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Abstract

We follow Humphreys [4], studying the structure theory of semisimple Lie algebras
(over algebraically closed fields of characteristic zero) in detail, proving the existence of
a Chevalley basis and constructing Chevalley groups of adjoint type.

We provide elementary definitions and results about Lie algebras. We take the per-
spective of toral subalgebras to show the root space decomposition with respect to a
maximal torus. We utilise representation theory to prove that the set of roots forms a
root system. Studying root systems in their own right then gives us further structural
results for semisimple Lie algebras. These enable us to prove the existence of a Chevalley
basis, which allows us to transfer the Lie algebra structure to finite fields. We conclude
by using this to construct Chevalley groups of adjoint type.
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Preface

Finite simple groups have been completely classified [2] and the classification theo-
rem is familiar to many. Such groups fall into one of the following categories: prime
cyclic groups, alternating groups, Chevalley groups, twisted Chevalley groups and spo-
radic groups. Cyclic groups and alternating groups are straightforward to construct, but
this is not the case for the other categories. It is possible to give relatively elementary
constructions in some circumstances, for example the Suzuki [7] and Ree [8, 9] groups.
However, such constructions are done with the aim of giving shortcuts to known desti-
nations, so they lack the overarching mathematical backbone which connects all of these
groups together.

It is important, then, for the standard constructions, and the machinery behind them,
to be understood. This machinery is known as Lie theory (pronounced ‘lee’), named after
the Norwegian mathematician Sophus Lie. For us, this will be the study of Lie algebras;
Lie groups are not mentioned. We primarily follow the path laid out by Humphreys
[4], framing the root space decomposition in terms of toral subalgebras, as opposed to
the more traditional Cartan subalgebras [1, 3]. Our goal is the construction of Chevalley
groups (of adjoint type). We give a process for taking a finite field K and a semisimple Lie
algebra L over an algebraically closed field of characteristic zero (the complex numbers,
for example), and producing a finite group of matrices with entries in K, determined
by the Lie algebra structure of L. This process is sufficient to construct all families of
non-twisted Chevalley groups; the twisted Chevalley groups require further machinery
[1].

This construction of Chevalley groups is our singular goal. As such we take a somewhat
streamlined path through the literature, only discussing the results needed for this. In
particular, the classification of Lie algebras using Dynkin diagrams, though important
to Lie Theory as a whole, is not covered. This approach does allow us room to cover
more detail, however. The elementary but essential results regarding simultaneous diag-
onalisibility, which are omitted in [4], are covered in full (Section 2). The discussions on
the machinery behind the construction in sections 25.4 and 25.5 of [4] are expanded into
formal results with proofs (Sections 18 and 19). Notably, a proof that G(K) is an auto-
morphism group of L(K) (Theorem 19.16) and an explicit example of such a construction
(example 19.17) are given. More explicit proofs have been given throughout, though it
should be noted that certain results have been stated without proof (the exhaustive list
is: Engel’s Theorem (1.21), a corollary to Lie’s Theorem (1.27), Weyl’s Theorem (9.4),
and an automorphism lemma (17.1)).

We begin with a brief introduction to some of the basic concepts (Section 1), followed
by a discussion of some ideas from linear algebra that are of particular importance to us
(Section 2). The notion of Jordan decomposition, though also very grounded in linear
algebra, is the first key idea relating directly to Lie algebras which we discuss (Section
3). We prove Cartan’s criterion (Section 4), which is necessary only for one crucial result:
that the Killing form is nondegenerate (Section 7). Our study of Lie algebras begins
in earnest with the introduction of toral subalgebras (Section 5), which leads into the
central idea of the root space decomposition of a semisimple Lie algebra (Section 6). Our
understanding of this decomposition will improve when we show that it revolves around
the maximal torus (Section 8), then again when we begin to see the structure of sl2(F)
appearing (Section 10), and finally when we discover that root spaces are 1-dimensional
(Section 11). For this, we use the representation theory of sl2(F), which we develop
beforehand (Section 9). We come to a temporary peak with the proof that the set of
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roots has the structure of a root system (Section 12), which we follow with a look at
root systems themselves (Sections 13 to 16). We are then set to prove the existence
of a Chevalley basis (Section 17). This is the key we need to transfer our Lie algebra
structure to a finite field (Section 18), over which we can construct automorphism groups
generated by exponentiating the adjoint maps of (non-toral) elements of the Chevalley
basis (Section 19). These are the Chevalley groups of adjoint type.

We write N, Z, Q and R to denote the natural numbers, integers, rationals and reals
respectively. Z[T ] denotes the set of polynomials in T with coefficients in Z. The symbol
⊂ denotes strict containment of sets; we always use ⊆ when equality is a possibility. We
use the shorthand Fx to denote the F-span of x.
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1. First Definitions

We begin by defining Lie algebras and laying out some of the basic results which we
use in later sections. Certain results, such as Engel’s Theorem (1.21) and a corollary to
Lie’s Theorem (1.27), will be taken as assumed (for proofs, see [4]).

Throughout this paper, F denotes some field and L denotes a finite dimensional Lie
algebra (defined below) over F. We place restrictions on L and F in subsequent sections.

1.1. Definition. A Lie algebra, L, is a vector space over some field F, equipped with a
multiplication

L× L→ L : (x, y) 7→ [xy],

called a Lie bracket, which is bilinear and satisfies

• [xx] = 0 for all x ∈ L,
• [x[yz]]+[z[xy]]+[y[zx]] = 0 for all x, y, z ∈ L. This is called the Jacobi identity.

1.2. It is useful to consider various reformulations of the Jacobi identity:

[x[yz]] + [z[xy]] + [y[zx]] = 0, (1.2.1)

[x[yz]] = −[z[xy]]− [y[zx]], (1.2.2)

[x[yz]] = [y[xz]]− [z[xy]] = [z[yx]]− [y[zx]]. (1.2.3)

1.3. Definition. Let V be a vector space. We denote by End(V ) the space of linear
maps from V to V . Note that if L is a Lie algebra, then when we write End(L), we
are still referring to vector space endomorphisms of the Lie algebra, not Lie algebra
endomorphisms. The space End(V ) is an associative algebra under the composition of
functions operation, denoted ◦.

We can define a Lie bracket on End(V ) by

[xy] = x ◦ y − y ◦ x,
for x, y ∈ End(V ). We then obtain a Lie algebra called the general linear Lie algebra
of V , denoted gl(V ). For n ∈ N, we also write gln(F) to denote the general linear Lie
algebra of Fn. The above method (defining a Lie bracket from the commutator of an
algebra) can be used to generate a Lie algebra from any associative algebra. Such a Lie
algebra is called a linear Lie algebra. It is also true that any finite dimensional Lie
algebra is isomorphic to some linear Lie algebra (see [5, Chapter VI]).

Another example of a Lie algebra which will be useful to us is the special linear
Lie algebra, denoted sl(V ). This is defined as the subalgebra of gl(V ) consisting of
endomorphisms with trace 0. We also write sln(F) = sl(Fn) for n ∈ N.

1.4. Definition. A homomorphism of Lie algebras is a linear map φ : L → L′ : x 7→
φ(x) which satisfies [φ(x)φ(y)] = φ([xy]) for all x, y ∈ L. An isomorphism of Lie
algebras is a bijective Lie algebra homomorphism. An isomorphism from a Lie algebra
to itself is called an automorphism and we denote the set of all automorphisms of L by
Aut(L). This is a group under the composition of functions operation.

1.5. Definition. Let A,B be subspaces of L. We write [AB] = spanF {[ab] : a ∈ A, b ∈ B}
for the product of subspaces. Note that taking the span is necessary for this to be a
subspace, because it is not in general possible to express a sum [ab] + [a′b′] as a single
product.

We call A a Lie subalgebra of L if it is closed under the Lie bracket. That is, if
[AA] ⊆ A, so A is a Lie algebra in its own right. The Lie subalgebra [LL] of L is called
the derived subalgebra of L.
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Let I be some subspace of L. Then I is called an ideal of L if [LI] ⊆ I. Important
examples of ideals are the derived subalgebra [LL] and the centre of L (Definition 1.7).

1.6. Lemma. The derived subalgebra of L is an ideal of L.

Proof. Let x, y, z ∈ L. Then [yz] ∈ L by definition, hence [x[yz]] ∈ [LL]. Therefore,
[L[LL]] ⊆ [LL]. �

1.7. Definition. Write Z(L) = {z ∈ L : ∀x ∈ L : [xz] = 0} and call this space the centre
of L.

1.8. Lemma. Z(L) is an ideal of L.

Proof. Let x ∈ L and z ∈ Z(L). Then [xz] = 0 by definition, where 0 ∈ Z(L) by
linearity. �

1.9. Definition. Call L simple if [LL] 6= {0} and the only ideals of L are {0} and
L. Throughout, we are primarily interested in semisimple Lie algebras (Definition 5.3),
which is a weaker condition than simplicity. Semisimple Lie algebras are direct sums of
simple ones.

1.10. Note that if L is simple, then as [LL] is an ideal (Lemma 1.6), we must have that
[LL] = L.

1.11. Definition. A map
δ : L→ L : x 7→ δ(x),

is called a derivation of L if it is linear and satisfies

δ([xy]) = [xδ(y)] + [δ(x)y]

for all x, y ∈ L. The space of derivations of L is denoted Der(L) and is a Lie subalgebra
of gl(L). The derivations we are interested in are the following:

Let x ∈ L. The map
ad(x) : L→ L : y 7→ [xy]

is called the adjoint endomorphism or adjoint map associated to x. It is important
to note that ad(x) is a vector space endomorphism, but not in general a Lie algebra
endomorphism. Derivations of this form are called inner.

When S is a subalgebra of L and x ∈ S, we can consider ad(x) to be acting on either
L or S. To remove ambiguity, we write

adL(x) : L→ L : y 7→ [xy]

or
adS(x) : S → S : y 7→ [xy]

in these situations.

1.12. As the Lie bracket is bilinear, it follows that ad(x) ∈ End(L) for x ∈ L. However,
ad(x) is not in general a Lie algebra homomorphism. We often use the notation of the
Lie bracket and that of adjoint maps interchangeably, depending on what we want to
emphasise.

The fact that adjoint maps are derivations will become useful in Section 19: Con-
structing Chevalley Groups, when we construct automorphisms by exponentiating certain
adjoint maps.

1.13. Lemma. Let x ∈ L. Then the map ad(x) is a derivation. That is, for y, z ∈ L,

ad(x)([yz]) = [y ad(x)(z)] + [ad(x)(y)z].
8



Proof. Immediate from reformulating the Jacobi identity (1.2.3). �

1.14. The notion of adjoint maps is important, because it gives us a very useful way
of representing Lie algebras. We use the adjoint representation (1.15) directly, in order
to prove many key structural results in Section 11: Integrality Properties. Additionally,
many ideas, such as nilpotency (1.19), are much easier to phrase in terms of adjoint maps.

1.15. Definition. Let V be some vector space over F. Then a Lie algebra homomorphism
ρ : L→ gl(L) is called a representation of L.

The representation we are interested in is called the adjoint representation of L,
denoted ad. We define

ad : L→ gl(L) : x 7→ ad(x).

As in the definition of ad(x) (1.11), we write adL when there is ambiguity as to the
domain.

1.16. Lemma. The map ad is a Lie algebra homomorphism (and hence is a representa-
tion).

Proof. Let x, y, z ∈ L. The Lie bracket in gl(L) is given by

[ad(x) ad(y)] = ad(x) ◦ ad(y)− ad(y) ◦ ad(x).

Therefore,

[ad(x) ad(y)](z) = (ad(x) ◦ ad(y)− ad(y) ◦ ad(x))(z)

= (ad(x) ◦ ad(y))(z)− (ad(y) ◦ ad(x))(z)

= ad(x)(ad(y)(z))− ad(y)(ad(x)(z))

= [x[yz]]− [y[xz]].

By the Jacobi identity (1.2.3), this is equal to

[z[yx]] = −[[yx]z] = [[xy]z] = ad([xy])(z).

As z was arbitrary, this implies that ad([xy]) = [ad(x) ad(y)]. �

1.17. We can see that

ker(ad) = {x ∈ L : ad(x) = 0} = {x ∈ L : ∀y ∈ L : [xy] = 0} = Z(L),

so Z(L) = {0} if and only if ad is an injective homomorphism. That is,

L ∼= ad(L) ⇐⇒ Z(L) = {0} .

1.18. Lemma. Let x, y ∈ L such that [xy] = 0. Then ad(x) and ad(y) commute.

Proof. For all z ∈ L,
(ad(x) ◦ ad(y))(z) = [x[yz],

which, applying the Jacobi identity (1.2.3) and the assumption that [xy] = 0, gives

[x[yz] = [y[xz]]− [z[xy]] = [y[xz]] = (ad(y) ◦ ad(x))(z).

As this holds for all z ∈ L, we have

ad(x) ◦ ad(y) = ad(y) ◦ ad(x).

�

1.19. Definition. Let V be some vector space over F and x ∈ End(V ). If xn = 0 for some
n ∈ N, then x is called nilpotent. We say an element x ∈ L is ad-nilpotent if ad(x) is
nilpotent. L is called nilpotent if ad(L)n(L) = {0} for some n ∈ N.
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1.20. Note that if all x ∈ L are ad-nilpotent, then there exists an n ∈ N such that

ad(x)n(y) = 0

for all x, y ∈ L, whereas if L is nilpotent, then there exists an n ∈ N such that

(ad(x1) ◦ · · · ◦ ad(xn))(y) = 0

for all x1, · · · , xn, y ∈ L, so the latter appears to be a stronger condition. It is in fact true
that the former implies the latter, so they are equivalent. This result is known as Engel’s
Theorem, and the proof nontrivial. We state Engel’s Theorem here as an assumption,
in addition to another result, about ideals of nilpotent Lie algebras. These will both be
used in Section 8: The Maximal Torus.

1.21. Theorem (Engel’s Theorem). Suppose that ad(x) is nilpotent for all x ∈ L. Then
L is nilpotent.

Proof. See Section 3.3 of [4]. �

1.22. Lemma. Let L be nilpotent and let K be an ideal of L. Then K 6= {0} implies that
K ∩ Z(L) 6= {0}.
Proof. See Lemma 3.3 of [4]. �

1.23. Definition. The derived series of L is denoted{
L(n)

}
n≥0

,

where L(0) = L and L(n) = [L(n−1)L(n−1)] for n > 0. If L(n) = {0} for some n ∈ N, then
L is called solvable. An important example of a solvable Lie algebra is the centre Z(L)
of L.

1.24. Lemma. Z(L) is solvable.

Proof. For all x, y ∈ Z(L), we have [xy] = 0 by definition, hence [Z(L)Z(L)] = {0}. �

1.25. Solvability is a weaker property than nilpotency (Lemma 1.26) - a fact we use
multiple times. Although it is also true that [LL] is nilpotent if L is solvable. This result
(Theorem 1.27) is a corollary to Lie’s theorem and shall be taken as an assumption. It is
used in Section 10: Orthogonality Properties.

1.26. Lemma. Let L be nilpotent. Then L is solvable.

Proof. Suppose L(i) ⊆ ad(L)i(L) for some i ∈ N. Then, as L(i) ⊆ L, we have

L(i+1) = [L(i)L(i)] ⊆ [ad(L)i(L)L] = ad(L)i+1(L).

Further, L(1) = [LL] = ad(L)(L). Therefore, by induction, L(i) ⊆ ad(L)i(L) for all i ∈ N.
As L is nilpotent, ad(L)n(L) = {0} for some n ∈ N, hence L(n) ⊆ ad(L)n(L) = {0}.

Therefore L(n) = {0}, so L is solvable. �

1.27. Theorem (Corollary to Lie’s Theorem). Let L be solvable and let x ∈ [LL]. Then
the map adL(x) is nilpotent. Further, [LL] is nilpotent.

Proof. See Corollary 4.1C of [4]. �

1.28. We have seen that the centre of L is solvable and an ideal. This gives Z(L) a
property (Proposition 1.29) which we need to prove a corollary to Cartan’s Criterion in
Section 4. We prove this result for an arbitrary solvable ideal.

1.29. Proposition. Let I be a solvable ideal of L. Suppose L/I is solvable. Then L is
solvable.

10



Proof. Suppose (L/I)(i) = L(i)/I for some i ∈ N. Then

(L/I)(i+1) = [(L/I)(i)(L/I)(i)]

= [(L(i)/I)(L(i)/I)]

= span
{

[(x+ I)(y + I)] : x, y ∈ L(i)
}

= span
{

[xy] + I : x, y ∈ L(i)
}

= span
{
x+ I : x ∈ [L(i)L(i)]

}
= [L(i)L(i)]/I

= L(i+1)/I.

We have (L/I)0 = L/I = L(0)/I, so by induction we have that (L/I)(i) = L(i)/I for all
i ∈ N.

As L/I is solvable, (L/I)(n) is zero for some n ∈ N. Consider the canonical homomor-
phism

π : L→ L/I : x 7→ x+ I.

As (L/I)(n) = L(n)/I, we have

π(L(n)) =
{
x+ I : x ∈ L(n)

}
= L(n)/I = (L/I)(n).

Therefore, L(n) ⊆ ker(π) = I. As I is solvable, I(m) = {0} for some m ∈ N, hence

L(n+m) = (L(n))(m) ⊆ I(m) = {0} .
That is, L(n+m) = {0}, so L is solvable. �

1.30. Example. We use the toy example of L = sl2(F). By definition, this consists of
traceless 2× 2 matrices over F. So elements of L can have arbitrary off-diagonal entries,
and the diagonal entries must sum to zero. That is,

L =

{(
a b
c −a

)
: a, b, c ∈ F

}
.

It would seem natural, then, to choose the basis

x =

(
0 1
0 0

)
, y =

(
0 0
1 0

)
, h =

(
1 0
0 −1

)
.

This turns out to be a good choice, as it fits well with the structure theory which we
develop later. It is considered the standard basis for sl2(F).

As a subalgebra of gl2(F), the Lie bracket is given by [xy] = x ◦ y − y ◦ x. That is,

[xy] =

(
1 0
0 0

)
−
(

0 0
0 1

)
=

(
1 0
0 −1

)
= h,

[hx] =

(
0 1
0 0

)
−
(

0 −1
0 0

)
=

(
0 2
0 0

)
= 2x,

[hy] =

(
0 0
−1 0

)
−
(

0 0
1 0

)
=

(
0 0
−2 0

)
= −2y.
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2. Semisimplicity and Simultaneous Diagonalisation

Results about Jordan decomposition (Section 3) and root-space decomposition (Sec-
tion 5) rely upon the ability to find a basis on which multiple diagonalisable maps are
simultaneously diagonal. We prove results to that effect in this section.

Throughout this section, V denotes a finite dimensional vector space over F. From this
section onwards, we assume F is algebraically closed.

2.1. Definition. Let x ∈ End(V ). We call x semisimple if the roots of its minimal
polynomial are all distinct. As F is algebraically closed, this is equivalent to x being
diagonalisable.

2.2. Lemma. Let x ∈ gl(V ) be semisimple. Let (v1, · · · , vn) be a basis for V on which x
is diagonal. Denote the standard basis vectors of gl(V ) relative to (v1, · · · , vn) by ei,j for
i, j = 1, · · · , n. That is, ei,j(vk) = δi,kvj. Then xei,j = λiei,j and ei,jx = λjei,j, where the
values λ1, · · · , λn are the eigenvalues of x corresponding to v1, · · · , vn respectively.

Proof. For each k = 1, · · · ,m, we have

(ei,jx)(vk) = λkei,j(vk) = λkδi,kvj.

But when k = i, we have

λkδi,kvj = λiδi,ivj = λiei,j(vk),

and when k 6= i, we have

λkδi,kvj = 0 = λiδi,kvj = λiei,j(vk).

That is, (ei,jx)(vk) = λiei,j(vk) for all k = 1, · · · ,m, hence ei,jx = λiei,j. Similarly,
xei,j = λjei,j. �

2.3. Proposition. Let x1, · · · , xm, y ∈ End(V ) commute and be diagonalisable. Suppose
that x1, · · · , xm are simultaneously diagonal with respect to some basis B = (e1, · · · , en)
of V . Then x1, · · · , xm, y are all simultaneously diagonalisable.

Proof. We are given that xi(ej) = λi,jej for some scalars λi,j ∈ F, for each i = 1, · · · ,m
and j = 1, · · · , n. Then, as the maps commute,

xi(y(ej)) = y(xi(ej)) = λi,jy(ej),

for each i and j. So y stabilizes the eigenspaces of all the xi. Therefore, if V is decomposed
into the intersections of the eigenspaces of all the xi, say V1, · · · , Vr, then y stabilizes
each Vj. Therefore, if we consider these maps as matrices with respect to B, then we can
consider y and all the xi as block diagonal matrices with blocks corresponding to the Vj.
Then the xi consist of scalar blocks. Specifically,

xi =

Λi,1

. . .
Λi,r

 ,

for each i = 1, · · · ,m, where the blocks Λi,j are all scalar matrices (not necessarily distinct
scalars), and Λ1,j, · · · ,Λr,j are all the same size for each j. As for y, we can write

y =

Y1

. . .
Yr

 ,
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where each block Yj is a square matrix of the same size as the Λi,j. If a block-diagonal
matrix is diagonalisable, then each block must be diagonalisable, so each block Y1, · · · , Yr
is diagonalisable.

Therefore, for each j = 1, · · · , r, we have that Dj = CjYjC
−1
j is diagonal for some

change of basis matrix Cj. Note that

CjΛi,jC
−1
j = Cj(λi,jI)C−1

j = λi,j(CjC
−1
j ) = λi,jI = Λi,j,

for each i = 1, · · · ,m and j = 1, · · · , r, as Λi,j is a scalar matrix for some eigenvalue
λi,j ∈ F of xi. So if we let

c =

C1

. . .
Cr

 ,

then cxic
−1 = xi for each i = 1, · · · , r. Further,

cyc−1 =

C1Y1C
−1
1

. . .
CrYrC

−1
r

 =

D1

. . .
Dr

 ,

which is diagonal. So conjugation by c preserves the diagonality of each xi and takes y
to a diagonal matrix. That is, if we apply c to the basis B, we obtain a basis on which
x1, · · · , xm, y are all diagonal. �

2.4. Corollary. Let A ⊆ End(V ) be some finite set of commuting diagonalisable maps.
Then all the maps in A are simultaneously diagonalisable.

Proof. We can use induction on |A| with Proposition 2.3 as the induction step. The base
case of |A| = 1 is trivially true. �

2.5. Lemma. Let x1, · · · , xr ∈ End(V ) be diagonal with respect to some basis B =
(e1, · · · , en) of V . Then any linear combination of x1, · · · , xr is also diagonal with respect
to B.

Proof. Let y ∈ End(V ) be some linear combination of x1, · · · , xn. That is,

y =
r∑
i=1

µixi

for some set of scalars µi ∈ F. We have that xi(ej) = λi,jej for some λi,j ∈ F, for each
i = 1, · · · , r and j = 1, · · · , n. Therefore,

y(ej) =
n∑
i=1

µixi(ej) =
n∑
i=1

µiλi,jej =

(
n∑
i=1

µiλi,j

)
ej,

for each j = 1, · · · , n, hence y is diagonal with respect to B. �

2.6. Theorem. Let A ⊆ End(V ) be some set of commuting diagonalisable maps. Then
all the maps in A are simultaneously diagonalisable.

Proof. As A ⊆ End(V ), we must have that spanF(A) ⊆ End(V ) has a finite basis con-
tained in A, say x1, · · · , xr (where r ≤ dim(V )). By Corollary 2.4, the xi are simulta-
neously diagonalisable. Then by Lemma 2.5, any linear combination of x1, · · · , xr also
diagonalises simultaneously with x1, · · · , xr. That is, all maps in A are simultaneously
diagonalisable. �
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3. Jordan Decomposition

Jordan decomposition (or Jordan-Chevalley decomposition) is the idea that an endo-
morphism (or an element of a Lie algebra) can be split into a sum of two parts, one
nilpotent and one semisimple (or ad-nilpotent and ad-semisimple for Lie algebras).

We begin with some results about semisimple and nilpotent endomorphisms. After
the main result (Jordan Decomposition), we extend the notion to abstract Lie algebras
through the adjoint representation, then show that the two correspond.

Throughout this section, V denotes a finite dimensional vector space over F.

3.1. Lemma. Let x, y ∈ End(V ). Suppose x and y commute and are both semisimple.
Then x+ y is semisimple.

Proof. As x and y commute and are diagonalisable, Proposition 2.3 implies that x and y
are simultaneously diagonalisable. Then Lemma 2.5 implies that x+ y is diagonalisable.

�

3.2. Lemma. Let x, y ∈ End(V ). Suppose x and y commute and are both nilpotent. Then
x+ y is nilpotent.

Proof. As x and y are nilpotent, there exist nx, ny ∈ N such that xnx = yny = 0. Let
n = max {nx, ny}. Then xn = yn = 0. Now consider

(x+ y)2n =
2n∑
i=1

(
2n

i

)
xiy2n−i.

Note that whenever i < n, we have 2n− i > n. So for each term in the sum, either xi = 0
or y2n−i = 0. Therefore, (x+ y)2n = 0, hence x+ y is nilpotent. �

3.3. Lemma. Let x ∈ End(V ). Suppose x is both nilpotent and semisimple. Then x = 0.

Proof. As x is semisimple, there exists a basis for V , say (v1, · · · , vn), and a collection of
scalars λ1, · · · , λn ∈ F such that x(vi) = λivi for all i = 1, · · · , n. On the other hand, x
is nilpotent, so xm = 0 for some m ∈ N. Therefore, xm(vi) = λmi vi = 0, hence λi = 0 and
x(vi) = 0 for all i = 1, · · · , n. That is, x = 0. �

3.4. Theorem (Jordan Decomposition). Let x ∈ End(V ). Then:

• There exist unique xs, xn ∈ End(V ), such that x = xs+xn, where xs is semisimple
and xn is nilpotent and xs and xn commute.
• There exist polynomials p(X), q(X) ∈ F[X], without constant term, such that xs =
p(x) and xn = q(x). In particular, xs and xn commute with any endomorphism
which commutes with x.
• Let A and B are subspaces of V where A ⊆ B ⊆ V . Suppose x(B) ⊆ A. Then
xs(B) ⊆ A and xn(B) ⊆ A.

Proof. Let χ be the characteristic polynomial of x. This can be expressed as

χ(X) =
n∏
i=1

(X − λi)mi ,

for some n ∈ N, where the values λ1, · · · , λn are the distinct eigenvalues of x with
corresponding multiplicities m1, · · · ,mn. Let 1V denote the identity in End(V ). Define

Vi = ker ((x− λi1V )mi) .
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As F is algebraically closed, all roots of the polynomial χ(X) exist, hence V can be
expressed as the direct sum of these subspaces:

V =
n⊕
i=1

Vi. (3.4.1)

As x commutes with itself and 1V , it commutes with (x−λi1V ) and hence (x−λi1V )mi .
Therefore,

(x− λi1V )mi(x(v)) = x((x− λi1V )mi(v)) = x(0) = 0

and hence x(v) ∈ Vi for all v ∈ Vi. That is, x(Vi) ⊆ Vi. Therefore, x can be considered
as a linear endomorphism of each Vi. In this regard, x has characteristic polynomial
(X − λi)

mi . Applying the Chinese Remainder Theorem for the ring F[X] allows us to
find a polynomial p satisfying p(X) ≡ 0 mod X and

p(X) ≡ λi mod (X − λi)mi (3.4.2)

for each i = 1, · · · , n.
Set q(X) = X − p(X). As p(X) ≡ 0 mod X, there exists some r ∈ F[X] satisfying

p(X) = 0 +Xr(X),

hence p ∈ XF[X]. Therefore, q(X) = X − Xr(X) = X(1 − r(X)), hence both p and q
have no constant term.

Let xs = p(x) and xn = q(x). As xs and xn are polynomials in x, they commute with
each other and any endomorphisms which commute with x, in addition to stabilizing
any subspaces stabilized by x. In particular, they stabilize Vi for each i = 1, · · · , n.
By (3.4.2), we have that p(X) = λi + r(X)(X − λi)mi for some r ∈ F[X], hence xs =
p(x) = λi + r(x)(x − λi)

mi . Therefore, (xs − λi) = r(x)(x − λi)
mi . Let v ∈ Vi. Then

(x− λ1V )mi(v) = 0 by definition, hence

(xs − λi1V )(v) = (r(x)(x− λi1V )mi)(v) = r(x)(0) = 0.

That is, xs(v)− (λi1V )(v) = 0, hence xs(v) = λiv. As v ∈ Vi was arbitrary, this implies

xs = λi1V . (3.4.3)

Therefore, xs acts diagonally on Vi with sole eigenvalue λi. Therefore, by (3.4.1), xs
acts diagonally on the whole of V , hence is semisimple. Further, (3.4.3) implies that
xn = x− xs = x− λi1V , hence

xmin (v) = (x− λi1V )mi(v) = 0,

for all v ∈ Vi, hence xn is nilpotent on Vi. This is true for all i = 1, · · · , n, so by (3.4.1),
xn is nilpotent on the whole of V .

If U ⊆ V is a subspace stabilized by x, then U is stabilized by xk for any k ∈ N. As U
is a subspace, it is closed under addition and scalar multiplication and so is also stabilized
by any sum or scalar multiple of stabilizing endomorphisms. That is, U is stabilised by
any polynomial of x without constant term, in particular xs and xn.

