
Scheduling for Mixed-criticality
Hypervisor Systems in the

Automotive Domain

Christos Evripidou

Doctor of Engineering

University of York

Computer Science

September 2016

Abstract

This thesis focuses on scheduling for hypervisor systems in the automotive domain.

Current practices are primarily implementation-agnostic or are limited by lack of vis-

ibility during the execution of partitions. The tasks executed within the partitions are

classified as event-triggered or time-triggered. A scheduling model is developed using

a pair of a deferrable server and a periodic server per partition to provide low latency

for event-triggered tasks and maximising utilisation. The developed approach enforces

temporal isolation between partitions and ensures that time-triggered tasks do not suffer

from starvation. The scheduling model was extended to support three criticality levels

with two degraded modes. The first degraded mode provides the partitions with ad-

ditional capacity by trading-off low latency of event-driven tasks with lower overheads

and utilisation. Both models were evaluated by forming a case study using real ECU

application code. A second case study was formed inspired from the Olympus Attitude

and Orbital Control System (AOCS) to further evaluate the proposed mixed-criticality

model. To conclude, the contributions of this thesis are addressed with respect to the

research hypothesis and possible avenues for future work are identified.

3

List of Contents

Abstract 3

List of Contents 9

List of Figures 12

List of Tables 14

List of Algorithms 15

Acknowledgements 17

Declaration 19

1 Introduction 21

1.1 Challenges in the Automotive Domain . 22

1.2 Industrial Context and Motivation . 25

1.3 Thesis Aim and Hypothesis . 27

1.4 Thesis Outline . 28

2 Field Survey and Review 31

2.1 Timing Predictability . 32

2.1.1 Static Timing Analysis . 33

2.1.2 Measurement-based Analysis . 37

2.1.3 Static vs Measurement-based Analysis 38

2.2 Real-time Scheduling . 38

2.2.1 Basic Concepts . 39

2.2.2 Rate Monotonic Scheduling . 40

5

List of Contents

2.3 Mixed-Criticality Scheduling . 43

2.4 Hierarchical Scheduling . 45

2.4.1 Execution Servers . 46

2.4.2 Work on Hierarchical Scheduling 49

2.5 Hypervisor Systems . 50

2.5.1 Review of Existing Hypervisors . 51

2.6 Industrial Context and Research Gap . 59

2.6.1 Domain Controlled Architecture . 59

2.6.2 ETAS Hypervisor (RTA-HV) . 60

2.6.3 Research Gap . 64

2.7 Summary . 64

3 System Architecture 65

3.1 Requirements and Assumptions . 66

3.1.1 Spatial Isolation . 66

3.1.2 Temporal Isolation . 67

3.2 Task Model . 68

3.3 Execution Servers . 71

3.3.1 Event-driven Execution Servers . 71

3.3.2 Time-driven Execution Servers . 72

3.3.3 Operation of the Execution Servers 72

3.4 Priority Space . 74

3.5 Resource Management . 74

3.6 Modifications to Partitions . 78

3.7 Response Time Analysis . 79

3.7.1 Server Schedulability . 79

3.7.2 Task Schedulability . 80

3.8 Worked Example . 83

3.8.1 Server Parameters . 85

3.8.2 Server Response Time Analysis . 85

3.8.3 Task Response Time Analysis . 87

3.9 Summary . 90

6

List of Contents

4 Case Study: Engine Controller 91

4.1 Hardware Platform Characteristics . 92

4.1.1 Operating Modes and Core Registers 92

4.1.2 Memory Management . 93

4.1.3 Vectored Interrupts . 94

4.2 Case Study . 95

4.2.1 Application Description . 95

4.2.2 Task Measurement . 95

4.3 Simulator Implementation . 102

4.3.1 Simulator Overview . 103

4.3.2 Main Simulator Structures . 103

4.4 Experiment . 106

4.4.1 Methodology . 106

4.4.2 Results . 108

4.5 Evaluation of Architectural Design . 111

4.6 Summary . 112

5 Extension to Mixed-Criticality 113

5.1 Mixed Criticality Task Model . 114

5.2 Mixed Criticality Execution Servers . 115

5.3 Execution Modes . 115

5.3.1 Normal Execution Mode (N) . 116

5.3.2 First Degraded Execution Mode (D1) 117

5.3.3 Second Degraded Execution Mode (D2) 118

5.4 Response Time Analysis . 119

5.4.1 Server Schedulability . 119

5.4.2 Task Response Times During Normal Mode 121

5.4.3 Task Response Times During Degraded Modes 123

5.4.4 RTA During Mode Changes . 124

5.5 Summary . 130

6 Case Study: Mixed-criticality Engine Controller 131

6.1 Server Parameter Selection . 131

6.2 Priority Assignment . 133

7

List of Contents

6.3 Sensitivity Analysis . 134

6.4 Taskset and Overhead Characteristics . 136

6.4.1 Mixed-criticality Taskset . 136

6.4.2 Hypervisor Overheads . 138

6.5 Hypervisor System Configurations . 138

6.5.1 2-partition Configuration . 138

6.5.2 3-partition Configuration . 140

6.5.3 8-partition Configuration . 140

6.6 Experiment . 140

6.6.1 Implementation . 140

6.6.2 Results . 144

6.7 Architectural Design Evaluation . 147

6.8 Summary . 148

7 Case Study: Olympus Attitude and Orbital Control System 149

7.1 Experiment Setup . 150

7.1.1 Olympus Attitude and Orbital Control System (AOCS) Taskset

and Hypervisor Overheads . 150

7.1.2 Average-Case Behaviour Simulation 151

7.1.3 Partitioning . 152

7.2 Results . 153

7.3 Architectural Design Evaluation . 157

7.4 Summary . 158

8 Conclusion 161

8.1 Thesis Overview . 161

8.2 Summary of Contributions . 162

8.2.1 Development of a Hypervisor Scheduling Model 163

8.2.2 Mixed-criticality Model . 163

8.3 Limitations and Future Work . 163

8.3.1 Dependency of MC Model on Task Temporal Characteristics . . . 164

8.3.2 Support for Multi-core . 164

8.3.3 Variability in Hardware . 164

8.3.4 Partition and Task Dependencies . 165

8

List of Contents

8.4 Closing Remarks . 165

A Application Task Execution Times 167

B Olympus AOCS Case Study Response Times 177

Abbreviations 183

References 185

9

List of Figures

1.1 The growth in the number of Electronic Control Units (ECUs) [80]. 22

1.2 Automotive Open System Architecture (AUTOSAR) architecture [9]. . . . 24

1.3 Virtual machine architecture. 25

2.1 Utility representation for hard, firm and soft real-time systems [19]. . . . 32

2.2 Different calculation methods [37]. 35

2.3 The three phases of measurement-based analysis [104]. 37

2.4 Container scheduling for a four-core system [77]. 44

2.5 Hierarchical scheduler structure [70]. 46

2.6 Examples of execution servers. 47

2.7 OKL4 microvisor with secure HyperCell
TM

technology [62]. 52

2.8 XtratuM architecture [29]. 55

2.9 Xen Project Hypervisor architecture [69]. 57

2.10 PikeOS partitioning according to ARINC-653 [99]. 58

2.11 Domain Oriented Architecture [88]. 60

2.12 Abstract architecture of RTA-HV [79, 90]. 61

2.13 Hypervisor based cross-company workflow [79]. 63

3.1 Comparison between the current version of RTA-HV and the proposed

architecture. 65

3.2 Example of logical memory layout in a two-partition system. 67

3.3 Task structure. 68

3.4 Aperiodic task execution examples. 70

3.5 Execution servers examples. 73

3.6 Example of a k-partition system priority space. 75

10

List of Figures

3.7 IPCP preemption examples. 76

3.8 Server capacity overrun example. 77

3.9 Server critical instance. 79

3.10 Periodic task critical instance. 82

3.11 Timeline of a scenario in the worked example. 84

4.1 ARM1176JZF-S core registers. 92

4.2 Comparison of preemption latency between the default kernel and a real-

time patched kernel [35]. 98

4.3 Relationship between period and WCET. 100

4.4 ARM1176JZF-S Hypervisor Overhead Routines. 101

4.5 Simulator abstract architecture overview. 102

4.6 Class diagram for executables. 104

4.7 Simulator priority queue data structure. 105

4.8 Hypervisor overheads with respect to the processor utilisation. 108

4.9 Experiment results summary. 109

4.10 Comparison summary of average case vs worst case. 110

5.1 State transitions for the mixed-criticality model. 116

5.2 Example task priorities in the mixed-criticality model. 116

5.3 Server critical instance. 119

5.4 Critical instance for the N→D1 mode change. 125

5.5 Critical instance during the D1→D2 mode change. 127

5.6 Critical instance during the degraded to normal mode transitions. 129

6.1 Implementation for the mixed-criticality model evaluation. 143

6.2 Application task WCET scaling with 2, 3 and 8-partition configurations. . 144

6.3 Ratio of hypervisor overheads to the system utilisation 2, 3 and 8-partition

configurations. 146

A.1 Box plots with execution time measurements for τ0 - τ3. 168

A.2 Box plots with execution time measurements for τ4 - τ7. 169

A.3 Box plots with execution time measurements for τ8 - τ11. 170

A.4 Box plots with execution time measurements for τ12 - τ15. 171

A.5 Box plots with execution time measurements for τ16 - τ19. 172

11

List of Figures

A.6 Box plots with execution time measurements for τ20 - τ23. 173

A.7 Box plots with execution time measurements for τ24 - τ27. 174

A.8 Box plots with execution time measurements for τ28 - τ31. 175

B.1 Response times for Olympus AOCS periodic tasks: C1, C2, C3 and C4. . 178

B.2 Response times for Olympus AOCS periodic tasks: C5, C6, C7 and C8. . 179

B.3 Response times for Olympus AOCS periodic tasks: C9 and C10. 180

B.4 Response times for Olympus AOCS sporadic tasks S1, S2, S3 and S4. . . . 181

B.5 Response times for Olympus AOCS sporadic tasks S5, S6 and S7. 182

12

List of Tables

2.1 Summary of reviewed hypervisors . 53

2.2 Timing Measurements and Virtualisation Overheads of Sample Applica-

tion on Infineon AURIX TC27x [90]. 62

3.1 Table of symbols. 81

3.2 Worked example tasks. 84

3.3 Summary of the response time analysis. 89

4.1 Automotive engine controller taskset. 96

4.2 Descriptive statistics for task execution times in ns. 99

4.3 Hypervisor overheads WCET. 102

5.1 Table of symbols. 120

6.1 Mixed-criticality application taskset characteristics. 137

6.2 Hypervisor overheads for the mixed-criticality model. 138

6.3 2-partition system configuration. 139

6.4 3-partition system configuration. 141

6.5 8-partition system configuration. 142

7.1 AOCS Taskset Real-time Characteristics. 151

7.2 Hypervisor overheads for the mixed-criticality model. 151

7.3 Olympus AOCS partition configurations. 153

7.4 Descriptive statistics of the observed latency Olympus AOCS tasks under

the 3-partition configuration. 154

7.5 Descriptive statistics of the observed latency Olympus AOCS tasks under

the 4-partition configuration. 155

13

List of Tables

7.6 Descriptive statistics of the observed latency for each mode of execution. 156

14

List of Algorithms

1 Server parameter selection for mixed criticality. 132

2 Priority assignment algorithm. 133

3 Algorithm for scaling up the WCET of a system configuration. 135

15

Acknowledgements

I would first like to thank my academic supervisor Prof. Alan Burns for his guidance

and support throughout the duration of my course. Al̇so, a big thanks to my assessor

Dr Leandro Soares Indrusiak for all his input during our TAP meetings.

A big thanks goes tȯ my industrial supervisor Dr Gary Morgan for his v̇aluable

insights and for all our "brain-picking" sessions.

Many thanks to my family Pipis, Myria and Skevi for thėir love and support.

Dealing with the ups and downs would not be possible without the valuaḃle support

of my friends Antonis Chatzimarkos, John Lenihan, Peter Skoutaris, Phil Dalton and

Thanos Zolotȧs.

Of ċourse, I would like to thank all the people involved with the LSCITS group

without whom I would not have received this opportunity. Special thanks to all the

lecturers of the taught modules that were part of this course for all the knowledge and

skills they helped me develop.

None of this would be possible without the suppȯrt of my sponsoring organisation,

ETAS Ltd, and all the people I had the pleasure and privilege to work with.

Ending, I would like to thaṅk the University of York for all the experiences over the

past nine years of being a student.

17

Declaration

I declare that this thesis is a presentation of original work and I am the sole author. This

work has not previously been presented for an award at this, or any other, University.

All sources are acknowledged as References.

Patent Applications

The work presented in Chapter 3 was filed for patent grant. The published patent

applications are as follows:

• C. Evripidou, A. Burns, and G. Morgan, "Method and apparatus for hosting a

multitasking guest on a host system", EP Patent App. EP20,150,177,684 [42].

• C. Evripidou, A. Burns, and G. Morgan, "Method and apparatus for hosting a

multitasking guest on a host system", CN Patent App. CN 201,610,826,878 [43].

• C. Evripidou, and G. Morgan, "Method and apparatus for hosting a multitasking

guest on a host system", US Patent App. 15/215,113 [41].

Workshop Paper

The following paper was published at the Workshop on Mixed Criticality Systems

(WMC 2016):

“C. Evripidou, and A. Burns - Scheduling for Mixed-criticality Hypervisor Systems

in the Automotive Domain” [40].

19

Declaration

Statement

I hereby give consent for my thesis, if accepted, to be made available for photocopying

and for inter-library loan, and for the title and summary to be made available to outside

organisations.

Signed . (candidate)

Date .

20

CHAPTER 1
Introduction

Complying with functional specifications alone is not sufficient to guarantee the cor-

rectness of a system. Many systems have both temporal and functional requirements

that need to be fulfilled. Systems that require operations to take place within timing

constraints are referred to as real-time systems [21].

Failure to meet these requirements can cause systems to exhibit consequences of

varying severities [61]. Safety-critical systems are those whose failure can lead to unac-

ceptable consequences [91], such as loss of life or significant financial damages. Com-

pletely proving the safety of such systems is not feasible due to their high complex-

ity, however using safety standards, like ISO 26262 [54], can help reduce the risk and

mitigate the consequences of failure. Standards have different Safety Integrity Levels

(SILs), like Automotive Safety Integrity Levels (ASILs) A-D for ISO 26262, which are

determined by performing hazard and risk assessment. Higher SILs can significantly

increase the development costs, and make any estimates and/or assumptions about the

system pessimistic. Typically, safety-critical systems with many different components

would need to be verified at the highest safety assurance level, however this would

result in high costs and underutilisation of resources [20, 38, 103]. The integration of

components with different levels of criticality within the same system, is increasingly

becoming a trend in real-time and embedded systems [20]. Such systems are referred to

as Mixed-Criticality Systems (MCSs).

21

Chapter 1. Introduction

Figure 1.1: The growth in the number of ECUs [80].

1.1 Challenges in the Automotive Domain

The automotive industry has been using software in cars for over 30 years and this is

increasing at a very fast pace [17, 18]. The software in a vehicle typically runs within

ECUs, which are embedded hardware platforms responsible for controlling different

subsystems within a vehicle. Examples of ECU are door control units, transmission

control units and engine control units.

As stated by Broy [18] in 2006, about 40% of the production cost of a vehicle was

spent on electronics and software. After the 30-year growth of the volume of software in

vehicles, a modern premium car may contain in excess of 100 processors spread across

70 ECUs [1, 17, 18, 52]. Nolte [80] illustrates this problem in Figure 1.1 by plotting the

number of ECUs present in cars by major manufacturers from 1988 to 2006. This is

a clear indication of the increased complexity and the added hardware costs that are

prominent in modern vehicles.

When they were first introduced, ECUs were functionally independent and were

connected solely to sensors and actuators [17]. As ECUs were required to provide ad-

ditional functionality, there was a need to establish communication channels between

them. This change has resulted in multiple ECUs cooperating to provide a certain piece

of functionality. In addition to numbers, ECUs can be heterogeneous and be responsible

for different types of tasks; hard real-time (vehicle control) and soft real-time (infotain-

ment). Given the large number of ECUs per vehicle, the dependencies between them

and their lack of homogeneity, it can be inferred that they form a complex system that

22

1.1. Challenges in the Automotive Domain

is hard to reason about.

Apart from the structural complexity of the electronic parts of modern vehicles, an-

other challenge in software engineering for the automotive domain is the difference in

lifetime of car models and ECU hardware [17,83]. Specifically, a car model typically has

a production lifetime of about 7 years, whereas a microprocessor 5 years. In addition to

the 7 years of production lifetime, a car manufacturer, or Original Equipment Manufac-

turer (OEM), needs to provide service and spare parts for an additional 15 years. The

result of this difference in lifetimes is that during a car’s lifetime it is very likely that

some ECU hardware components may stop being available in the market. Given that

the ECU software is usually highly optimised for the underlying hardware, porting to a

newer platform can be difficult and expensive.

The increased complexity that characterises modern vehicles led OEMs, suppliers

and other relevant companies to form a worldwide development partnership. The re-

sult of this partnership is the AUTOSAR [9]. AUTOSAR aims to provide a common

architecture as well as a methodology that will help with the understanding of the inter-

action of ECUs, allow software reuse and enable the combination of multiple functions

on a single ECU [60].

The allocation of several functions on an ECU and code reuse are achieved by the

layered architecture [9, 16, 60] shown in Figure 1.2. The bottom layer of this architecture

is the ECU hardware, which interacts directly with the Basic Software layer. The Basic

Software layer provides the necessary services that are needed by the AUTOSAR Soft-

ware Components (SWCs) to be functional. Access to the underlying hardware is routed

through the Microcontroller Abstraction Layer (MCAL). The AUTOSAR Runtime Envi-

ronment (RTE) provides an abstraction for ECU communication. Specifically, it supports

both inter-ECU communication and intra-ECU communication.

AUTOSAR supports the migration of SWC from one ECU to another. In order to

do this, the Basic Software (BSW) modules need to be reconfigured to facilitate the new

SWC. The BSW has over 80 modules, with approximately 200 configurable parameters

each. With the current tooling support reconfiguring the BSW is an expensive procedure

[79].

Although AUTOSAR provides a good solution in managing complexity and enabling

reuse, it was designed for the provision of the facilities required for vehicle control. In

modern vehicles there is an increasing number of applications that require a rich, typi-

23

Chapter 1. Introduction

Applica�on
So�ware

Component

AUTOSAR
Interface

Actuator
So�ware

Component

AUTOSAR
Interface

Sensor
So�ware

Component

AUTOSAR
Interface

Applica�on
So�ware

Component

AUTOSAR
Interface

Standardised
Interface

Opera�ng
System

St
an

da
rd

is
ed

In
te

rf
ac

e

AUTOSAR Run�me Environment (RTE)

Standardised
Interface

Services

Standardised
Interface

Standardised
Interface

Communica�on

Standardised
Interface

AUTOSAR
Interface

ECU
Abstrac�on

Standardised
Interface

AUTOSAR
Interface

Complex
Device
Drivers

Standardised
Interface

Microcontroller
Abstrac�on

ECU Hardware

AUTOSAR So�ware

...

AUTOSAR Middleware

Basic So�ware

RTE
Relevant

BSW
Relevant

VFB & RTE
Relevant

AUTOSAR
So�ware

Component

Standard
So�ware

Interface

Figure 1.2: AUTOSAR architecture [9].

cally general purpose, Operating System (OS) [52]. Running such applications as SWCs

is by design infeasible and require separate hardware. In addition to this, the real-time

properties required by infotainment and the vehicle control functions are fundamentally

different. These are contributing factors that make merging of these two functions on

a single ECU under a single OS a difficult problem. Hergenhan and Heiser [52] argue

that having infotainment and vehicle control on the same ECU is becoming a desirable

feature, due to the increased interaction between the two, as well as the under-utilisation

of the available processing power.

24

1.2. Industrial Context and Motivation

Hardware

Hypervisor

VM 1 VM 2 VM k

OSOSOS

Task 1

Task 2

Task n

..
.

Task 1

Task 2

Task m

..
.

Task 1

Task 2

Task j

..
.

...

Figure 1.3: Virtual machine architecture.

1.2 Industrial Context and Motivation

This research project is a collaboration with ETAS Ltd1 as the sponsoring organisation.

ETAS Ltd is a company owned by ETAS GmbH, specialising in integrated tools and tool

solutions for the development of automotive ECUs. ETAS GmbH is a sister company of

Robert Bosch GmbH.

Virtualisation is a technique, initially developed in the early 60’s [24], where logical

resources are created in order to allow one or more applications to execute on the same

hardware platform. The logical resources are created and managed by the Hypervisor

(HV), also referred to as Virtual Machine Manager (VMM). Figure 1.3 is an example of a

virtualisation architecture. From our experience with ETAS, there is increasing interest

in the automotive industry for the use of virtualisation to alleviate some of the problems

identified in Section 1.1.

The main use case for HV technology in the automotive domain is the reduction

of ECU count by combining multiple ECUs on a single hardware platform. The key

properties that must hold in a HV system is spatial and temporal isolation of the HVs.

Spatial isolation is achieved by prohibiting the Virtual Machines (VMs) from accessing

1http://www.etas.com

25

http://www.etas.com

Chapter 1. Introduction

memory areas outside of their memory space. Temporal isolation, which is the focus

of this research project, is the property under which a VM’s behaviour cannot cause

another VM to violate its real-time properties.

The interest of exploring the use of virtualisation in the automotive domain is rein-

forced by secondary use cases that are relevant to emerging trends or problems in the

industry. The following use cases were elicited from the collaboration with ETAS Ltd.

Mixed Criticality

AUTOSAR has been successful in combining multiple SWCs into multi-function ECUs,

however this raised the need for software of different ASILs to coexist on the same

address space. The integration of multiple ECUs on the same hardware platform would

typically require all components to be certified at the highest ASIL [54], which would

pose significant cost overheads. Virtualisation can be used to provide sufficient isolation

between the constituent VMs, allowing for a lower level of pessimism in the real-time

properties of the system and the potential reduction of costs associated with certification.

Moreover, AUTOSAR’s safety mechanisms when it comes to failure typically require

reset of the ECU. Resetting a multi-function ECU will result in a temporary severe loss

of functionality. The separation offered by virtualisation allows resetting individual

VMs, therefore limiting the overall impact of the failures.

Multicore

Support for multicore platforms was only introduced in ECUs in recent years. Exploiting

multicore platforms in older ECUs at the OS level would require a considerable cost. In

a virtualisation system, scheduling happens in a hierarchical manner (see Section 2.4).

In a hierarchical system, the VMs can be scheduled for execution on multiple cores,

without requiring modifications to their local schedulers.

Portability

Porting automotive ECUs is an expensive task, due to the highly hardware optimised

code. Virtualisation offers an additional layer of abstraction between the guest OSs and

the hardware. In a virtualised system, the guest OSs will only need to be ported to

work on top of the hypervisor, potentially being hardware independent. The hardware-

specific functions are implemented by the hypervisor, therefore in future ports only the

26

1.3. Thesis Aim and Hypothesis

hypervisor will require significant modifications.

Security

The introduction of security as an emerging property of supporting virtualisation can

help protect Intellectual Property (IP) and prohibit tampering from unauthorised sources.

SWC code is typically provided by different vendors that do not trust each other with

their IP. In a hypervisor system, entire ECU images can be provided as object code

for the use of the hypervisor instead of just individual SWCs. This provides a layer

of protection against IP theft. Moreover, a hypervisor can take advantage of hardware

encryption facilities offered by modern processors, therefore further protecting IP and

at the same time prohibiting tampering with the ECU OS code.

1.3 Thesis Aim and Hypothesis

The focus of this research project is the use of virtualisation in order to solve some

of the problems faced by the automotive industry due to an exponential increase in

complexity. The use of software in vehicles is becoming more extensive at a very fast

pace, which has resulted in a great increase in the number of ECUs per vehicle. Even

though there was some effort to reduce this complexity with the development of a

standardised architecture (AUTOSAR) [9], there is still much room for improvement.

The use of virtualisation enables multiple control systems to run on common hardware

under the control of a HV.

The use of HVs is typically associated with some degradation in the performance

of the visualised application due the overheads associated with virtualisation. In non-

real-time environments, the difference in temporal behaviour between an application

executing natively or executing on a hypervisor-based system is often acceptable. In

the automotive domain systems in vehicles are classified as safety-critical real-time sys-

tems. The temporal behaviour differences may result in deadline misses, with severe

consequences, such as financial loss or even loss of life.

As it is explained in more detail in Section 2.6.2, at the time of authoring this thesis,

the industrial sponsor of this research project had a working prototype hypervisor, RTA-

HV. The current version of RTA-HV provides virtualisation support for a multi-core

hardware platform, however having the limitation of only executing one VM per core.

27

Chapter 1. Introduction

This can result in the underutilisation of CPU resources. The value of the work in this

thesis to the industrial sponsor is the proposal of a hypervisor-based system architecture

which allows for the scheduling of multiple applications on a single core. Emphasis in

the evaluation of the proposed architecture is the formulation of case studies, in order

to provide confidence of the relevance of the findings of this thesis to the industrial

sponsor.

The aim of the work done towards this thesis is to investigate the use of hypervisor

technology from a real-time scheduling perspective. Specifically, we investigate on how

to meet the requirement for low response times for event-driven tasks, while maintain-

ing high utilisation. Particular focus is the incorporation of overheads in the scheduling

model using realistic data. We then investigate extending the scheduling model in order

to accommodate multiple levels of criticality. The scheduling models for both single

and multiple levels of criticality are then evaluated using a realistic case study that was

obtained via a detailed examination of a representative set of applications provided by

ETAS Ltd.

The hypothesis of this research project is that virtualisation can be used in

the automotive industry to combine the functionality of more than one ECUs

on a single hardware platform, while being able to make guarantees about

the real-time properties of the system.

1.4 Thesis Outline

Chapter 2 - Field Survey and Review

Chapter 2 presents the relevant literature. The topics reviewed are timing predictability,

real-time scheduling principles, mixed criticality scheduling and hierarchical schedul-

ing. The literature survey concludes with a review of existing hypervisors.

Chapter 3 - System Architecture

Chapter 3 details a description of the proposed architecture and scheduling model of the

system. We propose a memory configuration that supports spatial protection, providing

the facilities required to allow the execution of multiple VMs on a single core. We

then define the task model and the scheduling approach followed. The modifications

required to the code of the applications that are run within the VMs are also identified.

28

1.4. Thesis Outline

Chapter 4 - Case Study: Engine Controller

Chapter 4 contains a realisation of the developed model using a case study. First the cho-

sen hardware platform is overviewed, emphasising the features that are relevant to the

development of a hypervisor. A taskset was then composed using timing characteristics

that were obtained by performing timing analysis on real ECU code and a partial hy-

pervisor implementation. The taskset was used to evaluate the tightness of the analysis

and the scheduling model.

Chapter 5 - Extension to Mixed-Criticality

Chapter 5 extends the proposed model of Chapter 3 to support three levels of criticality

using three modes: normal, first degraded and second degraded. A response time

analysis was produced for all execution modes and mode changes.

Chapter 6 - Case Study: Mixed-criticality Engine Controller

Chapter 6 provides an evaluation of the proposed mixed-criticality model of Chapter 5

using sensitivity analysis. The sensitivity analysis provided the maximum Worst-case

Execution Time (WCET) scaling for each criticality level, given three system configura-

tions based on real ECU code.

Chapter 7 - Case Study: Olympus Attitude and Orbital Control System

Chapter 7 contains a case study inspired by the real-time characteristics of the Olympus

Attitude and Orbital Control System (AOCS). The purpose of this case study is to study

the performance of the system while exhibiting average-case behaviour. The findings

of this case study provide additional insight to the expected behaviour of the system in

each criticality mode.

Chapter 8 - Conclusion

Chapter 8 first provides a chapter-by-chapter summary of this thesis. The contributions

made with respect to addressing the research hypothesis of Section 1.3 are presented.

Limitations and possible areas for future work are then identified.

29

CHAPTER 2
Field Survey and Review

A system is considered as real-time if it is required to respond to external stimuli within

defined time frames [21]. It is therefore dependent not only on the logical correctness of

the software, but also on the timeliness of the output. Depending on the consequences

of not complying with the timing requirements, a real-time system can be classified

as hard real-time, firm real-time or soft real-time. Missing a deadline in a hard real-time

system results in potentially disastrous consequences, whereas a soft real-time system

can continue functioning with occasional deadline misses. Specifically, in the case of

a soft real-time system having a late delivery, within a bounded limit, can result in

reduced utility. In a firm real-time system missing occasional deadlines does not provide

any utility. These are summarised in Figure 2.1.

In this chapter, we first introduce the concept of timing predictability, and in par-

ticular timing analysis. The review then moves to Fixed-priority Scheduling (FPS), as

that is the scheduling approach followed by AUTOSAR-based OSs. Note that Dynamic-

priority Scheduling (DPS) approaches, such as Earliest Deadline First (EDF) [71] and

Constant Bandwidth Server (CBS) [2, 3] are not reviewed as they typically impose sig-

nificant overheads and they are not used in the automotive domain for scheduling.

In order to make the review material relevant to the virtualisation problem set by

the sponsoring organisation, applications of using hierarchical scheduling in relevant

domains are reviewed. We then present the approach followed by the industrial sponsor

of this project and identify the research gap to be investigated.

31

Chapter 2. Field Survey and Review

(a) Hard real-time. (b) Firm real-time.

(c) Soft real-time.

Figure 2.1: Utility representation for hard, firm and soft real-time systems [19].

2.1 Timing Predictability

A real-time system consists of a number of tasks [106]. Each task shows some variation

in execution time depending on the input and the environment’s state. In order to

explore timing predictability it is necessary to introduce the notions of WCET and Best-

case Execution Time (BCET).

The calculation or estimation of a task’s execution bounds is a difficult task [84,

106]. The first piece of information that is necessary for the evaluation of WCET is the

program’s worst execution path. The identification of this execution path is not trivial

as it can be dependent on the state of the input or the environment [106]. Additionally,

using just the source code with a known execution path is not sufficient to evaluate

the WCET [84]. Another factor that contributes in the complexity of estimating the

WCET is the process of compiling the source to machine code [84]. Due to compilers

optimising the object code by rearrangements and transformations, the execution paths

32

2.1. Timing Predictability

are modified from those that were identified at the source level.

Timing anomalies are present in advanced processor architectures. This is because

of some of the features that these architectures offer introduce a dependency between

timing and execution history [84, 106]. Specifically, the time required to execute an

instruction is dependent on performance-oriented features such as pipelines, branch

prediction and caches [50, 100]. These features impact the timing predictability of a

system, which is undesirable in hard real-time applications.

Wilhelm et al. [106] present an overview of timing analysis methods. These are clas-

sified as static or measurement-based methods. A static method obtains timing bounds

by considering the possible control flow paths of a task’s code in combination with a

hardware model. With measurement-based methods the task code is executed on physi-

cal or simulated hardware, producing estimates of WCET and BCET. Static methods are

safety-oriented, since they allow the analysis of hard real-time systems, covering corner

cases that are potentially left unexplored by measurement-based methods.

2.1.1 Static Timing Analysis

Static timing analysis techniques obtain the execution time bounds by combining the

task code with an abstract system model [44, 106]. Under the assumption that the sys-

tem model is correct, static timing analysis provides a safe estimate for a task’s execution

bounds [25]. There are various phases that can be used to acquire WCET and BCET esti-

mates. These include value analysis, control flow analysis, processor-behaviour analysis,

estimate calculation and symbolic simulation.

Value Analysis

A value analysis is used to identify the memory addresses a task might require access

to during its execution [106]. The purpose of determining the effective addresses of a

task is to extract information regarding the amount of time required to perform each

memory access. In their approach, Ferdinand et al. [44] perform value analysis by

calculating an interval of possible values for each processor register. Having calculated

the effective address range, it is possible to identify some infeasible execution paths,

further informing the subsequent stages of the timing analysis.

33

Chapter 2. Field Survey and Review

Control-flow Analysis

Another method used for the evaluation of WCET is the analysis of execution paths

in order to gather information about them [106]. This is referred to as Control-flow

Analysis (CFA). A key requirement of hard real-time systems is that every job of a task

must terminate. This implies that there is a finite set of possible execution paths, some of

which are not feasible. In general, this distinction is challenging, however it is possible

to eliminate some paths from the analysis. This results in having to analyse a superset

of the exact set of tasks, which still returns a safe WCET estimate.

An example of CFA is presented by Engblom et al. [36], using an automatic flow

analysis based on abstract interpretation. Specifically, run-time behaviour properties are

extracted by interpreting the program using abstract values instead of concrete ones, as

well as using abstract semantics. Using this method, the program can be proven to be

safe with respect to its run-time behaviour, provided that the abstraction of values and

semantics are also safe. The analysis is performed on intermediate code representation,

which suggests that the possible flows are identified in the executed code [48].

Processor-behaviour Analysis

The timing behaviour of the hardware that the code is running on must also be taken

into consideration when performing timing analysis. As identified in Section 2.1, it is a

difficult undertaking, especially with advanced processors, due to the timing behaviour

being dependent on the execution history. This requires for processor behaviour analysis

to improve the accuracy of the WCET estimates by including the hardware’s properties

with the task’s source code [106]. The processor’s occupancy state is analysed for all

execution paths of the task in question.

Cousot P. and Cousot R. [28] introduce the notion of abstract interpretation. Abstract

interpretation uses approximate semantics of the underlying structure of computations

in order to obtain some information about the program behaviour without actually ex-

ecuting it. The principles of abstract interpretations are used in processor behaviour

analysis. In general, with processor behaviour analysis an abstract processor model is

used, which overestimates the timing requirements of each instruction. The overesti-

mate is to ensure the calculation of safe WCETs. An invariance about these states is

calculated using the results of the analysis. On relatively simple processors with some

34

2.1. Timing Predictability

(a) Control-flow
graph with timing.

(b) Path-based calcula-
tion.

(c) IPET-based calculation.

(d) Tree-based calculation.

Figure 2.2: Different calculation methods [37].

performance features the analysis can be performed in a modular manner, where differ-

ent processor features are analysed in isolation before combining the findings. In their

paper, Heckmann et al. [50] argue that a modular approach is not suitable for more

complex processor architectures because the high level of dependency of the different

processor components require large safety margins during the analysis. A direct result

of these conservative margins is a largely overestimated WCET, which is often not useful

in practice.

Estimate Calculation

Bound calculation is used to produce an estimate of the WCET using the upper bound of

the results of value analysis, control flow analysis and processor-behaviour analysis [37,

35

Chapter 2. Field Survey and Review

106]. As stated by Ermedahl [37], the WCET calculation methods are split in three main

categories: tree-based, path based and Implicit Path Enumeration Technique (IPET).

Examples of these are illustrated in Figure 2.2.

Tree-based calculation is performed by first generating a control-flow graph, whose

nodes contain timing information. An example of a control-flow graph is shown in

Figure 2.2a. In order to obtain timing timing information for the whole program, a

bottom-up traversal of the control-flow graph is performed, as shown in Figure 2.2d.

Although this approach is computationally cheap, it is not able to deal with dependen-

cies between statements and with unstructured, possibly optimised code.

Path-based calculation methods produce a WCET estimate by calculating the max-

imum execution time of all the identified possible execution paths. This approach is

generally straightforward, unless the code has loops. In the case of a loop the WCET

of the loop’s body is calculated. The body’s WCET is then combined with the loop’s

flow information to obtain the overall WCET. An example of this approach is shown in

Figure 2.2b.

IPET was first introduced by Li and Malik [66] as an efficient method for producing

the execution time bounds of a program running on a given processor. With IPET, the

WCET estimates are calculated by combining the execution time bounds of the basic

blocks and the program flow into linear constraints. Every block in the control-flow

graph of the task is allocated a time coefficient (tentity) and a count variable (xentity) [106].

The time coefficient represents the upper time bound of the entity. The count variable

the maximum number of times the entity will be executed. WCET is then estimated

by calculating the sum of products of the time coefficients and count variables of each

entity (∑i∈entities xiti).

Symbolic Simulation

With a symbolic simulation approach the WCET is calculated by running the task on

an abstract processor model [106]. No input is used during the task’s execution, which

requires a combination of control-flow analysis, processor behaviour analysis and bound

calculation. A drawback of this approach is that the time required for the time bound

estimates to be calculated is proportional to the task’s execution time.

36

2.1. Timing Predictability

C-Source

Analysis phase

Measurement phase

Calcula�on phase

WCET
bound

Analyser tool

Execu�on �me
measurement

framework

Calcula�on
tool

Figure 2.3: The three phases of measurement-based analysis [104].

2.1.2 Measurement-based Analysis

Measurement-based methods measure the execution times of tasks by executing them

given a set of inputs either on hardware or a simulator [106]. This approach is used

to produce estimates or distributions instead of bounds, unless the worst-case input

is known. Wenzel et al. [104] present a Measurement-based Timing Analysis (MBTA)

method as a WCET analysis technique, which uses a combination of static analysis

techniques with measurements that were obtained with the execution of the program.

