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Abstract 

ANO1 (TMEM16A) is a Ca2+ activated Cl- channel (CaCC) expressed in peripheral 

somatosensory neurons responding to painful (noxious) stimuli. Previously, our lab 

has been able to demonstrate specific coupling of ANO1 to inositol 1,4,5-

trisphosphate receptor (IP3R)-mediated Ca2+ release from the endoplasmic reticulum 

(ER) via G-protein coupled receptor (GPCR) activation. This phenomenon 

underscores excitatory and noxious effects of some mediators of inflammatory pain, 

such as pro-algesic and vasoactive neuropeptide bradykinin. 

To further investigate mechanisms of ANO1 activation in somatosensory neurons, I 

developed a dual imaging approach, which involved transfecting dorsal root ganglion 

(DRG) neurons with a halide sensitive EYFP mutant (H148Q/I152L) and 

simultaneous Ca2+ imaging to monitor CaCC activity. This methodology was 

successfully used to demonstrate robust coupling of CaCC activity to IP3R activation 

produced by bradykinin. Blockade of ANO1 using a selective inhibitor (T16A-inhA01) 

abolished CaCC activity induced by bradykinin application. In contrast to the ER-

induced Ca2+ release, Ca2+ influx produced by depolarisation-induced activation of 

voltage gated Ca2+ channels (VGCCs) was relatively ineffective in activating ANO1, 

which is in good agreement with previous studies.  

TRPV1 activation by capsaicin was able to induce robust CaCC activity. Given the 

ability of TRPV1 to activate PLC isoforms and produce IP3, I further tested the 

mechanism by which ANO1 is activated by TRPV1. Depletion of the ER Ca2+ stores 

severely reduced both, the capsaicin-induced Ca2+ signals and the concurrent CaCC 

activation. Intriguingly, under extracellular Ca2+ free conditions capsaicin was still 

able to induce [Ca2+]i elevation, further illustrating the ability of TRPV1 to induce 

intracellular Ca2+ release. Finally, monitoring of ER specific-Ca2+ dynamics 

concurrently with CaCC activity unambiguously confirmed the ability of TRPV1 to 

produce ER-Ca2+ mobilisation. Importantly, IP3R blockade with xestospongin C 

reduced CaCC activity after TRPV1 activation. Collectively, these experiments 

suggest that a significant fraction of Ca2+ required for activation of ANO1 

downstream of TRPV1 is indeed delivered through IP3R activation.  

Using ‘in-situ proteomics’ and super-resolution microscopy I investigated multi-

protein complexes in ER-plasma membrane (ER-PM) junctions of DRG neurons 

involving ANO1, TRPV1 and IP3R1. I found using proximity ligation assay that all 3 
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proteins were within 40nm of each other; however there was a greater number of 

ANO1 and TRPV1 complexes compared to TRPV1/ANO1 and TRPV1/IP3R1 

complexes. Two-colour stochastic optical reconstruction microscopy (STORM) was 

able to confirm these findings and demonstrate that there is indeed a greater 

percentage of complexes involving ANO1 and TRPV1. Preliminary triple-colour 

STORM suggested the presence of ANO1, TRPV1 and IP3R1-containing protein 

complexes.  

Finally, I used total internal reflection microscopy (TIRF) to monitor the dynamics of 

the ER-PM junctions following the activation of bradykinin receptors or TRPV1. 

Application of bradykinin and capsaicin elicited increased intensity proximity of the 

ER to PM (as evaluated by the TIRF signal of fluorescently-labelled ER), which is 

suggestive of the ER moving to the PM by internal store mobilisation and highlighting 

the importance of ER-PM junctions.  

In sum, the experiments described in this thesis have discovered and characterised 

a novel mode of ANO1 activation in pain-sensing neurons: TRPV1-mediated ER 

Ca2+ release in ER-PM junctional signalling complex. These findings describe a 

hitherto unknown signalling mechanism potentially contributing to inflammatory pain. 

 

 

  



vii 
 

Contents 

Acknowledgements ............................................................................................................................. iv 

Abstract .................................................................................................................................................. v 

Contents ............................................................................................................................................... vii 

Publications ........................................................................................................................................... x 

List of Figures ...................................................................................................................................... xi 

List of Tables ...................................................................................................................................... xiii 

Abbreviations ..................................................................................................................................... xiii 

Chapter 1: Introduction ........................................................................................................................ 1 

1.1 What is pain? ................................................................................................................................ 1 

1.1.1 Nociceptors ............................................................................................................................ 1 

1.1.2 Pain transmission- from the periphery to the brain ............................................................... 3 

1.1.3 Inflammatory pain- sensitisation of nociceptors .................................................................... 5 

1.1.4 Pharmacology of pain ............................................................................................................ 7 

1.2 Ion channels involved in pain ...................................................................................................... 10 

1.2.1 Sensory channels ................................................................................................................ 10 

1.3 TRPV1 ......................................................................................................................................... 13 

1.3.1 Structure of TRPV1 ............................................................................................................. 15 

1.3.2 Sensitisation ........................................................................................................................ 17 

1.3.4 TRPV1 in chronic pain ......................................................................................................... 22 

1.4 Voltage-gated channels .............................................................................................................. 24 

1.4.1 Voltage-gated sodium channels .......................................................................................... 24 

1.4.2 Voltage-gated calcium channels ......................................................................................... 26 

1.4.3 Voltage-gated potassium channels ..................................................................................... 29 

1.5 Chloride channels in pain ............................................................................................................ 31 

1.5.1 Inhibitory or excitatory effects of Cl- channel activation ...................................................... 32 

1.5.2 CLC ..................................................................................................................................... 33 

1.5.3 GABA receptors .................................................................................................................. 36 

1.5.4 Glycine receptors ................................................................................................................ 37 

1.5.5 CFTR ................................................................................................................................... 38 

1.5.6 Bestrophins .......................................................................................................................... 39 

1.6 Ca2+ activated Cl- channels ......................................................................................................... 42 

1.7 Discovery of ANO1 ...................................................................................................................... 44 

1.7.1 Heterologously expressed ANO1 reproduces properties of a classical CaCC ................... 44 

1.7.2 Structure of ANO1 ............................................................................................................... 47 

1.7.3 Mechanisms of ANO1 activation ......................................................................................... 48 

1.8 Anoctamin family ......................................................................................................................... 53 



viii 
 

1.8.1 ANO2 ................................................................................................................................... 53 

1.9 Expression and functions of ANO1 ............................................................................................. 56 

1.9.1 Airways ..................................................................................................................................... 56 

1.9.2 Vasculature .......................................................................................................................... 57 

1.9.3 Gastrointestinal tract ........................................................................................................... 57 

1.9.4 Kidney .................................................................................................................................. 58 

1.9.5 ANO1 in nociception ............................................................................................................ 58 

1.10 Local Ca2+ Microdomains .......................................................................................................... 60 

1.10.1 SOCE ................................................................................................................................ 61 

1.10.2 Regulation of AC ............................................................................................................... 63 

1.10.3 Excitation-contraction coupling.......................................................................................... 63 

1.10.4 Coupling of ANO1 to different Ca2+ sources ...................................................................... 64 

1.11 Aims of this study ...................................................................................................................... 65 

Chapter 2: Materials and Methods .................................................................................................... 66 

2.1 DRG culture and transfection ...................................................................................................... 66 

2.2 Triple-wavelength Imaging .......................................................................................................... 67 

2.2.1 Imaging analysis .................................................................................................................. 68 

2.2.2 Standard Ca2+ imaging ........................................................................................................ 69 

2.2.3 Four-wavelength imaging .................................................................................................... 69 

2.2.4 Statistical analysis ............................................................................................................... 69 

2.3 Immunocytochemistry ................................................................................................................. 70 

2.4 Proximity Ligation Assay ............................................................................................................. 71 

2.5 STORM ....................................................................................................................................... 74 

2.6 ER TIRF ...................................................................................................................................... 76 

2.6.1 DRG TIRF ............................................................................................................................ 78 

2.6.2 HEK293 cell TIRF ................................................................................................................ 78 

2.6.3 Analysis of TIRF data .......................................................................................................... 78 

Chapter 3: Optimisation of the EYFP (H148Q/I152L) mutant fluorescence quenching 

methodology ........................................................................................................................................ 79 

3.1 Introduction ................................................................................................................................. 79 

3.1.1 Green Fluorescent Protein .................................................................................................. 79 

3.1.2 Structure .............................................................................................................................. 80 

3.1.3 Variants of GFP ................................................................................................................... 80 

3.1.4 Fluorescent proteins as Cl- channel activity sensors .......................................................... 82 

3.1.5 Protocol development .......................................................................................................... 83 

    3.2 Results ........................................................................................................................................ 87 

4.3 Discussion ................................................................................................................................... 92 



ix 
 

Chapter 4: Simultaneous EYFP (H148Q/I152L) and Ca2+ imaging to monitor activation of CaCC 

in DRG neurons ................................................................................................................................... 94 

4.1 Introduction ................................................................................................................................. 94 

4.1.1 Ca2+ release from the ER .................................................................................................... 94 

4.1.2 ANO1 coupling to IP3R in DRG neurons ............................................................................. 95 

4.2 Results ........................................................................................................................................ 96 

4.3 Discussion ................................................................................................................................. 109 

4.3.1 Halide sensor and fura-2 imaging provide an effective means to study CaCC activity .... 109 

4.3.2 CaCC coupling to IP3R in DRG neurons using dual imaging approach ............................ 110 

4.3.3 Why does ANO1 display preference over the Ca2+ source for activation? ....................... 111 

4.3.4 Ca2+ independent quenching in DRG neurons .................................................................. 112 

Chapter 5: Studying TRPV1 activation of CaCC in DRG neurons using dual imaging.............. 115 

5.1 Introduction ............................................................................................................................... 115 

5.1.1 P2X7 in oocytes ................................................................................................................ 115 

5.1.2 TRPV6 in epididymal cells ................................................................................................. 115 

5.1.3 TRPC6 in smooth muscle .................................................................................................. 116 

5.1.4 TRPV4 in choroid plexus epithelial cells ........................................................................... 116 

5.1.5 TRPV1 in DRG .................................................................................................................. 117 

5.1.6 Functional coupling between ANO1 and TRPV1 .............................................................. 117 

5.2 Results ...................................................................................................................................... 120 

5.3 Discussion ................................................................................................................................. 132 

5.3.1 TRPV1 is able to activate CaCC in DRG neurons ............................................................ 132 

5.3.2 TRPV1 engages the ER in order to activate CaCC .......................................................... 132 

5.3.3 ANO1 activation via TRPV1 is mediated by IP3R ............................................................. 134 

Chapter 6: Investigating arrangements of ANO1, TRPV1 and IP3R1 in DRG neurons using 

biochemical and super-resolution imaging approaches .............................................................. 136 

6.1 Introduction ............................................................................................................................... 136 

6.1.1 TRPV1-TRPA1 .................................................................................................................. 136 

6.1.2 ANO1-ERM ........................................................................................................................ 137 

6.1.3 ANO1-EGFR ...................................................................................................................... 138 

6.1.4 Orai1-STIM1-TRPC1-Cav1.2 ............................................................................................. 139 

6.1.5 Studying protein-protein interactions ................................................................................. 141 

6.1.6 Use of STORM in localisation of proteins ......................................................................... 143 

6.2 Results ...................................................................................................................................... 145 

6.3 Discussion ................................................................................................................................. 163 

6.3.1 PLA and STORM demonstrate similar results for ANO1, TRPV1 and IP3R1 ................... 163 

6.3.2 Benefits provided by STORM over PLA ............................................................................ 164 

Chapter 7: ER movement to the PM upon ER activation monitored using TIRF ........................ 166 



x 
 

7.1 Introduction ............................................................................................................................... 166 

7.1.1 Junctophilin ........................................................................................................................ 166 

7.1.2 Ist2 ..................................................................................................................................... 167 

7.1.3 Dynamic ER activity .......................................................................................................... 167 

7.2 Results ...................................................................................................................................... 170 

7.3 Discussion ................................................................................................................................. 187 

Chapter 8: General discussion ........................................................................................................ 189 

8.1 ANO1-IP3R microdomains are essential for ANO1 activation .................................................. 189 

8.2 TRPV1 also activates ANO1 through ER Ca2+ mobilisation ..................................................... 191 

8.3 ANO1 in physiological pain ....................................................................................................... 193 

8.4 Chronic pain involving ANO1: is there basis for this to occur? ................................................. 194 

8.5 Future research ......................................................................................................................... 196 

References……………………………………………………………………………………………………199 

  

Publications 

Papers 

Jin X, Shah S, Du X, Zhang H, Gamper N. (2014) Activation of Ca2+ -activated Cl- 

channel ANO1 by localized Ca2+ signals. The Journal of physiology. 

Jin X, Shah S, Liu Y, Zhang H, Lees M, Fu Z, Lippiat JD, Beech DJ, Sivaprasadarao 

A, Baldwin SA, Zhang H, Gamper N. (2013) Activation of the Cl- channel ANO1 by 

localized calcium signals in nociceptive sensory neurons requires coupling 

with the IP3 receptor. Science Signaling.  

Posters 

Shah, S, Carver, C, Shapiro, M and Gamper, N. (2017). Probing the Composition 

of TMEM16A-Containing Signaling Complexes in Sensory Neurons. Biophysical 

Society Annual Meeting, New Orleans. 

Shah, S and Gamper, N. (2016). Functional Coupling between TRPV1 and ANO1 

in Sensory Neurons Requires Ca2+-Release from the Endoplasmic Reticulum. 

Biophysical Society Annual Meeting, Los Angeles. 

Shah S and Gamper, N. (2015). Functional Coupling between ANO1 and TRPV1 

Channels in Sensory Neurons. Biophysical Society Annual Meeting, Baltimore. 

 

This thesis builds on the findings of the publications mentioned above. Posters 

presented were produced from data generated during this study. STORM data was 

produced at the University of Texas Health Science Center at San Antonio, where I 

spent 6 weeks to perform experiments with Professor Mark Shapiro and Dr Chase 

Carver. 

  



xi 
 

List of Figures 

Figure 1.1: Peripheral and central pain pathways. ..................................................... 4 

Figure 1.2: Inflammatory response to tissue damage ................................................ 6 

Figure 1.3: Hyperalgesia and Allodynia. ..................................................................... 8 

Figure 1.4: TRPV1 Structure. ................................................................................... 16 

Figure 1.5: Sensitisation of TRPV1 by PKA and PKC. ............................................. 20 

Figure 1.6: CryoEM structure of Bovine CLC-K. ....................................................... 35 

Figure 1.7: Mechanism of CFTR opening. ................................................................ 40 

Figure 1.8: Electrophysiological properties of ANO1 in HEK293 cells transfected with 

ANO1. ...................................................................................................................... 46 

Figure 1.9: Originally proposed topology of ANO1. .................................................. 49 

Figure 1.10: Structures of nhTMEM16 and mANO1. ................................................ 50 

Figure 1.11: High Ca2+ in a microdomain close to the mouth of a Ca2+ channel. ..... 62 

Figure 2.1: Schematic illustration of the PLA principle. ............................................ 73 

Figure 2.2: Schematic illustration of STORM principles. .......................................... 75 

Figure 2.3: Principle of TIRF. ................................................................................... 77 

Figure 3.1: Structure of GFP. ................................................................................... 81 

Figure 3.2: Schematic outlining the principle of I- imaging experiments. .................. 84 

Figure 3.3: Protocols used for recording Cl- channel activity using mutant EYFP 

(H148Q/I152L). ........................................................................................................ 86 

Figure 3.4: Optimisation of EYFP (H148Q/I152L) fluorescence quenching technique.

 ................................................................................................................................. 88 

Figure 3.5: Effects of standard extracellular bath solution on EYFP (H148Q/I152L) 

quenching. ................................................................................................................ 90 

Figure 3.6: Goldman-Hodgkin-Katz voltage equation used to calculate the 

equilibrium potential for Cl- channels. ....................................................................... 91 

Figure 4.1: Bradykinin application induces fura-2 measured Ca2+ increase and 

concurrent EYFP (H148Q/I152L) mutant fluorescence quenching upon application of 

bradykinin (250nM) to small DRG neurons. ............................................................. 98 

Figure 4.2: T16A-inhA01 abolishes EYFP (H148Q/I152L) mutant fluorescence 

quenching when bradykinin is applied but still evokes a Ca2+ rise in small-diameter 

DRG neurons. ........................................................................................................ 100 

Figure 4.3: VGCC activation (50mM KCl application) produces 2 different responses 

in small-diameter DRG neurons ............................................................................. 103 



xii 
 

Figure 4.4: Removing extracellular Ca2+ and activating VGCCs still induces EYFP 

(H148Q/I152L) quenching. ..................................................................................... 105 

Figure 4.5: Bradykinin application induces fura-2 measured Ca2+ increase and 

concurrent EYFP (H148Q/I152L) mutant fluorescence quenching upon application of 

bradykinin (250nM) in small DRG neurons. ............................................................ 108 

Figure 4.6: Activation of ANO1 in DRG. ................................................................. 113 

Figure 5.1: Capsaicin application induces fura-2 measured Ca2+ increase and 

concurrent EYFP (H148Q/I152L) mutant fluorescence quenching upon application of 

capsaicin (1µM) to small DRG neurons. ................................................................. 122 

Figure 5.2: Comparison of Ca2+ signals and EYFP quenching between different 

agonist/conditions applications in DRG neurons. ................................................... 123 

Figure 5.3: Effects of thapsigargin (1μM) pretreatment on DRG neurons and 

capsaicin (1μM) application. ................................................................................... 125 

Figure 5.4: Ca2+ imaging in cells loaded with fura-2 in response capsaicin (1μM) in 

various conditions. ................................................................................................. 126 

Figure 5.5: Triple imaging in CHO cells transfected with ANO1, TRPV1, EYFP 

(H148Q/I152L), Red-CEPIA and loaded with fura-2. .............................................. 130 

Figure 5.6: Comparison between capsaicin application (1µM) in control and 

xestospongin C pretreatment (1µM) triple imaging using CHO cells transfected with 

ANO1, TRPV1, EYFP (H148Q/I152L), Red-CEPIA and loaded with fura-2. .......... 131 

Figure 6.1: Orai1-TPRC1-STIM1-Cav1.2 macromolecular complexes in VSMCs. . 140 

Figure 6.2: Use of STORM in the localisation of proteins. ...................................... 142 

Figure 6.3: Immunostaining of DRG neurons with ANO1 and TRPV1 antibodies in 

small-diameter DRG neurons. ................................................................................ 146 

Figure 6.4: Immunostaining of DRG neurons with ANO1 and IP3R1 antibodies in 

small-diameter DRG neurons. ................................................................................ 147 

Figure 6.5: Co-localisation of MOR and TRPV1 in small-diameter DRG neurons. . 149 

Figure 6.6: Positive PLA control. ANO1-ANO1 PLA. .............................................. 150 

Figure 6.7: PLA between ANO1, TRPV1 and IP3R1. ............................................. 152 

Figure 6.8: Multi-protein complexes in DRG neurons observed by STORM. ......... 154 

Figure 6.9: Investigating the presence of multi-protein complexes formed between 

ANO1, TRPV1 and IP3R1 in DRG neurons. ........................................................... 159 

Figure 6.10: Three-color STORM in DRG neurons looking at ANO1, TRPV1 and 

IP3R1. ..................................................................................................................... 162 

Figure 7.1: E-Syts1 in forming ER-PM junctions. ................................................... 169 

Figure 7.2: Motoring ER activity in DRG neurons. .................................................. 171 



xiii 
 

Figure 7.3: ER movement in DRG cells loaded with ER-tracker Green under TIRF 

after bradykinin (250nM) application. ..................................................................... 175 

Figure 7.4: ER movement in DRG cells loaded with ER-tracker Green under TIRF 

after capsaicin (1μM) application. ........................................................................... 178 

Figure 7.5: ER movement in HEK293 cells transfected with B2R and CellLight ER-

GFP under TIRF after bradykinin (250nM) application. .......................................... 181 

Figure 7.6: ER movement in HEK293 cells transfected with TRPV1 and CellLight 

ER-GFP under TIRF after capsaicin (1μM) application. ......................................... 184 

Figure 7.7: Cross correlation approach to analyse TIRF data. ............................... 186 

Figure 8.1: ANO1 in Inflammatory pain. ................................................................. 195 

Figure 8.2: Potential ways by which ANO1 may contribute to chronic pain. ........... 198 

  

List of Tables 

Table 1.1: Table demonstrating the different characteristics of nociceptors types. .... 2 

Table 1.2: Different types of VGCCs. ....................................................................... 27 

Table 1.3: Subclasses of CLC proteins .................................................................... 33 

Table 1.4: Subunit and subtypes of GABAA receptor. .............................................. 36 

Table 2.1: Antibodies used for immunohistochemistry. ............................................ 71 

Table 2.2: PLA combinations. .................................................................................. 73 

 

Abbreviations 

[Ca2+]i    Intracellular Ca2+ concentration 

[Cl-]i   Intracellular Cl- concentration  

[Cl-]o   Extracellular Cl- concentration 

ABC    ATP-binding cassette transporter  

AC   Adenylyl Cyclase 

AKAP150  A-Kinase-anchoring protein 150 

AKT   PI3K-activated protein kinase B pathway   

ANK   Ankyrin domain 

ANO1   Anoctamin 1 

ATP   Adenosine triphosphate 

B1R   Bradykinin receptor 1 

B2R   Bradykinin receptor 2 

BAPTA   1,2-bis(o-aminophenoxy) ethane-N,N,N′,N′-tetra acetic acid 

BKCa   Large conductance Ca2+-activated K+ channel 

CaCC   Ca2+ activated Cl- channel 



xiv 
 

CALCLR  Calcitonin receptor-like receptor 

CaM   Calmodulin 

CaMKII   Calmodulin-dependent kinase II 

cAMP   cyclic adenosine monophosphate 

Cav   Voltage gated Ca2+ channel 

CCL   Chronic constriction injury 

cDNA   Complementary deoxyribonucleic acid 

CEPIA   Calcium-measuring organelle entrapped protein indicator 

CF    Cystic fibrosis 

CFA   Complete Freund’s adjuvant 

CFTR   Cystic fibrosis transmembrane regulator 

cGMP   cyclic guanine monophosphate 

CGRP    Calcitonin-gene related peptide 

CHO   Chinese hamster ovary cells 

CICR   Ca2+-induced Ca2+-release 

CIP   Congenital insensitivity to pain 

CNGC   cyclic nucleotide gated channel 

CNS   Central nervous system 

CPA   Cyclopiazonic acid 

CPECs   Choroid plexus epithelial cells 

CRPS   Complex regional pain syndrome 

DAG    Diacylglycerol 

DIDs   4,4′‐diisothio‐cyanostilbene‐2,2′‐disulfonic acid 

DMEM   Dulbecco’s modified Eagle’s medium 

DRG   Dorsal root ganglion 

DTE   Distal tubular epithelial cells 

EC50   Half-maximal (50%) response concentration 

Ecl   Nernst/equilibrium potential for Cl- 

EGFR   Epidermal growth factor receptor 

EGTA    ethylene glycol-bis(β-aminoethyl ether)-N,N,N',N'-tetraacetic acid 

EK   Nernst/equilibrium potential for K+ 

ER   Endoplasmic reticulum 

ERLIN1   Endoplasmic Reticulum Lipid Raft-Associated Protein 1 

ERM   Ezrin-radixin-moesin proteins 

E-syts   Extended synaptotagmins 

EYFP   Enhanced yellow fluorescent protein 

FBS   Fetal bovine serum 

FRET   Fluorescence resonance energy transfer 

FRT   Fisher rat thyroid cells 

GABA   Gamma-Aminobutyric acid 



xv 
 

GABARAP   GABA receptor associated protein  

GFP   Green fluorescent protein 

GPCR   G-protein coupled receptor 

H+   Proton 

HCM   Hypertrophic cardiomyopathy  

HCO3-   Bicarbonate ion 

HEK293  Human embryonic kidney 293 cells 

HNSCCs  Head and neck squamous cell carcinomas 

HSG   Human salivary gland cells 

HVA   High voltage gated Ca2+ channel 

IBD   Inflammatory bowel disease 

IBS   Inflammatory bowel syndrome 

ICC   Interstitial calls of Cajal 

ICD   Intracellular domain 

IL-4   Interleukin-4 

IP3   Inositol 1,4,5-trisphosphate 

IP3R   Inositol 1,4,5-triphosphate receptor 

I-V   Current-voltage relationship 

KCC2   K+-Cl- cotransporter 2 

Kd   Dissociation constant 

Kv   Voltage gated K+ channel 

LVA   Low voltage gated Ca2+ channel 

M1R   Muscarinic 1 receptor 

MAPK   Mitogen-activated protein kinase pathway 

MOR   μ-opioid receptor 

MORN   Membrane occupation and recognition nexus motifs 

mRNA   Messenger ribonucleic acid 

NaV   Voltage-gated Na+ channel 

NBD   Nucleotide binding domain 

NFA   Niflumic acid  

NG   Nodose ganglia 

NGF    Nerve growth factor 

NIS   Na+-I- symporter 

NKCC1   Na+-K+-Cl- cotransporter 1 

NPPB   5‐nitro‐2‐(3‐phenylpropylamino) benzoic acid 

PAG   Periaqueducatal gray 

PAR-2   Protease-activated receptor 2 

PASMC   Pulmonary Artery Smooth Muscle Cells 

PB   Parabrachial nucleus 

PI3   Phosphoinositide 3 kinase 



xvi 
 

PIP2   Phosphatidylinositol 4,5-bisphosphate 

PKA   Protein kinase A 

PKC   Protein kinase C 

PLA   Proximity ligation assay 

PLC   Phospholipase C 

PM   Plasma membrane 

Pma1   Plasma membrane ATPase 1 

PSNL   Partial spinal nerve ligation 

PTE    Proximal tubular epithelial cells 

RHoA    Ras homolog gene family, member A  

RNA   Ribonucleic acid 

RPE   Retinal pigment epithelial cells 

RVM   Rostral ventral medulla 

RYR   Ryanodine Receptor 

SERCA   Sarcoplasmic/Endoplasmic Reticulum Ca2+-ATPase  

siRNA   Small interference ribonucleic acid 

Slo1   Large conductance Ca2+-activated K+ channel 

SMP   Synaptotagmin-like, mitochondrial-lipid binding protein domain 

SNL   Spinal nerve ligation 

SOCE   Store-operated Ca2+ entry 

SP   Substance P 

SR   Sarcoplasmic reticulum 

STORM  Stochastic Optical Reconstruction Microscopy 

TG   Trigeminal ganglion 

TIRF   Total internal reflection fluorescence microscopy 

TM   Transmembrane 

TrkA   Tyrosine kinase A 

TRP   Transient receptor potential channel 

TRPA1    Transient receptor potential ankyrin 1 

TRPC1   Transient receptor potential canonical 1 channel 

TRPV1   Transient receptor potential vallinoid 1 channel 

VGAT   Vesicular GABA transporter  

VGCC   Voltage gated Ca2+ channel 

VMSCs   Vascular smooth muscle cells



1 
 

Chapter 1: Introduction 

1.1 What is pain? 

What is pain? The answer to this question is quite paradoxical if one was to ponder 

deeply regarding its existence and physiological nature. The word pain has its origins 

from the Latin word ‘poena’ which literally translates as punishment. This may well 

have been the case from ancient civilisations of the past to some parts of present 

day society, along with a subconscious perception of pain being punishment in 

nearly every living being to have ever graced the earth. However, if we actually delve 

deeper into the actual meaning of pain, at least from a biological perspective, then 

we are able to appreciate the vital aspects of pain rather than the dreadful 

perceptions that have blemished our minds with the preconceived notions regarding 

this experience. 

Pain is actually an experience emplaced to protect the body from further damage 

once it has been subjected to injury. This may be hard to acknowledge for the 

average being that such an unpleasant sensation is indeed providing protection for 

you and I but this can be contextualised when looking at disorders such as 

Congenital Insensitivity to Pain (CIP) syndrome. CIP is characterised by patients 

having an inability to sense any pain that the body endures (Peddareddygari et al., 

2014). Patients continually injure themselves and are oblivious to the fact that they 

are sustaining such injuries, many times to the same part of the body as previously. 

Children with this disorder require constant attention and education regarding their 

issues. In some cases this repetitive injury can lead to death (Basbaum et al., 2009; 

Shorer et al., 2014). A normal person would be able to feel pain and therefore cease 

the injured body part from sustaining further damage, thus allowing effective and 

efficient healing to occur. Despite the importance and benefits of pain in 

physiological terms, abnormal functionality of the nociceptive nervous system can 

cause unnecessary pain (Wieseler-Frank et al., 2004). In certain physiological or 

pathophysiological circumstances, pain outlives its usefulness to protect the body 

and becomes a nuisance for the patient (Linley et al., 2010). 

1.1.1 Nociceptors 

The transduction of primary sensory signals associated with tissue damage into the 

sensation of pain is a complex process entailing a constellation of ion channels and 
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receptors that work in concert to provide the unpleasant experience that we undergo 

when met with potentially damaging (noxious) stimuli or trauma. The process by 

which noxious stimuli are detected and realised by the body is referred to as 

nociception (Dubin and Patapoutian, 2010). Upon the onset of somatic damage (or 

when prospect of such damage approaches imminence), peripherally located 

neurons known as nociceptors, are preferentially activated. Nociceptors have 

unspecialised nerve endings and a high threshold in the noxious range for activation 

(Dubin and Patapoutian, 2010). Only if the noxious signal is of sufficient intensity will 

nociceptors be activated. Due to this high threshold, non-noxious (innocuous) stimuli 

are excluded from activating nociceptors i.e. non-noxious and noxious heat is 

perceived differently.  

Nociceptors can be subdivided into 3 different groups classified as: Aβ (myelinated 

large fibers), Aδ (thinly myelinated, medium-diameter fibers) and C-fibers (non-

myelinated) with the latter 2 groups forming the majority of nociceptors (although a 

small percentage of Aβ are also implicated in nociception (Djouhri and Lawson, 

2004) (Table 1.1). The myelination of these fibers dictates the speed of conduction 

and the types of pain that are perceived; Aδ fibers are responsible for the initial pain 

that is felt upon trauma (due to its myelination) whereas the C-fibers provide the 

secondary slow pain (Basbaum et al., 2009).  

 

Fiber type Size (diameter) Myelination Conduction velocity 

Aβ Large Myelinated Fast (>30 m/s) 

Aδ Medium Thinly myelinated Medium (5-30 m/s) 

C Small No myelination Slow (0.4-1.4 m/s) 

Table 1.1: Table demonstrating the different characteristics of nociceptors 

types. 

 

Nociceptors can also be categorised regarding the modality of response; Aδ fibers 

are mechanosensitive or mechanothermal whereas C-fibers tend to be polymodal 

(respond to mechanosensitive, mechanothermal and chemical stimuli). Nociceptors 

are also characterised on the expression of specific markers; peptidergic C-fibre 
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nociceptors express and release neuropeptides substance P (SP) and calcitonin-

gene related peptide (CGRP) and also express tyrosine kinase A (TrkA) 

neurotrophin receptor (Snider and McMahon, 1998; Basbaum et al., 2009). Non-

peptidergic nociceptors on the other hand bind isolectin IB4 and express c-Ret 

neurotrophin receptor as well as various G-protein coupled receptors (GPCR) (Dong 

et al., 2001). Recent next-generation sequencing studies identified further 

subdivision of nociceptors (Usoskin et al., 2015; Li et al., 2016) however this work is 

beyond the scope of the present study. 

1.1.2 Pain transmission- from the periphery to the brain 

As mentioned above, a host of ion channels and receptors are required to process 

the noxious signals (see below); a complement of channels, specific to the sensory 

modality of a given neuron is found at unspecialised nerve endings of nociceptors 

within the innervated tissue (e.g. skin) (Basbaum et al., 2009). Action potential 

generation at these endings is then propagated through the nociceptive axon (fiber) 

and passed on to the spinal cord where the first synaptic transmission takes place, 

and, ultimately to the higher centres of the brain (Fig. 1.1). Afferent projections 

extend from the periphery and synapse into the superficial laminae of the spinal cord 

(Basbaum et al., 2009). Cell bodies of nociceptors are located at peripheral ganglia, 

such as dorsal root ganglia (DRG) and trigeminal ganglia (TG). The smaller C fibers 

project to more superficial laminae called the ‘substantia gelatinosa’ (I and II) 

whereas the larger diameter Aδ project deeper into laminae II and V (Basbaum et al., 

2009) (Fig. 1.1). Subsequent second order neurons decussate and project via the 

spinothalamic tract to the thalamus where these neurons terminate. Some second 

order projections also project to other areas such as the periaqueductal gray, 

parabrachial nucleus and the rostral ventral medulla regions. Finally third order 

neurons then project to the cortex and the amygdala where the signals are 

processed and manifested as the emotional and behavioural aspects of pain 

(Basbaum et al., 2009; Dubin and Patapoutian, 2010) (Fig. 1.1). Other projections to 

areas involved in emotional processing include the cingulate and insular cortices 

(Basbaum et al., 2009). Orofacial pain processing occurs via a different pathway- the 

trigeminothalamic pathway via the trigeminal nerve (V) and has cell bodies at the 

TG. 
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Figure 1.1: Peripheral and central pain pathways. Afferent fibers of nociceptors 

project from the periphery to the dorsal horn of the spinal cord. Collections of cell 

bodies of sensory neurons are called DRG (circled). Here C-fibers terminate at the 

substantia gelatinosa (lamina I and II) whereas Aδ fibers terminate into lamina II and 

V. Second order neurons then cross the midline of the spinal cord and project to 

higher centers via the spinothalamic tract. In the CNS, neurons project to the rostral 

ventral medulla (RVM), periaqueductal gray (PAG) which allow descending 

modulation. The parabrachial nucleus (PB) projects to the amygdala which in turn 

sends signals to the insular and cingulate cortices to process the emotional aspect of 

pain. Projections to the thalamus relay information to the somatosensory cortex 

regarding localisation and intensity of pain. Figure based on (Basbaum et al., 2009).  
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1.1.3 Inflammatory pain- sensitisation of nociceptors 

Upon injury to body tissue, mechanisms are in place to transduce the signal to the 

brain. These involve not only the direct transduction of acute pain but also 

sensitisation of the nociceptive system to make it more receptive to incoming pain 

signals. There are various mechanisms by which sensitisation can be caused; it can 

be peripheral (affects peripheral somatosensory fibres) or central (affects central 

pain pathways, predominantly spinal) (Fischer et al., 2010). One fairly well studied 

scenario when peripheral sensitisation occurs can be seen in local tissue 

inflammation. The immune response brought about by an injury or infection often 

creates a specific local environment referred to as ‘inflammatory soup’ (Basbaum et 

al., 2009). It is an amalgamation of various biochemical agents that mediate pro-

inflammatory conditions. Bradykinin, prostaglandins, histamine, adenosine 

triphosphate (ATP) and protons are some of the constituents that are able to activate 

channels and receptors on the afferent nociceptive fibers innervating the inflamed 

tissue area and cause action potential generation (Basbaum et al., 2009; Fischer et 

al., 2010). Immune cells in the vicinity of the injured area are also activated which 

then release various agents that further sensitise the nociceptive system (Pinho-

Ribeiro et al., 2017) (Fig. 1.2).  

One outcome of this sensitisation is called ‘hyperalgesia’ - sensitisation of the 

nociceptive fibers where there is a heightened sense of pain when painful stimuli 

occur i.e. a warm shower that begins to burn an injured area of the burnt skin (Fig. 

1.3). When tissue is injured, some of the inflammatory mediators are able to 

modulate the activity of channels implicated in nociception in a way to facilitate the 

enhancement of nociceptive signals being fired (see below). Central sensitisation is 

a phenomenon that involves specific changes in the nervous system at the dorsal 

spinal cord and the brain (Latremoliere and Woolf, 2009). Similarly to peripheral 

sensitisation, which leads to a heightened sense of pain, central sensitisation also 

causes a reduction in threshold as well as incorporation of normally innocuous Aβ 

fibre activation to elicit pain (Woolf, 2010). Ultimately, there is enhancement in the 

generate action potentials in second order nociceptors before the onset of central 

sensitisation become sufficient to generate action potentials in the sensitised spinal 

cord (Latremoliere and Woolf, 2009; Woolf, 2011). Furthermore, molecular changes  
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Figure 1.2: Inflammatory response to tissue damage. Immune cells (i.e. mast 

cells, macrophages, neutrophils) in the vicinity of the injury release the ‘inflammatory 

soup’ which encompasses various pro-algesic substances and growth factors. The 

damages tissue also contributes to the ‘inflammatory soup’. These substances 

activate their corresponding receptors/channels (shown in the membrane), which in 

turn leads to nociceptor activation and action potential firing as well as nociceptor 

sensitisation. 
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excitability of neurons and the nociceptive circuits after increased stimulation of 

nociceptors (Woolf, 2010). Subthreshold inputs that were previously unable to also 

facilitate central sensitisation such as abnormally high Nav1.3 channel expression in 

second order dorsal horn neurons (Hains et al., 2004b). Other effects of central 

sensitisation include expansion of the primary afferent receptive fields that allows 

input from uninjured tissue to produce pain (Woolf, 2011). This often results in a 

phenomenon known as allodynia - a state where innocuous sensations elicit pain; 

when under normal conditions this wouldn’t be the case (Fig. 1.3), as demonstrated 

in rats (Tal and Bennett, 1994). Upregulation of N-type Ca2+ channels in the spinal 

cord also plays a role in onset of allodynia which is thought to enhance glutamate 

and SP release at synapses at the dorsal horn (Cizkova et al., 2002; Altier et al., 

2007; Lee, 2013). Central sensitisation consists of an element of neural plasticity as 

the effects of this phenomenon occur for minutes after the stimulation of the afferent 

fibers (Woolf, 2011). In the brain, sensitisation of the thalamic and somatosensory 

cortical neurons has been reported in rats that have undergone partial peripheral 

nerve injury (Guilbaud et al., 1992). Other examples of this phenomenon have been 

seen in human patients with phantom limb pain and complex regional pain syndrome 

(CRPS) where imaging studies of the brain have demonstrated changes in cortical 

representation (Flor et al., 1995; Pleger et al., 2004). Collectively, these sensitisation 

events allow for increased signal transduction to higher centres to alert the brain 

regarding the severity of injury but also promote effective healing of the injured 

tissue. However in some circumstances, this ‘protective’ mechanism can be altered 

that leads to spontaneous and unnecessary nociceptive firing which becomes 

debilitating (Basbaum et al., 2009; Woolf, 2011). 

1.1.4 Pharmacology of pain 

Various drugs are currently used in the treatment of pain. These ‘painkillers’ target 

various aspects of the nociceptive pathway and disrupt the generation of pain, 

thereby reducing pro-algesic signals sent to higher centres. One class of painkillers 

are known as non-steroidal anti-inflammatory drugs (NSAIDs). As the name 

suggests these are anti-inflammatory as they reduce inflammation associated with 

injury or condition (Day and Graham, 2013). PIP2 in the lipid membrane is converted 

into arachidonic acid by phospholipase A 2 (PLA2) (Day and Graham, 2013). 

Arachidonic acid (AA) is subsequently converted into prostaglandins, important 
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Figure 1.3: Hyperalgesia and Allodynia. Noxious stimuli elicit a response 

from nociceptors once a threshold is breached, leading to pain sensation 

(green curve). Hyperalgesia causes a heightened sense of pain to noxious 

stimuli (represented by the blue curve). A lower stimulus intensity is required 

to produce the same level of pain as previously. Allodynia results in pain 

occurring from normally painless stimuli (represented by red section of curve). 

Previously, these innocuous stimuli did not affect nociception therefore, no 

pain occurred. Incorporation of Aβ fibres into the nociceptive circuitry results 

in these stimuli producing pain. Figure adapted from (Lolignier et al., 2015). 
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mediators of the inflammatory response (see below) by the enzyme cyclooxygenase 

(COX) I and II. NSAIDS produce their effects by stopping the conversion of AA into 

prostaglandins by inhibiting COX enzymes (Day and Graham, 2013). Examples of 

NSAIDs include paracetamol, ibuprofen and aspirin, which have a pain-reducing 

effect but differing anti-inflammatory effects (Brooks and Day, 1991). Some issues 

with aspirin and ibuprofen include stomach ulceration and gastrointestinal bleeding 

(Day and Graham, 2013). Furthermore, Aspirin can’t be taken with anticoagulant 

drugs (such as warfarin) because of their blood thinning properties (Day and 

Graham, 2013).  

Opioids are another set of pain alleviating and are some of the most potent drugs 

used to combat pain syndromes (Chang et al., 2007). As well as ascending pain 

signalling, descending signals are also utilised by the brain to modulate pain and 

reduce the amount of pain felt (Chang et al., 2007). These endogenous signals result 

from the release of opioids (such as endorphins, enkephalins and dynorphins) which 

are able to reduce excitability of presynaptic nociceptor nerve terminals (reduce Ca2+ 

influx) (Trescot et al., 2008). Furthermore, opioids also hyperpolarise neurons in the 

dorsal horn (increase K+ currents) (Trescot et al., 2008). Opioid drugs such as 

morphine, codeine and tramadol are able to activate opioid receptors and mimic the 

pain-relieving effect of endogenous opioids (Trescot et al., 2008). However, the 

effects of opioids on the CNS can cause serious side effects including sedation, 

dizziness, confusion and in some cases respiratory depression (Kosten and George, 

2002; Trescot et al., 2008). However, the major issues with opioid drugs is the 

addiction that is associated with repeated use (Kosten and George, 2002; Chang et 

al., 2007).   

Other drugs include creams or patches consisting of lidocaine or benzocaine which 

work by numbing specific areas of skin (Brofeldt et al., 1989; Eslamian et al., 2013). 

Topical creams consisting of capsaicin (see below) are also available which work by 

‘defunctionalisation’ of TRPV1 channels (Anand and Bley, 2011). Another method by 

which capsaicin creams work is using the phenomenon known as ‘depolarisation 

block’, where capsaicin-mediated TRPV1 activation leads to depolarisation of the 

membrane but this in turn leads to inhibition of voltage gated sodium channels 

(Anand and Bley, 2011). These are just a few examples of analgesic drugs available 

and a brief discussion regarding mechanisms by which they produce painkilling 
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effects. The ultimate goal of research into pain is the development of more analgesic 

drugs acting on different pathways to maximise the potential for combatting pain 

syndromes. 

1.2 Ion channels involved in pain 

All excitable cells such as neurons, muscle cells and cardiac cells, use ion channels 

to convert stimuli into electrical signals. As mentioned, the nociceptive nervous 

system uses ion channels in unspecialised nerve endings to process noxious stimuli 

into action potentials, which are then relayed to the brain allowing perception of pain. 

Other essential functions of ion channels include generating and shaping action 

potentials (Jaffe et al., 2011), epithelial transport (Hollenhorst et al., 2011), regulating 

cell volume (Lang et al., 2007) etc. Ion channels are a diverse family of 

transmembrane (TM) proteins that allow diffusion of ions down their concentration 

gradients when activated and their gating mechanism is open (Gadsby, 2009). 

Furthermore, they can also be categorized depending on the ions they transport- 

cationic, anionic, non-selective etc and the mode of activation including binding of a 

ligand or changes in voltage (Gadsby, 2009). The wide variety of channels found in 

the body is out of the scope of this thesis therefore the following section will focus on 

ion channels that play a role in nociception. 