Now it only remains to prove uniqueness. Suppose x = s + n is another such decom-
position of x. Then

s+ n = x = xs + xn =⇒ xs − s = n− xn
and by part 2, all of these endomorphisms commute. Sums of commuting semisim-
ple/nilpotent endomorphisms are also semisimple/nilpotent (Lemma 3.1 and 3.2). Fur-
ther, if an endomorphism is both semisimple and nilpotent, then it is zero (Lemma 3.3).
Therefore, xs − s is semisimple; n− xn is nilpotent; and xs − s = n− xn. Thus, xs − s is
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both semisimple and nilpotent, hence zero. That is, xs − s = n − xn = 0, hence xs = s
and xn = n. Therefore the Jordan decomposition is unique. �

3.5. Lemma. Let x ∈ gl(V ) be nilpotent. Then ad(x) is nilpotent.

Proof. Consider the endomorphisms

λx : gl(V )→ gl(V ) : y 7→ x ◦ y,
ρx : gl(V )→ gl(V ) : y 7→ y ◦ x.

Let y ∈ gl(V ). As x is nilpotent, xn = 0 for some n ∈ N. Therefore,

(λx)
n(y) = xny = 0,

and
(ρx)

n(y) = yxn = 0,

for some n ∈ N, hence λx and ρx are both nilpotent. Further,

(λxρx)(y) = λx(ρx(y)) = x ◦ (y ◦ x) = (x ◦ y) ◦ x = ρx(λx(y)) = (ρxλx)(y),

so λx and ρx commute. Sums of commuting nilpotent endomorphisms are nilpotent
(Lemma 3.2), thus ad(x) = λx − ρx is nilpotent. �

3.6. Lemma. Let x ∈ gl(V ) be semisimple. Then ad(x) is semisimple.

Proof. As x is semisimple, there exists a basis, say (v1, · · · , vn), for V and some collection
of scalars λ1, · · · , λn ∈ F such that x(vi) = λivi for each i = 1, · · · , n. Denote the
standard basis vectors of gl(V ) relative to (v1, · · · , vn) by ei,j for i, j = 1, · · · , n. That is,
ei,j(vk) = δi,kvj. Then Lemma 2.2 implies that

ad(x)(ei,j) = [xei,j] = xei,j − ei,jx = λiei,j − λjei,j = (λi − λj)ei,j.
Therefore, ad(x) acts diagonally on gl(V ), hence is semisimple. �

3.7. Theorem. Let x ∈ End(V ) and let x = xs + xn be its Jordan decomposition. Then
ad(x) = ad(xs) + ad(xn) is the Jordan decomposition of ad(x) in End(End(V )).

Proof. We can write ad(x) = ad(xs + xn) = ad(xs) + ad(xn), as ad is linear. Then, for
y ∈ End(V ), we have

[ad(xs) ad(xn)](y) = ad(xs) ad(xn)(y)− ad(xn) ad(xs)(y)

= [xs[xny]]− [xn[xsy]].

Applying the Jacobi identity (1.2.3), we get

[xs[xny]]− [xn[xsy]] = [y[xnxs]] = −[[xnxs]y] = − ad([xnxs])(y).

This implies that [ad(xs) ad(xn)] = ad([xnxs]). By Theorem 3.4, xn and xs commute,
hence ad([xnxs]) = 0. Therefore, [ad(xs) ad(xn)] = 0, so ad(xs) and ad(xn) commute.
As xs is semisimple, ad(xs) is semisimple (Lemma 3.6); as xn is nilpotent, ad(xn) is
nilpotent (Lemma 3.5). Therefore, ad(x) = ad(xs) + ad(xn) is the Jordan decomposition
of ad(x). �

3.8. If L is a Lie algebra and x ∈ L, then we can consider the Jordan decomposition
of ad(x) ∈ End(L). The above results show that this decomposition corresponds to the
Jordan decomposition of x in L, if L is a linear Lie algebra. If L is an abstract Lie algebra
- that is, not consisting of endomorphisms - then the Jordan decomposition of an element
x ∈ L is simply taken to be that corresponding to the Jordan decomposition of ad(x).
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4. Cartan’s Criterion

We begin with a result about fields of characteristic zero, which will be used imme-
diately to prove a trace criterion for endomorphism nilpotency (Lemma 4.2), as well as
later, in Section 12: Rationality Properties. We also prove an associativity identity on the
trace function (Proposition 4.3). These results will be used to prove Cartan’s Criterion
(Theorem 4.4). It will, however, be the corollary to Cartan’s Criterion which we will rely
upon in Section 7: The Killing Form.

Throughout this section, V denotes a finite dimensional vector space over F. From this
section onwards, we assume that F has characteristic 0 (in addition to algebraic closure).

4.1. Proposition. As F has characteristic zero, Q ⊆ F.

Proof. As F is a field, by definition we have that 1 ∈ F, where 1 denotes the multiplicative
identity. As F has characteristic zero, we have that n = (1 + · · · + 1) ∈ F for all n ∈ N.
That is, N ⊆ F.

Also by definition, we have 0 ∈ F and that F contains the additive inverses of all its
elements. That is, x ∈ F implies −x ∈ F. Therefore, −N ⊆ F. Thus we have

Z = (N ∪ {0} ∪ (−N)) ⊆ F.
Further, F contains the multiplicative inverses of all its nonzero elements. That is,

x ∈ F \ {0} implies x−1 ∈ F. Let q ∈ Q \ {0}. Then q = z/n for some z ∈ Z and n ∈ N.
By the above, z, n ∈ F, hence n−1 ∈ F. Thus,

q =
z

n
= zn−1 ∈ F,

as F is closed under multiplication. That is, Q ⊆ F. �

4.2. Lemma. Let A,B be subspaces of gl(V ) such that A ⊆ B. Let

M = {x ∈ gl(V ) : [xB] ⊆ A}
and y ∈M . Suppose trace(yz) = 0 for all z ∈M . Then y is nilpotent.

Proof. Let x = s+ n be the Jordan decomposition of x. As s is semisimple, there exists
a basis of V , say (v1, · · · , vm), and some collection of scalars λ1, · · · , λm ∈ F, such that
s(vi) = λivi for each i = 1, · · · ,m. The field F has characteristic zero, so by (Proposition
4.1), we have Q ⊆ F.

Let E = spanQ {λ1, · · · , λm} be the vector space over Q spanned by the scalars λi. This
is a vector subspace of F, where F is considered as a vector space over Q. Denote the
dual space of E by E∗. Then the following statements are all equivalent: x is nilpotent;
x = n; s = 0; the scalars λ1, · · · , λm are all zero; E = {0}; E∗ = {0}. In particular,

E∗ = {0} =⇒ x nilpotent. (4.2.1)

Let f ∈ E∗. Let y ∈ gl(V ) be such that y(vi) = f(ai)vi for each i = 1, · · · ,m. Then y
is semisimple by definition. Then Lemma 2.2 implies that ei,js = λiei,j and sei,j = λjei,j,
as well as ei,jy = f(λi)ei,j and yei,jy = f(λj)ei,j. Therefore,

ad(s)(ei,j) = [sei,j] = sei,j − ei,js = (λj − λi)ei,j,
ad(y)(ei,j) = [yei,j] = yei,j − ei,jy = (f(λi)− f(λj))ei,j.

Note that, if λi−λj = λk−λl for some values of i, j, k, l, then f(λi−λj) = f(λk−λl),
hence f(λi) − f(λj) = f(λk) − f(λl). Further, if λi − λj = 0 for some values of i and
j, then f(λi − λj) = f(λi) − f(λj) = 0. Therefore, for all pairs of i and j, the points
(0, 0) and (λi − λj, f(λi)− f(λj)) are either equal or have distinct first coordinates. We
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can therefore use polynomial interpolation with these points to construct a polynomial
r ∈ F[T ] satisfying both r(0) = 0 and r(λi − λj) = f(λi)− f(λj) for all pairs of i and j.
Therefore,

r(ad(s))(ei,j) =

(∑
k

rk ad(s)k

)
(ei,j)

=
∑
k

rk ad(s)k(ei,j)

=
∑
k

rk(λi − λj)kei,j

=

(∑
k

rk(λi − λj)k
)
ei,j

= r(λi − λj)ei,j
= (f(λi − λj))ei,j
= ad(y)(ei,j),

for each pair of i and j, hence r(ad(s)) = ad(y).
As ad(s) is the semisimple part of the Jordan decomposition of ad(x) (Theorem 3.7),

ad(s) can be written as a polynomial in ad(x) with no constant term (Theorem 3.4).
Therefore, ad(y) is also a polynomial in ad(x) without constant term. Then, by the
assumption of the theorem, we have that ad(x)(B) ⊆ A, hence ad(y)(B) ⊆ A. But this
implies that y ∈M , hence trace(xy) = 0 by assumption.

We can calculate

(xy)(vi) = x(f(λi)vi)

= f(λi)x(vi)

= f(λi)(s(vi) + n(vi))

= f(λi)λivi + f(λi)n(vi),

where n(vi) contains no terms in vi, as n is nilpotent. Therefore,

0 = trace(xy) =
m∑
i=1

f(λi)λi.

As f(λi) ∈ Q and λi ∈ E, this expression is a Q-linear combination of elements of E, so
we can apply f to get

f

(
m∑
i=1

f(λi)λi

)
=

m∑
i=1

f(f(λi)λi)

=
m∑
i=1

f(λi)f(λi)

=
m∑
i=1

f(λi)
2, (4.2.2)

which equals f(0) = 0. As f ∈ E∗, we have that f(λi) ∈ Q for each i = 1, · · · ,m, hence
either f(λi)

2 > 0 or f(λi) = 0. This implies that f(λi) = 0 for all i = 1, · · · ,m, as
expression (4.2.2) equals zero. That is, f = 0. As f ∈ E∗ was arbitrary, we have shown
that E∗ = {0}. Therefore, by (4.2.1), x is nilpotent. �
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4.3. Proposition. Let x, y, z ∈ gl(V ). Then

trace([xy]z) = trace(x[yz]).

Proof. From the definition of the Lie bracket in gl(V ), we have

[xy]z = (xy − yx)z = xyz − yxz
and

x[yz] = x(yz − zy) = xyz − xzy.
Therefore, using the fact that trace(ab) = trace(ba) for all a, b ∈ gl(V ), in addition to the
fact that trace is linear, we can calculate

trace([xy]z) = trace(xyz − yxz)

= trace(xyz)− trace(y(xz))

= trace(xyz)− trace((xz)y)

= trace(xyz − xzy)

= trace(x[yz]).

�

4.4. Theorem (Cartan’s Criterion). Let L be a Lie subalgebra of gl(V ). Suppose that
trace(xy) = 0 for all x ∈ [LL] and y ∈ L. Then L is solvable.

Proof. By Lemma 4.2, if we let A = [LL] and B = L, then

M = {x ∈ gl(V ) : [xL] ⊆ [LL]}
and all x ∈M which satisfy trace(xy) = 0 for all y ∈M must be nilpotent.

Let x ∈ [LL]. Then x = [x1x2] for some x1, x2 ∈ L. Let z ∈ M . Then [zL] ⊆ [LL] by
definition, hence [zx1], [zx2] ∈ [LL]. Then the supposition implies that trace([zx1]x2) = 0.
Therefore (by Proposition 4.3),

0 = trace([zx1]x2) = trace(z[x1x2]) = trace(zx) = trace(xz).

As x ∈ [LL] ⊆ L, we have [xL] ⊆ [LL], hence x ∈ M by definition. Therefore, as z ∈ M
was arbitrary, we have that x is nilpotent. As x ∈ [LL] was arbitrary, this implies that all
x ∈ [LL] are nilpotent, hence [LL] is nilpotent by Engel’s Theorem. Nilpotency implies
solvability (Lemma 1.26), hence [LL] is solvable, which implies that L is solvable. �

4.5. Corollary. Suppose that trace(ad(x) ad(y)) = 0 for all x ∈ [LL] and y ∈ L. Then L
is solvable.

Proof. Consider the adjoint representation of L,

ad : L→ gl(L) : x 7→ ad(x).

As ad is a homomorphism, we have that ad(L) is a Lie subalgebra of gl(L), and that
[ad(L) ad(L)] = ad([LL]). That is, x ∈ [LL] for all ad(x) ∈ [ad(L) ad(L)]. Therefore,
by assumption, trace(ad(x) ad(y)) = 0 for all ad(x) ∈ [ad(L) ad(L)] and ad(y) ∈ ad(L).
Then (Theorem 4.4) implies that ad(L) is solvable.

We have that ker(ad) = Z(L) (Remark 1.17). Thus ker(ad) = Z(L) is a solvable ideal
of L (Lemma 1.24 and Lemma 1.8). Further, L/ ker(ad) ∼= ad(L), which we have shown
is solvable. Therefore, Proposition 1.29 implies that L is solvable. �
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5. Toral Subalgebras

We introduce a type of Lie subalgebra called a torus. Tori play a central role in
the structure of Lie algebras. We show that nonzero tori always exist in semisimple
Lie algebras, and in the following section, we use the properties of tori to decompose
semisimple L around a maximal torus.

5.1. Definition. Let T be a nonzero Lie subalgebra of L. If all elements of T are
semisimple (Definition 2.1), then T is called a toral subalgebra or a torus.

5.2. Proposition. Let T be a toral subalgebra of L. Then T is Abelian.

Proof. T is Abelian if [tt′] = 0 for all t, t′ ∈ T . That is, if adT (t) = 0 for all t ∈ T . This
is the case if adT (t) has all zero eigenvalues.

Let t ∈ T and suppose (for a contradiction) adT (t) has a nonzero eigenvalue λ ∈ F
with eigenvector s ∈ T . That is,

adT (t)(s) = λs 6= 0, (5.2.1)

hence
adT (s)(t) = − adT (t)(s) = −λs,

which implies that

adT (s)([st]) = adT (s)(−λs) = −λ adT (s)(s) = 0, (5.2.2)

hence [st] ∈ T is an eigenvector of adT (s) with eigenvalue 0.
On the other hand, s ∈ T , hence is semisimple, hence adT (s) is diagonalisable. There-

fore there exists an adT (s)-eigenbasis for T , say e1, · · · , en with corresponding eigenvalues
λ1, · · · , λn. t can then be expressed as

t =
n∑
i=1

µiei,

for some set of coefficients µi ∈ F, with at least one µi 6= 0.Then

[st] = adT (s)

(
n∑
i=1

µiei

)
=

n∑
i=1

µi adT (s)(ei) =
n∑
i=1

µiλiei,

hence

adT (s)([st]) = adT (s)

(
n∑
i=1

µiλiei

)
=

n∑
i=1

µiλi adT (s)(ei) =
n∑
i=1

µiλ
2
i ei. (5.2.3)

If [st] = 0, then [ts] = 0, which contradicts the supposition (5.2.1), hence [st] 6= 0.
Therefore, for some i = 1, · · · , n, the the coefficient of ei is nonzero. That is, µiλi 6= 0,
which implies that both µi and λi are nonzero. Hence µiλ

2
i 6= 0, which, when applied

to (5.2.3), implies that adT (s)([st]) 6= 0. This contradicts (5.2.2), hence the supposition
that adT (t) has a nonzero eigenvalue must be false. As adT (t) is diagonalisable and has
all eigenvalues equal 0, adT (t) = 0. As t ∈ T was arbitrary, we have that adT (t) = 0 for
all t ∈ T . That is, [tt′] = 0 for all t, t′ ∈ T . �

5.3. Definition. The radical of L, denoted Rad(L), is the maximal solvable ideal of L.
This is unique, due to the fact that sums of solvable ideals are also solvable ideals. We
call L semisimple (not to be confused with semisimple elements of L) if L is nonzero
and Rad(L) = {0}.
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5.4. Proposition. Let L be semisimple. Then Z(L) = {0}.

Proof. Z(L) is an ideal of L (Lemma 1.8) and is solvable (Lemma 1.24), hence is contained
in Rad(L) = {0}. �

5.5. If L is simple, then Rad(L) is either L or zero. If Rad(L) = L, then L is solvable,
hence [LL] 6= L. But this contradicts simplicity (Remark 1.10), hence Rad(L) = {0}.

That is, if L is simple, then L is also semisimple.

5.6. Lemma. Let L be semisimple. Then adL is injective.

Proof. Apply Proposition 5.4 to Remark 1.17. �

5.7. Lemma. Let L be simple. Then L is not nilpotent.

Proof. As L is simple, we have that ad(L)(L) = [LL] = L (Remark 1.10), hence

ad(L)n(L) = ad(L)n−1(L) = · · · = ad(L)(L) = L 6= {0} ,
for all n ∈ N, hence L cannot be nilpotent. �

5.8. Lemma. Let L be semisimple. Then L is not nilpotent.

Proof. Let I be a maximal ideal of L. As L is semisimple, Rad(L) = {0}, hence either
I = {0} or I is not solvable. If I = {0}, then L is simple, hence Lemma 5.7 implies that
L is not nilpotent.

Otherwise, I is not solvable. As I is an ideal, we have that I ⊆ [LI] ⊆ [LL]. Together
these imply that [LL] is not solvable. Nilpotency implies solvability (Lemma 1.26), hence
non-solvability implies non-nilpotency. Therefore [LL] is not nilpotent and so L must not
be nilpotent. �

5.9. Theorem. Let L be semisimple. Then L contains a nonzero toral subalgebra.

Proof. Lemma 5.8 implies that L is not nilpotent. Therefore, by Engel’s Theorem (1.21),
not all x ∈ L can be nilpotent. That is, there exists some x ∈ L, where if x = xn + xs
is its Jordan decomposition, then xs 6= 0. As xs ∈ L is semisimple, this implies that
span {xs} is a nonzero subalgebra of L consisting of semisimple elements: a torus. �

5.10. Definition. If T is a toral subalgebra of L and there exists no other toral subalgebra
T ′ such that T ⊂ T ′, then T is called a maximal toral subalgebra or maximal torus.

5.11. Example. We return to our toy example of L = sl2(F). We want to prove that L
is simple and find a maximal torus.

Suppose L has an ideal I. Recall the multiplication calculated in Example 1.30:

[xy] = h, [hx] = 2x, [hy] = −2y.

We then have

[Lx] = span {[xx], [yx], [hx]} = span {−h, 2x} = Fh⊕ Fx,
[Ly] = span {[xy], [yy], [hy]} = span {h,−2y} = Fh⊕ Fy,
[Lh] = span {[xh], [yh], [hh]} = span {−2x, 2y} = Fx⊕ Fy.

Therefore, if h ∈ I, we must have x, y ∈ I, hence I = L. Further, if either x or y is in I,
then h ∈ I. That is, if any one of x, y or h (or any nonzero multiple of these) is contained
in I, then I = L.

Suppose ax+ bh ∈ I for nonzero a, b ∈ F. Then

[h(ax+ bh)] = a[hx] = 2ax ∈ I,
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hence x ∈ I. Similarly, if we suppose ay + bh ∈ I for nonzero a, b ∈ F, then

[h(ay + bh)] = a[hy] = −2ay ∈ I,
hence y ∈ I. Suppose ax+ by ∈ I for nonzero a, b ∈ F. Then

[x(ax+ by)] = b[xy] = bh ∈ I,
hence h ∈ I.

We have therefore shown that if ax + by + ch ∈ I and any of a, b, or c are zero, then
I = L. So suppose that ax+ by + ch ∈ I for nonzero a, b, c ∈ F. Then

[h(ax+ by + ch)] = a[hx] + b[hy] = 2ax− 2by ∈ I,
which by the above, implies that I = L again.

Therefore, the only nonzero ideal of L is L itself. That is, L is simple.
We now want to find a maximal toral subalgebra of L. We can see that h is semisimple,

as ad(h) maps x to 2x and y to−2y. Let T be the maximal toral subalgebra containing Fh.
Tori are Abelian (Proposition 5.2), so the fact that x and y do not commute with h, implies
that x, y /∈ T . Further, as [hx] = 2x and [hy] = −2y, there cannot exist nonzero scalars
a, b ∈ F such that ax+by commutes with h. Therefore, as [h(ax+by+ch)] = [h(ax+by)],
there cannot exist nonzero scalars a, b, c ∈ F such that ax + by + ch commutes with h.
That is, T = Fh is a maximal toral subalgebra of L.
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6. Root Space Decomposition

Tori are Abelian, hence their adjoint maps commute. Recall that commuting diago-
nalisable maps are simultaneously diagonalisable. So, given a torus, we can find a basis
for L on which the entire torus acts diagonally. This enables us to decompose the Lie
algebra into its maximal torus and a set of root spaces (defined below), parametrised by
elements in the dual of this torus, called roots. These roots and their corresponding root
spaces will turn out to have various interesting properties, and the roots will turn out to
form a structure known as a root system (14.1).

In this section and all subsequent sections, we fix L to be a semisimple Lie algebra and
T to be a maximal toral subalgebra of L, which exists by Theorem 5.9. We denote the
dual space of T by T ∗.

6.1. Definition. For α ∈ T ∗, we write

Lα = {x ∈ L : ∀t ∈ T : [tx] = α(t)x} .

If α 6= 0 and Lα 6= {0}, then we call α a root and Lα a root space of L. Note that Lα
is indeed a subspace of L, as both the Lie bracket and α are linear.

The set of roots is denoted by Φ. That is,

Φ = {α ∈ T ∗ \ {0} : Lα 6= {0}} .

6.2. Note that

L0 = {x ∈ L : ∀t ∈ T : [tx] = 0} = CL(T ),

where CL(T ) is the centraliser of T in L. As T is Abelian, we have [tx] = 0 for all t, x ∈ T ,
hence T ⊆ L0 = CL(T ).

6.3. Proposition. Root spaces are all linearly independent subspaces. Specifically, if
α, β ∈ Φ ∪ {0}, then

Lα ∩ Lβ 6= {0} ⇐⇒ α = β.

Proof. Let xβ ∈ Lβ for some β ∈ Φ. Suppose we have some set of linearly independent
root spaces Lα1 , · · · , Lαn with β /∈ {α1, · · · , αn}. Suppose also, that

xβ ∈
n⊕
i=1

Lαi .

That is,

xβ =
n∑
i=1

λixi

for some λi ∈ F and some nonzero xi ∈ Lαi . Then for all t ∈ T , we have [txβ] = β(t)xβ,
hence [

t

(
n∑
i=1

λixi

)]
= β(t)

(
n∑
i=1

λixi

)
=

n∑
i=1

λiβ(t)xi.

On the other hand, [txi] = αi(t)xi, hence[
t

(
n∑
i=1

λixi

)]
=

n∑
i=1

λi[txi] =
n∑
i=1

λiαi(t)xi.

The xi are all linearly independent by supposition, hence λiβ(t) = λiαi(t). As this holds
for all t ∈ T , the supposition that β 6= αi implies that λi = 0. This holds for all
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i = 1, · · · , n, hence xβ = 0. That is,

Lβ ∩
n⊕
i=1

Lαi = {0} ,

hence Lβ, Lα1 , · · · , Lαn are all linearly independent.
Extending inductively from n = 1, we get that all root spaces are linearly independent.

�

6.4. Theorem. L can be expressed as

L =
⊕
α∈T ∗

Lα = L0 ⊕
⊕
α∈Φ

Lα.

Proof. Let s, t ∈ T . As T is Abelian (Proposition 5.2), [st] = 0. Then by the Jacobi
identity, for all x ∈ L,

[s[tx]] + [x[st]] + [t[xs]] = 0,

hence

[s[tx]] = −[t[xs]] = [t[sx]].

That is,
(ad(s) ◦ ad(t))(x) = (ad(t) ◦ ad(s))(x),

hence the ad(t) ∈ End(L) for t ∈ T commute. We can therefore invoke Theorem 2.6: there
exists a shared eigenbasis of L for the maps {ad(t) : t ∈ T}, say e1, · · · , en. That is, a basis
on which all these maps diagonalise simultaneously. Therefore, for each i = 1, · · · , n,

∀t ∈ T : ad(t)(ei) = αi(t)ei,

where αi : T → F is a function mapping t ∈ T to the eigenvalue of ad(t) corresponding
to the eigenvector ei. As ad is linear, each αi is linear. So each αi ∈ T ∗ and satisfies
[tei] = αi(t)ei for all t ∈ T , hence ei ∈ Lαi . Linearity of the Lie bracket then implies
that Fei ⊆ Lαi . The αi are not necessarily distinct, but each α ∈ T ∗ gives distinct Lα
(Proposition 6.3), hence

L =
⊕
α∈T ∗

Lα.

By definition, the nonzero Lα in this sum either satisfy α = 0 or α ∈ Φ. Therefore,

L = L0 ⊕
⊕
α∈Φ

Lα.

�

6.5. The decomposition of L in Theorem 6.4 is called the root space decomposition
of L. We have that T ⊆ L0 by Remark 6.2. It will later turn out that T = L0.

6.6. Proposition. Let α, β ∈ T ∗. Then [LαLβ] ⊆ Lα+β.

Proof. Let x ∈ Lα and y ∈ Lβ. For all t ∈ T , we then have [tx] = α(t)x and [ty] = α(t)y.
From the Jacobi identity (1.2.3), we have

[t[xy]] = [x[ty]]− [y[tx]]

= [x (β(t)y)]− [y (α(t)x)]

= β(t)[xy]− α(t)[yx]

= β(t)[xy] + α(t)[xy]

= (α(t) + β(t))[xy]
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= (α + β)(t)[xy],

which implies that [xy] ∈ Lα+β. �

6.7. One specific case of the above result is when β = −α. We then have [LαL−α] ⊆ L0.

6.8. Example. We continue our toy example of L = sl2(F). Recall from Example 5.11
that T = Fh was a maximal torus of L. We can see that [hx] = 2x, so if we let α ∈ T ∗ be
the map sending h to 2, then we have x ∈ Lα. Further, [hy] = −2y = (−α)(h)y, hence
y ∈ L−α. We thus have Φ = {α,−α} and

L = T ⊕ Lα ⊕ L−α,
where T = Fh, Lα = Fx and L−α = Fy.
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7. The Killing Form

We introduce the Killing form: a symmetric bilinear form on L. This form will play a
key role in all to come. Here, we will show that a semisimple Lie algebra has a nondegen-
erate Killing form. Further, we show the restriction of the Killing form to L0 = CL(T )
is also nondegenerate. This result underpins the following section. We conclude with a
result about the non-orthogonality of certain root spaces.

We continue to take L to be semisimple, T to be a maximal torus of L and F to be
algebraically closed with characteristic zero.

7.1. Definition. Let L be a Lie algebra over F. The Killing form, κ, of L is a symmetric
bilinear form

κ : L× L→ F : (x, y) 7→ 〈x, y〉 ,
where

〈x, y〉 = trace(ad(x) ad(y)).

The radical of of the Killing form (not to be confused with the radical of L) is defined

Rad(κ) = {x ∈ L : ∀y ∈ L : 〈x, y〉 = 0} . (7.1.1)

A bilinear form is called nondegenerate if its radical is zero.

7.2. Proposition. The Killing form of a Lie algebra is associative with respect to the Lie
bracket.

Proof. Let x, y, z ∈ L. The maps ad(x), ad(y), ad(z) are linear, hence contained in gl(L).
Therefore, by Proposition 4.3, we have

trace([ad(x) ad(y)] ad(z)) = trace(ad(x)[ad(y) ad(z)]).

Further, the map ad : L→ DerL is a Lie algebra homomorphism (Lemma 1.16), so

ad([ab]) = [ad(a) ad(b)],

for all a, b ∈ L.
Therefore,

〈[xy], z〉 = trace(ad([xy]) ad(z))

= trace([ad(x) ad(y)] ad(z))

= trace(ad(x)[ad(y) ad(z)])

= trace(ad(x) ad([yz]))

= 〈x, [yz]〉 .

�

7.3. Lemma. The radical of the Killing form is an ideal of L.

Proof. Rad(κ) is an ideal if [LRad(κ)] ⊆ Rad(κ). So let x ∈ L and r ∈ Rad(κ) be
arbitrary. Then Proposition 7.2 implies that, for all y ∈ L,

〈[xr], y〉 = −〈[rx], y〉 = −〈r, [xy]〉 = 0,

hence [xr] ∈ Rad(κ), so we are done. �

7.4. Proposition. Let α, β ∈ T ∗ such that α + β 6= 0. Then 〈Lα, Lβ〉 = {0}.
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Proof. Let x ∈ Lα and y ∈ Lβ. As α + β 6= 0, there must exist some t ∈ T such that

(α + β)(t) 6= 0. (7.4.1)

Then [tx] = α(t)x and [ty] = β(t)y. We have that 〈[xt], y〉 = 〈x, [ty]〉 (Proposition 7.2),
hence

0 = 〈x, [ty]〉 − 〈[xt], y〉
= 〈x, [ty]〉+ 〈[tx], y〉
= 〈x, β(t)y〉+ 〈α(t)x, y〉
= β(t) 〈x, y〉+ α(t) 〈x, y〉
= (α(t) + β(t)) 〈x, y〉
= (α + β)(t) 〈x, y〉 .

