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Abstract 

It is universally recognised that humans process speech and language in 

chunks, each meaningful in itself. Any two renditions or assimilations of a given 

sentence will exhibit similarities and discrepancies in chunking, where speakers and 

readers use pauses and inflections to mark phrase breaks. This thesis reviews 

deterministic and stochastic approaches to phrase break prediction, plus datasets, 

evaluation metrics and feature sets. Early rule-based experimental work with a 

chunk parser gives rise to motivational insights, namely: the limitations of 

traditional features (syntax and punctuation) and deficiency of prosody in current 

phrasing models, and the problem of evaluating performance when the training set 

only represents one phrasing variant. Such insights inform resource creation in the 

form of ProPOSEL, a prosody and part-of-speech English lexicon, to create a 

domain-independent knowledge source, plus prosodic annotation and text analytics 

tool for corpus-based research, supported by a comprehensive software tutorial. 

Future applications of ProPOSEL include prosody-motivated speech-to-viseme 

generation for ‗talking heads‘ and expressive avatar creation. Here, ProPOSEL is 

used to build the ProPOSEC dataset by merging and annotating two versions of the 

Spoken English Corpus. Linguistic data arrays in this dataset are first mined for 

prosodic boundary correlates and later re-conceptualised as training instances for 

supervised machine learning. This thesis contends that native English speakers use 

certain sound patterns (e.g. diphthongs and triphthongs) as linguistic signs for phrase 

breaks, having observed these same patterns at rhythmic junctures in poetry. Pre-

boundary lexical items bearing these complex vowels and gold-standard boundary 

annotations are found to be highly correlated via the chi-squared statistic in different 

genres, including seventeenth century English verse, and for multiple speakers. 

Complex vowels and other symbolic prosodic features are then implemented in a 

phrasing model to evaluate efficacy for phrase break prediction. The ultimate 

challenge is to better understand how sound and rhythm, as components of the 

linguistic sign, inform psycholinguistic chunking even during silent reading.  
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ANA Anacrusis or unstressed syllable(s) 
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Chapter 1 

Introduction 

1.1. Thesis overview  

The application area pertinent to this thesis is automated phrase break 

prediction, an NLP task within the TTS pipeline which sub-divides input text into 

meaningful units, phrases or chunks below sentence level to re-enact as closely as 

possible the way in which an articulate native speaker (or reader) might chunk (or 

parse) the utterance to maximise communication effectiveness (or understanding). In 

an automated system, predicting phrase breaks is synonymous with classifying 

junctures between words, or the words themselves, as either breaks or non-breaks. 

Once these break points or boundary delimiters have been discovered, intervening 

text can then be further ‗animated‘ with prosody, for example, it can be given a 

suitable intonation contour. Due to the modular TTS architecture, phrase break 

classifiers assume prior sentence segmentation and part-of-speech tagging for input 

text. Thus, punctuation and syntax are traditionally used as predictive features 

during classification. This thesis sets out to discover additional, prosodic phrase 

break correlates which may be used in conjunction with traditional features to 

enhance classifier performance. One of the artefacts produced in this thesis is 

ProPOSEL, a prosody and part-of-speech English lexicon for annotating the words 

of a text with an array of linguistic attributes (phonetic, prosodic and syntactic) 

which can be further transformed into candidate discriminatory classification 

features. The predictive potential of several transformations of this kind, including 

the principal thesis finding of complex vowels (i.e. the diphthongs and triphthongs 

of Received Pronunciation or BBC English) as proven phrase break correlates, is 

evaluated on a custom-built dataset via a simple phrase break model.  

1.2. Prosodic phrasing 

Prosodic phrasing is a universal characteristic of language (Ladd, 1996) and 

refers to the way speakers of any given language process speech as a series of 

chunks: meaningful, stand-alone clusters of words which have some relationship to 

syntactic phrase structure, the ‗natural joints‘ in sentences (Abney, 1995). For 
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example, Croft (1995) found that 97% of prosodic units in a corpus of English oral 

narratives were also syntactic units. The correlation and discrepancy between 

prosody and syntax is a continuing debate in the literature, but there does appear to 

be consensus on the fact that prosodic phrasing is simpler, shallower and flatter than 

syntactic structure. Abney (1992) proposes the unifying concept of performance 

structure, the way in which prosody and syntax interact in practice.  

Performance structure in English is realised and perceived as a partnership 

between pitch accents and pauses which draws attention to these natural joints or 

boundaries in the speech stream.  

‗...The correct question about sentence accent data is not ‗Why is the main 

prominence in this sentence on word X rather than on word Y?‘ but rather 

‗Why is this sentence divided up into phrases the way it is?‘ (Ladd, 1996, 

p.196; ibid. cf. p.233). 

The goal of automatic phrase break prediction is, therefore, to identify natural 

joints in text which correspond naturally and intelligibly (these are the important 

criteria) to the way a native speaker might process or chunk that same text as speech. 

In text, prominent boundaries are marked by punctuation and it is second nature for 

us to associate different intonation and different degrees of pause with the various 

punctuation marks when reading that text aloud. Thus language models designed to 

predict prosodic phrase breaks from input text – for Text-to-Speech Synthesis (TTS) 

applications, for example – will often use punctuation as a primary cue.  

Prosodic phrasing and intonation exhibit a dual purpose in speech: a chunking 

function to identify meaningful – and syntactically coherent – clusters of words and 

a highlighting function to emphasise salient items within clusters. In English, 

chunking and highlighting are often conflated (Peppe, 2006): prominent words tend 

to complete a phrase group and so occupy pre-boundary position. The convergence 

and non-convergence of these functions has consequences for the evaluation of 

language models that try to simulate them.  

1.3. Phrasing and punctuation 

The previous section refers to the debate about correspondence and anomaly at 

the prosody-syntax interface. Empirical evidence for this dichotomy is examined in 

detail in Chapter 5 of this thesis. The status of punctuation as prosodic boundary 
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marker is also problematic. On the one hand, punctuation is a very reliable boundary 

predictor, capturing about 50% of phrase breaks in text as evidenced in corpus-based 

studies (Taylor, 1996, p.131) and via experimentation (Taylor and Black, 1998; 

Ingulfsen, 2005). However, the performance of a classifier is in part measured by the 

number of correct phrase breaks it recaptures in a sample of unseen text stripped of 

its original boundary locations. Thus, while punctuation aids precision in that it does 

not lead to over-generation or insertion of boundaries where they are not supposed 

to be, it falls short on recall since we can expect twice as many boundaries as 

punctuation marks. A classifier therefore needs additional clues, available to humans 

performing such a task, to inform phrase break assignment: 

‗…As a rule of thumb, when we read a passage aloud, we are likely to use 

spoken boundaries corresponding to punctuation marks, and we have to decide 

where other, additional boundaries should be placed…‘ (Quirk et al. in Taylor, 

1996, p.130).  

1.4. What is a chunk? 

So far, we have loosely defined chunks as sequences of words that make sense 

as a stand-alone unit but which do not generally constitute a conventional written 

sentence (unless that sentence is very short). We have noted their resemblance to 

syntactic units, for example noun phrases or sentence clauses, and we have noted the 

correspondence between intelligent chunking and punctuation as chunk delimiter. 

Datasets used in this thesis merge information from different versions of the Spoken 

English Corpus (SEC) and carry their own attendant definition of what constitutes a 

chunk. This is first and foremost a prosodic unit. Such units are variously referred to 

as tone units or intonation groups or tone groups or intonational phrases in the 

literature (Croft, 1995). To qualify as a chunk by this definition, the posited 

sequence must include at least one accented word, namely, a word that exhibits pitch 

variation on the stressed syllable in the listener‘s/transcriber‘s perception (Dehe and 

Wichman, 2010). SEC identifies two levels of chunk via two different boundary 

markers: the tone unit boundary ( | ) and the pause ( || ). 

At this point, we mention additional prosodic terminology to do with 

prominence and intonation. The former is a property of syllables which are 

perceived as being louder and longer than others and which may enact changes in 
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pitch. The latter is generally a property of the phrase or sentence – although in 

emphatic or emotional speech, individual words may exhibit a complete intonation 

contour (Welby, 2003) – and refers to the tune of an utterance: recognisable patterns 

in a series of pitch movements which have semantic and functional significance. In 

English, prominent syllables can be stressed, in which case they are perceived as 

strong rhythmic beats endowed with a full vowel, not a reduced one. Stressed 

syllables may also be accented, in which case they initiate a change in the direction 

of pitch and sometimes a sharp jump across the speaker's pitch range. British 

English has six distinct pitch accent types: rising; falling; rising-falling; falling-

rising; rising-falling-rising; and level (Grabe, 2001), where the first four are 

considered to be major types (Dehe and Wichman, 2010). 

1.4.1. A Semiotics perspective on chunks 

Chunks are psychological as well as physical entities. One property of the 

linguistic sign as defined by Saussure is linearity (Saussure in Holdcroft, 1991, p. 

52), such that syntagmatic relations exist between one chunk and another, since the 

notion of syntagm is not simply restricted to word level units in a language:   

‗…the linguistic entity is not accurately defined until it is delimited, i.e. 

separated from everything that surrounds it on the phonic chain. These 

delimited entities or units stand in opposition to each other in the mechanism 

of language…‘ (ibid. p.89) 

Furthermore, the multiplicity of permissible chunk combinations and sequences is 

an aspect of the productive or generative nature of language. The particular focus of 

this thesis is on prosodic delimiters between contiguous chunks. 

1.4.2. Language generation and phrase construction within a cognitive 

framework 

Psycholinguists have investigated language generation and phrase construction 

within a cognitive framework, and their conclusions are relevant for this research. 

Kempen and Hoenkamp (1982) observe that:  

 ‗...Human speakers often produce sentences incrementally. They can start 

speaking having in mind only a fragmentary idea of what they want to say, and 

while saying this they refine the contents underlying subsequent parts of the 

utterance. This capability imposes a number of constraints on the design of a 

syntactic processor…‘ 
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They concluded that, in human language generation, sentences are constructed 

incrementally as a series of chunks; phrase breaks are generated under local 

constraints, to fit immediate context rather than global sentence structure. Other 

psycholinguists studying human generation of specific language constructions 

reached the same conclusion. For example, Stallings et al (1998) investigated 

phrasal ordering constraints in sentence production, focussing on phrase length and 

verb disposition in Heavy-NP shift; they also concluded that sentences are 

constructed incrementally, with phrase breaks generated under local constraints: 

‗...These findings point to the simultaneous activation of lexically derived 

syntactic representations and ordering options in sentence planning. A multiple 

constraints framework provides a means of reconciling the existence of 

competition among ordering options with incremental sentence 

construction…‘ 

These findings within a broader cognitive framework suggest that a phrase break 

prediction model could be based on indicators in the immediately preceding words, 

and need notrely on sentence-level syntactic processing. Psycholinguists have also 

investigated how different classes of words contribute differently to cognitive 

processing in phrase construction. For example, Bell et al (2009) studied 

predictability effects on durations of content and function words in conversational 

English, and found that ‗...content and function words are accessed differently in 

phrase production...‘ and that there is ‗…a general mechanism that coordinates the 

pace of higher-level planning and the execution of the articulatory plan…‘ This 

suggests a broad content/function feature might be a useful indicator in phrase break 

prediction. This is discussed in some detail in section 3.2 of this thesis.  

1.5. SEC as “gold standard” 

We have already stated that the performance of a classifier is in part measured 

by the number of correct phrase breaks it recaptures in a sample of unseen text. The 

general procedure is to train the classifier on ―gold standard‖ boundary annotated 

text from a speech corpus (the training set), and to hold in reserve a smaller section 

of text from the same source for testing. Although target boundary sites in the test 

set are available to the researcher for comparative evaluation, they are missing from 

test data presented to the classifier. Versions of SEC are often used as datasets for 
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training/testing phrase break models (e.g. Taylor and Black, 1998; Read and Cox, 

2007) because this corpus has already been marked up with boundary annotations by 

two corpus linguists: Gerry Knowles and Bryony Williams. These annotations are 

then regarded as a ―gold standard‖ for developing and evaluating language models 

because they encapsulate human performance, that is the level or standard of 

performance in terms of intelligibility and naturalness that the model is designed to 

emulate. Tone unit boundary markers ( | ) and pauses ( || ) in SEC are reactive in that 

they represent annotators‘ perceptions of acoustic events in the speech signal, such 

as periods of silence, pre-boundary lengthening in word-final syllables, and 

presence/absence of coarticulatory effects (Dehe and Wichman, 2010), and 

proactive in the sense that they may also signify annotators anticipating or 

predicting the chunking strategy for a given sentence after exposure to a particular 

speaker or genre (Pickering et al., 1996, p.65). Chapter 5 of this thesis includes 

further discussion of boundary annotations in SEC, especially the issues of inter-

annotator agreement, and prosodic variance.    

1.6. Ramifications of prosody 

This thesis is concerned with prosodic phrasing and the prosodic-syntactic 

devices used (by speakers, listeners, readers and writers) to demarcate chunk 

boundaries, the beginnings and ends of meaningful units of thought. By way of 

illustration, we might consider possible chunking and highlighting strategies for the 

following sentence (Winograd, 1984). 

In the popular mythology the computer is a mathematics machine: it is 

designed to do numerical calculations. Yet it is really a language machine: its 

fundamental power lies in its ability to manipulate linguistic tokens – symbols 

to which meaning has been assigned.  

1.6.1. Intuitive prosodic phrasing: Winograd extract 

This exercise did not involve applying any explicit rules. Instead, the text was 

read aloud in an expressive way and choices about prominent words and resting 

places were tested over several readings to see if they could confidently be 

replicated. This is the result (Example 1.1), where chunking words (i.e. words 

preceding a prosodic phrase boundary) are given in italics and highlighted words in 

bold. Three instances of conflation also occur – on tokens and symbols and do; the 
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identification of the word do as a conflated item is considered particularly 

idiosyncractic.  

 

 

 

Example 1.1 

In the popular mythology the computer is a mathematics machine: it is designed to 

do numerical calculations.  Yet it is really a language machine: its fundamental 

power lies in its ability to manipulate linguistic tokens – symbols to which meaning 

has been assigned. 

 We can use chunkers and highlighters to identify the most important lexical 

items, retaining the original linear order in which they appear: {mythology; 

computer; mathematics; machine; do; calculations; really; language; machine; 

power; tokens; symbols; meaning; assigned}. This list embodies a pretty powerful 

train of thought with some interesting word associations.  

A problem arises, however, if we try to extract formal propositions from such 

complex sentence structure.  Consider, for example, the first stand-alone section: In 

the popular mythology, the computer is a mathematics machine. It is easy to 

formulate the proposition: the computer is a mathematics machine. But this 

proposition is not strictly true, being qualified by the introductory prepositional 

phrase. Moreover, this prepositional phrase is key to introducing the contrast, 

reinforced by the stress, accenting and chunking, between a limited (popular) view 

of computers as calculators versus reality – computers as language machines. 

Finally, this prepositional phrase serves to associate computers with myth, with the 

human imagination, and yet this enriching aspect of meaning would be lost if we 

were to simply extract the proposition from the sentence and ignore the first chunk. 

1.6.2. Prosodic versus syntactic phrase structure: Winograd extract 

The nature of the relationship between prosody and syntax has been a 

continuing debate in the literature since the 1960s, with the intriguing paradox that 

prosodic phrasing both reflects syntactic constituency but is simpler, shallower and 

flatter than syntactic structure (Ladd, 1996).  This is best illustrated by example.  
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Intuitively, we might break the following sentence up into 2 or 3 prosodic phrases 

(Example 1.2). 

Example 1.2 

The two-phrase version: 

In the popular mythology || the computer is a mathematics machine || 

The three-phrase version: 

In the popular mythology || the computer | is a mathematics machine || 

It does not matter which version we choose; what matters is that each chunk is 

meaningful in its own right and that boundaries are not aberrant occurrences as in 

this next version (Example 1.3). 

Example 1.3 

Nonsensical phrasing: 

In the popular | mythology the | computer is a mathematics | machine | 

A full parse of the above sentence shows that while prosodic structure is linear, 

syntactic dependencies create a multi-layer structure, traditionally represented as a 

parse tree (Figure.1.1). 

 

Figure. 1.1: Parse tree representation of example sentence. 

http://www.ironcreek.net/phpsyntaxtree/  

This tree was constructed from the following labeled bracket notation and uses 

Brown PoS tags to identify parts of speech at terminal nodes (Example 1.4). 

Example 1.4 

[S [PP [IN In] [NP [AT the] [JJ popular] [NN mythology]]] [NP [AT 

the] [NN computer]] [VP [BEZ is] [NP [AT a] [NN mathematics] [NN 

machine.]]]] 
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The example suggests that prosodic phrase breaks equate to the nodes marked in 

bold in this bracketed notation and that they occur between large syntactic units 

{NP, VB, PP, ADJP, ADVP}.  This intuition is included in the selection of features 

used in a CART (Classification and Regression Tree) model for automatic phrase 

break prediction (Wang and Hirschberg, 1991) which reports a 90.8% success rate in 

the detection of prosodic boundaries. 

1.7. Structure of thesis document 

This thesis is structured as follows. Chapter 2 reviews speech corpora and 

prosodic annotation schemes, and Chapter 3 reviews deterministic and stochastic 

approaches to phrase break prediction, plus customary evaluation metrics and 

feature sets. Chapter 4 reports on early rule-based experimental work with a shallow 

or chunk parser. Outputs from same prompt closer inspection of corpus annotation 

and give rise to motivational insights about prosodic variance (Chapter 5) which 

then inform resource creation (Chapter 6). Prosodic resources comprise: ProPOSEL, 

a prosody and part-of-speech English lexicon, supported by a comprehensive 

software tutorial (Appendix 2), and the ProPOSEC dataset (§8.10). Significance 

testing finds a high degree of correlation between gold standard boundary 

annotations and certain sound patterns (i.e. complex vowels) in English in different 

genres: seventeenth century English verse (Chapter 7), plus read speech (i.e. a 

lecture) and spontaneous speech from the twentieth-century (Chapter 8). Linguistic 

data arrays in this spontaneous speech dataset (i.e. ProPOSEC) are then re-

conceptualised as training instances for supervised machine learning experiments 

(Chapter 9) and the final summary, conclusions, and ideas for further work appear in 

Chapter 10.  
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Chapter 2 

Speech Corpora and Prosodic Annotation Schemes 

2.1. English speech corpora used in this thesis 

The main speech corpora used for experimental work in this thesis are the 

Lancaster/IBM Spoken English Corpus (Taylor and Knowles, 1988) and a more 

recent version of this dataset: the Aix-MARSEC corpus project (Auran et al., 2004). 

These are corpora of larger texts, with content beyond words and phrases, as 

opposed to speech corpora such as TIMIT (§2.5). The latter has been used to train 

acoustic models for Automatic Speech Recognition, while SEC can be used to 

develop better rules for Text-to-Speech Synthesis (Knowles, 1996a). The Spoken 

English Corpus and Aix-MARSEC are outlined in this and the subsequent section 

on prosodic annotation schemes, along with other relevant speech corpora.  

2.2. The Spoken English Corpus 

The version of the Spoken English Corpus (SEC) used in this thesis is 

available from NLP resources in the School of Computing at Leeds University and 

vertically aligns each word in the corpus with its part-of-speech classification from 

the Lancaster-Oslo-Bergen (LOB) tagset (Johansson et al., 1986). The original SEC 

is a corpus of some 52,000 words of contemporary British English speech collected 

at the University of Lancaster, and transcribed orthographically and prosodically, 

plus annotated grammatically via the CLAWS (Constituent Likelihood Automatic 

Word-tagging System) tagger and CLAWS1 (i.e. LOB) tagset (UCREL, 2010). High 

quality recordings of speech samples from 53 different speakers and produced by 

IBM UK are also included as part of the corpus; most of these samples are taken 

from BBC radio. There are 11 speech categories in all: {A: Commentary; B: News 

broadcasts; C: Lecture type 1; D: Lecture type 2; E: Religious broadcast; F: 

Magazine style reporting; G: Fiction; H: Poetry; J: Dialogue; K: Propaganda; M: 

Miscellaneous}. Table 2.1 gives additional information for sections used in this 

thesis (i.e. Sections A and C) . 

Subsection Source Speaker(s) Date  

A01 In Perspective Rosemary Hartill 24.11.1984 
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A02 – A06 
From our own 

Correspondent 

Gerald Butt; Jon Silverman; 

John Carlin; James Morgan; 

David Smeeton 

24.11.1984 

A07 – A12 

News 

Laurie Margolis; Keith Graves; 

Graham Leach; Alan 

MacDonald; Peter Ruff; Jim 

Biddulph 

22.06.1985 

C01 The Reith 

Lectures (III) 

David Henderson 
20.11.1985 

Table 2.1: Genre and speaker identification in a sample from SEC 

2.3. The Aix-MARSEC Corpus Project 

The Aix-MARSEC corpus of Spoken British English is described as a freely 

available, collaborative and evolving database where the plan is to incorporate 

further contributions by referenced users. It originates from the Spoken English 

Corpus, comprising over 5 hours of BBC radio recordings from the 1980s, and its 

machine readable counterpart: MARSEC (Roach et al., 1993).  The original 

prosodic annotations have been augmented by multi-level annotation tiers from the 

Aix-MARSEC project and these are discussed in more detail in Section 2.8.   

 2.3.1. The Aix-MARSEC toolset 

Aix-MARSEC is both a toolset and a database. The former includes tools 

specifically designed for use on the database – multiplatform Praat and Perl scripts 

and reference files – and a general purpose prosody editor (PROZED for short) 

incorporating the MOMEL-INTSINT algorithms for reproducing the prosodic 

characteristics of utterances (Hirst, 2000a).   

 2.3.2. The Aix-MARSEC database 

The Aix-MARSEC database comprises radio recordings of fifty-three different 

speakers, in eleven different speech styles, with prosodic annotations from two 

experts; plus a further nine levels of prosodic annotation presented as separate tiers 

in Praat TextGrids. Two further levels of syntactic annotation were originally 

planned for syntactic annotation and a property grammar system. 

2.4. Hand-labelled speech corpora 

The International Computer Archive of Modern and Medieval English 

(ICAME) website lists several speech corpora where the recordings have been 
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transcribed and prosodically annotated according to the British tone sequence model 

(§1.4), where intonation is described as a succession of pitch movements –  falling 

or rising tones, for example. However, these corpora have been hand-labelled, 

prosodic marks used are corpus-specific and transcriptions are not intended for 

automatic processing. They are included here to highlight some of the important 

characteristics of prosody. 

The London-Lund corpus (Greenbaum and Svartvik, 1990) represents some 

thirty years‘ work and contains a hundred spoken texts – both spontaneous and 

composed monologues and dialogues – with detailed prosodic information 

identifying the following key features: tone unit boundaries; pauses of varying 

lengths; location of the nucleus or most prominent peak; direction of nuclear pitch 

accent; ―boosters,‖ (i.e. resetting of pitch level between one tone unit and another); 

varying degrees of stress, loudness and tempo; changes in voice quality; and 

paralinguistic features. This is a complex body of information. 

 An alternative approach has been adopted in COLT, the Bergen Corpus of 

London Teenage Language (University of Bergen, 1993), which contains some half 

a million words of spontaneous and lively speech by 13 to 17 year olds from five 

very different districts in London.  Parts of this corpus have been transcribed 

prosodically, with a practical and straightforward set of labels comprising: [#] for 

tone unit boundary; [-] for level tone; use of bold type to mark nuclei; and the set { 

\, /, \/, /\ } to designate direction of pitch accent: falling, rising, fall-rise and 

rise-fall. This annotation set resembles the scheme used in the Lancaster/IBM 

Spoken English Corpus discussed in Section 2.8.  

2.5. LDC corpus holdings 

The Linguistic Data Consortium (LDC) holds numerous speech corpora, each 

developed for a specific purpose and application and classified according to type as 

a shared resource for the international research community. The following are 

notable catalogue inclusions used in studies. 

The target application for the Boston University Radio Speech Corpus 

(Ostendorf et al., 1996) was TTS, with an emphasis on the generation of prosodic 

patterns. The corpus consists of over seven hours of professionally read radio news 

by four male and three female announcers recorded over a two year period. An 
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interesting feature of this corpus is the additional laboratory recordings of the same 

speakers reading the same news items in two contrasting styles: their normal 

speaking voice and their radio broadcast speech style. Annotations include 

orthographic transcription, phonetic alignments, part-of-speech tags and prosodic 

markers, including pauses, but only for a subset of the corpus. 

TIMIT, the Acoustic-Phonetic Continuous Speech Corpus (Garofolo et al., 

1993), is a corpus of read speech designed to provide data for Automatic Speech 

Recognition (ASR). It contains broadband recordings of 630 speakers of 8 major 

dialects of American English, each reading 10 phonetically rich sentences and thus 

has immediate potential for the statistical analysis of intonational variation between 

native English speakers. The TIMIT corpus has time-aligned orthographic, phonetic 

and word transcriptions which have been hand-verified, plus a 16-bit, 16kHz speech 

waveform file for each utterance and specified test and training subsets. 

The Switchboard Telephone Speech Corpus (Godfrey and Holliman, 1997) 

was also gathered for ASR. It is a collection of some 2400 telephone dialogues 

involving 543 male and female speakers from across the US on a range of topics and 

hence lends itself to research applications such as discourse annotation and the 

annotation of speech acts. An interesting feature of this corpus is that speaker 

attributes have been listed. 

2.6. The British National Corpus 

The BNC or British National Corpus (Burnard, 2000) has been reissued as a 

third edition in XML format so that it can be used with state-of-the-art natural 

language processing tools and resources. The corpus was completed in 1994 and 

contains some 100 million words of modern British English. The spoken part 

constitutes 10% of the whole and is made up of recordings and transcriptions of 

spontaneous speech by members of the public from 38 different UK locations, plus 

context-specific material from educational, business, public and leisure events. This 

corpus is not prosodically annotated, however.  

2.7. Other speech corpora 

The SPOT corpus (Speer et al., 2000) was set up as a cooperative game task 

involving 16 pairs of male speakers of American English to investigate how prosody 
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can be used to resolve syntactic ambiguity. Findings showed a match between 

prosodic and syntactic phrasing in the controlled grammatical context under 

investigation – transitive and intransitive sentences – but also some variety in tone 

sequences used by participants even in tightly scripted speech. 

The IViE, or International Variation in English, corpus project (Grabe et al., 

2001) constitutes thirty-six hours of speech recordings from sixteen-year-olds from 

nine urban dialects in the UK. A small section of this corpus has been prosodically 

transcribed. 

The OXIGEN project, or Oxford Intonation Generator, (Grabe et al., 2003) 

follows on from IViE and aims to further the investigation of demographic variation 

in intonation patterns in the UK. OXIGEN is intended to provide a statistical 

computational model of intonation in English for TTS and ASR which takes account 

of influences such as region, gender and individual speaking style.  

2.8. Prosodic annotation in SEC and Aix-MARSEC 

The Spoken English Corpus was annotated by Knowles and Williams 

according to the conventions of the British School (Grabe, 2001) where pitch accent 

types are described as pitch movements. There are, in effect, fifteen prosodic marks 

used in SEC-MARSEC representing the full range of accent types for British 

English; plus two types of boundary corresponding to break indices 3 and 4 in the 

ToBI system (§2.9); a mark signifying hesitation tone unit boundary; a mark for 

stressed as opposed to accented syllables; and finally two reset labels for higher or 

lower than predictable pitch. The latter are also used in the INTSINT coding system 

in Aix-MARSEC.    

Prosodic annotation in the Aix-MARSEC corpus presents the following 

information about an utterance in a nine-layer Praat (Boersma and Weenink, 2009) 

TextGrid. Words in the orthographic tier are broken down into individual phonemes 

and syllables in separate tiers, with a further tier revealing syllable structure. All this 

information is aligned. Furthermore, there is a series of separate tiers for 

suprasegmental components arranged in a hierarchy of stress feet, narrow rhythm 

units and ancruses and finally intonation units – and again, all this information is 

aligned. Yet another tier represents INTSINT coding of intonation at the surface 

phonological level. The MOMEL-INTSINT algorithms use a sequence of target 
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points derived from the acoustic signal to enable automatic modelling of 

fundamental frequency curves at the level of phonetic representation; and automatic 

coding of intonation using a finite set of symbols: {T, M, B, H, L, S, U, D}. This  set 

of symbols {Top, Middle, Bottom, Higher, Lower, Same, Upstepped, 

Downstepped} does not constitute a fixed inventory of labels (for pitch accents and 

boundary tones, for example) as used in Autosegmental-Metrical annotation 

schemes such as ToBI, ToDI and IViE (§2.9) but instead uniquely codes the 

intonation of an utterance as a pattern of absolute and relative tones. The final tier 

gives fundamental frequency values. Table 2.2 cross-references prosodic annotation 

marks used in SEC with those used in Aix-MARSEC.  

 

 

 

 

 

 

 

 

 

 

 

SEC Aix-MARSEC Signification 

_ _ Low level 

| | Minor tone unit boundary 

|| || Major tone unit boundary 

  ~ High level 

 < Lower than predictable pitch 

 > Higher than predictable pitch 

 none Hesitation tone unit boundary 
 /' High rise-fall 
 '/ High fall-rise 
\ 

\ High fall 
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/ 
/ High rise 

\ ' Low fall 

/ , Low rise 

 ,\ Low rise-fall (not used) 

 \, Low fall-rise 

• * Stressed but unaccented 

Table 2.2: Prosodic marks cross-referenced in SEC and Aix-MARSEC, as presented 

in Taylor and Knowles (1988) and Auran et al. (2004) respectively 

2.9. Autosegmental-Metrical (and other) prosodic annotation 

schemes 

ToBI (Tones and Break Indices) - is a machine-readable prosodic annotation 

scheme where transcriptions aim to capture features in the acoustic signal and a 

speaker's phonological choices. It has been widely used in studies because of its 

descriptive inventory of tones facilitating cross-linguistic comparison. ToBI has 

been through several revisions since its first appearance; the final set of four 

transcription tiers (Pitrelli, Beckmann and Hirschberg, 1994) includes a break index 

tier and a tone tier. In the former, values are assigned to disjuncture between words 

and intonational phrases, introducing a notional distinction between an intermediate 

phrase (Break Index 3) and a full intonation phrase (Break Index 4) and leading to 

theories outlining a hierarchy of prosodic constituents. A similar distinction between 

shorter and longer pauses, often corresponding to commas and full-stops, is made in 

other prosodic annotation schemes. The ToBI tone tier includes labels such as the 

high/low phrase accent (H-, L-); the phrase-initial boundary tone (%H, %L); and the 

final boundary tone (H%, L%). Table 2.3 illustrates ToBI annotations for pitch 

accents and boundaries, juxtaposed with boundary annotations from SEC.    

Orthographic Tier Will you have marmalade, or jam? 

Tone Tier    L*             H-  L*   H-H% 

Break Index Tier 1 1 1 3 1 4 

SEC scheme    |  || 

Table 2.3: Illustration of American (ToBI) prosodic annotations for sample 

sentence, including comparison with boundary annotations in SEC 

ToDI is a two-tier annotation scheme now in its second edition (Gussenhoven, 

Rietveld, Kerkhoff and Terken, 2003) which uses a modified inventory of ToBI-like 
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tones to label speakers' choices at significant points mapped to the orthographic tier. 

It was devised for the Dutch language but is applicable to British English, 

particularly since the inventory includes in its terminology all six pitch accent types 

mentioned in Section 1.4.  

The IViE (Intonational Variation in English) notation system is a further 

variant of the Autosegmental-Metrical approach inaugurated by ToBI and was 

devised to annotate a corpus of the same name with comparative recordings from 

nine different locations in the British Isles (Grabe et al., 2001). IViE was released in 

2001 and is distinctive in its incorporation of two new annotation tiers: a 

prominence tier and a phonetic tier. The prominence tier labels each peak in the 

frequency contour as P, and maps this symbol to the corresponding syllable in the 

orthographic tier. Furthermore, the phonetic tier introduces the concept of an 

implementation domain spanning consecutive segments or eventful blocks of the 

frequency contour and labels unaccented syllables either side of significant 

prominences (the "P"s) as high/low pitch or mid-range.  

 The Tilt model (Taylor, 2000) is described as an event detector which 

subsequently generates a synthesized intonation contour from the acoustic signal – a 

phonetic model, therefore.  Synthesized contours can then be compared to real ones.  

Significant events for this model were initially defined as pitch accents and rising 

boundaries, labeled [a] and [b] respectively, plus combination events – [ab] – 

where accent and boundary are realised as a single pitch movement. Presumably, the 

default boundary type – a fall – was not interpreted as an event because it marks the 

end of the utterance or segmental stream input. The results of automatic event 

detection trials were compared with human transcriptions of the same input, where 

annotators were given a fuller set of labels in keeping with traditional annotation 

schemes. This label set included [sil] for periods of silence; [l] for level accents; 

[m] for stressed but unaccented syllables; and labels for differentiating rising, level 

and falling accents in combination events. It was found that augmenting the model 

with a fuller set of labels gave better performance. 

2.10. Phonetic transcription schemes used in this thesis 

The Prosody and PoS English Lexicon (ProPOSEL) described in Chapter 5 

specifies phonetic transcriptions for each word form entry via two different 
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character sets: SAM-PA and DISC. ARPAbet transcriptions have also been used 

during lexicon build to generate some of the lexical stress patterns (§6.3.1), the 

ARPAbet being a phonetic transcription scheme using ASCII symbols and 

specifically designed for American English. 

SAM-PA is a standard computer-readable phonetic character set and is used in 

ProPOSEL for transcriptions derived from CUVPlus (Pedler and Mitton, 2003). As 

with the International Phonetic Alphabet (IPA), SAM-PA uses 2 characters to 

represent affricates (i.e. /tS/ and /dZ/ in chin and gin) and diphthongs (e.g. /eI/ 

and /aI/ in day and night). In contrast, the DISC (Distinct Single Characters) set 

implements an unambiguous, one-to-one mapping of character to segment in the 

sound systems of Dutch, English and German and is recommended for computer 

processing tasks (Burnage, 1990). Table 2.4 shows phonetic transcriptions in 

ProPOSEL for the homograph attribute and the noun foundation, which contains 2 

diphthongs (cf. Table 7.5); SAM-PA transcriptions are stressed and DISC 

transcriptions are stressed and syllabified.   

 

 

 

 

  

Word C5 

PoS 

tag 

SAM-PA DISC (stressed 

& syllabified) 

DISC (stress 

weightings assigned to 

each syllable) 

attribute NN1 '&trIbjut '{-trI-bjut '{:1 trI:0 bjut:0 

attribute VVB @'trIbjut @-'trI-bjut @:0 'trI:1 bjut:0 

attribute VVI @'trIbjut @-'trI-bjut @:0 'trI:1 bjut:0 

foundation NN1 faUn'deISn f6n-'d1-SH f6n:0 'd1:1 SH:0 
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Table 2.4: Example entries from ProPOSEL for word; part-of-speech; and SAM-PA 

and DISC phonetic transcriptions  

2.11. Syntactic annotation schemes relevant to this thesis 

Generally, in corpus compilation, part-of-speech (PoS) tags constitute the first 

level of linguistic enrichment for a text (Atwell, 2008), providing much more 

discriminating syntactic information per word than is found in dictionaries. One 

motivation for ProPOSEL (cf. Chapter 6) was to construct a lexicon for linkage with 

a range of speech corpora, necessitating, therefore, inclusion of more than one 

syntactic annotation scheme – four in all. ProPOSEL inherited the C5 tagset (Leech 

and Smith, 2000) from CUVPlus; this is a fairly sparse tagset (just over 60 tags) 

designed specifically for handling large quantities of data, as in the British National 

Corpus (Burnard, 2000). Inclusion of LOB or the Lancaster-Oslo-Bergen tagset 

(Johansson, 1986) was essential for cross-referencing syntactic information from 

SEC with Aix-MARSEC, since to date, the latter is not syntactically annotated. In 

addition, there are fields in ProPOSEL for Penn Treebank tags – as used in TIMIT 

and the Switchboard Telephone Speech Corpus, for example – and for C7, since this 

is UCREL‘s current standard tagset (UCREL, 2010). Of the 4 tagsets used in 

ProPOSEL, C7 is the most fine-grained and Penn the least. The scheme for mapping 

C5 to Penn, LOB and C7 is discussed in Chapter 6.5.2 and full details are given in 

Appendix 2: ProPOSEL‘s software tools.  
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Chapter 3 

Prosodic Phrase Break Prediction: Methods, Metrics and 

Feature Sets 

3.1.  Overview of task  

Techniques for automated prediction of prosodic phrase boundaries in text, 

typically for Text-to-Speech Synthesis (TTS) applications, can be deterministic or 

probabilistic. In either case, the problem of phrase break prediction is treated as a 

classification task and outputs from the model, as in other Natural Language 

Processing (NLP) applications such as part-of-speech (PoS) tagging, are evaluated 

against a human-labelled ‗gold standard‘ corpus (Jurafsky and Martin, 2000 p.308), 

also known as a ‗reference dataset‘ in the speech research community. For prosody, 

this gold standard is a test set where original transcriptions of recorded speech in the 

speech corpus include prosodic annotations by experts. Annotation systems 

commonly used for phrase break prediction are ToBI - Tones and Break Indices 

(Beckman & Ayers, 1997) - where the break index tier distinguishes 5 levels of 

juncture between words on a scale of 0 - 4, and the British system exemplified in 

SEC - the Spoken English Corpus (Taylor and Knowles, 1988) - which identifies 3 

levels: no boundary, minor phrase boundary, major intonational phrase (IP) 

boundary. Minor and major boundaries are assigned the pipe symbols: | and || 

respectively, and map to break indices 3 and 4 in ToBI. In Roach (2000), these same 

symbols denote tone unit boundary | and pause ||. 

3.2. Rule-based methods 

A standard rule-based method commonly used in TTS is to employ some form 

of ‗chink-chunk‘ algorithm which inserts a boundary after punctuation and 

whenever the input string matches the sequence: open-class or content word (chunk) 

immediately followed by closed-class or function word (chink), based on the 

principle that chinks initiate new prosodic phrases. Bell Labs speech synthesizer has 

used this kind of rule to identify low-level phrasal units or f-groups (Abney, 1994); 

and a similar notion of f-groups or function word constraints has been used to 

cluster parts-of-speech sandwiched between two function words (Elliott, 2003). 

Variants of the chink-chunk algorithm may seek to shuffle parts-of-speech (PoS) 
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between open and closed-class groupings; the chink-chunk algorithm proper 

(Liberman and Church, 1992) treats tensed verb forms as chinks and object 

pronouns as chunks for more natural phrasing. The challenge for this algorithm, 

which tends to over-generate boundaries, is to discover rules for merging f-groups 

into more complex units. Pertinent syntactic principles have been posited by 

Knowles (1996a) and Croft (1995) for mapping grammatical units onto intonation 

units. The former recommends lightening dense intonation by looking at local, 

rather than global, relationships between grammatical units: in effect by ranking 

successive f-group blocks (Knowles, 1996a, pp. 150; 153). For the latter, the most 

important constraint is avoidance of parallel structures, as distinct from nested 

structures, within single intonation units. This thesis is interested in phonetic and 

phonological principles influencing such a mapping.  

A more recent alternative rule-based method is described by Atterer (2002) 

and Atterer and Klein (2002); their model builds a hierarchical prosodic structure via 

a two-step process which uses the CASS chunk parser (Abney, 1991) to identify φ-

phrases (f-groups) and then ‗bundles‘ these minor phrases into intonational phrases. 

The algorithm uses a variable threshold figure (default setting 13) to limit the 

number of syllables in an intonational phrase if there is no intervening punctuation. 

This approach is reminiscent of Miller (1956) and the argument that humans have a 

short term or ‗immediate‘ memory span manifest in our tendency to process 

information in a fixed number of chunks; (this appears to be a specific use of the 

word ‗chunks‘ as countable units). However, while Atterer and Klein here define a 

chunk as a sequence of words which amounts to no more than 13 syllables, Miller 

seems less definite about size of chunk. For example, he refers to a set of 

experiments by Hayes (1952), where data consisted of 1000 monosyllabic words 

(not connected speech, therefore), and where human subjects were determined to 

have an immediate memory span of five words and 15 phonemes, ―...since each 

word had about 3 phonemes in it...‖ [my italics]. This thesis suggests that a more 

appropriate predictor for intonational phrases in English would be beats (i.e. 

syllables which carry primary stress) rather than phonemes, syllables per se and 

individual words (cf. 6.6.3; 9.5.1).  
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3.3. Statistical methods 

The leading study in the use of statistical methods for phrase break prediction 

is Taylor and Black‘s Markov model (1998), trained and tested on MARSEC, the 

Machine Readable Spoken English Corpus (Roach et al, 1993) and used in 

Edinburgh‘s Festival speech synthesis system (Black et al., 1999; Black, 2000). The 

training data for this supervised learning model is ‗text‘ represented by a sequence 

of PoS tags which include boundary tags. The model is structured such that states 

represent types of break - the desired classification outputs of break or non-break - 

and transitions represent likelihoods of phrase break sequences occurring. The 

model thus ‗learns‘ the classification task by integrating two sets of information: the 

probability of a PoS sequence, given juncture type, and the probability of a 

particular sequence of juncture types occurring. This extensive study actually goes 

on to compare the performance of both probabilistic and deterministic language 

models over six experimental settings, with a best score of 79% breaks-correct 

achieved with a higher order n-gram model and a more streamlined tagset obtained 

by post-mapping the output of the PoS-tagger onto a smaller tagset of 23.  

Busser et al. (2001) compare the effectiveness of a Memory-Based Learning 

(MBL) approach to predicting phrase breaks in MARSEC to Taylor and Black‘s 

(‗gold standard‘) use of HMMs for the same purpose. MBL is a supervised-learning 

approach where classification of data is made on the basis of maximum similarity to 

items in memory. In this study, the set of feature values descriptive of phrase break 

contexts, and used as input to train the classifier is: the orthographic form of the 

word in question; its PoS tag; its CFP-value (status as content word, function word 

or punctuation mark); and an expanded tag which gives the word itself if it is a 

function word and the PoS tag otherwise. A fixed-width feature vector of two words 

both to the left and right of the focus position in question supplies the context from 

which to extrapolate the ‗minority‘ class 1 (break) or more frequent class 0 (non-

break i.e. ordinary juncture). The study involves converting Taylor and Black‘s 

results over six experiments to the MBL metrics of precision, recall and F-score (see 

the discussion on performance measures in section 3) for the purposes of 

comparison and then experimenting with further optimization of these metrics, 

creating a different mix of information in the feature vectors via leave-one-out 

experiments and cross-validating against the training set. Busser et al. report an 

improvement on the best HMM result for recall with a simple MBL algorithm which 
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takes a limited context of one PoS to the left and right of the focus position and 

assigns equal weighting to each of these positions. 

Taylor and Black‘s use of a reduced tagset in their framework for assigning 

phrase breaks from PoS information has been taken forward in a recent study by 

Read and Cox (2004). This presents a best first search algorithm (suitable for any 

tagset) for exploring and determining groupings of PoS tags that will eventually 

constitute a reduced, optimal tagset for phrase break prediction. Read and Cox use 

what they term a flattened prosodic phrase hierarchy classification of break/non-

break on datasets from the Boston Radio News Corpus (Ostendorf et al., 1995) and 

MARSEC, and to evaluate their phrase break prediction model, use Taylor and 

Black‘s junctures correct measure, that is the percentage of non-breaks correctly 

predicted.  

The statistical modelling technique known as CART (a Classification and 

Regression Tree) is used by Wang and Hirschberg (1991) to predict prosodic phrase 

boundaries from features that can be automatically generated from text. ‗Learning‘ 

for this decision tree method includes training the splitting rules at each decision 

point in the tree to select the feature/value split which minimises prediction error 

rate in the training set. In this study, such features include: length of utterance in 

seconds and words; position of potential boundary site and distance from beginning 

and end of utterance; and syntactic constituents adjacent to the boundary site. An 

important additional feature used to compare the performance of the original model 

to an enhanced model which incorporates hand-labelled transcriptions in the data set 

(298 sentences of air travel information from DARPA, 1990) is accent status of 

<wi>, where <wi , wj> represents words either side of the boundary site. The best 

performing variable set included information from prosodic annotations of pitch 

accent and prior boundary location, giving a success rate of 90% boundaries correct 

and a streamlined tree with only 5 decision points.  

A related and more recent study (Koehn et al., 2000) builds on an augmented 

version of the above feature set (Hirschberg and Prieto, 1996) by adding syntactic 

information from a high accuracy syntactic parser. The ‗1996‘ feature set consists of 

the following: a 4-word PoS window and a 2-word accent window; the total number 

of words and syllables in the utterance; word distance from start and finish of the 

utterance in words, syllables and stressed syllables; distance from last punctuation 
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mark and what punctuation, if any, follows the word; position of word in relation to, 

or within, a noun phrase; and finally, size and distance of word from start of noun 

phrase. The ‗2000‘ feature set builds on the intuition that prosodic phrase breaks 

occur between large syntactic units {NP, VB, PP, ADJP, ADVP} and incorporates 

binary flags indicating which words initiate a major phrase or a sub-clause. The 

study reports a 90.8% prediction rate for boundary detection which is cross-

validated using other machine learning algorithms: a boosting algorithm, a rule 

learner, a boosted decision tree classifier and an alternating decision tree method. 