 

1.2.1 Sensory channels 

1.2.1.1 P2X receptors 

The initial phase of nociception is the noxious stimuli, which is sensed by receptors 

in the free endings of the skin. Ionotropic P2X purinergic receptors are a group of 

ligand-gated non-selective cation channels that are activated in response to the 

binding of ATP, allowing the influx of Na+ and Ca2+ into the cell from the extracellular 

compartment. This group of receptors includes 7 members, P2X1-P2X7, all of which 

are trimeric complexes (North, 2002). Subunits of these receptors can form 

homomeric complexes (P2X1-P2X5 and P2X7) or they can form heteromeric 

complexes (i.e. P2X1/3) (Nicke et al., 1998). On the other hand, it has been 

discovered that P2X6 receptors are unable to form functional homomeric complexes 

(Barrera et al., 2005). Each subunit of P2X receptors has a topology consisting of 2 

TM domains, a large extracellular domain and internal C- and N-termini (Torres et 
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al., 1998). The crystal structure of Zebrafish P2X4 binding ATP has been elucidated 

recently and found to consist of 3 ATP binding sites, which are located at the 

interfaces between the 3 subunits of the trimer (Hattori and Gouaux, 2012). 

Expression of these channels have been thought to implicate them in various 

processes such as modulation of synaptic transmission (Pankratov et al., 1999; Mori 

et al., 2001; Pankratov et al., 2002, 2003), smooth muscle contraction (Boland et al., 

1992; Boland et al., 1993; Gailly et al., 1993; Harhun et al., 2015), the immune 

response (Burnstock et al., 2014) and nociception (Chizh and Illes, 2001; Waldron 

and Sawynok, 2004).   

P2X2, P2X3 and P2X2/3 have been localised to primary sensory neurons where 

they play a role in nociception as ATP is one of the factors released by damaged 

tissue (Chen et al., 1995; Lewis et al., 1995). Studies have shown that knockout 

(KO) of P2X3 receptors in mice causes reduced afferent nerve activity and 

nociceptive signalling (Barclay et al., 2002). Furthermore, P2X2 and P2X3 double 

KO mice also demonstrated attenuated nociceptive responses to intraplantar 

formalin injection (Cockayne et al., 2005). Development of P2X3-selective 

antagonists has been able to produce alleviation of neuropathic and inflammatory 

pain in rat chronic pain models (Jarvis et al., 2002). Antisense oligonucleotide 

administration against P2X3 receptors has also been successful in reducing 

mechanical hyperalgesia induced by carrageenan in Wistar rats (Oliveira et al., 

2009).  

1.2.1.2 Piezo  

Piezo proteins have been implicated in mechanotransduction, the physiological 

process whereby mechanical forces are converted into biological signals to allow 

organisms to ascertain environmental features (Bagriantsev et al., 2014). Piezo1 and 

Piezo2 are mechanically activated (MA) non-selective cation channels that allow Na+ 

and Ca2+ entry into the cell upon activation (Coste et al., 2010; Ranade et al., 

2014c).  

Piezo1 has been found to be expressed in a wide range of cell types including 

vascular cells (Ranade et al., 2014a), erythrocytes (Faucherre et al., 2014) and renal 

tubular epithelial cells (Peyronnet et al., 2013). Piezo2 on the other hand is found in 

DRG and TG somatosensory neurons (Coste et al., 2010; Bron et al., 2014). 
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Interestingly, Piezo2 has been implicated in both innocuous and painful 

mechanoreception (Coste et al., 2010; Bagriantsev et al., 2014), where it is required 

for mechanotransduction in gentle touch (Ikeda and Gu, 2014; Maksimovic et al., 

2014; Woo et al., 2014). Merkel cell-neutrite complexes, which are responsible for 

gentle touch sensation, express Piezo2 and Merkel cell-specific knockdown of 

Piezo2 in mice leads to moderately reduced ability to encode gentle touch sensation 

(Woo et al., 2014). In terms of nociception, Piezo2 is expressed in unmyelinated 

small-diameter nociceptors (Coste et al., 2010). This channel is also responsible for 

the rapidly adapting MA current in DRG neurons, which was demonstrated using 

siRNA against the protein (Coste et al., 2010). Inflammation can also serve to 

modulate Piezo2 as bradykinin has been shown to enhance these currents 

suggesting a role for Piezo2 in mechanical hyperalgesia (Dubin et al., 2012). 

However, Piezo2 KO mice do not display obvious deficits in noxious mechanical 

sensitivity, therefore the role of this channel in mechanical pain is still requires 

elucidation (Ranade et al., 2014b). 

Structurally, Piezo proteins are very unique proteins owing to their huge size. They 

have a particularly large number of TM segments, predicted to consist of 30-40 of 

these structures, which was thought to be produce a homotetrameric structure 

(Coste et al., 2012). Recently however, the structure of mouse Piezo1 has been 

solved using cryo-electron microscopy (CryoEM) and has revealed that Piezo1 

actually forms as a homotrimer (Ge et al., 2015). Furthermore, each monomer was 

found to consist of 14 TM segments opposed to the predicted 30-40 (Ge et al., 

2015). The homotrimer surrounds a putative ion pore, which is responsible for its ion-

conducting properties (Ge et al., 2015).  

1.2.1.3 TRP channels 

TRP channels are a unique set of proteins that are sensors for a wide spectrum of 

physical and chemical stimuli (Clapham, 2003; Zheng, 2013). Activation of these 

diverse channels mediates the flux of Na+ and Ca2+ into cells, alters the membrane 

potential and plays an important role in various processes in the body such as 

sensory transduction (Clapham, 2003), fertilisation (Castellano et al., 2003), vision 

(Ribelayga, 2010), taste (Ishimaru and Matsunami, 2009), osmoregulation (Arniges 

et al., 2004) etc. TRP channels are split into various subgroups depending on 

sequence similarity and are classified as TRPA, TRPC, TRPM, TRPML, TRPN, 
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TRPP and TRPV. Of these groups, TRPN is the only family to have no mammalian 

representation (Walker et al., 2000; Sidi et al., 2003).  

All TRP channel are presumed to have a similar structure; they have a tetrameric 

organisation of subunits arranged around a central pore with each subunit consisting 

of 6TM domains. Unlike voltage-gated ion channels, TRP channels do not have a 

charged segment 4 domain that provides voltage-sensitivity to these channels. The 

initially discovered TRP channels were referred to as ‘classical’ or ‘canonical’ and 

categorised as TRPC channel members- TRPC1 being the first mammalian TRP 

member to be discovered and cloned (Wes et al., 1995). Identification of TRPC1 

came from investigations into the process of store operated Ca2+ entry (SOCE, see 

below) (Wes et al., 1995). The TRPC family has 7 members, TRPC1-7 which are 

split into a further 3 groups depending on functionality and sequence similarity: 

TRPC1/4/5, TRPC3/6/7 and TRPC2 (Clapham, 2003). However, others have placed 

TRPC1 on its own suggesting there are in fact 4 groups (Montell, 2005). Despite the 

many TRP channels present, I will only discuss the TRPV1 channel due to its 

importance and relevance to my work. 

 

1.3 TRPV1 

Transient Receptor Potential Vallinoid 1 (TRPV1) is characterised as a non-selective 

cationic channel involved with sensing heat as well as being activated by capsaicin 

(the active compound in chillies) and acidification (H+) (Rohacs et al., 2008). 

Nociceptors are known to express TRPV1 and other TRP channel members in order 

to transduce noxious stimuli into electrical signals for the brain to process. TRPV1 is 

the most famous of the ‘thermoTRP’ channels and is able to activate in response to 

heat above 43°C (Caterina et al., 1997). TRPV1 is found on peptidergic neurons, 

which also express CGRP and SP, and mainly localise to small diameter C-fibers 

(Cavanaugh et al., 2011) however some larger diameter neurons also express 

TRPV1 (Ohsawa et al., 2013). Both pre- and postsynaptic neurons at the dorsal horn 

of the spinal cord also express TRPV1 (Valtschanoff et al., 2001; Choi et al., 2016). 

As well as CNS expression, TRPV1 is also expressed in non-neuronal tissues such 

as liver (Siegmund et al., 2005), mast cells (Stander et al., 2004), keratinocytes 

(Inoue et al., 2002), hair follicle (Bodo et al., 2005; Biro et al., 2006), bladder 
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(Szallasi et al., 1993b, a), epithelia (Bodo et al., 2004) and airways (Russell and Lai-

Fook, 1979; Lundberg et al., 1983b; Lundberg et al., 1983a).  

TRPV1 is strongly implicated in the inflammatory sensitisation of nociceptors; the 

underlying mechanisms include the sensitisation by inflammatory mediators such as 

bradykinin (see below) but also increased expression of TRPV1 at the sight of injury 

(Kim et al., 2008). Furthermore, activation of TRPV1 at the nerve endings also leads 

to the release of other pro-algesic compounds, such as CGRP and SP, from the 

nociceptive terminals (Theriault et al., 1979; Wick et al., 2006b). CGRP activates 

calcitonin receptor-like receptor (CALCLR) which in turn triggers protein kinase A 

(PKA) and protein kinase C (PKC). CGRP has been known to produce mechanical 

hyperalgesia and central sensitisation in nociceptors and the dorsal horn of the 

spinal cord, respectively (Sun et al., 2004a; Sun et al., 2004b).  

Two groups generated TRPV1-KO mice and both found that capsaicin and noxious 

thermal heat were unable to produce currents in cultured DRG neurons (Caterina et 

al., 2000; Davis et al., 2000). TRPV1-mediated pH changes were also unable to 

induce currents in TRPV1-KO DRG neurons. Caterina and colleagues showed that 

there were behavioural deficits in mice during the aversive drinking test. When water 

(which mice drank for 3 days) was changed to capsaicin containing solution, wild 

type mice showed nocifensive behaviour whereas TRPV1-KO mice continue to drink 

water in a similar manner to previous days (Caterina et al., 2000). This suggests that 

capsaicin produces its effects exclusively through TRPV1 activation. Both groups 

also showed reduced thermal hyperalgesia induced by carrageenan injection in 

TRPV1-KO mice (Caterina et al., 2000; Davis et al., 2000). Heat-based behavioural 

tests (hot-plate and tail immersion tests) showed increased latencies in TRPV1-KO 

mice compared to wild type littermates, suggesting a role in noxious heat (Caterina 

et al., 2000). Conversely, Davis and colleagues showed that mice lacking TRPV1 

had normal thermoresponsive behaviour. Hot plate tests on TRPV1-KO mice 

showed normal heat sensitivity; this was paradoxical when considering the same 

group found DRG from TRPV1-KO mice showed no sensitivity to noxious heat 

(Davis et al., 2000). The differing responses reported by the 2 independent groups 

could be explained due to the tests used in these studies. The results from Caterina 

and colleagues demonstrate that capsaicin requires TRPV1 to produce its activity 

however Davis and colleagues used noxious heat as the stimulus for TRPV1 
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activation meaning their results suggest TRPV1 may not be the only channel 

responsible for noxious heat sensation. Furthermore, a study using skin-nerve 

preparations reported normal noxious heat sensation in TRPV1-KO mice but showed 

the importance of TRPV1 in heat sensitisation and hyperalgesia. A sensitiser of 

TRPV1, 2-aminoethoxydiphenyl borate, was only able to produce hyperalgesia in 

wild type but not TRPV1-KO mice (Zimmermann et al., 2005). Recently, another 

group also demonstrated TRPV1-KO DRG neurons still evoked responses to 

noxious heat however capsaicin produced no effects (Cho et al., 2012). As 

mentioned above, this suggests the presence of other heat sensors in the range of 

TRPV1’s heat-range (see below). 

1.3.1 Structure of TRPV1 

Structurally, TRPV1 complexes are composed as a tetramer of subunits, with each 

subunit consisting of 6TM domains and the pore region found between TM domains 

5 and 6 (Moiseenkova-Bell et al., 2008; Liao et al., 2013). Each subunit has a 

molecular mass of 95kDa (Caterina et al., 1997) and possess intracellular N and C-

termini consisting of various areas of interest (Moiseenkova-Bell et al., 2008; Liao et 

al., 2013). The N-terminus has 6-ankyrin repeat regions where both calmodulin 

(CaM) and ATP are known to bind whereas the C-terminus has areas for 

phosphatidylinositol 4,5-bisphosphate (PIP2) binding as well as further regions for 

CaM binding (Prescott and Julius, 2003; Lishko et al., 2007) (Fig. 1.4A). Various 

phosphorylation sites are also scattered around these internal regions of TRPV1. A 

conserved 25 amino acid region known as the ‘TRP box’ is located on the C-

terminus which is essential for tetramerisation of TRPV1 and is also involved in its 

allosteric activation (Garcia-Sanz et al., 2004). The channel exists as a 

homotetramer but can also form chimeric channels with TPRA1 and TRPV3 (Cheng 

et al., 2007; Cheng et al., 2012; Fischer et al., 2014) (Fig. 1.4A).  

The cryoEM structure of mammalian TRPV1 was solved in 2013 and it was 

discovered that the architecture of TRPV1 closely resembles voltage gated ions 

channels despite fairly low (~20%) sequence similarity (Liao et al., 2013). The 

tetrameric structure shows 4-fold symmetry around a central ion conduction pore and 

the extracellular mouth of the channel is wide with a relatively small selectivity filter 

(Liao et al., 2013). A ‘linker’ region on each subunit, which links the Ankyrin repeat  
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Figure 1.4: TRPV1 Structure. (A) The topology of TRPV1 showing 6 TM domains with 

a pore loop between TM 5 and 6. Various areas for modulation are indicated as the 

following: ANK: Ankyrin domains, Large Green Circle: Capsaicin, Small Green Circles: 

H+, Green Diamond: PKA, Blue Diamond: PKC Red Diamond: PKA/PKC, Green Star: 

CaM, Red Star: CaM/ATP, Red Oval. PIP2, Yellow Circle: Heat. (B) Crystal structure of 

TRPV1 showing the channel as a tetrameric protein. Ankyrin repeat domains are 

indicated for a single subunit of TRPV1. ICD: Intracellular domain. Figure adapted from 

(Liao et al., 2013) and (Morales-Lazaro et al., 2014). 
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domain section to the TM segments and the C-terminus, interacts with 2 ankyrin 

repeats of adjacent subunits to assemble the channel (Liao et al., 2013). An 

interaction between the TRP box domain and the S4-S5 linker also plays a role in 

stabilising the structure of the channel (Liao et al., 2013) (Fig. 1.4A and B).  

1.3.2 Sensitisation 

TRPV1 can be influenced by the plethora of pro-algesic mediators that are released 

under inflammatory conditions (Caterina and Julius, 2001). As mentioned above, 

sensitisation is an increase in the responsiveness of nociceptors to subthreshold 

stimuli and this can occur due to effects on the TRPV1 receptor itself, which in 

essence is ‘sensitised’ leading to enhanced activity of the channel (Caterina and 

Julius, 2001; Geppetti and Trevisani, 2004).  

1.3.2.1 PKA and PKC 

The presence of various kinase-binding sites on the intracellular domains of TRPV1 

allows for modulation of its activity (see above) (Touska et al., 2011). Release of pro-

algesic agents at the site of injury and as part of the inflammatory response activate 

their respective receptors and initiate different secondary messenger cascades 

(Basbaum et al., 2009). Prostaglandins ultimately activate PKA whereas bradykinin 

and ATP activate PKC, both of which are able to sensitise TRPV1 (Fischer et al., 

2010). Bradykinin is one of the inflammatory mediators released during the 

inflammation process (Golias et al., 2007; Basbaum et al., 2009; Fischer et al., 

2010). This polypeptide is made of nine amino acids (Golias et al., 2007) and 

synthesis of bradykinin occurs through the kinin-kallikrein system where high 

molecular weight kininogen (found in blood plasma) is converted into bradykinin via 

the activity of the enzyme kallikrein, a serine protease (Mandle et al., 1976; Blais et 

al., 2000). Kallikrein is produced by the precursor prekallikrein, which itself is 

activated by Factor XII and during tissue injury or trauma, Factor XII is released 

hence accelerating the production of kallikrein (Jukema et al., 2016). Interaction of 

Factor XII, prekallikrein and kininogen with negatively charge surfaces i.e. 

endothelial cells, leads to initiation of bradykinin production (Kaplan and 

Ghebrehiwet, 2010). Further cleavage of bradykinin by carboxypeptidase results in 

the formation of the active metabolite desArg9-BK (activates B1 receptor) (Ni et al., 

2003). Inactivation of bradykinin is a rapid process, which confines the activity of this 
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peptide to a small, localised area, making this ideal for mediating inflammatory pain 

in damaged tissue. This is achieved by kininases such as aminopeptidase P (Golias 

et al., 2007). Bradykinin is also associated with vasodilation of blood vessels and is 

broken down by angiotensin-converting enzyme (ACE), hence initiation of the 

vasoconstrictive Renin-Angiotensin system and leading to a reduction in the levels of 

bradykinin in the body (Golias et al., 2007). There are 2 principle receptors that are 

activated by bradykinin- B1 and B2 with another speculated B3 tracheal receptors 

thought to exist too (Golias et al., 2007). Upon activation of these metabotropic 

receptors, bradykinin is able to induce a secondary messenger cascade via the Gq 

pathway which involves the activation of the enzyme phospholipase C (PLC)-β 

(Mizumura et al., 2009). PLC-β cleaves PIP2 at the membrane leading to the 

formation of inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG). Both 

products of PIP2 cleavage have varying effects with IP3 able to activate IP3 receptors 

(IP3R) in the endoplasmic reticulum (ER) and induce Ca2+ release. DAG on the other 

hand is an activator of PKC which phosphorylates proteins (Rohacs et al., 2008). 

The latter has implications in inflammation and hyperalgesia as bradykinin-derived 

PKC phosphorylation of TRPV1 decreases the temperature threshold thus 

increasing sensitivity to noxious heat (Sugiura et al., 2002) (Fig. 1.5).  

Proteases-activated receptor 2 (PAR-2) can also sensitise TRPV1; PAR-2 receptors 

are activated during the inflammatory process where the release of proteases (i.e. 

trypsin) occurs. Cleavage of the extracellular N-terminal domain of the receptor 

allows the newly formed N-terminal to act as a ligand hence activating the receptor 

(Coughlin, 2000; Arora et al., 2007). This subsequently triggers the Gq pathway and 

ultimately PKC activation (Arora et al., 2007). Prostaglandin E2 is another 

inflammatory mediator which is able to initiate the adenylyl cyclase (AC) pathway to 

increase cyclic adenosine monophosphate (cAMP) production and subsequent PKA 

activation (Fischer et al., 2010). Activated PKA then proceeds to sensitises TRPV1 

(Moriyama et al., 2005). Interestingly, PAR-2 activation has been observed to induce 

activation of PKA via cAMP/PKA as well as the PKC pathway (Amadesi et al., 2006). 

This was also coupled to the observation that both of these kinases are involved in 

the sensitisation of TRPV1 (Amadesi et al., 2006) (Fig. 1.5).  
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1.3.2.2 TRPV1 upregulation 

Another mechanism by which TRPV1 activity is enhanced is through increased 

expression of the channel in nociceptors (Zhang et al., 2005; Stein et al., 2006). 

Nerve growth factor (NGF) is known to upregulate TRPV1 expression in nociceptors 

by activating TrkA receptors and inducing PI3 kinase (Zhuang et al., 2004). 

Downstream of this, another kinase- Src- is activated which induces the upregulation 

of TRPV1 into the plasma (Jin et al., 2004; Zhang et al., 2005). Insulin and insulin-

like growth factor enhance TRPV1 currents, an effect produced by upregulation of 

TRPV1 expression (Van Buren et al., 2005). 

1.3.2.3 ATP  

ATP binds to both N- and C-termini of TRPV1 (Kwak et al., 2000; Lishko et al., 

2007). ATP has been shown to enhance TRPV1 activity and also inhibit the 

desensitisation of the channel when activated by capsaicin (Kwak et al., 2000; 

Lishko et al., 2007). Interestingly, ATP binds to the N-terminal Ankyrin binding 

domain where CaM binds and competes with CaM and it has also been suggested 

that ATP is displaced by CaM from this binding site (Lishko et al., 2007). ATP is a 

substrate in the production of PIP2, which is required in the patch pipette to rescue 

TRPV1 from desensitisation (Liu et al., 2005). Furthermore, blocking kinases 

involved in the conversion of PI to PIP (precursor of PIP2) also delayed recovery 

from desensitisation (Liu et al., 2005).  

1.3.3 Desensitisation 

Repeated or prolonged stimulation of TRPV1 can lead to the receptor becoming 

insensitive to further activation. This process of TRPV1 desensitisation seems to 

require the presence of extracellular Ca2+ (Koplas et al., 1997); removal of 

extracellular Ca2+ or buffering of [Ca2+]i abolishes desensitisation (Koplas et al., 

1997). Various theories have been proposed regarding this desensitisation process 

which I will briefly discuss below. 
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Figure 1.5: Sensitisation of TRPV1 by PKA and PKC. Receptor activation (i.e. 

Prostaglandin-E2- yellow receptor on right) leads to the initiation of the Gs signalling 

cascade. Activation of adenylyl cyclase (A) converts ATP to cAMP, which in turn 

activates PKA. PKA is able to phosphorylate TRPV1 (orange channel) and sensitise 

its activity. B2R activation (green receptor on left) leads to initiation of the Gq 

signalling pathway, activating PLC-β. PLC-β is able to cleave PIP2 in the plasma 

membrane and form DAG and IP3R. DAG activates PKC which can also sensitise 

TRPV1 activity. IP3 is able to diffuse to the ER where IP3R (grey channel) are located 

and induce ER-Ca2+ release into the cytosol. In a pro-algesic model, this Ca2+ 

release would be able to activate other Ca2+ dependent proteins/processes (see 

below). PAR-2 has been known to activate both PKA and PKC pathways (Amadesi 

et al. 2006). 

 

 

IP3R 
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1.3.3.1 PIP2 

PIP2 also plays an important role in TRPV1 regulation. Initial studies found that PIP2 

plays an inhibitory role in TRPV1 activity (Chuang et al., 2001). Bradykinin-induced 

PIP2 cleavage was suggested to release TRPV1 inhibition hence allowing activity of 

the channel (Chuang et al., 2001). However, contrary to this effect, other TRP 

channels were found to be activated by PIP2 (Criddle et al., 2004; Lee et al., 2005; 

Rohacs et al., 2005; Nilius et al., 2006). Stein and colleagues subsequently found 

that PIP2 was able to activate TRPV1 in excised patches (Stein et al., 2006) and this 

was confirmed by ensuing research by Rohacs’ lab but interestingly, this study found 

that under certain circumstances, PIP2 also has an inhibitory effect on TRPV1 

(Lukacs et al., 2007). PIP2 depletion was able to potentiate TRPV1 activity at low 

capsaicin concentrations (1nM) however this was not the case with higher capsaicin 

concentrations (1μM) (Lukacs et al., 2007). At lower concentrations (1nM), PIP2 

maintains a partial inhibitory effect on TRPV1 which is removed after PIP2 depletion 

(Lukacs et al., 2007; Rohacs et al., 2008). The group concluded that higher 

capsaicin concentrations (1μM) allow increased Ca2+ influx which activates PLC and 

consequently leads to PIP2 cleavage and channel desensitisation (Lukacs et al., 

2007). Furthermore, inhibiting either PLC or PIP2 depletion (presence of PIP2 in 

whole cell patch pipette) caused desensitisation to be abolished in sf21 insect cells 

and recombinant HEK293 cells (Lishko et al., 2007; Lukacs et al., 2007). In 

summary, lower capsaicin concentrations lead to low levels of PIP2 depletion which 

produces TRPV1 activity however, when greater concentrations of PIP2 are depleted 

due to greater capsaicin concentrations, the channel is desensitised- almost acting 

as a brake to control the effects of TRPV1. Further research is still required to fully 

elucidate the effects of PIP2 on TRPV1.  

1.3.3.2 CaM 

CaM is another proposed desensitiser of TRPV1. There are 2 theories regarding 

CaM’s implications on TRPV1: direct and indirect desensitisation (Rohacs et al., 

2008). Direct effects of CaM are controversial despite the presence of CaM-binding 

domains on the C-terminus of TRPV1 and reported interactions between CaM and 

this site (Numazaki et al., 2003). Removal of this segment of TRPV1 disrupted the 

process of desensitisation however an inhibitor of CaM nor the co-expression of a 

Ca2+-insensitive CaM mutant in HEK293 cells was able to produce similar inhibition 
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of desensitisation (Numazaki et al., 2003). CaM was found to produce approximately 

50% inhibition in excised patches from Xenopus Oocytes heterologous expressing 

TRPV1 however, this was a slow process which is in stark contrast to the rapid and 

nearly complete desensitisation seen in native TRPV1 channels (Rosenbaum et al., 

2004). CaM was also found to interact with the N-terminus where the repeat Ankyrin 

domains are located (Rosenbaum et al., 2004; Lishko et al., 2007). In sf21 insect 

cells, TRPV1 is inhibited by CaM and unlike findings by Numazaki and colleagues, 

CaM inhibitors abolished capsaicin-induced desensitisation of TRPV1 (Lishko et al., 

2007). Indirect mechanisms of CaM desensitisation involve activating calcineurin- a 

protein phosphatase (Jung et al., 2004). Inhibition of calciuneurin has been shown to 

reduce TRPV1 desensitisation in both DRG neurons and cell lines (HEK293 and 

HeLa cells) (Docherty et al., 1996; Mohapatra and Nau, 2005). Ca2+ influx into cells 

is the trigger for desensitisation and seems to be a mechanism by which TRPV1 

protects the cell from toxic Ca2+ overload (Bhave et al., 2002). Therefore, Ca2+ 

activating CaM to desensitise TRPV1 is a credible theory regarding desensitisation.  

 

1.3.4 TRPV1 in chronic pain 

Alterations in the neural circuitry underlying pain transmission can lead to 

unnecessary pain and long-lasting chronic pain conditions; unsurprisingly, ion 

channel expression profiles play a significant role in the generation of chronic pain 

(Linley et al., 2010). Various studies have demonstrated altered TRPV1 expression 

in chronic pain conditions. Under normal conditions, TRPV1 is expressed in mainly 

C-fibres and to a lesser extent in Aδ fibres (Guo et al., 1999). However, two weeks 

after spinal nerve ligation (SNL), TRPV1 expression was decreased in the soma of 

damaged DRG neurons but was present near the site of injury (Hudson et al., 2001). 

Furthermore, SNL in lumbar (L) 5 of the spinal cord produced a reduction of TRPV1 

in this region but analysis of TRPV1 expression in another, undamaged region L4, 

showed increased TRPV1 expression (Fukuoka et al., 2002; Rashid et al., 2003; 

Mitrirattanakul et al., 2006). Interestingly, after partial spinal nerve ligation (PSNL), 

undamaged neurons showed increased expression of TRPV1 (Hudson et al., 2001). 

De novo expression of TRPV1 in myelinated A-fibers was also seen after PSNL 

(Rashid et al., 2003). Despite these findings, other studies have shown increased 

TRPV1 expression in injured neurons with no new expression of TRPV1 in A-fibers 
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(Christoph et al., 2007; Vilceanu et al., 2010). Chronic constriction injury (CCI) 

models of neuropathic pain show not only enhanced expression of TRPV1 in the 

spinal cord, but also enhanced CGRP release in spinal cord slices (Kanai et al., 

2005).  

In an animal model of lingual pain injury, overexpression of TRPV1 was 

demonstrated using imaging techniques (Biggs et al., 2007). Patients suffering from 

vulvodynia, a painful condition characterised by a burning sensation in the vulva, 

were showed increased TRPV1 expression in biopsies (Tympanidis et al., 2004). 

Inflammatory conditions of the bowel such as irritable bowel syndrome (IBS) and 

chronic inflammatory bowel disease (IBD), characterised by abdominal pain as part 

of the syndrome, also display enhanced levels TRPV1 in biopses (Yiangou et al., 

2001; Geppetti and Trevisani, 2004; Akbar et al., 2008). Accordingly, TRPV1 

antagonists are able to reduce experimental colitis (Miranda et al., 2007). Moreover, 

several studies have provided evidence linking chilli pepper consumption and IBS 

(Shah et al., 2000; Agarwal et al., 2002; Schmulson et al., 2003). TRPV1 also plays 

a role in the pathogenesis of pancreatitis, a painful, inflammatory condition of the 

pancreas (Liddle and Nathan, 2004; Nilius, 2007). An example of pancreatitis 

induction is through cerulein release (Kim, 2008). Cerulein is a peptide that induces 

inflammation by producing free radicals in pancreatic acinar cells, which in turn lead 

to inflammatory cytokine production (Kim, 2008). This pathological activation of 

nociceptors leads to release of SP and CGRP, hence pain generation related to 

pancreatitis (Nilius, 2007). These inflammatory mediators act on TRPV1 to generate 

pancreatitis-related pain sensation (Nathan et al., 2001; Nathan et al., 2002; Nilius, 

2007). Capsezipine, a TRPV1 antagonist, reduced cerulein-induced pancreatitis in 

rats through attenuated SP release and tissue damage (Nathan et al., 2001; Nathan 

et al., 2002). Interestingly, excessive alcohol consumption is known to be a frequent 

cause of pancreatitis; this can be explained with respect to TRPV1 as ethanol is able 

to sensitise TRPV1 activity (Trevisani et al., 2002; Criddle et al., 2004; Nilius, 2007). 

L-arginine is also able to cause pancreatitis in rats which has been shown to be 

mediated by TRPV1-induced SP and CGRP release (Wick et al., 2006b; Wick et al., 

2006a). Osteoarthritis is a disorder which encompasses joint pain as part of its 

presentation and chronic pain models of osteoarthritis report both overexpression of 

TRPV1 and enhanced release of CGRP (Fernihough et al., 2005). TRPV1-KO mice 
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present with reduced arthritic changes in tibiotarsal joints (Szabo et al., 2005). This 

effect was also evident in Complete Freund’s Adjunct (CFA) -induced knee swelling 

comparisons with wild type rats (Barton et al., 2006).  

 

1.4 Voltage-gated channels  

1.4.1 Voltage-gated sodium channels 

Voltage gated ion channels play a vital role in determining the excitability of neurons. 

Voltage gated sodium channels (Nav) underlie the sharp rise of the action potential 

and are critically important for the conduction of signals throughout the nervous 

system. Closed at resting membrane potentials, Nav channels open rapidly (within a 

millisecond) in response to depolarisation and allow Na+ influx into the cell (Catterall, 

2000a). As Na+ floods into the cells, within milliseconds, the Nav channels are 

inactivated due to gating properties of the channel. The inactivation gate moves to 

occlude the open pore and push the channel into the inactivated state (Capes et al., 

2013). As the membrane is repolarised, the occluded pore is unblocked as the 

inactivation gate recedes back to its initial conformation and closes ready for 

reactivation.  

Structurally, Nav channels are composed of an α-subunit with 4 homologous 

domains, each consisting of 6 non-identical TM segments (Beneski and Catterall, 

1980; Catterall, 2000a; Mantegazza and Catterall, 2012). This complex has a 

molecular mass of approximately 260kDa (Beneski and Catterall, 1980). The α-

subunit has been found to produce functional Na+ channels however there are also 

auxiliary subunits that can also bind to the α subunit. Four β-subunit’s exist (β1-4) 

consisting of an N-terminus extracellular immunoglobulin-like fold with a single TM 

segment (Catterall, 2012). These auxiliary subunits appear to be involved in 

modulation of channel gating and cell-cell interactions (Catterall, 2000a). Segments 

1-4 in each domain are responsible for the voltage sensitive ability of Nav channels 

and are collectively known as the voltage senor domain. It has been proposed that 

the positively charged residues in segment 4 move outward during depolarisation, 

which leads to a conformational change and channel opening (Bhave et al., 2002; 

Namadurai et al., 2015).  
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There are 9 Nav channels that have been discovered, Nav1.1-1.9 and an atypical Na+ 

channel- Nax (also referred to as Nav2). Of these channels, Nav1.3, Nav1.7, Nav1.8 

and Nav1.9 are expressed in DRG (Dib-Hajj et al., 2010). Nav1.5 are expressed at 

very low levels in DRG neurons too (Dib-Hajj et al., 2010). In embryonic neurons, 

Nav1.3 is the most abundant isoform before receding in neonates and is not detected 

in adult DRG (Waxman et al., 1994). However, Nav1.3 expression is upregulated in 

peripheral nerve injury and axotomised rodent DRG (Waxman et al., 1994; Hains et 

al., 2004b; Lindia et al., 2005). Contactin, a molecule released after axotomy, is 

known to interact with Nav1.3 in DRG and increase current density (Shah et al., 

2004). Phenytoin, a Nav blocker, has been found to assert a neuroprotective effect 

on axons and nerves after SCI (Hains et al., 2004a). Despite this increased presence 

of Nav1.3, other studies have shown a redundancy in its involvement in injury-

induced hyperexcitability of neurons. Global or DRG-specific KO of Nav1.3 doesn’t 

disrupt nocifensive behaviour in mice after nerve injury (Nassar et al., 2006). 

Furthermore, intrathecal antisense oligonucleotides against Nav1.3 did not reduce 

neuropathic pain in a rat nerve injury model (Lindia et al., 2005).  

Nav1.7 is expressed in a wide range of sensory and sympathetic ganglia and in both 

small and large diameter DRG neurons (Djouhri et al., 2003). In functionally 

identified nociceptors, expression of Nav1.7 is relatively high (Djouhri et al., 2003; 

Rush et al., 2006). Its function is thought to involve the amplification of weak stimuli 

known as ‘generator potentials’. Despite activating and inactivating rapidly, the 

transition from the activated channel to the inactivated configuration is slow when the 

membrane is depolarised. Ultimately, this allows Nav1.7 to be present and available 

for further generator potentials (Dib-Hajj et al., 2010). Consistent to its proposed role 

in nociceptors, Nav1.7 expression has been localised at free nerve endings 

(Cummins et al., 1998). Inflammation has been shown to increase the expression of 

Nav1.7 and interestingly, mutations in Nav1.7 have been implicated in CIP (Black et 

al., 2004). 
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1.4.2 Voltage-gated calcium channels 

One of the vital means by which Ca2+ can be increased in cells from outside the cell 

is through voltage-gated Ca2+ channels (VGCCs). Found in excitable cells such as 

skeletal muscle, cardiac myocytes and neurons, VGCCs, as the name states, are 

Ca2+ channels that activate in response to changes in membrane potential (Zamponi 

and Snutch, 2013). 

These channels are subclassified into 2 groups: low voltage activated (LVA) and 

high voltage activated (HVA) depending on the membrane potential at which they 

are activate (Zamponi and Snutch, 2013). The LVAs consist of a single group- T-type 

Ca2+ channels, whereas the HVAs have 4 group members- L, P/Q, N and R-type 

Ca2+ channels (Zamponi and Snutch, 2013). T and L-type VGCCs have more than 1 

isoform (Table 1.2). LVAs are unique as they are activated when the membrane 

potential reaches ~-60mV (Perez-Reyes, 2003) whereas HVAs require greater 

depolarisation to ~-40mV before they activate (Solinas et al., 2013). Structurally, 

VGCCs comprise of various subunits that produce the functional channel. This 

includes an α subunit (~190kDa), which is the primary subunit and forms the Ca2+-

selective pore of the channel (Catterall et al., 2005). Furthermore, this α subunit also 

houses the voltage-sensors and includes sites for drug/toxin binding (Catterall, 

2000b). The α1 subunit is made up of a single protein with a tetrameric structure 

(numbered I-IV) with each of the domains consisting of 6 TM segments (Catterall et 

al., 2005). The pore loop formed between segments 5 and 6 of each domain 

contribute to the formation of the actual pore itself (Catterall, 1995; Gurkoff et al., 

2013). The pore of the α1 subunit is important in conforming the selectivity of the 

channel to the divalent Ca2+ ion compared to monovalent ions (Cibulsky and Sather, 

2003; Sather and McCleskey, 2003). The N and C-termini as well as the intracellular 

side of the channel (linkers of the 4 domains) are rich in important targets for channel 

modulators (Catterall et al., 2005). Other subunits are referred to as auxiliary and 

include the β, α2δ and ɣ- subunits (Dolphin, 2012; Gurkoff et al., 2013). These 

cytoplasmic proteins are able to modulate the activity of the α1 pore by binding to 

various parts of the protein along with being involved in trafficking of the channel and 

modulating the kinetics (Campiglio and Flucher, 2015). In neurons the activity of 

VGCCs allows robust Ca2+ entry in response to depolarisation, e.g. during firing of 

an action potential.  
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Type Isoforms LVA/HVA Expression 

T 

Cav3.1 

Cav3.2 

Cav3.3 

LVA 
Heart, pancreas, kidney, DRG, placenta, smooth 

muscle 

L 

Cav1.1 

Cav1.2 

Cav1.3 

Cav1.4 

HVA 

Cav1.1: skeletal muscle 

Cav1.2: CNS, smooth muscle and heart; 

Cav1.3: CNS, endocrine cells 

Cav1.4: skeletal muscle 

P/Q Cav2.1 HVA CNS, heart, pituitary, spinal cord 

N Cav2.2 HVA CNS, DRG 

R Cav2.3 HVA CNS 

 

Table 1.2: Different types of VGCCs. Isoforms, activation group and expression 

profile  

 

1.4.2.1 LVA 

T-type Ca2+ channels are the only group of LVA VGCCs. There are 3 isoforms of the 

α1 subunit referred to as Cav3.1, Cav3.2 and Cav3.3 (Perez-Reyes, 2003) and are 

readily expressed in the heart (Ono and Iijima, 2010), smooth muscle (Fry et al., 

2006), kidney (Zhou and Greka, 2016), pancreas (Yang and Berggren, 2006) and 

neurons (Molineux et al., 2006); Cav3.2 being the most abundant in DRG (Park and 

Luo, 2010; Rose et al., 2013). Unlike some HVAs, these VGCCs do not require 

additional auxiliary subunits to function (Lambert et al., 1997). In terms of their 

nociceptive activity, T-type VGCCs are found in peripheral afferent fibres where they 
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are involved in modulating the excitability of nociceptors (Bourinet et al., 2005; 

Todorovic and Jevtovic-Todorovic, 2006; Obradovic et al., 2014). Due to their ability 

to be activated at lower membrane potentials close to the resting membrane 

potential, T-type VGCCs allow initial Ca2+ entry in response to sub-threshold 

stimulation leading to slight depolarisation hence priming and enhancing neurons for 

action potential firing (Huguenard, 1996; Amir et al., 2002; Bodo et al., 2005; 

Molineux et al., 2006; Park and Luo, 2010). Our lab has also shown how bradykinin 

application to DRG neurons increases T-type channel abundance, which indicates a 

possible role in inflammatory pain (Huang et al., 2016). Therefore, T-type VGCCs 

are a validated target in terms of developing analgesics.  

1.4.2.2 HVA 

L-type VGCCs are found expressed in a whole host of cell types, including the CNS 

(Park and Luo, 2010; Morton et al., 2013), cardiac cells (Bodi et al., 2005), VSMCs 

(Kubo et al., 1998), skeletal muscle (Bannister et al., 2009), retina (Baumann et al., 

2004) and the sinoatrial node (Ono and Iijima, 2010). There are 4 different isoforms 

for L-type VGCCs- Cav1.1, Cav1.2, Cav1.3 and Cav1.4 (Zamponi and Snutch, 2013); 

the most plentifully expressed in neurons being Cav1.2 and Cav1.3 (Hell et al., 1993; 

Ludwig et al., 1997). High membrane depolarisation leads to long-lasting activation 

of L-type VGCCs due to their slow inactivation (Helton et al., 2005). This means that 

there is a large influx of Ca2+ attributed to L-type VGCC activation that makes these 

channels important for processes such as excitation-transcriptional coupling 

(Barbado et al., 2009; Lu et al., 2015; Arias-Calderón et al., 2016). Cav1.3 is different 

in terms of its biophysical properties as it activates faster and at more negative 

membrane potentials compared to the other channels possibly leading to 

spontaneous firing (Koschak et al., 2001; Mangoni et al., 2003; Olson et al., 2005; 

Perez-Alvarez et al., 2011). In inflammatory pain, L-type current can be enhanced by 

various proteins such as PKA and CaM, with the latter being able to alter inactivation 

kinetics of L-type VGCCs (Hell et al., 1993). Neuropathic pain models show 

increased expression of Cav1.2 in rats that have undergone SNL (Kim et al., 2001; 

Fossat et al., 2010; Ohsawa et al., 2013).  

P/Q-type VGCCs consist of 1 member- Cav2.1 which is thought to play a role in 

neurotransmitter release (Catterall and Few, 2008). The name P/Q suggest the 

presence of 2 channels however it is actually the product of a single gene with 
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alternative splicing producing the different variants consisting of additional post 

translational modifications present in P-type channels (Bourinet et al., 1999; Tsunemi 

et al., 2002). The P- and Q- type channels differ in their ω-agatoxin IVA (a specific 

inhibitor of P/Q-type VGCCs) sensitivity as well as their inactivation kinetics (Tottene 

et al., 1996). In the peripheral somatosensory system these channels are expressed 

at the pre-synaptic nerve terminal in the spinal cord (Westenbroek et al., 1998). 

Cav2.1 channel role in nociception is not fully understood as it was initially thought 

neurotransmitter release from primary afferent fibers was controlled mainly through 

P/Q-type VGCCs (Catterall and Few, 2008). However, one study proposed that SP 

or CGRP release was not affected by ω-agatoxin IVA application to rat sensory 

neurons (Westenbroek et al., 1998). Aδ and C-fibers inputs were similarly unaffected 

by application of ω-agatoxin IVA. Instead it was shown that there is high expression 

in pre-synaptic terminals of the spinal cord of laminae II and VI of the dorsal horn 

where P/Q-type VGCCs are thought to play a role in the release of neurotransmitters 

(Westenbroek et al., 1998). Application of ω-agatoxin IVA to the dorsal horn strongly 

decreased neurotransmitter release suggesting P/Q channels modulating synaptic 

activity in the dorsal horn (Heinke et al., 2004). 

N-type VGCCs (Cav2.2) are highly expressed in various aspects of the nociceptive 

neurons such as DRG cell bodies, their processes synapsing onto the dorsal horn 

and the dorsal horn neurons themselves (Westenbroek et al., 1992). These channels 

play a definitive role in neurotransmitter release in primary afferent neurons- 

especially Aδ fibers (Westenbroek et al., 1998). Co-localisation between N-type 

VGCCs and vesicles carrying neurotransmitters has been demonstrated as well as 

inhibition of N-type VGCCs being able to stop neurotransmitter release (Santicioli et 

al., 1992).  

 

1.4.3 Voltage-gated potassium channels 

The K+ channel family is a large family of proteins, subdivided into groups depending 

on their functioning principle and structure (Gutman et al., 2005; Grizel et al., 2014). 

These include, inward rectifying K+ channels (Kir), Ca2+ activated K+ channels (KCA), 

Two-pore K+ channels (K2P), ATP-sensitive K+ (KATP) and voltage gated K+ channels 

(Kv).  
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Kv channels are the most diverse of the subgroups consisting of 12 member 

subfamilies (Kv1-Kv12) (Grizel et al., 2014). Whilst various types of K+ channels are 

expressed in DRG neurons, this section will briefly focus on Kv and K2P channels. 

Whilst Nav and VGCCs play a prominent role in the excitation and depolarisation of 

cells, to control excitability, Kv channels hyperpolarise cells to bring the membrane 

potential back to resting levels after depolarisation (Shimomura et al., 1962). 