Therefore either (α + β)(t) = 0 or 〈x, y〉 = 0; the former contradicts (7.4.1), hence the
latter must be true. As x ∈ Lα and y ∈ Lβ were arbitrary, this implies 〈Lα, Lβ〉 = {0}. �

7.5. Proposition. Let L be semisimple. Then the Killing form, κ, is nondegenerate.

Proof. By definition of semisimple,

Rad(L) = {0} , (7.5.1)

where Rad(L) is the maximal solvable subalgebra of L.
Let S = Rad(κ). Then by definition, for all x ∈ S and y ∈ L,

〈x, y〉 = trace(ad(x) ad(y)) = 0.

More specifically (as [SS] ⊆ L), for all x ∈ S and y ∈ [SS],

trace(ad(x) ad(y)) = 0.

Therefore Corollary 4.5 implies S is solvable. S is an ideal of L (Lemma 7.3), hence
is contained in the maximal ideal Rad(L). But Rad(L) = {0}, so S = Rad(κ) = {0}.
Therefore the Killing form is nondegenerate. �

7.6. Proposition. Let L be semisimple. Then the restriction of the Killing form to L0 is
nondegenerate.

Proof. By Proposition 7.5, the Killing form is nondegenerate on L. By definition, 0 /∈ Φ,
so by Proposition 7.4, for all α ∈ Φ,

〈L0, Lα〉 = {0} . (7.6.1)

Let κ0 be the restriction of κ to L0 and let x ∈ Rad(κ0). Then, for all y0 ∈ L0,

〈x, y0〉 = 0. (7.6.2)

Further, by (7.6.1), for all α ∈ Φ and yα ∈ Lα,

〈x, yα〉 = 0. (7.6.3)

Recall that we have the decomposition (Theorem 6.4)

L = L0 ⊕
⊕
α∈Φ

Lα,

hence any y ∈ L can be expressed as

y = y0 +
∑
α∈Φ

yα
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for some y0 ∈ L0 and collection of yα ∈ Lα. Therefore, by (7.6.2) and (7.6.3), for all
y ∈ L,

〈x, y〉 =

〈
x, y0 +

∑
α∈Φ

yα

〉
= 〈x, y0〉+

∑
α∈Φ

〈x, yα〉

= 0.

That is, x ∈ Rad(κ) = {0}. As x ∈ Rad(κ0) was arbitrary, we have Rad(κ0) = {0},
hence κ0 is nondegenerate. �

7.7. Proposition. Let α ∈ Φ. Then 〈Lα, L−α〉 = F 6= {0}. Specifically, 〈x, L−α〉 = F for
all x ∈ Lα \ {0}.

Proof. Firstly, note that the first assertion follows from the second, as α ∈ Φ implies that
Lα 6= {0}.

Let x ∈ Lα. Suppose 〈x, L−α〉 = {0}. By Proposition 7.4, we have that, for all β ∈ T ∗,
β 6= −α =⇒ 〈x, Lβ〉 = {0} .

But, by the supposition, we also have

β = −α =⇒ 〈x, Lβ〉 = {0} .
Therefore 〈x, Lβ〉 = {0} for all β ∈ T ∗. But by (Theorem 6.4),

L =
⊕
β∈T ∗

Lβ,

therefore 〈x, L〉 = {0}. But as the Killing form is nondegenerate (Proposition 7.5), this
implies that x = 0. As x was arbitrary, this shows that Lα = {0}, which contradicts the
assumption that α ∈ Φ. Therefore, the supposition that 〈x, L−α〉 = {0} must be false.

As 〈x, L−α〉 6= {0}, linearity implies that 〈x, L−α〉 = F: take some y ∈ L−α such that
〈x, y〉 = λ 6= 0, then

F = Fλ = F 〈x, y〉 = 〈x,Fy〉 ⊆ 〈x, L−α〉 ⊆ F.
�

7.8. Corollary. If α ∈ Φ then −α ∈ Φ.

Proof. Suppose −α /∈ Φ. Then L−α = {0} by definition, hence 〈Lα, L−α〉 = {0}. But
this contradicts Proposition 7.7, so the supposition is false and α ∈ Φ. �
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8. The Maximal Torus

Our goal in this section is to prove that T = L0. From this, we will obtain two useful
results: that the Killing form is nondegenerate when restricted to T , and that the root
space decomposition of L (Theorem 6.4) is centred around T .

We continue to take L to be semisimple, T to be a maximal torus of L and F to be
algebraically closed with characteristic zero.

8.1. Lemma. Let V be a finite dimensional vector space over F and x, y ∈ End(V ) such
that y is nilpotent and xy = yx. Then xy is nilpotent and trace(xy) = 0.

Proof. As y is nilpotent, there exists some n ∈ N such that yn = 0. Therefore, the
commutativity of x and y implies that (xy)n = xnyn = xn · 0 = 0. That is, xy is
nilpotent.

The trace of xy is equal to the constant term in the characteristic polynomial of xy.
But as xy is nilpotent, this is zero. �

8.2. Lemma. Let x, y ∈ L such that y is nilpotent and [xy] = 0. Then 〈x, y〉 = 0.

Proof. By the definition of the Lie bracket on gl(L), the fact that ad is a Lie algebra
homomorphism (Lemma 1.16) and the assumption that [xy] = 0, we have

ad(x) ad(y)− ad(y) ad(x) = [ad(x) ad(y)]

= ad([xy])

= ad(0)

= 0.

Therefore, ad(x) ad(y) = ad(y) ad(x). That is, the maps ad(x) and ad(y) commute.
Further, as y is nilpotent, ad(y) is nilpotent, by definition.

So ad(x) and ad(y) satisfy the criteria for Lemma 8.1, hence

〈x, y〉 = trace(ad(x) ad(y)) = 0.

�

8.3. Lemma. Let x ∈ Z(L0) be nilpotent. Then x = 0.

Proof. Let y ∈ L0. As x ∈ Z(L0), we have [xy] = 0. As x is nilpotent, Lemma 8.2 implies
〈x, y〉 = 0. Thus 〈x, L0〉 = {0}, as y ∈ L0 was arbitrary, hence x is in the radical of the
Killing form restricted to L0. This radical is zero (Proposition 7.6), hence x = 0. �

8.4. Lemma. Let x ∈ L0. If x = xn + xs is its Jordan decomposition, then xn, xs ∈ L0.

Proof. Recall that L0 = {y ∈ L : ∀t ∈ T : [yt] = 0}. So by definition,

ad(x)(T ) = {0} . (8.4.1)

The Jordan decomposition of ad(x) in gl(L) is

ad(x) = ad(xn) + ad(xs).

One property of Jordan decomposition (Theorem 3.4) is that if A ⊆ B ⊆ L are subspaces,
then

ad(x)(B) ⊆ A =⇒

{
ad(xs)(B) ⊆ A,

ad(xn)(B) ⊆ A.

Applying this to A = {0} and B = T , we obtain ad(xs)(T ) = {0} and ad(xn)(T ) = {0}.
Therefore xn, xs ∈ L0. �
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8.5. Lemma. Let x ∈ L0 be semisimple. Then x ∈ T .

Proof. Let t ∈ T and y = λx for some λ ∈ F. Then both t and y are semisimple. Further,
[yt] = 0, as y ∈ L0.

Semisimplicity is, by definition, equivalent to ad-semisimplicity, hence ad(y) and ad(t)
are semisimple. As [yt] = 0, the maps ad(y) and ad(t) commute (Lemma 1.18). Sums of
commuting semisimple maps are semisimple (Lemma 3.1), thus (ad(y)+ad(t)) = ad(y+t)
is semisimple. Therefore y + t is semisimple.

As t ∈ T and y ∈ Fx were arbitrary, we have just shown that the space T +Fx consists
entirely of semisimple elements.

As x ∈ L0, we have that [xT ] = {0}. Therefore (and as T is Abelian),

[(T + Fx)(T + Fx)] = [TT ] + [T Fx] + [FxT ] + [FxFx]

= [TT ] + F[xT ] + F[xx]

= {0}+ F {0}+ F {0}
= {0} ⊆ T + Fx.

Therefore, T + Fx is a Lie subalgebra of L. Further, as T + Fx consists entirely of
semisimple elements, it is a toral subalgebra. Clearly T ⊆ T +Fx. But as T is a maximal
toral subalgebra, it cannot be strictly contained by T + Fx, which implies T = T + Fx
and hence x ∈ T . �

8.6. Theorem. The restriction of the Killing form to T is nondegenerate.

Proof. Let x ∈ L0 and t ∈ Rad(κ|T ). That is, t ∈ T and 〈t, T 〉 = {0}. Let x = xs + xn
be the Jordan decomposition of x. Then xs, xn ∈ L0 by Lemma 8.4. Then as xs is
semisimple, we have xs ∈ T by Lemma 8.5. Therefore 〈t, xs〉 = 0. As xn ∈ L0, we have
[xnT ] = {0}. Specifically [xnt] = 0. As xn is nilpotent, we have ad(xn) is nilpotent.
Therefore, we can apply Lemma 8.2 to get 〈t, xn〉 = 0. Therefore, we have

〈t, x〉 = 〈t, xs + xn〉
= 〈t, xs〉+ 〈t, xn〉
= 0.

As x ∈ L0 was arbitrary, we have shown that 〈t, L0〉 = {0} and therefore that t is in
the radical of the Killing form restricted to L0. But this restriction of the Killing form
is nondegenerate (Proposition 7.6), hence the radical is zero. Therefore t = 0. As t was
arbitrary, we have shown that Rad(κ|T ) = {0}. Therefore, the restriction of the Killing
form to T is nondegenerate. �

8.7. Lemma. L0 is nilpotent.

Proof. Let x ∈ L0 and let x = xs + xn be its Jordan decomposition. That is, ad(x) =
ad(xs) + ad(xn) is the Jordan decomposition of ad(x). As L0 is a Lie subalgebra of L, we
can consider the restrictions of these adjoint maps to L0:

adL0(x) = adL0(xs) + adL0(xn).

We have xs, xn ∈ L0 by Lemma 8.4 and xs ∈ T by Lemma 8.5. Therefore, [xsL0] = {0}.
That is, adL0(xs) = 0. Therefore, adL0(x) = adL0(xn), which implies that adL0(x) is
nilpotent.

As x ∈ L0 was arbitrary, we have shown that all elements of L0 are ad-nilpotent. We
can therefore apply Engel’s Theorem (1.21) to get that L0 is nilpotent. �

8.8. Lemma. T ∩ [L0L0] = {0}.
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Proof. For t ∈ T and x ∈ L0 we have [tx] = 0. Therefore, utilizing the associativity of
the Killing form (Proposition 7.2), we get

〈T, [L0L0]〉 = {〈t, [xy]〉 : t ∈ T ; x, y ∈ L0}
= {〈[tx], y〉 : t ∈ T ; x, y ∈ L0}
= {〈0, y〉 : y ∈ L0}
= {0} .

Let t ∈ T ∩ [L0L0]. Then t ∈ [L0L0], so by the above, 〈t, T 〉 = {0}. That is, t ∈
Rad(κ|T ). But Rad(κ|T ) = {0} by Theorem 8.6, so t = 0. As t was arbitrary, we have
shown that T ∩ [L0L0] = {0}. �

8.9. Lemma. L0 is Abelian.

Proof. Suppose that L0 is nonAbelian. That is, [L0L0] 6= {0}. By Lemma 8.7, L0 is
nilpotent. As [L0L0] is an ideal of L0 (Lemma 1.6), we can apply Lemma 1.22 to get that
[L0L0] ∩ Z(L0) 6= {0}. So there exists a nonzero z ∈ [L0L0] ∩ Z(L0). This intersection is
contained in L0, so we have z ∈ L0.

z ∈ L0. (8.9.1)

Suppose this z is semisimple. Then Lemma 8.5 implies z ∈ T , hence by Lemma 8.8,

z ∈ T ∩ [L0L0] ∩ Z(L0) ⊆ T ∩ [L0L0] = {0} .

But z is nonzero, so this is a contradiction. Therefore, the supposition that z is semisimple
must be false. That is, if z = zn + zs is the Jordan decomposition of z, then zn 6= 0. As
z ∈ L0, Lemma 8.4 implies that zn ∈ L0. As z ∈ Z(L0), we have [zL0] = {0}, hence
ad(z)(L0) = 0. We can then apply Theorem 3.4: if A ⊆ B ⊆ L are subspaces, then

ad(z)(B) ⊆ A =⇒

{
ad(zs)(B) ⊆ A,

ad(zn)(B) ⊆ A.

If we let A = {0} and B = L0, we have that ad(zn)(L0) = {0}.
That is [znL0] = {0}, hence zn ∈ Z(L0). Therefore zn = 0 by Lemma 8.3. But

this contradicts the fact that zn 6= 0, so the supposition that L0 is nonAbelian must be
false. �

8.10. Theorem. T = L0.

Proof. Suppose that T 6= L0. We have that T ⊆ L0 (Remark 6.2), so the supposition
implies that there exists x ∈ L0 such that x /∈ T . Let x = xn + xs be the Jordan
decomposition of x. Then xs, xn ∈ L0 by Lemma 8.4, hence xs ∈ T by Lemma 8.5. If
xn ∈ T , then x = xs+xn ∈ T , contradicting the definition of x. Thus xn /∈ T (specifically,
xn 6= 0).
L0 is Abelian by Lemma 8.9, so xn ∈ Z(L0) = L0. Then Lemma 8.3 implies xn = 0.

But this contradicts the fact that xn 6= 0, so the supposition that T 6= L0 must be
false. �

8.11. Corollary. T = L0 and the root space decomposition of L can be expressed

L = T ⊕
⊕
α∈Φ

Lα.

Proof. See Theorem 6.4 and Theorem 8.10. �
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8.12. By Theorem 8.6, the Killing form is nondegenerate when restricted to T . Therefore,
we can express a correspondence between T and T ∗ as follows: for each φ ∈ T ∗, there
exists a unique tφ ∈ T such that φ(t) = 〈tφ, t〉 for all t ∈ T .
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9. Modules and Weights

We introduce the basics of modules and present Weyl’s Theorem (which we will take as
an assumption: see [4] for a proof). We then introduce the notion of weights and discuss
the representation theory of sl2(F). This is important to the larger theory of semisimple
Lie algebras, because (it will turn out) these Lie algebras are built up from copies of
sl2(F), so we can use results about sl2(F)-modules to determine the structure of arbitrary
semisimple Lie algebras.

Throughout the section, we take x, y and h to denote the standard basis vectors of
sl2(F) (defined below).

9.1. Definition. Let L be a Lie algebra over some field F. Then a vector space V over F
is called an L-module if it is equipped with an operation

L× V → V : (a, v) 7→ a · v,

which satisfies

(λa+ µb) · v = λ(a · v) + µ(b · v),

a · (λv + µw) = λ(a · v) + µ(a · w),

[ab] · v = a · (b · v)− b · (a · v),

for all λ, µ ∈ F; a, b ∈ L; v, w ∈ V . Naturally, if S is a subspace of V and also an
L-module under the same action, we say S is an L-submodule of V .

9.2. Definition. Let V be an L-module for some Lie algebra L. Then V is called irre-
ducible if there exist precisely two L-submodules of V : itself and {0}. That is, if V is
nontrivial and there exist no proper nontrivial L-submodules of V .
V is called completely reducible if V can be expressed as a direct sum of irreducible

submodules.

9.3. It makes sense to talk about representations being irreducible and completely re-
ducible: we apply the term to a representation ρ : L → gl(V ) if the term applies to the
L-module induced on V by ρ.

9.4. Theorem (Weyl’s Theorem). Let φ : L→ gl(V ) be a finite dimensional representa-
tion of a semisimple Lie algebra. Then φ is completely reducible.

Equivalently, if V is a finite dimensional module of a semisimple Lie algebra, then V
is completely reducible.

Proof. See Theorem 6.3 of [4]. �

9.5. Lemma. Let L be a Lie algebra over some field F and let V be an L-module. Suppose
L acts trivially on V . Then all subspaces of V are L-submodules, and submodules of V
are irreducible if and only if they are 1-dimensional.

Proof. Let v ∈ V . Then [vL] = {0} by assumption, hence Fv is an L-submodule of V . As
Fv is 1-dimensional, it has no proper nontrivial submodules, hence is irreducible. That
is, all 1-dimensional subspaces (and hence submodules) of V are irreducible submodules.

If S is a subspace of V , then S is a direct sum of 1-dimensional subspaces, which are
all submodules, hence S is a submodule of V and is irreducible if and only if dim(S) = 1.
All submodules are subspaces, so this also implies that all irreducible submodules are
1-dimensional. �
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9.6. Definition. Recall our example of sl2(F) (Example 1.30). The representation theory
of this Lie algebra is of particular importance to us, because we are able to utilise it in
the study of arbitrary semisimple Lie algebras.

We have shown that sl2(F) = span {x, y, h}, where

x =

(
0 1
0 0

)
, y =

(
0 0
1 0

)
, h =

(
1 0
0 −1

)
.

The Lie bracket on sl2(F) is then given by

[xy] = h, [hx] = 2x, [hy] = −2y.

9.7. Definition. Let V be an sl2(F)-module, λ ∈ F and Vλ = {v ∈ V : h · v = λv}. When
Vλ 6= {0}, call λ a weight of h in V and call Vλ a weight space.

9.8. Lemma. Let φ be a finite dimensional representation of L. Then φ maps semisimple
elements to semisimple elements.

Proof. See Corollary 6.4 of [4] �

9.9. Lemma. Let V be an sl2(F)-module. Then

V =
⊕
λ∈F

Vλ,

where Vλ is the weight space of h in V with weight λ.

Proof. As h is semisimple, Lemma 9.8 implies that the representation inducing V maps h
to a semisimple element of gl(V ), which gives a diagonal action of h on V . Therefore, V
can be decomposed into eigenspaces of this action, which are just weight spaces of h. �

9.10. Lemma. Let V be an sl2(F)-module. Denote weight spaces of h in V by Vµ for
µ ∈ F. Let λ ∈ F and v ∈ Vλ. Then x · v ∈ Vλ+2 and y · v ∈ Vλ−2.

Proof. We have that h·v = λv. From the definition of the module action, we can calculate

h · (x · v) = [hx] · v + x · (h · v) = (2x) · v + x · (λv) = (λ+ 2)x · v,
and similarly

h · (y · v) = [hy] · v + y · (h · v) = (−2y) · v + y · (λv) = (λ− 2)y · v,
hence x · v ∈ Vλ+2 and y · v ∈ Vλ−2. �

9.11. Definition. Let V be an sl2(F)-module, λ ∈ F and Vλ a weight space of h in V .
If v ∈ Vλ is annihilated by x, we call v a maximal vector of weight λ. As V is finite
dimensional, Lemma 9.9 and Lemma 9.10 imply such vectors must exist.

9.12. Proposition. Let V be an irreducible sl2(F)-module. Then the action of sl2(F) on
V is given by

• h · vi = (λ− 2i)vi,
• y · vi = (i+ 1)vi+1,
• x · vi = (λ− i+ 1)vi−1, for i ≥ 0,

where v0 is a maximal vector of weight λ and

vi =
1

i!
yi · v0

for each i ≥ 0.
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Proof. Lemma 9.10 implies y · Vλ ⊆ Vλ−2, hence yi · Vλ ⊆ Vλ−2i. Therefore, vi ∈ Vλ−2i for
each i, hence

h · vi = (λ− 2i)vi.

By definition,

y · vi = y ·
(

1

i!
yi · v0

)
=

(
i+ 1

(i+ 1)!
yi+1 · v0

)
= (i+ 1)vi+1.

We prove the third point using induction on i. Suppose x · vi = (λ − i + 1)vi−1, for
some i. Then

(i+ 1)x · vi+1 = (i+ 1)x ·
(

1

i+ 1
y · vi

)
= x · y · vi
= [xy] · vi + y · (x · vi)
= h · vi + y · ((λ− i+ 1)vi−1)

= (λ− 2i)vi + (λ− i+ 1)(y · vi−1)

= (λ− 2i)vi + (λ− i+ 1)(ivi)

= ((λ− i)− i+ i(λ− i) + i)vi

= (i+ 1)(λ− i)vi,
hence x · vi+1 = (λ− (i+ 1) + 1)vi.

As v0 is a maximal vector, x · v0 = 0 (this satisfies the formula under the convention
that v−1 = 0), hence

x · v1 = x · y · v0

= [xy] · v0 + y · x · v0

= h · v0 + y · (0)

= λv0.

Therefore, the base case of i = 1 is satisfied and consequently the third point holds for
all i ≥ 0. �

9.13. Theorem. Let V be an irreducible sl2(F)-module. Then

V =
m⊕
i=0

Fvi,

where the vi are defined as in Proposition 9.12.

Proof. By the first point of Proposition 9.12, the weight of h on vi is λ− 2i. This implies
that the vi are linearly independent. As V is finite dimensional, there can only be finitely
many nonzero vi. Let m ∈ N be the minimum index such that vm 6= 0 and vm+1 = 0.
This implies that vi = 0 for all i > m, by definition.

Consider the subspace M of V given by

M = Fv0 ⊕ · · · ⊕ Fvm.
As v−1 = 0 = vm+1, Proposition 9.12 implies that M is an L-submodule of V . Further,
M is nonzero, as v0 6= 0. But V is irreducible, so we must have that V = M . �

9.14. Corollary. Let V be an irreducible sl2(F)-module. Then:

• Each nonzero weight space of V is 1-dimensional and spanned by vi (as defined
in (Proposition 9.12)).
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• For some λ ∈ F, there exists a maximal vector of weight λ in V . Further, all
maximal vectors in V have weight λ.
• λ = dimV − 1 (and is therefore a nonnegative integer).
• The weights of h on V are the values λ, λ − 2, · · · ,−λ. Consequently, if µ is a

weight, then µ is an integer and −µ is also a weight.
• We can write V = Vλ ⊕ Vλ−2 ⊕ · · · ⊕ V−λ, where the Vµ are 1-dimensional weight

spaces of h.

Proof. The first point follows immediately from the theorem. This then implies that the
maximal vectors in V are precisely the vectors in Fv0, which gives us the second point.

The theorem gives us that dimV = m+ 1. By the third point of Proposition 9.12, we
have that

x · vm+1 = (λ− (m+ 1) + 1)vm = (λ−m)vm.

But vm+1 = 0 and vm 6= 0, hence λ = m = dimV − 1.
By the theorem, the weights of h on V are the values λ, λ − 2, · · · , λ − 2m. But we

can now express these as λ, λ− 2, · · · ,−λ. �

9.15. Definition. In light of (Corollary 9.14), there exists a unique positive integer λ for
which vectors in V are maximal if and only if their weight is λ. Further, all other weights
of h on V are integers less than λ. We therefore call λ the highest weight of V .

9.16. Proposition. Let V be an sl2(F)-module. Then V can be expressed as a direct sum,

V = I1 ⊕ · · · ⊕ In, (9.16.1)

of irreducible submodules Ii. If λ ∈ F is a weight of h on V , then Ii ∩ Vλ 6= {0} for some
i = 1, · · · , n, where Vλ is the weight space of h in V with weight λ. That is, there exists
some nonzero x ∈ Ii with weight λ.

Proof. As sl2(F) is simple, Weyl’s Theorem (9.4) implies that V is completely reducible.
That is, V can be expressed as in (9.16.1).

Suppose λ ∈ F is a weight of h on V . That is Vλ 6= {0}. Then there exists some
nonzero v ∈ Vλ, so h · v = λv. By (9.16.1), there exist vi ∈ Ii for each i = 1, · · · , n such
that

v =
n∑
i=1

vi.

Then, as h · v = λv,

h · v =
n∑
i=1

h · vi = λv =
n∑
i=1

λvi.

As the Ii all intersect trivially, this implies that h · vi = λvi for each i = 1, · · · , n. That
is, vi ∈ Vλ. As v is nonzero, at least one of these vi is nonzero, hence Ii ∩ Vλ 6= {0} for
some i = 1, · · ·n. �

9.17. Proposition. Let V be an irreducible sl2(F)-module. Then each weight space of V
can be generated from any other, by applying x or y.

Proof. Let S = sl2(F). By Corollary 9.14, V is expressible as a direct sum of 1-dimensional
weight spaces of h,

V = Vm ⊕ Vm−2 ⊕ · · · ⊕ V−m, (9.17.1)

where m = dim(V )− 1. Let Z denote the set of indices which appear in this expression.
That is, Z = {m,m− 2, · · · ,−m}.
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Suppose that x · Vr = {0} for some r ∈ Z \ {m}. Let V ′ = Vr ⊕ · · · ⊕ V−m. Then
{0} ⊂ V ′ ⊂ V . By Lemma 9.10, for all λ ∈ F,

x · Vλ ⊆ Vλ+2, (9.17.2)

y · Vλ ⊆ Vλ−2,

h · Vλ ⊆ Vλ.

Therefore,

S · V ′ = S · Vr ⊕ · · ·S · V−m
⊆ x · Vr ⊕ Vr ⊕ · · · ⊕ V−m−2

⊆ Vr ⊕ · · · ⊕ V−m
⊆ V ′,

as V−m−2 = {0} by (9.17.1) and x · Vr = {0} by supposition. This implies that V ′ is
an sl2(F)-module. This contradicts the assumption that V is irreducible. Therefore, the
supposition that x · Vr = {0} must be false. By (9.17.2), and as each nonzero weight
space in the decomposition (9.17.1) is 1-dimensional, this implies that x · Vr = Vr+2 for
all r ∈ Z.

Using an almost identical argument to the above (replace x with y and reverse some
signs), we can also conclude that y · Vr = Vr−2 for all r ∈ Z. Together with the decom-
position (9.17.1), these imply the result we are after. �

9.18. Proposition. Let V be a finite dimensional sl2(F)-module. If V is expressed as a
direct sum

V = I1 ⊕ · · · ⊕ In,
of n irreducible submodules Ii, then n = dim(V0) + dim(V1).

Proof. Let I = Ii for some irreducible submodule Ii of V . By Corollary 9.14,

I = Wm(I)⊕Wm−2(I)⊕ · · · ⊕W−m(I),

for weight spaces Wi(I), where dim(Wi(I)) = 1 for each i occurring in the sum. As
the indices in this sum are symmetric about 0, occur in intervals of 2 and are integers,
precisely one of 0 or 1 occurs as an index. That is, either W0(I) 6= {0} or W1(I) 6= {0},
but not both, hence

dim(I ∩ V0) + dim(I ∩ V1) = dim(W0(I)) + dim(W1(I)) = 1.

Therefore, as V = I1 ⊕ · · · ⊕ In, we have

dim(V0) + dim(V1) = dim(V ∩ V0) + dim(V ∩ V1)

= dim

(
n⊕
i=1

Ii ∩ V0

)
+ dim

(
n⊕
i=1

Ii ∩ V1

)

=
n∑
i=1

dim(Ii ∩ V0) + dim(Ii ∩ V1)

=
n∑
i=1

1

= n.

�

9.19. Lemma. sl2(F) is an irreducible sl2(F)-module (via the Lie bracket).
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Proof. Suppose A ⊂ sl2(F) is a nontrivial submodule of sl2(F). Then [sl2(F)A] ⊆ A,
hence A is an ideal of sl2(F). But sl2(F) is simple (Example 5.11), so has no proper
nontrivial ideals. This is a contradiction, so the supposition must be false. Therefore
sl2(F) has no nontrivial submodules. That is, sl2(F) is irreducible. �
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10. Orthogonality Properties

We have been building up to a series of results about the root space decomposition of
L, which will ultimately motivate the definition of a structure called a root system. This
series of results is divided into three sets, each building upon the previous, the first of
which we shall prove in this section.

We continue to take L to be semisimple, T to be a maximal torus of L and F to be
algebraically closed with characteristic zero.

10.1. Proposition. Φ spans T ∗.

Proof. Let n = dim(T ) = dim(T ∗) and let m = dim(span(Φ)). There exists a subset
A ⊆ Φ such that |A| = m. Suppose that span(Φ) 6= T ∗, hence m < n.

The kernel of any nonzero α ∈ T ∗ has codimension 1 in T . Thus dim(ker(α)) = n− 1
for each α ∈ A. As m < n, the intersection of m subspaces of dimension n− 1 must have
at least dimension 1. Therefore, there exists a nonzero t0 ∈ T such that

t0 ∈
⋂
α∈A

kerα.

Any α ∈ Φ \ A is a linear combination of elements of A, so has a kernel which is a
linear combination of the kernels of A. Therefore, t0 ∈ kerα for all α ∈ Φ.

Then we have [t0x] = α(t0)x = 0 for all x ∈ Lα for α ∈ Φ. Further, [t0t] = 0 for
all t ∈ T as T is Abelian. Therefore, by the root space decomposition (Corollary 8.11),
we have [t0x] = 0 for all x ∈ L, hence t0 ∈ Z(L). But as L is semisimple, Z(L) = {0}
(Proposition 5.4). This is a contradiction, so the supposition that span(Φ) 6= T ∗ must be
false. �

10.2. Proposition. Let α ∈ Φ, x ∈ Lα and y ∈ L−α. Then [xy] = 〈x, y〉 tα, where tα is
the element of T corresponding to α as in Remark 8.12.

Proof. Let t ∈ T . We have 〈t, [xy]〉 = 〈[tx], y〉 (Proposition 7.2). As x ∈ Lα, we have
[tx] = α(t)x. Lastly, if tα is the element of T corresponding to α (Remark 8.12), then
α(t) = 〈tα, t〉. Therefore,

〈t, [xy]〉 = 〈α(t)x, y〉
= 〈〈tα, t〉x, y〉
= 〈tα, t〉 〈x, y〉
= 〈〈x, y〉 tα, t〉
= 〈t, 〈x, y〉 tα〉 .

