
Formal analysis of confidentiality conditions

related to data leakage

Ibrahim Shiyam

Doctor of Philosophy

University of York

Computer Science

September 2016

This thesis is dedicated

To my parents, Zareena Ali and Ali Hassan Fulhu,

for their endless love and support throughout my life.

To my wife Fathimath Humam and daughter Aishath Zara Shiyam,

for their patience and understanding.

To my brother, Ahmed Shah Ali,

for always being there for me.

2

Abstract

The size of the financial risk, the social repercussions and the legal ramifications

resulting from data leakage are of great concern. Some experts believe that poor system

designs are to blame. The goal of this thesis is to use applied formal methods to verify

that data leakage related confidentiality properties of system designs are satisfied.

This thesis presents a practically applicable approach for using Banks’s confidentiality

framework, instantiated using the Circus notation.

The thesis proposes a tool-chain for mechanizing the application of the framework

and includes a custom tool and the Isabelle theorem prover that coordinate to verify a

given system model. The practical applicability of the mechanization was evaluated by

analysing a number of hand-crafted systems having literature related confidentiality

requirements.

Without any reliable tool for using BCF or any Circus tool that can be extended for the

same purpose, it was necessary to build a custom tool. Further, a lack of literature

related descriptive case studies on confidentiality in systems compelled us to use

hand-written system specifications with literature related confidentiality requirements.

The results of this study shows that the tool-chain proposed in this thesis is practically

applicable in terms of time required. Further, the efficiency of the proposed tool-chain

has been shown by comparing the time taken for analysing a system both using the

mechanised approach as well as the manual approach.

3

Contents

Abstract 3

List of Tables 11

List of Figures 15

Acknowledgements 19

Declaration 21

1 Introduction 23

1.1 Confidentiality . 23

1.2 Confidentiality engineering . 24

1.3 Data leakage through communication channels 28

1.4 Motivation . 32

1.4.1 Mandatory regulation demanding secure-by-design practices . . 33

1.4.2 Cost of data leakages . 34

1.5 Hypothesis . 38

1.5.1 The challenges . 39

1.5.2 Testing the hypothesis . 40

1.6 Contributions . 41

1.7 Thesis structure . 42

2 Background 43

2.1 Introduction . 43

5

Contents

2.2 Analysing systems with a confidentiality requirement 44

Abuse case . 44

PROMELA and the SPIN model checker 46

Integrating process design and SecureUML 48

Secure Tropos - Secure requirements engineering with reasoning 48

ConAn tool - Automated confidentiality analysis 49

InDico - Automated analysis of business processes for confidenti-

ality . 50

CONCHITA framework . 50

TEES confidentiality model . 51

Confidentiality Properties and the B Method 51

2.3 Banks’s confidentiality framework (BCF) 53

2.3.1 The conceptual basis for BCF . 54

2.3.2 Advantages and limitations of BCF 56

2.4 Unifying Theories of Programming (UTP) 57

2.4.1 UTP theories . 58

2.4.2 Program correctness . 64

2.4.3 Refinement . 67

2.4.4 BCF in UTP . 68

2.4.5 Possible twin state space . 69

2.5 Circus: a formal specification language 71

2.5.1 Advantages of Circus . 71

2.5.2 Uses of Circus . 72

2.5.3 Challenges of using the Circus notation 73

2.6 BCF using Circus . 74

2.6.1 User inference through observation 74

2.6.2 Formalising a confidentiality requirement 80

2.7 Analysing confidentiality requirements using BCF in Circus 81

2.7.1 Back propagation laws . 82

2.8 Limitations of BCF in Circus . 84

6

Contents

2.9 Summary . 85

3 Mechanisation of BCF 87

3.1 Introduction . 87

3.2 Practicality . 89

3.2.1 Rationale for a custom tool for mechanising BCF in Circus 89

3.2.2 The proposed mechanisation of BCF in Circus 90

3.2.3 Design decisions . 94

3.2.4 Requirements of the major components in the architecture 99

3.2.5 The mechanised analysis process 104

3.2.6 Interpreting the result of a mechanised analysis 106

3.3 Fixing the input prefix law . 107

3.4 Suitability . 110

3.4.1 Types of data leakage supported by BCF in Circus 111

3.4.2 Analysing data leakage through indirect communication using

BCF in Circus . 114

3.4.3 Confidentiality violation through recursion 117

3.5 Efficiency . 117

3.5.1 Comparison of efficiency between the manual and the mechanized

analysis . 118

3.6 Summary . 120

4 An approach for evaluating the mechanisation of BCF 121

4.1 Introduction . 121

4.2 The advantage of mechanisation over a manual approach 122

4.3 Value of the mechanisation . 134

4.4 Benchmark for evaluation . 134

4.5 Limitations of the catalogue approach for evaluation 135

4.6 Evaluation plan . 137

4.7 Summary . 141

7

Contents

5 A systematic literature search for case study material 143

5.1 Introduction . 143

5.2 Systematic literature search for case study material 144

5.2.1 Research question . 144

5.2.2 Identification of indexing services 145

5.2.3 Inclusion criteria . 146

5.2.4 Search keywords . 146

5.2.5 Literature selection . 148

5.3 Patterns of confidentiality requirements 150

5.3.1 Deriving patterns of confidentiality requirements 151

5.4 Subtleties in formalizing generic patterns of confidentiality requirements

using BCF in Circus . 169

5.4.1 Scenarios where different subtleties with inequality between two

sets may satisfy a confidentiality requirement 173

5.5 Identifying and formalizing generic patterns of confidentiality 174

5.6 Generalized patterns of confidentiality requirements 181

5.7 Confidentiality requirement patterns in literature 182

5.8 Patterns in software engineering . 183

5.9 Limitations of the study . 184

5.10 Summary . 186

6 Evaluation of mechanisation 187

6.1 Introducing . 187

6.2 Mechanised analysis of confidentiality patterns 190

6.2.1 Mechanised analysis of a system having a confidentiality property

that reflects pattern CP1 . 191

6.2.2 System requirement specification - Bank information system . . 191

6.2.3 Formal specification - Bank information system 196

6.2.4 Formalising the confidentiality requirement 206

8

Contents

6.2.5 Structure of the Circus specifications used in the mechanised

analysis . 209

6.2.6 Using the mechanised tool to analyse the system 211

6.2.7 Strengthening a weak specification 212

6.2.8 An example of strengthening a weak specification 215

6.2.9 Strengthening the specification . 217

6.2.10 Results of the analysis . 224

6.2.11 Negative testing . 225

6.2.12 Analysing other confidentiality patterns 227

Analysing the confidentiality pattern CP2 227

Analysing the confidentiality pattern CP3 234

Analysing the confidentiality pattern CP4 243

Analysing the confidentiality pattern CP5 252

6.2.13 A comparison of results of the mechanised analysis 255

6.3 Summary . 258

7 Evaluation 259

7.1 Introduction . 259

7.2 Factors that could have influenced the quality of the analysis 260

7.3 Benefits derived from the mechanisation 261

7.4 Contributions and Limitations . 263

7.5 Mechanization vs. manual back propagation 267

7.6 A critical analysis of the adopted mechanisation approach 267

7.7 Critical factors that would have altered the direction of this research . . 270

7.8 Further work . 271

A Appendix 279

A.1 Modelling a system using the Circus notation 279

A.1.1 Defining the data types and state variables 279

A.1.2 Establishing the communication channels 283

A.1.3 Defining the system operations . 284

9

Contents

A.1.4 Defining the overall behaviour of the system 285

A.1.5 Recursion . 287

A.2 A comparison of the tools that provide any form of support for specifying

systems in the Circus notation . 288

A.3 Decisions regarding the development of a custom tool for BCF application289

A.4 Translating CFAT notation to HOL . 291

A.5 Description and formal specification of systems 295

A.5.1 Case study - Phone book system 295

A.5.2 Case study - Secure electronic examination system 302

A.5.3 Case study - ePurse system . 318

Abbreviations 327

List of References 331

10

List of Tables

1.1 Financial risk ratio against net asset value of two companies where more

than 1 million records were compromised 35

1.2 Data leakages between 2011-2015 where more than 1 million records

were compromised . 37

2.1 Features supported by the various approaches for analysing confidenti-

ality requirements . 53

2.2 A set of basic signatures common to a range of programming language

theories . 59

2.3 Naming convention used for Circus specifications 75

2.4 A subset of back propagation laws of BCF in Circus by Banks (2012) . . 83

3.1 The input and output format of each major component of the architecture

of the mechanisation of BCF in Circus . 99

3.2 Analysing data leakage through indirect communication 116

3.3 Time taken for analysing Figure 4.1 using BCF in Circus 119

4.1 Descriptions of the constructs of the Patient details component of the

Health Information System . 123

5.1 Relevant catalogues for software engineering research 147

5.2 Patterns of confidentiality requirements 150

5.3 A collection of confidentiality requirements from literature 152

5.4 Possible ways of specifying an inequality between two sets S and S̃ . . 170

11

List of Tables

5.5 A comparison of equality in function maps from Figure 5.2 172

5.6 How confidentiality properties are addressed by subtleties in set inequal-

ity. 173

5.7 Possible ways of specifying an inequality between two sets S and S̃ . . 178

5.8 Bit representations of bank balances between 500 and 503 179

5.9 A catalogue of generalized patterns of confidentiality requirements . . . 181

6.1 Mapping a system requirement specification to structures in a Circus

specification . 192

6.2 Roles and Permissions Matrix of the Bank information system 194

6.3 Bank information system - Description of the Circus actions 196

6.4 Bank information system - Description of the user roles 197

6.5 Bank information system - Description of the basic types 198

6.6 Bank information system - Description of the state variables 198

6.7 Bank information system - Description of the state invariants 199

6.8 Results of the mechanised analysis of the Bank information system . . . 224

6.9 Result of the mechanised evaluation of the Bank information system

with a side channel . 227

6.10 Roles and Permissions Matrix of the Phone book system 230

6.11 Results of the mechanised analysis of the Phone book system 234

6.12 Roles and Permissions Matrix of the Secure electronic examination system238

6.13 Formal specification of conditions required to satisfy the confidentiality

requirement CR21 . 241

6.14 Results of the mechanised evaluation of the Secure electronic examination

system . 243

6.15 Roles and Permissions Matrix of the ePurse system 246

6.16 Results of the mechanised analysis of the ePurse system 249

6.17 Results of the mechanised analysis of the ePurse system 254

6.18 A comparison of the average analysis times for different systems 257

12

List of Tables

7.1 Mapping a system requirement specification to structures in a Circus

specification . 276

A.1 Online expenditure tracker - Description of the state variables 281

A.2 Online expenditure tracker - Description of the state invariants 281

A.3 Operators in HiVe for the Z mathematical constructs 294

A.5 Phone book system - Description of the Circus actions 296

A.6 Phone book system - Description of the basic types 297

A.7 Phone book system - Description of the state variables 297

A.8 Phone book system - Description of the state invariants 298

A.10 Secure electronic examination system - Description of the basic types . 304

A.11 Secure electronic examination system - Description of the free types . . 304

A.12 Secure electronic examination system - Description of the state variables 305

A.13 Secure electronic examination system - Description of the state invariants 307

A.14 Secure electronic examination system - Description of the Circus actions 310

A.16 ePurse system - Description of the Circus actions 319

A.17 ePurse system - Description of the basic types 319

A.18 ePurse system - Description of the free types 320

A.19 ePurse system - Description of the state variables 320

A.20 ePurse system - Description of the state invariants 321

13

List of Figures

1.1 How the work in this thesis is related to the rest of the information

system security research . 29

1.2 Aspects of a data leakage . 31

2.1 Approaches for eliciting, analysing, transforming and formally verifying

confidentiality properties in systems . 45

2.2 UTP theories, healthiness conditions and the theory of Circus 62

2.3 Weakest pre-condition and post condition of an ePurse payment operation 67

2.4 Circus specification of the secret number system 76

2.5 Inferences of Alice and Bob from system observations 76

3.1 Value added from mechanising BCF in Circus 88

3.2 The architecture and the flow of the mechanisation of BCF in Circus for

analysing systems with a confidentiality requirement 92

3.3 The process for evaluating a system with a confidentiality requirement

requirement using the manual approach as well as using the Confidenti-

ality Framework Application Tool . 95

3.4 The CFAT editor window . 102

3.5 How the predicate (loginUser 6∈ (cashiers ∪ managers)) is parsed using the

CFAT tool . 103

3.6 The mechanised analysis process . 105

3.7 Specification of Secret Highest Bidder - code block 1 of 1 115

15

List of Figures

4.1 Specification of the patient details component of a Patient information

system . 124

5.1 Keyword map describing the confidentiality engineering ecosystem . . 147

5.2 A function map for a function S and possible function maps for different

variants of a its twin function S̃ . 171

5.3 Deriving generalized patterns from patterns of confidentiality requirements175

6.1 Tripartite graph of user-to-role and role-to-permission assignments in

the Bank information system . 195

6.2 Use case diagram for the Bank information system 195

6.3 User roles and user observations . 201

6.4 Specification of Bank information system - code block 1 of 2 204

6.5 Structure of the Circus specifications used in the mechanised analysis . 210

6.6 Intersection of user roles A, B and C . 212

6.7 Pairwise disjoint statements for users roles A, B and C 214

6.8 Specification of Secret Highest Bid - code block 1 of 1 218

6.9 Specification of Secret Highest Bid - code block 1 of 1 219

6.10 Specification of Bank information system - code block 1 of 2 222

6.11 Use case diagram for the Bank information system 231

6.12 Use case diagram for the Secure electronic examination system 239

6.13 Use case diagram for the e-Purse system 246

6.14 Counter example generated due to an insecure operation 251

7.1 Some possible stages and paths that can be taken when moving from

business goals to Circus specifications . 278

A.1 Specification of Online expenditure tracker - code block 1 of 1 282

A.2 Circus BNF as published in Freitas (2005) doctoral thesis 286

A.3 Use case diagram for the Phone book system 296

A.4 Specification of Phone book system - code block 1 of 2 300

A.5 Use case diagram for a Secure electronic examination system 303

16

List of Figures

A.6 Specification of Secure electronic examination system - code block 1 of 6 . 312

A.7 Use case diagram for the ePurse system 318

A.8 Specification of ePurse system - code block 1 of 2 324

17

Acknowledgements

This work was supported by a scholarship from the Islamic Development Bank (IDB).

First and foremost, I thank my mother Zareena Ali and my father Ali Hassan Fulhu for

going the whole nine yards to support me throughout my life.

I am indebted to my supervisor Jeremy Jacob for believing in me and for trusting me

through the rugged terrain of my PhD journey. To benefit an open door policy from

my supervisor was a testament of his support towards my research. Thank you for not

giving up on me the day I walked in and told that I must pursue the impractical path

of manually evaluating systems if I am to make progress towards my goal.

I thank my wife Fathimath Humam for her sacrifice and understanding throughout the

length of this journey. I can’t thankyou enough. It was my best source of inspiration

that my lovely daughter Aishath Zara Shiyam understood and mentioned often on her

own that her ‘daadoo’ needs to do his never ending work to get his ‘third hat’.

A special thank you to my brother Ahmed Shah Ali who has support me throughout

this journey and throughout my life.

Apart from my supervisor, my dear friend Pedro De Oliveira Salazar Ribeiro has been

the most significant contributor to my research in terms of being a sound board as well

as a wonderful critique. I thank my colleague Gerard Ekembe Ngondi for being my

other sound board and critique, especially towards the final months of my PhD.

19

Acknowledgements

In the PLASMA group, I must specially thank José Manuel Calderón Trilla and Glyn

Faulkner for the valuable discussions in functional programming. And to Rudy

Braquehais for giving me a crash course on property based testing.

I thank the various people who have explained me various concepts during the various

stages of my journey including Michael J. Banks for the lengthy Skype conversation

to explain me the lifted semantics, Leonardo de Freitas for agreeing for me to visit

his office at the University of Newcastle and explaining and showing me the guts

and bones of the CZT tool, Simon Foster for introducing me to the Isabelle/UTP

framework, Frank Zeyda1 and Neeraj Kumar Singh2 for the valuable advice on shaping

my approach towards customising the Isabelle/UTP framework and finally Jan Burse3

and Abderrahmane Feliachi4 for Isabelle theorem prover related discussions.

A special thanks to Jim McCarthy of the Department of Defence in Australia for

contacting me almost 10 months later to let me know that they had declassified the Z

mathematical tool-kit which was classified at the time I had requested for it.

I thank Justice Hassan Saeed and my dear friend Sharif Ahmed of the Family Court in

the Republic of Maldives for assisting me in getting the case management procedure

of that court. Finally, I thank my friends Dr. Faisal Saeed and Dr. Mohamed Adil

for devoting their valuable time for me to test my technical explanations on them, the

positive feedback of which was used to adjust the explanations so that people from

outside the domain can understand.

1 University of Newcastle

2 University of Toulouse

3 XLOG Technologies GmbH

4 RATP Group

20

Declaration

I declare that this thesis is a presentation of original work and I am the sole author. This

work has not previously been presented for an award at this, or any other, University.

All sources are acknowledged as References.

21

1 Introduction

1.1 Confidentiality

Confidentiality is one of the three classic goals of the data security triad where the other

two are integrity and availability (Article 29 Working Party, 2013, p. 27). Confidentiality

of a system is an assurance that information will not be leaked to an unauthorised

audience by that system. Confidential information may include Personally Identifiable

Information (PII) (Antón and Earp, 2001) and business secrets amongst other things.

Disclosure of confidential information has the potential to compromise privacy, results

in huge financial losses and also have social repercussions. The massive data leakage of

Personally Identifiable Information of 33 million users at Ashley Madison in 2015 (BBC

News, 2015) is a perfect example of such damage. However, this has been dwarfed by

the recent announcement of the 2014 data breach at Yahoo Inc. (The New York Times

Company, 2016).

“Security experts say the breach could bring about class-action lawsuits, in addition

to other costs. An annual report by the Ponemon Institute in July found that the

costs to re-mediate a data breach is $221 per stolen record. Added up, that would

top Yahoo‘s $4.8 billion sale price”

(The New York Times Company, 2016).

The financial aspects of such data leakages in organisations has been published in

the media (see Table 1.2). However, the author was not able to find details on the

approaches which the perpetrators used for stealing confidential information from these

23

1 Introduction

organisations1. Therefore, there is no way to conclude whether these data leakages were

due to poor system design. Studies conducted by security experts such as Cast Software

.Inc (2014), Verizon Enterprise Solutions (2014) and Depaula (2016) have identified

poor system design as one of the reasons for data leakage. One such aspect of a poor

system design can be the inconsistency between the functional requirements of a system

and its confidentiality requirements. If a functional requirement and a confidentiality

requirement of a system are inconsistent, confidential data maybe revealed through an

implementation that only satisfies such a functional requirement.

To address the thesis scope and challenges, one must consider system development

approaches that ensure that the confidentiality requirements are engineered into the

design of an information system. Further, one must ensure that the chosen approach

supports a mathematically accurate transformation from a system model to an imple-

mentation.

1.2 Confidentiality engineering

Confidentiality engineering can be defined as the integration of tools and techniques

within the system development process whereby practitioners can verify the conform-

ance of a system design against a given set of confidentiality requirements. Given that

confidentiality is a non-functional property2, how can engineers verify whether the

design of a system respects both the functional as well as the non-functional require-

ments of a system? Model driven verification (Holzmann and Joshi, 2004) and formal

1 The author did find such information for the Target data leakage. The approach is reported as follows. “According
to Krebs, sources close to the investigation said the attackers first gained access to Target’s network on Nov. 15,
2013 with a username and password stolen from Fazio Mechanical Services, a Sharpsburg, Pa.-based company that
specializes in providing refrigeration and HVAC systems for companies like Target.

Fazio apparently had access rights to Target’s network for carrying out tasks like remotely monitoring energy
consumption and temperatures at various stores.

The attackers leveraged the access provided by the Fazio credentials to move about undetected on Target’s
network and upload malware programs on the company’s Point of Sale (POS) systems”
(IDG Communications, 2013).

2 In the field of software engineering, functional requirements describe what the system is supposed to do whereas
non-functional requirements describe the qualities of the system functions (Onabajo, 2009, p. 21).

24

1.2 Confidentiality engineering

The focus of the research presented in this thesis is on analysing models of inform-

ation systems for data leakage, by detecting inconsistencies between functional

requirements and confidentiality requirements. The motivation for this research is

discussed in Section 1.4

The hypothesis presents two main challenges.

1. Find an approach for system engineers to verify whether their system designs

respect the data leakage related confidentiality requirements of a system.

2. Find an approach for system engineers to ensure that their system designs

are transformed into implementations that are correct by construction.

These challenges demand the need for system development approaches where the

engineers can verify that:

• The system designs are confidentiality assuring.

• The step by step transformation from system designs to implementation can

be verified as preserving the embedded confidentiality assurances.

Thesis scope and challenges

verification (Blanchet, 2008; Hadj-alouane et al., 2005) are different approaches whereby

system designs can be verified for conformance to a given set of requirements.

Banks’s Confidentiality Framework (BCF) (Banks, 2012), discussed in this thesis, is

based on aspects of the information flow theories by Jacob (1988) and Morgan (1998).

Using BCF, the information flow in a system can be analysed. Login and logout

functions that are usually implemented to secure a system are part of an access control

mechanism that does not protect against information flow related security issues.

“Information flow (IF) analysis is a suitable verification technique that focuses on

the information propagation throughout the system (end-to-end) rather than mere

data access (point-to-point). IF analysis can identify leaks, so-called interferences,

that circumvent access control mechanisms”

(Accorsi and Wonnemann, 2010, p. 194).

25

1 Introduction

The case for formal methods. Formal methods are techniques based on mathematics to

describe system properties.

“A method is formal if it has a sound mathematical basis, typically given

by a formal specification language. This basis provides the means of pre-

cisely defining notions like consistency and completeness and, more relevantly,

specification, implementation, and correctness” (Wing, 1990, p. 8).

Correctness of a system can be described as an assurance that a software does

exactly what it is supposed to do. This assurance is often seen as a reflection

of the success percentage of applying a collection of test scenarios on the sys-

tem. However some of the correctness demanding systems such as mission

critical systems, military systems and life-saving systems needed a much more

correctness-guaranteed approach for their design, development and verification

(Cofer, 2010; Hall and Chapman, 2002). This is due to the criticality of the target

application environment as well as the financing involved in such huge pro-

jects. The approach for testing systems using test cases does not provide such

correctness guarantees as the set of test cases define a finite set of scenarios.

“Program testing can be used to show the presence of bugs, but never to show

their absence!” (Dijkstra, 1972).

Potter, Sinclair and Till (Potter et al., 1996b) believe that formal methods was

born out of this push towards assuring the ‘accuracy and correctness’ of software.

This belief was further supported by many academics in the software engineering

discipline where they commonly agreed that errors introduced early in the

development process are much harder and time-consuming to fix if detected later

and also consequently cost a lot more (Woodcock and Davies, 1996, p. 1; Bowen,

1996, p. 31; Peine et al., 2008, p. 9; Defence Science and Technology Organisation,

2008, p. 4; Cant et al., 2002, p. 2; Sommerville, 2010, p. 243) .

26

1.2 Confidentiality engineering

Confidentiality vs. Privacy. Many researchers including Jamal et al. (2014), Hayashi

(2013), Moore and McSherry (2013), McClelland (2002), Mayer (2002), Anderlik

and Rothstein (2001) and Mlinek and Pierce (1997) argue that people often use

the terms confidentiality and privacy interchangeably. For example, Hansen (1971),

Mayer (2002) and Tschantz and Wing (2008) used the word privacy interchangeably

with confidentiality, when discussing techniques that are used to analyse scenarios

with a confidentiality requirement.

Both these words are used in relation to information secrecy. The topic of this

thesis is focused on proposing an approach to make a certain confidentiality

framework practical. Therefore, it is important to clarify the difference between

these two terms and explain how one is related to the other.

A knowledge map of the field of information security research is presented in Fig-

ure 1.1. The objective of presenting Figure 1.1 is to show the association between

confidentiality, privacy and security which are sometimes used interchangeably.

Further, the knowledge map also highlights the area of the information security

research discussed in this thesis.

privacy refers to “the right of individuals or cooperative users to main-

tain confidentiality and control over their information when it’s

disclosed to another party” (Porambage et al., 2016, p. 37).

confidentiality refers to “the assurance on non-disclosure of sensitive resources

to unauthorised subjects” (Margheri et al., 2015, p. 34).

In summary, privacy is an individual’s desire for information secrecy whereas

confidentiality is an assurance for information secrecy. Privacy demands form

a subset of information secrecy requirements, where other requirements might

include secrecy of company information or government information, to name but

two.

27

1 Introduction

As shown in Figure 1.1, there are many aspects of confidentiality such as legal (Al-

Fedaghi, 2012, p. 6), financial (Rubinstein, 2011, p. 1456), ethical (Orb et al., 2001) and

data leakage related (Gordon, 2007) to name a few. In this thesis, we consider the data

leakage related aspect of confidentiality. An introduction to data leakage is given in

Section 1.3.

1.3 Data leakage through communication channels

Shabtai et al. (2012, p. 5) state that data leakage is the intentional or unintentional

distribution of private or sensitive data to an unauthorised entity. Private and sensitive

data are considered confidential and may include personal, corporate, military or

government data. Some intentional and unintentional activities that may result in a

data leakage are shown in Figure 1.2.

Different technological approaches are being used to provide data leakage detection

and prevention such as designated Data Leak Prevention (DLP) systems3, access control

and encryption mechanisms, advanced/intelligent4 security measures and standard

security measures such as firewalls, antivirus systems and intrusion detection systems.

Apart from direct theft, data leakage may occur as a result of poor information infra-

structure design (Cast Software .Inc, 2014; Depaula, 2016; Verizon Enterprise Solutions,

2014) as well as poor data management practices amongst others. Among the mechan-

isms that may help in detecting and mitigating data leakages, is the implementation of

information security policies. The information infrastructure of an organisation must be

governed by such policies to ensure that the security of the data is always maintained

whether in transit or at rest. This includes integrating such policies within the top-level

3 “Designated DLP solutions are intended to detect and prevent attempts to copy or send sensitive data, intentionally or
unintentionally, without authorization, mainly by personnel who are authorized to access the sensitive information”
(Shabtai et al., 2012, p. 9).

4 “Advanced or intelligent security measures include machine learning and temporal reasoning algorithms for detecting abnormal
access to data” (Shabtai et al., 2012, p. 9).

28

1.3 Data leakage through communication channels

Case Studies
systems with a

confidentiality requirement

Information
flow theories

Banks’s
Confidentiality

framework

Confidentiality

Confidentiality
Framework

Application Tool

used to validate
the consistency of

the requirements in

PeT
(Privacy enhancing

technologies)

Privacy

Privacy by
Design

is a set of
principles to achieve

Security

includes

Information
systems

is a property of

accurately
modelled using a

Formal notation

Circus
notation

uses

can formally be
modelled using the

assures

is a

Discussed inside this thesis

reason
about

Data leakage

assures

Ethical

Legal

Financial

has many
aspects such as

introduces semantic
extensions for

logically
reasons aboutmechanises

discussed in
published

literature using

Figure 1.1: How the work in this thesis is related to the rest of the information system
security research

29

1 Introduction

design of information systems. The focus of the research in this thesis is to provide

a practically applicable approach for using a formal framework that supports such

integrations.

Channels are used to communicate information between agents5 in an information

system. Within the context of an information system, an individual with a low security

clearance may use various channels to gather data that maybe classified at a higher

classification. Such channels may include side channels, covert channels, inference channels

and overt channels.

side channel A side channel is a physical observable side-effect of a computation,

that an adversary can measure (Lawson, 2009, p. 65).

covert channel A covert channel is described as “any communication channel that

can be exploited by a process to transfer information in a manner

that violates the systems security policy” (Latham, 1986, p. 80).

inference channel An inference problem exists when a user with a lower security clear-

ance uses information which he is authorized, to draw conclusions

about information at a higher security clearance (Garvey et al., 1991,

p. 119). Such a link that may allow the flow of information from a

higher security class to a lower security class is an inference channel.

overt channel An overt channel is described as “a communication path within a

computer system or network designed for the authorized transfer of

data” (Lucena et al., 2006, p. 147).

BCF codifies the information a user may not gain by observing overt channels in an

information system. The aim of this thesis is to extend the value of BCF. This has been

achieved by mechanising BCF and evaluating the mechanisation to understand how

effective it is for analysing system models for data leakages.

5 “Agents are active components forming the system. They can be humans, devices, legacy software, etc”
(De Landtsheer and Van Lamsweerde, 2005, p. 41).

30

1.3 Data leakage through communication channels

Legal liability
Regulatory violations

Lost productivity
Bad business reputation

Corporate espionage
Financial reward
Privacy violation

Physical theft
Social engineering

Phishing
Dumpster driving

Malware distribution
SQL injection

Instant messaging
Email

Malicious webpage
Hidden in SSL

Removable media

Channels of
communication

Unintentional activities
Intentional activities

Implications

Motivation

Detection / Mitigation
mechanismsChannels of

communication

side channels
Timing attacks
Power analysis
Cache attacks

covert channels
Steganography

Encryption

inference channels

overt channels

may
utilize

formalize
communications

over

inference channels

overt channels

Confidentiality
policies

Information flow
theories

Confidentiality
assurances of a system

formalized
using

reason
about

Data leakage
may be

minimized by
using

Intrusion detection systems

Thin client rollout

Virtual desktop rollout

Ban on removable storage

Anti-virus

Anti-spyware

information security
policies

include

may
result in

may
compromise

may be caused
through

may occur
as a result of driven by

Figure 1.2: Aspects of a data leakage

31

1 Introduction

1.4 Motivation

The regulatory demand for secure by design practices during system development and

the size of the financial risk due to data leakage incidences motivate work on techniques

to integrate confidentiality engineering during the system development process. System

development practices that guarantee confidentiality, contribute towards assuring

privacy as well as trustworthy computing. In this regard the work presented in this

thesis is highly encouraging.

The untrusted access to confidential information leads to privacy violations. Such

digital-era related privacy concerns have been raised as early as in the 1990s. One of the

recommendations of the study conducted by The New York Public Service Commission

during 1989 and 1990 on privacy in telecommunication services recommended that

privacy promoting technologies should be encouraged in future service offerings

(Rotenberg, 1993).

Technology and policy experts in security, privacy and networking who participated in

the 2003 conference on the Grand Challenges in Trustworthy Computing organised by

the Computing Research Association (2003) declared that:

• ensuring trustworthiness of important societal applications such as electronic

voting systems and healthcare record databases is one of the great challenges in

trustworthy computing.

• a possible progress on ensuring trustworthiness of important societal applications

will be to assure users that systems are designed with strong mathematical

guarantees that eventually can achieve confidentiality of records amongst other

security requirements.

Even though software designers have started to include non-functional properties such

as performance and reliability in the system development process, “security still remain

an afterthought” (Giorgini et al., 2004, p. 2). The same issue has been highlighted by a

number of author’s (CAUSE, 1997, p. 3; Mouratidis et al., 2003, p. 63 ; Mouratidis et al.,

32

1.4 Motivation

2005, p. 610; Schumacher et al., 2005, p. xi; Weiss and Mouratidis, 2008, p. 169; Williams,

2009, p. 67; Churchill, 2009, p. 131; David and Prosch, 2010, p. 3 ; Le M’etayer, 2010,

p. 323; Rubinstein, 2011, p. 1411; Le Métayer, 2011, p. 10 ; European Digital Rights, 2012,

p. 8; Burgemeestre et al., 2013, p. 153 ; Cavoukian and Dixon, 2013, p. 212 ; El-Hadary

and El-Kassas, 2014, p. 463) .

In this regard, this thesis explores ways in which the value of a validation framework

for systems with a confidentiality requirement can be extended. The eventual goal

is to have a well tested and mature confidentiality validation framework so that the

framework can be integrated into professional software development tool kits. The

work presented in this thesis contributes towards realising this goal.

1.4.1 Mandatory regulation demanding secure-by-design practices

Privacy legislations and regulations in many countries (General Services Administra-

tion, 2005; Office for National Statistics, 2002; Office of Parliamentary Counsel, 1988;

U.S. National Institute of Standards and Technology, 2014) mandate that personally

identifiable information must never be released to unauthorised individuals. However,

decisions about the implementation mechanisms to achieve legislative compliance is

solely left to the parties who handle personal data of individuals. Dr. Ann Cavoukian

(2009) first introduced the phrase Privacy by Design (see Figure 1.1) to refer to such

mechanisms, back in the 90s.

“Privacy by Design refers to the philosophy and approach of embedding privacy

into the design specifications of various technologies” (Cavoukian, 2009).

Both the preliminary and the final report of the U.S. Federal Trade commission (FTC)

on “Protecting Consumer Privacy in an Era of Rapid Change” in 2010 and 2012

consecutively recommends companies to adopt Privacy by Design practices by building

privacy at every stage of their product development (Federal Trade Commision (FTC),

2012; Federal Trade Commission, 2010). However, the FTC stopped short of using the

33

1 Introduction

phrase Privacy by Design in its call to the U.S. Congress, but rather requested them to

consider enacting baseline privacy legislation and reiterated its call for data security

legislation.

The General Data Protection Regulation of The European Parliament and The European

Council (2016) states that organisations must implement “data protection by design and

by default” whereby organisations must ensure that personal data will be “processed in

a manner that ensures appropriate security of the personal data, including protection

against unauthorised or unlawful processing and against accidental loss, destruction

or damage, using appropriate technical or organisational measures (‘integrity and

confidentiality’)”. The European Digital Rights (2012) and European Parliament (2014)

elaborate these measures by specifying that technical aspects should include the design

of software and hardware and that organisational aspects should include internal

and external policies and current best practices, a call advocated earlier by Dr. Ann

Cavoukian (2009) and later repeated by the U.S. FTC (Federal Trade Commision (FTC),

2012; Federal Trade Commission, 2010).

This shows a shift from general compliance recommendations and directives towards

legislation and regulation that mandates the adoption of secure-by-design practices

during software design and development. It is also important to note here that this

European Parliament regulation also applies to organisations outside the European

Union (EU) that collect personal data from EU citizens. Hence, the regulation throws a

broader net than the Euro-zone and practically covers all multinational companies in

the world.

1.4.2 Cost of data leakages

Data leakages cost millions of dollars to companies around the world. For example, as

per the Article 83 of the General Data Protection Regulation (The European Parliament

and The European Council, 2016, p. 82), companies with severe data breaches will be

fined either 2% of the company’s worldwide annual turnover or e10, 000, 000 which

34

1.4 Motivation

ever is greater. In addition, a data leakage has many other associated losses including

loss of customer confidence and legal fees and settlements related to multiple lawsuits.

Table 1.2 presents a list of major data leakages between 2011 to 2015 where each single

breach compromised more than 1 million unique customer records. Table 1.1 presents

the ratio of the cost of the data leakage to the net asset value of that company, just to

give an idea of the size of the risk to an organisation from data leakage. This shows

that data security translates into a financial risk for an organisation.

Organisation Information
lost

R
ec

or
ds

co
m

pr
om

is
ed

(i
n

m
ill

io
ns

)

Ye
ar N
et

as
se

t
va

lu
e

of
th

e
co

m
pa

ny
(i

n
$M

)

C
os

t
of

th
e

da
ta

br
ea

ch
(i

n
$M

)

R
is

k
ra

ti
o

on
ne

t
as

se
t

va
lu

e
of

th
e

co
m

pa
ny

Anthem Insurancea personal
information

80 2015 24, 251 8, 000 32.99%

The Home Depot b personal and
financial

information

56 2014 12, 520 8, 120 64.85%

Table 1.1: Financial risk ratio against net asset value of two companies
where more than 1 million records were compromised

a Company value has been taken from the 2014 Annual Report of Anthem, Inc. (Anthem, 2014) submitted to the U.S.
Securities Exchange. When calculating the total cost of the data breach at Anthem, Inc., the stated lower bound of
$100 (Lockton Inc., 2015) as the per record cost of the breach was considered.

b Company value has been taken to be the different between the total assets and liabilities in the Home Depot financial
report in (MarketWatch, 2014). When calculating the total cost of the data breach at The Home Depot, the average
cost of $145 paid for each stolen record in 2014 has been considered (Ponemon Institute LLC, 2014).

The cost of a data leakage cannot be realized for sometime. In the case of The Home

Depot data breach, the 2014 annual report of The Home Depot (2014) has revealed

35

1 Introduction

that the gross expense for their 2014 data breach stood at $63m . However, the report

also stated that “We expect to incur significant legal and other professional services expenses

associated with the Data Breach in future periods”. The 2015 annual report of The Home

Depot (2015) has revealed that the gross expense related to its 2014 data breach had

increased to $232m.

36

1.4 Motivation

Organisation Information
lost

Records
compromised

(in millions)

Year Source

Ashley Madison personal info 33 2015 (BBC News, 2015)

TalkTalk personal and
financial info

4 2015 (Gemalto, 2015)

U.S. office of
personnel

management

personal info 21 2015 (Gemalto, 2015)

Experian personal info 15 2015 (Guardian News, 2014)

Anthem Insurance personal info 80 2015 (Lockton Inc., 2015)

Adult FriendFinder personal info 3.8 2015 (Gemalto, 2015)

Community Health
System

personal info 4.5 2014 (Verizon, 2015)

Experian personal info 200 2014 (Guardian News, 2014)

The Home Depot personal and
financial info

56 2014 (The Home Depot, 2014)

JP Morgan personal info 76 2014 (The New York Times
Company, 2014)

eBay personal info 145 2014 (Verizon, 2015)

Adobe personal info 38 2013 (BBC News, 2013)

Target personal and
financial info

70 2013 (The Association of Data
Protection Officers, 2015)

Evernote personal info 50 2013 (The Association of Data
Protection Officers, 2015)

Epsilon personal info 60 2011 (The Association of Data
Protection Officers, 2015)

Sony personal info 78 2011 (The Association of Data
Protection Officers, 2015)

Table 1.2: Data leakages between 2011-2015 where more than 1 million
records were compromised

37

1 Introduction

1.5 Hypothesis

Banks (2012) proposed a formal framework that can be used for the formal analysis of

data leakage related confidentiality requirements in systems. Banks’s Confidentiality

Framework (BCF) can be used to demonstrate that the formal model of a system does

not leak data through legitimate communication channels of the system in violation

of any confidentiality requirements of the system. The manual application of BCF

is practically infeasible (Section 4.2). Further, there are no tools that can be used to

analyze system models using BCF. However, there are different tools and frameworks

that can be used to derive and analyse formal predicates from system models, similar

to BCF (Section 2.2).

The hypothesis of this thesis is that a practically applicable approach exists that

supports the process of analysing system models using Banks’s Confidentiality

Framework (BCF) (Banks, 2012) to verify if those models respect the integrated con-

fidentiality requirements pertaining to data leakage through legitimate channels.

The hypothesis

38

1.5 Hypothesis

1.5.1 The challenges

In order to justify the hypothesis, the following issues were addressed.

• Identify the step-by-step process for applying BCF.

• Identify what is required for applying BCF such as:

– how formal models of systems should be presented.

– how confidentiality requirements should be encoded in system

models.

• Identify how the process of applying BCF can be automated.

• Identify how the predicates generated through BCF can be translated to a

format that can be simplified by a tool.

• Identify a tool that can simplify complex predicates.

• Identify a formal language that can be used to specify systems and con-

fidentiality requirements in a way that the combined specification can be

type checked with an existing tool.

39

1 Introduction

1.5.2 Testing the hypothesis

In order to test the hypothesis, the following tasks were required.

1. Constructing a tool-chain for analysing systems using BCF.

2. Using the tool-chain to analyse purpose written specifications based on

typical system scenarios in which data leakage is a known issue.

3. Carrying out the following types of tests.

a) Multiple tests that show that analysing a system using BCF confirms

that the confidentiality requirements are respected in a given specific-

ation, if there were no contradictions in the system specification.

b) A test that shows that BCF correctly flags an issue that is not apparent

with a seemingly correct specification.

c) A test that shows that BCF correctly flags an issue with a specification

that has an artificially inserted inconsistency within its functionality

and confidentiality requirements.

4. Comparing the time taken to analyse systems using the tool-chain and

comparing it with manual application to show the value of the mechanisa-

tion.

5. Demonstrating the practical applicability of the mechanisation by showing

that confidentiality requirements related to data leakage through legitimate

channels can be generalised into patterns that supports tool based analysis.

40

1.6 Contributions

1.6 Contributions

Major contributions of this thesis are:

1. Proposing a practical approach for using Banks’s Confidentiality Framework

(BCF), to reason about the conformance of a system to a given set of data leakage

related confidentiality requirements, by developing a mechanisation for BCF

(contribution from Chapter 4).

2. Identifying and extracting generalized patterns of confidentiality requirements

from literature, where these requirements are related to data leakage in systems

through overt channels (contribution from Chapter 5).

3. Demonstrating the value of the proposed mechanisation by using it to analyse

systems with data leakage related confidentiality requirements. This includes:

a) Carrying out a comparison of execution times during the manual vs. mech-

anised application of BCF (contribution from Chapter 4).

b) Reviewing the time consumed for the mechanised application of BCF on

hand-crafted systems with varying degrees of complexity, with a confid-

entiality requirement that reflects a generalized pattern (contribution from

Chapter 6).

41

1 Introduction

1.7 Thesis structure

The structure of the thesis is as follows.

Chapter 2 presents a discussion of the preliminary knowledge that is required to

follow this thesis.

Chapter 3 presents the mechanisation of BCF. The chapter discusses ways in which

a practically applicable approach can be developed for BCF.

Chapter 4 presents a discussion on the approach which has been followed in this

research to evaluate the mechanisation of BCF.

Chapter 5 presents a systematic literature search for confidentiality related discus-

sions in order to identify common recurring patterns of confidentiality

requirements. Further, an approach for deriving generalized patterns of

confidentiality requirements is also presented.

Chapter 6 presents a case study analysis where systems with confidentiality re-

quirements, that represent instances of patterns of confidentiality require-

ments, has been analysed. A formal model has been developed for each

system and the results of the mechanised analysis has been presented

and compared.

Chapter 7 presents an evaluation of the research in this thesis. Further, this chapter

discusses the future directions in which the work pursued in this thesis

may be extended. The chapter further summarises the overall contribu-

tions, findings and limitations of the work presented in this thesis.

42

2 Background

2.1 Introduction

The research presented in this thesis establishes a practically applicable approach for the

analysis of data leakage in systems with a confidentiality requirement. The approach is

based on the mechanisation of BCF (Banks, 2012). BCF is based on Unifying Theories

of Programming (UTP) by Hoare and He (1998) and has been instantiated using the

Circus notation (Oliveira et al., 2009). The denotational semantics of the Circus notation

is based on UTP. This chapter provides an account of the preliminary knowledge which

the user must be equipped with in order to understand the technical content in this

thesis.

First, a discussion about the rationale behind selecting BCF for analysing data leakage

related confidentiality requirements in systems is presented. This includes a comparison

of BCF with research carried out by other researchers in the realm of formal analysis

of confidentiality. Next, the chapter introduces the reader to UTP, discusses how the

concept of BCF is captured in UTP, introduces the Circus notation and explains how

UTP forms the basis for the notation, describes how systems are modelled using the

Circus notation, describes how BCF is instantiated for Circus and discusses how BCF

in Circus can be used to analyse data leakage related confidentiality requirements in

systems.

43

2 Background

2.2 Analysing systems with a confidentiality requirement

This section reviews some existing formal approaches for analysing systems with a

confidentiality requirement. The Figure 2.1 shows the stage of the system development

where each approach is utilised. These approaches will be discussed later in this section.

The approaches discussed include PROMELA and the SPIN model checker (Holzmann,

1997), SecureUML (Basin et al., 2003), Secure Tropos (Bresciani et al., 2004), CoNaN

tool (Cerny and Alur, 2009a), InDico (Accorsi and Wonnemann, 2010), CONCHITA

using KAOS (De Landtsheer and Van Lamsweerde, 2005), TEES framework (Howitt,

2008) and Confidentiality properties and the B Method (Onunkun, 2012).

In addition, the Figure 2.1 includes the techniques abuse case and UML-RT to Circus

transformation. Even though these techniques are not used for analysing confidentiality

in systems, abuse case is included in Figure 2.1 to show that there is a possible alternative

to the existing KAOS technique used in CONCHITA, whereas UML-RT to Circus,

which is discussed later in Section 2.5.2, is included to show the stage of the system

development process where UML-RT to Circus is utilised.

This section presents a critical analysis of BCF by discussing the comparative advantages

and limitations of BCF with respect to other proposed approaches shown in Figure 2.1.

Abuse case. McDermott and Fox (1999) define abuse case as a complete interaction

between an actor and the system that is harmful to the system, one of the actors

or to one of the stakeholders of the system. McDermott and Fox (1999) introduced

the notion of abuse case to enable engineers to model possible harmful scenarios

of system interactions in such a way that the artefact could be understood by both

the user as well as the customer.

Abuse case and KAOS shown in Figure 2.1 are both goal-oriented requirement

engineering approaches that can be used for deriving security requirements from

security goals. However, they differ in how they derive and model security

requirements.

44

2.2 Analysing systems with a confidentiality requirement
G

o
a
ls

R
eq

u
ir

em
en

ts
Requirement illicitation Requirement analysis

Secure Tropos
DLV system

V
er

if
ie

d

re
q
u
ir

em
en

ts

F
o
rm

a
l

sp
ec

if
ic

a
ti
o
n

Formal verificationTransformation

V
er

if
ie

d

sp
ec

if
ic

a
ti
o
n

P
ro

gr
a
m

 C
o
d
e

Coding

CoNAN
tool

SecureUML
(UML+OCL)

UML-RT to
Circus

Onunkun
+

B method

PROMELA
+

SPIN model
checker

TEES
framework

Abuse case
(for security requirements)

(uses UML)

Banks
Confidentiality

Framework
(BCF)

InDico

CONCHITA

KAOS
(uses epistemic logic) CONCHITA tool

Step-2
SMT solver

Step-1
Automatic annotations

on Java Operations

Figure 2.1: Approaches for eliciting, analysing, transforming and formally verifying
confidentiality properties in systems

45

2 Background

• Knowledge Acquisition in autOmated Specification (KAOS) specification

language contains formal definitions in temporal first-order logic for com-

ponents of the system meta-model (Black, 2009, p. 22). These components

include system goal, agents, actions, entities and the relationships between

them. KAOS addresses security requirements by way of anti-goals (Lam-

sweerde, 2004).

• Abuse case uses the UML (Rumbaugh et al., 2004) approach for modelling

possible harmful scenarios of system interactions.

“In the requirement phase, the abuse case helps in gaining better under-

standing of system security between stakeholders, especially users and

customers. Any security design trade-offs can be made easily”

(Srivatanakul, 2005, p. 76).

PROMELA and the SPIN model checker. The Protocol/Process Meta Language (PRO-

MELA) (Holzmann, 1997) is a language for modelling finite state machines. It

allows a user to model concurrent processes. PROMELA supports embedded C

code. Communication between the processes are established through channels

defined for message passing. The Simple Promela INterpreter (SPIN) (Holzmann,

1997) analyses the logical consistency of concurrent systems. SPIN supports the

PROMELA modelling language. A PROMELA model consists of a number of

processes templates with at least one instantiation (Holzmann, 1997). The SPIN

model checker translates each template into a finite automaton. The global system

behaviour or state space of the system is represented by computing asynchronous

interleaving of all the finite automaton. Security properties are modelled as claims

in Linear Temporal Logic (LTL). SPIN converts the encoded security properties to

a Büchi automaton1 (Büchi, 1960) and computes the synchronous product of this

1 The Büchi automata extends the theory of finite automata on finite words to languages over infinite words. “While
finite runs of finite automata are accepting if an accepting state is visited at the end of the run, an infinite run of a
Büchi automaton is accepting if a final state is visited (or a final transition is taken) infinitely many times during
the course of the run. The Büchi acceptance condition thus specifies a set of states (or transitions) that have to be
visited (respectively, taken) infinitely often” (Varghese, 2014, p. 1).

46

2.2 Analysing systems with a confidentiality requirement

automaton and the automaton representing the global state space. The model

checker visits every reachable state and also remembers all the states it has visited

(Wang et al., 2000, p. 50). The memory requirement to store this information and

resources required to traverse the state space depends on the size of the state

and the number of reachable states and can be resource intensive depending on

the given system specification. Edelkamp et al. (2001) combined SPIN with HSF

(Edelkamp, 1999) heuristic search workbench to develop the LISP SPIN tool that

can traverse large state spaces more efficiently than SPIN.

The model checker either validates the given security property or else a counter

example is produced that shows how the violation can take place. Some other

researchers have used SPIN to model and analyse confidentiality properties of

systems as described below.

Dabaghchian and Abdollahi Azgomi (2015) used embedded C code in PRO-

MELA to model a variant of the observational determinism confidentiality

property. Observation determinism ensures confidentiality in concurrent

programs by assuring that public variables and private variables are kept

independent during the execution of a program.

Ahmed and Tripathi (2003) used SPIN to model and verify confidentiality

properties of a Computer Supported Cooperative Work (CSCW) system.

They re-modelled the course activity case study by Foley and Jacob (1995).

In this thesis, the same system has been modelled and analysed using BCF

(Banks, 2012).

Having to remember every visited state is the biggest limitation of SPIN. Fur-

ther, the specifications that can be written using PROMELA are restricted to

the available PROMELA templates. However, BCF is defined using the UTP

framework and can be instantiated for a range of UTP theories as shown by Banks

(2012). Therefore a broad set of features can be supported by instantiating BCF

on relevant UTP theories than in SPIN+PROMELA.

47

2 Background

SecureUML - Integrating UML based process modelling and RBAC. Basin et al. (2003) pro-

posed an approach to integrate RBAC based security policies into formal system

models by using OCL constraints in UML. The resulting UML based language is

called SecureUML. The RBAC policies imposed by OCL constructs are used to

derive the precondition for every action in a UML class. Further, they integrate

SecureUML with a process modelling language by defining a dialect that identi-

fies process elements as protected resources. The semantics of this dialect uses a

form of weakest pre-condition computation to decide whether a user is allowed

to execute a particular process element. The process models are translated to

implementations of controller objects for multi-tier applications. They evaluate

their approach by generating prototypes using an extended version of a tool

called ArcStyler2 (Basin et al., 2003, p. 8).

SecureUML integrates security into formal models of systems. However they do

not provide an approach for verifying those models. The fundamental objective

of BCF is to provide an approach for verifying confidentiality integrated formal

models of systems.

Secure Tropos - Secure requirements engineering with reasoning. Tropos (Bresciani et al.,

2004) is an agent based software engineering methodology. Tropos lacks the ability

to capture the functionality and security features of an organisation at the same

time. Giorgini et al. (2004) extended Tropos by defining predicates that represent

properties of actors and trust properties between actors. These predicates are

combined to form security properties in the form of axioms. These axioms are

formalized as a datalog3 logic program and analysed using the DLV system

(Leone et al., 2006). Consistency checks guarantee that the security specification

is not self contradictory (Giorgini et al., 2004).

2 ArcStyler “provides a transformation function for converting UML classes and state machines into controller classes
for web applications, executed in a Java Servlet environment” (Basin et al., 2003, p. 8).

3 Abiteboul et al. (1995, p. 273) give an introduction to the datalog language.

48

2.2 Analysing systems with a confidentiality requirement

Secure Tropos utilizes a graphic model of a system whereas BCF utilizes a formal

specification based model of a system. It is not clear how a formal specification

of a Secure Tropos based model can be derived so that the specification can be

refined to an eventual implementation. However, with certain instantiations of

BCF, this is possible.

ConAn tool - Automated confidentiality analysis. Automated program checking for con-

fidentiality by Cerny and Alur (2009a) presents a notion of confidentiality based

on possibilistic reasoning. The tool supports a subset of Java that includes boolean

variables, integer variables, data variables and variables that range over an infinite

domain. However, only equality tests on data variables are supported.

A program execution produces an observation with respect to a condition cond.

If two executions exist where, in one execution a confidentiality predicate secret

holds and in another execution the same confidentiality predicate secret does not

hold, then the two executions will be indistinguishable to the observer, hence

achieving confidentiality.

The proposed ConAn tool takes in a program in Java bytecode, a condition cond, a

confidentiality predicate secret and some other required parameters. The tool auto-

matically inserts annotations to the Java program that record user observations

based on program execution. The tool generates formal scripts compatible with

the Yices SMT solver (Dutertre, 2014). The Yices SMT solver decides satisfiability

of the resulting formulae.

Automated program checking for confidentiality related to data leakage is specific

to a subset of Java constructs whereas BCF is defined at a higher level since BCF

is based on a formal notation and not specific to any programming language.

The approach for verification does not start from a formal specification but

rather reverse engineers a program to derive a set of formal scripts which then

get evaluated. Data leakage in Circus models can be verified using BCF and

subsequently those models can be refined to be implemented in any supported

49

2 Background

programming language. The ConAn tool based approach is limited to restricted

Java based implementations of systems, whereas since BCF supports verification

of system models at the formal specification level, this limitation does not exist.

InDico - Automated analysis of business processes for confidentiality. Accorsi and Won-

nemann (2010) proposed an approach for information flow analysis in business

processes. First, a formal model of a business process is developed. For example,

the Business Process Model and Notation (BPMN) (White, 2004) can be used

for this. The model is mapped to a coloured Petri Net (Jensen, 1987). Next, the

activities of the resulting IFnet’s4 are labelled with security labels. Analysis of the

IFnet relies on a manual verification process. The first step is to inspect the IFnet

for structured patterns that might leak information. The second step is to check

whether the identified patterns are reachable within a run of the system. This

is a state space explosion problem when processes have non-trivial number of

states. Therefore, the approach is not practical for non-trivial processes and also

has scalability issues due to a manual analysis approach. Further, this approach

supports only non-interference properties.

In comparison to InDico, BCF is not limited by state explosion and scalability

because BCF validates a system based on predicates which can be machine

evaluated.

CONCHITA framework. The CONfidentiality CHecker for Incremental Threat Analysis

(CONCHITA) by De Landtsheer and Van Lamsweerde (2005) is a reasoning

framework based on bounded model checking and constraint solving techniques.

Formal system models are defined using the goal oriented software requirements

engineering methodology called KAOS (Van Lamsweerde et al., 1991). The know-

ledge of agents at specific states in the system are captured using epistemic

constructs. These epistemic constructs are combined with LTL (Linear Tem-

poral Logic) (Pnueli, 1977) to define axioms that capture the interaction between

4 An IFnet is a specialization of coloured petri nets for work-flow modelling and information flow analysis (Accorsi
and Wonnemann, 2010, p. 195).

50

2.2 Analysing systems with a confidentiality requirement

knowledge and time. A set of templates that represent specification patterns

for confidentiality requirements are given. Specifiers must utilize one of these

templates to define their confidentiality claims. CONCHITA propositionalizes

the input specification and confidentiality claims. The resulting propositions are

converted into non-temporal logic versions by defining the length of the trace

as a given bound. The confidentiality verification problem is translated to a

constraint satisfaction problem by quantifying confidentiality patterns over the

user agent’s finite bound of knowledge of the system. The resulting constraint

is analysed using the Oz constraint solver (Henz et al., 1993) which presents a

counter example if the knowledge of a user agent contradicts with the quantified

confidentiality claim.

CONCHITA depends on a limited set of templates that can be used to define

confidentiality requirements whereas BCF does not have this limitation. Further,

BCF uses the Circus notation that represents system entities and state variables

more closely than epistemic logic used in CONCHITA.

TEES confidentiality model. The TEES confidentiality model (Howitt, 2008) is an au-

thorisation model that utilizes both Role-Based Access Control (RBAC) (Ferraiolo

and Kuhn, 1992) and Identity-Based Access Control (IBAC) that includes override.

The model is based on a state machine approach and is formalized using the B

notation and verified using the Rodin B-toolkit (Butler and Hallerstede, 2007).

TEES concentrates on the antecedent of a conditional confidentiality requirement5

where TEES defines the condition under which the confidentiality of a state

variable must be maintained. However, BCF is more flexible in that BCF can

additionally define the degree of confidentiality of a state variable. For example,

consider a set S that represents the set of bids in an auction. BCF can be used to

define a confidentiality property where either all values of S can be kept secret or

a defined subset of values of S can be kept secret.

5 A conditional confidentiality requirement is equivalent to a conditional information flow, a flow of information that
only occurs when some condition is met at runtime (Tschantz and Wing, 2008, p. 108).

51

2 Background

Confidentiality Properties and the B Method. Onunkun (2012) proposes a framework to

reason about information flow security in B machines. The framework is restricted

to Multi Level Security properties. In this framework, state variables are mapped

to security classes in a security flow lattice. The framework extends the flow

logic analysis approach proposed by Clark et al. (2002). Reasoning about the

information flow is based on predicates computed based on this extension. Even

though the B machines were checked with Atelier-B (2017) for consistency, it is not

clear from Onunkun (2012) as to how the described information flow violations

were detected using the custom tool which Onunkun (2012) had developed.

BCF detects information flow violations through inconsistencies in a computed

predicate similar to that in Onunkun’s method. However, BCF is not restricted to

Multi Level Security properties only.

As can be seen from Figure 2.1 , the approaches based on Secure Tropos and SecureUML

are utilized in the requirement analysis phase. However, there is little research on how

the requirements phase is reconciled with the formal specification phase (Nakagawa

et al., 2007, p. 531). The work by Nakagawa et al. (2007) is an attempt towards bridging

this gap by proposing an approach to generate formal specifications based on VDM++

(Durr and van Katwijk, 1992) from KAOS models.

None of the above approaches support the analysis of a concrete formal specification of

a system where confidentiality requirements can be modelled using constraints on the

channels through which a system communicates with its environment. However, the

instantiation of BCF (Section 2.6) discussed in thesis supports supports such constraints.

The features in Table 2.1 are considered as critical criteria based on which BCF has been

selected for analysing systems with a confidentiality requirement.

Table 2.1 identifies at least one limitation of each approach in comparision to the BCF

approach for analysing data leakage related confidentiality requirements in systems.

52

2.3 Banks’s confidentiality framework (BCF)

Feature BC
F

PR
O

M
EL

A

Se
cu

re
U

M
L

Se
cu

re
Tr

op
os

C
oN

aN

In
D

ic
o

C
O

N
C

H
IT

A

T
EE

S

Not restricted by templates 3 5 5 5

Supports formal analysis of confidentiality
properties in system models

3 5 5

Not limited by state explosion problem 3 5

Not restricted by Multi-Level Security
properties

3 5

Table 2.1: Features supported by the various approaches for analysing
confidentiality requirements

A tick (3) denotes that the particular feature is avail-
able in the related formal approach. A cross (5) denotes that
the particular feature is not available in the related formal
approach. A blank denotes that the author has not verified
the availability of the particular feature in the related formal
approach. It is not necessary to identify all the features
supported by each approach as the intention of this table is
to show that none of the approaches except BCF support all
the features listed in the table.

2.3 Banks’s confidentiality framework (BCF)

Banks (2012) introduced BCF for the formal analysis of confidentiality requirements in

systems related to data leakage. BCF uses the general Unifying Theory of Programming

(UTP), and BCF has been instantiated (but not automated) for the Circus notation

(Oliveira et al., 2009). Hereafter, the phrase “BCF in Circus” will be used when referring

to this instantiation. BCF combines functionality and confidentiality requirements

within a formal framework to allow the specification of systems that are secure-by-

design (Banks and Jacob, 2011).

53

2 Background

As per Kerckhoffs’ Principle, ‘security through obscurity‘ is considered bad practice

in the design of a system (Kerckhoffs, 1883). In line with Kerckhoffs’ Principle, BCF

assumes that the adversary who wants to learn confidential information from the

system may have knowledge about the complete source code of the system.

Section 2.4 introduces UTP, describes the concept of BCF in UTP and discusses some of

the challenges that arise in automating a framework based on UTP. Section 2.5 gives

a brief introduction to the Circus notation, discusses how BCF has been instantiated

for the Circus notation and outlines some of the advantages of using Circus models in

detecting data leakage in systems.

2.3.1 The conceptual basis for BCF

The development of information flow security theories has been a gradual process.

Denning (1976) proposed a lattice model of secure information flow and provided a

formal semantics for the formal verification of information flow in program specific-

ations. Other notable information flow properties discussed in the literature include

Goguen and Meseguer’s Non-Interference (Goguen and Meseguer, 1982), Sutherland’s

Non-Deducibility (Sutherland, 1986), Jacob’s Inference function (Jacob, 1988), McCul-

lough’s Generalized Non-Interference (Mccullough, 1988), O’Halloran’s Non-inference

(O’Halloran, 1990), McLean’s Generalized Non-inference (McLean, 1994) and Zakinthi-

nos’s Perfect Security Property (Zakinthinos and Lee, 1997).

BCF is loosely based on the user inference function proposed by Jacob (1988). Further,

BCF adapts the idea of Morgan’s shadow semantics (Morgan, 2009). Both Jacob’s

inference function and Morgan’s shadow semantics are described below.

Jacob’s User Inference. Sometimes a system might only require hiding the occurrences

of certain properties of high6 events, rather than all high events and the knowledge

about the occurrence of other high events are considered acceptable. To cater for

6 Events executed by a user in a higher security level than an ordinary user of the system.

54

2.3 Banks’s confidentiality framework (BCF)

such scenarios, there was a need for a formal approach to calculate how much a

group of users can infer about the events executed by another group of users in a

system.

Jacob (1988) proposed the inference function to carry out such calculations. The

inference function calculates how much a user U can infer about the interactions

of other users in a system S, by carrying out an interaction allowed for the user U.

This is an observation based approach where the set of all possible observations

which the user U can make by interacting with S is syntactically written as S@U

and is called the projection of U onto S (Jacob, 1988, p. 15). The set of all traces in

the system S is denoted by τS. For any trace t, where t ∈ τS, U can only observe

parts of t that is visible to U through its window which is defined as t � U. The

projection of U onto S is defined as follows.

S@U =̂ {t � U | t ∈ τS}

After observing the output X of an interaction l with the system S, the user U can

calculate all possible traces which could have generated the observation X. This is

a general approach suitable for calculating the amount of knowledge a user can

obtain by interacting with the system.

Morgan’s shadow semantics. Classical refinement does not preserve ignorance7 re-

lated properties. This phenomenon commonly known as the refinement paradox

was first identified by Jacob (1988). Morgan’s approach (Morgan, 2009) consists

both in resolving the refinement paradox as well as maintaining the uncertainty

during the refinement of sequential programs.

