’s speech sample (the questioned sample) and a suspect sample (such

as a recording of a police interview). The objective is to compare these speech
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samples to draw conclusions about whether the speech in the two recordings

was produced by the same speaker or not (Nolan, 1983). Automatic speaker

recognition technology is becoming more available to assist with this sort of

forensic analysis, but it is not currently accepted in the same way as DNA typ-

ing methodology. A linguistic-acoustic approach (Foulkes and French, 2012),

that involves a significant manual role by the forensic analyst, is very much still

a large part of the forensic speech science subdiscipline. Because of the vari-

able nature of speech evidence, this is likely to continue to be the case, but we

cannot ignore the potential methodological advantages that technology could

bring to forensic speech science. Technology could contribute more objective

and testable qualities to forensic speech analysis, which are favourable prop-

erties within forensic science, and ones that could complement those of the

linguistic-acoustic approach.

While automatic speaker recognition technology is finding its feet within

the forensic domain, speaker comparison tasks are not the only type of task

that forensic speech scientists are asked to conduct. Forensic science, by its

unpredictable nature, presents a whole range tasks to an analyst. Another type

of task is speaker profiling. This is where we have a recording of an unknown

speaker and the aim is to extract information about that speaker, such as age,

geographical origin, etc. This is an appropriate analysis when we perhaps do

not have a suspect (and therefore no suspect recording) to compare against,

and we are simply trying to narrow down the pool of potential suspects (Watt,

2010). A typical scenario for this might be a ransom telephone call made by

an unknown speaker, for example. The task of speaker profiling is elaborated

on with specific case examples in Chapter 1 below.

At the centre of this thesis is the forensic speaker profiling application.

Currently, there has been little research on possible technologies for this kind of
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task, unlike automatic speaker recognition technology for speaker comparison

cases. As a result, there is not a technological option for this kind of case, and

so speaker profiling is solely conducted through a linguistic-acoustic approach.

The key motivation behind this thesis is to work towards an additional tool

for forensic speech analysts to use in some of their casework involving speaker

profiling tasks. This thesis turns to automatic accent recognition technology

to explore this prospect.

The bulk of automatic accent recognition research has targeted more gen-

eral speech technology applications, not necessarily considering forensic case-

work. The most common target application is automatic speech recognition

(Humphries and Woodland, 1997; Zheng et al, 2005; Vergyri, Lamel and Gau-

vain, 2010). We are more likely to achieve a lower error rate if we have cor-

rectly estimated the speaker’s accent category before the system attempts to

recognise the spoken content (Najafian, DeMarco, Cox and Russell, 2014). Au-

tomatic accent recognition has therefore often been considered as a step before

automatic speech recognition takes place. The focus on the speech recognition

application has meant that past automatic accent recognition research design

has catered for this cause. Research has not necessarily addressed the kinds of

challenges encountered in forensic casework. Nevertheless, automatic accent

recognition technology has the testable, repeatable and data-driven properties

that methodologies in the forensic sciences should aim for. These are ideal

methodological traits that all forensic sciences should move towards, in par-

allel with the change in attitude by criminal justice systems (as promoted by

the Home Office Forensic Science Regulator’s Code of Practice (Tully, 2016)).

This thesis is therefore devoted to considering automatic accent recognition

technology for forensic casework.

One particular automatic accent recognition system will be in focus through-
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out this thesis, the York ACCDIST-based automatic accent recognition sys-

tem (the Y-ACCDIST system). The Y-ACCDIST system is based on the

ACCDIST metric (Huckvale, 2004). Y-ACCDIST is a development on past

ACCDIST-based systems, in that Y-ACCDIST is designed to be able to pro-

cess spontaneous speech, whereas ACCDIST-based systems in past research

(Huckvale, 2004, 2007; Hanani, Russell and Carey, 2013) have only been able to

process controlled speech data in the form of reading passages or read prompts.

Crucially, past ACCDIST-based systems have required the spoken content of

unknown speakers to match exactly that of the training speakers. Obviously,

this kind of data constraint is not compatible with forensic applications. Y-

ACCDIST was therefore originally developed in Brown (2014) to test whether

we can overcome this limitation without losing the elegant modelling process

an ACCDIST-based approach offers. It is a segmental approach that takes into

account the specific realisations of speech segments that we expect embodies a

detailed representation of a speaker’s pronunciation system, more than other

system architectures. The details of Y-ACCDIST’s inner workings and how it

compares with other types of system are presented in Chapter 2. Because of

the seemingly fine-grained model of accent Y-ACCDIST forms, it is expected

that Y-ACCDIST shows promise for forensic applications. Y-ACCDIST is

therefore carried through the entirety of this thesis (after a comparison with

other types of accent recognition system), and all research questions are asked

of this specific system.

Research Objectives

As indicated above, the overarching goal of this thesis is to further test accent

recognition technology with a view to using it for forensic applications. This
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thesis breaks this overarching aim down into the following objectives:

1. Test and evaluate a number of different automatic accent recognition

system architectures on a dataset of fairly similar accents.

2. Compare automatic accent recognition performance across datasets which

present different challenges that are of relevance to the forensic domain.

3. Consider what unknown speech samples should contain to be accurately

analysed by an automatic accent recognition system.

4. Apply conclusion frameworks that are widespread across the forensic

sciences.

5. Explore whether we can transfer a novel accent recognition system ar-

chitecture to speaker recognition tasks.

Thesis Outline

This thesis will take the following steps to investigate whether automatic ac-

cent recognition technology can be implemented in a forensic context:

Chapter 1 is a literature review that gives further details about the foren-

sic speaker profiling application, the current position of technology in forensic

speech science, and a brief introduction to research on accent variation.

Chapter 2 compares six different automatic accent recognition systems on a

dataset of accents that are expected to be fairly similar to one another, rather

than accents that are very different from one other. This angle separates this
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thesis from much of the existing automatic accent recognition research. Auto-

matic accent recognition research tends to try to combat the great variation

within a language, because of the focus on the automatic speech recognition

application, which suffers due to great degrees of pronunciation differences

within the same language. This has meant that corpora of accents that are

very different from one another are usually used for this kind of research.

When considering forensic applications, we are much more interested in dis-

covering how sensitive accent recognition systems can be, and so Chapter 2

evaluates their performance by testing them on a set of similar accents. The

system that achieves the highest recognition rate in these experiments is then

taken further through the thesis for a much more detailed examination of its

performance and potential.

Chapter 3 focusses on another aspect of data that is likely to be useful

to forensic applications. While Chapter 2 presents controlled experiments in

which all the speakers are recorded producing the same reading passage, Chap-

ter 3 shifts the focus to recordings of spontaneous speech by testing it on a

different corpus of accents. This obviously moves us further towards more

forensically-realistic data. Chapter 3 then extends this by artificially degrad-

ing the data to a quality resembling telephony. Again, this is with a view to

explore accent recognition technology using forensically-relevant recordings.

Not only does Chapter 3 observe accent recognition performance under these

data conditions, but it also conducts a deeper investigation into how the sys-

tem models these different data qualities.

Chapter 4 integrates an additional step in the engineering of the accent recog-

nition system: feature selection. The primary aim of feature selection here is
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to improve system performance. We observe the effects of feature selection on

the two corpora used in Chapters 2 and 3 to make a cross-corpus comparison,

discovering whether or not it is appropriate to implement feature selection for

any dataset.

Chapter 5 turns our attention to the test samples, and asks whether the

segmental content of the test sample (i.e. the specific vowels and consonants

it contains) affects its likelihood of being correctly classified by an automatic

accent recognition system.

Chapter 6 looks at automatic accent recognition system performance on sam-

ples of speech produced by non-native speakers of English, testing whether a

system can classify speakers according to their first language. This makes use

of the large National Institute of Standards and Technology Speaker Recog-

nition Evaluation (NIST SRE) datasets. These datasets are much larger than

the datasets used in the thesis up until this point. The size of the dataset

opens up the opportunity to make some small changes to the engineering of

the system. This allows us to more comprehensively understand the effects on

recognition performance. Some engineering modifications are therefore also

tested and presented in this chapter.

Chapter 7 integrates the likelihood ratio framework into the accent recog-

nition system. This framework is used widely across the forensic sciences, as

it moves us away from making “hard decisions” (i.e. outputting a specific ac-

cent label) from an analysis, and instead allows us to make “soft decisions”

(i.e. outputting a likelihood of a speaker belonging to an accent category).

Considering the sensitivities involved in forensic applications, this approach to
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providing conclusions is more favourable.

Chapter 8 explores whether we can repurpose the accent recognition tech-

nology tested in this thesis to speaker recognition tasks, given its success at

distinguishing between very similar accents.

Chapter 9 gives an overall evaluation of the experiments presented in this

thesis, while offering a number of possible avenues for further research.
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CHAPTER 1

Literature Review

1.1 Introduction

This thesis sits at the intersection of speech technology and sociophonetics,

while targeting forensic applications. This chapter will therefore draw on back-

ground literature that covers topics on these three areas, split into three main

parts. The first part (Section 1.2) elaborates on speaker profiling, the specific

application that this thesis aims to provide further assistance with. The sec-

ond part (Section 1.3) will provide a picture of what role technology currently

plays in forensic speech science. This will expose the gap this thesis aims to oc-

cupy in exploring accent recognition technology for forensic applications. The

third and final part (Section 1.4) draws on literature in sociophonetics, which

outlines the challenge that accent variation poses to recognition technology.
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1.2 Speaker Profiling

Speaker profiling is the task of deducing information about an unknown speaker,

usually from a sound recording of him or her. This kind of information might

be a prediction of the speaker’s age, sex or geographical origin. This sec-

tion mainly talks about speaker profiling by trained analysts in the context

of forensic and LADO casework, but there is also some discussion about the

relevance of speaker profiling by non-expert listeners.

1.2.1 Forensic Speaker Profiling

An early and high-profile case that speaker profiling played a part in was the

case of The Yorkshire Ripper, where a serial killer committed murders over a

number of years during the late 1970s and early 1980s. While the culprit was

still at large, a tape recording was posted to the senior investigator of the case.

The recording was a spoken message from an anonymous individual claiming

to be the Yorkshire Ripper. As a dialectologist, Stanley Ellis was consulted to

analyse the recording to determine any identifying properties of the speaker

to help reduce the pool of potential suspects for the investigation team. Ellis’

account of his analysis and involvement in the case is reported in Ellis (1994).

Ellis describes parts of the analytical process he conducted to determine the

likely geographical origin of the speaker. He talks about a number of spo-

ken features he identified in the recording, such as /h/-dropping, gradually

narrowing down the area the speaker was likely to be from as somewhere in

Sunderland. He justifies, through spoken features, why he pinpointed the area

he did over other areas of the northeast of England. Ellis’ report provides a

good example of the kinds of analysis that can go on in a speaker profiling
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task.

Unfortunately, in the case of the Yorkshire Ripper, the tape recording was

created by a hoaxer, which distracted investigative efforts away from the area

where the real Yorkshire Ripper was at large. At the time, the hoaxer was

not identified, but decades later, in 2005, he was identified through DNA

evidence. At this point, the case became a speaker comparison case, rather

than a speaker profiling case (the details of this later analysis can be found in

French, Harrison and Lewis (2006)). The individual admitted to the hoaxing

offence, and this confirmed that Ellis’ earlier speaker profiling analysis was

indeed accurate, because this individual was from a part of Sunderland.

A speaker profiling analysis can also play a role in speaker comparison

cases. Nolan and Grigoras (2005) make a point of this in their case report

of a speaker comparison task concerning an unknown caller making obscene

phonecalls to staff working within a bank in London. Despite having record-

ings of the unknown caller and recordings of two suspects, there was some

value in determining whether the unknown caller was a speaker of Australian

English or New Zealand English. It was suspected that the unknown caller

was a member of staff within the London bank, which employed a number of

Australians and New Zealanders. Having knowledge that the primary suspect

was a New Zealander (with a typical New Zealand accent), it was important

to establish whether the unknown caller was a speaker of Australian or New

Zealand English. The authors acknowledge that this distinction is not always

clear. After some acoustic analysis, the authors established that it was likely

that the unknown caller was also from New Zealand, and so could not eliminate

the suspect at this point in the analysis.

Like forensic speaker comparison, speaker profiling involves a combina-

tion of aural-perceptual analysis and acoustic-phonetic analysis (Schilling and
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Marsters, 2015). Ideally, when conducting a speaker profiling case, an analyst

would have access to a representative sample of recorded data obtained from

speakers of the ‘suspect’ varieties, and any sociophonetic research literature

or dialectological accounts that are relevant to the suspect varieties. Such re-

sources can lay down the features that we could expect from speakers of the

relevant varieties. Observations or measurements (e.g. vowel formant mea-

suerments or observations on intonation patterns) that we gather from the

speech recording in question can then be put against these expectations.

Foulkes, French and Wilson (2018) provide an overview of forensic speaker

profiling, including some discussion of the Yorkshire Ripper case, as well as

other individual speaker profiling cases. Foulkes, French and Wilson move

on to talk about a specific type of speaker profiling, known as Language

Analysis for the Determination of Origin (LADO). In the context of asylum

seeker applications, LADO aims to establish where claimants were “socialized”

(Cambier-Langeveld, 2010: 68) as just one part of the overall application as-

sessment process, in which there may be some doubt over a claimant’s stated

origin. Foulkes, French and Wilson highlight the importance of linguists collab-

orating with native speakers of the spoken variety in a given case, and describe

this collaboration as “essential”. In their discussion, they describe how this

collaborative approach is not necessarily taken by organisations that regularly

undertake this kind of work (because there is a lack of enforced guidelines in

this area). Foulkes and Wilson (2011), in some experimental work, showed

that native speakers of the relevant linguistic variety actually have a lot to

offer these kinds of cases. While the area of LADO is very much up for debate

about the specific approach that should be taken to offer valid and reliable

analyses, there have been recent reports that the German authorities are tri-

alling some technology to assist with these sorts of tasks (e.g. Toor, 2017).
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This could provide an additional option for LADO.

Realistically speaking, the work presented here is more likely to benefit the

LADO application than forensic speaker profiling for criminal cases. French

(personal communication, 2018) points out that a forensic speech and acoustic

laboratory in the UK only conducts 3-5 speaker profiling cases per year. On the

other hand, there is an overwhelming number of LADO cases that could make

use of technology. Like Foulkes, French and Wilson (2018), this thesis considers

LADO as a type of speaker profiling and suggests that accent recognition

technology might be more appropriate for this cause.

Little research or literature on conducting speaker profiling exists and while

there might be some recommendations on how it should be done, practice

has not been sufficiently standardised. There may well be room to consider

speech technology for these kinds of purposes. One argument for trialling

technology for speaker profiling is that it can be effectively tested. This issue

will be discussed further in Section 1.3 below, but testing human analysts who

conduct this kind of work is very difficult, due to the length of time it can

take. We can, however, potentially run thousands of trials using technology,

which could shed light on the strengths and weaknesses of the methodology.

This is not to say that this is a reason to replace human analysts for speaker

profiling, but it is certainly an advantage of using technology in these sorts of

cases, where care should be taken.

1.2.2 Speaker Profiling by non-expert listeners

The case examples and scenarios above all involve linguistically trained listen-

ers and analysts. Some experiments have been run to evaluate lay listeners’

ability to assign accent labels to recordings of unknown speakers. This could
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have some relevance to the forensic domain in the context of witness state-

ments. When a crime is committed, it is not unusual for witnesses to comment

on the culprit’s accent. This was one of the key foci of Atkinson (2015).

Some research has managed to gauge how lay listeners perform in accent

classification tasks, and in some cases report surprisingly low recognition rates.

Clopper and Pisoni (2004), for example, conducted human accent classifica-

tion experiments. They asked participants to assign speakers to one of six

North American English categories, using North American English listeners.

They report an overall classification rate of 30% correct. The chance level

we would expect here is 16.7%. Another similar experiment was by Vieru,

de Mareüil and Adda-Decker (2011), who ran some human perceptual experi-

ments on their non-native French accent data. They looked into whether lay

listeners could distinguish between native speakers of Arabic, English, Ger-

man, Italian, Portuguese and Spanish, all speaking French. The listeners were

given the chance to familiarise themselves with sample data from these vari-

eties. The overall classification rate to come out of this experiment was 52%

correct on this six-way classification task, clearly sitting well above the chance

expectation of 16.7% correct. It might be the case that Vieru, de Mareüil

and Adda-Decker’s non-native accent recognition task was in fact easier than

Clopper and Pisoni’s native North American English task. A number of factors

come into play, however, such as the listener’s degree of previous exposure to

the different accents involved (which could be linked to the listeners’ mobility).

These sorts of factors are very difficult to control.

What we should take away from these lay listener experiments is that we

should be aware of these kinds of results when considering witness statements

which may include an accent recognition claim.
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1.3 Technology in Forensic Speech Science

The above section refers to the task of speaker profiling, but the majority of

cases that forensic speech scientists come across are speaker comparison cases

(approximately 70% of the overall caseload (French, Harrison, Kirchhübel,

Rhodes and Wormald, 2017)). As already stated in the Introduction of this

thesis, these are cases in which we have two or more speech recordings, and

we aim to determine how likely they are to have been produced by the same

speaker, against how likely it is that they were not. The linguistic-acoustic

approach is an established method of conducting a forensic speaker comparison

task. Foulkes and French (2012) provide an overview of the kinds of analyses

that can take place using this approach. Techniques might include a vocal

profile analysis from an auditory analysis of a recording. This is based on the

work of Laver (1980), which essentially provides a descriptive framework to

gather an overall picture of a speaker’s voice quality. For example, the analyst

would rate the creakiness and breathiness of the voice, among other qualities.

A more acoustic analysis is also typically conducted, wherein, for example,

vowel formant measurements are taken from the signal. In sum, the linguistic-

acoustic approach measures the individual linguistic feature components that

make up the overall speech signal. Together, these separate measurements

form a comprehensive picture of a speech recording. This analytical process

sets individual recordings up for comparison, ultimately to deliver a conclusion

that indicates how likely it is to find the evidence if the speech in the two

recordings were produced by the same speaker, relative to how likely it is to

find the evidence if the speech in the two samples were produced by different

speakers.
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Now, automatic speaker recognition is becoming more of an option in this

kind of analysis. Automatic speaker recognition research aims to serve appli-

cations beyond forensic ones, some of which we might consider comparatively

“low-risk” (Broeders, 2001: 54). Commercial telephone services, for instance,

could benefit from speaker recognition technology. This might be in the con-

text of resetting an account password down the phone, for example (Kinnunen

and Li, 2010). Building security technology could also benefit from speaker

recognition technology, where speech might be used as an access medium. Re-

lated to this, we are beginning to see some banks integrating speaker recogni-

tion technology, whereby customers can use their speech to access their account

information (HSBC is one example of this)1.

1.3.1 For and Against

While the advantages of using speaker recognition technology may include con-

venience and the prospect of additional biometric support to security access

systems, the advantages and disadvantages of using speaker recognition tech-

nology for the kinds of forensic applications we have discussed are more com-

plex. Despite trained automatic systems naturally producing outputs faster

than a human analyst, convenience and speed should not be the main reasons

for using these technologies in the criminal justice system. We of course want

to aim to achieve the most accurate and reliable analysis for a given case. In

her annual report for 2016, the UK Forensic Science Regulator stressed the

importance of using transparent methodologies across the forensic sciences

(Tully, 2017). With similar aims to the UK Forensic Science Regulator report,

1HSBC website information on Voice ID: https://www.hsbc.co.uk/1/2/contact-and-

support/banking-made-easy/voice-id [accessed 13/06/17].
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Drygajlo et al (2016) developed guidelines for best practice in forensic speaker

recognition on behalf of the European Network for Forensic Science Institutes

(ENFSI). This was in an effort to standardise practice across analysts, ensur-

ing that responsible approaches to casework are taken, while also reporting as

clearly and as accurately as possible to the legal parties involved (e.g. solici-

tors, judges or juries). We must be able to confidently conduct our analyses

knowing the strengths and weaknesses of our tools and techniques. In favour of

using technology with regard to methodological transparency is the fact that

we can run large numbers of tests to determine a system’s performance under

specific conditions. This point was made in the section above. We can test au-

tomatic systems to an extent that we cannot test human analysts, due to the

time required to do the latter. An argument against using technology with re-

spect to methodological transparency is that these systems may be branded as

“black boxes”. In other words, it could be claimed that the user of these tools

has insufficient knowledge or control over the inner workings of these systems.

Alexander, Forth, Atreya and Kelly (2016) address this concern by presenting

their automatic speaker recognition software as an “open box”, which aims to

provide an analyst with as much flexibility and control as possible surrounding

the configurations of a single analysis. They demonstrate that such flexibility

can be possible.

Another advantage of using technology in forensic tasks is that there is

a lower risk of bringing bias into an analysis. There is a body of work that

looks at the effects of cognitive bias on the work of forensic analysts across

the forensic sciences (Dror, Charlton and Péron, 2006; Dror and Hampikian,

2011; Kassin, Dror and Kuckucka, 2013; Zapf and Dror, 2017). In these stud-

ies, they demonstrate how contextual information about a specific piece of

evidence can affect the conclusion a forensic analyst might put forward. In
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Dror, Charlton and Péron,(2006), for example, this was done in the context of

forensic fingerprint analysis. Dror (2015) offered a number of ways in which

forensic analysts across the subdisciplines can alleviate some of the effects of

cognitive bias. Among these were integrating thorough checking procedures

within the overall process and incorporating technology into our analyses. In

the specific area of forensic speech science, contextual information may well be

intertwined with the speech evidence itself. While an analyst mainly needs to

focus on the spoken features of a recording, regardless of what is being said, the

spoken content is difficult to ignore, and so taking in context can be unavoid-

able. For this reason, Rhodes (2016) points out that forensic speech science is

at particular risk of the effects of cognitive bias. Technology obviously is not

affected by contextual bias in the same way. Speaker recognition technology

cannot be biased by the meaning of the spoken content of the speech samples

it analyses and so this could be seen as one argument for using technology in

an analysis.

Despite the advantages of technology’s relative objectivity, there are still

issues around submitting automatic analyses as evidence. In a recent UK rul-

ing, Slade & Ors v Regina [2015], an automatic speaker recognition system was

used to analyse the speech evidence in a court case. The judge ruled that the

evidence could not be admitted for the case because of the level of uncertainty

around the performance of these systems on forensically relevant recordings.

While it is in our interests to use the most effective methodologies for a foren-

sic analysis, it is also important to have a comprehensive understanding of

these methodologies under the specific conditions of the case at hand. It is

also imperative to be able to communicate how a methodology works to legal

professionals and juries. This is another responsibility of the forensic expert,

and could be viewed as a challenge in the future as he or she will be required
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to be able to sufficiently and successfully explain how these technologies work

to non-expert audiences.

This subsection has largely talked about technology’s role in forensic speech

science, with reference to automatic speaker recognition technology. However,

it is likely that other new technologies, such as accent recognition technology,

if implemented, would face similar challenges.

1.3.2 Development Data

To develop the technology, we of course require suitable databases for training

and testing. Similarly, relevant datasets are required for more manual ap-

proaches to forensic analysis (and this will be discussed further below). Over-

whelmingly, automatic speaker recognition studies make use of datasets made

available by the National Institute of Standards and Technology (NIST)2. Ev-

ery one or two years, NIST releases a Speaker Recognition Evaluation (SRE)

dataset for automatic speaker recognition researchers from across the globe

to train and test their systems and approaches. They are then required to

submit their results by a given deadline. This allows for all these systems to

be directly compared with one another. NIST datasets are extremely large,

now making available telephone recordings of thousands (3000 +) of different

speakers for experiments. This great volume of data allows for certain system

architectures to be sufficiently trained and tested (such as i-vector-based sys-

tems (Dehak, Kenny, Dehak, Dumouchel and Ouellet, 2011) and Deep Neural

Networks (DNNs) (Lei, Scheffer, Ferrer and McLaren, 2014). The performance

of these sorts of systems suffers with small datasets, but such systems are very

effective when trained on large volumes of data. Liu and Hansen (2011) em-

2See: https://www.nist.gov

40



Ch. 1 Literature Review

phasise the need to test technologies on smaller datasets, in the context of

more niche recognition problems. They state that, in reality, we typically do

not have access to large databases of relevant accents and dialects. It is more

realistic to expect smaller datasets to work from.

In a number of ways, these large NIST SRE datasets are very good for

exploring a range of different system architectures and various aspects of per-

formance. The fact that these datasets are largely made up of telephone

recordings means that, in some respects, these datasets are relevant to foren-

sic applications. However, in reality, forensic casework can be very specific in

terms of the type of data that is relevant to a particular case, and we know

that the performance of automatic speaker recognition systems can suffer con-

siderably when there is a mismatch in recording quality and/or recording type

between the training and test samples (Alexander, Botti, Dessimoz and Dryga-

jlo, 2004; Rajan, Kinnunen and Hautamäki, 2013). In fact, one of the reasons

why there was uncertainty surrounding the evidence presented in the Slade &

Ors v Regina [2015] case discussed above was because the recordings involved

were captured inside a car, and testing of automatic speaker recognition sys-

tems is not standardly done on recordings of this very specific type. Developing

technology and solutions for forensic applications therefore requires training

and testing of systems on a broad spectrum of databases that represent dif-

ferent types of speech, speakers and dataset sizes. Considering technology

and techniques for forensic applications, there have been researchers who have

developed speech databases for very specific scenarios. An example of a spe-

cialised corpus is one collected and researched by Fecher (2014). The purpose

of this work was to conduct a phonetic analysis of speech affected by various

items of ‘facewear’ (e.g. balaclavas and motorcycle helmets). Again, con-

sidering forensic applications, it is important to discover the effects of these
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conditions on speech samples to be able to more confidently comment on how

an analysis might be affected by these kinds of complicating factors.

In addition to these rather niche datasets, a number of databases exist that

were originally collected for sociophonetic research purposes that could also be

of value to forensic casework. The NIST dataset largely offers North American

English speech, which of course provides a very good resource in the context of

casework involving North American English. However, we need a resource to

account for the spoken variety that is involved in a given case, and so we can

turn to various speech databases collected by sociolinguists. For this reason,

Hughes and Wormald (2017) make a call for more collaboration between the

two areas of sociolinguistics and forensic speech science. They refer to the

“paradigm shift” in forensic science and the need for more relevant data to be

able to conduct the data-driven analyses that are expected of forensic speech

scientists.

There is one database in particular that has been repeatedly used for foren-

sic speech science research. To simulate as closely as possible the most typical

forensic scenario, Nolan, McDougall, de Jong and Hudson (2009) created the

DyViS database. This corpus consists of samples of speech produced by over

100 young adult male speakers (the demographic most often encountered in

forensic casework) in a number of mock (but forensically-realistic) scenarios.

In particular, it includes recordings of the same speakers making a telephone

call and answering police-style questions in a police interview room. This com-

parison task (between a telephone recording and a police interview) is typical

of forensic casework. It is therefore important to conduct research on this very

specific mismatch in recording type. Although the DyViS corpus offers a num-

ber of features that are useful to forensic research (both manual analysis and

automatic analysis), one criticism of the corpus is the specific spoken variety
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of the speakers. The young male informants were recruited from Cambridge

University, and so a large number of these speakers probably do not represent

the demographic of speakers that is regularly encountered in forensic casework.

The accent recognition experiments presented in this thesis make use of

three different datasets which offer a variety of conditions that we can train

and test the automatic accent recognition systems under. One key aim of this

subsection is to illustrate that a cross-corpus investigation is important to be

able to uncover the strengths and weaknesses of a system, so we can be as

transparent as possible about the methodology. However, the datasets obvi-

ously cannot reflect all possible forensically relevant scenarios. It is therefore

of interest to observe how a system or methodology transfers between differ-

ent types of dataset to assess how performance is affected. This comparison

of system performance on different corpora is discussed at numerous points

throughout this thesis.

1.4 Accent Variation

This thesis aims to characterise accent variation using automatic methods.

We know that all kinds of speech features can vary across speakers. When

we are looking at accent variation, we want to just identify those that are

characteristic of whole speech communities. A speech community is not defined

by a specific factor that speakers in a community share, but rather a group of

speakers share some trait to unite them in some way. This deliberately makes

way for quite a broad interpretation of what makes an accent (i.e. accent is

not limited to geographically defined speaker groups). Some examples of ways

in which groups of speakers can form a speech community are given below in

Section 1.4.1.
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The variables that mark an accent variety are often segmental (for example,

the presence or absence of non prevocalic-/r/ that distinguish rhotic accent va-

rieties from non-rhotic ones). Academic studies of accents commonly include

measurements and analyses of vowel formants, which indicate the ‘quality’ of

vowels. In the context of English, linguists will often refer to Wells’ (1982) key-

words to pinpoint vowels of interest. For example, studies have been interested

in how far forward in the vowel space some groups of speakers produce their

goose vowel (e.g. Haddican, Foulkes, Hughes and Richards (2013)). More

specifically, measuring and comparing the second formant values from speak-

ers’ productions would allow us to observe whether the goose vowel is fronted

or not. By referring to keywords like goose, linguists can include a number of

words that contain vowels that fall into the same phoneme class. For example,

we could focus on the vowels in boot and tune to obtain measurements for a

speaker’s goose vowel.

Features of voice quality tend to be associated with individual speaker vari-

ation, one reason being due to the physiological differences between speakers.

However, some work has attached voice quality features to whole speech com-

munities. As Stuart-Smith (1999) highlights, some voice quality features are

attributed to the physiological makeup of the speaker, while there are others

that have been ‘acquired’ where speakers implement muscular settings. It is

this latter case that could lead to certain voice quality features being linked

to specific speech communities. Voice quality seems like a difficult aspect of

speech to characterise, but the work of Laver (1980) has instigated ways of de-

composing voice quality into numerous features, resulting in a method known

as a Vocal Profile Analysis (VPA). Stuart-Smith (1999) suggests that Glasgow

speakers share a particular constellation of voice quality features, based on

a VPA. She makes further distinctions, however, within the Glasgow speaker
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group, classifying speakers into working class or middle class groups. In her

analysis, she found a number of voice quality differences between these groups

of speakers, the most prominent being that working class speakers exhibit

more whispery voice than middle class speakers. Beck and Schaeffler (2015)

conducted a voice quality study of adolescent speakers of Scottish English,

but reported that they did not find any significant voice quality differences

between speaker groups determined by geographical origin. They did, how-

ever, find significant voice quality differences between male and female speakers

(features that are not necessarily determined by obvious physiological differ-

ences between these two groups). Voice quality features have also been found

to characterise Liverpool English (Knowles, 1973) and Leicester and Brad-

ford Punjabi English (Wormald, 2016), for example. Depending on the accent

groups that we are interested in, the literature indicates that voice quality

features could also assist in distinguishing between accent groups.

There are also prosodic cues that could reveal a speaker’s accent group

(Peppé, Maxim and Wells, 2000; Clopper and Smiljanic, 2011). By measuring

and analysing pitch contours throughout speakers’ utterances, studies have

uncovered categorical patterns between speaker groups.

Different types of automatic accent recognition system aim to capture these

different features of accent variation so as to classify speakers, and they are

expected to take advantage of different types of variable. We see some of this

system range among automatic systems in Chapter 2. This subsection aims

to outline the reasons for accent variation and to briefly review some of the

sociolinguistic research literature.
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1.4.1 Factors Responsible for Variation

Within the field of linguistics, the study of accent variation comes under the

term sociophonetics. Foulkes, Scobbie and Watt (2010) highlight the challenge

of defining sociophonetics because of the number of layers of variation and the

angles from which it can be studied. Probably the first type of accent variation

that comes to mind is regional variation. Regional variation is concerned with

sociolinguistic variables that are shared by speakers of a specific geographical

origin. This is the type of variation that is at the centre of this thesis. However,

sociophonetic variation extends way beyond geographical boundaries. Social

class is another key factor that has received a lot of research attention, as

well as speakers’ age and sex (Foulkes, Scobbie and Watt, 2010). Lots of

other contributing factors have also been researched, however, such as ethnicity

(Alam and Stuart-Smith, 2011), sexual orientation (Mack and Munson, 2012)

and even political affiliation (Hall-Lew, Friskney and Scobbie, in press).

Contact varieties have also been a topic of focus in the sociophonetic liter-

ature. This is where an accent variety has developed as a result of two or more

communities coming into contact. One example of this within British English

is Multicultural London English (MLE) (Cheshire, Kerswill, Fox and Torger-

son, 2011). Similarly, Wormald (2016) sociophonetically dissects varieties of

British English that have been influenced by a heritage language. Specifically,

she looks at a number of variables in the speech of Panjabi-English speakers in

two English cities, Bradford and Leicester. Conducting a parallel analysis of

these speakers in two cities allowed Wormald to comment on which variables

used by first-generation and second-generation speakers of Panjabi-English are

produced as a result of influences from the heritage language (Panjabi), and

which are produced as a result of influences from the local regional variety.
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In addition to these kinds of factors that separate the pronunciation of

some speaker groups from others, we can also talk about intra-speaker phonetic

variation. A number of factors (such as the speaker’s emotional state or level

of tiredness) can be responsible for causing an individual’s speech production

to vary from one point in time to another. We can refer to this kind of data as

non-contemporaneous, and it is a type of variation that is very much a concern

for forensic speech scientists.

There has also been research into how a speaker’s pronunciation changes

across his or her lifespan. This type of intra-speaker variation has featured

within the forensic speech science research literature. Rhodes (2012) and

Kelly (2014) consider the effects of aging on speakers’ speech from a linguistic-

acoustic perspective and from an automatic speaker recognition perspective.

This is relevant to cases in which a considerable amount of time has passed

between the creation of suspect and unknown recordings (as was the case with

the John Humble case mentioned above in Section 1.2.1). It is acknowledged

within the research literature that speech properties are expected to change

throughout a speaker’s lifetime, due to physiological changes. Xue and Hao

(2003) showed that the volume of the vocal tract tends to increase with age.

This kind of change naturally has repercussions on acoustic features produced.

Xue and Hao measured an overall decrease in the formant frequencies of vowels

of by older speakers. Within the sociolinguistic literature, Sankoff and Blon-

deau (2007) conducted a longitudinal study of /r/ production among Montreal

French speakers. There are two possible phonetic realisations of /r/ in Mon-

treal French that vary in their place of articulation: the alveolar trill [r], and

the uvular trill [ö]. They collected speech data from the same individuals at

two points in time, once in 1971 and again in 1984. They showed a definite

change in /r/ production within these individuals over this 13-year time pe-
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riod. An overall finding is that speakers increased their use of the [ö] variant

over time, such that the mean proportion of this variant was 63.8% in 1971

and 77.8% in 1984. A study like this allows us to witness language change

occurring within speakers. Naturally, some speakers adopt a change like this

more than others due to a number of factors (speaker contact and mobility,

for example). Again, this sort of intra-speaker variation can be an important

consideration when conducting forensic casework.

The current subsection only gives a glimpse of some of the layers that con-

tribute to the overall speech production of an individual. It should, however,

introduce the complexity we can expect in the pronunciation of an individual.

This thesis simply targets one of these factors: regional variation. It is impos-

sible to account for all of the potential factors that might influence a speaker’s

production in accent recognition experiments, particularly when we wish to

maximise the quantity of data we can collect to represent an accent group.

However, it is important to keep these additional factors in mind as they can

help to explain the variation within a single speech community and the extent

of the challenge of the accent recognition problem.

1.4.2 Approaches to Sociophonetic Research

The early influential work of Labov (1963, 1966) prompted the dialectological

research community to adopt a largely quantitative approach to dialectology.

This usually involves the selection of one or a few linguistic variables (e.g. the

centralisation of diphthongs in the case of Labov (1963)) that are hypothesised

to vary across speaker groups, the collection of appropriate data to elicit tokens

of these variables, and the empirical analysis of the variables across the speech

communities of interest.
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In much of the sociolinguistic research that is carried out, only a small

number of linguistic variables are selected to compare the speech of differ-

ent communities. The selection of variables is often based on auditory ob-

servation by the researcher or on findings reported in the existing research

literature. Nerbonne (2009) advocates an “aggregate” approach, whereby we

take whole collections of features to analyse sociolinguistic variation. He ar-

gues that single-feature analyses are very likely to miss important aspects of

variation and, as a result, are more unreliable. In a way, the main accent recog-

nition system tested in this thesis employs an aggregate approach to analysing

sociolinguistic variation.

A lot of research takes measurements of speakers’ speech production to

analyse variation, but there is also research that makes use of the perceptions

of human listeners as a measurement tool. Perhaps a more obvious use for

listener perception is to uncover social judgements about speech communities

(Campbell-Kibler, 2010; Giles and Billings, 2004). However, listener percep-

tion can also be used to analyse specific linguistic variables that might be

distinctive of particular spoken varieties (e.g. Clopper and Pisoni, 2004).

We can view the automatic accent recognition systems presented in this

thesis as further ways of conducting sociophonetic analyses. It might, however,

be unclear which specific variables these systems use to distinguish between

accents. At points throughout this thesis, we will look to the sociophonetic

research that has been produced by these kinds of sociolinguistic methods to

try to make the inner workings of these technologies more transparent.
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1.5 Summary

This chapter has pointed to where the topic of accent recognition technology

sits within the current research climate with regards to speech technology,

forensic applications and sociophonetics. In a nutshell, the large proportion of

automatic accent recognition research has not considered factors that might

concern forensic applications. This thesis aims to counteract this trend.

With the call for transparency in forensic methodologies from regulatory

organisations, it is important to understand our analytical processes, to a high

level of detail, and so getting familiar with the relevant sociophonetic literature

could help us to do this for accent recognition systems. By making reference

to the sociolinguistic literature, we can gather an idea of what we can expect

from an accent recognition system, and try to determine the strengths and

weaknesses of these technologies.
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CHAPTER 2

A Comparison of Automatic Accent

Recognition Systems on

Geographically-Proximal Accents

2.1 Introduction

The experiments in this chapter aim to challenge and compare a range of differ-

ent types of automatic accent recognition system in the context of geographically-

proximal accents. As discussed in Chapter 1, much of the past automatic ac-

cent recognition research has been motivated by the automatic speech recog-

nition application. One factor which is problematic to successfully recognise

speech in automatic speech recognition is the great variation in a single lan-

guage. It is quite conceivable to think of numerous words which have very

different realisations in different accent varieties of the same language, and

the challenges all these variants bring to speech recognition models. For ex-

ample, the English word pot in a typical North American English accent has a
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similar realisation to part in a Standard Southern British English accent, pho-

netically transcribed as [phAt]. For speech recognition applications, we can see

how differences between quite distinct accents could cause problems. Indeed,

if we try to overcome this great variation by first identifying the speaker’s

accent group, and adapting the models accordingly, speech recognition rates

are seen to improve (Najafian, DeMarco, Cox and Russell, 2014).

For other applications it might be of interest to investigate accent recogni-

tion systems’ performance on accent varieties which are not as distinct from

one another as the varieties used in much of the accent recognition research.

A tool for forensic applications is more likely to be useful if it can model a

collection of differences which are more subtle, and perhaps less well-known

in the linguistic literature, rather than simply distinguishing between speakers

of North American English and Standard Southern British English, for exam-

ple. Because of the low level of difficulty involved in this kind of distinction,

developing a tool to group speech samples into one of these two categories

would not be particularly useful to forensic experts, who would easily be able

to make this kind of classification. We should therefore test systems on tasks

that are expected to be more difficult to forensic analysts. This is the main

motivation behind the experiments in this chapter.