3.4. Evaluation metrics used in studies 

The previous section briefly discusses a range of machine learning methods 

applied in prosodic phrase break prediction. The evaluation metrics used in studies 

seem to fall into one of two groups, however. The first group (see Wang and 

Hirschberg, 1991; Atterer, 2002; Read and Cox, 2004) select from the set of 

accuracy and error measures discussed in Taylor and Black (1998) and presented in 

Tables 3.1 and 3.2. 

Taylor and Black argue that breaks-correct is a better measure of algorithmic 

performance than junctures-correct (Table 3.1) because the latter includes non-

breaks in the calculation and these are always more numerous. 

% breaks-correct 

(true positives) 

breaks correctly predicted/ 

total number of breaks in test set 

 

% non-breaks correct 

(true negatives) 

non-breaks correctly predicted/ 

total number of non-breaks in test set 
x 100 

% junctures-correct (breaks + non-breaks) correctly predicted/ 

total number of junctures in test set 

 

Table 3.1: Accuracy measures for phrase break prediction 

% insertion errors (1) 

(false positives) 

breaks retrieved by model /  

total number of breaks in test set 

 

% insertion errors (2) 
breaks retrieved by model /  

total number of junctures in test set 
x 100 

% deletion errors 

(false negatives) 

 breaks missed by model /  

total number of breaks in test set 
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Table 3.2: Error measures for phrase break prediction 

The second group of evaluation metrics employed in statistical NLP (and for 

phrase break prediction see the aforementioned: Koehn et al., 2000; Busser et al., 

2001; Atterer and Klein, 2002) are taken from the field of Information Retrieval and 

are known as precision and recall. The latter corresponds exactly to the breaks-

correct measure, while the former equates to positive predictive value: in this case, 

the proportion of correct (relevant) predictions out of all the predictions made. In 

practice it is usual to combine precision and recall into a single overall performance 

measure or F-score which tends to maximise true positives (Manning and Schütze, 

1999) - in this case breaks-correct. Table 3.3 shows how precision, recall and F-

score are interpreted for the task of phrase break prediction. 

Precision 
breaks correctly predicted /  

number of breaks retrieved 

 

Recall 
breaks correctly predicted /  

total number of breaks in test set 
x 100 

F-score 
2 * precision * recall / 

precision + recall 

 

Table 3.3: Information Retrieval measures used in phrase break prediction 

 

3.5. The elusive gold standard for prosodic phrasing  

Phrase break prediction models are evaluated in terms of their ability to match 

boundary annotations in the test corpus. However, the long-term view is that the 

model will be able to generate intelligible and natural prosodic phrasing for any 

input text. It is hoped the model will have learnt the classification task well enough 

to make generalisations from the gold standard to the new domain. If it hasn‘t, it 

runs the risk of imposing a prosody template (one speaker, one realisation, one 

moment in time) on unsuspecting text. Some models over-predict; but how many of 

their false insertions or false positives are nevertheless valid in terms of performance 

structure? How many missed boundaries or false negatives in a given model are 

significant omissions? Perhaps the only way to answer these rhetorical questions 

would be to re-evaluate output predictions from the language model, assuming this 

model has already satisfied performance targets in terms of the conventional 

accuracy measure. Evaluation would then necessitate text marked up with all 



26 

 

plausible boundaries, and entail subjective human judgements as to intelligibility 

and naturalness of posited boundary sites. Such data is not available on a sufficiently 

large scale to obtain significant results, and since we only have access to one 

prosodic variant per utterance, is beyond the scope of this thesis.      

3.6. A closer look at features used in phrase break prediction 

So far, the discussion has focused on techniques and evaluation metrics used in 

phrase break prediction, plus the inherent problem of prosodic variance: more than 

one natural and intelligible phrasing (i.e. more than one gold standard) exists for 

most sentences; and models trained on one corpus may not generalise to other 

domains. This is confirmed in a recent study (Read and Cox, 2007) where the same 

feature set achieved different results on two different speech corpora: (i) an f-score 

of 81.6% on MARSEC, versus (ii) an f-score of 77.9% on the Boston Radio Speech 

Corpus, indicating that ‗…choice of features is sensitive to the material used…‘  

This section revisits features and feature sets typically used in phrase break 

prediction. 

3.6.1. Syntactic features 

Syntactic features are integral to phrase break prediction because of the 

overlap between syntactic and prosodic phrasing. Table 3.4 gives a possible parse 

and a simplified view of human consensus () on the best place to pause in this 

complex sentence, one of fourteen used in landmark psycholinguistic studies 

(Grosjean et al., 1979; Gee and Grosjean, 1983); rules for English grammar 

normally require a comma in this position. 

Subordinate clause Main clause 

After the cold winter of that year most people were totally fed-up 

            

[S [S [PP After [NP the cold winter]] [PP of [NP that year]]] [S [NP most 

people] [VP were [ADJP [ADVP totally] fed-up]]]] 
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Table 3.4: The most likely within-sentence phrase break corresponds to a major 

syntactic boundary in this sentence, where the parsing strategy (i.e. bracketing) 

is given by Link grammar 

3.6.2. CFP tags 

Besides punctuation (which is really a text-based feature), the least sensitive 

and most transferable syntactic feature for predicting phrase breaks is content-

function word status. For our model sentence, content-function word boundaries 

identify four phrasal units corresponding to major syntactic groupings defined by the 

Link parser (Sleator and Temperley, 1991) as shown in Table 3.5. 

 

PP PP NP VP 

After the cold winter of that year most people were totally fed-up. 

Table 3.5: Function-word groups captured by a standard CFP algorithm here match 

syntactic units from the Link parser  

3.6.3. PoS tags 

Festival‘s speech synthesis system requires more discrete syntactic information 

in the form of PoS tags. PoS tagging is an automated process with accuracy rates as 

high as 96-97%; our example sentence has been assigned the following set of C5 

tags via Lancaster‘s free online CLAWS trial service (UCREL, 2010) as shown in 

Table 3.6. 

 

After the cold winter of that year most people were totally fed-up 

CJS AT0 AJ0 NN1 PRF DT0 NN1 DT0 NN0 VBD AV0 AJ0 

Table 3.6: Words are classified via C5 PoS tags by the CLAWS free trial PoS-

tagging service. 

3.6.4. Parse features 

Building on the intuition that phrase breaks occur between major syntactic 

units {NP; VP; PP; ADJP; ADVP}, Koehn et al., (2000) augment a sophisticated 

feature set with binary flags indicating whether or not the token initiates a major 

phrase or sub-clause. Their impressive prediction rate of 90.8% for boundary 
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detection is partly accounted for by their incorporation of a feature derived from 

hand-labelled transcriptions: i.e. accent status of words adjacent to the boundary 

site; whereas the aim is to predict prosodic events like phrase breaks and accents 

automatically. 

3.6.5. Text-based features 

Taylor and Black, and more recently (Ingulfsen et al., 2005), have 

demonstrated that punctuation is the single most important source of information for 

phrase break classification, finding approximately 50% of all breaks. Other features 

automatically generated from text and transcribed speech, and used to supplement 

syntactic features, include: word counts denoting length of utterance and distance of 

potential boundary site from start and end of sentence (Wang and Hirschberg, 1991); 

total number of words and syllables, plus distance from start and finish of utterance 

in words, syllables and stressed syllables, plus distance of potential boundary site 

from last punctuation mark (Hirschberg and Prieto, 1996; Koehn et al., 2000).  

3.6.6. Combined feature sets 

Recent work (Ingulfsen et al., 2005) revisits syntactic features to determine the 

effectiveness of deep versus shallow linguistic representations for phrase break 

prediction. They find that a shallow representation (CXPoS) which provides 

different levels of granularity via (i) CFP tags; (ii) an expanded tag giving the word 

itself if it is a function word and the PoS tag otherwise; and (iii) PoS trigrams of two 

tags before and one after the boundary site (Taylor and Black, 1998), is as effective 

as the best performing deep representation. The latter augments the PoS trigrams 

with novel Link grammar parse features extracted as outputs from the Collins parser, 

where links are labelled arcs showing syntactic coupling between words, as 

illustrated in Figure 3.1.  

 

now!Stop itLeft wall

Wi O MV
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Fig.3.1: Labelled arcs for the string Stop it now! show syntactic coupling between 

Stop it (imperative {Wi} and object {O}) and Stop now (imperative {Wi} and 

modifier {MV}) but no link between it and now, permitting a possible phrase 

break in this position. 

The best performing model in this study uses Link features to complement CXPoS 

and achieves a good balance between the Information Retrieval metrics of precision 

(64.7%) and recall (64.4%). 

Read and Cox (2007) use various techniques and syntax-based feature sets to 

model the prosody-syntax interface. As with Ingulfsen et al., their best classifier 

combines deep and shallow features: long-range parse features derived from the 

Collins parser and expressed as the size of the biggest phrase ending in the current 

word, plus a binary flag indicating whether the phrase belongs to the set {NP; VP; 

PP; ADJP; ADVP}; and n-gram probabilities for both classes derived from a 

localised PoS window (trigrams), where a reduced tag set of 7-8 PoS is used (Read 

and Cox, 2005). 

3.7. Incorporating non-traditional features 

Ananthakrishnan and Narayanan (2008) adopt a novel approach to 

automatically annotating speech corpora by attempting to integrate the prediction of 

accents and boundaries based on combined feature streams (acoustic, lexical and 

syntactic), their dataset being the Boston University Radio News Corpus. Their 

study associates prosodic events with specific syllables and does so on the basis that 

syllables are the smallest linguistic units from which prosodic phenomena can be 

detected.  

Syllable counts have previously been implemented in syntax-based phrase 

break models for English to regulate the number of syllables in any one intonational 

phrase (Atterer, 2002; Atterer and Klein, 2002); and as a distance metric for 

encoding global information in the sentence (i.e. distance in syllables from the last 

break), which is then used to condition prior probabilities for breaks and non-breaks 

derived from local PoS trigram contexts (Schmid and Atterer, 2004).  

In Ananthakrishnan and Narayanan‘s study, syntax is provided by PoS tags;   

lexical evidence is represented via syllable tokens {tea: 'dx_iy'; can: 'k_aa_n'; 

state: 's_t_ey_t'} transcribed with ARPABET symbols; and acoustic features are 
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encoded as multi-dimensional vectors for each syllable. They find that lexical 

syllable tokens, augmented with canonical stress labels derived from an open source 

pronunciation lexicon, are effective for accent detection but not for boundary 

prediction. Their best phrase break classifier omits this feature stream and achieves 

91.61% agreement on the boundary detection task. However, as with Koehn et al., 

this model incorporates information (in the form of acoustic features) not generally 

available for TTS systems which take plain text as input.  

3.8. Summary  

This is a survey chapter and covers key research in automated phrase break 

prediction as background to this thesis, and how phrase break models are evaluated. 

Liberman and Church‘s chink-chunk algorithm, and Taylor and Black‘s Festival 

model emerge respectively as exemplars for rule-based and statistical approaches to 

the task in hand. The main finding in this chapter, after detailed analysis of existing 

feature sets, is the dearth of prosodic features in state-of-the-art phrase break models 

to complement traditional text-based and syntactic features. This has informed the 

main hypothesis in this thesis, namely that inclusion of prosodic features may 

improve the performance of such models, and that real world knowledge of prosody 

can be represented in a similar way to real world knowledge of syntax: via 

categorical or descriptive labels.  
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Chapter 4 

Early Experimental Work with Rule-based Models 

4.1. Overview 

This chapter records early experimental work, and more importantly insights 

gained which led to hypothesis formulation. Experiments involved two rule-based 

phrase break models using shallow syntactic features in the form of PoS tags and 

implementing a shallow parse via NLTK‘s chunk parser, on the basis that prosodic 

phrasing is simpler, shallower and flatter than syntactic structure. Both models use 

the same corpus sample from Section A (Commentary) of the Aix-MARSEC 

dataset: A08 (annotated by Williams) and A09 (annotated by Knowles). The earlier 

model is tested on this sample; the later model is developed on short extracts from 

the sample, plus Williams‘ boundary annotations in Section C (Lecture: general 

audience), and then tested on largely unseen text: Knowles‘ boundary annotations 

for the remainder of Section C. There is a small amount of deliberate overlap in 

corpus annotation in Section C to gauge inter-annotator agreement.  

4.2. The prepositional phrase model 

Intuitive phrasing of Terry Winograd‘s sentence (§1.6.1; 1.6.2) elicited a couple of 

options: 

 The two phrase version: 

 In the popular mythology || the computer is a mathematics machine || 

 The three phrase version: 

 In the popular mythology || the computer | is a mathematics machine || 

It is the author‘s contention, based on cumulative, native speaker insight into the 

English language, that the boundary separating the prepositional phrase in the 

popular mythology from the main clause the computer is a mathematics machine is 

more important than the optional boundary between subject and predicate. This is 

backed up by experimental evidence from the CART statistical model referred to in 

Chapter 3.3. It was decided therefore to see how far the beginnings and ends of 
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prepositional phrases coincided with boundary annotations by two expert linguists in 

the aforesaid extracts from Aix-MARSEC. 

4.2.1. Research questions 

The initial research question, namely to what extent prosodic phrase 

boundaries can be located via a major syntactic grouping like prepositional 

phrases, was complemented by other questions discussed in the following sub-

sections: 4.2.1.1 to 4.2.1.3. 

4.2.1.1. To what extent does shallow parsing reflect prosodic phrasing? 

The version of NLTK used for this model (nltk_lite version 0.6.5) included a 

regular expression chunk parser, with accompanying tutorial notes explaining how 

chunk parsing creates flat ‗…structures of fixed depth (typically depth 2)…‘ (Bird et 

al., 2006) and why it is more robust than full parsing. This description ties in with 

observations about the relative simplicity of prosodic structure and led to the 

realization that since this method uses regular expressions over PoS tags to chunk 

non-overlapping linguistic groupings in text, it could be used to identify prosodic 

phrases. There is also the  tradition of shallow parsing used to capture prosodic 

phrasing in the durable chinks ‘n’ chunks algorithm. It was decided therefore to use 

nltk_lite‘s chunk parser to set up a rule which specifies prepositional phrases as the 

node label for chunks and to run this over extracts from the corpus. 

4.2.1.2. Can any underlying principles be discovered governing the 

distribution of minor and major boundaries? 

The Aix-MARSEC corpus differentiates minor and major prosodic phrase 

boundaries (break indices 3 and 4) in an easily detectable, straightforward manner 

and facilitates comparison between expert annotators. It was anticipated that 

analysis of the planned chunk parsing experiment would naturally lead to close 

scrutiny of corpus annotations so that interesting correspondences between 

prepositional phrases and boundary type might be observed. The discovery of such 

linguistic patterns in speech corpora and the subsequent process of encoding that 

new knowledge as rules in a computational model of prosody is an example of what 

Huckvale (2002) advocates as the practice and goal of speech science. 
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4.2.1.3. To what extent do people agree on prosodic phrasing? 

This is an open-ended question. However, as part of this experiment, the plan 

was to compare the author‘s intuitive prosodic phrasing of extracts used to that of 

expert annotators‘. To accomplish this, plain text versions of the two complete 

informal news commentaries were obtained; these cover mid-1980s political issues 

in the Middle East (A08) and South Africa (A09).  

4.2.2. Experimental procedure 

Preparatory stages in this experimental work cover some of the natural 

language processing tasks essential to a Text-to-Speech synthesis system, in 

particular the task of morphosyntactic analysis: assigning part-of-speech tags to 

word tokens and imposing a hierarchical structure on sequences of PoS tags. 

However, this hierarchical structure is not a full syntactic parse but a partial chunk 

parse which only seeks to identify one syntactic grouping: prepositional phrases. 

The experiment assesses the degree of correspondence between the beginnings and 

ends of prepositional phrases retrieved via the chunk parse rule and ―gold standard‖ 

prosodic boundary annotations in the Aix-MARSEC Corpus. 

4.2.3. The first step: PoS tagging 

The chunk parsing experiment and the comparative study of intuitive prosodic 

phrasing versus boundary annotations in the corpus have both been run using 

unpunctuated text i.e. no { . , : ; ? () } as well as plain text versions with just the 

full stops restored. To obtain selected  transcripts, the TextTier was extracted from 

the following Notepad files in Aix-MARSEC, available in TextGrid format ready 

for use with Praat (Boersma and Weenink, 2009): A0801B to A0805B, annotated by 

Briony Williams and totalling 619 words, plus A0901G to A0906G, annotated by 

Gerry Knowles and totalling 789 words. Changes to A08 in preparation for PoS 

tagging with the Brown corpus tagset were as follows: 

 tee double u ay (airlines) was changed to TWA; 

 hyphens were inserted for x-ray, x-rayed and check-in; 

 enclitics such as that’s and they’ve were restored and all apostrophes checked 

and left in place e.g. Shi’ite and hero’s; 

 subject-verb agreement was corrected in the following context: ‗...hijackings 

from Ben Gurion...are unknown...‘ 



34 

 

There are no changes to report for A09, except to say that all apostrophes were 

checked and left in place e.g. nobody else’s. 

Plain text versions of A08 and A09 were PoS tagged using a composite tagger 

similar to the one outlined in the nltk_lite tutorial on categorizing and tagging words 

(Bird et al., 2009, Chapter 5). This takes the form of a bigram tagger trained on 

tagged extracts from the Brown corpus as ―gold standard‖ (genres A and B, Press 

Reportage and Press Editorial respectively); the bigram tagger backs off to a 

unigram tagger trained on the same genres, which in turn backs off to a default 

tagger that tags everything as NN, a singular noun. Sample code listing for this, only 

slightly modified from the original nltk_lite tutorial notes (ibid.), is given below and 

demonstrates the degree to which this toolkit is customised to NLP tasks. Here, the 

toolkit provides a tokenize() function, various classes of tagger and an associated 

train() method to facilitate the process of PoS-tagging any input text. 

text = sourcefile.readlines() 

# the next line stores the input text as a list of word tokens in the 

variable: tokens 

tokens = list(tokenize.whitespace(text)) 

my_tagger = tag.Default('nn') 

unigram_tagger = tag.Unigram(backoff=my_tagger) 

train_sents = list(brown.tagged(['a', 'b'])) 

unigram_tagger.train(train_sents) 

bigram_tagger = tag.Bigram(backoff=unigram_tagger)  

# the next line trains the tagger on “gold standard” tagged text from the 

Brown Corpus 

bigram_tagger.train(train_sents) 

# the next line stores a new version of the input text as a list of 

('token', 'tag') tuples in the variable: tagged 

tagged = list(bigram_tagger.tag(tokens)) 

Listing 4.1: Adaptation of NLTK code for constructing and training a composite 

tagger  

The combined tagger correctly tagged 86.13% of word tokens for Aix-

MARSEC A08, and 87.07% of word tokens for A09. The tagged versions of Aix-

MARSEC were then hand-corrected and all the tags were capitalised ready for the 

chunk parser. Roughly half the tagging errors resulted from the default tagger (e.g. 

‗past‘ tagged as NN in the following phrase ‗in the past two years‘). Significantly, 

16.28% of tagging errors in A08 and 21.57% of tagging errors in A09 were due to 

the word class of prepositions which could be tagged <IN>, <RP>, <RB>, <CS> 

(preposition, adverb particle, adverb or subordinating conjunction). This had 

repercussions for the chunk parse rule which specifies a preposition <IN> as chunk 
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node; and it is often difficult to determine whether there is an error or not e.g. ‗on‘ in 

‗…Pretoria‘s hold on the mineral rich territory…‘ tagged as <RP>.   

4.2.4. Developing the chunk parse rule 

The chunk parse rule used in this experiment was developed over several 

iterations on a complex test sentence of 77 words (Paulin, 2003). I have called this 

the imported rule. Though still a prototype, this rudimentary, catch-all formula 

attempts to specify the syntactic constituents of any prepositional phrase via a tag 

pattern, a regular expression pattern over strings of tags delimited by angled 

brackets and is evidently transferable from one context to another with very little 

intervention. The only significant changes between the imported rule and versions 

A08 and A09 are that: 

 coordinating conjunctions <CC> have been removed from the rule because 

they interfere with boundary prediction (see discussion in Section 5); 

 as a stop-gap measure, <PP$> (personal pronoun: possessive) has been 

replaced by <POSS> (a made-up tag) simply because the chunk parser does not 

recognize the dollar symbol. 

4.2.4.1. Imported rule version 

The tag pattern and description string for this rule instruct the parser to begin 

the chunk with a word token tagged as a preposition, and to include in that chunk 

any combination in any order of tokens tagged as follows: another preposition; 

determiner/pronoun (singular); determiner/pronoun (singular or plural); article; 

personal pronoun (object); nominal pronoun; determiner/personal pronoun 

(possessive); adjective; coordinating conjunction; noun (singular); noun (plural). 

parse.ChunkRule('<IN><IN|DT|DTI|AT|PPO|PN|PP$|JJ|CC|NN|NNS>+',  

"Chunk prepositions <IN> with sequences of prepositions <IN> 

determiners <DT|DTI>  articles <AT> object or nominal pronouns 

<PPO|PN> possessive determiners <PP$> adjectives <JJ> coordinating 

conjunctions <CC> and common nouns <NN|NNS> using the Brown 

tagset") 

Listing 4.2: Prepositional chunk node and description string for initial ruleset  
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4.2.4.2. A08 rule version 

This rule removes <CC> (coordinating conjunctions), replaces <PP$> with 

<POSS>, and adds the following constituents: determiner/pronoun or post 

determiner; cardinal number; superlative adjective; proper noun. 

parse.ChunkRule('<IN><IN|DT|DTI|AT|AP|CD|PPO|PN|POSS|JJ|JJT|NP|NN|NN

S>+', "Chunk prepositions <IN> with sequences of prepositions <IN> 

determiners <DT|DTI>  articles <AT> determiner/pronoun or post 

determiner <AP> cardinals <CD> object or nominal pronouns <PPO|PN> 

possessive determiners <POSS> adjectives and superlatives <JJ|JJT> 

proper nouns <NP> and common nouns <NN|NNS> using the Brown tagset")  

Listing 4.3: Prepositional chunk node and description string for Chunk Parse 1 

(§4.2.6)  

4.2.4.3. A09 rule version 

This rule incorporates the following additions: ordinal numbers and 

semantically superlative adjectives. 

parse.ChunkRule('<IN><IN|DT|DTI|AT|AP|CD|OD|PPO|PN|POSS|JJ|JJT|JJS|N

P|NN|NNS>+', "Chunk prepositions <IN> with sequences of prepositions 

<IN> determiners <DT|DTI>  articles <AT> determiner/pronoun or post 

determiner <AP> cardinals <CD> ordinals <OD> object or nominal 

pronouns <PPO|PN> possessive determiners <POSS> adjectives <JJ> 

superlatives <JJT> semantically superlatives adjectives <JJS> proper 

nouns <NP> and common nouns <NN|NNS> using the Brown tagset") 

Listing 4.4: Prepositional chunk node and description string for Chunk Parse 2 

(§4.2.6) 

4.2.5. Intuitive prosodic phrasing 

A further aspect of this experimental work, and a means of familiarisation with 

the corpus, was to compare the author‘s intuitive prosodic phrasing to that of expert 

annotators‘ and to mark out longer prosodic phrases in response to Liberman and 

Church‘s own criticism of the chink chunk rule in their original paper. They 

consider the prosodic phrases or ‗function word groups‘ captured by the rule to be 

too small to accommodate sufficient variation in prosody and are interested in 

discovering how these smaller units ‗…combine hierarchically to form sentence-

sized units…‘ The procedure followed in the current study was to assign major and 

minor boundaries with the same pipe symbol notation as the corpus, using 

unpunctuated text versions of A08 and A09 (i.e. no commas or full stops etc) and 

without reference to the original recordings. Intuitive boundary locations and types 

were then compared to corpus annotations. An example of these intuitive predictions 

is given below and set alongside corpus annotations in a short extract from A08 
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where the phrasing is quite dense – more so in the author‘s version than the original. 

The intuitive phrasing version also arranges the text so that what are considered to 

be the most important boundaries, those giving rise to longer prosodic phrases, 

appear at the end of the line:  

Intuitive phrasing: 

Given the state of lawlessness that exists in Lebanon || 

the uninformed outsider | might reasonably expect | security | at Beirut airport | 

to be amongst the tightest in the world || 

but the opposite is true || 

Example 4.1: Intuitive phrasing variant for sample sentence from the corpus  

Corpus annotations: 

Given the state of lawlessness that exists in Lebanon || the uninformed outsider 

might reasonably expect security | at Beirut airport || to be amongst the tightest in 

the world || but the opposite is true || 

Example 4.2: Corpus annotation of minor and major phrase boundaries by Williams  

4.2.6. Results 

The chunk parser‘s rule-based identification of prosodic phrases via retrieval 

of prepositional phrases, plus the author‘s intuitive predictions were compared to 

―gold standard‖ boundary annotations of extracts A08 and A09 in the Aix-MARSEC 

corpus by two expert linguists. An overview of how many boundaries of both types 

(major and minor) were correctly located by rule and by human judgement is 

presented in this section in Tables 4.1 and 4.2, while the discussion of error types – 

deletions (missed boundaries) and false insertions – is continued in Chapter 5.2.  

 

 

 

 

 

 

 

 BW ―Gold 

Standard‖ 

Chunk 

Parse 1 

Chunk 

Parse 2 

Intuitive 

Phrasing 

Total number of boundaries minor + 120 not run 110 93 
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major 

Total number of boundary positions 

correct 
  56 85 

Total number of major boundaries 67   60 

Total number of major boundaries 

correctly located 
  33 45 

Total number of minor boundaries 53   33 

Total number of minor boundaries 

correctly located 
  23 12 

Total number of full stops 33   33 

Total number of full stops correctly 

located 
   32 

Table 4.1: Raw counts for boundaries retrieved by rule and human judgement (A08)  

 

 

GK ―Gold 

Standard‖ 

Chunk 

Parse 1 

Chunk 

Parse 2 

Intuitive 

Phrasing 

Total number of boundaries minor + 

major 
200 131 135 156 

Total number of boundary positions 

correct 
 81 87 139 

Total number of major boundaries 31   52 

Total number of major boundaries 

correctly located 
 9 18 31 

Total number of minor boundaries 169   104 

Total number of minor boundaries 

correctly located 
 72 69 83 

Total number of full stops 24   24 

Total number of full stops correctly 

located 
 7 15 23 

Table 4.2: Raw counts for boundaries retrieved by rule and human judgement (A09)  

4.2.7. Initial reflections 

In evaluating the effectiveness of the chunk parse rule and the intuitive 

phrasing approach, 3 different measures have been used: total number of boundary 

positions correctly located; number of major and minor boundary types correctly 

located; and number of full stops correctly located. The first measure does not 

distinguish between major and minor boundaries; so as long as boundary site was 

correctly identified, an exact match between position and boundary type was not 

looked for. Chunk parse 1 took as input text without full stops or commas et cetera 

(as did the author when making intuitive predictions) but this did not locate 

boundaries where constituents included in the rule spanned the boundary as in: 



39 

 

‗…some form {of local government || at a news conference}…the party leaders…‘ 

Example 4.3: Two consecutive prepositional phrases spanning a sentence boundary  

 This approach was therefore abandoned, with an overall success rate of 

40.50% boundary positions correctly located in A09. For Chunk parse 2, full stops 

only were restored and this gave marginally better performance: 43.50% boundary 

positions correct for A09 and 46.66% correct for A08. Obviously, detection could be 

improved with fuller punctuation but as already pointed out, punctuation is partly a 

matter of style and the idea behind this experiment was to create a catch-all rule, 

independent of text domain.   

Syntactic contexts in which the chunk parse rule does seem to approach natural 

phrasing include consecutive prepositional phrases, for example: 

‗…{near the top of the political agenda of the major Western powers}…‘ 

Example 4.4: Rule captures syntactic dependencies between prepositional phrases 

One could argue for a boundary after the word ‗agenda‘; equally, one could get 

by quite comfortably without it. The chink chunk rule would create a surplus of 

boundaries here – 3 in all. This example does raise one issue, however, about the 

status of the preposition ‘of’ which seems to have a weaker semantic identity than 

other prepositions and which is reliant on neighboring nouns. Here, the word ‘of’ 

marks degrees of proximity to a desired target: the TOP of a particular agenda. Its 

link-up role can be illustrated by a further example where a boundary is invoked at 

the point where ‘of’ re-establishes contact between target and tributary nouns in the 

pattern ‗…a picture of..:‘ 

‗…an x-ray picture | on two TV screens || of the contents of hand baggage…‘ 

Example 4.5: Prosodic-syntactic boundary agreement in Williams‘ annotations 

Corpus annotations indicate the boundary after ‗screens‘ is stronger than the 

boundary after ‗picture‘. 

4.2.7.1. Reflections on intuitive prosodic phrasing 

Perhaps the most interesting result of this three-way comparison of predicted 

and perceived prosodic phrasing is within-sentence allocation of major boundaries 
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by the author and by Knowles and Williams. Raw counts from Tables 4.1 and 4.2 

have been reworked in Table 4.3.    

 % major boundaries not accounted for by full stops 

 GK CB BW CB 

A09 22.58% 53.85%   

A08   50.75% 45% 

Table 4.3: Author preferences seem closer to Williams‘ allocation of major phrase 

boundaries  

The further point of interest is the performance of this rather crude chunk parse 

rule relative to human judgement. The former gets between 43 and 47 per cent of 

boundaries correct for A09 and A08 respectively, while the latter scores between 69 

and 71 per cent. The rule-based method actually performs better than the author 

when discovering minor phrase boundaries in A08. 

4.3. The stoppers and starters model 

The prepositional rule model tries to identify likely constituents of 

prepositional phrases and its focus is therefore inside prosodic units. A second 

model, nicknamed the stoppers and starters model, takes a different approach. As 

with CFP rules, this model differentiates between PoS that generally terminate 

prosodic units (i.e. the stoppers or chunks) and PoS that generally initiate new ones 

(i.e. the starters or chinks); but it also exploits the fact that some PoS occur in either 

position, and prompts the following question: 

 

Instead of a binary division into content and function words, could we infer four 

groupings: stoppers, starters, both-ers (i.e. dual-functioning PoS as terminators and 

initiators of prosodic units) and neith-ers (i.e. medial components of prosodic units)? 

 

4.3.1. The two-stage chunker 

It is possible to apply more than one chunk pattern using NLTK‘s regular 

expression based chunk parser. In a two-stage (or multiple-stage) chunker (Bird et 

al., 2009, Chapter 7) rule ordering is important since the subordinate rule will only 
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create new chunks in material that is already partially chunked if there is no overlap. 

The prototype stoppers and starters model is a two-stage chunker, developed 

iteratively, which attempts to: 

 focus on the boundary itself, rather than the contents of prosodic chunks; 

 differentiate between boundaries preceded by nouns, adjectives, and certain 

pronouns as terminators (the dominant rule) versus boundaries preceded by other 

parts of speech (the subordinate rule). 

By way of illustration, an early version of this rule explores LOB categories which 

mostly end up in the dominant rule; earlier code (from 2006) has been updated here 

for compatibility with a more recent version of NLTK (0.9.8). The code in Listing 

4.5 takes liberties with the ChunkRule() method and uses it to isolate boundary 

positions, formulating the chunk node for each parse not as a major syntactic 

grouping, such as noun phrases (NP), but as an instruction to insert a boundary. 

Example outputs are compared to target prosody from the corpus.   

Target prosody from A08 

...it‘s frequently been used | by arab hijackers | as the starting point | for their 

operations | because it‘s such an easy touch | for anyone wanting to smuggle 

weapons onto an aircraft... 

 

 

 

 

import nltk, re 

from nltk.chunk.regexp import * 

text1 = [("it's", 'PPS+HVZ'), ('frequently', 'RB'), ('been', 'BEN'), 

('used', 'VBN'), ('by', 'IN'), ('Arab', 'JNP'), ('hijackers', 'NNS'), 

('as', 'IN'), ('the', 'ATI'), ('starting', 'JJ'), ('point', 'NN'), ('for', 

'IN'), ('their', 'POSS'), ('operations', 'NNS'), ('because', 'CS'), 

("it's", 'PPS+BEZ'), ('such', 'ABL'), ('an', 'AT'), ('easy', 'JJ'), 

('touch', 'NN'), ('for', 'IN'), ('anyone', 'PN'), ('wanting', 'VBG'), 

('to', 'TO'), ('smuggle', 'VB'), ('weapons','NNS'), ('onto', 'IN'), ('an', 

'AT'), ('aircraft', 'NN'), ('.', '.')] 

domRule = ChunkRule('<NN|NNS|JJT|NP|JNP|RP|RB><IN|OF|CS|CC>+', 

'Oppose  sequences of nouns and other types that behave as stoppers 

with starters like prepositions and conjunctions') 

subRule = ChunkRule('<NN|NNS|NP|JNP|JJT|PN><VBG|PPSS>', 'Oppose 

sequences of nouns and other types that behave as stoppers with 

collapsed relative clauses introduced by present participles or 

reflexive pronouns')  

chunker = RegexpChunkParser([domRule, subRule], chunk_node = 
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'INSERT_BOUNDARY')  

output = chunker.parse(text1) 

print output 

 

(S 

  it's/PPS+HVZ 

  frequently/RB 

  been/BEN 

  used/VBN 

  by/IN 

  Arab/JNP 

  (INSERT_BOUNDARY hijackers/NNS as/IN) 

  the/ATI 

  starting/JJ 

  (INSERT_BOUNDARY point/NN for/IN) 

  their/POSS 

  (INSERT_BOUNDARY operations/NNS because/CS) 

  it's/PPS+BEZ 

  such/ABL 

  an/AT 

  easy/JJ 

  (INSERT_BOUNDARY touch/NN for/IN) 

  (INSERT_BOUNDARY anyone/PN wanting/VBG) 

  to/TO 

  smuggle/VB 

  (INSERT_BOUNDARY weapons/NNS onto/IN) 

  an/AT 

  aircraft/NN 

  ./.) 

Listing 4.5: Boundary annotations in bold from two-stage chunker match gold 

standard corpus annotations  

Although the output does not exactly match corpus phrasing (the chunker gets 

4/5 boundaries correct but also inserts 2 others), and although the rules do not 

incorporate automatic boundary insertion after a full stop, there is nothing wrong 

with the output. We will return to this in the next chapter.  

4.3.2. Prototype grammar 

The chunk parser outlined in this section implements (i) a dominant rule which 

retrieves boundaries between nominal, adjectival and some pronominal categories 

versus other parts of speech; and (ii) a subordinate rule which then intuitively 

juxtaposes likely stoppers with likely starters in those remaining other parts of 

speech. The tag pattern is given largely by sequences of LOB tags (i.e. the chunker 

uses a more discrete tagset). For the dominant rule, the description string emphasises 

pre-boundary items whereas in the subordinate rule, the description string 

emphasises post-boundary items. 

Using NLTK‘s ChunkRule() method, the dominant rule for the current 

prototype in Test 3 (§4.3.4) effectively inserts a boundary after nouns, nominal and 

reflexive pronouns – and superlative adjectives because they can behave like nouns. 
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In addition, its subordinate rule opposes likely stoppers with the following clause 

markers: existential there, coordinating and subordinating conjunctions, 

prepositions, the word not, WH-pronouns, the word to denoting an infinitive of 

purpose, WH-determiners, and a made up tag <ATNEG> for negative forms of the 

article as in no.  

domRule = 

ChunkRule('<N.*|JJT|JNP|PN|PPL|PPLS><ATNEG|WPOSS|EX|CC|CS|IN|XNOT|TO

|MD|VBN|VBG|PPSS|POSS|VB|VB.*|BE|BE.*|HV|HV.*|WPO|WPS|WDT|WRB|RB|PPS

BEZ|EXBEZ|DTBEZ>', 

'Effectively insert a boundary after the same list of noun, 

adjective and pronoun types as in Test 2, but using RE operators to 

simplify presentation somewhat') 

 

subRule = 

ChunkRule('<WRB|RP|PPS|PPSS|PPL|RB|VBN|VBZ|VB|VBD|BEM|PPLS|CS><EX|CC

|CS|IN|XNOT|WP|WPS|WPO|TO|WDT|ATNEG>', 

'Oppose likely stoppers, adding subordinating conjunctions <CS> to 

this list - with clause markers including 2 new additions: WH-

determiners and a made up tag <ATNEG> for negative forms of the 

article as in NO') 

 

 Listing 4.6: Optionality in chunk node for dominant rule and identification of 

further chunk nodes in relation to major clause markers in subordinate rule  

4.3.3. Example outputs 

The stoppers and starters rule recognises potential boundary sites via PoS tag 

oppositions (in effect unweighted bigrams) observed from empirical data in Aix-

MARSEC. The outputs themselves are similar to those of other CFP algorithms in 

that they capture low level phrasal units; but the rule is also able to match corpus 

phrasing which discriminates between words that are sometimes classed as function 

words (see bold items in Example 4.6 below), one objective of model design being 

to explore the conventional mapping of function words to chinks. 

… cast/VBN their/POSS spell/NN | not/XNOT only/RB | on/IN our/POSS 

eminent/JJ professional/JJ colleague/NN Dr/NPT FitzGerald/NP | but/CC also/RB | 

on/IN Mr/'NPT Howell/NP | who/WP himself/PPL | has/HVZ a/AT First/OD 

Class/NNP degree/NN | in/IN Economics/NNP … 
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Example 4.6: Pronouns are often classed as function words, so too some forms of 

adverbs (e.g. particles), and verbs which function as auxiliaries (cf. the chinks 

‘n’ chunks algorithm)  

Raw preditions in Example 4.7 show the rule working quite well on a sentence 

from the Reith Lecture transcript; the annotator here is Briony Williams. True 

positives (boundaries correct) are marked  and false positives (false insertions) 

marked . Commas were deliberately stripped from input text and comma sites 

retrieved by the rule at major chunking boundaries are therefore given in bold. 

('one', 'CD')  

(INSERT_BOUNDARY: ('aspect', 'NN') ('of', 'IN'))   

('this', 'DT')  

(INSERT_BOUNDARY: ('centralism', 'NN') ('is', 'BEZ'))   

('the', 'ATI')  

(INSERT_BOUNDARY: ('idea', 'NN') ('which', 'WP'))   

('has', 'HVZ')  

('been', 'BEN')  

(INSERT_BOUNDARY: ('embraced', 'VBN') ('by', 'IN'))   

('successive', 'JJ')  

('British', 'JNP')  

(INSERT_BOUNDARY: ('governments', 'NNS')  

('of', 'IN')) �  

('both', 'ABX')  

(INSERT_BOUNDARY: ('parties', 'NNS') ('that', 'CS'))   

('a', 'AT')  

(INSERT_BOUNDARY: ('choice', 'NN') ('has', 'HVZ'))   

('to', 'TO')  

('be', 'BE')  

(INSERT_BOUNDARY: ('made', 'VBN')  

('at', 'IN')) �  

('Cabinet', 'NP')  

(INSERT_BOUNDARY: ('level', 'NN') ('of', 'IN'))   

('one', 'CD1')  

('particular', 'JJ')  

('reactor', 'NN')  

(INSERT_BOUNDARY: ('system', 'NN') ('for', 'IN'))   

('future', 'NN')  

('nuclear', 'JJ')  

('power', 'NN')  

(INSERT_BOUNDARY: ('stations', 'NNS') ('in', 'IN'))   

('Britain', 'NP') ('.', '.') 

 Example 4.7: Phrase break predictions from this rudimentary two-stage chunker 

retrieve sites of commas at major clause boundaries 

 

4.3.4. Concluding Comments  

NLTK recommends several rounds of rule development and testing in order to 

create a good chunker. The data in Examples 4.6 and 4.7 was obtained by running 

the simple chunking algorithm on part of the Reith Lecture transcript annotated by 

Briony Williams (1463 tokens); manually examining outputs and refining the rule; 
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and running the revised rule on the same section and finally on a previously 

unexamined section - i.e. the remainder of the Reith Lecture transcript annotated by 

Gerry Knowles (2445 tokens). Scores were recorded as shown in Table 4.4. 

 Annotator Precision % Recall % F-score % 

Test 1 BW 65.19 59.03 61.96 

Test 2 BW 66.76 71.35 68.98 

Test 3 GK 70.85 61.04 65.58 

Table 4.4: Sample P, R and F-scores from development tests on chunk parse phrase 

break rule based on unweighted bigrams 

4.4. Summary 

This chapter gives an account of early experimental work which constitutes 

part of the learning process in this thesis, and contributes to hypothesis formulation. 

The prepositional model (§4.2) and the stoppers and starters model (§4.3) are both 

incomplete projects, but have been included for the following reasons:  

1. They evidence a shift in emphasis in this thesis from attempting to define the 

contents of tone groups or prosodic phrases to concentrating on the boundary 

itself, that is the attributes – including prosodic attributes – of lexical items 

adjacent to the boundary. 

2. Their movement value in re-thinking the binary divide between content and 

function words for phrase break prediction which, for example, informs 

syntactic and prosodic feature extraction for machine learning experiments in 

Chapter 10 (§10.4 and 10.5).  

3. Consideration of outputs from both models have prompted closer inspection 

of corpus annotation in SEC and Aix-MARSEC, and given rise to 

motivational insights into prosodic variance which are discussed in the next 

chapter.   
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Chapter 5 

The Variability of Prosodic Phrasing 

5.1.  Overview  

In this chapter, the limitations of only using syntactic and text-based cues for 

phrase break prediction are further discussed, with evidence from the corpus, plus  

outputs from the prepositional phrase model (Chapter 4.2) in the form of false 

positives (extra insertions) and false negatives (missed boundaries) used as 

illustration. The discussion then turns to the limitations of  evaluating any phrase 

break model against a ―gold standard‖ which itself only represents one phrasing 

variant for an utterance or text. Again, there is detailed consideration of early 

experimental results in the form of predictions from the stoppers and starters model 

(Chapter 4.3), and evidence from the corpus, in support of the argument.  

5.2. Why syntax is not enough: evidence from the corpus 

Shallow or chunk parsing is a common methodology associated with phrase 

break prediction; there is consensus that prosodic phrasing is somehow simpler and 

flatter than syntactic structure. Hence chink-chunk or CFP-type algorithms are still 

used to identify low-level phrasal units in TTS (Knill, 2009). Noun phrase (NP) 

chunks are also represented in terms of IOB tags (Ramshaw and Marcus, 1995; Bird 

et al., 2009, Chapter 7) where word tokens are classified as constituents (inside) or 

non-constituents (outside) of NPs or as initiating (beginning) NPs. Hence, 

―beginners‖ correspond to chinks: closed-class or function words immediately 

preceded by an open-class or content word – the signal for boundary insertion 

(Liberman and Church, 1992). 

5.2.1. Inside or outside the chunk? 

The prepositional phrase model, which attempts to define likely constituents of 

prepositional phrases using a chunk parser from the Natural Language ToolKit, 

demonstrates the shortcomings of such catch-all rules. The examples in Table 5.1 

from Section A08 (1) and A09 (2-4) of our development set in Aix-MARSEC show 

prepositions (in bold) beginning (e.g. 2) or not beginning (e.g. 1) a prosodic phrase, 
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as the speaker decides. Moreover, some forms elude placement inside or outside the 

prepositional phrase chunk.  

1 on aeroplanes | flying around the Middle East and 

2 | on top of a hill | overlooking Windhoek | 

3 which French authorities | had made in their handling of 

4 fly back to South Africa | leaving those | internal leaders | 

Table 5.1: Prepositions and particles, plus gerunds and participles are difficult to 

categorise for prosodic-syntactic boundary placement. 

Resolving the problem in (3) would be a straightforward case of re-tagging the 

word handling as a gerund or verbal noun and identifying this new tag as a likely 

constituent of prepositional phrases. Examples (2) and (4) could not be resolved so 

easily: we can imagine a legitimate amalgamation of the prosodic chunks in (2) and 

might wish to retain the option of including participles within prepositional phrase 

sequences; we would not want this option in (4) however, where the participle 

initiates a new syntactic chunk and has nothing to do with the prepositional phrase. 

Finally, what do we make of the chopped-up NP those internal leaders in (4)? 

5.2.2. Category blends 

Manning and Schutze (1999, p.12) discuss ambiguity caused by non-

categorical behaviour of parts of speech: individual words can be PoS-tagged 

differently in different syntactic contexts and, though allocated a particular PoS tag 

in a particular context, may retain and exhibit simultaneous behaviours e.g. ―-ing‖ 

forms blurring the distinction between nouns and verbs. Another blurred category 

where word forms lean towards ―left‖ (outside) or ―right‖ (inside) behaviours 

relative to prosodic boundaries is particle <RP> versus preposition <IN> 

respectively. Such ―tagging‖ is fluid in spontaneous speech (§5.3.5 and 5.3.6). 

The prepositional rule inserts a boundary before true prepositions, PoS-tagged 

<IN>. There are six items tagged as true prepositions in the snippets in Table 5.1 

and only one particle: ―back‖ in (4). However, there does not seem to be much 

difference between the preposition-particles ―flying around‖ in (1) and ―fly back‖ in 

(4); and the absence of boundaries in speakers‘ chunking gives particles the benefit 

of the doubt here. 
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5.2.3. Rhythmic clout 

As yet, we do not have a definitive set of content-function word groups 

mapped to parts-of-speech. The lexicon discussed in Chapter 6 uses the same default 

mappings of CF to Penn Treebank tags as Busser et al. (2001) and Bell (2005). 

Nevertheless, we are likely to be in accord about the CF category labels allocated to 

the sentence fragment in row 1 of Table 5.2. 