A system state might have a visible as well as a hidden state space based on

the security policy requirements of the system. A variable h whose observations

are to be kept secret is part of the hidden state space. In addition, Morgan

7 An observer’s ignorance of data is his/her uncertainty about the parts of the program state which he/she cannot
see (Morgan, 2009, p. 2).

55

2 Background

introduces a third (set valued) variable to the hidden state space called the shadow,

which consists of all potential values of the variable h in the hidden state space,

including the current value of h. Consider the scenario where an adversary has

the complete knowledge of the source code, can view the visible part of system

state (based on his authorisation) as well as have the knowledge of the program

flow. However because of the uncertainty about the hidden state space due to

atomic non-determinism (introduced by the shadow), the adversary cannot deduce

for sure, the exact value of the variable h in the hidden state space.

Banks (2012) borrowed the concept of shadow variables from Morgan (2009). In BCF,

the concept of shadow variables is established by introducing the concept of a shadow

system, where the variables in the shadow system reflects the same from the original

system, under certain user observations. BCF in Circus also borrows the concept of

the inference function from Jacob (1988). BCF in Circus provides an inference function

that can be used to calculate the possible observations a user can make about the state

space of a system by his/her interactions. BCF in Circus assumes that the calculated

observation of the state space of a system is always a reflection of the state space of the

associated shadow system.

2.3.2 Advantages and limitations of BCF

The following are some of the advantages of BCF.

BCF being based on UTP. Since BCF is based on UTP, the underlying concept

can be specialised for other UTP theories. Banks described how BCF can be

specialised for the theory of designs (Banks, 2012, p. 35) and the theory of reactive

processes (Banks, 2012, p. 40). Banks has also instantiated BCF using the Circus

notation as stated before in page 53. In this thesis, this instantiation has been

used in analysing data leakage in systems with a confidentiality requirement.

BCF based analysis involves a comprehensive search of the state space. BCF uses

logical expressions to capture the knowledge about the entire state space of a

56

2.4 Unifying Theories of Programming (UTP)

program at any given state.

The following are some of the limitations of BCF.

Weak notion of confidentiality. BCF reasons about the existence of at least one

alternative explanation when hiding the value of a state variable. This is a weak

notion of confidentiality when compared to Caroll Morgan’s shadow semantics

(Morgan, 2009). In the shadow semantics, a set of other possible alternative

explanations exist for each hidden value.

Tedious, time consuming and error-prone calculations required in BCF. The calcu-

lations required to analyse a system using BCF is tedious, time consuming and

error-prone since the probability of human errors exists in any activity related to

manually manipulating large blocks of formulae text (Verma, 2011, p. 11).

Requirements must be written specific to a given system. When using BCF, con-

fidentiality requirements must be written specific to a given system and cannot

be expressed in a more abstract or generalized manner.

2.4 Unifying Theories of Programming (UTP)

BCF is a generic formal approach defined in Unifying Theories of Programming (UTP).

UTP is a unified framework for formal program semantics, which can be used to

formally specify systems (Hoare and He, 1998). UTP is a mathematical treatment of

computer programming using the simple non-deterministic programming language

introduced by Dijkstra (1975).

In the UTP semantics, all the possible observations of executing a program are captured

in a predicate (Hoare and He, 1998). Each variable in the predicate models an attribute

of the system. The following example describes a universal observation of a system

where an attribute x of the system is defined to be greater than 0 and another attribute

57

2 Background

y is defined to be greater than x.

x > 0∧ y > x (2.1)

Valid observations of the system may include (x = 5 & y = 6) or (x = 12 & y = 13).

However, as per the predicate in Equation (2.1), observations such as (x = 0 & y = 1)

or (x = 3 & y = 2) are not valid. Such observations cannot exist in practice.

2.4.1 UTP theories

A unified theory in UTP is comprised of alphabets, signatures and healthiness conditions8.

In addition to the observational variables in a system, a UTP theory may contain other

variables which are also called auxiliary variables (Foster and Payne, 2013; Oliveira

et al., 2009; Verma, 2011) that record certain properties about the execution of a program.

The alphabet of a program conforming to such a UTP theory includes these auxiliary

variables. A signature of a UTP theory for a programming language consists of a set

of operators and atomic components that represent the constructs of a programming

language (Hoare and He, 1998, p. 12). A set of basic signatures common to a range

of programming language theories are listed in Table 2.2. Healthiness conditions are

idempotent functions9 that define the subset of predicates that satisfy a given UTP

theory. The theory of relations (Hoare and He, 1998), the theory of designs (Hoare and He,

1998), the theory of reactive processes (Wei, 2013, p. 3) and the theory of reactive designs

(Cavalcanti and Woodcock, 2006) are UTP theories that form the foundation of the

Circus theory (Oliveira et al., 2009), the semantic basis for the Circus notation. The

build up to the theory of Circus from the theory of relations is shown in Figure 2.2. The

following is a brief introduction to each of those theories.

8 Healthiness conditions of a UTP theory are higher order predicates, that select only some predicates as meaningful
in that particular UTP theory. Healthiness conditions are often written as fixed point equations such as P=H(P),
where P represents a predicate and H is a predicate transformer.

9 “An idempotent function is a function f , where f (f (x)) = f (x) for all x” (Gormish et al., 1997, p. 8).

58

2.4 Unifying Theories of Programming (UTP)

Operation Syntax Semantics Description

Assignment a := e a′ = e ∧ x′ = x state variable a is assigned
the value of e and all other
variables (denoted by x) re-
main unchanged

Sequential
composition

P ; Q ∃ x0 • P[x0/x′] ∧ Q[x0/x] sequential composition
between the programs P
and Q is the relational
composition of their
intermediate state

Conditional P / b . Q (b ∧ P) ∨ (¬ b ∧ Q) a program that behaves like
P if b is true, or like Q if b
is false. b is a truth function
without dashed variables.

Skip ∏ x′ = x does not change the pro-
gram state in any way and
all state variables (denoted
by x) remain unchanged

Non-determinism PuQ P ∨ Q the greatest lower bound
between the programs P
and Q

Table 2.2: A set of basic signatures common to a range of programming language
theories

59

2 Background

Theory of relations. In the UTP theory of relations (Hoare and He, 1998), every program-

ming construct is formalised as a relation between an initial observation and an

intermediate or a final observation of a system. Any variable in a program predic-

ate can also be decorated with a prime (′) to denote the value of the same variable

immediately after the execution of the program. The undecorated counterpart

represents the value of the observation before the execution of the program. The

observations made before and after the execution of the program can be combined

to form a UTP relation which describes the relationship between the initial and

intermediate or final observation of the system.

For example, assume that the initial observation of the system in Equation (2.1) is

such that x = 3 and y = 16. Now, run the program statement:

x := x ∗ 5 (2.2)

The following UTP relation represents the initial and final observation resulting

from executing the program statement in Equation (2.2).

x = 3∧ x′ = 15∧ y = 16∧ y′ = 16

The theory of relations does not distinguish between terminating and non-terminating

programs (Cavalcanti et al., 2006, p. 210).

Theory of designs. A program statement written with preconditions and postcondi-

tions and which respects certain healthiness conditions is called a design. The theory

of designs introduces two observation variables where:

• ok indicates that the program has started.

• ok′ indicates that the program has terminated.

The subset of relations that conform to the theory of designs (Hoare and He, 1998)

must respect the healthiness conditions H1 and H2 (Hoare and He, 1998, p. 281).

60

2.4 Unifying Theories of Programming (UTP)

H1(P) =̂ ok⇒ P

H2(P) =̂ P ; ((ok⇒ ok′) ∧ v′ = v)

where P is a relation with the alphabet {ok, ok′, v, v′} and v represents all state

variables of the system except ok and ok′. If P is H1 healthy then any observation

on P can only be made after the program has started. If P is H2 healthy then the

program must always terminate.

Theory of reactive processes. A reactive process is a program which may engage with

its environment and whose behaviour might depend on these interactions (Wei,

2013, p. 3). In addition to ok and ok′, the theory of reactive processes introduces

the variables wait, tr and ref and their primed counterparts where:

• if wait′ is True then P is in an intermediate state.

• if wait′ is False then P has successfully terminated.

• if ok′ is True then the state of P depends on wait′.

• if ok′ is False then P has diverged.

• tr - sequence of events that have occurred up to the start of P.

• tr′ - sequence of events that have occurred after the start of P, to the point

when the subsequent observation is made.

• ref - events that P may have refused to participate in, up to the start of P.

• ref ′ - events that P may have refused to participate in after the start of P, to

the point when the subsequent observation is made.

where P is a process. The undashed variables ok and wait represents the similar

states of the predecessor of P.

A reactive process P must satisfy the healthiness conditions R1, R2 and R3 where

61

2 Background

The theory of Circus

as UTP relations

Morgan’s specification
statements

semanticssyntax

Djkstra’s guarded
commands

CSP notation

Z notation

UTP theories

UTP relation X
is a design

UTP relation X
is a reactive process

UTP relation X

H1,H2
R1,R2,R3

(R)

CSP1

CSP2

UTP relation X
is a CSP process

R1,R2,R3

(R)

Healthiness conditions of UTP theories

Figure 2.2: UTP theories, healthiness conditions and the theory of Circus

62

2.4 Unifying Theories of Programming (UTP)

R1 states that P must never change history, R2 states that tr has no influence on

the behaviour of P and R3 states that P has no effect on the observation before

it starts execution (Wei, 2013, p. 4). A reactive process is a fixed point on the

function composition R where:

R(P) =̂ R1 ◦ R2 ◦ R3(P)

Theory of reactive designs. The theory of reactive designs (Oliveira et al., 2009) combines

the valuable qualities of both the theory of designs (Hoare and He, 1998) and the

theory of reactive processes (Cavalcanti and Woodcock, 2006, p. 240) where:

the ability to model programs in terms of preconditions and postcondi-

tions in the theory of designs

is combined with,

the ability to capture the intermediate behaviour of programs in the

theory of reactive processes.

“The space of reactive designs is a sub-space of the reactive processes, which is derived

by applying R to the space of designs” (Banks, 2012, p. 14).

Theory of CSP. Hoare and He (1998) and Cavalcanti and Woodcock (2006) extend the

theory of reactive designs to give a UTP semantics to CSP processes (Banks, 2012,

p. 15). The space of CSP processes is a sub-space of the space of reactive designs

that also satisfies the healthiness conditions CSP1 and CSP2. CSP1 states that if

a given process P diverges, then the only guarantee is the extension of the trace.

CSP2 states that a given process P cannot require non-termination.

Even though each of the above theories has a different syntax, the semantics of all those

theories are based on UTP. An important advantage of a formalised program semantics

such as UTP is being able to formally reason about a program. How can one ensure

63

2 Background

that the developed program is consistent against its specification? This can be answered

using program correctness.

2.4.2 Program correctness

A program is correct if every observation made of every possible run of the program

results in values that satisfy the original specification (Hoare, 1997, p. 7). For example,

consider the specification S and a possible observation Q made from running a program

P1 that correctly implements S.

S =̂ (l′ < m′ ∧ l > 0∧m′ < 100)

Q =̂ (l = 5∧ l′ = l× 5∧m′ = 90∧m = 90)

To formalise the notation that the observation Q satisfies the specification S, we state

that the specification is implied by the observation.

(l = 5∧ l′ = l× 5∧m′ = 90∧m = 90)⇒ (l′ < m′ ∧ l > 0∧m′ < 100)

Further, program correctness states that this implication is true for all possible values

of the observable variables, if P1 correctly implements S.

∀ l, m, l′, m′ • ((l = 5∧ l′ = l× 5∧m′ = 90∧m = 90)

⇒ (l′ < m′ ∧ l > 0∧m′ < 100))

This universal quantification can also be written as [Q ⇒ S], using the conventional

square brackets by Dijkstra and Scholten (1990). The square brackets is an abbreviation

for the universal closure of the implication over all the variables in the alphabet.

[(l = 5∧ l′ = l× 5∧m′ = 90∧m = 90)⇒ (l′ < m′ ∧ l > 0∧m′ < 100)]

The universal quantification of Q⇒ S must be true if P1 is a correct implementation of

64

2.4 Unifying Theories of Programming (UTP)

S. In this case:

∀ l, m, l′, m′ • ((l = 5∧ l′ = l× 5∧m′ = 90∧m = 90)

⇒ (l′ < m′ ∧ l > 0∧m′ < 100))

≡ (Leibniz)

∀ l, m, l′, m′ • ((l = 5∧ l′ = l× 5∧m′ = 90∧m = 90)

⇒ (25 < 90∧ 5 > 0∧ 90 < 100))

≡ (simplify)

true

The above calculation shows that P1 is a correct implementation of S. Now, consider an

observation R that is made from running another program P2.

R =̂ (l = 5∧ l′ = l× 20∧m′ = 90∧m = 90)

In this case:

∀ l, m, l′, m′ • ((l = 5∧ l′ = l× 20∧m′ = 90∧m = 90)

⇒ (l′ < m′ ∧ l > 0∧m′ < 100))

≡ (Leibniz)

∀ l, m, l′, m′ • ((l = 5∧ l′ = l× 20∧m′ = 90∧m = 90)

⇒ (125 < 90∧ 5 > 0∧ 90 < 100))

≡ (simplify)

false

The above calculation shows that P2 is not a correct implementation of S.

Different theories have been proposed to facilitate reasoning about the correctness of

programs. Next, a discussion of such theories are presented.

65

2 Background

2.4.2.a Theories of program correctness

Formal program verification is proving properties of a program using logic and math-

ematics. Hoare logic (Hoare, 1969) and Dijkstra’s weakest precondition (Dijkstra, 1975)

are two well-known calculi for the formal verification of programs. BCF utilises a form

of weakest precondition computation to reason about confidentiality in systems.

Hoare logic. Hoare logic (Hoare, 1969) is a calculus that gives a set of inference rules

and axioms to reason about program correctness. A precondition is a boolean

expression that must be satisfied before the execution of the program. A postcon-

dition is a boolean expression that must be satisfied immediately after a program

has completed its execution. A precondition and postcondition assert a subset

of acceptable states on the initial and final states of a program. Hoare uses such

assertions to reason about certain programming constructs in UTP. If a program

Q starts in a state that satisfies P and completes its execution then the program

will reach a state that satisfies R.

P{Q}R (2.3)

This structure is called the Hoare triple (Hoare, 1969, p. 577).

Weakest pre-condition. Dijkstra (1975) used Hoare style assertions (Hoare, 1969) to

define a different construct for program development called the weakest precondi-

tion.

The weakest precondition function wp is a predicate transformer that maps a post

condition Q of a program statement S to a precondition P. Dijkstra (1975) states

that if the program S is executed with its initial state satisfying P, the program is

guaranteed to reach a state satisfying the post condition Q.

P = wp(S, Q)

66

2.4 Unifying Theories of Programming (UTP)

Figure 2.3 shows the post condition and the resulting weakest precondition of an

ePurse payment operation where ePurseBalance is the existing balance in the

ePurse and cost is the amount to be deducted from the ePurse for the sale of items.

In this case wp(S, Q) ≡ (ePurseBalance− cost) > 0, or ePurseBalance > cost.

Post-condition (Q)

ePurseBalance 0

Weakest pre-condition (P)

(ePurseBalance – cost) 0

Payment operation (S)
ePurseBalance = ePurseBalance -cost

(condition: the ePurse must have sufficient funds)
start stop

Figure 2.3: Weakest pre-condition and post condition of an ePurse payment operation

2.4.3 Refinement

Refinement is the verifiable transformation of an abstract specification of a system

to a more concrete one. If an abstract specification R is refined by a more concrete

specification S, the statement is formally written as R v S. Both of these specifications

as well as the relation between the two must be formally defined in order to prove that

the concrete specification is a “correct realisation” of the abstract specification (Potter

et al., 1996a). Program refinement is the process of applying such a set of correctness-

preserving transformations on an abstract specification eventually to produce executable

code (Back and Wright, 1998, p. 20).

Refinement Calculus. A Refinement Calculus is a framework for reasoning about the

correct derivation of programs using refinement. One approach for deriving

such correct programs is through stepwise refinement (Wirth, 1971). Back (1980)

used Dijkstra’s weakest precondition calculus (see Section 2.4.2.a) as a basis when

formalizing stepwise refinement in a refinement calculus. The refinement calculus

proposed by Morgan (1998) is an alternative approach where specifications and

executable code are regarded equally as programs. A third approach has been

proposed by Morris (1987). The approach by Morris (1987) is directly based on

that of Back (Cavalcanti et al., 1998, p. 1).

67

2 Background

2.4.4 BCF in UTP

BCF allows a user to validate the consistency of the requirements in a system by

comparing the state space of the original system P and an isomorphic state space of a

possible copy of the system P̃. From now on, this possible copy of the system, having

the possible copy of the state space, will be called the twin system and its state space

the twin state space. Banks called the twin state space the fog space (Banks and Jacob,

2014, p. 4). However, the word twin brings clarity to the concept of the fog space by

emphasizing that BCF assumes that there is exactly one alternative copy of the state

space and that the composition of the fog space is similar to that of the original system

state space. This composition implies that:

if a user is uncertain about the value of a state variable in the original system

state space based on his/her knowledge about the program counter

then the user will also be uncertain about the value of its twin counterpart in the

twin state space

The user’s knowledge about the program counter depends on what functions the user

is allowed to perform using the system. This in turn is defined by the functional

requirement of the system. Retrospectively, a confidentiality requirement defines what

a user must not learn from his/her interactions with a system. To achieve this, it

must be made sure that the user is uncertain about the value of the particular state

variable which the confidentiality requirement demands to be hidden or concealed.

This uncertainty can be achieved by restricting the user’s knowledge about the program

counter at the state where the value of that particular variable needs to be secured. To

achieve this restriction, a separation between the two state spaces must be enforced and

this can be specified by defining a predicate that uses variables from both the original

as well as the twin system.

68

2.4 Unifying Theories of Programming (UTP)

2.4.5 Possible twin state space

Identifying the state space of a system and subsequently introducing a possible twin

copy of the state space of the system, reflecting a possible copy of the system are

pre-requisites for using BCF. Banks uniquely identified the variables of the twin system

using the tilde decoration. In his thesis (Banks, 2012, p. 56), the twin variable for every

variable x is written as x̃.

The twin system always exists in tandem with the original system. The predicate that

represents the combined state space of the the original system and the twin system

is derived using the predicate transformer U (Banks, 2012, p. 56). The predicate

transformer U is defined as:

U(S) =̂ S∧ S̃

where S represents a relational predicate that defines a system, S̃ denotes S[x̃,x̃′/x,x′],

that is, S with each variable x and x′ systematically renamed to x̃ and x̃′. Every state

variable in the original system S has a twin variable in the twin system S̃. The combined

state space represented by the relation S ∧ S̃ is called a lifted relation (Banks, 2012, p. 56).

For example, consider the relational predicate S that represents a system.

S ≡ x > 3 ∧ y ≤ 100

The combined predicate that represents the system S in the lifted state space is:

U(S)
≡ (definition of U)

S∧ S̃
≡ (definition of S and S̃)

x > 3 ∧ y ≤ 100∧ x̃ > 3 ∧ ỹ ≤ 100

69

2 Background

where x̃ and ỹ are twin state space variables introduced by renaming the alphabetised

relational state variables x and y in the relational predicate S. The variable x̃ is a copy

of x with the same value domain10. Likewise, ỹ is a copy of y having the same value

domains.

10 “A value domain is defined as the permissible values for a data element” (American National Standard Institute
(ANSI), 1999, P. 27). Here, the term ‘value domain’ is used to refer to the set of values a variable might assume
through out all the stable states of a system.

70

2.5 Circus: a formal specification language

2.5 Circus: a formal specification language

Banks (2012, p. 85) illustrates BCF by instantiating BCF using the Circus notation (Freitas,

2005; Oliveira et al., 2009; Woodcock and Cavalcanti, 2002). Circus is a formalism that

combines a state based formalism called the Z notation (Spivey, 1989) and a process-

oriented formalism called CSP (Roscoe, 1995; Schneider, 1999) using the underlying

UTP semantics of the languages. In addition, Circus uses Dijkstra’s guarded command

notation (Dijkstra, 1997) and Morgan’s refinement calculus (Morgan, 1998). Since Circus

combines both Z and CSP (Woodcock and Cavalcanti, 2002), Circus utilizes the syntactic

structures from both the Z and the CSP notations.

2.5.1 Advantages of Circus

The state of a Circus process is hidden except for communications through channels

through which values of specified state variables may be observed (Cavalcanti and

Gaudel, 2014, p. 416) . Data security policies may be captured in a Circus specification

by introducing constraints on the data that can be communicated through defined

channels. Further, Circus supports complex data structures (Mahony and Dong, 1998).

The Circus notation has a strong formal semantics that is based on UTP, a framework

that unifies programming theories across many different computational paradigms

(Oliveira et al., 2005, p. 1). The refinement strategy for Circus by Sampaio et al. (2003)

allow the stepwise refinement of Circus specifications to code in a calculational way. The

underlying relational model of the Circus notation has proved convenient for reasoning

(Ramos et al., 2005, p. 100).

“We can benefit from the use of the Circus refinement calculus to model a system at

different abstraction levels, and, by using its refinement laws, verify the consistency

of the different refinement levels with the help of formal proofs.”

(Gomes, 2012, p. 5)

71

2 Background

2.5.2 Uses of Circus

The Circus notation by Woodcock and Cavalcanti (2001a) has benefited from active

development from the academic community since its introduction in 2001. Work has

been done to both illustrate the suitability of the Circus notation as a modelling language

as well as to extend the formalism to support a richer set of system characteristics.

The work by Sherif and Jifeng (2002), Wei et al. (2010) and Wei et al. (2011) proposed

different timed models for Circus for studying the properties of timed programs in

the untimed model, OhCircus by Cavalcanti et al. (2003) extended Circus with object-

oriented features (classes, inheritance and dynamic binding), SCJ-Circus by Miyazawa

and Cavalcanti (2015) supported the specification and verification of Safety-Critical

Java11 (SCJ) models (Henties et al., 2009).

Oliveira et al. (2004) presented a refinement strategy for industrial scale systems in

Circus. They illustrated this strategy by refining a Circus specification for an industrial

fire control system. They further stated that the illustration is an empirical evidence

that the strategy is applicable to large systems.

Freitas and Cavalcanti (2006) described a tool that uses a translation strategy for

converting a Circus specification to a Java program. Later, Cavalcanti et al. (2011)

extended her work (Cavalcanti et al., 2005) by proposing a semantics for automatically

deriving Circus specifications from a subset of Ada programs12 and proving that such

an Ada implementation of a control law diagram is correct.

Cavalcanti et al. (2005) proposed a semantics for control law diagrams13 using Circus.

11 “The Safety-Critical Java (SCJ) specification is designed to enable the creation of safety-critical applications using a
safety-critical Java infrastructure and using safety-critical libraries that are amenable to certification under DO-178B,
Level A and other safety-critical standards” (Henties et al., 2009, p. 3).

12 Wegner (1980) gives a brief history including characteristics of the Ada programming language.

13 “In a control law diagram, systems are modelled by directed graphs of blocks connected by wires. Roughly
speaking, wires carry signals, and blocks represent functions that determine how outputs are calculated from the
inputs. In a continuous-time model, signals vary continuously; in a discrete model, signals are sampled at fixed
time intervals, so that input and output take place in cycles.” (Cavalcanti et al., 2011, p. 467)

72

2.5 Circus: a formal specification language

They use extended versions of existing tools to translate a control law diagram to both

Z and CSP specifications respectively, capturing the state and reactive models of a

system as required. Finally, they proposed a translation strategy to derive a Circus

specification from the generated Z and CSP specifications.

Ramos et al. (2005) proposed a semantics for UML Realtime (UML-RT)14 via mapping

the realtime objects of the UML-RT into Circus. They proposed and proved a decompos-

ition law for those realtime objects to illustrate that the proposed model transformation

from UML-RT to Circus is sound (Ramos et al., 2005, p. 109).

Gomes (2012) presented a Circus specification for the Integrated Modular Avionics

(IMA) architecture15 for aircraft systems. In compliance with the ARINC 653 standard

(Prisaznuk, 2006), the formalisation focuses on modelling the temporal partitioning

of the application layer16 of the IMA architecture, that prevents the direct commu-

nication between applications running on that layer. The Circus specification is val-

idated by deriving a CSP specification from the Circus specification and using the

Failures-Divergence Refinement (FDR) tool (Goldsmith et al., 2005) on the resulting

CSP specification.

2.5.3 Challenges of using the Circus notation

The absence of a single common BNF for the Circus notation is one of the challenges

of using the notation for the formal specification of systems. Further, the absence of a

dedicated tool for specifying and type checking the resulting Circus specification is an-

other barrier that hinders researchers from using the Circus notation for developmental

14 “The UML Real-Time Profile (UML-RT) addresses modeling concepts that have proven suitable for modelling the
run-time architectures of complex real-time systems in application domains such as telecommunications, aerospace,
and industrial control” (Cheng and Garlan, 2001, p. 104)

15 “The IMA architecture consists of a distributed system, where many aircraft applications can be executed in the
same hardware module, sharing computing resources, communications and input and output devices.” (Gomes,
2012, p. 3)

16 “The operating system of the IMA architecture is designed in such a way to prevent, through the concept of
partitioning, direct communication among applications. It ensures that none of the partitions can share the same
memory area or processing time slice.” (Gomes, 2012, p. 4)

73

2 Background

research. Even though CZT (Malik and Utting, 2005) can be used for type checking a

Circus specification, it does not show helpful error messages making it difficult to type

check a Circus specification.

2.6 BCF using Circus

This section illustrates how BCF is instantiated using the Circus notation. Recall from

Section 2.3 that this instantiation is referred as ‘BCF in Circus’ throughout the rest of

this thesis.

2.6.1 User inference through observation

The Circus specification notation provides constructs called channels that allow external

actors to interact with a system through inputs and outputs. Through the aforemen-

tioned communications and combined with the knowledge about the source code of

the system, users may learn information about the values assumed by certain state

variables in a particular state or states. This information obtained by a user is termed a

user observation of that particular state or states of the system. If a user does not know

the exact value of a variable in a particular state, the user will be uncertain about the

exact value of that variable in that particular state.

Consider the trivial system in Figure 2.4 that maintains a secret number. Figure 2.5

shows how the inference of two users Alice and Bob differ based on the channels they

can access from the system in Figure 2.4.

74

2.6 BCF using Circus

All Circus specifications presented in this thesis follow the naming convention

presented in Table 2.3. This convention has been inspired by the naming convention

used by Barden et al. (1995) for presenting specifications using the Z notation. The

names used in the example column of the Table 2.3 are borrowed from the Circus

specification in Figure A.1, except in the case of Free data type.

Circus construct Naming convention used Example

Basic data type Written with all caps. CUSTOMER

Free data type The data type name is written with all caps.
The elements of the free type are written
using all lowercase letters. For example,
STAFF is a free type with elements no and
yes.

STAFF ::= no | yes

State variable Written using all lowercase letters. If the
state variable name is a combined word
then starting from the second word, capit-
alize the first letter of each word.

spent
currentCustomer
buyItem

Channel Written using all lowercase letters. If the
channel name is a combined word then
starting from the second word, capitalize
the first letter of each word.
Add the postfix ‘In’ at the end of the chan-
nel name if the channel is used for input-
ting data into the system. Add the postfix
‘Out’ at the end of the channel name if the
channel is used for outputting data from
the system.

buyItemIn

Channel set,
Action,
Schema

Capitalize the first letter and use lowercase
letters afterwards. If the name is a com-
bined word then capitalize the first letter of
each word and use lowercase letters after-
wards.

Customer
RecordMyRecipt
State

Table 2.3: Naming convention used for Circus specifications

Naming convention used in Circus specifications

75

2 Background 1

State
n : 1..9

channel xIn, xOut : 1..9
channelset Alice == {| xIn, xOut |}
channelset Bob == {| xOut |}

process SecretNumber =̂ begin
state State
RecordSecret =̂ var x : 1..5 • xIn?x−→ n := x?
ShowSecret =̂ xOut!(n mod 2)−→ Skip
• RecordSecret ; ShowSecret

end

Figure 2.4: Circus specification of the secret number system

1

Alice Bob

Initial observation n ∈ {1..9} n ∈ {1..9}
when executing

RecordSecret

channel xIn visible Yes No

can observe x (through xIn) x ∈ {1..5} (from spec)

can infer about n n = x (from spec) n ∈ {1..5} (from spec)

ShowSecret

channel xOut visible Yes Yes

can observe n mod 2 (through xOut) n mod 2 (through xOut)

can infer about n already know value of x
and that n = x

if n mod 2 is 1 then n ∈ {1, 3, 5}
if n mod 2 is 0 then n ∈ {2, 4}

certainty about the
value of n

certain uncertain

Figure 2.5: Inferences of Alice and Bob from system observations

76

2.6 BCF using Circus

Alice In the post state of ShowSecret, Alice knows the exact value of n because she

knows the exact value of x and n = x. In this case, the value of the twin

variable ñ is the same as the value of the variable n as follows.

U(n = x)
= (definition of U)

n = x ∧ ñ = x
= (predicate logic)

n = ñ

Bob In the post state of ShowSecret, Bob only knows that the value of n is such that

either n ∈ {1, 3, 5} or n ∈ {2, 4}. Assume that Bob figures out that n ∈ {2, 4}.
In this case the value of ñ in the twin system will be such that ñ ∈ {2, 4} as

shown below.

U(n ∈ {2, 4})
= (definition of U)

n ∈ {2, 4} ∧ ñ ∈ {2, 4}

If a user observes the exact value of a state variable n in a particular state then the value

of the twin variable in that particular state is such that ñ = n as we have seen from

Alice’s inference. We call this the coercion of observation. In the case of Bob’s inference,

the uncertainty around the value of the variable n makes it possible for n and ñ to have

different values in the state immediately after the operation ShowSecret. BCF captures

the notion of information secrecy based on this uncertainty as discussed in Section 2.6.2.

The indistinguishability relation. The indistinguishability relation I(L) (Banks, 2012,

p. 87) codifies the observable behaviour of the Circus process17 P in the original

system and the Circus process P̃ in the twin system as indistinguishable to a user,

having window L to a system, when:

17 “Each Circus process has a state and accompanying actions that define both the internal state transitions and the
changes in control flow that occur during execution.” (Sampaio et al., 2002, p. 451)

77

2 Background

• the two processes have the same values for the auxiliary variables (ok, wait,

etc).

• the projection18 of the traces (Banks, 2012, p. 24) through L are the same.

• the refusal sets are the same, as long as the behaviour has not terminated.

Here, the user’s window L is defined as “the set of events communicated by a

reactive process which are visible to the user” (Banks, 2012, p. 40). The indistin-

guishability relation I(L) is defined as follows:

I(L) =̂




ok = õk ∧ ok′ = õk′

∧ wait = w̃ait∧wait′ = w̃ait′

∧ (tr′ − tr) � L = (t̃r′ − t̃r) � L
∧ wait′ ⇒ ref ′ ∩ L = r̃ef ′ ∩ L




By lifting the semantics of the Circus action A using the construct U(A) and

enforcing I(L) on the resulting relation, we confine the observational capabilities

of the user to the user’s window. This process is captured using the predicate

transformer UC.

UC(L, A) =̂ U(A) ∧ I(L)

Banks models a user’s window as the subset of the channels in a Circus process

(Banks, 2012, p. 114). Such a channel set (Oliveira et al., 2009, p. 5) that contains

only the set of events visible to a particular group of users reflects the user window

of those users to the system.

18 A projection is an observable trace of a process in relation to a particular user window L, where L is a channelset
through which the user access a system.

78

2.6 BCF using Circus

Blocks. A block is a syntactic structure of BCF in Circus that can be used to specify

how Circus actions should be translated to lifted state space. A block is defined

as:

〈L : A〉 , (UC (L, a) C ` = L B A)

where L is a channelset, A is a Circus action and ` is a window label.

Blocks delineate the boundaries between lifted actions explicitly. BCF in Circus

assumes that a system user can only learn information about the program counter

at these boundaries. Further, the information that the user can learn at these

boundaries depends on the channels which the user can access from L. BCF in

Circus formalizes the information the user can learn at these delineated boundaries

by proposing back propagation laws. Each back propagation law is proposed

for a particular type of Circus action A and is used to calculate a predicate that

represents the information that the user can learn immediately after the execution

of the action A. The back propagation laws discussed later in Table 2.4 show how

these formal predicates can be calculated from blocks.

Blocks provide a systematic structure to extend the state space of a given Circus

action A while the indistinguishability relation allows us to identify the distinguishable

knowledge that can be learnt by observing A through a given channelset L. The objective

of a confidentiality requirement in the context of a system environment is to limit this

knowledge someone can obtain by observing the system through the same channelset L.

To address this objective, an approach for formalizing the confidentiality requirements

of a system is required, so that those formalized requirements can be integrated into

a formal specification in such a way that the resulting system specification can be

analysed for consistency.

79

2 Background

2.6.2 Formalising a confidentiality requirement

Confidentiality requirements demand constraints on the information that can be re-

vealed to a user through the user’s interactions with a system. BCF captures confid-

entiality requirements by maintaining a user’s uncertainty about the value assumed

by a state variable, based on his/her observation of the state space of the system. For

example, a confidentiality requirement is defined such that x 6= x̃, where x is a variable

in a system. In this case all values of x̃ that are different from the current value of

x serve as cover stories (Banks, 2012, p. 61) or alternative possible values for x. By

combining variables from the original system and its twin counterpart as in x 6= x̃, BCF

encapsulates a relation between the two when defining a confidentiality requirement.

The resulting predicate defines a coercion between a variable in a particular state and

its twin counterpart.

The confidentiality predicate must be associated with a channelset to define the scope

of the system communications on which the confidentiality predicate can be enforced.

For example, the construct 〈L | x 6= x̃〉 encodes that the confidentiality predicate x 6= x̃

must be enforced on all the communications through the channels that are included in

the channelset L.

A confidentiality annotation (CA) (Banks, 2012, p. 105) is a structure similar to a block

(see Section 2.6.1) where a logical predicate confidentiality predicate that encapsulates

a confidentiality requirement is associated with a set of channels channelset as in

Equation (2.4).

〈channelset | confidentiality predicate〉 (2.4)

The CA defined in Equation (2.4) mandates that if the user observing a system at

a particular state has access to a channel in the set of channels channelset then the

confidentiality constraint defined by the predicate confidentiality predicate must be

enforced on that state. Confidentiality is a ‘relative’ phenomena whereby confidentiality

may be conditional on several attributes such as who to conceal the information

80

2.7 Analysing confidentiality requirements using BCF in Circus

from and under which other conditions19 the information must be concealed. These

constraints may be applied as part of the antecedent of a confidentiality predicate.

Since confidentiality requirements in a system can now be formalized and integrated

into a formal system specification, the back propagation approach (Section 2.7) provided

in BCF in Circus can now be utilized.

2.7 Analysing confidentiality requirements using BCF in Circus

BCF contains a predicate transformer bw that derives a predicate from a Circus specific-

ation S that may contain both Circus actions A as well as a confidentiality predicate20

Conf . The predicate transformer bw calculates the weakest precondition of A. The

derived predicate is used to reason about the consistency of the requirements in S.

S =̂ 〈A〉 ; 〈Conf 〉

The specification S embeds the requirement whereby the confidentiality predicate

Conf must be satisfied immediately after the execution of A. To validate whether this

requirement is satisfied, we calculate the weakest precondition of A such that the post

state of A can satisfy Conf . This calculation can be done using the function bw(A, θ)

whereby it calculates the weakest precondition of A such that the post state of A can

satisfy θ, where θ is a predicate.

If the action was a sequential composition of two or more actions, then the weakest

precondition calculation is carried out iteratively starting from the right most action.

Consider the specification S1.

S1 =̂ 〈B1 ; B2〉 ; 〈Conf 〉

19 Tschantz and Wing (2008) describes a requirement as a conditional confidentiality requirement if it contains a conditional
information flow where information flow occurs only when some condition is met at runtime (Tschantz and Wing,
2008, p. 108). The same has been highlighted later in Section 6.2.4.

20 It must be noted that many confidentiality predicates can be integrated into a single specification.

81

2 Background

To observe whether Conf is respected immediately after the action 〈B1 ; B2〉 we first

calculate the weakest precondition of the action 〈B2〉 using the formula bw(〈B2〉, 〈Conf 〉)
and use the resulting predicate when calculating the weakest precondition of 〈B1〉.
Hence the overall weakest precondition of the system is defined as:

bw(〈B1 ; B2〉, 〈Conf 〉) ≡ bw(〈B1〉, bw(〈B2〉, 〈Conf 〉)) (2.5)

In BCF in Circus terminology, calculating the weakest precondition of a Circus action in

this manner is called back propagation. Banks (2012, p. 138) has provided a set of back

propagation laws to compliment BCF in Circus. These laws facilitate the calculation of

the weakest precondition for certain atomic actions and composite constructs defined

using the Circus notation as shown in Table 2.4.

2.7.1 Back propagation laws

The process of back propagation proposed in BCF in Circus uses a collection of back

propagation laws (Banks, 2012, p. 138). Later in this thesis, some of the back propagation

laws are used to analyse specifications of systems modelled using the Circus notation.

The definitions of these back propagation laws are presented in Table 2.4. The back

propagation approach for validating the consistency of the requirements in a system

specification involves:

• back propagating the specification of the system to generate a resulting predicate

that can be used to reason about the consistency of the requirements in the system

specification.

• simplifying the generated predicate to reveal whether the predicate is satisfiable.

According to BCF in Circus, a satisfiable predicate indicates that the specification

respects all the confidentiality properties coded in the specification whereas if the

predicate has a contradiction, this indicates that there is an inconsistency in the specific-

ation.

82

2.7 Analysing confidentiality requirements using BCF in Circus 1

Action Syntax BCF in Circus

Assign a := E bw(〈L : a := E 〉, θ) = θ[E , Ẽ/a, ã]

Output c!E−→Skip bw(〈L : c!E −→ Skip〉, θ) =

{
θ ∧ E = Ẽ if c ∈ L

θ if c 6∈ L

Input c?e : P bw(〈L : c?e : P −→ e := e?〉, θ)

=

{
∀ e : δ(c) • P(e)⇒ θ[e/ẽ] if c ∈ L

∀ e : δ(c) • P(e)⇒ ∃ ẽ : δ(c) • P(ẽ) ∧ θ if c 6∈ L

Guard g & B bw(g & B , θ) = (bw(B , θ) ∧ U(g)) ∨ U(¬ g)

External
choice

B1 @ B2 bw(B1 @ B2, θ) = bw(B1, θ) ∧ bw(B2, θ)

Scope vara : T • B bw(var a : T • B , θ)
= ∀ a : T • ∃ ã : T • bw(B ,∀ a : T • ∃ ã : T • θ)

Table 2.4: A subset of back propagation laws of BCF in Circus by Banks (2012)

83

2 Background

2.8 Limitations of BCF in Circus

In addition to the limitations of BCF, highlighted in Section 2.3.2, below are some of

the limitations specific to BCF in Circus.

BCF in Circus does not have a mechanizable law for parallel processes. Banks (2012,

p. 145) provides a discussion on how to back propagate a CA through a paral-

lel construct. However, this approach involves manual intervention to ‘reform’

(Banks, 2012, p. 147) the parallel process and so cannot be mechanised. There-

fore, further research is required to define a systematic approach and possibly a

restricted parallel construct for Circus that can be mechanised.

BCF in Circus has not been applied to a real system. Banks (2012) demonstrated

the practical application of BCF by using BCF in Circus to analyse the confid-

entiality requirements of a small fictitious auction system. However, he used a

heuristic approach when doing the necessary BCF calculations rather than doing

them from first principles (Banks, 2012, p. 135). Further, he did not apply BCF in

Circus to a real problem.

Back propagation laws has not been machine verified. While all back propagation

laws of BCF in Circus has been derived and justified by hand proofs, some of

these derivations include non-trivial and lengthy manual calculations.

“All theorems, lemmas and laws presented in this thesis have been justified by

hand proof. Nevertheless, it would be expedient to verify their correctness by

encoding their proofs in a theorem prover” (Banks, 2012, p. 187).

Therefore, it would be strongly advisable to machine verify the correctness of

these laws before using them. For example, the “bw specification statement”

has been derived through such lengthy manual calculations. During the current

research, an error with "bw input prefix" law was identified and the correct

definition of the law was proposed (see Section 3.3).

84

2.9 Summary

2.9 Summary

The main objective of this chapter is to present a preliminary description of the

background material that is required to follow the discussions in the remaining chapters

of this thesis. It must be recalled that the intention of this research is to develop

a practically applicable approach for analysing data leakage related confidentiality

requirements in systems using BCF.

Similar to Banks (2012), the intention is to use the instantiation of BCF in Circus for

modelling systems. The definition of a practically applicable approach in the current

context is a mechanisation where system models can be written and type checked

using a tool, extracting the predicate from BCF analysis on the system model can be

automated and the simplification of the derived predicate can be automated.

In this chapter:

• a brief description of UTP including the theory of relations, the theory of design,

weakest precondition, program correctness and refinement was presented.

• a brief description of the Circus notation was presented.

• a detailed description of BCF was presented.

• other formal and semi-formal approaches that have been proposed by other

researchers for analysing confidentiality properties related to data leakage in

systems with a confidentiality requirement were reviewed.

85

3 Mechanisation of BCF

3.1 Introduction

The core objective of this thesis is to produce a practically applicable approach for

reasoning about confidentiality in systems using BCF in Circus. While working on

achieving this objective, we were also determined to extend the value of BCF in

Circus for the research community. Therefore, while designing a practically applicable

and suitable mechanisation, the efficiency of the mechanisation was also considered.

Figure 3.1 shows the benefits derived from the mechanisation that has extended the

value of BCF in Circus. Further, they can be considered as high-level criteria for

evaluating the mechanisation produced in this thesis. The benefits derived from the

mechanisation are described below.

Practicality explore the development of a practically applicable approach that

uses BCF in Circus for analysing systems with a confidentiality

requirement. During this exercise, we have fixed an erroneous law

in BCF.

Suitability evaluate the suitability of the mechanisation for analysing the

different types of confidentiality requirements, as identified in

page 149 under Section 5.2.5.

Efficiency explain one possible approach for determining the efficiency of

the mechanisation. Compare the efficiency achieved with mechan-

isation when compared to the manual process.

87

3 Mechanisation of BCF

Banks s confidentiality framework (BCF) in Circus

Suitability
Does the mechanization support the
types of confidentiality properties

supported by BCF in Circus?

Practicality
Is the mechanization

a practically applicable approach
for using BCF in Circus?

Efficiency
Is the mechanization efficient?

Mechanized analysis
 Tedious back propagation process automated

using the back propagation tool.
 Predicate simplification partially automated

through an interactive theorem prover.

YES

Case studies
 Case studies have been used to analyze the

different types of properties supported by
BCF in Circus

Automation
 Efficiency demonstrated by analysis time

taken for the automated process in
comparison to the manual process

YES

YES

Mechanized tool-chain
(Back propagation tool + Theorem prover + Type checker)

V
al

u
e

ad
d
ed

 f
ro

m
 m

ec
h
a
n
iz
in

g
 B

C
F
 i
n
 C

ir
cu

s

Figure 3.1: Value added from mechanising BCF in Circus

The above criteria demand the adoption of a combination of design and development

research (Ellis and Levy, 2010) and case study research (Easterbrook et al., 2008). In

this context, the design and development research involves developing a solution that

is practically applicable for analysing systems with a confidentiality requiremet, using

BCF in Circus. The practicality of the mechanisation has been been evaluated through

a number of case studies. Case studies for this analysis has been selected through an

explicit framework as advised by Easterbrook et al. (2008).

The following subsection discuss how the mechanisation helps in achieving a prac-

tically applicable approach for analysing a system using BCF in Circus. After that,

the subsequent subsections discuss why the mechanisation is suitable for analysing

different types of confidentiality properties supported by BCF in Circus and how the

relative efficiency of the mechanisation in comparison to the manual approach can be

determined.

88

3.2 Practicality

3.2 Practicality

The practical use of BCF has been hindered by the following issues:

1. The application of BCF is lengthy and hence, tedious and error prone.

2. Because of the state explosion problem, the back propagation of a system spe-

cification results in a huge logical predicate spanning multiple pages. Manually

simplifying such huge predicates is error prone.

“Manual proofs are time-consuming, error-prone and often not economically

viable” (Cao and Yu, 2012, p. 48).

Therefore, the application of BCF can only be viable if it is done through a software

tool. Further, to mitigate manual errors and to be economically viable, the evaluation

of lengthy predicates should be automated or machine assisted so that the users can

enjoy the luxury of both “time and precision” when using BCF.

3.2.1 Rationale for a custom tool for mechanising BCF in Circus

Currently, there are no tools that support the mechanised application of BCF. However,

mechanising the application of BCF and subsequently automating the simplification

of the generated predicate will remove the complex, time-consuming and error prone

exercise demanded during the use of BCF. Since BCF is based on the Circus notation,

one would be tempted first to try and extend an existing tool that supports the Circus

notation, to reduce the development life cycle for the required tool. A custom tool

development should only be considered if an extendible candidate cannot be found.

Tool support for the Circus notation is limited. To the author’s knowledge, the only tools

that provide any form of support for specifying systems using the Circus notation are

89

3 Mechanisation of BCF

Symphony IDE1 (Coleman et al., 2014) supporting the COMPASS Modelling Language

(CML) (Woodcock and Miyazawa, 2012), CZT (Malik and Utting, 2005) and CRefine

(Oliveira et al., 2008). A detailed look into the architecture of these three tools (see

Appendix A.2) revealed that the work required to modify any of these tools to support

an extension to the Circus notation is not viable within the realm of this doctoral

research.

Since there was no viable platform that could be adopted and extended to support

BCF in Circus, a decision was made to develop a simple tool for the same purpose.

The tool has been named the ‘Confidentiality Framework Application Tool’ (CFAT).

And subsequently, the notation supported in this tool is referred as the CFAT notation.

Even though BCF has been instantiated for the Circus notation in BCF in Circus, CFAT

notation is a non-LATEX notation. Later, in Section 3.2.3 under the title “CFAT notation”,

a discussion is presented that details the reasons for adopting a non-LATEX notation for

modelling systems for the purposes of this thesis.

3.2.2 The proposed mechanisation of BCF in Circus

The proposed mechanisation for analysing systems using BCF in Circus is centred on a

tool-chain that contains the CFAT tool developed by the author, Isabelle theorem prover

for theorem proving and CZT for type checking Circus specifications. The CFAT tool

generates the necessary input that is required by each of the other two tools. Figure 3.2

shows the overall architecture and flow in the proposed mechanisation.

1 COMPASS Modelling Language (CML) is a language designed for modelling and analysing systems of systems
(Woodcock and Miyazawa, 2012). CML is based on VDM (Gulati and Singh, 2012), CSP (Hoare, 1980) and Circus
(Oliveira et al., 2006). Symphony IDE (Coleman et al., 2014) is a tool that utilizes CML models to generate theorem
files to reason about certain properties of these models. The generated theorem files are based on the Isabelle/UTP
framework (Woodcock et al., 2015). Isabelle/UTP is a deep embedding of UTP notation in the Isabelle theorem
prover (Nipkow et al., 2014).

90

3.2 Practicality

3.2.2.a The process of analysing a system for data leakage using BCF in Circus

The process of analysing a system for data leakage using BCF in Circus includes four

stages as shown in Figure 3.3. They are the Specification stage, the Back propagation stage,

the Predicate simplification stage and the Conclusion stage as described below.

Specification stage

A formal model of the system is developed at this stage. Further, the confidential-

ity requirements of the system are integrated in to the formal model.

• In the case of the manual analysis, the system and the confidentiality re-

quirements are modelled using BCF in Circus.

• In the case of the proposed mechanisation, a model of the system and its

confidentiality requirements are developed using the CFAT notation.

Back propagation stage

The back propagation calculation is carried out at this stage.

• In the case of manual analysis, the calculation results in a logical predicate.

• In the case of the proposed mechanisation, a HOL based theory file compat-

ible with the Isabelle theorem prover is generated.

Predicate simplification stage

The simplification of the generated predicate is carried out at this stage.

• In the case of the manual analysis, the simplification of the generated

predicate is carried out manually.

• In the case of the proposed mechanisation, the simplification of the generated

predicate is carried out using the Isabelle theorem prover.

Conclusion stage

At this stage, a conclusion is drawn from the result of the simplification carried

out during the previous stage.

91

3 Mechanisation of BCF

3.2.2.b Why each component of the mechanisation is required

The following is a brief description of each component in the tool chain including the

reason why the component is required.

Specification stage

Parser. The system model is supplied to the tool in the CFAT nota-

tion. The parser is required to parse the input and build

an object model that depicts the components of a Circus

specification.

LATEX interpreter. The LATEX interpreter is required to generate a Circus spe-

cification from the CFAT object model of the system, derived

by the parser.

Community Z tools (CZT). CZT is used to type-check the Circus specification of the

system, generated by the LATEX interpreter.

Confidentiality Framework
Application Tool

System Model (in CFAT format)

Back propagated predicate
(Theorem File)

HOL predicate Proof

Type Checked Circus

generates

Community Z
Tools

Parser AST

Isabelle/HOL
InterpreterHOL Mathematical tool-kit

Back propagation laws

Latex
Interpreter

System specification
In Circus notation

Latex document

submit to

Isabelle
Theorem
Prover

verifies

submit to

generates

verifies

Figure 3.2: The architecture and the flow of the mechanisation of
BCF in Circus for analysing systems with a confidentiality
requirement

92

3.2 Practicality

Back propagation stage

Back propagation laws. Back propagation laws of BCF are a catalogue of transform-

ation laws for Circus actions. It contains algebraic logic that

converts Circus specification statements of certain patterns

to formal predicates in higher order logic. Therefore, back

propagation laws are required to generate this predicate that

can be used to reason about confidentiality in the related

system. Table 2.4 presents a subset of the back propagation

laws of BCF.

HiVE mathematical tool-kit. The Z data structures in the generated predicate needs to be

mapped to their equivalent implementations in the target

platform, that will be used for predicate simplification. Sec-

tion 3.2.3 discusses possible frameworks that can be used for

this mapping and why HiVE was selected for the particular

mechanization approach discussed in this thesis. The HiVE

tool-kit provides an implementation of Z data structures

in the Isabelle/HOL platform, which is used for predicate

simplification. The function names defined in HiVE are

used for semantic mapping between Z data structures and

their HOL equivalent functions, when the HOL compliant

back-propagated predicate is generated by the Isabelle/HOL

interpreter.

Isabelle/HOL interpreter. The Isabelle/HOL interpreter is responsible for creating

HOL definitions for the data types defined in the CFAT

model. Further, the interpreter packages these definitions

and generates a HOL compliant Isabelle theorem prover

theory file which contains the back-propagated predicate

and the data type definitions in HOL. The interpreter also

creates other supporting theorem files as required. The

93

3 Mechanisation of BCF

Isabelle/HOL interpreter is required because it generates all

the necessary theorem files that are required for analysing

confidentiality in a given system.

Predicate simplification stage

Isabelle theorem prover. The Isabelle theorem prover is required to machine assist the

simplification of the back-propagated predicate, generated

by the Isabelle/HOL interpreter.

3.2.3 Design decisions

Decisions were made in selecting specific tools for building the mechanised tool chain.

The following is an explanation of what features about the specific tools influenced the

design decisions.

Parser. The CFAT tool uses a grammar based on ANTLR 4 (Parr, 2013) for parsing

specifications of systems submitted to the CFAT tool. Some other potential parsers

include yacc (Johnson, 1975) and JavaCUP (Hudson et al., 1998). The grammar file for

yacc is difficult to read because both the grammar rules as well as the instantiations

are in the same file. In comparison, ANTLR keeps the grammar rules and the visitor

classes2 in seperate files. Further, to the author’s knowledge there is no GUI tool that

supports yacc. However, there is GUI support for ANTLR through the standalone

tool ANTLRWorks (Bovet and Parr, 2008) as well as through plugins for NetBeans

(Salter and Dantas, 2014), Eclipse (Burnette, 2005) and IntelliJ (JetBrains, 2017). The GUI

support for ANTLR is very useful in debugging a grammar. In addition, the visitor

classes are generated in Java, the same language used for CFAT tool development.

The parsed system model can subsequently be used for generating the proof files

containing the HOL predicates that are then submitted to a theorem prover for simpli-

fication. The parsed system model can also be used for generating Circus specifications

2 A visitor class is an interface that computes and returns values by walking the parse tree (Parr, 2013, p. 40).

94

3.2 Practicality

Replace A with
the recursion body

of A

START

Get the main action action
A

Is A a recursion?YES

Apply back propagation
function bw to A with Θ

as true

NO

Does the resulting
predicate P contain bw

Simplify the bw
function

YES

Simplify the predicate P
(manual)

Can the predicate be
simplified to true?

There are no
contradictions in
the specification S

END

NO

B
a
ck

 p
ro

p
a
ga

ti
o
n

P
re

d
ic

a
te

ev

a
lu

a
ti
o
n

In
te

gr
a
te

d
 c

o
n
fi
d
en

ti
a
li
ty

in

 C
ir

cu
s

S
p
ec

if
ic

a
ti
o
n

Parse CFAT
model

Circus specification S with
CAs in a shadow state

space

Circus
specification

Confidentiality
Annotations (CAs)

BCF Laws

CFAT
specification

Parsed CFAT
model

Type check Circus
specification

Latex Interpreter

Isabelle/HOL
interpreter

Back propagation
engine

CFAT tool

HOL Tool-kit

BCF Laws

Isabelle theorem prover

Simplify the predicate
(interactive)

Does the theorem
prover time-out?

YES

Cannot conclude
whether there are no
contradictions in the

specification S

Is there a counter
example?

There is a
contradiction in

the specification S

In
te

rp
re

ti
n
g

th
e

re
su

lt
s

o
f
th

e
ev

a
lu

a
ti
o
n

S
ta

ge
s

in
 t

h
e

p
ro

ce
ss

 f
o
r

ev
a
lu

a
ti
n
g

sy
st

em
s

fo
r

d
a
ta

 l
ea

k

NOYES

NO
NO

YES

C
O

N
C

LU
SI

O
N

 S
TA

G
E

SIMPLIFICATION
STAGE

B
A

C
K

 P
R

O
P

A
G

A
TI

O
N

 S
TA

G
E

SP
EC

IF
IC

A
TI

O
N

 S
TA

G
E

System description
including

models of the system
develop adevelop a

Mechanized
execution

Process flow

Figure 3.3: The process for evaluating a system with a confidentiality requirement
requirement using the manual approach as well as using the Confidentiality
Framework Application Tool

95

3 Mechanisation of BCF

in LATEX that can be type checked using the CZT tool to assure that the CFAT tool

correctly transforms the given CFAT specification to the Circus LATEX syntax.

CFAT notation. One concrete syntax of the Circus notation is compatible with LATEX.

However, inspired by the non-LATEX approach adopted by CRefine (Oliveira et al., 2008),

Perfect Developer (Crocker, 2003) and Symphony IDE (Coleman et al., 2014) (that is

discussed in Appendix A.3), a decision was made to support a simple and concise

notation in our tool, that closely resemble the structure of Circus specifications, but

also one that can easily be transformed using a preprocessor into data structures that

collectively represent a system model.

To the author’s knowledge, there is no official BNF for the Circus notation. However,

there is a need to decide on a clear definition of the Circus notation, before BCF

in Circus can be mechanized. Moreover, since our Circus specifications will be

type checked using the CZT (Malik and Utting, 2005), it was logical to follow

the Circus BNF presented in Leonardo Freitas’s doctoral thesis “Model Checking

Circus" (Freitas, 2005); the preliminary work that integrated Circus type checking as

part of the CZT tool.

Formal definition of the Circus notation

Isabelle theorem prover. The earlier design decision to build a custom tool to carry

out the back propagation process (see Section 3.2.1) further required a decision on a

platform that will be used to evaluate the predicate resulting from the back propagation.

The critical criteria when selecting a platform for evaluating this predicate is its support

for the Z data structures. In this regard, the theorem prover extensions Isabelle/HiVe

(Mahony et al., 2009), Isabelle/ZF, ProofPower-Z (Lemma 1 Ltd., 2006, p. 1), Z/EVES

(Freitas, 2004) and the translation tool Z2SAL (Derrick et al., 2011) are suitable since

they all contain an encoding of the Z data structures.

Isabelle theorem prover is a LCF style interactive theorem prover (Nipkow et al., 2014).

It has a fixed set of core axioms to which all proofs must conform. ProofPower-Z

96

3.2 Practicality

(Lemma 1 Ltd., 2006, p. 40) extends ProofPower (Lemma 1 Ltd., 2006, p. 1) and supports

specification and proofs in Z. ProofPower is also an LCF style interactive theorem prover

(Lemma 1 Ltd., 2006, p. 6). Z/EVES is an extension to the EVES proof engine and

supports specification and proofs in Z (Freitas, 2004, p. 1). Z2SAL (Derrick et al., 2011)

is a translation tool for model checking Z specifications by translating Z specifications

to SAL input language (Moura et al., 2003) to be used by tools in the SAL tool suit.

Hands-on experience of some academics with Z2SAL has revealed that they have run

into difficulty in running the SAL simulator because of the state explosion problem

which is related to model checking (Siregar et al., 2014, p. 230). This is not a limitation

when using theorem proving. This persuaded the adoption of an approach based on

theorem proving, to simplify the predicate.

Z/EVES has a handful of tactics3 available for dispatching proofs whereas ProofPower

has over thousand tactics (Freitas, 2004). However, support for automatic theorem

provers (ATPs) and satisfiability-modulo-theories (SMT) solvers in the Isabelle theorem

prover lifts the Isabelle theorem prover platform to a whole new level in automating the

proof dispatch process. As stated by Blanchette and Paulson (2016), the sledgehammer

tool in the Isabelle theorem prover provides support for ATPs such as AgsyHOL

(Lindblad, 2014), Alt-Ergo (Bobot et al., 2008), E (Schulz, 2002), E-SInE (Hoder and

Voronkov, 2011), iProver (Korovin, 2008), iProver-Eq (Korovin and Sticksel, 2010),

LEO-II (Benzmüller et al., 2008), Satallax (Brown, 2012), SNARK (Stickel et al., 1994),

SPASS (Weidenbach et al., 2009), Vampire (Riazanov and Voronkov, 2002), Waldmeister

(Hillenbrand et al., 1997) and Zipperposition (Cruanes, 2015) and SMT solvers such as

CVC3 (Barrett and Tinelli, 2007), CVC4 (Barrett et al., 2011), veriT (Bouton et al., 2009),

and Z3 (Böhme and Weber, 2010). In addition, the Isabelle theorem prover has other

automatic proof dispatch tools such as auto and blast (Blanchette and Paulson, 2016,

p. 24). The decision to select an encoding based on the Isabelle theorem prover has

been supported further by the fact that Isabelle theorem prover is a stable and mature

3 “A tactic is an ML function which, when applied to a goal, reduces the goal to a list of subgoals and provides a
‘proof function’ which justifies why solving the subgoals will solve the goal” (Cant, 1992, p. 30).

97

3 Mechanisation of BCF

theorem prover (Feliachi et al., 2013) and has been utilised in many projects. Further,

its has a huge on-line community base and is constantly under development.

The author was not able to find a comparison between Isabelle/ZF and Isabelle/HiVe in

the publicly accessible literature. And so, the preference to use HiVe tool-kit was purely

based on the “possible” quality of the tool-kit. Isabelle/HiVe has been sanctioned by

a government body4 whereas the the code-base of Isabelle/ZF has been maintained

at the University of Cambridge by interested researchers. It may be assumed that

Isabelle/HiVe would have gone through a rigorous audit process for a clean and

accurate code but this maybe less true for Isabelle/ZF.

HOL mathematical toolkit. A mathematical tool-kit is required for the semantic rep-

resentation of data structures that are translated from Circus to Isabelle/HOL. Data

structures in the Circus notation are defined as per the Z notation (Z Standards Panel,

2000) where the semantics of the Z notation is based on the Zermelo-Fraenkel set theory

(Spivey, 1988). The HiVe mathematical toolkit by Mahony et al. (2009) and the HOL-Z

2.0 tool-kit by Brucker et al. (2003), both encode the mathematical data structures of the

Z notation in the Isabelle/HOL. HiVe was selected rather than the HOL-Z 2.0 because

the publicly available version of the HiVe toolkit supports Isabelle 2013-2 whereas the

HOL-Z 2.0 is much older and was written in 2003 raising compatibility issues with

Isabelle 2013-2 and further is not available publicly. A subset of the definitions from the

HiVe tool-kit has been used to encode the mathematical structures of Z using Isabelle

theorem prover data structures. From now on, the HiVe mathematical toolkit maybe

referred as the ‘mathematical toolkit’. Some of the mathematical notations being used

in this thesis is include in Appendix A.4.

Community Z Tools (CZT). Community Z Tools by Malik and Utting (2005) supports

the parsing of Circus specifications. In spite of the the many limitations (see Section 7.6),

CZT is the only available tool for type checking Circus specifications. Therefore, CZT

was utilized for this function.

4 Australian Department of Defence (Mahony et al., 2009).

98

3.2 Practicality

3.2.4 Requirements of the major components in the architecture

Input/output format and the content type. A number of integration challenges resulted

from the architectural decisions that were considered while designing the tool chain, as

shown in Figure 3.2. The main three components of the tool chain are the CFAT tool,

Isabelle theorem prover and the CZT tool. Table 3.1 shows the input and output file

format and content and the additional components required by each major component

in the tool chain to perform its function.

Component Input file format

and content type

Output file format

and content type

Additional components

required for the

component to function

CFAT tool System

specification in

CFAT format

- theorem file generated with

.thy extension

- Circus specification file

generated in LATEX format

with .tex extension

- Back propagation laws

of BCF in Circus

Isabelle

theorem

prover

Isabelle theorem

prover theory file

format

(extension .thy)

Result of the simplification is

shown in the results pane of

the theorem prover.

(No output file is produced.)

- HiVe mathematical tool

kit

- Typing files generated by

CFAT tool

CZT tool Circus

specification of a

system in the LATEX

format

(extension .tex)

Result of type checking is

shown on the editor pane of

CZT.