Rearranging the above equation gives

0 = 〈t, [xy]〉 − 〈t, 〈x, y〉 tα〉 = 〈t, [xy]− 〈x, y〉 tα〉 . (10.2.1)

The Killing form is nondegenerate on T (Theorem 8.6). Therefore, as (10.2.1) holds for
all t ∈ T , we have that [xy]− 〈x, y〉 tα = 0. Thus [xy] = 〈x, y〉 tα. �

10.3. Proposition. Let α ∈ Φ. Then [LαL−α] = Ftα.

Proof. By Proposition 10.2, we have that

[LαL−α] = {[xy] : x ∈ Lα; y ∈ L−α}
= {〈x, y〉 tα : x ∈ Lα; y ∈ L−α}
= 〈Lα, L−α〉 tα.

We also have that 〈Lα, L−α〉 = F (Proposition 7.7), so we are done. �
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10.4. Lemma. Let α ∈ Φ. Let x ∈ Lα and y ∈ L−α such that 〈x, y〉 6= 0. Let S =
span {x, y, [xy]}. Then dim(S) = 3.

Proof. The assumption that 〈x, y〉 6= 0 implies both x and y are nonzero. By Proposition
10.2, [xy] = 〈x, y〉 tα 6= 0, as tα corresponds to α 6= 0. As x, y and [xy] are nonzero
elements of the linearly independent spaces Lα, L−α and T = L0 respectively (Proposition
6.3), their span has dimension 3. �

10.5. Proposition. Let α ∈ Φ. Then α(tα) = 〈tα, tα〉 6= 0

Proof. Suppose α(tα) = 0. Then, for all x ∈ Lα and y ∈ L−α, we have

[tαx] = [tαy] = 0. (10.5.1)

We have that 〈Lα, L−α〉 = F (Proposition 7.7). Therefore, there exist x ∈ Lα and
y ∈ L−α such that 〈x, y〉 = 1 (these elements must therefore be nonzero). Then [xy] = tα
by Proposition 10.2.

Let S = span {x, y, tα}. By Lemma 10.4, we have dim(S) = 3. Using (10.5.1), we can
calculate

[SS] = span {[xy], [tαx], [tαy]}
= span {tα, 0, 0}
= Ftα. (10.5.2)

Therefore
[[SS][SS]] = [(Ftα)(Ftα)] = F[tαtα] = 0,

hence S is solvable. As L is semisimple, the adjoint representation of L is injective
(Lemma 5.6). Therefore, S ∼= adL(S) ⊆ gl(L), hence adL(S) is also solvable. Then
Theorem 1.27 implies that [adL(S) adL(S)] = adL([SS]) is nilpotent. By (10.5.2), tα ∈
[SS], so adL(tα) ∈ adL([SS]), which is nilpotent. Therefore adL(tα) is nilpotent, but is
also semisimple, as tα ∈ T . If a map is both nilpotent and semisimple, then it must be
zero (Lemma 3.3). That is, [tαL] = 0, hence tα ∈ Z(L). As L is semisimple, Z(L) = {0}
(Proposition 5.4), hence tα = 0. But this contradicts the definition of tα, as α 6= 0.
Therefore, the supposition that α(tα) = 0 must be false. �

10.6. Proposition. Let α ∈ Φ and xα ∈ Lα \ {0}. Then there exists yα ∈ L−α such that,
for hα = [xαyα], the span of {xα, yα, hα} is a Lie subalgebra of L isomorphic to sl2(F).
Further,

hα =
2tα
〈tα, tα〉

and h−α = −hα.

Proof. We have that 〈xα, L−α〉 = F (Proposition 7.7). Therefore, for any λ ∈ F, we can
find some yα ∈ L−α such that 〈xα, yα〉 = λ. Specifically, we can find a yα satisfying

〈xα, yα〉 =
2

〈tα, tα〉
,

as this value is in F (Proposition 10.5).
Let

hα =
2tα
〈tα, tα〉

.

Then, by Proposition 10.2,

[xαyα] = 〈xα, yα〉 tα =
2

〈tα, tα〉
tα = hα.
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Further,

[hαxα] =
2

〈tα, tα〉
[tαxα] =

2

〈tα, tα〉
α(tα)xα = 2

〈tα, tα〉
〈tα, tα〉

xα = 2xα.

Lastly,

[hαyα] =
2

〈tα, tα〉
[tαyα] =

2

〈tα, tα〉
(−α)(tα)yα = −2

〈tα, tα〉
〈tα, tα〉

yα = −2yα.

Let S = span {xα, yα, hα}. Lemma 10.4 implies that dim(S) = 3; by the above, S has
the same multiplication table as sl2(F).

For the final point, we can see that, for all t ∈ T ,

(−α)(t) = −α(t) = −〈tα, t〉 = 〈−tα, t〉 ,
hence t−α = −tα. Therefore,

h−α =
2

〈t−α, t−α〉
t−α =

2

〈−tα,−tα〉
(−tα) = (−1)3 2

〈tα, tα〉
tα = − 2

〈tα, tα〉
tα = −hα.

�

10.7. Corollary. Let α ∈ Φ and let Sα = {xα, yα, hα} be taken as in Proposition 10.6.
Then α(hα) = 2.

Proof. We have α(hα) = 〈tα, hα〉 (Remark 8.12). Therefore

α(hα) = 〈tα, hα〉 =

〈
tα,

2tα
〈tα, tα〉

〉
= 2
〈tα, tα〉
〈tα, tα〉

= 2.

�

10.8. Definition. For α ∈ Φ, we write Sα = span {xα, yα, hα}, for some choice of xα ∈ Lα
and yα ∈ L−α, and where hα = [xαyα] ∈ T . As in Proposition 10.6, we have that
Sα ∼= sl2(F).
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11. Integrality Properties

We continue the series of results on the root space structure from the previous section.
Of note are the results that all root spaces are 1-dimensional and that ±α are the only
roots in the span of a root α. We also introduce the notion of a root string - roots of the
form β+iα occur in unbroken sequences. This notion will be developed further in Section
15: Pairs of Roots. It will become important when we look at the Chevalley Basis of a
Lie algebra in Section 17: Chevalley Basis.

For roots α, we use the notation Sα (Definition 10.8) to denote some 3 dimensional
subalgebra of L, spanned by an element of Lα and L−α and their product. These Sα are
isomorphic to sl2(F) (Proposition 10.6), so we can take advantage of the representation
theory of sl2(F) we discussed in the Section 9: Modules and Weights.

We continue to take L to be semisimple, T to be a maximal torus of L and F to be
algebraically closed with characteristic zero.

11.1. Lemma. Let α ∈ Φ and let

M =
∑
λ∈F

Lλα.

Then M = Sα + T = Lα ⊕ L−α ⊕ L0.

Proof. Let xα ∈ Lα. By Proposition 10.6, we can find yα ∈ L−α such that Sα =
span {xα, yα, hα} (where hα = [xαyα]) is a 3 dimensional subalgebra of L isomorphic
to sl2(F).

We want M to be an Sα-module via the Lie bracket. This is automatically true, as
long as we have closure: [SαM ] ⊆M . We have that

[LβLγ] ⊆ Lβ+γ (11.1.1)

for all β, γ ∈ T ∗ (Proposition 6.6), and that L0 = T (Corollary 8.11), hence [LαL−α] ⊆ T .
Therefore

Sα ⊆ Lα ⊕ L−α ⊕ L0 ⊆M. (11.1.2)

Applying (11.1.1) again, we get

[SαM ] =
∑
λ∈F

[SαLλα]

⊆
∑
λ∈F

[LαLλα] + [L−αLλα] + [L0Lλα]

⊆
∑
λ∈F

L(λ+1)α + L(λ−1)α + Lλα.

For each λ ∈ F, we have that L(λ+1)α, L(λ−1)α, Lλα ⊆M by definition, hence [SαM ] ⊆M
and M is an Sα-module. Specifically an Sα-submodule of L.

We now want to find the weights of hα on M . Lemma 9.9 gives us that

M =
⊕
λ∈F

Mλ,

where Mλ = {x ∈M : [hαx] = λx}. The value λ ∈ F is a weight of hα if Mλ 6= {0}. That
is, λ is a weight if it is an eigenvalue of ad(hα) on M .

Let λ ∈ F and x ∈Mλ. As x ∈M , there exists an xµ ∈ Lµα for each µ ∈ F, such that

x =
∑
λ∈F

xµ.
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Then, as α(hα) = 2 (Corollary 10.7), we have

[hαx] =
∑
µ∈F

[hαxµ]

=
∑
µ∈F

(µα)(hα)xµ

=
∑
µ∈F

(2µ)xµ.

But as x ∈Mλ, we have [hαx] = λx, hence∑
µ∈F

2µxµ = λx =
∑
µ∈F

λxµ.

The xµ are all linearly independent (Proposition 6.3). Therefore, for all µ ∈ F, we have
2µxµ = λxµ, hence either xµ = 0 or 2µ = λ. That is, for all µ ∈ F,

2µ 6= λ =⇒ xµ = 0,

hence
x = xλ

2
∈ Lλ

2
α.

We have therefore shown that
Mλ ⊆ Lλ

2
α

for all λ ∈ F.
Now let x ∈ Lλα. Then [hαx] = λα(hα)x = 2µx (Corollary 10.7). Therefore x ∈ M2λ.

We have therefore shown that Lλα ⊆M2λ for all λ ∈ F.
Putting these last two results together gives us that, for all λ ∈ F,

Mλ = Lλ
2
α (11.1.3)

This implies that λ is a weight of hα on M if and only if λ
2
α is a root. Further, by

Corollary 9.14, these weights λ must be integers. That is,

M2µ 6= {0} ⇐⇒ Lµα 6= {0} =⇒ 2µ ∈ Z. (11.1.4)

Let t ∈ ker(α). Then

[xαt] = −[txα] = −α(t)xα = 0,

[yαt] = −[tyα] = −(−α)(t)yα = 0,

[hαt] ∈ [TT ] = {0} ,
hence [Sαt] = {0}. Therefore, as t was arbitrary,

[Sα ker(α)] = {0} . (11.1.5)

By definition, im(α) ⊆ F. As α is a root, it is nonzero. Therefore, im(α) = F and
dim(im(α)) = 1. This implies that ker(α) has codimension 1 in T . We have α(hα) = 2
(Corollary 10.7), hence hα /∈ ker(α). Therefore, ker(α) is complementary to Fhα in T .
That is,

T = ker(α)⊕ Fhα. (11.1.6)

By (11.1.3), the fact that L0 = T (Corollary 8.11), and (11.1.6) respectively,

M0 = L0 = T = ker(α)⊕ Fhα. (11.1.7)

Further, Fhα ⊆ Sα by definition, hence

M0 = T ⊆ ker(α)⊕ Sα. (11.1.8)
43



The sum is direct, because xα, yα /∈ T .
Suppose (for a contradiction) that M has an even weight greater than 2 (or less than
−2), say λ. Then by Proposition 9.16, there exists some irreducible submodule of M
which intersects Mλ nontrivially, say I. By Corollary 9.14, we can express the weight
space decomposition of I as

I = Im ⊕ Im−2 ⊕ · · · ⊕ I−m, (11.1.9)

where m = dim(I) + 1 and each weight space Ii has dimension 1. As I ∩Mλ 6= {0},
it contains elements of weight λ, which is even, hence I has a nonzero weight space of
even weight. Therefore, one of the terms in (11.1.9) has even index, which implies all the
terms have even index, as the indices are in intervals of 2. Therefore,

I0 6= {0} . (11.1.10)

By definition, I0 ⊆ M0, hence I0 ⊆ ker(α) + Sα by (11.1.8). Therefore, by (11.1.5) and
as [SαSα] = Sα,

[SαI0] ⊆ [Sα(ker(α) + Sα)]

⊆ [Sα ker(α)] + [SαSα]

⊆ {0}+ Sα

⊆ Sα.

But then repeated application of ad(Sα) to I0 will still be contained in Sα. As Sα contains
only elements of weight 0 and ±2, only elements with these weights can be generated from
I0 by applying xα and yα. This contradicts Proposition 9.17, therefore the supposition
that M has an even weight greater than 2 (or less than −2) must be false.

Specifically, 4 is not a weight of hα on M . That is, M4 = {0}, hence L2α = {0} by
(11.1.3), so 2α is not a root. As α ∈ Φ was arbitrary, this shows that

φ ∈ Φ =⇒ 2φ /∈ Φ,

or equivalently,

2φ ∈ Φ =⇒ φ /∈ Φ.

As α ∈ Φ, we thus have 1
2
α /∈ Φ. Therefore, by (11.1.3) again, we have that

M1 = {0} . (11.1.11)

Let n = dim(T ). Then by (11.1.6), dim(ker(α)) = n− 1. Let (k1, · · · , kn−1) be a basis
for ker(α). That is,

ker(α) =
n−1⊕
i=1

Fki.

By (11.1.5), Sα acts trivially on ker(α), so Lemma 9.5 implies that all 1-dimensional sub-
spaces of ker(α) are irreducible submodules. Specifically, Fki is an irreducible submodule
of ker(α) for each i = 1, · · · , n − 1. Therefore, the above decomposition of ker(α) is
actually a decomposition into n− 1 irreducible submodules.

By (11.1.8), ker(α) and Sα are disjoint, so consider the direct sum

Sα ⊕ ker(α) = Sα ⊕

(
n−1⊕
i=1

Fki

)
. (11.1.12)

Sα is an irreducible Sα-module (Lemma 9.19). Both Sα and ker(α) are contained in M by
(11.1.2) and (11.1.7) respectively. Further, ker(α) is an Sα-module by (11.1.5), so they
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are also both Sα-submodules of M . Therefore, the expression (11.1.12) is a direct sum of
n irreducible submodules of M .

However, by Proposition 9.18, any decomposition of M into irreducible submodules has
m = dim(M0) + dim(M1) terms. Thus by (11.1.11), (11.1.3) and the fact that L0 = T
(Corollary 8.11) respectively,

m = dim(M0) = dim(L0) = dim(T ) = n.

That is, the expression (11.1.12) is, in fact, a decomposition of M , so

M = Sα ⊕ ker(α)

= Sα + Fhα + ker(α)

= Sα + T, (11.1.13)

as Fhα ⊂ Sα and Fhα + ker(α) = T by (11.1.6).
We have Sα ⊆ L0⊕Lα⊕L−α and L0 = T (Corollary 8.11). Therefore (11.1.13) implies

that

M = Sα + T = Sα + L0 ⊆ L0 ⊕ Lα ⊕ L−α,
which is contained in M by definition, hence

M = L0 + Sα = L0 ⊕ Lα ⊕ L−α.
�

11.2. Theorem. Let α ∈ Φ. Then dim(Lα) = 1. That is, root spaces are 1-dimensional.

Proof. Let

M =
∑
λ∈F

Lλα.

By Lemma 11.1, we have

M = L0 + Sα = L0 ⊕ Lα ⊕ L−α. (11.2.1)

Let n = dim(T ) = dim(L0). We know that dim(Sα) = 3 and that dim(Sα ∩ L0) =
dim(Fhα) = 1. Therefore,

dim(L0 + Sα) = dim(L0) + dim(Sα)− dim(Sα ∩ L0) = n+ 3− 1 = n+ 2,

whereas
dim(L0 ⊕ Lα ⊕ L−α) = n+ dim(Lα) + dim(L−α).

Therefore, by (11.2.1),

dim(Lα) + dim(L−α) = 2. (11.2.2)

As α ∈ Φ, we also have −α ∈ Φ (Corollary 7.8), hence both Lα and L−α are nonzero.
But equation (11.2.2) implies that if either root space has dimension 2, then the other
must have dimension 0, hence they must both have dimension 1. That is,

dim(Lα) = 1.

�

11.3. Lemma. Let α ∈ Φ. Then Sα = Lα ⊕ L−α ⊕ [LαL−α].

Proof. Theorem 11.2 implies both Lα and L−α have dimension 1. That is,

[LαL−α] = [(Fxα)(Fyα)] = F[xy] = Fhα,
hence Lα⊕L−α⊕ [LαL−α] has dimension 3. By definition, Sα ⊆ Lα⊕L−α⊕ [LαL−α] and
also has dimension 3, hence we have equality. �
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11.4. Proposition. Let α be a root. Then the only scalar multiples of α which are also
roots are ±α.

Proof. Let

M =
∑
λ∈F

Lλα.

Then M = Lα ⊕ L−α ⊕ L0 by Lemma 11.1. Therefore

Lλα 6= {0} ⇐⇒ λ ∈ {0, 1,−1} . (11.4.1)

By definition, if φ ∈ T ∗ \ {0}, then φ ∈ Φ if and only if Lφ 6= {0}. So (11.4.1) implies
that λα is a root if and only if λ = ±1. �

11.5. Lemma. Let α, β ∈ Φ such that β 6= ±α. Let

K =
∑
i∈Z

Lβ+iα.

Then K is an irreducible Sα-module via the Lie bracket and the weights of hα on K are
the values β(hα) + 2i for which β + iα are roots, and these are all integers. Specifically,
each weight space Kβ(hα)+2i = Lβ+iα.

Proof. Let

K =
∑
i∈Z

Lβ+iα.

If β + iα = 0 for any i ∈ Z, then β = −iα. But β ∈ Φ, so β = ±α (Proposition 11.4),
which contradicts the assumption. Therefore, β + iα 6= 0 for all i ∈ Z.

For each i ∈ Z, calculate

[LαLβ+iα] ⊆ Lβ+(i+1)α ⊆ K,

[L−αLβ+iα] ⊆ Lβ+(i−1)α ⊆ K,

[L0Lβ+iα] ⊆ Lβ+iα ⊆ K.

Therefore, [SαK] ⊆ [(Lα ⊕ L−α ⊕ L0)K] ⊆ K, hence K is an Sα-module. Then Lemma
9.9 implies that

K =
⊕
λ∈F

Kλ

for weight spaces Kλ. As in the proof of Lemma 11.1, we want to find a correspondence
between weight spaces of K and root spaces of L.

Fix some i ∈ Z and let x ∈ Lβ+iα. Then [tx] = (β + iα)(t)x for all t ∈ T . Therefore,
as α(hα) = 2 (Corollary 10.7), we have

[hαx] = (β + iα)(hα)x

= (β(hα) + iα(hα))x

= (β(hα) + 2i)x,

hence x ∈ Kβ(hα)+2i. This implies that

Lβ+iα ⊆ Kβ(hα)+2i. (11.5.1)

Now let x ∈ Kβ(hα)+2i. As x ∈ K, there exists an xj ∈ Lβ+jα for each j ∈ Z, such that

x =
∑
j∈Z

xj.
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Therefore,

[hαx] =
∑
j∈Z

[hαxj] =
∑
j∈Z

(β + jα)(hα)xj.

On the other hand, as α(hα) = 2 (Corollary 10.7),

[hαx] = (β(hα) + 2i)x

= (β(hα) + iα(hα))x

= (β + iα)(hα)x

= (β + iα)(hα)
∑
j∈Z

xj

=
∑
j∈Z

(β + iα)(hα)xj.

Put together, these two equations give∑
j∈Z

(β + iα)(hα)xj =
∑
j∈Z

(β + jα)(hα)xj,

which, as α(hα) = 2 by (Corollary 10.7), is equivalent to∑
j∈Z

(β(hα) + 2i)xj =
∑
j∈Z

(β(hα) + 2j)xj.

Root spaces are linearly independent (Proposition 6.3), hence for each j ∈ Z we have
either xj = 0 or β(hα) + 2i = β(hα) + 2j. That is,

β(hα) + 2i 6= β(hα) + 2j =⇒ xj = 0,

which simplifies to
i 6= j =⇒ xj = 0.

In other words, x = xi ∈ Lβ+iα. As x was arbitrary, we have shown that

Kβ(hα)+2i ⊆ Lβ+iα. (11.5.2)

Putting (11.5.1) and (11.5.2) together, we get

Kβ(hα)+2i = Lβ+iα. (11.5.3)

Therefore, the weights of hα on K are the values β(hα) + 2i for which β + iα are roots.
Suppose that both 0 and 1 are weights of hα onK. Then β(hα)+2i = 0 and β(hα)+2j =

1 for some i, j ∈ Z. Therefore,

1 = 1− 0 = (β(hα) + 2j)− (β(hα) + 2i) = 2j − 2i = 2(j − i),
so (j − i) = 1

2
/∈ Z, which contradicts the fact the i and j are integers. Therefore, not

both 0 and 1 can be weights of hα on K. That is,

K0 6= {0} ⇐⇒ K1 = {0} (11.5.4)

Consider K expressed as a direct sum of irreducible submodules. Proposition 9.18
states that the number of irreducible submodules in such an expression must me equal
to n = dim(K0) + dim(K1). We have that n 6= 0, otherwise K would be zero, so K0 and
K1 cannot both be zero. By (11.5.4), K0 and K1 cannot both be nonzero. Therefore,
either n = dim(K0) or n = dim(K1). But (11.5.3) implies the weight spaces are all
1-dimensional, as root spaces are 1-dimensional (Theorem 11.2), so either way, n = 1.
That is, K is irreducible. Then Corollary 9.14 implies that the weights of hα on K are
all integers. �
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11.6. Corollary. Let α, β ∈ Φ. Then β(hα) ∈ Z.

Proof. If β 6= ±α, then Lemma 11.5 implies the result. Otherwise, α(hα) = 2 (Corollary
10.7) and (−α)(hα) = −α(hα) = −2. �

11.7. Definition. For α, β ∈ Φ, we refer to the values β(hα) as Cartan integers.

11.8. Proposition. Let α, β ∈ Φ such that β 6= ±α. Let r and q be the largest integers
for which β − rα and β + qα are roots. Then β(hα) = r − q and we have an unbroken
sequence of roots {β − rα, · · · , β, · · · , β + qα} ⊆ Φ.

Proof. Define K as in Lemma 11.5 and consider the highest and lowest weights of hα
on K. By Lemma 11.5, these must be β(hα) + 2q and β(hα) − 2r respectively, where
the values q, r ∈ Z+ are the largest integers for which β + qα and β − rα are roots. By
Corollary 9.14, the weights on K occur as an arithmetic progression with difference 2.
Therefore, the weights on K are precisely

β(hα)− 2r, · · · , β(hα), · · · , β(hα) + 2q,

and due to the correspondence between weights and roots in Lemma 11.5, the roots of
the form β + iα are precisely

β − rα, · · · , β, · · · , β + qα.

Further, Corollary 9.14 also implies that the lowest weight is the negative of the highest
weight. That is, β(hα)− 2r = −(β(hα) + 2q), hence 2β(hα) = 2r − 2q, so

β(hα) = r − q.
�

11.9. Definition. By Proposition 11.8, we can precisely list all roots of the form β + iα
for i ∈ Z. We write

Sβα = {β − rα, · · · , β, · · · , β + qα}
denote the set of such roots. We call such a set a root string. Specifically, Sβα is called
the α-string through β.

11.10. Proposition. Let α, β ∈ Φ such that β 6= ±α. Then (β − β(hα)α) ∈ Φ.

Proof. Let Z = {i ∈ Z : β + iα ∈ Φ}. By Proposition 11.8, the roots of the form β + iα
are precisely

β − rα, · · · , β, · · · , β + qα,

for some r, q ∈ Z+, hence Z = {−r, · · · , q}. Therefore q−r ∈ Z. That is, β+(q−r)α ∈ Φ,
so as β(hα) = r − q (Proposition 11.8), we have

β − β(hα)α = β − (r − q)α = β + (q − r)α ∈ Φ.

�

11.11. Proposition. Let α, β ∈ Φ such that β 6= ±α. Then [LαLβ] = Lα+β.

Proof. Let K be as in Lemma 11.5. Suppose that β+α is also a root. Then Lemma 11.5
implies that β(hα) and β(hα) + 2 are weights of hα on K, as well as that K is irreducible.
Therefore, by Proposition 9.17, all its weight spaces can be generated from any single one
by applying xα and yα. Specifically, if we apply Lemma 9.10, we get

[xαKβ(hα)] = Kβ(hα)+2.

Therefore, by Lemma 11.5 again, we have

[xαLβ] = Lβ+α,
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and as xα ∈ Lα, this implies that

[LαLβ] = Lα+β.

�

11.12. Theorem. L is generated as a Lie algebra by the root spaces Lα for α ∈ Φ.

Proof. Φ spans T ∗ (Proposition 10.1), so there exists some subset Φ′ ⊆ Φ which is a basis
for T ∗. We have a bijection between T ∗ and T , sending each α ∈ Φ to tα (Remark 8.12).
Thus {tα : α ∈ Φ′} must be a basis for T . That is,

T =
⊕
α∈Φ′

Ftα. (11.12.1)

By Lemma 11.3, we have that Sα = Lα ⊕ L−α ⊕ [LαL−α], where [LαL−α] = Fhα, for

hα =
2tα
〈tα, tα〉

∈ Ftα.

Therefore, [LαL−α] = Ftα. So by (11.12.1),

T =
⊕
α∈Φ′

[LαL−α]. (11.12.2)

We have the root space decomposition of L (Corollary 8.11):

L = T ⊕

(⊕
α∈Φ

Lα

)
.

By (11.12.2), this can be expressed:

L =

(⊕
α∈Φ′

[LαL−α]

)
⊕

(⊕
α∈Φ

Lα

)
.

�

11.13. Corollary. The root space decomposition of L can now be expressed:

L =

(⊕
α∈Φ′

Fhα

)
⊕

(⊕
α∈Φ

Fxα

)
,

where Φ′ ⊆ Φ is a basis for T ∗ and hα = [xαx−α] for each α ∈ Φ.
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12. Rationality Properties

In this section, we complete the set of properties for semisimple Lie algebras that we
have been working towards. The results which we are interested in are summarised in
Theorem 12.12. The crux of this is that Φ forms a root system, which we will define and
study in upcoming sections. This is significant, because root systems live in Euclidean
space, so we can use Euclidean geometry to obtain results about L, despite the fact that
L is over F 6= R. We begin by recalling the definition of a Euclidean space, which will be
used in (Corollary 12.11) as well as in subsequent sections.

We continue to take L to be semisimple, T to be a maximal torus of L and F to be
algebraically closed with characteristic zero.

12.1. Definition. A Euclidean space is a (finite dimensional) vector space over R with
a positive definite symmetric bilinear form.

12.2. Definition. Let α, β ∈ T ∗. We have corresponding elements tα, tβ ∈ T (Remark
8.12), so we can define a form on T ∗ by

〈α, β〉 = 〈tα, tβ〉 .

This form is nondegenerate, as the Killing form is nondegenerate on T (Theorem 8.6).

12.3. Lemma. Let α, β ∈ Φ. Then

2 〈β, α〉
〈α, α〉

= β(hα) ∈ Z.

Proof. We have that 〈tα, tα〉 6= 0 (Proposition 10.5) and β(hα) ∈ Z (Corollary 11.6).
Therefore,

2 〈β, α〉
〈α, α〉

=
2 〈tβ, tα〉
〈tα, tα〉

=

〈
tβ,

2tα
〈tα, tα〉

〉
= 〈tβ, hα〉 = β(hα) ∈ Z.

�

12.4. Lemma. Let β ∈ Φ. If β is expressed as a sum over some basis Φ′ ⊆ Φ of T ∗, then
the coefficients of each α ∈ Φ′ are rational numbers. Additionally, such a basis exists.

Proof. Let (α1, · · · , αn) be a basis for T ∗, where each αi ∈ Φ. This exists because Φ spans
T ∗ (Proposition 10.1). Then, for β ∈ Φ, we can express β as

β =
n∑
i=1

λiαi,

for some collection of λi ∈ F.
Then for each j = 1, · · · , n, we have

〈β, αj〉 =

〈
n∑
i=1

λiαi, αj

〉
=

n∑
i=1

λi 〈αi, αj〉 .

Therefore,

2 〈β, αj〉
〈αj, αj〉

=
n∑
i=1

2 〈αi, αj〉
〈αj, αj〉

λi (12.4.1)

We thus have a system of n equations (one for each j = 1, · · · , n), each in n unknowns
(λ1, · · · , λn), in which the coefficients are integers (Lemma 12.3). The coefficient matrix
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for this system of equations is

C =


2〈α1,α1〉
〈α1,α1〉 · · ·

2〈αn,α1〉
〈α1,α1〉

...
. . .

...
2〈α1,αn〉
〈αn,αn〉 · · ·

2〈αn,αn〉
〈αn,αn〉

 .

Let

M =

〈α1, α1〉 · · · 〈α1, αn〉
...

. . .
...

〈αn, α1〉 · · · 〈αn, αn〉

 .

Suppose that M is singular. Then there exists some linear dependence between the rows
of the matrix. That is, there exists a set of coefficients λ1, · · · , λn ∈ F - not all zero -
such that, for each j = 1, · · · , n,

n∑
i=1

λi 〈αi, αj〉 = 0.

Then, for each j = 1, · · · , n,

〈β, αj〉 =

〈
n∑
i=1

λiαi, αj

〉
=

n∑
i=1

λi 〈αi, αj〉 = 0.