In style, the experiments shown here closely simulate those presented in

Hanani, Russell and Carey (2013). In their study, they test a number of au-

tomatic accent recognition systems on the same accent corpus, the Accents

of the British Isles (ABI) corpus (D’Arcy, Russell, Browning and Tomlinson,

2004). The ABI corpus contains recorded data from speakers in 14 locations

across the breadth of the British Isles. For each location, they collected data

from 10 male speakers and 10 female speakers. The recorded data consist of

speech samples of the speakers reading the same prompts, so spoken content

53



Ch. 2 A Comparison of Accent Recognition Systems

is comparable and controlled across samples, providing a good experimental

basis to compare systems. Using these data, Hanani, Russell and Carey (2013)

compared the capacity of a number of different systems to classify speakers

into one of the 14 categories. The range of systems they tested contained both

text-dependent and text-independent systems. These two terms will be defined

and discussed in more detail in Section 2.3.1, but for now, text-dependent sys-

tems are those which require a transcription of the spoken content as input to

accompany the speech sample, whereas text-independent systems do not. The

experiments presented in the current work take four of the accent recognition

systems which were tested in Hanani, Russell and Carey (2013) and develop

similar versions to then test them on a corpus of accents which is expected

to be more challenging in that the varieties are predicted to be more simi-

lar to one another than those in the ABI corpus. The corpus chosen for this

purpose is the Accent and Identity on the Scottish/English Border (AISEB)

corpus (Watt, Llamas and Johnson, 2014), which will be described in detail

in Section 2.3.2 below. It is a corpus of geographically-proximal varieties that

we are assuming are more similar to one another than the accent varieties in

the ABI corpus. We should, however, emphasise that geographically-proximal

accents are not necessarily always more similar to one another than geographi-

cally non-proximal varieties. Likewise, accent varieties that are geographically

further away from each other can be phonologically similar. For example, Ul-

ster Scots and Scots varieties are thought to be similar due to their shared

history of the same broad group of settlers (Montgomery, 2001). Two other

systems from other studies (Wu, Duchateau, Martens and Compernolle (2010)

and Najafian, Safavi, Weber and Russell (2016)), have influenced two further

systems developed and applied for comparison in this chapter. This is to pro-

vide a substantial range of different accent recognition system architectures

54



Ch. 2 A Comparison of Accent Recognition Systems

for comparison using the same corpus of geographically-proximal accents. A

total of six systems have been built and tested.

2.1.1 Outline

This chapter will first review past approaches to automatic accent recognition

taken in other studies. We will then specify the details of the experiments

presented in this chapter, which include descriptions of each of the systems

developed and tested (in Section 2.3.1) as well as the AISEB corpus (Section

2.3.2). Before giving the results obtained by each of these systems on the

AISEB corpus, Section 2.3.3 will first provide results that have been generated

by similar systems in past studies which use different corpora. These results

gathered by past studies provide a context in which to analyse and discuss

the results generated by the systems using the AISEB corpus. Section 2.4

will then discuss the overall findings that we can draw from the experiments

presented in this chapter.

2.2 Past and Current Approaches

to Automatic Accent Recognition

In the Introduction above, it was mentioned that past automatic accent recog-

nition studies have involved accents with a large number of linguistic differ-

ences between them. This has meant that certain past system architectures

have been reasonably successful in distinguishing between these accents. This

section provides an overview of a number of different system types developed

in past studies, as well as the nature of the accent data that some of these

systems have been tested on. To guide this discussion, this section broadly
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divides system types into two categories. We first review phonotactic systems

in Section 2.2.1 and then move on to acoustic systems in Section 2.2.2.

2.2.1 Phonotactic Systems

Earlier accent recognition systems incorporated methods from Language Iden-

tification (LID) technologies. Zissman (1996) was a key study in exploring a

phonotactic approach to the task of LID, which looked at Phone Recognition

followed by Language Modelling (PRLM) systems. Given an unknown utter-

ance, a PRLM system first estimates its phone sequence using a phoneme

recogniser. Making use of this phone sequence estimation (as well as the num-

ber of occurrences of each phone), the likelihood of this sequence appearing

in each of the reference languages in the system is calculated. PRLM sys-

tems heavily rely on the different candidate languages having sequences and

distributions of phones which are distinctive enough to be able to discrimi-

nate languages. For this reason, we can expect that using phone sequences

to distinguish between different accents might be much more challenging than

it is in a LID task. Depending on the selection of accent varieties we are

interested in, it is not likely that there will be many sequential differences

to separate different varieties. We might expect accent features like rhoticity

to be picked up on, because in rhotic accents, /ô/ occurs in specific contexts

that it does not in non-rhotic accents. A PRLM system might therefore be

able to distinguish between rhotic and non-rhotic accents. However, often,

accents are characterised by the realisations of certain phonemes, rather than

the sequences they occur in. For example, it might be helpful to determine

the precise quality of /ô/-production for a given accent classification task.

There have been some studies into the prospect of using phonotactic ap-
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proaches in dialect recognition. For example, Biadsy, Soltau, Mangu, Navratil

and Hirschberg (2010) show the performance of these kinds of phonotactic ap-

proaches on the task of distinguishing between four dialects of Arabic: Iraqi

Arabic, Gulf Arabic, Levantine Arabic and Egyptian Arabic. They claim that

these dialects are distinguishable by the varieties’ phone sequences. Because of

the distinctive nature of these Arabic varieties, Biadsy et al achieved an Equal

Error Rate (EER) of 6.0% on this classification task. While these PRLM sys-

tems might be successful on this particular Arabic dialect classification task,

we cannot assume it will be successful when applied to other datasets of dialect

varieties.

The main focus of this chapter is to test systems on geographically-proximal

accents, where heightened levels of similarity between the varieties are as-

sumed. It is reasonable to expect that this phonotactic encoding has little to

offer an accent recognition task of this kind. It is predicted that the phone

sequences themselves are too similar and this type of difference would be too

subtle to confidently discriminate accents. We should also be mindful of the

errors that the first stage of phone recognition would also inevitably bring

to the process, possibly further diluting the already subtle or scarce accent

differences. We might therefore suggest that more attention should be de-

voted to the phonetic realisational differences between very similar varieties

when building a system for this purpose. Acoustic systems might be more

appropriate to uncover these phonetic realisational differences.

2.2.2 Acoustic Systems

To be able to model phonetic realisational differences, we need to move to-

wards acoustic approaches, rather than simply estimating which phones are
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present or absent in an utterance’s phone sequence (as suggested in the section

above). This subsection therefore describes some of the tools and techniques

which are, or have been, employed to acoustically characterise and classify

speakers’ accents. We can broadly look at acoustic accent recognition systems

in three main stages. In order, these are feature extraction, accent modelling

and classification. Each of these stages are discussed separately in turn below.

Figure 2.1: A broad illustration of the three main stages of automatic accent

recognition using an acoustic approach.

1) Feature Extraction

The first step in an acoustic system is information reduction of the raw sig-

nal, for both the training data and the testing data. We therefore need to

extract acoustic features to represent the signal. The most common type of

acoustic features are Mel Frequency Cepstral Coefficients (MFCCs) (Davis and

Mermelstein, 1980). These are acoustic feature vectors which are widely used

across speech technology as a whole. They were initially intended for speech

recognition, but are also used in areas like speaker recognition and speaker sex

recognition.

To generate MFCCs, the following steps are taken. As a preprocessing

stage, we apply preemphasis to the signal to overcome spectral tilt. Spectral
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tilt is simply the natural distribution of energy across the frequencies of voiced

sounds. There is less energy at the higher frequencies, so to ensure we do not

overlook potentially useful information at these higher frequencies, we can

apply preemphasis to boost the energy.

In most systems, MFCCs are extracted right across the speech sample

at overlapping intervals. A standard configuration for MFCCs is to extract

them from 25ms windows of speech, every 10ms. To extract the spectral

information from each of these windows of speech, a Discrete Fourier Transform

(DFT) can be applied to each window1. A DFT enables the extraction of the

magnitude of different frequency components. Because acoustic information

at all available frequency bands is not necessarily useful for characterising

segmental information, applying a mel-spaced filterbank to the window would

include a higher concentration of phonetically informative values in the overall

feature vector. This is because more segmental information is found at the

bottom of the spectrum and mel spacing brings more extraction points at

these lower frequencies. The magnitude can then be extracted from these mel-

spaced intervals. The distribution of a mel-spaced filterbank is demonstrated

in Figure 2.2.

1In many versions of the process, a Fast Fourier Transform is applied as an alternative

transform for this purpose.
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Figure 2.2: Illustration of the distribution of mel-spaced filterbanks.

A mel-spaced filterbank means that more information will be extracted from

lower down in the spectrum and fewer extraction points exist higher up in the

spectrum. This reflects the distribution of useful segmental information and is

also thought to be an approximation of the human perceptual system. This is

because of the “resolving power” of human ears throughout this distribution

of frequencies (Holmes and Holmes, 2001: 160). The logarithm of these energy

values is then taken before a Discrete Cosine Transform (DCT) is applied to

output the cepstrum. The cepstrum organises the acoustic information into

two categories: acoustic information determined by the filter (i.e. the shape of

the vocal tract manipulated by the articulators) and information determined

by the glottal source (Jurafsky and Martin, 2009: 335). Since it is the filter

information which provides segmental information, we only take the values

in the cepstrum associated with filter information. The first 12 values are

therefore taken to form the resulting MFCC vector. It is thought that the

values beyond this reflect the acoustic information which is determined by the

source. The overall MFCC extraction process is summarised in Figure 2.3:
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Figure 2.3: Flow diagram of the processes involved in MFCC extraction.

In addition to the 12 filter-based values described above, we can intro-

duce dynamic information to the MFCC representation. We can add delta

coefficients which effectively track the change in the coefficients. To do this,

delta coefficients simply log the difference between corresponding coefficients

in neighbouring windows of the signal. Delta delta coefficients can also be

introduced to add further dynamic information. In a similar way, these cap-

ture the difference between corresponding delta coefficients in neighbouring

windows of the signal.

MFCCs are not the only feature type that we could use in our systems.

Perceptual Linear Predictive coefficients (PLPs) (Hermansky, 1990) are an

alternative feature type which have been seen in a number of studies (e.g.

Müller and Mertins, 2011), to outperform MFCCs under certain conditions,
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mainly under more noisy conditions. Shifted Delta Cepstra (SDCs) are an-

other example of an alternative feature type used in speech technology. In

fact, Behravan, Hautamäki and Kinnunen (2015) chose to use SDCs in their

accent recognition work. SDCs are effectively a concatenation of delta cepstra

to place a greater emphasis on the dynamic information encoded in speech.

Torres-Carrasquillo et al (2002) demonstrated that SDCs can be an effective

feature in Language Identification tasks. As a parallel in the forensic pho-

netic literature, dynamic formant measurements have been of interest and

have served to generate reliable results (e.g. McDougall and Nolan (2007)).

It is thought that the dynamics of speech can be very informative in speaker

comparison casework, and could add value to evidence beyond that of just

taking midpoint formant values. Therefore, in the context of forensic speech

technology, it might be worth considering these features (SDCs) which aim to

offer more dynamic information, but this is a consideration for future research

since this thesis does not focus on a comparison of feature vectors.

While investigating different features predominantly seeks to improve over-

all performance, or to equip systems to perform better under certain condi-

tions, other motivations behind feature research might be to lower the overall

computational cost of a system. For example, while Poblete et al (2015)

have aimed to develop a new high-performing feature for speaker recognition

(Locally-Normalized Cepstral Coefficients (LNCCs)), they also highlight that

LNCCs come with a lower computational cost, which is of course an advantage.

These are just a few examples of alternative features that could be used,

but many more types and variations are possible. Throughout the experiments

presented in this thesis, MFCCs will be used as these are in line with much

of the past accent recognition research. Once acoustic features have been

extracted, they are then used for accent modelling, which is described and
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discussed in the next part of this section.

2) Accent Modelling

The modelling stage involves taking the extracted features and using them to

form a representation of the speech signal, which aims to capture the aspects

relevant for the particular purpose of a system. For example, for a speaker

recognition system, we want to form a model of the signal that best repre-

sents the distinguishing features of a speaker. Likewise, for accent recognition

systems, we want a model that best represents distinguishing features of an

accent. However, features that are relevant to other speech characteristics that

may be embedded within the speech signal (e.g. speaker sex and age factors)

can interfere with developing effective models. Because MFCCs are expected

to be particularly effective at capturing segmental information, it is reasonable

to expect that they are an appropriate measure to use for accent recognition.

This subsection introduces the three modelling methods applied in the ex-

periments presented in Section 2.3: Gaussian Mixture Models (Reynolds and

Rose, 1995), i-vectors (Dehak, Kenny, Dehak, Dumouchel and Ouellet, 2011)

and ACCDIST matrices (Huckvale, 2004, 2007).

a) Gaussian mixture models

An extremely common model in speech technology, and one employed in three

of the accent recognition systems tested below, is the Gaussian Mixture Model

(GMM). GMMs are probabilistic models that characterise data where it is as-

sumed that we have multiple normally distributed subpopulations. Taking in

feature vectors (in this case, MFCCs), a GMM can produce a typical repre-

sentation of the data we are trying to characterise. A GMM is a collection
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of gaussian distributions (together, forming multivariate gaussians) represent-

ing the distributions of the cepstral coefficients. They are composed of the

individual means for each coefficient and a covariance matrix.

In the context of forensic speech technology, GMMs have been the central

component of much of the automatic speaker recognition systems used. In

fact, Kinnunen and Li (2010: 20) refer to it as the “de facto reference method

in speaker recognition”. This is in relation to widely implemented GMM-

UBM (Gaussian Mixture Model Universal Background Model) systems, which

is where the GMM models are adapted from a UBM which is typically a very

broad representation of speech trained on masses of data.

Because of their success in speaker recognition, GMMs have naturally been

applied to the task of automatic accent recognition. Chen, Huang, Chang and

Wang (2001) were targeting the problem that the great variation among Man-

darin Chinese dialects brings to automatic speech recognition systems. To

approach this particular problem, they built and tested variants of a text-

independent GMM-based system. They focussed on separate results for male

and female speakers, because speaker sex is known to affect the GMMs (be-

cause this is another speaker property that is embedded in the speech signal).

They observed error rates of 15.5% and 11.7% for males and females respec-

tively. Considering these GMM-based systems do not depend on pre-defined

segmental units, as they are text-independent systems, these error rates seem

quite promising.

b) i-vector

i-vector-based systems are now widespread in automatic speaker recognition

(Dehak, Kenny, Dehak, Dumouchel and Ouellet, 2011) and language identifi-

cation (Dehak, Torres-Carrasquillo, Reynolds and Dehak, 2011). An i-vector-
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based system uses a distinctive modelling approach to a problem. An i-vector

is a compressed low-dimensional representation of a speech sample, which is

then used for the scoring or classification stage of a process. Further details of

how i-vectors are extracted are given below in Section 2.3.1. This subsection

reviews the performance of i-vector-based systems in past research.

Having witnessed the relative success that i-vector systems have had in

automatic speaker recognition, it is reasonable to assess an i-vector-based ap-

proach to accent recognition. Behravan, Hautamäki and Kinnunen (2013)

tested different variants of an i-vector accent recognition system on speech sam-

ples drawn from two different corpora, while also comparing i-vector technol-

ogy against a more traditional GMM-UBM system. The two different corpora

aimed to address two slightly different types of accent recognition task. The

first corpus used for their experiments was the CallFriend corpus (Canavan

and Zipperle, 1996), which provides two native dialects of different languages

(i.e spoken varieties that native speakers of that language produce, rather

than non-native varieties). They selected English, Mandarin and Spanish to

run experiments on. The second corpus was the Finnish national foreign lan-

guage certificate corpus (FSD), which provides recordings of ‘foreign-accented’

Finnish speech from speakers of various different native languages. The aim of

an accent recognition task using this corpus is to identify the native language

of a test speaker. We can treat this as a slightly different task in accent recog-

nition, as the second task of ‘foreign-accented’ recognition involves an extra

factor of linguistic proficiency. It is assumed that the speakers in this corpus

speak Finnish at differing levels. There are more factors that come into play

with regards to non-native accented speech. This topic is dealt with in further

detail in Chapter 6 of this thesis. Behravan et al ’s (2013) findings showed that

in both types of accent recognition task, the i-vector system outperformed the
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GMM-UBM system. The i-vector system achieved Equal Error Rates (EER) of

15.06% and 20.01% for the CallFriend and FSD corpora, respectively, whereas

the GMM-UBM system achieved 18.73% and 24.13% EER on the same tasks.

The additional factor of language proficiency in the FSD data is likely to affect

automatic accent recognition performance by perhaps introducing more vari-

ability within the models, although it is not necessarily clear in what respect

it might do so. A difference in the size of the datasets could also contribute

to the discrepancy in performance between the two corpora, but it is unclear

whether this was a factor in this study. Behravan, Hautamäki and Kinnunen

(2015) look into the effect of language proficiency on accent recognition in

more detail. They found that higher language proficiency does indeed tend

to lead to a lower likelihood of an unknown speaker being correctly classified

by native language. Presumably, a higher level of proficiency removes features

that are indicative of a speaker’s native language. Chapter 6 of this thesis

further considers classifying non-native accents with regards to another type

of automatic accent recognition system.

Bahari, Saeidi, van Hamme and van Leeuwen (2013) also compared differ-

ent types of system, including i-vector-based systems, on an accent recognition

task. The data they used were from the National Institute of Standards and

Technology (NIST) Speaker Recognition Evaluations (SRE). Again, using the

same terminology as Behravan, Hautamäki and Kinnunen (2013), this was

on a foreign-accent recognition task, where speakers of five different language

backgrounds were recorded speaking English. When coupled with a Support

Vector Machine classification mechanism (discussed further below), they found

that an i-vector-based system generates a higher classification rate (56% cor-

rect) than when using Gaussian Mean Supervector as the modelling technique,

which generated a classifcation rate of 53% correct on this particular task.
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When coupled with other types of classification mechanisms, however, it is

worth noting that this hierarchy of performance is not necessarily the case

on their particular accent classification task. It does not appear that we can

necessarily expect that the state-of-the-art i-vector modelling approach will

outperform GMM-based systems when other kinds of classification techniques

are implemented.

Other work has focussed on native accent recognition using i-vector-based

systems. DeMarco and Cox (2012) tested different i-vector systems on the ABI

corpus (described in Section 2.1 above). On the 14-way accent recognition task

between different accents across the British Isles, their best i-vector system

achieved an accuracy of 68%.

While a number of the i-vector-based accent recognition studies discussed

so far have explored the performance of different variants of i-vector systems

working alone, more recent research has investigated the accent recognition

performance of i-vector systems fused with other system types. System fusion

is when we can combine the output scores of a number of different systems

working in parallel to obtain an overall score for a trial (Brümmer et al, 2007).

Najafian, Safavi, Weber and Russell (2016) fuse an i-vector-based system with

a phonotactic-fused system and test this overall fused system on the ABI cor-

pus. This fused system outperforms either system type alone, with an overall

accent recognition accuracy of 84.87% on the 14-way recognition task. This

kind of fused approach to system building aims to take advantage of the dif-

ferent strengths of different systems. It is possible that some types of system

make correct classifications in cases where others do not. The i-vector-based

system developed for the purposes of the experiments on the AISEB corpus

detailed below has been influenced by the one in Najafian et al (2016). They

combine their i-vector approach with a Support Vector Machine classifier (Sup-
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port Vector Machines are introduced further below). When it is not fused with

other systems, their i-vector system is reported to achieve 76.76% on the 14-

way ABI accent recognition task.

c) ACCDIST-based modelling

This thesis has a particular focus on an alternative accent modelling method to

GMMs and i-vectors: ACCDIST-based modelling. ACCDIST (Accent Charac-

terization by Comparison of Distances in the Inter-segment Similarity Table)

was first introduced by Huckvale (2004). It has been found to outperform

GMM-based models in certain accent recognition tasks (Hanani, Russell and

Carey 2011, 2013). However, unlike most i-vector-based systems and GMM-

based systems, with past ACCDIST-based systems (Huckvale, 2004, 2007;

Hanani et al, 2011, 2013) come two fundamental practical limitations:

1. Past ACCDIST-based systems have required the spoken content of the

reference data used to train the system to be the same as the spoken

content (the exact same string of words) of the unknown speech sample.

For most applications, including forensic ones, we cannot expect that

the content of training data and unknown data will match. This there-

fore greatly limits the number of applications that past ACCDIST-based

systems could be used for.

2. Related to point 1. above, ACCDIST is text-dependent, because it re-

quires a transcription to accompany the unknown speech sample in order

for it to be processed and classified. This therefore requires a more la-

borious preprocessing stage as part of the overall classification task, and

many applications will not accommodate this. When we would like to at-

tach an accent recognition system to a speech recognition system’s front
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end, for example, there of course will not initially be a transcription

available for the purpose of accent recognition. This would obviously

remove the objective of developing a speech recognition system. For

forensic applications, on the other hand, there may be instances where

a transcription is available for an analysis, particularly when accuracy

and precision of the outcome takes priority, well above convenience.

Section 2.3 will describe how the specific ACCDIST-based system imple-

mented and represented here, Y-ACCDIST, overcomes the first of these limi-

tations in the development details. This is the key way in which Y-ACCDIST

has progressed from past ACCDIST-based studies. However, the second limi-

tation of requiring a transcription still remains.

3) Classification

Classification procedures take the modelled data and make the decision sur-

rounding the category of the unknown data. Like feature extraction and data

modelling, numerous ways of classifying data exist and it is possible to trial

different combinations of these different techniques.

Likelihoods

One way to do this, which will be employed in some of the systems in Section

2.3, is to calculate the likelihood that the acoustic features extracted from an

unknown speaker’s sample belong to the same group/class represented by a

GMM. The highest likelihood value generated between an unknown speaker’s

sample and a model results in a class label. Calculating likelihoods in this way

indicates the degree of similarity between an unknown and a reference model.
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Correlation

Another way to calculate degree of similarity (in relation to ACCDIST-based

modelling), and one seen in one of the systems introduced in Section 2.3, is by

calculating correlation. Again, higher values indicate higher degrees of sim-

ilarity. Various distances metrics (e.g Euclidean distance) could operate in

the same way. The fifth system described in the experiments below employs

Pearson’s r product-moment correlation for this purpose (as per Ferragne and

Pellegrino 2007, 2010).

Support Vector Machines

A widely used classification technique found across many machine learning

applications is the Support Vector Machine (SVM) (Vapnik, 1998). This is

a classification mechanism incorporated into most of the systems described

in Section 2.3.1. To broadly illustrate how it works, we can refer to plotting

training speakers, in their processed and modelled form, in multi-dimensional

space. An optimal hyperplane is calculated and formed between the different

categories of speakers. The category label of an unknown speaker can then

be determined by where the unknown speaker’s model falls in relation to the

hyperplane. Further details and an illustration are given in Section 2.3.1.

Table 2.1 below summarises the systems and results in accent recognition

studies discussed so far.
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2.3 Experiments

The experiments in this chapter compare a number of systems, using the

different modelling and classification mechanisms discussed in Section 2.2

above. In particular, this chapter will reveal the performance of a variation on

ACCDIST-based modelling, which has been termed Y-ACCDIST (the York

ACCDIST-based automatic accent recognition system). So far, variant sys-

tems of Y-ACCDIST have only been tested on databases that other automatic

accent recognition systems have not. This chapter compares the performance

of six different accent recognition system architectures on the same accent

database:

• GMM-UBM

• GMM-SVM

• i-vector-SVM

• Phonological-GMM-SVM

• Y-ACCDIST-Correlation

• Y-ACCDIST-SVM

These can be compared with accent recognition systems presented in previous

studies. The text-independent GMM-UBM and GMM-SVM systems are close

to those compared in Hanani, Russell and Carey (2013). The i-vector system

developed here is based on that seen in Najafian, Safavi, Weber and Russell

(2016), a study discussed above in Section 2.2.2. We will also draw compar-

isons between the Y-ACCDIST systems developed here and the ACCDIST-

based systems developed in Hanani et al (2013) as the most recent and high-
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performing alternative ACCDIST-based systems. To create some cohesion

between the text-independent GMM-based systems and the text-dependent

ACCDIST-based systems, a text-dependent Phonological-GMM-SVM system

(similar to the one found in Wu, Duchateau, Martens and Compernolle (2010))

has also been included in these experiments.

The main purpose of this chapter is to bring all of these system types to

the same classification task on geographically-proximal accents. It is expected

that the nature of the data, and the degrees of similarity that exist among

the accents, will affect the success rates. The experiments in this section will

therefore involve training and testing the six different automatic accent recog-

nition systems on the same corpus of geographically-proximal accents. While

the text-independent GMM-based systems and ACCDIST-based systems in

Hanani, Russell and Carey (2013) were tested on the ABI corpus of 14 dis-

tinct accents spoken across the British Isles, the text-dependent phonological

GMM-SVM system was tested on a different corpus by Wu et al (2010). They

claim that the corpus of five Flemish varieties they tested it on is a more chal-

lenging task. Even though Flanders is known to have very distinct dialects for

such a small geographical space, when speakers speak the standard language,

differences between speaker groups are less prominent. Their experiments used

recordings of speakers speaking the standard language. This chapter will allow

us to compare Wu et al ’s system with other system types on the same set of

geographically-proximal accents. The results these past studies presented will

be reproduced in the results section to compare these with the results produced

by the systems when testing them on the same set of geographically-proximal

varieties. The corpus of geographically-proximal accents used in these exper-

iments is the Accent and Identity on the Scottish/English Border (AISEB)

corpus (Watt, Llamas and Johnson, 2014). This is described in further detail
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in Section 2.3.2 below.

The following subsections give details of aspects of the experiments run in

this chapter. First, each of the different automatic accent recognition systems

is described in turn, then the corpus of geographically-proximal accents, the

AISEB corpus, used to train and test the systems is outlined. The results

produced by each of these systems and an evaluation of performance are then

given.

2.3.1 Automatic Accent Recognition Systems

The discussion in Section 2.2 above divided accent recognition systems into

two types: phonotactic systems and acoustic systems. The systems developed

and implemented in these experiments can be separated in a different way

into two categories of system. These categories are assigned according to the

systems’ text-dependency. The first three systems described below are text-

independent systems, whereas the following three are text-dependent systems.

Due to discrepancies in the definitions of these terms between studies, it is

important to define what is meant by these system types in the context of

this study. Text-independent systems are systems which do not require any

kind of transcription or knowledge of the spoken content of the speech data

being processed. Text-dependent systems, on the other hand, require a tran-

scription to accompany the speech data to help to estimate the linguistic units

making up the spoken content. These linguistic units will then play a part

in the modelling phase of the accent recognition process. Often, when text-

dependent systems are tested and presented, the spoken content is identical

between training and test data. While for the experiments in this chapter this

is largely the case, the main intention behind the text-dependent systems used
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in this thesis is that they can be applied to problems where the spoken content

is known, but not necessarily where the spoken content is exactly matched be-

tween training and test data. This is in line with what might be feasible in

forensic analyses and so this possibility is investigated in later chapters in this

thesis. In potential forensic applications, we might know the spoken content of

an utterance we want to analyse, but it is highly unlikely that it will match the

training data. Using these text-dependency terms to subdivide our systems,

each system is described below.

Text-Independent Systems

This part describes the three text-independent systems trained and tested in

this chapter (i.e. the systems that do not require transcriptions as input).

System 1: GMM-UBM

This system architecture is frequently used for speaker recognition tasks. How-

ever, in this work it has been modified (following specifcations laid out by

Hanani, Russell and Carey (2013)) to be tested for a classification task.

First, a Universal Background Model (UBM) is trained on multi-accent

multi-speaker speech data (with 64 mixture components) through the Expec-

tation Maximisation algorithm (Bilmes, 1988). Section 2.3.2 will describe the

dataset used for the experiments presented in this chapter. It will describe a

subset of a corpus (120 speakers out of a total of 160) that is used for training

and testing the different systems. 40 speakers were discarded based on fac-

tors to do with the quality of the reading passage recording (in anticipation of

the text-dependent experiments). The speech data of these 40 speakers have

therefore been used to train the UBM in the systems that require a UBM.
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Speech data of the corpus were manually processed to divide the data into

stretches of speech between natural pauses, in effect aiming to remove silences

from the recording. MFCCs (defined and explained in Section 2.2.2) are ex-

tracted throughout the UBM training speakers’ speech samples. In this study,

the Hidden Markov Model Toolkit (HTK) (Young et al 2009) was used to

extract MFCCs. These are composed of 12 coefficients, plus energy, and in

addition, delta and delta delta coefficients were included in the overall vector,

totalling to 39 elements. These were extracted from 25ms windows of speech

at overlapping 10ms intervals.

Accent-specific multi-speaker speech data for each accent in the corpus are

then introduced to the training process as enrolment data. For each set of en-

rolment data (one set will contain only data for a single accent), MFCCs are

extracted and maximum a-posteriori (MAP) adaptation (Gauvain and Lee,

1994) is applied to adapt an accent-specific model: a representative accent-

specific GMM. The GMMs were made up of 256 mixture components. To

classify a test speaker, the likelihood of the test speaker’s acoustic features

belonging to each of the adapted models is calculated. The highest likelihood

indicates class membership.
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Figure 2.4: The processes involved in the GMM-UBM system.

System 2: GMM-SVM

In the same way as System 1, a UBM is trained using multi-accent, multi-

speaker speech data. In the case of this system, the enrolment data are

speaker-specific, but are still independent of spoken content. Instead of adapt-

ing one single model to represent one accent, a model is adapted for each of

the speakers in the enrolment data (again, using MAP adaption). This leaves

multiple adapted GMMs representing each accent, one per speaker. Taking

each of these speaker-specific GMMs, the means are taken and concatenated

to form a supervector to represent that speaker. These speaker vectors are

then fed into a SVM classifier, which is effectively plotting these speakers in

high-dimensional space. For each accent class we have in our corpus, we form

a ‘one against the rest’ binary configuration. Each accent becomes the ‘one’,

while all other speakers are collapsed into ‘the rest’. The configuration rotates,

in order to enable each accent to become the ‘one’. Each time, the aim is to

find a hyperplane that separates the accent class in question from ‘the rest’. A
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number of hyperplanes are likely to be possible, but a SVM aims to calculate

the hyperplane with the largest (optimal) margin between the two groups2.

Figure 2.5 below offers a simplified illustration of a Support Vector Machine

classifier within 2-dimensional space.

Figure 2.5: A simplified illustration of a Support Vector Machine classifier.

When classifying an unknown speaker, the speech sample is adapted from the

UBM to form a GMM representing the speaker. The means of this model

are fed into the SVM on each rotation. The sample is classified according to

the clearest margin it forms relative to the hyperplane, indicating accent class

membership.

2The SVMs implemented in the systems in this thesis have been implemented using the

scikit-learn machine learning Python package. URL: scikit-learn.org.
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Figure 2.6: The processes involved in the GMM-SVM system.

System 3: i-vector-SVM

To extract i-vectors, the MSR identity toolbox (Sadjadi, Slaney and Heck,

2013) was used. Training an i-vector system begins in the same way as a

GMM-UBM system and a GMM-SVM system. A UBM is first trained, again

using the Expectation Maximisation algorithm. Using the enrolment train-

ing data for each accent, we can form a GMM supervector to represent each

speech sample. From these supervectors, we can calculate i-vector models to

represent each sample. We can look at this compression from supervector to

i-vector through the equation,

M = m + Tw,

where M is the GMM supervector, m is the UBM supervector, T is the low-

dimensional matrix and w is the i-vector. The aim is to capture the between-

sample variability through applying a total variability matrix. An i-vector

for a speech sample, w, is calculated using Baum-Welch statistics and the
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UBM. Behravan, Hautamäki and Kinnunen (2015: 120) summarise the i-vector

process well when they describe it as “a mapping from high-dimensional GMM

supervector space to a low-dimensional i-vector that preserves most of the

variability”. We can specify the number of dimensions that the total variability

matrix has. In this work, we use 400, which is a standardly used number of

dimensions in i-vector systems.

Once we have an i-vector representing each of our samples, our aim is to

capture the between-accent variation, not the between-speaker variation which

is what the i-vector models do up to this point. For the specific i-vector sys-

tem used in this study, the mechanism used to classify speakers is the Support

Vector Machine classifier. For this system, a polynomial kernel was used. This

i-vector-SVM system configuration closely follows that seen in the accent clas-

sification experiments in Najafian, Safavi, Weber and Russell (2016).
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Figure 2.7: The processes involved in the i-vector-SVM system.

Text-Dependent Systems

The next three systems described are termed text-dependent. As noted above,

these systems do not necessarily require the testing data to be composed of

the exact same spoken content as the training data. However, the experiments

in this chapter do use matching spoken content. Subsequent chapters make

use of data where the spoken content is not directly comparable.

These text-dependent systems require a phoneset and pronunciation dic-

tionary (or lexicon) to represent the phoneme segments that form the accent

models. This is because each of these text-dependent systems relies on forced

alignment as the first step in its processes. The forced aligner used was devel-

oped using the HTK 3.4 toolkit (Young et al, 2009). To align data for each

speaker, the aligner was iteratively trained on the data itself (a more low-
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resource solution to forced alignment). The specific phoneset that has been

used for the experiments in this chapter is detailed further below in Section

2.3.3.

System 4: Phonological GMM-SVM

This system is based on that seen in Wu, Duchateau, Martens and Comper-

nolle (2010). A number of speakers’ speech samples, along with their tran-

scriptions, for each of the accents involved, is taken and passed through a

forced aligner. Using the output time alignments, a GMM is trained to rep-

resent each phoneme for an individual speaker. All the GMM means for each

phoneme are concatenated to represent the speaker’s pronunciation system in

one long supervector. In the same way as the GMM-SVM system described

above, each training speaker’s representative vector is fed into a SVM classi-

fier. To classify an unknown speaker, the speech sample and transcription are

force aligned and subsequently used to train phoneme-specific GMMs. The

means of these GMMs are concatenated into a supervector and introduced to

the SVM to assign an accent label.
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Figure 2.8: The processes involved in the Phonological-GMM-SVM system.

System 5: Y-ACCDIST-Correlation

For each speaker in the training set, a speech sample and a transcription are

passed through a forced aligner. For each vowel phone token, the midpoint

12-element MFCC vector is extracted. These MFCCs are clustered into their

respective phoneme categories and an average MFCC vector is calculated to

represent each vowel phoneme3. As a result, each speaker’s vowel phoneme in-

ventory is represented by a series of average MFCC vectors, one per phoneme.

These representative MFCC vectors form the foundations of a matrix and the

Euclidean distance is calculated between all possible phoneme-pair combina-

tions. The resulting table of distances, the Y-ACCDIST matrix, represents

3For now, the experiments will only involve vowel segments to follow the work of Huckvale

(2004, 2007) and Hanani, Russell and Carey (2013). However, this thesis will move towards

modelling consonants as well in subsequent chapters.
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the speaker’s pronunciation system. To explain how this provides a model

of accent, we can refer to a specific example from British English. The vow-

els in foot and strut for Northern English English speakers are typically

realised the same (both as [U]). For Southern English English speakers, they

are typically realised differently (foot contains [U], whereas strut contains

[2]). When the Euclidean distance between the MFCCs for these two vowels is

calculated, it is expected that a smaller value will be generated for a Northern

speaker, and a larger one for the Southern speaker. A whole table (matrix)

of these phoneme-pair distances should capture a collection of these accent-

specific features. A Y-ACCDIST matrix is illustrated in Figure 2.9.

Figure 2.9: An illustration of part of a Y-ACCDIST matrix.

All the Y-ACCDIST matrices of the training speakers are pooled together ac-

cording to accent category and an average Y-ACCDIST matrix is calculated to

represent each accent. These average Y-ACCDIST matrices form our reference

system.

To classify an unknown speaker, the speech sample and transcription are

passed through a forced aligner and converted into a Y-ACCDIST matrix in

the same way that is described immediately above. The Pearson r product-

moment correlation is then calculated between the unknown speaker’s matrix
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and each of the average reference Y-ACCDIST matrices (one average matrix

per accent). Using correlation here is an indicator of similarity between ma-

trices. The higher the correlation, the more similar two matrices are. The

unknown speaker’s matrix is therefore assigned the same accent label as the

reference matrix with which it generates the highest correlation.

Figure 2.10: The processes involved in the Y-ACCDIST-Correlation system.

System 6: Y-ACCDIST-SVM

All speakers’ speech samples in the training set are converted into speaker-

specific Y-ACCDIST matrices in the same way described in the subsection

immediately above for the Y-ACCDIST-Correlation system. The difference

between the Y-ACCDIST-Correlation system and the Y-ACCDIST-SVM sys-
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tem lies in the classification process. Rather than producing an average matrix

for each accent category, the Y-ACCDIST matrices belonging to each accent

category remain speaker-specific. These speaker-specific matrices are then

used as input feature vectors for a SVM and the same classification process

takes place as that explained for the other SVM systems described above.

Figure 2.11: The processes involved in the Y-ACCDIST-SVM system.

The experiments presented here compare the six systems described above

on the same accent corpus. First, details and some background information

will be given about the accent corpus used in this chapter (the Accent and

Identity on the Scottish-English Border (AISEB) corpus (Watt, Llamas and

Johnson, 2014)).
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2.3.2 The AISEB Corpus

The data used for the experiments run in this study are from the Accent

and Identity on the Scottish/English Border (AISEB) corpus (Watt, Llamas

and Johnson, 2014). This corpus contains speakers from four locations across

the Scottish-English Border: Berwick-upon-Tweed, Eyemouth, Carlisle and

Gretna. The AISEB corpus was not primarily collected for speech technology

or forensic research, but for sociolinguistic purposes. These four communities

provide an interesting case study for sociolinguistic research in that they sit

in pairs very closely to one another (approximately 10 miles) either side of a

political border between Scotland and England. In total the corpus contains

speech samples from 160 speakers (40 per geographical location). Not only

were recordings from speakers in these four towns collected to analyse the

phonetic variation among them, but also to research the perceptual categori-

sations that the AISEB speakers make themselves about the speech of these

communities (Llamas, Watt and MacFarlane, 2016). To achieve this, the cor-

pus contains production data, attitudinal data and a perceptual strand, in the

form of several experiments.

Sociolinguistic analysis of the AISEB corpus is ongoing, but there are some

points about the linguistic features of these varieties presented in the literature

so far. The accent varieties in the AISEB corpus are of sociolinguistic interest,

particularly as there is a dimension of how national identity can interact with

the linguistic features of speakers in the communities that sit along a political

border (Llamas, 2010). In this specific instance, it is of interest to discover

which linguistic features, if any, that are typically associated with Scottish

English or English English are produced by speakers in the border communi-

ties. Llamas (2010) considers this in relation to coda-/r/, which is of course
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a typical feature of Scottish English, a rhotic variety. In an empirical inves-

tigation of coda-/r/ production among speakers of the four AISEB varieties,

Llamas shows a distinct difference between the localities either side of the bor-

der, where the coda-/r/ is used much more by the speakers in the two Scottish

communities compared with speakers from the two English communities.

Llamas, Watt and Johnson (2009) also make predictions about the variety

spoken in Berwick-upon-Tweed, based on their observation that it is “clearly

a hybrid of Scottish and Northumbrian varieties”. In doing so, they predict

that Berwick speakers produce the second vowel in letter (when referring to

Wells’ (1982) keywords) in a similar way to how Tyneside speakers are known

to produce it. A more open vowel [5] is more likely to be produced than [@].

Independent of work specifically on the AISEB corpus, there has been some

account of the spoken variety in Carlisle. Jansen (2013) acknowledges that

the Carlisle variety is often confused for Newcastle English or even Scottish

English. She provides an overview of Carlisle English, drawing on features

it shares and does not share with Newcastle English. Within her account of

Carlisle English, Jansen notes that the dress and kit vowels are raised, while

the trap vowel is low ([a], rather than [æ]). Among younger Carlisle speakers,

the possible realisations of the vowels in face and goat are reported to be

the same as those produced by Newcastle speakers. However, older Carlisle

speakers have an alternative possible realisation of [e@] for face.

A subset of AISEB was used for the experiments in this chapter, taking 30

speakers from each location and using the recorded reading passage as a speech

sample for each. A subset was used, rather than the whole corpus, because

of the quality of some of the reading passage recordings. For various reasons,

some recordings were judged unsuitable for these experiments. In addition, we

wanted a balanced number of speakers to represent each accent group. Within
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each group, we have a range of ages (15 speakers in the ‘younger’ category

(approx. 14-27 years) and 15 in the ‘older’ category (approx. 54-93 years).

