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Abstract	
	

Replication	 stress	 is	 present	 in	 cancers	 cells	 at	 higher	 than	 normal	 levels	 due	 to	 the	
increased	 proliferation	 caused	 by	 oncogene	 activation.	 This	 results	 in	 elevated	 levels	 of	
phosphorylated	RPA2	 (pRPA2)	 and	DNA	damage,	which	 can	ultimately	 result	 in	 genetic	
instability.	By	inhibiting	suppressors	of	replication	stress,	it	may	be	possible	to	target	this	
cancer-specific	phenotype	to	selectively	kill	tumour	cells.	Attempts	were	therefore	made	
to	develop	a	high	throughput	whole	genome	RNAi	screen	to	detect	increased	endogenous	
levels	 of	 pRPA2	 foci	 formation	 following	 gene	 knockdown,	 however,	 this	 proved	
unsuccessful.	As	a	contingency	measure	a	selected	panel	of	kinases,	identified	as	putative	
replication	 stress	 suppressors	 and	 potential	 druggable	 targets,	 were	 assessed	 for	 their	
ability	to	induce	pRPA2	foci	following	gene	knockdown.	This	approach	identified	several	
hits,	 which	 were	 then	 evaluated	 for	 their	 ability	 to	 preferentially	 kill	 cells	 lacking	 p53	
signalling	 or	 overexpressing	 several	 clinically	 relevant	 oncogenes	 (Cyclin	 E,	 H-RAS	 and	
MYC-N).	 They	 were	 also	 assessed	 for	 their	 ability	 to	 potentiate	 the	 effects	 of	 the	
replication	 stress	 inducing	 drugs	 Gemcitabine	 and	 5-Flurouracil	 as	 well	 as	 the	 PARP	
inhibitor	Olaparib.		

In	addition,	the	putative	DNA	damage	repair	factor	CCDC15,	which	has	been	hypothesised	
to	act	in	the	resolution	of	replication	impeding	lesions,	was	also	investigated	as	a	potential	
replication	 stress	 suppressor.	However,	 it	does	not	 appear	 to	modulate	DNA	 replication	
stress	as	 its	loss	does	not	 induce	pRPA2	and	the	 formation	of	DNA	damage	 following	its	
knockdown	 is	 independent	 of	 entry	 into	 S	 phase.	 Interestingly,	 depletion	 of	 CCDC15	
sensitised	 certain	 cell	 lines	 to	 the	 effects	 of	 DNA	 crosslinking	 agents.	 Furthermore,	
knockdown	of	CCDC15	also	slightly	increased	the	formation	of	endogenous	FANCD2	foci,	
but	 not	 in	 cells	 treated	 with	 DNA	 crosslinking	 agents.	 However,	 CCDC15-depleted	 cells	
exhibited	delayed	formation	and	resolution	of	RAD51	foci	following	DNA	damage,	which	
were	not	due	to	perturbations	in	cell	cycle	progression.	Although	CCDC15	appears	to	have	
little	effect	on	the	cell	cycle	distribution	of	cycling	cells,	its	loss	potentially	delays	re-entry	
into	the	cycle	of	cells	paused	in	G1	phase.		
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1.1	The	Importance	of	Genome	Stability		

The	fundamental	challenge	that	all	cells	face	is	the	accurate	replication	of	their	DNA	and	
the	precise	division	 into	 two	 identical	 progenies.	 If	 this	 is	 not	 carried	out	 correctly,	 the	
genomes	of	the	daughter	cells	differ	from	that	of	their	parent,	which	can	result	in	genomic	
instability	 (Shen,	 2011).	 This	 instability	 can	 be	 divided	 into	 two	 main	 classes:	
chromosomal	 instability	 (CIN),	 where	 the	 structure	 and/or	 number	 of	 chromosomes	 is	
altered,	 or	 microsatellite	 instability	 (MIN),	 where	 the	 repeat	 sequences	 present	 at	
microsatellites	are	expanded	or	contracted	(Negrini	et	al,	2010).		

Genomic	 instability	 can	 have	 positive	 consequences,	 such	 as	 the	 generation	 of	
evolutionary	 advantageous	 mutations,	 however	 it	 is	 most	 commonly	 associated	 with	
pathological	conditions	and	ageing	(Aguilera	&	Gomez-Gonzalez,	2008;	Vijg	&	Suh,	2013).	
Tissue	samples	from	patients	with	a	variety	of	neurological	disorders	display	instability	at	
repeated	sequences	which	is	not	observed	in	control	samples	(Haeusler	et	al,	2016).	It	is	
also	associated	with	a	number	of	premature	ageing	syndromes,	many	of	whose	symptoms	
include	predisposition	to	the	development	of	cancer	(Burhans	&	Weinberger,	2007).		

1.1.1	Cancer	

Cancer	is	not	a	single	disease	but	a	compendium	of	hundreds	of	disorders	that	can	arise	
from	almost	any	tissue	or	cell	 type	within	 the	body.	Globally	 it	 is	a	major	 issue;	 in	2012	
alone	 it	 resulted	 in	8.2	million	deaths	and	 this	 is	predicted	 to	 increase	 to	13	million	by	
2030.	 This	 extrapolation	 may	 be	 an	 underestimate	 of	 the	 future	 cancer	 burden	 as	 the	
adoption	 of	 lifestyles	 with	 associated	 cancer	 risks	 is	 rising	 internationally	 (American	
Cancer	Society,	2015).	Whilst	the	cancer	survival	rate	has	doubled	in	the	United	Kingdom	
in	the	last	40	years,	only	50%	of	patients	achieve	a	10	year	survival	post-diagnosis	(Cancer	
Research	UK,	2017).	No	single	universal	strategy	can	be	employed	to	reduce	its	incidence	
as	 there	 is	 a	 marked	 change	 in	 the	 prevalence	 of	 cancer	 types	 between	 economically	
developed	 and	 developing	 countries	 (American	 Cancer	 Society,	 2015).	 The	 impact	 of	
cancer	is	not	limited	to	the	human	cost,	it	also	poses	major	financial	implications.	Therapy	
costs	 are	 rising	 and	 as	 more	 patients	 survive	 for	 longer,	 the	 duration	 of	 treatment	 is	
increasing	(Yabroff	et	al,	2011).	The	loss	of	productivity	due	to	the	illness	and	the	drain	on	
patient	 income	also	appreciably	contribute	to	 the	economic	consequences	of	 the	disease	
(American	Cancer	Society,	2015).		

Despite	 the	 fact	 that	 there	 are	 tremendous	 levels	 of	 diversity	 in	 the	 effects	 and	
characteristics	 of	 individual	 cancer	 types,	 they	 are	mostly	 believed	 to	 share	 a	 common	
developmental	 pathway.	 All	 are	 thought	 to	 evolve	 through	 the	 continued	 acquisition	 of	
mutations,	some	of	which	confer	a	survival	advantage	upon	individual	cells.	These	‘driver’	
mutations	are	selected	for	during	tumorigenesis,	resulting	in	the	clonal	expansion	of	the	
cells	 containing	 them	 (Martincorena	 et	 al;	 Stratton	 et	 al,	 2009).	 Tumours	 are	
heterogeneous,	 as	 they	 contain	 several	 of	 these	 populations,	 each	 with	 their	 own	
mutational	profile	(Greaves	&	Maley,	2012).	Many	of	these	driver	mutations	are	associated	
with	 characteristics	 that	 are	 believed	 to	 be	 shared	 between	 most	 cancers,	 which	 are	
referred	to	as	“hallmarks”.	The	initial	six	hallmarks	were	defined	as:	the	ability	to	sustain	
proliferative	 signalling,	 the	 evasion	 of	 growth	 suppression,	 the	 resistance	 of	 cell	 death	
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signals,	 replicative	 immortality,	 the	 induction	 of	 angiogenesis	 and	 the	 activation	 of	
invasion	 and	 ensuing	 metastasis.	 It	 was	 suggested	 that	 cancerous	 cells	 acquire	 a	
succession	 of	 these	 capabilities	during	 their	development	which	 allows	 the	 progression	
from	 premalignant	 lesions	 into	 fully	 formed	 tumours	 (Hanahan	 &	 Weinberg,	 2000).	 A	
review	 of	 this	 system	 eleven	 years	 later	 suggested	 the	 addition	 of	 two	 additional	
hallmarks,	the	reprogramming	of	cancer	cell	metabolism	and	the	evasion	of	the	immune	
system.	 It	 also	 included	 two	 characteristics	 that	 were	 considered	 to	 promote	 cancer	
development:	inflammation	and	genomic	instability	(Hanahan	&	Weinberg,	2011).		

Faithful	 replication	of	DNA	 is	essential	 for	 the	prevention	of	 tumorigenesis	as	almost	all	
cancers	 arise	 through	 genomic	 alterations	 (Martincorena	 et	 al;	 Stratton	 et	 al,	 2009).	 A	
complex	 network	 of	 genome	maintenance	mechanisms	 has	 evolved	 to	 counteract	 these	
modifications	but	these	can	be	disrupted	during	the	development	of	cancer.	The	resultant	
mutations	fuel	the	development	of	the	tumours	into	more	malignant	lesions	as	they	induce	
further	genome	instability.	

1.2	Maintenance	of	Genome	Stability	

1.2.1	Cell	Cycle	Control	

The	 cell	 cycle	 temporally	 controls	 the	 growth	 and	 division	 of	 eukaryotic	 cells.	 This	
complex	molecular	pathway	ensures	 that	 the	 stages	of	 cell	 division	occur	 in	 the	 correct	
order	as	later	events	depend	upon	the	completion	of	those	that	occur	earlier	in	the	cycle.	
In	 this	way,	 cells	 can	 ensure	 that	 their	 genomes	 are	being	passed	on	without	alteration	
(Nurse,	2000).		

The	cycle	is	divided	into	four	distinct	phases:	an	initial	growth	phase	(G1),	the	synthesis	
(S)	phase	of	 new	DNA,	 a	 second	growth	phase	 (G2)	 and	 the	division	 into	 two	daughter	
cells	by	mitosis	(M	phase).	The	two	growth	phases	make	up	a	large	proportion	of	the	cell	
cycle	and	are	required	to	give	the	cells	additional	time	to	propagate	and	to	prepare	for	the	
events	of	S	phase	or	M	phase.	Progression	through	the	cell	cycle	is	controlled	by	members	
of	the	Cyclin	dependent	kinase	(CDK)	family	of	enzymes,	predominantly	CDK1	and	CDK2	
(Morgan,	 1997).	 The	 activation	 of	 the	 CDKs	 requires	 the	 binding	 of	 Cyclins	 and	 post-
translational	 modification	 by	 the	 CDK	 activating	 kinase	 (CAK)	 and	 CDC25	 family	 of	
phosphatases	(Pavletich,	1999).		

The	Cyclins	are	a	distinct	 family	of	proteins	whose	expression	 fluctuates	 throughout	 the	
cell	cycle.	The	sequence	similarity	between	these	dissimilar	proteins	 is	conserved	to	the	
‘Cyclin	 box’,	 a	 region	 required	 for	 their	 binding	 to	 CDKs	 (Morgan,	 1997).	 This	 binding	
partially	 activates	 CDKs	 by	 inducing	 conformational	 changes	 in	 their	 substrate	 binding	
site.	In	the	absence	of	Cyclin	binding,	CDKs’	T-loop	obstructs	their	catalytic	cleft,	whilst	in	
the	presence	of	Cyclins	it	is	relocated	to	allow	access	to	the	binding	site	(Pavletich,	1999).	
This	 re-arrangement	 exposes	 Threonine	 160	 (T160),	 or	 equivalent,	 which	 requires	
phosphorylation	by	CAK	for	the	full	activation	of	the	kinase	(Morgan,	1997)	and	moves	the	
PSTAIRE	helix	 into	the	binding	site.	This	helix	contains	Glutamic	Acid	51	(E51)	which	 is	
required	for	substrate	catalysis	(Pavletich,	1999).		
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The	phosphorylation	of	T160	by	CAK	increases	CDK	activity	up	to	300-fold	compared	to	
Cyclin	binding	alone.	It	results	in	the	stabilisation	of	Cyclin	binding	and	further	changes	to	
the	 conformation	 of	 the	 T-loop	 and	 catalytic	 cleft	 (Morgan,	 1997).	 In	mammalian	 cells,	
CAK	 has	 been	 identified	 as	 CDK7	 and	 its	 binding	 partner	 Cyclin	 H	 (Fisher	 &	 Morgan,	
1994).		

CDKs	are	also	phosphorylated	at	Tyrosine	15	(Y15)	and	Threonine	14	(T14)	by	Wee1	and	
Myt	1	respectively.	This	has	been	extensively	studied	with	respect	to	CDK1,	where	these	
modifications	 result	 in	 the	 obstruction	 of	 the	 substrate	 binding	 site	 and	 reduce	 the	
enzyme’s	affinity	for	ATP.	In	the	case	of	CDK2,	Y15	phosphorylation	does	not	completely	
abrogate	 the	 enzyme’s	 ATPase	 activity	 (Welburn	 et	 al,	 2007).	 The	 CDC25	 family	 of	
phosphatases	 dephosphorylates	 T14	 and	 Y15	 resulting	 in	 activation	 of	 the	 CDK/Cyclin	
complexes	(Perry	&	Kornbluth,	2007).	

CDK	 inhibitory	 subunits	 (CKIs)	 also	 play	 a	 role	 in	 the	 regulation	 of	 CDK	 activity.	 In	
mammals	 two	 families,	Cip	and	 INK4,	are	present	and	act	 in	a	 tissue	specific	manner	 to	
control	 cell	 cycle	 progression.	 The	 Cip	 family	 (p21,	 p27	 and	 p57)	 inhibits	 CDK2	 and	
CDK4/6	(Blain	et	al,	1997)	by	inserting	a	helix	into	the	ATP	binding	site	and	changing	the	
conformation	of	the	catalytic	cleft	of	CDKs	(Pavletich,	1999).	The	INK4	family	(p15,	p16,	
p18	and	p19)	inhibit	CDK4/6	alone	and	in	complex	with	the	D	Cyclins	(Blain	et	al,	1997)	
by	binding	adjacent	to	the	catalytic	cleft	which	disrupts	the	cyclin	and	ATP	binding	sites	
(Pavletich,	1999).		

As	alluded	to	earlier,	the	expression	of	the	Cyclins	oscillates	throughout	the	cell	cycle	and	
certain	members	of	the	family	are	associated	with	each	phase:	the	D	Cyclins	are	active	in	
G1,	Cyclins	E	and	A	are	active	in	S	and	Cyclins	A	and	B	play	a	role	in	the	onset	of	mitosis	
(Murray,	2004).		

In	G1,	intracellular	and	environmental	conditions	regulate	whether	cells	enter	a	new	cell	
cycle	 (Lukas	 et	 al,	 1996).	 Mitogenic	 signalling	 is	 required	 for	 the	 initiation	 and	
maintenance	of	G1	progression	until	 the	 ‘restriction	point’	where	 growth	 factors	 are	no	
longer	required	for	the	advancement	of	the	cell	cycle	(Blagosklonny	&	Pardee,	2002).	The	
mitogenic	signalling	pathways,	 including	those	mediated	by	membrane	Tyrosine	kinases,	
estrogen	and	G-coupled	protein	receptors,	result	in	the	transcription	of	the	D	Cyclins.	They	
also	 prevents	 their	 phosphorylation	 at	 Threonine	 286	 (Fig.1.2.1.1),	which	 targets	 these	
proteins	for	ubiquitin	mediated	proteasomal	degradation	(Blagosklonny	&	Pardee,	2002).	
The	Cyclin	D/CDK4/6	 complex	phosphorylates	 retinoblastoma	(pRb)	which	prevents	 its	
inhibition	 of	 the	 activity	 of	 the	 E2F	 family	 of	 transcription	 factors	 (Lukas	 et	 al,	 1996;	
Lundberg	 &	 Weinberg,	 1998).	 These	 proteins	 stimulate	 the	 transcription	 of	 genes	
essential	 for	 the	 progression	 of	 S	 phase,	 including	 proteins	 required	 for	 DNA	 synthesis	
(Blagosklonny	&	Pardee,	2002)	and	Cyclin	E	(Hwang	&	Clurman,	2005)	(Fig.	1.2.1.1).	The	
D	 Cyclins	 are	 degraded	 at	 the	 G1/S	 boundary	 as	 their	 presence	 is	 inhibitory	 to	 DNA	
replication	(Fukami-Kobayashi	&	Mitsui,	1999).		
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Figure	1.2.1.1	Cell	Cycle	Control	Mechanisms.	
Mitogenic	signalling	triggers	the	upregulation	of	Cyclin	D	expression	and	inhibits	its	phosphorylation.	
Cyclin	D	binds	to	CDK4/6	which	results	in	the	phosphorylation	of	pRb	and	the	release	of	E2F.	The	INK4	
CDK	inhibitors	repress	the	action	of	CDK4/6	to	prevent	spurious	cell	cycle	entry.	The	release	of	E2F	
elicits	 the	 upregulation	 of	 several	 genes	 required	 for	 DNA	 synthesis	 including	 Cyclin	 E.	 This	 Cyclin	
binds	 to	CDK2	resulting	 in	 centrosome	duplication	and	 the	assembly	of	 the	pre-replication	complex	
(pre-RC)	by	associating	with	Cdc6.	Cyclin	E/CDK2	also	phosphorylates	pRb	resulting	in	an	increase	in	
free	E2F	and	the	upregulation	of	Cyclin	A.	This	second	binding	partner	of	CDK2	triggers	origin	firing	
by	 interacting	with	MCM	7	and	 inhibits	the	 re-formation	of	 the	pre-RC	by	phosphorylating	Cdc6.	 It	
results	in	the	activation	of	Cyclin	B/CDK1	at	the	centrosomes.	The	Cip	family	of	CDK	inhibitors	inhibit	
both	CDK4/6	and	CDK2	to	control	progression	through	the	cell	cycle.	The	Cyclin	B/CDK1	complex	is	
responsible	for	the	initiation	of	centrosome	separation.	In	M	phase	it	migrates	to	the	nucleus	where	it	
subsequently	 phosphorylates	 the	 cohesin	 II	 complex	 and	 lamins,	 which	 results	 in	 chromosome	
cohesion	and	nuclear	envelope	breakdown	respectively.		

Cyclin	 E	 binds	 to	 CDK2	 and	 activation	 of	 this	 complex	 terminates	 the	 growth	 factor	
dependent	phase	 of	 the	 cell	 cycle	 (Blagosklonny	&	 Pardee,	 2002).	 It	 primes	 the	 cell	 for	
later	 events	 as	 its	 interaction	with	 Cdc6	 stimulates	 the	 formation	 of	 the	 pre-replication	
complex	 (Coverley	 et	 al,	 2002)	 and	 it	 is	 required	 for	 the	 duplication	 of	 centrosomes	
(Hinchcliffe	 et	 al,	 1999)	 (Fig.	 1.2.1.1).	 It	 further	 activates	 E2F	 by	 phosphorylating	 pRb	
which	upregulates	the	expression	of	Cyclin	A	(Lundberg	&	Weinberg,	1998;	Schulze	et	al,	
1995).	 Cyclin	 E	 is	 degraded	 as	 S	 phase	 progresses	 via	 a	 ubiquitin	 ligase	 dependent	
pathway	requiring	Fbw7	to	prevent	hyper-proliferation	(Siu	et	al,	2012).	

Cyclin	A,	the	second	binding	partner	of	CDK2,	has	biphasic	activity	which	is	regulated	by	
its	expression	level.	The	complex	is	initially	formed	at	the	onset	of	S	phase	with	a	surge	of	
further	activation	in	early	G2	(De	Boer	et	al,	2008).	In	S	phase,	Cyclin	A/CDK	interacts	with	
MCM	7	to	initiate	replication	at	licensed	origins	(Chibazakura	et	al,	2011;	Coverley	et	al,	
2002)	 and	phosphorylates	 Cdc6	 to	 prevent	 further	 licensing	 to	 ensure	 the	DNA	 is	 only	
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replicated	 once	 (Coverley	 et	 al,	 2002).	 In	 late	 G2,	 it	 has	 been	 demonstrated	 to	 control	
progression	into	M	phase	by	the	activation	of	Cyclin	B/CDK1	in	both	the	nucleus	and	at	the	
centrosomes	(De	Boer	et	al,	2008)	(Fig.	1.2.1.1).		

The	 activation	 of	 Cyclin	 B/CDK1	 begins	 in	 late	 G2	 at	 the	 centrosomes	 and	 its	 activity	
steadily	 rises	 throughout	 the	 remainder	of	G2	until	 the	onset	 of	mitosis	where	 it	 spikes	
rapidly	(Lindqvist	et	al,	2007).	It	promotes	the	separation	of	the	centrosomes	though	the	
destabilisation	 of	 interphase	 astral	 microtubules	 and	 primes	 several	 substrates	 for	
phosphorylation	 by	 Polo-like	 kinase	1	 (Plk1).	 One	 such	 substrate	 is	 Eg5,	 a	 kinesin	with	
microtubule	 sliding	 activity,	 which	 is	 required	 for	 centrosome	 separation.	 It	 also	
phosphorylates	 Tiam1	 which	 antagonizes	 the	 activity	 of	 Eg5	 to	 limits	 the	 extent	 of	
separation	(Whalley	et	al,	2015).	Cyclin	B	contains	a	cytoplasmic	retention	signal	which	
becomes	phosphorylated	 in	prophase	 to	allow	re-location	of	 the	complex	 to	 the	nucleus	
(Li	 et	 al,	 1997).	 Once	 within	 the	 nucleus,	 it	 phosphorylates	 the	 cohesin	 II	 complex	 to	
promote	 chromosome	 condensation	 (Abe	 et	al,	2011)	and	the	nuclear	 lamins	 and	 lamin	
associated	 proteins	 to	 induce	 nuclear	 envelope	 breakdown	 (Alvarez-Fernandez	 &	
Malumbres,	2014)	(Fig.	1.2.1.1).		

The	 mitotic	 Cyclins	 A	 and	 B	 are	 degraded	 by	 the	 anaphase	 promoting	 complex	 (APC)	
bound	 to	 Cdc20	 (Zachariae	 et	 al,	 1998).	 If	 Cyclin	 B	 cannot	 be	 degraded,	 cells	 fail	 to	
progress	through	the	Metaphase	to	Anaphase	transition	and	so	cannot	exit	mitosis	(Chang	
et	al,	2003).	The	activity	of	the	APC	persists	after	cell	division	to	allow	the	cells	to	prepare	
for	the	next	cell	cycle	via	its	binding	to	the	Cdh1	regulatory	subunit	(Zachariae	et	al,	1998).		

It	is	also	possible	for	a	cell	to	exit	the	cell	cycle	and	enter	a	non-proliferating	resting	phase	
(G0)	transitorily	or	permanently.	Transient	cell	cycle	exit,	or	quiescence,	can	be	reversed	
which	is	crucial	for	post-natal	tissue	repair	and	regeneration	(Terzi	et	al,	2016).	Cells	can	
be	 triggered	 to	 enter	 this	 state	 by	 a	 number	 of	 factors,	 including	 loss	 of	 adhesion	 or	
contact	inhibition,	and	is	thought	to	mainly	be	controlled	by	the	balance	of	active	pRB	or	
E2F.	These	cells	actively	maintain	this	non-proliferative	state	as	they	express	suppressors	
of	 differentiation,	 apoptosis	 (Yao,	 2014),	 cell	 cycle	progression	 and	mitogenic	 signalling	
(Fukada	et	al,	2007).	Cells	experiencing	high	levels	of	certain	stresses,	such	as	replication	
stress,	can	be	forced	to	enter	a	permanently	non-replicating	state.	In	this	senescent	state,	
proliferation	 is	 actively	 prevented	 and	 in	 the	 case	 of	 replicative	 senescence	 this	 is	
achieved	by	a	prolonged	DNA	damage	response	(Bartkova	et	al,	2006).		 	
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1.2.2	DNA	Replication	

In	 every	 cell	 cycle,	 the	 entire	 genome	must	 be	 precisely	 replicated	 once	 to	 ensure	 the	
maintenance	 of	 genomic	 stability.	 If	 errors	 occur	 during	 this	 process,	 they	 would	 be	
passed	onto	the	cells	progeny	and	could	result	in	deleterious	mutations.	Therefore,	several	
mechanisms	 are	 employed	 to	 ensure	 DNA	 is	 replicated	 accurately.	 Due	 to	 these	
maintenance	systems,	somatic	cells	incorporate	mutations	at	a	rate	of	approximately	1.2	
x10-8	per	base	pair	(Milholland	et	al,	2017).		

To	 ensure	 that	 DNA	 is	 only	 replicated	 once	 per	 cell	 cycle,	 replication	 origins	 must	 be	
licensed	before	replication	initiation	can	occur.	This	system	was	first	determined	in	cell-
free	Xenopus	egg	extracts	which	demonstrated	that	cells	needed	to	exit	metaphase	before	
replication	could	occur	again	(Blow	&	Laskey,	1988).	The	replication	factor	responsible	for	
the	 licensing	 of	 DNA	 was	 identified	 as	 the	 mini-chromosome-maintenance	 (MCM)	 ring	
complex	 (MCM	 2-7)	 which	 is	 assembled	 on	 chromatin	 following	 metaphase	 exit	 and	
displaced	 after	 origin	 firing	 (Chong	 et	 al,	 1995).	 This	 complex	 acts	 as	 part	 of	 the	 DNA	
helicase	to	unwind	the	duplex	DNA	for	replication	(Ishimi,	1997).	

The	 loading	 of	 MCM	 2-7	 onto	 the	 DNA	 requires	 the	 assembly	 of	 the	 pre-replication	
complex	(pre-RC),	which	consist	of	the	origin	recognition	complex	(ORC),	Cdc6	and	Cdt1	
(Nishitani	&	Lygerou,	2002).	The	ORC	initially	binds	to	DNA	replication	origins	throughout	
G1	 (Rowles	 et	 al,	 1996)	where	 it	 recruits	Cdc6	 (Coleman	et	 al,	 1996)	 and	 subsequently	
Cdt1	 to	 the	 complex	 (Tsuyama	 et	 al,	 2005)	 (Fig.	 1.2.2.1).	 It	 has	 recently	 been	
demonstrated	that	MCM	3	initially	binds	to	the	pre-RC,	closely	followed	by	MCM	4,	6	and	
7.	This	induces	a	conformation	change	in	the	complex	which	allows	DNA	to	enter	the	ring	
between	MCM	2	and	5	(Zhai	et	al,	2017).		

Figure	 1.2.2.1	 Licensed	 origin	 of	
replication.		
The	 ORC	 complex	 binds	 to	 origins	 of	
replication	 throughout	 G1.	 This	
subsequently	 recruits	 Cdc6	 and	 Cdt1	 to	
form	the	pre-replication	complex	which	is	
required	for	the	loading	of	MCM	2-7	DNA	
helicase.		

This	loading	can	only	occur	when	CDK4/6,	CDK2	and	CDK1	levels	are	low	(Bendris	et	al,	
2011)	which	prevents	the	re-licensing	of	origins	throughout	the	cell	cycle.	Once	MCM	2-7	
is	loaded	onto	the	DNA,	the	pre-RC	components	are	not	required	to	maintain	this	binding	
and	 so	are	degraded	 in	a	 cell	 cycle	dependent	manner	 (Blow	&	Hodgson,	2002).	ORC	 is	
phosphorylated	by	 the	CDKs	 in	 late	G1	and	 remains	 so	until	 exit	 from	metaphase	when	
CDK1	 activity	 is	 abolished.	 Cdc6	 is	 also	 phosphorylated	 which	 results	 in	 its	 ubiquitin-
mediated	proteolysis	(Nguyen	et	al,	2001).	It	is	the	inactivation	of	Cdt1	that	appears	most	
influential	in	the	downregulation	of	licensing	(Blow	&	Gillespie,	2008)	as	it	is	degraded	in	
a	cell	cycle	dependent	manner	(Li	et	al,	2003)	and	inhibited	by	geminin	binding	from	the	
onset	of	S	phase	to	metaphase	exit	(Arias	&	Walter,	2005;	Li	&	Blow,	2005).	
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At	the	initiation	of	S	phase,	the	pre-RCs	are	converted	into	pre-initiation	complexes	(pre-
IC)	through	the	activation	of	the	DNA	helicase	(Fragkos	et	al,	2015).	It	is	during	this	period	
that	Cdc6	and	Cdt1	dissociate	from	the	origins.	The	MCM	2-7	helicase	must	associate	with	
both	Cdc45	and	GINS	to	allow	the	initiation	of	DNA	replication	(Moyer	et	al,	2006)	as	these	
molecules	increase	its	ATPase	activity	and	affinity	for	DNA	(Ilves	et	al,	2010).	The	binding	
of	 Cdc45	 relies	 upon	 the	phosphorylation	 of	 the	MCM	 complex	 by	 the	DBF4	 dependent	
kinase	(DDK)	(Heller	et	al,	2011)	and	its	association	with	TopBP1	and	Treslin	in	a	CDK2	
dependent	 manner	 (Kumagai	 et	 al,	 2010).	 In	 contrast,	 Cyclin	 A/CDK2	 activity	 is	 also	
required	for	the	recruitment	of	GINS	to	the	complex	(Heller	et	al,	2011).	Its	activity	also	
results	in	the	binding	of	MCM	10	(Douglas	&	Diffley,	2016),	TopBP1	and	RECQL4	to	MCM	
2-7,	all	of	which	are	required	to	maintain	the	stability	of	the	helicase	(Im	et	al,	2009)	and	
for	efficient	replication	of	DNA	(Tanaka	et	al,	2013).		

Figure	 1.2.2.2	 Pre-initiation	
Complex.	
Activation	 of	 the	 MCM	 2-7	 helicase	
requires	 the	 binding	 of	 both	 Cdc45	
and	GINS.	Its	stability	and	efficiency	
are	 maintained	 by	 the	 subsequent	
binding	 of	 MCM	 10,	 TopBP1	 and	
RECQL4.	

The	replicative	DNA	polymerases,	Pol	a	primase,	Pol	e	and	Pol	d	are	recruited	to	the	pre-IC	
at	the	onset	of	S	phase.	Pol	e	recruitment	requires	the	signalling	of	Cyclin	A/CDK2,	whilst	
MCM	10	and	DNA	unwinding	are	essential	for	the	binding	of	Pol	a	and	Pol	d	(Heller	et	al,	
2011).	Alongside,	these	polymerases,	several	other	factors	are	essential	for	the	formation	
of	 the	 replisome.	The	DNA	binding	protein	RPA	 is	 recruited	 to	 the	 single	 stranded	DNA	
(ssDNA)	generated	by	 the	activity	of	 the	DNA	helicase.	 Its	binding	 is	essential	 to	protect	
the	ssDNA	from	degradation	and	prevent	the	formation	of	secondary	structures	that	could	
block	 replication	 (MacNeill	 et	 al,	 2012).	 The	 proliferating	 cell	 nuclear	 antigen	 complex	
(PCNA)	is	also	required	for	efficient	DNA	replication	as	it	fastens	the	polymerases	to	the	
DNA	 to	 allow	 rapid	 replication	 (Kelman,	 1997)	 and	 is	 loaded	 onto	 DNA	 by	 replication	
factor	C	(RFC)	(Bowman	et	al,	2006).	

Replication	 occurs	 bi-directionally	 away	 from	 the	 replication	 origin,	 with	 the	 DNA	
polymerase	travelling	from	5’	to	3’	(Zheng	&	Shen,	2011).	To	facilitate	replication,	the	DNA	
must	be	primed	by	a	primase,	a	DNA	dependent	RNA	polymerase,	which	creates	a	short	
RNA	 primer	 bound	 to	 the	 template	 strand	 (Fien	 et	 al,	 2004).	 In	 eukaryotic	 cells,	 the	
primase	 is	located	within	the	Pol	a	primase	complex	(Kilkenny	et	al,	2013),	whose	DNA	
polymerase	 domain	 extends	 the	 primer	 with	 deoxyribonucleotides	 (dNTPs)	 (Fien	 et	 al,	
2004).	 The	 RCF	 loads	 PCNA	 onto	 the	 primed	 DNA	 which	 displaces	 Pol	 a	 primase	 and	
facilitates	the	switch	to	Pol	e	on	the	leading	strand	and	Pol	d	on	the	lagging	strand	(Kunkel	
&	Burgers,	2008;	Maga	et	al,	2000;	Pursell	et	al,	2007;	Zheng	&	Shen,	2011).	Synthesis	on	
the	leading	strand	is	a	continuous	reaction	(Kunkel	&	Burgers,	2008)	whilst	lagging	strand	
synthesis	 requires	 repeated	 priming	 events	 by	 Pol	 a	 primase.	 Pol	 d	 carries	 on	 the	
synthesis	 from	 these	 primers,	 generating	 approximately	 200	 nucleotide	 long	 Okazaki	
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fragments	(Zheng	&	Shen,	2011).	This	displaces	the	downstream	primer	resulting	in	a	5’	
DNA	flap	which	is	subsequently	removed	by	the	combined	action	of	FEN1	and	Dna2	(Bae	
et	al,	2001)	before	the	fragments	can	be	joined	into	a	continuous	strand	by	ligation	(Zheng	
&	Shen,	2011).	

	
Figure	1.2.2.3	Active	DNA	replication	fork.	
MCM	2-7	in	complex	with	Cdc45	and	GINS	acts	as	the	replicative	helicase	and	unwinds	duplex	DNA	
(red)	to	produce	single	stranded	DNA.	This	is	bound	to	by	RPA	to	prevent	degradation	and	secondary	
structure	 formation.	 The	 primase	 of	 DNA	 polymerase	 a	 (Pol	 a)	 initiates	 DNA	 replication	 by	
synthesising	RNA	primers	(blue).	The	RCF-PCNA	complex	(blue	ring)	facilitates	polymerase	switching	
to	Pol	e	 on	 the	 leading	 strand	and	Pol	d	 on	the	 lagging	 strand.	Black	arrows	represent	direction	of	
DNA	Polymerase.		

DNA	polymerases	select	bases	for	incorporation	into	the	nascent	DNA	strand	according	to	
Watson-Crick	base	pairing	(Tanaka	et	al,	2010).	Mutations	of	conserved	residues	in	yeast	
(Li	et	al,	2005;	Niimi	et	al,	2004;	Venkatesan	et	al,	2006)	and	human	(Tanaka	et	al,	2010)	
DNA	polymerases	a	and	d	resulted	in	increased	mutation	rates	due	to	a	decreased	ability	
to	discriminate	mismatches.	As	well	as	the	ability	to	select	the	correct	bases	for	insertion,	
Pol	e	and	Pol	d	exhibit	3’-5’	exonuclease	proofreading	activity	that	allows	them	to	remove	
mispaired	bases	 (Kunkel,	 1988).	This	proofreading	 capacity	 increases	 the	 fidelity	 of	 the	
enzymes	 approximately	 100-fold	 (Reha-Krantz,	 2010)	 and	 is	 required	 for	 the	 proper	
maturation	of	Okazaki	fragments	(Garg	et	al,	2004).	

Any	 DNA	mismatches	 that	 remain	 are	 removed	 by	mismatch	 repair	 (MMR)	 (Iyer	 et	 al,	
2006)	with	the	most	common	sub-pathway	dependent	on	the	activity	of	MutSa	and	MutLa	
(Kunkel	&	Erie,	2015).	MutSa,	comprised	of	Msh2	and	Msh6,	binds	DNA	mismatches	and	
ATP	to	 form	a	clamp	that	can	slide	along	DNA	(Lee	et	al,	2014).	 It	 interacts	with	MutLa	
(Mlh1	 and	 Pms2)	 whose	 activation	 by	 PCNA	 results	 in	 the	 nicking	 of	 the	 nascent	 DNA	
strand	 (Kadyrov	 et	 al,	 2006).	 These	 nicks	 can	 facilitate	 strand	 displacement	 synthesis,	
where	Pol	d	 or	Pol	e	 incorporate	 the	 correct	base	 (Tran	 et	al,	 1999),	 before	 the	DNA	 is	
ligated	(Kunkel	&	Erie,	2015).	
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1.2.2.1	DNA	Replication	Stress	

The	rate	at	which	DNA	replication	occurs	affects	its	fidelity	as	when	it	 is	slowed	or	halts	
completely,	ssDNA	accumulates	within	the	nucleus,	which	is	subsequently	bound	by	RPA.	
This	 phenomenon	 is	 referred	 to	 as	 DNA	 replication	 stress	 and	 most	 commonly	 occurs	
when	the	replicative	helicase	becomes	uncoupled	from	the	DNA	polymerase	(Fig.	1.2.2.4).	
A	number	of	circumstances	can	trigger	DNA	replication	stress	 including	 the	depletion	of	
molecules	essential	for	the	completion	of	DNA	replication,	such	as	dNTPs	or	RPA,	or	 the	
presence	 of	 DNA	 lesions	 that	 physically	 arrest	 polymerase	 progression	 (Zeman	 &	
Cimprich,	 2014).	 Gene	 transcription	 can	 also	 pose	 a	 significant	 threat	 to	 the	 accurate	
completion	 of	 DNA	 replication	 as	 it	 can	 result	 in	 the	 formation	 of	 DNA	 secondary	
structures	 or	 DNA:RNA	 hybrids	 (R-loops)	 that	 cannot	 be	 bypassed	 by	 the	 DNA	
polymerases.	As	the	transcription	machinery	traverses	along	the	DNA	in	a	similar	fashion	
to	 the	 replisome,	 this	 can	 likewise	 form	 a	 barrier	 to	 the	 completion	 of	 DNA	 replication	
(Barlow	&	Nussenzweig,	2014).		

	

Figure	1.2.2.1.1	Stalled	DNA	replication	fork.	
The	replicative	helicase	(MCM	2-7	in	complex	with	Cdc45	and	GINS)	can	become	uncoupled	from	the	
replicative	 polymerase	 due	 to	 polymerase	blocking	 structures	 (orange	 star).	 The	 helicase	 continues	
unwinding	the	DNA	resulting	in	the	formation	of	single	stranded	DNA	that	is	subsequently	bound	by	
RPA.		

When	a	replication	fork	stalls,	DNA	synthesis	can	be	restarted	once	the	source	of	the	stress	
has	been	 removed.	 If	 this	 is	 not	possible,	 there	 are	 also	several	ways	 in	which	 cells	 can	
restart	replication	whilst	the	stress	is	still	present	(Zeman	&	Cimprich,	2014).		

This	includes	the	restart	of	replication	downstream	of	the	blockage	through	the	activation	
of	dormant	origins	or	the	re-priming	of	the	DNA.	During	G1,	more	origins	will	be	licensed	
than	will	be	required	to	replicate	the	genome	and	these	remaining	origins	lie	dormant	in	
an	unperturbed	cell	cycle.	However,	when	replication	is	impeded,	they	can	be	activated	to	
allow	the	completion	of	DNA	replication	before	M	phase	(Ge	et	al,	2007;	Woodward	et	al,	
2006).	 Physical	 blockage	 of	 polymerase	 progression	 is	 thought	 to	 be	more	 problematic	
when	it	occurs	on	the	leading	strand	as	synthesis	of	this	strand	requires	continuous	DNA	
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replication.	 In	 contrast	 these	 lesions	 are	well	 tolerated	when	 they	 occur	 on	 the	 lagging	
strand	as	the	lesions	can	be	bypassed	by	re-priming	(Yeeles	et	al,	2013).	However,	 it	has	
been	 suggested	 that	 re-priming	 can	 also	 occur	 on	 the	 leading	 strand	 following	 UV	
irradiation	(Bianchi	et	al,	2013;	Elvers	et	al,	2011)	and	requires	the	activity	of	the	primase	
and	alternative	DNA	polymerase	PrimPol	 (Bianchi	et	al,	2013;	García-Gómez	et	al,	2013;	
Mourón	et	 al,	 2013).	This	process	 results	 in	 a	single	 stranded	gap	 in	 the	DNA,	which	 is	
subsequently	repaired	(Berti	&	Vindigni,	2016).	

Replication	re-start	can	also	involve	remodelling	or	reversal	of	the	stalled	replication	fork.	
The	actions	of	several	DNA	helicases,	 including	BLM,	WRN	and	SWI/SNF	related,	Matrix	
Associated,	 actin	 dependent	 Regulator	 of	 Chromatin,	 Subfamily	 A	 Like	 1	 (SMARCAL1),	
have	 been	 implicated	 in	 remodelling	 (Berti	 &	 Vindigni,	 2016;	 Petermann	 &	 Helleday,	
2010).	 Cells	 lacking	 these	 enzymes	 display	 reduced	 or	 inefficient	 restart	 of	 DNA	
replication	 following	 fork	 stalling	 (Ciccia	 et	 al,	 2009;	 Davies	 et	 al,	 2007;	 Sidorova	 et	 al,	
2008).	 Replication	 fork	 reversal	 occurs	 when	 conditions	 are	 sub-optimal	 (Neelsen	 &	
Lopes,	2015)	and	involves	the	remodelling	of	the	fork	into	a	four-way	‘chicken-foot’	(Berti	
&	 Vindigni,	 2016)	 or	Holliday	 junction	 (Yoon	 et	 al,	 2004).	 During	 this	 process,	 the	 two	
newly	 synthesised	 strands	 anneal	 and	 a	 number	 of	 helicases,	 DNA	 translocases	 and	
recombinases	 have	 been	 implicated	 in	 this	 process,	 including	 RAD51	 (Berti	&	 Vindigni,	
2016).	These	reversed	forks	can	be	restarted	in	a	RECQ1-Poly	(ADP-ribose)	polymerase-1	
(PARP-1)	dependent	 (Berti	 et	 al,	 2013)	 or	 a	 Dna2	 dependent	manner	 (Thangavel	 et	 al,	
2015).	Remodelled	or	reversed	forks	can	also	be	restarted	by	recombination	which	results	
in	the	bypass	of	the	blockage.	The	loading	of	RAD51	required	for	this	process	is	facilitated	
by	 phosphatase	 and	 tensin	 homolog	 (PTEN)	 (He	 et	 al,	 2015)	 and	 requires	 DNA	 end	
resection.	 This	 is	 carried	 out	 by	 Mre11	 which	 is	 recruited	 to	 stalled	 forks	 by	 PARP-1	
(Bryant	et	al,	2009)	where	it	 interacts	with	both	BLM	and	WRN	(Petermann	&	Helleday,	
2010).	XRCC3,	a	facilitator	of	RAD51	filament	formation,	 is	also	required	for	this	form	of	
restart.	

The	prolonged	stalling	of	a	replication	fork	can	result	in	the	formation	of	a	DSB	through	
the	collapse	of	the	fork	(Berti	&	Vindigni,	2016).	This	has	been	linked	to	the	dissociation	of	
the	 replisome	 from	 the	 DNA	 (Tercero	 &	 Diffley,	 2001),	 however	more	 recent	 evidence	
suggests	that	the	replisome	remains	intact	but	is	in	an	inactive	state	or	is	displaced	rather	
than	completely	broken	down	(De	Piccoli	et	al,	2012).		
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1.2.3	DNA	Damage	Response	

As	well	 as	 counteracting	 the	 incorporation	 of	 errors	 that	 occur	 during	DNA	 replication,	
cells	 also	 must	 contend	 with	 DNA	 damage	 arising	 from	 endogenous	 and	 exogenous	
sources.	 To	 negate	 its	 effects,	 they	 have	 evolved	 a	 complex	 network	 of	 DNA	 damage	
response	mechanism	to	neutralise	the	various	types	of	DNA	lesions	that	they	encounter.		

1.2.3.1	Sources	of	DNA	Damage		

The	 formation	of	DNA	damage	resulting	 from	endogenous	sources	occurs	at	an	elevated	
frequency	 compared	 to	 damage	 arising	 due	 to	 external	 mutagens.	 The	 most	 common	
source	 of	 endogenous	 damage	 is	 reactive	 oxygen	 species	 (ROS)	 which	 arise	 through	
normal	 cellular	 metabolism	 and	 during	 immune	 responses.	 They	 can	 result	 in	 the	
oxidation	 of	 DNA	 bases,	 single	 strand	 breaks	 (SSB)	 or	 DSB	 (De	 Bont	 &	 van	 Larebeke,	
2004).	Activated	neutrophils	have	been	demonstrated	to	induce	8-oxo-deoxyguanosine	(8-
oxo-dG)	in	an	antioxidant	repressible	manner	(Shen	et	al,	2000)	and	chronic	inflammatory	
diseases	of	 the	 liver,	 such	as	hepatitis,	have	a	significant	correlation	with	oxidative	DNA	
damage	 (Shimoda	 et	 al,	 1994).	 The	 oxidation	 of	 thymine	 results	 in	 the	 formation	 of	 5-
Hydroxymethyluracil,	whose	repair	can	result	in	DSB	and	subsequent	apoptosis	(Rogstad	
et	al,	2002).		

As	well	 as	 oxidation,	 DNA	 bases	 can	 also	 be	 deaminated,	 alkylated	 or	 cleaved	 from	 the	
DNA	 backbone	 (depurination)	 (De	 Bont	 &	 van	 Larebeke,	 2004).	 Cytosine	 can	 be	
deaminated	 to	 form	 uracil,	 which	 is	 removed	 from	 the	 genome	 by	 the	 uracil-DNA	
glycosylase,	resulting	in	an	abasic	site.	Its	homolog	5-methycytosine	is	also	deaminated	to	
form	 thymidine	 resulting	 in	 a	mismatched	 GT	pair	which	 is	 repaired	 by	MMR	 (Lindahl,	
1993).	This	mutation	 is	 frequently	observed	 in	 the	p53	genes	of	 human	 cancerous	 cells	
(Rideout	et	al,	1990).	Whilst	the	alkylation	of	some	bases	results	in	mismatches,	others	do	
not	affect	base	pairing	but	result	 in	 the	generation	of	mutagenic	apurinic	 (AP)	sites	(De	
Bont	 &	 van	 Larebeke,	 2004).	 S-adenosylmethianine	 (SAM)	 is	 an	 important	 endogenous	
DNA	 alkylating	 agent	 as	 it	 can	 induce	 3-methyladenine	 and	 O6-guanine	 adducts	
enzymatically	which	can	result	in	mutagenesis	(Rydberg	&	Lindahl,	1982).	DNA	bases	can	
become	 depurinated	 through	 the	 hydrolysis	 of	 the	 N-glycosidic	 bond	 resulting	 in	 the	
formation	of	AP	sites,	which	are	susceptible	to	further	damage	(An	et	al,	2014).	Bases	can	
be	targeted	for	depurination	by	modifications,	such	as	those	induced	by	the	estrogen	3,4-
quinones	(Stack	et	al,	1996).		

Environmental	 mutagens	 are	 capable	 of	 inducing	 several	 types	 of	 DNA	 lesions	 via	 a	
number	of	mechanisms.	Oxidative	damage	can	also	arise	through	exogenous	sources	such	
as	 ultraviolet	 (UV)	 or	 ionizing	 radiation	 (IR)	 (Cooke	 et	 al,	 2003).	 UV	 can	 induce	 the	
formation	of	singlet	 oxygen,	a	 type	of	ROS,	which	 can	 induce	 the	 formation	of	 8-oxo-dG	
(Douki	et	al,	1999)	whilst	IR	absorption	by	intracellular	water	can	result	in	the	formation	
of	 free	 radicals	 that	 can	 damage	 DNA	 (Azzam	 et	 al,	 2012).	 As	 well	 as	 the	 induction	 of	
oxidative	damage,	UV	and	IR	can	additionally	cause	direct	damage	to	DNA	independent	of	
ROS.	The	absorption	of	UVB	(280	–	320nm)	photons	by	DNA	bases	induces	the	formation	
dimeric	 photoproducts	 including	 cyclobutane	 pyrimidine	 dimers	 (CPD)	 (Douki	 et	 al,	
1999),	which	have	been	implicated	in	skin	cancer	carcinogenesis	(Burren	et	al,	1998).	IR	is	
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likewise	directly	absorbed	by	DNA,	which	can	result	in	the	generation	of	SSB	or	DSB	when	
two	SSB	occur	in	close	proximity	on	opposite	strands.	DSB	are	considered	one	of	the	most	
detrimental	 DNA	 lesion	 as	 if	 they	 are	 not	 repaired	 they	 can	 result	 in	 mutation	 or	 the	
induction	of	apoptosis	(Mahaney	et	al,	2009).		

Adducts	can	also	form	which	covalently	link	two	nucleotide	residues;	this	can	occur	within	
the	 same	 strand	 (intrastrand)	 or	 between	 the	 two	 strands	 (interstrand).	 Intrastrand	
crosslinks	are	commonly	formed	by	UV	(Douki	et	al,	1999)	but	can	easily	be	removed	by	
the	 nucleotide	 excision	 repair	 (NER)	 pathway	 (Huang	 &	 Li,	 2013).	 However,	 the	
interstrand	crosslinks	(ICLs)	pose	more	of	a	threat	to	genome	stability	as	they	prevent	the	
separation	of	the	DNA	strands	which	halts	DNA	replication	and	gene	transcription	(Huang	
&	 Li,	 2013).	 These	 lesions	 can	 be	 induced	 by	 bifunctional	 alkylating	 agents,	 platinum	
compounds	and	the	antibiotic	Mitomycin	C	(MMC).		

Figure:	types	of	DNA	damage	and	the	pathways	that	repair	them	

1.2.3.2	PI3K	Like	Kinases	

The	phosphatidylinositol	3-kinase	(PI3K)	 like	kinase	(PIKK)	 family	are	serine/threonine	
kinases	 whose	 kinase	 domain	 exhibits	 a	 high	 degree	 of	 homology	 with	 PI3K.	 Its	 six	
members	co-ordinate	a	range	of	cellular	processes	with	three	in	particular	playing	crucial	
roles	within	 the	DNA	 damage	 response.	 Ataxia-telangiectasia	mutated	 (ATM),	 ATM	 and	
Rad3	 related	 (ATR)	 and	 DNA-dependent	 protein	 kinase	 (DNA-PK)	 function	 to	 transmit	
and	amplify	DNA	damage	signals	to	elicit	the	correct	cellular	response	(Falck	et	al,	2005;	
Rivera-Calzada	 et	 al,	 2015).	 ATM	 and	ATR	 both	 halt	 the	 cell	 cycle	 in	 response	 to	 DNA	
damage	whilst	DNA-PK	facilitates	the	repair	of	DSBs	(Ashley	et	al,	2014).	However,	these	
kinase	are	to	have	complementary	roles	and	all	three	kinases	have	been	demonstrated	to	
phosphorylate	 the	histone	H2AX	in	response	to	DSBs	(Paull	et	al,	2000),	which	acts	as	a	
global	DNA	damage	marker.	All	three	are	localised	to	DNA	damage	by	a	similar	mechanism	
that	relies	upon	recruitment	by	a	damage	sensor.	For	ATM	this	is	the	Mre11-Rad50-Nbs1	
(MRN)	complex,	ATR	its	binding	partner	ATRIP	and	DNA-PK	the	Ku70-Ku80	heterodimer.	
A	 conserved	 region	 in	 the	 C-terminus	 of	 Nsb1,	 ATRIP	 and	 Ku80	 is	 required	 for	 their	
interaction	with	their	respective	PIKK	(Falck	et	al,	2005).		

The	Ku70-Ku80	heterodimer	binds	to	the	free	ends	of	DNA	(Blier	et	al,	1993)	and	recruits	
the	catalytic	subunits	of	DNA-PK	(DNA-PKcs)	 to	 the	sites	of	DSB	(Gell	&	 Jackson,	1999).	
They	subsequently	trans-autophosphorylate	at	multiple	sites	resulting	in	kinase	activation	
and	phosphorylation	of	the	proteins	that	mediate	the	non-homologous	end	joining	(NHEJ)	
of	DSBs	(discussed	below)	(Goodwin	&	Knudsen,	2014).	DNA-PK	also	plays	a	role	 in	 the	
replication	stress	response	as	cells	expressing	mutant	forms	of	this	protein	fail	to	arrest	
replication	following	the	induction	of	stress	(Liu	et	al,	2012).		

ATM	is	rapidly	autophosphorylated	at	Serine	1981	(Bakkenist	&	Kastan,	2003),	Serine	367	
and	 Serine	 1893	 (Kozlov	 et	 al,	 2006)	 in	 response	 to	 DSB.	 This	 autophosphorylation	 is	
required	 to	 convert	 the	 enzyme	 from	 an	 inactive	 dimer	 to	 a	 functional	 monomer	
(Bakkenist	&	 Kastan,	 2003)	 and	 for	ATM’s	 association	with	 chromatin	 (Berkovich	 et	 al,	
2007).	As	well	as	recruiting	ATM	to	the	sites	of	DSB	via	Nbs1	(Falck	et	al,	2005),	the	MRN	
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complex	 is	 required	 for	 its	 stable	 association	 with	 DNA	 (Lee	 &	 Paull,	 2005)	 and	 its	
substrates,	 p53	 and	 checkpoint	 kinase	 2	 (Chk2)	 (Lee	&	 Paull,	 2004).	 It	 functions	 in	 the	
G1/S	checkpoint	 (discussed	below)	and	 is	also	required	 for	 the	 localisation	of	MRN	and	
WRN	at	 stalled	 replication	 forks	 (Ammazzalorso	 et	 al,	 2010;	Trenz	 et	 al,	 2006).	ATM	 is	
thought	to	be	the	primary	kinase	responsible	for	the	phosphorylation	of	the	histone	H2AX	
at	Serine	139	(gH2AX)	in	response	to	DSBs	(Burma	et	al,	2001;	Sharma	et	al,	2012a).	

ATR	 signalling	 is	 essential	 for	 the	 preservation	 of	 the	 genome	 as	 its	 basal	 activity	
maintains	replication	fork	stability	throughout	S	phase	(Cimprich	&	Cortez,	2008)	and	is	
fully	activated	in	response	to	replication	stress	(Vidal-Eychenié	et	al,	2013).	As	mentioned	
previously,	 this	 phenomenon	 results	 in	 the	 formation	 of	 long	 tracts	 of	 ssDNA	 that	 is	
subsequently	bound	by	RPA,	a	heterotrimeric	protein.		

RPA2	(RPA32)	is	phosphorylated	throughout	the	cell	cycle	at	a	number	of	residues	within	
its	N-terminus.	Two	residues,	Serine	23	(S23)	and	Serine	29	(S29)	are	phosphorylated	by	
the	CDKs	during	the	progression	of	an	unperturbed	cell	cycle	(Fang	&	Newport,	1993)	and	
in	 response	 to	 genotoxic	 stress	 (Zernik-Kobak	 et	 al,	 1997).	 Mutation	 of	 these	 sites	
deregulates	cell	cycle	progression,	the	replication	stress	response	and	results	in	persistent	
DNA	 damage	 (Anantha	 et	 al,	 2007).	 This	 stress-induced	modification	 promotes	 further	
phosphorylation	 of	 the	 N-terminus	 at	 a	 number	 of	 sites:	 Serine	 4/8	 (S4/8),	 Serine	 12,	
Serine	13,	Serine	14,	Threonine	21	(T21)	and	Serine	33	(S33).	It	has	been	proposed	that	
phosphorylation	 of	 S23	 and	 S29	 by	 CDK	 and	 subsequent	 phosphorylation	 of	 S33	 are	
required	before	 further	modification	 can	 take	place	 (Anantha	 et	 al,	 2007),	 although	 this	
may	 be	 an	 over	 simplification.	 Efforts	 have	 been	 made	 to	 determine	 the	 PIKKs	 that	
phosphorylate	these	remaining	sites,	but	the	data	is	contradictory,	most	likely	due	to	the	
variety	 of	 genotoxic	 agents	 and	 lack	 of	 specificity	 of	 the	 PIKK	 inhibitors	 used	 in	 these	
studies.	It	is	also	thought	that	there	may	be	a	high	degree	of	redundancy	within	the	system	
which	further	complicates	matters	(Liu	et	al,	2012).	Most	evidence	suggests	that	ATR	and	
DNA-PK	 are	 responsible	 for	 RPA2	 phosphorylation	 in	 response	 to	 replication	 stress	
(Anantha	et	al,	2007;	Ashley	et	al,	2014;	Liu	et	al,	2012;	Vassin	et	al,	2009;	Vidal-Eychenié	
et	 al,	 2013)	with	ATR	phosphorylating	T21	(Olson	et	 al,	 2006)	and	S33,	whilst	DNA-PK	
phosphorylates	S4/8	(Maréchal	&	Zou,	2014).	Phosphorylation	of	these	sites	is	essential	
for	the	response	to	DNA	replication	stress	as	mutants	demonstrate	impaired	recovery	(Liu	
et	al,	2012;	Vassin	et	al,	2009).		

ATR	is	recruited	to	DNA	via	its	binding	partner	ATRIP	(Falck	et	al,	2005)	which	recognises	
and	 binds	 to	 ssDNA	 bound	 phosphorylated	 RPA	 (Zou	 &	 Elledge,	 2003).	 A	 RAD17	
containing	 complex	 is	 localised	 to	 ssDNA	 by	 Pol	a	 primase	 and	 loads	 the	 RAD9-HUS1-
RAD1	(9-1-1)	complex	onto	RPA	coated	ssDNA	3’	overhangs	(Ellison	&	Stillman,	2003;	You	
et	 al,	 2002).	 TopBP1	 binds	 to	 RAD9	 and	 activates	 ATR	 via	 its	 activation	 domain	 (AD)	
allowing	 for	 the	 phosphorylation	 of	 ATR’s	 substrates	 (Delacroix	 et	 al,	 2007;	 Lee	 et	 al,	
2007a)	(Fig.	1.2.3.2.1).		

ATR’s	most	 notable	 substrate	 is	 checkpoint	 kinase	 1	 (Chk1)	which	 it	 phosphorylates	 at	
Serine	317	(S317)	(Zhao	&	Piwnica-Worms,	2001)	and	Serine	345	(S345)	(Liu	et	al,	2000).	
S317	phosphorylation	is	found	only	in	stressed	cells	whilst	there	is	evidence	that	S345	is	
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also	 required	 for	 mitosis	 in	 unperturbed	 cell	 cycles	 (Wilsker	 et	 al,	 2008).	 Chk1	
autophosphorylates	 Serine	 296	 (S296)	 in	 a	 S317/S345	 dependent	manner	 (Okita	 et	 al,	
2012)	which	is	thought	to	be	required	for	the	DNA	damage	response	(Wilsker	et	al,	2008).	
Its	 phosphorylation	 allows	 it	 to	 dissociate	 from	 the	 chromatin	 (Smits	 et	 al,	 2006)	 and	
transmit	 the	damage	 signals	 throughout	 the	nucleus	 (Sørensen	&	Syljuåsen,	 2012).	This	
halts	the	cell	cycle	at	the	Intra-S,	G2/M	and	spindle	checkpoints	(discussed	below).	It	also	
suppresses	 the	 activation	 of	 late	 firing	 origins	 in	 favour	 of	 allowing	 the	 continuation	 of	
replication	at	stalled	 forks	once	replication	stress	has	been	resolved	(Ge	&	Blow,	2010).	
There	is	also	evidence	that	Chk1	and	the	checkpoint	mediator	Claspin	control	replication	
fork	 progression	 in	 unstressed	 cells	 (Petermann	 et	 al,	 2008;	 Petermann	 et	 al,	 2010).	
Claspin	 is	required	 for	stress	 induced	Chk1	phosphorylation	but	 its	role	 in	unperturbed	
cell	 cycles	 is	 independent	 from	 that	 function	 (Scorah	 &	 McGowan,	 2009).	 Chk1	
phosphorylates	the	recombinase	RAD51	in	response	to	replication	stress	to	facilitate	the	
repair	of	DSBs	which	persist	in	Chk1	mutant	cells	(Sørensen		et	al,	2005).		

	

Figure	1.2.3.2.1	ATR	signalling	at	a	stalled	replication	fork.	
The	single	stranded	DNA	generated	in	replication	stressed	cells	is	bound	by	RPA	which	is	subsequently	
phosphorylated	 by	 the	 PIKKs.	 This	 recruits	 ATR	 via	 its	 interacting	 protein	 ATRIP	 and	 enables	 the	
loading	of	the	RAD9-HUS1-RAD1	(9-1-1)	complex	(red	ring).	TopBP1	binds	to	RAD9	which	localises	it	
to	 stalled	 replication	 forks	 where	 it	 activates	 ATR.	 Once	 activated,	 ATR	 can	 phosphorylate	 its	
substrates,	most	notably	Chk1,	but	these	also	include	SMARCAL1,	WRN	and	MCM2.		

In	 the	 absence	 of	 ATR	 signalling,	 stalled	 replication	 forks	 collapse	 resulting	 in	 the	
formation	 of	 DSBs,	 although	 this	 mechanism	 is	 inadequately	 understood.	 One	 way	 in	
which	 ATR	 maintains	 stalled	 fork	 stability	 is	 by	 the	 regulation	 of	 SMARCAL1.	 If	 left	
unchecked,	 SMARCAL1	 activity	 results	 in	 aberrant	 resection	 of	 stalled	 forks	 but	 if	 its	
activity	 is	 correctly	 controlled	 it	 can	 promote	 fork	 restart	 (Couch	 et	 al,	 2013).	
Phosphorylation	 of	WRN	 by	 ATR	 is	 required	 for	 its	 co-localisation	 with	 RPA	 at	 stalled	
forks	 and	 suppression	 of	 DSB	 formation	 (Ammazzalorso	 et	 al,	 2010).	 It	 also	
phosphorylates	MCM	2	at	stalled	replication	forks	which	results	in	the	recruitment	of	Plk1.	
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This	kinase	acts	to	locally	lift	the	suppression	of	replication	by	Chk1	and	allow	the	firing	of	
dormant	origins	to	ensure	that	replication	is	completed	(Trenz	et	al,	2008).	

1.2.3.3	Checkpoint	Activation	

Built	 into	 the	cell	cycle	are	several	surveillance	mechanisms	that	ensure	certain	aspects	
have	 been	 completed	 properly	 before	 the	 cell	 can	 continue	 onto	 the	 next	 phase.	 These	
‘checkpoints’	 monitor	 the	 entry	 into	 S	 phase,	 the	 fidelity	 of	 DNA	 replication,	 the	
commitment	 to	 cell	 division,	 and	 the	 proper	 segregation	 of	 the	 chromosomes	 during	
metaphase.	If	any	of	these	events	have	not	been	completed,	or	if	a	cell’s	DNA	is	damaged,	
cell	cycle	progress	is	halted	to	allow	the	rectification	of	these	issues	(Barnum	&	O’Connell,	
2014;	Murray,	1994).	

The	 G1/S	 transition	marks	 entry	 into	 a	 new	 cell	 cycle	 and	 beyond	 this	 point	 the	 cell	 is	
committed	 to	 DNA	 replication	 and	 cell	 division.	 The	 checkpoint	 that	 operates	 at	 this	
boundary	 is	controlled	by	ATM	and	 its	downstream	targets	Chk2	and	p53.	 It	 is	believed	
that	 the	 activation	 of	 the	 G1/S	 checkpoint	 occurs	 in	 two	phases	 in	 response	 to	 DSBs:	 a	
rapid	 transient	 activation	 of	 Chk2	 and	 a	 slower	more	 sustained	 activation	 of	 p53	 (Fig.	
1.2.3.3.1)	 (Bartek	 &	 Lukas,	 2001).	 Chk2	 is	 phosphorylated	 at	 Threonine	 68	 by	 ATM	 in	
response	to	DSB	(Lee	&	Paull,	2004;	Ward	et	al,	2001).	It	subsequently	phosphorylates	the	
CDC25A	 phosphatase	 at	 Serine	 123	 resulting	 in	 its	 ubiquitination	 which	 targets	 the	
protein	for	proteasomal	degradation	(Mailand	et	al,	2000).	This	prevents	the	activation	of	
Cyclin	 E/CDK2	 by	 dephosphorylation	 and	 the	 consequent	 transition	 into	 S	 phase.	 This	
inhibition	 is	 thought	 to	occur	within	30	minutes	of	DSB	 formation	 and	 lasts	 for	 several	
hours	(Deckbar	et	al,	2010).		

	

Figure	1.2.3.3.1	G1/S	checkpoint	activation.	
DNA	damage	triggers	the	activation	of	ATM	resulting	in	the	phosphorylation	of	Chk2,	MDM2	and	p53.	
Phosphorylated	 Chk2	 subsequently	 phosphorylates	 CDC25A	 which	 prevents	 it	 from	 removing	 the	
inhibitory	phosphate	from	CDK2.	MDM2	and	p53	phosphorylation	result	in	the	stabilisation	of	p53	and	
the	transcription	of	p21	(Cip).	This	protein	inhibits	CDK2	and	CDK4	to	prevent	entry	into	S	phase.		

The	tumour	suppressing	transcription	factor	p53	is	negatively	regulated	by	the	ubiquitin	
E3	 ligase	 MDM2	 (Cheng	 et	 al,	 2011).	 Phosphorylation	 of	 MDM2	 by	 ATM	 disrupts	 its	
conformation	which	is	thought	to	prevent	its	binding	to	p53	(Cheng	et	al,	2011;	Khosravi	
et	al,	1999)	which	enhances	the	stability	of	the	transcription	factor	(Deckbar	et	al,	2010).	
ATM	and	Chk2	also	phosphorylate	p53,	at	Serine	15	and	Serine	20	respectively	(Cheng	et	
al,	2011;	Khosravi	et	al,	1999),	which	is	thought	to	enhance	the	stability	of	the	protein	and	
increases	its	DNA	binding	efficiency	(Deckbar	et	al,	2010).	This	allows	p53	to	induce	the	
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transcription	 of	 its	 target	 genes,	 including	 the	 CDK	 inhibitor	 p21,	 which	 inhibits	 both	
CDK4	and	CDK2	to	prevent	S	phase	entry	(He	et	al,	2005).	As	this	checkpoint	response	is	
transcription	 dependent	 it	 is	 activated	 slowly	 but	 the	 effects	 last	 longer	 than	 those	
induced	by	CDC25A	inhibition	(Deckbar	et	al,	2010).		

In	response	to	replication	stress,	an	ATR	and	Chk1	mediated	Intra-S	phase	checkpoint	is	
triggered.	As	 in	 the	G1/S	 checkpoint,	 CDC25A	plays	 a	 key	 role	 in	 the	halting	of	 S	phase	
progression.	 It	 is	 phosphorylated	 by	 Chk1	 which	 increases	 the	 rate	 of	 its	 ubiquitin	
dependent	proteasomal	degradation	and	so	prevents	the	activation	of	Cyclin	A/CDK2	(Uto	
et	 al,	 2004).	 Whether	 Chk2	 acts	 in	 the	 Intra-S	 checkpoint	 is	 controversial	 (Falck	 et	 al,	
2001;	Uto	et	al,	2004),	although	contrasting	data	may	be	due	to	the	types	of	damage	used	
to	stimulate	cell	cycle	arrest	within	these	studies.		

	

Figure	1.2.3.3.2	Intra-S	phase	checkpoint	activation.	
ATR	 is	 activated	 in	 response	 to	 DNA	 replication	 stress.	 This	 allows	 for	 the	 phosphorylation	 of	 its	
downstream	 target	Chk1	which	 subsequently	 phosphorylates	 CDC25A.	 This	 inhibits	 its	 phosphatase	
activity	and	prevents	the	activation	of	CDK2	and	the	progression	of	S	phase.		

The	G2/M	checkpoint	prevents	 cells	with	un-replicated	or	damaged	DNA	 from	entering	
into	mitosis	as	 this	would	have	highly	detrimental	effects	on	genome	stability.	ATM	and	
ATR	 activate	 Chk2	 and	 Chk1	 respectively	 which	 both	 phosphorylate	 CDC25B/C.	 This	
stimulates	their	binding	by	 the	14-3-3	proteins	(Peng	et	al,	1997)	which	results	in	 their	
sequestration	in	the	cytoplasm	and	prevents	their	activation	of	Cyclin	B/CDK1	(Brunet	et	
al,	2002).	Wee1	is	a	Chk1	substrate	whose	phosphorylation	results	in	its	stabilisation	and	
increased	 inhibition	 of	 CDKs	 by	 phosphorylation	 (Dai	 &	 Grant,	 2010).	 ATM	 and	 Chk2	
phosphorylate	MDM2	and	p53,	as	described	previously,	which	results	in	the	transcription	
of	 the	 14-3-3σ	 and	 GADD45a	 proteins	 (Löbrich	 &	 Jeggo,	 2007).	 The	 14-3-3σ	 isoform	
sequesters	Cyclin	B/CDK1	in	the	cytoplasm	(Chan	et	al,	1999)	and	Gadd45a	also	reduces	
nuclear	Cyclin	B	levels.	(Fig.	1.2.3.3.3)	(Bulavin	et	al,	2001;	Reinhardt	et	al,	2007).		

During	metaphase	the	chromosomes	align	along	the	equator	of	the	cell	and	attach	to	the	
mitotic	spindle.	Once	this	has	been	completed	the	cells	progress	into	anaphase	where	the	
chromosomes	 are	 pulled	 to	 the	 opposite	 poles	 of	 the	 cell.	 A	 checkpoint	 exists	 at	 this	
transition	and	is	activated	when	the	microtubules	of	the	spindle	fail	to	properly	attach	to	
the	 kinetochores	 formed	 at	 the	 centromeres	 of	 the	 chromosomes	 (Musacchio,	 2015).	
Proper	 attachment	 generates	 equal	 tension	across	 the	 chromosome	 (Rieder	 et	 al,	 1995)	
and	in	the	absence	of	tension	BUB1	and	BUBR1/MAD3	are	recruited	(Taylor	et	al,	2001).	A	
complete	 lack	 of	 spindle	 attachment	 results	 in	 the	 additional	 localisation	 of	 MAD1	 and	
MAD2	at	the	kinetochore	(Waters	et	al,	1998).	BUBR1	recruitment	requires	the	catalytic	
activity	of	Aurora	kinase	B,	which	is	itself	phosphorylated	by	Chk1	in	response	to	spindle	
defects	 (Zachos	 et	 al,	 2007).	 The	 MAD	 and	 BUB	 proteins	 function	 to	 inhibit	 the	 APC,	
responsible	 for	 the	 degradation	 of	 cyclins	 and	 the	 onset	 of	 anaphase.	 This	 complex	 is	
regulated	by	 two	subunits,	Cdh1	and	Cdc20,	 the	 later	of	which	 is	required	 for	anaphase	
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progression	(Hwang	et	al,	1998).	It	is	bound	by	MAD2,	BUBR1/MAD3	and	BUB3,	referred	
to	 collectively	 as	 the	 mitotic	 checkpoint	 complex,	 which	 regulates	 the	 complexing	 of	
unbound	 MAD2	 with	 Cdc20	 to	 prevent	 its	 interaction	 with	 the	 APC	 (Fig.	 1.2.3.3.4)	
(Sudakin	et	al,	2001).		

	

Figure	1.2.3.3.3	G2/M	checkpoint	activation.	
DNA	damage	and	un-replicated	DNA	activate	ATM	and	ATR	respectively.	ATM	phosphorylates	Chk2,	
MDM2	and	p53.	Chk2	phosphorylates	both	p53	and	CDC25B/C	which	inhibits	its	dephosphorylation	of	
CDK1.	Stabilised	p53	results	in	the	transcription	of	14-3-3σ	and	Gadd45a	which	inhibit	the	activity	of	
CDK1.	ATR	phosphorylates	Chk1	which	in	turn	inactivates	CDC25B/C	and	stimulates	the	inhibition	of	
CDK1	by	Wee1.	The	14-3-3	proteins	also	inhibit	the	activities	of	CDC25B/C.	

	

	

Figure	1.2.3.3.4	Mitotic	spindle	checkpoint	activation.		
BUB1,	BUBR1,	BUB3,	MAD1	and	MAD2	bind	 to	kinetochores	of	 chromosomes	 that	are	not	properly	
attached	 to	 the	 mitotic	 spindle.	 This	 complex	 allows	 for	 the	 biding	 of	 soluble	 MAD2	 to	 CDC20,	 a	
regulatory	subunit	of	the	APC.	This	facilitates	the	subsequent	binding	of	BUBR1	and	BUB3	which	aid	in	
the	 prevention	 of	 APC	 activation.	 This	 averts	 the	 degradation	 of	 Cyclins	 A	 and	 B	 and	 the	 onset	 of	
anaphase.	Adapted	from	London	&	Biggins	(2014).		

If	 mitosis	 is	 unsuccessful	 cells	 can	 undergo	 mitotic	 catastrophe.	 This	 is	 thought	 to	 be	
triggered	by	premature	mitotic	entry,	abnormal	completion	or	failure	to	complete	division	
(Ianzini	&	Mackey,	1997;	Kroemer	et	al,	2009;	Vakifahmetoglu	et	al,	2008).	It	is	predicted	
to	 play	 a	 role	 in	 genomic	 maintenance	 by	 eliminating	 cells	 with	 missegregated	
chromosomes	by	forcing	them	irreversibly	into	apoptosis,	necrosis	or	senescence	(Vitale	
et	al,	2011).	Cells	can	undergo	apoptosis	or	necrosis	during	an	aberrant	mitosis	or	 they	
can	 enter	 a	 new	 cell	 cycle	 with	 missegregated	 chromosomes,	 which	 is	 referred	 to	 as	
mitotic	 slippage	 (Raab	et	 al,	 2015),	where	 they	 are	 subsequently	 forced	 to	die	 in	G1	or	
enter	 a	 senescent	 state.	 The	mechanisms	 that	 dictate	 the	 fate	 of	 the	 cells	 following	 an	
anomalous	mitosis	are	currently	unclear	(Mc	Gee,	2015).		
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1.2.3.4	DNA	Repair	Mechanisms	

As	a	wide	variety	of	lesions	affect	DNA,	cells	have	evolved	numerous	repair	mechanisms,	
each	 designed	 to	 rectify	 a	 specific	 subset	 of	 genomic	 injuries.	 These	 range	 from	 single	
enzymes,	 that	 directly	 rectify	 the	 damage,	 to	 complex	 multistep	 pathways	 involving	
diverse	classes	of	proteins	and	specific	enzymatic	functions.		

Certain	 base	 modifications	 can	 be	 reversed	 by	 direct	 modification	 by	 single	 enzymes.	
Three	 classes	of	 these	 enzymes	have	been	 identified:	 photolyases,	O6	 alkylguanine	DNA	
alkyltransferases	 and	 AlkB	 dioxygenases	 which	 reverse	 UV	 photoproducts,	 O-alkylated	
and	N-alkylated	bases	respectively	(Yi	&	He,	2014).	An	example	of	 these	enzymes	 is	O6-
methylguanine	 methyltransferase	 (MGMT)	 which	 transfers	 the	 alkyl	 group	 from	 O6	on	
guanine	to	a	cysteine	within	its	active	site.	This	restores	the	structure	of	the	base	whilst	
inactivating	 the	enzyme	and	targeting	 it	 for	degradation	(Pegg,	2000).	Whilst	crucial	 for	
genome	maintenance,	these	enzymes	only	rectify	a	small	proportion	of	such	DNA	lesions	
(Yi	 &	He,	 2014)	 and	more	 complicated	 alterations	 require	 repair	 by	 the	multistep	 base	
excision	repair	(BER)	and	nucleotide	excision	repair	(NER)	pathways.		

BER	 amends	 DNA	 base	 modifications	 that	 result	 in	 little	 distortion	 of	 the	 DNA	 helix	
structure	such	as	oxidation,	deamination	and	alkylation	(Krokan	&	Bjørås,	2013).	The	first	
step	of	the	pathway	is	the	removal	of	the	damaged	base	by	DNA	glycosylases	to	form	an	
abasic	 site	 (Jin	 et	 al,	 2013)	with	 the	 glycosylase	 that	 carries	out	 the	 reaction	depending	
upon	the	type	of	lesion	being	removed	(Krokan	&	Bjørås,	2013).	These	sites	are	converted	
to	SSB	by	APE-1,	the	major	AP-endonuclease	in	mammals	(Tell	et	al,	2009).	The	process	in	
then	 completed	 by	 the	 short-	 or	 long-patch	 pathways	 depending	 upon	 the	 number	 of	
nucleotides	 that	 require	 replacing	 (Jung‐Suk	 &	 Demple,	 2006).	 In	 short-patch	 BER,	 a	
single	nucleotide	is	excised	from	the	DNA	(Dianov	et	al,	1992)	and	the	AP	site	is	cleaved	by	
APE-1.	The	gap	is	then	filled	by	DNA	Polymerase	b	(Pol	b)	(Podlutsky	et	al,	2001)	and	the	
remaining	nicks	are	ligated	by	DNA	ligase	III	and	XRCC1	(Cappelli	et	al,	1997).	PARP-1	is	
involved	in	the	repair	of	SSB	and	has	been	demonstrated	to	prevent	the	accumulation	of	
these	lesions	during	BER	(Parsons	et	al,	2005).	It	facilitates	the	efficient	recruitment	of	Pol	
b	and	XRCC1	by	PARylation	following	its	binding	to	the	SSB	generated	by	APE-1	(Horton	et	
al,	 2014).	 Long-patch	 BER	 generates	 a	 gap	 of	 between	 2	 –	 10	 nucleotides	 (Krokan	 &	
Bjørås,	2013)	and	requires	factors	not	involved	in	short-patch	repair.	The	filling	of	the	gap	
is	most	likely	initiated	by	Pol	b	but	is	completed	by	the	replicative	polymerases	(Podlutsky	
et	al,	2001).	FEN-1	is	required	to	remove	the	resultant	DNA	flap	(Pascucci	et	al,	1999)	and	
as	DNA	Ligase	III	and	XRCC1	are	not	required	for	long-patch	repair,	it	is	believed	Ligase	I	
ligates	the	remaining	nicks	(Fig.	1.2.3.4.1)	(Sleeth	et	al,	2004).	
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Figure	1.2.3.4.1	Base	excision	repair.	
Base	excision	repair	removes	modified	bases	(orange	triangle)	from	DNA.	The	pathway	is	initiated	by	
DNA	glycosylases	that	excise	the	damaged	base	resulting	in	an	abasic	site	which	is	cleaved	by	APE-1	
forming	a	 single	 strand	break.	The	 filling	of	 this	gap	 is	then	 initiated	by	DNA	Polymerase	b	 (Pol	b)	
(green	 strand).	 In	 the	case	of	 short	patch	 repair	 the	 remaining	nick	 is	 ligated	by	XRCC1	and	Ligase	
(Lig)	III.	For	long-patch	repair,	the	replicative	DNA	polymerases	(Pol	e/d)	continue	the	strand	(purple)	
started	by	Pol	b	resulting	in	the	generation	of	a	DNA	flap	which	is	removed	by	FEN1	with	the	DNA	nick	
being	ligated	by	Lig	I.		

In	contrast,	base	alterations	that	result	in	the	distortion	of	the	DNA	helix	activate	the	NER	
pathway,	where	a	25	–	30	nucleotide	stretch	surrounding	the	damaged	base	is	excised	and	
the	 resultant	 break	 is	 repaired	 by	 gap	 filling	 (Marteijn	 et	 al,	 2009).	 NER	 has	 two	 sub-
pathways	 that	 are	 triggered	 by	 different	 stimuli:	 global	 genome	 NER	 (ggNER),	 which	
occurs	when	 the	 double	 helix’s	 structure	 has	 been	 altered	 (Trego	&	 Turchi,	 2006),	 and	
transcription	 coupled	 repair	 (TC-NER),	 which	 is	 activated	 when	 the	 lesion	 halts	
transcription	(Marteijn	et	al,	2009).	In	ggNER,	the	DNA	damage	is	initially	recognised	by	
XPC	 which	 continuously	 scans	 the	 genome	 for	 helix	 altering	 lesions	 (Petruseva	 et	 al,	
2014).	This	 induces	 the	local	opening	of	 the	DNA	duplex	which	 facilitates	 the	binding	of	
further	NER	factors	(Sugasawa	et	al,	1998).	In	TC-NER,	the	damage	is	recognised	indirectly	
as	it	is	the	pausing	of	RNA	Polymerase	II	(RNA	Pol	II)	that	triggers	its	activation	(Marteijn	
et	 al,	 2009).	 Cockayne	 syndrome	 protein	 B	 (CSB)	 (Fousteri	 et	 al,	 2006),	 UV-stimulated	
scaffold	 protein	 A	 (UVSSA)	 and	 ubiquitin-specific-processing	 protease	 7	 (USP7)	
transiently	interact	with	RNA	Pol	II	(Schwertman	et	al,	2012)	as	it	elongates	the	mRNA.	Its	
stalling	 increases	 the	binding	affinity	of	CSB	allowing	 for	 the	 formation	of	 the	CSA/CSB	
complex	(Fousteri	et	al,	2006)	which	is	responsible	for	the	backtracking	of	the	polymerase	
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(Sigurdsson	et	al,	2010). This	 leaves	the	DNA	unwound	and	accessible	for	further	repair	
factors	(Fig.	1.2.3.4.2).			

	

Figure	1.2.3.4.2	Nucleotide	Excision	Repair.	
Nucleotide	excision	repair	(NER)	removes	modified	bases	that	distort	the	structure	of	the	DNA	helix	
(blue	hexagon).	Global	genome	NER	(left	hand	pathway)	occurs	when	modified	bases	are	detected	by	
XPC.	The	binding	of	this	protein	to	DNA	induces	local	opening	which	allows	for	the	binding	of	further	
NER	 factors.	 In	 transcription	 coupled	 repair	 (right	 hand	 pathway)	 lesions	 that	 prevent	 RNA	
Polymerase	 II	 (Pol	 II)	 from	 progressing	 result	 in	 the	 binding	 of	 CSB,	 UVSSA	 and	 USP7.	 CSB	 is	
subsequently	 bound	 by	 CSA	 and	 this	 complex	 results	 in	 the	 backtracking	 of	 the	 polymerase	which	
facilitates	the	binding	of	further	NER	components.	Once	the	DNA	is	opened,	it	is	bound	to	by	the	TFIIH	
complex,	 containing	 the	 XPB	 and	 XPD	 helicases,	 which	 further	 open	 the	 DNA	 (not	 depicted).	 This	
facilitates	 the	 binding	 of	 XPG	 and	 the	 XPF/ERCC1	 complex	 which	 act	 as	 the	 3’	 and	 the	 5’	
endonucleases	respectively.	These	proteins	incise	the	DNA	to	remove	the	strand	containing	the	altered	
base.	Adapted	from	Martenijn	et	al,	(2014).	

In	both	 sub-pathways	of	NER,	 the	 opening	of	 the	DNA	 results	 in	 the	 recruitment	of	 the	
TFIIH	complex	(Tapias	et	al,	2004)	comprising	the	XPB	and	XPD	DNA	helicases,	p62,	p54,	
p44,	p34,	p8,	GTF2H3	and	CAK.	XPB	binds	 to	chromatin	bound	XPC	(Araújo	et	al,	2001)	
which	induces	the	further	unwinding	of	the	DNA	duplex	for	approximately	27	nucleotides	
to	 the	 5’	 and	 5	 nucleotides	 to	 the	 3’	 of	 the	 damaged	 base	 (Petruseva	 et	 al,	 2014).	 The	
damaged	base	within	the	resultant	DNA	bubble	is	identified	by	XPA	in	complex	with	RPA	
(Buschta-Hedayat	 et	 al,	 1999).	 XPG	 then	 binds	 to	 the	 3’	 end	 of	 the	 bubble,	 through	 its	
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interaction	with	 TFIIH	 (Zotter	 et	 al,	 2006),	 and	 acts	 as	 the	 3’	 endonuclease	 (Graf	 et	 al,	
2011).	XPF	in	complex	with	ERCC1	incises	the	DNA	at	the	ssDNA/dsDNA	junction	to	the	5’	
of	the	damaged	base	(Fig.1.2.3.4.2)	(Tsodikov	et	al,	2007).	Once	the	DNA	has	been	excised,	
PCNA	 is	 recruited	which	 facilitates	 the	 loading	of	DNA	Pol	e	and	 subsequent	 ligation	by	
DNA	Ligase	I	in	replicating	cells.	In	non-replicating	cells,	Pol	d,	or	Pol	k	fill	the	gap	and	DNA	
Ligase	III	ligates	the	nick	(Marteijn	et	al,	2014).		

As	well	 as	modification	 to	 the	DNA	bases,	 the	phosphodiester	backbone	 can	be	 cleaved	
resulting	 in	 strand	 breaks.	 DSBs	 are	 highly	 genotoxic	 lesions	 which	 pose	 a	 significant	
threat	 to	 the	 stability	 of	 the	 genome	 if	 they	 are	 not	 repaired	 correctly.	 The	method	 of	
repair	depends	upon	which	phase	of	the	cell	cycle	 the	damage	occurs	in.	When	a	second	
copy	 of	 the	 genome	 is	 present,	 during	 the	 S	 or	 G2	 phases,	 the	 break	 is	 preferentially	
repaired	by	homologous	recombination	(HR)	as	this	requires	the	sister	chromatid	to	act	as	
a	template	for	accurate	repair.	However,	this	cannot	occur	when	there	is	only	one	copy	of	
the	genome	present	during	G1	phase	and	so	cells	rely	on	NHEJ	or	microhomolgy	mediated	
end	 joining	 (MMEJ)	 which	 are	 more	 likely	 to	 introduce	 errors	 into	 the	 genome	
(Hoeijmakers,	2001;	Kent	et	al,	2015)(summarised	in	Fig.	1.2.3.4.3).		

As	 mentioned	 previously,	 the	 Ku70-Ku80	 heterodimer	 binds	 to	 DSBs	 and	 recruits	 the	
DNA-PKcs	 to	 facilitate	 NHEJ.	 The	 endonuclease	 Artemis	 is	 also	 recruited	 by	 the	 Ku	
heterodimer	and	is	activated	by	DNA-PK	(Goodarzi	et	al,	2006).	To	facilitate	DSB	repair	by	
this	 pathway,	 the	 overhanging	 DNA	 strands	 are	 resected	 to	 reveal	 regions	 of	
microhomology.	Artemis	 can	 resect	both	3’	and	5’	overhangs	once	 it	 has	been	activated	
(Chang	et	al,	2017;	Ma	et	al,	2002)	and	it	is	believed	to	be	the	primary	nucleases	that	acts	
in	NHEJ,	although	roles	for	MRN,	WRN	and	FEN1	have	also	been	suggested	(Pannunzio	et	
al,	2014).	If	the	DNA	overhangs	have	phosphates	at	their	3’	end	or	lack	them	at	their	5’	end	
these	 are	 removed	 or	 replaced	 respectively	 by	 polynucleotide	 kinase	 to	 allow	 their	
processing	 (Bernstein	 et	 al,	 2005).	 The	 main	 polymerases	 that	 act	 in	 NHEJ	 are	 DNA	
Polymerase	µ	 (Pol	µ)	and	Polymerase	λ	 (Pol	λ)	 (Bebenek	et	al,	2014;	Moon	et	al,	2014)	
which	interact	with	Ku70-Ku80	at	DSBs	(Ma	et	al,	2004)	and	incorporate	nucleotides	in	a	
template	 independent	manner	 (McElhinny	et	 al,	 2005).	The	nicks	 that	 remain	 following	
repair	 synthesis	 are	 ligated	 by	 DNA	 Ligase	 IV	 (Lieber,	 2010).	 This	 is	 thought	 to	 be	
stimulated	by	XRCC4	and	XPF	which	 form	a	complex	 to	stabilise	DNA	and	allow	 ligation	
(Chang	et	al,	2017;	Grawunder	et	al,	1997).		

MMEJ	 represents	 a	 distinct	 DSB	 repair	 pathway	 as	 it	 operates	 independently	 of	 the	
activity	 of	 Ku70-Ku80	 and	 Ligase	 IV	 (Bennardo	 et	 al,	 2008).	 Like	 NHEJ	 it	 relies	 upon	
resection	 to	 reveal	microhomologies	which	 are	utilised	 to	 align	 the	DNA.	However,	 this	
pathway	 is	 more	 error-prone	 than	 NHEJ	 as	 it	 promotes	 rearrangements	 and	 deletions	
within	 the	 genome.	 In	 human	 cells	 this	 process	 relies	 upon	 DNA	 Polymerase	 θ	 (Pol	 θ)	
which	 uses	 the	 opposite	 overhang	 of	 the	 DSB	 as	 a	 template	 to	 stabilise	 the	 DNA	 and	
repairs	the	break	by	strand	displacement	synthesis	(Kent	et	al,	2015).		 	
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Figure	1.2.3.4.3	Double	strand	break	repair.	
Double	strand	breaks	(DBS)	can	be	repaired	by	several	different	pathways.	When	there	is	no	second	
copy	of	the	genome	present	the	break	can	be	repaired	by	non-homologous	end	joining	(NHEJ)	which	
requires	Ku70-Ku80,	the	endonuclease	Artemis,	DNA	Polymerases	μ	and	λ	(Pol	μ	and	Pol	λ)	and	Ligase	
IV.	Alternatively,	the	break	can	be	repaired	by	Ku	independent	microhomology	mediated	end	joining	
(MMEJ)	which	requires	 small	 regions	of	homology	(green	 squares)	between	the	broken	 strands	and	
Polymerase	 θ	 (Pol	 θ).	 If	 during	 the	 resection	 of	 the	 DSBs	 ends	 larger	 regions	 of	 homology	 are	
uncovered,	it	can	be	repaired	by	single	strand	annealing	(SSA)	which	depends	upon	RAD52.	If	a	second	
copy	of	the	genome	is	present,	the	break	can	be	repaired	by	homologous	recombination	(HR),	which	
results	 in	the	RAD51	dependent	 formation	of	a	D-loop.	Once	this	has	occurred,	 the	 resolution	of	the	
break	can	occur	by	 three	 sub-pathways.	 In	DSB	repair	(DSBR)	a	double	Holliday	 junction	 is	 formed	
which	 can	 either	 by	 resolved	 by	 nucleases,	 which	 results	 in	 crossovers,	 or	 dissolved	 by	 BLM.	 In	
synthesis	 dependent	 strand	 annealing	 (SDSA),	 helicases	 displace	 the	 D-loop	 to	 prevent	 crossover	
formation.	 Break-induced	 replication	 (BIR)	 occurs	 when	 one	 strand	 of	 the	 DSB	 has	 been	 lost	
completely	and	relies	upon	the	intact	chromosome	to	replicate	the	lost	DNA.		

