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Abstract

Preference learning (PL) plays an important role in machine learning research and

practice. PL works with an ordinal dataset, used frequently in areas such as behavioural

science, medical science, education, psychology and social science. The aim of PL is to

predict the preference for a new set of items based on the training data.

In the application area of Recommender Systems (RSs), PL is used as an important

element to produce good recommendations. Many ideas have been developed to build

better recommendation techniques. One of the challenges in RSs is how to develop sys-

tems that are proactive and unobtrusive. To address this problem, we have studied the

use of pairwise comparisons in preference elicitation as a very simple way of expressing

preferences. Research in PL has also discovered this kind of representation and considers

it to be learning from binary relations.

There are three contributions in this thesis:

The first and the most significant contribution is a new approach based on Inductive

Logic Programming (ILP) in Description Logics (DL) representation to learn the relation

of order. The second contribution is a strategy based on Active Learning (AL) to support

the inference process and make choices more informative for learning purposes. A third

contribution is a recommender system algorithm based on the ILP in DL approach, im-

plemented in a real-world recommender system with a large used-car dataset.

The proposed approach has been evaluated by using both offline and online experi-

ments. The offline experiments were performed using two publicly available preference

datasets, while the online experiment was conducted using 24 participants to evaluate the

system. In the offline experiments, the overall accuracy of our proposed approach out-

performed the other 3 baseline algorithms, SVM, Decision Tree and Aleph. In the online

experiment, the user study also showed some satisfactory results in which our proposed

pairwise comparisons interface in a recommender system beat a common standard list

interface.
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Chapter 1

Introduction

1.1 Background and Motivation

Today, more and more people enjoy fast internet access which is used for numerous activ-

ities, such as browsing, shopping, video communication, playing games and so on. Busi-

nesses are also taking advantage of technological improvements. They sell products and

services via the internet with various attractive offers and work hard to increase sales. One

strategy to get more sales is personalisation. The role of personalisation in e-commerce

has been predicted to increase. In 2018, 70% of e-commerce will move from business-to-

consumer (B2C) and business-to-business (B2B) models to a model that focuses on the

individual customer experience [43].

Following this trend, the initiative to implement recommender systems (RSs) is being

popularized by large online marketplaces such as Amazon and eBay. The main goal of

RSs is to recommend suitable items to the customer based on their preferences. RSs have

been implemented in many domains, such as news, films, music, books, research articles

and products in general. This field is becoming more popular with internet technology

making processes faster and easier. Since the end of the 1990s when Amazon launched

their Collaborative Filtering (CF) method, research in recommender systems has increased

manyfold. Many ideas have been developed to build better recommendation techniques. In

the recommender system handbook, Ricci et al. [106] discuss some of the current research

challenges in this area, including developing a system to learn user preferences implicitly

without bothering customers with a huge number of questions.

It is essential to elicit the buyers’ preferences accurately and naturally, so the system

can predict the best match items for them. Rating, feedback and product review are the
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most common methods used to express user preferences. Even though buyers have become

used to giving ratings to items that they like, many people feel uncomfortable with the

use of numerical values. A novel approach has come up with a scheme asking, “which one

do you like better, item A or item B?” by using pairwise comparisons theory, proposed

by Balakrishnan and Chopra [14]. Almost half of the participants in their study enjoyed

answering pairwise questions compared to providing explicit ratings, while the majority of

the participants liked the recommender system produced by the pairwise comparisons more

than the one produced by the rating system. The finding is interesting due to the fact that

they are not familiar with pairwise comparisons. It is expected that customers express their

preferences more easily if the options are simplified. The pairwise comparisons method is

very common in statistics, but incorporating it into recommender system still needs further

investigation. Chapter 3 discusses studies of recommender systems which use pairwise

comparisons. In order to make the best recommendation for the user, a very large number

of pairwise choices may have to be asked. There is a trade-off between recommendation

prediction accuracy and the number of questions asked before the customer gets their

personal recommendation. An active learning method can choose the most informative

pairs in order to capture user tastes. Thus, the number of questions can be reduced for

user convenience.

Another relevant topic in recommender system research is the theory of web ontologies.

There are numerous examples of research on ontologies which have been implemented

in many different domains. In e-commerce systems, suppliers and vendors suffer from

unstandardized ways of describing the products. Ontologies can address this problem

by providing support for integrating heterogeneous and distributed information sources.

They provide a more powerful technique to describe items than a conventional relational

database system, especially in semantic representation. Allowing users to easily annotate

related terms and build a graph of a whole understanding in context is an advantage, as

it would be difficult to perform in a relational database system. Some ontology standards

for product feature descriptions, vendor details and most e-commerce terms have been

published on the web. Buyers can also exploit the use of ontologies in e-commerce to find

items with a similar meaning in a given context.

RSs use preference learning as an important element to produce good recommenda-

tions. Preference learning (PL) is a subtopic in Machine Learning (ML) that works with

an ordinal dataset, either in partial or full order. Nowadays, PL plays an important role in
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machine learning research and practice, because the ordinal data itself is used frequently

in many areas, such as behavioural science, medicine, education, psychology and social

science. For these domains, people can express their unique “value of preference”, which

may differ from others. For example, some buyers may give a rating on a Likert scale to

show whether they like a certain product or not; some paper submissions may be weakly

accepted, rejected or accepted depending on the review results. The aim of PL is to pre-

dict preferences for a new set of items, so that the produced ranking is similar in some

sense to the order provided in the given examples.

In logic-based machine learning, Inductive Logic Programming (ILP) is a robust method

that can learn relations in First Order Logic (FOL). This method is suitable for use in

learning user preference models from pairwise comparisons and can learn the order of pref-

erences from a given set of examples. ILP works by finding a valid hypothesis that covers

all positive examples and no negative examples (in some systems, the noise threshold in

the data can be set) by using logic programs. The ILP method is most commonly asso-

ciated with categorical data, but it can also handle numerical data and combinations of

these two data types. An advantage of ILP, which can be beneficial for solving problems in

preference learning, is its ability to learn from a limited number of instances as it bases its

hypotheses on logic reasoning rather than pure statistics. ILP will usually generalise from

the examples to produce a parsimonious rule using a minimum of constraints to explain

the data. To the best of our knowledge, there is no work addressing the PL problem using

ILP.

Muggleton introduced the term ILP in 1991 [90] and developed an application of

it in FOL, called Progol [92]. However, the nature of problems like PL may be best

described in other representations such as Description Logics (DL). Using description

logics in learning about preferences can be beneficial for two reasons: (1) the inference

result in description logics is easier to read and understand, and (2) we can also gain the

advantage of description logics implementation, such as OWL and RDFS, which provide

a mechanism to interconnect with other domains. This will also be useful to enrich the

inference result. With the increasing number of knowledge bases available, using the ILP

in DL representation will potentially encourage this research towards the semantic web

field. This trend brings great future potential to research in DL. As stated above, the field

of web ontologies has attracted the attention of e-commerce research due to the ease of

interconnecting it with other entities via the web. On the other hand, the implementation
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of ILP in DL is still quite limited and challenging, some of the challenges are presented

by Lehmann [70], Iannone et al. [62] and Fanizzi et al. [35].

A contribution to this field is made by implementing an ILP in DL to learn preference

relations in strict order. An experiment with the existing ILP in DL system implementa-

tion is also presented in this thesis.

1.2 Research Questions

There are three research questions to be investigated in this thesis as follows:

1. Can ILP be applied to the data/models expressed in DL in order to learn relationship

of order?

2. Is it possible to use Active Learning (AL) strategy in order to reduce the number of

training examples, respectively to increase the accuracy?

3. Can ILP in DL be used in an application to learn a user’s relative order of preferences

and to produce a set of sensible recommendations?

1.3 Aims and Objectives

The aim of this research is to propose a method which combines the principles of pair-

wise comparisons with those of a logic-based ML approach and AL to learn e-commerce

user preferences. The new approach developed in this research is implemented in a car

recommender system and has been tested online by inviting an appropriate sample of

participants to evaluate the system.

The objectives of this project are:

1. Develop a new ILP learner in DL capable of learning binary relations. This is called

APARELL (Active PAirwise RELation Learner).

2. Apply APARELL to learn pairwise preferences represented as ordinal data.

3. Study the benefits of using Active Learning for the task of learning from pairwise

comparisons.

4. Implement a recommender system with pairwise comparisons using APARELL on a

large, real-world dataset.
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5. Evaluate the above implementation of a recommender system with human partici-

pants.

1.4 Research Contributions

There are three major contributions to the field of machine learning and recommender

systems:

1. ILP using DL representation (Chapter 4 and 5)

In Chapter 4, an experiment using existing systems is provided highlighting the com-

parisons between statistical and logic-based machine learning. A further discussion

and analysis are provided to explain why the logic-based approach can be beneficial

in solving the PL problem. In Chapter 5, a novel approach in machine learning

to learn strict order relations by using ILP in DL representation is proposed. The

method is evaluated using two preference datasets and is compared to the other

three baseline machine learning algorithms.

2. Active learning strategy (Chapter 6)

The second contribution in this thesis is proposing an active learning strategy to

support the inference process from the method mentioned in Chapter 5. A novel

strategy is proposed to improve the learning accuracy of the preference learning

dataset by using as few examples as possible.

3. Pairwise recommender system application (Chapter 7)

The third major contribution of this thesis is proposing the recommender system

method by using pairwise preference elicitation. This system implements APARELL

in a real-world recommender system application with a large dataset from a popular

used car website. The major contribution in the recommender system includes the

introduction of a new method which combines pairwise preference elicitation with a

logic-based approach in producing the recommendation and providing explanations

for the choices made by the system. An online evaluation is performed by inviting a

number of participants to evaluate the system. The application is ready to be used

with structured linked open data for an e-commerce website.

1.5 Thesis Structure

The remainder of the thesis is organised as follows:
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Chapter 2 Theoretical foundations: this chapter demonstrates the theoretical back-

ground of the thesis. It covers: (i) the problem in preference learning and recommender

systems; (ii) knowledge representation, i.e. description logics and ontologies; and, (iii)

the method, i.e. the basics of machine learning, inductive logic programming and active

learning.

Chapter 3 Related work: in this chapter, recent work related to the thesis is described

in more detail and the state of the art in four major research areas, ILP in DL, pairwise

preference learning, active learning and recommender system, is also described.

Chapter 4 Learning binary preference relations: the tasks in learning binary re-

lations are described in detail and the results of an experiment on existing systems to

solve the tasks are presented. An analysis and discussion based on the experiment are also

provided to explain the pros and cons of two ML approaches: statistical and logic-based.

This chapter aims to understand the baseline ML approach for designing the proposed

solutions in the next chapter.

Chapter 5 Inductive learning of ordinal data in description logics: this chapter

describes in detail the new proposed method in ILP using DL representation. The accuracy

of the performance of the proposed approach is evaluated against other ML approaches,

i.e. Aleph, SVM and Decision Tree.

Chapter 6 Active learning to support the inference process: a new AL strategy

to support the learning process using the method discussed in Chapter 5, is explained.

Chapter 7 Pairwise recommender system implementation: this chapter describes

the recommender system application which is based on the novel approach in Chapter 5.

An online experiment with participants is reported.

Chapter 8 Conclusions and future work: the work is summarised and some sug-

gested future directions are discussed based on issues and points of interest arising in this

research.
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Chapter 2

Theoretical Foundations

2.1 Recommender Systems

2.1.1 Definition and history of recommender systems

RSs (RSs) is an emerging research field that has grown fast and become popular. The

increase of interest in this research topic has also been driven by great improvements in

internet technology and e-commerce. RSs have many advantages for e-commerce. Schafer

et al. [114] define three ways in which RSs enhance an e-commerce system, by helping buy-

ers with no experience in online shopping, by cross-selling the products and by improving

customer loyalty. The peak explosion of research in RSs occured when Amazon launched

their Collaborative Filtering (CF) method at the end of the 1990s, successfully increas-

ing their sales [33]. The successful Amazon became popular and other online businesses

started to implement RSs on their website. Amazon has patented their CF method as a

United States Patent [76]. Due to the fact that the main goal of an RS is to find the pre-

ferred information and eliminate information which is not liked by a user, the RS field can

be considered as a subset of information filtering [105]. The process of exploring a user’s

preferences from their historical data is followed by processing it using machine learning

algorithms to build a ranked list of recommended items, as preferred by the user [106].

The idea of exploiting computers to recommend the best item for the user has been

around since the beginning of computing. The first implementation of the RS concept

appeared in 1979, in a system called Grundy [107], a computer-based librarian that pro-

vided suggestions to the user on what books to read. This followed in the early 1990s

with the launch of Tapestry [44], the first commercial RS. Another RS implementation for
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helping people find their preferred articles was launched in the early 1990s by GroupLens,

a research lab at the University of Minnesota, USA [105]. They named the system after

the group, GroupLens Recommender System. This system claims to have a similar spirit

to that of Tapestry, Ringo, BellCore and Jester. A further development of RSs in the late

1990s was the implementation of Amazon Collaborative Filtering [76], one of the most

widely known RS technologies. Since this era, RSs based on Collaborative Filtering have

become very popular and has been implemented by many e-commerce and online systems.

Many toolboxes for RSs have also been developed. The success story of Amazon also

gave rise to the development of many RS algorithms known as hybrid approaches, which

combine multiple approaches.

Following the successful era at the end of the 1990s, industry offered generous funding

to implement RSs research. The most popular competition in RSs was held by Netflix, a

provider of internet streaming media. They launched the Netflix Prize1 in 2006 and give

1 million US Dollars to the winner of the competition who provided the best RS movie

recommendation. They announced the winning team in 2009. In 2010, YouTube also

implemented an RS on their website [29].

2.1.2 Recent RS research and challenges

Recent RS research has become more specific, attracting scientists to specific recommender

system conferences. The first ACM (Association for Computing Machinery) Conference

on RSs (RecSys) was held in Minneapolis, Minnesota, USA. It successfully attracted 35

long paper submissions and 23 short paper submissions from 15 countries. Following

that successful event, the ACM RecSyS Programme Committee decided to hold the event

annually. Along with the event, the ACM RecSys Conference Proceedings, published since

2007, have become a well-cited source in RS research.

To date, more than 200 articles have been published in the RS field answering many

challenges. RS research has not only become of interest in the computer science field, but

also in a number of different fields like marketing, information technology, information

science, economy and management. In 2012, Park et al. [100] classified 210 RS research

papers into eight categories using data-mining approaches to process historical user data.

They are, association rule, clustering, decision tree, k-nearest neighbour, link analysis,

1www.netflixprize.com
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neural networks, regression, and other heuristic methods. They found that clustering and

association rule were the most popular techniques used in business.

There are also studies in the RS field on incorporating emerged technologies such as web

ontologies [88,115,131], multi agent systems [8,19,81,82,89,127] and PCs [4,14,34,63,109]

to enhance the RS from different points of interest.

A number of sources state that there are a lot of issues in RS that still need to be

improved. Some of the problems which will become important RS challenges [106] are

discussed below:

• Scalability

Internet technology has become increasingly better. Therefore, more people feel

happy accessing the internet and interacting with online applications regularly. This

has caused the real data of both items and users to grow more quickly. Therefore,

there are opportunities to develop an approach to building RSs with greater capa-

bility of handling large scale datasets without interfering with system performance.

• Proactive and unobtrusive RSs

Some users may find it hard to articulate their preferences and needs, but from the

other side, they do not want to be bothered by questions or tasks when interacting

with the system. The interesting challenge is how to make a recommender system

able to learn a user’s preferences implicitly. It has also become a challenging issue to

develop a recommender system that can proactively recommend items which users

may need at a specific time.

• User privacy

Accessing users’ personal data may cause users to feel insecure about their privacy.

A recommender system which keeps users’ private data safe and protects against

malicious use will therefore be highly favoured.

• Diversity of the recommended items

Recommender systems can be used as knowledge discovery tools. Users may want

to explore the available options within the preferred items listed on the page. It will

become an interesting challenge to define the diversity level and balance the diversity

of recommendation results with accuracy.
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• Generic user models and cross domain RSs

It will be interesting to develop a recommender system which can build a user profile

and use it to recommend diverse item categories in more than two domains.

• Distributed RSs

Following the emergence of cloud computing technology, a recommender system will

be more interesting if it is placed on open networks to maximise the robustness and

flexibility of the system.

• Mobile RSs

Developing the recommender system in the mobile platform will improve the user’s

interaction. The user will be easier to get local information as they move to another

location, such as recommend the interesting places or trip destinations.

In addition to the challenges above, Felfernig et al. [36] also list challenges for further

RS research:

• Focusing on the user perspective

• Sharing recommendation knowledge

• Context awareness

• Psychological aspects of RSs

Middleton [85] also mentions challenges in building navigation history and profile rep-

resentations, which is an interesting topic in the Human Computer Interaction (HCI)

field.

2.1.3 Recommender system techniques and applications

Not long after the RS concept was introduced, many researchers developed techniques

to implement it in real online systems. Businesses were interested in implementing the

concept to increase sales by recommending suitable products for their customers. Re-

searchers in this field worked more to find the best method to learn user preferences and

collect them as historical data. The more they knew about a user’s preferences, the more

accurate predictions of recommended items they could produce. Machine learning or data

mining techniques were then used to explore users’ historical data.
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How techniques in RS are categorised differs from one source to another, and some-

times they use different names for the same concepts. The most common techniques are

Collaborative Filtering (CF), Content-Based Filtering (CBF) and Hybrid [5]. How the

techniques work is described below:

• Collaborative Filtering (CF)

This technique recommends items by looking at other users who have similar pref-

erences.

• Content-Based Filtering (CBF)

This technique recommends items by looking at how the user rates items.

• Hybrid

This technique recommends items by combining two or more techniques.

Other techniques mentioned in the literature include community-based, demographic,

knowledge-based [106], context-aware, rule filtering [42], stereotypes [107], item-centric/co-

occurrence based [123], graph-based [60] and global relevance. Each e-commerce site will

need different techniques or approaches, depending on their specific characteristics and

goals. Each of these techniques has its own advantages and disadvantages.

The above-mentioned techniques have been implemented in real-world systems and

have successfully helped people to interact and use online systems. Ghazanfar [42] and

Middleton [85] have collected the literature on RS applications, as can be seen in Table 2.1.

2.1.4 Evaluation of recommender system

Recent research in RSs focuses on building the best algorithms to find the most suitable

items for users. Success in any kind of computer systems, including RSs, should be mea-

sured using a suitable evaluation method. An achievement of overall goals can also be

used as an important measure to evaluate how well a system performs [119].

Evaluating RSs can be difficult because each algorithm has its own particular focus.

Some work better with a large dataset, whilst others work better with a smaller dataset.

Furthermore, the different types of dataset used in some RS algorithms make them difficult

to compare with others. Some work better in a specific domain and are not suitable for

other domains [52]. Choosing an appropriate method to evaluate an RS will become an

important issue. An appropriate method of evaluation ensures the system is confidently

implemented in the market or in making a novelty system for academic purposes [119].
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Table 2.1: Applications of RSs

Domain Category Application Name Commercial Site URL
MovieLens movielens.org

MovieFinder moviefinderonline.com
Netflix netflix.com

Films Reel reel.com
Recommender Explorer –

Virtual Reviewers –
FilmTrust trust.midswap.org/FilmTrust

Video YouTube youtube.com
CDNOW CDNOW.com

Ringo –
LastFm last.fm

Music and film CoCoA –
Pandora pandora.com

MyStrands mystrands.com
iTunes itunes.com
Flickr flickr.com

Amazon amazon.com
eBay eBay.com

Dietorecs –
EFOL –
Entrée –

FAIRWIS –
E-commerce Ghani –

Levis –
LIBRA –
MIAU –
RIND –

Ski-europe ski-europe.com
Choicestream choicestream.com

Restaurant Entrée –
Expertise finder ReferralWeb referralweb.net

Linkedin linkedin.com
GroupLens –

News filtering PHOAKS –
P-Tango –

Google news –
Email filtering Tapestry –

Citeseer citeseerx.ist.psu.edu
Web Fab –

QuickStep –
Foxtrot –

Which Book whichbook.net
Books What Should I Read Next whatshouldireadnext.com

Library Thing librarything.com
Libra –

Holidays and travel Trip Advisor tripadvisor.co.uk
Electronic program guides Electronic program guides –

Campiello –
Other ELFI –

OWL –
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The evaluation of an RS can be conducted using several methods and can be an offline

test or online test. The test can be combined with a user study to measure how satisfied

the user is with the system. An offline test will not cost too much because it does not need

user involvement. An offline test is usually performed to make sure that all algorithms

and environments work well before they are given an online test. According to [33], the

offline test only looks at users’ historical data. An online test can be more useful, because

it can discover the real taste of the users.

Some important properties to be considered in deciding the best recommender algo-

rithms include ( [119] and [9]):

1. Prediction accuracy and coverage

This is the most discussed property in many sources. This property follows the

basic assumption in RSs that users prefer more accurate prediction results which

cover more items.

2. Cold-start

In many cases, when a new item or a new user is added to the system, the recom-

mender algorithm can have difficulties in making a recommendation because it lacks

sufficient information. This problem is called cold-start.

3. Novelty and serendipity

Novelty is used to measure how the RS shows items that are new or unknown to

the user. Serendipity is used to measure how the recommender system provides

surprising yet beneficial items to the users.

4. Diversity

Some users of a certain type of application may like diverse recommendations rather

than items which are too similar.

5. Utility

A utility score is calculated from values that the system gives to the users.

6. Trust, risk and privacy

This property refers to user risk when accepting the recommendation. For example,

in stock purchasing recommendations, users may deal with a higher risk compared

to movie recommendations. The user also needs to feel secure in using the system.

This includes privacy and trust.
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7. Robustness, adaptivity and scalability

The general quality measurements of the system include these three properties. Ro-

bustness is the ability of the system to protect itself from an undesired attack that

could cause the system to produce false recommendations, while adaptivity means

how fast the algorithm can be adjusted when there are changes in the user’s prefer-

ences. Scalability can also be considered because real data may go faster than the

developer predicted.

8. Usability

Users can judge how easy the recommender system is to use. The easiest way

to evaluate is with user studies (e.g. survey, observation and monitoring). Pu

and Chen [102] propose a framework to evaluate RSs from the user’s perspective,

called ResQue (the RS’s Quality of user experience). The framework is used in this

thesis to evaluate our RS. It consists of 13 constructs and a total of 60 questions.

The framework is built to assess the perceived qualities of recommenders such as

their usability, usefulness, interface and interaction qualities, users’ satisfaction with

the system. It also looks at the influence of these qualities on users’ behavioural

intentions, including their intention to purchase the products recommended to them,

return to the system in the future and tell their friend about the system.

2.2 Pairwise Comparison

The term Pairwise Comparison (PC) originally comes from psychometrics, the field that

concerning psychological measurements. Thurstone introduced this theory in 1927 [129].

Bradley-Terry-Luce [23] then proposed a model for scaling paired comparisons in 1952.

The basic concept of PCs generally refers to the process of making a decision by comparing

items in pairs or choosing which item has a greater quantitative property than another.

PC is popular in a number of application areas, such as marketing, voting, multi-agent

systems and ranking players.

Thurstone’s law of comparative judgement [129] is defined as:

S1 − S2 = x12 ×
√
σ2

1 + σ2
2 − 2rσ1σ2 (2.1)

in which:

S1, S2 = the psychological scale values of the two compared stimuli.
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x12 = the sigma value corresponding to the proportion of judgements p1�2.

When p1�2 is greater than 0.5 the numerical value of x12 is positive.

When p1�2 is less than 0.5 the numerical value of x12 is negative.

σ1 = discriminal dispersion of stimulus R1

σ2 = discriminal dispersion of stimulus R2

r = correlation between the discriminal deviations of R1 and R2 in the same judgement.

This formula determines whether there is a different reaction when the subject of an

experiment is given two or more stimuli. The original formula for pairwise comparison is

adjusted in some applications, following different main goals and application purposes.

The Bradley-Terry model (BTM) [23] is also commonly used as a competitive relation-

ship probability model, the contestant’s win rate is proportional to his or her competitive-

ness. As an example of how BTM is used, we can consider only sports whose rules do not

allow for ties. Suppose there are 30 basketball teams in the NBA, each playing 82 games

in a regular season (so there are 1,230 total games). The simplest strategy to predict

the overall team ranking is by comparing the number of games won by each team. An

observation is made of each game played by two teams (i, j) and whether team i or team

j wins. Suppose team i beats j x(i, j) times and loses to team j x(j, i) times. Each team

i has some ‘strength’ βi which is represented in the form of a real number. Within the

basic probability model we can calculate the Maximum Likelihood Estimations (MLEs)

of strengths βi, βj ,... which imply a ranking order.

The probability model of team i beating j is defined by: P (i � j) = βi−βj . BTM treats

this outcome as an independent Bernoulli random variable with Bernoulli distribution

(pij), where the log-odds corresponding to the probability pij that team i beats team j is

modelled as:

log
pij

1− pij
= βi − βj (2.2)

Equivalently, solving for pij yields

pij =
eβi−βj

1 + eβi−βj
=

eβi

eβi + eβi
(2.3)

Although there are some extensions of BTM to accommodate a real situation, the basic

probability model in BTM assumes the conditions mentioned below hold:

1. each game has a definite winner (no ties)
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2. no home field advantage

3. not considering more elaborate modelling of point difference

4. strengths do not change with time.

If the competition level (strength) of i is higher than j, then the probability that

team i wins against j is also high. Maximum likelihood is then calculated to estimate the

individual competition level and then use this for ranking all individuals. This ranking

can be used to predict future win probabilities. MLE for this BTM can be performed

using standard software for generalised linear models or using specialised programs like

R [128] package BradleyTerry2 [132]. This competition perspective can also be used for

mining user preferences in RS by considering item features as competition levels.

2.3 Description Logics

Description Logics (DLs) are a family of languages that can be used to represent knowl-

edge in a structured, formal, yet understandable way. The name description logics was

taken from the fact that they provide a formal way to represent the important notions

of an application domain as concept descriptions. The term logics means that they are

equipped with a formal, logic-based semantics [12]. DLs are fragments of First Order

Predicate Logic (FOL) that have less expressive power. Many DLs are more decidable for

inference problems than FOL. Another feature that makes DLs more successful is a more

readable variable-free representation. However, the main reason for using DLs rather than

predicate logic is that DLs are carefully tailored, such that they combine interesting means

of expressiveness with the decidability of important reasoning problems. In this section,

a brief explanation of basic DLs and their equivalent syntax in FOL is provided.

2.3.1 Representing knowledge in DLs

DLs represent the world in terms of concepts, objects and roles. Concepts can be seen as a

formal definition of classes in an application domain, e.g. one can define a father as a man

having a child. They have two functions: (1) to describe a collection of objects and (2)

to describe the properties that a class should hold. Objects are individuals that belong to

one or more concepts. Roles represent a binary relationship between objects, e.g. John is

Anna’s father. In FOL, objects correspond to “individual constants”, concepts correspond
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to “unary predicates” and roles correspond to “binary predicates”. All this information

is stored in the form of a knowledge base which comprises two components, an assertional

part (ABox ) and a terminological part (TBox ). In more expressive DLs, the latter is

further subdivided into TBox and RBox, which contain knowledge about roles.

The notation used to represent knowledge does not include variables and is inspired

by set theory. Therefore, the following Boolean constructors are used, conjunction (u),

which is interpreted as set intersection, disjunction (t), which is interpreted as set union,

and negation (¬), which is interpreted as set complement. Some quantifier constructors

are also used, the existential restriction (∃R.C) and the universal restriction (∀R.C), as

well as the number restriction constructor (≥ nR). DL knowledge base representation is

discussed further in the following sections.

Terminological knowledge. DLs provide the declaration of universal statements of a

domain in the Terminology Box (TBox). The TBox is a finite set of General Concepts

Inclusions (GCI) and role inclusions. It corresponds to the schema in a relational database.

The GCI is of the form C v D, where C and D are (complex) concepts and a role inclusions

are of the form R v S, where R and S are roles. It is also allowed to use the concept

equivalence (C ≡ D) as an abbreviation of two GCIs: C v D and D v C, as well as the

role equivalence (R ≡ S) as an abbreviation for: R v S and S v R. As an example, a

woman can be defined as a female person by writing this declaration:

Woman ≡ Person u Female

In FOL, it is expressed: ∀x(Woman(x)→ Person(x) ∧ Female(x)).

In a more expressive terminological formalism, a constraint such as ‘only humans can

have human children’ is allowed and written:

∃hasChild.Human v Human

In FOL, it is expressed as: ∀x∃y (hasChild(x, y)∧ Human(y)→ Human (x)).

Assertional knowledge. The assertional set in the knowledge base is called the ABox.

It is used to state the properties of individuals. In a relational database it is called ‘data’,

while in the FOL it is known as ‘ground terms/facts’. For example, ‘Anna is a woman’ is
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declared as:

Woman(anna),

‘John has a child which is called Anna’ or ‘Anna is a child of John’ is declared as:

hasChild(john,anna).

Modelling relationships between roles. Knowledge of roles can be expressed in

RBox axioms, which refers to properties of roles. For example, the role parentOf is a

sub-role of ancestorOf is declared as:

parentOf v ancestorOf

In FOL, the above statement is written as: ∀x∀y(parentOf(x, y) → ancestorOf(x, y)),

which states that being a parent of somebody implies being an ancestor of them.

Complex role inclusion axioms can include role composition, which is used to explain

a certain role as a composition of two or more roles. Note that role compositions can only

appear on the left-hand side of complex role inclusions. For example, a composition of

role brotherOf and parentOf can be used to describe role uncleOf, as below:

brotherOf ◦ parentOf v uncleOf

In FOL, it can be expressed as: ∀x∀y∀z(brotherOf(x, y) ∧ parentOf(y, z)→uncleOf(x, z)),

states that the brother of someone’s parent is his/her uncle.

In general, DLs offer more convenient constructs than the corresponding FOL but do

not extend its expressivity. A general translation between DLs and FOL terms is provided

in Table 2.2.

Table 2.2: Translation between DLs and FOL terms

DLs FOL
concept unary relationship/predicate
role binary relationship/predicate
assertions or facts predicate with no variable (ground facts)
inclusion/subsumption implication
equivalence bi-implication
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2.3.2 DL reasoning

As mentioned above, knowledge representation is performed in such way that a machine

can understand and automatically reason with the given knowledge. One of the advantages

of logic-based knowledge representation, including DLs, is that once a body of knowledge

has been transferred into logical representation, queries can be performed in an intelligent

way which goes well beyond traditional databases. Some of the typical tasks for DL

knowledge-bases which require inferencing can include KB satisfiability, axiom entailment,

concept satisfiability, instance retrieval and classification.

There are several other reasoning tasks beyond those already mentioned which can

also be performed in DL KBs, such as abduction, induction, explanation and module ex-

traction. Many different techniques for DL reasoning are well studied, such as Tableau,

Automata, Consequence-based reasoning and Resolution. Most of them originate from

well-known approaches for theorem proving in a FOL setting. The aims of DL reasoning

are soundness and completeness of decision procedures to guarantee termination. More

details on DL reasoning can be found in [112]. Reasoning in DL follows the Open World

Assumption (OWA) which makes it different from reasoning in other logics. Unlike work-

ing under the Closed World Assumption (CWA), with the OWA it is assumed that the

knowledge base is incomplete; therefore, any missing information is treated as unknown

rather than just false.

2.3.3 DL languages family

There is always a trade-off between expressivity and complexity of reasoning when choosing

a language. The expressiveness of a description logic is determined by the operators

allowed in the language. Higher expressiveness implies higher complexity. There is a

well-established naming convention for DLs which depends on the operators used. DL

languages are named by using a label starting with one of the following basic logics:

• ALC stands for Attributive Language with Complement [116]. This is a base lan-

guage which allows:

– Atomic negation (negation of concept names that do not appear on the left-

hand side of axioms)

– Concept intersection

– Universal restrictions
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– Limited existential quantification

• FL stands for Frame-based description Language [72]; it allows:

– Concept intersection

– Universal restrictions

– Limited existential quantification

– Role restriction

• EL stands for Existential Language; it allows:

– Concept intersection

– Existential restrictions (of full existential quantification)

The naming scheme for DL languages often follows the order below:

((ALC|S|FL|EL)[H]|SR)[O][I][F|N |Q]

The meaning of the DL naming scheme letters are as follows:

• S denotes ALC with transitivity statements.

