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Abstract
The present work studies the effects of inducing a strain gradient on micron-sized

Galfenol and nickel devices containing vortex cores by means of a piezoelectric

element. Micromagnetic simulations show that the strain induced anisotropy gradient

causes vortex core translation along the direction of the gradient, which is key to

efficient excitation of the core dynamics. The effect of the strain gradient symmetry on

the displacement of the core is investigated and the experimental implementation of

the strain gradient is also discussed. For the latter, two approaches are considered. The

first is to make use of the ferroelastic multi-domain state of a ferroelectric substrate.

The second is based on tailoring a gradient in the strain by patterning two electrodes

on top of the piezoelectric substrate.
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Chapter 1

Introduction

The great variety of structures and properties found in magnetic systems makes

these very useful for several technological and biomedical applications. Advances

in such applications require further device miniaturization, which has focused the

attention of scientists on the ability of controlling magnetism in reduced dimensions, for

example magnetic surfaces, interfaces, thin films, micro- and nano-scale structures and

nanoparticles. Progress in microfabrication technology has enabled the preparation of a

variety of magnetic structures which have eventually arisen as promising candidates for

ultrahigh density data storage, magnetic random-access memories (MRAM), magnetic

field nanosensors and spintronic logic devices. In 2D magnetic systems, topological

defects such as Skyrmions [1] and magnetic vortices [2] are of particular interest.

The magnetic vortex structure is being investigated thoroughly mainly because of its

intriguing dynamical properties, especially the appearance of a gyrotropic mode at sub-

GHz frequencies. Such a low-frequency mode refers to the spiral, circular if no damping,

motion of the vortex core when it is displaced from its equilibrium position and is key

for applications in data recording and oscillators.

Magnetic vortices have been discussed heavily as possible bit elements in MRAM due

to their high stability with respect to static external magnetic fields [3, 4, 5] and to the

low stray fields present in these textures. This allows vortices to be packed more closely

than usual single domain states providing a pathway to a high density magnetic storage

device. The utilization of the magnetic vortex as a bit element is based on regarding the

two possible states of either its polarity or its chirality as the two bits of information “0”

and “1”. Combining both properties, the magnetic vortex is a promising candidate for a
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four state memory device [6]. Also, given the gyrotropic mode, it has been considered as

a potential microwave source in spin torque vortex oscillators (STVO-s) [7].

Excitation of vortex core motion is not only essential for microwave emission but has

been shown to provide a means to switch the polarity and chirality of the soliton

itself, allowing for data writing in magnetic memory applications. Dynamic in-plane

perturbations of very low amplitude induce polarity switching at subnanosecond scales

when the gyrotropic mode is excited resonantly. These perturbations include magnetic

field pulses [8, 9, 10], oscillating fields [11, 12, 13, 14], spin currents [15] and RF strain

gradients [16]. With respect to chirality, a gyromode-mediated control of the spin

circulation has also been found achievable when in-plane nanosecond field pulses are

applied to asymmetric structures [17].

The desire for reducing power consumption led years ago to the quest of another

way for controlling magnetization other than magnetic fields. Magnetoelectrics, which

refers to the manipulation of magnetization using electric fields or voltages emerged

as a promising answer to this, which on top, allows addressing magnetic elements

individually due to the much reduced stray field. In this context, there has been a recent

interest in using electric voltage induced strain to control magnetization in composites

consisting of a piezoelectric (PE) or ferroelectric (FE) substrate and a magnetostrictive

ferromagnetic (FM) element. The manipulation of magnetic textures containing vortices

by the application of strain has been reported in Galfenol (Fe81Ga19) [18] and nickel (Ni)

[19] where the strain acts as an additional uniaxial anisotropy. In contrast to a spatially

uniform uniaxial strain, which does not displace the vortex core [18], a 1-D linear strain

gradient has been found to induce vortex core dynamics [16]. In this work, the effect of

the strain gradient symmetry on the displacement of the vortex core is investigated in

Fe81Ga19/PE-FE and Ni/PE-FE composites as it is relevant for efficient excitation of the

core dynamics.



Chapter 2

Background

2.1 Energy contributions of ferromagnetism

Magnetism is a purely quantum mechanical effect that occurs when atoms with unpaired

electrons, and therefore with a non-zero net magnetic moment ~µ, are arranged in a

crystal lattice. If the magnetic moments interact sufficiently strongly with each other,

ferromagnetism occurs. The magnetic free energy of a ferromagnetic system is defined

by four interactions: the exchange coupling, the spin-orbit coupling, the magnetostatic

interaction and the Zeeman interaction. These interactions give rise to different energy

terms that will be introduced below.

2.1.1 The exchange energy

The origin of ferromagnetism relies on the exchange coupling. This is a quantum

mechanical effect that arises from the combination of Pauli′s exclusion principle and the

Coulomb interaction, involving only spin degrees of freedom. In a two electron system,

the orbital part of the wave function of the joint state, Φ , is built from the product of the

two single electron states, φa and φb, in such way that the exchange symmetry between

the two electrons is obeyed. This leads to two possible orbital wave functions for the

system, one of which is symmetric and the other antisymmetric:

ΦT ∝
[
φa(~r1)φb(~r2) +φb(~r1)φa(~r2)

]
symmetric

ΦS ∝
[
φa(~r1)φb(~r2)−φb(~r1)φa(~r2)

]
antisymmetric (2.1)

9



2.1. Energy contributions of ferromagnetism 10

Electrons have been labelled as 1 and 2. Taking into account the electrostatic repulsion,

the two orbital states above are not degenerate, and the energy difference between them is

known as the exchange energy. Even if the origin of the exchange interaction is the energy

dependence on the orbital symmetry, Pauli’s symmetry requirement over the complete

wave function, which includes both orbital and spin parts, results in the correlation

between the orbital symmetry and the spin alignment. Consequently, it is possible to

express the exchange coupling as an effective spin-spin interaction, specifically, the scalar

product of the two electron spins, such that:

Eelexch = −2JŜ1 · Ŝ2 (2.2)

Ŝ1 and Ŝ2 are the spin operators of electron 1 and 2 respectively, and J is known as the

exchange coupling strength or simply, as the exchange parameter. In this notation, spin

operators are dimensionless and the exchange parameter has units of energy. In a solid,

where the electronic wave functions of nearby atoms overlap, the exchange coupling is

generalized as a pair-wise spin interaction known as the Heisenberg model:

Eexch = −
∑
i,j

Jij Ŝi · Ŝj (2.3)

Here, Jij is the exchange parameter between two interacting spins i and j in the lattice.

Assuming only interactions between nearest neighbours and an isotropic exchange, the

expression above is simplified to:

Eexch = −J
∑
<i,j>

Ŝi · Ŝj (2.4)

For a ferromagnet J > 0 and the exchange coupling favours the spins, and hence the

magnetic moments, to be aligned in the crystal lattice, leading to a non-vanishing value

of the magnetization even at zero magnetic field. For an antiferromagnet J < 0 and it

becomes energetically favourable for neighbouring spins to point in opposite directions.

The exchange coupling is a short range force. In ferromagnetic materials, the coexistence

of short range forces and long range forces such as the magnetostatic interaction, makes

it difficult to describe their macroscopic magnetic behaviour. A method to overcome
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this issue is to replace the atomic nature of the matter and the quantum mechanical

interactions by a continuum model.

In this approach, the magnetization is considered to be a continuous field ~M(~r), where ~r

is the position vector in the ferromagnetic body. The magnitude of the magnetization

is assumed to be constant and equal to the saturation magnetization, Ms, and only

its orientation varies throughout the system. That is, ~M(~r) = Ms ~m(~r), where ~m is a

dimensionless unit vector known as the reduced magnetization andMs has units of A/m.

In this context, it is necessary to find a continuum expression for the exchange energy.

Considering the spin operators in (2.4) as classical vectors, for a crystal of uniform spins,

|~Si | = S, the exchange energy density1 in the continuum approximation becomes:

Uexch = A
∣∣∣∇ ~m (~r)

∣∣∣2 (2.5)

The integral extends over the volume of the body. A is called the exchange stiffness and

has units of energy per unit length. It is related to J as:

A =
JS2

a
C (2.6)

where a is the nearest neighbour distance and C is the number of sites in the unit cell.

2.1.2 The magnetocrystalline anisotropy

Even if the exchange coupling manages to explain the alignment of the spins and

ultimately, the magnetic moments in a ferromagnet, it only gives information on the

relative orientation of the spins. There are several contributions to the anisotropy

of the system that will eventually define the preferential crystallographic orientations

along which the magnetic moments align. One of the main sources of anisotropy

is the magnetocrystalline anisotropy, which refers to the coupling between the lattice

symmetry and the magnetic configuration of the system.