We attempted to maintain a balance of male and female speakers per accent

group. This division was not perfectly even, but it was approximately equal

within the groups. Like the experiments by Hanani, Russell and Carey (2013),

the spoken content for each speaker is the same. The recordings are of good

quality - a sampling rate of 44.1kHz was used - and last approximately three

minutes per speaker.

2.3.3 Phoneset

The phoneset defines the speech segment categories to which we will assign

our individual phone tokens in the speech data (which is of relevance to the

text-dependent systems). In linguistic terms, we can think about it as a kind

of phoneme inventory we choose to apply to the data. We know that a number

of different phoneme inventories can be relevant to a single language, depen-

dent on the accent varieties in that language. Even though we are working

with Scottish and English varieties in this chapter, we will be using a North

American English phoneset, based on the VoxForge phoneset4. In the early

development stages of these text-dependent systems, this North American En-

glish phoneset was implemented and compared with when a British English

phoneset was implemented5. The North American phoneset and pronunciation

dictionary were discovered to yield the best results for these data. A key dif-

ference between the North American pronunciation dictionary and the British

English pronunciation dictionary is that the North American one accounts for

rhoticity in speech. This is likely to be a key distinguishing feature between

4The VoxForge website can be found here: http://www.voxforge.org/home
5Neither phoneset includes the full repertoire of phonemes for the varieties in question.
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the Scottish and English speakers in the AISEB corpus. Experiments later in

this thesis will use slightly different pronunciation dictionaries, which are de-

termined by the type of data that are being used. For reference, the phoneset

that we have used for these AISEB experiments is presented in Tables 2.2 and

2.3 below:

Table 2.2: The vowel phoneset symbols used for the AISEB experiments along-

side their corresponding IPA symbols.

Phoneset Vowel Symbol AE AA AO IY UW EH IH UH

IPA Symbol æ A O i u E I U

Phoneset Vowel Symbol AX EY AY OY OW AW ER AH

IPA Symbol @ eI aI OI @U aU 3 2

Table 2.3: The consonant phoneset symbols used for the AISEB experiments

alongside their corresponding IPA symbols.

Phoneset Consonant Symbol P T K B D G CH JH

IPA Symbol p t k b d g tS dZ

Phoneset Consonant Symbol F V S Z TH DH SH HH

IPA Symbol f v s z T D S h

Phoneset Consonant Symbol zh L R W Y M N NG

IPA Symbol Z l ô w j m n N
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2.3.4 Results

This section compares results obtained by each type of system from past stud-

ies with those obtained by each system tested on the AISEB corpus. First,

the results of the previous studies are described and presented, and then the

results produced by similar systems on the AISEB corpus are presented.

Previous Studies

As repeated above, we can loosely compare the results generated by the sys-

tems developed and tested here with those of similar architectures tested on

corpora in previous studies. Those which were conducted by Hanani, Russell

and Carey (2013) and Najafian, Safavi, Weber and Russell (2016) were 14-way

accent classification tasks using the ABI corpus, whereas the result generated

by Wu, Duchateau, Martens and Compernolle (2010) was a five-way classifica-

tion task on Flemish varieties. For reference, these past results are presented

in Table 2.4.

Table 2.4: Recognition rates for six accent recognition systems from past stud-

ies for reference.

System Corpus No. classes % Accuracy

GMM-UBM ABI 14 61.13

GMM-SVM ABI 14 76.11

i-vector-SVM ABI 14 76.76

Phon-GMM-SVM Flemish 5 63.2

ACCDIST-based Correlation ABI 14 93.17

ACCDIST-based SVM ABI 14 95.18
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While these results are not the main focus of this chapter, they provide a good

reference point to then discuss the results presented below. What is important

to note is the overall hierarchy of performance of these different systems. This

will be discussed further in relation to the results given in the next subsection.

Results generated using the AISEB corpus

A three-fold cross-validation experimental setup was put in place to generate

results using the AISEB corpus. The total pool of 120 speakers was split

into three groups, 40 in each (10 speakers per accent). Each system was then

trained on two of these groups (80 speakers), and tested on the remaining

40 (the UBM remained unchanged, and it was only the enrolment data that

changed in the systems that made use of a UBM). The groups of speakers would

rotate round for each group of 40 to become the test batch, and eventually all

120 speakers would be tested.

The overall recognition rates for each of the six systems are shown in Table

2.5 below.

Table 2.5: Recognition rates for six accent recognition systems when tested on

the AISEB corpus.

System Recognition rate (%)

GMM-UBM 37.5

GMM-SVM 47.5

i-vector-SVM 40.8

Phon-GMM-SVM 68.3

Y-ACCDIST-Correlation 76.7

Y-ACCDIST-SVM 86.7
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We can observe a great spread of results across the six systems, as we would

expect of a combination of text-independent and text-dependent systems. We

can draw some conclusions when comparing the above results with those pre-

sented in past studies (reproduced in Table 2.4). Hanani, Russell and Carey

(2013) and Najafian, Safavi, Weber and Russell (2016) report results from

a 14-way accent recognition task between the relatively more geographically-

distant accent groups found in the Accents of the British Isles (ABI) corpus.

In the context of a 14-way accent recognition task, we would predict a chance

recognition rate of 7.14%. All results they report show performances well be-

yond chance expectations. When we compare the performance of very similar

systems on the AISEB corpus, we can see how much more robust ACCDIST-

based systems are to discriminating geographically-proximal accents. In con-

trast, the lowest-performing result (produced by the GMM-UBM system) only

sits marginally above the chance level of 25% for this task. Although a drop

in the performance of text-independent systems is perhaps expected, we can

observe the extent to which the text-independent systems suffer when they

are faced with a more challenging task of distinguishing between accents with

greater degrees of mutual similarity. To lend greater support to this observa-

tion, it would of course be useful to test the exact systems built in this study

on the ABI corpus, rather than draw conclusions from a comparison between

very similarly developed systems.

To take a closer look at the performances of each system, the confusion

matrices for each individual system are presented below. The absolute number

of correctly classified speakers is presented in each cell, indicating which accent

label the test speakers were assigned.
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Table 2.6: GMM-UBM confusion

matrix (37.5%).

Accent Ber. Car. Eye. Gre.

Ber. 12 12 5 1

Car. 6 13 8 3

Eye. 3 6 19 2

Gre. 13 11 5 1

Table 2.7: GMM-SVM confusion

matrix (47.5%).

Accent Ber. Car. Eye. Gre.

Ber. 14 3 3 10

Car. 6 12 4 8

Eye. 4 1 16 9

Gre. 7 5 3 15

Table 2.8: i-vector-SVM confusion

matrix (40.8%).

Accent Ber. Car. Eye. Gre.

Ber. 18 7 1 4

Car. 11 8 1 10

Eye. 9 5 12 4

Gre. 11 6 2 11

Table 2.9: Phonological GMM-

SVM confusion matrix (68.3%).

Accent Ber. Car. Eye. Gre.

Ber. 18 3 3 6

Car. 1 28 0 1

Eye. 5 0 23 2

Gre. 4 7 6 13

Table 2.10: Y-ACCDIST Correla-

tion confusion matrix (76.7%).

Accent Ber. Car. Eye. Gre.

Ber. 28 2 0 0

Car. 2 17 2 9

Eye. 0 0 26 4

Gre. 0 6 3 21

Table 2.11: Y-ACCDIST SVM

confusion matrix (86.7%).

Accent Ber. Car. Eye. Gre.

Ber. 30 0 0 0

Car. 2 23 1 4

Eye. 0 0 28 2

Gre. 0 5 2 23
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The confusion matrices offer the opportunity to observe whether the sys-

tems struggle to classify speakers of some accents over others. Some such

observations are discussed in Section 2.4 below.

2.4 Discussion

In line with the results of past studies (Table 2.3), the results generated us-

ing the AISEB corpus (in Table 2.4) are largely consistent with the expected

hierarchy in performance. The Y-ACCDIST-SVM system, followed by the

Y-ACCDIST-Corrleation system, achieve the highest recognition rates, while

the GMM-UBM system achieves the lowest. It was mentioned above that

even though the Y-ACCDIST systems, as well as the three text-independent

systems, display a drop in performance relative to previous studies, it seems

that the drop in performance is less substantial for the Y-ACCDIST systems,

particularly the Y-ACCDIST-SVM system. Based on this observation and

comparison with other studies, we can consider the Y-ACCDIST-SVM as a

state-of-the-art text-dependent accent recognition system.

One thing to bear in mind is that the performances of all the systems are

likely to improve with an increased number of training speakers, particularly

in the case of the text-independent systems. Because of the way Y-ACCDIST

works by calculating intra-speaker segmental distances, voice quality charac-

teristics, like those which correlate with the speakers’ age and sex, are expected

to play a much smaller role in the model than in i-vector or GMM-based mod-

els, and instead, the emphasis is on the speakers’ vowel systems. Particularly

as the AISEB dataset provides a range of speaker ages and speakers of both

sexes, Y-ACCDIST is probably at an advantage. In the other types of system,

we can expect that these voice-quality characteristics are more prevalent in
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the models, and so the accent variation (the specific aspect we are interested

in for this task) is overshadowed on more occasions in classification. Taking a

segmental approach in the first instance of course increases the Y-ACCDIST

systems’ chances of achieving greater recognition rates. Increasing the training

dataset is likely to allow the accent variation to be modelled more effectively by

the text-independent systems. Alternatively, it might be that these particular

accent varieties are not suitable for classification by these kinds of systems. A

larger dataset would be required to establish answers to these kinds of ques-

tions.

In a sense, the facts that the text-dependent systems can cope with the

corpus size we are using, and the text-independent systems do not, are worth

knowing. For forensic applications, it is unlikely that we will have access to vast

amounts of data to train a single system on. It could therefore be worth further

investigating more ‘low-resource’ approaches to accent recognition and trying

to determine how many training speakers are sufficient for a reliable analysis

to take place. It might be the case that the text-dependent approaches can

offer us this kind of low-resource capability.

One prominent difference that is obvious between the results of the past

studies, and the results from the AISEB experiments is the performance of the

GMM-SVM and the i-vector-SVM systems. Using the ABI corpus, Hanani,

Russell and Carey (2013) and Najafian, Safavi, Weber and Russell (2016)

present very similar performances of 76.11% and 76.76%, respectively. How-

ever, when both are tested on the AISEB corpus, more of a performance

gap emerges between the two types of system, with the i-vector-SVM sys-

tem achieving the lower score of 40.8% and the GMM-SVM system achieving

47.5%. Because both systems use an SVM classifier, it seems that the i-vector

modelling procedure is not the best for this specific task on this dataset. Again,
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it could be down to the quantity of data, whereby i-vector-based systems can

create more effective models with greater quantities of data. Alternatively, it

might be that i-vector models are not as effective when discriminating vari-

eties distinguished by more subtle accent differences. Applying these systems

to a greater number of corpora of varying sizes and degrees of similarity would

allow us to get a grasp of how these different systems perform on different

types of dataset.

Turning our attention to the individual confusion matrices for each of our

systems, we can see that some patterning is in evidence. With the number

of speakers that have been used, it is important to note that these are fairly

speculative observations which would require further investigation. It is rea-

sonable to expect that some accents are naturally more distinct than others.

Some will have a greater number of differences, or larger degrees of difference,

from the rest of the varieties in the dataset. We can look for these kinds of dif-

ferences among the accents in the confusion matrices for the systems. Broadly

speaking, Gretna tends to be the lowest-performing group overall (with a total

of 84 correct classifications out of a possible 180 across all six systems). From

a sociolinguistic point of view, this is unsurprising. Historically, Gretna is the

newest of the four towns in the AISEB corpus and was formed very suddenly

in the First World War as workers of a new munitions factory came to settle in

the area (Watt, Llamas and Johnson, 2014). It is therefore plausible that the

variety spoken in Gretna is not as established or distinct as the other varieties

because the town has not been long established itself. It might therefore be

understandable that the Gretna accent is more confusable than other varieties,

which is what we can generally observe among the confusion matrices.

At the other end of the spectrum, Eyemouth speakers are correctly classi-

fied on the most occasions, with a total of 124 correct classifications out of a
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possible 180 across all six systems. Eyemouth is consistently in the top two

most correctly classified varieties across all the systems’ results. Simply due

to the nature of accents, we can assume that some accents are more likely to

be correctly classified than others, and accent recognition performance is not

solely down to the systems.

Related to this, it could be that some varieties are more suited to being

classified by a particular type of system. Carlisle, as a variety, seems to be in-

consistent across systems in terms of its individual success rate relative to the

other accents. When processed by the i-vector-SVM system it is the lowest-

performing accent variety, whereas the Phonological-GMM-SVM system cor-

rectly classifies Carlisle speakers on more occasions than the other varieties.

Interestingly, though, when it comes to both Y-ACCDIST-based systems (the

highest-performing systems), the Carlisle variety performs relatively poorly. It

could be the case that the Carlisle accent is not as well suited to Y-ACCDIST

modelling as the other varieties, and the distinguishing factors in a Carlisle

accent are better presented through other modelling procedures. This is where

system fusion may be able to play a part in achieving an overall improved ac-

cent recognition performance (as seen in Hanani et al, (2013) and Najafian et

al, (2016)). Fusion can move us towards combining the strengths of different

types of system to produce a single improved result. Future research could

move in this direction.

When we are considering applying automatic accent recognition technolo-

gies to forensic tasks, we should expect challenging data types. The experi-

ments presented in this chapter were conducted on content-controlled reading

passage data, which is of course not a data type we can normally expect in

forensic tasks. The experiments presented in the next chapters in this thesis

will therefore involve spontaneous speech data so as to move closer towards
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the kinds of data found in forensic casework, and to challenge an automatic

accent recognition system in this respect.

2.5 Summary

This chapter has tested and evaluated six different automatic accent recogni-

tion systems on a corpus of geographically-proximal accents, the AISEB cor-

pus. With reference to similar systems developed in past studies, we have com-

pared the performances of different systems in relation to the specific dataset

chosen for this purpose. Performance was evaluated in terms of the dataset

size and the specific accents that were involved in the experiments. A num-

ber of possible further research directions exist in the form of running similar

experiments on a whole range of corpora, as well as combining the different

systems in order to take advantage of the strengths of different system types.
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CHAPTER 3

Automatic Accent Recognition on

Spontaneous and Degraded Speech Data

3.1 Introduction

For controlled accent recognition experiments, using spoken content which is

the same across speakers (i.e. producing the same reading passage or prompts)

has its advantages. Controlling this condition can allow us to more directly

compare recognition performance across different accent varieties and individ-

ual speaker performance. It also makes it possible to make direct comparisons

across individual segments found in the same phonological environments, if

we were interested in how particular speech segments contribute to a task.

However, when considering these systems for real-life forensic applications,

matching controlled spoken content across speakers is not a data feature we

can rely on. To make an accent recognition tool as versatile as possible, it is

essential that the tool can make accent recognition decisions based on what

will be termed content-mismatched speech data (i.e. spontaneous speech sam-
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ples), as well as content-controlled speech data (i.e. speakers producing the

same reading passage or prompts). In the phonetics literature, differences

have been studied between the reading mode and the spontaneous mode of

speech. For example, Howell and Kadi-Hanifi (1991) ran a small study in

which they asked a number of speakers to describe a room (spontaneously)

while being recorded. This recording was orthographically transcribed, and

the same speakers were asked to read the transcription of their own recording.

The reading was also recorded, resulting in two recordings of the same spo-

ken content, by the same speaker, one spontaneously produced and the other

in reading mode. Among their observations, they found differences such as

speakers pausing in different places and stress being placed differently. They

also comment that the rate of speech is higher in spontaneous speech than it is

in read speech. Consequently, not only does working with spontaneous spoken

data introduce content mismatch, but it also presents a different quality of

speech, and this quality might affect the performance of an automatic system.

Hanani, Russell and Carey (2013), a study regularly referenced throughout

this thesis, ran their automatic accent recognition experiments on read speech

data, like in the experiments presented in Chapter 2 above. However, Hanani

et al. speculate in their discussions of the experiments that spontaneous speech

might actually increase the prominence of a speaker’s accent features, in turn

increasing the chances of a successful accent classification.

In the context of automatic accent recognition systems, it is not clear

whether the spontaneous spoken mode might be advantageous to overall clas-

sification performance, or detrimental to it. It might be the case, particularly

in the context of text-independent systems, that spontaneous speech increases

the chances of an unknown speaker being correctly classified. Because the

text-independent systems we investigated in Chapter 2 (GMM-based systems
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and i-vector-based systems) capture an overall acoustic representation of the

speech samples, rather than making phoneme-on-phoneme comparisons, they

rely on having enough accent-specific features among speakers in a certain

accent category. If Hanani et al ’s (2013) hypothesis is correct, then text-

independent systems might benefit from spontaneous speech data.

In contrast, by taking a more segmental approach, as we do with Y-

ACCDIST, we might expect recognition rates to suffer when classifying content-

mismatched speech data, in comparison to a Y-ACCDIST system’s perfor-

mance using controlled read speech. This is for a number of reasons. First,

the content-mismatched nature of data is likely to bring problems to a unit-

dependent approach like this one. This is because of the varying co-articulatory

effects on a single phone. In the case of Y-ACCDIST, which makes average

representations of phonemes, the variation in the contexts that the individual

phones are found will affect the stability and comparability of these phoneme

representations across speakers. Another factor which might contribute to Y-

ACCDIST’s performance when processing spontaneous speech is the impact

the spontaneous data has on the forced alignment quality. It is reasonable to

expect that spontaneous speech would increase the segmentation error of the

aligner relative to read speech. The expected increase in articulation rate and

connected speech processes that come with spontaneous speech may reduce

the quality of the alignment (Goldman, 2011). If this is the case, it will also

contribute to less stable phoneme representations in the modelling stage of Y-

ACCDIST, and consequently, more ‘noise’ in the overall recognition process.

As discussed, there are reasons why spontaneous speech data might chal-

lenge a Y-ACCDIST-based system. The key purpose of this chapter is there-

fore to show Y-ACCDIST’s accent recognition performance on content-mismatched

speech data and to outline key considerations when processing such variable
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data.

The main way in which Y-ACCDIST deviates from the other ACCDIST-

based systems reported in previous studies (Huckvale 2004, 2007; Hanani, Rus-

sell and Carey 2011, 2013) is that it is designed to be able to process content-

mismatched (spontaneous) speech. Past ACCDIST-based systems have re-

quired the spoken content of the training and testing data to match. Chapter

2 contained the system descriptions of two Y-ACCDIST-based systems. The

key difference between Y-ACCDIST and past ACCDIST-based systems is the

modelling stage of these two systems, and it is this difference which makes

Y-ACCDIST applicable to content-mismatched speech data. All ACCDIST-

based systems are reliant on effectively making comparisons between the same

segmental units across speakers. The default version of Y-ACCDIST, for ex-

ample, will compare each representation of a test speaker’s vowel phonemes

with the vowel phoneme representations in the trained model. The ACCDIST

systems in Huckvale (2004, 2007) rely on word-specific vowels, so the vowel in

cat and the vowel in trap could not be compared against one another. They

are treated as separate vowels. The vowel in cat can only be compared with

other instances of the vowel in cat. The ACCDIST-based systems in Hanani

et al (2011, 2013) are similarly context-specific in the comparisons they are

restricted to. These systems make triphone-specific vowel comparisons. Like

the system in Huckvale (2004, 2007), Hanani et al ’s systems cannot make

comparisons across cat and trap. However, unlike the system by Huckvale,

Hanani et al ’s systems could compare the vowel in cat with the first vowel in

cattle. The Y-ACCDIST systems collapse all of these vowels into one, and can

therefore make comparisons across them, making it possible to work across

content-mismatched speech data. As already speculated, making these seg-

mental collapses is likely to form less stable accent models, but the purpose of
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this chapter is to determine how an ACCDIST-based system performs when

processing content-mismatched data, rather than only processing highly con-

trolled spoken content.

In addition, this chapter will also present results on degraded data. Again,

when aiming to make further steps towards testing and evaluating an au-

tomatic accent recognition system on forensically relevant speech data, it is

important to test a system on data of a quality lower than what we have so

far been testing it on. A large proportion of a forensic speech scientist’s work

involves analysing telephone call recordings (French, Harrison, Kirchhübel,

Rhodes and Wormald, 2017). We can simulate telephonic data by artificially

degrading these recordings. In doing so, we can make a direct comparison

between recording qualities using exactly the same recordings, providing a

means by which to conduct a controlled experiment. It is important to keep in

mind, however, that artificial degradation does not simulate genuine telephone

recordings with complete accuracy. Byrne and Foulkes (2004) demonstrated

this via a study in which they collected recordings of a small number of speak-

ers producing a short reading passage over a mobile phone. While this mobile

phone recording was being made, another microphone positioned in front of

the speaker was recording the same event, resulting in the same speech signal

being captured by a mobile phone and a microphone. Having analysed a num-

ber of vowel formants, they showed a clear increase in Formant 1 (F1) values

in the mobile phone recording relative to the studio microphone recording of

the same speech production. Artificially degrading a speech sample will not

necessarily accurately replicate these kinds of effects, and so this should be

kept in mind when analysing the results from the degraded data. Chapters

6, 7 and 8 of this thesis will reveal system performance using genuine tele-

phone recordings, but these cannot be directly compared with good-quality
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recordings in the way shown in this chapter.

3.1.1 Outline

To try to satisfy both of the present chapter’s key aims, which revolve around

testing an automatic accent recognition on more forensically realistic data,

this chapter takes the following two steps:

1. Test the highest-performing system observed in Chapter 2, the Y-ACCDIST-

SVM system, on spontaneous speech data.

2. Test the Y-ACCDIST-SVM system on the same data, having artificially

degraded it.

These two objectives are addressed in the experiments presented in Section

3.2.

In connection with these research aims, this chapter will also take a closer

look at the speaker models (the individual speaker Y-ACCDIST matrices)

that are produced using the content-mismatched dataset. In Section 3.3, we

will explore the degree of similarity that exists between the speaker models in

the dataset of different accents to see how the models sit in relation to each

other. We would expect to see speakers fall closest to other speakers in the

same accent class. We will do this with both good-quality data and artificially

degraded data to observe the effects of degradation on the individual speaker

models. This is done in an effort to better understand how Y-ACCDIST

models content-mismatched data in their high-quality and degraded forms.

To pursue the research objectives, the experiments in this chapter use

speech data from a different accent corpus from the one used in Chapter 2.

More details about this new corpus will be given in Section 3.2.1 below. The
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change in corpus has been motivated by the large amount of transcribed con-

versational data per speaker, allowing for a more detailed inspection of the

effects of this kind of data on accent recognition performance.

3.2 Experiments

This section outlines the experiments carried out so as to test Y-ACCDIST on

spontaneous speech. First, details about the data will be given in Section 3.2.1

and then the procedure and results with some analysis will follow. Details

about the Y-ACCDIST-SVM system being used for these experiments were

given above in Section 2.3.1 (System 6).

3.2.1 The Data

To thoroughly explore the condition of spontaneous speech in automatic ac-

cent recognition, a different corpus has been selected based on the quantity of

orthographically transcribed speech data per speaker it contains. While the

AISEB corpus used for the experiments in Chapter 2 does contain a sponta-

neous speech component, it does not have enough transcribed conversational

speech per speaker to sufficiently address the research objectives set out in

this chapter1. A subset of the Language Change in Northern Englishes corpus

(Haddican, Foulkes, Hughes and Richards, 2013) (henceforth, the Northern

Englishes corpus) has been processed for these experiments. This corpus con-

tains recordings of British English speakers from Derby, Manchester, Newcas-

tle and York, and the part of the corpus that this study is interested in is the

1It would, however, be preferable to conduct a more direct comparison of content-

controlled and content-mismatched data types on the same data.
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conversational data produced in pairs between the speakers. For each pair of

speakers, there is approximately an hour of orthographically transcribed con-

versation (on topics guided, but not necessarily enforced, by the researchers).

These recordings are sampled at 44.1kHz, as good-quality recordings.

The Northern Englishes corpus was originally collected for sociolinguistic

research purposes, like the AISEB corpus used for the experiments in Chapter

2, and not specifically for speech technology or forensic research. Each loca-

tion contains speakers of a ‘younger’ age band (ranging between ages 16-27).

There was a slightly different demographic focus in the Manchester group. Be-

cause of a particular sociolinguistic interest in the Manchester accent variety

by Haddican et al (2013), the Manchester sample contains two additional age

groups of speakers. These can be broadly labelled as ‘middle-aged’ and ‘older’.

The intention behind this stratification of speakers is to monitor and analyse

changing variables in the Manchester spoken variety. Even though this ad-

ditional categorisation of speakers is available in the corpus, the experiments

and analysis in this chapter will mostly focus on accent groups from different

geographical locations. This is because the number of speakers per age group

is not expected to be sufficient to train and test the Y-ACCDIST-SVM system.

For most of the experiments reported in this chapter, then, only a sub-

set of the Northern Englishes corpus has been used. Section 3.3, however,

does make use of these additional groups of Manchester speakers. The num-

ber of speakers per accent group in the corpus is uneven. In order to achieve

equal numbers of speakers per group, Derby speakers have been excluded from

this study, as fewer than 15 speakers are available to use. Recordings of 15

speakers, all falling within the ‘younger’ age group (approximately aged 16-

27), along with their orthographic transcriptions, from Manchester, Newcastle

and York, have been pre-processed and processed by the Y-ACCDIST-SVM
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system for the experiments presented in this section. Where possible, equal

proportions of male and female speakers have been included per accent group.

However, occasionally the speakers did not provide enough conversational data

for the experiments in this thesis. There are therefore some slight imbalances

in the proportions of male and female speakers in the accent groups. Particu-

larly when using smaller datasets like this one, these kinds of imbalances in the

speaker population are likely to affect accent recognition performance for many

systems. Text-independent systems, like i-vector-based systems, are likely to

capture speaker variation in multiple ways, including voice quality characteris-

tics that correlate with speaker properties like speaker sex. These characteris-

tics are likely to ‘distract’ from distinctive accent features. Y-ACCDIST-SVM

aims only to capture and characterise accent-specific features of speakers, and

so such imbalances are expected to be less of an issue for a text-dependent sys-

tem like this. For each speaker, 10 minutes of net speech was obtained. To do

this, the speech was manually preprocessed to only get turns of speech spoken

by a single speaker, effectively separating out the pairs of speakers in the con-

versational data. The orthographic transcriptions were chunked and labelled

along with their corresponding snippets of recordings. Once the speech data of

the speakers were separated, and the appropriate orthographic transcriptions

assigned to the relevant chunks of speech recording, the data were ready to

pass through Y-ACCDIST-SVM.

Compared to the AISEB varieties that were in focus in Chapter 2’s ex-

periments, the accent varieties in this chapter are relatively well documented.

There are a number of segmental features that might play a part in distin-

guishing them. Hughes, Trudgill and Watt (2012) list a number of linguistic

features that are characteristic of Manchester speech. Of these, they note the

production of [g] that follows /N/ in words like sing and tongue. /l/ is typically
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realised as ‘dark’-/l/ in both onset and coda positions (rather than ‘light’-/l/

in the onset position, which is typical of most varieties of English). Among the

vowel features, Manchester speakers typically have a more open and further

back realisation of the second vowel in letter (more like [2] or [6], rather than

[@]). Hughes, Trudgill and Watt also point out that the nurse and goose

vowels are usually fronted, where the goose vowel is even sometimes realised

as a diphthong. This list presents us with a constellation of features that make

up a typical Manchester accent.

Turning to what we might expect from the Newcastle data, Watt (2002)

shows that what we might have previously considered as typical features of

Tyneside English are likely to have changed. More traditional realisations

of the face and goat vowels are the diphthongs /I@/ and /U@/ respectively.

However, in Watt’s study of vowel productions from Tyneside speakers found

monophthongal realisations, more like /e:/ and /o:/. Watt and Allen (2003)

provide an overview of phonetic features of Tyneside English. One notable

distinguishing feature of Tyneside English is the glottalisation of stops /p, t,

k/ in certain contexts. The example Watt and Allen give is the /t/ in the

word carter. It might more appropriately be transcribed as [Pt] in a typical

Tyneside production as a sort of double articulation.

Compared to Manchester and Newcastle, the variety spoken in York is not

as well documented. York English falls in line with other Northern varieties

of English. In contrast to Newcastle English, Haddican, Foulkes, Hughes and

Richards (2013) show the diphthongization of the face and goat vowels (the

reverse of what was reported for Tyneside English by Watt (2002)). This

could be a point of distinction in the experiments presented in this chapter.

Similarly to Manchester, however, goose is shown to become more front in

York English.
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The sociophonetic literature has provided us with a number of linguistic

features we can perhaps depend on for distinguishing between the accent va-

rieties in the Northern Englishes dataset.

3.2.2 Phoneset

Because we are working with different varieties of English, these experiments

use a slightly different phoneset and pronunciation dictionary from the exper-

iments run on the AISEB corpus in Chapter 2. The pronunciation dictionary

used in Chapter 2 adopted North American features (such as rhoticity), which

is not relevant to the Northern Englishes data. Instead, the experiments in the

present chapter will take on a pronunciation dictionary and phoneset that is

based on British English. This means that the phoneset we are using for these

experiments is slightly larger than that used for the experiments presented

in Chapter 2. For reference the phoneset used for the Northern Englishes

experiments is presented in Tables 3.1 and 3.2:
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Table 3.1: The vowel phoneset symbols used for the Northern Englishes ex-

periments alongside their corresponding IPA symbols.

Phoneset Vowel Symbol AE AA AO AX IY UW

IPA Symbol æ A O @ i u

Phoneset Vowel Symbol EH IH UH EY AY OY

IPA Symbol E I U eI aI OI

Phoneset Vowel Symbol OW AW ER AH EA IAX

IPA Symbol @U aU 3 2 E@ I@

Table 3.2: The consonant phoneset symbols used for the Northern Englishes

experiments alongside their corresponding IPA symbols.

Phoneset Consonant Symbol P T K B D G CH JH

IPA Symbol p t k b d g tS dZ

Phoneset Consonant Symbol F V S Z TH DH SH HH

IPA Symbol f v s z T D S h

Phoneset Consonant Symbol ZH L R W Y M N NG

IPA Symbol Z l ô w j m n N

We should also note here that for the results that follow, all vowels and

consonants were included in the construction of the Y-ACCDIST matrices.

This differs from the Y-ACCDIST experiments presented in Chapter 2 that

only used vowels (minus schwa) in the construction of the models. This was

in a move to more closely simulate previous ACCDIST-based studies which

have only used vowel-based units. However, as noted below, in the case of the
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Northern Englishes corpus, an all-phonemes setting achieved a higher recog-

nition rate than a vowels-only setting. All phonemes will therefore be used for

the experiments here. This point will be relevant to subsequent chapters in

this thesis.

3.2.3 Results

The results presented here were produced by a leave-one-out cross-validation

experimental setup, where, in turn, each speaker in the dataset became the

test speaker and the system was trained on the remainder of the dataset. This

was to maximise training data, as a reduced number of speakers, only 15 per

class, is used in these experiments compared with the experiments shown in

Chapter 2. In this configuration, where each speaker is modelled using a total

of 10 minutes of net spontaneous speech, Y-ACCDIST achieves a recognition

rate of 86.7% correct2. In a three-way classification task like this one, we would

of course expect a rate of 33.3% if the system was working by chance. The

confusion matrix to accompany this result is given in Table 3.3 below:

2When we use a vowels-only setting instead of the all-phonemes setting, we achieve a

lower recognition rate of 77.8% correct. We will return to this comparison in result in

Chapters 4 and 6.
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Table 3.3: Confusion matrix for an accent recognition task using the Y-

ACCDIST-SVM system on spontaneous speech data from the Language

Change in Northern Englishes corpus (86.7% correct).

Accent Manc Newc York

Manc 13 0 2

Newc 1 13 1

York 1 1 13

Noticeably, unlike in the accent recognition tasks undertaken in Chapter 2, the

different accent groups appear to be recognised at the same rate (i.e. for each

accent group, 13 of 15 speakers were correctly classified). From these results,

it is not obvious whether speakers of a particular group are more likely to be

recognised than speakers of another group. The low number of speakers per

accent class used for these experiments also contributes to this.

Sample Duration

These results are of course unrealistic for a number of reasons. One of the

main criticisms of the results is the quantity of speech used to model each

speaker. This thesis considers results in the context of forensic applications,

and 10 minutes of speech for an analysis is an unrealistic quantity to expect

in forensic casework. The same experiments were re-run, therefore, on varying

quantities of speech for each speaker.

Until now, experiments have made use of a fixed phoneset for each trial

that has been run to construct the Y-ACCDIST matrices for that trial. In

the context of the AISEB experiments, where a controlled reading passage

was produced by all speakers, the same phones were produced by the different
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speakers, and the reading passage covered nearly all the phonemes in the

phoneme inventory. In the Northern Englishes experiments above, 10 minutes

of speech per speaker was available, and so coverage of the phoneme inventory

was not a significant concern. However, with shorter speech samples, it is

quite possible that a full coverage of the phoneme inventory is not present in

the test speaker’s sample. To account for this, the phoneset that makes up

the Y-ACCDIST matrices for each trial is determined by the phonemes that

are present in the test sample.

In increments of 30-seconds, the graph below shows the recognition rates of

the Y-ACCDIST-SVM system when it processes different quantities of speech.

The shorter portions of the total 10 minutes available for each speaker are

the first temporal portions which come up in the available 10 minutes (i.e.

anchored on 00:00).

Figure 3.1: Y-ACCDIST-SVM recognition rates when processing varying

lengths of speech sample.
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It is no surprise that we can observe a general increase in recognition rates from

30-second speech samples up to 10 minutes. Presumably, more information

relevant to speaker accent is available in longer stretches of speech, therefore

increasing recognition rates. Also, longer stretches of speech mean that we

have more tokens of a single phoneme, leading to more stable representations

in the accent models. We seem to see a steep increase in recognition rate up to

1.5 minutes of speech (80.0% correct). However, we do witness inconsistencies

in recognition rate beyond this point. This is likely to be partly attributed

to the number of speakers we have used for these experiments. The drop

between the performance at 4 minutes and 5.5 minutes is only a difference of

7 speakers. Using only 45 speakers to test the system naturally means that

losses and gains of correctly classified speakers will result in greater impacts on

the overall percentage. Nonetheless, it is still interesting to witness instability

in performance as speech sample length increases.

Accent recognition on degraded speech data

Another way in which the experiments shown in this thesis so far are unreal-

istic is that they have all been conducted using good-quality recordings. Of

course, in forensic casework, it is highly unlikely that analysts will work with

recordings which are of the same quality as recordings collected for a corpus

intended for sociolinguistic research. It is therefore a natural next step to find

out how Y-ACCDIST performs when processing degraded data. To do this,

and to attempt to make a direct comparison with the results presented above,

the same speech recordings from the same speakers have been artificially de-

graded. Although in some ways it might be better to work with recordings

which are genuine low-quality forensic recordings, we can make stronger com-
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parisons with Y-ACCDIST’s performance on good-quality data if we use the

same material that has been degraded. The data were downsampled to 8kHz,

bandpass-filtered to 250-3500Hz3, and a-law compression was applied4, result-

ing in recordings which resemble telephony. The same experimental configura-

tion employed in the experiments above was implemented in these experiments.

10 minutes of net speech per speaker was used to model all the speakers (both

training and testing), and a leave-one-out cross-validation configuration was

applied. Under this degraded condition, Y-ACCDIST achieved a result of

64.4% correct. The accompanying confusion matrix for the task is given in

Table 3.4 below:

Table 3.4: Confusion matrix for an accent recognition task using the Y-

ACCDIST-SVM system on artificially degraded speech data from the Lan-

guage Change in Northern Englishes corpus (64.4% correct).

Accent Manc Newc York

Manc 7 4 4

Newc 0 13 2

York 2 4 9

As we might expect, degrading the data has resulted in a reduction in the

overall recognition rate, from 86.7% correct to 64.4% correct. By degrading

the data in the way we have, we are likely to lose information that is telling

of a speaker’s accent. An overall reduction is therefore unsurprising. One

3A wider bandwidth (upper frequency limit of 4kHz) would be more representative of

modern telephony, but the specifications implemented here still produce data that are close

to telephone quality.
4a-law has been used for these experiments because these is the companding algorithm

used in Europe.
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interesting observation we can gather from the confusion matrix is that the

even distribution of correct classifications that we see across the accent groups

in Table 3.3 has been lost. Of course, it is important to note that when only

15 speakers per accent have been used, we can only speculate. However, it is

interesting to see that the number of Newcastle speakers correctly classified

remains approximately the same, while we witness a drop in the number of

correctly classified speakers from the other two accent groups. This might be

an indication that the Newcastle accent variety is more distinct overall among

these three accent varieties. It seems that more information has been lost

in the degradation that is important to characterising Manchester and York

speakers, relative to the Newcastle sample.

3.3 Individual Speaker Similarity

The results so far in this chapter have simply categorised individual speakers

based on models trained on a collection of speakers. However, it might be of

interest to observe how individual speakers sit in relation to other speakers in

the whole dataset. This might reveal more about how Y-ACCDIST matrices

characterise speech samples. This section aims to take a deeper look into how

individual speaker Y-ACCDIST matrices model a speaker’s speech sample

by looking at the degree of similarity between these matrices. This section

does this through two types of visualisation: swarmplots and multidimensional

scaling.
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3.3.1 Swarmplots

Taking inspiration from the success of a similarity metric deployed in one of

the systems developed and tested in Chapter 2, the outputs in this section

will make use of Pearson r product-moment correlation to measure similarity

between individual speakers’ Y-ACCDIST matrices. We saw in Chapter 2

that Pearson r product-moment correlation, when attached to Y-ACCDIST

as the classification mechanism for the AISEB corpus, achieved a recognition

rate of 76.7%. From this, Pearson r product-moment correlation appears to

be a suitable method for measuring similarity between Y-ACCDIST matrices.

These measurements will then be visualised through swarmplots.

Method

Each speaker’s 10-minute speech sample (sampling rate of 44.1kHz) in the

dataset used in the experiments above in this chapter was processed and mod-

elled as a Y-ACCDIST matrix in the usual way, making use of only the vowel

phonemes. Only vowel phonemes have been used because it seems that we can

witness clearer separation of speakers in this setting. The Pearson r product-

moment correlation was then calculated between every possible pair of speakers

available in the dataset.

Outputs and Analysis

The resulting speaker-pair correlation values are presented in the ‘swarmplots’

below. These swarmplots show the degree of similarity between different cat-

egories of speaker and individual speakers. Each speaker is taken individually

and the correlation value is subtracted from 1. Each speaker’s ‘swarm’ in the

swarmplots therefore shows the more similar speakers lower down on the y-axis
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(i.e. points closer to the labelled x-axis indicate a higher similarity measure-

ment)5. For the purposes of clarity, the outputs below show the individual

speakers in each category in three separate plots. The Manchester speakers’

swarmplot is shown in Figure 3.2, the Newcastle speakers’ swarmplot is shown

in Figure 3.3, and the York speakers’ swarmplot is shown in Figure 3.4.

To decode the speaker ID labels in the figures in the remainder of this

chapter, Table 3.5 clarifies what each of the component parts correspond to:

Table 3.5: Table to decode speaker ID labels in the Northern Englishes corpus.

Part of Speaker ID label Corresponding speaker property

The first three letters The geographical accent group of the speaker

MNCYMABC MNC = Manchester, NCL = Newcastle,

YRK = York

The fourth letter Age group of the speaker

MNCYMABC Y = younger, M = middle-aged, O = older

The fifth letter Sex of the speaker

MNCYMABC M = male, F = female

The final three letters Correspondence to the speaker’s pseudonym

MNCYMABC assigned during data collection

5The subtraction from 1 reinforces the mapping between distance shown on the swarm-

plot and similarity
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The swarmplots above do not appear to display the clear banding of colours

we might expect. In the case of Figure 3.2, for example, we would expect to

find a band of blue points lower down on the y-axis to show that these points

are more similar to the individual Manchester speakers labelled on the x-

axis. We would then expect to see the points representing Newcastle and York

speakers falling higher up on the y-axis to reflect a lower degree of similarity

between these speakers and the individual Manchester speakers. Instead, we

see more of a mix of these speaker points, but more specifically, we appear to

see a combination of Manchester and Newcastle speakers sitting closer to the

individual Manchester speakers, with York speakers generally sitting further

away and sharing a larger range of similarity. Because we do not see the clear

bands of speaker categories we might expect, this suggests that the individ-

ual Y-ACCDIST models do not carry a strong accent characterisation alone.