1 F F C F F 

2 before the hijacking of the 

3 ANA+NRU ANA NRU ANA 

Table 5.2: Binary classifications for syntax and rhythm 

Row 3 represents rhythmic annotations from the Jassem Tier (Bouzon and 

Hirst, 2004) in the Aix-MARSEC dataset. The label NRU (narrow rhythm unit) 

denotes either a stressed syllable in a monosyllabic word or a stressed syllable 

followed by a number of unstressed syllables in a bi-syllabic or polysyllabic word, 

while the label ANA (anacrusis) denotes an unstressed word-initial syllable or a 

sequence of unstressed syllables unattached to any NRU. Syntactically, the word 

before behaves as a function word in this example but rhythmically it shares 

attributes with content words, carrying a beat (primary stress) on a long vowel. 

A similar situation arises if we view the whole of this opening sentence in 

A08. 

A few days before the hijacking | of the TWA aircraft | soon after it took off from 

Athens airport || I was catching a similar TWA flight | from the same airport. ||  

 

Here we have two instances of the preposition ―from‖ – another grammatical or 

function word – which have different phonetic and rhythmic properties. We can 

verify this by inspecting instances from the TextGrid file for section A0801 in Aix-

MARSEC, as presented in Table 5.3. 

 

Tonic Stress Marks Tier Jassem Tier 

5.0099999999999998 

"from" 

5.0099999999999998 

"ANA" 
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5.0099999999999998 5.0099999999999998 

9.1639999999999997 

"~from" 

9.1639999999999997 

9.1639999999999997 

"NRU" 

9.1639999999999997 

Table 5.3: Even grammatical words exhibit prosodic variance 

Vowel reduction in the first occurrence of /fr@m/ makes it an anacrusis. 

Conversely, the second instance of /frQm/ is a narrow rhythm unit and even carries 

a pitch accent. 

5.2.4. Taking stock 

In summary, our example sentence exhibits all sorts of recalcitrant prosodic-

syntactic behavior. A syntax-based rule which inserts a boundary before true 

prepositions or between content and function words, or between major syntactic 

groupings (NP/AVP: A few days versus PP: before the hijacking) is insensitive to 

speaker evidence here, where the adverbial qualifier is being treated prosodically as 

part of the prepositional phrase chunk since its role is to enhance the specificity of 

that phrase. 

5.3. Why “gold standard” evaluation of prosody is problematic: 

evidence from the corpus 

Two publications discussed in this thesis raise questions about the practice of 

evaluating a prosodic phrase break model against a gold standard; in both cases the 

iconic prosodic annotations in versions of the Spoken English Corpus. Taylor and 

Black (1998) state that performance figures obtained in such experiments should be 

‗…treated with caution…‘ because prosody itself is subjective: different speakers 

pause in different places; one speaker will vary their use of pauses; expert annotators 

differ in their perceptions. Similar comments about variability in human 

performance appear in Hirschberg (2002). Taylor and Black also point out that 

junctures differ in type: those junctures which coincide with weaker syntactic 

boundaries are more likely to be potential prosodic boundary sites (see also Abney, 

1992; Abney, 1995). Knowles points out that, having established a dual-level 

boundary annotation set for SEC, transcribers duly ‗…interpret [their] observations 

as realisations of members of the set of categories…‘ (Knowles, 1996b, p.88), but 

then encounter ‗…several different patterns…subsumed under a category like tone 
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group boundary…‘ (ibid, p.94). In addition, Pickering et al (1996, p.67) note that 

Knowles perceives shorter tone units than his counterpart, Williams; this is further 

evidenced in this thesis in Section 5.3.1. Moreover, despite claims (ibid, p. 67) and 

evidence of inter-annotator agreement on boundary type in overlapping corpus 

annotations, these overlapping sections are few and far between, and we have found 

evidence that: (i) Williams makes bolder use than Knowles of the major boundary 

marker within sentences when she is sole transcriber (cf. Examples 4.2 and 4.5 in the 

previous chapter); and that: (ii) different boundary types have been assigned to 

similar syntactic contexts (cf. the discussion in Section 5.3.3 of both minor and 

major prosodic boundaries mapped to major clauses). Atterer and Klein (2002) 

encapsulate all these reservations and dichotomies: ‘…the very notion of evaluating 

a phrase-break model against a gold standard is problematic as long as the gold 

standard only represents one out of the space of all acceptable phrasings…‘ 

5.3.1. Inter-annotator agreement 

The ‗spaciousness‘ of acceptable prosody can be demonstrated straightaway by 

the gold standard itself in Examples 5.1 and 5.2, a sample from Section C in Aix-

MARSEC. The extract comes from a Reith Lecture and is illustrative because, while 

there is only one speaker, there are two alternative phrasings: this is one of the 

overlapping sections of prosodic annotation from Briony Williams and Gerry 

Knowles (approximately 9% of the corpus).  

The main difference between Knowles‘ and Williams‘ boundary annotations 

here seems to be one of perception. In the section marked in bold, Gerry Knowles 

‗hears‘ a more emphatic speaker than Briony Williams and inserts more pauses 

overall (35 instead of 29). Both annotators insert a boundary at every punctuation 

mark in the original raw text transcript - another acceptable phrasing, perhaps? 

 

 

 

for some people | this statement of orthodox economic doctrine | may appear | too 

unqualified || since it fails to mention explicitly | security of supply || often | though 

not always | the case for self sufficiency is argued | with reference to a country's 

need to ensure security | by minimising dependence | on foreign sources || the 
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outside world is seen | at best | as unreliable | and subject to instability | at worst | as 

actively hostile || from this fortress mentality | standpoint | autarchy | appears | 

to be common prudence || two sets of measures | then suggest themselves | one is to 

build up | domestic production of essentials | so as to reduce imports | to a minimum 

| the other | is to restrict exports | so as to ensure | that domestic supplies | are 

available | for domestic use ||   

Example 5.1: This is a sample of Gerry Knowles‘ phrase break annotations for a 

BBC recording of a Reith Lecture from the 1980s 

for some people | this statement of orthodox economic doctrine | may appear too 

unqualified || since it fails to mention explicitly | security of supply || often | though 

not always | the case for self sufficiency is argued | with reference to a country's 

need to ensure security | by minimising dependence on foreign sources || the outside 

world is seen at | best | as unreliable | and subject to instability | at worst | as actively 

hostile || from this fortress mentality standpoint | autarchy appears to be 

common prudence || two sets of measures | then suggest themselves | one | is to 

build up domestic production of essentials | so as to reduce imports | to a minimum || 

the other | is to restrict exports | so as to ensure | that domestic supplies | are 

available for domestic use ||   

Example 5.2: Briony Williams‘ phrase break annotations for the same sample in C  

Example 5.3 shows both annotators largely in agreement on phrasing and on 

emphatic, bi-tonal accents (rise-falls) in a snapshot sentence from Examples 5.1 and 

5.2. The only area of dispute is whether or not to include a boundary after the word 

‗…dependence…‘ 

 

 

 

,often | though not `/always | the case for self sufficiency is `/argued | with 

reference to a country's need to ensure se`/curity | by minimising dependence | on 

foreign sources 
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Example 5.3: This is the corpus version, showing all prosodic phrase breaks noted 

by Knowles and Williams and the pitch accent annotations on words preceding 

boundaries where the experts are in agreement. 

However, what if a new speaker took this same text and chunked it differently 

with the explicit intention of prioritising certain syntactic structures or constituents? 

What about the new phrasing in Example 5.4, for example, which differs from the 

original by deliberately highlighting intentions, movements, actions present in verb 

forms? 

often | though not always | the case for self sufficiency | is argued | with reference to 

a country's need | to ensure security | by minimising | dependence on foreign 

sources 

Example 5.4: This alternative phrasing is largely achieved within the performance 

structure of the original (§4.3.2) 

5.3.2. The space of acceptable phrasings 

The emphatic combination of (high) chunking accent and boundary in the 

matching annotations in bold in Example 5.3 is typical of English. An emphasis-

boundary pattern has now been engineered in Example 5.4 for the participle 

„…minimising |…‟ (which gets a high level pitch accent from both annotators) and 

could enhance the infinitive construction ‗…to ensure security…‘ if a boundary 

were to be placed before the noun. 

 

 

 

 

 

 

 

new instance: 

 [NP a country‘s need]  |  [VP to ensure | security] 

 

new instance: 

 [VP to ensure | security] [PP by minimising dependence] 
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new instance: 

 [PP by minimising | dependence] [PP on foreign sources] 

Example 5.5: Prosodic boundaries are shown in relation to the large syntactic units 

{NP, VB, PP, ADJP, ADVP} featured in Koehn et al, (2000). 

The difference between these new instances and the original template in 

Example 5.3 is that most of them occur within and not between discrete syntactic 

groupings – lower down the tree as it were. This is illustrated in Example 5.5. It is 

also worth noting that the only disruption these ‗false insertions‘ make to the 

original phrasing surrounds the noun ‗…dependence…‘ where Knowles and 

Williams are not in agreement anyway (Examples 5.1 and 5.2). The new instances in 

Example 5.5 are not disfluencies (speaker hesitations); in fact, they evidence a 

coherent strategy on the part of the speaker to emphasise ‗doing‘. Furthermore, even 

though they would be classed as false insertions when compared to the corpus gold 

standard, they are definitely not wrong. 

5.3.3. Different boundary types 

Of course, that is not the end of the story. A new complication now arises in 

that these different types of boundaries - the chunkers higher up the syntax tree and 

the highlighters lower down the tree - are not differentiated in the corpus. It would 

be nice if they were analogous to major and minor boundary classifications and the 

symbols: < || > and < | >. This is not the case, however. Examples 5.6 and 5.7 show 

the same annotator (in this case Briony Williams) using different phrase break 

annotations to flag up major clause boundaries in a news bulletin and a lecture. The 

association of double pipes (ToBI‘s break index 4) with major syntactic groupings, 

plus the use of pitch accent annotations without boundary reinforcement for 

highlighting in the first extract, seems much clearer. 

 

 

there are ~two \,scanning machines || which give an `/X ray picture | on two 

tele`/vision *screens || of the _contents of `hand *baggage || when `/I've been 

through *Athens airport || and `that's about *two dozen `times in the past *two 

`/years || there's `/never been more than ~one se\,curity man on *duty || and ~he's 
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\frequently reading a `newspaper || or ~chatting with _other `airport *staff || 

Example 5.6: This is a sample of Briony Williams‘ annotations of informal news 

commentary from a BBC radio broadcast from the 1980s. It shows 

correspondence between major intonation unit boundaries and major clause 

boundaries. 

the `/history | of ~British nuclear ,power programmes |  ~over the past thirty ,years | 

>pro_vides a de~pressing e\xample | of ~unreflecting _centralism in `action ||  

`stoutly rein`forced | _I may /add |  by `/other forms | of _DIY`E || `one aspect of this 

,centralism | is the i`/dea | which has been em~braced by su*ccessive British 

_governments of `/both parties | that a ,choice | `has to be made | at `/Cabinet level | 

of ~one par,ticular re`/actor system | for _future nuclear `power stations | in \Britain 

|| 

Example 5.7: Another sample annotation from Briony Williams shows minor 

intonation unit boundaries being used to demarcate major clause boundaries. 

5.3.4. Chunking versus highlighting 

The examples so far have demonstrated how denser prosodic phrasing (highlighting) 

can be inserted into the existing chunk structure of a sentence. The rest of Section 

5.3 covers instances where prosody redistributes prominence, first by ignoring, and 

second by shifting chunk boundaries.  

True positives retrieved by the stoppers and starters model are given in 

Example 5.8 and evidence a reliable rule-of-thumb when a major clause boundary 

and comma-site is retrieved before a subordinating conjunction. 

 

 

 

 

...the idea | which has been embraced by successive British governments of both 

parties | that a choice | has to be made...  
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Example 5.8: Phrase break predictions from the rudimentary syntax-driven rule 

retrieve sites of commas at major clause boundaries. 

This is generally a PoS context where prosody, performance structure and 

syntax (Abney, 1992) are in agreement: a prosodic boundary generally occurs with a 

major clause boundary. Nevertheless, the mismatch between prediction and 

empirical evidence in Example 5.9 below shows the speaker making a different 

chunking choice for this PoS context - glossing over a major syntactic boundary and 

favouring the highlighting over the chunking function of prosody by placing 

adjectives „…important…self-sufficient…‟ in phrase-final position. Consequently, 

predictions-by-rule quickly get out of sync with empirical phrasing (though not out 

of sync with naturalness) because they each start to take a different processing route 

through the sentence. As a final twist, however, predicted phrasing manages to 

regain contact with the original after coverage of the theme (everything before the 

copula) is complete (see bold items in Example 5.9). 

Corpus phrasing: 

‗…The idea that it‘s important | for developing countries to become self-sufficient | 

in food | is widely | and uncritically accepted | not just in Brussels; | but from the 

orthodox economic standpoint | it‘s without foundation…‘ 

Predicted phrasing: 

‗…The idea | that it‘s important for developing countries | to become self-sufficient 

in food | is widely | and uncritically accepted | not just in Brussels | but from the 

orthodox economic standpoint | it‘s without foundation…‘ 

Example 5.9: Predicted phrasing matches the corpus once the theme (everything 

before the copula ‗…is…‘) is established. 

5.3.5. Prepositions versus verb particles 

The prototype rule inserts a boundary before true prepositions, PoS-tagged 

<IN>. This accounts for false inserts - but legitimate, if somewhat emphatic (‗Tony 

Blair style‘) prosodic phrasing - in the following sentence fragment in Example 

5.10. 

Corpus phrasing: 

‗…the idea | which has been embraced by successive British governments of both 
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parties | that a choice | has to be made…‘ 

Predicted phrasing: 

‗…the idea | which has been embraced | by successive British governments | of both 

parties | that a choice | has to be made…‘ 

Example 5.10: Predicted phrasing abides by the gold standard POS tagged version 

of this sentence which classifies the function word ‗…by…‘ as a preposition. 

It will be noted from Example 4.8 that there are four empirically verified (true 

positive) phrase boundaries before prepositions in the section as a whole. Moreover, 

since the PoS-tagged version of this text is itself a gold standard, and since this 

version classifies ‗…embraced by…‘ as <VBN><IN> (a past participle followed by 

a preposition), we have a situation where two equally valid gold standards - tagged 

text versus prosodic annotation - are in conflict. This arises because the same 

speaker in this particular instance has realised ‗…embraced by…‘ as one unit and, 

via prosody, has in effect tagged the preposition as a verb particle: <VBN><RP>. 

This rules out an intervening chunking prosodic phrase boundary and significant 

chunking accent on ‗…embraced…‘ Corpus annotation on the verb testifies to this: 

em~braced is a level accent. 

5.3.6. A conflict of standards? 

Abney (1991) raises the thorny issue of prepositional phrase attachment, 

‗…the most explosive source of ambiguity in parsing…‘ The PoS identity of 

‗…embraced by…‘ is a case in point (Example 5.11): is it <VBN><RP> or is it 

<VBN><IN>? If the function word by is tagged <RP>, it falls within the 

subcategorisation frame of the verb and is classed as an argument; whereas if it is 

tagged <IN>, its attachment is to the ensuing noun (‗…by successive British 

governments…‘) and its behaviour is that of an adjunct - see Merlo et al (2006) for 

recent discussion of argument/adjunct distinction for prepositions. 

 

 

(1) [NP the idea] | [VP which has been embraced by]   [NP successive governments] 

(2) [NP the idea] | [VP which has been embraced] | [PP by successive governments] 
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Example 5.11: Alternative ‗chunk‘ parsing strategies for sentence fragment 

The ‗blended category‘ POS status (Manning and Schutze, 1999) of by in this 

instance is an opportunistic moment for the speaker to run with one of two different 

prosodies and two different parsing strategies as shown in Example 5.11. Strategy 

(1) is the corpus version and strategy (2) is the version created by the POS-tagger. 

Since both versions are inherent in the plain text and both are equally valid, then 

perhaps such ‗conflicts‘ can be resolved by generating POS tagged and prosodically 

annotated variants for a given text? These parallel prosodic-syntactic realisations 

will then enrich the gold standard and enable more robust, i.e. ‗noise-tolerant‘, 

evaluation of language models and contribute to our understanding of linguistic 

phenomena, the goal of ‗speech science‘ as defined by Huckvale (2002). Moreover, 

the idea of including variant annotations in a gold standard has been proposed and/or 

adopted in other areas of computational linguistics. It is well-established that two or 

more linguists may disagree on the analysis/annotation of a given sample of data 

(Shriberg and Lof, 1991; Carletta, 1996; Bayerl and Paul, 2007); and sometimes 

both analyses can be legitimate. The MorphoChallenge2005 gold standard for 

evaluation of morphological analysis programs entered for the contest (Kurimo et 

al., 2006) included occasional variant morphological segmentations; for example: 

pitchers can legitimately be analysed as pitch er s, OR pitcher s. Part-of-Speech 

taggers are normally expected to predict a single unambiguous PoS-tag for each 

word, but the gold standard Penn Treebank does allow for rare occasions when the 

Part of Speech is genuinely ambiguous (Santorini 1990, Marcus et al., 1994, 82007); 

for example: The duchess was entertaining last night, the word entertaining is 

tagged JJ|VBG - Adjective OR Present Participle Verb. Similarly, a Multitreebank 

or collection of variant syntactic analyses of sentences can be used for comparative 

evaluation of rival parsing programs (Atwell, 1996), corpus linguists' parsing 

schemes (Atwell et al., 2000), and unsupervised machine learning Grammatical 

Inference systems (van Zaanen et al., 2004). 

5.4. Summary 

This chapter completes the extensive survey of theoretical and methodological 

issues pertaining to this thesis in Chapters 1, 2 and 4. One of the main themes in this 

chapter is prosodic variance. The sustained discursive analysis of prosodic variance 
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here undertaken with close scrutiny of SEC annotations is considered to a strength in 

this thesis (§10.12). Aspects of this variance include the discernment of fluid 

syntactic categories such as particles and prepositions, and the distinction between 

highlighting and chunking boundaries. Consideration of empirical evidence of 

prosodic variance from the corpus in this chapter has influenced decision-making in 

thesis chapters 7 through 9. Despite being attuned to different boundary types and 

strengths, both as concepts and in actuality, no distinction is made in experimental 

work between major and minor boundaries because automatic identification of 

intelligible and naturalistic boundary sites in unseen text is challenging enough in 

itself. Moreover, researchers need to develop an awareness that however accurate 

their phrasing model, this achievement must be tempered by the relativity of correct 

predictions: more often than not, there are legitimate alternative phrasing strategies 

for any given sentence in English, and this subsumes the major/minor boundary 

divide.    
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Chapter 6 

ProPOSEL: the Prosody and Part-of-Speech English Lexicon 

6.1. Taking Stock: Motivation for ProPOSEL 

One of the thematic programmes for PASCAL-2
 
(2008) identifies a current 

interest in, and trend towards, leveraging real-world knowledge to enhance 

performance in machine learning in a variety of application domains, including text 

and language processing, where previously little a priori knowledge has been 

assumed on the part of the learning mechanism (cf. also the CFP for IJCAI 2009 on 

User-Contributed Knowledge and Artificial Intelligence). The survey in Chapter 3 

reveals a deficiency of a priori linguistic knowledge of prosody in the feature sets 

typically used in rule-based and data-driven phrase break models. In contrast, a 

competent human reader is able to project holistic linguistic insights, including 

projected prosody, onto text and to treat them as part of the input (Fodor, 2002). 

That same human reader will interpret the sound pattern signified by the 

orthographic form (Saussure in Chandler, 2002:18-20) when processing written 

language in their mother tongue. This thesis later contends that native English 

speakers, whether speaking, reading or writing, may use certain sound patterns as 

linguistic signs for phrase breaks. It also contends that such signs can be extracted 

from canonical forms in the lexicon and presented as input features for the phrase 

break classifier in the same way that real-world knowledge of syntax is represented 

in PoS tags. Moreover, such features are domain-independent and, like content-

function word status, can be projected onto any corpus. 

In addition to the inspirational because transferable chinks and chunks 

algorithm, multiple prosodic annotation tiers in the Aix-MARSEC corpus have also 

been revelatory, since they capture the prosody implicit in text and currently absent 

in learning paradigms for phrase break models. These two insights, plus an 

appreciation of prosodic variance gleaned from close examination of corpus 

evidence in Chapter 5, have informed the creation of ProPOSEL, the domain-

independent lexicon and prosodic annotation tool in this thesis.  

In accordance with guidelines on linguistic data management, this chapter now 

documents how domain knowledge from several widely-used lexical resources has 
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been combined to create ProPOSEL, a prosody and part-of-speech English lexicon 

of 104,049 entry groups, customised for linkage with corpora and language 

engineering tasks that involve the prosodic-syntactic chunking and/or analysis of 

text. ProPOSEL‘s multi-field format classifies wordforms under four variant PoS-

tagging schemes mapped to default closed and open-class word categories; it offers 

alternative access routes for users via phonetic transcriptions, syllable counts, CV 

patterns and lexical stress patterns or abstract representations of rhythmic structure; 

and it lends itself to implementation and exploitation as a Python dictionary object, 

with multiple values associated with each compound lookup key. The lexicon is 

intended for distribution with the Natural Language ToolKit and is therefore 

supported by dedicated Python software and tutorial documentation (Appendix 2) 

for corpus-based research and NLP.   

6.2. ProPOSEL: Derivation and rationale 

Lexical resources have long been used in language teaching and linguistic 

research; they are increasingly important in computer modelling of language, 

development of systems and tools for machine learning, language engineering and 

corpus linguistics, and applications in text analytics and stylometry. A number of 

English lexical resources have been taken up by computing researchers; and these 

researchers might benefit from a single resource which combines features from 

these.    

The ‗computer usable‘ dictionary of wordforms known as CUV2 (Mitton, 

1992) - itself derived from the Oxford Advanced Learner‘s Dictionary of Current 

English (Hornby, 1974) - has recently been updated (Pedler and Mitton, 2003). As 

well as increasing the number of entries from 70,646 to 72,060, CUVPlus1 identifies 

word class via the C5 tagset, the syntactic annotation scheme used in the BNC or 

British National Corpus (Burnard, 2000; Leech and Smith, 2000; UCREL, 2010). 

This introduction of more discriminating word class information than can be 

captured in the eight parts-of-speech {noun; verb; adjective; preposition; pronoun; 

adverb; conjunction; and interjection} traditionally used in English lexica is 

                                                 

1 Available from the Oxford Text Archive: http://ota.ahds.ac.uk/texts/2469.html 

 

http://ota.ahds.ac.uk/texts/2469.html
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significant: it facilitates linkage with machine-readable corpora - like the BNC itself 

- used by computational linguists for a range of Natural Language Processing (NLP) 

tasks, though the original focus for both Mitton‘s and Pedler‘s work is computer 

spellchecking.   

A machine-readable pronunciation lexicon is an integral part of front-end 

NLP modules in voice-driven applications; for example, it constitutes a natural way 

of giving a generic Text-to-Speech Synthesis (TTS) system both prosodic and 

syntactic insights into input text. For English, three such resources - originally 

developed for Automatic Speech Recognition (ASR) and listing words and their 

phonetic transcriptions - are widely used: CELEX-2 (Baayen et al, 1996); 

PRONLEX (Kingsbury et al, 1997); and CMU, the Carnegie-Mellon Pronouncing 

Dictionary (Carnegie-Mellon University, 1998). The latter is used in Edinburgh‘s 

Festival speech synthesis system (Black et al., 1999; Black, 2000); and the CMU 

text file is included as one of the datasets in NLTK - the Natural Language ToolKit, 

the library of Python software, data and tutorials for teaching and research in 

language and computing. Finally, the need for language resources containing fine-

grained grammatical, morphological and phonetic information to meet the 

requirements of NLP components for language engineering is well illustrated by the 

European-funded LC-STAR project (Hartikainen et al., 2003). Wide-coverage 

lexica for thirteen world languages2, including US-English, were created for flexible 

ASR and high-quality TTS modules in Speech-to-Speech Translation (SST) 

applications.   

These lexical resources have been used in a wide range of linguistics and 

language engineering research. For example:  

 OALD has been used in pronunciation prediction in speech processing 

systems (Davel and Barndard 2008) as well as  in spelling error detection 

(Mitton, 1996), (Pedler 2001; 2007);  

                                                 

2 The thirteen world languages represented in language-independent LC-STAR 

lexica are: Catalan, Finnish, German, Greek, Hebrew, Italian, Mandarin 

Chinese, Russian, Slovenian, Spanish, Standard Arabic, Turkish, and US-

English   
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 CUV has been used in computational generation of limericks (Lessard 

and Levison, 2005), and psycholinguistic research on letter-to-sound 

rules in adult readers (Kessler and Treiman, 2001)  

 BNC has been used for developing and evaluating dictionary and 

grammar resources for English language learning and language 

engineering (Baldwin et al., 2004); 

 CELEX has been used for cognitive science research on anagram 

analysis (Vincent et al., 2006); 

 PRONLEX has been used for pronunciation modelling in speech 

recognition systems (Hazen et al., 2005); 

 CMU has been used in humour research investigating humorous 

acronyms (Stock and Strapparava 2003), and as a guide in developing 

lexicons for new languages (Maskey et al., 2004). 

 

All of these applications, and many others, could benefit from an extended 

resource combining the information in all these lexical resources. This chapter 

records how entries in CUVPlus have been reorganised and supplemented with 

information generated from several reputable language resources (including the 

above) to create ProPOSEL, a purpose-built repository of linguistic concepts in 

accessible text file format for the target application of prosodic phrase break 

prediction but relevant to a range of machine learning and language engineering 

tasks. Since ProPOSEL is intended for open source distribution with NLTK, this 

paper documents the creation of this lexical resource - its derivation, content, 

application and associated software - in accordance with guidelines on linguistic 

data management in Bird et al, (2009, Chapter 11).  

Hence, relevant documentation concerning source lexica for ProPOSEL is 

introduced; and entry groups in CUVPlus; CELEX-2; CMU; and ProPOSEL itself 

are thoroughly explored, so that potential users are aware of the challenges involved 

in merging information from different lexica, and appreciate the degree of variance 

uncovered in relation to syllable counts, vowel reduction and assignment of 

secondary stress in those source lexica.     

The chapter also discusses the relevance of new, automatically generated and 

manually inspected fields in ProPOSEL to supervised machine learning tasks and 
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particularly to phrasing algorithms; and finally covers implementation of the 

prosody-PoS English lexicon as a Python dictionary or associative array, and user 

access strategies. 

6.3. Record structure in CUVPlus 

Each one-line entry in CUVPlus is presented as a series of six pipe-separated 

fields as in Example 1. 

Example 1 

burning|0|'b3nIN|Jb%,OA%|AJ0:14,VVG:14,NN1:2|2 

These are for: (1) orthographic form; (2) a capitalisation flag, where zero signals 

lower case and one upper case; (3) SAM-PA phonetic transcription; (4) word class 

and frequency rating from the CUV2 parent file; (5) C5 PoS tag plus enhanced 

CUVPlus frequency rating - rounded frequencies per million based on BNC counts; 

and (6) CUV2 syllable count. Fields one, three, five, and six are particularly relevant 

to prosodic-syntactic analysis of text and the alignment of fields one and five (i.e. 

orthographic form mapped to PoS category) is essential for automated processing of 

natural language. However, language models require a one-to-one mapping of 

wordform and word class. CUVPlus compacts syntactic variants for a given 

wordform into the same field; so securing this one-to-one mapping in ProPOSEL 

(Table 6.1) was a primary objective, especially since it suggests a (token, tag) tuple 

or pairing which would provide a unique identifier for automated dictionary lookup 

later (§6.7).  

 

 

 

CUVPlus Format Target Format for ProPOSEL 

burning|AJ0:14,VVG:14,NN1:2 

 

burning|VVG:14| present participle 

burning|AJ0:14| adjective 

burning|NN1:2|  noun or gerund 
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Table 6.1: Alternative formats for mapping wordform and word class information in 

lexica 

6.3.1. Phonology fields in CUVPlus  

SAM-PA phonetic transcriptions in CUVPlus mark secondary as well as 

primary stresses via commas and apostrophes respectively, while the last field logs 

number of syllables. Example 2 gives phonological information in fields one, three, 

and six for the wordform objectivity.   

Example 2 

objectivity | ,0bdZek'tIvItI | 5 

 However, while the native speaker, or advanced learner, of English can deduce 

that primary stress in this instance occurs on the third in a series of five syllables: 

ob-jec-ti-vi-ty, an automaton would need to be equipped with a sophisticated set of 

language-specific rules (known as the Maximal Onset Principle) to resolve problems 

like the following and eventually reach this conclusion:  

 there is a string of fourteen characters ,0bdZek'tIvItI which needs 

splitting into n syllables; 

 slice [0:3] represents the first syllable /,0b/; 

 this is because /bdZ/ is not a legal phoneme sequence in English and 

therefore the syllable division must occur between /b/ and /dZ/. 

Fortunately, there are alternative approaches in other computer usable 

dictionaries which may provide stressed and syllabified phonetic transcriptions or 

which may represent lexical stress as a pattern of numbers, one for each syllable. 

Thus, the stress pattern for ,ob-jec-'ti-vi-ty would be 20100. The second major 

objective was therefore to introduce supplementary phonological information from 

such sources as additional fields in ProPOSEL. 

6.4. English phonology in pronunciation lexica for speech 

technology 

The LC-STAR project highlighted the need for phonetic, prosodic, and 

morpho-syntactic enrichment in pronunciation lexica for voice-driven applications 

(Hartikainen et al, 2003). All thirteen LC-STAR lexica conform to a language-
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independent specification with guidelines on coverage, syntax, and phonology, for 

example: 

 each lexicon, defined as a set of entry group elements, includes at least 

50,000 inflected common-word entries; 

 generic entries classify wordforms via a basic scheme of 21 PoS with 

attributes common to several languages; 

 phonological information takes the form of  stressed and syllabified SAM-

PA phonetic transcriptions. 

As an aside, all function words are assigned primary stress and this is also the 

default setting for function words in ProPOSEL. 

6.4.1.  English phonology in the Carnegie-Mellon pronouncing dictionary 

The CMU pronouncing dictionary restricts information for each of its 127,069 

entries to: orthographic form; a counter denoting pronunciation variant; and an 

ARPAbet phonetic transcription - the ARPAbet being an American English subset 

of the International Phonetic Alphabet (IPA). Entries for the inflected form 

presented, which displays the maximum number (i.e. three) of American English 

pronunciation variants in this dictionary, are as follows (Example 3).  

Example 3 

PRESENTED 1 P R IY0 Z EH1 N T AH0 D 

PRESENTED 2 P ER0 Z EH1 N T AH0 D 

PRESENTED 3 P R IY0 Z EH1 N AH0 D 

Interestingly, the phonetic transcriptions in this dictionary do not show how 

stress affects vowel reduction (Jurafsky and Martin, 2008); hence, the usual 

ARPAbet symbol for schwa /ax/ does not make an appearance (cf. P R IY0 Z EH1 

N T AX0 D and its counterpart in SAM-PA prI'zent@d). Also, while a stress 

pattern can easily be extracted from CMU‘s ARPAbet transcriptions, homographs 

cause problems because there is no syntactic information to distinguish between 

wordforms which have the same spelling but which belong to a different class. The 

lemma present is a case in point (Table 6.2).  

CMU ENTRY 
STRESS 

PATTERN 

WORD CLASS 

PRESENT 1 P R EH1 Z AH0 N T 
1 0 

It is not possible to 

automatically determine from 

this entry which word class this 
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most common pronunciation and 

stress pattern belongs to.  (A 

native speaker or advanced 

learner will know it’s either a 

noun or an adjective.)  

PRESENT 2 P R IY0 Z EH1 N T 0 1 Pronunciations 2 and 3 for 

this lemma signify that it’s a 

verb – but how can this be 

automatically determined from 

the information given? 

PRESENT 3 P ER0 Z EH1 N T  
0 1 

Table 6.2: Automatic mapping of phonological and syntactic information is 

not enabled from CMU dictionary entries 

6.4.2 English phonology in CELEX-2 

There are some 160,595 English wordforms in the CELEX-2 lexical database.  

Phonological information is detailed: Example 4 shows an entry for territorial from 

a CELEX-based epw (English phonology wordforms) directory3. 

Example 4 

90218\territorial\0\46811\2\P\"tE-r@-'t$-r7l\ 

[CV][CV][CVV][CVVC]\[tE][r@][tO:][rI@l]\S\"tE-rI-'t$-

r7l\[CV][CV][CVV][CVVC]\[tE][rI][tO:][rI@l] 

Fields of interest are: (1) unique ID number or key; (2) orthographic form; (6) 

pronunciation status: primary citation form or stylistic variant of same; (7) stressed 

and syllabified phonetic transcription using the DISC character set; (8) CV 

(consonant-vowel) pattern; (9) syllabified phonetic transcription using the SAM-PA 

character set; (10) secondary, less common pronunciation variant.    

Field seven is of particular interest. CELEX-2 provides four different 

character sets for phonetic transcriptions, including the DISC set which allows one-

to-one mapping between character and distinct phonological segment. The DISC 

transcription for territorial: /"tE-r@-'t$-r7l/ shows the character /7/ being 

used to represent a dipthong. Field seven also demonstrates that if the user selects a 

stressed and syllabified phonetic transcription, irrespective of character set, they will 

have effectively assigned stresses to syllables and bypassed the problems outlined in 

Section 3.1. A lexical stress pattern of 2010 (but not, unfortunately, 20100 - 

§Section 4.4) can also be derived for territorial from the DISC transcriptions in 

                                                 

3 School of Computing NLP resources, University of Leeds 
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field seven, where /'/ denotes primary and /"/ secondary stress; alternatively, 

users familiar with Unix can use an awk script to compute this pattern. 

6.4.3. Variance in pronunciation lexica: lexical stress patterns 

The CELEX-2 database lists a number of primary (P) and secondary (S) 

pronunciation variants for each lemma or wordform, as in this example from the 

English Linguistic Guide (Burnage, 1990) for passenger, using stressed and 

syllabified SAM-PA4 transcriptions (Table 6.3). 

Variant pecking order Pronunciation status SAM-PA transcription 

1 P “p{-sIn-Dz@r* 

2 P “p{-sIn-Z@r* 

3 S “p{-s@n-dZ@r* 

4 S “p{-s@n-Z@r* 

5 S “p{-sn,-dZ@r* 

6 S “p{-sn,-Z@r* 

Table 6.3: Primary and secondary pronunciation variants for passenger in CELEX-

2 

Despite such segmental variation, the lexical stress pattern usually remains 

constant for a given word of two or more syllables in a given sentence slot - at least 

in terms of the location of primary stress: here passenger is realised throughout as 

100. The citation form for each entry in the CELEX-2 wordforms directory was 

therefore used as the main generator for lexical stress patterns in ProPOSEL.   

Perhaps the notion of one abiding stress pattern for an inflectional form in 

English needs qualification, however; homographs (§6.5.1) are a special case and 

there is evidence that dictionaries differ in the assignment of secondary stress and in 

syllable counts. The Carnegie-Mellon pronouncing dictionary (American English) is 

comfortable with secondary stress on the final syllable, whereas the Oxford-

Longman derived CELEX-2 and CUVPlus (British English) are not (Table 6.4). 

Lexicon Orhographic Form Phonetic Transcription Stress Pattern 

                                                 

4 SAM-PA transcriptions use /‖/for primary stress; the asterisk in ―p{-sIn-Dz@r* in 

Example 5 denotes a linking /r/.  
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CELEX-2 abolished @-'bQ-lISt 010 

CUVPlus abolished @'b0lISt 010 

CMU abolished AH0 B AA1 L IH2 SH T 012 

CELEX-2 calcify 'k{l-sI-f2 100 

CUVPlus calcify 'k&lsIfaI 100 

CMU calcify K AE1 L S AH0 F AY2 102 

CELEX-2 finite 'f2-n2t 10 

CUVPlus finite 'faInaIt 10 

CMU finite F AY1 N AY2 T 12 

Table 6.4 : Secondary stress is not marked for the wordforms: abolished, calcify and 

finite in either CELEX-2 or CUVPlus, whereas Carnegie-Mellon assigns 

secondary stress quite readily in these cases.   

6.4.4. Variance in pronunciation lexica: syllabification 

When it comes to syllabification, Roger Mitton‘s account (Mitton, 1992) of his 

difficulties in deciding on syllable counts for some 3000 or so words in CUV2 is 

illuminating. His problems were to do with the /@/ phoneme or schwa in dipthongs, 

in the middle of words and in words ending in -ion. He compares the sound /aI@/ 

in higher (definitely 2 syllables) and hire (he is unsure). He opts for one syllable for 

each of: fire/hire/wire/pier/tour but says that ‗…on another day, [he] might easily 

have counted them as two…‘ He juxtaposes gambolling with gambling and gives 

instances of the word champion realised as 2 and then 3 syllables. Sometimes it‘s 

simply a case, he says, of judging whether more or less /@/ seems most natural. 

Hence Mitton awards territorial five syllables whereas CELEX-2 only gives it four.  

Mitton‘s experience is played out in the dictionaries themselves.  Reduced 

vowels are included in syllable counts but sometimes disappear from phonetic 

transcriptions. The online version of OALD5 (now in its seventh edition) uses the 

schwa in its transcription for descendant (3 syllables) but not for iridescent (4 

syllables) - and the same goes for CUVPlus (Example 5). 

Example 5 

descendant|0|dI'send@nt|K6%|NN1:3|3 

                                                 

5 Oxford Advanced Learner‘s Dictionary:  

http://www.oup.com/elt/catalogue/teachersites/oald7/?cc=global 

http://www.oup.com/elt/catalogue/teachersites/oald7/?cc=global
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iridescent|0|,IrI'desnt|OA%|AJ0:1|4 

 

A quick check on the LDOCE6 website verifies that Longman use the schwa in both 

transcriptions.  

Finally, dictionaries are not in accord on syllabification. To give just one 

instance, the syllable count for memorial is difficult to determine because it contains 

a dipthong (Mitton‘s old problem again).  The CUV2-derived CUVPlus records a 

syllable count of 4 for this wordform but the CV pattern and syllabified transcription 

in CELEX-2 tell a different story. ProPOSEL reflects these discrepancies and this is 

intentional (Example 6). 

Example 6 

CUVPlus: memorial|0|mI'mOrI@l|K6%|NN1:16|4 

CELEX-2: [CV][CVV][CVVC]\[m@][mO:][rI@l] 

 

6.5. ProPOSEL: entry format, content, and build 

ProPOSEL is a textfile of 104,049 separate entries, each comprising fifteen 

pipe-separated fields arranged as in Example 7. 

Example 7 

sunniest|AJS|0|'sVnIIst|Os%|AJS:0|3|100|JJS|C|JJT|JJT| 

'sV-nI-Ist|'sV:1 nI:0 Ist:0|[CV][CV][VCC]  

 

(1) wordform; (2) C5 tag; (3) capitalisation flag; (4) SAM-PA phonetic 

transcription; (5) CUV2 tag and frequency rating; (6) C5 tag and BNC frequency 

rating; (7) syllable count; (8) lexical stress pattern; (9) Penn Treebank tag; (10) 

default content or function word tag; (11) LOB tag; (12) C7 tag; (13) DISC stressed 

and syllabified phonetic transcription; (14) stressed and unstressed values mapped to 

DISC syllable transcriptions; (15) consonant-vowel pattern. 

The CUVPlus ordering of fields has been preserved but shunted one place to 

the right to accommodate field two for duplicate C5 PoS tags stripped of their BNC 

frequency counts. Also, the number of entries for each wordform is proportional to 

                                                 

6 Longman Dictionary of Contemporary English: http://pewebdic2.cw.idm.fr/ 

 

http://pewebdic2.cw.idm.fr/
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the number of PoS tag categories assigned to it; and it is important to note that this 

in turn only reflects the distribution of that wordform in the parent corpus, the BNC.  

6.5.1. Phonology fields in ProPOSEL 

Currently, there are eight new automatically-generated fields (fields eight to 

fifteen) for each entry in addition to the second field; new phonological information 

is held in fields eight, thirteen, and fourteen, which include alternative phonetic 

transcriptions (DISC) to those in the original CUVPlus file. Lexical stress patterns in 

field eight have been derived in the first instance from CELEX-2, and hence use the  

version of English known as received pronunciation (RP) as canonical 

pronunciation form; if the wordform did not appear in this database, then, where 

possible, the pattern was extracted from Carnegie-Mellon. It is still possible to 

identify which source has been used from the stress pattern entries: gaps have been 

preserved between digits in stress patterns derived from CMU and the slight 

difference in presentation is deliberate (Table 6.5).  

betting VVG 10 Lexical stress pattern generated 

from CELEX-2 
betting AJ0 10 

bettor NN1 1 0 There are gaps between digits in 

the lexical stress patterns derived 

from Carnegie-Mellon bettors NN2 1 0 

betty NP0 1 0 

Table 6.5: Extracts from 5 adjacent wordform entries in ProPOSEL 

This exercise currently still leaves 7,816 out of the 104,049 entries in the 

prosody lexicon with ‗No value‘ recorded in the stress pattern field - typical 

examples being things like: a bit; ‘tween-decks; bletchley; and blighty. Similarly, 

there must be a considerable number of unused stress patterns from CELEX-2 and 

Carnegie-Mellon which did not find a matching entry in CUVPlus and hence 

ProPOSEL. 

6.5.2. Homographs 

One of the most fascinating aspects of this work has turned out to be 

homographs: words with one spelling but two different pronunciations and two 

distinct meanings and/or usages: bass, present and wound are classic examples. A 
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comprehensive list of some 550 homographs - most of which are derived from none 

other than Mitton‘s computer-usable dictionary - is available from Higgins (2010)7.  

One field of particular interest to our research into automatic phrase break 

prediction is lexical stress pattern, where the rhythmic structure of wordforms is 

represented symbolically as a string of numbers. For some homographs, this lexical 

stress pattern can fluctuate depending on part-of-speech category and meaning. 

Rhythmic structure for the homograph present is inverted when it functions as a 

verb, for example, as shown in fields one, two, four, seven, eight and ten for all its 

entries in ProPOSEL (Example 8). 

Example 8 

present | AJ0 | ‟preznt | 2 | 10 | C | 

present | NN1 | ‟preznt | 2 | 10 | C | 

present | VVI | prI‟zent | 2 | 01 | C | 

present | VVB | prI‟zent | 2 | 01 | C | 

All homographs have been checked and where necessary, entered manually when 

compiling the prosody-PoS English lexicon. 

6.5.3. Word class annotations in ProPOSEL 

So far, three rival PoS-tagging schemes have been included in ProPOSEL in 

addition to C5 for linkage with different corpora: Penn Treebank (Marcus et al., 

1994); LOB (Johansson et al., 1986); and C7 (cf. UCREL, 2010).  After much 

reflection and experimentation, a Penn Treebank  C5 mapping8 was achieved, 

based on - but not identical to - Naber‘s mapping of same, available online (Naber, 

2003). One advantage of including this annotation scheme is that there are suggested 

default mappings of Penn Treebank to content-function word and punctuation (CFP) 

tags (Busser et al., 2001; Bell, 2005); and therefore default settings were 

automatically generated from the Penn Treebank field for the CFP field in 

ProPOSEL (§5.2). This lexicon object of ten fields constituted the first prototype for 

                                                 

7 Formerly available through the British Library Net internet service until it was 

discontinued on 31 March 2007 

 

8 See Appendix 1 
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ProPOSEL (cf. Figure 1). For the additional syntactic fields, a C5  C7 mapping9 

was available from the UCREL website and a suggested mapping of C5  LOB 

was documented in Pedler‘s PhD thesis (Pedler, 2007); all mappings of C5 to variant 

PoS-tagging schemes in ProPOSEL are cross-referenced against these sources.  

The challenges of converting between different tagsets have been well 

documented (cf. Atwell et al., 1994; Atwell et al., 2000; Atwell, 2008). The exercise 

recently undertaken reveals that syntactic information is lost both ways even when 

mapping between C5 and Penn, both relatively lean tagsets; and this problem is 

compounded with richer tagsets like LOB and C7. One-to-many mappings uncover 

‗indelicate‘ areas of each tagset. For example, Penn uses just one tag IN for 

prepositions and subordinating conjunctions (cf. AMALGAM, 2010) whereas C5 

deploys a range of tags: PRF (the preposition of); PRP (any other preposition); CJS 

(subordinating conjunction); CJT (the conjunction that). Similarly, Penn has 

separate tags for whose (WP$) and for pre-determiners (PDT). Since prosodic 

phrasing is sensitive to clause markers (Koehn et al, 2000) and since pre-

determiners (e.g. all, quite, and this) are good candidates for pitch accent 

reinforcement, prosodic-syntactic clues are thus potentially compromised if such 

differentiations are subsumed under one tag. 

Example 9 shows a somewhat daunting array of one-to-many mappings from 

C5 (field two) to equivalent sets of PoS-tags in Penn (field nine), LOB (field 

eleven), and C7 (field twelve) for just one wordform ably in ProPOSEL‘s textfile. 