HR	requires	the	sister	chromatid	to	act	as	a	template	for	the	precise	repair	of	DSBs.	In	the	
initial	 stage,	 referred	 to	as	pre-synapsis,	MRN	and	CtIP	 initiate	 the	 resection	of	 the	DSB	
(Nicolette	et	al,	2010;	Zhu	et	al,	2008).	This	facilitates	the	formation	of	a	3’	overhang	by	
two	redundant	pathways	involving	Exo1	or	DNA2	acting	in	concert	with	BLM,	TOP3	and	
RMI1	(Gravel	et	al,	2008;	Zhu	et	al,	2008).	During	the	initial	resection	of	the	DSB,	if	regions	
of	 homology	 are	 revealed,	 the	 two	 strands	 can	 anneal	 with	 each	 other	 in	 a	 RAD52	
dependent	fashion	to	repair	the	break,	in	a	process	referred	to	as	single	strand	annealing	
(SSA)	(Bhargava	et	al,	2016).	The	RAD51	recombinase	competes	with	RPA	(Sugawara	et	al,	
2003)	to	bind	to	the	ssDNA	3’	overhangs	(Sung	&	Robberson,	1995)	which	is	facilitated	by	
the	recombination	mediators	BRCA2	and	PALB2	(Filippo	et	al,	2006).	This	binding	forms	
the	 pre-synaptic	 filament	 by	 stretching	 the	 ssDNA	 which	 is	 critical	 for	 the	 homology	
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search	 (Chen	 et	 al,	 2008)	 once	 it	 has	 invaded	 the	 sister	 chromatid.	 The	 homologous	
sequences	 enable	 the	 formation	 of	 a	 D-loop	 (Krejci	 et	 al,	 2012)	 where	 the	 3’	 of	 the	
invading	strand	acts	as	the	primer	for	repair	synthesis	(Bartosova	&	Krejci,	2014).		

Once	the	D-loop	has	been	formed,	several	different	scenarios	can	occur	that	result	in	the	
restoration	 of	 the	DNA;	 these	 include	 classical	 DSB	 repair	 (DSBR),	 synthesis	dependent	
strand	annealing	(SDSA)	and	break-induced	replication	(BIR).	In	DSBR	the	second	strand	
of	the	DSB	is	captured	and	stabilised	by	RAD52	to	form	a	double	Holliday	junction	(dHJ)	
through	 DNA	 synthesis	 (Bartosova	 &	 Krejci,	 2014;	 Szostak	 et	 al,	 1983).	 This	 can	 be	
resolved	 by	 nucleases,	which	 can	 result	 in	 crossovers,	 or	 dissolved	 by	 BLM	 ,	where	 no	
crossing	over	occurs	(Wu	&	Hickson,	2003).	There	is	evidence	that	this	pathway	may	be	
repressed	during	the	resolution	of	DSBs	as	RAD51	suppresses	the	formation	of	dHJs	(Wu	
et	 al,	 2008).	 In	 SDSA,	 dHJs	 are	 not	 formed	 as	 the	D-loop	 is	 displaced	 by	 helicases.	 The	
invading	strand	re-anneals	with	the	second	strand	of	the	DSB	where	the	remaining	gaps	
are	 filled	 and	 the	 continuous	 strands	 are	 re-formed	 by	 ligation	 (McMahill	 et	 al,	 2007;	
Nassif	et	al,	1994).	BIR	occurs	when	the	second	end	of	the	DSB	is	lost	(Heyer	et	al,	2010)	
and	can	result	in	the	loss	of	heterozygosity	and	gross	chromosomal	rearrangements.	The	
D-loop	 is	 converted	 into	 a	 pseudo	 replication	 fork	 (Bartosova	 &	 Krejci,	 2014)	 and	
synthesis	occurs	along	 the	 intact	chromosome.	This	nascent	strand	 is	then	subsequently	
used	to	reform	the	second	strand	of	the	broken	chromosome	(Lydeard	et	al,	2007).	

DNA	interstrand	crosslinks	(ICLs)	are	a	major	threat	to	the	stability	of	the	genome	as	they	
disrupt	 replication	 and	 transcription	 (Huang	 &	 Li,	 2013)	 as	 well	 as	 promoting	
chromosomal	 breaks	 and	 rearrangements.	 In	 higher	 eukaryotes,	 the	 Fanconi	 Anaemia	
(FA)	 pathway	 is	 required	 for	 the	 removal	 of	 these	 lesions	 through	 the	 coordination	 of	
NER,	HR	and	translesion	synthesis	(TLS)	(Moldovan	&	Andrea,	2009).	The	method	of	ICL	
repair	employed	by	the	cell	is	thought	to	be	dependent	upon	the	stage	of	the	cell	cycle	it	is	
in.	 In	 G1	 it	 is	 thought	 that	 ICL	 repair	 is	 carried	 out	 by	NER	 as	 the	 levels	 of	 unhooking	
observed	correlate	with	the	intensity	of	helix	distortion	induced	by	the	lesion	(Smeaton	et	
al,	 2008).	 In	 S	 phase	 and	 G2,	 FAAP24	 and	 FANCM	 working	 in	 concert	 recognise	 DNA	
damage.	When	 replication	 forks	 approach	 ICLs	 they	 stall	and	FANCM	can	promote	 their	
conversion	into	four-way	“chicken-foot”	junctions	to	promote	their	stabilisation	by	HR	or	
bypass	by	TLS	(Gari	et	al,	2008).		

FANCM	and	FAAP24	recruit	the	rest	of	the	core	FA	complex	to	the	ICL	(Ciccia	et	al,	2007).	
This	 complex,	 containing	 FANCA,	 FANCB,	 FANCC,	 FANCE,	 FANCF,	 FANCG,	 FANCL	 and	
FANCM	 alongside	 FAAP20,	 FAAP24	 and	 FAAP100,	 acts	 as	 an	 E3	 ubiquitin	 ligase.	 It	 is	
responsible	 for	 the	 monoubiquitination	 of	 FANCD2	 and	 FANCI	 which	 results	 in	 their	
chromatin	 localisation	 and	 the	 formation	 of	 damage	 repair	 foci	 that	 contain	
BRCA2/FANCD1	 and	 RAD51/FANCR	 (Garcia-Higuera	 et	 al,	 2001;	 Smogorzewska	 et	 al,	
2007;	Wang	et	al,	2004a).	Ubiquitinated	FANCD2	recruits	several	nucleases	to	ICLs	(Deans	
&	 West,	 2011;	 Kim	 &	 D'Andrea,	 2012).	 This	 includes	 FAN1,	 which	 cleaves	 nicked	 or	
branched	 structures	 and	 is	 a	5’	 flap	 endonuclease	 (Smogorzewska	 et	 al,	 2010)	 so	 could	
cleave	DNA	adjacent	to	stalled	replication	forks.	The	loss	of	certain	other	nucleases,	such	
as	 ERCC1,	 XPF/ERCC4/FANCQ,	 Slx4/FANCP	 and	MUS81,	 sensitises	 cells	 to	 crosslinking	
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agents	(Ciccia	et	al,	2008;	Svendsen	et	al,	2009).	As	all	these	enzymes	specifically	cut	at	3’	
flap	 structures,	 they	 could	 incise	 at	 the	other	 side	of	 the	 ICL	 to	FAN1	and	 complete	 the	
‘unhooking’	of	the	DNA.	The	ICL	can	then	by	bypassed	by	the	TLS	polymerases	REV1	or	Pol	
z,	 formed	 of	 the	 REV3L	 catalytic	 subunit	 and	 REV7/FANCV	 regulatory	 subunit.	 Any	
resultant	 DSB	 are	 repaired	 by	 HR,	 mediated	 by	 RAD51/FANCR,	 BRCA2/FANCD1,	
PALB2/FANCN	 and	 BRIP1/FANCJ	 (Deans	&	West,	 2011;	 Klein	Douwel	 et	 al,	 2014)	 (Fig.	
1.2.3.4.4).	It	is	possible	that	NER	may	also	play	a	role	in	removing	the	crosslink	following	
TLS	(Deans	&	West,	2011).	

Figure	 1.2.3.4.4	 Interstrand	
crosslink	repair	by	the	Fanconi	
Anaemia	pathway.		
Interstrand	 cross	 links	 (ICL-	
purple)	 link	 the	 two	 strands	 of	 a	
DNA	helix	and	prevent	them	from	
separating	during	replication	and	
gene	 transcription.	 When	 two	
replication	 forks	 (green	 arrows)	
converge	on	a	 ICL,	 they	 stall	and	
the	 ICL	 is	 recognised	 by	 FANCM	
and	 FAAP24.	 This	 results	 in	 the	
recruitment	 of	 the	 FA	 core	
complex	 (FANCA/B/C/E/F/G/L	
and	 FAAP20/100)	 which	
monoubiquitinates	 FANCD2	 and	
FANCI.	 These	 proteins	 recruit	
nucleases	 such	 as	 FAN1,	 MUS81,	
ERCC1,	 XPF	 and	 FANCP	 to	 incise	
the	DNA	and	unhook	the	ICL.	The	
lesion	can	then	be	bypassed	by	the	
translesion	synthesis	polymerases	
REV1,	 REV7	 or	 REV3L	 and	 it	 is	
possible	 that	 the	 ICL	 is	 removed	
by	 nucleotide	 excision	 repair	
(NER).	The	double	strand	break	in	
the	 opposite	 strand	 is	 then	
repaired	 by	 homologous	
recombination	 (HR)	mediated	 by	
RAD51,	BRCA2,	PALB2	and	BRIP1.		
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Translesion	synthesis	(TLS)	is	a	damage	tolerance	pathway	that	allows	for	the	bypass	of	
DNA	lesions	when	they	cannot	be	repaired	or	the	relevant	repair	pathways	are	overcome	
by	the	level	of	damage	present	(Izhar	et	al,	2013).	The	replicative	polymerases	(d	and	e)	do	
not	efficiently	bypass	DNA	lesions	therefore	a	number	of	other	polymerases	are	employed	
to	carry	out	this	function.	Whilst	several	alternative	polymerases	are	capable	of	bypassing	
lesions	and	are	involved	in	DNA	repair,	the	Y	family	DNA	polymerases,	Pol	h,	Pol	k,	Pol	i	
and	REV1	(Sale	et	al,	2012)	alongside	the	B	family	Pol	z	(Waters	et	al,	2009),	specifically	
function	 to	 bypass	 a	 variety	 of	 DNA	 lesions.	 In	 contrast	 to	 the	 replicative	 polymerases,	
these	enzymes	have	low	processivity	which	prevents	them	from	replicating	long	strand	of	
DNA	(Vaisman	&	Woodgate,	2017).	They	also	have	lower	fidelity	due	to	their	lack	of	3’-5	
exonucleolytic	proofreading	and	their	flexible	active	sites,	which	allow	for	the	processing	
of	bulky	DNA	lesions	(Kim	&	D'Andrea,	2012;	Perlow-Poehnelt	et	al,	2004).	

PCNA	is	ubiquitinated	at	stalled	DNA	replication	forks	by	RAD18	stimulated	by	RPA	and	
results	 in	 the	 recruitment	 of	 the	 TLS	 polymerases	 (Davies	 et	 al,	 2008).	 As	 well	 as	
recruiting	 the	 polymerases,	 PCNA	 stimulates	 their	 activity	 by	 acting	 as	 a	 processivity	
factor	 (Masuda	et	al,	2015).	Whilst	REV1	does	possess	TLS	 capabilities,	 it	 is	 believed	 to	
function	mainly	as	a	scaffold	protein	where	 it	acts	as	an	adaptor	between	the	other	TLS	
polymerases	 and	 the	 PCNA	 sliding	 clamp	 (Guo	 et	 al,	 2003;	 Guo	 et	 al,	 2006;	 Ross	 et	 al,	
2005;	Waters	et	al,	2009).	The	remaining	TLS	polymerases	each	function	to	mitigate	the	
deleterious	consequences	of	a	specific	set	of	DNA	lesions.	Pol	h	is	required	for	the	error-
free	 bypass	 of	 CPD	 following	 UV	 irradiation	 and	 its	 loss	 results	 in	 the	 variant	 form	 of	
cancer	 susceptibility	 syndrome	 Xeroderma	 Pigmentosum	 (Kannouche	 et	 al,	 2003).	 It	 is	
also	required	for	the	bypass	of	crosslinks	induced	by	Cisplatin	(Alt	et	al,	2007).	In	contrast,	
Pol	 k	 is	 required	 for	 the	 efficient	 bypass	 of	 bulky	 lesions	 induced	 by	 benzo(a)pyrene	
dioleoxide	 (BPDE)	 (Suzuki	 et	 al,	 2002)	 and	 its	 loss	 results	 in	 reduced	 levels	 of	 NER	
(Tomoo	&	Alan,	2006).	The	remaining	Y	family	polymerase,	Pol	i	can	carry	out	error	prone	
TLS	 across	 a	 number	 of	 substrates	 (Stallons	&	McGregor,	 2010)	 including	UV	 damaged	
DNA	(Wang	et	al,	2007).	It	is	also	believed	to	act	in	BER	as	it	can	partially	compensate	for	
the	 loss	 of	 Pol	b	 (Bebenek	 et	 al,	 2001).	 Pol	 z	 is	 thought	 to	 be	 involved	 in	 both	HR	and	
crosslink	repair	(Gan	et	al,	2008;	Sharma	et	al,	2012b).	It	has	also	been	implicated	in	the	
mutagenic	process	that	results	from	several	carcinogens	including	UV	and	BPDE	(Diaz	et	
al,	2003).		
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1.3	Deregulation	of	Genome	Maintenance	Mechanisms	in	Cancer	

Despite	 the	extensive	efforts	that	cells	employ	 to	prevent	or	minimise	 the	occurrence	of	
genomic	 alteration,	 mutations	 still	 arise.	 Whilst	 some	 are	 relatively	 harmless,	 other	
disruptions	 can	 result	 in	 deleterious	 consequences	 such	 as	 genomic	 instability	 and	
cancerous	 transformation.	 Genome	 instability	 is	 found	 in	 both	 hereditary	 and	 sporadic	
cancers	 and	 in	 both	 cases	 this	 is	 linked	 to	 the	 deregulation	 of	 genome	 maintenance	
mechanisms.	Instability	can	occur	in	the	form	small	scale	changes	to	the	genome,	such	as	
MIN	 or	 in	 more	 substantial	 alterations	 in	 the	 structure	 and	 number	 of	 chromosomes	
present	(CIN).	MIN	is	thought	to	arise	through	the	failure	by	MMR	to	rectifying	replication	
slippage	at	the	microsatellite	sequences	interspersed	throughout	the	genome	(Yao	&	Dai,	
2014).	It	can	result	in	a	hypermutator	phenotype	which	aids	in	cancerous	transformation	
(Boland	&	Goel,	 2010)	 and	 is	more	 commonly	 found	 in	hereditary	 cancers	but	 can	 also	
occur	 in	 some	 sporadic	 tumours.	 In	 contrast,	 CIN	 is	 found	 in	 the	 majority	 of	 human	
tumours	 and	 arises	 through	 the	 mis-segregation	 of	 chromosomes	 during	 mitosis.	 If	
chromosome	segregation	 is	not	carefully	regulated,	daughter	cells	can	be	produced	with	
the	incorrect	number	of	chromosomes	and	abnormal	chromosome	structures	(Yao	&	Dai,	
2014).	Such	mis-segregation	can	arise	from	a	number	of	sources,	 including	incompletion	
of	 DNA	 replication	 or	 repair	 (Burrell	 et	 al,	 2013).	 Genomic	 instability	 can	 also	 arise	
through	changes	that	do	not	affect	the	sequence	or	abundance	of	DNA	sequences.	Changes	
in	the	epigenetic	regulation	of	gene	expression	have	also	been	implicated	in	the	malignant	
phenotype.	Changes	in	 the	methylation	status	of	 the	promoters	of	genes	 involved	 in	cell	
cycle	 regulation	 and	 DNA	 repair	 have	 been	 demonstrated	 to	 contribute	 to	 genomic	
instability	(Baylin	&	Ohm,	2006;	Jin	&	Robertson,	2013).	Modification	of	histones	likewise	
plays	 a	 role	 in	 the	 regulation	 of	 DNA	 repair	 and	gene	 transcription	 so	 it	 is	 logical	 that	
alterations	 in	 their	abundance	would	similarly	affect	genomic	 instability	(Ferguson	et	al,	
2015).	

1.3.1	Cancer	Predisposition	

Between	5	-	10%	of	the	global	cancer	burden	can	be	accounted	for	by	hereditary	cancers	
(Guan	 et	 al,	 2015).	 These	 cancers	 arise	 in	 individuals	who	 carry	 germline	mutations	 in	
genes	 involved	 in	 the	 cell	 cycle	 checkpoints	 or	 the	 repair	 of	 DNA,	 typically	 tumour	
suppressors	(Negrini	et	al,	2010).	Usually,	the	mutation	only	affects	one	allele	of	the	gene	
whilst	the	other	remains	functional.	However,	this	functional	allele	can	be	lost	in	somatic	
cells	 (loss	 of	 heterozygosity)	 which	 can	 result	 in	 the	 onset	 of	 cancer	 progression	 as	 is	
described	 in	the	Knudson	two-hit	hypothesis	of	cancer	development	(Paige,	2003).	As	 it	
only	 requires	 the	 mutation	 of	 one	 allele	 to	 result	 in	 the	 onset	 of	 cancer,	 individuals	
harbouring	 these	 mutations	 tend	 to	 develop	 cancer	 earlier	 than	 those	 suffering	 from	
sporadic	cancers	(Brandt	et	al,	2008).	These	mutations	can	result	in	a	mutator	phenotype,	
allowing	 for	 the	 generation	 of	 further	 mutations	 and	 those	 that	 provide	 a	 growth	
advantage	 to	 the	 cells	are	 selected	 for.	Through	a	continuous	 sequence	of	mutation	and	
selection,	the	tumour	evolves	and	progresses	into	a	more	malignant	lesion	(Martincorena	
et	al;	Negrini	et	al,	2010).		
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Over	 200	 cancer	 susceptibility	 syndromes	 have	 been	 reported,	 and	 although	many	 are	
rare	 and	 some	 only	 result	 in	 benign	 disease,	 they	 still	 account	 for	 a	 considerable	
proportion	of	the	global	cancer	burden	(Nagy	et	al,	2004).	The	mutation	of	ATM	results	in	
Ataxia-telangiectasia	(AT),	an	autosomal	dominant	neurodegenerative	condition.	As	well	
as	 neurodegeneration,	 AT	 patients	 are	 predisposed	 to	 tumour	 formation,	 acutely	 IR	
sensitive	(Taylor	et	al,	1975),	display	chromosomal	instability,	age	prematurely	and	have	
decreased	life	expectancy	(Savitsky	et	al,	1995).	Approximately	25%	of	AT	sufferers	will	
develop	cancer	within	 their	 lifetime,	usually	 leukaemia	or	 lymphoma,	which	reflects	 the	
role	of	ATM	in	the	maturation	of	the	immune	system	(McKinnon,	2004).	ATR	hypomorphic	
mutations	 result	 in	 Seckel	 syndrome,	 a	 rarely	 occurring	 autosomal	 recessive	 dwarfism	
syndrome.	Like	AT	it	causes	premature	aging	however,	it	does	not	predispose	patients	to	
cancer,	 although	patients	 tend	to	die	 young	and	 so	may	not	have	 the	 chance	 to	develop	
tumours	(Murga	et	al,	2009).		

Inherited	 mutations	 in	 several	 DNA	 repair	 genes	 have	 also	 been	 linked	 to	 cancer	
predisposition	 syndromes.	 Xeroderma	 pigmentosum	 (XP)	 patients	 lack	 the	 ability	 to	
effectively	repair	UV	damage	and	so	are	highly	susceptible	to	skin	malignancies	(Kleijer	et	
al,	2008).	This	syndrome	can	arise	through	the	mutation	of	7	genes	involved	in	NER,	XPA-
XPG,	 and	 the	 variant	 form	 (XPV)	 arises	 through	 loss	 of	 Pol	h	 function	 (Lehmann	 et	 al,	
2011)	 Similarly,	 Fanconi	 Anaemia	 patients	 are	 sensitive	 to	 DNA	 crosslinks	 and	 are	
predisposed	 to	 acute	 myeloid	 leukaemia,	 squamous	 cell	 carcinomas	 and	 bone	 marrow	
failure	through	the	mutation	of	FA	pathway	genes	(Dong	et	al,	2015).	Currently	there	are	
22	genes	reported	in	the	FA	Mutation	Database	that	are	known	to	result	in	FA	and	FA-like	
cancer	susceptibility	syndromes	(Auerbach	&	Smogorzewska,	2017).	As	discussed	above,	
failure	of	the	MMR	genes	to	prevent	replication	slippage	can	result	in	MIN,	the	rarer	form	
of	genomic	instability.	Mutations	in	the	MMR	genes	MLH1	and	MSH2	result	in	a	mutator	
phenotype	that	drives	the	development	of	Lynch	syndrome	(also	referred	to	as	hereditary	
nonpolyposis	colon	cancer;	HNPCC),	whose	tumours	are	characterised	by	MIN.	Mutations	
in	 other	MMR	 genes	 have	 also	 been	 identified	 but	 these	 cause	 less	 severe	 phenotypes	
(Fishel	et	al,	1993;	Nagy	et	al,	2004).		

1.3.2	Sporadic	Cancers	

Historically,	 it	 was	 assumed	 that	 sporadic	 cancers	 would	 have	 a	 similar	 origin	 to	
hereditary	 cancers,	 with	 the	mutation	 of	 checkpoint	 and	 DNA	 repair	 genes	 driving	 the	
onset	of	genomic	instability.	This	mutator	hypothesis	predicted	that	these	genes	became	
mutated	in	precancerous	lesions	resulting	in	an	increased	mutation	rate	and	subsequent	
acquisition	of	further	mutations	(Hanahan	&	Weinberg,	2011).	However,	high	throughput	
screening	 studies	 revealed	 that	 DNA	 repair	 genes	 are	 infrequently	mutated	 in	 sporadic	
cancers,	 and	 that	 genomic	 instability	 is	 present	 before	 the	 mutation	 of	 cell	 cycle	
checkpoint	 genes	 (Bartkova	 et	 al,	 2005;	 Gorgoulis	 et	 al,	 2005).	 It	 is	 now	 believed	 that	
oncogenes	 are	 the	 earliest	 and	most	 frequent	 class	 of	 genes	mutated	 in	 the	majority	 of	
sporadic	cancers,	as	implied	in	the	oncogene-induced	DNA	damage	model	(Halazonetis	et	
al,	 2008;	Martincorena	 et	al;	Negrini	 et	 al,	 2010).Unlike	 the	 tumour	 suppressors,	whose	
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mutation	results	in	the	predisposition	to	hereditary	cancers,	mutation	of	only	one	allele	of	
an	oncogene	would	be	sufficient	to	induce	oncogenic	transformation.		

Oncogene	 activation	 or	 overexpression	 results	 in	 the	 induction	 of	 replication	 stress	
through	the	deregulation	of	oncogene	firing	and	DNA	synthesis.	Overexpression	of	several	
oncogenes	 including	 Cyclin	 E,	 MYC	 and	 RAS	 results	 in	 increased	 firing	 of	 replication	
origins	(Hills	&	Diffley,	2014)	and	 in	 the	case	of	Cyclin	E	 this	has	been	demonstrated	 to	
deplete	the	cellular	levels	of	dNTPs	resulting	in	impaired	progression	of	replication	forks	
(Jones	 et	 al,	 2013).	 Similarly,	 the	 upregulation	 of	 E2F1	 results	 in	 the	 deregulation	 of	
replication	 initiation	 and	 the	 over-replication	 of	 DNA	 via	 the	 overexpression	 of	 the	
licensing	factors	Cdc6	and	Cdt1	(Karakaidos	et	al,	2004).	Cyclin	E	and	RAS	overexpression	
have	also	been	implicated	in	the	re-replication	of	DNA	(Bartkova	et	al,	2005;	Di	Micco	et	al,	
2006).		

Cells	 experiencing	 replication	 stress	 preferentially	 form	 DSBs	 at	 common	 fragile	 sites	
(CFS),	which	are	particularly	susceptible	to	DNA	breakage.	Even	under	conditions	of	mild	
replication	 stress	 that	 do	 not	 trigger	 cell	 cycle	 arrest,	 these	 regions	 exhibit	 DNA	 strand	
breaks	(Durkin	&	Glover,	2007).	They	are	considered	difficult	to	replicate,	possibly	due	to	
their	AT	rich	nature	allowing	for	the	formation	of	DNA	secondary	structures	(Mishmar	et	
al,	1998)	and	interference	of	the	transcription	machinery	(Helmrich	et	al,	2013).	However,	
it	is	thought	that	the	scarcity	of	active	replication	origins	in	these	regions	is	the	most	likely	
cause	of	their	fragility.	This	would	force	forks	to	have	to	travel	long	distances	to	complete	
replication	 and	 there	would	 be	 no	dormant	 origins	 present	 to	 rescue	 a	 stalled	 fork	 (Le	
Tallec	et	al,	2011;	Zeman	&	Cimprich,	2014).	In	premalignant	lesions,	chromosomal	breaks	
preferentially	 occur	 at	 CFS	 in	 the	 absence	 of	 gross	 CIN,	 suggesting	 that	 it	 is	 replication	
stress	that	is	causing	the	DSB	to	occur	in	this	early	stage	of	cancer	development	(Gorgoulis	
et	 al,	 2005).	 It	 has	 also	 been	 confirmed	 that	 replication	 stress	 is	 present	 in	 these	
premalignant	 lesions	 through	 the	 study	 of	 replication	 fork	 stalling	 within	 these	 cells	
(Bartkova	 et	 al,	 2006).	 It	 is	 hypothesised	 that	 the	 HR	 machinery	 may	 become	
overwhelmed	by	the	DSB	resulting	from	oncogene-induced	replication	stress,	preventing	
their	 error-free	 repair	 (Gudjonsson	 et	 al,	 2012;	 Jones	 &	 Jallepalli,	 2012).	 Indeed,	 it	 has	
been	demonstrated	that	the	error	prone	repair	of	DSBs	by	NHEJ,	MMEJ	and	BIR	can	result	
in	 CIN,	 supporting	 the	 role	 that	 replication	 stress	 plays	 in	 the	 induction	 of	 genomic	
instability	(Costantino	et	al,	2014;	Lee	et	al,	2007b).		

During	 the	progression	of	cancer	 from	a	premalignant	 lesion	to	a	malignant	 tumour,	 the	
genomes	of	 cancer	 cells	 become	more	unstable	 (Gorgoulis	 et	 al,	 2005).	 In	premalignant	
cells,	the	DNA	damage	response	is	active	and	capable	of	inducing	the	cessation	of	cell	cycle	
progression	and	entry	into	senescence	or	apoptosis	(Bartkova	et	al,	2006;	Di	Micco	et	al,	
2006;	Gorgoulis	et	al,	2005;	Halazonetis	et	al,	2008).	The	activation	of	oncogenes	initiates	
increased	 levels	 of	 DNA	 replication	 resulting	 in	 replication	 stress	 and	 subsequent	
activation	 of	 the	 DNA	 damage	 response.	 This	 triggers	 entry	 into	 a	 state	 of	 oncogene-
induced	senescence	(OIS)	in	a	replication	dependent	manner	(Di	Micco	et	al,	2006).	In	the	
later	stages	of	cancer	progression,	DNA	damage	does	not	result	in	entry	into	senescence	or	
the	 induction	 of	 apoptosis	 (Gorgoulis	 et	 al,	 2005).	 It	 has	 been	 demonstrated	 that	
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mutations	in	Chk2	or	the	inhibition	of	ATM	signalling	both	suppress	the	induction	of	OIS	
resulting	 in	 more	 malignant	 forms	 of	 cancer	 (Bartkova	 et	 al,	 2006)	 and	 that	 p53	 loss	
results	in	the	failure	to	induce	apoptosis	(Gorgoulis	et	al,	2005).	It	was	therefore	proposed	
that	 the	 DNA	 damage	 response	 and	 cell	 cycle	 checkpoints	 act	 as	 an	 initial	 barrier	 to	
carcinogenesis	(Bartkova	et	al,	2006;	Gorgoulis	et	al,	2005;	Halazonetis	et	al,	2008).	Late	
stage	cells	display	instability	at	known	tumour	suppressor	loci	(Gorgoulis	et	al,	2005)	and	
p53	is	the	most	commonly	mutated	gene	in	human	cancers	(Negrini	et	al,	2010),	therefore,	
it	 is	 thought	 that	 the	 DNA	 damage	 response	 must	 be	 abrogated	 to	 overcome	 the	
tumorigenesis	barrier	and	allow	cancer	progression	(Halazonetis	et	al,	2008)	(Fig.	1.3.2.1).		

	

Figure	1.3.2.1	Oncogene	induced	
DNA	 damage	 model	 of	 cancer	
development.		
Oncogene	 activation	 results	 in	
hyper-proliferation	and	subsequent	
DNA	 replication	 stress.	 The	
impaired	replication	forks	collapse	
to	 form	 double	 strand	 breaks	
(DSBs)	which	 trigger	 activation	 of	
the	 DNA	 damage	 checkpoint	 and	
ensuing	 apoptosis	 or	 senescence	
which	 acts	 as	 a	 barrier	 to	
tumorigenesis.	 The	 genomic	
instability	that	can	result	 from	the	
error-prone	 repair	 of	 DSBs	 allows	
for	 the	 acquisition	 of	 mutations	
and	 those	 that	 inhibit	 checkpoint	
activation	will	be	selected	for.	Once	
the	 checkpoint	 has	 been	
inactivated,	 the	 cells	 can	 progress	
to	 the	 later	 stages	 of	 cancer	
development	 by	 accumulating	
further	mutations.	

The	error-prone	repair	of	DSBs	can	result	in	CIN	and	therefore	allow	for	the	acquisition	of	
the	mutations	 that	allow	 tumour	 cells	 to	 circumvent	OIS.	 It	 is	 believed	 that	 cancer	 cells	
only	display	mutated	checkpoint	and	DNA	damage	repair	genes	once	this	barrier	has	been	
bypassed	(Negrini	et	al,	2010).	Clonal	populations	arise	within	the	tumour,	each	with	its	
own	 mutational	 profile,	 resulting	 in	 a	 heterogeneous	 population	 of	 cells	 (Caswell	 &	
Swanton,	 2017).	 Alterations	 in	 the	 selective	 pressures	 acting	 on	 the	 tumours,	 such	 as	
chemotherapy	 treatment,	 can	 select	 for	 mutations	 that	 allow	 the	 tumour	 to	 survive	
(McGranahan	&	Swanton,	2015).	It	has	been	established	that	tumours	displaying	CIN	have	
increased	levels	of	drug	resistance	compared	to	CIN	negative	tumours	(Lee	et	al,	2011).		
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1.4	Targeting	Maintenance	Mechanisms	to	Treat	Cancer	

As	 cancer	 develops	 from	 a	 patient’s	 own	 cells,	 the	 only	 way	 that	 tumour	 cells	 can	 be	
differentiated	from	the	surrounding	normal	tissues	is	through	their	malignant	phenotype.	
Traditionally,	 cancer	 therapies	exploited	 the	ability	of	 the	majority	of	cancers	 to	rapidly	
proliferate,	 however,	 this	 approach	 has	 many	 limitations	 including	 the	 detrimental	
degradation	 of	 normal	 tissues.	 Therefore,	 a	 new	 paradigm	 in	 cancer	 therapy	 has	 been	
established	where	 efforts	 are	being	made	 to	develop	 treatments	 that	 target	 cancer	 cells	
more	specifically	at	a	molecular	level.		

1.4.1	Conventional	Therapy	

Historically,	cancer	treatment	strategies	have	been	limited	to	surgery	and	DNA	damaging	
agents,	including	radiotherapy	and	chemotherapeutics.	Whilst	surgery	can	be	successful	at	
locally	 controlling	 cancer	 within	 the	 patient,	 this	 treatment	 methodology	 has	 several	
limitations.	Its	efficacy	relies	on	removing	all	the	cancerous	cells	from	the	patient	and	as	it	
is	difficult	to	differentiate	between	cancerous	and	normal	tissues,	some	tumour	cells	can	
be	 left	 behind	 following	 the	 procedure.	 Surgery	 is	 not	 capable	 of	 treating	 metastatic	
disease	and	as	cancer	 is	a	systemic	disease	 the	efficacy	of	surgery	alone	has	been	called	
into	question	(Benjamin,	2014).	

The	efficacy	of	radiotherapy	is	due	to	the	ability	of	IR	to	induce	DNA	damage,	with	up	to	40	
DSBs	induced	per	gray	of	exposure,	as	well	as	a	multitude	of	SSBs	and	other	DNA	lesions	
(McGrath	&	Williams,	1966).	More	recently,	it	has	also	been	discovered	that	radiotherapy	
may	 stimulate	 the	 immune	 system	 to	 aid	 in	 the	 destruction	 of	 tumours	 (Gotwals	 et	 al,	
2017).	Although	advances	in	medical	imaging	and	techniques	for	delivering	radiotherapy	
have	increased	its	efficacy	and	reduced	the	damage	to	surrounding	normal	tissues,	as	with	
surgery,	 it	 is	only	capable	of	 local	control	of	cancer	and	 is	not	always	a	curative	regime	
(Baumann	et	al,	2016).		

As	cancer	became	better	understood,	and	 the	 important	role	metastasis	plays	 in	patient	
outcome	 became	 apparent,	 it	 was	 made	 clear	 that	 systemically	 acting	 agents	 were	
required	 for	 its	 the	effective	 treatment	(Chabner	&	Roberts,	2005).	As	a	consequence	of	
this,	 chemotherapeutic	 interventions	have	become	 the	 corner	 stone	of	 cancer	 treatment	
(Lord	 &	 Ashworth,	 2012).	 Since	 the	 1940s	 and	 the	 use	 of	 nitrogen	 mustard	 for	 the	
treatment	of	 lymphatic	 tumours	 (Gilman	&	Philips,	 1946),	 agents	 that	preferentially	 kill	
tumour	cells	have	been	used	to	treat	cancer.		

The	majority	of	 these	drugs	 interfere	with	 the	cells	ability	to	successfully	replicate	 their	
DNA	 and	 so	 can	 target	 cells	 that	 divide	 rapidly,	 such	 as	 tumour	 cells,	 whilst	 leaving	
terminally	differentiated	cells	 intact.	These	 include	several	classes	of	chemotherapeutics	
incorporating	 alkylating	 agents,	 crosslinking	 agents,	 topoisomerase	 inhibitors	 and	
antimetabolites.	Exogenous	DNA	alkylating	agents	are	currently	used	in	the	clinic	to	treat	
a	number	of	malignancies.	One	example	is	Temozolomide,	which	induces	the	formation	of	
O6-methylguanine	 and	 is	 presently	 used	 as	 part	 of	 the	 standard	 treatment	 regimen	 for	
glioblastoma	multiforme	(GBM).	ICLs	pose	a	major	threat	to	genome	stability	and	can	be	
induced	by	 several	 agents	 including	 the	 antibiotic	Mitomycin	C	 and	 the	platinum	based	
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compounds.	 The	 later	 class	 contains	 Cisplatin	 which	 is	 also	 capable	 of	 introducing	
intrastrand	 links	 (Dasari	 &	 Tchounwou,	 2014).	 Topoisomerases	 introduce	 transient	
strand	 breaks	which	 relax	 supercoiled	DNA	 to	 allow	 for	 the	 unimpeded	 progression	 of	
replication	 forks.	 When	 these	 enzymes	 are	 inhibited	 by	 agents	 such	 as	 Irinotecan	 and	
Etoposide,	the	DNA	strands	cannot	separate	or	the	induced	breaks	cannot	be	ligated	and	
persist,	 both	 of	which	 are	 highly	 toxic	 to	 cells	 (Strumberg	 et	 al,	 2000).	 Antimetabolites	
mimic	molecules	 that	are	 found	 intracellularly	 to	disrupt	cellular	metabolism	by	several	
mechanisms.	Gemcitabine,	a	deoxycytidine	analogue,	can	incorporate	into	DNA	triggering	
strand	 termination	 (Mini	 et	 al,	 2006;	 Plunkett	 et	 al,	 1995)	 and	 inhibit	 ribonucleotide	
reductase	 resulting	 in	 the	 depletion	 of	 the	 dNTP	 pool	 (Mini	 et	 al,	 2006).	 The	 uracil	
analogue	 5-Fluorouracil	 (5-FU)	 can	 also	 disrupt	 the	 composition	 of	 dNTP	 pools	 via	 the	
inhibition	 of	 thymidylate	 synthase.	 Furthermore,	 it	 can	 misincoporate	 into	 DNA	 which	
poses	a	threat	to	DNA	polymerase	progression	(Longley	et	al,	2003).		

Chemotherapeutics	 can	 also	 target	 other	 stages	 of	 the	 cell	 cycle	 to	 induce	 the	 killing	 of	
rapidly	proliferating	 cells.	 Spindle	poisons	 are	 able	 to	perturb	mitosis	by	disrupting	 the	
dynamics	 of	 microtubule	 formation	 and	 de-polymerisation	 both	 of	 which	 prevent	 the	
successful	completion	of	cell	division.	The	vinca	alkaloids	prevent	tubulin	polymerisation	
(Chabner	 &	 Roberts,	 2005)	 whilst	 the	 taxanes,	 including	 Paclitaxel,	 prevent	 the	
breakdown	of	microtubules	(Gligorov	&	Lotz,	2004).		

Whilst	chemotherapies	have	proved	effective	agents	for	targeting	rapidly	dividing	tumour	
cells,	there	are	a	number	of	drawbacks	associated	with	their	use.	High	proliferation	rates	
are	not	unique	to	tumour	cells,	they	are	also	displayed	by	some	normal	tissues	including	
the	 intestinal	 epithelium	 and	 hair	 follicle	 cells.	 As	 a	 result	 of	 this,	 one	 of	 their	 most	
considerable	 limitations	 is	 the	 adverse	 side	 effects	 resulting	 from	 the	 destruction	 of	
normal	 tissues.	 They	 can	 affect	 the	 nervous	 system	 resulting	 in	 peripheral	 neuropathy	
resulting	 in	 shooting	 pains,	 changes	 in	 sensory	 perception	 and	 weakness.	 The	
pathogenesis	of	this	condition	is	poorly	understood	despite	it	affecting	68%	of	patients	to	
some	 extent	 within	 their	 first	 month	 of	 treatment	 (Addington	 &	 Freimer,	 2016).	
Treatment	can	also	result	in	myelosuppression	(suppression	of	the	bone	marrow)	which	
is	 a	 major	 dose	 limiting	 side	 effect	 of	 certain	 chemotherapies,	 particularly	 alkylating	
agents,	as	they	can	result	in	neutropenia	(Wang	et	al,	2006).	Another	drawback	that	stems	
from	their	targeting	of	rapidly	dividing	cells	is	the	development	of	slowly-proliferating	or	
quiescent	 populations	 of	 cancer	 cells	 that	 are	 no	 longer	 sensitive	 to	 the	 initial	 drug	
(indolent	 cancer).	With	 the	 rapidly	 dividing	 cells	 removed,	 these	 populations	 face	 little	
competition	and	survive	within	the	patient	resulting	in	relapsed	disease	(Shah	&	Schwartz,	
2001).		

Chemotherapeutic	 treatment	 can	 result	 in	 the	 acquisition	 of	 molecular	 mechanisms	 of	
resistance.	Once	mechanism	which	cancer	cells	employ	is	to	increase	the	efflux	of	the	drug	
from	the	cell,	which	prevents	them	from	having	their	desired	effect.	They	can	achieve	this	
by	upregulating	their	cell	membrane	transporters,	such	as	multi-drug	resistance	protein	1	
(MDR1/P-glycoprotein),	an	ATP	binding	cassette	(ABC)	transporter	that	is	overexpressed	
in	a	number	of	cancers	and	can	be	upregulated	by	chemotherapeutic	treatment	(Thomas	&	
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Coley,	2003).	Alteration	of	cellular	metabolism	can	affect	how	drugs	are	processed	within	
the	 cell	 which	 can	 prevent	 their	 activation,	 as	 has	 been	 observed	 in	 uveal	 melanoma	
resistant	to	MMC	(Gravells	et	al,	2011).	Deregulation	of	apoptosis	through	p53	mutation	is	
likewise	 thought	 to	 contribute	 to	 drug	 resistance.	 The	 tumour	 microenvironment	 also	
plays	 a	 critical	 role	 in	 the	 response	 of	 tumour	 cells	 to	 cancer	 therapy	 as	 some	 animal	
models	 have	 shown	 differing	 responses	 to	 certain	 drugs	 when	 the	 tumour	 cells	 are	
injected	ectopically	or	in	metastatic	sites	(McMillin	et	al,	2013).	Additionally,	the	inherent	
DNA	 repair	 capacity	 of	 the	 cancer	 cells	 can	mitigate	 the	 effects	 of	 these	DNA	damaging	
therapies.	For	instance,	high	levels	of	MGMT	expression	in	malignant	astrocytomas	treated	
with	 the	 alkylating	 agent	 bis-chloroethylnitrosurea	 (BCNU)	 resulted	 in	 lower	 median	
survival	 than	 patients	 with	 low	 expression	 (Jaeckle	 et	 al,	 1998).	 TLS	 is	 another	 key	
damage	repair	pathway	that	can	confer	resistance	to	chemotherapies	as	they	can	bypass	
the	 lesions	 induced	as	demonstrated	by	Pol	h	which	 can	 replicate	 across	 the	 crosslinks	
produced	by	Cisplatin	treatment	(Alt	et	al,	2007).		

More	 recently,	 classical	 chemotherapies	 have	 been	 used	 to	 target	 genome	maintenance	
defects	 within	 tumour	 cells.	 DNA	 crosslinking	 agents,	 such	 as	 the	 platinum	 salts,	 have	
preferentially	 been	 used	 to	 treat	 cancers	 displaying	 defects	 in	 HR	 and	 NER,	 including	
familial	breast	cancers	(Turner	et	al,	2004)	and	ERCC1	negative	non-small	cell	lung	cancer	
(Lord	&	Ashworth,	2012).	Alkylating	agents	have	also	shown	promising	results	in	patients	
with	epigenetically	silenced	MGMT	(Weller	et	al,	2010).		

1.4.2	Molecular	Targeting	

The	latest	paradigm	in	cancer	drug	discovery	is	the	rational	design	of	compounds	that	will	
specifically	 target	 molecules	 implicated	 in	 the	 growth,	 development	 and	 survival	 of	
tumours.	 The	 selection	 of	 appropriate	 target	 molecules	 relies	 heavily	 on	 a	 detailed	
knowledge	 of	 the	 molecular	 changes	 that	 occur	 during	 cancer	 development	 and	 their	
prevalence	 in	 cancer	 patients.	 It	 is	 predicted	 that	 this	 new	 class	 of	 drugs	 should	
preferentially	 kill	 cancer	 cells,	 rather	 than	 normal	 tissues,	 as	 they	 target	 them	 more	
specifically	than	classic	chemotherapies	and	therefore	should	have	reduced	adverse	side	
effects	(Sawyers,	2004).		

One	approach	 to	 the	selection	of	cancer	specific	 targets	 is	 to	 identify	molecules	 that	are	
only	found	within	cancerous	cells.	These	include	the	oncogenic	fusion	genes,	which	were	
first	 discovered	 in	 haematological	 cancers	 and	 more	 recently	 in	 solid	 tumours.	 These	
genes	 are	 produced	 by	 the	 chromosomal	 rearrangements	 associated	 with	 CIN	 positive	
cancers.	 A	 prime	 example	 of	 these	 genes	 is	 the	 BCR-ABL1	 kinase,	 found	 in	 chronic	
myelogenous	 leukaemia	 (CML)	 patients	 (Ben-Neriah	 et	 al,	 1986)	 which	 regulates	
malignant	 transformation	 in	 this	 cancer	 (Deininger	 et	 al,	 2000).	 An	 inhibitor	 of	 this	
protein,	 Inmatinib,	has	been	developed	and	 it	proved	to	 induce	remission	 in	patients	so	
was	successfully	licensed	for	CML	treatment	(Druker	et	al,	2001).	Another	drug,	Crizotinib,	
an	inhibitor	of	the	ALK	tyrosine	kinase,	has	been	approved	for	the	treatment	of	non-small	
cell	lung	cancer	positive	for	ALK	rearrangements.	It	has	also	entered	clinical	trials	for	the	
treatment	 of	 this	 cancer	 with	 rearrangements	 of	 an	 additional	 tyrosine	 kinase	 ROS1	
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(Davies	&	Doebele,	2013).	However,	not	all	cancers	are	positive	for	fusion	genes	so	other	
methods	of	specifically	targeting	cancer	cells	have	been	developed.		

An	 alternative	 strategy	 is	 to	 identify	 molecules	 that	 are	 essential	 for	 the	 survival	 of	
transformed	cells	but	their	loss	can	be	tolerated	in	normal	tissues.	Many	cancers	become	
dependent	 upon	 the	 activation	 or	 overexpression	 of	 certain	 ‘driver’	 oncogenes	 for	 the	
preservation	 of	 their	 malignant	 phenotype	 and	 their	 survival.	 This	 phenomenon	 is	
referred	to	as	‘oncogene-addiction’	(Sharma	&	Settleman,	2007)	and	it	was	proposed	that	
the	inhibition	of	these	oncogenes	could	result	in	positive	therapeutic	outcomes.	This	was	
observed	 in	 MYC-driven	 osteogenic	 sarcoma	 mouse	 models,	 where	 MYC	 inactivation	
resulted	in	the	differentiation	of	the	tumour	cells	into	mature	bone	and	prolonged	tumour	
regression	(Jain	et	al,	2002).	 It	has	also	been	exploited	clinically	to	 treat	several	cancers	
with	 varying	 success.	As	mentioned	previously,	 inhibition	of	 the	BCR-ABL1	oncogene	 in	
CML	 results	 in	 tumour	 regression	 (Druker	 et	 al,	 2001)	 as	 the	 malignant	 phenotype	 is	
dependent	on	its	expression	(Deininger	et	al,	2000).	In	contrast,	when	the	HER2	inhibitor	
Herceptin	was	administered	to	breast	cancer	patients	with	overexpression	of	this	driver	
oncogene,	only	30%	of	patients	responded	to	 the	 therapy	(Valabrega	et	al,	2007).	 It	has	
subsequently	 been	 demonstrated	 that	 downregulation	 of	 PTEN	 conferred	 Herceptin	
resistance	 (Berns	 et	 al,	 2007)	 indicating	 that	 the	 inhibition	 of	 a	driver	 oncogene	 is	 not	
necessarily	a	successful	therapy	in	all	cases.		

Another	 promising	 approach	 is	 to	 identify	 synthetic	 lethal	 relationships	 within	 tumour	
cells.	 This	 concept	 states	 that	 if	 two	 genes	 are	 in	 a	 synthetic	 lethal	 relationship,	 the	
concurrent	 loss	 of	 both	 genes	 is	 not	 compatible	with	 cell	 viability,	 however,	 the	 loss	 of	
either	gene	alone	could	be	tolerated.	It	was	therefore	predicted	that	single	agent	therapies	
could	 be	 developed	 for	 targets	 that	 were	 in	 synthetic	 lethal	 relationships	 with	 cancer	
associated	mutations	(Kaelin	Jr,	2005).		

One	such	target	identified	by	this	method	is	PARP1	which	has	been	demonstrated	to	be	in	
a	synthetic	lethal	relationship	with	mutations	that	impair	HR.	Inhibition	of	this	enzyme	in	
cells	with	suboptimal	HR	due	to	BRCA1,	BRCA2,	XRCC2	or	XRCC3	mutations	was	cytotoxic	
(Bryant	et	al,	2005;	Farmer	et	al,	2005).	This	was	also	observed	in	cells	where	BRCA2	was	
disrupted	by	siRNA	transfection.	When	BRCA2	deficient	V-C8	and	VC-8	cells	that	had	been	
complemented	 with	 wild	 type	 BRCA2	 were	 treated	 with	 the	 same	 doses	 of	 PARP	
inhibitors,	the	deficient	cells	were	much	more	sensitive	suggesting	that	the	effects	of	PARP	
inhibition	are	specific	to	HR	deficient	cells	(Bryant	et	al,	2005).	As	mentioned	previously,	
this	enzyme	is	required	for	the	repair	of	SSBs	and	its	inhibition	results	in	their	persistence	
within	the	genome.	Replication	forks	stall	at	these	break	sites	and	potentially	result	in	the	
formation	of	DSBs.	In	HR-proficient	cells,	the	stalled	replication	forks	and	DSBs	would	be	
rescued	and	repaired	respectively	by	HR.	However,	in	the	absence	of	this	pathway,	these	
lesions	would	persist	or	be	repaired	by	error-prone	pathways	which	can	result	in	genomic	
instability	(Bryant	et	al,	2005;	Farmer	et	al,	2005).	This	work	lead	to	the	development	of	
the	 PARP	 inhibitor	 Olaparib	 which	 was	 approved	 in	 the	 UK	 in	 2015	 for	 treatment	 of	
ovarian	cancer	patients	with	BRCA1	and	BRCA2	mutations	(Cancer	Research	UK,	2015).			
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More	recently,	RNAi	screening	approaches	have	been	utilised	to	identify	genes	in	synthetic	
lethal	relationships	with	cancer-associated	mutations.	A	genome	wide	shRNA	screen	in	K-
RAS	mutant	cells	measured	the	levels	of	the	shRNAs	present	by	microarray	hybridisation	
to	identify	those	that	prevented	cell	proliferation.	This	was	also	carried	out	in	an	isogenic	
corrected	cell	line	and	comparison	of	the	two	data	sets	allowed	the	identification	of	genes	
with	apparent	synthetic	 lethality	with	K-RAS	overexpression.	This	demonstrated	 that	K-
RAS	 activated	 cells	 are	 sensitive	 to	 perturbations	 in,	 mitosis	 and	 particularly,	 the	
inhibition	of	Plk1	(Luo	et	al,	2009).	A	whole	genome	siRNA	screen	has	also	been	carried	
out	 in	 REV3	 deficient	 cancer	 cells	 to	 identify	 genes	 that	 decreased	 cell	 viability.	 It	
identified	RRM1,	 the	 large	 subunit	 of	 ribonucleotide	 reductase,	 an	 enzyme	 required	 for	
nucleotide	 synthesis,	which	 is	 also	 inhibited	 by	 hydroxyurea	 (HU).	 Treatment	with	 this	
drug	increased	the	levels	of	ssDNA	formed	in	REV3	deficient	cells	suggesting	a	role	for	this	
gene	in	the	replication	stress	response	(Kotov	et	al,	2014).	

It	 has	 been	 suggested	 that	 targeted	 therapies	 could	 be	 used	 to	 sensitise	 cells	 to	 DNA	
damaging	 agents	 rather	 than	 as	 single	 agent	 therapies.	 One	 potential	 benefit	 of	 this	
approach	 is	 that	 it	 may	 reduce	 the	 concentrations	 of	 these	 conventional	 therapies	
required	 for	 effective	 treatment,	 as	 they	 are	 commonly	 administered	 at	 their	maximum	
tolerated	dose.	This	may	reduce	some	of	their	adverse	side	effects	and	increase	the	quality	
of	 life	for	cancer	patients.	It	was	hypothesised	that	chemotherapies	could	be	paired	with	
inhibitors	 of	 the	 repair	 pathways	 that	 remove	 their	 cytotoxic	 lesions	 to	 prevent	 their	
resolution	 and	 reduce	 levels	 of	 resistance.	 This	 approach	 was	 trialled	 in	 GBM	 models	
where	 MGMT	 was	 inhibited	 by	 O6-benzylguanine	 to	 prevent	 the	 removal	 of	 O6-
methylguanine	 induced	 by	 Temozolomide	 treatment.	 Whilst	 this	 approach	 proved	
effective	in	pre-clinical	models	it	did	not	restore	Temozolomide	sensitivity	in	patients	that	
demonstrated	resistance	to	this	therapy	and	results	in	numerous	adverse	events	(Quinn	et	
al,	2009).	

As	well	as	being	used	as	a	single	agent	to	target	HR	deficient	cells,	PARP	inhibitors	have	
also	 been	 examined	 as	 agents	 that	 potentiate	 chemo-	 and	 radiotherapy.	 The	 loss	 of	 the	
MMR	 pathway	 results	 in	 resistance	 to	 several	 chemotherapeutic	 agents,	 most	 likely	
through	an	increased	tolerance	for	damaged	bases	within	the	DNA	(Liu	et	al,	1996).	One	
such	agent	is	Temozolomide,	the	tolerance	of	which	is	thought	to	be	accentuated	by	BER	
therefore	 the	 PARP	 inhibitor	 AG14361	was	 tested	 in	 combination	with	 Temozolomide.	
This	combination	enhanced	the	cytotoxicity	of	Temozolomide	in	MMR	proficient	cells	but	
the	 effect	was	more	 pronounced	 in	 cells	with	MMR	 deficiency.	 PARP	 inhibition	 did	 not	
sensitise	 MMR	 deficient	 cells	 to	 Cisplatin	 treatment	 (Curtin	 et	 al,	 2004),	 however,	
combination	of	Olaparib	and	Cisplatin	results	in	synergism	in	BRCA2	deficient	cells	(Evers	
et	 al,	 2008).	 Inhibition	 of	 PARP	 also	 slows	 the	 repair	 of	 damage	 induced	 by	 the	
topoisomerase	I	poison	Camptothecin,	as	PARP	is	required	for	the	removal	of	the	adducts	
induced	by	this	therapy	(Smith	et	al,	2005).	This	combination	has	been	shown	to	be	most	
effective	 in	 cells	with	 compromised	NER	due	 to	 loss	 of	XFP/ERCC1	as	 this	 represents	a	
compensatory	mechanism	 for	 the	 repair	 of	 Camptothecin	 induced	 damage	 (Zhang	 et	 al,	
2011).	The	 loss	of	PARP	has	also	been	 shown	 to	 radiosensitise	 actively	 replicating	 cells	
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(Banasik	 et	 al,	 1992)	most	 likely	 through	 the	 collision	of	 replication	 forks	with	 the	 SSB	
that	accumulate	following	PARP	inhibition	(Saleh-Gohari	et	al,	2005).		

NER	 plays	 a	 crucial	 role	 in	 removing	 bulky	 DNA	 adducts	 to	maintain	 genome	 stability,	
however,	 it	 also	 has	 a	 considerable	 affect	 upon	 the	 efficacy	 of	 certain	 DNA	 damaging	
therapeutics.	A	such,	efforts	have	been	made	to	identify	molecules	capable	of	modulating	
the	interaction	between	ERCC1	and	XPF	as	the	downregulation	of	these	proteins	sensitises	
cells	to	Cisplatin	treatment	(Arora	et	al,	2010).	The	molecule	F06/NERI02	was	identified	
in	 an	 in	 silico	 screen	 as	 an	 inhibitor	 of	 this	 interaction	 and	 has	 been	 demonstrated	 to	
sensitise	 cells	 to	both	Cisplatin	 and	MMC	treatment	 (Gavande	 et	al,	 2016).	 Inhibitors	of	
XPA,	the	protein	required	for	the	identification	of	the	adducts	have	also	been	identified	by	
in	 silico	 screens	 and	 several	 have	 been	 validated	 by	 DNA	 binding	 assays	 (Neher	 et	 al,	
2010).	 However,	 the	 use	 of	 these	 compounds	 as	 cancer	 therapies	 is	 currently	 still	 in	
question	as	they	have	not	been	studied	extensively	in	vivo	(Gavande	et	al,	2016).		

NHEJ	is	thought	to	account	for	up	to	85%	of	the	repair	of	DSBs	induced	by	radiotherapy	
(Shibata	 et	 al,	 2011).	 Inhibition	 of	 DNA-PKcs	 by	 the	 non-specific	 PIKK	 inhibitor	
Wortmaninn	and	 specific	DNA-PK	 inhibitors	 slows	 the	 repair	 of	DSBs	and	enhances	 the	
effects	 of	 IR	 and	 the	 topoisomerase	 II	 poison	 Etoposide	 (Curtin,	 2013).	 The	 specific	
inhibitor	NU7441	 increased	 the	 delay	 in	 tumour	 growth	 induced	 by	 Etoposide	 in	 colon	
cancer	 xenografts	 (Zhao	 et	al,	2006),	sensitised	B-cell	 chronic	 lymphocytic	 leukaemia	 to	
topoisomerase	 II	 poisons	 (Elliott	 et	 al,	 2011)	 and	 increased	 the	 sensitivity	 of	 several	
breast	cancer	cells	lines	to	both	ionising	radiation	and	Doxorubicin	(Ciszewski	et	al,	2014).	
Some	efforts	have	also	been	made	to	inhibit	NHEJ	by	disrupting	the	processing	of	the	DSB	
ends.	Inhibition	of	the	phosphatase	activity	of	polynucleotide	kinase	by	A12B4C3,	resulted	
in	the	radiosensitisation	of	both	breast	and	lung	cancer	cells,	although	this	inhibitor	lacks	
the	potency	for	clinical	assessment	(Freschauf	et	al,	2009).	Similarly,	 inhibitors	of	Ligase	
IV	 have	 been	 developed	 which	 result	 in	 the	 accrual	 of	 DSBs	 within	 the	 genome	 and	
subsequent	cytotoxicity	(Srivastava	et	al,	2012).		

Modulation	of	the	cell	cycle	checkpoints	by	targeted	therapies	could	also	sensitise	cancer	
cells	to	DNA	damaging	agents	as	they	would	not	be	able	to	halt	progression	to	allow	for	
the	damage	to	be	repaired.	Potentially,	this	could	result	in	increased	accumulation	of	DNA	
damage,	disruption	of	DNA	replication	and	failure	of	mitosis	all	of	which	can	result	in	cell	
killing.	ATM	is	mutated	in	AT	cells	which	are	characterised	by	genomic	instability	and	are	
highly	 sensitive	 to	 the	 effects	 of	 IR	 (Taylor	 et	 al,	 1975).	 This	 sparked	 interest	 in	 the	
potential	of	ATM	inhibitors	to	potentiate	radiotherapy	and	DSB	inducing	chemotherapies.	
One	of	the	earliest	inhibitors	studied	was	caffeine,	which	also	inhibits	ATR,	and	sensitises	
cells	 to	 a	 number	 of	 genotoxic	 agents	 but	 IR	 in	 particular	 (Sarkaria	 et	 al,	 1999).	 These	
effects	were	even	more	pronounced	in	p53	deficient	cells	suggesting	that	ATM	inhibitors	
may	specifically	target	cancerous	cells	(Powell	et	al,	1995).	The	first	potent	selective	ATM	
inhibitor	 KU55933	 prominently	 sensitised	 cells	 to	 both	 IR	 and	DSB	 inducing	 chemicals	
(Hickson	 et	 al,	 2004)	 which	 lead	 to	 the	 development	 of	 KU60019	 a	 more	 potent	
radiosensitiser	(Golding	et	al,	2009).	This	compound	was	shown	to	radiosensitise	glioma	
xenografts	 (Biddlestone-Thorpe	 et	 al,	 2013)	whilst	 having	 little	 effect	 on	 the	 viability	 of	
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terminally	 differentiated	 astrocytes	 (Golding	 et	 al,	 2012)	 and	 significantly	 increased	
survival	in	mouse	models	(Biddlestone-Thorpe	et	al,	2013).	Loss	of	ATM	function	has	also	
been	found	to	be	particularly	detrimental	in	cells	with	deficiency	of	the	FA	pathway.	ATM	
was	 found	 to	 be	 constitutively	 activated	 in	 FA	deficient	mice	 and	 a	double	 knockout	 of	
ATM	and	FANCG	was	found	to	be	inviable.	Pancreatic	cell	lines	lacking	FANCG	or	FANCC	
were	 found	 to	be	 sensitive	 to	ATM	 inhibition	when	 compared	 to	 isogenic	 corrected	 cell	
lines	again	suggesting	that	ATM	inhibitors	could	be	used	to	specifically	target	FA	deficient	
tumour	cells	(Kennedy	et	al,	2007).	However,	despite	this	evidence,	concerns	remain	that	
ATM	inhibitors	will	broadly	affect	all	cells	resulting	in	normal	tissue	toxicity.		

Conversely,	 p53	 can	 be	 activated	 to	 induce	 sensitivity	 of	 cancer	 cells	 to	 conventional	
therapies	or	 it	 can	be	 inhibited	 to	prevent	DNA	damage	 to	normal	 surrounding	 tissues.	
Reactivation	 of	 p53	 and	 induction	 of	 tumour	 cell	 apoptosis	 (RITA)	 binds	 to	 p53	which	
activates	 it	 and	 suppresses	 the	 growth	of	 tumours	by	 inducing	 apoptosis	 (Issaeva	 et	 al,	
2004).	 It	 achieves	 this	 by	 repressing	 the	 upregulation	 of	 anti-apoptotic	 factors	 and	 the	
downregulation	of	oncogenic	signalling	(Grinkevich	et	al,	2009).	Mutant	p53	reactivation	
and	 induction	 of	 rapid	 apoptosis	 (MIRA-1)	 restores	 the	 function	 of	 mutant	 p53	 and	
therefore	 may	 render	 resistant	 cancer	 cells	 susceptible	 to	 killing	 by	 DNA	 damaging	
therapies.	 It	 is	 capable	 of	 restoring	 p53’s	 DNA	 binding	 capacity	 and	 allowing	 for	 the	
transcription	of	its	target	genes	(Bykov	et	al,	2002;	Bykov	et	al,	2005).	Agents	that	inhibit	
p53,	 such	 as	 Pifithrin-a	 (PTN-a),	 have	 been	 utilised	 to	 protect	 normal	 cells	 form	 the	
adverse	 side	 effects	 associated	 with	 conventional	 cancer	 treatments.	 PTN-a	 has	 been	
demonstrated	 to	 protects	 cells	 and	 mice	 from	 genotoxic	 insults	 (Gudkov	 &	 Komarova,	
2005;	Komarov	et	al,	1999)	and	decrease	the	expression	of	p53	target	genes	(Culmsee	et	
al,	2001).		

The	 rational	 for	 the	 inhibition	 of	 the	 Intra-S	 and	 G2/M	 checkpoints	 is	 that	 a	 large	
proportion	of	cancer	cells	lack	functional	p53	signalling.	This	abolishes	the	functionality	of	
the	 G1/S	 checkpoint	 and	 so	 the	 cells	 rely	 on	 the	 remaining	 checkpoints	 to	 prevent	 the	
accumulation	 of	 inviable	 levels	 of	 DNA	 damage.	 Inhibition	 of	 these	 checkpoints	 should	
therefore	preferentially	kill	cells	lacking	an	active	G1/S	checkpoint	but	have	limited	effects	
on	normal	surrounding	tissues	(Blasina	et	al,	2008).	The	 inhibition	of	 these	checkpoints	
will	be	described	below	when	discussing	the	 targeting	of	the	replication	stress	response	
(1.4.2.1).		

As	mentioned	previously,	 spindle	poisons	have	been	classically	used	 to	 treat	cancers	by	
the	 induction	 of	 mitotic	 arrest	 and	 cell	 death.	 However,	 these	 agents	 lack	 specificity	
towards	cancer	cells	and	so	efforts	have	been	made	to	develop	more	specific	antimitotic	
agents.	Cancer	cells	frequently	display	amplified	levels	of	the	Aurora	kinases	(Malumbres	
&	de	Castro,	2014)	and	their	inhibition	has	been	demonstrated	to	be	detrimental	to	cancer	
cell	survival.	Several	Aurora	inhibitors	are	undergoing	clinical	trials	including	the	Aurora	
A	inhibitor,	Alisertib.	It	 induces	defects	in	the	formation	of	the	spindle	and	chromosome	
alignment	 resulting	 in	 the	 induction	 of	 apoptosis	 or	 mitotic	 slippage.	 It	 has	 proved	
effective	 in	 a	 broad	 range	 of	 both	 solid	 and	 haematological	 cancers,	 although	 the	
explanation	 for	 sensitivity	 remains	unclear	 (Niu	 et	 al,	 2015).	 Inhibitors	of	Plk1	 are	 also	
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under	 investigation	 for	 antitumor	 effects.	 This	protein	 is	 overexpressed	 in	 a	 number	 of	
cancers	and	its	inhibition	preferentially	results	in	the	elimination	of	cancerous	cells	which	
impedes	tumour	growth	in	mouse	models	(Guan	et	al,	2005).		

Like	conventional	chemotherapeutic	agents,	molecular	targeting	therapies	are	not	without	
their	limitations.	Cancer	cells	can	be	intrinsically	resistant	to	a	targeted	therapy	due	to	the	
levels	 of	 expression	 of	 certain	 damage	 repair	 pathways.	 An	 example	 of	 this	 is	 NHEJ	
defective	 ovarian	 cancers	which	 are	 innately	 resistant	 to	 the	 PARP	 inhibitor	 Rucaparib	
(McCormick	et	al,	2017).	Due	to	the	selective	pressures	induced	by	treatment,	cancer	cells	
can	 acquire	 resistance	 to	 these	 therapies	 by	 several	 mechanisms.	 They	 can	mutate	 the	
target	of	the	drug	to	prevent	its	binding	which	has	been	observed	in	non	small-cell	 lung	
cancers	treated	with	the	ATP	competitive	EGFR	inhibitor	Gefitinib.	Point	mutations	in	the	
receptor	prevented	the	binding	of	the	drug	but	did	not	affect	its	affinity	for	ATP	allowing	it	
to	 continue	 functioning	 (Kobayashi	 et	 al,	 2005).	 Cells	 can	 also	 reactivate	 pathways	
downstream	 of	 the	 drug’s	 target	 to	 maintain	 signalling	 in	 the	 presence	 of	 the	 drug	 as	
mutations	 in	 BRAF	 have	 been	 shown	 to	 confer	 resistance	 to	 EGFR	 inhibitors	 in	 lung	
cancers	(Ohashi	et	al,	2012).	Likewise,	cells	can	activate	pathways	 that	act	 in	parallel	 to	
those	affected	by	the	drug	to	maintain	signalling.	This	has	been	identified	in	non	small-cell	
lung	cancer	patients	who	have	developed	resistance	 to	EGFR	therapy	by	overexpressing	
MET	to	upregulate	PI3K	signalling	(Cappuzzo	et	al,	2009).	Finally,	where	therapies	rely	on	
intrinsic	mutations	 in	 the	 cancerous	 cells	 to	have	 their	 effect,	 further	mutation	of	 these	
genes	 can	 render	 the	 therapies	 ineffective.	 The	 prolonged	 use	 of	 the	 PARP	 inhibitor	
Olaparib	is	associated	with	the	development	of	resistance.	In	a	subset	of	BRCA2	negative	
tumours,	this	has	been	demonstrated	to	be	due	to	secondary	mutations	which	restore	the	
expression	of	BRCA2	and	so	mitigate	the	effects	of	the	drug	(Barber	et	al,	2013).		

1.4.2.1	Targeting	Replication	Stress	Response	

As	 discussed	 previously,	 premalignant	 lesions	 and	 tumour	 cells	 display	 higher	 than	
normal	 levels	 of	 replication	 stress	 due	 to	 the	 chronic	 activation	 of	 oncogenes.	 It	 has	
therefore	 been	 suggested	 that	 this	 differential	 in	 stress	 levels	 can	 be	 targeted	 to	
specifically	 kill	 cancerous	 cells.	 It	 is	 hypothesised	 that	 by	 further	 increasing	 replication	
stress	levels	by	modulating	the	response	to	this	phenomenon,	cancer	cells	would	be	forced	
over	a	threshold	of	stress	and	into	crisis.	Normal	cells,	with	their	lower	basal	stress	levels,	
would	 remain	 below	 this	 threshold	 and	 retain	 their	 viability.	 As	 the	 earlies	 stages	 of	
tumorigenesis	 display	 heightened	 replication	 stress,	 this	 approach	 may	 eliminate	
oncogene	 expressing	or	 tumour	 suppressor	deficient	 cells	 before	 they	 have	 a	 chance	 to	
develop	to	malignancy	and	so	may	be	able	to	prevent	the	development	of	tumours.		 	
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Figure	 1.4.2.1.1	 Targeting	 the	
Replication	Stress	Response.	
Cancerous	cells	contain	higher	levels	of	
replication	 stress	 then	 normal	 cells.	 It	
is	 thought	 that	 by	 inhibiting	 the	
replication	stress	response,	cancer	cells	
will	be	driven	over	a	threshold	level	of	
stress	 beyond	 which	 they	 cannot	
remain	 viable.	 In	 contrast	 the	 normal	
cells	 should	 remain	 below	 this	
threshold	and	survive.	

Several	 classes	of	 genes	have	 already	been	 classified	 as	 suppressors	of	 cellular	 levels	 of	
replication	 stress.	 These	 include	 the	 Intra-S	 checkpoint	 genes,	 primarily	 ATR,	Chk1	and	
Wee1,	which	modulate	the	cellular	response	to	impeded	DNA	replication.	Genes	involved	
in	 the	 synthesis	 and	 maintenance	 of	 dNTPs	 are	 also	 considered	 replication	 stress	
suppressors	as	a	lack	of	nucleotides	or	an	imbalance	in	the	nucleotide	pool	can	result	in	
the	stalling	of	replication	forks	(Bester	et	al,	2011).	The	ssDNA	binding	protein	RPA	is	also	
key	 player	 in	 the	 response	 to	 replication	 stress	 and	 a	 lack	 of	 this	 protein	 can	 result	 in	
genomic	instability	(Glanzer	et	al,	2014).	Certain	DNA	damage	repair	factors	also	suppress	
the	 build	 up	 of	 replication	 stress	 through	 the	 resolution	 of	 replication	 fork	 impeding	
lesions.	Factors	involved	in	RNA	processing	that	facilitate	efficient	gene	transcription	also	
prevent	the	accumulation	of	replication	stress.	When	these	genes	are	absent	the	likelihood	
of	 replication-transcription	 collisions	 increases	 which	 results	 in	 higher	 levels	 of	 stalled	
replication	 forks.	 These	 factors,	 alongside	 helicases,	 prevent	 the	 formation	 of	 DNA:RNA	
hybrids	 such	 as	 R-loops	 which	 impede	 replication	 fork	 progression	 and	 therefore	 are	
essential	 for	 the	 suppression	 of	 replication	 stress	 (Aguilera	 &	 Gomez-Gonzalez,	 2008;	
Zeman	&	Cimprich,	2014).		

As	discussed	previously,	inhibition	of	the	cell	cycle	checkpoints	by	targeted	therapies	has	
been	investigated	as	a	technique	to	potentiate	the	effects	of	conventional	cancer	therapies.	
Particular	 attention	 has	 been	 given	 to	 inhibitors	 that	 abrogate	 the	 Intra-S	 and	 G2/M	
checkpoint	as	loss	of	these	is	predicted	to	preferentially	eliminate	cells	lacking	p53.		

Inhibition	of	ATR	has	been	found	to	be	in	a	synthetic	lethal	relationship	with	the	activation	
of	 certain	 oncogenes	 or	 loss	 of	 tumour	 suppressors.	 As	 previously	 discussed,	 the	
activation	of	oncogenes	result	in	hyper-proliferation	and	the	induction	of	DNA	replication	
stress.	 ATR	 co-ordinates	 the	 cellular	 response	 to	 this	 phenomenon	 which	 cancer	 cells	
require	to	prevent	the	accumulation	of	 inviable	levels	of	DNA	damage.	Inhibition	of	ATR	
has	 been	 shown	 to	 be	 especially	 detrimental	 in	 cells	 lacking	 p53	 and	 that	 this	 is	 most	
likely	due	to	the	increased	rates	of	replication	seen	in	these	cells	(Kwok	et	al,	2016;	Murga	
et	al,	2009).	Overexpression	of	Cyclin	E	 in	mouse	 embryonic	 fibroblasts	 (MEFs)	 induces	
increased	levels	of	replication	stress,	which	is	further	exacerbated	by	the	inhibition	of	ATR	
but	not	 that	of	PI3K	or	mTOR.	These	effects	were	 aggravated	 further	by	 the	 loss	of	p53	
which	results	in	apoptosis	(Toledo	et	al,	2011).	Cell	death	is	induced	independently	of	p53	
in	cells	experiencing	replication	stress	(Myers	et	al,	2009;	Sidi	et	al,	2008),	so	its	loss	does	
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not	 prevent	 cancerous	 cells	 from	 entering	 apoptosis.	 The	 loss	 of	 functional	 ATR	 via	
hypomorphic	mutation	 has	 also	 been	 shown	 to	 increase	 genomic	 instability	 and	 induce	
cell	death	in	cells	expressing	oncogenic	RAS	mutants	(H-RASG12V	and	K-RASG12D)	(Gilad	et	
al,	 2010).	 The	 loss	 of	 ATR	 signalling	 is	 also	 potentiated	 by	 mutations	 in	 several	 DNA	
damage	 repair	 pathways.	 Defects	 in	HR	mediated	 repair	due	 to	 loss	 of	 ATM,	 BRCA2	 or	
XRCC3	and	BER	due	to	loss	of	XRCC1	resulted	in	increased	killing	by	the	ATR	inhibitor	VE-
821	when	 compared	 to	 isogenic	matched	 cells	with	 competent	DNA	 repair.	 Increases	 in	
DNA-PKcs	 expression	 also	 result	 in	 the	 induction	 of	 greater	 cell	 killing	 following	 ATR	
inhibition	 due	 to	 the	 amplified	 levels	 of	 replication	 stress	 observed	 within	 these	 cells	
(Middleton	et	al,	2015).	Two	ATR	inhibitors,	VX-970	(Vertex)	and	AZD6738	(AstraZeneca)	
are	 currently	 in	 clinical	 trials:	 VX-970	 in	 combination	 with	 a	 number	 of	 conventional	
chemotherapeutics,	 the	 PARP	 inhibitor	 Velaparib	 and	 radiotherapy	 whilst	 AZD6738	 is	
being	 trialled	 as	 a	 single	 agent	 as	 well	 as	 in	 combination	 with	 both	 conventional	
chemotherapy	and	radiotherapy	(Rundle	et	al,	2017).		

Chk1	 inhibition	 has	 been	 extensively	 studied	 to	 modulate	 the	 cells	 response	 to	 DNA	
replication	 stress.	 Knockdown	 of	 Chk1	 by	 siRNA	 was	 demonstrated	 to	 result	 in	 the	
abrogation	of	the	G2/M	checkpoint	and	increased	the	cytotoxicity	of	nucleoside	analogues	
and	topoisomerase	poisons	as	well	as	IR	(Carrassa	et	al,	2004;	Ganzinelli	et	al,	2008).	The	
first	 Chk1	 inhibitor,	 UCN01,	 was	 capable	 of	 abrogating	 G2/M	 arrest	 through	 targeting	
Chk1	 but	 also	 inhibited	 a	 number	 of	 other	 kinases.	 A	 range	 of	 more	 specific	 Chk1	
inhibitors	have	since	been	developed	that	vary	in	their	potency.	These	inhibitors	generally	
prevent	 cell	 cycle	 arrest	 and	 potentiate	 DNA	 damaging	 therapies,	 especially	 those	 that	
induce	DNA	replication	stress	(Chen	et	al,	2012).	Accumulated	evidence	suggest	that	Chk1	
inhibitors	 may	 be	 viable	 as	 single	 agents	 in	 cells	 overexpressing	 c-MYC.	 These	 cells	
overexpress	Chk1,	which	is	directly	induced	by	c-MYC,	and	inhibition	of	Chk1	resulted	in	
DNA	damage	accumulation	and	subsequent	apoptosis.	These	effects	were	not	observed	in	
cells	that	did	not	overexpress	this	oncogene	(Ferrao	et	al,	2012;	Höglund	et	al,	2011).	Chk1	
inhibitors	have	been	demonstrated	to	potentiate	the	effects	of	Gemcitabine	in	several	cell	
lines,	 including	pancreatic	 cells	 (Azorsa	 et	 al,	 2009;	Matthews	et	 al,	 2007;	Parsels	 et	 al,	
2009).	This	combination	using	the	Chk1	inhibitor	AZD7762	resulted	in	increased	g-H2AX	
foci	formation	whilst	either	treatment	alone	did	not,	suggesting	that	the	stalled	replication	
forks	resulting	from	Gemcitabine	treatment	collapsed	in	the	absence	of	Chk1	triggering	a	
DNA	 damage	 response	 (McNeely	 et	 al,	 2010).	 This	 inhibitor	 has	 also	 been	 shown	 to	
potentiate	 the	 effects	 of	 Irinotecan	 (Zabludoff	 et	 al,	 2008)	 and	 IR	 particularly	 in	 p53	
deficient	 cell	 lines	 (Mitchell	 et	 al,	 2010b).	 It	 has	 been	 demonstrated	 to	 potentiate	 the	
cytotoxic	effects	of	Olaparib	in	breast	cancer	and	pancreatic	cancer	cell	 lines	(Mitchell	et	
al,	2010a).	Similar	to	PARP	inhibitors,	cells	with	defective	NHEJ	appear	to	be	resistant	to	
the	effects	of	Chk1	inhibition.	However,	downregulation	of	HR	and	ICL	repair	appears	to	
sensitise	cells	to	inhibition	of	Chk1,	which	can	be	achieved	through	the	inhibition	of	mTOR	
(Massey	 et	 al,	 2016).	 Several	Chk1	 inhibitors	have	been	previously	 entered	 into	 clinical	
trials,	 including	 AZD7762,	 but	 many	 were	 halted	 due	 to	 dose	 limiting	 toxicities	
particularly	 of	 the	 haematological	 system	 (Chen	 et	 al,	 2012).	 Three	 Chk1	 inhibitors	 are	
currently	in	clinical	trials:	LY2606368/Prexasertib	(Eli	Lily),	MK8776	(Merck	and	Co.)	and	
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SRA737	(Sierra	Oncology	 Inc.).	All	 three	 are	being	 trialled	as	single	agents	as	well	as	 in	
combination	with	conventional	chemotherapies	(Rundle	et	al,	2017).		

An	 alternate	 strategy	 is	 to	 inhibit	 Wee1	whose	 knockdown	 prevents	 G2/M	 arrest	 in	 a	
similar	 fashion	 to	 the	 loss	 of	 Chk1,	 and	 sensitises	 cells	 to	 the	 effects	 of	 DNA	 damaging	
agents	(Wang	et	al,	2004b).	Its	inhibition	results	in	the	activation	of	CDK1	and	premature	
entry	 into	mitosis	 even	 before	 replication	 can	 be	 completed	 (Aarts	 et	 al,	 2012).	 It	 also	
increases	the	activity	of	CDK2	causing	an	increase	in	DNA	initiation	events	which	exhausts	
the	cellular	supply	of	nucleotides	and	results	 in	 fork	stalling	and	subsequent	collapse	 to	
DSBs	 (Beck	 et	 al,	 2012).	The	 first	 potent	and	 selective	Wee1	 inhibitor	MK-1775	 (Merck	
and	Co.)	has	been	shown	to	preferentially	sensitise	p53	deficient	cells	to	DNA	damaging	
agents	including	Gemcitabine,	5-FU,	Carboplatin	and	Cisplatin	(Hirai	et	al,	2010;	Hirai	et	al,	
2009;	Rajeshkumar	et	al,	2011).	It	has	been	clinically	evaluated	as	a	combination	therapy	
with	these	drugs	in	several	Phase	I	clinical	trials	which	have	produced	promising	results	
and	it	is	also	under	investigation	as	a	single	agent.	It	is	also	undergoing	two	Phase	II	trials	
evaluating	 its	use	 in	combination	with	Carboplatin	 in	p53	deficient	ovarian	and	cervical	
cancers	(Do	et	al,	2013).		

1.4.2.2	Identification	of	Novel	Replication	Stress	Response	Genes	as	Potential	Future	
Anti-cancer	Targets		

In	previous	studies,	RNAi	screening	approaches	have	been	utilised	to	identify	novel	factors	
involved	 in	 the	 maintenance	 of	 genome	 stability.	 Two	 genome	 wide	 screens	 identified	
genes	 whose	 knockdown	 resulted	 in	 increased	 DNA	 damage	 by	 monitoring	 levels	 of	
gH2AX	(Paulsen	et	al,	2009).	In	the	Paulsen	screen,	several	networks	were	identified	that	
regulated	genome	maintenance	including	cell	cycle	checkpoints,	DNA	repair	genes,	nuclear	
pores	 and	 mRNA	 processing.	 They	 also	 identified	 a	 role	 for	 Charcot-Marie-Tooth	
syndrome	genes	in	the	maintenance	of	the	genome.	Further	study	of	a	number	of	the	novel	
genome	maintenance	 factors	 identified	 in	 the	Collis	screen,	 including	Cep131	(Staples	et	
al,	 2012),	 CCDC13	 (Staples	 et	 al,	 2014),	 MRNIP/C5orf45	 (Staples	 et	 al,	 2016),	 EBLN1	
(Myers	et	al,	2016)	and	CDK18	(Barone	et	al,	2016),	have	revealed	roles	for	these	proteins	
in	maintenance	of	genome	stability.	An	additional	RNAi	screen	aimed	to	identify	genome	
maintenance	 factors	 by	monitoring	 the	 phosphorylation	 of	 the	 ATM	 substrate	 KAP1	 to	
indicate	the	activation	of	a	DNA	damage	response.	Hits	from	this	initial	screen	were	then	
validated	 by	 examining	 gH2AX	 foci	 formation.	 This	 screen	 identified	 SMARCAL1	 as	 a	
genome	 maintenance	 factor	 and	 subsequent	 work	 demonstrated	 that	 it	 acts	 at	 stalled	
replication	 forks	 to	prevent	 the	 formation	of	 replication	 stress	 associated	DNA	damage.	
Cells	lacking	this	protein	were	also	shown	to	display	 increased	 levels	of	phosphorylated	
RPA	 and	 sensitivity	 to	 the	 replication	 stress	 inducing	 agents	 HU,	 Aphidicolin	 and	
Camptothecin	(Bansbach	et	al,	2009).		

Several	 screening	 projects	 have	 also	 set	 out	 to	 directly	 identify	novel	 replication	 stress	
response	 genes.	A	HU	 sensitivity	 screen,	which	utilised	Dharmacon’s	druggable	 genome	
library,	 identified	 CDK9	as	 a	 replication	 stress	 response	 gene	 by	 assessing	 cell	 number	
following	gene	knockdown	(Yu	et	al,	2010).	Further	study	of	this	protein	revealed	that	its	
loss	 increased	 DNA	 damage	 signalling	 and	 prevented	 recovery	 from	 replication	 stress.	
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CDK9	in	complex	with	Cyclin	K	amasses	on	chromatin	following	replication	stress	where	it	
is	 thought	 to	prevent	 the	 formation	of	 excess	 ssDNA,	potentially	 through	 its	 interaction	
with	ATR.	A	similar	study	was	carried	out	to	identify	genes	whose	loss	sensitised	cells	to	
the	 effects	 of	 Gemcitabine	 using	 an	 RNAi	 library	 of	 nuclear	 genes	 and	 assessing	 cell	
viability	following	knockdown.	They	identified	NEK9,	whose	knockdown	resulted	in	DNA	
damage	accumulation,	RPA	foci	formation	and	impeded	the	activity	of	Chk1	in	response	to	
replication	 stress	 (Smith	 et	 al,	 2015).	 Kavanaugh	 et	 al.	carried	 out	 a	 screen	 to	 identify	
proteins	 whose	 loss	 impaired	 replication	 restart	 following	 the	 induction	 of	 replication	
stress.	Cells	were	stained	with	BrdU	to	assess	endogenous	 levels	of	DNA	replication	and	
subsequently	 treated	with	HU	 for	24	 hours.	 This	was	 then	 removed	 and	 the	 cells	were	
labelled	 with	 EdU	 to	 determine	 ongoing	 DNA	 replication	 and	 stained	 with	 gH2AX	
antibodies	 to	measure	 levels	of	DNA	damage.	Any	gene	whose	 loss	affected	endogenous	
replication	 stress	 levels,	 and	 therefore	 resulted	 in	 low	 BrdU	 incorporation,	 were	
discounted	 from	 this	 study.	 The	 ratio	 of	 gH2AX	 to	 EdU	 intensity	was	 calculated	 for	 the	
remaining	 genes	 to	 determine	 how	 they	 affected	 restart	 following	 HU	 treatment.	 Cells	
with	 impaired	 restart	 contained	 low	 levels	 of	 EdU	 and	 high	 levels	 of	 gH2AX	 and	were	
considered	 replication	 stress	 response	 genes.	 This	 included	 genes	 involved	 in	 DNA	
replication	 and	 repair,	 RNA	 transcription	 and	 processing	 and	 protein	 ubiquitination	
(Kavanaugh	et	al,	2015).		

1.4.2.3	Aims	and	Hypothesis	

As	genome	wide	RNAi	screens	have	been	demonstrated	to	be	a	successful	method	for	the	
detection	of	genome	maintenance	factors,	it	was	decided	to	develop	an	siRNA	screen	with	
the	 intention	 of	 identifying	 novel	 suppressors	 of	 replication	 stress.	Working	 under	 the	
hypothesis	that	as	yet	unidentified	regulators	of	replication	stress	exist	within	the	genome	
and	that	their	knockdown	would	increase	levels	of	RPA2	phosphorylation,	attempts	were	
made	 to	 optimise	 a	 high	 throughput	 immunofluorescence	 based	 screening	 assay.	 No	
screen	had	previously	been	developed	that	utilised	immunofluorescence	alone	and	solely	
quantified	 the	 endogenous	 levels	 of	 replication	 stress.	 However,	 when	 this	 proved	
unfeasible	the	assay	was	repurposed	as	a	smaller	scale	targeted	screen.	This	screen	aimed	
to	identifying	genes	whose	loss	increased	phosphorylation	of	RPA2	from	a	list	of	kinases	
that	 had	 been	 demonstrated	 to	 affect	 replication	 restart	 in	 the	 Kavanaugh	 screen.	 This	
approach	successfully	identified	hits	that	were	assessed	for	their	ability	to	sensitise	cells	
to	p53	deficiency,	oncogene	overexpression	and	replication	stress	inducing	therapies.		