• H denotes role hierarchies which allow for simple inclusions.

• R denotes complex role inclusions. In above naming scheme, SR means that it is

an ALC which has been extended with all kinds of RBox axioms, as well as self-

concepts2. It subsumes all of ALC,ALCH,S, and SH.

• O denotes nominal concepts.

• I denotes inverse roles.

• F denotes functional roles which can be expressed as > v 1.>. It becomes obsolete

once N is present and both are superseded by Q.

• N denotes number restrictions, e.g. to express a concept of ‘a mother of at least 3

children’ (Woman u ≥ 3 hasChild).

• Q denotes qualified number restrictions, e.g. to express the concept of ‘a mother of

at least 3 male children’ (Woman u ≥ 3 hasChild.Male).

2The self-concept enables inclusion of “role loops”, i.e. situations where an individual is simultaneously
source and target of the same relation
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As one family of DL languages, ALC [116] has the least expressivity in basic DL

language. It is described here as an example of how different features can be added

to a family of DLs and affect the complexity. We refer the reader to a description logic

navigator3 for more detailed information about the complexity of a particular DL language.

ALC allows us to construct complex concepts from simpler ones using various language

constructs. The capabilities include direct or indirect expression, e.g. concept disjointness,

domain and range of roles and the empty role.

ALC supports all Boolean operators on concepts (u,t,¬) as well as universal and exis-

tential role restrictions. Top concept > and bottom concept ⊥ can be expressed indirectly

but are typically included explicitly. In this DL, RBox axioms are not allowed, neither

are role inverses, cardinality constraints, nominal concepts and self-concepts. ALC is a

proper fragment of OWL [54] and is generally considered to be a prototypical description

logic for research investigations.

Some ALC extensions support the transitive roles, i.e. CIQ, T SL,ALC+,ALCR+ and

ALC⊕. Of these, CIQ, T SLandALC+ all support role expressions with transitive or tran-

sitive reflexive operators. Extensions of ALC described in [56] are shown in Figure 2.1.

The extensions of ALC with role transitivity are:

Figure 2.1: ALC extensions

3http://www.cs.man.ac.uk/ ezolin/dl/
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• ALCR+ [113] (in DL naming schemes often abbreviated to S) — ALC augmented

with only transitively closed primitive roles (axioms of the form R ∈ R+) and

no primitive role introduction (R v S) is allowed. The complexity of deciding the

satisfiability of ALCR+ concept expression is Pspace-complete, the same as for ALC;

• ALC⊕ [113] —ALCR+ augmented with a restricted form of primitive role introduc-

tion axioms by associating each non-transitive role R with its transitive orbit R⊕.

For example, it can assert an inclusion relation: son v son⊕, daughter v daughter⊕

and descendant v descendant⊕, where {son⊕,daughter⊕, descendant⊕} ⊆ R+. The

complexity of the concept satisfiability problem is Exptime-complete, the same as

for ALC+;

• ALC+ [10] — ALC augmented with union (t), composition (◦) and transitive closure

role (R+) expressions. Its concept satisfiability problem is known to be Exptime-

complete.

As described in [57], the transitive orbit of a role R, denoted R⊕, is a transitive role

which subsumes R and can be defined by the axioms R⊕ ∈ R+ and R v R⊕. The

interpretation of R⊕ is therefore a superset of the interpretation of the transitive closure

of R, but not necessarily the smallest one: i.e. only (R⊕)I ⊇ (R+)I is granted. In other

words, it is simpler than transitive closure [56, p.59].

The relation between ALC, ALCR+ , ALC⊕ and ALC+ is shown in Figure 2.2.

ALC Pspace-complete

ALCR+ Pspace-complete

ALC⊕ Exptime-complete

ALC+ Exptime-complete more expressive

Figure 2.2: Some extensions of ALC with transitive relation
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2.4 Ontologies

The term ontology has existed from the beginning of philosophy. Since the Aristotelian

era, a study of classifying things in the world, included describing existence, has been a

major concern. Artificial Intelligence (AI) has adopted the term ontology to describe a

real world problem in a machine-readable specification. Studer et al. [126] suggest the best

definition of ontology in AI as “a formal, explicit specification of a shared conceptualisa-

tion”. Ontologies originate from the branch of philosophy meaning “a systematic form of

existence.” Gruber [45] states the definition of ontology as “specification of conceptualisa-

tion in a formal and explicit way that can be shared with others.” In a knowledge-based

system, the term “exists” refers to any concept that can be represented.

In computer science, the concept of ontologies is used to organise information and deal

with the representation of entities, ideas, and events along with their properties and rela-

tions based on their categories [124]. Since the early 1990s ontologies have become widely

researched. The most interesting part of ontologies is the understanding of knowledge that

can be shared and communicated to humans, agents or application systems. Ontologies

have become an important asset in describing the structure and semantics of information

exchange [37].

The concept of ontologies is similar to database schema, although ontologies have

different characteristics:

• Ontologies use a language with richer syntax and semantics.

• They use a semi-structural natural language to describe information rather than a

tabular model.

• Terminologies are shared and consensual.

• They provide a domain theory rather that the structure of data containers.

2.4.1 Ontology representations

Ontologies require a formal logical language to express the terminology in a certain domain.

DL as a language with well-defined semantics and powerful reasoning tools has been chosen

as the best representation of ontologies. Recent web standards such as XML and RDF can

be used as a standard syntax to express ontologies. XML (eXtendible Markup Language)

is a tag-based language for building tree structures using linear syntax. Each leaf of
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the tree has a well-defined tag and context so that the information can be understood.

XML uses seven key terms for presenting information, elements, attributes, references,

comments, processing instructions, CDATA and Prolog.

RDF (Resource Description Framework). RDF is an application of XML with

additional meta-information to the semantic web. RDF is expressed using three data

models, known as triples, called subjects, predicates and objects. The subject of an RDF

statement is either a Uniform Resource Identifier (URI) or a blank node, which denotes

resources. Blank nodes are indicated anonymous resources. The predicate is a relationship

between resources and/or any atomic values provided by data type in XML. The object is

a property value that is mapped by the predicate. An object can be a URI, blank node

or a Unicode string literal. Sets of triples are called RDF graphs. RDF Schema (RDFS)

extends RDF with vocabulary for schema modelling.

OWL (Web Ontology Language). More specifically, ontologies can be built using

ontology languages. Some well-known languages used in the community are CyCL, KIF,

Ontolingua, Frame Logic, CLASSIC, XOL, OIL, DAML+OIL and OWL. OWL extends

RDFS into a very expressive ontology language. DL syntax can be used in representing

OWL ontologies, as DL is the basis for widely used ontology languages. A concept in

DL is referred as a class in OWL and a role in DL is referred as a property in OWL.

Horrocks et al. [55] describe the basic differences between OWL and RDF; OWL uses the

ability of RDF to express basic facts, and uses the capability of RDF schema to create

statements about the class-and property-structures and extends them in some ways, as

explained below:

• Classes

In OWL, classes can be declared and organised into a subsumption (“subclass”) hi-

erarchy. RDF Schema can declare the classes in the same way as OWL. Additionally,

as an extension of RDFS, OWL classes can be specified in some logical operators

(intersections, unions or complements) with other classes, or as enumerations of

specified objects. OWL can also define whether a class is disjoint with other classes

and whether an individual is distinct to other individuals.

• Property

OWL and RDFS share the capability of declaring properties, organising these prop-
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erties into a “subproperty” hierarchy and providing domains and ranges for these

properties. Here OWL is extending the RDFS with the capability of specifying that

the domains of OWL properties are OWL classes, and ranges can be either OWL

classes or externally-defined datatypes, such as string or integer. OWL can state that

a property is transitive, symmetric, functional or is the inverse of another property.

• Restrictions

The major extension of OWL over RDFS is the ability to provide restrictions on how

properties behave (locally) on a class. OWL can define classes where a particular

property is restricted so that all the values of that property must belong to a certain

class (or datatype); at least one value must come from a certain class (or datatype);

there must be at least certain specific values; and, there must be at least or at most

a certain number of distinct values.

2.4.2 Ontologies for e-commerce

Standard for product ontologies definition. E-commerce needs a standard so that

users and businesses can communicate with each other using the same understanding.

The emerging technology of ontologies has facilitated this need. There are efforts from a

number of researchers to build standards to fulfil the need of a single understanding of

ontology classes. Initiatives such as eOWL, GoodRelation and schema.org are described

in this section.

In addition to creating standards, to build good communication between participants

in e-commerce there are also efforts to interlink data available on the web called Linked

Open Data (LOD). From the interlinking lines, it can be seen that DBpedia is one of

the most complete sources for ontology definitions. DBpedia extracts structured informa-

tion from Wikipedia and makes this information available on the Web. Some open web

ontologies can also be used to find the classification of commercial products:

• Product Ontology4

This service provides approximately 300,000 precise definitions of products or ser-

vices that extend schema.org and GoodRelation for e-commerce markup. Product

Ontology builds the class definition based on English Wikipedia entries. Any new

4www.productontology.org

25



Chapter 2: Theoretical Foundations

entry in the English Wikipedia will shortly be available in Product Ontology. A

class definition can be retrieved using this URI:

http://www.productontology.org/id/Racing_bicycle

Another major innovation in utilising ontologies to represent commercial products

has been developed by Hepp, head of the E-Business and Web Science Research

Group at the Universität der Bundeswehr Munich. They developed GoodRela-

tions5 [50], a lightweight ontology for annotating products or services, offerings and

other aspects of e-commerce, so that users can search suitable suppliers using on-

tologies. GoodRelations has also collaborated with Google and Yahoo. The details

of e-commerce scenarios such as eligible countries, payment and delivery options,

quantity discounts, opening hours, terms and conditions can be expressed easily.

Prior to the initiatives to develop GoodRelations, Hepp built eClassOWL6 [49] in

2003 to describe the types and properties of products and services on the semantic

web.

Another initiative which comes from community collaboration between Bing, Google,

Yahoo and Yandex is called Schema.org [46], which was launched on 2 June 2011. It

provides a shared vocabulary and focuses on defining the item types and properties

that are most valuable to search engines. It builds a schema for many categories

including films, music, organisations, TV shows, products, places and many more.

Since 2012, e-commerce schema from schema.org has been officially integrated with

GoodRelations. An example to retrieve the information can be seen using this link:

http://schema.org/Person

• Used Car Ontology7

The Used Cars Ontology (UCO) was created by Hepp Research GmbH and Makolab

S.A. This ontology describes the details of used cars and their history, such as own-

ership records, any damage, modifications, features, MOT testing, accident informa-

tion, replacement of core parts, parking type, whether the owner smoked, etc. UCO

5www.purl.org/goodrelations/
6www.heppnetz.de/projects/eclassowl/
7http://ontologies.makolab.com/uco/ns.html
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is an extension of Good Relations. Two other related ontologies for the automotive

industry are designed to be used in combination with UCO: Vehicle Sales Ontology8

and Volkswagen Vehicle Ontology9. VSO describes many automotive types, such

as cars, boats, bikes and other vehicles. While VVO describes Volkswagen-specific

features of vehicles such as paint, parking, roofs, seats, services, steering wheels and

traffic patterns.

Interlinked data. The promise of shared knowledge in ontologies has now become a

reality. A large number of datasets have been published and are freely accessible to anyone.

The World Wide Web has shifted from a web with hyperlinked documents into a web of

shared and linked data. The new initiative to interlink datasets was initialised by the

Linking Open Data community in January 2007 and supported by W3C (World Wide

Web Consortium) Semantic Web Education and Outreach Group. About 50 billion facts

from subjects like biology, chemistry, economics, energy, geography, media and others are

available free (e.g. under Creative Commons license) on the Linked Open Data (LOD)

cloud. This data is published in RDF format and most are allowed to be reused for

commercial purposes. Linked Open Data has the main focus on high-quality metadata

management [15]. The interconnected datasets in LOD [3] are presented in Figure 2.3.

LOD visualisation contains links to the available datasets. Richard Cyganiak, from

DERI, and Anja Jentzsch, from Freie Universität Berlin, work to compile the data regularly

and provide it with a linked diagram that can be accessed freely [3]. At the last update

in February 2017, the diagram contained 1,163 datasets. It has grown very quickly since

the beginning of May 2007 when it contained only 12 datasets. The rapid growth of the

LOD in the last 10 years shows a great opportunity for the further work of this thesis in

terms of the ontology integration.

2.5 Machine Learning

Machine learning deals with the task of learning from data. It plays a central role in many

areas of computer technology, due to the increasing need to build intelligent computer

systems. In today’s busy world, a system that can help solve problems automatically is

important, e.g. people need a vehicle which can learn to drive on the road, people need to

8http://purl.org/vso/ns
9http://purl.org/vvo/ns
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Figure 2.3: Linking Open Data cloud diagram in 2017
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protect themselves from fraudulent credit card transactions and so on. Briefly, this field

is concerned with constructing a computer program that can automatically improve with

experience [87].

In line with the definition given by Mitchell [87], there is a common understanding of

machine learning, according to Flach [38]:

Machine learning is all about using the right features to build the right models

that achieve the right tasks.

It can be said that machine learning has three basic ingredients:

1. Well defined tasks

Task is a description of the problem that has to be solved in a certain domain.

A common way to simplify tasks is by classifying problems into classes, called a

classification problem. Another common way is labelling the training data with

urgency scores (e.g. 0 to 10), called a regression problem. Alternative ways to

learn the training data without any prior information about it, are called clustering

problems. According to Mitchell three features are needed to define the learning

problem: the class of the tasks, the measure of performance to be improved and the

source of experience.

2. Right models

A model is learned from the given training data in order to solve a certain task.

This is the central concept of machine learning. There are three common groups

of models, geometric models, probabilistic models and logical models. A geometric

model is constructed using geometric concepts, such as lines, planes, and distances.

It is relatively easy to visualise the data using a geometric classifier keeping two or

three dimensions. A probabilistic model learns from the training data by looking at

the probability of how the next incoming data will be grouped. This is a process of

reducing uncertainty. The logical model is constructed by translating the problem

into rules (if-then-else function) that are understandable by humans. Some rules are

easily organised into a tree structure.

3. Best features

Feature is a measurement that can be applied to any instance in the domain problem.

Determining the features to be used depends on the models that have been chosen,
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because the models are defined in terms of features. Some features used in machine

learning are of type integer (e.g. number of occurrences), Boolean (e.g. identifying

whether a sentence contains a certain word) and finite sets (e.g. set of colours

and shapes). Deciding any pair of features and models is often carried out as an

iterative process in Machine Learning. Sometimes the right features are captured

after constructing the models. If the model does not perform satisfactorily then it

is necessary to analyse the performances and understand which part of the features

needs to be improved [38].

The stages of applying machine learning for solving real world problems are described

in [83]:

1. Formulating the problem

2. Determining the representation

3. Collecting the training data

4. Evaluating the learned knowledge

5. Fielding the knowledge base

The first step in applying machine learning is formulating the problem. In other

words, defining the task, as explained above. Several techniques can be used to make a

real-world problem much simpler. At this stage, it is important to define the goal clearly.

Following that, the next stage in applying machine learning techniques is determining the

representation of the training data and knowledge to be learned. This stage refers to

choosing features to describe examples and characterise learning result. The third stage

is collecting the training data for the induction process. In most application domains, the

training data can be collected with help from experts to classify the data or to generate

them. After collecting the training data, the learner in machine learning will induce the

rules from them. This process is called knowledge acquisition. A standard approach

to evaluate the learned knowledge is dividing the data into two sets, training and test.

The process can be repeated with different splits until the desired rules performance is

reached. The most important part of the evaluation process is that there is an involvement

of experts to examine the learned knowledge. Fielding the knowledge base in the broadest

possible sense to solve the problem is the final stage. The learned knowledge can be used

even without a computer system to help in the decision making.
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In inductive learning, machine learning techniques are often divided into supervised,

unsupervised and reinforcement learning. These groupings of Machine Learning techniques

are based on how the system learns from the examples that are provided. In supervised

learning, the computer as a learner is led by a controller, which provides guidance on

actions. Examples of inputs and the desired outputs are presented. The system will then

learn from the given data to find a general rule that maps the inputs onto the outputs.

In unsupervised learning, there is no concept of the target data. The learning process

is performed by using only the set of input data. In reinforcement learning, the learner

searches an optimal model through interaction with a dynamic environment.

The algorithms that are commonly used in each category are:

1. Supervised learning: Backpropagation, Bayesian statistics, Case-based reasoning,

Decision trees, Nearest Neighbour Algorithm, Support vector machines, Random

Forests, Information fuzzy networks (IFN)

2. Unsupervised learning: Artificial neural network, Data clustering, Expectation-

maximisation algorithm, Self-organising map, Radial basis function network, Gen-

erative topographic map, Information bottleneck method

3. Reinforcement learning: Temporal difference learning, Q-learning, QV-learning, Sarsa

or Expected-Sarsa, Actor-Critic, Acla, Cacla

2.6 Inductive Logic Programming

The term Inductive Logic Programming (ILP) was introduced by Muggleton [90] as an in-

tersection of machine learning, especially inductive learning, and logic programming [93].

Golem [95] was the first ILP system to be applied to a wide variety of real-world applica-

tions. ILP has its theoretical roots in computational logic [79] and it has now been well

studied in both machine learning and logic programming for two decades [94]. Earlier

work on model inference by Shapiro [121] and inductive generalisation by Plotkin [101]

contributed to the introduction of ILP as a research area. Nowadays, ILP research not

only works in fundamental theories, but has also solved many problems in real-world

applications [47].

Inductive concept learning. Induction as opposed to deduction, means infering from

specific facts or instances to general principles. In machine learning, learning general rules
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from a set of given examples is called inductive learning (also called supervised learning),

where the general principles are expressed in some logical language, e.g. FOL, logic pro-

grams, or DLs. Inductive concept learning, which is a more specific problem setting than

inductive learning, is a task in which the main goal is to find a logical description of a

concept from instances (and non-instances) of that concept [69].

ILP representation. In logic programming, a clause refers to a disjunction of literals,

which may be either positive or negative. They can be used in two ways:

• as disjunctions: e.g. p ∨ q

• as implications: e.g. ¬p→ q

A Horn clause is a clause with at most one positive literal, i.e.:

• only one positive literal e.g. [¬p1,¬p2, . . . ,¬pn, q]

• no positive literal e.g. [¬p1,¬p2, . . . ,¬pn] and [ ]

Note that [¬p1,¬p2, . . . ,¬pn, q] is a representation for (¬p1∨¬p2∨· · ·∨¬pn∨q) which

is equivalent to p1 ∧ p2 ∧ · · · ∧ pn → q. In Prolog, it is written as: q : −p1, p2, . . . , pn. A

Horn clause with exactly one positive literal is a definite clause; a Horn clause with no

positive literals is sometimes called a goal clause, especially in logic programming.

ILP systems use logic programming, which is a subset of FOL. Logic programming

is used to represent examples, background knowledge and hypotheses. As an overview,

logic programming [78] is a computer programming paradigm which uses formal logic

to express statement. Major languages in logic programming include Datalog, Answer

Set Programming (ASP) and Prolog. The languages of logic programs provide sufficient

expressiveness for solving problems in relation learning [69]. These logic programming

systems use Horn clauses to represent problems. ILP can generate hypothesis from given

positive and negative examples, background knowledge and clauses of hypothesis.

Positive examples are ground literals that are labelled as true by the user, while nega-

tive examples are ground literals that are stated to be false by the user. Suppose we have

a set of positive examples E+ and a set of negative examples E−, we can define the logic

program as consistent and complete as stated in [17] using the definitions below:

A logic program P is complete (with respect to E+) if and only if (iff ), for all

examples e ∈ E+, P ` e.
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A logic program P is consistent (with respect to E+) iff, for no example e ∈ E−,

P ` e.

When using ILP, we need a hypothesis language to represent the hypothesis space

we expect the system to learn and background knowledge which refers to declarative prior

knowledge. The hypothesis language, and indirectly the background knowledge, determine

the search space of possible concept descriptions. A hypothesis language in general machine

learning, mentioned in [21], is defined as:

The language in which the hypotheses (also referred to as patterns or models)

it outputs are described.

Formally, Muggleton [91] describes the ILP task using the notation below:

Given: a hypothesis language LH ,

Find: a logic program (hypothesis) H ∈ LH which shall follow the conditions:

• Necessary: B 6|= E+

• Sufficient: B ∧H |= E+

• Consistent (either weak or strong)

– Weak consistent: B ∧H 6|= 2

– Strong consistent: B ∧H ∧ E− 6|= 2

Where B is background knowledge, E+ are positive examples and E− are negative

examples. The above symbols are read as: ∧ (logical and), |= (entails/logically proves),

2 (falsity). The necessary condition is to ensure that no set of positive examples appears

in the background knowledge. The sufficient condition is a requirement of the system

to produce the hypothesis together with the background knowledge that satisfies positive

examples. The weak and strong consistencies are the expression of how strict the system

is in accepting noise in the hypothesis coverage. The unique feature of ILP that allows

us to define background knowledge separately from the target predicate, and use them in

the learning process, makes it more beneficial for the problem of learning relations.

2.7 Active Learning

With supervised learning, all data points are labelled, so that the system can learn and find

a general model in the training data. In some cases labelling data manually takes a long
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time and it is very expensive. It may be necessary to hire a human expert to label each of

them, especially when the data is abundant and in various formats. For example, to build

document classification from a website, it will take some time to classify which document

should be labelled as ‘sport’, ‘news’, ‘gossip’, etc. In such cases, the learner algorithm may

actively choose which data points to label and ask the oracle to label them. This type of

iterative supervised learning is called Active Learning (AL). The chosen data points for

labelling are called queries. AL continually develops and tests new hypotheses as part of

the interactive learning process.

As explained in [117], AL strategies can be categorised into the two major types:

stream-based active learning and pool-based active learning. In stream-based active learn-

ing, one unlabelled example is considered at a time and then the learner decides whether

to query or ignore it. While in the pool-based active learning, a large pool of unlabelled

examples is gathered at once. It is then ranked by the informativeness. The data point

which has the highest rank will be queried first. The computing resources and the type of

the data are the main considerations when deciding which type of AL strategy to be used.

However, the pool-based type is much more common to be applied. But there are some

conditions that the stream-based approach is more appropriate e.g. when the memory

or processing resource is limited or when the data set is too large and has to be scanned

sequentially from disk.

According to [96], there are three different categories to select the next queries (called

selective sampling), namely:

1. Uncertainty reduction

data points are queried based on the least confidence prediction produced by the

learner (the most uncertain).

2. Expected-error minimisation

the learner selects the data points which will minimise future errors.

3. Version space reduction

queries are made by selecting the one that can reduce the version space as much as

possible.

Uncertainty sampling. Uncertainty sampling is one of the well-known methods in

uncertainty reduction. This technique was introduced by Lewis and Cattlet [73]. Uncer-

tainty sampling focuses on selecting the data points which are most uncertain. Therefore,
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a measurement of uncertainty to define uncertainty regions is needed for selecting can-

didate queries in the pool. Setting the threshold for defining uncertainty region is also

important. There are many ways to measure uncertainty, such as distance from the hy-

perplane and label probability, denote by Pθ(y |x), read as the probability under θ model

that the data point x will be given the label y. The following methods can be used for an

algorithm which uses label probabilities:

• Least Confident:

x∗LC = argmaxx 1− Pθ(ŷ |x)

where ŷ = argmaxy Pθ(y |x) or the class label with the highest posterior probability

under the model θ. This method is querying the data points whose predicted output

is the least confident (the most uncertain).

• Smallest Margin:

x∗SM = argminx Pθ(ŷ1|x) − Pθ(ŷ2|x)

In this formula, ŷ1 and ŷ2 are the first and the second most probable labels for data

point x under the model θ. This strategy uses the ambiguity of the possible label as

the uncertainty measure. The data point with the small margin is more ambiguous.

Therefore, it can provide the most information for the learner.

• Label Entropy:

x∗LE = argmax x

∑
i

Pθ (yi|x) logPθ(yi|x)

In this formula, yi ranges over all possible labels. Entropy [120] is a measure of a

variable’s average information content. This uncertainty sampling method chooses

the data point with maximum label entropy. It is often considered as a measure of

impurity in machine learning.

Error/variance reduction. In this method, the data points to be labelled are selected

based on how well they can predict future labelling. In other words, the learner decides

to pick out the questions that once they know the answer, can minimise future errors.

The expected error reduction strategy was proposed by Roy and McCallum [110]. In error

reduction, the learner identifies all possible outcomes and computes a weighted sum to

35



Chapter 2: Theoretical Foundations

give an expected value for each option. They then choose the best-expected value which

means the lowest expected future error.

Despite its ability to produce a more accurate classifier with less labelled data, the

expected error reduction, in most cases, is very costly. The cost for estimating the expected

future error for each query in the pool is very high. In addition, as any new model must be

re-trained for every possible labelling of every possible query in the pool, the computational

cost gets higher and higher.

In some cases, the expected error still can be reduced by considering the regression

problems. Geman et al. [40] describe the three basic components of the learner’s expected

error that correlated with each other, noise (unreliability of the true label), bias (error

due to the model class) and variance (squared-loss with respect to the target function).

The first two components, noise and bias are out of learner’s control. The only com-

ponent which can be controlled by the learner is variance. The learner should minimise

the variance to reduce the expected error value. For classification problems, the Fisher

Information Ratio can be used for variance reduction.

Query by committee and disagreement-based method. Hypothesis in machine

learning is defined as a rule or model that is built to explain the training data and make

future predictions on the new data. Version space reduction works by generating a com-

mittee of several hypotheses and makes queries on which the committee most disagrees. In

a binary classification problem, this strategy means making queries that remove approxi-

mately half of the version space. Query by Committee (QBC) is a method in version space

reduction. Instead of using one hypothesis to query the most informative data points to

be labelled, as in uncertainty sampling, QBC considers more than one hypothesis that is

available in the version space. Version space is defined by Mitchell [86] as the subset of

hypotheses which are consistent with the training data.

QBC was introduced by Seung et al. [118]. It was developed based on the disagreement

heuristics model [28]. The committee that is referred to by this strategy consists of some

hypotheses members in the version space that is chosen using ensemble methods such

as Random forests, Bagged classifiers, etc. The main idea of QBC is querying the data

points which can reduce the number of hypotheses in the version space. The favoured

data points are queried based on the degree of disagreement in the committee, which is

measured by a measurement such as Entropy of predicted responses or KL-divergence of
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Figure 2.4: Query by Committee

predictive distributions. The QBC selection method is illustrated in Figure 2.4. In the

figure, the data point to be selected is the one that the classifier line mostly disagrees with

(shown by the red arrow).

2.8 Summary

In this chapter, the foundational theory of machine learning and RSs is presented, so that

the scope and field of the research in this thesis can be clearly understood.

The basic knowledge described in this chapter includes an introduction to the machine

learning method, representation and the problem. To understand the method used in this

thesis, an explanations of machine learning tasks, ILP and AL are presented. A formal

knowledge representation is also introduced which includes the theory of DLs and also

the related research area of ontologies and their implementation in e-commerce, which

will be useful to support our motivation for using DL representation in an RS. Finally, to

understand the problem, research and applications of RSs and studies of PCs are provided.

Related work and the state of the art in the two research fields of machine learning and

RSs, will be described in the next chapter.
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Related Work

In this chapter, recent studies related to recommender systems and machine learning,

particularly in preference learning and ILP in DL, are discussed to analyse the current

state of the art. Preference learning as a research field in machine learning is described in

this chapter. The use of pairwise comparisons in preference learning has been explored in

the decision-making area as well as in the recommender systems research. Related studies

in the recommender systems area, including the use of ontologies, active learning, the

aspect of explainable information and pairwise comparisons, are presented. This chapter

also discusses related work in ILP using DL representation, namely DL-Learner and its

refinement operator, to identify the capability of existing systems to address problems in

pairwise preference learning.

3.1 Preference Learning

Preference Learning (PL) [39] is a field in machine learning where the main task involves

inducing predictive preference models from empirical data. In general, a PL task involves

predicting preferences for a new set of items from a known value of preferences in existing

items. Most commonly, the predicted preference relation is in the form of a total order

ranking problem. One of the most important areas in this field, called “label ranking” [61],

proposes a method to predict the order of preference from a given set of label preferences.

Similar to label ranking, in research by Kamishima [65], the user is asked to provide a

general order of preferences. A method called Nantonac Collaborative Filtering is proposed

to produce recommendations based on the general ordering preferences given by the user.

According to [32], there are two main ways of modelling preferences, quantitative
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and qualitative preferences. The first model is associated with a number (or a quantity)

representing its worth (e.g., “my preference for car type is a sedan”), while the second

type of modelling relates to each other via pairwise comparisons (e.g., “I prefer car 1

over car 2”). The first model is not easy for everyone though, since humans are not

always comfortable in expressing their preferences directly in terms of a value. It is

normally much easier and arguably more natural to provide information about preferences

in separate pieces, preferably in a qualitative way. In practice, this is achieved through

queries consisting of pairs of items along with their descriptions, where the user only needs

to select the better of the two items. The use of pairwise comparisons is still limited, not

only because the approach has not yet been adopted by the major e-commerce companies,

but also because choosing the most useful pairs and building a hypothesis about user

preferences still needs attention.

The use of Pairwise Comparison (PC) can minimise the inconsistency of users providing

numerical ratings. In the PL field, even though this method seems more comfortable for

some users to express their preferences, the approach to how the learning algorithm will

assess the quantitative information still remains a challenge. If the pairwise preferences are

satisfied by the transitivity property of an order relation, then the ranking of preferences

can be produced easily. For example, considering preference relation “�”, if A � B,

B � C and A � C then A � B � C. But there are some intransitive relations that

occur in pairwise preferences which are possible to make a cycle. For example, if A � B,

B � C and C � A then the ranking of preferences between A, B and C cannot be

determined. Researchers agree that approaches to this kind of problem are different from

ranking individual objects which are evaluated using their individual utility values [39].

Pairwise comparisons can also be used to learn about community preferences. Abbas-

nejad et al. [1] decompose user populations into communities of shared preferences and

build user preference models as an infinite Dirichlet Process (DP) mixture of communities.

The proposed algorithm is evaluated against the previous full Gaussian Process by [48] and

the results show that it scales better, with an accuracy as good as the previous approach.

PC can also be used in Multi-Criteria Decision Making (MCDM). It can be used to

estimate the decision maker’s preferences and solve problems in prioritising alternatives.

The PC method is used as an intermediate step for measuring intangible criteria in MCDM.

Siraj [122] explores the problem of prioritisation as an optimisation problem and proposes

a new method to prioritise alternatives using a graph-theoretic approach. The relative
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importance of two elements is assessed by the decision maker using a ratio judgment. The

ratio explains how much an element is preferred to the other element. Ratio judgements

can be represented using either a matrix or a graph. When represented using matrix

notation, the decision maker should provide a complete set of judgements. If an incomplete

judgement exists, a method to fill in the gaps should be performed. By using graph

representation, the matrix judgement can be drawn as a fully connected digraph. Not only

addressing the prioritisation task, but also the problem of selecting the best item from

multi-attributes choices has also been commonly solved using a decision support system,

one of which is implemented by Bohanec and Rajkovic [22]. This uses a dataset of cars

to evaluate user preferences. A well-known MCDM method, PROMETHEE (Preference

Ranking Organisation Method for Enrichment Evaluations) also uses PC to achieve the

goal i.e. rank the alternatives. Please refer to [16] for more details on the literature survey

of this method.