Structurally, Kv channels have 4 homo- or heteromeric subunits, each made up of 6 

TM domains (segments 1-6) (Du and Gamper, 2013). Segments 1-4 produce the 

voltage sensor domain which gives the channel its voltage-gating ability and 

segments 5 and 6 produce the pore through a re-entrant loop (Du and Gamper, 

2013). Auxiliary β-subunits are also present which regulate Kv channel activity (Li et 

al., 2006). In terms of nociception, activation of Kv channels reduces pain signals as 

membrane hyperpolarisation occurs (Du and Gamper, 2013). Various Kv channels 

are thought to play a role in nociception; Kv1.1-1.6 mRNA has been found in DRG 

neurons (Yang et al., 2004) with Kv1.1 and 1.2 being particularly abundant (Rasband 

et al., 2001). These 2 Kv subtypes were mainly found in large DRG compared to 

Kv1.4 which was predominantly localised in small-diameter DRG (Rasband et al., 

2001). IB4-positive neurons also expressed mainly Kv1.4 (Vydyanathan et al., 2005). 

Kv7 is another family of K+ channels that plays strong role in controlling excitability of 

nociceptors (reviewed in (Du and Gamper, 2013). Detailed discussion of the role of 

K+ channels in nociception is outside the scope of this thesis but it can be found in 

recent reviews (Du and Gamper, 2013; Du et al., 2017a).  

Despite not being voltage-gated like Kv channels, K2P channels are are proposed to 

play a role in nociception and therefore require a mention (O'Connell et al., 2002). 

Encode by KCNK genes, this family of proteins has 15 members, which are 

subdivided into 6 subfamilies- TWIK, TREK (including TRAAK), TASK, THIK, TALK 

and TRESK (Piechotta et al., 2011). What makes these channels distinct to other K+ 

channel family members is their structure and activation profile (O'Connell et al., 

2002). K2P channels are made up of a ‘dimer of dimers’; each subunit has 4 TM 

domains and as the name states, 2 pore domains with 2 of these subunits 

comprising the functional channel (O'Connell et al., 2002; Piechotta et al., 2011). 

Functionally, K2P channels contribute to the classical background ‘leak’ associated 

with K+ channel, hence play a role in setting the membrane potential and controlling 
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cellular excitability (Du and Gamper, 2013). Due to this vital involvement of K2P 

channels in excitable cells, their expression is found in a wide range of cells 

including neurons, epithelial cells and myocytes (O'Connell et al., 2002).  

Various K2P channels have been found in DRG neurons including TASK-1-3, TREK-

1-2, TRAAK, TWIK-1-2 and TRESK which suggests a role in pain processing (Talley 

et al., 2001; Marsh et al., 2012; Du and Gamper, 2013; Mathie and Veale, 2015). 

Despite these findings it is not clear as to which of these channels plays a greater 

role in nociceptors. Two members which were proposed as candidates underlying 

the background leak K+ channels in nociceptors are TREK and TRESK-2 using 

single cell electrophysiological recordings (Kang and Kim, 2006). However in relation 

to nociception, perhaps the most interesting aspect of K2P channels is the fact that 

they respond to various stimuli which can induce pain signals (Plant, 2012; Mathie 

and Veale, 2015). These channels respond to a combination of different stimuli; an 

example of this is for TREK-1 (KCNK2.1) which is modulated by temperature, 

voltage, pH, membrane stretch and ligands (Maingret et al., 1999; Patel et al., 1999; 

Maingret et al., 2000). Other members respond to thermal (TREK-2; (Kang et al., 

2005)), mechanical (TRAAK; (Kang et al., 2005)), acidification (TWIK and TASK-1-3; 

(Ma et al., 2012)). Interestingly, TASK-1-3 and TRESK have been shown to respond 

to hydroxyl-α-sanshool, a constituent of Szechuan peppers (Bautista et al., 2008). 

Ultimately, these channels would be inhibited and hence cause increased excitability 

and nociceptive firing (Du and Gamper, 2013).  

 

1.5 Chloride channels in pain 

A significant amount of research has gone into the various ion channels discussed 

above and their contributions to pain signalling. One group of ion channels that, until 

recently, have not received as much attention in terms of nociception are chloride 

(Cl-) channels. Our laboratory has found functional data to suggest the presence of 

Cl- channels in DRG and their implication in nociceptive processes (see below). 

Therefore, the rest of this chapter will focus on Cl- channels as they form the basis of 

this thesis.   

Cl- channels are a functionally and structurally diverse set of ion channels that are 

ubiquitously expressed throughout the body. They are involved in various biological 
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functions such as epithelial transport (Reddy et al., 1999), neuronal excitability 

(Staley et al., 1996; Huang et al., 2012; Ha and Cheong, 2017), vision (Bader et al., 

1982; Feigenspan and Bormann, 1998), olfaction (Reuter et al., 1998; Reisert et al., 

2003; Restrepo, 2005; Stephan et al., 2009; Delgado et al., 2016), cell volume 

regulation (Sardini et al., 2003; Almaca et al., 2009) and cellular contraction 

(Kitamura and Yamazaki, 2001; Coelho et al., 2004; Leblanc et al., 2005; Sancho et 

al., 2012; Brozovich et al., 2016) amongst many others.  

1.5.1 Inhibitory or excitatory effects of Cl- channel activation 

Upon stimulation or activation, Cl- channels allow the movement of Cl- ions 

depending on the electrochemical gradient present in the type of cell they are 

expressed in. In the majority of mature CNS neurons Cl- channels mediate influx of 

Cl- and hyperpolarize the membrane thus producing an inhibitory effect (e.g. GABAA 

and glycine receptors/channels)(Obata et al., 1978). Neurons generally have a 

typically low [Cl-]i (approximately 5mM) and a much greater [Cl-]o (approximately 

150mM). From a biophysical perspective with these values, the Nernst potential for 

Cl- (ECl) is more hyperpolarised compared to the resting membrane potential (more 

negative than -80mV) (Chesnoy-Marchais, 1983). However, this is not to say that Cl- 

movement is unable to produce depolarisation in some neurons. Cl- concentrations 

inside and outside the cells dictate the movement of ions in a particular direction and 

therefore whether they produce hyper- or depolarisation. One classical example is 

the Cl--induced depolarisation of immature cortical neurons where Cl- moves out of 

the cell hence producing an inward current (Ben-Ari et al., 1989; Yamada et al., 

2004). These neurons contain elevated [Cl-]i and more depolarized ECl so that 

opening of a Cl- channel results in outward flow of Cl- (inward current) hence a 

depolarising effect (Obata et al., 1978; Ben-Ari et al., 1989).  

The reason for the differing activity of Cl- channels is due to the presence of various 

transporters of Cl- channels in neurons. There are 2 principle transporters of Cl- - 

Na+-K+-Cl- - cotransporter 1 (NKCC1) and K+-Cl- cotransporter 2 (KCC2) (Delpire, 

2000). NKCC1 provides transport of 1 Na+ and K+ into the cell along with 2 Cl- to 

maintain electroneutrality. KCC2 on the other hand provides an opposite effect, to 

shuttle out 1 K+ and Cl- from the cell (Ben-Ari, 2002). Expression of NKCC1 is 

abundant in the CNS early in development therefore allowing accumulation of 

increased levels of Cl- inside the cells (Fukuda et al., 1998b; Fukuda et al., 1998a; 
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Ben-Ari, 2002). As development persists, the expression of NKCC1 decreases and 

KCC2 increases (Rivera et al., 1999; Ganguly et al., 2001) meaning there is less 

accumulation of Cl-, shifting the ECl below the resting membrane potential (Ben-Ari, 

2002). It has been postulated that the reason for this developmental Cl--induced 

excitability of neurons is due to GABAA- dependent depolarisation which in turn 

activates VGCCs (Fukuda et al., 1998b). VGCCs allow an influx of Ca2+ and 

subsequently abolish the Mg2+ block of NMDA channels (Ben-Ari et al., 1997). Due 

to the absence of AMPA receptors in early development, this is a necessary 

mechanism by which activity dependent neural circuits are formed (Ben-Ari et al., 

1997). As AMPA receptors are expressed, modulation of depolarisation is turned 

over to these excitatory receptors, allowing NKCC1 and KCC2 protein expression 

patterns to change and diverge Cl- channels towards inhibition (Ben-Ari, 2002). 

1.5.2 CLC 

CLCs are a well-established member of the Cl- channels. The first member of this 

family, CLC-0, was discovered and cloned from the Torpedo marmorata in 1990 

(Jentsch et al., 1990). Presently, members of the CLC family are placed into 3 

subclasses based upon gene sequences and functional properties of these proteins 

(Table 1.3).  

Subclass 1 (referred to as muscle type CLCs) consists of 4 members which share 

50-60% homology. Expression is localised to the plasma membrane to allow the 

movement of Cl- in and out of cells (Jentsch et al., 1999; Maduke et al., 2000). 

Subclass 2 and 3 (non-muscle type CLCs) on the other hand are found in 

intracellular membranes such as synaptic vesicles and play a role in maintaining the 

pH of these intracellular compartments (Stobrawa et al., 2001; Gunther et al., 2003; 

Mohammad-Panah et al., 2003). Subclass 2 CLCs share similar structures with the 

Table 1.3: Subclasses of CLC proteins 

 

Subclass 1 CLC-0, CLC-1 (CLC-N), CLC-2 and CLC-K (Ka and Kb 

isoforms)  

Subclass 2 CLC-3, CLC-4 and CLC-5 

Subclass 3 CLC-6 and CLC-7 
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yeast orthologue ScCLC (Borsani et al., 1995; Flis et al., 2005) (Table 1.3). 

In terms of the structure of CLC channels, they exist as homodimers with each of the 

subunits providing a separate ionic pore (Middleton et al., 1996; Dutzler et al., 2002). 

Each dimer consists of 18 α-helices which are arranged with a fascinating 

antiparallel architecture (Dutzler et al., 2002). The N-terminus half of the polypeptide 

is structurally related to the C-terminus which has been proposed to (i) manipulate 

the polar ends of the helices to stabilise (or destabilise) ions flowing through the 

selectivity filter, and (ii) to direct the non-polar ends of each helix towards the 

aqueous environment outside the membrane hence satisfying biophysical energy 

principles (Dutzler et al., 2003). The structure of bovine CLC-K has very recently 

been elucidated using cryoEM and was discovered to share an 84% sequence 

similarity with human CLC-K (Park et al., 2017) (Fig. 1.6). This study revealed the 

possible differences between muscle-type and non-muscle type CLCs where a 

difference in ion pore structure (wider ion pore is present for muscle-type CLCs) may 

allow the fast Cl- movement whereas vesicular CLCs accommodate Cl-/H+ transport 

in relation to acidification of these organelles (Park et al., 2017).   

CLCs also exhibit 2-types of gating; fast gating where independent gates are found 

for each pore of a homodimer complex and slow (common) gating which gates both 

pores simultaneously (Miller and White, 1984; Dutzler et al., 2003). In terms of 

structural changes for these gating mechanisms, slow gating involves conformational 

changes in the homodimer helices and C-termini whereas fast gating requires 

minimal rearrangements (Accardi and Pusch, 2003; Basilio et al., 2014).  

 

 

 

 

 

 

 

 



35 
 

 

 

 

 

 

 

 

 

  

Figure 1.6: CryoEM structure of Bovine CLC-K. Dimer structure of CLC-K (dark 

blue and light blue) in complex with Fab (grey for each subunit). Compared to non-

muscle type CLCs, CLC-K has a narrower pore. Figure adapted from (Park et al., 

2017). 
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1.5.3 GABA receptors 

Gamma-Aminobutyric acid (GABA) receptors play a role in inhibition of the 

mammalian nervous system (Sieghart, 1995). GABA is the ligand that binds to these 

receptor and allows activation of these channels (Sieghart, 1995). The GABA 

receptor family consists of 2 members, ionotropic GABAA channels and metabotropic 

GABAB receptors (Sigel and Steinmann, 2012). GABAA channels are ligand gated 

ion channels and one of the major players in terms of inhibition of neuronal firing in 

the CNS (Sigel and Steinmann, 2012). Structurally, GABAA receptors are arranged in 

a pentameric structure comprising of different combinations of various subunit 

subtypes (Barnard et al., 1998) (Table 1.4). 

 

Subunit class Subtype of subunit 

α 1-6 

β 1-3 

γ 1-3 

δ 1 

ε 1 

π 1 

θ 1 

ρ 1-3 

Table 1.4: Subunit and subtypes of GABAA receptor. 

 

The general consensus is that the most physiological heteromeric arrangements 

includes 2 α-, 2 β- and 1 γ-subunits (Sigel and Steinmann, 2012). Each subunit is 

made up of approximately 450 amino acids and consists a large extracellular N-

terminus with 4 TM domains (Sigel and Steinmann, 2012). TM 2 is involved in 

producing the pore region in each subunit. Interestingly, an intracellular loop is 

present between TM 3 and 4 which allows for modulation of the channel by 

phosphorylation and binding of various proteins to specific receptor subtypes (Sigel 

and Steinmann, 2012). An example of this is the binding of GABA Receptor 

Associated Protein (GABARAP) which only interacts with GABAA in the presence of 

γ1 or γ2 subunits (Wang et al., 1999; Nymann-Andersen et al., 2002). GABARAP is 
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thought to play a role in anchoring GABA to the cytoskeleton (Wang and Olsen, 

2000). Various compounds are thought to modulate GABAA channel activity such as 

barbiturates, benzodiazepines, anti-convulsants and neuroactive steroids (Johnston, 

2005) and GABAA antagonists include bicuculline, SR-95531 and picrotoxinin 

(Kaneda et al., 1995). Recently, GABAergic machinery has been localised in DRG 

neurons and has been found to play a role in nociceptive transmission, controlling 

and filtering nociceptive signals at the cell body of neurons (Du et al., 2017b).  

1.5.4 Glycine receptors 

Along with GABAA, glycine receptors are the other major inhibitory modulators of 

neurotransmission. Also a ligand gated ion channel, binding of glycine induces 

activation of this receptor (Lynch, 2004). The fast inhibitory capacity of glycine was 

first brought to the forefront of scientific research when its distribution was 

investigated in cat spinal cord (Aprison and Werman, 1965). Application of glycine 

onto spinal neurons produced strychnine-sensitive hyperpolarisation (Curtis et al., 

1967; Werman et al., 1967). This hyperpolarizing activity was subsequently found to 

be mediated by the glycine receptor (Pfeiffer et al., 1982). Similarly to GABAA, the 

glycine receptor is composed of 5 subunits surrounding a central pore (Lynch, 2004). 

Each subunit is made up of 4 TM domains and a large N-terminus domain (Lynch, 

2004). Expression of glycine receptors is largely found in the spinal cord, brain stem 

(Young and Snyder, 1973), cerebellum (Garcia-Alcocer et al., 2008), hippocampus, 

striatum, cortex (Bristow et al., 1986) and the retina (Haverkamp et al., 2003). Unlike 

GABAA channels, there are only 5 subunits identified for glycine receptors, α1-4 and 

a single β subunit (Grenningloh et al., 1990; Dutertre et al., 2012) and can form 

homomeric channels with a single α subunit or a heteromeric structures with α and 

the β subunit (Lynch, 2004). During development, glycine receptors undergo a 

developmental switch from α2 homomers (fetal) to α1 β heteromers (adults) (Becker 

et al., 1988). Neonatal rats express mRNA for all 3 subunits (α1, α2 and β) but at 

postnatal day 20, the adult form takes over (Becker et al., 1988; Watanabe and 

Akagi, 1995). This is also seen in the mRNA expression profile which falls for the α2 

subunit and increases for the α1 subunit (Akagi et al., 1991; Watanabe and Akagi, 

1995). However studies have provided evidence for the α2 subunit still being present 

at significant levels in the retina and brain stem during adulthood (Piechotta et al., 

2001). This suggests that the developmental switch is not as complete as previously 
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believed (Piechotta et al., 2001). Various other cells also express glycine receptors 

such as adrenomedullary chromaffin cells (Yadid et al., 1990), macrophages, 

leukocytes (Froh et al., 2002), Kupffer cells (specialised macrophages of the liver) 

(Ikejima et al., 1997) neural stem progenitor cells (Nguyen et al., 2002) and 

endocrine pancreatic cells (Weaver et al., 1998). Interestingly in pancreatic cells, 

activation of glycine receptors produces depolarisation and leads to increased [Ca2+]i 

levels (Weaver et al., 1998). 

1.5.5 CFTR  

The cystic fibrosis transmembrane conductance regulator (CFTR) functions as a Cl- 

channel at the apical membrane of epithelial cells (Riordan et al., 1989; Patrick and 

Thomas, 2012). This protein is a member of the ATP-binding cassette (ABC) 

transporter superfamily of proteins that confers the ability to hydrolyse nucleotides to 

transport substances across the membrane. However, unlike ABC transporter 

function which dictates the movement of substrates against their electrochemical 

gradients, CFTR has a functionally distinct role as an ion channel (Holland, 2011). 

CFTR is found in airways (Riordan et al., 1989), liver (Kinnman et al., 2000), 

digestive tract (Sood et al., 1992; Strong et al., 1994), pancreas (Hyde et al., 1997; 

Wilschanski and Novak, 2013), salivary glands (Shin et al., 2016) and recently found 

in exocrine sweat glands (Hanukoglu et al., 2017).  

The structure of CFTR consists of a single polypetide consisting of 2 TM domains 

which are responsible for formation of the pore (Sheppard and Welsh, 1999). These 

2 TM domains are connected through a regulatory domain (R). Two nucleotide 

binding domains (NBD1-2) are also present, which bind ATP to activate and 

hydrolyse ATP to close CFTR (Duffieux et al., 2000). Interestingly, binding of 2 ATP 

molecules to the 2 NBD motifs initiates a dimerisation of the 2 segments, inducing a 

conformational change to the channel (Delpire, 2000; Gadsby et al., 2006; Huang et 

al., 2009b) (Fig. 1.7). Upon hydrolysis of ATP, this dimerisation is dislocated which 

causes the channel to close (Csanady et al., 2006) (Fig. 1.7). Phosphorylation of the 

R-domain with protein kinases (PKA and PKC) has been shown to facilitate channel 

opening (Bompadre et al., 2005).  

Functions of CFTR involve transport of both Cl- and HCO3- in the maintenance of 

electrolyte and fluid transport, which plays an important role in various organs 
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(Frizzell and Hanrahan, 2012) (Fig. 1.7). Cl- secretion via CFTR causes paracellular 

Na+ secretion providing an osmotic driving force for water and production of an 

isotonic secretory product (Kunzelmann, 2001; Frizzell and Hanrahan, 2012). For 

example, airway surface liquid in lungs is essential for the clearance of mucus and in 

the intestine, the large amount of fluid (~8L per day) produced is vital for digestion 

(Barrett and Keely, 2000; Kunzelmann, 2001; Frizzell and Hanrahan, 2012). 

Disruption of this process impairs the production and composition of epithelial fluid 

and compromises organ functionality (Mehta et al., 2004). CFTR is the channel 

implicated in the autosomal-recessive disease cystic fibrosis (CF) which is 

characterised by abnormalities in this ion channel (Mehta et al., 2004). 

Approximately 70% of CF patients have the F508 deletion mutation in one or both 

CFTR genes even though over 1600 mutations in the CFTR gene have been 

reported (Davies et al., 2007). CF patients present mainly in the airways, pancreas 

and the bowel however the most problematic symptoms are the lungs where mucus 

clearance is disrupt (Davies et al., 2007).   

1.5.6 Bestrophins 

Bestrophins are generally regarded in relation to Best disease, a genetic disorder 

affecting the macula of the eye and disrupting vision (Petrukhin et al., 1998). The 

light peak of the electrooculogram is thought to be caused by a Cl- conductance and 

bestrophins have been put forward as likely candidates mediating this. Furthermore, 

these channels are found highly expressed at the retinal pigment epithelial (RPE) 

cells (Marmorstein et al., 2000; Sun et al., 2002). Despite this, their contribution to 

the development of Best disease has been disputed as RPE cells from mice, with the 

W93C Best disease mutation, display normal Cl- conductance (Zhang et al., 2010). 

The mammalian Bestrophin family consists of 4 members- BEST-1-4. 

Overexpression of Bestrophin 1 and 2 in HEK293 cells produced robust Cl- currents 

when caged Ca2+ was applied (Qu et al., 2003; Qu et al., 2004). Bestrophin 1 and 2 

are also expressed in mouse trachea and kidney epithelia; these cells also display 

Ca2+ activated Cl- currents in whole cell patch clamp recordings when extracellular 

ATP was applied to increase [Ca2+]i (Barro-Soria et al., 2008; Barro Soria et al., 

2009). Knock-down of both Bestrophin 1 and 2 reduced ATP-induced Cl- currents by 

50% in   
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Figure 1.7: Mechanism of CFTR opening. Two NBD domains (Blue and green 

shapes attached to CFTR) bind ATP (yellow circle) which induces a conformational 

change through dimerisation. This opens the channel until dissociation of ATP which 

puts CFTR back into the resting state. Figure based on (Csanady et al., 2006). 
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mouse trachea (Barro-Soria et al., 2008). These were also reduced with the 

application of the Cl- channel blockers DIDS and Niflumic Acid (Barro-Soria et al., 

2008). Bestrophin 1 expression has been demonstrated in mouse DRG neurons and 

spinal cord (Al-Jumaily et al., 2007; García et al., 2014; Pineda-Farias et al., 2015) . 

Moreover, the expression profile of bestrophin 1 has been shown to be upregulated 

after nerve injury or axotomisation of sensory neurons (Boudes et al., 2009) but this 

has been disputed by other groups (García et al., 2014; Pineda-Farias et al., 2015). 

Despite this, its presence in the dorsal horn of the spinal cord and DRG, and the fact 

that an anti-bestrophin 1 antibody reduces tactile allodynia after nerve ligation, 

suggests that bestrophin 1 does play a role in development of neuropathic pain 

(Pineda-Farias et al., 2015). A role in allodynia makes sense given the fact Boudes 

and colleagues showed BEST-1 transcripts are greater in large and medium 

diameter DRG compared to smaller DRG (Boudes et al., 2009). 

All isoforms of bestrophins have been found to be expressed in colonic epithelia 

(Barro-Soria et al., 2008; Ito et al., 2013; Eliasson et al., 2014). Bestrophin 1 has 

also been implicated in SOCE in the RPE where it has been co-localised with STIM1 

(Hidalgo et al., 1986; Barro-Soria et al., 2010; Gomez et al., 2013). Knockdown of 

bestrophin 1 caused reduced release of Ca2+ from the ER (Gomez et al., 2013). It is 

thought to act as a counterion for Ca2+ release and has been shown to affect Ca2+ 

store refilling when BEST-1 was knocked down using siRNA in porcine RPE cells 

(Neussert et al., 2010; Gomez et al., 2013).  

The crystal structure of the homolog of Bestrophin 1 from Klebsiella pneumoniae 

was resolved showing a stable pentameric organisation of the channel. Each subunit 

consists of 4 transmembrane domains and a relatively large intracellular portion 

thought to be important for protein-protein interactions (Yang et al., 2014). The X-ray 

crystal structure of chicken bestrophin 1-Fab complexes also reported an outer 

entryway, neck region and an inner cavity which encompasses the pore of the 

channel (Kane Dickson et al., 2014). The neck region has been implicated in the 

anionic permeability of the channel (SCN- > I- > Cl-) (O'Driscoll et al., 2009). 

Furthermore, 5 putative Ca2+ binding sites around the midsection region of the 

pentameric structure were revealed; this is contrary to previous reports implicating 
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the C-terminus of the channels in Ca2+ binding (Xiao et al., 2011; Kane Dickson et 

al., 2014).  

Studying the properties of bestrophin channels using electrophysiology has revealed 

that they are activated by nanomolar [Ca2+]i whereas under [Ca2+]i free conditions 

there were very little currents (Liu et al., 2015). Currents are also largely time and 

voltage-independent and showed slight outward rectification in various cell types (Qu 

et al., 2003; Pifferi et al., 2006; O'Driscoll et al., 2008).  

 

1.6 Ca2+ activated Cl- channels 

Ca2+ activated Cl- channels (CaCCs) are a distinct group of Cl- channels; CaCCs 

have been acknowledged since the 1980s in Xenopus Oocytes where Cl- currents 

were seen upon depolarisation (Miledi, 1982). Research over the years has yielded 

various aspects regarding their activity and has allowed CaCCs to be categorised 

and implicated in various processes.   

Epithelial cells express CaCCs where they play a role in the production of mucus 

from Goblet cells and fluid secretion (Danahay et al., 2002). CaCCs are also found in 

excitable cells, including neurons and muscle cells (Huang et al., 2009a; Huang et 

al., 2012). Sensory processing systems are also known to express robust CaCC 

currents; these include various sensory cells mediating olfaction (Kleene and 

Gesteland, 1991), vision (Bader et al., 1982; Barnes and Hille, 1989) and taste 

(Taylor and Roper, 1994).  

There has been some ambiguity regarding the classification of CaCCs. The 

hallmarks of classical CaCCs include: 

- Ca2+ sensitivity in the range of 0.2 µM– 5µM  

- Changes in Ca2+ sensitivity depending on membrane potential. For example, 

at more negative membrane potentials the Ca2+ sensitivity is lower compared 

to more positive membrane potentials 

- Outwardly rectifying current-voltage relationships at submaximal Ca2+ 

concentrations which become linear at saturating Ca2+ concentrations 

- Sensitivity to a broad spectrum of Cl- channel blockers, including niflumic acid 

(NFA), 4,4′‐diisothio‐cyanostilbene‐2,2′‐disulfonic acid (DIDS) and 5‐nitro‐2‐(3‐

phenylpropylamino) benzoic acid (NPPB).  
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- Preference for larger anions in the following order: 

SCN- > I- > Cl- > F- 

However, due to the fact that Cl- is the most abundant anion in the body, it is the 

primary charge carrier for CaCC channels.  

In addition to this classical CaCC current, a Ca2+-activated Cl- current with different 

properties was also described in various cell types. This CaCC was found to be 

dependent on cyclic guanine monophosphate (cGMP) in rat mesenteric artery 

smooth muscle cells (Matchkov et al., 2004). In these cells cGMP is an absolute 

requirement, regardless of Ca2+ presence and has been thought to act via cGMP-

dependent phosphorylation (Matchkov et al., 2004; Zhuang, 2009). 

For decades that followed physiological identification of CaCC, the molecular identity 

of the underlying ion channel defied identification. Various channels were put forward 

as candidates for CaCCs but these were ultimately dismissed as bonafide CaCCs 

due to their channel properties (Hartzell et al., 2005). CLC-3 was proposed as a 

CaCC because expression in epithelial cells led to CaCC currents being generated 

however, this was found to be CaM kinase II (CaMKII) dependent (Huang et al., 

2001; Robinson et al., 2004), which is not a property of ‘classical’ CaCCs. Another 

set of potential candidates were bestrophins but these channels are activated by 

nanomolar [Ca2+] whereas CaCCs require micromolar levels of [Ca2+]. Furthermore, 

bestrophins are voltage independent and don’t show the same outward rectification 

seen with classical CaCCs (Tsunenari et al., 2003; Tsunenari et al., 2006). Another 

family of proteins, the CLCAs, were proposed as CaCC due to their ion selectivity 

profile however, its activation by voltage without the requirement for Ca2+ elevation, 

linear I-V relationship and pharmacological profile (not blocked by CaCC inhibitors 

i.e. NFA) led to the dismissal of CLCAs as CaCC candidates (Cunningham et al., 

1995). Moreover, it was later discovered that CLCAs are not ion channels but 

secreted non-integral membrane proteins. It has been proposed that they are 

catalytic proteins which function in a manner similar to metalloproteases (Pawlowski 

et al., 2006).  

Finally, a novel family of proteins was identified as CaCC correlates in 2008 by 3 

independent groups. The next segment of this thesis will focus on the Anoctamin 

(TMEM16) family of proteins, which have been classified as true CaCCs.  
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1.7 Discovery of ANO1 

The first of the true CaCCs to be identified was ANO1 (TMEM16A) in 2008. Three 

different laboratories were able to clone and physiologically express this channel in 

heterologous systems (Caputo et al., 2008; Schroeder et al., 2008; Yang et al., 

2008). Co-expression of ANO1 and various Ca2+ mobilising receptors (i.e. 

endothelin, angiotensin etc.) in HEK293 cells produced robust Ca2+ activated Cl- 

currents (Yang et al., 2008). Xenopus oocytes endogenously block polyspermy- 

fertilisation of the egg with more than one sperm- due to CaCC currents they 

possess (Runft et al., 1999). Therefore, to find a novel expression system for CaCC 

currents, Axolotl Salamander oocytes were identified as physiologically polyspermic 

and showed no endogenous CaCC currents (Schroeder et al., 2008). When mRNA 

for Xenopus oocytes was injected into Axolotl oocytes, robust CaCC currents 

appeared in response to photo-releasable IP3, which was responsible for [Ca2+]i 

elevation (Schroeder et al., 2008). Size-fractionated Xenopus oocyte RNA segments 

expressed in Axolotl oocytes showed CaCC currents were only present in the 

specific ~5-7kb fraction. Further analysis revealed a single 5191 base pair cDNA 

clone was responsible for producing CaCC currents (Schroeder et al., 2008). 

Databases showed that this was the Xenopus orthologue of human and mouse 

ANO1. Another interesting approach involved analysing upregulation of genes after 

treatment of human bronchial cells by interleukin (IL)-4 and 13, which are known to 

increase Ca2+ activated Cl- currents. ANO1 was identified to be gene responsible for 

this as knockdown of ANO1 reduced CaCC activity (Caputo et al., 2008). Thus, 

these 3 studies set the ball rolling and peaked interest in ANO1 research. 

1.7.1 Heterologously expressed ANO1 reproduces properties of a classical 

CaCC 

Properties of ANO1 closely match those specified in general for classical CaCCs. 

When Ca2+ is not present, no CaCC currents are seen in HEK293 cells transfected 

with ANO1 (Yang et al., 2008). However, when submicromolar Ca2+ is present, 

ANO1 shows the typical outward rectification expected from CaCCs (Caputo et al., 

2008; Schroeder et al., 2008; Yang et al., 2008). When Ca2+ is increased to higher 

concentrations, the outwardly rectifying current-voltage relationship becomes linear 

(Yang et al., 2008; Romanenko et al., 2010; Xiao et al., 2011; Crutzen et al., 2016). 

Another characteristic of CaCCs is their interrelated sensitivity to Ca2+ and voltage 
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(Fig. 1.8). Ca2+ and voltage-dependence show a synergistic relationship with regards 

to ANO1 activation. In conditions where the membrane potential is depolarised, Ca2+ 

sensitivity for ANO1 increases (Yang et al., 2008; Xiao et al., 2011; Cho et al., 2012). 

Consequently, the EC50 for ANO1 was found to be 2.6µM at -60mV and 0.4μM at 

+60mV (Yang et al., 2008; Ferrera et al., 2009). One interesting property on ANO1 is 

its ability to be activated under Ca2+ free conditions by strong depolarisations. 

Depolarising the membrane to +200mV or above is able to induce ANO1 activity 

(Xiao et al., 2011; Vocke et al., 2013).  

Single channel conductance of ANO1 has been found to be 3.5pS which is in line 

with that reported for native CaCCs (Piper and Large, 2003; Adomaviciene et al., 

2013). ANO1 also exhibits time dependence when activated by Ca2+ (Sheridan et al., 

2011; Xiao et al., 2011). When activated, there is an instantaneous current followed 

by the time-dependent current which increases (Fig. 1.8). The instantaneous current 

is miniscule which reflects channels open at the holding potential whereas the 

second component is due to time-dependent opening induced by depolarisation 

(Xiao et al., 2011). This activation period is shortened when intracellular Ca2+ 

increases (Xiao et al., 2011; Yu et al., 2012). The time course for ANO1 to reach half 

maximal current at 274nM Ca2+ concentration was approximately 120ms at +100mV 

in HEK293 cells expressing ANO1 (Adomaviciene et al., 2013). Rat pulmonary artery 

smooth muscle cells (PASMCs) showed a time constant for full activation of 491ms 

at +90mV with 600nM Ca2+. (Manoury et al., 2010) Depolarising the cells causes 

slowing of the activation kinetics and deactivation of ANO1 requires Ca2+ unbinding 

from its binding site which is a voltage-dependent process (Xiao et al., 2011; Yu et 

al., 2012). At more depolarised voltages, the time constant for deactivation is longer 

compared to negative voltages. It was proposed that this may be due to the actual 

binding site for Ca2+ being close to the voltage-sensitive areas of the channel, 

however the voltage-sensitive domain was found to be at the intracellular loop 

between TM 3 and 4 whereas the proposed binding site is found in the pore region 

(see below) (Yu et al., 2012; Brunner et al., 2014; Yu et al., 2014; Paulino et al., 

2017).  
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Figure 1.8: Electrophysiological properties of ANO1 in HEK293 cells 

transfected with ANO1. Increasing Ca2+ produces a linear I-V relationship. 

Figure adapted from (Xiao et al., 2011) 
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1.7.2 Structure of ANO1 

Based on hydrophobicity studies, the structure of ANO1 was first predicted to consist 

of 8 transmembrane domains with intracellular N and C-termini (Yang et al., 2008) 

(Fig. 1.9A). A re-entrant loop was predicted to occur between TM 5 and 6 however 

after a study using HA-tag epitopes and subsequent accessibility experiments to 

various areas of the channel, it was proposed that the re-entrant loop was in fact an 

intracellular commodity between TM 6 and 7 (Yu et al., 2012). The crystal structure 

of an Anoctamin family member, ANO6, in the fungus Nectria haematococca 

(nhTMEM16) was ben solved in 2014, revealing insights into the structure and 

topology of Anoctamins (Brunner et al., 2014) (Fig. 1.10A). Despite being a lipid 

scramblase in function, it shares ~40% sequence homology with mammalian ANO1 

in the TM region. One important discovery elucidated by the crystal structure of 

nhTMEM16 is the presence of 10 TM domains and not the 8 previously presumed. 

The protein is found in a homo-dimeric complex with internal C and N-termini 

(Sheridan et al., 2011; Tien et al., 2013; Brunner et al., 2014).  

A small peptide region (residues 161-179) in the N-terminus has been implicated in 

being responsible for the ability of ANO1 to dimerise and is perceived as the critical 

region for channel assembly (Tien et al., 2013). This peptide stretch seems to be 

involved in the production of an α-helix involved in the dimer, hence mutagenic 

alterations to this region result in non-assembly of ANO1 in HEK293 cells (Tien et 

al., 2013). However, this dimerisation region was not identified in the crystal structure 

of nhTMEM16 despite it also being found in a homo-dimeric complex (Brunner et al., 

2014). The crystal structure of nhTMEM16 also revealed N-terminus interactions with 

the C-terminus of the opposing ANO1 subunit, such that the C-terminus actually 

wraps around the N-terminus leaving 2 dimer cavities (Brunner et al., 2014). Another 

more interesting feature of the nhTMEM16 structure is the presence of a small 

subunit cavity or ‘open furrow’ which has been presumed to be the ion conduction 

path (Fig. 1.10B). It also harbours various regions involved in ion selectivity and 

conduction in ANO1 (Yang et al., 2008; Yu et al., 2012). Recently, the structure of 

mouse ANO1 has been solved using cryoEM (Paulino et al., 2017) (Fig. 1.10A). 

Structurally, it was confirmed that ANO1 has a homo-dimeric structure and is 

relatively similar to nhTMEM16, with 10 transmembrane domains and internal C and 

N-termini (Paulino et al., 2017). ANO1 consists of a slightly larger extracellular 
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domain compared to nhTMEM16; this compact domain is where 6 cysteines 

residues critical for channel activity are found (Yu et al., 2012). Unlike findings by 

Tien and colleagues, there is no N-terminus interaction between adjacent subunits, 

which was proposed to be essential for homo-dimerisation (Tien et al., 2013). The C-

terminus domain interactions found in nhTMEM16 are also not present in ANO1 

meaning dimerisation is produced by other interactions than those proposed in 

nhTMEM16 (Brunner et al., 2014; Paulino et al., 2017). Instead, interactions between 

the extracellular section of TM 10 of each subunit produce the likely homo-

dimerisation interactions (Paulino et al., 2017). Interestingly, TM 10 of each subunit 

protrudes and extends further than in nhTMEM16, possibly to allow these 

interactions (Paulino et al., 2017). 

The pore region of ANO1 is composed of TM 3-7 and unlike the lipid scramblase 

nhTMEM16; the pore of ANO1 is also slightly rearranged in that TM 3, 4 and 6 shield 

the pore from the lipid membrane. Along with TM 5 and 7, this provides an aqueous 

pore for ion conduction (Paulino et al., 2017) (Fig. 1.10B). The two Ca2+ binding sites 

are found between TM 6, and 8- coinciding with the binding sites of Ca2+ in 

nhTMEM16 (Paulino et al., 2017). The pore is narrow but widens at the intracellular 

side of the channel.  

1.7.3 Mechanisms of ANO1 activation 

The mechanisms behind Ca2+ dependency of ANO1 activation have been the 

subject of intense speculation and this is still considered a controversial topic. One 

hallmark of CaCC activity is the ability to be activated by free Ca2+ in the micromolar 

range (Zhuang, 2009). There is a split in opinion regarding ANO1 activation; some 

groups maintain that free Ca2+ is necessary and sufficient to activate ANO1 but 

others believe activation requires CaM. 
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Figure 1.9: Originally proposed topology of ANO1. ANO1 was thought to consist 

of 8 TM domains. A change in the topology of ANO1 was proposed which placed the 

pore-loop between TM 6 and 7. N-terminus houses a potential dimerisation domain 

(yellow oval) and various CaM-binding domains. Another CaM domain has been 

identified before TM 7 (white segment) which increases the HCO3
- permeability. Red 

segment of N-terminus indicates segment b (splice variant exon proposed for CaM 

binding). Red circles show the location of 2 glutamate residues (E702 and E705) 

important for Ca2+ binding. Also shown is the EEEEEAVK segment at the 

intracellular loop between TM 2 and 3. EEEE has been shown to play a role in 

voltage dependence (highlighted yellow) of ANO1 and EAVK in Ca2+ sensitivity 

(highlighted orange). Figure based on (Pedemonte and Galietta, 2014; Leblanc et 

al., 2015) 
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Figure 1.10: Structures of nhTMEM16 and mANO1. (A) Crystal structures of 

nhTMEM16 (beige and grey) and mANO1 (red and blue) superimposed over each 

other. (B) Schematic representation of the differences between the pores of 

nhTMEM16 and mANO1. TM 4 and 6 are further apart allowing for the formation of 

an ‘open furrow’ where the hydrophilic heads of lipids such as phosphatidylcholine 

(shown) are able use to move from layer to layer. This allows the tails to remain in 

the hydrophilic core of the membrane. Rearrangements of TM 4 and 6 in mANO1 

allow the formation of an aqueous conduit for ion permeation. Figures adapted from 

(Fisher and Hartzell, 2017; Paulino et al., 2017) 
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1.7.3.1 CaM activation theory 

CaM seems essential for ANO1 Ca2+-dependent activation in various experiments 

carried out by different groups. Before the discovery of ANO1 in 2008, CaM was 

found to be an important regulator of CaCC currents in olfactory epithelial cells 

(Kaneko et al., 2006). CaM mutants were shown to reduce the Ca2+ sensitivity of 

CaCC in these cells (Kaneko et al., 2006). Kunzelmann’s group identified 2 putative 

CaM binding domains (CaM-BD1 and CaM-BD2) which were proposed to bind CaM 

and control channel activity (Tian et al., 2011). Similar to Ca2+ activated K+ channels 

(SKCa), which require CaM for activation (Fanger et al., 1999), it was demonstrated 

that molecules such as 1-DBIO, DCEBIO and riluzole (known activators of SKCa) 

were able to activate ANO1 currents in recombinant expression systems and in 

native cells (Tian et al., 2011). Moreover, inhibitors of CaM such as trifluoperazine 

and J8 caused a large reduction of ANO1 current in HEK293 cells (Tian et al., 2011). 

CaM was also found to bind to splice variants of ANO1 containing segment b 

(segment b overlaps with CaM-BD1) through co-immunoprecipitation studies, 

however the ac segment-containing splice variant of ANO1 was activated without 

this CaM-BD present which suggests CaM may play a role in other areas of ANO1 

activation (Tian et al., 2011). Mutations of these binding sites also caused a 

reduction in ANO1 activation by Ca2+. Interestingly, another CaM binding domain 

was found in the ac splice variant of ANO1 in another study (Jung et al., 2013). As 

well as potential implications in ANO1 activation, CaM is thought to also play a role 

in ANO1 permeability changes from Cl- to HCO3- under high Ca2+ conditions (see 

above). In support to this idea, experiments demonstrated that inhibitors and siRNA 

against CaM inhibit this phenomenon from occurring as well as application of 

exogenous CaM being able to recapitulate this property of ANO1 (Jung et al., 2013). 

As with CaM-dependent activation of ANO1, this permeability-altering ability of CaM 

has also been challenged as Yu and colleagues were unable to reproduce 

permeability changes when using mouse ANO1 expressed in HEK293 cells (Yu et 

al., 2014). Another regulatory CaM binding motif (RCBM) was identified in ANO1 and 

ANO2 (Vocke et al., 2013). CaM was found to interact with small peptides containing 

the sequence for the RCBM. Mutagenesis studies revealed this domain was 

important for Ca2+-dependent activation of ANO1 and the binding of CaM (Vocke et 

al., 2013). 
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1.7.3.2 Direct activation by Ca2+ theory 

Other groups have been able to generate data which opposes this notion of CaM-

required activation. A strategy utilising liposomes expressing ANO1 to study ANO1-

mediated Cl- efflux required only Ca2+ and voltage to induce activation- not CaM 

(Terashima et al., 2013). The addition of CaM in the liposomes had no effect on Cl- 

efflux. This group also found no interaction between ANO1 and CaM in pull down 

assays (Terashima et al., 2013). Again in opposition to findings of the ‘pro-CaM 

camp’, the Hartzell laboratory found no differences in current when exogenous CaM 

was applied to cytosolic portions of ANO1-expressing membranes in inside-out 

patches (Yu et al., 2014). Ca2+ insensitive mutants of CaM had no effect on ANO1 

currents in this study either, whereas they were shown to abolish SKCa currents (Yu 

et al., 2014). No interactions were seen between ANO1 and CaM in co-

immunoprecipitation assays either. In Xenopus oocytes, Ca2+ insensitive CaM 

mutants did not affect ANO1 current nor were anti-CaM antibodies and W7 (a potent 

CaM antagonist) able to affect ANO1 current (Tien et al., 2014).  