During	 the	 optimisation	 of	 the	 replication	 stress	 suppressor	 screens,	 efforts	 were	 also	
made	to	characterise	the	prospective	replication	stress	regulating	gene	CCDC15.	This	gene	
had	 been	 identified	 as	 a	 prospective	 genome	 maintenance	 factor	 in	 the	 Collis	 gH2AX	
screen	and	bioinformatic	analysis	had	predicted	it	was	involved	in	the	repair	of	replication	
impeding	lesions.	 It	was	 therefore	hypothesised	 that	it	may	act	as	a	novel	suppressor	of	
replication	stress.	The	objective	of	this	investigation	was	to	characterise	the	phenotype	of	
CCDC15	deficient	cells	with	regards	 to	the	DNA	damage	and	replication	stress	response.	
Tagged	versions	of	 this	protein	were	also	generated	 to	assess	 its	subcellular	localisation	
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(YFP)	 and	 to	 assess	 potential	 interactions	 with	 DNA	 damage	 repair	 proteins	 by	
immunoprecipitation	and	mass	spectrometry	approaches.		
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2.1	Materials	

2.1.1	Standard	Equipment	and	Consumables	

Airstream	ESCO	Class	II	BSC	
Applied	Biosystems	3730	DNA	Analyser	
Applied	Biosystems	7900	Real-Time	PCR		
BD	FACSCalibur™	
BD	Plastipak™	10ml	Syringe		
Bio-Rad	mini-PROTEAN	Tetra	Cell	
Bio-Rad	S1000	Thermal	Cycler	
Biosphere®	Filter	Tips	0.1-10µl,	2-20µl,	2-100µl,	100-1000µl	
BioTek	Elx405	Select	CW	Plate	Washer	
Cellstar	®	Cell	Culture	Dishes	100x20mm	
Corning	50ml	Reagent	Reservoir	
Costar	24	Well	Tissue	Culture	Treated	Plates	
Costar	96	Well	Tissue	Culture	Treated	Plates		
CytoOne	Multiwell	Plate,	6	well	
Eppendorf	Centrifuge	5430	
Eppendorf	Centrifuge	5810	R	
Eppendorf	Centrifuge	S415	R	
Epson	Expression	1680	Pro	Scanner	
Fisher	Scientific	FB15-12	TopMix	
Fisher	Scientific	MH-214	Analytical	Balance	
Fisher	Scientific	SG-607	Analytical	Balance	
FisherBrand™	5ml,	10ml	and	25ml	Disposable	Serological	Pipettes	
Fisherbrand™	Electric	Pipet	Controller	

FisherBrand™	Midi	Plus	Horizontal	Gel	System	
FisherBrand™	Syringe	Filter	PES	0.2µm	sterile	
Fujifilm	Fuji	Medical	X-ray	Film	Super	RX	
GE	NanoVue	Plus	
Gilson	P10,	P20,	P200	Multichannel	Pipettes	
Gilson	P2,	P10,	P20,	P200	and	P1000	Pipettes	
Grant	JB	Aqua	18	Plus	
Ibidi	µ-Dish	53mm	High	
Konica	Mibolta	SRX101A	
Labnet	311DS	Shaking	Incubator		
Life	Technologies	Countess	II	
Microplate	384	well	PP	PCR	with	skirt,	Greiner	Bio-one	
Millex	Filter	Unit	33mm	
MJ	Research	PTC-200	Peltier	Thermal	Cycler	
Molecular	Devices	ImageXpress	Micro	High	Content	Microscope	
Nanodrop	ND	1000	Spectrophotometer	
Nikon	Eclipse	TE200	Inverted	Microscope	
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Olympus	IX81	Motorised	Microscope	
Perkin	Elmer	UltraView	VoX	Spinning	Disk	Confocal		
Perkin	Elmer	ViewPlate-384	Black,	Optically	Clear	Bottom,	Tissue	Culture	Treated	
PlateLoc	Velocity	11	
Sanyo	MCO-19AIC	(UV)	
Sarstedt	Cell	Scraper	25cm	
Sarstedt	P200,	P1000	Pipette	Tips	
SLS	15ml/50ml	polypropylene	tubes	
Star	Lab	8-strip	PCR	Tubes,	0.2ml	&	Caps	
StarSeal	Advanced	Polyolefin	Film	
Sterilin	Universal	Tubes		
Stuart®	Mini	Gyro-rocker	
Stuart®	Rotator	SB3	
Syngene	U:GENIUS	
Techne	Dri-Block®	DB-2D	
Thermo	Megafuge	40	
Thermo	Multidrop	384	
Thermo	Multiskan	FC	
Thermo	Nunc™	EasYFlask™	25cm2	Nunclon™	Delta	Surface	
Thermo	Nunc™	EasYFlask™	75cm2	Nunclon™	Delta	Surface	
Thermo	Scientific	Multidrop	Combi	
Thermo	Scientific	Nuclon™	Delta	Surface,	6	well	plate		
ThermoScientific	Sterilin	Single	Use	Plastic	Petri	Dishes	
UV	Transilluminator,	UVP	Incoporated	
UVP	CX-200	UV	Crosslinker	
VWR	13mm	Microscope	Cover	Glasses	
Walker	Safety	Cabinet	Class	II	MSC	(Model	TDA-2G)	
Welch	2515C-75	REV	A		
XCell	SureLock™	Mini-Cell	Electrophoresis	System	
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2.1.2	Reagents	

1,4-dithiothreitol	(DTT):	Sigma	DTT-RO 

1,4-Piperazinediethanesulfonic	acid	(PIPES):	Sigma,	P6757 

3X	FLAG®	Peptide:	Sigma,	F4799	

5-Flurouracil:	Sigma,	F6627	
AccuPrime™	DNA	Polymerase:	ThermoFisher,	12346068	
AccuPrime™	GC	Rich	DNA	Polymerase:	ThermoFisher,	12337016	
Acetic	Acid,	Glacial:	Fisher	Scientific,	A38-212	
Acetone:	Fisher	Scientific,	A18P-4	
Agar	Granulated:	Melford,	GM1002	
Agarose	Gel	Loading	Dye	6X:	Fisher	Scientific,	RO611	
Ampicillin:	Melford,	A0104	
ANTI-FLAG®	M2	Affinity	Gel:	Sigma,	A2220	
Benzonase	Nuclease:	Novagen,	70664-3	
BioRad	Protein	Assay	Dye	Reagent	Concentrate:	BioRad,	500-0006	
BioScript:	BioLine,	BIO-27036	
Blasticydin:	InvivoGen,	ant-bl-1	
Bovine	Serum	Albumin	(BSA):	Sigma,	A2153	
BrdU:	Sigma,	B5002	
Bromophenol	Blue:	Sigma,	B10126	
Calcium	Chloride:	Sigma	499609	
Cisplatin:	Sigma,	P4394	
CometAssay®	Kit	(25	x	2	well	slides):	Trevigen	4250-050-K	
DAPI:	Life	Technologies,	D1306	
DH5a™	Competent	Cells:	ThermoFisher,	18265017	
DharmaFECT	1:	GE	Healthcare,	�		T-2001-01	
Dimethyl	Sulfoxide	(DMSO):	Fisher	Chemical,	D/4120/PB08	
Dulbecco’s	Modified	Eagle	Medium	(DMEM):	Lonza,	BE12-604F	
Edetic	Acid	(EDTA):	Sigma,	1233508	
Ethanol:	Fisher	Scientific,	AC615090010	
Ethidium	Bromide:	Sigma,	160359	
Fetal	Calf	Serum:		Lonza,	BE12-60F4	
G418:	Sigma,	G8168-10ML	
Gateway®	BP	Clonase®	II	Enzyme	Mix:	ThermoFisher.	11789020	
Gateway®	LR	Clonase®	II	Enzyme	Mix:	ThermoFisher.	11791043	
Gemcitabine	Hydrochloride:	Sigma,	G6423	
Glycerol:	Sigma,	G5516	
Hi-Res,	Low	Melt	AGAROSE:	GeneFlow,	AG	LM2-100gm	
High-Capacity	RNA-to-cDNA™	Kit:	ThermoFisher,	4387406	
Hoechst	33342	Trihydrochloride,	Trihydrate:	Life	Technologies,	H3570	
Hydrochloric	Acid	(HCl)	37%:	Fisher	Sceintific	A144-500LB	
Hydroxyurea	(HU):	Sigma,	H8627	
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Hyperladder	1:	SLS,	BIO-33053	
Hyrgromycin:	Sigma,	10843555001	
Immu-Mount:	Thermo	Scientific,	99-904-02	
Isopropanol:	Fisher	Scientific,	A416-4	
Kanamycin:	Melford,	K0126	
KOD	Hot	Start	DNA	Polymerase:	Sigma,	71086-3	
KU55933:	Generon,	SK-KU55933	
LB	Agar:	Melford,	GL1706	
LB	Broth:	Miller	Large	Granules:	Fisher,	1289-1650	
Lipo	2000:	ThermoFisher,11668019	
Lipofectamine	RNAiMAX	Transfection	Reagent:	Life	Technologies,	13778030	
Magnesium	Chloride:	Sigma,	M8266	
Marvel	Milk	Powder	
Methanol:	Fisher	Scientific,	A452SK-4	
Methylene	Blue:	Sigma	Aldrich,	M9140	
Mitomycin	C	(MMC):	Sigma,	M0503	
MTT	(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium	bromide):	Sigma,	M2128	
NuPAGE®	LDS	Sample	Buffer	(4X):	ThermoFisher,	NP007	
NuPAGE®	MOPS	SDS	Running	Buffer	(20X):	ThermoFisher,	NP001	
NuPAGE®	Transfer	Buffer	(20X):	ThermoFisher	NP0006	
NuPAGE™	4-12%	Bis-Tris	Protein	Gels,	1.5mm,	10	well:	ThermoFisher,	NP0335BOX	
NuPAGE™	4-12%	Bis-Tris	Protein	Gels,	1.5mm,	15	well:	ThermoFisher,	NP0336BOX	
Olaparib:	Generon,	A10111	
Oxoid	PBS	tablet:	Thermo	Scientific,	Cat.	No.	BR0014	
Paraformaldehyde	(PFA)	solution	4%	in	PBS:	Sanat	Cruz,	SC-281692	
PerfectPure	RNA	Cultured	Cell	Kit:	5	Prime,	2302340	
Phosphatase	Inhibitor:	Sigma,	P5726	
PIB:	Sigma,	P2714	
Pierce	ECL	Western	Blotting	Substrate:	Thermo	Scientific,	32106	
Pifithrin-a	(PFT-a)	HBr:	Tocris,	1267	
Platinum™	Hot	Start	PCR	Mastermix	(2X):	ThermoFisher,	13000012	
Potassium	Chloride:	Sigma,	P9333	
Propidium	Iodide:	Sigma,	P4170	
Protran	Nitrocellulose	Membrane:	VWR,	732-4016	
Puromycin:	Fisher,	VXA1113803	
QAIshredder	(50):	Qiagen,	79654	
Qiagen	Oligotex	Direct	mRNA	Mini	Kit:	Qiagen,	72022	
Qiagen	Rneasy	Mini	Kit:	Qiagen	74104	
QIAprep	Spin	Miniprep	Kit:	Qiagen,	27104	
QIAquick	Gel	Extraction	Kit	(50):	Qiagen,	28704	
QIAquick	PCR	Purification	Kit:	Qiagen,	28104,	
RNaseA:	Sigma,	R6513	
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Roscovitine:	Generon,	1950-5	
RPMI	1640	with	L-Glutamine:	Lonza,	BE12-702F	
RT2	First	Strand	Kit:	Qiagen,	330401	
SeeBluePlus2	Prestained	Standard:	ThermoFisher,	LC5925	
Sodium	Chloride:	Sigma,	S7653	
Sodium	Citrate:	Sigma,	1613859	
Sodium	Dodecyl	Sulphate	(SDS):	Sigma,	L3771-500G	
Sodium	Hydroxide	(NaOH)	Pellets:	Sigma,	1.06462	EMD	
Sucrose:	Sigma,	S7903	
SYBR®	 Gold	 Nucleic	 Acid	 Gel	 Stain	 (10,000X	 Concentrate	 in	 DMSO):	 ThermoFisher,	
S11494	
TaqMan	Reverse	Transcription	Reagents:	Thermo	Scientific,	N8080234	
TaqMan	Universal	PCR	Master	Mix	No	AmpErase	UNG:	ThermoFisher,	4324018	
Tet	System	Approved	FBS:	Clontech,	631106	
Tetracyclin:	Sigma,	87128	
Tris	Base:	Sigma,	TRIS-RO	
Tris	Hydrochloride:	Sigma	10812846001	
Triton™	X-100:	Sigma,	X100	SIGMA-ALDRICH	
Trypsin	(0.5g/l	trypsin,	0.2g/l	versene	(EDTA)):	Lonza,	17-161E	
TWEEN®	20:	Sigma,	P1379	
Visualiser™	Western	Blot	Detection	Kit:	Fisher	Scientific,	10553414	
Zeocin:	Melford,	Z0186	
b-Mercaptoethanol:	Fisher,	M/P200/05	
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2.1.2.1	Cell	Lines		

Cell	Line	 Origin	 Supplier	 Split	Ratio	
Plating	Densities	
(cells/well)	

Transfection	
Time	(Hours)	

HCT116	 Colorectal	Carcinoma	 ATCC	
1:10	twice	
weekly	

200	000	(6well)	 48/72	

20	000	(24	well)	 48/72	

750*	(96	well)	 48	

1000*	(384	well)	 48/72	

HCT116	
p53	Null	

Colorectal	Carcinoma	
(Hygromycin	and	

Neomycin	Resistance	
genes	in	place	of	p53)	

Meuth	Lab	
1:10	twice	
weekly	

200	000	(6	well)	 48	

20	000	(24	well)	 48	

750*	(96	well)	 48	

HCT116	
H-RAS	

Colorectal	Carcinoma												
(H-RAS	in	pCAG-Flox)	

ATCC	
(plasmid	
from	Meuth	

lab)	

1:10	twice	
weekly	

750	(96	well)	 48	

200	000	(6	well)	 48	

HEK	293	
FLP	

Embryonic	Kidney															
(FRT	site)	

Thermo	
Fisher	

1:15	twice	
weekly	

3	000	000	(14cm	
dish)	

N/A	

1	500	000	(10cm	
dish)	

N/A	

350	000	(6	well)	 N/A	

HeLa	 Cervix	Epithelia	 ATCC	
1:10	twice	
weekly	

150	000	(6	well)	 48/72/96	

30	000	(24	well)	 48/72	

1000	(96	well)	 72	

HeLa	
EGFP-
RPA2	

Cervix	Epithelia	(C-
terminal	EGFP-RPA2)	

Boulton	Lab	
1:10	twice	
weekly	

30	000	(24	well)	 72	

HeLa	FLP	
Cervix	Epithelia	(FRT	

site)	

ATCC							
(FRT	site	
incoportaed	
in	Boulton	
Lab)	

1:10	twice	
weekly	

1	000	000	(10cm	
dish)	

N/A	

300	000	(6	well)	 N/A	

IMR-32	
Neuroblastoma	

Abdominal	Metastasis	
ATCC	

1:10	twice	
weekly	

200	000	(6	well)	 48	

1500	(96	well)	 48	

MRC-5	 Foetal	Lung	Fibroblast	 ATCC	
1:10	twice	
weekly	

150	000	(6	well)	 48	

1000	(96	well)	 48	
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MRC-5	H-
RAS	

Foetal	Lung	Fibroblast																				
(H-RAS	in	pCAG-Flox)	

ATCC	
(plasmid	
from	Meuth	

lab	

1:10	twice	
weekly	

150	000	(6	well)	 48	

1000	(96	well)	 48	

PC-3	
Prostate	

Adenocarcinoma	Bone	
Metastasis	

ATCC	
1:10	twice	
weekly	

150	000	(6	well)	 48/72/96	

30	000	(24	well)	 48/72	

500	(96	well)	 72	

RPE-1	
Retinal	Epithelial	

(hTERT)	
ATCC	

1:7	twice	
weekly	

50	000	(6	well)	 72	

15	000	(24	well)	 48/72	

500	(96	well)	 72	

RPE-1	
FUCCI	

Retinal	Epithelial	
(hTERT)	with	FUCCI	

system	
Medema	Lab	

1:7	twice	
weekly	

15	000	(24	well)	 72	

SH-EP1	
Neuroblastoma	Bone	
Marrow	Metastasis	

ATCC	
1:5	twice	
weekly	

400	000	(6	well)	 48	

3000	(96	well)	 48	

SH-
EPTet21N 

Neuroblastoma	Bone	
Marrow	Metastasis	(Tet-
repressible	MYC-N)	

Bryant	Lab	
1:5	twice	
weekly	

400	000*	(6	well)	 48	

1500*	(96	well)	 48	

SW480	
Colorectal	

Adenocarcinoma	
ATCC	

1:10	twice	
weekly	

300	000	(6	well)	 48	

U2OS	 Osteosarcoma	 ATCC	
1:7	twice	
weekly	

100	000	(6	well)	 48	

20	000	(24	well)	 48	

U2OS	
Cyclin	E	

Osteosarcoma	(Tet-
repressible	Cyclin	E)	

Petermann	
Lab	

1:10	twice	
weekly	

100	000	(6	well)	 48	

900*	(96	well)	 48	

Table	2.1.2.1.1	Mammalian	Cell	Lines.		
Asterisk	(*)	demonstrates	the	plating	density	unless	stated	otherwise	

The	HCT116	H-RAS	and	MRC-5	H-RAS	 cells	 required	 culturing	 in	1µg/ml	 Puromycin	 to	
ensure	the	cells	maintained	the	RAS	overexpression	phenotype	as	the	pCAG-FLOX	vector,	
a	kind	gift	from	Professor	M.	Meuth,	contains	a	Puromycin	resistance	gene.		

Before	transfection,	the	HeLa	FLP	and	HEK	293	FLP	cells	required	culturing	in	Blasticidin	
and	 Zeocin	 to	 prevent	 the	 reversion	 to	 a	wild	 type	 phenotype.	 Once	 the	 cells	 had	 been	
transfected	 with	 a	 FRT	 Destination	 vector	 (2.2.2.17),	 the	 cells	 required	 culturing	 in	
Blasticidin	 and	Hygromycin	 to	 select	 for	 the	 transfected	vectors	 (Table	2.1.2.1.2).	These	
vectors	required	the	cells	to	be	cultured	in	1µg/ml	Tetracycline	to	induce	expression.				
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Cell	Line	 Transfection	Status	
Blasticidin	
(µg/ml)	

Zeocin	
(µg/ml)	

Hygromycin	
(µg/ml)	

HeLa	FLP	
Pre-transfection	 4	 50	 NA	

Post-transfection	 4	 NA	 200	

HEK	293	FLP	
Pre-transfection	 15	 100	 NA	

Post-transfection	 15	 NA	 150	
Table	2.1.2.1.2	FLP	Cell	Line	Culture	Conditions.		
	

The	 Fluorescence	 Ubiquitination	 Cell	 Cycle	 Indicator	 (FUCCI)	 system	 allows	 the	 direct	
visualisation	of	the	stage	a	cell	is	in	within	the	cell	cycle	through	the	fluorescent	labelling	
of	the	DNA	replication	factor	Cdt1	and	the	DNA	replication	inhibitor	Geminin.	This	system	
was	 incorporated	 into	 RPE-1	 cells	 which	 were	 a	 kind	 gift	 from	 Professor	 R.	 Medema	
(Netherlands	Cancer	Institute)	(Slaats	et	al,	2014).	

The	 ShepTet21N	 cells	 overexpressed	MYC-N	 in	 a	 Tetracycline-repressible	manner.	 The	
cells	were	cultured	in	RPM1	1640	with	Tetracycline	free	foetal	calf	serum	(FCS)	to	induce	
MYC-N	overexpression.	The	 cells	were	passaged	48	hours	prior	 to	plating	 to	 create	 two	
populations,	a	MYC-N	overexpressing	population	and	a	MYC-N	normal	population,	where	
1µg/ml	Tetracycline	was	added	to	the	cells.	

The	U2OS	 cells	with	 Tetracycline-repressible	 Cyclin	 E	 overexpression,	 a	 gift	 from	Dr	 E.	
Petermann	(University	of	Birmingham),		required	culturing	in	1µg/ml	Puromycin,	2µg/ml	
Tetracycline	 and	 400µg/ml	 G418	 to	 prevent	 the	 loss	 of	 the	 Cyclin	 E	 overexpression	
phenotype.	The	cells	were	plated	in	DMEM	containing	10%	Tetracycline	free	FCS	to	induce	
Cyclin	E	overexpression.	Four	hours	after	plating,	2µg/ml	Tetracycline	was	added	to	half	
the	 cells	 to	 repress	 Cyclin	 E	 overexpression	 to	 allow	 comparison	 between	 the	 two	
conditions.	Cells	were	transfected	24	hours	after	plating.		
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2.1.2.2	siRNAs	

siRNA	 Source	 Sequence	

SMARTpool:	ON-
TARGETplus	ATR	siRNA	 Eurofins	

GAACAACACUGCUGGUUUGUU	
GGUCAGCUGUCUACUGUUAUU	
GCAACUCGCCUAACAGAUAUU	
ACUGAUGGCUGAUUAUUUAUU	

CCDC15	siRNA	1	 Eurofins	 UGCCAGAAGCCCAGGAU	
CCDC15	siRNA	2	 Eurofins	 GAUAAGAAAGAGCGUCA	
CCDC15	siRNA	3	 Eurofins	 CCGAAAGAAACCUCGAA	
CCDC15	siRNA	4	 Eurofins	 GAAACAAGUUAAAUACC	

ON-TARGETplus	Non-
targeting	Pool	

Dharmacon,	D-
001810-10	 	

ON-TARGETplus	Non-
targeting	siRNA	#1	

Dharmacon,	D-
001810-01	 UGGUUACAUGUCGACUAA	

ON-TARGETplus	Non-
targeting	siRNA	#2	

Dharmacon,	D-
001810-02	 	

ON-TARGETplus	Non-
targeting	siRNA	#3	

Dharmacon,	D-
001810-03	 	

ON-TARGETplus	Non-
targeting	siRNA	#4	

Dharmacon,	D-
001810-04	 	

PMVK	siRNA	1	 Eurofins	 CCAUCUGGCUGGUGAGUGA	
PMVK	siRNA	2	 Eurofins	 GGUGGACGAUGCUGAGUCA	
PMVK	siRNA	3	 Eurofins	 GCAGACGGUCCGCGUUGUA	
PMVK	siRNA	4	 Eurofins	 GGAAGGACAUGAUCCGCUG	

SMARTpool:	ON-
TARGETplus	CCDC15	

siRNA	

Dharmacon,	L-
014545-02	

UGCCAGAAGCCCAGGAU	
GAUAAGAAAGAGCGUCA	
CCGAAAGAAACCUCGAA	
GAAACAAGUUAAAUACC	

SMARTpool:	ON-
TARGETplus	CHEK1	

siRNA	

Dharmacon,	L-
003255-00	

CCAGAUGUGUGGUACUUUA	
GAGAAGGCAAUAUCCAAUA	
CCACAUGUCCUGAUCAUAU	
GAAGUUGGGCUAUCAAUGG	

SMARTpool:	ON-
TARGETplus	RPA2	siRNA	

Dharmacon,	L-
017058-01	

AACAUGAAGUUCUGCGGUA	
UGGAACAGUGGAUUCGAAA	
GAGCAGGACCAGGGCGUUA	
GGAAGUAGGUUUCAUCUAU	

SMARTpool:	ON-
TARGETplus	RRM1	siRNA	

Dharmacon,	L-
004270-00	

UAUGAGGGCUCUCCAGUUA		
	UGAGAGAGGUGCUUUCAUU		
UGGAAGACCUCUAUAACUA			
CUACUAAGCACCCUGACUA	

SNRK	siRNA	1	 Eurofins	 GCUACAAAGUAUAACAUUC	
SNRK	siRNA	2	 Eurofins	 GGGAGCACCAAGUACAUUA	
SNRK	siRNA	3	 Eurofins	 GAAGUGAGAUGCAUGAAAC	
SNRK	siRNA	4	 Eurofins	 GCUCAGAUAGUUCAUGCUA	

Table	2.1.2.2.1	siRNA	for	Mammalian	Cell	Line	Transfection.	 
The	siRNAs	included	in	the	Targeted	Screen	are	listed	in	Appendix	1.		
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2.1.2.3	Primary	Antibodies	

Antibody	 Species	 Source	 Dilution	

53BP1	 Rabbit	 AbCam	(ab368823)	 1:1000	
Chk1		 Mouse	 Sigma	(C9358)	 1:2000	
Chk2		 Rabbit	 Cell	Signalling	(2662S)	 1:1000	
Cyclin	E	 Mouse	 Santa	Cruz	(sc-247)	 1:1000	
FANCD2		 Mouse	 AbCam	(ab12450)	 1:250,		
FANCD2		 Rabbit	 AbCam	(ab2187)	 1:250	(IF),1:1000	(Western)	
FLAG	M2	 Mouse		 Sigma	(F3165)	 1:1000	
GFP	 Rabbit	 AbCam	(ab290)	 1:1000	(IF	and	Western)	
MYC-N	 Mouse	 Santa	Cruz	(sc-53993)	 1:250	
p53	 Rabbit	 Cell	Signalling	(9289)	 1:1000	

pChk1	(Serine	317)		 Rabbit	 Cell	Signalling	(2344S)	 1:1000	
pChk2	(Threonine	68)		 Rabbit	 Cell	Signalling	(2197S)	 1:1000	
pRPA2	(Serine	33)		 Rabbit	 Bethyl	(A300-246A)	 1:1000	
pRPA2	(Serine	4/8)		 Rabbit	 Bethyl	(A300-245A)	 1:250	

pRPA2	(Threonine	21)		 Rabbit	 AbCam	(ab61065)	 1:250	(IF)*,	1:1000	(Western)	

RAD51		 Rabbit	 Santa	Cruz	(sc-8349)	 1:500		
RPA2		 Mouse	 Calbiochem	(NA19L)	 1:1000	(IF),	1:2000	(Western)	
RRM1		 Rabbit	 Cell	Signalling	(3388S)	 1:1000	
TopBP1		 Rabbit	 AbCam	(ab2402)	 1:500*		

RAS	 Rabbit	 Cell	Signalling	(3339S)	 1:1000	
β-Actin		 Mouse	 AbCam	(ab8226)	 1:2000	
β-Tubulin		 Mouse	 AbCam	(ab7797)	 1:2000	

ϒ-H2AX	(S139)		 Mouse	 Millipore	(05-636)	 1:1000	
ϒ-H2AX	(S139)	 Rabbit	 Cell	Signalling	(25755)	 1:500	
Table	2.1.2.3.1	Primary	Antibodies	for	Immunofluorescence	and	Western	Blotting	
Asterisk	(*)	demonstrates	the	concentration	unless	stated	otherwise.	

2.1.2.4	Secondary	Antibodies	

Antibody	 Source	 Dilution	

Alexa	FluorÒ	488	goat	anti-rabbit	IgG		 Life	Technologies	(A-11034)	 1:1000	

Alexa	FluorÒ	488	goat	anti-mouse	IgG		 Life	Technologies	(A-11001)	 1:1000	

Alexa	FluorÒ	594	goat	anti-mouse	IgG	 Life	Technologies	(A-11032)	 1:1000	
Alexa	FluorÒ	594	goat	anti-rabbit	IgG	 Life	Technologies	(A-11012)	 1:1000	
Polyclonal	Goat	Anti-mouse	IgG/HRP		 Dako	(P0447)	 1:2000	
Polyclonal	Swine	Anti-rabbit	IgG/HRP	 Dako	(P0399)	 1:2000	

Table	2.1.2.4.1	Secondary	Antibodies	for	Immunofluorescence	and	Western	Blotting	
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2.1.2.5	Primers	and	Probes	

Primer	 Source	 Sequence	

CCDC15	Forward	 Sigma	 ATGCTGGGAAGTATGGCCCG	

CCDC15	Reverse	 Sigma	 TTATAGATTTTTCAAAGTCCG	

CCDC15	Gateway	
Forward	 Sigma	 GGGGACAAGTTTGTACAAAAAAGCAGGCT	

TGCTGGGAAGTATGGCCCGAAAGAAA	

CCDC15	Gateway	
Reverse	 Sigma	 GGGGACCACTTTGTACAAGAAAGCTGGGT	

TTATAGATTTTTCAAAGTCCGCCTGT	

CCDC15	Gateway	
Short	Forward	

Sigma	 GGGGACAAGTTTGTACAAAAAAGCAGGCT	
TGCTGGGAAGTATGGCCCG	

CCDC15	Gateway	
Short	Reverse	 Sigma	 GGGGACCACTTTGTACAAGAAAGCTGGGT	

TTATAGATTTTTCAAAGTC	

CCDC15	Gateway	
Long	Forward	 Sigma	 GGGGACAAGTTTGTACAAAAAAGCAGGCT	

TGCTGGGAAGTATGGCCCGAAAGAAACCTC	

CCDC15	Gateway	
Long	Reverse	 Sigma	 GGGGACCACTTTGTACAAGAAAGCTGGGT	

TTATAGATTTTTCAAAGTCCGCCTGTGTGC	

CCDC15	Seq	F1		 Sigma	 ACCTGCCTCACCAGGTAGTT	

CCDC15	Seq	R1		 Sigma	 AACTACCTGGTGAGGCAGGT	

CCDC15	Seq	F2	 Sigma	 CTCCATAGCC	ATGCAGTCTT	

CCDC15	Seq	F3		 Sigma	 ATCTCTTGTAACTGATGAGA	

CCDC15	Seq	F4		 Sigma	 CACAAATCAGGCTCTTCTAA	

CCDC15	Seq	F5	 Sigma	 ATTTTCTACCCAGAGACCAA	

CCDC15	Seq	F6	 Sigma	 CAAGCATATCAAACTACCCT	

CCDC15	Seq	F7	 Sigma	 CGAGCCCAAATCCAGGAGAA	

CMV	Seq	Forward	 Sigma	 CGCAAATGGGCGGTAGGCGTG	

YFP	Seq	Forward	 Sigma	 AGCTCGCCGACCACTACCAG	

M13	Seq	Forward	 Sigma	 TGTAAAACGACGGCCAGT	

Table	2.1.2.5.1	Primers	for	PCR	and	DNA	Sequencing		
Underlined	letters	in	Gateway	Primers	represent	the	attB	sites	required	for	Gateway	Cloning.	
	
The	Gateway	primers	were	designed	to	include	attB	sites,	so	following	PCR	amplification,	
these	sites	would	flank	the	CCDC15	coding	sequence.	As	the	aim	was	to	N-terminally	tag	
CCDC15,	 the	start	codon	had	 to	be	modified	(removal	of	 the	adenine)	 to	keep	 the	 tag	in	
frame	with	the	gene.	No	alterations	were	made	to	the	stop	codon.		
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Probe		 Source		

GAPDH	 ThermoFisher,	Hs02758991_g1		

18S	 ThermoFisher,	Hs3003631_g1	

CCDC15	 ThermoFischer,	Hs00228050_m1	

SNRK	 ThermoFIsher,	Hs00299395_m1	

PMVK	 ThermoFisher,	Hs01014319_m1	
Table	2.1.2.5.2	TaqMan	Probes	for	Quantitative	PCR	

2.1.2.6	Vectors	

CCDC15	pcDNA3.1+C-(K)-DYK	Vector,	GenScript	

pDONR™221,	LifeTechnologies,	(12536-017)	

pcDNA™5/FRT/TO	N-Terminal	FLAG,	modified	from	vector	by	Invitrogen	(V6520-20)	to	
include	an	N-terminal	FLAG	tag	and	be	gateway	cloning	compatible	(Boulton	lab)	

pcDNA™5/FRT/TO	N-Terminal	YFP,	modified	from	vector	by	Invitrogen	(V6520-20)	to	
include	an	N-terminal	YPF	tag	and	be	gateway	cloning	compatible	(Boulton	lab)	

pOG44	Flp-Recombinase	Expression	Vector,	Thermo	Fisher	V600520	

2.1.2.7	Software	

CometScore™	v	1.5,	TriTek	

FlowJo™,	LLC	

Image	J	1.48v,	National	Institutes	of	Health	

MetaXpress®,	Molecular	Devices	

Prism	7,	GraphPad	Software	Inc.		

SDS	2.4,	ThermoFisher	

Sequencher	4.7,	Gene	Codes	Corporation	

Volocity®	6.1.1,	PerkinElmer	

2.1.3	Standard	Solutions	

0.5%	Triton	X-100,	3%	BSA:	2.5ml	Triton	X-100	and	15g	BSA	dissolved	in	500ml	PBS	

0.75%	Triton	X-100,	3%	BSA:	3.75ml	Triton	X-100	and	15g	BSA	dissolved	in	500ml	PBS	

1%	Agarose	 Gel:	 1g	Agarose	 and	2µl	 Ethidium	Bromide	 in	100ml	1X	
TAE	
1%	SDS	(w/v):	5g	SDS	dissolved	in	500ml	ddH2O	
1%	Triton	X-100:	5ml	Triton	X-100	dissolved	in	500ml	ddH2O	
10X	TBS	pH	7.6	24.2g	Tris,	80g	NaCl	in	500ml	ddH2O	
1M	CaCl2:	55.49g	CaCl2	dissolved	in	500ml	ddH2O	
1M	Hydrochloric	Acid	(HCl):	8.3ml	37%	HCL	in	91.7ml	ddH2O	
1M	KCl:	37.28g	KCl	dissolved	in	500ml	ddH2O	
1M	MgCl2:	47.6g	MgCl2	dissolved	in	500ml	ddH2O	
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1M	PIPES	pH	6.8:	151.19g	PIPES	dissolved	in	500ml	ddH2O	
1M	Sucrose:	171.15g	Sucrose	dissolved	in	500ml	ddH2O	
1M	Tris-HCl	pH	7.5:	157.6g	Tris-HCl	dissolved	in	1	litre	ddH2O	
1mM	DTT:	154mg	dissolved	in	1l	ddH2O	
1mM	EDTA	pH	8:	292mg	dissolved	in	1l	ddH2O		
200mM	NaCl:	5.84	g	NaCl	dissolved	in	500ml	ddH2O	
3%	BSA	in	PBS:	15g	BSA	dissolved	in	500ml	PBS	
5%	Marvel	Milk:	10g	Marvel	milk	powder	dissolved	in	200ml	PBSt	
500mM	EDTA	pH	8:	146.12g	EDTA	dissolved	in	1	litre	ddH2O	

500µg/ml	Propidium	Iodide:	25mg	Propidium	Iodide	in	50ml	PBS	
50mM	 Tris	 Base	 pH	 8:	 6.06g	 Tris	 Base	dissolved	 in	 800ml	ddH2O,	 pH	adjusted	 to	8	with	
concentrated	HCL	–	solution	made	up	to	1l	with	ddH2O	
50X	TAE:	242g	Tris	Base,	57.1ml	Acetic	Acid,	100ml	500mM	EDTA	in	1	litre	ddH2O	
5M	NaCl:	146.1g	NaCl	dissolved	in	500ml	ddH2O	
70%	Ethanol:	700ml	Ethanol,	300ml	ddH2O	
Acetone	Blocking	Buffer:	1.5g	BSA,	88.2g	Sodium	Citrate,	pH	to	7	with	HCl	

Agar:	15g	Granulated	Agar,	25g	LB	in	1l	ddH2O	
Alkali	Unwinding	Solution:	0.8g	NaOH	pellets,	500µl	200mM	EDTA	(from	kit),	99.5ml	ddH2O		
Cold	Pre-extraction	Buffer:	500ml	200mM	NaCl,	300ml	1M	sucrose,	3ml	1M	MgCl2,	10ml	1M	
PIPES	pH	6.8,	5ml	Triton	X-100-100	
COMET	electrophoresis	 solution:	8g	NaOH	pellets,	1ml	500mM	EDTA	pH	8	dissolved	in	1l	
ddH2O	
IP	Wash	Buffer:	100µl	50mM	Tris	Base,	80µl	200mM	NaCl,	20µl	1%	Triton	X-100,	4µL	1mM	
EDTA,	200µl	PIB,	20µl	Phosphatase	inhibitor	dissolved	in	1.6ml	ddH2O	
KCM:	500ml	1M	KCL,	150ml	1M	CaCl2,	250ml	1M	MgCl2	dissolved	in	500ml	ddH2O	
LB	Broth:	25g	LB	in	1	litre	ddH2O	
Lysis	Buffer:	100µl	50mM	Tris	Base,	80µl	200mM	NaCl,	20µl	1%	Triton	X-100,	2µl	1mM	DDT,	
4µL	1mM	EDTA,	4µL	50U/µl	Benzonase,	200µl	PIB,	20µl	Phosphatase	inhibitor	dissolved	 in	
1.6ml	ddH2O		
Methylene	Blue	(0.4%):	2g	Methylene	Blue	dissolved	in	500ml	70%	methanol	
NuPage	MOPS	SDS	Running	Buffer:	50ml	NuPage	MOPS	SDS	Running	Buffer	(20X),	950ml	
ddH2O	
NuPage	 Transfer	 Buffer:	 50ml	 NuPage	 Transfer	 Buffer	 (20X),	 200ml	 Methanol,	 750ml	
ddH20	
PBS-Tween	20:	1ml	Tween	20	dissolved	in	500ml	PBS		
PBS2t:	1.25ml	Tween	20	and	2.5g	Bovine	Serum	Albumin	(BSA)	dissolved	in	500ml	PBS	
PBSt:	500µl	Tween	20	dissolved	in	500ml	PBS	
Phosphate	Buffered	Saline	(PBS):	1	Oxoid	PBS	tablet	(Cat.	No.	BR0014)	dissolved	in	100ml	
deionised	water	before	autoclave	sterilisation	
SYBR	Gold	Comet	Stain:	1µl	SYBR	Gold	(X	10	000)	in	30ml	TE	Buffer	
TE	Buffer:	10	ml	10mM	Tris-HCl	pH	7.5,	2ml	1mM	EDTA	dissolved	in	1	litre	ddH2O	
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2.2	Methods	

2.2.1	Mammalian	Cell	Biology	

2.2.1.1	Passaging	Cells	

All	mammalian	cell	lines	(Table	2.1.2.1.1)	were	cultured	in	T75	flasks	at	37°C	and	5%	CO2	
in	DMEM	supplemented	with	10%	FCS.	The	exceptions	were	IMR-32,	which	were	cultured	
in	a	50:50	mix	of	DMEM	and	RPMI	1640	with	10%	FCS,	and	ShepTet21N	cells,	which	were	
cultured	 in	 RPM1	 1640	 supplemented	 with	 10%	Tetracycline	 Free	 FCS.	 The	 cells	 were	
allowed	to	reach	80-90%	confluence	before	passaging.	The	flasks	were	rinsed	with	10ml	
PBS	before	 the	 addition	of	Trypsin	and	once	 the	 cells	 had	detached	 from	 the	 flask	 they	
were	re-suspended	in	fresh	10%	FCS	DMEM.	This	cell	suspension	was	pelleted	at	200	x	g	
for	3	minutes	and	the	pellet	was	re-suspended	in	fresh	10%	FCS	DMEM.	These	cells	were	
transferred	 to	 new	 flasks	 containing	 fresh	 10%	 FCS	DMEM	with	 a	 dilution	 as	 stated	 in	
Table	 2.1.2.1.1.	 Cells	were	mycoplasma	 tested	 on	 a	 bi-monthly	 basis	 to	 ensure	 that	 the	
cells	were	free	of	contamination.		

2.2.1.2	siRNA	Transfection	

Cells	were	transfected	with	siRNA	to	abolish	the	expression	of	a	gene	of	interest	through	
the	steric	hindrance	of	 the	mRNA.	Cells	were	seeded	at	densities	stated	previously,	with	
HCT116	 and	 HCT116	 p53	 Null	 cells	 being	 passaged	 with	 1:2	 dilution	 the	 day	 before	
plating.	Cells	were	forward	transfected	(cells	plated	and	then	transfected),	unless	specified	
otherwise,	 with	 non-targeting	 or	 gene	 targeting	 siRNAs	 with	 a	 final	 concentration	 of	
30nM.	Lipid	transfection	reagents	were	utilised	to	deliver	the	siRNA	to	the	cell’s	 interior	
with.	Primarily,	DharmaFECT	1	was	the	chosen	transfection	reagent,	with	the	exception	of	
the	 earliest	 Screening	 Development	 (Chapter	 3)	 assays	 where	 RNAiMAX	 was	 used,	 at	
concentrations	specified	in	Table	2.2.1.3.1.	Cells	were	transfected	for	48,	72	or	96	hours	as	
stated	in	Table	2.1.2.1.1.	

Reagent	 Plate	Type	 Concentration	(µl/well)	

RNAiMAX	 24	well	 0.5	

DharmaFECT	1	

6	well		 0.5	

24	well	 0.2	

96	well	 0.05	

384	well	 0.01*	
Table	2.2.1.3.1	Transfection	Reagent	Concentrations	in	Different	Assay	Formats.		
Asterisk	(*)	demonstrates	the	concentration	unless	stated	otherwise.	

In	 the	 Screen	 Development	 assays	 (Chapter	 3),	 the	media	 was	 replaced	 in	 the	 24	 well	
plates	or	supplemented	with	 fresh	DMEM	containing	10%	FCS	 in	 the	384	well	plates	24	
hours	post-transfection	to	reduce	the	toxicity	of	the	transfection	reagents.		

2.2.1.3	Chemotherapy	and	Small	Molecule	Drug	Treatments	

Where	 specified,	 cells	 were	 treated	 with	 the	 cytotoxic	 drugs	 HU,	 to	 induce	 replication	
stress,	or	MMC,	to	induce	DNA	interstrand	crosslinks.	Cells	were	treated	with	2mM	HU	or	
80ng/ml	MMC	 for	16	hours	before	 fixing	or	media	 removal.	Untreated	 cells	were	mock	
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treatment	 with	 the	 same	 volume	 of	 PBS	 or	 ddH2O	 respectively	 as	 the	 volume	 of	 drug	
administered.		

To	 prevent	 entry	 into	 S	 phase,	 cells	 were	 treated	 with	 10µg/ml	 Roscovitine,	 a	 small	
molecule	CDK	 inhibitor	 (CDK1,	CDK2	and	CDK5),	4	hours	prior	to	 fixing	to	prevent	DNA	
replication	(Collis	et	al,	2007).		

Where	 specified,	 cells	were	 treated	24	 hours	 after	 plating	with	 the	 small	molecule	 p53	
inhibitor	Pifithrin-a	(0	 -	30µM)	to	mimic	loss	of	p53	 function	(Li	et	al,	2015a).	The	cells	
were	then	transfected	5	hours	following	the	treatment.			

2.2.1.4	Immunofluorescence		

Immunofluorescent	 staining	 of	 fixed	 cells	 relies	 upon	 the	 specificity	 of	 antibodies;	 the	
primary	antibodies	bind	 to	 their	 individual	 antigens	whilst	 the	 fluorescently	 conjugated	
secondary	antibodies	detect	 the	species	of	 the	primary	antibody.	Transfected	cells	were	
grown	 in	24	well	 plates	 (with	 the	 exception	of	 SW480	 cells)	 on	13mm	glass	 coverslips,	
which	 were	 etched	 for	 the	 growth	 of	 PC-3	 cells	 to	 aid	 cell	 adherence.	 To	 do	 so,	 the	
coverslips	were	 rinsed	 in	distilled	water	 and	 then	 incubated	 for	30	minutes	 in	1M	HCL	
solution.	They	were	then	rinsed	again	with	distilled	water	before	incubating	overnight	in	
100%	 ethanol.	 Each	 coverslip	was	 then	 dried	 individually	 before	 baking	 for	4	 hours	 to	
sterilise.	

In	 the	24	well	Screen	Development	Assays	(Chapter	3),	 the	 coverslips	were	 fixed	 in	4%	
PFA	 for	 10	 minutes	 before	 incubation	 with	 0.5%	 Triton	 X-100,	 3%	 BSA	 in	 PBS	 for	 5	
minutes	 (unless	 otherwise	 stated).	 The	 primary	 and	 secondary	 antibodies	 (Tables	
2.1.2.3.1-2)	 were	 diluted	 in	 PBS2t	 and	 the	 coverslips	 were	 washed	 3	 times	 following	
fixation,	 extraction	 and	antibody	 incubation	with	PBS-Tween	20.	DNA	was	 stained	with	
1µM	DAPI	which	was	included	in	the	secondary	antibody	incubation.	The	coverslips	were	
mounted	on	glass	slides	using	Immu-Mount.	This	protocol	was	subsequently	adapted	for	
use	in	the	384	well	plate	screening	assays.	Cells	were	added	to	the	plates	using	a	Thermo	
Scientific	Multidrop	Combi,	and	the	plates	were	washed	as	previously	but	using	a	Thermo	
Multidrop	384	and	a	BioTek	Elx405	Select	CW	Plate	Washer	 rather	 than	manually.	The	
fixation	time	was	extended	to	20	minutes	due	to	the	automated	aspiration	protocol,	which	
left	 a	 10µl	 residue	 in	 each	well	 and	 so	 reagent	 concentrations	 needed	 to	 be	 increased.	
Various	extraction	and	DNA	staining	procedures	were	trialled	in	this	plate	type	as	stated	
in	Chapter	3.		

In	all	other	immunofluorescence	assays,	the	cells	were	pre-extracted	with	0.5%	Triton	X-
100,	3%	BSA	in	PBS	for	5	minutes	before	fixing	as	stated	previously.	The	exceptions	to	this	
were	 the	 HCT116	 based	 cells	 lines	which	 were	 extracted	 after	 fixing.	 The	 primary	 and	
secondary	antibodies	were	diluted	in	3%	BSA	in	PBS	and	the	coverslips	were	washed	with	
PBS	and	mounted	as	described	previously.	

The	mounted	coverslips	were	imaged	using	a	Nikon	Eclipse	TE2000	inverted	microscope	
with	a	100X	objective	and	the	Volocity	software.	For	each	condition,	at	least	100	cells	were	
imaged,	 the	 total	number	of	cells	were	counted	and	then	scored	 for	 the	number	of	cells	
with	positive	nuclei.	A	nucleus	was	considered	positive	if	it	contained	10	bright	foci	with	
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the	 exception	 of	 RAD51	 stained	 cells	 where	 the	 average	 number	 of	 foci	 per	 cell	 was	
calculated,	 or	 where	 stated	 otherwise.	 The	 images	 were	 processed	 in	 ImageJ	 and	 the	
scoring	 graphs	 were	 generated	 and	 Unpaired	 Student’s	 T-tests	 were	 carried	 out	 using	
GraphPad	Prism.		

The	 384	well	 plates	were	 imaged	 using	 the	Molecular	 Devices	 ImageXpress	Micro	High	
Content	 Microscope	 with	 a	 20X	 or	 40X	 objective	 as	 specified	 where	 6	 or	 9	 sites	 were	
captured	respectively.	The	images	were	generated	using	MetaXpress	and	false	coloured	in	
ImageJ.	A	MetaXpress	Custom	Module	that	identified	the	nuclei	within	each	image	and	the	
foci	present	in	the	nuclei	by	their	size	and	intensity	was	used	to	calculate	the	average	and	
total	 number	 of	 foci	 within	 each	 nucleus	 this	 was	 subsequently	 used	 to	 calculate	 the	
number	of	positive	nuclei	within	each	condition.		

2.2.1.5	MTT	Colorimetric	Assay	

Metabolising	 cells	 convert	 soluble	 MTT	 into	 insoluble	 formazan	 crystals	 which	 can	 be	
subsequently	dissolved	which	was	utilised	to	colorimetrically	assess	the	number	of	viable	
cells	 in	 an	 assay.	 Cells	 were	 seeded	 in	 96	 well	 plates	 and	 where	 necessary,	 p53	 was	
inhibited	and	Cyclin	E	overexpression	was	induced	before	the	cells	were	transfected.		

When	 investigating	 the	 effects	 of	 genotoxic	 drugs,	 cells	 were	 either	 mock	 treated	 or	
treated	 with	 MMC	 (0	 -	 80ng/ml),	 Cisplatin	 (0	 -	 10µM),	 Hydroxyurea	 (0	 -	 100µM),	
Gemcitabine	 Hydrochloride	 (0	 -	 20nM),	 5-Flurouracil	 (0µM	 -	 25µM),	 Olaparib	 (0µM	 -	
10µM)	or	KU55933	(0	 -	10µM)	following	 the	specified	 transfection	 time.	The	cells	were	
incubated	 with	 the	 drugs	 for	 5	 days.	 When	 investigating	 the	 effects	 of	 oncogene	 and	
tumour	suppressor	activity	on	cell	survival	following	gene	knockdown,	the	cells	were	left	
to	 grow	 for	 5	 days	 following	 transfection.	 The	 cells	 were	 then	 incubated	 with	MTT	 at	
3mg/ml	in	PBS	for	3	hours	at	37°C.	The	media	was	then	removed	from	the	plates	using	a	
Welch	 2515C-75	 REV	A	 aspirator	 and	200µl	 DMSO	was	 added	 per	well	 to	 dissolve	 the	
formazan	 crystals.	 The	 plate	 was	 then	 read	 at	 540nm	 on	 a	 Thermo	Multiskan	 FC.	 The	
optical	 density	 (OD)	 values	 were	 used	 to	 calculate	 the	 percentage	 survival	 of	 each	
population	of	cells	compared	to	the	Control	1	transfected	cells.	The	survival	graphs	were	
plotted	in	GraphPad	Prism	which	was	also	used	to	carry	out	two	way	ANOVA	analyses	and	
unpaired	 Student’s	 T-tests	 to	 determine	 if	 the	 differences	 between	 the	 conditions	were	
significant.		

2.2.1.6	Clonogenic	Survival	Assay	

Clonogenic	assays	measure	the	ability	of	cells	to	form	colonies	following	gene	knockdown	
and/or	drug	treatment.	This	allows	for	assessments	to	be	made	in	how	these	conditions	
affect	cellular	survival.	Cells	were	seeded	and	transfected	in	6	well	plates	for	the	specified	
transfection	time.	The	cells	were	then	trypsinised,	re-suspended	in	fresh	10%	FCS	DMEM	
and	counted	to	allow	plating	of	200	or	2000	cells	per	well	 in	NUNC	6	well	plates.	Where	
specified,	 the	 cells	were	 treated	with	MMC	(0	 -	 100nM)	or	 irradiated	with	UV	 light	 (0	 -	
6J/m2).	The	cells	were	allowed	to	grow	for	11	days	before	the	media	was	removed	and	the	
colonies	were	 stained	with	Methylene	 Blue	 (0.4%)	 for	30	minutes.	 The	Methylene	 Blue	
was	aspirated	and	any	excess	stain	was	removed	by	submersion	in	lukewarm	water.	The	
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colonies	were	 then	manually	 counted	and	 the	plating	 efficiency	was	 calculated	 for	 each	
siRNA	by	dividing	the	number	of	colonies	present	in	an	untreated	well	by	the	number	of	
cells	initially	plated.	The	surviving	fraction	of	cells	for	each	treatment	was	then	calculated	
by	 dividing	 the	 number	 of	 colonies	 present	 by	 the	 plating	 efficiency	 multiplied	 by	 the	
number	of	cells	initially	plated.		

In	 the	 case	 of	 RPE-1	 cells,	 clear	 colonies	 were	 not	 formed	 in	 6	 well	 plates	 and	 so	 an	
alternative	 analysis	 method	 had	 to	 be	 employed.	 Once	 the	 cells	 had	 been	 stained	with	
Methylene	Blue,	the	plates	were	photographed	(Fig.	2.2.1.7.1)	and	then	1ml	of	a	1%	SDS	
solution	was	added	per	well.	The	plates	were	agitated	for	1	hour	at	room	temperature	to	
allow	the	Methylene	Blue	to	dissolve	(Scragg	&	Ferreira,	1991).	This	was	then	re-plated	in	
a	96	well	plate	which	was	read	at	620nm	on	a	Thermo	Multiskan	FC.	The	OD	values	were	
used	 to	 calculate	 the	percentage	 survival	 of	 the	 cells	 in	 each	 condition	 compared	 to	 the	
untreated	cells.		

	

Figure	2.2.1.7.1	RPE-1	Clonogenic	Survival	Assay	Plates.	
Representative	Images	of	RPE-1	Clonogenic	Survival	Assay	plates.	RPE-1	cells	were	transfected	with	
Control	1,	CCDC15	1	and	CCDC15	3	(top	row	to	bottom	row),	replated	at	(A)	200	cells	or	(B)	2000	cells	
per	well	and	then	treated	with	6J/m2	UV.	The	cells	were	grown	for	11	days	and	then	stained	with	0.4%	
Methylene	Blue	to	allow	the	colonies	to	be	visualised.	

2.2.1.7.	Alkaline	Comet	Assay	

The	comet	assay,	or	single	cell	gel	electrophoresis,	 is	a	 technique	 that	directly	measures	
DNA	strand	breaks.	Single	cells	are	suspended	in	agarose	before	they	are	lysed,	their	DNA	
unwound	and	they	are	subjected	to	electrophoresis.	Any	broken	DNA	migrates	toward	the	
anode	 creating	a	 ‘comet	 tail’.	 Cells	were	 seeded	and	 transfected	 in	6	well	plates	 for	 the	
specified	 transfection	 time.	 The	 cells	 were	 then	 trypsinised,	 suspended	 in	 pre-warmed	
PBS	 and	 pelleted	 by	 centrifugation	 at	 200	 x	 g	 for	 3	 minutes.	 The	 cells	 were	 then	 re-
suspended	and	diluted	to	give	10000	cell/ml	solutions.	For	each	sample,	25µl	cells	were	
added	to	250µl	 low	melt	agarose	and	100µl	was	then	pipetted	in	duplicate	onto	a	2	well	
Comet	slide.	The	slides	were	set	for	30	minutes	at	4°C	before	they	were	covered	in	lysis	
solution	 overnight	 at	 4°C.	 This	was	 removed	 and	 the	 slides	were	 then	 incubated	 in	 the	
alkali	unwinding	solution	for	1	hour	at	4°C.	The	slides	were	then	electrophoresed	for	30	
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minutes	at	300mA	with	a	constant	voltage	of	21V.	The	slides	were	then	washed	twice	in	
ddH2O	and	70%	ethanol	before	drying	at	25°C.	

Each	circle	of	agarose	was	 incubated	with	100µl	SYBR	Gold	Comet	Stain	 for	30	minutes	
before	 the	excess	stain	was	removed	and	the	slides	were	allowed	to	dry.	The	cells	were	
imaged	within	48	hours	of	 staining	with	 the	20X	objective	of	 the	Nikon	Eclipse	TE2000	
inverted	microscope	and	100	cells	were	imaged	per	condition.	The	images	were	exported	
into	CometScore	 for	 analysis	 and	 the	Percentage	DNA	 in	 the	 tail	and	Tail	Moment	were	
plotted	for	each	condition.		

2.2.1.8	Propidium	Iodide	Flow	Cytometry	

Propidium	iodide	(PI)	is	a	fluorescent	dye	that	intercalates	into	the	DNA	of	fixed	cells.	It	is	
routinely	used	to	assess	cell’s	DNA	content	by	flow	cytometry	and	so	analyse	the	cell	cycle	
distribution	within	a	population	of	cells.	Cells	were	seeded	and	transfected	in	6	well	plates	
for	 the	specified	 transfection	 time.	The	media	 from	each	well	was	 then	placed	 in	a	15ml	
tube	which	was	used	 to	 collect	 the	 cells	 once	 they	had	been	 trypsinised.	The	 cells	were	
pelleted	at	200	x	g	 for	3	minutes	before	being	washed	twice	in	PBS	and	fixed	in	ice-cold	
70%	ethanol.	 The	 cells	were	 then	pelleted	 again	 and	washed	 twice	more	 in	PBS	before	
being	 incubated	 for	15	minutes	with	RNaseA	as	PI	 also	binds	RNA.	The	pellet	was	 then	
incubated	with	50µg/ml	PI	overnight	at	4°C.	The	samples	were	then	analysed	using	a	BD	
FACSCalibur	with	10000	cells	analysed	per	sample.	The	single	cells	were	gated	and	then	
the	resultant	histograms	were	used	to	calculate	the	percentage	of	cells	in	Sub	G1,	G1,	S	and	
G2-M	phases	of	the	cell	cycle	using	FlowJo.		

2.2.1.9	Cell	Synchronisation	

Cell	 synchronisation	 is	 commonly	 applied	 to	 generate	 a	 population	 of	 cells	 in	 the	 same	
phase	of	the	cell	cycle	to	allow	how	cells	progress	through	the	cell	cycle	to	be	studied.	The	
RPE-1	FUCCI	cells	were	plated	and	24	hours	post-plating,	the	cells	were	gently	washed	in	
PBS	and	the	serum	containing	media	was	replaced	with	that	lacking	serum	to	synchronise	
the	cell’s	cell	cycles.	The	cells	were	then	transfected	for	72	hours	with	CCDC15	siRNA.	The	
cells	 were	 released	 from	 serum	 starvation	 12	 hours	 prior	 to	 the	 completion	 of	 the	
designated	 transfection	 time.	They	were	 either	 fixed	 immediately	or	 allowed	 to	 resume	
their	cell	 cycles	and	 fixed	12,	16	or	24	hours	post-release.	The	number	of	green,	yellow	
and	 red	 cells	 were	 then	 manually	 counted	 using	 the	 Nikon	 Eclipse	 TE2000	 inverted	
microscope	to	and	the	proportion	of	cells	within	each	stage	of	the	cell	cycle	was	calculated.		

2.2.1.10	Micro-irradiation	Induced	Localisation	of	DNA	Damage		

Micro-irradiation	of	cells	with	 lasers	 in	combination	with	 live	cell	 imaging	can	allow	for	
the	 observation	 of	 rapid	 and	 dynamic	 recruitment	 of	 repair	 proteins	 to	 sites	 of	 DNA	
damage.	The	HeLa	FLP	cells	stably	incorporating	a	CCDC15	containing	pcDNA™5/FRT/TO	
N-Terminal	YFP	vector	were	plated	 in	35mm	glass	bottomed	dishes	and	24	hours	post-
plating,	 the	 cells	 were	 treated	 with	 1µg/ml	 Tetracycline	 to	 induce	 CCDC15-YFP	
expression.	Prior	to	imaging,	the	cells	were	pre-sensitised	with	10µM	BrdU	for	24	hours.	
The	live	cells	were	imaged	using	the	Perkin	Elmer	UltraView	Vox	Spinning	Disk	Confocal	
system	via	an	Olympus	IX81	Motorised	Microscope.	The	YFP	expressing	cells	were	imaged	
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using	a	40X	objective	before	being	irradiated	with	a	405nm	UVA	laser	for	1	second.	The	
cells	were	then	subsequently	imaged	at	30	second	intervals	for	a	total	of	10	minutes	using	
the	Volocity	software.	The	images	were	then	analysed	and	processed	in	ImageJ.	

2.2.2	Molecular	Biology		

2.2.2.1	Western	Blotting	

Western	blotting	 is	 used	 to	detect	 the	 abundance	 and	post	 translational	modification	of	
proteins.	BSA	was	diluted	in	ddH2O	to	produce	a	titration	ranging	from	0	-	0.1mg/ml	BSA.	
Each	 concentration	was	 added	 to	 a	 96	well	 plate	 in	 triplicate	 and	 200µl	 of	 the	 BioRad	
Protein	Assay	Dye	Reagent	Concentrate,	 diluted	1:5,	was	 added	per	well.	 The	plate	was	
read	on	Thermo	Multiskan	FC	plate	reader	at	570nm	and	the	OD	values	were	normalised	
to	the	0mg/ml	BSA	background.	These	values	were	then	used	to	generate	a	standard	curve	
with	 the	 equation	𝑦 = 4.8871𝑥 + 0.0285 ,	 where	 y	 is	 the	 absorbance	 and	 x	 is	 the	
concentration	of	protein	(Fig.	2.2.2.1.1).		

Figure	 2.2.2.1.1	 Standard	 Curve	
Generated	from	BSA	Titration.	
A	BSA	titration	(0	-	0.1mg/ml)	was	plated	
in	 triplicate	 and	 a	 1:5	 dilution	 of	 the	
BioRad	 Protein	 Assay	 Dye	 Reagent	 was	
added	to	the	plate.	The	OD570	values	were	
read,	normalised	and	plotted	to	generate	
an	 equation	 to	 calculate	 the	
concentration	of	a	protein	sample	from	its	
absorbance.	

	

Cells	were	seeded	and	transfected	in	6	well	plates	for	the	specified	transfection	time.	The	
cell	monolayer	was	washed	 in	PBS	before	 the	 addition	of	 lysis	buffer.	This	was	 scraped	
over	the	cells,	collected	and	incubated	on	ice	for	20	minutes	with	vortexing	at	10	minute	
intervals.	 The	 samples	were	 then	 pelleted	 at	15,000	 x	g	 for	 15	minutes	 at	 4°C	 and	 the	
supernatant	was	 extracted.	 A	1:40	 dilution	 of	 each	 sample	was	 generated	 and	 this	was	
plated	 in	 triplicate	 in	a	96	well	plate	before	 the	addition	of	a	1:5	dilution	of	 the	BioRad	
Protein	Dye	Reagent.	The	OD570	values	of	each	sample	were	measured	and	the	equation	
calculated	 above	 was	 used	 to	 determine	 their	 protein	 concentration.	 The	 lysates	 were	
then	mixed	with	4X	NuPage	Loading	buffer	supplemented	with	5mM	DTT	and	boiled	on	a	
hot	block	to	prepare	the	samples	for	loading.		

The	protein	samples	(15µg)	were	loaded	into	10	or	15	well	NuPage	4-12%	Bis-Tris	Gels	
and	the	SeeBluePlus2	protein	ladder	was	also	loaded	to	determine	the	molecular	weights	
of	 the	bands	observed.	The	proteins	were	electrophoresed	 in	NuPage	Running	Buffer	at	
150V	 for	70	minutes	and	 then	 transferred	onto	nitrocellulose	membranes	at	100V	 for	2	
hours	 in	 NuPage	 Transfer	 Buffer.	 The	membranes	 were	 blocked	 for	 30	minutes	 in	 5%	
Marvel	Milk	 solution	 in	 PBS	 to	prevent	non-specific	 antibody	 binding.	 The	 primary	 and	
secondary	 antibodies	 (Table	 2.1.2.3.1-2)	 were	 diluted	 in	 5%	 milk	 solution	 and	 the	
membranes	 were	washed	 in	 PBSt.	 The	membranes	 were	 incubated	 with	 ECL	 (with	 the	
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exception	of	those	stained	with	RRM1	which	were	incubated	with	the	Visualiser	detection	
kit)	 to	 allow	 the	 visualisation	 of	 the	 bands	 on	 Fuji	Medical	 X-ray	Film.	 The	membranes	
were	exposed	to	the	film	for	30	seconds,	1	minute,	5	minutes	and	overexposed	before	they	
were	developed	using	a	Konica	Minolta	SRX101A.	

2.2.2.2	RNA	Extraction		

RNA	was	extracted	from	the	cells	either	for	use	in	qPCR	analysis	or	the	generation	of	cDNA	
libraries.	Cells	were	seeded	and	transfected	in	6	well	plates	for	the	specified	transfection	
time	 before	 their	 Total	 RNA	was	 extracted	 using	 the	Qiagen	 RNeasy	Mini	 Kit.	 The	 cells	
were	washed	 in	PBS	before	 the	 addition	of	 the	RTL	Buffer	which	was	 scraped	over	 the	
cells,	 collected	 and	 transferred	 to	 QIA	 shredder	 columns.	 These	were	 centrifuged	 for	 2	
minutes	at	800	x	g	before	70%	ethanol	was	added	to	 the	eluted	solution.	This	was	then	
transferred	to	Rneasy	spin	columns	which	were	centrifuged	for	15	seconds	at	800	x	g.	RWI	
Buffer	was	 then	 added	 to	 the	 columns,	 and	 centrifuged	 for	 15	 seconds	 after	which	 the	
eluted	 solution	was	discarded.	This	 step	was	 repeated	 twice	more	using	 the	RPE	Buffer	
and	 on	 the	 second	 occasion	 the	 columns	were	 centrifuged	 for	 2	minutes.	 The	 columns	
were	 then	 transferred	 to	 fresh	Eppendorfs	 and	RNase	 free	water	was	added	 to	 them	 to	
elute	the	RNA	by	centrifugation.		

Total	RNA	was	extracted	from	frozen	cell	pellets	using	the	Perfect	Pure	RNA	cultured	cell	
kit.	 To	 each	 Eppendorf,	 the	 kit	 Lysis	 solution	 was	 added	 and	 vortexed	 vigorously	 to	
dislodge	and	homogenise	the	pellet.	The	Ependorffs	were	then	centrifuged	at	400	x	g	for	1	
minute	 to	 remove	any	 foam.	The	 lysates	were	 then	 transferred	 to	purification	 columns,	
which	were	then	centrifuged	at	15000	x	g	 for	1	minute.	The	columns	were	then	washed	
once	 using	Wash	 1	 solution	 and	 twice	 using	Wash	 2	 solution	with	 centrifugation	 for	 1	
minute	 following	 the	 addition	 of	 each	 solution.	 The	 columns	 were	 then	 transferred	 to	
collection	 tubes	 and	 Elution	 solution	 was	 added	 to	 each	 column	 before	 they	 were	
centrifuged	for	1	minute	to	elute	the	RNA.		

mRNA	from	cultured	cells	was	extracted	using	the	Qiagen	Oligotex	Direct	mRNA	Mini	Kit.	
The	cells	were	washed	in	PBS,	trypsinised	and	3x106	cells	were	suspended	in	fresh	10%	
FCS	DMEM.	The	cells	were	pelleted	at	200	x	g	 for	3	minutes,	re-suspended	in	fresh	10%	
FCS	DMEM	and	transferred	into	Eppendorfs.	The	cells	were	then	centrifuged	at	300	x	g	for	
5	 minutes	 and	 the	 supernatant	 was	 discarded.	 OL1	 Buffer	 supplemented	 with	 b-
Mercaptoethanol	was	added	to	the	Eppendorfs	which	were	vortexed	for	10	seconds.	The	
contents	were	transferred	to	QIAshredder	tubes	and	centrifuged	for	2	minutes	at	13,000	x	
g.	ODB	Buffer	was	added	to	 the	 supernatants	and	they	were	mixed	 thoroughly	 together	
before	 centrifuging	 for	 3	 minutes.	 The	 supernatants	 were	 then	 transferred	 to	 new	
Eppendorfs	before	 the	Oligotex	 suspension	was	 added	and	 incubated	 for	10	minutes	 at	
25°C.	These	were	 then	centrifuged	 for	5	minutes	and	the	supernatants	were	mixed	with	
OL1	Buffer	and	ODB	Buffer.	These	were	 incubated	at	70°C	 for	3	minutes	and	25°C	 for	a	
further	 10	 minutes.	 The	 Eppendorfs	 were	 then	 centrifuged	 for	 5	 minutes	 and	 the	
supernatants	 were	 mixed	 with	 OW1	 Buffer	 before	 being	 transferred	 into	 small	 spin	
columns	 which	 were	 centrifuged	 for	 1	 minute	 at	 13,000	 x	 g.	 The	 columns	 were	 then	
transferred	 into	 new	 Eppendorfs	 and	 OW2	 Buffer	 was	 added	 before	 centrifuging	 for	 1	
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minute,	 this	 step	 was	 then	 repeated	 in	 the	 same	 Eppendorf.	 The	 columns	 were	 then	
transferred	to	new	tubes	and	OEB	buffer	at	70°C	was	added	to	each	column.	These	were	
then	centrifuged	for	1	minute,	which	was	repeated	to	complete	the	elution	of	the	mRNA.	

2.2.2.3	Reverse	Transcription	

Extracted	RNA	had	to	be	converted	to	cDNA	before	it	could	be	amplified	by	qPCR	or	
PCR.	The	Total	RNA	samples	prepared	above	were	reverse	transcribed	for	qPCR	using	the	
Applied	Biosystems	High	Capacity	RNA-to-cDNA	Kit	and	PCR	using	several	kits	(including	
the	 High	 Capacity	 RNA-to-cDNA	 Kit)	 as	 stated	 in	 Chapter	 6.	 Total	 RNA	 levels	 were	
quantified	using	the	NanoVue	Plus	or	the	Nanodrop	ND	1000	Spectrophotometer.	

For	the	High	Capacity	RNA-to-cDNA	Kit,	RNA	samples	were	diluted	to	1µg	of	total	RNA	per	
9µl	of	sample.	For	each	sample,	a	Mastermix	containing	the	2	X	RT	Buffer	and	20X	Enzyme	
mix	was	added	to	PCR	tubes	containing	1µg	of	the	sample	RNA.	The	tubes	were	vortexed	
to	eliminate	air	bubbles	and	loaded	onto	the	MJ	Research	PTC-200	Peltier	Thermal	Cycler	
programmed	to	the	Kit	Manufacturer’s	instructions.		

For	the	Bioscript	kit,	5µg	of	total	RNA	was	added	to	0.5µg	Oligo(dT)18	made	up	to	12µl	
with	nuclease	 free	H2O	and	 incubated	 for	 5	minutes	 at	 70°C	 before	 chilling	 on	 ice.	 The	
Mastermix	was	made	up	according	to	kit	instructions	and	mixed	with	the	RNA	mix	before	
the	addition	of	the	BioScript	(200u/µl)	enzyme.	This	was	incubated	for	60	minutes	at	37°C	
before	heating	to	70°C	for	10	minutes	to	halt	the	reaction.		

For	the	TaqMan	Reverse	Transcription	Kit,	the	RNA	primer	mix	was	made	up	according	to	
kit	 instructions	 with	 1µg	 Total	 RNA.	 This	 was	 incubated	 for	 5	minutes	 at	 65°C	 then	 2	
minutes	 at	4°C.	The	Mastermix	was	 then	made	 following	 the	kit	 instructions	and	mixed	
with	 the	 RNA/Primer	 mix.	 The	 reaction	 was	 then	 incubated	 at	 37°C	 for	 30	 minutes	
followed	by	5	minutes	at	95°C	to	halt	the	reaction.		

For	the	RT2	First	Strand	Kit,	GE	Buffer	was	added	to	5µg	Total	RNA	to	eliminate	genomic	
DNA	and	made	up	to	10µl	with	nuclease	free	H2O.	This	mix	was	then	incubated	at	42°C	for	
5	minutes	and	then	placed	on	ice	for	1	minute.	The	RT	mix	was	made	according	to	the	kit	
instructions	 using	 Buffer	 BC3	 and	 Control	 P2.	 This	 was	 added	 to	 the	 DNA	 elimination	
reaction	and	incubated	for	60	minutes	at	37°C	followed	by	a	5	minute	incubation	at	95°C	
to	halt	the	reaction.	Finally	91µl	Nuclease	free	water	was	added	to	the	reaction.	

2.2.2.4	Reverse-transcription	PCR		

Reverse	 transcription	 PCR	 (qPCR)	 quantifies	 the	 abundance	 of	 an	 mRNA	 of	 interest	
through	 its	 conversion	 to	 cDNA	 and	 subsequent	 amplification.	 It	 relies	 upon	 the	 use	 of	
primers	 conjugated	 to	 fluorescent	 tags,	 in	 this	 case	 FAM,	 that	 fluoresce	 as	 the	 cDNA	 of	
interest	 is	 amplified.	The	 fluorescence	 is	 then	measured	 to	determine	 the	 abundance	of	
the	transcript	within	the	sample.		

Each	cDNA	sample	was	amplified	with	2µl	 cDNA,	5µl	TaqMan	Universal	PCR	Mastermix,	
2.5µl	RNase	free	H2O	and	0.5µl	probe	(Table	2.1.2.5.2)	per	reaction.	Each	sample	mix	was	
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vortexed,	 then	 plated	 in	 triplicate	 in	 a	 384	 well	 PCR	 plate	 which	 was	 sealed	 using	
Polyolefin	Film	before	loading	onto	an	Applied	Biosystems	7900	Real	Time	PCR	machine.		

Once	 the	 protocol	 was	 completed,	 the	 Ct	 values	 were	 used	 to	 assess	 gene	 expression	
and/or	to	calculate	the	percentage	knockdown	of	achieved	by	siRNAs	using	the	protocol	
below	(Livak	&	Schmittgen,	2001).	

For	each	sample	calculate:	

∆Ct = Mean	Control	Probe	Ct − Mean	Gene	Probe	Ct		

∆Ct	Expression =	 2Y∆Z[		

For	each	gene	knockdown	sample	calculate:		

∆∆Ct =
∆Ct	Expression	Knockdown	Sample
∆Ct	Expression	Control	Sample

		

Percentage	Knockdown = (1 − ∆∆Ct)	X	100	

2.2.2.5	Polymerase	Chain	Reaction	(PCR)	

Several	PCR	kits	were	utilised	in	the	attempts	to	amplify	CCDC15	with	the	KOD	Hot	Start	
DNA	 Polymerase	 being	 the	most	 commonly	 used.	 For	 each	 reaction	 100ng	 of	 cDNA	 or	
plasmid	was	added	to	the	KOD	Mastermix	made	up	according	to	kit	instructions	and	gene	
specific	primers	(as	stated	in	Chapter	6)	with	a	total	reaction	volume	of	25µl.		

The	KOD	PCR	protocol	was	performed	as	follows	(unless	otherwise	stated):	

94°C	 	 3	mins			 x1	
94°C	 	 1	min	
55-70°C	 1.5	min	
68°C	 	 3	min	 	
68°C	 	 5	min	 	 x1	
4°C	 	 ¥	
Several	 additional	 PCR	 kits	 were	 trialled	 for	 the	 amplification	 of	 CCDC15	 cDNA.	 The	
Platinum	Hot	Start	PCR	kit	was	carried	out	according	to	the	kit	instructions	and	100ng	of	
cDNA	was	added	per	reaction.	The	AccuPrime	DNA	Polymerase	kit	Mastermix	was	made	
up	using	Buffer	1	according	to	the	kit	instructions	with	200ng	of	cDNA	added	per	reaction.	
The	AccuPrime	GC	Rich	DNA	Polymerase	was	also	trialled	using	the	kit	instructions	with	
either	Buffer	A	or	Buffer	B	as	stated	in	Chapter	6	and	100ng	of	cDNA	per	reaction.	
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The	 same	 PCR	 protocol	 was	 carried	 out	 for	 all	 these	 additional	 kits	 (unless	 stated	
otherwise)	as	follows:		

95°C	 	 3	mins			 x1	
55-70°C	 30	sec	
72°C	 	 3	min	 	
72°C	 	 5	min	 	 x1	
4°C	 	 ¥	

2.2.2.6	Agarose	Gel	Electrophoresis	

Agarose	 gel	 electrophorese	 allows	 for	 the	 separation	 of	 nucleic	 acids	 by	 size	 as	 longer	
transcrpts	will	migrate	slower	than	those	of	a	shorter	length.	The	higher	the	concentration	
of	 the	 agarose,	 the	 slower	 the	 proteins	will	migrate	 as	 the	 pores	within	 the	 gel	will	 be	
smaller.		

PCR	products	were	electrophoresed	on	1.5%	agarose	gels.	Agarose	was	added	to	1X	TAE	
which	 was	 heated	 to	 dissolve	 the	 agarose.	 This	 was	 then	 allowed	 to	 cool	 before	 the	
addition	 of	 0.2µg/ml	 ethidium	 bromide.	 The	 gel	 was	 poured	 and	 allowed	 to	 set	 before	
placing	in	the	horizontal	gel	tank	where	Hyperladder	1	and	PCR	products	mixed	4:1	with	
5X	Loading	dye	were	loaded	into	the	gel.	This	was	then	electrophoresed	for	1	hour	at	80V.		

Relevant	bands	were	excised	from	the	gels	using	a	UV	Transilluminator,	removing	as	little	
excess	gel	as	possible.	The	PCR	products	were	then	extracted	from	the	agarose	gel	using	
the	QIAquick	Gel	Extraction	Kit.	The	gel	slice	was	weighed	in	an	Eppendorf	and	QG	Buffer	
was	 added	at	 the	 volume	 specified	by	 the	kit	 for	 that	weight	 of	gel.	 The	Eppendorf	was	
incubated	at	50°C	for	10	minutes	and	was	vortexed	every	2	minutes	to	aid	the	dissolving	
of	the	gel.	Isopropanol	was	then	added	to	the	tube	at	one	gel	volume.	The	sample	was	then	
added	to	a	QAIquick	spin	column	and	centrifuged	for	1	minute	at	800	x	g	before	discarding	
the	 flow	through.	QG	Buffer	was	 then	added	to	 the	 column	which	was	 centrifuged	 for	a	
further	minute.	The	column	was	 then	washed	 in	PE	Buffer	and	centrifuged	 for	1	minute	
twice	to	remove	all	of	the	buffer.	The	column	was	then	placed	 in	a	microcentrifuge	tube	
and	 30µl	 of	 Buffer	 EB	 was	 added	 to	 the	 column,	 incubated	 for	 1	 minute	 and	 then	
centrifuged	for	1	minute	to	elute	the	DNA.	

2.2.2.7	Bacterial	Transformation	and	Plasmid	Isolation	

Bacterial	transformation	is	essential	for	the	propagation	of	plasmids	required	for	cloning	
studies.	 It	 requires	 the	 introduction	of	 the	plasmid	 into	competent	bacteria,	culturing	of	
the	 bacteria	 and	 then	 isolation	 of	 the	 plasmid	 using	 a	 membrane	 contained	 within	 a	
centrifugation	column.		

Ampicillin	or	Kanamycin	were	diluted	to	100µg/ml	or	50µg/ml	respectively	in	agar	before	
20ml	of	agar	was	poured	into	sterile	culture	dishes	under	a	flame.	The	plates	were	then	
allowed	to	set	at	room	temperature	before	drying	inverted	at	37°C.	

Plasmids	were	transformed	into	DH5a	E.	coli	cells	by	adding	1µg	of	plasmid	DNA	to	KCM	
and	making	up	to	100µl	in	ddH2O	before	mixing	with	the	bacteria.	A	negative	control	was	
prepared	 that	 contained	 no	 plasmid	 DNA.	 These	 solutions	 were	 then	 incubated	 for	 20	

x35	
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minutes	on	 ice	 followed	by	10	minutes	 at	 room	 temperature.	Under	 a	 flame,	 1ml	of	 LB	
Broth	was	added	to	each	sample	before	incubation	for	1	hour	at	37°C	with	shaking.	The	
cells	were	then	gently	pelleted	at	200	x	g	and	800µl	of	the	supernatant	was	removed.	The	
cells	were	then	re-suspended	in	the	remaining	LB	Broth	which	was	spread	on	Ampicillin	
or	 Kanamycin	 Agar	 plates,	 depending	 on	 the	 resistance	 genes	 of	 the	 plasmid,	 and	
incubated	at	37°C	for	16	hours.		

Ampicillin	or	Kanamycin	were	diluted	to	100µg/ml	or	50µg/ml	respectively	in	LB	Broth	
before	5ml	was	aliquoted	 into	Universal	Tubes.	Bacterial	colonies	were	 looped	 from	the	
Agar	plates	and	a	single	colony	was	added	to	each	tube	which	were	then	incubated	at	37°C	
with	shaking	for	16	hours.		

The	 QIAprep	 Spin	 Miniprep	 Kit	 was	 used	 to	 isolate	 the	 plasmids.	 The	 tubes	 were	
centrifuged	at	6000	x	g	for	10	minutes	and	the	resultant	pellets	were	re-suspended	in	PI	
Buffer	and	P2	Buffer	and	transferred	to	Eppendorfs.	After	5	minutes,	N3	Buffer	was	added	
to	the	Eppendorfs	which	were	centrifuged	for	10	minutes	at	17000	x	g.	The	flow	through	
was	 added	 to	 QIAprep	 2.0	 spin	 columns	 and	 centrifuged	 at	 800	 x	 g	 for	 1	minute.	 The	
columns	were	 then	wash	once	with	PB	Buffer,	 centrifuged	 for	1	minute	 and	 then	 twice	
with	PE	Buffer	before	centrifuging	twice	to	remove	any	residual	buffer.	The	columns	were	
then	transferred	into	sterile	Eppendorfs,	and	the	plasmid	DNA	was	eluted	by	the	addition	
of	EB	Buffer	and	centrifugation.		

2.2.2.8	Stable	Cell	Line	Generation	by	Gateway	Cloning		

Gateway	 cloning	 (Invitrogen)	 relies	 upon	 the	 conservative	 recombination	 between	 att	
sites	by	 the	bacteriophage	 lambda.	This	 system	was	used	 to	 create	N-terminally	 tagged	
forms	of	the	CCDC15	protein.		

CCDC15	cDNA	was	amplified	by	PCR	using	the	Gateway	Primers	(Table	2.1.2.5.1)	resulting	
in	 a	 full	 length	 cDNA	 PCR	 product	 flanked	 by	 attB	 sites.	 These	 products	 were	 then	
recombined	with	a	pDONR221	vector	containing	attP	sites	by	BP	Clonase	II	following	the	
kit	 instructions	 to	 generate	an	Entry	Clone	 containing	attL	sites.	The	 resultant	plasmids	
were	then	transformed	into	DH5a	and	isolated	as	described	previously,	using	Kanamycin	
selection.	The	pDONR221	plasmid	contained	a	death	gene,	ccdB,	so	products	that	had	not	
recombined	would	 not	 produce	 viable	 cells.	 The	 isolated	DNA	was	 then	 quantified	 and	
sent	for	sequencing.		

Once	 the	CCDC15	 insert	had	been	 fully	verified	by	sequencing	 in	 the	pDONR221	vector,	
the	plasmid	was	 recombined	with	 either	 an	N-terminal	 FLAG	 tag	or	N-terminal	YFP	 tag	
Destination	 Vector	 containing	 attR	 sites	 using	 the	 LR	 Clonase	 II	 kit.	 The	 reaction	 was	
transformed	into	DH5a,	selected	for	using	Ampicillin	and	isolated	as	described	previously.	
The	Destination	Vectors	 also	 contained	ccdB	 and	 so	 if	 recombination	was	not	 complete,	
cells	containing	those	products	would	die.	The	isolated	DNA	was	then	sent	for	sequencing	
to	determine	if	CCDC15	had	entered	the	Destination	Vectors	and	if	it	was	in	frame	with	the	
N-terminal	tags	(Fig.	2.2.2.8.1).		

DNA	 was	 sequenced	 by	 the	 University	 of	 Sheffield	 Core	 Genomics	 Facility	 utilising	 an	
Applied	 Biosystems	 3730	DNA	 analyser.	 For	 each	 reaction	 10µl	 10ng/µl	 template	 DNA	
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and	 10µl	 of	 1nM	 primer	 were	 provided.	 The	 resultant	 sequencing	 trace	 files	 were	
analysed	using	Sequencer	4.7	software.		

	

Figure	2.2.2.14.1	Gateway	Cloning	of	CCDC15	
CCDC15	was	 amplified	 using	Gateway	 primers	 to	 yield	 a	 PCR	 product	 flanked	 by	 attB	 sites.	 These	
products	were	 recombined	 into	 the	Donor	Vector	 pDONR221	which	 contained	 the	 ccdB	 death	 gene	
flanked	by	attP	 sites	and	a	Kanamycin	 resistance	gene	using	 the	BP	Clonase.	This	yielded	an	Entry	
Clone	containing	CCDC15	flanked	by	attL	sites	and	the	Kanamycin	resistance	gene	which	was	used	to	
select	transformed	cells.	The	by-product	of	this	reaction	contained	attR	surrounding	the	ccdB	death	
gene.	 Any	 bacteria	 that	 retained	 this	 by-product	 or	 Donor	 Vectors	 that	 had	 not	 successfully	
recombined	were	not	viable	due	to	the	presence	of	the	death	gene.	The	resultant	Entry	Clones	were	
then	 recombined	with	 N-terminal	 FLAG	 tag	 or	 N-terminal	 YFP	 tag	 containing	 Destination	 vectors	
using	LR	Clonase.	These	also	included	an	Ampicillin	resistance	gene	and	the	ccdB	death	gene	flanked	
by	attR	sites.	This	reaction	yielded	an	Expression	Clone	containing	the	CCDC15	gene	fused	to	the	N-
terminal	tags	 flanked	by	attB	 sites	and	the	Ampicillin	 resistance	gene	which	was	used	 for	 selection.	
The	by-product	of	this	reaction	contained	attP	sites	and	the	ccdB	death	gene.	As	previously	any	cells	
retaining	the	by-product	or	Destination	Vectors	that	had	not	recombined	would	die.		 	
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To	make	stable	cell	 lines,	HeLa	FLP	and	HEK	293	FLP	cells	were	plated	 in	6	well	plates.	
Once	 the	 cells	 were	 80%	 confluent	 the	 N-terminal	 YFP	 tagged	 CCDC15	 vector	 was	
transformed	into	the	HeLa	FLP	cells	and	the	N-terminal	FLAG	tagged	CCDC15	vector	was	
transformed	 into	both	the	HeLa	FLP	and	HEK	293	FLP	cells.	Cells	were	 transfected	with	
1µg	vector,	1µg	pOG44	Flp-Recombinase	and	4µl	Lipo	2000	per	well.		

Twenty-four	hours	post-transfection	 the	cells	were	 trypsinised	and	the	contents	of	each	
well	were	 re-suspended	 in	 10%	 FCS	 DMEM.	 The	 cells	were	 added	 to	 a	 10cm	 dish	 and	
treated	with	Blasticidin	and	Hygromycin	as	described	in	Table	2.1.2.1.2.	The	cells	were	left	
to	grow	 in	 the	dishes	until	colonies	had	 formed	and	then	 trypsinised	and	transferred	 to	
25cm2	tissue	culture	flasks.	Once	confluent	these	cells	were	then	cultured	in	75cm2	tissue	
culture	flasks	as	described	in	Table	2.1.2.1.2.		

2.2.2.9	Immunoprecipitation	

Immunoprecipitation	allows	for	the	isolation	of	a	protein	of	interest	from	a	cell	lysate	by	
utilising	 antibodies	 that	 specifically	bind	 to	 that	protein.	Attempts	were	made	 to	 isolate	
Flag-tagged	CCDC15	from	the	HEK	293	FLP	cells	for	use	in	mass	spectrometry	analyses.		

The	HEK	293	FLP	cells	stably	transfected	with	a	CCDC15	containing	pcDNA™5/FRT/TO	N-
Terminal	 FLAG	 vector	were	 plated	 in	 10cm	 or	 14cm	 dishes.	 The	 cells	were	 then	 either	
mock	 treated	with	 DMSO	 or	 treated	with	 1µg/ml	 Tetracycline	 to	 induce	 CCDC15-FLAG	
expression	24	hours	after	plating.	The	cells	were	grown	for	a	total	of	48	hours	before	the	
cells	were	washed	twice	in	ice	cold	PBS.		

In	the	small	scale	optimisation	experiment,	lysis	buffer	was	added	to	the	cells	which	were	
then	 mechanically	 disaggregated	 and	 aliquoted	 into	 Eppendorf	 tubes.	 In	 the	 scaled	 up	
experiment,	 the	 cells	 were	 disaggregated	 and	 aliquoted	 into	 falcon	 tubes	 before	 the	
addition	of	 the	 lysis	 buffer	without	DTT.	The	 lysates	were	 then	 incubated	on	 ice	 for	20	
minutes	with	vortexing	at	10	minute	intervals.	The	samples	were	then	pelleted	at	15000G	
for	15	minutes	at	4°C	and	the	supernatant	was	collected	and	50µl	was	saved	as	the	Input	
for	the	FLAG	Immunoprecipitation	(IP)	electrophoresis.		

ANTI-FLAG	M2	Affinity	Gel	was	aliquoted	into	an	Eppendorf	per	sample.	The	Eppendorfs	
were	centrifuged	for	30	seconds	at	3000rpm	then	rotated	180°	and	centrifuged	again.	The	
supernatant	was	aspirated	the	gel	was	washed	3	times	in	IP	buffer	before	the	addition	of	
the	 lysates	 in	the	small	scale	experiment.	 In	 the	scaled	up	versions,	 the	gel	was	washed	
with	 ice	 cold	 PBS	 before	 being	 transferred	 into	 a	 falcon	 tube	 where	 the	 lysates	 were	
added.	 Where	 stated,	 the	 gel	 was	 incubated	 with	 the	 FLAG	 M2	 antibody	 before	 lysate	
addition.	 The	 lysates	 were	 incubated	 with	 the	 gel	 overnight	 at	 4°C	 with	 rotation.	 The	
samples	were	then	pelleted	at	3000rpm	and	200µl	of	the	supernatant	was	removed	and	
kept	as	the	Unbound	fraction.	The	gel	was	then	washed	three	times	in	the	IP	Wash	Buffer,	
with	 a	 30	 minute	 incubation	 with	 rotation	 between	 washes,	 before	 centrifugation	 and	
removal.	Where	stated,	the	first	wash	was	retained	for	electrophoresis.		

After	the	final	wash	in	the	small-scale	optimisation	experiments,	the	Bound	fraction	was	
eluted	by	adding	20µl	of	the	4X	NuPage	Loading	buffer	supplemented	with	5mM	DTT.	In	
the	scaled	up	experiments,	 the	beads	were	washed	 in	1%	TBS	and	the	3X	FLAG	Peptide	
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(diluted	1:30	 in	 TBS)	was	 added	 to	 the	 beads.	 This	was	 incubated	 for	 30	minutes	with	
rotation	 before	 the	 samples	were	 centrifuged	 and	 110µl	 of	 the	 eluted	 supernatant	was	
collected.	Where	stated,	this	incubation	was	repeated.	In	all	experiments,	the	gel	was	then	
incubated	 with	 the	 FLAG	 peptide	 overnight	 at	 4°C	 with	 rotation	 before	 supernatant	
removal.	 Loading	 buffer	 was	 also	 added	 to	 the	 retained	 Input,	 Unbound	 and	 Wash	
fractions	 as	 well	 as	 the	 Elutions	 and	 remaining	 gel	 for	 the	 scaled	 up	 experiments.	 The	
samples	were	 then	boiled	 for	5	minutes	at	95°C.	For	both	 the	small	scale	and	scaled	up	
assays,	the	samples	were	separated	on	NuPage	4-12%	Bis-Tris	Gel	1.5mm	X	10	well	gels	
which	were	transferred	to	membranes	which	were	blotted	with	the	FLAG	M2	antibody.		
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3.1	Introduction	

As	 mentioned	 previously,	 cancer	 cells	 display	 higher	 than	 normal	 levels	 of	 replication	
stress	due	to	the	chronic	signalling	of	activated	oncogenes.	It	has	therefore	been	suggested	
that	 increasing	 these	 levels	 further	 could	 yield	 selective	 killing	 of	 tumour	 cells.	 The	
cancerous	 cells	would	be	pushed	over	 a	 threshold	 level	 of	 replication	 stress	and	 forced	
into	 crisis	whilst	 normal	 cells,	with	 their	 lower	basal	stress	 levels,	would	 remain	below	
this	limit	and	retain	their	viability.	On	this	basis,	it	was	predicted	that	screening	cells	for	
signs	of	increased	replication	stress	after	gene	inhibition	would	reveal	novel	factors	that	
regulate	 the	 replication	 stress	 response	 and	 could	 be	 therapeutically	 targeted	 to	 treat	
cancer.	 Therefore,	 it	was	proposed	 to	 develop	 a	 genome	wide	 siRNA	 screen	 to	 identify	
novel	suppressors	of	replication	stress.		