Example 9 

ably|AV0|RB,RBR,RBS|QL,QLP,RB,RI,RBR,RBT,RN| 

BCL,RA,REX,RG,RR,RL,RGR,RGT,RRR,RRT,RT 

The BNC tagset is relatively sparse and uses {AV0} as a catch-all tag for all kinds 

of adverbs bar particles {AVP} and wh-adverbs {AVQ}.  This then generates one-

to-many mappings from C5 to other syntactic annotation schemes where subsets of 

the adverbial category proliferate (cf. Nancarrow and Atwell, 2007). Variant PoS-tag 

fields in ProPOSEL list all subsets of the parent category which matches the C5 tag 

                                                 

9 UCREL C5 > C7 Mapping: 

http://www.comp.lancs.ac.uk/ucrel/claws/mapC7toC5.txt 

 

http://www.comp.lancs.ac.uk/ucrel/claws/mapC7toC5.txt
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for each entry group, and for this reason, the lexicon only lends itself to generation 

of PoS candidates for raw text via the C5 scheme. It would be possible, however, to 

generate a parallel syntactic analysis of a corpus like MARSEC where the original 

LOB annotations were mapped to C5 via automated look-up in ProPOSEL. Further 

instances of one-to-many mappings are provided in Table 6.6 to demonstrate how 

enclitics and Saxon genitives are presented in CUVPlus and handled during lexicon 

build. ProPOSEL is intended for open source distribution with NLTK and is 

supported by a toolkit of Python software, plus an explanatory tutorial, for 

negotiating such complexity, including a section on preparing the textfile for NLP 

(Appendix 2).  

Wordform & C5 Tag Penn, LOB and C7 Fields 

he'd|PNP+VM0 PRP,MD|PP3AS,PP3O,PP3OS,PP$$,PP1A,PP1AS,PP1O,PP1OS,P

P2,PP3,PP3A+MD|PPGE,PPIS1,PPIS2,PPIO1,PPIO2,PPY,PPH1

,PPHS1,PPHS2,PPHO1,PPHO2+VM,VMK 

lloyd's|NP0+POS NNP+NNPS+POS|NP,NPL,NPLS,NPS,NPT,NPTS+$|NPD1,NPD2,NP

M1,NNL1,NNL2,NP,NP1,NP2,NNA,NNB+GE 

beyond|AV0 RB,RBR,RBS|QL,QLP,RB,RI,RBR,RBT,RN|BCL,RA,REX,RG,RR,

RL,RGR,RGT,RRR,RRT,RT 

Table 6.6: Examples of one-to-many mappings in selected fields from raw text 

file entries in ProPOSEL for enclitics, Saxon genitives and adverbs. 

6.5.4. Summary of lexicon build 

Building ProPOSEL was accomplished in two main stages, recorded in the 

flowchart summary in Figure 6.1.  The first stage involved: 

 generating lexical stress patterns from CELEX-2 and CMU; 

 mapping these patterns to wordform entries in CUVPlus; 

 generating one-to-one mappings of wordform to word class in the emergent 

lexicon; 

 mapping content-function word categories to Penn Treebank tags; 

 mapping the above to word class (C5 tags) in the first prototype lexicon. 

 The prototype prosody and PoS English lexicon thus had entries with ten 

fields: the original six fields in CUVPlus and additional fields for C5 PoS tags, 

lexical stress patterns, Penn Treebank tags, and content-function word defaults.  The 

second stage involved: 

 supplementing entries in the prototype lexicon object with C5 > LOB, and 

C5 > C7 mappings in two separate steps; 
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 revisiting CELEX-2 to capture DISC syllabified transcriptions and CV 

patterns, and to award each syllable a stress value of {0, 1, or 2}; 

 appending these as three extra fields for each entry in the lexicon; 

 manually inspecting and correcting all homographs; 

 diagnostic testing of all fields and simultaneous development of user access 

code for ProPOSEL.  
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Figure 6.1: Flowchart summary of ProPOSEL build 

6.6.  Dictionary-derived features for machine learning of prosodic-

syntactic chunking 

As previously stated, the purpose of this work is to integrate information from 

different dictionaries into one lexicon, customised for language engineering tasks 
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which involve the prosodic-syntactic chunking of text. One such task is automated 

phrase break prediction: the identification of potential pauses in text which reflect 

the way in which a native speaker might process or chunk that same text as speech. 

This is treated as a classification task in supervised machine learning, where 

junctures (whitespaces) between words in the input text are classified as either 

breaks (the minority class) or non-breaks. The machine learner is trained on 

boundary-annotated text, the hand-labelled speech corpus or ―gold standard‖, and 

then tested on an unseen reference dataset from the same corpus, minus the 

boundaries, to see how many junctures have been correctly classified. 

6.6.1. The importance of PoS tags 

Training and testing language models on a ―gold standard‖ corpus which 

exemplifies the rules and structures to be learned is an approach widely used in NLP 

(e.g. in PoS-tagging, parsing, and semantic representation such as thematic role 

labelling). This approach depends on PoS-tagged text; the sentence fragment below 

(Example 10) is taken from Section A09 (informal mid-1980s BBC radio news 

commentary) of MARSEC, the Machine Readable Spoken English Corpus (Roach 

et al, 1993) and shows syntactic annotations from the LOB tagset and boundary 

annotations in the form of pipe symbols: (|) for tone unit boundary and (||) for 

pause (Roach, 2000).  

Example 10 

internal/JJ leaders/NNS | who‟ve/WP+HV come/VBN together/RB to/TO 

form/VB a/AT new/JJ government/NN | to/TO get/VB on/RP with/IN 

it/PP3 || 

 Therefore, a dictionary for NLP and linkage with corpora needs discriminating 

word class information in the form of PoS tags rather than categories based on the 

traditional 8 parts-of-speech; CELEX-2, for instance, only uses 9 categories to 

classify English lemmas (Burnage, 1990): {Noun, Adjective, Quantifier/Numeral, 

Verb, Pronoun, Adverb, Preposition, Conjunction, Interjection}. The LOB tagset 

captures fine-grained distinctions - on and with are tagged as particle (RP) and 

preposition (IN) respectively in the string get on with in Example 11 - and offers a 

choice of tags for the same word depending on its function or sentence-slot (Atwell, 

2008). This is important for prosody - cf. the discussion in Section 4.3.6 of 

prepositional phrase attachment and its implications for prosodic-syntactic 

chunking. The C5 tagset used in CUVPlus, while sparser than LOB, retains this 
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discriminatory characteristic; as noted, it has a separate tag for of (PRF) as distinct 

from other prepositions (PRP), which may emerge as a useful refinement for phrase 

break prediction. 

6.6.2. CFP status 

Phrase break classifiers have been trained on additional text-based features 

besides PoS tags. The CFP status of a token - is it a content word (e.g. nouns or 

adjectives) or function word (e.g. prepositions or articles) or punctuation mark? - has 

proved to be a very effective attribute in both deterministic and probabilistic models 

(Liberman and Church, 1992; Busser et al, 2001) and therefore, a default content-

word/function-word tag is assigned to each entry in the prosody lexicon in field ten. 

It is anticipated that further research will suggest modifications to this default status 

when the CFP attribute interacts with other text-based features. For example, the 

word against is a function word but it is also bi-syllabic and likely to carry word 

stress - different, therefore, from function words that ‗disappear‘ prosodically due to 

vowel reduction. The second entry for can in the Carnegie-Mellon pronouncing 

dictionary indicates this is what happens when, presumably, can is being a modal 

auxiliary (Example 11). 

Example 11 

CAN 1 K AE1 N (full vowel probably signifies noun)  

CAN 2 K AH0 N (no schwa, no word class but looks like vowel reduction in can 

the verb) 

6.6.3. Syllable count and lexical stress  

Syllable counts have already been used in phrase break models for English 

(Atterer and Klein, 2002; Schmid and Atterer, 2004). This rather assumes uniformity 

in terms of duration of syllables whereas we know that in connected speech, an 

indefinite number of unstressed syllables are packed into the gap between one stress 

pulse (Mortimer, 1985) and another, English being a stress-timed language (Hirst, 

2009). A lexical stress pattern, capturing both syllabification and stress distribution 

(rhythmic structure) in a simple abstract form, has therefore been included for each 

entry in the prosody-PoS lexicon because of its potential as a classificatory feature 

in the machine learning task of phrase break prediction. This intimation is further 

supported by the presence of rhythmic annotation tiers in the Aix-MARSEC corpus 

project (Hirst et al., 2000; Auran et al., 2004), with its focus on speech synthesis 
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applications and the theoretical modelling (acoustic, phonetic and phonological) of 

intonation and speech prosody. 

6.6.4. Prior knowledge for machine learning 

One of the thematic programmes for PASCAL10 (2008) identifies a current 

interest in, and trend towards, leveraging a priori knowledge to enhance 

performance in machine learning in a variety of application domains, including text 

and language processing.  is customised for corpus-based research; and specifically, 

for populating raw training data (i.e. the tokenized corpus text) with a priori 

knowledge gathered and cross-referenced from widely-used lexica. Predicting 

phrase boundaries at the prosody-syntax interface is a notoriously complex task for 

machine learning because of the inherent variance of prosody (cf. Taylor and Black, 

1998; Atterer and Klein, 2002; Chapter 5). Planned research into the phrase break 

prediction task will attempt to incorporate a dictionary-derived feature such as 

lexical stress pattern (field eight in ProPOSEL) into a data-driven model to explore 

this interface more fully; although using just the raw pattern would entail one 

hundred and twenty-four separate values for this feature (i.e. the set of lexical stress 

patterns in the lexicon).  

6.7. Implementing ProPOSEL as a Python dictionary 

A lexicon designed for linkage with corpora - speech corpora in this case - 

needs word class information in the form of PoS tags. It also needs wordforms and 

inflected forms rather than lemmas. CELEX-2, for example, lists wake and waken in 

its directory for English lemmas but not woke and woken; the latter appear in its 

directory for English wordforms instead. If we annotate these words using the LOB 

tagset, we get: wake/NN wake/VB waken/VB woke/VBD woken/VBN. The form and 

function of each word token in the corpus is defined by its PoS tag and therefore 

(token, tag) can act as a unique identifier for dictionary lookup. 

The Python programming language has a dictionary mapping object with 

entries in the form of (key, value) pairs. Each key must be unique and immutable 

(e.g. a string or tuple), while the values can be any type (e.g. a list). This syntax can 

                                                 
10 PASCAL: Pattern Analysis, Statistical Modelling, and Computational Learning: 

http://www.cs.man.ac.uk/~neill/thematic08.html 

 

http://www.cs.man.ac.uk/~neill/thematic08.html
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be exploited by transforming ProPOSEL into a Python dictionary with compound 

keys (wordform and C5 tag) and multiple values11 in the form of lists of tokens from 

chosen fields for a given entry. In Example 12, the syntax { } denotes a dictionary 

data structure in Python, where keys and values are separated by a colon, and where 

each individual entry exhibits the structure: ( ( ), [ ] ) - entry groups in tuple format; 

immutable dictionary keys in tuple format; values associated with those keys held in 

a list. 

Example 12 

{((„cascaded‟, „VVD‟):[„k&'skeIdId‟, „3‟, „010‟, „C‟]),  

((„cascaded‟, „VVN‟):[„k&'skeIdId‟, „3‟, „010‟, „C‟]), 

((„cascading‟, „VVG‟): [„3‟, „010‟, „C‟]), ((„cascading‟, „AJO‟): 

[„3‟, „010‟, „C‟])} 

Thus incoming corpus text, also in the form of (token, tag) tuples, can be 

matched against ProPOSEL‘s keys; and thus intersection enables corpus text to 

accumulate additional prosodic and syntactic annotations which constitute potential 

features for machine learning tasks. 

6.7.1. Dictionary lookup when input text is not tagged with C5  

The aforementioned lookup mechanism is relatively straightforward for 

corpora tagged with C5. A possible solution for input text annotated with an 

alternative PoS-tagging scheme is to find a match for (token, tag) in more than one 

field: field one (orthographic form) and then either field nine (Penn), or eleven 

(LOB), or twelve (C7). The preferred solution appends a C5 tag to each item in the 

input text such that lookup can proceed in the normal way. This negotiates problems 

caused by one-to-many mappings, enclitics and Saxon genitives, aptly illustrated by 

the raw textfile entry in Example 13, where the orthographic form 'twould is an 

enclitic. The modern-day equivalent it’d would exhibit the same complexity but 

does not appear in CUVPlus or ProPOSEL. 

Example 13 

'twould|PNP+VM0|PRP,MD|F|PP3AS,PP3O,PP3OS,PP$$,PP1A,PP1AS,PP1O, 

PP1OS,PP2,PP3,PP3A+MD|PPGE,PPIS1,PPIS2,PPIO1,PPIO2,PPY,PPH1,PPHS1, 

PPHS2,PPHO1,PPHO2+VM,VMK 

                                                 

11 See, for example, the recipe by M. Chermside in Martelli et al. (2005: 173)  
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 In this example, the C5 tag only finds a one-to-one match with Penn. The 

forest of one-to-many mappings from personal pronouns (PNP) in C5 to equivalent 

tags in LOB and C7 is particularly dense; and C7 also has two tags for modals: VM 

for auxiliaries (can, will, would etc.) and VMK for catenatives (ought, used).   

User access code for ProPOSEL includes functions for creating and 

tokenizing encliticised forms in all PoS fields such that ‗PNP+VM0‘ in C5 would be 

mapped to ‗PP3AS+MD‘, ‗PP3O+MD‘ et cetera in LOB, and similarly in C7. 

Preserving enclitics is considered to be important for prosody; it’s and it is are 

syntactically equivalent but are different in terms of beats.  Interestingly, the archaic 

encliticised form ‘twould in Example 14 has a different rhythmic structure from the 

more familiar it’d. 

6.7.2. Navigational software tools for ProPOSEL 

ProPOSEL is supported by a toolkit of software solutions compatible with 

NLTK and an explanatory tutorial with sections on: preparing the textfile for NLP; 

mapping variant syntactic information (with subsidiary sections on handling 

enclitics, Saxon genitives and one-to-many mappings); implementing ProPOSEL as 

a Python dictionary; annotating PoS-tagged corpora with domain knowledge of 

phonology; and customising searches via multiple criteria. 

Phonology fields in ProPOSEL constitute a range of access routes for users 

and enable lookup via sound, syllables, and rhythmic structure as alternatives to 

orthographic form.  It is also possible to read in the textfile as a nested structure and 

perform filtered searches on particular fields or field combinations as user-defined 

subsets of the lexicon.  

6.8. Filtered searches and having fun with ProPOSEL 

The previous section demonstrated how fine-grained grammatical 

distinctions in the PoS tag field(s) in ProPOSEL are integral to linkage with corpora. 

It also demonstrated how an electronic dictionary in the form of a simple text file 

can be reconceived and reconstituted as a computational data structure known as an 

associative memory or array.  

It is not always necessary to transform ProPOSEL into a Python dictionary, 

however. Users can also read in the lexicon textfile, apply Python‘s splitlines() 

method to process the text as a list of lines, and then apply the split() method, with 
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the pipe field separator as argument, to tokenize each field. Listing 6.1 presents this 

much more succinctly. 

lexicon = open('filepath', 'rU').read() 

lexicon = lexicon.splitlines() 

lexicon = [line.split('|') for line in lexicon] 

Listing 6.1: Reading in ProPOSEL as a nested structure   

Users can then perform a search on a defined subset of the lexicon. For 

example, users may wish to retrieve all entries with seven syllables from the lexicon. 

As well as returning items like: industrialisation, operating-theatre, and 

radioactivity, Listing 6.2 discovers the rather intriguing sir roger de coverley!  

for index in lexicon: 

if index[6] == '7': # look in the subset 

print index[0] # return word form(s) 

Listing 6.2: Searching a subset of the lexicon  

Another illustration would be finding words which rhyme. If we wanted to 

find all the words which rhyme with corpus in the lexicon, we could search field (4), 

for example, the SAM-PA phonetic transcriptions, for similar strings to /'kOp@s/. 

One way of doing this would be to compile a regular expression, substituting the 

metacharacter . for the ‗c‘ in corpus and then seek a match in the SAM-PA field. We 

might also look for minimal pairs, replacing the phoneme /s/ with the phoneme /z/ 

as in /'.Op@z/. Retaining the apostrophe as diacritic for primary stress before the 

wildcard here imitates the lexical stress pattern for corpus and is part of the rhyme. 

It transpires there is only one candidate which rhymes with corpus in the lexicon and 

two half rhymes. Listing 6.3 gives us porpoise /'pOp@s/ and then paupers 

/'pOp@z/ and torpors /'tOp@z/.  

p1 = re.compile("'.Op@s") 

p2 = re.compile("'.Op@z") 

sampa = [index[3] for index in lexicon]  

rhymes1 = p1.findall(' '.join(sampa)) 

rhymes2 = p2.findall(' '.join(sampa)) 
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Listing 6.3: Using regular expressions to retrieve bi-syllabic words with primary 

stress on the first syllable that rhyme with corpus. Note that Python lists start 

at index 0, hence in Listing 6.3, the SAM-PA field is at position [3] in the 

inner list of tokenized list fields for each entry. 

Two well established phonetic transcription schemes are also represented in 

ProPOSEL: the original SAM-PA transcriptions in field 4 and DISC stressed and 

syllabified transcriptions in fields 13 and 14 which, unlike SAM-PA and the 

International Phonetic Alphabet (IPA), use a single character to represent dipthongs: 

/p8R/ for pair, for example. 

Phonology fields in ProPOSEL constitute a range of access routes for users. 

As an illustration, a search for like candidates to the verb obliterate might focus on 

structure and sound: verbs of 4 syllables (field 7), with primary stress on the second 

syllable (field 8), and with vowel reduction on the first syllable (a choice of phonetic 

transcription fields). This filter retrieves sixty-two candidates - most but not all of 

them end in /eIt/ - including these in Table 6.7. 

 

 

 

 

 

 

 

 

('affiliate', "@'fIlIeIt") 

('corroborate', "k@'r0b@reIt") 

('manipulate', "m@'nIpjUleIt") 

('originate', "@'rIdZIneIt")  

('perpetuate', "p@'petSUeIt")  

('subordinate', "s@'bOdIneIt") 

('vociferate', "v@'sIf@reIt") 
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Table 6.7: Sample of 7 candidate verbs retrieved which share phonological features 

with the template verb: obliterate  

6.9. Chapter summary 

This chapter describes a purpose-built prosody and PoS English lexicon to 

integrate and leverage domain knowledge from several well-established language 

resources for corpus-based research in speech synthesis and related fields. It is 

planned to make this lexicon, and the accompanying software and tutorial, freely 

available under the auspices of open source projects such as the Python-based 

Natural Language Toolkit and/or the Aix-MARSEC corpus project. The 

incorporation of different tagsets - currently C5, Penn, LOB, and C7 - facilitates 

linkage with some of the main English language corpora used in speech and 

language processing. 

As well as arguing the case for word class identification via PoS tags in 

electronic dictionaries, this chapter has explored variations in syllabification and 

levels of prominence in the treatment of vowels and in phonetic transcriptions in 

English lexica.  The chapter also interprets lexical stress as a potential text-based 

feature for supervised machine learning.   

It is further suggested how a computer-usable and human readable dictionary 

text file can be reconceived and dynamically reconstituted as an associative array - a 

Python dictionary - where the recommended access strategy is via compound keys 

(wordform and C5 tag) which uniquely identify each lexical entry. Users can also 

manipulate the text file to perform filtered searches on subsets of the lexicon and 

access wordforms via sound, syllables and rhythmic structure.  

The contributing lexical resources which formed the basis of ProPOSEL – 

OALD, CUV, BNC, CELEX, PRONLEX, CMU, Penn Treebank, and LOB – have 

each been used in a variety of research projects covering psycholinguistics, language 

engineering and corpus linguistics. ProPOSEL combines the lexical information 

from all these resources, and so should be applicable in all these research areas, and 

many more. 
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Chapter 7 

Experimentation with ProPOSEL (Part 1): Derivation and 

Significance Testing of Non-traditional Prosodic Phrase Break 

Features in a Corpus of Seventeenth Century Blank Verse 

 

‗…To be, or not to be: that is the question: 

Whether 'tis nobler in the mind to suffer 

The slings and arrows of outrageous fortune, 

Or to take arms against a sea of troubles, 

And by opposing end them? To die: to sleep…‘ 

Hamlet Act 3, Scene 1; lines 56-60 

7.1. Discussion of background (literary) terminology for prosody 

The opening lines of Hamlet‘s famous soliloquy contain an unpunctuated 

section (lines 57-58) which has given rise to much syntactic controversy; the Arden 

Shakespeare‘s Hamlet (Jenkins, 2003:277) notes contradictory interpretations of 

prepositional phrase attachment by two critics for ‗…in the mind…‘: is it an 

adverbial or adjectival prepositional phrase, modifying suffer or nobler respectively? 

In the first case, the phrase will initiate a new syntactic chunk and the caesura, or 

main prosodic mid-line break (cf. Knowles, 1987:182) will fall after nobler; in the 

second case, the phrase will complete an information unit and tone group (cf. 

McCarthy, 1991:99) and the caesura will fall immediately after the fourth beat in the 

line, after mind. 

The above analysis introduces several important terms for discussing the 

prosody-syntax interface in Shakespearian blank verse and in English generally. It 

mentions chunking, that is the use of pitch accents and pauses to signal boundaries 

between meaningful clusters of words which have both prosodic and syntactic 

coherence: tone groups (prosodic units) and function word groups (syntactic units). 

It also mentions the caesura which, sometimes openly and sometimes unobtrusively 

and even negligibly, divides each line in iambic pentameter (blank verse metre) into 

one of the following beat patterns: {2-3; 3-2; 1-4; 4-1}. Finally, it mentions rhythm 
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or beats, lexical stresses and salient accents assigned to specific syllables by the poet 

himself, his actors, and his readers, but again, open to interpretation. Knowles, for 

example (Knowles, 1987:159;181) suggests that the number of accents in a 

pentameter may vary. While this is so, there will always be five beats (or stresses) 

and, like salient accents, these beats will always fall on stress prone syllables in any 

given word. Thus, in the above extract from Hamlet‘s soliloquy, the phrase 

‗…outRAgeous FORtune…‘ carries two beats as marked, but only one of them will 

be made salient by changes in pitch. The lexical stress patterns in ‗…outRAgeous 

FORtune…‘ are canonical and may be represented abstractly as a series of numbers 

010 10 from the set: {0 unstressed, or weakly stressed syllable; 1 primary stress; 2 

secondary stress}. 

So far, we have discussed these famous lines without explicit recognition of 

the feeling self – but that is not to say it is absent. However, before we can interpret 

and respond to these lines, we need to chunk them into meaningful groups of words, 

to parse them in effect; and this entails making decisions about prosody. So where is 

the caesura in line 57? 

 ‗…Whether ‘tis nobler in the mind to suffer…‘  

One possible rendition is to put it after mind because it is rhythmically more 

pleasing. A pause after nobler would insert a partition between two accent groups 

‘tis nobler and in the mind which ignores the invitation to run them together (nobler 

 in) via a linking r (Mortimer, 1985:46). This, in turn, encourages salience to 

gather on the word suffer instead of mind. A holistic phrasing for lines 56-60 might 

be as follows (with major phrase boundaries marked via || and salient items in bold). 

However, it is a matter of individual choice, as long as the phrasing and accenting 

make sense. 

‗…To be, or not to be: || that is the question: || 

Whether 'tis nobler in the mind || to suffer 

The slings and arrows of outrageous fortune, || 

Or to take arms against a sea of troubles, || 

And by opposing end them? || To die: to sleep…‘ 

 

There is one further term requiring explanation and that is enjambement or 

run-on lines, an instance being lines 57-58 in the above rendition, where prosodic-
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syntactic chunking does not correspond to the metrical lines. The absence of 

punctuation at the end of line 57 is a clue, used elsewhere in this speech and in 

Shakespearian verse in general, prompting the reader to ignore the line break and 

process the phrase  ‗…to suffer the slings and arrows…‘ as one chunk. Knowles 

(1987:138) advocates a middle way:  

‗…When you read…verse aloud, you can read according to the metre, or… 

according to the sense. Or, more likely, you will do something in between, 

trying not to lose either the metre or the sense entirely…‘  

The important point to note is that prosodic phrases in blank verse occur within lines 

and between lines; and that the use of enjambement and the shifting location of 

caesuras ‗…helps to create an illusion of natural speech…‘ (V&A, 2010). 

7.2. Legitimising variant phrasing in different editions of the same 

text   

In supervised machine learning, the task of predicting prosodic phrase breaks 

in text which mimic human phrasing equates to classifying junctures or whitespaces 

between words as either breaks (the minority class) or non-breaks. Given the 

interdependence of prosody and syntax, the language model is invariably trained on 

part-of-speech (PoS) contexts in which boundaries are likely to occur. These 

contexts are defined by a gold standard, an annotated speech corpus, processed as a 

list of tokens comprising PoS tags (syntactic annotation) and human-labelled 

boundaries. Once the model has been trained, it is tested on an unseen reference 

dataset minus the boundaries from the same corpus, and evaluated by seeing how 

many of the original boundary locations have been recaptured or predicted by the 

model.  

Evaluation against a human-labelled gold standard is a tried and tested method in 

computational linguistics. When applied to prosody, however, this procedure is 

problematic because prosody is inherently variable and the corpus ‗…only 

represents one out of the space of all acceptable phrasings…‘ (Atterer and Klein, 

2002). Thus predictions made by a language model which do not match the corpus 

would be classed as insertion or deletion errors irrespective of their potential 

validity as alternative phrasings. 
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We have already examined one instance of prosodic variance in five lines from 

Hamlet in the previous section. The next step is to compare prosodic phrasing in 

eTexts of antique and modern versions of Hamlet‘s soliloquy, where punctuation is 

assumed to be a gold standard boundary marker. Tags for punctuation are included 

in PoS-tagging schemes and exploited in automatic phrase break prediction because 

of their high correlation with boundaries. Again, for the purposes of illustration, 

only an excerpt from the soliloquy will be used: lines 60-65. 

Table 7.1 shows phrasing variance, as signified by the presence or absence of 

punctuation, between a modern version of Hamlet Act 3, Scene 1, lines 60-65 and 

Project Gutenberg‘s First Folio edition of same; both corpora are distributed with 

NLTK. The extracts exhibit a high degree of verse-sentence divergence; punctuation 

and caesuras demarcate prosodic-syntactic boundaries between independent clauses 

which span three lines and ‗…overflow [run-on lines] is unimpeded…‘ 

(Langworthy, 1931). It is also worth pointing out that the placing of punctuation 

(our boundary measurement) in the modern version of this extract matches exactly 

that of the Arden Shakespeare edition (Jenkins, 2003) although there are differences 

in types of punctuation mark used. 

MODERN VERSION FIRST FOLIO VERSION 

…To die: to sleep; 

No more; and by a sleep to say we end 

The heart-ache and the thousand natural 

shocks 

That flesh is heir to, 'tis a consummation 

Devoutly to be wish'd. To die, to sleep; 

To sleep: perchance to dream:  

…to dye, to sleepe   

No more; and by a sleepe, to say we end 

The Heart-ake, and the thousand Naturall 

shockes 

That Flesh is heyre too? 'Tis a 

consummation 

Deuoutly to be wish'd. To dye to sleepe, 

To sleepe, perchance to Dreame;   

 

 

 

LINEAR PROSE-STYLE PHRASING REPRESENTATION 

…To die | to sleep | no more | and 

by a sleep to say we end the heart-ache 

and the thousand natural shocks that 

flesh is heir to | 'tis a consummation 

…to dye | to sleepe no more | and 

by a sleepe | to say we end the Heart-ake 

| and the thousand Naturall shockes that 

Flesh is heyre too | 'Tis a consummation 
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devoutly to be wish'd | To die | to sleep | 

to sleep | perchance to dream |… 

Deuoutly to be wish'd |To dye to sleepe | 

to sleepe | perchance to Dreame |…   

Table 7.1: Prosodic variance captured via punctuation in different editions of 

Shakespeare  

It seems fair to say that the First Folio extract gives the speaker-reader clearer 

directions for prosodic-syntactic phrasing over lines 61-63. At the same time, it 

introduces further uncertainty: Wilson-Knight (2001:346) calls this phraseology 

‗…at once inclusive and enigmatic…‘ The next section discusses part-of-speech 

tagging; but how should we tag the phrase No more at the beginning of line 61? 

Does it mean enough; or no longer? Or is it an article-pronoun combination? And 

what does to mean in die to sleepe (line 64)? Is it infinitival or purposeful: in order 

to or so as to; or is it a verb particle? A sensitive rendition would resolve these 

questions, but only temporarily. 

7.3. Inspecting CFP boundaries in an annotated extract from 

Hamlet 

CFP rules are widely used for assigning phrase breaks in text-to-speech 

synthesis (TTS) applications (Abney, 1994; Knill, 2009); such rules interpret 

punctuation as a boundary marker and also insert boundaries between designated 

open-class or content words (the chunks) and closed-class or function words (the 

chinks). It is possible to use a stoplist (e.g. the stopwords corpus (reference) 

distributed as part of NLTK) as a means of filtering plain text for these grammatical 

words; but the usual method is to annotate the text with part-of-speech tags and thus 

identify lexical words {nouns; verbs; adjectives; adverbs} as distinct from all the 

rest. 

UCREL offers a web-based free trial PoS-tagging service and this was used 

for syntactic annotation of Hamlet‘s soliloquy in this demonstration because there is 

an option to select the C5 tagset, simplifying the lookup process and subsequent 

annotation with additional features via ProPOSEL. Four fields in ProPOSEL, 

denoting: word form; C5 PoS tag; default content-function word tag; and stressed 

and unstressed values mapped to DISC syllable transcriptions were selected for this 

study. An instance in the output text file displaying this information would be: 

patient|AJ0|C|'p1:1 SHt:0. 
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7.3.1. Annotating the text with ProPOSEL  

The procedure for annotating prosodic-syntactic boundaries in Hamlet‘s 

soliloquy (cf. Listing 7.1) was as follows: 

1. C5 PoS tags for a modern English version of the text using punctuation 

which accorded with Project Gutenberg’s First Folio edition  were obtained 

via UCREL‘s free trial service. The Early Modern English (EModE) text had 

been manually pre-processed to (i) restore past tense verb forms wish’d  

wished; (ii) incorporate the following transformations: perchance  

perhaps; ‘tis  it’s12; aye  yes; and (iii) insert the word these before 

fardles, as in the First Folio edition. Readers are referred to the VARD or 

spelling Variant Detector tool in Rayson et al (2005; 2007) for automatic 

pre-processing of large amounts of EModE text. 

2. A few manual ―corrections‖ were made to the C5 tagged output, either to 

match ProPOSEL‘s keys (as in there’s_EX0+VBZ and law’s_NN1+POS), or 

when an alternative syntactic analysis was preferred, for example (i) for as a 

subordinating conjunction rather than a preposition in: for_PRP in_PRP 

that_DT0  for_CJS in_PRP that_DT0; and (ii) off as a particle rather than 

a preposition in: shuffled_VBN off_PRP  shuffled_VBN off_AVP. The 

finished version was saved as a text file. 

3. This text file was then read in by the program and underwent the sequence of 

operations outlined in pseudocode in Listing 7.1: (i) the text was tokenized in 

the form of (word, tag) tuples; (ii) commas were tagged as minor boundaries 

‘|’ and a further set of punctuation marks { . : ; ? !} were tagged as 

major boundaries ‘||’; (iii) the text was mapped to a tokenized First Folio 

edition of the same extract from NLTK‘s Project Gutenberg file; (iv) 

ProPOSEL was read in and transformed into a Python dictionary of 

compound keys and multiple values; (v) intersection between ProPOSEL‘s 

keys and the text object in the lookup process resulted in further prosodic-

syntactic annotation of the text, including default content-function word tags; 

(vi) printouts of selected information in a user-friendly format were 

examined, with surprising results.  

                                                 

12 Transforming ‘tis to it’s does not affect syllable count and hence rhythm, unlike 

the transformation from it’s to it is in Section 6.7.1 of this thesis 
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# hamlet_prosody2_rerun.py 

# Compatible with NLTK 0.9.8 

# 27/11/09 

 

import nltk, re, pprint # main import statement for version 

import copy 

from nltk.tokenize import * 

import itertools 

 

tokenizer1 = LineTokenizer(blanklines='discard') 

tokenizer2 = WhitespaceTokenizer() 

 

# EModE version of text 

textEModE = "To be , or not to be , that is the Question : Whether 'tis 

Nobler in the minde to suffer The Slings and Arrowes of outragious Fortune 

, Or to take Armes against a Sea of troubles , And by opposing end them : 

to dye , to sleepe No more ; and by a sleepe , to say we end The Heart-ake 

, and the thousand Naturall shockes That Flesh is heyre too ? 'Tis a 

consummation Deuoutly to be wish'd . To dye to sleepe , To sleepe , 

perchance to Dreame ; I , there's the rub , For in that sleepe of death , 

what dreames may come , When we haue shuffel'd off this mortall coile , 

Must giue vs pawse . There's the respect That makes Calamity of so long 

life : For who would beare the Whips and Scornes of time , The Oppressors 

wrong , the poore mans Contumely , The pangs of dispriz'd Loue , the Lawes 

delay , The insolence of Office , and the Spurnes That patient merit of the 

vnworthy takes , When he himselfe might his Quietus make With a bare Bodkin 

? Who would these Fardles beare To grunt and sweat vnder a weary life , But 

that the dread of something after death , The vndiscouered Countrey , from 

whose Borne No Traueller returnes , Puzels the will , And makes vs rather 

beare those illes we haue , Then flye to others that we know not of . Thus 

Conscience does make Cowards of vs all , And thus the Natiue hew of 

Resolution Is sicklied o're , with the pale cast of Thought , And 

enterprizes of great pith and moment , With this regard their Currants 

turne away , And loose the name of Action ." 

 

textEModE = textEModE.split() # tokenize the text 

 

# PresE version of text with C5 PoS tag annotations 

tagged = open ('C:\\...\\C5_hamlet_folio_punct_checked.txt', 'rU').read()  

 

# Transformations on tagged version 

tagged = tokenizer2.tokenize(tagged) # ['To_TO0', 'be_VBI', ',_,',..]  

tagged = [tuple(index.split('_')) for index in tagged]  

# [('To', 'TO0'), ('be', 'VBI'), (',', ','),..]  

tagged = [list(index) for index in tagged]  

# [['To', 'TO0'], ['be', 'VBI'], [',', ','],..]  

for index in tagged: # Swap major & minor boundary markers for punctuation 

if index[0] == ',': 

index.remove(index[1]) 

index.append('|') 

elif index[0] in ['.', '?', '!', ':', ';']: 

index.remove(index[1]) 

index.append('||') 

   

final = list(zip(textEModE, tagged)) 

 

 

 

# Read in and transform ProPOSEL lexicon into Python dictionary 

lexicon = open('C:\\...\\proPOSEL0408_final.txt', 'rU').read() 

lexicon = [line.split('|') for line in list(tokenizer1.tokenize(lexicon))] 

# Keys are immutable so tuples are used 

lexKeys = [(index[0], index[1]) for index in lexicon]  

# Nested lists: syll count; lex stress; CFP; DISC-stress mappings 

lexValues = [[index[6], index[7], index[9], index[13]] for index in 

lexicon] buildDict = dict(zip(lexKeys, lexValues)) 

 

# Performing the lookup 

final2 = [((index[1][0].lower()), index[1][1]) for index in final] # Lower 
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case version required for ProPOSEL lookup 

final4 = copy.deepcopy(final) # [...('To', ['To', 'TO0']), ('be', ['be', 

'VBI'])...] 

 

for x, y in itertools.izip(final2, final4): 

if x in buildDict.keys(): # if tuple format matches ditionary keys 

y[1].append(buildDict[x]) # append corresponding values to list 

format 

     else: 

y[1].append('No match') 

 

# Obtain printout 

for line in final4: 

     if line[0] in ['.', '?', '!', ':', ';', ',']: 

 print line[0], line[1][1] 

     elif line[1][2] == 'No match': 

 print line[0], line[1][1]           

     else: 

 print line[0], line[1][1], line[1][2][2], line[1][2][3] 

      

Listing 7.1: Program for automatic annotation of prosodic-syntactic features via 

ProPOSEL 

7.3.2. True and false boundary predictions  

There are 36 phrase break annotations corresponding to punctuation in the 

version of Hamlet‘s soliloquy used in this study. Any rule, therefore, which 

interprets punctuation as a phrase break feature, will have good recall: 100% in this 

case because the gold standard is based on punctuation alone. When the text is 

annotated with default content-function word tags from ProPOSEL, we find that 

88.89% of these boundaries are also chink-chunk scenarios; but we also find that a 

chink-chunk rule dependent on these default settings over-predicts by inserting 50 

extra boundaries, false positives of uncertain validity. CFP output (in horizontal 

format) for the final sentence looks like this (Example 7.1), with extra boundaries 

highlighted in bold. 

 

Example 7.1 

Thus_C Conscience_C does_C make_C Cowards_C | of_F vs_F all_F ,_| 

And_F thus_C | the_ F Natiue_C hew_C | of_F Resolution_C Is_C 

sicklied_No match o're_F ,_| with_F the_F pale_C cast_C | of_F 

Thought_C ,_| And_F enterprizes_C | of_F great_C pith_C | and_F 

moment_C ,_| With_F this_F regard_C | their_F Currants_C turne_C 

away_C ,_| and_F loose_C | the_F name_C | of_F Action_C ._|| 

 

Readers may decide which of these extra boundaries they might use 

themselves. It seems more natural to preserve syntactic cohesion in the following 
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word clusters rather than chop them up into f-groups: the native hue of resolution; 

the pale cast of thought; great pith and moment; the name of action. On the other 

hand, falling rhythm makes enterprises and regard good candidates for a boundary 

of sorts: the in-line caesura. The word resolution is a similar case: it comes at the 

end of a line and its lexical stress pattern in ProPOSEL reveals two falls |2010|. 

7.3.3. An accidental insight  

A potential correlation was spotted, quite by accident, between words 

containing certain sounds and prosodic phrase boundaries in the outputs from 

Listing 7.1. The set of DISC phonetic transcriptions is peculiar in that it represents 

diphthongs and triphthongs (plus the long vowel in or) by the numerals 1 to 9; and 

these somehow stand out from the crowd. On inspection, it was noted that twelve 

out of thirty-three line ends in this extract contain diphthongs or triphthongs: 

{consummation; coile; life; time; delay; takes; make; beare; life; borne(?); moment; 

away}; and furthermore, that the same sounds co-occur with marked caesuras {dye; 

heart-ake; I; pawse; o‘er} and with potential (unmarked) caesuras such as those 

already discussed: nobler and minde (7.1) plus enterprizes (7.2.1). Table 7.2. shows 

some example outputs.  

 

 

 

 

 

 

 

 

 

 

Complex vowels in pre-boundary 

words 

Complex vowels at in-line caesuras 

: || , | 
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For CJS F 'f$R:1 

who PNQ F 'hu:1 

would VM0 F 'wUd:1 

beare VVI C 'b8R:1 

the AT0 F 'Di:1 

Whips NN2 C 'wIps:1 

and CJC F '{nd:1 

Scornes NN2 

of PRF F 'Qv:1 

time NN1 C 't2m:1 

, | 

And CJC F '{nd:1 

enterprizes NN2 C 'En:1 t@:0 pr2:0 zIz:0 

of PRF F 'Qv:1 

great AJ0 C 'gr1t:1 

pith NN1 C 'pIT:1 

and CJC F '{nd:1 

moment NN1 C 'm5:1 m@nt:0 

, | 

With PRP F 'wID:1 

this DT0 F 'DIs:1 

regard NN1 C rI:0 'g#d:1 

their DPS F 'D8:1 

Currants NN2 C 'kV:1 r@nts:0 

turne VVB C 't3n:1 

away AV0 C @:0 'w1:1 

, | 

Table 7.2: Co-occurrence of complex vowels and boundaries in Hamlet extract  

7.4. Intuiting non-traditional phrase break features from verse  

Automatic phrase break classifiers for text-to-speech synthesis systems 

currently rely on syntactic (e.g. part-of-speech) and text-based (e.g. punctuation) 

features for recapturing and emulating human parsing and phrasing strategies 

encapsulated by gold standard phrase break annotations in speech corpora used for 

training and testing such classifiers. In this case, the annotations correspond to 

listeners‘ perceptions of pauses in the speech stream as speaker prosody 

differentiates between syntactically coherent clusters of words: the chunking 

phenomenon (Abney, 1991).  

Experimental work in the rest of this chapter is based on observation and 

intuition: the presence of diphthongs and triphthongs at phrase breaks or rhythmic 

junctures in poetry (7.2) suggests that new categorical prosodic features for 

boundary prediction may be derived from lexical items which incorporate this subset 

of English vowels – henceforth referred to as complex vowels for convenience – in 

their canonical phonetic transcriptions. The following examples (Examples 7.2 and 

7.3) from English binary verse illustrate this association. 
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Example 7.2 

 

Tyger! Tyger! burning bright 

In the forests of the night, 

What immortal hand or eye 

Could frame thy fearful symmetry? 

(The famous opening stanza of Blake‘s The Tyger, circa 1794) 

Example 7.3 

The dove descending breaks the air 

With flame of incandescent terror 

Of which the tongues declare 

The one discharge from sin and error. 

The only hope, or else despair 

Lies in the choice of pyre or pyre – 

To be redeemed from fire by fire.  

(Eliot‘s Pentecostal invocation in part IV of Little Gidding, 1942)  

 The term rhythmic juncture is used here to denote in-line caesuras and line 

ends; and the lexical items of interest are words which immediately precede these 

boundaries and which bear complex vowels, often in the primary syllable, in their 

Present Day British English (PresE) canonical forms for both spelling and 

pronunciation. A vowel is said to be complex when vowel quality changes (from 

initial to target quality) within a single syllable (Maidment, 2009). Our subset 

includes words like fire and power where syllabification is dubious (one syllable or 

two?) and where transcriptions for standard English pronunciation vary between 

lexica (cf. 5.4.3 and 5.4.4).  In plain text view, some of these junctures are not 

physically represented, either by punctuation or by line and verse endings: these are 

the unmarked, in-line caesuras. Nevertheless, the following pre-boundary tokens 

with vocalic glides are posited for Blake‘s stanza: {Tyger; bright; night; eye; 

frame}; and for Eliot‘s: {air; flame; declare; hope; despair; choice; pyre; fire}. In 

the case of recital, such choices (one might even say classifications) reflect 

‗…speakers‘ perceptions about the divisibility of text…‘ (Sinclair and Mauranen, 

2006: xvi); in silent reading, they reflect projected prosody (Fodor, 2002).   
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The present study undertakes an investigation to assess the degree of 

correlation between words bearing gliding vowels and marked boundaries in a 

classic Early Modern English (EModE) literary text: Book I of Milton‘s Paradise 

Lost. Software tools from version 0.9.8 of NLTK, the Natural Language ToolKit 

(Bird et al., 2009) and Natural Language Processing (NLP) techniques are used to 

tokenize the text and then annotate it with ‗projected prosody‘ from ProPOSEL, a 

prosody and part-of-speech English lexicon (Chapter 5). The principal dataset is 

drawn from Dartmouth College‘s eText of the 1674 edition of the poem (Luxon, 

2010). The second dataset is a readily available, modern English version of Book 1: 

the 1992 eText from Project Gutenberg, also distributed in NLTK‘s corpora; 

although this does not entirely reflect original punctuation in the 1667 and 1674 

editions, it is assumed to be a reliable phrasing variant13.  

 This chapter discusses: the use of punctuation as a boundary marker in 

previous studies based on literary corpora (7.4); the tokenization and classification 

of each word in the samples as a break or non-break (7.5); the further annotation of 

each word token with its phonetic transcription via ProPOSEL, plus pertinent 

similarities and differences between EModE and PresE pronunciation (7.6); 

significance testing of the correlation between complex vowels and boundaries in 

both samples using the chi-squared statistic (7.7); and telling examples in Book 1 of 

Paradise Lost where unmarked conceptual boundaries (i.e. in-line caesuras) are 

signified by complex vowels (7.8).  

7.5. Punctuation as a prosodic template 

The symbolic representation of pauses via punctuation has been used in a 

number of exploratory studies of stylistic evolution in EModE blank verse. Pause 

patterns in Shakespeare‘s work, originally obtained from inclusive counts for 

punctuation at designated within-line positions for each play (Oras, 1960), have 

recently been subjected to formal statistical analysis (Jackson, 2002) and found to be 

good guides to chronology: plays of the same period, and in some instances, 

chronologically adjacent plays, reveal progressive experimentation with the 

                                                 

13 Jackson (2002) observes that ‗…agents of transmission may prefer heavy or light 

punctuation, [but] tend not to diverge too markedly in where they place the 

stops…‘ (§2) 
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placement of stops (i.e. punctuation) within the line. A similar phenomenon, that of 

increasing divergence between metrical (the lines of verse) and grammatical units in 

the Shakespearian chronology, is discussed in a much earlier paper (Langworthy, 

1931). Here, a quotient is obtained by dividing the number of parallel line types (e.g. 

where independent clauses are wholly contained within a line) by the number of 

divergent types in a given play and findings show that, whereas for very early plays 

the quotient is relatively high (40.00 and above), for later plays like Hamlet and 

Macbeth it is much lower (4.21 and 1.89 respectively) and for very late plays like 

The Winter’s Tale, lower still (0.47). The following extract from Act I, Scene VII of 

Macbeth
 
illustrates naturalistic prosodic-syntactic chunking both within and between 

lines, simulated via shifting placement of marked caesuras, and verse-sentence 

divergence facilitated by enjambement (Example 7.4). 

Example 7.4 

Macb. If it were done, when 'tis done, then 'twer well, 

It were done quickly: If th' Assassination 

Could trammell vp the Consequence, and catch 

With his surcease, Successe: that but this blow… 

 

Langworthy (1931) observes that the poet ‗…write[s] his sentence[s] almost as 

though he had forgotten all about the line, and yet fulfills the line requirements with 

the off-hand ease of a supreme master of metrics‘. 