(No output file is produced.)

- LATEX type setting pack-

age ‘circus’

Table 3.1: The input and output format of each major component of the
architecture of the mechanisation of BCF in Circus

99

3 Mechanisation of BCF

Syntactic renaming. The input and output variables in the Circus notation have the

postfix decorations ‘?’ and ‘!’ respectively. Likewise the same postfixes are attached to

similar variables in the CFAT notation. The Isabelle theorem prover does not accept

these decorations. Hence, a syntactic renaming of the input and output variables are

carried out before generating the Isabelle theorem files, one of which contains the back

propagated predicate. When generating the predicate, the input and output variables

are renamed whereby the “?" and “!" decorations are replaced with “ i" and “ o"

respectively.

Each variable of the twin state in BCF in Circus (see Section 2.4.5) is decorated with a

tilde such as x̃ where x is a state variable. This decoration is not supported by either

CZT or by the Isabelle theorem prover. Therefore, when writing the confidentiality

annotation using the CFAT notation, each twin variable in the confidentiality annotation

is written with a ‘Z’ prefix. The ‘Z’ prefix represents the twidle decoration on the twin

variable.

When generating the theorem file for analysis using the Isabelle theorem prover, every

twin variable reference x̃ has been renamed by prefixing the variable with a ‘Z’ such as

Zx in place of x̃.

When generating the predicate for the Isabelle theorem prover, the twin variables

continue to have the ‘Z’ prefix in their variable name. However, when generating the

Circus specification file for type checking with CZT, the ’Z’ prefix is removed from

each each twin variable Zx in the CFAT specification followed by decorating the same

variable with a subscript such as x9. The subscript integer 9 or the prefix ‘Z’ are

arbitrary choices that do not clash with anything else provided that the restrictions on

naming variables are followed as specified next.

Restrictions on variable names. In the current development of the CFAT tool, variables

of the twin state are identified using the prefix ‘Z’, input variables are identified using

the suffix ‘ i’ and output variables are identified using the suffix ‘ o’. Therefore, the

following restriction have been applied to any specification submitted via the CFAT

100

3.2 Practicality

tool editor interface.

• A variable name cannot have the letter ‘Z’ as the first letter.

• A variable name cannot end with the suffix ‘ i’ or ‘ o’.

The above restrictions are specific to the current version of the tool and does not hinder

the functionality of the tool. In a future iteration of the tool, these literal identifiers can

be replaced with other identifiers outside the letters of the alphabet.

Transforming CFAT notation to constructs of the Circus notation and Isabelle/HOL. The

CFAT notation provides support for a limited number of constructs which can be

used to specify variables, relations, actions and schemas of a Circus specification. The

structures must be converted from the original CFAT specification to the target notation

using constructs from the target notation that represent the structures of the CFAT

notation. Two different types of files are generated by the CFAT tool.

• For type checking purposes, the LATEX based Circus specification generated has the

same system model as the submitted CFAT model.

• For theorem proving purpose, the file generated contains a logical predicate and

has no system model. However, the predicate uses data structures from the

original CFAT specification. Therefore, the data objects specified using the CFAT

notation must be represented using the host notation in the Isabelle theorem prover.

The data objects of the CFAT notation themselves represent Z data structures.

Appendix A.4 describes how this can be achieved. It is important to note here

that Appendix A.4 does not represent a translation from Z to HOL. But rather,

Appendix A.4 discusses how type definitions, variable definitions and relation

definitions specified using the CFAT notation, that represents their equivalent Z

data structures, can be represented using the host language in the Isabelle theorem

prover.

101

3 Mechanisation of BCF

Figure 3.4: The CFAT editor window

Figure 3.4 contains part of the CFAT specification of the Circus specification in Figure 6.8. A parser built using ANTLR

is used to parse the CFAT specification. The labels in blue color resemble structures of a Circus specification. Predicates

can be presented with the same syntactic notation as written using Circus. The keywords var, guarded, assign, output

are special keywords in CFAT notation to identify the type of action and chan is used to specify a channel or channelset

depending on whether you associate a datatype to it. Liftedvar defines the variables on the twin system.

102

3.2 Practicality

Figure 3.5: How the predicate (loginUser 6∈ (cashiers ∪ managers)) is parsed using the
CFAT tool

Figure 3.5 shows how the predicate (loginUser 6∈ (cashiers∪managers)) is parsed using
the in-built parser in the CFAT tool. How to read the parse tree in Figure 3.5 can be
found in the ANTLR Reference Manual (Parr, 2013).

103

3 Mechanisation of BCF

3.2.5 The mechanised analysis process

Once a confidentiality integrated CFAT specification is developed from a system de-

scription, the consistency of the confidentiality and functionality requirements captured

in that specification can be analysed using the mechanised tool chain proposed in this

chapter. Figure 3.6 shows the steps which must be followed during this analysis. The

following is a description for each step.

1 Develop a CFAT specification of the system based on the description and use

cases of the system

Based on the descritpion and models of a system, a CFAT specification for the

system is generated. There is no formal translation between the system model or

system description to the CFAT specification. The requirement for this translation

has been highlighted in Section 7.8 as a potential area of further research that can

add value to the mechanised evaluation process.

2 Feed the specification into the mechanised tool

Next, the CFAT specification of the system is fed into the CFAT tool. This is done

by typing the specification into the editor interface of the CFAT tool.

3 Generate the back propagated predicate and typing files

The CFAT tool has an interface button called ‘Generate’. When the user presses

this button, the tool executes the back propagation of the submitted specification

as shown in Figure 3.3. This execution generates theorem files for both the back

propagated predicate and the data types defined in the specification. Both these

files utilize Z data constructs from the HiVe Mathematical Toolkit by Mahony et al.

(2009). The files are generated in a format compatible with the Isabelle theorem

prover.

4 Feed the theorem files into the Isabelle theorem prover

The theorem file generated in step 3 for the back propagated predicate is

opened in the Isabelle theorem prover. During preprocessing of the file, the

104

3.2 Practicality

Mechanised tool
for BCF in Circus

CFAT
Specification

Back propagated
predicate

(theorem file)

Typing info
(theorem file)

HiVe Mathematical
toolkit

Isabelle theorem
prover

2

3

Feed the specification into the
mechanised tool

4
Feed the theorem files into the
Isabelle theorem prover

Simplified :
Counter example found :

Theorem prover timeout :

Results of analysing the system for
consistency of requirements

5

Generate the back propagated
predicate and typing files

Uses data
constructs from

Apply interactive commands in the
Isabelle theorem prover such as:
sledgehammer
smt
auto
etc...

There are no contradictions
There is a contradiction
Isabelle cannot conclude whether there are
no contradictions

System description
and (or) use cases

1
Develop a CFAT specification of the
system based on the description and
use cases of a system

Figure 3.6: The mechanised analysis process

105

3 Mechanisation of BCF

Isabelle theorem prover loads all the necessary dependencies. In this case, it

includes loading the HiVe Mathematical Toolkit theory package (Mahony et al.,

2009) and the theorem files generated for the types defined in the system.

5 Apply interactive commands in the Isabelle theorem prover

Relevant commands in the Isabelle theorem prover are then used at the provided

interactive interface to simplify the predicate.

3.2.6 Interpreting the result of a mechanised analysis

Once the Isabelle theorem prover theory files, generated as per 3 in Figure 3.6, is

submitted to the Isabelle theorem prover, as per step 4 in Figure 3.6, the user can use

interactive theorem proving commands on the theorem prover, as per 5 in Figure 3.6,

to simplify the predicate in the theorem file.

The final result of the simplification may identify one or more contradictions in the

predicate. This may be as a result of contradictions between the functional require-

ments in the system or between the functional requirements and the confidentiality

requirements of the system. At the end of the analysis, three possible outcomes can be

expected as shown in Figure 3.3. They are:

Simplified If the predicate could be simplified to true, then according

to BCF in Circus, there are no contradictions in the system

model being analysed.

Counter example found If the theorem prover identifies a counter example, then

according to BCF in Circus, there might be a possible

contradiction in the system model being analysed. Page

250 shows the automatic generation of a counter example

while analysing a specification using the mechanisation

developed in this chapter.

106

3.3 Fixing the input prefix law

Theorem prover time-out If the theorem prover cannot reach a conclusion on simpli-

fying the predicate but rather times-out, then nothing can

be concluded about the presence or absence of contradic-

tions in the specification. Therefore the predicate could be

true or false. This may be a limitation of the mechanisation

proposed in this thesis. In some cases, even though the tool

has timed out, it may be possible to manually demonstrate

whether the predicate is ‘true’ or ‘false’.

3.3 Fixing the input prefix law

During the mechanisation process it was identified that the bw input prefix law (Banks,

2012, p. 140) was erroneous. Banks presented the following Circus input action

bw(〈L : c?e : P−→ e := e?〉, θ) (3.1)

and described his encoding of the input prefix law as follows.

“A prefixing which accepts an input value e? from the environment on

channel c reveals the exact value of e? to Low, provided Low can observe c.

Conversely, if Low cannot observe c, Low can still infer that e? has the type

δ(c) and that P(e?) holds” (Banks, 2012, p. 140).

The expression P defines a set of values that represent the type of the variable e?.

However, P may also be defined in terms of one or more state variables of the system.

For example, consider a system with a state variable called bal and a Circus action called

CheckBalance, where PERSON is a set of identifiers for customers.

bal : PERSON 7 7→N

CheckBalance =̂ c?e : (dom bal)−→ e := e?

107

3 Mechanisation of BCF

In CheckBalance, the type P of the variable e? is represented by the expression dom bal.

In the lifted state space, the equivalent ẽ? will have the type P̃ with the expression

dom b̃al. In the system state space the typing constraint P(e) must hold and in the

lifted state space the typing constraint P̃(̃e?) must hold. Which means, if Low cannot

observe c, Low can still infer that ẽ? has the type δ(c) and that P̃(̃e?) holds. Based on

this discussion, the corrected input prefix law is defined in Definition 3.1.

Definition 3.1. bw Input prefix law (corrected). A prefixing which accepts an input

value e? from the environment on channel c reveals the exact value of e? to Low,

provided Low can observe c. Conversely, if Low cannot observe c, Low can still infer

that ẽ? has the type δ(c) and that P̃(̃e?) holds.

bw(〈L : c?e : P−→ e := e?〉, θ)

=




∀ e : δ(c) • P(e)⇒ P̃(e) ∧ θ[e/ẽ] if c ∈ L

∀ e : δ(c) • P(e)⇒ ∃ ẽ : δ(c) • P̃(̃e) ∧ θ if c 6∈ L

In comparison, the existing bw input prefix law (Banks, 2012, p. 140) proposed in BCF

is:

bw(〈L : c?e : P−→ e := e?〉, θ)

=




∀ e : δ(c) • P(e)⇒ θ[e/ẽ] if c ∈ L

∀ e : δ(c) • P(e)⇒ ∃ ẽ : δ(c) • P(̃e) ∧ θ if c 6∈ L

Examining the issue with the existing bw input prefix law

Consider the Circus action ShowBalance and the channelset cashier.

channelset cashier == {| c, nout |}

108

3.3 Fixing the input prefix law

ShowBalance =̂ c?e : (dom bal)−→ nout!bal e?−→ Skip

Assume that a confidentiality annotation CA is back propagated through ShowBalance

where ShowBalance is lifted through the channelset cashier.

〈cashier | ShowBalance〉 ; 〈CA〉

The application of BCF is as follows.

〈ShowBalance〉 ; 〈CA〉

= (definition of ShowBalance)

〈c?e : (dom bal)−→ nout!bal e?−→ Skip〉 ; 〈CA〉

= (decomposing the prefix)

〈c?e : (dom bal)−→ Skip〉 ; 〈nout!bal e?−→ Skip〉 ; 〈CA〉

= (definition of bw sequence)

〈c?e : (dom bal)−→ Skip〉 ; bw(〈nout!bal e?−→ Skip〉, 〈CA〉)

= (definition of bw output, nout ∈ cashier)

〈c?e : (dom bal)−→ Skip〉 ; 〈bal e? = b̃al ẽ? ∧ CA〉

= (definition of bw sequence)

bw(〈c?e : (dom bal)−→ Skip〉, 〈bal e? = b̃al ẽ? ∧ CA〉)

= (definition of the existing bw input prefix law , c ∈ cashier)

∀ e? • e? ∈ dom bal⇒ bal e? = b̃al e? ∧ CA

Looking at the resulting predicate, we see that there is not enough information in the

predicate to determine if e? ∈ dom b̃al. If this is the case, b̃al e? might be undefined for

certain values of e?.

Now, the same calculation is carried out again, but with the new input prefix law

proposed in Definition 3.1.

109

3 Mechanisation of BCF

〈ShowBalance〉 ; 〈CA〉

= (definition of ShowBalance)

〈c?e : (dom bal)−→ nout!bal e?−→ Skip〉 ; 〈CA〉

= (decomposing prefix)

〈c?e : (dom bal)−→ Skip〉 ; 〈nout!bal e?−→ Skip〉 ; 〈CA〉

= (definition of bw sequence)

〈c?e : (dom bal)−→ Skip〉 ; bw(〈nout!bal e?−→ Skip〉, 〈CA〉)

= (definition of bw output, nout ∈ cashier)

〈c?e : (dom bal)−→ Skip〉 ; 〈bal e? = b̃al ẽ? ∧ CA〉

= (definition of bw sequence)

bw(〈c?e : (dom bal)−→ Skip〉, 〈bal e? = b̃al ẽ? ∧ CA〉)

= (definition of the new bw input prefix law , c ∈ cashier)

∀ e? • e? ∈ dom bal⇒ e? ∈ dom b̃al ∧ bal e? = b̃al e? ∧ CA

The result of the above calculation shows that e? ∈ dom b̃al and so b̃al e? has been

defined for all possible values of e?.

3.4 Suitability

The usefulness of the mechanisation of BCF in Circus can be evaluated in terms of its

suitability for the intended purpose. For this, there is a need to check if the types of

confidentiality analysis supported by BCF in Circus can be carried out using the using

the mechanisation.

110

3.4 Suitability

3.4.1 Types of data leakage supported by BCF in Circus

Recall from Section 1.3 that Shabtai et al. (2012, p. 5) describe data leakage as the

intentional or unintentional distribution of private or sensitive data to an unauthorised

entity. Following are some types of data leaks that BCF in Circus can be used to reason

about.

Data leakage through direct communication. One way data might leak is through direct

communication to the environment. This may happen if a function communicates

the value of a state variable x to the environment, while x has already been

declared as confidential by a confidentiality requirment in the same system. BCF

in Circus can identify such contradictions. For example, the Circus action ShowX in

Equation (3.2) outputs the value of x through the channel out. The confidentiality

requirement ConfX in Equation (3.3) states that x must never be revealed through

the channelset L. Assume that out ∈ L.

ShowX , 〈L | out!x −→Skip〉 (3.2)

ConfX , 〈L | x 6= x̃〉 (3.3)

The contradiction between the functionality ShowX and the confidentiality Conf is

brought to light with the following calculation. 1

〈ShowX〉 ; 〈ConfX〉
= bw((〈ShowX〉 ; 〈ConfX〉),True) [Back propagation]

= bw(〈ShowX〉, bw(〈ConfX〉,True)) [Law 6.32 - bw sequence]

= bw(〈ShowX〉, 〈x 6= x̃〉)) [Law 6.18 - bw CA]

= x = x̃ ∧ x 6= x̃ [Law 6.34 - bw output]

= False [Simplify]

Given a particular user u with a user role having access to the channels in the

channelset L, if u cannot observe the channel out then the value of x will not

111

3 Mechanisation of BCF

be revealed to u. This can be possible if out 6∈ L. Such role based access control

restrictions can be implemented using BCF in Circus.

Data leakage through inference. One of the ways in which a data leakage may occur is

through inference. A data leakage through inference is where a legal functionality

allows an authorised user to deduce something about a part of the system state

to which they do not have access rights. The challenge in addressing such a data

leakage is called an inference problem (Farkas and Jajodia, 2002).

“The inference problem is denoted as the compromise or increased probability

of compromise by deduction of unauthorized information due to combinations

of the possession, known existence, known absence, chronology and location of

authorized information” (Hubbard et al., 1986, p. 23).

In the context of software systems, access control mechanisms regulate the access

which subjects (users or other processes) have on the objects (state variables) of

a system (Denning, 1999). However, access control cannot capture the flow of

information.

“Access control checks place restrictions on the release of information but not

its propagation” (Sabelfeld and Myers, 2003, p. 5).

The philosophy of BCF “for protecting the confidentiality of information is to regulate

the information flow from systems to their users” (Banks, 2012, p. 54). Therefore, BCF in

Circus maintains knowledge about the origin of the information that is communicated

to the environment through a particular state variable x rather than just knowing the

value of x that is communicated to the environment. By bundling this capability with

an RBAC implementation5 in BCF in Circus, engineers can address some inference

problems in Circus specifications.

5 Role Based Access Control (RBAC) can be modelled in Circus specifications by regulating user access to channels
used in a specification.

112

3.4 Suitability

How BCF in Circus can track the flow of information is demonstrated using the

following example. For example, the Circus action AssignX in Equation (3.4) assigns

the value of the state variable y to the state variable x. The confidentiality requirement

ConfY in Equation (3.5) states that y must never be revealed through any channel in the

channelset L. Assume that out ∈ L.

AssignX , 〈L | x := y〉 (3.4)
ConfY , 〈L | y 6= ỹ〉 (3.5)

Consider the program fragment 〈AssignX〉;〈ShowX〉;〈ConfY〉. From an access control

point of view, the fragment does not have a contradiction because the only output

action ShowX in the fragment does not reveal the state variable y, that is required to be

kept confidential by ConfY. However, the indirect flow of confidential information in y

through the channel out is revealed if the fragment is analysed using BCF in Circus, as

shown in the following calculation. 1

bw((〈AssignX〉 ; 〈ShowX〉 ; 〈ConfY〉),True)

= bw((〈AssignX〉 ; 〈ShowX〉), bw(〈ConfY〉,True)) [Law 6.32 - bw sequence]

= bw((〈AssignX〉 ; 〈ShowX〉), 〈y 6= ỹ〉) [Law 6.18 - bw CA]

= bw(〈AssignX〉, bw(〈ShowX〉, 〈y 6= ỹ〉)) [Law 6.32 - bw sequence]

= bw(〈AssignX〉, 〈x = x̃ ∧ y 6= ỹ〉) [Law 6.34 - bw output]

= 〈x = x̃ ∧ y 6= ỹ〉[y, ỹ/x, x̃] [Law 6.31 - bw assignment]

= 〈y = ỹ ∧ y 6= ỹ〉 [Renaming]

= False [Simplify]

In summary, BCF in Circus can be used to analyse systems to reason about the:

• direct communication of values of state variables to the environment, that are

required to be kept confidential as per a confidentiality requirement.

• indirect communication of a confidential data to the environment through a state

variable authorised for that particular user.

113

3 Mechanisation of BCF

3.4.2 Analysing data leakage through indirect communication using BCF in
Circus

How the mechanised analysis proposed in this chapter detects a possible data leakage

through direct communication is demonstrated later in Section 6.2.1. In this section,

data leakage through indirect communication is demonstrated using the results of a

mechanised analysis carried out on a fictitious hand crafted specification.

The system has two bidders defined by the free type BIDDER where the bidder can

either Alice or Bob. The system maintains the highest bidder of a round of bidding

using the state variable highestBidder and the last bidder who has proposed a bid for

the same round using the state variable lastBidder. The channelsets Clerk,CustomerX and

CustomerY represents user roles where a person having that user role can observe com-

munications through any channels included in that channelset. A detailed discussion

of user roles and their importance in the data leakage analysis carried out in this thesis

is presented in Section 6.2.3.d. The channel recordBidderIn is used to submit the name of

a bidder to the system while showOnlyLastBidderOut and showLastBidderOut are used to

output the name of a bidder to the environment. The Circus action RecordHighestBidder

is used to record the name of the highest bidder of a bidding round, ShowLastBidder and

ShowLastBidderOnly are used to output the name of the last bidder who has submitted

a bid for the current round and finally, the Circus action HideHighestBidder (through the

schema HideHighestBidder) defines a confidentiality property where the value of the

highest bidder must never be revealed. To keep the example small, it is assumed that a

value for lastBidder has already been recorded.

The possible interpretations of the results of a mechanised analysis are considered in

Section 3.2.6. Table 3.2 discusses the possible reasons for the results of the mechanised

analysis of HideHighestBidder. The results show that the mechanisation is suitable for

identifying data leakage through indirect flow of confidential data.

114

3.4 Suitability

BIDDER ::= Alice | Bob

State
lastBidder, highestBidder : BIDDER

HideHighestBidder
ΞState

∃ State 9 •
highestBidder 6= highestBidder9

channel recordBidderIn, showOnlyLastBidderOut, showLastBidderOut : BIDDER

channelset Clerk == {| recordBidderIn |}
channelset CustomerX == {| showOnlyLastBidderOut |}
channelset CustomerY == {| showLastBidderOut |}

process Secret Highest Bidder =̂ begin

state State

RecordHighestBidder =̂ var recordBidder : BIDDER •
recordBidderIn?recordBidder−→

highestBidder := recordBidder?

ShowLastBidder =̂ lastBidder := highestBidder;
showLastBidderOut !(lastBidder)−→ Skip

ShowOnlyLastBidder =̂ showOnlyLastBidderOut !(lastBidder)−→ Skip

HideHighestBidder =̂ HideHighestBidder

• µX •





〈RecordHighestBidder〉
@ 〈ShowLastBidder〉
@ 〈ShowOnlyLastBidder〉


 ; 〈HideHighestBidder〉 ; X




end

Figure 3.7: Specification of Secret Highest Bidder - code block 1 of 1

115

3 Mechanisation of BCF

User role Outcome of the
analysis

Reason for the outcome

Clerk Counter
example found

Any user with the user role Clerk has access to the
channel highestBidderIn and therefore the user already
knows the highest bidder highestBidder. The confid-
entiality requirement HideHighestBidder to maintain
the secrecy of the highest bidder from this user role
will rightly result in a contradiction as shown from
the outcome of the analysis.

CustomerY Counter
example found

The value that represents the highest bidder
highestBidder is passed to the state variable lastBidder
through the assignment action in ShowLastBidder and
therefore the value being revealed in ShowLastBidder
through the state variable lastBidder is not the original
value of the last bidder but the value of the highest
bidder. Since a user with the user role CustomerY
has access to the channel showLastBidderOut that user
will learn the value of the highest bidder. This know-
ledge contradicts with the confidentiality requirement
HideHighestBidder where it demands to maintain the
secrecy of the highest bidder from all users. The ana-
lysis identifies this by producing a counter example.

CustomerX Simplified The value that represents the highest bidder is not
passed to the state variable lastBidder and therefore
the value being revealed through the state variable
lastBidder is the current value that represents the last
bidder.

Table 3.2: Analysing data leakage through indirect communication

116

3.5 Efficiency

3.4.3 Confidentiality violation through recursion

The analysis carried out in Section 3.4.2 has been restricted to a single run of the system

because BCF in Circus and therefore its mechanisation does not support the analysis of

recursive constructs in Circus. This has been highlighted as an important future area of

research (see Section 7.2).

The analysis carried out in Section 3.4.2 is a scenario where the support for recursion

in BCF in Circus would have revealed the highest bidder to a user with the user role

CurtomerX, in contradiction to the outcome shown in Table 3.2 . The execution of

ShowLastBidder would pass the value of the highest bidder highestBidder to the state

variable lastBidder and a subsequent execution of the ShowOnlyLastBidder would have

reveal the value of the highest bidder that has been recorded in the variable lastBidder .

3.5 Efficiency

Efficiency is a measure of the estimated cost which includes the total time taken for

executing user procedures (Seffah et al., 2006, p. 164). Efficiency of a process can

be measured in relation to the level of effectiveness achieved to the expenditure of

resources where a resource can be the time taken for the process, which can be used

to give a measure of the temporal efficiency of the process (Bevan and Azuma, 1997,

p. 176). The efficiency measure can be used to compare two or more tasks when carried

out in an environment where all parameters of the environment are the same except

the variable property of the environment that is being studied. The objective is to check

the relative efficiency of the mechanised process in comparison to the manual process.

The manual impracticality of both the back propagation as well as the simplification of

the generated predicate when analysing a non-trivial system has been the inspiration

for this thesis. Therefore, it goes without question that time taken for the manual

analysis of non-trivial systems cannot be obtained. However, since the mechanization

117

3 Mechanisation of BCF

developed in this chapter is an important contribution of this thesis, it is important to

compare the relative efficiency between the manual and the mechanized analysis of a

small specification of a system, for which the time taken for the manual analysis can be

obtain.

3.5.1 Comparison of efficiency between the manual and the mechanized analysis

Section 4.2 presents a manual analysis of the system specification in Figure 4.1. The

time taken for this analysis as well as the analysis of the same system using the mech-

anization developed in this chapter is shown in Table 3.3. It must be noted here that

there are no matrices to accurately measure the manual analysis of a system using

BCF in Circus. Therefore, the stated time for the manual analysis is an estimate. As

stated earlier in Section 3.2.6 , the outcome “Simplified” indicates that there are no

contradictions between the functionality and the confidentiality requirements in the

system. Bevan and Azuma (1997, p. 176) propose the following formulae to measure

temporal efficiency of a process.

Temporal Efficiency = Effectiveness/(Task Time)

It is assumed that the Effectiveness is the same for both the manual as well as the

mechanized analysis in this example since the analysis outcome from both are the

same as shown in Table 3.3. There is no particular unit of measurement given for the

Effectiveness measurement. For example, if we state that in this particular scenario

both approaches were 100% effective, then the Temporal Efficiency can be calculated as

shown in Table 3.3.

118

3.5 Efficiency

Type of analysis Analysis
outcome

Time taken for the
analysis

Temporal Efficiency

Manual Simplified 3600000 ms 100/3600000 = 0.000027

Mechanized Simplified 120 ms 100/120 = 0.833333

Table 3.3: Time taken for analysing Figure 4.1 using BCF in Circus

For this particular scenario, the ratio of the Temporal Efficiency of the mechanized

approach in comparison to the manual approach is 1 : 0.003 as shown below.

(Manual efficiency / Mechanized efficiency) = (0.000027/0.833333) = 0.003

119

3 Mechanisation of BCF

3.6 Summary

The main contribution of this chapter is the proposition of a mechanisation to make the

process of analysing systems using BCF in Circus practically applicable. In addition,

this chapter discusses the suitability of the proposed mechanisation, for analysing the

different types of confidentiality requirements, supported by BCF in Circus. Finally, the

chapter presents a comparison of efficiency between the manual and the mechanized

analysis of a given system.

The proposed mechanisation is a tool chain that consists of a custom tool, Isabelle

theorem prover and CZT. The custom tool is used for the mechanized back propagation

and generation of a back propagated predicate for a given system. The Isabelle theorem

prover is used to simplify the predicate, the result of which is used to reason about

confidentiality in the given system. The tool further generates a Circus specification of

the given system which is type checked using the CZT tool. The mechanisation will be

evaluated in Chapter 6.

In this chapter:

• the mechanisation approach that has been adopted in this research, to extend the

value of BCF in Circus, has been described.

• the types of confidentiality requirements that can be analysed using BCF in Circus

has been identified.

• the correct definition in place of an erroneous definition of the existing bw input

prefix law has been proposed.

120

4 An approach for evaluating the
mechanisation of BCF

4.1 Introduction

This chapter presents the approach which has been followed in evaluating the usefulness

of the mechanisation of BCF in Circus. There is a need to analyse case studies using

the mechanisation so that the advantage of the mechanisation can be demonstrated in

terms of saving time and detecting the possibility of a data leakage in systems with a

confidentiality requirement. Since the function of the mechanisation is to detect data

leakage in a given system, every potential case study system chosen mush have one

or more distinct confidentiality requirements relating to data leakage so that the case

study can be useful in this analysis.

An ideal evaluation would require testing the mechanisation on a range of realistic

case studies with different specifications and confidentiality requirements. Such an

evaluation can illustrate that the mechanised analysis approach can cope with varied

Circus specifications having data leakage related confidentiality requirements. However,

such realistic case studies can only be carried out using real world requirement spe-

cifications of systems. Such requirement specifications maybe obtained from officially

published documents of real life systems. However, if such documents are not available,

as was the case in this research, we would have to compile them by being in the field

and studying the original system and engaging with the real stakeholders. Such an

approach was used by Srivatanakul (2005) in conducting a case study on the Baggage

Handling System of the Bangkok International Airport in Thailand. However, based

121

4 An approach for evaluating the mechanisation of BCF

on the structure of a given Ph.D. research, such an engagement might not be always

possible, given the time limitation as was the case in this doctoral research.

4.2 The advantage of mechanisation over a manual approach

Mechanising the back propagation process can save a lot of resources related to time

which otherwise might be required when following manual calculations which needs

to be carried out with meticulous detail, to avoid human error. The advantage that this

mechanisation brings is self evident in a manual run that involves back propagating a

non-trivial Circus specification of a system. In this section, a step-by-step walk through

for back propagating a small component of a fictitious system is presented.

Figure 4.1 presents the Circus specification of the patient details component of a Health

Information System where a doctor uses a system to access details of patients who

are being treated by that doctor. The descriptions of the types, state variables, state

invariants, channels and actions of this specification are included in Table 4.1.

122

4.2 The advantage of mechanisation over a manual approach

PATIENT The set of all possible patient identifiers.

PATIENTDETAILS The set of all possible patient detail identifiers.

treats The set of people currently being treated at the clinic

where the doctor practices.

reqPatient The identifier of the patient whose patient details is being

requested from the system.

patientInfo A function that identifies the details of a patient, if any.

treats ⊆ dom patientInfo The set of people treated must be from the set of patients

whose patient details are recorded in the system.

patientIn The use of this channel by the system is to input the

identifier of the patient whose details are being requested

from the system.

detailsOut The use of this channel by the system is to output the

details of the particular patient being requested from the

system.

PatientDetails Allows a person to request the details of a patient, if the

identifier of that particular patient is in the set treats.

ConfType Enforces a confidentiality requirement that if the requested

patient is not in treats then do not reveal the details of the

patient.

Table 4.1: Descriptions of the constructs of the Patient details component
of the Health Information System

123

4 An approach for evaluating the mechanisation of BCF

[PATIENT, PATIENTDETAILS]

State
treats : P PATIENT
patientInfo : PATIENT 7 7→ PATIENTDETAILS
reqPatient : PATIENT

treats ⊆ dom patientInfo

HidePatientDetails
ΞState

∃ S̃tate •
reqPatient 6∈ treats⇒

(patientInfo reqPatient 6= ˜patientInfo ˜reqPatient)

channel patientIn : PATIENT

channel detailsOut : PATIENTDETAILS

channelset All == {| detailsOut, patientIn |}

process PatientSystem =̂ begin

Init =̂ [State′]

PatientDetails =̂ var patient : PATIENT •
patientIn?patient−→ reqPatient = patient?;

(patient? ∈ treats ∧ patient? ∈ dom patientInfo) N
detailsOut!(patientInfo patient?)−→ Skip)

ConfType =̂ HidePatientDetails

• 〈Init〉 ; 〈PatientDetails〉 ; 〈ConfType〉

end

Figure 4.1: Specification of the patient details component of a
Patient information system

124

4.2 The advantage of mechanisation over a manual approach

Assume that the state variables patientInfo and treats have already been populated. The

following is a step-by-step back propagation of the specification in Figure 4.1.

bw((〈Init〉 ; 〈PatientDetails〉 ; 〈ConfType〉),True)

= [Law 6.32 - bw sequence]

bw((〈Init〉 ; 〈PatientDetails〉), bw(〈ConfType〉,True))

= [Law 6.18 - bw CA]

bw((〈Init〉 ; 〈PatientDetails〉), 〈ConfType〉)

= [Law 6.32 - bw sequence]

bw(〈Init〉, bw(〈PatientDetails〉, 〈ConfType〉))

The following is the back propagation calculation for bw(〈PatientDetails〉, 〈ConfType〉).

bw(〈PatientDetails〉, 〈ConfType〉)

= [definition of PatientDetails]

bw(〈var patient : PATIENT •
patientIn?patient−→ reqPatient := patient?;

(patient? ∈ treats ∧ patient? ∈ dom patientInfo &

detailsOut!(patientInfo patient?)−→ Skip)〉,

〈ConfType〉)

125

4 An approach for evaluating the mechanisation of BCF

= [Law 6.27 - bw scope]

∀ patient : PATIENT • ∃ p̃atient : PATIENT •
bw((〈patientIn?patient−→ reqPatient := patient?〉;

〈(patient? ∈ treats ∧ patient? ∈ dom patientInfo &

detailsOut!(patientInfo patient?)−→ Skip)〉),

∀ patient : PATIENT • ∃ p̃atient : PATIENT • ConfType)

= [Lemma 5.23]

∀ patient : PATIENT • ∃ p̃atient : PATIENT •
bw((〈patientIn?patient−→ Skip〉;

〈reqPatient := patient?〉;

〈(patient? ∈ treats ∧ patient? ∈ dom patientInfo &

detailsOut!(patientInfo patient?))−→ Skip〉),

∀ patient : PATIENT • ∃ p̃atient : PATIENT • ConfType)

= [Law 6.32 - bw sequence]

∀ patient : PATIENT • ∃ p̃atient : PATIENT •
bw(〈patientIn?patient−→ Skip〉;

〈reqPatient := patient?〉,

bw(〈(patient? ∈ treats ∧ patient? ∈ dom patientInfo &

detailsOut!(patientInfo patient?))−→ Skip〉,

∀ patient : PATIENT • ∃ p̃atient : PATIENT • ConfType))

126

4.2 The advantage of mechanisation over a manual approach

= [Law 6.33 - bw guard]

∀ patient : PATIENT • ∃ p̃atient : PATIENT •
bw(〈patientIn?patient−→ Skip〉;

〈reqPatient := patient?〉,

(bw(〈detailsOut!(patientInfo patient?)−→ Skip〉,

∀ patient : PATIENT • ∃ p̃atient : PATIENT • ConfType)

∧ U(patient? ∈ treats ∧ patient? ∈ dom patientInfo))

∨ U(¬ (patient? ∈ treats ∧ patient? ∈ dom patientInfo)))

= [Law 6.34 - bw output]

∀ patient : PATIENT • ∃ p̃atient : PATIENT •
bw(〈patientIn?patient−→ Skip〉;

〈reqPatient := patient?〉,

(((∀ patient : PATIENT • ∃ p̃atient : PATIENT • ConfType ∧

(patientInfo patient? = ˜patientInfo ˜patient?))

∧ U(patient? ∈ treats ∧ patient? ∈ dom patientInfo)

∨ U(¬ (patient? ∈ treats ∧ patient? ∈ dom patientInfo))))

= [Law 6.32 - bw sequence]

∀ patient : PATIENT • ∃ p̃atient : PATIENT •
bw(〈patientIn?patient−→ Skip〉,

(bw(〈reqPatient := patient?〉,

(((∀ patient : PATIENT • ∃ p̃atient : PATIENT • ConfType ∧

(patientInfo patient? = ˜patientInfo ˜patient?))

∧ U(patient? ∈ treats ∧ patient? ∈ dom patientInfo))

∨ U(¬ (patient? ∈ treats ∧ patient? ∈ dom patientInfo)))))

127

4 An approach for evaluating the mechanisation of BCF

= [Law 6.31 - bw assignment]

∀ patient : PATIENT • ∃ p̃atient : PATIENT •
bw(〈patientIn?patient−→ Skip〉,

(((∀ patient : PATIENT • ∃ p̃atient : PATIENT • ConfType ∧

(patientInfo patient? = ˜patientInfo ˜patient?))

∧ U(patient? ∈ treats ∧ patient? ∈ dom patientInfo))

∨ U(¬ (patient? ∈ treats ∧ patient? ∈ dom patientInfo))))

[reqPatient, ˜reqPatient/patient?, ˜patient?]

= [Definition of ConfType]

∀ patient : PATIENT • ∃ p̃atient : PATIENT •
bw(〈patientIn?patient−→ Skip〉,

(((∀ patient : PATIENT • ∃ p̃atient : PATIENT •
(reqPatient 6∈ treats⇒

patientInfo reqPatient 6= ˜patientInfo ˜reqPatient)

∧ (patientInfo patient? = ˜patientInfo ˜patient?))

∧ U(patient? ∈ treats ∧ patient? ∈ dom patientInfo))

∨ U(¬ (patient? ∈ treats ∧ patient? ∈ dom patientInfo))))

[reqPatient, ˜reqPatient/patient?, ˜patient?]

128

4.2 The advantage of mechanisation over a manual approach

= [Renaming reqPatient, ˜reqPatient]

∀ patient : PATIENT • ∃ p̃atient : PATIENT •
bw(〈patientIn?patient−→ Skip〉,

(((∀ patient : PATIENT • ∃ p̃atient : PATIENT •
(patient? 6∈ treats⇒

patientInfo patient? 6= ˜patientInfo ˜patient?)

∧ (patientInfo patient? = ˜patientInfo ˜patient?))

∧ U(patient? ∈ treats ∧ patient? ∈ dom patientInfo))

∨ U(¬ (patient? ∈ treats ∧ patient? ∈ dom patientInfo))))

= [remove quantifiers - no bound variable]

∀ patient : PATIENT • ∃ p̃atient : PATIENT •
bw(〈patientIn?patient−→ Skip〉,

(((patient? 6∈ treats⇒

patientInfo patient? 6= ˜patientInfo ˜patient?)

∧ (patientInfo patient? = ˜patientInfo ˜patient?)

∧ U(patient? ∈ treats ∧ patient? ∈ dom patientInfo))

∨ U(¬ (patient? ∈ treats ∧ patient? ∈ dom patientInfo))))

129

4 An approach for evaluating the mechanisation of BCF

= [Law 6.36 - bw input prefix]

∀ patient? : PATIENT • ∃ ˜patient? : PATIENT •
((∀ patient? : PATIENT •

(((patient? 6∈ treats⇒

patientInfo patient? 6= ˜patientInfo ˜patient?)

∧ (patientInfo patient? = ˜patientInfo ˜patient?)

∧ U(patient? ∈ treats ∧ patient? ∈ dom patientInfo))

∨ U(¬ (patient? ∈ treats

∧ patient? ∈ dom patientInfo))))[patient?/ ˜patient?])

= [Law 6.33 - definition of U]

∀ patient? : PATIENT • ∃ ˜patient? : PATIENT •
((∀ patient? : PATIENT •

(((patient? 6∈ treats⇒

patientInfo patient? 6= ˜patientInfo ˜patient?)

∧ (patientInfo patient? = ˜patientInfo ˜patient?)

∧ (patient? ∈ treats ∧ patient? ∈ dom patientInfo)

∧ (p̃atient? ∈ t̃reats ∧ p̃atient? ∈ dom ˜patientInfo))

∨ (¬ (patient? ∈ treats ∧ patient? ∈ dom patientInfo)

∧ ¬ (p̃atient? ∈ t̃reats ∧ p̃atient? ∈ dom ˜patientInfo))))

[patient?/ ˜patient?])

130

4.2 The advantage of mechanisation over a manual approach

= [Renaming]

∀ patient? : PATIENT • ∃ ˜patient? : PATIENT •
(∀ patient? : PATIENT •

(((patient? 6∈ treats⇒

patientInfo patient? 6= ˜patientInfo patient?)

∧ (patientInfo patient? = ˜patientInfo patient?)

∧ (patient? ∈ treats ∧ patient? ∈ dom patientInfo)

∧ (patient? ∈ t̃reats ∧ patient? ∈ dom ˜patientInfo))

∨ (¬ (patient? ∈ treats ∧ patient? ∈ dom patientInfo)

∧ ¬ (patient? ∈ t̃reats ∧ patient? ∈ dom ˜patientInfo))))

= [Eliminate outer existential quantifier]

∀ patient? : PATIENT •
(∀ patient? : PATIENT •

(((patient? 6∈ treats⇒

patientInfo patient? 6= ˜patientInfo patient?)

∧ (patientInfo patient? = ˜patientInfo patient?)

∧ (patient? ∈ treats ∧ patient? ∈ dom patientInfo)

∧ (patient? ∈ t̃reats ∧ patient? ∈ dom ˜patientInfo))

∨ (¬ (patient? ∈ treats ∧ patient? ∈ dom patientInfo)

∧ ¬ (patient? ∈ t̃reats ∧ patient? ∈ dom ˜patientInfo))))

131

4 An approach for evaluating the mechanisation of BCF

= [Combine outer universal quantifiers]

∀ patient? : PATIENT •
(((patient? 6∈ treats⇒

patientInfo patient? 6= ˜patientInfo patient?)

∧ (patientInfo patient? = ˜patientInfo patient?)

∧ (patient? ∈ treats ∧ patient? ∈ dom patientInfo)

∧ (patient? ∈ t̃reats ∧ patient? ∈ dom ˜patientInfo))

∨ (¬ (patient? ∈ treats ∧ patient? ∈ dom patientInfo)

∧ ¬ (patient? ∈ t̃reats ∧ patient? ∈ dom ˜patientInfo)))

Continuing the back propagation from page 125;

bw(〈Init〉, bw(〈PatientDetails〉, 〈ConfType〉))

= [simplification of bw(〈PatientDetails〉, 〈ConfType〉)]

bw(〈Init〉,

(∀ patient? : PATIENT •
(((patient? 6∈ treats⇒

patientInfo patient? 6= ˜patientInfo patient?)

∧ (patientInfo patient? = ˜patientInfo patient?)

∧ (patient? ∈ treats ∧ patient? ∈ dom patientInfo)

∧ (patient? ∈ t̃reats ∧ patient? ∈ dom ˜patientInfo))

∨ (¬ (patient? ∈ treats ∧ patient? ∈ dom patientInfo)

∧ ¬ (patient? ∈ t̃reats ∧ patient? ∈ dom ˜patientInfo)))))

132

4.2 The advantage of mechanisation over a manual approach

= [No change in state in 〈 Init 〉]

∀ patient? : PATIENT •
(((patient? 6∈ treats⇒

patientInfo patient? 6= ˜patientInfo patient?)

∧ (patientInfo patient? = ˜patientInfo patient?)

∧ (patient? ∈ treats ∧ patient? ∈ dom patientInfo)

∧ (patient? ∈ t̃reats ∧ patient? ∈ dom ˜patientInfo))

∨ (¬ (patient? ∈ treats ∧ patient? ∈ dom patientInfo)

∧ ¬ (patient? ∈ t̃reats ∧ patient? ∈ dom ˜patientInfo)))

= [Predicate calculus]

true

The above manual back propagation of the specification in Figure 4.1 took approxim-

ately one hour to complete whereas the mechanised back propagation of the same

specification using the tool (see Chapter 3) developed in this research took 120 mil-

liseconds to complete. This shows a time-saving advantage of the mechanised back

propagation approach over the manual approach. In addition, the amount of human

errors that could be avoided through this mechanised calculation approach is self

evident.

133

4 An approach for evaluating the mechanisation of BCF

4.3 Value of the mechanisation

During the case study analysis carried out as part of this research, we were able to

verify the consistency of the requirements in a specification where a real issue with

the formalisation of the confidentiality requirement was not apparent at first glance.

However, later it was noticed that specification was seemingly incorrect. Upon further

review, it was identified that we had circumvented the weakness in the specification of

the system by strengthening the formalisation of the confidentiality requirement, that

allowed us to verify the consistency of the requirements in the system. In this thesis,

such a specification is called a ‘weak specification’.

Weak specification. For the purposes of this research, a specification is referred as

a ‘weak specification’ if the specification is seemingly incorrect but the mechanised

analysis of the specification using BCF in Circus results in a predicate that can be

simplified to true, thereby verifying the consistency of the requirements.

This experience with a ‘weak specification’ is discussed and demonstrated in Sec-

tion 6.2.7 using a fictitious hand-crafted system. The discussion further demonstrates

the value of the mechanisation. This is because the analysis did not verify the consist-

ency of the requirements until the confidentiality requirements were strengthened.

4.4 Benchmark for evaluation

To the author’s knowledge, there is no existing literature that defines a “benchmark

set” of case studies that can be used to evaluate a potential tool for analysing systems

with a confidentiality requirement. However, many papers that cover a broad range

of systems especially in the domain of information flow theories, security and privacy

discusses various confidentiality properties. And so, deriving an initial catalogue of

case studies that can be used for evaluating the mechanisation of BCF in Circus or other

similar mechanisations of security related tools as well as that can be extended by other

134

4.5 Limitations of the catalogue approach for evaluation

researchers would be a useful contribution. Such a catalogue is proposed in the next

chapter. Later in this thesis, this catalogue is used for evaluating the mechanisation of

BCF in Circus.

4.5 Limitations of the catalogue approach for evaluation

The papers identified in Chapter 5 discuss confidentiality requirements that are re-

quired in certain system contexts. However, none of the identified papers contain any

description or formal specification of these systems. Therefore, in order to analyse each

identified confidentiality pattern CP, the following activities were carried out.

• Select a confidentiality requirement from Table 5.3 that reflects the pattern CP.

• Hand-craft a set of system requirements for a typical system for which CP has

been identified as a confidentiality requirement.

• Develop a formal specification by interpreting the hand-crafted system require-

ments for the system.

It is a limitation of this research that specifications for case studies had to be developed

based on hand-crafted system requirements. However, if there was at least a full

description of a system in the identified papers, the system description could have

been re-written using a Controlled Natural Language (CNL)1. An unambiguous and

structured system description that follows a CNL can systematically be translated to

formal specifications that can be used for analysing those systems for data leakage.

Cabral and Sampaio (2008) have produced a tool that can translate a specification

written in a particular CNL to CSP. CSP being the reactive notation used in the Circus

notation, such an approach can directly map reactive characteristics from a requirement

document to a formal specification in the Circus notation. Since a CNL can be used

1 “CNLs are engineered subsets of natural languages whose grammars and vocabularies have been restricted in a
systematic way in order to reduce both the ambiguity and complexity of full NLs (e.g. English, French, etc.)”
(Feuto Njonko et al., 2014, p. 68).

135

4 An approach for evaluating the mechanisation of BCF

in such translations, further research can be carried out as to how the data structures

can be mapped from a similar CNL to the Z notation, where the Z notation is used to

encode data structures using the Circus notation. An effort in this direction is the work

by Becker (2007) who proposed the use of Cassandra2 to formalise policy specifications.

Translating specifications written in a particular CNL to the Circus notation might be

appropriate as a further extension to the mechanisation presented in this thesis.

2 Cassandra is a policy specification language that is based on Datalog (Abiteboul et al., 1995) with constraints.

136

4.6 Evaluation plan

4.6 Evaluation plan

The evaluation of the tool will be carried out using the following steps.

1. Identify a set of patterns recurring in the catalogue of confidentiality requirements

that has been derived from literature, where these requirements are related to

data leakage.

2. Present a case study example for each identified confidentiality requirement

pattern. The case study example will involve:

• hand-crafting an unambiguous description of the system.

• developing an appropriate Circus specification of the system.

• encoding the confidentiality requirements using BCF in Circus.

• using the mechanisation of BCF in Circus to analyse the formalized system

for data leakage by executing the back propagation process and simplifying

the resulting predicate using the Isabelle theorem prover.

3. Demonstrate how the weakness in a specification can be circumvented to make it

verifiable when analysed using BCF in Circus.

4. Demonstrate how a contradiction in a specification can be detected when a system

specification is analysed using BCF in Circus by introducing a contradiction

purposely in the specification.

5. Demonstrating positive tests where specifications in the above case studies

without a contradiction are verified when analysed using BCF in Circus.

6. Use the time taken for executing the back propagation process using the tool and

the time taken for simplifying the generated predicate as parameters, to compare

the relative resource utilization when different specifications are analysed using

the proposed mechanisation on a common platform.

137

4 An approach for evaluating the mechanisation of BCF

The objective of the evaluation is to show that the mechanisation correctly identifies the

specifications that contain an inconsistency within the specification and specifications

that do not. As you may recall from Section 2.7.1 on page 82, BCF concludes that a

system may leak data if the predicate generated by back propagating the specification

of a system contains a contradiction. Similarly, if the predicate generated does not

contain a contradiction, then BCF concludes that the system will not leak data. Here,

a contradiction reflects a logical inconsistency within the formal definitions of the

functional and confidentiality requirements in a system specification.

138

4.6 Evaluation plan

Types of specifications analysed

During the evaluation, the following different types of specifications have be analysed.

Positive specification For the purposes of this research, a positive specification is

defined as one which is written without any contradictions

between the functionality and confidentiality requirements

of the system. It is expected that applying the mechanised

tool on such a specification will produce a predicate that

can be Simplified to true by the Isabelle theorem prover.

Weak specification Recall from Section 4.3 in page 134 that during the analysis

we were able to verify the consistency of the requirements

that seemed to be incorrect. However, this verification was

possible by circumventing the weakness with the specifica-

tion using a modified formalisation of the confidentiality

requirement. This issue has been demonstrated in Sec-

tion 6.2.7.

Negative specification For the purposes of this research, a negative specification

is defined as one which is written with at least one definite

contradiction between the functionality and confidentiality

requirements of the system. It is expected that applying

the mechanised tool on such a specification will produce a

predicate that cannot be Simplified by the Isabelle theorem

prover. Rather, attempting to simplify the predicate using

the Isabelle theorem prover will result in either Theorem

prover time-out or Counter example found as outcomes.

139

4 An approach for evaluating the mechanisation of BCF

Possible categories of specifications based on analysis outcome

In general, there can be four different categories of specifications as listed below.

positive and provable A positive specification that can be proved automatically

automatically using proof tactics.

positive and not provable A positive specification that cannot be proved automatic-

ally using proof tactics. In this case, expert assistance

is required for theorem proving. The theorem proving

exercise may result in a time-out when some automated

theorem proving commands are executed.

negative and provable A negative specification for which a counter example can

be generated automatically using proof tactics.

negative and not provable A negative specification for which a counter example can

be generated using automatically using proof tactics.

In this case, expert assistance is required for identifying

a counter example. The theorem proving exercise may

result in a time-out when some automated theorem

proving commands are executed.

140

4.7 Summary

4.7 Summary

The main objective of this chapter is to layout a plan for evaluating the proposed mech-

anisation of BCF in Circus. This plan has been derived based on both the capabilities of

the mechanisation as well as the factors that confine the space where the mechanisation

can be utilized.

In this chapter:

• The comparative advantages of the proposed mechanisation over the manual

approach has been demonstrated.

• How the proposed mechanisation can be beneficial in identifying weak specifica-

tions which otherwise might be overlooked when following the manual approach

was demonstrated.

• The limitations that guide and confine the approach that has been taken in

mechanising BCF in Circus was discussed.

• The plan for evaluating the mechanisation of BCF in Circus has been discussed.

141

5 A systematic literature search for case study
material

5.1 Introduction

This chapter presents an approach for compiling a catalogue of confidentiality require-

ment patterns from the literature. A pattern is a generalized description of a commonly

occurring requirement (Dwyer et al., 1999, p. 412). A pattern catalogue is a collection of

related patterns subdivided into different categories (Hakeem, 2010, p. 23).

In this chapter, a literature search for confidentiality requirements are carried out

and the results are analysed to identify recurring patterns in those confidentiality

requirements. In the next chapter, system models that contain confidentiality properties

based on these patterns will be used in evaluating the practical applicability of the

mechanisation of BCF. To the author’s knowledge, system models that contain con-

fidentiality properties based on such a pattern catalogue has not been published in

the publicly accessible literature to this date. However, such a catalogue is required to

evaluate the BCF in Circus mechanisation developed through this research. This chapter

discusses how such a catalogue has been compiled to address this need. A systematic

literature search process is adopted to identify publications that can be included in

such a catalogue.

In addition, this chapter includes an approach for extracting generalized formalisations

from the formalisations of confidentiality requirement patterns. The result is a set of

143

5 A systematic literature search for case study material

minimum unique patterns of formalisation required to capture all the identified pat-

terns of confidentiality requirements. Any technique or approach intending to provide

support for the catalogue of confidentiality requirements can do so by providing sup-

port for this minimum set of generalized formalisations. In this research, this set of

generalized formalisations is referred to as the “generalized patterns of confidentiality

requirements”. Similarly, when designing a software to support the catalogue of con-

fidentiality requirements, we must ensure that the software supports the specification

templates that reflect the generalized patterns of confidentiality requirements.

The ‘pattern’ approach for software engineering became common place in the software

development community after Gamma et al. (1995) published the book Design Patterns:

Elements of Reusable Object-oriented Software. In their book, they used “patterns to

capture good solutions to common problems programmers experienced when designing

software” (Adolph et al., 2003, p. 7).

5.2 Systematic literature search for case study material

A systematic process is followed in this literature search to enhance the quality and

relevance of the resulting dataset.

5.2.1 Research question

The research question addressed in this chapter is:

What confidentiality properties or requirements have been discussed in software

engineering literature?

BCF in Circus integrates aspects of secure information flow theories with a formal

system development approach. Formal system development is a software engineering

approach that aims at delivering reliable software.

144

5.2 Systematic literature search for case study material

“Software engineering is the establishment and use of sound engineering principles

in order to obtain economically software that is reliable and works efficiently on real

machines” (Andreson, 2014, p. 496).

An unambiguous description of a system is required for formal system development.

Further, scenarios with a confidentiality requirement or confidentiality property are

needed to test secure information flow theories related to confidentiality.

Therefore, the ideal set of testing data for analysing BCF in Circus must have unam-

biguous descriptions of systems with a confidentiality requirement. The above research

question confines the literature search to software engineering to limit the search base

while maximising the possibility of extracting unambiguous descriptions of systems.

5.2.2 Identification of indexing services

The following phrases were used as a composite search string in Google Scholar to

identify the literature that discusses systematic literature review of software engineer-

ing.

"systematic literature review" "software engineering"

The first 20 results were considered. The motivation was to categorize the collection

of indexing services which each author thought was relevant for software engineering

research. Table 5.1 lists the most recurring indexing services which the author used.

Based on the number of papers where the indexing server was mentioned, as shown

in Table 5.1 , the indexing services IEEE Explorer, ACM Digital Library, ScienceDirect,

SpringerLink and Google scholar were selected as indexing services to based the

systematic literature search on. CiteSeer was excluded because it has a smaller digital

library than Google Scholar (Khabsa and Giles, 2014, p. 1) even though both had the

same number of mentions.

145

5 A systematic literature search for case study material

5.2.3 Inclusion criteria

The inclusion criteria for the documents retrieved were as follows.

1. The document must be in English.

2. Do not include repeated copies of the same document.

3. PDF and postscript documents were considered for this collection.

4. Only full documents rather than parts of documents were considered.

5. Only published journal papers, conference papers, thesis and reports were con-

sidered.

The collection of documents that conformed to the inclusion criteria is called the

literature base.

During the preparation for the literature search, the author identified that privacy and

confidentiality were often used in the context of lawyer-client confidentiality, patient

privacy and patient-doctor confidentiality. However, sometimes these discussions were

not centred on system engineering and design. During the literature search, such papers

were therefore not considered. Section 5.2.1 explains how confining the literature search

to software engineering may help in getting search results that discusses confidentiality

analysis centred on system engineering and design.

5.2.4 Search keywords

The ecosystem of research addressed in this thesis is confidentiality engineering. A

keyword map that represents the confidentiality engineering ecosystem is presented in

Figure 5.1.

146

5.2 Systematic literature search for case study material

Indexer # of times mentioned in the
20 papers

IEEE Explorer 16

ACM Digital Library 15

ScienceDirect 11

SpringerLink 9

Google scholar 5

CiteSeer 5

Table 5.1: Relevant catalogues for software engineering research

Privacy

Confidentiality
requirements

Security

Verification

Information system

includes

Confidentiality
verified

information
systemachieves

Confidentiality engineering
during system design

achieves

assured by

demands
assurances for

Formal specification

uses formal methods
to produce

is a property of

Figure 5.1: Keyword map describing the confidentiality engineering ecosystem

Based on the keyword map in Table 5.1, the following words and phrases were used to

search for literature that may discuss confidentiality engineering during system design.

• “confidentiality” and “formal methods”

• “confidentiality” and “system design”

• “confidentiality properties”

147

5 A systematic literature search for case study material

• “confidentiality requirements”

• “security engineering”

• “secure by design”

• “privacy1 by design”

5.2.5 Literature selection

The literature search carried out in this research showed that very few published papers

described a complete model of a system. Rather, papers discussed scenarios within

the system execution where a confidentiality assurance is required and how to fix it.

Therefore, any literature that mentioned the need for confidentiality of information in

the context of an information system was included.

Search results revealed 490 articles. All articles were put on a Mendeley catalogue

(Mendeley Ltd., 2016). The catalogue was searched using the keyword ‘confidential‘.

The inbuilt search system in Mendeley was used to search for the keyword. If a

keyword existed in a paper, Mendeley showed the number of occurrences of that

keyword in that paper. Mendeley takes the user directly to each occurrence in the paper

through its inbuilt interface. The paragraph, table or diagram where each occurrence

of the keyword was reviewed to see if a confidentiality requirement was described.

Table 5.3 presents the collection of confidentiality requirements that have been identified

following this search process.

Sequential access implementations. The system contexts where some of these confid-

entiality requirements were described might have been based on systems with

concurrent access. However, the systems modelled in this research have been

restricted to sequential access implementations because the catalogue of back

1 As highlighted in the introduction section, the words Privacy and Confidentiality have been used interchangeably
by many author’s to mean the same thing. Our objective is to cover a broad ground regarding the existing literature
that discusses confidentiality assurances required in system design.

148

5.2 Systematic literature search for case study material

propagation laws for BCF in Circus does not provide support for parallel processes.

This limitation has been discussed in Section 2.8.

Types of data leakage risks considered. As discussed in "On data leakage and the in-

ference problem" on pages 111 - 113 , BCF in Circus can be used to reason about

the possibility of data leakage through:

• direct communication of values of state variables to the environment, that

are required to be kept confidential as per a confidentiality requirement.

• indirect communication of confidential data to the environment through a

state variable authorised for that particular user.

Therefore, the confidentiality requirements selected for inclusion in the confiden-

tiality catalogue have been restricted to the above types of requirements.

The importance of analysing patterns of confidentiality requirements. When evaluating

a technique that has been proposed for analysing confidentiality requirements in

systems, it will be more justifiable to consider candidate requirements from groups

of requirements having the same pattern, rather than individual requirements.

By using this approach, a broader range of requirements can be addressed

during the evaluation of the mechanized analysis technique. Confidentiality

requirements take similar forms in many contexts. Such similarities can be the

basis for grouping confidentiality requirements. Each resulting group will have

confidentiality requirements with the same pattern. The next section presents

the derivation of groups of confidentiality requirements, each having a different

pattern.

149

5 A systematic literature search for case study material

5.3 Patterns of confidentiality requirements

The main objective of this section is to identify and review common patterns that may

exist in a collection of confidentiality requirements, which has been extracted from

literature. Each confidentiality requirement in this collection has been identified by a

unique identifier of the form CRX where X represents a unique integer assigned to

that particular requirement. A total of 33 CRs (CR1–CR33) were extracted from the

literature and these confidentiality requirements are presented in Table 5.3, Section 5.3.1.

Table 5.2 presents the patterns that exists in the descriptions of these confidentiality

requirements. The table further groups the collection of confidentiality requirements

based on which pattern each confidentiality requirement falls under. A pattern reflects

data leakage risks of a similar form across many contexts.

Pattern
id

Pattern description Confidentiality requirement where the
pattern exists

CP1 do not reveal the relation between
x and y in S

CR3, CR4, CR5, CR6, CR7, CR8,
CR9, CR11, CR12, CR13, CR18,

CR23, CR27, CR29, CR33

CP2 do not reveal whether x is a member
of S

CR10, CR14, CR20, CR21, CR22,
CR24, CR25, CR26

CP3 do not reveal the set S CR28, CR30, CR32

CP4 do not reveal the exact value of x CR1, CR2, CR15, CR16, CR19, CR31

CP5 do not reveal whether the value
of x is lower/higher than a given
threshold n

CR17

Table 5.2: Patterns of confidentiality requirements

150

5.3 Patterns of confidentiality requirements

5.3.1 Deriving patterns of confidentiality requirements

Table 5.2 includes the collection of confidentiality requirements, identified from the

set of literature, short-listed in Section 5.2.5. It is important to discuss briefly, the

process which has been followed in identifying and deriving patterns of confidentiality

requirements from this collection. The steps in this process include:

• Extracting a direct quote or paraphrasing the confidentiality requirement dis-

cussed in a given paper.

• Rephrasing the extracted description of each confidentiality requirement using a

structured statement.

• Categorizing the structured statements based on commonalities in their descrip-

tions.

• Presenting each category as a pattern of confidentiality requirements in Table 5.2.

151

5 A systematic literature search for case study material

Table 5.3: A collection of confidentiality requirements from literature

Context
scenario

Confidentiality property/goal required

a structured general definition for the confidentiality requirement

Context : Sealed bid auction system

The bid value b and the randomiser r must not be revealed to anyone

except the bidder until the bid submission phase.

(Viswanathan et al., 2000, p. 416)

CR1 if the user is not the bidder of b

then do not reveal the value of b (which represents the bid value)

CR2 if the user is not the bidder of b

then do not reveal the value of r (which represents the randomiser value)

Context : Clinical information system

“personal information about patients must be kept secure and confiden-

tial”.

“identifying information must not be made available to government and

health authorities.”

(Gurses et al., 2005, p. 7,10)

CR3
if the user belongs to the government or a health authority

then do not reveal the association between

the patient and his/her medical data

Continued on next page

152

5.3 Patterns of confidentiality requirements

Table 5.3 – Continued from previous page

“An unauthorized source should never access to the content”. No one

apart from authorised personal can have access to personal identifiable

health information.

(Juan et al., 2011, p. 26)

CR4
if the user does not have the necessary authorisation

then do not reveal the association between

the patient and his/her medical data

“The IS shall protect the privacy of patients and their associated medical

records. The confidentiality of data shall be guaranteed. Moreover, the

database shall be available for allowing the access of patient medical

information in case of urgent need”.

“Focusing on the patient data and its relationship with medical data, a

privacy goal is associated with them. However medical data (without

its associated relationship with patient data) is not constrained by this

privacy goal.”