3.2 Related Work in Recommender Systems

3.2.1 Pairwise preference in recommender systems

The idea of using comparisons in a Recommender System (RS) is still growing. How-

ever, some users may find it difficult to articulate their preferences. Some users are also

uncomfortable in giving comments and numerical ratings to an item. There are also ten-

dencies that users are not consistent in rating items. The most recent work on pairwise

recommender system was published in 2018 by Pan et al. [99] which proposes an algorithm

called CoFiSet (Collaborative Filtering via Learning Pairwise Preferences over Item-Sets).

Instead of using a single item, they use pairwise preference on a set of items (item-set).

Qian et al. [103] also published a study on pairwise comparisons as a preference elicita-

tion method. They performed an experiment using one thousand items from Yahoo Used

Car and propose an approach to learn user preferences using orthogonal queries to select

pairs. Linear SVM is then used to approximate the preference. Jensen et al. [63] use

pairwise comparisons in a music recommender system. They apply a Gaussian Process

regression model for comparisons between music tracks. They propose a new method to

improve classic collaborative filtering which is based on single ratings. Similar work was

performed by Rokach and Kisilevich [109]. They use a Lazy Decision Tree with pairwise

comparisons at each node. Their results show that pairwise comparison is better than a
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single-item-based approach. Pairwise comparison is also used to simplify the process of

building a user preferences profile, such as research by Jiang [64]. In that work, a pair

of items is shown to users to judge which one they like most. This method can minimise

users’ confusion when choosing from a number of items.

In RS research, pairwise preference has not been broadly implemented in a real system,

as rating based systems are more popular. Many well-known websites like Amazon, eBay

and YouTube use ratings as an input to produce recommendations. However, using pair-

wise preferences as a method to rank has been analysed in other domains, such as ranking

team sports [68]. The main goal of this method is to produce a global ranking. This

method can also be used in RS, but instead of getting a personalised recommendation, all

users will get the same (general) order in the recommendation list.

Fang and Si [34] successfully used pairwise comparisons to solve the implicit feed-

back problem. An experiment was conducted on the online scientific community dataset,

nanoHUB. It was not necessary for the user to complete many tasks before getting a

recommendation. The implicit feedback used here is click-through data. The pairwise

approach is utilised to compare the probability of the relevance of two resources. When a

recommended item is accessed by the user, it can be assumed that the item is more rele-

vant than the others, despite its ranking position. The pairwise preferences were modelled

using a logistic function of features. A set of items was used rather than the individual

rating score of each item. Fang and Si claim that it is the first learning to rank method

for real world recommender systems with implicit feedback.

Pairwise comparison is also used to mine user preferences by utilising the Bradley

Terry model as a measure of the competitive ability in pairwise comparisons [64]. This

model uses the content features of each item. They perceive the process of mining a

user’s preferences as the competition problem in game theory. If item A has a stronger

competitiveness than item B, the user tends to give a higher rating to A. The competition

occurs between the different content features of two items. After a user gives a rating

several times, the next user preferences value is estimated by summing the value of each

feature of the new item using k -nearest neighbour classification.

With personalisation as the core of RS research, Blėdaitė [20] combines the use of a

rating-based RS with pairwise preferences, so that each user receives a different recom-

mendation based on their preference profile. A method called Personalised Differential

Matrix with Ratings and Pairwise Preferences (PDMRPP) is proposed. It was evaluated

42



3.2 Related Work in Recommender Systems

in the film domain, combining ratings with pairwise preferences and incorporating those

to the collaborative filtering method resulting in better accuracy. A formula that gives a

higher score to a more popular film with very diverse ratings is proposed. Those movies

with the highest score will be shown, to be rated by the user.

3.2.2 Ontologies in recommender systems

Research into improving recommender systems using ontologies includes Middleton et

al. [84], who explain the basic understanding of how ontologies have been used in rec-

ommender systems in recent years. As a research interest, the idea for incorporating

ontologies into RSs is relatively new.

The literature also has research on the use of interlinking between concepts to build a

cross-domain RS. Tob̀ıas [131] developed a recommender system that suggests music artists

and compositions for places of interest using structured information from Linked Data

repositories, DBpedia. The semantic graph/network is used for knowledge representation.

To aim the objectives, metrics are developed to measure how far the semantic relations

between items are meaningful. Similar to Tobias’s work, Moe and Aung [88] also develop

a cross-domain recommender system by utilising ontologies to link facial skin problem (as

the problem) and related cosmetics (as the target). The Ford-Fulkerson algorithm is used

to bridge between two domain ontologies.

In the film domain category, Ostuni et al. [98] present Cinemappy, a location-based

system that computes contextual movie recommendations. The content-based engine em-

ploys graph information in DBpedia. Geographic criteria are exploited, instead of a sim-

ple geographic distance, to enrich the location-based information. Cheng et al. [26] have

also developed an ontology-based RS for film recommendation, called AOPRS (Adaptive

Ontology-Based Personalised Recommender System). They built their own film domain

ontology, MyMovieOntology (MMO) in OWL, based on IMDb (Internet Movie Database)

and used it as input data and search space. Related work is found in [97], which proposes a

hybrid recommendation algorithm for films and music to compute top-N recommendations

from implicit feedback. The algorithm is called SPrank. Similar to Cinemappy, SPRank

also uses DBpedia to extract semantic path-based features. A learning-to-rank algorithm

is then used to compute the recommendation.

An ontology-based recommender system is also implemented in the library domain.

PORE (Personal Ontology-Based Recommender) which is developed by Liao et al. [74]
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has the main goal of giving personalised recommendation in the Chinese library. It builds

a personalised ontology for each user based on their preferences. In 2015, Chen published

a paper on optimising PORE using the MapReduce algorithm [25].

Ontologies are also used to overcome the problem with missing user preferences, called

Ontology Filtering [115]. The information is captured by the topology of the ontology and

then used to estimate the missing preferences. When the missing user preference has been

completed, a recommendation will be made.

Further related research on ontology RSs identified by Lops et al. [80] are:

• SiteIF - a personal agent for multilingual news website

• ITR (Item Recommender) – a system that recommends items in several domains

• SEWep (Semantic Enhancement for Web Personalisation) – a web personalisation

system that uses usage log and semantics of web contents

• Quickstep – a recommender system for online academic research papers

• Foxtrot – extends Quickstep by improving the interface and implementing an email

notification

• Informed Recommender – a recommender system that transforms consumer’s prod-

uct review into a structured form

• News@hand – a system to recommend news

• A recommender system for interactive Digital Television

• JUMP System – intelligent delivery of information to knowledge workers

3.2.3 Explainable recommender systems

Many recommender systems provide recommendation as black boxes without explaining

how the learning algorithm found the solutions. As explained in [130], nowadays there

is a need to develop explainable recommender systems which can provide transparency

where the reasoning and data behind a recommendation algorithm are presented to users.

In Amazon, the explanation is provided as: “Customers Who Bought This Item Also

Bought ...”. In addition to transparency, user trust and loyalty can also be increased

with explanations, as well as increasing user-satisfaction, it makes it quicker and easier for
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Figure 3.1: Explanation interface for ACF

users to find what they want and persuade them to try or purchase a recommended item.

Current research on explanation interfaces for Automated Collaborative Filtering (ACF),

such as shown in Figure 3.1, is proposed in [2, 18,51]

Criteria for explanations in recommender systems are discussed in [130]:

1. transparency: explain how the system works

2. scrutability: allow users to tell the system it is wrong

3. trust: increase users’ confidence in the system

4. effectiveness: help users make good decisions

5. persuasiveness: convince users to try or buy

6. efficiency: help users make decisions faster

7. satisfaction: increase the ease of use or enjoyment

3.2.4 Active learning in recommender systems

In recommender systems, the problem can be considered as a classification problem [33].

It can also be treated as a regression problem, since the rating uses discrete numerical

values [111]. The recommendation results are obtained by using several machine learning

techniques depending on the rating information [64], for example neural networks, asso-

ciation rules, nearest neighbour, Rocchio algorithm, Decision Tree, linear classifier and

Näıve Bayes.
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In the recent literature, recommender systems consider the use of active learning as a

part of machine learning that allows the system to interact with users in the preference

acquisition process [111]. A very common approach to elicit user preferences is by asking

users to give ratings or feedback. Unfortunately, this approach cannot be used to span the

items presented to the users. Instead of considering the interactive process for eliciting

user preferences as an intrusive process, there are alternative ways to perform this using

exploratory processes. Some systems provide a “surprise me!” button to motivate the

user.

Based on the different motivations for achieving the goal, Rubens et al. [111] divide

the use of active learning in recommender systems into three types, uncertainty-based,

error-based and ensemble-based. The motivation to reduce uncertainty may not always

align with accuracy improvement. The uncertainty-model is used to find out which thing

is the wrong one. This approach is used to reduce uncertainty in rating estimates, deci-

sion boundaries and model parameters. The second approach is to reduce the predictive

error by using the relation between one of these instruments, error and the change in the

output estimates, test set error, change in parameter estimates and variance of parameter

estimates. While the third approach attempts to identify useful training points based on

consensus between models in the ensemble or multiple candidate models. In addition, they

discuss conversation-based active learning that can be used to sharpen the user preferences

until the most desired item is found.

3.3 DL-Learner

Description Logics (DLs) are language that can be used to represent knowledge in a

structured, formal, yet understandable way. Because of their well-defined semantics and

powerful reasoning tools, DL has been chosen as the best representation of ontologies. The

name description logics is taken from the fact that they provide a formal way to represent

the important ideas of the application domain as concept descriptions. The term logic also

means that they are equipped with a formal, logic-based semantics as explained in [11].

Many DLs can be considered as fragments of First Order Logic.

The implementation of ILP in DL has successfully shown some good results on learning

about concepts. One such result is DL-Learner [70] which aims to find a correct class

description in a specific ontology by given a set of positive and negative examples of

the individuals. It builds a hypothesis in the form of class descriptions (axioms) which
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can contain conjunctions, disjunctions and/or existential quantifications. DL-Learner is

another improvement on previous ILP implementations in DL, such as YinYang [62] and

DL-FOIL [35]. Kietz [66] and Konstantopoulos [67] also work in ILP in DL.

DL-Learner is proposed by Lehmann [70] to learn concepts in description logics and

OWL. It is published as a part of his thesis [71]. The tool implementation of this frame-

work is publicly available1 and can be accessed free under General Public License (GPL).

DL-Learner works by taking input from a knowledge base and a set of examples in the

knowledge base and then proceeding into the learning step using the ILP approach. The

output produced by the DL-Learner is a set of valid descriptions from a given positive and

(if any exist) negative examples. When learning about a concept description of class A, it

defines the negative examples in two ways:

• under the Open World Assumption (OWA), the negative examples consist of all

individuals which can be proved to be an instance of the negation of class A

• under the Closed World Assumption (CWA), the negative examples are a collection

of individuals, which cannot be proved to be an instance of class A. Applying CWA

is usually preferred in those systems to learn a good description of a set of instances

(examples).

Lehmann [71] introduces the two types of refinement operators used in DL-Learner, they

are, the complete OWL refinement operator and the ideal EL refinement operator. The

first type is the most expressive operator, designed for most OWL structures, while the

second type is designed to support the lightweight DL language, EL, aiming at the com-

pleteness, properness and finiteness of an ideal refinement operator. The second type is

the first published ideal (i.e. finite, complete and proper) refinement operator in descrip-

tion logics. Further information about properties of DL refinement operators can be found

in [71].

To explain how the DL-Learner complete OWL operator works, the following symbols

are used:

• ρ is the operator which will be applied recursively to traverse the structure of the

concepts

1http://dl-learner.org/
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• sh↓(A) is a downward refinement operator in the subsumption hierarchy of the con-

cept A

• sh↑(A) is an upward refinement operator in the subsumption hierarchy of the concept

A

• ar(r) is an atomic range of a role r

• ad(r) is an atomic domain of a role r

• NC is a set of concept names

• A, A′, B, C and D is a concept

• M is a set of concepts

• mgrB is a set of most general applicable roles with respect to a concept B

• r is a role

• > is OWL:Thing

• ⊥ is OWL:Nothing

The DL-Learner OWL complete operator ρ is applied to 8 different conditions:

1. if the current concept is ⊥, then ρ = ∅

2. if the current concept is >, then ρ = {C1 t · · · t Cn|Ci ∈ MB(1 ≤ i ≤ n)} in which

MB is the set of available concepts, defined as the union of the following sets:

• {A | A ∈ NC , A uB 6≡ ⊥, there is no A′ ∈ NC with A < A′}

• {A | A ∈ NC ,¬A uB 6≡ ⊥,¬A uB 6≡ B, there is no A′ ∈ NC with A′ < A}

• {∃r.> | r ∈ mgrB}

• {∀r.> | r ∈ mgrB}

3. if the current concept is a concept A in which A ∈ NC , then ρ = {A′ | A′ ∈ sh↓(A)}∪

{A uD | D ∈ ρ(>)}

4. if the current concept is a negated concept ¬A in which A ∈ NC , then ρ = {A′ | A′ ∈

sh↑(A)} ∪ {¬A uD | D ∈ ρ(>)}
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5. if the current concept is ∃r.D, then ρ = {∃r.E | A = ar(r), E ∈ ρA(D)} ∪ {∃r.D u

E | E ∈ ρ(>)} ∪ {∃s.D | s ∈ sh↓(r)}

6. if the current concept is ∀r.D, then ρ = {∀r.E | A = ar(r), E ∈ ρA(D)} ∪ {∀r.D u

E | E ∈ ρ(>)} ∪ {∀r.D | s ∈ sh↓(r)} ∪ {∀r.⊥ | D = A ∈ NC , sh↓(A) = ∅}}

7. if the current concept is C1 u · · · uCn, (n ≥ 2), then ρ={C1 u · · · uCi−1 uDuCi+1 u

· · · u Cn | D ∈ ρ(Ci), 1 ≤ i ≤ n}}

8. if the current concept is C1 t · · · tCn, (n ≥ 2), then ρ={C1 t · · · tCi−1 tDtCi+1 t

· · · t Cn | D ∈ ρ(Ci), 1 ≤ i ≤ n} ∪ {(C1 t · · · t Cn) uD | D ∈ ρ(>)}

In the DL-Learner ideal refinement operator for EL language, concepts are viewed as

tree structures to achieve the ideality. The refinement operator ψ is defined as a function

that maps a tree t ∈ Tmin to a subset of Tmin which can be divided into three base

operations, namely:

1. label extension, which means extend the destination vertex in the minimal tree

2. label refinement, which means refining the starting vertex in the minimal tree

3. edge refinement, which means refining one of the outgoing edges

Assuming A′ v A and r′ v r, the ideal refinement operator ψ is illustrated in Figure 3.2.

3.4 Summary

This chapter gives an overview of related studies in both the recommender system and

machine learning areas. Pairwise comparisons, which can also be considered as binary

relations, are commonly studied in some areas, such as MCDM, preference learning, rec-

ommender systems and ILP. In the preference learning field, the pairwise comparisons

method is more commonly used for predicting the ranking. Several approaches exist to

solve the ranking problem, but the use of pairwise comparisons to learn the order itself

has not been widely studied.

From the literature in the recommender systems field, especially those papers which

use a pairwise comparison technique, we observe that most studies use statistical machine

learning approaches. However, there is a large potential to benefit from applying a logic-

based approach, with the advantage of a more expressive representation. Therefore, we

identify there is a research gap which can be filled here.
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Figure 3.2: DL-Learner EL refinement operator

While the implementation of pairwise comparisons in the recommender system area

can be found in several studies, a commercial real-world application does not yet exist.

Some of the general research challenges in the recommender systems field are also discussed

in this chapter. One of these is to produce an explainable recommendation, which has the

potential to be resolved using the advantage of logic representation. Several studies on

the use of ontologies in recommender systems are also provided.

In the machine learning area, there exists an implementation of ILP in DL for learning

about concepts, but the use of ILP in DL for learning about relations is still not popular.

In this chapter, the DL-Learner framework and its refinement operators are reviewed. DL-

Learner is somewhat related to the work in this thesis; while it learns about concepts, one
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contribution of this thesis is learning the Domain and Range axioms of a specific object

property.

In the next chapter, the study on tasks of learning from binary relations using existing

systems is described in detail.
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Chapter 4

Learning Binary Preference

Relations

The use of data that genuinely reflects user preferences is essential to the success of any

recommender system. We used the user’s answers to classify new unlabelled data and make

a prediction about classes. The general annotation process is illustrated in Figure 4.1.

It shows how we derived conclusions about preferences regarding individual attributes

from data pairs of the form “Car 1 is-better-than Car 2”. The bold arrow represents

the annotation from the user and the dotted arrows show possible implications about

individual attributes that the learning algorithm will consider.

car 1 car 2
better than

engine size 1

body type 1

engine size 2

body type 2

fuel consumption 1

transmission 1

fuel consumption 2

transmission 2

Figure 4.1: User annotation

In this chapter, user preferences are learned from a set of pairwise questions using a

number of existing classification systems which fall into two categories of machine learning

approaches, statistical and logic-based systems. The aim of this chapter is to explore the

opportunities for using a logic-based approach in the recommender system area, which

has not been widely studied, and also to compare it with a common statistical approach.
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The two publicly available datasets [1,65] used for all offline experiments in this thesis are

explained in this chapter. Finally, a comprehensive analysis of the benefits and drawbacks

of systems that fall into those two approaches, statistical and logic-based, is also presented.

4.1 Problem Statement

Supervised learning is a type of machine learning algorithm in which the learner receives a

set of labelled examples as training data and makes predictions for all unseen points. This

matches the description of a Preference Learning (PL) problem in making a prediction

about user preferences. One common type of supervised learning problem is binary clas-

sification, which is learned from two classes. In PL from pairwise comparisons, there are

two classes to be learned, i.e. the “good” class and the “not good” class, but the nature

of the pairwise dataset lends itself to two other learning tasks:

1. Learning the top preference class (the best of all)

In this task, the characteristics of the group of items that do not have any better

comparisons in the group was learned.

2. Learning to order pairs of items (the relative order of preferences)

In this task, how items relate to other items through the “betterthan” relationship

was learned.

In order to achieve the learning goal, the experiments in this chapter are divided into

the two learning tasks described above.

4.2 Modelling Paradigms

AI research has tended to fall into two largely separate approaches, logical and statistical.

The former tends to emphasis handling complexity, while the latter focuses on uncertainty

[31]. The first approach represents knowledge symbolically and the system attempts to

reason using the symbolic knowledge. Systems that fall into this category include, logic

programming, description logics, classical planning, symbolic parsing, rule induction, etc.

The second approach uses a mathematical function to build the model. Systems that fall

into this category include: Naive Bayes, SVM, k-nearest neighbour, neural networks, etc.

The mapping of how the different machine learning algorithms used in the experiment

address the problem is shown in Table 4.1.
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Table 4.1: Mapping of solution

Approach Algorithm
Learning Task

top preference class order of preferences

Propositional Logic Decision Tree X
First-Order Logics Aleph X
Description Logics DL-Learner X
Statistical Bradley-Terry Model X X
Statistical SVM X

4.2.1 Logic-based approaches

The experiments in this chapter were performed using existing systems from three families

of logic:

1. Propositional logic

Propositional logic is concerned with propositions and their interrelationships (log-

ical connectives). The notion of a proposition here cannot be defined precisely.

Roughly speaking, a proposition is a possible condition of the world that is either

true or false, e.g., the possibility that it is raining, the possibility that it is cloudy,

and so forth [41]. Learning in this logic also follows restrictions, i.e. both concepts

and facts are expressed using a set of propositions and logical connectives. The

examples and the hypothesis produced are enumerated in all possible values. One

example of a learning algorithm which uses this logic is a Decision Tree (DT). The

Decision Tree algorithm is included in the experiment because it is the most simple

logic based algorithm that works with a white box system, which means that the

hypothesis produced can be read. The number of observations in the dataset is not

too large to be enumerated and so the possible rules (hypotheses) produced makes

it suitable for learning with a propositional logic based system.

2. First order logic

First Order Logic (FOL) is more expressive than propositional logic. It allows the use

of variables and quantifiers to explain a concept. Inductive Logic Programming (ILP)

is a learning algorithm which uses FOL, more specifically Horn clause expression, a

special form of FOL representation. ILP uses this representation in both concept and

object language. This makes ILP different from the propositional learning algorithm.

Examples of the learning algorithm in these logics include FOIL [104], Aleph [125],

Progol [92] and Golem [95]. Aleph was used here to learn binary classification.
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3. Description logics

Description Logics (DL) [11] define the world using concepts to represent a set of in-

dividuals and roles to represent the binary relations between individuals. A number

of classification learning algorithms in DL have been introduced, including work by

Fanizzi et al. [35], Kietz [66], Cohen and Hirsh [27], Badea and Nienhuys-Cheng [13],

Iannone et al. [62] and Lehmann [70]. Research on specific pairwise preferences in

DL is still very limited, such as the one introduced by Di Noia et al. [30], called

Ontological CP-Nets. A DL-Learner [70] was used in this experiment to find a valid

description of the top preferences class, the best group of cars according to the user

(see Section 4.1). The DL-Learner uses a similar idea to ILP in the refinement

operator to learn target classes.

4.2.2 Statistical approaches

In addition to logic-based learning, an experiment using statistical machine learning meth-

ods was also performed. The number of observations for each case (user) in the dataset

(see Section 4.3) is sufficient to be solved using statistical machine learning approaches.

For the statistical learner two existing systems are used, the Bradley-Terry model [23] to

produce global ranking from pairwise data and SVM as a binary classification algorithm

to predict the two classes of “better” and “worse”.

The experimental results of the logic-based learning are then compared to the statistical

machine learning approach. In a binary classification problem, the SVM searches for the

optimal linear separator of all data points in an n-dimensional space then uses it to make

predictions about new data. The method has previously been used by Qian et al. [103] in

a similar setup in PL with good results.

4.3 Dataset

4.3.1 Car preferences dataset

A dataset of car preferences1 provided by Abbasnejad et al. [1] in 2013 was used in this

experiment. Ten items with 4 features2 were used in their experiment. Each user provided

answers for all 45 possible pairs of items, giving 90 observations for each user. This

1http://users.cecs.anu.edu.au/ u4940058/CarPreferences.html
2The engine capacity feature was discretised to simplify the learning process
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comprises 45 positive examples from the user answers (e.g. car 1 is better than car 2), 45

negative examples from the opposite order of positive examples (e.g. car 2 is better than

car 1). Users were presented with a choice to select one car over another based on their

attributes. The data was collected from 60 different users from the United States using

Amazon’s Mechanical Turk. The 10 cars below were presented to the participants:

Table 4.2: Cars description used in Abbasnejad et al. [1] experiments

Item ID Body Type Transmission Fuel Consumed Engine Capacity

1 suv manual non-hybrid small 2.5L
2 sedan automatic hybrid large 5.5L
3 sedan manual non-hybrid medium 4.5L
4 sedan manual non-hybrid large 6.2L
5 suv manual non-hybrid medium 3.5L
6 suv automatic hybrid medium 3.5L
7 sedan automatic hybrid medium 3.5L
8 suv automatic hybrid small 2.5L
9 sedan automatic non-hybrid medium 3.5L
10 suv automatic non-hybrid medium 4.5L

4.3.2 Sushi preferences dataset

The second dataset used in the experiments was about sushi preferences,3 published by

Kamishima [65]. The dataset contains individual user preferences for 10 different sushi

types. Users were asked to sort the sushi according to their preference in ascending order.

For the experiment, the pairs order was generated from each individual preference. Similar

to the car dataset explained above, 45 pairs of sushi preferences are built from 10 types

of sushi. The specification of sushi is presented in Table 4.3. In this dataset, 5,000 users

were involved in the survey. However, in the experiment, only data from the first 60 users

was used to make it comparable with the car experiemnt dataset.

4.4 Learning the Top Preference Class

Experiments in this section only use the car dataset because the original format of the

dataset is in the form of partial orders. There is no full order in the dataset. This condition

is different from the sushi dataset, where each user originally provided the full order of

their choices.

3http://www.kamishima.net/sushi/
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Table 4.3: Sushi description used in Kamishima [65] experiments

ID Sushi name Style Major Minor Heaviness/ Frequency of Normalised Frequency of
Group Group Oiliness Consumption Price Sushi Sold

0 ebi maki seafood shrimp/crab 2.7289 2.1384 1.8384 0.84
(shrimp)

1 anago maki seafood tare 0.9264 1.9902 1.9925 0.88
(sea eel)

2 maguro maki seafood akami 1.7696 2.3485 1.8747 0.88
(tuna)

3 ika maki seafood squid/octopus 2.6884 2.0432 1.5152 0.92
(squid)

4 uni maki seafood other seafood 0.8130 1.6434 3.2873 0.88
(sea urchin)

5 ikura maki seafood roe 1.2649 1.9795 2.6957 0.88
(salmon roe)

6 tamago maki not seafood egg 2.3681 1.8662 1.0325 0.84
(egg)

7 toro maki seafood akami 0.5519 2.0575 4.4855 0.8
(fatty tuna)

8 tekka maki other seafood akami 2.2471 1.8790 1.5798 0.44
(tuna roll)

9 kappa maki other not seafood vegetables 3.7305 1.4568 1.02 0.4
(cucumber roll)

4.4.1 Bradley-Terry experiments

One of the most popular methods to predict global ranking from pairwise comparisons is

a method introduced by Bradley and Terry [23]. An experiment was performed using the

Bradley-Terry package in R [132]. The full order of preferences according to the BTM

coefficient for all users in the car dataset [1] is reported in Table 4.4. To make it easier for

the reader, the table only shows the full preferences order, while the BTM coefficients are

attached as Appendix A. The � notation is used to represent the order of strict preference

towards the first mentioned choice. This comes from the calculation where the first choice

has a higher BTM coefficient than the second choice. For example i � j means i is more

preferred than j. When there is no evidence that the preference is strong (no difference in

the BTM coefficients), then < is used to show that the first choice has a weak preference

or is equivalent to the second choice.

4.4.2 DL-Learner experiments

An experiment to learn the top preference class was also carried out with the DL-Learner

by specifying a set of cars that have first place in the rank (see Table 4.4) as positive

examples and the rest of the cars as negative examples. The best car characteristics for

each user can be learned by using the DL-Learner. Please note that some users have more

than one best car in their preferences. A simple ontology consisting of the item description

and its membership was created as an input to be learned by the DL-Learner. More about
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Table 4.4: Bradley-Terry experiment result

userID full order of item (carID) preferences

user1 7 � 8 � 2 � 9 � 6 � 3 � 5 � 1 � 10 � 4
user2 6 < 10 � 5 � 2 < 4 � 8 � 1 � 3 < 7 � 9
user3 1 � 2 � 3 � 4 � 5 � 6 � 7 � 8 � 9 � 10
user4 8 � 6 � 7 � 10 � 2 � 9 � 5 � 1 � 3 � 4
user5 7 � 10 � 4 � 2 � 3 < 6 � 9 � 5 � 8 � 1
user6 7 � 2 � 8 � 6 � 9 � 5 � 10 � 1 � 3 � 4
user7 8 � 6 � 10 � 7 � 2 � 9 � 1 � 5 � 3 � 4
user8 9 � 2 � 7 � 3 � 4 � 6 � 10 < 8 � 5 � 1
user9 8 � 7 � 2 � 5 � 1 � 6 � 3 � 4 � 10 � 9
user10 4 � 3 � 1 � 5 � 9 � 10 � 7 � 2 < 6 � 8

user11 9 � 10 � 4 � 3 � 5 � 2 � 1 � 7 � 6 � 8
user12 5 � 4 � 1 � 3 < 6 � 9 < 2 < 8 < 10 � 7
user13 8 � 6 � 10 � 7 � 2 � 9 � 1 � 5 � 3 � 4
user14 6 � 8 � 10 � 5 � 1 � 2 < 7 � 4 < 3 � 9
user15 2 � 7 � 9 � 6 � 8 � 10 � 3 � 4 � 5 � 1
user16 9 � 10 � 2 < 7 � 6 � 8 � 3 � 4 � 5 � 1
user17 8 � 6 � 7 � 2 � 9 � 10 � 1 � 5 � 3 � 4
user18 8 � 6 � 1 � 7 � 2 � 5 < 10 � 9 � 3 � 4
user19 6 � 8 � 10 � 2 � 7 � 9 � 1 � 5 � 3 � 4
user20 9 � 2 � 4 < 10 � 7 � 6 � 8 < 3 � 5 � 1

user21 10 < 9 � 3 � 4 � 5 � 1 � 2 � 7 � 6 � 8
user22 8 � 6 < 7 � 5 � 1 � 10 < 2 � 9 � 3 � 4
user23 9 � 7 � 2 � 4 < 3 � 10 � 6 � 8 � 5 � 1
user24 8 � 6 < 10 � 2 < 7 � 9 � 1 � 5 � 3 � 4
user25 6 � 7 < 8 � 2 < 10 � 9 � 5 � 3 � 1 � 4
user26 10 < 6 � 8 � 2 � 7 � 9 � 5 � 1 � 4 � 3
user27 2 < 4 � 3 < 7 � 9 � 5 � 6 � 10 � 8 � 1
user28 5 � 1 � 6 � 8 � 10 � 3 < 4 � 2 < 7 � 9
user29 8 � 1 � 5 < 6 < 7 � 3 < 9 � 10 � 2 < 4
user30 2 � 10 < 4 � 6 � 1 � 7 < 3 � 9 � 8 < 5
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Table 4.4: Bradley-Terry experiment result (cont.)

userID full order of item (carID) preferences

user31 2 � 6 < 7 � 4 < 10 � 8 < 9 � 3 < 5 � 1
user32 8 � 6 � 7 � 9 � 2 � 10 � 1 � 5 � 3 � 4
user33 10 � 5 � 6 � 1 � 8 � 4 � 2 < 3 < 9 � 7
user34 10 � 8 < 6 � 9 � 2 � 1 � 4 � 7 � 5 � 3
user35 9 � 2 � 10 � 7 � 6 � 4 < 8 � 3 � 5 � 1
user36 6 � 8 � 7 � 10 � 2 � 9 � 3 � 5 � 1 � 4
user37 9 � 3 < 4 � 10 � 5 � 1 � 6 � 2 � 8 � 7
user38 6 � 8 � 7 � 2 � 10 � 9 � 5 � 1 � 3 � 4
user39 6 � 8 � 2 � 7 � 10 � 9 � 5 � 1 � 4 � 3
user40 2 < 6 � 7 < 8 � 10 � 9 � 4 < 5 � 1 � 3

user41 7 < 8 � 6 < 9 � 5 < 10 � 2 � 1 � 3 � 4
user42 6 � 8 � 10 � 5 � 1 � 7 � 9 � 2 � 3 � 4
user43 2 � 7 � 6 � 8 � 9 � 10 � 4 � 3 � 5 � 1
user44 3 < 4 � 10 � 9 � 5 � 2 � 1 � 7 � 6 � 8
user45 10 � 6 � 5 � 1 � 8 � 4 � 3 � 2 � 9 � 7
user46 2 � 7 � 6 < 4 � 3 � 10 � 8 � 5 � 9 � 1
user47 2 < 7 � 9 � 6 � 3 � 4 � 8 < 10 � 5 � 1
user48 6 � 8 � 2 � 5 < 7 < 10 � 1 � 9 � 3 < 4
user49 3 < 4 � 5 � 1 � 2 � 10 � 6 � 7 < 9 � 8
user50 10 � 6 < 8 � 7 � 2 � 5 < 9 � 1 � 3 � 4

user51 2 � 4 � 10 � 6 � 7 � 5 � 9 � 8 � 3 � 1
user52 9 � 2 � 7 � 10 � 6 � 8 � 4 � 3 � 5 � 1
user53 2 � 6 � 7 � 8 � 5 � 10 � 1 � 3 � 9 � 4
user54 7 � 6 < 8 � 2 � 1 � 5 < 9 � 3 < 4 < 10
user55 7 � 6 < 8 � 2 � 1 � 5 < 9 � 3 < 4 < 10
user56 8 � 6 < 7 � 2 � 1 � 5 � 10 � 9 � 3 � 4
user57 5 � 10 � 1 � 3 < 4 < 9 � 6 � 8 � 2 � 7
user58 10 � 7 � 9 � 3 � 8 � 6 � 2 � 1 � 4 � 5
user59 4 � 2 < 10 � 3 � 6 < 7 � 5 � 1 � 9 � 8
user60 5 � 6 � 1 � 10 � 8 � 4 � 2 � 3 < 7 � 9

the ontology representation of the pairwise preference problem is explained in Chapter 5

and the class hierarchy used in the DL-Learner is the same as shown in Figure 5.1a.