The origin of the magnetocrystalline anisotropy is the combination of the spin-orbit

coupling and the crystal fields. The spin-orbit interaction couples the spin angular

momentum and the orbital angular momentum of an electron. It arises from the

1In this work, energies, E, are distinguished from energy densities, U.
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electromagnetic interaction between the electron spin and the magnetic field generated

by the same electron orbiting around the nucleus. Given a certain ion in the crystal, all

the neighbouring ions produce an electric field called the crystal field, which generates

attractive or repulsive forces on the first ion. Depending on the crystal symmetry, the

orbitals must arrange differently so that the electrostatic repulsion is minimized. Due

to the spin-orbit coupling, such orbital orientations cause certain spin orientations to be

energetically favourable. These are known as easy axes.

The symmetry of the magnetocrystalline anisotropy is the same as that of the crystal

lattice. Consequently, a cubic crystal as nickel (Ni) or Galfenol (Fe81Ga19) has a cubic

anisotropy with 3 easy axes. The corresponding energy density can be expressed as a

series expansion of the direction cosines α1, α2 and α3 between the magnetization and

the principal crystallographic axes ~u1 = [100], ~u2 = [010] and ~u3 = [001]:

Ucan = Kc0 +Kc1
(
α2

1α
2
2 +α2

2α
2
3 +α2

3α
2
1

)
+Kc2 α

2
1α

2
2α

2
3 + ... (2.7)

Kc0, Kc1, Kc2 ... are called anisotropy coefficients and have units of energy per unit

volume. As Kc0 has no directional dependence, the first coefficient is the most relevant

and the expression can be simplified to:

Ucan = Kc
(
α2

1α
2
2 +α2

2α
2
3 +α2

3α
2
1

)
(2.8)

with Kc1 = Kc.

In hexagonal crystals as cobalt, the crystal symmetry causes a uniaxial anisotropy with a

single easy axis. The easy axis coincides with ~u3 and any direction in the basal plane is

an equally hard direction along which a much larger field is required to magnetize the

body. The mathematical expression for the uniaxial anisotropy is a series of powers of

the direction cosines weighted by the corresponding anisotropy coefficients:

Uuan = Ku0 +Ku1α
2
3 +Ku2α

4
3 + ... (2.9)

Again, discarding the 0th order element and neglecting 2nd and higher order

contributions:



2.1. Energy contributions of ferromagnetism 13

Uuan = Kuα
2
3 (2.10)

with Ku1 = Ku . Written in terms of the reduced magnetization:

Uuan = Ku( ~m · ~u) (2.11)

where ~u3 = ~u.

2.1.3 The magnetostatic energy and shape anisotropy

The magnetostatic interaction refers to the interaction between the magnetic field

generated by the magnetic distribution of the system and the magnetization itself. In

a ferromagnet, each magnetic dipole, which is represented by the magnetic moment ~µj ,

produces a magnetic field ~hj centered at the atomic position ~rj that extends all over the

space:

~hj =
1

4π

[
−

~µj
|~r +~rj |3

+
3

|~r −~rj |5
[
~µj ·

(
~r −~rj

)](
~r −~rj

)]
(2.12)

As a consequence, a dipole in the ith lattice point ~µi , interacts with the dipolar field

created by the rest of the dipoles. The energy of ~µi is then:

Ei = −~µi ·
∑
j,i

µ0
~hj (2.13)

Summing all the individual contributions, the magnetostatic energy can be expressed as:

Ems = −
∑
i

~µi ·
∑
j,i

µ0
~hj (2.14)

It is usual to write (2.14) as a function of the total dipolar field, known as the

magnetostatic field, which is the sum of the individual fields (2.12) generated by all the

dipoles in the crystal:
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Ems = −
µ0

2

∑
i

~µi ~Hd (2.15)

with Hd =
∑
j
~hj . The magnetostatic field is usually called the demagnetizing field inside

the body and the stray field outside the body. In the continuum approximation, it can be

approximated to:

~Hd =
1

4π

[∫
V

ρv (~r ′) (~r −~r ′)
|~r −~r ′ |3

dV +
∫
s

ρs (~r ′) (~r −~r ′)
|~r −~r ′ |3

dS

]
(2.16)

where ρv and ρs stand for the volume and the surface magnetic charge density

respectively. This finally leads to the continuum expression of (2.15):

Ums = −
µ0Ms

2
~m · ~Hd (2.17)

For particular geometries as ellipsoids or spheres, the demagnetizing film is uniform and

can be written as:

~Hd = −Ms N ~m (2.18)

where N is the so-called demagnetizing tensor.

When the ferromagnetic body is uniformly magnetized, the first integrand of equation

(2.16) is zero. In that case, the magnetostatic energy only depends on the shape of the

body and the direction of the magnetization, and has the same mathematical form as the

uniaxial anisotropy. Then, the dipolar energy is usually referred to as shape anisotropy. In

thin films, the shape anisotropy tends to keep the magnetization within the film plane.

In a structure small enough, the single-domain configuration is energetically favourable.

In that case, the cost generated by the demagnetizing fields inside the body is

compensated by the minimization of the exchange energy. However, in larger systems,

the increase in the magnetostatic energy cannot be compensated any more and

consequently, the body splits into several magnetic domains. That way, the magnetostatic

energy is minimized.

The formation of domains occurs in spite of an increase in the exchange energy at the
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domain walls, where there is a gradual rotation of spins. This occurs over lengths of the

order of tens to hundreds of nanometers leading to Bloch or Néel type domain walls.

Figure 2.1: Formation of magnetic domains in order to minimize the dipolar contribution. (a)
corresponds to a single-domain state. Here, the exchange energy is minimum but the dipolar
energy is the largest due to the big dipolar fields. In (b) the system splits into two domains
reducing the magnetostatic contribution at the expense of creating a domain wall. Finally, in
(c) the demagnetizing fields are cancelled minimizing the dipolar energy but introducing several
domain walls. The resulting 4-domain configuration is known as the flux-closure or Landau
structure.

2.1.4 The magnetoelastic energy

The magnetoelastic interaction or magnetostriction stands for the coupling between the

magnetization of the body and the strain applied to it. Essentially, if a strain is applied,

the distances between atoms change and the lattice is distorted. As a consequence,

the crystal fields change and the spin configuration of the system is modified. The

magnetoelastic energy is a function of the direction cosines of the magnetization and

the components εij of the strain tensor. For a cubic crystal:

Ume = B1

(
α2

1εxx +α2
2εyy +α2

3εzz
)

+B2

(
α1α2εxy +α2α3εyz +α3α1εzx

)
(2.19)

where B1 and B2 are the so-called magnetoelastic coupling constants in J/m, which

depend on the elastic moduli C11, C21 and C44, and the magnetostriction constants λ100

and λ111:

B1 = −3
2
λ100 (C11 −C12)

B2 = 3C44λ111 (2.20)



2.2. Micromagnetics 16

If the magnetzation is restricted to be in-plane (α3 = 0) and negligible in-plane shear

strain is assumed (εxy = 0), the expression can be simplified to:

Ume = B1α
2
1

(
εxx − εyy

)
= B1∆εcos2φ (2.21)

where φ denotes the angle between the magnetization and the [100] direction, and

∆ε = εxx − εyy is the in-plane strain anisotropy. Comparing equation (2.21) to the

expression for the magnetocrystalline uniaxial anisotropy (2.10), one can see that the

magnetoelastic energy above is another type of uniaxial anisotropy with Ku = Ks = B1∆ε.

2.1.5 The Zeeman energy

Finally, if an external magnetic field is applied to the ferromagnetic system, the magnetic

moments inside the body tend to align with the external field. The energy term that

describes this effect is the Zeeman term, which is given by:

Uz = −µ0Ms ~m · ~Hext (2.22)

where the magnetic field is in A/m units.

2.2 Micromagnetics

The micromagnetic formulation seeks the description and prediction of magnetic

behaviours at micro- and nano-length scales. In this model, the magnetization is

represented by a continuous field of constant magnitude. In micromagnetics two

approaches are distinguished, the static approach and the dynamic approach.

On the one hand, the static approach minimizes the energy of the body with respect to

the spatial distribution of the magnetization, ~m (~r), to calculate equilibrium magnetic

configurations. Taking into account all the energy contributions in § 2.1, the total energy

of a cubic ferromagnet with in-plane magnetization is given by:
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E =
∫
V

[
A (∇ ~m)2 +Kc

(
α2

1α
2
2 +α2

2α
2
3 +α2

3α
2
1

)
−
µ0Ms

2
~m · ~Hd +B1∆εcos2φ−µ0Ms ~m · ~Hext

]
dV

(2.23)

By using variational principles, it can be shown that the energy minimum satisfies the

following condition:

~m× ~Hef f = 0 (2.24)

where ~Hef f is a local effective field that involves all the interactions described:

~Hef f (~r) = − ∂E

∂ ~m(~r)
(2.25)

That is, the equilibrium is reached when ~m(~r) aligns to the local effective field at ~r.