(Mayer et al., 2005, p. 2,10)

CR5

if the user does not have the necessary authorisation

and the request is not made under a condition of urgency

then do not reveal the association between

the patient and his/her medical data

Continued on next page

153

5 A systematic literature search for case study material

Table 5.3 – Continued from previous page

“For example, a patient typically gives consent to his/her medical record

to physicians in a call group (set of physician sharing a practice), however,

patients with particular conditions might only give consent to their family

physician”.

Onabajo and Jahnke (2006b)

CR6

if the patient has a particular condition

and the user is not the family physician

then do not reveal the association between

the patient and his/her medical data

“The context of the confidentiality statement is not only based on the

purpose, but also on potential user(s) or stakeholder(s) who require access

to data e.g., a patient would normally give access to his/her medical

record to a physician for care-delivery, but deny access to non-medical

staff”.

“For example, access to sections of a medical record, such as prescription

history, might have potential influence on treatment options, particularly

during emergencies”.

(Onabajo and Jahnke, 2006a, p. 3,4)

CR7
if the user is not a physician

then do not reveal the association between

the patient and his/her medical data

Continued on next page

154

5.3 Patterns of confidentiality requirements

Table 5.3 – Continued from previous page

It is important to preserve individual privacy of the persons in healthcare

information systems.

(Trouessin, 1999, p. 450)

CR8
if the user is not authorized

then do not reveal the association between

the patient and his/her medical data

“We motivate the need for conditional confidentiality by referring to the

doctor example from the introduction. As described before, the system

should allow access to the X- ray only if the user is a doctor.”

(Tschantz and Wing, 2008, p. 111)

CR9
if the user is not a doctor

then do not reveal the association between

a patient and his/her x-ray

“Protection of the integrity and confidentiality of medical images is an

issue in the management of patients’ medical records. Confidentiality

states that unauthorized parties should not be granted to access medical

images during transmission”.

(Ulutas et al., 2011, p. 341)

CR10

if the user is not authorized

then for every given x,

do not reveal whether x is a member of the set S

(where S contains the set of x-rays)

Continued on next page

155

5 A systematic literature search for case study material

Table 5.3 – Continued from previous page

“the specific association between individual patients and their illnesses is

sensitive and should be maintained confidential”.

(De Capitani di Vimercati et al., 2014, p. 214)

CR11
if the user is not authorized

then do not reveal the association between

a patient and his/her illness

“The last kind of attribute is the confidential attribute,the values of which

we have to protect”.

“For example, if the attribute is a HIV test result, then the revelation of a

‘+’ value may cause a serious invasion of privacy”.

(Wang et al., 2007, p. 257)

CR12
if the user is not authorized

then do not reveal the association between

a patient and his/her HIV result

Continued on next page

156

5.3 Patterns of confidentiality requirements

Table 5.3 – Continued from previous page

Context : e-payment system

“Several items in this system may need protection: (i) User’s private

information as known to the local host (ii) Account information provided

by User to the applet upon form submission (iii) Order information similar

to (ii) (iv) The mere fact that User is engaging in a transaction with

Merchant (v) Secrets concerning User’s account possessed by Acquirer

such as account balance or credit limit.”

(Dam and Giambiagi, 2000, p. 235)

CR13
if the user is not authorized

then do not reveal the association between

a customer and his/her account balance result

Continued on next page

157

5 A systematic literature search for case study material

Table 5.3 – Continued from previous page

Context : Phone book

The existence of a particular phone number in a phone book should be

kept secret.

“The property to be kept secret for the example is whether a particular

string, say ‘555-55’ is in the phone book. Let us denote it by secret. We

want to verify that the attacker cannot infer whether the secret holds or not

based on her knowledge of the program and observation of the outputs

(in this case, the variable message)”.

(Cerny and Alur, 2009b, p. 175)

CR14

if the user is not authorized

then for every given x,

do not reveal whether x is a member of the set S

(where S contains the phone numbers in the phone book)

Context : Smart card

The confidentiality of the personal data stored in a smart card must be

maintained.

“Due to its particular nature, a major concern of smartcards applications is

to guarantee confidentiality and integrity of data”.

(Barthe and Dufay, 2005, p. 133,164)

CR15
if the user is not authorized

then do not reveal the value of x

(where x is any personal detail stored in the smart card)

Continued on next page

158

5.3 Patterns of confidentiality requirements

Table 5.3 – Continued from previous page

Context : e-Purse

“In that specific example, agents who are not the card holder should not

know that there is at least $v in the e-purse (whatever the value of v is)”.

“An agent should not know the exact value of some state variable”.

“An agent should not know that the value of some state variable is

below/above some threshold”.

(De Landtsheer and Van Lamsweerde, 2005, p. 44)

CR16 if the agent is not the card holder

then do not reveal the value of x

CR17
if the agent is not the card holder

then do not reveal whether the value y is

above/below a certain threshold n

Continued on next page

159

5 A systematic literature search for case study material

Table 5.3 – Continued from previous page

Context : Bank information system

The paper uses confidentiality requirements from Chandra and Khan

(2010, p. 17), which reads, “Confidentiality protects data/information from

unauthorised user access. Security demands that sensitive information

should not be disclosed publicly. For example, in a bank account man-

agement system, function get balance () shows the current balance amount

of user. In this case permission should be granted only for authorised user

to see the information”.

(Parveen et al., 2015, p. 2)

CR18
if the user is not authorized

then do not reveal the association between

a customer and his/her current balance

“This enables us to check confidentiality properties, e.g., that critical data

such as credit card information are shared only with authorized partners”.

“a driver in trouble must be assured that information about his credit card

and his location cannot become available to unauthorized users”.

(Lapadula et al., 2008, p. 713,714)

CR19
if the user is not authorized

then do not reveal the value of y

(where y is a credit card information of the card holder)

Continued on next page

160

5.3 Patterns of confidentiality requirements

Table 5.3 – Continued from previous page

Context : Examination system

“No examinee should learn any details of the contents of the examination

before the start of the examination”.

“No examinee should learn any details of the contents of any other ex-

aminees answer paper between the start of the paper and the end of the

examination”.

“No examinee should learn any details of the marking until results are

posted”.

(Foley and Jacob, 1995, p. 143)

CR20

if the user u is registered in an exam e

and exam e has not started

then for every given x,

do not reveal whether x is a member of the set S

(where S represents the contents of the exam e)

Continued on next page

161

5 A systematic literature search for case study material

Table 5.3 – Continued from previous page

CR21

if the user u currently using the system is not requesting information

that belongs to him/her

and exam e has started and but not ended

then do not reveal the set S

(where S represents the answers recorded by a user other than u

in the exam e)

CR22

if the user u is registered in an exam e

and the results of exam e has not been posted

then for every given x,

do not reveal whether x is a member of the set S

(where S represents the markings for the exam e)

The crucial information that is confidential2 in a computer assisted assess-

ment and diagnosis system includes the testing number, the name of the

candidates, title, score and user account amongst others.

(Cao and Wang, 2009, p. 292)

CR23
if the user is not authorized

then do not reveal the association between

a candidate and his/her candidate details

Continued on next page

2 Cao and Wang (2009) describes a mechanism that protects the confidential data via encryption.

162

5.3 Patterns of confidentiality requirements

Table 5.3 – Continued from previous page

Context : Java card

The confidentiality of data in a multi-application Java card must be guar-

anteed as per the applet isolation principle.

(Andronick et al., 2003, p. 335)

CR24

if the applet A is not authorised on the applet B

then for every given x,

do not reveal whether x is a member of the set S

(where S represents the set of data in the applet A)

“Open smart cards let you download code onto cards after their issuance

(postissuance)”.

“One of the main issues when deploying these applications is to guarantee

to the customer that these applications will be safe i.e., that their execution

will not jeopardise the smart card’s integrity or confidentiality.”.

(Casset, 2002, p. 290)

CR25

if the applet A is not authorised on the applet B

then for every given x,

do not reveal whether x is a member of the set S

(where S represents the set of data in the applet A)

Continued on next page

163

5 A systematic literature search for case study material

Table 5.3 – Continued from previous page

“This objective prevents the objects owned by one applet from being used

by another applet without explicit sharing. The isolation between the

applets covers two security properties: confidentiality and integrity. The

confidentiality ensures that during its execution, an applet cannot read

the information stored in the other applets”.

(Chetali and Nguyen, 2008, p. 202)

CR26

if the applet A is not authorised on the applet B

then for every given x,

do not reveal whether x is a member of the set S

(where S represents the set of data in the applet A)

Continued on next page

164

5.3 Patterns of confidentiality requirements

Table 5.3 – Continued from previous page

Context : Conference management system

The following confidentiality properties are addressed.

“A group of users learn nothing about a paper unless one of them becomes

an author of that paper or a PC member at the paper’s conference.

A group of users learn nothing about a paper beyond the last submitted

version unless one of them becomes an author of that paper.

A group of users learn nothing about the content of a review beyond the

last submitted version before the discussion phase and the later versions

unless one of them is that review’s author.

The author’s learn nothing about the discussion of their paper”.

(Kanav et al., 2014, p. 168)

CR27

if the user u is not the author of the paper x

and u is not a PC member at the conference

where x is submitted

then do not reveal the association between

the paper x and any details related to that paper

Continued on next page

165

5 A systematic literature search for case study material

Table 5.3 – Continued from previous page

Context : Broker subscription system

“Confidentiality is important here because Pubs want to make sure that

only paying customers have access to the quotes. We say that a CBPS

system provides publication confidentiality if Brokers can neither identify

the content of the messages published by Pubs nor infer the distribution

of attribute values of the message”.

(Ion et al., 2010, p. 134)

CR28

if the user u is a Broker

then do not reveal the set S

(where S is the set of contents

in the messages published by a publisher)

“We say that a CBPS system provides subscription privacy if Brokers can

neither identify what subscriptions Subs made nor relate a set of subscrip-

tions to a specific Sub”.

(Ion et al., 2010, p. 134)

CR29
if the user u is a Broker

then do not reveal the association between

a subscriber and his/her set of subscriptions

Continued on next page

166

5.3 Patterns of confidentiality requirements

Table 5.3 – Continued from previous page

Context : Military information system

“Information about mission plans, strategy, and deployment of troops

must remain confidential on the C4I computer system and networks of all

type”.

“If an adversary gets access to the logistics information stored in a file or

database may be used to misguide the army commander in the deployment

of troops”.

(Alghamdi et al., 2010, p. 131)

CR30
if the user u is not authorised

then do not reveal the set S

(where S is the set of logistics information)

Context : Information retrieval system

The confidentiality of the search query as well as the contents of the

retrieved documents should be maintained.

“The proposed method maintains the confidentiality of the query as well

as the content of retrieved documents”.

(Swaminathan et al., 2007, p. 12)

CR31
if the user is not authorized

then do not reveal the value of x

(where x is the search query)

CR32
if the user is not authorized

then do not reveal the set S

(where S is the set of contents in the retrieved documents)

Continued on next page

167

5 A systematic literature search for case study material

Table 5.3 – Continued from previous page

Context : Human resource

“For example, to maintain the confidentiality of personnel data while

handling the requests for HR data, the security requirement shall guaran-

tee that only those requests coming from the members of human resources

staff are considered”.

(Yu et al., 2015, p. 104)

CR33
if the user is not authorized

then do not reveal the association between

an employee and his/her personal details

It is important to identify any commonalities that may exist in the formalisation of

the patterns in Table 5.2 using BCF in Circus. Such commonalities maybe considered

as generalized patterns, as they exist across more than one confidentiality pattern.

However, before a confidentiality pattern can be formalized, any vagueness within

its description must be removed. In Table 5.3, CP3 is identified as having a vague

description. The next section discusses the possible different interpretations of CP3

that can be formalised.

168

5.4 Subtleties in formalizing generic patterns of confidentiality requirements using BCF in Circus

5.4 Subtleties in formalizing generic patterns of confidentiality
requirements using BCF in Circus

Most of the confidentiality requirements presented in Table 5.3 are not described in a

clear and concise manner. Therefore, the patterns derived from these confidentiality

requirements can be formalised in more than one way. The subtleties with these

different formal definitions translate to different upper limits on the information that

can be disclosed to an unauthorised audience.

Such subtleties may be required during the system design stage where there are often

trade-offs between functional and non-functional requirements (Yu and Liu, 2001, p. 185;

Santen, 2006, p. 154). For example, rather than concealing every single bid in a set of

bids Bids it will be acceptable to conceal at least 1 bid. By doing so, the uncertainty

about the highest bid in Bids can be maintained as the the concealed bid may be the

highest bid.

In this section, we discuss possible different formal definitions of inequality between

two sets, as required by pattern CP3. The pattern CP3 states:

do not reveal the set S

Even though the pattern demands that the set S must not be revealed, the specifics of

how much information about S must be concealed has not been defined in the original

literature. Table 5.4 lists some possible ways in which the inequality between two sets

may be formalized using BCF in Circus.

169

5 A systematic literature search for case study material

Possible ways of specifying set inequality Syntax in BCF in Circus

do not reveal the exact composition of the set S S 6= S̃

do not reveal any elements of the set S S∩ S̃ = {}
do not reveal at least n elements from the set S (# S + n) ≥ # S̃

Table 5.4: Possible ways of specifying an inequality between two sets S and S̃

The subtleties listed in Table 5.4 is demonstrated using a set of tuples of the function

S and S̃ as shown in Figure 5.2. Each function maps a person identifier to his/her

salary. Each mapping (x, y) is a tuple, such as (Alex, 1000) in Figure 5.2a, (Fred, 400) in

Figure 5.2e and (Casey, 1000) in Figure 5.2h. Table 5.5 shows the differences between

the function map in Figure 5.2a and each of the the function maps in Figure 5.2b to

Figure 5.2i.

170

5.4 Subtleties in formalizing generic patterns of confidentiality requirements using BCF in Circus

Alex 1000

Bob 2000

Casey 3000

Dave 400

Fred 500

(a) S

Alex 1000

Bob 2000

Casey 3000

Dave 400

Fred 500

(b) S̃

Alex 1000

Bob 2000

Casey 3000

Dave 400

Fred 500

(c) S̃

Alex 1000

Bob 2000

Casey 3000

Dave 400

Fred 500

(d) S̃

Alex 1000

Bob 2000

Casey 3000

Dave 400

Fred 500

(e) S̃

Alex 1000

Bob 2000

Casey 3000

Dave 400

Fred 500

(f) S̃

Alex 1000

Bob 2000

Casey 3000

Dave 400

Fred 500

(g) S̃

Alex 1000

Bob 2000

Casey 3000

Dave 400

Fred 500

(h) S̃

Alex 1000

Bob 2000

Casey 3000

Dave 400

Fred 500

(i) S̃

Figure 5.2: A function map for a function S and possible function maps for different variants
of a its twin function S̃

171

5 A systematic literature search for case study material 1

dom(S) ran(S) S∩ S̃ = {} S 6= S̃ (# S + 1) ≥ # S̃

function map (b) as S̃ 5 3 5

dom(S̃) =

ran(S̃) =

function map (c) as S̃ 5 3 3

dom(S̃) 6=
ran(S̃) 6=

function map (d) as S̃ 3 3 5

dom(S̃) =

ran(S̃) =

function map (e) as S̃ 5 3 5

dom(S̃) =

ran(S̃) 6=
function map (f) as S̃ 3 3 3

dom(S̃) 6=
ran(S̃) 6=

function map (g) as S̃ 5 3 3

dom(S̃) 6=
ran(S̃) 6=

function map (h) as S̃ 3 3 3

dom(S̃) 6=
ran(S̃) 6=

function map (i) as S̃ 3 3 3

dom(S̃) 6=
ran(S̃) 6=

Table 5.5: A comparison of equality in function maps from Figure 5.2

NOTE:
- The n in (# S + n) ≥ # S̃ has been instantiated to 1, for the purposes of demonstration in Table 5.5.
- The 3 denotes that the property defined in the column heading is satisfied while 5 denotes that the property is not
satisfied.

172

5.4 Subtleties in formalizing generic patterns of confidentiality requirements using BCF in Circus

5.4.1 Scenarios where different subtleties with inequality between two sets may
satisfy a confidentiality requirement

The Table 5.6 shows how effective each possible way of specifying inequality between

two sets is against confidentiality requirements, that have been identified in Section 5.3.

The set S in Table 5.6 may be any expression that results in a set. The 3 denotes that

the property is satisfied by the type of implementation.

Set to be kept
secret (S)

Specify a set inequality where we

Conceal the exact contents of the
set

Conceal all the ele-
ments of the set

Conceal at least n ele-
ments from the set

set of salaries in a
salary band with
x number of employees 3

may reveal M where M ⊂ S. M
might contain x− 1 salaries. Us-
ing M and x we can compute
the sum of the hidden salaries
thereby revealing the only hid-
den salary

3 3 (if n > 1)

answers of a candidate c 4 May reveal all answers except 1 3 May reveal (# S− n) an-
swers from S

set of medicines
in a patients
prescription history 5

may reveal M where M ⊂ S.
M might contain a specific medi-
cine implying a specific medical
condition of the patient

3 may reveal M where
M ⊂ S. M might con-
tain a specific medicine
implying a specific med-
ical condition of the pa-
tient

Table 5.6: How confidentiality properties are addressed by subtleties in set
inequality.

3 Chivers (2006, p. 89) discusses a scenario where the relationship between an employee and his/her salary is
confidential. Lunt (1989, p. 104) states that if the set of employees in a group is small enough then the association
between a particular employee and his/her salary can be inferred.

4 Foley and Jacob (1995, p. 143) state that the answers recorded by an examinee must not be revealed to any other
examinee during the examination.

5 Onabajo and Jahnke (2006a, p. 844) state that restricting the visibility of the prescription history is a patient’s
confidentiality requirement.

173

5 A systematic literature search for case study material

5.5 Identifying and formalizing generic patterns of confidentiality

This section presents a discussion on extracting generalized patterns from formal

specifications of confidentiality requirement patterns that were identified in Section 5.3.

The approach involves identifying commonalities that may exist in formalizing these

patterns and deriving generalized patterns of confidentiality requirements based on

these commonalities. These generalized patterns can also be categorised as property

specification patterns since these patterns have been extracted from specifications of

properties.

“A property specification pattern describes the essential structure of some aspect

of a system’s behaviour and provides expressions of this behaviour in a range of

common formalisms” (Dwyer et al., 1998, p. 9).

Konrad et al. (2003) provide a template for specifying security patterns. Further, he

suggests a systematic process for simulating as well as model checking the resulting

models. Figure 5.3 shows the steps that were followed in deriving these generalized

patterns.

CP1 The confidentiality pattern CP1 states:

do not reveal the relation between x and y in S

Here, the objective of CP1 is to maintain the secrecy regarding the existence

of the tuple or pair (x, y) in the set S. Binary relations and functions from the

Z notation are used to model such a set of tuples (Spivey, 1989, p. 27).

“A relation is defined to be a set of pairs. A function is a particular form

of relation, where each domain element has only one corresponding range

element” (ISO/IEC, 2002).

174

5.5 Identifying and formalizing generic patterns of confidentiality
G

en
er

a
li
ze

d
 f
o
rm

a
li
za

ti
o
n

in
 B

C
F
 i
n
 C

ir
cu

s

GP1

do not reveal
whether x is in S

GP2

do not reveal any
elements of the set S

GP4

do not reveal the exact
value of any expression expr

GP3

do not reveal at least n
elements from the set S

expr is any expression

F
o
rm

a
li
za

ti
o
n
 i
n

B
C

F
 i
n
 C

ir
cu

s
In

te
rp

re
ta

ti
o
n

CP1

Do not reveal the relation
between x and y in set S

CP2

Do not reveal whether
x is a member of S

CP4

Do not reveal the
exact value of x

CP3

Do not reveal the
set S

P
a
tt

er
n
s

in
 c

o
n
fi
d
en

ti
a
li
ty

p
ro

p
er

ti
es

CP5

do not reveal whether
the value x is lower/higher than

a given threshold n

do not
reveal

at least n
elements
from S

do not
reveal

the exact
composition

of S

if S is a
non-functional

relation

if S is a
function

.. ..

if x is between
m and n

if x is
higher than n

if x is
lower than n

Generalized patterns of confidentiality properties

do not
reveal
any

element
in S

Figure 5.3: Deriving generalized patterns from patterns of confidentiality requirements

175

5 A systematic literature search for case study material

Recall from Section 2.5 that Circus combines the Z notation with other nota-

tions and techniques. The following are two formalisations of CP1 depending

on whether the set S is a relation or a function.

Where S is a non-functional relation, one possible formalisation of CP1

using BCF in Circus can be:

(x, y) ∈ S⇒ (x̃, ỹ) 6∈ S̃ (5.1)

The formalisation used in Equation (5.1) for specifying confidentiality in

set S is specific to tuples. However, the formalisation is concerned with

maintaining the secrecy of an element of in a given set. This is simillar to

the requirement pattern captured in CP2.

If S in CP1 is a non-functional relation

Where S is a function, one possible formalisation of CP1 using BCF in

Circus can be:

S(x) 6= S̃(x̃) (5.2)

The formalisation in Equation (5.2) can be used in BCF in Circus to conceal

the exact value of S(x). This fulfils the confidentiality requirement pattern

in CP1 where CP1 is concerned with maintaining the secrecy of the tuple

(x, S(x)). Here, S(x) represents the variable y is CP1. This is simillar to

the requirement pattern captured in CP4.

If S in CP1 is a function

176

5.5 Identifying and formalizing generic patterns of confidentiality

CP2 The confidentiality pattern CP2 states:

do not reveal whether x is a member of S

One possible formalisation of CP2 using BCF in Circus can be:

x ∈ S⇒ x̃ 6∈ S̃ (5.3)

While Equation (5.3) is a possible formalisation of CP2, Equation (5.3) is also a

more generalized formalisation of Equation (5.1) . The following generalized

pattern can be derived from Equation (5.3).

� Generalized pattern GP1 : do not reveal whether x is in S

CP3 The confidentiality pattern CP3 states:

do not reveal the set S

In Section 5.4, the need for introducing some subtly different interpretations

of CP3 were discussed. Further, formalisations for those interpretations were

presented and how they address different confidentiality properties were

discussed. Due to the lack of clear descriptions of confidentiality properties

under CP3, it was important that those interpretations were available for

accurately formalising the confidentiality properties. For this reason, the

subtly different interpretations of CP3 can be adopted as generalised patterns

for maintaining the secrecy of a set. Here, the contents of Table 5.4 in Table 5.7

are being duplicated for easy reference. Further, a unique identifier for each

possibility listed in Table 5.7 has been introduced.

177

5 A systematic literature search for case study material

id Possible ways of specifying set inequality BCF in Circus

S1 do not reveal the exact composition of the set S S 6= S̃

S2 do not reveal any elements of the set S S∩ S̃ = {}
S3 do not reveal at least n elements from the set S (# S + n) ≥ # S̃

Table 5.7: Possible ways of specifying an inequality between two
sets S and S̃

The formalisation of S1 in Table 5.7 is similar to the requirement pattern

captured in CP4 where CP4 is a more generic formalisation of S1.

The following generalized pattern can be derived from the formalisation of S2

in Table 5.7.

� Generalized pattern GP2 : do not reveal any elements of the set S

The following generalized pattern can be derived from the formalisation of S3

in Table 5.7.

� Generalized pattern GP3 : do not reveal at least n elements from the set S

CP4 The confidentiality pattern CP4 states:

do not reveal the exact value of x

Here, the objective of CP4 is to maintain the secrecy of the exact value of x.

One possible formalisation of CP4 using BCF in Circus can be:

x 6= x̃ (5.4)

178

5.5 Identifying and formalizing generic patterns of confidentiality

Pattern CP4 with definition “do not reveal the exact value of x” is a weak

pattern because even after CP4 is applied, sometimes critical information

may be revealed, without revealing the exact value that is required to be

kept secret. For example, consider the requirement where the exact value

of a customer bank account is required to be a secret. If the balance bal

of a customer called bob is $500 and if a user has access to the binary

representation of the state variable bal except the last two bits, then

the user can infer that bal is definitely between 500 and 503. In this

scenario, even though CP4 has been satisfied through bit obfuscation,

the inference made by the user might not be acceptable. This is because,

through inference, the user is able to learn bal to a high degree of accuracy.

Table 5.8 represents the bit representation of numbers from 500 to 503.

values 256 128 64 32 16 8 4 2 1

500 1 1 1 1 1 0 1 0 0

501 1 1 1 1 1 0 1 0 1

502 1 1 1 1 1 0 1 1 0

503 1 1 1 1 1 0 1 1 1

Table 5.8: Bit representations of bank balances between
500 and 503

When using bit obfuscation for confidentiality, as discussed above, the

minimum number of bits that needs to be obfuscated to maintain the

secrecy of a value will depend on the confidentiality requirement, where

the confidentiality requirement must define the degree to which the value

should be kept confidential.

Limited inference while maintaining secrecy of the exact value

179

5 A systematic literature search for case study material

Essentially, both Equation (5.4) and Equation (5.2) are concerned with main-

taining the secrecy of the exact value of an expression expr, where expr ≡ x

in Equation (5.4) and expr ≡ f (x) in Equation (5.2). The expression ẽxpr is

derived by renaming each state variable y in expr with its twin counterpart ỹ

as in expr[y/ỹ]. Equation (5.5) represents a more generalised formalisation of

CP4.

expr 6= ẽxpr (5.5)

We may derive the following generalized pattern from Equation (5.5).

� Generalized pattern GP4 : do not reveal the exact value of any expression expr

CP5 The confidentiality pattern CP5 states:

do not reveal whether the value of x is lower/higher than a given

threshold n

The objective of CP5 is to maintain the secrecy of the upper bound and the

lower bound of a value against some given thresholds. The pattern CP5 has

been extracted from the paper (De Landtsheer and Van Lamsweerde, 2005,

p. 4). Infact, this pattern contains three generic patterns of confidentiality

properties which they have formalised separately in (De Landtsheer and

Van Lamsweerde, 2005, p. 4) using epistemic logic. Following are possible

formalisations of those patterns using BCF in Circus.

lower bound do not reveal whether x is lower than the threshold m

x ∈ {y | y < n} ⇒ x̃ 6∈ {y | y < n} (5.6)

180

5.6 Generalized patterns of confidentiality requirements

upper bound do not reveal whether x is higher than the threshold m

x ∈ {y | y > n} ⇒ x̃ 6∈ {y | y > n} (5.7)

between do not reveal whether x is between m and n

x ∈ m..n⇒ x̃ 6∈ m..n (5.8)

The formalisation used in Equation (5.8) specifies that the knowledge that

the value of x falls within a certain range must be confidential. In general,

the formalisation is concerned with maintaining the secrecy of an element in

a given set, which in this case is the set of values in the range m..n. This is

similar to the requirement pattern captured in CP2.

5.6 Generalized patterns of confidentiality requirements

A literature-related set of generalized patterns of confidentiality requirements related

to data leakage has been derived through research carried out in this chapter. The set

of generalized patterns derived are shown in Table 5.9. The table further shows how to

specify each generalized pattern of confidentiality requirement using BCF in Circus.

Pattern
id

Pattern description How to specify a
property with the pattern

using BCF in Circus

GP1 do not reveal whether x is in S x ∈ S⇒ x̃ 6∈ S̃

GP2 do not reveal any elements of the set S S∩ S̃ = {}

GP3 do not reveal at least n elements from the set S (# S + n) ≥ # S̃

GP4 do not reveal the exact value of any expression expr expr 6= ẽxpr

Table 5.9: A catalogue of generalized patterns of confidentiality requirements

181

5 A systematic literature search for case study material

5.7 Confidentiality requirement patterns in literature

Gurses et al. (2005) list a set of attributes that describe a confidentiality requirement.

They include the owner of the confidentiality data, degree of agreement between the

stakeholders of the data, the counter-stakeholder or the role from whom the owner wants

to hide the data, the information to which the confidentiality requirement refers to, the

owners rationale for the confidentiality requirement, the temporal range or how long the

confidentiality requirement must be in place and the context or the cluster of system

functionality where the requirement must be implemented.

De Landtsheer and Van Lamsweerde (2005) presents a catalogue of patterns on con-

fidentiality along two dimensions. One is concerned with the degree of appropriate

knowledge that must be kept confidential. The second is concerned with timing ac-

cording to which the knowledge must be kept confidential. Similar to De Landtsheer

and Van Lamsweerde (2005), BCF in Circus helps to formally specify the degree of

confidentiality that must be maintained about a piece of data. BCF in Circus can address

timing related confidentiality properties in terms of the order of states.

Both De Landtsheer and Van Lamsweerde (2005) and the generic patterns proposed

in this thesis share the pattern “do not reveal the exact value of a variable”. Further, De

Landtsheer and Van Lamsweerde (2005) proposed the pattern Confidential lower/up-

per bound which states that “An agent should not know that the value of some state variable

is below/above some treshold”, which has been dissected into two generic patterns and

included in the catalogue of generic patterns in Table 5.9. Also, De Landtsheer and Van

Lamsweerde (2005) proposed the pattern Fully confidential value which states “An

agent should not be able to infer any property about the value of some state variable”.

This pattern is just a conjunction of many other patterns proposed in his catalogue.

The timing related confidentiality patterns by De Landtsheer and Van Lamsweerde

(2005, p. 45) include Confidential now that states that “In the current state, an agent

should not know about some state variable”; Confidential until expiration date that states

that “An agent should not know about some state variable until some delay has expired”;

182

5.8 Patterns in software engineering

Confidential unless/until condition states that “An agent should not know about some

state variable unless or until some condition becomes true”; Confidential forever that states

that “An agent should never know about some state variable”. Both confidentiality until a

condition is met (see Section 6.2.4) and confidentiality forever are properties that can

also be specified using BCF in Circus.

5.8 Patterns in software engineering

In the early 1990s, there was an interest in the software engineering community to

identify situations in which design knowledge could be represented and shared between

practitioners (Fowler, 1997, p. 5). Engineers explored the possibility of using the pattern

language approach by Alexander et al. (1977) to represent knowledge that can possibly

be shared. The OOPSLA workshops (Meyrowitz, 1986) provided an early platform for

such discussions. Currently, the Pattern Languages of Programs (PLoP) conference

series (The Hillside Group, 2017) is one of the annual platforms for such discussions.

Alexander et al. (1977) introduced the notion of pattern languages in the context of

building architecture where the elements of the language were entities called patterns.

He defined the term ‘pattern’ as follows.

“Each pattern describes a problem which occurs over and over again in our envir-

onment, and then describes the core of the solution to that problem, In such a way

that you can use this solution a million times over, without ever doing it the same

way twice.” (Alexander et al., 1977, p. x)

In the field of software engineering, pattern based approaches has been discussed with

respect to various stages of a system development process. Some of the different kinds

of patterns used in a system development process include music design patterns (Bouaziz

et al., 2011), design patterns6 (Andrews et al., 2008; Angkasaputra and Pfahl, 2004;

6 “Capturing expert-knowledge and providing proven solutions for recurring problems is the basic idea of software (design)
patterns.” (Schumacher, 2001, p. 4)

183

5 A systematic literature search for case study material

Baggetun et al., 2004; Bézivin et al., 2005; Fiadeiro and Andrade, 2001; Gamma et al.,

1995; Gangemi et al., 2007), learning flow patterns (Bote-Lorenzo et al., 2004), requirement

patterns (Maiden, 1998), process patterns (Ambler, 1998; Ambysoft and Ambler, 1998; Ha-

gen and Gruhn, 2004; Ribó and Franch, 2002; Tran et al., 2006), analysis patterns (Fowler,

1997; Hahsler and Informationswirtschaft, 2001; Kodaganallur and Shim, 2006; Purao

et al., 2003), collaboration patterns (Coplien, 2004), re-factoring pattern (Andrews et al.,

2008), architecture patterns (Buschmann et al., 1996; Shaw and Garlan, 1996), architecture

reference patterns (Buschmann et al., 1996), improvement patterns (Appleton, 1997) and

organizational patterns (Campbell, 2004; Lukosch and Schümmer, 2006; Sommerville,

2016).

Patterns have also been utilized in formal methods technology. Freitas and Whiteside

(2014) proposed proof tactics to facilitate less experienced proof engineers to attempt at

difficult lemmas, reducing the proof cost and effort in the process.

5.9 Limitations of the study

There are a number of inherent limitations in the process adopted in compiling the

catalogue of confidentiality properties. Firstly, during the literature search, it was

found that often the search results included papers that discussed legal aspects of

privacy and confidentiality while those papers had no discussions on confidentiality

requirements. Combining this reality with our inclusion criteria where we select only

the first 20 results from each “indexing service × keyword phrase” pair meant that

papers discussing confidentiality requirements might have been pushed further down

the stack past the first 20 results.

The interpretations proposed for some vague confidentiality requirements may be

reasonable. However, those interpretations are still hand-crafted and hence need

further evidence to strengthen the argument that the patterns derived from such

interpreted confidentiality requirements are important. Rather than reading all 490

search results word for word, the effort was concentrated on locating any discussions of

184

5.9 Limitations of the study

confidentiality properties both in the abstract as well as around each paragraph where

the keyword ‘confidential’ was located.

The search functionality in Mendeley software was used to locate keywords in each

paper. Such an approach was necessary because of the limited time frame available

for this Ph.D. However, some useful discussions of confidentiality properties that did

not contain the specific word ‘confidentiality’ might have been missed, as a result of

following this process.

Finally, documents that cannot be indexed by Mendeley would not have been included

in the search results that Mendeley produced. One or more potential discussions on

confidentiality properties might have been overlooked because of this. It must be noted

here that the decision to use Mendeley was a personal choice and has to do with its

ease of user for the author.

185

5 A systematic literature search for case study material

5.10 Summary

The main objective of this chapter is to derive a set of generic patterns of confidentiality

requirements from literature. Such a set is required to fill a vacuum in terms of a

benchmark of confidentiality requirement patterns that can be used in testing tools that

analyse systems for confidentiality.

In this chapter:

• a catalogue of confidentiality requirements from literature was compiled.

• a literature related set of patterns of confidentiality requirements were derived.

• generic patterns of confidentiality requirements were identified and formalized.

• existing literature specific to patterns of confidentiality requirements, as well

as the emergence and use of patterns in software engineering in general was

discussed.

186

6 Evaluation of mechanisation

6.1 Introducing

The objective of this chapter is to demonstrate that the CFAT tool developed under this

research is practically applicable. This chapter presents an evaluation of the mechanisa-

tion of BCF in Circus described in Chapter 3. The evaluation of the mechanisation will

involve analysing systems with different patterns of confidentiality requirements, that

has been identified in Section 5.2.

In Chapter 5, a literature search was carried out to identify case studies that discusses

systems with a confidentiality requirement. However, none of the papers identified in

Chapter 5 contained a full system description or a full formal specification of a system,

discussed in that paper. Further, none of the papers presented a confidentiality analysis

using BCF. Papers by De Landtsheer and Van Lamsweerde (2005) and Howitt (2008)

describe confidentiality analysis of systems based on other modelling techniques. In

Section 2.2, a discussion of the differences between those techniques and the approach

adopted by BCF in Circus (Banks, 2012) has been presented.

In the absence of a literature-supported full formal specifications of systems, hand-

crafted possible system requirement specifications for systems had to be developed.

187

6 Evaluation of mechanisation

We will work through an example of each identified pattern where we will:

1. introduce a hand-crafted set of requirements for a system.

2. illustrate the functional structure of the system using a use-case diagram.

3. construct a Circus specification of the system manually.

4. specify the confidentiality requirements of the system using BCF in Circus.

5. construct a CFAT specification of the system based on the Circus specification and

confidentiality requirement.

6. analyse the CFAT specification using the mechanisation tool to check the consist-

ency of the requirements defined in the system.

There is no formal mapping between the use case and the formal model of the system

captured in the Circus specification. The back propagation laws of BCF in Circus (Banks,

2012, p. 138) does not contain a back propagation law that can be used on parallel

processes. And so, currently BCF in Circus can only be used to evaluate sequential

access systems. Therefore, in all cases it is assumed that the systems modelled in this

chapter are single user access.

The confidentiality requirements used in the analysis carried out in this chapter are

deduced from the discussion of confidentiality in the published papers. This exercise

has been carried out in Chapter 5 and the deduced confidentiality properties are listed

in Table 5.3. An informal approach has been used to state the requirements of each

system in natural language and then a Circus specification has been presented for that

system.

In order to analyse each identified confidentiality requirement pattern CP, we will

model a system Y described in one of the referenced papers RP in Table 5.3. Each

confidentiality requirement CR stated for Y in Table 5.3 has been derived from the

confidentiality properties discussed in RP. A CP represents a generalized definition for

each CR. Table 5.2 groups all confidentiality requirements based on the CP which they

188

6.1 Introducing

The concept of BCF is that at least one alternative similar observation exists for

each observation of a state variable in the original system. BCF notation uses the

decoration tilde (˜) as in S̃ to specify a similar state space of a given state schema S.

However, this notation is not supported by the CZT tool (Malik and Utting, 2005),

which is used for type and syntax checking the Circus specification of the system.

A similar state space of a state schema S can be specified in the Circus notation

using LATEX by subscripting the schema name with a number such as by writing S9.

Each variable x in the new schema S9 can then be referenced using the notation x9.

It must be highlighted that in all the formal statements presented in this chapter,

x9 has been used to represent each state variable x in the twin state space.

It must be noted here that the subscript 9 is an arbitrary choice that does not clash

with anything else as long as the restrictions on the naming conventions are in

place as discussed on Page 100. It must also be noted that using the subscript 9 is a

coding trick to enable syntax and type checking by the CZT tool. It is important to

declare this only as a coding trick because the semantics of this coding trick does

not correctly capture the BCF concept ‘at least one alternative similar observation exists

for each observation of a state variable in the original system’.

Encoding the concept of the twin or shadow state using the Circus notation

represent. Each case study analysis in this chapter involves using the mechanisation to

verify the consistency of a BCF in Circus based formal model of Y against an associated

CR.

The BCF in Circus based formal specification of a system contains syntactic decorations

that are not supported by both CZT as well as the Isabelle theorem prover. Therefore,

for the purposes of type and syntax checking the formal specification using CZT and

for theorem proving using the Isabelle theorem prover, syntactic renaming of the twin

state variables in the formal specification are required. Recall that Section 3.2.4 in

189

6 Evaluation of mechanisation

Page 100 discusses all the variables of the system specification that must be renamed

by the user during the submission of the system specification to the mechanised tool

as well as that will be renamed when files are generated by the mechanised tool. The

explanation on Page 189 recalls how the twin or shadow state space is encoded in a

Circus specification generated by the mechanised tool so that the specification can be

type and syntax checked using CZT.

6.2 Mechanised analysis of confidentiality patterns

In Chapter 5, a set of patterns has been extracted from the confidentiality requirements

described in a systematically compiled literature set. In this section, we will discuss the

mechanised analysis of systems having confidentiality properties with one or more of

those patterns.

The following steps will be carried out in each case study.

• Present the system requirement specification of the case study system.

• Develop and describe a possible formal specification of the functionality require-

ments of the case study system using the Circus notation.

• Discuss a possible formalisation of the confidentiality requirement(s) of the case

study system using the extended Circus notation.

• Describe how the mechanisation in Chapter 3 can be used to analyse the formal

specification.

• Present and discuss the results of the mechanised analysis of the formal specifica-

tion that integrates the confidentiality requirement.

The above steps will be discussed in detail for the first pattern. For the subsequent

patterns, the pattern and subsequently the results from analysing a system with a

confidentiality property having that pattern will be present. Recall from Section 6.1

that BCF in Circus only supports sequential access systems and therefore in all the

190

6.2 Mechanised analysis of confidentiality patterns

analysis carried out in this chapter, systems will be modelled with sequential access.

Further, recall that all the derived confidentiality patterns are listed in Table 5.2 and all

the identified confidentiality requirements are listed in Table 5.3.

6.2.1 Mechanised analysis of a system having a confidentiality property that
reflects pattern CP1

The first case study to evaluate the mechanisation of BCF in Circus involves analysing

a system with a confidentiality property that reflects the pattern CP1. The confiden-

tiality requirement CR18 has been chosen as an adhoc choice for this analysis. The

confidentiality pattern CP1 states:

do not reveal the relation between x and y in S

For this analysis, a simple accounts system for a bank will be modelled. The system

will be called the Bank information system. The confidentiality property modelled

in this system has been borrowed from discussions by both Parveen et al. (2015) and

Lapadula et al. (2008).

6.2.2 System requirement specification - Bank information system

A hand-crafted system requirement specification of a fictitious Bank information system

is given below. The functions listed in the Bank information system are borrowed from

commonly used use cases by Eckel (2005), Skon (2016) and Pearce (2017) for academic

discussions in the context of a Bank information system.

Organisational structure

A bank balance is represented by a number.

A customer is a person.

191

6 Evaluation of mechanisation

The structures of a system requirement specification may be mapped onto structures

of the Circus notation. Table 6.1 shows such a mapping. Every system requirement

specification presented in this section has been structured accordingly for ease of

readability. It must be noted that each developed Circus specification will be just

one possible implementation of the original system.

System requirement specification Structures of the Circus notation

Organisational structure

(entities and attributes)

data types, data objects,

global constants

Organisational rules and regulations state invariants

Operations performed in the organisation actions

Who can perform the functions channelsets

(representing user roles)

Which staff are included in each user role state invariants that define

elements of sets

Table 6.1: Mapping a system requirement specification to structures in a
Circus specification

Mapping between the structures of a system specification and the Circus notation

192

6.2 Mechanised analysis of confidentiality patterns

The company uniquely identifies the person who is the manager of the company.

The company uniquely identifies the person who is the current user of the sys-

tem.

The company maintains a list that contains every customer of the company.

The company maintains a list that contains every cashier of the company.

The company maintains a list that contains every user of the company.

The company maintains a bank balance for each existing customer.

Organisational rules

The same person cannot be a customer and a cashier and and the manager.

Every user must be either a customer or a cashier or the manager.

The current user must be included in the user list.

User roles in the system

The banking staff user role includes the manager and all users who are cashiers.

The cashier user role includes all users who are cashiers.

The customer user role contains all users who are customers.

Operations, user roles and permissions

Table 6.2 lists all the system operations, and the specific permissions on those

operations by user role. Figure 6.1 presents a tripartite graph that shows the

user-to-role and role-to-permission assignments in the Bank information system.

User roles and how it is utilised in BCF in Circus for analysing data leakage in a

system is discussed later in Figure 6.3.

193

6 Evaluation of mechanisation

User roles

Operation identifier

Operations allowed on the Bank information system

Ba
nk

in
g

St
af

f

C
as

hi
er

C
us

to
m

er

Find own balance

Find the account balance of oneself.

3

Find customer balance

Find the account balance of any customer.

3

Record new customer

Record the personal details of a new customer.

3

Deposit to customer

Calculate and Update the bank balance of a particular

customer which is derived using the customers existing

bank balance and value deposited by the customer.

3

Withdraw from customer

Calculate and Update the bank balance of a particular

customer which is derived using the customers existing

bank balance and value withdrawn by the customer.

3

Table 6.2: Roles and Permissions Matrix of the Bank information system

194

6.2 Mechanised analysis of confidentiality patterns

user user role permission

Cashier

Manager

Customer

Banking staff

Customer

Cashier

Record_new_customer

Deposit_to_customer

Withdraw_from_customer

Find_customer_balance

Find_own_balance

Figure 6.1: Tripartite graph of user-to-role and role-to-permission
assignments in the Bank information system

Figure 6.2 presents a graphical summary of the system requirement specification of the

Bank information system using a use case diagram.

Bank information system

View own
customer balance

View any
customer balance

Register new
account

Customer

Manager

Cashier

Withdraw from
any customer

account

Deposit to any
customer account

Violates
confidentiality policy

Does not violate
confidentiality policy

Figure 6.2: Use case diagram for the Bank information system

195

6 Evaluation of mechanisation

6.2.3 Formal specification - Bank information system

The actions in Table 6.3 addresses the operations of the Bank information system and

reflects the system requirement specification of the Bank information system. The basic

type in Table 6.5, state variables in Table 6.6 and state invariants in Table 6.7 reflect

organisational structures that are described in the system requirement specification of

the Bank information system in Section 6.2.2.

It is important to note that the action Init in Table 6.3 is not in the use case diagram in

Figure 6.2. The action Init initializes the state variable that records the identifier of the

customer whose information is being requested from the system. This is an internal

initialization function.

Table 6.3: Bank information system - Description of the Circus actions

Action Operation performed by the action

NewAccount Allows a cashier to create a customer bank account in the

system.

DepositMoney Allows a cashier to deposit money to an existing bank ac-

count.

WithdrawMoney Allows a cashier to withdraw money from an existing bank

account.

GetMyBalance Allows a customer to view his/her own account balance.

The customer provides his/her person identifier which the

operation uses to retrieve the account balance.

GetAnyCustBalance Allows a cashier to view the account balance of any customer.

196

6.2 Mechanised analysis of confidentiality patterns

6.2.3.a User roles

As detailed on page 201, user roles are modelled in BCF in Circus using channelsets.

Table 6.2 includes the user roles that are assumed as common in a typical Bank

information system. These user roles in the specification of the Bank information

system has been modelled using channelsets as shown in the Circus specification

of the system in Figure 6.10 and these channelsets are listed in Table 6.4 with their

descriptions.

Table 6.4: Bank information system - Description of the user roles

channelset as user role Functions allowed for the user role

Customer a user role where users have the right to view their own

bank balances

Cashier a user role where users have the right to create a new

customer account with the information provided by the

customer, carry out a deposit or a withdraw transaction

on any customer account and also find the balance of any

customer account.

BankingStaff a user role where users have the right to view the balance

of any customer account.

197

6 Evaluation of mechanisation

6.2.3.b Types

A basic type that contains the identifiers of all the possible people in the system is

defined.

Table 6.5: Bank information system - Description of the basic types

Basic type Description

PERSON The set of all possible person identifiers.

6.2.3.c State variables

The following are organisational components which we believe are common in a bank-

ing environment. A state variable has been declared to represent each organisational

component within the system specification. The description of these state variables are

included in Table 6.6.

Table 6.6: Bank information system - Description of the state variables

State variable Description

balance A function that identifies the balance of a customer, if any.

managers The set of identifiers of the managers.

cashiers The set of identifiers of the cashiers.

customers The set of identifiers of the customers.

loggedIn The set of identifiers of the users who are logged into the system.

198

6.2 Mechanised analysis of confidentiality patterns

loginUser The identifier of the person who is currently using the system.

reqCustomer The identifier of the person about whom informaiton is being

requested from the system.

6.2.3.d State invariants

We assume certain system constraints that must be respected throughout the life of

the system. These constraints reflect the relevant organisational rules that we believe

are typical in an accounts system in a bank. These constraints are defined as state

invariants1 in the system specification.

Table 6.7: Bank information system - Description of the state invariants

State invariants Description

loginUser ∈ loggedIn

The current user must be from the set of users logged into the system.

loggedIn ⊆ (customers ∪ cashiers ∪ managers)

The current user of the system must either be from the group of customers,
the group of cashiers or the manager.

(customers ∩ cashiers) = {}

The same person cannot be a customer and a cashier at the same time.

(customers ∩ managers) = {}

1 A state invariant of a system is a property that holds in every reachable state of the system (Kirby et al., 1999,
p. 110).

199

6 Evaluation of mechanisation

The same person cannot be a customer and the manager at the same
time.

(cashiers ∩ managers) = {}

The same person cannot be a cashier and the manager at the same time.

dom (balance) ⊆ customers

Every person who has a bank balance recorded in the system must be a
customer.

200

6.2 Mechanised analysis of confidentiality patterns

A user role is a named instance where a set of permissions are assigned to a group of

users to perform a set of tasks. In the Circus notation, a user may perform tasks on a

system through communications allowed on a system, that are made possible through

channels. In this regard, a set of permissions are synonymous with a set of channels

or a channelset in the Circus notation. Therefore, a channelset is used to model a

user role in a system. A user may belong to one or more user roles. For example, in

Figure 6.3 user x belongs to the user role A whereas user y belongs to both user roles A

and B.

The observations that a user can make by executing a function depend on the set of

authorized permissions for that user. One way BCF in Circus can be used to analyse

a system for data leakage is by comparing the set of prohibited observations for a

particular user u against the set of observations the user u can make by executing the

system.

A user having a particular

 user role belongs to a

 group of users that can execute the

 functions allowed for that user role and

 make observations from those executions.

x and y
are users

in the user
group

y is a user
in the user

group

user x

user y

f1

f2

f3

f4

f5

f2

f5u
se

r
ro

le
 A

u
se

r
ro

le
 B

observations from executing f1

observations from executing f3

observations from executing f4

observations from executing f5

observations from executing f2

Figure 6.3: User roles and user observations

In the ongoing Bank information system example, the identity of the specific user who

is currently logged into the system is represented by the variable loginUser and has

the data type PERSON. The group of users that belong to the user role employees is

represented by the variable employees and has the data type F PERSON.

Data leakage is analysed with respect to the user roles held by a user

201

6 Evaluation of mechanisation

6.2.3.e Formal specification of the Bank information system

The full formal specification of the Bank information system is presented in Figure 6.4.

202

6.2 Mechanised analysis of confidentiality patterns

(This page intentionally left blank)

203

6 Evaluation of mechanisation

[PERSON]

State
balance : PERSON 7 7→N

reqCustomer, loginUser : PERSON
loggedIn, customers, cashiers, managers : F PERSON

dom (balance) ⊆ customers
(customers ∩ cashiers ∩ managers) = {}
loggedIn ⊆ (customers ∪ cashiers ∪ managers)
loginUser ∈ loggedIn

HideBalCustomer
ΞState

∃ State 9 •
loginUser 6= reqCustomer ∧
loginUser 6∈managers ∧
loginUser 6∈ cashiers ∧
reqCustomer ∈ dom (balance)⇒

(balance reqCustomer) 6= (balance9 reqCustomer9)

channel newBalanceIn, mrbalOut, showBalanceOut, myBalanceOut : N

channel withdrawAmountIn, depositAmountIn : N

channel withdrawCustomerIn, depositCustomerIn, newCustomerIn : PERSON
channel rubIn, customerIn : PERSON

channelset BankingStaff == {| customerIn, showBalanceOut |}
channelset Cashier == {|withdrawAmountIn, customerIn, showBalanceOut,

depositAmountIn, depositCustomerIn, withdrawCustomerIn,
newCustomerIn, newBalanceIn |}

channelset Customer == {|myBalanceOut |}

process Bank information system =̂ begin

state State

Init =̂ reqCustomer := loginUser

NewAccount =̂ var newBalance : N;
newCustomer : PERSON •
newBalanceIn?newBalance−→
newCustomerIn?newCustomer−→
((newCustomer? 6∈ dom (balance) ∧ loginUser ∈ cashiers)N

balance := balance⊕
{(newCustomer? 7→ newBalance?)})

DepositMoney =̂ var depositAmount : N;
depositCustomer : dom (balance) •
depositAmountIn?depositAmount−→
depositCustomerIn?depositCustomer−→
((loginUser ∈ cashiers)N

balance := balance⊕
{(depositCustomer? 7→

(balance depositCustomer?− depositAmount?))})

Figure 6.4: Specification of Bank information system - code block 1 of 2

204

6.2 Mechanised analysis of confidentiality patterns

WithdrawMoney =̂ var withdrawAmount : N;
withdrawCustomer : dom (balance) •
withdrawAmountIn?withdrawAmount−→
withdrawCustomerIn?withdrawCustomer−→
((loginUser ∈ cashiers)N

balance := balance \
{(withdrawCustomer? 7→

(balance withdrawCustomer? + withdrawAmount?))})

GetMyBalance =̂ reqCustomer := loginUser;
((loginUser ∈ customers ∧

loginUser ∈ dom (balance))N
myBalanceOut !(balance loginUser)−→ Skip)

GetAnyCustBalance =̂ var customer : PERSON •
customerIn?customer−→
reqCustomer := customer?;
((loginUser ∈ cashiers ∨ loginUser ∈ managers)N

showBalanceOut !(balance customer?)−→ Skip)

HideBalCustomer =̂ HideBalCustomer

UserOptions =̂




NewAccount
@ DepositMoney
@ WithdrawMoney
@ GetAnyCustBalance
@ GetMyBalance




; HideBalCustomer

• 〈Init〉 ; µY • 〈(UserOptions ; Y)
〉

end

Figure 6.4 (cont.) : Specification of Bank information system - code block 2 of 2

205

6 Evaluation of mechanisation

6.2.4 Formalising the confidentiality requirement

In this section, a possible formalisation of the confidentiality requirement CR18 is

specified using the Circus notation. The general definition of CP1 states:

do not reveal the relation between x and y in S

The confidentiality requirement CR18 of the Bank information system reads:

CR18 : permission to view the balance of a customer should be given only to an

authorised user.

The confidentiality requirement CR18 can be re-phrased as follows, to align with the

definition of CP1.

if the user is not authorised

then do not reveal the association

between a customer and his account balance

In this particular confidentiality requirement, the condition to hide the association

between A and B is satisfied if the user is not authorised. Tschantz and Wing (2008)

describes such a requirement as a conditional confidentiality requirement that contains a

conditional information flow where information flow occurs only when some condition is

met at runtime (Tschantz and Wing, 2008, p. 108).

Identify the condition for confidentiality. Papers published by Parveen et al. (2015, p. 2)

and Lapadula et al. (2008, p. 713,714) that contain confidentiality requirements

with CP1 does not mention which set of users are authorised to view the data.

Therefore, in the case of an accounts system at a bank, it is assumed that the

current user of the system loginUser is authorised to view the balance of the bank

account B which belongs to the customer reqCustomer, if one of the following

conditions are satisfied.

206

6.2 Mechanised analysis of confidentiality patterns

• loginUser is the manager

• loginUser is a cashier

• loginUser and reqCustomer are the same

If none of the above conditions are satisfied, then the balance of the bank account

B must never be revealed to the user loginUser. It must also be ensured that the

account holder reqCustomer has a bank balance recorded in the bank balance

register balance in the system. This combined condition can be written follows.

loginUser is not the manager

and loginUser is not a cashier

and loginUser and reqCustomer are different

and reqCustomer has an associated bank balance record in balance

The above condition may be formalised using the Circus notation as follows.

loginUser 6∈managers

∧ loginUser 6∈ cashiers

∧ loginUser 6= reqCustomer

∧ reqCustomer ∈ dom balance

Identify the confidential data. BCF states that whenever a user can observe the value of

a variable x in the normal system state space he/she can assume that the shadow

system must also have the same value for its twin variable x̃.

In order to prevent the system from revealing the exact value of a particular

variable, we must exclusively state a separation between the value of the variable

in the original system and that in the shadow system. In this scenario we may

write:

x 6= x̃

207

6 Evaluation of mechanisation

In the case of the Bank information system, the value we must not reveal is:

balance reqCustomer

where balance is a function between a customer identifier and the bank balance

of that customer if any and reqCustomer is the identifier of the customer whose

bank balance is being requested. To state a minimum separation between the

value (balance reqCustomer) and its twin counterpart (balance9 reqCustomer9) we

may write:

(balance reqCustomer) 6= (balance9 reqCustomer9)

Build the confidentiality predicate. The condition for confidentiality and the separation

defined for the confidential data are combined to come up with a formal definition

for the confidentiality requirement CR18 . The derived formal definition is shown

below as a Z schema. As described in page 189, a subscript 9 is used to represent

the state schema of the twin system as well as the variables from the twin system.

HideBalCustomer

ΞState

∃ State 9 •
loginUser 6= reqCustomer ∧
loginUser ∈ customers ∧
reqCustomer ∈ dom (balance)⇒

(balance reqCustomer) 6= (balance9 reqCustomer9)

The schema HideBalCustomer includes a confidentiality constraint that must be

enforced on the state space of a particular state or states of the Bank information

system where HideBalCustomer is observed.

A pre-requisite for using BCF in Circus to analyse systems for confidentiality is to

understand how a formalized confidentiality requirement can be integrated into a

208

6.2 Mechanised analysis of confidentiality patterns

Circus specification.

6.2.5 Structure of the Circus specifications used in the mechanised analysis

A confidentiality integrated Circus specification is a Circus specification which includes

one or more confidentiality annotations2. Figure 6.5 shows how a confidentiality

integrated Circus specification has been structured for the purposes of the mechanised

analysis carried out in this chapter. The structures CA schema name , CA Action and

CA predicate are introduced into a Circus specification to integrate the confidentiality

properties of a system within its specification. A detailed description of the Circus

notation and how its structures can be used to model a system is given in Appendix A.1.

Here, a summarised description of the main structures of a Circus specification are

presented, which has been utilized in the case study specifications in this chapter. It

must be noted that one can produce other possible specifications of the same system

using the Circus notation.

The highlighted words process, begin, state and end in Figure 6.5 are Circus keywords.

The description of the place-holders in Figure 6.5 are given below.

TypeDeclarations The place-holder for the names of the Basic types defined

in the specification.

StateVariableDeclarations The place-holder for the declarations of state variables in

the system.

StateInvariants The place-holder for the state invariants that are required

in the system state.

StateName The place-holder for the name assigned to the schema that

encodes the state of the system.

ChannelDefinitions The place-holder where channels3 are defined in the spe-

2 A brief introduction to confidentiality annotations (Banks, 2012, p. 105) is discussed in Section 2.6.2.

3 The definition of channels and channelsets in the Circus notation are discussed in (Freitas, 2005, p. 13) .

209

6 Evaluation of mechanisation

TypeDeclarations

[StateName]
StateVariableDeclarations

StateInvariants

CA schema name
ΞStateName

CA predicate

ChannelDefinitions

ChannelsetDefinitions

process ProcessName =̂ begin
state StateName
Action 1 =̂
....
Action n =̂

CA Action =̂ CA schema name
• 〈MainAction〉

end

Figure 6.5: Structure of the Circus specifications used in the mechanised analysis

210

6.2 Mechanised analysis of confidentiality patterns

cification.

ChannelsetDefinitions The place-holder where channelsets3 are defined in the

specification.

ProcessName The place-holder for the name assigned to the Circus process

that is defined in the specification.

Action 1 , ... , Action n Place-holders for the names of the Circus actions that are

defined in the system.

CA schema name The place-holder for the schema name that is defined to

embed the confidentiality predicate.

CA Action The place-holder for the name of the Circus action that

is defined to use the CA schema name schema as a Circus

action.

CA predicate The place-holder for the formal predicate that represents a

confidentiality property of the system being formalised.

MainAction The label MainAction represents the place-holder for the

nameless main action that defines the process behaviour.

For the purposes of the mechanised analysis in this chapter

we define the main action as a composite action that uses

Action 1 to Action n and CA Action.

6.2.6 Using the mechanised tool to analyse the system

The first step in using the mechanisation developed in this thesis, is to submit the

BCF in Circus based formalization of the Bank information system (see Figure 6.10) to

the CFAT tool in the CFAT format. Next, follow the steps in Figure 3.6 to analyse the

211

6 Evaluation of mechanisation

submitted specification using the mechanisation. The possible results from the analysis

and how they can be interpreted are described in Section 3.2.6.

6.2.7 Strengthening a weak specification

Recall from Section 4.3 that a specification is referred as a ‘weak specification’ if

the specification is seemingly incorrect but the mechanised back propagation of the

specification using BCF in Circus results in a predicate that can be simplified to true.

The Bank information system specification in Figure 6.4 has a fundamental weakness in

its role specification, where the three-way intersection is not strong enough to rule out

the same user playing two roles at once. This subsection explores the specific weakness

and its solution.

Assume that a fictitious organisation has the user roles A, B and C. Further, assume

that the organisation has a particular piece of confidential data CI.

A C

B

r

b

a c

Figure 6.6: Intersection of user roles A, B and C

212

6.2 Mechanised analysis of confidentiality patterns

The seemingly correct formalisation of organisational rules. Assume the following or-

ganisational rules.

• Rule 1 - CI can be visible to users having the user role B and the user role C.

• Rule 2 - CI must not be revealed to users having the user role A.

• Rule 3 - Every user in the organisation must belong to either A or B or C.

• Rule 4 - A user cannot occupy more than one user role in the organisation.

Rule 1 was formalised as;

user ∈ (B∪ C)⇒ show CI (6.1)

and Rule 2 was formalised as;

user ∈ A⇒ conceal CI (6.2)

and Rule 3 was formalised as;

user ∈ (A∪ B∪ C) (6.3)

and Rule 4 was formalised as;

A∩ B∩ C = {} (6.4)

where user is the user who was requesting access to the confidential information

CI, ‘show CI’ is a specification that allows the value of CI to be revealed and

‘conceal CI’ is a specification that states that the value of the state variable CI

must not be revealed in the current state. The consistency of the requirements in

the specification, that included the formalisations Equation (6.1), Equation (6.2),

Equation (6.3) and Equation (6.4), could not be verified using the proposed

mechanisation.

213

6 Evaluation of mechanisation

Strengthening the specification. In order to prove the consistency of the requirements

in the formalised specification of the system, the formalisation of Rule 2 had to

be strengthened by replacing Equation (6.2) with Equation (6.5) as follows.

user 6∈ (B∪ C)⇒ conceal CI (6.5)

Upon further investigation, it was found that the original formalisation of Rule 4

in Equation (6.4) only guaranteed that r in Figure 6.6 was empty. In this scenario,

it may be possible that one or both of the subsets x and z might not be empty.

In such a scenario, Equation (6.1) and Equation (6.2) will contradict each other.

Strengthening the formalisation of Rule 2 worked because Equation (6.5) did not

enforce Rule 2 on subsets x and z. However, this means that there might be the

possibility of data leakage should there be a user who belonged to x or z and who

was requesting for CI based on Rule 1. The mechanisation had detected this data

leakage.

The solution. The correct formalisation of Rule 4 must define the sets x, y, z and r as

empty to ensure that a user cannot occupy more than one user role. For this,

all possible pairwise intersections for the user roles in the organisation must be

defined as empty as shown in Figure 6.7.

A B A C B C

A∩ B = {} A∩ C = {} B∩ C = {}

Figure 6.7: Pairwise disjoint statements for users roles A, B and C

If the pairwise disjoint statements in Figure 6.7 are used as invariants in the

formal specification of the system, then the consistency of the requirements in the

system against the confidentiality property in Equation (6.2) can be verified.

214

6.2 Mechanised analysis of confidentiality patterns

6.2.8 An example of strengthening a weak specification

Consider a fictitious hand-crafted bidding system where the value of the highest bid

must never be revealed to a customer. Possible formal specifications of the system are

presented in Figure 6.8 and Figure 6.9. Figure 6.8 presents a ‘weak specification’ of the

system whereas the specification in Figure 6.9 presents a strengthened specification.