The CELOE (Class Expression Learner for Ontology Engineering) learning algorithm [71],

which is the implementation of the DL-Learner OWL complete refinement operator, was

used in this experiment to maximise the possibility of always finding a solution. The

configuration file for user1 used to run the DL-Learner is shown in Figure 4.2. The de-

scription of the top class for user1 is shown in Figure 4.3. The DL-Learner experiment

results from the first five users are shown in Table 4.5, while the complete results are shown

in Appendix B. The DL-Learner produced several solutions with 100% accuracy, only the
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first suggested description is shown. It can be concluded that the best car for user1 is the

car which has the property values: Automatic and Hybrid and MediumCar and Sedan.

The same method of putting the best cars as positive examples and the rest as negative

examples in the configuration file was applied to all 60 users in the car preferences dataset.

prefixes = [ ("ex","http://www.mycars.org/ontology#") ]

// knowledge source definition
ks.type = "OWL File"
ks.fileName = "carpreferences.owl"

// reasoner
reasoner.type = "OWL API Reasoner"
reasoner.sources = { ks }

// learning problem
lp.type = "posNegStandard"
lp.positiveExamples = { "ex:car7" }
lp.negativeExamples = { "ex:car1", "ex:car2","ex:car3","ex:car4","ex:car5",

"ex:car8", "ex:car9", "ex:car6","ex:car10" }
alg.type = "celoe"
alg.maxExecutionTimeInSeconds = 2
alg.maxNrOfResults = 10

Figure 4.2: DL-Learner configuration file example

Automatic and Hybrid and MediumCar and Sedan

Figure 4.3: DL-Learner learning results example

Table 4.5: DL-Learner experiment results

user ID the best carID DL-Learner result with 100% accuracy
user1 car7 Automatic and Hybrid and MediumCar and Sedan
user2 car6,car10 Automatic and MediumCar and Suv
user3 car1 Manual and SmallCar
user4 car8 Automatic and SmallCar
user5 car7 Automatic and Hybrid and MediumCar and Sedan

The aim of the experiments, to learn the top class using a BTM and a DL-Learner,

is to show that existing systems in pairwise comparisons and DL can be used to address

the learning problem in pairwise preferences. Cars preferred by the users can be seen

from the BTM results only by considering the winner of each pair competition. This

can be performed without examining the car features. By using this method, it is still

possible to learn what is best for the users. In the same task, the DL-Learner results give

more information on the user’s most preferred car features. In recommender systems, it
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is important to understand what type of items are suitable for users, so that the correct

recommendation can be made.

4.5 Learning to Order Pairs of Items

The second task was divided into two types of data, categorical only and mixed-type. The

nature of pairwise preference data is usually mixed between numerical and categorical,

but unfortunately not all learning algorithms can handle this type of data. Both represen-

tations have their own advantages and disadvantages. An experiment on the two different

data representations (i.e. categorical and mixed-type) of both sushi and car preference

datasets is described here.

4.5.1 Learning from categorical data

This experiment was carried out by using the SVM and CART DT [24] algorithms on

Matlab R2016a running on Mac OSX version 10.11.2. For the ILP algorithm, Aleph 5.0

was run on a Prolog compiler: yap 6.3.2. The mapping from representations to the choice

of machine learning algorithms and their implementation is shown in Table 4.6.

Table 4.6: Representation → algorithm → implementation

Representation Algorithm Implementation

Propositional Logic Decision Tree fitctree on Matlab
First-Order Logics ILP Aleph on yap

Statistical SVM fitcsvm on Matlab

4.5.1.1 Experiment setting with car dataset

Learning with only categorical data requires the dataset to be discretised and encoded to

suit the learner input style. For the car dataset, the encoding was applied to the engine

capacity attributes as shown in Table 5.1. The rest of the attributes still needed to be

encoded to be fed into the SVM and DT-learner. The attributes encoding for the car

dataset is shown in Table 4.7.

SVM and DT. The DT-learner can learn categorical data in any format (text or num-

ber) but in this experiment, the use of the numeric format was designed to make the

encoding process easier, so that the same data format could be used with the other learn-

ing algorithm (i.e. SVM). The input for the DT is in pairs format with two classes, i.e.
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Table 4.7: Values attributes encoding

body type transmission fuel consumption engine capacity
(x1,x2) (x3,x4) (x5,x6) (x7,x8)

1= suv 1= manual 1= hybrid 1= small
2= sedan 2= automatic 2= non-hybrid 2= medium

3= large

“1” for positive examples and “-1” for negative examples. The data input as a numeric

format is shown as: 2,1,1,1,1,2,2,2,1, where the first 8 digits represent the attribute

values (first two numbers are bodytype, second two numbers are transmission, third two

numbers are fuel consumption and the fourth two numbers are engine capacity) and the

last digit represents the class (positive or negative). A sample of the tree for user1 was

generated using the Matlab CART DT algorithm shown in Figure 4.4.

Using the same data conversion as shown in Table 4.7 the dataset was processed using

Matlab SVM with the standard setting.

Aleph. Aleph uses separate files to differentiate between positive and negative examples.

The positive examples are stored as an ‘.f’ file extension, while the negative examples

are stored as an ‘.n’ file extension. The negative examples are the opposite relation of

positive examples. All examples follow the logic programming format. The input for

Aleph is shown in Figure 4.5. In the first line of the positive examples, it is shown that

bt(car1,car2), which means car1 is better than car2. Likewise, in the first line of the

negative examples, it is stated that bt(car2,car1) which means car2 is not better than

car1.

Three experiments were performed with Aleph. The flexibility to specify background

knowledge and hypothesis language offered by Aleph, as one special feature of the ILP

implementation, can be used to learn the pairwise PL in different ways. The three different

settings in Aleph are:

• setting 1: learn from single attribute of each item

• setting 2: learn by comparing the same attributes from each item in pairs

• setting 3: learn from a mixed-type data format

The first two settings are explained here while the third setting will be explained in

Section 4.5.2.
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-1 1

1 -1 -1

1

-1

-1 1

x8 = 1   

x7 = 1   x7 = 1   

x1 = 1   x5 in (1 2)   

x6 in (1 2)   

x6 = 1   

x2 = 1   

   x8 = 2

   x7 = 2    x7 = 2

   x1 = 2    x5 = 3

   x6 = 3

   x6 = 2

   x2 = 2

(a) DT rule in graph mode

1 if x8=1 then node 2 elseif x8=2 then node 3 else -1

2 if x7=1 then node 4 elseif x7=2 then node 5 else -1

3 if x7=1 then node 6 elseif x7=2 then node 7 else 1

4 if x1=1 then node 8 elseif x1=2 then node 9 else -1

5 class = -1

6 class = 1

7 if x5 in {1 2} then node 10 elseif x5=3 then node 11 else 1

8 class = 1

9 class = -1

10 if x6 in {1 2} then node 12 elseif x6=3 then node 13 else 1

11 class = -1

12 if x6=1 then node 14 elseif x6=2 then node 15 else 1

13 class = 1

14 class = -1

15 if x2=1 then node 16 elseif x2=2 then node 17 else 1

16 class = -1

17 class = 1

(b) DT rule in text mode

Figure 4.4: DT rule sample for car dataset
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bt(car1,car2).

bt(car7,car8).

bt(car3,car1).

bt(car2,car3).

(a) File in ‘.f’ extension containing
positive examples

bt(car2,car1).

bt(car8,car7).

bt(car1,car3).

bt(car3,car2).

(b) File in ‘.n’ extension containing
negative examples

Figure 4.5: Aleph’s positive and negative examples for car dataset

In the first setting, the learner is aiming to learn the betterthan relationship by using

each single attribute value in every pair. For example, if the positive example says “car1 is

better than car2”, then every attribute on car1 and car2 will be considered as a candidate

hypothesis. An example of a possible candidate hypothesis will be: “car A is better than

car B if car A is sedan and car B is manual”. The values specified in the example are

not necessarily values of the same attributes (manual is a transmission type and sedan

is a body type). To make it clearer for the reader, an example of a supplied hypothesis

language for Aleph with this setting is presented in Figure 4.7. A sample of the Aleph

valid hypotheses with this setting is shown in Figure 4.8. Aleph stores the hypothesis

language together with background knowledge in a file with a ‘.b’ extension.

In the second setting, the learner considered corresponding attribute values only. For

example, if the positive example was “car1 is better than car2”, then the learner only

built the candidate hypothesis based on the same attribute comparisons from every pair.

An example of a possible candidate hypothesis is: “car A is better than car B if car A

is sedan and car B is suv”. In the example, “sedan” and “suv” are the values of car

body types. A hypothesis language specified for Aleph with this setting is provided in

Figure 4.9 and a sample of the valid hypotheses is shown in Figure 4.10.

From the rules produced by Aleph, we can observe that the ILP model provides a more

compact representation than the rules produced by the DT. In the above example, only

the attribute value which has an association with the positive examples is defined (by the

engineer) in Aleph’s rules. This is different from the DT, where it uses Information Gain

to select the important attributes from the data. Howell [58] states that the ILP rules can

be viewed as shortcuts into the conclusions drawn by the decision tree. Additionally, they

do not impose a hierarchy on rule importance as the decision tree would. This would be

important in the case of missing data. If “node-caps” were a missing attribute in a query,

the usefulness of a decision tree with that attribute at its root would be compromised. It
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% type
fuelconsumption(hybrid).
fuelconsumption(nonhybrid).
transmission(automatic).
transmission(manual).
bodytype(sedan).
bodytype(suv).
enginesize(small).
enginesize(medium).
enginesize(big).

% type
car(car1).
car(car2).

% background knowledge
hasfuelcons(car1,nonhybrid).
hasfuelcons(car2,hybrid).
hasbodytype(car1,suv).
hasbodytype(car2,sedan).
hastransmission(car1,manual).
hastransmission(car2,automatic).
hasenginesize(car1, small).
hasenginesize(car2, large).

Figure 4.6: Aleph background knowledge in all settings

:- modeh(1,bt(+car,+car)).
:- modeb(1,hasfuelcons(+car,#fuelconsumption)).
:- modeb(1,hasbodytype(+car,#bodytype)).
:- modeb(1,hastransmission(+car,#transmission)).
:- modeb(1,hasenginesize(+car,#enginesize)).

Figure 4.7: Aleph hypothesis language in setting 1

bt(A,B) :-
hasfuelcons(B,nonhybrid), hasbodytype(A,sedan),
hastransmission(A,automatic).

bt(A,B) :-
hasfuelcons(A,hybrid), hastransmission(B,manual).

Figure 4.8: A sample of Aleph valid hypotheses with setting 1
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:- modeh(1,bt(+car,+car)).
:- modeb(1,carfuel(+car,#fuelconsumption,+car,#fuelconsumption)).
:- modeb(1,carbodytype(+car,#bodytype,+car,#bodytype)).
:- modeb(1,cartransmission(+car,#transmission,+car,#transmission)).
:- modeb(1,carenginesize(+car,#enginesize,+car,#enginesize)).

carfuel(A,X,B,Y):- hasfuelcons(A,X), car(A), car(B),
hasfuelcons(B,Y), X\=Y .

carbodytype(A,X,B,Y):- hasbodytype(A,X), car(A), car(B),
hasbodytype(B,Y), X\=Y .

cartransmission(A,X,B,Y):- hastransmission(A,X), car(A), car(B),
hastransmission(B,Y), X\=Y .

carenginesize(A,X,B,Y):- hasenginesize(A,X), car(A), car(B),
hasenginesize(B,Y), X\=Y .

Figure 4.9: Aleph hypothesis language in setting 2

bt(A,B) :-
carfuel(B,nonhybrid,A,hybrid), cartransmission(B,manual,A,automatic).

bt(A,B) :-
carfuel(B,nonhybrid,A,hybrid), carenginesize(B,medium,A,large).

Figure 4.10: A sample of Aleph valid hypotheses with setting 2

can also be made more concise and meaningful by adding specific background knowledge.

For example, in an experiment with Aleph setting 2, we specified the specific hypothesis

language in the background knowledge, as shown in Figure 4.9, to limit the rules to only

consider comparisons between corresponding attributes. It also means that it was possible

to skip unnecessary comparisons and save time.

4.5.1.2 Experiment settings using the sushi dataset

The experiment with the sushi dataset was performed on the same hardware as the car

dataset. The settings and results of an experiment using the sushi preferences dataset are

explained in this section.

SVM and DT. Similar to the settings explained for the car dataset, the learners were

fed using 2 sets containing positive and negative examples. The positive examples were a

set of correctly ordered pairs for each user. Then a set of negative examples was built from

the opposite order of the user preferences. For each user, there was a complete set of 90

observations, consisting of 45 positive examples and 45 negative examples. The original

dataset was already in numeric attribute format, so that in the sushi dataset discretisation
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was not necessary. A sample of numeric input for the SVM and DT containing positive

and negative examples is shown in Table 4.8.

Table 4.8: Formatting sushi dataset for SVM and DT

1 1 0 0 7 6 1.26 2.73 1.98 2.14 2.70 1.84 0.88 0.84 1
1 1 0 0 7 5 1.26 2.69 1.98 2.04 2.70 1.52 0.88 0.92 1
1 1 0 0 7 8 1.26 0.81 1.98 1.64 2.70 3.29 0.88 0.88 1
1 1 0 0 6 7 2.73 1.26 2.14 1.98 1.84 2.70 0.84 0.88 -1
1 1 0 0 5 7 2.69 1.26 2.04 1.98 1.52 2.70 0.92 0.88 -1
1 1 0 0 8 7 0.81 1.26 1.64 1.98 3.29 2.70 0.88 0.88 -1

1 1 0 0 7 6 1.26 2.73 1.98 2.14 2.70 1.84 0.88 0.84 1 

 
 
 
 
 

 
 

Style of the 
more preferred 
sushi: 1 

Style of the 
less preferred 
sushi: 1 class label: 

positive 

	Attribute values of each sushi pair 
(in the same order as mentioned in Table 4.8) 

	

Figure 4.11: Sushi dataset node explanations

Each row represents a user preference on a pair of sushi types. The first 14 columns

represent the numeric attributes and the last column is the class label (1=positive; -

1=negative). The node explanation is described in Figure 4.11. The user ID is not

required in the learning process as the individual unique preferences were learned each

time. The same setting is repeated for each user in the dataset. The standard setting of

Matlab CART DT implementation was followed and all attributes were treated as numeric.

For the SVM implementation, Matlab used linear kernel function as the default setting.

The DT used the rules to predict the new unseen data. In this experiment, some of the

rules produced by the DT are shown in Figure 4.12. The node interpretation for the DT

also follows Figure 4.11. For example, x1 is the style of the more preferred sushi, x2 is the

style of the less preferred sushi, x3 is the major group of the more preferred sushi and x4

is the major group of the less preferred sushi.
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1 1

-1 1 -1

-1 1 -1

1 -1

x7 < 1.5   

x5 < 5   x6 < 10   

x5 < 7.5   x5 < 10   

x5 < 5.5   

x14 < 2.5   x6 < 7.5   

x12 < 2.5   

  x7 >= 1.5

  x5 >= 5   x6 >= 10

  x5 >= 7.5   x5 >= 10

  x5 >= 5.5

  x14 >= 2.5   x6 >= 7.5

  x12 >= 2.5

(a) DT rule in graph mode

1 if x7<1.5 then node 2 elseif x7>=1.5 then node 3 else -1

2 if x6<4 then node 4 elseif x6>=4 then node 5 else 1

3 if x6<10 then node 6 elseif x6>=10 then node 7 else -1

4 if x6<2 then node 8 elseif x6>=2 then node 9 else -1

5 class = 1

6 if x14<2.5 then node 10 elseif x14>=2.5 then node 11 else -1

7 class = 1

8 if x5<5 then node 12 elseif x5>=5 then node 13 else 1

9 class = -1

10 if x6<7.5 then node 14 elseif x6>=7.5 then node 15 else -1

11 class = 1

12 class = 1

13 class = -1

14 if x6<6.5 then node 16 elseif x6>=6.5 then node 17 else -1

15 class = -1

16 class = -1

17 class = 1

(b) DT rule in text mode

Figure 4.12: DT rule sample for sushi dataset
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Aleph. All the settings in Aleph were the same as in the previous experiment (explained

in Section 4.5.1.1). The sushi dataset formatting for Aleph positive and negative examples

is shown in Figure 4.13. Three different Aleph settings for the hypothesis pattern were also

used. Some of the background knowledge (incomplete) in setting 1 is shown in Figure 4.14a

and in setting 2 in Figure 4.14b.

bt(sushi1,sushi0).

bt(sushi7,sushi2).

bt(sushi2,sushi5).

bt(sushi2,sushi9).

bt(sushi5,sushi3).

(a) File in ‘.f’ extension containing positive ex-
amples

bt(sushi0,sushi1).

bt(sushi2,sushi7).

bt(sushi5,sushi2).

bt(sushi9,sushi2).

bt(sushi3,sushi5).

(b) File in ‘.n’ extension containing negative ex-
amples

Figure 4.13: Aleph positive and negative examples for sushi dataset

Figure 4.14a means Aleph should consider hypotheses which include the attributes of

each sushi in the pair. An example of a consistent hypothesis produced by this pattern

is: ‘in a pair, any sushi A is better than any sushi B, if sushi A has style of maki

and sushi B has major group of seafood’ (please see Figure 4.15). This is different

from Figure 4.14b which means that Aleph is only allowed to consider hypotheses which

compare the same attributes: “in a pair, any sushi A is better than any sushi B, if

sushi A has style of (maki or not maki) and sushi B has style of (maki or not maki),

in which the two sushis do not have the same style”.

From the head mode (modeh), Aleph builds an hypothesis by looking for any examples

that match this pattern bt(+sushi,+sushi) (see Figure 4.13); bt() means a predicate

‘better than’, while +sushi means it is an input of type ‘sushi’. The body modes (modeb)

is a function of sushistyle(+sushi,#style, +sushi, #style) which has two types of

input: ‘sushi’ and ‘style’. How this function works is specified in the following line:

sushistyle(A,X,B,Y) :- hasstyle(A,X), sushi(A), sushi(B), hasstyle(B,Y), X\=Y,

which means that the search will consider building a candidate hypothesis if both items

have different sushi styles.

A sample of the consistent hypotheses produced by Aleph is shown in Figure 4.15. The

Aleph hypotheses above can be read as:

• any sushi A is better than any sushi B if sushi B has minor group: akami and sushi

A has minor group: akami and sushi B has heaviness: 2 (i.e. between 2.2 and 3.7).
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% specify the hypothesis pattern

:- modeh(1,bt(+sushi,+sushi)).

:- modeb(1,hasstyle(+sushi,#style)).

:- determination(bt/2,hasstyle/2).

% specify the different type of sushi

style(maki).

style(notmaki).

% specify the sushi name

sushi(sushi0).

sushi(sushi1).

% explain the relationship between sushi and attribute ‘style’

hasstyle(sushi0,notmaki).

hasstyle(sushi1,notmaki).

(a) Setting 1: single attributes

% specify the hypothesis pattern

:- modeh(1,bt(+sushi,+sushi)).

:- modeb(1,sushistyle(+sushi,#styleconsumption,+sushi,#styleconsumption)).

:- determination(bt/2,sushistyle/4).

% specify the different type of sushi

style(maki).

style(notmaki).

% specify the sushi name

sushi(sushi0).

sushi(sushi1).

% explain the relationship between sushi and attribute ‘style’

hasstyle(sushi0,notmaki).

hasstyle(sushi1,notmaki).

% do not include the attribute that has the same value

sushistyle(A,X,B,Y):- hasstyle(A,X),sushi(A),sushi(B),hasstyle(B,Y),X\=Y .

(b) Setting 2: comparable attributes

Figure 4.14: Aleph background knowledge for sushi dataset
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• any sushi A is better than any sushi B if sushi B has minor group: roe and sushi A

has minor group: akami.

• any sushi A is better than any sushi B if sushi A has major group: seafood and sushi

B has minor group: squid.

bt(A,B) :-

hasminor(B,akami), hasminor(A,akami), hasheaviness(B,2).

bt(A,B) :-

hasminor(B,roe), hasminor(A,akami).

bt(A,B) :-

hasmajor(A,seafood), hasminor(B,squid).

Figure 4.15: A sample of Aleph consistent hypotheses for sushi dataset

4.5.1.3 Experiment result

The accuracy of the three existing algorithms is shown in Table 4.9. The experiment shows

that in terms of the algorithm accuracy, the SVM outperformed Aleph and the DT in the

car dataset but the DT shows the highest accuracy amongst the other algorithms on the

sushi dataset. There is no single winner in this experiment. There is also no significant

difference between the two different hypothesis language settings of Aleph in both datasets.

The result of the ANOVA test shows that there is a significant difference in the accuracy of

the algorithms, with under 5% significance level assumptions for both datasets, as shown

in Table 4.10. An ANOVA is conceptually similar to a multiple two-sample t-test, but is

more conservative (resulting in less type I errors).

Table 4.9: Mean and standard deviation of 10-fold cross validation test

SVM DT Aleph setting 1 Aleph setting 2

car dataset 0.8317±0.12 0.7470±0.10 0.7292±0.08 0.7033±0.10
sushi dataset 0.7604±0.09 0.8094±0.06 0.7789±0.06 0.75±0.09

Table 4.10: ANOVA (α = 0.05) statistical results on SVM, DT and Aleph

F p-value F-crit
car dataset 16.8230 6.1592× 10−10 2.6429
sushi dataset 2.7211 0.0451 2.6429
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4.5.2 Learning from mixed-type data

One of the advantages of using ILP systems is their ability to handle both numeric and

categorical data without needing conversion. In this section, an experiment with Aleph is

described in detail, including the hypothesis language, the background knowledge and the

experiment results. Aleph with mixed type data settings was used in both datasets, car

and sushi preferences.

4.5.2.1 Experiment settings with car dataset

In the car dataset, each item had four attributes, 3 of them were categorical attributes

(body type, fuel and transmission) and 1 was numeric (engine size). Each user answered

on the same set of items. In this experiment, the same background knowledge file was

used for every user, but the set of positive and negative examples, which represented

the user preference, was different. Figure 4.16 shows that the categorical and numerical

attributes were treated differently. A complete background knowledge file, stored in a file

with ‘.b’ extension, is shown in Appendix C.1. The hypothesis in this setting considered

comparisons of values from the same attributes. As an example: “car A is better than

car B if car A is a hybrid car and car B is a non-hybrid car, and car A has a greater engine

size than car B.” This example is shown in Figure 4.18a.

% specify the hypothesis language

:- modeh(1,bt(+car,+car)).

:- modeb(1,carfuel(+car,#fuelconsumption,+car,#fuelconsumption)).

:- modeb(1,carbodytype(+car,#bodytype,+car,#bodytype)).

:- modeb(1,cartransmission(+car,#transmission,+car,#transmission)).

:- modeb(1,carenginegreaterthan(+car,+car,-float,-float)).

:- modeb(1,carenginelessthan(+car,+car,-float,-float)).

% specify different rules for categorical attributes

carfuel(A,X,B,Y):- hasfuelcons(A,X), car(A), car(B), hasfuelcons(B,Y), X\=Y.

% specify rules for numerical attribute

carenginegreaterthan(A,B,X,Y):- car(A), car(B),

hasenginesize(A,X), hasenginesize(B,Y), X>Y.

carenginelessthan(A,B,X,Y):- car(A), car(B), hasenginesize(A,X),

hasenginesize(B,Y), X<Y.

Figure 4.16: Aleph’s background knowledge for car dataset in setting 3
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4.5.2.2 Experiment settings with sushi dataset

In the original sushi dataset there were 7 attributes, three of them (i.e. style, major and

minor) were categorical and the other four (i.e. heaviness/oiliness, frequency of consump-

tion, normalised price and frequency of sushi sold) were numeric. In the sushi dataset,

every user was asked to give a full ranking of the same set of sushis; therefore, the back-

ground knowledge used in the Aleph experiments is the same for all users. The hypothesis

in this setting considers comparisons of values from the same attributes. Figure 4.17 shows

that in the body mode declaration, the rules are set differently between the categorical

and numerical attributes. The complete background knowledge for the sushi dataset is

shown in Appendix C.2. An example of a valid hypothesis is: “sushi A is better than

sushi B if sushi A is a seafood and sushi B is not a seafood, and sushi A has a greater

level of heaviness/oiliness than sushi B.” This sample is shown in Figure 4.18b.

% hypothesis language

:- modeh(1,bt(+sushi,+sushi)).

:- modeb(1,sushistyle(+sushi,#style,+sushi,#style)).

:- modeb(1,sushiheavinesslessthan(+sushi,+sushi,-float,-float)).

:- modeb(1,sushiheavinessgreaterthan(+sushi,+sushi,-float,-float)).

% specify different rules for categorical attributes

sushistyle(A,X,B,Y):- hasstyle(A,X),sushi(A),sushi(B),hasstyle(B,Y),X\=Y .

% specify rules for numerical attribute

sushiheavinesslessthan(A,B,X,Y):- sushi(A), sushi(B), hasheaviness(A,X),

hasheaviness(B,Y), X<Y .

sushiheavinessgreaterthan(A,B,X,Y):- sushi(A), sushi(B), hasheaviness(A,X),

hasheaviness(B,Y), X>Y .

Figure 4.17: Aleph’s background knowledge for sushi dataset in setting 3

bt(A,B) :-

carfuel(B,nonhybrid,A,hybrid), carenginegreaterthan(A,B,C,D).

(a) Aleph’s hypothesis for car dataset

bt(A,B) :-

sushimajor(B,seafood,A,notseafood), sushiheavinesslessthan(A,B,C,D).

(b) Aleph’s hypothesis for sushi dataset

Figure 4.18: Aleph’s sample solutions with setting 3
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4.5.2.3 Experiment result

The results of the Aleph experiments with the mixed type setting are shown in Table 4.11.

An ANOVA test was performed to evaluate whether there was a significant difference be-

tween the three different Aleph settings. The results of the ANOVA test, with a confidence

level of 0.05 show that there is a significant difference on the sushi dataset, with p-value

= 1.81× 10−7, but not the car dataset.

Table 4.11: Aleph accuracy with mixed-type data setting

Aleph setting 3

car dataset 0.7208±0.11
sushi dataset 0.7015±0.07

4.6 Summary

There are two main tasks in learning pairwise comparison preferences, learning the top

class and learning to order the pairs. An experiment to learn the top class was carried

out using two existing learning algorithms, BTM and DL-Learner. The second task was

performed using three classification algorithms, SVM, DT and Aleph. A comparison

between statistical and logic-based approaches on PL with pairwise comparisons was also

highlighted, although some researchers argue that separating those two ML approaches is

not always necessary.

In learning to order pairs of items, the results of the three different approaches are

quite interesting. The statistical approach, SVM, works very well when all the data is in

a numeric format and it can be very practical. On the other hand, Aleph and DT also

showed good results, with some advantages of a more readable model (a set of rules) and

they work well for both numerical and categorical data. In contrast to the DT, Aleph

as the FOL learner algorithm, has a special feature of being more flexible in defining the

rules.

It is shown that the full benefits of logic-based methods are to be expected for richer

representations, where a range of background concepts (either provided by the software

designers or gradually inferred from the data) can be used to model users with complex

preferences. While in general, the statistical approach has proven to have practical advan-

tages, the experiments show that logic-based approaches offer a number of benefits over

those based on statistics:
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• rule flexibility: the flexibility of adding background knowledge to the logical learner

to limit the rules and build more meaningful result (e.g. using Aleph implementation)

can be used.

• readability: the results of the logical approach (both the DT and Aleph) are more

readable and easier to understand for further use (i.e. providing a recommendation).

The benefits of using the logic-based approaches motivated this thesis to use an ILP

technique, which is based in FOL, to address the pairwise preferences problem. However,

as observed, an FOL-based system is not easy to implement in a recommender system

due to the complexity of the language representation. An effort to balance the trade-off

between the benefits and the shortcoming of using a logic-based approach in recommender

systems has been made. We propose an approach which applies a FOL-based system in a

different logic representation, i.e. Description Logics. In the next chapter, the proposed

approach is described in detail.
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Inductive Learning of Ordinal

Data in Description Logics

Inductive Logic Programming (ILP) is very promising due to the advantages of using

background knowledge to generalise consistent rules from given examples. Here we propose

an algorithm named APARELL (Active PAirwise RELation Learner), which was built

on the basis of ILP in Description Logics (DL). This chapter describes APARELL, a

basic pairwise relation learning algorithm to solve strict order relations. Active Learning

(AL) will be discussed further in Chapter 6. The algorithm is applied in the preference

learning domain, as the automation of preference learning has become essential in many

e-commerce applications, following the trend of customer personalisation. The use of DL

representation in the e-commerce area, as the basic language of the semantic web, is also

rising in popularity. We aim to learn preferences from a set of pairwise comparisons,

where the user is given a pair of items and asked to explicitly choose the preferred one of

each pair. The use of DL representation in this research is also motivated by a suggestion

in [12] which states one benefit of using DLs over other logic representations is that they

produce a more readable and human-friendly result for novice users. Furthermore, it

gives an opportunity to integrate the proposed algorithm with e-commerce systems in the

future. We evaluate the algorithm using two real world datasets in the sushi and car

preference domains and show that the accuracy of APARELL outperforms the other 3

baseline algorithms, SVM, Decision Tree and Aleph.

This research builds on previous work combining ILP and DL, called the DL-Learner [70].

This aims to find the correct class description in a specific ontology from a set of positive

and negative examples of individuals. While the DL-Learner can only learn class defini-
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tions, we aim to learn definitions of relations. In the previous chapter, we show how the

DL-Learner learns the top class of preferences. However, it cannot be used to learn the

order of preferences. We address this problem by using APARELL, which is described in

the rest of this chapter.

5.1 Problem Representation

The preference learning problem is defined as follows:

Given: a set of individuals, a class hierarchy, a mapping from individuals to

classes, and a set of preferences represented as pairs of individuals, where the

first individual is preferred over (strictly better than) the second,

Find: a disjunction of axioms defining the domain and range of the relation

betterthan (where each axiom is expressed as a conjunction of classes) that

is complete and consistent with the given preferences.

This problem is categorised as a supervised learning problem, where the user assigns

one of two possible labels for each pair of items after considering their attributes. We then

use these labels to search for a definition of the Domain and Range class memberships

that render the relation true.

We propose an approach to learn the relations and apply the resulting system to

learn the strict order (i.e. better than). The properties of strict order relations are anti-

symmetric, which means that if item A is better than item B, then in any case item B

cannot be better than item A, unless A=B. That special case is excluded by the assumption

of betterthan being anti-reflexive (i.e. X cannot be seen as better than itself). It is also

transitive, which means whenever item A is better than item B, and item B is better than

item C, then item A is better than item C.

In the preprocessing step, the data was completed using transitive closure. The on-

tology reasoner can always be used to extract all pairs of items satisfying the preference

relation as a result of applying the transitivity property. We added these inferred exam-

ples to the set of positive examples, so that the complete closure is used by the learning

algorithm. We also use the anti-symmetry property to produce all negative examples as

a ‘mirror image’ of the positive ones (after completing their transitive closure), i.e., all

pairs derived from a positive example through the swap of the first and second element
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in the pair. This is also consistent with how the ontology reasoner works. Providing anti-

symmetry and anti-reflexive properties, it will infer that any pair of individuals with the

reverse order of the relation is being inconsistent with the ontology. We also remove any

cycle appearing in the relations.

The representation of a sample preference learning problem in DL is shown in Fig-

ure 5.1. The class hierarchy is given to the system as an input. We evaluated our al-

gorithm using a simple class hierarchy, as shown in Figure 5.1a, in order to make the

solutions comparable to the Aleph representation. In this section, we use Turtle1 syntax

to describe RDF data2.