Currently,	 there	 is	 no	 well-defined	 cellular	 marker	 that	 can	 be	 used	 to	 identify	 cells	
undergoing	 replication	stress	 as	 it	 is	 not	 a	physical	 structure	within	 the	 cell.	One	of	 the	
best	 ways	 to	 detect	 replication	 stress	 is	 a	 direct	 readout	 of	 DNA	 synthesis	 (Zeman	 &	
Cimprich,	 2014),	 such	 as	 BrdU	 staining.	 This	 technique	 was	 used	 by	 Kavanaugh	 et	 al.,	
(2015)	to	assess	endogenous	levels	of	replication	stress	after	gene	knockdown	by	siRNA.	
An	alternative	method	is	to	detect	an	event	that	is	key	in	the	response	to	replication	stress.	
Abrogation	of	the	phosphorylation	of	RPA2	at	Threonine	21	(T21)	and	Serine	33	(S33)	by	
ATR	 (Vassin	 et	 al,	 2009)	 and	 Serine	 4/8	 (S4/8)	 by	 DNA-PK,	 prevents	 recovery	 from	
replication	stress	(Ashley	et	al,	2014).	As	phosphorylation	of	these	sites	is	required	for	the	
resolution	 of	 replication	 stress,	 it	 can	 be	 considered	 an	 essential	 step	 in	 the	 cellular	
response	to	this	phenomenon.	Immunofluorescent	staining	has	previously	been	shown	to	
be	capable	of	detecting	phospho-RPA2	(pRPA2)	foci	(Collis	et	al,	2007;	Collis	et	al,	2008)	
and	so	antibodies	raised	against	these	phosphosites	can	be	utilised	for	replication	stress	
detection.	TopBP1	 is	also	a	crucial	component	of	 the	replication	stress	response,	as	 it	 is	
vital	for	the	activation	of	ATR	at	stalled	replication	forks	(Choi	et	al,	2010).	Like	pRPA2,	it	
forms	nuclear	foci	in	stressed	cells	which	can	be	detected	by	immunofluorescent	staining	
(Kim	 et	 al,	 2005)	 and	 so	 TopBP1	 antibodies	 can	 similarly	 be	 used	 for	 the	 detection	 of	
replication	stress.		

To	assess	the	ability	of	the	pRPA2	antibodies	to	detect	changes	in	replication	stress	levels,	
positive	controls,	whose	knockdown	has	previously	been	established	to	induce	replication	
slowing,	 were	 included	 in	 the	 screening	 development	 assays.	 Efficient	 DNA	 replication	
requires	several	components	including	a	ready	supply	of	nucleotides	(Bester	et	al,	2011;	
Zeman	 &	 Cimprich,	 2014).	 Ribonucleotide	 reductase	 catalyses	 the	 conversion	 of	
ribonucleotides	(rNDPs)	into	deoxyribonucleotides	(dNTPs)	and	its	activity	depends	upon	
its	catalytic	subunit	RRM1	(Mann	et	al,	1988).	Knockdown	of	RRM1	results	in	a	significant	
reduction	in	the	dNTP	pool	resulting	in	slowed	proliferation	(Wang	et	al,	2013).	Cell	cycle	
checkpoints	 also	play	 a	 role	 in	 the	 suppression	of	 replication	 stress.	The	knockdown	of	
Chk1	impairs	the	cell’s	ability	to	recover	from	replication	stress	(Kavanaugh	et	al,	2015)	
and	 in	deficient	cells,	origin	 firing	 is	deregulated	(Syljuåsen	 	et	al,	2005).	Knockdown	of	
these	two	genes	by	siRNA	were	therefore	used	throughout	the	development	of	the	screen		
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as	 positive	 controls	 for	 heightened	 replication	 stress.	 Additionally,	 hydroxyurea	 (HU)	
inactivates	the	enzyme	ribonucleotide	reductase	(Yarbro,	1968)	and	results	in	replication	
fork	 stalling.	 HU	was	 therefore	 used	 in	 these	 experiments	 as	 an	 additional	 transfection	
independent	positive	control.	

It	 was	 hypothesised	 that	 novel	 suppressors	 of	 replication	 stress	 existed	 in	 the	 human	
genome.	 Therefore,	 attempts	 were	 made	 to	 develop	 a	 high	 throughput	 genome	 wide	
screening	assay	to	assess	endogenous	levels	of	pRPA2	following	gene	knockdown,	where	
an	 increase	 in	 phosphorylation	 indicated	 the	 loss	 of	 a	 suppressor	 of	 replication	 stress.	
Western	 blotting	 was	 initially	 used	 to	 detect	 a	 replication	 stress	 response	 after	 the	
knockdown	 of	 known	 replication	 stress	 suppressor	 genes.	 Three	 phospho-RPA2	
antibodies	were	used	to	assess	pRPA2	foci	formation	and	the	most	successful	was	used	to	
evaluate	staining	in	a	cell	line	panel	containing	both	normal	and	cancerous	cell	lines.	This	
assay	 was	 then	 re-optimised	 for	 use	 in	 a	 384	 well	 high	 throughput	 screening	 format.	
Alternative	 methods	 of	 replication	 stress	 detection	 were	 also	 trialled	 as	 screening	
approaches	 and	 for	 hit	 validation	 but	 unfortunately	 none	 proved	 successful	 in	 the	 high	
throughput	format.		

3.2	Replication	Stress	Suppressor	Knockdown	

Western	blotting	analysis	was	used	to	assess	the	efficiency	of	Chk1	or	RRM1	knockdown	
by	 siRNA	 pools	 which	 would	 be	 used	 as	 positive	 controls	 in	 the	 pRPA2	 screen.	 Cell	
populations	 treated	with	HU	were	used	 as	 an	 additional	positive	 control	 for	 replication	
stress.	HCT116	 cells	were	 reverse	 transfected	 for	 either	 48	 or	 72	 hours	with	 Control	 1	
(non-targeting),	Chk1	or	RRM1	siRNA	using	DharmaFECT	1.	Cells	were	then	treated	with	
2mM	HU	or	mock	treated	with	PBS	16	hours	before	media	removal.	Total	Chk1	and	total	
RRM1	expression	were	determined	 to	 assess	 the	 efficiency	of	 the	knockdown.	 Levels	 of	
phospho-Chk1	 (S317),	 total	 RPA2	 and	 phospho-RPA2	 (T21)	 were	 also	 determined	 to	
assess	the	levels	of	replication	stress	induced	(Fig.3.2.1).	

As	shown	in	Figure	3.2.1,	both	Chk1	and	RRM1	siRNA	reduce	target	protein	expression	in	
HCT116	cells	at	both	time	points.	A	faint	band	is	present	in	the	Chk1	lane	of	the	total	Chk1	
blot	 suggesting	 that	 the	 knockdown	 was	 not	 complete	 whilst	 the	 RRM1	 knockdown	
appeared	more	 effective.	RRM1	knockdown	 induced	Chk1	phosphorylation	 at	 S317	and	
knockdown	 of	 both	 proteins	 stimulated	 RPA2	 phosphorylation,	 as	 shown	 using	 the	
specific	phosphorylated	T21	antibody	and	by	 the	double	band	in	 the	 total	RPA2	blot.	At	
both	 time	 points	 RPA2	 phosphorylation	 was	 more	 apparent	 in	 RRM1-depleted	 cells	
compared	with	Chk1-depleted	cells,	suggesting	this	produces	a	stronger	replication	stress	
response.	As	 these	bands	 are	 absent	 in	 the	untreated	Control	 1	 siRNA	 cells,	 it	 indicates	
that	 the	 replication	 stress	 response	 was	 the	 result	 of	 knockdown	 of	 RRM1	 and	 Chk1.	
Similarly,	 treatment	with	HU	promoted	 robust	 Chk1	and	RPA2	 phosphorylation	 in	 cells	
transfected	with	Control	1	siRNA	and	 increased	the	 level	of	phosphorylation	seen	 in	 the	
Chk1	knockdown	lanes	but	not	RRM1.	As	the	Chk1	and	RRM1	siRNA	transfection	and	HU	
treatment	 resulted	 in	 heightened	 levels	 RPA2	 phosphorylation,	 they	 were	 considered	
appropriate	positive	controls	for	replication	stress	in	the	pRPA2	screening	assays.	 	
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Figure	3.2.1.	Gene	Knockdown	by	Chk1	and	RRM1	siRNA	and	induction	of	a	replication	stress	
response.		
HCT116	cells	were	reverse	transfected	with	Control	1,	Chk1	or	RRM1	siRNA	for	(A)	48	or	(B)	72	hours.	
Cells	were	mock	treated	with	PBS	or	treated	with	2mM	HU	for	16	hours	before	media	removal.	The	
cells	were	lysed	and	15µg	of	protein	from	each	sample	was	loaded	onto	a	NuPage	4-12%	Bis-Tris	Gel	
for	 separation.	The	gels	were	 transferred	 to	nitrocellulose	membranes	before	blocking	and	blotting	
with	total	RRM1,	total	Chk1,	pChk1	(S317),	total	RPA2,	pRPA2	(T21)	and	b-Tubulin	(loading	control)	
primary	antibodies.	The	primary	antibodies	were	detected	with	HRP	conjugated	secondary	antibodies.	

3.3	Phospho-RPA2	Antibody	Selection	

Immunofluorescent	 identification	 of	 pRPA2	 foci	 has	 previously	 been	 validated	 as	 a	
detection	 method	 for	 increased	 replication	 stress	 (Collis	 et	 al,	 2007).	 RPA2	 is	
phosphorylated	at	a	number	of	sites	in	its	N-terminus	in	response	to	cell	cycle	progression	
and	cellular	stress	(Anantha	et	al,	2007).	Three	phospho-antibodies	raised	against	the	N-
terminal	sites	S4/8,	T21	and	S33	were	tested	for	their	ability	to	detect	replication	stress	in	
siRNA	 transfected	 HCT116	 cells	 by	 immunofluorescence	 approaches	 to	 assess	 their	
suitability	for	use	in	a	high	throughput	siRNA	screen.		

3.3.1	Initial	Staining	Protocol	for	Phospho-RPA2	Foci	Detection	

Initially,	the	cells	were	forward	transfected	with	Control	1	or	Chk1	siRNA	using	RNAiMAX	
for	48	or	72	hours.	Once	 fixed,	 the	cells	were	permeabilised	by	repeated	washing	of	the	
coverslips	with	PBS-tween	20,	blocked	for	30	minutes	with	0.5%	BSA	in	PBS	and	stained	
with	the	three	pRPA2	primary	antibodies	(Fig.3.3.1.1	and	Fig.	3.3.1.2).		

Of	 the	 three	antibodies	used	 to	detect	pRPA2	 in	 this	experiment,	only	 the	T21	antibody	
could	identify	discrete	pRPA2	foci.	The	S4/8	antibody	showed	mostly	cytoplasmic	staining	
and	where	the	antibody	had	entered	the	nucleus,	it	could	not	detect	foci.	The	S33	antibody	
rarely	 appeared	 to	 enter	 the	 nucleus,	 so	 could	 not	 detect	 pRPA2	 foci.	 Even	 with	 the	
addition	 of	 HU,	 this	 antibody	 could	 not	 detect	 replication	 stress	 under	 these	 staining	
conditions.	 In	 contrast,	 the	 T21	 antibody	 detected	 clear	 foci	 in	 all	 conditions	 and	 the	
number	of	foci	appeared	to	increase	with	the	level	of	replication	stress	induced,	with	more	
foci	appearing	in	the	Chk1	knocked	down	and	HU	treated	cells	(Fig.3.1.1.1	and	3.3.1.2).	As	
such,	the	T21	antibody	images	were	scored	for	the	number	of	pRPA2	foci	they	contained	
to	 determine	 whether	 it	 could	 detect	 discernible	 variation	 in	 the	 levels	 of	 replication	
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stress	between	the	different	conditions	(Fig.	3.3.1.3).	The	S4/8	and	S33	images	could	not	
be	scored	as	these	antibodies	did	not	detect	foci.		

	

Figure	 3.3.1.1	 Comparison	 of	 pRPA2	 Antibodies	 at	 48	 hour	 transfection	 time	 with	 initial	
protocol.		
Representative	 images	 of	 HCT116	 cells	 forward	 transfected	 with	 Control	 1	 or	 Chk1	 siRNA	 and	
RNAiMAX	and	grown	for	48	hours	post-transfection.	Cells	were	mock	treated	with	PBS	or	treated	with	
2mM	HU	for	16	hours	before	fixing.	Once	fixed	the	cells	were	permeabilised	with	PBS-tween	20	in	the	
washes.	 The	 cells	were	 stained	with	 antibodies	 raised	 against	 the	 S4/8,	 T21	 and	 S33	 phospho-sites	
within	RPA2.	
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Figure	 3.3.1.2	 Comparison	 of	 pRPA2	 Antibodies	 at	 72	 hour	 transfection	 time	 with	 initial	
protocol.		
Representative	 images	 of	 HCT116	 cells	 forward	 transfected	 with	 Control	 1	 or	 Chk1	 siRNA	 and	
RNAiMAX	and	grown	for	72	hours	post-transfection.	Cells	were	mock	treated	with	PBS	or	treated	with	
2mM	HU	for	16	hours	before	fixing.	Once	fixed	the	cells	were	permeabilised	with	PBS-tween	20	in	the	
washes.	 The	 cells	were	 stained	with	 antibodies	 raised	 against	 the	 S4/8,	 T21	 and	 S33	 phospho-sites	
within	RPA2.	
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For	 the	48	hour	samples,	 transfection	with	Chk1	siRNA	or	 treatment	with	HU	 increased	
the	percentage	of	nuclei	positive	for	T21	foci	when	compared	to	Control	1	untreated	cells	
(Figure	3.3.1.3).	This	is	as	expected	as	these	cells	would	be	experiencing	an	increased	level	
of	replication	stress.	No	marked	difference	was	seen	between	the	Control	1	untreated	cells	
and	any	other	condition	at	72	hours	(Fig.	3.3.1.3).	Unexpectedly,	the	combination	of	Chk1	
knockdown	and	HU	treatment	did	not	increase	the	percentage	of	positive	foci	seen	when	
compared	to	knockdown	alone	at	either	time	point	(Fig.3.3.1.3).		

	

	
Figure	3.3.1.3	Percentage	of	HCT116	cells	positive	for	T21	foci	with	initial	protocol.	
For	each	condition	the	number	of	cells	were	counted	and	the	percentage	of	T21	positive	nuclei	was	
calculated.	A	nucleus	was	considered	positive	if	it	contained	10	or	more	bright	T21	foci.	Values	derived	
from	one	experiment.		

3.3.2	Improved	Protocol	for	Phospho-RPA2	Foci	Detection	

The	 comparison	 of	 the	 three	 pRPA2	 antibodies	 was	 repeated	 using	 a	 re-optimised	
protocol	 to	 improve	 the	 staining	 produced	 by	 the	 assay	 (see	 below),	 and	 to	 bring	 the	
protocol	 into	 line	 with	 the	 high	 throughput	 screening	 assays	 run	 at	 the	 Sheffield	 RNAi	
Screening	 Facility	 (SRSF).	 As	 such,	 HCT116	 cells	 were	 reverse	 transfected	 with	
DharmaFECT	1	used	as	the	transfection	reagent.	Additionally,	a	more	stringent	extraction	
step,	where	 the	 cells	were	 incubated	with	0.5%	Triton	X-100	and	3%	BSA	 in	PBS	 for	5	
minutes,	 was	 included	 post-fixation.	 This	 was	 incorporated	 to	 further	 permiabilise	 the	
membranes	of	 the	 cell	 and	allow	 the	 antibodies	better	 access	 to	 the	nucleus	(Fig.3.3.2.1	
and.	3.3.2.2).		

With	the	improved	extraction	procedure,	the	S4/8	antibody	demonstrated	a	higher	level	
of	nuclear	staining,	however	there	was	still	a	high	cytoplasmic	background.	Whilst	some	
cells	did	display	nuclear	foci,	this	was	only	ever	observed	in	the	HU	treated	cells	and	not	in	
the	untreated	Chk1	knocked	down	 cells	 (Fig.	 3.3.2.1	 and	3.3.2.2).	The	 alterations	 to	 the	
protocol	 also	 improved	 entry	 of	 the	 S33	antibody	 into	 the	 cells.	However,	 the	 antibody	
now	stained	both	the	cytoplasm	and	the	nucleus	and	no	clear	foci	could	be	detected.	It	also	
showed	very	little	change	between	the	different	conditions,	especially	at	the	72	hour	time	
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point	(Fig.	3.3.2.1	and	3.3.2.2).	The	 level	of	nuclear	background	staining	observed	 in	the	
T21	 images	 was	 reduced	 using	 this	 amended	 protocol.	 The	 T21	 antibody	 images	 were	
scored	for	the	number	of	pRPA2	foci	they	contained	to	determine	whether	it	could	detect	
changes	in	the	levels	of	replication	stress	between	the	different	conditions	(Fig.	3.3.2.3).		

	

Figure	3.3.2.1	 Comparison	of	 pRPA2	Antibodies	 at	 48	hour	 transfection	 time	with	 improved	
protocol.		
Representative	 images	 of	 HCT116	 cells	 reverse	 transfected	 with	 Control	 1	 or	 Chk1	 siRNA	 and	
DharmaFECT	1	and	grown	for	48	hours	post-transfection.	Cells	were	mock	treated	with	PBS	or	treated	
with	2mM	HU	for	16	hours	before	fixing.	Once	fixed	the	cells	were	permeabilised	with	0.5	%	Triton	X-
100	 and	 3%	 BSA.	 The	 cells	 were	 stained	 with	 antibodies	 raised	 against	 the	 S4/8,	 T21	 and	 S33	
phospho-sites	within	RPA2.	
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Figure	3.3.2.2	 Comparison	of	 pRPA2	Antibodies	 at	 72	hour	 transfection	 time	with	 improved	
protocol.		
Representative	 images	 of	 HCT116	 cells	 reverse	 transfected	 with	 Control	 1	 or	 Chk1	 siRNA	 and	
DharmaFECT	1	and	grown	for	72	hours	post-transfection	Cells	were	mock	treated	with	PBS	or	treated	
with	2mM	HU	for	16	hours	before	fixing.	Once	fixed	the	cells	were	permeabilised	with	0.5	%	Triton	X-
100	 and	 3%	 BSA.	 The	 cells	 were	 stained	 with	 antibodies	 raised	 against	 the	 S4/8,	 T21	 and	 S33	
phospho-sites	within	RPA2.		

A	 higher	 percentage	 of	 T21	 positive	 cells	 were	 detected	 in	 all	 conditions	 (Fig.	 3.3.2.3)	
when	reverse	 transfection	and	a	stronger	extraction	procedure	are	used.	 In	both	 the	48	
hour	and	72	hour	experiments,	Chk1	knockdown	increased	the	percentage	of	T21	positive	
nuclei	compared	to	Control	1	untreated	cells.	The	signal	window	between	these	conditions	
was	47.35%	at	48	hours	and	23.55%	at	the	72	hour	time	point	(Fig.	3.3.2.3).	Unlike	in	the	
previous	 experiment,	 the	 combination	of	Chk1	knockdown	and	HU	 treatment	 increased	
the	percentage	of	T21	positive	cells	observed	at	72	hours	but	not	48	hours.		 	
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Figure	3.3.2.3	Percentage	of	HCT116	cells	positive	for	T21	foci	with	improved	protocol.		
For	each	condition	the	number	of	cells	were	counted	and	the	percentage	of	T21	positive	nuclei	was	
calculated.	A	nucleus	was	considered	positive	if	it	contained	10	or	more	bright	T21	foci.	Values	derived	
from	one	experiment.	

This	experiment	was	repeated	with	a	48	hour	 transfection	and	without	HU	treatment	 to	
further	 investigate	 the	 staining	 of	 Chk1	 knocked	 down	 cells	 by	 the	 T21	 antibody.	 The	
scoring	data	 from	 these	 additional	 two	 repeats	was	 combined	with	 the	 original	 data	 to	
assess	the	T21	antibodies	ability	to	repeatedly	detect	replication	stress	(Fig.	3.3.2.4).	

	

	
Figure	3.3.2.4	Percentage	of	 Chk1	knocked	down	HCT116	
cells	positive	for	T21	foci.	
For	 each	 condition	 the	 number	 of	 cells	were	 counted	 and	 the	
percentage	of	T21	positive	nuclei	was	calculated.	A	nucleus	was	
considered	positive	 if	 it	contained	10	or	more	bright	T21	foci.	
Asterisks	indicate	significant	difference	from	Control	1,	p	value	
<0.05.	 Mean	 values	 derived	 from	 three	 independent	
experiments,	with	their	respective	SEMs.		

	
	

The	 scoring	 data	produced	 by	 the	 T21	antibody	was	 reproducible	 in	 the	 three	 repeats.	
Chk1	 knockdown	 significantly	 increased	 the	 percentage	 of	 T21	 positive	 nuclei	 when	
compared	 to	 the	 Control	 1	 cells	 (p	 value	 of	 0.0006)	 and	 produced	 a	 signal	window	 of	
43.4%.	

Once	 the	 staining	 procedure	 was	 established	 it	 was	 repeated	 in	 cells	 transfected	 with	
RRM1	siRNA	(Fig.3.2.1).	The	cells	were	reverse	transfected	with	Control	1	or	RRM1	siRNA	
and	 DharmaFECT	 1	 for	 48	 hours.	 The	 cells	 were	 then	 scored	 for	 T21	 positive	 nuclei	
(Fig.3.3.2.5	and	Fig.	3.3.2.6).		
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Figure	3.3.2.5	RPA2	T21	staining	in	RRM1	knocked	down	HCT116	cells.		
Representative	 images	 of	 HCT116	 cells	 reverse	 transfected	 with	 Control	 1	 or	 RRM1	 siRNA	 and	
DharmaFECT	1.	 Cells	were	 grown	 for	 48	 hours	 post-transfection	 before	 fixing.	 Once	 fixed,	 the	 cells	
were	permeabilised	with	0.5	%	Triton	X-100	and	3%	BSA.	The	cells	were	 stained	with	an	antibody	
raised	against	the	T21	phospho-site	within	RPA2.	

	

Figure	3.3.2.6	Percentage	of	RRM1	knocked	down	HCT116	
cells	positive	for	T21	foci.	
	For	each	condition	the	number	of	cells	were	counted	and	the	
percentage	 of	 T21	 positive	 nuclei	 was	 calculated.	 A	 nucleus	
was	considered	positive	if	it	contained	10	or	more	bright	T21	
foci.	Asterisks	indicate	significant	difference	from	Control	1,	p	
value	 <0.05.	 Mean	 values	 derived	 from	 three	 independent	
experiments,	with	their	respective	SEMs	

	

The	staining	pattern	produced	by	the	knockdown	of	RRM1	was	distinct	 from	that	of	 the	
Chk1	knocked	down	cells.	A	number	of	cells	displayed	very	bright	staining	and	a	highly	
positive	 nucleus,	 in	 some	 cases	 leading	 to	 the	 saturation	 of	 the	 image	 (Fig.3.3.2.5).	 The	
knockdown	of	RRM1	produced	a	significantly	higher	percentage	of	T21	positive	cells	than	
Control	1	siRNA	cells	(p	value	0.0001)	(Fig.3.3.2.6)	and	a	slightly	higher	percentage	than	
Chk1	 knockdown	 (78.84%	 compared	 to	 72.52%).	 The	 signal	 window	 of	 this	 assay,	
53.33%,	was	also	larger	than	that	produced	by	Chk1	knockdown	(47.35%).	As	Chk1	and	
RRM1	knockdown	produced	repeatable	induction	of	replication	stress	and	suitable	signal	
windows,	both	were	used	for	further	development	of	the	screening	assay.		
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3.4	Phospho-RPA2	Replication	Stress	Detection	in	a	Cell	Line	Panel	

Once	 the	 T21	 protocol	 had	 been	 established	 in	 HCT116	 cells,	 it	 was	 tested	 in	 several	
different	 cell	 lines	 to	 ensure	 that	 the	 staining	 was	 not	 a	 cell	 line	 specific	 effect.	 The	
experiment	was	repeated	in	RPE-1,	SW480	and	p53	deficient	HCT116	cell	lines.		

3.4.1	Phospho-RPA2	Replication	Stress	Detection	in	RPE-1	

The	 hTERT	 immortalised	 normal	 cell	 line	 RPE-1	 was	 used	 to	 assess	 the	 effect	 of	
replication	stress	suppressor	knockdown	in	a	normal,	as	opposed	to	a	cancerous	cell	line	
(Fig.3.4.1.1,	 Table	 3.4.1.1	 and	 Fig	 3.4.1.2).	 The	 staining	 pattern	 produced	 by	 the	 T21	
antibody	 in	RPE-1	cells	was	comparable	 to	 that	seen	 in	HCT116.	When	scored,	a	similar	
trend	was	 seen	 in	 the	 levels	 of	 positive	 nuclei,	with	 RRM1	 inducing	 a	 slightly	 stronger	
response	than	Chk1	knockdown.	RRM1	knockdown	produced	a	higher	percentage	of	cells	
that	showed	very	bright	staining	and	the	cell	morphology	was	also	altered	with	the	nuclei	
appearing	much	larger	than	in	Control	1	cells	(Fig.3.4.1.1).	However,	neither	knockdown	
of	 Chk1	 or	 RRM1	 produced	 a	 statistically	 significant	 increase	 in	 T21	 positive	 nuclei	 (p	
values	0.09	and	0.12	respectively;	Fig	3.4.1.2).	

	
Figure	3.4.1.1	RPA2	T21	staining	in	RPE-1	cells.		
Representative	 images	 of	 RPE-1	 cells	 reverse	 transfected	with	 Control	 1,	 Chk1	 or	 RRM1	 siRNA	and	
DharmaFECT	1.	 Cells	were	 grown	 for	 48	 hours	 post-transfection	 before	 fixing.	 Once	 fixed,	 the	 cells	
were	permeabilised	with	0.5	%	Triton	X-100	and	3%	BSA.	The	cells	were	 stained	with	an	antibody	
raised	against	the	T21	phospho-site	within	RPA2.	
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Figure	3.4.1.2	Percentage	of	RPE-1	cells	positive	
for	T21	foci.		
For	each	condition	the	number	of	cells	were	counted	
and	 the	 percentage	 of	 T21	 positive	 nuclei	 was	
calculated.	 A	 nucleus	 was	 considered	 positive	 if	 it	
contained	 10	 or	 more	 bright	 T21	 foci.	 Asterisks	
indicate	 significant	 difference	 from	 Control	 1,	 p	
value	 <0.05.	 Mean	 values	 derived	 from	 three	
independent	 experiments,	 with	 their	 respective	
SEMs.	

3.4.2	Phospho-RPA2	Replication	Stress	Detection	in	SW480	

The	adenocarcinoma	derived	SW480	 cell	 line	 and	HCT116	differ	 in	 their	MMR	and	p53	
status.	The	T21	protocol	was	repeated	in	this	cell	line	to	assess	the	possible	effects	of	MIN	
and	p53	deficiency	on	the	levels	of	replication	stress	detected	(Fig.	3.4.2.1	and	Fig.	3.4.2.2).		

	
Figure	3.4.2.1	RPA2	T21	staining	in	SW480	cells.		
Representative	 images	of	SW480	cells	 reverse	 transfected	with	Control	1,	Chk1	or	RRM1	siRNA	and	
DharmaFECT	1.	 Cells	were	 grown	 for	 48	 hours	 post-transfection	 before	 fixing.	 Once	 fixed,	 the	 cells	
were	permeabilised	with	0.5	%	Triton	X-100	and	3%	BSA.	The	cells	were	 stained	with	an	antibody	
raised	against	the	T21	phospho-site	within	RPA2.	 	
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Figure	3.4.2.2	Percentage	of	SW480	cells	positive	 for	
T21	foci.		
For	each	condition	the	number	of	cells	were	counted	and	
the	 percentage	 of	 T21	 positive	 nuclei	 was	 calculated.	 A	
nucleus	was	considered	positive	if	it	contained	10	or	more	
bright	 T21	 foci.	 Asterisks	 indicate	 significant	 difference	
from	Control	1,	p	value	<0.05.	Mean	values	derived	 from	
three	 independent	 experiments,	 with	 their	 respective	
SEMs.	
	

As	with	RPE-1	cells,	the	staining	pattern	observed	in	the	SW480	cells	was	similar	to	that	
seen	in	HCT116.	However,	in	these	cells,	Chk1	knockdown	produced	a	higher	percentage	
of	positive	nuclei	than	loss	of	RRM1	(Fig.3.4.2.2).	Nonetheless,	the	RRM1	knockdown	again	
produced	more	cells	with	a	very	high	number	of	foci	(Fig.3.4.2.1).	The	knockdown	of	both	
genes	produced	a	significant	increase	in	the	level	of	T21	positive	nuclei	observed	with	p	
values	of	0.0003	and	0.043	respectively	(Fig.3.4.2.2).		

3.4.3	Phospho-RPA2	Replication	Stress	Detection	in	p53	Deficient	HCT116	

The	T21	staining	protocol	was	carried	out	in	HCT116	with	p53	function	abolished	by	HR	
(Bunz	 et	 al,	 1998),	 a	 kind	 gift	 from	Professor	M.	Meuth.	 These	were	 used	 to	 assess	 the	
effects	of	p53	disruption	in	an	otherwise	unchanged	genetic	background	(Fig.3.4.3.1	and	
Fig	3.4.3.2).	It	was	anticipated	that	these	p53	deficient	cells	could	be	utilised	to	detect	any	
replication	stress	suppressors	that	conferred	a	synthetic	lethal	relationship	with	p53	loss.		

	
Figure	3.4.3.1	RPA2	T21	staining	in	HCT116	p53	Null	Cells.		
Representative	 images	 of	HCT116	 p53	Null	 cells	 reverse	 transfected	with	 Control	 1,	 Chk1	 or	 RRM1	
siRNA	and	DharmaFECT	1.	Cells	were	grown	for	48	hours	post-transfection	before	fixing.	Once	fixed,	
the	 cells	were	 permeabilised	with	 0.5	%	Triton	X-100	 and	 3%	BSA.	 The	 cells	were	 stained	with	 an	
antibody	raised	against	the	T21	phospho-site	within	RPA2.		 	
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Figure	 3.4.3.2	 Percentage	 of	 HCT116	 p53	Null	
cells	positive	for	T21	foci.	
For	each	condition	the	number	of	cells	were	counted	
and	 the	 percentage	 of	 T21	 positive	 nuclei	 was	
calculated.	 A	 nucleus	 was	 considered	 positive	 if	 it	
contained	 10	 or	 more	 bright	 T21	 foci.	 Asterisks	
indicate	significant	difference	from	Control,	p	value	
<0.05.	Mean	values	derived	from	three	independent	
experiments,	with	their	respective	SEMs.	
	

The	 p53	 deficient	 HCT116	 cells	 produced	 the	 same	 scoring	 trend	 as	 the	 p53	 deficient	
SW480	 cell	 line,	with	 a	 higher	 level	 of	 replication	 stress	 detected	 in	 the	 Chk1	 knocked	
down	cells	than	the	RRM1.	Chk1	and	RRM1	knockdown	resulted	in	a	significant	increase	
in	 the	 levels	of	 replication	stress	detected	when	compared	to	Control	1	 transfected	cells	
with	p	values	0.0028	and	0.0013	respectively	(Fig.	3.4.3.2).	

3.4.4	Comparison	of	Phospho-RPA2	Detection	in	the	Cell	Line	Panel	

Comparison	 of	 the	 HCT116	wild	 type	 scoring	 data	 and	 that	 obtained	 from	 RPE-1	 cells	
shows	that	 the	RPE-1	Control	1	 transfected	population	displayed	a	higher	proportion	of	
cells	positive	for	replication	stress,	which	was	unexpected	(Fig	3.4.4.1).	However,	in	both	
the	Chk1	and	RRM1	knocked	down	cells,	the	level	of	positive	nuclei	observed	was	lower	in	
the	RPE-1,	suggesting	that	the	loss	of	replication	stress	suppressors	had	less	of	an	effect	in	
this	cell	line.		

Figure	3.4.4.1	Comparison	of	the	percentage	of	HCT116	wild	type,	RPE-1,	SW480	and	HCT116	
p53	null	cells	positive	for	T21	foci.		
For	each	condition	the	number	of	cells	were	counted	and	the	percentage	of	T21	positive	nuclei	was	
calculated.	A	nucleus	was	considered	positive	if	it	contained	10	or	more	bright	T21	foci.	Mean	values	
derived	from	three	independent	experiments	with	error	bars	representing	the	SEM.	
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Likewise,	the	SW480	Control	1	siRNA	transfected	cells	showed	a	higher	background	level	
of	replication	stress	compared	to	the	HCT116	wild	type	cells.	In	this	cell	 line,	the	loss	of	
Chk1	also	appeared	to	have	a	greater	effect	upon	the	levels	of	replication	stress	observed	
compared	to	 the	knockdown	of	RRM1	which	was	not	observed	 in	the	HCT116	wild	type	
cells.	Very	similar	results	were	seen	when	comparing	the	HCT116	wild	type	and	HCT116	
p53	null	cells.	This	suggests	that	the	higher	basal	levels	and	greater	dependence	on	Chk1	
for	suppressing	replication	stress	were	due	to	the	loss	of	p53	in	the	SW480	cells.	

3.5	High	Throughput	Phospho-RPA2	Replication	Stress	Detection	

For	 the	 identification	 of	 heightened	 replication	 stress	 following	 gene	 knockdown	 on	 a	
genome-wide	 scale,	 a	 high	 throughput	 assay	 was	 required	 and	 was	 developed	 at	 the	
Sheffield	RNAi	Screening	Facility	(SRSF).		

3.5.1	Initial	High	Throughput	Staining	Protocol	

The	protocol	previously	optimised	 in	24	well	plates	was	scaled	down	 into	 the	384	well	
format	with	some	minor	adjustments,	as	described	in	section	2.2.1.5	due	to	the	nature	of	
this	 plate	 type.	 The	 initial	 optimisation	 experiment	 aimed	 to	 determine	 which	
concentration	of	the	T21	pRPA2	antibody	to	use	in	this	assay.	For	this,	HCT116	cells	were	
reverse	transfected	for	48	or	72	hours	with	non-targeting	Control	1	or	Chk1	siRNA	using	
DharmaFECT	1.	The	cells	were	fixed	with	4%	PFA	containing	a	1:500	dilution	of	Hoescht,	
permeabilised	 for	 5	 minutes	 with	 0.5%	 Triton	 X-100	 and	 3%	 BSA	 and	 stained	 with	 a	
titration	of	the	T21	pRPA	primary	antibody	(1:250	-	1:1000).	Images	were	captured	with	
the	20X	objective	of	 the	Molecular	Devices	 ImageXpress	Micro	High	Content	Microscope	
(Fig.	3.5.1.1	and	Fig	3.5.1.2).		

In	both	assay	plates,	the	T21	antibody	appeared	to	have	entered	the	cells	but	did	not	stain	
the	nucleus	strongly.	In	the	48	hour	plate	(Fig.3.5.1.1)	very	little	difference	was	observed	
between	 the	 Control	 1	 and	 Chk1	 knocked	 down	 cells.	Whilst	 pRPA2	 staining	 appeared	
stronger	in	the	72	hour	plate	(Fig.3.5.1.2)	only	a	few	Chk1	knocked	down	cells	appeared	
brightly	stained.	The	 levels	of	background	staining	were	high	and	no	clear	 foci	could	be	
detected	at	any	antibody	concentration.	Upon	examination	of	 the	 images,	 it	was	deemed	
that	the	staining	was	not	suitable	for		analysis	due	to	the	lack	of	foci	perceived.		
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Figure	3.5.1.1	RPA2	T21	staining	with	initial	high	throughput	protocol		
Representative	 images	 of	 HCT116	 cells	 reverse	 transfected	 with	 Control	 1	 or	 Chk1	 siRNA	 and	
DharmaFECT	1	and	grown	for	(A)	48	or	(B)	72	hours	post-transfection.	Once	fixed	and	permeabilised	
with	 0.5%	Triton	 X-100	 and	 3%	BSA	 for	 5	minutes,	 cells	were	 stained	with	 a	 1:250	 dilution	 of	 an	
antibody	raised	against	the	T21	site	in	RPA2.	
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3.5.2	Time	Course	to	Determine	Optimum	Extraction	Time		

As	 the	 initial	 staining	protocol	was	not	 successful,	 further	optimisation	was	 required	 to	
produce	a	staining	pattern	suitable	for	scoring	in	this	plate	type.	Due	to	the	dimensions	of	
the	plate	and	the	use	of	automated	aspiration,	the	incubation	time	with	4%	PFA	had	to	be	
increased	 to	 achieve	 optimal	 fixation	 of	 the	 cells.	 A	 similar	 approach	 was	 trialled	 with	
0.5%	Triton	X-100	and	3%	BSA	to	assess	if	increasing	the	extraction	time	would	improve	
the	 levels	 of	 antibody	 entering	 the	 nucleus.	 The	 experiment	 was	 set	 up	 as	 previously	
described	but	with	extraction	times	of	5,	7,	10	or	15	minutes	and	a	single	concentration	of	
T21	primary	antibody	(1:250)	(Fig.3.5.2.1	and	Fig	3.5.2.2).		

	

Figure	3.5.2.1	Extraction	time	course	in	384	well	plate	at	48	hours.	
Representative	 images	 of	 HCT116	 cells	 reverse	 transfected	 with	 Control	 1	 or	 Chk1	 siRNA	 and	
DharmaFECT	1	 and	grown	 for	 48	 hours	 post-transfection.	 Once	 fixed	 and	 permeabilised	with	 0.5%	
Triton	X-100	and	3%	BSA	 for	5,	7,	10	or	15	minutes,	 cells	were	 stained	with	a	1:250	dilution	of	an	
antibody	raised	against	the	T21	site	in	RPA2.		
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In	both	assay	plates,	the	staining	with	a	5	minute	extraction	was	poor	with	little	antibody	
entering	the	nucleus	(Fig.3.5.2.1	and	Fig.	3.5.2.2).	As	 the	extraction	time	 increased	 to	10	
minutes,	the	level	of	nuclear	staining	increased	slightly.	Conversely,	at	the	15	minute	time	
point,	the	antibody	signal	appeared	to	have	diffused	out	of	the	cells,	probably	due	to	over	
permeabilisation	of	the	cytoplasmic	membrane.	The	10	minute	time	point	was	therefore	
chosen	for	all	further	high	throughput	screening	experiments	to	improve	the	nuclear	entry	
of	the	antibody.			

	

Figure	3.5.2.2	Extraction	time	course	in	384	well	plate	at	72	hours.	
Representative	 images	 of	 HCT116	 cells	 reverse	 transfected	 with	 Control	 1	 or	 Chk1	 siRNA	 and	
DharmaFECT	1	 and	grown	 for	 72	 hours	 post-transfection.	 Once	 fixed	 and	 permeabilised	with	 0.5%	
Triton	X-100	and	3%	BSA	 for	5,	7,	10	or	15	minutes,	 cells	were	 stained	with	a	1:250	dilution	of	an	
antibody	raised	against	the	T21	site	in	RPA2.		
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3.5.3	High	Throughput	Staining	Protocol	with	Increased	Extraction	Time	

The	 T21	 primary	 antibody	 titration	 (1:250	 –	 1:1000)	 was	 repeated	 with	 the	 optimal	
extraction	 time	 (10	 minutes)	 identified	 previously	 to	 determine	 the	 concentration	 of	
primary	antibody	to	be	used	in	the	final	screening	assay	(Fig.3.5.3.1).		

	

Figure	3.5.3.1	RPA2	T21	staining	10	minute	extraction	at	72	hours.		
Representative	 images	 of	 HCT116	 cells	 reverse	 transfected	 with	 Control	 1	 or	 Chk1	 siRNA	 and	
DharmaFECT	1	 and	grown	 for	 72	 hours	 post-transfection.	 Once	 fixed	 and	 permeabilised	with	 0.5%	
Triton	 X-100	 and	 3%	BSA	 for	 10	minutes,	 cells	were	 stained	with	 a	 1:250	 dilution	 of	 an	 antibody	
raised	against	the	T21	site	in	RPA2.		

Antibody	staining	appeared	to	be	increased	when	compared	to	the	images	obtained	for	the	
initial	staining	procedure,	yet	the	antibody	staining	was	still	not	sufficient	for	automated	
scoring.	Very	 little	difference	 in	 the	proportions	of	 highly	 stained	nuclei	were	observed	
between	the	Control	1	and	Chk1	knocked	down	cells.	Unfortunately,	 images	could	not	be	
obtained	for	the	48	hour	plate	due	to	a	lack	of	cells	present	in	the	wells.	This	was	due	to	an	
error	made	during	the	fixation	of	the	plates,	where	Triton	X-100	at	0.5%	was	added	to	the	
plates	in	the	place	of	4%	PFA.	As	the	increased	extraction	time	proved	insufficient	to	allow	
the	 differentiation	 between	 Control	 1	 and	 Chk1	 knocked	 down	 cells,	 the	 48	 hour	
experiment	was	not	repeated	in	favour	of	further	optimisation.		

3.5.4	High	Throughput	Staining	Protocol	with	Cold	Pre-Extraction	

It	was	decided	to	add	a	pre-extraction	step	before	the	fixation	of	the	cells	to	remove	their	
cytoplasm	as	well	as	permeabilising	the	nuclear	membrane.	The	rationale	for	its	inclusion	
was	that	pre-extraction	is	commonly	used	to	reduce	non-specific	antibody	staining	whilst	
improving	access	of	the	antibody	to	the	nucleus.	The	decision	was	also	made	to	include	the	
Hoechst	in	the	secondary	antibody	incubation,	rather	than	in	the	fixative	step	to	prevent	
any	interactions	with	the	binding	of	the	primary	antibody	to	chromatin	associated	RPA2.	A	
2mM	overnight	HU	treatment	was	included	as	a	transfection	independent	positive	control.	
HCT116	cells	were	transfected	as	previously	and	were	either	treated	or	mock	treated	with	
HU	16	hours	prior	to	fixing.	A	5	minute	incubation	with	the	cold	pre-	extraction	buffer	at	
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4°C	 was	 included	 before	 the	 fixing	 of	 the	 cells	 in	 4%	 PFA	 alone.	 The	 cells	 were	 then	
extracted	and	stained	with	1:250	dilution	of	the	T21	antibody	and	with	the	addition	of	the	
Hoechst	in	the	secondary	antibody	incubation	(Fig.3.5.4.1	and	Fig.	3.5.4.2).	

	

Figure	3.5.4.1	RPA2	staining	T21	of	Chk1	knocked	down	HCT116	with	cold	pre-extraction	at	48	
hours.		
Representative	 images	 of	 HCT116	 cells	 reverse	 transfected	 with	 Control	 1	 or	 Chk1	 siRNA	 and	
DharmaFECT	1	and	grown	for	48	hours	post-transfection.	Cells	were	mock	treated	with	PBS	or	treated	
with	2mM	HU	 for	16	hours	before	 fixing.	Cells	were	 incubated	with	cold	pre-extraction	buffer,	 fixed	
and	then	further	permeabilised	with	0.5%	Triton	X-100	and	3%	BSA	for	5	minutes.	Cells	were	stained	
with	a	1:250	dilution	of	an	antibody	raised	against	the	T21	site	in	RPA2.		
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Figure	3.5.4.2	RPA2	staining	T21	of	Chk1	knocked	down	HCT116	with	cold	pre-extraction	at	72	
hours.		
Representative	 images	 of	 HCT116	 cells	 reverse	 transfected	 with	 Control	 1	 or	 Chk1	 siRNA	 and	
DharmaFECT	1	and	grown	for	72	hours	post-transfection.	Cells	were	mock	treated	with	PBS	or	treated	
with	2mM	HU	 for	16	hours	before	 fixing.	Cells	were	 incubated	with	cold	pre-extraction	buffer,	 fixed	
and	then	further	permeabilised	with	0.5%	Triton	X-100	and	3%	BSA	for	5	minutes.	Cells	were	stained	
with	a	1:250	dilution	of	an	antibody	raised	against	the	T21	site	in	RPA2.		

At	both	the	48	and	72	hour	time	points,	very	few	cells	remained	in	the	wells	once	the	cells	
were	permeabilised	and	fixed.	The	48	hour	plate	showed	a	very	high	level	of	background	
staining	in	the	Control	1	siRNA	transfected	wells	and	discrete	foci	could	not	be	observed.	
The	addition	of	HU	or	the	knockdown	of	Chk1	alone	failed	to	raise	the	levels	of	T21	foci	
detected	 in	 this	 assay.	 However,	 when	 combined,	 the	 T21	 stain	 appeared	 brighter	 and	
clear	foci	could	be	distinguished	in	some	of	the	wells.	The	72	hour	plate	showed	a	very	low	
level	of	T21	staining	making	it	very	difficult	to	focus	the	microscope	in	the	Cy5	channel.	As	
a	result	of	this,	the	plate	had	to	be	imaged	using	the	10X	objective	rather	than	the	20X	to	
detect	 the	T21	signal.	No	differences	could	be	detected	 in	the	 levels	of	staining	between	
the	different	conditions.	
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As	the	Chk1	knockdown	was	not	showing	a	detectable	difference	when	compared	to	the	
Control	1	cells	in	this	assay,	the	decision	was	made	to	test	the	RRM1	siRNA	in	this	format.	
This	 siRNA	 had	 showed	 a	 stronger	 induction	 of	 T21	 phosphorylation	 than	 Chk1	
knockdown	 by	 western	 blotting	 (Fig.	 3.2.1)	 and	 so	 it	was	 thought	 that	 this	 siRNA	may	
prove	 a	more	 successful	 positive	 control	 in	 the	 high	 throughput	 assay.	 The	 experiment	
was	 repeated	 as	 previously	 described	 with	 the	 ice	 cold	 pre-extraction	 step,	 the	 only	
difference	 being	 the	 inclusion	 of	 RRM1	 siRNA	 in	 the	 place	 of	 Chk1	 (Fig.3.5.4.3	 and	 Fig	
3.5.4.4).	As	with	the	previous	assay,	insufficient	cells	were	imaged	due	to	a	scarcity	of	cells	
remaining	in	the	wells,	even	when	the	number	of	images	taken	per	well	was	doubled.		

	

Figure	3.5.4.3	RPA2	T21	staining	of	RRM1	knocked	down	cells	with	cold	pre-extraction	at	48	
hours.		
Representative	 images	 of	 HCT116	 cells	 reverse	 transfected	 with	 Control	 1	 or	 RRM1	 siRNA	 and	
DharmaFECT	1	and	grown	for	48	hours	post-transfection	Cells	were	mock	treated	with	PBS	or	treated	
with	2mM	HU	 for	16	hours	before	 fixing.	Cells	were	 incubated	with	 cold	pre-extraction	buffer,	 fixed	
and	then	further	permeabilised	with	0.5%	Triton	X-100	and	3%	BSA	for	5	minutes.	Cells	were	stained	
with	a	1:250	dilution	of	an	antibody	raised	against	the	T21	site	in	RPA2.		
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Figure	3.5.4.4	RPA2	T21	staining	of	RRM1	knocked	down	cells	with	cold	pre-extraction	at	72	
hours.		
Representative	 images	 of	 HCT116	 cells	 reverse	 transfected	 with	 Control	 1	 or	 RRM1	 siRNA	 and	
DharmaFECT	1	and	grown	for	72	hours	post-transfection.	Cells	were	mock	treated	with	PBS	or	treated	
with	2mM	HU	 for	16	hours	before	 fixing.	Cells	were	 incubated	with	cold	pre-extraction	buffer,	 fixed	
and	then	further	permeabilised	with	0.5%	Triton	X-100	and	3%	BSA	for	5	minutes.	Cells	were	stained	
with	a	1:250	dilution	of	an	antibody	raised	against	the	T21	site	in	RPA2.		

In	 the	48	hour	 assay,	RRM1	knockdown	alone	was	 sufficient	 to	produce	 a	difference	 in	
staining	when	compared	to	 the	untreated	Control	1	cell	populations.	Clear	 foci	could	be	
detected	 in	several	cells	 in	both	 the	RMM1	knockdown	and	HU	treated	wells	suggesting	
that	the	antibody	was	reaching	the	nucleus	in	sufficient	quantities	in	this	assay.	On	the	72	
hour	plate,	RRM1	knockdown	alone	failed	to	produce	foci,	however	bright	cells	could	be	
seen	 in	 the	 images	 but	 they	 were	 not	 in	 sharp	 focus.	 Even	 though	 this	 assay	 seemed	
capable	 of	 producing	 cells	 containing	 bright	 foci,	 several	 factors	 prevented	 the	
continuation	 of	 cold	 pre-extraction	 as	 a	 viable	 method	 for	 preparing	 screening	 plates,	
including	the	lack	of	cells	present	at	the	end	of	the	assay	and	logistical	concerns	regarding	
the	cold	incubation.	A	decision	was	therefore	made	to	pursue	other	methods	of	improving	
the	extraction	of	the	cells	to	maintain	the	high	throughput	nature	of	the	assay.		
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3.5.5	Triton	X-100	Titration	to	Determine	Optimum	Concentration	for	Extraction	

As	 the	 cold	 pre-extraction	 procedure	 was	 deemed	 impractical	 for	 high	 throughput	
screening,	an	alternative	method	of	 increasing	 the	permeabilisation	of	 the	 cell’s	nucleus	
was	required.	As	a	longer	extraction	time	decreased	the	nuclear	antibody	signal	detected,	
a	titration	of	Triton	X-100	was	carried	out	to	determine	the	optimum	concentration	for	a	
10	minute	incubation.	Solutions	of	0.5%,	0.75%	or	1.0%	Triton	X-100	with	3%	BSA	were	
used	to	extract	Control	1	or	RRM1	siRNA	transfected	cells.	These	were	then	stained	with	
T21	 antibody	 diluted	 at	 1:250.	 The	 plate	 was	 imaged	 using	 the	 Cy5	 channel	 and	 20X	
objective	 and	 the	 Texas	 Red	 channel	 with	 both	 the	 20X	 and	 40X	 objectives	 to	 detect	
different	 wavelengths	 of	 light	 being	 emitted	 by	 the	 secondary	 antibody’s	 fluorophore	
(Fig.3.5.5.1	 and	 3.5.5.2).	 The	 assay	 was	 not	 carried	 out	 at	 72	 hours	 as	 in	 previous	
experiments	 the	extended	transfection	plates	had	shown	 increased	levels	of	background	
staining.	

	

Figure	3.5.5.1	Triton	X-100	Titration	in	RPA2	T21	stained	cells	imaged	in	the	Cy5	channel	
Representative	 images	 of	 HCT116	 cells	 reverse	 transfected	 with	 Control	 1	 or	 RRM1	 siRNA	 and	
DharmaFECT	1	and	grown	for	48	hours	post-transfection.	Once	fixed	the	cells	were	permeabilised	with	
0.5%,	0.75%	or	1.0%	Triton	X-100	and	3%	BSA	for	10	minutes.	Cells	were	stained	with	a	1:250	dilution	
of	an	antibody	raised	against	the	T21	 site	 in	RPA2.	Cells	were	 imaged	using	the	Cy5	channel	of	 the	
Molecular	Devices	ImageXpress	Micro	High	Content	Microscope.	
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Figure	 3.5.5.2	 Triton	 X-100	 Titration	 in	 RPA2	 T21	 stained	 cells	 imaged	 in	 the	 Texas	 Red	
channel.	
Representative	 images	 of	 HCT116	 cells	 reverse	 transfected	 with	 Control	 1	 or	 RRM1	 siRNA	 and	
DharmaFECT	1	and	grown	for	48	hours	post-transfection.	Once	fixed	the	cells	were	permeabilised	with	
0.5%,	0.75%	or	1.0%	Triton	X-100	and	3%	BSA	for	10	minutes.	Cells	were	stained	with	a	1:250	dilution	
of	an	antibody	raised	against	 the	T21	 site	 in	RPA2.	Cells	were	 imaged	using	the	Texas	Red	channel	
with	a	40X	objective	on	the	Molecular	Devices	ImageXpress	Micro	High	Content	Microscope.	

When	 the	 plate	 was	 imaged	 using	 the	 Cy5	 channel,	 little	 differences	 could	 be	 detected	
between	 the	Control	1	 and	RRM1	knocked	down	cells	 (Fig.3.5.5.1).	Most	 of	 the	brightly	
stained	 cells	 observed	 were	 mitotic	 and	 so	 of	 little	 interest	 in	 this	 assay.	 However,	
switching	 to	 the	 Texas	 Red	 channel	 greatly	 improved	 the	 detection	 of	 the	 secondary	
antibody	 signal	 (Fig.3.5.5.2);	 a	 reduced	 level	 of	 background	 staining	 was	 observed	 and	
clear	foci	could	be	detected	in	the	RRM1	knocked	down	cells	at	40X.	Increasing	the	Triton	
X-100	 concentration	 used	 to	 permeabilised	 the	 plates	 improved	 the	 levels	 of	 antibody	
entering	the	nucleus	and	aided	in	the	clear	detection	of	foci	by	reducing	the	non-specific	
staining,	 as	 seen	 in	 Figure	 3.5.5.2.	 However,	 in	 some	wells	where	 a	 1.0%	Triton	 X-100	
solution	 had	 been	 used,	 the	 antibody	 signal	 had	 started	 to	 diffuse	 out	 of	 the	 nucleus,	
suggesting	 the	 nuclear	 membrane	 had	 been	 over	 permeabilised.	 To	 prevent	 this	 from	
occurring	in	future	experiments,	a	solution	of	0.75%	Triton	X-100	and	3%	BSA	in	PBS	was	
chosen	to	permeabilise	the	cells.	
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3.5.6	High	Throughput	Staining	Protocol	with	Increased	Triton	X-100	Concentration	

The	 increased	 Triton	 X-100	 concentration	 of	 0.75%	 was	 next	 used	 to	 extract	 Chk1	 or	
RRM1	 knocked	 down	 cells	 in	 an	 attempt	 to	 determine	 the	 concentration	 of	 primary	
antibody	 to	 be	 used	 in	 the	 final	 screening	 assay.	 Cells	were	 reverse	 transfected	 for	 48	
hours	 using	 DharmaFECT	 1	 and	 fixed	 and	 extracted	 as	 previously	 described.	 The	 cells	
were	then	stained	with	a	titration	of	RPA2	T21	primary	antibody	from	a	1:250	dilution	to	
a	1:1000	dilution	(Fig.3.5.6.1).		

	

Figure	3.5.6.1	RPA2	T21	staining	of	Chk1	or	RRM1	knocked	down	cells	with	increased	Triton	X-
100.		
Representative	 images	of	HCT116	cells	reverse	transfected	with	Control	1,	Chk1	or	RRM1	siRNA	and	
DharmaFECT	1	and	grown	for	48	hours	post-transfection.	Once	fixed	the	cells	were	permeabilised	with	
0.75%	 Triton	 X-100	 and	 3%	 BSA	 for	 10	 minutes.	 Cells	 were	 stained	 with	 a	 1:250	 dilution	 of	 an	
antibody	raised	against	the	T21	site	in	RPA2.	

Increasing	 the	 Triton	 X-100	 concentration	 and	 imaging	 the	 plate	 using	 the	 Texas	 Red	
channel	 allowed	 for	 differentiation	 between	 the	 Control	 1	 and	 Chk1	 or	 RRM1	 knocked	
down	 cells	 (Fig.3.5.6.1).	 The	 RRM1	 knocked	 down	wells	 contained	 fewer	 cells	 than	 the	
other	conditions,	suggesting	that	re-optimisation	of	cell	number	may	be	required.	In	some	
of	 the	 Control	 1	 transfected	 wells,	 a	 higher	 than	 expected	 proportion	 of	 cells	 stained	
brightly	 for	 T21	 foci,	 which	 would	 reduce	 the	 screening	 window	 of	 the	 assay.	 This	
prevented	the	selection	of	an	antibody	concentration	for	screening	as	further	optimisation	
of	the	non-targeting	Controls	was	required.		



Phospho-RPA2	RNAi	Screen	Development	

	 120	

3.5.7	Assessment	of	Non-Targeting	Controls	in	High	Throughput	Staining	Protocol	

As	the	Control	1	siRNA	used	in	previous	experiments	appeared	to	be	producing	a	higher	
than	expected	proportion	of	brightly	stained	cells,	the	complete	panel	of	ON-TARGETplus	
non-targeting	Control	siRNAs	were	tested	in	the	assay.	Cells	were	reverse	transfected	with	
Control	1,	2,	3,	4	and	the	non-targeting	siRNA	Control	Pool	(comprised	of	Control	siRNA	1	
to	 4),	 as	 well	 as	 Chk1	 and	 RRM1	 as	 positive	 controls	 for	 replication	 stress.	 Cells	were	
grown	for	48	hours	post	transfection,	fixed	and	extracted	as	previously	described	and	then	
stained	with	a	1:250	dilution	of	the	RPA2	T21	antibody	(Fig.3.5.7.1).	

	

Figure	3.5.7.1	RPA2	T21	staining	of	Control	Panel	and	Chk1	or	RRM1	knocked	down	cells.		
Representative	images	of	HCT116	cells	reverse	transfected	with	Control	1,	2,	3,	4,	Control	Pool,	Chk1	or	
RRM1	siRNA	and	DharmaFECT	1	and	grown	for	48	hours	post-transfection.	Once	fixed	the	cells	were	
permeabilised	with	0.75%	Triton	X-100	and	3%	BSA	for	10	minutes.	Cells	were	stained	with	a	1:250	
dilution	of	an	antibody	raised	against	the	T21	site	in	RPA2.	

The	 images	were	 deemed	 to	 be	 of	 high	 enough	 quality	 to	 assess	 using	 the	MetaXpress	
Custom	Module	 Editor.	 This	 was	 used	 to	 calculate	 the	 average	 number	 of	 foci	 per	 cell	
(Fig.3.5.7.2A)	and	the	exact	number	of	foci	present	within	each	cell	imaged.	This	individual	
cell	data	was	then	used	to	determine	how	many	cells	were	positive	for	T21	foci,	with	cells	
containing	more	than	10	foci	being	considered	positive	(Fig	3.5.7.2B).		
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Figure	3.5.7.2	Comparison	of	average	data	and	individual	cell	data	generated	by	MetaXpress	
Custom	Module	Editor.		
For	each	condition	MetaXpress	Custom	Module	Editor	calculated	the	(A)	average	number	of	 foci	per	
cell	 and	 the	 number	 of	 foci	 in	 each	 individual	 cell.	 (B)	 The	 individual	 cell	 data	 was	 then	 used	 to	
calculate	the	number	of	positive	nuclei.	A	nucleus	was	considered	positive	if	it	contained	10	or	more	
bright	T21	foci.	Values	derived	from	one	experiment.	

The	most	 toxic	non-targeting	siRNA	used	 in	 the	assay	was	 the	Control	Pool	as	it	has	the	
combined	 toxicity	 of	 all	 four	 individual	 siRNAs.	 Control	 1	 and	 Control	 2	 produced	 the	
lowest	level	of	replication	stress	with	Controls	3	and	4	producing	a	higher	level	of	stressed	
cells.	 However,	 as	 this	 was	 still	 below	 10%	 and	 produced	 a	 signal	 window	 of	 33.95%	
(between	Control	 3	and	Chk1),	 any	of	 the	 four	would	be	 acceptable	 for	use	 in	 the	 final	
screening	assay.		

Both	the	average	data	(Fig.3.5.7.2	A)	and	the	individual	cell	data	(Fig.3.5.7.2.B)	produced	a	
similar	 trend	 across	 the	 siRNAs	 and	 could	 differentiate	 between	 the	 non-targeting	
Controls	and	the	positive	controls.	However,	 it	was	decided	to	analyse	all	 further	assays	
using	the	individual	cell	data	as	it	gave	more	information	about	the	frequency	of	positive	
cells	in	a	well.		

Again,	the	number	of	cells	remaining	in	the	wells	at	the	end	of	the	experiment	were	much	
lower	than	desired.	The	levels	of	replication	stress	being	produced	by	the	Chk1	and	RRM1	
knockdown	were	also	lower	than	expected	so	further	optimisation	of	the	screening	assay	
was	carried	out	to	try	and	improve	this.		

3.5.8	Re-optimisation	of	High	Throughput	Assay	Conditions	

As	 the	 cell	 numbers	 and	 transfection	 efficiency	 appeared	 to	 be	 sub-optimal	 in	 previous	
experiments,	the	screening	assay	was	re-optimised	to	try	to	rectify	this.	Cells	were	plated	
at	1000,	1500	and	2000	cells	per	well	to	see	if	increased	plating	density	resulted	in	more	
cells	 remaining	 at	 the	 end	 of	 the	 assay.	 An	 increased	 concentration	 of	 DharmaFECT	 1	
(0.04µl	 compared	 to	 0.01µl	 per	 well)	was	 trialled	 to	 try	 and	 improve	 the	 efficiency	 of	
transfection.	The	72	hour	time	point	was	also	re-introduced	in	an	attempt	to	improve	the	
efficiency	of	the	gene	knockdown.		
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The	 cells	 were	 transfected	with	 Control	 3	 siRNA,	 as	 this	 produced	 the	 highest	 level	 of	
stress	in	the	previous	assay	and	Chk1	and	RRM1	siRNA	were	used	as	positive	controls	for	
replication	 stress	 (Table	 3.5.8.1,	 Fig	 3.5.8.1,	 Fig	 3.5.8.2	 and	 Fig	 3.5.8.3).	 The	 cells	 were	
fixed	and	stained	as	previously	described	with	a	1:250	dilution	of	RPA2	T21.		

	

Table	3.5.8.1	Automated	scoring	of	re-optimised	high	throughput	screening	assay.		
For	each	condition	the	number	of	cells	and	foci	were	counted	and	the	number	of	cells	positive	for	T21	
foci	were	calculated.	A	nucleus	was	considered	positive	if	it	contained	10	or	more	bright	T21	foci.	Two	
wells	were	assessed	per	condition.	

Increasing	the	concentration	of	DharmaFECT	1	reduced	the	numbers	of	cells	imaged	in	the	
gene	 knockdown	wells	 of	 the	 48	 hour	 plate	 and	 drastically	 diminished	 the	 numbers	 of	
cells	 present	 in	 all	 conditions	 of	 the	 72	 hour	 plate	 (Table	3.5.8.1).	 It	 also	 increased	 the	
levels	 of	 replication	 stress	 reported,	 especially	 at	 the	 72	 hour	 time	 point	 (Fig.3.5.8.1,	
3.5.8.2	and	3.5.8.3).	The	decision	was	made	 to	remain	at	0.01µl	DharmaFECT	1	 to	allow	
100	cells	to	be	captured	per	well	when	nine	sites	were	imaged.	

	 	

siRNA DharmaFECT1 Cells	Plated
48	hour 72	hour

Total	Cells T21	
Positive

%	T21	
Positive Total	Cells T21	

Positive
%	T21	
Positive

Control	3

0.01
1000 115 9 7.83 142 50 35.21
1500 154 22 14.29 255 21 8.24
2000 191 28 14.66 317 23 7.26

0.04
1000 114 19 16.67 9 8 88.89
1500 142 26 18.31 29 20 68.97
2000 201 34 16.92 80 53 66.25

Chk1

0.01
1000 103 50 48.54 49 33 67.35
1500 155 80 51.61 130 63 48.46
2000 194 26 13.40 189 122 64.55

0.04
1000 53 32 60.38 3 3 100.00
1500 63 45 71.43 12 11 91.67
2000 101 72 71.29 26 24 92.31

RRM1

0.01
1000 115 90 78.26 33 32 96.97
1500 141 120 85.11 85 71 83.53
2000 252 195 77.38 58 55 94.83

0.04
1000 21 21 100.00 1 0 0.00
1500 16 16 100.00 15 15 100.00
2000 111 111 100.00 6 6 100.00
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Figure	3.5.8.1	Re-optimisation	of	high	throughput	screening	assay	with	48	hour	transfection.	
Representative	images	of	HCT116	cells,	plated	at	1000,	1500	or	2000	cells	per	well,	reverse	transfected	
with	Control	3,	Chk1	or	RRM1	siRNA	and	(A)	0.01µl	or	(B)	0.04µl	DharmaFECT	1	per	well.	Cells	were	
grown	for	48	hours	post-transfection.	Once	fixed	the	cells	were	permeabilised	with	0.75%	Triton	X-100	
and	3%	BSA	for	10	minutes.	Cells	were	stained	with	a	1:250	dilution	of	an	antibody	raised	against	the	
T21	site	in	RPA2.	 	
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Figure	3.5.8.2	Re-optimisation	of	high	throughput	screening	assay	with	72	hour	transfection.	
Representative	images	of	HCT116	cells,	plated	at	1000,	1500	or	2000	cells	per	well,	reverse	transfected	
with	Control	3,	Chk1	or	RRM1	siRNA	and	(A)	0.01µl	or	(B)	0.04µl	DharmaFECT	1	per	well.	Cells	were	
grown	for	72	hours	post-transfection.	Once	fixed	the	cells	were	permeabilised	with	0.75%	Triton	X-100	
and	3%	BSA	for	10	minutes.	Cells	were	stained	with	a	1:250	dilution	of	an	antibody	raised	against	the	
T21	site	in	RPA2.	
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Figure	3.5.8.3	Automated	scoring	of	re-optimised	high	throughput	screening	assay.		
For	each	condition	the	number	of	cells	and	foci	were	counted.	The	number	of	cells	positive	for	T21	foci	
were	 calculated.	 A	 nucleus	was	 considered	 positive	 if	 it	 contained	 10	 or	more	 bright	 T21	 foci.	 (A)	
0.01µL	DharmaFECT	1,	 48	 hour	 transfection.	 (B)	 0.04µL	DharmaFECT	1,	 48	 hour	 transfection.	 (C)	
0.01µL	DharmaFECT	1,	 72	 hour	 transfection.	 (D)	 0.04µL	DharmaFECT	1,	 72	 hour	 transfection.	No	
cells	were	present	at	1000	cells	per	well	with	0.04µL	DharmaFECT1	and	a	72	hour	transfection.	Values	
derived	from	one	experiment.	

Extending	 the	 transfection	 time	 from	 48	 to	72	 hours	 increased	 the	 levels	 of	 replication	
stress	observed	 in	the	assay	(Fig.3.5.8.3),	however	even	at	0.01µL	DharmaFECT	1,	 there	
was	 a	 strong	 reduction	 in	 the	 number	 of	 cells	 imaged	 in	 the	 RRM1	 knockdown	 wells	
(Table	3.5.8.1).	As	a	 result	 of	 this,	 the	48	hour	 time	point	was	 favoured	over	 a	72	hour	
transfection	time.		

Increasing	the	plating	density	increased	the	number	of	cells	that	remained	in	the	well	at	
the	end	of	the	assay	(Table	3.5.8.1).	However,	it	did	not	have	a	dramatic	effect	on	the	levels	
of	 replication	stress	 reported	 in	 the	 assay	 (Fig.3.5.8.3),	 so	 it	 could	be	 increased	without	
compromising	the	assay	window.	All	future	assays	were	carried	out	at	2000	cells	per	well	
as	 this	 plating	 density	 returned	 approximately	 100	 cells	 per	 well	 at	 0.01µl	 per	 well	
DharmaFECT	1	with	48	hour	transfection	when	nine	sites	were	imaged	(Table	3.5.8.1).		
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3.5.9	High	Throughput	Staining	Protocol	with	Increased	Cell	Number	

Following	 the	previous	re-optimisation	experiment,	 the	assessment	of	 the	Control	Panel	
(excluding	the	Control	Pool)	was	repeated	with	the	increased	cell	plating	density	of	2000	
cells	per	well	to	try	and	improve	the	number	of	cells	imaged	per	condition.		

When	it	came	to	imaging	this	plate,	the	microscope	could	not	be	focused	appropriately	in	
the	 Texas	 Red	 channel	 when	 using	 the	 40X	 objective.	 However,	 when	 using	 the	 20X	
objective	the	foci	could	be	readily	observed.	The	decision	was	made	to	image	the	plate	at	
20X	 and	 then	write	 a	 scoring	 algorithm	 that	 could	 process	 the	 20X	 images	 (Fig.3.5.9.1,	
Table	3.5.9.1	and	Fig	3.5.9.2).	

	

Figure	3.5.9.1	RPA2	T21	staining	of	Control	Panel	and	Chk1	or	RRM1	knocked	down	cells	with	
increased	plating	density.		
Representative	 images	 of	 HCT116	 cells	 plated	 at	 2000	 cells	 per	 well	 and	 reverse	 transfected	 with	
Controls	 1,	 2,	 3,	 4,	 Chk1	 or	 RRM1	 siRNA	and	DharmaFECT	1.	 Cells	were	 grown	 for	 48	 hours	 post-
transfection.	 Once	 fixed	 the	 cells	were	 permeabilised	with	 0.75%	 Triton	 X-100	 and	 3%	 BSA	 for	 10	
minutes.	Cells	were	stained	with	a	1:250	dilution	of	an	antibody	raised	against	the	T21	site	in	RPA2.	

As	the	plate	was	imaged	at	20X	rather	than	40X,	no	judgement	could	be	made	on	whether	
the	increased	plating	density	would	result	in	a	sufficient	number	of	cells	being	imaged	at	
the	 end	 of	 the	 assay.	 It	 was	 also	 uncertain	 whether	 the	 20X	 scoring	 algorithm	 was	
accurately	detecting	the	number	of	foci	present	within	the	cells	as	all	the	Control	siRNAs	
tested	produced	much	higher	proportions	of	 positive	 cells	 than	expected	(Fig.3.5.9.2).	A	
working	20X	scoring	algorithm	would	have	been	very	useful	as	it	would	allow	more	cells	
to	be	counted	per	well	and	so	further	efforts	were	made	to	improve	its	functionality.		
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Figure	3.5.9.2	Automated	scoring	of	Control	Panel,	and	Chk1	or	RRM1	knocked	down	cells	with	
increased	plating	density.		
For	each	condition	the	number	of	cells	and	foci	were	counted.	The	number	of	cells	positive	for	T21	foci	
were	calculated.	A	nucleus	was	considered	positive	if	it	contained	10	or	more	bright	T21	foci.	Values	
derived	from	one	experiment.		

The	 Control	 Panel	 assay	 with	 increased	 plating	 density	 was	 repeated	 with	 the	 aim	 of	
imaging	 the	 plate	 at	 both	 20X	 and	 40X	 and	 comparing	 the	 results	 generated	 by	 the	
respective	algorithms.	The	40X	data	could	 then	be	used	 to	alter	 the	20X	algorithm	until	
they	 reported	 a	 similar	 trend.	 Cells	 were	 stained	 using	 the	 original	 T21	 antibody	 lot	
(Fig.3.5.9.3	and	3.5.9.4A)	and	a	new	vial	of	the	antibody	(Fig.3.5.9.4B)	to	determine	if	the	
primary	antibody	was	affecting	the	assay	signal.		

Comparison	of	the	two	scoring	algorithms	clearly	shows	that	they	were	not	identifying	the	
same	objects	as	T21	 foci	 (Fig.3.5.9.4).	The	 focusing	was	poor	on	 the	40X	 images	and	the	
levels	 of	 replication	 stress	 detected	 did	 not	 correlate	 with	 previous	 assays	 or	with	 the	
levels	 of	 replication	 stress	 expected	 following	 siRNA	 transfection.	 The	 20X	 scoring	
algorithm	appeared	to	be	detecting	much	higher	levels	of	foci	in	all	conditions.	The	cells	
also	 appeared	 to	 be	 growing	 on	 top	 of	 one	 another,	 which	 may	 have	 prevented	 the	
accurate	identification	of	individual	cells.		
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Figure	 3.5.9.3	 RPA2	 T21	 staining	 of	 Control	 Panel,	 Chk1	 or	 RRM1	 knocked	 down	 cells	 to	
compare	20X	and	40X	objectives.	
Representative	 images	 of	 HCT116	 cells	 plated	 at	 2000	 cells	 per	 well	 and	 reverse	 transfected	 with	
Controls	 1,	 2,	 3,	 4,	 Chk1	 or	 RRM1	 siRNA	and	DharmaFECT	1.	 Cells	were	 grown	 for	 48	 hours	 post-
transfection.	 Once	 fixed	 the	 cells	were	 permeabilised	with	 0.75%	 Triton	 X-100	 and	 3%	 BSA	 for	 10	
minutes.	Cells	were	stained	with	a	1:250	dilution	of	an	antibody	raised	against	the	T21	site	in	RPA2.	
Cells	were	 imaged	 using	 the	 (A)	 20X	 and	 (B)	 40X	 objectives	 of	 the	Molecular	Devices	 ImageXpress	
Micro	High	Content	Microscope.	
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Figure	3.5.9.4	Comparison	of	Control	Panel	and	Chk1	or	RRM1	knocked	down	cells	imaged	with	
a	20X	and	a	40X	objective.	
For	each	condition	the	number	of	cells	and	foci	were	counted.	The	number	of	cells	positive	for	T21	foci	
were	calculated.	A	nucleus	was	considered	positive	if	it	contained	10	or	more	bright	T21	foci.	Values	
derived	from	one	experiment.	(A)	Original	T21	antibody	lot.	(B)	New	T21	antibody	lot.	

The	40X	 images	and	scoring	data	generated	 for	both	 the	original	and	new	T21	antibody	
lots	suggested	that	the	staining	of	the	plate	has	been	sub-optimal	so	this	experiment	could	
not	be	used	to	alter	the	20X	scoring	algorithm.	The	experiment	was	repeated,	again,	using	
only	 the	 original	 T21	 antibody	 to	 maintain	 consistency	 throughout	 assay	 development	
(Fig.3.5.9.5).		

	
Figure	3.5.9.5	RPA2	T21	staining	of	Control	Panel,	Chk1	or	RRM1	knocked	down	cells	at	20X	
objective	
Representative	 images	 of	 HCT116	 cells	 plated	 at	 2000	 cells	 per	 well	 and	 reverse	 transfected	with	
Controls	 1,	 2,	 3,	 4,	 Chk1	 or	 RRM1	 siRNA	and	DharmaFECT	1.	 Cells	were	 grown	 for	 48	 hours	 post-
transfection.	 Once	 fixed	 the	 cells	were	 permeabilised	with	 0.75%	 Triton	 X-100	 and	 3%	 BSA	 for	 10	
minutes.	Cells	were	stained	with	a	1:250	dilution	of	an	antibody	raised	against	the	T21	site	in	RPA2.	
Cells	were	imaged	using	the	20X	objective	of	the	Molecular	Devices	ImageXpress	Micro	High	Content	
Microscope.	
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When	 imaging	 the	plate	with	 the	20X	objective	 it	was	 revealed	 that	not	all	 of	 the	wells	
were	 in	 focus	 and	 that	 Chk1	 transfected	 cells	 did	 not	 appear	 to	 be	 permeabilised	
(Fig.3.5.9.5).	When	it	came	to	imaging	the	plate	at	40X,	the	signal	could	not	be	detected	in	
the	Texas	Red	channel,	which	prevented	the	microscope	from	being	able	to	focus	properly.	
To	 try	 and	 determine	 the	 strength	 of	 the	 staining,	 the	 plate	 was	 subsequently	 imaged	
using	the	InCell	2000	near	confocal	Microscope	(Fig.3.5.9.6).		

	

Figure	3.5.9.6	RPA2	T21	staining	of	Control	Panel,	Chk1	or	RRM1	knocked	down	cells	imaged	
using	the	InCell	2000	microscope	
Representative	 images	 of	 HCT116	 cells	 plated	 at	 2000	 cells	 per	 well	 and	 reverse	 transfected	 with	
Controls	 1,	 2,	 3,	 4,	 Chk1	 or	 RRM1	 siRNA	and	DharmaFECT	1.	 Cells	were	 grown	 for	 48	 hours	 post-
transfection.	 Once	 fixed	 the	 cells	were	 permeabilised	with	 0.75%	 Triton	 X-100	 and	 3%	 BSA	 for	 10	
minutes.	Cells	were	stained	with	a	1:250	dilution	of	an	antibody	raised	against	the	T21	site	in	RPA2.	
Cells	were	imaged	using	the	100X	objective	of	the	InCell	2000	Microscope.	

When	 examining	 the	 confocal	 images,	 it	 was	 noted	 that	 there	 were	 very	 few	 cells	
remaining	on	the	plates,	despite	the	increased	plating	density.	A	high	level	of	non-specific	
staining	was	also	observed	outside	of	the	cells	in	several	images	and	as	in	the	20X	images,	
the	Chk1	knocked	down	cells	did	not	appear	to	have	been	stained.	There	were	a	number	of	
bright	 dots	 observed	 within	 the	 nuclei	 of	 the	 RRM1	 knocked	 down	 cells	 (Fig.3.5.9.7),	
however	these	appeared	too	large	to	be	RPA	foci.	This	poor	staining	and	apparent	lack	of	
true	foci	in	the	gene	knocked	down	cells	raised	serious	questions	and	concerns	about	the	
effectiveness	and	reproducibility	of	the	assay	in	this	format.	
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Figure	3.5.9.7	RPA2	T21	staining	of	RRM1	knocked	down	cells	 imaged	using	 the	 InCell	2000	
microscope	
Representative	 images	 of	 HCT116	 cells	 plated	 at	 2000	 cells	 per	 well	 and	 reverse	 transfected	 with	
RRM1	siRNA	and	DharmaFECT	1.	Cells	were	grown	for	48	hours	post-transfection.	Once	fixed	the	cells	
were	permeabilised	with	0.75%	Triton	X-100	and	3%	BSA	for	10	minutes.	Cells	were	stained	with	a	
1:250	dilution	of	an	antibody	raised	against	the	T21	site	in	RPA2.	Cells	were	imaged	using	the	100X	
objective	of	the	InCell	2000	Microscope.	

3.5.10	Trouble	Shooting	High	Throughput	Staining	Protocol	

As	 the	high	 throughput	assay	was	 still	proving	problematic,	 despite	previously	 showing	
promising	 results,	 an	attempt	was	made	 to	pinpoint	 the	 cause	of	 some	of	 the	 recurrent	
issues.	 These	 experiments	 aimed	 to	 determine	 if	 there	was	 some	 problem	 in	 the	 assay	
protocol	being	employed	in	the	384	well	plates	or	if	the	complication	was	intrinsic	to	this	
plate	type	itself.		

Three	assay	plates,	two	384	well	and	one	24	well,	were	set	up	in	the	Collis	lab	using	the	
same	 reagents	 as	 in	 the	 24	 well	 assays	 described	 previously.	 In	 each	 plate,	 cells	 were	
reverse	 transfected	 with	 Control	 1,	 Chk1	 or	 RRM1	 siRNA	 and	 untransfected	 cells	 were	
treated	with	2mM	HU	16	hours	prior	to	fixation.	A	shaking	step	was	added	to	the	protocol	
before	 cell	 plating	 to	 ensure	 the	 complexing	 of	 DharmaFECT	 1	 and	 siRNA	 to	 reduce	
toxicity	 to	 the	 cells.	 One	 of	 the	 384	 well	 plates	 and	 the	 24	 well	 plate	 were	 fixed	 and	
extracted	using	the	extended	incubations	employed	at	the	SRSF	(Fig.3.5.10.1	A	and	B).	The	
other	384	well	plate	was	fixed	and	extracted	using	the	Collis	lab	procedure	utilised	in	the	
previous	 24	 well	 assays	 (Fig.3.5.10.1	 C).	 The	 384	well	 plates	 were	manually	 fixed	 and	
stained	due	to	the	lack	of	a	384	well	plate	washer	in	the	Collis	lab.	

The	cell	coverage	observed	in	the	384	well	plates	was	still	very	variable	across	the	well,	
with	some	completely	bald	patches	occurring.	The	only	condition	to	produce	bright	foci	in	
the	384	well	format	when	using	either	protocol	was	the	treatment	with	HU,	there	were	no	
differences	 observed	 between	 the	 Control	 1	 transfected	wells	 and	 the	 gene	 knockdown	
wells	(Fig.3.5.10.1	B	and	C).		

The	 SRSF	 protocol	 in	 24	 well	 plates	 produced	 very	 similar	 images	 to	 those	 produced	
previously	 in	 this	 plate	 type.	 Clear	 differences	 could	 be	 seen	 between	 the	 Control	 1	
transfected	 and	 the	 gene	 knockdown	 wells,	 which	 produced	 a	 similar,	 if	 less	 intense,	
staining	pattern	than	that	induced	by	HU	treatment	(Fig.3.5.10.1	A).	This	is	in	contrast	to	
the	lack		
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of	foci	observed	in	the	384	well	plate	assay,	suggesting	that	it	is	something	intrinsic	in	this	
384	well	 plate	 format	 that	 is	 preventing	 the	observation	of	 pRPA2	 foci,	 rather	 than	 the	
protocol	in	itself.		

	

Figure	 3.5.10.1	 Comparison	 of	 Collis	 lab	 and	 SRSF	 protocols	 in	 24	well	 and	 384	 well	 plate	
format.	
Representative	images	of	HCT116	cells	plated	at	(A)	20	000	cells	per	well	in	a	24	well	plate	or	(B	&	C)	
2000	cells	 in	a	384	well	plate.	Cells	were	either	untransfected	or	reverse	transfected	with	Control	1,	
Chk1	or	RRM1	siRNA	and	DharmaFECT	1	and	grown	for	48	hours	post-transfection.	Transfected	cells	
were	mock	treated	with	PBS	whilst	untransfected	cells	were	 treated	with	2mM	HU	16	hours	before	
fixing.	Cells	were	fixed	for	(C)	10	minutes	and	permeabilised	with	0.5%	Triton	X-100	and	3%	BSA	for	5	
minutes	(Collis	lab)	or	(A	&	B)	fixed	for	20	minutes	and	permeabilised	with	0.75%	Triton	X-100	and	
3%	BSA	for	10	minutes	(SRSF).	Cells	were	stained	with	a	1:250	dilution	of	an	antibody	raised	against	
the	T21	site	in	RPA2.	Cells	were	imaged	using	the	(A)	Nikon	Eclipse	TE2000	Inverted	Microscope	or	(B	
&	C)	the	40X	objective	of	the	Molecular	Devices	ImageXpress	Micro	High	Content	Microscope.		
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3.6	Alternative	Methods	of	Detecting	Replication	Stress	

3.6.1	EGFP-RPA2	Expressing	HeLa	Cells	for	RPA2	Foci	Detection	

The	pRPA2	antibody	selection	immunofluorescence	assay	carried	out	in	HCT116	cells	was	
repeated	in	two	clones	(C1	and	C3)	of	HeLa	cells	that	stably	expressed	EGFP-RPA2.	They	
were	employed	to	see	if	the	level	of	RPA2	foci	that	contained	pRPA2	could	be	quantified	
(Fig.3.6.1.1).	It	was	proposed	that	this	technique	could	be	used	as	an	alternative	screening	
method	to	the	HCT116	assay	or	for	hit	validation.	

	
Figure	3.6.1.1.	Detection	of	pRPA	foci	in	EGFP-RPA2	Expressing	HeLa	cells.		
Representative	images	of	EGFP-RPA2	HeLa	C1	(A)	and	C3	(B)	cells	forward	transfected	with	Control	1	
or	Chk1	 siRNA	and	RNAiMax.	The	cells	were	grown	 for	72	hours	post-transfection.	Cells	were	mock	
treated	 with	 PBS	 or	 treated	 with	 2mM	 HU	 for	 16	 hours	 before	 fixing.	 Once	 fixed	 the	 cells	 were	
permeabilised	with	 PBS-Tween	 20	 in	 the	wash	 steps.	 The	 cells	were	 stained	with	 antibodies	 raised	
against	the	S4/8	and	T21	phospho-sites	within	RPA2.	

During	the	imaging	of	these	coverslips	it	was	observed	that	cells	were	only	present	at	their	
edges	where	 they	grow	most	densely.	Those	 that	were	still	attached	had	stained	poorly,	
expressed	 little	 to	no	EGFP-RPA2	(Fig.3.6.1.1)	and	photo-bleached	quickly.	This	made	 it	
extremely	difficult	to	focus	on	the	cell	and	thus	no	images	could	be	obtained	for	the	S33	
stained	 cells.	 All	 future	 work	 with	 this	 cell	 line	 was	 halted	 after	 the	 detection	 of	
mycoplasma	 contamination	 in	 the	 C3	 clone	 and	 the	 lack	 of	 EGFP-RPA2	 expression	
observed	by	fluorescent	microscopy.		
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3.6.2	Total	RPA2	Immunofluorescence	

When	the	EGFP-RPA2	expressing	HeLa	cells	showed	poor	autofluorescence,	an	alternative	
method	 for	 determining	 the	 level	 of	 foci	 containing	 pRPA2	within	 a	 cell	was	 trialled.	 A	
total	RPA2	antibody	was	used	in	this	assay	to	stain	HCT116	cells	reverse	transfected	with	
Control	or	Chk1	siRNA	and	DharmaFECT	1	for	48	or	72	hours.	The	cells	were	treated	with	
2mM	HU	 for	16	hours	before	 fixing	 and	permeabilised	with	0.5%	Triton	X-100	and	3%	
BSA	in	PBS	(Fig.	3.6.2.1	and	Fig	3.6.2.2).	

	

Figure	3.6.2.1.	Total	RPA2	staining	in	HCT116	cells	at	48	hours.		
Representative	 images	 of	 HCT116	 cells	 reverse	 transfected	 with	 Control	 1	 or	 Chk1	 siRNA	 and	
DharmaFECT	1.	 The	 cells	were	 grown	 for	 48	 hours	 post-transfection.	Cells	were	mock	 treated	with	
PBS	or	treated	with	2mM	HU	for	16	hours	before	fixing.	Once	fixed	the	cells	were	permeabilised	with	
0.5	%	Triton	X-100	and	3%	BSA.	The	cells	were	stained	with	an	antibody	raised	against	total	RPA2.		
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Figure	3.6.2.2.	Total	RPA2	staining	in	HCT116	cells	at	72	hours.	
Representative	 images	 of	 HCT116	 cells	 reverse	 transfected	 with	 Control	 1	 or	 Chk1	 siRNA	 and	
DharmaFECT	1.	 The	 cells	were	 grown	 for	 72	 hours	 post-transfection.	Cells	were	mock	 treated	with	
PBS	or	treated	with	2mM	HU	for	16	hours	before	fixing.	Once	fixed	the	cells	were	permeabilised	with	
0.5	%	Triton	X-100	and	3%	BSA.	The	cells	were	stained	with	an	antibody	raised	against	total	RPA2.	

Little	 difference	 was	 observed	 between	 the	 RPA2	 staining	 in	 the	 Control	 1	 and	 Chk1	
knocked	down	untreated	cells	as	both	conditions	display	a	pan	nuclear	stain	(Fig.3.6.2.1	
and	Fig	3.6.2.2).	A	proportion	of	the	cells	treated	with	HU	displayed	foci	which	was	clearer	
in	 the	Chk1	knocked	down	 cells.	As	 this	 antibody	 failed	 to	 identify	discrete	 foci	 in	gene	
knockdown	cells	untreated	with	HU,	it	was	not	further	investigated	as	this	project	aimed	
to	 identify	 genes	 that	 increased	 replication	 stress	 without	 the	 pressure	 of	 exogenous	
agents.		
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3.6.3	TopBP1	Immunofluorescence	

An	antibody	raised	against	TopBP1	was	also	investigated	as	a	potential	alternative	marker	
of	replication	stress	that	could	be	used	for	screening	or	hit	validation.	HCT116	cells	were	
reverse	 transfected	with	Control	 1	or	Chk1	siRNA	and	DharmaFECT	1	 for	48	hours	and	
treated	with	2mM	HU	for	16	hours	prior	to	fixing.	Once	fixed,	the	cells	were	permeabilised	
by	 incubation	with	0.5%	Triton	X-100	and	3%	BSA	 in	PBS	 for	5	minutes.	The	coverslips	
were	then	stained	with	a	TopBP1	antibody	(Fig.3.6.3.1).		

	

Figure	3.6.3.1.	TopBP1	staining	in	HCT116	cells	at	48	hours.	
Representative	 images	 of	 HCT116	 cells	 reverse	 transfected	 with	 Control	 1	 or	 Chk1	 siRNA	 and	
DharmaFECT	1.	 The	 cells	were	 grown	 for	 48	 hours	 post-transfection.	Cells	were	mock	 treated	with	
PBS	or	treated	with	2mM	HU	for	16	hours	before	fixing.	Once	fixed	the	cells	were	permeabilised	with	
0.5	%	Triton	X-100	and	3%	BSA.	The	cells	were	stained	with	an	antibody	raised	against	TopBP1.		
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The	 TopBP1	 antibody	 images	 appeared	 to	 differ	 between	 the	 Control	 1	 and	 replication	
stress	 induced	 cells	 (Fig.3.6.3.1),	 however,	 there	 was	 some	 non-specific	 background	
staining	observed.	The	images	were	scored	for	the	presence	of	bright	TopBP1	foci	to	see	if	
the	differences	in	signal	detected	were	significant	(Fig.3.6.3.2).	

	

	
Figure	 3.6.3.2	 Percentage	 of	 HCT116	 cells	 positive	
for	TopBP1	foci.	
For	each	condition	the	number	of	cells	was	counted	and	
the	 percentage	 of	 TopBP1	 positive	 nuclei	 was	
calculated.	 A	 nucleus	 was	 considered	 positive	 if	 it	
contained	 10	 ore	 more	 bright	 TopBP1	 foci.	 Asterisks	
indicate	significant	difference	from	Control	Untreated,	p	
value	<0.05.		Mean	values	derived	from	two	independent	
experiments,	with	their	respective	SEMs.		