The approach presented by Wenzel et al. [104] is performed in three steps, as shown in

Figure 2.3.

The first phase of MBTA is the analysis phase. In this phase the source code is anal-

ysed, extracting path information and partitioning the program into segments. Test data

is then generated in order for the program to use as input to obtain information about

the time spent by the task in each segment. The second phase of MBTA is the mea-

surement phase, where the execution times of each segment are obtained by running the

program using the test data generated in the analysis phase. Lastly, in the calculation

37

Chapter 2. Field Survey and Review

phase, the execution times are combined with the path information in order to calculate

the WCET bound estimates.

2.1.3 Static vs Measurement-based Analysis

In this section we provide a brief comparison between static and measurement-based

methods.

As it was previously stated, static methods calculate execution time bounds using

abstraction [106]. It is therefore necessary that an abstract processor model is used in

the analysis. These models tend to be pessimistic and error prone, which can result to

imprecise results [104]. Measurement-based methods, however, do not require processor

models, instead they require special equipment, such as hardware or simulation to run

the code on. This equipment can often be complex and expensive.

Following from the lack of processor models, measurement-based methods are prone

to inaccuracies that result from the dependency of execution time on the processor’s ex-

ecution history. Even though measurement-based methods are referred to as unsafe,

Wilhelm et al. [106] claim that in some cases the WCET and BCET estimates are more

accurate than the ones produced by static analysis. This is more often the case in com-

plex processors.

Measurement-based methods have difficulties dealing with timing anomalies. In

order to overcome these, the execution times have to be measured for all initial states of

the program, which is very time consuming and difficult. Anomalies make the definition

of abstract models used in static analysis difficult.

The current practice in the automotive industry, as observed by our experience with

ETAS, is the use of measurement-based techniques. Specifically, measurements are taken

by defining two points in the code and counting the number of cycles elapsed between

the two. This can be done using cycle-accurate simulators and/or physical development

boards. Applications in the automotive industry are primarily linear with no dynamic

data structures, therefore making their WCETs predictable.

2.2 Real-time Scheduling

In their book, Burns and Wellings [21] state that concurrent programs are aimed “to

model parallelism in the real world”, in order to be able to interact with entities in

38

2.2. Real-time Scheduling

it. The interaction with the real-world entities is typically performed through sensors

and actuators. These are usually much slower than the processor, therefore possibly

resulting in under-utilisation of the available resources. Introducing concurrency in

programs can help minimise the time the processor remains idle. Additionally, it allows

the exploitation of parallelism in problem solving, which can significantly lower the

time required to reach a solution.

Concurrent programs require the specification of the order that tasks are executed

at any point in time [21]. This is referred to as scheduling. Scheduling ensures the

execution of tasks in a deterministic manner, while enforcing synchronisation primitives

in order to ensure local ordering constraints.

2.2.1 Basic Concepts

In this section we introduce tasks and scheduling algorithms as fundamental real-time

scheduling concepts.

Tasks

Real-time tasks can either be periodic, aperiodic or sporadic [19]:

A periodic task is characterised by its period (T), deadline (D) and execution time

(C) [19]. To constrain these characteristics, a periodic task must have an execution time

less than its period [71]. Additionally, it is usually required that the deadline of a process

is not greater than its period, however this is not a necessary requirement.

An aperiodic task differs from a periodic one in the sense that it is triggered from

an external source [19]. The associated timing information of an aperiodic task is its

required execution time and its deadline. Typically, an aperiodic task have a greater

level of criticality within a system, since they are usually responses to critical events.

A sporadic task is one that can be invoked at any time, however it has a predefined

minimum inter-arrival time.

In simple models there is an underlying assumption that tasks are released in a

perfectly periodic manner [21]. In reality there is a variation between the invocation of

a task and its release. Release jitter (J) is defined as the maximum deviation of a tasks

release time from its invocation.

39

Chapter 2. Field Survey and Review

Scheduling Algorithms

A scheduling algorithm provides facilities for managing the system resources, as well

means of determining the worst-case behaviour of a system when it is used [19, 21,

71]. There are two categories of scheduling algorithms: static and dynamic. A static

scheduling algorithm determines the task schedule prior to the program’s execution,

whereas a dynamic scheduling algorithm determines the task schedule at run-time.

Scheduling tests are used to determine whether a system is able to meet its timing

requirements using a certain scheduling policy [21]. A schedulability test is said to be

sufficient if it can guarantee that all deadlines will always be met. A necessary schedula-

bility test indicates whether the system will miss a deadline miss during its execution.

When a test is both sufficient and necessary is said to be exact (or optimal).

A goal of using scheduling algorithms is to maximise processor utilisation. Processor

utilisation is the portion of the time the processor spends executing tasks. This is defined

as the sum of execution time and period ratios for all tasks of the system, as shown in

Equation 2.1.

U =
n

∑
i=1

Ci

Ti
(2.1)

Task interference is another factor that has a very important role in determining

whether a system is schedulable. The interference suffered by a runnable task is the time

the processor spends executing higher priority tasks. Joseph and Pandya [55] derived

Equation 2.2, which represents the cumulative interference a task τi may experience

from all other tasks in the system of higher priority.

Ii = ∑
j∈hp(i)

⌈
Ri

Tj

⌉
Cj (2.2)

where hp(i) is a function that returns the set of tasks with a priority level that is higher

than the priority level of task τi (see Table 3.1).

2.2.2 Rate Monotonic Scheduling

In a rate monotonic priority assignment each task is allocated a priority (P), which

is inversely proportional to its period (T) ie. the shorter the period, the higher the

priority [21, 65]. Specifically, for any two tasks τi and τj, Ti < Tj ⇒ Pi > Pj. In the case

where two tasks share the same period the priority allocation is resolved in an arbitrary

40

2.2. Real-time Scheduling

manner [65]. Rate monotonic priority assignment is guaranteed to have optimal priority

assignment [64] for uniprocessor systems in O(n log2 n) time.

Using a rate-monotonic priority ordering, a schedulability test can be derived using

the algorithm’s worst-case utilisation bound [21, 64, 71]. Specifically, if the condition of

Equation 2.3 holds, then all N tasks of the system will meet their deadlines. Specifically,

for a system with N → ∞, it is guaranteed that all of its timing requirements are met

if the processor utilisation for all tasks is under 69.3% using rate-monotonic scheduling.

This schedulability test was first introduced by Liu et al. [71]. In their paper, Devillers

and Goossens [33] identify a mistake in the proof of this test, which does not affect the

worst-case utilisation bound.

N

∑
i=1

Ci

Ti
≤ N(2

1
N − 1) (2.3)

In their paper, Bini et al. [15] developed a schedulability test of equal complexity but

less pessimistic than the one by Liu et al. [71] in Equation 2.3. The proposed schedula-

bility test is shown in Equation 2.4.

n

∏
i=1

(
Ci

Ti
+ 1
)
≤ 2 (2.4)

Schedulability tests are generally not accurate and they are not easily applicable to

more general task models [21]. Response-time Analysis (RTA) is a more computationally

expensive but accurate approach for determining whether a system is schedulable. The

main idea of RTA is to identify the response time of each task of the system (R) and

check these values against the corresponding deadlines.

The response time of a task τi is defined in Equation 2.5 as the sum of its execution

time (Ci) and the interference (Ii) from higher priority tasks. Equation 2.6 is derived by

substituting Ii with the definition of Equation 2.2.

Ri = Ci + Ii (2.5)

= Ci + ∑
j∈hp(i)

⌈
Ri + Jj

Tj

⌉
Cj (2.6)

In their paper, Audsley et al. [7] use Equation in 2.6 to form the monotonically non-

decreasing recurrence relationship of Equation 2.7. In order to determine whether a set

41

Chapter 2. Field Survey and Review

of tasks is schedulable, the wn
i values are evaluated. When two successive values are

equal (wn
i = wn+1

i), then the task set is schedulable. If the value exceeds the correspond-

ing task’s deadline then the test fails.

wn+1
i = Ci + ∑

j∈hp(i)

⌈
wn

i + Jj

Tj

⌉
Cj (2.7)

The response time analysis can be extended to account for task blocking. Specifically,

a task is blocked if it is suspended until a lower priority releases a system resource which

is required for the higher priority task’s execution [21, 94]. The situation where a lower

priority task blocks a higher priority task is referred to as priority inversion. In their

paper, Sha et al. [94] introduce the priority inheritance protocol, where if a lower priority

task uses a shared resource, its priority is raised to the highest task priority using that

resource. This protocol provides an upper bound on the blocking time of a task.

Bi =
K

∑
k=1

usage(k, i)C(k) (2.8)

The upper bound of a task’s blocking time (Bi) is given by the sum of all the critical

sections of the resources it uses (C(k)). Specifically, usage(k, i) is a binary function which

returns 0 if a resource k is used by task i.

In their paper, Davis et al. [32] identify the case of push-through blocking, where

in some cases the response time analysis is optimistic. Assume a task model where the

WCET is composed of the task main body followed by a non-preemptive region (ie. Ci =

Cbody
i + Cpost

i). The task’s deadline is met if its main body finishes its execution before

its deadline. The non-preemptive section can therefore be executed after the deadline of

the task, therefore adding additional blocking in its next release. The maximum amount

of blocking BMAX received by a task τi is therefore given by:

BMAX
i = max(Bi + Cpost

i) (2.9)

Incorporating the blocking time in the response time analysis equation:

Ri = Ci + BMAX
i + ∑

j∈hp(i)

⌈
Ri + Jj

Tj

⌉
Cj (2.10)

42

2.3. Mixed-Criticality Scheduling

Similarly, the recurrence relationship becomes:

wn+1
i = Ci + BMAX

i + ∑
j∈hp(i)

⌈
wn

i + Jj

Tj

⌉
Cj (2.11)

2.3 Mixed-Criticality Scheduling

In recent years, industry has shown interest in developing and certifying components

independently, in order to reduce development costs and improve the system’s perfor-

mance [20, 38]. The different constituent components of such systems can have varying

degrees of criticality, therefore requiring verification to different safety levels. Systems

that consist of components with different levels of criticality are referred to as Mixed-

Criticality System (MCS). The criticality levels are typically classified with respect to

safety standards. Examples of these standards are RCTA DO-178B and ISO-26262, which

are used in aviation and automotive respectively.

In his 2007 paper, Vestal [103] states that the WCET estimate is dependent on the

level of certification of the application or system component. Therefore higher criticality

WCET estimates are more pessimistic than lower criticality ones. Altmeyer et al [4]

discuss the need for quantification of WCET estimate confidence. They discuss static and

measurement-based timing analysis methods. They state that static analysis methods are

believed to be superior to measurement based ones, since they can be proven to be safe,

given the correctness of the models, and the confidence of the estimate can be obtained

by comparing the models against real systems.

The predominant MCS task definition in the literature is: (~T, D, ~C, L), where ~T and

~C are vectors with period and execution times, respectively, for each criticality level. For

any two criticality levels, L1 and L2, such that L1 > L2, C(L1) ≥ C(L2) and T(L1) ≤

T(L2).

Ri = Ci(Li) + ∑
j∈hp(i)

⌈
Ri

Tj

⌉
Cj(Li) (2.12)

Vestal [103] states that Audsley’s algorithm [8] can be applied for MCS. Dorin et

al [34] formalised Vestal’s approach by proving that Audsley’s algorithm is optimal for

priority assignment in MCS. Vestal’s model was extended by incorporating release jitter

and adapted traditional sensitivity analysis to apply to MCS.

43

Chapter 2. Field Survey and Review

G-EDFC

G-EDFD

Best EffortE

EDFB EDF EDF EDF

CEA CE CE CE

Figure 2.4: Container scheduling for a four-core system [77].

Building on Vestal’s model, Baruah and Vestal [11] extended the approach to support

use with sporadic tasks. They show that feasibility analysis can be performed using

algorithms for traditional sporadic task systems. They introduce a hybrid algorithm

that combines EDF and Vestal’s algorithm. In their algorithm, each task is assigned a

priority that is not necessarily unique. Tasks with the same priority are scheduled using

EDF. Baruah and Vestal’s approach outperforms Vestal’s original model but not FPS.

Baruah and Burns [13] address the issue of low schedulability of Vestal’s approach

by monitoring the execution time of tasks. In his approach, Vestal evaluates the response

time of tasks at the highest level of criticality. Monitoring the execution times of tasks

prevents overruns, therefore improving the resource utilisation.

The execution of MCS starts in the lowest criticality mode. If a task misses its low

criticality deadline, C(LO) then a mode change is triggered and the execution of the

system changes to HI. In their review, Burns and Davis [20] state that although there is

research on mode change protocol, there is the problem that a system can be schedulable

in every mode, but not during mode changes [101].

In their paper, Mollison et al. [77] propose an architecture for scheduling mixed-

criticality tasks on a multi-core platform, which is referred to as MC2 in subsequent work

by Herman et al. [53]. Their proposed architecture follows a criticality classification,

which is similar to the one proposed by RCTA DO-178B. Specifically, there are five

levels of criticality, labelled from A to E, A being the highest level and E to the lowest.

The tasks are scheduled by intra-container schedulers for each criticality level. Figure

2.4 summarises the proposed architecture on a four-core platform.

44

2.4. Hierarchical Scheduling

Tasks of criticality A are scheduled using a cyclic executive scheduling approach.

Cyclic executive is a table-based approach, where tasks are scheduled according to a

precomputed table. Level B tasks are scheduled using a Partitioned Earliest Deadline

First (P-EDF) scheduler, because of it has relatively low overheads and has been theo-

retically shown to be optimal on on single-core. Level C and D are scheduled using a

Global Earliest Deadline First (G-EDF) scheduler to support tasks where a small amount

of tardiness can be tolerated. Lastly, level E tasks are scheduled whenever the processor

is idle.

The architecture that was proposed by Mollison et al. [77] was implemented by

Herman et al. [53], as stated in their 2012 paper. MC2 was implemented using the

LITMUSRT1 Linux kernel extension. LITMUSRT extends the Linux kernel to support

modular scheduler plugins. The implementation of MC2 shows that the overheads in-

troduced by the architecture are relatively small. Furthermore, Herman et al. [53] argue

that MC2 is robust with respect to mistakes in the WCET estimates.

2.4 Hierarchical Scheduling

In their journal article, Lipari and Bini [70] identify a use case for hierarchical schedul-

ing, which is very relevant to the requirements posed by the sponsoring organisation of

this project, ETAS Ltd. Specifically, they state that in many applications, it is desirable to

move well functioning applications that were implemented on older processors without

having to spend a significant amount of time re-designing and re-implementing. Hierar-

chical scheduling is proposed as a possible way of enabling a number of applications to

work on common hardware, while ensuring that the timing requirements are still being

met.

Hierarchical scheduling is a partitioned scheduling framework, where tasks and pro-

cesses are grouped together into applications that are to be executed on underlying

hardware [14, 26, 46, 98]. In a hierarchical scheduling system, each application imple-

ments its own local scheduling algorithm [30]. The applications are then allocated CPU

bandwidth according to a global scheduler. Specifically, the global scheduler selects

which of the applications is to execute at any time. Each application is then responsible

to utilise its execution time by executing tasks according to its local scheduler. An addi-

1LITMUSRT - Linux Testbed for Multiprocessor Scheduling in Real-Time Systems:
http://www.litmus-rt.org/

45

http://www.litmus-rt.org/

Chapter 2. Field Survey and Review

Global
Scheduler

Local
Scheduler

Application A

Task A1

Task A2 Task A3

Local
Scheduler

Application B

Task B2

Task B1

Local
Scheduler

Application C

Task C1

Task C2

Task C3

Operating System

Figure 2.5: Hierarchical scheduler structure [70].

tional functionality of the global scheduler is to provide temporal protection to each of

the applications [70]. This structure is illustrated in Figure 2.5.

2.4.1 Execution Servers

The applications within a hierarchical system are scheduled using execution servers.

Execution servers can be viewed as tasks that provide the applications with the time

slots, during which they are allowed to execute. In this section we identify the main

types of execution servers. Figure 2.6 summarises the behaviour of each of the identified

execution servers by example. The capacity of the execution sever of the illustrated

examples for polling, deferrable and periodic servers is set to Cs = C0 + C1, whereas for

sporadic server it was set to Cs = 2C0 +C1, in order to clearly demonstrate its behaviour,

where C0 and C1 are the execution times of τ0 and τ1 respectively.

Polling Server

A polling server is invoked at a set period and has a maximum capacity. All application

tasks that are eligible for execution are run until the capacity is exhausted [23,30,93,97].

If the application is idle (ie. no tasks are eligible for execution), the remaining capacity

is discarded. At the end of the period, the server’s capacity is replenished. The polling

server has low memory requirements, computational complexity and is relatively easy

to implement [23]. However, it suffers from low performance.

The behaviour of the polling server is illustrated by the example of Figure 2.6a. At

the start of the server period, τ0 is released. The server is running and therefore τ0 exe-

46

2.4. Hierarchical Scheduling

s

τ0

τ1

R RR

(a) Polling Server.

s

τ0

τ1

R RR

(b) Deferrable server.

s

τ0

τ1

R RR

(c) Periodic Server.

s

τ0

τ1

RR

(d) Sporadic server.

RRelease Task execu�on Server execu�onServer replenishment

The examples illustrated in this figure demonstrate the functionality of execution servers. We
consider a simple non-preemptive system with two tasks, τ0 and τ1, that execute using the

server s.

Figure 2.6: Examples of execution servers.

47

Chapter 2. Field Survey and Review

cutes to completion. Since there are no runnable tasks, the server’s capacity is discarded

before τ1’s release. The server is replenished after its period has passed and t1 starts

executing to completion and τ0 is released during that time. After τ1 terminates τ0 starts

executing immediately to completion. The server’s remaining capacity is discarded after

τ1’s termination since there are no runnable tasks at that point.

Deferrable Server

A deferrable server [23, 30, 97] has a capacity and a fixed period at which it is invoked.

The application tasks are allowed to execute for as long as the server capacity is not

exhausted. If the application is idle, the server’s capacity is preserved. The capacity

is replenished after each period. Deferrable servers are computationally and memory

efficient, and are relatively easy to implement [23]. They also outperform polling servers

in terms of performance.

In Figure 2.6b the server starts executing and services τ0 to completion. The server’s

capacity is saved and it stops executing. τ1 is then released and serviced immediately

since the server has enough capacity for it. After the server’s replenishment it retains

its capacity until a task becomes runnable (τ0 in this case).

Periodic Server

A periodic server [23,30,31,93] is similar to the polling server, with the difference that it

continues executing and using the server’s capacity even if the application is idle. The

periodic server has similar implementation and computational complexity as the polling

server approach. Although it outperforms deferrable servers in terms of schedulability

[30], in some cases it may suffer from lower performance.

The periodic server in the example of Figure 2.6c starts executing, servicing τ0, which

executes to completion. The server continues to execute with no runnable tasks, exhaust-

ing its capacity. τ1 is then released and waits until the server’s replenishment, since it

was previously exhausted. After the server is replenished τ1 starts executing and τ0 is

released. Both tasks execute to completion, exhausting the server’s capacity.

Sporadic Server

A sporadic server functions in a similar way to Deferrable Servers, with the difference

that its capacity is replenished only after it is exhausted. The sporadic server is char-

48

2.4. Hierarchical Scheduling

acterised by good performance, however it is has greater implementation and compu-

tational complexity, as well as higher memory requirements than the other servers that

were discussed [23].

The sporadic server of Figure 2.6d is assumed to have a greater capacity than the

previous examples, for sake of demonstration: Cs = 2C0 + C1. The server starts exe-

cuting as τ0 is released, servicing it to completion. Its capacity is reserved until τ1 is

released, which is also serviced to completion. At its first period, the server has a re-

mainder capacity of C0 and is therefore not replenished. τ0 is released and serviced to

completion, exhausting the server’s capacity. τ1 is then released before the server’s next

period and waits until its replenishment. After the server capacity is replenished, τ1

starts executing.

2.4.2 Work on Hierarchical Scheduling

A proportional-share scheduling algorithm was proposed by Goyal et al. [47] in 1996.

The algorithm is referred to as Start-time Fair Queueing (SFQ) and was initially targeted

for integrated services networks, however it was also deployed for use in a hierarchical

scheduling environment. In the SFQ, each network packet is associated with a start and

a finish tag. The packages are then scheduled in increasing order of their start tags.

SFQ is claimed by Goyal et al. [46] to achieve fair CPU bandwidth allocation for

a uniprocessor system. Additionally, the algorithm provides bounds for the delay and

throughput of the threads in a realistic environment. In 2000, Chandra et al. [27] identify

that SFQ suffers from unbounded unfairness and starvation when used in a multiproces-

sor environment because of the inability to partition the CPU bandwidth appropriately.

In their 2009 paper, Åsberg et al. [85] present a hierarchical scheduling framework for

use in the AUTOSAR infrastructure. The authors suggest integrating the global sched-

uler of the framework with the AUTOSAR Basic Software (BSW). The global scheduler

can either interface with the OS or the existing scheduler in order to acquire access to

standardised scheduling functions.

Following from their work in [85], Åsberg et al. [86] show that their proposed frame-

work can be used in practice in their 2010 paper. In order to achieve this, they used

the Times2 tool, which supports schedulability analysis, formal verification and code

2Times - A Tool for Modeling and Implementation of Embedded Systems:
http://www.timestool.com.

49

http://www.timestool.com

Chapter 2. Field Survey and Review

generation. Using the Times tool they were able to perform schedulability analysis un-

der fixed-priority preemptive hierarchical scheduling. Additionally, they adjust the code

generated from Times in order to be executable on VxWorks. Lastly, they state that there

is significant difference between the response times of simulated and executed code.

In their 2012 work, Lackorzyńsky et al. [63] identify that there is incompatibility be-

tween mixed-criticality guests and the current virtualisation technology. They propose

an interface that allows the guest operating systems to allocate budgets and switch be-

tween them. Specifically, the guests are provided budgets by the global scheduler in the

form of scheduling contexts (SCs) during startup or on request. Each SC is described by

its global priority and a budget that can be replenished if certain predefined conditions

are met. The SCs are then mapped to virtual CPUs (vCPUs), allowing the VM to select

which SC to run at a time on each of its allocated vCPUs. This approach is shown to re-

quire a very small number of modifications to the guest OSs code; 10 and 22 additional

lines of code for FreeRTOS and Linux respectively. Additionally, the latency that was

introduced from the activation of context switches was measured to be 0.4µs and 2.8µs

for paravirtualised and fully-virtualised guests respectively, showing the difference in

overheads between the two. The main limitation of this approach is that it assumes

access to the guest OS source code and the ability to modify it.

2.5 Hypervisor Systems

One of the key challenges identified in Section 1.1 is the high ECU count, which con-

tributes to development costs and complexity of the software and hardware in vehicles.

A possible way to alleviate this is the use of virtualisation. Virtualisation is the use of

software in order to integrate and concurrently execute multiple operating systems and

applications on the same hardware. As explained in the previous chapter, this is of-

ten achieved using a Virtual Machine Manager (VMM) or Hypervisor (HV) in order to

provide temporal and spatial isolation between the Virtual Machines (VMs) [58, 74].

Early work on virtualisation by Popek and Goldberg [82] in 1974 identify three char-

acteristics of an HV. First, an HV needs to be able to provide its hosted VMs with an

execution environment which is indistinguishable from real hardware. Second, execu-

tion is efficient by mapping a large subset of the virtual processor instruction set to a

physical processor. Third, the HV has complete control over all hardware resources and

50

2.5. Hypervisor Systems

is able to allow or prohibit VMs access, according to the system configuration.

Popek and Goldberg [82] also identify a set of properties for HVs:

• Efficiency: all non-privileged instructions are executed directly on hardware.

• Resource control: it is impossible for a VM to interfere with any system resources

that are not allocated to it.

• Equivalence: a VM produces the same results when executing as if it was executing

without a HV.

The HV characteristics by Popek and Goldberg [82] refer to full virtualisation. With

full virtualisation the applications in VMs can be executed without requiring any mod-

ifications [58]. In order to maintain the properties identified above in a fully virtualised

environment it is necessary to have adequate hardware support. Specifically, allowing

a VM to execute directly most of the time on the underlying hardware for efficiency

requires that the HV will be able to identify attempts to execute privileged instructions.

The HV is then responsible for checking whether the VM is allowed to perform the

operation it attempted to and act accordingly.

Paravirtualisation was introduced as means of alleviating the lack of hardware sup-

port and to simplify the development of HVs. Specifically, in a paravirtualised environ-

ment, VMs execute directly on hardware using modified versions of their application

code [58], using HV calls to replace the functionality of privileged instructions.

2.5.1 Review of Existing Hypervisors

This section contains a review of existing virtualisation systems. The criteria for selecting

these systems to review is the availability of information on them and the relevance to

the domain of this project. The virtualisation systems that were considered but not

reviewed extensively are:

• Freescale’s embedded hypervisor [45] is mainly targeted at high-end PowerPC

chips and is primarily used for fast networking switches and infrastructure. The

supported platforms typically have a considerably richer set of features than the

targets typically used by ETAS Ltd (eg. Infenion TriCore), therefore this HV was

not reviewed further.

51

Chapter 2. Field Survey and Review

Figure 2.7: OKL4 microvisor with secure HyperCell
TM

technology [62].

• INTEGRITY Multivisor [95] was developed by GreenHills Software. Although

there was very limited visibility of information available for it, the supported ar-

chitectures (ARM, PowerPC and Intel) imply a requirement for hardware support

for virtualisation and high-end Memory Management Unit (MMU) capabilities.

This hypervisor therefore was not investigated further.

• Wind River Hypervisor [92] follows a paravirtualisation approach. The supported

OSs are Wind River Linux and VxWorks. There is multicore support, however

the supported processor architectures are x86 and PowerPC (MPC85xx upwards),

which have considerably more resources than the hardware platforms typically

used by ETAS Ltd.

For the purpose of this thesis, out of all the virtualisation systems that were studied,

four will be reviewed: OKL4 [62], XtratuM [87], Xen [10] and PikeOS [99]. Table 2.1

summarises the key features of each of the reviewed hypervisors.

OKL4

OKL4 is a general purpose microkernel-based hypervisor developed by Open Kernel

Labs, in order to provide minimal hardware abstraction to accommodate multiple op-

erating systems [51, 62, 81]. The supported hardware architectures for OKL4 are ARM,

52

2.5.
H

ypervisor
System

s

OKL4 XtratuM Xen PikeOS

Supported Architectures ARM, Intel, MIPS
LEON2, LEON3,
LEON4, x86, ARM
Cortex R4f

x86, x86_64 and
ARM. Legacy
support for IA64

ARM, MIPS, PPC,
SH4, x86, x86-64,
SPARC V8, LEON

Virtualisation approach
Full virtualisation
and
paravirtualisation

Paravirtualisation
Full virtualisation
and
paravirtualisation

Paravirtualisation

Static memory allocation Yes Yes Yes Yes
Multiple partitions Yes Yes Yes Yes
Temporal isolation Partly Yes Yes Yes
Spatial Isolation Yes ARINC-653 Yes ARINC-653

Inter-process communication Yes ARINC-653
Partial support via
shared memory

ARINC-653

Direct device access Yes Yes Yes Yes
Shared peripheral support Yes Yes Yes Yes
Interrupt virtualisation Yes Yes Yes Yes
Real-time support Partly Yes Yes Yes

Scheduling
Round-robin,
priority-based
preemptive scheduler

ARINC-653 based
fixed cyclic
scheduling

Credit, Credit 2,
RTDS and
ARINC-653

Combination of
time-driven and
priority-based
scheduling

Bare-metal Yes Yes Yes Yes

Table 2.1: Summary of reviewed hypervisors

53

Chapter 2. Field Survey and Review

MIPS and Intel. Since ARM and MIPS are already being used in the automotive in-

dustries for ECUs, and because OKL4 is characterised by efficiency and following a

minimalist approach, it was chosen for review.

The main claim of OKL4 is that it provides the facilities to host multiple isolated

VMs. Each VM runs in a non-privileged mode within the boundaries of a secure cell.

These cells are part of the Secure HyperCell
TM

Technology, which offers an infrastructure

for the development of complex software systems using simpler components. A key

feature of using this technology is spatial protection, using the underlying hardware

MMU.

Secure cells are also used for resource management by allocating each resource to

the appropriate VMs. This enables the microkernel to identify invalid accesses to re-

sources that could potentially violate the integrity of the system. Although the OKL4

microkernel provides access protection, the system is not deadlock free. Instead, it

offers deadlock detection functionality that terminates all threads in the dependency

chain [81]. This behaviour can potentially cause problems that affect the integrity of the

system, as it may erroneously terminate a VM.

Another claim of OKL4 is its capability to support real-time OSs. Specifically, it is

stated that this is due to the performance optimisations to functions that have a big

impact on real-time response. These functions include context switching and inter-

process communication (IPC). Additionally, it allows the guest OSs to allocate priorities

to their tasks, in order to help achieve the desired real-time properties. Even though

OKL4 seems to be very optimised, no analysis of the real-time properties was found.

OKL4 also tries to make the development of device drivers easier. Instead of having

to develop a device driver for each VM, OKL4 supports sharing drivers from general

purpose OSs, which typically offer a richer set of facilities. Specifically, for each device a

physical driver is needed, which is then used by the guest OSs with the implementation

of virtual drivers. This can be interpreted as device virtualisation.

Temporal protection in OKL4 is enforced by a round-robin, priority-based, preemp-

tive scheduler. The guest operating systems are able to implement their own local

scheduling policy for ordering the execution order of their tasks. OKL4 is responsi-

ble for determining which VM executes at any time with respect to the priority of each

VM. Whenever the CPU time allocation of a VM is used up, it is preempted in order to

allow the next VM to execute.

54

2.5. Hypervisor Systems

Figure 2.8: XtratuM architecture [29].

XtratuM

XtratuM [29, 72, 73, 87] is a hypervisor, that was designed for the use in real-time safety

critical systems by following the ARINC-653 standard for spacial and temporal parti-

tioning in real-time operating systems for the avionics domain. Since avionics is a real-

time safety-critical domain, it offers properties that are also relevant in the automotive

domain.

A requirement for XtratuM is the modification of guest OSs in order to work with

XtratuM [29]. Specifically, privileged instructions are replaced with hypervisor calls

(hypercalls) that are processed by the hypervisor, which acts as a service provider. This

technique is referred to as paravirtualisation. Para-virtualisation offers two main ben-

efits [58] first it simplifies the hypervisor design and implementation, and second it is

generally faster than having full virtualisation. The obvious drawback is the require-

ment to port an OS to work with XtratuM.

Figure 2.8 illustrates an architectural overview of the XtratuM hypervisor [29]. This

architecture can be divided in three layers: hardware-dependent layer, internal service

layer and virtualisation service layer. The hardware-dependent layer includes a set of

driver that manage low-level, hardware-dependent functions such as interrupt handling,

timers, memory management etc. In order to hide the complexity, a hardware abstrac-

tion layer (HAL) is used. The internal service layer is responsible for booting the system,

as well as the provision of essential C functions like memset and strcpy. Lastly, the vir-

55

Chapter 2. Field Survey and Review

tualisation service layer functions as a service provider that will enable the hypervisor

to support the paravirtualisated partitions.

XtratuM always runs in privileged mode, whereas the guest OSs execute in a non-

privileged mode [29, 73]. Given that the VMs do not share any memory, and this prop-

erty cannot be modified in a non-privileged mode, XtratuM provides strong spacial

isolation.

In order to provide temporal isolation, each partition is scheduled for execution

using the hypervisor’s fixed cyclic scheduler [29,73]. On one hand, due to the simplicity

of the scheduler, it is possible to reason about the system’s real-time properties. On the

other hand, this can prove to be insufficient to support multiple OSs with different levels

of criticality.

In order to implement IPC, ARINC-653 is used as a standard to provide a port-

based communication system. Since ARINC-653 is a standard used in the avionics

industry, which is has high robustness and safety requirements, it can be said that

XtratuM provides robust communication mechanisms.

The guest OSs are not able to do interrupt and trap handling without support from

XtratuM. Specifically, when a trap or an interrupt occurs, the hypervisor determines

whether it should be forwarded to a guest OS according to a configuration file. If so,

the exception is propagated to the appropriate guest OS, which then handles it in a non-

privileged mode. This indirection has some impact in performance, however it ensures

that a guest OS cannot violate the system’s integrity when exceptions are raised.

Xen Project

Xen Project is an open source hypervisor, developed by Barham et al [10] in 2003, ini-

tially for x86 architectures and was later ported to support ARMv7 and ARMv8 archi-

tectures [67]. Xen is used in many applications, including server virtualiation, desktop

virtualisation and embedded systems [69].

The architecture of Xen is summarised in Figure 2.9. The Xen HV sits directly on top

of the hardware and to manage CPU, interrupts and memory accesses. There are two

supported modes of virtualisation: paravirtualisation, and full virtualisation. Virtual

machines using full virtualisation can also use paravirtualisation features in order to

improve performance with fewer guest modifications. The guest VMs are isolated from

one another and prohibited from having privileged access to hardware or IO.

56

2.5. Hypervisor Systems

Figure 2.9: Xen Project Hypervisor architecture [69].

At system initialisation, the first VM created is Domain 0, also referred to as the

control domain. Domain 0 offers core functionality required by the Xen Project Hyper-

visor to function. This specialised VM has direct access to hardware and is responsible

to mediate IO operations and communication between VMs. It also provides a control

interface, which allows the system to be controlled by the outside world. Domain 0 is

also able to create, destroy and configure VMs using the Toolstack.

The currrent version of Xen (v 4.5) supports four schedulers [68]: Credit, Credit 2,

RTDS [107, 108] and ARINC 653. Credit 2 and RTDS are currently in an experimental

phase, however they are expected to be supported in the next release (v 4.6). Credit

and Credit 2 are proportional share schedulers, where each VM is allocate a weight and

a cap. The weight represents the portion of CPU time the VM is allowed to use with

relative to the weights of the other VMs. The cap is the maximum CPU time the VM

will receive. The Real-time Deferrable Server (RTDS) scheduler [68,107,108] is designed

to provide a guaranteed amount of CPU time to each VM. The RTDS scheduler allocates

each VCPU is allocated a budget and a period. The VCPUs then function as deferrable

servers and are scheduled using preemptive EDF.

PikeOS

PikeOS [99] is a hypervisor developed by SYSGO AG. The focus of this hypervisor is

to use virtualisation in embedded safety-critical domains [58, 59]. Similarly to OKL4,

57

Chapter 2. Field Survey and Review

Figure 2.10: PikeOS partitioning according to ARINC-653 [99].

PikeOS is also a microkernel-based hypervisor. It is available on a wide variety of

hardware architectures: ARM, MIPS, PPC, SH4, x86, x86-64, SPARC V8, LEON. As

suggested by Figure 2.10, ARINC-653 is used in order to ensure safe partitioning.

For non-safety-critical OSs, PikeOS supports dynamic memory allocation [59]. Specif-

ically, the guest OS is able to request for additional memory or release memory at run-

time. In the case of safety-critical real-time OSs, a static memory allocation is supported.

Whereas, for richer OSs it is possible to have requests for additional memory or for re-

leasing memory. A potential problem of supporting both dynamic and static memory

allocation is the temporal interference between two VMs due to changes in the memory

mapping.

In order to simplify and increase the performance of accessing IO devices, drivers

are implemented with user-level code in the VMs [58]. Therefore, in order to access an

IO device a guest OS only requires read/write access to the memory location where

the device registers are mapped to. This avoids the problem of having to virtualise the

devices, therefore having good performance without jeopardising the system’s integrity.

This implies that PikeOS supports device virtualisation, however no evidence was found

to indicate support of shared devices.

As stated by Kaiser [58], PikeOS supports non-real-time, time-driven real-time and

event-driven real-time VMs. The VMs in the system are partitioned into a set of do-

mains, τi [56, 57]. The first domain, τ0, is referred to as the background domain and

the rest as foreground. The VMs are allocated priorities, with real-time VMs having

medium to high priorities and non-real-time a common low priority. The event-driven

and non real-time VMs are allocated to τ0, whereas the time driven ones are spread

58

2.6. Industrial Context and Research Gap

across the foreground domains, τi(i 6= 0). At each point in time two domains are active

at a time: the background and one of the foreground ones. The scheduler then decides

which VM is allowed to execute according to the priorities of the VMs in the active

domains. This scheduling approach addresses the ARINC-653 fixed cyclic scheduler’s

low-utilisation issue.

Similarly to XtratuM, PikeOS is based on the ARINC-653 standard for IPC. Apart

from using IPC to establish communication between VMs, it is also used for interrupt

handling. Specifically, when an interrupt is raised, the hypervisor determines whether

it is to be handled by a VM or not. If so, then it is converted to an IPC message, which

is sent to the corresponding VM. Then, the VM is responsible for processing the IPC

thereby handling the interrupt in a non-privileged mode.