As (α1, · · · , αn) is a basis for T ∗, this implies that 〈β, T ∗〉 = {0}. Therefore, β = 0, as the
form is nondegenerate by definition. But this contradicts the definition of β. Therefore,
the supposition that M is singular must be false. That is, M is nonsingular.

For each i = 1, · · · , n, let Mi = (〈αi, α1〉 , · · · , 〈αi, αn〉). Then we can express M as

M =

M1
...
Mn

 .

Then

C =


2

〈α1,α1〉M1

...
2

〈αn,αn〉Mn

 ,

hence

det(C) =

(
n∏
i=1

2

〈αi, αi〉

)
det(M).

As M is nonsingular, det(M) 6= 0. Therefore, det(C) 6= 0 and C is nonsingular. As C
is the matrix describing the system of equations (12.4.1), this implies that there exists a
unique solution over Q. That is, β ∈ spanQ {α1, · · · , αn}. �

12.5. Definition. We write EQ = spanQ(Φ). It makes sense to consider rational multiples
of elements of T ∗, because Q ⊆ F (Proposition 4.1), so in fact EQ ⊆ T ∗.

12.6. Lemma. There exists a subset Φ′ ⊆ Φ which is a basis for both T ∗ and EQ.

Proof. By Lemma 12.4, such a Φ′ exists as a basis for T ∗, where Φ ⊆ spanQ(Φ′). There-
fore, for each α ∈ Φ,

α =
∑
β∈Φ′

µα,ββ.
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If γ ∈ EQ, then for some collection of λα ∈ Q,

γ =
∑
α∈Φ

λαα =
∑
α∈Φ

λα
∑
β∈Φ′

µα,ββ =
∑
β∈Φ′

(∑
α∈Φ

λαµα,β

)
β ∈ spanQ(Φ′).

That is, EQ ⊆ spanQ(Φ′). Further EQ = spanQ(Φ) ⊇ spanQ(Φ′), as Φ′ ⊆ Φ, hence we
have equality: EQ = spanQ(Φ′). Lastly, Φ′ is F-linearly independent (as it is a basis for
T ∗), so it must also be Q-linearly independent, as Q ⊆ F (Proposition 4.1). Therefore,
Φ′ is a basis for EQ. �

12.7. Lemma. The form on T ∗ can be restricted to EQ. This form on EQ is positive
definite.

Proof. Let γ, δ ∈ T ∗. Their corresponding elements in T are tγ and tδ respectively. Recall
the root space decomposition (Theorem 8.11):

L = T ⊕

(⊕
α∈Φ

Lα

)
,

where Lα = Fxα (Theorem 11.2). Therefore {t1, · · · , tn} ∪ {xα : α ∈ Φ} is a basis for L,
where {t1, · · · , tn} is a basis for T .

By definition of Lα, ad(t)(xα) = α(t)xα for all t ∈ T and α ∈ Φ. Therefore,

(ad(tγ) ◦ ad(tδ))(xα) = ad(tγ)(ad(tδ)(xα))

= ad(tγ)(α(tδ)xα)

= α(tδ) ad(tγ)(xα)

= α(tδ)α(tγ)xα.

Further, tγ and tδ act trivially on T , as T is Abelian (Proposition 5.2), hence

trace(ad(tγ) ad(tδ)) =
∑
α∈Φ

α(tγ)α(tδ).

Therefore,

〈γ, δ〉 = 〈tγ, tδ〉
= trace(ad(tγ) ad(tδ))

=
∑
α∈Φ

α(tγ)α(tδ)

=
∑
α∈Φ

〈α, γ〉 〈α, δ〉 ,

that is,

〈γ, δ〉 =
∑
α∈Φ

〈α, γ〉 〈α, δ〉 . (12.7.1)

Let β ∈ Φ. By (12.7.1), we have that

〈β, β〉 =
∑
α∈Φ

〈α, β〉2 .

Therefore,

1

〈β, β〉
=
〈β, β〉
〈β, β〉2
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=
∑
α∈Φ

〈α, β〉2

〈β, β〉2

=
∑
α∈Φ

(
〈α, β〉
〈β, β〉

)2

. (12.7.2)

By Lemma 12.3, for each α, β ∈ Φ, we have

2 〈α, β〉
〈β, β〉

∈ Z, (12.7.3)

hence
〈α, β〉
〈β, β〉

∈ Q.

Which, when applied to (12.7.2), gives

1

〈β, β〉
∈ Q,

hence we also have that 〈β, β〉 ∈ Q.
Let α, β ∈ Φ. By (12.7.3) again, we have

〈α, β〉 =
1

2
〈β, β〉

(
2 〈α, β〉
〈β, β〉

)
∈ 1

2
QZ = Q.

That is,

〈Φ,Φ〉 ⊆ Q.
Therefore, as EQ = spanQ(Φ),

〈EQ, EQ〉 =

〈∑
α∈Φ

Qα,
∑
β∈Φ

Qβ

〉
=
∑
α,β∈Φ

Q 〈α, β〉 ⊆
∑
α,β∈Φ

QQ = Q. (12.7.4)

We can therefore consider this form restricted to EQ.
Suppose γ ∈ EQ such that 〈γ,EQ〉 = {0}. We can express γ as

γ =
∑
α∈Φ

λαα,

for some collection of scalars λα ∈ Q. By the supposition, 〈γ, α〉 = 0 for each α ∈ Φ,
hence

〈γ, T ∗〉 = 〈γ, spanF(Φ)〉 =
∑
α∈Φ

F 〈γ, α〉 = 0.

As γ ∈ EQ ⊆ T ∗ and the form on T ∗ is nondegenerate, γ must be zero. This shows that
the form is still nondegenerate when restricted to EQ.

Let γ ∈ EQ. By (12.7.4), 〈α, γ〉 ∈ Q for all α ∈ Φ, as Φ ⊆ EQ. By (12.7.1), we have
that

〈γ, γ〉 =
∑
α∈Φ

〈α, γ〉2 .

That is, 〈γ, γ〉 is a sum of squares of rational numbers, hence is either positive or zero,
and is zero only if all terms are zero. That is, if 〈γ, γ〉 = 0, then 〈α, γ〉 = 0 for all α ∈ Φ.
But as Φ spans EQ by definition, this implies that 〈EQ, γ〉 = {0}, which in turn implies
that γ = 0, as the form is nondegenerate on EQ. That is, the form is positive definite on
EQ. �
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12.8. Definition. As Q is a subfield of R and EQ is a Q-vector space, both R and EQ
are Q-modules. We can therefore define the tensor product E = R⊗Q EQ. That is,

E =

{
n∑
i=1

λi ⊗ γi : λi ∈ R; γi ∈ EQ

}
,

where (λ⊗ γ) = 1R ⊗ (λγ) for all λ ∈ Q and γ ∈ EQ.

12.9. Proposition. E ∼= spanR(Φ).

Proof. Consider a pure tensor λ⊗ γ ∈ E for some λ ∈ R and γ ∈ EQ. We have

γ =
∑
α∈Φ

µαα

for some collection of scalars µα ∈ Q. Then

λ⊗ γ = λ⊗
∑
α∈Φ

µαα =
∑
α∈Φ

λ⊗ (µαα) =
∑
α∈Φ

(µαλ)⊗ α =
∑
α∈Φ

να ⊗ α,

where να = µαλ ∈ QR = R. We identify να ⊗ α with να(1R ⊗ α) and 1R ⊗ α with α,
hence να ⊗ α with ναα. Therefore,

λ⊗ γ =
∑
α∈Φ

να ⊗ α =
∑
α∈Φ

ναα ∈ spanR(Φ).

That is, the pure tensors in E are contained in spanR {Φ}. As E consists of sums of pure
tensors and spanR {Φ} is closed under addition, we have shown that

E ⊆ spanR(Φ). (12.9.1)

Now let γ ∈ spanR(Φ). That is,

γ =
∑
α∈Φ

µαα =
∑
α∈Φ

µα ⊗ α

for some collection of scalars µα ∈ R. Then µα ⊗ α ∈ E for each α ∈ Φ, hence γ ∈ E.
That is,

E ⊇ spanR(Φ).

Which, with (12.9.1), implies equality. �

12.10. Lemma. The form on EQ can be extended to E and it remains positive definite.

Proof. Let γ, δ ∈ E. In light of Proposition 12.9, we consider E as spanR(Φ), so

γ =
∑
α∈Φ

λαα; δ =
∑
β∈Φ

µββ,

for some collection of scalars λα, µβ ∈ R.
We extend the form on EQ to E via

〈γ, δ〉E =
∑
α∈Φ

∑
β∈Φ

λαµβ 〈α, β〉EQ
∈ R.

This is consistent: if each λα, µβ ∈ Q (and hence γ, δ ∈ EQ), then

〈γ, δ〉E =
∑
α∈Φ

∑
β∈Φ

λαµβ 〈α, β〉EQ
=

〈∑
α∈Φ

λαα,
∑
β∈Φ

µββ

〉
EQ

= 〈γ, δ〉EQ
.

We can thus write 〈γ, δ〉 without having to specify whether this is the form on EQ or E.
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As E and EQ have the same basis, the form must stay positive definite when extended
from EQ to E. �

12.11. Corollary. E ∼= spanR(Φ) is a Euclidean space.

12.12. Theorem. Let L be a simple Lie algebra over an algebraically closed field of
characteristic zero. Let Φ denote the set of roots of L. Then:

• Φ spans E and does not contain 0.
• If α ∈ Φ, then the scalar multiples of α contained in Φ are precisely ±α.
• If α, β ∈ Φ, then

2 〈β, α〉
〈α, α〉

∈ Z.

• If α, β ∈ Φ, then

β − 2 〈β, α〉
〈α, α〉

α ∈ Φ.

Proof. Φ spans E by Proposition 12.9 and does not contain zero by definition. The
second point is from Proposition 11.4. The third point is from Lemma 12.3, which with
Proposition 11.10 also implies the final point. �

12.13. This theorem is equivalent to the statement that Φ is a root system in E. Root
systems will be defined and discussed in Section 14: Root Systems.
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13. Reflections In Euclidean Space

Before we start looking at root systems, we need some results about reflections. We
outline some basic properties and prove a criterion (Theorem 13.7) which will be useful
when we look at root systems in the following section.

Throughout this section, we take E to be a Euclidean space (Definition 12.1). We
denote the form on E by 〈α, β〉 for α, β ∈ E.

13.1. Definition. A hyperplane in E is a subspace of codimension 1. For a nonzero
vector α ∈ E, we write Pα to denote the corresponding hyperplane orthogonal to α,
defined

Pα = {β ∈ E : 〈β, α〉 = 0} .
A reflection in E is an invertible linear transformation of E which fixes some hyper-

plane and sends any vector orthogonal to that hyperplane to its negative. For nonzero
α ∈ E, denote by σα the reflection in the hyperplane Pα.

13.2. Lemma. Let α, β ∈ E and P be some hyperplane in E. If α /∈ P , then β = ρ+ aα
for some ρ ∈ P and a ∈ R. Specifically, if α 6= 0, then β = ρ + aα for some ρ ∈ Pα and
a ∈ R.

Proof. As P has codimension 1, we have that E = P ⊕ Rα. We can therefore write
β = ρ+ aα for some ρ ∈ P and a ∈ R.

If α 6= 0, then we have that 〈α, α〉 6= 0, as the form is positive definite. Therefore
α /∈ Pα, so we can apply the above for P = Pα. �

13.3. Definition. For α, β ∈ E, we will use the notation (linear in the first variable only)

(β, α) =
2 〈β, α〉
〈α, α〉

.

Note that this means

(α, α) =
2 〈α, α〉
〈α, α〉

= 2.

13.4. Lemma. Let α ∈ E. Then the reflection σα is given by

σα(β) = β − (β, α)α,

for all β ∈ E.

Proof. Let β ∈ E. By Lemma 13.2, there exists ρβ ∈ Pα and aβ ∈ R such that β =
ρβ + aβα. Therefore,

σα(β) = σα(ρβ + aβα)

= σα(ρβ) + aβσα(α)

= ρβ − aβα
= β − 2aβα. (13.4.1)

Further, 〈ρβ, α〉 = 0 by definition, hence

〈β, α〉 = 〈ρβ + aβα, α〉
= 〈ρβ, α〉+ aβ 〈α, α〉
= aβ 〈α, α〉 .

Therefore,

aβ =
〈β, α〉
〈α, α〉

,
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which, when applied to (13.4.1), gives

σα(β) = β − 2
〈β, α〉
〈α, α〉

α.

�

13.5. Lemma. For all α ∈ E, the reflection σα is an involution. That is, σα = σ−1
α .

Proof. Let β ∈ E. Then, by Lemma 13.4,

σ2
α(β) = σα(β − (β, α)α)

= σα(β)− (β, α)σα(α)

= β − (β, α)α + (β, α)α

= β.

As β was arbitrary, this shows that σ2
α = 1, which proves the result. �

13.6. Definition. We write GL(E) to denote the general linear group of E. This is
defined as the group (under the composition of maps operation) of invertible linear maps
in End(E).

13.7. Theorem. Let Φ be a finite set (not containing zero) which spans E and where
all reflections {σα : α ∈ Φ} leave Φ invariant. Suppose σ ∈ GL(E) leaves Φ invariant,
pointwise fixes a hyperplane P of E and sends some α ∈ Φ to its negative. Then σ = σα
and P = Pα.

Proof. Let τ = σσα. Then τ = σσ−1
α by Lemma 13.5. By definition, τ(Φ) = Φ and

τ(α) = α, hence τ fixes Rα.
Let β ∈ E. As σ pointwise fixes P , but not α, we have that α /∈ P . Therefore, there

exist ρ ∈ P and a ∈ R such that β = ρ+ aα (Lemma 13.2). Then

σ(β) = σ(ρ+ aα)

= σ(ρ) + aσ(α)

= ρ− aα
= ρ+ aα− 2aα

= β − 2aα,

hence

τ(β + Rα) = τ(β) + Rτ(α)

= σ(σα(β)) + Rα
= σ(β − (β, α)α) + Rα
= σ(β)− (β, α)σ(α) + Rα
= β − 2aα + (β, α)α + Rα
= β + Rα.

So τ pointwise fixes both Rα and E/Rα.
Let (ε1, · · · , εn−1) be a basis for Pα and let εn = α. Then (ε1, · · · , εn) is a basis for E.

We then have, for some ei ∈ R,

τ : εi 7→

{
εi + eiεn, (i = 1, · · · , n− 1),

εn, (i = n).
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Consider the representation of E where

ε1 7→


1
0
...
0

 , · · · , εn 7→


0
...
0
1

 .

Then the matrix representation Aτ of τ is given by

Aτ =


1 0 · · · · · · 0

0
. . . . . .

...
...

. . . . . . . . .
...

0 · · · 0
. . . 0

e1 · · · · · · en−1 1

 .

Thus we can write Aτ = Nτ + In, where In is the identity matrix and

Nτ =


0 · · · 0 0
...

. . .
...

...
0 · · · 0 0
e1 · · · en−1 0

 .

As Nτ is strictly lower triangular, Nτ
n = 0, hence (Aτ − In)n = Nτ

n = 0. Therefore, the
minimal polynomial of Aτ (and hence that of τ) divides (X − 1)n ∈ R[X].

As τ(Φ) = Φ and Φ is finite, for each β ∈ Φ, we have that τ kβ(β) = β for some kβ ∈ N.
The value ∏

β∈Φ

kβ

exists in N, as Φ is finite; further, as kβ divides k, we have that τ k fixes β for all β ∈ Φ.
Therefore, as Φ spans E, we have that τ k fixes all of E, hence τ k = 1. Therefore the
minimal polynomial of τ divides Xk − 1.

The minimal polynomial of τ must therefore divide the greatest common divisor of
(X− 1)k and Xk− 1, which is X− 1. That is, τ = 1. Therefore, σσ−1

α = 1, which implies
that σ = σα. �
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14. Root Systems

We look at root systems, discussing the Weyl group and duals/inverses of root systems.
We conclude by relating the notion of root duals/inverses back to our Lie algebra setting.

We continue to take E to be a Euclidean space. We also take Φ to be a root system in
E (defined below).

14.1. Definition. Let Φ be a subset of the Euclidean space E. Then Φ is called a root
system in E if the following axioms hold:

• Φ is finite, spans E and does not contain 0.
• If α ∈ Φ, the scalar multiples of α in Φ are precisely ±α.
• If α ∈ Φ, the reflection σα leaves Φ invariant.
• If α, β ∈ Φ, then (β, α) ∈ Z.

Let Φ and Φ′ be root systems in E and E ′ respectively. We call Φ and Φ′ isomorphic
as root systems, if there exists a vector space isomorphism, φ : E → E ′, which satisfies:

• φ(Φ) = Φ′,
• (φ(β), φ(α)) = (β, α) for all α, β ∈ Φ.

14.2. Lemma. Suppose σ ∈ GL(E) leaves Φ invariant. Then, for all α, β ∈ Φ:

• σσασ−1 = σσ(α),
• (β, α) = (σ(β), σ(α)).

Proof. Both σ and σα leave Φ invariant (by supposition and by definition of Φ). Therefore,

σσασ
−1(Φ) = σσασ

−1(σ(Φ)) = σσα(Φ) = Φ,

so σσασ
−1 leaves Φ invariant.

For all β ∈ E, we have

σσασ
−1(σ(β)) = σσα(β)

= σ(β − (β, α)α)

= σ(β)− (β, α)σ(α). (14.2.1)

Further, if β ∈ Pα, then 〈β, α〉 = 0, hence (β, α) = 0; therefore,

σσασ
−1(σ(β)) = σ(β)− (β, α)σ(α)

= σ(β),

so σσασ
−1 fixes σ(Pα), which is still a hyperplane, because σ is invertible so preserves

dimension.
Lastly,

σσασ
−1(σ(α)) = σσα(α) = σ(−α) = −σ(α).

Therefore, σσασ
−1 leaves Φ invariant, pointwise fixes σ(Pα) and sends σ(α) to its negative.

Therefore, Theorem 13.7 implies that σσασ
−1 = σσ(α).

Therefore, for all β ∈ E,

σσ(α)(σ(β)) = σσασ
−1(σ(β)) = σ(β)− (β, α)σ(α),

by (14.2.1), whereas by Lemma 13.4,

σσ(α)(σ(β)) = σ(β)− (σ(β), σ(α))σ(α).

Therefore,
σ(β)− (β, α)σ(α) = σ(β)− (σ(β), σ(α))σ(α),

which simplifies to
(β, α) = (σ(β), σ(α)).
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14.3. Corollary. Let φ ∈ GL(E). Suppose φ leaves Φ invariant. Then φ is a root system
automorphism of Φ.

Proof. The definition of a root system isomorphism is already satisfied by φ, bar one
point: that (β, α) = (φ(β), φ(α)) for all α, β ∈ Φ. This is implied by Lemma 14.2. �

14.4. Lemma. Let (E,Φ) and (E ′,Φ′) be isomorphic root systems with isomorphism φ.
Then

σφ(α)(φ(β)) = φ(σα(β))

for all α, β ∈ Φ.

Proof. Let α, β ∈ Φ. Then,

σφ(α)(φ(β)) = φ(β)− (φ(β), φ(α))φ(α)

= φ(β)− (β, α)φ(α)

= φ(β − (β, α)α)

= φ(σα(β))

by Lemma 13.4 and the definition of root system isomorphisms. �

14.5. Definition. Denote by W the subgroup of GL(E) generated by the reflections
{σα : α ∈ Φ}. This is called the Weyl group of Φ.

14.6. Proposition. W is a subgroup of the symmetric group on Φ and is finite.

Proof. By definition, Φ is left invariant by the reflections generating W . As Φ is a finite
set, these generators are permutations of Φ, hence are elements of the symmetric group
on Φ. �

14.7. Proposition. Let (E,Φ) and (E ′,Φ′) be isomorphic root systems with isomorphism
φ. Let W and W ′ denote their respective Weyl groups. Then the map

φ∗ :W →W ′ : σ 7→ φ ◦ σ ◦ φ−1

is a group isomorphism.

Proof. Let σ1, σ2 ∈ W . Then

φ∗(σ1σ2) = φ ◦ (σ1 ◦ σ2) ◦ φ−1

= φ ◦ σ1 ◦ (φ−1 ◦ φ) ◦ σ2 ◦ φ−1

= (φ ◦ σ1 ◦ φ−1) ◦ (φ ◦ σ2 ◦ φ−1)

= φ∗(σ1)φ∗(σ2),

hence φ∗ is a group homomorphism.
W and W ′ are generated by the sets R = {σα : α ∈ Φ} and R′ = {σβ : β ∈ Φ′} respec-

tively. As σα = σβ if and only if β ∈ Rα, and the scalar multiples of α ∈ Φ are precisely
±α by definition, we have that |R| = 1

2
|Φ| and |R′| = 1

2
|Φ′|. Further, |Φ| = |Φ′|, as the

root systems are isomorphic, and this value is finite by definition. Therefore,

|R| = |R′| (14.7.1)

and is finite.
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Let σβ ∈ P ′. That is, β ∈ Φ′. As φ(Φ) = Φ′, we have β = φ(α) for some α ∈ Φ. As
φ is an isomorphism, for all γ ∈ E ′, there exists some δ ∈ E such that γ = φ(δ) and
δ = φ−1(γ). Further, σφ(α)(φ(δ)) = φ(σα(δ)) by Lemma 14.4, hence

σβ(γ) = σφ(α)(φ(δ)) = φ(σα(δ)) = φ(σα(φ−1(γ))) = (φ ◦ σα ◦ φ−1)(γ) = φ∗(σα)(γ).

As γ ∈ E was arbitrary, we have σβ = φ∗(σα), where σα ∈ R. Therefore, as σβ ∈ R′ was
arbitrary, we have R′ ⊆ φ∗(R). Thus, by (14.7.1),

|R′| ≤ |φ∗(R)| ≤ |R| = |R′|,
hence |R′| = |φ∗(R)| and R′ = φ∗(R). As these sets are finite and of equal size, we have
that φ∗ acts as a bijection between R and R′. As these are the generators of W and W ′,
we have that φ∗ is a bijection. �

14.8. Proposition. The Weyl group of Φ is a subgroup of Aut(Φ).

Proof. Let σ ∈ W . Then σ ∈ GL(E) and σ(Φ) = Φ. Therefore, by Theorem 14.3, σ is a
root system automorphism of Φ.

SoW ⊆ Aut(Φ), hence is a subgroup, as the group operation (composition of functions)
is the same. �

14.9. Definition. Let α ∈ Φ. We define

α∨ =
2α

〈α, α〉
and call

Φ∨ = {α∨ : α ∈ Φ}
the dual or inverse of Φ.

14.10. Lemma. Let α ∈ Φ. Then σα∨ = σα.

Proof. As α∨ is a scalar multiple of α, the hyperplanes orthogonal to α and α∨ are the
same, hence the reflections in those hyperplanes are the same. �

14.11. Theorem. Φ∨ is a root system in E.

Proof. By definition, |Φ∨| ≤ |Φ|, so is finite. The form is positive definite, so

α∨ =
2α

〈α, α〉
exists and, as α 6= 0, is nonzero for all α ∈ Φ. Therefore, 0 /∈ Φ∨. Further,

span(Φ∨) =
∑
α∨∈Φ∨

Rα∨

=
∑
α∈Φ

Rα∨

=
∑
α∈Φ

R
(

2

〈α, α〉
α

)
=
∑
α∈Φ

Rα

= span(Φ)

= E,

hence Φ∨ spans E.
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Note that, for α ∈ Φ,

(−α)∨ =
2(−α)

〈(−α), (−α)〉
= −

(
2α

〈α, α〉

)
= −(α∨). (14.11.1)

Suppose α∨ and β∨ in Φ∨ are scalar multiples. That is, β∨ = λα∨ for some λ ∈ R.
Then

2β

〈β, β〉
= λ

2α

〈α, α〉
,

which implies

β = λ
〈β, β〉
〈α, α〉

α.

That is, β and α are scalar multiples. But as β and α are in Φ, we have that β = ±α.
Therefore, either β∨ = α∨ or β∨ = (−α)∨ = −(α∨), by (14.11.1). That is, the scalar
multiples of α∨ ∈ Φ∨ are precisely ±α∨.

Let α∨, β∨ ∈ Φ∨. Then

(σα(β))∨ =
2σα(β)

〈σα(β), σα(β)〉
.

By Lemma 13.4, we have that

〈σα(β), σα(β)〉 = 〈β − (β, α)α, β − (β, α)α〉
= 〈β, β〉 − (β, α) 〈α, β〉 − (β, α) 〈β, α〉+ (β, α)2 〈α, α〉
= 〈β, β〉 − 2(β, α) 〈β, α〉+ (β, α)2 〈α, α〉 ,

where we can express

(β, α)2 〈α, α〉 = (β, α)
2 〈β, α〉
〈α, α〉

〈α, α〉 = 2(β, α) 〈β, α〉 .

Putting these together then gives

〈σα(β), σα(β)〉 = 〈β, β〉 − 2(β, α) 〈β, α〉+ 2(β, α) 〈β, α〉 = 〈β, β〉 .
Therefore, applying Lemma 13.4 again,

(σα(β))∨ =
2σα(β)

〈σα(β), σα(β)〉

=
2β − 2(β, α)α

〈β, β〉

=
2β

〈β, β〉
−
(

2β

〈β, β〉
, α

)
α

= β∨ − (β∨, α)α

= σα(β∨)

= σα∨(β∨),

where the last step uses Lemma 14.10. Φ is a root system, so σα(β) ∈ Φ, hence (σα(β))∨ =
σα∨(β∨) ∈ Φ∨ for all α, β ∈ Φ. That is, the reflections σα∨ preserve Φ∨.

Finally, let α∨, β∨ ∈ Φ∨. Then,

(β∨, α∨) =
2 〈β∨, α∨〉
〈α∨, α∨〉

=
2
〈

2β
〈β,β〉 ,

2α
〈α,α〉

〉
〈

2α
〈α,α〉 ,

2α
〈α,α〉

〉 = 2

〈
β
〈β,β〉 ,

α
〈α,α〉

〉
〈

α
〈α,α〉 ,

α
〈α,α〉

〉 .
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We can express the denominator as〈
α

〈α, α〉
,

α

〈α, α〉

〉
=
〈α, α〉
〈α, α〉2

=
1

〈α, α〉
,

hence

(β∨, α∨) = 2

〈
β

〈β, β〉
,

α

〈α, α〉

〉
〈α, α〉 = 2

〈β, α〉 〈α, α〉
〈β, β〉 〈α, α〉

=
2 〈β, α〉
〈α, α〉

= (β, α),

which is an integer, as Φ is a root system. �

14.12. Proposition. The root systems Φ∨ and Φ have the same Weyl group.

Proof. Let W∨ denote the Weyl group of Φ∨. This is generated by the set R∨ =
{σα∨ : α ∈ Φ} andW is generated byR = {σα : α ∈ Φ}. By Lemma 14.10, for each α ∈ Φ,
the reflections σα∨ and σα are the same, hence R∨ = R and consequently W∨ =W . �

14.13. Corollary (to Theorem 12.12). Let L be a simple Lie algebra over an algebraically
closed field of characteristic zero. Then the set of roots is a root system.

Proof. Now that we have defined what a root system is, we can see that this result is
equivalent to Theorem 12.12. �

14.14. Lemma. Let L be a semisimple Lie algebra over an algebraically closed field of
characteristic zero. Let T denote a maximal torus of L, and Φ denote the set of roots.
Then in the correspondence between T ∗ and T (Remark 8.12), the element of T which
corresponds to α∨ is

hα =
2tα
〈tα, tα〉

.

Proof. For all t ∈ T , we have that α(t) = 〈tα, t〉, hence

α∨(t) =

(
2α

〈α, α〉

)
(t) =

2

〈tα, tα〉
α(t) =

2

〈tα, tα〉
〈tα, t〉 =

〈
2tα
〈tα, tα〉

, t

〉
= 〈hα, t〉 .

�
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15. Pairs of Roots

We study root systems further, demonstrating restrictions on angles and length ratios
between pairs of roots. We use this to prove an interesting result about root strings: they
have length at most 4. Further, the α-string through β is reversed by the reflection σα
(that is, the midpoint of the string lies on the hyperplane Pα).

We continue to take E to be a Euclidean space and Φ to be a root system in E.

15.1. Theorem. Let α, β ∈ Φ be nonproportional roots, labelled such that ||α|| ≤ ||β||.
Let θ be the angle between them. Then θ is one of the values in this table:

(α, β) (β, α) θ ||β||2/||α||2
0 0 π/2 -
1 1 π/3 1
−1 −1 2π/3 1
1 2 π/4 2
−1 −2 3π/4 2
1 3 π/6 3
−1 −3 5π/6 3

Proof. As ||α|| ≤ ||β||, we have that 〈α, α〉 ≤ 〈β, β〉, hence

1

〈α, α〉
≥ 1

〈β, β〉
.

Therefore,

(β, α) =
2 〈β, α〉
〈α, α〉

≥ 2 〈β, α〉
〈β, β〉

=
2 〈α, β〉
〈β, β〉

= (α, β).