This could be because of the instability that spontaneous, content-mismatched

speech data brings to an accent model, and so a number of matrices to repre-

sent an accent group is required to construct a strong enough accent represen-

tation. Overall, these swarmplots demonstrate the high degree of similarity

that exists between the Northern Englishes speaker models, whether they are

members of the same accent group or not.

These swarmplots also reveal individual speakers who seem to be signifi-

cantly more dissimilar from the rest of the speakers in the dataset. Among the

young Manchester speakers in Figure 3.2, we see this for speaker MNCYM-

DAL, and in the case of young Newcastle speakers, speaker NCLYMCHR be-

haves similarly. Both speakers stand out among the dataset, being seemingly

dissimilar from the rest of the speakers. This could be for a few reasons. One

could be that these speakers are not typical of any of these Northern varieties

of English, to the point of being distant from all other speakers. Another rea-
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son might be that these speakers generated a particularly high segmentation

error rate in the forced alignment process, meaning that the segmental rep-

resentations which form the foundations of the Y-ACCDIST matrix are more

inaccurate than those for other speakers.

Individual Speaker Similarity using Degraded Speech Data

We can also generate swarmplots of these speakers once we have artificially de-

graded their speech samples. These are presented below for individual speakers

in each of the three accent groups.
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These swarmplots generated using degraded data reveal some interesting

effects that degrading data has on the Y-ACCDIST matrices, not just the

overall recognition rate that is outputted after the whole classification process.

Firstly, what stands out about the swarms using degraded data, compared

with the swarms generated from good-quality recordings shown in Figures 3.2,

3.3 and 3.4, is the apparent overall increase in similarity between speakers in

the dataset. We also see that the range in which the speakers fall seems to

have been decreased. Overall, with the artificial degradation of the speech

data, we observe an increase in similarity among the speakers, which suggests

that the degradation is reducing the amount of variation represented among

these speakers. It seems the Y-ACCDIST matrices are made more similar

by reducing the amount of information which distinguishes speakers in the

degradation. An alternative hypothesis might have been that degradation

decreases the degree of similarity among the speakers, because the resulting

segmentation error from the forced alignment might increase. This would

mean that the segmental representations might destabilise, therefore causing

a more random distribution. However, we are witnessing the opposite effect

in these swarmplots.

Additionally, it appears that individual speakers are affected differently by

the degradation. For example, we no longer see speaker MNCYMDAL as being

much more distant from the other speakers. However, a different speaker (MN-

CYMASH) is seen to be much more dissimilar from the rest of the speakers

under the degraded data condition. From listening to these recordings (among

other recordings from this dataset), there did not appear to be anything par-

ticularly unusual about these specific recordings. It is interesting to see that

the recording quality affects individual speakers in different ways. It might

be that degradation has increased the forced alignment segmentation error for
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MNCYMASH, or that less information that distinguishes MNCYMASH from

the rest of the speakers in the dataset has been removed by the degradation.

3.3.2 Multidimensional Scaling

Another way we can observe how these speakers are modelled is through Multi-

dimensional Scaling (MDS). Ferragne and Pellegrino (2010) conducted a MDS

analysis, combined with ACCDIST-based models, to observe similarity be-

tween the 14 accent groups represented in the Accents of the British Isles

(ABI) corpus (D’Arcy, Russell, Browning and Tomlinson, 2004). This was

done using highly controlled wordlist data. We can also conduct an MDS,

combined with ACCDIST-based models, to observe the degree of similarity

between individual speakers. In a similar way to the swarmplots above, this

should shed some light on how Y-ACCDIST models the data we have used in

this chapter. It could also reveal points of interest about the data.

Because it is easier to visualise a large amount of data with MDS than it is

with the swarmplots, the dataset has been increased for this subsection to in-

clude additional Manchester speakers. We will therefore use the Y-ACCDIST

models of 15 younger Manchester speakers, 15 younger Newcastle speakers

and 15 younger York speakers (these are the speakers that were used in the

experiments above in this chapter), as well as 10 older Manchester speakers

and 10 middle-aged Manchester speakers. By including extra speaker groups

of a different sort, we are more likely to see how Y-ACCDIST modelling works.

Once each speaker’s speech sample has been processed and speaker-specific

Y-ACCDIST matrices have been generated, we calculate the Euclidean dis-

tance between all the possible pairs of speakers so as to grasp the degree of

similarity between them. MDS then seeks to project our data points (indi-

129



Ch. 3 Spontaneous and Degraded Speech

vidual speakers) in a low-dimensional space, staying as true as possible to the

original degrees of similarity computed between the speakers via Euclidean

distances. To conduct this reduction, a loss function, stress, is used to mea-

sure how well a projection of the data points in a low-dimensional space (e.g.

two dimensions) maps on to the original high-dimensional space (McDougall,

2013: 168). The resulting 2-dimensional scatterplot for these Northern En-

glishes speakers can be found in Figures 3.8 and 3.9 below. The first is for

the good-quality data condition, and the second is for the artificially degraded

data condition.
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These MDS plots show some correspondence with the swarmplots, but there

are also some things that they expose that the swarmplots did not.

Firstly, we see the overall difference in degree of similiarity between the

good-quality condition and the artificially degraded condition. By simply ob-

serving the x and y axes, we can see that different scales are being used. A

smaller range is used for the artificially degraded data. This corroborates our

observations from the swarmplots in Section 3.3.2, in which we saw a greater

degree of similarity among speakers once their recordings had been artificially

degraded. While we can see a large amount of overlap between the groups,

the good-quality recordings (Figure 3.8) seem to provide clearer clusterings of

the accent groups of the sort expected. For example, the York speakers (green

labels) and the Newcastle speakers (pink labels) seem to cluster at different

sides of the population, with only a small amount of overlap. Such a clear

grouping is lost in the case of artificially degraded recordings in Figure 3.9.

Secondly, we see the same speakers that were identified in the swarmplots

as particularly distinct from the rest of the population as rather distant from

the rest of the population in the MDS plots. In the case of the good-quality

data, these were MNCYMDAL and NCLYMCHR. In the case of the artifi-

cially degraded recordings, the speaker identified as particularly distinctive

was MNCYMASH.

The MDS plots, however, more clearly indicate the general degree of speaker

similarity within each accent group by using two values (each dimension),

rather than just using one (which is what was implemented to form the swarm-

plots). It is interesting to observe that the older Manchester speakers occupy

a much smaller space as a group in this plot than do the other groups. The

middle-aged Manchester speakers similarly occupy a small area (but a larger

one than the older category), whereas the three accent groups of younger
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speakers appear to occupy larger areas. This could be an indication of the

difference in degree of variation within different speaker age groups. That is,

there could be a greater degree of variation in the pronunciation systems of

younger speakers. It would be of interest to conduct a phonetic analysis of the

data to observe whether this observation is confirmed.

While there are ways in which the swarmplots and MDS plots correspond,

there are perhaps more details revealed by the MDS plots. These visual out-

puts have allowed to us to better understand how Y-ACCDIST models speak-

ers using good-quality and artificially degraded recordings.

3.4 Discussion

The Northern Englishes corpus has provided a means to test our ACCDIST-

based system (Y-ACCDIST) on spontaneous (content-mismatched) speech

data. Past ACCDIST-based systems have been restricted only to tasks in-

volving content-controlled data, whereby the speakers produce read prompts

or word lists. As already described, what separates Y-ACCDIST from past

ACCDIST-based systems is that it collapses speech segments into their phoneme

classes, enabling the possibility of processing content-mismatched data. The

experiments in this chapter do indeed suggest that Y-ACCDIST can work on

spontaneous speech by exceeding chance expectations on a three-way task.

However, in an ideal world, we would prefer to run these experiments on the

same speakers and varieties producing reading passage data. This would allow

us to make a more direct performance comparison between content-controlled

and content-mismatched data. The Northern Englishes corpus was selected

based on the quantity of transcribed spontaneous speech per speaker that it

provides, so allowing the experiments in this chapter to be run. Future re-
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search could make a more direct comparison between content-controlled and

content-mismatched data.

The overall accent recognition results showed the expected drop in per-

formance between using good-quality recordings to train and test the system,

and using artificially degraded data. Taking a closer look at the swarmplots

between the good-quality recordings and the artificially degraded recordings,

we can grasp the kind of effect that data degradation has on the Y-ACCDIST

models, rather than simply on the overall recognition rate. Degradation of

the data appears to increase the degree of similarity among speakers. We

can suppose, then, that it is this increase in similarity that we see among the

models that is responsible for the increase in errors in the degraded data con-

dition. It would be interesting, and potentially of use in forensic applications,

to test the system on mismatched data conditions and to see the effects of

this. By this, we mean that the system is trained on data of a certain quality

(e.g. good quality) and tested on another quality type (e.g. degraded). In the

context of automatic speaker recognition technology for forensic applications,

this kind of data mismatch has been researched to observe how robust speaker

recognition systems are to it (e.g. Alexander, Botti, Dessimoz and Drygajlo

(2004)). Botti, Alexander and Drygajlo (2004) build on this and suggest ways

of compensating for data mismatch in speaker recognition systems. Carrying

out this line of research with automatic accent recognition systems might also

be worthwhile when considering them for forensic tasks. However, it is more

likely that a tool like Y-ACCDIST is more suited to an application like LADO

(as indicated previously in this thesis), where we are more likely to have more

control over the kind of data we use. The work in this thesis therefore focusses

on the matched condition.

We have also observed how individual Y-ACCDIST matrices model speak-
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ers. Used alone, it does not seem that speaker-specific matrices are particu-

larly useful at categorising speakers. In the similarity outputs (swarmplots and

MDS plots) we did not see clear bandings or groupings of speakers belonging

to the same accent class. It would appear that to develop a strong model of

accent, multiple speakers from the same accent group need to be used to form

that model (and this is why we find good recognition rates in an accent classifi-

cation task). Despite this finding, we are able to make interesting observations

about individual speakers or groups of speakers via these outputs.

3.5 Summary

This chapter has reported the performance of the Y-ACCDIST-SVM system

when challenged by spontaneous (content-mismatched) speech data rather

than reading passage (content-controlled) recordings, showing that the system

still performs well above chance level on these particular Northern English ac-

cent varieties (86.7% correct). To challenge the system further, Y-ACCDIST-

SVM was tested on the same speech recordings once they had been artificially

degraded to specifications similar to telephony. An expected decrease in per-

formance (to 64.4%) was observed in this condition. These experiments were

run in a bid to test this accent recognition system on more forensically rel-

evant data, compared to the experiments run in Chapter 2 of this thesis.

The chapter then progressed towards taking a closer look at the Northern En-

glishes data, and how Y-ACCDIST modelling appears to characterise speakers’

speech samples. This was done by processing the samples in the usual way

and computing an individual Y-ACCDIST matrix to represent each speaker.

Pearson r product-moment correlations between all the possible speaker pairs

were calculated to gauge the degree of similarity between speakers to produce
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swarmplots, and Euclidean distance was used as part of the Multidimensional

Scaling analysis. Based on these speaker-on-speaker comparisons, it seems

that Y-ACCDIST matrices alone do not appear to form a strong enough rep-

resentation of a speaker’s accent. Indeed, they seem to be extremely similar to

one another, regardless of accent group. Interestingly, when we look at these

individual speaker similarity measures once we have artificially degraded the

data, it appears to raise the degree of similarity among the speakers, and

reduces the variation represented in our dataset.

137



CHAPTER 4

Incorporating feature selection into

automatic accent recognition

4.1 Introduction

The term feature selection is used to describe the process of determining a

‘good’ subset of ‘features’ from a larger feature set in order to conduct a given

task. Feature selection usually refers to automatic, or objective, methods of

achieving this. Feature selection is implemented across a range of research

domains. Guyon and Elisseeff (2003) discuss it in the context of gene selection

and text categorisation, as just two example areas that commonly apply fea-

ture selection. Feature selection is a means to overcome the so-called curse of

dimensionality, which acknowledges the problems that come with using high-

dimensional data (Keogh and Mueen, 2011; Bellman, 1957). When we use

high-dimensional data to work on problems, we run the risk of including in-

formation that does not necessarily contribute to a given task. In fact, some

data features (dimensions) might add ‘noise’ to a process, which may divert
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conclusions away from an accurate outcome.

Feature selection is usually associated with ‘big data’ problems (e.g. Bolón-

Canedo, Sánchez-Maroño and Alonso-Betanzos, 2015). However, it is proposed

here that feature selection could be useful to forensic tasks. A forensic speech

practitioner may well be asked to conduct an analysis involving any linguistic

variety. The number of ‘relevant’ populations (i.e. datasets) available to the

forensic practitioner tends to be limited. It is likely that a dataset containing a

relatively small number of speakers is available for a given case. However, the

number of potential features available for analysis does not change. Feature

selection techniques can therefore be useful in this kind of scenario by reducing

the entire feature set to a smaller subset of features useful to a specific task.

Also, the objectivity of feature selection techniques is seemingly advantageous.

Rather than an analyst making assumptions about which features might be

most valuable in a given task (this might be based on the phonetics literature

or auditory judgment), we can also estimate, using statistical or computational

methods, which features are most valuable using feature selection. Such an

approach could help to avoid some useful features being overlooked. There are

also likely to be some advantages surrounding the amount of labour involved in

analysing a dataset. Computational methods can of course save a considerable

amount of time for the analyst.

This chapter deals with feature selection in relation to automatic accent

recognition. More specifically, we look at whether integrating feature selection

into the Y-ACCDIST-SVM system (the highest-performing system shown in

the experiments in Chapter 2) will improve performance further. This is a de-

velopment on past studies which have looked at the performance of ACCDIST-

based systems. A number of assumptions have been placed on these past

systems and feature selection could help to remove these assumptions. The
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ACCDIST-based systems developed and tested in Huckvale (2004, 2007) and

Hanani, Russell and Carey (2013) focussed on only vowel-based units. In Huck-

vale’s system these were word-specific vowels, whereas Hanani et al ’s system

used triphone-based vowel units (this difference was more comprehensively

described in Chapter 3 in Section 3.1). To match these systems for a closer

comparison, the Y-ACCDIST experiments that were run in Chapter 2 only

included vowel phonemes. To include only vowel segments is a decision made

by the developers of these systems. While a lot of sociophonetic research does

indeed focus on vowel differences between accents, and we can expect vowels

to differ between accents, we know that consonant realisations also vary across

accents. By excluding consonants from these systems, we are possibly ignoring

valuable discriminatory information in an accent recognition task. We noted

in Chapter 3 that in the case of the Northern Englishes corpus that using an

all-phonemes setting in the Y-ACCDIST-SVM system, we achieve a higher

accent recognition rate than we do using the vowels-only setting. However,

in the case of accent recognition experiments on the AISEB corpus, the re-

verse is the case (the vowels-only setting - 86.7% correct - outperforms the

all-phonemes setting - 80.8% correct). This contrast in performance demon-

strates that the optimum segmental configuration for accent recognition using

the Y-ACCDIST system is data-specific. Another assumption that was made

in Huckvale (2004, 2007) and Hanani et al (2013) was that including schwa

was not likely to assist with the classification task, and so schwa-based units

were also excluded from the analysis. Contradicting this assumption, there

are indeed some accents where schwa might offer discriminatory power (Watt,

Llamas, French, Braun and Robertson, 2016), and so we perhaps should not

overlook these speech segments when conducting these tasks. Feature selec-

tion could help us to move away from these assumptions and to estimate a
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combination of both vowels and consonants that are better at discriminating

between a specific set of accents in a dataset, rather than just choosing a vowel-

based system. Of course, we might also want to use this kind of technology on

linguistic varieties that we have little knowledge of, and therefore would not

know which phonemes would be best to include. Feature selection is a way

of overcoming a need for prior knowledge. These are key motivations behind

conducting the experiments in this chapter.

As already mentioned, feature selection is incorporated across a range of

disciplines. Even when we just look at the area of speech technology, we can see

this in language recognition, emotion recognition and speaker recognition (e.g.

Richardson and Campbell (2008), Vogt and André (2005), and He, Wornell

and Ma (2016)). Some of these applications will be discussed in the following

section. This chapter not only looks at whether feature selection can contribute

to the performance of the Y-ACCDIST-SVM system, but it also compares the

outputs based on the two different accent corpora (containing different sets of

British English accents) used in this thesis. By making a cross-corpus com-

parison like this, we can observe whether the same features are highlighted as

valuable for both sets of accents or if we can see corpus-specific tendencies.

One consideration related to this is whether the phonemes that are naturally

more frequent in the data are better accent discriminators (because a higher

number of tokens presumably leads to stronger phoneme representations in

the Y-ACCDIST models). Comparing two corpora allows us to speculate with

greater confidence about these kinds of factors. Particularly when considering

forensic applications, comparing the analysis of more than one corpus is im-

portant to do. If feature selection is not necessarily appropriate to use on all

sets of accents, we should find out which datasets it is appropriate for, and

consider why this might be the case.
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4.1.1 Outline

Based on the discussion above, this chapter has four key objectives:

1. Compare the performance of two feature selection methods when they

are incorporated into the Y-ACCDIST-SVM system. This comparison

largely takes place in Section 4.3.2.

2. Compare the effects of these feature selection methods on two differ-

ent accent corpora to monitor how feature selection transfers between

datasets. This comparison is mainly conducted in Section 4.3.3.

3. Inspect and compare the rankings of features produced by the feature

selection methods across the two corpora. We raise points of interest in

relation to these rankings across both sections 4.3.2 and 4.3.3.

4. Explore the role of phoneme frequency on the estimated contribution a

single phoneme makes to a given accent recognition task. This takes

place Section 4.3.4.

Before experiments are run and outputs are produced to address these four

objectives, Section 4.2 reviews past work on feature selection.
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4.2 Previous Work on Feature Selection

Feature selection has multiple benefits:

Lowers computational cost

One function of feature selection is to lower computational cost. If we can

effectively select only the features that contribute to the task at hand, we

should achieve at least the same level of performance, while doing it using less

information. He, Wornell and Ma’s (2016) research into ‘low-power’ speaker

recognition is motivated by achieving computational efficiency, and one of the

things they focus on to do this is feature pre-selection so as to avoid taking un-

necessary signal information through the whole speaker recognition process. In

the context of security systems or similar commercial applications (e.g. build-

ing access applications), this is well-motivated research to make these sorts of

technologies suitable for a wider range of applications. These kinds of appli-

cations cannot afford to have long processing times once a speech sample has

been submitted. When developing a system for forensic casework, lowering

computational cost might not necessarily be the priority aim for integrating

feature selection, but improving performance would be. This potential benefit

is covered by the following point.

Removes ‘noisy’ features

As mentioned in Section 4.1 above, feature selection can be used to remove

‘noisy’ features. These features are unlikely to benefit an analysis by includ-

ing them, and can even prevent reliable analyses taking place. Often we can

expect the removal of ‘noisy’ features to improve the overall performance of a
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system.

Provides a ranking of useful features

While the above two points aim to make contributions to system performance

in two different ways (increases in efficiency and success rates), we can also

produce helpful outputs from a feature selection task, in the form of a ranking

of features. This might simply be informative, but it could be useful to dif-

ferent applications, as we will explain in the context of forensic speech science

further below.

4.2.1 Feature Selection in Speech Technology

This subsection reviews literature, specifically within speech technology, that

looks at the effects of feature selection for different types of problem. It finally

arrives at feature selection with specific reference to the task of automatic

accent recognition.

We first look at automatic emotion recognition through speech samples,

because of the amount of feature selection literature in this area. On the

basis of acoustic information derived from a speech sample, can we classify

the emotional state of the speaker? The area of emotion recognition via the

speech signal has received attention in relation to feature selection because of

the scarcity and small sizes of the relevant databases available (Rong et al,

2009). Forensic speech science shares some of the challenges faced by emotion

recognition in that the number of relevant speech databases for a given case

might be small, as well as the size of the databases themselves. When using

high-dimensional data, having a small number of training samples is a problem.

This is because overfitting can happen, whereby the high-dimensional data can
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perfectly fit to the small number of data points, but does not classify unseen

data samples well. If we can identify just a subset of useful features, we avoid

this problem of overfitting on small datasets.

Automatic emotion recognition usually focusses on the classification of

speech samples into one of a few classes. Schüller et al (2004), for example,

ran experiments classifying speech samples into one of seven classes: anger,

disgust, fear, joy, neutral, sadness and surprise. Emotion recognition experi-

ments by other researchers tend to use a similar set of categories. Rong, Li

and Chen (2009) apply different feature selection methods to an automatic

emotion classification system. The original number of acoustic features was

84, consisting of values to do with pitch and MFCC coefficients, for example.

They found that by reducing the number of acoustic features to 16 (those that

are estimated to be the 16 most useful) improved emotion recognition rates

by 2.01%.

Pohjalainen, Räsänen and Kadioglu (2015) compared feature selection meth-

ods on other kinds of paralinguistic classification tasks. They used a range of

corpora that allowed them to conduct a number of binary classification tasks.

They used the Speaker Likeability Database (SLD) (Burkhardt, Schüller, Weiss

and Weninger, 2011), which contains recordings that have been rated by listen-

ers according to how likeable they thought the voices in the recordings were.

From this rating, Pohjalainen computed whether each speaker was rated as

either likeable or not overall. In a similar way, the NKI CCRT Speech Corpus

(van der Molen et al, 2012) was used to conduct a binary classification task

of assigning speakers to either an intelligible class or an unintelligible class. A

third corpus was used to form binary classifications for five different personal-

ity traits of speakers: openness to experience, conscientiousness, extraversion,

agreeableness and neuroticism. This was the Speaker Personality Corpus (Mo-
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hammadi and Vinciarelli, 2012). Again, a process using listeners was used to

determine whether speakers’ speech samples were conscientious-sounding or

not (for example). When applying their feature selection techniques to each

of these classification tasks, they were reducing the feature set size from all

possible features available to between 2% and 6.2% of the entire original fea-

ture set. This is a huge reduction in the number of features, and they found

that classification performance was either approximately the same as using the

entire set of features, or performance was marginally improved. In the case of

these results, then, we can at least lower the computational cost of a process,

even if we do not see an improvement in performance.

Wu, Duchateau, Martens and Compernolle (2010) compared methods of

feature selection on an automatic accent recognition task. They used two dif-

ferent modelling strategies (involving GMMs), three different types of classifier,

and trialled three different feature selection methods in different combinations.

System 4 in Chapter 2 of this thesis (the Phonological GMM-SVM system) is

based on the system used in Wu et al ’s study, but without a feature selection

step integrated. The focus of their paper was to compare these methods, but

they also looked at ‘hybrid’ methods that combined these different feature

selection techniques.

Overall, Wu et al. found that incorporating feature selection into a text-

dependent automatic accent recognition system does improve recognition rates,

with 10% of the total number of available features achieving the best perfor-

mance.

Like Wu et al, this chapter incorporates and evaluates feature selection

methods in text-dependent automatic accent recognition. More specifically,

we are interested in whether feature selection can be an advantageous step

when integrated into the Y-ACCDIST-SVM system, the highest-performing

146



Ch. 4 Feature Selection

system from Chapter 2 (which outperformed the accent recognition system

that was replicated from Wu et al (2010)). The experiments in this chapter

first compare two feature selection methods that were shown to be beneficial

in Wu et al ’s (2010) study (Analysis of Variance and Support Vector Machine

Recursive Feature Elimination) using the AISEB corpus, the larger corpus used

so far, to establish whether feature selection might have something to offer the

overall Y-ACCDIST-based process. We then apply Y-ACCDIST-SVM with

these feature selection methods to the Northern Englishes corpus to see how

the outcome alters when we use it on different data that present different

challenges. These different types of problem will be emphasised below.

4.3 Experiments

The following experiments investigate how two feature selection methods af-

fect overall accent recognition rates. First, this section will introduce the two

feature selection methods being used in this chapter, and will then move on to

their performances when integrated into the Y-ACCDIST-SVM system. These

variant systems will be trained and tested on two different corpora in turn: the

AISEB corpus (Watt, Llamas and Johnson, 2014) (already described in Chap-

ter 2 in Section 2.3.2) and the Northern Englishes corpus (Haddican, Foulkes,

Hughes and Richards, 2013) (already described in Chapter 3 in Section 3.2.1).

The purpose of conducting these experiments on two different corpora is to

observe whether feature selection has the same effect across different sets of

accents.
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4.3.1 Feature Selection Methods

The experiments in this chapter compare two feature selection methods that

were used in the automatic accent recognition experiments in Wu et al (2010):

one-way ANOVA and Support Vector Machine Recursive Feature Elimina-

tion (SVM-RFE). Within the Y-ACCDIST-SVM system, the feature selection

method being tested will be integrated into the recognition process after the

speakers have been modelled as Y-ACCDIST matrices. Feature selection will

identify a subset of the Y-ACCDIST matrix elements and the reduced matrices

are then taken through the classification process. The features we are there-

fore analysing are the individual Y-ACCDIST matrix elements (phoneme-pair

distance values).

Figure 4.1: Y-ACCDIST-SVM system diagram with feature selection

integrated.

Each feature selection method is introduced below:
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1) One-way Analysis of Variance (ANOVA)

One-way ANOVA is a statistical technique that, in this application, will take

the speaker Y-ACCDIST matrices for each accent, and determine the mean

for each of the matrix elements. Using these means and the variance of these

values, we can calculate a p-value that indicates whether a given feature is

significantly different across the accent groups. The smaller the p-value, the

more distinctive that feature is estimated to be between these accent groups.

Based on these p-values, we can generate a ranking of all the phoneme-pair

distances. We can then specify a number of features to include in the analysis

and take the top-ranked features up to this number.

One problem with ANOVA is that it does not take into account the features

that correlate with one another. It takes each matrix element independently

and calculates a p-value for that element, disregarding the values generated

for other matrix elements and how the matrix elements work together as a

set. Correlating features are features where the value of one could be used

to predict another. This means that taking features that correlate with each

other is not necessarily going to contribute more to the overall analysis. In fact,

including correlating features could introduce ‘noise’ to the process. Ideally, we

should combine features that do not correlate. In the context of Y-ACCDIST,

there are a lot of features that are likely to correlate. Within the Y-ACCDIST

matrices we have distance values between all the phoneme-pair combinations

possible in the phoneme inventory. This means that we have a lot of features

that are based on the same phonemes. This is one reason why ANOVA may

not be the best feature selection method for a Y-ACCDIST system, but we

nonetheless observe its benefits to an analysis in the experiments below.
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2) Support Vector Machine Recursive Feature Elimination

(SVM-RFE)

Support Vector Machine Recursive Feature Elimination (SVM-RFE) begins

by taking all of the available features and, one-by-one, assesses each one’s

contribution to the training speakers’ separation within the SVM. The one that

is estimated to be the least beneficial to a task is removed, and the process

starts again by assessing all the features in the remaining set, one-by-one.

In the case of Y-ACCDIST, the system will take speaker models consisting

of all of the available matrix elements (phoneme-pair distances between all

the vowels and consonants in the phoneme inventory). The feature that is

assessed to contribute the least to the task is removed, and the elimination

process starts again, gradually reducing down the number of matrix elements.

The problem of correlating features is expected to be less of a concern when

using SVM-RFE, compared to using ANOVA. While ANOVA will take each Y-

ACCDIST matrix element at a time and determine its significance to the task

independently, SVM-RFE initially takes all of the matrix elements together

and assesses them as a set. Looking at the features as a set, rather than looking

at each feature independently, reduces problems around correlating features.

One downside to SVM-RFE, however, is that it is computationally much

more expensive. Another is that we expect it to require a large amount of

data for it to work effectively. It may well be the case that the datasets that

we are using here are not large enough for this method.

4.3.2 Experiments on the AISEB corpus

This first set of experiments will allow us to observe and compare the per-

formances of the two feature selection methods on the AISEB corpus. The
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experiments presented in Chapter 2 involved the AISEB corpus, and so more

detail about the data can be found in Section 2.3.2. The data from the AISEB

corpus used for these experiments consisted of speech samples produced by

30 speakers from each of four locations along the Scottish-English border.

Each speaker’s speech sample is a recording of the reading passage task the

informant was asked to carry out. For the purpose of these experiments, this

means that phonemic coverage (that is, the extent to which each phoneme in

the system is represented) will be roughly equal for all speakers, such that a

controlled comparison can take place.

Effect on Performance

For each of the two feature selection methods, the following experimental pro-

cess was applied. Using all the vowels and consonants available in the phoneme

inventory, 120 speakers from the AISEB corpus (30 from each of the 4 loca-

tions) were represented by Y-ACCDIST matrices using the reading passage

recording. In a leave-one-out cross-validation setup, each speaker became the

unknown test speaker, while the rest of the speakers were used to train the

Y-ACCDIST-SVM system. For each rotation (i.e. each time a speaker became

the unknown speaker), the feature selection method was applied so as to reduce

the total number of features used to train the SVM, ready for classification.

At this set number of features, we reduce the number of Y-ACCDIST ma-

trix elements to the ones that have been ranked as the top n matrix elements

from the training data, and we generate a recognition rate with this number

of features. In increments of 51, we establish the recognition rate at the given

number of features. Figure 4.2 below shows the effect on performance when a

1Increments of 5 have been used, rather than increments of 1, due to the high computa-

tional cost of running the SVM-RFE feature selection method.
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certain number of the top-ranked features (Y-ACCDIST matrix elements) is

used to model the speakers, which then go on to train the SVM and classify

an unknown speaker.

Figure 4.2: The effect of the number of top-ranked features on accent recogni-

tion performance by two feature selection methods: ANOVA and SVM-RFE.

The horizontal red line indicates the level at which the system performs when

we use all the phonemes available (both vowels and consonants) to act as a

baseline to show us whether the feature selection methods benefit performance

or degrade performance. This baseline level translates to 80.8% correct.

The main observation we see is that using a smaller number of features

improves the performance of the recognition system. The ANOVA method

seems to achieve the highest recognition rate overall, where the 80 top-ranked

features were used. This achieved a recognition rate of 89.2% correct. This

also exceeds the recognition rate we achieve when we implement the original
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vowels-only setting, which is 86.7% correct.

Even though ANOVA seems to achieve the highest recognition rate overall,

it seems to be the more ‘volatile’ of the two methods. Firstly, ANOVA seems

to be the method with the greater propensity to bring recognition rates below

baseline recognition rate. Although SVM-RFE does not quite reach the same

recognition rate that ANOVA does, it much more consistently produces recog-

nition rates above the baseline, and the rate appears to more gradually rise

as we decrease the number of features used. Additionally, SVM-RFE appears

to select better sets of features when fewer than 80 are included. In the case

of ANOVA, it appears to peak at 80 features, and then performance rapidly

drops. SVM-RFE, on the other hand, still maintains reasonable recognition

rates where lower numbers of features are used. This difference in effect on per-

formance could be due to the fact that ANOVA deals with each Y-ACCDIST

matrix element independently, whereas SVM-RFE looks at the collection of

features as a set and then gradually removes each feature, while observing

the effect that the remainder of the set has on performance. However, this

consistency in performance comes at a greater computational cost, compared

to when ANOVA is used.

Feature Ranking

We can also observe more closely how the specific Y-ACCDIST matrix ele-

ments are ranked by each feature selection method. This is shown by the

heatmaps below in Figures 4.3 and 4.4, for which all speakers in our dataset

have been modelled as Y-ACCDIST matrices and each feature selection method

has been applied, resulting in an overall ranking of matrix elements (phoneme-

pair distances). For ANOVA, this is based on the p-values generated indepen-
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dently for each Y-ACCDIST matrix element. The smaller the p-value, the

higher the ranking. For SVM-RFE, the ranking is based on the order in which

the individual matrix elements are removed from the set to achieve the best

performance overall. The matrix elements that are removed first are those

which yield a low (worse) ranking. Only a simple ranking system has been

used for each method. It is of course possible to generate a heatmap of all of

the ANOVA p-values, so we can observe just how significant our individual

matrix elements are. However, for the purposes of comparing the two methods,

only a simple ranking system has been used, where the top-ranked element for

each method is ranked 1, and so on.

The following heatmaps form the basis of a Y-ACCDIST matrix. Only the

lower triangle is shown because the matrix is symmetric. The darker the cell,

the higher that matrix element is ranked.
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When comparing these heatmaps, we can observe both similarities and

differences. First of all, both feature selection methods rank the same Y-

ACCDIST matrix element as the highest-ranking feature. This is the distance

between ‘iy’ and ‘ey’ (/i/ and /eI/ or fleece and face vowels when referring

to Wells’ (1982) keywords). It is interesting how the two methods corroborate

in this way, suggesting that this phoneme pair distance (or indeed, these two

phonemes) are particularly valuable for distinguishing between these specific

accent varieties. We might expect /i/-production to vary among these vari-

eties. With reference to the AISEB corpus, Llamas, Watt and MacFarlane

(2016) point out that the Scottish Vowel Length Rule (SVLR) is likely to con-

dition different productions of /i/ among AISEB speakers. When SVLR is

in place, there are durational differences between /i/ in certain phonological

conditions, traditionally among Scottish English speakers. This may therefore

be an expected distinguishing feature among these varieties. Even though Y-

ACCDIST is not expected to capture durational segmental differences directly

(because it only uses midpoint MFCC vectors to represent each segment), there

may be quality differences within the segments that are a result of the increase

in duration that could be reflected in the models (Lindblom, 1963).

It is interesting to see that a diphthong forms part of this highest-ranking

feature. One criticism of the system in its current form is that it does not ac-

count for dynamic information within the sound segment. Recall from Chapter

2 (in the description of the Y-ACCDIST-based systems) that these phoneme-

pair distances are distances between MFCC vectors extracted from the tem-

poral midpoint of the segment. Not only this, but the MFCC vectors that

are extracted exclude any delta or acceleration features that would also have

accounted for dynamic information in the sound (i.e. information that char-

acterises diphthongs). However, it appears that even just the midpoint of this
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sound is distinctive.

From the heatmap of the ANOVA method (Figure 4.3), we can see that

some rows and columns of darker cells are more evident than others. In par-

ticular, the ‘iy’ segment (/i/) seems to be showing this pattern more than any

other segment. This suggests that this segment is particularly useful in distin-

guishing between the four AISEB varieties. The SVM-RFE heatmap (Figure

4.4), however, does not appear to show these kinds of categorical rankings to

the same extent. This absence of relatively sharp distinctions is likely to be the

result of the different ways in which the two methods work, as was discussed

further above. As explained before, ANOVA takes each Y-ACCDIST matrix

element independently and calculates a p-value indicating how valuable it is

to the task. SVM-RFE, on the other hand, looks at all of the available ele-

ments as a set and selects an element to remove, in a one-by-one fashion, based

on how the remaining elements work together as a set. This latter strategy

removes the likelihood of using combinations with more correlating features

(and is probably why we witnessed the effect on performance we saw in Figure

4.2).

Although there are performance advantages to using SVM-RFE, it might

be that ANOVA sheds more light on which specific phonemes are good distin-

guishing features for a given set of accents through exposing these darker rows

and columns. This in itself might be a useful feature of the system, especially

with forensic applications in mind. Given a set of accents, we can perhaps

get an idea in advance of which segments are most useful to the task of dis-

tinguishing between them. Forensic casework can require knowledge about

any accent variety, and while there is a body of sociophonetic literature on

a whole range of linguistic varieties, it is of course very difficult to account

for all varieties that might be relevant to casework. This might either be be-
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cause a variety has not been researched at all or it might be that a variety

has not been researched and documented for a length of time. Due to sound

change, we cannot assume that sociophonetic research conducted 20 or more

years ago is still relevant today. Conducting feature ranking like this could be

a way of efficiently screening a dataset of accents to identify which segments

might be key to distinguishing between them. In addition, it is a data-driven

and repeatable methodology. These are key properties of a method that are

encouraged by forensic science regulators.

Equally, and for a similar purpose, feature selection could be a useful tool

for sociophonetic research. A lot of sociophonetic research involves the selec-

tion (manually by the researcher) of a small number of linguistic variables to

focus on in more detail. This selection could be based on the sociophonetic

literature or on auditory judgements. However, a feature ranking process, like

the one demonstrated in this section, could provide a way of taking a large

number of variables and more objectively assessing which ones might be of

interest. The prospect of using Y-ACCDIST as a sociophonetic research tool

is discussed in further detail in Chapter 9.

4.3.3 Experiments on the Northern Englishes corpus

These experiments involve the Northern Englishes corpus that was introduced

in the discussion of the experiments presented in Chapter 3. There are three

key reasons why it might be valuable to run the same experiments on a different

corpus:

1. First, it is of interest to observe whether feature selection has the same

effect on performance (i.e. recognition rates) across corpora of different

sets of accents.
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2. Secondly, it would be interesting to see whether the same Y-ACCDIST

matrix elements (phoneme-pair distances) are highlighted as being most

valuable in distinguishing between a different set of accents. In an ac-

cent recognition task of this kind, we perhaps might not expect the same

elements to be highlighted. We would expect different matrix elements

to be key in distinguishing between different sets of accents (according

to the unique combination of characteristics of the accents involved).

However, it is important to test this for confirmation. There could be

other factors at play, such as the frequency of phonemes. More frequent

phonemes in a language might lead to being better distinguishing fea-

tures because they create more stable phoneme representations within

the Y-ACCDIST models. This issue is dealt with more directly in Sec-

tion 4.3.4.

3. Finally, it is of interest to run these feature selection experiments on a

corpus of spontaneous conversational speech. The AISEB corpus pro-

vided us with the opportunity to run these experiments on content-

controlled data, but for forensic applications, it is vital to observe and

compare performance on data that are more relevant to the type of data

found in forensic casework.

Like the AISEB experiments above, we will log the recognition rates for each

feature selection method, with different numbers of features to include in the

analysis being specified (again, in increments of 5 features). 15 speakers per

accent group (Manchester, Newcastle and York) will be used in our recognition

tasks in a leave-one-out cross-validation setup. We will then observe how the

Y-ACCDIST matrix elements have been ranked for these data using heatmaps

(Figures 4.7 and 4.8), while comparing them with the heatmaps generated for
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the AISEB data.

Effect on Performance

The graph below (Figure 4.5) shows the performance of each feature selection

method, combined with the Y-ACCDIST-SVM system, while specifying the

number of features used for the analysis in increments of five. This graph is

directly comparable with the one generated for the AISEB corpus above in

Figure 4.2.

Figure 4.5: The effect of number of top-ranked features on accent recogni-

tion performance by two feature selection methods on the Northern Englishes

corpus.

We can see a very different effect on performance that the two feature selection

methods have on the Northern Englishes corpus. Firstly, baseline performance

here equates to 86.7% correct. On the whole, we see that these feature selection
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methods have a detrimental effect on baseline performance. Particularly in the

case of SVM-RFE, this is likely to be down to the lower number of speakers

we are working with from this corpus. Smaller datasets with a high number

of features to work with prove problematic to feature selection techniques like

this (Saeys, Abeel and de Peer, 2008). However, we also see that ANOVA

largely does not have a positive effect on performance, and when it does, it

only improves it by a very small margin. As well as the fact that we are using

a smaller number of speakers, another reason for this might be because of

the nature of these varieties. We might expect that these varieties are more

distinct from one another than the varieties in the AISEB corpus. It could

be that a larger number of phonemes are useful to the task of distinguishing

between these varieties, and in removing these features, we are taking away

more discriminative power from the system. In the case of a more similar

set of accents (such as AISEB), feature selection is expected to benefit the

task because we are more likely to be removing ‘noisy’ features, rather than

useful ones. In a task concerning more distinct accents, we might expect to

start closer to the ‘ceiling’ level of performance and removing features does not

make much change to this, whereas for more similar accents, we can expect to

start further away from the ‘ceiling’ level and removing ‘noisy’ features does

make a difference. This demonstrates that feature selection might not always

be appropriate for all sets of accents. However, we should remove the factor

of dataset size to try to confirm this hypothesis.