 

ANO1 has no canonical Ca2+ binding domains i.e. EF-hands seen in STIM1 (Huang 

et al., 2009a) and aequorin (Tricoire et al., 2006). Yet, negatively charged amino acid 

residues (EEEEEAVK) in the internal regions of ANO1 (also found in Ca2+ activated 

K+ channels and bestrophins) have been proposed to play a part in voltage and Ca2+ 

sensitivity (Xiao et al., 2011). Mutating these residues showed that the EAVK 

segment caused reduced Ca2+ sensitivity of ANO1 whereas removal of the initial 

EEEE segment eliminated the intrinsic voltage dependence without influencing 

ANO1 sensitivity (Xiao et al., 2011). Two highly conserved glutamate residues (E702 

and E705) have also been implicated in the actual binding of Ca2+ to ANO1. Mutating 

these residues to cysteine and applying cysteine-modifying reagents showed 

decreased sensitivity to Ca2+ (Yang et al., 2008; Yu et al., 2014). The most direct 

evidence for direct gating of ANO1 by Ca2+ came from structural studies as Ca2+ ions 

were present in the channel structure (Brunner et al., 2014). The binding site for Ca2+ 

in nhTMEM16 consists of residues from TM 6, 7 and 8, including 3 glutamates, 2 

aspartates and an asparagine (Brunner et al., 2014). Mutating these residues 

reduced the activity of nhTMEM16 in the presence of Ca2+.  
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1.8 Anoctamin family 

1.8.1 ANO2 

The ANO1 family consists of 10 members with ANO1 being the first to be 

characterised. ANO1 and ANO2 are the only 2 members of the family that have 

undisputed CaCC activity, which can be attributed to a 62% sequence similarity 

between the channels (Yang et al., 2008). ANO2 has different properties compared 

to ANO1. The activation and deactivation kinetics are faster than ANO1 however the 

Ca2+ sensitivity is 10 times lower (Pifferi et al., 2012). Chimeric ANO1/ANO2 

channels where the 3rd intracellular loop of ANO2 was incorporated into ANO1, 

containing the glutamate residues at positions 702 and 705 demonstrated that these 

residues are critical to lower Ca2+ sensitivity of ANO1 (Scudieri et al., 2013). Single 

channel conductance of ANO2 is also smaller than that of ANO1 (1pS compared to 

3.5pS, respectively) (Stephan et al., 2009). ANO2 is expressed in various tissues of 

the body with olfactory neurons showing abundant expression of ANO2 (Stephan et 

al., 2009; Rasche et al., 2010). Upon stimulation of receptors on olfactory sensory 

neurons, an increase in cAMP leads to activation of cyclic nucleotide-gated channels 

(CNGSs) which are non-selective to cations (Kaupp, 2010). Depolarisation occurs 

and Ca2+ entry through CNGCs is able to activate ANO2 which essentially amplifies 

the excitable effects of the odorant (Rasche et al., 2010). ANO2-expression in 

HEK293 cells also produced CaCC currents similar to those seen in native olfactory 

cilia.  

1.8.1.1 ANO2 in Olfaction 

As mentioned previously, neurons can accumulate Cl- which allows Cl- efflux upon 

stimulation of ANO2. Vomeronasal sensory neurons (VSNs), involved in the 

detection of pheromones, also express ANO2 (Dibattista et al., 2012). Odorant 

receptors are able to activate the Gq pathway and induce DAG, which activates 

TRPC2 channels (Dibattista et al., 2012). These channels induce Ca2+ influx hence 

activating ANO2 (Dibattista et al., 2012). KO of ANO2 causes no CaCC currents to 

be generated in olfactory neurons, showing that ANO2 is the main CaCC-forming 

channel in this cell type (Billig et al., 2011). However, contrary to the general 

consensus that CaCCs have a core role in olfactory transduction, KO of ANO2 did 

not massively impair odorant-sensing ability of these neurons (Billig et al., 2011). 

However, recently it was reported that ANO2-KO in mice produced deficiencies in 
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the odor-related food finding ability (Pietra et al., 2016). Furthermore, the rate of 

action potential firing is greater and prolonged in ANO2-KO olfactory neurons which 

suggests that ANO2 plays a role in controlling the action potential firing rate in these 

neurons (Pietra et al., 2016). Nevertheless, due to this ongoing controversy, the 

exact role of ANO2 in olfactory signalling remains to be elucidated. 

1.8.1.2 ANO2 in Vision 

Photoreceptors also express ANO2 which has been localised to the retina, where 

these channels play a dual role in a photoreceptor’s response to light. Generally, Na+ 

influx via cGMP-gated cation channels is an incessant process in the dark causing 

depolarisation of the membrane (Cia et al., 2005; Pedemonte and Galietta, 2014). 

Accordingly, Ca2+ also enters the cells through VGCCs at the synaptic terminals, 

which is accompanied by a constant release of glutamate. This arrangement sets the 

resting membrane potential higher than normal (~between -40mV and -50mV) 

(Thoreson et al., 2004; Dauner et al., 2013). In cones the Ecl is close to the resting 

membrane potential (~-46mV) therefore, activation of ANO2 tends to have a less 

pronounced effect (Stohr et al., 2009). In rods on the other hand, the Ecl is 

approximately -20mV compared to the dark resting membrane potential (Thoreson et 

al., 2002). Here Cl- efflux occurs, adding to the depolarisation of the cells. This 

makes sense when we look at the function of rod cells, which are highly sensitive to 

light therefore contain greater mechanisms to distinguish light from dark.  

1.8.1.3 ANO2 in the hippocampus 

ANO2 has been proposed to play a role in hippocampal neurons, where it is 

expressed in CA1 and CA3 pyramidal neurons (Huang et al., 2012). In contrast, 

ANO1 was not expressed in these neurons and whereas ANO2-KO inhibited the 

CaCC current, ANO1-KO had no such effect (Huang et al., 2012). Unlike ANO1, 

VGCC and NMDA receptor activation activated ANO2 in these neurons; furthermore, 

experiments using Ca2+ chelators indicated that the ANO2 is found close to the 

source of Ca2+ (Huang et al., 2012). Recording at CA1 neurons after CA3 

stimulation, it was also discovered that ANO2 produces its effect in the 

somatodendritic region where it acts as an inhibitory entity (low Cl- in pyramidal 

neurons; see above) and raises the excitability threshold. Overall, this acts as a 

brake on neuronal excitability.   
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1.8.1.4 Other Anoctamins 

Functionally anoctamins can be subdivided into two groups: (1) CaCCs (ANO1 and 

ANO2) and (2) lipid scramblases (ANO3-10). Lipid scramblases are proteins that are 

involved with the distribution of phospholipids across the lipid bilayer (Bevers and 

Williamson, 2010). Scramblases move phosphatidylserine from the internal leaflet of 

the lipid bilayer to the external layer (Bevers and Williamson, 2010). The importance 

of this activity lies in processes such as coagulation where platelet cells expose 

phosphatidylserine which, in turn, triggers phagocytosis of dying cells (Malvezzi et 

al., 2013). However, in relation to the other anoctamins, different opinions exist 

between different groups regarding their activity. Thus, Kunzelmann’s group found 

that expression of ANO6, 7 and 10 produced CaCC currents; however, in ATP-

induced I- flux assays, these channels only produced activity that was approximately 

10% of ANO1 activity (Schreiber et al., 2010). Conversely, another group found that 

there are no robust CaCC currents for ANO3-7, probably due to little or no plasma 

membrane expression of these proteins (Tsutsumi et al., 2004; Mizuta et al., 2007; 

Duran et al., 2012).  

ANO3 has been implicated in playing a role in nociception with high expression in 

DRG neurons with ANO3-KO mice displaying hypersensitivity to temperatures over 

50°C (Huang et al., 2013). Furthermore, it was discovered that ANO3 plays a role in 

regulating Na+ activated K+ activity in DRG (Huang et al., 2013). Mutations in ANO5 

have been linked to musculoskeletal disorders such as gnathodiphyseal dysplasia 

(GDD). This leads to bone fragility due to abnormal bone mineralisation (Tsutsumi et 

al., 2004; Mizuta et al., 2007; Duran et al., 2012). Other disorders linked to ANO5 

include recessive muscular dystrophies (Bolduc et al., 2010; Hicks et al., 2011). 

ANO6, has been found to play a role in lipid scrambling (Suzuki et al., 2010). 

Mutations in ANO6 lead to Scott syndrome, a rare congenital disorder characterised 

by defective blood coagulation (Suzuki et al., 2010; Castoldi et al., 2011). Underlying 

this disorder is abnormal lipid scrambling which causes an altered phospholipid 

composition of the external layer of the membrane (Suzuki et al., 2010; Malvezzi et 

al., 2013). ANO6 has also been proposed to function as both an ion channel and a 

scramblase however, its ion conducting ability was only present under micromolar 

Ca2+ concentrations and at positive membranes (Scudieri et al., 2015). ANO7 is 

found expressed in the prostate and has been suggested to play a role in cell-cell 
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adhesion (Das et al., 2007). Moreover, ANO7 has been implicated in prostate cancer 

due to its high expression profile however its role in the development of this type of 

cancer is unknown (Cereda et al., 2010). ANO10 mutations have been linked to an 

autosomal recessive called cerebellar ataxias (Vermeer et al., 2010; Duran et al., 

2012). 

 

1.9 Expression and functions of ANO1 

1.9.1 Airways 

ANO1 is widely expressed in the body. Various cell types that were known to 

produce CaCC currents express ANO1. ANO1 is present in the airways where it is 

involved with secretion of Cl- and hydration (Yang et al., 2008; Rock et al., 2009; 

Gallos et al., 2013; Caputo et al., 2015). Caputo and colleagues, one of the initial 

three independent groups to identify ANO1, found that IL-4 treatment caused a near 

sevenfold upregulation of ANO1 mRNA in bronchial cells (Caputo et al., 2008). 

Transfecting this mRNA into CFPAC-1 (pancreatic) or CFBE41o (human bronchial 

epithelial) cell lines and using a halide-sensitive YFP assay or performing whole-cell 

patch clamp experiments, produced CaCC activity. This was reduced by 60-70% 

when siRNA was used to silence ANO1 (Caputo et al., 2008). ANO1 also plays a 

role in the release of mucus from goblet cells (Costa and Catterall, 1984; Zhuang, 

2009; Scudieri et al., 2012). Under normal conditions there is minute presence of 

ANO1 but in patients with asthma or mouse models mimicking asthma, there is 

increased ANO1 expression in mucus-producing goblet cells (Caputo et al., 2008; 

Zhuang, 2009; Kondo et al., 2017). Another interesting point to mention is the 

importance of HCO3- secretion for mucus release. Altering HCO3- secretion has 

been shown to change the consistency of mucus in sheep, pigs and human trachea 

(Joo et al., 2001). In small intestine of mice, absence of HCO3- led to a 50% 

reduction in agonist-stimulated mucus release (Garcia et al., 2009). In relation to 

this, an interesting property of ANO1 is its ability to transport HCO3-, especially at 

high Ca2+ concentration where the permeability changes from preferring Cl- to HCO3- 

(Jung et al., 2013). It was hypothesized that this property of ANO1 relies on the 

presence of CaM (see above).  
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Overall, this strengthens the notion that ANO1 is a vital component of mucus release 

where it can accommodate the movement of fluid through Cl- transport and HCO3-.   

1.9.2 Vasculature 

It has long been known that vasculature expresses functional CaCC (Criddle et al., 

1996; Zhuang, 2009). Accordingly, vascular smooth muscle cells (VSMCs) in various 

regions of the body have been shown to express ANO1, including the thoracic aorta 

and cerebral arteries (Bulley et al., 2012; Davis et al., 2013; Wang et al., 2016). Due 

to an accumulation of Cl- inside VSMCs, ANO1 activation leads to a depolarising 

effect and vasoconstriction indicating a role for ANO1 in hypertension. (Vaughan-

Jones, 1979; Baumgarten and Fozzard, 1981; Bulley et al., 2012). Consequently, 

siRNA against ANO1 was able to reduce pressure-induced vasoconstriction 

indicating that ANO1 channels contribute this process (Bulley et al., 2012). Following 

on from these findings, spontaneous hypertensive rats were shown to have 

overexpression of ANO1 and accordingly, pharmacological blockade or knockdown 

of ANO1 resulted in reduction in blood pressure (Heinze et al., 2014; Wang et al., 

2016). Interestingly, Angiotensin II, a vasoactive peptide that increases blood 

pressure, has been shown to increase the expression on ANO1 (El Chemaly et al., 

2014). Other effects of ANO1 in VMSCs are thought to include the progression of 

vascular remodelling by inducing VMSC proliferation (Wang et al., 2015; Qu et al., 

2016). ANO1 overexpression in these cells could therefore serve as a trigger to the 

development of hypertension (Wang et al., 2015). PASMCs were known to possess 

CaCC currents and siRNAs against ANO1 in PASMCs caused an almost total loss of 

whole cell CaCC current (Manoury et al., 2010). There is also evidence to suggest 

that PASMCs increase ANO1 expression in response to chronic hypoxia, leading to 

increased vasoreactivity, which in turn produces pulmonary hypertension (Sun et al., 

2012). Both conditions highlight the importance of ANO1 and how its regulation is 

necessary in the vasculature.  

1.9.3 Gastrointestinal tract 

The Gastrointestinal tract also expresses ANO1. Interstitial Cells of Cajal (ICC) are a 

specialized set of pacemaker cells responsible for the generation of ‘slow waves’-

phasic contractions that occur in an autonomous nature in the gastrointestinal tract 

(Takaki, 2003). The slow waves are driven by Ca2+ oscillations; ANO1 is present in 
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these cells and activated due to IP3R-induced Ca2+ release. ANO1 seems to be vital 

for slow waves of electrical activity, as knockdown of ANO1 severely disrupts both 

the electrical activity and the contraction involved with this process (Gomez-Pinilla et 

al., 2009; Hwang et al., 2009; Singh et al., 2014). Recently it was discovered that 

ANO1 also plays a role in the tone of the internal anal sphincter (Zhang et al., 2016a; 

Cobine et al., 2017). Accordingly, tone is reduced when ANO1 antagonists are 

applied and genetically encoded deletions of ANO1 also lead to a loss of ICC slow 

waves and spontaneous contractions in mice (Cobine et al., 2017). Further analysis 

demonstrated that the anal sphincter tone requires VGCC-induced activation of 

ryanodine receptors (RYR). The elevation of [Ca2+]i in turn activates ANO1 and 

induces contraction (Zhang et al., 2016a).  

1.9.4 Kidney 

ANO1 is expressed at the proximal renal tubules of the kidney. Uhtaek Oh’s group, 

pioneers of ANO1 discovery, showed the presence of ANO1 in kidney cells (Yang et 

al., 2008). ANO1 was immunohistochemically localised to the proximal and distal 

tubular epithelial (PTE, DTE) cells and also to podocytes in humans and rat (Faria et 

al., 2014). ANO1 knockdown in mice led to development of proteinuria, which 

indicates a significant role for ANO1 in glomerular function (Faria et al., 2014). 

However, this was attributed to loss of PTE ANO1, not podocyte ANO1 loss (Faria et 

al., 2014). ATP application has also been shown to induce CaCC currents in inner 

medullary collecting duct cells of kidneys causing Cl- secretion through a mechanism 

reliant on PLC and Ca2+ (Cuffe et al., 2000; Rajagopal et al., 2012). ANO1 is 

expressed in these cells with minimal bestrophin-1 expression. It has been proposed 

that this Cl- secretion provides an adaptive mechanism for NaCl removal when there 

is high dietary salt intake (Rajagopal et al., 2011). In disease states of the kidney, 

ANO1 has also been implicated in the formation of renal cysts (Buchholz et al., 2014; 

Tanaka and Nangaku, 2014). 

1.9.5 ANO1 in nociception 

Sensory neurons have been known to express CaCCs since 1987 when Bader and 

colleagues discovered CaCC current activation in quail sensory neurons when [Ca2+]i 

was elevated (Bader et al., 1987). Subsequent buffering of Ca2+ was able to supress 

this current (Bader et al., 1987). Interestingly, nerve injury induced through axotomy 
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of the sciatic nerve in rats produced increased CaCC currents in injured DRG 

neurons (Andre et al., 2003). This increased CaCC current was only present in a 

subset of axotomised neurons that showed ‘regenerating’ axon growth typical after 

nerve injury but was only to medium and large neurons (Andre et al., 2003). 

Furthermore, CaCC candidates such as bestrophin 1 and Tweety2 were also 

upregulated after SNL in mice (Al-Jumaily et al., 2007). Another study involving 

nerve injury proposed that the increased CaCC current was mediated by bestrophin 

1 and bestrophin 3 in large and medium-diameter DRG neurons (Boudes et al., 

2009). As mentioned earlier, this indicates the involvement of CaCCs in nociception 

and related conditions such as nerve injury, inflammation, chronic pain etc.  

After ANO1 discovery, Yang and colleagues demonstrated its expression in DRG 

neurons- particularly small-diameter (Yang et al., 2008). ANO1 was recently 

suggested to also play a role as a heat sensor, similar to TRPV1 (Cho et al., 2012). 

Temperatures above 44°C were able to activate ANO1 regardless of Ca2+ presence, 

however Ca2+ was able to lower the heat threshold of ANO1 in a similar manner to 

the synergistic relationship between voltage and Ca2+ that ANO1 displays (Cho et 

al., 2012). Mice lacking TRPV1 still displayed behavioural responses to heat and 

DRG from TRPV1-KO mice produced inward Cl- currents in response to heat (Cho et 

al., 2012). Conditional KO of ANO1 in sensory neurons reduced temperature-

induced Cl- currents and siRNA against ANO1 also had a similar effect (Cho et al., 

2012). Furthermore, blockers of both TRPV1 and ANO1 were found to completely 

abolish heat responses. Independent verification of these finding is yet to be 

obtained. Other implications of ANO1 in nociception will be discussed below. 

The inflammatory mediator, bradykinin was found to induce a depolarising CaCC 

current along with inhibiting the Kv7 current in DRG neurons with both effects 

attributed to bradykinin activating the Gq pathway (see above) (Liu et al., 2010). 

Again, the relatively high expression of the NKCC1 cotransporter in DRG neurons 

means there is a build-up of Cl- in these cells (Rocha-Gonzalez et al., 2008; Mao et 

al., 2012). Consequently, CaCC activation is excitatory (Cl- efflux) meaning the net 

effect of the inhibition of hyperpolarizing Kv7 channels and the excitatory Cl- 

channels would be summated in strong depolarisation and action potential firing (Liu 

et al., 2010). Knockdown of ANO1 using siRNA or pharmacological inhibition 

produced a reduction in CaCC current in DRG neurons and reduced inflammatory 
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pain and itch (Liu et al., 2010; Lee et al., 2014; Ru et al., 2017). Ultimately, in DRG it 

was found to be local Ca2+ elevation from the ER through IP3R which activated 

ANO1 (see chapter 4). As Ca2+ sensitivity of ANO1 is fairly low, especially at resting 

membrane potentials, it was proposed that these channels are arranged in a local 

Ca2+ microdomains at the ER-PM junctions (Jin et al., 2013).  

 

1.10 Local Ca2+ Microdomains 

Ca2+ is one of the most important intracellular second messengers. These ions are 

important mediators of various cell-signalling processes where they can; (i) alter the 

membrane potential, and (ii) function as intracellular signalling messengers for a 

wide spectrum of processes such as gene transcription, cell proliferation, apoptosis, 

and neurotransmitter release (Bootman et al., 2001). [Ca2+]i is kept low (~100-

500nM) to allow steep gradients for Ca2+ entry, thereby priming cells for this event 

(Berridge, 2006).  

Importantly however, not every rise in [Ca2+]i will lead to every Ca2+-dependent 

process occurring in a cell. The ability of Ca2+ to function as a secondary messenger 

depends on both its temporal and spatial properties (Berridge, 2006). This means 

that activation of Ca2+-sensitive channels/proteins by Ca2+ will require the relevant 

concentration to exist in the immediate environment before any effect occurs along 

with maintaining specificity of Ca2+ signalling (Rizzuto and Pozzan, 2006).  

To facilitate this in various instances, components of the Ca2+ signalling cascade are 

often organized into functional Ca2+ microdomains (Berridge, 2006). These Ca2+ 

microdomains are sites within cells (~10-100nm) where there is a high, localised 

Ca2+ concentration which serves to enhance signalling fidelity and strengthen the 

response to a stimulus in an efficient, selective manner (Berridge, 2006). Ca2+ 

release into microdomains is adjudged to be local due to its transient and spatial 

restriction within a cell (Bootman et al., 2001). For example, Ca2+ entering the cell 

from the extracellular space or Ca2+ release into the cytosol from the ER may lead to 

the production of highly specific and concentrated Ca2+ levels (reported to be up to 

~50µM) around the mouth of the channel and in the local vicinity (Neher, 1998; 

Bauer, 2001; Bootman et al., 2001). However, the presence of proteins and 

membranes stops the spread of Ca2+ to the rest of the cell (Fig. 1.11). Alternatively, 
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these signals can be summated in a cell to lead to the elevation of this ‘global’ Ca2+ 

(Berridge, 1993; Bootman et al., 2001; Rizzuto and Pozzan, 2006). Below I will 

discuss some examples of microdomains and the roles they play in cellular 

processes. 

1.10.1 SOCE 

SOCE is the process whereby the internal Ca2+ stores in the ER are refilled after 

depletion (Parekh and Putney, 2005). Activation of GPCRs activate PLC and 

generate IP3, which subsequently activates IP3Rs. Activation of this receptor causes 

Ca2+ to rapidly exit the ER and into the cytosol (Berridge, 1993). Upon depletion of 

the ER Ca2+ content, two proteins, STIM1 and Orai1, found in the ER and the PM, 

respectively, are able to interact and initiate the refilling process (Smyth et al., 2006). 

The close apposition between the ER and PM facilitates this process (Carrasco and 

Meyer, 2011). STIM1 is a Ca2+ sensor protein, which relays the depletion signal to 

Orai1 through a physical interaction (Smyth et al., 2006). Orai1 forms a pore to allow 

Ca2+ entry into the cell and back into the ER through the SERCA pumps (Smyth et 

al., 2006). Microdomains involving SOCE are important in various cell types and 

allow a restricted area for Ca2+ entry to refill the ER as well as playing a role in other 

functions. In skeletal muscle, SOCE microdomains are vital in the rapid repletion of 

the sarcoplasmic reticulum (SR) (Launikonis and Rios, 2007; Stiber et al., 2008). 

STIM1 is localised close to the T-tubule PM in skeletal muscle and subsequent 

depletion of SR Ca2+ allows rapid SOCE- within 1 second compared to in T-

lymphocytes which require of approximately 1 min before SOCE occurs; this has 

been attributed to the pre-existence of microdomains in T-tubule structures 

(Launikonis and Rios, 2007).  
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Figure 1.11: High Ca2+ in a microdomain close to the mouth of a Ca2+ channel. 

Ca2+ concentration reaches ~50μM around the channel however, as we move away 

by a few hundred nanometers (Naraghi and Neher, 1997; Neher, 1998; Bauer, 2001; 

Rizzuto and Pozzan, 2006), the concentration of Ca2+ rapidly decreases to ~100nM. 

A Ca2+ sensitive channel close to the high concentration of Ca2+ can be activated 

whereas channels further away are not activated. Based on figure from (Rizzuto and 

Pozzan, 2006). 
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1.10.2 Regulation of AC 

Another function of SOCE Ca2+ microdomains is in the activation of AC. Some 

isoforms of AC (1 and 8), the enzyme required in the production of cAMP and 

subsequent activation of PKA, require Ca2+ for activation (Willoughby and Cooper, 

2007). In non-excitable cells, Ca2+ entry through Orai1 channels is able to activate 

AC however, other means of [Ca2+]i elevation have been found to be incapable of 

activating this enzyme (Martin et al., 2009). Agonist-, thapsigargin- and ionomycin-

induced [Ca2+]i elevations were unable to induce AC in C6-2B glioma cells (Chiono et 

al., 1995; Fagan et al., 1996). Interestingly, the global Ca2+ rise seen through SOCE 

was less than that caused by mechanisms mentioned above but was still able to 

activate AC activity, demonstrating the importance of specific Ca2+ signals (Fagan et 

al., 1996; Fagan et al., 1998). AC 8 was also found in lipid rafts with Orai1 in MIN6 

cells which suggests they may be in close proximity (Martin et al., 2009). 

Furthermore, BAPTA was able to inhibit AC activity but EGTA was unable to produce 

this effect further supporting that this is due to local Ca2+ (Fagan et al., 1998). Taken 

together, this data suggests that AC is located in close proximity to Orai1 and STIM1 

proteins and Ca2+ via Orai1 in the local vicinity is able to modulate AC activity 

(Parekh, 2008). 

1.10.3 Excitation-contraction coupling 

Excitation-contraction coupling is another process where microdomains play a vital 

role. The process of excitation-contraction coupling links membrane depolarisation 

with contraction in cardiomyocytes (Aronsen et al., 2013). L-type VGCCs are 

localised to the sarcolemma of myocytes where activation of these channels leads to 

Ca2+ influx (Aronsen et al., 2013). The close proximity of RYR in the SR to the 

sarcolemma (Scriven et al., 2010), means L-type VGCCs influx activates RYR 

receptors, a process known as Ca2+-induced Ca2+ release (CICR) (Mackenzie et al., 

2001). In ventricular cells, activation of a single L-type VGCCs activates 10-15 RYRs 

(Wang et al., 2001) therefore, a small number of L-type VGCCs in the T-tubules can 

activate a great number of RYR; the summation of this effect is a large rise in [Ca2+]i 

sufficient to trigger contraction (Berridge, 2006). The importance of L-type VGCCs 

and RYR coupling in microdomains has been demonstrated in heart failure where 

there is a loss of coupling between these proteins therefore insufficient cardiac 

contraction (Benitah et al., 2002; Bito et al., 2008; Sanchez-Alonso et al., 2016).  
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In cerebral arterial smooth muscle, T-type Ca2+ channels have been found to 

assemble into microdomains with RYR to activate CICR-like events (Abd El-Rahman 

et al., 2013). Ultimately, CICR induces large conductance Ca2+ activated K+ channel 

(BKCa) activity to reduce arterial constriction (Harraz et al., 2014). KO of T-type Ca2+ 

channels causes reduced BKCa activity and enhanced myogenic tone of arterial 

smooth muscle due to loss of RYR activation (Harraz et al., 2014; Harraz et al., 

2015). 

1.10.4 Coupling of ANO1 to different Ca2+ sources 

Extracellular Ca2+ entry can activate ANO1 in many situations, particularly in 

expression systems. Thus, ionomycin is able to activate ANO1 in HEK293 cells 

where it is able to induce the linear I-V relationship seen for ANO1 in the presence of 

high Ca2+ (Zhuang, 2009; Tian et al., 2011; Jung et al., 2013). This was also seen in 

ICC pacemaker cells (Kim et al., 2014) and thyroid follicular cells (Iosco et al., 2014). 

Ionomycin application to Fisher rat thyroid (FRT) cells transfected with ANO1 are 

also able to induce ANO1 activity in I- based quenching assays, which was not 

possible in Ca2+-free conditions (Schreiber et al., 2010). Photoreceptors expressing 

ANO1 have been shown to interact with VGCCs where the Cacna2d4 mutation in the 

α2δ4 subunit of the VGCC disrupts both this interaction and the activation of ANO1 

(Caputo et al., 2015). In canine ventricular myocytes, sarcolemmal L-type VGCCs 

are essential for ANO1 activity and have also been shown to co-localise with these 

Ca2+ channels (Horvath et al., 2016). Furthermore, in Xenopus oocytes, expression 

and stimulation of Gq-gated P2Y2 receptors generates ANO1 currents however these 

are almost abolished when extracellular Ca2+ was removed suggesting a prominent 

role for extracellular Ca2+ in ANO1 activation in these cells (Kunzelmann et al., 

2011). 

CaCCs were found to be activated through the ER after IP3 application and also 

through SOCE where they showed different I-V profiles- outwardly rectifying and 

linear for the Ca2+ source, respectively (Hartzell, 1996; Kuruma and Hartzell, 1999). 

However this SOCE-activation was later suggested to be a secondary effect of Ca2+ 

channelled via IP3R after the SOCE-mediated store refill (Courjaret and Machaca, 

2014). Yang and colleagues also demonstrated the importance of ER Ca2+ when 

they transfected HEK293T cells with ANO1 and various GPCRs which induced Ca2+ 
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release from the ER. These receptors (i.e. P2Y2 receptors activated by ATP) induced 

CaCC currents when stimulated with the corresponding agonist (Yang et al., 2008). 

Furthermore, depleting the ER of Ca2+ stopped ANO1 activation (Yang et al., 2008). 

P2Y1 and P2Y2 receptors are known to be expressed endogenously in HEK293T 

cells (Schachter et al., 1997). When no additional P2Y2 receptors were 

overexpressed in HEK293T cells, there was activation of ANO1 currents however, 

upon overexpression of P2Y2 receptors, the ANO1 current was greatly enhanced 

(Kunzelmann et al., 2011). Thus, it was proposed that there must be close proximity 

between ANO1 and the Ca2+ source for activation to take place and more receptors 

leads to more interactions between the ANO1 and IP3R (Kunzelmann et al., 2011). 

The above examples highlight several features of ANO1 coupling to a Ca2+ source: 

(i) ANO1 channels can be activated by various Ca2+ signals in different cell types or 

expression systems but the common theme is it’s close coupling to the ER Ca2+ 

release; (ii) due to low Ca2+ sensitivity, ANO1 channels need to be positioned closely 

to the Ca2+ source to be reliably activated. Further examples regarding the proximity 

of the Ca2+ source to ANO1 will be discussed in subsequent chapters.  

 

1.11 Aims of this study 

The aim of this study is to investigate activation of ANO1 channels in nociceptive 

sensory neurons by localised Ca2+ signals and to investigate whether different types 

of nociceptive Ca2+-signalling pathways are able to activate ANO1. Specific focus will 

be given to three independent Ca2+ signalling pathways: (i) pro-inflammatory GPCR; 

(ii) VGCC and (iii) TRPV1. To investigate this I will develop a new imaging technique 

combining Ca2+ imaging and a halide sensitive quenching to monitor intracellular 

Ca2+ dynamics and CaCC activity simultaneously. Furthermore, I will also look at the 

relationships between proximity of ANO1 to potential Ca2+ sources using biochemical 

and super-resolution imaging approaches to provide insight into underlying 

mechanisms regarding ANO1 activation. If the Ca2+ source is found in close 

proximity to ANO1, then in theory it should be able to activate ANO1. 
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Chapter 2: Materials and Methods 

2.1 DRG culture and transfection 

Handling of rats throughout this whole process was done in accordance with Home 

Office regulations. Wistar rats (7 day old) were culled by over-exposure to Isoflurane 

followed by cervical dislocation to confirm death. Decapitation and removal of the 

spine allowed DRG to be extracted and isolated. The spine was sliced in half along 

the sagittal plane to expose the spinal cord; gentle removal of the spinal cord 

revealed small spherical DRGs in small grooves within the spine. Extraction of DRG 

was made with fine forceps and stored in ice-cold Hanks Balanced Salt Saline 

(HBSS) during the extraction process. Once all DRG were isolated, they were 

transferred to a dissociation solution consisting of pre-warmed (37°C) HBSS, 

dispase (10mg/ml) (Invitrogen) and collagenase type 1A (1mg/ml) (Sigma). The 

dissociation solution containing isolated DRG was incubated at 37°C for 

approximately 13 minutes to allow dissociation of cells until the mixture became 

cloudy. Gentle trituration (~5 times) of the mixture helped the dissociation process 

after which cells were replaced at 37°C for a further 2 minutes. Further trituration 

was done (~10-20 times) to ensure maximal DRG dissociation. Termination of the 

dissociation process was achieved by supplementing the incubated mixture with ice 

cold growth media (DMEM and GlutaMAX) (Invitrogen), containing penicillin 

(50U/ml), streptomycin (50ug/ml) and 10% Fetal Calf Serum (FCS). DRG were 

centrifuged twice for 5 minutes at 800rpm (4°C), to wash the solution and collect the 

cells. Fresh media was used to resuspend the pellet prior to the second spin. 

Resuspended cells were transferred onto coverslips pre-coated with poly-D-lysine 

and laminin in 24-well culture plates. Plates were incubated in a humidified incubator 

(5% CO2) at 37°C for 4 hours after which cells were supplemented with fresh warm 

growth media. Cells were cultured at 37°C for a further 2-4 days. 

 

When transfection was necessary, cells collected after the final wash (see above) 

were resuspended in a rat neuron transfection buffer (Lonza) and mixed with 5μg of 

mutant EYFP DNA constructs (pcDNA6 vectors) with mutations at H148Q and I152L 

positions. The solution was quickly loaded into a Lonza-certified cuvette and 

transferred into the Lonza Nucleofector I console and transfected on setting O-03. 

Transfected cells were then resuspended in 500-550µl warm DMEM media before 
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plating onto coverslips (~90µl per 13mm coverslip). Coverslips were pre-coated with 

poly-D-lysine and laminin in 24-well culture plates. Plates were incubated in a 

humidified incubator (5% CO2) at 37°C for 4 hours after which cells were 

supplemented with fresh warm growth media. Cells were cultured at 37°C for a 

further 2-4 days.  

EYFP (H148Q/l152L) DNA was kindly provided by Dr Jonathan Lippiat. 

2.2 Triple-wavelength Imaging 

Extracellular solution was produced to bathe cells (mM): NaCl (160); KCl (2.5); 

MgCl2 (1); CaCl2 (2); HEPES (10) and Glucose (10). The pH was buffered to 7.4 

using NaOH (1M) (All from Sigma). Each coverslip was broken into 3-4 pieces (or 

chips) with a diamond pencil and a single piece was incubated with 2µM fura-2 AM 

(Life Technologies) and pluronic F-127 (0.01%) (Sigma) at 37°C for 45 minutes. 

Loading was done with no light in the microflow safety cabinet. After loading with 

fura-2 AM, the chip was washed with extracellular solution before imaging. Foil was 

used to shield cells from light during transferral of cells from the incubator to the 

imaging rig. Chips containing fura-2 loaded cells was placed on the camera chamber 

for imaging. Extracellular solution was used to perfuse the cells through a gravity 

driven perfusion system. Imaging was performed with a Nikon TE-2000 microscope 

(inverted) with the 40x objective. The imaging setup was equipped with T.I.L.L 

Phototonics fluorescent imaging system (Polychrome V monochromator, IMAGO 

CCD camera and TILLVison 4.5.56 software/Live Acquisition 2.2.0). Live images of 

cells were used to locate neurons that had been successfully transfected with the 

EYFP mutant using 488nm excitation at 40ms exposure fluorescent light to avoid 

photobleaching. Glial cells (bipolar processes) were excluded from the search and 

only successfully transfected DRG with a diameter of ~20µm were selected. Ca2+ 

loading was identified using the same process as for the mutant EYFP identification 

but with a 380nm excitation wavelength. Filter cubes allowing EYFP and fura-2 

imaging was used for emission (GFP-B and UV-2A, respectively (Nikon 

MicroscopyU)). UV-2A was used for dual imaging. Only cells successfully 

transfected and loaded with the EYFP mutant and fura-2, respectively, were imaged. 

Exposure for all 3 wavelengths (340, 380 and 488) was adjusted during imaging to 

provide optimal signal-to-noise parameters (ranging from 50ms-500ms maximum). 
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Regions of interest (ROI) were marked on a snapshot taken from which live 

recordings were made for all 3 wavelengths.  

Extracellular solutions containing various concentrations of I- instead of Cl- were 

made by equimolar substitution of the NaCl with NaI (30mM, 10mM and 5mM). 

Drugs were added to the NaI containing solution whilst imaging (GABA 100μM, 

capsaicin 1μM, bradykinin 250nM). The 50mM K+ solution was produced by 

subtracting the 47.5mM increase in KCl (50mM) from the NaCl content (160mM to 

112.5mM) to maintain a balance in the ion content of the solution. Ca2+ free solutions 

were produced with increased NaCl (165mM) to compensate for Cl- lost with the 

removal of CaCl2; 1mM EGTA was also added. Pre-incubation with thapsigarigin 

(LKT Laboratories) (1μM) was done during the fura-2 loading process and 

thapsigarigin was kept in solutions during imaging to maintain its effects.  

Protocols for imaging involved perfusion of standard extracellular solution for 50 

seconds, before switching to NaI containing extracellular solution for 50 seconds. 

NaI containing NaI + drug/agonist/condition was then applied for 100 seconds to 

visualise the effects produced. Fluorescent images were taken every 2 seconds (1 

step) sequentially at 488nm, 340 and 380 nm. Fluorescence intensity at 488 nm was 

used as a reporter of I- influx; ratio of fluorescence intensities at 340 and 380 was 

used as a reporter of intracellular Ca2+ concentration.  

2.2.1 Imaging analysis 

Once imaged, ratios between 340nm and 380nm were produced and transferred to 

Microsoft Excel for analysis along with data for fluorescence intensity at 488nm. 

Fura-2 ratios were normalised to the change in the ratio to t=0 (∆R/R0) and EYFP 

(H148Q/I152L) mutant fluorescence data were normalised to the change in 

fluorescence recorded at t=0 (∆F/F0), for each cell. Cells where either of the 

recording channels gave unstable baseline or oscillations during recording were 

discounted form analysis. All cells included in the analysis were temporarily aligned 

to the point of Ca2+ increase by 3 times the standard deviation of the baseline. 

Agonist-dependent EYFP (H148Q/I152L) mutant fluorescence quenching was also 

monitored from this point until the end of agonist application. Statistical analysis was 

then carried out between the end of the agonist-independent quenching period to the 

completion of the agonist-dependent quenching period.  
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2.2.2 Standard Ca2+ imaging 

Standard Ca2+ imaging involved no transfection. After the second wash, cells were 

resuspended in warm DMEM media and plated onto pre-coated coverslips and 

grown for 2 days. Cells were loaded with fura-2 and imaging was done in the same 

manner as above but using only 340nm and 380nm excitation wavelengths.   

2.2.3 Four-wavelength imaging 

Chinese hamster ovary (CHO) cells were grown in tissue culture plates at 37°C (5% 

CO2) and passaged when confluent (~70%). DMEM:F12 (1:1) media with Glutamax 

(supplemented with penicillin (50U/ml), streptomycin (50ug/ml) and 10% Fetal Calf 

Serum (FCS)) (Thermofisher) was used to grow CHO cells. Transfection was done 

using Fugene HD (Promega) according to manufacturer’s instructions. cDNA 

plasmids coding for EYFP (H148Q/I152L), TRPV1, ANO1 and red CEPIA (400ng 

each) were used to overexpress the corresponding proteins CHO cells. Cells were 

plated onto 13mm glass coverslips and loaded with fura-2 before imaging. Triple 

imaging (including Red CEPIA imaging) was done by adding a fourth channel, 

560nm for excitation. A special dichroic filter (Chroma) was used to allow all 4 

channels to be imaged simultaneously (combining DC/59022bs-XR-360-UF1 and 

DC/59022m). During IP3R-blocking experiments, xestospongin C (Abcam) (1μM) 

was pre-incubated with cells during the fura-2 loading process and kept in solutions 

during imaging to maintain its effects.  

2.2.4 Statistical analysis 

All cells imaged for a certain condition were collated and averaged before being 

plotted as a graph. Students T-test (paired) was used to compare pre-agonist and 

post-agonist values for both fura-2 Ca2+ signals and EYFP (H148Q/I152L) 

quenching. Comparison of maximal quenching/Ca2+ elevation between 2 conditions 

were compared using students T-test (unpaired). ANOVA was used when comparing 

more than 2 conditions (with Tukey test for comparison between groups). If results 

were not normally distributed (tested for all datasets using Origin normality test 

setting), then comparisons for data sets were made using Wilcoxon-Signed (paired 

comparison), Mann-Whitney (unpaired comparison) and Kruskal-Wallis ANOVA to 

compare more than 2 datasets (in conjunction with Mann-Whitney to compare 
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individual datasets). If a result is deemed to be significantly different, the p value 

must be below 0.05 (p≤0.05). All results are provided as mean ± S.E.M. 

 

The n number is equal to the number of cells used for each experiment. Each 

dataset consists of cells taken from at least 3 DRG preparations from rats. If 

transfection in cell lines was used, a minimum of 3 transfections was made for each 

dataset. 

2.3 Immunocytochemistry 

DRG cultures were prepared on coverslips in the same manner as mentioned above 

(without transfection). Neurons were fixed using 1:1 ice-cold acetone/methanol 

solution before being washed three times with 1X PBS. Blocking solution made up of 

0.05% Tween 20, 0.25%Triton™ X-100 and 5% donkey serum in 1X PBS was used 

to block the culture for 1 hour at room temperature before cells were incubated with 

either 1:100 ANO1 primary antibody (Santa Cruz) or TRPV1 primary antibody 

(diluted in 1X PBS/10mg/ml BSA) or both overnight at 4°C on a rocking table. 

Cultures were then washed again with 1X PBS three times and incubated with 

1:1000 Alexa Fluor ® 488 (Life Technologies) (donkey anti goat) or Alexa Fluor ® 

555 (Life Technologies) (goat anti guinea pig) diluted in antibody dilution buffer for 2 

hours. Finally coverslips were washed and mounted on glass coverslips with 

VECTASHIELD mounting medium supplemented with 4,6 diamidino-2-phenylindole 

(DAPI). Imaging was performed with a Carl Zeiss LSM510 inverted confocal 

microscope and Zeiss ZEN imaging software. See table 1 for all antibodies and 

concentrations used. Acetone/methanol was used as a fixative for all antibodies to 

maintain consistency.  
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Antibody Species 
Species raised 
in (secondary 

only) 
Dilutions Company 

ANO1 
goat 
rabbit 

1:200 
1:500 

Santa Cruz 
Abcam 

TRPV1 guinea pig 1:500 Neuromics 

IP3R1 rabbit 1:500 Cell Signaling Technology 

MOR rabbit 1:500 Abcam 

Alexa Fluor ® 488 
Anti-goat  
Anti-rabbit 

Anti-guinea pig 

Donkey 
Goat 

1:1000 Thermofisher 

Alexa Fluor ® 555 
Anti-goat 

Anti-rabbit 
Anti-guinea pig 

Donkey 
Goat 

1:1000 Thermofisher 

Alexa Fluor ® 633 Anti-rabbit Goat 1:1000 Thermofisher 

 

Table 2.1: Antibodies used for immunohistochemistry. Table shows primary 

(white) and secondary (grey) antibodies used, species, dilutions used and company. 

 

2.4 Proximity Ligation Assay 

Proximity ligation assay (PLA) uses the principle of 2 oligonucleotide labelled 

antibodies (primary or secondary) being able to bind and fluoresce, only when they 

are in close proximity to one another (30-40nm). This technique was first developed 

in 2002 by Fredriksson and colleagues who showed its ability to detect platelet-

derived growth factor in situ (Fredriksson et al., 2002). Primary antibodies (different 

species) against two proteins presumed to be less than 40nm apart from each other 

are used to bind the proteins of interest (Fig. 2.1). A pair of secondary antibodies, 

which are conjugated to oligonucleotides (referred to as PLUS and MINUS probes), 

are used to bind the primary antibodies. If the proteins of interest are indeed less 

than 40nm apart, complimentary connector oligonucleotides can allow formation of a 

single-stranded DNA circle between the 2 secondary oligonucleotide-conjugated 

probes (Fig. 2.1). One of the conjugated probes in the DNA circle can then act as a 

primer for rolling circle amplification (RCA), with the DNA-circle acting as a template. 