As E is a Euclidean space, we can use the standard identity for the angle, θ, between
α and β:

||α|| ||β|| cos(θ) = 〈α, β〉 .
This implies that,

(β, α) =
2 〈β, α〉
〈α, α〉

= 2
||β|| ||α|| cos(θ)

||α|| ||α|| cos(0)
= 2
||β||
||α||

cos(θ),

which in turn gives

(β, α)(α, β) =

(
2
||β||
||α||

cos(θ)

)(
2
||α||
||β||

cos(θ)

)
= 4 cos2(θ). (15.1.1)

As cos(θ) ∈ [−1, 1], we have that cos2(θ) ∈ [0, 1], hence

(β, α)(α, β) ∈ [0, 4].

Further, as Φ is a root system, both (β, α) and (α, β) are integers, hence

(β, α)(α, β) ∈ [0, 4] ∩ Z = {0, 1, 2, 3, 4} .
If (β, α)(α, β) = 4, then by (15.1.1), cos(θ) = 1, hence θ = 0, which implies that α and

β are proportional. This contradicts the assumption, hence (β, α)(α, β) 6= 4. If either
one of (β, α) or (α, β) are zero, they must both be zero. The rest of the table exhausts
the possibilities for two integers multiplying together to give 1, 2 or 3.

For the ratios of norms, we can see that if (β, α) = n(α, β) for some n = 1, 2, 3, we get

2 〈β, α〉
〈α, α〉

= n
2 〈α, β〉
〈β, β〉

,
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which simplifies to 〈β, β〉 = n 〈α, α〉, hence

||β||2

||α||2
=
〈β, β〉
〈α, α〉

=
n 〈α, α〉
〈α, α〉

= n.

�

15.2. Lemma. Let α, β ∈ Φ be nonproportional.

• If 〈α, β〉 < 0, then α + β ∈ Φ.
• If 〈α, β〉 > 0, then α− β ∈ Φ.

Proof. Suppose 〈α, β〉 > 0. Then (α, β) > 0, as the form is positive definite. By Theorem
15.1, we have at least one of (α, β) = 1 or (β, α) = 1.

By definition, Φ is closed under the reflections σα and σβ. Suppose (α, β) = 1. Then
by Lemma 13.4,

σβ(α) = α− (α, β)β = α− β ∈ Φ.

Now suppose (β, α) = 1. Then, again by Lemma 13.4,

σα(β) = β − (β, α)α = β − α ∈ Φ,

which implies that α− β ∈ Φ, as Φ is closed under negation.
Now suppose that 〈α, β〉 < 0. Then 〈α,−β〉 > 0. We have that −β ∈ Φ, so we have

already shown that this implies α− (−β) = α + β ∈ Φ. �

15.3. Theorem. Let α, β ∈ Φ be nonproportional. Then the α-string through β is reversed
by σα, is unbroken, and has length at most 4.

Proof. Let r, q ∈ Z be the largest integers for which β − rα ∈ Φ and β + qα ∈ Φ
respectively. As β ∈ Φ, these values exist and are nonnegative.

Suppose there exists some i ∈ Z strictly between r and q, such that β + iα /∈ Φ.
Consider the substring of non-roots surrounding β + iα. Specifically, the end points of
this string. For some p ∈ {−r, · · · , i− 1}, we have

β + pα ∈ Φ; β + (p+ 1)α /∈ Φ. (15.3.1)

Similarly, for some s ∈ {i+ 1, · · · , q}, we have

β + (s− 1)α /∈ Φ; β + sα ∈ Φ. (15.3.2)

By Lemma 15.2,
〈α, β + pα〉 < 0 =⇒ α + (β + pα) ∈ Φ,

and
〈α, β + sα〉 > 0 =⇒ α− (β + sα) ∈ Φ.

But by (15.3.1), β + (p + 1)α ∈ Φ, hence 〈α, β + pα〉 ≥ 0. Additionally, by (15.3.2),
−(β + (s− 1)α) /∈ Φ, hence β + (s− 1)α /∈ Φ, as Φ is closed under negation. Therefore,
〈α, β + sα〉 ≤ 0. That is,

〈α, β + sα〉 ≤ 0 ≤ 〈α, β + pα〉 .
Therefore,

〈α, β〉+ s 〈α, α〉 ≤ 〈α, β〉+ p 〈α, α〉 ,
which can be simplified to

s ≤ p,

because 〈α, α〉 > 0, as the form is positive definite. But p < s by definition, so this is
a contradiction. Therefore, the supposition that β + iα /∈ Φ must be false. That is, the
root string is unbroken.
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We use the notation Sβα to denote the set of roots in the α-string through β. Let
L = {β + tα : t ∈ R} denote the line through Sβα. Let Ls ⊂ L denote the closed line
segment from β − rα to β + qα. That is,

Sβα = L ∩ Φ ⊂ Ls ⊂ L.

The line L is, by definition, parallel to α, hence orthogonal to Pα. So the reflection σα
reverses L about the point where L intersects Pα. Call this point χ. Therefore,

σα(Sβα) ⊆ σα(L) = L.

As Φ is a root system, it is preserved by σα. As Sβα ⊆ Φ, we have that σα(Sβα) ⊆ Φ.
Therefore,

σα(Sβα) ⊆ L ∩ Φ = Sβα (15.3.3)

Suppose σα does not reverse Ls. Then χ is not the midpoint of Ls (that is, Pα does
not intersect Ls at its midpoint). Therefore, one of the endpoints of Ls lies further from
χ than the other. Therefore, σα sends this endpoint outside Ls. That is, we have at least
one of:

• σα(β − rα) /∈ Ls;
• σα(β + qα) /∈ Ls.

But as Sβα ⊂ Ls, this implies that σα sends at least one of β− rα or β+ qα outside of Sβα,
which contradicts (15.3.3). Therefore, the supposition that σα does not reverse Ls must
be false. That is, σα reverses Ls and, because the endpoints of Ls and Sβα coincide, also
reverses Sβα.

Let γ = β − rα. Let Sγα = {γ − r′α, · · · , γ + q′α} denote the α-string through γ. This
is the same as Sβα = {β − rα, · · · , β + qα}, hence r′ = 0 and q′ = r + q. As σα reverses
Sβα, it maps the endpoints to one another. That is,

σα(β′) = β′ + q′α.

Therefore, by Lemma 13.4
β′ − (β′, α)α = β′ + q′α,

hence
(β′, α) = −q′.

Theorem 15.1 limits the possible values of (β′, α), giving |− q′| ≤ 3. As q′ is nonnegative,
this implies q′ ≤ 3. The length of the root string Sβα = Sβ

′
α is given by

|Sβα| = | {β′, β′ + α, · · · , β′ + q′α} | = | {0, 1, · · · , q′} | = q′ + 1.

Therefore, the length of the α-string through β is q′ + 1 ≤ 4. �
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16. Bases of Root Systems

We define a base of a root system and prove that every root system has a base (Corol-
lary 16.19) and that every base occurs in a certain form (Theorem 16.21). We will use
bases to define a Chevalley basis in the following section, which will be instrumental in
constructing Chevalley groups.

We continue to take E to be a Euclidean space and Φ to be a root system in E.

16.1. Definition. Let ∆ ⊆ Φ. We call ∆ a base of Φ if it is a basis for E and each β ∈ Φ
can be expressed as

β =
∑
α∈∆

λαα, (16.1.1)

for some collection of λα ∈ Z, either all nonnegative or all nonpositive. With respect to
a given base, the roots contained in that base are called simple.

The height of a root β relative to ∆, denoted ht(β), is defined

ht(β) =
∑
α∈∆

λα,

where λα is the coefficient of α in the expression for β (16.1.1). These values are unique
for each β ∈ Φ, as ∆ is a basis for E.

16.2. Lemma. Let α ∈ ∆. Then ht(α) = 1.

Proof. This is immediate from the definition. �

16.3. Lemma. Let β ∈ Φ. Express β as

β =
∑
α∈∆

λαα.

If ht(β) > 0, then λα ≥ 0 for all α ∈ ∆. If ht(β) < 0, then λα ≤ 0 for all α ∈ ∆. As
0 /∈ Φ, the value ht(β) is never zero.

Proof. By definition, the coefficients λα are either all nonnegative or all nonpositive. �

16.4. Definition. Let β ∈ Φ. If ht(β) > 0, call β positive; if ht(β) < 0, call β negative.
Denote the sets of positive and negative roots in Φ by Φ+ and Φ− respectively.

16.5. Lemma. Φ can be expressed as a disjoint union Φ = Φ+ ∪ Φ−.

Proof. By Lemma 16.3, we have that ht(β) 6= 0 for all β ∈ Φ. By definition Φ+ and Φ−

do not intersect, so the union is disjoint. �

16.6. Lemma. Let α, β ∈ ∆ be distinct. Then 〈α, β〉 ≤ 0 and (α− β) /∈ Φ.

Proof. Let λγ be a collection of scalars indexed by γ ∈ ∆, where all λγ = 0 except λα = 1
and λβ = −1. Then

α− β −
∑
γ∈∆

λγγ.

This collection of scalars is not all nonpositive or all nonnegative, hence by definition of
∆, we have that α − β /∈ Φ. The roots α and β are distinct elements of a basis, hence
nonproportional. Therefore, by Lemma 15.2,

〈α, β〉 > 0 =⇒ α− β ∈ Φ.

We have α− β /∈ Φ, hence 〈α, β〉 ≤ 0. �
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16.7. Definition. Let γ ∈ E. Denote the subset of roots which lie on the same side of
the hyperplane Pγ as γ by

Φ+(γ) = {α ∈ Φ : 〈α, γ〉 > 0} ,
and the subset of roots which lie on the opposite side of Pγ from γ by

Φ−(γ) = {α ∈ Φ : 〈α, γ〉 < 0} .

16.8. Lemma. For all γ ∈ E, we have Φ−(γ) = −Φ+(γ).

Proof. Let α ∈ Φ−(γ). That is, 〈α, γ〉 < 0, hence 〈−α, γ〉 > 0. Therefore −α ∈ Φ+(γ),
or equivalently α ∈ −Φ+(γ). This implies that Φ−(γ) ⊆ −Φ+(γ).

Now let α ∈ −Φ+(γ). That is, −α ∈ Φ+(γ), hence 〈−α, γ〉 > 0. Therefore, 〈α, γ〉 < 0,
hence α ∈ Φ−(γ). This implies that −Φ+(γ) ⊆ Φ−(γ). �

16.9. Definition. Let γ ∈ E. Call γ regular if

γ ∈ E \
⋃
α∈Φ

Pα,

and singular otherwise.

16.10. Lemma. Let γ ∈ E be regular. Then Φ = Φ+(γ) ∪ Φ−(γ).

Proof. Suppose Φ 6= Φ+(γ) ∪ Φ−(γ). Then there exists some α ∈ Φ which is not an
element of Φ+(γ) or −Φ+(γ). Then both 〈α, γ〉 > 0 and −〈α, γ〉 > 0 are false. That is,
both 〈α, γ〉 ≤ 0 and 〈α, γ〉 ≥ 0 are true, hence 〈α, γ〉 = 0. Therefore, γ ∈ Pα. But as γ is
regular, γ /∈ Pα, so we have a contradiction. Therefore the supposition must be false. �

16.11. Definition. Let γ ∈ E be regular. Then α ∈ Φ+(γ) is called decomposable if
α = β1 + β2 for some β1, β2 ∈ Φ+(γ), and indecomposable otherwise. Denote the set
of indecomposable roots in Φ+(γ) by ∆(γ).

16.12. Lemma. Let γ ∈ E be regular. Then each root in Φ+(γ) is a nonnegative Z-linear
combination of roots in ∆(γ).

Proof. Suppose otherwise. Then Φ+(γ) \ Z 6= ∅, where Z = spanZ+(∆(γ)). Let α ∈
Φ+(γ) \ Z such that the value of 〈γ, α〉 is minimal in this set. As 1 ∈ Z+, we have
that ∆(γ) ⊆ Z, hence α /∈ ∆(γ). That is, α is decomposable, so can be expressed as
α = β1 + β2 for some β1, β2 ∈ Φ+(γ). By definition of Φ+(γ), both 〈γ, β1〉 and 〈γ, β2〉
are strictly positive. Further, 〈γ, α〉 = 〈γ, β1〉 + 〈γ, β2〉, hence both 〈γ, β1〉 < 〈γ, α〉 and
〈γ, β2〉 < 〈γ, α〉. Therefore, β1, β2 /∈ Φ+(γ) \ Z, as α was chosen to have minimal 〈γ, α〉
in this set. That is, β1, β2 ∈ Φ+(γ)∩Z. The set Z is closed under addition by definition,
hence α + β1 + β2 ∈ Z. But this contradicts the definition of α, hence such α cannot
exist. This implies that Φ+(γ) \ Z = ∅ (as nonempty finite sets always contain their
minimums). This contradicts the supposition, hence we have the result. �

16.13. Lemma. Let γ ∈ E be regular and let α, β ∈ ∆(γ). Suppose α 6= β. Then
〈α, β〉 ≤ 0.

Proof. Suppose 〈α, β〉 > 0. By definition, if α ∈ Φ+(γ), then −α /∈ Φ+(γ). Therefore
β 6= −α, hence α and β are nonproportional. Therefore by Lemma 15.2, α − β ∈ Φ,
hence by Lemma 16.10, either α− β ∈ Φ+(γ) or β − α ∈ Φ+(γ).

Suppose α−β ∈ Φ+(γ). Then we can express α = (α−β)+β, where both components
of α are elements of Φ+(γ). That is, α is decomposable, which is a contradiction, as
α ∈ ∆(γ). Therefore, the supposition must be false.
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Now suppose β − α ∈ Φ+(γ). Then we can express β = (β − α) + α, where both
components of β are elements of Φ+(γ). That is, β is decomposable, which again is a
contradiction, as β ∈ ∆(γ). Therefore, the supposition must be false.

Together, these points give a further contradiction, which implies that the original
supposition must be false. That is, 〈α, β〉 ≤ 0. �

16.14. Lemma. Let S ⊂ E be a nonempty set of vectors lying strictly on one side of
some hyperplane. Let

α =
∑
β∈S

β.

Then α lies on the same side of the hyperplane as the vectors in S.

Proof. Let Pγ denote the hyperplane in question, where γ ∈ E is some nonzero vector
orthogonal to it and on the same side as the vectors in S. Then each β ∈ S satisfies
〈β, γ〉 > 0 and β /∈ Pγ. Thus we can write β = ρβ + λβγ, for some ρβ ∈ Pγ and λγ ∈ R
(Lemma 13.2). We have that 〈ρβ, γ〉 = 0, hence

0 < 〈β, γ〉 = 〈ρβ + λβγ, γ〉 = 〈ρβ, γ〉+ λβ 〈γ, γ〉 = λβ 〈γ, γ〉 ,
where 〈γ, γ〉 > 0 as the form is positive definite. Therefore, λβ > 0. Now we can express
α as

α =
∑
β∈S

β =
∑
β∈S

(ρβ + λβγ) =

(∑
β∈S

ρβ

)
+

(∑
β∈S

λβ

)
γ = ρα + λαγ,

where ρα ∈ Pγ and λα is a sum of strictly positive reals, hence is strictly positive.
Therefore,

〈α, γ〉 = 〈ρα + λαγ, γ〉 = 〈ρα, γ〉+ λα 〈γ, γ〉 = λα 〈γ, γ〉 > 0,

again as the form is positive definite. That is, α lies on the positive side of Pγ. �

16.15. Lemma. Let S ⊂ E be a set of vectors lying strictly on one side of some hyperplane.
Suppose that α 6= β implies 〈α, β〉 ≤ 0 for all α, β ∈ S. Then S is a linearly independent
set.

Proof. Suppose there exists some set R = {rα : α ∈ S} ⊂ R which satisfies∑
α∈S

rαα = 0.

Let S+ = {α ∈ S : rα > 0} and S− = {α ∈ S : rα < 0}. Then α ∈ S \ (S+ ∪ S−) implies
rα = 0. Therefore,

0 =
∑
α∈S

rαα =
∑
α∈S+

rαα +
∑
α∈S−

rαα.

For each α ∈ S−, let tα = −rα. Then each tα > 0 and we have∑
α∈S+

rαα = −
∑
α∈S−

rαα =
∑
α∈S−

−rαα =
∑
α∈S−

tαα.

Let

ε =
∑
α∈S+

rαα =
∑
α∈S−

tαα. (16.15.1)

Then

〈ε, ε〉 =

〈∑
α∈S+

rαα,
∑
β∈S−

tββ

〉
=
∑
α∈S+

∑
β∈S−

rαtβ 〈α, β〉 .
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As S+ and S− intersect trivially by definition, each pair of α and β in the above sum satisfy
α 6= β, which implies 〈α, β〉 ≤ 0 by assumption. Further, each rα and tβ appearing in the
above sum is positive. Therefore, the sum must be negative or zero. That is, 〈ε, ε〉 ≤ 0,
hence 〈ε, ε〉 = 0 and ε = 0, as the form is positive definite.

As all the coefficients rα and tα appearing in (16.15.1) are positive, the vectors (rαα and
tαα) in each sum lie on the same side of the hyperplane as the vectors in S. Supposing
that these sums are nonempty, we can apply Lemma 16.14 to get that ε also lies on that
side of the hyperplane. But ε = 0, so cannot lie strictly on one side of any hyperplane,
which is a contradiction. Therefore, the supposition that the sums are nonempty must
be false. That is, S+ = S− = ∅, hence rα = 0 for all α ∈ S.

We have shown that in an arbitrary expression of linear dependence on S, all coefficients
are zero. That is, S is a linearly independent set. �

16.16. Proposition. Let γ ∈ E be regular. Then ∆(γ) is a base of Φ.

Proof. Let β ∈ Φ. By Lemma 16.10, we can express Φ = Φ+(γ) ∪ Φ−(γ), so either
β ∈ Φ+(γ) or β ∈ Φ−(γ). In the latter case, −β ∈ Φ+(γ). Therefore, by Lemma 16.12,
one of β or −β can be expressed as a nonnegative Z-linear combination of elements
of ∆(γ). That is, β can be expressed as either a nonnegative or nonpositive Z-linear
combination of elements of ∆(γ).

Therefore, ∆(γ) spans Φ. As Φ spans E by definition, we have that ∆(γ) also spans
E. By definition, Φ+(γ) lies strictly on one side of some hyperplane, hence so does
∆(γ) ⊆ Φ+(γ). Further, by Lemma 16.13, α 6= β implies 〈α, β〉 ≤ 0 for all α, β ∈ ∆(γ).
Therefore, by Lemma 16.15, ∆(γ) is linearly independent. Therefore, ∆(γ) is a basis for
E. �

16.17. Lemma. There exists γ ∈ E which satisfies 〈γ, α〉 > 0 for all α ∈ ∆.

Proof. Label the elements in ∆ such that ∆ = {α1, · · · , αn}, where n = dim(E). For
each k = 1, · · · , n, let Ek = span {α1, · · · , αk}.

Suppose γ ∈ Ek satisfies

〈γ, αi〉 > 0 (16.17.1)

for each i = 1, · · · , k. Let

Pk = E⊥k = {δ ∈ E : 〈δ, Ek〉 = {0}} .
Then dim(Pk) = n− k and dim(Ek+1) = k + 1. We have that

dim(Pk ⊕ Ek+1) = dim(Pk) + dim(Ek+1)− dim(Pk ∩ Ek+1)

= (n− k) + (k + 1)− dim(Pk ∩ Ek+1)

= n+ 1− dim(Pk ∩ Ek+1).

But as these spaces are contained in E, we must have dim(Pk ⊕ Ek+1) ≤ n. Thus
dim(Pk ∩ Ek+1) ≥ 1.

So there exists a nonzero δ ∈ Pk ∩ Ek+1. As δ ∈ Pk, we have that

〈δ, αi〉 = 0 (16.17.2)

for each i = 1, · · · , k.
Suppose that 〈δ, αk+1〉 = 0. With (16.17.2), this implies that 〈δ, Ek+1〉 = {0}. But

as δ ∈ Ek+1, this implies that 〈δ, δ〉 = 0, which in turn implies that δ = 0, as the
form is positive definite. This contradicts the definition of δ, hence the supposition that
〈δ, αk+1〉 = 0 must be false. That is, 〈δ, αk+1〉 6= 0.
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For each λ ∈ R, let γλ = γ + λδ. Then

〈γλ, αk+1〉 = 〈γ + λδ, αk+1〉 = 〈γ, αk+1〉+ λ 〈δ, αk+1〉 .
As 〈δ, αk+1〉 6= 0, there exists some λ ∈ R for which 〈γλ, αk+1〉 > 0. Fix λ to be such a
value.

Then, by (16.17.2), we have

〈γλ, αi〉 = 〈γ + λδ, αi〉 = 〈γ, αi〉+ λ 〈δ, αi〉 = 〈γ, αi〉 ,
for each i = 1, · · · , k. By (16.17.1), we have 〈γ, αi〉 > 0, hence 〈γλ, αi〉 > 0.

We have shown that if there exists a γ ∈ Ek satisfying 〈γ, αi〉 > 0 for all i = 1, · · · , k,
then there must also exist a γλ ∈ Ek+1 satisfying 〈γλ, αi〉 > 0 for all i = 1, · · · , k + 1.

Further, α1 ∈ E1 and 〈α1, α1〉 > 0 as the form is positive definite. Therefore, by
induction, there exists a γ ∈ E = En satisfying 〈γ, αi〉 > 0 for all i = 1, · · · , n. �

16.18. Lemma. Let γ ∈ E satisfy 〈γ, α〉 > 0 for all α ∈ ∆. Then γ is regular.

Proof. Let β ∈ Φ. As ∆ is a base, β can be expressed

β =
∑
α∈∆

λαα,

where the coefficients are either all nonnegative or all nonpositive. We have γ ∈ Pβ only
if

0 = 〈γ, β〉

=

〈
γ,
∑
α∈∆

λαα

〉
=
∑
α∈∆

λα 〈γ, α〉 .

But by assumption, 〈γ, α〉 > 0 for each α ∈ ∆ and the coefficients all have the same sign,
so 〈γ, β〉 6= 0 and γ /∈ Pβ.

As β was arbitrary, γ /∈ Pβ for all β ∈ Φ, hence γ is regular. �

16.19. Corollary. There exists a base for Φ. Specifically, there exists a regular γ ∈ E
and ∆(γ) is a base.

Proof. Together, Lemma 16.17 and Lemma 16.18 imply that there exists a regular γ ∈ E.
Then Proposition 16.16 implies that ∆(γ) is a base �

16.20. Lemma. Let γ ∈ E satisfy 〈γ, α〉 > 0 for all α ∈ ∆. Then Φ+ = Φ+(γ) and
Φ− = Φ−(γ).

Proof. Let β ∈ Φ+. Then β ∈ Φ and can be expressed

β =
∑
α∈∆

λαα,

where λα ∈ R+ for all α ∈ ∆. Therefore,

〈γ, β〉 =

〈
γ,
∑
α∈∆

λαα

〉
=
∑
α∈∆

λα 〈γ, α〉 > 0,

as 〈γ, α〉 > 0 for each α ∈ ∆ by assumption (we have 〈γ, β〉 6= 0 as β 6= 0), hence
β ∈ Φ+(γ). As β was arbitrary, this implies that Φ+ ⊆ Φ+(γ).
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Now let β ∈ Φ−. Then −β ∈ Φ+, so by the above, we have −β ∈ Φ+(γ). By Lemma
16.8, Φ−(γ) = −Φ+(γ), hence β ∈ Φ−(γ). This implies that Φ− ⊆ Φ−(γ). We have that
Φ = Φ+ ∪Φ− (Lemma 16.5) and that Φ = Φ+(γ)∪Φ−(γ) (Lemma 16.10). Both of these
unions are disjoint. Therefore,

Φ+ ∪ Φ− = Φ+(γ) ∪ Φ−(γ),

hence

Φ+ = (Φ+(γ) ∪ Φ−(γ)) \ Φ−

= Φ+(γ) ∪ (Φ−(γ) \ Φ−),

as Φ− ⊆ Φ−(γ). But then the fact that the union is disjoint, along with Φ+ ⊆ Φ+(γ),
implies both that Φ+ = Φ+(γ) and that Φ−(γ) \ Φ− = ∅, hence Φ− = Φ−(γ). �

16.21. Theorem. There exists a regular γ ∈ E such that ∆ = ∆(γ).

Proof. By Lemma 16.17, there exists a γ ∈ E which satisfies 〈γ, α〉 > 0 for all α ∈ ∆.
Let β ∈ ∆. Then β ∈ Φ+ = Φ+(γ) by Lemma 16.2 and Lemma 16.20.
Suppose that β is decomposable with respect to γ. That is, β = β1 + β2 for some

β1, β2 ∈ Φ+(γ). As ∆ is a base, we can express this as

β =

(∑
α∈∆

λαα

)
+

(∑
α∈∆

µαα

)
, (16.21.1)

where each collection of scalars λα ∈ Z and µα ∈ Z is either all nonnegative or all
nonpositive. As β1, β2 ∈ Φ+(γ) = Φ+ by Lemma 16.2, these values are in fact all
nonnegative.

We can rearrange (16.21.1) to give

(λβ + µβ − 1)β +
∑

α∈∆\{β}

(λα + µα)α = 0.

This is an expression of linear dependence on ∆, hence all the coefficients are zero, as ∆
is a basis. That is, λα + µα = 0 for all α ∈ ∆ \ {β} and λβ + µβ − 1 = 0. As λα, µα ≥ 0
for all α ∈ ∆, this implies that λα, µα = 0 for all α ∈ ∆ \ {β} and that one of λβ or
µβ is zero (as λβ, µβ ∈ Z). But at least one λα and one µα must be nonzero, as both β1

and β2 are nonzero. We therefore have a contradiction, hence the supposition that β is
decomposable must be false. That is, β ∈ ∆(γ).

Thus, we have shown that ∆ ⊆ ∆(γ). By Proposition 16.16, ∆(γ) is a base of Φ, and
by definition ∆ is a base of Φ. Therefore, |∆| = dim(E) = |∆(γ)|, hence the inclusion
∆ ⊆ ∆(γ) implies that ∆ = ∆(γ). �

16.22. Corollary. The root space decomposition of L can now be expressed:

L =

(⊕
α∈∆

Fhα

)
⊕

(⊕
α∈Φ

Fxα

)
,

where ∆ is a base of Φ and hα = [xαx−α] for each α ∈ Φ.

Proof. By Theorem 16.21, Φ has some base ∆. Then Φ ⊆ spanZ(∆) by definition. This
implies that Φ ⊆ spanF(∆), as F has characteristic zero. Further, as Φ spans T ∗, we have
that T ∗ = spanF(∆). The result then follows from Corollary 11.13. �
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17. Chevalley Basis

In this section, we return to the Lie algebra setting, armed with the results about root
systems from the previous sections, which we can apply to the set of roots, Φ, as this is
a root system (Theorem 12.12). We will define and construct a special kind of basis for
L - one in which all structure constrants are integers - called a Chevalley basis. For this,
we will need a result about a certain automorphism of L (Lemma 17.1), which we will
take as assumed (for a proof, see [4]).

It should be noted that the statement and proof of (Lemma 17.4) is slightly different
from the corresponding result in [4] (Proposition 25.1b). The statement of the result
differs so as to make its use in the proof of (Lemma 17.5) clear and accurate. The proof
differs so that it (and hence Lemma 17.5 (corrispondingly Proposition 25.1c of [4])) do
not depend on the classification theorem.

We continue to take L to be semisimple, T to be a maximal torus of L and F to be
algebraically closed with characteristic zero.

17.1. Lemma. There exists an automorphism σ of L, of order 2, which maps Lα to L−α
for each α ∈ Φ and maps t to −t for all t ∈ T .

Proof. See Proposition 14.3 of [4]. �

17.2. Let α, β ∈ E and let θ be the angle between these two vectors. Then:

• θ < π/2 ⇐⇒ 〈α, β〉 > 0.
• θ = π/2 ⇐⇒ 〈α, β〉 = 0.
• θ > π/2 ⇐⇒ 〈α, β〉 < 0.

Consider the hyperplane Pα: this consists of points in E orthogonal to α, hence points
with an angle of π/2 with α. We also have that 〈α, Pα〉 = {0} by definition.

If β lies on the same side of Pα as α, then θ < π/2. This is the positive side of Pα,
so 〈α, β〉 > 0. Similarly, if β is on the opposite side of Pα from α, then θ > π/2 and
〈α, β〉 < 0.

17.3. Lemma. Let α, β ∈ E be nonzero and let θ be the angle between them. Then the
angle between α and σα(β) is π − θ.

Proof. Reflections preserve angles, so the angle between σα(α) = −α and σα(β) is also
θ. Further, the angle between α and −α is π. As we are working in the 2 dimensional
Euclidean plane spanned by α and β, the angles between α and σα(β) and −α must add
up to π. Therefore, the angle between α and σα(β) is π − θ. �

17.4. Proposition. Let α, β ∈ Φ be nonproportional. Let Sβα = {β − rα, · · · , β + qα}
denote the α-string through β. Then at most two distinct root lengths occur in Sβα ∪ {α}.
Proof. Without loss of generality, choose β in this root string such that 〈β, α〉 is minimal.
We have that

〈β − α, α〉 = 〈β, α〉 − 〈α, α〉 < 〈β, α〉 ,
as the form is positive definite, hence β − α cannot be a root. Therefore, we can express
the root string as

Sβα = {β, · · · , β + qα} . (17.4.1)

The reflection σα reverses this root string (Theorem 15.3), hence

σα(β + iα) = β + (q − i)α. (17.4.2)

Let θ be the angle between α and β. Suppose θ < π/2. By Lemma 17.3, the angle
between α and σα(β) is π − θ. By (17.4.2), we have σα(β) = β + qα, thus by the

73



α

βσα(β)

−α θ

π − θ

Pα

θ

Figure 1.