In both Figure 6.8 and Figure 6.9, the following representations are followed. The free

type PERSON represents the identifiers of all the users who can use the system which

includes alice, bob, carol, dave and eve. The loginUser is the identifier of the user who is

currently using the system. The groups of users in the system include loggedIn which

includes all the users currently using the system, customers that includes the identifiers

of all the customers, cashiers that includes the identifiers of all the cashiers, managers

that includes the identifiers of all the managers in the system. The system requires that

the set of logged in users must always be from the combined set of customers, cashiers

and managers. The system has two user roles where Customer includes all the users in

customers and Staff includes all users in both cashiers and managers. The system has

a function called RecordHighestBid which can be used to record the highest bid and

ShowHighestBid which shows the highest bid recorded in the system.

Assume that the confidentiality requirement of the system states that the value of the

highest bid highestBidvalue must never be revealed to the customers in the system. The

confidentiality requirement may be formalised using the following schema.

HideHighestBidOriginal

ΞState

∃ State 9 •
loginUser ∈ customers⇒

highestBidvalue 6= highestBidvalue9

The specifcation that includes HideHighestBidOriginal is shown in Figure 6.8. When

simplifying the predicate generated from back propagating the specification Figure 6.8,

215

6 Evaluation of mechanisation

the Isabelle theorem prover highlights that there is contradiction in the predicate. This

is because the triple intersection invariant
customers ∩ cashiers ∩ managers = {}

in the following State schema of the specification in Figure 6.8 does not define the three

sets as disjoint sets, as discussed on Page 214.

State

loginUser : PERSON

loggedIn, customers, cashiers, managers : F PERSON

highestBidvalue : N

loginUser ∈ loggedIn

loggedIn ⊆ (customers ∪ cashiers ∪ managers)

(customers ∩ cashiers ∩ managers) = {}

In this scenario, the loginUser who is currently logged into the system may belong

to both customers and either of cashiers or managers. The conflicting requirements

of the functions allowed for a user role assigned to a manager or a cashier and the

confidentiality requirements enforced on a user role assigned to a customer is detected

during the simplification of the predicate. This conflict is detected as a potential data

leakage.

Therefore, to make the requirements in the specification consistent, an upper limit is

defined on the users to whom the confidential data in the confidentiality requirement

can be revealed. The change is included in the modified confidentiality requirement

HideHighestBidModified as follows.

HideHighestBidModified

ΞState

∃ State 9 •
loginUser 6∈ (cashiers ∪ managers)⇒

highestBidvalue 6= highestBidvalue9

216

6.2 Mechanised analysis of confidentiality patterns

The confidentiality requirement in HideHighestBidModified states that highestBidValue

must never be revealed to anyone except a user who belongs to the combined set of

uses from customers and managers.

6.2.9 Strengthening the specification

In order to use HideHighestBidOriginal, the original formalisation of the confidentiality

requirement that aligns with the description of the confidentiality requirement, we

must modify the system state so that the sets customers, cashiers and managers are

disjoint from each other. The system state is modified as follows to include pairwise

intersections of the sets cashiers, managers and customers.

State

loginUser : PERSON

loggedIn, customers, cashiers, managers : F PERSON

highestBidvalue : N

loginUser ∈ loggedIn

loggedIn ⊆ (customers ∪ cashiers ∪ managers)

(cashiers ∩ managers) = {}
(customers ∩ managers) = {}
(customers ∩ cashiers) = {}

The modified specification of the system is included in Figure 6.9. The consistency of

the requirements in this strengthened specification can now be verified.

217

6 Evaluation of mechanisation

PERSON ::= alice | bob | carol | dave | eve

State
loginUser : PERSON
loggedIn, customers, cashiers, managers : F PERSON
highestBidvalue : N

loginUser ∈ loggedIn
loggedIn ⊆ (customers ∪ cashiers ∪ managers)
(customers ∩ cashiers ∩ managers) = {}

HideHighestBid
ΞState

∃ State 9 •
loginUser 6∈ (cashiers ∪ managers)⇒

highestBidvalue 6= highestBidvalue9

channel recordBidIn, showLastBidOut : N

channelset Customer == {| showLastBidOut |}
channelset Staff == {| recordBidIn, showLastBidOut |}

process SecretHighestBid =̂ begin

state State

RecordHighestBid =̂ var recordBid : N •
recordBidIn?recordBid−→
((loginUser ∈ cashiers ∨ loginUser ∈ managers)N

highestBidvalue := recordBid?)

ShowHighestBid =̂ ((loginUser ∈ cashiers ∨ loginUser ∈ managers)N
showLastBidOut !(highestBidvalue)−→ Skip)

HideHighestBid =̂ HideHighestBid

• µX •
((

〈RecordHighestBid〉
@ 〈ShowHighestBid〉

)
; 〈HideHighestBid〉 ; X

)

end

Figure 6.8: Specification of Secret Highest Bid - code block 1 of 1

(The weak specification)

218

6.2 Mechanised analysis of confidentiality patterns

PERSON ::= alice | bob | carol | dave | eve

State
loginUser : PERSON
loggedIn, customers, cashiers, managers : F PERSON
highestBidvalue : N

loginUser ∈ loggedIn
loggedIn ⊆ (customers ∪ cashiers ∪ managers)
(cashiers ∩ managers) = {}
(customers ∩ managers) = {}
(customers ∩ cashiers) = {}

HideHighestBid
ΞState

∃ State 9 •
loginUser ∈ customers⇒

highestBidvalue 6= highestBidvalue9

channel recordBidIn, showLastBidOut : N

channelset Customer == {| showLastBidOut |}
channelset Staff == {| recordBidIn, showLastBidOut |}

process SecretHighestBid =̂ begin

state State

RecordHighestBid =̂ var recordBid : N •
recordBidIn?recordBid−→
((loginUser ∈ cashiers ∨ loginUser ∈ managers)N

highestBidvalue := recordBid?)

ShowHighestBid =̂ ((loginUser ∈ cashiers ∨ loginUser ∈ managers)N
showLastBidOut !(highestBidvalue)−→ Skip)

HideHighestBid =̂ HideHighestBid

• µX •
((

〈RecordHighestBid〉
@ 〈ShowHighestBid〉

)
; 〈HideHighestBid〉 ; X

)

end

Figure 6.9: Specification of Secret Highest Bid - code block 1 of 1

(The strengthened specification)

219

6 Evaluation of mechanisation

6.2.9.a Strengthened formal specification of the Bank information system

The strengthened formal specification of the Bank information system is presented in

Figure 6.10.

220

6.2 Mechanised analysis of confidentiality patterns

(This page intentionally left blank)

221

6 Evaluation of mechanisation

[PERSON]

State
balance : PERSON 7 7→N

reqCustomer, loginUser : PERSON
loggedIn, customers, cashiers, managers : F PERSON

dom (balance) ⊆ customers
(cashiers ∩ managers) = {}
(customers ∩ managers) = {}
(customers ∩ cashiers) = {}
loggedIn ⊆ (customers ∪ cashiers ∪ managers)
loginUser ∈ loggedIn

HideBalCustomer
ΞState

∃ State 9 •
loginUser 6= reqCustomer ∧
loginUser ∈ customers ∧
reqCustomer ∈ dom (balance)⇒

(balance reqCustomer) 6= (balance9 reqCustomer9)

channel newBalanceIn, mrbalOut, showBalanceOut, myBalanceOut : N

channel withdrawAmountIn, depositAmountIn : N

channel withdrawCustomerIn, depositCustomerIn, newCustomerIn : PERSON
channel rubIn, customerIn : PERSON

channelset BankingStaff == {| customerIn, showBalanceOut |}
channelset Cashier == {|withdrawAmountIn, customerIn, showBalanceOut,

depositAmountIn, depositCustomerIn, withdrawCustomerIn,
newCustomerIn, newBalanceIn |}

channelset Customer == {|myBalanceOut |}

process Bank information system =̂ begin

state State

Init =̂ reqCustomer := loginUser

NewAccount =̂ var newBalance : N;
newCustomer : PERSON •
newBalanceIn?newBalance−→
newCustomerIn?newCustomer−→
((newCustomer? 6∈ dom (balance) ∧ loginUser ∈ cashiers)N

balance := balance⊕
{(newCustomer? 7→ newBalance?)})

DepositMoney =̂ var depositAmount : N;
depositCustomer : dom (balance) •
depositAmountIn?depositAmount−→
depositCustomerIn?depositCustomer−→
((loginUser ∈ cashiers)N

balance := balance⊕
{(depositCustomer? 7→

(balance depositCustomer?− depositAmount?))})

Figure 6.10: Specification of Bank information system - code block 1 of 2

222

6.2 Mechanised analysis of confidentiality patterns

WithdrawMoney =̂ var withdrawAmount : N;
withdrawCustomer : dom (balance) •
withdrawAmountIn?withdrawAmount−→
withdrawCustomerIn?withdrawCustomer−→
((loginUser ∈ cashiers)N

balance := balance \
{(withdrawCustomer? 7→

(balance withdrawCustomer? + withdrawAmount?))})

GetMyBalance =̂ reqCustomer := loginUser;
((loginUser ∈ customers ∧

loginUser ∈ dom (balance))N
myBalanceOut !(balance loginUser)−→ Skip)

GetAnyCustBalance =̂ var customer : PERSON •
customerIn?customer−→
reqCustomer := customer?;
((loginUser ∈ cashiers ∨ loginUser ∈ managers)N

showBalanceOut !(balance customer?)−→ Skip)

HideBalCustomer =̂ HideBalCustomer

UserOptions =̂




NewAccount
@ DepositMoney
@ WithdrawMoney
@ GetAnyCustBalance
@ GetMyBalance




; HideBalCustomer

• 〈Init〉 ; µY • 〈(UserOptions ; Y)
〉

end

Figure 6.10 (cont.) : Specification of Bank information system - code block 2 of 2

223

6 Evaluation of mechanisation

6.2.10 Results of the analysis

Table 6.8 presents the results of the mechanised analysis of the Bank information system.

The total time taken for the mechanised analysis is the combined total of the time it

takes to back propagate the specification using the CFAT tool and the time it takes to

simplify the generated predicate using the Isabelle theorem prover.

The process of back propagation calculates the user’s inference about the process state

at each step of the process execution (Banks, 2012, p. 186). The results of the back

propagation are dependent on the set of channels that is accessible to a user (see page

201). Since each user role in this system has access to a different set of channels, the

results of the mechanised analysis of the system is presented in relation to users in

each user role.

User role against which the system has being
analysed C

as
hi

er

C
us

to
m

er

M
an

ag
er

Time taken for back propagation 474 ms 1055 ms 641 ms

Time taken for predicate simplification 2043 ms 2194 ms 2120 ms

Total time taken for evaluation 2517 ms 3249 ms 2761 ms

Result of the mechanised evaluation Simplified Simplified Simplified

Table 6.8: Results of the mechanised analysis of the Bank information system

The results show that the tool saves time by executing the back propagation in a matter

of milliseconds. However, as demonstrated with a smaller specification in Section 4.2 ,

a manual application of the back propagation process will be very much slower while

also being error prone.

Table 6.8 shows that the analysis of the system with respect to the three user roles in the

Bank information system results in the outcome “Simplified”. Recall from Section 3.2.6

that if the predicate generated from back propagating a system specification can

224

6.2 Mechanised analysis of confidentiality patterns

be simplified, then according to BCF in Circus, there are no contradictions in the

specification of the system being analysed.

6.2.11 Negative testing

Positive testing is used to verify the functionality of a product whereas negative testing

is used to verify that a product does not do something (Oehlert, 2005, p. 58). In the

context of this thesis, positive testing is used to verify that there are no contradictions

between the functionality and confidentiality requirements in a system. Negative

testing uses cases that are expected to fail (Olan, 2003, p. 320).

”Negative testing is performed to ensure that the system is able to handle inconsist-

ent information. Negative acceptance tests (often expressed in the form of negative

scenarios) are increasingly recognized as a powerful way of thinking about require-

ments, possible conflicts, and identifying threats.” (Melnik et al., 2006, p. 41)

In the context of testing systems for data leakage related confidentiality requirements,

using BCF in Circus, a potential negative test will be to evaluate what will happen in a

scenario where one accidentally introduces a side channel that violates access control

requirements in a system. To simulate this scenario, an explicit side channel has been

introduced to the hand-crafted system specification of the Bank information system.

The basic approach is to:

introduce a channel based access to a piece of data d for a user role ur

while there is already an existing confidentiality requirement that exclusively

restricts the user role ur from having access to d.

Such a test is expected to fail since there is a contradiction in the defined access

parameters.

225

6 Evaluation of mechanisation

To introduce a side channel, a function with unconstrained access is introduced to

the system specification of the Bank information system. This new Circus action,

called GetBalance, allows any user using the system to view the account balance of any

customer. The formal specification of the action GetBalance is as follows.

GetBalance =̂ var rub : dom (balance) •
rubin?rub−→
reqCustomer := rub?;

mrbalOut !(balance rub?)−→ Skip

The confidentiality requirement HideBalCustomer restricts certain users from knowing

the balance of any customer while the Circus action GetBalance allows any user to know

the balance of any customer. Table 6.9 illustrates the results of a mechanised analysis of

a formal specification that includes GetBalance.

Table 6.9 shows that the analysis of the Bank information system specification (that

includes the side channel), with respect to the user role “Customer”, results in the

outcome “Time-out”. Recall from Section 3.2.6 that if the predicate generated from back

propagating a system specification does not reach a conclusion during simplification

but rather times-out, then nothing can be concluded about the presence or absence of

contradictions in the specification. As stated earlier in Section 3.2.6, the result can be

interpreted as provably true or provably false.

226

6.2 Mechanised analysis of confidentiality patterns

User role against which the system has
being evaluated C

as
hi

er

C
us

to
m

er

M
an

ag
er

Time taken for back propagation 374 ms 344 ms 350 ms

Time taken for predicate simplification 771 ms - 930 ms

Total time taken for evaluation 1145 ms 344 ms 1280 ms

Result of the simplification by the
theorem prover

Simplified Time-out Simplified

Table 6.9: Result of the mechanised evaluation of the Bank information system with a
side channel

6.2.12 Analysing other confidentiality patterns

Next , the confidentiality patterns CP2, CP3, CP4 and CP5 will be analysed in order.

6.2.12.a Analysing the confidentiality pattern CP2

The following is an analysis of a system with a confidentiality property that reflects the

confidentiality pattern CP2. The confidentiality requirement CR14 has been chosen as

an adhoc choice for this analysis.

The mechanised analysis of CR14 will be discussed using a hand-crafted system

requirement specification of a fictitious Phone book system of a Secret government

agency (Cerny and Alur, 2009b, p. 175). The fictitious Phone book system of a Secret

government agency has been used as a case study for confidentiality analysis by others

such as Lunt (1989) and Jajodia and Meadows (1995).

The full formal specification for the Phone book system is included in Appendix A.5.1.

Here, we present the requirement specification of the system and the results of analysing

227

6 Evaluation of mechanisation

the presented specification of the system. It must be noted that the formal specification

included in Appendix A.5.1 is just one possible implementation of the system using

the Circus notation.

6.2.12.a.1 Requirement specification of a system having CP2

The following requirement specification of the Phone book system has been divided

into the organisational structure, the organisational rules, the user roles in the system,

the operations and the user roles and permissions matrix of the system. Figure 6.11

presents a summarised use case diagram of the Phone book system.

Organisational structure

• Every engineer, secretary, official and the manager is an employee of the agency.

• The agency uniquely identifies the employee who is the manager of the

agency.

• The agency maintains a list that contains every engineer of the agency.

• The agency maintains a list that contains every secretary of the agency.

• The agency maintains a list that contains every official of the agency.

• The agency maintains a list that contains every official with a confidential

phone number in the agency.

• The agency maintains a phone number for a subset of existing officials in the

agency.

Organisational rules

• The same employee cannot be a secretary and an engineer.

• The same employee cannot be a secretary and the manager.

• The same employee cannot be an engineer and the manager.

228

6.2 Mechanised analysis of confidentiality patterns

• The agency phone book can only be used by either a secretary or an engineer

or the manager.

• The set of officials with a confidential phone number must be from the set

of officials whose phone numbers have been recorded in the phone book.

User roles in the system

The following are user roles of the system. These user roles reflect the actors

that are included in the use case diagram in Figure 6.11 The tasks that can be

performed by a user belonging to each user role is described in Table 6.4.

• The Manager user role includes the manager of the agency.

• The Secretary user role includes all users who are secretaries in the agency.

• The Engineer user role contains all users who are engineers in the agency.

Operations, user roles and permissions

Table 6.10 lists all the system operations, and the specific permissions on those

operations by user role.

229

6 Evaluation of mechanisation

User roles

Functions that can be performed in the Phone book system

Se
cr

et
ar

y

En
gi

ne
er

M
an

ag
er

Record the phone number of a particular official in the phone
book.

3

Find the phone number of an official who is not in the list of
officials with a confidential phone number.

3 3

Find the phone number of any official, recorded in the phone
book.

3

Record the name of an official in the list of officials whose
phone numbers are to be kept confidential.

3

Table 6.10: Roles and Permissions Matrix of the Phone book system

6.2.12.a.2 Formalising the confidentiality requirement CR14

In this section, a possible formalisation of the confidentiality requirement CR14 is

presented using the Circus notation. The general definition of CP2 states:

do not reveal whether x is a member of S

The confidentiality requirement CR14 of the Phone book system discussed in Cerny

and Alur (2009b, p. 175) reads:

CR14 : The property to be kept secret for the example is whether a particular

string, say ‘555-55’ is in the phone book.

Recall that the confidentiality requirement CR14 has been rephrased as follows, to

align with the definition of CP2.

230

6.2 Mechanised analysis of confidentiality patterns

Manager

Phone book
of a secret government agency

Add employee
Phone number

Add employee
Phone number

EngineerSecretary

Get non-secret
phone number

Get non-secret
phone number

Set a phone
number secret

Set a phone
number secret

Get any
phone number

Get any
phone number

User role
Information flow violates
confidentiality policy
Information flow violates
confidentiality policy

Information flow
is allowed

User role
Information flow violates
confidentiality policy

Information flow
is allowed

Figure 6.11: Use case diagram for the Bank information system

if the user is not authorized

then for every given x,

do not reveal whether x is a member of the set S

(where S contains the phone numbers in the phone book)

This is another confidentiality requirement with a conditional information flow (Tschantz

and Wing, 2008, p. 108) where the condition to hide the information about the member-

ship of x in S is satisfied if the user is not authorised.

Identify the condition for confidentiality. Cerny and Alur (2009b) do not detail the spe-

cific users from whom the information is required to be hidden. Therefore, in the

case of the Phone book system, it is assumed that the current user of the system

loginUser is not authorised to view the phone number of a secret official if the

user is not the manager and the name of the requested official reqOfficial is in the

list of secret officials. These conditions can be combined and written as follows.

231

6 Evaluation of mechanisation

loginUser is not the manager

and reqOfficial is in the list of secret officials

The above condition may be formalised using the Circus notation as follows.

loginUser 6∈managers

∧ reqOfficial ∈ secretList

Identify the confidential data. In order to hide the membership of a particular variable

x in the set S in the normal state space, it is required to have the cover story

that the twin variable x9 is not a member of the twin set S in the shadow state

space. BCF states that whenever a user can observe the value of a variable x in

the normal system state space he/she can assume that the shadow system must

also have the same value for its twin variable x9.

In order to prevent the system from revealing the exact value of a particular

variable, we must exclusively state a separation between the value of the variable

in the original system and that in the shadow system. In this scenario we may

write:

x ∈ S⇒ x9 6∈ S9

In the case of the Phone book system, where phone number of a secret official

reqOfficial is requested, information about the membership of the official in the

phone book register PhoneNumbers must not revealed. This may be formalised as

follows:

reqOfficial ∈ dom phoneNumbers

⇒ reqOfficial9 6∈ dom phoneNumbers9

where PhoneNumbers is a function between an identifier for an official and a phone

number, if any.

232

6.2 Mechanised analysis of confidentiality patterns

Build the confidentiality predicate. Now, we combine the condition for confidentiality

and the separation defined for the confidential data to come up with a formal

definition for the confidentiality requirement CR14 . The derived formal definition

is shown below as a Z schema.

HideSecretNumber

ΞState

∃ State 9 •
reqOfficial ∈ secretList ∧
reqOfficial 6= loginUser ∧
loginUser 6= manager⇒

reqOfficial ∈ dom (phoneNumbers)⇒
reqOfficial9 6∈ dom (phoneNumbers9)

The schema HideSecretNumber includes a confidentiality constraint that must be

enforced on the state space of a particular state or states of the Phone book system

where HideSecretNumber is observed.

6.2.12.a.3 Results of analysing the Phone book system

Table 6.11 shows that the analysis of the system with respect to the three user roles in the

Phone book system results in the outcome “Simplified”. Recall from Section 3.2.6 that if

the predicate generated from back propagating a system specification can be simplified,

then according to BCF in Circus, there are no contradictions in the specification of the

system being analysed.

233

6 Evaluation of mechanisation

User role against which the system has being
analysed Se

cr
et

ar
y

En
gi

ne
er

M
an

ag
er

Time taken for back propagation 338 ms 223 ms 445 ms

Time taken for predicate simplification 1904 ms 2919 ms 1802 ms

Total time taken for evaluation 2242 ms 3142 ms 2247 ms

Result of the simplification by the theorem prover Simplified Simplified Simplified

Table 6.11: Results of the mechanised analysis of the Phone book system

6.2.12.b Analysing the confidentiality pattern CP3

The following is an analysis of a system with a confidentiality property that reflects the

confidentiality pattern CP3. The confidentiality requirement CR21 has been chosen as

an adhoc choice for this analysis.

The mechanised analysis of CR21 will be discussed using the Secure electronic examin-

ation system by Foley and Jacob (1995). For this, a hand-crafted system requirement

specification of a fictitious Secure electronic examination system has been developed.

Some functions listed in this specification have been borrowed from the description of

the Secure electronic examination system by Foley and Jacob (1995).

The full formal specification for the Secure electronic examination system is included in

Appendix A.5.2. Here, we present the requirement specification of the system and the

results of analysing the presented specification of the system. It must be noted that the

formal specification included in Appendix A.5.2 is just one possible implementation of

the system using the Circus notation.

234

6.2 Mechanised analysis of confidentiality patterns

6.2.12.b.1 Requirement specification of a system having CP3

The following requirement specification of the Secure electronic examination system

has been divided into the organisational structure, the organisational rules, the user

roles in the system, the operations and the user roles and permissions matrix of the

system. Figure 6.12 presents a summarised use case diagram of the Secure electronic

examination system.

Organisational structure

• A chair is a user.

• A setter is a user.

• A checker is a user.

• A grader is a user.

• The company maintains a chair for each existing subject.

• The company maintains a setter for each existing paper.

• The company maintains a checker for each existing paper.

• The company maintains a grader for each existing paper.

• The company maintains a result for each existing candidate.

• The company maintains a paper status for each existing paper.

• The company maintains a subject of each existing paper.

• The company maintains a list that contains every student of the company.

• The company maintains a list that contains every lecturer of the company.

• The company maintains a list that contains every loggedInUser of the com-

pany.

235

6 Evaluation of mechanisation

• The company uniquely identifies the user who is the current user of the

company.

• The company uniquely identifies the can who is the current user of the

company.

• The company records the relationship between a candidate and a paper.

• The company records the relationship between a candidate and a answer.

• The company records the relationship between a paper and a question.

• The company records the relationship between a paper and a answer.

Organisational rules

• All subject chairs, setters, checkers and graders must be lecturers.

• A lecturer cannot have more than one role. Hence, the lecturer can either be a

subject chair, setter, checker or grader.

• The set of users allowed access to the system is a subset of the set of lecturers

and students.

• A person cannot be both a lecturer and a student in the system.

• Every paper with a paper status must belong to an announced examination.

• Every paper for which a setter has been assigned must have a paper status.

• Every paper for which a checker has been assigned must have a paper status.

• Every paper for which a grader has been assigned must have a paper status.

• Every paper on which a question is recorded must have a paper status.

• Every paper on which an answer is recorded must have a paper status.

• Every paper registered for, must have a paper status.

236

6.2 Mechanised analysis of confidentiality patterns

• Every student registered for a paper must be a registered candidate.

• Every student registered as a candidate must be a student recorded in the

system.

• Every result must belong to a registered paper.

• Every answer recorded must be for a registered paper.

• Lecturers who record questions in the system must be setters.

• Every question recorded in the system must be for a registered paper.

• Every answer recorded in the system must be for a registered paper.

User roles in the system

The following are user roles of the system. These user roles reflect the actors

that are included in the use case diagram in Figure 6.12. The tasks that can be

performed by a user belonging to each user role is described in Table 6.12.

• The Chair user role contains all users who are subject chairs in the institution.

• The Setter user role includes all users who are setters of examination papers

in the institution.

• The Checker user role includes all users who check examination papers in

the institution.

• The Marker user role includes all users who grade the examination papers in

the institution.

• The Student user role contains all users who are studying in the institution.

Operations, user roles and permissions

Table 6.12 lists all the system operations, and the specific permissions on those

operations by user role.

237

6 Evaluation of mechanisation

User roles

Functions that can be performed on the Phone book
system

C
ha

ir

Se
tt

er

C
he

ck
er

M
ar

ke
r

St
ud

en
t

Announce an examination for a particular subject. 3

Appoint a lecturer for the position of a setter from the
relevant subject group to set the paper.

3

Appoint a lecturer for the position of a checker from
the relevant subject group to check the papera.

3

Appoints a lecturer called a grader from the relevant
subject group to grade the candidates who grade the
paper.

3

Set a paper if the user is authorised to do so. 3

Release a paper if the user is authorised to do so. 3

Close an examination if the user is authorised to do
so.

3

Check a paper if the user is authorised to do so. 3

Grade a paper if the user is authorised to do so. 3

Publish grades of candidates who set for a particular
paper if the user is authorised to do so.

3

Register oneself as a candidate to sit for a particular
paper.

3

Record an answer for particular paper if the user is
registered as a candidate for that particular paper.

3

Find results of oneself for a particular paper. 3

Cancel ones own registration for a particular paper. 3

Table 6.12: Roles and Permissions Matrix of the Secure electronic examination system

a In the paper Secure Electronic Examinations by Foley and Jacob (1995) many setters and checkers could be appointed.
However to keep our model simple, we consider a single setter and a single checker for a paper.

238

6.2 Mechanised analysis of confidentiality patterns

Examination system

Release paper

Remove setter

Set paper

Announce paper

Setter

Checker

Chair

Violates
confidentiality policy

Appoint setter

Student

Close exam

Check paper

Appoint checker

Appoint marker

Grade paper

Publish grades Marker

Get own grade

Get own recorded
answers

Take paper
(record answers)

Register for exam

Get any student
grade

Get recorded
answers for any

student

Cancel
registration

Does not violate
confidentiality policy

Remove checker

Remove marker

Figure 6.12: Use case diagram for the Secure electronic examination system

6.2.12.b.2 Formalising the confidentiality requirement CR21

The general definition of confidentiality pattern CP3 reads:

do not reveal the set S

The confidentiality requirement CR21 identified from the Secure electronic examination

system states:

CR21 : No examinee should learn any details of the contents of any other exam-

inees answer paper between the start of the examination and the end of

the examination.

239

6 Evaluation of mechanisation

Recall from page 162 that the confidentiality requirement CR21 has been rephrased as

follows, to align with the definition of CP3.

if the user u currently using the system is not requesting information

that belongs to him/her

and exam e has started but not ended

then do not reveal the set S

(where S represents the answers recorded by a user other than u

in the exam e)

Similar to the earlier discussion in Section 6.2.4, CR21 is also a conditional confiden-

tiality requirement (Tschantz and Wing, 2008). The formalisation of the condition for

confidentiality and the confidential data are discussed separately.

Identify the condition for confidentiality. In this particular confidentiality requirement,

the condition to hide the set containing the answers recorded by other examinees

from the current user of the systems is satisfied if the examination for the paper

of the requested userhas started and has but not ended yet.

In our hand-crafted formal specification for the Secure electronic examination

system (see Appendix A.5.2), the possible states of a paper is represented by

the free type PAPERSTATUS. The description of all these states can be found in

Appendix A.5.2. The status of the paper between the start of an examination for

that paper and its end is represented by the value released.

We may write the conditions required to satisfy the confidentiality requirement

using the Circus notation as follows:

240

6.2 Mechanised analysis of confidentiality patterns

condition stated in the confidential-
ity requirement

one possible specification in Circus

examination of the paper for which
the current user is a candidate has
started and not ended

pStatus (regPaper theCandidate) = released

the user currently using the system
is not requesting information that
belongs to him/her

((regStudent) ∼) loginUser 6= theCandidate

Table 6.13: Formal specification of conditions required to satisfy the confidential-
ity requirement CR21

The confidentiality of the data must be enforced if all the conditions in Table 6.13

are satisfied. We may write this combined condition as follows.

((regStudent) ∼) loginUser 6= theCandidate

∧ pStatus (regPaper theCandidate) = released

Identify the confidential data. Here, we are to hide every single answer recorded by the

examinee theCandidate from the current user. The set of answers recorded by the

examinee theCandidate is represented by the set answersB:

answersB ≡ {theCandidate} −C ansStudent

where ansStudent is a relation between candidate identifiers and answers they

have recorded. In the shadow system, the set of answers recorded by the examinee

theCandidate is represented by the set answersB9:

answersB9 ≡ {theCandidate9} −C ansStudent9

241

6 Evaluation of mechanisation

where ansStudent9 is the twin counterpart of ansStudent. To prevent the system

from revealing any value in the set answersB we state that the sets answersB and

answersB9 are disjoint.

({b} −C ansStudent) ∩ ({b9} −C ansStudent9) = {}

Build the confidentiality predicate. We now combine the condition and the action to

come up with a formal definition for the confidentiality requirement CR21 . The

derived formal definition is shown below.

HideOthersAnswers

ΞState

∃ State 9 •
((regStudent) ∼) loginUser 6= theCandidate ∧

pStatus (regPaper theCandidate) = released⇒
(ran({theCandidate} −C ansStudent) ∩

ran({theCandidate9} −C ansStudent9)) = {}

The schema HideOthersAnswers includes a confidentiality constraint that must be en-

forced on the state space of a particular state or states of the Secure electronic examina-

tion system where HideOthersAnswers is observed.

6.2.12.b.3 Results of analysing the Secure electronic examination system

Table 6.14 shows that the analysis of the system with respect to the user roles in the

Secure electronic examination system results in the outcome “Simplified”. Recall from

Section 3.2.6 that if the predicate generated from back propagating a system specification

can be simplified, then according to BCF in Circus, there are no contradictions in the

specification of the system being analysed.

242

6.2 Mechanised analysis of confidentiality patterns

User role against which
the system has been
evaluated

Se
tt

er

M
ar

ke
r

C
ha

ir

C
he

ck
er

St
ud

en
t

Time taken for
back propagation

12854 ms 15282 ms 4860 ms 7378 ms 9887 ms

Time taken for
predicate simplification

7772 ms 8808 ms 7371 ms 6201 ms 7558 ms

Total time taken for
evaluation

20626 ms 24090 ms 12231 ms 13579 ms 17445 ms

Result of the simplification
by the theorem prover

Simplified Simplified Simplified Simplified Simplified

Table 6.14: Results of the mechanised evaluation of the Secure electronic examination
system

6.2.12.c Analysing the confidentiality pattern CP4

The following is an analysis of a system with a confidentiality property that reflects the

confidentiality requirement pattern CP4. The confidentiality requirement CR16 has

been chosen as an adhoc choice for this analysis.

The mechanised analysis of CR16 will be discussed using a hand-crafted system

requirement specification of a fictitious CR16 . The fictitious ePurse system has been

used as a case study for confidentiality analysis by De Landtsheer and Van Lamsweerde

(2005, p. 44).

The full formal specification for the ePurse system is included in Appendix A.5.1. Here,

we present the requirement specification of the system and the results of analysing the

presented specification of the system. It must be noted that the formal specification

243

6 Evaluation of mechanisation

included in Appendix A.5.3 is just one possible implementation of the system using

the Circus notation.

6.2.12.c.1 Requirement specification of a system having CP4

The following requirement specification of the ePurse system has been divided into

the organisational structure, the organisational rules, the user roles in the system,

the operations and the user roles and permissions matrix of the system. Figure 6.13

presents a summarised use case diagram of the ePurse system.

Organisational structure

• The ePurse system maintains an ePurse for every buyer identifier from a

subset of buyers in the system.

• The ePurse system maintains a balance identifier for every ePurse from a

subset of ePurses in the system.

• The ePurse system maintains an ePurse identifier for every transaction

from a subset of transactions in the system.

• The ePurse system maintains a terminal identifier for every transaction

from a subset of transactions in the system.

• The ePurse system maintains a balance identifier for every transaction from

a subset of transactions in the system.

• The ePurse system maintains an ePurse for every buyer from a subset of

buyers in the system.

• The ePurse system maintains a validation status for every transaction from a

subset of transactions in the system.

• The ePurse system uniquely identifies the agent that is currently request-

ing to execute a function in the system.

244

6.2 Mechanised analysis of confidentiality patterns

• The ePurse system uniquely identifies the ePurse, the balance of which is

requested from the system.

Organisational rules

• The ePurse, of which a balance is requested from the system, must have a

balance recorded in the system.

• The ePurse, of which a balance is requested from the system, must have an

associated owner recorded in the system.

• Every transaction that has an associated agent must also have a transaction

amount recorded in the system.

• Every transaction that has an associated ePurse must also have a transaction

amount recorded in the system.

• Every transaction that has an associated validation status must also have a

transaction amount recorded in the system.

• Every ePurse that has a transaction associated with it must also have a

balance recorded in the system.

• Every ePurse that has a balance associated with it must belong to an agent

in the system.

User roles in the system

The following are user roles of the system. These user roles reflect the actors

that are included in the use case diagram in Figure 6.13 The tasks that can be

performed by a user belonging to each user role is described in Table 6.15.

• The Buyer user role includes the buyers in the ePurse system.

• The Seller user role includes the sellers in the ePurse system.

• The Terminal user role includes the terminals in the ePurse system

245

6 Evaluation of mechanisation

Operations, user roles and permissions

Table 6.15 lists all the system operations, and the specific permissions on those

operations by user role.

User roles

Operations that can be performed on the ePurse system

Se
lle

r

Bu
ye

r

Te
rm

in
al

Record a transaction in the system. 3

Approve a transaction on the ePurse of a buyer. 3

Process the payment for a translation. 3

Get the balance in the ePurse of a given buyer. 3

Table 6.15: Roles and Permissions Matrix of the ePurse system

e-Purse system

Buyer

Get balance of
e-Purse

Get balance of
e-Purse

Record
transaction

Record
transaction

Approve
transaction on

e-Purse

Approve
transaction on

e-Purse

Seller

Process
payment

Process
payment

Terminal

User role
Information flow violates
confidentiality policy
Information flow violates
confidentiality policy

Information flow
is allowed

User role
Information flow violates
confidentiality policy

Information flow
is allowed

Figure 6.13: Use case diagram for the e-Purse system

246

6.2 Mechanised analysis of confidentiality patterns

6.2.12.c.2 Formalising the confidentiality requirement CR16

In this section, a possible formalisation of the confidentiality requirement CR16 is

specified using the Circus notation. The general definition of CP4 states:

do not reveal the exact value of x

The confidentiality requirement CR16 of the ePurse system by De Landtsheer and Van

Lamsweerde (2005, p. 44) reads:

CR16 : agents who are not the card holder should not know the exact value of

some state variable.

Recall that the confidentiality requirement CR16 has been rephrased as follows, to

align with the definition of CP4.

if the agent is not the card holder

then do not reveal the value of x

Once again, like the previous confidentiality requirements, this confidentiality require-

ment requires confidentiality of information under certain conditions.

Identify the condition for confidentiality. De Landtsheer and Van Lamsweerde (2005,

p. 44) state that the current agent currAgent using the system is not authorised

to view the exact value of a state variable if does not. If that state variable is the

balance of a particular ePurse reqPurse, then the requirement states that currAgent

must not know the exact balance of reqPurse if currAgent does not own reqPurse.

This confidentiality condition can be written as follows.

currAgent is not the owner of the ePurse

The above condition may be formalised using the Circus notation as follows.

247

6 Evaluation of mechanisation

(currAgent 7→ reqPurse) 6∈ owns

where own is a function that identifies the ePurse of a given agent, if any.

Identify the confidential data. In order to prevent the system from revealing the exact

value of a particular variable, we must exclusively state a separation between the

value of the variable in the original system and that in the shadow system. In the

case of the ePurse system, such a separation is formalised as follow.

(balance reqPurse) 6= (balance9 reqPurse9)

Build the confidentiality predicate. Now, the condition for confidentiality and the sep-

aration defined for the confidential data must be combined to come up with a

formal definition for the confidentiality requirement CR16 . The derived formal

definition is shown below as a Z schema.

HideExactBalance

ΞState

∃ State 9 •
(currAgent 7→ reqPurse) 6∈ owns ∧
currAgent 6= terminal ∧
reqPurse ∈ dom (balance)⇒

(balance reqPurse) 6= (balance9 reqPurse9)

The schema HideExactBalance includes a confidentiality constraint that must be

enforced on the state space of a particular state or states of the ePurse system

where HideExactBalance is observed.

248

6.2 Mechanised analysis of confidentiality patterns

6.2.12.c.3 Results of analysing the ePurse system having CR16

Table 6.16 shows that the analysis of the system with respect to the three user roles

in the ePurse system results in the outcome “Simplified”. Recall from Section 3.2.6

that if the predicate generated from back propagating a system specification can

be simplified, then according to BCF in Circus, there are no contradictions in the

specification of the system being analysed.

User role against which the system has
being analysed

Se
lle

r

Bu
ye

r

Te
rm

in
al

Time taken for back propagation 481 ms 394 ms 653 ms

Time taken for predicate simplification 1590 ms 1329 ms 1460 ms

Total time taken for evaluation 2071 ms 1723 ms 2113 ms

Result of the simplification by the
theorem prover

Simplified Simplified Simplified

Table 6.16: Results of the mechanised analysis of the ePurse system

249

6 Evaluation of mechanisation

6.2.12.c.4 Negative test with an automatic counter example

In some scenarios the theorem prover may identify a counter example after running

possible combinations to simplify the submitted predicate. Consider the Circus spe-

cification of the ePurse system in Figure A.8. Extend the specification in Figure A.8 by

introducing the schema HideIfNotTerminal that represents a confidentiality annotation

and the Circus action ShowAnyBal. The schema HideIfNotTerminal formalises a confiden-

tiality requirement where the system must never reveal the balance of any ePurse if the

current user agent is not a terminal. The Circus action ShowAnyBal formalises a function

where the balance of any requested ePurse can be viewed. The descriptions of the

variables in both HideIfNotTerminal and ShowAnyBal are included in Appendix A.5.3.

HideIfNotTerminal

ΞState

∃ State 9 •
currAgent 6= terminal⇒

(balance reqPurse) 6= (balance9 reqPurse9)

ShowAnyBal =̂ var anyPurse : dom (balance) ∩ ran owns •
anyPurseIn?anyPurse−→
reqPurse := anyPurse?;

showAnyPurseOut !(balance anyPurse?)−→ Skip

The main action of the specification of the ePurse system in Figure A.8 is modified to

include HideIfNotTerminal and ShowAnyBal as follows.

• µX •




SelectAgent ;




〈ApproveTrnsctn〉
@ 〈ShowBalSec〉
@ (〈ShowAnyBal〉 ; 〈HideIfNotTerminal〉)
@ 〈DoPayment〉
@ 〈RecordTrnsctn〉




; X




250

6.2 Mechanised analysis of confidentiality patterns

Analysing the resulting specification using the mechanisation of BCF in Circus pro-

posed in this research resulted in the Isabelle theorem prover suggesting a counter

example. The Isabelle theorem prover command “apply smt” suggested that the vari-

able currAgent might assume the value seller or buyer. In this case, the antecedent

in the implication in HideIfNotTerminal will be satisfied resulting in a contradiction

between the output action in ShowAnyBal and the consequent in the implication in

HideIfNotTerminal.

Figure 6.14: Counter example generated due to an insecure operation

251

6 Evaluation of mechanisation

6.2.12.d Analysing the confidentiality pattern CP5

The ePurse system discussed earlier contains the confidentiality property CR17 that

reflects the confidentiality requirement pattern CP5. Therefore, the same model of

that ePurse system will be reused here for analysing a system with a confidentiality

property that reflects CP5. As mentioned earlier, the full formal specification for the

ePurse system is included in Appendix A.5.3 and it must be noted that this formal

specification is just one possible implementation of the system using the Circus notation.

6.2.12.d.1 Formalising the confidentiality requirement CR17

In this section, a possible formalisation of the confidentiality requirement CR17 is

specified using the Circus notation. The general definition of CP5 states:

do not reveal the exact value of x

The confidentiality requirement CR17 of the ePurse system by De Landtsheer and Van

Lamsweerde (2005, p. 44) reads:

CR17 : agents who are not the card holder should not know whether a state

variable is above/below a given threshold.

Recall that the confidentiality requirement CR17 has been rephrased as follows, to

align with the definition of CP5.

if the agent is not the card holder

then do not reveal whether the value y is

above/below a certain threshold n

Once again, like the previous confidentiality requirements, this confidentiality require-

ment requires confidentiality of information under certain conditions. The confidential-

ity requirement CR17 has the same condition.

252

6.2 Mechanised analysis of confidentiality patterns

The formal definition of the condition for confidentiality has been presented earlier in

the analysis for CP4. The confidentiality requirement CR17 has the same condition for

confidentiality. In addition, the balance of a requested customer being below a certain

threshold bmin is a condition to be enforced this confidentiality requirement.

balance reqPurse ∈ {r : N | r < bmin}

To hide the set of possible values of balance reqPurse we define the set of possible values

of balance reqPurse and balance9 reqPurse9 to be disjoint.

balance reqPurse ∈ {r : N | r < bmin}
⇒ balance9 reqPurse9 6∈ {r : N | r < bmin}

The derived formal definition of CR17 is shown below as a Z schema.

HideMinBalance

ΞState

∃ State 9 •
(currAgent 7→ reqPurse) 6∈ owns ∧
currAgent 6= terminal ∧
reqPurse ∈ dom (balance) ∧
balance reqPurse ∈ {r : N | r < bmin} ⇒

balance9 reqPurse9 6∈ {r : N | r < bmin}

The schema HideMinBalance includes a confidentiality constraint that must be en-

forced on the state space of a particular state or states of the ePurse system where

HideMinBalance is observed. The main action of the ePurse system has been modified

as follows for this analysis.

253

6 Evaluation of mechanisation

• µX •



〈SelectAgent〉 ;




〈ApproveTrnsctn〉
@ (〈ShowBalSec〉 ; 〈HideMinBalance〉)
@ 〈DoPayment〉
@ 〈RecordTrnsctn〉




; X




The ePurse system in the specification in Figure A.8, having the modified main action

as above, is analysed using the mechanisation. The results of this analysis is discussed

next.

6.2.12.d.2 Results of analysing the ePurse system having CR17

Table 6.17 shows that the analysis of the system with respect to the three user roles in

the ePurse system results in the outcome “Simplified”. Recall from Section 3.2.6 that if

the predicate generated from back propagating a system specification can be simplified,

then according to BCF in Circus, there are no contradictions in the specification of the

system being analysed.

User role against which the system has
being analysed

Se
lle

r

Bu
ye

r

Te
rm

in
al

Time taken for back propagation 481 ms 394 ms 653 ms

Time taken for predicate simplification 1590 ms 1329 ms 1460 ms

Total time taken for evaluation 2071 ms 1723 ms 2113 ms

Result of the simplification by the
theorem prover

Simplified Simplified Simplified

Table 6.17: Results of the mechanised analysis of the ePurse system

254

6.2 Mechanised analysis of confidentiality patterns

6.2.13 A comparison of results of the mechanised analysis

In order to compare the results of the mechanised analysis shown in Table 6.8, Table 6.11,

Table 6.14, Table 6.16 and Table 6.17 we must first have a way to identify the relative size

of each Circus specification that was analysed. The author does not know of any prior

work on comparing the relative size of two formal specifications in the Circus notation.

Further, the reader must also be informed that the implemented back propagation

process in the CFAT tool uses regular expressions and pattern matching for renaming

variables in the generated predicate. Alternatively, with the right programming skills,

one could have implemented the same mechanisation using a functional programming

language. In this scenario, regular expressions and pattern matching might not be

required.

BCF laws (see Table 2.4) used in the analysis in this chapter are:

• bw external choice

• bw sequence

• bw assignment

• bw guard

• bw input prefix

• bw output prefix

The bw sequence and bw external choice laws are for the composite operators, sequential

composition and external choice respectively. Apart from that, BCF back propagation

laws for the atomic actions in the Circus notation manipulate the incoming predicate

during the back propagation process. For example, bw guard, bw input prefix and bw

output prefix laws add additional text to the predicate being calculated. However, the

bw assignment law applies pattern matching through regular expressions to manipulate

the predicate being calculated. It is expected that as the predicate grows in size, more

computing time is required for pattern matching. Therefore, a correlation can be

255

6 Evaluation of mechanisation

expected between the number of “assignment” actions in a given specification and the

average time taken for back propagating the same specification. Such a correlation is

reflected in Table 6.18 . However, this is less true for bw guard, bw input prefix and bw

output prefix laws where:

Application of the input and output laws depends on the channelset L upon which

the specification S is lifted. If there are output actions in S that uses a channel in L

additional text will be introduced to the back propagated predicate, increasing its

size. Likewise, base on whether an input action uses a channel in the channelset L

for communication, the resulting text introduced to the back propagated predicate

will be different. Therefore it will be difficult to derive a meaningful correlation

between the number of input actions in a Circus specification and the time it takes

for back propagating that specification.

The back propagation of the guarded action also introduce new text to the back

propagated predicate. However, this text depends on the size of the guard in a

guarded action. Therefore, existence of a guard will have little impact on the time

taken for back propagation.

It must be strongly noted that this is too little a dataset to make a strong conclusion

regarding the correlation. A much larger dataset from a range of systems must be

analysed if we are to make a more accurate conclusion regarding the relation between

the specification size and time taken for its mechanised analysis.

256

6.2 Mechanised analysis of confidentiality patterns

Context Bank
information

system

Phone book
system

Secure
electronic

examination
system

ePurse
system

ePurse
system

Confidentiality
requirement

CR18 CR14 CR21 CR16 CR17

Confidentiality pattern CP1 CP2 CP3 CP4 CP5

Number of Circus actions

Guarded action 5 4 19 4 4

Input action 8 5 15 10 10

Output action 2 2 3 1 1

Assign action 6 5 34 7 7

The average
back propagation time

434 ms 252 ms 2792 ms 1477 ms 1587 ms

The average
simplification time

1271 ms 1656 ms 2095 ms 1095 ms 1219 ms

Table 6.18: A comparison of the average analysis times for different systems

257

6 Evaluation of mechanisation

6.3 Summary

The main contribution of this chapter is the analysis carried out to evaluate the mech-

anisation of BCF in Circus, developed under this research. This fulfills the objective of

this chapter by demonstrating that the mechanisation of BCF in Circus is practically

applicable.

In this chapter:

• the mechanisation of BCF in Circus has been used to analyse systems with

confidentiality requirements that reflect five different types of confidentiality

requirement pattern identified in this research.

• the issue with a weak specification and how the weak specification maybe

strengthened has be demonstrated.

• the concept of negative testing has been discussed and the results of carrying out

a negative test has been discussed.

• the results obtained from executing different sizes and complexities of case studies

has been critiqued.

• a possible correlation between the number of “assignment” actions in a given spe-

cification and the average time taken for back propagating the same specification

has been identified. It must be noted that this maybe due to the programming

style used for mechanising BCF where pattern matching has been used text

replacement in a predicate.

258

7 Evaluation

This chapter presents an overall evaluation of the research presented in this thesis.

7.1 Introduction

Recall from Chapter 1 that the hypothesis of this research states that:

a practically applicable approach exists that supports the process of analysing system

models using Banks’s Confidentiality Framework (BCF) (Banks, 2012) to verify if

those models respect the integrated confidentiality requirements pertaining to data

leakage through legitimate channels.

The author argues that the hypothesis has been fully satisfied through the proposed

mechanisation in this thesis. The argument for the practical applicability of the proposed

mechanisation approach has been justified by showing the time taken for analysing

specifications of different systems with varying sets of functions. A possible approach

for calculating the efficiency of the mechanisation has been discussed through a com-

parison between the time taken for a manual run of a BCF in Circus based analysis of a

system and a mechanised run of the same analysis.

The author is quick to acknowledge that the current mechanisation does not support

the analysis of recursion and parallel processes in systems. This is due to the current

limitations in BCF in Circus, as discussed in the next section. For this reason, the

mechanisation supports only sequential access systems.

259

7 Evaluation

7.2 Factors that could have influenced the quality of the analysis

The following factors could have strengthened the overall value of the outcome of the

analysis carried out in this thesis.

Availability of real Circus specifications of Systems. If the case studies conducted in

this research were based on real Circus specifications of systems or on real

confidentiality requirements relating to data leakage then the justification of the

advantages brought by the proposed mechanisation could have been stronger.

Having to invent and hand-craft these specifications has been one of the limitations

of this research as detailed in Section 7.4.

Availability of descriptions of real-life systems. The research conducted in this thesis

required a catalogue of system descriptions of real-life systems, that could be

used as a benchmark for testing the mechanisation of BCF in Circus. However, the

author was not able to find a literature backed catalogue of formal specifications or

even system descriptions of real-life systems having a confidentiality requirement.

Therefore, such a catalogue has been compiled through a literature search, as

part of this research. Many limitations have shaped the catalogue that was

compiled eventually. However, if such a comprehensive catalogue was available,

results from analysing systems in that catalogue would have contributed towards

evaluating the value that the mechanisation can bring to the system engineering

discipline. The author believes that the catalogue provided in Chapter 5 can be a

starting point for such requirements for a benchmark.

Support for recursion in BCF in Circus. Banks (2012, p. 148) discussed a method for

deriving an invariant obligation that is required to back propagate a loop body in

a recursion. However, he stated that the method cannot be used in all scenarios

and therefore sometimes one must resort to intuition to identify the invariant

obligation.

260

7.3 Benefits derived from the mechanisation

“We leave the problem of devising more sophisticated techniques for identifying

invariant obligations for future work.”

(Banks, 2012, p. 148)

In some scenarios, the user may identify an invariant obligation. However, Banks

does not provide a mechanisable law for these scenarios. Hence, the current

version of the CFAT tool is not designed to provide support for back propagating

recursion constructs. Section 3.4.3 discusses a scenario where a data leakage may

occur through recursion.

Support for parallel processes in BCF in Circus. BCF in Circus does not have a mechan-

izable back propagation law for parallel processes that can be used for automating

the back propagation of parallel constructs. This is a limitation of BCF in Circus as

discussed in Section 2.8. Concurrent access to systems is an important aspect of

information systems. A comprehensive analysis of confidentiality in a concurrent

access system must involve analysing the parallel process blocks in the system

specification.

7.3 Benefits derived from the mechanisation

The proposed mechanisation was intended to provide a number of benefits that would

enhance the value of BCF in Circus. The intended benefits have been discussed in

Section 3.1. The following is a discussion on the extent to which these intended benefits

have been realized.

Practicality. The evaluation of the proposed mechanisation has shown that the pro-

posed mechanisation is practically applicable. This has been demonstrated by

presenting the time taken for analysing a number of hand crafted systems that

are based on scenarios supported by literature. Based on the However, the per-

formance of the mechanisation can be improved on many fronts. For example,

261

7 Evaluation

currently the LATEX model of the system and the HOL based back propagated pre-

dicate needs to be manually submitted to the CZT and the Isabelle theorem prover

respectively. This process could be automated to achieve a seamless process for

analysing systems using the proposed mechanisation of BCF in Circus.

Suitability. Apart from practicality, another intended purpose of the mechanisation

of BCF in Circus is to show whether systems with different types of confiden-

tiality requirements can be analysed. Two types of confidentiality properties

that are supported by BCF in Circus has been identified. The suitability of the

mechanisation to detect both types of confidentiality requirements supported by

BCF in Circus has been demonstrated through the use of negative testing (see

Section 6.2.11). It must be noted that the testing for suitability carried out in this

thesis is not strong as the proposed mechanisation does not support recursion

and parallel constructs, due to limitations with BCF in Circus. Therefore, in an

ideal world, these tests will fall short of reflecting real world scenarios of the

consistency of requirements in a system specification. Developing mechanizable

laws for recursion and parallel constructs of the Circus notation is a further work

required.

Efficiency. The comparison between the mechanised versus the manual analysis of a

trivial system in Section 3.5.1 has shown that the proposed mechanisation of BCF

in Circus in this thesis is multifold efficient than the manual approach. While

the relative efficiency has been shown for a trivial example, there is no way to

conclude whether the derived ratio of the Temporal Efficiency (see Section 3.5.1)

will be constant as the size and complexity of the specifications change. The

author believes that the discussion on relative efficiency between the manual

versus the mechanized analysis approach in Section 3.5 has demonstrated that an

efficient approach for analysing systems using BCF in Circus has been achieved

through the mechanisation.

262

7.4 Contributions and Limitations

7.4 Contributions and Limitations

In this section, a discussion of the contributions and some of the limitations of those

contributions are presented.

Catalogue of case studies with a confidentiality requirement. The catalogue of case stud-

ies with a confidentiality requirement is an original contribution made in this

thesis as far as the author is aware of. As an initial catalogue, this provides a

good collection of case studies that has been derived through a systematic process.

Further, this collection can be used by other researchers to analyse other dimen-

sions in relation to a confidentiality requirement literature. For example, context

where security is most sought after. Researchers working on vertical areas of

research such as eliciting confidentiality requirements and various formalisms of

confidentiality requirement specifications can use scenarios from the case studies

in this catalogue to align their research with this existing literature discussing

different scenarios with a confidentiality requirement. This is because there is a

vacuum of such real-world case studies.

“there is a vacuum of real-world case studies and experience reports on how

confidentiality requirements are dealt with in practice”

(Gurses et al., 2005, p. 102).

The major limitation of the proposed catalogue in this thesis is its derivation

process. Because the scenarios were identified by focussing on pages in a paper

where a certain keyword was found, prospective descriptions of confidentiality

related requirements in other pages of the paper might have been missed, if such

a discussion did not contain the keyword ‘confidential’. Because of the limited set

of relevant papers that were identified, it was necessary to consider discussions

where confidentiality was mentioned in a very general way without giving much

details about the context except a reference for the system environment, such as

‘a banking system’, ‘an electronic voting system’, etc.

263

7 Evaluation

Generalized patterns of confidentiality requirements. Generalized patterns of confiden-

tiality requirements is an original contribution as far as the author is aware of.

These patterns will greatly help the confidentiality engineering community as

the pattern catalogue can be used as a baseline benchmark to address confid-

entiality properties in the literature. However, while using the catalogue as a

benchmark, the user must also be aware that the catalogue could be improved on

many grounds. The pattern catalogue can also be useful for comparing different

formalisms that can be used to analyse systems with a confidentiality requirement.

Assumptions were made when standardizing some confidentiality requirements

described in some papers. Those assumptions were necessary because some of

the requirements were not clearly stated in terms of:

• the exact data that needed concealing.

• the user roles that were supposed to be unauthorised, with regards to a

particular piece of data in a given context.

Some patterns might be weak because the confidentiality requirements from which

those patterns were derived were partially hand-crafted. The author acknowledges

this weakness as a limitation. This limitation can only be overcome when systems

and their confidentiality requirements, considered as source material for such a

catalogue, are specified in a clear and unambiguous manner.

Further, because of the above mentioned limitation, the author anticipates fur-

ther patterns, should there be a more in-depth literature search exercise for

confidentiality properties in systems.

Confidentiality Framework Application Tool. The CFAT tool is an original contribution

of this research. A mechanised back propagation apparatus does not exists

to the author’s knowledge. Banks acknowledges this as an impediment to

BCFs deployment (Banks, 2012, p. 187). With the CFAT tool, this has been

addressed. The CFAT tool has been developed as part of this research. The

264

7.4 Contributions and Limitations

biggest advantage of the CFAT tool is that it makes the task of back propagation

practically applicable.

The ability to generate a LATEX based Circus specification of a system being

analysed is an important feature of the CFAT tool. Engineers can type check and

syntax check the generated Circus specification to provide a degree of certainty

about the validity of specification.

The major limitation hindering the use of the CFAT tool is that the user must be

equipped with expertise in using the CFAT notation. One further improvement

required is the ability to automatically submit the generated LATEX based Circus

specification and the Isabelle theorem file to CZT and Isabelle theorem prover

respectively.

Further to the limitations in the contributions that has been made with this thesis, there

were other limitations that confined the landscape available for this research. Following

are such limitations.

Programming style not scalable. The use of an imperative programming approach to

code the back propagation logic used in the proposed mechanisation tool is not

scalable. This is one of the shortcomings of the tool proposed in this thesis. A

more appropriate approach would have been to use functional programming.

However, a functional programming approach was not pursued because the

author does not have the relevant background.

Having to hand-craft specifications. Since formal system specifications were not avail-

able for the systems modelled in the case studies in this thesis, specifications of

those systems had to be hand-crafted. The resulting specifications might not have

reflected the real life scenarios in those contexts.

Unable to analyse systems with parallel processes. If BCF in Circus supported parallel

processes then the mechanisation of BCF in Circus could have been extended and

used to analyse multi-user parallel processing environments. Such an analysis

265

7 Evaluation

would have reflected a much closer view about the consistency of the requirements

in the system, as many systems designed for use by members of an organisation

allow parallel access.

Unable to analyse the recursion construct. BCF in Circus does no have a back propaga-

tion law for recursion. Because of this, the recursion construct had to be bypassed

during the back propagation stage of every analysis carried out in this research.

Banks (2012, p. 148) discussed how one may approach to back propagate the

recursion construct in Circus. However, this discussion is in its early stages

and needs further research to produce a mechanizable back propagation law for

recursion. As such, this endeavour is not within the scope of this thesis.

The global state promotion dilemma. The technique adopted by BCF for reasoning about

confidentiality in systems is to make specifiers define the level of separation

between the real and the twin system and use the result of the back propagation

application on the system specification to prove this separation. A separation

for a state variable can be defined if that variable exists in the global state space

of the system. This becomes an issue if the engineer wants to protect the value

of a particular function application such as f (x) where f is a function in the

global state space whereas x is a runtime variable whose value is provided by

the user during the execution of the program. Therefore, in order to define the

required separation, the value of x must be assigned to a global state variable y

and subsequently the formalisation of the confidentiality requirement must use f

and y rather than f and x.

266

7.5 Mechanization vs. manual back propagation

7.5 Mechanization vs. manual back propagation

Banks (2012) did not present any analysis on the feasibility of the manual application

of BCF. Rather, he did state that:

“The lack of any dedicated tool support for our platform is arguably the main

impediment to its deployment.” (Banks, 2012, p. 187)

The benefit of the mechanisation can be visible when the results of a manual back

propagation of a system and the mechanised back propagation of the same system

are compared side by side. The manual back propagation shown in Section 4.2 is for

a system formalized with a Circus specification that contains one input action, one

assignment action, one guarded action and one output action. Manual analysis of that

system using BCF in Circus takes roughly one hour while the mechanized analysis of

the same system takes 120 milliseconds as stated on Section 4.2.

A more promising set of results of a mechanised analysis that includes the time taken

for back propagating non-trivial system models is shown in Table 6.18 . For example,

the mechanized back propagation of the secure examination system with 71 atomic

actions takes an average of 2792 milliseconds or 2.79 seconds.

7.6 A critical analysis of the adopted mechanisation approach

Circus is not ideal as a formalism to adapt for instantiating BCF. The most important

issue is that there is no official BNF for the Circus notation. Some researchers do include

variations of what they say is the BNF of Circus such as in the papers by Woodcock and

Cavalcanti (2001b, P. 292), Woodcock and Cavalcanti (2002, P. 185), Sampaio et al. (2003,

P. 149), Freitas (2005, P. 13), Cavalcanti and Woodcock (2002, P. 149), Oliveira et al. (2006,

P. 3) and Oliveira et al. (2009, P. 5). However, unlike the ISO standardisation of the Z

notation (ISO/IEC, 2002) there is no single standardisation of the Circus notation nor

267

7 Evaluation

there is a working group that identifies themselves as the caretaker of this formalism.

Another issue with the Circus notation is that there are no reliable and stable tool

support that can cater for type checking and model checking Circus specifications.

The only type checking tool available for type checking a Circus specification is CZT.

However, it does not contain useful error messages, syntax highlighting or navigation

capabilities for Circus specific constructs in the specification. Ye and Woodcock (2017)

has proposed an approach for model checking Circus specifications by linking Circus to

CSP||B1. Their approach involves transforming the state part of a Circus specification

to a B machine while converting the behavioural part to CSP and finally using ProB

(Leuschel and Butler, 2003) to model check the resulting CSP||B specification. The

problem here is that the limitations in CSP||B confine the type of Circus specifications

that are supported in this approach. Ye and Woodcock (2017, p. 94) discusses these

limitations. Tools such as CRefine (Oliveira et al., 2008) and JCircus (Barrocas and

Oliveira, 2012) have been developed in the past to cater for a specific need of a research

conducted in the past. However, to the author’s knowledge there is no evidence that

either these tools or any other Circus tools are actively being developed and maintained

in such a away that other researchers can build upon its code-base. Further, research

on the Circus notation has yet to be taken up by the broader research community rather

than being confined to a small cohort of collaborating academics from a limited set

universities, as is the case at present.

Isabelle theorem prover is not ideal for simplifying the predicate generated from back

propagating a formal specification based on Circus. One reason is that mechanical

theorem proving used in Isabelle theorem prover requires guidance by an expert. On

the contrary, finite-state verification techniques2 such as model checking can fully be

automated.

1 “CSP||B is a combination of CSP and B aiming to introduce behavioural specification into state-based B machines.
The B method characterises abstract state, operations with respect to their enabling conditions and their effect on
the abstract state, while CSP specifies overall system behaviour. But different from Circus, the CSP specification
and B machine in CSP||B are always orthogonal.They are individually complete specifications and can be checked
separately” (Ye and Woodcock, 2017, p. 76).