Addition of DNA polymerase allows formation of a long DNA product which contains 

repeated sequences that can be targeted for detection using fluorescently labelled 

oligonucleotides (Fig. 2.1). Hybridisation of these fluorescent tags can then be 

visualised to indicate the presence of 2 proteins in close proximity (Fig. 2.1). 
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PLA kits (Sigma) were purchased and the assay was completed in accordance with 

the manufacturer’s instructions. For the protocol, DRG cultures (untransfected) were 

plated and grown directly on to glass microscope slides coated with poly-D-lysine 

and laminin. Fixation was again done using 1:1 acetone/methanol and cells were 

washed 3 times with 1X PBS. Prior to blocking, an ImmEdge hydrophobic barrier pen 

(Vector laboratories) was used to delimit the reaction to an approximate area of 

1cm2. Blocking solution provided in the PLA kit was used to block the cells for 30 

minutes at 37°C. Subsequently, cells were treated with primary antibodies 

(combination of 2 from ANO1, TRPV1 or IP3R1, same dilutions as 

immunocytochemistry) in an antibody dilution buffer provided in the kit. Cells were 

put on a rocker at 4°C overnight. PLA buffer A was used to wash the cells twice (5 

minutes) before PLA probes (secondary antibodies conjugated with oligonucleotides) 

were added. No commercial kit for anti-guinea pig probes is available so an anti-

guinea pig secondary antibody was conjugated to a MINUS oligonucleotide using a 

PLA conjugation kit (Sigma). Both anti-guinea pig MINUS and anti-goat PLUS 

antibodies were diluted in the antibody dilution buffer (see Table 2.2 for dilutions of 

each probe) and incubated with the cells for 60 minutes at 37°C. Further washes 

were then carried out (5 minutes again) using PLA wash buffer A. For ligation, a 

solution consisting of ligation stock solution in high purity water (1:5) was made and 

ligase was added to produce a final ligase dilution of 1:40. This was incubated with 

cells for 30 minutes at 37°C. PLA buffer A was used to wash the cells again (2 

minutes) twice before the amplification solution was produced. Amplification stock 

was diluted in high purity water (1:5) before polymerase was added to give a final 

polymerase dilution of 1:80. Cells were incubated with the amplification solution for 

100 minutes at 37°C. Final washes using PLA buffer B were done twice for 10 

minutes before a final wash using 1:100 buffer B solution. Cells were then sealed 

using DAPI-containing mounting medium. Imaging was performed with a Carl Zeiss 

LSM510 inverted confocal microscope and Zeiss ZEN imaging software. PLA puncta 

were counted for each condition and quantified. PLA conditions for testing 

interactions between proteins is shown in Table 2.2. 
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Figure 2.1: Schematic illustration of the PLA principle. Primary antibodies 

against 2 proteins of interest are detected by PLA probes (+ and -). If these are 

within 40nm of each other, a DNA circle is able to for through ligation. One of the 

ligated ends acts as a primer for RCA to occur. The resulting DNA product has 

repeat sequences that can be tagged with fluorescent molecules for detection. 

 

 

Antibody 1 Species 
PLA Probe 
/dilution 

Antibody 
2 

Species 
PLA Probe 
/dilution 

ANO1 Goat 
Anti-Goat 
PLUS (1:5) 

TRPV1 Guinea Pig 
Conjugated-
MINUS 
(1:200) 

ANO1 Goat 
Anti-Goat 
PLUS (1:5 

IP3R1 Rabbit 
Anti-Rabbit 
MINUS (1:5) 

IP3R1 Rabbit 
Anti-Rabbit 
PLUS (1:5) 

TRPV1 Guinea Pig 
Conjugated-
MINUS 
(1:200) 

ANO1 Goat 
Anti-Goat 
PLUS (1:5) 

ANO1 Rabbit 
Anti-Rabbit 
MINUS (1:5) 

ANO1 Goat 
Anti-Goat 
PLUS (1:5) 

- - 
Conjugated-
MINUS 
(1:200) 

 

Table 2.2: PLA combinations. Table showing PLA probe combinations for different 

primary antibodies and dilutions used. Second to bottom row shows ANO1-ANO1 

positive control and bottom row shows negative control with only 1 primary antibody. 
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For negative and positive controls PLA was also repeated with just ANO1 primary 

antibody and no second primary antibody present (negative control) and with 2 

ANO1 primary antibodies (positive control). 

2.5 STORM 

A number of methods that allow to resolve objects at distances closer than the 

diffraction barrier have become available within the last decade; these are 

collectively called ‘super-resolution’ imaging techniques. The development of super-

resolution imaging is potentially a game-changer in life sciences, a fact that was 

recognised in the award of the 2015 Nobel Prize in Chemistry (to Eric Betzig, Stefan 

Hell and William Moerner). One of these techniques is called Stochastic Optical 

Reconstruction Microscopy (STORM) which was first reported back in 2006 (Rust et 

al., 2006). STORM exploits the principles of photo-switchable fluorophores targeted 

against proteins of interest. During each imaging cycle, only a small subset of 

fluorophores are turned on which subsequently allows nanometer localisation 

accuracy for each fluorophore to be determined (Rust et al., 2006). This process is 

repeated for many iterations and finally the individual localisations can be 

reconstructed to provide a full image of the target (Rust et al., 2006). This ingenious 

approach allows the diffraction limited resolution to be broken and high resolution to 

be achieved which initially was approximately 20nm, however recent studies have 

been able to further increase this to 2nm laterally and 41nm axially (Dudok et al., 

2015). In the version of the technique used in this study, the methodology requires 

so called ‘dye-pairs’ where two photo-switchable fluorophores are attached to an 

antibody, one of these is referred to as the activator and the other a reporter i.e. Cy3 

(activator) and Cy5 (reporter) (Zhang et al., 2016b). The Cy3 activator is stimulated 

with green light which in turn allows energy transfer to the Cy5 reporter molecule 

(Fig. 2.2). The energy transfer allows Cy5 to fluoresce and the subsequent point 

spread function (psf) of the activated reporter can be derived. The reporter 

fluorescence is recorded whereas the activator fluorescence is not- it is only part of 

the technique itself. In each cycle that is done, reporter dyes are first driven in non-

emitting ‘dark state’, then a small subset of fluorophores is activated by stimulation of 

the activators and the process is repeated until an overall image can be generated 

(Rust et al., 2006; Zhang et al., 2016b). Using different activators can allow multi-

colour STORM experiments to be done (see chapter 6). 
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DRG cultures were prepared and grown in glass-bottomed dishes. The same 

protocol for immunocytochemistry was carried out until the secondary antibody 

stage. Secondary antibodies consisted of in-house conjugated dye-pairs (activator-

reporter) (Zhuang, 2009; Zhang et al., 2016b). The ratio of activator: antibody: 

reporter required was 2-3:1:0.6-1 for optimum results (Nikon N-STORM protocol). 

Before imaging, a buffer containing Tris (50mM, pH8), NaCl (10mM), Glucose (10% 

w/v) and GLOX solution consisting of glucose oxidase (0.5mg/ml), catalase 

(40µg/ml) and cysteamine MEA (10mM) was used to submerge cells in.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2: Schematic illustration of STORM principles. Schematic 

representation of multicolour STORM using photo-switchable dye-pair activation. 

Activator molecules (405 and Cy3 in this example) are stimulated with their 

respective laser lines causing them to fluoresce. Subsequent energy transfer from 

the activator to the reporter (647 for both molecules) leads to fluorescence of this 

molecule which is then recorded. Therefore, reporter activity is only generated when 

the corresponding laser line of the reporter is used, allowing multicolour STORM. 

 

 

 

 

 



76 
 

For image acquisition, a Nikon Ti inverted microscope with an EMCCD camera 

(Andor iXon3) was utilised with Nikon N-STORM super-resolution imaging setup 

(Nikon Elements software) (Nikon Instruments). A CFI 100X/NA 1.49 oil immersion 

objective was used for imaging. Activators used were Alexa 405, 488 and Cy3 

whereas the reporter was always Alexa 647. These were stimulated with 405nm, 

488nm, 561nm and 647nm laser lines, respectively. Strong laser stimulation of the 

reporter molecules (647nm) cause photoswitching of the molecules into a temporary 

dark state. Weak stimulation of reporter molecules (405, 488 or 561nm) allowed 

activation of a subset of reporter molecules through energy transfer. Only the 

reporter molecules were imaged for several frames (1 frame= 16ms), before being 

switched back into the dark state and the whole process repeated for over 30 

minutes (~10,000 cycles), with each time a different subset of reporters being 

imaged (Zhang et al., 2016b). This allows a super-resolution image to be built up. 

Cluster analysis was done using an in-house developed software based on density 

based spatial clustering algorithm with noise (DBSCAN) (Ester et al., 1996; Zhang et 

al., 2016b). The localisation precision is based on 2 parameters, the size of the 

cluster (larger diameter, the less precision) and intensity of localisations (more 

intense localisation, the more precise the signal is deemed to be). Filtering of images 

was done to remove background noise. Dense regions of localisations or ‘clusters’ 

were identified within a directly-reachable radius proximity (between 20 and 80nm) 

with a minimum number of localisations surrounding a single core point of the 

cluster. Localisations not within the radius size were considered to be noise. Clusters 

were characterised using the activator dye used to detect a certain protein. Using 

this data, the percentage of clusters belonging to a protein was calculated from total 

clusters and presented as histograms.  

2.6 ER TIRF 

Total Internal Reflection Fluorescence (TIRF) imaging is an imaging technique that 

allows events occurring near or at the plasma membrane to be visualised (Fish, 

2009). As light travels through two different (transparent) media, each with differing 

refractive indices, light is partially diffracted and partially reflected. TIRF only occurs 

if light passes through the medium with a higher refractive index (i.e. glass dish, 

n=1.512) to a medium with a lower refractive index (i.e. sample specimen, n=1.33). 

As the angle of incidence is increased, so does the level of diffraction. Once the 
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angle of incidence is increased beyond the critical angle, light is no longer diffracted 

but fully reflected back into the medium thus allowing formation of an evanescent 

wave to at the glass-cell interface as some of the light energy is converted into this 

electromagnetic field. The evanescent wave decays exponentially when moving 

away from the interface (i.e. moving deeper into the sample). It has been estimated 

that the evanescent field can excite fluorophores that are not farther than 100-200nm 

away from the glass-cell interface, therefore providing a very good signal-to-noise 

ratio with low background fluorescence from out of focus planes (Fish, 2009) (Fig. 

2.3). The critical angle (θC) can be calculated using Snell’s Law which determines 

the angle at which total internal reflection occurs. This uses the refractive indices of 

the two media used in individual set ups: 

 

 

 

Figure 2.3: Principle of TIRF. (A) Snell’s Law equation to determine critical angle, 

θc. (B) Laser light excitation when over the critical angle produces an evanescent 

wave which decays exponentially. Fluorescently labelled molecules to be seen only 

in this wave and not further into the cytoplasm meaning events close to the plasma 

membrane can be monitored. 

A 

B 
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2.6.1 DRG TIRF 

For TIRF imaging, DRG cultures were grown onto 25mm glass coverslips. Cells 

were loaded with the 1µM ER-tracker Green (Thermo-fisher) for 30 minutes at 37°C 

before imaging. Coverslips were inserted into a perfusion chamber to allow direct 

placement onto a 60X oil immersion lens (Apo TIRF 60X, Nikon) and perfused with 

standard extracellular solution. An imaging system comprising of a Nikon TE-2000 E 

microscope with a CCD camera was utilised for TIRF imaging. Cells were located 

using brightfield and epi-fluorescence (488nm excitation) before being imaged for 

TIRF. The angle of the 488nm laser line was changed to produce TIRF at the plasma 

membrane. Drugs (bradykinin 250nM and capsaicin 1µM) were produced in standard 

extracellular solution before being perfused onto cells. Images were taken and 

analysed using Nikon Elements software.  

2.6.2 HEK293 cell TIRF 

HEK293 cells were grown in tissue culture dishes with DMEM and Glutamax 

containing penicillin (50U/ml), streptomycin (50ug/ml) and 10% Fetal Calf Serum 

(FCS). HEK293 cells were transfected with B2R or TRPV1 with mCherry 

(identification) cDNA using Fugene HD (Promega). Before plating onto 25mM 

coverslips, 10µl CellLight ER-GFP (BacMam 2.0) was added to the pellet to induce 

ER-GFP expression. After 24 hours, cells were imaged in the same manner as with 

DRG cultures.  

2.6.3 Analysis of TIRF data 

Cells imaged were divided into grids to monitor all areas of the cell. Averages of 

single cell grids and multiple cells in a condition were calculated and plotted as 

histograms. Paired T-tests were used to compare pre-drug and post-drug average 

responses in multiple cell calculations. ANOVA was used to test the comparisons 

between peak responses between cells in a single condition.  
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Chapter 3: Optimisation of the EYFP (H148Q/I152L) mutant fluorescence 

quenching methodology 

3.1 Introduction 

Electrophysiology is the primary technique used by researchers to yield the vast 

majority of information regarding ANO1. This includes data ranging from activation 

and deactivation kinetics to single channel conductance for ANO1 activity 

(Adomaviciene et al., 2013; Pedemonte and Galietta, 2014). There is no doubt that 

electrophysiology is a powerful method when it comes to ion channel study however, 

other techniques must continually be developed to provide well-rounded analysis 

and cover as much ion channel properties as possible. Some drawbacks of 

electrophysiology include relatively low throughput as only one cell can be recorded 

at a time and, particularly pertinent to the aims of this study, is in a situation when a 

CaCC channel is activated by Ca2+ influx through a non-selective cation channel 

(e.g. TRPV1) in the same cell. This means that it is very difficult to 

electrophysiologically separate the simultaneous activities of these two types of 

channel, as ionic current is a readout for both. Fluorescence imaging is an 

alternative technique which can potentially solve this problem as different optical 

probes for Ca2+ and Cl- can be utilised. In addition, live fluorescence imaging can 

offer higher throughput as compared to single-cell electrophysiology recordings. 

3.1.1 Green Fluorescent Protein 

Green fluorescent protein (GFP) was first discovered by Osuma Shimomura in 1962 

from Aequorea Victoria in which the protein aqeuorin is able to emit a blue glow in 

the presence of Ca2+ (Shimomura et al., 1962). This blue light is able to excite 

neighbouring GFP through an energy transfer process and therefore emit green 

fluorescence (Shimomura et al., 1962; Shimomura, 2005). The discovery of GFP 

provided the backbone for a whole host of fluorescent protein labels and sensors to 

be developed which has revolutionised cellular biology, leading to this ground 

breaking discovery winning a Nobel Prize in 2008. These proteins have quickly 

became an important tool in a researchers repertoire and used in a wide range of 

experimental techniques not limited to visualising gene expression (Chalfie et al., 

1994), protein targeting (Snapp, 2005), live imaging (Ettinger and Wittmann, 2014) 

as well as being used in optogenetics (Tantama et al., 2012).  
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3.1.2 Structure 

The most important factor regarding the fluorescent protein is the general β-barrel 

structure. This rigid structure is comprised of 11 β-pleated sheets which encases a 

central α-helix and it is this central portion of the protein where the light-emitting 

chromophore is located (Ormo et al., 1996; Yang et al., 1996) (Fig. 3.1A). To allow 

the formation of the chromophore, 4 processes must occur; (1) folding, (2) 

cyclisation, (3) oxidation and (4) dehydration (Craggs, 2009). Folding of the protein 

into its tertiary structure is an important and prerequisite step in chromophore 

formation (Fig. 3.1B). This can be demonstrated by denaturing the tertiary structure 

of GFP and seeing a loss of fluorescence (Reddy et al., 2012). In GFP, 3 amino 

acids are thought to be critical for the fluorescent property; S65, Y66 and G67. This 

tripeptide is able to undergo an autocatalytic event and produce the fluorescent 

species, however only G67 is indispensable to GFP as changing the other amino 

acids can result in altered properties of GFP (Heim et al., 1994). Cyclisation involves 

nucleophilic attack of the G67 amide nitrogen on the carbonyl carbon to form an 

imidazoline ring, thus highlighting the importance of the G67 amino acid (Pakhomov 

and Martynov, 2008). Subsequent oxidation and dehydration are able to ‘trap’ the 

fluorophore in the mature state, providing fluorescence, in this reversible reaction. 

(Barondeau et al., 2003; Craggs, 2009). 

3.1.3 Variants of GFP 

Introducing various mutations into GFP enabled researchers to alter its properties in 

terms of stability of the protein itself or the fluorescent activity (Remington, 2006; 

Pakhomov and Martynov, 2008). One of the Nobel prize winning pioneers of GFP 

studies, Rodger Tsien, and his group engineered a single point mutation at the 

tripeptide member S65 to threonine (S65T) which shifted the bimodal excitation-

emission spectra of GFP from 395nm and 475nm with emission at 508nm and 

503nm, respectively to just 488nm and with emission at 509nm (Heim et al., 1995). 

This also resulted in 5 times better fluorescence and stability of the protein compared 

to wild type GFP. One important mutation includes F64L which results in greater 

folding efficiency at 37°C and greater fluorescence and therefore aptly named 

enhanced GFP (EGFP) (Craggs, 2009). Other mutations have been found to shift 

the excitation-emission spectra to allow different coloured fluorescent proteins to be 

engineered (Remington, 2006). These include cyan fluorescent protein (CFP), yellow   
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Figure 3.1: Structure of GFP. (A) Left panel shows the structure of GFP from a side 

on view which highlights the β-pleated sheet structure. N-terminus domain depicted 

in red and C-terminus shown in blue. Right panel shows the structure from the top 

highlighting the chromophore in the middle of the ‘barrel’ structure. (B) Steps 

required for the formation of chromophore (see text). Figures adapted from (Craggs, 

2009).  

A 

B 
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fluorescent protein (YFP) and red fluorescent protein (RFP), which has in turn led to 

offshoots of these various species being developed with different properties (Shaner 

et al., 2007; Day and Davidson, 2009).  

3.1.4 Fluorescent proteins as Cl- channel activity sensors 

Some of the mutations incorporated into GFPs were able to confer new and useful 

properties to the fluorescent proteins. For instance, enhanced YFP (EYFP) contains 

4 mutations, S65G; V68L; S72A and T203Y causing red-shifted excitation-emission 

spectra (514nm excitation and 528nm emission) and provides intense fluorescence 

(Elsliger et al., 1999). Interestingly, two further mutations engineered in EYFP were 

H148Q and I152L, which have been found to allow enhanced halide sensitivity to this 

protein whereby the fluorescence is quenched upon binding of a halide ion 

(Jayaraman and Verkman, 2000; Galietta et al., 2001a). This mutant has a Kd of 

3mM for I- and 88mM for Cl- (1.9mM and 85mM for purified proteins at pH7.4, 

respectively) (Galietta et al., 2001a), making it possible to use this mutant to detect 

fairly small changes of I- concentration on the background of physiological 

concentrations of Cl- (Galietta et al., 2001b). 

As mentioned earlier, one interesting property of ANO1 (and most other Cl- 

channels) is its ability to transport other anions apart from Cl- (Yang et al., 2008). In 

general, halide ions such as I- are able to permeate Cl- channels better than Cl- itself 

however because Cl- is the main anionic charge carrier in the body, these channels 

are known as 'Cl- channels' (Verkman and Galietta, 2009). There are some instances 

where I- plays a physiological role and its movement is required, an example being in 

thyroid glands where the sodium-iodide symporter (NIS) transports 2 Na+ and 1 I- 

into follicular cells for the production of thyroid hormone (Dohan et al., 2003). 

Deficiencies in iodine in the diet lead to disorders such as hypothyroidism, thyroid 

goiters (enlargement of the thyroid gland) and mental retardation in children where 

the mother has had iodine-deficiency during pregnancy (Zimmermann et al., 2008). 

Interestingly, ANO1 has also been implicated in the production of thryroid hormones 

(Iosco et al., 2014). Thyroid follicular cells uptake I- before a protein known as 

pendrin pumps I- into the follicle colloid where production of the hormones occurs 

(Fugazzola et al., 2001; Bizhanova and Kopp, 2009). These cells have long been 

known to display CaCC currents (Martin, 1992; Viitanen et al., 2013) and radioiodide 

efflux was found to occur after GPCR-agonist activation (Weiss et al., 1984; Corda et 
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al., 1985; Iosco et al., 2014). Therefore, ANO1 was suggested to play a role in I- 

transport where it acts as a Ca2+-activated I- channel (Iosco et al., 2014; Twyffels et 

al., 2014).    

The permeability of Cl- channels to I- provides an opportunity for us to develop a 

method whereby we can utilize fluorescent proteins in order to study Cl- channel 

activity, more specifically ANO1.  

3.1.5 Protocol development 

The basis of a protocol allowing us to visualise Cl- channel activity would require: (i) 

expression of the halide sensitive fluorescent protein in cells (ultimately – the DRG 

neurons); (ii) presence of a Cl- channel in the cells (endogenous or transfected) and 

(iii) presence of I- in the bath solution to be able to induce quenching. Figure 3.2 

shows the protocol in schematic form. Activation of the Cl- channel would open the 

anion-conducting pore and use the concentration gradient for I- to drive it into the 

cells. Upon interaction of I- with the halide sensor, the fluorescence would quench to 

provide an indirect measurement of Cl- channel activity. This halide sensitive 

fluorescence approach has been used in previous studies but hitherto not in single-

cell imaging of neurons. A YFP (H148Q/I152L) mutant was utilised by Johansson 

and colleagues in CHO-K1 cells in the search for high throughput assays to develop 

GABAA channel modulators (Johansson et al., 2013). This study used different 

concentrations of NaI (5mM, 10mM, 20mM and 40mM) and measured both agoinst-

independent and dependent quenching. Overall, they came to the conclusion that 

10mM was the optimal NaI concentration to use for assays using CHO-K1 cells 

(Johansson et al., 2013). In the context of ANO1 studies, this approach has been 

used in the development of a novel ANO1 blocker Ani9 as part of a high throughput 

assay in fisher rat thyroid (FRT) cells (Seo et al., 2016). Ani9 was found to be more 

selective for ANO1 over ANO2 in its inhibitory activity (Seo et al., 2016). Other 

studies looking at ANO1 activators and inhibitors also used the YFP mutant 

biosensor to assay compounds in HEK293 and FRT cells, respectively, due to the 

high throughput screening it allows (Namkung et al., 2011; Huang et al., 2012). 

Moreover, this technique has also been used to look at the effects of various  
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Figure 3.2: Schematic outlining the principle of I- imaging experiments. 

DRG neurons are transfected with the halide-sensitive HI48Q/I152L EYFP 

mutant (yellow circles). DRG neurons are known to express Cl- channels (red 

shapes in membrane) and at rest mutant EYFP is able to fluoresce and I- (red 

circles) is unable to enter the cells (Upper panel). Activation of Cl- channels 

allows I- to flow into the cells and induce quenching of the mutant EYFP 

fluorescence hence allowing Cl- channel activity to be monitored (Lower 

panel).  
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mutations in ANO1 and how they affect channel activity (Bill et al., 2015). The 

protocol involved applying carbachol to activate ANO1 channels with various 

mutations and measuring the responses. Interestingly, the most significant mutation 

they reported was S741T in the pore loop which enhanced Ca2+ sensitivity of ANO1 

and rendered the Ca2+ gating of the channel insensitive to voltage (Bill et al., 2015). 

In all of these studies, expression systems in combination with fluorescence plate 

readers were used. 

In our previous study we used primary DRG neurons transfected with EYFP 

(H148Q/I152L) and individually imaged these cells in the presence of standard bath 

solution consisting of 30mM NaI to test activation of endogenous CaCC in DRG 

neurons by Ca2+ release from the ER or by the activity-dependent Ca2+ influx through 

the VGCC (Jin et al., 2013). However, this method displayed significant agonist-

independent YFP quenching (Fig. 3.3A), so it was impossible to apply more than one 

agonist during a single experiment.  

We have therefore decided to optimise this technique to minimise agonist-

independent quenching and allow efficient agonist-dependent response in a single 

protocol (Fig. 3.3B). For this optimisation stage it was more beneficial to use a direct 

agonist-activated channel such as GABAA, which is abundantly expressed in DRG 

(Maddox et al., 2004; Du et al., 2017b) instead of CaCC, which requires intracellular 

Ca2+ to activate and displays more heterogeneous responses in DRG. Recently, 

Gamper’s group demonstrated that rat sensory ganglia contain the ‘machinery’ for 

GABA synthesis such as the vesicular GABA transporter (VGAT) and electron 

micrographs revealed the presence of GABA packaged inside vesicles ready for 

release (Du et al., 2017b). Release of GABA after depolarisation of DRG neurons 

shows that it plays a vital role in the control of nociceptive signals that are thought to 

allow DRG neurons to filter and gate signals for nociceptive transmission (Du et al., 

2017b). Using GABAA as part of the optimisation process, we can quickly visualise a 

response and titrate the extracellular I- in order to determine optimal concentration 

that provides a good dynamic range for the agonist-dependent quenching while 

keeping the agonist-independent ‘rundown’ of fluorescence to the minimum. Similarly 

to ANO1, GABAA channels have a halide permeability sequence as I−> Br−> Cl−> F−, 

where larger anions are able to permeate through these channels better than smaller 

ones. 
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Figure 3.3: Protocols used for recording Cl- channel activity using 

mutant EYFP (H148Q/I152L). (A) Previous protocol required application of 

NaI made to a separate set of cells with and without agonist to provide a 

measure of agonist-independent quenching. (B) Newly devised protocol will 

require titration of I- concentration to produce minimal agonist-independent 

quenching to allow application of agonist during a single experiment.  

A 

B 
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3.2 Results 

To optimise this halide-sensitive quenching approach, DRG neurons were 

dissociated and before plating out, cells were transfected with EYFP (H148Q/I152L) 

mutant cDNA using Lonza’s nucleofector. As DRG neurons are postmitotic, 

heterologous expression of genes in these cells is difficult and common transfection 

reagents are unable to transfect cells, yet previous studies from our lab have shown 

that DRG neurons can stably express proteins after transfection using the 

’nucleoporation’ method (Kirton et al., 2013). Furthermore, we have previously used 

this approach in DRG neurons using the same mutant EYFP to carry out ANO1 

studies (Jin et al., 2013). After culturing cells for 48 hours, the cells were imaged 

using TillPhotonics fluorescence imaging system. A simple protocol was carried out 

which involved perfusing cells with standard bath solution for 50 seconds before 

applying the same bath solution with a fraction of NaCl substituted with NaI (for 50 

seconds) to provide a source of I- to induce quenching of the fluorescence. NaI 

perfusion produced agonist-independent quenching which we have previously 

encountered therefore our main objective was to reduce this to a minimal level as 

possible. Finally, the NaI containing bath solution with GABA (100µM) added was 

applied (for 50 seconds) to induce agonist-dependent quenching. Optimisation of the 

agonist-dependent quenching was required to provide a distinctive, visible response 

while maintaining minimal agonist-independent quenching.  

We prepared 30, 10 and 5mM NaI containing bath solutions to apply to DRG cultures 

that were transfected with EYFP (H148Q/I152L) (Fig. 3.4A and B). Perfusion of 

30mM NaI led to fluorescence being quenched almost immediately by 0.26 ± 0.068 

(n=7, p<0.05, ANOVA with Tukey). When subsequent GABA (100µM) was applied, 

only relatively small further quenching was observed (from 0.26 ± 0.068 to 0.37 ± 

0.073) however this was not significantly different to the agonist-independent 

quenching. Thus, at the 30mM concentration of NaI in extracellular solution, the rate 

of agonist-independent quenching exceeds the rate of agonist-dependent quenching 

(Fig. 3.4A and B), which is not ideal. Therefore, lower NaI concentrations (10 and 

5mM) were tested. Using 10mM NaI gave a significantly smaller agonist-independent 

quenching (by 0.038 ± 0.0059), as compared to 30mM NaI (p<0.05, unpaired T-test) 

however this was not significantly different to quenching caused by standard bath  
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Figure 3.4: Optimisation of EYFP (H148Q/I152L) fluorescence quenching 

technique. (A) Representative traces for 5, 10 and 30mM NaI application. (B) 

Average data for 5 (n=5), 10 (n=5) and 30mM (n=7) NaI solutions. (    ) denotes 

end of standard bath solution application, (   ) denotes end of the NaI extracellular 

solution application and (    ) denotes end of NaI extracellular solution + GABA 

(100μM) application. 
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solution. Furthermore, application of 100µM GABA produced an obvious decrease in 

the EYFP fluorescence by 0.102 ± 0.02 (p<0.001, ANOVA with Tukey). Finally, 5 mM 

NaI was also tested; it produced very small agonist-independent quenching by 0.02 

± 0.01 (not significant). GABA (100µM) application produced quenching in a similar 

manner to that of 10mM NaI; quenching occurred by 0.12 ± 0.014 (n=5, p<0.01, 

ANOVA with Tukey). In the experiments with 10 and 5mM NaI there was minimal 

rundown of fluorescence in the standard bath solution (0.01 ± 0.007, n=7 and 0.02 ± 

0.003, n=5, respectively). There was no significant difference between agonist-

independent or dependent quenching between 5mM and 10mM NaI (Fig. 3.4B). We 

have therefore chosen 5mM NaI for subsequent experiments to minimize possible 

non-specific effects of iodide in DRG. 

To confirm that this technique is not affected by our bath solution, we decided to 

perform some imaging of neurons transfected with the EYFP (H148Q/I152L) mutant 

and perfuse normal bath solution. Application of normal bath solution gave no 

significant quenching which validated our protocol to be used for monitoring anion 

channel activity (0.004 ± 0.0089, n=5) (Fig. 3.5). 
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Figure 3.5: Effects of standard extracellular bath solution on EYFP 

(H148Q/I152L) quenching. Quenching induced by standard extracellular solution 

(containing no NaI or GABA application, n=5) after 150 seconds. Effects of 5mM NaI 

solution and quenching caused by GABA are also shown for comparison.     
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The agonist-independent quenching can also be analysed by looking at the 

equilibrium potentials for GABAA channels in DRG which have an intracellular 

concentration of 40mM (Rocha-Gonzalez et al., 2008). When using standard bath 

solutions, the equilibrium potential for Cl- (and hence GABAA channels) is calculated 

as ~-35mV using the Nernst Potential equation (extracellular 165.5mM; intracellular 

40mM). Due to the fact that our methodology incorporates I- and Cl- channels are 

permeable to I-, the effects of both ions on the equilibrium potential must be taken 

into account. This is done using the Goldman-Hodgkin-Katz (GHK) voltage equation 

(Fig. 3.6):  

 

When 5mM NaI (substituted for equimolar NaCl) is included in the solutions, the 

equilibrium potential for GABAA channels is set to -36.4mV using a published 

permeability ratio of 1.88 (PI/PCl) for GABAA in DRG (Robertson, 1989). When the 

NaI concentration is raised to 10mM, the equilibrium potential for GABAA is changed 

to -37.1mV and when the concentration of NaI is increased to 30mM, it is -39.5mV. 

This is even more significant for ANO1 given the fact that I- permeability is greater for 

ANO1 compared to GABAA channels (Peters et al., 2015). If we calculate the 

equilibrium potentials for ANO1 using 5mM, 10mM and 30mM concentrations of NaI 

in DRG with a PI/PCl of 5 at resting Ca2+ levels (Peters et al., 2015), we get values of 

-38.6mV, -41.2mV and -49.5mV, respectively. For ANO1, the equilibrium potentials 

are closer to the resting membrane potential for DRG (~-55mV; Rocha-Gonzalez et 

al., 2008), especially for 30mM NaI. Therefore, when the membrane potential is 

greater than these calculated equilibrium potentials, I- will move into the cells- the 

higher the NaI concentration, the greater the danger of this happening. Additionally, 

the greater concentration gradient for I- also means a large driving force at higher 

NaI concentrations and spontaneously open channels will allow I- to be driven into 

the DRG, therefore causing greater agonist-independent quenching (Fig. 3.4). To 

summarise, the electrochemical gradient at higher NaI concentrations results in 

greater agonist-independent quenching, which supports the decision to use 5mM NaI 

for my experiments.  

Figure 3.6: Goldman-Hodgkin-Katz voltage equation used to calculate the 

equilibrium potential for Cl- channels.  

 



92 
 

4.3 Discussion 

Our results, along with previous work, have demonstrated that a halide sensitive 

mutant YFP can be used to monitor Cl- channel activity in DRG neurons. It is a well-

known fact that DRG neurons express GABAA (Du et al., 2017b), which makes them 

an attractive channel for us to utilise as a means to optimise our halide-sensitive 

approach as GABAA is a bona fide Cl- channel. In our previous studies we started 

with a full exchange of the NaCl content (160mM) to NaI to enable EYFP quenching 

however, apart from a solitary response, there was almost total quenching in every 

experiment that we performed. This was not the case in thyroid follicular cells where 

100mM exchange of NaCl to KI caused only a 20% quenching response (Iosco et 

al., 2014). The potential reasons for agonist-independent quenching may include 

activity of the NKCC1 cotransporter or Cl- channels that are spontaneously open. 

NKCC1 cotransporter is found in DRG neurons where it is known to accumulate Cl- 

and despite I- being a poor substitute for Cl- in terms of NKCC1 activity, it has 

nonetheless been shown to allow I- movement (Markadieu and Delpire, 2014). 

Therefore in the presence of I-, NKCC1 may be able to transport I- into neurons and 

cause quenching. In terms of channel activity, there are various Cl- channels 

expressed in DRG and if some are open in a spontaneous manner, then this will 

allow I- influx and quenching will occur. Furthermore, the larger NaI concentration 

provides a greater driving force for I- entry which will also result in more I- entering 

cells. For this reason, the concentration of NaI was reduced to 30mM in order to stop 

this quenching (Jin et al., 2013). This manoeuvre reduced quenching somewhat so it 

become possible to compare the degree of quenching after exposure of different 

sets of DRG neurons to NaI with or without agonist. Yet, the agonist-independent 

quenching with 30mM NaI was still significant (Fig. 3.4) so it was not possible to 

apply compounds in succession and perform paired measurements on the same 

neuron. Therefore further steps were taken in order to improve this imaging protocol, 

minimize the agonist-independent quenching and enable successive application of 

multiple compounds during a single recording.  

Lower NaI (10mM and 5 mM) gave significantly less agonist-independent quenching 

while still providing clear response to agonist-induced Cl- channel activation. Our 

data are in very good agreement with theses reported earlier; thus, Johansson and 

colleagues reported very small agonist-independent quenching in CHO-K1 cells was 
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for 5mM and 10mM NaI and approximately 30% for 40mM (Johansson et al., 2013). 

On the other hand, the responses obtained in CHO-K1 cells were greater when 

GABA was applied compared to what we have found in DRG. The agonist-

dependent quenching was approximately 15% and 25% for 5 and 10mM NaI, 

respectively in CHO-K1 cells. Differences between our results and those seen in 

CHO-K1 cells could be due to overexpression of GABA receptors allowing more 

channels to be activated, hence more activity of GABA on the quenching. Application 

of GABA in 40mM NaI only gave a 15% quenching response which could be due to 

the larger agonist-independent quenching masking the response achieved. Even 

though 40mM NaI gave the largest response overall, the majority of this was due to 

agonist-independent quenching. Therefore, we concluded that all further 

experiments will utilise 5mM NaI despite the fact 10mM also gave similar responses. 

Using the lower of the 2 concentrations would safeguard cells from potential side 

effects of the higher NaI concentration. 

After optimising and confirming the ability of this halide sensitive mutant EYFP 

technique in observing Cl- channel activity, the next chapter will focus on 

modification and application of this method to monitor CaCC activity in DRG neurons 

in response to pro-algesic compounds. 
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Chapter 4: Simultaneous EYFP (H148Q/I152L) and Ca2+ imaging to monitor 

activation of CaCC in DRG neurons 

4.1 Introduction 

There are various routes by which cytosolic Ca2+ signals can be produced in 

neurons, including influx via ligand-gated ion channels, SOCE, VGCCs as well as 

through the release from the internal Ca2+ stores found in the ER. The latter 2 

examples are significant pathways engaged in sensory neurons as Ca2+ entry 

through VGCC occurs during action potential firing while Ca2+ release from the ER is 

used in multiple GPCR signalling cascades, including these triggered by pro-algesic 

inflammatory mediators such as bradykinin (Golias et al., 2007). VGCCs have been 

discussed in the general introduction therefore I will briefly discuss ER Ca2+ release 

mechanisms. 

4.1.1 Ca2+ release from the ER 

The ER hosts a vast concentration of Ca2+, approximately 1-2mM (de la Fuente et 

al., 2013), which can be released upon stimulation of a receptor producing a 

secondary messenger or through Ca2+ itself ultimately leading to an increase in 

cytosolic Ca2+ (Marks, 1997). There are 2 types of receptors found in the ER that 

mediate Ca2+ release- IP3R (Taylor and Tovey, 2010) and RYR (Lanner et al., 2010). 

The IP3R has 3 isoforms: IP3R1, IP3R2 and IP3R3, with IP3R1 being the most 

abundantly expressed isoform throughout the body and also the one that 

predominates in DRG (Dent et al., 1996; Taylor and Tovey, 2010). IP3Rs are 

essentially tetrameric ion channels- each subunit consisting of 6 TM domains and 

have a molecular mass of approximately 1100kDa (Taylor and Tovey, 2010). 

Interestingly, IP3Rs can be activated by 2 secondary messengers- IP3 and Ca2+ itself 

(Finch et al., 1991; Marchant et al., 1997). GPCRs that couple to Gq- and G11 type of 

Gα activate PLC, which subsequently cleaves PIP2 giving rise to IP3 and DAG 

(Tuteja, 2009). IP3 is able to diffuse through the cytosol and bind to the IP3R 

channels and induce robust Ca2+ release into the cytosol (Tuteja, 2009). Ca2+ on the 

other hand has a biphasic effect on IP3R where concentrations of ~500nM work in 

tandem with IP3 to provide efficient channel activity however greater Ca2+ 

concentrations inhibit channel activity (Iino, 1990; Marshall and Taylor, 1993; Taylor 

and Tovey, 2010). This is a vital inhibitory mechanism by which Ca2+ release into the 

cytosol is regulated to avoid toxic Ca2+ overload (Taylor and Tovey, 2010). RYR 
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channels are extremely important in the process of excitation-contraction coupling in 

muscle cells (Santulli and Marks, 2015). There are 3 isoforms- RYR1, 2 and 3; the 

former 2 are found predominantly in skeletal muscle (Takeshima et al., 1989) and 

myocardium (Nakai et al., 1990; Otsu et al., 1990) respectively, whereas the latter is 

widely expressed and also found in the brain (Hakamata et al., 1992; Lanner et al., 

2010). Structurally RYRs form as homotetramers- each monomer consists of 

approximately 5000 amino acids (Lanner et al., 2010). RYRs are unique in their 

ability to activate CICR. CICR involves Ca2+ entry (i.e. L-type Ca2+ channels), which 

is able to bind and activate RYR. Subsequent opening of RYRs allows Ca2+ release 

from the ER/SR (Endo, 2009). However due to their critical involvement in 

inflammatory signalling and ANO1 activation in DRG neurons (Jin et al., 2013), this 

chapter will focus on IP3R.  

4.1.2 ANO1 coupling to IP3R in DRG neurons 

It is a well-known fact that ANO1 is expressed in DRG neurons (Yang et al., 2008; 

Liu et al., 2010; Jin et al., 2013; Lee et al., 2014; Takayama et al., 2015). ANO1 and 

IP3R form ER-PM junctional microdomains which allow preferential activation of 

ANO1 in DRG neurons (Jin et al., 2013). Conversely, there is poor coupling of ANO1 

and VGCCs in DRG due to the lack of proximity as demonstrated using proteomics 

and biochemical approaches (Jin et al., 2013). Gq- protein coupled receptor 

activation was able to induce ANO1 currents. Disrupting ANO1 or ER activity using 

NFA (block ANO1) or thapsigargin (deplete ER Ca2+) abolished currents from 

occurring (Jin et al., 2013). Furthermore, ANO1 and GPCRs (activation of which lead 

to IP3 production) are found in lipid rafts- areas rich in lipids (cholesterol, 

sphingolipids and sphingomyelin) (Korade and Kenworthy, 2008), which serve to 

compartmentalize cellular processes by acting as organizing hubs for signalling 

complexes (Korade and Kenworthy, 2008). In DRG neurons, lipid rafts allow these 

proteins to form closely positioned domains, at ER-PM junctions which allows the 

activation of ANO1 (Jin et al., 2014). VGCCs are not part of this lipid raft 

microdomain hence the poor coupling with ANO1. To this end PAR-2, another 

GPCR, was also able to activate ANO1. Removal of Ca2+ from the bath solution had 

no effect on ANO1 activity; robust CaCC currents were seen after bradykinin 

application (Jin et al., 2013). Recently, Cabrita and colleagues have also 

demonstrated coupling of ANO1 activity to IP3R in cell lines (Cabrita et al., 2017). 
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Taken together this demonstrates the importance of microdomains in various 

aspects of cell signalling and also shows how vital junctional ER-PM microdomains 

are for ANO1 activation. 

In this chapter, I will focus on these ANO1-activation properties and investigate them 

using a novel dual-imaging approach which allows us to monitor CaCC activity and 

Ca2+ signalling concurrently in a single cell approach.  

4.2 Results 

We used our improved imaging protocol which (i) minimized agonist-independent 

quenching of the halide sensor and (ii) combined I- influx-based monitoring of Cl- 

channel activity with Ca2+ imaging using fura-2. In contrast to previous experiments, 

this method allowed interrogation of CaCC properties and simultaneous monitoring 

of cytosolic Ca2+ levels in the same live neuron. Using this method we revisited 

coupling of ANO1 to bradykinin-activated B2R and VGCCs in cultured small DRG 

neurons. EYFP (H148Q/I152L) was stably transfected in DRG neurons using the 

Lonza Nucleofector kit and cultured for 48 hours. Prior to our experiments, fura-2 AM 

was loaded into cells to enable us to visualize the Ca2+ dynamics. At the beginning of 

each experiment standard bath solution was perfused for 50s before switching to NaI 

(5mM) extracellular solution (for 50s). Bradykinin (250nM) was then perfused into the 

chamber in the presence of NaI solution (for 100s; see Fig. 4.1A). Application of 

bradykinin led to a significant increase in Ca2+ and a concurrent reduction in 

fluorescence (n=12) (Fig. 4.1A and B). The Ca2+ rose sharply and rapidly and 

peaked at 12 seconds before falling. This was followed quickly by initiation of 

quenching of the EYFP (H148Q/I152L) mutant fluorescence. The EYFP quenching 

was recorded in all cells in which there was a bradykinin-induced Ca2+ transient. Of 

the 12 cells that were imaged, the average Ca2+ signal (∆F/F0) amounted to 1.96 ± 

0.18 fold over the baseline (Fig. 4.1B). The EYFP fluorescence decreased by 0.11 ± 

0.018 (n=12, p<0.0001, paired T-test) showing that bradykinin-application is indeed 

able to induce I- influx into cells to quench the fluorescence (Fig. 4.1B). Overcoming 

the shortcomings of the previous study (Jin et al., 2013) we can confirm that the 

EYFP quenching was closely correlated with the rise in intracellular Ca2+ due to the 

effects of bradykinin (Fig. 4.1). 
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Figure 4.1: Bradykinin application induces fura-2 measured Ca2+ increase and 

concurrent EYFP (H148Q/I152L) mutant fluorescence quenching upon 

application of bradykinin (250nM) to small DRG neurons. (A) Representative 

trace of one DRG in response to bradykinin. (B) Individual cell responses for fura-2 

(upper) and EYFP (H148Q/I152L) fluorescence quenching (lower) for bradykinin 

application (n=12). ****p<0.0001 

B 
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To validate our experiments and prove that this effect was due to ANO1 and not 

another anionic conductance, the selective ANO1 inhibitor T16Ainh-A01 (50µM) was 

used to block ANO1 to see if there was any EYFP fluorescence quenching when 

bradykinin was applied in this instance. Transfected cells were incubated with the 

inhibitor during the fura-2 loading process and T16Ainh-A01 was also included in the 

solutions during the imaging protocol. Satisfyingly, T16Ainh-A01 completely Inhibited 

the bradykinin induced quenching seen in the previous experiment- there was 

significantly less quenching compared to bradykinin application (0.0017 ± 0.001, n=6 

vs. 0.11 ± 0.018, n=12, p<0.001, unpaired T-test) (Fig. 4.2). However, whilst 

bradykinin was still able to cause an increase in Ca2+; the BK-induced Ca2+ 

transients in the presence of T16Ainh-A01 were significantly lower than in control 

conditions (0.70 ± 0.23, n=6 vs. 1.96 ± 0.18, n=12; p<0.001, unpaired T-test). 