On the other hand, the dynamical approach looks for the time evolution of the

magnetization. An equation that describes the time dependence of the magnetization

was presented by Landau and Lifshitz in 1935 [20]. It is known that an external magnetic

field causes the precession of the magnetic moment around it, the so-called Larmor

precession. Landau and Lifshitz suggested that the magnetization ~m (~r) also precesses

due to the local effective field:

d ~m
dt

= −γ ~m× ~Hef f (2.26)

where γ =
gqe−

2me−
is the gyromagnetic ratio with g the Landé factor. To take into

consideration dissipative effects, which cause the magnetization in actual systems to slow

down and eventually stop, a damping term was introduced. This led to the Landau-

Lifshitz-Gilbert (LLG) differential equation:

d ~m
dt

= −γ
(
~m× ~Hef f − η

~m× d ~m
dt

)
(2.27)

The first term in (2.27) represents the torque exerted by the effective field. The second

term is the damping term, governed by damping parameter η. By integrating the
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LLG equation the evolution of the magnetization is obtained until at equilibrium, the

magnetization and the effective field are parallel.

Figure 2.2: Undamped (a) and damped (b) motion of the magnetization vector around the
effective field ~Hef f representing equations (2.26) and (2.27) respectively.

2.3 Magnetic vortices in planar magnetic materials

2.3.1 Introduction to the magnetic vortex state

Lateral confinement in some planar magnetic materials leads to a magnetic vortex

configuration. The topological defect is observed in square and circular geometries of

micron and sub-micron dimensions in soft ferromagnetic materials such as Permalloy

(Fe80Ni20) [21]. In these elements the vortex state arises as a result of the balance between

the exchange energy and the magnetostatic energy and is characterized by an in-plane

magnetization everywhere in the element except at the centre, where the magnetization

rotates out of plane. Such a central region is known as the vortex core and has a diameter

of about 20 nm.

In square elements, the in-plane magnetization forms a Landau closed flux [22] as shown

in Fig.2.3 (a). The square is divided into 4 magnetic domains and the magnetization in

each domain forms an angle of 90◦ with that of the two neighbours. This manages to

cancel any stray fields and therefore, minimizes the magnetostatic energy. However, it

increases the exchange energy of the system. In order to avoid a singularity at the centre,

the vortex core arises. Similarly, in soft circular structures the magnetic moments curl

in the sample plane minimizing the dipolar energy and the increasing angles between

adjacent spins force a vortex core formation at the centre, Fig.2.3 (b).
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Figure 2.3: Vortex state in dots of different shapes showing an in plane flux-closure configuration.

Polarity (P) and chirality (C) define the state of the soliton. Polarity specifies the

orientation of the magnetization inside the vortex core with respect to the sample plane,

whereas chirality indicates the sense of the in-plane magnetization. Both quantities can

only take two values, +1/−1, and therefore, the magnetic vortex has 4 possible states,

Fig.2.4.

Figure 2.4: Four possible states of the flux closure vortex configuration: (a) P=1 and C=1; (b) P=-1
and C=1; (c) P=1 and C=-1; and (d) P=-1 and C=-1.

2.3.2 Dynamical properties of the magnetic vortex

At non-zero temperature, ferromagnetic order is disrupted by spin fluctuations known

as spin waves2. Spin waves can be classically pictured as coupled precessions of spins

around the ordered moment in the ferromagnet. In a normal mode, the spins precess at

the same frequency and with a constant phase difference with respect to their neighbours,

giving rise to a waveform of frequency ω and wave vector k. Spin waves are quantized as

magnons, with an angular momentum of 1~ and a magnetic moment of 1gµB. Spin waves

can be excited, or equivalently, magnons can be produced, by using dynamic magnetic

fields.

In a flux-closed configuration, the spin-wave spectrum includes radial modes and

azimuthal modes. When a magnetic vortex is introduced, Fig.2.3, the spectrum is affected

so that the degeneracy of the azimuthal modes with opposite rotation sense is shifted

[23] and a low frequency sub-GHz mode, the gyrotropic mode, appears [24, 25]. The

gyrotropic mode is a translational mode that arises when the core is moved away from

2Actually, these fluctuations still exist at T = 0 due to the zero point energy.
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its equilibrium position by a perturbation such as an external magnetic field. When

the perturbation is turned off, ideally the core would endlessly gyrate in a circular orbit.

Actually, due to damping effects, the core goes back to the equilibrium position in a spiral

motion. This motion can be described using an alternative form of the LLG equation,

which was first introduced by A. Thiele [26]. Assuming that the vortex core moves as a

rigid object, (2.27) can be transformed to the following force equation [27]:

~F = G · ~̇r + g · ~̇r (2.28)

where ~r = ~r (x,y) is the position of the vortex core in the film. The first term, ~FG = G · ~̇r,

is known as the gyroforce and it is responsible for the vortex core oscillation. G is the

so-called gyromagnetic tensor3 whose components are given by:

Gij =
Ms

γ

∫
~m ·

(
~m
ri
× ~m
rj

)
d2r (2.29)

The second term, ~Fg = g · ~̇r, is the damping force which causes the shifted vortex core to

return to equilibrium. g is called the dissipation tensor and its components are given by:

gij = η Ms

∫ (
~m
ri
· ~m
rj

)
d2r (2.30)

Finally, ~F corresponds to the remaining forces acting on the vortex, which include

restoring forces (~Fr ) pointing towards the centre of the sample:

~F = −∂E(~r)
∂~r

(2.31)

where E is the free energy of the vortex. A simplified diagram of the forces acting during

the gyrotropic motion of an out-of plane vortex core is represented for a 2-dimensional

structure in Fig.2.5:

3The gyromagnetic tensor is usually expressed as the so-called gyrovector (~G) such that Gij = εkijGi
with εkij the Levi-Civita symbol.
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Figure 2.5: Depiction of the forces acting during the gyrotropic motion of the vortex state for a
planar ferromagnetic disc. The vortex core (red dot), which points along the ẑ direction, follows
a spiral motion when it is displaced from the equilibrium position at the centre of the element.

2.4 Multiferroic materials and magnetoelectricity

In the same way ferromagnetic (FM) materials exhibit a spontaneous magnetization at

zero magnetic field, ferroelectric (FE) and ferroelastic (FS) materials show a spontaneous

polarization and strain respectively, both of which can be reversed by an external electric

field. Ferromagnetism, ferroelectricity and ferroelasticity are ferroic properties and by

definition, a single-phase multiferroic material is the one that shows two or more of them

in the same phase. Magnetoelectricity, on the other hand, is an independent phenomenon

that refers to the coupling between the ferromagnetic and the ferroelectric properties of

any material with both magnetic and electronic polarizability, regardless of whether it is

multiferroic or not.

The ultimate goal for device applications, would be a single-phase multiferroic with a

strong coupling between the ferroelectric and ferromagnetic order parameters. That

way, electric fields would not only reorient polarization but would allow a simple

and more energetically efficient control of the magnetization at room temperature.

However, only a very few room temperature single-phase multiferroic materials have

been reported. For that reason, in the last decades, the focus of many researches has

been to design and identify new mechanisms for a large magnetoelectric coupling and

multiferroic behaviour. The latter includes bilayer samples where a thin-film layer of a

magnetostrictive ferromagnetic material is grown on a piezoelectric (PE) substrate.
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Figure 2.6: Diagram showing the relationship between multiferroic and magnetoelectric
materials.

Such composite systems operate by coupling the magnetic and electric properties

between the two materials via strain. When an electric field is applied, a strain is

generated in the piezoelectric:

εij = dkijEk with i,j,k = 1,2,3 (2.32)

Here, dkij are the components of the third rank piezoelectric tensor and Ek the

components of the electric field. This is usually written in a 2-subscript matrix notation:

εi = dkiEk with k = 1,2,3 and i = 1,2,3,4,5,6 (2.33)

where the strain is now a 6-component vector

~ε =


ε1
ε2
ε3
ε4
ε5
ε6

 =


εxx
εyy
εzz
εyz
εzx
εxy

 (2.34)

and the piezoelectric tensor is substituted by a 6×3 matrix where dki is the strain induced

in the direction i per unit electric field applied along k.

Subsequently, such a strain produces a change in the magnetic anisotropy via the

inverse magnetostriction effect. In order to induce large changes in the magnetic

configuration through the generation of magnetoelastic anisotropy (2.21), materials with

large magnetostriction coefficients are sought. Regarding the piezoelectric substrate,
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materials with large piezoelectric coefficients are pursued. Given that piezoelectricity

has a similar origin to ferroelectricity (non-centrosymmetry), piezoelectric materials are

also ferroelectrics. A good understanding of the ferroelectric properties becomes then

essential as they determine the piezoelectric properties themselves, as will be seen in

§ 2.5.

2.5 Voltage driven manipulation of magnetic vortices

As introduced in chapter 1, patterned magnetic nanostructures have been widely

investigated for applications in non-volatile data storage and magnetic random-access

memories. Searching for a low power writing mechanism, the possibility of switching the

magnetization through an electric field induced strain has been extensively studied. For

that purpose, the ferromagnetic nanostructures are coupled to a piezoelectric substrate

where the strain is generated and transferred to the former. A magnetoelastic anisotropy

is then created by magnetostriction effects, which can switch magnetization.