α

β

−α

2π
3 π

3

β + qα
π
3

Pα

Figure 2.

supposition, the angle between α and β + qα is greater than π/2 (see Figure 1). That is,
in view of Remark 17.2,

〈α, β + qα〉 < 0 < 〈α, β〉 ,
which contradicts the minimality of 〈α, β〉. Therefore, θ ≥ π/2, hence by Theorem 15.1,
we are restricted to

θ ∈
{
π

2
,
2π

3
,
3π

4
,
5π

6

}
.

Suppose θ = π/2. Then (β, α) = 0 (Theorem 15.1). Suppose q > 0. Then by Lemma
13.4,

σα(β + qα) = σα(β) + qσα(α) = β − (β, α)α− qα = β − qα
is also a root. But this contradicts (17.4.1), which implies there are no roots of this form.
We conclude that q = 0 and Sβα = {β}.

Now suppose that θ = 2π/3 (see Figure 2). By Lemma 17.3 and (17.4.2), the angle
between α and β + qα is π − θ = π/3. As β + qα lies in the arc between α and β, this
implies that the angle between β and β + qα is θ − π/3 = π/3. Further, the roots β and
β + qα have the same length, as reflection preserves length. Therefore the points 0, β
and β + qα form the vertices of an equilateral triangle (see Figure 3), hence the length
of the edge from β to β + qα is equal to the length of β. These lengths are given by
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β

0

β + qα

π
3||β|| ||β||

||qα||

Figure 3.

α

β

−α

3π
4 π

4

β + qα

π
2

Pα

Figure 4.

β β + qα

π
2

||qα||

||β|| ||β||

0

Figure 5.

||β + qα− β|| = ||qα|| and ||β|| respectively. Therefore,

||β|| = ||qα|| = q||α||,

where ||α|| = ||β|| by Theorem 15.1, hence q = 1. That is, Sβα = {β, β + α}, where both
these roots have the same length.
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β β + 2α||α||

||β||

||β + α||

0

β + α

Figure 6.

Now suppose that θ = 3π/4 and ||α|| ≤ ||β|| (see Figure 4). By Lemma 17.3 and
(17.4.2), the angle between α and β + qα is π − 3π/4 = π/4. Further, ||β|| = ||β + qα||,
as reflections preserve length. The angles between α and β+ qα and β must add to 3π/4
(the angle between α and β), hence the angle between β+ qα and β must equal π/2. We
can then apply Pythagoras’ Theorem on the triangle with vertices 0, β and β + qα (see
Figure 5), giving

||qα||2 = ||β||2 + ||β + qα||2 = 2||β||2,
which implies that

q2 = 2
||β||2

||α||2
= 2 · 2 = 4

by Theorem 15.1. Therefore, as q is a nonnegative integer, q = 2. This implies that β+α
is the midpoint of the line segment from β to β+qα, hence 0, β and β+α are the vertices
of a right-angled triangle (see Figure 6). Therefore, we obtain

||β||2 = ||α||2 + ||β + α||2,

which, as ||β||2 = 2||α||2 by Theorem 15.1, implies

||β + α||2 = ||α||2,

hence ||β +α|| = ||α||. So we have that Sβα = {β, β + α, β + 2α}, where ||β|| = ||β + 2α||
and ||β + α|| = ||α||.

Now suppose that θ = 3π/4 and ||α|| > ||β|| (Figures 4 and 5 still apply). As in the
previous case, the angle between β and β+ qα is π/2 and ||β|| = ||β+ qα||. This gives us

||qα||2 = ||β||2 + ||β + qα||2 = 2||β||2,

which implies that

q2 = 2
||β||2

||α||2
=

2||β||2

2||β||2
= 1,

as ||α||2 = 2||β||2 by Theorem 15.1. That is, Sβα = {β, β + α}, where ||β|| = ||β + α||.
Now suppose that θ = 5π/6 and ||α|| ≤ ||β|| (see Figure 7). By Lemma 17.3 and

(17.4.2), the angle between α and β + qα is π − 5π/5 = π/6. Therefore, the angle
between β and β + qα is 2π/3; further, these roots have the same length, as β + qα is
the reflection of β in Pα. Consider the midpoint of the line segment between these roots:
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α

β

−α

5π
6

π
6

β + qα2π
3

Pα

Figure 7.

β β + qα

π
3

β + q
2α

0

||q2α||

||β|| =
√

3||α||

Figure 8.

β β + 3αβ + 3
2α

0

||32α||

√
3||α||

||β + 3
2α||

Figure 9.

β + q
2
α. This point, with β and 0, form the vertices of a right angled triangle with angle

π/3 at the vertex 0 (see Figure 8). Therefore, applying trigonometry gives us

sin
(π

3

)
=
|| q

2
α||
||β||

=
q

2
· ||α||
||β||

=
q

2
· ||α||√

3||α||
=

√
3

6
q,
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β β + 3αβ + α

0

||12α||

||β + α|| ||β + 3
2α||

β + 3
2α

Figure 10.

as ||β|| =
√

3||α|| by Theorem 15.1, hence
√

3

2
=

√
3

6
q,

thus q = 3. We can now find ||β + 3
2
α|| (see Figure 9). We have

||β||2 = ||3
2
α||2 + ||β +

3

2
α||2,

which, as ||β|| =
√

3||α||, implies

||β +
3

2
α||2 = 3||α||2 − (

3

2
||α||)2

= (3− 9

4
)||α||2

=
3

4
||α||2.

Now consider the right angled triangle with vertices 0, β+α and β+ 3
2
α (see Figure 10).

From this, we get

||β + α||2 = ||1
2
α||2 + ||β +

3

2
α||2 =

1

4
||α||2 +

3

4
||α||2 = ||α||2,

hence ||β + α|| = ||α||. Further, by (17.4.2), we have σα(β + α) = β + 2α, hence these
two roots also have the same length. So we have Sβα = {β, β + α, β + 2α, β + 3α}, where
||α|| = ||β + α|| = ||β + 2α|| and ||β|| = ||β + 3α||.

Now suppose that θ = 5π/6 and ||α|| > ||β||. As in the previous case, the angle
between β and β + qα is 2π/3, and these roots have the same length, hence the points 0,
β and β + q

2
α form a right angled triangle with angle π/3 at the vertex 0. We again use

trigonometry to get

sin
(π

3

)
=

q
2
||α||
||β||

,

which, as ||α|| =
√

3||β|| by Theorem 15.1, implies
√

3

2
=

q
2

√
3||β||
||β||

=

√
3

2
q,

hence q = 1. That is, Sβα = {β, β + α}, where ||β|| = ||β + α||. �
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17.5. Lemma. Let α, β, α + β ∈ Φ. Let Sβα = {β − rα, · · · , β + qα} denote the α-string
through β. Then

r + 1 =
q 〈α + β, α + β〉

〈β, β〉
.

Proof. We have that (β, α) = r − q (Proposition 11.8), hence r = q + (β, α). Therefore,

(r + 1)− q 〈α + β, α + β〉
〈β, β〉

= (q + (β, α)) + 1− q 〈α + β, α + β〉
〈β, β〉

= q + (β, α) + 1− q 〈α, α〉
〈β, β〉

− 2q 〈α, β〉
〈β, β〉

− q 〈β, β〉
〈β, β〉

= (β, α) + 1− q 〈α, α〉
〈β, β〉

− 2q 〈α, β〉
〈β, β〉

= (β, α) + 1− q 〈α, α〉
〈β, β〉

− 2q 〈α, β〉 〈α, α〉
〈β, β〉 〈α, α〉

= (β, α) + 1− q 〈α, α〉
〈β, β〉

−
(

2 〈β, α〉
〈α, α〉

)(
q 〈α, α〉
〈β, β〉

)
= (β, α) + 1− q 〈α, α〉

〈β, β〉
− (β, α)

q 〈α, α〉
〈β, β〉

= ((β, α) + 1)

(
1− q 〈α, α〉

〈β, β〉

)
= AB,

where we let

A = (β, α) + 1

and

B = 1− q 〈α, α〉
〈β, β〉

.

Now we need only show that AB = 0.
Suppose 〈α, α〉 ≥ 〈β, β〉. Then |(β, α)| ≤ |(α, β)|, hence by Theorem 15.1, we have

(β, α) ∈ {−1, 0, 1}. If (β, α) = −1, then A = 0. Otherwise, (β, α) ≥ 0, hence 〈β, α〉 ≥ 0.
Therefore,

〈β + α, β + α〉 = 〈α, α〉+ 〈β, β〉+ 2 〈β, α〉 ≥ 〈α, α〉+ 〈β, β〉 .
As the form is positive definite, 〈α, α〉 , 〈β, β〉 > 0, hence 〈β + α, β + α〉 is strictly greater
than both of these. That is, ||β + α|| 6= ||β||, ||α||. As β + α ∈ Φ, we have β + α ∈ Sβα,
hence ||α|| = ||β||, because only two distinct root lengths occur in Sβα (Proposition 17.4).
That is,

〈α, α〉 = 〈β, β〉 . (17.5.1)

Further, 〈β + 2α, β + 2α〉 > 〈β + α, β + α〉, hence ||β + 2α|| 6= ||β + α||. Therefore,
β + 2α /∈ Φ (Proposition 17.4). That is, q = 1, hence by (17.5.1),

B = 1− q 〈α, α〉
〈β, β〉

= 1− 〈α, α〉
〈α, α〉

= 0.

Now suppose 〈α, α〉 < 〈β, β〉. Then ||α|| 6= ||β||. As α + β ∈ Φ, Proposition 17.4
implies that ||α + β|| ∈ {||α||, ||β||}, or equivalently,

〈α + β, α + β〉 ∈ {〈α, α〉 , 〈β, β〉}
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We have that 〈α, α〉 , 〈β, β〉 > 0 as the form is positive definite, hence

〈β + α, β + α〉 ≤ 〈α, α〉+ 〈β, β〉 .
But

〈β + α, β + α〉 = 〈α, α〉+ 〈β, β〉+ 2 〈β, α〉 ,
hence

〈β, α〉 < 0. (17.5.2)

Therefore,

〈β − α, β − α〉 = 〈β, β〉+ 〈α, α〉 − 2 〈β, α〉 > 〈β, β〉+ 〈α, α〉 > 〈β, β〉 > 〈α, α〉 .
Therefore, β − α /∈ Φ (Proposition 17.4). That is, r = 0. As ||α|| < ||β||, Theorem 15.1
implies (α, β) ∈ {−1, 0, 1}. But by (17.5.2),

(α, β) =
〈α, β〉
〈β, β〉

< 0,

hence (α, β) = −1. We have that r = 0 and q = r − (β, α). Therefore,

q = −(β, α) =
(β, α)

−1
=

(β, α)

(α, β)
=
〈β, α〉 〈β, β〉
〈α, β〉 〈α, α〉

=
〈β, β〉
〈α, α〉

,

hence

B = 1− q 〈α, α〉
〈β, β〉

= 1− 〈β, β〉 〈α, α〉
〈β, β〉 〈α, α〉

= 0.

�

17.6. Lemma. Let α, β ∈ Φ be nonproportional. Choose xα ∈ Lα and x−α ∈ L−α for
which

[xαx−α] = hα =
2tα
〈tα, tα〉

∈ T.

Let xβ ∈ Lβ be arbitrary. If Sβα = {β − rα, · · · , β, · · · , β + qα} is the α-string through β,
then

[x−α[xαxβ]] = q(r + 1)xβ.

Proof. If xβ = 0, then the result holds. So suppose xβ 6= 0. If β + α /∈ Φ, then
[LαLβ] = Lα+β = {0} (Proposition 11.11), hence [xαxβ] = 0. This implies that q = 0, so
the result holds.

So suppose also, that α + β ∈ Φ. Therefore, Lα+β 6= 0, hence Lα+β, Lα and Lβ are
all 1-dimensional (Theorem 11.2). Therefore, we can consider the subalgebra Sα. Recall
that L is an Sα-module under the Lie bracket. Note that

[Sαxβ] = [spanF {xα, x−α, hα}xβ] = [spanF {xα, x−α, hα} spanF {xβ}] = [SαLβ]

and

[SαLβ+iα] = [LαLβ+iα] + [L−αLβ+iα] + [FhαLβ+iα]

= Lβ+(i+1)α + Lβ+(i−1)α + Lβ+iα,

by Proposition 11.11. Therefore the Sα-module generated by xβ is

K =
∑
i∈Z

Lβ+iα.

Then by Lemma 11.5, we have that

K = Lβ−rα ⊕ · · ·Lβ ⊕ · · · ⊕ Lβ+qα,
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is irreducible, and the weight spaces of K correspond to root spaces via

Kβ(hα)+2i = Lβ+iα. (17.6.1)

The highest weight on K is thus

β(hα) + 2q =

〈
tβ,

2tα
〈tα, tα〉

〉
+ 2q

=
2 〈β, α〉
〈α, α〉

+ 2q

= (β, α) + 2q

= (r − q) + 2q

= r + q. (17.6.2)

By Corollary 9.14, there exists a maximal vector k0 in Kr+q. By Proposition 9.12, there
exist vectors

ki =
1

i!
adi(x−α)(k0),

and ad(x−α)(k) ∈ Kλ−2 for all k ∈ Kλ and λ ∈ F. Therefore,

adq(x−α)(k0) ∈ Kr+q−2q = Kr−q.

That is, kq ∈ Kr−q. As xβ ∈ Lβ, we have that xβ ∈ Kβ(hα) by (17.6.1). As these
root/weight spaces are 1-dimensional, by Theorem 11.2, xβ and kq must be proportional.
That is,

xβ = µkq

for some µ ∈ F. Finally, r+q is the highest weight on K by (17.6.2), hence by Proposition
9.12 we have

[xαkq] = ((r + q)− q + 1)ki−1 = (r + 1)ki−1,

[x−αkq−1] = ((q − 1) + 1)kq−1+1 = qkq

so we can calculate

[x−α[xαxβ]] = [x−α[xα(µkq)]]

= µ[x−α((r + 1)kq−1)]

= µ(r + 1)[x−αkq−1]

= µ(r + 1)(qkq)

= q(r + 1)xβ.

�

17.7. Proposition. There exists a choice of xα ∈ Lα for each α ∈ Φ which satisfies:

• [xαx−α] = hα for all α ∈ Φ;
• If α, β, α + β ∈ Φ and [xαxβ] = cα,βxα+β, then cα,β = −c−α,−β.

Proof. Let α ∈ Φ. By Lemma 17.1, there exists an automorphism σ of L of order 2, for
which σ(Lα) = L−α and σ(t) = −t for all t ∈ T .

Let xα ∈ Lα \ {0} and let x−α = σ(xα). Then x−α ∈ L−α by definition, and x−α 6= 0,
otherwise σ maps a nonzero element to zero, which contradicts the bijectivity of σ.

Suppose 〈xα, x−α〉 = 0. By Proposition 10.2, [xαx−α] = 〈xα, x−α〉 tα, hence [xαx−α] = 0.
But root spaces are 1-dimensional (Theorem 11.2), so this implies that [LαL−α] = {0},
which contradicts Proposition 10.3. Therefore, 〈xα, x−α〉 6= 0. We also have that 〈α, α〉 6=
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0, as the form on E is positive definite. Therefore, as F is algebraically closed, we can
define

c =

√
2

〈xα, x−α〉 〈α, α〉
∈ F.

Therefore, cxα ∈ Lα and −σ(cxα) = cx−α ∈ L−α. Then

〈cxα, cx−α〉 = c2 〈xα, x−α〉

=
2

〈xα, x−α〉 〈α, α〉
〈xα, x−α〉

=
2

〈α, α〉
.

Therefore, by Proposition 10.2,

[(cxα)(cx−α)] = 〈cxα, cx−α〉 tα =
2tα
〈α, α〉

= hα.

For each pair (α,−α), we take this choice of root vectors for xα and x−α, which exhausts
all α ∈ Φ.

So fix a choice of xα for α ∈ Φ satisfying the first point. Let α, β ∈ Φ and suppose
α+ β ∈ Φ. We have that [xαxβ] ∈ Lα+β (Proposition 6.6), and as Lα+β is 1-dimensional
(Theorem 11.2), we also have that [xαxβ] = cα,βxα+β for some cα,β ∈ F. As roots occur
with their negations, we must also have that −α,−β,−α − β ∈ Φ and [x−αx−β] =
c−α,−βx−α−β for some c−α,−β ∈ F. We have defined x−α−β = −σ(xα+β), thus

σ([xαxβ]) = σ(cα,βxα+β) = cα,βσ(xα+β) = −cα,βx−α−β.
On the other hand, as σ is a morphism,

σ([xαxβ]) = [σ(xα)σ(xβ)] = [(−x−α)(−x−β)] = [x−αx−β] = c−α,−βx−α−β.

Therefore, c−α,−β = −cα,β. �

17.8. Lemma. Let xα ∈ Lα for each α ∈ Φ such that Proposition 17.7 is satisfied. Then
for all α, β ∈ Φ for which α + β ∈ Φ, we have

c2
α,β = q(r + 1)

〈α + β, α + β〉
〈β, β〉

,

where [xαxβ] = cα,βxα+β and Sβα = {β − rα, · · · , β, · · · , β + qα}.

Proof. Let α, β ∈ Φ such that α + β ∈ Φ. Then α and β must be nonproportional
(Theorem 12.12), hence tα and tβ must be nonproportional and satisfy tα + tβ = tα+β

(Remark 8.12). We can calculate

[(cα,βxα+β)(cα,βx−α−β)] = c2
α,β[xα+βx−α−β]

= c2
α,βhα+β

= c2
α,β

2tα+β

〈α + β, α + β〉

= c2
α,β

2(tα + tβ)

〈α + β, α + β〉
. (17.8.1)

On the other hand, we have cα,βxα+β = [xαxβ] and cα,βx−α−β = −[x−αx−β], hence

[(cα,βxα+β)(cα,βx−α−β)] = −[[xαxβ][x−αx−β]]

= −[xα[xβ[x−αx−β]]] + [xβ[xα[x−αx−β]]]
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= [xα[xβ[x−βx−α]]] + [xβ[xα[x−αx−β]]]. (17.8.2)

Consider these root strings involving ±α and ±β:

Sβα = {β − rα, · · · , β + qα} ,
S−β−α = {−β − r(−α), · · · ,−β + q(−α)}
Sαβ = {α− r′β, · · · , α + q′β} ,
S−α−β = {−α− r′(−β), · · · ,−α + q′(−β)} ,

for some nonnegative integers r′ and q′ (we define Sαβ with r′ and q′ then calculate the
negative root strings using the fact that β+iα ∈ Φ if and only if −(β+iα) = −β+i(−α) ∈
Φ). By Lemma 17.6, we have that

[x−α[xαxβ]] = q(r + 1)xβ,

[xα[x−αx−β]] = q(r + 1)x−β,

[x−β[xβxα]] = q′(r′ + 1)xα,

[xβ[x−βx−α]] = q′(r′ + 1)x−α.

Therefore, applying these to (17.8.2), we get

[(cα,βxα+β)(cα,βx−α−β)] = [xα[xβ[x−βx−α]]] + [xβ[xα[x−αx−β]]]

= [xα(q′(r′ + 1)x−α)] + [xβ(q(r + 1)x−β)]

= q′(r′ + 1)[xαx−α] + q(r + 1)[xβx−β]

= q′(r′ + 1)
2tα
〈α, α〉

+ q(r + 1)
2tβ
〈β, β〉

.

Then applying this to (17.8.1) gives

c2
α,β

2(tα + tβ)

〈α + β, α + β〉
= q′(r′ + 1)

2tα
〈α, α〉

+ q(r + 1)
2tβ
〈β, β〉

,

hence

c2
α,β

2tα
〈α + β, α + β〉

+ c2
α,β

2tβ
〈α + β, α + β〉

= q′(r′ + 1)
2tα
〈α, α〉

+ q(r + 1)
2tβ
〈β, β〉

.

Which, as tα and tβ are linearly independent, implies

c2
α,β

2tβ
〈α + β, α + β〉

= q(r + 1)
2tβ
〈β, β〉

,

hence

c2
α,β = q(r + 1)

〈α + β, α + β〉
〈β, β〉

.

�

17.9. Definition. A Chevalley basis of a Lie algebra L is a basis {xα : α ∈ Φ} ∪
{h1, · · · , hn} for which the set of xα satisfies Proposition 17.7, and for which all hi = hαi
for some base ∆ = {α1, · · · , αn} of Φ.

17.10. Theorem. Let {xα : α ∈ Φ} ∪ {h1, · · · , hn} be a Chevalley basis of L. Then the
associated structure constants are all integers. Specifically,

• [hihj] = 0 for all i, j = 1, · · · , n.
• [hixα] = (α, αi)xα for all α ∈ Φ and i = 1, · · · , n.
• [xαx−α] = hα for all α ∈ Φ, where hα ∈ spanZ {h1, · · · , hn}.
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• For α, β ∈ Φ, then either [xαxβ] = 0 if α + β ∈ Φ or [xαxβ] = ±(r + 1)xα+β if
α + β ∈ Φ, where Sβα = {β − rα, · · · , β + qα}.

Proof. For each i, j = 1, · · · , n, we have that hi, hj ∈ T , hence [hihj] = 0 as T is Abelian
(Proposition 5.2).

Let α ∈ Φ and i = 1, · · · , n. By definition, xα ∈ Lα, so [txα] = α(t)xα for all t ∈ T .
Specifically, [hixα] = α(hi)xα. We also have α(hi) = 〈tα, hi〉 (Remark 8.12), hence

[hixα] = 〈tα, hi〉xα =

〈
tα,

2tαi
〈tαi , tαi〉

〉
xα =

2 〈tα, tαi〉
〈tαi , tαi〉

xα = (α, αi)xα.

Let α ∈ Φ. By Theorem 14.11, Φ∨ = {α∨ : α ∈ Φ} is a root system with base ∆∨ =
{α∨1 , · · · , α∨n}, where

α∨ =
2α

〈α, α〉
.

By Lemma 14.14, α∨(t) = 〈hα, t〉 for all t ∈ T . As ∆∨ is a base for Φ∨, there exist scalars
µ1, · · · , µn ∈ Z such that

α∨ =
n∑
i=1

µiα
∨
i .

Therefore, for all t ∈ T ,

〈hα, t〉 = α∨(t) =
n∑
i=1

µiα
∨
i (t) =

n∑
i=1

µi 〈hi, t〉 =

〈
n∑
i=1

µihi, t

〉
,

hence 〈
hα −

n∑
i=1

µihi, t

〉
= 0.

As the Killing form is nondegenerate, this implies that

hα =
n∑
i=1

µihi.

Finally, let α, β ∈ Φ be nonproportional and write Sβα = {β − rα, · · · , β + qα} for
the α-string through β. Suppose that α + β /∈ Φ, then Lα+β = {0}. We have that
[xαxβ] ∈ Lα+β (Proposition 6.6), hence [xαxβ] = 0. Now suppose that α + β ∈ Φ. Then
by Lemma 17.5,

r + 1 =
q 〈α + β, α + β〉

〈β, β〉
. (17.10.1)

As {xα : α ∈ Φ} is part of a Chevalley basis, it satisfies Proposition 17.7, hence [xαxβ] =
cα,βxα+β, where

c2
α,β = q(r + 1)

〈α + β, α + β〉
〈β, β〉

(17.10.2)

by Lemma 17.8. Rearranging the equations (17.10.1) and (17.10.2) gives

r + 1

q
=
〈α + β, α + β〉
〈β, β〉

=
c2
α,β

q(r + 1)
,

which implies that
c2
α,β = (r + 1)2,

hence cα,β = ±(r + 1). �
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18. Passing to a Finite Field

Up to this point, we have been working with a Lie algebra over an algebraically closed
field of characteristic zero. We want to capture the Lie algebra structure of L over an
arbitrary finite field. For a given field K of characteristic p, we reduce the vectors of L
modulo p to get a Lie algebra over Fp, then we extend to K. We can do this because, with
respect to a Chevalley basis, all the structure constants are integers, so the Lie bracket
remains closed.

We continue to take L to be semisimple and F to be algebraically closed with charac-
teristic zero.

18.1. Definition. Let B = {xα : α ∈ Φ}∪{h1, · · · , hn} be a Chevalley basis for L. Define
L(Z) = spanZ(B).

18.2. Given some choice of xα for each α ∈ Φ which satisfies (Proposition 17.7), a Cheval-
ley basis is then determined by a choice of ∆. The following lemma is to show that this
choice of ∆ does not affect the L(Z) obtained from the resulting Chevalley basis. That
is, L(Z) is determined only by the choice of xα.

18.3. Lemma. L(Z) is independent of the choice of ∆.

Proof. Let ∆,∆′ be bases for Φ, with respective Chevalley basis B and B′. By Lemma
14.14, the map taking α ∈ T ∗ to hα ∈ T is a bijective linear map. Write h(∆) =
{hα : α ∈ ∆} = {h1, · · · , hn} and h(∆′) = {hα : α ∈ ∆′} = {h′1, · · · , h′n}. Then

B = {xα : α ∈ Φ} ∪ h(∆), (18.3.1)

B′ = {xα : α ∈ Φ} ∪ h(∆′). (18.3.2)

By the definition of a base, we have that Φ ⊇ ∆,∆′ and Φ ⊆ spanZ(∆), spanZ(∆′).
The former implies that spanZ(Φ) ⊇ spanZ(∆), spanZ(∆′); whereas the latter implies
that spanZ(Φ) ⊆ spanZ(spanZ(∆)) = spanZ(∆) and similarly, spanZ(Φ) ⊆ spanZ(∆′).
Therefore,

spanZ(∆) = spanZ(Φ) = spanZ(∆′). (18.3.3)

Now we calculate

h(spanZ(∆)) = h

(∑
δ∈∆

Zδ

)
=
∑
δ∈∆

Zh(δ) =
∑

hδ∈h(∆)

Zhδ = spanZ(h(∆)).

Similarly, we have that h(spanZ(∆′)) = spanZ(h(∆′)). Therefore, by (18.3.3), we have

spanZ(h(∆)) = h(spanZ(∆)) = h(spanZ(∆′)) = spanZ(h(∆′)).

Therefore, by (18.3.1) and (18.3.2), we have

spanZ(B) = spanZ({xα : α ∈ Φ} ∪ h(∆))

= spanZ({xα : α ∈ Φ})⊕ spanZ(h(∆))

= spanZ({xα : α ∈ Φ})⊕ spanZ(h(∆′))

= spanZ({xα : α ∈ Φ} ∪ h(∆′))

= spanZ(B′).

�

18.4. Lemma. The space L(Z) is closed under the Lie bracket inherited from L.
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Proof. Let B denote the Chevalley basis for L from which L(Z) is constructed. By
Theorem 17.10, [b1b2] ∈ spanZ(B) = L(Z) for any b1, b2 ∈ B. Thus,

[L(Z)L(Z)] =

[(∑
b∈B

Zb

)(∑
b∈B

Zb

)]
=

∑
b1,b2∈B

Z[b1b2],

which is contained in∑
b1,b2∈B

Z spanZ(B) = Z spanZ(B) = spanZ(B) = L(Z),

hence [L(Z)L(Z)] ⊆ L(Z). �

18.5. Definition. Fix some prime p and define L(Z) as above for some Chevalley basis
B of L. Let Fp denote the prime field of characteristic p. We have that L(Z) and Fp are
Z-modules under the actions

x · n :=
n∑
i=1

x (x ∈ L(Z), n ∈ Z),

and

n · λ :=
n∑
i=1

λ (n ∈ Z, λ ∈ Fp)

respectively. We can therefore define the tensor product

L(Fp) = L(Z)⊗Z Fp =

{
n∑
i=1

xi ⊗ λi : xi ∈ L(Z); λi ∈ Fp

}
,

where we identify (x · n)⊗ λ = x⊗ (n · λ) for all x ∈ L(Z), n ∈ Z and λ ∈ Fp.

18.6. Proposition. L(Fp) ∼= spanFp(B).

Proof. Consider a pure tensor x⊗ λ ∈ L(Fp). We can write

x =
∑
b∈B

nbb,

for some nb ∈ Z. Therefore,

x⊗ λ =

(∑
b∈B

nbb

)
⊗ λ =

∑
b∈B

(nbb)⊗ λ =
∑
b∈B

b⊗ (nb · λ),

where nb · λ is just some element of Fp. Arbitrary elements of L(Fp) can therefore be
expressed as sums of such pure tensors, which can then also be expressed in the form∑

b∈B

b⊗ λb,

for some λb ∈ Fp, because (b ⊗ λ1) + (b ⊗ λ2) = b ⊗ (λ1 + λ2). For each element in
L(Fp), the values λb are unique, and for any choice of λb, the above expression is an
element of L(Fp). Therefore, mapping b⊗λ in L(Fp) to λb in spanFp(B) gives the desired
isomorphism. �

18.7. Definition. We define a Lie bracket on L(Fp) by

[(x⊗ λ)(y ⊗ µ)]L(Fp) = [xy]L(Z) ⊗ λµ,
for each (x⊗ λ), (y ⊗ µ) ∈ L(Fp).
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18.8. The Lie algebra L(Fp) has the same Lie bracket structure as L, unless p divides one
of the structure constants of L. In that case, some of the nonzero structure constants in
L become zero in L(Fp).