Interestingly, T16Ainh-A01 also reduced the agonist-independent quenching. When 

comparing the agonist-independent quenching for control (bradykinin application 

dataset) and T16Ainh-A01, there is a significant difference in the agonist-

independent quenching (0.028 ± 0.0049, n=12 vs. 0.00052 ± 0.00082, n=6; p<0.01, 

unpaired T-test). Therefore, it seems as though ANO1 could be at least in part 

responsible for this phenomenon. Resting levels of Ca2+ present in cells being 

imaged could influence results due to the Ca2+ sensitive nature of ANO1. If there is 

greater Ca2+ present, this could depolarise the resting membrane potential of the cell 

and induce sensitisation of ANO1 channels- this may lead to open cells before 

agonist application. To see if this was the case, the agonist-independent EYFP 

quenching was compared between 2 cells with identical resting Ca2+ ratios (182.02 

and 182.16). Before application of bradykinin, the EYFP quenched by 0.02 and 0.04 

for each cell. This suggests that agonist-independent quenching is not influenced by 

resting Ca2+ ratio. Furthermore, the cell with the greatest resting Ca2+ ratio (202.04) 

showed 0.03 agonist-independent quenching, again showing that this doesn’t 

necessarily affect quenching. This may be due to photobleaching of the sensor or 

condition of the cell (damaged cell membranes may allow more I- entry). 

These data sets demonstrate that: (i) our imaging protocol allows simultaneous 

measurement of CaCC and Ca2+ dynamics in live individual neurons; (ii) B2R 

activation is able to induce EYFP (H148Q/I152L) mutant quenching which closely  
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Figure 4.2: T16A-inhA01 abolishes EYFP (H148Q/I152L) mutant 

fluorescence quenching when bradykinin is applied but still evokes a Ca2+ 

rise in small-diameter DRG neurons. Individual cell data showing the effects of 

T16A-inhA01 on both Ca2+ and EYFP quenching. **p<0.01, *** p<0.001   
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follows Ca2+ release evoked by bradykinin application and (iii) this bradykinin-

dependent quenching of EYFP (H148Q/I152L) is dependent on CaCC. 

Previously, it has been demonstrated that activation of ANO1 is closely coupled to 

IP3R activation and poorly coupled to VGCC activation in small diameter DRG 

neurons (Jin et al., 2013). This was confirmed through both whole-cell patch clamp 

recordings and EYFP (H148Q/I152L) mutant fluorescence quenching however again 

there was no simultaneous Ca2+ imaging in these earlier experiments so the Ca2+ 

entry through the VGCC could not be directly correlated with the ANO1 activity (Jin 

et al., 2013). Our optimised imaging protocol was therefore used to re-evaluate 

coupling of ANO1 to VGCC activation in DRG neurons. To activate VGCCs, 50mM 

of extracellular NaCl was replaced with KCl to induce depolarisation (EK = -25.9 mV) 

hence allowing Ca2+ entry from outside the cell. Remarkably, there were 2 types of 

responses from VGCC activation in neurons recorded from (Fig. 4.3A and B). The 

majority of neurons (15/23; 65%) showed no response which was what was 

expected and correlates to the results obtained by Jin and colleagues (quenching of 

0.018 ± 0.004). This was regardless of an increase in Ca2+ being present in every 

single neuron recorded from (Fig. 4.3C). However, the remaining 8/23 (35%) 

neurons actually showed varying degrees of EYFP quenching which we considered 

a response (quenching of 0.16 ± 0.028). We divided the neurons into ‘responders 

and ‘non-responders’ based on the degree of EYFP quenching induced by the high-

K+ depolarisation: if quenching did not exceed the rate of agonist-independent 

quenching (i.e. 4% over 100s), the neuron was considered a non-responder, all other 

neurons were classified as responders (Fig. 4.3C). On average for the full population 

of neurons that were tested (including responders and non-responders to VGCC 

activation), there was significant quenching when VGCCs were activated (Fig. 4.3C). 

The proportion of responding neurons was somewhat higher than in our previous 

experiments (5-20%) (Liu et al., 2010; Jin et al., 2013).  

However, in our previous study (Jin et al., 2013) some depolarisation-induced inward 

currents were observed in the presence of VGCC blocker, cadmium, suggesting that 

there may be other, non-CaCC currents involved. We decided to investigate this by 

removing the extracellular Ca2+ during VGCC activation with 50mM KCl solution. In 

cells we tested, there was no Ca2+ signal in any cell (Fig. 4.4A and B), however, 

there was still some quenching of the EYFP (H148Q/I152L) mutant fluorescence  
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Figure 4.3: VGCC activation (50mM KCl application) produces 2 different 

responses in small-diameter DRG neurons. (A) Representative traces of one DRG 

‘responder’ and (B) one DRG ‘non-responder’ after VGCC activation. (C) Individual 

cell data showing fura-2 and EYFP (H148Q/I152L) mutant fluorescence quenching 

for VGCC activation showing subsets of responders (n=8) and non-responders 

(n=15; total n=23) ****p< 0.0001. 

C 
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(n=7). This confirms that there is a portion of the quenching that is not due to CaCC 

during depolarisation with the high-K+ solution. When Ca2+-free responses to 50mM 

KCl are compared to the responsive-subset neurons, there is no significant 

difference between the quenching achieved by both conditions, however both 

conditions elicited significantly greater quenching compared to VGCC non-

responsive neurons (Ca2+-free: 0.104 ± 0.022, vs. non-responsive neurons, 

p<0.0001, unpaired T-test). 

In sum, our data are broadly in agreement with our previously published conclusions 

that VGCC are poorly coupled to ANO1 in small-diameter DRG neurons: (i) 65% of 

such DRG neurons did not show CaCC-dependent EYFP quenching in response to 

depolarisation (even though there were large Ca2+ transients in these cells); (ii) the 

majority of quenching in ‘responding’ neurons was Ca2+-independent and, thus 

involves mechanisms other than CaCC.  

Finally, to definitively conclude that bradykinin-induced quenching of EYFP 

(H148Q/I152L) fluorescence depends on ER Ca2+ release, rather than on any Ca2+ 

influx mechanisms, we repeated bradykinin application in Ca2+ free conditions. There 

was a 1.07 ± 0.30 increase in Ca2+ (p<0.05, n=5) when bradykinin was applied in the 

absence of Ca2+ in the extracellular solutions (Fig. 4.5A and B). This was somewhat 

smaller than the Ca2+ rise seen with bradykinin application in the presence of Ca2+ 

(p<0.0001, unpaired T-test) (Fig. 4.5B). The time taken to reach the maximal 

response was also longer (22 seconds). More importantly, EYFP (H148Q/I152L) 

mutant fluorescence was still significantly quenched when bradykinin was applied in 

Ca2+ free conditions (0.15 ± 0.03, n=5, p<0.01). Satisfyingly, the levels of quenching 

were almost identical, regardless of Ca2+ levels reached in the cells (Fig. 4.5B). 

Therefore, this result confirms the importance of IP3R Ca2+ release in the bradykinin-

induced ANO1 activation.  
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Figure 4.4: Removing extracellular Ca2+ and activating VGCCs still induces 

EYFP (H148Q/I152L) quenching. (A) Representative trace for one DRG response 

to 50mM KCl application to small-diameter DRG neurons, (B) Individual cell data 

for EYFP (H148Q/I152L) mutant fluorescence quenching showing pre and post 

responses to 50mM KCl application in different conditions (n=7). ****p<0.0001  
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Figure 4.5: Bradykinin application induces fura-2 measured Ca2+ increase and 

concurrent EYFP (H148Q/I152L) mutant fluorescence quenching upon 

application of bradykinin (250nM) in small DRG neurons. (A) Representative 

trace of one DRG in response to bradykinin in Ca2+ free conditions. (B) Individual cell 

responses for fura-2 data for bradykinin application and represents EYFP 

(H148Q/I152L) fluorescence quenching for bradykinin application before and after 

application of bradykinin in Ca2+ free conditions (n=5) and (C) comparison between 

responses to bradykinin application in control or Ca2+ free conditions (n=5). 

****p<0.0001  
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4.3 Discussion 

This chapter demonstrates that our halide sensitive quenching technique can be 

used to monitor CaCC activation in DRG cultures and allows us to apply a sequence 

of solutions in a single protocol- something we were unable to do previously. 

Furthermore, coupling this with fura-2 imaging enables alignment of reported CaCC 

activity with Ca2+ dynamics in native cells to demonstrate that this is a Ca2+-coupled 

event. We have shown that application of bradykinin is able to induce quenching of 

EYFP (H148Q/I152L) fluorescence in all neurons where there was a rise in [Ca2+]i. 

On the other hand, activation of VGCCs using 50mM KCl solution to depolarize 

neurons was unable to activate CaCC in 65% of DRG. The remaining 35% of 

neurons did respond to VGCC activation, however the majority of the EYFP 

quenching seen in these neurons was unlikely CaCC-dependent as removing Ca2+ 

from the bath solution did not abolish quenching. These findings are in good 

agreement with previous observations that ANO1 activity in DRG neurons is 

functionally coupled to IP3R-induced Ca2+ release (Liu et al., 2010; Jin et al., 2013). 

4.3.1 Halide sensor and fura-2 imaging provide an effective means to study 

CaCC activity 

This EYFP (H148Q/I152L) quenching methodology using I- ions was previously used 

to demonstrate bradykinin-induced ANO1 activity however there were 2 issues with 

this; the first being the experiment had to be done in 2 steps with 30mM NaI 

application on a set of cells followed by 30mM NaI in the presence of bradykinin on 

another set of cells, which required comparing responses in different populations of 

neurons, and the second being the inability to monitor Ca2+ levels. The first of these 

issues was resolved when we optimised our methodology to be able to image the 

EYFP (H148Q/I152L) mutant fluorescence in a single protocol with 5mM NaI 

extracellular solution (see previous chapter). Previous studies have utilized halide 

sensitive YFP quenching to study CFTR and glycine receptors in the search for 

channel modulators in high throughput screening assays (Galietta et al., 2001b; Sui 

et al., 2010) as well as in the development of ANO1 inhibitors (Seo et al., 2016). 

However, no one has previously coupled Ca2+ imaging with this method to visualise 

activation of a channel such as ANO1 in a single-cell setting. Satisfyingly, the 

increase in Ca2+ is closely followed by quenching in all responses measured. Despite 

this, both Ca2+ but mainly EYFP quenching does not recover. The fura-2 signal can 
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be explained by overload of the Ca2+ extrusion mechanisms but even when Ca2+ 

recovers back to baseline level, EYFP quenching shows no recovery. This may well 

be due to a slow unbinding process of the I- (high Kd) from EYFP as well as the 

potential mechanisms for I- extrusion being inefficient compared to physiological 

processes such as Cl- extrusion. Further research is required to fully elucidate the 

reasons for this phenomenon.  

4.3.2 CaCC coupling to IP3R in DRG neurons using dual imaging approach 

It has been proven that GPCR activation i.e. through bradykinin or PAR-2 

application, in DRG neurons and cell lines leads to the activation of ANO1 (Jin et al., 

2013; Cabrita et al., 2017). To test our optimized methodology, we used an 

established phenomenon- the ability of bradykinin to activate CaCC (ANO1) in DRG 

neurons and the poor coupling of VGCCs to CaCC (Jin et al., 2013). The results 

confirmed that CaCC can indeed be activated by bradykinin application via Ca2+ 

release from the ER. This conclusion is based on the facts that (i) ANO1 inhibitor 

T16inh-A01 completely abolished the bradykinin-induced anion influx, but not Ca2+ 

transients (Fig. 4.2) and (ii) removal of extracellular Ca2+ did not prevent neither the 

Ca2+ transients nor the anion influx (Fig. 4.5). This exemplifies CaCC coupling to 

IP3R due to the fact that even though VGCC activation induced a similar [Ca2+]i 

elevation to bradykinin in Ca2+ free conditions, only bradykinin was able to induce 

quenching (Fig. 4.3 and 4.5). Furthermore, VGCC quenching has been 

demonstrated to be Ca2+ independent and consists of ‘responding’ and ‘non-

responding cells’. Activation of B2R activates the Gq-signalling cascade, ultimately 

producing IP3 which in turn releases Ca2+ from the ER through IP3R (Fig. 4.6). This 

IP3-induced Ca2+ release seems to be the defining step for ANO1 activation; so why 

is this Ca2+ release from the ER so vital for ANO1 activation? As suggested earlier, 

close juxtaposition of the ER and the PM allows the formation of a local Ca2+ 

microdomain enabling ANO1 activity. ER-PM junctions are important aspects of 

intracellular signalling in various types of cells and are vital for processes such as 

STIM-ORAI-mediated SOCE and excitation-contraction coupling in muscle cells (see 

introduction). Looking at our functional microdomain consisting of ANO1 and B2R as 

the plasmallemal components and IP3R as the reticular component, B2R activation 

leads to IP3 formation which in turn activates ANO1 through IP3R (Fig. 4.6). 

Furthermore, ANO1 and B2R have been known to localise to lipid rafts of the 
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membrane, areas of the PM rich in cholesterol and glycosphingolipids (Jin et al., 

2013). Similarly, ANO1 is present at lipid raft domains in VSMCs (Sones et al., 2010) 

as well as B2R being found at lipid rafts in sensory neurons (Jeske et al., 2006). The 

presence of these proteins in lipid rafts of DRG neurons has further strengthened the 

notion that they are located in similar areas and work in a localised system. 

4.3.3 Why does ANO1 display preference over the Ca2+ source for activation? 

ANO1 seems to selectively discriminate over the source of Ca2+ present to activate 

it. Both VGCCs and IP3R channels induced relatively high ‘global’ Ca2+ transients (as 

measured with cytosolically loaded fura-2) upon activation but IP3R Ca2+ release is 

much more efficient to activate ANO1. What are the potential reasons for this? As 

mentioned, ANO1 has reportedly low Ca2+ sensitivity (-60mV; EC50= 2.6µM) (Yang et 

al., 2008), therefore the presence of a local microdomain is logical to allow facilitation 

of its activation (Fig. 4.6). The crystal structure of the fungal orthologue of ANO6 

nhTMEM16 has revealed the Ca2+ binding site to be enclosed deep in the 

hydrophobic transmembrane area of the protein which would necessitate the 

requirement of high Ca2+ to be able to reach this site (Brunner et al., 2014). 

Additionally, Ca2+ release at the mouth of IP3R has been reported to reach 100µM 

which dissipates rapidly just microns away from the channel (Naraghi and Neher, 

1997; Foskett et al., 2007). Thus, close proximity or, as we suggested earlier, even a 

physical coupling of ANO1 and IP3R within a junctional microdomain would further 

assist Ca2+ reaching the binding site (Jin et al., 2013). Taken together, the ER-PM 

junctions, proximity of ANO1 and IP3R, presence of B2R receptors in the local 

microdomain along with other factors such as the presence of the cytoskeleton serve 

to allow the formation of a potent Ca2+ microdomain able to activate the relatively 

insensitive ANO1 channel (Fig. 4.6). 

In terms of VGCCs, Ca2+ entering cells from this source seems to couple poorly to 

ANO1. Again, this may come down to the aspect of spatial arrangement where the 

VGCCs are not a component of the ANO1-activating functional microdomain (Fig. 

4.6). PLA, a biophysical technique where probes can only produce a positive signal if 

there is proximity under 40nm of 2 target protein, has revealed no close proximity 

between ANO1 and VGCCs in small DRG neurons (Jin et al., 2013). As mentioned 

earlier, it would make sense for VGCCs not to activate ANO1 in the context of 

nociception as Ca2+ influx and depolarisation would lead to further VGCC activation 
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and induce a positive-feedback loop. Ultimately this over-excitability in nociceptors 

could lead to chronic pain conditions. This is an interesting scenario to probe as 

VGCC activity can induce ANO1 activity when lipid rafts are destroyed in DRG (Jin et 

al., 2013). It may well be that the loss of the lipid rafts causes VGCCs to come closer 

to ANO1 which was seen in VSMCs of rats where there was a redistribution of ANO1 

in the membrane upon raft disruption and in DRG after lipid raft destruction (Sones 

et al., 2010; Jin et al., 2013). As well as this, there was an augmentation of ANO1 

activity which could be due to Ca2+ from VGCCs now being able to activate the 

channel without reaching such a high Ca2+ concentration as previously required 

(Sones et al., 2010; Jin et al., 2013). One potential source for this augmentation 

could be the loss of PIP2 upon membrane alterations caused by destroying lipid 

rafts. PIP2 reportedly has an inhibitory effect on ANO1 in rat pulmonary arteries 

where it binds to the channel (Al-Jumaily et al., 2007; Pritchard et al., 2014). 

Removing this inhibition was found to increase ANO1 activity, which may be another 

significant reason for the ability of Gq-coupled GPCRs to be able to activate ANO1. 

However, conflicting data presented by Ta and colleagues suggests that there is no 

inhibitory effect of PIP2 on ANO1 but rather it induces ANO1 activity (Ta et al., 2017). 

However, at this current stage, more research is required to make a conclusive 

judgement regarding this topic. This is not to suggest VGCCs are unable to play a 

role in ANO1 activation in the context of nociception; VGCC activation during action 

potential firing may serve to sensitise the environment through global Ca2+ elevation 

and depolarisation (both factors influence ANO1 activity), hence making it easier for 

other potential proteins to activate ANO1. During inflammation, this may become 

significant where the pro-algesic modulators of ANO1 (i.e. bradykinin and PAR-2) 

are released. Furthermore, in inflammatory conditions, three times the normal [Cl-]i is 

accumulated in DRG due to NKCC1 (Funk et al., 2008) meaning that ANO1 activity 

will produce greater pro-nociceptive effects.  

4.3.4 Ca2+ independent quenching in DRG neurons 

In the small percentage of neurons where we observed some EYFP quenching in 

response to high-K+ depolarisation, we concluded that this anionic influx seemed to 

be largely independent of Ca2+ (as quenching was still present when experiments 

were repeated in Ca2+-free extracellular bath solutions). Thus, it doesn’t necessarily 

mean that this anion influx was due to CaCC activation; other sources for this  
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Figure 4.6: Activation of ANO1 in DRG. Activation of Gq-coupled receptors 
produces IP3R activation by generation of IP3. Arrangement of ANO1 and IP3R in an 
ER-PM, functional microdomain means Ca2+ release from IP3R is sufficient and able 
to activate ANO1. VGCCs on the other hand are not in this arrangement so are 
unable effectively activate ANO1. 
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quenching could well be the activity of the NKCC1 cotransporter. Further to this 

point, depolarisation of the membrane may lead to action potential firing, which in 

neurons has been found to increase Cl- levels (Amir et al., 2002; Woodin et al., 2003; 

Fiumelli et al., 2005). Furthermore, this has also been found to enhance and 

increase activity of the Na+-K+ ATPase leading to reduced [Na+]i (Morita et al., 1993; 

Parker et al., 1996). Subsequently, Brumback and Staley, demonstrated that action 

potential firing causes NKCC1 to re-establish [Na+]i and as part of this process, to 

maintain electroneutrality, also allows Cl- influx into cells (Brumback and Staley, 

2008). Therefore, during action potential firing, there is an increase in [Cl-]i which can 

be blocked by Na+-K+ ATPase blockers (Brumback and Staley, 2008). This could be 

occurring in DRG neurons as after potential action potential firing caused by VGCCs, 

accumulation of [Cl-]i may result due to NKCC1 activity. Therefore, in the presence of 

I-, this may be transported and cause quenching of the fluorescence which is not 

attributed to ANO1 activity.  

Having confirmed the ability of our methodology in studying CaCC activity, I will test 

the ability of TRPV1 to activate ANO1 in our newly developed system. 
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Chapter 5: Studying TRPV1 activation of CaCC in DRG neurons using dual 

imaging 

5.1 Introduction 

Non-selective cation channels (i.e. P2X, Piezo, TRP) allow Na+ and Ca2+ influx into 

cells upon activation, therefore providing a means by which Ca2+ can potentially 

activate ANO1. Even though several lines of research indicate functional coupling 

between ANO1 and IP3R, recent studies have shown ANO1 can be activated by 

non-selective cations channels too. I will therefore discuss some examples of this in 

the following section. 

5.1.1 P2X7 in oocytes 

ATP is able to evoke anionic conductance’s when applied in various cell types such 

as Schwann cells (Amedee and Despeyroux, 1995; Colomar and Amedee, 2001) 

and parotid acinar cells (Arreola and Melvin, 2003). P2X7 has been shown to 

functionally couple to ANO1 in Xenopus and Axolotl oocytes heterologously 

expressing ANO1 and P2X7 (Stolz et al., 2015). Application of ATP to these oocytes 

exhibited robust ANO1 currents when extracellular Ca2+ was available, which were 

10 times greater than when no extracellular Ca2+ was present (Stolz et al., 2015). 

These currents were sharply reduced upon Ca2+ removal from the perfusion or by 

BAPTA (the Ca2+ chelator that inhibits fast rises in Ca2+) pre-injection (Stolz et al., 

2015). Interestingly, however no physical interaction between these proteins was 

detected. This functional coupling was also evident in AsPC-1 cells (Stolz et al., 

2015). Even though P2X7 is expressed in astrocytes and microglia and not in DRG 

neurons, it shows how there is scope for potential coupling with other P2X receptors.  

5.1.2 TRPV6 in epididymal cells 

Recently, ANO1 has been shown to couple to TRPV6 in epithelial principal cells in 

rat epididymis (Gao et al., 2016). Removal of extracellular Ca2+ leads to loss of both 

TRPV6 and CaCC current in these cells. Using biochemical and pharmacological 

approaches, the authors were able to show that these proteins were co-expressed in 

epididymal principle cells at the apical membrane (Gao et al., 2016). Furthermore, 

blockade of TRPV6 with lanthanum (non-specific cation channel blocker) and ANO1 

with tannic acid, led to loss of the respective currents (Gao et al., 2016). It has been 

postulated that the functional role for coupling between ANO1 and TRPV6 is 
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involved in regulating membrane excitability in these cells. Constitutively open 

TRPV6 channels allow a local Ca2+ elevation in epididymal principle cells producing 

a depolarising effect. This ‘local’ Ca2+ is then able to activate nearby ANO1 

channels, which produces hyperpolarisation of the cells to bring the membrane 

potential back to resting levels (Gao et al., 2016).  

5.1.3 TRPC6 in smooth muscle 

TRPC6 is also coupled to ANO1 in smooth muscle cells (Wang et al., 2016). Co-

expression of both proteins has been found in resistance-size cerebral arteries and 

using a co-immunoprecipitation approach, Wang and colleagues were able to pull 

down ANO1 and TRPC6 together from these cells (Wang et al., 2016). Hyp9, a 

selective activator of TRPC6 was found to stimulate CaCC currents in arterial 

myocytes which were also reduced using T16Ainh-A01. Furthermore, this was 

dependent on a local Ca2+ elevation as BAPTA and not EGTA, was able to abolish 

CaCC currents (Wang et al., 2016). Physiologically, functional coupling between 

TRPC6 and ANO1 plays a role in pressurized cerebral arteries with ANO1 mediating 

vasoconstriction through TRPC6-induced activation. To emphasise the importance of 

ANO1 activation requiring specific and local Ca2+ signals for activation in these cells, 

VGCC activation using 60mM KCl produced no ANO1 currents, suggesting that 

VGCCs are not spatially positioned to allow activation of ANO1 (Wang et al., 2016).  

5.1.4 TRPV4 in choroid plexus epithelial cells 

ANO1 has been found to functionally interact with TRPV4 in choroid plexus epithelial 

cells (CPECs). TRPV4 and ANO1 are expressed in CPECs and play a role in the 

modulation of water efflux from these cells (Takayama et al., 2014). In CPECs and 

HEK293T heterologously expressing ANO1 and TRPV4, stimulation of TRPV4 by 

GSK1016790A (GSK) produced robust CaCC currents whereas T16inh-A01 

abolished these TRPV4-evoked Cl- currents (Takayama et al., 2014). Moreover, 

there was a physical interaction between these proteins as discovered using co-

immunoprecipitation studies (Takayama et al., 2014). Due to the fact that water 

movement follows Cl- flux in cells, ANO1-induced Cl- efflux caused a reduction in cell 

volume of CPECs. This was also seen in HEK293T cells transfected with ANO1 and 

TRPV4 as GSK was able induce cell size reduction through ANO1 activation. It has 

been proposed that hyposmotic conditions activate TRPV4 which in turn triggers 
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ANO1 through the Ca2+ influx hence producing water efflux (possibly by aquaporins) 

(Takayama et al., 2014).  

5.1.5 TRPV1 in DRG 

Several recent studies have correlated the activity of ANO1 and TRPV1 in 

nociceptors. Oh’s lab produced evidence to suggest ANO1 can be activated by heat 

(Cho et al., 2012). Heat ramps in HEK293T cells transfected with ANO1 produced 

robust activation of a Cl- conductance when temperatures were increased above 

44oC. This was also seen with ANO2 (albeit a smaller current compared to ANO1) 

however not with ANO4 or ANO5 (Cho et al., 2012). DRG expressing endogenous 

ANO1 also behaved in an analogous manner. Similarly to ANO1’s synergistic 

relationship between Ca2+- and voltage-dependence, the presence of Ca2+ enhanced 

the temperature sensitivity of ANO1 by lowering the temperature threshold (Cho et 

al., 2012). Additionally, increased temperatures also produced greater currents when 

the membrane was depolarized. This shows that temperature is also an important 

determinant of ANO1 activity, especially in the field of nociception. DRG and TG 

neurons also show a very high level of co-expression between ANO1 and TRPV1 

(Kanazawa and Matsumoto, 2014; Lee et al., 2014; Takayama et al., 2015). 

Intriguingly, pharmacological blockade or genetic deletion of TRPV1 in mice resulted 

in DRG neurons still being able to respond to heat with depolarizing currents which 

were only abolished when a CaCC blocker was introduced (Lee et al., 2014). 

Similarly, siRNA against ANO1 was also able to reduce nocifensive behaviours 

thermal hyperalgesia in rats (Lee et al., 2014).  

5.1.6 Functional coupling between ANO1 and TRPV1 

Functional data regarding ANO1 activation induced by TRPV1 is also available. 

HEK293 cells expressing ANO1 and TRPV1 show CaCC currents after application of 

capsaicin (Takayama et al., 2015). Furthermore, TRPV1 and ANO1 have been 

shown to physically interact in co-immunoprecipitation experiments. It has therefore 

been suggested that ANO1 and TRPV1 are found very close to each other, possibly 

physically coupled which allows Ca2+ influx through TRPV1 to activate ANO1 

(Takayama et al., 2015). Activation of TRPV1 allows Ca2+ and Na+ to enter cells 

leading to depolarisation; this would have 2 effects on ANO1: (i) the depolarisation 

would cause ANO1 to become more sensitive to Ca2+ and (ii) Ca2+ entering the cells 
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may be able to activate ANO1 directly (Takayama et al., 2015). As mentioned in the 

introduction, due to the high Cl- concentration activation of DRG neurons, ANO1 

would also produce depolarisation, with the effects summating with TRPV1-induced 

depolarisation providing a stronger response (Takayama et al., 2015). In nociceptive 

neurons, this would lead to increased excitability and more pain transmission. 

Another touted role for ANO1 and TRPV1 is in the process of synaptic transmission 

at synapses of the primary afferent fibers in the spinal cord. Proteins produced in cell 

bodies are transported to nerve endings in sensory neurons and into the presynaptic 

terminals of the spinal cord (Takayama et al., 2015). Recordings in the substantia 

gelatinosa showed spontaneous excitatory post synaptic potentials (sEPSP) which 

were facilitated upon capsaicin application. However, when ANO1 was blocked using 

T16A-inhA01, this facilitation was abolished (Takayama et al., 2015). It has been 

hypothesized that upon ANO1 activation through TRPV1 at the presynaptic terminal, 

the depolarisation caused (see above) activates VGCCs that then allow release of 

glutamatergic vesicles (Takayama et al., 2015).  

In TG neurons, ANO1 expression is decreased with the injection of CFA in the 

tongue, which was linked to an increase in TRPV1 expression (Suzuki et al., 2016). 

Furthermore, T16A-inhA01 was also able to reduce AP firing in DRG neurons 

generated by TRPV1 activation by capsaicin application (Suzuki et al., 2016). This 

further adds to the speculation that there is possibly some intricate coupling between 

ANO1 and TRPV1. 

The close relationships between TRPV1 and ANO1 are somewhat difficult to 

elucidate unambiguously due to the following issues: (i) activation of both channels 

results in inward currents of similar kinetics under physiological conditions (i.e. 

resting membrane potential ~-60 mV, native [Cl-]i) (Liu et al., 2010), (ii) both channels 

are sensitive to heat within roughly similar range and (iii) some pharmacological 

modulators of these channels suffer from cross-reactivity. Thus, the small-molecule 

ANO1 activator Eact has been demonstrated to also activate TRPV1 (Liu et al., 

2016). In another study Eact was reported to induce CaCC currents in DRG neurons 

(Deba and Bessac, 2015) however, in this study there was no mentioning of the 

cross-reactivity reported by Liu and colleagues. Eact also induced nocifensive 

behaviors in mice, which were reduced in the presence of T16A-inhA01 (Deba and 

Bessac, 2015). This effect was also seen when capsaicin was used to replace Eact in 
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mice. Yet, due to the supposed cross-reactivity, these studies lack clarity as to what 

the relative contribution of ANO1 and TRPV1 is regarding the excitatory effects of 

Eact and, to lesser extent, of capsaicin as well. Therefore, this chapter will focus on the 

activation of TRPV1 by ANO1, again using our newly developed dual imaging 

approach to dissect the mechanisms of ANO1 activation by TRPV1. The advantage 

of our imaging approach is in that TRPV1 and ANO1 are recorded with different 

fluorophores (fura-2 and EYFP H148Q/I152L, respectively), which circumvents the 

difficulty of patch-clamp recording, where both channels generate similar currents. 
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5.2 Results 

We firstly decided to demonstrate the activation of ANO1 through TRPV1 using our 

dual imaging protocol. Similarly to the previous chapter, EYFP (H148Q/I152L) was 

expressed in DRG neurons and cultured for 48 hours; one hour before analysis 

cultures were loaded with fura-2 AM. No NGF was utilized in our cell preparations. 

Application of capsaicin (1µM) to DRG neurons expressing the halide-sensor 

induced significant Ca2+ transients and a concurrent EYFP quenching (Fig. 5.1A and 

B). On average, capsaicin caused the fluorescence to decrease by 0.12 ± 0.026 

(n=9, p<0.001). This was also coupled to an increase in Ca2+ (ΔR/R0 = 1.8 ± 0.26, 

n=9, p<0.001) (Fig. 5.1B). Comparing the effects produced by TRPV1 activation and 

conditions tested in the previous chapter, Ca2+ signals produced by capsaicin and 

bradykinin were similar however, VGCC activation produced a smaller Ca2+ 

response compared to these Ca2+ sources (VGCC vs capsaicin, p<0.05; VGCC vs 

bradykinin, p<0.01, both ANOVA with Tukey) (Fig. 5.2). Bradykinin application 

induced significantly greater EYFP (H148Q/I152L) fluorescence quenching to that 

produced VGCC activation (VGCC vs bradykinin, p<0.05, Mann Whitney) (Fig. 5.2). 

However, capsaicin application showed no significant difference with VGCC 

application despite producing a marginally smaller response compared to bradykinin 

application. However, as mentioned above, the non-responsive population of 

neurons to 50mM KCl is the ‘true’ effect expected and comparing this to capsaicin 

indeed shows a significantly greater response induced by capsaicin application 

(p<0.01, Mann Whitney). Therefore, this demonstrates that TRPV1 application can 

activate CaCC in DRG neurons.  

TRPV1 activation has been known to induce PLC activation, PIP2 cleavage and 

subsequent IP3 generation (Lukacs et al., 2007). This means that there may be two 

distinct processes underlying a capsaicin-induced Ca2+ transient: (i) primary Ca2+ 

influx through the TRPV1 channel pore and (ii) ER store release stimulated by Ca2+-

sensitive PLCδ (Lukacs et al., 2007; Rohacs et al., 2008) or other mechanisms. 

Given the tight coupling between ANO1 and IP3R established in previous studies, 

this may well be an interesting mode by which ANO1 is coupled to TRPV1 in DRG 

neurons. To test if Ca2+ released from the ER contributes to capsaicin-induced 

activation of ANO1, we applied thapsigargin (1µM) in an acute manner to deplete the 

Ca2+ in the ER. However, this produced a large Ca2+ elevation on its own, as the 
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Figure 5.1: Capsaicin application induces fura-2 measured Ca2+ 
increase and concurrent EYFP (H148Q/I152L) mutant fluorescence 
quenching upon application of capsaicin (1µM) to small DRG neurons. 
(A) Representative trace of one DRG in response to capsaicin. (B) Individual 
cell responses for fura-2 (upper) and EYFP (H148Q/I152L) fluorescence 
quenching (lower) for capsaicin application (n=9). **p<0.01 
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Figure 5.2: Comparison of Ca2+ signals and EYFP quenching between 
different agonist/conditions applications in DRG neurons. Peak individual 
cell data for fura-2 signals (upper) and EYFP (H148Q/I152L) fluorescence 
quenching (lower) evoked after 50mM KCl (n=23), capsaicin (n=9), and 
bradykinin (n=12) application. *p<0.05, **p<0.01 
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Ca2+ leaves the ER and into the cytosol where fura-2 is present (data not shown). 

Therefore, in the next set of experiments we pre-incubated DRG cultures with 1µM 

thapsigargin (1 hour at 37oC) and included thapsigargin in the solutions during the 

perfusion to maintain depletion of the Ca2+ stores. The results showed that the 

capsaicin-induced fura-2 Ca2+ signal was severely reduced by thapsigargin 

application in the majority of the cells we tested (Thapsigargin pre-treatment: 0.34 ± 

0.13, n=6 Vs Control: 1.8 ± 0.26, n=9, p<0.0001), which in most cells rendered 

TRPV1 unable to activate ANO1 (Fig. 5.3). This was also seen in the EYFP 

(H148Q/I152L) mutant fluorescence quenching (Thapsigargin pre-treatment: 0.007 ± 

0.017, n=6 Vs Control: 0.12 ± 0.026, n=9, p<0.01) (Fig. 5.3). These data indicate that 

a significant portion of Ca2+ attributed to TRPV1 activation in fact originates from the 

ER and when this is removed from the ‘total’ Ca2+ signal produced by TRPV1 

activation, ANO1 cannot be activated in a manner previously demonstrated.  

 

To test this further, we performed standard fura-2 Ca2+ imaging (no transfection with 

EYFP (H148Q/I152L)) and measured capsaicin-induced Ca2+ transients in DRG 

neurons using Ca2+-free bath solution. This would be able to demonstrate if [Ca2+]i 

can be elevated without the extracellular Ca2+ component of TRPV1 activation. The 

results showed that removal of extracellular Ca2+ reduced but not completely 

abolished Ca2+ rises in our cells (0.71± 0.11, n=9) (Fig. 5.4). The global Ca2+ signal 

measured in Ca2+-free medium was of a similar level to the Ca2+ rise seen in cells 

pre-incubated with thapsigargin or cyclopiazonic acid (CPA, 1μM), another inhibitor 

of the SERCA Ca2+-ATPase pump used to deplete ER Ca2+ stores also produced a 

reduction of Ca2+ in DRG neurons (Thapsigargin pre-treatment: 0.49 ± 0.11, n=12, 

CPA pre-treatment 0.67 ± 0.14, n=16) (Fig. 5.4). There was no significant difference 

between these conditions however, all three of these conditions evoked significantly 

lower Ca2+ transients compared to capsaicin (1μM) application in control conditions 

(1.33 ± 0.15, n=19, p<0.05, ANOVA with Tukey).  
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Figure 5.3: Effects of thapsigargin (1μM) pretreatment on DRG neurons and 

capsaicin (1μM) application. Comparison between individual cell data for fura-2 

signals (upper) and EYFP (H148Q/I152L) fluorescence quenching (lower) in 

response to control (capsaicin only) and after pretreatment with thapsigarign. 

**p<0.01, ***p<0.001. 
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Figure 5.4: Ca2+ imaging in cells loaded with fura-2 in response 
capsaicin (1μM) in various conditions. Graph shows Ca2+ signal in 
response to capsaicin application in control conditions (n=19), after pre-
incubation with thapsigargin (n=12), in the Ca2+ free extracellular bath solution 
(n=9) and after pre-incubation with CPA (n=16). Data presented as mean ± 
SEM Statistics performed using ANOVA with Tukey. * representing 
significance at p<0.05. 
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DRG neurons are particularly difficult to transfect (Kirton et al., 2013) and while the 

‘nucleofection’ technique that we utilised does allow transfection of some neurons, 

the difficulty with the technique is in its tendency to destroy the majority of DRG 

neurons during the electroporation stage of the transfection. This means that 

transfection efficiency is low (~5%) and cells that do express the mutant EYFP 

protein are sometimes damaged. This makes it difficult to perform complex imaging 

experiments on DRG neurons co-transfected with several proteins. Alternatively, cell 

lines can be used to stably express fluorescent proteins in a relatively efficient 

manner with common transfection reagents. Moreover, researchers have 

successfully employed EYFP (H148Q/I152L) quenching assays in cell lines. Another 

advantage of using cell lines is that they allow more reliable transfection of multiple 

proteins. Thus, to confirm that ER Ca2+ is being mobilized due to TRPV1 activation, 

CHO cells were transfected with TRPV1, ANO1, EYFP (H148Q/I152L) and an ER-

specific Ca2+ indicator known as Red-Calcium-measuring organelle-Entrapped 

Protein IndicAtor (Red-CEPIA) (Suzuki et al., 2014) as well as being loaded with 

fura-2. Similarly to the EYFP halide sensor, CEPIA decreases in fluorescence upon 

Ca2+ exiting the ER. Therefore, if ER Ca2+ is involved in the process of ANO1 

activation through TRPV1, along with EYFP quenching and a Ca2+ increase, there 

will also be a concurrent decrease in CEPIA fluorescence. Fascinatingly, our 

experiments showed that there was indeed a significant quenching of both EYFP 

mutant fluorescence and Red-CEPIA, as well as a significant Ca2+ rise as measured 

by fura-2 (Fig. 5.5A and B). Fura-2 signal rose to 0.66 ± 0.11, EYFP (H148Q/I152L) 

fluorescence showed quenching by 0.089 ± 0.044 (n=5, p<0.05, Wilcoxon Signed) 

and Red-CEPIA quenched by 0.061 ± 0.019 (n=5, p<0.05, paired T-test). This 

confirms our previous findings in DRG that TRPV1 mobilizes the ER and this is 

perhaps the major Ca2+ source for ANO1 activation (Fig. 5.5B).  

 

TRPV1 can also generate IP3 through PLC activation (Lukacs et al., 2007). 

Alternatively, the ER is also known to consist of functional TRPV1 proteins (Gallego-

Sandin et al., 2009), which could be producing a large Ca2+ release to activate 

ANO1. To investigate potential mechanisms by which ANO1 activation occurs, we 

repeated these triple imaging experiments in the presence of xestospongin C (1µM), 

a blocker of IP3R. Cells were pre-incubated with xestospongin C during the fura-2 
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loading and was also included in perfusion solutions to maintain inhibition of IP3R. 

Results demonstrated that there was a reduction in all 3 parameters being 

investigated (Fig. 5.6). Fura-2 Ca2+ signal was reduced from 0.66 ± 0.11 (n=5) in 

control conditions to 0.18 ± 0.051 (n=5, p<0.01, unpaired T-test), EYFP quenching 

was reduced from 0.089 ± 0.044 (n=5) in control conditions to 0.026 ± 0.013 (n=5, 

p<0.05, not significant with Mann Whitney) and Red-CEPIA levels went from 0.061 ± 

0.019 (n=5) in control conditions to 0.018 ± 0.0016 (n=6, p<0.05, unpaired T-test) 

(Fig. 5.6). Even though EYFP (H148Q/I152L) mutant quenching isn’t significantly 

reduced when xestospongin C is applied, it is still considerably lower compared to 

the control conditions. Overall, this suggests that TRPV1 can activate ANO1 through 

IP3R activation.  
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Figure 5.5: Triple imaging in CHO cells transfected with ANO1, TRPV1, 
EYFP (H148Q/I152L), Red-CEPIA and loaded with fura-2. (A) Representative 
traces from a single cell showing fura-2 signals, EYFP (H148Q/I152L) and Red-
CEPIA quenching. (B) Individual cell data showing pre and post- capsaicin (1µM) 
application signals for fura-2, EYFP (H148Q/I152L) and red-CEPIA (n=5).* p<0.05 

B 
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Figure 5.6: Comparison between capsaicin application (1µM) in control and 
xestospongin C pretreatment (1µM) triple imaging using CHO cells 
transfected with ANO1, TRPV1, EYFP (H148Q/I152L), Red-CEPIA and loaded 
with fura-2. Comparison between individual cell data showing responses for 
fura-2, EYFP (H148Q/I152L), Red-CEPIA after capsaicin (1µM) application for 
control (n=5) and xestospongin C pretreatment (n=5). * p<0.05, **p<0.01 

- 

- 
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5.3 Discussion 

This chapter focuses on the activation of ANO1 by TRPV1 using our dual and triple 

imaging approaches. Our findings are in agreement with the work of other groups as 

TRPV1 is able to induce ANO1 activity which is seen as EYFP (H148Q/I152L) 

fluorescence quenching, in both DRG neurons and CHO cells. Another point that is 

important for the methodology being utilized is that there is generally a good 

correlation between the kinetics of Ca2+ signal and EYFP (H148Q/I152L) quenching. 

Fig. 5.1A depicts an experiment with a biphasic Ca2+ transient which dips before 

rising again; these dynamics are also visualized in the EYFP (H148Q/I152L) 

fluorescence quenching. The quenching re-engages after the brief cessation and 

follows the Ca2+ transient fairly closely. This effect demonstrates that this technique 

is suitable for studies of CaCC activation by Ca2+. 

5.3.1 TRPV1 is able to activate CaCC in DRG neurons 

Considering the basis for ANO1 activation by TRPV1, it appears that such coupling 

would make sense physiologically as: (i) both channels are heat sensors with similar 

temperature thresholds; (ii) ANO1 is activated by Ca2+ while TRPV1 delivers Ca2+ to 

the cytosol; and (iii) activation of both channels will lead to pain signals. Therefore, 

functional coupling of these two channels may increase the dynamic range of heat 

sensitivity and the output signal of individual DRG neurons. The activation of ANO1 

by TRPV1 can be superficially compared to the coupling of the K+ channel Slo1 to 

VGCCs whereby Ca2+ influx through the latter channels is able to activate the former 

(Lu et al., 2007). Slo1 channels require close proximity or co-localisation with the 

Ca2+ source for activation to occur. The analogy is further supported by the fact that 

Slo1 channels also have relatively low Ca2+ sensitivity (hence the requirement for 

close proximity to the Ca2+ source, as is the case of ANO1). Importantly, physical 

association between ANO1 and TRPV1 has been suggested in the literature 

(Takayama et al., 2015), which supports the fact that some form of direct activation 

of ANO1 through TRPV1 Ca2+ is occurring.  