	

	

The	scoring	trend	produced	by	this	antibody	was	similar	to	that	seen	for	the	T21	antibody,	
with	 the	 cells	 expected	 to	 be	 experiencing	 higher	 levels	 of	 replication	 stress	displaying	
more	 positive	 nuclei.	 Chk1	 knockdown,	 treatment	with	HU	 and	 their	 combination	 each	
produced	 a	 significantly	 increased	 level	 of	 positive	 nuclei	when	 compared	 to	 Control	 1	
untreated	 cells	 (p	 values	 0.015,	 0.007	 and	 0.001	 respectively),	 although,	 this	 antibody	
produced	a	higher	proportion	of	positive	cells	within	Control	1	cell	populations	compared	
with	the	T21	antibody.	However,	as	the	TopBP1	antibody	proved	successful	in	detecting	
replication	stress	 in	 the	24	well	assay,	 it	was	scaled	up	 to	 the	384	well	 format.	HCT116	
cells	were	reverse	 transfected	with	Control	1	or	Chk1	siRNA	with	DharmaFECT	1	 for	48	
hours.	The	cells	were	fixed	with	4%	PFA	and	Hoescht	for	20	minutes	and	permeabilised	by	
incubation	with	0.5%	Triton	X-100	and	3%	BSA	in	PBS	for	10	minutes.	The	cells	were	then	
stained	with	a	titration	of	the	TopBP1	antibody	(1:500	–	1:1500).	Cells	were	imaged	using	
the	20X	objective	of	 the	Molecular	Devices	 ImageXpress	Micro	High	Content	Microscope	
(Fig.3.6.3.3).		
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Figure	3.6.3.3	TopBP1	staining	in	HCT116	cells	in	384	well	plate.		
Representative	 images	 of	 HCT116	 cells	 reverse	 transfected	 with	 Control	 1	 or	 Chk1	 siRNA	 and	
DharmaFECT	 1.	 The	 cells	 were	 grown	 for	 48	 hours	 post-transfection.	 Once	 fixed	 the	 cells	 were	
permeabilised	with	0.5	%	Triton	X-100	and	3%	BSA.	The	cells	were	stained	with	a	1:500	dilution	of	an	
antibody	raised	against	TopBP1.	

The	TopBP1	antibody	did	not	appear	to	enter	the	nucleus	at	any	concentration	tested	as	
there	were	no	 clear	 foci	 and	no	differences	between	 the	 two	 conditions	were	observed	
(Fig.3.6.3.3),	 however,	 some	 non-specific	 staining	 of	 the	 assay	 plate	 was	 identified.	 No	
decisions	could	be	made	about	which	antibody	concentration	should	be	used	in	this	plate	
format	from	these	images,	therefore	further	optimisation	of	the	assay	was	required.		

The	 assay	 was	 carried	 out	 with	 the	 inclusion	 of	 the	 cold	 pre-extraction	 procedure	
(described	previously)	 and	 treatment	of	 the	 cells	with	2mM	HU.	The	 cells	were	 stained	
with	 a	 1:500	 dilution	 of	 the	 TopBP1	 antibody	 (Fig.3.6.3.4).	 The	 pre-extraction	 step	
reduced	 the	 non-specific	 staining	 observed	 in	 the	 initial	 experiment	 and	 increased	 the	
levels	of	antibody	entering	the	nucleus.	However,	this	did	not	allow	the	differentiation	of	
Control	1	transfected	and	Chk1	knocked	down	cells	with	endogenous	levels	of	replication	
stress.	The	minority	of	HU	treated	cells	showed	strong	nuclear	staining	but	demonstrated	
a	pan-nuclear	stain	and	no	 foci	could	be	detected.	 Further	optimisation	of	 this	antibody	
was	halted	in	favour	of	further	optimisation	of	the	RPA2	T21	antibody.	
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Figure	3.6.3.4	TopBP1	staining	in	Pre-extracted	HCT116	cells	in	384	well	plate.		
Representative	 images	 of	 HCT116	 cells	 reverse	 transfected	 with	 Control	 1	 or	 Chk1	 siRNA	 and	
DharmaFECT	1.	 The	 cells	were	 grown	 for	 48	 hours	 post-transfection.	Cells	were	mock	 treated	with	
PBS	or	treated	with	2mM	HU	for	16	hours	before	fixing	Cells	were	incubated	with	cold	pre-extraction	
buffer	before	fixing	and	further	permeabilisation	with	0.5	%	Triton	X-100	and	3%	BSA.	The	cells	were	
stained	with	a	1:500	dilution	of	antibody	raised	against	TopBP1.	
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3.7	Discussion	

As	mentioned	previously,	replication	stress	is	not	a	physical	structure	but	a	description	of	
the	 state	of	 a	 cell	and	 its	detection	 is	 hampered	by	 the	 lack	of	a	 clearly	defined	 cellular	
marker.	 The	 quantification	 of	 DNA	 synthesis,	 by	 techniques	 such	 as	 BrdU	 or	 EdU	
incorporation	 into	 nascent	 DNA,	 are	 regarded	 as	 the	 most	 effective	 methods	 for	
identifying	replication	stress	(Zeman	&	Cimprich,	2014)	and	have	recently	been	utilised	in	
a	genome	wide	screen	to	detect	factors	that	impede	replication	restart	(Kavanaugh	et	al,	
2015).		

Identification	 of	 downstream	 markers	 of	 replication	 stress	 had	 not	 previously	 been	
applied	 on	 a	 genome	 wide	 scale	 to	 assess	 the	 endogenous	 levels	 of	 replication	 stress	
following	 gene	 knockdown.	 Whilst	 this	 approach	 does	 not	 give	 a	 direct	 read	 out	 of	
replication	 stress,	 it	 is	 still	 a	widely	 used	 and	 screens	 employing	 similar	methods	 have	
previously	proved	successful	including	a	gH2AX	screen	by	Dr.	S.	Collis,(Barone	et	al,	2016;	
Myers	et	al,	2016;	Staples	et	al,	2016;	Staples	et	al,	2014;	Staples	et	al,	2012).		

RPA2	phosphorylation	is	a	well	characterised	downstream	event	in	the	replication	stress	
response	and	pRPA2	antibodies	have	been	used	previously	within	the	Collis	lab	to	identify	
stressed	cells	(Barone	et	al,	2016;	Collis	et	al,	2007;	Collis	et	al,	2008).	As	this	technique	
was	already	employed	within	 the	 lab,	 it	was	 selected	 for	 the	potential	 development	 for	
genome	wide	RNAi	screen	to	identify	novel	regulators	of	replication	stress.		

As	the	screen	completed	by	Dr.	S.	Collis	and	another	completed	within	the	lab	of	Professor	
M.	Meuth	at	the	SRSF	had	been	carried	out	in	HCT116	cells,	this	line	was	chosen	to	be	used	
for	the	main	body	of	this	work.	This	was	to	allow	comparisons	between	the	three	screens	
and	 also	 because	 it	 had	 proved	 successful	 in	 previous	 screens.	 As	 the	 Collis	 screen	
assessed	g-H2AX	levels,	 it	was	thought	 that	genes	could	be	 identified	whose	knockdown	
increased	 both	 replication	 stress	 and	 DNA	 damage,	 potentially	 through	 the	 collapse	 of	
stalled	replication	forks.		

For	the	proper	assessment	of	replication	stress	levels	following	gene	knockdown,	suitable	
positive	 controls	 needed	 to	 be	 identified.	 Efficient	 DNA	 replication	 is	 essential	 for	 the	
timely	 progression	 of	 replication	 forks	 and	 the	 knockdown	 of	 proteins	 that	 affect	 this	
process	 have	 been	 demonstrated	 to	 cause	 replication	 stress.	 One	 such	 protein	 is	 the	
ribonucleotide	reductase	subunit	RRM1	which	as	mentioned	previously	is	involved	in	the	
catalysis	of	dNTPs	and	whose	loss	results	in	slowed	proliferation.	Several	components	of	
the	 cell	 cycle	 checkpoints	 have	 also	 been	 characterised	 as	 suppressors	 of	 replication	
stress.	The	most	notable	example	is	Chk1	whose	knockdown	reduces	the	effectiveness	of	
the	 Intra-S	 checkpoint	 (Kavanaugh	 et	 al,	 2015).	 By	maintaining	 replication	 stress,	 Chk1	
loss	allows	for	the	formation	and	detection	of	pRPA2	foci.	These	two	genes	were	therefore	
selected	 as	 siRNA	 positive	 controls	 for	 replication	 stress	 to	 be	 used	 throughout	 the	
development	of	the	screening	assay.	Ribonucleotide	reductase	can	also	be	inhibited	by	HU	
which	provides	similar	effects	to	the	loss	of	RRM1	with	the	advantage	that	its	effects	upon	
replication	fork	slowing	are	independent	of	transfection.	
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Western	 blotting	 revealed	 that	 the	 knockdown	 of	 both	 Chk1	 and	 RRM1	 by	 siRNA	was	
sufficient	at	48	and	72	hours	for	use	as	positive	control	siRNAs	for	future	screening	assays.	
The	loss	of	either	of	these	genes	and	treatment	with	HU	induced	Chk1	phosphorylation	at	
Serine	 137	 and	 RPA2	 at	 T21	 (when	 present)	which	 is	 indicative	 of	 a	 replication	 stress	
response	 (Vassin	 et	 al,	 2004;	 Zhao	&	 Piwnica-Worms,	 2001).	 Of	 the	 two	 siRNAs,	RRM1	
produced	the	greater	replication	stress	response.	This	may	be	a	result	of	the	more	efficient	
knockdown	of	RRM1	compared	to	Chk1	or	a	difference	in	the	phenotype	produced	by	the	
knockdown.	 RRM1	 inhibition	 hinders	 the	 initiation	 of	 DNA	 replication	 by	 reducing	 the	
pool	 of	 available	 nucleotides	 (Bester	 et	 al,	 2011)	whilst	 Chk1	 loss	 increases	 replication	
initiation	and	then	induces	DNA	strand	breaks	(Syljuåsen		et	al,	2005).		

	
Figure	3.7.1	Phospo-RPA2	Screening	Assay	Development.		
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RPA2	is	phosphorylated	at	several	sites	at	its	N-terminus,	including	S4/8,	T21	and	S33,	by	
the	PIKKs	 in	response	 to	cellular	stress	(Anantha	et	al,	2007).	Antibodies	raised	against	
these	 three	 phospho-sites	 were	 assessed	 for	 their	 ability	 to	 detect	 RPA2	 foci	 in	 an	
immunofluorescent	 protocol	 previously	 optimised	 within	 the	 Collis	 lab.	 Using	 this	
protocol,	only	the	T21	antibody	could	detect	the	expected	punctate	pattern	of	pRPA	foci.	
Despite	being	able	to	identify	increases	in	the	percentage	of	positive	nuclei	following	Chk1	
knockdown	 or	 HU	 treatment	 after	 48	 hours,	 the	 assay	 did	 not	 produce	 the	 expected	
results.	Overall,	the	levels	of	foci	produced	were	much	lower	than	expected	and	the	assay	
did	 not	 appear	 sensitive	 enough	 to	 differentiate	 between	 Chk1	 knockdown	 alone	 or	 in	
combination	 with	 HU	 which	 produced	 a	 stronger	 replication	 stress	 response	 in	 the	
western	blot.	At	the	72	hour	time	point,	no	increase	in	the	levels	of	positive	nuclei	were	
observed	as	a	result	of	the	heightened	levels	of	stress	observed	in	the	Control	1	untreated	
cells.	 This	 was	 most	 likely	 due	 to	 the	 prolonged	 incubation	 of	 the	 cells	 with	 the	
transfection	reagents	which	induced	additional	toxicities.		

In	 light	 of	 these	 results,	 several	 alterations	were	made	 to	 the	 transfection	 and	 staining	
procedure	employed	 in	 this	assay.	At	 the	advice	of	 the	SRSF,	 the	media	was	replaced	24	
hours	post-transfection	to	reduce	the	harmful	effects	of	prolonged	transfection	times	and	
the	switch	was	made	to	DharmaFECT	1	as	this	had	produced	limited	toxicities	in	previous	
screens.	The	facility	also	required	cells	to	be	reverse	transfected	as	the	siRNAs	are	printed	
into	 the	 final	 assay	 plates	 and	 so	 forward	 transfection	 is	 not	 possible.	 To	 improve	 the	
sensitivity	of	the	assay,	efforts	were	made	to	improve	the	staining	produced	by	the	three	
antibodies.	A	stringent	extraction	protocol	employed	within	the	Collis	lab	to	assess	several	
chromatin	bound	damage	markers	was	trialled	for	the	pRPA2	antibodies.	This	employed	a	
stronger	 detergent	 with	 a	 longer	 incubation	 than	 had	 been	 used	 previously.	 This	 was	
predicted	 to	 increase	 the	 permeabilisation	 of	 cellular	 membranes	 therefore	 improving	
nuclear	entry	of	the	antibody.		

Whilst	 these	 alterations	 did	modify	 the	 staining	 patterns	 produced	 for	 all	 three	 of	 the	
pRPA2	antibodies,	 both	 the	 S4/8	and	 S33	 antibodies	 still	 failed	 to	 identify	discrete	 foci	
following	gene	knockdown	alone.	For	the	T21	antibody,	the	changes	reduced	the	levels	of	
background	 staining	 observed	 and	 quantification	 of	 the	 images	 revealed	 that	 a	 higher	
proportion	of	nuclei	appeared	positive	 in	all	 conditions.	The	sensitivity	of	 the	assay	had	
also	increased	as	a	difference	could	now	be	observed	between	Chk1	knockdown	alone	and	
in	combination	with	HU.	As	the	48	hour	time	point	still	produced	the	larger	signal	window,	
it	was	 chosen	 for	 further	 investigation	 of	 Chk1	 knockdown.	 The	 scoring	 data	produced	
from	these	assays	demonstrated	 that	the	knockdown	of	Chk1	significantly	 increased	the	
number	of	cells	positive	for	T21	foci	(p-value	of	0.0006).	This	suggests	that	there	is	a	real	
increase	in	replication	stress	being	induced	by	the	loss	of	this	gene.		

When	this	assay	was	repeated	in	RRM1	knocked	down	cells,	the	staining	pattern	observed	
was	 subtly	different	 to	 that	 observed	 in	 the	 cells	 lacking	 Chk1.	More	 cells	 showed	 very	
bright	 staining	 and	a	 proportion	 of	nuclei	were	 highly	 positive,	 containing	many	 bright	
foci.	As	with	 the	loss	of	Chk1,	RRM1	knockdown	significantly	 increased	the	 level	of	cells	
experiencing	 replication	 stress	 (p-value	 0.0001).	 It	 appeared	 to	 induce	 a	 greater	 stress	
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response	 than	Chk1	 loss,	 as	was	previously	 seen	 in	 the	western	blot.	However,	 as	both	
siRNA	produced	a	detectable	significant	increase	in	replication	stress	it	was	decided	that	
both	should	be	included	in	further	development	of	the	screening	assay.		

To	 ensure	 that	 these	 observed	 effects	 were	 not	 cell	 line	 specific,	 these	 assays	 were	
repeated	in	several	cell	lines	to	further	evaluate	the	effects	of	replication	stress	suppressor	
knockdown	in	differing	genetic	backgrounds.		

When	 carried	 out	 in	 non-transformed	 RPE-1	 cells,	 which	 are	 immortalised	 by	 human	
telomerase	(h-TERT)	expression	(Bodnar	et	al,	1998;	Jiang	et	al,	1999),	a	similar	trend	to	
HCT116	was	observed.	The	levels	of	positive	nuclei	detected	were	lower	than	that	seen	in	
HCT116	cells,	which	was	expected,	as	normal	cells	are	predicted	to	be	less	effected	by	the	
disruption	of	replication	than	cancerous	cells.	However,	the	knockdown	of	neither	Chk1	or	
RRM1	produced	a	significant	difference	in	the	levels	of	replication	stress	observed	when	
compared	to	Control	1	siRNA	transfected	cells	(p	values	0.09	and	0.12	respectively).	This	
was	most	 likely	 due	 to	 the	 high	 levels	 of	 positive	 Control	 1	 transfected	 cells	 observed	
which	 was	 unanticipated	 as	 normal	 cells	 are	 predicted	 to	 have	 a	 lower	 basal	 level	 of	
replication	 stress.	The	RPE-1	 cells	were	much	more	variable	 in	 the	 levels	 of	 replication	
stress	reported	 in	 the	assay,	as	evidenced	by	the	size	of	 the	error	bars	 in	Figure	3.4.1.3,	
which	may	be	why	the	Control	cells	appear	to	be	more	stressed	in	this	cell	line.		

The	 assay	was	 also	 carried	 out	 in	 the	 SW480	 adenocarcinoma	 derived	 (Leibovitz	 et	 al,	
1976)	cell	line	which	is	MIN	negative	(Boland	&	Goel,	2010)	and	p53	deficient	(Rochette	et	
al,	2005)	unlike	HCT116.	Whilst	 loss	of	both	genes	produced	a	significant	increase	in	the	
levels	 of	 cells	 experiencing	 replication	 stress	as	 seen	previously,	 unlike	 in	 the	other	 cell	
lines	the	knockdown	of	RRM1	did	not	produce	a	higher	proportion	of	T21	positive	nuclei	
than	Chk1	knockdown.	This	change	is	thought	to	reflect	the	reliance	of	p53	deficient	cells	
on	 the	 Intra-S	 and	 G2/M	 cell	 cycle	 checkpoints.	 Loss	 of	 these	 checkpoints	 through	 the	
knockdown	of	Chk1	would	severely	compromise	these	cell’s	ability	to	counter	replication	
stress	 and	 DNA	 damage	 due	 to	 an	 inability	 to	 arrest	 the	 cell	 cycle	 and	 allow	 repair	 to	
occur.	 As	 further	 evidence	 for	 this,	 the	 Control	 1	 cells	 showed	 a	 higher	 background	 of	
replication	stress	 than	the	HCT116	cells,	which	has	been	observed	 in	other	assays	using	
this	cell	line	(Collis	lab,	unpublished).		

To	 further	 examine	 the	 effects	 of	 p53	 deficiency	 on	 replication	 stress	 suppressor	
knockdown,	the	T21	assay	was	carried	out	in	HCT116	cells	where	p53	function	has	been	
eradicated	by	targeted	HR	(Bunz	et	al,	1998)	but	they	are	otherwise	genetically	identical.	
As	seen	with	the	SW480	cell	line,	the	loss	of	both	genes	significantly	increased	the	levels	of	
positive	nuclei	observed,	the	cells	were	more	affected	by	the	loss	of	Chk1	than	RRM1	and	
high	levels	of	background	staining	were	observed	in	the	Control	1	cells.	As	the	SW480	and	
p53	deficient	HCT116	cells	produced	such	similar	phenotypes,	it	suggests	that	p53	status	
plays	 a	 greater	 role	 in	 a	 cells	 response	 to	 replication	 suppressor	 knockdown	 than	 the	
presence	of	MIN.		

The	development	of	a	high	throughput	screening	assay	was	essential	if	the	effects	of	gene	
knockdown	on	replication	stress	were	 to	be	assessed	on	a	genome-wide	scale	(Fig.3.7.1,	
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Appendix	 1).	 This	 involved	 attempts	 to	 automate	 the	 majority	 of	 the	 assay’s	 set	 up,	
imaging	and	analysis	 to	 allow	 for	data	 to	be	 generated	with	a	much	higher	 throughput.	
While	 this	automation	removed	some	of	 the	subjectivity	 from	the	data	analysis	 it	posed	
many	problems	including	the	adaptation	of	the	assay	to	a	high	throughput	format	and	the	
correct	identification	of	the	assay	signal.		

The	 nature	 of	 the	 384	 well	 plates	 and	 the	 automated	 techniques	 used	 at	 the	 SRSF	
demanded	alterations	be	made	to	the	transfection	and	staining	protocol.	The	replacement	
of	the	media	24	hours	post-transfection	was	replaced	with	addition	of	fresh	media	to	the	
wells	 to	 dilute	 the	 transfection	 reagents.	 This	 had	 been	 found	 in	 previous	 screens	 to	
reduce	the	loss	of	cells	from	the	plates.	The	use	of	plate	washers	meant	that	approximately	
10µl	 of	 residue	 remained	 in	 the	 bottom	 of	 the	 wells	 following	 each	 aspiration	 so	 any	
reagents	 that	 were	 added	 were	 diluted	 by	 this	 residual	 buffer.	 This	 necessitated	 the	
extension	of	the	incubation	with	the	PFA	fixative	as	this	was	bought	at	4%	and	so	could	
not	 be	 altered	 to	 account	 for	 the	 dilution.	 The	 SRSF	 protocols	 also	 commonly	 used	
Hoescht,	rather	than	DAPI,	to	stain	the	DNA	and	included	this	in	the	fixative	rather	than	
the	 secondary	 antibody	 incubation.	 This	 allowed	 the	 assay	 plates	 to	 be	 checked	 for	
contamination	and	confluency	before	antibody	staining	as	it	can	be	very	difficult	to	focus	a	
light	microscope	on	a	384	well	plate.	The	72	hour	transfection	time	was	re-introduced	as	it	
was	unsure	which	time	point	would	produce	the	better	staining	in	this	plate	type.		

Despite	these	alterations	to	the	Collis	lab	method,	the	assay	could	not	successfully	detect	
T21	 foci	 for	 any	 condition	 which	 necessitated	 the	 further	 optimisation	 of	 the	 staining	
protocol.	To	determine	if	it	was	a	lack	of	membrane	permeabilisation	that	was	limiting	the	
staining,	 a	 time	 course	 was	 carried	 out	 to	 determine	 if	 an	 increased	 incubation	 time	
improved	 access	 of	 the	 antibody	 to	 the	 nucleus.	 Up	 to	 the	 10	 minute	 time	 point	 the	
extended	incubation	improved	antibody	entry	whilst	beyond	this	time	the	antibody	signal	
had	begun	to	diffuse,	suggesting	that	the	nuclear	membrane	had	become	too	degraded.	In	
light	of	this,	a	10	minute	extraction	 time	was	chosen	 for	 further	 investigation.	However,	
when	 this	 was	 subsequently	 trialled,	 the	 images	 produced	 were	 still	 inadequate	 for	
automated	analysis	as	very	little	difference	was	observed	between	the	Control	1	and	Chk1	
knocked	 down	 cells	 and	 so	 further	 optimisation	 was	 required	 to	 improve	 the	 signal	
window	of	the	assay.	

Another	 technique	 utilised	within	 the	 Collis	 lab	 for	 the	 immunofluorescent	detection	 of	
chromatin	bound	proteins	is	pre-extraction.	In	this	technique,	the	cells	are	incubated	with	
an	 extraction	 buffer	 to	 remove	 the	 cytoplasm	 and	 increase	 permeability	 before	 fixing	
(Staples	et	al,	2016).	This	method	was	trialled	in	the	384	well	format	with	an	ice	cold	pre-
extraction	buffer.	HU	treatment	was	included	to	determine	if	the	poor	signal	window	was	
due	to	insufficiency	of	transfection.	The	combination	of	Chk1	knockdown	and	HU	was	the	
only	 condition	 sufficient	 to	 induce	 high	 levels	 of	 staining	 suggesting	 that	 the	 assay	was	
capable	of	detecting	 replication	stress	but	was	not	 sensitive	 enough	 to	detect	 the	 lower	
levels	caused	by	gene	knockdown	alone.	When	this	assay	was	repeated	with	RRM1	siRNA	
the	 combination	of	RRM1	knockdown	and	HU	treatment	produced	discrete	 foci	 but	 this	
was	not	seen	for	RRM1	alone.		
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It	was	thought	further	optimisation	of	this	technique	may	have	resulted	in	sufficient	levels	
of	staining	to	detect	replication	stress	following	gene	knockdown	alone.	However,	several	
factors	prevented	the	continuation	of	cold	pre-extraction	as	a	viable	method	for	preparing	
screening	plates.	A	disturbing	lack	of	cells	was	observed	in	the	assay	plates	when	applying	
this	technique	and	so	it	would	not	have	be	possible	to	guarantee	that	enough	cells	would	
remain	 in	 the	 well	 to	 draw	 meaningful	 conclusions	 from	 the	 images.	 Additionally,	 the	
requirement	to	carry	out	the	incubation	with	the	pre-extraction	buffer	at	4°C	would	have	
hindered	the	high	throughput	capabilities	of	the	assay.	The	Microlab	Star	Hamilton	robot	
housed	in	the	SRSF	was	capable	of	processing	plates	with	short	incubation	times,	however	
it	 could	 not	 be	 cooled	 to	 4°C.	 To	 process	 the	 plates	 using	 the	Multidrop	 and	 the	 plate	
washer	would	 have	 been	 extremely	 time	 consuming,	 as	 few	 plates	would	 be	 able	 to	 be	
extracted	at	one	time	to	minimise	the	risk	of	over-permeabilisation.		

As	 this	 technique	 proved	 unfeasible,	 a	 different	 method	 of	 further	 increasing	 the	
permeabilisation	 of	 the	 nuclear	 membrane	 was	 required.	 As	 increasing	 the	 incubation	
with	 the	 extraction	 buffer	 any	 further	 decreased	 the	 levels	 of	 antibody	 detected	 in	 the	
nucleus,	 it	was	decided	 to	 increase	 the	detergent	concentration	 in	 the	buffer.	When	this	
plated	was	imaged	using	the	Cy5	channel,	little	difference	could	be	discerned	between	the	
Control	1	and	RRM1	knocked	down	cells.	However,	images	generated	using	the	Texas	Red	
channel	showed	improved	detection	of	the	secondary	antibody.	The	Alexa	FluorÒ	594	dye	
is	most	commonly	detected	using	a	Texas	Red	filter	set	as	both	of	these	dyes	emit	in	the	
red	 region	 of	 the	 spectrum	 (ThermoFisher,	 2016)	 whilst	 the	 Cy5	 channel	 is	 commonly	
used	 to	 detect	 far-red	 emission.	 However,	 the	 initial	 optimisation	 experiments	 were	
imaged	 using	 this	 channel	 due	 to	 a	 communication	 error	 with	 the	 SRSF	 during	 the	
development	of	 the	 imaging	protocol.	As	 the	Texas	Red	channel	detected	more	signal,	 it	
was	 easier	 to	 focus	 the	 microscope	 and	 so	 improved	 the	 quality	 of	 the	 images	 being	
generated.	Increasing	the	Triton	X-100	concentration	to	1%	appeared	to	over	permiabilise	
the	 cell’s	 membranes	 whilst	 0.75%	 allowed	 for	 the	 imaging	 of	 clear	 foci	 with	 the	 40X	
objective.		

The	knockdown	of	Chk1	was	re-introduced	into	the	optimisation	assays	at	this	point	as	its	
loss	produced	a	lower	level	of	T21	phosphorylation	than	that	of	RRM1	in	previous	assays.	.	
As	it	was	unlikely	that	any	novel	replication	stress	suppressor	would	produce	as	strong	a	
response	as	Chk1	knockdown,	it	was	necessary	to	ensure	that	the	assay	could	differentiate	
between	Chk1	deficient	and	Control	1	cells	as	if	it	could	not,	it	would	not	have	been	fit	for	
purpose.	Overall,	 the	 increased	Triton	X-100	 concentration	 and	 the	 switch	 to	 the	 Texas	
Red	 channel	 had	 increased	 the	 sensitivity	 of	 the	 assay	 which	 was	 now	 capable	 of	
differentiating	between	Control	1	and	Chk1	knocked	down	cells.		

Some	 of	 the	 Control	 1	 wells	 displayed	 greater	 than	 anticipated	 levels	 of	 T21	 positive	
nuclei,	which	reduced	the	signal	window	of	the	assay.	Therefore,	it	was	decided	to	assess	
alternative	 non-targeting	 controls	 for	 inclusion	 in	 the	 assay.	 The	 four	 individual	 non-
targeting	 siRNAs	 in	 the	 ON-TARGETplus	 library	 and	 the	 pool	 combining	 all	 four	 were	
trialled	 alongside	 the	 Chk1	 and	 RRM1	 siRNAs.	 The	 MetaXpress	 Custom	 Module	 Editor	
software	 was	 used	 to	 develop	 an	 algorithm	 that	 could	 identify	 a	 nucleus	 and	 the	 foci	
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within	it	by	assessing	the	size	and	intensity	of	the	objects	within	the	images.	The	average	
number	of	foci	per	cell	was	calculated	for	every	well	and	the	number	of	foci	present	per	
cell	used	to	calculate	the	proportion	of	T21	positive	cells.	With	the	combined	toxicities	of	
the	four	individual	siRNAs,	the	pool	proved	to	be	the	most	toxic	and	so	was	discarded.	All	
four	of	 the	 individual	siRNA	produced	 less	 than	10%	positive	nuclei	and	so	would	have	
been	acceptable	for	inclusion	in	the	final	screening	assay.		

Comparison	 of	 the	 average	 data	 and	 the	 individual	 cell	 data	 showed	 that	 they	 both	
produced	similar	 trends.	However,	 for	all	 further	automated	analysis,	 the	 individual	cell	
data	was	used	as	it	was	less	susceptible	to	biases.	If	a	small	number	of	highly	positive	cells	
occurred	in	a	well,	this	would	have	skewed	the	average	data	and	made	it	look	like	more	
replication	 stress	 is	 ensuing	 than	 is	 actually	 the	 case.	 The	 algorithm	 can	 miscount	 the	
number	of	cells	in	a	well	if	the	cells	are	growing	in	clumps	and	again	this	would	affect	the	
average	data;	this	would	be	identified	in	the	individual	cell	data	and	could	be	rectified.	The	
average	 data	 also	 gives	 no	 indication	 of	 the	 variability	 of	 the	 staining	 within	 the	 well,	
which	can	be	calculated	from	the	cell	data.		

As	with	 the	previous	assay,	 the	number	of	 cells	 imaged	was	a	concern	and	the	 levels	of	
replication	 stress	 being	 produced	 by	 Chk1	 and	 RRM1	 knockdown	 were	 lower	 than	
expected.	Therefore,	efforts	were	made	to	improve	cell	numbers	by	increasing	the	plating	
density	 and	 transfection	 by	 increasing	 the	 concentration	 of	 DharmaFECT	 1	 and	
transfection	time.	The	increased	level	of	DharmaFECT	1	reduced	cell	numbers	in	the	gene	
knockdown	wells,	most	likely	due	to	increased	non-specific	toxicities.	Similar	results	were	
seen	for	the	72	hour	transfection	with	regards	to	RRM1	knocked	down	cells,	possibly	due	
the	 fact	 that	cells	can	only	survive	 for	short	periods	of	 time	with	severely	compromised	
nucleotide	metabolism.	These	decreases	in	cell	number	offset	any	improvements	in	signal	
window	observed	with	these	conditions	and	so	were	not	pursued	further.	Increasing	the	
plating	density	resulted	in	more	cells	imaged	per	condition	and	had	very	little	effect	on	the	
levels	of	replication	stress	reported,	so	the	plating	density	was	increased	to	2000	cells	as	
this	gave	approximately	100	cells	per	well	for	every	condition.		

Upon	 repeating	 the	 non-targeting	 control	 panel	 experiment	 with	 2000	 cells	 plated	 per	
well	 the	 antibody	 signal	 did	 not	 appear	 in	 the	 Texas	 Red	 channel	 when	 using	 the	 40X	
objective.	 By	 reducing	 the	 magnification	 and	 using	 the	 20X	 objective	 the	 signal	 was	
detected	and	foci	could	be	identified.	The	differing	abilities	of	the	objectives	to	detect	the	
signal	is	a	result	of	how	the	microscope	captures	the	images.	In	the	20X	images	the	image	
of	 each	 cell	 comprises	 fewer	pixels	 than	 in	 the	40X	 images.	This	means	 that	 in	 the	20X	
images,	the	intensity	of	the	signal	of	the	individual	pixels	in	the	40X	image	are	combined	to	
form	the	smaller	 image	(Fig.	3.7.2),	 resulting	 in	a	stronger	antibody	signal	which	can	be	
detected	by	the	microscope.		
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Figure	3.7.2.	Difference	in	pixel	coverage	at	40X	and	20X	objectives.		
Representative	schematic	of	cell	at	a	(A)	40X	objective	and	a	(B)	20X	objective.	Each	square	represents	
one	pixel.		

An	algorithm	was	written	to	score	the	imaged	obtained	at	the	20X	objective	however,	this	
did	 not	 appear	 to	 correctly	 report	 the	 number	 of	 foci	 present	 accurately	 as	 all	 4	 non-
targeting	 siRNAs	 produced	 higher	 replication	 stress	 levels	 than	 observed	 previously.	
Further	attempts	were	made	to	optimise	the	20X	algorithm	for	automated	scoring	as	more	
cells	could	be	 imaged	at	this	objective	whilst	observing	 the	same	number	of	sites	as	 the	
40X	foci,	which	would	have	improved	the	robustness	of	the	scoring	data.	Several	attempts	
were	made	to	image	a	plate	at	both	the	20X	and	the	40X	objective	and	compare	the	result	
produced	by	the	two	respective	algorithms	and	adjust	the	20X	to	give	a	similar	result	to	
that	produced	for	the	40X	images.		

The	initial	comparison	revealed	that	the	20X	algorithm	was	identifying	much	higher	levels	
of	foci	than	the	40X	in	every	condition,	indicating	that	either	the	criteria	for	identification	
of	nuclei	or	foci	required	adjustment.	In	the	40X	images,	the	levels	of	positive	foci	detected	
were	 surprising,	 with	 the	 non-targeting	 control	 transfected	 cells	 producing	 higher	
percentages	of	positive	nuclei	 than	 the	gene	knocked	down	cells.	This	was	observed	 for	
both	 antibody	 lots	 and	 so	 was	 not	 due	 to	 degradation	 of	 the	 original	 antibody.	 As	 the	
results	appeared	irregular	the	assay	was	repeated,	however,	the	plate	was	not	able	to	be	
imaged	at	the	40X	objective	due	to	a	lack	of	T21	signal.	In	the	20X	images	the	Chk1	cells	
appeared	 to	 be	 poorly	 stained	 and	 a	 high	 level	 of	 background	 staining	 was	 observed.	
Subsequent	imaging	of	this	plate	on	an	InCell	2000	microscope	to	determine	the	strength	
of	 the	 antibody	 staining	 revealed	 that	 despite	 the	 efforts	 to	 increase	 cell	 density,	 the	
coverage	of	the	wells	was	still	sparse,	with	many	images	appearing	completely	devoid	of	
cells.	This	inconsistent	cell	coverage	was	worrying	as	it	had	the	potential	to	dramatically	
affect	 the	 robustness	 of	 the	 assay.	 The	 high	 levels	 of	 background	 staining	 were	 also	
concerning	as	this	reduced	the	screening	window	of	the	assay	and	increased	the	likelihood	
of	false	positives	being	reported.	The	lack	of	staining	in	the	Chk1	knocked	down	cells	and	
the	absence	of	true	foci	in	the	RMM1	knocked	down	cells	was	surprising	as	in	the	previous	
assays,	transfection	with	these	siRNAs	had	produced	a	clear	staining	pattern.		

The	next	planned	step	 in	 the	optimisation	of	 the	assay	was	 to	 trial	a	room	temperature	
pre-extraction	where	cells	are	permeabilised	with	the	0.5%	Triton	X-100,	3%	BSA	buffer,	
fixed	and	then	stained	immediately.	However,	this	was	never	completed	in	favour	of	the	
trouble	shooting	experiments.		
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As	either	 the	 transfection	or	 the	staining	did	not	appear	repeatable	between	the	assays,	
experiments	were	 carried	 out	 to	 try	 and	 determine	 the	 cause	 of	 some	 of	 the	 recurrent	
issues.	Their	 aim	was	 to	determine	 if	 there	was	an	 issue	with	 the	 reagents	or	protocols	
being	 employed	 at	 the	 SRSF,	 or	 if	 the	 issues	 stemmed	 from	 the	 384	 well	 plate	 itself.	
Despite	 the	 protocol	 used	 to	 process	 the	 384	 well	 assay	 plates,	 the	 cell	 coverage	 was	
variable	across	the	well,	although	this	may	have	been	an	artefact	of	the	manual	washing.	
On	HU	treatment	resulted	in	the	induction	of	bright	foci	suggesting	that	the	issues	do	not	
stem	from	the	inability	of	the	antibody	to	detect	pRPA2.	This	suggests	that	it	is	either	an	
issue	with	 the	 reverse	 transfection	within	 these	 wells	 or	 gene	 knockdown	 producing	 a	
weaker	 replication	 stress	 response	 than	 HU	 treatment.	 In	 contrast,	 when	 the	 SRSF	
procedure	 was	 carried	 out	 in	 a	 24	 well	 plate,	 clear	 differences	 could	 be	 distinguished	
between	 the	 Control	 1,	 gene	 knocked	 down	 and	HU	 treated	 cells.	 As	 this	 procedure	 is	
capable	of	producing	foci	in	the	24	well	format,	it	indicates	that	it	is	something	implicit	in	
the	 384	 well	 format	 that	 hindered	 the	 assay.	 One	 possibility	 is	 that	 the	 differing	
capabilities	of	the	Nikon	Eclipse	and	 ImageXpress	microscopes	 to	detect	 the	pRPA2	T21	
signal	may	have	caused	the	disconnect	between	the	 two	assay	 formats.	However,	 it	was	
not	possible	to	image	384	well	plated	on	the	Nikon	or	slides	on	the	ImageXpress	and	so	
this	could	not	be	tested.		

When	 looking	 back	 over	 the	 images	 produced	 during	 the	 optimisation	 of	 the	 high	
throughput	assay	 it	was	observed	that	 there	were	high	 levels	of	variability	between	the	
assays.	 Even	when	 the	 images	produced	were	 of	 a	 decent	 quality,	 there	was	 variability	
between	 the	 levels	 of	 foci	 observed	 for	 the	 same	 condition	 in	 the	 different	 assays.	 One	
source	of	this	variability	may	have	been	the	inconsistencies	in	how	the	assay	plates	were	
processed	during	 the	 fixing	and	 staining	procedure.	Due	 to	 the	multi-user	nature	of	 the	
SRSF	it	was	not	always	possible	to	guarantee	the	use	of	the	same	piece	of	equipment	week	
on	week	and	on	several	occasions	the	Multidrop	and	plate	washer	were	not	available	due	
to	 technical	 difficulties.	 This	 may	 also	 have	 contributed	 to	 the	 irregularity	 of	 the	 cell	
coverage	 seen,	 as	manual	 and	 automatic	 plate	washing	produce	 very	 different	 shearing	
forces	and	so	may	change	the	conditions	faced	by	the	cells	during	staining.		

The	 background	 signal,	 irregularity	 of	 cell	 coverage	 and	 potential	 inconsistency	 of	
transfection	 efficiency	 all	 prevented	 the	 development	 of	 a	 robust	 assay	 suitable	 for	
genome	wide	RNAi	screening.	It	was	also	highly	concerning	that	the	assay	appeared	to	be	
very	close	to	the	detection	limit	of	the	40X	objective	implied	by	the	ability	of	the	plate	to	
be	 imaged	 using	 the	 20X	 objective	 but	 not	 the	 40X	 on	 several	 occasions.	 This	 was	
worrying	as	slight	variability	 in	the	strength	of	the	assay	signal	may	have	prevented	 the	
imaging	of	a	plate	and	so	wasted	time	and	resources.	This	was	not	resolved	by	setting	the	
assay	 up	 manually	 to	 eliminate	 the	 technical	 issues	 encountered	 at	 the	 SRSF	with	 the	
Collis	lab	reagents.		

Whilst	 a	 logical	 and	 methodical	 approach	 was	 taken	 to	 optimise	 this	 method,	 several	
factors	prevented	the	development	of	a	reliable	screening	assay.	One	major	weakness	of	
this	 study	 was	 the	 inconsistencies	 introduced	 by	 the	 technical	 difficulties	 encountered	
during	the	staining	of	the	assay	plates	mentioned	previously.	These	majorly	undermined	
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the	effectiveness	of	this	optimisation	and	may	have	caused	several	of	the	problems,	such	
as	the	variable	cell	coverage,	that	necessitated	further	optimisation	of	the	assay.	That	said,	
it	is	likely	that	the	choice	of	cell	line	also	played	a	part	in	the	failure	of	the	development	of	
this	 assay.	 Even	 in	 the	 24	 well	 assay,	 on	 several	 occasions,	 large	 bald	 patches	 were	
observed	on	the	coverslips	due	to	the	cells	lifting	during	staining.	Most	likely	this	is	due	to	
the	 propensity	 of	 this	 cell	 line	 to	 aggregate	 and	 so	 when	 they	 lift	 whole	 sheets	 are	
removed	 from	 the	 coverslips	 or	 well	 bottoms.	 Combined	 with	 the	 variability	 of	 the	
strength	of	signal	produced	either	through	inconsistent	transfection,	antibody	binding	or	
staining	there	was	little	confidence	in	this	screening	assay.	Any	one	of	these	factors	or	a	
combination	of	them	all	may	have	resulted	in	the	failure	to	produce	a	reliable	and	effective	
screening	assay.		

It	was	considered	that	the	384	well	assay	could	be	re-developed	in	96	well	assay	plates	or	
utilising	a	different	cell	line	that	would	be	less	susceptible	to	aggregation	or	lifting.	Ideally	
this	 cell	 line	would	 have	 been	 of	 cancerous	 origin	 and	 previously	 been	 used	 in	 a	 SRSF	
antibody	based	screen.	As	either	of	these	options	could	potentially	have	resulted	in	the	re-
optimisation	of	the	entire	assay,	which	would	have	been	costly	and	time	consuming,	and	
still	produced	an	assay	unsuitable	for	screening,	this	was	not	attempted.		

In	 parallel	with	 the	 initial	 pRPA2	 experiments	 in	HCT116	 cells,	 several	 complementary	
approaches	were	trialled	as	potential	alternative	screening	methods	or	for	hit	validation.	
The	 first	 utilised	 HeLa	 cells	 expressing	 EGFP	 tagged	 RPA2	 to	 determine	 if	 these	 cells	
formed	 EGFP	 foci	 following	 replication	 stress	 suppressor	 knockdown	 and	 if	 so,	 what	
proportion	 of	 the	 foci	 were	 stained	 by	 the	 pRPA2	 antibodies.	 However,	 several	 issues	
arose	with	this	assay	including	poor	adherence	to	coverslips,	poor	staining	and	very	low	
levels	of	EGFP	expression.	Repeating	this	experiment	yielded	no	further	results	as	without	
fail	the	plates	became	bacterially	infected.	Upon	routine	mycoplasma	testing,	the	C3	clone	
returned	a	positive	result	which	explained	the	issues	with	lifting	cells	and	all	further	work	
was	halted.	The	low	levels	of	EGFP	expression	in	the	C1	clone	also	prevented	further	work.	
A	 very	 similar	 approach	was	 attempted	 using	 a	 total	RPA2	antibody	which	would	 have	
been	assessed	alongside	the	pRPA2	antibodies.	However,	this		failed	to	yield	foci	following	
gene	 knockdown	 alone,	 suggesting	 this	 assay	 was	 not	 sensitive	 enough	 to	 detect	
endogenous	levels	of	replication	stress.		

As	previously	mentioned,	TopBP1	foci	can	also	be	used	to	assess	replication	stress	levels	
(Kim	 et	 al,	 2005)	 and	was	 therefore	 investigated	 as	 an	 alternative	 screening	 approach.	
Although	 producing	 higher	 levels	 of	 non-specific	 staining,	 it	 did	 produce	 quantifiable	
images	and	could	distinguish	between	Control	1	and	Chk1	knocked	down	cells.	As	a	result,	
this	 assay	 was	 miniaturised	 into	 a	 384	 well	 assay	 format.	 However,	 foci	 could	 not	 be	
readily	detected,	even	with	pre-extraction,	and	so	the	assay	development	was	halted.		

As	 neither	 the	 T21	 pRPA2	 foci	 detection	 assay	 or	 any	 of	 the	 alternative	 approaches	
investigated	 were	 suitable	 for	 use	 in	 a	 genome-wide	 screen,	 the	 development	 of	 this	
project	 had	 to	 be	 terminated.	 However,	 as	 the	 24	 well	 pRPA2	 foci	 detection	 assay	
produced	repeatable	screening	results,	it	was	decided	to	utilise	this	protocol	for	screening	
purposes.	It	would	have	been	too	expensive	and	laborious	to	carry	out	an	entire	genome-
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wide	screen,	or	even	a	kinome	screen	using	this	protocol	so	a	targeted	kinase	screen	was	
proposed	instead.	
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4.1	Introduction	

Due	to	 the	 failure	of	 the	high	throughput	screening	methods	to	produce	a	feasible	assay	
for	 the	 identification	 of	 novel	 replication	 stress	 suppressors,	 it	was	 decided	 to	 adopt	 a	
more	 targeted	 approach.	 As	 the	 pRPA2	 T21	 24	well	 staining	protocol	 had	 reproducibly	
generated	 a	 suitable	 screening	 window	 throughout	 assay	 development,	 this	 assay	 was	
further	optimised	and	employed	as	a	targeted	kinase	screen.		

During	 the	 development	 of	 the	 high	 throughput	 screen,	 Kavanaugh	 and	 colleagues	
published	a	paper	which	detailed	their	identification	of	replication	stress	response	genes	
using	 a	 genome	 wide	 screening	 approach	 (Kavanaugh	 et	 al,	 2015).	 This	 genome	 wide	
screen	 utilised	 BrdU	 incorporation	 to	 quantify	 endogenous	 levels	 of	 replication	 stress	
following	 gene	 knockdown	 before	 treating	 the	 cells	 with	 HU	 to	 induce	 replication	 fork	
stalling.	The	cells	were	then	incubated	with	EdU	to	measure	the	restart	of	replication	forks	
before	 fixing	 and	 staining	with	 gH2AX	antibodies	 to	 determine	 the	 levels	 of	 unresolved	
damage.	The	EdU	and	gH2AX	staining	was	quantified	and	used	 to	calculate	a	replication	
restart	 score	 (RSS)	which	were	 then	assigned	 robust	 Z-scores.	The	data	published	 from	
this	screen	was	used	to	generate	a	list	of	potential	replication	stress	response	genes	to	be	
assessed	in	the	phospho-RPA2	Targeted	Screen.	

It	 was	 decided	 to	 specifically	 investigate	 kinases	 that	 suppressed	 replication	 stress,	 as	
these	 enzymes	 are	 considered	 ‘druggable’	 (Hopkins	&	 Groom,	 2002).	 All	 of	 the	 kinases	
included	in	the	ON-TARGETplus	SMARTpool	siRNA	library	were	ranked	by	their	average	
RSS	Z-score,	with	hits	with	an	average	RSS	Z-score	of	less	than	3	being	discarded.	

These	 remaining	 kinases	 were	 shortlisted	 based	 on	 any	 cancer	 associated	 mutations,	
identified	 using	 cBioPortal	 (Cerami	 et	 al,	 2012),	 or	 interesting	 phenotypes	 in	 the	
GenomeRNAi	database	(Schmidt	et	al,	2013)	(Appendix	3)	which	resulted	in	a	final	list	of	
18	kinases	(Table	4.1.1).	

	

	
Table	4.1.1.	Kinases	 to	be	 included	in	Phospho-
RPA2	Targeted	Screen.	
The	 ON-TARGETplus	 SMARTpool	 kinases	 were	
ranked	by	their	average	RSS	Z-score;	those	with	an	
average	 Z-score	 less	 than	 3	were	 discarded.	 These	
were	 then	 shortlisted	 based	 on	 associated	 cancer	
mutations	 and	 phenotypes	 reported	 in	 RNAi	
screens.	The	final	 list	was	compiled	of	kinases	with	
no	 published	 replication	 stress	 suppressor	 activity	
in	PubMed.	
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These	 kinases	 were	 also	 assigned	 their	 Z-scores	 from	 the	 Collis	 gH2AX	 RNAi	 screen	
(Barone	et	al,	2016;	Myers	et	al,	2016;	Staples	et	al,	2016;	Staples	et	al,	2014;	Staples	et	al,	
2012)	and	a	Caspase	3	activation	 and	RPA2	Ser4/8	phosphorylation	 screen	 (Meuth	 lab,	
unpublished).	However,	it	was	found	that	there	was	little	correlation	between	the	Z-scores	
generated	 in	 the	three	screens	and	so	 these	were	not	considered	during	 target	selection	
(Appendix	3).	

It	was	hypothesised	that	as	these	kinases	played	a	role	in	replication	restart,	they	would	
also	 increase	 the	 levels	 of	 pRPA2	 observed	 following	 gene	 knockdown	 and	 that	 these	
enzymes	 would	 make	 suitable	 candidates	 for	 targeted	 cancer	 therapies.	 Any	 gene	 that	
didn’t	 confer	an	 increase	 in	pRPA2	 foci	 formation	 following	knockdown	were	discarded	
and	the	remaining	hits	were	validated	in	a	TopBP1	immunofluorescent	screen.	They	were	
also	assessed	for	their	ability	to	preferentially	decrease	survival	in	p53	deficient	cells	and	
from	this	assay	two	hits,	Phosphomevalonate	Kinase	(PMVK)	and	Sucrose	Non-fermenting	
Related	Kinase	(SNRK),	were	selected	for	further	assessment.		

The	siRNA	pools	used	in	these	subsequent	screens	were	deconvoluted	and	the	individual	
siRNAs	 were	 assessed	 for	 their	 ability	 to	 reduce	 PMVK	 or	 SNRK	 expression,	 increase	
pRPA2	foci	formation	and	sensitise	p53	null	cells.	As	the	individual	PMVK	siRNA	failed	to	
decrease	 survival	 in	 the	 p53	 deficient	 cells,	 work	 on	 this	 gene	 was	 halted.	 The	 SNRK	
deficient	 phenotype	 was	 characterised	 by	 immunofluorescence,	 MTT	 cytotoxicity	 and	
Clonogenic	 survival	 assays	 and	 flow	 cytometry	 to	 determine	 its	 status	 as	 a	 potential	
cancer	drug	target.		

4.2	Phospho-RPA2	Staining	Optimisation	in	U2OS	Cells	

When	designing	the	Targeted	Screening	assay,	it	was	decided	to	use	U2OS	cells	as	this	was	
the	cell	 line	 that	had	been	used	 to	carry	out	 the	Kavanaugh	screen.	As	 this	assay	would	
never	be	 scaled	down	 to	 a	high	 throughput	 format,	 techniques	 that	would	have	proved	
unfeasible	could	also	now	be	employed	to	improve	the	quality	of	the	immunofluorescent	
staining.	Four	staining	methods	were	investigated	to	determine	which	produced	the	most	
specific	 staining	 pattern.	 Cells	were	 forward	 transfected	with	 Control	 1,	 Chk1	 or	RRM1	
siRNA	and	DharmaFECT	1.	The	cells	were	fixed	48	hours	post-transfection	with	one	set	of	
coverslips	 pre-extracted	with	 0.5%	 Triton	 X-100,	 3%	 BSA	 in	 PBS	 for	 5	minutes	 before	
fixing.	Two	sets	of	coverslips	were	incubated	with	0.5%	Triton	X-100,	3%	BSA	in	PBS	for	5	
minutes	 after	 fixing,	 one	 of	which	was	 also	 blocked	 in	 0.5%	BSA	 in	 PBS	 1	 hour	 before	
staining.	The	final	set	of	coverslips	was	extracted	with	acetone	and	blocked	with	Acetone	
Blocking	Buffer	before	the	cells	were	stained	(Fig.	4.2.1	and	Fig.	4.2.2).		
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Figure	4.2.1	Staining	techniques	trialled	for	the	pRPA2	staining	of	U2OS	cells.	

All	of	the	four	protocols	trialled	produced	a	very	low	level	of	T21	background	staining	in	
the	Control	1	 cells.	Of	 the	 four	 techniques,	 the	 coverslips	 extracted	with	0.5%	Triton	X-
100,	3%	BSA	in	PBS	with	no	additional	blocking	produced	the	poorest	quality	images	with	
the	most	non-specific	staining	of	the	nucleus	(Fig.	4.2.2).	This	was	particularly	prominent	
in	 the	Chk1	knocked	down	 cells	where	 less	 foci	 are	present	 than	 in	 the	RRM1	deficient	
cells.	 The	 coverslips	 that	 received	 the	 additional	0.5%	BSA	 block	 also	 displayed	 higher	
than	desirable	levels	of	background	staining	in	the	Chk1	knocked	down	cells	but	the	foci	
appeared	clearer	in	the	cells	lacking	RRM1.	Extraction	with	acetone	reduced	the	levels	of	
background	staining	observed	 in	Chk1	deficient	cells	but	did	not	appear	 to	 improve	 the	
staining	of	RRM1	knocked	down	cells	compared	to	the	coverslips	that	received	additional	
blocking	 (Fig.	 4.2.2).	 The	 protocol	 that	 produced	 the	 least	 background	 staining	was	 the	
pre-extraction	of	the	cells.	Very	little	background	was	observed	in	the	Chk1	knocked	down	
cells	and	 the	 foci	appeared	more	defined	 in	 the	RRM1	deficient	 cells	 than	 for	any	other	
protocol.	 As	 a	 result	 of	 this,	 all	 further	 Immunofluorescent	 staining	 experiments	 were	
carried	out	using	pre-extraction	(unless	otherwise	stated).		
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Figure	4.2.2	Optimisation	of	the	RPA2	Staining	Protocol	in	U2OS	Cells.		
Representative	 images	 of	U2OS	 cells	 forward	 transfected	with	 Control	 1,	 Chk1	 or	 RRM1	 siRNA	and	
DharmaFECT	1.	The	cells	were	grown	for	48	hours	post-transfection.	Cells	were	either	permeabilised	
with	0.5	%	Triton	X-100	and	3%	BSA	before	fixing,	permeabilised	with	0.5	%	Triton	X-100	and	3%	BSA	
after	 fixing	 (some	 of	 which	 were	 blocked	 in	 0.5%	 BSA)	 or	 extracted	 with	 acetone.	 The	 cells	 were	
stained	with	a	1:250	dilution	of	antibody	raised	against	the	T21	site	within	RPA2.	

4.3	Phospho-RPA2	Targeted	Screen	

Once	 the	 Phospho-RPA2	 staining	 protocol	 had	 been	 selected,	 the	 Targeted	 Screen	 was	
carried	out	with	five	individual	biological	replicates	(two	carried	out	by	Dr.	K.	Myers	of	the	
Collis	 lab).	 In	 addition	 to	 the	 Control	 1	 siRNA	 employed	 in	 the	 high	 throughput	 screen	
(Chapter	3),	RPA2	siRNA	was	included	as	a	further	negative	control	to	remove	the	primary	
antibody’s	 target	 and	 so	 set	 a	 low	 level	 threshold	 of	 pRPA2	 foci	 formation.	 As	 used	
previously,	 Chk1	 and	 RRM1	 siRNA	 were	 included	 as	 siRNA	 positive	 controls.	 Two	
untransfected	 wells	 were	 also	 included	 on	 each	 assay	 plate,	 one	 of	 which	 was	
subsequently	treated	with	2mM	HU,	as	supplementary	transfection	independent	controls.	
Each	 assay	 plate	 also	 included	 the	 18	 target	 kinases	 selected	 from	 the	 Kavanaugh	 data	
(Fig.	 4.3.1).	 The	 kinases	 were	 numbered	 according	 to	 their	 location	 in	 a	 custom	 siRNA	
plate	(A2-B9)	to	remove	any	potential	bias	from	the	scoring	of	the	screen.	
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Figure	4.3.1	Phospho-RPA2	Targeted	Screen	
Representative	images	of	U2OS	cells	forward	transfected	with	Control	1,	RPA2,	Chk1,	RRM1	or	siRNA	
against	the	18	selected	kinases	and	DharmaFECT	1.	Two	wells	remained	untransfected,	one	of	which	
was	 treated	 with	 2mM	 HU	 for	 16	 hours	 pre-extraction.	 The	 cells	 were	 grown	 for	 48	 hours	 post-
transfection	 then	 permeabilised	with	 0.5	%	Triton	 X-100	 and	 3%	BSA	 before	 fixing.	 The	 cells	were	
stained	with	a	1:250	dilution	of	antibody	raised	against	the	T21	site	within	RPA2.	
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Figure	 4.3.2	 Percentage	 of	 U2OS	 Cells	 positive	 for	 T21	 foci	 in	 the	 Phospho-RPA2	 Targeted	
Screen.	
For	each	condition	the	number	of	cells	were	counted	and	the	percentage	of	T21	positive	nuclei	was	
calculated.	 A	 nucleus	was	 considered	 positive	 if	 it	 contained	 10	 or	more	 bright	 T21	 foci.	 Asterisks	
indicate	significant	difference	from	untransfected	Cells,	p	value	<0.05.	Mean	values	derived	from	five	
independent	experiments,	with	their	respective	SEMs.	Red	line	represents	10%	T21	Positive	Nuclei	cut	
off	for	hit	selection.	

The	untransfected	cells	(Cells),	Control	1	and	RPA2	knocked	down	cells	showed	very	low	
levels	of	T21	staining.	The	Chk1	and	RRM1	knocked	down	cells	and	the	HU	treated	cells	
showed	a	very	high	level	of	staining	as	previously	demonstrated	in	other	cell	lines.	None	of	
the	 selected	 kinases	 showed	 as	 high	 a	 level	 of	 staining	 as	 the	 positive	 controls,	 as	was	
expected,	as	none	of	 the	kinases	scored	as	highly	 in	 the	Kavanaugh	screen	as	Chk1.	The	
images	 were	 subsequently	 scored	 for	 T21	 foci	 to	 determine	 if	 differences	 could	 be	
distinguished	between	the	target	kinases	and	the	negative	controls	(Fig.	4.3.2).		

The	knockdown	of	Chk1	or	RRM1	and	treatment	with	HU	produced	a	significantly	higher	
percentage	 of	 T21	 positive	 cells	 when	 compared	 to	 the	 untransfected	 cells	 (p-values	
<0.0001,	 0.0042	 and	 <0.0001	 respectively).	 However,	 none	 of	 the	 selected	 kinases	
produced	a	significant	change	in	the	levels	of	T21	phosphorylation	(Fig.	4.3.2,	Appendix	4).	
A	statistically	significant	cut	off	of	10%	T21	Positive	Nuclei	(p-value	0.0295)	was	chosen	
to	allow	the	identification	of	kinases	for	further	investigation;	this	resulted	in	the	selection	
of	kinases	B2-B9.	
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4.4	Hit	Validation	and	Further	Kinase	Selection	

When	the	kinases	for	further	investigation	had	been	selected,	several	assays	were	carried	
to	assess	the	validity	of	the	hits	as	replication	stress	suppressors.	These	assays	also	served	
to	further	narrow	down	the	list	of	remaining	kinases	to	a	number	viable	for	more	detailed	
analysis.		

4.4.1	TopBP1	Replication	Stress	Detection		

The	alternative	replication	stress	marker	TopBP1	(as	demonstrated	in	3.6.3)	was	utilised	
to	validate	the	selected	hits	as	replication	stress	suppressors.	Cells	were	transfected	with	
Control	1	siRNA	or	siRNA	targeting	Chk1,	RRM1	or	one	of	the	8	selected	kinases	(B2-B9)	
with	DharmaFECT	1.	An	untransfected	(Cells)	and	a	HU	treated	well	was	also	included	on	
each	assay	plate	as	transfection	independent	controls	(Fig.	4.4.1.1).		

Figure	4.1.1.1	TopBP1	staining	of	selected	Targeted	Screen	kinases	
Representative	images	of	U2OS	cells	forward	transfected	with	Control	1,	Chk1,	RRM1	or	siRNA	against	
the	8	selected	kinases	and	DharmaFECT	1.	One	well	remained	untransfected.	The	cells	were	grown	for	
48	hours	post-transfection	then	permeabilised	with	0.5	%	Triton	X-100	and	3%	BSA	before	fixing.	The	
cells	were	stained	with	a	1:500	dilution	of	antibody	raised	against	TopBP1.	
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Table	4.4.1.1	Scoring	of	selected	Targeted	Screen	kinases	for	TopBP1	positive	nuclei.		
For	 each	 condition,	 the	 total	 number	 of	 cells	were	 counted	 and	 the	 percentage	 of	 TopBP1	 positive	
nuclei	was	calculated.	A	nucleus	was	considered	positive	if	it	contained	10	or	more	bright	foci.	Values	
derived	from	three	independent	experiments.		

The	untransfected	cells	and	Control	1	cells	produced	a	very	 low	 level	of	staining,	which	
increased	upon	 the	knockdown	of	Chk1,	RRM1	or	 treatment	with	HU	 (not	 shown).	The	
TopBP1	images	were	subsequently	scored	to	allow	the	quantification	of	the	differences	in	
replication	 stress	 induced	 by	 gene	 knockdown	 (Table	 4.4.1.1	 and	 Fig.	 4.4.1.2).	 When	
compared	 to	the	untransfected	cells,	 the	knockdown	of	Chk1,	RRM1	or	HU	treatment	all	
produced	 a	 significant	 increase	 in	 the	 levels	 of	 TopBP1	 positive	 cells	 (Table	 4.4.1.1).	
Additionally,	 kinases	 B2,	 B4,	 B7	 and	 B8	 also	 all	 produced	 a	 significant	 increase	 in	 the	
levels	of	replication	stress	observed	in	this	assay,	whilst	the	remaining	four	kinases	(B3,	
B5,	B6	and	B9)	did	not	due	the	variability	in	staining	produced	by	their	knockdown.	

Despite	 four	 kinases	 not	 producing	 a	 significant	 difference	 when	 compared	 to	
untransfected	cells,	as	all	of	the	kinases	produced	a	similar	increased	level	of	replication	
stress	in	this	assay	compared	with	negative	control	cells,	all	8	kinases	were	taken	forward	
for	further	investigation.		

	

	
Figure	4.4.1.2	Percentage	of	U2OS	cells	
positive	for	TopBP1	foci.	
For	 each	 condition	 the	 number	 of	 cells	
were	 counted	 and	 the	 percentage	 of	
TopBP1	 positive	 nuclei	was	 calculated.	 A	
nucleus	 was	 considered	 positive	 if	 it	
contained	10	or	more	bright	TopBP1	foci.	
Asterisks	 indicate	 significant	 difference	
from	 untransfected	 Cells,	 p	 value	 <0.05.	
Mean	 values	 derived	 from	 three	
independent	 experiments,	 with	 their	
respective	SEMs.		
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4.4.2	Sensitisation	to	p53	Loss	

One	 way	 in	 which	 drugs	 are	 being	 designed	 to	 target	 cancer	 cells	 more	 specifically	 is	
through	the	exploitation	of	synthetic	lethal	relationships	with	cancer	associated	mutations	
and/or	 cancer	 selective	 vulnerabilities	 such	 as	 gene	 addiction.	 Mutation	 of	 the	 tumour	
suppressor	p53	 is	 the	most	 common	genetic	 change	 that	 arises	 in	 cancer	 (Negrini	 et	al,	
2010).	Therefore,	 the	 identification	of	 any	 gene	whose	 loss	 is	more	detrimental	 in	 cells	
lacking	functional	p53	may	prove	to	be	a	promising	cancer	therapy	target.		

Two	 isogenic	 HCT116	 cell	 lines	 that	were	 wild	 type	 (WT)	 or	 null	 with	 regards	 to	 p53	
(Bunz	 et	 al,	 1999)	 were	 therefore	 used	 to	 investigate	 if	 any	 of	 the	 8	 selected	 kinases	
preferentially	killed	cells	deficient	for	p53.	To	demonstrate	that	the	HCT116	and	HCT116	
p53	null	cell	 line	did	differ	 in	 their	p53	expression	status,	western	blotting	analysis	was	
used	 to	 determine	 the	 expression	 of	 p53	 in	 each	 cell	 line.	 The	 cells	were	 grown	 for	72	
hours	 before	 being	 lysed	 to	 prepare	 samples	 for	 electrophoresis.	 The	 resultant	
membranes	were	blotted	with	p53	and	b-Actin	antibodies	(Fig.	4.4.2.1).	
	

Figure	4.4.2.1	Expression	of	p53	in	HCT116	wild	type	and	HCT116	
p53	null	cells.	
HCT116	wild	type	and	HCT116	p53	null	cells	were	grown	for	72	hours	
before	 lysis.	 For	 each	 cell	 line,	 15µg	 of	 protein	 was	 loaded	 onto	 a	
NuPage	4-12%	Bis-Tris	Gel	 for	 separation.	The	gels	were	 transferred	
to	 nitrocellulose	 membranes	 before	 blocking	 and	 blotting	 with	 p53	
and	 b-Actin	 primary	 antibodies	 which	 were	 detected	 by	 HRP	
conjugated	secondary	antibodies.	

Once	the	disparity	in	p53	expression	had	been	established,	the	existence	of	any	potential	
sensitisation	of	p53	deficient	cells	was	investigated.	MTT	cytotoxicity	assays	were	carried	
out	where	each	kinase	was	knocked	down	in	p53	wild	type	and	p53	null	HCT116	cells.	The	
cells	 were	 forward	 transfected	 with	 Control	 1,	 kinase	 B2-8	 or	 ATR	 siRNA	 and	
DharmaFECT	1.	ATR	was	used	 as	 a	positive	 control	 as	 it	 has	previously	been	 shown	 to	
exhibit	a	synthetic	 lethal	relationship	with	p53	deficiency	(Kwok	et	al,	2016).	The	assay	
plates	were	left	for	120	hours	post-transfection	before	the	addition	of	MTT	(Fig.	4.4.2.2).	

For	every	kinase,	the	HCT116	p53	wild	type	cells	grew	better	following	gene	knockdown	
when	compared	to	the	p53	null	cells	(Fig.	4.4.2.2A).	Calculation	of	the	fold	change	between	
the	p53	null	and	wild	 type	cells	revealed	 that	 the	kinases	B5	and	B9	were	 the	only	 two	
kinases	 to	 produce	 a	 significant	 difference	 (p-values	 0.017	 and	 0.024	 respectively)	 in	
growth.	 As	 knockdown	 of	 these	 two	 kinases,	 PMVK	 (B5)	 and	 SNRK	 (B9),	 produced	 a	
significant	 decrease	 in	 the	 growth	 of	 p53	 deficient	 cells	 they	 were	 taken	 forward	 for	
further	investigation.		
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Figure	 4.4.2.2	 Growth	 of	 HCT116	 p53	 wild	 type	 and	 p53	 null	 cells	 following	 knockdown	 of	
selected	Targeted	Screen	Kinases.		
HCT116	p53	wild	type	or	p53	null	cells	were	transfected	with	Control	1,	ATR	or	siRNAs	against	the	8	
selected	 Targeted	 Screen	 Kinases	 and	 DharmaFECT	 1.	 The	 cells	 were	 grown	 for	 120	 hours	 post-
transfection	before	the	addition	of	MTT.	Mean	values	were	derived	from	3	independent	experiments,	
with	their	respective	SEMs.	(A)	Percentage	growth	of	each	siRNA	in	HCT116	p53	wild	type	or	p53	null	
cells.	(B)	Fold	change	in	the	percentage	growth	of	p53	wild	type	compared	to	p53	null	cells.	Asterisks	
indicate	significant	difference	from	Control	1,	p	value	<0.05	

4.4.3	Deconvolution	of	Hit	siRNA	Pools	

To	 validate	 the	 knockdown	 of	 PMVK	 and	 SNRK,	 the	 pool	 siRNAs	 that	were	 used	 in	 the	
Phospho-RPA2,	 TopBP1	 and	 sensitivity	 screens	 were	 deconvoluted	 to	 determine	 if	 the	
effects	observed	were	due	to	specific	gene	knockdown	or	off	target	effects.		

For	both	genes,	the	four	individual	siRNAs	were	assessed	for	their	knockdown	capabilities	
by	 qPCR.	 U2OS	 cells	 were	 forward	 transfected	 with	 Control	 1,	 PMVK	 1-4	 or	 SNRK	 1-4	
siRNAs	with	DharmaFECT	1	and	grown	for	48	hours.	The	cells	were	then	lysed,	the	RNA	
was	 extracted	 and	 subsequently	 reverse	 transcribed.	 The	 resultant	 cDNA	 was	 then	
amplified	using	TaqMan	probes	for	18S	ribosomal	RNA	and	PMVK	or	SNRK.	The	Ct	values	
produced	were	then	used	to	calculate	the	percentage	gene	knockdown	(Table	4.4.3.1	and	
Fig	4.4.3.1).	This	experiment	was	carried	out	with	four	repeats	with	two	repeats	carried	
out	by	Miss	L.	Sinclair	(Masters	student).		

Table	 4.4.3.1	 Percentage	 Knockdown	 of	 PMVK	 and	 SNRK	
following	 siRNA	 transfection	 with	 deconvoluted	 siRNA	
pools.		
U2OS	were	transfected	with	Control	1,	PMVK	1-4	or	SNRK	1-4	for	
48	hours.	RNA	was	extracted	from	the	cells,	reverse	transcribed	
and	 the	 resultant	 cDNA	 was	 amplified	 using	 TaqMan	 primers	
against	18S	 ribosomal	RNA,	and	PMVK	or	SNRK.	The	Ct	values	
generated	 were	 used	 to	 calculate	 the	 percentage	 knockdown	
using	 the	 2-DDC	 method.	 Mean	 values	 derived	 from	 four	
independent	experiments.	
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Figure	 4.4.3.1	 Percentage	Knockdown	of	 PMVK	 and	 SNRK	 following	 siRNA	 transfection	with	
deconvoluted	siRNA	pools.	
U2OS	were	transfected	with	Control	1,	(A)	PMVK	1-4	or	(B)	SNRK	1-4	for	48	hours.	RNA	was	extracted	
from	 the	 cells,	 reverse	 transcribed	 and	 the	 resultant	 cDNA	 was	 amplified	 using	 TaqMan	 primers	
against	18S	ribosomal	RNA,	and	PMVK	or	SNRK.	The	Ct	values	generated	were	used	to	calculate	the	
percentage	 knockdown	 using	 the	 2-DDC	 method.	 Mean	 values	 derived	 from	 four	 independent	
experiments,	with	their	respective	SEMs.	

For	both	genes,	all	 siRNAs	produced	a	high	percentage	of	gene	knockdown	with	all	 four	
siRNA	exceeding	90%	knockdown	for	PMVK	and	siRNA	1-3	exceeding	75%	knockdown	for	
SNRK	(Fig.	4.4.3.1).		

The	four	individual	siRNAs	were	also	included	in	a	RPA2	T21	immunofluorescence	assay	
to	determine	how	many	produced	comparable	results	to	those	observed	in	the	initial		

pooled	 siRNA	 screen.	 U2OS	 cells	were	 forward	 transfected	with	 Control	 1,	 RPA2,	 Chk1,	
RRM1,	PMVK	1-4	or	SNRK	1-4	siRNAs	with	DharmaFECT	1	and	grown	for	48	hours	post-
transfection.	An	untransfected	well	 (Cells)	and	a	HU	 treated	well	were	 also	 included	as	
transfection	 independent	 controls.	 The	 cells	 were	 then	 fixed	 and	 stained	 as	 described	
previously	 (Fig.	 4.4.3.2).	 This	 experiment	 was	 carried	 out	 with	 four	 repeats	with	 three	
repeats	carried	out	by	Miss	L.	Sinclair.		

The	 images	obtained	show	a	very	similar	staining	pattern	to	 the	 initial	T21	screen,	with	
the	 negative	 controls	producing	 a	 very	 low	 level	 of	 scoring	whilst	 the	 positive	 controls	
showed	a	much	higher	 level	of	positive	nuclei.	The	PMVK	and	SNRK	siRNAs	produced	a	
low	 level	 of	 T21	 stained	 nuclei,	 again	 as	 previously,	 but	 they	 demonstrated	 a	 greater	
proportion	of	positive	nuclei	than	the	negative	control	cells.	The	images	were	scored	for	
T21	positive	nuclei	to	determine	if	the	individual	siRNAs	produced	a	similar	result	to	that	
seen	in	the	initial	screen	(Fig	4.4.3.3).		
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Figure	4.4.3.2	RPA2	 staining	of	 cells	 knocked	down	with	PMVK	or	 SNRK	deconvoluted	siRNA	
pools.	
Representative	images	of	U2OS	cells	forward	transfected	with	Control	1,	RPA2,	Chk1,	RRM1	PMVK	1-4	
or	 SNRK	 1-4	 and	 DharmaFECT	 1.	 The	 cells	 were	 grown	 for	 48	 hours	 post-transfection	 then	
permeabilised	with	0.5	%	Triton	X-100	and	3%	BSA	before	fixing.	The	cells	were	stained	with	a	1:250	
dilution	of	antibody	raised	against	the	T21	site	within	RPA2	T21.	
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The	 three	 positive	 controls	 produced	 a	 significant	 difference	 in	 the	 percentage	 of	 T21	
positive	cells	compared	 to	 that	observed	 in	 the	untransfected	Cells	(p-values	of	<0.0001	
for	 Chk1,	 0.0112	 for	 RRM1	 and	 <0.0001	 for	HU).	 Of	 the	 deconvoluted	 hit	 siRNAs,	 only	
PMVK	4	and	SNRK	1	produced	a	significant	increase	in	the	levels	of	pRPA	foci	(p-values	of	
0.320	and	0.004	respectively),	with	most	siRNA	producing	a	non-significant	 increase,	as	
was	seen	in	the	initial	screen.	

	

	

Figure	4.4.3.3	Percentage	of	PMVK	and	SNRK	
deconvoluted	siRNA	pool	knocked	down	U2OS	
cells	positive	for	T21	foci.	
For	 each	 condition	 the	 number	 of	 cells	 were	
counted	 and	 the	 percentage	 of	 T21	 positive	
nuclei	was	calculated.	A	nucleus	was	considered	
positive	 if	 it	 contained	 10	 or	 more	 bright	 T21	
foci.	Mean	values	derived	from	four	independent	
experiments,	with	their	respective	SEMs.		

	

	

	

	

As	 neither	 the	 qPCR	 or	 the	 T21	 scoring	 could	 conclusively	 differentiate	 between	 the	
siRNAs,	PMVK	1-4	and	SNRK	1-3	siRNAs	were	taken	forward	to	repeat	the	p53	sensitivity	
screen.	 The	 HCT116	 p53	 wild	 type	 and	 p53	 null	 cells	 were	 forward	 transfected	 with	
Control	1,	PMVK	1-4,	SNRK	1-3	or	ATR	siRNA	and	DharmaFECT	1.	The	assay	plates	were	
left	 for	 120	 hours	 following	 transfection	 before	 the	 addition	 of	MTT	 (Fig.	 4.4.3.4).	 This	
experiment	 was	 carried	 out	 with	 five	 repeats	 with	 two	 repeats	 carried	 out	 by	Miss	 L.	
Sinclair.		

In	 both	 the	 PMVK	 and	SNRK	assays,	 the	 knockdown	 of	 ATR	 significantly	 decreased	 the	
growth	of	the	p53	deficient	HCT116	cells	as	expected.	However,	despite	their	significance,	
the	differences	in	growth	were	not	large	and	so	may	not	have	been	biologically	relevant.	
None	 of	 the	 PMVK	 siRNAs	 tested	 significantly	 reduced	 growth	 which	 was	 unexpected	
given	 that	 the	 siRNA	pool	did.	 For	 SNRK,	 siRNA	2	 significantly	decreased	growth	 in	 the	
deficient	 cells	 and	 siRNA	 3	 did	 decrease	 growth	 to	 a	 similar	 level	 but	 this	 was	 not	
significant.	 These	 two	 siRNAs	 were	 used	 in	 further	 experiments	 to	 investigate	 the	
potential	of	 this	kinase	as	a	cancer	drug	target.	As	none	of	 the	PMVK	siRNA	had	made	a	
repeatable	impact	on	cellular	growth,	investigation	into	this	kinase	was	halted	in	favour	of	
the	continued	characterisation	of	SNRK.		
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Figure	4.4.3.4	Growth	of	HCT116	p53	wild	type	and	null	cells	following	knockdown	of	PMVK	or	
SNRK.	
HCT116	p53	Wild	Type	or	p53	null	cells	were	transfected	with	Control	1,	(A-B)	PMVK	1-4,	(C-D)	SNRK	
1-4	or	ATR	siRNAs	and	DharmaFECT	1.	The	cells	were	grown	for	120	hours	post-transfection	before	
the	 addition	 of	 MTT.	 Mean	 values	 were	 derived	 from	 five	 independent	 experiments,	 with	 their	
respective	SEMs.	(A,	C)	Percentage	growth	of	each	siRNA	in	HCT116	p53	wild	type	or	p53	null	cells.	(B,	
D)	 Fold	 change	 in	 the	 percentage	 growth	 of	HCT116	 p53	wild	 type	 compared	 to	 the	 p53	null	 cells.	
Asterisks	indicate	significant	difference	from	Control	1,	p	value	<0.05.	

4.5	Further	Investigation	of	the	Sensitisation	to	p53	Loss		

4.5.1	Pharmacological	Inhibition	of	p53	signalling	

Rather	than	relying	solely	on	the	results	obtained	using	the	p53	null	HCT116	cell	line,	the	
sensitivity	assays	were	repeated	 in	wild	 type	HCT116	cells	 that	had	 their	p53	signalling	
disrupted	 by	 Pifithrin-a	 (PTN-a).	Whilst	 this	 p53	 inhibitor	 has	 been	 shown	 to	 have	 off	
target	effects	(Sohn	et	al,	2009),	it	has	previously	been	demonstrated	that	it	protects	cells	
and	mice	 from	genotoxic	 insults	 (Gudkov	&	Komarova,	 2005;	Komarov	 et	 al,	1999)	and	
decreases	 the	 expression	 of	 p53	 target	 genes	 (Culmsee	 et	 al,	 2001).	 It	 was	 therefore	
deemed	as	 an	 appropriate	 alternative	 chemical	 approach	 to	 complement	 the	previously	
obtained	genetic	data.	HCT116	wild	type	cells	were	plated	and	24	hours	post-plating	the	
cells	 were	 treated	 with	 a	 0	 -	 30µM	 titration	 of	 PTN-a.	 Five	 hours	 after	 the	 cells	 were	
treated	 they	 were	 transfected	 with	 Control	 1,	 SNRK	 2,	 SNRK	 3	 or	 ATR	 siRNAs	 with	
DharmaFECT	1	and	grown	for	120	hours	before	the	addition	of	MTT	(Fig.	4.5.1.1).		
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Figure	4.5.1.1	Sensitivity	of	SNRK	and	ATR	knocked	down	cells	to	Pifithrin-a.	
HCT116	cells	were	grown	for	24	hours	before	treatment	with	0,	3.75,	7.5,	15	or	30µM	Pifithrin-a.	The	
cells	were	then	transfected	with	Control	1,	SNRK	2,	SNRK	3	or	ATR	siRNA	and	DharmaFECT	1	5	hours	
after	 treatment.	 The	 cells	were	 grown	 for	 120	 hours	 post-transfection	 before	 the	 addition	 of	MTT.	
Mean	values	were	derived	from	three	independent	experiments,	with	their	respective	SEMs.		

Knockdown	of	neither	SNRK	nor	ATR	significantly	decreased	the	growth	of	PTN-a	treated	
cells	 compared	 to	 cells	 transfected	 with	 Control	 1	 siRNA.	 However,	 at	 7.5µM	 PTN-a,	
Control	1	 transfected	cells	appeared	to	grow	better	 than	any	of	 the	gene	knocked	down	
cells,	suggesting	that	drug	is	potentially	capable	of	mimicking	the	results	seen	in	the	p53	
null	cells.		

ATM	lies	upstream	of	p53	in	the	DNA	damage	response	and	its	mutation	in	tumour	cells	
can	 produce	 similar	 results	 as	 the	 loss	 of	 p53	 (Bartkova	 et	 al,	 2005).	 Therefore,	 it	was	
decided	to	assess	if	SNRK	knockdown	could	sensitise	cells	to	inhibition	of	ATM	by	the	ATM	
inhibitor	KU55933.	HCT116	cells	were	transfected	with	Control	1,	SNRK	2,	SNRK	3	or	ATR	
siRNAs	with	DharmaFECT	1	 for	48	hours.	The	 cells	were	 then	 treated	with	 a	0	 -	 10µM	
titration	of	KU55933	and	grown	for	120	hours	before	the	addition	of	MTT	(Fig.	4.5.1.2).	

The	combination	of	ATR	knockdown	and	KU55933	treatment	did	not	result	in	cell	killing	
although	 it	 has	 previously	 been	 reported	 that	 ATR	 inhibition	 selectively	 kills	 ATM	
deficient	 cells	 (Kwok	 et	 al,	 2016;	 Min	 et	 al,	 2017;	 Reaper	 et	 al,	 2011).	 This	 calls	 into	
question	 the	 effectiveness	 of	 the	 KU55933/ATR	 siRNA	 combination	 in	 this	 assay	 and	
therefore	judgements	cannot	be	made	as	to	whether	SNRK	knockdown	sensitises	cells	to	
ATM	inhibition.			
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Figure	4.5.1.2	Sensitivity	of	SNRK	and	ATR	knocked	down	cells	to	KU55933.	
HCT116	cells	were	transfected	with	Control	1,	SNRK	2,	SNRK	3	or	ATR	siRNA	and	DharmaFECT	1	for	
48	hours	before	treatment	with	0,	1,	2.5,	5,	10µM	KU55933	for	120	hours.	Mean	values	were	derived	
from	three	independent	experiments,	with	their	respective	SEMs.		

4.5.2	Sensitisation	of	p53	Deficient	Cells	

As	 the	 knockdown	 of	 SNRK	 preferentially	 killed	p53	 deficient	 cells	 in	 the	MTT	 survival	
assay,	a	Clonogenic	survival	assay	was	carried	to	further	assess	the	effects	of	SNRK	loss	on	
cell	 survival	 using	 this	 more	 sensitive	 technique.	 HCT116	wild	 type	 and	 p53	 null	 cells	
were	 transfected	with	Control	1,	 SNRK	2,	 SNRK	3	or	ATR	 siRNA	 for	48	hours.	The	 cells	
were	then	trypsinised,	counted	and	replated	at	either	200	or	2000	cells	per	well.	The	cells	
were	grown	for	11	days	to	allow	colonies	to	form	which	were	subsequently	stained	with	
Methylene	Blue	(0.4%)	and	manually	counted	(Fig.	4.5.2.1).		

	
Figure	4.5.2.1	Clonogenic	survival	of	SNRK	knocked	down	HCT116	p53	wild	type	and	null	cells.		
HCT116	p53	wild	type	and	null	cells	were	transfected	with	Control	1,	SNRK	2,	SNRK	3	or	ATR	siRNA	
and	DharmaFECT	1	and	grown	for	48	hours	before	being	trypsinised	and	replated	at	200	or	2000	cells	
per	well.	The	cells	were	then	grown	for	11	days	to	allow	colonies	to	form	which	were	then	stained	with	
0.4%	Methylene	Blue.	The	colonies	were	counted	and	 the	plating	efficiencies	were	calculated.	Mean	
values	derived	from	three	independent	experiments,	with	their	respective	SEMs.	
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In	 the	 wild	 type	 cells,	 the	 knockdown	 of	 SNRK	 or	 ATR	 did	 not	 significantly	 affect	 the	
survival	of	the	cells.	In	the	p53	null	cells,	knockdown	of	SNRK	with	either	siRNA	produced	
a	 trend	towards	decreased	survival,	but	 this	was	not	significant	due	 to	 the	variability	of	
the	number	of	colonies	produced.	This	suggests	the	possibility	that	the	loss	of	SNRK	may	
decrease	survival	in	a	p53	deficient	background.	

4.5.3	Assessment	of	DNA	Damage	in	p53	Null	Cells	

It	was	hypothesised	 that	 the	 loss	of	SNRK	may	 induced	DNA	damage	 through	 increased	
replication	stress,	which	would	be	more	severe	in	p53	deficient	cells,	leading	to	increased	
cell	death.	Therefore,	the	levels	of	gH2AX	and	53BP1	foci	were	determined	following	SNRK	
siRNA-mediated	knockdown	 in	 the	p53	wild	 type	 and	null	HCT116	 cells.	Both	 cell	 lines	
were	also	treated	with	the	CDK	inhibitor	Roscovitine	to	determine	if	DNA	replication	was	
required	for	the	induction	of	the	damage	(Collis	et	al,	2007).	The	HCT116	p53	wild	type	
and	null	cells	were	plated	and	transfected	with	Control	1,	SNRK	2,	SNRK	3	or	ATR	siRNAs	
with	 DharmaFECT	 1	 for	 48	 hours.	 Four	 hours	 prior	 to	 fixation,	 the	 cells	 were	 either	
treated	with	10µg/ml	Roscovitine	or	mock	treated	with	DMSO.	The	cells	were	then	fixed,	
extracted	with	0.5%	Triton	X-100	and	3%	BSA	 in	PBS	before	 co-staining	 for	gH2AX	and	
53BP1	(Fig.	4.5.3.1).	The	cells	were	imaged	and	scored	for	the	average	number	of	gH2AX	
and	53BP1	per	cell	(Fig.	4.5.3.2).		

	
Figure	4.5.3.1	gH2AX	and	53BP1	staining	of	Roscovitine	treated	HCT116	p53	wild	type	and	null	
cells.		
Representative	 images	of	 (A)	HCT116	wild	 type	and	 (B)	HCT116	p53	null	 cells	 forward	 transfected	
with	Control	1,	SNRK	2,	SNRK	3	or	ATR	siRNA	and	DharmaFECT	1.	The	cells	were	grown	for	48	hours	
post-transfection,	mock	treated	with	PBS	or	treated	with	10µg/ml	Roscovitine	for	4	hours,	fixed	and	
then	permeabilised	with	0.5	%	Triton	X-100	and	3%	BSA.	The	cells	were	stained	with	1:1000	dilutions	
of	antibodies	raised	against	gH2AX	(green)	and	53BP1	(red).		
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Figure	4.5.3.2	Average	number	of	gH2AX	and	53BP1	foci	 in	Roscovitine	 treated	HCT116	wild	
type	and	p53	null	cells.		
For	 each	 condition,	 the	 total	 number	 of	 cells	were	 counted	 and	 the	 average	number	 of	 gH2AX	and	
53BP1	 foci	per	 cell	were	calculated	Mean	values	derived	 from	three	 independent	experiments,	with	
their	respective	SEMs.	Asterisks	indicate	significant	difference	from	Untreated	cells,	p	value	<0.05.	(A)	
HCT116	p53	Wild	Type.	(B)	HCT116	p53	null.		

In	 the	 untreated	 HCT116	 wild	 type	 cells,	 the	 knockdown	 of	 either	 SNRK	 or	 ATR	
significantly	increased	the	number	of	gH2AX	and	53BP1	foci	observed	when	compared	to	
Control	1	transfected	cells.	In	the	HCT116	p53	null	cells,	the	loss	of	neither	SNRK	nor	ATR	
expression	 resulted	 in	 a	 significant	 increase	 in	 the	 numbers	 of	 foci	 observed	 for	 either	
damage	marker,	although	there	is	a	trend	towards	increased	numbers	for	both.		

The	 treatment	 with	 Roscovitine	 significantly	 decreased	 the	 number	 of	 foci	 present	
compared	 to	 the	 untreated	 cells	 in	 the	majority	 of	 conditions	 (Fig	 4.5.3.2).	 The	 loss	 of	
neither	SNRK	nor	ATR	resulted	in	an	increase	in	the	number	of	foci	observed,	suggesting	
that	the	damage	resulting	from	their	knockdown	is	dependent	upon	DNA	replication.	This	
suggests	 that	 such	damage	 is	 likely	occurring	 through	 the	 collapse	of	 stalled	 replication	
forks.	However,	 this	was	not	observed	 for	 the	wild	 type	control	cells	where	Roscovitine	
treatment	 increased	 gH2AX	 levels	 and	 had	 little	 effect	 upon	 the	 number	 of	 53BP1	 foci	
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present.	 It	 was	 also	 not	 observed	 in	 the	 ATR	 transfected	 p53	 null	 cells	 due	 to	 the	
variability	of	numbers	observed	in	the	untreated	cells.		

For	both	gH2AX	and	53BP1,	more	foci	were	observed	in	the	p53	null	Control	1	transfected	
cells	 than	 the	wild	 type	 cells.	As	 this	was	 reversed	by	Roscovitine	 treatment,	 it	 appears	
that	the	increased	damage	occurring	in	these	cells	is	dependent	upon	DNA	replication.	For	
gH2AX,	the	SNRK	and	ATR	knocked	down	cells	also	displayed	higher	numbers	of	foci	in	the	
p53	null	than	the	wild	type	cells.	However,	this	was	not	seen	to	the	same	extent	for	53BP1.	

4.5.4.	Effect	of	SNRK	on	Cell	Cycle	Progression	in	p53	Null	Cells		

To	 assess	 the	 potential	 effects	 of	 SNRK	 knockdown	 on	 cell	 cycle	 distribution,	 PI	 FACS	
analysis	was	carried	out	on	both	the	wild	type	and	p53	null	HCT116	cells.	Both	cell	lines	
were	 transfected	with	Control	1,	 SNRK	2,	 SNRK	3	or	ATR	 siRNA	 for	48	hours.	The	 cells	
were	trypsinised	and	fixed	in	ice	cold	70%	ethanol	before	they	were	treated	with	RNase	A	
and	stained	with	50µg/ml	PI.	The	stained	cells	were	then	analysed	by	flow	cytometry	with	
10000	cells	counted	per	sample	(Fig.	4.5.4.1).	

	

Figure	4.5.4.1	 Cell	 cycle	 distribution	 of	 SNRK	knocked	down	p53	wild	 type	and	null	HCT116	
cells.		
(A)	HCT116	p53	wild	type	and	(B)	p53	null	cells	were	transfected	with	Control	1,	SNRK	2,	SNRK	3	or	
ATR	siRNA	and	DharmaFECT	1	 for	48	hours.	Cells	were	 fixed	 in	 ice	 cold	70%	ethanol,	 treated	with	
RNase	A	and	stained	with	50µg/ml	propidium	iodide.	Cells	were	then	analysed	by	flow	cytometry,	with	
10000	cells	analysed	per	sample,	to	determine	the	DNA	content	of	the	cells.	Values	derived	from	one	
experiment.	