In an attempt to better understand the effect of dataset size on the per-

formance of these feature selection methods, we can reduce the number of

speakers used for the AISEB experiments and re-run the trials. Figure 4.6 be-

low shows exactly this where 15 speakers per accent in the AISEB corpus have

been randomly selected (to match the number of speakers per accent group in
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the Northern Englishes corpus).

Figure 4.6: The effect of number of top-ranked features on accent recognition

performance by two feature selection methods on the AISEB corpus, using 15

speakers per accent group.

This performance graph confirms our suspicions around the effectiveness of the

SVM-RFE method on smaller datasets. While it improves performance overall

on the AISEB corpus when 30 speakers per group are used, it is detrimental to

performance when the number of speakers is halved. However, ANOVA still

seems to bring some benefit to the AISEB varieties, despite having a smaller

dataset. Because we see ANOVA having more of a benefit on the smaller

AISEB dataset that we do on the Northern Englishes dataset, we can gather

that the specific varieties involved has an effect on whether feature selection is

beneficial to a task or not. It seems that we get around the best performance

on the Northern Englishes corpus if we simply include the whole phoneme
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inventory in our Y-ACCDIST models. For the AISEB corpus, on the other

hand, some selection can bring about our best performance.

Feature Ranking

In the same way we observed how the two feature selection methods rank

features on the AISEB data, we can observe how the Y-ACCDIST matrix

elements are ranked for the Northern Englishes corpus. It is of interest to

discover whether the same matrix elements are ranked in a similar order to

those ranked for the AISEB corpus. It is expected that this will not be the

case. It is expected that the ranking of elements will be dependent on the

specific accents themselves, and the ranking will therefore be unique to the

Northern Englishes corpus.

Before we analyse the outputs, there are a few ways in which this is a

slightly different task to the one we conducted on the AISEB corpus, and

therefore points to keep in mind. These are possible reasons for the differences

between the AISEB outputs and the Northern Englishes outputs:

• One thing to keep in mind for the Northern Englishes corpus is the fact

that the data are made up of spontaneous conversational speech, unlike

the AISEB experiments which used reading passage (content-controlled)

data. We can therefore expect more variability in the phoneme repre-

sentations across speakers.

• Another factor is the fact that we have used a lower number of speakers

per group for the Northern Englishes task (15 speakers per group), com-

pared with the AISEB task (30 speakers per group). This could make

the outputs less reliable than those generated for AISEB.
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• Similarly, we have a smaller number of accent groups for the Northern

Englishes task, compared with the AISEB task, and so it is a three-way

classification task, rather than a four-way task.

• Finally, slightly different phonesets were used to construct the Y-ACCDIST

matrices in the Northern Englishes task, and therefore slightly differ-

ent phoneme inventories have been represented. While the AISEB task

used a phoneset and pronunciation dictionary that aligns more closely

to North American English, the Northern Englishes task made use of

a Southern British English phoneset. These were the two options that

were available during development. An American phoneset was selected

for AISEB based on favourable preliminary experiments in the early de-

velopment stages of the system. The same options were presented when

the Y-ACCDIST system was being trained and tested for the North-

ern Englishes corpus. In this instance, a British English phoneset was

shown to outperform a North American English phoneset. This means

that the Northern Englishes heatmaps include the /I@/ (‘iax’) and /6/

(‘oh’) phonemes, while the AISEB heatmaps do not.

Because of these differences between the two accent classification tasks, this

is not a direct comparison, but it is still important to discover how feature

ranking might differ between two different types of dataset. Below are the fea-

ture ranking heatmaps for ANOVA and SVM-RFE for the Northern Englishes

accent recognition task.
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Again, we see a clearer definition in a smaller number of rows and columns

in the ANOVA heatmap, compared with the SVM-RFE heatmap. A reason

for this was suggested and explained in the context of the AISEB task above.

In contrast to the heatmaps generated for the AISEB task, there appears to be

fewer points of corroboration in the case of the Northern Englishes heatmaps.

For example, it was noted above that the AISEB heatmaps both computed

the same Y-ACCDIST matix element as the highest-ranking element. For the

Northern Englishes heatmaps, the highest-ranking element is not the same in

each. We witnessed in the performance graph (Figure 4.5) that in the case

of the Northern Englishes data SVM-RFE is not such a successful method for

feature selection, than what we saw in the case for the AISEB task using more

speakers. It is likely to be less effective because of the significant reduction of

number of data points (speakers) per accent group in the case of the Northern

Englishes corpus. SVM-RFE requires a larger number of data points than

what it has been presented with here. What we see in the heatmap showing the

performance of the SVM-RFE method is perhaps, therefore, not a meaningful

ranking of matrix elements. We should only use SVM-RFE for larger datasets

and these outputs seem to confirm this.

When comparing the heatmaps generated by the ANOVA method for each

of the corpora (Figures 4.3 and 4.7), we do appear to observe different rank-

ings of elements. To distinguish between the AISEB varieties, we can observe

a large number of vowel elements in the higher rankings. For these North-

ern English varieties, however, this trend does not appear to be repeated. In

the case of the AISEB varieties, /i/, /E/, /ae/ and /I/ stand out as some of

the more highly ranked segments overall. However, this combination does not

seem to be consistent with the Northern Englishes task. In the Northern En-

glishes task, we might suggest that fewer segments are so clearly highlighted as
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potentially valuable phonemes in distinguishing between these varieties. How-

ever, /t/ is indicated as the most useful phoneme in distinguishing between

these Northern English varieties. /t/ is included in the highest ranked matrix

element in this task. For these Northern English varieties, seeing /t/ come

through as a key distinctive feature is perhaps unsurprising. This is because

Newcastle English typically exhibits glottal reinforcement on its voiceless plo-

sives, distinguishing it from other varieties of English (Docherty and Foulkes,

1999). Other voiceless plosives typically have glottal reinforcement in Newcas-

tle English, but it is perhaps due to the relative frequency of /t/ (i.e. it has a

much higher frequency than /p/ and /k/) that has meant that this is shown

to be more valuable in this task than the other two voiceless plosives.

As discussed above, a criticism of the Y-ACCDIST-based systems is that

they only represent individual phonemes using average midpoint MFCC vec-

tors. By only taking a single midpoint measurement, there is only so much

information about that phoneme that is represented. For example, a lot of

information that characterises diphthongs is expected to be overlooked. This

is also expected to be the case for plosives, like /t/. What characterises plo-

sives are the different stages of plosive production at different temporal points

through the sound. It is therefore expected that important distinguishing

information would be missed. However, from the ANOVA feature selection

heatmap above, it seems that at least some distinguishing information is in

fact captured and subsequently taken advantage of within the recognition pro-

cess.

In addition to /t/, we also seem to observe some value from /@/ and /I/.

Past studies excluded /@/-based units because it was not expected to be a

useful accent discriminator (Huckvale 2004, 1007; Hanani, Russell and Carey,

2013). However, there is reason to believe that /@/ could indeed carry telling
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information about an accent variety. This is more support to use feature

selection methods to remove these kinds of assumptions about certain speech

segments.

4.3.4 The Effect of Phoneme Frequency on

Feature Ranking

The phonemes identified in the section above (/t/ and /@/) are very frequent in

English. In the case of the Northern Englishes task, where we have used natu-

ral spontaneous speech, rather than recordings of a controlled reading passage

from speakers, we might expect phoneme frequency to play a significant role.

The more frequent phonemes are, the more likely that they will provide stable

representations in the Y-ACCDIST models. This will subsequently lead to

more stable models. As discussed in Chapter 3, natural spontaneous speech

means that we find the same phoneme in a number of different contexts which

will mean we can expect greater variability in the acoustic representations.

We can also speculate that the vowels uncovered as particularly useful in the

AISEB task are relatively frequent. It is likely that there is an interaction

between frequency and the features highlighted as the most valuable by fea-

ture selection. Taking inspiration from the approach seen in Franco-Pedroso

and Gonzalez-Rodriguez (2016), this subsection speculates about how the fre-

quency of a phoneme might contribute to how valuable it is in an accent

classification task.

The ANOVA feature rankings from this chapter have been used to form

a picture of these effects for each corpus. This is because we have concluded

that this ranking method seems to expose individual segments more effectively

across both corpora. Obviously, because of how Y-ACCDIST modelling works,
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we need to find a way of separating out the pairs of phonemes, so we can just

observe the performance of individual phonemes. While the following proce-

dure will not provide a high-resolution view of the effect of phoneme frequency,

it should offer an approximate indication of whether there is an effect or not.

The average ranking is computed for each phoneme, where all the rankings are

included, where a single phoneme forms part of the pair. In other words, we

calculate the average ranking for a phoneme by taking all the rankings for that

phoneme’s row and column in the feature ranking heatmaps presented above.

We also extract frequency information for each phoneme from the transcrip-

tions of the data. In the case of the AISEB corpus, we count the number of

occurrences of each phoneme in the reading passage. In the case of the North-

ern Englishes corpus, we compute the average number of times a phoneme

occurs in a 10-minute speech sample in that corpus. Table 4.1 below presents

the Pearson r correlation values that are calculated between the average rank-

ing and frequency variables for each phoneme, and then scatterplots follow to

visually support this analysis:

Table 4.1: Pearson r correlation values calculated between phoneme frequency

and feature selection ranking.

Corpus r

AISEB 0.365

Northern Englishes 0.640

The average ranking and frequency counts are plotted against one another in

the plots below for each corpus. Figure 4.9 displays the plot for the AISEB

corpus and Figure 4.10 displays the plot for the Northern Englishes corpus.
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The relevant mappings of the phone symbols to IPA symbols can be found

earlier in this thesis in Sections 2.3.3 and 3.2.2. Note that the frequency counts

for each corpus (on the y-axis) are working to different scales. The lower the

average ranking, the more valuable to the task that segment is estimated to

be.
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In the plots above, we appear to see at least some effect of phoneme fre-

quency for both corpora. However, it seems that a stronger effect (shown

by both the correlation values and the scatterplot) is present in the case of

the Northern Englishes corpus. This is to be expected because of the rea-

sons given above surrounding the fact that in the Northern Englishes corpus

we have spontaneous conversational speech, whereas in the AISEB data we

have content-controlled reading passage data, where all speakers are produc-

ing the same segments in the same phonological environments (and so reducing

the variability in those phoneme representations). In the case of spontaneous

speech, the contribution of a single phoneme could therefore more heavily rely

on having a higher number of tokens to form a stable phoneme representation.

We can also make some interesting observations about some individual

phonemes through these plots. It appears that /s/ is ranked very differently

between the two corpora. In the case of the Northern Englishes corpus, it

appears to be an anomaly, where it is a reasonably frequent segment, but is

ranked as particularly valueless in this task. For the AISEB corpus, however,

it appears that it ranks quite highly. It could be that /s/ is particularly

variable in different contexts, and so in the case of the Northern Englishes

corpus of spontaneous speech, it could actually be detrimental to recognition

performance. We also see a different placement of the trap vowel (ae) between

the two plots. Of course, it is expected that we will see relevant differences

between these two plots according to the specific differences among the sets of

accents within each corpus. Phoneme frequency is just another factor to keep

in mind. Chapter 5 of this thesis deals with the effects of phoneme frequency

further from a different perspective.
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4.4 Discussion

In the experiments throughout this chapter, we have seen a contrast in the per-

formance of the feature selection methods between the different datasets. We

already listed above some points to consider when comparing the outputs for

the different datasets in these experiments, such as the lower number of speak-

ers per accent group and the lower number of accent groups in the Northern

Englishes corpus. Additionally, the nature of the data itself is likely to have an

effect, in that the Northern Englishes data consisted of spontaneous conver-

sational recordings, whereas the AISEB corpus consisted of reading passage

recordings (the same one read by all the speakers). However, it is also possible

that the nature of the sets of accents is also partly responsible for the differ-

ences in performance. We might assume that the overall degree of similarity

between the accents in the Northern Englishes corpus is lower than between

the accents in the AISEB corpus. If this is the case, we can reasonably expect

differences in the outputs from the experiments in this chapter. It is quite

possible that the AISEB varieties simply have more features in common than

the varieties in the Northern Englishes corpus have. If we have a set of accents

where there are simply a lot of features that help to distinguish between them,

then the benefits of feature selection are likely to be quite limited. In the case

of a set of varieties where there are relatively few discriminating features, fea-

ture selection can be expected to be very beneficial as the removal of ‘noisy’

features becomes more important to optimise performance. We should run

further feature selection experiments on a variety of different accent corpora

to more thoroughly explore this possibility.

The main reason for trialling feature selection in this work is to see whether

176



Ch. 4 Feature Selection

we can improve overall system performance of the Y-ACCDIST-SVM system.

In the case of AISEB, feature selection had this effect. However, it would be

interesting to look into the recognition rates in much more detail. First of all,

it would be interesting to look into which speakers are being misclassified and

speculate about why that might be. As an extension to this, it would also be

interesting to see whether we get the same speakers misclassified with different

numbers and sets of features. In other words, are we necessarily correctly clas-

sifying the same speakers we do in the baseline setting, plus additional ones,

when we use our optimal number of features for processing? Alternatively,

do we actually correctly classify speakers in the baseline condition that are

misclassified in the task where we use the optimal number of features? We

perhaps should not assume that we simply add more correctly classified speak-

ers to those that we have correctly classified in another setting, but perhaps

some correctly classified speakers are lost as we approach optimum settings

overall. A more detailed investigation would be required to establish what is

happening in this respect.

Y-ACCDIST currently works using features extracted from midpoints of

segments. As previously pointed out in this chapter, this could be a criticism

of the system because we know that there is dynamic information through

sounds that can be indicative of accent (monophthongs vs. diphthongs, for

example). In Brown (2014), experiments were presented where more points

throughout the segments were included, in an attempt to take advantage of

dynamic information. However, this seemed to have a detrimental effect on

performance and it was put down to the fact that these additional features

brought ‘noise’ into the models. Future work could look at whether feature

selection could overcome this problem and revisit whether dynamic features

could in fact contribute to an ACCDIST-based system.
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The experiments in this chapter obviously rely on the fact that speakers

will exhibit a specific set of features that are produced by typical speakers from

the geographical locations. In the making of the two corpora, speakers were

selected based on their background, which would have a strong likelihood of

them speaking a typical variety of the area. This is the usual nature of corpora

that are intended for sociolinguistic research purposes. However, in reality

it is common to find speakers that produce a combination of features that

typically belong to speakers from different areas. It would be interesting to

extend this research to investigate whether we could identify if some features

of a speaker’s speech would be typical from one variety, whereas other features

are more typical of another variety. This could be of value to some strands of

sociophonetic research.

4.5 Summary

This chapter has firstly shown the effects that two different feature selec-

tion methods, ANOVA and SVM-RFE, have when integrated into the Y-

ACCDIST-SVM system. We cannot necessarily conclude that these feature se-

lection methods improve the performance of the Y-ACCDIST-SVM system in

every instance. This chapter has demonstrated that the nature of the datasets

that are being used appears to have an effect on whether feature selection

methods are useful to the task at hand. This is important to keep in mind

when considering these kinds of technologies for forensic applications, where

different datasets are relevant to different tasks. This chapter has also specu-

lated about individual phonemes and their individual contribution to a given

accent classification task, while also observing that there is likely to be a fre-

quency effect involved.
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CHAPTER 5

Effects of Segmental Content

on Accent Recognition Performance

5.1 Introduction

The purpose of working with spontaneous speech data is to simulate more

closely the type of data we might encounter in forensic casework. So far

shown in this thesis, the Y-ACCDIST system has been challenged by testing

it on geographically-proximal accents, spontaneous speech data and degraded

speech data. Within the spontaneous speech data and degraded data condi-

tions, the duration of the speech samples being tested has also been observed

as an experimental variable. Of course, it is of interest to determine approx-

imately how much speech is required in an unknown sample for a reliable

analysis to take place. Unsurprisingly, the experiments in previous chapters

have shown that shorter speech samples are less likely to be correctly classified

than longer ones. However, it is hypothesised here that the segmental contents

(i.e. the specific vowels and consonants) of the unknown speech sample also
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have some bearing on the chances of the sample being classified correctly. In

other words, for a given accent classification task to take place, which specific

phonemes within the unknown sample will assist with the particular analy-

sis, and how many of them are required? The focus of the present chapter

is the content of the test samples, rather than the training data, because we

are interested in stepping towards the criteria a speech sample needs to meet

to successfully undergo an analysis. Already in this thesis, we have seen that

some segments are more valuable than others in distinguishing between accents

in a given dataset, through the feature selection results presented in Chapter

4. Feature selection was conducted on the training data to determine which

Y-ACCDIST matrix elements (the phoneme-pair distances) are likely to be

most valuable. By running a feature selection phase during system training,

and only including the elements which have been ranked highly, we can in

principle improve system performance. It is therefore not unreasonable to as-

sume that some test samples are more suitable for an analysis, depending on

their segmental contents.

Similarly, in automatic speaker recognition research, there have been a

number of studies which only include linguistically-defined units in the anal-

ysis, rather than including what the whole speech sample has to offer. This

has been enabled by the advances in automatic speech recognition technology,

so the speech content can be recognised or estimated by a speech recognition

system, in order for particular linguistic units to be selected or deselected.

A more linguistically-constrained speaker recognition analysis can then take

place. Shriberg (2007) talks about this selective, linguistically-constrained,

approach as a ‘conditioning’ process of the speaker recognition models. One

speaker recognition study which takes advantage of this is Bocklet and Shriberg

(2009), which trials a number of syllable-based constraints on a GMM-UBM
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speaker recognition system using NIST Speaker Recognition Evaluation (SRE)

2008 data. They discovered that by only using monosyllabic words they can

achieve comparable recognition rates to using all the data available (an EER

of 4.4% with telephonic data), while also significantly reducing the amount

of data that the system has to process. This could be beneficial in terms of

computational cost. Franco-Pedroso and Gonzalez-Rodriguez (2016) provide

another study, which makes use of linguistic constraints in speaker recognition

technology, where they test many i-vector-based systems that have been condi-

tioned using only tokens of a single phoneme. They did this for each phoneme

in a phoneme inventory for American English speech (also using NIST SRE

datasets). They took this a step further and conducted the same tests on sys-

tems constrained to specific diphones (unique speech units consisting of two

phones in sequence). They discovered a very general pattern of systems con-

strained to more frequent phonemes generating lower equal error rates. They

also propose that perhaps the particular linguistic constraints placed on a sys-

tem are speaker-dependent (i.e. some speakers’ samples will be more suited to

some linguistic constraints that other speakers’ samples for an analysis), but

this requires further investigation. Overall, these studies demonstrate that

some linguistic units are more useful to a recognition task than others.

While linguistically constraining a system at the training stage is a move to

improve overall performance (in a similar way to the feature selection experi-

ments in Chapter 4 of this thesis), it may also be worth considering the linguis-

tic constraints that the unknown (test) speech sample poses for an already-

trained and optimised system, and whether this affects the likelihood of a

reliable analysis taking place. The effects of the segmental content of test

samples is touched upon in automatic speaker recognition research by Hasan,

Saeidi, Hansen and van Leeuwen (2013). Their study is largely motivated by
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the problem of duration mismatch in speaker recognition, whereby system per-

formance is challenged by short test utterances. They look at this in relation

to i-vector speaker recognition systems. One key factor they hold responsible

is the phoneme distributions of shorter test utterances. They suggest that it

is the coverage of the phoneme inventory represented in a test utterance that

affects the quality of the speaker’s representation. They show the exponential

reduction of the number of unique phonemes as a speech sample’s duration

decreases. While Hasan et al make this important link between the phoneme

content of a test sample and its duration, and subsequently speculate about

its effect on system performance, their experiments still only concern different

durations of speech sample. Their experiments did not explore the direct effect

of a sample’s phoneme content on performance.

Other work on automatic speaker recognition has looked into the link be-

tween the segmental content of test samples and the outcome of its trial. Kahn,

Audibert, Rossato and Bonastre (2010) ran experiments on French data to see

if the phonetic content of test samples affected speaker recognition perfor-

mance. They report that they did not find a significant result in relation to

this, but they acknowledge that this does not mean that it does not have an

effect at all. One criticism of their experiments is that they used a corpus of

phonetically balanced read prompts. Controlling data like this does not allow

us to see the effects of the natural distribution of speech segments that a lan-

guage offers. It is desirable to run these kinds of experiments on spontaneous

speech, but of course finding or acquiring enough transcribed spontaneous

speech data can prevent this kind of valid research from taking place.

It is hypothesised in this chapter that the segmental composition of the test

sample is likely to have an effect on its chances of being correctly classified

in the context of automatic accent recognition. We will continue to use the
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Y-ACCDIST-SVM system to explore this. Since the Y-ACCDIST system

takes a text-dependent approach to accent recognition, we can expect that

the segmental content of a test sample is particularly important in predicting

whether it will be correctly classified. This chapter explores this hypothesis in

the context of spontaneous speech. Unlike similar experiments run by Kahn,

Audibert, Rossato and Bonastre (2010), this chapter will focus on the natural

segmental distributions that spontaneous speech presents. To do this, the

Northern Englishes corpus (used for experiments reported in Chapters 3 and 4

of this thesis) has been used as it provides a substantial amount of transcribed

spontaneous speech per speaker. However, we will be using shorter samples for

the experiments in this chapter, than the samples used in the experiments in

previous chapters. As Chapter 3 acknowledged, 10 minutes of net speech per

speaker is an unrealistic sample length to expect in forensic casework. Also,

two short samples of the same duration are much more likely to have different

segmental contents, and these differences might influence the outcome of an

analysis. It is these shorter samples that the present chapter is concerned

with.

5.1.1 Outline

Section 5.2 will further explain the idea of segmental content before this chap-

ter moves on to describe the methodology employed to address the above

hypothesis in Section 5.3. Section 5.4 will first analyse the effects of the seg-

mental content of 30-second test samples on accent recognition performance

using the Y-ACCDIST system. Section 5.4 will then move on to analyse these

same effects on different sample lengths. Section 5.5 will evaluate these exper-

iments.
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5.2 Segmental Content of a Speech Sample

The purpose of this section is to further expand and clarify the idea of a speech

sample’s segmental content, which was given and touched on in the title of this

chapter and in the section above. Using 30-second test sample durations as an

example, we observed earlier in Chapter 3 that speech samples of this shortened

length achieve an overall automatic accent recognition performance, with the

Y-ACCDIST-SVM system, of 53.3% correct. To further illustrate the idea

of segmental content, two of the 30-second samples from one of the speakers

in the Northern Englishes corpus were selected at random, and number of

tokens of each phoneme was counted in each sample. These phoneme frequency

counts for each sample form the segmental content, and we can observe the

distributions very simply in Figure 5.1 below. For reference, the corresponding

IPA symbols to accompany the segmental symbols used can be found earlier

in this thesis in Section 3.2.2:
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Figure 5.1: The segmental distributions of two randomly selected 30-second

speech samples.

The general shapes of these distributions at a first glance look fairly similar,

reflecting the natural phonemic distribution of English. However, some dif-

ferences exist between the two distributions. For example, Sample 1 appears

to contain roughly 50% more schwas (indicated by the ‘ax’ phoneset symbol)

than Sample 2. Also, Sample 1 appears to contain three instances of the /3:/

vowel (indicated by the ‘er’ symbol), whereas Sample 2 contains none. We

are interested in whether these kinds of differences matter when classifying

these samples. Suh and Hansen (2012: 1515), in relation to speaker recogni-

tion technology, refer to these gaps of phone coverage in test or enrollment
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datasets as ‘acoustic holes’. They investigate a way of addressing these acous-

tic holes when dealing with particularly short speech samples that do not cover

the whole of the language’s phoneme inventory. We can gather that this is a

problem that spans speech technology when short utterances are being used,

and is not a problem restricted to accent recognition. It is expected to be of

particular relevance to accent recognition, however, because segmental cues

can play a very large part in accent diagnosis.

The key question posed by this chapter is, do these segmental differences

between speech samples greatly affect the likelihood of the sample’s successful

accent classification? It is possible that the natural phonemic distribution of

English will largely allow for a reliable analysis to take place. The next sec-

tion outlines the methodology used to try to establish whether the segmental

content of a speech sample affects the likelihood of a successful analysis taking

place.

5.3 Methodology

The Language Change in Northern Englishes corpus (Haddican, Foulkes, Hughes

and Richards 2013), which has been used for the experiments reported in pre-

vious chapters of this thesis, provides enough transcribed data to allow us to

obtain a number of different speech samples per speaker with different nat-

ural segmental distributions. The subset of speakers taken from this corpus

provides 15 speakers per accent group. The accent groups being used are

Manchester, Newcastle and York English. In the same way seen previously

in this thesis, 10 minutes of orthographically transcribed net speech is avail-

able. For these experiments, the 10 minute stretches for each speaker allow us

to generate a number of same-session short samples per speaker. As well as
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producing numerous speech samples with different natural segmental distribu-

tions, having multiple same-session samples per speaker enables us to observe

whether there are speaker identity effects (i.e. are some speakers more classi-

fiable than others?). Speaker identity effects might be down to a number of

factors. One might be that some speakers are simply more typical of an accent

group than others. Another might be that some speakers are more suitable

for processing by Y-ACCDIST. For example, the first step in Y-ACCDIST

is forced alignment and some speakers may yield a better segmentation than

others. It is possible that these factors mean that performance is largely down

to the specific speaker. The setup of this experiment will allow us to speculate

about the effect of speaker identity on performance.

Given 10 minutes of transcribed net speech per speaker, we can obtain

20 30-second speech samples per speaker. These were smaller samples were

divided by simply concatenating the full 10 minutes available and cutting

at 30-second intervals. This did mean that samples were cut mid-utterance.

For the 45 speakers, this means that there is a total of 900 30-second speech

samples available for testing. The frequency of each phoneme was logged for

each sample, capturing the segmental distribution of each sample, before being

passed through Y-ACCDIST as a test sample. When each sample was tested,

no speech from the same speaker was used to train Y-ACCDIST. The full 10-

minute stretches of the rest of the speakers in the dataset were used to train

Y-ACCDIST. Whether the test sample was correctly classified or incorrectly

classified was logged for that sample, in a binary fashion. This process was

conducted for each of the total 900 30-second speech samples. Logging the

phoneme frequencies and the success or failure of each sample in this way

prepares a results dataset that can be analysed by a mixed-effects logistic

regression model.
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5.4 Analysis

This section initially looks at the effects of segmental content on the classi-

fication of 30-second speech samples. We also consider the effects of speaker

identity on classification on these samples. Section 5.4.2 then progresses on to

look at these factors on other durations of speech sample.

5.4.1 30-second speech samples

We can observe the successfully and unsuccessfully classified speech samples

for each speaker in Figure 5.2 below:

Figure 5.2: Successful and unsuccessful classifications of the 30-second trials

for each speaker.
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The figure above allows us to rule out that the successful classifications are

solely down to the specific speaker being classified. Taking an initial glimpse

at the chart shows that there does not seem to be a huge weighting of correct

classification assigned to specific speakers (i.e. we do not see entire columns of

only correct classifications or only incorrect classifications). They seem to be

much more randomly distributed among the different speakers, indicating that

other factors play some part in correct and incorrect classifications of 30-second

speech samples. However, a closer inspection of the correct classifications does

seem to suggest that speaker identity accounts for the outcome of an analysis

to some extent. Focussing on speakers 6 and 17, for example, we see that

many more of these speakers’ trials are successfully classified compared with

other speakers. In contrast, speaker 12 seems to be an example of the opposite

situation, where the majority of this speaker’s trials are incorrectly classified.

These observations seem to reinforce our expectations that some speakers are

more suitable for this kind of analysis, while others (like speaker 12) seem to

be less so.

Even though we can observe some suggestion of individual speaker effects,

it seems that there are other factors which separate the successfully classified

samples from the unsuccessfully classified ones. As hypothesised in this chap-

ter, it is possible that this is partly down to the segmental contents of the

samples. To investigate this, the phoneme frequencies of each sample and its

classification outcome (successful or unsuccessful) were analysed by a mixed-

effects logistic regression model to assess whether there are certain phonemes

(if any) that seem to occur more frequently in the successfully classified sam-

ples than they do in the unsuccessfully classified samples.

For the mixed-effects logistic regression model, the frequency of each phoneme

was coded as a fixed effect, as well as the true accent group of the speaker.
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This is because some accent groups might be more ‘distinct’ than others (as

was discussed in Chapter 2 of this thesis). Further details of the AISEB cor-

pus were outlined above in Chapter 2. One of the four accent groups, the

speakers from Gretna, was collectively correctly classified on fewer occasions

than the other accent groups in the corpus. This was put down to the fact

that Gretna is perhaps expected to be the lowest performing group due to

the town’s history. Watt, Llamas and Johnson (2014) explain that Gretna

is a relatively new town, having been formed in the First World War quite

suddenly when settlers came to the area to work at a munitions factory. This

sudden and relatively recent formation of Gretna could lead to the possibility

that the spoken variety might still contain more variation among the speakers

than among speakers of the other varieties, leading to an overall lower accent

classification rate as a group. The true accent group of the speaker is therefore

also expected to contribute to the outcome of the trial.

Results

From the mixed-effects model (making use of the lme4 R package), three

phonemes were revealed to be significant. These are displayed in Table 5.1:
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Table 5.1: The phonemes identified as significant by the mixed-effects logistic

regression model.

Phoneme Coefficient Standard Error Significance

E 0.0698018 0.0291341 0.0166

u 0.0944547 0.0429213 0.0278

@ 0.0369923 0.0150073 0.0137

These results indicate that the more of each of these phonemes we find

in a 30-second speech sample, the more likely it is that the speech sample

will be correctly classified. The fact that any phonemes were flagged up at

significant at all suggests that the segmental content does have an effect on the

likelihood of the speech sample being successfully analysed by Y-ACCDIST.

This is worth bearing in mind when considering automatic accent recognition

for forensic applications. Especially for shorter recordings, we might need to

think about whether they contain the speech segments that would assist with

the analysis. On the basis of these results, it is suggested that some samples

are more segmentally suitable for an analysis than others. When we consider

the specific phonemes that have been identified as significant in the analysis,

we can draw sociolinguistic links with the particular accent varieties we are

distinguishing between.

Beginning with the phoneme which was revealed to be most significant,

schwa is perhaps expected to be a key distinguisher for these particular vari-

eties. Watt, Llamas, French, Braun and Robertson (2016) show that schwa is

a distinguishing feature of varieties of northeastern English English, of which

Newcastle is one. Watt et al report that Newcastle speakers typically produce
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[5], rather than [@]. Recall also from the description of the Northern Englishes

corpus in Chapter 3 (Section 3.2.1) that Hughes, Trudgill and Watt (2012)

point out that in Manchester English, the letter vowel is produced more

like [2] or [6], also deviating from the more standard production of [@]. From

the literature, it is not clear what we might expect of York speakers in the

production of these segments, but it is likely that York speakers typically pro-

duce [@]. If these are characteristic features of these varieties as suggested,

it is no surprise that schwa, as a phoneme, arises as significant in the re-

sults above. Watt et al ’s results also align with those of Franco-Pedroso and

Gonzalez-Rodriguez (2016), who found that, in their i-vector formant-based

speaker recognition experiments, schwa can also function as a good individual

speaker discriminant. It is expected that schwa’s frequency as a segment con-

tributes to these results, as it provides more data to strengthen models and

representations, which naturally lead to improved results. We can also refer

to the feature selection outputs generated for these Northern Englishes data

in Chapter 4 to uncover any signs of corroboration between the two analy-

ses. Recall from Figure 4.10 that schwa was shown to be a very high-ranking

segment (indicating its distinctiveness among these specific Northern English

accents).

The /u/ vowel can also be explained in this context. goose-fronting is a

phenomenon found in accent varieties across the UK. goose is the keyword

taken from Wells (1982) to describe the /u/ phoneme in English. It is typically

thought of as a close back rounded vowel, but the goose-fronting phenomenon

describes its more front realisation by some speakers. Baranowski and Turton

(2015: 295) claim that the /u/ vowel has fronted significantly for all social

groups in the Manchester area. In contrast, Watt (2000) claims that in Ty-

neside English, goose-fronting is not evident. Given the difference in the
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reported quality of the /u/ vowel in these two varieties, it might be expected

that /u/ is a variable which can successfully assign the speakers the correct

accent label, particularly for the Manchester and Newcastle speakers.

The /E/ vowel, however, is not necessarily expected to appear among fea-

tures which distinguish between these varieties. It has not been proposed as a

distincive feature of these accents by the sociophonetic literature. One possible

explanation for it appearing among the very few significant effects is that it is a

good discriminant, but it has not been sufficiently researched by sociophoneti-

cians. An alternative explanation is that it is more to do with the inner work-

ings of Y-ACCDIST, and what it requires to express realisational differences

between varieties. In the modelling of speakers’ accents, Y-ACCDIST cal-

culates distances between pairs of sounds, rather than treating each phoneme

segment individually. While we intend to express individual segmental realisa-

tions in this way, we must remember that it is pairs of phonemes which provide

the basis for the expression. To be able to express realisational differences, a

phoneme must be able to create a reflective distance with another phoneme’s

representation, treating it like a reference point. We could therefore accept

that there might be particularly stable phonemes found among the significant

effects in the results above. This is because an analysis might require at least

one phoneme which provides stability across all the accent varieties in our cor-

pus for the realisational variation to be sufficiently expressed. In support of

this finding, we also see this segment ranked reasonably highly by the feature

selection analysis presented in Figure 4.10.

The three phonemes revealed in the results do not, of course, exhaust the

list of phonemes which might be expected to assist in an accent recognition

task between these three accent varieties. Based on description of the varieties

in this dataset given in Chapter 3 (Section 3.2.1), we might also expect to see
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the face and goat vowels, since it was reported that in Manchester English

these are diphthongal, while they are mostly monophthongal in Newcastle

English. Likewise, we might also expect to see the plosives /p, t, k/ as these are

typically glottalised in Newcastle English (again, this was discussed in Section

3.2.1). It should be kept in mind, however, that these are the phonemes

which are highlighted when it is 30-second speech samples being tested. If

longer speech samples were used, other phonemes might emerge as significant

components. We can expect that phoneme frequency plays a large part in

these results, and a 30-second stretch of speech might not allow for other

expected phonemes to form strong enough representations, because there are

simply not enough of them. The number of phone tokens it takes to form

a reliable representation of a phoneme’s realisation for a speaker may also

be phoneme-dependent (i.e. some phonemes might require fewer tokens to

produce a reliable average representation than others). One reason for this

might be to do with a phoneme occurring in a greater variety of contexts than

others, and so a wider range of coarticulatory effects might vary a phoneme’s

range of realisations.

The Effect of Speaker Identity

In addition to the fixed effects, the model outputted a variance for the random

effect of speaker identity (the kind of effect we discussed above in relation to

Figure 5.2). The model outputted a variance of 0.398 attributed to speaker

identity. If the variance were 0, this would indicate that the specific speaker

identity does not contribute to the outcome of a speech sample’s analysis.

However, the variance outputted suggests that speaker identity does indeed

contribute to the outcome, reinforcing initial expectations.
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To explore whether these effects are still significant at other durations of

speech sample, the section below looks at different sample lengths, varying

sample duration to lengths less than 30 seconds and more than 30 seconds.

5.4.2 Varying sample length

This section compares the results of running the same analysis on sample

lengths of different durations. This will uncover whether the phonemes re-

vealed as significant in the analysis above are still significant in other sample

durations. As discussed above, we can expect phoneme frequency to interact

with these results, and sample length obviously affects the number of tokens

of a phoneme we find in a sample. The extent to which this affects results is

explored in this section.

In addition to the experiments using the 900 30-second samples above, a

mixed-effects logistic regression model was run for each of the following sample

durations (we also give the total number of speech samples the dataset will

allow for the longer durations, considering that there are 10 minutes of speech

per speaker):

• 20 seconds (900 samples)

• 25 seconds (900 samples)

• 35 seconds (765 samples)

• 40 seconds (675 samples)

The same model setup was used for each of these sample durations, where

the frequencies for each phoneme in the sample are coded as fixed effects, along

with the accent category, and speaker identity is coded as a random effect. For
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each model (for each sample duration), the significant effects are given in Ta-

ble 5.2 below. For the sake of easier comparison, the 30-second sample results,

which were shown in the section above, have also been included in the table.

Table 5.2: The phonemes identified as significant by the mixed-effects logistic

regression model.

Duration Model Phoneme Coefficient Std. Error Significance

20 secs 3 0.155557 0.050521 0.00208

25 secs n -0.038775 0.019775 0.0499

tS -0.128558 0.064732 0.0470

E 0.0698018 0.0291341 0.0166

30 secs u 0.0944547 0.0429213 0.0278

@ 0.0369923 0.0150073 0.0137

E 0.055944 0.028402 0.04887

6 0.083376 0.028982 0.00402

35 secs I@ 0.177996 0.057549 0.00198

d 0.037795 0.019263 0.04976

f -0.079694 0.031727 0.01201

E 0.057348 0.028816 0.0466

40 secs 3 0.079076 0.039434 0.0449

E@ 0.091353 0.040311 0.0234
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At a first look, inconsistencies seem to show up across the different sample

durations. Generally speaking, different segments are flagged as significant for

different sample lengths. We should view these results with caution. A larger

dataset that allows for more samples to be included in the analysis would help

to overcome the volatility. It could also be due to focussing on such short

sample lengths, where the phoneme distributions might change considerably

between different durations. Despite that, it appears that among these iden-

tified phonemes, there are some patterns and alignments with what we might

expect sociophonetically. Not only can we refer to the sociophonetic litera-

ture, but we can also refer to outputs from analysis run in Chapter 4 from

the feature selection experiments. Section 4.3.4 of Chapter 4 presents visual

outputs that indicate which phonemes were most valuable to two different ac-

cent classification tasks through feature selection. These outputs plotted each

phoneme’s overall ranking against its frequency. One of these plots (Figure

4.10) shows this for the Northern Englishes corpus used in the experiments in

this chapter. We can therefore check for points of corroboration between the

segments that are suggested to be particularly distinctive in Figure 4.10 and

those which are identified as significant in the mixed-effects analysis presented

in Table 5.2 above. The key difference between them, however, is that Figure

4.10 was produced using all 10 minutes of speech per speaker, while the results

presented in Table 5.2 were produced using much shorter speech samples.

One key observation is that across these durations, it is mostly vowel seg-

ments that have been identified, and these all have positive coefficients (sug-

gesting that the more of these segments there are, the more likely one of these

speech samples will be classified correctly). There are also consonants which

have been identified as significant, but with a negative coefficient. This means

that having more of these tokens in a speech sample is more likely to lead to an
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incorrect classification. Such segments are /n/ and /tS/ in the 25-second du-

ration model and /f/ in the 35-second model. The negative coefficient implies

that perhaps some segments have a detrimental effect in the accent recogni-

tion task. It is inevitable that some segments will not play a role in accent

diagnosis, but there appears to be some that go beyond this and mislead the

system. It could be that these are segments which are good individual speaker

discriminators, rather than accent discriminators. Particularly in the case of

/n/, Scheffer et al (2011) demonstrated that nasal segments seem to be advan-

tageous in speaker recognition technology, especially under high vocal effort

conditions. Seeing that vowels overwhelmingly appear to be significant vari-

ables with positive coefficients indicates that the outputs of these analyses are

not entirely random. The sociophonetic literature usually focusses on vow-

els because they are expected to be particularly good discriminating features

among accents of English.

Only one segment has been revealed as significant for the 20-second sam-

ples, and this is the /3:/ vowel (or the nurse vowel when we refer to Wells’

(1982) lexical sets). As with /u/ and schwa in the 30-second samples, we can

expect that /3:/ would be a valuable segment to an accent recognition analysis.