Turning now to Paradise Lost, Banks (1927) sets out to identify the 

‗prosodical devices‘ by which Milton ‗…makes the rhythms of his units of thought 

independent of the single lines and of each other, thus achieving the effect of 

irregular paragraphs‘. Again, punctuation in the form of terminal and medial stops 

{periods; colons; question and exclamation marks} is used to delineate verse 

paragraphs; but Banks‘ real interest is in classifying these joints in the verse in terms 

of trigrams consisting of a stop bordered by antecedent and posterior syllables which 

may or may not carry a beat. He identifies two prosodic patterns – the first of which 

is high-profile – which reinforce the midline break in Milton‘s verse through accent 

inversion, rather in the way of magnets: like accents repel! Examples of these are 

tabulated below (Table 7.3), with line references for Book I. 

Juncture Type Example Line 
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A stop between two accents  ‗…for ever dwells! Hail, horrors…‘ 250 

A de-accented stop ‗…hastened: as when bands…‘ 675 

Table 7.3: Inverted accents in bold reinforce midline phrase breaks in Milton‘s 

verse 

The present study also aims to explore prosodical devices associated with 

phrase breaks in Paradise Lost: namely, to test the intuition that diphthongs and 

triphthongs act as vocalic precursors of boundaries. It is assumed that punctuation in 

the principal dataset is sufficiently representative of the poet‘s phrasing and that all 

punctuation is significant. Such assumptions are supported by precedent; the terms 

punctuation and pauses have been used interchangeably in studies considered in this 

section; and inclusive counts for punctuation have incorporated: (i) major and minor 

boundary types; (ii) and medial as well as terminal stops. A further point is that 

punctuation is a primary feature used in language models for the machine learning 

of task of phrase break prediction: Ingulfsen et al (2005) even make the point that 

‗…punctuation is used by writers to indicate rhythm and pausing‘. 

Experimentation (7.7) to determine whether the co-occurrence of complex 

vowels and pauses in Book I of Paradise Lost is statistically significant is based on a 

boundary count which includes all line-terminals in the count, irrespective of 

whether they are marked by punctuation or not. The mechanics and justification for 

this are covered in Section 7.5 and revisited in Section 7.8, where other types of 

conceptual boundary are also discussed.  

7.6. Issues of tokenization and phrase break classification 

The author has experimented with two different approaches to tokenization. 

Initially, for the Gutenberg sample, CorpusReader and Tokenizer Classes in NLTK 

0.9.8 were used to simultaneously read in the unprocessed contents of this eText of 

Paradise Lost and to store these contents as a nested list of line tokens: the variable 

milton in the commented code snippet in Listing 7.2. The first line of the poem is 

then accessed via its list index, in this case milton[2]; and slice notation is used to 

assign the whole of Book I to a variable of the same name – book1 – and to access 

and print out the first complete sentence: milton[2:18] by way of illustration. As 

an aside, punctuation in the output from Listing 7.2 accords well with the same 
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excerpt as it appears in an original 1674 edition of the poem, viewable as a .jpg 

image on the internet (Geraghty, 2003). 

import nltk, re  

from nltk.tokenize import *#import all Tokenizer Classes from tokenize package 

tokenizer = LineTokenizer(blanklines='discard')#initialize LINE tokenizer 

milton = tokenizer.tokenize(nltk.corpus.gutenberg.raw('milton-

paradise.txt'))# Read in & tokenize lines in one step  

book1 = milton[2:800] # start and end LINE indexes for Book I of the poem 

 

>>> for line in milton[2:18]: print line # gives us the first sentence 

Of Man's first disobedience, and the fruit  

Of that forbidden tree whose mortal taste  

Brought death into the World, and all our woe,  

With loss of Eden, till one greater Man  

Restore us, and regain the blissful seat,  

Sing, Heavenly Muse, that, on the secret top  

Of Oreb, or of Sinai, didst inspire  

That shepherd who first taught the chosen seed  

In the beginning how the heavens and earth  

Rose out of Chaos: or, if Sion hill  

Delight thee more, and Siloa's brook that flowed  

Fast by the oracle of God, I thence  

Invoke thy aid to my adventurous song,  

That with no middle flight intends to soar  

Above th' Aonian mount, while it pursues  

Things unattempted yet in prose or rhyme. 

Listing 7.2: NLTK‘s LineTokenizer() captures each line of verse in the 

Gutenberg eText as a separate token of type string 

Listing 7.2 provides a solution for preserving verse form during tokenization. 

The next step is to transform book1 so that every word in a line is captured as a 

separate token which can eventually be counted; each of these tokens is then 

classified as a break or a non-break, on the basis of two break indicators: associated 

punctuation and/or line terminal status. For the Gutenberg text, this was initially 

accomplished using NLTK‘s WhitespaceTokenizer(), which captures any 

attendant punctuation as part of each word token and thus facilitates the process of 

break classification. As an example, Listing 7.3 displays three phrase break tokens 

highlighted in bold: Chaos; or and more. 
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>>> for line in book1[8:11]: print line # Python lists start at 0  

['In', 'the', 'beginning', 'how', 'the', 'heavens', 'and', 'earth'] 

['Rose', 'out', 'of', 'Chaos:', 'or,', 'if', 'Sion', 'hill'] 

['Delight', 'thee', 'more,', 'and', "Siloa's", 'brook', 'that', 'flowed'] 

Listing 7.3: NLTK‘s WhitespaceTokenizer() captures 3 break tokens in lines 9 to 

11 of the Gutenberg eText  

However, an alternative approach has since been used and has now been 

applied to both datasets in this study. The customised verse tokenizer in Listing 7.4 

uses a regular expression (cf. Brierley and Atwell, 2009 for step-by-step 

decomposition and explanation of this regular expression) to differentiate word-

internal from normal punctuation and effectively combats problems arising from 

house style punctuation, as in these pauses in lines 27-28 of the Gutenberg variant 

(Example 7.5).  

Example 7.5 

Say first--for Heaven hides nothing from thy view,  

Nor the deep tract of Hell--say first what cause 

 Outputs from both the WhitespaceTokenizer() (labelled test) and the 

regular expression tokenizer (labelled paradise) are juxtaposed in Listing 7.4, 

where the existing data structure for book1 undergoes further nesting to tokenize 

individual elements within each line.  

 

 

 

 

 

import nltk, re  

from nltk.tokenize import *  

tokenizer = LineTokenizer(blanklines='discard')  

 

# Read in & tokenize lines in one step 

milton = tokenizer.tokenize(nltk.corpus.gutenberg.raw('milton-

paradise.txt'))  

 

book1 = milton[2:800] # start and end LINE indexes for Book I of the poem 
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white = WhitespaceTokenizer() 

test = [white.tokenize(index) for index in book1] # Tokenize on whitespace 

 
# INSTANTIATE A CONTAINER AND APPLY A REGULAR EXPRESSION TOKENIZER TO CAPTURE WORD 

TOKENS AND PUNCTUATION TOKENS, PRESERVING WORD-INTERNAL PUNCTUATION SUCH AS 

HYPHENATED FORMS 'sea-monster' 

 

paradise = [] # becomes a deeply nested array 

for line in book1: 

 paradise.append(re.findall(r"\w+(?:[-']\w+)*|[-.]+|\S\w*", line)) 

 

 
# OUTPUTS 

 

>>> for line in test[26:28]: print line 

 

['Say', 'first--for', 'Heaven', 'hides', 'nothing', 'from', 'thy', 

'view,'] 

['Nor', 'the', 'deep', 'tract', 'of', 'Hell--say', 'first', 'what', 

'cause'] 

 

>>> for line in paradise[26:28]: print line 

 

['Say', 'first', '--', 'for', 'Heaven', 'hides', 'nothing', 'from', 

'thy', 'view', ','] 

['Nor', 'the', 'deep', 'tract', 'of', 'Hell', '--', 'say', 'first', 

'what', 'cause'] 

Listing 7.4: Comparative outputs (in bold) from two different approaches to 

tokenization for the Gutenberg eText 

As stated, the author has used the customised verse tokenizer for the count.   

Turning now to the principal dataset, Listing 7.5 operates on Dartmouth‘s eText and 

sorts all word tokens into different bags for breaks and non-breaks via a series of 

steps:  (i) all 798 line terminal tokens are collected in ends and then subdivided on 

presence or absence of attendant punctuation (the containers ends_punct and 

ends_nonpunct); (ii) the container minus_ends is then created where line terminal 

word and punctuation tokens have been removed; (iii)  a for loop captures medial 

breaks in minus_ends and then excludes them from consideration before the final 

iteration bags remaining tokens as non-breaks, ignoring punctuation tokens.  

 

 

 

import nltk, re, copy  

from nltk.tokenize import * 

tokenizer = LineTokenizer(blanklines='discard')  

 

# Dartmouth College version of Book 1 of Paradise Lost, 1674 edition 

milton = open('...dartmouth_1674.txt', 'rU').read()#read in Book 1 as a string 

book1 = tokenizer.tokenize(milton)  

 

# INSTANTIATE A CONTAINER AND APPLY A REGULAR EXPRESSION TOKENIZER TO CAPTURE WORD 

TOKENS AND PUNCTUATION TOKENS, PRESERVING WORD-INTERNAL PUNCTUATION SUCH AS 
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HYPHENATED FORMS 'sea-monster' 

paradise = [] 

for line in book1:  

 paradise.append(re.findall(r"\w+(?:[-']\w+)*|[-.]+|\S\w*", line)) 

 

# (i) CAPTURE THE LAST 2 TOKENS, WHICH COULD BE WORD + PUNCT OR ELSE 2 WORDS  

ends = [index[-2:] for index in paradise]  

ends_punct = [] # initialises container for end-stopped line-terminal word tokens  

ends_nonpunct = [] # initialises container for run-on line terminal word tokens 

 

for index, item in enumerate(ends): 

    if '.' in item[-1]: # if the line terminates with punctuation... 

        ends_punct.append((index, item[-2])) #...append previous word token  

    elif ',' in item[-1]: ends_punct.append((index, item[-2])) 

    elif ';' in item[-1]: ends_punct.append((index, item[-2])) 

    elif ':' in item[-1]: ends_punct.append((index, item[-2])) 

    elif '?' in item[-1]: ends_punct.append((index, item[-2])) 

    elif '!' in item[-1]: ends_punct.append((index, item[-2])) 

    elif ')' in item[-1]: ends_punct.append((index, item[-2])) 

    elif '--' in item[-1]: ends_punct.append ((index, item[-2])) 

    elif '"' in item[-1]: ends_punct.append((index, item[-2])) 

    else: ends_nonpunct.append((index, item[-1])) # append terminal word token 

 

# (ii) REMOVE LINE TERMINAL WORD AND PUNCTUATION TOKENS  

minus_ends = [] 

for index, item in enumerate(paradise): 

    if '.' in item[-1]: minus_ends.append((index, item[:-2])) 

    elif ',' in item[-1]: minus_ends.append((index, item[:-2]))  

    elif ';' in item[-1]: minus_ends.append((index, item[:-2])) 

    elif ':' in item[-1]: minus_ends.append((index, item[:-2])) 

    elif '?' in item[-1]: minus_ends.append((index, item[:-2])) 

    elif '!' in item[-1]: minus_ends.append((index, item[:-2])) 

    elif ')' in item[-1]: minus_ends.append((index, item[:-2])) 

    elif '--' in item[-1]: minus_ends.append((index, item[:-2])) 

    elif '"' in item[-1]: minus_ends.append((index, item[:-2])) 

    else: minus_ends.append((index, item[:-1])) 

 

# (iii) CAPTURE MEDIALS & BAG REMAINING WORD TOKENS AS NON-BREAKS 

minus_ends2 = copy.deepcopy(minus_ends) # changes to copy won’t affect original  

medials = []# initialises container for word tokens marked as caesuras 

non_breaks = []# initialises container for remaining non-break word tokens 

 

 

for index, item in minus_ends2: 

    for i, v in enumerate(item): 

        if v in [',', '.', ')', '"', '!', '?', ':', ';', '--']: 

            medials.append((i, item[i - 1])) # append token prior to 

punctuation  

            del item[i - 1] # remove medial break token from line in minus_ends2 

 

for index, item in minus_ends2: 

    for i, v in enumerate(item): 

        if v in [',', '.', ')', '"', '!', '?', ':', ';', '--', "'"]: 

            pass # ignore punctuation tokens 

        else: non_breaks.append((i, v)) 

Listing 7.5: Collecting and sorting all word tokens in Dartmouth College‘s eText of 

Book I of Paradise Lost into 5 different bags: (1) all line terminals; (2) end-

stopped terminals; (3) run-on terminals; (4) marked caesuras; (5) non-breaks  

  

The counts presented in Section 7.7 of this chapter are the true counts for (i) 

this particular version of the corpus and (ii) this particular solution for tokenizing 

blank verse. Even though we are ostensibly working with the same poem in the 

Dartmouth and Gutenberg eTexts, we are not working with the same text – or 
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dataset – and subtle differences do emerge which affect the overall counts (but not 

the experimental outcome) for each version. One of the frequent culprits here is 

hyphenated forms: there are more of them in the Gutenberg version, hence reducing 

the word count for this dataset (cf. unshaded rows in Table 7.4). Another occasional 

difference is the representation of elisions – although it is unlikely that a modern 

reader familiar with the rhythms of blank verse would let such differences spoil the 

beat (cf. shaded rows in Table 7.4).  

Gutenberg 

311 

And broken chariot-wheels. So thick bestrown, 

 

6 word tokens 

Gutenberg 

340 

Waved round the coast, up-called a pitchy cloud  

 

8 word tokens 

Gutenberg 

460 

In his own temple, on the grunsel-edge, 7 word tokens 

Dartmouth 

311 

And broken Chariot Wheels, so thick bestrown  7 word tokens 

Dartmouth 

340 

Wav'd round the Coast, up call'd a pitchy cloud  9 word tokens 

Dartmouth 

460 

In his own Temple, on the grunsel edge,  8 word tokens 

Gutenberg 

223 

"...In billows, leave i' th' midst a horrid vale..." 9 word tokens; 10 

syllables intended 

Dartmouth 

223 

"...In billows, leave i'th' midst a horrid Vale..." 8 word tokens; 

exactly 10 

syllables 

Table 7.4: Utterances which are virtually prosodically identical in the two datasets 

have different word counts 

7.7. Projecting prosody onto text via ProPOSEL 

ProPOSEL is a prosody and part-of-speech English lexicon of 104049 word 

forms, where each entry is mapped to a series of fields holding phonetic, syntactic 

and prosodic information about that word form. Fields of immediate interest to this 

study are (1) and (13): the headwords and DISC syllabified phonetic transcriptions 

which, unlike the more familiar International Phonetic Alphabet (IPA) and SAM-

PA, use a single character to represent each phonological segment, irrespective of its 

complexity. Table 7.5 illustrates the distinctive symbolic equivalents for complex 

vowels in DISC which are so easy to spot. 

Diphthong SAMPA DISC Example Example DISC Transcription 

 /eI/ 1 day / d1 / 
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 /aI/ 2 night / n2t / 

 /OI/ 4 boy / b4 / 

 /@U/ 5 no / n5 / 

 /aU/ 6 now / n6 / 

 /I@/ 7 here / h7 / 

 /e@/ 8 there / D8 / 

 /U@/ 9 sure / S9 / 

Table 7.5: Comparative representations of SAM-PA and DISC phonetic 

transcriptions for diphthongs in Received Pronunciation in English  

ProPOSEL was originally designed for the target application of phrase break 

prediction, for compatibility with Python and NLTK, and for linkage with speech 

corpora. Projecting a priori linguistic knowledge from this lexicon onto corpus text 

is accomplished automatically. The Python programming language has a dictionary 

mapping object with entries in the form of (key, value) pairs, and this syntax is 

exploited by transforming ProPOSEL into a Python dictionary, with headwords (the 

keys in this case) mapped to an array of values from selected fields. During lookup, 

word tokens in the corpus acquire values associated with matching dictionary keys. 

In this way, the contents of each bag created in Listing 7.5 have now been tagged 

with prosodic annotations for further analysis. Table 7.6 shows the first six line 

terminal breaks in ends_punct after intersection with an instance of ProPOSEL 

holding the following symbolic values: syllable count (field 7); lexical stress pattern 

(field 8); content-function word tag (field 10); DISC transcription (field 13); stressed 

and unstressed values mapped to DISC syllable transcriptions (field 14).  

 

 

[['woe', ['1', '1', 'C', "'w5", "'w5:1"]], 

 

['seat', ['1', '1', 'C', "'sit", "'sit:1"]], 

 

['seed', ['1', '1', 'C', "'sid", "'sid:1"]], 

 

['song', ['1', '1', 'C', "'sQN", "'sQN:1"]], 

 

[„rhime‟, 'rhyme', ['1', '1', 'C', "'r2m", "'r2m:1"]], 

 

['pure', ['1', '1', 'C', "'pj9R", "'pj9R:1"]],..] 
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Table 7.6: Prosodic and syntactic annotations acquired via intersection with 

ProPOSEL for the first six end-stopped line terminals in Dartmouth College‘s 

eText of Book I of Paradise Lost, where tokens bearing complex vowels 

appear in bold.    

7.7.1. What about the Great Vowel Shift? 

In this study, present day pronunciation is projected onto EModE text – which 

is normally what contemporary readers/speakers do anyway with literary classics of 

this period – and findings are based on canonical forms: the eight diphthongs, plus 

the triphthongs, of Received Pronunciation (Roach, 2000: 21-24), or standard 

English speakers‘ ‗wacky vowels‘ (BBC, 2010). Some of these sound patterns would 

not have been used in Milton‘s day. The so-called Great Vowel Shift was a sound 

change over a prolonged period (roughly 1500 to 1800) that affected long vowels in 

English, such that their place of articulation shifted upwards, a process complicated 

by regional variation.  

Barber (1997:139-40) offers a possible pronunciation for an extract from To 

His Coy Mistress by one of Milton‘s contemporaries, the poet Andrew Marvell. His 

transcriptions (presented in their equivalent SAM-PA forms in this section) for 

diphthongs in the following words: time; coyness; down accord with PresE 

pronunciations, while transcriptions for day and no simply indicate long vowels, the 

latter only becoming diphthongized in the late eighteenth century (ibid:107). An 

online simulation for EModE (Menzer, 2000) also suggests that the diphthong /aU/ 

in loud would have sounded much the same with an advanced speaker in 1650 as it 

does today but that the vowel in name was still in flux and reminiscent of the French 

sound même; this agrees with Barber‘s transcription for day: /d:/. Another online 

simulation suggests that words like time/bite and now/loud did contain diphthongs 

but that these sounded more like hybrids of the combination but and beet and the 

combination but and boot respectively (Rogers, 2000). 

Phonetic transcriptions in ProPOSEL show English vowels still in flux today 

and variation in source pronunciation lexica. The SAM-PA and CELEX 

transcriptions in fields 4 and 13 – derived from CUVPlus (Pedler and Mitton, 2002) 

and CELEX (Baayen et al., 1996) – are in agreement for the following instance of 

the diphthong /U@/ in pure; interestingly, the CELEX notation for pure (cf. Table 

6.6) incorporates a y-glide (cf. Bridges, 1921:24) and the same goes for the SAM-PA 
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field: / pjU@R /. On the other hand, the word form moor is realised with a 

diphthong in one source lexicon (CUVPlus) and a monophthong in the other 

(CELEX): / mU@R / versus / 'm$R /; the same speaker may also happily switch 

from one variant to the other. Finally, triphthongs are particularly unstable, as shown 

in the mismatches in syllabification in Table 7.7: CELEX does not appear to use any 

triphthongs and therefore fire and power are bi-syllabic; the CUVPlus transcription 

for fire may be interpreted as a triphthong, given the syllable count, but on the same 

basis, the transcription for power may not. This variance, even in canonical forms, is 

part of our language today. 

 Word form Syllable count SAM-PA DISC 

CUVPlus fire 1 'faI@R  

CELEX fire 2  'f2-@R 

CUVPlus power 2 'paU@R  

CELEX power 2  'p6-@R 

Table 7.7: Instances of variant syllabification and phonetic transcription for the 

same orthographic form in pronunciation lexica show English vowels still in 

flux today  

7.8. Significance testing: the correlation of complex vowels and 

phrase breaks 

Sections 7.5 and 7.6 of this chapter have described how each word in Book I of 

Paradise Lost has been tokenized; then classified as a break or non-break, 

depending on the presence or absence of attendant punctuation, and as a further 

refinement, line-terminal status; and finally tagged with its modern-day phonetic 

transcription. Correspondence between the pronunciation of complex vowels in 

Milton‘s day and ours has also been discussed (7.6.1).  

Table 7.8 shows counts for the five different containers in Listing 7.5: {all line 

terminals; end-stopped terminals; run-on terminals; marked caesuras; non-breaks}, 

together with various counts for diphthongs and triphthongs obtained through 

dictionary lookup. These figures represent final counts after manual inspection and 

correction of totals for complex vowels due to unmatched items during lookup, 

where the latter generally comprise: proper nouns (e.g. Nile; Sinai; Horonaim; 

Aonian); and compounds (e.g. sound-board; love-tale; straw-built; dove-like; night-
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founder’d), in addition to archaic words and forms (e.g. compeer; scape; know’st; 

erewhile; extreams; battel; choyce).  

Queries Containers Counts 

Number of LINE TERMINAL tokens ends 798 

Number of END-STOPPED lines ends_punct 266 

Number of RUN-ON lines ends_nonpunct 532 

Total number of MEDIAL BREAKS medials 553 

Number of NON-BREAKS which are not line-end 

tokens 

non_breaks 

4649 

Total number of WORD TOKENS 
ends + medials + 

non_breaks 6000 

Total for TOKENS with attendant punctuation ends_punct + medials 819 

Total for TOKENS without attendant 

punctuation  

ends_nonpunct + 

non_breaks 

5181 

Total number of BREAKS ends + medials 1351 

Total number of NON-BREAKS non_breaks 4649 

Total for unmatched diphthongs + triphthongs 

after ProPOSEL lookup 

MANUAL INSPECTION OF: 

ends_punct; 

ends_nonpunct; medials; 

non_breaks 

294 

Total for unmatched diphthong_triphthong 

BREAKS after ProPOSEL lookup 

MANUAL INSPECTION OF: 

ends_punct; 

ends_nonpunct; medials 

106 

Count for GLIDES as BREAKS, excluding 

unmatched items 

ends_punct; 

ends_nonpunct; 

medials 419 

Count for GLIDES as NON-BREAKS, 

excluding unmatched items 

ends_nonpunct 

874 

Total count for GLIDES as BREAKS  419+106 

Total count for GLIDES as NON-BREAKS  874+188 

Total count for complex vowels  1587 

Table 7.8: Shaded rows provide data for a chi-squared test based on a break count 

which includes all line terminals plus marked caesuras. 

 

7.8.1. Applying the chi-squared test for collocation discovery 

Based on figures from the shaded rows in Table 7.8 and entered in bold in 

Table 7.9, it is now possible to assign each word in the sample to one of four 

different categories and to compute and enter totals for each category in a 2 x 2 

contingency table (cf. Table 7.9) ready for the chi-square test. The category label of 

diphthongs is used here to denote all complex vowels; and figures entered in bold 

Table 7.9 juxtaposes observed and expected frequencies for all four 

categories obtained from the data in Table 7.8 and/or calculated from marginal totals 

in rows and columns for each category. Expected frequencies are given in italics; for 

example, the expected frequency for items in the sample which exhibit the following 
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attribute-value pairings: diphthong {yes}; break {yes} is 357.34 (i.e. 1351 / 6000 * 

1587).  

GROUPS OUTCOMES TOTALS 

Breaks Non-breaks 

Diphthongs 

 

525 

357.34 
1062 

1229.66 
1587 

No diphthongs 

 

826 

993.66 

3587 

3419.34 

4413 

TOTALS 
 

1351 4649 6000 

Table 7.9: Observed and expected frequencies are computed from the raw counts 

obtained in Listing 4.  

 We assume that the distributions resulting from observed (fo) and expected 

frequencies (fe) in the shaded area in Table 7.9 will be very similar: this is the null 

hypothesis o. Then, if the value of chi-squared 
2 

according to the following 

formula exceeds some critical value, we can reject o and surmise that the observed 

distribution is unlikely to have occurred by chance, and that diphthongs and 

boundaries are not independent of each other.   

 





e

eo

f

ff 2

2
)(

  

 

In this case, the association between groups and outcomes is deemed to be 

highly significant: chi squared equals 138, with 1 degrees of freedom, and a two-

tailed p-value or odds ratio which is less than 0.0001.  

The break count in Table 7.8 for Dartmouth‘s eText of the 1674 edition of 

Book 1 is lower than that of the more heavily punctuated Gutenberg version: 1351 to 

1447 respectively. Nevertheless, the Gutenberg text is a reliable phrasing variant, 

encapsulating an alternative parsing and phrasing strategy for the reader or speaker. 

It is of consequence, therefore, that the statistically significant correlation between 

complex vowels and phrase breaks is corroborated by this dataset. Experimental 

replication returns a chi-squared statistic of 123, with 1 degrees of freedom, and a 

two-tailed p-value of 0.0001.    
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7.9. Textual analysis of unmarked conceptual boundaries in Book 1 

of Paradise Lost 

This investigation is based on rhythmic junctures in Book I of Paradise Lost 

marked by punctuation and by line ends. That the latter represent conceptual 

boundaries and reflect performance structure (cf. Gee and Grosjean, 1983; Abney, 

1992) in theatre or for recital is apparent in this directive on verse-speaking from the 

Royal Shakespeare Company (Hall, 2004: 28): ‗…[t]he end of each line is in fact a 

punctuation often more crucial than the regular punctuation itself‘. An alternative 

view or segmentation of the text is implemented via XML markup in Durusau and 

O‘Donnell (2002); their sentence view differs from traditional presentation, which 

preserves the integrity of each line (cf. the tokenization process in Section 7.5), and 

instead segments on punctuation, so that chunks often run from one line to the next 

and sometimes incorporate constituents from more than two lines. In the following 

example (Example 7.6) of verse-sentence divergence from lines 10-12 of Book I, 

segments (i.e. strings between <seg></seg> XML tags) reflect punctuation in the 

Raben14 version. 

Example 7.6 

…or, </seg><seg> if Sion hill 

Delight thee more, </seg><seg> and Siloa’s brook that flowed 

Fast by the oracle of God, </seg><seg> I thence 

Invoke thy aid to my adventurous song, </seg><seg> 

 

Run-on lines are common in blank verse. Borrowing terminology from 

Durusau and O‘Donnell (ibid.), line terminals which are not end-stopped are 

members of overlapping hierarchies. They represent the logical relation of 

intersection between two different sets within the sentence: the metrical line and the 

prosodic-syntactic chunk. The token down, for example, in ‗…With hideous ruin 

and combustion down…‘ (Paradise Lost, Book I, line 46) is unmarked with 

punctuation in the original 1667 and 1674 editions of the poem, as well as the 

Project Gutenberg eText, and exhibits this kind of duality. It is also part of a wider 

                                                 

14 The eText used in Project Gutenberg‘s Paradise Lost was originally created by Dr. 

Joseph Raben of Queen‘s College, NY circa 1964-5. 
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context: the sentence container spanning lines 44 – 49 (cf. Table 7.10), where the 

majority of terminals are run-on and carry diphthongs or triphthongs.   

Table 7.10: Phrasing in 17
th

. century editions of Paradise Lost is more open-ended  

 While Raben‘s version faithfully reflects poetic elisions (th’etheral; 

th’Omnipotent), it is more prescriptive in its punctuation such that, in sentence view, 

down would be assigned to a different segment from the 17
th

 century versions. In the 

latter, the token down is highly ambiguous; syntactically, it is probably part of the 

compound preposition down to and attached to the subsequent noun phrase 

bottomless perdition, but the absence of punctuation seems to preserve an almost 

uncapturable, long-distance syntactic and semantic relationship to the verb Hurld, in 

which case, down would be a particle as in: Satan was hurled down from heaven. By 

twice separating down from hurled, with commas after sky and combustion, Raben 

has edited out some poetic effects: down as a particle lost in space, as a long sound 

lamenting the terrible violence of Satan‘s severance from God.  

The Fall – and Milton‘s depiction of it – is indelible from our imaginations; a 

recent stunning re-enactment is the opening sequence of Peter Jackson‘s film 

adaptation of The Two Towers (2002) and that long shot of the Balrog falling 

flaming from the bridge of Khazad-Dum into the pit of Moria. Images of falling 

abound in Book I. There is the famous Mulciber passage where again, a gathering of 

complex vowels and long vowels in the hinterland between lines delays the verse 

movement as we witness the protagonist‘s fall from grace – a beautiful slow-motion 

arc (Example 7.7). 

‗…thrown by angry Jove 

Sheer o‟er the crystal battlements: from morn 

To noon he fell, from noon to dewy eve, 

1667 and 1674 editions Project Gutenberg eText 

 

…Him the Almighty Power 

Hurld headlong flaming from th' Ethereal Skie 

With hideous ruine and combustion down 

To bottomless perdition, there to dwell 

In Adamantine Chains and penal Fire, 

Who durst defie th' Omnipotent to Arms. 

 

‗…Him the Almighty Power  

Hurled headlong flaming from th' ethereal sky,  

With hideous ruin and combustion, down  

To bottomless perdition, there to dwell  

In adamantine chains and penal fire,  

Who durst defy th' Omnipotent to arms…‘ 
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A summer‘s day…‘  

  

7.9.1. Caesuras as conceptual boundaries 

The boundary concept in verse may be extended to caesuras or rhythmic 

junctures within the line, though it has not been possible to include all candidates in 

the boundary count for the present study because the location of unmarked caesuras 

is open to interpretation and we have no agreed gold standard to work from. 

Nevertheless, complex vowels may signal optimal phrase break opportunities within 

the line, especially when enjambement encourages the reader or speaker to process 

phrases like ‗…I thence / Invoke thy aid to my adventurous song…‘ as one chunk 

(cf. XML segmentation in Example 7.6). Would chunking or pausing somewhere 

within this phrase enhance a reader‘s or listener‘s understanding? If so, where is the 

best place to pause? Is it after thence or is it after the diphthong-bearing aid? 

One final extract (cf. lines 17-26 in Table 7.11) from Book I of Paradise Lost 

may serve to highlight how complex vowels signify conceptual boundaries which 

are pivotal to the parsing strategy for that sentence; and how the correlation of 

complex vowels and boundaries seems, in fact, to fit Saussure‘s model of the sign: 

‗…[a] linguistic sign is not a link between a thing and a name, but between a 

concept [signified] and a sound pattern [signifier]…‘ (Saussure in Chandler, 

2002:18). Diphthongs act as precursors or signifiers of phrase breaks.  

 

1674 version 1992 version 

 

And chiefly Thou O Spirit, that dost prefer 

Before all Temples th' upright heart and pure, 

Instruct me, for Thou know'st; Thou from the 

first 

Wast present, and with mighty wings outspread  

Dove-like satst brooding on the vast Abyss 

And mad'st it pregnant: What in me is dark 

Illumine, what is low raise and support; 

That to the highth of this great Argument 

I may assert Eternal Providence, 

And justifie the wayes of God to men. 

 

And chiefly thou, O Spirit, that dost prefer  

Before all temples th' upright heart and pure,  

Instruct me, for thou know'st; thou from the first  

Wast present, and, with mighty wings outspread,  

Dove-like sat'st brooding on the vast Abyss,  

And mad'st it pregnant: what in me is dark  

Illumine, what is low raise and support;  

That, to the height of this great argument,  

I may assert Eternal Providence,  

And justify the ways of God to men.  
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Table 7.11: Again, phrasing in the most popular 17
th

. century edition of Paradise 

Lost is less directive than a contemporary edition  

 

Punctuation is again more subtle in the 17
th

 century version and assumes a 

poetic sensibility and a poetic ear. In the original, for example, Dove-like belongs 

both to outspread and to sat’st, whereas the modern edition eliminates one of these 

paths. Moreover, a comma after Abyss at the end of line 21 is perhaps redundant 

because we cannot produce a succession of sibilants {sat‘st; vast; Abyss; mad‘st} 

without slowing down. The section of interest, however, is lines 22-23, where both 

versions agree. 

Assuming that punctuation represents the poet‘s phrasing, we are meant to 

pause at the comma in: ‗…What in me is dark / Illumine, what is low raise and 

support…‘ Nevertheless, despite the status of dark as a run-on line terminal, and 

despite its proximity to the marked boundary in Illumine, the syntax requires a break 

at this point; the bigram <adjective><verb> is unusual and the line-break alerts us to 

this fact. In the subsequent clause, we have a repetition of this uncommon template 

but instead of a line-break, we have two consecutive diphthongs: low raise 

inhibiting normal phonotactics. A gold standard phrasing of this section is 

hypothesized as follows: ‗…What in me is dark | Illumine, | what is low | raise and 

support; |…‘ Thus adjacency of complex vowels has been interpreted as a textual 

cue or text-based feature in a difficult syntactic context and in the absence of 

explicit permission to pause.  

7.10. Concluding Comments  

This study uses punctuation, as in previous work on pause patterns in English 

verse, plus line endings, as equivalents for gold standard phrase break annotations 

and discovers a significant correlation between complex vowels (i.e. diphthongs and 

triphthongs) and prosodic-syntactic boundaries, a result which is replicated in two 

naturalistic phrasing variants of the same poem. This finding is believed to have 

several implications. First, complex vowels (like punctuation itself) constitute a 

domain-independent phrase break feature. Thus, what works for verse may also 

work for prose; and the author will shortly report on similar findings in a parallel 

experiment for PresE using an extract from the Aix-MARSEC dataset (Chapter 8). 

Second, while punctuation is a top-performing phrase break feature, it does not 
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capture all perceived prosodic-syntactic boundaries. The use of additional run-on 

line endings as conceptual boundaries substantiates these findings and also 

highlights the ambiguous status of some phrase break tokens as constituents of more 

than one syntactic grouping, where the groups are not always immediately adjacent, 

even in plain text view. The chapter also considers complex vowels as boundary 

precursors, as textual cues signifying optimal parsing and phrasing strategies, and 

enhancing understanding, for readers and speakers alike. Finally, the prosodical 

devices used deliberately or subconsciously by poets (Milton did say his verse was 

unpremeditated15) may provide generic insights into prosodic-syntactic chunking. 

Banks (6.4) detects accented and deaccented stops which can be parameterised for 

experiments with PresE speech corpora (cf. Aix-MARSEC); and he leaves us with 

an intriguing observation: that units of thought are rhythmical.    

 

                                                 

15 Paradise Lost, Book 9, line 24   
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Chapter 8 

Experimentation with ProPOSEL (Part 2): Significance Testing 

of Non-traditional Prosodic Phrase Break Features in a Corpus of 

Transcribed Speech from the Twentieth Century 

8.1. Recapitulation 

The previous chapter reported on a significant correlation between lexical 

items containing complex vowels and prosodic-syntactic boundaries in seventeenth 

century verse. Real-world knowledge of PresE canonical pronunciation from 

ProPOSEL was projected onto each word token in two different versions, 

constituting two phrasing variants, of Paradise Lost, Book 1. The chi-squared test 

for independence returned a two-tailed p-value of less than 0.0001 for the 

association of this vowel subset and phrase breaks in both samples. This led to 

speculation that Milton‘s unpremeditated use of complex vowels – which slow 

down verse movement in Paradise Lost and thus generate rhythmic junctures – may 

represent a phrasing device habitual not just to poets but to native English speakers 

in general. In this chapter, concurrent work on a corpus of present-day British 

English speech corroborates these findings.  

8.2. Research questions 

Complex vowels may constitute a new predictive feature in phrasing models 

for English, especially since this feature is robust enough to tolerate ‗noisy‘ variant 

phrasing strategies for the same text or speech (cf. 4.3.6): the statistically significant 

correlation between words carrying complex vowels and phrase breaks is 

corroborated by both datasets in Chapter 7. 

  The intuition that the presence of complex vowels in content words increases 

the likelihood of their being classified as breaks comes from poetry, where 

diphthongs and triphthongs seem to be associated with rhythmic junctures, and has 

been tested on poetry. Experimental work in this chapter sets out to determine 

whether this association holds good for: (i) ordinary (if formal) comtemporary 

British English speech; (ii) spontaneous as well as read speech (i.e. different genres); 

(iii) multiple speakers. In all cases, the datasets used merge information from the 

Spoken English Corpus and the Aix-MARSEC corpus project. 
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8.3. Hypothesising non-traditional phrase break correlates 

A recent study by Ananthakrishnan and Narayanan (cf. 3.7) attempts to 

integrate the prediction of accents and boundaries based on combined feature 

streams (acoustic, lexical and syntactic) and finds that lexical syllable tokens, 

augmented with canonical stress labels derived from an open source pronunciation 

lexicon, are effective for accent detection but not for boundary prediction.  

Ananthakrishnan and Narayanan conclude that syllable tokens are poorer 

indicators of boundary events than PoS tags. However, this conclusion is based only 

on word-final syllable tokens minus stress weightings for the phrase break prediction 

task; word-initial and medial syllables are automatically classed as non-breaks 

because they are never immediately followed by boundary tokens. 

This thesis questions the assumption that non word-final syllabic nuclei (e.g. 

the second syllable in seCURity) have no influence on boundary placement and tests 

the hypothesis that complex vowels – i.e. diphthongs and triphthongs – might 

emerge as useful predictive features for phrase break models, irrespective of where 

they occur within a word. There is consensus within the ASR research community 

that pauses affect vowel durations in preceding words (Vergyri et al., 2003). This 

thesis reverses the perspective on prepausal lengthening and asks to what extent a 

domain-independent feature like complex vowels may be said to induce boundaries. 

The prosody and PoS English lexicon (cf. Chapter 5) addresses the perceived 

need (cf. 5.1) for prosodic features to complement syntax and punctuation in phrase 

break models, thus extending the knowledge source for this classification task. Furui 

(2009) has stated that improvements in ASR depend on better knowledge sources; 

and there is a current trend in various application domains towards supplementing 

raw training data with a priori knowledge, where hitherto little real-world 

knowledge has been assumed on the part of the learning mechanism (cf. PASCAL-2
 

(2008); CFP for IJCAI 2009 on User-Contributed Knowledge and Artificial 

Intelligence). The survey in Chapter 2 diagnoses a deficiency of a priori linguistic 

knowledge of prosody in feature sets typically used for automatic phrase break 

prediction, whereas competent human readers will habitually project prosody onto 

text and treat this as part of the input. This thesis contends that human readers may 

use the sound patterns inherent in complex vowels as linguistic signs for phrase 

breaks in as yet undefined contexts. It also contends that such signs are domain-
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independent, that they can be extracted from the lexicon and, just like PoS tags, can 

be projected onto any corpus and can subsequently be presented as input features to 

the phrase break classifier.   

8.4. Automatic annotation of composite SEC and Aix-MARSEC 

Section C dataset  

To investigate the correlation between complex vowels and phrase breaks in 

contemporary British English speech, an extract from the Aix-MARSEC corpus was 

automatically tagged with shallow parse features and canonical phonetic 

transcriptions from ProPOSEL. A chi-squared test was then used to determine 

whether this correlation is statistically significant or not. The experimental dataset 

was the same as that used in previous studies (cf. 3.3): a BBC radio recording from 

the 1980s of a Reith lecture in Section C of the corpus.  Approximately half of this 

was sampled, with original phrase break annotations from Gerry Knowles, plus a 

short section inter-annotated by Knowles and Bryony Williams. Illustrative 

examples are also taken from a previously used dataset: informal news 

commentaries in sections A08 and A09 of the corpus. 

Preparing the dataset prior to dictionary lookup was non-trivial and involved 

several stages. The first task was to map annotation tiers in overlapping subfiles in 

the Aix-MARSEC sample in order to label each word as a break or non-break 

(8.4.1). Word and phrase break classifications in Aix-MARSEC were then merged 

with corresponding PoS-tagged text in the Spoken English Corpus, where 

discrepancies intervene: compounds and abbreviations are handled differently in 

both datasets, for example (8.4.2). Next, the corpus was re-tagged with the PoS tag 

scheme used in the lexicon (8.4.3) i.e. a discriminating tagset (LOB) was collapsed 

into a sparser one (C5). Finally, desired information from the lexicon was projected 

onto the dataset by matching up word-C5 pairings (8.4.4). 

8.4.1. Mapping tiers in Aix-MARSEC 

The Aix-MARSEC Corpus has multi-level prosodic annotation tiers aligned 

with the speech signal; the two tiers used in this study are for plain text plus 

intonation units (IUs) delineated by phrase break mark-up / | /. The SAMP-PA 

transcriptions from the syllables tier were not used in this study because the focus is 

on predictive features derived from speaker-independent and domain-independent 
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citation forms in ProPOSEL which can be superimposed on any unseen English text 

– for example, seventeenth century English verse (cf. Chapter 7).       

Each section in Aix-MARSEC is split up into a series of much smaller, 

overlapping TextGrid files. Merging the text and IUs tiers was therefore 

accomplished on a file-by-file basis, using interval tokens to retrieve a match 

between tiers. The resulting list objects were concatenated in a final list – 

listAllText – ready for merger with the corresponding file in the Spoken English 

Corpus (SEC) to capture PoS-tags.  

8.4.2. Merging Aix-MARSEC and SEC files 

The target data structure for dictionary lookup (8.4.4) is a nested list where 

each index holds values for: word token; break class; punctuation; and PoS-tag. 

Capturing PoS tags from SEC entailed looping over two parallel lists of unequal 

length – listAllText and a list of word_PoS pairings from SEC – a process 

complicated by the fact that compound words are represented differently in both 

datasets, and furthermore, that punctuation in SEC does not always correspond to 

boundaries or placeholders in Aix-MARSEC. Such problems are exemplified in 

Table 8.1 (from section A09 of the corpus), where we find different representations 

for the compound adjective: cross-ethnic; variant phrasing for the fragment: who 

two years ago; no apparent placeholder in Aix-MARSEC following the boundary 

after ago; and no punctuation in SEC after the word together, which is marked as a 

phrase break in Aix-MARSEC. 

 

 

 

 

Aix-MARSEC SEC 

['ethnic', '48.69', '|'] 

['#', '48.74', 'P'] 

['cross', '49.12', 'non-break'] 

['ethnic', '49.53', '|'] 

['#', '49.62', 'P'] 

['and', '49.88', 'non-break'] 

['political', '50.41', 'non-

JJ    ethnic 

,     , 

JJ    cross-ethnic 

,     , 

CC    and 

JJ    political 

,     , 
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break'] 

['parties', '50.88', '|'] 

['#', '51.39', 'P'] 

['who', '51.59', 'non-break'] 

['two', '51.73', 'non-break'] 

['years', '52.04', 'non-break'] 

['ago', '52.44', '|'] 

['came', '52.70', 'non-break'] 

['together', '53.12', '|'] 

['#', '53.17', 'P'] 

['to', '53.34', 'non-break'] 

NNS   parties 

WP    who 

,     , 

CD    two 

NNS   years 

RB    ago 

,     , 

VBD   came 

RB    together 

TO    to 

Table 8.1: Transcriptions of the same utterance in two different versions of the 

corpus exhibit variant phrasing. 

8.4.3. Mapping between PoS tag sets using ProPOSEL 

List indices in the object listAllText have now acquired PoS tags and, if 

present, punctuation from the semi-automatic process just described. However, the 

recommended lookup strategy with the prosody and PoS lexicon is via compound 

dictionary keys comprising word_C5 pairings. A range of tagsets (Penn, LOB and 

C7) were mapped to C5 as part of lexicon build; and ProPOSEL‘s software tools 

provide solutions for mapping between schemes (Chapter 5). In the present study, a 

more discriminating tagset, LOB, is collapsed into a sparser scheme: C5. As part of 

this process, enclitics in LOB are re-formatted in a style compatible with the 

lexicon; instances such as: ['BEDZ', 'was', '>', 'XNOT', "n't", '<'] and 

['WP', 'who', '>', 'HV', "'ve", '<'] are transformed into: ['BEDZ+XNOT', 

"wasn't"] and ['WP+HV', "who've"]. 

8.4.4. Dictionary lookup and text annotation 

Nested arrays in listAllText are finally augmented with domain knowledge 

of prosody (i.e. DISC fields in ProPOSEL) and coarse-grained syntactic information 

(default content-function word tags) via intersection with ProPOSEL. Listing 8.1 

first builds an instance of the dictionary object proPOSEL with compound keys 

word_C5 tuples mapped to selected values. Python‘s itertools() module is then 

used to loop through two parallel iterables: listAllText and match, a sequence of 

word_C5 tuples from the same dataset. Items in the latter are compared against 
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ProPOSEL‘s keys; a successful match appends dictionary values associated with 

those keys to the parallel nested position in listAllText.  

proPOSEL = dict(zip(lex_keys, lex_values)) 

match = [(index[0], index[5]) for index in listAllText] 

for x, y in itertools.izip(match, listAllText): 

    if x in proPOSEL.keys(): 

        y.append(buildDict[x])  

    else: 

        y.append('No match') 

[tuple(line) for line in listAllText] # the final set of 

annotations  

Listing 8.1: Intersection between the dictionary object proPOSEL and the sequence 

object match appends dictionary values to the parallel position in 

listAllText. 

Inner lists in listAllText have now been augmented with content/function-

word tags, DISC phonetic transcriptions and canonical stress weightings aligned 

with syllables (e.g. the lexical stress pattern 2010 assigned to the DISC transcription 

for the word contribution: "kQn:2 trI:0 \'bju:1 SH:0). 