Verbeek et al [102] worked on the formalisation of PikeOS API calls. In their pa-

per, they propose a methodology for developing high-level functional specifications of

separation kernels. They used their methodology to formalise and prove transitive non-

interference of the PikeOS API calls that require secure information flow.

2.6 Industrial Context and Research Gap

This section sets the industrial context of this research project, by summarising the in-

dustry practices and trends as observed throughout this research project. First we pro-

vide a brief description of BMW’s Domain Controlled Architecture. RTA-HV, which is

a real-time hypervisor developed by ETAS Ltd, is then reviewed in order to identify the

gap addressed by this research project.

2.6.1 Domain Controlled Architecture

The high complexity of the electronics and software in vehicles motivated the devel-

opment of the Domain Oriented Architecture by BMW, which proposes a partitioning

method where ECUs are allocated to Domain Control Units (DCU) [88–90]. Although

the decentralised approach, which is currently the most common practice in the au-

tomotive industry, offers a high level of flexibility, it also increases the development

costs. Moreover, there is an increasing need for cross-ECU communication, therefore

potentially overloading the communication buses.

An example of a domain oriented architecture is presented in Figure 2.11. The ECUs

59

Chapter 2. Field Survey and Review

Chassis Infotainment
Driver

Assistance
Powertrain
Switch

Body

DCU ECU Communication Link

Figure 2.11: Domain Oriented Architecture [88].

are clustered with respect to their functionality. The ECUs within a domain communi-

cate using a number of communication channels, that are connected to their respective

domain controller. This arrangement ensures that the communication paths between

tightly related software components are kept as short as possible. Domain controllers

are connected with one another using fast links, such as Ethernet, allowing communica-

tion across domains.

2.6.2 ETAS Hypervisor (RTA-HV)

A current trend in the automotive industry is the use of multicore hardware platforms

for the reduction of power consumption [90]. Multicore is supported since AUTOSAR

4.0, however adapting legacy software to take advantage of multicore is a difficult job.

Virtualisation is identified as a possible solution for the integration of multiple ECUs

into a single DCU [90]. RTA-HV, which is a deeply embedded hypervisor developed

by ETAS Ltd was investigated. RTA-HV is a multi-core bare-metal hypervisor, imple-

mented on AURIX and ARM processors [78, 90].

Figure 2.12 summarises the abstract architecture of the RTA-HV. RTA-HV is logically

located directly above the hardware and executes in a privileged mode on the processor.

It primarily follows a paravirtualisation approach, providing the VM applications with

an API of hypervisor calls and a set of emulated instructions that can be decoded and

60

2.6. Industrial Context and Research Gap

Hypervisor

MPU
abstrac�on

Excep�ons

Services

VM-VM
Comms VDE

Own IO Own IO Own IO Own IO
CPU
MPU

CPU
MPU

Shared
IO

Virtual
Machine

Virtual
Machine

Shared IO
VDE

Figure 2.12: Abstract architecture of RTA-HV [79, 90].

executed by the HV on the VM’s behalf. The Virtual Machines or Partitions execute in

user mode, which restricts their access to privileged states.

Device Management

The VM applications can access non-shared IO devices both directly and through the

hypervisor. Direct access to IO devices has no performance degradation and, in the

case of AUTOSAR, requires no changes to MCAL, however depending on the system

configuration it may not be possible due to hardware limitations. Specifically, in a

system with many IO devices the number configurable memory areas provided by the

MMU/MPU may not be sufficient. This limitation can be overcome by allowing the

VM applications to access IO through HV calls. In this case, the HV is responsible for

checking whether the HV call is permitted before it is serviced.

Access to shared devices is managed using Virtual Device Emulators (VDE). VDEs

provide an abstract interface that allows VMs to access devices. The primary use case for

VDEs is to allow sharing of hardware resources between HV in a manner that prohibits

data corruption due to concurrent access. VDEs are treated as part of the hypervisor and

are executed in a privileged mode. Apart from managing concurrent access to hardware

devices, VDEs can also be used to simplify potentially hard-to-use device interfaces, or

act as a virtual communication device between HV, allowing for fast inter-partition

61

Chapter 2. Field Survey and Review

Benchmarks
Number of Cycles

Native Virtualised Overhead
Two nops 2 3 50%
Setting BIV 7 211 2914%
Four writes to the PSW 2 469 23350%
Read from STM_CLC (HV_ReadUI()) 5 164 3180%
Retrieving priority 5 13 160%
Setting priority 2 166 8200%
Write to interrupt register (HV_WriteUI()) 6 153 2450%
Return from interrupt 13 27 107%
Interrupt entry 3 105 3400%
Entering trap 26 100 284%
Return from trap 11 13 18%
Set untrusted mode 10 1503 15030%

Table 2.2: Timing Measurements and Virtualisation Overheads of Sample Application
on Infineon AURIX TC27x [90].

communications without requiring access to external devices, such as CAN controllers.

Part of the RTA-HV specification is an API for the development of custom VDEs.

Partition Interrupts

RTA-HV assumes an interrupt-driven system. Interrupts have unique priorities and are

either handled by the partitions or VDEs. The priority level of any partition interrupt

is strictly lower than the priority of VDE interrupts. Temporal protection is enforced by

prohibiting partitions to disable all interrupts or raise the core’s Interrupt Priority Level

(IPL) above that of their highest priority interrupt.

The minimisation of overheads, implementation/porting costs and low interrupt

latency drove the design of RTA-HV to uniquely map each VM to a single core. Table

2.2 summarises the main virtualisation overheads, comparing them to the overheads of

a non-virtualised system on Infineon AURIX TC27x hardware. Forwarding interrupts to

the applications running in the VMs has significant overheads due to lack of hardware

support. The main source of the additional latency is the need to emulate the BISR

(Begin Interrupt Service Routine) instruction. BISR is used to set the core in an interrupt

handling state by saving the execution context and changing the current priority level.

Integration Overheads

Without the use of virtualisation, integrating AUTOSAR SWC can have high costs [79]

due to the complexity of RTE and BSW, which are configured using many parameters,

62

2.6. Industrial Context and Research Gap

Hypervisor

Applica�on
So�ware

Component

AUTOSAR
Interface

Actuator
So�ware

Component

AUTOSAR
Interface

Sensor
So�ware

Component

AUTOSAR
Interface

Applica�on
So�ware

Component

AUTOSAR
Interface

Standardised
Interface

Opera�ng
System

St
an

da
rd

is
ed

In
te

rf
ac

e

AUTOSAR Run�me Environment (RTE)

Standardised
Interface

Services

Standardised
Interface

Standardised
Interface

Communica�on

Standardised
Interface

AUTOSAR
Interface

ECU
Abstrac�on

Standardised
Interface

AUTOSAR
Interface

Complex
Device
Drivers

Standardised
Interface

Microcontroller
Abstrac�on

ECU Hardware

AUTOSAR So�ware

...

AUTOSAR Middleware

Basic So�ware

Applica�on
So�ware

Component

AUTOSAR
Interface

Actuator
So�ware

Component

AUTOSAR
Interface

Sensor
So�ware

Component

AUTOSAR
Interface

Applica�on
So�ware

Component

AUTOSAR
Interface

Standardised
Interface

Opera�ng
System

St
an

da
rd

is
ed

In
te

rf
ac

e

AUTOSAR Run�me Environment (RTE)

Standardised
Interface

Services

Standardised
Interface

Standardised
Interface

Communica�on

Standardised
Interface

AUTOSAR
Interface

ECU
Abstrac�on

Standardised
Interface

AUTOSAR
Interface

Complex
Device
Drivers

Standardised
Interface

Microcontroller
Abstrac�on

ECU Hardware

AUTOSAR So�ware

...

AUTOSAR Middleware

Basic So�ware

Hypervisor

Applica�on
So�ware

Component

AUTOSAR
Interface

Actuator
So�ware

Component

AUTOSAR
Interface

Sensor
So�ware

Component

AUTOSAR
Interface

Applica�on
So�ware

Component

AUTOSAR
Interface

Standardised
Interface

Opera�ng
System

St
an

da
rd

is
ed

In
te

rf
ac

e

AUTOSAR Run�me Environment (RTE)

Standardised
Interface

Services

Standardised
Interface

Standardised
Interface

Communica�on

Standardised
Interface

AUTOSAR
Interface

ECU
Abstrac�on

Standardised
Interface

AUTOSAR
Interface

Complex
Device
Drivers

Standardised
Interface

Microcontroller
Abstrac�on

ECU Hardware

AUTOSAR So�ware

...

AUTOSAR Middleware

Basic So�ware

Hypervisor

Applica�on
So�ware

Component

AUTOSAR
Interface

Actuator
So�ware

Component

AUTOSAR
Interface

Sensor
So�ware

Component

AUTOSAR
Interface

Applica�on
So�ware

Component

AUTOSAR
Interface

Standardised
Interface

Opera�ng
System

St
an

da
rd

is
ed

In
te

rf
ac

e

AUTOSAR Run�me Environment (RTE)

Standardised
Interface

Services

Standardised
Interface

Standardised
Interface

Communica�on

Standardised
Interface

AUTOSAR
Interface

ECU
Abstrac�on

Standardised
Interface

AUTOSAR
Interface

Complex
Device
Drivers

Standardised
Interface

Microcontroller
Abstrac�on

ECU Hardware

AUTOSAR So�ware

...

AUTOSAR Middleware

Basic So�ware

Hypervisor

Supplier 1

Supplier 2

Integrator Integrator

Figure 2.13: Hypervisor based cross-company workflow [79].

as stated in Section 1.1. In order for applications to work in a RTA-HV VM some porting

effort is required, viewing the ECU code as a single entity, since it follows a paravirtu-

alisation approach. The first part that needs to be modified is the startup code, since

the HV is responsible for some of the initialisation code. The OS code also needs to be

modified by replacing privileged operations, such as changing interrupt priorities, with

HV calls. Porting an application to work on top of RTA-HV is expected to be simpler in

comparison to the integration of individual SWCs. Enabling inter-VM communication

is another area that requires some porting effort. Specifically, a VDE needs to be created

to emulate a communication interface between VMs.

Figure 2.13 summarises the cross-company workflow for the integration of a HV sys-

tem using components from multiple suppliers. The Integrator provides the Suppliers

with example development hardware and the hypervisor configuration. The Suppliers

develop their ECU software to work within a virtual machine and deliver the complete

ECU images to the Integrator. The Integrator is then responsible for flashing the ECU

images and the HV on the same ECU, perform the integration testing.

63

Chapter 2. Field Survey and Review

2.6.3 Research Gap

RTA-HV is successful in reducing the ECU count with fewer, more powerful units. The

one VM per core approach offers the lowest possible latency on a virtualised system,

however it can potentially result in the underutilisation of resources. This problem

becomes more apparent when considering the integration of ECUs with low CPU utili-

sation, such as the heater controller or the wiper module. The identified research gap is

the investigation of allowing multiple VMs to execute on a single core, in order to max-

imise the resource utilisation, while taking into account the need for minimal interrupt

latency and overheads.

From a scheduling point of view, the methods used by traditional hypervisor systems

assume limited to no visibility with regards to the execution of the applications within

the VMs. In the case of having automotive software running in the VMs, some structural

information is available. Additionally, the Integrator and Suppliers of Figure 2.13 can be

the same company, or collaborate in allowing visibility to some degree. A research gap

is therefore identified, where a scheduling method for a hypervisor system can schedule

and allocate the CPU resources at the task level rather than the VM level.

2.7 Summary

In this chapter we present a review of the relevant literature, as well as identify the

industrial relevance of this research project. We provide an introduction to timing pre-

dictability and real-time scheduling concepts. The concept of mixed criticality schedul-

ing is then introduced, providing an overview of the literature relevant to this research

project. The focus of this chapter then shifts to hierarchical scheduling and hypervisor

technology. After both topics are introduced, we provide a review of existing hypervi-

sor systems. Having reviewed the relevant literature, we then proceed to provide the

industrial context and identify the research gap using the experience of collaborating

with ETAS Ltd.

In the next chapter we propose a scheduling model that enables the hypervisor to

take advantage of having some visibility inside the VMs at the task level.

64

CHAPTER 3
System Architecture

A modern vehicle may contain software from different suppliers, as well as a mixture

of legacy and modern code. Modifying legacy code in order to run in a paravirtualised

system can be an expensive process. Therefore, in the case of virtualising legacy systems,

these modifications should be kept to a minimum. In modern code, such as AUTOSAR-

based OSs, the modularity of the software can be taken advantage of to provide the

additional flexibility offered by our approach.

In this chapter, we present an architectural design for a hypervisor system and a

scheduling framework that supports the execution of multiple applications on a single

core. The proposed architecture is highly driven by the automotive industry require-

ments, while taking into consideration the ISO 26262 standard.

HV

CPU0 CPU1

p0 p1

(a) Current configuration of RTA-HV.

HV

CPU0

p0 p1 ... pn

(b) Configuration of the proposed architec-
ture.

Figure 3.1: Comparison between the current version of RTA-HV and the proposed ar-
chitecture.

65

Chapter 3. System Architecture

3.1 Requirements and Assumptions

Figure 3.1a summarises the currently supported configuration of RTA-HV. As stated in

Section 2.6.1, RTA-HV, the hypervisor developed by the industrial sponsor, supported

a one-to-one partition to CPU mapping during the work done towards this research

project. The high level requirement of the proposed architecture is the support for

more than one partition per CPU. This requirement is decomposed into lower level

requirements based on domain-specific requirements as set by the industrial sponsor

and compliance with the automotive standard ISO-26262 [54]. As dictated by ISO 26262-

1:2011(E) Definition 1.49 [54], Freedom From Interference (FFI) is defined as:

“absence of cascading failures between two or more elements that could lead to the

violation of a safety requirement”

A cascading failure is defined as a failure of one element in the system, which can

cause a failure in another element. In terms of the proposed hypervisor architecture, the

partitions are considered as the constituent elements. The hypervisor is the mechanism

for enforcing the necessary isolation between the partitions.

3.1.1 Spatial Isolation

A key guideline introduced by ISO 26262-6:2011(E) Annex D is FFI [54,88]. Content cor-

ruption and protection from read/write access to the memory space of other partitions

are identified as potential effects of faults in the software components. In hypervisor

systems, these effects are mitigated by enforcing spatial isolation. Specifically, partitions

are prohibited from accessing and modifying the hypervisor’s or another partition’s

memory space. Ensuring that a partition is unable to access the memory space of an-

other partition (read or write) is also a protection mechanism for IP rights, which partly

falls in the security use case of Section 1.2.

Modern processors support spatial protection, using either their memory manage-

ment unit (MMU) or memory protection unit (MPU). The MMU/MPU is configured

directly by the hypervisor, as shown in the example of Figure 3.2. It is assumed that

the hypervisor is allowed to have full read/write access to the entire memory space.

The partitions only have access to their own memory space. Inspired by RTA-HV, in

the case where a partition attempts an illegal memory access, it will be restarted by the

hypervisor, unless an alternative recovery routine is defined.

66

3.1. Requirements and Assumptions

HV Vector Table

Par��on Code and Data

Par��on p1

Virtual Register Block (VBR1)

p1 Vector Table

Par��on Code and Data

Par��on p0

Virtual Register Block (VBR0)

p0 Vector Table

HV Code and Data

Hypervisor

Accessible
by HV

Accessible
by p1 and HV

Accessible
by p0 and HV

Figure 3.2: Example of logical memory layout in a two-partition system.

The Virtual Register Blocks (VRB) are memory regions that are only accessible by

the hypervisor and are associated with their corresponding partitions. VRBs are used

to store the processor state information during preemption, to allow suspending and

resuming the execution of partitions.

3.1.2 Temporal Isolation

The primary requirement of the proposed architecture is the support for multiple par-

titions executing on a single processor. The hypervisor must ensure the temporal iso-

lation between partitions, by enforcing FFI. Specifically, failure of one partition to meet

its temporal requirements must not cause other partitions or the hypervisor to miss

their deadlines. Temporal isolation is achieved using execution servers, as described in

Sections 3.3 and 3.5.

It is assumed that each partition in the system may contain event-driven tasks, time-

driven tasks or a collection of both. A key driver is the minimisation of the response

67

Chapter 3. System Architecture

time of event-driven tasks. The minimisation of event-driven task response times is

a requirement set by the industrial sponsor. This can potentially reduce the overall

resource utilisation of the system, as it can introduce a tradeoff between utilisation and

latency. The use of separate execution servers for each type of task, as discussed in

Section 3.3, aims to meet the need for low latency of event-driven tasks, as well as

maximise utilisation of time-driven tasks.

The developed architecture must have low and predictable implementation over-

heads. This requirement is also present in AUTOSAR-based OS. The use of FPS in

AUTOSAR meets this requirements, as it is relatively simple to implement and anal-

yse. Additionally, FPS has low implementation overheads, which are incorporated in

the schedulability analysis described in Section 3.7.

3.2 Task Model

Traditional hypervisor scheduling approaches were developed assuming no visibility at

the task level in the partitions. In this section we define a flexible task model, which

allows exploiting visibility, where that is available, taking into account implementation

overheads. First, we classify tasks as periodic or sporadic. Periodic tasks are strictly

periodic, whereas sporadic are event-triggered tasks with a known minimum interar-

rival time. The main motivation behind the proposed scheduling method is that spo-

radic tasks require quick response times, while periodic ones can be serviced in a more

efficient, lower overheads approach. All operations performed by the hypervisor are

executed in a non-preemptive manner and are described as highly predictable pieces of

code.

Ci
cs1 Ci

1 Ci
cs2

A B C D

Figure 3.3: Task structure.

The order of execution of the regions of a task τi is shown in Figure 3.3. A task τi is

defined by the tuple (Ccs1
i , Ci, Ccs2

i , Ti, Pi):

• Ccs1
i : the scheduling and context switching overheads required before the exe-

cution of the main task body. In sporadic tasks, this section is performed by the

hypervisor and is therefore cannot be preempted. Periodic tasks can be preempted

68

3.2. Task Model

by the hypervisor during this section but not by other periodic tasks of the same

partition. This is because this operation is performed directly by the partition.

• Ci: the time required for the task’s main body to execute. Partition tasks (periodic

and sporadic) can be preempted while in this section, however hypervisor tasks

run with no preemption.

• Ccs2
i : the overheads of terminating the execution of the task. The preemption rules

that apply for Ccs1
i also apply during the execution of this section.

• Ti: the period or minimum interarrival time of the task.

• Pi: the priority level of the task. The smaller the numeric value of P, the higher the

priority.

Figure 3.4 demonstrates the preemption mechanism described in this section, using

an example of a simple system with two sporadic tasks, τ0 and τ1. In the simple case, as

shown in Figure 3.4a, τ1 is released, the hypervisor forwards the event to the partition,

which then executes to completion before the release and execution of τ0.

The second example, shown in Figure 3.4b, demonstrates preemption, focusing on

the case where a higher priority task is released during the execution of a preemptive

region of a lower priority one. In this example, τ0 is released and is forwarded to the

appropriate partition, which in turn starts executing the task body. During the execution

of the preemptive region of τ0 a higher priority task, τ1, is released. The execution of τ0 is

suspended, allowing for τ1 to be forwarded and executed to completion. The execution

of τ0 is then resumed until its termination.

In Figure 3.4c, τ0 is released and the hypervisor is executing the forwarding routine

when τ1 is released. During the execution of the forwarding routine, all interrupts

are masked and therefore τ1 is blocked. The execution of the forwarding routine of τ0

terminates, unmasking the interrupt line associated with τ1. The forwarding routine of

τ1 is performed, allowing τ1 to execute to completion since it is the highest priority task

in the system that is eligible to execute. After the termination of τ1, the execution of τ0

resumes.

69

Chapter 3. System Architecture

τ0

τ1

(a) Simple case of sporadic task execution.

τ0

τ1

(b) Aperiodic task execution without blocking.

τ0

τ1

(c) Aperiodic task execution with blocking.

Preemp�ve regionNon-preemp�ve region Release

The examples in this figure demonstrate the execution of sporadic tasks. We consider a system
with two sporadic tasks, τ0 and τ1. For simplicity, we assume that the servers associated with

both tasks always have enough capacity and τ1 is of higher priority than τ0.

Figure 3.4: Aperiodic task execution examples.

70

3.3. Execution Servers

3.3 Execution Servers

Our approach aims to minimise the response time for event-triggered tasks, while at

the same time maximise schedulability and enforce temporal protection between the

different partitions1. The CPU time is shared between the partitions using execution

servers. Temporal protection is achieved by prohibiting partitions to execute for more

than their servers’ capacity. Each server is associated with a hypervisor task, which is

responsible for replenishing its capacity.

3.3.1 Event-driven Execution Servers

Aperiodic tasks are released in response to events and therefore need to be serviced

with the lowest possible latency. To facilitate this requirement, two types of execution

servers were considered: sporadic servers and deferrable servers.

Sporadic servers function in a similar manner to deferrable servers. The main differ-

ence between the two is that the capacity of sporadic servers is only replenished after it

is depleted. Using sporadic servers has the benefit of potentially requiring fewer replen-

ishments, which has an impact on the required overheads. As was identified in Section

2.4.1, sporadic servers suffer from higher implementation overheads, computation com-

plexity and memory requirements [23, 96]. Sporadic servers are therefore rejected, as

one of the main requirements for the proposed architecture is low overheads.

Deferrable servers have the potential drawback of being replenished more than nec-

essary, which translates to increased overheads. The memory and computational re-

quirements of deferrable servers are typically lower than sporadic servers [23,96], there-

fore sporadic tasks execute using deferrable servers that are assumed to always have

enough capacity to service all event-driven tasks, given their WCET, hypervisor over-

heads and period. With the use of a deferrable server, no server capacity is expended

when the system is idle and events are serviced as they arrive, provided they have the

highest priorities in the system.

Deferrable servers offer low response time for the sporadic tasks, however they are

inferior in terms of schedulability in comparison to periodic servers. This is because

deferrrable servers can use their capacity back-to-back, making the jitter of the serviced

tasks Ji = Rs − Cs (see Section 3.8.3).
1A similar approach by Missimer et al. [76] using sporadic and priority inheritance bandwidth preserv-

ing servers (PIBS) was published during the write-up of this Thesis.

71

Chapter 3. System Architecture

3.3.2 Time-driven Execution Servers

For servicing time-driven tasks, the focus shifts from low latency to high schedulability.

Therefore two execution server candidates are condidered: polling servers and periodic

servers.

Polling servers and periodic servers have similar behaviour. At the start of the pe-

riod, the servers are at maximum capacity and service tasks until their capacity is de-

pleted. Both servers have low computational and memory requirements. The difference

between polling and periodic servers is that polling servers lose their remaining capac-

ity when no task is ready to execute. Although the additional capacity can potentially

be utilised by other entities in the system, polling servers suffer from low performance,

therefore they were rejected.

The time-driven tasks in the system are executed using a periodic server in order

to alleviate this trade off, therefore improving schedulability, without compromising on

the low latency required by event-driven tasks.

3.3.3 Operation of the Execution Servers

The association between servers and tasks is defined using matrix M. The rows of

the matrix represent the tasks in the system, whereas the columns are the servers. All

elements can take the values 0 or 1. If a task τi is serviced by sj, then Mτi ,sj = 1, otherwise

Mτi ,sj = 0. Moreover, a task can be serviced by exactly one server, which implies that

the sum of each row results in 1.

M =



HV DS0 DS1 PS0 PS1

τ0 1 0 0 0 0

τ1 1 0 0 0 0

τ2 1 0 0 0 0

τ3 1 0 0 0 0

τ4 0 0 1 0 0

τ5 0 1 0 0 0

τ6 0 0 0 1 0

τ7 0 0 0 0 1



(3.1)

Equation (3.1) is an example configuration of an association matrix of a simple sys-

72

3.3. Execution Servers

τPS

τ0

s

(a) Periodic server.

τDS

τ0

s

(b) Deferrable server.

Task execu�on

Server execu�on

Non-preemp�ve region

Release

Figure 3.5: Execution servers examples.

tem with two partitions, p0 and p1. Each partition is associated with a deferrable and a

periodic server. Specifically, DS0 and PS0 are associated with partition p0, and DS1 and

PS1 are associated with partition p1. Each of the servers requires a hypervisor task so

that its capacity is replenished periodically. The hypervisor tasks that are responsible

for replenishing the server’s capacity are τ0, τ1, τ2 and τ3. Partition p0 has two tasks,

τ5 and τ6, and p0 also has two tasks, τ4 and τ7. τ4 and τ5 are sporadic tasks and are

therefore associated with DS0 and DS1 respectively. Similarly, τ6 and τ7 are periodic

tasks and are associated with PS0 and PS1 respectively.

The examples of Figure 3.5 demonstrate the execution of periodic and deferrable

servers. In both examples we assume a hypervisor task (τPS or τDS) that is responsible

73

Chapter 3. System Architecture

for replenishing, an execution server (PS or DS) and an application-level task, τ0, that

associated with the server. In this example we assume that both servers have the same

period and enough capacity to service τ0.

The hypervisor overheads associated with the periodic server of Figure 3.5a are

shown as the non-preemptive regions of PS. Periodic servers have generally lower

hypervisor overheads, since the hypervisor only needs to switch to the partition’s ex-

ecution context at the start of the server’s period. During the server’s execution the

partition is responsible for scheduling its periodic tasks.

In the case of deferrable servers, the hypervisor is responsible for dispatching the

sporadic tasks, preserving the server’s capacity when it is not used. The hypervisor

overheads for sporadic tasks are shown as the non-preemptive regions of τ0 in Figure

3.5b. The deferrable server’s capacity required to service a sporadic task also includes

the hypervisor overheads associated with it.

3.4 Priority Space

Figure 3.6 shows the relationship between the execution modes in terms of their cor-

responding priority levels. The hypervisor executes in hypervisor mode at the highest

system priority region. Since the hypervisor’s code is trusted and typically consists of

short, highly predictable non-preemptive tasks. The motivation behind this approach is

to allow event-triggered tasks to execute at a priority level that is strictly higher than

any time-triggered tasks.

Periodic tasks have the lowest priority range in the system. Specifically, a partition

executes in periodic mode if no event is pending and eligible to be handled. The eli-

gibility of handling an event is directly associated with the remaining capacity of the

server used by the task it triggers. A partition executing in periodic mode is responsible

for doing its own task scheduling and may therefore maintain its own internal priority

space.

3.5 Resource Management

We propose the use of a modified version of the priority ceiling protocol (PCP) for man-

aging the use of system resources. At the system level, resources are classified as shared

or non-shared. Shared resources can be used by more than one partition and therefore

74

3.5. Resource Management

DS1 DSkDS0

Hypervisor Tasks

τ1

τ2

τ5

τ8

τ9

τ0

PS0

τ3

τ4

PSk

τ11

τ12

τ10

PS1

τ6

τ7

p0 p1 pk

...

Pr
io
rit
y

Time-driven
tasks

(periodic servers)

Event-driven
tasks

(deferrable servers)

Figure 3.6: Example of a k-partition system priority space.

75

Chapter 3. System Architecture

τ0

s

R0

τ1 R0

(a) Blocking of higher priority task with
equal ceiling priority.

τ0

s

R0

τ1

τ2

(b) Preemption by a task with a higher pri-
ority than the ceiling.

We assume three tasks, τ0, τ1 and τ2 with increasing priorities. Tasks τ0 and τ1 execute using
the server s, whereas τ2 is considered a hypervisor task and can therefore execute without a

server. The resource R0 is shared by tasks τ0 and τ1.

Figure 3.7: IPCP preemption examples.

need to be accessed through the hypervisor in order to protect from unbounded block-

ing.

A non-shared resource is used by a single partition, however it may be shared across

multiple tasks within that partition. In the non-shared resources case, hypervisor sup-

port is only required if the resource is used in the sporadic mode. The use of hypervisor

support for the use of resources is required due to the overlap in priorities between

partitions.

Similarly with the immediate priority ceiling protocol (IPCP) [94], each task in the

system is assigned a static priority as described in Section 3.4. For every hypervisor

managed resource a ceiling priority is assigned, which is defined as the maximum pri-

ority of the tasks that use it. The dynamic priority of a task is therefore evaluated as the

ceiling of the task’s static priority and highest priority of all the resources it uses.

The use of IPCP guarantees that a higher priority task can only be blocked by a

lower priority task at most once. By definition of the protocol, mutual exclusion is en-

76

3.5. Resource Management

τ0

s

R0

server capacity
depleted

overrun

{

Figure 3.8: Server capacity overrun example.

forced if tasks cannot self suspend. Additionally, deadlocks and transitive blocking are

prevented. Although these are necessary properties, they are not sufficient for fault iso-

lation with respect to the level of interference between partitions. We therefore propose

two constraints.

The first constraint is to have an upper limit on the amount of time a task can spend

accessing a hypervisor managed resource. Having a limit on the time a task can access

is a mechanism for controlling the amount of time a high priority task (i.e. partition ISR)

can be blocked by a lower priority one (e.g. partition tasks executing in periodic mode).

This constraint also serves as a fault detection and isolation mechanism.

Figure 3.7 demonstrates the use of IPCP in the proposed system model. In the

example of Figure 3.7a we show the case where a higher priority task, τ1, can be blocked

by a lower priority one, τ0. Specifically, τ0 is released first and starts executing at its own

priority level. During its execution it starts using resource R0, which raises its priority

level to that of τ1, which is the ceiling priority. τ1 is released while τ0 holds the resource

and is therefore blocked until the resource is released. Releasing R0 drops τ0’s priority to

its default level, therefore allowing τ1 to preempt τ0 and execute to completion. τ0 then

resumes its execution to completion since it is the highest priority task in the system

that is ready to execute.

In the scenario exampled in Figure 3.7b, τ0 starts executing and starts using the

resource R0, raising the priority to the ceiling, which is the priority of τ1. The hypervisor

task τ2 is released and preempts τ0, since τ2’s priority is greater than the ceiling priority

of τ0. The resource can remain locked by τ0 even while it is preempted, since IPCP

is deadlock-free. τ2 executes to completion, allowing τ0 to continue executing. The

resource R0 is released by τ0, lowering its dynamic priority and continues to execute

until it terminates.

77

Chapter 3. System Architecture

The second constraint that is proposed is that a partition executing in periodic mode

must have released all hypervisor managed resources before it is preempted due to its

server’s capacity being depleted. In order to enforce this constraint while maintaining

temporal isolation, we allow a partition to overrun in its periodic mode by the maximum

length of the time interval a task can use any resource [31]. This is shown in Figure 3.8.

The overrun is then subtracted from the partition’s periodic server capacity at the next

replenishment. This ensures that when the system executes for a long amount of time,

no periodic server exceeds its average resource utilisation by continuously requesting to

use a shared resource when it has minimal capacity.

3.6 Modifications to Partitions

The proposed architecture assumes a paravirtualised approach, similar to the one sup-

ported by RTA-HV, as described in Section 2.6.1. Porting a partition to allow it to execute

on the proposed hypervisor system first requires changes to its start-up code. Specifi-

cally, part of the partition initialisation code is no longer required, since it is performed

by the hypervisor. This includes setting up the stack, interrupt tables and peripherals

that are not accessible from a non-privileged mode.

Calls to privileged instructions that cannot be efficiently emulated are also replaced

in the partition’s code by the appropriate hypervisor calls. Examples of such instruc-

tions are changing the core’s current priority level, reading/writing to IO devices and

disabling/masking interrupts.

The above changes are sufficient for a partition to execute using a hypervisor, reg-

ulating its CPU quota using just periodic servers. The use of periodic servers does not

require any visibility of the internal task structure of the partition. Taking advantage of

deferrable servers however, requires that the hypervisor has knowledge of when parti-

tion tasks are released and terminate.

Typically, all task releases are either in response to a peripheral, such as CAN, or a

scheduled timer interrupt. As in RTA-HV, all interrupts are first handled by the hyper-

visor and if appropriate are forwarded to their corresponding partition, according to the

configuration of the system. The hypervisor is therefore able to keep track of the release

times of partition tasks. The partition is responsible for informing the hypervisor the

termination of its sporadic tasks using a hypervisor call.

78

3.7. Response Time Analysis

Rs

Interference

Blocking

Server overheads

Server Execution

Figure 3.9: Server critical instance.

3.7 Response Time Analysis

The response time analysis is performed in two stages. The first stage is a response

time analysis at the server level, to determine whether the servers are guaranteed to

receive their required execution time during their periods. If the servers are guaranteed

their required capacity, the response time analysis is performed on the tasks in order

to determine whether they can meet their deadlines within their servers. Table 3.1

summarises the symbols used in the response time analysis of this section.

3.7.1 Server Schedulability

In this section we present the schedulability analysis of a set of servers. Specifically, we

consider a server to be schedulable if between any of its replenishments it is guaranteed

to receive as much CPU time as its capacity. For this analysis, we treat servers as

ordinary tasks with an execution time equal to their capacity, Cs, and a period equal

to their replenishment period Ts. The deadline of the server tasks is set to be equal to

their replenishment period (Ds = Ts).

As shown in Figure 3.9, the response time of a server, Rs, is defined as the maximum

amount of time required to use its capacity after its release. Specifically, it is the time

required for a server to execute for Ccs1
s + Cs time units. Note that the second context

switch overhead, Ccs2
s , is not part of the server’s response time.

A server can be blocked at most once if a non-preemptive region is being executed.

79

Chapter 3. System Architecture

The non-preemptive region in the system are the forwarding and return overheads (Ccs1

and Ccs2). Since hypervisor tasks are of higher priority than all servers, they are not

calculated as blocking but as interference. Therefore, the blocking of a task is considered

as the maximum execution time of all low priority non-preemptive tasks:

Bs = max
{

max(Ccs1
j , Ccs2

j)|j ∈ lp(s) ∧ j ∈ async
}
∪{

max(Ccs1
j , Ccs2

j)|j ∈ lp(s) ∧ j ∈ PS
}

(3.2)

The response time of a server can also be affected by push-through blocking as its

non-preemptive region may be executed after the deadline of the server. This is an

acceptable scenario, as the response time refers to the time required for the server to

receive its total capacity, Cs. The context switch overhead that takes place after the

server depletes its capacity, Ccs2
s can therefore be pushed through to the next period.

The blocking factor for a server therefore becomes:

BMAX
s = max(Ccs2

s , Bs) (3.3)

Next, we identify the sources of interference. For any server there are two sources of

interference: hypervisor tasks and servers with a higher ceiling priority (deferrable and

periodic).

The interference from hypervisor tasks and higher priority servers over a window w

is defined as:

Is(w) = ∑
j∈hp(s)

⌈
w + Jj

Tj

⌉ (
Ccs1

j + Cj + Ccs2
j

)
(3.4)

The response time of a server, Rs is given by the recurrence relation:

Rs =Ccs1
s + Cs + BMAX

s + ∑
j∈hp(s)

⌈
Rs + Jj

Tj

⌉ (
Ccs1

j + Cj + Ccs2
j

)
(3.5)

3.7.2 Task Schedulability

To calculate the response time of a task τi we first need to define the server load. Given

a task τi, which uses the server s, the load on the server at priority level i is given by

80

3.7. Response Time Analysis

Symbol Description
Ccs1

i Time required by the overheads before the execution of the main body
of a task or server.

Ci Execution time required by the main body of a task or the capacity of
a server

Ccs2
i Time required by the overheads after the execution of the main body

of a task or server.
Ti The period of a task or server.
Pi The priority of a task or server.
Ji Release jitter.
Bi Blocking received by tasks of priority lower than Pi.

Mi,s Returns 1 if the task τi executes using the server s.
Ri The response time of a task or server.

Ls
i (w) The load on a server s at the priority level Pi over the length of a

window w.
Ii(w) The interference received by a task or server at priority level Pi
lp(i) The set of tasks or servers of lower priority than Pi.
hp(i) The set of tasks or servers of higher priority than Pi.
async The set of sporadic tasks.
sync The set of periodic tasks.
hv The set of hypervisor tasks.
PS The set of periodic servers.
DS The set of deferrable servers.

Table 3.1: Table of symbols.

Equation (3.6). Therefore, the load of a server s in a window w at a priority level Pi and

higher is defined as the sum of Ci and the total interference from higher priority tasks

that are serviced by s.

Ls
i (w) = Ccs1

i + Ci + Ccs2
i + ∑

j∈hp(i)
Mj,s

⌈
w + Jj

Tj

⌉ (
Ccs1

j + Cj + Ccs2
j

)
(3.6)

The total length of gaps where there is no available server capacity is defined as:

(⌈
Ls

i (w)

Cs

⌉
− 1
)
(Ts − Cs) (3.7)

A task τi that uses a deferrable server can be blocked at most once if the system is

executing non-preemptive code regions. Such sections are the overheads of forwarding

events to partitions, returning from them and the context switches associated with peri-

odic servers. The blocking resulting from non-preemptive code regions of lower priority

tasks is given by Bcs
i .