The	knockdown	of	neither	SNRK	nor	ATR	in	either	of	the	cell	lines	drastically	affected	cell	
cycle	 distribution.	 In	 the	 wild	 type	 cells,	 gene	 knockdown	 slightly	 increased	 the	
percentage	of	cells	in	G1	and	reduced	the	proportion	in	S	or	G2/M	but	these	changes	were	
only	slight.	The	p53	null	cells	displayed	a	slightly	higher	proportion	of	cells	in	Sub	G1	than		

the	wild	 type	cells	but	this	was	the	same	for	all	 siRNA.	The	same	trend	was	observed	 in	
these	cells	with	 increased	G1	and	decreased	S	and	G2/M	cells	when	SNRK	or	ATR	were	
knocked	down.	No	statistical	analysis	could	be	carried	out	on	this	data	as	the	experiment	
was	only	carried	out	once	due	to	time	constraints.		 	
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4.6	SNRK-mediated	Lethality	to	Oncogene	Induced	Replication	Stress	

4.6.1	Sensitisation	of	Cyclin	E	Overexpressing	Cells	

The	overexpression	of	Cyclin	E	 is	associated	with	an	 increase	 in	the	 firing	of	replication	
origins,	 deregulation	 of	 the	 initiation	 of	 S	 phase	 and	 increases	 the	 likelihood	 of	 DNA	
replication	interfering	with	gene	transcription.	This	ultimately	results	in	DNA	damage	and	
genomic	 instability	 which	 aids	 the	 evolution	 of	 cancerous	 cells	 (Jones	 et	 al,	 2013).	 Its	
overexpression	has	been	 identified	 in	 a	 large	number	of	 cancers,	 including	breast,	 lung,	
cervix	 and	gastrointestinal	 (Malumbres	&	 Barbacid,	 2001),	 and	 is	 commonly	 associated	
with	poor	disease	free	survival	(Hwang	&	Clurman,	2005).		

As	 it	 is	 frequently	 overexpressed	 in	 tumours	 and	 those	 tumours	 typically	 demonstrate	
poorer	survival	outcomes,	it	would	be	beneficial	to	identify	cancer	targets	that	specifically	
detrimentally	affect	Cyclin	E	overexpressing	cells.	Previous	work	has	demonstrated	 that	
the	overexpression	of	Cyclin	E	may	be	synthetic	lethal	with	the	loss	of	ATR	(Toledo	et	al,	
2011),	 which	 suggests	 that	 inhibition	 of	 replication	 stress	 suppressors	 may	 be	
unfavourable	in	Cyclin	E	overexpressing	cells.		

U2OS	cells	with	Tetracycline	repressible	Cyclin	E	overexpression,	a	kind	gift	 from	Dr.	E.	
Petermann,	were	therefore	used	to	determine	if	the	knockdown	of	SNRK	was	specifically	
detrimental	to	Cyclin	E	overexpressing	cells.	Western	blotting	analysis	was	used	to	verify	
the	Tetracycline	repressible	nature	of	the	Cyclin	E	overexpression.	The	U2OS	Cyclin	E	cells	
were	 grown	 for	4	hours	before	 the	 addition	of	 2µg/ml	Tetracycline	 to	 repress	Cyclin	E	
overexpression	or	mock	treated	with	DMSO.	The	cells	were	grown	for	a	further	48	hours	
before	 they	were	 lysed.	 A	 total	 Cyclin	 E	 antibody	was	 used	 to	 assess	 the	 protein	 levels	
present	within	the	cell	lysates	(Fig.	4.6.1.1).		

Figure	 4.6.1.1	 Tetracycline	 induced	 repression	 of	 Cyclin	 E	
overexpression	
U2OS	 Cyclin	 E	 cells	 were	 plated	 for	 four	 hours	 before	 mock	
treatment	with	DMSO	or	treatment	with	2µg/ml	Tetracycline	and	
grown	 for	 a	 further	 48	 hours.	 The	 cells	 were	 lysed	 and	 15µg	 of	
protein	 from	 each	 sample	was	 loaded	 onto	 a	NuPage	 4-12%	Bis-
Tris	Gel	for	separation.	The	gels	were	transferred	to	nitrocellulose	
membranes	before	blocking	and	blotting	with	Total	Cyclin	E	and	b-	
Actin	(loading	control)	primary	antibodies.	The	primary	antibodies	
were	detected	with	HRP	conjugated	secondary	antibodies.	

A	much	lower	level	of	Cyclin	E	is	present	in	the	Tetracycline	treated	cells	compared	to	the	
mock	 treated	cells	which	demonstrates	that	 the	Cyclin	E	overexpression	in	these	cells	is	
Tetracycline	repressible.	A	double	band	can	be	seen	in	the	mock	treated	cells	but	this	has	
previously	been	reported	in	this	cell	line	(Jones	et	al,	2013).		

These	cells	were	then	used	to	assess	whether	the	knockdown	of	SNRK	was	preferentially	
cytotoxic	to	Cyclin	E	overexpressing	cells.	The	U2OS	Cyclin	E	cells	were	plated	and	4	hours	
later,	the	cells	were	either	mock	treated	with	DMSO	or	treated	with	2µg/ml	Tetracycline	
to	 repress	 Cyclin	 E	 overexpression.	 The	 cells	were	 transfected	with	 Control	 1,	 SNRK	 2,	



Phospho-RPA2	Targeted	Screen	

	 173	

SNKR	3	or	ATR	siRNA	and	DharmaFECT	1	24	hours	after	plating.	The	cells	were	grown	for	
120	hours	before	the	addition	of	3mg/ml	MTT	(Fig.	4.6.1.2).		

	

Figure	4.6.1.2	Growth	of	U2OS	cells	overexpressing	Cyclin	E	following	SNRK	knockdown.		
U2OS	Cyclin	E	cells	were	plated	for	four	hours	before	mock	treatment	with	DMSO	or	treatment	with	
2µg/ml	 Tetracycline.	 The	 cells	 were	 transfected	 with	 Control	 1,	 SNRK	 2,	 SNRK	 3	 or	 ATR	 and	
DharmaFECT	1	24	hours	post-plating.	The	cells	were	grown	for	120	hours	post-transfection	before	the	
addition	 of	MTT.	Mean	 values	 were	 derived	 from	 3	 independent	 experiments,	 with	 their	 respective	
SEMs.	(A)	Percentage	growth	of	each	siRNA	in	U2OS	Cyclin	E	cells	with	or	without	Tetracycline.	(B)	
Fold	 change	 in	 the	 percentage	 growth	 of	 U2OS	 Cyclin	 E	 cells	 with	 Tetracycline	 compared	 to	 cells	
without	Tetracycline.	Asterisks	indicate	significant	difference	from	Control	1,	p	value	<0.05.	

The	 knockdown	 of	 SNRK	 by	 either	 siRNA	 did	 not	 impact	 on	 the	 growth	 of	 Cyclin	 E	
overexpressing	cells	when	compared	to	the	cells	with	repressed	Cyclin	E	overexpression.	
Only	 the	 knockdown	 of	 ATR	 significantly	 decreased	 the	 growth	 of	 the	 Cyclin	 E	
overexpressing	cells	(p-value	0.0358),	suggesting	that	the	loss	of	SNRK	is	not	detrimental	
in	cells	overexpressing	this	oncogene.		

4.6.2	Sensitisation	of	H-RAS	Overexpressing	Cells		

The	canonical	RAS	genes,	K-RAS,	N-RAS	and	H-RAS	are	mutated	 in	up	 to	30%	of	human	
tumours,	 making	 RAS	 mutations	 one	 of	 the	 most	 common	 incidents	 during	 cancer	
evolution	(Pylayeva-Gupta	et	al,	2011).	The	mutations	of	these	genes	are	often	commonly	
found	 in	 cancers	 with	 poorer	 prognosis,	 including	 pancreatic	 ductal	 adenocarcinoma	
(Fernandez-Medarde	 &	 Santos,	 2011).	 Previously,	 oncogenic	 RAS	 expression	 has	 been	
demonstrated	to	be	synthetic	lethal	when	the	ATR	pathway	is	significantly	inhibited	(Gilad	
et	 al,	 2010),	 suggesting	 that	 the	 inhibition	 of	 replication	 suppression	 pathways	may	 be	
preferentially	detrimental	to	cells	with	mutated	or	overexpressed	RAS.		

The	HCT116	 and	MRC-5	H-RASG12V	 overexpressing	 cell	 lines	were	 generated	 by	Miss	 C.	
Fellows	 (PhD	 student;	 Cox	 and	Collis	 labs)	using	 a	pCAG-FLOX	vector	 containing	 the	H-
RAS	 gene,	 a	 kind	 gift	 from	 Professor	M.	Meuth.	 H-RAS	mutation	 is	 only	 found	 in	3%	 of	
human	 tumours	 compared	 to	 the	 25-30%	 of	 tumours	 harbouring	 K-RAS	 (Fernandez-
Medarde	&	Santos,	2011).	However,	as	a	vector	containing	this	gene	was	readily	available	
in	 the	 Sheffield	 Academic	 Unit	 of	 Molecular	 Oncology,	 and	 it	 had	 previously	 been	
demonstrated	to	alter	replication	kinetics	(Gagou	et	al,	2014),	H-RASG12V	overexpressing	
cell	lines	were	generated	rather	than	using	the	more	common	K-RAS	mutation.		
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The	 overexpression	 of	 H-RASG12V	 in	 these	 two	 cell	 lines,	 compared	 to	 the	 wild	 type	
parental	 cells	was	 assessed	 by	western	 blotting.	 HCT116	wild	 type,	 HCT116	H-RASG12V,	
MCR-5	wild	 type	and	MRC-5	H-RASG12V	 cells	were	 grown	for	72	hours	before	 they	were	
lysed.	A	total	RAS	antibody	was	used	 to	assess	the	protein	levels	present	within	the	cell	
lysates	(Fig.	4.6.2.1).		

	

Figure	4.6.2.1	HCT116	and	MRC-5	H-RAS	overexpression.		
HCT116	wild	type,	HCT116	H-RASG12V,	MCR-5	wild	type	and	MRC-5	H-

RASG12V	cells	were	grown	for	72	hours.	The	cells	were	lysed	and	15µg	
of	protein	 from	each	 sample	was	 loaded	onto	a	NuPage	4-12%	Bis-
Tris	 Gel	 for	 separation.	 The	 gels	 were	 transferred	 to	 nitrocellulose	
membranes	before	blocking	and	blotting	with	Total	RAS	and	b-	Actin	
(loading	 control)	 primary	 antibodies.	 The	 primary	 antibodies	 were	
detected	with	HRP	conjugated	secondary	antibodies.	

	
RAS	bands	were	only	detectable	in	the	two	vector	containing	cell	lines	and	no	bands	were	
visible	 in	 either	 of	 the	 parental	 cell	 lines,	 demonstrating	 that	 these	 cells	 are	
overexpressing	H-RASG12V.		

The	HCT116	wild	 type	and	HCT116	H-RASG12V	cells	were	primarily	used	 to	assess	 if	 the	
knockdown	of	SNRK	preferentially	sensitised	the	RAS	overexpressing	cells.	Both	cell	lines	
were	 transfected	with	Control	1,	 SNRK	2,	 SNKR	3	or	ATR	 siRNA	and	DharmaFECT	1	24	
hours	after	plating	and	the	cells	were	grown	for	120	hours	before	the	addition	of	3mg/ml	
MTT	(Fig.	4.6.2.2).		

	
Figure	4.6.2.2	Growth	of	HCT116	cells	overexpressing	H-RAS	following	SNRK	knockdown.		
HCT116	wild	 type	and	HCT116	H-RASG12V	 cells	were	transfected	with	Control	1,	 SNRK	2,	 SNRK	3	or	
ATR	and	DharmaFECT	1	24	hours	post-plating.	The	cells	were	grown	for	120	hours	post-transfection	
before	 the	 addition	 of	MTT.	Mean	 values	were	 derived	 from	3	 independent	 experiments,	with	 their	
respective	SEMs.	(A)	Percentage	growth	of	each	siRNA	in	HCT116	wild	type	or	the	HCT116	H-RASG12V	

cells.	(B)	Fold	change	in	the	percentage	growth	of	HCT116	wild	type	compared	to	HCT116	H-RASG12V	
cells.		

None	of	the	siRNA	produced	a	significant	change	in	growth	when	compared	to	the	Control	
1	 transfected	 cells	 due	 to	 the	 variability	 in	 the	 assay.	 Unexpectedly,	 all	 three	 siRNA	
produced	 a	 trend	 to	 increased	 growth	 in	 the	H-RASG12V	 overexpressing	 cells,	 even	 ATR.	
However,	 it	 has	 been	 reported	 that	 partial	 knockdown	 of	 ATR	 in	 cells	 expressing	
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oncogenic	K-RAS	promoted	tumour	formation	(Gilad	et	al,	2010),	suggesting	that	the	gene	
knockdown	may	not	be	optimal	in	this	assay.		

This	experiment	was	repeated	in	the	MRC-5	H-RASG12V	cell	line	as	MRC-5	cells	are	normal	
cells	 and	 the	 overexpression	 of	 H-RASG12V	 in	 this	 line	 is	 more	 reminiscent	 of	 early	
neoplastic	lesions	(Fig.	4.6.2.3).		

	
Figure	4.6.2.3	Growth	of	MRC-5	cells	overexpressing	H-RAS	following	SNRK	knockdown.		
MRC-5	wild	type	and	MRC-5	H-RASG12V	cells	were	transfected	with	Control	1,	SNRK	2,	SNRK	3	or	ATR	
and	 DharmaFECT	 1	 24	 hours	 post-plating.	 The	 cells	 were	 grown	 for	 120	 hours	 post-transfection	
before	 the	 addition	 of	MTT.	Mean	 values	were	 derived	 from	3	 independent	 experiments,	with	 their	
respective	SEMs.	 (A)	Percentage	growth	of	 each	 siRNA	 in	MRC-5	wild	 type	or	the	MRC-5	H-RAS	G12V	

cells.	 (B)	Fold	change	 in	the	percentage	growth	of	MRC-5	wild	 type	compared	to	MRC-5	H-RAS	G12V	
cells.	

The	knockdown	of	SNRK,	with	both	siRNA,	and	ATR	significantly	decreased	the	growth	of	
H-RASG12V	overexpressing	cells	(p-values	of	0.0022,	0.0379	and	0.0017	respectively).	This	
differs	for	results	seen	in	the	HCT116	H-RASG12V	cells	possibly	due	to	the	efficiency	of	gene	
knockdown	in	this	cell	line.	It	is	also	plausible	that	the	genetic	background	of	the	parental	
cells	has	resulted	in	this	discrepancy.		

4.6.3	Sensitisation	of	MYC-N	Overexpressing	Cells	

Overexpression	of	MYC-N,	a	member	of	the	MYC	family	of	transcription	factors,	can	induce	
the	 transformation	 of	 rat	 embryonic	 fibroblasts	 (Huang	&	Weiss,	 2013).	 This	 gene	was	
identified	due	to	its	amplification	in	approximately	20%	of	neuroblastoma	cases	(Beltran,	
2014)	which	is	correlated	with	high	grade,	poor	prognosis	(Huang	&	Weiss,	2013)	and	is	
used	to	stratify	at	risk	patients	for	more	aggressive	forms	of	treatment.	The	amplification	
of	 MYC-N	 has	 also	 been	 described	 in	 a	 number	 of	 other	 tumour	 types,	 including	
glioblastoma,	 retinoblastoma	 and	 prostate	 cancer,	 and	 is	 typically	 associated	with	 poor	
prognosis	(Beltran,	2014).		

The	amplification	of	MYC-N	is	thought	to	increase	the	levels	of	replication	stress	present	
when	compared	 to	normal	cells,	 resulting	in	a	dependence	upon	ATR/Chk1	signalling.	 It	
has	previously	been	demonstrated	that	further	enhancing	this	replication	stress,	by	means	
of	PCNA	 inhibition	by	R9-caPep,	resulted	 in	cell	death	(Gu	et	al,	2015).	 It	was	 therefore	
decided	 to	 investigate	 whether	 the	 knockdown	 of	 SNRK	 would	 detrimentally	 affect	
survival	in	MYC-N	overexpressing	cells.		
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The	overexpression	of	MYC-N	in	the	SH-EP1	(no	MYC-N),	IMR-32	(MYC-N	overexpressing)	
and	 SH-EPTet21N	 (Tetracycline	 repressible	 MYC-N	 overexpressing)	 (Lutz	 et	 al,	 1996)	
neuroblastoma	 cells	 was	 assessed	 by	 western	 blotting.	 The	 SH-EP1,	 IMR-32	 and	 SH-
EPTet21N	cells	(in	the	presence	and	the	absence	of	Tetracycline)	were	plated;	in	all	assays	
twice	as	many	cells	were	plated	in	the	presence	of	Tetracycline	due	to	the	slower	cycling	
of	 these	cells.	The	cells	were	grown	for	72	hours	before	 lysis	and	sample	preparation.	A	
total	MYC-N	antibody	was	used	to	assess	the	protein	levels	present	within	the	cell	lysates	
(Fig.	4.6.3.1).		

Figure	 4.6.3.1	 Neuroblastoma	 cell	 line	 MYC-N	
overexpression.		
SH-EP1,	 IMR-32	 and	 SH-EPtet21N	 (with	 and	 without	
Tetracycline)	were	grown	for	72	hours.	The	cells	were	 lysed	and	
15µg	of	protein	from	each	sample	was	loaded	onto	a	NuPage	4-
12%	 Bis-Tris	 Gel	 for	 separation.	 The	 gels	 were	 transferred	 to	
nitrocellulose	membranes	before	blocking	and	blotting	with	Total	
MYC-N	 and	 b-	 Actin	 (loading	 control)	 primary	 antibodies.	 The	
primary	 antibodies	 were	 detected	 with	 HRP	 conjugated	
secondary	antibodies.	

MYC-N	 expression	 was	 only	 detectable	 in	 the	 IMR-32	 and	 SH-EPTet21N	 without	
Tetracycline	lanes	as	expected	and	so	these	cell	 lines	were	used	to	assess	the	affected	of	
SNRK	loss	in	MYC-N	overexpressing	cells.		

Initially,	 the	 SH-EP1	 and	 IMR-32	 cells	 were	 used	 to	 determine	 if	 loss	 of	 SNRK	
detrimentally	 affected	 MYC-N	 overexpressing	 cells	 more	 than	 cells	 with	 no	 MYC-N	
expression.	Both	cell	lines	were	transfected	with	Control	1,	SNRK	2,	SNKR	3	or	ATR	siRNA	
and	DharmaFECT	1	24	hours	after	plating	and	the	cells	were	grown	for	120	hours	before	
the	addition	of	3mg/ml	MTT	(Fig.	4.6.3.2).		

	

Figure	4.6.3.2	Growth	of	SH-EP1	and	IMR-32	cells	following	SNRK	knockdown.		
SH-EP1	and	IMR-32	cells	were	transfected	with	Control	1,	SNRK	2,	SNRK	3	or	ATR	and	DharmaFECT	1	
24	 hours	 post-plating.	 The	 cells	were	 grown	 for	 120	 hours	 post-transfection	 before	 the	 addition	 of	
MTT.	 Mean	 values	 were	 derived	 from	 3	 independent	 experiments,	 with	 their	 respective	 SEMs.	 (A)	
Percentage	growth	of	 each	siRNA	 in	SH-EP1	or	 the	 IMR-32	cells.	 (B)	Fold	change	 in	 the	percentage	
growth	of	SH-EP1	compared	to	IMR-32	cells.	
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Transfection	with	 both	 SNRK	 siRNA	 and	 ATR	 siRNA	 resulted	 in	 reduced	 growth	 in	 the	
MYC-N	 overexpressing	 IMR-32	 cells.	 Both	 SNRK	 2	 and	 ATR	 produced	 a	 significant	
decrease	 in	growth	(p-values	0.0064	and	0.0113	respectively)	but	 this	was	not	seen	 for	
SNRK	3,	most	likely	due	to	the	variability	in	growth	produced	by	this	siRNA.		

This	assay	was	repeated	using	the	SH-EPTet21N	Tetracycline	repressible	MYC-N	system.	
Cells	 in	 the	presence	and	absence	of	Tetracycline	were	plated	and	then	transfected	with	
Control	1,	SNRK	2,	SNKR	3	or	ATR	siRNA	and	DharmaFECT	1	24	hours	after	plating	and	
the	 cells	were	 grown	 for	120	hours	before	 the	 addition	of	 3mg/ml	MTT	 (Fig.	 4.6.3.3A).	
However,	 the	Control	 1	 transfected	 cells	 cultured	 in	 the	absence	of	Tetracycline	did	not	
grow	well	 in	this	assay,	which	prevented	the	normalisation	of	the	results.	The	assay	was	
repeated	with	a	different	Control	siRNA	(Eurofins	Control)	(Fig.	4.6.3.3B)	but	again	the	cell	
growth	 and	 resulting	 OD	 values	 were	 very	 low	 for	 the	 Control	 transfected	 cells	 in	 the	
absence	 of	 Tetracycline.	 As	 this	 siRNA	 produced	 a	 similar	 result	 to	 the	 ATR	 positive	
control,	 there	 was	 a	 very	 small	 signal	 window	 for	 this	 assay	 and	 therefore	 it	 was	 not	
repeated.		

	

Figure	4.6.3.3	Growth	of	SH-EPTet21N	cells	following	SNRK	knockdown	
SH-EPTet21N	cells	were	plated	in	the	presence	or	absence	of	Tetracycline.	The	cells	were	transfected	
with	 (A)	 Control	 1	 or	 (B)	 Eurofins	 Control	 siRNA	 along	 with	 SNRK	 2,	 SNRK	 3	 or	 ATR	 with	
DharmaFECT	 1.	 The	 cells	were	 grown	 for	 120	 hours	 post-transfection	 before	 the	 addition	 of	MTT.	
Mean	values	derived	from	(A)	two	independent	with	their	respective	SEMs	or	(B)	one	experiment.		
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4.7	SNRK-mediated	Sensitisation	to	Potentially	Replication	Stress	Inducing	
Chemotherapies	

4.7.1	Gemcitabine	Sensitivity	

Gemcitabine	is	a	deoxycytidine	analogue	that	causes	DNA	replication	stress	in	a	number	of	
ways	 (Plunkett	 et	 al,	 1995).	 It	 can	 be	 incorporated	 into	DNA	where	 it	 results	 in	 strand	
termination	and	 the	halting	of	 the	DNA	polymerases.	This	 lesion	 cannot	be	 removed	by	
normal	DNA	 repair	mechanisms	and	 so	 can	 result	 in	prolonged	 fork	 stalling	(Mini	 et	al,	
2006;	 Plunkett	 et	 al,	 1995).	 It	 also	 acts	 as	 an	 inhibitor	 of	 DNA	 polymerases	 and	
ribonucleotide	 reductase,	 the	 later	of	which	 results	 in	 the	depletion	of	nucleotide	pools	
(Mini	 et	 al,	 2006)	 in	 a	 similar	 manner	 to	 HU.	 In	 pre-clinical	 studies,	 the	 effects	 of	
Gemcitabine	have	been	 shown	to	be	potentiated	by	Chk1	 inhibition,	 in	 a	number	of	 cell	
lines	 (Matthews	 et	 al,	 2007;	 Parsels	 et	 al,	 2009;	 Venkatesha	 et	 al,	 2012),	 and	 Wee1	
inhibition,	 specifically	 in	 p53	 deficient	 cells	 (Rajeshkumar	 et	 al,	 2011).	 Both	 Chk1	
inhibitors	and	Wee1	inhibitors	in	combination	with	Gemcitabine	have	been	taken	forward	
into	clinical	trials	(ClinicalTrials.gov,	2017b;	Thompson	&	Eastman,	2013).		

As	 the	 effects	 of	 Gemcitabine	 have	 been	 potentiated	 by	 other	 replication	 stress	
suppressors,	 it	was	decided	 to	 investigate	 if	 the	 loss	of	 SNRK	acted	 synergistically	with	
this	drug.	HCT116	cells	were	 transfected	with	Control	1,	SNRK	2,	SNKR	3	or	ATR	siRNA	
and	DharmaFECT	1	for	48	hours.	The	cells	were	then	treated	with	a	0	-	20nM	titration	of	
Gemcitabine	and	grown	for	120	hours	before	the	addition	of	MTT	(Fig.	4.7.1.1).	

	

Figure	4.7.1.1	Sensitivity	of	SNRK	and	ATR	knocked	down	cells	to	Gemcitabine.		
HCT116	cells	were	transfected	with	Control	1,	SNRK	2,	SNRK	3	or	ATR	siRNA	and	DharmaFECT	1	for	
48	 hours	 before	 treatment	 with	 0,	 2.5,	 5,	 10,	 20nM	 Gemcitabine	 for	 120	 hours.	 Mean	 values	 were	
derived	from	3	independent	experiments,	with	their	respective	SEMs.		

Knockdown	of	SNRK,	especially	with	siRNA	2,	and	ATR	appears	to	increase	the	sensitivity	
of	cells	to	Gemcitabine,	however,	this	effect	was	not	significant	due	to	the	variability	of	the	
values	produced	in	this	assay.		
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4.7.2	PARP	Inhibitor	Sensitivity	

Poly	 (ADP-ribose)	 polymerase	 1	 (PARP1)	 is	 involved	 in	 the	 BER	 DNA	 damage	 repair	
pathway	and	has	been	shown	to	be	essential	for	the	survival	of	HR	deficient	cells	(Bryant	
et	al,	2005;	Farmer	et	al,	2005).	As	replication	stress	relies	on	HR	 for	 its	resolution	and	
PARP	has	been	shown	to	be	required	for	its	completion	in	response	to	replication	stress	
(Bryant	et	al,	2009),	the	loss	of	PARP	function	results	in	prolonged	DNA	replication	arrest.	
In	pre-clinical	work,	PARP	inhibition	has	been	shown	to	be	potentiated	by	Chk1	and	ATR	
inhibition	when	compared	to	single	agent	therapy	(Kim	et	al,	2017;	Sen	et	al,	2017)	and	
currently	the	Chk1	inhibitor	Prexasertib	is	being	trialled	with	the	licensed	PARP	inhibitor	
Olaparib	(ClinicalTrials.gov,	2017a).		

As	 the	 combination	of	PARP	 inhibitors	have	previously	 shown	promise	with	 the	 loss	of	
replication	 stress	suppressors,	 it	was	decided	 to	 see	 if	 the	 loss	of	 SNRK	would	 augment	
their	 function.	 HCT116	 cells	 were	 transfected	 with	 Control	 1,	 SNRK	 2,	 SNKR	 3	 or	 ATR	
siRNA	 and	 DharmaFECT	 1	 for	 48	 hours.	 The	 cells	 were	 then	 treated	 with	 a	 0	 -	 10µM	
titration	of	Olaparib	and	grown	for	120	hours	before	the	addition	of	MTT	(Fig.	4.7.2.1).		

	

Figure	4.7.2.1	Sensitivity	of	SNRK	and	ATR	knocked	down	cells	to	Olaparib.		
HCT116	cells	were	transfected	with	Control	1,	SNRK	2,	SNRK	3	or	ATR	siRNA	and	DharmaFECT	1	for	
48	hours	before	treatment	with	0,	1,	2.5,	5,	10µM	Olaparib	for	120	hours.	Mean	values	were	derived	
from	3	independent	experiments,	with	their	respective	SEMs.		

Whilst	the	knockdown	of	SNRK	with	both	siRNA	and	ATR	produced	a	decrease	in	growth	
when	compared	to	 the	Control	1	 transfected	cells,	these	differences	were	not	significant	
due	to	the	variability	of	the	assay,	however,	this	does	suggest	that	the	loss	of	SNRK	may	
potentiate	PARP	inhibitors.	

4.7.3	5-Flurouracil	Sensitivity	

5-Fluorouracil	(5-FU)	is	an	uracil	analogue	which	is	intracellularly	converted	into	several	
metabolites	which	disrupt	RNA	synthesis,	misincoporate	into	DNA	and	inhibit	the	enzyme	
thymidylate	synthase.	This	enzyme	is	required	for	the	de	novo	synthesis	of	thymidylate		
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and	the	maintenance	of	nucleotide	pools,	therefore	the	inhibition	of	this	enzyme	results	in	
replication	stress	(Longley	et	al,	2003).		

It	has	previously	been	determined	that	inhibition	of	Chk1	in	colorectal	cancer	and	Wee1	in	
p53	deficient	cells	sensitised	them	to	5-FU,	therefore	it	was	decided	to	investigate	whether	
the	 loss	 of	 SNRK	would	 also	 sensitise	 cells	 to	 this	 drug.	 HCT116	 cells	were	 transfected	
with	Control	1,	SNRK	2,	SNKR	3	or	ATR	siRNA	and	DharmaFECT	1	for	48	hours.	The	cells	
were	then	treated	with	a	0	-	25µM	titration	of	5-FU	and	grown	for	120	hours	before	the	
addition	of	MTT	(Fig.	4.7.3.1).	

	

Figure	4.7.3.1	Sensitivity	of	SNRK	and	ATR	knocked	down	cells	to	5-Flurouracil.		
HCT116	cells	were	transfected	with	Control	1,	SNRK	2,	SNRK	3	or	ATR	siRNA	and	DharmaFECT	1	for	
48	 hours	 before	 treatment	with	 0,	 2.5,	 5,	 10,	 25µM	5-Flurouracil	 for	 120	 hours.	Mean	 values	were	
derived	from	3	independent	experiments,	with	their	respective	SEMs.		

The	 knockdown	 of	 neither	 SNRK	 nor	 ATR	 significantly	 sensitised	 HCT116	 cells	 treated	
with	 5-FU.	Whilst	 ATR	 did	 produce	 a	 trend	 towards	 sensitisation,	 this	 was	 only	 slight.	
Transfection	with	SNRK	3	appeared	to	reduce	 the	sensitivity	of	 the	cells	to	5-FU	but	the	
results	seen	with	this	siRNA	were	highly	variable	in	this	assay	and	the	difference	was	not	
significant.		

4.8	Discussion	

As	the	high	throughput	pRPA2	T21	screen	did	not	prove	viable,	 it	was	decided	to	utilise	
the	24	well	format	as	a	more	targeted	screening	approach.	This	assay	had	been	optimised	
in	 a	 number	 of	 cell	 lines	 and	 reproducibly	 produced	 a	 signal	 window	 that	 would	 be	
considered	suitable	for	screening	purposes.	It	was	decided	to	focus	on	protein	kinases,	as	
these	enzymes	are	considered	druggable	and	so	make	attractive	drug	targets	(Hopkins	&	
Groom,	2002).	

During	 the	 development	 of	 the	 high	 throughput	 screen,	 Kavanaugh	 et	 al.	 published	 a	
genome	wide	screen	identifying	modulators	of	the	replication	stress	response.	Following	
gene	knockdown	U2OS	cells	were	labelled	with	BrdU	to	measure	the	endogenous	levels	of	
replication	stress	following	gene	knockdown.	The	cells	were	subsequently	treated	with	HU	
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for	24	hours	before	 labelling	with	EdU.	The	 cells	were	 then	 fixed	 and	 stained	 for	BrdU,	
EdU	and	gH2AX.	The	rationale	of	this	assay	was	that	cells	with	compromised	fork	restart	
would	 not	 have	 recovered	 from	 the	 HU	 treatment	 and	 so	 would	 have	 low	 EdU	
incorporation	 and	 high	 levels	 of	 gH2AX	 present	 within	 their	 nuclei.	 Replication	 restart	
scores	(RSS)	were	calculated	by	dividing	the	gH2AX	intensity	by	that	of	EdU	for	each	cell	
and	 then	 taking	 an	 average	 of	 every	 cell	 within	 the	 samples.	 These	 RSS	 scores	 were	
converted	 into	 Z-scores	 which	 were	 ranked	 to	 identify	 genes	 whose	 loss	 negatively	
affected	replication	restart.	

Whilst	this	technique	more	directly	measures	DNA	replication	stress	(Zeman	&	Cimprich,	
2014)	 than	 identifying	pRPA	foci,	 the	pRPA2	T21	screen	aimed	to	 identify	 genes	whose	
knockdown	increased	replication	stress	under	endogenous	conditions.	In	the	Kavanaugh	
screen,	any	gene	whose	knockdown	alone	significantly	reduced	BrdU	incorporation	were	
discounted	from	further	analysis.	Therefore,	the	genes	whose	loss	endogenously	increased	
replication	 stress	 were	 not	 studied	 further.	 As	 this	 paper	 only	 investigated	 the	 genes	
whose	 knockdown	 affected	 the	 restart	 of	 DNA	 replication	 following	 HU	 treatment,	 a	
number	of	factors	involved	in	the	initiation	of	DNA	replication	may	have	been	overlooked.		

Any	 kinase	 that	 generated	 an	 average	 Z-score	 of	 greater	 than	 3	 in	 this	 screen	 was	
considered	 as	 a	 potential	 gene	 of	 interest.	 The	 top	 three,	 Chk1,	 WEE1	 and	 ATR,	 were	
discarded	 as	 they	 are	 already	 well	 established	 replication	 stress	 response	 genes.	 The	
cBioPortal	and	GenomeRNAi	databases	were	utilised	to	cherry	pick	the	interesting	genes	
from	the	list	of	42	remaining	kinases.	A	gene	was	considered	interesting	if	its	knockdown	
resulted	 in	 phenotypes	 commonly	 associated	 with	 cells	 experiencing	 DNA	 replication	
stress,	 including	 decreased	 viability	 with	 replication	 stress	 causing	 drugs	 or	 oncogene	
overexpression,	increased	DNA	content	in	S	phase	and	increased	gH2AX	levels	(Appendix	
3).		

It	was	also	thought	that	the	Kavanaugh	Z-scores	could	be	combined	with	those	generated	
in	 the	 Collis	 gH2AX	 screen	 (Barone	 et	 al,	 2016;	Myers	 et	 al,	 2016;	 Staples	 et	 al,	 2016;	
Staples	et	al,	2014;	Staples	et	al,	2012)	and	an	unpublished	screen	conducted	in	the	Meuth	
lab	 investigating	 Caspase	 3	 activation	 and	 RPA2	 S4/8	 phosphorylation	 following	 Chk1	
inhibition	 and	 incubation	with	 excess	 thymidine.	However,	 it	was	 found	 that	 there	was	
very	 little	 correlation	 between	 the	 three	 screens.	 For	 example,	 CAMK1	 was	 the	 fourth	
highest	 ranked	kinase	 in	 the	Kavanaugh	 screen	but	 generated	 a	negative	Z-score	 in	 the	
Meuth	pRPA2	S4/8	 screen.	The	differences	 in	 conditions	 that	 the	 cells	were	 exposed	 to	
may	have	played	a	role	in	these	differences.	In	both	the	Kavanaugh	and	Meuth	screens	the	
cells	were	 exposed	 to	 exogenous	 sources	of	 stress,	HU	and	excess	 thymidine	with	Chk1	
inhibition	 respectively.	 In	 contrast,	 the	Collis	screen	aimed	 to	 identify	 genes	whose	 loss	
increased	DNA	damage	following	gene	knockdown	alone.	It	is	therefore	unsurprising	there	
was	 little	 correlation	 between	 the	 three	 screens	 as	 in	 each	 the	 cells	 had	 different	
replication	and	cell	cycle	defects	induced	before	gene	knockdown.		

Even	 screens	 investigating	 the	 same	 phenotype	 can	 generate	 different	 results	 as	
demonstrated	 by	 PMVK.	 This	 kinase	 was	 reported	 to	 increase	 gH2AX	 intensity	 in	 the	
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GenomeRNAi	database	(Paulsen	et	al,	2009)	but	this	was	not	identified	as	a	hit	in	the	Collis	
screen	 as	 it	 generated	 a	 negative	 Z-score.	 This	 may	 be	 due	 to	 the	 different	 cell	 lines	
utilised	for	the	screens	(HeLa	versus	HCT116).	

The	 targeted	 screen	 was	 carried	 out	 in	 U2OS	 cells,	 to	 maintain	 consistency	 with	 the	
Kavanaugh	screen,	and	so	the	pRPA2	T21	staining	protocol	was	re-optimised	for	this	cell	
line.	Once	established,	 it	was	utilised	to	screen	 the	18	selected	kinases	of	which	kinases	
B2-B9	 were	 selected	 for	 further	 screening.	 The	 loss	 of	 these	 genes	 increased	 the	
proportion	of	cells	positive	for	pRPA2	foci	above	the	10%	positive	threshold.	This	cut	off	
was	 chosen	 as	 it	was	 a	 significant	 increase	 in	 T21	 foci	 compared	 to	 the	 average	 of	 the	
negative	control	values.	These	8	kinases	were	then	validated	in	a	TopBP1	screen	where	all	
8	 increased	 the	 levels	 of	 TopBP1	 foci	 compared	 to	 the	 negative	 controls.	 However,	 the	
results	were	so	similar	that	it	was	felt	that	this	assay	could	not	be	used	to	narrow	down	
the	 list	 of	 kinases.	 Therefore,	 all	 8	 were	 subsequently	 assessed	 to	 see	 if	 their	 loss	
preferentially	sensitised	p53	deficient	cells.	The	loss	of	every	kinase	reduced	the	growth	of	
the	 p53	 null	 HCT116	 compared	 to	 the	 wild	 type	 cells,	 which	 was	 unsurprising	 as	 in	
previous	 assays	 these	 cells	 had	 shown	 higher	 basal	 levels	 of	 replication	 stress	 (Fig.	
3.4.4.1).	Only	 two	genes,	B5	(PMVK)	and	B9	(SNRK)	produced	a	significant	difference	 in	
growth	and	were	therefore	taken	forward	for	further	investigation.		

Gene	knockdown	was	validated	by	assessing	the	deconvoluted	siRNA	pools	by	qPCR	and	
all	 4	 PMVK	 and	 3	 of	 the	 SNRK	 siRNAs	 produced	 sufficient	 gene	 knockdown.	 These	
individual	siRNA	recapitulated	the	pRPA2	results	observed	with	the	siRNA	pools,	although	
they	could	not	fully	reproduce	those	seen	in	the	p53	MTT	assay.	Only	1	out	of	the	4	PMVK	
siRNA	tested	mildly	 reduced	growth	 in	 the	p53	null	 cells,	 therefore	 the	 investigation	of	
this	hit	was	discontinued.	However,	2	of	the	3	SNRK	siRNAs	(SNRK	2	and	SNRK	3)	reduced	
growth	in	the	p53	null	cells,	therefore	this	kinase	was	investigated	further.		

The	effects	of	the	p53	inhibitor	Pifithrin-a	(PTN-a)	was	predicted	to	mimic	the	mutation	
of	p53	 found	 in	 cancer	 cells	more	 closely	 than	a	 genetic	 knockout.	As	PTN-a	 is	 a	 crude	
drug	and	more	than	likely	does	not	completely	abrogate	p53	signalling	it	was	unsurprising	
that	the	loss	of	SNRK	or	ATR	did	not	significantly	decrease	cell	growth,	as	seen	in	the	p53	
null	cells.	However,	at	7.5µM	PTN-a,	the	loss	of	SNRK	or	ATR	did	appear	to	be	sensitising	
the	cells	compared	to	the	Control	1	transfected	cells.	Pharmacological	inhibition	of	ATM	by	
KU53933	 was	 also	 assessed	 for	 its	 ability	 to	 preferentially	 kill	 SNRK	 deficient	 cells.	
However,	 the	 assay	 did	 not	 appear	 to	 be	 functioning	 correctly.	 It	 has	 previously	 been	
reported	that	the	loss	of	ATR	kills	ATM	deficient	cells	(Kwok	et	al,	2016;	Min	et	al,	2017;	
Reaper	 et	 al,	 2011),	 however	 ATR	 siRNA	 did	 not	 kill	 the	 KU55933	 treated	 cells.	 It	 is	
uncertain	if	this	arose	due	to	lack	of	action	of	the	drug	or	due	to	issues	with	cell	confluency	
within	the	assay,	but	as	the	positive	control	did	not	induce	cell	killing,	it	called	the	assay’s	
results	 into	 question.	 Whilst	 the	 ATR	 siRNA	 was	 not	 explicitly	 examined	 for	 gene	
knockdown	 in	 this	 project,	 the	 same	 siRNA	 had	 previously	 been	 reported	 by	 the	 Collis	
laboratory	to	induce	significant	knockdown	(Beveridge	et	al,	2014;	Staples	et	al,	2016).	
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Assessment	 of	 the	 survival	 of	 p53	 deficient	 cells	 following	 SNRK	 knockdown	 in	 the	
Clonogenic	assay	demonstrated	a	strong	trend	but	no	statistically	significant	decrease	in	
survival	following	siRNA	transfection	in	either	the	p53	wild	type	or	null	cell	line.	The	loss	
of	ATR	also	did	not	significantly	affect	p53	null	cell	survival,	despite	apparently	being	in	a	
synthetic	lethal	relationship	(Kwok	et	al,	2016).	Due	to	the	differences	in	assay	length	and	
end	 point	 (growth	 or	 survival)	 this	 data	 does	 not	 necessarily	 contradict	 the	 results	
observed	in	the	MTT	assays.	However,	as	both	SNRK	siRNA	did	show	a	trend	to	decreased	
survival	in	the	p53	null	cells,	these	results	may	have	become	significant	if	they	had	been	
repeated	further.	

Loss	of	SNRK	or	ATR	resulted	in	significantly	increased	levels	of	gH2AX	and	53BP1	foci	in	
wild	 type	 p53	 but	 not	 p53	 null	 HCT116	 cells,	 although	 there	 is	 a	 trend	 to	 increased	
damage	following	gene	knockdown	in	the	later	cell	line.	This	lack	of	significance	was	most	
likely	due	 to	 the	 increased	 levels	 of	 damage	observed	 in	 the	Control	1	 transfected	 cells.	
Treatment	 with	 Roscovitine	 abrogated	 these	 increases,	 suggesting	 that	 they	 were	
dependent	 upon	 DNA	 replication	 and	 that	 the	 damage	 is	 likely	 occurring	 due	 to	 the	
heightened	 replication	 stress	 within	 these	 cells.	 The	 loss	 of	 SNRK	 and	 ATR	 displayed	
higher	numbers	of	gH2AX	foci	in	the	wild	type	than	the	null	cells	but	this	was	not	true	for	
53BP1.	This	most	likely	is	due	to	the	difference	in	the	type	of	damage	identified	by	these	
antibodies:	gH2AX	more	generally	identifies	damage	whilst	53BP1	is	considered	to	be	DSB	
specific.		

The	heightened	levels	of	DNA	damage	observed	in	the	p53	null	cell	line	correlated	with	the	
results	 obtained	 for	 this	 cell	 line	 with	 the	 pRPA2	 T21	 antibody	 (Fig.	 3.4.4.1).	 Levels	 of	
replication	stress	were	also	increased	in	the	Control	1	transfected	cells	compared	to	those	
observed	in	the	p53	wild	type	cell	line.	As	Roscovitine	treatment	abrogated	the	increased	
foci	 numbers	 observed	 in	 the	 p53	 null	 Control	 1	 transfected	 cells,	 it	 appears	 that	 the	
heightened	 levels	 of	 damage	 were	 a	 result	 of	 the	 previously	 observed	 increased	
replication	stress.	This	is	as	expected	as	these	cells	lack	a	functional	G1/S	checkpoint	and	
so	their	entry	to	S	phase	can	occur	in	unfavourable	conditions.		

Despite	the	increased	levels	of	damage	and	replication	stress	induced	by	the	loss	of	SNRK,	
this	does	not	appear	to	affect	cell	cycle	distribution	as	demonstrated	by	PI	FACS	analysis.	
It	may	be	that	the	loss	of	SNRK	only	affects	replication	at	a	local	level	rather	than	globally	
throughout	 the	 nucleus	 and	 so	 does	 not	 cause	 large	 perturbations	 in	 cell	 cycle	
progression.	It	is	also	possible	that	as	this	data	is	only	taken	from	a	single	experiment,	loss	
of	SNRK	may	result	in	altered	cell	cycle	distribution	but	were	not	observed.		

The	loss	of	SNRK	in	Cyclin	E	overexpressing	cells	appeared	to	have	little	impact	on	their	
growth	when	compared	to	cells	with	normal	Cyclin	E	expression.	However,	in	Jones	et	al.	
these	 cells	 had	 entered	 a	 senescent	 state	 within	 4-6	 days	 of	 the	 induction	 of	 Cyclin	 E	
overexpression.	As	this	assay	was	ended	7	days	after	induction	the	cells	may	have	already	
entered	a	senescent	state	and	therefore	not	have	been	as	affected	by	the	loss	of	SNRK	as	
the	un-induced	cells.		
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In	the	H-RASG12V	overexpressing	HCT116	cells	the	loss	of	ATR	did	not	decrease	growth	as	
had	been	previously	reported	(Gilad	et	al,	2010)	and	therefore	the	assay	was	repeated	in	
the	 MRC-5	 H-RASG12V	 overexpressing	 cells.	 Unlike	 in	 the	 HCT116	 cells,	 loss	 of	 SNRK	
significantly	decreased	the	growth	of	the	overexpressing	MRC-5.	It	is	most	likely	that	the	
differing	genetic	backgrounds	in	this	assay	affected	the	results,	as	MRC-5	are	a	normal	cell	
line	they	contain	less	replication	stress	and	DNA	damage	(unpublished	data).	As	a	result	of	
this,	these	cells	may	be	more	affected	by	the	overexpression	of	H-RASG12V	than	the	HCT116	
cells.	 Also,	 they	 would	 likely	 have	more	 stringent	 cell	 cycle	 control	 than	 the	 cancerous	
HCT116	cells	and	so	an	 increase	 in	replication	stress	may	have	been	 less	well	 tolerated	
within	this	model	of	oncogene	induced	replication	stress.			

Whilst	SNRK	loss	appeared	to	affect	the	growth	of	the	MYC-N	overexpressing	IMR-32	cell	
line	 more	 than	 the	 MYC-N	 normal	 SH-EP1	 cells,	 the	 two	 lines	 originate	 from	 different	
patients	and	therefore	have	differing	genetic	background.	It	was	consequently	decided	to	
repeat	this	assay	in	the	SH-EPTet21N	cell	line	that	overexpressed	MYC-N	in	a	Tetracycline	
repressible	manner.	However,	when	this	assay	was	attempted	the	majority	of	the	MYC-N	
overexpressing	 cells	 transfected	 with	 two	 different	 control	 siRNA	 died,	 making	 it	
impossible	 to	 calculate	 growth	 values	 for	 these	 cells.	 This	 assay	 was	 repeated	 using	 a	
different	 scrambled	 control	 siRNA	 (Eurofins	 Control)	 where	 more	 cells	 survived	 than	
previously.	However,	 a	 similar	proportion	of	 cells	 survived	when	 they	were	 transfected	
with	the	ATR	siRNA.	As	the	negative	and	positive	controls	were	producing	similar	survival,	
there	was	a	very	small	assay	window	and	so	the	experiment	was	not	considered	robust.		

Overall,	this	suggests	that	 the	 loss	of	SNRK	may	be	detrimental	in	cells	that	have	higher	
levels	of	replication	stress	due	to	the	overexpression	of	certain	oncogenes.		

Three	chemotherapies	were	chosen	to	assess	whether	loss	of	SNRK	would	sensitise	cells	
to	 their	 mechanism	 of	 action.	 The	 first,	 Gemcitabine,	 is	 a	 well-established	 inducer	 of	
replication	 stress	 through	 DNA	 polymerase	 halting	 and	 ribonucleotide	 reductase	
inhibition.	The	second,	Olaparib,	induces	replication	stress	by	preventing	its	resolution	by	
HR	 as	 well	 as	 trapping	 the	 PARP	 molecule	 on	 DNA	 which	 inhibits	 DNA	 polymerase	
progression.	The	knockdown	of	both	SNRK	and	ATR	sensitised	cells	 to	Gemcitabine	and	
Olaparib	when	 compared	 to	Control	1	 transfected	cells,	most	 likely	by	pushing	 the	 cells	
over	 a	 threshold	 of	 replication	 stress	 beyond	 which	 the	 cells	 could	 not	 remain	 viable.	
Nevertheless,	 these	 effects	 were	 not	 significant	 due	 to	 the	 variability	 of	 the	 assay.	 The	
third	drug,	5-FU,	has	a	very	complicated	metabolism	and	its	effectiveness	may	not	solely	
rely	 upon	 increased	 levels	 of	 replication	 stress.	 Whilst	 the	 inhibition	 of	 thymidylate	
synthetase	by	this	enzyme	does	disrupt	the	nucleotide	pool,	it	results	in	the	incorporation	
of	 dUTP	 and	 FdUTP	 into	 DNA	 and	 the	 latter	 may	 not	 be	 able	 to	 be	 removed	 by	 post-
replicative	repair.	It	is	therefore	not	completely	surprising	that	SNRK	and	ATR	loss	did	not	
significantly	sensitise	cells	to	the	effects	of	this	drug.	

Whilst	 this	 study	 focused	 mostly	 on	 SNRK	 deficiency	 and	 how	 this	 affected	 various	
oncogene	and	drug	induced	replication	stress	models,	it	would	have	been	advantageous	to	
investigate	other	aspects	of	SNRK	within	the	cellular	responses	 to	replication	stress	and	
also	to	further	investigate	PMVK.		
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The	gene	SNRK	contains	 a	protein	kinase	domain,	 a	ubiquitin	 associated	domain	 (UBA)	
(UniProt,	 2017)	 and	 is	 predicted	 to	 contain	 a	 strong	 nuclear	 localisation	 sequence	
suggesting	 that	 it	 is	 localised	 within	 the	 nucleus	 (Kosugi	 et	 al,	 2009).	 In	 AMPK	 related	
kinases,	the	UBA	domain	regulates	kinase	activity	rather	than	actively	binding	to	ubiquitin	
chains.	A	crystal	structure	of	the	SNRK	UBA	domain	suggests	that	its	binding	inhibits	the	
activity	of	the	kinase	domain	by	binding	between	the	C	and	N	terminal	lobes	of	the	domain	
(Wang	et	al,	2018).	 It	may	 therefore	be	possible	 for	 inhibitors	of	SNRK	to	be	developed	
that	mimic	the	structure	of	its	UBA	domain	or	that	specifically	bind	to	the	inactive	form	of	
the	enzyme	and	prevent	its	activation	by	the	removal	of	the	UBA	domain.		

SNRK	 has	 been	 shown	 to	 play	 a	 role	 in	 the	metastasis	 of	 ovarian	 cancers	 (Hopp	 et	 al,	
2017)	and	its	overexpression	reduces	proliferation	of	colon	cancer	cells.	Increased	levels	
of	 SNRK	 upregulate	 calcyclin	 binding	 protein	 which	 reduces	 proliferation	 through	 the	
degradation	of	non-phosphorylated	b-catenin.	Loss	of	SNRK	increases	the	tumorigenicity	
of	 colon	 cancer	 cells	 (Rines	 et	 al,	 2012),	 potentially	 through	 increased	 proliferation.	
Knockdown	has	also	been	previously	reported	to	sensitise	cells	to	Gemcitabine	(Azorsa	et	
al,	 2009),	 further	 suggesting	 that	 loss	 of	 this	 gene	 increases	 proliferation	 and	
subsequently	levels	of	replication	stress.		

Liver	 Kinase	 B1	 (LKB1	 also	 known	 as	 STK11)	 phosphorylates	 SNRK	 at	 residue	 T173,	
within	 its	 T-loop,	 which	 activates	 its	 kinase	 activity.	 This	 phosphorylation	 is	 absent	 in	
HeLa	 cells	 lacking	 LKB1	 expression	 and	 SNRK	 is	 not	 active	 in	 these	 cells	 (Jaleel	 et	 al,	
2005).	As	one	mechanism	of	activation	 for	SNRK	has	been	elucidated,	at	 least	 in	vitro,	 it	
should	have	been	possible	to	determine	whether	it	is	activated	constituently	in	cells	or	if	it	
becomes	 activated	 in	 response	 to	 DNA	 replication	 stress.	 No	 commercial	 antibody	 is	
available	 for	 the	 detection	 of	 SNRK	 phosphorylated	 at	 T173,	 but	 it	 could	 have	 been	
possible	to	utilise	a	pan	pS/T	antibody	to	detect	activation.		

LKB1	is	a	tumour	suppressor	mutated	in	the	cancer	susceptibility	syndrome	Peutz	Jeghers	
Syndrome	(PJS).	It	interacts	with	p53	to	induce	p21	expression	and	its	loss	increases	the	
expression	of	Cyclin	D,	Cyclin	E	and	Cyclin	A.	It	may	therefore	have	been	useful	to	assess	
the	replication	stress	suppressor	phenotype	of	LKB1	to	see	if	 its	 loss	produced	a	similar	
phenotype	 to	 that	 of	 SNRK.	 However,	 this	 approach	 most	 likely	 would	 have	 been	
complicated	 by	 the	 effects	 that	 the	 loss	 of	 LKB1	 would	 have	 had	 on	 other	 cellular	
pathways.	 For	 example,	 via	 its	 phosphorylation	 of	 AMPK,	 LKB1	 controls	 cell	 growth	 in	
response	to	nutrient	fluctuations	and	the	polarity	of	cells	(Shackelford	&	Shaw,	2009).		

Whilst	mass	spectrometry	has	predicted	proteins	that	interact	with	SNRK	(UniProt,	2017),	
only	one	project	specifically	set	out	to	identify	proteins	that	interacted	with	it	(Al-Hakim	
et	al,	2005)	as	it	was	included	as	one	of	the	12	AMPK	related	kinases	investigated	in	this	
study.	 It	 may	 therefore	 have	 been	 advantageous	 to	 carry	 out	 mass	 spectrometry	 by	
generating	a	FLAG-tagged	version	of	the	protein,	as	attempted	in	Chapter	6.		

One	 of	 the	 biggest	weaknesses	 of	 this	 study	 was	 the	 lack	 of	 results	 demonstrating	 the	
effects	of	SNRK	loss	upon	replication	stress	signalling.	The	phosphorylation	of	Chk1	(S317	
and	S345)	by	ATR	results	in	its	activation	(Cimprich	&	Cortez,	2008)	and	can	be	identified	
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by	western	blotting,	as	demonstrated	 in	Chapter	3.	Whilst	 this	was	attempted	 for	SNRK	
knocked	 down	 cells,	 it	 was	 never	 conclusively	 shown	 that	 SNRK	 loss	 induced	 Chk1	
phosphorylation	due	to	issues	with	the	antibody.		

A	polyclonal	antibody	raised	against	SNRK	 is	commercially	available	(abcam,	2017)	and	
could	have	been	used	 to	 confirm	the	 localisation	of	 SNRK	within	 the	nucleus	of	 cells	 by	
immunofluorescence.	This	antibody	could	also	have	been	used	to	assess	gene	knockdown	
by	 both	 immunofluorescence	 and	 western	 blotting.	 The	 immunofluorescent	 images	
provided	 for	 the	 antibody	 (abcam,	 2017)	 suggest	 that	 SNRK	 is	 located	 throughout	 the	
nucleus	but	it	would	have	been	useful	to	see	if	 it	 localised	into	foci	following	replication	
stress.	It	would	also	have	been	beneficial	to	carry	out	co-localisation	experiments	with	the	
replication	stress	and	DNA	damage	markers	mentioned	in	this	chapter.		

Another	potentially	useful	approach	would	have	been	 to	 investigate	if	SNRK	knockdown	
synergised	 with	 Aphidicolin.	 This	 drug	 is	 a	 potent	 inhibitor	 of	 the	 B	 family	 DNA	
polymerases	 (a,	 d,	 e	 and	 z)	 in	 eukaryotes	 and	 induces	 replication	 fork	 stalling	 in	 cells	
already	 in	 S	 phase.	 A	 low	 dose	 of	 Aphidicolin	 has	 also	 been	 shown	 to	 sensitise	
unresponsive	 cancer	 stem	 cells	 to	 Chk1	 inhibition	 (Manic	 et	 al,	 2017)	 and	 therefore	 it	
would	have	been	extremely	useful	to	see	if	this	could	be	replicated	with	SNRK	loss.	

DNA	fibre	analysis	allows	for	an	in	depth	investigation	of	the	replication	dynamics	within	
cells.	 It	 relies	 of	 the	 consecutive	 incorporation	 of	 the	 halogenated	 nucleotides	 IdU	 and	
CldU	which	 can	 be	 detected	 and	 reveal	 a	 number	 of	 replication	 fork	 behaviours.	 These	
include	 their	 speed,	 direction	 of	 travel,	 firing,	 stalling,	 termination	 and	 re-start	
(Nieminuszczy	 et	 al,	 2016).	Use	of	 this	 technique	would	have	 allowed	 for	 a	 further	 and	
more	sensitive	quantification	of	the	levels	of	replication	stress	induced	by	the	loss	of	SNRK	
and	how	this	deficiency	affects	other	replication	 fork	dynamics	such	as	 fork	stalling	and	
dormant	origin	firing.	

It	would	 also	have	been	valuable	 to	 ascertain	 if	 it	was	present	at	 active	or	 stalled	DNA	
replication	forks.	It	is	possible	to	isolate	proteins	on	nascent	DNA,	a	technique	referred	to	
as	iPOND,	which	allows	the	identification	of	proteins	that	accumulate	at	replication	forks	
and	newly	synthesised	DNA.	 In	this	procedure,	nascent	DNA	 is	 labelled	by	EdU	which	 is	
subsequently	 conjugated	 to	 Biotin	 which	 allows	 the	 purification	 of	 the	 DNA:protein	
complexes	 using	 Streptavidin	 (Sirbu	 et	 al,	 2012).	This	method	 could	 have	 been	 used	 to	
determine	 if	SNRK	localises	 to	all	 replication	 forks,	whether	 it	 is	 recruited	 following	 the	
initiation	 of	 replication	 stress	 or	 if	 the	 loss	 of	 SNRK	 affected	 the	 formation	 of	 the	
replisome.		

PMVK	is	predicted	to	contain	no	nuclear	localisation	sequences	(Kosugi	et	al,	2009)	and	is	
most	likely	located	within	the	cytoplasm	(Binder		et	al,	2017b).	High	expression	has	been	
shown	 to	 positively	 correlate	 with	 multi-drug	 response	 in	 ER	 positive	 breast	 cancers	
(Shen	et	al,	2012)	and	its	knockdown	increased	gH2AX	foci	formation	(Paulsen	et	al,	2009)	
and	sensitised	cells	to	PARP	inhibition	(Turner	et	al,	2008).	

It	 is	a	peroxisomal	enzyme	 involved	 in	 the	mevalonate	pathway	(Chambliss	et	al,	1996)	
which	is	fundamental	for	the	growth	of	tumour	cells	and	has	been	shown	to	be	modulated	
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by	 oncogenic	 signalling	 (Mullen	 et	 al,	 2016).	 Mevalonate	 diphosphate	 decarboxylase	
(MVD)	 lies	 downstream	 of	 PMVK	 in	 the	 mevalonate	 pathway.	 Its	 inhibition	 by	
fluoromevalonate	results	in	the	depletion	of	dNTPs,	S	phase	arrest	and	the	induction	H2AX	
and	Chk1	phosphorylation	which	were	reversed	by	exogenous	dNTPs.	The	depletion	of	the	
dNTP	 pool	 was	 linked	 to	 an	 increase	 in	 mevalonate	 phosphate,	 the	 substrate	 of	 MVD,	
which	 was	 exhausting	 the	 cellular	 pool	 of	 ATP	 (Martín	 Sánchez	 et	 al,	 2015).	 This	may	
explain	why	PMVK	knockdown	resulted	in	increased	levels	of	replication	stress.	It	would	
therefore	 have	been	useful	 to	 assess	 if	 loss	of	PMVK	affected	 cellular	 levels	 of	ATP	and	
dNTPs	to	see	if	a	similar	depletion	occurred.		

Mass	 spectrometry	 data	 suggests	 that	 it	 may	 interact	 with	 the	 RNA/DNA	 helicase	
Senataxin,	 (Huttlin	 et	 al,	 2015)	 amongst	 other	 proteins,	 which	 is	 required	 for	 the	
resolution	of	R-loops	 that	can	 impact	on	DNA	replication	and	 lead	 to	genome	 instability	
(Garcia-Muse	&	Aguilera,	 2016).	 Senataxin	has	been	 shown	 to	prevent	 replication	 forks	
colliding	with	 transcription	 complexes	 and	 loss	of	 this	protein	 results	 in	abnormal	DNA	
and	DNA/RNA	structures	 that	hinder	 replication	 fork	progression	 (Alzu	 et	al,	 2012).	As	
this	protein	acts	as	a	replication	stress	suppressor	itself,	it	may	have	been	valuable	to	have	
investigated	whether	its	predicted	association	with	PMVK	was	functional	as	this	may	have	
provided	another	explanation	as	to	how	PMVK	acted	to	suppress	replication	stress.	This	
could	have	been	achieved	by	FLAG	tagging	PMVK	to	allow	immunoprecipitation	and	mass	
spectrometry	 analysis	 of	 its	 interacting	 proteins.	 It	 may	 also	 have	 been	 beneficial	 to	
compare	cells	deficient	of	both	Senataxin	and	PMVK	to	cells	where	only	one	gene	was	lost	
to	determine	if	the	combination	increased	levels	of	replication	stress,	suggesting	that	they	
were	not	acting	in	the	same	pathway.		

Whilst	 the	 individual	 PMVK	 siRNA	 failed	 to	 sensitise	 p53	 deficient	 cells,	 it	 would	 have	
been	 beneficial	 to	 further	 examine	 the	 replication	 stress	 suppressor	 phenotype	 of	 this	
gene.	 If	 time	 restrictions	had	not	prevented	 this,	 it	would	have	been	 investigated	 in	 the	
oncogene	 induced	 replication	 stress	 models	 and	 for	 its	 ability	 to	 sensitise	 cells	 to	
replication	stress	inducing	chemotherapies.	It	would	have	been	particularly	interesting	to	
investigate	 if	 the	knockdown	of	 this	 gene	 sensitised	 cells	 to	PARP	 inhibition	 as	 this	has	
been	previously	reported	(Turner	et	al,	2008).	 It	would	also	have	been	advantageous	 to	
have	carried	out	gH2AX	immunofluorescence,	as	its	loss	has	been	reported	to	increase	the	
prevalence	 of	 this	 marker	 (Paulsen	 et	 al,	 2009),	 and	 investigate	 if	 the	 damage	 caused	
relied	upon	DNA	replication.	The	DNA	fibre	analysis	described	previously	would	also	have	
confirmed	its	role	as	a	replication	stress	suppressor	and	if	it	affected	the	restart	of	stalled	
DNA	replication	forks.		
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5.1	Introduction	

Coiled-coil	domain-containing	protein	15	(CCDC15)	 is	a	951	amino	acid	protein,	 located	
on	 chromosome	 11	 which	 contains	 4	 coiled	 coil	 domains	 but	 no	 other	 identifiable	
structures.	 It	 is	 reportedly	present	 in	the	chordate	common	ancestor,	but	despite	 this,	 it	
has	no	known	function	(GeneCards,	2017a;	UniProt,	2016).	However,	it	was	identified	as	a	
protein	whose	knockdown	increased	gH2AX	levels	in	a	genome	wide	RNAi	screen	(Barone	
et	al,	2016;	Myers	et	al,	2016;	Staples	et	al,	2016;	Staples	et	al,	2014),	carried	out	by	Dr.	S.	
Collis,	where	it	generated	a	modest	Z	score	of	1.2.	

All	of	the	uncharacterised	hits	(proteins	of	unknown	function)	from	this	screen,	including	
CCDC15,	 were	 assessed	 for	 functional	 associations	 with	 DNA	 repair	 genes	 by	 Dr.	 J	
Bradford.	RNA	Sequencing	data	(TCGA	database)	was	used	to	determine	if	the	expression	
of	 a	 gene	 of	 interest	was	 correlated	with	 that	 of	 all	 other	 genes	 in	 a	 given	 cancer	 type	
which	 produced	 a	 table	 of	 Pearson	 correlation	 coefficients	 (PCC).	 This	 was	 repeated	
across	 numerous	 cancer	 types	 and	 combined	 into	 a	 gene	 versus	 cancer	 matrix,	 where	
every	gene	had	a	PCC	listed	for	each	cancer	type	examined.	These	PCCs	were	then	ranked,	
from	high	to	low,	to	generate	a	ranked	gene	versus	cancer	matrix	which	was	used	as	the	
input	for	the	Robust	Rank	Aggregation	(RRA)	R	package,	which	aggregated	the	ranked	lists	
to	 generate	 significance	 probabilities	 for	 every	 gene	 (Kolde	 et	 al,	 2012).	 These	
probabilities	represented	how	likely	that	a	given	rank	was	to	occur	across	the	number	of	
cancers	investigated,	with	a	low	p-value	representing	consistent	correlation	with	the	gene	
of	 interest.	The	genes	were	 then	ranked	by	 their	P-values	(significant	 to	not	significant)	
and	this	list	was	used	as	the	input	for	Gene	Set	Enrichment	Analysis	(GSEA)	(Subramanian	
et	al,	2005)	to	identify	enrichment	of	Reactome-defined	DNA	repair	pathway	genes	at	the	
top	of	the	list	to	generate	an	enrichment	score.	If	numerous	DNA	repair	genes	occurred	at	
the	top	of	the	list,	the	enrichment	score	would	be	significant	(Fig.	5.1.1).		

Along	with	the	uncharacterised	hits,	a	list	of	random	genes	and	a	list	of	known	DNA	repair	
factors	were	subjected	 to	GSEA	as	negative	and	positive	controls	respectively.	All	of	 the	
known	DNA	 repair	 factors	 tested	 generated	 enrichment	 scores	with	 significant	p-values	
for	DNA	repair	genes	whilst	only	one	of	the	nine	random	genes	appeared	correlated	with	
DNA	repair	(Table	5.1.1).	

	
Table	 5.1.1	 Enrichment	 Scores	 for	 the	 correlation	 of	 the	 expression	 of	 known	 DNA	 repair	
factors	and	random	genes	for	Reactome-defined	DNA	repair	genes.		
(A)	Known	DNA	repair	genes	and	(B)	random	genes	were	subjected	to	Gene	Set	Enrichment	Analysis	to	
generate	Enrichment	Scores	and	their	significance	for	their	correlation	with	DNA	repair	genes.		
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Figure	 5.1.1	 Bioinformatics	
analysis	of	CCDC15.		
CCDC15	RNA	expression	data	was	
correlated	 with	 that	 of	 all	 other	
genes	in	a	given	cancer	type.	This	
was	 repeated	 for	 a	 number	 of	
cancers	 and	 the	 resultant	
Pearson’s	 correlation	
coefficients(PCCs)	were	combined	
to	 form	 a	Gene	 vs.	 Caner	Matrix.	
The	 PCC	 were	 then	 ranked	 and	
this	ranked	matrix	was	input	into	
the	 Robust	 Rank	 Aggregation	 R	
package.	 This	 converted	 the	
matrix	into	a	list	of	p-values,	with	
a	low	value	meaning	the	gene	was	
consistently	 correlated	 with	
CCDC15	 across	 the	 cancer	 types.	
These	p-values	were	subsequently	
ranked	 from	 significant	 to	 not	
significant	 and	 used	 as	 the	 input	
for	Gene	Set	Enrichment	Analysis	
to	generate	an	Enrichment	Score.		

	

C16orf75	generated	a	Z-score	of	1.54	in	the	gH2AX	screen	and	was	included	in	the	list	of	
uncharacterised	 hits.	 Through	 the	 GSEA,	 this	 gene	 was	 predicted	 to	 correlate	 with	 the	
Fanconi	 Anemia	 (FA)	 pathway	 and	 MCM	 complex	 components	 (MCM2-8	 and	 MCM10)	
were	the	top	ranked	DNA	repair	genes.	This	gene	has	since	been	reclassified	RMI2,	a	BLM	
complex	 component	 that	 is	 required	 for	 the	 limitation	of	 crossovers	during	DNA	 repair	
(Singh	 et	 al,	 2008).	 It	 has	 experimentally	 been	 shown	 to	 interact	with	 the	 FA	 pathway	
component	FANCM	(Deans	&	West,	2009)	and	has	been	predicted	to	interact	with	MCM10	
(GeneCards,	 2017b).	 Taken	 together,	 this	 suggested	 that	 GSEA	 can	 make	 accurate	
predictions	about	the	function	and	interactions	of	proteins.	

CCDC15	 proved	 to	 be	 consistently	 correlated	 with	 DNA	 repair	 genes	 across	 all	 cancer	
types	 investigated,	 with	 an	 Enrichment	 Score	 of	 0.74	 (p-value	 0.00)	 and	 Mre11A	 was	
reported	as	the	top-ranking	DNA	repair	gene	(Table	5.1.2).	Many	of	the	top	ranked	genes	
were	components	of	the	Fanconi	Anaemia(FA)/BRCA,	Damage	Tolerance	and	Nucleotide	
Excision	Repair	(NER)	pathways,	suggesting	that	CCDC15	may	be	involved	in	the	repair	of	
DNA	crosslinks,	or	lesions	that	impede	DNA	replication.		

It	was	therefore	decided	to	investigate	CCDC15	further	to	determine	if	it	was	a	novel	DNA	
repair	factor,	and	in	particular,	 if	 it	was	involved	in	the	detection	or	repair	of	replication	
impeding	lesions,	as	suggested	by	the	top	ranked	genes	from	the	GSEA.	
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Table	5.1.2	Top	correlated	Reactome-defined	
DNA	repair	genes	for	CCDC15.		
Genes	 were	 ranked	 by	 p-value	 for	 correlated	
Enrichment	 Analysis	 to	 assess	 enrichment	 of	
Reactome-defined	DNA	repair	genes.		

	

	
	
	

	

To	 validate	 the	 findings	 of	 the	 GSEA,	 qPCR	was	 used	 to	 validate	 CCDC15	 siRNAs	which	
were	used	to	assess	DNA	damage	in	CCDC15-depleted	cells	and	if	its	loss	sensitised	cells	to	
chemotherapeutic	 agents.	 Once	 this	 was	 established,	 western	 blotting,	
immunofluorescence,	 Comet	 assays	 and	 flow	 cytometry	 were	 used	 to	 characterise	 the	
involvement	CCDC15	in	the	DNA	damage	response.	Clonogenic	survival	assays	were	also	
attempted	 to	 further	 define	 the	 sensitisation	 of	 CCDC15	 knocked	 down	 cells	 to	 DNA	
crosslinking	agents.	

5.2	Validation	of	Gene	Set	Enrichment	Analysis	

5.2.1	CCDC15	RNA	Expression	in	Common	Cell	Lines	

Quantitative	PCR	(qPCR)	was	used	to	determine	the	RNA	expression	levels	of	CCDC15	in	a	
number	of	cancer	cell	 lines	(PC-3,	T47D,	HCT116,	H460,	HeLa)	used	within	the	Sheffield	
Academic	Unit	of	Molecular	Oncology,	and	the	normal	immortalised	cell	line,	RPE-1.	PC-3	
RNA	 was	 isolated	 from	 a	 frozen	 pellet,	 a	 kind	 gift	 from	 Professor	 J.	 Catto,	 and	 T47D,	
HCT116,	H460	and	HeLa	RNA	extracts	were	a	kind	gift	from	the	Professor	M.	Meuth.	The	
RPE-1	RNA	was	isolated	directly	from	cultured	cells.	The	RNA	was	reverse	transcribed	and	
the	resultant	cDNA	was	amplified	by	PCR	using	TaqMan	probes	 for	GAPDH	and	CCDC15	
(Fig.	5.2.1.1).		

Of	 all	 the	 cell	 lines	 tested,	RPE-1	had	 the	 lowest	Delta	Ct	 value,	meaning	 that	 it	 had	 the	
highest	CCDC15	expression	when	normalised	 to	 the	expression	of	GAPDH.	The	cell	 lines	
with	 the	 next	 lowest	 Delta	 Ct	 values	were	H460,	 T47D	 and	 PC-3	 (Table	 5.2.1.1),	which	
were	 all	 very	 similar,	whilst	 HeLa	 cells	 produced	 the	 highest	 Delta	 Ct	 value.	 Three	 cell	
lines	 were	 selected	 for	 further	 analysis	 of	 CCDC15:	 RPE-1	 to	 determine	 the	 effects	 of	
CCDC15	in	normal	cells,	PC-3	as	it	had	previously	been	optimised	within	the	Collis	lab	for	
clonogenic	survival	and	MTT	assays	and	HeLa	to	determine	if	low	endogenous	expression	
levels	affected	the	knockdown	phenotype.		
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Table	5.2.1.1	CCDC15	RNA	expression	in	cancer	cell	line	panel.		
RNA	extracts	were	reverse	transcribed	and	the	resultant	cDNA	was	amplified	using	TaqMan	probes	
against	GAPDH	and	CCDC15.	The	 resultant	Ct	values	were	used	 to	 calculate	 the	Delta	Ct	values	 for	
each	cell	line.		

5.2.2	CCDC15	Knockdown	by	siRNA		

The	effectiveness	of	CCDC15	knockdown	by	siRNA	at	various	time	points	post-transfection	
was	assessed	by	qPCR.	PC-3	and	HeLa	cells	were	transfected	with	Control	1	and	CCDC15	
for	48,	72	or	96	hours.	The	cells	were	then	lysed,	shredded	and	had	their	RNA	extracted	
before	 it	 was	 reverse	 transcribed.	 The	 resultant	 cDNA	 was	 amplified	 as	 described	
previously	and	the	Ct	values	produced	for	GAPDH	and	CCDC15	were	used	to	calculate	the	
percentage	gene	knockdown	(Fig.	5.2.2.1).		

Figure	 5.2.2.1	 Percentage	 knockdown	 of	
CCDC15	following	siRNA	transfection	in	PC-3.	
PC-3	were	 transfected	with	 Control	 1	 or	 CCDC15	
siRNA	 for	48,	72	or	96	hours.	RNA	was	extracted	
from	 the	 cells,	 reverse	 transcribed	 and	 the	
resultant	 cDNA	 was	 amplified	 using	 TaqMan	
probes	against	GAPDH	and	CCDC15.	The	Ct	values	
generated	were	 used	 to	 calculate	 the	 percentage	
knockdown	 using	 the	 2-DDCt	method.	 Mean	 values	
derived	from	three	independent	experiments,	with	
their	respective	SEMs.	

	

Despite	repeated	attempts,	this	experiment	did	not	produce	meaningful	results	when	RNA	
was	extracted	from	HeLa	cells;	the	qPCR	analysis	would	produce	an	“undetermined”	result	
in	both	the	Control	1	and	CCDC15	siRNA	transfected	extracts	for	the	CCDC15	probe,	most	
likely	due	to	the	low	expression	levels	of	CDC15	within	this	cell	line.	

In	PC-3	cells,	a	72	hour	 transfection	produced	the	most	effective	knockdown	of	CCDC15	
gene	expression	(Fig.	5.2.2.1),	with	an	average	knockdown	of	89.89%.	By	96	hours	gene	
expression	appeared	to	be	recovering	(68.50%	knockdown),	so	a	72	hour	transfection	was	
chosen	for	future	experiments	(unless	stated	otherwise).		
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5.2.3	Assessment	of	DNA	Damage	in	CCDC15	Depleted	Cells	

To	determine	if	CCDC15	knockdown	increased	the	levels	of	DNA	damage	experienced	by	
unchallenged	 cells,	 CCDC15	 siRNA	 transfected	 cells	were	 stained	with	 antibodies	 raised	
against	 the	 DNA	 damage	markers	 gH2AX	 and	 53BP1.	 PC-3,	 HeLa	 and	 RPE-1	 cells	 were	
transfected	with	Control	1	and	CCDC15	siRNA	using	DharmaFECT	1	for	48	hours.	The	cells	
were	pre-extracted	with	0.5%	Triton	X	and	3%	BSA	in	PBS	before	fixing	and	co-staining	
for	gH2AX	and	53BP1	(Fig.	5.2.3.1	-	3).		

	

Figure	5.2.3.1	DNA	damage	detection	in	CCDC15	knocked	down	PC-3	cells.		
Representative	images	of	PC-3	cells	transfected	with	Control	1	or	CCDC15	siRNA	and	DharmaFECT	1	
and	grown	for	48	hours	post-transfection.	Cells	were	incubated	with	0.5%	Triton	X-100	and	3%	BSA	in	
PBS	for	5	minutes	before	fixing	and	staining	with	antibodies	raised	against	gH2AX	and	53BP1.		

	

Figure	5.2.3.2	DNA	damage	detection	in	CCDC15	knocked	down	HeLa	cells.		
Representative	images	of	HeLa	cells	transfected	with	Control	1	or	CCDC15	siRNA	and	DharmaFECT	1	
and	grown	for	48	hours	post-transfection.	Cells	were	incubated	with	0.5%	Triton	X-100	and	3%	BSA	in	
PBS	for	5	minutes	before	fixing	and	staining	with	antibodies	raised	against	gH2AX	and	53BP1.		
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Figure	5.2.3.3	DNA	damage	detection	in	CCDC15	knocked	down	RPE-1	cells.		
Representative	images	of	RPE-1	cells	transfected	with	Control	1	or	CCDC15	siRNA	and	DharmaFECT	1	
and	grown	for	48	hours	post-transfection.	Cells	were	incubated	with	0.5%	Triton	X-100	and	3%	BSA	in	
PBS	for	5	minutes	before	fixing	and	staining	with	antibodies	raised	against	gH2AX	and	53BP1.		

The	suboptimal	transfection	time	of	48	hours	was	used	for	these	experiments	as	the	qPCR	
analysis	was	still	ongoing,	in	an	attempt	to	ascertain	if	CCDC15	was	worth	studying.	In	all	
three	 cell	 lines,	 CCDC15	 knockdown	 increased	 the	 levels	 of	 gH2AX	 and	 53BP1	 foci	
observed.	The	images	were	scored	for	the	number	of	foci	they	contained	to	allow	the	DNA	
damage	response	in	the	respective	cell	populations	to	be	quantified	(Fig	5.2.3.4).		

In	all	three	cell	 lines	the	knockdown	of	CCDC15	significantly	increased	the	proportion	of	
cells	positive	 for	gH2AX,	when	compared	to	Control	1	 transfected	cells,	with	p-values	of	
0.025,	0.026	and	0.009	 in	PC-3,	HeLa	and	RPE-1	 cells	 respectively.	 Loss	of	CCDC15	also	
resulted	in	the	increase	in	the	number	of	cells	positive	for	53BP1	foci,	this	difference	was	
significant	in	PC-3	and	RPE-1	cells	(p-values	0.0009	and	0.017)	but	not	in	HeLa	cells	(p-
value	0.129)	due	to	the	variability	of	the	staining	in	this	cell	line.	Collectively,	this	suggests	
that	CCDC15	loss	 increases	the	 levels	of	DNA	damage	experienced	by	unchallenged	cells	
and	that	CCDC15	may	play	a	role	in	the	maintenance	of	genome	stability.		

	 	



Characterisation	of	CCDC15	Deficient	Cells	

	 198	

	
Figure	5.2.3.4	Percentage	of	PC-3,	HeLa	and	RPE-1	cells	positive	for	gH2AX	and	53BP1	foci.		
For	each	condition	the	number	of	(A)	PC-3,	(B)	HeLa	or	(C)	RPE-1	were	counted	and	the	percentage	of	
gH2AX	and	53BP1	positive	nuclei	was	calculated.	A	nucleus	was	considered	positive	if	it	contained	10	
or	more	bright	foci.	Asterisks	indicate	significant	difference	from	Control	1,	p	value	<0.05.	Mean	values	
derived	 from	 three	 independent	 experiments	 for	 PC-3	 and	 RPE-1	 and	 two	 for	 HeLa,	 with	 their	
respective	SEMs.		

5.2.4	DNA	Damaging	Agent	Sensitivity	

As	the	GSEA	suggested	that	CCD15	expression	correlated	with	a	number	genes	associated	
with	the	resolution	of	DNA	crosslinks	and	replication	impeding	damage,	MTT	cytotoxicity	
assays	 were	 carried	 out	 to	 determine	 whether	 CCDC15	 knockdown	 sensitised	 cells	 to	
these	lesions.		

5.2.4.1	Mitomycin	C	Sensitivity	

Mitomycin	 C	 (MMC),	 is	 a	 cytotoxic	 chemotherapeutic	 agent,	 that	 induces	 crosslinks	 in	
complementary	 DNA	 strands	 (interstrand	 crosslinks,	 ICLs).	 PC-3,	 HeLa	 and	 RPE-1	 cells	
were	transfected	with	Control	1	or	CCDC15	siRNA	using	DharmaFECT	1	for	72	hours.	The	
cells	were	then	treated	with	MMC	(0	-	80ng/ml)	for	120	hours	before	the	addition	of	MTT	
(Fig.	5.2.4.1.1).	

In	the	RPE-1	cells,	CCDC15	knockdown	significantly	sensitised	cells	to	the	effects	of	MMC,	
and	a	trend	towards	sensitisation	was	observed	in	PC-3	cells	but	this	was	not	significant.	
No	difference	was	seen	at	all	 in	HeLa	cells,	suggesting	that	the	role	of	CCDC15	in	dealing	
with	DNA	crosslinks	may	depend	upon	expression	level.		
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Figure	5.2.4.1.1	Sensitivity	of	CCDC15	knocked	down	cells	to	Mitomycin	C.		
(A)	 PC-3,	 (B)	 HeLa	 and	 (C)	 RPE-1	 cells	 were	 transfected	 with	 Control	 1	 or	 CCDC15	 siRNA	 and	
DharmaFECT	1	and	grown	for	72	hours	before	treatment	with	0,	10,	20,	40	or	80ng/ml	MMC	for	120	
hours.	Asterisks	indicate	significant	difference	from	Control	1,	p	value	<0.05.	Mean	values	were	derived	
from	3	independent	experiments,	with	their	respective	SEMs.		

5.2.4.2	Cisplatin	Sensitivity	

Cisplatin	 is	 a	 platinum	 based	 chemotherapeutic	 that	 forms	 DNA	 ICLs	 and	 intrastrand	
crosslinks	 by	 the	 binding	 of	 purine	 bases,	 resulting	 in	 DNA	 damage	 and	 ultimately	
apoptosis	(Dasari	&	Tchounwou,	2014).	PC-3,	HeLa	and	RPE-1	cells	were	transfected	with	
Control	1	or	CCDC15	siRNA	using	DharmaFECT	1	for	72	hours.	The	cells	were	then	treated	
with	Cisplatin	(0	-	10µM)	for	120	hours	before	the	addition	of	MTT	(Fig.	5.2.4.2.1).	

	

Figure	5.2.4.2.1	Sensitivity	of	CCDC15	knocked	down	cells	to	Cisplatin.		
(A)	 PC-3,	 (B)	 HeLa	 and	 (C)	 RPE-1	 cells	 were	 transfected	 with	 Control	 1	 or	 CCDC15	 siRNA	 and	
DharmaFECT	1	and	grown	for	72	hours	before	treatment	with	0,	1,	2.5,	5	or	10µM	Cisplatin	for	120	
hours.	Asterisks	indicate	significant	difference	from	Control	1,	p	value	<0.05.	Mean	values	were	derived	
from	3	independent	experiments,	with	their	respective	SEMs.		

Of	the	three	cell	 lines,	only	the	RPE-1	cells	showed	a	significant	increase	in	sensitivity	to	
Cisplatin	after	the	knockdown	of	CCDC15	but	this	sensitisation	was	less	than	that		
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observed	for	MMC	treatment.	This	suggests	that	CCDC15	loss	may	be	more	detrimental	in	
the	presence	of	ICLs	than	intrastrand	crosslinks.	Unlike	the	MMC	experiments,	PC-3	cells	
did	not	appear	to	be	sensitised	to	Cisplatin	and	HeLa	cells	again	showed	no	sensitisation.	

5.2.4.3	Hydroxyurea	sensitivity	

The	 enzyme	 ribonucleotide	 reductase	 is	 essential	 for	 the	 synthesis	 of	
deoxyribonucleotides	and	the	efficient	progression	of	DNA	replication.	It	is	inactivated	by	
the	drug	hydroxyurea	(HU)	which	results	in	the	stalling	of	DNA	replication	forks	(Yarbro,	
1968).	PC-3,	RPE-1	and	HeLa	cells	were	transfected	with	Control	1	or	CCDC15	siRNA	using	
DharmaFECT	1	 for	72	hours.	The	 cells	were	 then	 treated	with	HU	 (0	 -	 125µM)	 for	120	
hours	before	the	addition	of	MTT	(Fig.	5.2.4.3.1).	For	all	three	cell	lines,	the	knockdown	of	
CCDC15	 did	 not	 sensitise	 the	 cells	 to	 HU	 treatment;	 suggesting	 that	 CCDC15	 is	 not	
required	for	the	resolution	of	stalled	replication	forks	per	se.	

	

Figure	5.2.4.3.1	Sensitivity	of	CCDC15	knocked	down	cells	to	Hydroxyurea.		
(A)	 PC-3,	 (B)	 HeLa	 and	 (C)	 RPE-1	 cells	 were	 transfected	 with	 Control	 1	 or	 CCDC15	 siRNA	 and	
DharmaFECT	1	 and	grown	 for	 72	 hours	 before	 treatment	with	 0,	 25,	 50,	 75	 or	 100µM	HU	 for	 120	
hours.	Mean	values	were	derived	from	3	independent	experiments,	with	their	respective	SEMs.		

5.2.5.	Deconvolution	of	the	CCDC15	siRNA	Pool	

To	 ensure	 that	 the	 effects	 observed	 following	 the	 knockdown	 of	 CCDC15	were	 not	 off	
target	effects,	the	siRNA	pool	was	deconvoluted	into	the	four	individual	siRNAs	and	qPCR	
analysis	was	used	to	assess	their	knockdown.	PC-3	cells	were	transfected	with	Control	1	
and	CCDC15	1	-	4	for	72	hours.	The	cells	were	lysed,	the	RNA	extracted	and	converted	to	
cDNA	which	was	subsequently	amplified	as	described	previously.	The	Ct	values	produced	
for	GAPDH	and	CCDC15	were	then	used	to	calculate	the	percentage	gene	knockdown	(Fig.	
5.2.5.1).		

Of	 the	 three	 individual	 siRNAs,	 CCDC15	1	 and	CCDC15	3,	 produced	a	 greater	 than	80%	
knockdown	of	CCDC15	expression	(80.17%	and	83.51%	respectively).	These	two	siRNAs	
were	chosen	for	all	further	work	on	this	project.	The	remaining	siRNAs	were	discarded	as	
they	 did	 not	 produce	 a	 satisfactory	 knockdown	 (CCDC15	 2	 67.26%	 and	 CCDC15	 4	
54.59%).		
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Figure	 5.2.5.1	 Percentage	 knockdown	 of	 deconvoluted	
CCDC15	siRNA	pool	following	siRNA	transfection	in	PC-3	
cells.	
PC-3	 cells	 were	 transfected	with	 Control	 1	 or	 CCDC15	 1-4	
siRNA	 for	 72	 hours.	 RNA	 was	 extracted	 from	 the	 cells,	
reverse	 transcribed	 and	 the	 resultant	 cDNA	was	 amplified	
using	TaqMan	primers	against	GAPDH	and	CCDC15.	The	Ct	
values	 generated	 were	 used	 to	 calculate	 the	 percentage	
knockdown	 using	 the	 2-DDCt	 method.	 Mean	 values	 derived	
from	 three	 independent	 experiments,	 with	 their	 respective	
SEMs.	

5.3	DNA	Damage	Response	Phenotype	

Once	it	had	been	established	that	CCDC15	loss	increased	endogenous	DNA	damaged	and	in	
some	cases	sensitised	cells	to	exogenous	genotoxic	stress;	further	analysis	was	carried	out	
to	ascertain	the	role	it	played	in	DNA	damage	repair	using	the	validated	individual	siRNA.		

5.3.1	DNA	Damage	Response	Activation	

5.3.1.1	DNA	Damage	Marker	Immunofluorescence		

The	previous	immunofluorescent	analysis	of	the	DNA	damage	markers	gH2AX	and	53BP1	
was	repeated	with	the	individual	CCDC15	siRNA	and	at	the	72	hour	time	point.	PC-3,	HeLa	
and	 RPE-1	 cells	 were	 transfected	 with	 Control	 1,	 CCDC15	 1	 or	 CCDC15	 3	 siRNA	 using	
DharmaFECT	1	for	72	hours.	The	cells	were	pre-extracted	with	0.5%	Triton	X	and	3%	BSA	
in	PBS	before	fixing	and	co-staining	for	gH2AX	and	53BP1	(Fig.	5.3.1.1.1	-	3).		

	
Figure	 5.3.1.1.1	 DNA	 damage	 detection	 in	 deconvoluted	 CCDC15	 siRNA	 knocked	 down	 PC-3	
cells.		
Representative	 images	 of	 PC-3	 cells	 transfected	with	 Control	 1,	 CCDC15	 1	 or	 CCDC15	 3	 siRNA	 and	
DharmaFECT	1	and	grown	for	72	hours	post-transfection.	Cells	were	incubated	with	0.5%	Triton	X-
100	and	3%	BSA	 in	PBS	 for	5	minutes	before	 fixing	and	subsequent	staining	with	antibodies	 raised	
against	gH2AX	and	53BP1.		 	
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Figure	 5.3.1.1.2	 DNA	 damage	 detection	 in	 deconvoluted	 CCDC15	 siRNA	 knocked	 down	 HeLa	
cells.		
Representative	 images	 of	HeLa	 cells	 transfected	with	Control	 1,	 CCDC15	 1	 or	CCDC15	 3	 siRNA	and	
DharmaFECT	1	and	grown	for	72	hours	post-transfection.	Cells	were	incubated	with	0.5%	Triton	X-
100	and	3%	BSA	 in	PBS	 for	5	minutes	before	 fixing	and	subsequent	staining	with	antibodies	 raised	
against	gH2AX	and	53BP1.		