2 “Finite-state verification refers to a set of techniques for proving properties of finite-state models of computer
systems” (Dwyer et al., 1998, p. 7).

268

7.6 A critical analysis of the adopted mechanisation approach

“In contrast to mechanical theorem proving, which often requires guidance by

an expert, most finite-state verification techniques can be fully automated, thus

relieving the user of the need to understand the inner workings of the verification

process” (Dwyer et al., 1998, p. 7).

When compared to theorem proving, the advantages of model checking include full

automation and the ability to generate counter examples that help in debugging (Ye

and Woodcock, 2017, p. 73). However, a proof based approach excels in certain aspects

such as being able to handle very complex systems because it does not have to directly

check every state and also because its logics are typically more expressive (Amjad, 2004,

p. 16). The ideal scenario would be to use a platform that has an efficient combination

of model checking and theorem proving. Such combinations have been proposed in the

past researchers such as Arkoudas et al. (2004), Amjad (2004), Aagaard et al. (1999),

Bjørner et al. (1997), Dingel and Filkorn (1995), Shankar (1996), McMillan (1999) and

Rajan et al. (1995).

Generating and submitting the back propagated predicate in a format that is sup-

ported by such a combined platform will be a valuable further improvement for the

mechanisation approach proposed in this thesis.

The CZT platform was considered for building custom extensions on top of it, to support

the mechanisation of the calculations required by BCF in Circus and subsequently for

code genration. However, the architecture and inner workings of the CZT editor was

very complex that demand a steep learning curve before the CZT editor could be

extended. Kimber (2007) considered the CZT editor as an input interface which he

planned to extend for code generation to produce PerfectDeveloper (Crocker, 2003) code

from Object-Z specifications. However, after reviewing the CZT editor, Kimber (2007)

concluded that the DTDs and schemas of CZT projects were quite impenetrable.

HiVe Mathematical Tool-kit is not ideal for the purpose of the mechanisation proposed

in this thesis. This is because the theory package does not provide a set of tactics which

can be used in dispatching automatic proofs for theories.

269

7 Evaluation

7.7 Critical factors that would have altered the direction of this
research

The following are some critical factors that would have altered the direction of this

research, if they were available at the beginning of this research.

Knowledge of Isabelle/Isar and Standard ML. If the author had been well versed with

Isabelle/Isar3 and standard ML (Wenzel, 2013, p. i) then the author could have

embedded Circus and the block structure (Banks, 2012, p. 102) of BCF in Circus

inside the Isabelle theorem prover, like HOL-Z (Brucker et al., 2003), Z and

HOL (Bowen and Gordon, 1994), CML (Woodcock and Miyazawa, 2012) or

Isabelle/Circus (Feliachi et al., 2012). Further, using ML, the author could have

mechanised the back propagation logic and subsequently simplify the predicate

within the Isabelle theorem prover.

Detailed developer guide for CZT. If there was a clear documentation regarding the

architecture of CZT and how one may extended it, the author could have extended

CZT to generate the theorem file from the standard LATEX format supported by

the CZT tool. In this scenario, the user could have specified the system using the

Circus notation rather than having to get expertise in using the CFAT notation

which is required in the current mechanisation proposed in this thesis. The author

attempted to extend CZT during the course of this research. However, similar to

Kimber (2007), the author found it impenetrable within the time frame of this

research.

“Indeed, the DTDs and schemas downloaded from existing projects such as

CZT were quite impenetrable.” (Kimber, 2007, p. 59)

3 Isabelle/Isar provides an interpreted language support for interactive theorem proving in the Isabelle theorem
prover whereas the host language of the Isabelle theorem prover is standard ML (Wenzel, 2013, p. i).

270

7.8 Further work

7.8 Further work

The contributions made in this thesis has enabled many interesting directions of further

research that could be explored in future.

Comparative analysis of BCF in Circus. The proposed mechanisation in this thesis and

other similar mechanisations proposed in the literature, for analysing systems

with a confidentiality requirement, can be compared side by side on the basis

of analysis time and competence required. Such as exercise may reveal the

comparative strengths and weaknesses of the compared approaches. BCF in Circus

supports certain sub classes of confidentiality properties as stated in Section 5.3.

Therefore, it is important to confine this comparative analysis to systems with

properties that are supported by all compared approaches.

Extension of the mechanisation of BCF in Circus to support additional constructs.

If further research on BCF in Circus results in the introduction of support for data

leakage analysis of parallel processes, then such extensions can easily be adapted

in the mechanisation proposed in this thesis. Further, results of such an analysis

will more closely reflect the information flows in a real life execution of a system

with parallel processes rather than an exercise that cannot analyse a system with

parallel processes.

Embedding in Higher Order Logic (HOL). An on-going work (Zeyda et al., 2017) at the

University of York is concerned with embedding Circus in Isabelle/UTP. This

work further involves translating Circus notations into corresponding operators

within this embedding. The confidentiality framework can be mechanized as an

Isabelle/HOL theory by extending this embedding, so that Circus models with a

confidentiality requirement can be directly written in the Isabelle theorem prover

similar to HOL-Z and Isabelle/Circus. Tactics can be developed to facilitate the

simplification of these system models.

271

7 Evaluation

Prototyping for black-box testing. Circus formal models may be translated to executable

OCAML programs for rapid prototyping. These prototypes may be used by

security experts to conduct data secrecy tests.

BCF and Event-B. BCF can be adopted for the Event-B notation provided that there is

a UTP semantics for the notation. The back propagation laws of BCF can then be

mechanized by extending the RODIN tool. The RODIN tool already has support

for modelling and refinement of Event-B specifications. This effort may result in

a more integrated tool that supports confidentiality verification.

Improving the efficiency and effectiveness of the mechanisation. The proposed mechan-

isation can be improved on many grounds so that engineers can save time when

using the mechanisation. Some potential areas of the mechanisation that can be

improved to achieve a better efficient and effective performance from the tool

include:

• Building support in the CFAT tool for a Controlled Natural Language (CNL)

as detailed in page 275-276. CNL can lower the barrier of entry for the CFAT

tool by allowing users to specify systems using a natural language rather

than having to use a structured notation.

• Automating the submission of the back propagated predicate to the Isabelle

theorem prover. This can be possible through the use of command line tools

of the Isabelle theorem prover.

• Automating the validation of the generated LATEX specification using CZT.

This can be possible through the use of command line tools of CZT.

• Develop tactics in the Isabelle theorem prover for improving the automation

of the simplification. Most probably, this will be an extension to the HiVe

mathematical toolkit.

272

7.8 Further work

Techniques to improve the identification of data leakage risks. The process followed in

this thesis, for analysing systems with a confidentiality requirement, can be

strengthened by improving the confidentiality requirement elicitation stage of

the process. The current approach involves formalizing the given confidentiality

requirement and including it as part of the formal specification of the system.

However, if the system requirements could be analysed using techniques for

identifying security requirements from business goals, it can only help to improve

the set of security requirements of the system. The following are some useful

techniques in this domain that future researchers can utilize.

Abuse cases Abuse cases utilizes use case models to model complete

interactions between a systems and one or more actors

(McDermott and Fox, 1999). In comparison to normal

use cases, the result of the interaction in an abuse case is

harmful to one of the actors or stakeholders of the system.

“In a requirements phase, abuse case models can be used

to increase both user and customer understanding of

the security features of a proposed product.”

(McDermott and Fox, 1999, p. 63)

Misuse cases Sindre and Opdahl (2005) introduced misuse cases, which

are inverted use cases that describe functions that the sys-

tem should not allow. Use cases and misuse cases are in-

cluded in the same diagram of the system model, rather

than being on different diagrams like use cases and Abuse

cases. Misuse-case diagrams link regular use cases to both

threats and potential countermeasures which aids in priorit-

ization of requirements since the real cost of implementing

a use case includes the protection needed to mitigate all

serious threats to it (Sindre and Opdahl, 2005, p. 41).

273

7 Evaluation

Deviational techniques A security analysis using deviational techniques such as

HAZOP (Kletz, 1999) on use cases may identify security

requirements which otherwise might have slip through un-

noticed. Srivatanakul (2005) demonstrated that deviational

techniques can be used on use cases in UML to identify

security requirements.

Anti-goals Another technique for identifying security requirements

is through the use of anti-models. An anti-model includes

anti-goals, which are attackers own goals that are inten-

tional obstacles to security goals, set up by the attackers

to threaten security goals (Elahi et al., 2010, p. 21). Lam-

sweerde (2004) extended KAOS, a goal-oriented security re-

quirements engineering methodology to capture anti-goals

and other obstacles that capture exceptional behaviour.

Tool-supported automation of translations. From the initial business goals to the formal

specification of confidentiality integrated systems, there are many stages where

there are requirements for syntactic translations of requirements between stages.

Figure 7.1 shows some of these stages with a T . Further work on automating

the translation at each stage is recommended to introduce a systematic process

for each translation. One such technique for enabling such translations is to use a

Controlled Natural Language (CNL) for describing systems. A small introduction

to CNL is given on page 275 - 276.

274

7.8 Further work

Two important issues that one must address when writing a system require-

ment specification for an information system are that:

• the organisational structure and rules that are to be incorporated into

the information system must be described in a language that can be

understood by all stakeholders.

• the specification should be unambiguous so that traceability can be

established between the system requirement specification and its eventual

implementation.

Unambiguity is also required in a system requirement specification in order

to avoid inconsistencies between stakeholders as well as in order to formally

reason about system models. One way to ensure unambiguity in a system

requirement specification is to use a Controlled Natural Language (CNL)

(Schwitter, 2010).

A CNL is a subset of a natural language where the grammar and vocabulary

are restricted in a systematic way to reduce the ambiguity and complexity

found in a full natural language (Schwitter, 2010, p. 1113). Some CNLs include

INCOSE (Condamines and Warnier, 2014, p. 36), Attempto Controlled English

(ACE) (Fuchs et al., 2008) and Computer-Processable Language (CPL) (Clark et al.,

2005).

RuleCNL by Feuto Njonko et al. (2014) is a domain independent CNL that sys-

tematically embeds domain facts and terms in grammatically correct sentences.

In an organisational setting these domain fact and terms can be synonymous

with organisational rules and structure.

Controlled Natural Language (CNL)

275

7 Evaluation

“An ontology models a part of the world. Such a model can be used by

humans and computers in order to establish a common ‘understanding’ of

relevant concepts and the relations between them.”

(Schumacher, 2001, p. 32)

A future area of work can be to work on a CNL that adopts the concept

of embedding organisational rules and structures similar to RuleCNL. This

CNL can be designed to provide a set of necessary patterns that can be used

to describe a simple system in such a way that the system description can

be systematically translated into a Circus specification. Table 7.1 shows the

mapping between some components of a system requirement specification

and a Circus specification. A set of rules can be proposed that can be used

to describe the organisational structure, rules and regulations using natural

language. Subsequently, a mapping for translating compliant sentences to the

Circus notation can be provided.

System requirement specification Structures of the Circus notation

Organisational structure data types, data objects,
global constants

Organisational rules and regulations state invariants

Operations performed in the organisation actions

Who can perform the functions channelsets
(representing user roles)

Which staff are included in each user role state invariants that define
elements of sets

Table 7.1: Mapping a system requirement specification to structures in
a Circus specification

Controlled Natural Language (CNL) (continued)

276

7.8 Further work

A comprehensive set of sentence patterns are not required for using a CNL, but

rather a minimal set of patterns that can be used to derive unambiguous and

grammatically correct sentences to describe the structure, rules and regulations

of an organisation is enough as a start. Nonetheless, the grammar can be

extended later to support a richer set of patterns of sentences in order to

describe other identified components of a system requirement specification as

listed in Table 7.1.

Controlled Natural Language (CNL) (continued)

277

7 Evaluation

rephrase
system requirements

using a CNL

identify
security requirements using

deviational techniques,
abuse cases,
misuse cases,
anti-goals, etc

Bussiness
goals

translate
system definition in CNL

to CFAT constructs

System definition
in a CNL

System requirements

System model
(Eg:Use case in

UML)

Circus
specification

System model in
CFAT format

translate
system definition in CNL

to UML objects

used to derive a

translate
system definition in CNL

to Circus in LaTeX

used to
derive

used to

Functional
requirements

used to
derive

combined to form

translate
CFAT constructs to
Circus in LaTeX

Manually
transform to a

T
T

T

T

results in

Security
requirements

used to

produces a

Figure 7.1: Some possible stages and paths that can be taken when
moving from business goals to Circus specifications

278

A Appendix

A.1 Modelling a system using the Circus notation

One way to model a system using the Circus notation, is to model the individual

components of the system and then combine them into a single system definition called

a Circus specification. The specifications of individual components are called Circus

paragraphs1. A Circus specification may contain zero, one or many Circus paragraphs.

This section describes how the Circus notation has been used to formally model the

range of systems discussed in this thesis.

The application of the Circus constructs, discussed in this section, are illustrated

using the specification of an Online expenditure tracker system (see Figure A.1). The

components of this specification are explained one-by-one, as we progress through the

following sub-sections. In summary, this system allows an on-line customer to purchase

items. Money spent on every purchase is tallied with his/her previous purchases. The

system also allows a customer to check his/her total expenditure.

A.1.1 Defining the data types and state variables

A.1.1.a Data types

In this thesis, systems are modelled as abstract formal specifications. Significant

examples of system scenarios are taken from the literature. The data structures of these

systems are modelled as abstract sets of elements or relations and functions.

1 A Circus paragraph is a syntactic structure of the Circus specification language (Sampaio et al., 2003).

279

A Appendix

Basic types In the Circus notation, an abstract data type can be defined by providing

the name of the type enclosed in a pair of square brackets. Such type

definitions are called basic types (Spivey, 1989, p. 47). Similarly, multiple

types can be defined by providing a comma separated sequence of type

names.

e.g. [CUSTOMER, ITEM]

In the example, the basic types CUSTOMER and ITEM are defined using

the statement [CUSTOMER, ITEM]. The basic type CUSTOMER represents

the set of all the customer identifiers and the basic type ITEM represents

the set of all the item identifiers used in the system.

Free types A type with a finite number of elements can be defined in Circus using

the free type construct. A free type can be used to define a set of distinct

constants (Spivey, 1989, p. 82).

e.g. Status ::= InUse | NotInUse

The statement Status ::= InUse | NotInUse defines the free type (Spivey, 1989)

Status to be a set containing exactly two distinct elements that represent

two values. The free type definitions in this thesis use simple free types.

More complex free types can be defined as show in (Spivey, 1989, p. 82).

A.1.1.b State variables and invariants

State variables are variables that are declared in the global scope of the system. For

example, the data structures spent, price and currentCustomer need to be accessible

throughout the scope of the process Online expenditure tracker (see Figure A.1) and

so they are defined as state variables. The description of the state variables in the

specification are included in the Table A.1.

280

A.1 Modelling a system using the Circus notation

Table A.1: Online expenditure tracker - Description of the state variables

State variable Description

spent A function that identifies the amount spent by a customer, if any.

price A function that identifies the price of an item, if any.

currentCustomer The user who is currently logged into the system.

The system enforces constraints encoded as state invariants on the values that can be

assumed by the state variables. These constraints encode the policies of the parent

organisation. The description of these state invariants are included in Table A.2.

Table A.2: Online expenditure tracker - Description of the state invariants

State invariants Description

currentCustomer ∈ (dom (spent))

The current user who is logged into the system must have a spent value
recorded in the system.

281

A Appendix

[CUSTOMER, ITEM]

State
spent : CUSTOMER 7 7→N

currentCustomer : CUSTOMER
price : ITEM 7 7→N

currentCustomer ∈ (dom (spent))

channel mySpentAmountOut : N

channel buyItemIn : ITEM

channelset Customer == {| buyItemIn, mySpentAmountOut |}

process Online expenditure tracker =̂ begin

state State

RecordMyReciept =̂ var buyItem : ITEM •
buyItemIn?buyItem−→

((buyItem? ∈ dom (price))N
spent := spent⊕ {(currentCustomer 7→
(spent currentCustomer + price buyItem?))})

GetMySpent =̂ mySpentAmountOut !(spent currentCustomer)−→ Skip

• µX •
((

RecordMyReciept
@ GetMySpent

)
; X
)

end

Figure A.1: Specification of Online expenditure tracker - code block 1 of 1

282

A.1 Modelling a system using the Circus notation

A.1.2 Establishing the communication channels

The system must have communication channels so that the customer can interact with

the system, by way of inputs and outputs.

Channels A channel can be declared by using the syntax channel x+ : T, where

channel is a keyword, x+ denotes a single or a comma separated sequence

of channel names and T denotes the type of data that can be communicated

through the channels. If a Circus channel is declared with this syntax, it can

be used by the system for communicating with the environment by way of

inputs and outputs. For example, the statement;

channel itin : ITEM

in the running example defines a channel called itin with the data type

ITEM to input item identifiers. It is important to note here that channels

are strongly typed in Circus, and hence a channel will restrict the data it

communicates based on its data type2.

In a system environment, confidentiality requirements may be enforced on all users

or various requirements may be enforced on various sub-groups of users. BCF (see

Section 2.3) provides constructs to enforce confidentiality requirements on a defined

sets of channels. In this regard, a confidentiality requirement may be enforced on a

user by enforcing the confidentiality requirement on the set of channels through which

the user communicates with the system.

Channel sets A set of channels with a given name is called a channelset. A channelset

is defined using the notation channelset ::= {| x+ |}, where channelset is

a keyword and x+ denotes a single or a comma separated sequence of

channel names. For example, the statement;

channelset Customer == {| buyItemIn, mySpentAmountOut |}

2 A channel can also be defined without a data type. Such channels are called synchronisation points and they do
not communicate any value (Freitas, 2005).

283

A Appendix

in the running example defines a channelset called Customer that represents

the set of channels allowed to a customer of the system.

A.1.3 Defining the system operations

The term ‘action‘, in the Circus terminology refers to any operation of a system and

hence, from now on this term will be used to refer to system operations accordingly.

Here, we define the syntax of the common actions used in the Circus specifications

discussed in this thesis.

Primitive actions. The action Skip terminates immediately and does not make any

changes to the system state (Oliveira et al., 2009, p. 7).

Declaring a variable. A variable can be declared using the statement var v+ : T where

v+ denotes a single or a comma separated sequence of variable names and T

denotes the datatype of v that represents the values that v can assume.

The statement var n : N; c : CUSTOMER declares the variable n that can store

data of type N and the variable c that can store data of type CUSTOMER.

Input and output events. A prefixed action is defined to achieve input or output com-

munications whereby the communication event defined in the prefix takes place

before the action starts. A prefixed action is defined using the format Comm−→A

as found in the BNF in Figure A.2 where Comm is a communication event and A

is a Circus action.

Inputting a value

A prefixed action for input is written c?x−→A, whereby the system accepts a

value to the variable x through the channel c and then behaves like A and x is in

the scope of A (Oliveira, 2005).

284

A.1 Modelling a system using the Circus notation

Outputting a value

A prefixed action for output is written c!y−→A whereby the system outputs the

value of the expression y through the channel c and then behaves like A.

Assigning a value to a variable. A value can be assigned to a variable using the action

statement a := E where a is a variable defined in the scope of the assignment

action and E is an expression that evaluates to a value of the same type as the

state variable a.

A.1.4 Defining the overall behaviour of the system

In the Circus notation, a system may be defined with one or more processes. Each

process may contain one or more actions and a main action. However, all the systems

analysed in this thesis are based on systems composed of multiple actions within a

single process. This is because our work uses BCF in Circus (Banks, 2012) where the

verification laws developed so far have been restricted to single processes.

A Circus specification supports multiple actions through action composition using the

CSP operators in the Circus BNF in Figure A.2. The following constructs are utilized in

this thesis for process composition.

Recursion. The recursion construct µX • A ; X recursively executes the action A where

X is a recursion label defined using the construct µX. We may define multiple

recursions in a single main action.

Sequential composition. The construct A ; B defines a sequential composition of two

actions whereby ‘; ’ is the sequential composition operator and the execution of

the action A is immediately followed by the execution of the action B.

In the example the statement (RecordMyReciept @ GetMySpent) ; X defines a se-

quential composition where the composite action (RecordMyReciept @ GetMySpent)

is immediately followed by X, a recursive invocation of the process starting at the

label X.

285

A Appendix 1

Program ::= CircusPar*

CircusPar ::= ZParagraph | ChanDecl | CSetDecl | ProcDecl

ChanDecl ::= channel CDecl

SeqCDecl ::= CDecl | SeqCDecl ; CDecl

CDecl ::= N+ | N+ : ZExpr

CSDecl ::= channelset N== CSExpr

CSExpr ::= {| |} | {| N+ |} | N | CSExpr \ CSExpr

| CSExpr ∪ CSExpr | CSExpr ∩ CSExpr

PDecl ::= process N =̂ ProcDef

PDef ::= begin PPar* state Schema-Expr PPar* • Act end

PPar ::= Zparagraph | N =̂ Act | NameSetDecl

Act ::= Schema-Expr | CSPAct

CSPAct ::= Skip | Stop | Chaos | Comm→ Act | Cmd | ZPred N Act

| N | µN• Act | Act ; Act | Act u Act | Act @ Act

| Act |[NSExpr | CSExpr | NSExpr]| Act | Act \ CSExpr

| 9 ZDecl • Act

Cmd ::= var x : ZExpr • Act | N+ := ZExpr

Comm ::= N CParam*

CParam ::= ?N | ?N : ZPred | ! ZExpr | .ZExpr

NSDecl ::= nameset N== NSExpr

NSExpr ::= {} | { N+ } | N | NSExpr \ NSExpr

| NSExpr ∪ NSExpr | NSExpr ∩ NSExpr

Figure A.2: Circus BNF as published in Freitas (2005) doctoral thesis

NOTE : Pages 31 to 35 of the ISO standard for the Z notation (ISO/IEC, 2002) contains the
complete BNF of the Z notation.

External choice. The logged in user is allowed to either increment his expenditure

total by recording a new receipt in the system or view his/her total expenditure

recorded in the system.

RecordMyReciept @ GetMySpent

These are multiple execution paths which the user can choose from. The external

286

A.1 Modelling a system using the Circus notation

choice operator @ can be used to define a composite action with multiple execution

paths where the selected path depends on the external input.

Main action. The overall behaviour of a Circus process is defined by defining a nameless

action within the process scope. The overall behaviour of the system in the

running example is defined using the following Circus action.

• µX •



 RecordMyReciept

@ GetMySpent


 ; X




An implementation of the system specification in Figure A.1 will behave as follows. In

the beginning state of the system, it is assumed that the state variables price and spent

have already been populated with the necessary data. While in this state, the Circus

action RecordMyReciept or GetMySpent can be chosen by the environment. At the end of

the run, the recursive label X locates the program counter to the state at the beginning

of the program where the label X is defined.

A.1.5 Recursion

The recursion construct in the Circus notation is of the form µX • F(X). To left justify

the lifted body 〈F(X)〉 with respect to the confidentiality annotation θ, we have to

identify an invariant obligation θi where θ v θi (Banks, 2012, p. 148). Consider the

original confidentiality annotation θ as θ0. The following calculation is used to identify

a θn such that θn = θn+1.

θi+1 = θi ∧ bw(〈F(X)〉, θi)

Banks’s argues that this method is not guaranteed to identify a finite n such that

θn = θn+1 (Banks, 2012, p. 148) in the general case. He further states that, in this case

one may resort to intuition by analysing patterns of obligations to derive an invariant

obligation.

287

A Appendix

The calculation of the invariant obligation needs further research to derive any useful

laws that can be used for back propagation calculations and as such this endeavour

is not within the scope of this thesis. For this reason, we do not calculate invariant

obligations when back propagating the systems in the case studies in this thesis. I note

that omitting the calculation of the invariant obligation is a limitation of the case study

analysis done in this thesis.

A.2 A comparison of the tools that provide any form of support for
specifying systems in the Circus notation

Tool support for the Circus notation is limited. To the author’s knowledge, the only

tools that provide any form of support for specifying systems in the Circus notation are

Symphony IDE supporting COMPASS Modelling Language (CML), CZT and CRefine.

The following describes the extent to which each tool supports specifying systems in

the Circus notation and the effort required to modify the tool to support an extension

to the Circus notation.

Symphony IDE supporting COMPASS Modelling Language (CML). Symphony IDE sup-

ports the domain specific language CML that is designed for modelling and analysing

systems of systems (Woodcock and Miyazawa, 2012). CML is based on VDM (Gulati

and Singh, 2012), CSP (Hoare, 1980) and Circus (Oliveira et al., 2006). Symphony IDE

(Coleman et al., 2014) is a tool that utilizes CML models to generate Isabelle theorem

files to reason about certain properties of those models. Hence, CML, Symphony IDE

and the Isabelle theorem prover provide a clear path from formal models based on

Circus to Isabelle theorem prover, where we can reason about various properties of

those models. However, the generated theorem files are based on the Isabelle/UTP

framework (Woodcock et al., 2015). The foundation of the Isabelle/UTP framework is

based on a custom definition for the UTP variable and a value model that complements

the typing requirements for those variables. In order to extend the Isabelle/UTP to

support the extended twin semantics of BCF we need to code a new definition for every

288

A.3 Decisions regarding the development of a custom tool for BCF application

UTP notation and function of the theory of designs in the Isabelle/UTP. Therefore,

CML is not a viable alternative for the purpose of extending it to support BCF.

Symphony IDE generates Isabelle theorem files based on CML system models to reason

about certain properties of these models. The theorem files are based on a theory

package that needs extensive extension from the ground up if twin semantics was to be

supported.

Community Z Tools (CZT). CZT (Malik and Utting, 2005) supports the parsing of Circus

specifications. However, the architecture and inner workings of the CZT editor is

very complex that demand a steep learning curve before the CZT editor could be

extended to support reasoning about confidentiality requirements in a given Circus

specification. Kimber (2007) considered the CZT editor as an input interface which he

planned to extend for code generation to produce PerfectDeveloper (Crocker, 2003) code

from Object-Z specifications. However, after reviewing the CZT editor, Kimber (2007)

concluded that the DTDs and schemas of CZT projects were quite impenetrable.

CRefine. CRefine (Oliveira et al., 2008) is a tool that supports the use of Circus refine-

ment calculus (Sampaio et al., 2003). It has an inbuilt proof obligation manager, that

automatically dispatch proofs for some of its refinement steps (Oliveira et al., 2008).

However, since CRefine extends CZT (Gurgel et al., 2008), it suffers from the same

architectural complexities.

A.3 Decisions regarding the development of a custom tool for BCF
application

For design decisions regarding the development of a BCF application and code gen-

eration tool, it is best to learn how the past researchers have approached it. CRefine,

Symphony IDE and Perfect Developer (Crocker, 2003) are some of the tools that have

been developed in the past for the formal specification and verification of systems.

Perfect Developer (Crocker, 2003) is a tool that allows a user to define and later refine a

formal specification to object oriented code. In addition, it generates “proof obligations”

289

A Appendix

from pre-conditions, invariants, etc to verify the correctness of the system model being

defined (Kimber, 2007). These three tools allow the formal specification systems and

dispatch proofs about certain properties of those systems. CRefine and Symphony IDE

both support Circus or a close variant of it. Our requirements for a formal tool for

reasoning about confidentiality, also share these characteristics.

Even-though CRefine accepts a LATEX document, it has support for a unicode (on-screen

pretty printing) display format because the author’s of the CRefine tool believe that

its target audience is mostly not familiar with LATEX and also that “pretty printing is a

success among researchers, since it unconditionally makes the presentation of the development

more user friendly” (Oliveira et al., 2008). Perfect developer adopts a non-LATEX notation

similar to any object oriented language, to make it more “accessible for software developers

with limited mathematical knowledge”. CML is also a non-LATEX notation.

290

A.4 Translating CFAT notation to HOL

A.4 Translating CFAT notation to HOL

The following subsections describe how the some CFAT structures that represent Z data

structures are translated into equivalent HOL data structures in the Isabelle theorem

prover. The following presents a discussion of how the the data structures of CFAT

notation is translated to similar HOL data structures.

Variable definition. Z is a strongly typed language and hence a variable declaration in Z

implies that the universal set that contains all elements for that type (Kolyang

et al., 1996) restricts the possible values of that variable. This implication is

the type invariant for that type. For, e.g., The Z statement user : EMPLOYEE;

• defines a state variable “user" with an arbitrary type EMPLOYEE (type

definition), but it also

• implies that “user" belongs to an arbitrary set EMPLOYEE of the same

type (type invariant).

However, in HOL notation, the type definition and the type invariant must be

stated separately. To standardize the translation from Z to HOL and also for

ease of readability, the convention we have adopted is that we write;

• the lowercase of the given Z type name EMPLOYEE, as the equivalent

arbitrary type name in HOL (type EMPLOYEE in Z written as type

employee in HOL)

• the given type EMPLOYEE (also the assumed arbitrary set) in Z as name

of the universal set representing the given type in HOL (arbitrary set

EMPLOYEE is Z written as arbitrary set EMPLOYEE in HOL)

For example, Equation (A.1) defines a variable in the Z notation where the

variable name is user and its type is EMPLOYEE.

user : EMPLOYEE (A.1)

291

A Appendix

The variable definition in Equation (A.1) can be written in equivalent HOL

term as in Equation (A.2).

∀ (user::employee) . user ∈ EMPLOYEE (A.2)

where employee is an arbitrary type, user is universally quantified and EMPLOYEE

is a set of the same type employee.

Each basic type defined in the Z notation is considered to be synonymous

with a universal set of labels that represent that type. Hence, we translate

every basic type defined in the Z notation as the Isabelle theorem prover

type string, that represent a set of strings. In the Isabelle theorem prover, we

defined this type synonym with the statement;

type synonym employee = string

Subsequently, we define the arbitrary sets of basic types as sets of strings as

shown below.

definition EMPLOYEE :: "string set "

where "EMPLOYEE == v. ∃ (s::string) . v = s"

Relations and functions. A relation is a set of cartesian products of some given types.

Throughout this thesis, we restrict ourself to binary relations which are

relations between two given types. In Z notation, a relation is enforced

between two types via the use of the infix operator ↔. Given two types

DOCTOR and PATIENT , Equation (A.3) defines a relation between the two.

GP : DOCTOR↔ PATIENT (A.3)

Equation (A.3) can be read as: the relation GP relates doctors to patients . The

HOL notation equivalent for the Equation (A.3) is shown as Equation (A.4).

∀ (GP::doctor <=> patient) . GP ∈ (DOCTOR <�> PATIENT) (A.4)

292

A.4 Translating CFAT notation to HOL

Here, doctor and patient are two type variables representing types of the

elements in the two universal sets DOCTOR and PATIENT defined by the

two given types and <=> is the type constructor for the “relation type" in

the Mathematical tool-kit. The invariant GP ∈ (DOCTOR <�> PATIENT)

defines the valid elements that belong to the set of the cartesian products of

the relation GP. The set of elements DOCTOR and PATIENT of the arbitrary

types doctor and patient are defined as follows.

definition DOCTOR :: "string set " (A.5)
where "DOCTOR == v. ∃ (s::string) . v = s" (A.6)

Set definition for basic type DOCTOR

definition PATIENT :: "string set " (A.7)
where "PATIENT == v. ∃ (s::string) . v = s" (A.8)

Set definition for basic type PATIENT

Functions are special types of relations. The toolkit by Bowen and Gordon

(1994) defines functions that restrict the subset of relations that are healthy

with respect to various function definitions. Appendix A.4 presents operators

in the toolkit that are defined for functions over relations and components of

those relations.

293

A Appendix

Function type Z infix notation HiVe notation

Binary relation ↔ <�>

Partial function 7→ -|->

Total function → �>

Function application %�

Cartesian product × ><

Maplet 7→ |->

Table A.3: Operators in HiVe for the Z mathematical constructs

Following are the function definitions for partial and total functions.

X 7→ Y == {f . f : (S↔ R) ∧ (∀ x y1 y2. (x, y1) : f ∧ (x, y2) : f ⇒ (y1 = y2))}

X→ Y == {s.s : S 7→ R ∧ dom s = S}

In a system where only some doctors are assigned patients, a partial relation

exists between the doctors and the patients. In such a case, the relation GP

can be defined as;

GP : DOCTOR 7→ PATIENT

whereas the HOL equivalent definition is,

∀ (GP::doctor <=> patient) . GP ∈ (DOCTOR -|-> PATIENT)

294

A.5 Description and formal specification of systems

A.5 Description and formal specification of systems

A.5.1 Case study - Phone book system

A hand-crafted documentation with a formal specification of the Phone book system of

a secret government agency is presented. A Circus action is defined for each use case in

the use case diagram of the Phone book system shown in Figure A.3. The operations

performed by these actions are described in Table A.5. It is important to note that

the action Init in Table A.5 is not in Figure A.3. This is because Init initializes system

variables and is not executed through external action. The following table of contents

may be useful for easy navigation within this case study.

Contents of the case study Page

Documentation of the Phone book system case study

- Operations 295

- Data types of system entities 297

- State variables 297

- Formal specification of the system in the Circus notation 300

A.5.1.a Operations

The operations of the system are formalized as Circus actions and described in Table A.5.

295

A Appendix

Manager

Phone book
of a secret government agency

Add employee
Phone number

Add employee
Phone number

EngineerSecretary

Get non-secret
phone number

Get non-secret
phone number

Set a phone
number secret

Set a phone
number secret

Get any
phone number

Get any
phone number

User role
Information flow violates
confidentiality policy
Information flow violates
confidentiality policy

Information flow
is allowed

User role
Information flow violates
confidentiality policy

Information flow
is allowed

Figure A.3: Use case diagram for the Phone book system

Table A.5: Phone book system - Description of the Circus actions

Action Operation performed by the action

AddPhoneNumber Adds a phone number to the phone book.

SetSecretPhoneNumber Adds an official into the list of high ranking officials whose

phone numbers should never be revealed.

GetPhoneNumberNoSecret Outputs the phone number of a given official, as long he is

not included in the list of high ranking officials.

GetPhoneNumberAny Outputs the phone number of a given offical.

296

A.5 Description and formal specification of systems

A.5.1.b Data types of system entities

The entities of the system are employees and their phone numbers. These are represen-

ted using basic types. These basic types are described in Table A.6.

Table A.6: Phone book system - Description of the basic types

Basic type Description

EMPLOYEE set of all possible identifiers for employees

TELEPHONE set of all possible telephone numbers

A.5.1.c State variables

The state of the system is recorded by the schema State. The state variables that record

and maintain various information about the system state are described in Table A.7.

Table A.7: Phone book system - Description of the state variables

State variable Description

phoneNumbers A relation that identifes the telephone number allocated to each

unique employee.

secretList The set of unique identifiers that represents the set of employees

whose phone numbers are considered secret.

loggedIn The set of identifiers of the users who are logged into the system.

297

A Appendix

loginUser The identifier that represents the user who is currently logged into

the system.

reqOfficial The identifier of the official whose phone number is being reques-

ted from the system.

officials The set of identifiers that represents all the officials whose phone

numbers have been recorded in the system.

secretaries The set of unique identifiers that represents the secretaries of the

organisation.

engineers The set of identifiers that represents all the engineers whose phone

numbers have been recorded in the system.

manager The identifier that represents the manager of the organisation.

A.5.1.d State invariants

Further, the system is designed to respect the following constraints.

Table A.8: Phone book system - Description of the state invariants

State invariants Description

dom (phoneNumbers) ⊆ officials

The set of people whose phone numbers are recorded in the system must
be from the set of officials recorded in the system.

secretList ⊆ dom (phoneNumbers)

298

A.5 Description and formal specification of systems

The set of officials whose numbers are considered confidential must be
from the set of officials whose phone numbers have been recorded in the
system.

reqOfficial ∈ dom (phoneNumbers)

The official whose phone number is being requested from the system
must have his/her phone number recorded in the system.

loginUser ∈ loggedIn

The current user must be from the set of users logged into the system.

loggedIn ⊆ officials

The set of users who are logged into the system must be from the set of
officials in the agency.

officials ⊆ (secretaries ∪ engineers ∪ {manager})

The set of officials of the agency mustbe from the group of secretaries,
the group of engineers or the manager.

(engineers ∩ {manager}) = {}

The same person cannot be an engineer and the manager at the same
time.

({manager} ∩ secretaries) = {}

The same person cannot be the manager and a secretary at the same time.

(engineers ∩ secretaries) = {}

The same person cannot be an engineer and a secretary at the same time.

299

A Appendix

[TELEPHONE, EMPLOYEE]

State
phoneNumbers : EMPLOYEE 7 7→ TELEPHONE
manager, reqOfficial, loginUser : EMPLOYEE
engineers, secretaries, officials, loggedIn, secretList : F EMPLOYEE

(engineers ∩ secretaries) = {}
({manager} ∩ secretaries) = {}
(engineers ∩ {manager}) = {}
officials ⊆ (secretaries ∪ engineers ∪ {manager})
loggedIn ⊆ officials
loginUser ∈ loggedIn
reqOfficial ∈ dom (phoneNumbers)
secretList ⊆ dom (phoneNumbers)
dom (phoneNumbers) ⊆ officials

HideSecretNumber
ΞState

∃ State 9 •
reqOfficial ∈ secretList ∧
reqOfficial 6= loginUser ∧
loginUser 6= manager⇒

reqOfficial ∈ dom (phoneNumbers)⇒
reqOfficial9 6∈ dom (phoneNumbers9)

channel addPhoneNumberIn, anyPhoneOut, noSecPhoneOut : TELEPHONE
channel noSecOfficialIn, setSecretOfficialIn, addPhoneOfficialIn : EMPLOYEE
channel anyOfficialIn : EMPLOYEE

channelset Engineers == {| noSecPhoneOut, noSecOfficialIn |}
channelset Manager == {| setSecretOfficialIn, anyPhoneOut, anyOfficialIn |}
channelset Secretaries == {| addPhoneOfficialIn, noSecPhoneOut, noSecOfficialIn,

addPhoneNumberIn |}

process Phone book system =̂ begin

state State

Init =̂ reqOfficial := loginUser

AddPhoneNumber =̂ var addPhoneNumber : TELEPHONE;
addPhoneOfficial : officials •
addPhoneNumberIn?addPhoneNumber−→
addPhoneOfficialIn?addPhoneOfficial−→
((loginUser ∈ secretaries)N

phoneNumbers := phoneNumbers⊕
{(addPhoneOfficial? 7→ addPhoneNumber?)})

SetSecretPhoneNumber =̂ var setSecretOfficial : dom (phoneNumbers) •
setSecretOfficialIn?setSecretOfficial−→
((loginUser = manager)N

secretList := secretList ∪ {setSecretOfficial?})

Figure A.4: Specification of Phone book system - code block 1 of 2

300

A.5 Description and formal specification of systems

GetPhoneNumberNoSecret =̂ var noSecOfficial : dom (phoneNumbers) •
noSecOfficialIn?noSecOfficial−→
reqOfficial := noSecOfficial?;
((noSecOfficial? 6∈ secretList ∨
loginUser = manager)N

noSecPhoneOut !(phoneNumbers noSecOfficial?)−→ Skip)

GetPhoneNumberAny =̂ var anyOfficial : dom (phoneNumbers) •
anyOfficialIn?anyOfficial−→
reqOfficial := anyOfficial?;
((loginUser = manager)N

anyPhoneOut !(phoneNumbers anyOfficial?)−→ Skip)

HideSecretNumber =̂ HideSecretNumber

Options =̂




AddPhoneNumber
@ SetSecretPhoneNumber
@ GetPhoneNumberNoSecret
@ GetPhoneNumberAny


 ; HideSecretNumber

• 〈Init〉 ; µY • 〈Options ; Y〉

end

Figure A.4 (cont.) : Specification of Phone book system - code block 2 of 2

301

A Appendix

A.5.2 Case study - Secure electronic examination system

A hand-crafted documentation with a formal specification of the Secure electronic

examination system is presented. A Circus action is defined for each use case in the use

case diagram of the Secure electronic examination system shown in Figure A.5. The

operations performed by these actions are described in Table A.14. It is important to

note that the action Init in Table A.14 is not in Figure A.5. This is because Init initializes

system variables and is not executed through external action. The following table of

contents may be useful for easy navigation within this case study.

Contents of the case study Page

Documentation of the Secure electronic examination system case study

- Operations 310

- Data types of system entities 302

- State variables 305

- Formal specification of the system in the Circus notation 312

A.5.2.a Data types of system entities

The entities of the system including the actors Chair, Student, Setter, Checker and

Grader as well as the components Paper, Question, Answer and Candidate are repres-

ented using basic types. These basic types are described in Table A.10.

302

A.5 Description and formal specification of systems

Examination system

Release paper

Remove setter

Set paper

Announce paper

Setter

Checker

Chair

Violates
confidentiality policy

Appoint setter

Student

Close exam

Check paper

Appoint checker

Appoint marker

Grade paper

Publish grades Marker

Get own grade

Get own recorded
answers

Take paper
(record answers)

Register for exam

Get any student
grade

Get recorded
answers for any

student

Cancel
registration

Does not violate
confidentiality policy

Remove checker

Remove marker

Figure A.5: Use case diagram for a Secure electronic examination system

303

A Appendix

Table A.10: Secure electronic examination system - Description of the basic types

Basic type Description

EXAMINER The set of all possible identifiers for examiners

USER The set of all users who are allowed access to the system

SUBJECT The set of all identifiers for subjects

PAPER The set of all identifiers for all subject examination papers an-

nounced and managed in the system

QUESTION The set of all identifiers for questions in all the subject examination

papers.

ANSWER The set of all identifiers for answers recorded by students against

the subject examination papers

CANDIDATE The set of all identifiers representing candidates who are students

who have registered in the system to sit on examinations.

The login status of users and the status of the examination papers are attributes that

define values for certain properties of some entities in the system. These attributes are

declared as free types in the system and are described in Table A.11.

Table A.11: Secure electronic examination system - Description of the free types

Free type Item Meaning

PAPERSTATUS announced The paper has been announced.

304

A.5 Description and formal specification of systems

setting The paper is currently being set.

checked The paper has been checked.

released The paper has been released for candidates to take

the paper.

paperclosed The examination has ended and answers will not

be accepted from candidates for that paper.

grading The paper is currently being graded.

gradepublished The results have been published.

A.5.2.b State variables

The state of the system is recorded by the schema State. The state variables that record

and maintain various information about the system state are described in Table A.12.

Table A.12: Secure electronic examination system - Description of the state variables

State variable Description

chair A function that identifies the lecturer appointed as the chair for a

subject, if any.

exams A relation between subjects and examination papers initiated for

those subjects.

setter A function that identifies the lectuer appointed as the setter for a

paper, if any.

305

A Appendix

checker A function that identifies the lectuer appointed as the cheker for a

paper, if any.

grader A function that identifies the lectuer appointed as the marker for a

paper, if any.

pStatus A function that identifies the status of a paper, if any.

regStudent A function that identifies the student for a given candidate, if any.

regPaper A function that identifies the paper registered by a candidate, if

any.

questions A relation between papers and questions that belong to those

papers.

ansPaper A relation between papers and answers recorded on those papers.

ansStudent A relation between candidate and answers they have recorded.

result A function that represents the grade obatained by a candidate, if

any.

students The set of identifiers of the students.

lecturers The set of identifiers of the lecturers.

users The set of identifiers of the users who are allowed acces to the

system.

loginUser The user who is currently logged into the system.

theCandidate The candidate whose grade or answer is being requested from the

system.

306

A.5 Description and formal specification of systems

A.5.2.c State invariants

Further, the system is designed to respect the following constraints.

Table A.13: Secure electronic examination system - Description of the state invari-
ants

State invariants Description

((ran chair) ∪ (ran setter) ∪ (ran checker) ∪ (ran grader)) ⊆ lecturers

The set of lecturers who are appointed as chairs of subjects a subset of
the set of chairs recorded in the system.

((ran chair) ∩ (ran setter)) = {}

A lecturer cannot be a subject chair and a setter at the same time.

((ran chair) ∩ (ran checker)) = {}

A person cannot be both a chair and a checker in the system.

((ran chair) ∩ (ran grader)) = {}

A person cannot be both a chair and a grader in the system.

((ran setter) ∩ (ran checker)) = {}

A person cannot be both a setter and a checker in the system.

((ran setter) ∩ (ran grader)) = {}

A person cannot be both a setter and a grader in the system.

((ran checker) ∩ (ran grader)) = {}

307

A Appendix

A person cannot be both a checker and a grader in the system.

users ⊆ (lecturers ∪ students)

The set of users allowed access to the system is a subset of the set of
lectuers and students.

(lecturers ∩ students) = {}

A person cannot be a lecturer and a student at the same time.

loginUser ∈ users

The user currently using the system must be from the set of users allowed
access to the system.

dom (pStatus) ⊆ dom (exams)

A paper for which a paper status has been recorded must belong to a
particular subject.

dom (setter) ⊆ dom (pStatus)

A paper for which a setter has been assigned must have a paper status.

dom (checker) ⊆ dom (pStatus)

A paper for which a checker has been assigned must have a paper status.

dom (grader) ⊆ dom (pStatus)

A paper for which a grader has been assigned must have a paper status.

dom (questions) ⊆ dom (pStatus)

Every paper on which a question is recorded must have a paper status.

308

A.5 Description and formal specification of systems

dom (ansPaper) ⊆ dom (pStatus)

Every paper on which an answer is recorded must have a paper status.

ran regPaper ⊆ dom (pStatus)

Every paper registered for, must have a paper status.

dom (regPaper) ⊆ dom (regStudent)

Every student registered for a paper must be a registered candidate.

ran regStudent ⊆ students

A student registered as a candidate must be a student recorded in the
system.

dom (result) ⊆ dom (regPaper)

Every result recorded in the system must be for a registered paper.

dom (ansStudent) ⊆ dom (regPaper)

Every answer recorded by a student must be for a registered paper.

dom (questions) ⊆ dom (setter)

Every paper for which questions are recorded, must have a setter assigned
to it.

dom (questions) ⊆ ran regPaper

Every question recorded in the system must be for a registered paper.

dom (ansPaper) ⊆ ran regPaper

Every answer recorded in the system must be for a registered paper.

309

A Appendix

A.5.2.d Operations

The operations of the system are formalized as Circus actions and described in

Table A.14.

Table A.14: Secure electronic examination system - Description of the Circus actions

Action Operation performed by the action

AnnouncePaper Allows a subject chair to announce a subject examination.

AppointSetter Allows a subject chair to appoint a subject lecturer to set the

exam paper.

ResignSetter Allows an appointed setter to resign himself or herself from

the post.

AppointChecker Allows a subject chair to appoint a subject lecturer to check

the exam paper.

ResignChecker Allows an appointed checker to resign himself or herself

from the post.

AppointMarker Allows a subject chair to appoint a subject lecturer to set the

exam paper.

ResignMarker Allows an appointed grader to resign himself or herself from

the post.

CloseExam Allows a setter to close the paper to conclude the end of the

examination.

310

A.5 Description and formal specification of systems

CheckPaper Allows a checker to check the paper and record his approval

by changing the paper status to checked.

GradePaper Allows a grader to record the grade awarded to a particular

cnadidate for a particular paper.

PublishGrades Allows a grader to publish the grades obained by all candid-

ates who set for a paper.

TakePaper Allows a student to record answers for a particular paper

during the examination.

GetMyAnswers Allows a user to view the answers he/she has recorded in

the system.

RegisterforExam Allows a student to register for a particular paper using

his/her candidate number.

CancelRegistration Allows a student to cancel his/her registration for a particu-

lar paper.

GetOwnResult Allows a student to view his/her grade for a particular paper

he/she took.

GetAnyResult Allows a lecturer to view the grade of any candidate for any

paper he/she has sat.

SetPaper Allows a setter to set a paper by recording questions for that

paper.

ReleasePaper Allows a setter to release the paper for candidates to take

the examination.

311

A Appendix

[ANSWER, QUESTION, PAPER, SUBJECT, USER, EXAMINER]
[CANDIDATE]

PAPERSTATUS ::= paperclosed | released | checked | setting | announced
| gradepublished | grading

State
loginUser : USER
regStudent : CANDIDATE 7 7→USER
ansPaper : PAPER↔ANSWER
ansStudent : CANDIDATE↔ANSWER
grader, checker, setter : PAPER 7 7→USER
pStatus : PAPER 7 7→ PAPERSTATUS
exams : PAPER 7 7→ SUBJECT
chair : SUBJECT 7 7→USER
regPaper : CANDIDATE 7 7→ PAPER
users, lecturers, students : F USER
theCandidate : CANDIDATE
questions : PAPER↔QUESTION
result : CANDIDATE 7 7→N

dom (ansPaper) ⊆ ran regPaper
dom (questions) ⊆ ran regPaper
dom (questions) ⊆ dom (setter)
dom (ansStudent) ⊆ dom (regPaper)
dom (result) ⊆ dom (regPaper)
ran regStudent ⊆ students
dom (regPaper) ⊆ dom (regStudent)
ran regPaper ⊆ dom (pStatus)
dom (ansPaper) ⊆ dom (pStatus)
dom (questions) ⊆ dom (pStatus)
dom (grader) ⊆ dom (pStatus)
dom (checker) ⊆ dom (pStatus)
dom (setter) ⊆ dom (pStatus)
dom (pStatus) ⊆ dom (exams)
loginUser ∈ users
(lecturers ∩ students) = {}
users ⊆ (lecturers ∪ students)
((ran checker) ∩ (ran grader)) = {}
((ran setter) ∩ (ran grader)) = {}
((ran setter) ∩ (ran checker)) = {}
((ran chair) ∩ (ran grader)) = {}
((ran chair) ∩ (ran checker)) = {}
((ran chair) ∩ (ran setter)) = {}
((ran chair) ∪ (ran setter) ∪ (ran checker) ∪ (ran grader)) ⊆ lecturers

HideOthersAnswers
ΞState

∃ State 9 •
((regStudent) ∼) loginUser 6= theCandidate ∧

pStatus (regPaper theCandidate) = released⇒
(ran({theCandidate} −C ansStudent) ∩

ran({theCandidate9} −C ansStudent9)) = {}

Figure A.6: Specification of Secure electronic examination system - code block 1 of 6

312

A.5 Description and formal specification of systems

channel gradeAwardedIn, anyResultOut, ownResultOut : N

channel takePaperAnswerIn : ANSWER
channel appCheckerSubjectIn, appointPsubjectIn, paperSubjectIn : SUBJECT
channel appMarkerSubjectIn : SUBJECT
channel resignPsetterIn, appointPSetterIn, newPaperIn : PAPER
channel appMarkerPaperIn, resCheckerPaperIn, appCheckerPaperIn : PAPER
channel gradePaperIn, chkPaperIn, closePaperIn, resMarkerPaperIn : PAPER
channel regExamPaperIn, takePaperIn, pubGradePaperIn : PAPER
channel anyResultPaperIn, ownResultPaperIn, cancelRegPaperIn : PAPER
channel releasePaperIn, setPaperIn : PAPER
channel ownAnswerCandidateIn, takePaperCandidateIn, gradeCandidateIn : CANDIDATE
channel ownResultCandidateIn, cancelRegCandidateIn, regExamCandidateIn : CANDIDATE
channel anyResultCandidateIn : CANDIDATE
channel appMarkerLecturerIn, appCheckerLecturerIn, appointPlecturerIn : USER
channel ownAnswerOut : F ANSWER
channel setQuestionPaperIn : QUESTION

channelset Chair == {| appMarkerSubjectIn, appMarkerLecturerIn, resMarkerPaperIn,
appCheckerLecturerIn, resCheckerPaperIn, appMarkerPaperIn,
resignPsetterIn, appCheckerSubjectIn, appCheckerPaperIn,
appointPSetterIn, appointPsubjectIn, appointPlecturerIn |}

channelset Checker == {| resCheckerPaperIn, chkPaperIn |}
channelset Marker == {| gradeCandidateIn, gradeAwardedIn, pubGradePaperIn,

gradePaperIn |}
channelset Setter == {| resignPsetterIn, releasePaperIn, closePaperIn,

setPaperIn, setQuestionPaperIn |}
channelset Student == {| takePaperCandidateIn, ownAnswerCandidateIn, ownAnswerOut,

ownResultOut, takePaperIn, takePaperAnswerIn,
cancelRegCandidateIn, ownResultPaperIn, ownResultCandidateIn,
regExamPaperIn, regExamCandidateIn, cancelRegPaperIn |}

process Secure electronic examination system =̂ begin

state State

Init =̂ theCandidate := ((regStudent) ∼) loginUser

AnnouncePaper =̂ var paperSubject : dom (chair);
newPaper : PAPER •
paperSubjectIn?paperSubject−→
newPaperIn?newPaper−→
((chair paperSubject? = loginUser)N

exams := exams⊕ {(newPaper? 7→ paperSubject?)};
pStatus := pStatus⊕ {(newPaper? 7→ announced)})

AppointSetter =̂ var appointPlecturer : lecturers;
appointPsubject : dom (chair);
appointPSetter : dom (pStatus) •
appointPlecturerIn?appointPlecturer−→
appointPsubjectIn?appointPsubject−→
appointPSetterIn?appointPSetter−→
((loginUser ∈ lecturers ∧ (appointPsubject?, loginUser) ∈ chair)N

setter := setter⊕ {(appointPSetter? 7→ appointPlecturer?)})

Figure A.6 (cont.) : Specification of Secure electronic examination system - code block 2 of 6

313

A Appendix

ResignSetter =̂ var resignPsetter : dom (setter) •
resignPsetterIn?resignPsetter−→
((loginUser ∈ lecturers ∧ (resignPsetter?, loginUser) ∈ setter)N

setter := setter \ {(resignPsetter? 7→ loginUser)})

AppointChecker =̂ var appCheckerLecturer : lecturers;
appCheckerSubject : dom (chair);
appCheckerPaper : dom (pStatus) •
appCheckerLecturerIn?appCheckerLecturer−→
appCheckerSubjectIn?appCheckerSubject−→
appCheckerPaperIn?appCheckerPaper−→
((loginUser ∈ lecturers ∧
(appCheckerSubject?, loginUser) ∈ chair)N

checker := checker⊕
{(appCheckerPaper? 7→ appCheckerLecturer?)})

ResignChecker =̂ var resCheckerPaper : dom (checker) •
resCheckerPaperIn?resCheckerPaper−→
((loginUser ∈ lecturers ∧
(resCheckerPaper?, loginUser) ∈ checker)N

checker := checker \ {(resCheckerPaper? 7→ loginUser)})

AppointMarker =̂ var appMarkerLecturer : lecturers;
appMarkerSubject : dom (chair);
appMarkerPaper : dom (pStatus) •
appMarkerLecturerIn?appMarkerLecturer−→
appMarkerSubjectIn?appMarkerSubject−→
appMarkerPaperIn?appMarkerPaper−→
((loginUser ∈ lecturers ∧
(appMarkerSubject?, loginUser) ∈ chair)N

grader := grader⊕
{(appMarkerPaper? 7→ appMarkerLecturer?)})

ResignMarker =̂ var resMarkerPaper : dom (grader) •
resMarkerPaperIn?resMarkerPaper−→
((loginUser ∈ lecturers ∧ (resMarkerPaper?, loginUser) ∈ grader)N

grader := grader \ {(resMarkerPaper? 7→ loginUser)})

CloseExam =̂ var closePaper : dom (setter) ∩ dom (pStatus) •
closePaperIn?closePaper−→
((loginUser ∈ lecturers ∧

(closePaper?, loginUser) ∈ setter ∧
(closePaper?, released) ∈ pStatus)N

pStatus := pStatus⊕ {(closePaper? 7→ paperclosed)})

CheckPaper =̂ var chkPaper : dom (checker) ∩ dom (pStatus) •
chkPaperIn?chkPaper−→
((loginUser ∈ lecturers ∧

(chkPaper?, loginUser) ∈ checker ∧
(chkPaper?, setting) ∈ pStatus)N

pStatus := pStatus⊕ {(chkPaper? 7→ checked)})

Figure A.6 (cont.) : Specification of Secure electronic examination system - code block 3 of 6

314

A.5 Description and formal specification of systems

GradePaper =̂ var gradeAwarded : N;
gradePaper : dom (grader) ∩ dom (pStatus);
gradeCandidate : dom (regPaper) •
gradeAwardedIn?gradeAwarded−→
gradePaperIn?gradePaper−→
gradeCandidateIn?gradeCandidate−→
((loginUser ∈ lecturers ∧

(gradeCandidate?, gradePaper?) ∈ regPaper ∧
(gradePaper?, paperclosed) ∈ pStatus ∧
(gradePaper?, loginUser) ∈ grader)N

result := result⊕ {(gradeCandidate? 7→ gradeAwarded?)})

PublishGrades =̂ var pubGradePaper : dom (grader) ∩ dom (pStatus) •
pubGradePaperIn?pubGradePaper−→
((loginUser ∈ lecturers ∧

(pubGradePaper?, paperclosed) ∈ pStatus ∧
(pubGradePaper?, loginUser) ∈ grader)N

pStatus := pStatus⊕ {(pubGradePaper? 7→ gradepublished)})

TakePaper =̂ var takePaperAnswer : ANSWER;
takePaperCandidate : dom (regPaper);
takePaper : ran(regPaper) •
takePaperAnswerIn?takePaperAnswer−→
takePaperCandidateIn?takePaperCandidate−→
takePaperIn?takePaper−→
theCandidate := takePaperCandidate?;
((loginUser ∈ students ∧

((regStudent) ∼) loginUser = takePaperCandidate? ∧
(takePaper?, released) ∈ pStatus ∧
(takePaperCandidate?, takePaper?) ∈ regPaper)N

ansPaper := ansPaper⊕ {(takePaper? 7→ takePaperAnswer?)})

GetMyAnswers =̂ var ownAnswerCandidate : dom (ansStudent) •
ownAnswerCandidateIn?ownAnswerCandidate−→
theCandidate := ownAnswerCandidate?;
((loginUser ∈ students ∧

((regStudent) ∼) loginUser = ownAnswerCandidate?)N
ownAnswerOut !

(ansStudent L {ownAnswerCandidate?} M)−→ Skip)

RegisterforExam =̂ var regExamCandidate : dom (regStudent);
regExamPaper : dom (pStatus) •
regExamCandidateIn?regExamCandidate−→
regExamPaperIn?regExamPaper−→
theCandidate := regExamCandidate?;
((loginUser ∈ students ∧

((regStudent) ∼) loginUser = regExamCandidate?)N
regPaper := regPaper⊕

{(regExamCandidate? 7→ regExamPaper?)})

Figure A.6 (cont.) : Specification of Secure electronic examination system - code block 4 of 6

315

A Appendix

CancelRegistration =̂ var cancelRegCandidate : dom (regStudent);
cancelRegPaper : ran(regPaper) •
cancelRegCandidateIn?cancelRegCandidate−→
cancelRegPaperIn?cancelRegPaper−→
theCandidate := cancelRegCandidate?;
((loginUser ∈ students ∧

((regStudent) ∼) loginUser = cancelRegCandidate? ∧
(cancelRegCandidate?, cancelRegPaper?) ∈ regPaper)N

regPaper := regPaper \
{(cancelRegCandidate? 7→ cancelRegPaper?)})

GetOwnResult =̂ var ownResultPaper : ran(regPaper);
ownResultCandidate : dom (result) •
ownResultPaperIn?ownResultPaper−→
ownResultCandidateIn?ownResultCandidate−→
theCandidate := ownResultCandidate?;
((loginUser ∈ students ∧

((regStudent) ∼) loginUser = ownResultCandidate? ∧
(ownResultCandidate?, ownResultPaper?) ∈ regPaper ∧
(ownResultPaper?, gradepublished) ∈ pStatus)N

ownResultOut !(result ownResultCandidate?)−→ Skip)

GetAnyResult =̂ var anyResultCandidate : dom (result);
anyResultPaper : ran(regPaper) •
anyResultCandidateIn?anyResultCandidate−→
anyResultPaperIn?anyResultPaper−→
theCandidate := anyResultCandidate?;
((loginUser ∈ lecturers ∧

(anyResultCandidate?, anyResultPaper?) ∈ regPaper)N
anyResultOut !(result anyResultCandidate?)−→ Skip)

SetPaper =̂ var setQuestionPaper : QUESTION;
setPaper : dom (setter) ∩ dom (pStatus) •
setQuestionPaperIn?setQuestionPaper−→
setPaperIn?setPaper−→
((loginUser ∈ lecturers ∧

(setPaper?, loginUser) ∈ setter ∧
(setPaper?, checked) ∈ pStatus)N

questions := questions⊕
{(setPaper? 7→ setQuestionPaper?)};

pStatus := pStatus⊕ {(setPaper? 7→ setting)})
ReleasePaper =̂ var releasePaper : dom (setter) ∩ dom (pStatus) •

releasePaperIn?releasePaper−→
((loginUser ∈ lecturers ∧

(releasePaper?, loginUser) ∈ setter ∧
(releasePaper?, checked) ∈ pStatus)N

pStatus := pStatus⊕ {(releasePaper? 7→ released)})
HideOthersAnswers =̂ HideOthersAnswers

StudentOptions =̂




RegisterforExam
@ CancelRegistration
@ TakePaper
@ GetOwnResult
@ GetMyAnswers




Figure A.6 (cont.) : Specification of Secure electronic examination system - code block 5 of 6

316

A.5 Description and formal specification of systems

LecturerOptions =̂




AppointSetter
@ ResignSetter
@ AppointChecker
@ ResignChecker
@ CloseExam
@ CheckPaper
@ AppointMarker
@ ResignMarker
@ SetPaper
@ ReleasePaper
@ GradePaper
@ PublishGrades
@ GetAnyResult




Options =̂

(
LecturerOptions

@ StudentOptions

)
; HideOthersAnswers

• 〈Init〉 ; µX • 〈Options ; X〉

end

Figure A.6 (cont.) : Specification of Secure electronic examination system - code block 6 of 6

317

A Appendix

A.5.3 Case study - ePurse system

A hand-crafted documentation with a formal specification of the ePurse system is

presented. A Circus action is defined for each use case in the use case diagram of the

ePurse system is shown in Figure A.7. The operations performed by these actions are

described in Table A.16. It is important to note that the action Init in Table A.16 is not in

Figure A.7. This is because Init initializes system variables and is not executed through

external action. The following table of contents may be useful for easy navigation

within this case study.