81

Chapter 3. System Architecture

Ri

Interference

Blocking

Server overheads

Server Execution

Task Execution

Figure 3.10: Periodic task critical instance.

Bcs
i = max

{
max(Ccs1

j , Ccs2
j)|j ∈ lp(i) ∧ j ∈ async

}
∪{

max(Ccs1
j , Ccs2

j)|j ∈ lp(i) ∧ j ∈ PS
}

(3.8)

As identified by Davis et al [32] and later by Whitham et al [105], an additional source

of blocking for task τi is its own context switch overhead after the execution of its main

body, as this can be propagated into the next busy period. Therefore the blocking factor

for τi is the maximum of Ccs2
i and the blocking from lower priority context switching

overheads Bcs
i .

Bi = max(Ccs2
i , Bcs

i) (3.9)

Next we will define the interference of periodic and sporadic tasks. First we consider

sporadic tasks. Aperiodic tasks receive interference from higher priority sporadic tasks

and hypervisor tasks. Therefore, the interference at priority level Pi received by task τi

over a window w is defined by:

Ii(w) = ∑
j∈hp(i)

⌈
w + Jj

Tj

⌉ (
Ccs1

j + Cj + Ccs2
j

)
(3.10)

82

3.8. Worked Example

A periodic task receives interference from higher priority periodic servers, higher

priority tasks that use the same server as itself, sporadic tasks and hypervisor tasks.

Additionally, a periodic task’s response time is also affected by its server’s context switch

overhead, Ccs1
s . This behaviour is shown in Figure 3.10. In the scenario of Figure 3.10 on

arrival all higher priority tasks in the server execute, using up its capacity. On the next

server period the task receives interference from sporadic and hypervisor tasks. When

the server is able execute it first elapses Ccs1
i time units before it becomes able to start

servicing tasks. The task then starts executing and is preempted by other tasks within

the same server and subsequently by tasks outside the server.

The interference of a periodic task τi with priority level Pi, executing on server s

(Mτi ,s = 1) is given by:

Ii(w) = ∑
j∈hv

⌈
w
Tj

⌉ (
Ccs1

j + Cj + Ccs2
j

)
+ (3.11)

∑
k∈async

⌈
w + Jk

Tk

⌉ (
Ccs1

k + Ck + Ccs2
k

)
+ (3.12)

∑
l∈hp(i)

Ml,s

⌈
w + Jl

Tl

⌉ (
Ccs1

l + Cl + Ccs2
l

)
(3.13)

The response time of partition/application tasks (periodic or sporadic) is given by

the following recurring relation:

Ri = Ccs1
i + Ci + Ccs1

i +

(⌈
Ls

i (Ri)

Cs

⌉
− 1
)
(Ts − Cs) + Bi + Ii(Ri) (3.14)

Hypervisor tasks are not associated with execution servers, therefore their release

jitter is 0. In their work, Davis and Burns [30] show that the release jitter of tasks is

dependent on their period. Specifically, in the case where a task’s period is a multiple

of its server’s period it has a release jitter of 0, otherwise Rs − Ts.

3.8 Worked Example

Consider a simple system configuration with two partitions, p0 and p1 with the taskset

shown in Table 3.2. The taskset is consisted of two sporadic tasks, τ3 and τ4, and two

periodic, τ5 and τ6. Tasks τ0, τ1 and τ2 are hypervisor tasks responsible for replenishing

the server capacity. Equation (3.15) shows the task-server association matrix. The tasks

associated with partition p0 are serviced by the servers DS0 and PS0. Partition p1 is only

83

Chapter 3. System Architecture

Task Ccs1 C Ccs2 T P Type Partition
τ0 0 3 0 100 1 HV -
τ1 0 3 0 200 2 HV -
τ2 0 3 0 300 3 HV -
τ3 2 10 1 100 4 async p0

τ4 2 10 1 200 5 async p1
τ5 1 30 1 300 6 sync p0

τ6 1 30 1 400 7 sync p0

Table 3.2: Worked example tasks.

τ0

τ1

τ5

τ2

τ3

τ4

τ6

50 100 1500

Figure 3.11: Timeline of a scenario in the worked example.

associated with an sporadic task, τ4, which is serviced by the deferrable server DS1.

M =



HV DS0 DS1 PS0

τ0 1 0 0 0

τ1 1 0 0 0

τ2 1 0 0 0

τ3 0 1 0 0

τ4 0 0 1 0

τ5 0 0 0 1

τ6 0 0 0 1


(3.15)

Figure 3.11 shows a timeline of a potential scenario in the system described in this

example. All tasks are released at the start of the timeline. Hypervisor tasks (τ0, τ1 and

τ2) execute first from highest to lowest priority. The execution of tasks using deferrable

servers are delayed due to jitter, therefore the periodic server PS0 is the highest priority

84

3.8. Worked Example

entity that is ready to execute. During the execution of PS0, τ5 is serviced and executes to

completion. After the completion of τ5, τ4 becomes ready, preempting PS0. The periodic

server PS0 resumes its execution after τ4 returns. The highest priority task that is ready

to execute at this point is τ6, therefore it starts executing using ts server’s capacity CDS0 .

During the execution of τ6, τ3 becomes ready, therefore PS0 is preempted, allowing

τ3 to execute to completion. At t = 100, the hyperisor task τ0 is released, therefore

preempting the periodic server, suspending the execution of τ6. At the same time, τ3 is

released and ready to execute. The periodic server PS0 is preempted for 16 time units,

as τ0 and τ3 execute back-to-back. After τ3 returns, τ6 executes for the remainder of its

execution time.

3.8.1 Server Parameters

The period of each server is set as the minimum of the periods of the tasks serviced by it.

Therefore, the periods of the servers DS0, DS1 and PS0 are 100, 200 and 300 respectively.

Given the server periods, the minimum server capacity required by the serviced tasks is

given by:

Cs = ∑
∀i

Mi,s

⌈
Ti

Ts

⌉
(Ccs1

i + Ci + Ccs2) (3.16)

Solving for each server:

CDS0 =

⌈
100
100

⌉
(2 + 10 + 1) = 13 (3.17)

CDS1 =

⌈
200
200

⌉
(2 + 10 + 1) = 13 (3.18)

CPS0 =

⌈
300
300

⌉
(1 + 30 + 1) +

⌈
400
300

⌉
(1 + 30 + 1) = 96 (3.19)

The server overheads of PS0 are arbitrarily set as Ccs1 = 2 and Ccs2 = 1 for demon-

stration purposes. Moreover, the server periods are used as the replenishment periods

for the hypervisor tasks τ0, τ1 and τ2. Having the complete set of server and task pa-

rameters, we then proceed to determining whether the system is schedulable.

3.8.2 Server Response Time Analysis

Having all the required parameters, the first part of the analysis is the calculation of the

server response times. Starting with w0
s = Ccs1

s + Cs, the server response times is given

85

Chapter 3. System Architecture

by the recurrence relation:

wn+1
s =Ccs1

s + Cs + Bs + ∑
j∈hp(s)

⌈
wn

s + Jj

Tj

⌉ (
Ccs1

j + Cj + Ccs2
j

)
(3.20)

The blocking factor of the execution servers was defined as the maximum amount of

time spent in non-preemptive regions (Ccs1 or Ccs1) by lower priority sporadic tasks or

periodic servers. This results in B = 2 for DS0 and DS1. PS0 is the lowest priority server

in the system and therefore does not suffer from blocking. Solving Equation (3.20) for

DS0:

w0
DS0

=13

w1
DS0

=13 + 2 +
⌈

13
300

⌉
3 +

⌈
13

200

⌉
3 +

⌈
13
100

⌉
3 = 24

w2
DS0

=13 + 2 +
⌈

24
300

⌉
3 +

⌈
24

200

⌉
3 +

⌈
24
100

⌉
3 = 24

w1
DS0

= w2
DS0

, therefore the response time of DS0 is RDS0 = 24. We then proceed to

solve for DS1.

w0
DS1

=13

w1
DS1

=13 + 2 +
⌈

15
300

⌉
3 +

⌈
13
200

⌉
3 +

⌈
13
100

⌉
3 +

⌈
13
100

⌉
13 = 37

w2
DS1

=13 + 2 +
⌈

37
300

⌉
3 +

⌈
37
200

⌉
3 +

⌈
37
100

⌉
3 +

⌈
37
100

⌉
13 = 37

w1
DS1

= w2
DS1

, therefore the response time of DS1 is RDS1 = 37.Similarly, for the periodic

server PS0:

w0
PS0

=98

w1
PS0

=98 +
⌈

98
300

⌉
3 +

⌈
98

200

⌉
3 +

⌈
98

100

⌉
3 +

⌈
98
100

⌉
13 +

⌈
98
200

⌉
13 = 133

w2
PS0

=98 +
⌈

133
300

⌉
3 +

⌈
133
200

⌉
3 +

⌈
133
100

⌉
3 +

⌈
133
100

⌉
13 +

⌈
133
200

⌉
13 = 149

w3
PS0

=96 +
⌈

149
300

⌉
3 +

⌈
149
200

⌉
3 +

⌈
149
100

⌉
3 +

⌈
149
100

⌉
13 +

⌈
149
200

⌉
13 = 149

The response time of PS0 is: RPS0 = 149. The response times of all servers are less than

their periods, therefore they are guaranteed to receive the required CPU time to meet

86

3.8. Worked Example

their capacity.

3.8.3 Task Response Time Analysis

The last part of the analysis is to calculate the response time of all partition tasks in

the system to make guarantees on their worst case response time. The response time

analysis of partition tasks is calculated using the recurrence relation:

wn+1
i = Ccs1

i + Ci + Bi +

(⌈
Ls

i (w
n
i)

Cs

⌉
− 1
)
(Ts − Cs) + I(wn

i) (3.21)

where s is the server associated with task τi, such that Mi,s = 1.

Aperiodic tasks

The blocking received by sporadic tasks is calculated as the maximum non-preemptive

region of lower priority sporadic tasks and periodic servers. Therefore, the blocking

factor of all sporadic tasks is 2.

Using the simple taskset provided in this example allowed the selection of server

parameters that guarantee that there is always enough capacity to service all tasks. At

any priority level the load of the server is less than or equal to the server’s maximum

capacity, L(w)s
i ≤ Cs, therefore there are no gaps where servers have no capacity.

(⌈
Ls

i (w
n
i)

Cs

⌉
− 1
)
(Ts − Cs) = 0

The response time of τ3 is calculated solving the recurrence relation of Equation

(3.21):

w0
3 =12

w1
3 =12 + 2 +

⌈
12
300

⌉
3 +

⌈
12
200

⌉
3 +

⌈
12

100

⌉
3 = 23

w2
3 =12 + 2 +

⌈
23
300

⌉
3 +

⌈
23
200

⌉
3 +

⌈
23

100

⌉
3 = 23

w2
3 = w1

3 = 23, therefore the response time of τ3 is R3 = 23. The next sporadic task

we consider is τ4. The task τ4 receives interference from all hypervisor tasks and τ3.

Interference received by sporadic tasks are subject to release jitter, Ji = Ti − Rs, since

87

Chapter 3. System Architecture

they utilise a deferrable server. Therefore the response time of τ4 is calculated as:

w0
4 =12

w1
4 =12 + 2 +

⌈
12

300

⌉
3 +

⌈
12
200

⌉
3 +

⌈
12
100

⌉
3 +

⌈
12 + (100− 37)

100

⌉
13 = 49

w2
4 =12 + 2 +

⌈
49

300

⌉
3 +

⌈
49
200

⌉
3 +

⌈
49
100

⌉
3 +

⌈
49 + (100− 37)

100

⌉
13 = 49

The response time of τ4 was calculated as R4 = 49. The response times of both τ3 and

τ4 are less than their deadlines, which are assumed to be their periods, therefore both

sporadic tasks in the system will meet their deadlines.

Periodic Tasks

Next we calculate the response times of the periodic tasks in the system. Similarly with

the deferrable servers, the parameters of the periodic servers were selected to avoid gaps

where there is no available server capacity. Therefore,

(⌈
Ls

i (w
n
i)

Cs

⌉
− 1
)
(Ts − Cs) = 0

Periodic tasks are blocked by lower priority tasks within the same server, or lower

priority periodic servers. In the case of τ5, the blocking factor is 1, since it can be blocked

by τ6 for up to Ccs1
6 = 1 time units. Periodic tasks receive interference from hypervisor

and sporadic tasks, higher priority periodic servers and higher priority periodic tasks

that use the same servers. The response time of τ5 was calculated using the recurrence

relation:

w0
5 =31

w1
5 =31 + 1 +

⌈
31
300

⌉
3 +

⌈
31

200

⌉
3 +

⌈
31
100

⌉
3+⌈

31 + (200− 24)
200

⌉
13 +

⌈
31 + (100− 37)

100

⌉
13 = 92

w2
5 =31 + 1 +

⌈
92
300

⌉
3 +

⌈
92

200

⌉
3 +

⌈
92
100

⌉
3+⌈

92 + (200− 24)
200

⌉
13 +

⌈
92 + (100− 37)

100

⌉
13 = 92

R5 = 92, since w2
5 = w1

5 = 92. The next task we consider is τ6. τ6 is the lowest priority

task in the system and therefore receives no blocking. The response time is calculated

88

3.8. Worked Example

Name B I D R
Tasks

τ0 2 - 100 5
τ1 2 τ0 200 8
τ2 2 τ0, τ1 300 11
τ3 2 τ0, τ1, τ2 100 23
τ4 2 τ0, τ1, τ2, τ3 200 49
τ5 1 τ0, τ1, τ2, τ3, τ4 300 92
τ6 0 τ0, τ1, τ2, τ3, τ4, τ5 400 127

Servers
DS0 2 τ0, τ1, τ2 100 24
DS1 2 τ0, τ1, τ2, τ3 200 37
PS0 0 τ0, τ1, τ2, τ3, τ4 300 149

Table 3.3: Summary of the response time analysis.

as follows:

w0
6 =31

w1
6 =31 +

⌈
31
300

⌉
3 +

⌈
31

200

⌉
3 +

⌈
31

100

⌉
3+⌈

31 + (200− 24)
200

⌉
13 +

⌈
31 + (100− 37)

100

⌉
13 +

⌈
31
300

⌉
32 = 124

w2
6 =31 +

⌈
124
300

⌉
3 +

⌈
124
200

⌉
3 +

⌈
124
100

⌉
3+⌈

124 + (200− 24)
200

⌉
13 +

⌈
124 + (100− 37)

100

⌉
13 +

⌈
124
300

⌉
32 = 127

w3
6 =31 +

⌈
127
300

⌉
3 +

⌈
127
200

⌉
3 +

⌈
127
100

⌉
3+⌈

127 + (200− 24)
200

⌉
13 +

⌈
127 + (100− 37)

100

⌉
13 +

⌈
127
300

⌉
32 = 127

R6 = 127, since w3
6 = w2

6. Both response times for τ5 and τ6 are less than their periods,

therefore they are guaranteed to meet their deadlines.

System Schedulability

According to the response time analysis performed in this section, the example system

was deemed as schedulable. Table 3.3 summarises the results of the schedulability

analysis. Specifically, for each task and server in the system the calculated blocking (B),

interference (I) and response times (R) are listed. Comparing all response times with

the deadline (D) of each task, all response times are shorter than the deadlines, therefore

all tasks are schedulable.

89

Chapter 3. System Architecture

3.9 Summary

In this chapter we present the proposed system architecture for a hypervisor system that

supports mapping many partitions onto a single core. We present the proposed memory

configuration, to enforce spatial protection and support the operations required by the

scheduling model. We then focus on detailing the scheduling model, which is motivated

by the modularity of AUTOSAR-based automotive OSs.

Our approach uses a priority ordering, which is aimed to reduce the latency of

handling event-triggered events, while having a high level of processor utilisation. Tem-

poral protection is enforced using execution servers, which guarantee partitions with

a certain amount of the CPU time over a fixed period. Two types of servers are used

to minimise the latency of handling event triggered tasks, allow for high utilisation and

enforce temporal protection. Specifically, event-triggered (sporadic) tasks execute within

high priority deferrable servers, whereas time-triggered (periodic) tasks execute using

lower priority periodic servers.

In the next chapter we evaluate our architecture using a case study that was ob-

tained through our collaboration with ETAS Ltd. A partial hypervisor implementation

and a realistic application were used to obtain the necessary time measurements to re-

alise the proposed model. The realised model is then used to determine the system’s

maximum utilisation, given a priority ordering, both using the response time analysis

of this chapter and via simulation.

90

CHAPTER 4
Case Study: Engine Controller

The hypothesis of this research project, as stated in Chapter 1, is that virtualisation can

be used in the automotive industry for the integration of multiple control units on a

single processor while retaining the real-time properties of the system. The use of HV

technology as a virtualisation technique also offers the benefit for alleviating some of

the challenges identified in Section 1.1. In Chapter 2 we reviewed relevant work in the

literature as well as existing HVs. We then reviewed RTA-HV, the HV developed by

ETAS Ltd, motivating the development of the system model described in Chapter 3.

In this chapter we evaluate the proposed scheduling model in terms of utilisation

and the tightness of the schedulability analysis using a case study that was derived

from application code provided by ETAS Ltd.

First, we present an overview of the hardware platform (ARM1176-JZF-S) that was

used to obtain time measurements of the application tasks. The application tasks, which

were provided by the industrial sponsor, were ported to execute on the aforementioned

hardware platform and a measurement-based timing analysis was performed. A partial

hypervisor was implemented in order to obtain timing information for the associated

overheads. The timing information was used to generate scenarios for a custom simula-

tion. The results from the simulation runs were analysed and discussed in terms of the

architectural decisions of Chapter 3.

91

Chapter 4. Case Study: Engine Controller

System
and
User

FIQ Supervisor Abort IRQ Undefined
Secure
Monitor

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13

R14

R15

R0

R1

CSPR

R2

R3

R4

R5

R6

R7

R8_fiq

R9_fiq

R10_fiq

R11_fiq

R12_fiq

R13_fiq

R14_fiq

R15 (PC)

R0

R1

SPSR_fiq

CSPR

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13_svc

R14_svc

R0

R1

CSPR

SPSR_svc

R15 (PC)

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13_abt

R14_abt

R0

R1

CSPR

SPSR_abt

R15 (PC)

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13_irq

R14_irq

R0

R1

CSPR

SPSR_irq

R15 (PC)

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13_und

R14_und

R0

R1

CSPR

SPSR_und

R15 (PC)

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13_mon

R14_mon

R0

R1

CSPR

SPSR_mon

R15 (PC)

Figure 4.1: ARM1176JZF-S core registers.

4.1 Hardware Platform Characteristics

The experimental evaluation for the proposed system model was performed using a

custom simulator, which is detailed in Section 4.3, using measurements that were ob-

tained using an ARM1176JZF-S processor [6]. ARM1176JZF-S is a 32-bit processor based

on the ARMv6 architecture using a system control coprocessor, CP15, which is used to

read status information and to configure the processor’s functions such as interrupts,

the memory management unit (MMU) and performance monitoring.

4.1.1 Operating Modes and Core Registers

The ARM1176JZF-S processor has eight modes of execution [6]:

• User: the mode of execution that is conventionally used by user applications. In

92

4.1. Hardware Platform Characteristics

the context of the proposed system, the partitions will execute in User mode.

• System: a privileged form of User mode, typically used by the OS. This mode can

be used by the hypervisor to access the partitions’ execution context.

• FIQ: is used when handling fast interrupts.

• Supervisor: is a protected privileged mode.

• Abort: is entered in the event of a prefetch or data abort.

• IRQ: is used when handling interrupts.

• Undefined: is entered when an instruction results in an undefined exception.

• Secure Monitor: is a mode that is part of TrustZone, which is a set of security

extensions that were first introduced in ARM1176JZF-S.

Figure 4.1 lists the core registers of ARM1176JZF-S that are accessible by each mode.

Each mode has 16 general purpose registers (R0 - R15) and a status register (CSPR). SPSR

is a program status register that contains the processor’s status before a mode change

that was caused by an exception. FIQ has 8 banked registers, whereas the rest of the

privileged modes, excluding System mode, have 3. The banked registers allow for faster

exception handling since in some cases saving the banked register values can be avoided.

4.1.2 Memory Management

Memory protection in ARM1176JZF-S is implemented using an MMU based on the

ARMv6 architecture [6]. The ARMv6 MMU supports virtual to physical address trans-

lation, therefore simplifying the linking process. The support of address translation

allows partitions to be linked according to a virtual address space, instead modifying

the linker script for each partition separately to avoid clashes. The hypervisor needs

only to be aware of the physical memory address of the partitions’ entry points. This

also makes the rearranging of the memory layout of partitions simpler, since all the

required modifications are part of the hypervisor’s configuration.

Another feature of the MMU is the support of up to 16 memory domains, therefore

allowing up to 15 partitions per processor. In the ARMv6 architecture a domain is a

collection of memory regions. Each memory region has its own access rights, there-

fore allowing a partition to potentially create a custom configuration of the memory

93

Chapter 4. Case Study: Engine Controller

regions within its domain. This has the advantage of potentially reducing the migration

overheads since changes in the partitions’ memory setup can be avoided.

4.1.3 Vectored Interrupts

ARM1176JZF-S supports the use of vectored interrupts with the addition of the ARM

PrimeCell Vectored Interrupt Controller (PL192) [5]. PL192 supports up to 32 vectored

interrupt lines.

Each interrupt line can be enabled/disabled, have its handler’s address and priority

specified programmatically. Enabling/disabling certain interrupt lines is a requirement

of the proposed model, allowing masking the release of higher priority tasks when their

server’s capacity is depleted. Vectored interrupts can also be taken advantage for lower

latency, which is a key driver in the development of the proposed model.

The rationale behind the approach followed for forwarding and returning from in-

terrupts is to minimise the required changes to the partition code. Therefore, the en-

vironment provided to the partition by the hypervisor after an interrupt is forwarded

must reflect the hardware’s behaviour.

On arrival of an interrupt the processor saves its state on the SPSR, the next instruc-

tion is preserved in the link register, R14. The processor then enters its relevant interrupt

state (FIQ or IRQ, depending on the type of interrupt), and the address of the appropriate

exception vector is set as the program counter, R15. In the case of a partition interrupt,

the hypervisor first sets a watchdog timer to ensure that the partition does not exceed

its server’s capacity.

The execution context and state information required to support preemption is saved.

Acknowledgement of the interrupt is signaled to PL192, interrupts of higher priorities

are disabled. As identified in Section 3.2, the time required to forward a partition inter-

rupt is Ccs1. Finally, the partition associated with the interrupt is allowed to execute for

C time units.

After servicing an interrupt, or completing the execution of the corresponding spo-

radic task’s main body, partitions signal completion to the hypervisor. The hypervisor

dismisses the watchdog timer associated with the interrupt and updates the remaining

server capacity, taking into account the time required to complete the remainder of this

routine. The execution context and state information is then restored. This procedure

takes Ccs2 time units.

94

4.2. Case Study

4.2 Case Study

The proposed approach was heavily motivated by the requirements of the automotive

industry and takes into account implementation overheads. In this section a case study

is formed to evaluate the approach proposed in Chapter 3.

4.2.1 Application Description

The case study evaluation was performed using ECU application code that was pro-

vided by ETAS Ltd. The application code consisted of a set of AUTOSAR TASKs of

a Mercedes-Benz M160 engine controller. The functionality of the application code in-

cludes controlling the air flow, idle speed, and fuel injection.

Each TASK has a unique period and a set of sub-tasks that are to be executed at that

period. The provided taskset was split into two partitions by an expert with respect to

the individual task functionality. Each task was then classified as sporadic or periodic,

with respect to their real-time requirements. The resulting partition configuration is

shown in Table 4.1.

4.2.2 Task Measurement

In this section we describe the methodology followed for obtaining the timing informa-

tion for application tasks and hypervisor overheads in the system. The resulting timing

information for all tasks and hypervisor overheads is then presented.

Application Tasks

The next step for the case study is to analyse the provided ECU code, in order to be

fit to the proposed model. The source contained only application code, without the

underlying OS. The minimum information that is required for the proposed model is

the task execution times and the period, which was elicited from the naming conven-

tion used for TASK names. The execution times of the tasks were obtained using a

measurement-based approach.

The first part of the timing analysis was to study the provided code. Upon in-

spection, the code was primarily linear with minimal branching. Numeric calculations

and variable conversions were the primary operations performed by the code. The in-

put/output of the tasks was made by reading/writing to external variable, each with a

95

Chapter 4. Case Study: Engine Controller

Partition Task Name T (ms) Type
τ0 1 Sporadic
τ1 1 Sporadic
τ2 1 Sporadic
τ3 1 Sporadic
τ4 1 Sporadic
τ5 10 Periodic
τ6 10 Periodic
τ7 10 Periodic
τ8 10 Periodic
τ9 10 Periodic
τ10 10 Periodic
τ11 20 Periodic
τ12 20 Periodic
τ13 100 Periodic
τ14 100 Periodic
τ15 100 Periodic
τ16 100 Periodic
τ17 100 Periodic
τ18 100 Periodic
τ19 100 Periodic
τ20 100 Periodic
τ21 100 Periodic
τ22 100 Periodic

0

τ23 100 Periodic
τ24 10 Periodic
τ25 10 Periodic
τ26 10 Periodic
τ27 50 Periodic
τ28 100 Periodic
τ29 100 Periodic
τ30 100 Periodic

1

τ31 1000 Periodic

Table 4.1: Automotive engine controller taskset.

96

4.2. Case Study

clearly defined range of valid values.

Measuring the task execution times required modifications to the provided code,

since the OS code was not available. Specifically the code was modified with definitions

of all the external variables and structures. The defined variables were initialised using

valid values elicited from the coding convention used for the comments accompanying

the definition of the external variables. A mechanism for running the tasks was also

implemented, therefore making the application code runnable on operating systems

capable of running GCC, such as Windows and Linux.

The chosen hardware platform to execute the modified application code on was a

Raspberry PI Model B. This hardware platform was chosen for the following reasons:

• Linux support: The Linux environment support eliminates the need for porting

the application code to run on a bare-metal environment. Additionally, the filesys-

tem used by Linux can be used to log the observed execution times rather than

requiring more complicated mechanisms of tracing the execution of the applica-

tion code like streaming over GPIO or JTAG.

• Compiler toolchain: Typically, Linux distribution have access to a GCC compiler

and a make build system. The modified application code can therefore be compiled

and run on both the Raspberry PI and a host environment for testing, without the

need to modify the source code or build configuration.

• ARM1176JZF-S: Raspberry PI features the same processor that was considered

by the industrial sponsor for porting RTA-HV at the time. The application tasks

primarily performed numeric calculations, without the use of OS calls. The timing

measurements of the application code would therefore be obtained using the same

instruction set and timings as if bare-metal version.

The main concern about using Linux for obtaining time measurements is the in-

terference from periodic kernel-related interrupts, which can cause spikes in the time

measurements. As shown in Figure 4.2, the use of a real-time kernel, such as the one

bundled with Emlid, has significantly lower and more predictable preemption latency.

Occasional spikes in the observed execution times can also be treated as outliers via

statistic analysis. The measurements were therefore taken on a Raspberry Pi Model B

running Emlid, which is a Debian-based Linux distribution with a real-time kernel.

97

Chapter 4. Case Study: Engine Controller

Figure 4.2: Comparison of preemption latency between the default kernel and a real-
time patched kernel [35].

Executing and measuring a task’s execution time was not possible as the execution

times of the tasks were short, exceeding the the capabilities of the high resolution timer

that was provided by the kernel. Therefore, to measure the task execution times, each

task was executed 1 million times, taking an average execution time. This process was

repeated 500 times per task, therefore having a sample of 500 estimated execution times

per task. As previously identified, the execution path of the tasks was mostly linear. It

is therefore assumed that the observed average-case execution times are representative

of the worst-case execution times.

Table 4.2 summarises the sampled execution times. From the table, there is a small

difference between mean and median as well as a small standard deviation of the execu-

tion times. This confirms that there is little variation between each measured execution

time, as expected from the minimal branching that was observed during the inspection

of the code. The data of Figure 4.3 represents the relationship between WCET and pe-

riods of all tasks taskset. Analysis using Pearson’s r showed no correlation between the

WCET and the period of tasks, r(30) = −0.0622, p = 0.735 (two-tailed test). Box plots

of the execution times for all application tasks are listed in Appendix A.

Note: After obtaining all application task time measurements and conducting the ex-

periments detailed in Chapters 4 and 6 a secondary timing analysis was performed. For

98

4.2. Case Study

Task Min Max Mean Median Std
τ0 516.06 518.49 516.93 516.87 0.42
τ1 3351.14 3641.27 3371.46 3353.75 64.65
τ2 955.60 959.29 956.59 956.36 0.74
τ3 188.55 189.35 188.91 188.86 0.16
τ4 612.29 615.18 613.41 613.30 0.52
τ5 221.49 222.28 221.85 221.78 0.16
τ6 444.86 447.13 445.49 445.45 0.24
τ7 123.99 124.65 124.23 124.18 0.13
τ8 361.33 362.95 361.90 361.78 0.31
τ9 361.36 363.60 362.08 361.95 0.37
τ10 497.33 499.70 498.18 498.14 0.45
τ11 361.41 363.16 361.99 361.86 0.34
τ12 420.06 424.44 420.90 420.88 0.38
τ13 361.39 363.38 361.97 361.84 0.34
τ14 419.97 422.01 420.84 420.83 0.34
τ15 1035.55 1039.08 1036.62 1036.49 0.59
τ16 248.28 249.26 248.70 248.63 0.18
τ17 1084.03 1088.36 1084.98 1084.87 0.63
τ18 2523.01 2537.88 2526.73 2525.13 2.97
τ19 361.39 363.18 362.03 361.91 0.32
τ20 338.45 340.07 339.01 338.91 0.27
τ21 372.68 374.80 373.27 373.19 0.32
τ22 343.02 344.00 343.52 343.45 0.19
τ23 1325.86 1330.68 1327.37 1327.15 0.89
τ24 480.63 483.01 481.40 481.38 0.40
τ25 460.15 462.09 460.82 460.79 0.24
τ26 173.33 174.15 173.63 173.58 0.14
τ27 203.72 204.47 204.04 203.98 0.16
τ28 492.54 493.55 493.15 493.14 0.21
τ29 505.74 507.78 506.46 506.44 0.24
τ30 2351.58 2373.03 2356.22 2354.42 3.73
τ31 755.56 758.30 756.43 756.47 0.26

Table 4.2: Descriptive statistics for task execution times in ns.

99

Chapter 4. Case Study: Engine Controller

0 200 400 600 800 1000
Period (ms)

0

500

1000

1500

2000

2500

3000

3500

W
C

ET
(n

s)

Figure 4.3: Relationship between period and WCET.

the secondary timing analysis the OS kernel was patched to allow for the use of the

System Performance Monitor (SPM) by disabling the system validation registers. The

SPM provides a cycle counter (co-processor CP15, register c15, operational register c12),

which was used to obtain cycle-accurate execution times of the application tasks. The

measurements taken using the cycle-accurate counter were within a 5% error margin.

For the purpose of constructing a representative taskset and given the time constraints

of this project, the original measurements were used.

Hypervisor Overheads

To calculate the hypervisor overheads, a partial hypervisor implementation was built.

The hypervisor overheads in the system are responsible for the replenishment of the

server capacity and handling forwarding and returning from interrupts.

Figure 4.4 outlines the operations performed by the hypervisor after an event triggers

the fire of an interrupt. When an interrupt is triggered that needs to be handled by a

partition the hypervisor’s ISR is entered in IRQ mode. The first step is to change the

processor’s mode to System. In System the hypervisor has access to the registers used

by the partition, which are saved to the corresponding VRB. The execution context is

pushed on the hypervisor’s stack. An acknowledge signal is then sent to the interrupt

100

4.2. Case Study

Partition

Hypervisor

Return from interrupt

Restore context
from HV stack

Forward interrupt

Change to
System mode

Save core status to
the partition's VRB

Acknowledge
interrupt

Save context on
HV stack

Change to
System mode

Restore core status from
the partition's VRB

Set core to User mode
and enter the partition's ISR

Execute partition's
ISR

Event

Figure 4.4: ARM1176JZF-S Hypervisor Overhead Routines.

controller and the partition is allowed to execute its ISR in User mode.

After the partition finishes the execution of the task released in response to the event

it issues a return from exception (RFE) hypervisor call. The hypervisor then changes the

core’s execution mode to System, and reads the context from the hypervisor stack. The

partition registers are restored from the corresponding VRB and the system resumes

execution by restoring the context; the context is popped from the hypervisor’s stack.

The replenishment of a server’s capacity combines operations from both forward and

return from interrupt routines. To replenish a server’s capacity the context and status

information is saved and the interrupt corresponding to the server’s replenishment timer

is acknowledged. The server’s capacity is then set to the appropriate value and all

interrupt lines related to the server are unmasked. The context is then restored and the

101

Chapter 4. Case Study: Engine Controller

Simula�on
Environment

2

Simula�on
Environment

1

Simula�on
Environment

n
..
.

Experiment
Simula�on

Environment

1

Processor

Clock

Executable

Event Dispatcher

Event Schedule

Executable
Queue

Experiment
Configura�on

Simula�on
Log

Logger

Simulator

Figure 4.5: Simulator abstract architecture overview.

system proceeds to execute or resume execution of the highest priority entity.

Specialised versions of the described hypervisor routines are generated for every in-

terrupt line and server at the system configuration service. This is common practice in

the automotive industry to avoid having dynamic code, which can hinder the perfor-

mance and timing predictability of the system. The resulting components are therefore

short and linear, therefore making it feasible to accurately calculate their WCET using

static analysis. Specifically, the WCET of the developed hypervisor components was

calculated using the maximum cycles required for the ARM1176JZF-S instructions to

execute [6].

Table 4.3 summarises the hypervisor overheads:

Hypervisor Overhead WCET (ns)
Forward interrupt 363
Return from interrupt 139
Replenish server capacity 553

Table 4.3: Hypervisor overheads WCET.

4.3 Simulator Implementation

A Java-based simulator was developed to allow the evaluation of the approach proposed

in Chapter 3. The simulator’s abstract architecture is shown in Figure 4.5. The motiva-

tion behind the developed simulator’s architecture is to take advantage of parallelism

102

4.3. Simulator Implementation

by creating multiple isolated simulation environments, each executed within a separate

thread.

4.3.1 Simulator Overview

The main drivers of the simulator’s design and development were to accurately model

the behaviour of the architecture described in Chapter 3 and the ability to take advantage

of parallelism. Within the system boundary of the simulator an experiment is defined

as a set of simulation environments, constructed according to the experiment configu-

ration. The experiment configuration files are provided as an input to the simulator.

These include the tasks in the system, the execution servers and the length of the sim-

ulation. Each simulation generates a log with the execution summary of each released

job in the system. Each simulation environment is an independent entity, allowing the

parallel execution of simulations on multi-core, taking advantage of Java’s concurrency

programming features. All experiments were executed on the York Advanced Research

Computing Cluster (YARCC), which is a compute cluster with 840 cores spread across

40 nodes.

4.3.2 Main Simulator Structures

A simulation environment has a system clock and an arbitrary number of timed enti-

ties whose state is updated with every clock tick. The timed entities implemented for

the purposes of the experiments required for the evaluation of our approach are the

processor, an event dispatcher and a logger.

Timed Entities

Timed entities are used as an abstract way of defining all elements in the system whose

state depends on the progression of time. All timed entities have a common interface

that allows them to advance their state by one time unit.

The processor is defined as a timed entity that maintains a queue of executables and

a currently running executable. With each time step the processor first updates the

currently running executable with the highest priority executable that is eligible to run.

The current executable’s state is then progressed one time step. In the case where there

is no executable that is eligible to run the processor is idle until the next time unit.

103

Chapter 4. Case Study: Engine Controller

Executable

Deferrable
Server

Periodic
Server

0..*

0..1

Task
Execu�on
Server

Figure 4.6: Class diagram for executables.

The event dispatcher is a timed entity consisting of a queue of events that is used

as a mechanism for injecting events into the system. Each event is defined by a set

of parameters: absolute release time, an optional period, a template executable entity

and the task queue the executable is injected to. An event is released when its absolute

release time matches the value of the clock. During an event release, the executable

template is used to construct an instance of the executable, which is then added to

the appropriate queue. If the event is periodic, a new event is scheduled for the next

absolute release time. Being a timed entity, the event dispatcher’s state is updated with

every tick of the simulation environment’s clock. The state of the event dispatcher is

strictly updated before updating the processor’s state to avoid race conditions,

Executables

Executables within the context of the developed simulator are timed entities that are part

of the realisation of the scheduling model. As summarised in Figure 4.6, executables

refer to tasks and execution servers. A task can either execute directly on the processor

(hypervisor tasks), or within an execution server (partition tasks). An execution server

can either be a deferrable server (sporadic tasks) or a periodic server (periodic tasks).