The strain anisotropy ∆ε needed to produce the magnetoelastic anisotropy (2.21) can be

achieved by using the sign difference between the piezoelectric coefficients d33 and d31 of

conventional high piezoelectric ceramic actuators as Pb[ZrxTi1−x]O3 (PZT) [28]. When a

voltage is applied along its dominant elongation axis ẑ, the actuator expands along the

latter and contracts along the two orthogonal directions x̂ and ŷ (Fig.2.7). Therefore, if a

magnetostrictive film is affixed to the x̂ − ẑ face, it exhibits a compressive strain along x̂

and a tensile strain along ẑ.

Figure 2.7: Sketch of the response of a magnetostrictive film coupled to a PZT ceramic, to a
voltage applied along the dominant elongation axis of the piezoelectric.

Another way of generating an anisotropic strain is to use the (011) cut of single crystal

relaxor ferroelectrics as (1−x)Pb(Mg1/3Nb2/3)O3−xPbTiO3 (PMN-xPT, 0 < x < 0.35). This

ferroelectric has received much attention during the last decade due to its extremely high
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piezoelectric response at room temperature, which relates to the fact that it situates very

close to the boundary where tetragonal, orthorhombic, rhombohedral and monoclinic

phases meet. The (011) cut is particularly suitable because it can produce a large and

well-defined uniaxial anisotropy by inducing simultaneously compressive and tensile

strains in the orthogonal [100] (x̂) and [010] (ŷ) in-plane directions.

The unique properties of the PMN-xPT rely on its crystal structure, orientation and

domain states. The (011)-oriented rhombohedral PMN-xPT (x = 0.32) has 8 possible

polarization directions along the < 111 > variants, represented by the dashed lines in

Fig.2.8 (a). When an electric field is swept back and forth along the direction of the cut,

the polarization shows the two stage reversal behaviour shown in Fig.2.8 (b) provided

that the maximum amplitude of the field is bigger than a critical value.

Initially, the strong positive field fully poles the material along [011]. This results from

a multi-domain configuration where the local polarization vectors align to either the

[111] or the [111] variants. Upon reversal of the applied field, the polarizations switch

to the [111] and [111] directions respectively. Such switching is mediated by a narrow

range around the coercive field, Ec, in which the polarizations point along the in-plane

[100] and [011] variants. The latter is accompanied by tensile and compressive strains

in the two orthogonal axes according to the piezoelectric coefficients d31 = 610pC/N and

d32 = −1883pC/N. As a result, a large strain anisotropy of the order of 10−3 is generated

in the plane near Ec, Fig.2.8 (c).

Figure 2.8: (a) Rhombohedral phase of PMN-PT with [011] orientation, adapted from [29]; (b)
polarization [30] and (c) strain anisotropy [31] as a function of the amplitude of the electric field
applied along the direction of the thickness, [011].
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It has also been reported that a localized strain anistropy can be produced between a

pair of electrodes patterned on top of a ferroelectric substrate [32]. The structure, which

consisted of a PZT substrate with two 100nm aluminium (Al) square electrodes on top,

is shown in Fig.2.9.

Figure 2.9: Schematic of the device that generates localized bi-axial surface strain that interacts
with the magnetostrictive element. (a) Cross section and (b) isometric view. The dashed line in
(b) illustrates the out-of plane expansion under the electrodes that creates the bi-axial strain field
εxx − εyy > 0 in a central Ni island [32].

With the back fully grounded, a voltage V is applied to the upper electrodes. As a result,

the piezoelectric material underneath expands and contracts along x̂ and ŷ respectively.

In order to accommodate the in-plane deformation, mechanical stretching of the PZT

occurs in the space between the two electrodes as well. Consequently, the magnetic Ni

element located between the latter is elongated along x̂ (εxx > 0) and contracted along ŷ

(εyy < 0), leading to a bi-axial strain anisotropy εxx − εyy > 0 within the device.

Magnetic domain wall motion [19] and chirality switching of a vortex domain wall

[31] has already been observed in Ni ring/(011)PMN-PT heterostructures where the

strain anisotropy of ≈ 10−3 induces a magnetoelastic anisotropy (2.21) of the order of

10kJ/m3 (B1 ≈ −6.2MJ/m3). Regarding flux-closure vortex states, distortion of the in-

plane magnetic domains has been observed for Fe81Ga19 discs4 with a diameter of ≈

2 µm coupled to a PZT transducer. When a voltage is applied to the transducer, a uniform

tensile strain of ≈ 10−4 is generated, which induces a uniaxial anisotropy of kJ/m3 along

[010] (B1 ≈ 16MJ/m3). The strain-induced uniaxial anisotropy aligns the magnetization

more strongly along the anisotropy axis, enlarging the domains whose magnetization

points along [100] and shrinking the domains whose magnetization aligns along [010].

However, due to the symmetry of the system, the vortex core is not displaced from the

centre of the element, as can be seen in Fig.2.10.

4The disc structure in this case forms a Landau flux-closure similar to the normally found in square
elements, rather than the usual curling vortex structure. This is due to the strong magnetocrystalline cubic
anisotropy of Fe81Ga19.
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Figure 2.10: On top, evolution of the magnetic domain pattern in a 2.2µm circular Fe81Ga19/PZT
structure for different voltages applied to the transducer. On the bottom, micromagnetic
simulations of the Fe81Ga19 device with an uniaxial anisotropy along [010] given byKs equal to (e)
0, (f) 3.5, (g) 8.4, and (h) 10kJ/m3. The yellow arrows indicate the direction of the magnetization
in each domain [18].

In [16] Ostler et al. show that this symmetry can be broken by introducing a 1-

dimensional linear gradient in the magnitude of the strain-induced anisotropy of the

form ε(y) = (dε/dy)y. The present work extends this idea and investigates the effect

of the strain induced anisotropy gradient on the vortex core displacement for Ni/PE

and Fe81Ga19/PE heterostructures and discusses the experimental implementation of the

gradient by means of a PMN-xPT (x ≈ 0.32) substrate. Both square and circular vortex

geometries are considered.

Figure 2.11: Sketch of a square device in a flux closure vortex state (a), showing how a
unidirectional anisotropy introduced by a magnetic field can displace the vortex core (b), in
contrast to the uniaxial anisotropy induced by the strain (c) which cannot shift the core, adapted
from [16].



Chapter 3

Method

3.1 Micromagnetic simulations

The initial part of this project was to simulate the effects of a strain gradient in Fe81Ga19

and Ni micron-sized devices with the micromagnetic solver OOMMF (Object Oriented

Micromagnetic Framework).

OOMMF is a numerical finite difference solver for solving problems defined on a 3D grid

of square cells holding 3D spins. The code works by solving the LLG equation (2.27), as

well as finding the ground state of a magnetic body by minimizing equation (2.23). In

this work, the minimization method was used in order to find the ground state of the

system when a strain induced anisotropy gradient was introduced.

With OOMMF, the ferromagnetic body is divided into cuboids of dimensions ∆x,∆y ,∆z

called cells and a uniform magnetization inside each cell ~mi is assumed. Then, given a

certain initial state, the energy of the system is computed cell by cell. In this discrete

model, the expressions for the exchange, the cubic and uniaxial anisotropies and the

Zeeman energy densities at cell i are defined by1:

Uexchi =
∑
j∈Ni

Aij
~mi ·

(
~mi − ~mj

)
∆2
ij

(3.1)

Ucani = −Ku
(
αi1

2
αi2

2
+αi2

2
αi3

2
+αi3

2
αi1

2
)

where αik (k = 1,2,3) = ~mi · ~uk . (3.2)

1Note that OOMMF adds a minus sign to the cubic anisotropy energy (3.2) and the uniaxial anisotropy
energy (3.3) redefining the anisotropy constants Kc and Ku respectively.

27
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Uuani = −Ku( ~mi · ~u)2 (3.3)

Uzi = −µ0Ms

(
~mi · ~Hext

)
(3.4)

Specifically, 3.1 is the expression for the exchange energy of the ith cell coupled to its

nearest 6 neighbouring cells, which is obtained by substituting the derivatives in 2.5 with

finite differences. Ni is the set of the 6 cells nearest to the ith cell and they are coupled to

the latter via the corresponding stiffness coefficients Aij . Finally, ∆i,j is the discretization

step size between two cells i and j, and it is defined as the distance in meters between

the central points of the two cells. The only term missing is the magnetostatic term. This

is the hardest one to compute and involves Fourier Transforms in the process. First, the

demagnetizing field at each cell is computed:

~Hdi =
∑
j

N i,j ~mj (3.5)

where N i,j is the demagnetizing tensor defining the demagnetizing field arising from

cell j at cell i, which is computed using the formulae in [33]. The total demagnetization

energy is then determined by the convolution of the individual cells with Fast Fourier

Transforms. Once the energy of the initial state has been calculated, the state of

minimum energy is searched iteratively through the method of conjugate gradients.