Contents of the case study Page

Documentation of the ePurse system case study

- Operations 319

- Data types of system entities 319

- State variables 320

- Formal specification of the system in the Circus notation 324

e-Purse system

Buyer

Get balance of
e-Purse

Get balance of
e-Purse

Record
transaction

Record
transaction

Approve
transaction on

e-Purse

Approve
transaction on

e-Purse

Seller

Process
payment

Process
payment

Terminal

User role
Information flow violates
confidentiality policy
Information flow violates
confidentiality policy

Information flow
is allowed

User role
Information flow violates
confidentiality policy

Information flow
is allowed

Figure A.7: Use case diagram for the ePurse system

318

A.5 Description and formal specification of systems

A.5.3.a Operations

The operations of the system are formalized as Circus actions and listed in Table A.16.

Table A.16: ePurse system - Description of the Circus actions

Action Operation performed by the action

SelectAgent Allows the user to select the current agent who is using the

system.

RecordTrnsctn Allows the seller to record the value of a transaction in the

system.

ApproveTrnsctn Allows the ePurse holder to approve charging the value of the

transaction from his/her ePurse.

ShowBalSec Allows only the ePurse owner to check the balance of the ePurse.

DoPayment Allows the terminal to process the transaction by adjusting value

of the transaction from the ePurse.

A.5.3.b Data types of system entities

These basic types declared in the system are described in Table A.17.

Table A.17: ePurse system - Description of the basic types

Basic type Description

TRANSACTION set of all possible transaction identifiers

EPURSE set of all possible epurse identifiers

319

A Appendix

The free types declared in the system are described in Table A.18.

Table A.18: ePurse system - Description of the free types

Free type Item Meaning

AGENT buyer The current agent is the buyer.

seller The current agent is the seller.

terminal The current agent is the terminal.

VALIDATED yes The transaction has been validated.

no The transaction has not been validated.

A.5.3.c State variables

A state variable has been declared to represent each organisational component within

the system specification. The description of these state variables are included in

Table A.19.

Table A.19: ePurse system - Description of the state variables

State variable Description

owns A function that identifies the ePurse owned by a buyer, if any.

balance A function that identifies the balance in an ePurse, if any.

320

A.5 Description and formal specification of systems

transPurse A function that identifies the ePurse to which a transaction is

charged, if any.

transTerminal A function that identifies the terminal on which a transaction is

recorded, if any.

transAmount A function that identifies the value of a transaction, if any.

transValid A function that identifies the validation status of a transaction, if

any.

currAgent The current agent who is using the system.

reqPurse The ePurse of which a balance is being requested.

A.5.3.d State invariants

We assume certain system constraints that must be respected throughout the life of

the system. These constraints reflect the relevant organisational rules that we believe

are typical in a phone book system. These constraints are defined as state invariants

(Woodcock and Davies, 1996, p. 168) in the system specification.

Table A.20: ePurse system - Description of the state invariants

State invariants Description

dom (balance) ⊆ ran owns

Every ePurse which has a balance must also have an owner.

ran transPurse ⊆ dom (balance)

321

A Appendix

Every ePurse on to which a transaction is recorded must also have a
balance recorded.

dom (transValid) ⊆ dom (transAmount)

Every transaction that has a validation status must also have a transation
value associated with it.

dom (transPurse) ⊆ dom (transAmount)

Every transacation of an ePurse must also have a transation value associ-
ated with it.

dom (transTerminal) ⊆ dom (transAmount)

Every transacation recorded in a terminal must also have a transation
value associated with it.

reqPurse ∈ ran owns

The ePurse of which a balance is being requested must be owned by
someone.

reqPurse ∈ dom (balance)

The ePurse of which a balance is being requested must have a balance
recorded.

322

A.5 Description and formal specification of systems

(This page intentionally left blank)

323

A Appendix

[EPURSE, TRANSACTION]

AGENT ::= terminal | seller | buyer
VALIDATED ::= no | yes

bmin : N

State
transPurse : TRANSACTION 7 7→ EPURSE
transTerminal : TRANSACTION 7 7→AGENT
currAgent : AGENT
transValid : TRANSACTION 7 7→VALIDATED
balance : EPURSE 7 7→N

transAmount : TRANSACTION 7 7→N

owns : AGENT 7 7→ EPURSE
reqPurse : EPURSE

reqPurse ∈ dom (balance)
reqPurse ∈ ran owns
dom (transTerminal) ⊆ dom (transAmount)
dom (transPurse) ⊆ dom (transAmount)
dom (transValid) ⊆ dom (transAmount)
ran transPurse ⊆ dom (balance)
dom (balance) ⊆ ran owns

HideExactBalance
ΞState

∃ State 9 •
(currAgent 7→ reqPurse) 6∈ owns ∧
currAgent 6= terminal ∧
reqPurse ∈ dom (balance)⇒

(balance reqPurse) 6= (balance9 reqPurse9)

HideMinBalance
ΞState

∃ State 9 •
(currAgent 7→ reqPurse) 6∈ owns ∧
currAgent 6= terminal ∧
reqPurse ∈ dom (balance) ∧
balance reqPurse ∈ {r : N | r < bmin} ⇒

balance9 reqPurse9 6∈ {r : N | r < bmin}

channel recordTransAmountIn, showBalEpurseOut, bsout : N

channel epurseOwnerIn, bybIn, approveTransAgentIn, changeAgentIn : AGENT
channel payTransEpurseIn, showEpurseIn, epbIn, approveTransEpurseIn : EPURSE
channel payTransIn, approveTransIn, recordTransactionIn : TRANSACTION

channelset Buyer == {| approveTransIn, approveTransAgentIn, approveTransEpurseIn |}
channelset Seller == {| recordTransAmountIn, recordTransactionIn |}
channelset Terminal == {| showBalEpurseOut, showEpurseIn, epurseOwnerIn,

payTransIn, payTransEpurseIn |}

Figure A.8: Specification of ePurse system - code block 1 of 2

324

A.5 Description and formal specification of systems

process ePurse system =̂ begin

state State

SelectAgent =̂ var changeAgent : AGENT •
changeAgentIn?changeAgent−→ currAgent := changeAgent?

RecordTrnsctn =̂ var recordTransaction : TRANSACTION;
recordTransAmount : N •
recordTransactionIn?recordTransaction−→
recordTransAmountIn?recordTransAmount−→
((currAgent = seller)N

transAmount := transAmount⊕
{(recordTransaction? 7→ recordTransAmount?)})

ApproveTrnsctn =̂ var approveTransEpurse : EPURSE;
approveTransAgent : AGENT;
approveTrans : TRANSACTION •
approveTransEpurseIn?approveTransEpurse−→
approveTransAgentIn?approveTransAgent−→
approveTransIn?approveTrans−→
((currAgent = buyer ∧ approveTrans? ∈ dom (transAmount))N

transPurse := transPurse⊕
{(approveTrans? 7→ approveTransEpurse?)};

transValid := transValid⊕ {(approveTrans? 7→ yes)};
transTerminal := transTerminal⊕

{(approveTrans? 7→ approveTransAgent?)})
ShowBalSec =̂ var epurseOwner : dom (owns);

showEpurse : dom (balance) ∩ ran owns •
epurseOwnerIn?epurseOwner−→
showEpurseIn?showEpurse−→
reqPurse := showEpurse?;
((currAgent = buyer ∧ currAgent = epurseOwner? ∧

(epurseOwner? 7→ showEpurse?) ∈ owns)N
showBalEpurseOut !(balance showEpurse?)−→ Skip)

DoPayment =̂ var payTransEpurse : EPURSE;
payTrans : TRANSACTION •
payTransEpurseIn?payTransEpurse−→
payTransIn?payTrans−→
((currAgent = terminal ∧ payTrans? ∈ dom (transPurse))N

balance := balance⊕
{(payTransEpurse? 7→
(balance payTransEpurse?− transAmount payTrans?))})

HideExactBalancê= HideExactBalance

HideMinBalance =̂ HideMinBalance

• µX •


〈SelectAgent〉 ;




〈ApproveTrnsctn〉
@ (〈ShowBalSec〉 ; 〈HideExactBalance〉)
@ 〈DoPayment〉
@ 〈RecordTrnsctn〉


 ; X




end

Figure A.8 (cont.) : Specification of ePurse system - code block 2 of 2

325

Abbreviations

ANTLR ANother Tool for Language Recognition

ATP Automatic Theorem Prover

BCF Banks’s Confidentiality Framework

BNF Backus-Naur Form

CA Confidentiality Annotation

CML COMPASS Modelling Language

CNL Controlled Natural Language

CONCHITA CONfidentiality CHecker for Incremental Threat Analysis

CSCW Computer Supported Cooperative Work

CSP Communicating Sequential Processes

CZT Community Z Tools

DLP Data Leak Prevention

DTD Document Type Definition

E.U. European Union

FDR Failures-Divergence Refinement

FTC Federal Trade Commission

327

Abbreviations

GUI Graphical user interface

HAZOP HAZard and OPerability

HiVE Hierarchical Verification Environment

HOL Higher-Order Logic

IBAC Identity-Based Access Control

IEC International Electrotechnical Commission

ISO International Organization for Standardization

KAOS Knowledge Acquisition in autOmated Specification

LCF Logic for Computable Functions

LTL Linear Temporal Logic

ML Meta Language

OCAML Object Categorical Abstract Machine Language

OCL Object Constraint Language

OOPSLA Object-Oriented Programming Systems Languages & Applications

PII Personally Identifiable Information

RBAC Role-Based Access Control

RHODIN Rigorous Open Development Environment for Complex Systems

SMT Satisfiability Modulo Theories

SPIN Simple Promela INterpreter

UML Unified Modelling Language

328

Abbreviations

UML-RT Unified Modelling Language - Realtime

UTP Unifying Theories of Programming

ZF Zermelo-Fraenkel set theory

329

List of References

Aagaard, Mark D, Robert B Jones, and Carl-johan H Seger. Lifted-FL : A Pragmatic

Implementation of Combined Model Checking and Theorem Proving. page 323, 1999.

Abiteboul, Serge, Richard Hull, and Victor Vianu. Foundations of databases. Addison-

Wesley Publishing Company, Inc., United States of America, 1995. ISBN 0-201-53771-0.

doi: 10.1016/0898-1221(95)90258-9.

Accorsi, Rafael and Claus Wonnemann. InDico: Information Flow Analysis of Business

Processes for Confidentiality Requirements. In Cuellar, Jorge, Javier Lopez, and Gilles

Barthe Alexander Pretschner, editors, Proceedings of the 6th international conference on

Security and trust management (STM’10), pages 194–209. Springer-Verlag Berlin, 2010.

ISBN 978-3-642-22443-0, 978-3-642-22444-7. doi: 10.1007/978-3-642-22444-7_13. URL

http://link.springer.com/chapter/10.1007/978-3-642-22444-7_13?null.

Adolph, S, P Bramble, and A Cockburn. Patterns for Effective Use Cases. Crystal

collection for software professionals. Addison-Wesley, 2003. ISBN 9780201721843.

URL https://books.google.co.uk/books?id=FGdXBs5uCxMC.

Ahmed, Tanvir and Anand R. Tripathi. Static verification of security requirements in

role based CSCW systems. In Proceedings of the eighth ACM symposium on Access control

models and technologies (SACMAT ’03), pages 196–203, Como, Italy, 2003. ACM New

York, NY, USA. ISBN 1581136811. doi: http://dx.doi.org/10.1145/775412.775438.

URL http://portal.acm.org/citation.cfm?doid=775412.775438.

Al-Fedaghi, S. S. Privacy as a Base for Confidentiality. SSRN Electronic Journal, pages

1–13, 2012. ISSN 1556-5068. doi: 10.2139/ssrn.2012395.

331

http://link.springer.com/chapter/10.1007/978-3-642-22444-7_13?null
https://books.google.co.uk/books?id=FGdXBs5uCxMC
http://portal.acm.org/citation.cfm?doid=775412.775438

List of References

Alexander, Christopher, Sara Ishikawa, and Murray Silverstein. A Pattern Language:

Towns, Buildings, Construction. Oxford University Press, New York, aug 1977.

ISBN 0195019199. URL http://www.amazon.fr/exec/obidos/ASIN/0195019199/

citeulike04-21.

Alghamdi, Abdullah Sharaf, Tazar Hussain, and Gul Faraz Khan. Enhancing C4I

security using threat modeling. UKSim2010 - UKSim 12th International Conference on

Computer Modelling and Simulation, pages 131–136, 2010. doi: 10.1109/UKSIM.2010.31.

Ambler, Scott W. Process Patterns: Building Large-scale Systems Using Object Technology.

Cambridge University Press, New York, NY, USA, 1998. ISBN 0-521-64568-9.

Ambysoft, An and Scott W Ambler. An Introduction to Process Patterns. Technical

Report September, AmbySoft Inc., 1998.

American National Standard Institute (ANSI), . Procedures for Achieving Content Con-

sistency in ISO/IEC 11179 Metadata Registries. Technical report, Pacific Northwest

National Laboratory, Washington, DC, USA, 1999.

Amjad, Hasan. Combining model checking and theorem proving. Tech-

nical Report 601, University of Cambridge, Cambridge, 2004. URL

http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Combining+

model+checking+and+theorem+proving#0.

Anderlik, M R and M A Rothstein. Privacy and confidentiality of genetic information:

what rules for the new science? Annual review of genomics and human genetics, 2:

401–433, 2001. ISSN 1527-8204. doi: 10.1146/annurev.genom.2.1.401.

Andreson, Ross. Security Engineering. Number 1. 2014. ISBN 9780874216561. doi:

10.1007/s13398-014-0173-7.2.

332

http://www.amazon.fr/exec/obidos/ASIN/0195019199/citeulike04-21
http://www.amazon.fr/exec/obidos/ASIN/0195019199/citeulike04-21
http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Combining+model+checking+and+theorem+proving#0
http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Combining+model+checking+and+theorem+proving#0

List of References

Andrews, Paul S, Adam T Sampson, John Markus Bjørndalen, Susan Stepney, Jon

Timmis, Douglas N Warren, and Peter H Welch. Investigating Patterns for the

Process-Oriented Modelling and Simulation of Space in Complex Systems. Artificial

Life XI Proceedings of the Eleventh International Conference on the Simulation and Synthesis

of Living Systems, pages 17–24, 2008. URL http://kar.kent.ac.uk/24033/.

Andronick, J, B Chetali, and O Ly. Using Coq to verify Java Card applet isol-

ation properties. Lecture Notes in Computer Science (including subseries Lecture

Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2758:335–351,

2003. ISSN 0302-9743. URL http://www.scopus.com/inward/record.url?eid=2-s2.

0-35248858397&partnerID=40&md5=4aa2672bfb9233176f0682b34540c461.

Angkasaputra, Niniek and Dietmar Pfahl. Making software process simulation model-

ing agile and pattern-based. Simulation, 11:12, 2004.

Anthem, Inc. 2014 Annual report - Anthem Inc. Technical report, Anthem,

Inc., 2014. URL http://media.corporate-ir.net/media_files/IROL/13/130104/

2014AR/export7/pdfs/Anthem_2014AR.pdf.

Antón, Annie I. and Julia B. Earp. A Taxonomy for Web Site Privacy Requirements.

Technical report, North Carolina State University, Raleigh, NC, USA, 2001. URL

http://www4.ncsu.edu/\simjbearp/TSE.pdf.

Appleton, Brad. Patterns for conducting process improvement. In Proceedings of PLOP,

volume 97, 1997.

Arkoudas, Konstantine, Sarfraz Khurshid, Darko Marinov, and Martin Rinard. Integrat-

ing Model Checking and Theorem Proving for Relational Reasoning, pages 21–33. Springer

Berlin Heidelberg, Berlin, Heidelberg, 2004. ISBN 978-3-540-24771-5. doi: 10.1007/

978-3-540-24771-5_3. URL https://doi.org/10.1007/978-3-540-24771-5_3.

Article 29 Working Party, . Opinion 03/2013 on purpose limitation, WP203,. Technical

Report April, European Commission, 2013.

333

http://kar.kent.ac.uk/24033/
http://www.scopus.com/inward/record.url?eid=2-s2.0-35248858397&partnerID=40&md5=4aa2672bfb9233176f0682b34540c461
http://www.scopus.com/inward/record.url?eid=2-s2.0-35248858397&partnerID=40&md5=4aa2672bfb9233176f0682b34540c461
http://media.corporate-ir.net/media_files/IROL/13/130104/2014AR/export7/pdfs/Anthem_2014AR.pdf
http://media.corporate-ir.net/media_files/IROL/13/130104/2014AR/export7/pdfs/Anthem_2014AR.pdf
http://www4.ncsu.edu/$\sim $jbearp/TSE.pdf
https://doi.org/10.1007/978-3-540-24771-5_3

List of References

Atelier-B, . The industrial tool to efficiently deploy the B Method. 2017. URL http:

//www.atelierb.eu/en/.

Back, Ralph Johan. Correctness Preserving Program Refinements: Proof Theory and Applica-

tions. Mathematisch centrum, Amsterdam, 1980. ISBN 9061962072.

Back, Ralph-Johan and Joakim Wright. Refinement Calculus: A Systematic Introduction.

Springer-Verlag New York, 1998. ISBN 0387984178. URL http://www.springer.com/

gb/book/9780387984179.

Baggetun, Rusman E Poggi C, Ellen Rusman, and Caterina Poggi. R. Design patterns for

collaborative learning: From practice to theory and back. In Proceedings of International

Conference on Educational Multimedia, Hypermedia and Telecommunications, volume 53,

page 277. Citeseer, 2004.

Banks, Michael J. On Confidentiality and Formal Methods. PhD thesis, The University of

York, 2012. URL http://etheses.whiterose.ac.uk/2709/.

Banks, Michael J. and Jeremy L. Jacob. Specifying Confidentiality in Circus. Lecture

Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence

and Lecture Notes in Bioinformatics), 6664 LNCS:215–230, 2011. ISSN 03029743. doi:

10.1007/978-3-642-21437-0_18.

Banks, Michael J. and Jeremy L. Jacob. On integrating confidentiality and functionality

in a formal method. Formal Aspects of Computing, 26(5):963–992, 2014. ISSN 0934-

5043. doi: 10.1007/s00165-013-0285-4. URL http://link.springer.com/10.1007/

s00165-013-0285-4.

Barden, Rosalind, Susan Stepney, and David Cooper. Z in practice. BCS practitioner

series. Prentice Hall, 1995. ISBN 978-0-13-124934-9.

334

http://www.atelierb.eu/en/
http://www.atelierb.eu/en/
http://www.springer.com/gb/book/9780387984179
http://www.springer.com/gb/book/9780387984179
http://etheses.whiterose.ac.uk/2709/
http://link.springer.com/10.1007/s00165-013-0285-4
http://link.springer.com/10.1007/s00165-013-0285-4

List of References

Barrett, Clark and Cesare Tinelli. CVC3. In Damm, Werner and Holger Hermanns,

editors, Computer Aided Verification: 19th International Conference, CAV 2007, Berlin,

Germany, July 3-7, 2007. Proceedings, pages 298–302. Springer Berlin Heidelberg, Berlin,

Heidelberg, 2007. ISBN 978-3-540-73368-3. doi: 10.1007/978-3-540-73368-3_34. URL

http://dx.doi.org/10.1007/978-3-540-73368-3_34.

Barrett, Clark, Christopher L Conway, Morgan Deters, Liana Hadarean, Dejan Jovanović,

Tim King, Andrew Reynolds, and Cesare Tinelli. CVC4. In Gopalakrishnan, Ganesh

and Shaz Qadeer, editors, Computer Aided Verification: 23rd International Conference,

CAV 2011, Snowbird, UT, USA, July 14-20, 2011. Proceedings, pages 171–177. Springer

Berlin Heidelberg, Berlin, Heidelberg, 2011. ISBN 978-3-642-22110-1. doi: 10.1007/

978-3-642-22110-1_14. URL http://dx.doi.org/10.1007/978-3-642-22110-1_14.

Barrocas, S L M and M V M Oliveira. JCircus 2.0: an Extension of an Automatic

Translator from Circus to Java. Communicating Process Architectures, 34(55):15–36,

2012.

Barthe, Gilles and Guillaume Dufay. Formal Methods for Smartcard Security. In

Aldini, Alessandro, Roberto Gorrieri, and Fabio Martinelli, editors, Foundations

of Security Analysis and Design III, chapter Formal Met, pages 133–177. Springer-

Verlag, Berlin, Heidelberg, 2005. ISBN 3-540-28955-0, 978-3-540-28955-5. URL http:

//dl.acm.org/citation.cfm?id=2137760.2137767.

Basin, David, Jürgen Doser, and Torsten Lodderstedt. Model driven security for process-

oriented systems. Proceedings of the eighth ACM symposium on Access control models

and technologies - SACMAT ’03, page 100, 2003. doi: 10.1145/775423.775425. URL

http://portal.acm.org/citation.cfm?doid=775412.775425.

BBC News, . Adobe hack: At least 38 million accounts breached.

Http://www.bbc.co.uk/news/technology-24740873, 2013. URL http://www.bbc.

co.uk/news/technology-24740873.

335

http://dx.doi.org/10.1007/978-3-540-73368-3_34
http://dx.doi.org/10.1007/978-3-642-22110-1_14
http://dl.acm.org/citation.cfm?id=2137760.2137767
http://dl.acm.org/citation.cfm?id=2137760.2137767
http://portal.acm.org/citation.cfm?doid=775412.775425
http://www.bbc.co.uk/news/technology-24740873
http://www.bbc.co.uk/news/technology-24740873

List of References

BBC News, . Ashley Madison faces huge class-action lawsuit.

http://www.bbc.co.uk/news/business-34032760, 2015. URL http://www.bbc.co.

uk/news/business-34032760.

Becker, Moritz Y. Information governance in NHS’s NPfIT: A case for policy specifica-

tion. International Journal of Medical Informatics, 76(5-6):432–437, 2007. ISSN 13865056.

doi: 10.1016/j.ijmedinf.2006.09.008.

Benzmüller, Christoph, Lawrence C Paulson, Frank Theiss, and Arnaud Fietzke. LEO-II

- A Cooperative Automatic Theorem Prover for Classical Higher-Order Logic (System

Description). In Armando, Alessandro, Peter Baumgartner, and Gilles Dowek, editors,

Automated Reasoning: 4th International Joint Conference, IJCAR 2008 Sydney, Australia,

August 12-15, 2008 Proceedings, pages 162–170. Springer Berlin Heidelberg, Berlin,

Heidelberg, 2008. ISBN 978-3-540-71070-7. doi: 10.1007/978-3-540-71070-7_14. URL

http://dx.doi.org/10.1007/978-3-540-71070-7_14.

Bevan, N and M Azuma. Quality in use: incorporating human factors into the software

engineering lifecycle. In Proceedings of IEEE International Symposium on Software

Engineering Standards, pages 169–179, jun 1997. doi: 10.1109/SESS.1997.595963.

Bézivin, Jean, Frédéric Jouault, and Jean Paliès. Towards model transformation design

patterns. In Proceedings of the First European Workshop on Model Transformations (EWMT

2005), page 116, 2005.

Bjørner, Nikolaj S, Zohar Manna, Henny B Sipma, and Tomás E Uribe. Deductive

verification of real-time systems using STeP, pages 22–43. Springer Berlin Heidelberg,

Berlin, Heidelberg, 1997. ISBN 978-3-540-69058-0. doi: 10.1007/3-540-63010-4_3. URL

https://doi.org/10.1007/3-540-63010-4_3.

Black, Jennifer Ann. CARNEGIE INSTITUTE OF TECHNOLOGY SYSTEM SAFETY

AS AN EMERGENT PROPERTY IN COMPOSITE SYSTEMS. PhD thesis, CARNE-

GIEMELLON UNIVERSITY, 2009.

336

http://www.bbc.co.uk/news/business-34032760
http://www.bbc.co.uk/news/business-34032760
http://dx.doi.org/10.1007/978-3-540-71070-7_14
https://doi.org/10.1007/3-540-63010-4_3

List of References

Blanchet, Bruno. Automated Verification of Selected Equivalences for Security Protocols.

The Journal of Logic and Algebraic Programming, 75(1):3–51, 2008. URL http://www.

sciencedirect.com/science/article/pii/S1567832607000549.

Blanchette, Jasmin Christian and Lawrence C Paulson. Hammering Away: A User’s

Guide to Sledgehammer for Isabelle/HOL, 2016. URL http://isabelle.in.tum.de/

dist/doc/sledgehammer.pdf.

Bobot, François, Sylvain Conchon, Evelyne Contejean, and Stéphane Lescuyer. Imple-

menting polymorphism in SMT solvers. In Proceedings of the Joint Workshops of the 6th

International Workshop on Satisfiability Modulo Theories and 1st International Workshop on

Bit-Precise Reasoning, pages 1–5. ACM, 2008.

Böhme, Sascha and Tjark Weber. Fast LCF-style proof reconstruction for Z3. Lecture

Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence

and Lecture Notes in Bioinformatics), 6172 LNCS:179–194, 2010. ISSN 03029743. doi:

10.1007/978-3-642-14052-5_14.

Bote-Lorenzo, Miguel L, Davinia Hernández Leo, Yannis Dimitriadis, Juan I Asensio-

Pérez, Eduardo Gómez-Sánchez, Guillermo Vega-Gorgojo, and Luis M Vaquero-

Gónzalez. Towards reusability and tailorability in collaborative learning systems

using IMS-LD and Grid Services. Advanced Technology for Learning. 2004; 1 (3): 129-138,

2004.

Bouaziz, Rahma, Brahim Hamid, and Nicolas Desnos. Towards a Better Integration

of Patterns in Secure Component-based Systems Design. In Proceedings of the 2011

International Conference on Computational Science and Its Applications - Volume Part V,

ICCSA’11, pages 607–621, Berlin, Heidelberg, 2011. Springer-Verlag. ISBN 978-3-642-

21933-7. URL http://dl.acm.org/citation.cfm?id=2029427.2029483.

337

http://www.sciencedirect.com/science/article/pii/S1567832607000549
http://www.sciencedirect.com/science/article/pii/S1567832607000549
http://isabelle.in.tum.de/dist/doc/sledgehammer.pdf
http://isabelle.in.tum.de/dist/doc/sledgehammer.pdf
http://dl.acm.org/citation.cfm?id=2029427.2029483

List of References

Bouton, Thomas, Diego Oliveirade , David Déharbe, and Pascal Fontaine. veriT: An

Open, Trustable and Efficient SMT-Solver. In Schmidt, Renate A, editor, Automated

Deduction – CADE-22: 22nd International Conference on Automated Deduction, Montreal,

Canada, August 2-7, 2009. Proceedings, pages 151–156. Springer Berlin Heidelberg,

Berlin, Heidelberg, 2009. ISBN 978-3-642-02959-2. doi: 10.1007/978-3-642-02959-2_12.

URL http://dx.doi.org/10.1007/978-3-642-02959-2_12.

Bovet, Jean and Terence Parr. ANTLRWorks: an ANTLR grammar development

environment. Software: Practice and Experience, 38(12):1305–1332, 2008.

Bowen, Jonathan and Mike Gordon. Z and HOL. In Bowen, J. P. and J. A. Hall, editors,

Z User Workshop, Cambridge 1994, pages 141–167. Springer London, Cambridge, 1994.

ISBN 3-540-19884-9.

Bowen, Jonathan P. Formal Specification and Documentation using Z: A Case Study

Approach. Citeseer, 1996. URL http://citeseerx.ist.psu.edu/viewdoc/download?

doi=10.1.1.14.8627&rep=rep1&type=pdf.

Bresciani, Paolo, Anna Perini, Paolo Giorgini, Fausto Giunchiglia, and John Mylopoulos.

Tropos: An agent-oriented software development methodology. Autonomous Agents

and Multi-Agent Systems, 8(3):203–236, 2004. ISSN 13872532. doi: 10.1023/B:AGNT.

0000018806.20944.ef.

Brown, Chad E. Satallax: An Automatic Higher-Order Prover. In Gramlich, Bernhard,

Dale Miller, and Uli Sattler, editors, Automated Reasoning: 6th International Joint Confer-

ence, IJCAR 2012, Manchester, UK, June 26-29, 2012. Proceedings, pages 111–117. Springer

Berlin Heidelberg, Berlin, Heidelberg, 2012. ISBN 978-3-642-31365-3. doi: 10.1007/

978-3-642-31365-3_11. URL http://dx.doi.org/10.1007/978-3-642-31365-3_11.

Brucker, Achim D., Stefan Friedrich, Frank Rittinger, and Burkhart Wolff. HOL-Z 2.0:

A Proof Environment for Z-Specifications. Journal of Universal Computer Science, 9(2):

152—-172, 2003.

338

http://dx.doi.org/10.1007/978-3-642-02959-2_12
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.14.8627&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.14.8627&rep=rep1&type=pdf
http://dx.doi.org/10.1007/978-3-642-31365-3_11

List of References

Büchi, J Richard. On a decision method in restricted second order arithmetic. In

Proceedings of the International Congress on Logic, Method, and Philosophy of Science,

pages 1–12. Stanford University Press, 1960.

Burgemeestre, Brigitte, Joris Hulstijn, and Yao Hua Tan. Value-based argumentation for

designing and auditing security measures. Ethics and Information Technology, 15(3):

153–171, 2013. ISSN 13881957. doi: 10.1007/s10676-013-9325-2.

Burnette, Ed. Eclipse IDE Pocket Guide. O’Reilly Media, Inc., 2005. ISBN 0596100655.

Buschmann, Frank, Regine Meunier, Hans Rohnert, Peter Sommerlad, and Michael

Stal. Pattern-Oriented Software Architecture - Volume 1: A System of Patterns. Wiley

Publishing, 1996. ISBN 0471958697, 9780471958697.

Butler, Michael and Stefan Hallerstede. The Rodin Formal Modelling Tool. BCSFACS

Christmas 2007 Meeting Formal Methods In Industry London, pages 1–5, 2007. URL

http://eprints.ecs.soton.ac.uk/14949/.

Cabral, Gustavo and Augusto Sampaio. Automated formal specification generation

and refinement from requirement documents. Journal of the Brazilian Computer Society,

14(1):87–106, mar 2008. ISSN 1678-4804. doi: 10.1007/BF03192554. URL https:

//doi.org/10.1007/BF03192554.

Campbell, Jeffrey D. Interaction in collaborative computer supported diagram devel-

opment. Computers in Human Behavior, 20(2):289–310, 2004. ISSN 0747-5632. doi:

http://dx.doi.org/10.1016/j.chb.2003.10.019. URL http://www.sciencedirect.com/

science/article/pii/S0747563203000918.

Cant, A. Program Verification using Higher Order Logic. Technical report, Australian

Government, 1992. URL http://dspace.dsto.defence.gov.au/dspace/handle/

1947/9036.

339

http://eprints.ecs.soton.ac.uk/14949/
https://doi.org/10.1007/BF03192554
https://doi.org/10.1007/BF03192554
http://www.sciencedirect.com/science/article/pii/S0747563203000918
http://www.sciencedirect.com/science/article/pii/S0747563203000918
http://dspace.dsto.defence.gov.au/dspace/handle/1947/9036
http://dspace.dsto.defence.gov.au/dspace/handle/1947/9036

List of References

Cant, Tony, Brendan Mahony, and Jim McCarthy. Design Oriented Verification

and Evaluation : The Dove Project. Technical report, DSTO Information Sci-

ences Laboratory, Edinburgh, South Australia, Australia 5111, 2002. URL http:

//dspace.dsto.defence.gov.au/dspace/handle/1947/4378.

Cao, Longbing and Philip S. Yu. Behavior Computing. Springer-Verlag, London, 2012.

ISBN 9781447129684. doi: 10.1007/978-1-4471-2969-1.

Cao, Xiao Ming and Xiangrui Wang. A computer- assisted assessment and diagnosis

system for arts students-oriented computer education. 2009 International Conference

on Education Technology and Computer, ICETC 2009, pages 289–293, 2009. doi: 10.1109/

ICETC.2009.53.

Casset, Ludovic. Development of an Embedded Verifier for Java Card Byte Code Using Formal

Methods, pages 290–309. Springer Berlin Heidelberg, Berlin, Heidelberg, 2002. ISBN

978-3-540-45614-8. doi: 10.1007/3-540-45614-7_17.

Cast Software .Inc, . Study finds seven out of ten retailer and finance applcations vulner-

able to Heartbleed-style attacks. Technical report, Cast Software .Inc, New York, NY

10016, 2014. URL http://www.castsoftware.com/discover-cast/press-releases.

CAUSE, . Privacy and the Handling of Student Information in the Electronic Networked

Environments of Colleges and universities. Technical report, CAUSE, Boulder, Col-

orado, 1997. URL https://library.educause.edu/\sim/media/files/library/

1997/1/pub3102-pdf.pdf.

Cavalcanti, Ana and Marie-Claude Gaudel. Data Flow Coverage for Circus-Based

Testing. In Gnesi, Stefania and Arend Rensink, editors, Fundamental Approaches

to Software Engineering: 17th International Conference, FASE 2014, Held as Part of the

European Joint Conferences on Theory and Practice of Software, ETAPS 2014, Grenoble,

France, April 5-13, 2014, Proceedings, pages 415–429. Springer Berlin Heidelberg, Berlin,

Heidelberg, 2014. ISBN 978-3-642-54804-8. doi: 10.1007/978-3-642-54804-8_29. URL

http://dx.doi.org/10.1007/978-3-642-54804-8_29.

340

http://dspace.dsto.defence.gov.au/dspace/handle/1947/4378
http://dspace.dsto.defence.gov.au/dspace/handle/1947/4378
http://www.castsoftware.com/discover-cast/press-releases
https://library.educause.edu/$\sim $/media/files/library/1997/1/pub3102-pdf.pdf
https://library.educause.edu/$\sim $/media/files/library/1997/1/pub3102-pdf.pdf
http://dx.doi.org/10.1007/978-3-642-54804-8_29

List of References

Cavalcanti, Ana and Jim Woodcock. A Predicate Transformer Semantics for a Concur-

rent Language of Refinement. Communicating Process Architectures, pages 147–166,

2002.

Cavalcanti, Ana and Jim Woodcock. A tutorial introduction to CSP in unifying theories

of programming. Refinement Techniques in Software Engineering, pages 220–268, 2006.

ISSN 03029743. doi: 10.1007/11889229_6. URL http://eprints.whiterose.ac.uk/

70560/.

Cavalcanti, Ana, Augusto Sampaio, and Jim Woodcock. Procedures and Recursion

in the Refinement Calculus. Journal of the Brazilian Computer Society, 5:0, 1998.

ISSN 0104-6500. URL http://www.scielo.br/scielo.php?script=sci_arttext&

pid=S0104-65001998000200002&nrm=iso.

Cavalcanti, Ana, Phil Clayton, and Colin O’Halloran. Control Law Diagrams in

Circus. In Fitzgerald, John, Ian J Hayes, and Andrzej Tarlecki, editors, FM 2005:

Formal Methods: International Symposium of Formal Methods Europe, Newcastle, UK,

July 18-22, 2005. Proceedings, pages 253–268. Springer Berlin Heidelberg, Berlin,

Heidelberg, 2005. ISBN 978-3-540-31714-2. doi: 10.1007/11526841_18. URL http:

//dx.doi.org/10.1007/11526841_18.

Cavalcanti, Ana, Will Harwood, and Jim Woodcock. Pointers and Records in the

Unifying Theories of Programming. In Dunne, Steve and Bill Stoddart, editors,

Unifying Theories of Programming: First International Symposium, UTP 2006, Walworth

Castle, County Durham, UK, February 5-7, 2006, Revised Selected Papers, pages 200–216.

Springer Berlin Heidelberg, Berlin, Heidelberg, 2006. ISBN 978-3-540-34752-1. doi:

10.1007/11768173_12. URL http://dx.doi.org/10.1007/11768173_12.

Cavalcanti, Ana, Phil Clayton, and Colin O’Halloran. From control law diagrams to

Ada via Circus. Formal Aspects of Computing, 23(4):465–512, 2011. ISSN 1433-299X. doi:

10.1007/s00165-010-0170-3. URL http://dx.doi.org/10.1007/s00165-010-0170-3.

341

http://eprints.whiterose.ac.uk/70560/
http://eprints.whiterose.ac.uk/70560/
http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0104-65001998000200002&nrm=iso
http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0104-65001998000200002&nrm=iso
http://dx.doi.org/10.1007/11526841_18
http://dx.doi.org/10.1007/11526841_18
http://dx.doi.org/10.1007/11768173_12
http://dx.doi.org/10.1007/s00165-010-0170-3

List of References

Cavalcanti, Ana L C, Augusto C A Sampaio, and Jim Woodcock. A unified language

of classes and processes. In St Eve: State-Oriented vs. Event-Oriented Thinking in

Requirements Analysis, Formal Specification and Software Engineering, Satellite Workshop

at FM’03, 2003. URL http://kar.kent.ac.uk/13842/.

Cavoukian, Ann. Privacy by Design. Technical report, Information and Privacy

Commissioner of Ontario, Ontario, Canada, 2009.

Cavoukian, Ann and Mark Dixon. Privacy and Security by Design: A Convergence of

Paradigms. In Cavoukian, Ann, editor, Privacy by Design. From rhetoric to reality, pages

209–226. Information and Privacy Commissioner of Ontario, Ontario, Canada, 2013.

Cerny, Pavol and Rajeev Alur. Automated Analysis of Java Methods for Con dentiality.

Computer Aided Verification, pages 173–187, 2009a.

Cerny, Pavol and Rajeev Alur. Automated Analysis of Java Methods for Confidentiality.

Computer Aided Verification, pages 173–187, 2009b.

Chandra, S. and R.A Khan. Confidentiality checking an object-oriented class hierarchy.

Network Security, 2010(3):16–20, 2010. ISSN 13534858. doi: 10.1016/S1353-4858(10)

70037-4.

Cheng, Shang-wen and David Garlan. Mapping Architectural Concepts to UML-RT. In

International Conference on Parallel and Distributed Processing Techniques and Applications

(PDPTA’2001), 2001.

Chetali, Boutheina and Quang-huy Nguyen. Industrial Use of Formal Methods for a

High-Level Security Evaluation. FM 2008: Formal Methods, pages 198–213, 2008. doi:

10.1007/978-3-540-68237-0_15.

Chivers, Howard Robert. Security Design Analysis. PhD thesis, University of York, UK,

2006.

342

http://kar.kent.ac.uk/13842/

List of References

Churchill, Andrew. ’Privacy and public policy delivery - Dichotomy or design’.

Information Security Technical Report, 14(3):131–137, 2009. ISSN 13634127. doi:

10.1016/j.istr.2009.10.009. URL http://dx.doi.org/10.1016/j.istr.2009.10.009.

Clark, David, Chris Hankin, and Sebastian Hunt. Information flow for Algol-like

languages. Computer Languages, Systems and Structures, 28(1):3–28, 2002. doi: http:

//dx.doi.org/10.1016/S0096-0551(02)00006-1.

Clark, Peter, Philip Harrison, Thomas Jenkins, John A Thompson, and Richard H

Wojcik. Acquiring and Using World Knowledge Using a Restricted Subset of English.

FLAIRS Conference, pages 506–511, 2005.

Cofer, Darren. Model checking: Cleared for take off. Lecture Notes in Computer Science (in-

cluding subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),

6349 LNCS:76–87, 2010. ISSN 03029743. doi: 10.1007/978-3-642-16164-3_6.

Coleman, JoeyW., Luis Diogo Couto, Kenneth Lausdahl, Claus Ballegaard Nielsen,

Anders Kaels Malmos, Peter Gorm Larsen, Richard Payne, Simon Foster, Al-

varo Miyazawa, Uwe Schulze, Adalberto Cajueiro, and Andre Didier. Fourth

Release of the COMPASS Tool Symphony IDE User Manual, 2014. URL http:

//www.compass-research.eu/Project/Deliverables/D31.4a.pdf.

Computing Research Association, . Four Grand Challenges in Trustworthy Computing:

Second in a Series of Conferences on Grand Research Challenges in Computer Science

and Engineering. Technical report, Computing Research Association, 2003. URL

http://archive.cra.org/reports/trustworthy.computing.pdf.

343

http://dx.doi.org/10.1016/j.istr.2009.10.009
http://www.compass-research.eu/Project/Deliverables/D31.4a.pdf
http://www.compass-research.eu/Project/Deliverables/D31.4a.pdf
http://archive.cra.org/reports/trustworthy.computing.pdf

List of References

Condamines, Anne and Maxime Warnier. Linguistic Analysis of Requirements of

a Space Project and Their Conformity with the Recommendations Proposed by

a Controlled Natural Language. In Davis, Brian, Kaarel Kaljurand, and Tobias

Kuhn, editors, Controlled Natural Language: 4th International Workshop, CNL 2014,

Galway, Ireland, August 20-22, 2014. Proceedings, pages 33–43. Springer International

Publishing, Cham, 2014. ISBN 978-3-319-10223-8. doi: 10.1007/978-3-319-10223-8_4.

URL http://dx.doi.org/10.1007/978-3-319-10223-8_4.

Coplien, J. Patterns of engineering. IEEE Potentials, 23(2):4–8, apr 2004. ISSN 0278-6648.

doi: 10.1109/MP.2004.1289991.

Crocker, David. Perfect Developer: A tool for Object-Oriented Formal Specification and

Refinement. In Tools Exhibition Notes at Formal Methods Europe. Escher Technologies

Ltd., Mallard House, Hillside Road, Ash Vale, Aldershot GU12 5BJ, UK, 2003.

Cruanes, Simon. Extending Superposition with Integer Arithmetic, Structural Induc-

tion, and Beyond. Theses, École polytechnique, sep 2015. URL https://hal.

archives-ouvertes.fr/tel-01223502.

Dabaghchian, Maryam and Mohammad Abdollahi Azgomi. Model checking the obser-

vational determinism security property using PROMELA and SPIN. Formal Aspects

of Computing, 27(5-6):789–804, 2015. ISSN 1433299X. doi: 10.1007/s00165-014-0331-x.

Dam, Mads and Pablo Giambiagi. Confidentiality for mobile code: the case of a simple

payment protocol. Proceedings 13th IEEE Computer Security Foundations Workshop.

CSFW-13, pages 233–244, 2000. ISSN 10636900. doi: 10.1109/CSFW.2000.856940. URL

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=856940.

David, Julie Smith and Marilyn Prosch. Extending the value chain to incorporate

privacy by design principles. Identity in the Information Society, 3(2):295–318, 2010.

ISSN 18760678. doi: 10.1007/s12394-010-0059-6. URL http://www.springerlink.

com/index/10.1007/s12394-010-0059-6.

344

http://dx.doi.org/10.1007/978-3-319-10223-8_4
https://hal.archives-ouvertes.fr/tel-01223502
https://hal.archives-ouvertes.fr/tel-01223502
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=856940
http://www.springerlink.com/index/10.1007/s12394-010-0059-6
http://www.springerlink.com/index/10.1007/s12394-010-0059-6

List of References

De Capitani di Vimercati, Sabrina, Robert F. Erbacher, Sara Foresti, Sushil Jajodia,

Giovanni Livraga, and Pierangela Samarati. Encryption and fragmentation for data

confidentiality in the cloud. In Aldini, Alessandro, Javier Lopez, and Fabio Martinelli,

editors, Foundations of Security Analysis and Design VII: FOSAD 2012/2013 Tutorial

Lectures, pages 212–243. Springer International Publishing, Cham, Switzerland, 2014.

ISBN 978-3-319-10081-4, 978-3-319-10082-1. doi: 10.1007/978-3-319-10082-1_8. URL

http://link.springer.com/chapter/10.1007/978-3-319-10082-1_8.

De Landtsheer, Renaud and Axel Van Lamsweerde. Reasoning about confidentiality at

requirements engineering time. Proceedings of the 10th European software engineering

conference held jointly with 13th ACM SIGSOFT international symposium on Foundations

of software engineering, pages 41–49, 2005. doi: 10.1145/1081706.1081715. URL

http://portal.acm.org/citation.cfm?id=1081715.

Defence Science and Technology Organisation, . The PARTI Architecture Assurance.

Technical report, Defence Science and Technology Organisation, Department of

Defence, Government of Australia, Edinburgh, South Australia 5111, Australia, 2008.

Denning, Dorothy. The limits of formal security models. National Computer Systems

Security Award Acceptance Speech, 18, 1999.

Denning, Dorothy E. A lattice model of secure information flow. Communications of the

ACM, 19(5):236–243, 1976. ISSN 00010782. doi: 10.1145/360051.360056.

Depaula, Nic. A Sophistication Index for Evaluating Security Breaches. Symposium on

information assurance, (11):26–31, 2016.

Derrick, John, Siobhán North, and Anthony J H Simons. Z2SAL: a translation-

based model checker for Z. Formal Aspects of Computing, 23(1):43–71, 2011. ISSN

1433-299X. doi: 10.1007/s00165-009-0126-7. URL http://dx.doi.org/10.1007/

s00165-009-0126-7.

345

http://link.springer.com/chapter/10.1007/978-3-319-10082-1_8
http://portal.acm.org/citation.cfm?id=1081715
http://dx.doi.org/10.1007/s00165-009-0126-7
http://dx.doi.org/10.1007/s00165-009-0126-7

List of References

Dijkstra, Edsger W. Notes on Structured Programming. In Dahl, Ole-Johan, C.A.R.

Hoare, and Edsger W. Dijkstra, editors, Structured programming, chapter Notes on S,

pages 1–82. Academic Press Ltd. London, UK, UK, 1972. ISBN 0-12-200550-3.

Dijkstra, Edsger W. Guarded commands, non-determinacy and formal derivation

of programs. ACM SIGPLAN Notices, 18(6):453–457, 1975. ISSN 03621340. doi:

10.1145/390016.808417.

Dijkstra, Edsger W. A Discipline of Programming. Prentice Hall PTR, Upper Saddle River,

NJ, USA, 1st edition, 1997. ISBN 013215871X.

Dijkstra, Edsger W and Carel S Scholten. Predicate Calculus and Program Semantics.

Springer-Verlag New York, Inc., New York, NY, USA, 1990. ISBN 0-387-96957-8.

Dingel, Jürgen and Thomas Filkorn. Model checking for infinite state systems using data

abstraction, assumption-commitment style reasoning and theorem proving, pages 54–69.

Springer Berlin Heidelberg, Berlin, Heidelberg, 1995. ISBN 978-3-540-49413-3. doi:

10.1007/3-540-60045-0_40. URL https://doi.org/10.1007/3-540-60045-0_40.

Durr, E and J Katwijkvan . VDM++, a formal specification language for object-oriented

designs. In CompEuro 1992 Proceedings Computer Systems and Software Engineering,

pages 214–219, may 1992. doi: 10.1109/CMPEUR.1992.218511.

Dutertre, Bruno. Yices 2.2. Lecture Notes in Computer Science. Springer International

Publishing, 2014. doi: 10.1007/978-3-319-08867-9_49.

Dwyer, Matthew B., George S. Avrunin, and James C. Corbett. Property specification

patterns for finite-state verification. Proceedings of the second workshop on Formal methods

in software practice - FMSP ’98, pages 7–15, 1998. doi: 10.1145/298595.298598. URL

http://dl.acm.org/citation.cfm?id=298598.

Dwyer, M.B., G.S. Avrunin, and J.C. Corbett. Patterns in property specifications for

finite-state verification. Proceedings of the 1999 International Conference on Software

Engineering (IEEE Cat. No.99CB37002), pages 411–420, 1999. ISSN 0270-5257. doi:

10.1145/302405.302672.

346

https://doi.org/10.1007/3-540-60045-0_40
http://dl.acm.org/citation.cfm?id=298598

List of References

Easterbrook, Steve, Janice Singer, Margaret-Anne Storey, and Daniela Damian. Se-

lecting Empirical Methods for Software Engineering Research. In Shull, Forrest,

Janice Singer, and Dag I. K. Sjøberg, editors, Guide to Advanced Empirical Soft-

ware Engineering, volume 53, pages 296–297. Springer-Verlag, London, 2008. ISBN

9788578110796. doi: 10.1017/CBO9781107415324.004. URL https://doi.org/10.

1007/978-1-84800-044-5_11.

Eckel, Bruce. Thinking in Java (4th Edition). Prentice Hall PTR, Upper Saddle River, NJ,

USA, 2005. ISBN 0131872486.

Edelkamp, Stefan. Data structures and learning algorithms in state space search. PhD thesis,

PhD thesis, University of Freiburg, 1999. Infix, 1999.

Edelkamp, Stefan, Alberto Lluch Lafuente, and Stefan Leue. Protocol Verification with

Heuristic Search. Technical report, Association for the Advancement of Artificial

Intelligence, 2001. URL http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.

1.1.26.6752.

El-Hadary, Hassan and Sherif El-Kassas. Capturing security requirements for software

systems. Journal of Advanced Research, 5(4):463–472, 2014. ISSN 20901232. doi:

10.1016/j.jare.2014.03.001. URL http://linkinghub.elsevier.com/retrieve/pii/

S2090123214000332.

Elahi, Golnaz, Eric Yu, and Nicola Zannone. A Vulnerability-centric Requirements

Engineering Framework: Analyzing Security Attacks, Countermeasures, and Re-

quirements Based on Vulnerabilities. Requir. Eng., 15(1):41–62, mar 2010. ISSN

0947-3602. doi: 10.1007/s00766-009-0090-z. URL http://dx.doi.org/10.1007/

s00766-009-0090-z.

Ellis, Timothy J. and Yair Levy. A guide for novice researchers: Design and development

research methods. In Proceeding of the Informing Science and Information Technology

Education Conference (InSITE) 2010, pages 108–118. Nova Southeastern University,

2010. URL http://nsuworks.nova.edu/gscis_facpres/111/.

347

https://doi.org/10.1007/978-1-84800-044-5_11
https://doi.org/10.1007/978-1-84800-044-5_11
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.26.6752
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.26.6752
http://linkinghub.elsevier.com/retrieve/pii/S2090123214000332
http://linkinghub.elsevier.com/retrieve/pii/S2090123214000332
http://dx.doi.org/10.1007/s00766-009-0090-z
http://dx.doi.org/10.1007/s00766-009-0090-z
http://nsuworks.nova.edu/gscis_facpres/111/

List of References

European Digital Rights, . Key aspects of the proposed General Data Protection

Regulation explained : What are they ? Why are they important ? What are common

misconceptions ? What can be improved ? Technical report, European Digital Rights,

Brussels, 2012. URL https://edri.org/files/GDPR-key-issues-explained.pdf.

European Parliament, . Protection of individuals with regard to the processing of

personal data (General Data Protection Regulation Draft). European Parliament Texts

Adopted, 2014. URL http://www.europarl.europa.eu/sides/getDoc.do?pubRef=-/

/EP//TEXT+TA+P7-TA-2014-0212+0+DOC+XML+V0//EN.

Farkas, Csilla and Sushil Jajodia. The Inference Problem: A Survey. SIGKDD Explor.

Newsl., 4(2):6–11, dec 2002. ISSN 1931-0145. doi: 10.1145/772862.772864. URL

http://doi.acm.org/10.1145/772862.772864.

Federal Trade Commision (FTC), . Protecting Consumer in an Era of Rapid Change:

Recommendations for businesses and policymakers. Federal Trade Commision, (March):

1– 112, 2012.

Federal Trade Commission, . Protecting Consumer Privacy in an Era of Rapid Change:

A proposed framework for businesses and policymakers. Preliminary FTC Staff Report,

(December), 2010.

Feliachi, Abderrahmane, Marie-Claude Gaudel, and Burkhart Wolff. Isabelle/Circus:

A Process Specification and Verification Environment, pages 243–260. Springer Ber-

lin Heidelberg, Berlin, Heidelberg, 2012. ISBN 978-3-642-27705-4. doi: 10.1007/

978-3-642-27705-4_20. URL https://doi.org/10.1007/978-3-642-27705-4_20.

Feliachi, Abderrahmane, Marie-claude Gaudel, and Makarius Wenzel. The Circus

Testing Theory Revisited in Isabelle / HOL. In International Conference on Formal

Engineering Methods, Lecture Notes in Computer Science, pages 131–147. Springer

Berlin Heidelberg, 2013.

348

https://edri.org/files/GDPR-key-issues-explained.pdf
http://www.europarl.europa.eu/sides/getDoc.do?pubRef=-//EP//TEXT+TA+P7-TA-2014-0212+0+DOC+XML+V0//EN
http://www.europarl.europa.eu/sides/getDoc.do?pubRef=-//EP//TEXT+TA+P7-TA-2014-0212+0+DOC+XML+V0//EN
http://doi.acm.org/10.1145/772862.772864
https://doi.org/10.1007/978-3-642-27705-4_20

List of References

Ferraiolo, David and Richard Kuhn. Role-Based Access Control. In In 15th NIST-NCSC

National Computer Security Conference, pages 554–563, Baltimore, MD, oct 1992. ISBN

1580533701. doi: 10.1109/2.485845.

Feuto Njonko, Paul Brillant, Sylviane Cardey, Peter Greenfield, and Walid El Abed.

RuleCNL: A Controlled Natural Language for Business Rule Specifications. In

Davis, Brian, Kaarel Kaljurand, and Tobias Kuhn, editors, Controlled Natural Lan-

guage: 4th International Workshop, CNL 2014, Galway, Ireland, August 20-22, 2014.

Proceedings, pages 66–77. Springer International Publishing, Cham, 2014. ISBN 978-3-

319-10223-8. doi: 10.1007/978-3-319-10223-8_7. URL http://dx.doi.org/10.1007/

978-3-319-10223-8_7.

Fiadeiro, J L and L F Andrade. Interconnecting objects via contracts. In Proceedings

Technology of Object-Oriented Languages and Systems. TOOLS 38, pages 182–183, 2001.

doi: 10.1109/TOOLS.2001.911771.

Foley, S.N. and J. Jacob. Specifying security for CSCW systems. In Proceedings The

Eighth IEEE Computer Security Foundations Workshop, pages 136–145, jun 1995. ISBN

0-8186-7033-9. doi: 10.1109/CSFW.1995.518559. URL http://ieeexplore.ieee.org/

lpdocs/epic03/wrapper.htm?arnumber=518559.

Foster, Simon and Richard Payne. COMPASS Theorem Proving Support - Developers

Manual. Technical Report September, European Commission, 2013. URL http:

//www.compass-research.eu/Project/Deliverables/D332b.pdf.

Fowler, M. Analysis Patterns: Reusable Object Models. Addison-Wesley series in object-

oriented software engineering. Addison-Wesley, 1997. ISBN 9780201895421. URL

https://books.google.co.uk/books?id=4V8pZmpwmBYC.

349

http://dx.doi.org/10.1007/978-3-319-10223-8_7
http://dx.doi.org/10.1007/978-3-319-10223-8_7
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=518559
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=518559
http://www.compass-research.eu/Project/Deliverables/D332b.pdf
http://www.compass-research.eu/Project/Deliverables/D332b.pdf
https://books.google.co.uk/books?id=4V8pZmpwmBYC

List of References

Freitas, Angela and Ana Cavalcanti. Automatic Translation from Circus to Java. In Misra,

Jayadev, Tobias Nipkow, and Emil Sekerinski, editors, FM 2006: Formal Methods: 14th

International Symposium on Formal Methods, Hamilton, Canada, August 21-27, 2006.

Proceedings, pages 115–130. Springer Berlin Heidelberg, Berlin, Heidelberg, 2006.

ISBN 978-3-540-37216-5. doi: 10.1007/11813040_9. URL http://dx.doi.org/10.

1007/11813040_9.

Freitas, Leo. Model checking Circus. PhD thesis, University of York, 2005.

Freitas, Leo and Iain Whiteside. Proof patterns for formal methods. In International

Symposium on Formal Methods, pages 279–295. Springer, 2014.

Freitas, Leonardo. Proving Theorems with Z/Eves. Technical Report July, University of

Kent, 2004.

Fuchs, Norbert E, Kaarel Kaljurand, and Tobias Kuhn. Attempto Controlled English

for Knowledge Representation, pages 104–124. Springer Berlin Heidelberg, Berlin,

Heidelberg, 2008. ISBN 978-3-540-85658-0. doi: 10.1007/978-3-540-85658-0_3. URL

https://doi.org/10.1007/978-3-540-85658-0_3.

Gamma, Erich, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns:

Elements of Reusable Object-oriented Software. Addison-Wesley Longman Publishing

Co., Inc., Boston, MA, USA, 1995. ISBN 0-201-63361-2.

Gangemi, A, A Gómez-Pérez, V Presutti, and Mari Carmen Suárez-Figueroa. Towards

a Catalog of OWL-based Ontology Design Patterns. In Actas de la XII Conferencia de la

Asociación Española para la Inteligencia Artificial, 2007. URL http://oa.upm.es/5212/.

Garvey, T D, T F Lunt, and M E Stickel. Abductive and approximate reasoning models

for characterizing inference channels. In Proceedings Computer Security Foundations

Workshop IV, pages 118–126, jun 1991. doi: 10.1109/CSFW.1991.151578.

Gemalto, . First Half Review 2015 - Findings from the BREACH LEVEL INDEX.

Technical report, Gemalto, 2015.

350

http://dx.doi.org/10.1007/11813040_9
http://dx.doi.org/10.1007/11813040_9
https://doi.org/10.1007/978-3-540-85658-0_3
http://oa.upm.es/5212/

List of References

General Services Administration, . Federal Acquisition Regulation. ht-

tps://www.acquisition.gov/sites/default/files/current/far/pdf/FAR.pdf, 2005.

URL https://www.acquisition.gov/sites/default/files/current/far/pdf/FAR.

pdf.

Giorgini, Paolo, Fabio Massacci, John Mylopoulos, and Nicola Zannone. Requirements

engineering meets trust management. Technical report, UNIVERSITY OF TRENTO,

2004.

Goguen, Joseph A and José Meseguer. Security Policies and Security Models. Security

and Privacy, IEEE Symposium on, page 11, 1982. doi: 10.1109/SP.1982.10014.

Goldsmith, Michael, Bill Roscoe, and Philip Armstrong. Failures-Divergence

Refinement-FDR2 User Manual, 2005.

Gomes, Artur Oliveira. Formal Specification of the ARINC 653 Architecture Using Circus.

PhD thesis, The University of York, 2012. URL http://etheses.whiterose.ac.uk/

id/eprint/2683.

Gordon, Peter. Data Leakage - Threats and Mitigation. Technical report, SANS Institute,

2007.

Gormish, Michael J, Edward L Schwartz, Alexander F Keith, Martin P Boliek, and

Ahmad Zandi. Lossless and nearly lossless compression for high-quality images,

1997. URL http://dx.doi.org/10.1117/12.270058.

Guardian News, . Experian hack exposes 15 million people’s personal in-

formation. https://www.theguardian.com/business/2015/oct/01/experian-

hack-t-mobile-credit-checks-personal-information, 2014.

URL https://www.theguardian.com/business/2015/oct/01/

experian-hack-t-mobile-credit-checks-personal-information.

351

https://www.acquisition.gov/sites/default/files/current/far/pdf/FAR.pdf
https://www.acquisition.gov/sites/default/files/current/far/pdf/FAR.pdf
http://etheses.whiterose.ac.uk/id/eprint/2683
http://etheses.whiterose.ac.uk/id/eprint/2683
http://dx.doi.org/10.1117/12.270058
https://www.theguardian.com/business/2015/oct/01/experian-hack-t-mobile-credit-checks-personal-information
https://www.theguardian.com/business/2015/oct/01/experian-hack-t-mobile-credit-checks-personal-information

List of References

Gulati, Ms and Ms Singh. Analysis of Three Formal Methods-Z,

B and VDM. International Journal of Engineering, 1(4):1–5, 2012.

URL http://www.ijert.org/browse/june-2012-edition?download=297:

analysis-of-three-formal-methods-z-b-and-vdm&start=120.

Gurgel, Alessandro Cavalcante, Cristiano Gurgel Castro, and Marcel Vinicius Oliveira.

Tool Support for the Circus Refinement Calculus. In Proceedings of the 1st International

Conference on Abstract State Machines, B and Z, ABZ ’08, page 349, Berlin, Heidelberg,

2008. Springer-Verlag. ISBN 978-3-540-87602-1. doi: 10.1007/978-3-540-87603-8_37.

URL http://dx.doi.org/10.1007/978-3-540-87603-8_37.

Gurses, Seda, Jens H Jahnke, Christina Obry, Adeniyi Onabajo, Thomas Santen, and

Morgan Price. Eliciting confidentiality requirements in practice. Proceedings of the 2005

conference of the Centre for Advanced Studies on Collaborative research, pages 101–116, 2005.

ISSN 1705-7361. URL http://dl.acm.org/citation.cfm?id=1105634.1105642.

Hadj-alouane, Nejib Ben, John Mullins, Nejib Ben Hadj-alouane, Stéphane Lafrance,

Feng Lin, John Mullins, and Mohamed Moez Yeddes. On the Verification of Intransit-

ive Noninterference in Mulitlevel Security. IEEE Transactions on Systems, Man, and

Cybernetics, Part B (Cybernetics), 35(5):948–958, 2005. doi: 10.1109/TSMCB.2005.847749.

URL http://ieeexplore.ieee.org/document/1510770/.

Hagen, Mariele and Volker Gruhn. Towards flexible software processes by using process

patterns. In IASTED Conf. on Software Engineering and Applications, pages 436–441,

2004.

Hahsler, Michael and Wirtschaftsuniversität Wien Informationswirtschaft. Software

Engineering with Analysis Patterns. Technical report, Technical Report of WU-Wien,

2001.

Hakeem, Hossam Hassan. A compositional framework for determining pattern applicability.

Phd thesis, De Montfort University, 2010. URL http://hdl.handle.net/2086/4401.

352

http://www.ijert.org/browse/june-2012-edition?download=297:analysis-of-three-formal-methods-z-b-and-vdm&start=120
http://www.ijert.org/browse/june-2012-edition?download=297:analysis-of-three-formal-methods-z-b-and-vdm&start=120
http://dx.doi.org/10.1007/978-3-540-87603-8_37
http://dl.acm.org/citation.cfm?id=1105634.1105642
http://ieeexplore.ieee.org/document/1510770/
http://hdl.handle.net/2086/4401

List of References

Hall, Anthony and Roderick Chapman. Correctness by construction: Developing a

commercial secure system. IEEE Software, 19(1):18–25, 2002. ISSN 07407459. doi:

10.1109/52.976937.