Hughes, Trudgill and Watt (2012: 117) note that /3:/ is fronted in Manchester

English, which might separate Manchester speakers from Newcastle and York

speakers. Interestingly, /3:/ does not appear as significant in the analyses for

other durations, but then reappears for the longest duration, 40 seconds. This

could be linked to the point previously made in the section above with regard

to some phonemes requiring more tokens to form a strong enough representa-

tion in the model than others. It could be that /3:/ does not require many

tokens to form a reliable representation in a sample. However, in the longer

sample durations, as more phonemes gather more tokens, these might provide
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more distinctive power than /3:/ in longer durations. This does not mean to

say that /3:/ does not have anything to offer at all in the longer durations,

but has less of an effect when accompanied by other phonemes’ stronger repre-

sentations. Interestingly, when we look at where /3:/ is positioned within the

feature selection output in Figure 4.10, we can see that there are also signs of

this phoneme, showing distinguishing potential as a relatively infrequent seg-

ment. /3:/ is the highest-ranking segment among the least frequent phonemes

(i.e. it is the highest-ranking segment among those phonemes which have fewer

than 100 occurrences within a 10-minute speech sample, on average).

Turning our attention to the segments /I@/ and /E@/, we can assume that

similar factors for each of these are at play. Both of these phonemes have

schwa as a component, and so a similar effect to the one discussed above

in relation to Newcastle speakers’ schwa are also likely to apply with these

phonemes. In contrast, Hughes, Trudgill and Watt (2012) note that the /I@/

and /E@/ phonemes are ‘smoothed’ in Manchester English, and so are realised

more as [I:] and [E:]. It seems that these expected realisational differences might

perhaps be influential in distinguishing between these particular varieties when

using shorter speech samples.

Although schwa was identified as significant and was justified in the con-

text of 30-second speech samples, it has not emerged as significant in other

durations. We can perhaps expect schwa’s representation to be sensitive to

the addition or removal of tokens in a sample. Even though schwa is a very

frequent segment, it appears in many different contexts. We can expect that

some contexts help with indicating the speaker’s accent, whereas others do

not. The tokens of schwa which seemingly do not contribute to correctly clas-

sifying a speaker’s accent may therefore introduce ‘noise’ to the representation

and so would lose distinctive value as a result. This might explain schwa’s
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inconsistency as a significant effect, despite being a highly frequent phoneme.

This is explored further in Section 5.5 below.

There are of course phonemes which have not been highlighted by the

mixed-effects model that we might expect to assist with successful classifica-

tion. There are diphthongs that are known to vary among these accent vari-

eties. For example, making reference to Wells’ (1982) lexical sets, we might

predict the vowel in face to be significant, but it has not been revealed as

particuarly distinctive in this analysis. Likewise, in the feature selection out-

puts in Chapter 4, the face vowel (‘ey’) was not shown to be ranked highly

overall in the case of the Northern Englishes accents (in Figure 4.10). Watt

and Milroy (1999: 29) describe the typical variants of this vowel in Newcas-

tle English, stating that it tends to be raised to [Ei] when preceding voiceless

stops or fricatives, and is realised as [ai] elsewhere. Other diphthongs might

provide other kinds of realisations which might contribute to distinctive accent

models in Y-ACCDIST. This analysis may not be reliable enough to reflect

all our expectations that have been fuelled by previous sociophonetic research.

An alternative reason is that the frequency of face might not be sufficient

to establish a stable representation of it in these shorter speech samples. As

discussed above, it is quite possible that this is a phoneme that requires a large

quantity of tokens to form a reliable representation in a Y-ACCDIST model.

Some consonants are of course also expected to be good indicators in this

classification task among these particular accents. For example, Watt and

Milroy (1999) describe the /t/ variants that are characteristic of Newcastle

English, one being that in pre-pausal position, we tend to get /t/ spiranti-

sation. Another example of typical Newcastle English features they give is

the glottal reinforcement of consonants. In some phonological contexts, /p/,

/k/ and /t/ are often reinforced by [P] in Newcastle English. /t/ has not sur-
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faced as a significant variable in these analysis however. It seems that in the

case of these short durations of speech, having these segments included in

the unknown speaker’s sample does not significantly add to the chances of a

successful classification. This could be down to a number of factors, like the

frequency of the particular contexts these characteristic segments are found

in, or perhaps these segments require a more dynamic representation in the

model to be able to sufficiently reflect the speaker’s accent. Because the ab-

sence of this segment appears to contradict the outputs from feature selection

for this data (Figure 4.10), it could well be the factor of frequency at play here,

or indeed, it could be a reflection of the reliability of the logistic regression

analysis. According to the feature selection outputs, /t/ is the highest-ranked

segment that discriminates the Northern Englishes accents. This of course was

computed using 10-minute speech samples, rather than shorter samples. It is

therefore quite possible that it requires a large number of tokens to form a

stable and distinctive representation.

The Effect of Speaker Identity

Individual speaker identity was coded as a random effect in the model, because

we can reasonably expect that some speakers are more likely to be successfully

classified than others. As discussed above in relation to the 30-second speech

samples, speaker identity does indeed account for some of the variance in

the model, therefore indicating that speaker identity does contribute to the

likelihood of a successful classification (σ2 = 0.398).

We can observe this variance across the models for each of the sample

durations. In Figure 5.3 below, the variance of speaker identity for each of the

duration models is given.
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Figure 5.3: Speaker identity variance in each mixed-effects logistic regression

model for each speech sample duration condition.

Given that we only have five duration models here, the conclusions we can

gather can only be very speculative, but there still seems to be something to

consider. It appears that there might be a general increase in the variance

in the model assigned to speaker identity. This suggests that perhaps, as the

duration of the speech sample increases, specific speaker identity contributes

more to the likelihood of a successful classification. More data would be re-

quired to test whether this trend continues for longer durations of speech. It is

possible that the contribution the specific speaker identity makes to a sample’s

likelihood of being successfully classified plateaus and stabilises at longer du-

rations, once the individual phoneme segments’ representations have stabilised

with more tokens.

Similar effects of sample duration on the contribution that specific speaker

identity makes to performance also apply to automatic speaker recognition.
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Doddington, Liggett, Martin, Przybocki and Reynolds (1998) made steps to-

wards accounting for this by placing labels on different speakers, using sta-

tistical analysis, to characterise the “recognizabilty” of speakers in speaker

recognition tasks. It might be of interest to investigate how segmental dis-

tributions interact with the recognizability of speakers in speaker recognition,

and observe whether the label a speaker is assigned changes if the segmental

distribution of a speech sample changes. This is another possible direction for

further research.

5.5 Discussion

One thing which has been highlighted above, and which is likely to be key to

the significance of a phone segment to an analysis, is the context in which the

phone occurs. This was suggested earlier in the chapter in Section 5.4.2 in

the case of schwa. Watt, Llamas, French, Braun and Robertson (2016) only

focussed on word-final schwa tokens in their analysis. We can expect that

tokens of a phoneme in particular contexts bear more informative value to the

task than others. For example, Watt et al (2016) report that word-final schwa

has a higher intensity in the Newcastle variety than the preceding stressed

vowel in the word. It is context-dependent characteristics like these which

might be carrying all of the distinctive value to the task that is encoded in

the overall average representation of a single phoneme. Other contexts might

present ‘noise’ to the representation and do nothing for the accent classifica-

tion task. It might therefore be of interest to conduct further research into

the details of the contexts of the phoneme’s tokens, particularly for very fre-

quent phonemes like /@/. It is plausible to run a similar analysis that uses

more specific categories of speech segments, rather than the broader phoneme
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categories enforced here.

Another factor that could play a part, which has been accounted for indi-

rectly in the analysis, but has not been separated out on its own, is articulation

rate. It could be that the articulation rate of individual speakers affects the

likelihood of a speech sample being correctly classified by the Y-ACCDIST sys-

tem. Articulation rate of a speaker has been indirectly encoded in the model

because speaker ID was coded as a random effect, and a speaker’s articulation

rate is embedded within this factor. One hypothesis could be that a higher

articulation rate leads to a higher likelihood of that speaker’s samples being

correctly classified. This is because a 30-second speech sample would include

more phone segments to produce more stable representations in the model. A

deeper investigation into the data would uncover whether this is the case.

To its practical disadvantage, Y-ACCDIST is a text-dependent system,

which enables it to take a very segmental approach to the task of accent recog-

nition. We can therefore expect that the phone segments that are present in

the unknown speaker’s speech sample are especially important to the analysis.

It would also be interesting to run these experiments on a different type of

accent recognition system (a text-independent i-vector classification system,

for example). These kinds of system take a more global approach to a classifi-

cation task, not making initial phone segmentations, but take the sample as a

whole. It would be interesting to run the same experiments described in this

chapter using an i-vector accent recognition system, rather than Y-ACCDIST.

It might be the case that the segmental content of a sample also has an effect

on the performance of an i-vector system.

In a similar way to different types of accent recognition system, it would

also be of interest to run these sorts of experiments, testing the effects of

a speech sample’s segmental content, on speaker recognition systems. For
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forensic applications, it could be useful to determine whether a speech sample

is suitable for an analysis by a particular type of system, or to at least bear

in mind the factors contributing to a reliable or successful analysis. In the

context of security and commercial automatic speaker recognition systems, it

is also expected that certain passphrases yield higher success rates than others,

and this is partly down to the phonemic contents of these passphrases. Across

applications, it seems it would be valuable to move towards establishing the

segmental criteria a sample needs to meet for a reliable analysis to take place.

5.6 Summary

This chapter has more directly investigated the relationship between the phoneme

frequencies of a speech sample and the likelihood of a successful classification

by the Y-ACCDIST-SVM system. Although we should cautiously interpret the

outputs of these analyses, it appears that the segmental content of a speech

sample influences a speech sample’s probability of being correctly classified.

Of most of those phonemes that were identified as significant, we can generally

offer a sociophonetic explanation for why they are significant when distinguish-

ing between speakers of Manchester, Newcastle and York varieties of English.

Despite that, other groups of phonemes which would be expected to contribute

to a sample’s successful classification were not identified as significant by the

model. Possible reasons surrounding Y-ACCDIST’s inner workings and the

frequencies of these phonemes were offered for this. Importantly, however,

there are plenty of other factors that of course contribute to the success of

a sample’s classification. One of these that has been discussed is individual

speaker identity (i.e. some speakers are more classifiable than others), a factor

which was accounted for in the logistic regression analysis. This chapter has
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not, however, been able to provide specific and fine-tuned criteria that a test

sample needs to meet to increase the probability of its successful classification.

Instead, this chapter has shown that the segmental content of an unknown

speaker’s speech sample should be factored in when it is being analysed in an

accent recognition task.
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CHAPTER 6

Using Y-ACCDIST to classify

non-native varieties of English

6.1 Introduction

All the experiments so far in this thesis make use of accent corpora of na-

tive varieties of English, starting with native varieties which are expected to

be fairly similar to one another (the AISEB corpus). We then moved on to

the Northern Englishes corpus, another corpus of native accents that allowed

us to test Y-ACCDIST on spontaneous conversational speech. This chapter

extends this research by testing Y-ACCDIST on spontaneous conversational

speech produced by non-native speakers of English. The objective of the sys-

tem is to classify speakers according to their native language We can expect

this to be a different kind of problem because of a number of additional fac-

tors that come into play in non-native speech. These kinds of factors will

be described in Section 6.2. Moving on to a different database in this chap-

ter continues with one of the key objectives of this thesis of transferring an
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analytical methodology to different types of task. This is in the interest of

gaining a thorough understanding of the methodology’s capabilities. As has

been repeated throughout this thesis, past ACCDIST-based systems have all

only been tested on a single corpus, the Accents of the British Isles (ABI) cor-

pus, which consists of good-quality recordings of native speakers of accents of

the British Isles reading prepared prompts. This chapter will again observe an

ACCDIST-based system’s performance on a corpus which presents yet more

kinds of challenges.

The data used to test the performance of Y-ACCDIST on non-native accent

varieties are from the National Institute of Standards and Technology Speaker

Recognition Evalulation (NIST SRE) 2004, 2005 and 2006 datasets (Przy-

bocki and Martin, 2004). These datasets are primarily intended for automatic

speaker recognition experiments, but metadata are available that make it pos-

sible to conduct other kinds of task. These databases are largely made up

of telephonic speech, and the subset used for the experiments in this chapter

is just made up of telephonic speech, and so constitute a more forensically

realistic scenario, compared to experiments in previous chapters. More details

about the subset of the NIST SRE data used for these experiments will be

given below, but one important feature of this task to note is that we are

only using phone labels of the data that have been estimated by an automatic

speech recognition system. In a sense, then, this chapter not only observes

Y-ACCDIST’s performance on non-native speech, but also observes whether

it is capable of working without human-generated transcriptions (which are

the kind of transcription that have been used for all the experiments in the

chapters above). In effect, we are therefore also testing whether it could be

used as a sort of text-independent tool (for a faster less labour-intensive ac-

cent recognition analysis). This could have repercussions for the Y-ACCDIST
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system’s overall usability if it can indeed cope with estimated phone labels,

rather than accurate human-generated phone labels. This difference in the

treatment of data will be considered when analysing the results.

One significant advantage of the NIST SRE subset being used for the ex-

periments in this chapter is that it is much larger than any of the corpora used

in previous chapters. While the subsets of the AISEB corpus and Northern

Englishes corpus contained 120 and 45 speakers, respectively, the NIST SRE

subset contains 700 speakers (100 per accent group). This volume of data

means that we can much more reliably assess the effects that small changes

to the system have on performance. Consequently, this chapter also presents

results where modifications have been made to the engineering of the system.

6.1.1 Outline

This chapter first reviews past research on non-native speech in Section 6.2

before discussing past research that has incorporated estimated phone labels

from an automatic speech recognition system in Section 6.3. The purpose of

including sections on these two topics is to consider the expected effects of

these specific data properties on the Y-ACCDIST-SVM system. Section 6.4

will then outline the details of the experiments run, including a description of

the speech data, as well as further information on the estimated phone labels

from the speech recognition system. The specific experiments, along with

their results, will then be presented in two parts. The first part (Section 6.4.4)

deals with the baseline experiments, along with some segmental alternations,

varying which speech segments are included in the accent modelling. The

second part (Section 6.4.5) presents the effects of making modifications to

the engineering of the current default configuration of the Y-ACCDIST-SVM
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system. An discussion this chapter’s findings is then given in Section 6.5.

6.2 Non-native accents

Numerous factors contribute to how exactly a speaker’s non-native accent is

produced. In their review of the literature on the factors affecting a speaker’s

foreign accent, Piske, MacKay and Flege (2001) list the following (among oth-

ers):

1) Age of the speaker when they learn the language

On the basis of a good deal of linguistic research (as well as everyday obser-

vation), we can assume that the younger a language learner is, the better the

command of a language the speaker will go on to have (e.g. Asher and Garćıa,

1969). This links with the idea of the so-called ‘critical period’ in language

learning in relation to first language acquisition whereby we can only acquire

our first language to native level if we do so as children (Lenneberg, 1967), but

this idea also seems to extend, to some degree, to second language acquisition

where we do see younger learners acquiring a higher standard of a second lan-

guage than older learners (Johnson and Newport, 1989). Focussing on just the

second language speaker’s pronunciation, we could generalise that a speaker

who started learning at an earlier stage in life is more likely to have an accent

that is closer to a native accent of the second language.

2) The length of time a speaker has resided in a place where the

L2 is spoken

It is expected that the amount of time that a speaker has lived in a place

where the language they are learning is spoken contributes to how speech is
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produced. Flege, Yeni-Komshian and Liu(1999) conducted a study of Korean

learners of English, using ‘age of arrival’ (to the United States) as a key vari-

able of interest. They used native listeners to rate the accents of these Korean

speakers speaking English, finding an effect of ‘age of arrival’ on the rated

‘strength’ of the foreign accent. This relationship also links to the point above

in that, as well as the learner’s amount of exposure to the language, simply

the age at which a speaker starts learning also has an impact.

3) The motivation of the speaker

Of course, the motivation of the speaker to reach a high standard in a language

is also expected to affect the overall production of speech. Gardner (2007) dis-

cusses different types of motivation in learning a language and what roles these

might play in acquiring a language. Gardner concludes that it is generally the

intensity of the motivation of a speaker that is the key contributing factor to

achievement in second language acquisition.

4) The aptitude of the speaker to learn a language

There is individual variation among members of the language learning commu-

nity. Some individuals are naturally more suited to learning languages than

others, a fact which is regularly acknowledged in the second language learning

research literature (e.g. Rubin, 1975). However, it is of course difficult to de-

termine exactly what it is that some of the more successful language learners

have that others do not.

The list offered by Piske et al. does not, by any means, account for all the

complexities that non-native varieties of a language may exhibit. Aspects to

do with whether a speaker was formally educated in a language, and how far
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through the education system the speaker took this language learning. There

are other issues associated with a speaker’s identity that could also come into

play. In contrast to how speakers might be motivated to reach a high standard

of a particular language, Drummond (2012: 110) points out that some speakers

may intentionally avoid adopting pronunciation features of native speakers so

as to express their own native identity. Connected to this, the statistical anal-

ysis run in Drummond (2012) revealed a significant effect regarding non-native

speakers’ future plans. In analysing the ING variable in English, produced by

Polish migrants living in Manchester, UK, Drummond found that if the Polish

individuals were planning to return to Poland in the future, it was more likely

that they would produce [INk] for this word ending, rather than other native

forms, principally [In] and [INg], in Manchester English. Through this one vari-

able, there seems to be an indication that even a speaker’s future intentions

could also impact on the pronunciation patterns in a second language.

Finally, and what the performance of a system in this task relies on, is the

effect of the first language (L1) of a speaker on the acquisition of a second

language (L2). For a good recognition rate, we would hope that features from

the first language are distinctive and consistent enough to be modelled by the

accent recognition system. However, within the second-language acquisition

research literature, there has been some attention paid to how the L1 of a

speaker affects how well the speaker adopts the native features of the L2. For

example, McAllister, Flege and Piske (2002) monitor the production of native

Estonian, English and Spanish speakers producing Swedish words. In Swedish,

there are ‘quantity’ distinctions that distinguish between different phonemes.

For example, the phone sequence [vE:g] in Swedish means road, whereas the

sequence [vEg:] means wall, with only changes in the durations of different

sounds, rather than finding quality differences in the sounds (Helgason, Ringen
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and Suomi, 2013). McAllister, Flege and Piske (2002) found that the Estonian

speakers acquired this distinction much more readily than the English and

Spanish speakers. Estonian has durational distinctions like Swedish, whereas

English and Spanish do not. These kinds of features of a speaker’s L1 (which

increase the similarity of a speaker’s pronunciation of the L2 with that of

native speakers of the L2) could increase the likelihood of confusion between

an Estonian speaker speaking Swedish and a native speaker of Swedish. These

kinds of relationships between different L1s could help us to predict confusions

by an automatic accent recognition system.

The factors listed and discussed above demonstrate the extent of the com-

plexity among the non-native speaker population. We could assume that these

additional factors that come into play for non-native accents might make mod-

elling these accents in a classification system more difficult. We have reason

to expect that there is greater variation within these groups (and therefore

greater variation among the accent models), which could lead to more confu-

sions, and we might also expect greater within-speaker variation as well. It is

reasonable to expect that for a non-native task, we would need more speakers

per group to sufficiently train an accent recognition system than we would for

a task using native accents.

This section has touched on just some of the considerations we ought to

take into account when observing system performance across native accent

recognition tasks and non-native accent recognition tasks. There are different

kinds of factors that might come into play when we are training and testing.

Specifically, we might expect much more variation in the pronunciation systems

of the non-native speakers, which might lead to weaker Y-ACCDIST models.

However, larger sets of speakers per accent to train the system might help to

counteract this expectation.
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6.3 Phone estimation through speech

recognition

Chapter 2 discussed some of the earlier studies in automatic language recog-

nition which took the Phone Recognition followed by Language Modelling

(PRLM) approach to the task (Zissman, 1996). Such an approach was also

tried in automatic accent recognition (e.g. Biadsy, Soltau, Mangu, Navratil

and Hirschberg, 2010). Using the outputs of an automatic speech recognition

system, in the form of phone labels, the system’s following processes rely on

these outputs. It is important to remember that these labels are simply esti-

mations and very much depend on the quality of the specific speech recognition

system being used. Most of the labels are correct, but it is of course impor-

tant to remember that there are errors among them. The errors, however,

are likely to be meaningful in some way. For example, we can expect that an

/n/ is more likely to be mistaken for another nasal segment, rather than for a

voiceless plosive. A segment that one segment is confused with by a system, is

likely to share acoustic properties. These kinds of confusions might therefore

not cause so much ‘noise’ in the system, as we may end up with a category

of nasals which might actually function as a label class that can sufficiently

serve the system’s subsequent processes. The exact details of the automatic

speech recognition system used for the experiments in this chapter are given

in Section 6.4.2 below.

For these past PRLM systems, it is just the sequence of labels that was im-

portant for the system’s subsequent processes. In the context of Y-ACCDIST,

the system will rely on these estimated labels, but also the accompanying

time alignments. Unlike the original PRLM language identification systems
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(Zissman, 1996), Y-ACCDIST extracts acoustic values from the labelled seg-

ments to represent them, and so not only is the sequence of phone labels for

each sample important, but also where each one begins and ends (i.e. the

segmentation error). This segmentation consideration also applies to the text-

dependent experiments in the chapters above in relation to the outputs of the

forced aligner. While the phone labels are expected to be accurate, the time

alignments to accompany these labels are not necessarily precise.

6.4 Experiments

This section lays down the components of the non-native accent recognition

experiments. The dataset is first described in detail, followed by the nature

of the estimated transcriptions. These are aspects of the experiments that set

them apart from the experiments in previous chapters.

6.4.1 The Data

Only a subset of the NIST databases from the 2004, 2005 and 2006 speaker

recognition evaluations (Przybocki and Martin, 2004) has been used. Together,

these databases are comprised of thousands of speakers, but we do not have

estimated phone labels for all of them. Only a subset were passed through an

automatic speech recogniser. What has reduced the potential pool of speakers

further is the number of speakers within each accent class, who are speaking

English. Not all speech samples in NIST are in English. Other languages

are included, so these recordings are eliminated for the purpose of this study.

Additionally, of the recordings where speakers are speaking English, there

are great imbalances between the number of speakers within different accent
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groups. By far, the group with the largest number of speakers is made up

of native English speakers, and there are large numbers of native speakers of

Spanish and Russian, but then very few speakers of Vietnamese, for example.

From the different accent groups available, seven groups were selected, based

on the fact that these categories allowed for groups of 100 speakers to be used

for these experiments. The resulting accent groups for these classification

experiments were therefore:

• Arabic

• Bengali

• Mandarin Chinese

• native English

• Farsi

• Russian

• Spanish

We do not have any more detailed information about the speakers’ language

background. For example, the Arabic speakers could be native speakers of any

Arabic dialect. Also, having listened to a small number of the recordings in

the native English category, it seems that most of the speakers are speaking a

North American variety of English (as expected), but there are also recordings

of British English speech, too. In experiments using the AISEB corpus and

Northern Englishes corpus in previous chapters, the speaker groups were much

more controlled. We can expect this lack of control in the collection of the

NIST data to also contribute to the weakening of the accent models, alongside
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the factors that come from using second-language data (discussed in the section

above).

The NIST speech samples are telephone recordings. Each speaker’s sample

is part of a two-way casual conversation with another speaker which lasts for

approximately 5 minutes in total. We can therefore expect that each indi-

vidual speaker’s speech sample contains around 2-2.5 minutes of speech for

that speaker (although we should acknowledge that there could well be great

variation in duration per speaker). In Chapter 3, we saw some results of

experiments where we tested Y-ACCDIST-SVM on different durations of con-

versational speech recordings. Two minutes of net speech per speaker did not

secure the best performance, but it still generated a recognition rate of over

82.2% correct on the three-way classification task of Northern English English

accents. This result, however, was produced using good-quality recordings. In

the context of the NIST telephone recordings used in this chapter, we might

expect some reduction in performance.

Having listened to a small number of these recordings, it seems that it is

common for recordings in this database to come with some background noise

(for example, other people talking in the background). This sort of feature of

course resembles much more realistic recordings, but it is another feature of

the data we should consider when comparing these results with those produced

in previous chapters.

6.4.2 Phone Recognition

The estimated labels are those that were used for the experiments in Franco-

Pedroso and Gonzalez-Rodriguez (2016). These labels were produced by the

Decipher automatic speech recognition system by researchers at SRI (Ka-
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jarekar et al, 2009). It is reported that this automatic speech recognition sys-

tem’s Word Error Rate (WER) is comparable to other state-of-the-art speech

recognition systems, achieving a WER of 23.0% for native English and 36.1%

for non-native English. At first, these WERs suggest that the resulting tran-

scriptions we are using contain numerous errors. However, WER is not neces-

sarily reflective of a “phone error rate”, where a word in the transcription can

be logged as incorrect where only one phone in the whole word might be incor-

rect. We can assume that the “phone error rate” is better than the WER and

this is the rate that is important for these Y-ACCDIST experiments. However,

as a thorough analysis of the transcriptions in relation to this has not been

conducted, the precise accuracy of the phone labels remains unknown.

When testing Y-ACCDIST, it is also important to point out that the set

of phone symbols used for these NIST experiments is different from those

used in the experiments with the AISEB corpus and the Northern Englishes

corpus. While there is a lot of overlap with the phonesets that have already

been implemented in this thesis, there are also some differences. The phoneset

used for these NIST experiments is given and interpreted in Tables 6.1 and

6.2 below:
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Table 6.1: The vowel phoneset symbols used for the NIST experiments along-

side their corresponding IPA symbols.

Phoneset Vowel Symbol AE AA AO IY UW EH IH UH

IPA Symbol æ A O i u E I U

Phoneset Vowel Symbol AX EY AY OW AW ER AH OY

IPA Symbol @ eI aI @U aU 3 2 OI

Table 6.2: The consonant phoneset symbols used for the NIST experiments

alongside their corresponding IPA symbols.

Phoneset Consonant Symbol P T K B D G CH JH

IPA Symbol p t k b d g tS dZ

Phoneset Consonant Symbol F V S Z TH DH SH HH

IPA Symbol f v s z T D S h

Phoneset Consonant Symbol L R W Y M N NG DX

IPA Symbol l ô w j m n N R

This phoneset is almost identical to the phoneset used for the AISEB exper-

iments on English and Scottish accents. However, the key difference here is

the ‘DX’ symbol which maps on to the alveolar tap, [R], which is one feature of

North American English, where it is an allophonic variant of /t/ and /d/ that

occurs in intervocalic contexts between a stressed and an unstressed syllable

(Herd, Jongman and Sereno, 2010). Exemplar words are writer and rider (Zue

and Laferriere, 1979). Because we are dealing with North American English

as the native accent variety among this list, ‘DX’ has been included in the
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phoneset.

6.4.3 Experimental Setup

A leave-one-out cross-validation setup has been implemented for these experi-

ments, like the experiments presented in Chapter 3 on the Northern Englishes

corpus. This setup allows us to maximise the amount of data available to train

the system.

We can divide the experiments into two streams. The first stream (Section

6.4.4) is concerned with the the segmental configurations of the system (i.e.

which phones are included in the construction of the Y-ACCDIST matrices).

The second stream (Section 6.4.5) takes advantage of the the considerably

larger size of the dataset we are using for these experiments. This means we

can make changes to aspects of the system’s engineering, and that changes

to the recognition rate are more likely to be an effect of engineering changes,

rather than the consequence of smaller datasets naturally prompting larger

changes to the recognition rate by just a single speaker being misclassified.

6.4.4 Segmental Experiments

From a comparison of the experiments run on the AISEB corpus and the

Northern Englishes corpus earlier in this thesis, we saw a difference in what

kinds of phoneme segments generated the highest recognition rate. We noted

in previous chapters that in the case of the AISEB corpus, including only

vowel segments is more effective than including consonants as well. For the

Northern Englishes accents on the other hand, including consonants seems to

generate a higher recognition rate than by just including vowels. Because of

this difference between the corpora, the initial experiments on the NIST data
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will first compare Y-ACCDIST-SVM’s performance using these two settings:

the vowels-only setting and the all-phonemes setting. For each of these set-

tings in the seven-way accent classification task our NIST dataset allows, the

recognition rate is presented in the table below (we would expect a rate of

14.3% correct if the system was working by chance):

Table 6.3: Accent recognition results on the NIST SRE dataset of non-native

accents, where the vowels-only and all-phonemes settings have been imple-

mented.

Segmental setting % Correct

Vowels-only 40.3

All-phonemes 52.9

There seems to be a great difference between the two segmental settings. This

suggests that there is a lot of distinguishing information across the whole

phoneme inventory, which is not constrained to just one group of segments.

For the higher performing setting, the all-phonemes setting, the confusion

matrix is given below in Table 6.4 for that task.
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Table 6.4: Confusion matrix of the NIST SRE non-native accent classification

task, where all phoneme segments were included in the analysis.

Accent Ara. Ben. Chn. Eng. Far. Spa. Rus.

Ara. 48 12 7 7 8 6 12

Ben. 11 65 12 1 4 4 3

Chn. 6 4 59 8 9 8 6

Eng. 7 3 6 50 8 12 14

Far. 10 8 10 4 55 4 9

Spa. 8 2 7 13 8 52 10

Rus. 13 7 3 17 9 10 41

The highest-performing group appears to be the Bengali-accented speakers,

whereas Russian speakers make up the lowest-performing group. This sug-

gests that the Bengali English accent is the most distinctive out of all the

accents. Interestingly, the native English accent does not seem to be perform-

ing particularly well as a group. The native English group is ranked fourth

in terms of how many speakers are correctly classified. We might expect a

higher group recognition rate for the native English speakers because, for rea-

sons discussed further above in this chapter, we might expect less variation

among a group of native speakers of a language, and so the system should have

formed a stronger representation of this variety. However, this reasoning does

not seem to be reflected in these results. It could be that the native accent

variation represented (i.e. a range of North American and British varieties,

and possibly others) in this model creates just as much instability among the

models as non-native groups.
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Including Filled Pauses

The speech recognition system that produces phone labels for the NIST data

also outputs separate labels for filled pauses (‘PUM’ and ‘PUH’). In the ex-

periments in Chapter 3, on the Northern Englishes data, there were of course

filled pauses in the data, because it was spontaneous conversational speech.

However, the segments that made up these filled pauses were not separated

from the rest of the phoneset. Instead, their component sounds were collapsed

into existing phoneme segments in the phoneset (e.g. a filled pause would be

represented by ‘ax’ + ‘m’ for an ‘um’). In the transcriptions provided for the

NIST data by the speech recognition system, ‘PUM’ and ‘PUH’ map onto

two possible realisations for a filled pause: ‘PUM’ is composed of a vowel and

a nasal, and ‘PUH’ is simply just a vowel sound. In some forensic phonetic

studies, filled pauses have been found to be relatively strong speaker discrim-

inators (Wood, Hughes and Foulkes, 2014). Reasons for this include the fact

that they can be fairly frequent segments in spontaneous speech and we can

also view them as unconscious events, and so they are less likely to be disguised

or affected as much by other factors.

Since these additional segments are available for the NIST dataset, it could

be of interest to see whether filled pauses can be of value to an accent recogni-

tion task, given their suspected value in individual speaker comparison tasks.

To investigate, the two filled pause variables have been added to the all-

phonemes setting that is used to form the Y-ACCDIST matrices, and the

experiments were repeated.

In this segmental setting, the Y-ACCDIST-SVM system generated a recog-

nition rate of 54.4% correct, which is a slight improvement on the all-phonemes

setting without filled pauses (52.9% correct), suggesting that filled pauses do
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indeed carry some distinctive power for an accent classification task like this

one. To take a closer look at the results of this task, the confusion matrix is

presented in the table below:

Table 6.5: Confusion matrix of the NIST SRE non-native accent classification

task, where all phoneme segments and filled pauses were included in the Y-

ACCDIST matrices (54.4% correct).

Accent Ara. Ben. Chn. Eng. Far. Spa. Rus.

Ara. 46 12 8 7 8 7 12

Ben. 8 69 12 1 3 4 3

Chn. 5 3 67 5 8 7 5

Eng. 7 2 3 48 6 20 14

Far. 8 5 10 8 55 4 10

Spa. 8 3 3 15 8 51 12

Rus. 11 4 5 19 6 10 45

In this confusion matrix, we seem to see the greatest improvement is in the

group of Mandarin Chinese speakers. Without filled pauses, as a group, they

attain 59% correct. When filled pauses are included, this increases to 67%

correct. It could be that Chinese-accented English has particularly distinctive

filled pauses, over the other varieties. A phonetic analysis would be able to

uncover this.

In contrast to the improvement we see in the number of correctly classified

Chinese speakers, we see an increase in the number of English speakers being

confused for Spanish speakers (an increase from 12 to 20) by including the

filled pause segments. Additionally, we see a slight increase in the number of
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Spanish speakers being confused for English speakers (an increase from 13 to

15). This may suggest that the filled pauses of English and Spanish speakers

are similar to one another, and therefore causing these increases in confusions.

Again, a more detailed phonetic analysis should be conducted to confirm this

hypothesis.

6.4.5 Engineering Modifications

Until this chapter, the datasets that have been used to test the Y-ACCDIST-

SVM system have been relatively small by the standards of much speech tech-

nology research (but quite large by the usual standards of sociophonetic re-

search). The reasons for using the AISEB corpus and Northern Englishes

corpus were given above, and were more to do with the nature of the accents

and the different ways in which these data could challenge the system. Ad-

ditionally, it is of interest to explore systems’ capabilities on smaller datasets

for the sake of forensic applications, because it is unlikely that for a given

case, forensic speech analysts will have access to large sets of relevant data to

work with. However, a larger dataset, like the one used in this chapter, allows

us to more reliably test the effects of smaller changes made to the system.

By testing the system on more speech samples, improvements and degrada-

tions in performance can be properly monitored, rather than only being very

speculative about the improvements in performance when only 45 trials have

been conducted (in the case of the Northern Englishes corpus, for example).

Here, we have 700 test trials, and so we can more reliably test the effects that

changes to the system can have on performance.
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Two different aspects of the system will be adapted to test different alter-

nations:

1. The distance metric used to construct the Y-ACCDIST matrices

2. Incorporating variance into the acoustic feature vectors to try to account

for the dynamic nature of speech.

Both of these aspects will be addressed in turn below.

Testing Distance Metrics

The first way we shall make changes to the system is to modify the distance

metric used to construct the Y-ACCDIST matrices. We can refer to Chapter

2 where details of the Y-ACCDIST-SVM system are given in Section 2.3.1.

This comes at the point in the process after forced alignment, and once we

have computed our average MFCCs for each phoneme in the inventory. In the

system’s current setup, the Y-ACCDIST matrices are formed by calculating

the Euclidean distance between all of the possible phoneme-pair combinations.

This was simply to follow the architecture of past ACCDIST-based systems

(e.g. Huckvale, 2004; Ferragne and Pellegrino, 2007). However, there are other

distance metrics we can test to determine whether Euclidean distance is the

most suitable metric. The following distance metrics will be compared:
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• Euclidean distance

The Euclidean distance can be used to calculate the distance between

two vectors. We can imagine each vector representing co-ordinates in

n-dimensional Euclidean space and then simply measuring the length

of a straight line between them. The formula for Euclidean distance is

given below:

Euclid.dist. =

√√√√ n∑
i=1

(ai − bi)2,

where a and b are the vectors we are calculating the Euclidean distance

between.

• Manhattan distance

The Euclidean distance above was described as the straight line between

two vectors in Euclidean space. Manhattan distance takes a grid-based

approach, where the distance is computed based on vertical and hori-

zontal lines, where diagonal routes cannot be taken. It is this vertical-

horizontal route that is used to compute the Manhattan distance. The

formula is given below:

Manhat.dist. =
n∑

i=1

|ai − bi|
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• Cosine distance

While Euclidean distance is concerned with the straight line between

two vectors in n-dimensional space, cosine distance is concerned with the

angle between two vectors. Again, we assess the two vectors in space,

but instead take the cosine of the angle between them, rather than the

traditional idea of ‘distance’, as such. The formula is given below:

Cos.dist. = 1−

n∑
i=1

aibi√√√√ n∑
i=1

a2i

√√√√ n∑
i=1

b2i

These distances were compared using the segmental setting that has so far

yielded the highest recognition rate of 54.4 % correct in the experiments pre-

sented in Section 6.4.4 above (all phonemes, plus filled pauses). Again, a

leave-one-out cross-validation setup was used to test the system on this seven-

way classification task for each distance metric. The results are displayed in

Table 6.6 below:
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Table 6.6: Accent recognition results on the NIST SRE dataset of non-native

accents, when varying the distance metric used to construct the Y-ACCDIST

matrices.

Distance metric % Correct

Euclidean distance 54.4

Manhattan distance 50.1

Cosine distance 63.1

Manhattan distance yields a lower recognition rate than Euclidean distance,

whereas cosine distance seems to increase recognition rate by a large margin to

63.1% correct. It is difficult to explain why a cosine distance might outperform

Euclidean distance on this task.

In the early development stages of the system, different alternatives were

trialled, but the amount of data did not allow for these kinds of differences to

be expressed, and so the original alternation taken from past studies (using

Euclidean distance) was retained. For the remaining experiments using the

NIST dataset, cosine distance will be used in the system, rather than Euclidean

distance.

6.5 Discussion

We see that, overall, the Y-ACCDIST-SVM system does seem to classify, to

some degree, the non-native accent groups that the NIST SRE dataset pro-

vides. Section 6.2 listed a number of factors which could lead to weaker Y-

ACCDIST models for each speaker. In addition to the fact that non-native

accents have been used here, we also only used ‘estimated labels’ generated
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by a state-of-the-art automatic speech recognition system, rather than (pre-

sumably) more accurate transcriptions prepared by human annotators. From

just observing the results presented in this chapter, it is difficult to determine

just how each of these additional challenges impact on performance without a

deeper inspection of the data. For the sake of improving performance, it could

be of value to discover the specific strengths and weaknesses of the automatic

speech recognition system. If there are certain segments that are regularly

confused by the speech recognition system, then including these segments in

the Y-ACCDIST matrices could well weaken the accent models. Eliminating

such segments could improve recognition rates.

We can loosely compare this chapter with Bahari, Saeidi, van Hamme

and van Leeuwen’s (2013) accent classification study of non-native varieties

from NIST SRE datasets. They tested a number of different text-independent

systems on the NIST 2008 dataset, using five accent categories, rather than

seven. Also, there were much smaller numbers of speakers, as well as an

imbalance in the numbers of speakers, per accent group in Bahari et al ’s study.

However, their study does provide some insight into how text-independent i-

vector-based accent recognition systems work on non-native accent data of

this kind. They report recognition rates of between 41% correct and 58%

correct for various system alternations. It could be the case that in non-native

experiments, text-independent systems actually perform better than in native-

accent experiments (like those on the AISEB corpus in Chapter 2). It could

be that the differences brought about by the speakers’ L1 are distinctive and

consistent enough across the speech signal to be expressed in the acoustic

features, without the need for segmental information supplied in advance. In

contrast, a segmental approach like Y-ACCDIST could be expected to suffer

on a non-native task because of its reliance on consistency of the production
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of individual segments, both within speakers and across speakers within a

group. A further research direction, then, is to compare text-dependent and

text-independent systems on corpora containing native accents and non-native

accents to discover whether there are performance differences in this respect.

Chapter 3 attempted to draw a comparison in performance between good-

quality recordings and recordings that had been artificially degraded to re-

semble a quality close to telephone transmission. The degradation was done

artificially in order to make a direct comparison of exactly the same record-

ings to monitor the effects in a controlled way. However, as was acknowledged

in Chapter 3, the artificial degradation does not produce data that exactly

replicates telephonic recordings. Among other reasons, one is down to the

natural behaviour of speakers when speaking into a telephone, compared to

a face-to-face conversation. We can expect some Lombard effect taking place

in a telephone, whereby a speaker may unconsciously adapt his or her speech

to increase the likelihood of being understood. The Lombard effect is usually

researched and discussed in the context of noisy speech (e.g. Junqua, Fincke

and Field, 1999), but we can also expect similar effects in telephone speech.