In this study, 2 µm×2 µm Galfenol and nickel squares have been simulated, as well as

some 2 µm-diameter Ni discs. In all the cases, the thickness of the devices was 20 nm.

The cubic anisotropy typical of these materials was neglected because its contribution

to the energy is much smaller than the uniaxial anisotropy term that will be introduced

(Kc << Ku), as polycrystalline sputtered samples are assumed. All in all, the material

parameters used as inputs are specified in table 3.1. All the calculations have been done

using a rectangular mesh of 5nm× 5nm× 10nm cells.

Fe81Ga19 Ni
Ms (A/m) 1.378× 106 2.1× 105

A (J/m) 1.3× 10−11 10−11

Kc (J/m3) 0 0

Table 3.1: Material parameters used in our OOMMF simulations for Galfenol and nickel.
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The initial state for all the simulations has been a Landau structure with a vortex core at

the centre defined by an anti-clockwise chirality and positive polarity. Such a state had

been previously simulated starting from the Landau configuration in Fig. 3.1, introduced

as a bitmap image, and applying a magnetic field along +ẑ through the Zeeman term.

(3.4).

Figure 3.1: Bitmap images for the square and circular geometries used to calculate the initial
vortex state with OOMMF. White arrows represent the direction of the magnetization depending
on the colour of the domain.

3.2 Design of the samples

In order to implement the in-plane strain anisotropy gradient ∆ε(y), three experiments

were designed. The strain is generated in a PMN-PT substrate by applying a voltage to

Au contacts and making use of the high piezoelectric coefficients of the PMN-PT. The 3

experiments, E1, E2 and E3, were carried out using two different samples which have

been represented schematically in Fig.3.2 (a) and Fig.3.2 (b).

Figure 3.2: Sketch of the two FM/PE structures that were fabricated for the generation of an
anisotropy gradient in the magnetostrictive elements represented in blue. The thicknesses in
brackets are expressed in nm. Within the dashed frames, it is illustrated how a strain gradient is
achieved for each experiment E1, E2 and E3.
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In E1, Fig.3.2 (E1), the upper electrode is a uniform layer of gold (Au) that covers the

entire polished surface of the PMN-PT plate. On top of the latter, the ferromagnetic

devices (in blue) are located at the areas delimited by the black dashed lines. Devices

include square and circular elements of several dimensions that range from 0.5 µm- to

6 µm-diameter and side respectively. In this design a strain gradient can be accomplished

due to the ferroelectric domain states of the PMN-PT. It is known that ferroelectric

domains in PMN-PT can range from tens [34] or hundreds [35] of nm up to several tens

of µm [36], and such domains can represent different polarization and structural phases

[37].

Figure 3.3: Different types of domain walls. (a) Ising type, showing a gradual magnitude variation
but no spin rotation. (b) Bloch type, showing a gradual rotation parallel to the domain wall. (c)
Néel type, showing a normal rotation to the domain wall. From (a) to (c) the width of the domain
wall increases. Taken from [38].

Unlike ferromagnetic materials where Bloch and Néel walls are present (§ 2.1.3),

ferroelectric domain walls are predominantly Ising type. Indeed, the coupling between

ferroelectric polarization and lattice strain imposes a significant energy cost for rotating

the polarization away from the symmetry-allowed directions in the lattice, which leads

to much narrower domain walls with only several nanometres width (see Fig.3.3). Hence,

it is quite likely that one of the elements sits somewhere on top of a multi-ferroelectric

domain area. Localized strain gradients can arise within such a small area containing

domain boundaries where several phases join, each phase leading to strain of a different

nature.

In the second experiment, E2, patterned top electrodes were used to create a localized

strain gradient between a pair of top electrodes A-A where a 2 µm square is located.

The electrodes consist of 1.0 mm × 1.5 mm square pads separated by a distance of

approximately 2mm to allow an easy contact between these and the back electrode. In

order to generate a gradient in the region around the 2 micron island, a 0.5 mm-long

arm rises from each pad and faces the ferromagnetic element. As can be observed in
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Fig.3.2 (E2), the arms are wedge shaped towards the ferromagnetic device and thus the

island-electrode distance varies linearly on ŷ from ≈ 5 µm to ≈ 6.25 µm. This way, when

a voltage is applied between the electrodes, the resulting electric field also varies in ŷ.

Such an electric field can penetrate the piezoelectric and propagate through the surface,

producing an ŷ-dependent in-plane strain ∆ε(y) according to2 d12 = −1340pC/N.

In E3, another pair of electrodes B-B faces a similar 2 micron square. However, the arms

emerging from the pads are no longer wedge shaped at their end. The gradient here arises

when a negative voltage is applied to one of the B electrodes and a positive voltage to the

other electrode while the bottom is grounded. As a consequence, the PMN-PT suffers a

mechanical deformation in ẑ that goes from a contraction at one end of the substrate (at

−x̂) to an expansion at the other end (at +x̂). The out of plane contraction is followed by

an expansion in ŷ (d32 = −1883pC/N), whereas the expansion in ẑ leads to an contraction

along the latter. The opposite occurs for the x̂ direction (d31 = +610pC/N). This results

in an in-plane strain gradient along x̂, ∆ε(x), as shown in Fig.3.2 (E3).

3.3 Experimental techniques

3.3.1 Fabrication techniques

The two samples in § 3.2 were fabricated using one surface polished PMN-PT (x ≈ 0.32)

single crystal plates acquired from Atom Optics Co., cut into 5mm × 5mm × 0.3mm

substrates. The Au electrodes were thermally evaporated, using e-beam lithography for

the patterned contacts. The ferromagnetic devices were also fabricated using e-beam

lithography. In this case, the deposition of the ferromagnetic Ni and Fe81Ga19 30-nm

layers was carried out by collaborators at The University of Nottingham via magnetron

sputtering. A capping layer of chromium was also deposited to avoid oxidation. Below,

thermal evaporation and e-beam lithography will be described in more detail.

3.3.1.1 Thermal evaporation

Thermal evaporation is a thin-film deposition method where the source material is

evaporated in a vacuum and deposited on the substrate. The vacuum allows vapour

particles to travel directly to the target, where they condense back to a solid state. Using

2The values for the piezoelectric coefficients of the PMN-PT have been obtained from [39].
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the MANTIS HEX deposition system shown in Fig.3.4 (a), a thick 80-nm layer of gold

was put down on the polished side of the PMN-PT as the back contact. On the other side,

the thinner top electrodes were deposited.

Figure 3.4: (a) Mantis system of thermal evaporation and (b) PMN-PT substrates fixed to the
sample holder prior to deposition.

The PMN-PT is mounted into the sample holder as shown in Fig.3.4 (b). Subsequently,

this is loaded in the vacuum chamber with the substrate facing downwards. After loading

the substrate, the main chamber was pumped down to at least 5× 10−6 mbar.

The MANTIS system is fitted with three thermal boat sources on the bottom of the

chamber, one of which was loaded with gold in the form of little solid pellets. Boats

are essentially thin sheet pieces of suitable metals which can be heated to very high

temperatures with electric currents. The gold inside the boat is heated to its melting

point producing some vapour pressure inside the chamber. In high vacuum conditions,

a vapour cloud is produced, which traverses the chamber, impinges on the PMN-PT

substrate and sticks to it as a thin film. During this process, the thickness of the deposited

Au film is measured by the Quartz Crystal Microbalance (QCM) located close to the

substrate, which resonates at different frequencies depending on the additional mass

deposited during the evaporation.

The same procedure was carried out to deposit the upper Au layer onto the non-polished

side of the PMN-PT. All the depositions were carried out with a current between 55 A

and 70 A, with which a deposition rate between 0.3 and 0.6 Å/s was achieved. After the

desired thickness was reached, the shutters of the boat were closed and the current was

ramped down to 0 A to end the depositions.
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3.3.1.2 Electron Beam Lithography (EBL)

The Raith VOYAGER e-beam lithography system enabled the fabrication of the pairs of

patterned top electrodes in experiments E2 and E3, as well as all the square- and disc-

shaped ferromagnetic elements.

Through this technique, the desired pattern is written out as a nanometre sized focussed

electron beam is moved over the sample. Such a pattern is recorded in an electron

sensitive film (e-resist) that is deposited before the exposure by spin-coating. The e-

beam induces a change in the molecular structure of the resist and as a result, either

the exposed or the unexposed areas of the latter can be dissolved in a solvent called

developer. The pattern can then be transferred to the material deposited on top through

a lift-off procedure. All these steps involved in the lithography process are illustrated in

Fig.3.5.

Figure 3.5: Schematic representation of the e-beam lithography process for the ferromagnetic
devices in E1.

A 950 PMMA (poly-methyl methacrylate) resist was used for all the samples, deposited

on the substrate using spin coating at 4000 rpm for 60 seconds and subsequently soft-

baked. Because the PMN-PT is a pyroelectric material, the baking was carried out by

using slow ramps and reaching no higher temperatures than 150C◦. The PMMA is a

positive tone resist, which means that it is the exposed areas that are dissolved during
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the development. The developer was a solution mixture of isopropanol (IPA) and de-

ionized (DI) water in a ratio of 7:3.