Turtle syntax provides a way to create an RDF triple in the form of groups (as subjects,

predicates or objects) for ease of reading. For example, given the original RDF data with

full URIs (Uniform Resource Identifiers) as below:

<http://www.mycars.org/ontology#car1>

<http://www.mycars.org/ontology#betterthan>

<http://www.mycars.org/ontology#car3>.

<http://www.mycars.org/ontology#car1>

<http://www.mycars.org/ontology#betterthan>

<http://www.mycars.org/ontology#car4>.

By factoring out common portions of URIs, Turtle syntax provides a shorter form as shown

below:

@prefix myontology: <http://www.mycars.org/ontology#>.

myontology:car1 myontology:betterthan myontology:car3,

myontology:car4.

5.1.1 Hypothesis language

The aim of ILP is to find a theory that is complete (it covers all the given positive

examples) and consistent (it covers no negative examples). In our algorithm, a hypothesis

1https://www.w3.org/TR/turtle/
2Turtle stands for Terse RDF Triple Language
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(a) Simple car class hierarchy

(b) The user annotation is translated into object properties “betterthan”

Figure 5.1: Problem representation in the Protègè visualisation
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is built for a specific object property that we want to learn, as in the case of the property

betterthan. We describe betterthan as an object property in Turtle syntax as shown

below:

myontology:betterthan rdf:type owl:ObjectProperty.

Each of the possible hypotheses about this relation is then described as a pair of class

definitions, which specify membership of the domain D and the range R of the relation.

The same hypothesis language can be described in Aleph notation as the following mode

declarations:

:- modeh(1,betterthan(+car,+car)).

:- modeb(1,hasbodytype(+car,#bodytype)).

:- modeb(1,hasfuelcons(+car,#fuelconsumption)).

:- modeb(1,hasbodytype(+car,#bodytype)).

:- modeb(1,hastransmission(+car,#transmission)).

:- modeb(1,hasenginesize(+car,#enginesize)).

5.1.2 Background knowledge

Our algorithm represents background knowledge through classes and their membership,

as shown in the example below (which uses Turtle syntax):

myontology:Sedan rdf:type owl:Class ;

rdfs:subClassOf myontology:Car ;

owl:disjointWith myontology:Suv .

myontology:car1 rdf:type owl:NamedIndividual ,

myontology:Car ,

myontology:Manual ,

myontology:NonHybrid ,

myontology:SmallCar ,

myontology:Suv .
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The same background knowledge can be spelt out in Aleph as follows:

car(car1). %type predicate

bodytype(sedan). %type predicate

hasbodytype(car1,suv). %bk

hasfuelcons(car1,nonhybrid). %bk

hastransmission(car1,manual). %bk

hasenginesize(car1, small). %bk

5.1.3 Examples

In our algorithm, the set of positive examples is defined by user preferences and the pre-

processing step which computes the transitive closure of these preferences, which are then

negated to produce all negative examples. The following Turtle code expresses that car1

is better than car3, car4, car5, and car10:

myontology:car1 myontology:betterthan myontology:car3 ,

myontology:car4 ,

myontology:car5 ,

myontology:car10 .

In traditional ILP syntax, the same examples are represented as ground facts of the

predicate betterthan/2, where the arguments are of type car. So, the positive examples

in Aleph are written as: betterthan(car1,car3), and the negative, obtained by their

reversal, as :-betterthan(car3,car1).

5.2 Proposed Algorithm

The algorithm was implemented in Java using two Java-based API libraries: OWL API3 [53]

and RDF4J API4 to handle DL. The user manual for an implementation of the proposed

algorithm with a command line interface is provided in Appendix D. We follow the four

basic procedures used in the Progol/Aleph greedy learning approach:

3http://owlapi.sourceforge.net/
4http://rdf4j.org/
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1. Select a positive example. Each instance of the relation can be seen as a pair of

object IDs. Similar to Aleph, we proceed through the example sequentially.

2. Build the bottom clause. The bottom clause is constructed from the conjunction

of all non-disjoint classes in which each individual in the pairs is the member.

3. Search. This step is to find all clauses consistent with the data.

4. Remove covered positive examples. Our algorithm is greedy in its treatment of

positive training examples. We removed all covered positive examples once consistent

clauses were added to the current theory.

The pseudocode for APARELL is shown in Algorithm 1. It takes five arguments as

an input: (i) background knowledge, (ii) a set of positive examples, (iii) a set of negative

examples, (iv) a setting of literal (depth) limit, and (v) a relation name to be learned (in

this case, it is betterthan). The algorithm will then process the input by following the four

basic steps listed above.

After some initialisation, the loop is performed if positive examples are still available to

be processed (some positive examples are removed during the search). The generalisation

of each example starts from the size of 2 literals (clause size is set to 2 in step 6), e.g.

Manual betterthan Sedan (Manual is counted as 1 literal and Sedan is also counted as 1

literal). This generalisation is built on a combinations of each literal in the bottom clause.

For example, in Figure 5.2, the bottom clause is given in the bottom box with the ⊥ sym-

bol. It contains a set of classes on the left, x1={Manual, NonHybrid, Smallcar, Suv}

and a set of classes on the right, x2={MediumCar, Manual, NonHybrid, Sedan}. From

the example, the generalisation will start from: Manual betterthan MediumCar. The al-

gorithm will skip the evaluation if the literals on the left are the same as the literals on

the right, e.g. Car betterthan Car. Any hypothesis/clause that is consistent with positive

examples and which does not cover any negative examples will be stored in a theory T.

An increment in the clause size (step 18) is needed whenever the algorithm cannot find

a consistent clause in the current clause size (level). Otherwise, if one or more consistent

clauses have been found in the current level, the algorithm will stop the search and re-

move the covered positive examples (step 25). If the algorithm cannot find any consistent

clauses before it reaches the specified depth limit, the current example will be added to

the theory T and it will be removed from the set of positive examples.
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Algorithm 1 APARELL algorithm

Input – background knowledge B,
a set of positive examples E+ = {〈e1, e2〉, . . . , 〈en, em〉},
a set of negative examples E− = {〈e2, e1〉, . . . , 〈em, en〉},
literal (depth) limit l,
a relation name r = betterthan

Output – A theory T represented as a set of clauses, each defining a pair of concepts
specifying the relation’s domain and range

1: set T = ∅ /* initialisation*/
2: set x1 = ∅ /* the list of constraints on Domain */
3: set x2 = ∅ /* the list of constraints on Range */
4: set flag = false /* whether a consistent generalisastion of the bottom clause has been

found */
5: while E+ is not empty do
6: set clause size = 2 /* initial value for |x1|+ |x2| */
7: set x1 = ∅, x2 = ∅, flag = false /* reset in every loop*/
8: select e+ ∈ E+ to be generalised, and define 〈e1, e2〉 = e+

/* build the bottom clause 〈x1, x2〉 for e+ as follows: */
9: • set x1 = {C1, . . . , Cm}∀Ci such that e1 is a member of class Ci

10: • set x2 = {D1, . . . , Dn}∀Di such that e2 is a member of class Di

11: while flag==false and clause size < l do
/* search (top-down) through all generalisations of the bottom clause */

12: for all x′1 ⊆ x1, x
′
2 ⊆ x2, |x′1|+ |x′2| == clause size do

13: if x′1 betterthan x
′
2 is consistent and more general than e+ then

14: add the clause to T
15: set flag = true
16: end if
17: end for
18: if flag==false and clause size < l then
19: set clause size = clause size+ 1 /* increment clause size */
20: else if flag==false and clause size == l then
21: add e+ to T and remove e+ from E+ /* exception */
22: end if
23: end while
24: if flag==true then
25: remove covered positive examples from E+

26: end if
27: end while
28: return T
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5.2.1 Search and refinement operator

A top down approach similar to the one in Progol/Aleph was used, starting with the

smallest clause length. The algorithm proceeds by considering an increasing number of

properties (literals) constraining each of the two objects in the relation. The refinement

operator starts from the top as written in DL below:

> u ∃betterthan.>

The bottom clause contains the conjunction of n constraints (of type class membership)

on the Domain side and same number of constraints again on the Range side of the relation.

This will produce n×n possible pairs on the first level of generalisation (clause length=2).

All combinations of constraints are evaluated, apart from those that imply the same class

membership of both arguments (i.e. X is better than Y because they both share the same

property/class membership) and those that have already been considered. An example of

the refinement operator from a positive example car1 is better than car3 is illustrated in

Figure 5.2 (please see Section 5.5.1 for the car preferences original description).

(Thing) betterthan (Thing)

(Car) betterthan (Car)

(Manual) betterthan (MediumCar) (Manual) betterthan (NonHybrid) . . .

(Manual) betterthan (MediumCar u Manual) . . .

. . .

(Manual u NonHybrid u SmallCar) betterthan (MediumCar u Manual u NonHybrid u Sedan)

⊥
(Manual u NonHybrid u SmallCar u Suv) betterthan (MediumCar u Manual u NonHybrid u Sedan)

Figure 5.2: APARELL refinement operator

Comparisons with ALEPH. The coverage of a clause is expressed through P and

N , where P is the number of positive examples covered and N is the number of negative

examples covered. In cases where one solution has the same score as an alternative solution,

Aleph will only return the first solution found. In our algorithm, we consider all new
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clauses that cover at least two positive examples and none of the negatives. (This is done

to ensure consistency and that at least a minimum level of generalisation takes place.) The

search will not stop until all possible combinations at each level have been considered. The

resulting theory is a disjunction of clauses. Therefore, any test examples covered by one

of them is classified as positive.

Our algorithm retains all consistent clauses generalised from a given positive example,

rather than just one of them, as Aleph would have done. (At the same time, both al-

gorithms discard the positive example from the training set after this generalisation step

in a greedy learning manner.) This is the most important difference between the two

algorithms and a possible explanation for any observed difference in their performance.

If a consistent clause has not been found yet, the algorithm continues to refine the

current candidate by adding one literal to constrain either objects in the relation. Similarly

to Aleph, when APARELL cannot find a consistent generalisation, it adds the bottom

clause itself to the theory.

CWA and OWA. We implemented our algorithm using the Closed World Assumption

(CWA). For the problem of learning strict order, it makes virtually no difference whether

our system operates under the CWA or Open World Assumption (OWA). Under the OWA,

we learn two hypotheses: one as mentioned before, the other with positive and negative

examples swapped. For the given domain (of learning strict order), the second hypothesis

(i.e. the one that is swapped between the negative and positive examples) is almost the

exact negation of the first (modulo the choice of a training sample). The resulting coverage

is therefore almost identical to that of the CWA hypothesis. The resulting hypothesis of

learning the given positive and negative example from userID=1 in the car dataset is shown

in Figure 5.3a, while the hypothesis with the swapped positive and negative example is

shown in Figure 5.3b.

5.2.2 Complexity of APARELL algorithm

The algorithm uses breadth-first search with limited depth. For each positive example,

the generalisation search tree will contain 2n × 2n nodes in the worst case (if the depth is

not limited), with n representing the number of attributes. This number comes from the

combinations of clauses built from the attribute values in the bottom clause. If there are

n attributes in the data set, then on the left 2n possible attribute value combinations will
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(a) Learning from positive and negative

(b) Learning from negative and positive being swapped

Figure 5.3: An example of APARELL hypothesis under CWA and OWA
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be built, starting from size 1 up to size n. Each of these combinations needs to be paired

with the attribute value combinations from the right side which are of the same size, i.e.

2n, to create clauses/nodes in the search tree. Those two numbers are then multiplied,

giving 2n × 2n.

In the worst case, if the search cannot find a consistent clause for the positive examples,

then the search will be m× 2n× 2n, where m represents the number of positive examples.

If the algorithm finds a consistent hypothesis at a certain level, it will stop and remove the

covered positive examples to reduce the complexity. This greedy method has been proven

very effective in the original ILP greedy algorithms such as Aleph and Progol in reducing

the complexity while still producing good accuracy in a number of problems. Since the

number of attributes is the most significant parameter of the algorithm complexity, it can

be simplified to O(22n) (where n is the number of attributes); therefore the complexity is

exponential.

5.2.3 Current limitations

The algorithm can handle a multi-level class hierarchy. We only allow conjunctions of

literals in the clauses, effectively limiting the language to EL description logic. With

this limitation, we can still produce a fairly accurate model with the results being easier

to interpreted. The most expensive process is membership checking (using the ontology

reasoner) for all possible hypotheses. This is used for scoring the hypothesis coverage. One

possible way to reduce the complexity is by minimising the search tree and checking the

redundancy without reducing the accuracy. The search in our algorithm follows a breadth-

first search with limited depth (specified as l parameter) which makes the complexity of

the algorithm exponential with respect to the number of possible attribute values of each

item, but it is capped by a certain depth. Another limitation of the proposed algorithm

is that we do not provide a set of minimal solutions. Unlike Aleph, we produce a full set

of solutions to make a better prediction.

While we produce a more accurate result, the process takes about 5 times longer than

Aleph. For example, given 45 training examples, in which each item has 4 attributes, our

algorithm takes 409 ms to finish while Aleph is faster, performing in just 88 ms. Although

it is not a proper head-to-head comparison when the two systems were developed using

different platforms.
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5.3 Improving the Scalability

Our system can read two different input type options, an OWL file and an RDF database.

In the first type, the system reads all inputs (i.e. the ontology file, the training examples

and the test examples) from OWL text files and processes the query using the OWL API.

Each example is stored as a pair separated by a comma (e.g. “car1, car2”). A set of

examples is stored in a CSV file format and the positive and negative examples need to

be stored in different text files. The difference between RDF and OWL can be read in

Section 2.4.1.

In this section, the procedure for using the second input type, an RDF database is

explained. A triplestore was used as the main input to read the ontology model. The

GraphDB5 triplestore was implemented, and all queries processed remotely using the

SPARQL query language. Triplestore is used in our system to accommodate a larger

dataset, which cannot be handled in terms of the performance speed, by a text file.

The steps used in applying ILP with the RDF database are explained below:

1. Build a connection to a triplestore database server.

2. Build a membership table to speed up the scoring process. In this step, we execute

a SPARQL query to retrieve the class memberships. We need to store in memory

which individual belongs to a certain class. This makes the learner work faster when

it comes to counting the hypothesis coverage scores. By using a membership table,

it is not necessary to run the query every time, saving resources.

3. Select a positive example to be generalised.

4. Build the bottom clause. In this process, similar to step 2, we use a SPARQL query

to retrieve all classes of the individual on the left and right sides of the relation.

5. Search the solutions in the same way as explained in the previous section, to build

the refinement operator.

6. Remove the covered examples and repeat the generalisation procedure until all ex-

amples are covered by rules.

5http://graphdb.ontotext.com/
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Step numbers 3 - 6 are the main steps in the proposed algorithm (see Section 5.2).

This procedure was evaluated using the existing datasets [1,65] and the results show that

using triplestore can make the process 4 times faster than using textfiles.

5.4 Search in a Complex Class Hierarchy

In the case of a more complex class hierarchy that consists of more than one level, we

consider the hypothesis search over all inferred class memberships of each individual. For

example, if the class hierarchy and its membership in Figure 5.4 is given to the system,

the algorithm progresses as follows:

1. Select a positive example. As an example, car 1 is better than car 3, is gener-

alised. Please see Table 5.2 for the properties of the cars.

2. Build the bottom clause. In this step, the reasoner is used to infer all classes

which include car 1 and car 3 in their direct and indirect membership. The bottom

class of the above example is shown as follows:

(Car and EconomyCar and FamilyCar and Manual and

NonHybrid and SmallCar and Suv) betterthan

(Car and Manual and MediumCar and NonHybrid and Sedan)

The above bottom clause is only used for generalisation guidance, since

SmallCar v EconomyCar v Car. The examination of a clause like this is skipped

because the membership of the intersection between a class and its superclass will

be the same as the membership of the class itself. For example, the membership of

SmallCar u EconomyCar is {car1,car8}, which is the same as the membership of

SmallCar itself.

3. Search. The search begins with the shortest clause length considered (2 literals) as

shown below:

Car betterthan Manual

Car betterthan MediumCar

Car betterthan NonHybrid

Car betterthan Sedan
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EconomyCar betterthan Car

EconomyCar betterthan Manual

...

If no consistent hypothesis of length 2 is found, the search parameter is increased

to 3:

EconomyCar and FamilyCar betterthan Car

EconomyCar and FamilyCar betterthan Manual

...

Please note that we also skip evaluations of same value comparisons like:

Car betterthan Car to speed up the search.

4. Remove covered positive examples. We count the coverage for each hypothesis

built and remove any covered positive examples from the training dataset.

Figure 5.4: An example of more than one level of car class hierarchy
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5.5 Evaluation

5.5.1 Dataset

In this experiment, we use the same datasets as in Chapter 4. Both the sushi and the car

datasets have 10 items to rank, giving 45 preference pairs per user. We took 60 users from

each dataset and performed 10-fold cross validation for each individual user’s preferences.

The car dataset has 4 attributes, body type, transmission, fuel consumption and engine

size. We provide a sample of data from [1] to make this clearer as shown in Table 5.1 and

Table 5.2. Despite the difference in the number of attributes in the two datasets, we found

that with the clause length was set to 4 (in Aleph and in our algorithm), it was sufficient

to produce consistent hypotheses.

The second dataset used in the experiments is about sushi preferences6, published by

Kamishima [65]. The dataset contains individual user preferences for 10 different sushi

types. The users were asked to sort the sushis according to their preferences in ascending

order. For the experiment, we generated the pairs order from each individual preference.

Similar to the car dataset explained above, 45 pairs of sushi preferences were built from

10 types of sushi. The specification of sushi is presented in Table 4.3. In the dataset,

5,000 users were involved in the survey, but in this experiment, only data from the first

60 users were used, to make it comparable with the experiment on the car dataset. The

sushi preference dataset is quite large compared to the car preference dataset, as it has 7

attributes giving the specification of each sushi . With the large size of the sushi dataset,

we were able to test the performance of the algorithm and evaluate how it grows. With

the literal setting=2, 7 attributes on each pair creates 49 (7×7) possible combinations

of values to be visited as candidate hypotheses. The combination could be even larger

with a higher setting of maximum literals allowed in the algorithm. For example, with

depth setting=4, for each user there will be 1,274 nodes × 45 (number of examples) to

visit. Please note that comparisons of the same values are skipped and some examples are

removed during the search. The sushi class hierarchy used in this experiment is shown in

Figure 5.5.

6http://www.kamishima.net/sushi/
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Figure 5.5: Sushi class hierachy

Table 5.1: Item descriptions on car dataset

Car ID Bodytype Transmission Fuel Engine size

1 suv manual non-hybrid small
2 sedan automatic hybrid large
3 sedan manual non-hybrid medium
4 sedan manual non-hybrid large
5 suv manual non-hybrid medium
6 suv automatic hybrid medium
7 sedan automatic hybrid medium
8 suv automatic hybrid small
9 sedan automatic non-hybrid medium
10 suv automatic non-hybrid medium

Table 5.2: A sample of car preference dataset

User ID Item1 ID Item2 ID

1 1 3
1 1 4
1 1 5
1 1 10
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5.5.2 Evaluation method

The goal of this evaluation is to assess the accuracy of the predictive power of the algorithm

to solve the preference learning problem. To achieve this, we set up four experiments:

1. Asses the accuracy of the algorithm compared to three baseline algorithms, SVM,

Aleph and DT, on 60 users in the car dataset and the sushi dataset. An ANOVA

and a post-hoc test were done to assess if any of the differences in the algorithms’

performance were significant.

2. Asses the capability of the algorithm to learn relations from a more complex class

hierarchy by using the car dataset.

3. Asses the accuracy and the performance of the algorithm on a larger dataset by

conducting an experiment with the 5,000 users of the sushi dataset.

4. Asses the accuracy of the algorithm on different training example sizes compared to

the three baseline algorithms.

Accuracy on 60 users. We compared our algorithm with three other machine learning

algorithms: SVM, the Matlab CART Decision Tree (DT) learner and Aleph. SVM is a

very common statistical classification algorithm that is used in many domains. Similar

work on pairwise preference learning was performed by Qian et al. [103] showing that

SVM can also be used to learn in this domain. Both DT and Aleph were included in the

evaluation since both are logic based learners, with the first in propositional logic and the

second in First Order Logic.

We built a simple class hierarchy as explained in Section 5.1 for each dataset. We

learned the individual preferences and evaluated the model using 10-fold cross validation.

We repeated the same test for all users then found the average accuracy. The accuracy

result is shown in Table 5.3. This experiment stopped at a length of 4 literals (the same

as Aleph’s default clause length). According to the ANOVA test with α = 0.05, the

results show that there is a significant difference between the algorithms, with a p-value

of 1.14× 10−21 for the car dataset and 2.97× 10−3 for the sushi dataset.

An ANOVA is conceptually similar to multiple two-sample t-tests but is more conser-

vative (resulting in less type I errors). After performing an ANOVA test, we needed to

find which algorithms were significantly different using Fisher’s Least Significant Differ-

ence (LSD). The results of this post-hoc test are shown in Table 5.4. Please note that
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the results of the 10-fold cross validation may have a bias due to the fact that the use of

transitivity chains (closures) may create an overlap between training and test data.

Table 5.3: Mean and standard deviation of 10-fold cross validation test

SVM DT Aleph Our algorithm

car dataset 0.8264±0.12 0.7470±0.10 0.7292±0.08 0.8456±0.06
sushi dataset 0.7604±0.09 0.7869±0.07 0.7789±0.06 0.8138±0.07

Table 5.4: Post-hoc Fisher’s Least Significant Difference (LSD)

Algorithm 1 Algorithm 2
Sushi dataset Car dataset

p-value means diff. p-value means diff.

Aleph DT 0.561 same 0.292 same
Aleph Our algorithm 0.011 different 0 different
Aleph SVM 0.177 same 0 different
Our algorithm DT 0.049 different 0 different
Our algorithm SVM 0 different 0.257 same
DT SVM 0.054 same 0 different

Accuracy on more complex class hierarchy. As an additional experiment, we eval-

uated the car dataset with the complex class hierarchy (see Figure 5.4) using literal depth

limit=4. The accuracy of our algorithm was performed using 10-fold cross validation. The

results of the experiment with the complex class hierarchy are shown in Table 5.5. The

accuracy results show no difference between using simple class hierarchy and complex class

hierarchy.

Table 5.5: Car dataset with complex class car hierarchy

mean 0.8409

std.deviation 0.1405

Accuracy on a larger dataset. In this experiment, our algorithm still showed the

highest accuracy compared to the three baseline algorithms. The average accuracy on

individual preferences from 5,000 sushi dataset users is shown in Table 5.6. In the first

experiment, evaluated the mean difference between the algorithms using an ANOVA and

a post-hoc test. Here, the p-value of the ANOVA (α=0.05) test was 0. This is common

in a large dataset. According to [75], performing a statistical test to analyse the mean

difference in a large dataset can be problematical, as p-values tend to drop quickly to zero.

From the results shown in Table 5.6, a low standard deviation rate is a good indication

that the accuracy of our algorithm is excellent in any case in the dataset.
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Table 5.6: Experiment result on 5000 users

SVM DT Aleph Our algorithm

mean 0.7599 0.8004 0.7867 0.8150
stdev 0.0912 0.0612 0.0697 0.0604

Accuracy on different training example sizes. We performed several experiments

with the algorithms by varying the proportion of training examples and testing it on

10% of examples. For a more robust result, we validated each cycle with 10-fold cross

validation. The results of these experiments are shown in Figure 5.6, where it can be seen

that APARELL still works better, even with the smallest number of training examples.

Figure 5.6: Accuracy by varying number of training examples

5.5.3 Algorithm performance

A further test was run to examine algorithm performance by different clause length settings

(see Table 5.7). The evaluation was performed on both datasets by training the model on

90% of the examples and testing it on the remaining 10%. We also recorded the algorithm

execution times of 60 users × 90% of examples (2,382 total examples in the car dataset and
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2,400 total examples in the sushi dataset, please note that some of the positive examples

are removed during the search). The algorithm was executed on Java 8 Eclipse IDE with

8 GB Memory 1867 MHz DDR3 and a 2.9 GHz Processor Intel Core i5 machine.

The results show there is no significant accuracy improvement after 4 literals. Surpris-

ingly, the algorithm ran very slowly at 2 literals for the car dataset (where the achieved

accuracy is the lowest for all tested clause lengths). The reason is in the removal of the

covered positive examples (see Section 5.2). If we cannot find a consistent hypothesis

when generalising a positive example, we add an exception and only remove one example.

However, when the algorithm finds consistent hypotheses, it removes more than one ex-

ample, which results in much fewer positive examples, thus speeding up the search. This

anomaly does not occur in the sushi dataset due to the larger number of attributes, so

that the possibility of finding a consistent hypothesis for clause length 2 is higher.

Table 5.7: Performance on different clause length settings

Clause length Car dataset Sushi dataset
Accuracy Running time Accuracy Running time

2 literals 0.7433 ±0.15 17,824 ms 0.8135±0.13 12,189 ms
3 literals 0.8533 ± 0.14 11,338 ms 0.8117±0.13 19,040 ms
4 literals 0.8434 ±0.12 13,050 ms 0.8266±0.13 36,922 ms
5 literals 0.8217 ±0.15 14,223 ms 0.8150± 0.14 60,943 ms

5.6 Sample Output

An example of consistent hypotheses found by our algorithm is shown in Figure 5.3. The

output of the command line software also prints out all possible hypotheses in the search

space and their coverage score, as shown in Figure 5.7.

5.7 Summary

In this chapter, the ILP implementation in DL was demonstrated, to study relation in

general and in particular to learn user preferences from pairwise comparisons. In terms

of accuracy, the experiments show that our algorithm outperformed the other baseline

algorithms, but this is a time consuming process. In order to produce a complete and

consistent hypothesis, our algorithm takes much longer than the three baseline algorithms.

In fact, the proposed algorithm has proven statistically significantly better than all tested

alternatives in all but one case. The exception in question is when compared to SVM on

97



Chapter 5: Inductive Learning of Ordinal Data in Description Logics

Figure 5.7: A sample of APARELL generalisation

the car dataset, where our algorithm achieves a seemingly higher mean accuracy, but the

result is not statistically significant (in other words, it is a draw).

As shown in the previous chapter, it could be argued that the original ILP system,

which is based on logic programming, can be used to solve the problem in preference

learning as well as propositional logic and statistics-based systems. It is also true that as

a fragment of FOL, representing the problem in DL make it more restrictive in terms of

the expressiveness. However, in this chapter, we have shown that the knowledge base in

the preference learning problem can be represented by using DL representation in a more

human-friendly and more readable way than other representations, as suggested in [12].

In addition, research in DL has been paying attention to scalable triplestore database

management systems, which can accommodate data growth in the future. This might

also be advantageous for our research. In the next chapter, the active learning part of

APARELL, improving the accuracy with the least training data, is described.
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Chapter 6

Active Learning to Support the

Inference Process

In the previous chapter, the basic module of a relation learner based on ILP in DL,

APARELL, is explained. While the use of ILP in DL can be very useful in learning

preferences in pairwise comparisons, another challenge remains on how to select the most

informative pairs when asking users. In the real world, the problem of selecting the next

pairwise comparisons to be annotated can be more complicated. There will be thousands

of possible pair combinations with different attribute descriptions.

Active Learning (AL) aims to reduce the number of examples as early as possible.

The quality of an AL strategy really depends on which learning algorithm is used and

the problem itself [117]. It is not possible to generalise the quality of an AL strategy

to all learning algorithms. There are a number of sampling methods in AL which are

commonly used to address certain classification problems, such as uncertainty sampling,

error/variance reduction and query by committee. Most of these well-known AL strategies

use probabilities to measure the likelihood of each data point being classified as a certain

class. However, they cannot be used to support our learning algorithm, because probability

has not yet been implemented in APARELL. An explanation of existing AL strategies is

provided in Chapter 2.

Here we explain the active learning strategy to enhance the basic module of APARELL.

A new active learning strategy to choose the most informative pairs using the distance

measurement between items in pairs is proposed. The proposed AL strategy has been

evaluated on the car preferences dataset and compared to two other sampling methods:

(i) random sampling, and (ii) maximum distance sampling.
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6.1 Problem Definition

In the domain of pairwise preference learning, the active learning problem is defined as

follows:

Given: a set of unlabelled data in pairs

Find: the most informative data in pairs to be fed into the learning algorithm

to produce a more accurate result with fewer examples.

The term informative here means the capability to provide a significant contribution

to the predictive power of the chosen learning algorithm.

6.2 Proposed AL Strategy

A new approach was developed based on the idea of version space [86] reduction, where

the next point to be labelled is the one that reduces the size of the version space faster.

It is useful for our learning algorithm to explore every possibility as wide as possible at

the beginning. We can then proceed with the search in each local version space in order

to give the learner more supporting facts. An illustration of the search process is shown

in Figure 6.1. For example, a user is given two pairs of cars to chose from, as below:

• car 1 OR car 2

• car 3 OR car 4,

where each car has the attributes:

• car 1 is a sedan and automatic car

• car 2 is an SUV and manual car

• car 3 is a sedan and manual car

• car 4 is an SUV and automatic car,

and the user’s answers are:

• car 1 is better than car 2

• car 3 is better than car 4.
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6.2 Proposed AL Strategy

From the above example, the data is processed in two steps. In the first step, each

diagonal space in four quadrants is explored (see the grey shaded area in Figure 6.1a).

This is called the ‘exploring step’. The user is given a set of pairs considering the most

different attributes (later called the furthest distance) of each item in the pairs, e.g. the

pair car 1 and car 2 was selected because the cars do not share any common attributes.

The aim of this step is to decide which areas need to be explored further. A method of

measuring the distance between two items is needed to select which pair of item has the

furthest distance, which in this case means the most informative pair. The measurement

method used is explained in Section 6.2.1.

In the second step, the search focuses on half of the quadrants (see the grey shaded area

in Figure 6.1b). In this step, the search is focused on more specific attributes preferred

by the user, which leads the learner to higher accuracy. This is called the ‘refining step’.

More details on each step are explained in Section 6.2.2.
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Figure 6.1: Illustration of the selection of the next pairwise process

6.2.1 Pair distance measurement

The idea of using a distance measure to separate the data as far as possible is similar to

performing pre-clustering on the data. However, performing data clustering on a large

dataset is very time consuming and cannot be performed simultaneously with the learning

process. Pre-clustering can also be problematic when very limited data is available. The

intuition behind the use of this method is that performing a distance measurement allows

the learner to get better sampling data from different attribute values. The pair distance is

measured to obtain the most informative data points from different regions in the attribute

dimension space.
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The ALGO DISTANCE algorithm, proposed by Ahmad and Dey [7] was used to mea-

sure the distance for single valued variable categorical data. This means, if (X1, X2, . . . , Xm)

define a data object having m attributes then every attribute value Xi(i = 1, . . . ,m) can

take only one value. The ALGO DISTANCE has been evaluated in supervised and unsu-

pervised learning methods. It is based on the fact that the similarity between two attribute

values depends on their relationship with the other attributes. If the distance between

two data points is large, they most likely do not share any common attribute values.

ALGO DISTANCE measures the distance between every pair of attribute values in the

same attribute category then repeats this for all attributes in the data set. For example,

in the car dataset, it measures the distance between the attribute value Manual and the

attribute value Automatic in the Transmission category. The dissimilarity between two

attribute values in the same category is computed with respect to the co-occurrence with

every other attribute value in each different category of the data set. The average value

of the co-occurrence distances will then give the distance between two distinct attribute

values in that data set.

Suppose there is a categorical attribute Ai in a data set, with two values x and y.