The NIST database has therefore allowed for us to test the Y-ACCDIST-SVM

system on realistic telephonic data, which is of course of forensic interest.

6.6 Summary

This chapter has explored whether the Y-ACCDIST-SVM system, the sys-

tem shown to outperform other types of accent recognition system on another

dataset in Chapter 2, can work on the accent groups provided by NIST SRE

datasets. These datasets differ from the datasets used in earlier chapters in two

key respects: six out of the seven accent categories were groups of non-native

232



Ch. 6 Recognition of Non-native Accents

English speakers, and the phone labels used were estimated by an automatic

speech recognition system, rather than produced by human annotators. These

factors do not seem to prevent the system from performing accent recogni-

tion to some level. The best recognition rate from the experiments above was

63.1%, where all segments in the phoneset (plus filled pauses) were included

in the matrices, and cosine distance was used instead of Euclidean distance

when computing the Y-ACCDIST matrices. This is well above the chance

expectation for a seven-way classification task (14.3%), but there is of course

plenty of room for improvement. Further research, involving some phonetic

analysis or more controlled data collection, is required to gather an under-

standing of which specific factors (to do with the nature of non-native accents

or the quality of the transcriptions) are most problematic for the system to

cope with.
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CHAPTER 7

Conclusion Frameworks for

Accent Recognition

7.1 Introduction

When we consider any kind of system for forensic applications, it is also im-

portant to consider how we present the outputs of the system. This includes

“human systems” (where system is used as a much broader term for analytical

methodology, rather than just for automatic technology). French and Harrison

(2007) acknowledged the need for forensic speech scientists to change the way

they standardly express conclusions to the court or other interested parties.

At the time of publication of French and Harrison’s paper, in speaker com-

parison cases, experts would standardly present their evidence by stating that

it is “very likely” (just one example selected from an impressionistic scale)

that the questioned speech sample was produced by the suspect speaker. In

a sense, this is overstating the weight of this one piece of evidence, because

we could arrive at that same conclusion for another speaker in that analysis.
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We should therefore not link the evidence so directly to the suspect in our

conclusions as that is the role of the trier of fact, having combined all of the

evidence available. Motivated by a “serious logical flaw” (French and Har-

rison, 2007: 139) in this way of expressing conclusions, French and Harrison

(2007) is in fact presented in the form of a Position Statement, which was

signed by a number of practising UK-based forensic phoneticians in support

of the position. In the foreword of the Position Statement (p. 138), they point

out the subtle, but significant, distinction between the task that forensic pho-

neticians had been doing and the task that they should be looking to be doing:

“In the past forensic speech scientists were often thought of as identify-

ing speakers. Within the new approach they do not make identifications.

Rather, their role becomes that of providing an assessment of whether

the voice of the questioned recording fits the description of the suspect.”

We should make this distinction because the speech evidence alone (like DNA

and other forms of forensic evidence) cannot make an identification like this.

The speech evidence could also point towards other speakers in the wider

population, and this must be acknowledged. It is up to the trier of fact to

combine the different pieces of evidence presented in a case to arrive at an

overall conclusion over identity. This is not the role of the forensic speech

scientist and so it should be reflected in how the conclusions of speech analyses

are expressed.

To try to mitigate the logical flaw to some degree, French and Harrison put

forward a two-tiered approach to expressing conclusions in an analysis. The

first stage is to express the consistency between the questioned recording and

the suspect recording. The second stage is to express the distinctiveness of
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the features involved in the analysis. In addition to this proposed approach,

they also acknowledged the advantages of implementing the likelihood ratio

framework (detailed further in Section 7.2 below), but suggest that it is an

unrealistic approach to apply to most cases, as it demands large quantities of

unavailable data. This argument was reemphasised in French, Nolan, Foulkes,

Harrison and McDougall (2010).

In response to the UK Position Statement, Rose and Morrison (2009) wel-

comed the intentions behind it and are in favour of the direction that the

majority of the UK forensic phonetic community seem to be moving in, but

they describe the proposed two-tiered approach as a “compromise” and sug-

gest that it does not adequately overcome the problem. They suggest that

more should be done to implement the likelihood ratio framework, which they

believe is the only correct way to express an analyst’s conclusions. They argue

that it is much more inline with other forensic disciplines.

Saks and Koehler (2005) describe the change in how the courts view forensic

analysis of all kinds, and how we are much more ready to question the methods

used by forensic practitioners. They highlight the need to challenge expert

testimony by stating that the second most common factor that contributes to

an individual being wrongfully convicted is incorrect forensic analysis. Using

DNA typing almost as a role model for the domain, they call for sound scientific

research on methods used right across the forensic sciences, whereby we use

scientific protocols and base our conclusions on realistic data, rather than

making assumptions about a case. The likelihood ratio framework could help

us to remove at least some of these assumptions.

It is more likely that an accent recognition system like the one presented

here would be used for more investigative purposes, or in conjunction with hu-

man analysts, rather than the outputs being presented in court. There is still
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some motivation to incorporate likelihood ratios into an accent recognition. It

is of interest to know the strength of the evidence in investigative scenarios

to be able to justify resources and efforts given to a specific direction. Addi-

tionally, if the LADO application were to employ this kind of technology1, a

likelihood ratio could be more informative about the plausibility of the appli-

cant’s claim.

Because of the framework’s strengths and current popularity across the

forensic sciences, this chapter integrates the likelihood ratio framework into

accent recognition. To do this, we will transfer the concept and methodology

used in speaker recognition to the Y-ACCDIST-SVM system when training

and testing it on the NIST SRE dataset used in the experiments in Chapter 6.

So far, we have only conducted what we might call “closed-set” experiments,

where we have demanded an accent label to be outputted for each trial. In

a way, this resembles an “identification” approach that French and Harrison

(2007) rightly propose the forensic phonetics community should move away

from. As well as this, it is not necessarily an entirely useful task in the context

of forensic applications, because it drastically limits the questions we can try

to answer with a forced-choice system. What is expected to be more useful

is an “open-set” task, where we ask for the likelihood of a speaker belonging

to a given accent category, over other accent categories. We could also draw

this distinction using the terms “hard decision” and “soft decision”. Until this

chapter, we have been making “hard decisions” regarding the test data, but

it is perhaps more appropriate in forensic contexts to make “soft decisions”.

The likelihood ratio framework can help us to achieve this. This chapter

looks at how the Y-ACCDIST-SVM accent recognition system performs when

1Language Analysis for the Determination of Origin (LADO) was discussed as a possible

application of accent recognition technology in Chapter 1 of this thesis.
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likelihood ratios are its output, rather than hard-decision accent labels.

7.1.1 Outline

This chapter will first decompose, at a conceptual level, the likelihood ratio

framework in Section 7.2. Section 7.3 will then introduce Calibration, which

is a step we should take to both measure and improve the accuracy of the

likelihood ratios a system outputs. The performance measures we will use

to evaluate the system when it produces soft-decision outputs will then be

described in Section 7.4. We will then present the experiments and results

in Section 7.5. Section 7.6 will finally evaluate this soft-decision approach to

automatic accent recognition.

7.2 The Likelihood Ratio Framework

A likelihood ratio (LR) is an indication of the weight of evidence expressed

as a single number. It provides a way of transparently presenting the conclu-

sion of an analysis. Rose (2002: 57) describes this framework as “logical” and

“commonsense”. These are properties of an analysis that the forensic science

regulators are encouraging (Tully 2016, 2017). This section conceptually de-

scribes the LR and what it represents. It is usually considered in terms of a

speaker recognition or speaker comparison task, rather than an accent recog-

nition task like the one conducted in this chapter. Initially, we will explain

the likelihood ratio in the context of an individual speaker comparison task,

and then extend this explanation to the task of accent recognition.

We can present the components of a likelihood ratio through the simple

formula below:
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LR =
p(E|Hp)

p(E|Hd)

Let us imagine that we have two speech samples, one “unknown” speaker’s

speech sample and a “suspect” speaker’s speech sample. We can see that the

ratio is made up of two probabilities. The numerator is the probability of

the unknown speech sample having been produced by the suspect speaker,

given the evidence (we might call this the prosecution hypothesis, Hp). The

denominator is the probability of the evidence being found in a population of

relevant speakers (we might call this the defence hypothesis, Hd). In effect,

we have a ratio that puts the degree of similarity between the unknown and

suspect samples against the estimated degree of typicality that the evidence

presents. In this format, any LR values that are equal to more than 1 are in

support of the prosecution hypothesis. Naturally, the higher the number, the

stronger the support for the Hp. Conversely, any LR values that are equal to

a value of less than 1 provide support for the defence hypothesis. In turn, the

lower the value, the stronger the support for the defence hypothesis. A value

of exactly 1 does not provide support for either hypothesis.

7.2.1 Log scaling

While this provides a framework to express the weight of evidence, there is a

problem with using an LR value in the form we have explained so far. Cur-

rently, values that are in support of the defence hypothesis fall between 0 and

1, whereas values that are in support of the prosecution hypothesis fall between

1 and infinity. A skew like this does not allow us to effectively compare the
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degree of support between evidence in support of the prosecution hypothesis

and evidence in support of the defence hypothesis. To counteract this distri-

bution we can apply log scaling to the values. This provides us with a more

even distribution of scores. It also changes the point at which we do not have

support for either the prosecution or defence to 0, meaning that any negative

scores are in support of the defence, while any positive scores are in support

of that of the prosecution. Using a range of log LRs, Rose (2002: 62) offers

some “verbal equivalents” to the log-likelihood ratio value range, labelling log

LRs of more than 4 “very strong support for the prosecution” and log LRs of

less than -4 very strong support for the defence hypothesis, for example.

7.2.2 Application to accent recognition

In applying the likelihood ratio framework to the accent recognition task,

we will swap the suspect speaker sample for the collection of samples that

contribute to a model that represents a single accent. For individual speaker

recognition a number of speakers would be used to form a model of typicality

to contribute to the denominator of the LR. In the case of accent recognition,

the rest of the accent models for different accents in the corpus are used to

estimate a measure of typicality.

7.3 Calibration

Calibration is a means of measuring the reliability or “confidence” (Gonzalez-

Rodriguez et al, 2007) of a system’s outputs, as well as improving overall

performance. Rather than simply outputting a likelihood ratio from a system

and assessing whether the value outputs a probability that is in favour of

240



Ch. 7 Conclusion Frameworks

the truth outcome (based on a test set of data), we can gather a much more

proportionate indication of how accurate the outputs are. For example, if a

system outputs a score that is in strong support of a given hypothesis and

it turns out that the truth value lies with the alternative hypothesis, it is

important for us to know the extent to which a system does this. In these

kinds of instances, we would want to ‘penalise’ the system heavily and for this

to be reflected in an overall measure of the system’s reliability. Calibration

can help us to capture this kind of information. Ramos-Castro, Gonzalez-

Rodriguez and Ortega-Garcia (2006) demonstrate in their experiments the

importance of integrating calibration within an automatic speaker recognition

system when we are intending to use that system for forensic applications.

It has been suggested that in a classification task, rather than a recogni-

tion task like speaker recognition (a sort of binary setup), we might want to

conduct calibration to account for multiple hypotheses (i.e. the likelihoods of

a speech sample belonging to each of the classes in our set). Brümmer and

van Leeuwen (2006) offer solutions to the automatic language identification

research community enabling them to calibrate scores for a classification task

like this, and indeed, Bahari, Saeidi, van Hamme and van Leeuwen (2013)

implement such a method on an accent classification task similar to the one

presented in this chapter. While the experiments in this thesis so far have

also been to classify speech samples, and these experiments have largely been

inspired by previous classification studies, it is proposed here that we continue

to use the binary setup that is associated with speaker recognition problems.

This is because we are considering accent recognition systems for forensic ap-

plications and it is expected that the questions posed to forensic analysts are

more likely to involve a binary hypothesis, than multiple hypotheses. That is

to say, we are more ready to expect a problem that requires investigating how
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likely it is that a speaker’s speech sample belongs to a category relative to the

likelihood that the speech sample does not belong to that category. Accord-

ingly, the approach taken by speaker recognition research will be applied to

the accent recognition task in this chapter.

These experiments make use of pool adjacent violators (PAV) calibration

(as outlined by Brümmer and du Preez (2007))2. Other methods of calibration

exist. A more common option for calibration is the use of logistic regression

(e.g. Morrison, 2013), but the scores from the Y-ACCDIST-SVM system are

not normally distributed, and so a non-parametric method of calibration (PAV

calibration) has been selected to produce the likelihood ratios in these exper-

iments. To conduct calibration, we need an additional partition of data to

develop the system in this way. This will be implemented in the experiments

run in this chapter, as outlined in Section 7.5.1 further below.

7.4 Performance Measures

So far in this thesis, we have largely used the measure of % Correct to moni-

tor changes in system performance under different settings or when testing on

different data. To a certain extent, this has served its purpose of allowing us

to observe these differences. However, to consider this system in forensic con-

texts, it has been argued that alternative performance measures should also be

explored so as to cater for the more common “open-set” type of question that

forensic problems often ask of analysts. This section describes performance

measures that are standardly used in automatic speaker recognition research:

Equal Error Rate and Log-likelihood-ratio Cost Function. In the first instance,

2PAV calibration was conducted by using a MATLAB script written by Daniel Ramos-

Castro.
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we will describe these measures in the context of automatic speaker recog-

nition, because this is the more established scenario in which they are used.

They will be transferred and applied to the task of accent recognition in the

experiments in this chapter.

7.4.1 Equal Error Rate (EER)

For speaker recognition, we can generate the Equal Error Rate (EER) through

a number of test trials, where we know what the true identities of the speakers

in the test samples are. Using these test trials we can draw up the distributions

of same-speaker scores (the probability that the two samples were produced

by the same speaker) and different-speaker scores (the probability that the

two samples were produced by different speakers - these might also be called

“impostor scores”). In an ideal world, these two sets of scores would consis-

tently produce values that are completely separable. We can visualise this via

the two distributions in the Figure 7.1:
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Figure 7.1: Different-speaker and same-speaker scores with no overlap between

the two sets of scores.

From this kind of situation, we could take a score from our system and quite

confidently determine whether it is a same-speaker or a different-speaker score.

However, in reality, we do not tend to get distributions like this. Instead, we

encounter distributions of same-speaker and different-speaker scores that over-

lap (as illustrated in the figure below).
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Figure 7.2: Overlapping different-speaker and same-speaker score distribu-

tions, this being a more realistic idea of what we can expect in speaker recog-

nition.

The smaller the overlap between these distributions, the better our system is

at discriminating between speakers. Based on these two distributions, we can

compute a threshold which can determine whether or not the system concludes

that a questioned sample was produced by the same speaker who produced

the suspect sample.

The overlap between these two distributions inevitably leads to system

errors, and we can classify these errors into two types: False Acceptance Rate

(FAR) and False Rejection Rate (FRR). The FAR is the proportion of times

a speaker is incorrectly ‘matched’ with a sample from a different speaker. The

FRR is the proportion of times a test speaker is incorrectly concluded to not

be the same one who produced the suspect sample. Within the overlap of score

distributions, the distributions of these kinds of errors will also overlap, and it

is the intersection at which they do that determines the EER (i.e. the point
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at which the FAR and the FRR are equal). In doing so, the EER accounts for

both kinds of error, and the lower the EER, the better the system. We can

imagine this by returning to Figures 7.1 and 7.2 above and what they show.

The further apart the two distributions, the lower down it will be where the

FAR and FRR intersect, yielding a lower EER.

We can transfer the measure of EER to automatic accent recognition by

using same-accent scores and different-accent scores produced by the system.

Distributions and subsequent calculations can then be made in the same way

described in earlier paragraphs.

Detection Error Tradeoff (DET) curve

Alongside the EERs achieved by a test set, we can also graphically repre-

sent the performance of a system through a DET curve. Martin, Doddington,

Kamm, Ordowski and Przybocki (1997) explain what DET curves show, while

simultaneously offering reasons why they are preferred over Receiver Operat-

ing Characteristic (ROC) curves, which were more commonly used before the

introduction of DET curves. One of the features of a DET curve that Martin

et al. point out as being an advantage over the more traditionally used ROC

curve, is that the different systems viewed on a single plot are more separable,

allowing us to make more refined comparisons among different systems. The

DET curve plots the probability of getting a false acceptance against the prob-

ability of getting a false rejection, given a likelihood outputted by the system.

The result for a single system is something that looks like Figure 7.3 below,

where we have a line that is positioned diagonally from around the top left of

the graph to the bottom right:
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Figure 7.3: An example diagram of a DET curve.

A single line represents the performance of a single system. The further to-

wards the bottom left-hand corner the line is, the better the system (because

the probability of getting an error reduces).

The experiments in this chapter (as well as the experiments in Chapter

8) will make use of both the EER and the DET curve to evaluate system

performance.

7.4.2 Log-likelihood-ratio Cost Function (Cllr)

The Log-likelihood-ratio Cost Function (Cllr) is a measure of the calibration

and discrimination abilities of a system. Van Leeuwen and Brümmer (2007)

describe the Cllr as the measure of the quality of log-likelihood ratios. The
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following formula (taken from Ramos-Castro (2006)) defines Cllr:

Cllr =
(

1

NHp

∑
iforHp=true

log2 1 +
1

LRi

)
+
(

1

NHd

∑
jforHd=true

log2 1 + LRj

)

We can see from this equation that the first half takes into account the pro-

portion of likelihood ratios outputted for the prosecution hypothesis (Hp), and

the second half does so for the defence hypothesis (Hd). This equation applies

a higher penalty to scores that are significantly in favour of one hypothesis,

when the alternative hypothesis is actually true. This contributes to a larger

Cllr value overall. If the Cllr is higher than 1, the likelihood ratios we are

generating are not useful to the task. The closer the Cllr is to 0, the higher

the quality of the likelihood ratios.

7.5 Experiments

This section outlines the experimental setup and tools used to output and

monitor the performance of the Y-ACCDIST-SVM system when it is adapted

to output likelihood ratios, rather than hard-decision accent labels. Concepts

discussed in Section 7.4 above have been applied.

7.5.1 Methodology

The same data used in the NIST experiments in the previous chapter have

been used to generate the results in this chapter. This is because the NIST

subset is the largest corpus used in this thesis which allows us to compute more
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reliable outputs. We therefore have seven accent groups, with 100 speakers

per group, totalling 700 speakers (more specific details about the data can be

found in Chapter 6 in Section 6.4.1).

For calibration to take place, we require an additional partition of data,

compared to the experiments we have already run on the NIST dataset. In

the previous chapter, we adopted a leave-one-out cross-validation configura-

tion, where each speaker became the test speaker on rotation, leaving the

rest of the dataset (of 699 speakers) as training speakers. To be able to inte-

grate calibration, this training and testing setup has been altered. For these

experiments, 80 speakers per accent group have been used to train the Y-

ACCDIST-SVM system. The remaining 20 speakers per accent (totalling 140

speakers) are used as calibration data. To generate the evaluation trials, the

80 speakers per accent are used in a leave-one-out cross-validation setup to test

the system. This is the same way as the experiments in the previous chapter

were run, but we are using smaller amounts of data to train the system. This

naturally might mean that we reduce the overall recognition rate, as lower

numbers of speakers to train the system might lead to weaker accent represen-

tations in the SVM. This will be taken into consideration when analysing the

results. The EER and accompanying DET curve for this task were computed

using the FoCal toolkit (Brümmer, 2007).

7.5.2 Results

% Correct

It was mentioned above that the trained system may have been weakened by

a reduction in the number of speakers per accent used (when we consider this

training and testing setup in relation to the experiments run in Chapter 6).
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So as to be able to compare these results with those obtained in the previ-

ous chapter, a leave-one-out cross-validation experiment was conducted using

80 speakers per accent group, allowing us to generate a value using the %

Correct measure of performance. This is to observe whether the reduction of

20 speakers per accent category greatly affects system performance compared

with using 100 speakers per accent group. In this setting a recognition rate

of 61.4% correct was achieved. We see only a slight reduction in performance

relative to when we used 100 speakers per accent to train the system (which

yielded 63.1% correct).
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EER

This task generated a result of 19% EER. The figure below displays the DET

curve for this task.

Figure 7.4: DET curve for the NIST accent recognition task

Cllr

Having calibrated the system, we achieve a Cllr of 0.6316. The fact that this

value is below 1 suggests that the likelihood ratios the system outputs are

reliable, to some extent, but there is plenty of room for improvement, as it is

still quite far from 0.
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Tippett plot

It can also be useful to observe the likelihood ratios themselves. So far, we

have looked at single-value measures (EER and Cllr) that tell us about the

likelihood ratios that the system outputs collectively, but we have not in-

spected the distribution of likelihood ratios. Tippett plots are one way that

can allow us to do this. Tippett plots consist of two lines to represent the per-

formance of a single system: one line to represent the same-speaker (or in this

case, same-accent) likelihood ratios, and the other line to represent different-

speaker (different-accent) likelihood ratios. The same-accent line in the plot

represents the cumulative proportion of likelihood ratios that are smaller than

the likelihood ratio marked on the x -axis, whereas the different-accent line

represents the cumulative proportion of likelihood ratios that are greater than

the likelihood ratio marked on the x -axis. The accompanying Tippett plot

that illustrates the performance of the system after calibration is given in Fig-

ure 7.5 below3. The same-accent line is blue, and the different-accent line is

red.

3This Tippet plot was generated using a MATLAB script developed and made available

by Geoffrey Morrison. See: http://geoff-morrison.net/Software/plottippett.m
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Figure 7.5: Tippett plot of the log-likelihood ratios generated from the Y-

ACCDIST-SVM system after PAV calibration.

The stepwise nature of these lines is not typically seen so vividly in Tippett

plots. This is a result of the non-parametric PAV calibration method that

has been used for this analysis, in combination with a relatively small test

set. Typically, logistic regression is used for calibration, but this was not the

method selected in this instance, because the scores from the Y-ACCDIST-

SVM system were not normally distributed.

The points at which these two lines cross the vertical 0 line are of some

interest. This shows us the proportion of these scores that reflect a value that

supports the alternative hypothesis (i.e. the errors). Decomposing these, the

253



Ch. 7 Conclusion Frameworks

point at which the same-accent line crosses 0 into the negative values shows us

the proportion of “false misses” the system makes, whereas the point at which

the different-accent line crosses 0 indicates the proportion of these scores that

we can classify as “false hits”. From this Tippett plot, we can see that the

Y-ACCDIST-SVM system is slightly more likely to make a “false miss” than

a “false hit” using these data.

7.6 Discussion

Compared with the EERs generated by state-of-the-art speaker recognition

systems (often using the same or similar data), the results of this accent recog-

nition task do not appear to be so impressive. It seems that Y-ACCDIST

models are not as good at distinguishing between accents as i-vector models

are at distinguishing between speakers. It could be that the samples we use

to train a system on a single accent are simply characterised by too much

variation to permit us to confidently assign an unknown speaker.

Within forensic speaker comparison research, there has been some work to

look at what is meant by a “relevant population” (Hughes and Foulkes, 2015;

Hughes, 2014). They investigated how selecting different datasets that form an

estimation of typicality (i.e. the denominator of the likelihood ratio formula)

can affect the resulting LR from an analysis. Ideally, we need to use reference

data that are similar to the speech samples being analysed (for example, to

match them in terms of speaker sex, accent, etc.). Among their findings,

Hughes and Foulkes (2015) found that when a mismatched dataset is used

to make speaker comparisons we tend to produce weaker results in support

of the defence hypothesis. There are also questions surrounding the size of

the reference database and what number of speakers is sufficient to conduct
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a comparison (Hughes, 2017). These kinds of concerns also transfer to the

problem of accent recognition when applying the likelihood ratio framework.

Perhaps using the other accents in the NIST dataset was not a suitable choice.

We should look further into the nature of the “relevant population” we use to

compute the LRs for accent recognition (e.g. how many different accents we

should include etc.). Throughout this thesis, by running accent recognition

experiments on three different corpora, we have seen that the nature of the

set of accents is partly responsible for the overall recognition rate. It has been

argued that the overall degree of similarity that exists among the accents is

likely to play a key role in the likelihood of an unknown speaker being classified.

This should be trialled within the likelihood ratio framework to examine the

extent to which the degree of similarity among the accents within an accent

database affects the likelihood ratios.

7.7 Summary

The likelihood ratio framework was integrated into Y-ACCDIST-SVM accent

recognition experiments on the NIST SRE dataset. This was in a move to make

“soft decisions” about a speech sample, rather than making “hard decisions”,

using a framework that is widely accepted across the forensic sciences. In doing

so, this chapter has introduced and implemented new performance measures

and graphical representations that are typically used in speaker recognition.

An EER of 19% was generated for the NIST non-native accent recognition task.

This result does not compare well to the EERs we tend to see in automatic

speaker recognition research (as we will observe in the following chapter). This

thesis has largely observed how various changes (to the accent recognition

system and the data) have affected % Correct, a performance measure based
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on hard decisions. However, it would also be of interest to investigate how

similar changes (particularly to the dataset choice) affect these soft-decision

measures in accent recognition.
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CHAPTER 8

The Y-ACCDIST system as an assistive

speaker recognition tool

8.1 Introduction

In previous chapters, some results and system outputs have suggested that

there might be scope for using accent recognition technology on an individ-

ual speaker comparison basis, not just for categorising speakers. Chapter

2 presented the results from experiments which explored the performance

of different accent recognition systems when aiming to distinguish between

geographically-proximal accents (i.e. accents that are assumed to share a large

number of features with one another due to their geographical proximity). This

was thought to be a challenge to a system which is of interest to forensic appli-

cations, and the performance of the Y-ACCDIST-based systems on this sort of

task showed promise. However, when we looked at the similarity between indi-

vidual speaker Y-ACCDIST models in Chapter 3, we did not see the patterns

we necessarily expected. Individual speaker models did not necessarily fall ex-
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clusively by other speakers in the same accent group. There is also reason to

believe Y-ACCDIST would not perform very well in this sort of task, because

it is thought that the Y-ACCDIST models actually remove voice-quality infor-

mation that could help to discriminate speakers. Despite this, we did observe

some interesting positioning of specific speakers in Chapter 3’s visual outputs

that indicated how similar the speakers were to one another. There were some

individual speakers that were seen to be particularly distant from the rest of

the speakers in the dataset, which could be suggesting that these Y-ACCDIST

models could discriminate individual speakers. The experiments in Chapters 2

and 3 naturally spark curiosity about whether this kind of approach could offer

assistance to forensic speaker comparison tasks (the most dominant type of

task in forensic speech science). The main purpose of this chapter is to assess

whether the speaker-specific models that a Y-ACCDIST approach forms are

fine-grained enough to be able to distinguish between specific speakers. This

chapter therefore evaluates the extent to which speaker-specific information

remains in the Y-ACCDIST models.

8.1.1 Outline

The present chapter first outlines some of the current approaches used in

forensic speaker comparison tasks in Section 8.2. Section 8.3 then turns to

approaches to automatic speaker recognition, and where a Y-ACCDIST-based

approach might fit among these. Section 8.4 presents the speaker recognition

experiments that have been run using our Y-ACCDIST-based approach. Sec-

tion 8.5 then evaluates Y-ACCDIST’s potential in speaker comparison tasks.
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8.2 Forensic Speaker Comparison

Forensic speaker comparison takes advantage of the fact that there are collec-

tions of speaker-specific features that could, in certain circumstances, discrim-

inate a speaker from others in a population. The aim is to take two or more

speech recordings and determine how likely it is that the speech was produced

by the same speaker, relative to how likely it was produced by another speaker

in the population. This idea was elaborated on in Chapter 7 of this thesis (in

Section 7.2) in the context of the likelihood ratio framework.

To form a picture of the kinds of methodologies that are being implemented

in current casework, Gold and French (2011) conducted a survey of the meth-

ods used by 36 forensic speech analysts who undertake casework around the

world. The practitioners had varying casework experience in terms of how

many cases they have been involved in and also the countries in which they

practise. Gold and French categorised the different types of methodology that

might be implemented by these different analysts into five groups:

1. Auditory Phonetic Analysis Only, where the analyst listens to the

speech samples, taking note of segmental and suprasegmental features.

2. Acoustic Phonetic Analysis Only, where the analyst uses software

(such as Praat (Boersma and Weenink, 2017)) to extract acoustic pho-

netic features to make judgements.

3. Auditory Phonetic cum Acoustic Phonetic Analysis, where the

analyst uses a combination of the methods described in 1) and 2) above.

4. Analysis by Automatic Speaker Recognition System, where the

analyst passes the speech samples through automatic speaker recognition
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software.

5. Analysis by Automatic Speaker Recognition System with Hu-

man Assistance, where the analyst makes use of an automatic speaker

recognition system along with some human analysis (using the methods

described in 1), 2) or both).

From the survey, Gold and French reported that a range of these approaches

were used. However, no practitioner, at the time of the survey, reported to

only use an automatic speaker recognition system (approach 4)). It was found

that approach 3) was the most popular approach, followed by approach 5).

If we were to discover that a Y-ACCDIST-based approach does have some

value for this kind of task, it would not neatly fall into one of the five cat-

egories listed above. Some aspects of it would be automatic, while there is

a certain degree of manual pre-processing involved. Fully automatic foren-

sic speaker recognition systems are text-independent, forming a model of the

speaker’s speech based on acoustic features extracted from across the whole

sample. Y-ACCDIST, on the other hand, is a text-dependent system that

takes a more segmental approach, modelling individual phonemes separately.

We could view a Y-ACCDIST-based approach as a ‘hybrid approach’. It anal-

yses and compares phoneme segments (similar to some of the analysis we

might see in approaches 1) and 2)), but it also uses aspects that we see in

automatic systems (i.e. acoustic feature extraction and recognition through

Support Vector Machines).

In Gold and French’s (2011) survey, they also asked the participating foren-

sic speech practitioners about their use of population statistics. Population

statistics refer to speech features (e.g. formant frequencies, articulation rate,
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etc.) that occur among speakers in a population that is relevant or similar to

the case. Using these population statistics, analysts can gauge how typical a

particular feature value is, which can then assist with the analysis. 70% of

Gold and French’s respondents claimed that they use these kinds of statistics

for casework. Perhaps more importantly, however, ‘A number of respondents

commented that if more population statistics were available they would use

them’ (Gold and French, 2011: 299). Collecting and reliably measuring or

extracting these kinds of population data can be very laborious. Introducing

new methodologies that can extract and model speech more efficiently could

help with this problem in the field. If a method like Y-ACCDIST were to

work for these kinds of cases, it could help to achieve this aim. Although some

pre-processing is still involved in the form of transcription work, extracting

features and modelling the pronunciation systems of a database of speakers is

comparatively fast.

The automatic properties of Y-ACCDIST could be seen as advantageous to

some aspects of forensic science. One part of a forensic speech scientist’s work

is the analysis itself, but another part is presenting the evidence to the court.

The Daubert v Merrell Dow Pharmaceuticals Inc. (1993) ruling highlights

the importance of being able to test and retest a methodology and, in effect,

communicate the error rate of a methodology to the court. The ability to

run masses of test trials is one key advantage of using automatic methods to

get a good idea of a system’s performance. While not as straightforward as

the text-independent systems, where minimal pre-processing is required, a Y-

ACCDIST-based approach still offers a relatively good basis upon which to run

large numbers of test trials so as to be able to offer the objective performance

information that might be viewed as preferable to the court.

Before outlining the experiments carried out to explore this new speaker
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comparison objective for Y-ACCDIST, the next subsection discusses text-

independent and text-dependent automatic speaker recognition systems.

8.3 Automatic Speaker Recognition

Automatic speaker recognition systems are not just intended for the kinds of

forensic speaker comparison tasks that have been referred to throughout this

thesis. Often, they are considered for security access applications. Some se-

curity applications are exemplified in Furui (1997), such as telephone banking

or accessing computer devices through spoken passwords. Another area of

research within speech technology that involves speaker recognition research

is speaker diarization (Tranter and Reynolds, 2006; Anguera et al, 2012).

Speaker diarization is the task of taking a recording that contains speech pro-

duced by multiple speakers, and being able to assign different turns of speech

to the correct speaker. This might benefit the resulting transcription from a

system. For example, we can imagine a speech recognition system that is being

used in a business meeting to produce a transcription of what has been said.

Speaker diarization would make these transcriptions much more readable and

useful if we can attribute a turn to an individual speaker. For this kind of task,

overlapping speech is a particular research problem (Boakye, Trueba-Hornero,

Vinyals and Friedland, 2008).

When discussing these speaker recognition technologies in relation to foren-

sic applications, Drygajlo (2007) points out that automatic speaker recogni-

tion is a controversial issue, despite the advantages of an automatic analysis

mentioned at various points in this thesis. One of the reasons for the contro-

versy is that the area of forensic speech analysis ‘lacks worldwide standards

and recommendations’ (pg. 132). There have been some efforts to resolve
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this situation. Recently, Drygajlo et al (2016) published some guidelines for

‘best-practice’ in forensic speaker recognition (for both automatic and semi-

automatic methods) on behalf of the European Network of Forensic Science

Institutes (ENFSI), an organisation dedicated to improving and standardising

practices across forensic science. Drygajlo et al ’s guidelines list a number of

precautions that should be taken, and points we should consider, when we

use these technologies for forensic applications. For example, a number of

pre-processing guidelines are given (such as removing pauses and separating

speakers), as well as encouragement to provide detailed documentation of the

training and validating databases used for a given analysis. Developing a set

of guidelines like this should assist in standardising practices across analysts

and ensuring that the methods used are as transparent as possible.

Another organisation relevant to automatic speaker recognition (and one

that has already been introduced and discussed in this thesis) is the National

Institute of Standards and Technology (NIST). However, we should keep in

mind that NIST considers applications beyond forensic ones. Every year or

two, NIST releases a Speaker Recognition Evaluation (SRE) dataset. This

dataset is intended as a sort of competition dataset that speaker recognition

researchers can use to train and test their text-independent speaker recognition

systems, and then they can submit their results by a given deadline. The SRE

databases are of a substantial size and so allow for the training and testing

of system types that require larger sets (e.g. i-vector-based systems (Dehak,

Kenny, Dehak, Dumouchel and Ouellet, 2011)). In recent years, NIST has

also started providing a Human Assisted Speaker Recognition (HASR) task

(Greenberg et al, 2010). The provided data can either be analysed by only

a human analyst (or a team of human analysts), or the human analysis can

be combined with an automatic system. The purpose of the HASR task is
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to provide a task that simulates more closely what happens in forensic tasks,

which could allow for an effective comparison of different analysts’ approaches

to the same problem. Ultimately, the aim of these NIST tasks is to allow us

to more directly compare different researchers’ and practitioners’ approaches

to the same data, and to encourage further innovation in the field.

In the same way we can divide automatic accent recognition systems into

two categories according to their text-dependency (as we saw in Chapter 2), we

can make the same division with automatic speaker recognition systems. As al-

ready mentioned, the number of applications that text-dependent systems can

be used for is limited compared to the number that text-independent systems

can be used for. Again, the Y-ACCDIST-based system is a text-dependent sys-

tem, and so it is important to consider past work on this category of systems

as well. The two subsections immediately below discuss automatic speaker

recognition systems with reference to these text-dependency categories.

8.3.1 Text-independent speaker recognition systems

The same kinds of techniques used in text-independent automatic speaker

recognition have already been introduced in this thesis in Chapter 2, in rela-

tion to the text-independent accent recognition systems tested there. This is

because automatic accent recognition research has often followed in the foot-

steps of automatic speaker recognition research, by adopting the same tech-

niques and applying them to a different kind of task. Until recently, Gaus-

sian Mixture Models (GMMs) were the main modelling technique for text-

independent speaker recognition (Reynolds and Rose, 1995). Now, i-vectors

are the standard modelling strategy for text-independent speaker recognition

(Dehak, Kenny, Dehak, Dumouchel and Ouellet, 2011) as they generally ex-
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ceed the performance of GMM-based systems. Details of how these modelling

approaches are implemented are given above in Chapter 2. To offer some

idea of the level of performance an i-vector-based speaker recognition system

can achieve with reasonably good quality telephone data, Garcia-Romero and

Espy-Wilson (2011) report their best system’s Equal Error Rate (EER) (the

lower the EER, the better the system, as explained in more detail in Chapter

7 in Section 7.4) as 1.27%. Of course, researchers run tests under varying

conditions to discover the limits of these systems, and so such low EERs are

not always achieved where more challenging (e.g. noisy or mismatched) data

are involved (Mandasari, McLaren and van Leeuwen, 2012).

8.3.2 Text-dependent speaker recognition systems

Text-dependent speaker recognition systems present more practical limitations

than text-independent speaker recognition systems. For most text-dependent

systems, the spoken content that comprises the training utterances needs to

match the spoken content of the test utterances. The kind of application that

could use this setup is where we have security systems that require a spoken

password, for example. This is a particularly controlled case of text-dependent

speaker recognition. The experiments in this chapter using Y-ACCDIST will

still require segmental information about the speech samples, but we do not

need the spoken content to match word-for-word.

In the text-independent speaker recognition literature, there are some con-

cerns about the effect of, what has been termed, ‘phonetic variability’ between

training and test utterances that is expected to affect speaker recognition per-

formance (Kenny, Boulianne, Ouellet and Dumouchel, 2007). Phonetic vari-

ability between utterances refers here to the difference in phones used between
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the utterances, because it is highly likely that they will be composed of dif-

ferent spoken content. The spectral features used to represent the utterances

(like MFCCs) are also used for automatic speech recognition, because they are

expected to represent the shape of the vocal tract at that time point. While

using spectral features for speaker recognition is expected to contribute to the

modelling of an individual’s vocal tract shape, we can also expect the specific

phones used in the utterance to affect that overall model. Text-dependent

speaker recognition systems, where the spoken content of the training and test

utterances matches, is expected to remove this variability, but this issue could

affect overall performance in text-independent tasks.

Due to the added preparatory efforts that text-dependent speaker recog-

nition requires (i.e. collecting very specific spoken recordings or transcribing

many recordings), the pool of suitable databases is considerably smaller than it

is for text-independent speaker recognition. As well as the number of databases

available, the size of a corpus for text-dependent speaker recognition is also

likely to be compromised, because of the time and cost required to provide

transcriptions of the data, or to control the data. Larcher, Lee, Ma and Li

(2014) raise the problem of available and suitable databases, while introducing

the RSR2015 database for text-dependent speaker recognition research. They

claim that this database, containing speech from 300 speakers, is one of the

largest databases available that would be suitable for text-dependent speaker

recognition research. By comparison, the number of speakers made available

for the text-independent NIST SRE tasks is something closer to 3000.

There is also some interest in pursuing text-dependent questions in text-

independent speaker recognition research. Already described in this thesis,

Franco-Pedroso and Gonzalez-Rodriguez (2016) look at the performance of

i-vector speaker recognition systems that are, in their terms, ‘linguistically-
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constrained’. Using the NIST SRE database from 2006, they use an automatic

speech recognition system to estimate the phonetic content of the data (i.e.

which vowels and consonants are present in the speech samples), and only using

specific phonemic segments to compare speakers in an i-vector system, rather

than a whole utterance. They found that the systems that were constrained to

only the trap vowel or only the price vowel (with reference to Wells’ (1982)

lexical sets) were the highest performing single-phoneme systems. For these

systems that were trained and tested on only male speakers, the EERs were

21.21% and 21.38% respectively. While interesting findings were produced by

this study, one weakness is the fact that the phonemic content of the data

(and therefore the segments that were used for these linguistically-constrained

systems) were only estimations by an automatic speech recognition system (in

the same way seen in the experiments in Chapters 6 and 7). It would be of

forensic interest to confirm Franco-Pedroso and Gonzalez-Rodriguez’s findings

with hand-corrected data.