5.3.2 TRPV1 engages the ER in order to activate CaCC 

Interesting as this data may be, where does this fit in with the context of localised 

Ca2+ signalling in DRG neurons? As discussed and demonstrated in the previous 

chapter, ANO1 activation is coupled to IP3R which facilitates the activation of this 
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poorly Ca2+-sensitive channel. Ca2+ sources such as VGCCs that provide Ca2+ entry 

by other means are seemingly ineffective in activating ANO1, an effect possibly due 

to the spatial arrangements of the channels. The simplest explanation for TRPV1-

induced EYFP (H148Q/I152L) fluorescence quenching would be that direct activation 

of ANO1 occurs via TRPV1 Ca2+ influx (Takayama et al., 2015). Somewhat counter-

intuitively, the ability of TRPV1 to activate PLC-isoforms could provide another link 

between ANO1 activation by TRPV1 and this may involve the ANO1-IP3R functional 

complex. This concept that a sizeable fraction of the Ca2+ generated by TRPV1 

application is due to the internal Ca2+ store release will be quite startling to many but 

it becomes more understandable given the fact Ca2+ entry through TRPV1 under 

physiological conditions is relatively low as the majority of the TRPV1 current is 

carried by Na+ ions (Samways et al., 2008). This has been demonstrated in studies 

where the fraction of Ca2+ entering the cell through the channel itself has been found 

to be approximately 10%, even though the permeability of Ca2+ is greater than that of 

Na+ (Samways et al., 2008; Samways and Egan, 2011). This raises the question of 

whether Ca2+ influx through TRPV1 alone is sufficient for ANO1 activation observed 

in experiments. In any likelihood that this be the case, the only way that this could be 

achieved is through the proposed physical coupling between ANO1. Yet, the fact that 

capsaicin-induced EYFP quenching was almost abolished by thapsigargin strongly 

suggests that even if TRPV1 and ANO1 are in close proximity in DRG neurons, Ca2+ 

influx through TRPV1 alone is not sufficient to strongly activate ANO1 (Fig. 5.3). 

Nonetheless, TRPV1’s ability in engaging ER Ca2+ stores fits nicely into the 

accepted notions of ANO1-IP3R coupling in DRG.  

To confirm that ER Ca2+ was involved in the ANO1-dependent EYFP quenching 

induced by capsaicin, we pioneered a quadruple-wavelength imaging approach 

using CHO cells transfected with the ANO1, TRPV1, EYFP (H148Q/I152L), Red-

CEPIA and loaded with fura-2 (Fig. 5.5). The benefit of this approach is in that it 

allows measurement of ANO1 activity along with corresponding cytosolic Ca2+ levels 

and, simultaneously, to directly visualize Ca2+ dynamics of the ER. When Ca2+ is 

released from the ER, Red-CEPIA fluorescence intensity decreases, which is 

manifested by the downward deflection on the measurement trace. This ER-specific 

indicator was developed from cfGCaMP2, a genetically encoded Ca2+ indicator and 

includes ER localisation and retention sequences (Suzuki et al., 2014). The Kd of 
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CEPIA is 565μM in vitro making it suitable to measure the high Ca2+ concentrations 

found in the ER (Suzuki et al., 2014). CEPIA has been used in studies to visualize 

processes such as SOCE, thus upon stimulation of ER Ca2+ release with histamine 

in HeLa cells (Ca2+ free conditions), there was a strong reduction in the CEPIA signal 

which went back to baseline levels once Ca2+ was reintroduced (Suzuki et al., 2014). 

One study also used CEPIA when looking at EB3, a microtubule-associated protein 

and its involvement in IP3R regulation. CEPIA imaging revealed that loss of EB3 

leads to attenuation of IP3R-dependent Ca2+ release in endothelial cells (Geyer et al., 

2015). In our approach, we used CEPIA to test whether the ER is complicit in the 

quenching of EYFP (H148Q/I152L) mutant fluorescence when capsaicin is applied. 

The results confirmed this fact and definitively showed that ER Ca2+ is depleted by 

capsaicin application and this, together with the inhibition of capsaicin-induced 

anionic permeability by thapsigargin, strongly suggests that ER Ca2+ release is a 

major factor in TRPV1 activation of ANO1. Again this makes sense as there is 

already thought to be coupling between ANO1 and IP3R, so in theory, anything that 

can drive this functional complex will be able to activate ANO1.  

5.3.3 ANO1 activation via TRPV1 is mediated by IP3R  

It has been suggested that TRPV1 channels are present in the ER (Gallego-Sandin 

et al., 2009; Imler and Zinsmaier, 2014). This is thought to be part of a reserve pool 

of TRPV1 channels that are rapidly inserted into the membrane in response to 

various signals including NGF-induced phosphorylation and PKC activation (Zhang 

et al., 2005). These processes occur during inflammation where TRPV1 is known to 

be upregulated (Zhang et al., 2005; Stein et al., 2006). Apart from this reserve pool, 

functional TRPV1 channels are also present in the ER, however activation of these is 

thought to lead to cell death in some cases as seen in human lung cells (Thomas et 

al., 2007). Gallego-Sandin and colleagues showed expression of TRPV1 in the ER of 

DRG neurons and also demonstrated that capsaicin-induced Ca2+ release could be 

evoked without the need for extracellular Ca2+ in HEK293T cells (Gallego-Sandin et 

al., 2009). They also utilised an ER-targeted Ca2+-indicator to show this and 

attributed this effect to the presence of TRPV1 in the ER however there was no 

attention paid to the PLC-mobilising ability of TRPV1, nor was this potential 

mechanism tested in this study. Our experiments using xestospongin C to block IP3R 

show reduced levels of cytoplasmic Ca2+, reduced levels of ER Ca2+ release and 
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also a reduction in EYFP (H148Q/I152L) mutant quenching in transfected CHO cells 

(despite not being significant), implicating IP3R activity in the effects of TRPV1 

activation (Fig. 5.6). The general hypothesis behind TRPV1-mediated ER Ca2+ 

release is that Ca2+-dependent PLCδ activation is induced by the initial Ca2+ influx 

through TRPV1 (as well as TRPM8) (Rohacs et al., 2005; Lukacs et al., 2007; Yudin 

et al., 2011). Researchers have utilised PIP2 binding domains of proteins (i.e. Tubby) 

to visualize the effects of PIP2 translocation from the plasma membrane to the 

cytoplasm upon TRPV1 activation hence confirming activation of PLC (Lukacs et al., 

2007; Rohacs et al., 2008). Ca2+-independent PLC isoforms may also exist which 

could possibly be the reason for Ca2+ elevation seen in our Ca2+-imaging 

experiments under extracellular Ca2+ free conditions.  

Therefore, our results suggest that, whilst not completely ruling out ER-TRPV1 Ca2+ 

release, IP3R-mediated Ca2+ release is most likely playing an important role, at least 

in the context of TRPV1-dependent ANO1 activation. Further research is required to 

elucidate whether ER-TRPV1 play any role in ANO1 activation.  

To summarize, in this chapter a functional relationship between ANO1, TRPV1 and 

IP3R has been demonstrated. Therefore, the next logical step to take is to study 

possible proximity between these proteins in DRG neurons to provide further insight 

into the mechanisms underlying ANO1 activation. 
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Chapter 6: Investigating arrangements of ANO1, TRPV1 and IP3R1 in DRG 

neurons using biochemical and super-resolution imaging approaches 

6.1 Introduction 

Ion channels function to control the excitability of neurons within the nervous system 

however it is not always a case of single ion channels working alone to achieve this. 

In various instances, ion channels may form into multi-protein complexes comprising 

of different ion channels and other important molecules to work together and operate 

in a myriad of pathways to alter neuronal functionality (Marsh and Teichmann, 2015). 

This results in synergistic interplay between channels that results in either activation 

of adjoining protein channels or the initiation of signalling cascades which may lead 

to changes in cellular activity (Marsh and Teichmann, 2015). However, it must be 

pointed out that in many instances it is unknown as to how the interplay may result in 

the effect seen. Below I will discuss some examples of such complexes involving our 

proteins of interest, ANO1 and TRPV1. 

6.1.1 TRPV1-TRPA1 

TRPA1 is the sole member of the TRP Ankyrin (TRPA) subfamily of proteins. The 

denotation of the A comes from the 14 ankyrin repeats that are found in this channel. 

TRPA1 is expressed in primary afferent fibers of sensory ganglia (DRG, TG and 

Nodose ganglia- NG). Functionality of TRPA1 involves a role in the sensing of cold 

stimuli (Kwan et al., 2006). Heterologous TRPA1 expression in CHO cells showed 

channel activation at temperatures below 15°C as well as by compounds such as 

mustard oil, methysalicylate and gingerol (Kwan et al., 2006). Furthermore, KO of 

TRPA1 in mice was found to severely impair temperature sensitivity to cold stimuli 

and reduce cold hyperalgesia (Story et al., 2003; Obata et al., 2005; Kwan et al., 

2006). It has been established that TRPA1 and TRPV1 can reciprocally affect the 

activity of the other channel through secondary messenger cascades (Weng et al., 

2015). Moreover, TRPA1 and TRPV1 are found in heteromeric complexes in various 

cells including sensory ganglia (Akopian, 2011) and cardiac myocytes (Andrei et al., 

2016). This is somewhat perplexing, especially in sensory afferents with these 

proteins being on opposite ends of the temperature-sensitivity scale. Using various 

techniques, Staruschenko and colleagues demonstrated the interaction between 

TRPV1 and TRPA1 using co-immunoprecipitation studies in CHO cells transfected 

with the proteins and in TG neurons from both rats and mice (Staruschenko et al., 
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2010). A Förster resonance energy transfer (FRET) based TIRF microscopy 

approach was also employed by this group to visualise the interaction between 

TRPV1 and TRPA1 at the plasma membrane. It was revealed that the FRET 

efficiency between TRPV1 and TRPA1 is similar to that seen between TRPV1 and 

TRPV1 (labelled with the different fluorescent proteins). This interaction seems to 

provide TRPA1 with the outward-rectification property which is reduced when TRPV1 

is lacking which suggests that the activity of TRPA1 is reigned in due to the presence 

of TRPV1 (Staruschenko et al., 2010). Recently, evidence emerged to suggest that 

the interaction between TRPV1 and TRPA1 is regulated by an adapter protein 

TMEM100, which prevents an interaction between these 2 proteins (Weng et al., 

2015). KO of this TMEM100 ‘adapter’ protein causes a tight interaction between 

TRPV1 and TRPA1, which in turn inhibits TRPA1. Interestingly, KO of TMEM100 in 

mouse models only affects TRPA1-related pain behaviours, not TRPV1 (Weng et al., 

2015). Furthermore, TMEM100 expression in CHO cells with TRPV1 and TRPA1 

enhances TRPA1 activity. One critical finding of this study was the requirement of a 

specific site (3 amino acids) within TMEM100 that prevents the interaction between 

TRPV1 and TRPA1. Administration of a TMEM100 cell-permeable peptide 

incorporating the triple mutation attenuated TRPA1 activity whilst alleviate pain in an 

animal model (Weng et al., 2015). 

6.1.2 ANO1-ERM 

Amongst the interactions of ANO1 with different proteins, there is also scope for 

potential interactions between ANO1 and various aspects of the cytoskeleton. The 

so called ‘ERM’ proteins (ezrin, radixin, moesin) along with Ras homolog gene 

family, member A (RhoA) are involved in coordination of the cortical cytoskeleton by 

linking actin filaments to plasma membrane proteins (Perez-Cornejo et al., 2012; 

Solinet et al., 2013). ERM proteins play important roles in producing specialised and 

distinct cortical domains i.e. apical brush border of the small intestine (McClatchey 

and Fehon, 2009; McClatchey, 2012) and also modulate dynamic cellular events 

such as mitosis, migration and junctional remodelling (McClatchey and Fehon, 2009; 

Fehon et al., 2010; McClatchey, 2012). Binding of ANO1 to ERM proteins may 

signify a role for these proteins in ANO1 activity, expression and trafficking. For 

example, moesin knockdown in HEK293 cells co-transfected with ANO1 and moesin 

leads to reduced ANO1 current amplitude (Perez-Cornejo et al., 2012). This also ties 
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in well with other research, which shows reduced ANO1 activity when actin is 

disrupted with cytochalasin-D A (Tian et al., 2011). The cytoskeleton may well play a 

significant role in ANO1 activity. Moesin expression at the membrane is increased 

when ANO1 is co-expressed which suggests that ANO1 may play a role in 

organising the cytoskeleton (Perez-Cornejo et al., 2012). Interestingly, oocyte 

microvilli length is also increased in the presence of ANO1 which is independent of 

its activity (Courjaret et al., 2016). It has been proposed that ANO1 may well be a 

means to further strengthen the PM-cytoskeleton link by reinforcing the scaffold 

between these aspects of the cell (Courjaret et al., 2016). 

6.1.3 ANO1-EGFR 

In diseases states such as cancer, ANO1 has been implicated in playing a role in 

development of tumours by inducing cell signalling cascades to promote tumour 

growth (Britschgi et al., 2013; Qu et al., 2014; Jia et al., 2015). Epidermal growth 

factor receptor (EGFR) is a known instigator of cell proliferation, tumour growth and 

metastasis in head and neck squamous cell carcinomas (HNSCCs) (Cassell and 

Grandis, 2010; Bill et al., 2015). EGFR produces its effects through phosphorylation 

of tyrosine residues of the receptor, which in turn activates the mitogen-activated 

protein kinase (MAPK) or PI3K-activated protein kinase B (AKT) pathways. These 

cascades then cause the cell to undergo oncogenic changes (Bill et al., 2015). In 

90% of HNSCCs, EGFR is found to be upregulated (Yarden, 2001). ANO1 is also 

overexpressed in various cancers including HNSCCs and breast cancers and has 

been found to enhance EGFR activity (Britschgi et al., 2013; Bill et al., 2015). In 

breast cancer, ANO1 activity is essential for cell viability as well as enabling EGFR 

activity as KO of ANO1 resulted in reduced tumour growth and maintenance in vivo 

(Britschgi et al., 2013). It has been proposed that ANO1 is able to regulate EGFR 

activity through an imbalance of intracellular ion homeostasis (Horiuchi et al., 2007; 

Bill et al., 2015). However it seems as if the presence of ANO1 is sufficient for 

stimulation of proliferation, independent of its anion channel activity, as amongst 

several CaCC inhibitors tested, only CaCCinh-A01, which promotes ANO1 

degradation, was able to reduce proliferation (Bill et al., 2014). Interestingly, it has 

recently been discovered that ANO1 and EGFR form complexes in HNSCCs and in 

heterologous expression systems which was revealed using an unbiased proteomics 

screen and co-immunoprecipitation experiments (Bill et al., 2015).  
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6.1.4 Orai1-STIM1-TRPC1-Cav1.2 

There are plenty of other examples of ion channels apart from ANO1 and TRPV1 

that can co-assemble. SOCE is a mechanism which involves numerous protein 

interactions between protein components. Ca2+ removal from the internal Ca2+ stores 

after stimulation of cells causes STIM1 and Orai proteins to interact and induce 

replenishment of the stores (Prakriya and Lewis, 2015). Another protein often 

implicated in this process is TRPC1 (Liu et al., 2003; Ambudkar, 2007; Liu et al., 

2007). Orai1-dependent Ca2+ entry after STIM1 activation leads to insertion of 

TRPC1 into the PM (Cheng et al., 2011). TRPC1 is then able to partake in Ca2+ entry 

in a manner similar to Orai1 (Liu et al., 2003; Ambudkar, 2007; Liu et al., 2007). 

However, TRPC1 is dependent on Orai1 activity; demonstrated using Orai1 

knockdown which led to inhibition of TRPC1-induced Ca2+ entry in a human salivary 

gland (HSG) cell line (Cheng et al., 2011). Orai1 and TRPC1 have been shown to 

interact and form puncta upon store-depletion in TIRF experiments and 

immunoprecipitation studies (Ong et al., 2007; Cheng et al., 2011). Furthermore, 

both of these distinct processes require STIM1 mediation (Ong et al., 2007), as 

demonstrated through co-expression of a mutant form of STIM1, which caused loss 

of SOCE and abolishment of the Orai1-TRPC1 interaction (Cheng et al., 2011).  

In VSMCs, vasoreactive agonists such as serotonin are able to generate an increase 

in Ca2+ leading to vessel contraction (Avila-Medina et al., 2016). There are 2 stages 

to this, one involving SR Ca2+ release and the second involving Cav1.2 activation 

and Ca2+ influx (Catterall, 2012; Arias-Calderón et al., 2016; Brozovich et al., 2016). 

Interestingly, L-type VGCCs also interact with Orai1 and TRPC1 in VSMCs and 

aortic ring preparations (Avila-Medina et al., 2016). It has been demonstrated that 

agonist stimulation (i.e. serotonin) causes Ca2+ release from the SR, which in turn 

causes SOCE (Brozovich et al., 2016). This Ca2+ depolarises the cells further 

causing activation of L-type VGCCs in both VSMCs and rat myometrium (Bolotina, 

2012; Noble et al., 2014).  
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Figure 6.1: Orai1-TPRC1-STIM1-Cav1.2 macromolecular complexes in VSMCs. 

Upper panel: Resting state of channels. Lower panel: Agonist stimulation leads to 

depletion of ER Ca2+, inducing SOCE. Orai1 (orange channel in PM) and TRPC1 

(blue channel) activation is mediated by STIM1 (orange protein in ER), leading to ER 

Ca2+ store repletion. The impending Ca2+ entry (yellow circles) causes a slight 

depolarisation which activates Cav1.2 to cause vessel contraction. STIM1 also 

modulates Cav1.2 to avoid Ca2+ overload. Figure based on (Dionisio et al., 2015).  
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Additionally, both Orai1 and TRPC1 are in close proximity to L-type VGCCs in 

unstimulated cells as demonstrated through PLA and upon agonist application, more 

PLA puncta are seen (Avila-Medina et al., 2016). Overall, a macromolecular 

signalling complex is formed which incorporates STIM1, Orai1, TRPC1 and L-type 

VGCCs. SOCE occurs through Orai1 and TRPC1, which cluster together upon 

depletion. Interaction of these proteins is mediated by STIM1. Furthermore, STIM1 

has also been known to inhibit L-type VGCCs which suggests involvement of STIM1 

prevents issues such as Ca2+ overload and regulates cellular excitability (Dionisio et 

al., 2015) (Fig. 6.1). 

6.1.5 Studying protein-protein interactions 

I have explained some different scenarios where proteins interact with each other to 

provide various functions. The majority of techniques used to identify these 

interactions is through molecular biology (i.e. immunoprecipitation studies, Western 

blots, PLA etc). Other ways to study protein-protein interactions include fluorescent 

microscopy techniques, for example FRET and TIRF microscopy (Staruschenko et 

al., 2010). Fluorescence microscopy is an extensively utilized technique in research 

to date allowing vast advantages such as the non-invasive nature and ability to use 

molecular labelling with high specificity (Henriques et al., 2011). Despite this there 

are some restrictions which limit the ability to obtain certain data. One issue is the 

inability of fluorescent microscopy to deliver high enough optical resolution to allow 

visualisation of individual molecules in the nanometer range or protein-protein 

interactions. Light disseminates as a wave and focussing this on a small area will 

only allow a finite sized image to be resolved, which is approximately half of the 

wavelength propagated from the microscope (Henriques et al., 2011). The maximal 

resolution that fluorescent microscopy can provide is approximately 200nm 

transversely and 500nm longitudinally due to the size of the wave. In terms of 

protein-protein interactions, or looking at proteins with close proximity, fluorescent 

microscopy is unable to resolve the location of the target molecules if they are closer 

to each other than these limits. This phenomenon is referred to as diffraction limited 

resolution and therefore to be able to obtain higher/finer resolution, sub-diffraction 

limit imaging must be developed. Super-resolution imaging techniques such as 

STORM provide the opportunity to study protein-protein interactions in the 

nanometer range (see chapter 2 for details regarding STORM). 
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Figure 6.2: Use of STORM in the localisation of proteins. Use of STORM in 

resolving Bassoon (red) and Homer1 (green) at pre- and post-synaptic nerve 

terminals, respectively in main olfactory bulb glomeruli in mice. Left panel 

demonstrates conventional microscopy image and right panel demonstrates 

STORM-resolved image. Figure adapted from (Dani et al., 2010). 
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6.1.6 Use of STORM in localisation of proteins 

STORM has been able to successfully label and resolve individual actin filaments in 

COS-7 fibroblast and BSC-1 epithelial cells as well as allowing the visualisation in 

3D (Xu et al., 2012). It was also shown that the actin filaments are separated in 2 

layers which are denser in the dorsal region of the cells compared to the ventral 

portion. Fascinatingly, the effects of actomyosin perturbing drugs cytochalasin D and 

latrunculin A can be clearly visualised in the STORM image which reveal the 

presence of much less dense regions of actin and aggregate formation (Xu et al., 

2012). Voids were also formed in the dorsal region of the cells and were clearly 

detected using STORM (Xu et al., 2012). Chemical synapses of neurons have also 

been resolved using STORM (Dani et al., 2010). Two scaffold proteins Bassoon and 

Homer1 found on presynaptic and postsynaptic membranes, respectively, were 

successfully resolved by STORM providing clear and distinct sections surrounding 

the synaptic cleft in mouse olfactory bulb slice preparations (Fig. 6.2). The size of the 

synaptic cleft is approximately 20nm (Zuber et al., 2005) and under conventional 

fluorescent microscopy, the resulting image would be a pixelated amalgamation of 

colours; the results therefore demonstrate the high resolution that STORM is able to 

ascertain (Dani et al., 2010). More than 2 probes can also be used to target proteins 

in STORM. Three-colour STORM was used to visualise the location of other scaffold 

proteins relative to Bassoon and Homer1 such as a scaffold protein structurally 

related to Bassoon called Piccolo (Dani et al., 2010). This was found at a similar 

distance from the presynaptic terminal as Bassoon whereas RIM1, which plays a 

role in synaptic release was found close to the membrane itself (Dani et al., 2010; 

Kaeser et al., 2011). This is evidence that small differences in protein localisation 

can be detected with the high accuracy of STORM.  

Recently STORM has been utilised to look at the interactions between different 

proteins with protein A-kinase-anchoring protein (AKAP) 150 in neurons (Zhang et 

al., 2016b). This chaperone protein is able to assemble and organise various 

proteins into intimately associated multi-channel complexes. Homomeric Kv7.2 and 3 

and 2/3 multimer channels form tight complexes with AKAP150 whereas Kv7.1 

channels do not associate with AKAP150 when co-transfected in CHO cells (Zhang 

et al., 2016b). It was also demonstrated in superior cervical ganglia neurons that not 

all GPCRs interact with AKAP150 as there was association between AKAP150 and 
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muscarinic M1 receptors (M1R) but not with B2R (Zhang et al., 2016b). This array of 

interactions revealed by STORM make sense as it has been established that M1R 

activation leads to ‘M-current’ (combination of Kv7 channel currents) inhibition 

through AKAP150 signalling (Hoshi et al., 2003; Zhang et al., 2011a). However, the 

most interesting discovery was the fact that AKAP150 prefers Kv7.2/3 multimers over 

other Kv7 subtypes. This data was supplemented with this groups own intricate 

clustering analysis that allows the proportion of genuine ‘clusters’ that are formed 

between 2 or more proteins using stringent parameters to assess what contributes 

an actual cluster (Zhang et al., 2016b). Interestingly, TRPV1 and Kv7.2/3 were 

shown to interact physically in DRG neurons and it has been established that TRPV1 

activation is also able to inhibit the M-current (Zhang et al., 2011b). Zhang and 

colleagues also looked at this interaction and found clustering between these 

proteins only occurred when AKAP150 was present. It was also demonstrated in NG 

neurons that TRPV1 and L-type VGCCs are able to form complexes with AKAP150 

(Zhang et al., 2016b). Taken together these various interactions between these 

proteins prove how effective STORM can be in visualising not only structural data 

but also provide information regarding protein-protein interactions for more than 2 

proteins.  
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6.2 Results 

After demonstrating the various functional aspects of ANO1 and TRPV1 in the 

previous chapter, we decided to change our approach and focus on the localisation 

of these proteins in DRG neurons to elucidate potential mechanisms by which these 

proteins may be functionally coupled. In previous studies looking at the relationship 

between ANO1 and TRPV1, it has been proposed through biomolecular studies that 

at least some ANO1 and TRPV1 molecules are in physical association with each 

other when expressed in DRG (Takayama et al., 2015). We decided to look at this 

potential association in DRG neurons using two alternative localisation techniques: 

an in situ proteomics approach known as PLA and the super resolution microscopy 

technique discussed above, STORM.  

 

As both, PLA and STORM are antibody-based techniques, we first performed 

immunostaining in combination with confocal microscopy to confirm the validity of the 

antibodies to be used in the experiments. All antibodies were previously validated by 

our lab (ANO1 and IP3R1) and Zhang and colleagues (TRPV1) (Jin et al., 2013; 

Zhang et al., 2016b). ANO1 and TRPV1 were shown to co-stain with each other in 

DRG cultures (Cho et al., 2012; Takayama et al., 2015) and provided clear signal in 

our immunostainings, whereas secondary antibodies only (no primary antibodies) 

provided no signal (Fig. 6.3A and B). We also checked the IP3R1 antibody and it also 

showed positive staining (not shown). Next, we attempted triple staining with all 3 

antibodies however, this was unsuccessful due to poor signal with our third-

secondary antibody (Alexa-633). Therefore we decided to perform IP3R1 staining 

with ANO1 and found both conditions provided positive staining as well as no 

staining when primary antibodies were not included (Fig. 6.4A and B). Despite this 

positive staining, we were unable to confirm whether there was close proximity 

between ANO1 and IP3R1 using confocal microscopy due to insufficient resolution 

(see above). Similarly, despite signals from ANO1 and TRPV1 forming overlapping 

puncta, there was no conclusive answer as to whether there is association of these 

proteins in these puncta, again, due to the insufficient resolution of confocal 

microscopy.   
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Figure 6.3: Immunostaining of DRG neurons with ANO1 and TRPV1 antibodies in 

small-diameter DRG neurons. (A) ANO1 and TRPV1 co-immunostaining. Top left 

panel; Positive ANO1 staining in a DRG neuron with Alexa 488 secondary antibody. Top 

right; Positive TRPV1 staining in a DRG neuron with Alexa 555 secondary antibody. 

Bottom left; DAPI staining showing the presence of glial cells. Bottom right; Merged 

staining consisting of ANO1, TRPV1 and DAPI (B) Negative control experiments with no 

primary antibody present (secondary only). Left; No primary TRPV1 antibody. Right; no 

primary ANO1 antibody (Alexa 488 secondary only). Scale= 20μm for all images 
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Figure 6.4: Immunostaining of DRG neurons with ANO1 and IP3R1 antibodies in 

small-diameter DRG neurons. (A) Top left panel; Positive ANO1 staining in a DRG 

neuron with Alexa 555 secondary antibody. Top right; Positive TRPV1 staining in a 

DRG neuron with Alexa 488 secondary antibody. Bottom left; DAPI staining. Bottom 

right; Merged staining consisting of ANO1, IP3R1 and DAPI (B) Negative control 

experiments with no primary IP3R1 antibody present (Left panel Alexa 488 secondary 

only; Right panel Alexa 555 secondary only). Scale= 20μm for all images. 
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The next step was to perform PLA between the various pairs of proteins. To validate 

the PLA approach we performed positive and negative controls utilising our protein 

of interests. For the negative control we performed PLA between TRPV1 and the μ-

opioid receptor (MOR). Both proteins are present at the plasma membrane of many 

nociceptors (Fields et al., 1980; Endres-Becker et al., 2007) but, to the best of our 

knowledge, were never shown (or suggested) to physically interact. Yet, MOR has 

been shown to modulate the activity of TRPV1 in CFA-induced paw inflammation of 

mice through an intracellular signalling cascade (Breese et al., 2005; Endres-Becker 

et al., 2007). There was also an upregulation of both proteins in inflammatory pain 

models (Endres-Becker et al., 2007). Initially, immunostaining was performed for 

both MOR and TRPV1, which revealed the presence of both MOR and TRPV1 in 

many DRG neurons (Fig. 6.5A). PLA was then carried out between MOR and 

TRPV1; analysis of the PLA-treated samples showed no positive signals which 

suggested that despite the presence of both proteins in DRG neurons, they are 

further than 40nm from each other and therefore there is not any physical 

association (Fig. 6.5B).  

 

As a positive control for the PLA investigations, we also decided to visualise a single 

protein with two antibodies raised in different species. Due to it being the focal point 

of our studies, ANO1 was used for this control. ANO1 antibodies used were Santa 

Cruz anti-goat and Abcam anti-rabbit detected by the ‘plus’ and ‘minus’ PLA probes, 

respectively (Fig. 6.6). In this approach both probes are expected to bind to the 

same protein and, thus, a positive ‘proximity’ signal is expected. The results indeed 

showed robust puncta for ANO1-ANO1, demonstrating that the assay reliably 

recognises the proximity between two probes attached to their target protein(s). 

We then used PLA to test the proximity of ANO1 and TRPV1 in small-diameter DRG 

neurons. PLA analysis showed that there was positive signal for this pair in 40 cells 

that we imaged meaning that the proteins are within 40nm of each other in these 

cells (Fig. 6.7A and E). Due to our findings in the previous chapter, which indicated 

the ability of TRPV1 to activate IP3R as part of its response and in the literature 

which states the presence of TRPV1 in lipid rafts (Szoke et al., 2010) where GPCRs 

and ANO1 are also found, we next tested possible proximity between TRPV1 and 

IP3R1 (Fig. 6.7B and E). PLA analysis again showed positive results however it must  
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Figure 6.5: Co-localisation of MOR and TRPV1 in small-diameter DRG neurons. 

(A) MOR and TRPV1 co-immunostaining. Top left panel; Positive MOR staining in a 

DRG neuron with Alexa 488 secondary antibody. Middle left panel; Positive TRPV1 

staining in a DRG neuron with Alexa 555 secondary antibody. Bottom left panel; 

Merged staining consisting of MOR and TRPV1. Scale= 10μm (B) MOR-TRPV1 PLA. 

Top right panel; brightfield image. Middle right panel; PLA (green) between MOR and 

TRPV1 showing no puncta. Bottom right panel; Merge between brightfield and PLA 

(green) channels. Scale= 20μm for all images. 
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Figure 6.6: Positive PLA control. ANO1-ANO1 PLA. Left panel; Brightfield image. 

Middle panel; PLA (green) between 2 anti-ANO1 (goat and rabbit) primary antibodies. 

Right panel; Merge between brightfield and PLA channels. These experiments were 

performed by Gabriel Hoppen. Scale= 10μm for all images. 
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Figure 6.7: PLA between ANO1, TRPV1 and IP3R1. (A) PLA between ANO1 and 
TRPV1 in small diameter DRG neurons. Left panel; brightfield image. Middle panel; 
PLA between ANO1 and TRPV1 (green). Right panel; merge between brightfield and 
PLA channel. (B) PLA between TRPV1 and IP3R1 in small diameter DRG neurons. Left 
panel; brightfield image. Middle panel; PLA between TRPV1 and IP3R1 (green). Right 
panel; merge between brightfield and PLA channel. (C) PLA between ANO1 and IP3R1 
in small diameter DRG neurons. Left panel; brightfield image. Middle panel; PLA 
between ANO1 and IP3R1 (green). Right panel; merge between brightfield and PLA 
channel. (D) Single primary antibody PLA. Left panel; DAPI staining. Middle panel; PLA 
with single primary ANO1 only (no pair of primary antibodies) showing no signal. Right 
panel; Merge between DAPI and PLA channels. (E) PLA pair puncta per cell analysis. 
Plot showing the number of puncta detected per cell for different protein pairs. Scale= 
20μm for all images. ****p<0.0001  
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be noted that there were less puncta in these cells as compared to that between 

ANO1 and TRPV1 (only 9 cells showed puncta compared to 40 for TRPV1 and 

ANO1). Furthermore, the average puncta per cell that we identified were greater for 

ANO1 and TRPV1 (28.23) compared to TRPV1 and IP3R (20.6) (p<0.0001, Mann 

Whitney). This confirmed that TRPV1 and IP3R1 are indeed in close proximity to 

each other in some cells. We also tested the proximity of ANO1 and IP3R1 (Fig. 6.7C 

and E). Even though we have already shown close association of these proteins in 

our previous study (Jin et al., 2013), we have repeated these experiments to 

demonstrate reproducibility. As previously, there was positive signal between this 

pair of proteins, however, this was significantly less than that found in ANO1-TRPV1 

PLA (16 cells, average 11.5 puncta per cell, p<0.0001, Mann Whitney). Even though, 

there were more PLA-positive cells for ANO1 and IP3R1 compared to TRPV1 and 

IP3R1, the number of puncta per cell are lower (p<0.0001, Mann Whitney). Overall, 

this indicates that this trio of proteins may form complexes. ANO1 and TRPV1 

appear to display more robust association, as compared to that between 

plasmallemal and ER proteins (Fig. 6.7E).  

As an additional negative control, we omitted the TRPV1 primary antibody (leaving 

only the ANO1 primary antibody) and visualised no signal, demonstrating that ‘by 

chance’ proximity of the PLA probes is negligible (Fig. 6.7D). 

To confirm our results, we decided to analyse these protein pairs using two-colour 

STORM technique. We have shown that TRPV1 and MOR show no positive signals 

for PLA, which suggests that they are not in close proximity despite the presence of 

both proteins in DRG neurons. To test the STORM methodology and visualise 

potential protein-protein interactions, these 2 proteins were also used as negative 

controls for initial investigations. Immunostaining was performed as previously 

discussed but the secondary probe was changed to include the photo-switchable 

activator-reporter dye-pairs (Cy3 and Alexa 647, respectively). Running the samples 

under STORM microscopy yield images which showed the presence of individual 

clusters of proteins (Fig. 6.8A). TRPV1 and MOR STORM analysis showed that the 

majority of the clusters identified were either TRPV1 (1304 clusters, 38.7 ± 3.4% 

n=5) or MOR (1556 clusters, 52.7 ± 4.2%, n=5) only (Fig 6.8B). Interestingly, the 

remaining 8.6% of clusters consisted of a combination of TRPV1 and MOR which  
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Figure 6.8: Multi-protein complexes in DRG neurons observed by STORM. (A) 

Representative images showing STORM between TRPV1 (Green) and MOR (Red). Solid 

white circles indicate individual clusters and dashed circles indicate potential complexes 

consisting of 2 proteins. (B) Cluster analysis between TRPV1 and MOR showing percentage 

of TRPV1 alone, MOR alone and both complexes together identified.  
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were designated as co-localised (345 clusters, 8.6 ± 3.2%, n=5). Yet, this was a 

minor fraction and, on a whole, both STORM and PLA report that there is no 

proximity between TRPV1 and MOR receptors in the majority of instances in DRG 

neurons.  

STORM was then used to look at the potential interactions between ANO1 and 

TRPV1. Using PLA we have already shown that at least some of these proteins are 

in close proximity in DRGs (see above). Cultured DRG neurons were immunostained 

with ANO1 and TRPV1 primary antibodies and the same secondary dye-pairs were 

used as with TRPV1 and MOR STORM studies. Unlike the TRPV1-MOR STORM 

experiment, ANO1 and TRPV1 showed significantly more clustering (2314 clusters, 

42.6 ± 4.1%, n=6) (Fig. 6.9A and B). 54.3 ± 4.2% of TRPV1 was found in TRPV1-

only clusters (2919 clusters, n=6) (Fig. 6.9A and C). Interestingly, ANO1 was 

scarcely present on its own (164 clusters, 3.1 ± 0.33%, n=6) (Fig. 6.9C). Therefore, 

STORM demonstrates that most ANO1 molecules are found in close proximity or 

potentially in complexes with TRPV1, while this cannot be said about TRPV1, as 

more than half of TRPV1 clusters were without ANO1 (Fig. 6.9A and C).  

 

We also tested TRPV1 and IP3R1 interactions in DRG using STORM (Fig. 6.9B and 

C). As well as our PLA studies which show positive signals between these proteins, 

we were expecting proximity between TRPV1 and IP3R1. The STORM analysis 

identified a smaller percentage of co-clustered TRPV1 and IP3R1 proteins (735 

clusters, 26.1% ± 3.0%, n=9) compared to ANO1 and TRPV1 (Fig. 6.9C). This was 

something that we also saw in our PLA, where the number of puncta between 

TRPV1 and IP3R1 were less than those seen for ANO1 and TRPV1 (see above).  

The next combination of proteins that we wanted to test using STORM were ANO1 

and IP3R1 to enable us to match all the PLA pairs with STORM analysis. Again, 

Gamper lab showed interactions between ANO1 and IP3R1 in DRG neurons using 

co-immunoprecipitation studies and PLA (Jin et al., 2013). Similarly to TRPV1 and 

IP3R1, we found that there was a smaller percentage of ANO1 and IP3R1 clusters 

(355 clusters, 32.3 ± 6.1%, n=6) compared to ANO1 and TRPV1 clusters but the 

percentage was slightly higher than ANO1 and IP3R1 clustering (Fig. 6.9C). Again,  
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Figure 6.9: Investigating the presence of multi-protein complexes formed 

between ANO1, TRPV1 and IP3R1 in DRG neurons. (A) Representative images 

showing STORM between; (upper panel) ANO1 (red) and TRPV1 (green) and (lower 

panel) TRPV1 (green) and IP3R1 (red) (B) TRPV1 (green) and IP3R1 (red). (C) 

Cluster analysis showing the percentage of clusters detected for ANO1 and TRPV1, 

(B) TRPV1 and IP3R1 and (D) TRPV1 and IP3R1.  
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the percentage of ANO1 alone has been found to be very small, suggesting in all of 

our STORM analysis that ANO1 is occupied or ‘bound up’- where it is in physical 

contact or in close proximity with another protein.  

Finally, we performed preliminary 3-colour STORM experiments to investigate the 

presence of complexes that may include all 3 proteins. The protocol involved, triple 

co-immunostaining and the use of 3 dye-pairs with Alexa 405, Cy2 and Cy3 as the 

reporters for IP3R1, ANO1 and TRPV1, respectively. Alexa 647 was used as the 

activator for all proteins. Running the 3-colour STORM revealed that there were 

some potential clusters which included all 3 proteins (352 clusters, 14.1 ± 0.8%, 

n=10) (Fig. 6.10A and B). In fact, this triple cluster was the largest population when 

looking at the co-clustering protein combinations (Fig. 6.10B and C). Yet, these 

experiments will need future confirmation. 
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Figure 6.10: Three-color STORM in DRG neurons looking at ANO1, TRPV1 and 
IP3R1. (A) Representative image showing an example of clustering between ANO1 
(green) and TRPV1 (red) and IP3R1 (blue). Scale= 0.2μm (B) Cluster analysis 
showing the percentage of clusters detected ANO1, TRPV1 and IP3R1 and (C) 
spread of cluster radius size amongst these cluster percentages. Individual clusters 
of ANO1, TRPV1 and IP3R1 removed for clarity. 
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6.3 Discussion 

This chapter demonstrates the relationships between ANO1, TRPV1 and IP3R1. 

Previous studies have been able to prove the physical interaction between ANO1 

and TRPV1 in DRG neurons and in heterologous systems (Takayama et al., 2015). 

We have been able to reaffirm this finding and show in our experiments that ANO1 

and TRPV1 are indeed in close contact with each other using both biochemical/ 

proteomics approaches and super-resolution microscopy (Fig. 6.7A, E and 6.8B). 

PLA works on the basis of 2 corresponding DNA probes that can ligate and produce 

fluorescence only if the 2 proteins of interest are within 40nm of each other. PLA has 

previously been used to successfully show the formation of STIM2 and Orai1 

complexes in SOCE (Gruszczynska-Biegala and Kuznicki, 2013). Untreated cells 

show little signal however SOCE leads to greater proximity between the 2 proteins, 

causing the complex to form and become detectable with PLA (Gruszczynska-

Biegala and Kuznicki, 2013). PLA was also used to show TRPV1 and TRPA1 co-

localisation in mouse coronary artery endothelial cells (MCAECs) after propofol 

treatment, where these proteins contribute to the vasodilatory effect of propofol 

(Sinharoy et al., 2017). As mentioned earlier, IP3R1 and ANO1 also show positive 

signals for PLA in DRG which demonstrates how ANO1 and IP3R1 are positioned in 

a close arrangement so that Ca2+ release can overcome ANO1-activation restraints 

(Jin et al., 2013). In our hands, ANO1 and IP3R1 also produced positive PLA signal 

(Fig. 6.7C and E), confirming previous findings (Jin et al., 2013; Cabrita et al., 2017). 

However, after obtaining evidence for TRPV1-evoked IP3R1 activation in the 

previous chapter, we also considered the possibility of close proximity between these 

proteins. Interestingly there was positive PLA signal between TRPV1 and IP3R1 

indicating that at least some of these proteins are within 40nm of each other (Fig. 

6.7B and E).  

6.3.1 PLA and STORM demonstrate similar results for ANO1, TRPV1 and IP3R1 

These protein pairings were also investigated using a cutting-edge microscopy 

technique, STORM, which provides sub-diffraction limited resolution. Coupled with a 

newly developed cluster analysis paradigm, multi-colour STORM allows highly 

accurate localisation of proteins in relation to one another (Dani et al., 2010). 

Consistently, STORM results are very complementary to the PLA data (Fig. 6.7 and 

6.8). ANO1 and TRPV1 showed the most co-clustering out of the 3 pairs, with ANO1 



164 
 

and TRPV1 showing less co-localisation with IP3R1, however there are two 

scenarios which cannot be distinguished here: (i) ANO1-TRPV1 are in closer 

proximity or (ii) there are just numerically more ANO1-TRPV1 complexes. 

6.3.2 Benefits provided by STORM over PLA 

STORM has also revealed some further insights that were not possible to gain with 

PLA. Thus, it appears that ANO1 is mainly found clustered or in close proximity to 

one of the other proteins with only a small proportion on ANO1 channels found on 

their own (Fig. 6.8). This is logical as the low sensitivity of ANO1 would require close 

proximity to the Ca2+ source for efficient activity. Conversely, there is still a great deal 

of TRPV1 and IP3R1 found alone presumably for interaction with other partners. PLA 

only allows visualisation of 2 proteins at a time however STORM can allow a greater 

number of proteins to be investigated. This enabled us to explore the potential for 

interactions between ANO1, TRPV1 and IP3R1. In 3-colour STORM configuration, 

there are triple-clusters detected and interestingly these are the largest proportion of 

the multi-protein combinations being investigated. The other co-localised clusters are 

still present but less abundant which suggests that with ANO1 and TRPV1 co-

localisation, there is a greater possibility that there is an IP3R1 molecule in the local 

vicinity.   

Taken together in the context of TRPV1-induced ANO1 activation, these results may 

indicate that at least in some DRG neurons there are multi-protein signalling 

complexes at ER-PM junctions containing ANO1 and TRPV1 at the plasma 

membrane and IP3R1 in the juxtaposed ER membrane. This tri-protein arrangement 

may allow TRPV1 to feed into the already proposed mechanism of ANO1-IP3R1 

coupling in DRG neurons and activate ANO1. Ca2+ flooding into the cell via TRPV1 

may reach a sufficient level of Ca2+ (at the mouth of the channel) to be able to 

activate ANO1 however this seems unlikely considering the results from our store-

depletion experiments (see chapter 5). If the analysis from STORM revealed an 

overwhelming majority of clusters showing a single type of co-localisation (i.e. ANO1 

and TRPV1) then one may be able to hypothesise that this co-localisation is the 

reason for a certain functional effect that has been identified. However, it seems as if 

both mechanisms of ANO1 activation may be occurring and this may serve to further 

strengthen ANO1’s activity in terms of nociception. Both mechanisms would allow 
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ANO1 activation and, at the same time, allow TRPV1 to produce its interactions with 

other proteins i.e. with TRPA1 (see above). Even if TRPV1 is not physically coupled 

to ANO1, its ability to activate IP3R1 via PLC may then be able to still provide 

activation of ANO1.   