The pattern is transferred to the material (Au in the case of the electrodes and Ni or

Fe81Ga19 in the case of the devices) by dissolving the remaining resist in acetone (ACE),

which lifts off the material on top so that only the material that was deposited in the

areas where there was no resist is left.

To write the pattern with the e-beam, Fig.3.5 step 2, a write field of 500 µm and a step-

size of 5 nm were used. That is, for a fixed stage position, a maximum area of 500 µm

was written, during which the beam moved in steps of 5 nm until it had gone through

the entire area. One of the most relevant quantities that determines the quality of the

pattern is the dose, which must be sufficient to fully remove all the exposed regions but

not so big that the non-exposed areas are removed as well. The dose of exposure depends

on the step size, as well as on the beam current and the dwell time (time that the beam

stays still in a given position):

Area dose =
Beam current ·Dwell time

Step size2 (3.6)

For the square contacts a dose of 3300 µC/cm2 was used with a beam current of 5859.6

pA and an aperture of 100 µm. For the devices, which require higher sensitivity, a smaller

beam current of 651.61 pA was set with an aperture of 40 µm. In this case, a dose range

between 230 µC/cm2 to 825 µC/cm2 was covered for each element in order to ensure the

right dose for each size and shape in the pattern.

3.3.1.3 Demagnetization routine

Whereas micron-sized Galfenol and Permalloy discs and squares are usually found in

a flux-closure vortex state right after their fabrication, this is seldom the case for Ni

devices. Nickel has a lower saturation magnetization, and therefore the shape anisotropy

(2.17), which is responsible for the flux closure state, is weaker in this material. As

a consequence, unavoidable defects at dislocations and non-magnetic inclusions cause

pinning sites that prevent the Ni elements to be in their otherwise natural ground state.

One way to bring the Ni elements to the desired flux-closure vortex configuration, is to

apply a low frequency magnetic field whose amplitude decreases linearly as shown in
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Fig.3.6 (a).

Figure 3.6: (a) Depiction of the amplitude modulated magnetic field used in the demagnetization
routine. (b) Experimental set up used to bring the Ni devices to a flux closure vortex state.

When the amplitude of the oscillating filed is maximum, the magnetic moments in

the devices will follow its direction. As the amplitude of the field decreases, the

magnetization will lose gradually the track of the field, until at 0 amplitude it will no

longer be influenced by the latter. At that point, the magnetic field is switched off. This

way, whatever the magnetic domain walls were formed upon fabrication, they can be

unpinned and a new ground state is reached. In order to create a magnetic field of this

form, the set up in Fig.3.6 (b) was utilized. A couple of magnetic coils were fed with a

sine wave of 1.5Vpp and 0.5Hz which was amplitude modulated by a triangular wave of

0.005Hz. This led to a 0.5Hz magnetic field inside the coils with a maximum amplitude

of ≈ 45mT sufficient to initially saturate the nickel devices.

3.3.2 Imaging techniques

In order to look at the magnetic configuration of the devices and track the position of the

vortex core, XMCD and MFM measurements were performed, which will be described in

this section.

3.3.2.1 X-Ray Magnetic Circular Dichroism (XMCD)

X-ray magnetic circular dichroism or XMCD is the phenomenon that refers to the

difference in absorption of right handed (σ+) and left handed (σ−) circular polarized

x-rays at an inner-shell absorption edge of a magnetic material.

In a transition metal such as nickel (3d9), magnetic properties can be extracted from

2p → 3d electronic transitions. The 2p level is split into 2p1/2 and 2p3/2, which
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correspond to an anti-parallel (j = l − s) and a parallel (j = l + s) spin-orbit coupling

respectively. This results in the L2 (2p1/2 → 3d) and L3 (2p3/2 → 3d) edges in the x-ray

absorption spectrum with intensities I2 and I3.

When circularly polarized x-rays impinge on the sample, photons transfer their orbital

angular momentum to the core electrons in the 2p1/2 and 2p3/2 levels. Due to the

spin-orbit coupling, for a given circular polarization, a different number of spin-up and

spin-down photoelectrons are generated from any of the 2p levels. For a right circular

polarized light 62.5% (37.5%) spin-up (spin-down) photoelectrons are generated from

2p3/2, whereas 25% (75%) are generated from 2p1/2. For σ− the percentages are reversed

as the photons carry an opposite angular momentum. Here, spin-up and and spin-down

are defined relative to the photon helicity.

Figure 3.7: (a) Schematic depiction of the two-step mechanism of the XMCD. In this case, there
are only unfilled spin up states which makes the detector only sensitive to spin up states. As a
result, I3 is then higher for σ+ than for σ− and the opposite happens regarding I2 (b). Subtracting
the two intensities I(σ+)−I(σ−), the so-called XMCD signal is positive at L3 (peak A) and negative
at L2 (peak B).

When the sample is magnetic, the exchange-split 3d valence band acts as a spin-sensitive

detector. Due to the imbalance between spin-up and spin-down d-holes, the transition of

either spin up or spin down electrons is favoured. The quantization axis of this detector

is given by the direction of the magnetization. The resulting dichroism effect, that is, the

subtraction of the absorption peaks acquired for the two different polarizations of the

x-rays, is proportional to the difference between the spin-down and spin-up holes which

is in turn, proportional to the magnetic moment per atom:

IXMCD2,3 = I2,3(σ+)− I2,3(σ−) ∝ ~µ · ~σ (3.7)
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where ~σ is the handedness of the photons. As can be seen, the dichroism is maximum

when the magnetization of the sample lies along the direction of the incident light. In

that case, the magnetization pointing parallel and anti-parallel to the x-rays leads to a

sign difference in the XMCD signal and an image contrast is obtained.

3.3.2.2 X-Ray Photoemission Electron Microscopy (X-PEEM)

When photoelectrons are excited, the resulting core holes often decay via an Auger

process. That is, when the vacancy left by the photoelectron is filled by an electron

from a higher energy level, the resulting release of energy can be transferred to another

electron which is ejected from the atom. The ejected electrons are known as secondary

electrons. A PEEM microscope measures the x-ray absorption indirectly by imaging the

secondary electrons yield from the sample. If installed in a synchrotron beam line where

x-rays of the adequate wavelengths are produced, the so-called X-PEEM can be used to

perform magnetic imaging with XMCD as the contrast mechanism (Fig.3.8), measuring

the projection of the magnetization along the direction of the photon.

Figure 3.8: X-PEEM images of a Ni square obtained at the Ni L3 edge using circularly polarized
photons with (a) positive helicity (σ+) and (b) negative helicity (σ−). (c) The difference signal
(I+ − I−), XMCD, clearly shows 2 magnetic domains in the element. The direction of the
magnetization in each domain is represented by the orange arrows.

At Diamond Light Source (DLS), beam line I06 combines PEEM with polarised soft X-

rays, enabling XMCD measurements. What is more, the system in I06 allows electric

fields to be applied to the sample in situ. In this work, this beamline was used to measure

Ni/PMN-PT devices under external voltages between −200V and 200V. The Ni elements

were measured by tuning circularly polarized x-rays to the L3 edge at 852.7 eV. For each

measurement, 10 images were taken for a positive polarization first, and other 10 were

taken for a negative polarization afterwards. The procedure was then repeated for a

lower energy, at the so-called pre-edge (pe). The polarization and the energy of the beam

can be changed through two couples of PPM (pure permanent magnets) arrays called

undulators, which can be arranged in different ways to produce different magnetic fields.
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After properly averaging and normalizing the images taken at each polarization (3.8), the

resulting images are subtracted to obtain an asymmetric image with magnetic contrast

IXMCD .

IXMCD =
∑10
i=1 I

i
3 (σ+)∑10

i=1 I
i
pe (σ+)

−
∑10
i=1 I

i
3 (σ−)∑10

i=1 I
i
pe (σ−)

(3.8)

Figure 3.9: (a) Sketch of a PEEM microscope used to image magnetic domains by bombarding the
sample with circularly polarized x-rays, taken from [34]. (b) PEEM in the I06 beamline at DLS.

3.3.2.3 Magnetic force microscopy (MFM)

Magnetic force microscopy (MFM) is another magnetic imaging technique that can also

be used to image vortex structures [21]. This is an in-house technique easier to perform

compared to X-PEEM measurements which require beam-time at an external facility

such as DLS. At the York JEOL Nanocentre, MFM measurements can be done using the

BioScope Resolve system shown in Fig.3.10.

Figure 3.10: BioScope Resolve system from Bruker at the York JEOL Nanocentre.

MFM is an imaging technique based on atomic force microscopy (AFM). In MFM a

magnetic-coated tip attached to a flexible cantilever moves over the sample surface along
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parallel lines divided into many pixels. Through a dithering piezo, the cantilever is

vibrated at or slightly off its resonance frequency. During the raster scan, the interactions

between the tip and the surface produce changes in the frequency, amplitude and phase

of the oscillations of the cantilever. These changes can then be monitored through a laser

beam focussed on the back of the cantilever, which is reflected and detected by a position

sensitive photodiode.