For the given data set, suppose Aj denotes another categorical attribute. Let w denote a

subset of values of Aj . Using set-theoretic notation, (∼ w) denotes the complementary set

of values occurring for attribute Aj . The co-occurence of each attribute value with other

attribute values can be calculated using conditional probabilities. Let Pi(w|x) denote the

probability that an element having value x for Ai, has a value belonging to w for Aj . The

distance between attribute values x and y of Ai with respect to attribute Aj is denoted

by δij(x, y) and is defined as follows:

δij(x, y) = Pi(ω|x) + Pi(∼ ω|y)− 1, (6.1)

where ω is the subset w of attribute Ai values that maximise the sum of Pi(ω|x) and

Pi(∼ ω|y). Since both Pi(ω|x) and Pi(∼ ω|y) lie between 0 and 1.0, to restrict the value

of δij(x, y) to between 0 and 1, the sum needs to be subtracted by 1. This can be achieved

using a maximising function find max which is shown in Algorithm 2.

Suppose there are m categorical attributes in the data set, Ai denotes the i-th categori-

cal attribute. The distance between two distinct attribute values x and y of any categorical

attribute Ai (denoted δ(x, y)) is calculated with respect to each j-th attribute (j 6= i):
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6.2 Proposed AL Strategy

Algorithm 2 Function find max()

Input – Two attribute Ai and Aj , two attribute values x and y of Ai
Output – Distance δij(x, y)
Let vj be the number of categorical values of attribute Aj , and u[t] denote a particular
value of Aj , 1 ≤ t ≤ vj . P (u[t]|x) denotes the probability that an object having value
x for i-th attribute has value u[t] for j-th attribute.

1: δij(x, y) = 0 /* distance initialised to 0 */
2: w′ = ∅ /* Support set initialised to NULL */
3: for t = 1; t < vj ; t++ do
4: if P (u[t]|x) ≥ P (u[t]|y) /* u[t] occurs more frequently with x than with y */ then
5: add u[t] to w′ /* u[t] is added to support set */
6: δij(x, y) = δij(x, y) + P (u[t]|x)
7: else
8: add u[t] to ∼ w′ /* u[t] is added to complement of support set */
9: δij(x, y) = δij(x, y) + P (u[t]|y);

10: end if
11: end for
12: δij(x, y) = δij(x, y)− 1;

δ(x, y) =
1

m− 1

 m∑
j=1

δij(x, y)

 (i 6= j) , (6.2)

where the following properties hold:

1. 0 ≤ δ(x, y) ≤ 1,

2. δ(x, y) = δ(y, x),

3. δ(x, x) = 0.

The pseudocode of ALGO DISTANCE, which uses the above equation, is given in Algo-

rithm 3.

Following the calculation of the distances of each attribute values, the distance between

a pair of data values/points is computed using the Manhattan Distance. Suppose there

are two data objects X and Y, where:

• X has a set of m attribute value {x1, x2, . . . , xm},

• Y has a set of attribute values {y1, y2, . . . , ym},

• xm and ym are the values of attribute Am,
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Chapter 6: Active Learning to Support the Inference Process

Algorithm 3 ALGO DISTANCE

Input - data set D with m attributes and n data objects, in which the numerical
attributes have been discretised.
Output – Distance between every pair of attribute values for all attributes.

1: for every attribute Ai do
2: for every pair of categorical attribute values (x, y) of Ai do
3: Sum = 0;
4: for every attribute Ai 6= Aj do
5: Compute δij(x, y) using find max();
6: Sum = Sum + δij(x, y);
7: end for
8: δ(x, y) = Sum/(m− 1)
9: end for

10: end for

the distance between two data objects ϑ(X,Y ) can be computed as follows:

ϑ(X,Y ) =
m∑
i=1

δ(xi, yi) (Manhattan Distance) (6.3)

Ahmad and Dey [6] introduced the use of ALGO DISTANCE to measure the dis-

tance of data with mixed type attributes. This section focuses on a data set in which all

attributes are categorical.

6.2.2 Selecting the next pairwise comparisons

The goal of the proposed AL strategy is to make better predictions using as few pairwise

comparisons as possible. The pseudocode for the proposed AL strategy is written in

Algorithm 4. This strategy aims to reduce the version space by half with the following

steps:

1. Exploring step

In the first step, the exploration of all possibilities is performed as far as possible,

as there is no initial information about user preferences. The system starts to learn

from a set of pairs which have maximum distances. It is argued that the rules from

the first set have a possibility of containing the correct attributes to describe the

best car so far. In the system output, these attributes appear as any clause on the

left, but not on the right, of the relation betterthan.

2. Refining step

The previous step gives information on which car attributes are preferred by the
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6.2 Proposed AL Strategy

user, so we can now continue the search by focusing only on these attributes. In

this step, more specific pairwise comparisons will be selected, based on the rules

produced by the learner in the previous step. As an example, in the exploring step,

the learner produces rules as below:

(Suv) betterthan (Sedan)

(Manual and Suv) betterthan (Hybrid)

(Suv and Manual) betterthan (Automatic)

(Suv) betterthan (MediumCar and Hybrid)

(Suv and Manual) betterthan (MediumCar)

(Suv and NonHybrid) betterthan (MediumCar)

(Manual) betterthan (Sedan and MediumCar)

(Manual and LargeCar) betterthan (Sedan)

Therefore, everything (every attribute) that appears on the left, but not on the right,

of the relation betterthan is considered to be selected as the most informative pairs

and it is concluded that:

Attributes of the best car so far = {Suv, Manual, NonHybrid, LargeCar}

From the above example, the item set in the refining step is limited only by con-

sidering each of the attributes above (i.e. SUV, manual, non-hybrid, and large

car). We can use query to retrieve any pair that contains items matched with those

characteristics. In a real recommender system, users can perform a filtering search

interactively, so that the pairs shown to them are exactly what they want. But in an

offline experiment, since we can only use the preferences existing in the data set, all

possible best attribute values produced in the first round need to be tested, whether

they are good enough to predict the overall user preferences or not.

The refining step is performed for all attribute values found in the first step. For

example, the refining step is started from the attribute value Suv. Pairs that have

the same Suv type (a subset of the car dataset that shares the common attribute

value Suv) were selected. This method made a big contribution to the correctness

of the prediction.
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Chapter 6: Active Learning to Support the Inference Process

Algorithm 4 Active learning module of APARELL

1: Measure the distance for every attribute value pair in the data set using
ALGO DISTANCE

2: Set parameter k as the sampling size in each batch/step
3: Initialise a set of positive examples E+ = ∅
4: Run the initial step:

• Select k pairs with the furthest distance
• Add the selected pairs to E+

• Generate the negative examples E− where all pairs have the opposite
order from E+

• Sort by descending distance
• Run APARELL
• Get all attribute values that appear on the left but not on the right

side (the best item attributes).
5: Run the refining step:

• Get the best attribute values produced by step 4 (called best class)
• Retrieve all pairs which belong to best class (first item and second

item in the pairs share a common attribute value of best class)
• Select k pairs from best class with the highest distances
• Add the selected pairs to E+

• Generate negative examples E− where all the pairs have the opposite
order from E+

6: Sort all pairs in E+ in descending order by distance
7: Run APARELL with a set of examples E+ and E−

6.3 Evaluation

6.3.1 Dataset

In this evaluation, the car preferences dataset [1] is used. The description of available cars

is shown in Table 6.1.

Table 6.1: Item descriptions

Car ID Bodytype Transmission Fuel Engine size

1 suv manual non-hybrid small
2 sedan automatic hybrid large
3 sedan manual non-hybrid medium
4 sedan manual non-hybrid large
5 suv manual non-hybrid medium
6 suv automatic hybrid medium
7 sedan automatic hybrid medium
8 suv automatic hybrid small
9 sedan automatic non-hybrid medium
10 suv automatic non-hybrid medium
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6.3.2 Experiment setting and result

Before evaluating the proposed strategy, we need to set up the prerequisites, i.e. measure

the distance of each attribute value pair in the car dataset. The distance of each attribute

value in the dataset using ALGO DISTANCE [7] is presented in Table 6.2.

Table 6.2: Distance between pairs of attributes based on ALGO DISTANCE

Value 1 Value 2 Distance

sedan suv 0.13333
automatic manual 0.27778
hybrid non-hybrid 0.27778
large medium 0.27778
large small 0.33333
medium small 0.27778

Three experiments were used to evaluate the proposed AL strategy:

1. Assessing the goodness of different selection strategies by distances on predicting the

best car attributes.

2. Comparing two different sorting methods, i.e. maximum and minimum with random

sampling.

3. Assessing the proposed AL strategy against random and maximum ordering meth-

ods.

Predicting the best car attributes. After measuring the distance for each attribute

value in the dataset, it is possible to calculate the distance of all pairs of cars. We need to

assess how distance affects the prediction power of the learning algorithm. In this section,

we evaluate whether maximum distance is better at predicting than minimum distance or

random. They are also compared to the full set of training data.

An experiment to find which distance type contributes most to better prediction was

run. This experiment was designed to evaluate how good different selection strategies to

predict the best car attributes were. We took an exact number of pairs in each subset of

attribute values to limit the data. For each user, we took 9 pairs, with each of them being

a member of one of nine different classes (please see Figure 5.1a): Automatic, Manual,

Suv, Sedan, Hybrid, NonHybrid, SmallCar, MediumCar, and LargeCar. This can also be

explained as the pairs sharing at least one common attribute value between them.
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In the maximum distance setting, we selected pairs with the greatest distances, while

in the minimum setting, we choose pairs with the closest distances. We ran the learner

and analysed how many best attribute values were produced by those pairs. To make it

easier for the reader, we borrowed the term recall from binary classification, in which the

quality of the prediction is measured by the fraction of relevant instances retrieved over

the total amount of relevant instances. The same setting were repeated for every user and

the average values obtained for all users.

The results of this experiment are shown in Figure 6.2. From the results, it can be

argued that when APARELL learns from selected pairs with maximum distances, it can

produce a set of rules which contain on average 67.62% correct best car attributes.
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Figure 6.2: Result of the best car attributes prediction

The accuracy of different sorting methods. Our learning algorithm uses a top

down approach similar to Aleph/Progol [92]. It builds a hypothesis by combining each

attribute for every pair. It starts from the most general (the shortest clause) and stops

at a certain level (specified as a parameter). The hypothesis generalisation was done

based on the order of the examples (sequentially). This means the rules produced by
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the algorithm vary depending on how the examples are ordered. It is very important to

pay attention to this, especially when there is only a small number of available examples.

Another experiment was run on different example orderings and evaluated with 10-fold

cross validation. The results of this experiment on different sizes of training examples are

shown in Figure 6.3. It is shown that the maximum distance method predicts better than

the minimum or random methods.
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Figure 6.3: Accuracy on the car dataset by different examples ordering

Performance of the proposed AL strategy. In this experiment, the performance

of the proposed AL strategy was evaluated. The evaluation was based on how fast it

improved in accuracy compared to the random sampling method. The dataset contained

60 different individual preferences. The standard 10-fold cross validation was performed

for each user on the dataset and the results are shown in Figure 6.4. In each iteration,

the accuracy of a different number of training examples was tested. From the results, it is

shown that by sorting the examples using pair distances in descending order, it contributes

to better accuracy when compared to random ordering (see the yellow line versus the red

line). Even better, as shown in Figure 6.4, the proposed AL strategy can enhance the

accuracy of learning from the smallest training size (see the blue line versus the yellow
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line).
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Figure 6.4: Learning curve of our proposed AL strategy

6.4 Summary

In this chapter, a new approach to choosing next pairwise comparisons based on distance

measurement between pairs is proposed. This is based on using the same method of greedy

ILP systems, where the hypothesis generalisation proceeds sequentially in the order of

the examples and then removing the examples which are already covered. The ordering

method affected the rules produced by the greedy ILP learner, especially when the number

of examples was very limited. From the experiment, it is shown that the proposed AL

strategy produces higher accuracy compared to random selection, even in the smallest size

of training data.

In the next chapter, the implementation and evaluation of APARELL in a pairwise

recommender system is described.
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Chapter 7

Pairwise Recommender System

Implementation and Evaluation

Despite the practicality of online shopping, in some cases the thousands of available choices

can be overwhelming for users. It makes them spend their online shopping time searching

for the most suitable items without eventually proceeding to buy the items. Some users

may find it easy to find their preferred items online, because they already have a clear

preference for what they want, but others may find it difficult. In this chapter, the

implementation of a recommender system using pairwise preference elicitation is explained.

One of the benefits of using the proposed recommender system is to help users who have

difficulty in articulating their preferences, for example, if they are new to the field/shopping

category or they want to understand what kind of things they might like.

7.1 Overview of the System

A real-world recommender system application was implemented to help users find their

preferred items through a set of pairwise comparisons. The proposed ILP in the DL

algorithm which was introduced in Chapter 5 was used to learn the user preferences and

finally produce a recommendation. The active learning part was not implemented here,

as the system was built interactively, which allowed users to choose the pairs themselves

using the filtering system provided in our system. The active learning module would be

useful in an offline setting, where there are only datasets without any further interaction

with users.

An evaluation of the user experience was done using the ResQue (Recommender
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systems’ Quality of user experience) [102] post-questionnaire and the interface prefer-

ences questionnaire. The system is built on a Java platform with a triplestore database,

GraphDB, to improve system scalability and performance.

7.2 System Design

This section explains the system design including a system flowchart diagram, system

architecture, database design, user interaction and the recommendation algorithm.

7.2.1 System flowchart diagram

The process of the proposed recommender system starts by showing the initial pairs to

the user and asking them to see if any of those are interesting to them. The user can

use filtering and sorting features to narrow down the pair choices. The system flowchart

diagram is shown in Figure 7.1.

7.2.2 System architecture

The proposed system is composed of two main modules. Collaboratively they allow the

system to query a set of pairs from the triplestore database to be annotated by the user,

so that the system can generate a set of recommendations. Those two main modules are:

1. The learning module.

The proposed learning algorithm based on ILP in DL used in this module is explained

in Chapter 5.

2. Recommender module.

The system will find the best items for the user based on rules which are produced

by the learning algorithm. The steps below are used to produce a recommendation:

• The output of the learning algorithm is received as an input to the recommen-

dation algorithm.

• A directed graph is built to express the order of preferences based on the rules

produced by the learner.

• The value attributes in the graph that appear the best (i.e. no values better

than them) are obtained.

• Find a set of items with the above constraints.
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Figure 7.1: System flowchart diagram
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More details about the recommendation algorithm are provided in Section 7.2.3. The

architecture of the system is shown in Figure 7.2.

Figure 7.2: Recommender system architecture

7.2.3 Recommendation algorithm

A set of rules produced by the learning algorithm in Chapter 5 shows the attribute values,

with one being better than the others, as in the example below:

(Suv) betterthan (Sedan)

(Manual) betterthan (Hybrid)

(Suv) betterthan (Automatic)

(Suv) betterthan (MediumCar)

(NonHybrid) betterthan (MediumCar)

(MediumCar) betterthan (Automatic)

The recommendation is built based on a set of the best attributes as shown in the

above hypotheses. To make this clear, the directed graph in Figure 7.3 shows which

attributes are the best. We can see that the node: NonHybrid, SUV, Manual does not

114



7.2 System Design

have any predecessor nodes (no incoming arrows). These attributes become the criteria

for selecting the recommended items and are shown to users as an explanation.

SUV

Manual

Sedan

Hybrid

Automatic

MediumCarNonHybrid

Figure 7.3: Directed graph of hypotheses produced by the learner

7.2.4 Database design

In this recommender application, the dataset was implemented using two different types

of database system, relational DBMS (i.e MySQL) for storing user profiles and triplestore

DBMS (i.e GraphDB) for storing user preferences and the product knowledge base.

7.2.5 User interaction

A web interface was developed to allow the users to interact with the system easily. The

users selected a ‘better item’ from the pairs, based on their preferences. They were allowed

to skip pairs in cases where none of the items in the pair matches their preferences. They

could also use the filtering system for narrowing down their choices. The pairwise user

interface is shown in Figure 7.4. The system showed five pairs on each page, which

consisted of 10 items in pairs. The next button was available to see more choices. At

the end of the interactive process, the system showed a set of recommended items to the

users, along with the reason, based on preferences that have been fed into the system (see

Figure 7.5).
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Figure 7.4: Pairwise user interface
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Figure 7.5: The best items recommendation interface
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Figure 7.6: The best items recommendation interface (cont.)
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7.3 Online Evaluation

The study was designed by following the user evaluation framework for recommender

systems (ResQue), which was introduced by Pu and Chen [102] to evaluate the quality of

recommender systems from the user perspective. The participants were recruited at the

University of York in November 2017.

The study was conducted using a within-participant design, which means each user

performed two different tasks. Users were asked to evaluate the pairwise interface as shown

in Figure 7.4 and compare it to the standard list interface as shown in Figure 7.8. Users’

click behaviours and the execution time were automatically recorded in log files.

At the beginning, participants were briefed on the upcoming tasks and given instruc-

tions for using both interfaces. After the briefing session, participants signed an informed

consent form and started the study. In order to clarify the evaluated interfaces to the par-

ticipants, a user manual was shown and a brief description was given by the experimenter.

The study started with a series of background and demographic questions being an-

swered anonymously, as shown in Figure 7.7. After evaluating both interfaces, participants

filled in a post-stage assessment questionnaire for the respective interfaces. At the end,

they were asked to fill in an interface preference questionnaire and took part in a short

interview about the experience of using the two interfaces. A set of questions in the

post-stage questionnaire are shown in Section 7.3.2.1 and the final questionnaire is shown

in Section 7.3.2.2. The overall time needed for each participant was between 15 and 30

minutes.

There were 24 participants in this study. The first 20 participants were given a £5

Amazon voucher as a thank you for participating in the study.

Before the user study was conducted, a pilot test was run with three participants, in

which some of the system bugs were found and reported. The pilot test is an important

step to ensure that the study performs smoothly.

7.3.1 Designing the tasks

The participants were given specific tasks when using each interface. Two similar tasks

were given to each user as below:

1. The user needs to find up to three cars suitable for daily commutes between home

and office (with a distance of around 5-7 miles each way).
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Figure 7.7: User profile interface

2. The user needs to find up to three cars suitable for weekend shopping for a household

of four people (with a distance of around 3-5 miles).

The above tasks were designed to be as natural as possible and suitable for all genders

and ages. The first task had to be completed using the interface proposed in this thesis

i.e. the pairwise comparisons interface. Using this interface, users were also provided with

the temporary results of the recommendation (shown at the side of the interface). In the

second task, the users had to use the standard list interface with which they are more

familiar, as can be found on many e-commerce sites. Using the second interface, users

were also provided with a random recommendation (shown on the side of the interface) to

help them find the cars. They could click on the ‘I like this’ button for each option in the

side recommendations. Users had to evaluate the quality of the final recommendations,

which were shown on the ‘Top Picks’ page. Users needed to annotate at least 10 pairs (in

the first interface) or items (in the second interface) in order to see the recommendation

list and finally submit their answer on the ‘Top Picks’ page. For the pairwise interface,

the recommendation was produced using the proposed algorithm explained in Chapter 5,

while for the standard list interface, the recommendation was a set of items that had been

chosen by the users (no specific algorithm was used here). The users were not informed

about the algorithm used by the system, to prevent bias in their answers in the post-stage

questionnaire.

There were 7,360 used cars available for participants to choose from. The car dataset
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Figure 7.8: Standard list user interface
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was crawled from the Autotrader.co.uk website in September 2017. It was relatively up-

to-date on the day the study was conducted (in November 2017). The used cars available

in this dataset widely varied e.g. they were built between 1965 and 2017, and they were

advertised with various prices, the cheapest being £500 and the most expensive £70,000.

7.3.2 Evaluation criteria

7.3.2.1 Post-stage questionnaire

After using each interface, the user was asked to fill in a five-point Likert scale questionnaire

(1 strongly disagree up to 5 strongly agree) to evaluate the interface he/she had just tested.

Because this questionnaire was a user-centric evaluation, we can also call it a usability and

user satisfaction assessment. The evaluation aspects and the questions of the post-stage

questionnaire are shown below:

1. Quality of Recommended Items

(a) Accuracy

Q1. The items recommended to me matched my interests

(b) Novelty

Q2. The items recommended to me are novel and interesting

(c) Diversity

Q3. The items recommended to me are diverse

Q4. The items recommended to me are similar to each other (reverse scale)

2. Interaction Adequacy

Q5. The recommender explains why the products are recommended to me

3. Interface Adequacy

Q6. The layout of the recommender interface is attractive and adequate

4. Perceived Ease of Use

Q7. Finding an item to buy with the help of the recommender is easy

5. Perceived Usefulness

Q8. I feel supported to find what I like with the help of the recommender

6. Control/Transparency

Q9. I feel in control of telling the recommender what I want
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7. Attitudes

Q10. Overall, I am satisfied with the recommender

Q11. I am convinced of the products recommended to me

Q12. I am confident I will like the items recommended to me

8. Behavioural Intentions

(a) Continuance and Frequency

Q13. I will use this recommender again

(b) Purchase Intention

Q14. I would buy the items recommended, given the opportunity

7.3.2.2 Interface preferences questionnaire

Finally, all participants were asked to answer a questionnaire about their preferences with

the two interfaces in terms of five aspects: general preference, informativeness, usefulness,

better at recommending and better at helping perceived diversity. This evaluation follows

the interface questionnaire from [59]. The questions used in this questionnaire are shown

below:

Q1. Which interface did you prefer overall? (General preference)

Q2. Which interface did you find more informative? (Informativeness)

Q3. Which interface gave you more useful recommendations? (Usefulness)

Q4. Which interface showed the cars you really like? (Better at recommending)

Q5. Which interface was better at showing more diverse choices? (Better at helping

perceived diversity)

The user manual, the online questionnaire and the consent form are included in Ap-

pendix F and E.

7.4 Results Analysis

In this section, the experiment’s results are reported, which include a demographics report,

post-stage questionnaire details and comparisons, an interface preferences questionnaire
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report, user behaviours (time spent on each interface, number of pages visited, clicks count

on the Top Picks page, clicks count for the side recommendations) and short interview

results. The details and analysis of each report are also provided.

7.4.1 Demographics report

There were 24 participants of different ages, genders and professions in this study. Some

of the participants were students (PhD) or in full-time employment (research associates)

and their ages ranged from 20 to 45. The proportion of females and males was quite

balanced, with 4% identifying as other. The demographic profiles based on age, gender

and profession are shown in Figure 7.9.

under	25	
years	old
17%

26	- 30	
years	old
21%31	- 35	

years	old
42%

36	- 40	
years	old
12%

more	than	41	
years	old

8%

AGE

(a) Participants’ profiles based on their age

male,	
54%

female,	
42%

other,	
4%

GENDER

(b) Participants’ profiles based on their gender

student
79%

fulltime	
employment,		21%

PROFESSION

(c) Participants’ profiles based on their profession

Figure 7.9: Participants’ demographics report
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7.4.2 Post-stage questionnaire results

The ordinal values of all participants’ responses for each question were averaged and the

difference between the pairwise and standard list interface responses were tested using a

paired sample t-test. The average values of each question are shown side by side between

pairwise and standard list to see how they differ. Detailed comparisons on each question

are shown in Appendix G.1. The means, standard deviations and paired t-test p-values

are shown in Table 7.1.

From all the questions, it can be concluded that the average preferences of the pairwise

interface are higher than the standard list interface, except for one question: Q1: “The

items recommended to me matched my interests”, but according to the paired t-test

results, the difference was not significant for Q1. Significant differences were found for the

questions below:

• Q3: “The items recommended to me are diverse”

• Q5: “The recommender explains why the products are recommended to me”

• Q7: “Finding an item to buy with the help of the recommender is easy”

• Q11: “I am convinced of the products recommended to me”

• Q13: “I will use this recommender again”

• Q14: “I would buy the items recommended, given the opportunity”.

While the means of the two questionnaires provide a general comparison of the in-

terfaces, the proportion details for each question show more meaningful results. More

details on the response proportions for each question are provided in Figure G.1 using bar

charts and Figure G.2 using pie charts. For example, for Q1. “The items recommended

to me matched my interests”, the means comparison of both interface assessments shows

that the means of the list interface are slightly higher than those of the pairwise interface.

However, when we assess the details, in the pairwise interface assessment, there were more,

“strongly agree”, statements than in the list interface assessment (54% vs 50%, resp.). In

this case, the difference between the two statements “agree” and “strongly agree” is quite

meaningful in drawing a conclusion. For all questions, the pairwise interface got more

“strongly agree” statements than the list interface, except in three cases: Q4. “The items

recommended to me are similar to each other”, where this is the reverse scale (we can

125



Chapter 7: Pairwise Recommender System Implementation and Evaluation

assess this case by observing the opposite statement: disagree vs strongly disagree); Q6.

“The layout of the recommender interface is attractive and adequate”; and Q9. “I feel in

control of telling the recommender what I want”, where for the latter two questions, they

are a draw (the proportions of “strongly agree” statements are the same for both interface

assessments).

7.4.3 Interface preferences questionnaire results

The final questionnaire consisted of an evaluation of five different factors of the interface

preferences. These were, general preference, informativeness, usefulness, better at recom-

mending and better at helping perceived diversity. From those five factors, the number

of participants who preferred the pairwise interface over the list interface was higher than

the opposite preference, except in one aspect, better at recommending, where the pairwise

interface got the same votes as the list interface. The results of the interface preferences

are presented in Figure 7.11. The dotted line at 50% is drawn to make differences between

votes clearer.

For the first factor, preferred interface, the results show that 54% of participants pre-

ferred the pairwise interface while 42% of the participants preferred the standard list

interface. This means that the pairwise interface got slightly higher votes than the stan-

dard list interface. For the second factor, informativeness, 38% of the participants chose

the pairwise interface while only 21% of the participants chose the standard list interface.

However, for this factor, participants who chose both interfaces as the more informative

interface reported as high as 42%. For the third factor, usefulness, the pairwise interface

gained 46% of the votes; this is higher than that for the standard list interface, which only

got 38%. For the fourth factor, better at recommending, the pairwise and the standard

list interfaces got the same votes at 38%. This is in line with the previous section on

the post-stage questionnaire results, where participants were asked about the accuracy of

the recommendation (Q1. The items recommended to me matched my interests). The

results also show almost the same number of voters between the pairwise and standard

list interfaces. For the last factor, better at helping perceived diversity, the participants

who chose the pairwise interface were significantly higher than the standard list interface

with 67% vs 17%.
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Table 7.1: Mean and standard deviation of post-stage questionnaire
Q with * mark is a question with the significant difference at α = 5% (p− value < 0.05)

Q1 Q2 Q3* Q4 Q5* Q6 Q7* Q8 Q9 Q10 Q11* Q12 Q13* Q14*

Accuracy Novelty Diversity Diversity
(reverse
scale)

Interaction Interface Ease of
Use

Usefulness Control Satisfaction Influence Confidence Intention
to reuse

Intention
to buy

Pairwise 4.38±0.92 4.25±0.79 3.88±0.99 2.75±1.26 4.25±0.79 4.08±0.58 4.33±0.64 4.21±0.66 4.04±0.75 4.38±0.58 4.21±0.72 4.17±0.87 4.50±0.59 4.29±0.62

List 4.42±0.65 3.79±0.83 3.17±1.13 3.25±1.15 3.08±1.35 3.83±0.92 3.96±0.81 4.04±0.81 3.79±0.98 4.08±0.78 3.92±0.72 4.00±0.78 4.13±0.90 4.00±0.72

p − value 0.8619 0.0694 0.0208 0.1035 0.0019 0.1853 0.0359 0.3824 0.1617 0.1292 0.0499 0.2567 0.0359 0.0256

1

2

3

4

5

Q1 Q2 Q3* Q4 Q5* Q6 Q7* Q8 Q9 Q10 Q11* Q12 Q13* Q14*

Pairwise-vs-Standard	 List	Interface	Post-Stage	Questionnaire

Pairwise List

Figure 7.10: Usability and user satisfaction assessment results
Q with * mark is a question with the significant difference at α = 5% (p− value < 0.05)
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Figure 7.11: Interface preferences questionnaire results

Details of the interface questionnaire is provided in Appendix G.2. The composition

of participant profiles based on their ages and who gave votes to three of the options

pairwise, list and both interfaces is reported in Figure G.3. The voters’ details based on

their genders are shown in Figure G.5 and the voters’ details based on their professions

are shown in Figure G.7. From those three figures, it needs to be emphasised that the

pairwise interface got votes from different types of participants. There was no dominant

user type who liked the pairwise interface.

7.4.4 User behaviours

7.4.4.1 Time spent

Participants completed all of the tasks in about 15 - 30 minutes. The average time needed

to complete the task using the pairwise interface was 7 minutes and 28 seconds. To

complete the task using the standard list interface, they needed slightly longer, at 8 minutes

and 20 seconds on average. According to the paired sample t-test p-value at the 5% level,

there is no significant difference between the time spent on the pairwise and the standard

list interfaces. The number of participants who worked longer on the pairwise interface

was 10 people, while the number of participants who worked longer on the standard list

interface was 14 people. Details of the time spent on the study are reported in Table 7.2.
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Table 7.2: Users’ time spent (in minutes)

pairwise interface list interface

user1 08:09 18:02

user2 09:04 13:02

user3 05:52 16:04

user4 07:42 08:08

user5 07:22 04:42

user6 06:27 06:08

user7 07:19 02:57

user8 09:01 06:10

user9 06:50 12:27

user10 06:54 10:39

user11 09:18 07:53

user12 08:14 07:38

user13 17:28 10:41

user14 09:39 09:17

user15 04:19 06:26

user16 08:59 09:12

user17 03:21 05:23

user18 05:28 08:55

user19 16:50 06:26

user20 04:04 04:25

user21 05:14 05:17

user22 03:38 02:46

user23 01:31 02:29

user24 06:40 14:55

average 07:28 08:20

7.4.4.2 Pages visited

The users’ behaviours when interacting with the system were also observed, i.e. how

many pages they opened to complete each task. In the pairwise interface, five pairs of cars

(10 individual cars) were shown on each page, while in the standard list interface, there

were five used cars on each page. The users’ behaviours when exploring the pages while

searching for their favourite cars are quite interesting. The number of pages visited by

each user is presented in Table 7.3. The average number of pages visited using the pairwise

interface was 12.08, while for the standard list interface it was reported as high as 49.96

on average. There is a significant difference in the number of pages visited between the

pairwise and list interfaces with the p-value of the paired t-test (α = 0.05) being 0.0089.

From this report, we can conclude that using the pairwise interface can reduce the number

of pages visited by up to 76%, which can be interpreted as simplifying the task.
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Table 7.3: Number of pages visited

pairwise interface list interface

user1 3 28

user2 7 68

user3 5 46

user4 3 30

user5 4 8

user6 9 36

user7 17 22

user8 3 10

user9 7 32

user10 4 52

user11 5 32

user12 114 429

user13 32 52

user14 9 26

user15 2 40

user16 18 32

user17 2 10

user18 8 16

user19 14 18

user20 3 12

user21 10 32

user22 5 14

user23 3 18

user24 3 136

average 12.08 49.96

7.4.4.3 The number of cars submitted as the answers

In each task, the participants needed to find up to three cars they liked. The average

number of cars submitted as answers for the pairwise interface was 2.29 and it was 2.42

for the standard list interface. The details of these numbers are shown in Table 7.4.

7.4.4.4 Clicks count on the side recommendation

A side recommendation was provided as an additional feature of the system to help the

users find suitable cars. It seems that not many participants took advantage of the side

recommendation, as this was only an additional feature. Most of the time, the participants

focused on the main part of the page to complete the tasks. The total clicks count on

the side recommendation of the pairwise interface was 11 and for the standard list, it was

only 4.
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Table 7.4: Number of cars submitted as the answers

pairwise interface list interface

user1 3 3

user2 1 1

user3 3 3

user4 2 3

user5 3 3

user6 2 1

user7 1 2

user8 1 3

user9 2 3

user10 1 2

user11 3 3

user12 3 1

user13 1 3

user14 3 1

user15 1 3

user16 3 3

user17 3 3

user18 3 1

user19 3 3

user20 3 2

user21 3 2

user22 3 3

user23 1 3

user24 3 3

average 2.29 2.42

7.4.5 Short interview results

Short interviews were conducted after each participant finished the tasks, including filling

in the three questionnaires. The questions were: “How do you feel after evaluating these

two interfaces? Which one do you like and why?” And “what about the recommendation

that the system gave to you?”. Participants talked about their opinions and the sessions

were recorded. The full interview transcripts are presented in Table H.1 in Appendix H.