To reflect the desired behaviour of the preemption rules defined in Sections 3.2 and

3.5, each executable is composed by a sequence of regions with their own priority and

whether it is preemptive or not. This inherently supports the non-preemptive rule for

the sporadic task and periodic server overheads, as well as the capability to raise a tasks

priority as dictated by IPCP.

104

4.3. Simulator Implementation

0

1

2

n ...

Pr
io
ri
ty

...

...

...

...

Figure 4.7: Simulator priority queue data structure.

Execution Servers

Execution servers in the simulator have a similar functionality to the processor. Each

server has its own currently active executable; nested servers are supported by design,

however in the context of our model, the executables associated with execution servers

are tasks. With each time step, if a server is the currently executable on the processor, it

progresses one time unit, causing its currently active executable to also progress by one

time unit.

The capacity of the execution servers is depleted with each clock tick, as described

in Section 2.4.1. Specifically, the periodic servers’ capacity is depleted with every clock

tick if they are the currently running executable. The capacity of a deferrable server is

depleted only if it has a currently active executable, otherwise it enters a "not ready"

state. Both deferrable and periodic servers enter a "not ready" state, if their capacity is

depleted, where they remain until their next replenishment.

Priority Queue

Figure 4.7 summarises the data structure used for the implementation of the priority

queues in the system. The priority queue is an array of length n + 1, each entry cor-

responding to a priority level. Each entry contains a queue of executables in order to

support cases where a task’s execution extends into the next period, therefore having in

essence two ready tasks at the same priority level.

Tasks at the same priority level are scheduled using a first-in first-out approach.

Specifically, executables that are preempted are placed in front of the queue of their

respective priority level. New executable releases are placed at the end of the queue.

105

Chapter 4. Case Study: Engine Controller

4.4 Experiment

The simulator described in Section 4.3 was used to investigate the tightness of the re-

sponse time analysis of Section 3.7 and the robustness of the system in terms of propa-

gating the effects of deadline misses.

4.4.1 Methodology

To evaluate the tightness of the analysis we compare the maximum utilisation achieved

until the analysis indicates a deadline miss with the utilisation achieved until the first

deadline miss in the simulation.

Server Parameters

The server parameters were selected in such a way to minimize gaps where the servers

have no capacity. The server period used is the minimum of the periods of all tasks

within the server as shown in Equation (4.1).

Ts = min
∀i

Mi,sTi (4.1)

Given the server’s period the capacity required to service all tasks is given by Equa-

tion (4.2). Specifically, the server capacity is set as the sum of all task execution times

over a window of length Ts.

Cs = ∑
∀i

Mi,s

⌈
Ts

Ti

⌉
Ctot

i (4.2)

Priority Assignment

Given a system configuration with task and server definitions, we first assign priorities.

Due to the complexity of the model, the priority assignment is performed following a di-

vide and conquer approach. First, the priority space is divided into three priority bands,

as described in Section 3.4: hypervisor, sporadic and periodic. Hypervisor tasks are as-

signed priorities using rate monotonic at the hypervisor priority band. At the periodic

priority band, periodic servers are allocated priorities using Audsley’s algorithm [8],

without taking into account the periodic tasks.

106

4.4. Experiment

After assigning the priorities to the hypervisor tasks and periodic servers, we assign

priorities to the sporadic tasks in a similar manner to the periodic servers. Lastly, we al-

locate priorities to periodic tasks. The periodic tasks are assigned local priorities within

their server. Therefore, starting from the lowest priority periodic server, its serviced

tasks are assigned priorities using Audsley’s algorithm, without taking into account

periodic tasks that execute in different servers.

Generation of Simulator Configurations

Given the priority assignment, the response time analysis that was formulated in Section

3.7 is used to determine whether the system is schedulable. The processor speed is de-

creased progressively by incrementing the execution times of all tasks until the analysis

indicates that the system is schedulable. This assumes that task execution time increases

linearly as the processor’s speed is decreased. With each iteration, new priorities are as-

signed and the system is checked for schedulability.

When the system is deemed unschedulable by the analysis the priority ordering

is retained and system configurations are generated while scaling down the processor

speed until the utilisation reaches 100%. The collection of system configurations is used

as input to the simulator described in Section 4.3, along with the additional experiment

parameters required to form the experiment configuration.

This procedure is followed to generate experiment configurations for two different

server-task mapping. The first mapping was listed in Table 4.1, which corresponds to

a two-partition system. The second mapping was devised in order to investigate the

propagation of the effects of deadline misses across partitions. Specifically, we further

divided the tasks into servers with respect to their period. Tasks within different par-

titions that have the same period were kept in separate servers. This resulted into a

nine-partition system using 1 deferrable server and 8 periodic servers.

Both systems were simulated for a full period 1000ms. One period was determined as

sufficient for the purpose of this experiment, since all tasks are released simultaneously

at the start of the simulation. In the worst-case simulations, all tasks execute for WCET,

since this is the worst-case scenario. Moreover, always executing for the WCET, removes

non-determinism therefore each scenario is executed once. The average-case simulations

were repeated five times.

107

Chapter 4. Case Study: Engine Controller

0.4 0.5 0.6 0.7 0.8 0.9 1.0
Utilisation

20

25

30

35

40

45

50

O
ve

rh
ea

ds
(%

)

2-server experiment
9-server experiment

Figure 4.8: Hypervisor overheads with respect to the processor utilisation.

4.4.2 Results

Worst Case

Figure 4.8 shows the relationship between the total utilisation and the utilisation asso-

ciated with overheads. In both systems, overheads increase linearly with respect to the

total system utilisation. The additional periodic servers in the nine-server experiment

has introduced a small increase in overheads, which suggests that the use of deferrable

servers for sporadic tasks introduces the majority of the overheads in the system.

Figure 4.9 summarises the deadline misses with respect to the system utilisation ac-

cording to the simulator results. The first deadline miss of the two-partition system

occurs at 82% utilisation. The tasks that first miss their deadlines execute within the

lowest priority periodic server with short periods with medium-low priority level. Sub-

sequently, all tasks in the lowest priority server missed their deadline when the system

reached 88% utilisation.

At 89% utilisation, tasks in the higher priority periodic server started to miss their

deadlines. Additionally, the lowest priority sporadic task suffered from deadline misses

due to blocking. At 95% utilisation all periodic tasks and lower priority sporadic tasks

108

4.4. Experiment

0.4 0.5 0.6 0.7 0.8 0.9 1.0
Utilisation

20

30

40

50

60

70

80

90

100

110

D
ea

dl
in

es
m

et
(%

)

2-server experiment
9-server experiment

Figure 4.9: Experiment results summary.

suffered from deadline misses. All deadlines were met by hypervisor tasks.

The nine-server configuration has additional hypervisor tasks are responsible with

the replenishment of the server capacity. The hypervisor tasks significantly contributed

to the interference received by the sporadic tasks, causing the first deadline miss at 59%

utilisation. The additional of servers also increased the frequency with which tasks were

blocked. At 86% utilisation tasks in lower priority servers begin to miss their deadlines.

Average Case

The simulation results of the previous section show the behaviour of the system in

the worst case, where sporadic tasks are always released at their minimum interarrival

time. Most commonly, this is not the case, therefore we also examine the behaviour of

the system for the case where sporadic tasks do not manifest as periodic.

The simulations were repeated for both systems described above, after configuring

the simulator to release sporadic tasks with varying interarrival times. Specifically, the

interarrival times of sporadic tasks were taken using a Weibull distribution (k = 2, λ =

1). The choice of parameters and probability distribution was based on the work done

by Maxim et al. [75]. Both sporadic and periodic tasks were simulated using estimated

109

Chapter 4. Case Study: Engine Controller

0.4 0.5 0.6 0.7 0.8 0.9 1.0
Utilisation

20

30

40

50

60

70

80

90

100

110

D
ea

dl
in

es
m

et
(%

)

2-server experiment
9-server experiment
2-server experiment(sporadic)
9-server experiment(sporadic)

Figure 4.10: Comparison summary of average case vs worst case.

average-case execution times. Inspired by the work done by Hansen et al. [49], the

execution time for each release of a task was calculated using a Gumbel distribution

(µ = 0.8, σ = 0.125). The results are summarised in Figure 4.10. Note that the analysis

of Section 4.2.2 showed that the WCET and the AVET were very close. This is often

not the case, therefore the tasks were simulated using additional variation to better

investigate the impact of average case behaviour compared to the worst case.

In the two-server simulation runs, the first deadline miss was observed at 88.6%

utilisation. Increasing the utilisation did not cause any further deadline misses. The

task that missed its deadline was the lowest priority sporadic task. The experiment

results indicate that the use of limited capacity execution servers provided sufficient

temporal isolation, as per the requirements of Section 3.1.

The first deadline miss in the nine-server simulation run was observed at 59% util-

isation. Additional deadline misses were observed at 66%, 72%, 82% and 95%. Similar

to the two-server configuration, the tasks with deadline misses were aperiodic, which

further demonstrates FFI between the different partitions in the system as the deadline

misses of higher priority tasks did not cause the starvation of lower priority tasks.

110

4.5. Evaluation of Architectural Design

Analysis vs Simulations

The simulation results indicated that the first observed deadline miss occurred at a

significantly higher utilisation level than the analysis. Specifically, the response time

analysis indicated that the system was not schedulable after slowing down the clock

speed by a factor of 84 for the two-partition system and 68 for the nine-partition system.

The slow-down factors translate to utilisation of 55% and 45% respectively for each

system configuration. Compared to the worst-case simulation results, the first observed

deadline misses were at 82% utilisation for the two-server configuration and 59% for the

nine-partition configuration.

The response time analysis represents the critical instance, which is the worst case

behaviour of the system. The difference between the analysis and simulation results is

attributed to two factors: release jitter of tasks and blocking.

In the critical instance, the release jitter of tasks, as shown in Section 3.7.2, is defined

as Rs − Ts. The release is accounted for in the response time analysis for all tasks that

execute within deferrable servers and all unbound tasks that execute within periodic

servers. As a result of the server parameter selection approach followed, the release

jitter was not exhibited in the simulations.

The blocking factor in the response time analysis was defined as the longest non-

preemptive region of lower priority tasks and servers. The non-preemptive regions in

the system, which as shown in the timing analysis of Section 4.2.2, have large WCET

with respect to the main body of the application tasks of the system. This leads to high

blocking, therefore making the analysis to achieve low utilisation.

4.5 Evaluation of Architectural Design

In this section we evaluate the architecture proposed in Chapter 3. Specifically, we con-

sider the requirements of Section 3.1 and their fulfilment by the proposed architecture

based on the case study performed in this chapter.

A requirement of the proposed system architecture, as discussed in Section 3.1, is the

minimization of the response times of sporadic tasks. This was achieved by the priority

space that was introduced in Section 3.4. The proposed priority space places hyper-

visor tasks at the highest priority space, sporadic (or event-driven) tasks are placed at

a priority level that is strictly lower than hypervisor tasks but higher than all periodic

111

Chapter 4. Case Study: Engine Controller

(time-driven) tasks. This ensures that all event-driven tasks are serviced as fast as pos-

sible, provided that there is enough server capacity and the CPU is not used by the

hypervisor.

The primary requirement of the proposed architecture is to provide sufficient tempo-

ral isolation between the partitions. The simulation results showed that deadline misses

of tasks within an execution server had did not cause tasks in other servers to miss their

deadlines. Additionally, the use of execution servers provided a mechanism to guard

against starvation of the periodic tasks from the higher-priority sporadic tasks. This was

demonstrated in the worst-case simulation of the nine-partition configuration.

The use of deferrable servers for servicing sporadic tasks allowed for lower response

times for the serviced tasks. Specifically, in the average case simulations, as the sporadic

tasks have varying interarrival times the deferrable servers are able to service the tasks

as they arrive, without having their capacity expended while idle. Periodic servers

allow for no jitter in bound tasks, which is a contributing factor to the calculation of the

response times of tasks in the critical instance.

4.6 Summary

In this chapter we evaluate the proposed system model using a case study provided by

ETAS Ltd. Realistic ECU application code was analysed in order to extract timing infor-

mation to use for realising the model proposed in Chapter 3. The hypervisor overheads

were calculated using a partial implementation of a hypervisor. The timing information

was used to simulate the system’s behaviour using a two and nine server configuration,

varying the processor’s speed with each run.

The analysis demonstrated that the case study will deliver relatively low utilisation

due to the high blocking introduced by the hypervisor overheads and the constraints in

the priority assignment due to the partitioning of the priority space of Section 3.4. The

majority of the overheads are mainly attributed to the forwarding of interrupts that are

necessary for handling sporadic tasks. The hypervisor overheads however are highly

dependent on hardware support and the configuration of the system.

In the next chapter the proposed model is extended to support multiple levels of

criticality. The mixed-criticality model features two levels of system degradation.

112

CHAPTER 5
Extension to Mixed-Criticality

The introduction of safety in the automotive industry with the ISO26262 standard on

functional safety of road vehicles [54] gave rise to concerns regarding the integration

of components with different ASIL in the same physical ECU. AUTOSAR enables the

integration of SWC from different vendors, requiring modifications to the configuration

of the RTE and BSW [79]. From a safety-critical perspective AUTOSAR lacks the re-

quired separation mechanisms. Specifically a failure in an AUTOSAR SWC typically

results in an ECU reset. In the case where all SWCs are of the same ASIL this is accept-

able, however in the case of mixed-criticality this could potentially allow a low criticality

component to interfere with a higher criticality one. This directly violates freedom from

interference (FFI), as dictated by ISO 26262-6:2011 Annex D [54].

A possible way of achieving FFI is to ensure that components of different criticality

levels are located on separate physical ECUs. Failures in lower criticality components

would therefore be isolated and not propagate to other ECUs of higher criticality. This

approach could potentially have little to no benefit on the number of physical ECUs,

which, as identified in Section 1.1, is one of the main drivers to the high development

costs for software and hardware in vehicles. The use of a hypervisor can provide the

necessary isolation between its partitions to allow the integration of multiple ECU im-

ages on a single physical ECU, while enforcing FFI.

This chapter details an extension to the model described in Chapter 3, allowing

components of three criticality levels, LO, MI and HI, to execute on the same hardware

using a hypervisor. In the context of the proposed model, criticality is a property of

113

Chapter 5. Extension to Mixed-Criticality

the partitions. Specifically all tasks in a partition have the same criticality level of the

partition.

The proposed mixed-criticality model features two modes of degradation and takes

advantage of the low utilisation that was introduced by the requirement for low sporadic

task latency in order to provide the additional capacity required by high-criticality tasks

to meet their deadlines. In the first degraded mode all sporadic tasks are migrated in

periodic servers, providing additional capacity due to the lower overheads and higher

utilisation. Tasks are only dropped during the second degraded mode, where only HI

criticality partitions are allowed to execute.

5.1 Mixed Criticality Task Model

The proposed mixed-criticality model supports three levels of criticality, LO, MI, HI,

with HI > MI > LO. The level of criticality is used as a property of the partitions,

enforcing that all tasks within a partition are of the same level of criticality. The task

model is defined in a similar manner as the model proposed by Vestal [103]. A task τi is

defined by the tuple (~Ccs1
i , ~Ci, ~Ccs2

i , ~Ti, ~Pi,Li), where:

• ~Ccs1
i : A vector containing the WCET of the implementation overheads before the

execution of the task’s main body for each criticality level, Ccs1
i (LO), Ccs1

i (MI) and

Ccs1
i (HI).

• ~Ci: A vector containing the WCET of the task’s main body at each criticality level.

Ci(LO) ≤ Ci(MI) ≤ Ci(HI).

• ~Ccs2
i : The WCET of the overheads after the execution of the task’s main body for

each criticality level, Ccs2
i (LO), Ccs2

i (MI) and Ccs2
i (HI).

• ~Ti: The period of the task at each level of criticality, T(LO) ≥ T(MI) ≥ T(HI).

• ~Pi: The priority level of the task at each criticality level, Pi(LO), Pi(MI), Pi(HI).

• Li: The criticality level of the task (ie. LO, MI, HI).

In the mixed-criticality task model, the preemption rules are as specified in Section

3.2. The main difference between the single criticality and mixed-criticality model is the

ability of tasks to change from sporadic to periodic, depending on which server they

use to execute.

114

5.2. Mixed Criticality Execution Servers

5.2 Mixed Criticality Execution Servers

Consider a system composed of a set of k partitions, p0...pk−1. Similarly to the single-

criticality model, the CPU time used by each partition is managed using execution

servers. Each partition can have one deferrable sever to handle its sporadic tasks and a

periodic server for its periodic tasks.

An execution server si is defined by the tuple (~Ccs1
i , ~Ci, ~Ccs2

i , ~Ti, ~Pi,Li), where:

• ~Ccs1
i : A vector containing the context switching overheads required by a periodic

server prior to its execution. For deferrable servers, the context switch overheads

are incorporated in the sporadic task definition, therefore Ccs1 = 0.

• ~Ci: A vector containing the server’s capacity for each criticality level.

• ~Ccs2
i : A vector containing the context switching overheads after a periodic server

uses up its capacity. Similarly with ~Ccs1
i , for deferrable servers this is part of the

sporadic task definition, and is therefore set to 0.

• ~Ti: The replenishment period of the execution server for each criticality level.

• ~Pi: The server’s priority for each criticality level. This is defined as the maximum

of the priorities of all serviced tasks.

• Li The criticality level of the server (ie. LO, MI, HI). Execution servers within the

same partition are of the same criticality level.

The association matrix is defined as a vector, ~Mi,s, allowing a different task-server

mapping for each criticality level. This is used to take advantage of the latency-utilisation

trade-off of the model described in Chapter 3, by allowing different task-server map-

pings are required for each criticality level.

5.3 Execution Modes

Figure 5.1 summarises the mode transitions performed by the system to support multi-

ple levels of criticality. A requirement of implementing the mixed-criticality model is to

monitor the execution time of all partition tasks.

115

Chapter 5. Extension to Mixed-Criticality

D1 D2N
Task exceeds its

C(LO) time
Task exceeds its

C(MI) time

Figure 5.1: State transitions for the mixed-criticality model.

N

τ1

τ2

τ3

τ0

HV

DS1τ4

DS0τ5

PS1τ7

PS0τ6 D1

τ2

τ3 HV

PS1τ7

PS0τ6

τ5

τ4

D2

τ2

HV

PS0τ6

τ5

P
ri
o
ri
ty

Figure 5.2: Example task priorities in the mixed-criticality model.

5.3.1 Normal Execution Mode (N)

The initial mode the system executes in is referred to as normal, or N. While in N mode,

the scheduling approach described in Chapter 3 is used. Specifically, each partition is

associated with a deferrable server and a periodic server. For every server in the system

a hypervisor task is required in order to replenish its capacity at the start of its period.

All partition tasks are associated with the corresponding partition’s servers.

Figure 5.2 examples a simple two-partition system, p0 and p1, each having an spo-

radic and a periodic task. p0 is a HI criticality partition, whereas p1’s criticality is level

MI. All partition tasks are handled by deferrable and periodic servers, as shown in Fig-

ure 5.2 and Equation (5.1). The servers’ capacity is replenished by the hypervisor tasks

116

5.3. Execution Modes

τ0, τ1, τ2 and τ3.

M(LO) =



HV DS0 DS1 PS0 PS1

τ0 1 0 0 0 0

τ1 1 0 0 0 0

τ2 1 0 0 0 0

τ3 1 0 0 0 0

τ4 0 0 1 0 0

τ5 0 1 0 0 0

τ6 0 0 0 1 0

τ7 0 0 0 0 1



(5.1)

The execution time of the partition tasks are monitored by the hypervisor. In the case

where a partition task exceeds its LO criticality WCET a mode change is triggered

(N→D1).

5.3.2 First Degraded Execution Mode (D1)

During the mode change to D1 all sporadic tasks are migrated to their corresponding

partition’s periodic servers. Since the deferrable servers are no longer in use, the hyper-

visor tasks responsible for replenishing their capacity are dropped. Equation (5.2) and

Figure 5.2 demonstrate the resulting task allocation after the transition to D1.

M(MI) =



HV DS0 DS1 PS0 PS1

τ0 0 0 0 0 0

τ1 0 0 0 0 0

τ2 1 0 0 0 0

τ3 1 0 0 0 0

τ4 0 0 0 0 1

τ5 0 0 0 1 0

τ6 0 0 0 1 0

τ7 0 0 0 0 1



(5.2)

As identified in Section 2.4.1, periodic servers are superior to deferrable servers in

terms of utilisation [30]. Moreover, as it was identified in Section 4.4.2, deferrable servers

have considerable overheads. With the migration to periodic servers, the overheads as-

117

Chapter 5. Extension to Mixed-Criticality

sociated with using deferrable servers are used as additional capacity to provide tasks

with enough capacity to execute at the MI criticality level. The additional capacity avail-

able to the periodic server associated with a partition pn during the N→D1 transition is

given by Equation (5.3).

C+
N→D1 (TPSn(MI)) =

⌊
TPSn(MI)
TDSn(LO)

⌋
Crep+

∑
j•Mj,DSn (LO)=1

⌊
TPSn(MI)

Tj(LO)

⌋ (
Ccs1

j (LO) + Ccs2
j (LO)

)
−

∑
k•Mk,DSn (LO)=1

⌊
TPSn(MI)
Tk(MI)

⌋ (
Ccs1

k (MI) + Ccs2
k (MI)

)
(5.3)

If no tasks are pending to execute and an idle tick is detected, the system reverts

to the normal execution mode, N. In the case where a task executes for more than its

MI WCET a mode change is triggered and the system executes in the second degraded

mode D2 (D1→D2).

5.3.3 Second Degraded Execution Mode (D2)

The second degraded mode, D2, is used as a last resort in order to ensure that HI criti-

cality tasks are able to meet their deadlines. In the D2 mode lower criticality partitions

are dropped, providing the additional capacity required for tasks to execute for their HI

criticality WCET.

M(MI) =



HV DS0 DS1 PS0 PS1

τ0 0 0 0 0 0

τ1 0 0 0 0 0

τ2 1 0 0 0 0

τ3 0 0 0 0 0

τ4 0 0 0 0 0

τ5 0 0 0 1 0

τ6 0 0 0 1 0

τ7 0 0 0 0 0



(5.4)

As shown in Equation (5.4), p1 is of MI criticality, therefore the periodic server, PS1,

118

5.4. Response Time Analysis

Cscs1 Cscs2Cs

Rs

IsBs

Blocking Interference

Server main body Non-preemptive regions

Figure 5.3: Server critical instance.

which is responsible for servicing its tasks is no longer allowed to execute. With PS1 not

allowed to execute, τ3, which is responsible for replenishing its capacity, is also dropped.

The additional capacity available to the HI criticality partitions given a window of

length w is given by Equation (5.5).

C+
D1→D2(w) = ∑

Lj≤MI

⌊
w

Tj(MI)

⌋ (
Ccs1

i (MI) + Ci(MI) + Ccs2
i (MI)

)
(5.5)

Similar to D1, the system is able to revert to the N mode if no task is pending for

execution and an idle tick is detected.

5.4 Response Time Analysis

The response time analysis for the mixed criticality level is performed using the ap-

proach followed by Adaptive Mixed-Criticality (AMC) [12]. The system is schedulable

if all task deadlines are met at each execution mode, N, D1 and D2, and during the

mode changes N→D1, D1→D2, D1→N and D2→N.

5.4.1 Server Schedulability

As with the single criticality model, the first part of the analysis is the calculation of

the server response times. For the server response time analysis servers are treated as

regular tasks with interference from higher priority hypervisor tasks and higher priority

servers. The critical instance of an execution server s at citicality level `, where ` ∈

{LO, MI, HI}, is shown in Figure 5.3.

119

Chapter 5. Extension to Mixed-Criticality

Symbol Description
~Ccs1
i A vector containing the time required by the overheads before the ex-

ecution of the main body of a task or server for each criticality level.
~Ci A vector containing the time required by the main body of a task or

the capacity of a server for each criticality level.
~Ccs2
i A vector containing the time required by the overheads after the exe-

cution of the main body of a task or server for each criticality level.
~Ti A vector containing the period of a task or server at each criticality

level.
~Pi A vector containing the priority of a task or server at each criticality

level.
Ccs1

i (`) Time required by the overheads before the execution of the main body
of a task or server at criticality level `.

Ci(`) Execution time required by the main body of a task or the capacity of
a server at criticality level `.

Ccs2
i (`) Time required by the overheads after the execution of the main body

of a task or server at criticality level `.
Ti(`) The period of a task or server at criticality level `.
Pi(`) The priority of a task or server at criticality level `.
Li The criticality level of a task or server.

Ji(`) Release jitter at criticality level `.
Bi Blocking received by tasks of priority lower than Pi.

Mi,s(`) Returns 1 if the task taui executes using the server s at criticality level
`.

Ri The response time of a task or server.
Ls

i (w) The load on a server s at the priority level Pi over the length of a
window w.

I`i (w) The interference received by a task or server at priority level Pi when
the system executes at criticality level `.

lp(i) The set of tasks or servers of lower priority than Pi.
hp(i) The set of tasks or servers of higher priority than Pi.
async The set of sporadic tasks.
sync The set of periodic tasks.
hv The set of hypervisor tasks.
PS The set of periodic servers.
DS The set of deferrable servers.

C+
a→b(w) The additional capacity received over a window w by after the mode

change a→b.
Crep The time required to replenish a server’s capacity.

Table 5.1: Table of symbols.

120

5.4. Response Time Analysis

Bcs
s (`) = max

{
max(Ccs1

j (`), Ccs2
j (`))|j ∈ lp(s, `) ∧ j ∈ async

}
∪{

max(Ccs1
j (`), Ccs2

j (`))|j ∈ lp(s, `) ∧ j ∈ PS
}

(5.6)

First we consider the blocking factor of a server s at criticality level `. As shown in

Equation (5.6) a server can be blocked by lower priority sporadic tasks or lower priority

periodic servers. The response time of a server excludes the cs2 region, which can

potentially be pushed to the next busy period [105]. Therefore the total blocking of a

server s at criticality level ` is defined as:

Bs(`) = max
(
Ccs2

i (`), Bcs
i (`)

)
(5.7)

The interference received by a server is dependent on hypervisor tasks and servers

with a higher priority ceiling. Given a window of length w, the interference received by

a server s at criticality level ` is given by:

I`s (w) = ∑
j∈hp(s)

⌈
w + Jj(`)

Tj(`)

⌉ (
Ccs1

j (`) + Cj(`) + Ccs2
j (`)

)
(5.8)

The response time of a server s at criticality level ` is given by the recurrence relation:

R`
s =Ccs1

i (`) + Ci(`) + max
(
Ccs2

i (`), Bcs
i (`)

)
+ (5.9)

∑
j∈hp(s)

⌈
R`

s + Jj(`)

Tj(`)

⌉ (
Ccs1

j (`) + Cj(`) + Ccs2
j (`)

)
(5.10)

5.4.2 Task Response Times During Normal Mode

In the normal execution mode N, the response times of tasks are calculated by adapting

the response time analysis of Section 3.7 to use the LO values of the vectors defined

in Sections 5.1 and 5.2. To calculate the response time of a task τi that executes using

server s we first need to calculate the server load. The load of the server s at priority

level Pi(LO) given a window of length w is given by:

121

Chapter 5. Extension to Mixed-Criticality

Ls
i (w) =Ccs1

i (LO) + Ci(LO) + Ccs2
i (LO)+ (5.11)

∑
j∈hp(i)

Mj,s(LO)

⌈
w + Jj(LO)

Tj(LO)

⌉ (
Ccs1

j (LO) + Cj(LO) + Ccs2
j (LO)

)
(5.12)

The gaps where server capacity is not available for servicing tasks is given by the

expression in Equation (5.13).

(⌈
Ls

i (RLO
i)

Cs(LO)

⌉
− 1

)
(Ts(LO)− Cs(LO)) (5.13)

A partition task can be blocked during the execution of the non-preemptive regions

of sporadic tasks and periodic servers:

Bcs
i = max

{
max

(
Ccs1

j (LO), Ccs2
j (LO)

)
|Pj(LO) ≤ Pi(LO) ∧ j ∈ async

}
∪{

max
(

Ccs1
j (LO), Ccs2

j (LO)
)
|Pj(LO) ≤ Pi(LO) ∧ j ∈ PS

}
(5.14)

Therefore, the blocking factor for partition tasks is given by Equation (5.15):

Bi = max
(
Ccs2

i (LO), Bcs
i
)

(5.15)

The interference received by partition tasks varied depending on the type of server

they use. In the N mode, both deferrable and periodic servers are used, therefore re-

quiring partition tasks may receive interference from different sources. Equation (5.16)

shows the interference received by tasks using deferrable servers. Specifically, a task

within a deferrable server receives interference from higher priority sporadic tasks and

hypervisor tasks.

Ii(w) = ∑
Pj(LO)≥Pi(LO)

⌈
w + Jj(LO)

Tj(LO)

⌉ (
Ccs1

j (LO) + Cj(LO) + Ccs2
j (LO)

)
(5.16)

In the case of tasks within periodic servers there are four sources of interference:

hypervisor tasks, sporadic tasks, periodic servers of higher priority and higher priority

tasks using the same execution server:

122

5.4. Response Time Analysis

Ii(w) = ∑
j∈hv

⌈
w

Tj(LO)

⌉ (
Ccs1

j (LO) + Cj(LO) + Ccs2
j (LO)

)
+ (5.17)

∑
k∈async

⌈
w + Jk(LO)

Tk(LO)

⌉ (
Ccs1

k (LO) + Ck(LO) + Ccs2
k (LO)

)
+ (5.18)

∑
m∈hpPS(s)

⌈
w + Jm(LO)

Tm(LO)

⌉ (
Ccs1

m (LO) + Cm(LO) + Ccs2
m (LO)

)
+ (5.19)

∑
Pl(LO)≥Pi(LO)

Ml,s(LO)

⌈
w + Jl(LO)

Tl(LO)

⌉ (
Ccs1

l (LO) + Cl(LO) + Ccs2
l (LO)

)
(5.20)

The response time of partition tasks for the N mode is given by:

RLO
i =Ccs1

i (LO) + Ci(LO) + Ccs1
s (LO)+ (5.21)(⌈

Ls
i (RLO

i)

Cs(LO)

⌉
− 1

)
(Ts(LO)− Cs(LO)) + Bi + Ii(RLO

i) (5.22)

5.4.3 Task Response Times During Degraded Modes

In the degraded modes D1 and D2 we use the MI and HI values for the task parameters

respectively. The load on a server s running at criticality level ` at priority level Pi(`) is

given by:

Ls
i (w) =Ccs1

i (`) + Ci(`) + Ccs2
i (`)+

∑
j∈hp(i)

Mj,s(`)

⌈
w + Jj(`)

Tj(`)

⌉ (
Ccs1

j (`) + Cj(`) + Ccs2
j (`)

)
(5.23)

Similarly with the normal execution mode, the gaps where server capacity is not avail-

able over a window of length w is given by:

(⌈
Ls

i (w)

Cs(`)

⌉
− 1
)
(Ts(`)− Cs(`)) (5.24)

In the degraded modes deferrable servers are not used, therefore the blocking is

received from the non preemptive regions of lower priority periodic servers.

Bcs
i = max

{(
Ccs1

j (`), Ccs2
j (`)

)
|Pj(`) ≤ Pi(`) ∧ j ∈ PS

}
(5.25)

123

Chapter 5. Extension to Mixed-Criticality

Bi = max
(
Ccs2

i (`), Bcs
i
)

(5.26)

The interference received by partition tasks in the degraded modes over a window

of length w is calculated using Equation (5.27). The identified sources of interference are

hypervisor tasks, higher priority servers and higher priority tasks that execute within

the same server.

Ii(w) = ∑
j∈hv

⌈
w

Tj(`)

⌉ (
Ccs1

j (`) + Cj(`) + Ccs2
j (`)

)
+ (5.27)

∑
m∈hpPS(s)

⌈
w + Jm(`)

Tm(`)

⌉ (
Ccs1

m (`) + Cm(`) + Ccs2
m (`)

)
+

∑
Pl(`)≥Pi(`)

Ml,s(`)

⌈
w + Jl(`)

Tl(`)

⌉ (
Ccs1

l (`) + Cl(`) + Ccs2
l (`)

)

The response time of partition tasks during the degraded modes of execution, D1

and D2 is given by:

R`
i = Ccs1

i (`) + Ci(`) + Ccs1
s (`) +

(⌈
Ls

i (R`
i)

Cs(`)

⌉
− 1

)
(Ts(`)− Cs(`)) + Bi + Ii(R`

i) (5.28)

5.4.4 RTA During Mode Changes

In this section we produce the response time analysis, to determine whether the system

is schedulable during mode changes. We calculate the response time of a task τi that

uses server s while executing in N mode and s′ during degraded execution. We identify

three types of mode changes in the system: normal to first degraded (N→D1), first

degraded to second degraded (D1→D2) and degraded to normal (D1→N, D2→N).

Transition from Normal to First Degraded

The critical instance during the N→D1 mode change is shown in Figure 5.4 for sporadic

and periodic tasks. In both task types the task τi receives blocking from lower priority

tasks and servers. The blocking factor, Bi is given by:

Bi = max
(
Ccs2

i (LO), Bcs
i
)

(5.29)

124

5.4. Response Time Analysis

N mode D1 mode

Ci(LO)
exceeded

(a) N→D1 transition for sporadic tasks.

N mode D1 mode

Ci(LO)
exceeded

(b) N→D1 transition for periodic tasks.

Blocking

Interference

Task
execution

Mode change
overhead

Mode change
trigger

Server
execution

Figure 5.4: Critical instance for the N→D1 mode change.

where

Bcs
i = max

{
max

(
Ccs1

j (LO), Ccs2
j (LO)

)
|Pj(LO) ≤ Pi(LO) ∧ j ∈ async

}
∪{

max
(

Ccs1
j (LO), Ccs2

j (LO)
)
|Pj(LO) ≤ Pi(LO) ∧ j ∈ PS

}
(5.30)

To calculate the first potential gap where there is no remaining server capacity we

first require to calculate the load on the server. The load on the server while the system

executes in N mode is given by:

Ls
i (RLO

i) =Ccs1
i (LO) + Ci(LO) + Ccs2

i (LO)+

∑
Pj(LO)≥Pi(LO)

Mj,s(LO)

⌈
RLO

i + Jj(LO)

Tj(LO)

⌉ (
Ccs1

j (LO) + Cj(LO) + Ccs2
j (LO)

)
(5.31)

125

Chapter 5. Extension to Mixed-Criticality

The gap where there is no capacity to service task τi while the system executes in N

mode is given by the expression of Equation (5.32).

(⌈
Ls

i (RLO
i)

Cs(LO)

⌉
− 1

)
(Ts(LO)− Cs(LO)) (5.32)

As shown in Equation (5.33), sporadic tasks receive interference from hypervisor

tasks and sporadic tasks with higher priority.

ILO
i (RLO

i) = ∑
Pj(LO)≥Pi(LO)

⌈
RLO

i + Jj(LO)

Tj(LO)

⌉ (
Ccs1

j (LO) + Cj(LO) + Ccs2
j (LO)

)
(5.33)

The sources of interference for periodic tasks are hypervisor tasks, sporadic tasks,

higher priority periodic servers and higher priority tasks residing in the same server, s.

ILO
i (RLO

i) = ∑
j∈hv

⌈
RLO

i
Tj(LO)

⌉ (
Ccs1

j (LO) + Cj(LO) + Ccs2
j (LO)

)
+

∑
k∈async

⌈
RLO

i + Jk(LO)

Tk(LO)

⌉ (
Ccs1

k (LO) + Ck(LO) + Ccs2
k (LO)

)
+

∑
m∈hpPS(s)

⌈
RLO

i + Jm(LO)

Tm(LO)

⌉ (
Ccs1

m (LO) + Cm(LO) + Ccs2
m (LO)

)
+

∑
Pl(LO)≥Pi(LO)

Ml,s(LO)

⌈
RLO

i + Jl(LO)

Tl(LO)

⌉ (
Ccs1

l (LO) + Cl(LO) + Ccs2
l (LO)

)
(5.34)

Transitioning from mode N to D1 has a WCET of CN→D1 time units. Following the

transition, we use the MI values for all task and server parameters. Since all sporadic

tasks are incorporated into periodic servers it is necessary to account for the higher pri-

ority periodic servers and higher priority tasks within the same server. The interference

received by τi after the transition to D1 is given by:

126

5.4. Response Time Analysis

D1 mode D2 mode

Ci(MI)
exceeded

Blocking

Interference

Task
execution

Mode change
overhead

Mode change
trigger

Server
execution

Figure 5.5: Critical instance during the D1→D2 mode change.