In a first scan, the tip is driven very close to the sample surface (at 15-25 nm) where

short-range atomic and van der Waals forces dominate. Phase and amplitude changes

produced by these forces are detected by the photodiode and converted into electric

signals V (t). The difference between the amplitude and a reference value V0 is then

minimized through a feedback loop whose output is the signal that has to be applied to

the Z-piezo scanner to keep the oscillation amplitude constant. This way, the topography

of the sample is mapped. The process is schematically represented in Fig.3.11 (a).

Figure 3.11: (a) Depiction of the atomic force microscopy where a tip attached to the cantilever
scans the sample surface to gather topographic information. (b) Sketch of the magnetic force
microscopy where the tip is lifted and the magnetic interaction between tip and sample is
measured. Adapted from [40].

In MFM the tip is raised to a height h and a second scan is performed where the

tip-surface distance is kept constant by following the topographic profile as Fig.3.11

(b) shows. This way, contributions from the previous forces are minimized allowing

relatively weak but long-range magnetic interactions to be detected. The magnetostatic

interaction between the magnetic tip and the stray fields arising from the sample is given

by:
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~F = µ0

∫
V

~∇ ·
(
~Mtip · ~Hsample

)
dVtip (3.9)

where ~Mtip is the magnetic configuration of the tip. The tip has a sharp cone-like shape

whose magnetization points along the perpendicular to the sample. As a consequence,

(3.9) is reduced to the interaction with the out of plane component of the stray fields,

Hsample,z:

F = Fz = µ0

∫
V

∂
∂z

(
Mtip,z ·Hsample,z

)
dVtip (3.10)

The force gradient along the vertical
∂Fz
∂z

alters the resonant characteristics of the

cantilever by shifting the oscillation frequency. Such a shift is measured as a change

in the amplitude δA or a change in the phase δφ with respect to the driving signal. If the

cantilever is excited at the free resonance, the sign of δA is insensitive to the sign of the

force gradient. However, the phase shift is:

δφ = −Q
k
∂Fz
∂z

(3.11)

Here, Q is the quality factor of the cantilever and k is the spring constant that models the

deflection of the cantilever. Attractive interactions
∂Fz
∂z

> 0 give negative phase shifts

whereas repulsive interactions
∂Fz
∂z

< 0 lead to positive phase shifts. This forms an

image contrast between domains pointing parallel, +ẑ, or anti-parallel, −ẑ, to the surface

normal. For an in-plane magnetized sample, domain walls lifting out-of plane can also

be observed.

Figure 3.12: Frequency shift arising from the magnetic interaction between the tip and the
sample, which is measured either by a change in the amplitude or a change in the phase respect
to the driving signal.
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The 30−60 nm lateral resolution of the BioScope Resolve system may not resolve a vortex

core (with a expected diameter of ≈ 20 nm) in the ferromagnetic elements. However,

the domain walls of the in-plane Landau structure can be imaged in the square-shaped

elements, which is sufficient to track the position of the core.

Nevertheless, magnetic imaging with the BioScope Resolve at York was a big challenge.

Several issues had to be overcome before achieving the first magnetic image, including

software and hardware problems that left the system unavailable for more than one

month. A couple of test samples of known magnetic state were used first, including

the following waveguide with Permalloy structures on it:

Figure 3.13: Micrograph of the waveguide used as a test sample to image with the MFM. Inside
the waveguide there are lots of different devices of Permalloy that were imaged with the MFM.

Devices in the waveguide include discs, ellipses, rectangles and squares with sizes from

hundreds of nanometres to several microns, some of them in a flux-closure state.

The main reason why magnetic imaging was so difficult was the lack of suitable probes

to do the measurement. PPP-LM-MFMR probes from Nanosensors were used in the

begging, which were the only probes with magnetic coating available at the Nanocentre.

One of the measurements performed with these probes can be observed in Fig.3.14

(a), where the phase channel of the lift scan is shown for one of the devices in the

waveguide. Even if a strong magnet was used to try to restore the magnetization of

the tip, magnetic contrast was never observed but only topographical information. After

many unsuccessful measurements, this seemed to indicate that the probes were too old

and had lost magnetic sensitivity over time.

New probes were then ordered from Bruker, MESP-LM-V2 probes, cobalt-chromium

coated. Using a strong magnet again to magnetize the tip perpendicular to the probe,

a Flux Closure pattern could finally be imaged in the same device, a 2 µm×2 µm square,

shown in Fig.3.14 (c). Magnetic contrast was observed in a range between 25 nm and 50
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nm height providing that the laser had been properly aligned on the cantilever and the

photodetector had been properly adjusted. Otherwise, as magnetic forces are weak, the

magnetic contrast could be lost relatively easily, Fig.3.14 (b). The optimum lift height

to image the Permalloy square was found to be between 30 and 40 nm. In the image,

4 in-plane magnetic domains are distinguished separated by the domain walls which

interact with the magnetic tip. The cross formed by the walls matches the Mz profile of

the simulated Landau vortex state, Fig.4.1 (a) in § 4.1.1, except that the core is too small

to be resolved.

Figure 3.14: MFM measurements performed on a 2×2 µm2 Permalloy square to image the out of
plane component Mz. In all the cases the lift height is 35 nm. In (a) old probes (PPP-LM-MFMR)
were used; in (b) and (c) new probes (MESP-LM-V2) were used. In (b) there is no magnetic contrast
due to a possible misalignment of the tip. In (c) the Landau configuration is evident.



Chapter 4

Results

4.1 Micromagnetic simulations

In this section, a hybrid magnetostrictive FM/PE multilayer is simulated with OOMMF.

The ferromagnetic component consists of a 2 µm planar structure. In section § 4.1.1

a Galfenol square is considered and in § 4.1.2 a nickel square is investigated and

a few results concerning circular geometries are shown. In the simulations the

exchange interaction between the macrospins is included (3.1) as well as the long-ranged

demagnetization fields (3.5). In addition to the latter, a strain gradient in the PE is

introduced. It is well known (§ 2.5) that the application of a static uniaxial strain to

a magnetostrictive material induces an additional uniaxial anisotropy to the magnetic

free energy [18]. The uniaxial strain anisotropy (§ 2.1.4) can be written as:

Ume = Ks cos2φ (4.1)

where φ is the angle between the magnetization and the strain, which has been assumed

to be along the [100] direction. Neglecting any small component along [010], εyy = 0, the

magneotelastic anisotropy constant is given by the magnetoelastic coefficient B1 and the

normal strain εxx:

Ks = B1εxx (4.2)

εxx is given by:

43
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εxx(y) =
(
dε
dy

)
y + β (4.3)

So that equation (4.1) can be written as:

Ume = (C +α · y)cos2φ (4.4)

Here, α is the gradient of the uniaxial anisotropy due to the strain gradient dε/dy,

and C is a uniform uniaxial anisotropy coming from the uniform strain β. Thus, the

x-component of the strain is now dependent on the position in ŷ enabling a gradient

in the strain. The strain gradient is given by the second term, whereas the first term

allows to control the symmetry of the gradient. For example, setting C = 0 allows

an antisymmetric strain such that Ks(y) = −Ks(−y). For a non-zero C, such symmetry

does not exist about y = 0. In [16] Ostler et al. already showed that core translations

can be achieved introducing a strain induced anisotropy gradient of the form ε(y) =

(dε/dy)y. In this section we investigate the effect of the strain gradient symmetry on

such displacement of the vortex core.

4.1.1 Effects of an anisotropy gradient on a Galfenol element

At equilibrium, without any magnetoelastic anisotropy, the vortex core resides in the

centre of the film (x,y)=(0,0) displaying the Landau flux-closure in Fig.4.1 (a). The vortex

core is the small central region with a large Mz indicating a positive polarity.

Figure 4.1: The z component of magnetization of a 2 µm×2 µm Fe81Ga19 square when: (a)
there is no strain induced anisotropy; when a tensile (b) and compressive (c) spatially uniform
uniaxial anisotropy of |Ks | = 30kJ/m3 is included; and (d) when a uniaxial anisotropy gradient of
α = 30× 106kJ/m4 is included. The colours represent the magnetization in the positive (red) and
negative (blue) z-direction.
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The anti-clockwise sense of the in-plane magnetization is illustrated by the blue arrows

which represent the direction of the magnetization in each domain. The four domains

are clearly defined by the weaker out of plane magnetization at each domain wall.