8.4 Experiments

To test Y-ACCDIST as a speaker recognition tool, these experiments aim

to explore how a Y-ACCDIST modelling approach might be able to capture

individual speaker differences based on the speaker’s pronunciation system,

without voice quality information. These experiments look at the prospect

of using this approach with different durations of speech sample (1-minute,

2-minute and 5-minute samples).
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8.4.1 Data

The data used for these experiments are from the Northern Englishes corpus

(Haddican, Foulkes, Hughes and Richards, 2013), the same corpus used in

the experiments in Chapter 3. The motivation behind using this corpus is

down to its specific properties. First, the Northern Englishes corpus contains

orthographically transcribed conversational data. Spontaneous conversational

speech is much more relevant to forensic applications than controlled read

speech that some corpora provide. Also, the amount of orthographically tran-

scribed speech per speaker (approximately 10 minutes of net speech) allows us

to test this text-dependent methodology while varying the duration, which is

also valuable to know in the context of a given methodology.

Ideally, for automatic speaker recognition research we would have a much

larger pool of speakers to work with than what we have here. Here, we have

a total of 68 speakers to use. As already stated, we have approximately 10

minutes of speech per speaker to use in these experiments. Although it does

not provide us with much data, we do have the possibility of trialling 5-minute

same-speaker sample comparisons. We have produced results below with this

duration, but it is important to keep in mind that the number of trials we could

run in this condition is much lower than those we could run using 1-minute

and 2-minute speech samples, because we have a fixed total duration of speech

available for each speaker. This becomes apparent when observing the DET

curves under each of these durational conditions. Nevertheless, we still obtain

some idea of the kind of performance we can expect from the Y-ACCDIST

system under this condition.

Another criticism of the data setup in these experiments is that our same-

speaker pairs come from the same recording (session). Ideally, we would have
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same-speaker speech samples from different recording sessions to better match

the kind of scenarios we find in forensic casework. It is not expected, however

that Y-ACCDIST will be as sensitive to matching samples based on recording

session, because of how the modelling stage of the system works. By making

intra-recording calculations between segmental representations, it is expected

that Y-ACCDIST cancels out the quality information of a recording, and just

accounts for the pronunciation information.

8.4.2 Training and Testing

On rotation, each speaker is treated as the test (unknown) speaker, while

the remaining 67 speakers from our dataset are treated as impostors. For

each round of experiments, two stretches of speech are extracted from the

total 10 minutes available (the duration of sample depends on the duration

being tested for that experiment). Each sample is used to compute a sample-

specific Y-ACCDIST matrix. The matrix from the first stretch of speech

per speaker is fed into a SVM with a linear kernel. In a ‘one-against-the-rest’

configuration, each speaker becomes the target (and therefore the ‘one’), while

all other speakers become ‘the rest’. In turn, each speaker’s second sample is

used as the test sample and one genuine-speaker probability and 67 impostor

probabilities are computed, where each trained speaker becomes the target.

This is similar to the accent recognition experiments described in Chapter 2,

using the Y-ACCDIST-SVM system, but instead of modelling accents as ‘one-

against-the-rest’, we are modelling individual speakers in this configuration.

We can obtain same-speaker and different-speaker probabilities from the SVM

to then measure performance.
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8.4.3 Performance Evaluation

Until Chapter 7, this thesis has largely monitored the performance of different

systems through a simple percentage indicating the proportion of correct ac-

cent classifications. Because this chapter is about transferring a system from

one type of task (accent recognition) to another (speaker recognition), the

percentages of the system arriving at the correct result will be given for the

experiments below, so we can make a very loose comparison of performance

across the two task types. We can think of this as a speaker identification

task, rather than a speaker verification task. Reynolds and Rose (1995) make

the distinction between these two types of automatic speaker recognition task,

and it is to do with the type of question we are trying to answer. Speaker

identification is a closed-set task, in which we decide which speaker out of a

reference set is most likely to be the speaker of our unknown sample. Speaker

verification is the task of determining how likely it is that two samples were

produced by the same speaker, relative to how likely they were not. Equal

Error Rate (EER) is standardly presented to evaluate the performance of a

system, and this will be given in these experiments as well. Descriptions of

these measures typically used in speaker recognition research were given in

Chapter 7 (Section 7.3).

To summarise, for each set of experiments, we will present system perfor-

mance through the following measures:

1. % correct for a speaker identification result.

2. EER along with DET curves for a speaker verification result.
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8.4.4 Results and Analysis

This subsection first presents the performance results of a Y-ACCDIST-SVM

speaker recognition system with just the good-quality recordings (sampling

rate 44.1kHz) at different durations to train and test the system (on 1-minute,

2-minute and 5-minute samples). These results are then compared with those

generated using the same data, but after they have been artificially degraded

(using the degraded data from Chapter 3, which were downsampled to 8kHz,

bandpass-filtered to 250-3500Hz and a-law compression was applied). The

performances of all of these duration and quality combinations will first be

presented through recognition rates (in terms of a sort of closed-set speaker

identification task), which is more similar to the accent recognition tasks that

have been presented previously in this thesis. Performance will also be ex-

pressed via DET curves and EERs.

Table 8.1: Results from speaker identification experiments on good-quality

data.

Sample Duration Recognition Rate (% Correct)

1 min 22.1%

2 mins 41.2%

5 mins 70.6%
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Figure 8.1: DET curves to compare the Y-ACCDIST-SVM system when it

has been trained and tested on different durations of speech sample.

Table 8.2: Equal Error Rates (EERs) generated when training and testing the

Y-ACCDIST system on different durations of speech sample.

Duration of Sample EER

1 min 24.51%

2 mins 16.86%

5 mins 7.49%
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These evaluation measures show an improvement in performance as we in-

crease the sample duration. The discriminatory strength of the Y-ACCDIST

speaker models is expected to increase and stabilise as we increase the amount

of speech we use to build them. The abrupt drop-off we see in the 5-minute

duration curve is down to the reduced amount of data we have for testing this

duration.

Degraded Data

Below are the experimental outputs that result from having re-run these same

experiments on the same recordings after artificially degrading them (this ar-

tificial degradation was conducted for the experiments in Chapter 3 of this

thesis). For easier comparison, the DET curves for the experiments run on

good-quality recordings (already given above) have been reproduced in the

table of speaker identification recognition rates and DET plot below, along

with the DET curves generated from the experiments run on the artificially

degraded data.

Table 8.3: Results from a speaker identification experiments on good-quality

data and degraded data.

Sample Duration
Recognition Rate (% Correct)

Good-quality data Degraded data

1 min 22.1% 11.5%

2 mins 41.2% 18.8%

5 mins 70.6% 39.7%
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Figure 8.2: DET curves to compare the Y-ACCDIST-SVM system when it has

been trained and tested on different durations and qualities of speech sample.

Table 8.4: Equal Error Rates (EERs) generated when training and testing the

Y-ACCDIST system on different durations of speech sample after artificial

degradation.

Duration of Sample EER

1 min 30.12%

2 mins 27.18%

5 mins 15.14%
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Overall, a degradation in the data has a negative effect on speaker recog-

nition performance (as we would expect), and the hierarchy of performance

among the different durational conditions remains.

8.5 Discussion

The results above show that Y-ACCDIST models have some speaker discrim-

inatory power, although they have certainly not been found to be particularly

powerful characterisations for speaker comparison purposes.

We should also keep in mind the difference in speech sample durations from

those that other speaker recognition researchers tend to use, and compare them

to the relatively long samples that have been used in the experiments in this

chapter. A lot of speaker recognition research involves training and testing on

30-second speech samples or 10-second speech samples. The test samples that

were provided for the NIST SRE 2012 campaign ranged between 20 seconds

and 160 seconds. Samples of these shorter lengths could not be modelled

well using Y-ACCDIST, as suggested by the results above, since it requires a

number of tokens of the same phoneme for Y-ACCDIST to be able to generate

a sufficient representation of that phoneme. This of course significantly limits

the number of applications, or specific cases, that a tool like this could be used

for.

It is interesting to observe that as an accent recognition system, Y-ACCDIST-

SVM performs well in comparison to other types of accent recognition system,

whereas in a speaker recognition task, Y-ACCDIST-SVM performs poorly.

These results confirm that we cannot necessarily assume that a method that

has been shown to be good for discriminating fairly similar accents is neces-

sarily good for discriminating individual speakers (although, we should keep

276



Ch. 8 Y-ACCDIST and Speaker Recognition

in mind the small dataset that has been used in this chapter). Hughes and

Foulkes (2016) presented findings on the same corpus used in this chapter, the

Northern Englishes corpus, where they looked at the capacity of different for-

mant frequencies (F1, F2 and F3) to distinguish between individual speakers,

and also their capacity to distinguish between accent groups of speakers. Their

results showed that features that seem to have the most speaker discrimina-

tory power did not necessarily have the most power in discriminating between

accents. F3 was shown by Hughes and Foulkes to be the best performing fea-

ture in discriminating speakers, but it was the worst feature for distinguishing

between accents. These findings seem to be mirrored in this thesis. While we

seem to have a good method for distinguishing accents (and that is what we

see from the Y-ACCDIST-based systems), this method does not yield good

results in distinguishing between speakers.

Although it has been an interesting question to consider, we have estab-

lished that a Y-ACCDIST-based system does not perform well on speaker

recognition tasks, and so we can conclude that this is not a research direction

that is worth pursuing.

8.6 Summary

This chapter has presented initial results that use a Y-ACCDIST-based ap-

proach to speaker recognition. While a Y-ACCDIST-SVM speaker recogni-

tion system shows some capacity to discriminate speakers (i.e. it performs

above chance level), it does not seem to produce results that are close to those

produced by state-of-the-art i-vector speaker recognition systems, and when

taking into account the lengths of speech samples that are required to model

a speaker in Y-ACCDIST, it seems that the number of applications that we
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could use it for might be limited.

However, we still do not know how a Y-ACCDIST-SVM speaker recogni-

tion system compares with an i-vector system in terms of the speakers they

incorrectly classify. It would be of interest to see whether the two approaches

are complementary in anyway, or whether there is overlap in terms of the

specific speakers that cause system errors.
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CHAPTER 9

Overall Discussion and Conclusions

What distinguishes this work from other automatic accent recognition studies

is the repeated reference to forensic applications. This thesis has continually

considered what the experimental results presented in this thesis might mean

for forensically-realistic tasks. At this point, it is therefore important to offer

an overall evaluation of how suitable the Y-ACCDIST system is for forensic

tasks. We should also suggest steps that could be taken to further establish the

Y-ACCDIST-SVM’s suitability for forensic applications. To do this, the cur-

rent chapter is divided into two main parts. The first part will bring together

the key findings from the thesis, and summarise what they mean for accent

recognition technology in the context of forensic applications. As is the nature

of research, there are obviously countless research projects that could build

on the work presented herein. The second part of this chapter will therefore

present some of these possible research avenues.
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9.1 Overview of Key Findings

This section takes findings and implications from across the chapters of this

thesis to review both the Y-ACCDIST-SVM system and automatic accent

recognition more broadly. These will of course be evaluated in the context of

forensic applications. The key points for discussion have been broken down

and organised under a number of headings.

Smaller and more similar datasets

One of the key observations in this work is how the main system in focus,

the Y-ACCDIST-SVM system, has transferred between datasets with differ-

ent properties. In doing this, we have been able to establish which kinds of

task Y-ACCDIST seems to perform well on, and which kinds of task it does

not. Unlike other applications, forensic ones particularly require methodologies

that are robust to changes in the data under scrutiny. Some applications, more

commercial ones for example, might be satisfied by only a fixed set of training

data (i.e. the same set of accents), but technology developed for forensic appli-

cations should ideally be trained, and should function well, on numerous and

diverse datasets. Chapter 2 demonstrated Y-ACCDIST-SVM’s performance

relative to other types of automatic accent recognition system. The size of

the dataset used for testing was likely to play a large role in the low perfor-

mance of the text-independent systems, as well as the nature of the accents

themselves that were being used. Chapter 2 indicated that Y-ACCDIST-SVM

shows promise for smaller-data tasks, as well as tasks where the degree of

similarity between the accents is expected to be higher. These two traits in

a system are favourable for forensic applications, as larger ‘relevant’ datasets
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are unlikely to be available (ones of the size required to sufficiently train the

kinds of text-independent systems that were tested in Chapter 2). Also, to

be able to distinguish between accents that present more of a challenge is of

greater value to forensic applications. If the task is easy, then it is perhaps

pointless to invest in technology for that purpose.

There might be some interest in accommodating low-resource accent recog-

nition tasks in future research plans. Particularly for forensic applications, in

which it is not necessarily obvious or predictable which accent varieties will

be relevant to future cases, we might want to consider research on more gen-

eralised ‘low-resource’ approaches. The idea of ‘low-resource’ tasks has been

considered for automatic speech recognition (e.g. Thomas, Seltzer, Church

and Hermansky, 2013), in cases in which we might be trying to develop speech

recognition systems for languages for which we simply do not have the training

resources to develop systems that use data-hungry algorithms. To a certain

degree, and in a similar way, low-resource methods have been explored in rela-

tion to language recognition. Van Leeuwen and Brümmer (2008) focus on this

in relation to the NIST 2005 Language Recognition Evaluation data, where

they focus on the performance of different systems trained on only one hour

of language data.

If we are considering developing accent recognition technology for forensic

purposes, then this low-resource research theme should be continued in order

to provide methodologies that are as versatile as possible.

Text dependency

One of the main features that distinguishes Y-ACCDIST from other ACCDIST-

based systems (Huckvale 2004, 2007; Hanani, Russell and Carey, 2013) is that

Y-ACCDIST has been developed to process content-mismatched speech. In
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other words, the spoken content of the training speech samples does not need

to match that of the test speech samples. We therefore needed to redefine

text-dependent systems and divide them into two groups: those which require

the spoken content of recordings of test speakers to match that of the training

speakers, and those that do not. Although the latter category still requires

some manual preprocessing to provide a transcription for an analysis take

place, it is still much more suitable for forensic applications than the former

category. We have seen throughout this thesis that an ACCDIST-based sys-

tem that has been adapted to process content-mismatched speech can work to

some level across different databases.

Regarding the transcription, in many of the experiments in this thesis we

have been making a key assumption that, in the text-dependent condition, the

transcription will always be correct. In terms of the practical implementation

of a technology like this, we might be tempted to assume that only a lower level

of transcription (orthographic transcription) is required, and so we might not

necessarily need specially trained individuals to provide those transcriptions.

Within forensic speech science, there is a call to avoid underestimating how

difficult transcription can be. Fraser (2015) shows us the extent to which errors

can occur in transcriptions of covert recordings, which are of poor quality

(as is typical of forensic casework). Police officers might sometimes provide

transcriptions of recordings for the court, and Fraser (2017) describes the

quality of these transcriptions as “amazingly low”. We should therefore aim

to use transcriptions provided by trained specialists, and the risks of using low-

quality transcriptions might be a factor we ought to consider in relation to the

Y-ACCDIST system. Although it will be more costly only to use trained

transcribers for the recordings that are fed into the system, it could prove

valuable.
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Chapters 6 and 7 showed that the Y-ACCDIST system can work to some

extent with inaccurate transcriptions, because the input transcriptions were

generated using an automatic speech recognition system. However, we do

not know whether, or by how much, automatically generated transcriptions

impact on accent recognition performance. Also, do these inaccuracies nec-

essarily have the same impact across different sets of accents? If we were to

estimate the transcriptions for a more similar set of accents (like the AISEB

corpus in Chapter 2), would we see a large drop in performance because we

lose some of the key accent-distinguishing information in the speech recogni-

tion errors? This thesis has largely only considered whether a transcription is

present or not, regardless of its quality. There are further factors we should

take into account with respect to the quality of these transcriptions.

Recording quality

It was expected that the Y-ACCDIST-SVM system would be able to cope with

a degradation in recording quality. This is because of the intra-speaker seg-

mental calculations that are computed to model the speaker. In contradiction

to this hypothesis, Chapter 3 revealed a substantial reduction in performance

under the degraded condition. It seems that the quality of the data has a

greater impact on performance than was initially expected. A further look

into how Y-ACCDIST processes degraded data showed the increase in similar-

ity between all speaker accent models, regardless of the speakers’ accent. The

degradation of the data means that fewer differences are expressed through the

Y-ACCDIST methodology. As a consequence, we achieve a lower performance.

Chapter 3 provided an opportunity to see what difference data quality can

make to accent recognition performance, because of the controlled experiments

conducted by degrading the same data to make a direct comparison. However,
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there were problems with these experiments because the degraded record-

ings were only approximations of telephony and were not genuine telephone

recordings. The NIST SRE dataset consisted of genuine telephone recordings

for accent recognition experiments to take place, demonstrating that the Y-

ACCDIST-SVM system can work in some cases on telephonic data.

Segmental Factors

Working from different directions, Chapters 4 and 5 observed the contribu-

tion that individual phonemes made to the successful classification of speech

samples. Chapter 4 incorporated feature selection to reduce the Y-ACCDIST

models to contain the most valuable features (the phoneme-pair distances)

and use only those for classification. We saw feature selection improve accent

recognition rates when we were using the AISEB corpus to train and test the

Y-ACCDIST system, but did not see such an effect when we used the Northern

Englishes corpus. This was partly put down to the fact that we might expect

to find fewer features that help to distinguish between the AISEB varieties

because these are thought to be more similar accents. Feature selection is

expected to improve performance in the case of more similar varieties as there

are more ‘noisy’ features to remove.

In running these feature selection experiments, we were also able to identify

which specific features were estimated to be most valuable to a given accent

recognition task. Through this, we could gather an idea of which phonemes are

particularly distinctive among a set of accents. By showing us which phonemes

are helpful to the system, this could also be offering sociophonetic information

about our dataset of accents.

Phoneme frequency was shown to have some effect on the estimated value

of a phoneme to an accent recognition task. The higher the frequency, the
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more stable the features are expected to be in the models, and so if a phoneme

is a good distinguisher for a set of accents, then it is more likely to contribute

to a successful classification if it is also a frequent segment.

Chapter 5 observed the effect of individual segments and phoneme fre-

quency from a different angle, in the context of the test data rather than the

training data. It follows that the unknown speech sample is more likely to be

correctly classified if it contains larger numbers of certain phoneme segments.

We are therefore relying on the natural phoneme distributions of the language

to provide enough indicative accent information for a Y-ACCDIST analysis.

These experiments showed that the particular segmental composition of a test

sample does have a significant effect on its likelihood of being successfully

classified. This chapter did not go as far as discovering the criteria a speech

sample needs to meet for it to be reliably analysed, but the results suggest

that there is a need to conduct further research to uncover such criteria.

Y-ACCDIST Speaker Recognition

Despite Y-ACCDIST’s relative success on accent recognition tasks, Chapter

8 revealed a rather poor speaker recognition performance obtained by Y-

ACCDIST speaker models, in comparison to other types of automatic speaker

recognition system. However, the types of system that do tend to perform

well in automatic speaker recognition (e.g. GMM-UBM and i-vector systems)

do not perform well in automatic accent recognition, as shown in Chapter 2.

This is an interesting contrast to draw, and demonstrates how the different

types of model capture different types of variation in a complementary way.
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9.2 Further Directions for Research

This section offers just six of the many possible topics for further research.

Accent Disguise

One interesting research avenue, particularly in the context of forensic appli-

cations, is whether and how a system like Y-ACCDIST could process speech

suspected of being disguised. There have been forensic cases where an individ-

ual has committed fraud and imitating another voice has aided the deception.

Foulkes, French and Wilson (2018) discuss a specific case, the case of Lord

Buckingham. In this instance, a North American individual falsely took on the

identity of a British Earl, and so an imitated British accent was adopted to re-

inforce this identity. As an indication of volume, Künzel, Gonzalez-Rodriguez

and Ortega-Garcia (2004) say that approximately 15% of cases submitted to

the German Federal Police Speaker Recognition Department are suspected to

involve some form of voice disguise. Voice disguise, of course, may not nec-

essarily entail the specific form of accent disguise, but this may occasionally

feature in forensic casework. Voice disguise can involve altering the voice in

different ways (i.e. voice quality factors, pitch, etc). However, because Y-

ACCDIST aims to exclude these sorts of voice quality properties, we can only

discuss its application in relation to just one form of voice disguise: accent

disguise.

Singh, Gencaga and Raj (2016) carried out a study that analysed the

disguised speech production of a professional mimic. The imitations the mimic

was asked to do were based on the voices of a number of public figures and

so both voice quality and accent characteristics were involved in the disguise.
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They took formant measurements to determine the nature of the variation of

phonemes between the different imitations. They discovered three (/dZ/, /tS/

and /j/) that did not vary across all the different imitations, while all the

vowel phonemes varied greatly. The phonemes that do not seem to vary could

be useful in cases of suspected voice disguise. However, further research on a

larger number of professional mimics would be required to confirm this.

We could extend a study on voice disguise using Y-ACCDIST. Its segmental

approach could analyse the effects of disguise, specifically in the accent domain.

Also, it could be valuable to conduct an analysis which is based on MFCC

features, rather than formants. Automatic formant extraction is not known

to be wholly reliable (Duckworth, McDougall, de Jong and Shockey, 2011;

Harrison, 2013). We may achieve a clearer picture of the production effects of

accent disguise using a higher-resolution feature: MFCCs.

Jenkins (2016) conducted a small-scale study that compared Y-ACCDIST’s

capabilities of assessing accent-disguised speech against the capabilities of hu-

man listeners. She used as stimuli recordings of speakers imitating Scottish

English, as well as genuine Scottish English speech. She discovered that Y-

ACCDIST and humans perform in different (and possibly complementary)

ways, and found that Y-ACCDIST made fewer false positive judgments than

the human listeners. As Jenkins acknowledges, however, a larger amount of

data would be required to confirm this comparison. Also, a larger number

of speakers would be required to determine a reliable recognition rate that

would indicate how well Y-ACCDIST could classify disguised and genuine ac-

cented speech recordings. By running this small-scale study, Jenkins (2016)

has sparked curiosity around Y-ACCDIST’s capabilities in the context of ac-

cent disguise with these initial findings.
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Y-ACCDIST as a tool for sociophonetic research

Forensic speech science often turns to sociophonetic research literature to assist

in casework. If a case involves speech from a particular variety of a language,

it is important to know the features of the variety. However, of course it is

more than possible to come across varieties which have not been researched,

or varieties which have not been researched for a number of years. Accent

varieties undergo change, and for sociolinguists to keep on top of these changes

is a challenging prospect. In Brown (2014), the effect of a system trained

on older accent varieties, when faced with newer accent varieties was shown.

Under this kind of mismatched condition, we achieved a recognition rate of 65%

on a four-way accent classification task. When the data are not mismatched

in this way, however, the recognition rate is substantially higher at 83.3%

correct. These results indicated the impact on accent recognition performance

if the training data are not updated. These results also demonstrate the need

to regularly update our knowledge of accent varieties, and so alternative and

more efficient analytical methods can help us to achieve this.

Of course, more traditional sociophonetic techniques have value. Common

techniques include measuring formants or Voice Onset Time (VOT), and these

can lead to findings about linguistic varieties. The same techniques can be

transferred to forensic casework and so, in many ways, the two subdisciplines

go hand in hand. These analytical methods are relatively time-consuming and,

consequently, more costly. Developing new and more efficient techniques could

potentially benefit sociophonetic research, as well as forensic casework. Not

only could introducing new techniques increase the efficiency of research, but

it could also bring the researcher complementary methodologies, presenting

different findings about the varieties that we would not otherwise find using

the more traditional techniques alone. The intention here is to propose that we
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look to combine different methods, rather than replace some with others. This

was demonstrated in Vieru, de Mareüil and Adda-Decker (2011), for example,

who combined acoustic measurements (e.g. vowel formant measurements and

segmental duration) with data mining techniques to determine the most effec-

tive of these measurements in distinguishing between speakers of non-native

French accents.

Nerbonne and Kleiwig (2007) express the importance of sociophonetic ap-

proaches which move away from a selective strategy of simply choosing a few

linguistic variables that are expected to exhibit variation. They talk about ‘di-

alectometry’ and promote the advantages of more objectively incorporating a

collection of features into our studies. They discuss and compare a number of

similarity measures that can be applied to dialect variation studies. In partic-

ular, Nerbonne and Kleiwig apply a variant of Levenshtein distance to dialect

data, which involves tracking the cost of each of the segmental differences (i.e.

deletions, insertions and substitutions) between phonemic transcriptions of the

the same word in two different dialects. The outcome is an overall score for

the pair that reflects how similar or different they are. By approaching dialect

difference in this kind of way allows us to incorporate a collection of linguistic

variables, rather than a select few like we see across a range of sociophonetic

studies. There are of course problems with this kind of approach, however, in

that insertions, deletions and substitutions work at the phonemic sequential

level of analysis. This might work when we make comparisons across some

varieties, but a lot of accent research would benefit from looking more closely

at the phonetic realisational differences which exist between accents. A Y-

ACCDIST-based approach to sociophonetics could provide an analysis using

a collection of linguistic variables, as well as measuring similarity through the

different phonetic realisations between different accents. This approach might
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be more suitable for analysing some corpora, whereas a Levenshtein-based ap-

proach might be more suitable for others, depending on the type of variation

we wish to observe for the particular study. As mentioned earlier in this thesis,

Y-ACCDIST has been developed so to allow us to process content-mismatched

speech data. Levenshtein distance requires one-to-one sequences of words, so

these tools are suitable for different types of corpora, as well as, probably,

different types of variation.

Brown and Wormald (2017) demonstrate how Y-ACCDIST could be ben-

eficial to sociophonetic research by producing outputs from the Y-ACCDIST

system when trained on a corpus of Panjabi-English (Wormald, 2016). Be-

cause a detailed phonetic analysis of the corpus had already been conducted,

we were able to see how Y-ACCDIST’s outputs corroborated results gathered

using more traditional sociophonetic research methods. The varieties in this

corpus that were shown to be more similar to one another through a con-

ventional sociophonetic analysis were also shown to be more similar to one

another by the Y-ACCDIST outputs. However, Y-ACCDIST also highlighted

some interesting features that were not identified by the phonetic analysis.

For example, a feature ranking from running a feature selection task on the

varieties in the corpus indicated that /@/ could be of particular interest in the

case of these accents. These sorts of outputs could uncover features that might

otherwise go overlooked by more traditional phonetic methodologies.

Comparison with human accent recognition performance

One clear direction to take would be to compare the recognition performance

of automatic accent recognition systems with that of human listeners. These

kinds of comparisons have been made in past studies. For example, Hanani,

Russel and Carey (2013) asked lay listeners to classify speech samples into
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one of the 14 accent classes represented in the Accents of the British Isles

(ABI) corpus (D’Arcy, Russell, Browning and Tomlinson, 2004). They could

then compare human performance with the performance of automatic systems.

They reported that human listeners obtained a lower performance score than

nearly all of their automatic accent recognition systems, with 58.24% accuracy.

While it is interesting to observe the performance of lay listeners on a task

like this, of interest to this research is how forensic speech practitioners perform

in an accent recognition task, compared with how automatic systems perform.

Perhaps the Y-ACCDIST system does not correctly classify the same speech

samples as an expert. It would be of value to investigate whether there is any

complementarity between expert analysts and automatic accent recognition

systems.

Cross-linguistic research into automatic accent recognition

Throughout this thesis, we have mentioned that automatic accent recognition

performance is likely to depend on the nature of the set of accents we are

trying to distinguish between and the degree of similarity (or number of com-

monalities) that exists between them. We have been looking at how one accent

recognition system transfers between different accent datasets. Another con-

sideration might be the specific language itself. It could be that some languages

have fewer of the kinds of differences that lead to good differentiation using

Y-ACCDIST models, and more of other kinds that would not be captured so

well.

The experiments in this thesis have been on various accents of English.

Depending on the sets of English accents we are focussing on, the phoneme in-

ventories have consisted of around 42 phonemes. Some languages have smaller

phoneme inventories, and others have larger ones. Because the Y-ACCDIST
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system relies so heavily on the language’s phoneme inventory to provide the

foundations for the accent models, it would be interesting to explore whether

performance deteriorates when we only have access to a small phoneme inven-

tory. A study of accent recognition across a number of languages would be an

interesting task to carry out.

Incorporating prosodic features

We know that prosody can help to discriminate accents (Grabe, 2004), a fea-

ture the Y-ACCDIST system is not designed to account for. Vieru, de Mareüil

and Adda-Decker (2011) acknowledge prosody in their analysis of foreign-

accented French speech. They measured prosodic cues for their accented

speech data, as well as segmental cues (vowel formants, segmental duration,

etc.). Using data mining techniques, they were able to produce a ranking

of which cues are most valuable to distinguishing between the six accents of

French in their database. In this ranking task, they found that prosodic cues

are of less value to the task than the segmental cues. Of course, it is quite

possible that for the task of classifying these six specific non-native accents of

French, prosody does not play a large role. Prosody might play a greater role

in distinguishing between another set of accents. Alternatively, the measures

that Vieru et al used to characterise prosody in the speech samples might not

have been the most effective.

Biadsy and Hirschberg (2009) incorporated prosodic features into their au-

tomatic accent recognition system, which was developed to classify Arabic

speech samples into dialect groups. They showed an improvement in per-

formance when prosodic information was added to the process. Although

prosodic information is not necessarily expected to help in all accent classi-

fication tasks, it would be of interest to integrate and compare methods of
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quantifying prosodic patterns and combine them with the Y-ACCDIST-based

methods shown in this thesis.

Looking beyond the phoneme

We could suggest that the segmental generalisations that the Y-ACCDIST sys-

tem makes throughout this thesis are too broad. By assigning a phoneme class

to each speech sound, we are possibly losing some resolution in the variation

that the data offer. If we were to use syllable-based units, we could uncover

more specific segments which carry distinctive value in a text-dependent accent

classification or speaker recognition task. Some phonemes are systematically

realised in a particular way depending on its position within a syllable. For

example, /l/ in many varieties of English is produced as a ‘light’-/l/ when in a

syllable onset (at the beginning of a syllable) and as a ‘dark’-/l/ in a syllable

coda (at the end of a syllable) (Sproat and Fujimura, 1993).

At a more subtle level, Greenberg (1999) demonstrates how consonants can

be produced differently depending on whether they are situated within a sylla-

ble onset or coda. He demonstrates how, particularly in conversational speech,

sounds in a syllable coda are much more likely to be deleted than the sounds

in an onset. He describes the syllable onset as the “survivor” component

of the syllable (p. 163), whereas the coda is described as being “disposable”

in comparison (p. 166). In the context of the Y-ACCDIST system then, it

could be of interest to form our phoneme representations using only sounds

in the onset, because by including sounds in the coda, we could be modelling

sounds based on their deleted forms in spontaneous speech. Deletions could

subsequently create noise within the Y-ACCDIST matrices. Alternatively, it

could be valuable to split consonant phoneme classes into two: one for those

phoneme tokens that are found in a syllable onset, and those that are found
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within a syllable coda. Naturally, this would come at the expense of the sys-

tem becoming more text-dependent by requiring much more specific contexts.

Another consideration related to this is the issue of syllable stress. Sounds

are produced differently according to whether they fall within a stressed sylla-

ble or not. This could also impact on the phoneme representations that form

the Y-ACCDIST matrices. Perhaps conditioning the phoneme classes to only

include segments within stressed syllables, and exclude those in unstressed

syllables, could have an effect on accent recognition rates.

9.3 Conclusion

The key strengths of the Y-ACCDIST-SVM system are its relative sensitivity

to fairly similar accents and the ability to work with smaller datasets, com-

pared with other types of system. These traits are expected to be favourable to

a system intended for forensic applications, because conducting accent recog-

nition on an easy task is unlikely to be of interest to forensic analysts, and

also a methodology that can be transferred between accent recognition tasks

is more likely to be useful to a domain that operates on a case-by-case basis.

This is because different resources are available for different cases.

However, we still do not see an accent recognition performance that com-

pares with the performance of automatic speaker recognition systems. When

we applied the conclusion frameworks that are thought to be a more appro-

priate way of presenting the outcome of an analysis (likelihood ratios), we

achieved 19% EER using the Y-ACCDIST system. Although this is com-

parable with the results of other automatic accent recognition studies, it is

not comparable with the performance of different types of recognition system

(namely speaker recognition systems). In the Introduction of this thesis, the
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issues concerned with using technology within forensic science and the crim-

inal justice system were emphasised. Implementing a new methodology into

this sensitive context is not a straightforward process. We have discussed the

problems that an automatic speaker recognition analysis encountered in one

particular case, Slade & Ors v Regina [2015], in the Introduction. While this

research has contributed to the area by establishing some of the strengths and

weaknesses of one particular accent recognition system, we certainly cannot

conclude that it is ready to use for forensic casework. The findings in this

thesis are simply a step forward towards developing new methodologies for

the purpose of forensic speaker profiling. It seems that Y-ACCDIST would

not be appropriate to use for all accent recognition tasks. One promising line

of inquiry could be to advance research into identifying the kinds of cases and

speech samples that are suitable for a particular methodology, rather than

developing one single methodology that works for all data types. Perhaps a

“one-size-fits-all” approach is simply unachievable in this context.

Even if an automatic accent recognition system cannot be used in all cases,

we cannot ignore the fact that it presents qualities that are desirable in a

forensic analytical methodology. The most viable means to take advantage of

the objective, testable and data-driven properties of an automatic system is

to use it in conjunction with a trained human analyst, but there are plenty of

questions over how this kind of collaboration would be put into practice. Of all

the possible future research directions, considering the issues and sensitivities

surrounding forensic applications, how we can combine human expertise with

the strengths of an automatic system is one that could greatly benefit the field.
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Rajan, P., Kinnunen, T. & Hautamäki, V. (2013), Effect of multicondition

training on i-vector PLDA configurations for speaker recognition, in ‘Pro-

ceedings of Interspeech’, Lyon, France, pp. 3694–3697.

Ramos-Castro, D., Gonzalez-Rodriguez, J. & Ortega-Garcia, J. (2006), Likeli-

hood ratio calibration in a transparent and testable forensic speaker recog-

nition framework, in ‘Proceedings of Odyssey: The Speaker and Language

Recognition Workshop’, San Juan, Puerto Rico.

Reynolds, D. & Rose, R. (1995), ‘Robust text-independent speaker identifica-

tion using gaussian mixture speaker models’, IEEE Transactions of Speech

and Audio Processing 3, 72–83.

Rhodes, R. (2012), Assessing the strength of non-contemporaneous forensic

speech evidence, PhD thesis, University of York, UK.

Rhodes, R. (2016), Cognitive bias in forensic speech science: a survey on risks

and proposed safeguards, in ‘Paper presented at the International Associa-

tion for Forensic Phonetics and Acoustics conference’, York, UK.

Richardson, F. & Campbell, W. (2008), Language recognition with discrimina-

tive keyword selection, in ‘Proceedings of the IEEE International Conference

for Acoustics, Speech and Signal Processing’, pp. 4145–4148.

Rong, J., Li, G. & Chen, Y.-P. P. (2009), ‘Information processing and man-

agement’, Information Processing and Management 45, 315–328.

319



Bibliography

Rose, P. (2002), Forensic Speaker Identification, Forensic Science Series, Taylor

Francis, London.

Rose, P. & Morrison, G. (2009), ‘A response to the UK Position Statement on

forensic speaker comparison’, The International Journal of Speech, Language

and the Law 16, 139–163.

Rubin, J. (1975), ‘What the “Good Language Learner” can teach us’, TESOL

Quarterly 9, 41–51.

Sadjadi, S. O., Slaney, M. & Heck, L. (2013), ‘MSR identity toolbox v1.0: A

MATLAB toolbox for speaker-recognition research’, Speech and Language

Processing Technical Committee Newsletter, IEEE .

Saeys, Y., Abeel, T. & de Peer, Y. V. (2008), Robust feature selection using

ensemble feature selection techniques, in ‘European Conference on Machine

Learning and Knowledge Discovery in Databases, Part II’, Berlin, Germany,

pp. 313–325.

Saks, M. & Koehler, J. (2005), ‘The coming paradigm shift in forensic identi-

fication science’, Science 309, 892–895.

Sankoff, G. & Blondeau, H. (2007), ‘Language change across the lifespan: /r/

in Montreal French’, Language 83, 560–588.

Scheffer, N., Ferrer, L., Graciarena, M., Kajarekar, S., Shriberg, E. & Stolcke,

A. (2011), The SRI NIST 2010 Speaker Recognition Evaluation system,

in ‘Proceedings of the International Conference on Acoustics, Speech and

Signal Processing’, Prague, Czech Republic.

320



Bibliography

Schilling, N. & Marsters, A. (2015), ‘Unmasking Identity: Speaker profiling for

forensic linguistic purposes’, Annual Review of Applied Linguistics 35, 195–

214.

Schüller, B., Rigoll, G. & Lang, M. (2004), Speech emotion recognition com-

bining acoustic features and linguistic information in a hybrid support vector

machine - belief network architecture, in ‘Proceedings of the International

Conference on Acoustics, Speech and Signal Processing’, Montreal, Canada,

pp. 577–580.

Shriberg, E. (2007), Higher-level features in speaker recognition, in C. Muller,

ed., ‘Speaker Classification’, Vol. 1 of Lecture Notes in Computer Science,

Springer-Verlag, Berlin Heidelberg, pp. 241–259.

Singh, R., Gencaga, D. & Raj, B. (2016), Formant manipulations in voice

disguise by mimicry, in ‘Proceedings of the 4th International Workshop on

Biometrics and Forensics (IWBF)’, Limassol, Cyprus.

Sproat, R. & Fujimura, O. (1993), ‘Allophonic variation in english /l/ and its

implications for phonetic implementation’, Journal of Phonetics 21, 291–

311.

Stuart-Smith, J. (1999), Glasgow: accent and voice quality, in P. Foulkes

& G. Docherty, eds, ‘Urban Voices: Accent Studies in the British Isles’,

Routledge, London, pp. 203–222.

Suh, J.-W. & Hansen, J. H. L. (2012), ‘Acoustic hole filling for sparse enroll-

ment data using a cohort universal corpus for speaker recognition’, Journal

of the Acoustical Society of America 131, 1515–1528.

321



Bibliography

Thomas, S., Seltzer, M., Church, K. & Hermansky, H. (2013), Deep Neu-

ral Network features and semi-supervised training for low resource speech

recognition, in ‘Proceedings of the International Conference on Acoustics,

Speech and Signal Processing’, Vancouver, Canada, pp. 6704–6708.

Toor, A. (2017), ‘Germany to use voice analysis software to help determine

where refugees come from’. Accessed 28/06/2017.

URL: https://www.theverge.com/2017/3/17/14956532/germany-refugee-

voice-analysis-dialect-speech-software

Torres-Carrasquillo, P., Singer, E., Kohler, M., Greene, R., Reynolds, D. & Jr,

J. D. (2002), Approaches to language identification using Gaussian Mixture

Models and Shifted Delta Cepstral features, in ‘Proceedings of the Interna-

tional Conference on Spoken Language Processing’, pp. 89–92.

Tranter, S. & Reynolds, D. (2006), ‘An overview of automatic speaker diariza-

tion systems’, IEEE Transactions on Audio, Speech and Language Process-

ings 14, 1557–1565.

Tully, G. (2016), Forensic Science Regulator Codes of Practice and

Conduct: for forensic science providers and practitioners in the

criminal justice system, Technical report, The UK Government.

https://www.gov.uk/government/publications/forensic-science-providers-

codes-of-practice-and-conduct-2016.

Tully, G. (2017), Forensic Science Regulator An-

nual Report, Technical report, The UK Government.

https://www.gov.uk/government/publications/forensic-science-regulator-

annual-report-2016.

322



Bibliography

van der Molen, L., van Rossum, M., Jacobi, I., van Son, R., Smeele, L., Rasch,

C. & Hilgers, F. (2012), ‘Pre- and posttreatment voice and speech outcomes

in patients with advanced head and neck cancer treated with chemora-

diotherapy: Expert listeners’ and patients’ perception’, Journal of Voice

26, 25–33.
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