18.9. Definition. Let K be some field extension of Fp. Then K is an Fp-module under
multiplication. As L(Fp) is a vector space over Fp, it is an Fp-module under scalar
multiplication. We can therefore define the tensor product

L(K) = L(Fp)⊗Fp K =

{
n∑
i=1

xi ⊗ κi : xi ∈ L(Fp); κi ∈ K

}
,

where we identify (λx)⊗ κ = x⊗ (λκ) for all x ∈ L(Fp), λ ∈ Fp and κ ∈ K. By a similar
argument to that in (Proposition 18.6), we have that

L(K) ∼= spanK(B).

Again, we define a Lie bracket on L(K) by

[(x⊗ λ)(y ⊗ µ)]L(K) = [xy]L(Fp) ⊗ λµ,
for each (x⊗ λ), (y ⊗ µ) ∈ L(K).
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19. Constructing Chevalley Groups

The thrust of the previous section is that we can take any finite field K and construct
a Lie algebra L(K) over K with the same multiplication table as L (apart from the
exceptions noted in Remark 18.8). Now, we construct an automorphism group over each
L(K) by exponentiating the adjoint maps of elements of the Chevalley basis (recall that,
by construction, this is a basis for L, L(Fp) and L(K)). These groups are called Chevalley
groups (of adjoint type). We also use some ideas from [1] in this final section.

It should be noted that, in this section, we give a substantially more thorough treatment
of the results than appears in the literature [1, 4]. In particular, we prove that Chevalley
groups are in fact automorphism groups of L(K) (Proposition 19.14 and Theorem 19.16)
and prove a concrete example of constructing a Chevalley group from a given Lie algebra
(example 19.17).

We continue to take L to be semisimple, T to be a maximal torus of L and F to be
algebraically closed with characteristic zero.

19.1. Recall that for x ∈ L, the map ad(x) is a derivation (Lemma 1.13). It therefore
satisfies an identity known as the Leibniz rule. We prove the Leibniz rule for arbitrary
derivations.

19.2. Lemma. Let δ be a derivation of L and a, b ∈ L. Then for all n ∈ N:

δn([ab])

n!
=

n∑
i=0

[(
δi(a)

i!

)(
δn−i(b)

(n− i)!

)]
. (19.2.1)

Proof. We use induction on n. The base case is satisfied:

δ0([ab])

0!
= [xy] =

0∑
i=0

[ab]

=
0∑
i=0

[(
δi(a)

i!

)(
δ0−i(b)

(0− i)!

)]
.

The inductive assumption is that (19.2.1) is satisfied for some n ∈ N. This implies that

δn+1([ab])

(n+ 1)!
=

1

(n+ 1)
δ

(
δn([ab])

n!

)
=

1

(n+ 1)
δ

(
n∑
i=0

[(
δi(a)

i!

)(
δn−i(b)

(n− i)!

)])

=
1

(n+ 1)

n∑
i=0

δ

([(
δi(a)

i!

)(
δn−i(b)

(n− i)!

)])

=
1

(n+ 1)

n∑
i=0

[(
δi(a)

i!

)
δ

(
δn−i(b)

(n− i)!

)]
+

[
δ

(
δi(a)

i!

)(
δn−i(b)

(n− i)!

)]

=
1

(n+ 1)

n∑
i=0

[(
δi(a)

i!

)(
δn+1−i(b)

(n− i)!

)]
+

[(
δi+1(a)

i!

)(
δn−i(b)

(n− i)!

)]

=
1

(n+ 1)

(
n∑
i=0

[(
δi(a)

i!

)(
δn+1−i(b)

(n− i)!

)]
+

n∑
i=0

[(
δi+1(a)

i!

)(
δn−i(b)

(n− i)!

)])
=

1

(n+ 1)
(A+B)
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We shall deal with the sums A and B separately. Firstly,

A =
n∑
i=0

[(
δi(a)

i!

)(
δn+1−i(b)

(n− i)!

)]

=
n∑
i=0

n+ 1− i
n+ 1− i

[(
δi(a)

i!

)(
δn+1−i(b)

(n− i)!

)]

=
n∑
i=0

(n+ 1− i)
[(

δi(a)

i!

)(
δn+1−i(b)

(n+ 1− i)!

)]

=
n+1∑
i=0

(n+ 1− i)
[(

δi(a)

i!

)(
δn+1−i(b)

(n+ 1− i)!

)]
,

as the (n+ 1)’th term is zero.
Secondly,

B =
n∑
i=0

[(
δi+1(a)

i!

)(
δn−i(b)

(n− i)!

)]

=
n+1∑
i=1

[(
δi(a)

(i− 1)!

)(
δn+1−i(b)

(n+ 1− i)!

)]

=
n+1∑
i=1

i

i

[(
δi(a)

(i− 1)!

)(
δn+1−i(b)

(n+ 1− i)!

)]

=
n+1∑
i=1

i

[(
δi(a)

i!

)(
δn+1−i(b)

(n+ 1− i)!

)]

=
n+1∑
i=0

i

[(
δi(a)

i!

)(
δn+1−i(b)

(n+ 1− i)!

)]
,

as the 0’th term is zero. The sum of A and B is then

A+B =
n+1∑
i=0

(n+ 1− i)
[(

δi(a)

i!

)(
δn+1−i(b)

(n+ 1− i)!

)]
+ i

[(
δi(a)

i!

)(
δn+1−i(b)

(n+ 1− i)!

)]

=
n+1∑
i=0

(n+ 1)

[(
δi(a)

i!

)(
δn+1−i(b)

(n+ 1− i)!

)]
= C.

Continuing from where we left off, we have

δn+1([ab])

(n+ 1)!
=

1

(n+ 1)
(A+B)

=
1

(n+ 1)
C

=
1

(n+ 1)

n+1∑
i=0

(n+ 1)

[(
δi(a)

i!

)(
δn+1−i(b)

(n+ 1− i)!

)]

=
n+1∑
i=0

[(
δi(a)

i!

)(
δn+1−i(b)

(n+ 1− i)!

)]
.

�
89



19.3. Lemma. Let α ∈ Φ and x ∈ Lα. Then ad(x) is nilpotent.

Proof. We calculate
ad(x)(L0) ⊆ [LαL0] ⊆ Lα

(Proposition 6.6), which gives

ad(x)2(L0) ⊆ ad(x)(Lα) ⊆ [LαLα] = {0} .
Now, for β ∈ Φ and i ∈ N, we calculate

ad(x)i(Lβ) ⊆ ad(Lα)i(Lβ) ⊆ Lβ+iα.

Root strings are finite (Theorem 15.3). Therefore, for some i ∈ N, we have Lβ+iα = {0}
and hence ad(x)i(Lβ) = {0}.

As L is finite dimensional, we can take n ∈ N to be the maximum of these i (and 2).
Then, using the root space decomposition (Theorem 6.4)

L = L0 ⊕
⊕
β∈Φ

Lβ,

we have that ad(x)n = 0. �

19.4. For α ∈ Φ, we can express exp(ad(xα)) as a finite sum:

exp(ad(xα)) =
m∑
i=0

ad(xα)i

i!
.

This is because ad(xα) is nilpotent by Lemma 19.3.

19.5. Lemma. Let δ be a nilpotent derivation of L. Then exp(δ) is a Lie algebra homo-
morphism. That is, exp(δ) is linear and, for all a, b ∈ L,

exp(δ)([ab]) = [(exp(δ))(a) (exp(δ))(b)] .

Proof. The linearity of exp(δ) follows from the linearity of δ.
Let a, b ∈ L. As δ is nilpotent, let n ∈ N be such that m > n =⇒ δm = 0. Then

[(exp(δ))(a) (exp(δ))(b)] =

[(
n∑
i=0

δi(a)

i!

)(
n∑
i=0

δi(b)

i!

)]

=
n∑

i,j=0

[(
δi(a)

i!

)(
δj(b)

j!

)]
. (19.5.1)

We want to put this sum into a form where we can simplify using the Leibniz rule (19.2.1).
Notice that we are summing over {(i, j) ∈ Z2 : 0 ≤ i, j ≤ n}:

(0, 0) · · · (0, n)
...

. . .
...

(n, 0) · · · (n, n)

Any method of iteration which exhausts this list will give us an equivalent expression
for (19.5.1). We can rearrange this list such that each row corresponds to each upwards
diagonal of the previous:

(0, 0)
...

. . .
(n, 0) · · · (n, 0)

. . .
...

(n, n)
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As δm = 0 for all m > n, we can include terms (i, j) with either of i, j > n and retain
equality with (19.5.1):

(0, 0)
...

. . .
(n, 0) · · · (n, 0)

...
. . .

...
. . .

(2n, 0) · · · (n, n) · · · (0, 2n)

In this arrangement, the ith row contains the terms

{(i, 0), · · · , (0, i)} = {(j, i− j) : j = 0, · · · , i} .

This gives us the expression for (19.5.1):

2n∑
i=0

i∑
j=0

[(
δj(a)

j!

)(
δi−j(b)

(i− j)!

)]
.

From here we can apply (19.2.1) to give

[(exp(δ))(a)(exp(δ))(b)] =
2n∑
i=0

δi([ab])

i!

=
n∑
i=0

δi([ab])

i!

= (exp(δ))([ab]),

again using the fact that δm = 0 for m > n. �

19.6. Proposition. Let δ be a nilpotent derivation of some Lie algebra L. Then exp(δ)
is an automorphism of L, with inverse

(exp(δ))−1 =
n∑
i=0

(−1)iηi,

where η = exp(δ)− 1 and n is the largest power for which δ 6= 0.

Proof. By Lemma 19.5, we have that exp(δ) is a homomorphism, so we need only show
that the product with the claimed inverse equals 1.(

n∑
i=0

(−1)iηi

)
(exp(δ)) =

(
n∑
i=0

(−1)iηi

)
(1 + η)

=

(
n∑
i=0

(−1)iηi

)
+ η

(
n∑
i=0

(−1)iηi

)

=

(
n∑
i=0

(−1)iηi

)
+

(
n∑
i=0

−(−1)i+1ηi+1

)

=

(
n∑
i=0

(−1)iηi

)
+

(
n+1∑
i=1

−(−1)iηi

)

= (−1)0η0 +

(
n∑
i=1

(−1)iηi − (−1)iηi

)
− (−1)n+1ηn+1

91



= 1 +

(
n∑
i=1

0

)
± ηn+1

= 1± ηn+1

= 1± (exp(δ)− 1)n+1

= 1±

((
n∑
i=0

δi

i!

)
− 1

)n+1

= 1±

(
1 +

(
n∑
i=1

δi

i!

)
− 1

)n+1

= 1±

(
n∑
i=1

δi

i!

)n+1

= 1±

(
n∑
i=1

δi

i!

)n+1

.

The lowest power of δ in the above sum is 1, hence the lowest power occurring in the
expression as a whole is n+ 1. However, δn+1 = 0, hence

1±

(
n∑
i=1

δi

i!

)n+1

= 1± 0 = 1.

�

19.7. Lemma. Let α ∈ Φ and m ∈ N. Then

ad(xα)m

m!
(L(Z)) ⊆ L(Z).

Proof. We can express the Chevalley basis as B = {xα : α ∈ Φ}∪{h1, · · · , hn}. Fix some
α ∈ Φ and let fm = ad(xα)m/m!.

Suppose fm(B) ⊆ L(Z). Let x ∈ L(Z). Then

x =
∑
b∈B

λbb

for some collection of scalars λb ∈ Z. Therefore,

fm(x) = fm

(∑
b∈B

λbb

)
=
∑
b∈B

λbfm(b),

hence f(x) ∈ spanZ(fm(B)). By the supposition, this implies that

fm(x) ∈ spanZ(fm(B)) ⊆ spanZ(L(Z)) = L(Z).

As x was arbitrary, we have fm(L(Z)) ⊆ L(Z). That is,

fm(B) ⊆ L(Z) =⇒ fm(L(Z)) ⊆ L(Z). (19.7.1)

By definition, for m ≥ 1,

fm(x) =
1

m
ad(xα)(fm−1(x)). (19.7.2)

Therefore, if x ∈ L and l ≥ m, then

fm(x) = 0 =⇒ fl(x) = 0. (19.7.3)
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For m = 1, we have
fm(x) = ad(xα)(xα) = [xαxα] = 0,

hence by (19.7.3), we have fm(xα) = 0 for all m ∈ N.
By Theorem 17.10,

[hixα] = (α, αi)xα ∈ Zxα,
hence for m = 1, we also have

fm(hi) = ad(xα)(hi) = [xαhi] = −[hixα] = −(α, αi)xα ∈ L(Z),

for each i = 1, · · · , n. Then for m = 2, (19.7.2) implies that

fm(hi) =
1

2
ad(xα)(f1(hi)) =

1

2
ad(xα)(−(α, αi)xα) =

1

2
(α, αi)[xαxα] = 0.

Therefore, by (19.7.3), we have fm(hi) ∈ L(Z) for all m ∈ N.
By Theorem 17.10 again, we have [xαx−α] = hα, where hα ∈ spanZ {h1, · · · , hn} ⊂

L(Z), hence for m = 1, we have

fm(x−α) = ad(xα)(x−α) = hα.

Then, for m = 2, (19.7.2) implies that

fm(x−α) =
1

2
ad(xα)(f1(x−α)) =

1

2
ad(xα)(hα) = −1

2
[hαxα] = −1

2
α(hα)xα = −xα,

as α(hα) = 2 by (Corollary 10.7). Then for m = 3, we have

fm(x−α) =
1

3
ad(xα)(f2(x−α)) =

1

3
[xα(−xα)] = −1

3
[xαxα] = 0.

Therefore, by (19.7.3), fm(x−α) ∈ L(Z) for all m ∈ N.
Now let β ∈ Φ such that β 6= ±α. Denote the α-string through β by Sβα. That is,

Sβα = {β − rα, · · · , β + qα} .
For each i ∈ Z, consider Sβ+iα

α , the α-string through β + iα. We write

Sβ+iα
α = {(β + iα)− riα, · · · , (β + iα) + qiα} .

Therefore, as Sβα = Sβ+iα
α , we have

Sβα = {β − rα, · · · , β + qα}
= {(β + iα)− (r + i)α, · · ·} ,

hence ri = r + i. Therefore, by (Theorem 17.10),

[xαxβ+iα] = ±(ri + 1)xβ+(i+1)α = ±(r + i+ 1)xβ+(i+1)α, (19.7.4)

hence we can calculate

fm(xβ) =

(
ad(xα)m

m!

)
(xβ)

=
1

m!
ad(xα)m−1([xαxβ]).

With repeated application of (19.7.4), we obtain

fm(xβ) =
1

m!

(
m∏
i=1

(r + i)

)
xβ+mα

=
1

m!

(
(r +m)!

r!

)
xβ+mα
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=
(r +m)!

m!r!
xβ+mα

=

(
r +m

m

)
xβ+mα,

where the last line uses the binomial coefficient and we take xβ+mα = 0 if β + mα /∈ Φ.
That is, fm(xβ) ∈ L(Z) for al m ∈ N.

We have shown that fm(B) ⊆ L(Z) for all m ∈ N. Therefore, applying (19.7.1), we
have that fm(L(Z)) ⊆ L(Z) for all m ∈ N. �

19.8. Proposition. Let α ∈ Φ. Then exp(ad(xα)) leaves L(Z) invariant.

Proof. By Lemma 19.7,

∀i ∈ N :

(
ad(xα)i

i!

)
(L(Z)) ⊆ L(Z).

We can express exp(ad(xα)) as a finite sum, by (Remark 19.4). Therefore,

exp(ad(xα))(L(Z)) =

(
m∑
i=1

ad(xα)i

i!

)
(L(Z))

=
m∑
i=1

(
ad(xα)i

i!

)
(L(Z)).

⊆
m∑
i=1

L(Z)

= L(Z),

hence exp(ad(xα)) leaves L(Z) invariant. �

19.9. Lemma. For λ ∈ F, we have that exp(ad(λxα)) is an automorphism of L.

Proof. We have that ad(x) is a derivation of L for any x ∈ L. By Lemma 19.3, ad(xα)
is nilpotent. Thus ad(λxα) = λ ad(xα) is a nilpotent derivation of L. Therefore, by
Proposition 19.6, exp(ad(λxα)) is an automorphism of L. �

19.10. It turns out that exp(ad(λxα)) only depends on λ is a specific way: elements of
the Chevalley basis B are sent to Z[λ]-linear combinations in B. Further, the coefficients
in these polynomials in Z[λ] do not depend on λ. Therefore, if we replace λ with an
indeterminate T , we obtain a map taking elements of B to Z[T ]-linear combinations in
B. These maps are the automorphisms of L(K) from which we construct our Chevalley
groups.

19.11. Proposition. Let T be an indeterminate. Let e1, · · · , en denote the elements of the
Chevalley basis B (in no particular order). Then, for each α ∈ Φ, i ∈ N and j = 1, · · · , n,(

ad(Txα)i

i!

)
(ej) =

n∑
k=1

µ(α, i, j, k)T iek,

for some µ(α, i, j, k) ∈ Z and

exp(ad(Txα))(ej) =
n∑
k=1

fα,j,k(T )ek,

for some fα,j,k ∈ Z[T ].
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Proof. By Lemma 19.7, for ej ∈ B and i ∈ N, we have(
ad(xα)i

i!

)
(ej) =

n∑
k=1

µ(α, i, j, k)ek,

where µ(α, i, j, k) ∈ Z. Therefore,(
ad(Txα)i

i!

)
(ej) = T i

(
ad(xα)i

i!

)
(ej)

= T i
n∑
k=1

µ(α, i, j, k)ek

=
n∑
k=1

µ(α, i, j, k)T iek.

Thus,

exp(ad(Txα))(ej) =
m∑
i=1

(
ad(Txα)i

i!

)
(ej)

=
m∑
i=1

n∑
k=1

µ(α, i, j, k)T iek

=
n∑
k=1

(
m∑
i=1

µ(α, i, j, k)T i

)
ek

=
n∑
k=1

fα,j,k(T )ek.

As each µ(α, i, j, k) ∈ Z, we have that

fα,j,k(T ) =
m∑
i=1

µ(α, i, j, k)T i ∈ Z[T ].

�

19.12. Definition. For each α ∈ Φ, denote the matrix representation (with respect to B)
of exp(ad(Txα)) by Mα(T ).

19.13. Corollary. For each α ∈ Φ, the entries of the matrix Mα(T ) are elements of Z[T ].

19.14. Proposition. For each α ∈ Φ, the matrix Mα(T ) is invertible.

Proof. Fix α ∈ Φ and write M = Mα(T ). As ad(Txα) = T ad(xα) = 0 if ad(xα) = 0, we
can extend Remark 19.4 to give that

exp(ad(Txα)) =
m∑
i=0

ad(Txα)i

i!
.

Therefore, M = M0 +M1 + · · ·+Mm, where each Mi is the matrix representation of

ad(Txα)i

i!
.

Note that this implies that M0 is the identity matrix, In.
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Let e1, · · · , en denote the elements of the Chevalley basis B. By Proposition 19.11, for
each i ∈ N and j = 1, · · · , n,(

ad(Txα)i

i!

)
(ej) =

n∑
k=1

µ(α, i, j, k)T iek,

for some µ(α, i, j, k) ∈ Z. As ad(xα) is nilpotent (Lemma 19.3), Mi is nilpotent for each
i > 0. Further,(

ad(Txα)i

i!

)(
ad(Txα)j

j!

)
=

ad(Txα)i+j

i!j!
=

(
ad(Txα)j

j!

)(
ad(Txα)i

i!

)
,

so these Mi commute.
Let N = M1 + · · ·+Mm. Sums of commuting nilpotent endomorphisms are nilpotent

(Lemma 3.2), thus N is nilpotent. Therefore, for some change of basis, N is strictly upper
triangular, hence M = In +N is upper triangular with each diagonal entry equal to 1:

M =


1 M2,1 · · · Mn,1

0
. . . . . .

...
...

. . . . . . Mn,n−1

0 · · · 0 1

 .

Thus M has determinant 1 and is invertible. �

19.15. Definition. Let G(K) = 〈Mα(κ) : α ∈ Φ, κ ∈ K〉. This group is called a Cheval-
ley group (of adjoint type).

19.16. Theorem. The group G(K) acts on L(K) as a group of automorphisms.

Proof. Let Mα(κ) ∈ G(K). Firstly, we need to show that Mα(κ) acts on L(K). By
Proposition 19.11, we have that

Mα(κ)ei =
n∑
j=1

fα,i,j(κ)ej,

for fα,i,j(κ) ∈ Z[κ]. As K is a field, it is a natural Z-module via

aκ =
a∑
i=1

κ,

hence we can interpret fα,i,j(κ) as an element of K. Therefore,

Mα(κ)ei ∈ spanK(B) = L(K),

and by extension,

Mα(κ)(L(K)) ⊆ L(K).

By Proposition 19.14, Mα(κ) is invertible, hence is a bijection. So for Mα(κ) to be an
automorphism, we only need to show that is is a Lie algebra homomorphism. That is,
for x, y ∈ L(K), we need to show that

Mα(κ)([xy]) = [Mα(κ)(x)Mα(κ)(y)].

As L(K) = spanK(B), we need only show that, for ei, ej ∈ B,

Mα(κ)([eiej]) = [Mα(κ)(ei)Mα(κ)(ej)]

and the desired result will follow by linearity.
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By Proposition 19.11,

exp(ad(λxα))(ej) =
n∑
k=1

fα,j,k(λ)ek,

for some fα,j,k(λ) ∈ Z[λ], with coefficients not dependent on λ. Therefore,

exp(ad(λxα))([eiej]) = exp(ad(λxα))

(
n∑
k=1

cki,jek

)

=
n∑
k=1

cki,j exp(ad(λxα))(ek)

=
n∑
k=1

cki,j

n∑
l=1

fα,k,l(λ)el

=
n∑
l=1

(
n∑
k=1

cki,jfα,k,l(λ)

)
el

=
n∑
l=1

gα,i,j,l(λ)el, (19.16.1)

where the coefficient of el, gα,i,j,l(λ) ∈ Z[λ], is a polynomial with coefficients not dependent
of λ. Further,

[exp(ad(λxα))(ei) exp(ad(λxα))(ej)] =

[(
n∑
k=1

fα,i,k(λ)ek

)(
n∑
l=1

fα,j,l(λ)el

)]

=
n∑
k=1

n∑
l=1

fα,i,k(λ)fα,j,l(λ)[ekel]

=
n∑
k=1

n∑
l=1

fα,i,k(λ)fα,j,l(λ)
n∑
t=1

ctk,let

=
n∑
t=1

(
n∑
k=1

n∑
l=1

ctk,lfα,i,k(λ)fα,j,l(λ)

)
et

=
n∑
t=1

hα,i,j,t(λ)et, (19.16.2)

where the coefficient of et, hα,i,j,t(λ) ∈ Z[λ], is - again - a polynomial with coefficients not
dependent on λ. By Lemma 19.9, exp(ad(λxα)) is an automorphism of L, hence (19.16.1)
and (19.16.2) are equal for all λ ∈ F. Therefore they must be coordinatewise equal, hence
gα,i,j,t(λ) = hα,i,j,t(λ) for each t = 1, · · · , n. As the coefficients of these polynomials do
not depend on λ, and they are equal for all λ ∈ F, they must be equal as polynomials.
Therefore they are still equal when taking values of κ ∈ K, hence

exp(ad(κxα))([eiej]) = [exp(ad(κxα))(ei) exp(ad(κxα))(ej)].

That is,

Mα(κ)([eiej]) = [Mα(κ)(ei)Mα(κ)(ej)].

�
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19.17. Example. We shall use our toy example of L = sl2(F) to demonstrate the process
of constructing a Chevalley group. Let K = F3 = Z/3Z. For concreteness, we could take
F = C, however, as the structure constants are integers with respect to the Chevalley
basis, any algebraically closed field of characteristic zero gives the same Lie structure.

Recall the standard basis (x, h, y) of L. As [xy] = h and there are no triples of roots
α, β, α + β ∈ Φ, this basis satisfies Proposition 17.7, hence is a Chevalley basis.

The root system Φ of L has two roots, α and −α, where x = xα and y = x−α. So the
generators of G(K) will be the matrices Mα(κ) and M−α(κ) for κ ∈ K, where Mα(κ) is
the matrix of exp(ad(κx)) and M−α(κ) is the matrix of exp(ad(κy)). That is, we have
|Φ|·|K\{0} | = 2·2 = 4 generators (when κ = 0 we obtain the identity). These generators
are dimL× dimL = 3× 3 matrices over K = F3.

Firstly, we need to compute the adjoint maps of x and y,

ad(x) :


x 7→ 0,

h 7→ −2x,

y 7→ h,

ad(y) :


x 7→ −h,
h 7→ 2y,

y 7→ 0.

This gives us the matrices

X =

0 −2 0
0 0 1
0 0 0

 , Y =

 0 0 0
−1 0 0
0 2 0

 ,

respectively. Further, we have

X2 =

0 0 −2
0 0 0
0 0 0

 , Y 2 =

 0 0 0
0 0 0
−2 0 0

 ,

and X3 = Y 3 = 0, Therefore, as (ad(Tx))n = T n(ad(x))n, we have

Mα(T ) = I + TX +
1

2
T 2X2 =

1 −2T −T 2

0 1 T
0 0 1


and

M−α(T ) = I + TY +
1

2
T 2Y 2 =

 1 0 0
−T 1 0
−T 2 2T 1

 .

The generators for G(K) are then

X1 = Mα(1) =

1 1 2
0 1 1
0 0 1

 , X2 = Mα(2) =

1 2 2
0 1 2
0 0 1

 ,

Y1 = M−α(1) =

1 0 0
2 1 0
2 2 1

 , Y2 = M−α(2) =

1 0 0
1 1 0
2 1 1

 ,

and I = Mα(0) = M−α(0). From these, we obtain the elements

O1 = X1Y1 =

1 2 2
1 0 1
2 2 1

 , O2 = X2Y2 =

1 1 2
2 0 2
2 1 1

 ,
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L1 = X1Y2 =

0 0 2
0 2 1
2 1 1

 , L2 = X2Y1 =

0 0 2
0 2 2
2 2 1

 ,

U1 = Y2X1 =

1 1 2
1 2 0
2 0 0

 , U2 = Y1X2 =

1 2 2
2 2 0
2 0 0

 ,

and

D = O1O2 =

0 0 2
0 2 0
2 0 0

 .

The multiplication table is given by:

I X1 X2 Y1 Y2 O1 L1 L2 O2 U2 U1 D
I I X1 X2 Y1 Y2 O1 L1 L2 O2 U2 U1 D
X1 X1 X2 I O1 L1 L2 O2 Y1 Y2 U1 D U2

X2 X2 I X1 L2 O2 Y1 Y2 O1 L1 D U2 U1

Y1 Y1 O2 U2 Y2 I X2 L2 D U1 O1 X1 L1

Y2 Y2 U1 O1 I Y1 U2 D L1 X1 X2 O2 L2

O1 O1 Y2 U1 L1 X1 I Y1 U2 D L2 X2 O2

L1 L1 D L2 X1 O1 U1 U2 O2 X2 I Y2 Y1

L2 L2 L1 D O2 X2 X1 O1 U1 U2 Y2 I Y2

O2 O2 U2 Y1 X2 L2 D U1 Y2 I X1 L1 O1

U2 U2 Y1 O2 D U1 Y2 I X2 L2 L1 O1 X1

U1 U1 O1 Y2 U1 D L1 X1 I Y1 O2 L2 X2

D D L2 L1 U2 U1 O2 X2 X1 O1 Y2 Y1 I

From this, we can read off that G(K) is a group of order 12, has 3 elements of order 2,
namely O1, O2 and D, and 8 elements of order 3. This is the alternating group A4, also
known in the literature as PSL2(3). It should be noted that this is not a simple group.
However, for larger fields K and larger Lie algebras, this process does give simple groups.

19.18. This process - taking a finite field K and generating a matrix group over K deter-
mined by L - is how the non-twisted Chevalley groups are constructed. For the twisted
Chevalley groups, we need to take advantage of symmetries in the Dynkin diagrams.
That is, we need the machinery behind the classification, which is covered in any good
introductory text on Lie algebras [1, 3, 4, 6].

The classification is based upon a correspondence between the pairs (L, T ) and (Φ, E).
We have seen how a root system Φ in E is associated to the maximal toral subalgebra
T of L (Theorem 12.12). We have also seen how L is determined by its roots, in that
it is generated by the 1-dimensional root spaces Lα for α ∈ Φ (Theorem 11.12). There
are still some important questions to answer, however. For any given L, we may have a
choice of T - does this freedom of choice affect the resulting root system? The answer
is no: given two maximal tori T and T ′ of L, there exists an automorphism of L which
maps T onto T ′ [4].

Another question is whether the group G(K) is affected by the choice of Chevalley
basis. We know (Lemma 18.3) that L(Z), and hence G(K), is unaffected by the choice of
∆, but there is still some freedom when choosing the xα vectors in the Chevalley basis.
It turns out that this freedom of choice actually reduces down to merely a choice of sign
[4], which therefore does not ultimately affect G(K).
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