Hansen, M. H. Insuring confidentiality of individual records in data storage and

retrieval for statistical purposes. Managing Requirements Knowledge, International

Workshop on, page 579, 1971. doi: http://doi.ieeecomputersociety.org/10.1109/AFIPS.

1971.100. URL http://doi.acm.org/10.1145/1479064.1479167%5Cnhttp://portal.

acm.org/citation.cfm?doid=1479064.1479167.

Hayashi, Koichiro. Social Issues of Big Data and Cloud: Privacy, Confidentiality, and

Public Utility. 2013 International Conference on Availability, Reliability and Security,

pages 506–511, 2013. doi: 10.1109/ARES.2013.66. URL http://ieeexplore.ieee.

org/lpdocs/epic03/wrapper.htm?arnumber=6657282.

Henties, Thomas, James J Hunt, Doug Locke, Kelvin Nilsen, Martin Schoeberl, and

Jan Vitek. Java for Safety-Critical Applications. In 2nd International Workshop on

the Certification of Safety-Critical Software Controlled Systems (SafeCert 2009). Elsevier

Science B. V, 2009.

Henz, Martin, Gert Smolka, and Jorg Wurtz. Object-Oriented Concurrent Constraint

Programming in Oz. In Herzog, Otthein, Thomas Christaller, and Dieter Schutt,

editors, Grundlagen und Anwendungen der Künstlichen Intelligenz, number April in

Informatik aktuell. Springer Berlin Heidelberg, 1993. doi: 10.1007/978-3-642-78545-0_

3.

Hillenbrand, Thomas, Arnim Buch, Roland Vogt, and Bernd Löchner. WALDMEISTER

- High-Performance Equational Deduction. Journal of Automated Reasoning, 18(2):

265–270, 1997. ISSN 1573-0670. doi: 10.1023/A:1005872405899. URL http://dx.doi.

org/10.1023/A:1005872405899.

353

http://doi.acm.org/10.1145/1479064.1479167%5Cnhttp://portal.acm.org/citation.cfm?doid=1479064.1479167
http://doi.acm.org/10.1145/1479064.1479167%5Cnhttp://portal.acm.org/citation.cfm?doid=1479064.1479167
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6657282
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6657282
http://dx.doi.org/10.1023/A:1005872405899
http://dx.doi.org/10.1023/A:1005872405899

List of References

Hoare, C. A. R. and Jifeng He. Unifying Theories of Programming. Prentice Hall Englewood

Cliffs, 1998. ISBN 978-0134587615. doi: 10.1007/978-3-319-14806-9. URL http:

//www.amazon.com/Unifying-Theories-Programming-C-Hoare/dp/0134587618.

Hoare, C.A.R. An Axiomatic Basis for Computer Programming. Communications of the

ACM, 12(10):576–580, 1969. ISSN 00010782. doi: 10.1145/363235.363259.

Hoare, C.A.R. A model for communicating sequential process. 1980. URL http:

//ro.uow.edu.au/compsciwp/14/.

Hoare, C.A.R. Unified theories of programming. Mathematical methods in program

development. NATO ASI Series F Computer and Systems Science, 158:313–368, 1997.

Hoder, Kryštof and Andrei Voronkov. Sine Qua Non for Large Theory Reasoning. In

Bjørner, Nikolaj and Viorica Sofronie-Stokkermans, editors, Automated Deduction –

CADE-23: 23rd International Conference on Automated Deduction, Wrocław, Poland, July

31 - August 5, 2011. Proceedings, pages 299–314. Springer Berlin Heidelberg, Berlin,

Heidelberg, 2011. ISBN 978-3-642-22438-6. doi: 10.1007/978-3-642-22438-6_23. URL

http://dx.doi.org/10.1007/978-3-642-22438-6_23.

Holzmann, Gerard J. The Model Checker SPIN. Ieee Transactions on Software Engineering,

23(5):279–295, 1997. ISSN 00985589. doi: 10.1109/32.588521.

Holzmann, Gerard J and Rajeev Joshi. Model-Driven Software Verification. In

Graf, S. and L. Mounier, editors, Model Checking Software, pages 76–91. Springer-

Verlag Berlin Heidelberg, 2004. URL http://link.springer.com/chapter/10.1007%

2F978-3-540-24732-6_6.

Howitt, Anthony. The formal specification of the Tees Confidentiality Model. PhD thesis,

Teesside University, 2008.

Hubbard, B S, S A Walker, and R R Henning. Database Systems and the Criteria: Do

They Relate? In 9th National Computer Security Conference, pages 21–24, 1986.

354

http://www.amazon.com/Unifying-Theories-Programming-C-Hoare/dp/0134587618
http://www.amazon.com/Unifying-Theories-Programming-C-Hoare/dp/0134587618
http://ro.uow.edu.au/compsciwp/14/
http://ro.uow.edu.au/compsciwp/14/
http://dx.doi.org/10.1007/978-3-642-22438-6_23
http://link.springer.com/chapter/10.1007%2F978-3-540-24732-6_6
http://link.springer.com/chapter/10.1007%2F978-3-540-24732-6_6

List of References

Hudson, S, F Flannery, S Ananian, D Wang, and A Appel. JavaCup User’s Manual,

1998.

IDG Communications, Inc. Target breach happened because

of a basic network segmentation error, 2013. URL https:

//www.computerworld.com/article/2487425/cybercrime-hacking/

target-breach-happened-because-of-a-basic-network-segmentation-error.

html.

Ion, Mihaela, Giovanni Russello, and Bruno Crispo. Supporting publication and

subscription confidentiality in pub/sub networks. Lecture Notes of the Institute for

Computer Sciences, Social-Informatics and Telecommunications Engineering, 50 LNICST:

272–289, 2010. ISSN 18678211. doi: 10.1007/978-3-642-16161-2_16.

ISO/IEC, . Information technology–Z formal specification notation–Syntax, type system

and semantics. Technical report, International Organization for Standardization

International Electrotechnical Commission, 2002. URL ftp://195.215.30.152/jtc1/

sc22/def/n3399.pdf.

Jacob, Jeremy L. Security specifications. Proceedings. 1988 IEEE Symposium on Security

and Privacy, pages 14–23, 1988. doi: 10.1109/SECPRI.1988.8094.

Jajodia, Sushil and Catherine Meadows. Inference problems in multilevel secure

database management systems. Information Security: An integrated collection of essays,

1:570–585, 1995. URL http://www.acsa-admin.org/secshelf/book001/24.pdf.

Jamal, Leila, Julie C Sapp, Katie Lewis, Tatiane Yanes, Flavia M Facio, Leslie G Biesecker,

and Barbara B Biesecker. Research participants’ attitudes towards the confidentiality

of genomic sequence information. European journal of human genetics : EJHG, 22(8):

964–8, 2014. ISSN 1476-5438. doi: 10.1038/ejhg.2013.276. URL http://www.ncbi.nlm.

nih.gov/pubmed/24281371.

355

https://www.computerworld.com/article/2487425/cybercrime-hacking/target-breach-happened-because-of-a-basic-network-segmentation-error.html
https://www.computerworld.com/article/2487425/cybercrime-hacking/target-breach-happened-because-of-a-basic-network-segmentation-error.html
https://www.computerworld.com/article/2487425/cybercrime-hacking/target-breach-happened-because-of-a-basic-network-segmentation-error.html
https://www.computerworld.com/article/2487425/cybercrime-hacking/target-breach-happened-because-of-a-basic-network-segmentation-error.html
ftp://195.215.30.152/jtc1/sc22/def/n3399.pdf
ftp://195.215.30.152/jtc1/sc22/def/n3399.pdf
http://www.acsa-admin.org/secshelf/book001/24.pdf
http://www.ncbi.nlm.nih.gov/pubmed/24281371
http://www.ncbi.nlm.nih.gov/pubmed/24281371

List of References

Jensen, Kurt. Coloured Petri nets. Petri Nets: Central Models and Their Properties SE -

10, 254:248–299, 1987. doi: 10.1007/BFb0046842. URL http://dx.doi.org/10.1007/

BFb0046842.

JetBrains, . IntelliJ IDEA, 2017. URL https://www.jetbrains.com/idea/.

Johnson, Stephen C. Yacc: Yet another compiler-compiler, volume 32. Bell Laboratories

Murray Hill, NJ, 1975.

Juan, Beatriz Martín De, Miguel Ángel, Valero Duboy, Diana Soler, José Manuel Azorín,

and Rafael Conde. Design and Validation of a Secure Communication Platform for

Mobile Health. Temp 2013, pages 24–31, 2011.

Kanav, Sudeep, Peter Lammich, and Andrei Popescu. A Conference Management

System with Verified Document Confidentiality. In Biere, Armin and Roderick

Bloem, editors, Computer Aided Verification: 26th International Conference, CAV 2014,

Held as Part of the Vienna Summer of Logic, VSL 2014, Vienna, Austria, July 18-22, 2014.

Proceedings, pages 167–183. Springer International Publishing, Cham, Switzerland,

2014. ISBN 978-3-319-08867-9. doi: 10.1007/978-3-319-08867-9_11. URL https:

//doi.org/10.1007/978-3-319-08867-9_11.

Kerckhoffs, Auguste. La Cryptographie Militaire. Journal des Sciences Milit-

aires, IX, jan 1883. URL http://www.cl.cam.ac.uk/\simfapp2/kerckhoffs/la_

cryptographie_militaire_i.htm.

Khabsa, M and C. Lee Giles. The Number of Scholarly Documents on the Public Web.

PLoS ONE, 9:e93949, may 2014. doi: 10.1371/journal.pone.0093949.

Kimber, Tim G. Object-Z to Perfect Developer. Technical Report September, Imperial

College London, 2007.

Kirby, J, M Archer, and C Heitmeyer. SCR: a practical approach to building a high as-

surance COMSEC system. In Computer Security Applications Conference, 1999. (ACSAC

’99) Proceedings. 15th Annual, pages 109–118, 1999. doi: 10.1109/CSAC.1999.816018.

356

http://dx.doi.org/10.1007/BFb0046842
http://dx.doi.org/10.1007/BFb0046842
https://www.jetbrains.com/idea/
https://doi.org/10.1007/978-3-319-08867-9_11
https://doi.org/10.1007/978-3-319-08867-9_11
http://www.cl.cam.ac.uk/$\sim $fapp2/kerckhoffs/la_cryptographie_militaire_i.htm
http://www.cl.cam.ac.uk/$\sim $fapp2/kerckhoffs/la_cryptographie_militaire_i.htm

List of References

Kletz, Trevor A. Hazop and hazan : identifying and assessing process industry hazards.

Institution of Chemical Engineers (Great Britain), Philadelphia, PA, 4th ed edition,

1999. ISBN 1560328584 (alk. paper).

Kodaganallur, Viswanathan and Sung Shim. Analysis Patterns: A Taxonomy

and its Implications. Information Systems Management, 23(3):52–61, 2006. doi:

10.1201/1078.10580530/46108.23.3.20060601/93707.6. URL http://dx.doi.org/10.

1201/1078.10580530/46108.23.3.20060601/93707.6.

Kolyang, , T. Santen, and B. Wolff. A Structure Preserving Encoding of Z in Isa-

belle/HOL. Theorem Proving in Higher Order Logics, pages 1–16, 1996.

Konrad, Sascha, Betty H.C. Cheng, Laura a. Campbell, and Ronald Wassermann. Using

Security Patterns to Model and Analyze Security Requirements. 2nd International

Workshop on Requirements Engineering for High Assurance Systems, pages 13–22, 2003.

Korovin, Konstantin. iProver – An Instantiation-Based Theorem Prover for First-

Order Logic (System Description). In Armando, Alessandro, Peter Baumgartner,

and Gilles Dowek, editors, Automated Reasoning: 4th International Joint Conference,

IJCAR 2008 Sydney, Australia, August 12-15, 2008 Proceedings, pages 292–298. Springer

Berlin Heidelberg, Berlin, Heidelberg, 2008. ISBN 978-3-540-71070-7. doi: 10.1007/

978-3-540-71070-7_24. URL http://dx.doi.org/10.1007/978-3-540-71070-7_24.

Korovin, Konstantin and Christoph Sticksel. iProver-Eq: An Instantiation-Based The-

orem Prover with Equality. In Giesl, Jürgen and Reiner Hähnle, editors, Auto-

mated Reasoning: 5th International Joint Conference, IJCAR 2010, Edinburgh, UK, July

16-19, 2010. Proceedings, pages 196–202. Springer Berlin Heidelberg, Berlin, Heidel-

berg, 2010. ISBN 978-3-642-14203-1. doi: 10.1007/978-3-642-14203-1_17. URL

http://dx.doi.org/10.1007/978-3-642-14203-1_17.

Lamsweerde, a. Van. Elaborating security requirements by construction of intentional

anti-models. Proceedings. 26th International Conference on Software Engineering, 2004.

ISSN 0270-5257. doi: 10.1109/ICSE.2004.1317437.

357

http://dx.doi.org/10.1201/1078.10580530/46108.23.3.20060601/93707.6
http://dx.doi.org/10.1201/1078.10580530/46108.23.3.20060601/93707.6
http://dx.doi.org/10.1007/978-3-540-71070-7_24
http://dx.doi.org/10.1007/978-3-642-14203-1_17

List of References

Lapadula, Alessandro, Rosario Pugliese, and Francesco Tiezzi. Specifying and analysing

SOC applications with COWS. Lecture Notes in Computer Science (including subseries

Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 5065 LNCS:

701–720, 2008. ISSN 03029743. doi: 10.1007/978-3-540-68679-8_43.

Latham, Donald C. Trusted computer system evaluation criteria. Department of Defense,

1986.

Lawson, N. Side-Channel Attacks on Cryptographic Software. IEEE Security Privacy, 7

(6):65–68, nov 2009. ISSN 1540-7993. doi: 10.1109/MSP.2009.165.

Le M’etayer, Daniel. Privacy by Design: A Matter of Choice. In Gutwirth, Serge, Yves

Poullet, and Paul De Hert, editors, Data Protection in a Profiled World, pages 323–

334. Springer Netherlands, Dordrecht, 2010. ISBN 978-90-481-8865-9. doi: 10.1007/

978-90-481-8865-9_20. URL https://doi.org/10.1007/978-90-481-8865-9_20.

Le Métayer, Daniel. Formal methods as a link between software code and legal

rules. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in Bioinformatics), 7041 LNCS:3–18, 2011. ISSN 03029743.

doi: 10.1007/978-3-642-24690-6_2.

Lemma 1 Ltd., . ProofPower. Technical report, Lemma 1 Ltd., 2006.

Leone, Nicola, Gerald Pfeifer, Wolfgang Faber, Thomas Eiter, Georg Gottlob, Simona

Perri, and Francesco Scarcello. The DLV system for knowledge representation and

reasoning. ACM Trans. Comput. Logic, 7(3):499–562, 2006. ISSN 1529-3785. doi:

10.1145/1149114.1149117. URL http://doi.acm.org/10.1145/1149114.1149117.

Leuschel, Michael and Michael Butler. ProB: A Model Checker for B. In Keijiro, Araki,

Stefania Gnesi, and Mandrio Dino, editors, FME 2003: Formal Methods: International

Symposium of Formal Methods Europe, Pisa, Italy, September 8-14, 2003. Proceedings, pages

855–874. Springer Berlin Heidelberg, 2003. ISBN 978-3-540-45236-2. doi: 10.1007/

978-3-540-45236-2_46. URL https://doi.org/10.1007/978-3-540-45236-2_46.

358

https://doi.org/10.1007/978-90-481-8865-9_20
http://doi.acm.org/10.1145/1149114.1149117
https://doi.org/10.1007/978-3-540-45236-2_46

List of References

Lindblad, Fredrik. A Focused Sequent Calculus for Higher-Order Logic. In Demri,

Stéphane, Deepak Kapur, and Christoph Weidenbach, editors, Automated Reason-

ing: 7th International Joint Conference, IJCAR 2014, Held as Part of the Vienna Sum-

mer of Logic, VSL 2014, Vienna, Austria, July 19-22, 2014. Proceedings, pages 61–75.

Springer International Publishing, Cham, 2014. ISBN 978-3-319-08587-6. doi: 10.1007/

978-3-319-08587-6_5. URL http://dx.doi.org/10.1007/978-3-319-08587-6_5.

Lockton Inc., . Anthem Breach Overview. Technical Report February, Lockton Inc.,

2015.

Lucena, Norka B, Grzegorz Lewandowski, and Steve J Chapin. Covert Channels in IPv6,

pages 147–166. Springer Berlin Heidelberg, Berlin, Heidelberg, 2006. ISBN 978-3-540-

34746-0. doi: 10.1007/11767831_10. URL https://doi.org/10.1007/11767831_10.

Lukosch, Stephan and Till Schümmer. Groupware Development Support with Tech-

nology Patterns. Int. J. Hum.-Comput. Stud., 64(7):599–610, jul 2006. ISSN 1071-5819.

doi: 10.1016/j.ijhcs.2006.02.006. URL http://dx.doi.org/10.1016/j.ijhcs.2006.

02.006.

Lunt, T.F. Aggregation and inference: facts and fallacies. In Proceedings. 1989 IEEE

Symposium on Security and Privacy, pages 102–109. IEEE Comput. Soc. Press, 1989.

ISBN 0-8186-1939-2. doi: 10.1109/SECPRI.1989.36284. URL http://ieeexplore.

ieee.org/lpdocs/epic03/wrapper.htm?arnumber=36284.

Mahony, B. and Jin Song Dong Jin Song Dong. Blending Object-Z and Timed CSP:

an introduction to TCOZ. Proceedings of the 20th International Conference on Software

Engineering, 1998. ISSN 0270-5257. doi: 10.1109/ICSE.1998.671106.

Mahony, Brendan, Jim McCarthy, Linh Vu, and Kylie Williams. Z Support in the HiVe

Mathematical Toolkit. Technical report, Defence Science and Technology Organisation,

Edinburgh, South Australia 5111, Australia, 2009.

359

http://dx.doi.org/10.1007/978-3-319-08587-6_5
https://doi.org/10.1007/11767831_10
http://dx.doi.org/10.1016/j.ijhcs.2006.02.006
http://dx.doi.org/10.1016/j.ijhcs.2006.02.006
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=36284
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=36284

List of References

Maiden, N. CREWS validation frames: validating systems requirements. In IEE

Colloquium on Understanding Patterns and Their Application to Systems Engineering

(Digest No. 1998/308), pages 2/1–2/6, apr 1998. doi: 10.1049/ic:19980542.

Malik, Petra and Mark Utting. CZT: A Framework for Z Tools. ZB 2005: Formal

Specification and Development in Z and B, 3455:315–352, 2005. ISSN 03029743. doi:

10.1007/11415787_5. URL http://dx.doi.org/10.1007/11415787-5.

Margheri, Andrea, Rosario Pugliese, and Francesco Tiezzi. On Properties of Policy-

Based Specifications. Electronic Proceedings in Theoretical Computer Science, 188:33–50,

2015. ISSN 2075-2180. doi: 10.4204/EPTCS.188.5. URL http://arxiv.org/abs/1508.

03903.

MarketWatch, Inc. Annual Financials for Home Depot Inc.

http://www.marketwatch.com/investing/stock/hd/financials/balance-sheet,

2014. URL http://www.marketwatch.com/investing/stock/hd/financials/

balance-sheet.

Mayer, Nicolas, André Rifaut, and Eric Dubois. Towards a Risk-Based Security Re-

quirements Engineering Framework. 11th International Workshop on Requirements

Engineering: Foundation for Software Quality (REFSQ 05), pages 83–97, 2005. doi:

10.1.1.109.7452. URL http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.

1.1.109.7452&rep=rep1&type=pdf.

Mayer, T. S. Privacy and Confidentiality Research and the U.S. Census Bureau Recom-

mendations Based on a Review of the Literature. Technical report, U.S. Bureau of the

Census, Washington D.C. 20233, 2002. URL http://www.census.gov/srd/papers/

pdf/rsm2002-01.pdf.

McClelland, R. Confidentiality and security of clinical information in mental health

practice. Advances in psychiatric Treatment, 8(4):291, 2002.

Mccullough, Daryl. Why Care About Composability ? Odyssey, 1988.

360

http://dx.doi.org/10.1007/11415787-5
http://arxiv.org/abs/1508.03903
http://arxiv.org/abs/1508.03903
http://www.marketwatch.com/investing/stock/hd/financials/balance-sheet
http://www.marketwatch.com/investing/stock/hd/financials/balance-sheet
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.109.7452&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.109.7452&rep=rep1&type=pdf
http://www.census.gov/srd/papers/pdf/rsm2002-01.pdf
http://www.census.gov/srd/papers/pdf/rsm2002-01.pdf

List of References

McDermott, John and Chris Fox. Using Abuse Case Models for Security Requirements

Analysis. In Proceedings of the 15th Annual Computer Security Applications Conference,

ACSAC ’99, pages 55—-, Washington, DC, USA, 1999. IEEE Computer Society. ISBN

0-7695-0346-2. URL http://dl.acm.org/citation.cfm?id=784590.784691.

McLean, John. Security Models, 1994.

McMillan, Kenneth L. Verification of Infinite State Systems by Compositional Model

Checking. In Proceedings of the 10th IFIP WG 10.5 Advanced Research Working Conference

on Correct Hardware Design and Verification Methods, CHARME ’99, pages 219–234,

London, UK, UK, 1999. Springer-Verlag. ISBN 3-540-66559-5. URL http://dl.acm.

org/citation.cfm?id=646704.702020.

Melnik, Grigori, Frank Maurer, and Mike Chiasson. Executable Acceptance Tests for

Communicating Business Requirements: Customer Perspective. In Proceedings of

the Conference on AGILE 2006, AGILE ’06, pages 35–46, Washington, DC, USA, 2006.

IEEE Computer Society. ISBN 0-7695-2562-8. doi: 10.1109/AGILE.2006.26. URL

https://doi.org/10.1109/AGILE.2006.26.

Mendeley Ltd., . Mendeley. https://www.mendeley.com, 2016. URL https://www.

mendeley.com.

Meyrowitz, Norman, editor. OOPSLA ’86: Conference Proceedings on Object-oriented

Programming Systems, Languages and Applications, New York, NY, USA, 1986. ACM.

ISBN 0-89791-204-7.

Miyazawa, Alvaro and Ana Cavalcanti. SCJ-Circus: a refinement-oriented formal

notation for Safety-Critical Java. In Derrick, John, Eerke A Boiten, and Steve Reeves,

editors, Proceedings 17th International Workshop on Refinement, Refine@FM 2015, Oslo,

Norway, 22nd June 2015., volume 209 of EPTCS, pages 71–86, 2015. doi: 10.4204/

EPTCS.209.6. URL http://dx.doi.org/10.4204/EPTCS.209.6.

361

http://dl.acm.org/citation.cfm?id=784590.784691
http://dl.acm.org/citation.cfm?id=646704.702020
http://dl.acm.org/citation.cfm?id=646704.702020
https://doi.org/10.1109/AGILE.2006.26
https://www.mendeley.com
https://www.mendeley.com
http://dx.doi.org/10.4204/EPTCS.209.6

List of References

Mlinek, E J and J Pierce. Confidentiality and privacy breaches in a university hospital

emergency department. Academic emergency medicine : official journal of the Society for

Academic Emergency Medicine, 4(12):1142–1146, 1997. ISSN 1069-6563. doi: 10.1111/j.

1553-2712.1997.tb03697.x. URL http://www.ncbi.nlm.nih.gov/pubmed/9408430.

Moore, Helen and Wilfred McSherry. Ethical implications of consent in transla-

tional research. Cancer Nursing Practice, 12(10):22–26, 2013. doi: http://dx.doi.

org/10.7748/cnp2013.12.12.10.22.e1002. URL http://rcnpublishing.com/doi/abs/

10.7748/cnp2013.12.12.10.22.e1002.

Morgan, Carroll. Programming from Specification. Prentice Hall International (UK) Ltd,

1998.

Morgan, Carroll. The Shadow Knows: Refinement and security in sequential programs.

Science of Computer Programming, 74(September 2007):629–653, 2009. ISSN 01676423.

doi: 10.1016/j.scico.2007.09.003.

Morris, Joseph M. A theoretical basis for stepwise refinement and the programming

calculus. Science of Computer Programming, 9(3):287–306, 1987. ISSN 01676423. doi:

10.1016/0167-6423(87)90011-6.

Moura, Leonardo De, Sam Owre, and Natarajan Shankar. The SAL Language Manual.

Technical Report 650, Computer Science Laboratory, SRI International, Menlo Park,

Tech. Rep. CSL-01-01, 2003.

Mouratidis, Haralambos, Paolo Giorgini, and Gordon Manson. Integrating Security

and Systems Engineering: Towards the Modelling of Secure Information Systems.

Proceedings of CAiSE 2003, 15th International Conference on Advanced Information Systems

Engineering, 2681:63–78, 2003.

Mouratidis, Haralambos, Paolo Giorgini, and Gordon Manson. When security meets

software engineering: A case of modelling secure information systems. Information

Systems, 30(8):609–629, 2005. ISSN 03064379. doi: 10.1016/j.is.2004.06.002.

362

http://www.ncbi.nlm.nih.gov/pubmed/9408430
http://rcnpublishing.com/doi/abs/10.7748/cnp2013.12.12.10.22.e1002
http://rcnpublishing.com/doi/abs/10.7748/cnp2013.12.12.10.22.e1002

List of References

Nakagawa, Hiroyuki, Kenji Taguchi, and Shinichi Honiden. Formal Specification Gen-

erator for KAOS: Model Transformation Approach to Generate Formal Specifications

from KAOS Requirements Models. In Proceedings of the Twenty-second IEEE/ACM In-

ternational Conference on Automated Software Engineering, ASE ’07, pages 531–532, New

York, NY, USA, 2007. ACM. ISBN 978-1-59593-882-4. doi: 10.1145/1321631.1321729.

URL http://doi.acm.org/10.1145/1321631.1321729.

Nipkow, Tobias, Lawrence C Paulson, and Markus Wenzel. A Proof Assistant for Higher-

Order Logic. Springer-Verlag Berlin, 2014.

Oehlert, P. Violating assumptions with fuzzing. IEEE Security Privacy, 3(2):58–62, mar

2005. ISSN 1540-7993. doi: 10.1109/MSP.2005.55.

Office for National Statistics, . National Statistics Code of Practice: State-

ment of Principles. Technical report, Office for National Statistics, United

Kingdom, 2002. URL http://calls.ac.uk/wp-content/uploads/2013/06/

protdataaccessconfidentiality_tcm77-179254.pdf.

Office of Parliamentary Counsel, . Privacy Act 1988, 1988.

O’Halloran, Colin. A Calculus of Information Flow. In ESORICS, volume 90, pages

147–159, 1990.

Olan, Michael. Unit Testing: Test Early, Test Often. J. Comput. Sci. Coll., 19(2):319–328, dec

2003. ISSN 1937-4771. URL http://dl.acm.org/citation.cfm?id=948785.948830.

Oliveira, M, Alessandro Cavalcante Gurgel, and CG Castro. CRefine: Support for the

Circus Refinement Calculus. IEEE, 2008.

Oliveira, M V M, A L C Cavalcanti, and J C P Woodcock. Refining Industrial Scale

Systems in lCircus. In East, Ian, Jeremy Martin, Peter Welch, David Duce, and Mark

Green, editors, Communicating Process Architectures, volume 62 of Concurrent Systems

Engineering Series, pages 281–309. IOS Press, sep 2004.

363

http://doi.acm.org/10.1145/1321631.1321729
http://calls.ac.uk/wp-content/uploads/2013/06/protdataaccessconfidentiality_tcm77-179254.pdf
http://calls.ac.uk/wp-content/uploads/2013/06/protdataaccessconfidentiality_tcm77-179254.pdf
http://dl.acm.org/citation.cfm?id=948785.948830

List of References

Oliveira, Marcel. Formal Derivation of State-Rich Reactive Programs using Circus. PhD

thesis, University of York, 2005.

Oliveira, Marcel, Jim Woodcock, and Ana Cavalcanti. Formal development of industrial-

scale systems in Circus. Innovations in Systems and Software Engineering, 1:125–146,

2005. ISSN 16145046. doi: 10.1007/s11334-005-0014-0.

Oliveira, Marcel, Jim Woodcock, and Ana Cavalcanti. A denotational semantics for

Circus. Electronic Notes in Theoretical Computer Science, 187:107–123, 2006. URL

http://www.sciencedirect.com/science/journal/15710661.

Oliveira, Marcel, Ana Cavalcanti, and Jim Woodcock. A UTP semantics for Cir-

cus. Formal Aspects of Computing, 21:3–32,17, 2009. ISSN 09345043. doi: 10.1007/

s00165-007-0052-5.

Onabajo, Adeniyi. Analysis of multilateral software confidentiality requirements. PhD thesis,

University of Victoria, 2009. URL http://hdl.handle.net/1828/1689.

Onabajo, Adeniyi and Jens H. Jahnke. Properties of confidentiality requirements.

Proceedings - IEEE Symposium on Computer-Based Medical Systems, 2006:841–846, 2006a.

ISSN 10637125. doi: 10.1109/CBMS.2006.133.

Onabajo, Adeniyi and Jens H. Jahnke. Modelling and reasoning for confidentiality

requirements in software development. Proceedings of the International Symposium

and Workshop on Engineering of Computer Based Systems, pages 460–467, 2006b. doi:

10.1109/ECBS.2006.50.

Onunkun, Temitope Jos. Confidentiality Properties and the B Method. PhD thesis, Kings

College London, 2012.

Orb, Angelica, Laurel Eisenhauer, and Dianne Wynaden. Ethics in Qualitative Re-

search. Journal of Nursing Scholarship, 33(1):93–96, 2001. ISSN 1547-5069. doi:

10.1111/j.1547-5069.2001.00093.x. URL http://dx.doi.org/10.1111/j.1547-5069.

2001.00093.x.

364

http://www.sciencedirect.com/science/journal/15710661
http://hdl.handle.net/1828/1689
http://dx.doi.org/10.1111/j.1547-5069.2001.00093.x
http://dx.doi.org/10.1111/j.1547-5069.2001.00093.x

List of References

Parr, Terence. The definitive ANTLR 4 reference. Pragmatic Bookshelf, 2013.

Parveen, Nikhat, Md. Rizwan Beg, and M. H. Khan. Model to Quantify Confid-

entiality at Requirement Phase. Proceedings of the 2015 International Conference

on Advanced Research in Computer Science Engineering and Technology (ICARCSET

2015) - ICARCSET ’15, pages 1–4, 2015. doi: 10.1145/2743065.2743117. URL

http://dl.acm.org/citation.cfm?doid=2743065.2743117.

Pearce, Jon. Requirements Modeling. http://www.cs.sjsu.edu/∼pearce/uml/usecases.htm,

2017. URL http://www.cs.sjsu.edu/\simpearce/uml/usecases.htm.

Peine, Holger, Marek Jawurek, and Stefen Mandel. Security goal indicator trees: A

model of software features that supports efficient security inspection. Proceedings of

IEEE International Symposium on High Assurance Systems Engineering, pages 9–18, 2008.

ISSN 15302059. doi: 10.1109/HASE.2008.57.

Pnueli, Amir. The Temporal Logic of Programs. The 18th IEEE Symposium on Foundation

of Computer Science, pages 46–57, 1977. ISSN 0272-5428. doi: 10.1109/SFCS.1977.32.

Ponemon Institute LLC, . 2014 Cost of Data Breach Study : Global Analysis. Technical

Report May, Ponemon Institute LLC, 2014.

Porambage, Pawani, Mika Ylianttila, Corinna Schmitt, Pardeep Kumar, Andrei Gurtov,

and Athanasios V. Vasilakos. The Quest for Privacy in the Internet of Things. IEEE

Cloud Computing, 3(2):36–45, 2016. ISSN 2325-6095. doi: 10.1109/MCC.2016.28. URL

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7478541.

Potter, Ben, David Till, and Jane Sinclair. An Introduction to Formal Specification and

Z. Prentice Hall PTR, Upper Saddle River, NJ, USA, 2nd edition, 1996a. ISBN

0132422077.

Potter, Ben, David Till, and Jane Sinclair. An introduction to formal specification and Z.

Prentice Hall PTR, 1996b.

365

http://dl.acm.org/citation.cfm?doid=2743065.2743117
http://www.cs.sjsu.edu/$\sim $pearce/uml/usecases.htm
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7478541

List of References

Prisaznuk, PaulJ. ARINC Specification 653, Avionics Application Software Standard

Interface. In Avionics, Electrical Engineering Handbook, pages 14–17. CRC Press,

dec 2006. ISBN 978-0-8493-8438-7. doi: doi:10.1201/9780849384394.ch14. URL

http://dx.doi.org/10.1201/9780849384394.ch14.

Purao, Sandeep, Veda C Storey, and Taedong Han. Improving Analysis Pattern Reuse

in Conceptual Design: Augmenting Automated Processes with Supervised Learning.

Info. Sys. Research, 14(3):269–290, sep 2003. ISSN 1526-5536. doi: 10.1287/isre.14.3.269.

16559. URL http://dx.doi.org/10.1287/isre.14.3.269.16559.

Rajan, S, N Shankar, and M K Srivas. An integration of model checking with automated proof

checking, pages 84–97. Springer Berlin Heidelberg, Berlin, Heidelberg, 1995. ISBN

978-3-540-49413-3. doi: 10.1007/3-540-60045-0_42. URL https://doi.org/10.1007/

3-540-60045-0_42.

Ramos, Rodrigo, Augusto Sampaio, and Alexandre Mota. A Semantics for UML-RT

Active Classes via Mapping into Circus. In Steffen, Martin and Gianluigi Zavattaro,

editors, Formal Methods for Open Object-Based Distributed Systems: 7th IFIP WG 6.1

International Conference, FMOODS 2005, Athens, Greece, June 15-17, 2005. Proceedings,

pages 99–114. Springer Berlin Heidelberg, Berlin, Heidelberg, 2005. ISBN 978-3-540-

31556-8. doi: 10.1007/11494881_7. URL http://dx.doi.org/10.1007/11494881_7.

Riazanov, Alexandre and Andrei Voronkov. The Design and Implementation of

VAMPIRE. AI Commun., 15(2,3):91–110, aug 2002. ISSN 0921-7126. URL http:

//dl.acm.org/citation.cfm?id=1218615.1218620.

Ribó, Josep M and Xavier Franch. Supporting Process Reuse in PROMENADE. Barcelona:

LSI-Universitat Politècnica de Catalunya, 2002.

Roscoe, a W. CSP and determinism in security modelling. Security and Privacy, 1995.

Proceedings., 1995 IEEE Symposium on, pages 114–127, 1995. ISSN 10637109. doi:

10.1109/SECPRI.1995.398927.

366

http://dx.doi.org/10.1201/9780849384394.ch14
http://dx.doi.org/10.1287/isre.14.3.269.16559
https://doi.org/10.1007/3-540-60045-0_42
https://doi.org/10.1007/3-540-60045-0_42
http://dx.doi.org/10.1007/11494881_7
http://dl.acm.org/citation.cfm?id=1218615.1218620
http://dl.acm.org/citation.cfm?id=1218615.1218620

List of References

Rotenberg, Marc. Communications privacy: implications for network design. Commu-

nications of the ACM, 36(8):61–68, 1993.

Rubinstein, Ira S. Regulating Privacy By Design. Berkeley Techno-

logy Law Journal, 26(3):1409–1456, 2011. ISSN 10863818. doi: 10.

15779/Z38368N. URL http://ra.ocls.ca/ra/login.aspx?url=http://search.

ebscohost.com/login.aspx?direct=true&db=bth&AN=74237061&site=eds-live.

Rumbaugh, James, Ivar Jacobson, and Grady Booch. The Unified Modeling Language

Reference Manual. Pearson Higher Education, 2004.

Sabelfeld, Andrei and Andrew C Myers. Language-Based Information-Flow Security.

IEEE Journal on Selected Areas in Communications, 21(1):5–19, 2003. doi: 10.1109/JSAC.

2002.806121.

Salter, David and Rhawi Dantas. NetBeans IDE 8 Cookbook. Packt Publishing, 2014. ISBN

1782167765, 9781782167761.

Sampaio, Augusto, Jim Woodcock, and Ana Cavalcanti. Refinement in Circus. FME

2002:Formal Methods-Getting IT Right, 2391:1–15, 2002. doi: 10.1007/3-540-45614-7_26.

URL http://dx.doi.org/10.1007/3-540-45614-7-26.

Sampaio, Augusto, Jim Woodcock, and Ana Cavalcanti. A Refinement Strategy for

Circus. Formal Aspects of Computing, 15:146–181, 2003. ISSN 09345043. doi: 10.1007/

s00165-003-0006-5.

Santen, T. Stepwise Development of Secure Systems. Proc. 25th International Conference

on Computer Safety, Reliability and Security (SAFECOMP 2006). Gdansk, Poland, pages

142–155, 2006. ISSN 16113349. doi: 10.1007/11875567_11.

Schneider, Steve. Concurrent and Real Time Systems: the CSP approach. John Wiley and

Sons, Ltd., 1999.

Schulz, Stephan. E - a Brainiac Theorem Prover. AI Commun., 15(2,3):111–126, aug 2002.

ISSN 0921-7126. URL http://dl.acm.org/citation.cfm?id=1218615.1218621.

367

http://ra.ocls.ca/ra/login.aspx?url=http://search.ebscohost.com/login.aspx?direct=true&db=bth&AN=74237061&site=eds-live
http://ra.ocls.ca/ra/login.aspx?url=http://search.ebscohost.com/login.aspx?direct=true&db=bth&AN=74237061&site=eds-live
http://dx.doi.org/10.1007/3-540-45614-7-26
http://dl.acm.org/citation.cfm?id=1218615.1218621

List of References

Schumacher, Markus. Security Engineering with Patterns. Springer-Verlag Berlin

Heidelberg, 1 edition, 2001. ISBN 3540407316. doi: 10.1007/b11930. URL

http://eprints.lancs.ac.uk/60581/.

Schumacher, Markus, Eduardo Fernandez, Duane Hybertson, Frank Buschmann, and

Peter Sommerland. Security Patterns : Integrating Security and Systems Engineering.

John Wiley and Sons Inc., The Atrium, Southern Gate, Chichester, West Sussex PO19

8SQ, England, 2005. ISBN 9780470858844.

Schwitter, Rolf. Controlled Natural Languages for Knowledge Representation. In

Proceedings of the 23rd International Conference on Computational Linguistics: Posters,

COLING ’10, pages 1113–1121, Stroudsburg, PA, USA, 2010. Association for Compu-

tational Linguistics. URL http://dl.acm.org/citation.cfm?id=1944566.1944694.

Seffah, Ahmed, Mohammad Donyaee, Rex B Kline, and Harkirat K Padda. Usability

measurement and metrics: A consolidated model. Software Quality Journal, 14(2):

159–178, jun 2006. ISSN 1573-1367. doi: 10.1007/s11219-006-7600-8. URL https:

//doi.org/10.1007/s11219-006-7600-8.

Shabtai, Asaf, Yuval Elovici, and Lior Rokach. A survey of data leakage detection and

prevention solutions. Springer-Verlag, New York, 1 edition, 2012. ISBN 978-1-4614-

2052-1. doi: 10.1007/978-1-4614-2053-8. URL http://www.springer.com/gb/book/

9781461420521.

Shankar, N. PVS: Combining specification, proof checking, and model checking, pages 257–

264. Springer Berlin Heidelberg, Berlin, Heidelberg, 1996. ISBN 978-3-540-49567-3.

doi: 10.1007/BFb0031813. URL https://doi.org/10.1007/BFb0031813.

Shaw, Mary and David Garlan. Software Architecture: Perspectives on an Emerging

Discipline. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1996. ISBN 0-13-182957-

2.

368

http://eprints.lancs.ac.uk/60581/
http://dl.acm.org/citation.cfm?id=1944566.1944694
https://doi.org/10.1007/s11219-006-7600-8
https://doi.org/10.1007/s11219-006-7600-8
http://www.springer.com/gb/book/9781461420521
http://www.springer.com/gb/book/9781461420521
https://doi.org/10.1007/BFb0031813

List of References

Sherif, Adnan and He Jifeng. Towards a Time Model for Circus. In George, Chris

and Huaikou Miao, editors, Formal Methods and Software Engineering: 4th International

Conference on Formal Engineering Methods, ICFEM 2002 Shanghai, China, October 21–25,

2002 Proceedings, pages 613–624. Springer Berlin Heidelberg, Berlin, Heidelberg, 2002.

ISBN 978-3-540-36103-9. doi: 10.1007/3-540-36103-0_62. URL http://dx.doi.org/

10.1007/3-540-36103-0_62.

Sindre, Guttorm and Andreas L. Opdahl. Eliciting security requirements with misuse

cases. Requirements Engineering, 10:34–44, 2005. ISSN 09473602. doi: 10.1007/

s00766-004-0194-4.

Siregar, M U, J Derrick, S North, and A J H Simons. Experiences using Z2SAL. In 2014

International Conference on Advanced Computer Science and Information System, pages

225–231, oct 2014. doi: 10.1109/ICACSIS.2014.7065856.

Skon, Jim. Use Case Example Solution, 2016. URL http://cs.mvnu.edu/twiki/bin/

view/Main/SsE12014Prob1Sol.

Sommerville, I. Software Engineering, Global Edition. Pearson Education Limited, 10th

edition, 2016. ISBN 9781292096148. URL https://books.google.co.uk/books?id=

W_LjCwAAQBAJ.

Sommerville, Ian. Software Engineering. Addison-Wesley, Boston, Massachusetts 02116,

9 edition, 2010. ISBN 9780137035151. doi: 10.1111/j.1365-2362.2005.01463.x.

Spivey, J M. Understanding Z: A Specification Language and Its Formal Semantics. Cam-

bridge University Press, New York, NY, USA, 1988. ISBN 0-521-33429-2.

Spivey, Jhon. M. The Z notation: A reference manual. Prentice-Hall, Inc. Upper Saddle

River, NJ, USA, 1989. ISBN 0-13-978529-9. doi: 10.1016/0167-6423(90)90091-Q.

Srivatanakul, Thitima. Security Analysis with Deviational Techniques. Phd thesis, The

University of York, UK, 2005. URL https://pdfs.semanticscholar.org/c1b5/

0c6687e6feae1ca07187dea358eb9a42bdbf.pdf.

369

http://dx.doi.org/10.1007/3-540-36103-0_62
http://dx.doi.org/10.1007/3-540-36103-0_62
http://cs.mvnu.edu/twiki/bin/view/Main/SsE12014Prob1Sol
http://cs.mvnu.edu/twiki/bin/view/Main/SsE12014Prob1Sol
https://books.google.co.uk/books?id=W_LjCwAAQBAJ
https://books.google.co.uk/books?id=W_LjCwAAQBAJ
https://pdfs.semanticscholar.org/c1b5/0c6687e6feae1ca07187dea358eb9a42bdbf.pdf
https://pdfs.semanticscholar.org/c1b5/0c6687e6feae1ca07187dea358eb9a42bdbf.pdf

List of References

Stickel, Mark, Richard Waldinger, Michael Lowry, Thomas Pressburger, and Ian Under-

wood. Deductive composition of astronomical software from subroutine libraries. In

Bundy, Alan, editor, Automated Deduction — CADE-12: 12th International Conference on

Automated Deduction Nancy, France, June 26 – July 1, 1994 Proceedings, pages 341–355.

Springer Berlin Heidelberg, Berlin, Heidelberg, 1994. ISBN 978-3-540-48467-7. doi:

10.1007/3-540-58156-1_24. URL http://dx.doi.org/10.1007/3-540-58156-1_24.

Sutherland, David. A model of Information. In Proceeding of the 9th National Computer

Security Conference, pages 175–183. DTIC Document, Baltimore, 9th edition, 1986.

Swaminathan, Ashwin, Yinian Mao, Guan-Ming Su, Hongmei Gou, Avinash L Varna,

Shan He, Min Wu, and Douglas W Oard. Confidentiality-preserving rank-ordered

search. StorageSS, pages 7–12, 2007.

The Association of Data Protection Officers, . The Biggest Data Breaches of All Time.

https://www.dpo.ie/news/view/1539, 2015. URL https://www.dpo.ie/news/view/

1539.

The European Parliament and The European Council, . General Data Protection

Regulation. Technical report, European Union (EU), 2016. URL http://eur-lex.

europa.eu/eli/reg/2016/679/oj.

The Hillside Group, . Pattern Languages of Programs (PLoP), 2017. URL https:

//conf.researchr.org/series/PLOP.

The Home Depot, . 2014 Annual Report - The Home Depot. Technical report, The

Home Depot, 2014.

The Home Depot, . 2015 Annual Report - The Home Depot. Technical report,

The Home Depot, 2015. URL http://investor.resmed.com/investor-relations/

financials/default.aspx?section=annual.

370

http://dx.doi.org/10.1007/3-540-58156-1_24
https://www.dpo.ie/news/view/1539
https://www.dpo.ie/news/view/1539
http://eur-lex.europa.eu/eli/reg/2016/679/oj
http://eur-lex.europa.eu/eli/reg/2016/679/oj
https://conf.researchr.org/series/PLOP
https://conf.researchr.org/series/PLOP
http://investor.resmed.com/investor-relations/financials/default.aspx?section=annual
http://investor.resmed.com/investor-relations/financials/default.aspx?section=annual

List of References

The New York Times Company, . Ways to Protect Yourself After the JPMorgan Hack-

ing. http://www.nytimes.com/2014/10/04/your-money/jpmorgan-chase-hack-

ways-to-protect-yourself.html, 2014. URL http://www.nytimes.com/2014/10/04/

your-money/jpmorgan-chase-hack-ways-to-protect-yourself.html.

The New York Times Company, . Yahoo Says Hackers Stole Data on 500 Million Users in

2014. http://www.nytimes.com/2016/09/23/technology/yahoo-hackers.html, 2016.

URL http://www.nytimes.com/2016/09/23/technology/yahoo-hackers.html.

Tran, Hanh Nhi, Bernard Coulette, and Bich Thuy Dong. A UML-based Process Meta-

model Integrating a Rigorous Process Patterns Definition. In Proceedings of the 7th Inter-

national Conference on Product-Focused Software Process Improvement, PROFES’06, pages

429–434, Berlin, Heidelberg, 2006. Springer-Verlag. ISBN 3-540-34682-1, 978-3-540-

34682-1. doi: 10.1007/11767718_39. URL http://dx.doi.org/10.1007/11767718_39.

Trouessin, Gilles. Dependability Requirements and Security Architectures for the

Healthcare / Medical Sector 1. In Felici, Massimo and Karama Kanoun, ed-

itors, Computer Safety, Reliability and Security: 18th International Conference, SA-

FECOMP’99 Toulouse, France, September 27–29, 1999 Proceedings, pages 445–458.

Springer Berlin Heidelberg, Berlin, Heidelberg, 1999. ISBN 978-3-540-48249-9. doi:

10.1007/3-540-48249-0_38. URL https://doi.org/10.1007/3-540-48249-0_38.

Tschantz, Michael Carl and Jeannette M. Wing. Extracting conditional confidentiality

policies. Proceedings - 6th IEEE International Conference on Software Engineering and

Formal Methods, SEFM 2008, pages 107–116, 2008. doi: 10.1109/SEFM.2008.46.

Ulutas, Mustafa, Güzin Ulutas, and Vasif V. Nabiyev. Medical image security and

EPR hiding using Shamir’s secret sharing scheme. Journal of Systems and Software,

84(3):341–353, 2011. ISSN 01641212. doi: 10.1016/j.jss.2010.11.928. URL http:

//dx.doi.org/10.1016/j.jss.2010.11.928.

371

http://www.nytimes.com/2014/10/04/your-money/jpmorgan-chase-hack-ways-to-protect-yourself.html
http://www.nytimes.com/2014/10/04/your-money/jpmorgan-chase-hack-ways-to-protect-yourself.html
http://www.nytimes.com/2016/09/23/technology/yahoo-hackers.html
http://dx.doi.org/10.1007/11767718_39
https://doi.org/10.1007/3-540-48249-0_38
http://dx.doi.org/10.1016/j.jss.2010.11.928
http://dx.doi.org/10.1016/j.jss.2010.11.928

List of References

U.S. National Institute of Standards and Technology, . Guidelines for Smart Grid

Cybersecurity NISTIR 7628 Revision 1. U.S. Department of Commerce NISTIR, 1

(September):668, 2014. doi: 10.6028/NIST.IR.7628r1.

Van Lamsweerde, Axel, Anne Dardenne, Bruno Delcourt, Françoise Dubisy, and Others.

The KAOS project: Knowledge acquisition in automated specification of software. In

Proceedings of the AAAI Spring Symposium Series, 1991.

Varghese, Praveen Thomas Methrayil. Parity and Generalised Büchi Automata Determinisa-

tion and Complementation. PhD thesis, University of Liverpool, 2014.

Verizon, . 2015 Data Breach Investigations Report. Information Security, pages 58,57,

2015.

Verizon Enterprise Solutions, . 2014 Data Breach Investigations Report. Technical

Report 1, Verizon Enterprise Solutions, 2014. URL www.verizonenterprise.com/

resources/reports/rp_Verizon-DBIR-2014_en_xg.pdf.

Verma, Ankit. Mechanising Programs in Isabelle/HOL. Technical report, University of

York, 2011.

Viswanathan, Kapali, Colin Boyd, and Ed Dawson. A Three Phased Schema for sealed

bid auction system design. Lecture Notes in Computer Science (including subseries Lecture

Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 1841:412–426, 2000.

ISSN 16113349. doi: 10.1007/10718964_34.

Wang, Da W., Churn Jung Liau, and Tsan Sheng Hsu. Granulation as a privacy

protection mechanism. Lecture Notes in Computer Science (including subseries Lecture

Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 4400 LNCS(PART 2):

256–273, 2007. ISSN 03029743. URL http://www.scopus.com/inward/record.url?

eid=2-s2.0-38149084088&partnerID=tZOtx3y1.

Wang, Wenli, Zoltán Hidvégi, Andrew D. Bailey, and Andrew B. Whinston. E-process

design and assurance using model checking. Computer, 33:48–53, 2000. ISSN 00189162.

doi: 10.1109/2.876292.

372

www.verizonenterprise.com/resources/reports/rp_Verizon-DBIR-2014_en_xg.pdf
www.verizonenterprise.com/resources/reports/rp_Verizon-DBIR-2014_en_xg.pdf
http://www.scopus.com/inward/record.url?eid=2-s2.0-38149084088&partnerID=tZOtx3y1
http://www.scopus.com/inward/record.url?eid=2-s2.0-38149084088&partnerID=tZOtx3y1

List of References

Wegner, Peter. The Ada Language and Environment. SIGSOFT Softw. Eng. Notes,

5(2):8–14, apr 1980. ISSN 0163-5948. doi: 10.1145/1010792.1010793. URL http:

//doi.acm.org/10.1145/1010792.1010793.

Wei, K, J Woodcock, and A Burns. A Timed Model of Circus with the Reactive Design

Miracle. In 2010 8th IEEE International Conference on Software Engineering and Formal

Methods, pages 315–319, sep 2010. doi: 10.1109/SEFM.2010.40.

Wei, Kun. New Circus Time. Technical Report April, University of York, York,

UK, 2013. URL https://www.cs.york.ac.uk/circus/publications/techreports/

reports/CircusTime.pdf.

Wei, Kun, Jim Woodcock, and Alan Burns. Timed circus: Timed CSP with the miracle.

Proceedings - 2011 16th IEEE International Conference on Engineering of Complex Computer

Systems, ICECCS 2011, pages 55–64, 2011. doi: 10.1109/ICECCS.2011.13.

Weidenbach, Christoph, Dilyana Dimova, Arnaud Fietzke, Rohit Kumar, Martin Suda,

and Patrick Wischnewski. SPASS Version 3.5. In Schmidt, Renate A, editor, Automated

Deduction – CADE-22: 22nd International Conference on Automated Deduction, Montreal,

Canada, August 2-7, 2009. Proceedings, pages 140–145. Springer Berlin Heidelberg,

Berlin, Heidelberg, 2009. ISBN 978-3-642-02959-2. doi: 10.1007/978-3-642-02959-2_10.

URL http://dx.doi.org/10.1007/978-3-642-02959-2_10.

Weiss, M. and H. Mouratidis. Selecting security patterns that fulfill security require-

ments. Proceedings of the 16th IEEE International Requirements Engineering Conference,

RE’08, pages 169–172, 2008. ISSN 1090-705X. doi: 10.1109/RE.2008.32.

Wenzel, Makarius. The Isabelle / Isar Reference Manual. Technical report, Technische

Universität München, Garching, Germany, 2013. URL http://isabelle.in.tum.de/

doc/isar-ref.pdf.

White, Stephen a. Introduction to BPMN. BPTrends, pages 1–11, 2004. ISSN 09636897.

doi: 10.3727/000000006783982421.

373

http://doi.acm.org/10.1145/1010792.1010793
http://doi.acm.org/10.1145/1010792.1010793
https://www.cs.york.ac.uk/circus/publications/techreports/reports/Circus Time.pdf
https://www.cs.york.ac.uk/circus/publications/techreports/reports/Circus Time.pdf
http://dx.doi.org/10.1007/978-3-642-02959-2_10
http://isabelle.in.tum.de/doc/isar-ref.pdf
http://isabelle.in.tum.de/doc/isar-ref.pdf

List of References

Williams, Mary Anne. Privacy management, the law and business strategies: A case for

privacy driven design. Proceedings - 12th IEEE International Conference on Computational

Science and Engineering, CSE 2009, 3:60–67, 2009. doi: 10.1109/CSE.2009.478.

Wing, J M. A specifier’s introduction to formal methods. Computer, 23(9):8–22, sep 1990.

ISSN 0018-9162. doi: 10.1109/2.58215.

Wirth, Niklaus. Program development by stepwise refinement. Communications of the

ACM, 14(4):221–227, 1971. ISSN 00010782. doi: 10.1145/362575.362577.

Woodcock, Jim and Ana Cavalcanti. A Concurrent Language for Refinement. In

Proceedings of the 5th Irish Conference on Formal Methods, pages 93–115. BCS Learning

& Development Ltd., Swindon, UK, 2001a. URL http://dl.acm.org/citation.

cfm?id=2227391.2227398.

Woodcock, Jim and Ana Cavalcanti. The Steam Boiler in a Unified Theory of Z

and CSP. In Proceedings of the Eighth Asia-Pacific on Software Engineering Conference,

APSEC ’01, pages 291—-, Washington, DC, USA, 2001b. IEEE Computer Society. URL

http://dl.acm.org/citation.cfm?id=872020.872420.

Woodcock, Jim and Ana Cavalcanti. The Semantics of Circus. In Bert, Didier, Jonathan P.

Bowen, Martin C. Henson, and Ken Robinson, editors, Zb 2002: Formal Specifica-

tion and Development in Z and B: 2nd International Conference of B and Z Users Gren-

oble, pages 184–203, Berlin, 2002. Springer Berlin Heidelberg. ISBN 3-540-43166-7.

doi: 10.1007/3-540-45648-1_10. URL http://link.springer.com/chapter/10.1007/

3-540-45648-1_10.

Woodcock, Jim and Jim Davies. Using Z. Specification, Refinement and Proof. Prentice-Hall,

Inc., 1996. ISBN 0139484728. URL www.usingz.com/text/zedbook.pdf.

Woodcock, Jim and Alvaro Miyazawa. CML Definition 0. Technical report, COMPASS,

2012. URL http://www.compass-research.eu/Project/Deliverables/D231.pdf.

374

http://dl.acm.org/citation.cfm?id=2227391.2227398
http://dl.acm.org/citation.cfm?id=2227391.2227398
http://dl.acm.org/citation.cfm?id=872020.872420
http://link.springer.com/chapter/10.1007/3-540-45648-1_10
http://link.springer.com/chapter/10.1007/3-540-45648-1_10
www.usingz.com/text/zedbook.pdf
http://www.compass-research.eu/Project/Deliverables/D231.pdf

List of References

Woodcock, Jim, Simon Foster, and Frank Zeyda. Isabelle/UTP: A Mechanised

Theory Engineering Framework. Springer, pages 21–41,31, 2015. doi: 10.1007/

978-3-319-14806-9_2.

Ye, Kangfeng and Jim Woodcock. Model checking of state-rich formalism Circus by

linking to CSP||B. International Journal on Software Tools for Technology Transfer, 19

(1):73–96, feb 2017. ISSN 1433-2787. doi: 10.1007/s10009-015-0402-1. URL https:

//doi.org/10.1007/s10009-015-0402-1.

Yu, Eric and Lin Liu. Modelling Trust for System Design Using the i * Strategic

Actors Framework. Trust in Cyber-Societies, pages 175–194, 2001. ISSN 03029743. doi:

10.1007/3-540-45547-7_11.

Yu, Yijun, Virginia N L Franqueira, Thein Than Tun, Roel J. Wieringa, and Bashar

Nuseibeh. Automated analysis of security requirements through risk-based argu-

mentation. Journal of Systems and Software, 106:102–116, 2015. ISSN 01641212. doi:

10.1016/j.jss.2015.04.065. URL http://dx.doi.org/10.1016/j.jss.2015.04.065.

Z Standards Panel, . Formal Specification - Z Notation - Syntax , Type and Semantics.

Technical report, International Organization for Standardization and International

Electrotechnical Commission, 2000. URL http://www.open-std.org/jtc1/sc22/

open/n3187.pdf.

Zakinthinos, Aris and E.S. Lee. A general theory of security properties. Proceedings.

1997 IEEE Symposium on Security and Privacy (Cat. No.97CB36097), pages 94–102, 1997.

ISSN 1081-6011. doi: 10.1109/SECPRI.1997.601322.

Zeyda, Frank, Julian Ouy, Simon David Foster, and Ana Lucia Caneca Cavalcanti. Form-

alised Cosimulation Models. 2017. URL http://eprints.whiterose.ac.uk/121804/.

375

https://doi.org/10.1007/s10009-015-0402-1
https://doi.org/10.1007/s10009-015-0402-1
http://dx.doi.org/10.1016/j.jss.2015.04.065
http://www.open-std.org/jtc1/sc22/open/n3187.pdf
http://www.open-std.org/jtc1/sc22/open/n3187.pdf
http://eprints.whiterose.ac.uk/121804/

	Abstract
	List of Tables
	List of Figures
	Acknowledgements
	Declaration
	Introduction
	Confidentiality
	Confidentiality engineering
	Data leakage through communication channels
	Motivation
	Mandatory regulation demanding secure-by-design practices
	Cost of data leakages

	Hypothesis
	The challenges
	Testing the hypothesis

	Contributions
	Thesis structure

	Background
	Introduction
	Analysing systems with a confidentiality requirement
	Abuse case
	PROMELA and the SPIN model checker
	Integrating process design and SecureUML
	Secure Tropos - Secure requirements engineering with reasoning
	ConAn tool - Automated confidentiality analysis
	InDico - Automated analysis of business processes for confidentiality
	CONCHITA framework
	TEES confidentiality model
	Confidentiality Properties and the B Method

	Banks's confidentiality framework (BCF)
	The conceptual basis for BCF
	Advantages and limitations of BCF

	Unifying Theories of Programming (UTP)
	UTP theories
	Program correctness
	Refinement
	BCF in UTP
	Possible twin state space

	Circus: a formal specification language
	Advantages of Circus
	Uses of Circus
	Challenges of using the Circus notation

	BCF using Circus
	User inference through observation
	Formalising a confidentiality requirement

	Analysing confidentiality requirements using BCF in Circus
	Back propagation laws

	Limitations of BCF in Circus
	Summary

	Mechanisation of BCF
	Introduction
	Practicality
	Rationale for a custom tool for mechanising BCF in Circus
	The proposed mechanisation of BCF in Circus
	Design decisions
	Requirements of the major components in the architecture
	The mechanised analysis process
	Interpreting the result of a mechanised analysis

	Fixing the input prefix law
	Suitability
	Types of data leakage supported by BCF in Circus
	Analysing data leakage through indirect communication using BCF in Circus
	Confidentiality violation through recursion

	Efficiency
	Comparison of efficiency between the manual and the mechanized analysis

	Summary

	An approach for evaluating the mechanisation of BCF
	Introduction
	The advantage of mechanisation over a manual approach
	Value of the mechanisation
	Benchmark for evaluation
	Limitations of the catalogue approach for evaluation
	Evaluation plan
	Summary

	A systematic literature search for case study material
	Introduction
	Systematic literature search for case study material
	Research question
	Identification of indexing services
	Inclusion criteria
	Search keywords
	Literature selection

	Patterns of confidentiality requirements
	Deriving patterns of confidentiality requirements

	Subtleties in formalizing generic patterns of confidentiality requirements using BCF in Circus
	Scenarios where different subtleties with inequality between two sets may satisfy a confidentiality requirement

	Identifying and formalizing generic patterns of confidentiality
	Generalized patterns of confidentiality requirements
	Confidentiality requirement patterns in literature
	Patterns in software engineering
	Limitations of the study
	Summary

	Evaluation of mechanisation
	Introducing
	Mechanised analysis of confidentiality patterns
	Mechanised analysis of a system having a confidentiality property that reflects pattern CP1
	System requirement specification - Bank information system
	Formal specification - Bank information system
	Formalising the confidentiality requirement
	Structure of the Circus specifications used in the mechanised analysis
	Using the mechanised tool to analyse the system
	Strengthening a weak specification
	An example of strengthening a weak specification
	Strengthening the specification
	Results of the analysis
	Negative testing
	Analysing other confidentiality patterns
	Analysing the confidentiality pattern CP2
	Analysing the confidentiality pattern CP3
	Analysing the confidentiality pattern CP4
	Analysing the confidentiality pattern CP5
	A comparison of results of the mechanised analysis

	Summary

	Evaluation
	Introduction
	Factors that could have influenced the quality of the analysis
	Benefits derived from the mechanisation
	Contributions and Limitations
	Mechanization vs. manual back propagation
	A critical analysis of the adopted mechanisation approach
	Critical factors that would have altered the direction of this research
	Further work

	Appendix
	Modelling a system using the Circus notation
	Defining the data types and state variables
	Establishing the communication channels
	Defining the system operations
	Defining the overall behaviour of the system
	Recursion

	A comparison of the tools that provide any form of support for specifying systems in the Circus notation
	Decisions regarding the development of a custom tool for BCF application
	Translating CFAT notation to HOL
	Description and formal specification of systems
	Case study - Phone book system
	Case study - Secure electronic examination system
	Case study - ePurse system

	Abbreviations
	List of References