Please note that the interview IDs are provided to make the points in the coding table

clearer and they are not related to the user IDs in the previous table.

Transcripts were coded manually by annotating the important keywords mentioned

by the respondents in the short interview process. Each keyword is classified into three

relevant categories: (1) interface preference, (2) reason, and (3) general comment. The

second category, reason, is divided into two more specific classifications: (a) reasons for
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preferring the pairwise interface, and (b) reasons for preferring the standard list view.

The transcript codes and categories are shown in Table H.2 in Appendix H. The keywords

found in each category and the count for each keyword (shown as a number in brackets)

are given below:

1. Interface preference

• preferring to the pairwise (14)

• preferring to the list view (10)

2. Reason

(a) reasons for preferring the pairwise interface

• correct explanation (match the interest) (6)

• comparing is easy (4)

• more diverse choices (4)

• helpful recommendation explanation (5)

• helpful to understand the expectations (3)

• displaying more cars (4)

• more informative (2)

• interesting (2)

• relevant (1)

• specifications is shown next to picture (1)

• helpful (1)

• forcing me to compare (1)

• capability to compare similar cars (1)

• recommending some surprising items (1)

• helpful side recommendation (1)

• helpful to find the preferred cars (1)

• better design (1)

• less often to click the ‘next’ button and scroll down (1)

• correct recommendation (1)

• ability to narrow down the choices (1)
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• feel in control (1)

• helpful filtering feature (1)

(b) reasons for preferring the standard list view

• the pairs are confusing (5)

• dislike of comparing (3)

• easier to use (3)

• freedom to choose (2)

• not aware of filtering in the pairwise interface (2)

• more familiar (2)

• comfortability on the screen (1)

• having a clear idea on what to buy (1)

• filtering is more useful with the list view (1)

• more relevant (1)

• more convincing (1)

• attractive recommendation (1)

• more diverse (1)

• expecting to compare more similar cars (1)

• can stay focus on searching (1)

3. General comment

• good (8)

• correct recommendations (6)

• useful (3)

• helpful (3)

• expecting more informative pictures of cars (3)

• expecting more items to compare (rather than in pairs) (2)

• comparisons is suitable for someone who unsure about the choices (2)

• list interface is suitable for someone who already knows his/her expectations (1)

• expecting more data in the system (1)

• expecting most popular items (1)
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• expecting more options in the filtering (1)

• knowing the reason of the recommendation is helpful (1)

• concern to use pairwise for actually buying a car (1)

• pairwise interface showing my preferred car in the first page (1)

• list interface showing my preferred car in the second page (1)

• easy to use (1)

• interactive (1)

• interesting (1)

• informative (1)

• good interface (1)

• convincing (1)

• expecting user reviews in each car (1)

• recommendation explanation can be improved (1)

• specific range in the explanation is not really helpful (1)

• filtering in the pairwise interface can be improved (1)

• design of the explanation can be improved (1)

From the interviews, we can conclude that participants’ responses align with the ques-

tionnaire results where more than half of them showed an interest in the pairwise interface.

In summary, there were a number of reasons of why some participants found that the pair-

wise interface was interesting, such as they did not really understand what type of car

they liked, so the comparisons helped them to know about types of car more easily. They

also liked the explanation given by the system to help them understand their preferences.

Some of them liked a surprise and felt more excited when the recommendation shown to

them was different from the one that they had chosen before. In the recommender system

research, this is called the novelty of the recommendation. Discussing the interface, they

found an advantage in seeing more cars displayed on a page, so there was no need for them

to click the ‘next’ button and scroll down too often.

On the other side, we observe the people who prefer the standard list interface over

the pairwise gave reasons such as it was more familiar, they already knew what they really

wanted to buy, and they did not like to be forced to compare cars. Sometimes, the pairs
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were more confusing for them. We also highlighted some important feedback about the

interfaces in general, such as the pictures could be more informative, the filtering feature

could be improved, and the system could show the most popular cars and user reviews of

each car.

7.5 Summary

In this chapter, the learning algorithm proposed in Chapter 5 was implemented in a

real-world used car recommender system and the evaluation was reported. The system

was evaluated using both a user-centric evaluation framework, ResQue, and an interface

preference questionnaire. There were 24 participants, recruited from the University of

York in this study. Some interesting findings are outlined in this chapter which include

the fact that our proposed pairwise interface gained more votes in the ResQue than the

common list interface on all aspects of the evaluation, except on the first aspect about the

accuracy of the recommendation, which was a draw. Some of them also had significant

differences according to the paired t-test results. In the interface preference questionnaire,

the pairwise interface also showed a better result compared to the standard list interface,

except for one factor on usefulness, which was again a draw. The short interview results

are also interesting, where the real experience on using the interfaces was observed in

more detail. The results of our experiment show that the use of a pairwise interface in a

recommender system offered an interesting new experience to the user.
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Chapter 8

Conclusions and Future Work

8.1 Conclusions

This thesis provides an overview of machine learning techniques to solve the problem of

learning from pairwise comparisons. It studies the comparison between statistical and

logic-based methods. The benefits of using logic-based methods with their richer repre-

sentations are also discussed. The contributions in this thesis are in the area of machine

learning and recommender systems.

In the machine learning area, a novel approach of Inductive Logic Programming (ILP)

in Description Logic (DL), called APARELL (Active PAirwise RELation Learner), is pro-

posed. Existing work on ILP in DL is still limited to learning class descriptions. Here we

propose an implementation of ILP in DL to learn binary relations from pairwise compar-

isons. The capability of the system to read from a remote Resource Description Framework

(RDF) data is also presented in order to gain the benefit of using the DL representation

with a standardised syntax. A command line tool was developed and made available to

the public to be used under the General Public License (GPL). Several experiments to

evaluate the accuracy and performance of the proposed algorithm were conducted. The

accuracy was measured using four different aspects, on relatively small but complete and

very detailed datasets, on a larger size dataset, on a dataset with a more complex class

hierarchy and on various training example sizes. The evaluation shows that in terms of

accuracy, APARELL outperformed other baseline machine learning algorithms.

When examining the existing algorithms to address the pairwise preference learning,

it could be argued that ILP system based on First Order Logic (FOL) performance is

sufficient, as well as using the propositional logic and statistics-based systems. However,
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some studies on DLs [12] claim that by using DL representation, the knowledge can be

represented in a more human-friendly and readable way than the other representations.

It can be integrated easily into an online e-commerce platform such as the recommender

system presented in this thesis. Another advantage of using DL representation is that

background knowledge, which usually needs to be reformatted from the original data

to be understood by the learner, is already available as an ontology. It can be easily

generated using an Integrated Development Environments (IDEs) with a Graphical User

Interface (GUI), e.g. Protégé or even easier for domains in which they are available as

linked open data. Not only representing the problem in different logic representation,

but our proposed algorithm is also improving the accuracy by producing a complete set

of consistent hypotheses. Our algorithm uses Closed World Assumption (CWA), which

makes it easier to find a consistent hypothesis. For the task of learning strict order, using

CWA or Open World Assumption (OWA) produces very similar results.

As an additional contribution in this area, a new approach in Active Learning (AL)

has been proposed supporting the learning process given limited data. The experiment

shows that the set of hypotheses/rules produced by APARELL depends on the ordering

method when processing the training examples and which example are processed first,

especially when the number of examples and the attributes of each item are very limited.

The proposed AL strategy selects the next pairwise comparison based on the distance

measurement between pairs. It is shown that the proposed AL strategy can produce

higher accuracy compared to random selection, in a smaller number of examples.

In the recommender system area, the novel approach, APARELL, was implemented in

a real-world used car recommender system and the user evaluation study was reported. We

propose a new method to produce recommendations with APARELL. The logic approach

is still not quite common in recommender systems. Most studies apply a statistics-based

approach to produce recommendations, as it is easier and more practical to implement.

We show that a logic-based approach can be implemented effectively in a recommender

system. A used car dataset collected from Autotrader.co.uk on September 2017 was used

in a user study with 24 participants from the University of York. From the online ex-

periments, we achieve a satisfactory result where the majority of participants preferred

the pairwise comparisons interface over the standard list and they agree that the use of

pairwise comparisons in a recommender system is helpful to find their preferred cars. The

pairwise interface also offers more diverse recommendations than the standard list inter-
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face, which can be helpful for anyone who wants to explore their preferences. In addition,

although the standard list interface is more familiar and easier for some participants,

the introduction of pairwise comparisons can bring an exciting experience for an online

shopper.

8.2 Future Work

With the completion of this thesis, there are many possible areas of improvement that can

be explored considering that the work done in this thesis constitutes only a starting point

for a wider research line.

As a general relation learner in DL, APARELL can be improved by expanding the

refinement operator to allow the use of different logic operators (e.g. union and negation)

and universal quantifiers to improve the accuracy. To do this, we need an evaluation on

a different dataset. The expansion of APARELL could also include a method of handling

mixed-type data in the learning process. A method to incorporate numerical features in

the hypothesis search can be borrowed from FOIL-DL proposed by Lisi and Straccia [77].

Considering applications in the recommender system area, the use of probability and

weighted rules to deal with the uncertainty problem could be an advantage. A recent study

by Riguzzi et al. [108] can be used to improve the proposed approach. The implementation

of the recommender system can then be generalised and tested using different purchase

domains, such as housing, short-term accommodation or hotels, travel and books.

Finally, there is a large potential in the proposed ILP in DL method in this thesis, as

well as using the logic-based methods in e-commerce research. The current research in

the e-commerce area, specifically in recommender systems, is looking for an effective and

richer representation to solve the problem with explainable systems to ensure a stronger

level of engagement between the system and the users.

8.3 Final Remarks

Some of the data, software and source code developed as part of this thesis will be made

available on the author’s GitHub page at https://github.com/nnqomariyah/

139





Appendix A

Bradley-Terry Experiment
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Table A.1: BT coefficients on car dataset [1]

Car ID BT Coefficients

user1 user2 user3 user4 user5 user6 user7 user8 user9 user10

1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

2 6.30× 101 1.92 −1.14× 102 6.74× 101 2.14 3.94× 101 4.48× 101 1.00× 102 8.85× 10−1 −4.39

3 5.20× 10−16 −9.96× 10−1 −4.57× 101 −2.29× 101 1.23 −2.72× 10−16 −4.55× 101 6.05× 101 −1.64 1.94× 10−1

4 −4.39× 101 1.92 −2.33× 101 −4.64× 101 2.44 −2.93× 10−16 −6.90× 101 4.09× 101 −2.51 1.91× 101

5 2.26× 10−16 2.09× 101 2.37× 101 2.26× 101 2.28× 10−15 7.00× 10−1 −2.26× 101 6.09× 10−16 5.47× 10−16 −7.58× 10−1

6 2.18× 101 3.98× 101 −6.82× 101 1.35× 102 1.23 2.33 1.13× 102 2.14× 101 −6.51× 10−2 −4.39

7 1.05× 102 −9.96× 10−1 −1.37× 102 1.12× 102 2.71 5.81× 101 6.73× 101 8.01× 101 1.99× 101 −3.40

8 8.39× 101 9.25× 10−1 −9.08× 101 1.59× 102 1.15× 10−15 2.13× 101 1.36× 102 1.10 3.87× 101 −2.33× 101

9 4.24× 101 −2.09× 101 −2.80× 10−10 4.50× 101 1.21 2.22 2.24× 101 1.21× 102 −2.22× 101 −1.47

10 −2.22× 101 3.98× 101 4.73× 101 8.99× 101 2.59 7.49× 10−2 8.99× 101 1.10 −2.59 −2.50

Car ID BT Coefficients

user11 user12 user13 user14 user15 user16 user17 user18 user19 user20

1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

2 2.24× 101 −4.20× 10−1 6.09× 10−16 −2.07× 101 2.05× 102 3.87 6.73× 101 −1.01 6.73× 101 6.01× 101

3 6.73× 101 −2.42× 10−1 −2.11× 101 −2.18× 101 6.90× 101 2.30 −4.55× 101 −4.05× 101 −4.55× 101 3.79× 101

4 8.99× 101 6.47× 10−2 −4.08× 101 −2.18× 101 4.64× 101 1.15 −6.90× 101 −6.01× 101 −6.90× 101 4.08× 101

5 4.48× 101 9.43× 10−1 −9.11× 10−1 1.96× 101 2.35× 101 3.16× 10−15 −2.26× 101 −2.02 −2.26× 101 1.87× 101

6 −4.55× 101 −2.42× 10−1 3.98× 101 8.00× 101 1.36× 102 3.16 1.13× 102 2.02× 101 1.36× 102 3.89× 101

7 −2.26× 101 −8.55× 10−1 9.11× 10−1 −2.07× 101 1.82× 102 3.87 8.99× 101 −2.29× 10−16 4.48× 101 3.98× 101

8 −6.90× 101 −4.20× 10−1 5.94× 101 5.93× 101 1.14× 102 2.47 1.36× 102 3.99× 101 1.13× 102 3.79× 101

9 1.36× 102 −4.20× 10−1 2.67× 10−16 −4.36× 101 1.59× 102 2.26× 101 4.48× 101 −2.15× 101 2.24× 101 7.88× 101

10 1.13× 102 −4.20× 10−1 2.07× 101 3.93× 101 9.14× 101 4.71 2.24× 101 −2.02 8.99× 101 4.08× 101
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Table A.1: BT coefficients on car dataset [1] (cont.)

Car ID BT Coefficients

user21 user22 user23 user24 user25 user26 user27 user28 user29 user30

1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

2 −2.24× 101 −5.61× 10−1 1.38× 102 4.03× 101 5.84× 101 8.99× 101 7.78× 101 −8.10× 101 −4.14× 101 4.40× 10−1

3 6.75× 101 −2.05× 101 1.15× 102 −3.96× 101 1.90× 101 −4.64× 101 7.67× 101 −7.99× 101 −3.94× 101 −4.23× 10−1

4 4.49× 101 −3.93× 101 1.15× 102 −6.01× 101 −1.96× 101 −2.29× 101 7.78× 101 −7.99× 101 −4.14× 101 3.10× 10−1

5 2.24× 101 1.72× 10−1 2.35× 101 −1.97× 101 3.78× 101 2.26× 101 3.83× 101 2.06× 101 −1.93× 101 −8.63× 10−1

6 −6.79× 101 1.86 6.90× 101 4.14× 101 6.00× 101 1.36× 102 1.96× 101 −1.99× 101 −1.93× 101 9.18× 10−16

7 −4.50× 101 1.86 1.61× 102 4.03× 101 5.92× 101 6.74× 101 7.67× 101 −8.10× 101 −1.93× 101 −4.23× 10−1

8 −9.15× 101 2.18× 101 4.64× 101 6.32× 101 5.92× 101 1.13× 102 9.00× 10−16 −3.96× 101 1.87× 101 −8.63× 10−1

9 9.12× 101 −1.18 1.85× 102 1.96× 101 5.76× 101 4.50× 101 5.69× 101 −1.03× 102 −3.94× 101 −6.07× 10−1

10 9.12× 101 −5.61× 10−1 9.15× 101 4.14× 101 5.84× 101 1.36× 102 8.16× 10−15 −5.92× 101 −4.04× 101 3.10× 10−1

Car ID BT Coefficients

user31 user32 user33 user34 user35 user36 user37 user38 user39 user40

1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

2 4.21× 101 4.49× 101 −6.29× 101 8.87× 10−1 1.61× 102 4.23× 101 −3.93× 101 8.99× 101 1.12× 102 6.05× 101

3 1.90× 101 −4.56× 101 −6.29× 101 −3.89× 101 4.65× 101 8.01× 10−16 2.21× 101 −2.29× 101 −4.64× 101 −9.13× 10−16

4 2.14× 101 −6.91× 101 −4.11× 101 −9.02× 10−1 7.00× 101 −2.29× 101 2.21× 101 −4.64× 101 −2.29× 101 1.10

5 1.90× 101 −2.26× 101 4.16× 101 −2.02× 101 2.35× 101 6.58× 10−16 2.07× 101 2.26× 101 2.26× 101 1.10

6 2.31× 101 1.13× 102 2.07× 101 2.76 9.33× 101 1.26× 102 −1.96× 101 1.59× 102 1.59× 102 6.05× 101

7 2.31× 101 9.01× 101 −8.58× 101 −9.75× 10−1 1.16× 102 8.34× 101 −7.98× 101 1.12× 102 8.99× 101 5.94× 101

8 2.07× 101 1.37× 102 −2.05× 101 2.76 7.00× 101 1.04× 102 −5.93× 101 1.35× 102 1.35× 102 5.94× 101

9 2.07× 101 6.74× 101 −6.29× 101 1.72 1.85× 102 2.18× 101 2.24× 101 4.50× 101 4.50× 101 2.09× 101

10 2.14× 101 2.25× 101 6.31× 101 2.27× 101 1.38× 102 6.28× 101 2.09× 101 6.74× 101 6.74× 101 3.96× 101
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Table A.1: BT coefficients on car dataset [1] (cont.)

Car ID BT Coefficients

user41 user42 user43 user44 user45 user46 user47 user48 user49 user50

1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

2 1.01 −6.74× 101 2.05× 102 2.24× 101 −9.05× 101 1.85× 102 4.06× 101 4.11× 101 −1.00× 10−15 1.06

3 −1.65× 10−16 −9.03× 101 4.64× 101 1.14× 102 −6.77× 101 1.14× 102 3.78× 101 −1.10 3.79× 101 −2.02× 101

4 −1.99× 101 −1.14× 102 6.90× 101 1.14× 102 −4.51× 101 1.37× 102 3.71× 101 −1.10 3.79× 101 −3.99× 101

5 2.02 2.24× 101 2.35× 101 4.49× 101 2.28× 101 4.64× 101 1.77× 101 2.10× 101 1.90× 101 5.28× 10−1

6 2.21× 101 9.14× 101 1.59× 102 −4.55× 101 4.59× 101 1.37× 102 3.85× 101 7.98× 101 −1.92 4.10× 101

7 2.32× 101 −2.24× 101 1.82× 102 −2.26× 101 −1.38× 102 1.61× 102 4.06× 101 2.10× 101 −2.92 2.10× 101

8 2.32× 101 6.79× 101 1.36× 102 −6.90× 101 −2.25× 101 6.90× 101 3.60× 101 6.01× 101 −2.28× 101 4.10× 101

9 2.21× 101 −4.48× 101 1.14× 102 6.73× 101 −1.14× 102 2.35× 101 3.96× 101 −5.02× 10−16 −2.92 5.28× 10−1

10 2.02 4.50× 101 9.14× 101 9.00× 101 6.96× 101 9.15× 101 3.60× 101 2.10× 101 −9.96× 10−1 4.14× 101

Car ID BT Coefficients

user51 user52 user53 user54 user55 user56 user57 user58 user59 user60

1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

2 2.05× 102 1.82× 102 1.36× 102 6.42× 10−1 6.42× 10−1 2.80× 10−16 −8.55× 101 3.23× 10−16 3.70 −3.94× 101

3 2.35× 101 4.64× 101 −2.26× 101 −1.86 −1.86 −7.99× 101 −2.19× 101 1.67 2.73 −5.89× 101

4 1.82× 102 6.90× 101 −6.92× 101 −1.86 −1.86 −1.00× 102 −2.19× 101 −3.38× 10−1 2.27× 101 −2.07× 101

5 9.14× 101 2.35× 101 4.49× 101 −1.22 −1.22 −2.07× 101 4.26× 101 −1.41 3.94× 10−1 9.74× 10−1

6 1.36× 102 1.14× 102 1.13× 102 1.34 1.34 1.10 −4.37× 101 3.90× 10−1 1.13 7.97× 10−1

7 1.14× 102 1.59× 102 8.99× 101 2.18 2.18 1.10 −1.07× 102 2.41 1.13 −5.89× 101

8 4.64× 101 9.14× 101 6.73× 101 1.34 1.34 2.29× 101 −6.44× 101 6.68× 10−1 −1.93× 101 −9.74× 10−1

9 6.90× 101 2.05× 102 −4.55× 101 −1.22 −1.22 −5.99× 101 −2.19× 101 2.30 −1.32× 10−15 −7.93× 101

10 1.59× 102 1.36× 102 2.24× 101 −1.86 −1.86 −4.03× 101 2.10× 101 3.23 3.70 −7.97× 10−1
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Appendix B

DL-Learner Experiment

Table B.1: DL-Learner experiment result

user ID the best carID DL-Learner result with 100% accuracy

user1 car7 Automatic and Hybrid and MediumCar and Sedan

user2 car6,car10 Automatic and MediumCar and Suv

user3 car1 Manual and SmallCar

user4 car8 Automatic and SmallCar

user5 car7 Automatic and Hybrid and MediumCar and Sedan

user6 car7 Automatic and Hybrid and MediumCar and Sedan

user7 car8 Automatic and SmallCar

user8 car9 Automatic and NonHybrid and Sedan

user9 car8 Automatic and SmallCar

user10 car4 LargeCar and Manual

user11 car9 Automatic and NonHybrid and Sedan

user12 car5 Manual and MediumCar and Suv

user13 car8 Automatic and SmallCar

user14 car6 Automatic and Hybrid and MediumCar and Suv

user15 car2 Automatic and LargeCar

user16 car9 Automatic and NonHybrid and Sedan

user17 car8 Automatic and SmallCar

user18 car8 Automatic and SmallCar

user19 car6 Automatic and Hybrid and MediumCar and Suv

user20 car9 Automatic and NonHybrid and Sedan
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Appendix B: DL-Learner Experiment

Table B.2: DL-Learner experiment result (cont.)

user ID the best carID DL-Learner result with 100% accuracy

user21 car10,car9 Automatic and NonHybrid

user22 car8 Automatic and SmallCar

user23 car9 Automatic and NonHybrid and Sedan

user24 car8 Automatic and SmallCar

user25 car6 Automatic and Hybrid and MediumCar and Suv

user26 car10,6 Automatic and MediumCar and Suv

user27 car2,car4 LargeCar

user28 car5 Manual and MediumCar and Suv

user29 car8 Automatic and SmallCar

user30 car2 Automatic and NonHybrid and Sedan

user31 car2 Automatic and NonHybrid and Sedan

user32 car8 Automatic and SmallCar

user33 car10 Automatic and NonHybrid and Suv

user34 car10 Automatic and NonHybrid and Suv

user35 car9 Automatic and NonHybrid and Sedan

user36 car6 Automatic and Hybrid and MediumCar and Suv

user37 car9 Automatic and NonHybrid and Sedan

user38 car6 Automatic and Hybrid and MediumCar and Suv

user39 car6 Automatic and Hybrid and MediumCar and Suv

user40 car2,car6 Hybrid and (LargeCar or (MediumCar and Suv))

user41 car7,car8 Hybrid and (SmallCar or (MediumCar and Sedan))

user42 car6 Automatic and Hybrid and MediumCar and Suv

user43 car2 Automatic and NonHybrid and Suv

user44 car3,car4 Manual and Sedan

user45 car10 Automatic and NonHybrid and Suv

user46 car2 Automatic and NonHybrid and Suv

user47 car2,car7 Automatic and Hybrid and Sedan

user48 car6 Automatic and Hybrid and MediumCar and Suv

user49 car3,car4 Manual and Sedan

user50 car10 Automatic and NonHybrid and Suv

user51 car2 Automatic and NonHybrid and Suv

user52 car9 Automatic and NonHybrid and Sedan

user53 car2 Automatic and NonHybrid and Suv

user54 car7 Automatic and Hybrid and MediumCar and Sedan

user55 car7 Automatic and Hybrid and MediumCar and Sedan

user56 car8 Automatic and SmallCar

user57 car5 Manual and MediumCar and Suv

user58 car10 Automatic and NonHybrid and Suv

user59 car4 LargeCar and Manual

user60 car5 Manual and MediumCar and Suv
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Appendix C: Aleph Background Knowledge

Appendix C

Aleph Background Knowledge

C.1 Aleph settings for car dataset

% specify the hypothesis language

:- modeh(1,bt(+car,+car)).

:- modeb(1,carfuel(+car,#fuelconsumption,+car,#fuelconsumption)).

:- modeb(1,carbodytype(+car,#bodytype,+car,#bodytype)).

:- modeb(1,cartransmission(+car,#transmission,+car,#transmission)).

:- modeb(1,carenginegreaterthan(+car,+car,-float,-float)).

:- modeb(1,carenginelessthan(+car,+car,-float,-float)).

:- determination(bt/2,carfuel/4).

:- determination(bt/2,carbodytype/4).

:- determination(bt/2,cartransmission/4).

:- determination(bt/2,carenginegreaterthan/4).

:- determination(bt/2,carenginelessthan/4).

% type of categorical attributes

fuelconsumption(hybrid).

fuelconsumption(nonhybrid).

transmission(automatic).

transmission(manual).

bodytype(sedan).

bodytype(suv).

% type of individual car

car(car1).

car(car2).

car(car3).

car(car4).

car(car5).

car(car6).

car(car7).

car(car8).

car(car9).

car(car10).

Figure C.1: Aleph’s background knowledge for car dataset in setting 3
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C.1 Aleph settings for car dataset

% relations of each car with its attribute values

hasbodytype(car1,suv).

hasbodytype(car2,sedan).

hasbodytype(car3,sedan).

hasbodytype(car4,sedan).

hasbodytype(car5,suv).

hasbodytype(car6,suv).

hasbodytype(car7,sedan).

hasbodytype(car8,suv).

hasbodytype(car9,sedan).

hasbodytype(car10,suv).

hasfuelcons(car1,nonhybrid).

hasfuelcons(car2,hybrid).

hasfuelcons(car3,nonhybrid).

hasfuelcons(car4,nonhybrid).

hasfuelcons(car5,nonhybrid).

hasfuelcons(car6,hybrid).

hasfuelcons(car7,hybrid).

hasfuelcons(car8,hybrid).

hasfuelcons(car9,nonhybrid).

hasfuelcons(car10,nonhybrid).

hastransmission(car1,manual).

hastransmission(car2,automatic).

hastransmission(car3,manual).

hastransmission(car4,manual).

hastransmission(car5,manual).

hastransmission(car6,automatic).

hastransmission(car7,automatic).

hastransmission(car8,automatic).

hastransmission(car9,automatic).

hastransmission(car10,automatic).

hasenginesize(car1, 2.5).

hasenginesize(car8, 2.5).

hasenginesize(car10, 4.5).

hasenginesize(car5, 3.5).

hasenginesize(car7, 3.5).

hasenginesize(car6, 3.5).

hasenginesize(car9, 3.5).

hasenginesize(car3, 4.5).

hasenginesize(car2, 5.5).

hasenginesize(car4, 6.2).

Figure C.1: Aleph’s background knowledge for car dataset in setting 3 (cont.)
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Appendix C: Aleph Background Knowledge

% specify different rules for categorical attributes

carfuel(A,X,B,Y):- hasfuelcons(A,X), car(A), car(B), hasfuelcons(B,Y), X\=Y.

carbodytype(A,X,B,Y):- hasbodytype(A,X), car(A), car(B), hasbodytype(B,Y), X\=Y.

cartransmission(A,X,B,Y):- hastransmission(A,X), car(A), car(B),

hastransmission(B,Y), X\=Y.

% specify rules for numerical attribute

carenginegreaterthan(A,B,X,Y):- car(A), car(B),

hasenginesize(A,X), hasenginesize(B,Y), X>Y.

carenginelessthan(A,B,X,Y):- car(A), car(B), hasenginesize(A,X),

hasenginesize(B,Y), X<Y.

Figure C.1: Aleph’s background knowledge for car dataset in setting 3 (cont.)
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C.2 Aleph setting for sushi dataset

C.2 Aleph setting for sushi dataset

% hypothesis language

:- modeh(1,bt(+sushi,+sushi)).

:- modeb(1,sushistyle(+sushi,#style,+sushi,#style)).

:- modeb(1,sushimajor(+sushi,#major,+sushi,#major)).

:- modeb(1,sushiminor(+sushi,#minor,+sushi,#minor)).

:- modeb(1,sushiheavinesslessthan(+sushi,+sushi,-float,-float)).

:- modeb(1,sushiheavinessgreaterthan(+sushi,+sushi,-float,-float)).

:- modeb(1,sushiconsumedlessthan(+sushi,+sushi,-float,-float)).

:- modeb(1,sushiconsumedgreaterthan(+sushi,+sushi,-float,-float)).

:- modeb(1,sushipricelessthan(+sushi,+sushi,-float,-float)).

:- modeb(1,sushipricegreaterthan(+sushi,+sushi,-float,-float)).

:- modeb(1,sushisoldlessthan(+sushi,+sushi,-float,-float)).

:- modeb(1,sushisoldgreaterthan(+sushi,+sushi,-float,-float)).

:- determination(bt/2,sushistyle/4).

:- determination(bt/2,sushimajor/4).

:- determination(bt/2,sushiminor/4).

:- determination(bt/2,sushiheavinesslessthan/4).

:- determination(bt/2,sushiheavinessgreaterthan/4).

:- determination(bt/2,sushiconsumedlessthan/4).

:- determination(bt/2,sushiconsumedgreaterthan/4).

:- determination(bt/2,sushipricelessthan/4).

:- determination(bt/2,sushisoldlessthan/4).

:- determination(bt/2,sushipricegreaterthan/4).

:- determination(bt/2,sushisoldgreaterthan/4).

% type for categorical attributes

style(maki).

style(notmaki).

major(seafood).

major(notseafood).

minor(aomono).

minor(tare).

minor(squid).

minor(shrimp).

minor(roe).

minor(otherseafood).

minor(egg).

minor(veggie).

% type of individual sushi

sushi(sushi0).

sushi(sushi1).

sushi(sushi2).

sushi(sushi3).

sushi(sushi4).

sushi(sushi5).

sushi(sushi6).

sushi(sushi7).

sushi(sushi8).

sushi(sushi9).

Figure C.2: Aleph’s background knowledge for sushi dataset in setting 3
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Appendix C: Aleph Background Knowledge

%relations of each sushi with its attribute values

hasstyle(sushi0,notmaki).

hasstyle(sushi1,notmaki).

hasstyle(sushi2,notmaki).

hasstyle(sushi3,notmaki).

hasstyle(sushi4,notmaki).

hasstyle(sushi5,notmaki).

hasstyle(sushi6,notmaki).

hasstyle(sushi7,notmaki).

hasstyle(sushi8,maki).

hasstyle(sushi9,maki).

hasmajor(sushi0,seafood).

hasmajor(sushi1,seafood).

hasmajor(sushi2,seafood).

hasmajor(sushi3,seafood).

hasmajor(sushi4,seafood).

hasmajor(sushi5,seafood).

hasmajor(sushi6,notseafood).

hasmajor(sushi7,seafood).

hasmajor(sushi8,seafood).

hasmajor(sushi9,notseafood).

hasminor(sushi0,shrimp).

hasminor(sushi1,tare).

hasminor(sushi2,akami).

hasminor(sushi3,squid).

hasminor(sushi4,otherseafood).

hasminor(sushi5,roe).

hasminor(sushi6,egg).

hasminor(sushi7,akami).

hasminor(sushi8,akami).

hasminor(sushi9,veggie).

hasheaviness(sushi0,2.728978008).

hasheaviness(sushi1,0.926384365).

hasheaviness(sushi2,1.769559033).

hasheaviness(sushi3,2.688400824).

hasheaviness(sushi4,0.813043478).

hasheaviness(sushi5,1.264872521).

hasheaviness(sushi6,2.368070953).

hasheaviness(sushi7,0.551854656).

hasheaviness(sushi8,2.247133758).

hasheaviness(sushi9,3.73054755).