IMI
i (R∗i) = ∑

j∈hv

⌈
R∗i

Tj(LO)

⌉ (
Ccs1

j (LO) + Cj(LO) + Ccs2
j (LO)

)
+

∑
k∈hpPS(s)

⌈
R∗i + Jk(MI)

Tk(MI)

⌉ (
Ccs1

k (MI) + Ck(MI) + Ccs2
K (MI)

)
+

∑
Pl(LO)≥Pi(LO)

Ml,s(LO)

⌈
R∗i + Jl(LO)

Tl(LO)

⌉ (
Ccs1

l (LO) + Cl(LO) + Ccs2
l (LO)

)
(5.35)

The resulting response time during a N→D1 mode switch is given by Equation

(5.37).

R∗i =Ccs1
i (LO) + Ci(LO) + Ccs1

s (LO)+ (5.36)(⌈
Ls

i (RLO
i)

Cs(LO)

⌉
− 1

)
(Ts(LO)− Cs(LO)) +

max
(
Ccs2

i (LO), Bcs
i
)
+ ILO

i (RLO
i) + CN→D1+(⌈

Ls′
i (R∗i)

Cs′(MI)

⌉
− 1

)
(Ts′(MI)− Cs′(MI)) + IMI

i (R∗i) (5.37)

Transition from First Degraded to Second Degraded

The critical instance during a mode switch from D1 to D2 is shown in Figure 5.5. During

the switch all partition tasks execute using periodic servers. The blocking received by

127

Chapter 5. Extension to Mixed-Criticality

partition tasks during while the system executes in D1 is defined as the maximum

between the longest non-preemptive region of lower priority servers and Ccs2
i (MI).

Bi = max
(
Ccs2

i (MI), Bcs
i
)

(5.38)

where

Bcs
i = max

{
max

(
Ccs1

j (MI), Ccs2
j (MI)

)
|Pj(MI) ≤ Pi(MI) ∧ j ∈ PS

}
(5.39)

While executing in degraded modes, task τi uses server s′. The gap, where s′ has no

capacity to service τi during the execution in the D1 mode is given by:

(⌈
Ls′

i (RMI
i)

Cs′(MI)

⌉
− 1

)
(Ts′(MI)− Cs′(MI)) (5.40)

Prior the mode change, τi receives interference from hypervisor tasks and higher

priority servers and higher priority tasks that execute within s′. The interference during

the execution in D1 is given by Equation (5.41).

IMI
i (RMI

i) = ∑
j∈hv

⌈
RMI

i
Tj(MI)

⌉ (
Ccs1

j (MI) + Cj(MI) + Ccs2
j (MI)

)
+

∑
k∈hpPS(s)

⌈
RMI

i + Jk(MI)
Tk(MI)

⌉ (
Ccs1

k (MI) + Ck(MI) + Ccs2
K (MI)

)
+

∑
Pl(MI)≥Pi(MI)

Ml,s(MI)

⌈
RMI

i + Jl(MI)
Tl(MI)

⌉ (
Ccs1

l (MI) + Cl(MI) + Ccs2
l (MI)

)
(5.41)

After the mode switch is triggered, the system spends CD1→D2 time units. After the

mode change τi receives interference from the HI criticality tasks in the system, when

there is sufficient server capacity available.

128

5.4. Response Time Analysis

N mode

Idle
tick

(a) Aperiodic tasks.

N mode

Idle
tick

(b) Periodic tasks.

Blocking

Interference

Task
execution

Mode change
overhead

Mode change
trigger

Server
execution

Figure 5.6: Critical instance during the degraded to normal mode transitions.

IHI
i (RHI

i) = ∑
j∈hv

⌈
RHI

i
Tj(HI)

⌉ (
Ccs1

j (HI) + Cj(HI) + Ccs2
j (HI)

)
+

∑
k∈hpPS(s)

⌈
RHI

i + Jk(HI)
Tk(HI)

⌉ (
Ccs1

k (HI) + Ck(HI) + Ccs2
K (HI)

)
+

∑
Pl(HI)≥Pi(HI)

Ml,s(HI)

⌈
RHI

i + Jl(HI)
Tl(HI)

⌉ (
Ccs1

l (HI) + Cl(HI) + Ccs2
l (HI)

)
(5.42)

The response time of a task τi using server s′ during the D1→D2 mode switch is

given by:

R∗i =Ccs1
i (MI) + Ci(MI) + Ccs1

s (MI) +

(⌈
Ls′

i (RMI
i)

Cs′(MI)

⌉
− 1

)
(Ts′(MI)− Cs′(MI)) +

max
(
Ccs2

i (MI), Bcs
i
)
+ IMI

i (RMI
i) + CD1→D2+(⌈

Ls′
i (R∗i)

Cs′(HI)

⌉
− 1

)
(Ts′(HI)− Cs′(HI)) + IHI

i (R∗i) (5.43)

Transition from Degraded States to Normal

As shown in Figure 5.6, the transition from the degraded modes to normal is triggered

by an idle tick after all released tasks have finished executing. For the critical instance

129

Chapter 5. Extension to Mixed-Criticality

we assume that all tasks in the system are released immediately after the mode change

operation starts executing. During the D1→N and D2→N mode changes, the response

time of task τi is calculated following a similar approach to the one described in Section

5.4.2. The key difference in the response time of τi is that instead of the blocking it

suffers from the interference of the mode switch overhead, CD→N . The response time of

τi during the D1→N and D2→N mode changes is given by:

R∗i =Ccs1
i (LO) + Ci(LO) + Ccs1

s (LO)+(⌈
Ls

i (R∗i)
Cs(LO)

⌉
− 1
)
(Ts(LO)− Cs(LO)) + CD→N + Ii(R∗i) (5.44)

5.5 Summary

In this chapter we extend the system model to support multiple levels of criticality. In

the proposed model three criticality levels are supported: LO, MI and HI. The system

can execute in one of three modes: N, D1 and D2.

A N→D1 mode switch is triggered if a task exceeds its LO criticality WCET. In

the first degraded mode, D1, tasks within deferrable servers are migrated to periodic

servers, therefore taking advantage of the reduced overheads to extend the periodic

servers capacity. This execution mode takes advantage of the latency-utilisation trade-

off, as well as the higher overheads that result from using high priority deferrable servers

during the normal execution mode, N. In D1 all tasks are scheduled, using the addi-

tional capacity available after the task migrations to satisfy their MI timing require-

ments.

Another mode switch (D1→D2) is triggered if a task executing while the system is

in D1 mode exceeds its MI WCET. The D2 mode follows a more aggressive approach,

allowing only HI criticality tasks to execute. The system is able to return to the normal

execution mode, N, if an idle tick is detected and no task is pending for execution. The

additional capacity available to the HI criticality partitions was calculated.

A response time analysis for the mixed criticality model was produced. Specifically,

the analysis consists of calculating the response times of all partition tasks during the

three modes of execution, N, D1 and D2, and all mode changes, N→D1, D1→D2,

D1→N and D2→N.

130

CHAPTER 6
Case Study: Mixed-criticality Engine

Controller

One of the industrial use cases identified in Section 1.2 is supporting the integration

of partitions of different criticality levels in a single physical ECU. This use case was

realised in Chapter 5 by extending the scheduling model of Chapter 3 to support three

levels of criticality using two modes of degradation. In the first degraded mode, D1, all

event-triggered tasks are migrated from deferrable servers to their partitions’ periodic

serves, exploiting the additional available capacity that results from the reduced hyper-

visor overheads. In the second deferrable mode, D2, only partitions of HI criticality are

allowed to execute.

In this chapter, we evaluate the scheduling approach of Chapter 5 by forming a case

study using ECU application code that was provided by ETAS Ltd. The ECU application

code used is the same as the one used in Chapter 4.

6.1 Server Parameter Selection

The task parameters and task-server mappings vary per criticality level, therefore the

server period and capacity are calculated for each criticality level. Algorithm 1 details

the method used for selecting server parameters. The approach followed focuses on hav-

ing no gaps where server capacity is not available using the lowest possible replenishing

period.

131

Chapter 6. Case Study: Mixed-criticality Engine Controller

Algorithm 1: Server parameter selection for mixed criticality.
Input: ` - current criticality level
Data: servers - list of all servers
tasks - list of all tasks
MIN_P - minimum priority level
Result: The capacity and replenishment period of all servers are set using the

minimum possible replenishment period.
1 Function SetServerParameters (`)
2 foreach s ∈ servers do
3 periods← [];

/* Construct a list with the unique periods of all tasks

serviced by server s */

4 foreach t ∈ s.tasks[`] do
5 if t.T(`) /∈ periods then
6 Append t.T(`) to periods;

7 sort periods in ascending order;
8 done← False;

/* Periods are tried in ascending order, since they were

sorted. */

9 foreach t′ ∈ periods do
/* The minimum required capacity given a period t′ is given

as the total load on the server s. */

10 c′ ← L(s, MIN_P, t′, `);
11 if c′ < t′ then
12 s.T(`)← t′;
13 s.C(`)← c′;
14 done← True;
15 break loop;

16 if not done then
17 return FAIL;

18 return SUCCESS;

132

6.2. Priority Assignment

The parameters of a server s are selected by first constructing a list containing all the

unique periods of the tasks serviced by s at criticality level `. For each unique period

t′, starting from the shortest to the longest, the required server capacity, c′, to service all

the tasks within s is calculated as the load on the server given a window length t′ at the

minimum priority level, MIN_P. If the period and capacity values are valid, ie. c′ < t′,

they are assigned to the server.

6.2 Priority Assignment

Algorithm 2: Priority assignment algorithm.
Input: ` - current criticality level
Data: servers - list of all servers
ps - list of all periodic servers
hvtasks - list of all hypervisor tasks
dstasks - list of all tasks mapped to periodic servers

1 Function AssignPriorities(l)
2 p← MAX_P;
3 sort hvtasks in ascending order by T(`);

/* Assign priorities to hypervisor tasks. */

4 foreach t ∈ hvtasks do
5 t.P(`)← p;
6 p← decrement (p);

7 sort dstasks in ascending order by T(`);
/* Assign priorities to tasks using deferrable servers. */

8 foreach t ∈ dstasks do
9 t.P(`)← p;

10 p← decrement (p);

/* For simplicity we assign tasks within periodic servers global

priorities. */

11 sort ps in ascending order by T(`);
12 foreach s ∈ ps(`) do
13 sort s.tasks(`) in ascending order by T(`);
14 foreach t ∈ s.tasks(`) do
15 t.P(`)← p;
16 p← decrement (p);

17 foreach s ∈ servers do
18 s.P(`)← ceilP (s.tasks(`)); /* ceiling priority of tasks in s */

The priority assignment for all tasks and servers in the system follows Algorithm 2.

The approach of Algorithm 2 assigns priorities based on a rate-monotonic approach, by

assigning higher priorities to tasks with shorter periods. In the case where two tasks

133

Chapter 6. Case Study: Mixed-criticality Engine Controller

have the same period, the one with the shortest WCET is assigned a higher priority.

The algorithm follows a divide and conquer approach in order to produce a priority

ordering that complies with the system model’s priority space. Priorities are assigned

from highest to lowest, given the current criticality level, `.

A counter, p, is initialised at the highest priority level. The list of hypervisor tasks

is sorted with respect to their periods and WCETs. The sorted list gives the priority

ranking of the hypervisor tasks from highest to lowest. Iterating through the sorted

hypervisor task list, priorities at the current criticality level (`) are assigned the value

of p. The priority level represented by p is decreased with each iteration, therefore all

hypervisor tasks have unique consecutive priorities at the highest priority band.

Similar to hypervisor tasks, the list of tasks using deferrable servers at criticality

level ` is sorted. All tasks in the sorted list are assigned unique priorities from high to

low. The next step of priority assignment is tasks mapped on periodic servers. Unlike

deferrable servers, periodic servers have no overlapping priorities. The list of periodic

servers is therefore sorted with respect to their replenishment period and capacity at the

current criticality level, `.

For all periodic servers, starting from the highest priority to the lowest, tasks are

assigned priorities. Specifically for a periodic server s the list of all its tasks at the

current criticality level is sorted. The order of tasks in the sorted list is then used as a

ranking for assigning priorities.

The last part of the priority assignment is setting the execution server priorities. As

stated in Section 5.2, the priority level of an execution server at a criticality level ` is

defined as the ceiling priority of all the tasks it services when the system executes at the

current criticality level.

6.3 Sensitivity Analysis

Algorithm 3 details the algorithm used to perform sensitivity analysis to the mixed

criticality model of Chapter 5. The purpose of the algorithm is to provide the maximum

task WCET for each criticality level resulting in a schedulable system.

The input of the algorithm is a configuration file that contains all the base infor-

mation required to construct a system definition at LO criticality. Specifically, the con-

figuration file contains a list of application tasks. Each task is defined by its name,

134

6.3. Sensitivity Analysis

Algorithm 3: Algorithm for scaling up the WCET of a system configuration.
Input: con f - base system configuration file
Data: STEP - the granularity level for scaling up the task WCETs
Result: A marginally schedulable system definition that follows the base

configuration.
1 system← parse (con f);
2 foreach ` ∈ {LO, MI, HI} do
3 min_scale← 1;
4 max_scale← 1/getUtilisation (system);
5 scale← (max_scale−min_scale)/2;
6 schedulable← f alse;
7 while (max_scale−min_scale) > 2 ∗ STEP do
8 system.setScaleWCET (scale, `);
9 SetServerParameters (`);

10 system.AssignPriorities (`);
11 schedulable←SetServerParameters (`) ∧ isSchedulable (system, `)
12 if schedulable then
13 min_scale← scale;
14 scale← (max_scale−min_scale)/2;

15 else
16 max_scale← scale;
17 scale← (max_scale−min_scale)/2;

18 if ¬schedulable then
19 scale← scale− STEP;
20 system.setScaleWCET (scale, `);
21 SetServerParameters (`);
22 system.AssignPriorities (`);

LO-criticality WCET (Ccs1, C, Ccs2), period, type (periodic or sporadic), criticality level

(LO, MI or HI) and partition name. The application task parameters in conjunction

with pre-set hypervisor overheads provides sufficient information to generate a repre-

sentation of the resulting system.

The sensitivity analysis of Algorithm 3 follows a bisection-based approach to search

for the maximum scaling factor that can be applied to the WCETs while keeping the sys-

tem schedulable. The first step of the sensitivity analysis is parsing the configuration file

and the initialisation of min_scale, max_scale and scale. This generates a system descrip-

tion with base parameters. min_scale then is initialised to 1 (ie. no scaling), max_scale

is initialised to the scaling required to get a utilisation of 1 in the system, scale is de-

fined as the mid-point between min_scale and max_scale. Additionally, the schedulable

flag is initialised to f alse. For each criticality level `, follow a bisection approach until

135

Chapter 6. Case Study: Mixed-criticality Engine Controller

the difference between min_scale and max_scale is less than 2 ∗ STEP. Every iteration

updates the schedulable flag, to indicate whether the system was schedulable or not.

If the difference of min_scale and max_scale is less than 2 ∗ STEP and the system was

not schedulable during the last iteration, scale is decreased by STEP and the scaling is

applied to the system configuration. When the algorithm terminates, scale contains the

maximum scaling factor and system contains the system configuration scaled up until

just schedulable.

6.4 Taskset and Overhead Characteristics

This section details the characteristics of the case study formed using the application

code provided by ETAS Ltd that was also used for Chapter 4.

6.4.1 Mixed-criticality Taskset

Table 6.1 lists the characteristics of the tasks used to evaluate the mixed-criticality ex-

tension of the system model. The WCET of the listed tasks is the maximum observed

execution time, as obtained by the timing analysis performed in Section 4.2.2. These

were used as a base for the LO-criticality WCET. The WCET values used to evaluate the

proposed approach were obtained as described in Algorithm 3. The tasks retain their

periodic/sporadic classification, since these properties are determined by the timing

characteristics.

All tasks in the classified with respect to their criticality level. The classification was

performed by an expert with respect to the functionality of the tasks. Specifically, tasks

with functions that are key for the operation of an engine, such as fuel pump control

and manifold pressure monitoring, are classified as HI criticality.

Tasks that are less susceptible to causing damage to the engine in case of failure,

such as diagnostics or battery voltage monitoring, are classified as MI criticality. MI

tasks are only dropped in D2 mode, which is used as a last resort to allow the system

to safely recover or reboot. Therefore, tasks with relaxed timing requirements from

a functional prospective, such as coolant temperature monitoring (the rate of change

of coolant temperature, assuming no sensor malfunction, is relatively slow), are also

classified as MI criticality.

136

6.4. Taskset and Overhead Characteristics

Task WCET (ns) Period (ms) Criticality Type
τ0 518 100 HI Periodic
τ1 3641 10 HI Periodic
τ2 959 100 HI Periodic
τ3 189 10 MI Periodic
τ4 615 100 HI Periodic
τ5 222 1 HI Sporadic
τ6 447 1000 MI Periodic
τ7 125 100 MI Periodic
τ8 363 10 HI Periodic
τ9 364 10 HI Periodic
τ10 500 1 HI Sporadic
τ11 363 1 HI Sporadic
τ12 424 100 HI Periodic
τ13 363 10 MI Periodic
τ14 422 100 HI Periodic
τ15 1039 100 HI Periodic
τ16 249 100 HI Periodic
τ17 1088 100 HI Periodic
τ18 2538 100 MI Periodic
τ19 363 50 MI Periodic
τ20 340 100 MI Periodic
τ21 375 100 HI Periodic
τ22 344 1 HI Sporadic
τ23 1331 20 HI Periodic
τ24 483 10 MI Periodic
τ25 462 1 HI Sporadic
τ26 174 100 HI Periodic
τ27 204 10 HI Periodic
τ28 494 10 HI Periodic
τ29 508 10 HI Periodic
τ30 2373 20 HI Periodic
τ31 758 100 HI Periodic

Table 6.1: Mixed-criticality application taskset characteristics.

137

Chapter 6. Case Study: Mixed-criticality Engine Controller

6.4.2 Hypervisor Overheads

The identified hypervisor overheads for the mixed-criticality extension of the scheduling

model are shown in Table 6.2. The interrupt forward and return overheads remain

unchanged with the mixed criticality model. The cost of replenishing a server’s capacity

is also unchanged, however the replenishment period is set equal the corresponding

server’s period for each criticality level. In the case where no tasks are serviced by a

server at a criticality level, the server capacity replenishment cost is set to 0.

Hypervisor Overhead WCET (ns)
Forward interrupt 363
Return from interrupt 139
Replenish server capacity 553
Mode change 645

Table 6.2: Hypervisor overheads for the mixed-criticality model.

Changing criticality modes is a new source of hypervisor overheads that arises from

the proposed mixed-criticality model. During a mode switch the hypervisor performs

the necessary operations for migrating tasks between servers. The current system model

assumes a single-core, therefore no task state information is required to be moved. The

main operations performed during a mode change is a reconfiguration of the interrupt

controller to support the new task priority levels and entry points. Similar to the other

hypervisor overheads, the measurement was obtained via static analysis of a partial

implementation.

6.5 Hypervisor System Configurations

In this section we present three different task configurations that were used for the

evaluation of the mixed-criticality model of Chapter 5.

6.5.1 2-partition Configuration

The first configuration that was used for the evaluation was the two-partition setup that

is shown in Table 6.3. In this configuration, the tasks are divided into two partitions

with respect to their criticality level. Specifically p0 is a HI criticality partition, whereas

the criticality level of p1 is MI. The highest priority band is occupied by the server

replenishment tasks p0_ds_rep, p0_ps_rep and p1_ps_rep. All asynrchronous tasks in

138

6.5. Hypervisor System Configurations

Task LO MI HI
ID Server Priority Server Priority Server Priority

p0_ds_rep HV 1 HV N/A N/A N/A
p0_ps_rep HV 2 HV 0 HV 0
p1_ps_rep HV 3 HV 1 N/A N/A

τ0 p0_ps 30 p0_ps 28 p0_ps 19
τ1 p0_ps 22 p0_ps 20 p0_ps 11
τ2 p0_ps 33 p0_ps 31 p0_ps 22
τ3 p1_ps 9 p1_ps 2 N/A N/A
τ4 p0_ps 31 p0_ps 29 p0_ps 20
τ5 p0_ds 4 p0_ps 10 p0_ps 1
τ6 p1_ps 16 p1_ps 9 N/A N/A
τ7 p1_ps 13 p1_ps 6 N/A N/A
τ8 p0_ps 18 p0_ps 16 p0_ps 7
τ9 p0_ps 19 p0_ps 17 p0_ps 8
τ10 p0_ds 8 p0_ps 14 p0_ps 5
τ11 p0_ds 6 p0_ps 12 p0_ps 3
τ12 p0_ps 29 p0_ps 27 p0_ps 18
τ13 p1_ps 10 p1_ps 3 N/A N/A
τ14 p0_ps 28 p0_ps 26 p0_ps 17
τ15 p0_ps 34 p0_ps 32 p0_ps 23
τ16 p0_ps 26 p0_ps 24 p0_ps 15
τ17 p0_ps 35 p0_ps 33 p0_ps 24
τ18 p1_ps 15 p1_ps 8 N/A N/A
τ19 p1_ps 12 p1_ps 5 N/A N/A
τ20 p1_ps 14 p1_ps 7 N/A N/A
τ21 p0_ps 27 p0_ps 25 p0_ps 16
τ22 p0_ds 5 p0_ps 11 p0_ps 2
τ23 p0_ps 23 p0_ps 21 p0_ps 12
τ24 p1_ps 11 p1_ps 4 N/A N/A
τ25 p0_ds 7 p0_ps 13 p0_ps 4
τ26 p0_ps 25 p0_ps 23 p0_ps 14
τ27 p0_ps 17 p0_ps 15 p0_ps 6
τ28 p0_ps 20 p0_ps 18 p0_ps 9
τ29 p0_ps 21 p0_ps 19 p0_ps 10
τ30 p0_ps 24 p0_ps 22 p0_ps 13
τ31 p0_ps 32 p0_ps 30 p0_ps 21

Table 6.3: 2-partition system configuration.

139

Chapter 6. Case Study: Mixed-criticality Engine Controller

the application used for the case study are classified as HI criticality. The deferrable

server of p1 is not used, therefore the replenishment task p1_ds_rep was omitted. From

a scheduling perspective, replenishment tasks for deferrable servers are considered as

LO criticality, since no deferrable servers are used in the degraded modes.

6.5.2 3-partition Configuration

The 3-partition configuration was composed to compare the performance of the model in

the case where partitions were classified in terms of criticality and timing requirements.

All periodic tasks are mapped to partitions p0 and p1. The sporadic tasks that were

part of p0 in the 2-partition configuration of Section 6.5.1 are now isolated in a separate

partition, p2. The criticality level of the tasks composing partition p1 is MI, whereas p0

and p1 are HI criticality.

6.5.3 8-partition Configuration

In the 8-partition configuration tasks were partitioned with respect to their periods and

criticality level, as shown in Table 6.5. p0 is the only partition using a deferrable server,

since it is composed of all the sporadic tasks in the system. The MI criticality partitions

are p2, p4, p6 and p7. The partitions composed of HI criticality tasks are p0, p1, p3 and

p5.

6.6 Experiment

In this section we provide an overview of the implementation used to perform the sen-

sitivity analysis, as shown in Sections 6.1, 6.2 and 6.3. The hypervisor configurations of

Section 6.5 were then used as input data to produce the results necessary to evaluate the

mixed-criticality model.

6.6.1 Implementation

Figure 6.1 summarises the process followed to produce a system configuration that is

marginally schedulable, given a base system specification. The base system specification

is a file containing definitions for all application tasks in the system. Each task definition

is consisted of the task name, WCET (Ccs1, C and Ccs2), period (T), criticality level (`),

140

6.6. Experiment

Task LO MI HI
ID Server Priority Server Priority Server Priority

p0_ps_rep HV 4 HV 1 HV 1
p1_ps_rep HV 5 HV 2 N/A N/A
p2_ds_rep HV 3 N/A N/A N/A N/A
p2_ps_rep N/A N/A HV 0 HV 0

τ0 p0_ps 32 p0_ps 29 p0_ps 20
τ1 p0_ps 24 p0_ps 21 p0_ps 12
τ2 p0_ps 35 p0_ps 32 p0_ps 23
τ3 p1_ps 11 p1_ps 8 N/A N/A
τ4 p0_ps 33 p0_ps 30 p0_ps 21
τ5 p2_ds 6 p2_ps 3 p2_ps 2
τ6 p1_ps 18 p1_ps 15 N/A N/A
τ7 p1_ps 15 p1_ps 12 N/A N/A
τ8 p0_ps 20 p0_ps 17 p0_ps 8
τ9 p0_ps 21 p0_ps 18 p0_ps 9
τ10 p2_ds 10 p2_ps 7 p2_ps 6
τ11 p2_ds 8 p2_ps 5 p2_ps 4
τ12 p0_ps 30 p0_ps 27 p0_ps 18
τ13 p1_ps 12 p1_ps 9 N/A 0
τ14 p0_ps 31 p0_ps 28 p0_ps 19
τ15 p0_ps 36 p0_ps 33 p0_ps 24
τ16 p0_ps 28 p0_ps 25 p0_ps 16
τ17 p0_ps 37 p0_ps 34 p0_ps 25
τ18 p1_ps 17 p1_ps 14 N/A N/A
τ19 p1_ps 14 p1_ps 11 N/A N/A
τ20 p1_ps 16 p1_ps 13 N/A N/A
τ21 p0_ps 29 p0_ps 26 p0_ps 17
τ22 p2_ds 7 p2_ps 4 p2_ps 3
τ23 p0_ps 25 p0_ps 22 p0_ps 13
τ24 p1_ps 13 p1_ps 10 N/A N/A
τ25 p2_ds 9 p2_ps 6 p2_ps 5
τ26 p0_ps 27 p0_ps 24 p0_ps 15
τ27 p0_ps 19 p0_ps 16 p0_ps 7
τ28 p0_ps 22 p0_ps 19 p0_ps 10
τ29 p0_ps 23 p0_ps 20 p0_ps 11
τ30 p0_ps 26 p0_ps 23 p0_ps 14
τ31 p0_ps 34 p0_ps 31 p0_ps 22

Table 6.4: 3-partition system configuration.

141

Chapter 6. Case Study: Mixed-criticality Engine Controller

Task LO MI HI
ID Server Priority Server Priority Server Priority

p0_ds_rep HV 8 N/A N/A N/A N/A
p0_ps_rep N/A N/A HV 0 HV 0
p1_ps_rep HV 9 HV 1 HV 1
p2_ps_rep HV 10 HV 2 N/A N/A
p3_ps_rep HV 11 HV 3 HV 2
p4_ps_rep HV 12 HV 4 N/A N/A
p5_ps_rep HV 13 HV 5 HV 3
p6_ps_rep HV 14 HV 6 N/A N/A
p7_ps_rep HV 15 HV 7 N/A N/A

τ0 p5_ps 41 p5_ps 33 p5_ps 22
τ1 p1_ps 29 p1_ps 21 p1_ps 14
τ2 p5_ps 44 p5_ps 36 p5_ps 25
τ3 p2_ps 21 p2_ps 13 N/A N/A
τ4 p5_ps 42 p5_ps 34 p5_ps 23
τ5 p0_ds 16 p0_ps 8 p0_ps 4
τ6 p7_ps 47 p7_ps 39 N/A N/A
τ7 p6_ps 33 p6_ps 25 N/A N/A
τ8 p1_ps 25 p1_ps 17 p1_ps 10
τ9 p1_ps 26 p1_ps 18 p1_ps 11
τ10 p0_ds 20 p0_ps 12 p0_ps 8
τ11 p0_ds 18 p0_ps 10 p0_ps 6
τ12 p5_ps 39 p5_ps 31 p5_ps 20
τ13 p2_ps 22 p2_ps 14 N/A N/A
τ14 p5_ps 40 p5_ps 32 p5_ps 21
τ15 p5_ps 45 p5_ps 37 p5_ps 26
τ16 p5_ps 37 p5_ps 29 p5_ps 18
τ17 p5_ps 46 p5_ps 38 p5_ps 27
τ18 p6_ps 35 p6_ps 27 N/A N/A
τ19 p4_ps 32 p4_ps 24 N/A N/A
τ20 p6_ps 34 p6_ps 26 N/A N/A
τ21 p5_ps 38 p5_ps 30 p5_ps 19
τ22 p0_ds 17 p0_ps 9 p0_ps 5
τ23 p3_ps 30 p3_ps 22 p3_ps 15
τ24 p2_ps 23 p2_ps 15 N/A N/A
τ25 p0_ds 19 p0_ps 11 p0_ps 7
τ26 p5_ps 36 p5_ps 28 p5_ps 17
τ27 p1_ps 24 p1_ps 16 p1_ps 9
τ28 p1_ps 27 p1_ps 19 p1_ps 12
τ29 p1_ps 28 p1_ps 20 p1_ps 13
τ30 p3_ps 31 p3_ps 23 p3_ps 16
τ31 p5_ps 43 p5_ps 35 p5_ps 24

Table 6.5: 8-partition system configuration.

142

6.6. Experiment

LO MI HI

*Assign Priori�es

Scale up
WCET

Set Server
Parameters

*Assign Priori�es

Scale up
WCET

Set Server
Parameters

Assign Priori�es

Scale up
WCET

Set Server
Parameters

Scaled System
Configura�on

Re
pe

at

Re
pe

at

Re
pe

at

*

Base System
Specifica�on

* Repeat until the system is marginally schedulable

Parse
Specifica�on

Figure 6.1: Implementation for the mixed-criticality model evaluation.

type (periodic or sporadic) and the identifier of the partition it is part of. All system

overheads are provided as parameters.

For each application task a check is performed whether its partition has already been

defined. If the partition is undefined, a new partition is added to the system with the

provided identifier. Each partition has a deferrable server and a periodic server associ-

ated with it. A task entity is created using the specification of the current task, which

is then mapped to the appropriate servers for each criticality level. For example, a HI

criticality sporadic task is mapped on the deferrable server of its partition at criticality

level LO and the periodic server at MI and HI. Whereas, a periodic task would be

mapped on the periodic server of its partition for all criticality levels.

The taskset specification in conjunction with the system overhead parameters are

used to compose a base system configuration. The configuration is then processed as

described in Algorithm 3, using a STEP value of 0.001. This results in a system configu-

ration that is marginally schedulable at all criticality levels. Hypervisor code is assumed

143

Chapter 6. Case Study: Mixed-criticality Engine Controller

2-partition 3-partition 8-partition
System Configuration

0

50

100

150

200

250

300

350

400

Ta
sk

W
C

ET
Sc

al
in

g
Fa

ct
or

103 103
80

45

304 310

48

324

355N mode
D1 mode
D2 mode

Figure 6.2: Application task WCET scaling with 2, 3 and 8-partition configurations.

to have highly predictable WCET. Therefore, the WCET for all operations performed by

the hypervisor are not scaled up for the MI and HI criticality levels.

The implementation of the required analysis for the evaluation of the proposed

mixed-criticality model was written using Oracle Java SE JDK 8. The analysis was run

on a DELL XPS L501X laptop with an 8-core Intel i7 Q740 CPU, 6GB RAM running a

64-bit version of Microsoft Windows 10.

6.6.2 Results

In this section we discuss the results of the sensitivity analysis on the three identified

system configurations.

WCET Scaling

Figure 6.2 shows the scaling that was achieved by each system configuration for all

criticality levels. The 2-partition configuration while the system executes in N mode

achieved a scaling factor of 103. At the degraded modes there is significant capacity

144

6.6. Experiment

loss, which makes the proposed model ineffective for the 2-partition configuration. The

reason for the poor performance in D1 and D2 is that the large variation of the temporal

requirements of the application tasks of p0.

As it was identified in Section 6.5.1, in the 2-partition configuration p0 is consisted

of both periodic and sporadic tasks. All sporadic tasks have a minimum interarrival

time of 1ms, whereas the periodic tasks of p0 have periods of up to 100ms. The server

parameter selection method that was used was intended to eliminate gaps where no

capacity was available. The capacity of the periodic server of p0 at the degraded modes

was set as the capacity required to service all its tasks within a 1ms interval. This

resulted in significant waste of periodic server capacity, which caused the system to lose

capacity after the mode switch to the first degraded mode, D1. Dropping p1 in the

second degraded mode, D2, provides a small amount of additional capacity, however it

still performs poorly in comparison to the execution in N mode.

The 3-partition configuration achieves the same scaling as the 2-partition config-

uration while the system executes in N mode. After the mode switch to D1 there is a

significant increase of the WCET scaling, by a factor of 3. Assigning the sporadic tasks in

a separate partition (p2) eliminated the server parameter shortcoming of the 2-partition

configuration. Specifically, in the degraded modes the sporadic tasks execute using the

periodic server of p2. All sporadic tasks in the system share the same minimum inter-

arrival time of 1ms. This allows for no wasted server capacity, therefore increasing the

achieved scaling in the degraded modes. Switching to the second degraded mode, D2,

there is a small increase in the scaling factor. The small increase is as expected, since the

95% of application task utilisation is used by HI criticality tasks.

The scaling achieved with the 8-partition configuration was 80, which is significantly

lower than the 2 and 3-partition configurations. The lower scaling achieved for the 8-

partition configuration was attributed to the large number of hypervisor tasks, which

reside at the highest priority band in the system. Specifically, server capacity replenish-

ment tasks are assigned strictly higher priorities than application tasks, therefore having

a greater impact on the optimality of the priority assignment algorithm.

Another contributing factor to this is the context switching overheads of sporadic

tasks. After the switch to the first degraded mode, D1, the achieved scaling is 310, which

is the highest achieved in all three configurations. The use of solely periodic servers

servicing tasks of the same period made the priority assignment algorithm very effective.

145

Chapter 6. Case Study: Mixed-criticality Engine Controller

2-partition 3-partition 8-partition
System Configuration

0

10

20

30

40

50

60

70

80

O
ve

rh
ea

ds
(%

)

54% 54% 55%

62%

14%
11%

57%

12%
9%

N mode
D1 mode
D2 mode

Figure 6.3: Ratio of hypervisor overheads to the system utilisation 2, 3 and 8-partition
configurations.

Switching to D2 results in more spare capacity than the 3-partition configuration, since

additional capacity is freed due to the number of server replenishment tasks that are no

longer in use, as shown in Table 6.5.

Hypervisor Overheads

Figure 6.3 shows the percentage of the system utilisation spent for hypervisor overheads

for each system configuration; 54% of the utilisation of the 2 and 3-partition configura-

tions is spent in hypervisor overheads. The majority of these overheads are attributed

to handling sporadic tasks. The 8-partition configuration has 55% overheads, due to the

additional number of execution servers.

The 2-partition configuration suffers from 62% and 57% overheads during the D1

and D2 modes respectively. Similarly to the poor scaling factor, the high overheads

is also a result of the wasted server capacity due to the difference in the periods of

the periodic and sporadic tasks of p0. The capacity of the periodic server of p0 in the

146

6.7. Architectural Design Evaluation

degraded modes has enough capacity to service all its tasks with each release. Most of

this capacity is idled away, therefore increasing the overheads-to-utilisation ratio.

Separating the sporadic tasks in separate partitions resulted in a significant overhead

decrease during the degraded modes, as shown in Figure 6.3 for the 3 and 8-partition

configurations. The 8-partition configuration has slightly lower overheads with respect

to the total utilisation than the 3-partition configuration since there is no wasted server

capacity resulting from large periods variations of tasks within the same server.

6.7 Architectural Design Evaluation

Overall, the proposed mixed-criticality approach performs poorly in system configu-

rations where the tasks within a single partition have significantly different temporal

requirements. A high increase in the WCET scaling factor was observed when the spo-

radic tasks were migrated on a separate server instead of using the same periodic server

as periodic tasks.

The poor performance of the 2-partition configuration is an indication where the use

of polling servers may provide better performance under certain circumstances. The

approach used for selecting server parameters was to find the smallest possible period

for a server capacity that is equal to the load on the server over a window of length

that is equal to the period. In the worst-case, this can result in a significant amount of

unused capacity in cases where the serviced tasks have large variations in their periods.

This is exacerbated in the average case.

The use of polling servers instead of periodic servers could therefore provide better

overall performance when used by bound periodic tasks as polling servers relinquish

their capacity when they are idle. The variation in the interarrival times of sporadic

tasks can introduce instances where the server is idle, thus causing the server’s capacity

to be relinquished. Subsequent releases of sporadic tasks will therefore be blocked until

the next replenishment of their server. Although the proposed mixed-criticality model

takes advantage of the utilisation/performance trade-off, the use of polling servers to

service sporadic tasks in degraded modes can provide lower performance than periodic

servers. Therefore, the use of polling servers in degraded modes for servicing sporadic

tasks can contradict the requirement for minimising the latency of sporadic tasks, as

discussed in Section 3.1.

147

Chapter 6. Case Study: Mixed-criticality Engine Controller

6.8 Summary

In this chapter the mixed criticality system model is evaluated by performing sensitivity

analysis on three system configurations based on the application code provided by ETAS

Ltd.