8.5. Significance testing for Section C dataset  

Each word in the sample was assigned to one of four different categories and 

counts for each category were entered in a 2 x 2 contingency table (Table 8.2) ready 

for the chi-square test. The category label of diphthongs is used here to denote all 

complex vowels. The total word count is simply the length of listAllText minus 

the count for unmatched items; these were not included in the final calculation and 

figures used in Table 8.2 reflect this. 

GROUPS OUTCOMES  

Breaks Non-breaks  

Diphthongs 201 298 499 

No diphthongs 437 1357 1794 

 638 

(696 – 58) 

1655 2293  

(2468 – 175) 
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Table 8.2: A 2 x 2 contingency table records the observed frequency distribution for 

target groups and outcomes from the corpus sample.  

The chi-square test in this experiment determines whether the distribution 

resulting from observed frequencies in the shaded area in Table 8.2 is significantly 

different from the chance distribution anticipated from expected frequencies. The 

latter are calculated via marginal totals for rows and columns in the table: for 

example, the expected frequency for diphthongs classified as breaks is given by (638 

/ 2293) * 499. Table 8.3 presents observed (given in bold) versus expected 

frequencies (given in italics and expressed as whole numbers for clarity of 

presentation) for all four categories.  

GROUPS OUTCOMES 

Breaks Non-breaks 

Diphthongs 201 

139 

298 

360 

No diphthongs 437 

499 

1357 

1295 

Table 8.3: Observed and expected frequencies are used to find the value of 
2 

in this 

test for independence.  

These figures are then used to find the value of 
2 

according to the formula 

previously given (see 7.8.1.).   

The null hypothesis o assumes that the distributions will be the same or that 

the difference will not exceed some critical value. In this case, however, o can be 

rejected because the association between groups and outcomes turns out to be 

extremely statistically significant: chi squared equals 49.28, with one degree of 

freedom, and a two -tailed p-value which is less than 0.0001. This p-value represents 

the odds ratio for achieving the same result through random sampling. Finally, since 

there are only four diphthong-bearing function words which are also classified as 

breaks in this sample (§4.2.3), we can hypothesize that the significant correlation is 

actually between diphthong-bearing content words and phrase breaks.  

8.6. Etymology in Section C dataset 

A further research question tested via the Section C dataset was whether or not 

there is any association between etymology and phrasing. For this experiment, every 
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word in the sample was assigned to one of two groups: Old English or 

Latinate/Other. Classifications were made with reference to the Collins English 

Dictionary (Sinclair, 1994), where words derived from Old English, Norse, Frisian, 

Saxon et cetera were subsumed into the Old English group. Table 8.4 records the 

counts used in the significance test for this feature. Etymology was found to be 

highly correlated with phrasing, returning a chi-squared statistic of 456, with 1 

degrees of freedom, and a two-tailed p-value of less than 0.0001 for the Section C 

data. One might hypothesise that words in the Latinate/Other category are more 

likely to be content words and to have richer prosodic attributes (e.g. a rhythmic 

profile that guarantees a beat) – hence their association with boundaries. 

GROUPS OUTCOMES  

Breaks Non-breaks  

Old English 169 1240 1409 

Latinate 469 415 884 

 638 

(696 – 58) 

1655 2293  

(2468 – 175) 

Table 8.4: 2 x 2 contingency table for distribution of Old English versus 

Latinate/Other words in relation to phrase break annotations in the corpus  

8.7. Significance testing on a multi-speaker dataset of spontaneous 

speech  

So far, we have gathered empirical evidence from seventeenth century verse 

and read speech from the twentieth century which highlights a statistically 

significant correlation between words carrying complex vowels and phrase breaks in 

English via the chi-squared test for independence. This investigation is now 

extended to spontaneous speech, while reminding readers that the gold-standard 

phrase break annotations used still denote intentional as opposed to disfluent pauses. 

8.7.1. Custom-built dataset 

The dataset used to test the correlation between complex vowels and phrase 

breaks in the genre of spontaneous as opposed to read speech, and for multiple 

speakers instead of a single speaker, was custom-built to align word tokens and 

phrase break information from Aix-MARSEC, with syntactic information (i.e. LOB 

PoS-tags) from SEC and ProPOSEL (i.e. C5 PoS-tags), plus punctuation from SEC, 

plus shallow parse features (i.e. content-function word tags) and canonical phonetic 
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transcriptions, again from ProPOSEL. The dataset of 7762 word tokens was 

compiled from informal news commentary in Section A of the corpus: it includes 

ten different speakers, both male and female, and two different annotators: Gerry 

Knowles and Briony Williams, and is outlined in Table 8.5. The algorithm used for 

this most recent dataset build is outlined in Section 8.9. 

Section A 

file no.  

Word count Break count Speaker 

gender 

Annotator 

A01 791 135 Female Williams 

A03 635 120 Male Williams 

A04 984 283 Male Knowles 

A05 803 200 Male Knowles 

A06 827 126 Male Williams 

A07 714 163 Male Knowles 

A08 629 120 Male Williams 

A09 789 199 Male Knowles 

A10 801 132 Male Williams 

A11 789 147 Male Knowles 

Table 8.5: Overview of dataset used. 

8.7.2. Obtaining the counts 

Word and phrase break totals for each Section A sub-file in Table 8.5 

constitute initial values for a 2 x 2 contingency table exploring the relationship 

between two distinct groups: diphthong-bearing words versus words with no 

diphthong (where the label ‗diphthong‘ stands for all complex vowels); and two 

distinct outcomes: breaks versus non-breaks. Word counts were obtained by 

subtracting the break count (number of pauses) from the length of each file. Each 

word token was then classified as a break or non-break, depending on whether or not 

it was followed by a pause. 

The total counts for diphthong and non-diphthong-bearing words were 

generated automatically for the most part but subject to manual inspection where 

prosodic information from ProPOSEL was (or appeared to be) missing. Missing 

information was due to a variety of factors. The dataset is spattered with proper 

nouns which do not appear in the lexicon. Furthermore, there are omissions passed 

down from source lexica: the noun hijackings from A08 does not appear as a plural 

in ProPOSEL, for example; and while the verb rely (in A11) carries a lexical stress 

pattern generated from one source, it has no values for fields 13-15 simply because 
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they are generated from an alternative source which, surprisingly, does not include 

that word. Finally, there are some ‗freaks of nature‘ such as the misspelling of 

disillusioned in Section A09 of the corpus: 

(A09|dissillusioned|non_break|AJ0|No_match). There are, in fact, several 

opportunities for a match here in ProPOSEL, depending on whether the word has 

been tagged in context as an adjective, past participle or past preterite.  

8.7.3. Running the chi-squared test 

Four counts were used to populate each 2 x 2 contingency table: word and 

break counts from Table 8.5 and total counts for diphthong-bearing (content and 

function) word breaks versus diphthong-bearing (content and function) word non-

breaks. The remaining counts were generated from these as in this example (Table 

8.6) from Section A09. 

GROUPS OUTCOMES 

Totals Breaks Non-breaks 

Diphthongs 57 129 186 

No diphthongs 142 461 603 

Totals 199 590 789 

Table 8.6: A 2 x 2 contingency table records the observed frequency distribution for 

target groups and outcomes from corpus sample A09.  

     The chi-square test in this experiment determines whether the distribution 

resulting from observed frequencies in the shaded area in Table 8.6 is significantly 

different from the chance distribution anticipated from expected frequencies. The 

latter are calculated via marginal totals for rows and columns in the table: for 

example, the expected frequency for diphthongs classified as breaks is given by (199 

/ 789) * 186. 

8.8. Discussion of results for multi-speaker corpus of spontaneous 

speech 

Table 8.7 presents a summary of the findings. On the evidence of this study, 

the correlation between words carrying complex vowels and phrase breaks in 

English is a very significant stylistic feature of some speakers (at least 50%) but not 

others.  

Section A Ratio: words Value of 2 2-tailed  Significant? 
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file number to breaks p-value 

A01 5.86 : 1 0.356 0.5510 No 

A03 5.29 : 1 0.095 0.7585 No 

A04 3.48 : 1 25.354 < 0.0001 Yes 

A05 4.02 : 1 15.976 < 0.0001 Yes 

A06 6.56 : 1 1.358 0.2439 No 

A07 4.38 : 1 10.947 0.0009 Yes 

A08 5.24 : 1 30.090 < 0.0001 Yes 

A09 3.97 : 1 3.795 0.0514 Not quite 

A10 6.07 : 1 0.873 0.3502 No 

A11 5.37 : 1 7.885 0.0050 Yes 

Table 8.7: Results per file for the chi-squared test.  

The presence or absence of this habit of speech seems to be independent of 

speaker gender and discernible (albeit subconsciously) to different listeners: both 

Knowles‘ and Williams‘ phrase break annotations are consistent with the findings. 

There also seems to be a link to phrasing density: on balance, the significant 

correlation occurs with speakers who pause more often. The densest phrasing occurs 

in A04, where dramatic reportage covers war-torn El Salvador. What is interesting 

in these findings is: (i) there is a  stark contrast between these two types of speaker; 

and (ii) a multi-speaker corpus of spontaneous speech corroborates findings from 

previous experiments (8.5), where the datasets might be described as ‗composed 

speech‘. 

The diphthong counts err on the side of caution. The category of diphthong-

bearing non-breaks is skewed somewhat by the high frequency of indefinite articles 

tagged with a full vowel, the canonical pronunciation: /eI/. Bearing this in mind, 

we re-calculated the value of chi-squared for files with non-significant correlations 

(i.e: A01, A03, A06, A09, A10), subtracting occurrences of /a:eI/ from the count 

for diphthong-bearing non-breaks and adding them to the non-diphthong-bearing 

non-breaks group. This made no difference to the result for each sub-file in all but 

one case: for A09, with 18 occurrences of /a:eI/, the re-calculated value of 
2
 is 

8.579, with a two-tailed p-value of 0.0034.  

Finally, calculating the chi-squared statistic for the correlation between 

diphthong-bearing words and breaks for the whole of Section A, we get a very 
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significant result, for the data in Table 8.8: chi-squared equals 70.887 with one 

degrees of freedom and a two-tailed p-value which is less than 0.0001. 

GROUPS OUTCOMES 

Totals Breaks Non-breaks 

Diphthongs 550 1447 1997 

No diphthongs 1075 4690 5765 

Totals 1625 6137 7762 

Table 8.8: A 2 x 2 contingency table records the observed frequency distribution for 

target groups and outcomes over all Section A files 

8.9. Algorithm used in most recent dataset build 

 This section discusses the algorithm used to merge data from two different 

versions of the corpus (SEC and Aix-MARSEC) with canonical dictionary forms 

from ProPOSEL. A visual representation of the algorithm summarises preceding 

explanation and justification at each step in this segmented process (cf. Fig.8.1).  

NLP resources at the University of Leeds include a version of SEC tagged with 

the Lancaster-Oslo-Bergen (LOB) tagset; but aligning word-LOB pairings in SEC 

with information from the current concatenated version of Aix-MARSEC 

(2006:02:27) was non-trivial. An initial problem is that some orthographic forms in 

SEC (i.e. hyphenated compounds and abbreviations) are decomposed into multiple 

phonetic and prosodic units in Aix-MARSEC: for example, the TextGrid file for 

A0802B in Aix shows decomposition of the word x-ray into two separate narrow 

rhythm units (NRU), equivalent to two stressed feet. 

SYLLABLES TIER: A0802B JASSEM TIER: A0802B 

8.3460000000000001 

""" e k s" 

8.3460000000000001 

8.6959999999999997 

""" r eI" 

8.6959999999999997 

8.3460000000000001 

"NRU" 

8.3460000000000001 

8.6959999999999997 

"NRU" 

8.6959999999999997 
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Table 8.9: Data from 2 prosodic annotation tiers (syllables and rhythmic units) in an 

Aix-MARSEC TextGrid file 

The first step was therefore to reconcile, manually, orthography in SEC 

Section A with that of Aix: for example, TWA (airlines) in A08 becomes tee double 

u ay and so on. 

After automatically reconstituting enclitics in SEC (e.g. will_MD not_XNOT in 

LOB becomes won’t_MD+XNOT) in Step 2, the most intractable problem was 

mapping PoS tags from SEC with data from Aix (Step 3); in this merger, files are of 

different lengths, due to asynchronous distribution of punctuation (in SEC) and 

pauses/phrase break annotations (in Aix). 

The dataset includes PoS tags from two schemes which differ in ‗delicacy‘ (cf. 

Atwell, 2008): C5 is a much sparser tagset than LOB. It is also integral to dictionary 

lookup via ProPOSEL. The algorithm addresses this mismatch in delicacy between 

the tagsets in Steps 4 and 5. The former instantiates a live one-to-many mapping of 

C5<LOB PoS tags from the imported ProPOSEL lexicon. Examples in Table 8.10 

show rafts of LOB tags mapped to C5 in the single category of adverbs, plus 

category combinations involving proper nouns, along with potential problems which 

lurk the other way: prepositions and subordinating conjunctions in LOB with more 

than one equivalent in C5. 

 

 

 

 

 

Syntactic 

Category 

C5 LOB 

Adverbs AV0 ['QL', 'QLP', 'RB', 'RI', 'RBR', 

'RBT', 'RN'] 

Enclitic: proper  

noun with has 

NP0+POS ['NP$', 'NPL$', 'NPLS$', 'NPS$', 

'NPT$', 'NPTS$'] 

Preposition: of PRF IN 

Prepositions PRP IN 

Subordinating CJT CS 
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conjunction: that 

Subordinating 

conjunctions 

CJS CS 

Table 8.10: One-to-many mappings for C5 and LOB occur both ways      

A match between LOB tokens in the merged dataset and the live mapping in 

ProPOSEL appends the corresponding C5 tag to dataset arrays (Step 5) and a patch 

is implemented to remove redundant C5 tags in cases of LOB<C5. Very few items 

remain untagged at this stage and can therefore be repaired manually: for example 

there were only 15 untagged items remaining out of 629 word tokens in Section 

A08. 

Finally, ProPOSEL is transformed into a Python dictionary via its bespoke 

software tools (cf. Appendix 2), with compound (word + C5) keys mapped to 

prosodic-syntactic value arrays from selected fields in the lexicon. Intersection 

between dictionary keys and (word + C5) pairings in the dataset appends dictionary 

values to the parallel position in that sequence object (Step 6). 

8.10 Language resources 

The dataset built and used here for experimentation constitutes another 

language resource made available via this thesis: an open-source version of Section 

A (Commentary) in SEC, the Spoken English Corpus (Taylor and Knowles, 1988) 

with multi-level parallel annotations juxtaposing linguistic information from 

different versions of the corpus with canonical dictionary forms, in a format 

optimized for query with Perl or Python and other text processing programs.   This 

prototype prosody and POS annotated version of SEC (ProPOSEC) merges selected 

information from Aix-MARSEC (i.e. file number; word token; SAMPA phonetic 

transcription; and tonic stress marks assigned to each segment) with syntactic 

annotations from SEC, plus corresponding syntactic annotations and canonical 

pronunciations in the ProPOSEL lexicon. In addition, pauses denoting the original 

‗gold-standard‘ phrase break annotations in SEC are aligned with punctuation where 

appropriate. 

Currently, the order and content of fields in the text file is as follows: (1) Aix-

MARSEC file number; (2) word; (3) LOB PoS-tag; (4) C5 PoS-tag; (5) Aix SAM-

PA phonetic transcription; (6) SAM-PA phonetic transcription from ProPOSEL; (7) 
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syllable count; (8) lexical stress pattern; (9) default content or function word tag; 

(10) DISC stressed and syllabified phonetic transcription; (11) alternative DISC 

representation, incorporating lexical stress pattern; (12) nested arrays of phonemes 

and tonic stress marks from Aix. 

 Listing 8.2 shows linguistic annotations in ProPOSEC for a prosodic-syntactic 

chunk initiated by a major clause boundary, the snippet soon after it took off from 

Athens airport from Section A08 of the corpus, with items in bold selected for 

further comment.  

A0801|soon|RB|AV0|su:n|sun|1|1|C|'sun|'sun:1|[['s', 'u:', 'n'], 

['\\', '\\', '\\']] 

A0801|after|CS|CJS|A:ft@|'Aft@R|2|10|F|'#f-t@R|'#f:1 t@R:0|[['A:', 

'f', 't', '@'], ['0', '0', '0', '0']] 

A0801|it|PP3|PNP|rIt|It|1|1|F|'It|'It:1|[['r', 'I', 't'], ['0', 

'0', '0']] 

A0801|took|VBD|VVD|tUk|tUk|1|1|C|'tUk|'tUk:1|[['t', 'U', 'k'], 

['`', '`', '`']] 

A0801|off|RP|AVP|Qf|0f|1|1|C|'Qf|'Qf:1|[['Q', 'f'], ['0', '0']] 

A0801|from|IN|PRP|fr@m|fr0m|1|1|F|'frQm|'frQm:1|[['f', 'r', '@', 

'm'], ['0', '0', '0', '0']] 

A0801|athens|NP|NP0|{TInz|'&TInz|2|10|C|No value|No value|[['{', 

'T', 'I', 'n', 'z'], ['*', '0', '0', '0', '0']] 

A0801|airport|NN|NN1|e@pO:t|'e@pOt|2|10|C|'8-p$t|'8:1 p$t:0|[['e@', 

'p', 'O:', 't'], ['`/', '0', '0', '0']] 

A0801|PAUSE|,|, 

Listing 8.2: Parallel linguistic annotations for each word token include a 

prototype mapping between phones and tonic stress marks  

8.10.1 Elisions   

Differences in ProPOSEC‘s SAM-PA transcriptions from Aix-MARSEC (field 

5) and the lexicon (field 6) arise in part due to the former implementing elision rules 

for optimizing raw phonemic transcriptions (Auran et al., 2004). Hence, in Listing 

8.2, the Aix transcription for it shows a linking ‗r‘. Link-ups effected by w-glides 

and y-glides (Mortimer, 1985:46) are not included and constitute a potential 

enhancement for Aix-MARSEC and ProPOSEC. For example, greater verisimilitude 

to spoken English could be achieved quite simply by an extra rule governing use of 

the definite article (cf. 8.10.2).  



129 

 

8.10.2 Reduced forms   

Another difference in ProPOSEC‘s SAM-PA transcriptions in fields (5) and 

(6) is more extensive representation of reduced vowels in function words in Aix-

MARSEC. Hence we have an optimized versus canonical transcription for from in 

Listing 8.2. Definite articles in Aix-MARSEC are transcribed one of two ways: 

/D@/ - incorporating a schwa and identical to their SAM-PA transcriptions in the 

lexicon; and /DI/ - modelling coarticulation before vowels as in: /DI/ and /A:mI/ for 

the army (Aix-MARSEC A0402). As suggested in the previous section, elision 

prediction could include a linking ‗y‘ in such instances: / DIjA:mI/ for the  army. 

 

 

  

 

 

   

 

 

 

 

 

 

 

 

 

Step 1: Manual 

Reconcile orthography in SEC file with Aix Amended version of SEC file 

Step 2: Automatic 

Reconstitute enclitics in SEC; lower case 

all words 
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Step3: Automatic 

Merge PoS from SEC with data from Aix, 

coping with asynchronous distribution of 

punctuation & pauses 

File with LOB PoS tags subsumed in to Aix 

data 

Step 4: Automatic 

Map set of C5 PoS tags in ProPOSEL to 

arrays of corresponding LOB tags, where one-to-

many mappings predominate 

 

Step 5: Automatic & Manual 

Iterate through output file from Step 3, 

seeking a match between LOB tags in data file 

and live mapping from Step 4. A match triggers 

an event: insertion of C5 tag at designated index 

position in data file array. Implement a patch for 

instances of one-to-many mappings LOB<C5. 

Conduct manual inspection. 

File with C5 as well as LOB PoS tags 

subsumed into Aix data, with one-to-one 

correspondence between taggings 

Step 6: Automatic 

Create instance of ProPOSEL transformed 

into a Python dictionary with compound (word + 

C5) keys mapped to prosodic-syntactic value 

arrays. A match between dictionary keys and 

word + C5 pairings in output file from Step 5 

triggers an event: designated prosodic-syntactic 

information from ProPOSEL is appended to 

dataset arrays. Re-run lookup seeking match 

between word tokens only for any untagged 

items.  

Dataset subfiles for Section A of the 

corpus 

Figure 8.1: Stages in dataset build 
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Chapter 9 

ProPOSEC Dataset Transformation and Derivation of Non-

traditional Prosodic Features for Supervised Machine Learning in 

WEKA  

9.1. Overview 

The previous two chapters have presented empirical evidence of a significant 

correlation in English between ‗gold-standard‘ phrase break annotations in different 

varieties of spoken English and words containing complex vowels in their canonical 

dictionary pronunciations. Multi-level parallel annotations in the ProPOSEC dataset 

(cf. 8.10) facilitate statistical analyses of this kind.  

The ProPOSEC dataset assembles a syntactic, rhythmic, and phonetic profile 

for each word in the corpus. However, converting this raw data into feature vectors 

for phrase break prediction using a machine learning toolkit such as WEKA (Hall et 

al., 2009) is challenging for a number of reasons. One problem is the potential 

number of values for each attribute (e.g. the number of PoS in the tag set and the 

range of lexical stress patterns). Added to this is the problem of incorporating 

sufficient context into the language model: for example, the researcher may be 

interested in a window of N words either side of a given index position. 

The focus for experimental work here, and in Chapters 7 and 8 of this thesis, is 

to gain insight into how interrelationships between syntax, rhythm and 

pronunciation might influence break placement. This chapter first describes how 

linguistic data arrays in the ProPOSEC dataset can be re-conceptualised as training 

instances for supervised machine learning via a knowledge engineering algorithm 

which represents each word token in the dataset as a vector of 31 nominal attribute-

value pairings that complement traditional features (i.e. syntax and punctuation) 

with symbolic depictions of prosody. Findings from a series of boundary prediction 

experiments, with different combinations of traditional and non-traditional attributes 

and using the WEKA toolkit are then presented and discussed.  
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9.2.  Data transformation 

The raw data in Listing 9.1 shows selected linguistic annotations in ProPOSEC 

for a prosodic-syntactic chunk initiated by a major clause boundary, the string soon 

after it took off from Athens airport from Section A08 of the corpus. Only fields 

used in the algorithm are given and appear as follows: {word; C5 PoS-tag; lexical 

stress pattern; default content or function word tag; DISC stressed and syllabified 

phonetic transcription}. As a reminder of some terminology, lexical stress patterns 

are abstract representations of rhythmic structure, as in the sequence 201 for 

disappear, where each syllable is assigned a stress weighting: 1 for primary stress, 2 

for secondary stress and 0 for unstressed elements. DISC phonetic transcriptions are 

unique in providing a one-to-one mapping between character and sound for long 

vowels, diphthongs and triphthongs, and affricates. 

PAUSE|,|, 

soon|AV0|1|C|'sun 

after|CJS|10|F|'#f-t@R 

it|PNP|1|F|'It 

took|VVD|1|C|'tUk 

off|AVP|1|C|'Qf 

from|PRP|1|F|'frQm 

athens|NP0|10|C|No value 

airport|NN1|10|C|'8-p$t 

PAUSE|,|, 

Listing 9.1: Example of raw data in ProPOSEC showing word, C5 PoS tag, 

lexical stress pattern, content/function word tag, and stressed and syllabified DISC 

phonetic transcription 

9.3. Rationale for attribute-value sets in re-conceptualised data 

We are interested in: (i) uncovering prosodic information in plain text; (ii) how 

best to formulate categorical or descriptive representations of prosodic phenomena; 

and (iii) how ensuing features may improve automatic phrase break classification. 

Previous chapters present the solution to the first objective: simulating human reader 

and speaker performance by projecting prosody onto text via the ProPOSEL lexicon, 

a customised text annotation and text analytics tool. The focus here is on the second 

and third objectives, starting with the feature set, and the knowledge engineering 

algorithm used to derive values from raw annotations (as in Listing 9.1) and assign 
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these categorical descriptors to each token. A visual summary of this algorithm is 

given in Fig. 9.1.  

9.4. Reducing the POS-tag set for phrase break prediction 

Taylor and Black‘s landmark comparative study of probabilistic and 

deterministic phrase break models over six experimental settings achieves a best 

score of 79% breaks-correct with a high order n-gram model and a reduced POS-tag 

set of 23 (cf. 3.3). Building on this cue, Read and Cox (2007) present a tagset 

reduction algorithm whose output of between 7 and 8 symbols is used to inform the 

feature set of their best performing model. Interestingly, existential there proves a 

useful predictor (cf. 4.3.2).   

A knowledge engineering approach has here been used to economise on POS 

tags while remaining sensitive to the predictive potential of major clause markers, 

plus subtleties such as emphatic tendency (and hence beat) and prosodic coherence 

in, respectively, words classed in LOB as determiner/pronouns {such; all; both; 

same; few} and encliticised auxiliaries and modals {it‘d; won‘t}. Under some 

schemes, notably CFP algorithms (cf. Busser et al., 2001), such words would be 

classed as function words, hence initiating prosodic phrases and attracting false 

positive boundary placement. There are also deviant behaviours within syntactic 

categories that can be exploited, such as the relative dominance in noun attachment 

rate of the preposition of compared with other prepositions (Volk, 2006). The C5 

tagset isolates both the preposition of and the conjunction that from like parts-of-

speech and these distinctions have been preserved.   

The POS attribute here is based on the traditional 8 parts of speech {nouns, 

verbs, adjectives, adverbs, pronouns, prepositions, conjunctions, interjections} but 

expands some classes where differentiation is thought to influence boundary 

placement (e.g. Liberman and Church construe object pronouns as content words, 

unlike other pronouns) and adds a miscellaneous category for the infinitive marker 

to, foreign words, and items not to be tagged. The final set of values amounts to 22, 

and comprises: nouns; adverbs; 5 expanded classes: (i) verbs {verb, modal, 

modal_negative, auxiliary, auxiliary_negative}; (ii) adjectives 

{adjective, article, determiner}; (iii) pronouns {pronoun, 

pronoun_reflexive, pronoun_object, pronoun_indefinite, pronoun_WH}; 
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(iv) prepositions {preposition_of, all other prepositions}; (v) conjunctions 

{conjunction_that, all other conjunctions}; interjections; a miscellaneous 

category; and a null value.   

9.5. Prosodic attribute-value sets 

In this study, each word has been classified in terms of 4 prosodic attributes: 

whether or not a word carries a beat; whether or not a word begins with a stressed 

syllable; whether or not a word ends with a stressed syllable, and if not, then the 

number of terminating unstressed syllables; whether or not a word contains a 

complex vowel. Each of these attributes is derived algorithmically by manipulating 

conditions based on projected prosody annotations from ProPOSEL and an 

important first step in the sequence (cf. Fig. 9.1) is ascertaining beat status for a 

given word. 

9.5.1. Beat status  

Lexical stress patterns and content-function word tags are mainly used to 

determine whether or not a word in context retains its canonical beat, based on the 

following assumptions. First, it is assumed all content words carry a beat, unless 

they are monosyllabic particles as in the phrase get a move on, where syntactic 

attachment of particle to preceding noun is, in a sense, reinforced prosodically via 

link-up (Mortimer, 1985), such that moveon becomes a single unit, with a 

hypothetical lexical stress pattern of 10 (i.e. stressed syllable followed by unstressed 

syllable). Thus, words with dual functionality as particles and prepositions are 

recognised, simultaneously, as syntactically distinct but prosodically analogous. 

Next, beat retention is assumed for numbers, reinforcement words (cf. 9.4), negative 

enclitics, function words and encliticised forms of more than one syllable, and any 

word for which lexicon look-up has failed, as these are largely proper nouns, and 

hence content words. Finally, it is assumed all other words forfeit their canonical 

beat in practice.  

9.5.2. Jassem tag 

The Aix-MARSEC corpus project includes rhythmic annotation tiers after 

Abercrombie versus Jassem (cf. Bouzon and Hirst, 2004), where stress feet are 

somewhat differently construed. For both theorists, stress feet in English begin with 

a stressed syllable; then, for the former, the foot continues across word boundaries if 



135 

 

need be, until the next stressed syllable; while for the latter, the foot is decomposed 

into a narrow rhythm unit, terminating at a word boundary, and an anacrusis, 

denoting the gap or lull between that terminus and the next stressed syllable. The 

algorithm here uses categorical labels after Jassem because of the neat 

correspondence between concept and token, but distinguishes between beat-

retaining words that begin with a stressed syllable and ones that do not. Thus in the 

fragment before the hijacking of the from A08, the noun hijacking, with primary 

stress on the first syllable, is tagged NRU for narrow rhythm unit, the preposition of is 

tagged ANA for anacrusis, and the preposition before, which carries a full beat on the 

second syllable, has a new combination tag of ANA+NRU, describing its rhythmical 

profile. Table 9.1 is a comparative breakdown of the given fragment according to 

the rhythmic scheme developed in this thesis and incorporating coarse-grained 

syntactic categorisation into content-function word groups and a binary flag for beat 

status. 

Syntax F F C F F 

Tokens before the hijacking of the 

Beat flag yes no yes no no 

Jassem tag ANA+NRU ANA NRU ANA ANA 

 Table 9.1: Descriptive classification of syntax and rhythm 

9.5.3. Lexical stress pattern 

The set of values for the attribute lexical stress pattern was considered 

to be too large (e.g. there are 124 patterns in ProPOSEL) and therefore this was 

rationalised down via a function which uses raw lexical stress patterns and beat 

assignment to determine whether a word ends with a stressed syllable; whether it 

ends with one, two, or multiple unstressed syllables; and whether lexical stress can 

be discounted (i.e. the word is a monosyllabic function word) or whether the value is 

simply missing. 

9.5.4. Complex vowels 

Complex vowels are the set of diphthongs and triphthongs in present day 

English and have been discussed in some detail in Chapter 7 of this thesis (cf. §7.4; 

7.7; 7.7.1). DISC phonetic transcriptions employ a single character for each 

phonological segment. Complex vowels are represented by digits, (cf. 7.4), so a 
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search was performed over DISC transcriptions to assign a binary tag for presence 

or absence of complex vowels for each token. 

9.6. Punctuation 

This thesis has already cited evidence from corpus-based studies and 

experimental work (§1.3) that punctuation is the single most important source of 

information for phrase break classification, finding approximately 50% of all breaks. 

We have also cited stylistic analyses where punctuation is used to trace pause 

patterns in Shakespearian blank verse (§7.5). Moreover, significance tests in this 

thesis consider all forms of punctuation (plus line terminals) as boundary 

annotations in Milton's verse (§7.5). For machine learning experiments in this 

chapter, we use three values to represent punctuation: words with attendant 

punctuation are classified as stops or medials, depending on punctuation type, and 

words with no attendant punctuation are labelled as non-terminals. This feature 

therefore implements the recommendation from Taylor (1996, p.145) that 

information about punctuation type should be used in speech synthesis systems.  

9.7. Training instances 

Taylor and Black classify junctures (whitespaces) as breaks or non-breaks and 

model prior probability of juncture type via a trigram context of two POS before and 

one after the juncture to be classified; while Busser et al use an extended fixed-

width feature vector of two POS to both left and right of the focus position (cf. 3.3). 

One of the longer term goals following on from this thesis is to derive boundary-

endorsing rhythmic templates from annotated speech corpora and from literary 

corpora, especially poetry (cf. examples of accented and de-accented midline stops 

in Milton‘s blank verse in Table 7.3), and so training instances in this study capture 

prosodic-syntactic attribute-values for overlapping windows of five words. The class 

attribute then denotes break status for the third word only: words classed as breaks 

immediately precede boundary annotations in the corpus and are embedded and 

viewed within a context of two words both before and after, with dummy tokens 

inserted to supplement instances involving words at the beginning and end of each 

of the ten separate text files. Table 9.2 represents the complete training instance for 

the word took in the phrase after it took off from; the shaded row is a non-break and 

this determines the class attribute for this particular example.  
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Word POS Punctuation Lexical Stress Beat Jassem CV 

after conjunction nonterminal endsSingleUnstressedSyll yes NRU no 

it pronoun nonterminal discountLexicalStress no ANA no 

took verb nonterminal endsStressedSyll yes NRU no 

off particle nonterminal discountLexicalStress no ANA no 

from preposition nonterminal discountLexicalStress no ANA no 

Table 9.2: Non-break classification of training instance, where word classified 

is centrally embedded in N-gram of 5 tokens  

The training instance itself takes the form:  

took, conjunction, nonterminal, endsSingleUnstressedSyllable, yes, NRU, no, 

pronoun, nonterminal, discountLexcialStress, no, ANA, no, verb, nonterminal, 

endsStressedSyllable, yes, NRU, no, particle, nonterminal, 

discountLexicalStress, no, ANA, no, preposition, nonterminal, 

discountLexicalStress, no, ANA, no, nonBreak 

9.8. Abstract modelling of training instances 

The supervised machine learning experiments in this chapter use features, or 

observations over a set of strings, to predict phrase breaks, encoded as a list of 

comma-separated values in an ARFF or CSV format. Another way of describing this 

abstract model is in terms of a mathematical equation analogous to the Drake 

Equation (cf. SETI, 2011) which explicitly lists the factors involved in predicting the 

number of technologically advanced civilisations that might exist in our galaxy. This 

way of stating a model lists all the features as factors in the equation:  

 

 

PB = f ( W, 

POSn-2, PUNn-2, LSn-2, Bn-2, Jn-2, CVn-2, 

POSn-1, PUNn-1, LSn-1, Bn-1, Jn-1, CVn-1, 

POSn-2, PUNn, LSn, Bn, Jn, CVn, 

POSn+1, PUNn+1, LSn+1, Bn+1, Jn+1, CVn+1, 

POSn+2, PUNn+2, LSn+2, Bn+2, Jn+2, CVn+2 ) 
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i.e. PB (phrase break) is some function of: 

W = current word, 

POSn-2 = part-of-speech at position n-2, 

PUNn-2 = punctuation at position n-2, 

LSn-2 = lexical stress pattern at position n-2, 

Bn-2 = beat at position n-2, 

Jn-2 = Jassem at position n-2, 

CVn-2 = complex vowel at position n-2 

… and so on  

9.8.1. Weighted factors 

In many of the experiments (i.e. Runs 8-33), we have set some of these factors 

to zero to see what effect this has on predictive power. For example, in the best-

performing prosody-syntax model (Run 28, Table 9.5), there are only nine non-zero-

weighted features. Moreover, this model also shows the dominance of syntax in the 

features used: five out of nine non-zero-weighted features concern part-of-speech.  

PB (phrase break) is a function of: 

W = current word, 

POSn-2 = part-of-speech at position n-2, 

POSn-1 = part-of-speech at position n-1, 

POSn = part-of-speech at position n, 

POSn+1 = part-of-speech at position n+1, 

POSn+2 = part-of-speech at position n+2, 

LSn-2 = lexical stress pattern at position n-2, 

CVn-2 = complex vowel at position n-2, 

Jn+2 = Jassem at position n+2, 

CVn+2 = complex vowel at position n+2 

It is also worth pointing out that this result is based purely on well-formed 

utterances (standardised and grammatically correct English usage), namely BBC 

radio broadcast news commentary. Thus it is not surprising that syntax is a good 

phrase break predictor here. Ideally, a fairer test of the contribution of symbolic 

prosodic features should be with less well-formed English, for example spontaneous 

conversational speech, or surreptitious recordings, or less "expert-crafted" text such 

as verbal autopsy reports (Danso et al., 2011). However, none of these are available 



139 

 

with mark-up for machine learning experiments; so the following sections 

necessarily report only on this ―conservative‖ genre.  

 

9.9. Overview of test procedure  

The WEKA toolkit (Hall et al., 2009) was used in a series of systematic 

boundary prediction experiments using different combinations of attributes (i.e. 

graphemic, syntactic and prosodic) to address the following questions: 

1. Using the full feature set (punctuation, syntax, and prosody), can we improve 

on baseline performance?   

2. When punctuation as top performing feature is removed from the feature set, 

does the addition of all 4 symbolic prosodic features improve on the 

performance of a syntax-only model? 

3. Does the addition of complex vowels as a stand-alone prosodic feature 

enhance the performance of a syntax-only model? 

These are the main questions; supplementary related questions are as follows: 

4. Does the addition of other ―stand-alone‖ prosodic features enhance the 

performance of a syntax-only model? 

5. Does selectional inclusion of prosodic feature combinations enhance the 

performance of a syntax-only model? 

These are supervised machine learning experiments which, because our dataset is 

small, use 10-fold cross-validation as test method. As is customary in phrase break 

prediction experiments (§1.5), we measure performance of the language model, and 

this case the feature set, via the number of major and minor boundary sites re-

captured during test. Similarly, as in classic phrase break prediction experiments 

(Taylor and Black, 1998), we do not attempt to measure performance in terms of the 

model's ability to predict major as distinct from minor boundaries. Moreover, with 

respect to this decision, we have already presented evidence of: (i) transcriber 

differences in the assignment of boundary types in our dataset (§5.3; 5.3.1); and (ii) 

―inconsistencies‖ in boundary type assignment for one transcriber (§5.3.3). Hence in 

this study, we are only concerned with a two-class problem: predicting breaks (the 

minority class) or non-breaks (the majority class).  
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9.9.1. Testing via a range of classifiers  

A decision was taken to use a range of generic classifiers during testing (i.e. 

decision trees: J48 and ADTree; rule learners: OneR and JRip; and Bayesian 

learners: BayesNet and AODE) to compare results from different learning schemes. 

This has proved advantageous in qualifying use of classification accuracy as sole 

evaluation metric, and in highlighting unequal classification error costs, where, for 

example, Bayesian learners capture more true positives but also generate more false 

positives than decision trees. These issues are discussed throughout Section 9.13. 

J48 is the main classifier used to address the research questions identified in Section 

9.9 because it achieved the highest success rate in the first round of experiments 

(§Table 9.3). Finer points, such as exploring potential gains from sparse use of 

prosodic features, prompt comparative evaluation of J48 outputs versus at least one 

other classifer (§9.13).   

9.9.2. Overview of evaluation metrics used 

We have surveyed and summarised evaluation metrics commonly used in 

phrase break prediction experiments in Section 3.4. In machine learning, 

performance is traditionally measured first and foremost by success rate or 

accuracy: the total number of correct classifications for breaks plus non-breaks 

made during test vis-à-vis gold standard class labels for each test instance. We 

therefore use this metric but also juxtapose the accuracy measure with Balanced 

Classification Rate (BCR), namely the average of positive hits for each class, 

because class distributions in our dataset are skewed, such that an unintelligent  

classifier which labels each test instance with the dominant class label, achieves a 

respectable success rate of 79%. This additional BCR metric, and its implementation 

here, is more fully discussed in Section 9.13. We  have also tabulated f-scores (§3.4) 

for the majority and minority class in each test run for comprehensive presentation, 

though these are not further discussed.  

9.10. Test results with punctuation included as a feature 

Table 9.3 summarises results in terms of 3 evaluation metrics from 10-fold 

cross validation tests on the transformed ProPOSEC dataset for experimental runs 

with punctuation included as a feature for various classifiers compared against two 

baselines: ZeroR and OneR. The former simply predicts the majority class (non-
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breaks in this case) for all instances; while the latter selects the best performing 

attribute for classification. Not surprisingly, this turns out to be punctuation. The 

simple ruleset:  

 {nonterminal -> nonbreak; terminal -> break; medial -> break}  

results in correct classification of 6962 out of 7763 instances.  

9.10.1. Discussion of test results with punctuation included as a feature 

The first point to make with regard to Table 9.3 is that ―unintelligent‖ baseline 

performance, namely the majority classifier, is reasonably high at 79.04% accuracy. 

The OneR classifier sets an even higher baseline success rate of 89.68%, 

demonstrating the fact that punctuation is a top-performing feature. Run 3, where 

J48 uses the full feature set of punctuation, syntax and all four additional symbolic 

prosodic features, improves on OneR baseline performance, with a success rate of 

90.07%. This constitutes the best accuracy score achieved throughout this first series 

of tests, and also represents an improvement on OneR performance in terms of two 

other evaluation metrics: f-score for minority class (0.73 instead of 0.67); and 

Balanced Classification Rate, namely an average of the hits on each class (0.80 

instead of 0.75). The improvement in accuracy turns out not to be statistically 

significant however. This is more fully discussed in Section 9.13, which also 

addresses the rationale for test runs with other classifiers in Table 9.3, and 

interesting insights gained in the process.  
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Total Number of Instances: 7763 

Total Non-Breaks: 6136; Total Breaks: 1627 

Prior probabilitiy Majority Class: 0.79; Prior Probability Minority Class: 0.21 

              Run Classifier Number 

of 

features 

Description of feature set % 

Success 

rate 

TP FN TN FP  F-score: 

Majority 

Class 

F-score: 

Minority 

Class 

BCR: Balanced 

classification rate 

(Higher is better)  

1 ZeroR 31 Whole feature set 79.04 0 1627 6136 0 0.88 0 0.50 

2 OneR 31 Whole feature set (rule=punct) 89.68 826 801 6136 0 0.94 0.67 0.75 

3 J48 31 

 

Whole feature set 

 

90.07 1038 589 5954 182 0.94 0.73 0.80 

4 JRip 31 

 

Whole feature set 

 

88.92 981 646 5922 214 0.93 0.70 0.78 

5 ADTree 31 

 

Whole feature set 

 

90.03 1016 611 5973 163 0.94 0.72 0.80 

6 AODE 31 

 

Whole feature set 

 

86.59 1342 285 5380 756 0.91 0.72 0.85 

7 BayesNet 31 

 

Whole feature set 

 

82.67 1388 239 5030 1106 0.88 0.67 0.84 

              Table 9.3: Experimental runs for various classifiers versus baseline performance with punctuation included as a feature 
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9.11. Test results without punctuation included as a feature 

The objective in the first round of tests was to see if, given a feature set 

augmented with symbolic prosodic features, our classifier (J48) could improve on 

baseline performance for phrase break prediction set by a majority (ZeroR) classifier 

and then a OneR classifier. An improvement was recorded in both cases; and since 

this classifier achieved the highest accuracy score, it was retained in subsequent 

tests. The objective in this second round of tests is to evaluate classifier performance 

when punctuation, the top-performing feature, is removed - and more particularly, to 

see if a language model using prosodic as well as syntactic features can improve on 

a syntax-only model. Experimental runs also record classifier performance versus 

the baseline and versus a syntax-only model when syntax is supplemented by each 

of the 4 prosodic features in turn, namely: (i) complex vowels; (ii) lexical stress or 

word-internal syllable weightings; (iii) beat; (iv) jassem or coarse-grained, word-

internal rhythmic profile. From the point of view of many natural language 

engineering applications, it would be detrimental to remove punctuation as a feature. 

Taylor (1996, p.143) argues that '...all punctuation marks can contribute to the 

generation of tone group boundaries.' However, for the purposes of experimentation, 

and given that there are also applications with direct speech as input, and without 

punctuation mark-up, punctuation is now removed from the feature set. 

9.11.1. Discussion of results where punctuation is removed as a feature 

The ZeroR baseline is fixed at 79.04%. The baseline success rate for the 

syntax-only OneR classifier is 81.62%. Not surprisingly, the OneR classifier uses 

postpos1 as sole discriminator, which can effectively be interpreted as the chink-

chunk rule: the sequence open-class word + closed class word is an optimal phrase 

break location. However, since we are measuring whether additional prosodic 

information improves performance for phrase break prediction in the absence of 

punctuation, the figure to beat is J48's performance of 85.68% with syntactic 

features only. This figure is taken from Run 12 in Table 9.4. On this we get negative 

results as follows, though the differences do appear to be marginal, indicating that 

neither model is significantly better than the other: (i) 85.25% versus 85.68% when 

all prosodic features are selected in Run 13; (ii) 85.48% versus 85.68% when syntax 

is supplemented with complex vowels only in Run 16; (iii) 85.29% versus 85.68% 

when syntax is supplemented with lexical stress only in Run 17; and (iv) 85.59% 
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versus 85.68% when syntax is supplemented with either the beat or jassem feature in 

Runs 18 and 19 respectively.  
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Total Number of Instances: 7763 

Total Non-Breaks: 6136; Total Breaks: 1627 

Prior probabilitiy Majority Class: 0.79; Prior Probability Minority Class: 0.21 

              Run Classifier Number 

of 

features 

Description of feature set % 

Success 

rate 

TP FN TN FP  F-score: 

Majority 

Class 

F-score: 

Minority 

Class 

BCR: Balanced 

classification rate 

(Higher is better)  

8 OneR 6 Syntax only (rule=postpos1) 81.62 330 1297 6006 130 0.89 0.32 0.59 

9 OneR 26 Prosody-syntax (rule=postpos1) 81.62 330 1297 6006 130 0.89 0.32 0.59 

10 OneR 21 Prosody only (rule=poststress1) 79.04 9 1618 6127 9 0.88 0.01 0.50 

11 OneR 6 CV only (rule=postcv1) 79.17 10 1617 6136 0 0.88 0.01 0.50 

12 J48 6 Syntax only 85.68 921 706 5730 406 0.91 0.62 0.75 

13 J48 26 Prosody-syntax 85.25 870 757 5748 388 0.91 0.60 0.74 

13a ADTree 26 Prosody-syntax 85.25 1050 577 5568 568 0.91 0.65 0.78 

14 J48 21 Prosody only 78.71 363 1264 5747 389 0.87 0.31 0.58 

15 J48 6 CV only 79.04 0 1627 6136 0 0.88 0 0.50 

16 J48 11 Syntax and CVs 85.48 904 723 5732 404 0.91 0.62 0.74 

17 J48 11 Syntax and stress 85.29 905 722 5716 420 0.91 0.61 0.74 

18 J48 11 Syntax and beat 85.59 903 724 5741 395 0.91 0.62 0.75 

19 J48 11 Syntax and jassem (rhythm)  85.59 903 724 5741 395 0.91 0.62 0.75 

              Table 9.4: Experimental runs for J48, a generic decision tree classifier, versus OneR baseline performance minus punctuation as a 

feature. (§10.9.3) for comment on ADTree Run 13a.  
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9.12. Tests where syntax is supplemented by combinations of 

prosodic features 

Since the addition of single prosodic features (Runs 16-19) gave a marginal 

improvement on use of all prosodic features (Run 9), a "trial and error" approach 

was adopted to see which combinations of prosodic features (if any) could improve 

on a syntax-only model. An abstraction of the best performing model in this 

experimental round has already been presented in Section 9.8.1. Table 9.5 compares 

performance of different prosodic-syntactic feature combinations with the accuracy 

rate achieved by the J48 syntax-only model: 85.68%. All prosodic-syntactic feature 

variations tabulated represent a marginal improvement on the syntax-only model. 