	
Figure	5.3.1.1.3	DNA	damage	detection	 in	 deconvoluted	CCDC15	 siRNA	knocked	down	RPE-1	
cells.		
Representative	 images	of	RPE-1	cells	 transfected	with	Control	1,	CCDC15	1	or	CCDC15	3	 siRNA	and	
DharmaFECT	1	and	grown	for	72	hours	post-transfection.	Cells	were	incubated	with	0.5%	Triton	X-
100	and	3%	BSA	 in	PBS	 for	5	minutes	before	 fixing	and	subsequent	staining	with	antibodies	 raised	
against	gH2AX	and	53BP1.		 	
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As	observed	previously,	knockdown	of	CCDC15	with	either	siRNA	increased	the	levels	of	
gH2AX	 and	 53BP1	 foci	 observed	 in	 all	 three	 cell	 lines.	 The	 images	 were	 subsequently	
scored	for	the	number	of	positive	nuclei	they	contained	to	allow	the	DNA	damaged	caused	
by	gene	knockdown	to	be	quantified	(Fig	5.3.1.1.4).		

	

Figure	5.3.1.1.4	Percentage	of	PC-3,	HeLa	and	RPE-1	cells	positive	 for	gH2AX	and	53BP1	 foci	
following	transfection	with	individual	CCDC15	siRNAs.	
For	each	condition	the	number	of	(A)	PC-3,	(B)	HeLa	or	(C)	RPE-1	were	counted	and	the	percentage	of	
gH2AX	and	53BP1	positive	nuclei	was	calculated.	A	nucleus	was	considered	positive	if	it	contained	10	
or	more	bright	foci.	Asterisks	indicate	significant	difference	from	Control	1,	p	value	<0.05.	Mean	values	
derived	 from	 three	 independent	 experiments	 for	HeLa	 cells	 and	 two	 for	 PC-3	 and	RPE-1	 cells,	with	
their	respective	SEMs.		

In	all	three	cell	lines	there	was	a	general	trend	that	the	knockdown	of	CCDC15	with	either	
siRNA	 increased	the	percentage	of	cells	positive	 for	gH2AX	and	53BP1.	 In	the	PC-3	cells,	
the	knockdown	of	CCDC15	with	either	siRNA	failed	to	significantly	increase	the	levels	of	
gH2AX	or	53BP1	foci	detected,	 in	contrast	to	the	result	seen	when	using	the	pool	siRNA.	
However,	in	the	HeLa	cells,	both	siRNA	significantly	increase	the	levels	of	gH2AX	(p	values	
of	 0.0018	and	0.0021)	 and	53BP1	 (p-values	of	 0.0028	and	0.0037).	 For	 the	RPE-1	 cells	
CCDC15	1	significantly	increased	the	levels	of	gH2AX	(p-value	0.0443)	but	not	53BP1	(p-
value	 0.523).	 The	 opposite	 was	 seen	 for	 CCDC15	 3	 where	 gH2AX	 levels	 were	 not	
significantly	increased	(p-value	0.0720)	but	53BP1	levels	were	(p-value	0.0396).	Overall,	
this	data	suggests	 that	CCDC15	 loss	does	result	 in	DNA	damage	and	that	 the	phenotype	
observed	when	using	the	pool	siRNA	was	not	due	to	off	target	effects.		
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5.3.2.2	Direct	Measurement	of	DNA	Damage	

Comet	 assays	 (single-cell	 gel	 electrophoresis)	 were	 employed	 to	 directly	 measure	 the	
levels	 of	 DNA	 damage	 caused	 by	 CCDC15	 knockdown,	 rather	 than	 relying	 solely	 on	
surrogate	 immunofluorescence	 markers.	 PC-3,	 HeLa	 and	 RPE-1	 cells	 were	 transfected	
with	Control	1,	CCDC15	1	or	CCDC15	3	siRNA	using	DharmaFECT	1	for	72	hours.	The	cells	
were	then	trypsinised	and	suspended	in	agarose	on	Comet	slides	before	they	were	lysed	
and	their	DNA	was	unwound.	These	slides	were	 the	electrophoresed,	stained	with	SYBR	
Gold,	imaged	and	scored	(Fig.	5.3.1.2.1).		

	
Figure	 5.3.1.2.1	 Percentage	 DNA	 in	 Tail	 and	 Tail	 Moment	 of	 PC-3,	 HeLa	 and	 RPE-1	 cells	
following	CCDC15	knockdown.	
(A,D)	PC-3,	(B,E)	HeLa	and	(C,F)	RPE-1	cells	were	transfected	with	Control	1,	CCDC15	1	or	CCDC15	3	
siRNA	 and	 DharmaFECT	 1	 and	 grown	 for	 72	 hours	 before	 being	 trypsinised	 and	 re-suspended	 in	
agarose.	 The	 cells	 were	 then	 lysed,	 their	 DNA	 unwound	 and	 electrophoresed.	 The	 cells	 were	 then	
stained	with	SYBR	Gold,	imaged,	scored	and	the	(A-C)	Percentage	DNA	in	their	Comet	Tails	and	their	
(D-F)	Tail	Moments	were	calculated.	Mean	values	derived	from	three	independent	experiments	for	PC-
3	and	HeLa	cells	and	two	for	RPE-1	cells,	with	their	respective	SEMs.	

In	all	three	cells	lines,	the	knockdown	of	CCDC15	with	either	siRNA	failed	to	significantly	
increase	 either	 the	 Percentage	DNA	 in	 the	 Tail	 or	 the	 Tail	Moment	 of	 the	 Comets	 (Fig.	
5.3.1.2.1).	In	PC-3	cells	this	was	probably	due	to	the	extreme	variability	of	the	assay	and	
the	high	 levels	 of	 damage	observed	 in	 the	Control	 1	 transfected	 cells.	 In	 the	HeLa	 cells,	
CCDC15	1	did	not	appear	to	be	having	any	effect	as	very	few	tails	were	produced	which	
resulted	in	a	Tail	Moment	lower	than	that	of	the	Control	1	cells.	In	the	RPE-1	cells,	CCDC15	
knockdown	 with	 both	 siRNA	 slightly	 increased	 the	 Percentage	 DNA	 in	 the	 Tail	 of	 the	
Comets	 but	 this	 was	 not	 significant	 as	 the	 variability	 of	 the	 Control	 1	 transfected	 cells	
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exceeded	 this	 increase.	 CCDC15	 1	 non-significantly	 increased	 the	 Tail	Moment	 in	 these	
cells	but	again	this	was	extremely	variable	and	was	not	seen	for	CCDC15	3.		

As	 the	 results	 in	 all	 three	 cells	 lines	were	 extremely	 inconstant	 and	 a	 number	 of	 users	
within	 the	Bryant	and	Collis	labs	were	experiencing	 technical	difficulties	with	 this	assay	
(see	 Discussion)	 it	 was	 decided	 not	 to	 pursue	 this	 assay	 in	 order	 to	 focus	 on	 further	
characterisation	of	the	CCDC15	knockdown	phenotype.		

5.3.2	Sensitisation	to	DNA	Crosslinking	Agents	

5.3.2.1	Clonogenic	Survival	Assays	

Clonogenic	assays	typically	demonstrate	a	greater	decrease	in	cell	survival	as	drug	doses	
increase	when	compared	to	MTT	assays.	These	assays	were	attempted	as	they	may	have	
allowed	 for	 some	 of	 the	 small	 differences	 seen	 in	 the	MTT	 assays	 to	 be	 amplified	 and	
analysed	 in	 more	 detail.	 PC-3,	 HeLa	 and	 RPE-1	 cells	 were	 transfected	 with	 Control	 1,	
CCDC15	1	or	CCDC15	3	siRNA	for	72	hours.	The	cells	were	then	trypsinised,	counted	and	
replated	at	either	200	or	2000	cells	per	well.	Once	the	cells	had	settled	they	were	drugged	
with	a	0	–	100nM	titration	of	MMC.	The	cells	were	grown	for	11	days	to	allow	colonies	to	
form	which	were	then	stained	with	Methylene	Blue	(0.4%).	In	the	case	of	PC-3	and	HeLa	
cells	the	resultant	colonies	were	then	manually	counted	(Fig.	5.3.2.1.1).	

	

Figure	5.3.2.1.1	Survival	of	CCDC15	knocked	down	cells	in	the	presence	of	MMC.	
(A)	 PC-3	 and	 (B)	 HeLa	 cells	 were	 transfected	 with	 Control	 1,	 CCDC15	 1	 or	 CCDC15	 3	 siRNA	 and	
DharmaFECT	1	and	grown	for	72	hours	before	being	trypsinised	and	replated	at	200	or	2000	cells	per	
well.	The	cells	were	then	drugged	with	0,	25,	50,	75	or	100nM	MMC	for	11	days	to	allow	colonies	to	
form.	The	cells	were	 then	 stained	with	0.4%	Methylene	Blue	which	were	counted	and	 the	 surviving	
fractions	were	calculated.		

In	the	PC-3	cells,	no	difference	at	all	could	be	observed	between	the	surviving	fractions	of	
the	 Control	 1,	 CCDC15	 1	 and	 CCDC15	 3	 transfected	 cells,	 despite	 a	 difference	 being	
observed	in	the	previously	described	MTT	assay	with	the	pool	siRNA.	In	the	HeLa	cells,	the	
CCDC15	knocked	down	cells	did	appear	more	sensitised	to	MMC,	but	due	to	the	variability	
seen	in	the	Control	1	cells,	the	difference	in	survival	were	not	significant.	Unlike	the	PC-3	
and	 HeLa	 cells,	 the	 RPE-1	 cells	 did	 not	 form	 distinct	 individual	 colonies	 that	 were	
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countable	 in	 this	 assay,	 therefore	 an	 alternative	 quantification	 method	 was	 trailed	 to	
assess	cell	survival.	Once	the	cells	had	been	stained	the	Methylene	Blue	was	dissolved	with	
1%	SDS	and	assessed	colorimetrically	(Fig.	5.3.2.1.2).		

	

Figure	5.3.2.1.2	Survival	of	CCDC15	knocked	down	RPE-1	in	the	presence	of	MMC.	
RPE-1	cells	were	transfected	with	Control	1,	CCDC15	1	or	CCDC15	3	siRNA	and	DharmaFECT	1	and	
grown	 for	72	hours	before	being	 trypsinised	and	replated	at	200	cells	per	well.	The	cells	were	then	
drugged	with	0,	25,	50,	75	or	100nM	MMC	for	11	days	to	allow	colonies	to	form.	The	cells	were	then	
stained	with	0.4%	Methylene	Blue	which	was	dissolved	with	1%	SDS	and	analysed	colorimetrically.	
Values	derived	from	one	experiment.	

In	 this	 assay,	 no	 difference	was	 seen	 in	 the	 survival	 of	RPE-1	 cells	 knocked	down	with	
CCDC15	1	siRNA	compared	to	the	control	cells,	unlike	the	results	seen	in	the	MTT	assay.	
The	cells	transfected	with	CCDC15	3	appeared	to	survive	better	in	the	presence	of	MMC,	
which	was	most	likely	an	artefact	of	the	assay.	For	the	2000	cell	per	well	plates,	the	wells	
had	reached	confluence	and	saturated	the	plate	reader	during	the	colorimetric	analysis.	

In	parallel	with	the	MMC	assay,	a	UV	sensitivity	assay	was	carried	out	in	the	RPE-1	cells	as	
they	had	shown	sensitivity	to	both	MMC	and	Cisplatin	in	the	MTT	assays.	The	cells	were	
transfected	and	re-plated	as	in	the	MMC	assay	and	then	irradiated	with	0	–	6J/m2	UV	light.	
The	 cells	 were	 then	 left	 for	 11	 days	 to	 form	 colonies	 before	 they	 were	 stained	 and	
analysed	as	described	previously	(Fig.	5.3.2.1.3).		

For	all	three	siRNA,	the	cells	appeared	to	survive	better	after	UV	irradiation,	despite	there	
seeming	to	be	less	colonies	on	the	plate	at	the	higher	doses.	It	appeared	that	the	colonies	
were	stained	more	darkly	on	the	plates	 irradiated	with	the	higher	UV	doses	which	most	
likely	resulted	in	this	unusual	outcome.	It	was	decided	not	to	continue	with	this	method	of	
analysing	 clonogenic	 assays	 as	 it	 did	 not	 appear	 to	 accurately	 represent	 the	 number	 of	
cells	surviving.		
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5.3.2.1.2	Survival	of	CCDC15	knocked	down	RPE-1	after	UV	irradiation	
RPE-1	cells	were	transfected	with	Control	1,	CCDC15	1	or	CCDC15	3	siRNA	and	DharmaFECT	1	and	
grown	 for	72	hours	before	being	 trypsinised	and	replated	at	200	cells	per	well.	The	cells	were	then	
irradiated	with	0,	1,	2,	4	or	6J/m2	UV	then	allowed	to	grow	for	11	days	so	colonies	formed.	The	cells	
were	 then	 stained	 with	 0.4%	 Methylene	 Blue	 which	 was	 dissolved	 with	 1%	 SDS	 and	 analysed	
colorimetrically.	Values	derived	from	one	experiment.	

5.3.2.2	 Assessment	 of	DNA	 Damage	 in	 CCDC15-depleted	 cells	 in	 response	 to	MMC	
and	UV	

As	 the	 clonogenic	 survival	 assays	 had	 failed	 to	 identify	 any	 sensitisation	 to	 DNA	
crosslinking	 agents,	 it	was	 decided	 to	 investigate	 if	 CCDC15’s	 loss	 affected	 the	 levels	 of	
DNA	damage	experienced	by	cells	 following	treatment	with	MMC	or	UV.	PC-3,	HeLa	and	
RPE-1	 cells	 were	 transfected	 with	 Control	 1,	 CCDC15	 1	 or	 CCDC15	 3	 siRNA	 using	
DharmaFECT	 1	 for	 72	 hours.	 The	 cells	 were	 either	 treated	 with	 80ng/ml	MMC	 for	 16	
hours	or	 irradiated	with	60J/m2	UV	light	4	hours	prior	 to	pre-extraction.	The	cells	were	
pre-extracted,	 fixed	and	 co-stained	 for	 gH2AX	and	53BP1	 (Fig.	5.3.2.2.1-3).	 For	 all	 three	
cell	 lines,	 the	 images	were	 scored	 for	 the	number	of	 positive	nuclei	 they	 contained	(Fig	
5.3.2.2.4).		

Treatment	with	MMC	 or	 irradiation	 with	 UV	 increased	 the	 levels	 of	 gH2AX	 and	 53BP1	
observed	when	compared	to	the	untreated	cells	(Fig.	5.3.1.1.4)	as	expected.	However,	the	
knockdown	 of	 CCDC15	 did	 not	 drastically	 alter	 the	 levels	 of	 DNA	 damage	 reported	
following	 treatment	 compared	 to	 the	 Control	 1	 transfected	 cells,	 with	 only	 the	
combinations	of	CCDC15	3	and	MMC	significantly	increasing	the	levels	of	53BP1	observed	
in	RPE-1	cells	and	CCDC15	3	and	UV	significantly	increasing	the	levels	of	gH2AX	observed	
in	HeLa	cells.		
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Figure	5.3.2.2.1	DNA	damage	detection	following	DNA	crosslinking	in	PC-3	cells.		
Representative	 images	 of	 PC-3	 cells	 transfected	with	 Control	 1,	 CCDC15	 1	 or	 CCDC15	 3	 siRNA	 and	
DharmaFECT	1	and	grown	for	72	hours	post-transfection.	Cells	were	either	treated	with	(A)	80ng/ml	
MMC	for	16	hours	or	(B)	 irradiated	with	60J/m2	UV	light	4	hours	prior	to	pre-extraction.	Cells	were	
incubated	with	0.5%	Triton	X-100	and	3%	BSA	in	PBS	for	5	minutes	before	fixing	and	staining	with	
antibodies	raised	against	gH2AX	and	53BP1.		
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Figure	5.3.2.2.2	DNA	damage	detection	following	DNA	crosslinking	in	HeLa	cells.		
Representative	 images	 of	HeLa	 cells	 transfected	with	Control	 1,	 CCDC15	 1	 or	CCDC15	 3	 siRNA	and	
DharmaFECT	1	and	grown	for	72	hours	post-transfection.	Cells	were	either	treated	with	(A)	80ng/ml	
MMC	for	16	hours	or	(B)	 irradiated	with	60J/m2	UV	light	4	hours	prior	to	pre-extraction.	Cells	were	
incubated	with	0.5%	Triton	X-100	and	3%	BSA	in	PBS	for	5	minutes	before	fixing	and	staining	with	
antibodies	raised	against	gH2AX	and	53BP1.		
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Figure	5.3.2.2.3	DNA	damage	detection	following	DNA	crosslinking	in	RPE-1	cells.		
Representative	 images	of	RPE-1	cells	 transfected	with	Control	1,	CCDC15	1	or	CCDC15	3	 siRNA	and	
DharmaFECT	1	and	grown	for	72	hours	post-transfection.	Cells	were	either	treated	with	(A)	80ng/ml	
MMC	for	16	hours	or	(B)	 irradiated	with	60J/m2	UV	light	4	hours	prior	to	pre-extraction.	Cells	were	
incubated	with	0.5%	Triton	X-100	and	3%	BSA	in	PBS	for	5	minutes	before	fixing	and	staining	with	
antibodies	raised	against	gH2AX	and	53BP1.		
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Figure	5.3.2.2.4	Percentage	of	PC-3,	HeLa	and	RPE-1	cells	positive	 for	gH2AX	and	53BP1	 foci	
following	DNA	crosslinking.	
For	each	condition	the	number	of	(A,	D)	PC-3,	(B,	E)	HeLa	or	(C,	F)	RPE-1	cells	that	had	been	treated	
with	 (A-C)	 MMC	 or	 (D-F)	 UV	 irradiation	 were	 counted	 and	 the	 percentage	 of	 gH2AX	 and	 53BP1	
positive	nuclei	was	calculated.	A	nucleus	was	considered	positive	if	it	contained	10	or	more	bright	foci.	
Asterisks	indicate	significant	difference	from	Control	1,	p	value	<0.05.	Mean	values	derived	from	three	
independent	experiments	for	HeLa	cells	and	two	for	PC-3	and	RPE-1	cells,	with	their	respective	SEMs.		

As	crosslinking	agents	did	not	appear	 to	be	having	an	effect	at	these	 time	points,	 it	was	
decided	to	carry	out	a	 time	course	experiment	 to	determine	how	CCDC15	deficient	cells	
respond	 to	 UV	 induced	 damage	 over	 time	 and	 if	 the	 dynamics	 of	 the	 DNA	 damage	
response	were	altered	in	these	cells.	RPE-1	cells	were	transfected	with	Control	1,	CCDC15	
1	or	CCDC15	3	siRNA	using	DharmaFECT	1	for	72	hours.	Cells	were	either	mock	irradiated	
or	irradiated	with	60J/m2	UV	light	0,	4,	8	or	24	hours	before	pre-extraction	and	fixing.	The	
cells	 were	 then	 stained	 for	 gH2AX	 (Fig.	 5.3.2.2.5)	 imaged	 and	 then	 scored	 for	 gH2AX	
positive	nuclei	(Fig	5.3.2.2.6).		
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Figure	5.3.2.2.5	gH2AX	foci	in	RPE-1	cells	following	recovery	from	UV	irradiation.	
Representative	 images	of	RPE-1	cells	 transfected	with	Control	1,	CCDC15	1	or	CCDC15	3	 siRNA	and	
DharmaFECT	 1	 and	 grown	 for	 72	 hours	 post-transfection.	 Cells	 were	 either	 mock	 irradiated	 or	
irradiated	with	60J/m2	UV	light	0,	4,	8	or	24	hours	prior	to	pre-extraction.	Cells	were	incubated	with	
0.5%	Triton	X-100	and	3%	BSA	in	PBS	for	5	minutes	before	fixing	and	staining	with	an	antibody	raised	
against	gH2AX.	
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Figure	 5.3.2.2.6	 Percentage	 of	 RPE-1	 cells	 positive	 for	 gH2AX	 following	 recovery	 from	 UV	
irradiation.	
For	 each	 condition	 the	 number	 of	 RPE-1	 cells	 were	 counted	 and	 the	 percentage	 of	 gH2AX	 positive	
nuclei	 was	 calculated.	 A	 nucleus	 was	 considered	 positive	 if	 it	 contained	 10	 or	 more	 bright	 foci.	
Asterisks	indicate	significant	difference	from	Control	1,	p	value	<0.05.	Mean	values	derived	from	four	
independent	experiments,	with	their	respective	SEMs.		

As	 observed	 previously,	 the	 knockdown	 of	 CCDC15	 in	 unchallenged	 cells	 significantly	
increased	 the	 levels	 of	 DNA	 damage	 observed	 with	 siRNA	 1	 and	 siRNA	 3	 (p-values	 of	
0.0203	and	0.0055	 respectively).	 The	 same	 increase	was	 observed	when	 the	 cells	were	
fixed	 immediately	 after	 irradiation	 but	 the	 increases	 were	 not	 significant	 with	 either	
siRNA	as	 the	 values	were	 too	variable;	 this	 trend	was	also	observed	at	 the	4	hour	 time	
point.	However,	 by	 8	 hours,	 all	 three	 cell	 populations	 had	 a	 similar	 level	 of	 damage.	 	A	
similar	 trend	was	 observed	 at	 24	 hours	 with	 all	 3	 siRNAs	 producing	 levels	 of	 positive	
nuclei	 comparative	 to	 the	 CCDC15	 knocked	 down	 cells	 at	 the	 0	 hour	 time	 point.	 This	
suggests	 that	 the	 knockdown	 of	 CCDC15	 may	 have	 accelerated	 the	 formation	 of	 DNA	
damage	in	UV	irradiated	cells,	however,	they	appeared	to	recover	at	a	similar	rate	to	cells	
with	functional	CCDC15.		

5.3.3	Involvement	in	the	Fanconi	Anaemia/BRCA	Pathway		

5.3.3.1	FANCD2	Ubiquitination	

A	number	of	proteins	involved	in	the	Fanconi	Anaemia	(FA)	and	BRCA	pathway	appeared	
in	 the	 GSEA	 list	 of	 DNA	 repair	 genes	 whose	 expression	 correlated	 best	 with	 that	 of	
CCDC15.	 Furthermore,	 CCDC15-depleted	 cells	 exhibited	 an	 increased	 sensitivity	 to	 ICL	
inducing	agents	 (Fig.	 5.2.4.1.1	and	5.2.4.2.1).	Therefore,	 it	was	decided	 to	 investigate	 its	
potential	role	within	this	pathway.	Western	blotting	analysis	was	used	to	assess	the	post-
translational	 modification	 status	 of	 FANCD2,	 which	 becomes	 ubiquitinated	 upon	 DNA	
damage	and	is	critical	for	the	repair	of	ICLs	(Liang	et	al,	2016).	PC-3,	HeLa	and	RPE-1	cells	
were	 transfected	 with	 Control	 1,	 CCDC15	 1	 or	 CCDC15	 3	 using	 DharmaFECT	 1	 for	 72	
hours.	Cells	were	either	mock	treated	with	ddH2O	or	treated	with	80ng/ml	MMC	16	hours	
before	 the	 cells	were	 lysed.	A	 total	FANCD2	antibody,	 in	which	 a	band	shift	 is	 observed	
upon	 ubiquitination,	 was	 used	 to	 assess	 protein	 levels	 and	 its	 post-translational	
modification	(Fig.	5.3.3.1.1).		
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Figure	5.3.3.1.1	 Induction	 of	 FANCD2	Ubiquitination	 following	CCDC15	knockdown	and	MMC	
treatment.		
PC-3,	(B)	HeLa	or	(C)	RPE-1	cells	were	transfected	with	Control	1,	CCDC15	1	or	CCDC15	3	siRNA	for	72	
hours	with	DharmaFECT	1.	Cells	were	mock	treated	with	ddH2O	or	treated	with	80ng/ml	MMC	for	16	
hours	before	media	removal.	The	cells	were	lysed	and	15µg	of	protein	from	each	sample	was	loaded	
onto	 a	 NuPage	 4-12%	 Bis-Tris	 Gel	 for	 separation.	 The	 gels	 were	 transferred	 to	 nitrocellulose	
membranes	before	blocking	and	blotting	with	a	Total	FANCD2	and	Actin	(loading	control)	primary	
antibodies.	The	primary	antibodies	were	detected	with	HRP	conjugated	secondary	antibodies.	

In	PC-3	cells,	FANCD2	appeared	to	be	ubiquitinated	in	the	Control	1	untreated	lane,	which	
was	 unexpected	 as	 these	 cells	 had	 not	 been	 exposed	 to	 exogenous	 DNA	 crosslinking	
agents.	The	ubiquitination	was	not	reduced	by	the	knockdown	of	CCDC15	by	either	siRNA,	
suggesting	 that	 CCDC15	 is	 not	 required	 for	 this	 event.	 In	 the	 HeLa	 cells,	 some	
ubiquitinated	FANCD2	was	present	 in	 the	Control	1	untreated	lane	and	 this	appeared	to	
increase	 with	 CCDC15	 knockdown.	 Unlike	 the	 other	 two	 cell	 lines,	 RPE-1	 cells	 did	 not	
appear	to	have	ubiquitinated	FANCD2	in	the	untreated	conditions	but	it	was	present	in	all	
the	cells	treated	with	MMC	which	suggests	that	CCDC15	is	not	essential	for	the	activation	
of	the	FA	pathway	and	this	is	not	how	the	loss	of	CCDC15	results	in	DNA	damage.		

5.3.3.2	Fanconi	Anaemia/BRCA	Pathway	Immunofluorescence	

To	validate	the	western	blotting	analysis,	CCDC15	knocked	down	cells	were	assessed	for	
the	 activation	 of	 the	 FA	 pathway	 by	 immunofluorescence.	 In	 the	 presence	 of	 DNA	
crosslinks,	 FANCD2	 localises	 into	 foci	 within	 the	 nucleus	 (Liang	 et	 al,	 2016)	 and	 can	
therefore	 be	 quantified	 to	 determine	 pathway	 activation.	 PC-3,	 HeLa	 and	 RPE-1	 were	
transfected	with	Control	1,	CCDC15	1	or	CCDC15	3	using	DharmaFECT	1	for	72	hours.	The	
cells	were	either	mock	treated,	treated	with	80ng/ml	MMC	for	16	hours	or	irradiated	with	
60J/m2	UV	light	4	hours	prior	to	pre-extraction.	The	cells	were	pre-extracted	fixed,	stained	
with	 a	 FANCD2	 antibody	 (Fig.	 5.3.3.2.1-3)	 and	 the	 resultant	 images	 were	 scored	 for	
FANCD2	positive	nuclei	(Fig	5.3.3.2.4).		

Foci	formation	appeared	to	slightly	increase	with	the	loss	of	CCDC15	in	the	three	cell	lines,	
however	this	effect	was	not	significant.	PC-3	cells	appeared	to	have	a	higher	percentage	of	
positive	nuclei	following	gene	knockdown	and	treatment	with	either	MMC	or	UV	but	again	
this	effect	was	not	significant	as	 this	experiment	was	only	carried	out	successfully	once.	
Neither	MMC	or	UV	appeared	to	increase	the	number	of	HeLa	cells	or	RPE-1	cells	positive	
for	FANCD2	foci	following	CCDC15	knockdown.		
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Figure	 5.3.3.2.1	 Fanconi	 Anaemia	 pathway	 activation	 following	 CCDC15	 knockdown	 in	 PC-3	
cells.		
Representative	 images	 of	 PC-3	 cells	 transfected	with	 Control	 1,	 CCDC15	 1	 or	 CCDC15	 3	 siRNA	 and	
DharmaFECT	1	and	grown	for	72	hours	post-transfection.	Cells	were	either	mock	treated,	treated	with	
80ng/ml	MMC	for	16	hours	or	 irradiated	with	60J/m2	UV	light	4	hours	prior	to	pre-extraction.	Cells	
were	incubated	with	0.5%	Triton	X-100	and	3%	BSA	in	PBS	for	5	minutes	before	fixing	and	staining	an	
antibody	raised	against	FANCD2.	

	

Figure	5.3.3.2.2	 Fanconi	Anaemia	pathway	activation	 following	CCDC15	knockdown	 in	HeLa	
cells.		
Representative	 images	 of	HeLa	 cells	 transfected	with	Control	 1,	 CCDC15	 1	 or	CCDC15	 3	 siRNA	and	
DharmaFECT	1	and	grown	for	72	hours	post-transfection.	Cells	were	either	mock	treated,	treated	with	
80ng/ml	MMC	for	16	hours	or	 irradiated	with	60J/m2	UV	light	4	hours	prior	to	pre-extraction.	Cells	
were	incubated	with	0.5%	Triton	X-100	and	3%	BSA	in	PBS	for	5	minutes	before	fixing	and	staining	
with	an	antibody	raised	against	FANCD2.	
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Figure	5.3.3.2.3	Fanconi	Anaemia	pathway	activation	 following	CCDC15	knockdown	in	RPE-1	
cells.		
Representative	 images	of	RPE-1	cells	 transfected	with	Control	1,	CCDC15	1	or	CCDC15	3	 siRNA	and	
DharmaFECT	1	and	grown	for	72	hours	post-transfection.	Cells	were	either	mock	treated,	treated	with	
80ng/ml	MMC	for	16	hours	or	 irradiated	with	60J/m2	UV	light	4	hours	prior	to	pre-extraction.	Cells	
were	incubated	with	0.5%	Triton	X-100	and	3%	BSA	in	PBS	for	5	minutes	before	fixing	and	staining	
with	an	antibody	raised	against	FANCD2.	

	

Figure	5.3.3.2.4	Percentage	of	 PC-3,	HeLa	and	RPE-1	cells	positive	 for	FANCD2	 foci	following	
DNA	crosslinking.	
(A)	PC-3,	(B)	HeLa	or	(C)	RPE-1	cells	were	either	mock	treated,	treated	with	MMC	or	UV	irradiation.	
For	each	condition	 the	number	of	 cells	were	counted	and	 the	percentage	of	FANCD2	positive	nuclei	
was	calculated.	A	nucleus	was	considered	positive	if	it	contained	10	or	more	bright	foci.	Mean	values	
derived	from	three	independent	experiments	for	HeLa	cells,	two	for	RPE-1	cells	and	one	for	PC-3	cells,	
with	their	respective	SEMs.	

The	cells	in	the	previously	described	gH2AX	UV	recovery	time	course	were	co-stained	for	
FANCD2	to	determine	if	CCDC15	knockdown	affected	the	resolution	of	FANCD2	foci	after	
exposure	 to	 DNA	 crosslinks	 (Fig.	 5.3.3.2.5).	 The	 cells	were	 imaged	 and	 then	 scored	 for	
FANCD2	positive	nuclei	(Fig	5.3.3.2.6).		 	
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Figure	5.3.2.2.5	FANCD2	foci	in	RPE-1	cells	following	recovery	from	UV	irradiation.	
Representative	 images	of	RPE-1	cells	 transfected	with	Control	1,	CCDC15	1	or	CCDC15	3	 siRNA	and	
DharmaFECT	 1	 and	 grown	 for	 72	 hours	 post-transfection.	 Cells	 were	 either	 mock	 irradiated	 or	
irradiated	with	60J/m2	UV	light	0,	4,	8	or	24	hours	prior	to	pre-extraction.	Cells	were	incubated	with	
0.5%	Triton	X-100	and	3%	BSA	in	PBS	for	5	minutes	before	fixing	and	staining	with	an	antibody	raised	
against	FANCD2.	

As	observed	in	the	single	time	point	experiment,	the	knockdown	of	CCDC15	in	untreated	
RPE-1	cells	did	not	significantly	alter	the	levels	of	FANCD2	foci	detected	and	the	same	was	
seen	 when	 the	 cells	 were	 fixed	 immediately	 after	 irradiation.	 By	 4	 hours,	 the	 level	 of	
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FANCD2	foci	had	 increased	compared	to	 the	0	hour	 time-point,	but	very	 little	difference	
could	 be	 observed	 between	 the	 3	 siRNAs.	 The	 levels	 of	 positive	 nuclei	 remained	 stable	
until	the	24	hour	time	point	when	the	percentage	of	positive	nuclei	had	decreased	to	that	
of	 untreated	 cells	 for	 all	 three	 cell	 populations.	 Collectively,	 these	 data	 suggest	 that	 the	
loss	of	CCDC15	has	little	effect	upon	the	formation	or	resolution	of	FANCD2	foci	after	UV	
irradiation.		

	

Figure	5.3.3.2.6	Percentage	of	RPE-1	cells	positive	for	FANCD2	foci	following	recovery	from	UV	
irradiation.	
For	each	condition	the	number	of	RPE-1	cells	were	counted	and	 the	percentage	of	FANCD2	positive	
nuclei	was	calculated.	A	nucleus	was	considered	positive	if	it	contained	10	or	more	bright	foci.	Mean	
values	derived	from	four	independent	experiments,	with	their	respective	SEMs.		

The	 FA	 protein	 BRCA2	 (FANCD1)	 recruits	 the	 recombinase	 RAD51	 (FANCR)	 to	 ssDNA,	
which	 is	 involved	 in	homologous	repair	of	DSB	and	mutations	 in	 this	protein	have	been	
demonstrated	to	sensitise	cells	to	DNA	ICLs	(Hashimoto	et	al,	2016).	As	it	is	believed	to	act	
downstream	 of	 FANCD2	 ubiquitination	 (Walden	 &	 Deans,	 2014),	 the	 UV	 recovery	 time	
course	 was	 repeated	 and	 the	 cells	 were	 stained	 for	 RAD51,	 which	 forms	 foci	 in	 the	
presence	of	DSB	and	 ICLs	(Gospodinov	et	al,	2009),	 to	determine	 if	CCDC15	knockdown	
affected	these	later	events	in	ICL	repair	(Fig.	5.3.3.2.7).	In	these	cells,	the	average	number	
of	foci	per	cell	was	calculated,	as	much	fewer	RAD51	foci	form	in	damage	cells	compared	
to	the	other	markers	(Fig	5.3.3.2.6).	

In	the	untreated	cells	and	the	cells	fixed	immediately	following	UV	irradiation	(0	hours),	
there	was	very	 little	evidence	of	RAD51	 foci	 formation	 in	any	of	 the	conditions,	with	an	
average	 of	 1	 foci	 per	 cell.	 By	 4	 hours	 post-irradiation,	 the	 Control	 1	 transfected	 cells	
contained	more	RAD51	 foci	 than	the	cells	 transfected	with	CCDC15	1	and	CCDC15	3	but	
the	 differences	were	 not	 significant.	 The	 trend	was	 reversed	 by	 8	 hours,	with	 both	 the	
CCDC15	1	and	CCDC15	3	populations	containing	a	higher	average	number	of	foci	per	cell,	
but	again	the	differences	were	not	significant.	By	24	hours,	the	levels	of	foci	produced	by	
all	three	siRNA	were	reduced,	with	the	Control	1	transfected	cells	showing	a	slightly	lower	
average	number	of	foci	than	the	cells	transfected	with	either	of	the	CCDC15	siRNAs.	This	
suggests	that	the	formation	of	RAD51	foci	is	slightly	delayed	in	the	cells	lacking	CCDC15	as	
is	their	resolution	compared	to	the	Control	1	transfected	cells.		



Characterisation	of	CCDC15	Deficient	Cells	

	 219	

	
Figure	5.3.2.2.7	RAD51	foci	in	RPE-1	cells	following	recovery	from	UV	irradiation.	
Representative	 images	of	RPE-1	cells	 transfected	with	Control	1,	CCDC15	1	or	CCDC15	3	 siRNA	and	
DharmaFECT	 1	 and	 grown	 for	 72	 hours	 post-transfection.	 Cells	 were	 either	 mock	 irradiated	 or	
irradiated	with	60J/m2	UV	light	0,	4,	8	or	24	hours	prior	to	pre-extraction.	Cells	were	incubated	with	
0.5%	Triton	X-100	and	3%	BSA	in	PBS	for	5	minutes	before	fixing	and	staining	with	an	antibody	raised	
against	RAD51.	
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Figure	 5.3.3.2.8	 Average	 number	 of	 RAD51	 foci	 in	 RPE-1	 cells	 following	 recovery	 from	 UV	
irradiation.	
For	each	condition,	the	total	number	of	cells	were	counted	and	the	average	number	of	foci	per	cell	was	
calculated.	Mean	values	derived	from	four	independent	experiments,	with	their	respective	SEMs.		

5.3.4	Association	with	DNA	Replication	and	Cell	Cycle	Progression	

5.3.4.1	Activation	of	the	DNA	Replication	Stress	Response	

CCDC15	was	hypothesised	to	be	involved	in	the	repair	of	replication	impeding	lesions	due	
to	the	genes	its	expression	correlated	with	in	the	GSEA.	The	phenotypes	produced	by	the	
loss	of	this	gene	bear	some	similarity	to	those	produced	when	the	helicase	HELQ	is	lost	in	
mammalian	cells;	mainly	 the	sensitivity	 to	MMC	and	association	with	RAD51	paralogues	
apparently	independent	of	the	FA	pathway	(Adelman	et	al,	2013;	Takata	et	al,	2013).	As	
this	 protein	 appears	 to	 also	 be	 associated	 with	 ATR	 signalling	 and	 its	 loss	 results	 in	
reduced	 Chk1	 phosphorylation	 (Takata	 et	 al,	 2013),	 it	 was	 investigated	 if	 CCDC15	
knockdown	resulted	in	DNA	replication	stress.		

Immunofluorescence	 analysis	 was	 used	 to	 determine	 if	 gene	 knockdown	 resulted	 in	
increased	 RPA2	 phosphorylation	 (pRPA2)	 at	 Threonine	 21	 (T21).	 The	HeLa	 and	 RPE-1	
cells	previously	described	 in	 the	FANCD2	 immunofluorescent	 assay	were	 co-stained	 for	
pRPA2	T21	(Fig.	5.3.4.1.1)	and	the	images	were	then	scored	for	pRPA2	T21	positive	nuclei	
(Fig	5.3.4.1.3).	



Characterisation	of	CCDC15	Deficient	Cells	

	 221	

	
Figure	5.3.4.1.1	RPA2	T21	foci	in	HeLa	cells	following	CCDC15	knockdown.		
Representative	 images	 of	HeLa	 cells	 transfected	with	Control	 1,	 CCDC15	 1	 or	CCDC15	 3	 siRNA	and	
DharmaFECT	1	and	grown	for	72	hours	post-transfection.	Cells	were	either	mock	treated,	treated	with	
80ng/ml	MMC	for	16	hours	or	 irradiated	with	60J/m2	UV	light	4	hours	prior	to	pre-extraction.	Cells	
were	incubated	with	0.5%	Triton	X-100	and	3%	BSA	in	PBS	for	5	minutes	before	fixing	and	staining	
with	an	antibody	raised	against	T21	phosphorylated	RPA2.		

	
Figure	5.3.4.1.2	RPA2	T21	foci	in	RPE-1	cells	following	CCDC15	knockdown.	
Representative	 images	of	RPE-1	cells	 transfected	with	Control	1,	CCDC15	1	or	CCDC15	3	 siRNA	and	
DharmaFECT	1	and	grown	for	72	hours	post-transfection.	Cells	were	either	mock	treated,	treated	with	
80ng/ml	MMC	for	16	hours	or	 irradiated	with	60J/m2	UV	light	4	hours	prior	to	pre-extraction.	Cells	
were	incubated	with	0.5%	Triton	X-100	and	3%	BSA	in	PBS	for	5	minutes	before	fixing	and	staining	
with	an	antibody	raised	against	T21	phosphorylated	RPA2.		
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Figure	 5.3.4.1.3	 Percentage	 of	 HeLa	 and	 RPE-1	 cells	 positive	 for	 pRPA2	 T21	 foci	 following	
CCDC15	knockdown	and	DNA	crosslinking.	
	(A)	HeLa	or	(B)	RPE-1	cells	were	either	mock	treated,	treated	with	MMC	or	UV	irradiation.	For	each	
condition	 the	 number	 of	 cells	 were	 counted	 and	 the	 percentage	 of	 pRPA2	 T21	 positive	 nuclei	 was	
calculated.	A	nucleus	was	considered	positive	if	it	contained	10	or	more	bright	foci.	Asterisks	indicate	
significant	 difference	 from	 Control	 1,	 p	 value	 <0.05.	 Mean	 values	 derived	 from	 two	 independent	
experiments,	with	their	respective	SEMs.	

In	HeLa	cells,	the	knockdown	of	CCDC15	alone	did	not	result	in	an	increase	in	the	levels	of	
T21	positive	nuclei	observed;	a	very	slight	trend	was	seen	in	RPE-1	cells	but	the	increase	
was	not	 significant	 for	 this	 set	 of	data.	Treating	 the	 cells	with	MMC	or	 irradiating	 them	
with	 UV	 light	 also	 did	 not	 increase	 the	 levels	 of	 replication	 stress	 in	 CCDC15	 knocked	
down	cells	further	than	that	observed	in	the	Control	1	transfected	cells.	All	of	this	suggests	
that	CCDC15	is	not	required	for	the	suppression	of	replication	stress	from	endogenous	or	
exogenous	 sources,	 which	 implies	 that	 it	 is	 not	 essential	 for	 the	 repair	 of	 lesions	 that	
impeded	DNA	replication.		

5.3.4.2	Replication	Associated	DNA	damage	

To	determine	if	the	DNA	damage	caused	by	the	knockdown	of	CCDC15	was	related	to	DNA	
replication,	the	CDK	inhibitor	Roscovitine	was	used	to	prevent	S-phase	entry	(Collis	et	al,	
2007).	RPE-1	cells	were	transfected	with	Control	1,	CCDC15	1	or	CCDC15	3	siRNA	using	
DharmaFECT	 1	 for	 72	 hours.	 Four	 hours	 prior	 to	 pre-extraction	 the	 cells	 were	 either	
treated	with	10µg/ml	Roscovitine	or	mock	 treated	with	DMSO.	The	cells	were	 then	pre-
extracted	and	fixed	before	staining	with	gH2AX	(Fig.	5.3.4.2.1)	and	the	images	were	scored	
for	gH2AX	positive	nuclei	(Fig	5.3.4.2.2).	
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Figure	5.3.4.2.1	DNA	Damage	in	RPE-1	cells	following	CCDC15	knockdown	and	Roscovitine	
treatment.	
Representative	 images	of	RPE-1	cells	 transfected	with	Control	1,	CCDC15	1	or	CCDC15	3	 siRNA	and	
DharmaFECT	1	and	grown	for	72	hours	post-transfection.	Cells	were	either	mock	treated	or	treated	
with	10µg/ml	Roscovitine	4	hours	prior	to	pre-extraction.	Cells	were	incubated	with	0.5%	Triton	X-
100	 and	 3%	 BSA	 in	 PBS	 for	 5	minutes	 before	 fixing	 and	 staining	with	 an	 antibody	 raised	 against	
gH2AX.		

	

Figure	5.3.4.2.2	Percentage	of	RPE-1	cells	
positive	 for	 gH2AX	 foci	 following	
transfection	 with	 individual	 CCDC15	
siRNAs.	
For	each	condition	the	number	of	RPE-1	cells	
were	 counted	 and	 the	 percentage	 of	 gH2AX	
positive	nuclei	was	calculated.	A	nucleus	was	
considered	positive	if	it	contained	10	or	more	
bright	foci.		

	

	

As	 seen	previously,	 the	knockdown	of	CCDC15	 significantly	 increased	 the	percentage	of	
cells	 positive	 for	 gH2AX	when	 compared	 to	Control	 1	 transfected	 cells	 (significance	not	
shown	on	graph;	p-values	0.0081	for	Untreated	CCDC15	1,	0.0008	Roscovitine	CCDC15	1,	
0.0018	Untreated	CCDC15	3	and	0.0007	Roscovitine	CCDC15	3).	However,	the	treatment	
with	Roscovitine	did	not	significantly	alter	the	proportion	of	cells	that	displayed	gH2AX		

positive	nuclei	when	compared	to	the	Untreated	cells	for	any	siRNA.	This	suggests	that	the	
damage	 caused	 by	 CCDC15	 knockdown	 is	 not	 replication	 associated	 as	 it	 occurs	 to	 the	
same	 extent	 in	 the	 presence	 of	 CDK	 inhibitors	 at	 an	 incubation	 time	 demonstrated	 to	
inhibit	entry	into	S	phase.		 	



Characterisation	of	CCDC15	Deficient	Cells	

	 224	

5.3.4.3	Effects	Upon	Cell	Cycle	Progression		

As	part	of	the	characterisation	of	CCDC15	in	potential	DNA	damage	response	mechanisms,	
FACS	analysis	of	propidium	iodide	(PI)	stained	cells	was	used	to	resolve	if	the	loss	of	this	
gene	 affected	 cell	 cycle	 progression.	 PC-3,	 HeLa	 and	 RPE-1	 cells	were	 transfected	with	
Control	1,	CCDC15	1	or	CCDC15	3	siRNA	using	DharmaFECT	1	for	72	hours.	Sixteen	hours	
prior	 to	 fixation	 the	 cells	were	 either	 treated	with	80ng/ml	MMC	or	mock	 treated	with	
ddH2O.	The	cells	were	trypsinised	and	fixed	in	ice	cold	70%	ethanol	before	being	treated	
with	RNase	A	and	stained	with	50µg/ml	PI.	The	stained	cells	were	then	analysed	by	flow	
cytometry	with	10000	cells	counted	per	sample	(Fig.	5.3.4.3.1).		

	

Figure	5.3.4.3.1	Cell	cycle	distribution	of	CCDC15	knocked	down	PC-3	and	Hela	cells		
(A,B)	 PC-3	 and	 (C,D)	 HeLa	 cells	 transfected	 with	 Control	 1,	 CCDC15	 1	 or	 CCDC15	 3	 siRNA	 and	
DharmaFECT	1	and	grown	for	72	hours	post-transfection.	Cells	were	either	(A,C)	mock	treated	with	
ddH2O	or	(B,D)	treated	with	80ng/ml	MMC	16	hours	prior	to	fixation.	Cells	were	fixed	in	ice	cold	70%	
ethanol,	treated	with	RNase	A	and	stained	with	50µg/ml	propidium	iodide.	Cells	were	then	analysed	
by	flow	cytometry,	with	10000	cells	analysed	per	sample,	to	determine	the	DNA	content	of	the	cells.		

For	the	RPE-1	cells,	not	enough	cells	were	repeatedly	present	in	the	samples,	so	the	cell	
cycle	profiles	generated	were	not	accurate.	In	the	untreated	PC-3	cells,	the	knockdown	of	
CCDC15	had	no	effect	upon	the	progression	of	the	cells	through	the	cell	cycle.	In	the	MMC	
treated	populations,	there	was	an	increase	in	cells	in	the	Sub	G1	population,	a	decrease	in	
the	proportion	of	cells	present	in	G1	and	an	increase	in	the	percentage	of	cells	in	S	phase,	
however,	 these	 differences	were	 seen	 in	 all	MMC	 treated	 cells,	 regardless	 of	 the	 siRNA	
they	had	been	transfected	with,	suggesting	that	CCDC15	loss	has	little	effect	on	cell	cycle	
progression	 in	 the	presence	of	DNA	crosslinking	agents.	 In	the	Untreated	HeLa	cells,	the	
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loss	of	CCDC15	also	appeared	 to	have	little	 impact	on	cell	 cycle	progression,	with	minor	
differences	observed	 in	 cells	 transfected	with	CCDC15	1	but	not	CCDC15	3.	 In	 the	MMC	
treated	populations,	 there	was	an	 increase	 in	 the	percentage	of	cells	 in	S	and	G2/M	but	
again	 the	 loss	of	CCDC15	did	not	drastically	 alter	 the	proportions	of	 cells	 in	 each	phase	
compared	to	the	Control	1	transfected	cells.		

The	 Fluorescence	 Ubiquitination	 Cell	 Cycle	 Indicator	 (FUCCI)	 system	 allows	 the	 direct	
visualisation	of	the	stage	a	cell	is	in	within	the	cell	cycle	through	the	fluorescent	labelling	
of	the	DNA	replication	factor	Cdt1	and	the	DNA	replication	inhibitor	Geminin.	This	system	
was	 used	 to	 further	 investigate	 the	 effects	 of	 CCDC15	 knockdown	 on	 cell	 cycle	
progression.	

One	theory	as	to	why	the	formation	of	RAD51	foci	formation	was	delayed	in	the	CCDC15	
knocked	 down	 cells	 was	 that	 it	 altered	 the	 kinetics	 of	 the	 cell	 cycle	 following	 UV	
irradiation.	 It	 was	 thought	 that	 CCDC15-depleted	 cells	 could	 be	 entering	 S	 phase	 at	 a	
slower	 rate	 than	 the	Control	1	 siRNA	 transfected	cells	and	 therefore	 initiating	HR	 later.	
This	was	investigated	using	the	RPE-1	FUCCI	cells,	a	kind	gift	from	Professor	R.	Medema	
(Netherlands	 Cancer	 Institute),	 to	 assess	 if	 the	 cell	 cycle	 distributions	 were	 altered	
following	UV	irradiation.	The	cells	were	plated	and	transfected	with	Control	1,	CCDC15	1	
or	CCDC15	3	siRNA	using	DharmaFECT	1	for	72	hours.	Cells	were	either	mock	irradiated	
or	 irradiated	with	60J/m2	UV	 light	0,	 4,	 8	 or	 24	 hours	 before	 fixing.	 The	 number	 of	 G1	
(green),	G1/S	(yellow)	and	S/G2/early-M	(red)	cells	were	then	manually	counted	on	using	
the	Nikon	 Eclipse	 TE2000	 inverted	microscope	 and	 the	 proportion	 of	 cells	within	 each	
stage	of	the	cell	cycle	was	calculated	(Fig.	5.3.4.3.2).		

The	 loss	of	CCDC15	did	not	appear	 to	affect	 the	progression	of	the	cells	 through	the	cell	
cycle	following	UV	irradiation	as	at	all	time	points,	the	distribution	was	very	similar	to	that	
observed	in	the	Control	1	transfected	cells.	This	implies	that	is	not	a	postponed	entry	into	
S	 phase	 that	 delays	 the	 formation	 of	 RAD51	 foci	 in	 the	 deficient	 cells	 following	 UV	
irradiation.		
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Figure	5.3.4.3.2	 Cell	 cycle	 distribution	 of	 CCDC15	knocked	down	RPE-1	 FUCCI	 cells	 following	
recovery	from	UV	irradiation.		
RPE-1	 FUCCI	 cells	 were	 trans	 transfected	 with	 Control	 1,	 CCDC15	 1	 or	 CCDC15	 3	 siRNA	 and	
DharmaFECT	1	and	grown	for	72	hours	post-transfection.	Cells	were	irradiated	with	60J/m2	UV	light	
(A)	0,	(B)	4,	(C)	8	or	(D)	24	hours	prior	to	fixation.		

The	RPE-1	FUCCI	cells	were	also	utilised	to	determine	how	CCDC15	knockdown	affects	the	
re-entry	of	cells	into	the	cell	cycle	following	reversible	cell	cycle	exit.	The	cells	were	plated	
and	 24	 hours	 post-plating,	 the	 serum	 containing	media	was	 replaced	with	 that	 lacking	
serum	to	synchronise	the	cell’s	cell	cycles.	The	cells	were	then	transfected	with	Control	1,	
CCDC15	1	or	CCDC15	3	siRNA	using	DharmaFECT	1.	After	60	hours	of	serum	starvation,	
the	cells	were	released	back	into	serum	and	fixed	immediately	or	allowed	to	resume	their	
cell	cycles	and	fixed	12,	16	or	24	hours	post-release.	The	cells	were	then	manually	counted	
as	previously	and	the	proportion	of	cells	within	each	stage	of	the	cell	cycle	was	calculated	
(Fig.	5.3.4.3.3).		

The	CCDC15	knocked	down	cells	appeared	to	re-enter	the	cell	cycle	at	a	slower	rate	than	
the	 Control	 1	 transfected	 cells	 as	 12	 hours	 post-release	 the	 majority	 remained	 in	 G1.	
However,	by	16	hours	post-release	 the	cell	cycle	distribution	of	 the	knocked	down	cells	
showed	little	difference	from	the	Control	1	cells.		
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Figure	5.3.4.3.3	Cell	cycle	distribution	of	CCDC15	knocked	down	RPE-1	FUCCI	cells.			
RPE-1	 FUCCI	 cells	were	 plated	 and	 24	 hours	 post-plating	 the	 cell	 culture	media	was	 replaced	with	
fresh	media	 lacking	 serum.	 The	 cells	were	 then	 transfected	with	Control	 1,	 CCDC15	 1	 or	 CCDC15	 3	
siRNA	and	DharmaFECT	1.	The	cells	were	grown	in	the	serum	free	media	for	60	hours	before	release	
back	into	serum.	The	cells	were	then	fixed	(A)	immediately,	(B)	12,	(C)	16	or	(D)	24	hours	following	
release.		

Unfortunately,	when	this	experiment	was	repeated,	the	cells	did	not	respond	to	the	serum	
starvation	and	so	their	cell	cycle	profiles	were	not	synchronised	(Fig.	5.3.4.3.4).	In	the	first	
experiment,	 the	CCDC15	3	 transfected	cells	 fixed	 immediately	 following	release	also	did	
not	 show	 synchronisation	 but	 this	 was	 not	 observed	 at	 the	 12	 hour	 time	 point.	 It	 is	
thought	that	possibly	the	serum	was	not	all	removed	from	the	wells	which	prevented	the	
synchronisation,	however	as	 the	experiment	was	carried	out	with	 the	same	protocol	 for	
each	 replicate,	 this	was	 considered	 unlikely.	 This	 prevented	 the	 further	 analysis	 of	 the	
delayed	 re-entry	 of	 the	 cell	 cycle	 by	 CCDC15	 knocked	 down	 cells	 as	 time	 constraints	
prevented	the	repeating	of	the	experiment.		
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Figure	5.3.4.3.3.	Failure	of	cell	synchronisation	in	RPE-1	FUCCI	cells.		
(A)	 Initially	 the	RPE-1	 FUCCI	 cells	 transfected	with	Control	 1	 and	 CCDC15	 1	were	 almost	 all	 in	G1	
immediately	 following	 release	 from	 serum	 starvation.	 (B,C)	 However,	 when	 this	 experiment	 was	
repeated,	the	cells	failed	to	synchronise	in	G1.		

5.4	Discussion	

A	coiled	coil	is	a	superhelical	domain	containing	multiple	(2-7)	a-helices	(UniProt,	2016)	
and	 proteins	 containing	 these	 domains	 are	 involved	 in	 gene	 transcription	 (Guo	 et	 al,	
2015),	vesicle	transport,	cytoskeletal	formation	and	motility	(Burkhard	et	al,	2001).	They	
are	also	involved	in	the	repair	of	DNA	damage	as	BRCA1	interacts	with	PALB2	via	coiled	
coil	 domains	 (Zhang	 et	 al,	 2009)	 and	 several	 coiled	 coil	 domain	 containing	 (CCDC)	
proteins	were	identified	in	a	RNAi	screen	searching	for	genes	whose	knockdown	increased	
gH2AX	 formation	(Collis,	 unpublished).	This	 included	 the	 then	uncharacterised	CCDC13,	
which	 has	 since	 been	 classified	 as	 a	 centriolar	 satellite	 protein	 that	 is	 required	 for	 the	
maintenance	of	genome	stability	during	mitosis	(Staples	et	al,	2014).	The	list	of	remaining	
uncharacterised	proteins	 (which	 included	a	number	of	CCDC	proteins)	 identified	 as	hits	
within	 this	 screen	 were	 assessed	 by	 GSEA	 for	 functional	 associations	 with	 DNA	 repair	
genes.		

To	 validate	 this	 approach,	 the	GSEA	were	 carried	out	using	 a	 list	 of	 known	DNA	 repair	
genes	and	a	list	of	arbitrary	genes	not	previously	identified	as	involved	in	DNA	repair	as	
positive	and	negative	controls,	respectively.	All	of	the	known	DNA	repair	genes	included	in	
the	analysis	returned	significant	enrichment	scores.	Of	the	negative	control	list,	only	one	
out	 of	 the	 nine	 random	 genes,	 MGC72080,	 returned	 a	 significant	 enrichment	 score.	
MGC72080	is	a	read-through	transcript	of	two	pseudogenes;	CCZIP,	a	vacuolar	trafficking	
protein	 homolog	 and	 OR7E38P,	 an	 olfactory	 receptor	 pseudogene	 (National	 Centre	 for	
Biotechnology	Information,	2017)	so	it	is	uncertain	why	expression	of	this	gene	would	be	
correlated	with	 that	of	DNA	repair	genes.	The	gene	C16orf75	was	 included	 in	 the	 list	of	
uncharacterised	 hits,	 as	 it	 was	 uncharacterised	 in	 2009	 when	 the	 screen	 data	 was	
generated.	 Its	 expression	 significantly	 correlated	with	 that	 of	 FA	 pathway	 components.	
This	gene	has	since	been	re-classified	as	RMI2,	a	BLM	component	complex,	which	has	been	
shown	by	co-purification	to	interact	with	FANCM	(Deans	&	West,	2009;	Singh	et	al,	2008).		
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As	this	analysis	had	correctly	identified	the	test	DNA	damage	repair	genes	and	known	DNA	
repair	 genes	 included	 in	 the	 list	 of	 uncharacterised	hits,	 it	was	decided	 to	 investigate	 a	
number	 of	 the	 proteins	 predicted	 by	 the	 analysis	 to	 be	 involved	 in	 DNA	 repair.	 This	
included	 the	 gene	 CCDC15,	 whose	 expression	 consistently	 correlated	with	 that	 of	 DNA	
repair	genes,	suggesting	that	 it	may	be	 involved	in	 the	maintenance	of	genome	stability.	
The	 list	of	genes	whose	expression	most	significantly	correlated	with	CCDC15	contained	
several	components	of	 the	FA/BRCA	(Fig.	5.4.1),	NER	(Fig.	5.4.2)	and	Damage	Tolerance	
pathways	as	well	as	proteins	involved	in	DNA	replication.	Therefore,	it	was	hypothesised	
that	 this	 protein	 was	 involved	 in	 the	 detection	 or	 repair	 of	 replication	 impeding	 DNA	
lesion.		

Out	of	the	panel	of	cell	 lines	examined	in	this	study,	CCDC15	shows	high	levels	of	mRNA	
expression	in	RPE-1	and	PC-3	cells	and	low	levels	in	HeLa	cells.	These	three	cell	lines	were	
utilised	 to	 assess	 the	 CCDC15	 knockdown	 phenotype	 and	 if	 this	 was	 altered	 by	 gene	
expression	level.	

The	qPCR	analysis	to	determine	the	optimal	transfection	time	for	CCDC15	siRNA	was	only	
successfully	carried	out	in	PC-3	cells.	Despite	repeated	attempts	to	determine	expression	
following	 transfection	 in	HeLa	 cells,	 the	 assay	 kept	 returning	 an	 “undetermined”	 result.	
This	was	thought	to	be	due	to	the	low	endogenous	expression	level	as	it	takes	37.99	cycles	
for	CCDC15	to	be	detected	in	untransfected	cells	and	as	the	protocol	only	cycles	40	times,	
this	 is	 very	 close	 to	 the	 limit	 of	 detection.	 This	 technique	 was	 used	 to	 assess	 gene	
expression	 and	 knockdown,	 rather	 than	 by	 determining	 protein	 expression	 by	 western	
blotting	as	although	there	are	commercial	antibodies	available	for	CCDC15,	no	satisfactory	
evidence	has	been	generated	that	they	can	detect	this	protein.		

As	 siRNAs	 can	 have	 off	 target	 effects,	 it	 is	 widely	 accepted	 that	 if	 a	 phenotype	 can	 be	
generated	by	several	siRNAs	targeting	different	regions	of	a	gene	of	interest’s	mRNA,	it	is	
considered	more	likely	due	to	target	mRNA	knockdown	rather	than	off-target	effects.	As	
the	 initial	 experiments	 in	 this	 study	 had	 been	 carried	 out	 using	 siRNA	 pools,	 it	 was	
decided	to	deconvolute	this	into	its	four	constituent	siRNAs	and	validate	the	phenotypes	
observed.		

Another	technique	to	ensure	that	an	observed	phenotype	is	due	to	the	knockdown	of	the	
target	 gene	 is	 to	 carry	 out	 rescue	 experiments	 (Morita	 et	 al,	 2012).	 Knockdown	 of	 the	
endogenous	 gene	 is	 achieved	 through	 siRNA	 targeting	 the	 3’	 or	 5’	 UTR	 of	 the	 gene	 of	
interest	 in	 cells	 exogenously	 overexpressing	 said	 gene.	 These	 siRNA	 do	 not	 affect	 the	
exogenous	 gene	 and	 so	 it	 can	 be	 determined	 if	 this	 overexpression	 can	 reverse	 the	
phenotype	 induced	by	 the	siRNA.	The	CCDC15	N-terminally	 tagged	vectors	generated	 in	
Chapter	6	could	have	been	used	for	these	studies,	however	the	siRNA	discussed	here	could	
not	 as	 they	 did	 not	 target	 the	 UTR	 regions	 of	 the	 gene.	 The	 lack	 of	 these	 rescue	
experiments	are	considered	to	be	one	of	the	main	weaknesses	of	this	study.	
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Figure	5.4.1	Interstrand	crosslink	repair	by	the	Fanconi	Anaemia	pathway.		
Interstrand	 cross	 links	 (ICL-	 purple)	 link	 the	 two	 strands	 of	 the	 DNA	 and	 prevent	 them	 from	
separating	 during	 replication	 and	 gene	 transcription.	 When	 two	 replication	 forks	 (green	 arrows)	
converge	 on	 a	 ICL,	 they	 stall	 and	 the	 ICL	 is	 recognised	 by	 FANCM	and	 FAAP24.	 This	 results	 in	 the	
recruitment	 of	 the	 FA	 core	 complex	 (FANCA/B/C/E/F/G/L	 and	 FAAP20/100)	 which	
monoubiquitinates	 FANCD2	 and	 FANCI.	 These	 proteins	 recruit	 nucleases	 such	 as	 FAN1,	 MUS81,	
ERCC1,	XPF	and	FANCP	to	incise	the	DNA	and	unhook	the	ICL.	The	lesion	can	then	be	bypassed	by	the	
translesion	synthesis	polymerases	REV1,	REV7	or	REV3L	and	it	is	possible	that	the	ICL	is	removed	by	
nucleotide	excision	repair	(NER).	The	double	strand	break	in	the	opposite	strand	is	then	repaired	by	
homologous	recombination	(HR)	mediated	by	RAD51,	BRCA2,	PALB2	and	BRIP1.	Genes	located	in	the	
list	of	top	30	genes	whose	expression	correlated	with	that	of	CCDC15	are	highlighted	red.		

Knockdown	of	CCDC15	increased	the	levels	of	nuclei	positive	for	the	DNA	damage	marker	
gH2AX	and	53BP1	 in	 all	 three	 cell	 lines	under	 endogenous	 conditions	with	both	pooled	
and	 individual	 siRNAs.	 This	 was	 encouraging,	 as	 it	 suggested	 that	 CCDC15	 was	 really	
involved	in	the	DNA	damage	response	and	it	was	not	a	cell	line	or	siRNA	specific	effect.		

However,	its	loss	did	not	increase	the	levels	of	foci	observed	following	MMC	treatment	or	
UV	 irradiation	when	 compared	 to	proficient	 cells.	This	 is	 despite	 the	 fact	 that	 the	 same	
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dose	 of	 MMC	 (80ng/ml)	 showed	 significant	 sensitisation	 of	 RPE-1	 cells	 and	 decreased	
growth	of	PC-3	 cells	 in	 the	MTT	assay.	The	 immunofluorescence	 results	 following	MMC	
and	UV	are	not	necessarily	incompatible	with	those	reported	in	the	MTT	assays,	as	even	
though	DNA	crosslinking	agents	failed	to	dramatically	increase	the	levels	of	DNA	damage	
observed	 at	 these	 time	 points,	 the	 cells	 in	 the	 MTT	 assay	 were	 in	 contact	 with	 the	
crosslinking	agents	for	a	much	longer	time	period.	The	MTT	assays	were	also	measuring	
the	percentage	of	cells	that	grew	in	the	presence	of	the	agents,	which	cannot	be	achieved	
using	gH2AX	and	53BP1	immunofluorescence,	as	it	is	not	possible	to	know	how	many	cells	
have	been	lost	over	the	course	of	the	experiment.		

Alkaline	Comet	assays	were	employed	to	more	directly	measure	the	levels	of	DNA	damage	
induced	 by	 CCDC15	 knockdown	 rather	 than	 solely	 relying	 on	 downstream	 markers.	
However,	despite	repeated	attempts	in	all	three	cell	lines,	no	increase	in	damage	could	be	
observed	with	either	siRNA	repeatedly.	It	was	thought	that	changes	in	the	pH	of	the	EDTA	
used	 to	 generate	 the	 unwinding	 and	 electrophoresis	 buffers	were	 resulting	 in	 very	 low	
levels	 of	 Tail	 induction	 within	 the	 assays.	 Similar	 issues	 were	 experienced	 by	 other	
members	of	the	Collis	lab	during	this	time.		

Comparison	to	previous	data	produced	within	the	lab	highlighted	that	the	assays	were	not	
behaving	 as	 expected.	The	Control	 1	 transfected	 cells	 produced	much	 lower	Percentage	
DNA	 in	 the	Tail	and	Tail	Moment	values	 than	 in	 this	previous	work	(Barone	et	al,	2016;	
Myers	et	al,	2016;	Staples	et	al,	2016).	When	compared	to	the	results	produced	for	EBLN1,	
whose	knockdown	induces	comparable	levels	of	gH2AX	and	53BP1	to	CCDC15,	the	results	
were	 much	 lower	 (1.2%	 DNA	 in	 the	 tail	 compared	 to	 5%)	 (Myers	 et	 al,	 2016).	 An	
alternative	reason	as	to	why	the	results	differed	between	the	CCDC15	and	EBLN	deficient	
cells	is	the	type	of	damage	induced	by	the	loss	of	these	genes.	As	ICLs	join	strands	of	DNA	
together	 which	 prevents	 their	 separation,	 this	 may	 result	 in	 reduced	 migration	 of	
damaged	DNA	during	the	electrophoresis	stage	of	the	Comet	assay.	As	CCDC15	is	believed	
to	be	 involved	 in	 the	 repair	 of	DNA	 crosslinks,	 its	 loss	may	 result	 in	 their	 accumulation	
whilst	EBLN1	has	not	been	implicated	in	cross	link	repair.		

As	alkali	conditions	were	used	in	these	assays,	both	single	strand	breaks	and	DSBs	would	
have	been	detected.	It	would	have	been	beneficial	to	have	repeated	the	assay	using	neutral	
conditions,	 as	 these	 assays	 only	 detect	 DSBs	 and	 CCDC15	 knockdown	 increased	 the	
percentage	 of	 cells	 positive	 for	 53BP1,	 which	 only	 occurs	 at	 DSBs.	 However,	 time	
constraints	prevented	 this.	 It	would	 also	have	been	beneficial,	 given	 the	 sensitisation	of	
deficient	cells	to	cross	linking	agents,	to	assess	the	effects	of	CCDC15	loss	in	a	Comet	assay	
modified	for	the	purpose	of	detecting	ICLs.	In	this	assay,	a	defined	dose	of	IR	that	induces	
SSB	 is	 utilised	 following	 lysis	 to	 break	 the	 DNA	 strands	 allowing	 the	 DNA	 to	 migrate	
through	the	gel,	with	the	presence	of	ICL	retarding	the	movement	through	the	gel	(Wu	&	
Jones,	2012).	

Despite	the	apparent	sensitivity	of	PC-3	cells	to	MMC	in	the	MMT	assay,	this	was	not	seen	
in	the	Clonogenic	survival	assay.	The	plating	efficiencies	calculated	for	this	cell	line	were	
really	 low	 (16%	 for	CCDC15	and	9%	 for	CCDC15	3)	 suggesting	 that	 the	majority	of	 the	
replated	cells	had	not	formed	colonies.	It	is	thought	that	this	remaining	population	of	cells	
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represented	an	untransfected	population	which	is	why	the	result	is	so	similar	to	that	seen	
in	the	Control	1	transfected	cells.		

The	difficult	in	re-suspending	the	RPE-1	cells	may	have	been	mitigated	by	plating	a	lower	
number	 of	 cells,	 thus	 allowing	 distinct	 colonies	 to	 have	 formed.	 However,	 this	was	 not	
attempted	 and	 instead	 a	 different	 approach	 to	 analysing	 the	 data	 was	 trialled.	 A	 1%	
solution	of	SDS	was	used	to	dissolve	the	Methylene	Blue	stain	which	was	then	measured	
colorimetrically	(Scragg	&	Ferreira,	1991).	This	method	was	used	to	assess	MMC	and	UV	
sensitivity	 following	 CCDC15	 knockdown	 in	 this	 cell	 line.	 However,	 knockdown	 did	not	
appear	to	sensitise	cells	to	MMC	as	seen	in	the	MTT	assay	and	increasing	the	dose	of	UV	
irradiation	appeared	to	increase	the	survival	of	all	three	cell	populations.	It	is	thought	that	
possibly	 the	 size	of	 the	 colonies	was	 affecting	 the	 assay,	 as	 large	 colonies	 stained	more	
darkly	than	small	colonies.	Therefore	a	few	large	colonies	could	produce	a	similar	result	to	
a	 greater	number	of	 small	 colonies.	As	 there	was	 little	 confidence	 in	 this	 technique,	 the	
assay	was	not	repeated.	As	a	result,	it	would	have	been	beneficial	to	repeat	the	MMC	MTT	
assays	with	individual	siRNAs	to	see	if	they	produced	the	same	results	as	the	pool	but	time	
constraints	prevented	this.		

In	 the	 MMC	 MTT	 assays,	 a	 top	 concentration	 of	 80ng/ml	 was	 used	 which	 equates	 to	
239µM	MMC.	This	is	much	higher	than	the	highest	dose	used	in	the	MMC	Clonogenic	assay	
of	 100nM.	 However,	 when	 doses	 higher	 than	 100nM	 were	 trialled,	 very	 few	 CCDC15	
knocked	down	 cells	 survived	at	 either	plating	density,	 therefore	 the	 top	dose	had	 to	be	
limited	in	this	format.	It	is	possible	that	no	effect	was	seen	in	the	Clonogenic	assays	as	the	
drug	 doses	 were	 not	 high	 enough	 to	 see	 the	 sensitising	 effect	 of	 CCDC15	 knockdown	
observed	in	the	MTT	assays.	It	may	have	been	possible	to	use	higher	drug	doses	by	plating	
more	cells	for	these	doses,	as	this	would	have	been	accounted	for	during	the	calculation	of	
the	surviving	fraction,	but	this	was	not	attempted.		

Loss	of	CCDC15	did	not	 affect	 the	ubiquitination	of	 FANCD2	nor	did	 it	 have	 a	dramatic	
effect	upon	the	levels	of	FANCD2	foci	formed	in	untreated,	MMC	treated	or	UV	irradiated	
cells.	 It	 also	 had	 little	 effect	 on	 the	 formation	 and	 resolution	 of	 foci	 following	 UV	
irradiation	 suggesting	 that	 its	 loss	 does	 not	 dramatically	 effect	 crosslink	 formation.	 In	
contrast,	 it	appeared	to	delay	the	formation	and	the	resolution	of	RAD51	foci	during	the	
recovery	from	UV	treatment.	This	suggests	that	it	may	be	involved	upstream	of	the	loading	
of	RAD51	onto	DNA	following	UV	irradiation	and	therefore	may	be	interacting	with	the	HR	
machinery	downstream	of	FANCD2.		

The	delay	in	the	binding	of	RAD51	to	DNA	may	have	been	caused	by	the	prolonged	binding	
of	RPA,	which	competes	with	RAD51	to	bind	 to	single	stranded	DNA	(Stauffer	&	Chazin,	
2010).	The	co-staining	of	the	RAD51	UV	recovery	cells	with	the	pRPA2	T21	antibody	or	a	
total	RPA2	antibody	was	considered	but	previous	difficulties	with	the	RAD51	antibody	in	
the	past	within	the	Collis	lab	prevented	these	analyses.	The	UV	recovery	assay	could	have	
been	repeated	with	either	the	pRPA2	or	Total	RPA2	antibodies,	possibly	with	some	earlier	
time	points,	as	 this	protein	 typically	binds	more	quickly	 to	ssDNA	than	RAD51.	Another	
possibility	was	that	DNA	resection	at	 the	DSB	ends	was	delayed,	which	could	have	been	
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investigated	 through	 BrdU	 immunofluorescence	 or	 the	 ER-AsiSI	 system	 combined	with	
qPCR	(Zhou	et	al,	2014).	

As	RAD51	binding	was	perturbed,	this	may	have	affected	the	ability	of	CCDC15	deficient	
cells	to	successfully	carry	out	HR.	Several	assays	are	available	that	directly	measure	a	cells	
ability	 to	 repair	DSB	by	 a	 variety	of	 repair	pathways	 including	HR	and	MMEJ.	One	 such	
assay	 is	 the	 Traffic	 Light	 Reporter	 (TLR)	 assay	 where	 transfection	 with	 the	 I-SceI	
endonuclease	 results	 in	 the	 formation	of	 a	 functional	GFP	gene	 in	 cells	 carrying	out	HR	
(Schmidt	et	al,	2015).	The	TLR	assay	was	kindly	sourced	from	Professor	Steve	Jackson,	but	
unfortunately,	time	constraints	prevented	any	of	these	avenues	from	being	explored.		

A	 lack	of	RPA	phosphorylation	 following	CCDC15	 loss	 and	 the	presence	of	DNA	damage	
marker	 foci	 after	 treatment	with	Roscovitine	 indicates	 that	 CCDC15	 is	 not	 a	 replication	
stress	 suppressor,	 despite	 the	 indication	 that	 it	 is	 involved	 in	 the	 repair	 of	 replication	
halting	 lesions.	 Loss	of	 this	gene	 also	had	 little	 effect	upon	 cell	 cycle	progression	under	
endogenous	conditions,	following	treatment	with	MMC	or	UV	irradiation.	It	did	however,	
appear	 to	 delay	 re-entry	 into	 the	 cell	 cycle	 following	 serum	 starvation.	 Cellular	
mechanisms	 that	 govern	 the	 exit	 from	a	quiescent	 state	 are	understood	poorly	but	 it	 is	
thought	 to	 be	 controlled	 by	 the	 Rb-E2F	network	 (Kwon	 et	 al,	 2017;	Wang	 et	 al,	 2017).	
Modulation	of	this	pathway	has	been	shown	to	determine	how	deep	the	quiescent	state	of	
a	cell	is	and	so	how	easily	they	re-enter	the	cell	cycle	(Kwon	et	al,	2017;	Wang	et	al,	2017).	
As	very	few	interactions	are	known	for	CCDC15	it	is	unsure	whether	it	may	be	involved	in	
this	pathway	 in	 some	way	 and	 if	 this	 is	 how	 its	 loss	 delays	 re-entry	 into	 the	 cell	 cycle.	
Nevertheless,	 the	 effects	 upon	 cell	 cycle	 re-entry	were	 only	 observed	 once	 and	 so	 little	
judgement	can	be	made	about	the	significance	of	CCDC15’s	role	in	quiescence.		

Whilst	this	work	focuses	mainly	on	the	involvement	of	CCDC15	in	FA/BRCA	pathway	and	
its	association	with	DNA	replication,	the	GSEA	highlighted	other	mechanisms	by	which	its	
loss	may	result	in	genome	instability.		

Of	the	top	30	DNA	repair	genes	whose	expression	correlated	well	with	that	of	CCDC15,	6	
were	 involved	 in	 NER	 (ERCC4/XPF,	 GTF2H3,	 ERRC3/XPB,	 ERCC8/CSA,	 LIG3	 and	
ERCC6/CSB).	 NER	 is	 split	 into	 two	 sub-pathways,	 global	 genome	 (gg)-NER	 and	
transcription	 coupled	 (TC)-NER,	 that	 recognise	 different	 types	 of	 DNA	 lesions	 but	
ultimately	 result	 in	 the	 recruitment	 of	 the	 same	 DNA	 damage	 repair	 factors	 in	 a	 core	
reaction.	 ERCC8	 and	 ERCC6	 are	 involved	 in	 the	 early	 stages	 of	 TC-NER	 whilst	 the	
remaining	4	 genes	 are	 involved	 in	 the	 core	NER	 reaction	 shared	 by	 both	 sub-pathways	
(Marteijn	et	al,	2014).		

Mutations	 in	NER	genes	result	in	three	diseases:	Cockayne	Syndrome	(CS)	characterised	
by	 neurological	 and	 developmental	 abnormalities,	 Trichothiodystrophy	 (TTD)	
characterised	 by	 brittle	 hair/nails	 and	 some	 neurological	 defects	 and	 the	 cancer	
susceptibility	 syndrome	 Xeroderma	 Pigmentosum	 (XP).	 Most	 XP	 patients	 display	
sensitivity	to	crosslinking	agents	(Murray	et	al,	2002),	compromised	repair	of	UV	induced	
DNA	damage	and	an	increased	incidence	of	skin	cancers	(Kleijer	et	al,	2008).	As	CCDC15	
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has	shown	some	evidence	of	being	 involved	 in	 the	repair/formation	of	UV	induced	DNA	
damage,	it	is	possible	that	it	may	interact	with	components	of	the	NER	pathways.		

The	most	commonly	used	tool	to	diagnose	XP	patients	it	to	measure	their	cell’s	ability	to	
repair	 DNA	 damage	 following	 UV	 irradiation;	 during	 this	 process	 nascent	 DNA	 is	
synthesised	 to	 replace	 the	 damaged	 DNA	 which	 is	 referred	 to	 as	 unscheduled	 DNA	
synthesis	 (USD).	 Classically,	 this	 would	 have	 been	 measured	 by	 the	 incorporation	 of	
radiolabelled	nucleotides	(Lehmann	et	al,	2011)	but	this	technique	has	been	superceded	
by	the	incorporation	of	EdU	and	its	subsequent	fluorescent	labelling	(Limsirichaikul	et	al,	
2009).	 This	 protocol	 has	 been	 adapted	 to	 confirm	 the	 involvement	 of	 candidate	 DNA	
repair	genes	 in	NER	by	knocking	them	down	with	RNAi	and	determining	 their	ability	to	
carry	out	USD	(Jia	et	al,	2015).	This	modified	technique	could	have	been	used	to	resolve	if	
CCDC15	has	any	involvement	in	the	NER	pathway.		

	

Figure	5.4.2	Nucleotide	excision	repair	pathway	
Nucleotide	excision	repair	(NER)	removes	modified	bases	that	distort	the	structure	of	the	DNA	helix.	
Global	genome	NER	(left	hand	pathway)	occurs	when	modified	bases	are	detected	by	XPC.	The	binding	
of	this	protein	to	DNA	induces	 local	opening	which	allows	for	the	binding	of	 further	NER	factors.	 In	
transcription	coupled	 repair	 (right	hand	pathway)	 lesions	prevent	RNA	Polymerase	 II	 (Pol	 II)	 from	
progressing	 which	 results	 in	 the	 binding	 of	 CSB,	 UVSSA	 and	 USP7.	 CSB	 is	 bound	 by	 CSA	 and	 this	
complex	 results	 in	 the	 backtracking	 of	 the	 polymerase	which	 facilitates	 the	 binding	 of	 further	NER	
component.	Once	the	DNA	is	opened	it	is	bound	to	by	the	TFIIH	complex,	containing	the	XPB	and	XPD	
helicases,	 which	 further	 open	 the	 DNA	 (not	 depicted).	 This	 facilitates	 the	 binding	 of	 XPG	 and	 the	
XPF/ERCC1	complex	which	act	as	the	3’	and	the	5’	endonucleases	respectively.	These	proteins	 incise	
the	DNA	 to	 remove	the	 strand	containing	 the	altered	base.	Genes	 located	 in	the	 list	of	 top	30	genes	
whose	expression	correlated	with	that	of	CCDC15	are	highlighted	red.		
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The	expression	 levels	of	a	number	of	genes	 involved	 in	Translesion	synthesis	(TLS)	also	
correlated	 well	 with	 that	 of	 CCDC15.	 These	 included	 POLH	 (DNA	 Polh),	 REV1,	 REV3L	
(catalytic	 subunit	 of	 DNA	 Polz)	 and	 POLD3	 (accessory	 subunit	 of	 Pol	 z).	 Both	 Polh	 and	
REV1	 belong	 to	 the	 Y	 family	 of	 DNA	 polymerases,	 the	 most	 copious	 family	 of	 damage	
tolerance	DNA	polymerases	 (Sale	et	al,	2012)	whilst	Polz	 is	a	B	 family	DNA	polymerase	
(Waters	et	al,	2009).		

REV1	 is	only	capable	of	 inserting	a	cytosine	opposite	an	abasic	site	(Nelson	et	al,	1996)	
although	 its	 role	 in	 TLS	 is	 believed	 to	 be	 as	 a	 scaffold	 protein	 rather	 than	 through	 its	
catalytic	activity	(Ross	et	al,	2005;	Waters	et	al,	2009).	In	contrast,	Polh’s	catalytic	activity	
is	required	for	the	bypassing	of	UV	induced	DNA	crosslinks	(Kannouche	et	al,	2003)	and	
those	 induced	 by	 Cisplatin	 treatment	 (Alt	 et	 al,	 2007).	 It	 has	 also	 been	 shown	 to	
accumulate	 at	 stalled	 replication	 forks	 (Kannouche	 et	 al,	 2001)	 and	 co-localises	 with	
phosphorylated	ATM	at	gH2AX	where	it	is	required	for	efficient	phosphorylation	of	ATM’s		

substrates,	 including	Chk2	and	p53	(Liu	&	Chen,	2006).	Deficiency	of	Polh	results	 in	 the	
variant	form	of	XP	(XP-V),	which	is	characterised	by	defective	post-replicative	DNA	repair	
(Kannouche	 et	 al,	 2001)	 and	 its	 loss	 also	 results	 in	 a	 decrease	 in	 DSB	 induced	 HR	
(Kawamoto	 et	 al,	 2005).	 Polz	 has	 been	 implicated	 in	 the	 development	 of	 Cisplatin	
resistance	(Lin	et	al,	2006),	the	repair	of	DSBs	via	HR	in	combination	with	REV1	(Sharma	
et	al,	2012b)	and	it	is	proposed	to	be	involved	in	the	repair	of	DNA	crosslinks	induced	by	
MMC	(Gan	et	al,	2008).		

If	 CCDC15	was	 interacting	with	 Polh	 or	 Polz	 it	may	 explain	why	 its	 loss	 resulted	 in	 an	
increase	 in	 DNA	 damage,	 sensitisation	 to	 DNA	 crosslinks	 and	 altered	 HR	 dynamics.	 As	
Polh	forms	nuclear	foci	following	UV	induced	DNA	damage	(Kannouche	et	al,	2001),	it	may	
have	been	possible	to	repeat	the	UV	recovery	experiment	using	an	antibody	raised	against	
this	 protein,	 to	 see	 if	 its	 recruitment	 was	 hindered	 in	 CCDC15	 knocked	 down	 cells.	
Although	Polz	 is	predicted	to	localise	to	the	nucleus,	no	suitable	antibody	is	available	for	
immunofluorescent	 analysis	 and	 so	 this	 assay	 would	 not	 be	 possible.	 However,	 co-
immunoprecipitation	(Chapter	6)	would	reveal	if	this	protein	interacted	with	CCDC15.		

It	 may	 also	 have	 been	 beneficial	 to	 ascertain	 how	 the	 loss	 of	 CCDC15	 would	 affect	
development	which	would	have	allowed	comparison	to	the	phenotypes	generated	by	the	
loss	 of	 other	 DDR	 genes.	 This	 work	 could	 have	 been	 carried	 out	 in	 Zebrafish,	 which	
contain	 a	 CCDC15	 ortholog	 (GeneCards,	 2017a),	 by	modifying	 CCDC15	 expression	 with	
morpholinos.	 RAD51	 mutant	 Zebrafish	 have	 recently	 been	 reported	 to	 display	 FA	 like	
symptoms	after	treatment	with	DNA	crosslinking	agents	(Botthof	et	al,	2017)	and	as	loss	
of	CCDC15	appeared	to	affect	RAD51	kinetics,	it	would	be	interesting	to	observe	if	loss	of	
this	 gene	 produced	 a	 similar	 phenotype.	 These	models	 could	 also	 be	 used	 to	 compare	
CCDC15	and	NER	mutants	as	the	NER	pathway	is	conserved	in	Zebrafish	(Li	et	al,	2015a;	
Zeng	et	al,	2009).		
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6.1	Introduction	

As	 described	 previously	 (Section	 5.1),	 expression	 of	 Coiled-coil	 domain-containing	 15	
(CCDC15)	 has	 been	 shown	 to	 be	 associated	 with	 DNA	 repair	 factors	 using	 Gene	 Set	
Enrichment	Analysis	 (GSEA),	 in	particular	 those	 associated	with	 the	FA/BRCA,	NER	and	
Damage	Tolerance	pathways.	As	such,	it	has	been	hypothesised	to	be	a	novel	DNA	repair	
factor	involved	in	the	resolution	of	replication	impeding	DNA	lesions.		

The	 accurate	 subcellular	 localisation	 of	 CCDC15	 has	 not	 been	 clearly	 defined.	 Gene	
Ontology	 analysis	 appears	 to	 indicate	 that	 it	 is	 located	 at	 centrosomes	 (UniProt,	 2016),	
however	examination	of	the	quoted	paper	reveals	that	CCDC15	is	not	mentioned	as	one	of	
the	 predicted	 novel	 centrosomal	 components	 (Jakobsen	 et	 al,	 2011).	 The	 subcellular	
localisation	database	 Compartments	 (Binder	 et	 al,	 2014)	 suggests	 that	 the	 cytoskeleton	
(including	the	centrosomes)	is	its	most	likely	location	with	the	plasma	membrane	and	the	
nucleus	being	rated	as	the	most	unlikely	(Binder		et	al,	2017a).	However,	it	does	contain	a	
predicted	 nuclear	 localisation	 sequence,	 suggesting	 that	 it	 localises	 to	 both	 the	 nucleus	
and	the	cytoplasm	(Kosugi	et	al,	2009).	

A	 number	 of	 potential	 interactors	 have	 been	 reported	 for	 CCDC15	 in	 high	 throughput	
interaction	studies	 (Table	6.1.1)	(GeneCards,	 2017a).	The	 resultant	 STRING	network	 for	
these	shows	no	 interactions	between	any	 interactors	 included	 in	 the	network	 (BioGRID,	
2017).		

Gene	Name	 Experimental	Evidence	 Citation	

APP	 Reconstituted	Complex	 (Olah	et	al,	2011)	

KIAA0753	
Proximity	Labelled	Mass	

Spectrometry	
(Firat-Karalar	et	al,	2014)	

MEF2A	
Affinity	Capture	Mass	

Spectrometry	
(Li	et	al,	2015b)	

PLK4	
Proximity	Labelled	Mass	

Spectrometry	
(Firat-Karalar	et	al,	2014)	

TRIM44	
Affinity	Capture	Mass	

Spectrometry	
(Huttlin	et	al,	2015)	

Table	6.1.1	Reported	Interactors	of	CCDC15	
Interactors	of	CCDC15	as	reported	by	the	BioGrid	Interaction	Database	(BioGRID,	2017).		

It	was	therefore	decided	to	investigate	the	localisation	and	interactions	of	CCDC15	in	more	
detail	 to	 determine	 if	 any	 of	 the	 interactions	 predicted	 by	 the	 GSEA	 were	 biologically	
relevant	and	if	it	was	potentially	involved	in	any	DNA	damage	repair	pathways.	To	achieve	
this,	we	generated	 two	N-terminally	 tagged	versions	of	 the	CCDC15	protein	by	Gateway	
Cloning;	one	fused	with	YFP	and	the	other	FLAG.	These	were	used	to	generate	stable	cell	
lines	with	 Tetracycline	 inducible	 expression	 of	 the	 CCDC15	 fusion	proteins	which	were	
then	utilised	for	subcellular	localisation	(YFP)	and	immunoprecipitation	(FLAG)	with	the	
aim	of	carrying	out	mass	spectrometry	analyses.		 	
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6.2	CCDC15	Cloning	and	Stable	Cell	Line	Generation	

6.2.1	CCDC15	PCR		

6.2.1.1	Isolation	of	CCDC15	cDNA	from	Cell	Lines	

Initially,	attempts	were	made	to	isolate	CCDC15	cDNA	by	extracting	RNA	from	PC-3	cells,	
reverse	 transcribing	 this	 and	 then	 amplifying	 the	 CCDC15	 cDNA	 by	 PCR.	 The	 Qiagen	
RNeasy	Mini	Kit	was	utilised	to	extract	the	RNA	from	PC-3	cells	and	this	was	subsequently	
reverse	 transcribed	 to	 cDNA	 using	 the	 Applied	 Biosystems	High	 Capacity	RNA-to-cDNA	
Kit.	The	CCDC15	Gateway	Forward	and	Reverse	primers	were	used	to	amplify	 the	cDNA	
using	the	KOD	Hot	Start	DNA	Polymerase	kit,	with	200ng	cDNA	template	per	reaction,	an	
annealing	temperature	gradient	of	55	-	70°C	and	a	3	minute	extension	time.	The	resultant	
PCR	 products	 were	 loaded	 onto	 a	 1%	 Agarose	 gel	 and	 electrophoresed	 for	 1	 hour	 to	
separate	the	products	(Fig.	6.2.1.1.1).		