The methodology followed for performing the sensitivity analysis was detailed.

Specifically, we present a server parameter selection approach that focuses on elimi-

nating server gaps using short replenishment periods. A rate-monotonic based priority

assignment was then defined, providing a systematic way of assigning priorities for all

criticality levels, given the temporal characteristics of the tasks. The server parameter

selection and priority assignment algorithms were used as part of the scaling up algo-

rithm, which, given a base system configuration, scales up the WCET of all tasks in the

system, producing a marginally schedulable system for each criticality level.

From the sensitivity analysis it was observed that the proposed approach was suc-

cessful in providing additional capacity in the configurations where the sporadic tasks

were isolated in separate partitions, during the execution in D1 mode. Dropping MI

criticality tasks in D2 mode provided little improvement in terms of additional capacity,

due to the taskset consisting of 95% HI criticality tasks. High variations in the task pe-

riods of one partition resulted in capacity loss due to high overheads and wasted server

capacity.

148

CHAPTER 7
Case Study: Olympus Attitude and

Orbital Control System

In this chapter we perform an experimental evaluation of the mixed-criticality extension

of the proposed model, which was introduced in Chapter 5. The case study performed in

this chapter was inspired from the real-time characteristics of the Olympus Attitude and

Orbital Control System (AOCS) taskset, as presented in the paper by Burns et al. [22].

The focus of the experiments is the investigation of the response times achieved by the

proposed mixed-criticality model when the simulated system experiences average-case

behaviour in the three execution modes.

AOCS is a subsystem of the Olympus experimental communication satellite, which

was in service from July 1989 [22] until August 1993 [39]. The AOCS is responsible

for maintaining the satellite’s position and orientation in the geostationary ring. The

primary functionality of the AOCS is implemented by the CONTROLLER object, which

is functionally decomposed to the following objects:

• RECEIVE FROM BUS - Used for accessing shared data from the bus.

• CONTROL LAW - Responsible for maintaining the satellite’s position.

• SENSOR - Provides the CONTROL LAW object with required sensor information.

• ACTUATORS - Provides access to the satellite’s actuators.

149

Chapter 7. Case Study: Olympus Attitude and Orbital Control System

7.1 Experiment Setup

This section describes the experiment setup used to evaluate the proposed mixed-criticality

model of Chapter 5. We first list the tasks that consist the Olympus AOCS taskset us-

ing the information from the case study by Burns et al. [22]. The information from the

case study is also used to obtain representative hypervisor overheads for a hardware

platform with a high level of virtualisation support. We then present two alternative

partitioning configurations, which are used to investigate the impact of partitioning in

the observed latency and response times.

7.1.1 AOCS Taskset and Hypervisor Overheads

The case study by Burns et al. [22] provides the real-time requirements of the tasks of

the AOCS. The taskset is consisted of 10 periodic tasks and 7 sporadic tasks, as listed

in Table 7.1. Each task is defined by its period, WCET, deadline and offset. The level of

criticality of each task was assigned with respect to the functionality provided by each

task. Specifically, task C5 (CONTROL_LAW) was treated as the primary task of the

AOCS, therefore it is treated as a HI criticality task. Based on the object descriptions

in [22], tasks that are directly related to C5 were also treated as HI criticality. Task S2

is identified as a soft real-time task, therefore it was assigned a LO criticality. The rest

of the tasks in the system were assigned MI criticality. We then present the approach

taken to simulate average-case behaviour in the simulated system.

For the hypervisor overheads, we assume that the target hardware platform has a

high level of virtualisation support, which results in hpervisor overheads that are multi-

ples of the time required to service an interrupt, as per the timing analysis performed by

Burns et al. [22]. The hypervisor overheads that are used in this case study are especially

selected to be minimal as the automotive case study of Chapters 4 and 6 investigate a

taskset where the application has a relatively low utilisation compared to the hypervisor

overheads.

Investigating the behaviour of the proposed model with minimal hypervisor over-

heads can provide additional insights with respect to the design choices of the archi-

tecture proposed in Chapter 5. The resulting hypervisor overheads are summarised in

Table 7.2.

150

7.1. Experiment Setup

ID Name T WCET Criticality D Offset
Periodic Tasks

C1 READ_BUS_IP 10 1.7639E+00 HI 10 0
C2 REAL_TIME_CLOCK 50 2.8248E-01 HI 90 0
C3 COMMAND_ACTUATORS 200 2.1265E+00 HI 140 50
C4 REQUEST_WHEEL_SPEEDS 200 1.4257E+00 MI 22 0
C5 CONTROL_LAW 200 5.2846E+01 HI 200 50
C6 PROCESS_DSS_DATA 1000 5.1562E+00 MI 400 200
C7 REQUEST_DSS_DATA 200 1.4257E+00 MI 17 150
C8 CALIBRATE_GYRO 1000 6.9140E+00 HI 900 200
C9 PROCESS_IRES_DATA 100 8.2206E+00 HI 50 500
C10 REQUEST_IRES_DATA 100 1.4257E+00 MI 24 0

Sporadic Tasks
S1 TELEMETRY_RESPONSE 62.5 3.1930E+00 HI 30 0
S2 TELECOMMANDS 187 2.5006E+00 LO 187 0
S3 READ_YAW_GYRO 100 4.0749E+00 HI 50 0
S4 MESSAGES_HERE 50 1.3424E+00 MI 50 0
S5 TM_HERE 62.5 9.9160E-02 MI 62.5 0
S6 ZI_HERE 100 9.9160E-02 MI 100 0
S7 TC_HERE 187 9.9160E-02 MI 187 0

Note: The unit of measure of time used in the table is milliseconds (ms).

Table 7.1: AOCS Taskset Real-time Characteristics.

Hypervisor Overhead WCET (ms)
Forward interrupt 0.0054
Return from interrupt 0.0054
Replenish server capacity 0.0108
Mode change 0.0108

Table 7.2: Hypervisor overheads for the mixed-criticality model.

7.1.2 Average-Case Behaviour Simulation

The primary requirement of the experiment setup is the investigation of the system’s

behaviour using average case manifestations of all task releases. This requires the in-

troduction of randomisation in two areas in the system: sporadic task interarrival times

and the task execution times. The necessary information for creating a probabilistic

model of the average case behaviour of the system is not available in the original case

study, therefore all randomisation was performed using examples from the literature.

The simulations were run for the length of one hyper-period and repeated five times.

In Table 7.1, all tasks are associated with a period. In the case of sporadic tasks,

the period is treated as a minimum interarrival time. To obtain the interarrival time

between the each release of a given sporadic tasks, we employ the analysis performed

151

Chapter 7. Case Study: Olympus Attitude and Orbital Control System

by Maxim et al. [75]. Specifically, we use a Weibull distribution (k = 2, λ = 1) to obtain

a coefficient for each release of a given sporadic task. The coefficient is then multiplied

with the minimum interarrival time resulting in the actual interarrival time. Coefficients

with a value of ≤ 1 are set to 1.

The actual execution time of each task release is calculated using a Gumbel distribu-

tion (µ = 0.6, σ = 0.125). Similar to the interarrival times, the actual execution time of

each task release is calculated by multiplying the worst-case execution time of the given

task with a value from the distribution. If the coefficient obtained from the Gumbel

distribution is ≥ 1, it is set to 1.

7.1.3 Partitioning

From the analytical results on both the single-criticality model of Chapter 4 and the

mixed-criticality model of Chapter 6, partitioning plays an important role in the perfor-

mance of the proposed model. The results suggested that partitioning tasks primarily

based on their periods rather than just the sporadic/periodic nature of tasks can signif-

icantly improve the schedulability of the system despite the increase of overheads that

follows many-partition configurations.

The case study performed in this chapter examines a system with minimal hypervi-

sor overheads. This can provide a clearer view on the impact of partitioning, since the

effect of the hypervisor overheads will be significantly lower. We examine two system

configurations: a three-partition configuration and a four-partition configuration. The

partitioning for the two configurations is listed in Table 7.3. Tasks C1 and C7 have rel-

atively short deadlines. To accommodate the requirement for a short response time of

those tasks, they were assigned to the deferrable servers of their respective partitions

instead of the periodic servers during the execution in N mode.

3-partition Configuration

As stated in Section 5.1, all tasks within a partition are constrained to have the same

level of criticality. Therefore, the minimum number of partitions for the tasks in Table

7.1 is achieved by grouping all tasks of the same criticality level into a single partition.

This results into three partitions.

152

7.2. Results

3-partition Configuration 4-partition Configuration
Partition Task Period Partition Task Period
p0, L=LO S2 187 p0, L=LO S2 187

C10 100 C10 100
C3 200 C3 200
C4 200 C4 200
C6 1000 C6 1000
C7 200 C7 200
S4 50 S4 50
S5 62.5 S5 62.5
S6 100 S6 100

p1, L=MI

S7 187

p1, L=MI

S7 187
C1 10 p2, L=HI C1 10
C2 50 C2 50
C5 200 C5 200
C8 1000 C8 1000
C9 100 C9 100
S1 62.5 S1 62.5

p2, L=HI

S3 100

p3, L=HI

S3 100
p0_DS_rep 187 p0_DS_rep 187
p1_DS_rep 50 p1_DS_rep 50
p1_PS_rep 100 p1_PS_rep 100
p2_DS_rep 62.5 p2_DS_rep 62.5
p2_PS_rep 100 p2_PS_rep 100

HV

N/A N/A

HV

p3_PS_rep 10

Table 7.3: Olympus AOCS partition configurations.

4-partition Configuration

From Table 7.1, the HI criticality periodic task C1 has the shortest period in the system.

In the 4-partition configuration we introduce an additional partition that services only

C1. An alternative partitioning scheme would the introduction of additional partitioning

for tasks with significantly different temporal requirements in comparison to the other

tasks in the same partition.

7.2 Results

In this section we discuss the results of the simulation runs that were described in

Section 7.1. Boxplots of the response times of each task in each configuration is shown

in Appendix B. Tables 7.4 and 7.5 summarise the observed response times of of each task

the 3-partition and 4-partition configurations, respectively, for each execution mode (N,

D1, D2). Descriptive statistics for the observed latency values in the system are shown

153

C
hapter

7.
C

ase
Study:O

lym
pus

A
ttitude

and
O

rbitalC
ontrolSystem

Task N - LO D1 - MI D2 - HI
ID MAX Mean Variance MAX Mean Variance MAX Mean Variance
C1 4.262E-02 1.680E-03 2.444E-05 1.111E+01 2.681E+00 1.854E+01 1.620E-02 1.223E-03 1.377E-05
C2 2.332E+01 7.617E+00 5.793E+01 2.852E+01 1.870E+01 2.265E+01 1.628E+01 5.909E+00 2.249E+01
C3 2.748E+00 4.005E-01 2.282E-01 1.765E+01 1.454E+01 1.639E+00 4.047E+00 1.797E+00 6.944E-01
C4 7.281E+00 3.737E-01 1.177E+00 2.700E-02 1.985E-02 6.092E-06 N/A N/A N/A
C5 4.096E+01 2.288E+01 2.005E+02 6.261E+01 4.018E+01 1.320E+02 2.764E+01 1.152E+01 4.078E+01
C6 6.055E+00 2.785E+00 1.725E+00 3.334E+00 2.886E+00 8.075E-02 N/A N/A N/A
C7 3.453E-01 1.595E-02 4.532E-03 1.620E-02 1.283E-02 3.640E-06 N/A N/A N/A
C8 1.843E+01 1.488E+01 8.682E+00 2.685E+01 2.240E+01 8.023E+00 1.344E+01 1.041E+01 5.732E+00
C9 1.592E+01 9.768E+00 2.142E+00 1.789E+01 1.476E+01 2.328E+00 5.350E+00 1.646E+00 1.140E+00
C10 8.509E+00 9.333E-01 1.474E+00 1.443E+00 4.639E-01 2.174E-01 N/A N/A N/A
S1 1.735E+00 1.574E-01 1.735E-01 1.433E+01 3.684E+00 3.206E+01 1.777E+00 3.502E-01 3.199E-01
S2 5.714E+00 3.859E-01 1.169E+00 N/A N/A N/A N/A N/A N/A
S3 4.094E+00 6.002E-01 9.685E-01 2.600E+01 2.041E+01 5.422E+00 1.287E+01 7.438E+00 6.024E+00
S4 2.748E+00 2.152E-01 2.915E-01 2.647E+00 9.498E-01 4.815E-01 N/A N/A N/A
S5 5.510E+00 1.554E-01 4.721E-01 4.068E+01 2.065E+01 1.962E+02 N/A N/A N/A
S6 5.573E+00 1.818E-01 6.971E-01 3.745E+00 2.426E+00 3.376E-01 N/A N/A N/A
S7 5.660E+00 3.858E-01 1.234E+00 4.096E+01 1.681E+01 1.812E+02 N/A N/A N/A

Table 7.4: Descriptive statistics of the observed latency Olympus AOCS tasks under the 3-partition configuration.

154

7.2.
R

esults

Task N - LO D1 - MI D2 - HI
ID MAX Mean Variance MAX Mean Variance MAX Mean Variance
C1 5.709E+00 1.112E-02 6.091E-02 2.749E-02 1.064E-02 1.131E-05 2.375E-02 9.917E-03 5.270E-06
C2 1.823E+01 6.021E+00 3.675E+01 2.737E+01 1.779E+01 1.086E+01 1.184E+01 4.175E+00 6.434E+00
C3 3.060E+00 3.166E-01 3.415E-01 1.720E+01 1.529E+01 5.457E-01 4.697E+00 2.147E+00 3.811E-01
C4 3.225E+00 1.036E-01 2.143E-01 1.800E+00 1.793E+00 1.060E-05 N/A N/A N/A
C5 3.564E+01 5.872E+00 9.613E+01 4.629E+01 2.320E+01 6.817E+01 2.006E+01 7.518E+00 9.682E+00
C6 4.977E+00 1.636E+00 1.552E+00 3.909E+00 3.287E+00 1.058E-01 N/A N/A N/A
C7 5.204E-01 2.590E-02 1.072E-02 1.796E+00 1.788E+00 7.322E-06 N/A N/A N/A
C8 1.547E+01 1.212E+01 5.643E+00 2.346E+01 2.165E+01 5.363E+00 9.472E+00 5.699E+00 3.488E+00
C9 1.254E+01 8.965E+00 8.452E-01 1.929E+01 1.531E+01 9.981E-01 4.472E+00 2.025E+00 2.762E-01
C10 4.308E+00 3.993E-01 3.131E-01 3.217E+00 2.058E+00 1.145E-01 N/A N/A N/A
S1 9.439E-01 8.803E-02 4.854E-02 1.466E+01 4.200E+00 3.741E+01 1.793E+00 4.570E-01 6.101E-01
S2 2.694E+00 1.724E-01 2.687E-01 N/A N/A N/A N/A N/A N/A
S3 1.943E+00 1.002E-01 1.304E-01 2.565E+01 1.871E+01 5.825E+00 1.096E+01 4.935E+00 2.719E+00
S4 1.651E+00 7.115E-02 6.208E-02 3.891E+00 2.289E+00 1.842E-01 N/A N/A N/A
S5 2.574E+00 1.061E-01 1.553E-01 2.905E+01 1.145E+01 1.234E+02 N/A N/A N/A
S6 2.615E+00 8.599E-02 1.963E-01 4.438E+00 3.046E+00 1.893E-01 N/A N/A N/A
S7 2.651E+00 8.623E-02 2.266E-01 3.815E+01 1.458E+01 1.592E+02 N/A N/A N/A

Table 7.5: Descriptive statistics of the observed latency Olympus AOCS tasks under the 4-partition configuration.

155

Chapter 7. Case Study: Olympus Attitude and Orbital Control System

Configuration Exec. Mode Max Mean Variance Skewness Kurtosis
3-partition 40.96 2.56 38.86 3.20 11.56
4-partition

N (LO)
35.64 1.65 16.68 3.12 12.88

3-partition 62.61 7.59 109.35 1.65 2.71
4-partition

D1 (MI)
46.29 5.65 69.49 1.40 1.10

3-partition 27.64 1.75 13.77 2.69 8.28
4-partition

D2 (HI)
20.06 1.29 5.51 2.24 5.74

Table 7.6: Descriptive statistics of the observed latency for each mode of execution.

in Table 7.6.

During the execution of the 3-partition configuration in N mode, no deadline misses

were observed. The maximum observed latency was 40.96ms by task C5, which was

assigned the second lowest priority in the system. The mean of the observed latencies

was µ = 2.56ms with a variance of σ2 = 38.86. The kurtosis of the observed latency

values was 11.56. In combination with the skewness (3.20), which indicates a high num-

ber of outliers. The 4-partition configuration in N execution mode also experiences no

deadline misses. The maximum observed latency is 35.64ms with mean µ = 1.65ms and

variance σ2 = 16.68. The skewness (3.12) and kurtosis (12.88) of the observed latencies

are close to the corresponding 3-partition ones, indicating a similar shape in the distri-

bution. Using a significance level of α = 0.05, analysis of the latency times indicated

that the 3-partition configuration exhibited significantly higher latency compared to the

4-partition configuration.

After a N→D1 mode change, S2, which is the only LO criticality task in the system

is dropped, whereas the remaining sporadic tasks are migrated to their corresponding

partitions’ periodic servers. The overall observed latencies in both configurations are

increased. This is expected as the motivation of the mixed criticality system model

of Chapter 5 and the results of the case study in Chapter 6, is the exploitation of the

schedulability/performance trade-off.

The highest observed latency in the 3-partition configuration is 62.61ms, with a mean

of µ = 7.59ms and variance σ2 = 109.35. The skewness (1.65) and kurtosis (2.71) during

the execution D1 mode indicating a significantly lower number of outliers compared to

N. The 4-partition configuration exhibited a maximum latency of 46.29, mean µ = 5.65

and variance σ2 = 69.49. The skewness (1.40) and kurtosis (1.10) of the 4-partition

configuration are lower than the respective 3-partition values. Specifically, the lower

kurtosis in the 4-partition configuration indicates a lower number of outliers.

156

7.3. Architectural Design Evaluation

During the execution of the 3-partition configuration, the only task that exhibited

deadline misses was C1. The deadline misses of C1 are attributed to the temporal

requirements of C1 compared to the rest of the tasks of the same partition. The 4-

partition configuration exhibited no deadline misses. This is consistent with the findings

of Section 6.6.2, where it was indicated that a high level of variation in periods of tasks

sharing a single execution server can have a negative effect in the optimality of the server

parameters and priority assignment.

The transition D1→D2 causes all tasks with criticality level of MI and LO to be

abandoned. No deadline misses were observed in either configuration (3-partition and

4-partition). The maximum observed latency in the 3-partition configuration is 27.64ms,

whereas in the case of the 4-partition configuration the maximum observed latency is

20.06ms. The mean and variance of the observed latency in the 3-partition configuration

was µ = 1.74ms and σ2 = 13.77, whereas in the 4-partition configuration, µ = 1.29ms

and σ2 = 5.51.

7.3 Architectural Design Evaluation

The response time analysis of the original case study [22] indicated that at the worst

case, all hard real-time tasks would meet their deadlines. S2, which is a soft-real time

task would miss its deadline in the worst case. Response time analysis on the Olympus

AOCS taskset using the model proposed in Chapter 5, indicated that the system is not

schedulable in either configuration. The release jitter experienced from unbound tasks

and the deferrable servers played a significant role in the interference when the system

executes in the critical instance.

The proposed model of Chapter 5 was developed to take advantage of the trade-

off between low latency and schedulability. In the experiment results of Section 7.2 it

was shown that both configuration experienced overall lower response times during the

execution in N mode compared to D1. Although the observed response times during the

execution in N mode were lower, there were occasional spikes, which are represented

by the calculated skewness and kurtosis values. The use of periodic servers in D1 mode

resulted in higher but more predictable response times. This was expected due to the

nature of deferrable servers. This correlates with the rationale behind the development

of the mixed-criticality extension to the system model (Chapter 5), as performance (ie.

157

Chapter 7. Case Study: Olympus Attitude and Orbital Control System

low latency) is traded for more predictable response times.

As it was identified in Section 6.7, and the simulation runs performed in this Chap-

ter using the 3-partition configuration, in cases where tasks with significantly different

temporal requirements share the same periodic server, there is some degradation due to

the relatively long replenishment period of the server. This raises the question whether

polling servers would be a more appropriate option in place of periodic servers. Given

the real-time characteristics of the Olympus AOCS taskset, and in particular the num-

ber of unbound tasks in the systems, the use of polling servers would potentially have a

negative impact on the overall performance of the system. Specifically, given the taskset

of this case study, the likelihood of a task waiting on the replenishment of its execution

server’s capacity is higher.

As was also observed in Chapters 4 and 6, temporal isolation, which is one of the

key requirements identified in Section 3.1, is sufficiently enforced by the use of execu-

tion servers. Specifically, limiting the capacity of the execution servers provides an upper

boundary on the expected interference from tasks that execute in different servers. Ad-

ditionally, with the abandonment of LO criticality tasks in D1 and MI criticality tasks

in D2, we limit the impact of lower criticality tasks on higher criticality tasks.

Abandoning the execution of MI and LO criticality tasks was shown to be sufficient

in both configurations for providing additional capacity to service HI criticality tasks.

Execution in D2 exhibits the shortest response times in both configurations, ensuring

that no deadlines are missed. This further reinforces the rationale behind D2 mode

(Section 5.3.3), where if increasing the utilisation bound by the use of periodic servers is

not sufficient, dropping lower criticality tasks can provide additional capacity to service

all HI criticality tasks.

7.4 Summary

In this chapter we form a case study inspired from the Olympus Attitude and Orbital

Control System (AOCS) [22]. The taskset of the Olympus AOCS is first analysed with

respect to the functionality provided by each task. The tasks were then classified into

the three levels of criticality, as supported by the model described in Chapter 5. The

experimental setup was tailored to investigate the impact of partitioning in the system

and the behaviour of the system in the average case, assuming a hardware platform

158

7.4. Summary

with a high level of virtualisation support.

Two partitioning approaches were considered: 1 partition per criticality level (3-

partitions), further partitioning based on real-time characteristics of tasks (4-partitions).

Simulation results of the average case behaviour indicated that the 3-partition configu-

ration exhibited a higher level of skewness of the observed latencies compared to the

4-partition configuration. The 3-partition configuration exhibited deadline misses of a

low priority task while executing in D1 mode. This aligns with the findings of the

sensitivity analysis of Chapter 6, where it was indicated that in cases where tasks with

significantly different temporal characteristics can have a negative impact in the perfor-

mance of the proposed model.

The 4-partition configuration, which was constructed based on temporal character-

istics, as well as the level of criticality of each task, outperformed the 3-partition config-

uration in all modes of execution. The simulation results show that the mixed-criticality

model takes advantage of the performance-predictability trade-off during the execution

in the degraded modes (D1 and D2), as the number of outliers in the observed latencies

is significantly lower compared to the execution in the N mode.

159

CHAPTER 8
Conclusion

This thesis is written in partial fulfilment of the requirements for the degree of Doctor

of Engineering, EngD, therefore the undertaken research is highly motivated by the

interests of the industrial sponsor of this project, ETAS Ltd. The work towards this

thesis was evaluated by forming a case study using real ECU application code that was

provided by ETAS Ltd.

In this chapter we discuss the contributions of the work done within this thesis in

terms by addressing the research hypothesis. We then identify limitations and possibil-

ities for future work to further investigate and build on the contributions of the work

done towards this thesis.

8.1 Thesis Overview

Chapter 1 starts with a brief introduction on the challenges faced in the automotive do-

main. It then sets an industrial context based on the interests of the sponsoring organi-

sation, which served as a motivation towards the undertaken research. The introduction

closes by stating the thesis hypothesis, and providing an outline of the thesis.

Chapter 2 provides a review of the relevant literature. We briefly visit topics on tim-

ing analysis and real-time scheduling. A review on relevant work on mixed-criticality

and hierarchical scheduling is provided. The focus of the review then shifts to an

industry-oriented approach by reviewing existing hypervisor systems. The interests

of the industrial sponsor are then visited, reviewing the current state of their work and

161

Chapter 8. Conclusion

identifying the research gap that the work of this thesis focuses on.

Chapter 3 describes a proposed architectural design and a scheduling approach for a

single-core hypervisor system that focuses on providing low latency for event-triggered

application tasks. The proposed model incorporates the scheduling and hypervisor

overheads. A response time analysis is provided for the proposed model.

Chapter 4 evaluates the approach proposed in Chapter 3 by means of a case study us-

ing real ECU code that was provided by ETAS Ltd. A short description of the hardware

platform used is provided. The application task parameters are calculated by means

of measurement-based analysis, whereas hypervisor overheads were calculated using

static analysis. The evaluation was performed via simulation.

Chapter 5 extends the model proposed in Chapter 3, allowing for three criticality

levels. The definition of tasks and servers is extended with vectors to support parameters

for each criticality level. The execution modes and the transitions between them are

described and a response time analysis is produced.

Chapter 6 evaluates the mixed-criticality model of Chapter 5 by forming a case study

inspired from the automotive industry. The algorithms used for selecting server param-

eters, assigning task priorities and performing sensitivity analysis are listed. The sensi-

tivity analysis was applied to three system configurations using the timing information

of the application tasks from the timing analysis of Section 4.2.2.

Chapter 7 consists of a case study inspired from the Olympus AOCS. The results of

the case study were obtained by simulating the average-case behaviour of the system.

Statistical analysis was used to investigate the performance of the proposed model.

8.2 Summary of Contributions

In this section we summarise the contributions of the work done towards exploring the

research hypothesis. The research hypothesis addressed by this thesis is:

“The hypothesis of this research project is that virtualisation can be used in

the automotive industry to combine the functionality of more than one ECUs

on a single hardware platform, while being able to make guarantees about

the real-time properties of the system. ” (Section 1.3)

From the research hypothesis two key requirements are elicited:

162

8.3. Limitations and Future Work

(R1) The research is relevant and fills the identified research gap in the automotive

industry, as articulated by ETAS Ltd.

(R2) The scheduling models developed by this research must be analysable to make

guarantees about the real-time properties of the system.

The requirements from the research hypothesis are satisfied by the following contri-

butions.

8.2.1 Development of a Hypervisor Scheduling Model

In Chapter 3 we present a scheduling approach for a hypervisor system. Traditional

hypervisor scheduling systems assume no visibility of the partitions’ execution (R1).

The proposed approach focuses on minimising the latency of event-driven tasks (R1).

The use of execution servers ensures temporal isolation between partitions (R2). The

proposed model allows for the incorporation of implementation overheads, making the

response time analysis closer to the system’s actual execution (R1, R2). Empirical results

show that although the schedulability analysis is pessimistic, timing faults are contained

and not propagated, making the proposed model robust and reliable.

8.2.2 Mixed-criticality Model

Chapter 5 extends the model of Chapter 3 to support multiple levels of criticality (R1).

With the first degraded mode D1, the proposed mixed-criticality model takes advantage

of the trade-off between schedulability and low latency for event-triggered tasks, in-

creasing the capacity available to partitions. The mixed-criticality model was evaluated

by means of sensitivity analysis using parameters derived from real ECU application

tasks (R1, R2). The analysis showed that partitions composed of tasks with similar tem-

poral requirements are able to increase the capacity available by a factor of 3 (R2). The

additional capacity is made available without requiring the abandonment of any parti-

tion tasks, which makes it a novel approach. The second degraded mode, D2, provides

additional capacity based on the criticality levels of the composing partitions (R2).

8.3 Limitations and Future Work

In this section we identify the limitations of the work done and propose possible areas

of future work.

163

Chapter 8. Conclusion

8.3.1 Dependency of MC Model on Task Temporal Characteristics

The evaluation of the mixed-criticality model showed that the capacity after switching

to the degraded modes is highly dependent on the temporal requirements of the tasks

within each partition. Specifically, in the case where tasks with significant variability

in their temporal requirements, capacity loss was observed. A possible way to remedy

that is to separate the application tasks into partitions with respect to their temporal

requirements. This is a potentially expensive job, since it is highly dependent on the

availability of tooling that allows the reconfiguration of the AUTOSAR BSW. An alter-

native approach which is to be explored as future work is the conversion of deferrable

servers into periodic servers during the first degraded mode. A third option that can

be explored is the investigation of using polling servers in place of periodic servers for

periodic tasks based on the timing characteristics of the taskset. Another consideration

which was identified in Section 7 is taking into consideration the release time offset of

tasks in the taskset, further guiding the development of the system model.

8.3.2 Support for Multi-core

The proposed models currently support single-core hardware platforms. Section 1.2

identifies the support for multi-core platforms as a use case for hypervisor systems

as a means of reducing the porting costs of older ECU code. Supporting multi-core

platforms opens interesting research questions, such as the viability of task/partition

migration and inter-core communications.

8.3.3 Variability in Hardware

The proposed scheduling models for single and mixed-criticality systems were designed

to be able to take into account implementation overheads. The empirical results were

obtained using execution time and overhead parameters based on a ARM1176JZF-S pro-

cessor. Further investigation on the impact of processor features, such as virtualisation

support, on the hypervisor overheads. The hypervisor overheads were a key factor in

the pessimism of the response-time analysis of Chapter 4 and the capacity loss of the

2-partition system configuration in Chapter 6.

164

8.4. Closing Remarks

8.3.4 Partition and Task Dependencies

The only support for dependencies between tasks and partitions in the proposed model

is the use of resources. In Section 1.1 it was identified that one of the challenges in

the automotive industry is the complexity due to cross-ECU communication. The lack

of support for interaction between tasks and partitions is therefore a limitation of the

model. Extending the model to support these interactions is a possible avenue for future

work.

8.4 Closing Remarks

Overall, although there are significant topics of future work to be addressed, the work of

this thesis has demonstrated that a flexible approach to virtualisation can address many

of the current requirements of automotive software.

165

APPENDIX A
Application Task Execution Times

This appendix contains boxplots summarising the observed execution times during the

timing analysis performed in Section 4.2.2.

167

Appendix A. Application Task Execution Times

τ0

T0 = 100ms

516.0

516.5

517.0

517.5

518.0

518.5

Ex
ec

ut
io

n
ti

m
e

(n
s)

(a) τ0 execution measurements.

τ1

T1 = 10ms

3350

3400

3450

3500

3550

3600

3650

Ex
ec

ut
io

n
ti

m
e

(n
s)

(b) τ1 execution measurements.

τ2

T2 = 100ms

956

957

958

959

Ex
ec

ut
io

n
ti

m
e

(n
s)

(c) τ2 execution measurements.

τ3

T3 = 10ms

188.6

188.8

189.0

189.2

Ex
ec

ut
io

n
ti

m
e

(n
s)

(d) τ3 execution measurements.

Figure A.1: Box plots with execution time measurements for τ0 - τ3.

168

Appendix A. Application Task Execution Times

τ4

T4 = 100ms

612.5

613.0

613.5

614.0

614.5

615.0

Ex
ec

ut
io

n
ti

m
e

(n
s)

(a) τ4 execution measurements.

τ5

T5 = 1ms

221.6

221.8

222.0

222.2

Ex
ec

ut
io

n
ti

m
e

(n
s)

(b) τ5 execution measurements.

τ6

T6 = 1000ms

445.0

445.5

446.0

446.5

447.0

Ex
ec

ut
io

n
ti

m
e

(n
s)

(c) τ6 execution measurements.

τ7

T7 = 100ms

124.0

124.1

124.2

124.3

124.4

124.5

124.6

Ex
ec

ut
io

n
ti

m
e

(n
s)

(d) τ7 execution measurements.

Figure A.2: Box plots with execution time measurements for τ4 - τ7.

169

Appendix A. Application Task Execution Times

τ8

T8 = 10ms

361.25

361.50

361.75

362.00

362.25

362.50

362.75

363.00

Ex
ec

ut
io

n
ti

m
e

(n
s)

(a) τ8 execution measurements.

τ9

T9 = 10ms

361.5

362.0

362.5

363.0

363.5

Ex
ec

ut
io

n
ti

m
e

(n
s)

(b) τ9 execution measurements.

τ10

T10 = 1ms

497.5

498.0

498.5

499.0

499.5

Ex
ec

ut
io

n
ti

m
e

(n
s)

(c) τ10 execution measurements.

τ11

T11 = 1ms

361.50

361.75

362.00

362.25

362.50

362.75

363.00

363.25

Ex
ec

ut
io

n
ti

m
e

(n
s)

(d) τ11 execution measurements.

Figure A.3: Box plots with execution time measurements for τ8 - τ11.

170

Appendix A. Application Task Execution Times

τ12

T12 = 100ms

420

421

422

423

424

Ex
ec

ut
io

n
ti

m
e

(n
s)

(a) τ12 execution measurements.

τ13

T13 = 10ms

361.5

362.0

362.5

363.0

Ex
ec

ut
io

n
ti

m
e

(n
s)

(b) τ13 execution measurements.

τ14

T14 = 100ms

420.0

420.5

421.0

421.5

422.0

Ex
ec

ut
io

n
ti

m
e

(n
s)

(c) τ14 execution measurements.

τ15

T15 = 100ms

1035.5

1036.0

1036.5

1037.0

1037.5

1038.0

1038.5

1039.0

Ex
ec

ut
io

n
ti

m
e

(n
s)

(d) τ15 execution measurements.

Figure A.4: Box plots with execution time measurements for τ12 - τ15.

171

Appendix A. Application Task Execution Times

τ16

T16 = 100ms

248.4

248.6

248.8

249.0

249.2

Ex
ec

ut
io

n
ti

m
e

(n
s)

(a) τ16 execution measurements.

τ17

T17 = 100ms

1084

1085

1086

1087

1088

Ex
ec

ut
io

n
ti

m
e

(n
s)

(b) τ17 execution measurements.

τ18

T18 = 100ms

2522.5

2525.0

2527.5

2530.0

2532.5

2535.0

2537.5

Ex
ec

ut
io

n
ti

m
e

(n
s)

(c) τ18 execution measurements.

τ19

T19 = 50ms

361.50

361.75

362.00

362.25

362.50

362.75

363.00

363.25

Ex
ec

ut
io

n
ti

m
e

(n
s)

(d) τ19 execution measurements.

Figure A.5: Box plots with execution time measurements for τ16 - τ19.

172

Appendix A. Application Task Execution Times

τ20

T20 = 100ms

338.50

338.75

339.00

339.25

339.50

339.75

340.00

Ex
ec

ut
io

n
ti

m
e

(n
s)

(a) τ20 execution measurements.

τ21

T21 = 100ms

373.0

373.5

374.0

374.5

Ex
ec

ut
io

n
ti

m
e

(n
s)

(b) τ21 execution measurements.

τ22

T22 = 1ms

343.0

343.2

343.4

343.6

343.8

344.0

Ex
ec

ut
io

n
ti

m
e

(n
s)

(c) τ22 execution measurements.

τ23

T23 = 20ms

1326

1327

1328

1329

1330

Ex
ec

ut
io

n
ti

m
e

(n
s)

(d) τ23 execution measurements.

Figure A.6: Box plots with execution time measurements for τ20 - τ23.

173

Appendix A. Application Task Execution Times

τ24

T24 = 10ms

481.0

481.5

482.0

482.5

483.0

Ex
ec

ut
io

n
ti

m
e

(n
s)

(a) τ24 execution measurements.

τ25

T25 = 1ms

460.5

461.0

461.5

462.0

Ex
ec

ut
io

n
ti

m
e

(n
s)

(b) τ25 execution measurements.

τ26

T26 = 100ms

173.4

173.6

173.8

174.0

Ex
ec

ut
io

n
ti

m
e

(n
s)

(c) τ26 execution measurements.

τ27

T27 = 10ms

203.8

204.0

204.2

204.4

Ex
ec

ut
io

n
ti

m
e

(n
s)

(d) τ27 execution measurements.

Figure A.7: Box plots with execution time measurements for τ24 - τ27.

174

Appendix A. Application Task Execution Times

τ28

T28 = 10ms

492.6

492.8

493.0

493.2

493.4

Ex
ec

ut
io

n
ti

m
e

(n
s)

(a) τ28 execution measurements.

τ29

T29 = 10ms

506.0

506.5

507.0

507.5

Ex
ec

ut
io

n
ti

m
e

(n
s)

(b) τ29 execution measurements.

τ30

T30 = 20ms

2355

2360

2365

2370

Ex
ec

ut
io

n
ti

m
e

(n
s)

(c) τ30 execution measurements.

τ31

T31 = 100ms

755.5

756.0

756.5

757.0

757.5

758.0

Ex
ec

ut
io

n
ti

m
e

(n
s)

(d) τ31 execution measurements.

Figure A.8: Box plots with execution time measurements for τ28 - τ31.

175

APPENDIX B
Olympus AOCS Case Study

Response Times

In this Appendix, we provide boxplots that summarise the observed response times of

the Olympus AOCS taskset of Chapter 7. For each task we illustrate the response times

during each mode of execution. The deadline of each task is marked by the horizontal

line in the following plots.