Figure C.2: Aleph’s background knowledge for sushi dataset in setting 3 (cont.)
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C.2 Aleph setting for sushi dataset

hasconsumed(sushi0,2.138421734).

hasconsumed(sushi1,1.990228013).

hasconsumed(sushi2,2.348506401).

hasconsumed(sushi3,2.043239533).

hasconsumed(sushi4,1.643478261).

hasconsumed(sushi5,1.979461756).

hasconsumed(sushi6,1.866223208).

hasconsumed(sushi7,2.057532173).

hasconsumed(sushi8,1.878980892).

hasconsumed(sushi9,1.456772334).

hasprice(sushi0,1.838419913).

hasprice(sushi1,1.992458678).

hasprice(sushi2,1.874724518).

hasprice(sushi3,1.515151515).

hasprice(sushi4,3.28728191).

hasprice(sushi5,2.695362718).

hasprice(sushi6,1.032467532).

hasprice(sushi7,4.485454545).

hasprice(sushi8,1.57983683).

hasprice(sushi9,1.02).

hassold(sushi0,0.84).

hassold(sushi1,0.88).

hassold(sushi2,0.88).

hassold(sushi3,0.92).

hassold(sushi4,0.88).

hassold(sushi5,0.88).

hassold(sushi6,0.84).

hassold(sushi7,0.8).

hassold(sushi8,0.44).

hassold(sushi9,0.4).

% specify different rules for categorical attributes

sushistyle(A,X,B,Y):- hasstyle(A,X),sushi(A),sushi(B),hasstyle(B,Y),X\=Y .

sushimajor(A,X,B,Y):- hasmajor(A,X),sushi(A),sushi(B),hasmajor(B,Y),X\=Y .

sushiminor(A,X,B,Y):- hasminor(A,X),sushi(A),sushi(B),hasminor(B,Y),X\=Y .

% specify rules for numerical attribute

sushiheavinesslessthan(A,B,X,Y):- sushi(A), sushi(B), hasheaviness(A,X),

hasheaviness(B,Y), X<Y .

sushiheavinessgreaterthan(A,B,X,Y):- sushi(A), sushi(B), hasheaviness(A,X),

hasheaviness(B,Y), X>Y .

sushiconsumedlessthan(A,B,X,Y):- sushi(A), sushi(B), hasconsumed(A,X),

hasconsumed(B,Y), X<Y .

sushiconsumedgreaterthan(A,B,X,Y):- sushi(A), sushi(B), hasconsumed(A,X),

hasconsumed(B,Y), X>Y .

sushipricelessthan(A,B,X,Y):- sushi(A), sushi(B), hasprice(A,X),

hasprice(B,Y), X<Y .

sushipricegreaterthan(A,B,X,Y):- sushi(A), sushi(B), hasprice(A,X),

hasprice(B,Y), X>Y .

sushisoldlessthan(A,B,X,Y):- sushi(A), sushi(B), hassold(A,X),

hassold(B,Y), X<Y .

sushisoldgreaterthan(A,B,X,Y):- sushi(A), sushi(B), hassold(A,X), hassold(B,Y), X>Y .

Figure C.2: Aleph’s background knowledge for sushi dataset in setting 3 (cont.)
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Appendix D

APARELL User Manual

D.1 Introduction

APARELL stands for Active PAirwise RELation Learner, is a supervised machine learn-

ing software which can learn a relation in OWL/Description Logics. It implements the

framework explains in this thesis.The guidance on how to use the software is provided in

this document.

D.2 Getting started

APARELL is implemented in Java and can be used in almost all platform. It requires Java

version 8 or higher. It can be downloaded in the software section in here1 as a zip file which

contains the main software in a compiled “aparell.jar” file; an example of configuration

file; and a set of working examples in a folder ‘dataset’. Before running the software, we

need to prepare these three basic things, which are:

1. a relation name to be learned,

for example, we want to learn “betterthan” relationship,

2. a set of positive and negative examples,

this set will contain examples in form of “individual1,individual2” in which individ-

ual1 is related to individual2 through a relation in point 1, and

3. a class hierarchy in the ontology,

1https://www-users.cs.york.ac.uk/∼nnq/
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the class hierarchy as knowledge source is necessary to be specified as the learner

uses it as a base to build the hypotheses.

To run the software, it requires all necessary parameters to be specified in a configu-

ration file stored as a text file. We will explain the parameter configuration in the next

section. The software can be simply run from a terminal as:

$ java -jar aparell.jar \path\to\configuration\file.txt

D.3 Configuration file

There are five required parameters need to be specified in this file. It is required to provide

the full path to the specified file.

• kbfile or tripledb server

this parameter is used to specify a knowledge source. APARELL can read both an

OWL file and a triple database server. We need to specify one at a time, whether we

want to use an OWL file or a remote/local triple store database server. All formats

supporting by OWL API2 can be used in here.

• prefix

prefix is used to reference IRI (Internationalized Resource Identifier) of the ontology.

• relation

currently, APARELL can be used to learn one relation at a time. We need to specify

the relation name in the ontology that we want to learn.

• pos example

we need to specify the positive examples in a text file using a format given in the

next section. The possible value is the full path to the positive training file.

• neg example

we also need to specify the negative examples in a separated text file. The possible

value is the full path to the negative training file.

There are three optional parameters can be specified in a configuration file, they are:

2http://owlapi.sourceforge.net
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• pos test

we can specify the positive examples test file if we want to evaluate the learner

model’s accuracy. The possible value is the full path to the positive test file.

• neg test

if the positive test is specified, the negative test examples is also need to be specified.

The possible value is the full path to the negative test file.

• literal depth limit

this setting is used to limit the depth of the search with the default value is 4.

Currently, our system can handle the search until the depth value=5. We can specify

any positive integer number between 2 and 5.

• include inferred class this setting is used to specify whether we want to include

the inferred class in the search or not. The possible value is: YES or NO, with the

default value of this setting is NO.

D.4 An example

An example of a complete configuration file is shown in Figure D.1a. All the examples,

i.e. training positive, training negative, testing positive and testing negative, is using the

format shown in Figure D.1b as the pairs of individual - individual separated by a

comma. All the input files is stored as textfiles.

D.5 Software architecture

APARELL is built by using two types of Java ontology handling library: OWL API for

processing an OWL file and RDF4J for processing an ontology from an RDF database

server. For the ability to read databases from a remote server, this software works well

with GraphDB 3.

3https://ontotext.com/products/graphdb/
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% knowledge base resource

% tripledb_server=http://localhost:7200/repositories/mycarsontology

kbfile = car.owl

prefix = http://www.mycars.org/ontology#

relation = betterthan

% training examples

pos_examples = trainpos.txt

neg_examples = trainneg.txt

% test examples (optional)

pos_test = testpos.txt

neg_test = testneg.txt

% parameter settings (optional)

literal_depth_limit=3

include_inferred_class=no

(a) A sample of a configuration file

car7,car6

car7,car8

car3,car1

car2,car3

(b) A sample of a positive examples file

Figure D.1: APARELL configurations
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INFORMED CONSENT FORM 
 

Title of Project:  Utilizing Pairwise Comparisons and Active 

Learning for User Preferences Elicitation in 

Recommender System 

Principal Investigator:  Nunung Nurul Qomariyah 

 

We invite you to take part in this research study at Computer Science Department 

University of York which aims to learn user preferences regarding the purchase of 

used cars. Please note that this study cannot be seen as providing any practical 

advice on this matter and the University of York cannot be held liable for the 

consequence of any purchase made by yourself. 

 

Before you participate in the design evaluation study, please read all the sections 

in this consent form, printing your name and then sign at the end. 

 

Section 1.  VOLUNTARY PARTICIPATION 

Taking part in this research study is voluntary. You do not have to participate in 

this research. If you choose to take part, you have the right to stop at any time. If 

you decide not to participate or if you decide to stop taking part in the research at 

a later date, there will be no penalty or loss of benefits to which you are otherwise 

entitled.  

Your investigator may take you out of the research study without your permission. 

Some possible reasons for this are: you did not follow the study instructions or 

your data seemed to be invalid. 
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Section 2. PROCEDURES 

Your investigator will guide you through the online system. You will be asked to 

answer all the questions. We do not store any personal data related to your email 

account.  

You are given two tasks to finish as below: 

1. Please find up to three cars suitable for daily commute between home and 

office (within the distance around 5-7 miles each way).  

2. Please find up to three cars suitable for weekend shopping for a household 

of 4 people (within the distance around 3-5 miles each way).  

 

You have to finish each of the tasks by using one of these interfaces, which are: 

• Pairwise interface 

• Standard list interface 

 

There are three questionnaires you need to fill in, they are: 

• Post-stage questionnaire for pairwise interface. After you finish working 

with pairwise interface, you will be asked to complete a post-stage 

questionnaire to evaluate the recommender system.  

•  Post-stage questionnaire for standard list interface. You also need to 

complete the post-stage questionnaire for evaluating this interface.  

• After you complete your assessment with both interface, you will be asked 

to fill in the final questionnaire to compare between those two interfaces. 

 

The principal investigator will help you with any inquiry regarding this 

experiment. You can ask any question or seek further clarification about this study 

if you need to. 

  

161



  

 

 

Section 3. STATEMENT OF CONFIDENTIALITY 

All information collected is confidential and anonymous. Any information from 

the study will only be made public in an anonymous group format, so that 

individuals will not be identifiable.  

 

 

Section 4  COMPENSATION FOR PARTICIPATION 

You will be given an Amazon voucher worth £5 to compensate you for 

participating in this study. 

 

By signing below, you indicate that you have read the information written above, 

agree to participate in this study and give permission for the study to be recorded.  

 

 

 

____________________ ____________  _______________________ 
Signature of Participant Date  Printed Name 
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USER MANUAL 
 
Title of Project:  Learning User Preferences for Recommender Systems 

from Pairwise Comparisons using Inductive Logic 
Programming in Description Logics 

Principal Investigator:  Nunung Nurul Qomariyah 
 
In this experiment, you are given two tasks to finish as below: 

1. Please find up to three cars suitable for daily commute between home and 
office (within the distance around 5-7 miles each way).  

2. Please find up to three cars suitable for weekend shopping for a household of 
4 people (within the distance around 3-5 miles each way).  

 
You have to finish each of the tasks by using one of these interfaces, which are: 

• Pairwise interface.  
• Standard list interface 

We provide the screenshot and guidance in the next page. 
 
There are three questionnaires you need to fill in, they are: 

1. Post-stage questionnaire for pairwise interface. After you finish working with 
pairwise interface, you will be asked to complete a post-stage questionnaire 
to evaluate the recommender system.  

2. Post-stage questionnaire for standard list interface. You also need to complete 
the post-stage questionnaire for evaluating this interface.  

3. After you complete your assessment with both interfaces, you will be asked 
to fill in the final questionnaire to compare between those two interfaces. 

 
The principal investigator will help you with any inquiry regarding this experiment. 
You can ask any question or seek further clarification about this study if you need 
to. 
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PAIRWISE INTERFACE 
There are three steps to use this interface: 
 

1. Annotating the pairs. 
In this interface, you can search the cars using filtering in the left side, we 
suggest you to not sort the items in order to allow you to get more diverse 
choices. Please note that we provide the image of the cars for illustration only. 
Some of the items don’t have an image available. Please don’t use the image 
solely for guiding you through the search. We want you to annotate at least 
10 pairs to complete this part.  
 
You can start to choose one of items you like in each pair (please compare the 
items in rows). For examples, in the first row you compare between 
Volkswagen CC and Volkswagen Passat. Please consider all the attribute 
values carefully. You can pass the pairs if none of the items match your 
preferences. After you finish choosing in pairs, please click blue button 
“Save” in the bottom of the page. You can continue to annotate the pairs as 
many as you like. 
 

2. Recommendations. 
We provide a set of recommendation for you in the right side, if you like any 
of them, please click the green button “I like this”.  

 
3. Submitting your answer and result of your search. 

After you finish selecting the cars you like, you can submit your answer 
through YOUR TOP PICKS page (click the green button in your top right).  

 
In the TOP PICKS page, you will be asked to choose up to three cars that 
suitable for you, and then click the SUBMIT YOUR ANSWER. You can also 
see alternatives of the recommendation by click the button “See other 
alternatives here”. In this step, you can always go back and annotate more 
pairs if you want to see different results.  
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Figure 1. Pairwise interface 
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Figure 2. Top picks page 
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STANDARD LIST INTERFACE 
There are three steps to use this interface: 
 

1. Selecting the items. 
In this interface, you can search the cars using filtering in the left side. Please 
note that we provide the image of the cars for illustration only. Some of the 
items don’t have an image available. Please don’t use the image solely for 
guiding you through the search. 
 
You can start to choose one of items you like in each page. You can pass the 
annotation on a page if none of the items match your preferences. After you 
finish choosing your preferred items, please click blue button “Save” in the 
bottom of the page. You can continue to select the items as many as you like. 
 

2. Recommendations.  
We provide a set of recommendation for you in the right side, if you like any 
of them, please click the green button “I like this”.  

 
3. Submitting your answer and result of your search. 

After you finish selecting the cars you like, you can submit your answer 
through YOUR TOP PICKS page (click the green button in your top right).  

 
In the TOP PICKS page, you will be asked to choose up to three cars that 
suitable for you, and then click the SUBMIT YOUR ANSWER. 

 
 
 
 
 
 
 
 
 
 

Appendix F: User Study Manual

168



  

 
 
 
 
 
  

Figure 3. Standard list interface 
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POST-STAGE QUESTIONNAIRE 
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INTERFACE PREFERENCE 
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G.1 Post-stage questionnaire results
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G.2 Interface preferences questionnaire results
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Appendix H: Interview Transcripts

Table H.1: Interview transcripts

Interview ID Transcript

1 “I think I prefer to choose pairwise comparions because I can compare two items
easily. The system is really useful and helpful for customers. As a customer, we
can choose the items so that the system can give us some items related to the one
that we want to buy.”

2 “I prefer the single list rather than the comparisons between pairs of cars because
I find it more comfortable on interface like in this computer screen, the fact that
you can have as many options as possible all together rather than go step by step
with two or three or multiple comparisons, with the filter, if you have in mind
what you want it is easier for me to choose with the filter and give me a splash
page with 20 or 50 options that I can compare all together. Not just the two and
then the two. If you do not have the filter, probably you need step-by-step filtering
but it’s a bit redundant. But I don’t know if making a comparison between pairs
of cars could be useful for people that have no real idea of what to choose.”

3 “When I was filtering the types of cars according to mileage and price, there was
no car available, it was a surprise for me, because there are so many cars in all the
ranges of mileages and engine power. So it will be better and interesting for the
person who is using the website if they get more choices to select from. In terms of
filter, I think there can be more options because people like to play around first and
then go to their final choices, so there could be more options on what people like
most or most popular. I like the pairwise one better. It was easier for me because
when I was filtering the cars, it showed me the car with the specifications on the
side of the picture. It was very easy to choose from in terms of the information
that had been given.”

4 “Well the interface is good, but from both of them I prefer the list, because I don’t
have to think to choose one of the available choices so I can focus on each of the
items. The pairwise just forces me to choose between two options, it is difficult for
me. The recommendation is good, at least I know why the system recommended
the cars for me.”

5 “Pairwise was better in my opinion. The pictures should show the different sides
of the cars not only front side, some pictures only showing the back, I am confused.
I like pairwise maybe because it’s more informative and the choices there are more
diverse compared to the list one.”

6 “I like the pairwise interface because it gives me the benefit to compare instantly
with other cars instead of comparing the homogeneous list of similar cars. I think
it helped me to understand and to know my expectations. (Talking about the
quality of the recommendation) Actually both of them were almost the same but
the way it gave me the best cars, pairwise did a better job.”

7 “I like the pairwise one, because I guess it can help you, kind of forces you to
compare the cars. So I sorted them by price, it tended to show me quite similar
cars, they came up in each pair, it kind of forces me to choose between the similar
cars. The standard list is OK because I am more familiar with this type on every
online website. The recommendation given by the system is quite interesting
because it came up with some things that I haven’t seen before, I don’t know
whether I’ve seen them or not, I’ve just forgotten about it. It was certainly
interesting. If I want to use it to buy a car probably I am a bit worried because
it gives me slightly different choices but with kind of explanations why it showed
you these cars, so it’s a quite good result.”

8 “I would say I like the pairwise better because it gives more choices and it chose
everything on the side (side recommendation) instead of just disappear; you just
keep an eye on whatever you choose. It helped me to find the cars I liked and also
because it gives you summary about what you like. The explanations matched my
preferences.”
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Table H.1: Interview transcripts (cont.)

Interview ID Transcript

9 “It is kind of a bit difficult, because in terms of the interface, I think the pairwise
interface looks better and is very informative because in the section where I click
Your Top Picks the interface gave me information on why we picked those cars.
In the standard list interface I couldn’t find why we picked the cars. In terms of
the design, the pairwise is better but in terms of the informativeness also pairwise
is better, but in terms of the diversity of the choices I guess I think the pairwise
is very diverse... which is sometimes, if I am not really sure what I’m looking for,
that’s good but if I’m really sure what I want and then which car, which type,
what kind of transmission system that I like, I think the standard list interface
gave me a better choice of cars that I like. (About the recommendation) I mean
it’s a matter of personal choice, so I set in the beginning that I like these very
specific cars with very specific characteristics so when I expect something in the
recommendation I expect something that OK, fits with my profile with what I set
before in the beginning so I don’t really pay much attention to something new
that happens as far as I remember, all the cars that I clicked on appeared in the
recommendation section, I didn’t click on ‘see other alternatives’ for the pairwise
interface, I only clicked the ‘see other alternatives’ in the standard list interface
because on the first page the pairwise interface represented what I really needed
so although I didn’t click three cars, I just clicked on two cars but it seems that’s
OK it was quite representative of what I need. But in the standard list interface,
I needed to click on ‘see other alternatives’ and then on the second page I found
all the cars that really suit me.”

10 “With the pairwise it seems to me because you’re forced to compare two different
cars so.. to make like a choice whether you like a large car or maybe a newer car
or.. so it’s make more, that you are forced to make a choice between something...
which is good. But also the good part of the other... the list interface that you
are not forced to make a choice between two, so you have more freedom of looking
around. Maybe I like more the first interface, maybe just because I am used to
it... oh sorry, the list one, I feel more comfortable.”

11 “I prefer the pairwise interface simply because it’s the fact that at the end of the
day when you’ve done choosing your cars and you move on to the recommendation
provided it gives you the reason why it’s providing the recommendation compared
to the standard one. (About the quality of the recommendation) Yes, I think that
compared to the standard list interface, the pairwise interface gives me a more
diverse output to some extent. I think this is what really got me because this is
what I am looking for, I was purposely trying to get a hatchback between hundred..
well over 100 bhp, and it’s all picked up on that feature highlight.”

12 “Well actually I found I had interest in both of the interfaces so... specifically I
want the cars and... in that pairs and there is a... both of them, but I found out
that... the standard list interface is likely to recommend the cars that I might
purchase if I don’t want these specific cars. Both of the interfaces are very easy
to use and very interactive.”
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Appendix H: Interview Transcripts

Table H.1: Interview transcripts (cont.)

Interview ID Transcript

13 “Actually both are good, but for me I think... the pairwise is good to see two
cars but sometimes it’s not that similar for me so I got confused, I need to choose
both. Because we used to use the standard list, that’s why maybe it’s easier, but
both are good. I think pairwise, the most advanced job using pairwise is you can
choose cars on the same page... you can see more cars on the same page. I think
the quality of the recommendation in both is good. I can find my choices in both
interfaces. It would be good if the pictures can have more than one side of the
same car, maybe if you have some customer reviews, something like that.”

14 “I prefer the list interface of the recommendation, obviously making the preference
better than the pairwise, the more complex one, you need to choose one, but I think
the quality of the recommended cars in the end is not diverse for me at all and they
are kind of similar to each other. But the list one, I think the recommendation
is all attractive to me. I think it is sometimes, it’s not fair if you compare two
cars with very different prices or if you prefer the high price car, it makes me a lot
more confused cause obviously the car with the higher price is of higher quality
but if you take into account the price.. is that really worth that price, so it is
hard to make a decision. If you compare the cars with similar prices is a lot more
easier, I was not using the sorting method in both interfaces, I didn’t notice. The
results here (pairwise interface) are quite limited I think as, for example, the price
is limited to 5000 to 6000 and... mileage I’m not sure.. to me it’s the small it
is the better for me, I really do not prefer this range. Actually I just prefer the
smaller mileage but you need to compare also the price and features. I like the
small engine size and yes... it is here in the explanation. And also the year... the
newer the better for me, not only this range and I found the cars I like in here
(pairwise). But you see these cars are very similar to each other, isn’t it? But in
the list I found it more diverse, you got SUV, you got a small car.”

15 “I think the search filter in the pairwise, whenever I click next it goes back, it’s
a bit annoying for me. More or less I like the pairwise better than the list, you
find more choices on a page, I don’t need to scroll down to see more cars. I can
get more cars quicker, the other one (list) you need to click next more often to
see more cars. Well I think this pairwise recommendation is better than the list
for me. I found the cars here, to some extent, yes, this explanation matched my
preferences. I submit three cars each time, the same as the list one.”

16 “I like standard list interface more actually, well in the standard list interface I can
check the cars one by one, in the pairwise interface I have to choose one of them,
but with some cars, I didn’t like both, so it was actually not very meaningful to
me. In the standard list interface, you know... I feel more independent to choose
one. This (pairwise) felt like I had to choose one, I felt pressured. The filtering
system is helpful. In the standard list interface, the recommendation was much
more relevant. In the pairwise interface, the recommendation was more different
from what I like. The explanation is representative but it could be.. I don’t know...
maybe more.. the design could be more different, I think. The attributes in the
explanation are related to what I like.”

17 “Both interfaces were good and interesting, but I like the pairwise one compared
to the list. In pairwise I can see more available cars without using the filtering, but
in the list, I have to use the filtering otherwise it will be too cheap and random.
Yes, I like the recommendation given by the system and I found my preferences in
there.”
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Table H.1: Interview transcripts (cont.)

Interview ID Transcript

18 “I think the list one is better because the pairwise is comparing the cars and there
were different cars that we couldn’t compare each other, some of them are cheap,
some of them are expensive, some of them are sports cars. I didn’t find it suitable
to compare them, therefore I choose the list one. The list one is also easy to use
and remembers my choice. The recommendation quality is good, because it gives
everything, I can see all the information just by looking at the small picture. I
don’t need to go inside of the advert therefore the interface was useful for me
just looking at the information. And the price is suitable to my budget. I choose
new cars mostly and it recommends me the new cars and the cheap ones and
those suitable for families, I choose five-door cars because it will be better for my
children and the recommendation is suitable with my choices. The application is
useful, but some of the pictures just show the inside of the car and therefore I
want to see the outside picture of the car, otherwise it is useful, it gives me the
opportunity to choose anything I want, price, year and mileage. It is easier to look
for cars with this application. Yes, it’s helped me to find the cars I need, actually
I found two or three cars that suit me.”

19 “I think the list interface is much easier because I think pairwise got me something
like confused so in my opinion I choose the list one. In pairwise interface, sometimes
there is no match between this pairwise, for example, here is automatic and here
is manual so I think, if it is a similar pattern in pairwise it will be better. I
was not using the sorting filter, if I was using the sorting maybe I got similar car
comparisons. I did find the cars I like in the recommendation and the explanations
were good because I prefer the automatic over manual. The recommendation gave
me automatic cars so that’s OK.”

20 “I think I like the interfaces. I am still wondering how this search functionality,
sorting functionality can be used, but yeah, I like the interface, I like the recom-
mendation part as well because some of those are quite useful. It was difficult to
choose in the pairwise because the choices were quite random but you know it was
still giving me better options. I think I found something in the recommendation
which I would like to buy. The standard list interface does not distract me from
choosing the cars.”

21 “The pairwise interface has limited choices. I found the cars that I like in the
recommendation. Actually when comparing the cars, I am considering the price
and age of the cars. I prefer the newer and the cheaper car.”

22 “They are both good, they bring quite good information, but I think the pairwise
is more useful because it is narrowing down the options, options, options. I think
I like pairwise better. The explanation is interesting and matches my preferences.
It is very nice, I like it. Maybe for the pairwise, if you can make it three options
instead of two that would be great. I feel it isn’t difficult for me to choose between
two.”

23 “I think the pairwise interface is quite interesting because I can see more options
than the list one. And also this is new, I have never seen it before, so I think it
would be useful for a person like me who didn’t know much about cars. The list
one is OK for me. Yes, the recommendation helps me find the car I like.”

24 “I would say that the pairwise helps me to understand what I would like to look
for. I like the facts that we can go back and add more choices to get a better
recommendation from the system, so I feel more in control with the system. I like
the explanations, some of the features are exacly what I like, just like this body
type, I prefer hatchback than any other else.”
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Appendix H: Interview Transcripts

Table H.2: Transcripts codes and categories

Interview ID Codes Categories

1 preferring to the pairwise interface preference

comparing is easy; relevant reasons for preferring the pairwise interface

useful; helpful general comment

2 preferring to the list view interface preference

comfortability on the screen;

having a clear idea on what to buy;

filtering is more useful with the list view reasons for preferring the standard list view

comparisons is suitable for someone who unsure

about the choices;

expecting more items to compare

(rather than in pairs) general comment

3 preferring to the pairwise interface preference

specifications is shown next to picture;

comparing is easy reasons for preferring the pairwise interface

expecting more data in the system;

expecting most popular items;

expecting more options in the filtering general comment

4 preferring to the list view interface preference

the pairs are confusing; easier to use reasons for preferring the standard list view

helpful recommendation explanation reasons for preferring the pairwise interface

good general comment

5 preferring to the pairwise interface preference

more informative; more diverse choices reasons for preferring the pairwise interface

expecting more informative pictures of cars general comment

6 preferring to the pairwise interface preference

comparing is easy;

helpful to understand the expectations reasons for preferring the pairwise interface

good general comment
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Table H.3: Transcripts codes and categories (cont.)

Interview ID Codes Categories

7 preferring to the pairwise interface preference

helpful; forcing me to compare;

capability to compare similar cars;

recommending some surprising items;

interesting;

helpful recommendation explanation reasons for preferring the pairwise interface

more familiar reasons for preferring the standard list view

good;

concern to use pairwise for

actually buying a car general comment

8 preferring to the pairwise interface preference

more diverse choices;

helpful side recommendation;

helpful to find the preferred cars;

helpful recommendation explanation;

correct explanation (match the interest) reasons for preferring the pairwise interface

9 preferring to the pairwise interface preference

better design; more informative;

helpful recommendation explanation;

more diverse choices reasons for preferring the pairwise interface

comparisons is suitable for someone

who unsure about the choices;

list interface is suitable for someone

who already knows his/her expectations;

pairwise interface showing my preferred car

in the first page;

list interface showing my preferred car

in the second page general comment

10 preferring to the list view interface preference

dislike of comparing; freedom to choose reasons for preferring the standard list view

11 preferring to the pairwise interface preference

helpful recommendation explanation;

more diverse choices;

correct explanation (match the interest) reasons for preferring the pairwise interface

12 preferring to the list view interface preference

more convincing reasons for preferring the standard list view

correct recommendations; easy to use;

interactive general comment
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Appendix H: Interview Transcripts

Table H.4: Transcripts codes and categories (cont.)

Interview ID Codes Categories

13 preferring to the list view interface preference

more familiar; the pairs are confusing reasons for preferring the standard list view

displaying more cars reasons for preferring the pairwise interface

good; correct recommendations;

expecting more informative pictures of cars;

expecting user reviews in each car general comment

14 preferring to the list view interface preference

attractive recommendation; more diverse

the pairs are confusing;

not aware of filtering in the pairwise interface reasons for preferring the standard list view

recommendation explanation can be improved;

specific range in the explanation is not

really helpful general comment

15 preferring to the pairwise interface preference

displaying more cars;

lless often to click the ‘next’ button and

scroll down;

correct explanation (match the interest) reasons for preferring the pairwise interface

filtering in the pairwise interface can be improved general comment

16 preferring to the list view interface preference

dislike of comparing; freedom to choose;

more relevant reasons for preferring the standard list view

correct explanation(match the interest);

helpful filtering feature reason to prefer the pairwise interface

design of the explanation can be improved general comment

17 preferring to the pairwise interface preference

displaying more cars; correct recommendation reasons for preferring the pairwise interface

good; interesting general comment

18 preferring to the list view interface preference

the pairs are confusing; easier to use reasons for preferring the standard list view

good; correct recommendation;

informative; useful; helpful;

expecting more informative pictures of cars general comment
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Table H.5: Transcripts codes and categories (cont.)

Interview ID Codes Categories

19 preferring to the list view interface preference

easier to use; the pairs are confusing;

expecting to compare more similar cars;

not aware of the filtering in

the pairwise interface reasons for preferring the standard list view

good; correct recommendation general comment

20 preferring to the list view interface preference

dislike of comparing; can stay focus on

searching reasons for preferring the standard list view

good interface; useful;

correct recommendation; convincing general comment

21 preferring to the pairwise interface preference

comparing is easy reasons for preferring the pairwise interface

correct recommendation general comment

22 preferring to the pairwise interface preference

ability to narrow down the choices;

correct explanation (match the interest);

interesting; comparing is easy reasons for preferring the pairwise interface

good;

expecting more items to compare

(rather than in pairs) general comment

23 preferring to the pairwise interface preference

displaying more cars;

helpful to understand the expectations reasons for preferring the pairwise interface

helpful general comment

24 preferring to the pairwise interface preference

helpful to understand the expectations;

feel in control;

correct explanation (match the interest) reasons for preferring the pairwise interface
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Abbreviations

ABox Assertional Box

ACF Automated Collaborative Filtering

ACM Association for Computing Machinery

AI Artificial Intelligence

AL Active Learning

ALC Attributive Language with Complement

ANOVA Analysis of Variance

AOPRS Adaptive Ontology Based Personalised Recommender System

API Application Programming Interface

APARELL Active PAirwise RELation Learner

ASP Answer Set Programming

BTM Bradley Terry Model

CELOE Class Expression Learner for Ontology Engineering

DL Description Logics

DT Decision Tree

FOL First Order Logic

GPL General Public License
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GUI Graphical User Interface

HCI Human Computer Interaction

IDE Integrated Development Environment

ILP Inductive Logic Programming

IMDb Internet Movie Database

LOD Linked Open Data

MCDM Multi-Criteria Decision Making

ML Machine Learning

OWL Web Ontology Language

PC Pairwise Comparison

PL Preference Learning

PORE Personal Ontology-based REcommender

PROMETHEE Preference Ranking Organization Method for Enrichment Evaluations

QBC Query by Committee

RDF Resource Description Framework

RecSys Conference on Recommender System

ROC Receiver Operating Characteristic

RS Recommender System

SVM Support Vector Machine

TBox Terminology Box

UCO Used Cars Ontology

URI Uniform Resource Identifier

W3C World Wide Web Consortium

XML Extensible Markup Language

200



XSL Extensible Stylesheet Language
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[32] Carmel Domshlak, Eyke Hüllermeier, Souhila Kaci, and Henri Prade. Preferences

in AI: An overview. Artificial Intelligence, 175(7):1037 – 1052, 2011.

[33] Michael D. Ekstrand, John T. Riedl, and Joseph A. Konstan. Collaborative filtering

recommender systems. Foundations and Trends in Human–Computer Interaction,

4(2):81–173, 2011.

[34] Yi Fang and Luo Si. A latent pairwise preference learning approach for recom-

mendation from implicit feedback. In Proceedings of the 21st ACM International

Conference on Information and Knowledge Management, CIKM ’12, pages 2567–

2570. ACM, 2012.

[35] Nicola Fanizzi, Claudia d’Amato, and Floriana Esposito. DL-FOIL concept learning

in description logics. In Inductive Logic Programming, pages 107–121. Springer,

2008.

[36] Alexander Felfernig, Michael Jeran, Gerald Ninaus, Florian Reinfrank, and Stefan

Reiterer. Toward the next generation of recommender systems: applications and

research challenges. In Multimedia services in intelligent environments, pages 81–

98. Springer, 2013.

[37] Dieter Fensel. Ontologies: A Silver Bullet for Knowledge Management and Electronic

Commerce. Springer, 2001.

[38] Peter Flach. Machine Learning: The Art and Science of Algorithms that Make Sense

of Data. Cambridge University Press, 2012.
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