Figure	 6.2.1.1.1	 PC-3	 cDNA	 amplified	
by	Gateway	Primers	using	the	KOD	Hot	
Start	DNA	Polymerase	kit.		
PC-3	RNA	was	extracted	using	the	Qiagen	
RNeasy	Mini	 Kit	 and	 reverse	 transcribed	
to	 cDNA	 using	 the	 Applied	 Biosystems	
High	Capacity	RNA-to-cDNA	Kit.	This	was	
then	amplified	using	the	CCDC15	Gateway	
Forward	 and	 Reverse	 primers	 and	 the	
KOD	Hot	Start	DNA	polymerase	kit	with	a	
55	-	70°C	annealing	temperature	gradient	
and	 a	 3	minute	 extension	 time.	 The	 PCR	
products	 were	 electrophoresed	 on	 a	 1%	
agarose	 gel.	 Only	 primer	 dimers	 are	
visible	(predicted	CCDC15	cDNA	~3Kb)		

At	every	annealing	temperature,	only	primer	dimers	could	be	detected	on	the	agarose	gel	
suggesting	that	these	conditions	were	not	optimal	for	the	amplification	of	CCDC15	cDNA	
using	 these	 primers.	 Two	 new	sets	 of	 Gateway	primers	were	 designed,	 one	 set	 shorter	
than	the	original	primers	and	the	other	 longer.	The	 initial	amplification	experiment	was	
then	repeated	using	the	original	gateway	primers,	the	short	primers,	the	long	primers	or	
the	 combination	 of	 short	 and	 long	 primers	 (short	 forward	 and	 long	 reverse	 or	 long	
forward	 and	 short	 reverse).	 As	 seen	 previously,	 these	 PCR	 conditions	 only	 produced	
primer	dimers	for	all	primer	combinations	(data	not	shown).		

In	 a	 further	 attempt	 to	 amplify	CCDC15	 cDNA,	normal	primers	 that	did	not	 contain	 the	
attB	 sites	 required	 for	 Gateway	 Cloning	 were	 used	 in	 combination	 with	 several	 less	
stringent	 PCR	 kits;	 these	 included	 the	 Platinum	 Hot	 Start	 PCR	 kit,	 the	 AccuPrime	 DNA	
Polymerase	kit	and	the	AccuPrime	GC	Rich	DNA	Polymerase	kit	with	Buffer	B	(cDNA)	(Fig.	
6.2.1.1.2).	The	previously	isolated	PC-3	cDNA	was	included	in	these	PCR	reactions.		

In	 both	 the	 Platinum	 Hot	 Start	 and	 AccuPrime	 DNA	 Polymerase	 reactions	 only	 primer	
dimers	were	observed	on	the	gel.	However,	 in	the	AccuPrime	GC	Rich	reactions	with	the	
higher	annealing	temperatures,	some	product	was	formed.	Nevertheless,	these	products		
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were	too	small	to	be	full	length	CCDC15	(approximately	3kb).	The	experiment	with	this	kit	
was	 repeated	 but	 Buffer	 A	 (genomic	 DNA)	 was	 used	 in	 the	 place	 of	 Buffer	 B.	 (Figure	
6.2.1.1.3).	

	

Figure	6.2.1.1.2	PC-3	cDNA	amplified	using	less	stringent	DNA	Polymerase	kits.		
PC-3	RNA	was	extracted	using	the	Qiagen	RNeasy	Mini	Kit	and	reverse	transcribed	to	cDNA	using	the	
Applied	 Biosystems	 High	 Capacity	 RNA-to-cDNA	 Kit.	 This	 was	 then	 amplified	 using	 the	 CCDC15	
Forward	and	Reverse	primers	and	either	Platinum	Hot	Start	PCR	kit,	the	AccuPrime	DNA	Polymerase	
kit	or	the	AccuPrime	GC	Rich	DNA	Polymerase	kit	with	Buffer	B.	A	55	-	70°C	annealing	temperature	
gradient	and	a	3	minute	extension	time	were	used.	The	PCR	products	were	electrophoresed	on	a	1%	
agarose	gel.		

Figure	 6.2.1.1.3	 PC-3	 cDNA	 amplified	
using	the	AccuPrime	DNA	Polymerase	kit.		
PC-3	 RNA	 was	 extracted	 using	 the	 Qiagen	
RNeasy	Mini	 Kit	 and	 reverse	 transcribed	 to	
cDNA	 using	 the	 Applied	 Biosystems	 High	
Capacity	 RNA-to-cDNA	 Kit.	 This	 was	 then	
amplified	 using	 the	 CCDC15	 Forward	 and	
Reverse	primers	and	the	AccuPrime	GC	Rich	
DNA	 Polymerase	 kit	 with	 Buffer	 A.	 A	 55	 -	
70°C	annealing	temperature	gradient	and	a	
3	minute	extension	time	were	used.	The	PCR	
products	 were	 electrophoresed	 on	 a	 1%	
agarose	gel.		

With	 Buffer	 A,	 PCR	 products	 were	 seen	 at	 all	 but	 the	 lowest	 annealing	 temperature,	
however	 they	 were	 still	 too	 small	 to	 be	 full	 length	 CCDC15.	 The	 decision	 was	made	 to	
repeat	 this	experiment	but	alter	 the	conditions	of	 the	PCR	reaction;	one	set	of	 reactions	
used	a	4	minute	extension	time,	whilst	another	set	cycled	through	the	protocol	40	times	
rather	than	35	(Fig.	6.2.1.1.4).		

The	 increased	 extension	 time	 appeared	 to	 decrease	 the	 levels	 of	 PCR	 product	 formed	
whilst	the	increase	in	the	number	of	cycle	did	not	increase	the	size	of	the	products	formed	
when	compared	to	35	cycles.		
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Figure	6.2.1.1.4	PC-3	 cDNA	amplified	using	 the	AccuPrime	DNA	Polymerase	Kit	with	Altered	
PCR	Conditions.		
PC-3	RNA	was	extracted	using	the	Qiagen	RNeasy	Mini	Kit	and	reverse	transcribed	to	cDNA	using	the	
Applied	 Biosystems	 High	 Capacity	 RNA-to-cDNA	 Kit.	 This	 was	 then	 amplified	 using	 the	 CCDC15	
Forward	and	Reverse	primers	and	the	AccuPrime	GC	Rich	DNA	Polymerase	kit	with	Buffer	A.	A	55	-	
70°C	annealing	temperature	gradient,	a	3	or	4	minute	extension	time	and	a	35	or	40	cycle	protocol	
were	used.	The	PCR	products	were	electrophoresed	on	a	1%	agarose	gel.		

CCDC15	amplification	was	also	attempted	using	the	primers	lacking	the	attB	sites	and	the	
KOD	 Hot	 Start	 DNA	 Polymerase	 Kit	 with	 a	 fresh	 vial	 of	 the	 polymerase.	 As	 with	 the	
Gateway	primers,	this	kit	only	produced	primer	dimers	and	failed	to	amplify	CCDC15	(not	
shown).		

As	 a	 range	of	different	PCR	kits	 and	primers	had	 failed	 to	 result	 in	 the	 amplification	of	
CCDC15	cDNA	other	alternative	approaches	were	explored	in	an	attempt	to	produce	a	full-
length	PCR	product.	As	mentioned	previously,	CCDC15	expression	is	comparatively	low	in	
mammalian	cell	 lines	and	so	 it	was	 thought	 that	by	altering	the	reverse	 transcription	or	
the	 RNA	 extraction	 it	 may	 increase	 the	 levels	 of	 CCDC15	 cDNA	 in	 the	 library	 and	 thus	
allow	the	amplification	of	the	gene.		

Three	alternative	reverse	transcription	kits,	the	Bioscript,	TaqMan	Reverse	Transcription	
Reagents	 and	 the	 RT2	First	 Strand	 kits,	 were	 trialled	 to	 produce	 and	 improved	 cDNA	
library.	All	three	of	these	kits	claimed	to	be	able	to	produce	cDNA	transcripts	longer	than	
CCDC15’s	approximate	3kb	length.	The	cDNA	produced	by	each	kit	was	amplified	by	the	
KOD	 Hot	 Start	 DNA	 Polymerase	 with	 an	 extension	 time	 of	 3	 minutes	 and	 a	 55	 -	 70°C	
annealing	temperature	gradient	(Fig.	6.2.1.1.5).	
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Figure	6.2.1.1.5	PC-3	cDNA	produced	by	alternative	reverse	transcription	kits.	
PC-3	RNA	was	 extracted	 using	 the	Qiagen	RNeasy	Mini	 Kit	 and	 reverse	 transcribed	 to	 cDNA	using	
either	the	Bioscript,	TaqMan	Reverse	Transcription	Reagents	or	the	RT2	First	Strand	kit.	This	was	then	
amplified	using	the	CCDC15	Forward	and	Reverse	primers	and	the	KOD	Hot	Start	Polymerase	kit.	A	55	
-	70°C	annealing	temperature	gradient	and	a	3	minute	extension	time	were	used.	The	PCR	products	
were	electrophoresed	on	a	1%	agarose	gel.		

The	alternative	reverse	transcription	kits	did	not	improve	the	amplification	of	CCDC15	as	
only	primer	dimers	were	observed	on	the	gel.	As	a	result	of	this,	it	was	decided	to	try	and	
extract	 the	 mRNA	 from	 PC-3	 cells.	 As	 only	 the	 mRNA	 would	 be	 added	 to	 the	 reverse	
transcription	reaction,	rather	than	total	RNA,	it	was	thought	that	this	would	increase	the	
relative	 level	of	CCDC15	mRNA	being	added	to	 the	reaction	and	therefore	 increased	 the	
levels	of	cDNA	being	produced.	The	mRNA	extraction	was	carried	out	using	the	Oligotex	
Direct	mRNA	Mini	Kit	with	the	resultant	cDNA	reverse	transcribed	using	the	BioScript	kit	
as	other	users	in	the	lab	had	successfully	used	this	kit	to	produce	cDNA	for	PCR.	The	cDNA	
was	then	amplified	using	the	KOD	Hot	Start	DNA	Polymerase	kit	as	described	previously	
(Fig.	6.2.1.1.6).		

Figure	 6.2.1.1.6	 Messenger	 RNA	
amplification.		
PC-3	RNA	was	extracted	using	 the	
Oligotex	Direct	mRNA	Mini	Kit	and	
reverse	 transcribed	 to	 cDNA	using	
the	 BioScript	 Kit.	 This	 was	 then	
amplified	 using	 the	 CCDC15	
Forward	 and	Reverse	 primers	 and	
the	KOD	Hot	Start	Polymerase	kit.	
A	55	-	70°C	annealing	temperature	
gradient	and	a	3	minute	extension	
time	were	used.	The	PCR	products	
were	 electrophoresed	 on	 a	 1%	
agarose	gel.		
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The	mRNA	 extraction	 also	 did	 not	 result	 in	 the	 amplification	 of	 CCDC15	 cDNA	 as	 only	
primers	were	observed	on	the	gel.	As	PC-3	cells	were	failing	to	yield	full	length	CCDC15,	an	
alternative	cell	line,	MDA-MB-231,	was	trialled	as	a	source	of	mRNA.	The	cells	were	grown	
and	the	RNA	was	extracted	using	the	Qiagen	RNeasy	Mini	Kit	by	Mr.	A	Ganesh.	The	RNA	
was	reverse	transcribed	using	the	BioScript	kit	and	amplified	using	the	KOD	Hot	Start	DNA	
Polymerase	 kit	 by	 Dr.	 K.	 Myers	 using	 both	 the	 normal	 and	 Gateway	 primers	 and	 an	
annealing	gradient	of	48	-	72°C	(Fig.	6.2.1.1.7).		

	
Figure	6.2.1.1.7	MDA-MB-231	cDNA	amplification.		
MDA-231	RNA	was	extracted	using	the	Qiagen	RNeasy	Mini	Kit	and	reverse	transcribed	to	cDNA	using	
the	 BioScript	 Kit.	 This	 was	 then	 amplified	 using	 the	 CCDC15	 Normal	 and	 Gateway	 Forward	 and	
Reverse	primers	and	the	KOD	Hot	Start	Polymerase	kit.	A	48	-	72°C	annealing	temperature	gradient	
and	a	3	minute	extension	time	were	used.	The	PCR	products	were	electrophoresed	on	a	1%	agarose	
gel.	Red	arrow	represents	3kb	band	presumed	to	be	amplified	CCDC15	cDNA.		

As	shown	on	the	gel,	the	intermediate	annealing	temperatures	produced	a	3kb	band,	
presumed	to	be	amplified	CCDC15.	The	3kb	region	of	the	gel	was	excised	by	Dr.	K.	Myers	
and	the	DNA	was	extracted	using	the	QIAquick	PCR	Purification	Kit.	This	experiment	was	
repeated	using	the	same	MDA-MB-231	RNA	and	a	fresh	preparation	of	PC-3	RNA	with	an	
annealing	temperature	of	65°C	as	this	resulted	in	amplification	in	Dr.	K.	Myers’	
experiment.	However,	this	did	not	yield	any	amplification,	only	primer	dimers.	The	PCR	
was	repeated	and	as	well	as	the	MDA-MB-231	and	PC-3	cDNA,	the	DNA	purified	from	the	
gel	fragment	by	Dr.	K.	Myers	was	also	included	(Fig.	6.2.1.1.8).		
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Figure	 6.2.1.1.8	 MDA-MB-231	 and	 PC-3	
RNA	amplification.		
MDA-231	 and	 PC-3	 RNA	 was	 extracted	
using	 the	 Qiagen	 RNeasy	 Mini	 Kit	 and	
reverse	 transcribed	 to	 cDNA	 using	 the	
BioScript	 Kit.	 This,	 and	 an	 MDA-MB-231	
cDNA	 extracted	 from	 a	 previous	 gel,	 was	
then	 amplified	 using	 the	 CCDC15	 Normal	
and	Gateway	Forward	and	Reverse	primers	
and	 the	 KOD	 Hot	 Start	 Polymerase	 kit.	 A	
65°C	 annealing	 temperature	 and	 a	 3	
minute	extension	time	were	used.	The	PCR	
products	 were	 electrophoresed	 on	 a	 1%	
agarose	gel.		

Again,	the	result	produced	by	Dr.	K.	Myers	could	not	be	reproduced	in	either	cell	line	or	
with	either	set	of	primers.	The	DNA	that	had	been	isolated	from	the	previous	gel	(Fig.	
6.2.1.1.7)	could	not	be	re-amplified	at	this	annealing	temperature.	This	prompted	a	repeat	
of	the	experiment	but	only	using	the	Gateway	primers	and	with	an	annealing	temperature	
gradient	of	65	-	67°C	(Fig.	6.2.1.1.9)	as	these	were	the	two	temperatures	that	produced	the	
clearest	3kb	band	on	Dr.	K.	Myers’	gel.	

	

Figure	 6.2.1.1.9	 MDA-MB-231	 and	 PC-3	 RNA	 amplification	 with	 annealing	 temperature	
gradient.	
MDA-MB-231	and	PC-3	RNA	was	extracted	using	the	Qiagen	RNeasy	Mini	Kit	and	reverse	transcribed	
to	 cDNA	 using	 the	 BioScript	 Kit.	 This	 was	 then	 amplified	 using	 the	 CCDC15	 Normal	 and	 Gateway	
Forward	 and	 Reverse	 primers	 and	 the	 KOD	 Hot	 Start	 Polymerase	 kit.	 A	 65	 -	 67°C	 annealing	
temperature	 gradient	 and	 a	 3	 minute	 extension	 time	 were	 used.	 The	 PCR	 products	 were	
electrophoresed	on	a	1%	agarose	gel.		

None	of	the	annealing	temperatures	trialled	produced	amplification	of	CCDC15	so	the	PCR	
was	repeated	with	a	wider	range	of	annealing	temperatures	(48	-	72°C),	but	as	before,	no	
amplification	was	observed	(data	not	shown).		

	 	



CCDC15	Localisation	and	Interaction	Studies	

	 246	

6.2.1.2	CCDC15	Vector	PCR	Amplification	

As	amplification	of	CCDC15	from	cell	line	derived	cDNA	libraries	had	not	been	possible,	a	
pcDNA3.1+/C-(K)-DYK	 vector	 containing	 CCDC15	 cDNA	 was	 purchased	 from	 GenScript.	
This	vector	contained	a	FLAG-tagged	version	of	CCDC15	and	an	Ampicillin	resistance	gene	
to	 allow	 the	 selection	 of	 transformed	 bacteria.	 This	 vector	was	 transformed	 into	DH5a	
which	were	subsequently	grown	on	Ampicillin	containing	agar	plates	for	16	hours	at	37°C.	
Individual	 colonies	 were	 isolated	 and	 added	 to	 LB	 broth	 containing	 Ampicillin	 and	
incubated	at	37°C	for	a	further	16	hours	with	shaking.	A	negative	control	sample,	where	
no	 vector	 DNA	 was	 included	 in	 the	 transformation	 reaction,	 was	 also	 plated	 and	 no	
bacterial	colonies	were	formed	on	the	plate.	Once	the	bacteria	had	been	incubated	in	the	
LB	for	16	hours,	the	plasmid	DNA	was	isolated	using	the	QIAprep	Spin	Miniprep	Kit	which	
yielded	801ng/µl	plasmid	DNA.		

The	plasmid	DNA	was	then	amplified	using	the	KOD	Hot	Start	DNA	Polymerase	kit,	with	
the	 CCDC15	 Gateway	 primers,	 an	 annealing	 temperature	 gradient	 of	 60	 -	 70°C	 and	 an	
extension	time	of	3	minutes.	The	PCR	products	were	then	separated	on	a	1%	agarose	gel	
(Fig.	6.2.1.2.1).	

Figure	 6.2.1.2.1	 CCDC15	 vector	 DNA	
amplification	
CCDC15	 Vector	 was	 transformed	 into	 DH5a	
and	 then	 isolated	 using	 the	 QIAprep	 Spin	
Miniprep	Kit.	The	resultant	plasmid	DNA	was	
then	 amplified	 using	 the	 CCDC15	 Gateway	
Forward	 and	 Reverse	 primers	 and	 the	 KOD	
Hot	 Start	 Polymerase	 kit.	 A	 60	 -	 70°C	
annealing	 temperature	 gradient	 and	 a	 3	
minute	 extension	 time	 were	 used.	 The	 PCR	
products	 were	 electrophoresed	 on	 a	 1%	
agarose	 gel	 Red	 arrow	 represents	 3kb	 band	
presumed	to	be	amplified	CCDC15	cDNA		

The	highest	four	annealing	temperatures	produced	no	band	at	3kb,	however,	a	band	was	
present	 in	 the	 three	 lowest	 temperatures	 (64.8°C,	 62.8°C	 and	60°C).	These	 three	bright	
bands	were	excised	and	gel	purified	using	the	QIAquick	PCR	Purification	Kit	which	yielded	
62.5ng/µl	DNA.		
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6.2.2	Stable	Cell	Line	Generation	

The	Gateway	cloning	method	(described	2.2.2.14)	was	employed	to	generate	N-terminally	
FLAG	 tagged	and	 an	N-terminally	 YFP	 tagged	CCDC15	 fusion	 proteins.	 To	 carry	 out	 the	
proposed	localisation	and	interaction	studies,	it	was	decided	to	utilise	two	cell	lines,	HeLa	
FLP	and	HEK	293	FLP,	to	allow	the	stable	expression	of	the	CCDC15	fusion	proteins	in	a	
Tetracycline	dependent	manner.	During	the	generation	of	these	cell	lines,	the	Entry	clones	
generated	in	the	BP	reaction	were	fully	sequenced	verified	to	ensure	that	they	did	contain	
CCDC15.	 Likewise,	 the	 Expression	 clones	 were	 sequenced	 to	 confirm	 that	 the	 CCDC15	
cDNA	was	in	frame	with	their	respective	N-terminal	tags.		

6.2.2.1	Transfection	into	FLP	Cell	Lines		

The	HeLa	FLP	and	HEK	293	 cells	were	plated	 in	6	well	plates	 for	24	hours	before	 they	
were	 transfected	 with	 either	 the	 CCDC15-YFP	 or	 CCDC15-FLAG	 Expression	 clone	 (HEK	
293	FLP	cells	were	only	transfected	with	CCDC15-FLAG).	These	cells	were	then	grown	for	
24	hours	post-transfection	before	they	were	transferred	into	10cm	dished	and	treated	as	
described	 in	Table	2.1.2.1.2.	The	cells	were	 then	grown	for	3	weeks	 to	allow	colonies	 to	
form	before	they	were	transferred	into	25cm2	flasks.	Once	these	had	reached	confluence,	
the	cells	were	transferred	into	75cm2	flasks	for	culturing.		

6.2.2.2	YPF	and	FLAG	Expression		

Western	 blotting	 analysis	was	 used	 to	 determine	 if	 the	 transfected	 cell	 lines	 expressed	
YFP	or	FLAG	at	the	correct	molecular	weight	to	suggest	its	fusion	to	CCDC15.	CCDC15	has	
a	molecular	weight	 of	 110kDa,	YFP	of	 27kDa	and	FLAG	of	1kDa,	 therefore	CCDC15-YFP	
should	 be	 observable	 at	 around	137kDa	and	 CCDC15-FLAG	 at	 111kDa.	 HeLa,	 HeLa	 FLP	
CCDC15-YFP,	 HeLa	 FLP	 CCDC15-FLAG	 and	 the	 HEK	 293	 FLP	 CCDC15-FLAG	 cells	 were	
plated	in	10cm	dishes	for	24	hours	before	the	addition	of	1µg/ml	Tetracycline	to	induce	
gene	expression	(negative	control	dishes	were	mock	treated	with	DMSO).	The	cells	were	
grown	 for	48	hours	 in	 total	 before	media	 removal	 and	 cell	 lysis.	 The	 expression	of	YFP	
(Fig.	 6.2.2.2.1)	 and	 FLAG	 (Fig.	 6.2.2.2.2)	 was	 determined	 in	 the	 respective	 cell	 lines	 to	
ascertain	 if	 a	 band	 correlating	 to	 that	 of	 tagged	 CCDC15	 could	 be	 observed	 and	 if	 the	
formation	of	the	band	was	Tetracycline	inducible.		

In	 the	 untreated	HeLa	 cells,	 Tetracycline	 treated	HeLa	 cells	 or	 the	 untreated	HeLa	 FLP	
CCDC15-YFP	 cells	 there	 was	 no	 GFP	 band	 that	 corresponded	 with	 the	 expression	 of	
CCDC15-YFP	(Fig.	6.2.2.2.1).	However,	when	Tetracycline	had	been	added	to	the	HeLa	FLP	
CCDC15-YPF	cells,	a	GFP	band	was	clearly	visible	(Fig.	6.2.2.2.1).	As	with	the	GFP	blot,	the	
addition	 of	 Tetracycline	 did	 not	 induce	 a	 FLAG	 band	 that	 corresponded	with	 CCDC15-
FLAG	in	the	HeLa	cells.	The	same	was	true	in	the	HeLa	FLP	CCDC15-FLAG	cells	suggesting	
that	this	cell	line	did	not	actually	contain	CCDC15-FLAG	and	so	work	with	this	cell	line	was	
discontinued.	 In	 the	 HEK	 293	 FLP	 cells,	 no	 FLAG	 band	 was	 present	 in	 the	 untreated	
population,	however,	 in	the	cells	treated	with	Tetracycline	a	band	was	visible	at	110kDa	
(Fig.	6.2.2.2.2).		
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Figure	6.2.2.2.1	YFP	expression	in	transfected	HeLa	FLP	Cells	
HeLa	and	HeLa	FLP	CCDC15-YFP,	cells	were	plated	for	24	hours	before	either	mock	treatment	with	
DMSO	or	treatment	with	1µg/ml	Tetracycline	to	 induce	CCDC15	fusion	protein	expression.	The	cells	
were	grown	 for	a	 further	24	hours	before	media	 removal.	The	cells	were	 lysed	and	15µg	of	protein	
from	 each	 sample	 was	 loaded	 onto	 a	 NuPage	 4-12%	 Bis-Tris	 Gel	 for	 separation.	 The	 gels	 were	
transferred	to	nitrocellulose	membranes	before	blocking	and	blotting	with	GFP	and	b-Actin	primary	
antibodies.	The	primary	antibodies	were	detected	with	HRP	conjugated	secondary	antibodies.	

	

Figure	6.2.2.2.2	FLAG	Expression	in	transfected	HeLa-FLP	and	HEK	293-FLP	cell	lines	
HeLa,	HeLa	FLP	CCDC15-FLAG	and	HEK	293	FLP	CCDC15-FLAG	cells	were	plated	for	24	hours	before	
either	mock	treatment	with	DMSO	or	treatment	with	1µg/ml	Tetracycline	to	 induce	CCDC15	 fusion	
protein	expression.	The	cells	were	grown	for	a	further	24	hours	before	media	removal.	The	cells	were	
lysed	 and	 15µg	 of	 protein	 from	 each	 sample	 was	 loaded	 onto	 a	 NuPage	 4-12%	 Bis-Tris	 Gel	 for	
separation.	The	gels	were	transferred	to	nitrocellulose	membranes	before	blocking	and	blotting	with	
FLAG	and	b-Actin	 primary	 antibodies.	 The	 primary	 antibodies	were	 detected	with	HRP	 conjugated	
secondary	antibodies.	
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6.3	CCDC15	Subcellular	Localisation		

6.3.1	Transient	CCDC15-YFP	Transfection	

Whilst	waiting	 for	 the	 generation	 of	 the	HeLa	 FLP	 cells	 containing	CCDC15-FLAG,	 HeLa	
cells	were	 transiently	 transfected	with	the	CCDC15-YFP	Expression	clone	 to	observe	 the	
subcellular	localisation	of	CCDC15.	The	cells	were	either	transiently	transfected	with	1µg	
of	the	CCDC15-YFP	Expression	clone	and	Lipo	2000	or	mock	transfected	with	Lipo	2000	
alone.	The	cells	were	grown	for	48	hours	post-transfection	before	they	were	pre-extracted	
and	fixed.	The	coverslips	were	then	stained	with	anti-GFP	antibodies	(Fig.	6.3.1.1).	

	

Figure	6.3.1.1	Transient	transfection	of	CCDC15-YFP	into	HeLa	Cells.		
Representative	 images	 of	 HeLa	 cells	 either	 transiently	 transfected	 with	 1µg	 of	 the	 CCDC15-YFP	
Expression	Vector	and	Lipo	2000	or	mock	transfected	with	Lipo	2000	alone.	The	cells	were	grown	for	
48	hours	post-transfection	before	they	were	pre-extracted,	fixed	and	stained	with	a	primary	antibody	
raised	against	GFP.		

No	 fluorescent	 cells	 could	 be	 observed	 in	 the	mock	 transfected	 population	 whilst	 cells	
were	 observed	 that	 contained	 YFP	 within	 the	 transfected	 population.	 However,	 the	
transfection	efficiency	was	very	low	as	the	majority	of	the	cells	did	not	fluoresce.	The	cells	
also	 looked	 unhealthy	 and	 far	 fewer	 remained	 on	 these	 coverslips	 compared	 to	 the	
untransfected	cells.	These	images	were	of	too	poor	a	quality	to	determine	the	subcellular	
localisation	of	CCDC15	so	 the	experiment	was	repeated	with	 the	HeLa	FLP	CCDC15-YFP	
cells.		
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6.3.2	Tet	Inducible	CCDC15-YPF	Localisation		

6.3.2.1	Localisation	in	Undamaged	Cells	

The	 HeLa	 FLP	 CCDC15-YFP	 cells	 were	 plated	 and	 24	 hours	 later	 the	 cells	 were	 either	
treated	with	1µg/ml	Tetracycline	or	mock	 treated	with	DMSO.	The	cells	were	grown	 for	
48	 hours	 post-treatment	 before	 they	 were	 fixed	 and	 stained	 with	 a	 GFP	 antibody	 (Fig.	
6.3.2.1.1).		

	

Figure	6.3.2.1.1	 CCDC15-YFP	 localisation	 in	 HeLa	 FLP	 CCDC15	 YFP	 cells	 following	 treatment	
with	DNA	crosslinking	agents.		
Representative	 images	 of	 HeLa	 FLP	 CCDC15-YFP	 cells	 either	 treated	 with	 1µg/ml	 Tetracycline	 or	
mock	treated	with	DMSO.	The	Tetracycline	treated	cells	either	received	no	further	treatment	or	were	
treated	for	16	hours	with	80ng/ml	MMC	or	60J/m2	UV	for	4	hours	prior	to	pre-extraction.	The	cells	
were	 grown	 for	 48	 hours	 post	 Tetracycline	 treatment	 before	 they	 were	 pre-extracted,	 fixed	 and	
stained	with	a	primary	antibody	raised	against	GFP.		
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As	 expected,	 in	 the	 cells	 not	 treated	with	 Tetracycline	 there	was	 almost	 negligible	 YFP	
detected.	 In	 the	 Tetracycline	 treated	 cells,	 most	 cells	 demonstrated	 some	 level	 of	 YFP	
expression	 with	 a	 few	 cells	 expressing	 it	 highly	 (Fig.	 6.3.2.1.1).	 The	 cells	 appeared	 to	
express	YFP	in	the	cytoplasm	of	the	cells	with	very	little	expression	in	the	nucleus.		

6.3.2.2.	Localisation	Following	DNA	Damage	

To	determine	 if	 the	 induction	of	DNA	 crosslinks	 result	 in	a	 change	 in	 the	 localisation	of	
CCDC15-YFP,	 the	 HeLa	 FLP	 CCDC15-YFP	 cells	 were	 plated	 as	 previously	 and	 then	 the	
Tetracycline	treated	cells	were	either	treated	with	80ng/ml	MMC	for	16	hours	or	60J/m2	
UV	4	hours	prior	to	fixing	(Fig.	6.3.2.1.1).	The	treatment	with	MMC	or	irradiation	with	UV	
did	not	result	in	a	marked	change	in	the	localisation	of	CCDC15-YFP	as	the	majority	of	the	
signal	was	still	observed	within	the	cytoplasm.		

As	MMC	and	UV	had	no	effect	upon	the	localisation	at	these	time	points,	 it	was	decided	to	
use	a	UVA	laser	 to	 induce	DNA	damage	 in	live	cells	and	 then	monitor	 the	 localisation	of	
CCDC15-YFP.	 This	 technique	 is	 used	 to	 identify	 rapid	 re-localisation	 of	 fluorescently	
tagged	 proteins	 and	 is	 considered	 more	 sensitive	 than	 immunofluorescence.	 The	 HeLa	
CCDC15-YFP	cells	were	plated	and	24	hours	later	were	treated	with	1µg/ml	Tetracycline.	
The	cells	were	pre-sensitised	by	treating	with	10µM	BrdU	24	hours	before	imaging.	The	
cells	were	imaged	before	they	were	irradiated	and	for	10	minutes	following	irradiation	at	
30	second	intervals	(Fig.	6.3.2.2.2).		

Following	the	induction	of	DNA	damage	with	the	UVA	laser,	CCDC15-YFP	did	not	appear	to	
re-localise	immediately	following	irradiation	or	in	the	10	minutes	post-irradiation.	Taken	
together	 with	 the	 MMC	 and	 UV	 data,	 this	 suggests	 that	 CCDC15	 is	 located	 within	 the	
cytoplasm	and	does	not	exhibit	any	sub-cellular	re-localisation	following	the	induction	of	
DNA	damage.		

	 	



CCDC15	Localisation	and	Interaction	Studies	

	 252	

	

Figure	 6.3.2.2.2	 Micro-irradiation	 induced	 localisation	 of	 CCDC15-YFP	 in	 HeLa	 FLP	 CCDC15-
YFP.	
Representative	images	of	HeLa	FLP	CCDC15-YFP	cells	treated	with	1µg/ml	Tetracycline,	pre-sensitised	
with	BrdU	and	micro-irradiated	with	a	405nm	UVA	laser	for	1	second.	The	cells	were	imaged	prior	to	
irradiation,	and	for	10	minutes	after	at	30	second	intervals.	The	red	lines	in	the	Pre-irradiation	image	
represent	the	laser’s	path	through	the	nucleus.		
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6.4	CCDC15	Interaction	Studies		

6.4.1	CCDC15	Immunoprecipitation		

The	 HEK	 293	 FLP	 CCDC15-FLAG	 cells	 were	 utilised	 for	 the	 immunoprecipitation	 of	
CCDC15.	The	cells	were	plated	and	treated	with	1µg/ml	Tetracycline	or	mock	treated	with	
DMSO	 24	 hours	 after	 plating.	 After	 a	 total	 of	 48	 hours	 the	 cells	 were	 lysed	 and	 the	
resultant	 lysates	 were	 incubated	 with	 ANTI-FLAG	 M2	 Affinity	 Gel	 for	 16	 hours.	 The	
samples	were	then	eluted	by	boiling	with	the	NuPage	Loading	buffer	supplemented	with	
5mM	DTT.	The	Input	(5%	total	lysate),	Unbound	and	Bound	fractions	were	then	separated	
by	electrophoresis	and	 the	resultant	membrane	was	blotted	with	 the	FLAG	M2	antibody	
(Fig.	6.4.1.1)	

	
Figure	6.4.1.1	Small	Scale	FLAG	Immunoprecipitation	of	HEK	293	FLP	CCDC15-FLAG	Cells.	
HEK	293	FLP	CCDC15-FLAG	cells	were	plated	for	24	hours	before	being	either	mock	treatment	with	
DMSO	or	treated	with	1µg/ml	Tetracycline	to	induce	CCDC15-FLAG	expression.	The	cells	were	grown	
for	a	further	24	hours	before	lysis.	The	lysates	were	incubated	with	ANTI-FLAG	M2	Affinity	Gel	for	16	
hours	 before	 elution	 by	boiling	with	 the	NuPage	 Loading	 buffer	 supplemented	with	 5mM	DTT.	 The	
Input,	Unbound	and	Bound	fractions	were	loaded	onto	a	NuPage	4-12%	Bis-Tris	Gel	 for	separation.	
The	 gels	were	 transferred	 to	 nitrocellulose	membranes	 before	 blocking	 and	 blotting	with	 FLAG	M2	
primary	 antibodies	 which	 were	 detected	 with	 HRP	 conjugated	 secondary	 antibodies.	 Red	 arrows	
represent	CCDC15-FLAG	molecular	weight.		

In	 the	 Input	 lanes,	 a	 band	 corresponding	 to	 the	molecular	weight	 of	CCDC15-FLAG	was	
only	present	in	the	cells	treated	with	Tetracycline.	No	bands	at	this	molecular	weight	were	
present	in	the	Unbound	lanes,	suggesting	that	the	CCDC15-FLAG	had	bound	to	the	gel.	As	a	
band	at	the	correct	molecular	weight	could	be	observed	in	the	Tetracycline	treated	Bound	
lane	and	not	in	the	mock	treated	lane	(Fig.	6.4.1.1)	it	was	decided	to	scale	this	experiment	
up	in	an	attempt	to	prepare	samples	for	mass	spectrometry	(Fig.	6.4.1.2).		

As	seen	in	the	small	scale	experiment,	CCDC15-FLAG	was	only	present	in	the	Input	sample	
treated	 with	 Tetracycline.	 There	 was	 a	 non-specific	 band	 just	 below	 the	 CCDC15-FLAG	
band	that	was	present	in	both	lanes.	This	was	also	present	in	the	Unbound	fractions	but	
there	did	not	appear	to	be	any	CCDC15-FLAG	present	or	remaining	bound	to	the	Affinity	
Gel,	 suggesting	 that	 the	protein	had	been	eluted.	Whilst	 a	 faint	band	was	present	at	 the	
correct	 molecular	 weight	 in	 Tetracycline	 treated	 30	 minute	 Elution	 fraction,	 the	 mock	
treated	lane	was	very	dark	and	so	it	was	not	possible	to	determine	whether	the	band	had	
been	 induced	 by	 Tetracycline.	 It	 was	 therefore	 decided	 to	 repeat	 the	 experiment	 to	
attempt	 to	elucidate	 if	the	band	was	CCDC15-FLAG.	 In	 this	experiment,	 the	gel	was	pre-
incubated	with	 the	FLAG	M2	antibody	 for	1	hour	on	 ice	 to	saturate	 it	before	 the	 lysates	
were	added	(Fig.	6.4.1.3).		
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Figure	6.4.1.2	FLAG	Immunoprecipitation	of	HEK	293	FLP	CCDC15-FLAG	Cells.	
HEK	 293	 FLP	 CCDC15-FLAG	 cells	 were	 plated	 for	 24	 hours	 before	 being	 either	mock	 treated	with	
DMSO	or	treated	with	1µg/ml	Tetracycline	to	induce	CCDC15-FLAG	expression.	The	cells	were	grown	
for	a	further	24	hours	before	lysis.	The	lysates	were	incubated	with	ANTI-FLAG	M2	Affinity	Gel	for	16	
hours	before	elution	by	incubation	with	the	3X	FLAG	Peptide	for	30	minutes	or	16	hours.	The	Input,	
Unbound,	remaining	Affinity	Gel	and	two	eluted	supernatant	samples	were	loaded	onto	a	NuPage	4-
12%	 Bis-Tris	 Gel	 for	 separation.	 The	 gels	 were	 transferred	 to	 nitrocellulose	 membranes	 before	
blocking	and	blotting	with	FLAG	M2	primary	antibodies	which	were	detected	with	HRP	conjugated	
secondary	antibodies.	Red	arrows	represent	CCDC15-FLAG	molecular	weight	

	
Figure	6.4.1.3	FLAG	 Immunoprecipitation	of	HEK	293	FLP	CCDC15-FLAG	Cells	with	saturated	
affinity	gel.		
HEK	 293	 FLP	 CCDC15-FLAG	 cells	 were	 plated	 for	 24	 hours	 before	 being	 either	mock	 treated	with	
DMSO	or	treated	with	1µg/ml	Tetracycline	to	induce	CCDC15-FLAG	expression.	The	cells	were	grown	
for	a	further	24	hours	before	 lysis.	The	ANTI-FLAG	M2	Affinity	Gel	was	pre-incubated	with	the	FLAG	
M2	primary	antibody	for	one	hour	on	ice	before	the	addition	of	the	lysates.	The	lysates	were	incubated	
with	ANTI-FLAG	M2	Affinity	Gel	for	16	hours	before	elution	by	incubation	with	the	3X	FLAG	Peptide	for	
30	 minutes	 or	 16	 hours.	 The	 Input,	 Unbound,	 remaining	 Affinity	 Gel	 and	 two	 eluted	 supernatant	
samples	were	loaded	onto	a	NuPage	4-12%	Bis-Tris	Gel	 for	separation.	The	gels	were	transferred	to	
nitrocellulose	membranes	before	blocking	and	blotting	with	FLAG	M2	primary	antibodies	which	were	
detected	with	HRP	conjugated	secondary	antibodies.	Red	arrows	represent	CCDC15-FLAG	molecular	
weight.	

In	this	experiment,	the	original	lysate	was	unfortunately	not	retained	as	an	Input	sample,	
therefore	it	is	uncertain	if	the	addition	of	Tetracycline	induced	CCDC15-FLAG	expression.	
There	were	no	bands	corresponding	with	the	molecular	weight	of	CCDC15-FLAG	present	
in	 the	 Unbound	 lanes	 but	 the	 non-specific	 band	 below	 the	 CCDC15-FLAG	 band	 was	
present.	There	were	also	no	bands	visible	in	either	of	the	two	sets	of	Elution	lanes	but	a	
faint	 band	was	present	 in	 the	 Tetracycline	 treated	 affinity	 gel	 lane.	 However,	 this	 band	
was	much	fainter	than	would	be	expected	if	all	of	the	protein	had	been	retained	on	the	gel.		

As	the	protein	was	still	not	present	in	the	Elutates,	the	experiment	was	repeated	without	
the	pre-incubation	of	 the	 gel	 but	with	 an	additional	half	 hour	 incubation	with	 the	FLAG	
peptide	between	the	initial	and	overnight	incubations.	The	first	wash	of	the	gel	following	
lysate	incubation	was	also	retained	for	electrophoresis	(Fig.	6.4.1.4).		
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Figure	6.4.1.4	FLAG	Immunoprecipitation	of	HEK	293	FLP	CCDC15-FLAG	Cells	with	additional	
elution.		
HEK	 293	 FLP	 CCDC15-FLAG	 cells	 were	 plated	 for	 24	 hours	 before	 being	 either	mock	 treated	with	
DMSO	or	treated	with	1µg/ml	Tetracycline	to	induce	CCDC15-FLAG	expression.	The	cells	were	grown	
for	a	further	24	hours	before	lysis..	The	lysates	were	incubated	with	ANTI-FLAG	M2	Affinity	Gel	for	16	
hours	before	elution	by	incubation	with	the	3X	FLAG	Peptide	for	30	minutes	(carried	out	twice)	or	16	
hours.	The	 Input,	Unbound,	 first	wash,	 remaining	Affinity	Gel	and	 three	eluted	 supernatant	samples	
were	 loaded	 onto	 a	 NuPage	 4-12%	 Bis-Tris	 Gel	 for	 separation.	 The	 gels	 were	 transferred	 to	
nitrocellulose	membranes	before	blocking	and	blotting	with	FLAG	M2	primary	antibodies	which	were	
detected	with	HRP	conjugated	secondary	antibodies.	Red	arrows	represent	CCDC15-FLAG	molecular	
weight.	

In	 this	 experiment,	 CCDC15-FLAG	 was	 not	 induced	 by	 Tetracycline,	 despite	 a	 new	
preparation	of	 the	drug	being	used	 for	 this	 experiment.	 It	was	 therefore,	 not	 surprising	
that	no	bands	corresponding	to	the	protein	appeared	in	the	Unbound,	Wash,	Affinity	Gel	or	
Eluted	fractions	(Fig.	6.4.1.4).		

It	was	decided	 to	determine	 if	 the	HEK	293	FLP	CCDC15-FLAG	were	still	expressing	 the	
CCDC15-FLAG	 fusion	 gene	 by	 repeating	 the	 experiment	 carried	 out	 in	 section	 6.2.3.2.	
However,	 the	current	vial	of	 the	FLAG	M2	primary	antibody	had	been	expended.	An	old	
vial	 of	 the	 antibody	 was	 used	 but	 this	 produced	 a	 very	 faint	 blot	 and	 no	 bands	
corresponding	 to	 CCDC15-FLAG	 were	 observed	 (data	 not	 shown).	 It	 was	 decided	 to	
validate	this	blot	by	carrying	out	qPCR	analysis	to	determine	if	the	expression	of	CCDC15	
changed	 following	 Tetracycline	 addition.	 The	 HEK	 293	 FLP	 CCDC15-FLAG	 cells	 were	
plated	and	24	hours	 later	1µg/ml	Tetracycline	was	 added.	After	 a	 further	24	hours	 the	
cells	 were	 then	 lysed,	 shredded	 and	 had	 their	 RNA	 extracted	 before	 it	 was	 reverse	
transcribed.	The	resultant	cDNA	was	amplified	by	PCR	using	TaqMan	probes	 for	GAPDH	
and	CCDC15	(Table	6.4.1.1).		
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Table	6.4.1.1	CCDC15	RNA	expression	in	HEK	293	FLP	CCDC15-FLAG	cells.		
HEK	293	FLP	CCDC15-FLAG	cells	were	plated	and	24	hours	 later	treated	with	Tetracycline	or	mock	
treated	with	DMSO.	After	a	 further	24	hours	the	cells	were	 lysed	and	 their	RNA	was	extracted.	The	
RNA	extracts	were	reverse	transcribed	and	the	resultant	cDNA	was	amplified	using	TaqMan	probes	
against	GAPDH	and	CCDC15.	The	 resultant	Ct	values	were	used	 to	 calculate	 the	Delta	Ct	values	 for	
each	cell	line.		

As	demonstrated	by	the	Delta	Ct	values,	no	difference	in	the	expression	of	CCDC15	could	
be	detected	between	the	two	populations.	If	the	cells	were	still	expressing	CCDC15-FLAG	
in	 a	 Tetracycline	 inducible	manner,	 the	 Ct	 value	 for	 CCDC15	 should	 have	 decreased	 as	
should	have	the	Delta	Ct	value	for	the	Tetracycline	treated	cells.	However,	this	was	not	the	
case	and	so	it	was	concluded	that	the	cells	were	unfortunately	no	longer	expressing	this	
fusion	protein.		

6.5	Discussion		

Little	 work	 has	 been	 carried	 out	 regarding	 the	 localisation	 and	 interactors	 of	 CCDC15,	
which	is	suggested	to	be	involved	in	the	DNA	damage	response.	It	has	been	reported	to	be	
localised	 to	 the	centrosomes	(UniProt,	2016),	however	 further	 investigation	of	 the	 cited	
paper	reveals	that	it	is	not	the	case	(Jakobsen	et	al,	2011).	The	nucleus	is	rated	as	one	of	
the	 most	 unlikely	 regions	 of	 the	 cell	 for	 CCDC15	 to	 localise	 to	 by	 the	 database	
Compartments	(Binder		et	al,	2017a),	however	it	does	contain	a	strongly	predicted	nuclear	
localisation	sequence	(Kosugi	et	al,	2009).	Several	interactors	have	also	been	identified	in	
high	throughput	studies,	however	none	of	these	proteins	share	a	function	or	interact	with	
each	other	(BioGRID,	2017;	GeneCards,	2017a).	Efforts	were	therefore	made	to	elucidate	
the	 subcellular	 localisation	 and	 interactors	 of	 this	protein	 through	 the	 generation	 of	 N-
terminally	tagged	fusion	proteins.		

Initial	attempts	were	made	to	isolate	CCDC15	cDNA	from	the	PC-3	and	MDA-MB-231	cell	
lines	using	several	PCR	kits.	 These	 two	 cell	 lines	were	 chosen	as	 they	were	 reported	 to	
have	high	 expression	 levels	 of	CCDC15	 in	The	Human	Protein	Atlas	 (Uhlén	 et	 al,	 2015).	
However,	this	proved	unsuccessful,	most	likely	due	to	the	low	levels	at	which	this	gene	is	
expressed	 even	 in	 these	 comparatively	 highly	 expressing	 cell	 lines.	 Instead,	 a	
pcDNA3.1+/C-(K)-DYK	vector	containing	CCDC15	cDNA	was	acquired	and	this	cDNA	was	
amplified	using	 the	Gateway	primers.	This	attB	 flanked	DNA	was	 then	used	 to	produce	
CCDC15-YFP	and	CCDC15-FLAG	Expression	Clones	via	the	Gateway	cloning	method.		

These	vectors	were	stably	incorporated	into	the	HeLa	FLP	and	HEK	293	FLP	cell	lines.	At	
the	first	attempt,	the	stable	cell	line	generation	was	unsuccessful	for	the	HEK	293	FLP	cells	
and	 had	 to	 be	 repeated.	 In	 the	 HeLa	 FLP	 cells,	 CCDC15-YFP	 incorporation	 could	 be	
detected	but	not	that	of	CCDC15-FLAG.	 It	 is	 thought	 that	because	all	of	 the	colonies	that	
had	formed	following	the	stable	cell	line	generation	were	pooled	and	grown	collectively,	a	
heterogeneous	population	of	cells	were	created.	Some	colonies	may	have	originated	from	
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cells	 that	managed	to	 incorporate	 the	Hygromycin	resistance	gene	without	 the	CCDC15-
FLAG	 gene,	 or	 epigenetically	 silenced	 CCDC15	 expression,	 and	 these	 could	 have	
outcompeted	 those	 that	had	 incorporated	 the	 gene	 correctly.	Unlike	 the	HeLa	FLP	 cells,	
the	HEK	293	FLP	cells	did	express	CCDC15-FLAG	and	so	these	cells	were	maintained.	

Before	 the	 stable	 cell	 lines	 were	 generated,	 the	 CCDC15-YFP	 Expression	 clone	 was	
transiently	transfected	into	HeLa	cells.	However,	the	transfection	efficiency	was	very	low	
and	expression	of	the	gene	detrimentally	affected	the	cells,	most	likely	due	to	the	large	size	
of	the	fusion	gene.	No	fluorescent	cells	were	observed	in	the	mock	transfected	population	
whilst	a	few	of	the	cells	remaining	in	the	transfected	population	faintly	fluoresced.	Due	to	
the	poor	 levels	 of	 transfection	and	 the	 faintness	of	 the	 fluorescence,	 these	 images	 could	
not	be	used	to	judge	the	subcellular	localisation	of	the	fusion	gene.		

In	 the	 HeLa	 FLP	 CCDC15-YPF	 expressing	 cells	 YFP	was	 undetectable	 in	 untreated	 cells	
whilst	Tetracycline	induced	CCDC15-YFP	expression	throughout	the	cytoplasm.	No	bright	
dots	or	structures	could	be	determined	that	suggested	it	was	localising	to	the	cytoskeleton	
or	 the	 centrosomes.	 MMC	 and	 UV	 treatment	 produced	 little	 redistribution	 of	 the	 YFP	
signal,	 although	 a	 few	 cells	 did	 appear	 to	 have	 nuclear	 YFP	 following	 UV.	 However,	 as	
these	 images	were	not	 taken	on	a	confocal	microscope	 it	 is	not	entirely	clear	 if	 the	YFP	
signal	 was	 within	 the	 nucleus	 or	 located	 above	 the	 nucleus	 in	 the	 cytoplasm.	 As	 these	
images	were	 taken	 several	 hours	 after	 the	 induction	 of	 DNA	 damage	 it	was	 decided	 to	
irradiate	 the	 cells	 with	 a	 UV	 laser	 and	 monitor	 CCDC15-YFP	 localisation	 immediately	
following	 DNA	 damage.	 However,	 CCDC15-YFP	 did	 not	 re-localise	 in	 the	 10	 minutes	
immediately	following	damage	suggesting	that	CCDC15	remains	in	the	cytoplasm.		

One	possibility	 is	 that	 overexpression	of	 this	 fusion	 gene	 resulted	 in	 its	mis-localisation	
within	the	cell	and	its	accumulation	in	the	cytoplasm	or	that	the	protein	products	formed	
aggregates	in	the	cytoplasm.	However,	the	latter	is	considered	unlikely	as	the	fluorescence	
appears	to	be	distributed	evenly	throughout	the	cytoplasm	in	the	majority	of	the	cells.	 If	
the	 HeLa	 FLAG-CCDC15	 cells	 had	 formed	 correctly,	 it	 could	 have	 been	 possible	 to	
determine	 the	 localisation	 of	 CCDC15	 using	 an	 anti-FLAG	 antibody	 for	
immunofluorescence.	This	could	not	be	carried	out	 in	 the	HEK	293	FLP	cells	as	this	cell	
line	 is	not	amenable	 for	 this	procedure.	This	would	have	determined	 if	 the	YFP	tag	was	
affecting	CCDC15	localisation.	Another	possibility	is	that	the	N-terminal	location	of	the	tag	
was	affecting	 its	 localisation,	possibly	due	 to	disruption	of	 its	secondary	structure	or	 its	
binding	to	an	interacting	protein.	To	rule	out	this	possibility,	a	C-terminally	tagged	version	
of	the	protein	could	have	been	generated.		

To	 determine	 that	 the	 YFP	 expression	 induced	 by	 Tetracycline	 addition	 was	 due	 to	
CCDC15-YFP	 expression,	 the	 cells	 could	 have	 been	 transfected	 with	 the	 CCDC15	 siRNA	
investigated	in	Chapter	5.	As	these	siRNA	targeted	the	main	body	of	the	gene	they	would	
also	have	knocked	down	the	overexpressed	version.		

However,	 if	 CCDC15	 truly	 does	 reside	 in	 the	 cytoplasm,	 it	 is	 not	 alone	 as	 several	 other	
genes	 that	 affect	 DNA	 repair	 have	 also	 been	 located	 there.	 Several	 repair	 factors	 and	
checkpoint	 genes	 localise	 to	 the	 centrosomes	 throughout	 the	 course	 of	 the	 cell	 cycle	
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including	ATM,	ATR,	Chk2,	Chk1,	BRCA1	and	Centrin	2.	The	role	that	ATM,	ATR,	and	Chk2	
play	 at	 the	 centrosomes	 has	 not	 yet	 been	 elucidated	 (Mullee	 &	 Morrison,	 2016).	
Centrosomal	 Chk1	 is	 thought	 to	 regulate	 the	 activation	 of	 CDK1/Cyclin	 B	 at	 the	
centrosomes	through	the	modulation	of	CDC25B	(Kramer	et	al,	2004)	whilst	BRCA1	loss	
results	 in	 centrosomal	 duplication	 (Xu	 et	 al,	 1999).	 Centrin	 2,	 which	 is	 predominantly	
located	at	the	centrosomes,	has	been	shown	to	interact	with	XPC	to	stimulate	NER	(Nishi	
et	al,	2005).	As	these	genes	may	influence	DNA	damage	repair	and	cell	cycle	progression	
whilst	remaining	outside	the	nucleus,	it	is	not	infeasible	that	CCDC15	may	do	the	same.	It	
is	possible	that	it	may	be	influencing	DNA	damage	repair	from	the	cytoplasm	by	regulating	
the	 actions	 of	 certain	proteins	 through	 cellular	 trafficking.	 Its	 loss	may	mean	 that	 their	
actions	 are	de-regulated	which	 subsequently	 results	 in	 the	DNA	damage	or	prevents	 its	
efficient	repair.	As	BRCA1	is	located	at	centrosomes	it	is	plausible	that	an	interaction	with	
CCDC15	outside	of	the	nucleus	may	modulate	its	effects	upon	PALB2	and	subsequently	the	
loading	of	RAD51	by	BRCA2.		

Immunoprecipitation	 of	 CCDC15-FLAG	was	 attempted	 using	 the	HEK	 293	FLP	 CCDC15-
FLAG	 cells.	 In	 the	 initial	 small	 scale	 experiment,	 CCDC15	 FLAG	was	 successfully	 eluted	
from	the	Affinity	Gel	so	the	experiment	was	scaled	up	in	an	attempt	to	generate	samples	
for	 use	 in	mass	 spectrometry	 analysis.	 In	 the	 first	 attempt,	 a	 faint	 band	 at	 the	 correct	
molecular	weight	was	identified	in	the	Tetracycline	treated	30	minute	Elution.	However,	
as	the	untreated	lane	was	so	dark	it	was	impossible	to	determine	if	this	was	a	nonspecific	
band	and	so	 the	experiment	was	repeated.	 In	this	experiment,	 it	 is	uncertain	 if	 the	cells	
were	expressing	the	fusion	gene	as	no	Input	sample	was	retained.	No	evidence	of	CCDC15-
FLAG	was	detected	in	either	of	the	Eluates	but	it	appears	that	some	remained	bound	to	the	
Affinity	Gel.	This	is	most	likely	due	to	the	saturation	of	the	gel	with	the	M2	FLAG	primary	
antibody	prior	to	incubation	with	the	lysates.	The	final	repeat	of	this	experiment	yielded	
no	 evidence	 of	 CCDC15-FLAG	 in	 any	 of	 the	 fractions,	 including	 the	 Tetracycline	 treated	
Inputs.		

Lysates	were	 prepared	 for	western	 blotting	 analysis	 to	determine	 if	 the	 cells	were	 still	
expressing	the	fusion	gene	but	the	previously	used	vial	of	the	M2	FLAG	primary	antibody	
was	 empty	 and	 an	 older	 vial	 produced	 a	 faint	 blot	 with	 no	 bands	 corresponding	 to	
CCDC15-FLAG.	To	validate	this	blot,	qPCR	analysis	was	carried	out	on	Tetracycline	treated	
and	mock	treated	cells.	No	change	in	CCDC15	RNA	expression	was	observed	between	the	
two	 populations	 of	 cells,	 suggesting	 that	 the	 cells	were	 no	 longer	 expressing	 the	 fusion	
gene.		

As	stated	previously,	as	all	the	clones	were	pooled	during	the	generation	of	the	stable	cell	
lines	 it	 is	 possible	 that	 some	 cells	 did	 not	 incorporate	 the	 entire	 plasmid	 and	 so	 could	
survive	 the	 antibiotic	 selection	without	 expressing	 the	 fusion	 gene,	 or	 silenced	CCDC15	
expression	 through	 epigenetic	 mechanisms.	 It	 is	 thought	 that	 these	 cells	 may	 have	 out	
competed	the	correctly	expressing	cells	at	some	point	during	their	culturing	as	these	cells	
had	previously	repeatedly	demonstrated	CCDC15-FLAG	expression.	Though	vials	had	been	
frozen	down	whilst	 the	cells	were	still	expressing	the	 fusion	gene,	all	 the	vials	had	been	
thawed.	Between	the	small	 scale	and	 larger	scale	 immunoprecipitation	experiments,	 the	
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cells	had	died	and	new	cells	had	 to	be	defrosted.	However,	 the	cells	had	not	 frozen	well	
and	 it	 took	 the	 pooling	 of	 10	 vials	 to	 produce	 a	 viable	 population.	 This	 problem	 had	
previously	been	encountered	with	the	HEK	293	FLP	cells	within	the	Collis	lab.	These	cells	
displayed	CCDC15-FLAG	expression	in	western	blots	and	so	were	used	for	the	large-scale	
immunoprecipitation	assays.	By	the	time	the	cells	had	been	mycoplasma	tested	and	frozen	
down	the	cells	had	ceased	expressing	the	fusion	gene.		

If	we	had	not	been	constrained	by	time	pressures,	the	HEK	293	FLP	cells	would	have	been	
re-transfected	 with	 the	 CCDC15-FLAG	 Expression	 Clone.	 Rather	 than	 pooling	 all	 of	 the	
colonies,	 individual	 colonies	 would	 have	 been	 grown	 separately	 and	 assessed	 for	 their	
expression	 of	 the	 fusion	 gene.	 Hopefully,	 this	 would	 have	 eliminated	 the	 issues	
surrounding	the	continued	expression	of	this	gene.		

As	 there	 had	 also	 been	 issues	 with	 the	 immunoprecipitation	 before	 the	 cells	 stopped	
expressing	 the	 gene,	 it	may	also	have	been	beneficial	 to	produce	 a	CCDC15-MYC	 tagged	
protein.	 An	 Affinity	 Gel	 for	 the	 immunoprecipitation	 of	 MYC-tagged	 proteins	 is	 also	
available	and	so	 the	assay	could	be	carried	out	under	similar	conditions.	This	may	have	
yielded	the	successful	elution	of	the	protein	and	the	MYC	antibody	may	have	produced	less	
non-specific	bands	than	the	M2	FLAG	antibody.	However,	FLAG	immunoprecipitation	has	
been	 used	 previously	 within	 the	 Collis	 lab	 to	 produce	 samples	 for	 mass	 spectrometry	
(Myers	et	al,	2016;	Staples	et	al,	2016;	Staples	et	al,	2014;	Staples	et	al,	2012)	and	so	cross-
referencing	with	the	data	produced	in	these	projects	may	have	allowed	for	the	elimination	
of	some	false	positives.	If	the	immunoprecipitation	assay	had	proved	feasible,	the	eluted	
samples	 would	 have	 been	 prepared	 for	 mass	 spectrometry	 analysis	 by	 the	 Sheffield	
University	Biological	Mass	Spectrometry	Facility.	This	data	would	have	been	compared	to	
the	 list	 of	 genes	 produced	 by	 the	 GSEA	 to	determine	 if	 any	were	 true	 interactors.	 Such	
analyses	 may	 also	 have	 determined	 the	 role	 that	 CCDC15	 appears	 to	 play	 in	 genome	
maintenance	and	the	cell	cycle	by	determining	which	pathways	it	may	be	involved	in,	and	
how	to	further	interrogate	these	hypotheses.	
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7.1	Identification	of	Replication	Stress	Suppressors	

Targeting	the	 increased	levels	of	 replication	stress	observed	 in	cancerous	cells	has	been	
proposed	 as	 a	method	 of	 specifically	 inducing	 cancer	 cell	 death.	 It	 is	 hypothesised	 that	
increasing	this	level	 further	would	drive	 these	cells	over	a	 threshold	beyond	which	 they	
could	not	maintain	their	viability.	Normal	cells,	with	 their	reduced	basal	 levels	of	stress,	
would	remain	below	this	level	and	survive	the	therapy.	Consequently,	the	identification	of	
genes	whose	loss	increases	DNA	replication	stress	is	of	therapeutic	relevance.	

RNAi	screening	has	previously	been	successfully	utilised	for	the	identification	of	genome	
maintenance	 factors	 and	 specifically,	 replication	 stress	 response	 genes.	 No	 previous	
screen	 identifying	 the	 latter	 has	 relied	 solely	 upon	 immunofluorescent	 detection	 or	
quantified	 the	 endogenous	 levels	 of	 replication	 stress.	Therefore,	 a	 screening	 assay	was	
developed	that	assessed	the	levels	of	RPA2	phosphorylation	following	gene	knockdown.		

7.1.1	Genome	Wide	RNAi	Screen	Development		

The	 known	 replication	 stress	 suppressors	 Chk1	 and	 RRM1	 were	 chosen	 as	 positive	
controls	in	this	assay	as	their	knockdown	induced	a	DNA	replication	stress	response.	The	
drug	hydroxyurea	(HU)	was	also	included	as	a	transfection	independent	positive	control.	
Assessment	of	three	antibodies	raised	against	several	phospho-sites	within	RPA2	(pRPA2)	
resulted	in	the	selection	of	the	pRPA2	Threonine	21	(T21)	antibody	for	use	in	the	assay.	It	
could	 detect	 increases	 in	 replication	 stress	 in	 HCT116	 cells	 following	 Chk1	 or	 RRM1	
knockdown.	This	assay	was	repeated	in	a	cell	line	panel	to	ensure	that	the	staining	was	not	
cell	line	specific.	Whilst	the	staining	pattern	was	reproducible	between	the	three	cell	lines,	
those	 without	 functional	 p53	 showed	 a	 greater	 reliance	 on	 the	 function	 of	 Chk1	 for	
suppressing	replication	stress.		

Once	it	was	determined	that	the	pRPA2	T21	antibody	could	detect	increases	in	replication	
stress,	 this	 protocol	 was	 used	 to	 develop	 a	 high	 throughput	 screening	 assay.	 Several	
variables	within	 the	 assay	were	 extensively	optimised,	 including	 the	 extraction	method,	
primary	 antibody	 concentration,	 cell	 number,	 transfection	 time	 and	 the	 transfection	
reagent	concentration.		

Despite	the	logical	approach	taken	to	optimise	the	protocol,	the	assay	proved	unreliable;	
the	number	of	cells	remaining	in	the	wells	at	the	end	of	the	assay	was	highly	variable	and	
the	intensity	of	the	antibody	staining	appeared	inconsistent.	These	issues	may	have	been	a	
result	 of	 the	 technical	 difficulties	 encountered	 during	 assay	 set	 up	 at	 the	 SRSF.	 Neither	
increasing	the	cell	number	nor	preparing	the	plates	manually	 in	the	Collis	lab	 improved	
the	 cell	 coverage	or	assay	 signal.	 The	high	 throughput	 screening	method	was	 trialled	 in	
the	original	small	scale	format	assay	plates	where	it	could	identify	changes	in	the	levels	of	
endogenous	replication	stress.	This	suggested	that	it	was	an	intrinsic	property	of	the	high	
throughput	 format,	 potentially	 the	 ImageXpress	 microscope,	 that	 was	 limiting	 its	
feasibility,	therefore	further	optimisation	of	the	assay	was	halted.		

Several	 other	 methods	 of	 replication	 stress	 were	 trialled	 including	 Total	 RPA2	 and	
TopBP1	 detection	 but	 these	 also	 proved	 unfeasible	 for	 the	 detection	 of	 endogenous	
replication	stress	in	a	high	throughput	format.	
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7.1.2	Targeted	Screening,	Validation	and	Classification	

Due	to	the	impracticalities	encountered	in	the	development	of	the	high	throughput	screen,	
the	pRPA2	T21	assay	was	 instead	utilised	as	a	 targeted	kinase	screen.	This	was	used	 to	
assess	the	replication	stress	suppression	of	several	of	the	kinases	identified	as	hits	in	the	
U2OS-based	Kavanaugh	screen	(Kavanaugh	et	al,	2015),	which	was	published	during	the	
optimisation	of	 the	whole	genome	wide	screen.	The	pRPA2	T21	assay	was	 therefore	re-
optimised	for	small	scale	screening	in	U2OS	cells	before	the	list	of	18	selected	kinases	was	
included	for	screening.		

Of	 these	 kinases,	 8	 were	 identified	 as	 potential	 suppressors	 of	 endogenous	 replication	
stress	within	this	assay	and	carried	forward	as	initial	hits.	These	were	then	included	in	a	
TopBP1	validation	screen	which	confirmed	that	their	loss	increased	endogenous	levels	of	
replication	 stress.	To	determine	which	kinases	were	worth	 further	 study,	 the	hits	were	
included	in	a	cytotoxicity	assay	to	determine	if	their	knockdown	preferentially	affected	the	
growth	 of	 p53	 deficient	 cells.	 This	 revealed	 that	 the	 depletion	 of	 PMVK	 or	 SNRK	 is	
particularly	 detrimental	 to	 the	 survival	 of	 cells	 lacking	 p53.	 The	 siRNA	 pools	 targeting	
these	 kinases	 were	 deconvoluted	 and	 the	 individual	 siRNAs	 were	 assessed	 by	 qPCR,	
pRPA2	 T21	 immunofluorescence	 and	 a	 p53	 sensitivity.	 Only	 the	 individual	 siRNAs	
targeting	 SNRK	 resulted	 in	 preferential	 sensitisation	 of	 the	 p53	 null	 HCT116	 cells	 so	
further	investigation	of	PMVK	was	ceased.	

In	clonogenic	assays,	SNRK	knockdown	appeared	to	sensitise	the	p53	null	cells	but	did	not	
affect	wild	 type	 cells,	 although	 this	 was	 not	 significant.	 Loss	 of	 SNRK	 in	 both	 cell	 lines	
increased	the	levels	of	the	DNA	damage	markers	gH2AX	and	53BP1.	This	was	abrogated	by	
treatment	 with	 the	 CDK	 inhibitor	 Roscovitine,	 suggesting	 that	 damage	 formation	
depended	upon	DNA	replication.	The	loss	of	SNRK	was	also	assessed	for	its	ability	to	affect	
the	 survival	 of	 cells	whose	 p53	 signalling	 had	 been	 pharmacologically	 disrupted.	 It	 did	
decrease	the	survival	of	cells	treated	with	the	p53	inhibitor	Pifithrin-a	at	7.5µM,	although	
this	was	not	significant.	This	was	not	surprising	given	the	crude	nature	of	the	drug.	It	did	
not	affect	cells	treated	with	the	ATM	inhibitor	KU55933,	however,	neither	did	loss	of	ATR,	
which	 is	 reportedly	 synthetic	 lethal	 with	 ATM	 deficiency,	 so	 called	 the	 validity	 of	 this	
assay	into	question.		

SNRK	 loss	 was	 also	 examined	 for	 its	 effects	 upon	 the	 survival	 of	 cells	 overexpressing	
several	clinically	relevant	oncogenes.	It	had	no	detrimental	effects	on	the	survival	of	U2OS	
with	induced	Cyclin	E	overexpression,	although	these	cells	may	have	entered	senescence	
and	so	were	less	affected	by	the	knockdown	than	the	un-induced	cells.	A	disconnect	was	
observed	between	the	effects	of	SNRK	loss	in	HCT116	and	MRC-5	cells	overexpressing	H-
RASG12V.	 In	 the	HCT116	 cells	 its	 loss	did	not	 affect	 growth	but	 it	did	 in	 the	MRC-5	 cells,	
most	likely	due	to	the	differing	genetic	backgrounds	of	the	two	lines.	Likewise,	knockdown	
of	SNRK	sensitised	the	MYC-N	overexpressing	IMR-32	cells	when	compared	to	the	MYN-N	
normal	 SH-EP1	 cells.	 This	 implies	 that	 SNRK	 loss	 is	 preferentially	 unfavourable	 in	 cells	
with	high	levels	of	replication	stress	due	to	oncogene	overexpression.		
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The	loss	of	SNRK	was	also	shown	to	sensitise	cells	to	the	effects	of	the	replication	stress	
inducing	drugs	Gemcitabine	and	Olaparib	but	not	that	of	5-FU	whose	main	mechanism	of	
action	is	not	thought	to	involve	replication	stress.		

7.1.3	Screening	Conclusions		

RNAi	screening	is	a	valid	approach	for	the	identification	of	replication	stress	suppressors	
through	monitoring	the	formation	of	pRPA2	T21	foci.	Whilst	the	high	throughput	genome	
wide	 approach	proved	unreliable,	 the	developed	assay	proved	effective	 as	a	 small	 scale	
targeted	 screen.	 This	 yielded	 the	 identification	 of	 several	 potential	 novel	 replication	
suppressors,	 including	 SNRK.	 Given	 its	 ability	 to	 target	 p53	 deficient	 cells	 and	 those	
overexpressing	certain	oncogenes,	SNRK	appears	to	be	a	promising	candidate	for	targeted	
cancer	 therapies.	 As	 it	 is	 a	 kinase	 it	 is	 considered	 a	 druggable	 protein	 and	 the	
identification	of	its	UBA	domain	as	a	potential	natural	inhibitor	of	its	function	makes	it	an	
appealing	drug	candidate.	Its	ability	to	enhance	the	efficacy	of	clinically	available	therapies	
also	 enhances	 its	 desirability	 as	 a	 potential	 novel	 therapeutic	 target.	 It	 is	 therefore	
considered	 further	 investigation	 into	 its	 cellular	 function	 and	 the	 effects	 of	 its	 loss	 are	
justified.	 Although	 not	 investigated	 in	 detail	 within	 this	 project,	 PMVK	 also	 appears	 to	
merit	further	study	as	it	has	a	defined	role	within	a	cancer	relevant	pathway	and	a	highly	
plausible	mechanism	for	causing	replication	stress	through	nucleotide	depletion.	

7.2	Characterisation	of	CCDC15	

Gene	 set	 enrichment	 analysis	 (GSEA)	 has	 previously	 been	 shown	 to	 be	 capable	 of	
predicting	biologically	relevant	 interactions	based	on	gene	expression	data,	as	 is	seen	in	
the	 case	 of	 C19orf75/RMI2	 (Deans	&	West,	 2009;	 Singh	 et	 al,	 2008).	 Therefore,	 it	 was	
decided	to	characterise	the	putative	genome	maintenance	factor	CCDC15,	which	had	been	
predicted	 by	 GSEA	 to	 be	 involved	 in	 DNA	 damage	 repair.	 In	 particular,	 its	 expression	
correlated	 well	 with	 several	 genes	 involved	 in	 the	 Fanconi	 Anaemia	 (FA),	 nucleotide	
excision	 repair	 and	 translesion	 synthesis	 pathways,	 all	 of	 which	 remove	 replication	
impeding	lesions	from	the	genome.	It	was	hypothesised	that	CCDC15	may	be	involved	in	
the	 repair	 of	 these	 lesions	 and	 consequently	 potentially	 be	 a	 suppressor	 of	 DNA	
replication	stress.	

Whilst	CCDC15	has	been	reported	to	 localise	 to	centrosomes	by	Gene	Ontology	analysis,	
this	 is	 due	 to	 a	 mis-annotation	 (Jakobsen	 et	 al,	 2011).	 However,	 further	 information	
suggests	that	it	may	localise	to	the	cytoskeleton	or	the	nucleus	due	to	a	predicted	nuclear	
localisation	 sequence	 (Kosugi	 et	 al,	 2009).	 No	 experimental	 evidence	 outside	 of	 high	
throughput	interaction	studies	have	identified	any	interactors	of	CCDC15.		

In	 several	 projects	 within	 the	 Collis	 lab,	 characterisation	 of	 a	 protein’s	 function	 by	
assessing	 the	 knockdown	 phenotype	 has	 yielded	 positive	 results	 (Barone	 et	 al,	 2016;	
Myers	et	al,	2016;	Staples	et	al,	2016;	Staples	et	al,	2014;	Staples	et	al,	2012).	In	several	of	
these	 projects,	 tagged	 fusion	 proteins	 have	 also	 been	 generated	 to	 allow	 for	 the	
subcellular	localisation	and	interactions	to	be	established.		
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7.2.1	Characterisation	of	the	CCDC15	Deficient	Phenotype	

The	 expression	 of	 CCDC15	 was	 validated	 in	 a	 cell	 line	 panel	 by	 qPCR	 which	 was	
subsequently	 used	 to	 assess	 its	 knockdown	 by	 siRNA.	 Transfected	 cells	 were	 then	
assessed	 for	DNA	damage	markers	 and	sensitivity	 to	 several	DNA	damaging	 agents	 in	a	
cell	line	panel	that	ranged	in	their	levels	of	CCDC15	RNA	expression.	Depletion	of	CCDC15	
increased	damage	accumulation	in	all	cell	 lines	but	only	sensitised	the	highly	expressing	
RPE-1	cells	to	the	effects	of	MMC	and	Cisplatin.	CCDC15	siRNA	had	little	effects	upon	the	
sensitivity	of	PC-3	and	HeLa	cells	to	these	drugs	and	no	effect	upon	the	efficacy	of	HU	in	
any	cell	line.		

The	 siRNA	 pool	 was	 then	 deconvoluted	 and	 the	 DNA	 damage	 immunofluorescence	
experiments	 were	 replicated,	 producing	 similar	 increased	 levels	 of	 endogenous	 DNA	
damage	 to	 those	observed	 for	 the	pooled	 siRNA.	The	DNA	damage	marker	 assays	were	
repeated	following	MMC	treatment	or	UV	irradiation,	however	the	loss	of	CCDC15	did	not	
increase	the	damage	seen	when	compared	to	Control	1	transfected	cells.	The	difference	in	
the	apparent	sensitivity	of	the	cells	between	the	MTT	and	immunofluorescence	assays	is	
most	likely	due	to	the	difference	in	the	length	of	time	that	the	cells	were	exposed	to	the	
drug.	 In	Clonogenic	survival	assays,	 its	loss	had	little	effects	upon	the	sensitivity	of	both	
PC-3	and	HeLa	cells	to	MMC.	In	the	former	cell	line,	this	was	thought	to	be	due	to	lack	of	
CCDC15	 knocked	 down	 cells	 surviving	 following	 re-plating	 as	 it	 showed	 some	 MMC	
sensitivity	 in	 the	MTT	assay.	 Clonogenic	 assays	 proved	 unfeasible	 in	 the	 RPE-1	 cells	 as	
they	 did	 not	 form	 distinct	 colonies	 at	 the	 plating	 densities	 chosen	 and	 colorimetric	
quantification	 of	 the	 Methylene	 Blue	 did	 not	 appear	 to	 represent	 the	 number	 of	 cells	
present	in	the	assay	plates.		

As	it	was	predicted	to	interact	with	several	FA	genes,	the	effects	of	CCDC15	knockdown	on	
the	FA	pathway	were	investigated.	Depletion	of	CCDC15	did	not	prevent	the	ubiquitination	
of	FANCD2	(a	marker	of	FA	pathway	activation)	and	only	slightly	increased	the	levels	of	
foci	formed	in	untreated	but	not	MMC	or	UV	treated	cells.	Similarly,	no	overt	effects	on	the	
kinetics	of	FANCD2	foci	following	UV	irradiation	were	observed	in	CCDC15-depleted	cells,	
although	these	cells	did	exhibit	delayed	formation	of	RAD51	foci	and	resolution	following	
UV	 irradiation.	 This	 change	 was	 not	 due	 to	 altered	 cell	 cycle	 dynamics	 affecting	 the	
induction	of	HR	and	 so	was	most	 likely	 thought	 to	be	due	 to	 competition	with	RPA	 for	
ssDNA	binding	or	delayed	resection.		

It	 was	 hypothesised	 that	 CCDC15	was	 involved	 in	 the	 removal	 of	 replication	 impeding	
lesions	 and	 predicted	 that	 its	 loss	 would	 result	 in	 the	 induction	 of	 replication	 stress.	
However,	 knockdown	 of	 CCDC15	 did	 not	 alter	 the	 formation	 of	 pRPA2	 T21	 foci	 and	
Roscovitine	 treatment	 did	 not	 alter	 the	 levels	 of	 damage	 reported,	 suggesting	 that	 this	
occurs	independently	of	DNA	replication.	Knockdown	of	CCDC15	also	had	little	effect	upon	
cell	cycle	progression	in	untreated	or	MMC	treated	PC-3	and	HeLa	cells.	When	RPE-1	cells	
were	synchronised	 in	G1	by	serum	starvation,	 the	 loss	of	CCDC15	appeared	to	delay	re-
entry	 into	 the	 cell	 cycle	 through	 a	 currently	 unknown	mechanism,	 although	 it	must	 be	
noted	that	this	experiment	was	only	successfully	carried	out	once.	It	 is	possible	that	this	
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may	be	due	to	as	yet	undiscovered	link	between	CCDC15	and	the	Rb-E2F	network	which	is	
known	to	regulate	quiescent	exit.		

7.2.2	Localisation	and	Interaction	of	CCDC15	

Initial	attempts	were	made	 to	 isolate	RNA	 from	PC-3	and	MDA-MB-231	 cells	 to	 act	 as	a	
template	for	the	production	of	cDNA	for	use	in	the	Gateway	cloning	system.	However,	this	
proved	unattainable,	most	 likely	due	 to	the	 low	levels	of	RNA	expressed	 for	this	gene.	A	
plasmid	 containing	 CCDC15	 cDNA	 was	 therefore	 sourced	 and	 this	 was	 successfully	
amplified	using	the	Gateway	primers,	which	were	subsequently	used	to	generate	CCDC15-
YFP	 and	 CCDC15-FLAG	 expression	 vectors.	 These	 clones	 were	 stably	 incorporated	 into	
HeLa	 FLP	 (YFP	 and	 FLAG)	 and	 HEK	 293	 FLP	 cell	 lines	 (FLAG	 only).	 Western	 blotting	
analysis	revealed	that	the	HeLa	FLP	cells	were	expressing	CCDC15-YFP	but	not	CCDC15-
FLAG,	whilst	the	HEK	293	FLP	cells	were	initially	expressing	the	CCDC15-FLAG	construct.		

Transient	 transfection	 of	 CCDC15-YFP	 into	HeLa	 cells	was	 inefficient	 and	 detrimentally	
affected	the	viability	of	the	cells	and	so	could	not	be	used	to	assess	subcellular	localisation.	
The	HeLa	FLP	cells	stably	expressing	CCDC15-YFP	revealed	 that	 it	was	expressed	 in	 the	
cytoplasm	and	did	not	 re-localise	 following	MMC	treatment	or	UV	 irradiation	(initial	10	
minutes	 following	 irradiation	 or	 4	 hours	 later).	 Small	 scale	 immunoprecipitation	 was	
carried	out	successfully	using	the	HEK	293	FLP	CCDC15-FLAG	expressing	cells.	However,	
when	this	experiment	was	scaled	up	to	produce	samples	for	mass	spectrometry	analysis,	
the	 fusion	 protein	 could	 not	 be	 successfully	 purified.	 Further	 optimisation	 of	 this	
technique	was	halted	when	it	was	discovered	that	the	cells	had	stopped	expressing	FLAG-
tagged	CCDC15.	

7.2.3	CCDC15	Conclusions	

CCDC15	is	a	putative	genome	maintenance	factor	that	appears	to	affect	the	sensitivity	of	
cells	to	DNA	cross	linking	agents	in	an	expression	dependent	manner,	potentially	due	to	an	
increased	rate	in	the	formation	of	DNA	damage.	The	loss	of	CCDC15	slightly	increases	the	
formation	of	FANCD2	foci	in	untreated	cells	but	not	following	treatment	with	crosslinking	
agents.	 It	 also	 delays	 the	 formation	 and	 resolution	 of	 RAD51	 foci	 which	 is	 not	 due	 to	
postponed	 entry	 into	 S	 phase	 and	 is	 therefore	 more	 likely	 due	 to	 alterations	 in	 the	
availability	of	ssDNA	or	the	loading	machinery.	Its	loss	does	not	result	in	the	induction	of	a	
replication	stress	response	and	the	damage	that	accumulates	forms	independently	of	DNA	
replication.	It	also	appears	not	to	be	involved	in	determining	the	cell	cycle	distribution	of	
cycling	cells,	but	may	promote	the	restart	of	cells	paused	in	G1,	although	the	mechanism	
for	 this	 is	unknown.	 It	appears	 to	 localise	 in	 the	cytoplasm	and	does	not	redistribute	 in	
response	to	DNA	damage,	however,	through	interaction	with	cytoplasmic	and	centrosomal	
DNA	repair	and	cell	cycle	proteins	it	may	regulate	DNA	damage	repair.		

As	it	appears	to	influence	the	formation	of	DNA	damage	foci	and	potentially	the	onset	of	
homologous	recombination	mediated	repair,	further	elucidation	of	this	gene’s	function	is	
warranted.	 Particularly,	 investigation	 into	 whether	 this	 gene	 interacts	 with	 BRCA1	 or	
some	 other	 component	 of	 the	 HR	 machinery	 outside	 of	 the	 nucleus	 may	 reveal	 its	
mechanism	 of	 action.	 Within	 this	 work,	 no	 investigation	 of	 its	 role	 within	 nucleotide	
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excision	 repair	 or	 translesion	 synthesis	 was	 attempted.	 Alongside	 this	 work,	 mass	
spectrometry	 analysis	 may	 also	 be	 key	 in	 elucidating	 its	 interactors	 and	 subsequently	
understanding	how	it	results	in	the	formation	of	DNA	damage	and	potentially	delayed	exit	
from	a	quiescent	state	when	depleted	from	cells.		

7.3	Overall	Conclusions	

This	work	presents	 the	optimisation	and	completion	of	a	RNAi	screen	aiming	to	 identify	
novel	suppressors	of	 replication	stress	as	well	as	the	 investigation	of	a	putative	genome	
maintenance	factor.	In	this	study	it	has	been	demonstrated	that	siRNA	screens	are	capable	
of	 identifying	 replication	 stress	 suppressors	 by	 indirect	 immunofluorescence,	 although	
this	 was	 not	 achieved	 at	 the	 genome	 wide	 scale.	 However,	 even	 at	 the	 small	 scale	 it	
resulted	in	the	 identification	of	a	potential	drug	 target	 in	SNRK	and	an	 interesting	novel	
replication	 stress	 suppressor	 in	 PMVK.	 The	 use	 of	 siRNA	and	 immunofluorescence	 also	
identified	a	potential	novel	regulator	of	HR	and	quiescence	exit	in	CCDC15	which	warrants	
further	investigation.			

Whilst	 this	work	 demonstrates	 that	 siRNA	 knockdown	 is	 capable	 of	 elucidating	 certain	
aspect	of	a	protein	of	interests	function,	it	also	highlights	that	reliance	on	RNAi	alone	is	not	
enough	to	fully	characterise	a	protein.	One	of	the	greatest	weaknesses	in	this	work	is	that	
no	rescue	experiments	were	carried	out	and	so	it	cannot	be	stated	with	certainty	that	all	of	
the	phenotypes	observed	are	due	to	the	knockdown	of	the	gene	of	interest.	Another	flaw	
was	 the	 reliance	 on	 downstream	 markers	 for	 detecting	 DNA	 damage	 and	 replication	
stress.	 Whilst	 attempts	 were	 made	 to	 directly	 assess	 the	 former,	 none	 were	 made	 to	
measure	 replication	 stress	 more	 directly,	 such	 as	 DNA	 fibre	 analysis	 or	 BrdU	
incorporation.	 Addition	 of	 these	 techniques	 to	 this	 body	 of	work	would	 have	 increased	
confidence	in	the	conclusions	drawn.		
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Appendix	1	Targeted	Screen	siRNA	sequences	

Well	 siRNA	 Source	 Sequence	

A02	 CAMK1	

J-004940-05	 AGAUACAGCUCUAGAUAAG	

J-004940-06	 GAAGAUAAGAGGACGCAGA	

J-004940-07	 UGAAAUACCUGCAUGACCU	

J-004940-08	 GAAUGAUGCCAAACUCUUU	

A03	 DGKA	

J-006711-07	 GAGAUAGGGCUCCGAUUAU	

J-006711-08	 CAAUCAAGAUCACCCACAA	

J-006711-09	 CGACCAGUGUGCCAUGAAA	

J-006711-10	 ACAGUAGGCUGGAUUCUAG	

A04	 GAK	

J-005005-06	 GCAGAGAGUAUGCAUUAAA	

J-005005-07	 CACCAGAAAUCAUAGACUU	

J-005005-08	 GCGACACGGUUCUGAAGAU	

J-005005-09	 GGACGCGUGUGACAUUCAA	

A05	 STK16	

J-004054-05	 CGACAUGCAUCGCCUCUUC	

J-004054-06	 AAUAAGCGCUACCUCUUCA	

J-004054-07	 GGUACGCUGUGGAAUGAGA	

J-004054-08	 CCAUUCAUGCCAAGGGUUA	

A06	 STK36	

J-005039-09	 GGUAAUCAGUCUCGCAUCU	

J-005039-10	 GAGCAGGUCUGUUGGCAUU	

J-005039-11	 GUACAAGGGUCGAAGAAAA	

J-005039-12	 GAAGCUAGGCAGUGACGUU	

A07	 MAP2K6	

J-003967-05	 CCAAAGAACGGCCUACAUA	

J-003967-06	 CGUCAAGCCUUCUAAUGUA	

J-003967-07	 GAUAAAGGCCAGACAAUUC	

J-003967-08	 GAUCCGAGCCACAGUAAAU	

A08	 PI4KA	

J-006776-13	 GCUAUGUGCGGGAGUAUAU	

J-006776-14	 GAUCGAGCGUCUCAUCACA	

J-006776-15	 GUGGCCAACUGGAGAUCUA	

J-006776-16	 GGAACGAAGUGACCCGUCU	
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Well	 siRNA	 Source	 Sequence	

A09	 SRMS	

J-005376-05	 UCACGGAACUCAUGCGCAA	

J-005376-06	 GGGAGAAGCUGCACGCCAU	

J-005376-07	 GAUCAAGGUCAUCAAGUCA	

J-005376-08	 GCAGAAGGGACGGCUCUUU	

A10	 DGKI	

J-006717-07	 AAGCAGGCGUUUCACAAUA	

J-006717-08	 GGGAGAUUGUGAAAUAUAU	

J-006717-09	 AAGAUGCGCUUGAAUUGUA	

J-006717-10	 GAACUAGUGCAGUCAUUUG	

A11	 MAP4K1	

J-003586-07	 GAUACAAUGAGCUGUGUGA	

J-003586-08	 CAACAACGUUCUCAUGUCU	

J-003586-09	 GGAGUUAUCUCUGGUUGCA	

J-003586-10	 GAAAGGACCCUCCAUUGGG	

B02	 PIK3R1	

J-003020-14	 AGUAAAGCAUUGUGUCAUA	

J-003020-15	 CCAACAACGGUAUGAAUAA	

J-003020-16	 GACGAGAGACCAAUACUUG	

J-003020-17	 UAUUGAAGCUGUAGGGAAA	

B03	 STK35	

J-005384-05	 GCUACGGCGUGGUUUAUGA	

J-005384-06	 GCAAAGAGGGCAAUCAAGA	

J-005384-07	 GGUCACAUGUGCUGCUUAA	

J-005384-08	 CAACAAAAGUUUCAUGCUA	

B04	 MAPKAPK5	

J-005015-05	 GAUAAAGUAGAUCGACUAA	

J-005015-06	 GGAAUUAGUGGUCCAGUUA	

J-005015-07	 GCGCAAAGAAGGCAUCAGA	

J-005015-08	 UGCAAACUCCUAAGAGAUA	

B05	 PMVK	

J-006782-05	 CCAUCUGGCUGGUGAGUGA	

J-006782-06	 GGUGGACGAUGCUGAGUCA	

J-006782-07	 GCAGACGGUCCGCGUUGUA	

J-006782-08	 GGAAGGACAUGAUCCGCUG	

B06	 TTK	

J-004105-09	 GAUAAGAUCAUCCGACUUU	

J-004105-10	 GCAAUACCUUGGAUGAUUA	

J-004105-11	 CCAGUUAACCUUCUAAAUA	

J-004105-12	 GAUAGUUGAUGGAAUGCUA	
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Well	 siRNA	 Source	 Sequence	

B07	 CDK10	

J-003235-14	 GGCCUAUGGUGUCCCAGUA	

J-003235-15	 GGAAGCAGCCCUACAACAA	

J-003235-16	 CCAACUUGCUCAUGACCGA	

J-003235-17	 GCACAGGAACUUCAUUAUC	

B08	 PAK1	

J-003521-09	 ACCCAAACAUUGUGAAUUA	

J-003521-10	 GGAGAAAUUACGAAGCAUA	

J-003521-11	 UCAAAUAACGGCCUAGACA	

J-003521-12	 CAUCAAAUAUCACUAAGUC	

B09	 SNRK	

J-004322-19	 GCUACAAAGUAUAACAUUC	

J-004322-20	 GGGAGCACCAAGUACAUUA	

J-004322-21	 GAAGUGAGAUGCAUGAAAC	

J-004322-22	 GCUCAGAUAGUUCAUGCUA	
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Appendix	2	High	Throughput	Screen	Development	
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Appendix	3	Targeted	Screen	Hit	Selection		
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Appendix	4	Targeted	Screen	Statistics	

siRNA	 p-value	
Chk1	 0.0001	
RRM1	 0.0042	
HU	 0.0001	
A2	 0.6979	
A3	 0.4022	
A4	 0.7660	
A5	 0.9929	
A6	 0.2397	
A7	 0.2725	
A8	 0.3222	
A9	 0.2673	
A10	 0.3574	
A11	 0.3993	
B2	 0.0744	
B3	 0.1208	
B4	 0.2133	
B5	 0.1940	
B6	 0.1399	
B7	 0.2283	
B8	 0.2318	
B9	 0.2947	

	
	
	

	

	