We focus on the best result in Run 28 (Table 9.5). This model has a success rate of 

85.80% and uses complex vowels in 2 index positions (i - 2 and i + 2) either side of 

the index to be classified, plus word-internal rhythmical/syllabic information: lexical 

stress (i - 2) and jassem (i + 2). 
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Total Number of Instances: 7763 

Total Non-Breaks: 6136; Total Breaks: 1627 

Prior probabilitiy Majority Class: 0.79; Prior Probability Minority Class: 0.21 

              Run Classifier Number 

of 

features 

Description of feature set % 

Success 

rate 

TP FN TN FP  F-score: 

Majority 

Class 

F-score: 

Minority 

Class 

BCR: Balanced 

classification rate 

(Higher is better)  

12 J48 6 Syntax only 85.68 921 706 5730 406 0.91 0.62 0.75 

20 J48 8 Syntax(CV + Beat in Post2) 85.73 921 706 5734 402 0.91 0.62 0.75 

21 J48 8 Syntax(CV + Jassem in Post2) 85.73 921 706 5734 402 0.91 0.62 0.75 

22 J48 10 Syntax(All in Pre2) 85.73 929 698 5726 410 0.91 0.63 0.75 

23 J48 7 Syntax(CV in Pre2) 85.73 926 701 5729 407 0.91 0.63 0.75 

24 J48 7 Syntax(Stress in Pre2) 85.73 925 702 5730 406 0.91 0.63 0.75 

25 J48 13 Syntax(All in Pre2; 3 in Post2 ) 85.71 940 687 5714 422 0.91 0.63 0.75 

26 J48 9 Syntax(CVPre2; JassemCVPost2) 85.74 927 700 5729 407 0.91 0.63 0.75 

27 J48 10 Syntax(StressCVPre2; BeatCVPost2) 85.77 935 692 5723 413 0.91 0.63 0.75 

28 J48 10 Syntax(StressCVPre2; JassemCVPost2) 85.80 937 690 5724 412 0.91 0.63 0.75 

              Table 9.5: Experimental runs for J48 with syntax plus different combinations of prosodic features versus a syntax-only model 
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9.12.1. McNemar significance test 

To determine whether or not the score of 85.80% (a prosody-syntax phrase 

break model) in Run 28 represents a significant improvement on 85.68% (a syntax 

only phrase break model) in Run 12, a further test was performed: McNemar‘s 

significance test for comparing the performance of two algorithms. The test requires 

classification data on matched pairs, and in this case, this is provided by output 

predictions for the same instances for the two different models in WEKA, as in 

Table 9.6. 

Output Predictions in WEKA for syntax-only J48 model in Fold 1 
770    2:break 1:nonbreak      +  *0.925  0.075 

771    2:break 1:nonbreak      +  *0.726  0.274 

772    2:break 1:nonbreak      +  *0.5    0.5 

773    2:break 1:nonbreak      +  *0.842  0.158 

774    2:break    2:break          0.193 *0.807 

775    2:break    2:break          0.423 *0.577 

776    2:break    2:break          0.193 *0.807 

777    2:break 1:nonbreak      +  *0.667  0.333 

 

Output Predictions in WEKA for syntax-prosody J48 model for same Fold 1 
770    2:break 1:nonbreak      +  *0.783  0.217 

771    2:break 1:nonbreak      +  *0.778  0.222 

772    2:break    2:break          0.167 *0.833 

773    2:break 1:nonbreak      +  *0.719  0.281 

774    2:break    2:break          0.111 *0.889 

775    2:break 1:nonbreak      +  *0.995  0.005 

776    2:break 1:nonbreak      +  *0.832  0.168 

777    2:break 1:nonbreak      +  *0.786  0.214 

Table 9.6: Matched pairs of output predictions in WEKA for the same 

instances in the syntax-only versus syntax prosody models 

 

Counts for concordant and discordant pairs were derived from such classification 

data in WEKA and assembled in a 2 x 2 contingency table as follows (Table 9.7).  

 

 Syntax-only: correct Syntax-only: incorrect 

Prosody-syntax: correct 6621 40 

Prosody-syntax: incorrect 30 1072 

 Table 9.7: Concordant and discordant results for the syntax-only and 

prosody-syntax models (Runs 12 and 28)  
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McNemar‘s chi-squared significance test only considers whether or not there is a 

significant difference in proportions in the discordant pairs (shaded in Table 9.7). In 

this case, the difference is not significant: the two-tailed p-value is 0.28, and the 

odds ratio is 1.33 with a 95% confidence interval.  

9.13. Do prosodic features add value? 

Do prosodic features add value for phrase break prediction? This is a difficult 

question. On the one hand, there is some evidence to suggest that the addition of 

prosodic features does enhance performance depending on which model and which 

evaluation metric is used. This evidence comes initially from Table 9.3, which 

tabulates results for various classifiers with all features present: punctuation, syntax 

and prosody. While decision trees (J48 and ADTree) have the highest success rates, 

the Bayesian classifiers (AODE and BayesNet) clearly capture more true positives, 

suggesting these classifiers have learnt the concept associated with the minority 

class better than others, and more importantly, they exhibit better Balanced 

Classification Rates.  

9.13.1. Balanced Classification Rate versus Accuracy 

Before re-considering results from Table 9.3, plus additional results in Table 

9.8, we might consider the argument for preferring BCR to classical overall 

accuracy, even though this metric has not been used in classic phrase break 

prediction experiments (cf. 3.4). In our experimental dataset, and in datasets for 

phrase break prediction in general, the classes are not evenly distributed: there is not 

a 50/50 chance that each whitespace between words can be classified as a break or 

non-break. Instead, datasets are imbalanced, leading to apparently ―respectable‖ 

success rates for unintelligent ZeroR classification based on skewed class priors, in 

this case 79% (non-breaks) versus 21% (breaks). Accuracy or success rate does not 

consider these relative class distributions and unequal classification error costs, 

whereas BCR places equal emphasis on model capture of true positives (sensitivity) 

as well as true negatives (specificity), and is not pre-empted by an imbalanced 

dataset. Hence there are examples in machine learning literature of ―success‖ for 

classification being interpreted as BCR rather than the traditional accuracy measure. 

For example, BCR is the preferred metric in the STAMINA (State Machine 

Inference Approaches) competition ―…to drive the evaluation and improvement of 
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software model-inference approaches…‖ (Walkinshaw et al., 2010), and has been 

used for evaluation in machine learning and knowledge discovery (Helleputte and 

Dupont, 2009); and document analysis systems (Gazzah and Ben Amara, 2008). 

Table 9.8 subsumes Table 9.3, and juxtaposes runs from Table 9.4 with new 

material (Runs 29-33) from which to draw overall conclusions. It still gives BCR as: 

0.5 * ((TP / total positive instances) + (TN / total negative instances)) 

However, it also presents a version of BCR known as harmonic BCR (Walkinshaw 

et al., 2010). This is computed as:  

2 * ((sensitivity * specificity) / (sensitivity * specificity)) 

where sensitivity equals: TP / (TP + FN), and where specificity equals: TN / (TN + 

FP). This is the metric used in STAMINA.  

9.13.2. Verifying accuracy via significance testing with punctuation 

present  

In Table 9.8, J48‘s success rate of 90.07% (Run 3) using the entire feature set 

does not represent a significant improvement on baseline performance, namely the 

89.68% achieved by the OneR model using punctuation as sole predictor of phrase 

breaks. The same applies to AODE‘s success rate of 86.59% (Run 6) which, despite 

the high BCR metrics, shows a significantly worse result. Significant improvement 

(or otherwise) is here measured (Table 9.9) via the corrected re-sampled t-test, 

implemented in WEKA‘s Experimenter, and used to verify BCR (Nadeau and 

Bengio, 2003; Helleputte and Dupont, 2009). This finding has also been 

corroborated via the McMemar test (9.12.1) and the results presented in Tables 9.10 

and 9.11. By the same token, AODE‘s punctuation and syntax model (Run 33) 

represents the only significant improvement on the baseline punctuation rule in this 

entire series of tests (Tables 9.8 and 9.13). 
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Total Number of Instances: 7763 

Total Non-Breaks: 6136; Total Breaks: 1627 

Prior probabilitiy Majority Class: 0.79; Prior Probability Minority Class: 0.21 

 

Run Classifier Number 

of 

features 

Description of feature set % 

Success 

rate 

TP FN TN FP BCR: Balanced 

classification rate 

(Higher is better)  

Harmonic 

BCR 

1 ZeroR 31 Whole feature set 79.04 0 1627 6136 0 0.50 0.00 

2 OneR 31 Whole feature set (rule=punct) 89.68 826 801 6136 0 0.75 0.67 

3 J48 31 Whole feature set 90.07 1038 589 5954 182 0.80 0.77 

4 JRip 31 Whole feature set 88.92 981 646 5922 214 0.78 0.74 

5 ADTree 31 Whole feature set 90.03 1016 611 5973 163 0.80 0.76 

6 AODE 31 Whole feature set 86.59 1342 285 5380 756 0.85 0.85 

7 BayesNet 31 Whole feature set 82.67 1388 239 5030 1106 0.84 0.84 

8 OneR 6 Syntax only (rule=postpos1) 81.62 330 1297 6006 130 0.59 0.34 

29 AODE 6 Syntax only 85.06 910 717 5693 443 0.74 0.70 

9 OneR 26 Syntax and prosody (rule=postpos1) 81.62 330 1297 6006 130 0.59 0.34 

30 AODE 26 Syntax and prosody only 81.13 1162 465 5136 1000 0.74 0.77 

11 OneR 11 Syntax and CVs (rule=postpos1) 81.62 330 1297 6006 130 0.59 0.34 

31 AODE 11 Syntax and CVs only 84.63 917 710 5653 483 0.74 0.70 

32 J48 11 Syntax and punctuation 89.66 857 770 6103 33 0.76 0.69 

33 AODE 11 Syntax and punctuation 90.35 1159 468 5855 281 0.83 0.82 

Table 9.8: Comparative performance of classifiers in terms of Accuracy, Balanced Classification Rate (BCR), and Harmonic BCR 
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Analysing:  Percent_correct 

Datasets:   1 

Resultsets: 2 

Confidence: 0.05 (two tailed) 

Date:       19/07/11 09:00 

 

 

Dataset                   (1) rules.On | (2) trees  

                         -------------------------- 

wekadataCV_ALL.txt       (100)   89.68 |   89.74    

                         -------------------------- 

                               (v/ /*) |   (0/1/0)  

Skipped:  

 

Key: 

 

(1) rules.OneR '-B 6' 3010129309850089072 

(2) trees.J48 '-C 0.25 -M 2' -217733168393644444 

 

Datasets:   1 

Resultsets: 2 

Confidence: 0.05 (two tailed) 

Date:       19/07/11 08:54 

 

 

Dataset                   (1) rules.On | (2) bayes  

                         -------------------------- 

wekadataCV_ALL.txt       (100)   89.68 |   86.51 *  

                         -------------------------- 

                               (v/ /*) |   (0/0/1)  

Skipped:  

 

Key: 

 

(1) rules.OneR '-B 6' 3010129309850089072 

(2) bayes.AODE '\"-F \" 0' 9197439980415113523 

 

Table 9.9: Results for corrected re-sampled t-test in WEKA Experimenter for 

J48 and AODE compared against the OneR baseline. 

 

 OneR: correct OneR: incorrect 

J48: correct 6780 212 

J48: incorrect 182 589 

2-tailed p-value = 0.14; odds ratio = 1.17 with 95% confidence 

 Table 9.10: Concordant and discordant results for J48 using all available 

features compared against OneR (punctuation) as control in McNemar‘s test   
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 OneR: correct OneR: incorrect 

AODE: correct 6190 532 

AODE: incorrect 772 269 

2-tailed p-value = 0.0001; odds ratio = 0.69 with 95% confidence 

 Table 9.11: Concordant and discordant results for AODE using all available 

features compared against OneR (punctuation) as control in McNemar‘s test. Here, 

OneR performs significantly better than AODE.   

 

 OneR: correct OneR: incorrect 

AODE: correct 6680 334 

AODE: incorrect 282 467 

2-tailed p-value = 0.04; odds ratio = 1.18 with 95% confidence 

 Table 9.12: Concordant and discordant results for AODE using punctuation 

and syntax compared against OneR (punctuation) as control in McNemar‘s test   

9.13.3. Verifying accuracy via significance testing with punctuation 

absent 

Table 9.8 summarises experimental permutations for different classifiers with 

and without punctuation; this summarisation is legitimate given the preceding 

systematic presentation of results for J48 as background. Run 31 in Table 9.8 

records performance for an AODE model minus punctuation and using syntax and 

complex vowels as features. The success rate of 84.63% is an interesting result as it 

represents a significant improvement on 81.62% for the OneR syntax-only model 

(Run 8) which uses postpos1 as phrase break indicator: effectively, the chink-chunk 

rule. Again, this is verified via McNemar‘s test (Table 9.13). By the same token, 

however, AODE‘s syntax-only performance (Run 29), also represents a significant 

improvement on the baseline and attains a higher success rate: 85.06% versus 

84.63%. Here significance is assumed, given the finding in Table 9.13. 
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 OneR: correct OneR: incorrect 

AODE: correct 5923 647 

AODE: incorrect 413 780 

2-tailed p-value = 0.0001; odds ratio = 1.57 with 95% confidence 

 Table 9.13: Concordant and discordant results for AODE using syntax and 

complex vowels compared against OneR (postpos1) as control in McNemar‘s test   

9.14. Concluding remarks 

From the evidence presented in this chapter, based solely on a limited dataset 

of grammatically well-formed, expertly-crafted BBC radio broadcast transcripts, it 

appears that symbolic prosodic features do not improve phrase break prediction over 

syntax-only predictors, and that this finding applies both when punctuation is 

present, and when it is withheld as a feature. In fact it is fair to say that at best, the 

inclusion of prosodic features has not achieved significant gains in performance 

(Run 3 versus Run 2), and that at worst, prosody has detracted from performance by 

introducing ―noise‖ (Run 6 versus Run 33). Less prosody means less noise, and that 

would explain why single prosodic features (e.g. the complex vowels in Run 31, 

Table 9.8), or sparser combinations of prosodic features (e.g. Run 28, Table 9.5), 

get better results. Hence, these findings all tend to disprove the hypothesis that 

symbolic prosodic features, in addition to syntax and punctuation, will enhance 

performance in phrase break prediction. This finding is more fully discussed in the 

main Conclusions chapter.   
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Step 1: Automatic 

Use PAUSE tokens to classify preceding 
words as breaks (or non-breaks if there 
is no subsequent PAUSE).  

Attribute: class 

Values: 2 + NONE 

Step 2: Automatic 

Implement a “rationalise POS” function 
via C5 tags to reduce the number of 
values for syntax as an attribute, while 
preserving distinctive categories of 
interest.   

Attribute: POS 

Values: 21 + NONE 

Step3: Automatic 

Use (mainly) lexical stress patterns and 
content-function word status to 
determine whether or not a word in 
context retains its canonical beat.  

Attribute: beat 

Values: 2 + NONE  

Step 4: Automatic 

Use beat assignments from the previous 
step, together with lexical stress 
patterns, to assign Jassem tags, 
indicating whether or not a word begins 
with a stressed syllable, and if not, 
whether a stressed syllable occurs 
before the word boundary.  

Attribute: Jassem 

Values: 3 + NONE 

Step 5: Automatic 

Implement a “rationalise lexical stress” 
function to reduce the value set of 
lexical stress patterns.  

Attribute: rhythmic profile 

Values: 6 + NONE 

 

Step 6: Automatic 

Generate a punctuation attribute via 
presence or absence of punctuation, 
plus type of punctuation (i.e. medial or 
terminal).  

Attribute: punctuation 

Values: 3 + NONE 

Step 7: Automatic 

Use DISC phonetic transcriptions to 
determine whether or not a word 
contains a diphthong or a triphthong.  

Attribute: complex vowel 

Values: 2 + NONE 
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Steps 8 (Automatic), 9 (Manual) and 10 (Automatic) 

Generate sliding windows of length 5 to 
embed and contextualise the index to 
be re-classified (i.e. the middle index) 
during testing. 

Training instances of 31 attribute-value 

pairings for: index – 2, index – 1, index, 

index + 1, index + 2, and the class 

attribute.  

Add dummy leading and trailing indices 
to embed and contextualise words at 
beginnings and ends of ProPOSEC text 
files. 

Print n-gram instances to file, removing 
the class attribute for all but the middle 
index, and appending this attribute at 
the end of each instance.   

Figure 9.1: Summary of stages in algorithmic transformation of ProPOSEC 

data into a training set for machine learning 
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Chapter 10 

Thesis Summary, Conclusions, and Ideas for Further Work 

10.1 Overview 

This final chapter first reviews the main threads running through this thesis, 

and then draws conclusions from empirical work about: (i) the correlation of 

descriptive as opposed to acoustic prosodic phenomena – and in particular complex 

vowels – and boundary annotations in different texts and different spoken genres; 

and (ii) the predictive potential of such symbolic prosodic features for the machine 

learning task of phrase break prediction. Recommendations for future work 

include/cover: (i) extension and application of the ProPOSEL lexicon as speech-to-

viseme generator for avatar creation; and (ii) application of text analytics techniques 

for English developed in this thesis to explore phrasing strategies in Arabic, another 

stress-timed language. Finally, the chapter summarises PhD impact, originality, and 

contribution to research field.  

10.2. Thesis main threads: shallow parsing and prosodic phrasing 

Prosodic chunking is a language universal and there is acceptance that such 

phrasing is simpler, shallower and flatter than syntactic structure, hence the tradition 

of robust shallow parsing for predicting prosodic phrase boundaries in unseen text, 

with CFP algorithms implemented at Bell (Abney, 1994) and Toshiba (Knill, 2009). 

A comprehensive study (Ingulfsen et al., 2005) found that shallow parse features at 

different levels of granularity, complemented by information about strong/weak 

syntactic coupling from Link grammar, achieved a good balance between the IR 

metrics of precision and recall for phrase break prediction. This study, along with 

Taylor and Black (1998), also recognises punctuation as a top performing feature for 

this task, re-invoking the status of punctuation as prosodic annotation:  

‗...Elizabethan popular writers...wrote for a people whose social intercourse 

had developed the art of conversation – their punctuation in this connection is 

highly suggestive, and so is the size of their vocabulary...‘ (Leavis, 1965, p. 

88).  
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10.2.1. Ambiguity of function words 

In Chapter 4 of this thesis, the focus of early work shifts from attempts to 

define syntactic sequences equivalent to prosodic phrases for shallow parsing (i.e. 

contents of prosodic phrases), to PoS either side of the boundary position itself. An 

improved f-score was achieved via a prototype two-stage chunker, where rule-

ordering constitutes both a linguistic and algorithmic challenge. Chapters 4 and 5 

question the binary divide into content and function words for CFP rules: ‗gold 

standard‘ CF allocation of blended categories, most notably particles and 

prepositions, is variable. Moreover, some function words are bi-syllabic and by 

virtue of this fact, their rhythmic constitution is analogous to bi-syllabic content 

words and may influence boundary placement. Finally, there is as yet no agreed set 

of reliable content-function word defaults for the phrase break prediction task. 

10.3. Thesis main threads: the variability of prosody 

As well as revisiting the theme of blended categories and dual-functioning 

PoS, Chapter 5 cites Taylor and Black (1998) and Atterer and Klein (2004) who 

question the validity of evaluating prosodic phrasing models in terms of one corpus 

template. Many insertion or deletion errors for boundary prediction are not errors at 

all but legitimate, variant phrasing strategies. Again, these alternative phrasings are 

embedded in the text, as is the case with variant parsing strategies. 

Chapter 5 suggests a follow-up project where a tried and tested prosodic 

phrasing model is used to generate alternative prosodies for each sentence in the 

corpus which would then be subjected to human judgement to ascertain accuracy 

and naturalness and finally incorporated into a parallel corpus. It would not be the 

first time that variant annotations have been included in the gold standard. 

MultiTreebanks have been used for comparative analyses of rival parsing programs; 

for prosody, and because of its inherent variability, parallel prosodic realisations of 

each sentence in the corpus would facilitate more robust, noise-tolerant evaluation of 

phrasing models. 

10.3.1. The distinction between chunking and highlighting 

Another idea emerging from Chapter 5 of this thesis is different kinds of 

boundaries categorised as chunkers and highlighters. The former may co-occur with 

major clause markers but may also be manifest at other levels in the syntax tree. The 
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latter occur much lower down the tree; and in some cases, speakers may choose to 

relinquish an obvious chunking boundary in favour of more idiosyncratic 

highlighting in order to emphasise certain structures or constituents: speech acts or 

semantic roles.  

10.4. Thesis main threads: projecting prosody onto text via 

ProPOSEL  

Chapter 6 reports on the trend towards leveraging real-world linguistic 

knowledge to enhance performance in machine learning for language engineering 

tasks (e.g. Furui, 2009), and highlights a deficiency of a priori knowledge of 

prosody in phrasing models for English. Furthermore, it concurs with studies that 

recognise how human readers project their internalised knowledge of prosody onto 

text even during silent reading to inform parsing and understanding. The prosody 

inherent in text, and currently absent in learning paradigms for phrase break models, 

is revealed in the multiple annotation tiers in Aix-MARSEC. The ProPOSEL lexicon 

developed as part of this thesis is a linguistic repository from which to extract real-

world knowledge of prosody and syntax for projection (i.e. annotation) onto any 

text; it is possible, for example, to regenerate symbolic rhythmic labels such as Aix-

MARSEC‘s narrow rhythm units and anacruses from lexical stress patterns in 

ProPOSEL.   

10.4.1. Prosodic information in ProPOSEL 

Although ProPOSEL does not incorporate variant pronunciations, it does 

contain stressed and syllabified phonetic transcriptions. Pronunciation lexica for 

ASR often record a range of linear phonetic transcriptions for a given word but a 

transcription string also needs to be given structure (syllabification) and depth 

(stress weigthings) which together define the rhythmic profile or lexical stress 

pattern for a word and are subsisting attributes of a word. Chapter 6 of this thesis has 

uncovered variance in pronunciation lexica with regard to syllabification and 

secondary stress assignment. For lexical items where there is no ambiguity in terms 

of syllable count, the lexical stress pattern tells us something more fundamental 

about a word: its rhythmic structure. The potential of this feature for predicting 

rhythmic juncture is explored in machine learning experiments in Chapter 9.  
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10.5. Thesis main threads: the ProPOSEL lexicon as model  

There is a perceived need for fine-grained syntactic, morphological and 

phonetic information in lexica designed for language engineering tasks such as TTS, 

ASR and Machine Translation. This thesis argues the case for discriminating word 

class information in lexica designed for linkage with corpora. The ProPOSEL model 

maps between four syntactic annotation schemes, with software tools for refining 

this mapping and re-tagging a corpus annotated with one of its hosted tag-sets. The 

contributing lexical resources forming the basis of ProPOSEL – OALD, CUVPlus, 

BNC, CELEX, CMU, Penn Treebank and LOB – have each been used in a variety 

of research projects covering psycholinguistics, language engineering and corpus 

linguistics. Hence, in combining lexical information from all these resources, 

ProPOSEL is applicable in all these research areas, and many more. 

By integrating a range of different resources, and enabling a variety of access 

strategies (cf. 6.8), with consultation based on various combinations of partial 

syntactic and prosodic knowledge of target words, ProPOSEL represents 

groundwork for the next generation of electronic dictionaries.  

10.5.1. Cognitive aspects of the lexicon 

Phonology fields in ProPOSEL constitute a range of access routes for users 

and enable lookup via sound, syllables, and rhythmic structure as alternatives to 

orthographic form. Human users of electronic dictionaries can start from partial 

concepts or patterns when they are generating a message or looking for a (target) 

word. Conceptual inputs of dictionary users may be based on semantic cues, such as 

conceptual primitives, semantically related words, partial definitions (e.g. synsets); 

but speakers/writers may also be searching for a word which matches syntactic, 

phonetic or prosodic partial patterns, for example, seeking a matching rhythm or 

rhyme. While meaning is clearly the focus of many lexicography researchers, access 

by sound, rhythm and prosody, plus syntactic similarity, may also prove useful 

complementary strategies for some users.  

Another key issue for lexicography (cf. Workshop on Cognitive Aspects of 

the Lexicon, Coling 2008) is robust, yet flexible organisation of resources. By 

building on and integrating with Python and NLTK, ProPOSEL can be accessed by 

other NLP tools or via the standard Python interface for direct browsing and search. 

ProPOSEL is also a potential exemplar for lexical entry standardisation. Many 
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lexicographers focus on standardisation of semantics or definitions; but 

standardisation of syntactic, phonetic and prosodic information is also an issue. The 

pragmatic approach of this thesis is to integrate lexical entries from a range of 

resources into a standardised Python dictionary format, where the dictionary is 

reconceived and dynamically reconstituted as an associative array. Users can thus 

manipulate the text file to perform filtered searches on subsets of the lexicon and 

access wordforms via sound, syllables and rhythmic structure. 

10.6. Thesis main hypothesis: development  

The design (e.g. feature selection) and evaluation of language models for 

automatic phrase break prediction is challenged by the inherent variance of prosody 

itself. Prosodic-syntactic chunking is a language universal, however, and the survey 

of phrase break models for English (cf. Chapter 3) confirms that syntax is integral to 

the task. Syntactic features may be shallow (e.g. PoS-tags or the content-function 

word divide) or deep (e.g. long-distance information in n-gram modelling or the 

incorporation of parser outputs) or both, as in combined feature sets; and they are 

often supplemented by text-based features with varying degrees of domain-

independence (e.g. sentence length and use of punctuation).  

However, this thesis highlights a deficiency of a priori knowledge of prosody 

in both rule-based and data-driven phrase break models. Moreover, some models 

which do incorporate prosodic features are insufficiently linguistically-motivated: 

syllable counts are not best suited to a stress-timed language like English; and 

similarly, since nouns are highly correlated with boundaries and since primary stress 

in English nouns of more than one syllable tends to fall early in the word, word-final 

syllables minus canonical stress labels (cf. 3.7) are unlikely to emerge as good 

categorical boundary predictors.    

There is a recent trend towards leveraging real-world knowledge to enhance 

performance in machine learning. The author concurs with studies that recognise 

how, even in silent reading, humans project prosody onto text and treat it as part of 

the input. Hence we have developed ProPOSEL, a tool for automatically projecting 

a priori knowledge of prosody from the lexicon onto text. This tool is also domain-

independent insofar as it is compatible with English corpora tagged with four 

different PoS-tagging schemes.   
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There is consensus in the ASR community that pauses affect vowel durations 

in adjacent words. Based on observations from poetry and prose of an apparent 

correlation between a subset of English vowels and prosodic boundaries, the thesis 

redefines this causal relationship and interprets complex vowels (the subset) as 

phrase break signifiers. This correlation is first verified via significance testing on 

samples of 17
th

. Century English verse and contemporary British English speech. A 

range of dictionary-derived, symbolic prosodic features (including complex vowels) 

are then expressed as attribute-value sets in machine-learning experiments to explore 

their predictive potential in comparison with traditional phrase break features: 

punctuation and syntax.    

10.7. Thesis main hypothesis: significance testing  

Language use in poets who are native English speakers only differs in degree from 

that of normal English speakers:  

‗...Since our concern was speech, and speech impelled us 

To purify the dialect of the tribe...‘ (T.S.Eliot, Little Gidding, Part II, 1942) 

A creative insight of this PhD is that if poets favour certain sounds in words as 

phrase break devices, then this may be endemic to the language in question (i.e. 

English) and not a poetic conceit.  

Motivated by the observed presence of diphthongs and triphthongs at 

rhythmic junctures in verse, Chapter 7 of this thesis verifies a statistically significant 

correlation between complex vowels and phrase breaks in a representative corpus of 

17
th

. Century English verse. Furthermore, another important finding from this study 

is that phrasing variants of the same text give the same highly correlated result.  

Significance tests in Chapter 8 demonstrate how the statistically significant 

association between pre-boundary lexical items bearing complex vowels and gold 

standard phrase break annotations is upheld for contemporary British English speech 

in the form of a lecture (8.4; 8.5). Subsequently, a more comprehensive study of this 

phenomenon is then undertaken in response to recommendations from Wichman 

(2009), namely, to try a different genre, and one that more closely resembles 

spontaneous, rather than read speech: the informal news commentary in Section A 

of Aix-MARSEC, which comprises multiple speakers and different genders. The 

same statistically significant association between complex vowels and phrase breaks 



163 

 

is again upheld in thesis sections (8.7; 8.8; 8.9) which also introduce the latest 

version of the algorithm used to merge the SEC and Aix-MARSEC datasets and 

map between the LOB and C5 tagsets. 

We therefore have empirical evidence from three very different styles of 

speech (seventeenth century verse, a scripted lecture on economics, and informal 

news commentary) of a significant correlation between complex vowels and phrase 

breaks in English. Each dataset is relatively small, but the fact that this correlation is 

common to all suggests that this is a generic habit of English speech.  

10.8. Thesis main hypothesis: machine learning experiments 

Chapters 7 and 8 of this thesis establish a statistically significant correlation 

between words bearing one of a subset of the English vowel system (the subset 

being complex vowels) and boundary annotations which constitute intelligible and 

naturalistic human phrasing in different spoken genres. Given this correlation, and 

given the dearth of prosodic features in current phrasing models for TTS, we have 

evaluated the efficacy of complex vowels and other symbolic prosodic features for 

the phrase break prediction task, and from the evidence so far, we have concluded 

that at best, introducing such features does not result in significant performance 

gains. 

Augmenting traditional feature sets of syntax and punctuation with four novel 

symbolic/descriptive prosodic features, namely complex vowels, beats, word-

internal syllable-stress weightings, and word-internal rhythmic profile, does improve 

significantly on majority class baseline performance, and also improves on the 

baseline set by punctuation as top-performing feature – though not significantly. 

Using syntax plus the complete set of prosodic features again improves significantly 

on baseline performance, namely OneR prediction via syntactic identity of the word 

immediately following the index to be classified, but this model cannot improve on 

the success rate of a model using the full set of syntactic features (as opposed to a 

single syntactic feature) implemented via the same J48 classifier. Next, using syntax 

and complex vowels only, we again improve significantly on OneR baseline 

performance, but again cannot improve on the syntax-only model, nor can we 

achieve such improvements via single implementations of other prosodic features. 

Finally, selective use of prosodic information (i.e. complex vowels plus word-
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internal syllable weights and rhythmic properties in certain index positions) to 

complement syntax does lead to a better success rate than a syntax-only model but 

this achievement is not found to be significant. However, a final point to make is 

that this thesis posits not just one, but four new phrase break features, and breaks 

new ground in addressing '...the case for a symbolic, intermediate representation of 

prosody...‘ (Ostendorf, 2009) by introducing descriptive (symbolic) prosodic 

features for phrase break prediction.  

10.9. Thesis main hypothesis: conclusions 

The evidence presented in this thesis tends to disprove the hypothesis that 

symbolic prosodic features, in addition to syntax and punctuation, will enhance 

overall performance in phrase break prediction for English (cf. Run 33). Moreover, 

in the absence of punctuation, the addition of such features, whether en masse or 

singly or selectively, has not improved on accuracy attained by a syntax-only model. 

It is therefore fair to say from the evidence that at best, introducing prosodic features 

does not lead to significant gains, and that at worst, prosody introduces unnecessary 

noise. However, these findings are based solely on a limited dataset of BBC radio 

transcripts – similar in size and from the same source as test sets used in other 

studies (cf. Taylor and Black, 1998; Busser et al., 2001) – where the dominance of 

syntax as boundary predictor is to be expected; it may not apply in the case of less 

grammatically well-formed texts. Therefore, we recommend further testing with a 

larger, more varied dataset which includes, for example, spontaneous conversational 

speech, and/or surreptitious recordings, and/or less ―expert-crafted‖ text such as 

verbal autopsy reports (Danso et al., 2011). As yet, there is no such marked up 

corpus available for machine learning experiments so it would need to be assembled.  

10.9.1. Complex vowels as phrase break signifiers 

The fact that adding complex vowels as a feature does not appear to improve 

success rates in our phrasing model does not, we posit, detract from findings in 

Chapters 7 and 8 of this thesis, where complex vowels are found to be highly 

correlated with boundaries in a variety of genres – a contemporary British English 

lecture; 17
th

. Century English verse; informal BBC radio news commentary – and 

for multiple speakers. This thesis contends that native English speakers may use 

certain sound patterns as linguistic signs for phrase breaks, and that one such sign is 
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the subset of complex vowels. We consider complex vowels as boundary precursors, 

as visual/textual, plus vocal and aural cues signifying optimal parsing and phrasing 

strategies for readers, speakers and listeners alike. We also believe this finding may 

apply to other languages: the preference for complex vowels in English may 

translate to a different subset of favoured vowel sounds in other languages. There is 

therefore considerable potential for further work in this area. The studies involving 

complex vowels in Chapters 7 and 8 uncover just one element in the prosodic and 

graphemic tiers (as distinct from the syntactic tier) of boundary phenomena. 

Moreover, as part of our recommendation for further testing, symbolic prosodic 

features like complex vowels may achieve better results for phrasing models in 

languages where word order is less constrained (e.g. Arabic), and where, 

presumably, the predictive potential of syntax may be less reliable.   

10.9.2. Grey areas: data skew, different classifiers, different metrics 

Any phrase break prediction experiment will encounter the problem of skewed 

data. Non-breaks (the majority class) will always significantly outnumber breaks 

(the minority class) in real world corpus data. Hence the baseline set by the majority 

class will always be challenging (e.g. 79%) for the language model and it is 

therefore important to validate apparent gains in accuracy via significance testing. It 

is also important to consider more than one evaluation metric; this is highlighted by 

discrepancies in performance over different classifiers implementing the same 

feature set. Bayesian classifiers (e.g. Runs 6 and 7) re-capture many more minority 

class instances – a priority, one might argue. This should be set against their 

proclivity for generating more false positives to get a true picture of performance.  

Experiments in Chapter 9 consider results in terms of both accuracy and balanced 

classification rate; and in the case of conflicting results (e.g. Run 6), more confident 

conclusions have been drawn via appropriate significance testing (§9.13.2). We 

therefore recommend both strategies – use of additional metrics to complement 

accuracy, and significance testing – for future evaluation of phrasing models.  

10.9.3. Further insights gained 

We have demonstrated how linguistic data arrays in ProPOSEC can be 

reconceptualised as training instances for machine learning. Data conversion into 

succinct attribute-value sets for use in WEKA is non-trivial and is implemented via 

a knowledge engineering algorithm which reduces the number of values for POS 



166 

 

and lexical stress patterns, and condenses the beat, rhythm, complex vowels and 

punctuation attributes even further into a finite set of two or three values. 

Succinctness does not undermine subtlety, however: the algorithm generates a 

specific identity for function words whose prosodic characteristics resemble those of 

content words, for example. We believe that standard categorisation of function 

words for phrase break prediction needs revisiting: (i) pronouns are not a 

homogeneous group; (ii) words exhibit prosodic behaviour which belies their 

syntax; (iii) sparing use of fine syntactic distinctions (e.g. that and of versus other 

conjunctions and prepositions) pays off (cf. ADTree models in Runs 5 and 13a, 

Appendix 3). 

10.10. Further work: extension and application of ProPOSEL for 

VTTS  

A potential follow-on project from this PhD is a visual extension of the 

ProPOSEL lexicon, mapping already-present phonetic transcriptions to their 

equivalent viseme sequences for visual text-to-speech (VTTS) applications. In 

standard TTS, the output from the NLP system module is a text file which represents 

a re-working of the orthographical form into its equivalent phonetic and prosodic 

transcription. In VTTS, there is an additional transformation where phonetic 

transcriptions are mapped to sequences of visemes denoting corresponding lip 

shapes for production of each segment or phoneme. Phonemes are visually 

ambiguous and therefore the mapping from phonemes to visemes is many-to-one. 

Moreover, there is widespread discrepancy in phoneme-viseme mappings used in 

prototype VTTS applications for English (cf. Ezzat and Poggio, 2000; Kalberer & 

Gool, 2001; Bozkurt et al., 2007). Construing ProPOSEL as a speech-to-viseme 

generator and VTTS component would include extending the lexicon as follows: 

1. Rationalisation of a default phoneme-viseme mapping for British and/or 

American English.  

2. Generating canonical viseme sequences from phonetic transcriptions for each 

lexicon entry.   

3. Deriving default normalised duration vectors from a reliable speech corpus 

such as Aix-MARSEC (where several time-stamped prosodic annotation 

tiers could be explored/used) and supplementing lexicon entries with this 

information. 
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10.11. Applying thesis Text Analytics techniques to Arabic  

Another follow-on project is to apply thesis Text Analytics techniques for 

English (§Chapters 7 and 8) to explore phrasing strategies in another stress-timed 

language, Arabic. Here, an initial dataset would be the Quran, since certain 

(Tajweed) editions of this text already incorporate fine-grained prosodic boundary 

annotations, and a morphologically and syntactically annotated Quran corpus is also 

available (Dukes, 2011). The project would involve: (i) mining these prosodic-

syntactic boundaries for syntactic, phonetic and prosodic correlates, and verifying 

frequent patterns via significance testing; and (ii) re-expressing significant sound 

patterns as symbolic features to be incorporated and tested in state-of-the-art phrase 

break models for both Classical and Modern Standard Arabic TTS. Interestingly, it 

is less likely that punctuation would be available as a feature in such applications; 

and also, we might speculate that since word order in Arabic is less restricted than 

English, syntax may be less reliable as a boundary predictor, and thus symbolic 

prosodic features might indeed bring tangible improvements. A further idea would 

be to use a priori knowledge of the sound system of Arabic inherent in Quranic 

boundary annotations to inform phoneme-viseme mappings for Arabic VTTS 

applications.  

10.12. Summary: PhD impact, originality, and contribution to 

research field 

This final section presents a brief summary of research contributions and 

achievements of this PhD.  

10.12.1. Understanding the prosody-syntax interface: discursive analysis 

and experimentation  

1. An important distinction is made in the Introduction between prosodic 

chunking and highlighting, and these concepts are integrated into later 

discussions of prosodic variance (cf. 5.3.4). 

2. There is sustained, discursive analysis of gold standard phrase break 

annotations in both SEC (the Spoken English Corpus) and Milton‘s ‗Paradise 

Lost,‘ plus presentation and discussion of variant phrasing in same. Similar 

treatment is given to prepositional phrase attachment and the crucial 
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distinction between particles and prepositions for accurate and naturalistic 

automated chunking. 

3. The author believes her most original insight and research contribution is: (i) 

the observation; and (ii) the discovery via significance testing, of co-

occurrence between words bearing complex vowels and phrase breaks first in 

poetry, and then in different spoken genres.  

4. The above experimental work relies on two further important thesis insights, 

namely: (i) the lack of a priori knowledge of prosody to complement 

punctuation and syntax in language models for predicting prosodic phenomena 

(i.e. phrase breaks); and (ii) that prosody can be projected onto text in much 

the same way as syntax is. 

10.12.2. Artefact and resource creation 

1. Python and NLTK have been used to build ProPOSEL, a customised prosody 

and part-of-speech English lexicon for text annotation and Text Analytics.  

2. ProPOSEL is supported with software tools and an extended user tutorial. 

3. ProPOSEL is then used to create the ProPOSEC dataset, supplementing 

annotations in SEC and Aix-MARSEC with canonical annotations from the 

lexicon. There is then further demonstration of how ProPOSEC annotations 

can be converted into attribute-value sets for machine learning in WEKA.  

10.12.3. Originality and ideas for further work 

1. This thesis supplements traditional phrase break features (punctuation and 

syntax) with categorical features derived from the lexicon. This constitutes an 

original way of representing prosody, as opposed to continuous features such 

as fundamental frequency. Four such novel symbolic features are posited and 

evaluated.  

2. Another emerging hypothesis is that: (i) other correlations may emerge 

between English phonemes and phrase breaks; and (ii) the principle of 

annotating text with a ProPOSEL-like tool and then mining these annotations 

for boundary correlates can be applied to other languages e.g. Arabic. 

3. An interesting application of ProPOSEL might be integration into dialogue 

systems for linguistically-informed lip-synch in relational agents. 
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10.12.4. Impact 

1. Journal and conference publications arising from this thesis have addressed a 

range of research communities: Corpus Linguistics; Natural Language 

Processing; Linguistic Resources and Evaluation; the speech community (i.e. 

Interspeech and Speech Prosody); and Literary and Linguistic 

Computing/Digital Humanities.   
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Appendix 1: Mapping for Variant Syntactic Annotation Schemes in 

Current Version of ProPOSEL  

 

C5 PoS tags Variant Syntactic Annotation Schemes and Tags, with comments 

and most recent revisions given in italics 

 
AJ0 Penn JJ 

LOB JJ,JJB,JNP 

C7 JJ,JK 

AJC Penn JJR 

LOB JJR 

C7 JJR 

AJS Penn JJS 

LOB JJT 

C7 JJT 

AT0 Penn DT 

LOB AT,ATI 

C7 AT,AT1 

AV0 Penn RB,RBR,RBS 

LOB QL,QLP,RB,RI,RBR,RBT,RN (Shall I add: ABL?)  

C7 BCL,RA,REX,RG,RR,RL,RGR,RGT,RRR,RRT,RT 

AVP Penn RP 

LOB RP 

C7 RP,RPK 

AVQ Penn WRB 

LOB WRB 

C7 RGQ,RGQV,RRQ,RRQV 

CJC Penn CC 

LOB CC 

C7 CC,CCB 

CJS Penn CS 

LOB CS 

C7 CS,CSA,CSN,CSW 

CJT Penn IN,CS 

LOB CS 

C7 CST 

CRD Penn CD 

LOB CD,CD1,CD1S,CDS,CD-CD (added: NN0, NN02 UCREL)  

C7 MC,MC1,MC2,MF,MCMC 

DPS Penn PRP$ 

LOB PP$ 

C7 APPGE 

DT0 Penn DT,PDT 

LOB DT,DTI,DTS,DTX,ABL,ABN,ABX,AP,APS  

C7 DB,DB2,DA,DA1,DA2,DAR,DAT,DD,DD1,DD2 

DTQ Penn WDT 

LOB WDT,WQL (added: WDTR Shall I add WP, WP$?) 