177

Appendix B. Olympus AOCS Case Study Response Times

3-part LO 4-part LO 3-part MI 4-part MI 3-part HI 4-part HI
0

5

10

R
es

po
ns

e
Ti

m
e

(m
s)

(a) Task C1: READ_BUS_IP, L = HI.

3-part LO 4-part LO 3-part MI 4-part MI 3-part HI 4-part HI
0

20

40

60

80

R
es

po
ns

e
Ti

m
e

(m
s)

(b) Task C2: REAL_TIME_CLOCK, L = HI.

3-part LO 4-part LO 3-part MI 4-part MI 3-part HI 4-part HI
0

50

100

R
es

po
ns

e
Ti

m
e

(m
s)

(c) Task C3: COMMAND_ACTUATORS, L = MI.

3-part LO 4-part LO 3-part MI 4-part MI 3-part HI 4-part HI
0

5

10

15

20

R
es

po
ns

e
Ti

m
e

(m
s)

(d) Task C4: REQUEST_WHEEL_SPEEDS, L = MI.

Figure B.1: Response times for Olympus AOCS periodic tasks: C1, C2, C3 and C4.

178

Appendix B. Olympus AOCS Case Study Response Times

3-part LO 4-part LO 3-part MI 4-part MI 3-part HI 4-part HI
0

50

100

150

200

R
es

po
ns

e
Ti

m
e

(m
s)

(a) Task C5: CONTROL_LAW, L = HI.

3-part LO 4-part LO 3-part MI 4-part MI 3-part HI 4-part HI
0

100

200

300

400

R
es

po
ns

e
Ti

m
e

(m
s)

(b) Task C6: PROCESS_DSS_DATA, L = MI.

3-part LO 4-part LO 3-part MI 4-part MI 3-part HI 4-part HI
0

5

10

15

R
es

po
ns

e
Ti

m
e

(m
s)

(c) Task C7: REQUEST_DSS_DATA, L = MI.

3-part LO 4-part LO 3-part MI 4-part MI 3-part HI 4-part HI
0

200

400

600

800

R
es

po
ns

e
Ti

m
e

(m
s)

(d) Task C8: CALIBRATE_GYRO, L = HI.

Figure B.2: Response times for Olympus AOCS periodic tasks: C5, C6, C7 and C8.

179

Appendix B. Olympus AOCS Case Study Response Times

3-part LO 4-part LO 3-part MI 4-part MI 3-part HI 4-part HI
0

20

40

R
es

po
ns

e
Ti

m
e

(m
s)

(a) Task C9: PROCESS_IRES_DATA, L = HI.

3-part LO 4-part LO 3-part MI 4-part MI 3-part HI 4-part HI
0

10

20

R
es

po
ns

e
Ti

m
e

(m
s)

(b) Task C10: REQUEST_IRES_DATA, L = MI.

Figure B.3: Response times for Olympus AOCS periodic tasks: C9 and C10.

180

Appendix B. Olympus AOCS Case Study Response Times

3-part LO 4-part LO 3-part MI 4-part MI 3-part HI 4-part HI
0

10

20

30

R
es

po
ns

e
Ti

m
e

(m
s)

(a) Task S1: TELEMETRY_RESPONSE, L = HI.

3-part LO 4-part LO 3-part MI 4-part MI 3-part HI 4-part HI
0

50

100

150

R
es

po
ns

e
Ti

m
e

(m
s)

(b) Task S2: TELECOMMANDS, L = LO.

3-part LO 4-part LO 3-part MI 4-part MI 3-part HI 4-part HI
0

20

40

R
es

po
ns

e
Ti

m
e

(m
s)

(c) Task S3: READ_YAW_GYRO, L = HI.

3-part LO 4-part LO 3-part MI 4-part MI 3-part HI 4-part HI
0

20

40

R
es

po
ns

e
Ti

m
e

(m
s)

(d) Task S4: MESSAGES_HERE, L = MI.

Figure B.4: Response times for Olympus AOCS sporadic tasks S1, S2, S3 and S4.

181

Appendix B. Olympus AOCS Case Study Response Times

3-part LO 4-part LO 3-part MI 4-part MI 3-part HI 4-part HI
0

20

40

60

R
es

po
ns

e
Ti

m
e

(m
s)

(a) Task S5: TM_HERE, L = MI.

3-part LO 4-part LO 3-part MI 4-part MI 3-part HI 4-part HI
0

25

50

75

100

R
es

po
ns

e
Ti

m
e

(m
s)

(b) Task S6: ZI_HERE, L = MI.

3-part LO 4-part LO 3-part MI 4-part MI 3-part HI 4-part HI
0

50

100

150

R
es

po
ns

e
Ti

m
e

(m
s)

(c) Task S7: TC_HERE, L = MI.

Figure B.5: Response times for Olympus AOCS sporadic tasks S5, S6 and S7.

182

Abbreviations

AOCS Olympus Attitude and Orbital Control Sys-

tem.

ASIL Automotive Safety Integrity Level.

AUTOSAR Automotive Open System Architecture.

BCET Best-case Execution Time.

BSW Basic Software.

CBS Constant Bandwidth Server.

CFA Control-flow Analysis.

DPS Dynamic-priority Scheduling.

ECU Electronic Control Unit.

EDF Earliest Deadline First.

FFI Freedom From Interference.

FPS Fixed-priority Scheduling.

G-EDF Global Earliest Deadline First.

HV Hypervisor.

183

Abbreviations

IP Intellectual Property.

IPET Implicit Path Enumeration Technique.

IPL Interrupt Priority Level.

MBTA Measurement-based Timing Analysis.

MCAL Microcontroller Abstraction Layer.

MCS Mixed-Criticality System.

MMU Memory Management Unit.

OEM Original Equipment Manufacturer.

OS Operating System.

P-EDF Partitioned Earliest Deadline First.

RTA Response-time Analysis.

RTE AUTOSAR Runtime Environment.

SFQ Start-time Fair Queueing.

SIL Safety Integrity Level.

SPM System Performance Monitor.

SWC AUTOSAR Software Component.

VM Virtual Machine.

VMM Virtual Machine Manager.

WCET Worst-case Execution Time.

184

References

[1] U. Abelein, H. Lochner, D. Hahn, and S. Straube, “Complexity, quality and

robustness-the challenges of tomorrow’s automotive electronics,” in Design, Au-

tomation & Test in Europe Conference & Exhibition (DATE). IEEE, 2012, pp. 870–871.

[2] L. Abeni and G. Buttazzo, “Integrating multimedia applications in hard real-

time systems,” in Proceedings 19th IEEE Real-Time Systems Symposium (Cat.

No.98CB36279), Dec 1998, pp. 4–13.

[3] L. Abeni, G. Lipari, and J. Lelli, “Constant bandwidth server revisited,” SIGBED

Rev., vol. 11, no. 4, pp. 19–24, Jan. 2015.

[4] S. Altmeyer, B. Lisper, C. Maiza, J. Reineke, and C. Rochange, “WCET and Mixed-

Criticality: What does Confidence in WCET Estimations Depend Upon?” in 15th

International Workshop on Worst-Case Execution Time Analysis (WCET 2015), ser. Ope-

nAccess Series in Informatics (OASIcs), F. J. Cazorla, Ed., vol. 47. Dagstuhl,

Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2015, pp. 65–74.

[5] ARM Information Center. (2002) ARM PrimeCellTM VectoredInterrupt Controller

(PL192) technical reference manual. ARM. [Accessed: 14 May. 2016].

[Online]. Available: http://infocenter.arm.com/help/index.jsp?topic=/com.arm.

doc.ddi0273a/index.html

[6] ——. (2009) ARM1176JZF-STMtechnical reference manual. ARM. [Accessed:

14 May. 2016]. [Online]. Available: http://infocenter.arm.com/help/index.jsp?

topic=/com.arm.doc.ddi0419c/index.html

[7] N. Audsley, A. Burns, M. Richardson, K. Tindell, and A. Wellings, “Applying new

scheduling theory to static priority pre-emptive scheduling,” Software Engineering

Journal, vol. 8, no. 5, pp. 284–292, Sep. 1993.

185

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0273a/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0273a/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0419c/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0419c/index.html

References

[8] N. Audsley, “Optimal priority assignment and feasibility of static priority tasks

with arbitrary start times,” University of York, York, United Kingdom, Tech. Rep.,

Nov. 1991.

[9] AUTOSAR. (2012, Aug.) AUTomotive Open System ARchitecture. [Accessed: 30

Sep. 2012]. [Online]. Available: http://www.autosar.org

[10] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer,

I. Pratt, and A. Warfield, “Xen and the art of virtualization,” in Proceedings of the

nineteenth ACM symposium on Operating systems principles, ser. SOSP ’03. New

York, NY, USA: ACM, 2003, pp. 164–177.

[11] S. Baruah and S. Vestal, “Schedulability analysis of sporadic tasks with multiple

criticality specifications,” in Euromicro Conference on Real-Time Systems, Jul. 2008,

pp. 147–155.

[12] S. K. Baruah, A. Burns, and R. I. Davis, “Response-time analysis for mixed criti-

cality systems,” in IEEE 32nd Real-Time Systems Symposium (RTSS), Nov. 2011, pp.

34–43.

[13] S. Baruah and A. Burns, “Implementing mixed criticality systems in Ada,” in

Reliable Software Technologies - Ada-Europe, ser. Lecture Notes in Computer Science,

A. Romanovsky and T. Vardanega, Eds. Springer Berlin Heidelberg, 2011, vol.

6652, pp. 174–188.

[14] J. Bennett and H. Zhang, “Hierarchical packet fair queueing algorithms,” Network-

ing, IEEE/ACM Transactions on, vol. 5, no. 5, pp. 675–689, Oct. 1997.

[15] E. Bini, G. Buttazzo, and G. Buttazzo, “Rate monotonic analysis: the hyperbolic

bound,” Computers, IEEE Transactions on, vol. 52, no. 7, pp. 933 – 942, Jul. 2003.

[16] H. Bo, D. Hui, W. Dafang, and Z. Guifan, “Basic concepts on AUTOSAR develop-

ment,” in International Conference on Intelligent Computation Technology and Automa-

tion (ICICTA), vol. 1, May 2010, pp. 871–873.

[17] M. Broy, I. Kruger, A. Pretschner, and C. Salzmann, “Engineering automotive soft-

ware,” Proceedings of the IEEE, vol. 95, no. 2, pp. 356 –373, Feb. 2007.

186

http://www.autosar.org

References

[18] M. Broy, “Challenges in automotive software engineering,” in Proceedings of the

28th international conference on Software engineering, ser. ICSE ’06. New York, NY,

USA: ACM, 2006, pp. 33–42.

[19] A. Burns, “Scheduling hard real-time systems: a review,” Software Engineering

Journal, vol. 6, no. 3, pp. 116–128, May 1991.

[20] A. Burns and R. Davis, “Mixed criticality systems-a review,” Department of Com-

puter Science, University of York, Tech. Rep, Jan. 2016.

[21] A. Burns and A. Wellings, Real-Time Systems and Programming Languages: Ada,

Real-Time Java and C/Real-Time POSIX, 4th ed. Addison Wesley, May 2009.

[22] A. Burns, A. J. Wellings, C. Bailey, and E. Fyfe, “The olympus attitude and orbital

control system a case study in hard real-time system design and implementation,”

in Ada-Europe International Conference. Springer, 1993, pp. 19–35.

[23] G. C. Buttazzo, Hard Real-Time Computing Systems: Predictable Scheduling Algorithms

and Applications. Boston, MA: Springer US, 2011, ch. Fixed-Priority Servers, pp.

119–159.

[24] J. P. Buzen and U. O. Gagliardi, “The evolution of virtual machine architecture,”

in Proceedings of the National Computer Conference and Exposition, ser. AFIPS. New

York, NY, USA: ACM, Jun. 1973, pp. 291–299.

[25] S. Byhlin, A. Ermedahl, J. Gustafsson, and B. Lisper, “Applying static WCET anal-

ysis to automotive communication software,” in Real-Time Systems, 2005. (ECRTS

2005). Proceedings. 17th Euromicro Conference on, Jul. 2005, pp. 249 – 258.

[26] A. Chandra and P. Shenoy, “Hierarchical scheduling for symmetric multiproces-

sors,” Parallel and Distributed Systems, IEEE Transactions on, vol. 19, no. 3, pp. 418–

431, Mar. 2008.

[27] A. Chandra, M. Adler, P. Goyaly, and P. Shenoy, “Surplus fair scheduling: A

proportional-share CPU scheduling algorithm for symmetric multiprocessors,”

2000.

[28] P. Cousot and R. Cousot, “Abstract interpretation: a unified lattice model for static

analysis of programs by construction or approximation of fixpoints,” in Conference

187

References

Record of the Fourth Annual ACM SIGPLAN-SIGACT Symposium on Principles of Pro-

gramming Languages. Los Angeles, California: ACM Press, New York, NY, Jan.

1977, pp. 238–252.

[29] A. Crespo, I. Ripoll, and M. Masmano, “Partitioned embedded architecture based

on hypervisor: The XtratuM approach,” in European Dependable Computing Confer-

ence (EDCC), Apr. 2010, pp. 67–72.

[30] R. Davis and A. Burns, “Hierarchical fixed priority pre-emptive scheduling,” in

26th IEEE International Real-Time Systems Symposium, Dec. 2005, pp. 257–270.

[31] ——, “Resource sharing in hierarchical fixed priority pre-emptive systems,” in

27th IEEE International Real-Time Systems Symposium, 2006, pp. 257–270.

[32] R. I. Davis, A. Burns, R. J. Bril, and J. J. Lukkien, “Controller area network (CAN)

schedulability analysis: Refuted, revisited and revised,” Real-Time Systems, vol. 35,

no. 3, pp. 239–272, 2007.

[33] R. Devillers and J. Goossens, “Liu and layland’s schedulability test revisited,”

Information Processing Letters, vol. 73, no. 5, pp. 157–161, 2000.

[34] F. Dorin, P. Richard, M. Richard, and J. Goossens, “Schedulability and sensitiv-

ity analysis of multiple criticality tasks with fixed-priorities,” Real-Time Systems,

vol. 46, no. 3, pp. 305–331, 2010.

[35] Emlid. (2014) Raspberry pi real-time kernel. [Online]. Available: https:

//emlid.com/raspberry-pi-real-time-kernel/

[36] J. Engblom, A. Ermedahl, M. Nolin, J. Gustafsson, and H. Hansson, “Worst-case

execution-time analysis for embedded real-time systems,” International Journal on

Software Tools for Technology Transfer, vol. 4, no. 4, pp. 437–455, Oct. 2003.

[37] A. Ermedahl, “A modular tool architecture for worst-case execution time analy-

sis,” Ph.D. dissertation, Uppsala Universitet, Uppsala, Sweden, Jun. 2003.

[38] A. Esper, G. Nelissen, V. Nélis, and E. Tovar, “How realistic is the mixed-criticality

real-time system model?” in Proceedings of the 23rd International Conference on Real

Time and Networks Systems. ACM, 2015, pp. 139–148.

188

https://emlid.com/raspberry-pi-real-time-kernel/
https://emlid.com/raspberry-pi-real-time-kernel/

References

[39] European Space Agency. (1994) Olympus: End of mission. [Online]. Available:

http://www.esa.int/For_Media/Press_Releases/OLYMPUS_End_of_mission

[40] C. Evripidou and A. Burns, “Scheduling for Mixed-criticality Hypervisor

Systems in the Automotive Domain,” in WMC 2016 4th International Workshop

on Mixed Criticality Systems, Porto, Portugal, Nov. 2016. [Online]. Available:

https://hal.archives-ouvertes.fr/hal-01419143

[41] C. Evripidou and G. Morgan, “Method and apparatus for hosting a multitasking

guest on a host system,” Patent US Patent App. 15/215,113, 2017. [Online].

Available: https://www.google.com/patents/US20170024247

[42] C. Evripidou, G. Morgan, and A. Burns, “Method and apparatus for hosting a

multitasking guest on a host system,” Patent EP Patent App. EP20,150,177,684,

2017. [Online]. Available: https://www.google.com/patents/EP3121716A1

[43] ——, “Method and apparatus for hosting a multitasking guest on a host

system,” Patent CN Patent App. CN 201,610,826,878, 2017. [Online]. Available:

https://www.google.com/patents/CN106453515A?cl=en

[44] C. Ferdinand, R. Heckmann, M. Langenbach, F. Martin, M. Schmidt, H. Theil-

ing, S. Thesing, and R. Wilhelm, “Reliable and precise WCET determination for a

real-life processor,” in Embedded Software, ser. Lecture Notes in Computer Science,

T. Henzinger and C. Kirsch, Eds. Springer Berlin / Heidelberg, 2001, vol. 2211,

pp. 469–485.

[45] freescale Semiconductor. (2008) FreescaleâĂŹs embedded hypervisor for

qoriq p4 series communications platform (white paper). [Online].

Available: http://www.nxp.com/assets/documents/data/en/white-papers/

EMBEDDED_HYPERVISOR.pdf

[46] P. Goyal, X. Guo, and H. M. Vin, “A hierarchical CPU scheduler for multimedia

operating systems,” in USENIX 2nd Symposium on OS Design and Implementation

(OSDI), Oct. 1996, pp. 107–122.

[47] P. Goyal, H. M. Vin, and H. Chen, “Start-time fair queueing: a scheduling al-

gorithm for integrated services packet switching networks,” SIGCOMM Comput.

Commun. Rev., vol. 26, no. 4, pp. 157–168, Aug. 1996.

189

http://www.esa.int/For_Media/Press_Releases/OLYMPUS_End_of_mission
https://hal.archives-ouvertes.fr/hal-01419143
https://www.google.com/patents/US20170024247
https://www.google.com/patents/EP3121716A1
https://www.google.com/patents/CN106453515A?cl=en
http://www.nxp.com/assets/documents/data/en/white-papers/EMBEDDED_HYPERVISOR.pdf
http://www.nxp.com/assets/documents/data/en/white-papers/EMBEDDED_HYPERVISOR.pdf

References

[48] J. Gustafsson, B. Lisper, C. Sandberg, and N. Bermudo, “A tool for automatic

flow analysis of C-programs for WCET calculation,” in Proceedings of the Eighth

International Workshop on Object-Oriented Real-Time Dependable Systems (WORDS),

Jan. 2003, pp. 106 – 112.

[49] J. Hansen, S. A. Hissam, and G. A. Moreno, “Statistical-based WCET estimation

and validation,” in Proceedings of the 9th Intl. Workshop on Worst-Case Execution Time

(WCET) Analysis, 2009.

[50] R. Heckmann, M. Langenbach, S. Thesing, and R. Wilhelm, “The influence of

processor architecture on the design and the results of wcet tools,” Proceedings of

the IEEE, vol. 91, no. 7, pp. 1038 – 1054, Jul. 2003.

[51] G. Heiser and B. Leslie, “The OKL4 microvisor: convergence point of microkernels

and hypervisors,” in Proceedings of the first ACM asia-pacific workshop on Workshop

on systems, ser. APSys. New York, NY, USA: ACM, 2010, pp. 19–24.

[52] A. Hergenhan and G. Heiser, “Operating systems technology for converged

ECUs,” in 6th Embedded Security in Cars Conference (escar). Hamburg, Germany:

ISITS, Nov. 2008.

[53] J. Herman, C. Kenna, M. Mollison, J. Anderson, and D. Johnson, “RTOS support

for multicore mixed-criticality systems,” in IEEE 18th Real-Time and Embedded Tech-

nology and Applications Symposium (RTAS), 2012, pp. 197–208.

[54] ISO, “Road vehicles – functional safety,” International Organization for Standard-

ization, International Standard ISO-26262, Nov. 2011.

[55] M. Joseph and P. Pandya, “Finding response times in a real-time system,” The

Computer Journal, vol. 29, no. 5, pp. 390–395, 1986.

[56] R. Kaiser, “Alternatives for scheduling virtual machines in real-time embedded

systems,” in Proceedings of the 1st workshop on Isolation and integration in embedded

systems, ser. IIES. New York, NY, USA: ACM, 2008, pp. 5–10.

[57] ——, “Bringing together real-time and virtualization,” in Embedded World Confer-

ence, Nuremberg, Germany, Feb. 2009.

190

References

[58] ——, “Combining partitioning and virtualization for safety-critical systems,” Em-

bedded World Conference, Jan. 2009.

[59] R. Kaiser and S. Wagner, “Evolution of the PikeOS microkernel,” in First Interna-

tional Workshop on Microkernels for Embedded Systems, I. Kuz and S. M. Petters, Eds.,

National ICT Australia. Kensington, Australia: NICTA, Jan. 2007, pp. 50–57.

[60] F. Kirschke-Biller, S. Fürst, S. Lupp, S. Bunzel, S. Schmerler, R. Rimkus, A. Gilberg,

K. Nishikawa, and A. Titze, “AUTOSAR - A worldwide standard: Current devel-

opments, roll-out and outlook,” in 15th International VDI Congress Electronic Sys-

tems for Vehicles, Baden-Baden, Germany, Oct. 2011.

[61] J. Knight, “Safety critical systems: challenges and directions,” in Proceedings of the

24rd International Conference on Software Engineering, May 2002, pp. 547–550.

[62] O. K. Labs. (2012, Aug.) OKL4 microvisor. [Accessed: 01 Oct. 2012]. [Online].

Available: http://www.ok-labs.com/products/okl4-microvisor

[63] A. Lackorzyński, A. Warg, M. Völp, and H. Härtig, “Flattening hierarchical

scheduling,” in Proceedings of the tenth ACM international conference on embedded

software, ser. EMSOFT. New York, NY, USA: ACM, 2012, pp. 93–102.

[64] J. Lehoczky, L. Sha, and Y. Ding, “The rate monotonic scheduling algorithm: exact

characterization and average case behavior,” in Proceedings of Real Time Systems

Symposium, Dec. 1989, pp. 166–171.

[65] J. Y.-T. Leung and J. Whitehead, “On the complexity of fixed-priority scheduling of

periodic, real-time tasks,” Performance Evaluation, vol. 2, no. 4, pp. 237–250, 1982.

[66] Y.-T. S. Li and S. Malik, “Performance analysis of embedded software using im-

plicit path enumeration,” in Proceedings of the 32nd annual ACM/IEEE Design Au-

tomation Conference, ser. DAC. New York, NY, USA: ACM, 1995, pp. 456–461.

[67] Linux Foundation. (2013, Jul.) Xen Project advances open source vir-

tualization with new release. San Francisco, CA. [Accessed: 16 Feb

2016]. [Online]. Available: http://www.xenproject.org/about/in-the-news/

155-xen-project-advances-open-source-with-new-release.html

191

http://www.ok-labs.com/products/okl4-microvisor
http://www.xenproject.org/about/in-the-news/155-xen-project-advances-open-source-with-new-release.html
http://www.xenproject.org/about/in-the-news/155-xen-project-advances-open-source-with-new-release.html

References

[68] ——. (2015, Apr.) Xen Project Schedulers. San Francisco, CA. [Accessed: 16

Feb 2016]. [Online]. Available: http://wiki.xenproject.org/wiki/Xen_Project_

Schedulers

[69] ——. (2015, Apr.) Xen Project Software Overview. San Francisco, CA.

[Accessed: 16 Feb 2016]. [Online]. Available: http://wiki.xen.org/wiki/Xen_

Project_Software_Overview

[70] G. Lipari and E. Bini, “A methodology for designing hierarchical scheduling sys-

tems,” Journal of Embedded Computing, vol. 1, no. 2, pp. 257–269, 2005.

[71] C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogramming in a

hard-real-time environment,” J. ACM, vol. 20, no. 1, pp. 46–61, Jan. 1973.

[72] M. Masmano, I. Ripoll, and A. Crespo, “An overview of the XtratuM nanokernel,”

in Proceedings of the Workshop on Operating System Platforms for Embedded Real-Time

Applications, 2005.

[73] M. Masmano, I. Ripoll, A. Crespo, and J. J. Metge, “XtratuM: a hypervisor for

safety critical embedded systems,” in 11th Real-Time Linux Workshop, Jan. 2009.

[74] A. Masrur, T. Pfeuffer, M. Geier, S. Drössler, and S. Chakraborty, “Designing

VM schedulers for embedded real-time applications,” in Proceedings of the seventh

IEEE/ACM/IFIP international conference on Hardware/software codesign and system syn-

thesis, ser. CODES+ISSS. New York, NY, USA: ACM, 2011, pp. 29–38.

[75] C. Maxim, A. Gogonel, D. Maxim, and L. Cucu, “Estimation of Probabilistic Min-

imum Inter-arrival Times Using Extreme Value Theory,” in 6th Junior Researcher

Workshop on Real-Time Computing (JRWRTC 2012) in conjunction with the 20th Inter-

national Conference on Real-Time and Network Systems (RTNS 2012), Jan. 2013, pont-

à-Mousson, France, November 8-9, 2012.

[76] E. Missimer, K. Missimer, and R. West, “Mixed-criticality scheduling with I/O,”

in Proceedings of the 28th Euromicro Converence on Real-Time Systems (ECRTS),

Toulouse, France, Jul. 2016, pp. 120–130.

[77] M. Mollison, J. Erickson, J. Anderson, S. Baruah, and J. Scoredos, “Mixed-

criticality real-time scheduling for multicore systems,” in IEEE 10th International

Conference on Computer and Information Technology (CIT), 2010, pp. 1864–1871.

192

http://wiki.xenproject.org/wiki/Xen_Project_Schedulers
http://wiki.xenproject.org/wiki/Xen_Project_Schedulers
http://wiki.xen.org/wiki/Xen_Project_Software_Overview
http://wiki.xen.org/wiki/Xen_Project_Software_Overview

References

[78] G. Morgan, “Deeply embedded real-time hypervisors for the automotive domain,”

in 20th IEEE Real-Time and Embedded Technology and Applications Symposium, Berlin,

Germany, Apr. 2014.

[79] ——, “Safety and security with hypervisor technology,” in Embedded World Confer-

ence. Nuremberg, Germany: Design & Elektronik, Feb. 2016.

[80] T. Nolte, “Hierarchical scheduling of complex embedded real-time systems,” in

Ecole d’Ete Temps-REel (ETR), 2009.

[81] OKL4 Microkernel Reference Manual, Open Kernel Labs, Alexandria, Australia, Sep.

2008, [Accessed: 30 Sep. 2012]. [Online]. Available: http://www.reds.ch/share/

cours/SEEE/okl4-ref-manual-3.0.pdf

[82] G. J. Popek and R. P. Goldberg, “Formal requirements for virtualizable third gen-

eration architectures,” Commun. ACM, vol. 17, no. 7, pp. 412–421, Jul. 1974.

[83] A. Pretschner, M. Broy, I. H. Kruger, and T. Stauner, “Software engineering for

automotive systems: A roadmap,” in 2007 Future of Software Engineering, ser. FOSE.

Washington, DC, USA: IEEE Computer Society, 2007, pp. 55–71.

[84] P. Puschner and A. Burns, “Guest editorial: A review of worst-case execution-time

analysis,” Real-Time Systems, vol. 18, pp. 115–128, 2000.

[85] M. Åsberg, M. Behnam, F. Nemati, and T. Nolte, “Towards hierarchical scheduling

in autosar,” in IEEE Conference on Emerging Technologies Factory Automation (ETFA),

Sep. 2009, pp. 1 –8.

[86] M. Åsberg, T. Nolte, and P. Pettersson, “Prototyping hierarchically scheduled sys-

tems using task automata and times,” in 5th International Conference on Embedded

and Multimedia Computing (EMC), Aug. 2010, pp. 1–8.

[87] (2012, Aug.) XtratuM. Real-Time System Group, Instituto de Automatica e

Informatica Industrial, Universitat Politecnica de Valencia. Spain. [Accessed: 16

Feb 2016]. [Online]. Available: http://www.xtratum.org

[88] D. Reinhardt, D. Kaule, and M. Kucera, “Achieving a scalable E/E-Architecture

using AUTOSAR and virtualization,” SAE International Journal of Passenger Cars-

Electronic and Electrical Systems, vol. 6, no. 2, pp. 489–497, 2013.

193

http://www.reds.ch/share/cours/SEEE/okl4-ref-manual-3.0.pdf
http://www.reds.ch/share/cours/SEEE/okl4-ref-manual-3.0.pdf
http://www.xtratum.org

References

[89] D. Reinhardt and M. Kucera, “Domain controlled architecture - a new approach

for large scale software integrated automotive systems.” in PECCS, 2013, pp. 221–

226.

[90] D. Reinhardt and G. Morgan, “An embedded hypervisor for safety-relevant auto-

motive E/E-systems,” in 9th IEEE International Symposium on Industrial Embedded

Systems (SIES). IEEE, 2014, pp. 189–198.

[91] L. Rierson, Developing Safety-Critical Software: A Practical Guide for Aviation Software

and DO-178C Compliance. CRC Press, 2013.

[92] W. River. (2009) Wind river hypervisor (product overview). [On-

line]. Available: https://www.windriver.com/products/product-overviews/

wr-hypervisor-product-overview.pdf

[93] L. Sha, J. P. Lehoczky, and R. Rajkumar, “Solutions for some practical problems in

prioritized preemptive scheduling.” in RTSS, vol. 86, 1986, pp. 181–191.

[94] L. Sha, R. Rajkumar, and J. Lehoczky, “Priority inheritance protocols: an approach

to real-time synchronization,” IEEE Transactions on Computers, vol. 39, no. 9, pp.

1175–1185, 1990.

[95] G. Software. (2017) INTEGRITY multivisor - virtualization architecture for secure

systems. [Online]. Available: http://www.ghs.com/products/rtos/integrity_

virtualization.html

[96] B. Sprunt, L. Sha, and J. Lehoczky, “Aperiodic task scheduling for hard-real-time

systems,” Real-Time Systems, vol. 1, no. 1, pp. 27–60, 1989.

[97] J. K. Strosnider, J. P. Lehoczky, and L. Sha, “The deferrable server algorithm for

enhanced aperiodic responsiveness in hard real-time environments,” IEEE Trans-

actions on Computers, vol. 44, no. 1, pp. 73–91, 1995.

[98] V. Sundaram, A. Chandra, P. Goyal, P. Shenoy, J. Sahni, and H. Vin, “Application

performance in the qlinux multimedia operating system,” in Proceedings of the

eighth ACM international conference on Multimedia, ser. MULTIMEDIA. New York,

NY, USA: ACM, 2000, pp. 127–136.

194

https://www.windriver.com/products/product-overviews/wr-hypervisor-product-overview.pdf
https://www.windriver.com/products/product-overviews/wr-hypervisor-product-overview.pdf
http://www.ghs.com/products/rtos/integrity_virtualization.html
http://www.ghs.com/products/rtos/integrity_virtualization.html

References

[99] SYSGO AG. (2012, Aug.) PikeOS RTOS and virtualization concept. [Ac-

cessed: 16 Feb 2016]. [Online]. Available: http://www.sysgo.com/products/

pikeos-rtos-and-virtualization-concept/

[100] S. Thesing, J. Souyris, R. Heckmann, F. Randimbivololona, M. Langenbach, R. Wil-

helm, and C. Ferdinand, “An abstract interpretation-based timing validation of

hard real-time avionics software,” in Proceedings of International Conference on De-

pendable Systems and Networks, Jun. 2003, pp. 625–632.

[101] K. Tindell, A. Burns, and A. Wellings, “Mode changes in priority preemptively

scheduled systems,” in Real-Time Systems Symposium, Dec. 1992, pp. 100–109.

[102] F. Verbeek, O. Havle, J. Schmaltz, S. Tverdyshev, H. Blasum, B. Langenstein,

W. Stephan, B. Wolff, and Y. Nemouchi, “Formal API specification of the PikeOS

separation kernel,” in NASA Formal Methods. Springer, 2015, pp. 375–389.

[103] S. Vestal, “Preemptive scheduling of multi-criticality systems with varying de-

grees of execution time assurance,” in 28th IEEE International Real-Time Systems

Symposium (RTSS), 2007, pp. 239–243.

[104] I. Wenzel, R. Kirner, B. Rieder, and P. Puschner, “Measurement-based timing anal-

ysis,” in Leveraging Applications of Formal Methods, Verification and Validation, ser.

Communications in Computer and Information Science, T. Margaria and B. Stef-

fen, Eds. Springer Berlin Heidelberg, 2009, vol. 17, pp. 430–444.

[105] J. Whitham, N. C. Audsley, and R. I. Davis, “Explicit reservation of cache memory

in a predictable, preemptive multitasking real-time system,” ACM Trans. Embed.

Comput. Syst., vol. 13, no. 4s, pp. 120:1–120:25, Apr. 2014.

[106] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whalley, G. Bernat,

C. Ferdinand, R. Heckmann, T. Mitra, F. Mueller, I. Puaut, P. Puschner, J. Staschu-

lat, and P. Stenström, “The worst-case execution-time problem - overview of meth-

ods and survey of tools,” ACM Transactions on Embedded Computing Systems, vol. 7,

no. 3, pp. 36:1–36:53, May 2008.

[107] S. Xi, J. Wilson, C. Lu, and C. Gill, “RT-Xen: towards real-time hypervisor schedul-

ing in xen,” in Proceedings of the ninth ACM international conference on Embedded

software, ser. EMSOFT. New York, NY, USA: ACM, 2011, pp. 39–48.

195

http://www.sysgo.com/products/pikeos-rtos-and-virtualization-concept/
http://www.sysgo.com/products/pikeos-rtos-and-virtualization-concept/

References

[108] S. Xi, M. Xu, C. Lu, L. T. X. Phan, C. Gill, O. Sokolsky, and I. Lee, “Real-time multi-

core virtual machine scheduling in Xen,” in Proceedings of the 14th International

Conference on Embedded Software, ser. EMSOFT. New York, NY, USA: ACM, 2014,

pp. 27:1–27:10.

196

	Abstract
	List of Contents
	List of Figures
	List of Tables
	List of Algorithms
	Acknowledgements
	Declaration
	Introduction
	Challenges in the Automotive Domain
	Industrial Context and Motivation
	Thesis Aim and Hypothesis
	Thesis Outline

	Field Survey and Review
	Timing Predictability
	Static Timing Analysis
	Measurement-based Analysis
	Static vs Measurement-based Analysis

	Real-time Scheduling
	Basic Concepts
	Rate Monotonic Scheduling

	Mixed-Criticality Scheduling
	Hierarchical Scheduling
	Execution Servers
	Work on Hierarchical Scheduling

	Hypervisor Systems
	Review of Existing Hypervisors

	Industrial Context and Research Gap
	Domain Controlled Architecture
	ETAS Hypervisor (RTA-HV)
	Research Gap

	Summary

	System Architecture
	Requirements and Assumptions
	Spatial Isolation
	Temporal Isolation

	Task Model
	Execution Servers
	Event-driven Execution Servers
	Time-driven Execution Servers
	Operation of the Execution Servers

	Priority Space
	Resource Management
	Modifications to Partitions
	Response Time Analysis
	Server Schedulability
	Task Schedulability

	Worked Example
	Server Parameters
	Server Response Time Analysis
	Task Response Time Analysis

	Summary

	Case Study: Engine Controller
	Hardware Platform Characteristics
	Operating Modes and Core Registers
	Memory Management
	Vectored Interrupts

	Case Study
	Application Description
	Task Measurement

	Simulator Implementation
	Simulator Overview
	Main Simulator Structures

	Experiment
	Methodology
	Results

	Evaluation of Architectural Design
	Summary

	Extension to Mixed-Criticality
	Mixed Criticality Task Model
	Mixed Criticality Execution Servers
	Execution Modes
	Normal Execution Mode (N)
	First Degraded Execution Mode (D1)
	Second Degraded Execution Mode (D2)

	Response Time Analysis
	Server Schedulability
	Task Response Times During Normal Mode
	Task Response Times During Degraded Modes
	RTA During Mode Changes

	Summary

	Case Study: Mixed-criticality Engine Controller
	Server Parameter Selection
	Priority Assignment
	Sensitivity Analysis
	Taskset and Overhead Characteristics
	Mixed-criticality Taskset
	Hypervisor Overheads

	Hypervisor System Configurations
	2-partition Configuration
	3-partition Configuration
	8-partition Configuration

	Experiment
	Implementation
	Results

	Architectural Design Evaluation
	Summary

	Case Study: Olympus Attitude and Orbital Control System
	Experiment Setup
	aocs Taskset and Hypervisor Overheads
	Average-Case Behaviour Simulation
	Partitioning

	Results
	Architectural Design Evaluation
	Summary

	Conclusion
	Thesis Overview
	Summary of Contributions
	Development of a Hypervisor Scheduling Model
	Mixed-criticality Model

	Limitations and Future Work
	Dependency of MC Model on Task Temporal Characteristics
	Support for Multi-core
	Variability in Hardware
	Partition and Task Dependencies

	Closing Remarks

	Application Task Execution Times
	Olympus aocs Case Study Response Times
	Abbreviations
	References