The benefits of STORM can be shown in the results obtained for ANO1 and TRPV1. 

For PLA the only information that we can obtain is that TRPV1 and ANO1 are within 

~40nm of each other- we are unable to get an idea if this means the proteins are 

physically interacting, on the limit of 40nm from each other or anything in between. 

STORM provides an idea as to what the distribution of cluster size actually is and 

also the relative levels of non-interacting proteins present, again providing more 

information than just 2 proteins are close to each other. Furthermore, being able to 

visualise more than 2 proteins is also another major advantage of STORM.   

There is a small percentage of clusters that were deemed to consist of TRPV1 and 

MOR co-localised together after being processed by the STORM clustering analysis, 

despite the majority of clusters being either only TRPV1 or only MOR positive. This 

could be due to the fact that STORM is a great deal more sensitive in judging the 

presence of co-localised proteins or the fact that the PLA analysis was unable to 

detect these due to biophysical constraints as part of the process (PLA probe 

interactions may not have occurred during the assays) which is still unlikely. 

Alternatively, Zhang and colleagues suggested that up to 10% clustering in STORM 

may be ‘false-positive’ in certain scenarios. This was derived from Kv7 homomer and 

multimer STORM experiments which revealed that Kv7.1 and 4 subunits (known to 

produce homomeric channels and don’t co-localise with each other) gave a 10% 

signal as multimers between the 2 subunits. Therefore, in this situation the clustering 

would be considered as false.  
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Chapter 7: ER movement to the PM upon ER activation monitored using TIRF 

7.1 Introduction 

ER-PM junctions are vital in controlling Ca2+-dynamics in various cell types 

(Giordano et al., 2013). Due to the fact that our proteins of interest are found at these 

junctions and coupled with findings in previous chapters demonstrating the 

requirement of IP3R1 for ANO1 activation and proximity of ER-PM proteins, some 

attention is required to show how these junctions are assembled and function in 

cells.  

7.1.1 Junctophilin 

In cardiac muscle, ER-PM junctions allow initiation of CICR as they enable the 

juxtaposition of VGCCs to RYR receptors. Therefore, as an action potential arrives, 

L-type VGCC activation is able to efficiently and reliably activate RYRs and allow 

excitation-contraction coupling due to the spatial arrangement between these two 

proteins (Beavers et al., 2014). A protein family known as the junctophilins has been 

found in cardiac cells; it was demonstrated that these proteins play a crucial role in 

tethering the ER/SR and the PM (Landstrom et al., 2014). The junctophilin family of 

proteins consists of 4 members; junctophilin 1-4, and structurally comprise of eight 

membrane-occupation and recognition nexus (MORN) motifs which tether to the PM, 

an α-helix, divergent region and a C-terminus transmembrane motif that anchors the 

protein into the ER/SR (Landstrom et al., 2011; Takeshima et al., 2015). In cardiac 

cells junctophilin 2 is the predominant isoform and has been shown to be important 

for this ER-PM association. In human cardiac tissue from patients who had died after 

hypertrophic cardiomyopathy (HCM), there was a reduction in junctophilin 2 

(Landstrom et al., 2011) which has also been shown in rat models of HCM 

(Minamisawa et al., 2004). Partial silencing of junctophilin 2 in HL-1 cells displayed 

myocyte hypertrophy along with increased expression of markers for this process 

(Landstrom et al., 2011). Furthermore, Ca2+ dynamics in the cell (both L-type VGCC 

and RYR) were markedly reduced as there was a loss of the proximity between 

these proteins. SOCE is another process reliant on junctophilin proteins in skeletal 

muscle (Hirata et al., 2006). Silencing of both junctophilin 1 and 2 caused reduced 

SOCE as well as deformed triad junctions in these cells (Hirata et al., 2006). In other 

cell types such as T-cells, another isoform- junctophilin 4- has been found to play a 

role in SOCE (Woo et al., 2016). Jurkat cells have shown reduced levels of Ca2+ in 
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the ER stores when junctophilin 4 KO had occurred (Woo et al., 2016). Primary 

murine CD4+ T-cells with junctophilin 4 KO also exhibited reduced ER Ca2+ content 

but interestingly, the occurrence of SOCE was also diminished. Junctophilin 4 co-

localised with STIM1 and it was demonstrated that store-depletion promotes physical 

interaction between the two proteins. Loss of junctophilin 4, reduced the number of 

STIM1 clusters in these cells, thus implicating junctophilin 4 in recruiting STIM1 to 

ER-PM junctions (Woo et al., 2016). Recently, our lab has also shown the presence 

of junctophilin 1, 3 and 4 in DRG neurons where they seem to play a similar role as 

reported by Woo and colleagues (unpublished data). 

7.1.2 Ist2 

A protein known as Ist2 is involved in producing ER-PM junctions in the yeast 

saccharomyces cerevisiae (Pichler et al., 2001; Manford et al., 2012). Interestingly, 

Ist2 is the yeast orthologue of mammalian anoctamins which is localised to the ER 

and extends to the PM (Stefan et al., 2013). It has been demonstrated that loss of 

this junctional protein thorough gene deletion leads to loss of contacts between the 

ER and PM (Story et al., 2003; Manford et al., 2012; Wolf et al., 2012). A role for Ist2 

involving the regulation of metabolic processes has been touted. Plasma membrane 

ATPase 1 (Pma1) induced H+ efflux is thought to reduce pH in yeast cells and is 

governed by extracellular glucose (Morsomme and Boutry, 2000). Loss of Ist2 in 

yeast shows reduced H+ efflux whereas overexpression of Ist2 results in a slightly 

faster rate of alkalisation of the cells (Wolf et al., 2012).  

7.1.3 Dynamic ER activity 

Although some ER-PM junctions are constitutive (Stefan et al., 2013; Okeke et al., 

2016), the ongoing investigations of several groups suggest that in some instances, 

the ER is moving into closer proximity with the PM upon stimulation (e.g. store 

depletion) (Giordano et al., 2013; Courjaret and Machaca, 2014; Saheki et al., 2016). 

This could result in formation of de-novo junctions or rearrangement of existing 

junctions in a manner where the ER is closer to the PM. Such processes would be of 

high relevance to the functional activity of junctional ANO1-containing complexes in 

DRG neurons since shortening of the distance between ANO1 and IP3R is expected 

to facilitate ANO1 activation.  
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One method thought to induce CaCC activity was SOCE as initially proposed by the 

Hartzell lab back in 1996 (Hartzell, 1996). It is reasonable to postulate that ANO1 

activation through SOCE may well be possible, especially as replenishment of the 

ER is necessary to activate ANO1 through IP3R. Recently, it has been demonstrated 

in oocytes that ANO1 activation requires SOCE however, this is not direct activation 

through Orai and STIM proteins (Courjaret and Machaca, 2014). It was proposed 

that Ca2+ entering the ER through SOCE is then delivered to ANO1 channels 

through the IP3Rs. Furthermore, this process of SOCE involves regions of ER 

physically moving up to the PM when SOCE was initiated (Courjaret and Machaca, 

2014). 

A family of proteins called extended synaptotagmins (E-syts) are another example of 

tethering proteins which have been known to play a role in tethering ER to PM after 

stimulation of GPCRs (Saheki et al., 2016). This family consists of 3-members (E-

syts 1-3); E-syts1 is of particular interest due to its Ca2+-dependent nature (Min et al., 

2007). Similarly to synaptotagmin, E-syts have five C2 domains, two of which are 

essential for the tethering to occur due to their Ca2+-sensitive nature (Min et al., 

2007; Malmersjo and Meyer, 2013) (Fig. 7.1). Ca2+ elevation causes the recruitment 

and tethering of the ER and PM thorough C2E and C2C domains at PIP2 rich 

segments of the PM (Malmersjo and Meyer, 2013; Perez-Lara and Jahn, 2015) (Fig. 

7.1). Mutants of E-syts1 have shown C2E to be vital for tethering and C2C vital in 

shortening of the distance between the ER and PM (Fernandez-Busnadiego et al., 

2015). Ultimately, this close apposition between the ER-PM allows for processes 

such as DAG clearance through the synaptotagmin-like, mitochondrial-lipid binding 

protein (SMP) domain (Saheki et al., 2016). This was demonstrated in artificial 

liposomes using a FRET-based lipid-transfer assay where lipid transfer was 

visualised from a donor liposome to an acceptor liposome in the presence of E-

syts1. Interestingly, E-syts are not required for SOCE, as E-syts 1-3 KO doesn’t 

affect SOCE in HeLa cells (Giordano et al., 2013; Idevall-Hagren et al., 2015). Taken 

together, this shows that the ER is not a rigid organelle but rather dynamic in its 

ability to facilitate various cellular processes. 
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Figure 7.1: E-Syts1 in forming ER-PM junctions. Upper panel: In resting 
conditions, E-Syts1 is not tethered to the PM. Lower panel: Upon Ca2+ binding to the 
C2E and C2C domains, E-syts1 tethers to PIP2 (green ovals) in the PM, allowing 
shortening of the distance between ER and PM. Figure based on (Krauss and 
Haucke, 2016). 
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7.2 Results 

As part of their studies, two groups have recently used an interesting approach 

where they utilised a luminal ER marker, ER-oxGFP to monitor apposition between 

the ER and PM under TIRF (Giordano et al., 2013; Saheki et al., 2016). Under 

normal conditions in wild type cells, an elevation in Ca2+ in the cytoplasm led to the 

ER-oxGFP signal being increased which is thought to indicate greater areas of close 

proximity between the ER and the PM (Giordano et al., 2013; Saheki et al., 2016). 

Oxo-M (agonist of M1R) stimulation of HeLa cells transfected with M1R indeed 

induced an increase in TIRF signal for ER-oxGFP (Saheki et al., 2016).  

To test whether there is any movement of the ER to the PM in DRG after 

engagement of the ER, we devised a TIRF-based imaging approach to visualise ER 

dynamics. An ER-specific tag was expressed in cells and monitored during 

application of several relevant agonists. By using TIRF, we are able to focus on the 

cell membrane at the specimen-glass coverslip interface and any increase in 

fluorescence of the ER marker will be indicative of the ER moving closer to the PM. 

DRG neurons were cultured and incubated with an ER-specific dye, ER-tracker 

Green (Thermofisher), 30 min before imaging. ER-tracker Green is conjugated to 

glibenclamide, a drug that binds to the sulphonyurea receptors of ATP-sensitive K+ 

channels (Shen et al., 1992; Ripoll et al., 1993). As these receptors are highly 

localised to the ER, the tracker provides an ER-specific stain. To analyse our data, 

we devised a grid-based method using the Nikon Elements software to divide every 

cell footprint into a grid to allow us to be able to monitor both, the integral footprint 

fluorescence as well as the activity within specific regions within the cell (Fig. 7.2A). 

Performing TIRF on DRG stained with the ER tracker demonstrated that the ER is a 

dynamic organelle and its proximity to the PM is subject to fluctuations. As a control, 

we decided to apply no agonist (just standard bath solution) and monitor activity of 

the ER (Fig. 7.2B). We found that there was no increase in TIRF signal intensity but 

after 100 seconds there was a decrease in fluorescence (100 seconds: 0.95 ± 0.016 

vs 132 seconds: 0.90 ± 0.016 n=5, 192 grids) however there was no increase in 

fluorescence during this application. This reduction in fluorescence may be due to 

bleaching or movement of the ER away from the PM as part of its dynamic activity. 
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Figure 7.2: Motoring ER activity in DRG neurons. (A) Grid based analysis to 
take into account all areas of the each cell. (B) Control experiments where DRG 
loaded with ER-tracker Green and imaged (n=5) with no agonist application (just 
extracellular bath solution). All grids were averaged for each of cell and plotted 
as a histogram to monitor changes in TIRF intensity. No increase in 
fluorescence was seen during this period. 

A 

B 
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Upon bradykinin application, many areas didn’t respond however, several areas 

responded with an increased intensity of ER-tracker signal (Fig. 7.3A, B and C). 

Comparing all cells imaged to each other showed that there were some cells which 

responded with a greater TIRF intensity compared to others (p<0.05, ANOVA, n=6). 

When taking all cells imaged into account, the signal decreases gradually (possibly 

photobleaching) but application of bradykinin leads to an increased level of 

fluorescence with respect to the pre-bradykinin signal intensity (Fig. 7.4D) (pre-

bradykinin: 0.94± 0.00047 Vs peak bradykinin (250nM): 1.0009 ± 0.00036, 

p<0.00001 n=6, 429 grids). However, when comparing this to F/F0 there is no 

significant difference.  

 

Chapter 5 demonstrates that TRPV1 is able to engage IP3R Ca2+ release. To test if 

TRPV1 also has a similar effect as B2R activation, capsaicin was applied to DRG 

neurons stained with the ER tracker. Again there were some individual neurons that 

did show an increase of footprint fluorescence in certain grids images and also in the 

average TIRF intensity of single cells (p<0.05, ANOVA) (Fig 7.4A, B and C). The 

majority of neurons didn’t show significant cell-wide with respect to F/F0, however 

when comparing the pre-capsaicin application responses to post-capsaicin 

application responses, capsaicin application caused a significant increase in TIRF 

intensity (pre-capsaicin: 0.93 ± 0.0068 Vs peak capsaicin (1μM): 1.013 ± 0.029, 

p<0.001, n=5 cells, 305 grids). Comparing the peak TIRF intensity between 

bradykinin and capsaicin application showed no significant differences. 

One significant issue which impeded TIRF imaging of DRG neurons was the fact that 

in culture conditions, neurons rarely reside on the glass as they prefer to position 

themselves on top of the glial cells. Therefore when on the glass, the neurons often 

have a limited footprint (as can be seen in Figs. 7.3B-4B) and make it difficult to 

obtain reliable TIRF recordings. As one moves away from the TIRF plane, the 

evanescent field depreciates exponentially so that the fluorophores that are located 

within the ER can no longer be excited and the signal is therefore lost. To circumvent 

this issue, we repeated these experiments using adherent HEK293 cells co-

transfected with either B2R or TRPV1 and another ER marker- viral-based ER-GFP 

(CellLight ER-GFP, BacMam 2.0). Once transfected, the construct enters cells and 

allows GFP to be expressed specifically in the ER.  
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Figure 7.3: ER movement in DRG cells loaded with ER-tracker Green under 

TIRF after bradykinin (250nM) application. (A) Representative traces showing 

‘responsive’ and ‘non-responsive’ grids in response to bradykinin application. (B) 

Representative images of changes in TIRF signal intensity. Upper left panel: pre-

bradykinin application TIRF signal (0 seconds), upper right panel: post bradykinin 

application (120 seconds), lower left panel: post bradykinin response (300 

seconds). White arrows show changes after 120 seconds and red arrows show 

changes after 300 seconds post-bradykinin application, lower right panel: 

brightfield image of DRG being imaged. Images correspond to uppermost purple 

trace in (A) (C) Average changes (all grids) in TIRF intensity of one ‘responsive’ 

cell after bradykinin application. (D) Averages changes in TIRF intensity of all cells 

(n=6). SEM not shown for clarity. * denote comparison points for statistics. 
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Figure 7.4: ER movement in DRG cells loaded with ER-tracker Green under 

TIRF after capsaicin (1μM) application. (A) Representative traces showing 

‘responsive’ and ‘non-responsive’ grids in response to capsaicin application. (B) 

Representative images of changes in TIRF signal intensity. Upper left panel: pre-

capsaicin application TIRF signal (0 seconds), upper right panel: post capsaicin 

application (120 seconds), lower left panel: post capsaicin response (300 seconds). 

White arrows show changes after 120 seconds and red arrows show changes after 

300 seconds post-capsaicin application, lower right panel: brightfield image of DRG 

being imaged. Images correspond to uppermost beige trace in (A). (C) Average 

changes (all grids) in TIRF intensity of one ‘responsive’ cell after capsaicin 

application. (D) Averages changes in TIRF intensity of all cells (n=6). SEM not 

shown for clarity. * denote comparison points for statistics. 
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We tested the effects of bradykinin and capsaicin using this new ER-marker. 

Application of bradykinin (250nM) again produced an increased TIRF signal which 

was significantly greater compared to F/F0 (Fig. 7.5A, B and C) (1.05 ± 0.022, 

p<0.01, n=5, 164 grids).  

Application of capsaicin on HEK293 cells transfected with TRPV1, gave an increase 

in TIRF intensity response, suggesting that indeed TRPV1 activation may induce an 

effect on the ER, which is similar to that of bradykinin (Fig. 7.6A, B and C). This is 

consistent with the Ca2+ imaging data presented in the Chapter 5, which 

demonstrated that capsaicin application induces robust Ca2+ release from the ER. 

Various areas of the cell show increased TIRF signal after capsaicin application 

(1.074 ± 0.028, p<0.05, n=6, 157 grids) (Fig. 7.6A, B, C and D). However, as with all 

cell responses, there were many areas where there was decreased or no increase in 

signal (Fig. 7.6D). Comparing peak TIRF intensity between the capsaicin and 

bradykinin application in HEK cells was not significantly different. In both conditions, 

there was no major decrease or fluctuations in TIRF intensity as was seen in DRG 

neurons (Fig. 7.3D and 4D). Therefore, HEK293 cells allow a more stable baseline 

and coupled with the less loss of signal, provide a potentially more efficient platform 

to perform these experiments on.  

Another analysis approach for this TIRF data is to segment regions of interest (ROIs) 

using a cross correlated approach based on time courses (Fig. 7.7). Figure 7.7 has 

been produced by re-analysing the DRG data from figure 7.3 using this approach. 

The benefit of this analysis technique is the ROIs are segmented using software 

which is able to group/detect various aspects of the responses together according to 

their activity, which means that responses from different grids resulting from the 

same area of the DRG are not treated as 2 different responses. The benefit of this 

method compared to the grid approach used for analysis above is the fact that this is 

reproducible and removes any subjectivity. Furthermore, it provides a reproducible 

way of analysing this kind of data. Therefore, future experiments will be analysed 

using this technique.   
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Figure 7.5: ER movement in HEK293 cells transfected with B2R and CellLight 

ER-GFP under TIRF after bradykinin (250nM) application. (A) Representative 

traces showing ‘responsive’ and ‘non-responsive’ grids in response to bradykinin 

application. (B) Average changes (all grids) in TIRF intensity of one ‘responsive’ cell 

after bradykinin application. (C) Averages changes in TIRF intensity of all cells 

(n=6). SEM not shown for clarity.  
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Figure 7.6: ER movement in HEK293 cells transfected with TRPV1 and 
CellLight ER-GFP under TIRF after capsaicin (1μM) application. (A) 
Representative traces showing ‘responsive’ and ‘non-responsive’ grids in response 
to capsaicin application. (B) Average changes (all grids) in TIRF intensity of one 
‘responsive’ cell after capsaicin application. (C) Averages changes in TIRF intensity 
of all cells (n=6). SEM not shown for clarity. (D) Representative image showing 
intensity profile for application of capsaicin on a responsive HEK293 cell expressing 
TRPV1 and CellLight ER-GFP. Left panel: Pre-capsaicin application and right 
panel: Post-capsaicin application. White arrows show areas where there is 
increased ER-TIRF signal intensity after capsaicin application and red arrow shows 
area where there was a decreased signal. 
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Figure 7.7: Cross correlation approach to analyse TIRF data. Software is able 
to detect ROIs by analysing the activity in different regions of the cell and combining 
areas of similar activity over time. (A) Image of DRG (left) and same DRG 
overlayed with ROIs detected by software (left). (B) Traces from respective colour-
coded ROIs detected in (A) after bradykinin application. (C) Raster plot for all ROIs 
detected showing changes in activity over the duration of the experiment. 
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7.3 Discussion 

Movement of the ER has been documented to occur upon stimulation of GPCRs 

such as M1R and during SOCE (Courjaret and Machaca, 2014; Saheki et al., 2016). 

We decided to investigate this in our studies to understand whether there is any 

movement of the ER towards the membrane in DRG neurons upon IP3R activation 

(after bradykinin or capsaicin application). The data suggest that in both DRG 

neurons and reconstituted expression systems (HEK293 cells transfected with B2R 

or TRPV1), stimulation of ER Ca2+ release with either bradykinin or capsaicin did 

induce closer proximity between the ER and PM, as assessed by the increased ER 

TIRF signal. Some areas of the cell footprint showed a greater intensity in signal 

which we interpret as the ER moving closer to the glass-cell surface interface under 

TIRF (so moving to the PM). There may not be a requirement for all of the ER to 

move but small areas may translocate closer to the PM where for example, there are 

ANO1 and IP3R receptors. The effects were more evident in HEK293 cells as 

compared to DRG (likely due to the better adherence of the former); capsaicin was 

found to be more effective in inducing ER-PM proximity as compared to DRG. Our 

results are also in good agreement with those reported by Courjaret and colleagues 

who reported that areas of the ER and PM move closer to each other during SOCE 

in oocytes (Courjaret and Machaca, 2014).  

The data reported here are encouraging but should be treated as preliminary due to 

following facts: (i) it was difficult to image DRG neurons in TIRF mode (see above); 

(ii) ER-PM junctions in HEK293 cells may not necessarily be identical to these in 

DRG neurons; and (iii) due to ‘patchy’ responses within a footprint, these were 

difficult to analyse. Yet, these results are encouraging and warrant further 

investigation. Mechanistically, we suggest that both bradykinin (via Gq-PLCβ) and 

capsaicin (via Ca2+-dependent PLCδ) induce ER Ca2+ release, which is associated 

with concurrent shortening of the ER-PM distance. At this point we cannot ascertain 

whether new ER-PM junctions are being induced or the process is restricted to the 

pre-existing junctions, but in either case, this tightening of the ER-PM proximity 

during the signal transduction may serve to enhance activation of ANO1 channels by 

the IP3-mediated Ca2+ release from the ER.  

These findings may cause one to speculate that ANO1 itself may also use such a 

mechanism to potentially tether PM-ER junctions. Ist2 consists of a polybasic C-
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terminus domain which is rich in lysine and histidine residues and has been shown to 

be vital for Ist2 interactions with the PM (Juschke et al., 2005; Manford et al., 2012). 

Loss of this polybasic segment of Ist2 has been shown to abolish ER-PM contacts 

from forming and introducing a truncated Ist2 protein (consisting of 2 transmembrane 

domains and the C-terminus) into non-Ist2 expressing cells was sufficient to form 

ER-PM junctions again (Manford et al., 2012). Unfortunately, ANO1- a human 

orthologue of Ist2- does not possess this polybasic domain and even though they are 

related, ANO1 shares very little sequence similarity with Ist2 (Kunzelmann et al., 

2016). Therefore, tethering of the ER to the PM has to be through another means. 

One protein discovered as part of the interactome for ANO1 was endoplasmic 

reticulum lipid raft-associated protein 1 (ERLIN1) (Perez-Cornejo et al., 2012), an 

IP3R regulating protein which associates with IP3R physically in an activity-

dependent manner to facilitate processes such as ER-associated degradation of 

IP3R (Pearce et al., 2009). Proteins such as these may therefore play a role in the 

tethering between ANO1 and TRPV1 which could be essential to identify to fully 

understand the mechanism in IP3R-mediated ANO1 activation. 

  



189 
 

Chapter 8: General discussion 

This thesis has focused on the activation of ANO1 by various pro-inflammatory 

mediators in the context of peripheral nociception. The discovery of ANO1 in 2008 

reported expression in DRG neurons as well as many other tissues (Yang et al., 

2008). Our lab was the first to characterise the activation of ANO1 in DRG neurons 

in 2010, which was mediated by bradykinin application (Liu et al., 2010). Pro-

inflammatory mediators such as bradykinin are known to sensitise several sensory 

channels and enhance their activity in nociceptors as well as reduce inhibitory effects 

of other channels (Geppetti and Trevisani, 2004; Huang et al., 2006; Liu et al., 2010). 

Bradykinin application led to an excitatory Cl--dependent inward current being 

elicited, which was also coupled to an inhibition of M-current (Liu et al., 2010). ANO1 

activation in these cells was discovered to couple to the Gq pathway and ultimately 

IP3R activation (Liu et al., 2010; Jin et al., 2013) and additionally this was facilitated 

through arrangement of the channels in functional ER-PM microdomains. 

8.1 ANO1-IP3R microdomains are essential for ANO1 activation 

The results in this thesis confirm previous findings regarding coupling of ANO1 to 

IP3R activation using a newly developed single cell imaging approach, combining 

both fura-2 Ca2+ imaging and a halide sensitive EYFP mutant to allow monitoring of 

concurrent Ca2+ dynamics and Cl- channel activity, respectively. This is the first time 

both of these methods have been combined to simultaneously study CaCC activity. 

All previous studies to our knowledge have used a single method to record ANO1 

activity, such as patch-clamp recordings (Yang et al., 2008; Xiao et al., 2011; Huang 

et al., 2012; Jin et al., 2013; Vocke et al., 2013) or imaging involving the halide 

sensitive approach when studying CaCC activity (de la Fuente et al., 2013; Bill et al., 

2014; Bill et al., 2015; Seo et al., 2016). The advantage of the method developed 

herein is in that it allows us to directly correlate the dynamics and properties of 

intracellular Ca2+ signaling with ANO1 activation in live neurons. We successfully 

demonstrated this technique can be used to monitor CaCC activity and in terms of 

our study, activation is coupled to IP3R. Furthermore, we were able to demonstrate 

that VGCC activation is poorly coupled to this CaCC activity, again highlighting the 

preference of ANO1 to local Ca2+ rises delivered through IP3R activation. This was 

exemplified by the observation that EYFP (H148Q/I152L) mutant quenching was 

present during bradykinin application in extracellular Ca2+ free conditions but not 
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upon VGCC activation despite similar Ca2+ transients being observed in both cases. 

The low Ca2+ sensitivity of ANO1 dictates the requirement for high Ca2+ levels to 

induce activation which seemingly protects ANO1 activation from global Ca2+ rises 

(Yang et al., 2008; Liu et al., 2010; Jin et al., 2013). ANO1 activation through 

transient, highly localised Ca2+ elevation therefore provides selectivity in terms of 

activation. In a nociceptive context, one of the roles of ANO1 is its involvement in 

amplifying the effects of other stimuli thus providing increased pain sensation. If all 

Ca2+ signals were able to activate ANO1, then this amplification aspect would be lost 

therefore, only pro-nociceptive signals seem to activate ANO1 (see below).  

The formation of Ca2+ microdomains allows the facilitation of ANO1 activation. ER-

PM junctions provide the platform for microdomain formation between ANO1 and 

IP3R, however the mechanism behind this junction formation is as of yet unknown. It 

may well be a protein that tethers the ER to the PM or ANO1 and IP3R themselves 

that allow this to occur. A protein mentioned in the previous chapter, E-syt1 allows 

the ER and PM to come into close contact in a Ca2+ dependent manner (Min et al., 

2007). Interestingly, there is high expression of this protein in DRG neurons as 

demonstrated by the Allen Brain Atlas. IP3R activation causes Ca2+ release, which 

may cause E-syt1 to bring the ER and PM into closer proximity and therefore 

increase the localised Ca2+ concentration for ANO1 activation. However, this is 

somewhat unclear at the moment as studies have found that extracellular Ca2+ 

(through SOCE) is required for E-syt1 tethering but knocking out E-syt1 doesn’t 

affect SOCE in HeLa cells (Giordano et al., 2013; Idevall-Hagren et al., 2015). 

Therefore, potential E-Syt1 studies in DRG neurons appear be an extremely enticing 

and intriguing prospect.  

It has also been demonstrated using GST-pulldown assays that the intracellular 

loops between TM 2 and TM 3 and the C-terminus of ANO1 interact with IP3R1 (Jin 

et al., 2013); this may tether both proteins and contribute to the formation of very 

tight ER-PM junctions and further enhance the effects of IP3R localised Ca2+ 

increases, hence further facilitating ANO1 activation. As mentioned in the previous 

chapter, ERLIN1 is part of the ANO1 interactome (Perez-Cornejo et al., 2012) and is 

known to mediate IP3R-related processes by physically interacting with IP3R (Jin et 

al., 2014). Such a protein that interacts with both ANO1 and IP3R may well be 

dependent on TM 2 and TM 3 and the C-terminus of ANO1 to form interactions 
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between the 2 proteins. Other scaffolding proteins such as Homer1b/c, are known to 

link IP3Rs to PM-localised proteins (i.e. metabotropic glutamate receptors (Tu et al., 

1998)), and has been found to interact with ANO1 and potentially play a role in the 

production of ER-PM junctions (unpublished data). Junctophilin proteins are 

expressed in DRG neurons and may also be involved in the formation of ER-PM 

junctions. Further research is required to elucidate such scenarios.  

8.2 TRPV1 also activates ANO1 through ER Ca2+ mobilisation 

TRPV1 is the prototypic noxious heat sensor of the body and is activated in a 

polymodal manner (Rohacs et al., 2008). Recent studies have been able to 

demonstrate coupling between ANO1 and TRPV1 in DRG neurons. ANO1 and 

TRPV1 were found to be physically coupled using biochemical approaches and Ca2+ 

buffering experiments (Takayama et al., 2015). It was proposed that the functional 

interaction between ANO1 and TRPV1 occurred through a local Ca2+ nanodomain 

(Takayama et al., 2015); this observation was made based on EGTA (slow Ca2+ 

buffer) and BAPTA (fast Ca2+ buffer) chelating experiments, where BAPTA and 

EGTA were both unable to inhibit ANO1 activity after TRPV1 activation hence the 

nanodomain idea was put forward. Yet, BAPTA has been known to inhibit Ca2+ 

nanodomains too (Eggermann et al., 2011; Arai and Jonas, 2014); an example of 

this has been demonstrated at synapses where neurotransmitter release occurs. 

Nanodomain coupling of presynaptic Ca2+ channels and Ca2+-sensors (10-20nm) for 

neurotransmitter release has been established (Bucurenciu et al., 2008; Eggermann 

et al., 2011; Arai and Jonas, 2014). BAPTA has also been used successfully to 

inhibit such coupling in basket cells (Bucurenciu et al., 2008; Arai and Jonas, 2014). 

Therefore it is unclear as to the observations made by Takayama and colleagues.  

Importantly, even if BAPTA inhibited ANO1 activity in these assays, it could still not 

distinguish between the direct effect of TRPV1 on ANO1 or ER-mobilising effects as 

BAPTA can also inhibit IP3R-induced ANO1 activation (Jin et al., 2013). We used our 

dual imaging approach to show that TRPV1 was indeed able to induce an anionic 

flux in our setup; this was coupled to a rise in [Ca2+]i. Interestingly, we found that 

depletion of Ca2+ from internal stores significantly reduced both Ca2+ elevation and 

halide sensitive EYFP quenching induced in DRG after capsaicin application. 

Furthermore, capsaicin application to DRG in Ca2+-free extracellular bath solution 

still evoked Ca2+ transients, suggesting that TRPV1 activation can induce 
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intracellular Ca2+ transients even in the absence of Ca2+ influx from the extracellular 

space.  

TRPV1 has been found to activate PLC, which leads to subsequent IP3 generation 

and hence IP3R activation (Lukacs et al., 2007). Ca2+ independent PLCs may be 

present in DRG to facilitate this activity (Lukacs et al., 2007) or alternatively TRPV1 

in the ER may induce this activity (Gallego-Sandin et al., 2009). Thus, the exact 

mechanism by which activation of TRPV1 causes ER Ca2+ release requires future 

investigation. To definitively show that the mobilisation of internal stores plays a role 

in TRPV1-induced ANO1 activation, we coupled our dual imaging approach to also 

monitor ER-Ca2+ dynamics using CEPIAs in CHO cells (Suzuki et al., 2014). 

Application of capsaicin produced Ca2+ elevation, EYFP quenching and a loss of ER 

Ca2+ in CHO cells transfected with ANO1 and TRPV1. This strengthened the notions 

regarding involvement of ER-Ca2+ release in TRPV1 activity and ANO1 activation. 

To further validate our findings and investigate the route by which Ca2+ is released, 

an IP3R inhibitor, xestospongin C, was used to inhibit IP3R in our triple imaging 

approach. Xestospongin C was able to reduce cytosolic Ca2+, EYFP quenching and 

CEPIA-monitored ER Ca2+ release, which adds support to our conclusion that IP3R is 

activated during TRPV1 activation. This is a logical means by which ANO1 is 

activated as (i) we have already established that activity of ANO1 requires IP3R Ca2+ 

release, (ii) TRPV1 is able to activate PLCδ and produce IP3 (Lukacs et al., 2007; 

Rohacs et al., 2008) and (iii) ER-localised TRPV1 activation has been found to 

induce cell death (Thomas et al., 2007) therefore would seem an unlikely mechanism 

for activity.  

We have also demonstrated the proximity between ANO1 and TRPV1 using both 

PLA and STORM. Previously, it has been demonstrated that ANO1 and TRPV1 are 

found in complex with each other through biochemical studies (Takayama et al., 

2015). We have been able to show that there is close proximity between these 

proteins in DRG neurons, however this doesn’t necessarily mean a direct effect of 

TRPV1 on ANO1 as proposed by Takayama and colleagues. It could suggest 

localisation with ANO1 allows TRPV1 to influence ANO1 through already-coupled 

IP3R. Furthermore, preliminary triple STORM indeed suggests the presence of 

complexes consisting of ANO1, TRPV1 and IP3R1 in DRG. 
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Additional studies regarding the dynamics of the ER suggest that the distance 

between the ER and PM is reduced after stimulation of ER Ca2+ mobilising 

receptors. Bradykinin application to DRG transfected with an ER-specific marker 

demonstrated that certain areas of the ER respond with a greater intensity signal 

under TIRF, suggestive of closer proximity between the ER and PM. This was also 

the case after capsaicin application; whilst this does not definitively show the ER is 

mobilised by TRPV1 activation, the ER behaving in a manner similar to that after 

bradykinin application (which does induce ER-Ca2+ release) may be indicative of ER 

activation. Coupled to the findings of our PLA and STORM experiments, the ER may 

move to the PM to facilitate ANO1 activation by IP3R. Further research is required to 

fully elucidate the mechanisms behind ER movement.  

8.3 ANO1 in physiological pain  

So where does this fit in with the process of pain transmission? ANO1 is also a heat 

sensor so activation under noxious temperatures contributes to heat pain signals 

(Cho et al., 2012) however it is in inflammatory pain where ANO1 activity is most 

likely to produce effects that contribute to pain. In nociceptors, the various pro-

algesic effects happen at once, thus bradykinin release and TRPV1 activation could 

occur simultaneously along with other pro-inflammatory/algesic effects. In the 

context of inflammatory pain, tissue injury leads to release of pro-inflammatory 

mediators such as bradykinin and PAR-2 agonists and activation of ANO1 through 

the Gq-protein coupled signaling cascade (Linley et al., 2010). ANO1 is then able to 

produce a depolarising effect on the nociceptor, fitting in well with the depolarisation 

attributed to bradykinin-induced Ca2+ release (Linley et al., 2010). Simultaneously, 

activation of TRPV1 (i.e. proton release from injured tissue) leads to further 

depolarisation through its own cation influx and ANO1 activation- according to our 

results- via ER-induced Ca2+ release. In inflammatory conditions, it has been 

demonstrated that further Cl- accumulation occurs in the cytosol; the concentration 

has been shown to elevate due to NKCC1 phosphorylation (Funk et al., 2008). 

These combined depolarisations will ultimately lead to Nav activation and action 

potential firing. Moreover, depolarisation and [Ca2+]i elevation through non-ANO1 

activating means i.e. Nav and VGCC activation, respectively, will subsequently affect 

ANO1 sensitivity meaning ANO1 will require lower [Ca2+]i to be activated. In theory, 

this may allow other poorly-coupled Ca2+ sources to activate ANO1 however, this 
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may well be a factor contributing to or facilitating chronic pain conditions (see below). 

Additionally to the range of effects mentioned, other pro-algesic attributes of the 

inflammatory mediators (i.e. bradykinin causes TRPV1 sensitisation and M-current 

inhibition etc.), mean enhanced excitability of nociceptors and subsequently greater 

pain transmission. This demonstrates the complexity of nociception and how so 

many interconnecting aspects of this process occur, involving such a small number 

of proteins. Other, not yet resolved, aspects of ANO1 activation and nociception on a 

whole may well further connect into this paradigm.  

8.4 Chronic pain involving ANO1: is there basis for this to occur? 

When pain occurs without injury or persists after healing, it is referred to as chronic 

pain (Woolf and Mannion, 1999; Linley et al., 2010). One major reason for the onset 

of chronic pain conditions invovles the alteration in the excitability profile of 

nociceptors (Linley et al., 2010). A change in ion channel expression, whether this is 

an increase in excitatory or decrease in inhibitory channels, can lead to increased 

excitability of nociceptors- this also applies to ANO1 (Fig. 8.2). Firstly, ANO1 

upregulation itself may underlie some aspects of chronic pain. If there are enhanced 

levels of ANO1 protein, activation of more channels will lead to an amplified ANO1-

mediated Cl- efflux, resulting in more microdomains being present through a greater 

number of ER-PM junctions (more ANO1 and IP3R in closer proximity). Formation of 

de novo microdomains may lead to non ANO1-activating Ca2+ sources for example, 

VGCCs, which are known to be upregulated during chronic pain conditions (Perret 

and Luo, 2009), to gain proximity to ANO1 channels. In such a scenario VGCC 

activation could cause a positive feedback loop and overexcitability (see 

introduction). Lipid rafts maintain organisation of proteins in the plasma membrane 

and ANO1, TRPV1 and B2R receptors are known to localise to these lipid-enriched 

areas of the membrane (Lamb et al., 2002; Sones et al., 2010; Szoke et al., 2010; 

Jin et al., 2013). Loss of lipid raft components such as cholesterol is known to alter 

ANO1 activation by reversing the coupling to VGCCs and uncoupling with IP3R (Jin 

et al., 2013). This would also lead to over-activation of ANO1 through a positive-

feedback loop by Ca2+ influx through VGCCs (Liu et al., 2010). Again this could be 

part of a chronic pain condition where standard coupling is lost and re-coupling to 

another non-ANO1 activating Ca2+ source occurs leading to overexcitability (i.e. 

VGCC) (Fig. 8.2).   
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Figure 8.1: ANO1 in Inflammatory pain. Tissue damage leads to release of 

inflammatory mediators which activate receptors such as B2R and TRPV1. Both are 

able to induce IP3R activation and subsequent ANO1 activation through a local Ca2+ 

microdomain. NKCC1 accumulates Cl- in the cytosol allowing the Ecl to be greater 

than resting membrane potential, hence inducing excitatory ANO1 activity. VGCCs 

on the other hand are not part of the microdomain, hence unable to activate ANO1 

effectively. Other effects such as TRPV1 sensitisation by B2R-activated PKC, M-

current inhibition and increased [Ca2+]i entry through IP3R and TRPV1 (amongst 

other channels) depolarise nociceptive fibres and activate VGSCs, causing action 

potential firing. This further sensitises ANO1 leading to more activity and increased 

pain sensation. 

  

IP3R 
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NKCC1 expression is vital for accumulation of Cl- in cells and DRG are known to 

express NKCC1 (Mao et al., 2012; Modol et al., 2014). Loss of NKCC1 through 

genetic ablation has been found to impair Cl- accumulation in DRG and reduce 

thermal hyperalgesia in mice (Sung et al., 2000). Moreover, mechanical allodynia 

was also attenuated in mice with NKCC1-KO (Laird et al., 2004). This suggests a 

role for Cl- accumulation, which ultimately results in excitatory activity of ANO1 (Liu 

et al., 2010). In inflammatory conditions, Cl- accumulation is enhanced and serves to 

increase the driving force for Cl- channel efflux (Funk et al., 2008). This isn’t the only 

type of condition where Cl- accumulation leads to alteration of normal neuronal 

activity. In epilepsy, hippocampal (Rivera et al., 1999; Palma et al., 2006) and 

cortical (Cohen et al., 2002; Jin et al., 2005) neurons show increased Cl- 

accumulation causing GABAergic and glycinergic activation to become excitatory 

(Price et al., 2005). Neuropathic pain syndromes following spinal cord injury (SCI) 

also demonstrate Cl- accumulation (from 31mM to 68mM), which was due to 

increased levels of NKCC1 protein as well as reduced KCC2 for Cl- extrusion 

(Hasbargen et al., 2010). This imbalance in Cl- regulatory proteins underlies 

neuropathic pain in SCI rat models and can be reduced by the NKCC1 blocker 

bumetanide (Hasbargen et al., 2010). Bumetanide also shows attenuation of pain 

responses in various pain models including TRPV1-dependent allodynia (Pitcher et 

al., 2007), histamine-induced itch and flare responses in skin (Willis et al., 2004) and 

formalin-induced nocifensive behavioural tests (Granados-Soto et al., 2005). This 

suggests increasing [Cl-]i provides a greater means for ANO1 dependent excitatory 

activity, ultimately providing a platform by which ANO1 could be targeted for 

therapeutic intervention in pain syndromes.  

8.5 Future research  

All of the above mentioned points are fascinating aspects regarding putative roles 

ANO1 could play in chronic pain. Using this work as a basis for future studies may 

allow us to open new pathways for therapeutic intervention. In terms of the direction 

for future work, it may be worthwhile investigating the junctions that may be in place 

to allow ANO1 activation in DRG neurons. Some of these proteins have been 

suggested in chapter 7 and therefore it may be of interest to look at these in DRG 

neurons and if they are able to influence ANO1 activity. Gamper lab has already 

shown the presence of some junctophilin isoforms in DRG so it would be interesting 
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to demonstrate the effects of junctophilin KO on ANO1 activity- possibly utilising our 

halide-sensitive imaging approach developed in this thesis. Recently published 

material has suggested that E-syts proteins are able to play a role in trafficking of 

ANO1 proteins (Lerias et al., 2018). This may indicate a more complex role in not 

only trafficking but actual ANO1 activity given knockdown of E-syts family members 

reduces ANO1 current density (Lerias et al., 2018). Other investigations can include 

identifying various proteins that interact with ANO1 in DRG neurons so pulling down 

proteins using full-length ANO1 may be beneficial for this, hence providing a clearer 

picture of how these may lead to microdomain formation. As mentioned, if junctional 

proteins are indeed involved in aspects of ANO1 activity, they may also play a role in 

inflammatory or chronic pain by producing too many junctions, therefore generation 

of transgenic animals with DRG specific KO of potential microdomain proteins may 

allow us to find new ways to combat inflammatory pain. These are just some 

examples to pursue for further insight into the contribution of ANO1 to various types 

of pain. 

To summarise, the various findings of this thesis provide greater insight into the 

mechanisms regarding ANO1 activation in DRG neurons, especially regarding 

TRPV1 activation. The activity of ANO1 leads to an excitatory effect and in the 

context of nociception, increased pain sensation. The methods used in this study will 

aid general studies into ANO1 and CaCCs in various tissues and allow greater 

understanding of mechanisms of Cl- channel activity in general. However, further 

research is required to fully elucidate the implications of ANO1 in pain transmission.  

 

 

  



198 
 

 

 

Figure 8.2: Potential ways by which ANO1 may contribute to chronic pain. 

Increased ANO1 presence may lead to a greater number of ER-PM junctions hence 

greater coupling of IP3R to ANO1 channels. Ca2+ release from the ER may result in a 

greater number of ANO1 channels being activated therefore, a greater excitatory 

effect. Loss of lipid rafts may result in loss of normal coupling and re-coupling to non-

ANO1 activating Ca2+ sources, such as VGCCs. Positive feedback loops could form 

as ANO1-dependent excitation would activate more VGCC activation and result in 

action potential firing. Finally, upregulation of NKCC1 may lead to enhanced Cl- 

accumulation, providing a greater driving force for ANO1 activity.  

  

IP3R 
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