C7 DDQ,DDQGE,DDQV 

 

EX0 

 

Penn 

 

EX 
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LOB EX 

C7 EX 

 

ITJ 

 

Penn 

 

UH 

LOB UH 

C7 UH 

NN0 Penn NN 

LOB NNU 

C7 
NN,NNU,NNA,NNB,NNO (Remove NN0, NNA, NNB (UCREL) & add 
NNJ) 

NN1 Penn NN 

LOB NN,NNP,NR  

C7 NN1,NNT1,NNU1,ND1 

NN2 Penn NNS 

LOB NNS,NRS,NNPS,NNUS 

C7 
NN2,NNJ2,NNT2,NNU2,NNO2 (added: NPM2 (Lancs) remove 
NN02) 

NP0 Penn NNP,NNPS 

LOB NP,NPL,NPLS,NPS,NPT,NPTS (removed: NR, NRS) 

C7 
NNP,NNPS,NPD1,NPD2,NPM1,NPM2,NNL1,NNL2,NP,NP1,NP2 (remove 

NPM2, NNP, NNPS & add: NNA, NNB) 

NULL Penn NIL - no equivalent tag 

LOB NIL - no equivalent tag 

C7 NULL 

ORD Penn JJ 

LOB OD 

C7 MD 

PNI Penn NN,NP (Treebank check) 

LOB PN 

C7 PN,PN1 

PNP Penn PRP 

LOB PP3AS,PP3O,PP3OS,PP$$,PP1A,PP1AS,PP1O,PP1OS,PP2,PP3,PP3A 

C7 PPGE,PPIS1,PPIS2,PPIO1,PPIO2,PPY,PPH1,PPHS1,PPHS2,PPHO1,PPHO2 

PNQ Penn WP,WP$ 

LOB WP,WPA,WPO,WP$ (added: WP$R, WPOR, WPR) 

C7 PNQV,PNQS,PNQO 

PNX Penn PXP 

LOB PPL,PPLS 

C7 PNX1,PPX1,PPX2 

POS Penn POS 

LOB $ 

C7 GE 

PRF Penn IN 

LOB IN 

C7 IO 

PRP Penn IN 

LOB IN 

C7 II,IF,IW 

TO0 Penn TO 

LOB TO 

C7 TO 

UNC Penn FW,LS,SYM,$ 

LOB &FO,&FW,NC 

C7 FW,FU,FO 
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VBB Penn VB,VBP 

LOB BEM,BER (Removed: VB,BE,) 

C7 VB0,VBM,VBR 

 

VBD 

 

Penn 

 

VBD 

LOB BED,BEDZ 

C7 VBDR,VBDZ 

VBG Penn VBG 

LOB BEG 

C7 VBG 

VBI Penn VB 

LOB BE 

C7 VBI 

VBN Penn VBN 

LOB BEN 

C7 VBN 

VBZ Penn VBZ 

LOB BEZ 

C7 VBZ 

VDB Penn VB,VBP 

LOB DO (Removed: VB) 

C7 VD0 

VDD Penn VBD 

LOB DOD 

C7 VDD 

VDG Penn VBG 

LOB VBG 

C7 VDG 

VDI Penn VB 

LOB DO 

C7 VDI 

VDN Penn VBN 

LOB VBN 

C7 VDN 

VDZ Penn VBZ 

LOB DOZ 

C7 VDZ 

VHB Penn VB,VBP 

LOB HV (Removed: VB)  

C7 VH0 

VHD Penn VBD 

LOB HVD 

C7 VHD 

VHG Penn VBG 

LOB HVG 

C7 VHG 

VHI Penn VB 

LOB HV 

C7 VHI 

VHN Penn VBN 

LOB HVN 

C7 VHN 
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VHZ Penn VBZ 

LOB HVZ 

C7 VHZ 

 

 

 

VM0 

 

 

 

Penn 

 

 

 

MD 

 

LOB 

 

MD 

C7 VM,VMK 

VVB Penn VB,VBP 

LOB VB 

C7 VV0 

VVD Penn VBD 

LOB VBD 

C7 VVD 

VVG Penn VBG 

LOB VBG 

C7 VVG,VVGK 

VVI Penn VB 

LOB VB 

C7 VVI 

VVN Penn VBN 

LOB VBN 

C7 VVN,VVNK 

VVZ Penn VBZ 

 
LOB VBZ 

 
C7 VVZ 

XX0 Penn RB 

 
LOB XNOT 

 
C7 XX 

ZZ0 Penn NIL - no equivalent tag 

 
LOB ZZ 

 
C7 ZZ1,ZZ2 

ZZ2 Penn NIL - no equivalent tag 

 
LOB ZZ 

 
C7 ZZ1,ZZ2 

PRE,PRE- 

This is a 

CUVPlus tag 

for 

prefixes 

Penn NIL - no equivalent tag 

LOB NIL - no equivalent tag 

C7 NIL - no equivalent tag 
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Appendix 2: ProPOSEL‟s Software Tools 

A2.1. Introduction 

The prosody lexicon comes as a textfile with each of its 104,049 entries 

presented as a series of pipe-separated fields: 

carsick|AJ0|0|’kAsIk|OA%|AJ0:-1|2|12|JJ|C|JJ,JJB,JNP|JJ,JK| 

'k#-"sIk|'k#:1 "sIk:2|[CVV][CVC] 

The contents of each field are as follows. 

Field Contents Example 

1 wordform carsick 

2 C5 PoS tag AJ0 

3 capitalization flag 0 

4 SAM-PA phonetic transcription ‘kAsIk 

5 CUV2 tag plus frequency rating OA% 

6 C5 PoS tag plus frequency rating AJ0:-1 

7 syllable count 2 

8 lexical stress pattern 12 

9 Penn Treebank PoS tag(s) JJ 

10 CFP tag C 

11 LOB PoS tag(s) JJ,JJB,JNP 

12 C7 PoS tag(s) JJ,JK 

13 DISC syllabified transcription 'k#-"sIk 

14 syllable-stress mapping 'k#:1 "sIk:2 

15 CV pattern [CVV][CVC] 

Table A.1: Fields in ProPOSEL 

This format, plus the contents of field 1 and fields 3 – 7, are derived from two 

parent files: Roger Mitton‘s computer-usable dictionary CUV2 (Mitton, 1992) and 

Jennifer Pedler‘s updated version of same (Pedler and Mitton, 2003). This tutorial 

mainly uses information from newly created prosodic-syntactic fields: field 2 and 

fields 8 - 15 and refers the reader to a full account of lexicon build in Chapter 5 of 

this thesis. The code has been updated to NLTK version 0.9.8, and the code here is 
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compatible with the version of NLTK used in the recently published book (Bird et 

al., 2009).    

A2.2. Preparing the prosody lexicon for NLP 

We will initially just use a sample from the prosody lexicon for purposes of 

illustration.  The lexicon can be read in as a list of string entries via a two step 

process (Listing A.1):  

# import latest version of NLTK 

import nltk, re, pprint 

 

# strings terminate in newline \n 

lexicon = open('filepath', 'rU').readlines() 

 

# strip away \n character 

lexicon = map(string.strip, lexicon) 

Listing A.1: Reading in and tokenizing ProPOSEL (Method 1) 

Individual fields can then be tokenized with an additional line of code.  

# tokenize at pipe symbols 

lexicon = [line.split('|') for line in lexicon]  

>>> lexicon 

[.., ['carsick', 'AJ0', '0', "'kAsIk", 'OA%', 'AJ0:-1', '2', '12', 

'JJ', 'C', 'JJ,JJB,JNP', 'JJ,JK', "'k#-,sIk", "'k#:1 ,sIk:2", 

'[CVV][CVC]',],..] 

Listing A.1: continued. 

A2.2.1. Alternative for tokenizing entries and fields in the lexicon 

An alternative way of converting the lexicon textfile into a list of lists, where 

the contents of each entry field appear as separate tokens, is given in Listing A.2. 

 

 

 

# import latest version of NLTK 

import nltk, re, pprint 
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# instantiate a LineTokenizer()  

tokenizer = LineTokenizer() 

 

# read in the lexicon 

lexicon = open('filepath', 'rU').read() 

 

# use NLTK’s LineTokenizer Class to convert string entries to 

tokenized lines 

lexicon = [line.split('|') for line in 

list(tokenizer.tokenize(lexicon))] 

Listing A.2: Reading in and tokenizing ProPOSEL (Method 2) 

Either way, the result is the same.  If we now use the Python built-in 

enumerate() function on our sample lexicon, we can view the output - as in 

lexicon[20] (Listing A.3). 

>>> for index, value in enumerate(lexicon): 

 print index, value 

20 ['carrying', 'VVG', '0', "'k&rIIN", 'Jb%', 'VVG:58', '3', '100', 

'VBG', 'C', 'VBG', 'VVG,VVGK', "'k{-rI-IN", "'k{:1 rI:0 IN:0", 

'[CV][CV][VC]'] 

Listing A.3: Inspecting tokenized entry fields 

A.2.2 Selecting specific fields in the lexicon 

Depending on our purpose, we may only need certain information in the 

lexicon.  The first line of code in the next listing creates a new lexicon called 

syllables where entries consist of: wordform, PoS tag, syllable count and syllable-

stress mapping.  We can then view this cut down version of the lexicon. 

 

 

 

 

 

 

syllables = [[line[0], line[1], line[6], line[13]] for line in 

lexicon] 

>>> for line in syllables: 
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      print ' '.join(line[:]) 

# best printed to file with whole lexicon! 

carrier-pigeons NN2 5 'k{:1 r7:0 ,pI:2 _Inz:0 

carriers NN2 3 'k{:1 r7z:0 

carries VVZ 2 'k{:1 rIz:0 

Listing A.4: Selecting specific fields in the lexicon 

Output from Listing A.4 reveals some anomalies in the lexicon.  The resulting 

entries for carrier-pigeons and carriers display information on syllable count at 

variance with the syllable-stress mapping.  Such anomalies are deliberate, in a sense.  

The prosody lexicon was created from various sources and one of the insights 

gained through this process is that in English, syllabification - like other aspects of 

prosody - is often a matter of choice and natural discrepancies arise between one 

native speaker and another (cf. Chapter 6.4.3 and 6.4.4).  As a general rule, the 

syllable count in field 7 of the prosody lexicon constitutes a subjective choice or 

judgement by a native speaker while the pronunciation forms in fields 13 and 14, 

plus the syllabified CV patterns in field 15 are more canonical.  It is up to the user to 

decide how to negotiate such variance. 

A.2.3 Using Python‟s set() method to capture attribute-value mappings  

The prosody lexicon was originally intended as a prosodic annotation tool for 

machine learning, to be used in conjunction with tagged speech corpora and this is 

discussed in Section A.5 below.  Here we may simply note that using Python‘s 

set() method on a single field in the lexicon retrieves the set of all possible values 

for that field.  Thus, if lexical stress pattern is interpreted as a potential 

classificatory feature for a given machine learning task, we can use the following 

line of code on field 8 of our lexicon to obtain all permutations for this feature.  This 

code uses the field selector in Listing A.4 in a Python list comprehension as single 

argument to the set() method. 

 

 

 

lexStressValues = list(set([(line[7]) for line in lexicon])) 

>>> lexStressValues 
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['201', '10', '12', '1020', '120', '1 0', '1', '2001', '100'] # 

sample set only 

Listing A.5: Inspecting attribute-value mappings within lexicon fields 

Listing A.5 again shows an anomaly - this time resulting from choices made 

during lexicon build - in that this set (from the sample lexicon – the full set is much 

larger) contains two identical lexical stress patterns: {'10'} and {'1 0'} where the 

latter includes a whitespace character.  Instances of this kind originally arose from a 

decision to preserve variance in lexical stress patterns derived from two different 

sources (Chapter 6.4.3). Again, it is left to the user to determine how to 

accommodate such distinctions. 

A.3 Mapping variant syntactic information in the prosody lexicon 

The prosody lexicon incorporates alternative PoS tagging schemes: C5, Penn 

Treebank, LOB and C7 (cf. Appendix 1 for details of the mapping between schemes 

in ProPOSEL); and it is possible to map between them via a one-step process similar 

to that used in Listing A.5.  We may, for example, wish to map C5 to Penn and print 

this out in tabulated format.  Listing A.6 uses a declarative style - again via list 

comprehension as argument to Python‘s set() method - to obtain the mapping and 

then wraps up the formatting in a function. 

mapTags = list(set([(line[1], line[8]) for line in lexicon]))  

>>> def getMapping(mapTags): 

 print '%s %20s\n' % ('C5 ', 'Penn Treebank') # creates header 

row 

 for line in mapTags: 

  print '%s %20s' % (line[0],line[1])    # cf. NLTK Book 6.3.2 

 

 

 

 

 

 

 

 

>>> getMapping(mapTags) 

C5         Penn Treebank 
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NN2                  NNS 

VVI                   VB 

AJ0                   JJ 

VVB               VB,VBP 

VVG                  VBG 

VVZ                  VBZ 

NP0             NNP,NNPS 

NN1                   NN 

# Note: this mapping is 

incomplete 

# because only a sample from the 

# lexicon is used for this demo 

Listing A.6: Obtaining simplified mapping of variant PoS schemes in ProPOSEL 

The user may note from this small sample in Listing A.6 that there are 

instances where the source tag does not map neatly onto one target tag and this 

problem is compounded when the tagset(s) involved are less sparse - LOB, for 

example, or C7.  There is also the question of linguistic interpretation.  Ambivalence 

surrounding infinitive and base forms of lexical verbs is evident here: C5 

distinguishes between the two - <VVI> versus <VVB> - whereas the Penn Treebank 

has one tag for ‗base form‘ <VB> and then another tag <VBP> for non-3sg (not 3
rd

. 

person singular) present tense.   

A.3.1 Dealing with enclitics, Saxon genitives and one-to-many mappings 

In this section we will use information from the entire prosody lexicon for 

demonstration.  The following code - familiar from Section A.2 - maps the set of all 

C5 PoS tags in the lexicon to their equivalent symbolic values in LOB. 

import nltk, re, pprint, copy, itertools, string 

lexicon = open('filepath', 'rU').read()  

# the complete prosody lexicon 

lexicon = lexicon.splitlines() 

lexicon = [line.split('|') for line in lexicon] 

mapTags = list(set([(line[1], line[10]) for line in lexicon])) 

>>> len(mapTags) 

96 
 

Listing A.7: The set of C5 to LOB mappings in the lexicon  

The C5 tagset contains 62 part-of-speech tags, including 4 tags for 

punctuation.  The set of 96 C5 tags in the lexicon, evident from Listing A.7, 

includes enclitics and possessive forms like “I’ll” <PNP+VMO> and “Lloyd’s” 

<NPO+POS>.  The variable mapTags also reveals that around 41% (39 out of 96) of 

these C5 to LOB mappings are one-to-many.  Table A.2 below provides the 
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following example strings from mapTags where the problem emerges of separately 

tokenizing the variant LOB tags, plus their possessive or enclitic attachments, to 

match the corresponding C5 token. 

Example strings from mapTags with C5 

token given first 

 

Possessives and enclitics need 

attaching to all PoS variants in 

LOB 

'NP0+POS',  

'NP,NPL,NPLS,NPS,NPT,NPTS+$' 
Symbolic mapping of Saxon 

genitive in C5 and LOB 

'DTQ+VM0', 'WDT,WQL,WP,WP$+MD' One-to-many mapping for wh-

determiner with encliticised modal 

'PNP+VBB', 

'PP3AS,PP3O,PP3OS,PP$$,PP1A,PP1AS, 

PP1O,PP1OS,PP2,PP3,PP3A+BEM,BER' 

One-to-many mapping for both 

personal pronoun and encliticised 

base form of BE 

Table A.2: Problems with genitives, enclitics and one-to-many mappings      

A.3.1.1 What is our target format? 

We have so far been working with the C5 and LOB tagsets but code listings in 

this section can be adapted for other tagging schemes in the lexicon.  Our 

demonstration target here is to map combination C5 tokens to a series of equivalent 

combination tokens in LOB as follows. 

C5 combo Possible corresponding LOB combos 

'NP0+POS',  'NP$', 'NPL$', 'NPLS$', 'NPS$', 'NPT$', 'NPTS$' 

 

'DTQ+VM0',  'WDT+MD', ‘WQL+MD', 'WP+MD', 'WP$+MD' 

 

'PNP+VBB',  'PP3AS+BEM', 'PP3O+BEM', 'PP3OS+BEM', 'PP$$+BEM', 

'PP1A+BEM', 'PP1AS+BEM', 'PP1O+BEM', 'PP1OS+BEM', 

'PP2+BEM', 'PP3+BEM', 'PP3A+BEM',  

'PP3AS+BER', 'PP3O+BER', 'PP3OS+BER', 'PP$$+BER', 

'PP1A+BER', 'PP1AS+BER', 'PP1O+BER', 'PP1OS+BER', 

'PP2+BER', 'PP3+BER', 'PP3A+BER',  

Table A.3: Specifiying target format for C5 to LOB mapping 

A.3.2.2 Subsuming tag attachments into variant LOB tag tokens 

The first step is to separate the attachment from the rest of the LOB string 

(Listing A.8). 

mapTags = list(set([(line[1], line[10]) for line in lexicon])) 

 

tagSplit = [line[1].split('+') for line in mapTags] # line[1] holds 
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the LOB tags 

 

>>> tagSplit 

[..[‘NP,NPL,NPLS,NPS,NPT,NPTS’, ‘$’],..] # example output 

Listing A.8: Re-formatting LOB tokens: initial step 

The variable tagSplit can then be used and transformed within 

interdependent reformatting functions (Listing A.9) which need to handle enclitics 

separately from Saxon genitives.  This staged reformatting is explained in Section 

A.3.2.3 but readers should also look carefully at comment lines in Listing A.9 and 

also try things out for themselves.  

A.3.2.3. High-level description  

(1) Instantiate an empty list to store transformations created during reformatting. 

 

(2) Incorporate a plus sign in the tokenized LOB string in tagSplit as prefix to 

each individual PoS tag representing an enclitic. 

 

(3) Apply the transformations in step (2).  Loop over the latest version of 

tagSplit and push each item onto the stack in our empty list while 

simultaneously ensuring that the <$> tag denoting Saxon genitive is 

incorporated within LOB tokens where necessary.  

 

(4) Loop over the result of step (3) and tokenize each individual PoS in each 

string of LOB tags. 

 

(5) Loop over the result of step (4).  Attach enclitics to each LOB token and pop 

any unwanted material. 

 

(6) Apply steps (1) to (5) by calling the reformatting function in step (5). 

 

(7) Unpack unwanted structure so that the final sequence is a list of lists where 

each index comprises C5 token and equivalent LOB tokens. 

 

 

A.3.2.4 Reformatting functions  

import nltk, re, pprint, copy, itertools, string 

from nltk.tokenize import * 

tokenizer = WhitespaceTokenizer() # tokenization via whitespace as 

separator 
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lexicon = open('filepath', 'rU').read() 

lexicon = lexicon.splitlines() 

lexicon = [line.split('|') for line in lexicon] 

 

mapTags = list(set([(line[1], line[10]) for line in lexicon])) 

tagSplit = [line[1].split('+') for line in mapTags] 

 

empty = [] # somewhere to store list transformations created during 

reformatting 

 

 

def format1(tagSplit):  

    """ 

    Formatting function dealing only with single instance 

enclitics.  

    Restores '+' as prefix as in: [..['WDT,WQL,WP,WP$', '+MD'],..]  

    """ 

    for line in tagSplit: # next condition excludes genitives 

        if len(line) > 1 and len(line[1]) > 1:  

            line[1] = re.sub(line[1], '+' + line[1], line[1]) 

 

 

def format2(tagSplit): # argument is transformed tagSplit from 

previous function 

    """ 

    Formatting function dealing with multiple instance enclitics. 

    Restores '+' as prefix as in: [..['...PP3A', '+BEM,+BER'],..] 

    Takes as argument list transformation created from previous 

function. 

    """ 

 

    for line in tagSplit: 

        if len(line) > 1: 

            line[1] = re.sub(',', ',+', line[1])# cases like ‘+BEM,BER’  

 

 

def getEnclitics(tagSplit, empty): # this reformats Saxon genitives 

    """ 

    Formatting function which takes as argument list transformation 

created by calling previous two functions.  It loops over this 

latest version of tagSplit and appends each item to container list 

(empty) while simultaneously ensuring that the <$> tag denoting 

Saxon genitive is incorporated within LOB tokens where necessary. 

    """   

  

    format1(tagSplit) # applies previous function  

    format2(tagSplit) # applies previous function 

    for line in tagSplit: # transformed tagSplit via format1 and format2  

        if len(line) == 1: # all lines without enclitics or Saxon genitives 

            empty.append(line) 

        elif len(line) > 1: # only do this for enclitics or genitives  

            if line[1] == '$': # treat genitives separately from enclitics 

                line[0] = line[0] + ',' # adds a trailing comma to enable… 

                line = re.sub(r',', '$,', line[0])  

# Previous line adds a trailing comma to enable last item to pick up '$' 

                line = line[:-1] # chops off trailing '$,' 

                empty.append([line]) # preserves structure of nested list 

            else: 

                empty.append(line) # only applies to enclitics 
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def format3(empty): # tokenizes each individual PoS tag 

    """ 

    Formatting function which tokenizes all LOB tags via whitespace 

separator. Takes as argument list transformation built via previous 

function. Enclitics still consist of two separate tokens after 

calling this function as in: 

[..[['WP', 'WPA', 'WPO', 'WP$', 'WP$R', 'WPOR', 'WPR'], 

['+MD']],..] 

    """ 

    getEnclitics(tagSplit, empty) # applies previous function & builds list 

    for index in empty: # loop tokenizing is via whitespace replacing commas  

        if len(index) == 1: 
            index[0] = list(tokenizer.tokenize(re.sub(',', ' ', index[0]))) 

        elif len(index) > 1: 
            index[0] = list(tokenizer.tokenize(re.sub(',', ' ', index[0]))) 
            index[1] = list(tokenizer.tokenize(re.sub(',', ' ', index[1]))) 

 

def format4(empty): # attaches enclitics 

    """ 

    Formatting function which merges PoS tags in enclitics.  This 

function call applies all the transformations on tagSplit described 

in the previous functions.  Resulting structure still needs to be 

unpacked. 

    """  

    format3(empty)  # applies previous function 

    for line in empty: # loops over transformed version of empty 

        if len(line) > 1: 

            if len(line[0]) == 1 and len(line[1]) == 1: # e.g. 

[['MD'], ['+XNOT']] 

                for x, y in itertools.izip(line[0], line[1]):  

# Previous line combines tags 

                    line.append([x + y]) # appends combined tags 

                    del line[0:2] # removes separate tags 

            elif len(line[0]) > 1 and len(line[1]) >= 1:  

# Previous line is for multiple variants 

                for x in line[0]: # loops over PoS variants 

                    for y in line[1]: # loops over enclitics 

                        line.append([x + y])  

# Outputs from previous line e.g. ['WPO+MD'],['WP$+MD']]  

                del line[0:2]#removes separate tags on combining enclitics  

 

# All the above functions can then be called via a single line of 

code: 

 

format4(empty) # applies all the transformations 

 

# We now have LOB combination tokens (cf. Table A1).  What remains 

to be done is unpack this deeply nested structure, for example: 

 

[..[['PP3AS+BEM'], ['PP3AS+BER'], ['PP3O+BEM'], ['PP3O+BER'], 

['PP3OS+BEM'], ['PP3OS+BER'], ['PP$$+BEM'], ['PP$$+BER'], 

['PP1A+BEM'], ['PP1A+BER'], ['PP1AS+BEM'], ['PP1AS+BER'], 

['PP1O+BEM'], ['PP1O+BER'], ['PP1OS+BEM'], ['PP1OS+BER'], 

['PP2+BEM'], ['PP2+BER'], ['PP3+BEM'], ['PP3+BER'], ['PP3A+BEM'], 

['PP3A+BER']],..] 

Listing A.9: Re-formatting functions 

A.3.3 Unpacking unwanted structure and printing out a mapping 

Enclitics in the resulting list sequence object empty are still too deeply nested 

and we need to unpack them.  To do this in one step, we need to treat indices 
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containing LOB combination tags differently than others.  Listing A.10 offers one 

solution and also provides a neatly aligned printout of the C5 to LOB mapping 

obtained from the prosody lexicon as an illustration. 

empty2 = [] # instantiates a new container 

 

for line in empty:  

    if len(line) == 1: # for indices which don’t contain enclitics 

        empty2.append(line[0]) 

    elif len(line) > 1: # in the case of enclitics 

        empty2.append([' '.join(index) for index in line]) 

 

>>> empty2 

 

# Values in this new container are identical in structure to 

ProPOSEL’s keys: 

 

('VBB+XX0', ['BEM+XNOT', 'BER+XNOT']) 

('NP0', ['NP', 'NPL', 'NPLS', 'NPS', 'NPT', 'NPTS']) 

('VBI', ['BE']) 

# Obtaining a mapping:   

 

tagsC5 = [index[0] for index in mapTags]  

# set of all C5 tags in prosody lexicon 

 

tagsC5LOB = zip(tagsC5, empty2) # obtains mapping C5 > LOB  

 

# Obtaining an example printout: 

 

print 'C5       :  LOB\n' # header row 

 

for index in tagsC5LOB: 

    if len(index[0]) > 3: # if index[0] looks like: 'VBB+XX0' 

        print index[0], ' : ', ' '.join(index[1]) 

    elif len(index[0]) <= 3: # if index[0] isn’t an enclitic 

        print index[0], '     : ', ' '.join(index[1])  

# leave some extra space 

 

# Aligned printout looks like:  

 

C5       :  LOB 

 

VBB+XX0  :  BEM+XNOT BER+XNOT 

NP0      :  NP NPL NPLS NPS NPT NPTS 

VBI      :  BE 

Listing A.10:  Unpacking unwanted structure  

A.4. Using the lexicon as a prosodic annotation tool  

We now have an object - tagsC5LOB - which contains one-to-many mappings 

of C5 tokens to an array of equivalent LOB tokens, including combination tokens 

for enclitics.  Code listings in sections 4 and 5 of this tutorial utilise this object, 

rather than the raw information in the lexicon textfile (e.g. field 11 for LOB), to 

match incoming corpus text in the form of (token, tag) tuples to entries in the 
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lexicon and automatically annotate that text with additional prosodic information.  

Listing A.11 uses a short sentence from Section C of the LOB-tagged Spoken 

English Corpus and enriches the existing annotation with prosodic information on: 

syllable count (lexicon field 7); lexical stress pattern (field 8); CFP status (field 10); 

and the distribution of stressed and unstressed syllables represented in DISC format 

(field 14).  Readers should note that this tutorial does not deal with punctuation and 

such tokens will not accumulate additional information.   

text = ['both', 'ABX'), ('propositions', 'NNS'), ('are', 'BER'), 

('false', 'JJ')] 

text2 = [list(line) for line in text] # lists are mutable 

 

for line in text2: 

    for index in tagsC5LOB: # the mapping object created in Listing A10 above 

        for i in range(len(index[1])): 

            if line[1] == index[1][i]: # if LOB tags match  

                line.append(index[0])  # add the C5 tag  

 

>>> text2 # tokens now displaying LOB and C5 tags 

[['both', 'ABX', 'DT0'], ['propositions', 'NNS', 'NN2'], ['are', 

'BER', 'VBB'], ['false', 'JJ', 'AJ0']] 

 

# Create a new version of the lexicon with desired fields only 

lexicon2 = [(line[0], line[1], line[6], line[7], line[9], line[13]) 

for line in lexicon] 

 

""" 

The following loop only deals with non-ambiguous matches, searching 

for a match between wordform and C5 tag in the two objects: text2 

and tagsC5LOB.  Ambiguous matches will be further discussed – see 

4.2 below.   

""" 

for line in text2:  

    for entry in lexicon2: 

        if len(line) == 3: # non-ambiguous matches only 

            if line[0] == entry[0] and line[2] == entry[1]: 

                line.append(entry[2]) 

                line.append(entry[3]) 

                line.append(entry[4]) 

                line.append(entry[5]) 

 

>>> for line in corpusText2: # result for illustrative fragment 

      print line 

 

['both', 'ABX', 'DT0', '1', '1', 'F', "'b5T:1"] 

['propositions', 'NNS', 'NN2', '4', '2010', 'C', '"prQ:2 p@:0 'zI:1 

SHz:0'] 

['are', 'BER', 'VBB', '1', '1', 'C', "'#R:1"] 

['false', 'JJ', 'AJ0', '1', '1', 'C', "'f$ls:1"] 

Listing A.11: Annotating corpus sample via ProPOSEL 

A.4.1 Discussion of ambiguous cases 

So far, we have encountered one-to-many mappings where one C5 tag equates 

to two or more LOB variants; Listing A.11 can deal with this eventuality.  However, 



198 

 

a backfiring problem emerges for those few instances where the one-to-many 

mapping works the other way round.  Prepositions, for example, have one tag in 

LOB but one of two tags in C5, which isolates ('of', 'PRF') from all other 

prepositions: <'PRP'>.  Using a longer extract (85 tokens in all) from the same 

source, which we will call text3, we can check outputs from Listing A.11 to see 

how many of them have successfully accumulated extra prosodic features. How 

many have been missed and why have they been missed?  To answer this, we need 

to inspect the transformed object text3_transformed.  

text3_transformed = [list(line) for line in text3] # lists are 

mutable 

 

for line in text3_transformed: 

    for index in tagsC5LOB: # mapping object created in Listing A10  

        for i in range(len(index[1])): 

            if line[1] == index[1][i]: # if LOB tags match  

                line.append(index[0])  # add the C5 tag  

 

>>> len(text3_transformed) 

85 

 

# Sample outputs show why some indices have not been tagged – see 

comments 

 

['I', 'PPSS'] # untagged because word is in upper case 

['want', 'VB', 'VVI', 'VVB'] # one-to-many mapping LOB < C5 

['to', 'TO', 'TO0', '1', '1', 'F', "'tu:1"] 

['enlarge', 'VB', 'VVI', 'VVB'] 

['on', 'IN', 'PRF', 'PRP'] 

['the', 'ATI', 'AT0', '1', '1', 'F', "'Di:1"] 

['contrast', 'NN', 'NN1', '2', '10', 'C', "'kQn:1 tr#st:0"] 

['between', 'IN', 'PRF', 'PRP'] 

['DIYE', 'NP', 'NP0'] # not in ProPOSEL lexicon 

['and', 'CC', 'CJC', '1', '1', 'F', "'{nd:1"] 

['economic', 'JJ', 'AJ0', '4', '2010', 'C', '"i:2 k@:0 'nQ:1 

mIk:0'] 

['orthodoxy', 'NN', 'NN1', '4', '1000', 'C', "'$:1 T@:0 dQk:0 

sI:0"] 

 

tagged = [index for index in text3_transformed if len(index) == 7]  

# total tagged 

untagged = [index for index in text3_transformed if len(index) <= 

4] # total missed 

variants = [index for index in text3_transformed if len(index) == 

4] # LOB < C5 

misc = [index for index in text3_transformed if len(index) <= 3]  

# miscellaneous 

>>> len(tagged) 

42 

>>> len(untagged) 

43 

>>> len(variants) 

23 

>>> len(misc) 

20 
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Listing A.12: Inspecting annotation outputs 

We have successfully annotated about 50% of our extract.  One-to-many 

mappings in the direction LOB < C5 account for about 50% of untagged data; we 

will fix this problem with a patch in Section 6.5, where we also implement the 

prosody lexicon as a Python dictionary.   There are the remaining untagged indices 

in misc (Listing A.12) that cannot be accounted for in this way.  The interested 

reader will find that misc contains capitalised items and proper nouns ['MacQuedy', 

'NP', 'NP0'], abbreviations ['DIYE', 'NP', 'NP0'], compounds ['do-it-

yourself', 'JJB', 'AJ0'] and adverbials ['first', 'RB', 'AV0'].  In the 

case of adverbials, it may well be that they are tagged differently in the corpus than 

in the original lexicon entry: CUVPlus classes ‘first’ as an ordinal <ORD> for 

example.    

A.5. Implementing the prosody lexicon as a Python dictionary   

The Python programming language has a dictionary mapping object with 

entries in the form of (key, value) pairs.  Each key must be unique and immutable 

(e.g. a string or tuple), while the values can be any type (e.g. a list).  This syntax can 

be exploited when transforming the prosody lexicon into a Python dictionary.  

Tuples can be used to create compound lookup keys comprising wordform and PoS 

tag which in turn are associated with multiple values in the form of a list of tokens 

from selected fields for any given entry.  Thus, using a sample of 9 entries to 

represent our lexicon and version 0.9.8 of NLTK, we can transform it into a Python 

dictionary or associative array.   

import nltk, re, pprint 

from nltk.tokenize import * 

tokenizer = LineTokenizer()  

lexicon = """ 

cascade|NN1|0|k&'skeId|I2%,K6%|NN1:2|2|01|NN|C|NN1,NNT1,NNU1,ND1|NR

,NN,NNP 

cascade|VVB|0|k&'skeId|I2%,K6%|VVB:0|2|01|VB,VBP|C|VV0|VB 

cascade|VVI|0|k&'skeId|I2%,K6%|VVI:0|2|01|VB|C|VVI|VB 

cascaded|VVD|0|k&'skeIdId|Ic%,Id%|VVD:1|3|010|VBD|C|VVD|VBD 

cascaded|VVN|0|k&'skeIdId|Ic%,Id%|VVN:0|3|010|VBN|C|VVN,VVNK|VBN 

cascades|NN2|0|k&'skeIdz|Ia%,Kj%|NN2:1|2|01|NNS|C|NN2,NNJ2,NNT2,NNU

2,NNO2|NNS,NRS,NNPS,NNUS 

cascades|VVZ|0|k&'skeIdz|Ia%,Kj%|VVZ:-1|2|01|VBZ|C|VVZ|VBZ 

cascading|VVG|0|k&'skeIdIN|Ib%|VVG:1|3|010|VBG|C|VVG,VVGK|VBG 

cascading|AJ0|0|k&'skeIdIN|Ib%|AJ0:0|3|010|JJ|C|JJ,JK|JJ,JJB,JNP 

""" 

 
lexicon = [line.split('|') for line in list(tokenizer.tokenize(lexicon))] 

lexKeys = [(index[0], index[1]) for index in lexicon]  
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# dictionary lookup keys 

  

lexValues = [[index[6], index[7], index[9]] for index in lexicon]  

# values 

 

buildDict = dict(zip(lexKeys, lexValues)) 

 

 

 

>>> buildDict 

 

{('cascades', 'NN2'): ['2', '01', 'C'], ('cascaded', 'VVN'): ['3', 

'010', 'C'], ('cascade', 'VVB'): ['2', '01', 'C'], ('cascade', 

'NN1'): ['2', '01', 'C'], ('cascading', 'VVG'): ['3', '010', 'C'], 

('cascaded', 'VVD'): ['3', '010', 'C'], ('cascade', 'VVI'): ['2', 

'01', 'C'], ('cascades', 'VVZ'): ['2', '01', 'C'], ('cascading', 

'AJ0'): ['3', '010', 'C']} 

 

Listing A.13: Transforming the prosody lexicon into a Python dictionary  

This returns an as yet unsorted dictionary.  To reorder items and inspect this 

series of linguistic observations on wordform and part-of-speech mapped to syllable 

count, lexical stress pattern and content/function word status, we can use the 

following code. 

>>> jumble = buildDict.keys() 

>>> def sortIt(jumble): 

 jumble.sort() 

 for k in jumble: 

  print ' '.join(k), ' '.join(buildDict[k]) 

 

>>> sortIt(jumble) 

cascade NN1 2 01 C 

cascade VVB 2 01 C 

cascade VVI 2 01 C 

cascaded VVD 3 010 C 

cascaded VVN 3 010 C 

cascades NN2 2 01 C 

cascades VVZ 2 01 C 

cascading AJ0 3 010 C 

cascading VVG 3 010 C 

Listing A.14: Sorting a Python dictionary 

A.5.1 Intersection between the transformed lexicon and corpus text  

The compound keys (wordform, C5 PoS tag) in our transformed prosody 

lexicon facilitate linkage with speech corpora, especially if the corpus is tagged with 

C5 like the BNC.  Incoming corpus text - also in the form of (token, tag) tuples - can 

be matched against dictionary keys; and thus intersection enables text to accumulate 

additional prosodic annotations which constitute potential features for machine 

learning tasks.  CFP status, for example - field 10 in the lexicon - has proved a very 
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effective attribute for automatic phrase break prediction (Liberman and Church, 

1992; Busser et al., 2001).   

 

 

 

 

 

 

 

 

 

 

 

Figure A.1: Input text intersects with Python dictionary keys and acquires 

additional tags from the prosody lexicon 

If the incoming corpus text is tagged with a different scheme, we are still able 

to use the transformed lexicon as a text annotation tool; as in Section 6.4, the object 

tagsC5LOB (containing one-to-many mappings of C5 tokens to an array of 

equivalent LOB tokens in the desired format) will be used to promote dictionary 

lookup. 

A.5.2 Patching the backfiring problem   

The object variants in code Listing A.12 reveals a problem with one-to-

many mappings in the unexpected direction C5 < LOB.  It contains items such as 

prepositions, subordinating conjunctions, infinitives/base forms of verbs (cf. 

discussion in section A.3), present and past participles, and WH-pronouns; a brief 

explanation of why these instances occur is included in the comments below.  

>>> for line in variants:  

      print line            # example outputs contain items like 

['of', 'IN', 'PRF', 'PRP']  

# C5 has 2 tags for prepositions, one being unique to 'of'  

 

['that', 'CS', 'CJT', 'CJS']  

# C5 has 2 tags for subordinating conjunctions, one being unique to'that' 

 

['pay', 'VB', 'VVI', 'VVB']  

# C5 distinguishes between the infinitive and base form of the verb 

 

['used', 'VBN', 'VVN', 'VDN'] # C5 has a separate tag for 'done'  

 

['unreflecting', 'VBG', 'VVG', 'VDG'] # C5 has separate tag for 'doing' 

 

['which', 'WP', 'PNQ', 'DTQ']  

# patch will only use <DTQ> since this is how 'which' is tagged in CUVPlus 

incoming corpus text  

 already PoS-tagged 

 format: list of tuples 

 [..(‘gone’, ‘VBN’),..] 

 matches lexicon keys 

 

intersection with Python dictionary 

 

 accumulates more tags 

 e.g. CFP, stress pattern 

 [..(‘gone’, ‘VBN’, ‘C’, ‘1’),..] 

 these tags are text-based 

features 
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Listing A.15: Inspecting one-to-many annotation outputs 

Fortunately, there is only a small number of one-to-many mappings from C5 < 

LOB and therefore we can solve this problem, by and large, with the following patch 

- though readers should note it may not be exhaustive, simply because it has not yet 

been tested on a sufficient amount of corpus text.  Readers should also note that we 

have gone back to the object text3_transformed (cf. Listing A.12) before 

intersection with the lexicon. 

text3_transformed = [list(line) for line in text3] # lists are 

mutable 

 

for line in text3_transformed: 

    for index in tagsC5LOB: # mapping object created in Listing A10 

        for i in range(len(index[1])): 

            if line[1] == index[1][i]: # if LOB tags match  

                line.append(index[0])  # add the C5 tag  

 

# HERE IS THE PATCH - WITH SOME EXPLANATIONS GIVEN IN COMMENTS: 

 

for index in text2: 

    if len(index) == 4: # if there are 2 equivalent C5 tags 

        if index[0] == 'of': 

            index.remove('PRP') 

        elif index[0] != 'of' and index[1] == 'IN': 

            index.remove('PRF') 

        elif index[0] == 'that': 

            index.remove('CJS') 

        elif index[0] != 'that' and index[1] == 'CS': 

            index.remove('CJT') 

        elif index[0] == 'done': 

            index.remove('VBN') 

        elif index[1] == 'VBN' and index[0] != 'done': 

            index.remove('VDN') 

        elif index[0] == 'doing': 

            index.remove('VBG') 

        elif index[1] == 'VBG' and index[0] != 'doing': 

            index.remove('VDG') 

        elif index[0] == 'which': 

            index.remove('PNQ') # retain tag in original documentation 

        elif index[1] == 'BE': 

            index.remove('VBB') # appears less frequently in the 

lexicon   

        elif index[1] == 'HV': 

            index.remove('VHI') # appears less frequently in the 

lexicon   

        elif index[1] == 'DO': 

            index.remove('VDI') # appears less frequently in the 

lexicon   

        elif index[1] == 'VB' and index[0] not in ['be', 'do', 'have']: 

            index.remove('VVI') # appears less frequently in the 

lexicon   

 

>>> variants # if we inspect the list of one-to-many LOB > C5 mappings… 

 

[] # …we find that it’s empty 
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Listing A.16: Patch for resolving one-to-many mappings 

A.5.3. High level description of dictionary lookup 

(1) Use the first two fields of the prosody lexicon in a tuple to create the 

immutable dictionary keys. 

 

(2) Select corresponding values from the remaining fields in the lexicon. 

 

(3) Build a Python dictionary from these compound keys and value arrays. 

 

(4) Ensure all indices in the object text3_transformed are of equal length. 

 

(5) Isolate the (word, C5 tag) tokens in text3_transformed ready for 

intersection with dictionary keys. 

 

(6) Loop through the two iterables - i.e. the dictionary keys and the (word, C5 

tag) tokens in text3_transformed - in parallel, using Python‘s itertools() 

module.  If there is a match, then append the value array associated with that 

key to the index in text3_transformed. 

 

(7) Print the result to file in a format of your choice. 

A.5.4. Code listing for dictionary lookup 

lexKeys = [(index[0], index[1]) for index in lexicon] # Step (1) 

  

lexValues = [[index[6], index[7], index[9], index[13]] for index in lexicon] # Step 

(2)  

 

buildDict = dict(zip(lexKeys, lexValues)) # Step (3) 

 

for index in text3_transformed: 

 if len(index) == 2: 

     index.append('None') # Step (4) 

 

match = [(index[0], index[2]) for index in text3_transformed] # Step (5) 

 

for x, y in itertools.izip(match, text3_transformed): # Step (6) 

    if x in buildDict.keys(): # if tuple matches dictionary keys 

        y.append(buildDict[x]) # append value array to index in corpusText2 

 

    else: 

        y.append('No_match') 

 

# EXAMPLE RESULT FROM STEP 7, WITH FORMATTING APPLIED: 

 

wordform:            individual 

PoS tag:             JJ 

syllable count:      5 

stress pattern:      2010 

CFP tag:             C 

stress distribution: ,In:2 dI:0 'vI:1 _9l:0 
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wordform:            willingness 

PoS tag:             NN 

syllable count:      3 

stress pattern:      100 

CFP tag:             C 

stress distribution: 'wI:1 lIN:0 nIs:0 

 

wordform:            to 

PoS tag:             TO 

syllable count:      1 

stress pattern:      1 

CFP tag:             F 

stress distribution: 'tu:1 

 

wordform:            pay 

PoS tag:             VB 

syllable count:      1 

stress pattern:      1 

CFP tag:             C 

stress distribution: 'p1:1 

 

wordform:            should 

PoS tag:             MD 

syllable count:      1 

stress pattern:      1 

CFP tag:             F 

stress distribution: 'SUd:1 

 

wordform:            be 

PoS tag:             BE 

syllable count:      1 

stress pattern:      1 

CFP tag:             C 

stress distribution: 'bi:1 

 

wordform:            the 

PoS tag:             ATI 

syllable count:      1 

stress pattern:      1 

CFP tag:             F 

stress distribution: 'Di:1 

 

wordform:            main 

PoS tag:             JJB 

syllable count:      1 

stress pattern:      1 

CFP tag:             C 

stress distribution: 'm1n:1 

 

wordform:            test 

PoS tag:             NN 

syllable count:      1 

stress pattern:      1 

CFP tag:             C 

stress distribution: 'tEst:1 
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Listing 6.17: Dictionary lookup and final annotation outputs 

A.6. Concluding  comments   

This stand-alone software tutorial as a guide to using ProPOSEL has been 

written in the style of the NLTK online book, with step-by-step, fully commented 

code, and is another aspect of language resource creation as output from this thesis. 

Much of the code, particularly from Sections A.3 to A.5, has also been instrumental 

in preparing and annotating datasets used in succeeding chapters, including 

ProPOSEC (§ 8.10).   
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Appendix 3: ADTree alternating decision tree classifier models 

ADTree Run 5: 31 features, including punctuation uses fine-grained 

syntactic information defined in this thesis (§9.4) 

 

=== Classifier model (full training set) === 

 

Alternating decision tree: 

 

: -0.663 

|  (1) punct = nonterminal: -0.354 

|  |  (3) postpos1 = noun: -1.161 

|  |  (3) postpos1 != noun: 0.175 

|  |  |  (5) postpos1 = preposition: 0.358 

|  |  |  (5) postpos1 != preposition: -0.108 

|  |  |  (10) postpos1 = conjunctionTHAT: 0.91 

|  |  |  (10) postpos1 != conjunctionTHAT: -0.038 

|  (1) punct != nonterminal: 3.69 

|  (2) pos = noun: 0.684 

|  (2) pos != noun: -0.426 

|  |  (4) beat = yes: 0.355 

|  |  (4) beat = no: -0.446 

|  |  |  (9) pos = adverb: 0.828 

|  |  |  (9) pos != adverb: -0.064 

|  |  (6) pos = preposition: -0.812 

|  |  (6) pos != preposition: 0.068 

|  (7) pos = pronounObject: 1.325 

|  (7) pos != pronounObject: -0.023 

|  |  (8) postpos1 = conjunction: 0.598 

|  |  (8) postpos1 != conjunction: -0.033 

Legend: -ve = nonbreak, +ve = break 

Tree size (total number of nodes): 31 

Leaves (number of predictor nodes): 21 

 

Time taken to build model: 0.37 seconds 

 

=== Stratified cross-validation === 
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ADTree Run 13a: 26 features and no punctuation uses fine-grained 

syntactic information defined in this thesis (§9.4) 

 

=== Classifier model (full training set) === 

 

Alternating decision tree: 

 

: -0.663 

|  (1) pos = noun: 0.677 

|  |  (7) postpos1 = prepositionOF: -0.757 

|  |  (7) postpos1 != prepositionOF: 0.069 

|  (1) pos != noun: -0.437 

|  |  (3) jassem = ana: -0.531 

|  |  |  (5) pos = adverb: 1.118 

|  |  |  (5) pos != adverb: -0.131 

|  |  |  |  (6) pos = pronounObject: 1.776 

|  |  |  |  (6) pos != pronounObject: -0.139 

|  |  |  |  (9) pos = adjectiveArticle: -0.795 

|  |  |  |  (9) pos != adjectiveArticle: 0.161 

|  |  (3) jassem != ana: 0.342 

|  |  (8) pos = preposition: -0.973 

|  |  (8) pos != preposition: 0.045 

|  (2) postpos1 = noun: -0.86 

|  (2) postpos1 != noun: 0.17 

|  |  (4) postpos1 = conjunction: 0.755 

|  |  (4) postpos1 != conjunction: -0.056 

|  |  (10) postpos1 = pronoun: 0.504 

|  |  (10) postpos1 != pronoun: -0.046 

Legend: -ve = nonbreak, +ve = break 

Tree size (total number of nodes): 31 

Leaves (number of predictor nodes): 21 

 

Time taken to build model: 0.28 seconds 

 

=== Stratified cross-validation === 

 

 

 

 