If a spatially uniform strain is acting on the heterostructure, dε/dy = 0 and hence

α = 0, the resulting magnetic configuration is illustrated in Fig.4.1 (b) for a tensile

strain (β > 0) and in Fig.4.1 (c) for a compressive strain (β < 0), which induces a

uniaxial anisotropy of Ks = +|C| and Ks = −|C| respectively. |C| = 30kJ/m3 corresponds

to a typical experimental strain of |β| ≈ 5 × 10−3. The uniform strain-induced uniaxial

anisotropy aligns the magnetization in each domain more strongly along the axis of the

anisotropy. From the Poisson relation, the tensile (compressive) strain in x̂ also gives rise

to a compressive (tensile) strain in ŷ which results in decreasing the size of the domains

whose magnetization is aligned along |ŷ| (|x̂|) whilst increasing the domains aligned in the

|x̂| (|ŷ|) directions. Due to the symmetry of the system, there is no motion of the vortex

core as there are equal numbers of spins whose energy is minimized by aligning with the

anisotropy direction.

In Fig.4.1 (d) a strain induced anisotropy gradient is introduced, α , 0. Here, in

contrast to the previous cases, the vortex core displaces from the centre in the negative ŷ

direction. First, antisymmetric gradients were studied, β = 0, by setting C to 0. Elements

were simulated for several gradients, from α = 5 × 106kJ/m4 to α = 40 × 106kJ/m4 in

steps of 5 × 106kJ/m4. Fig.4.2 (a) shows three of these simulated Fe81Ga19 elements,

α = 10×106kJ/m4, α = 20×106kJ/m4 and α = 40×106kJ/m4 in comparison to the initial

state where there is no strain or in other words, where α = 0 (and C = 0).

As shown in Fig.4.2 (b), there is a gradual translation of the vortex core to negative y

values with a maximum displacement of y ≈ 320 nm at α = 40×106kJ/m4. In the process,

the distortion of the magnetic domains culminates with the emergence of an additional

domain wall along the direction of displacement which bridges the domains aligned

along |x̂|. The location of the vortex core as a function of α is represented in Fig.4.2

(c). Due to the symmetry of the gradient, the bottom half of the structure is subjected

to a compressive strain (→←) in the x-direction and a subsequent tensile strain (←→) in

ŷ, with the net effect of reducing the size of the domain whose magnetization is aligned

along +x̂ while enlarging the domains aligned in the |y|-directions. The upper half of the

structure experiences the inverse situation, a tensile (compressive) strain in x̂ (ŷ), which
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gives rise to an enlargement of the domain whose magnetization is aligned in -x̂ and a

decrease in the domains whose magnetization is directed along |ŷ|. The overall result of

this strain gradient is to translate the vortex core in the negative y-direction away from

its equilibrium. Such displacement is independent on the chirality and polarity of the

configuration but depends on the sign of the gradient as will be seen later.

Figure 4.2: (a) Profile of the uniaxial anisotropy, Ks, for antisymmetric gradients. (b) Mz of
the Fe81Ga19 square for several gradients α. (c) Position of the vortex core as a function of α.
Error bars in this and subsequent graphs in § 4.1 represent the cell size of the grid used in the
computation. (d) Magnetoelastic energies, Eme (black squares), magnetostatic energies, Ems (red
circles), and the difference between the two, Edif f = Eme −Ems (blue triangles) versus α.

Although for small gradients the displacement is almost linear in α, for gradients above

α = 15 × 106kJ/m4, the change in core position with further increases of α diminishes.

This can be understood by looking at the two competing long-ranged free energies, the

magnetoelastic energy (Eme) and the magnetostatic energy (Ems). These are shown in

Fig.4.2 (d) along with the difference between the two Edif f = Eme − Ems. For low values

of α, it is the magnetoelastic energy that increases more rapidly with the amplitude,

giving a positive slope in the Edif f curve. However, around α = 15×106kJ/m4, when the

core is approximately 230 nm-off centre, the behaviour reverses and the magnetostatic

contribution starts increasing more rapidly. That is, the increment in the contribution

pushing the core towards the centre becomes bigger than the one pushing the core out of

it. As a result, the displacement of the vortex core begins to saturate. At a certain value

of α, when the shape anisotropy starts dominating over the magnetoelastic anisotropy,
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the vortex core is expected to reach its maximum displacement possible.

The effects of an additional uniform anisotropy, C, which acts as an offset to the

anisotropy gradient, α, was also investigated with α set to 15 × 106kJ/m4, to be within

the linear displacement regime as shown previously in Fig.4.2 (c). The offset was varied

from C = −25kJ/m3 to C = +25kJ/m3. To complete the study, the gradient was inverted,

α = −15×106kJ/m4. The y coordinate of the vortex core as a function of C is represented

in Fig.4.3, which includes the zero-offset case (C = 0). Blue squares correspond to the

systems with α = +15 × 106kJ/m4, whereas red circles correspond to the systems with a

negative gradient α = −15× 106kJ/m4.

Figure 4.3: (a) Vertical position of the vortex core as a function of C for the 2 µm×2 µm Fe81Ga19
square for α = +15× 106kJ/m4 (blue squares) and α = −15× 106kJ/m4 (red circles). The inset (b)
shows the effect of C on the anisotropy profile.

Once again, the gradient shifts the vortex core along the vertical. As can be observed, the

core displacement is maximised, |ycore| ≈ 200 nm, when C = 0 so that the strain gradient

is antisymmetric about y = 0. As C increases towards positive values, the effect of the

strain gradient on the core displacement is reduced. For instance, for C = 15kJ/m3 the

core displacement is 145 nm compared to 180 nm for C = 0. Although a reduction of the

core displacement occurs for positive values of C, the shifting is still significant, bigger

than 100 nm in all the cases. Especially, the cases where C ≥ 15kJ/m3 are particularly

relevant to achieve vortex core displacement experimentally. This is because in this range

the structure experiences a tensile strain along x̂ over the whole structure, which is easier

to fabricate than a gradient going from compressive to tensile.
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However, the situation is different for negative offsets, C < 0. As C becomes negative, the

reduction in the displacement is far greater than for the equivalent positive C. For C =

−15kJ/m3 the strain gradient induced core displacement is only 10 nm in the y direction.

Further increases in the magnitude of C in this direction (more negative) results in the

vortex core moving in the opposite y direction. Such asymmetry regarding the offset

can be explained by looking at the domain configurations for α = +15 × 106kJ/m4 and

C ± 15kJ/m3 in Fig.4.4.

Figure 4.4: Simulated Fe81Ga19 squares for (a) α = +15 × 106kJ/m4 and C = +15kJ/m3 and
(b) α = +15 × 106kJ/m4 and C = −15kJ/m3 showing no symmetry about y = 0. On top, the
corresponding anisotropy profiles are represented.

In the figure above, the profile of the anisotropy gradient is represented on top. The

figures on the bottom are once again top views of the simulated squares showing the

Mz component of the magnetization, where numbers 1 to 4 identify the four in-plane

domains. The black arrows on the other hand, represent either a tensile strain (←→) or

a compressive strain (→←) source of the magnetoelastic energy with Ks > 0 and Ks < 0

respectively. In this context, the arrows represent the value of the anisotropy coefficient

throughout the sample, where bigger arrows correspond to bigger magnitudes of Ks.

Fig.4.4 (a) shows the domain configuration for α = +15 × 106kJ/m4 and C = +15kJ/m3.

This translates into a strain induced anisotropy going from Ks = 0 at y = −1µm to

Ks = −30kJ/m3 at y = +1µm. The effect of this anisotropy profile is to enlarge the

domains 2 and 4 whose magnetization points along the |y| directions to the extent where

they dominate the central region of the structure where the core resides. Domains with

magnetization directed along |x̂| are expelled from this region leaving only a very narrow

stripe at the centre of the structure which resembles a Néel domain wall. Thus the strain
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induced anisotropy, which is directed in x̂, has very little effect in this region due to the

absence of significant Mx, the x-component of the magnetization. As a consequence, the

vortex displacement is small. However for C = −15kJ/m3, the anisotropy profile enlarges

domains 1 and 3 where ~M is aligned along the tensile strain direction. Domains 2 and 4

are reduced to an extent in the central region that they now resemble a Néel domain wall

running in the x-direction. As there is now significantMx, in the central region the strain

induced anisotropy gradient enlarges domain 1 preferentially to domain 3 (although both

increase in area) translating the core in the negative y direction.

The only difference between the elements with α > 0 and α < 0, is that the vortex core is

displaced to opposite directions along ŷ. That is, when the strain gradient is inverted, the

displacement of the core is in the positive direction and shows mirror symmetry about

y=0 as shown in Fig.4.5.

Figure 4.5: Simulated Fe81Ga19 squares for (a) α = +15 × 106kJ/m4 and C = +15kJ/m3 and (b)
α = −15×106kJ/m4 and C = +15kJ/m3 showing symmetry about y = 0. On top, the corresponding
anisotropy profiles are represented.

4.1.2 Effects of an anisotropy gradient on a nickel element

The same study was then carried out for a 2 µm×2 µm nickel square by changing the

material-specific parameters, A and Ms, to those that correspond to pure Ni (Tab.3.1).

For asymmetric gradients, the effect is similar to the one found for the Fe81Ga19 element,

to displace the vortex core along −ŷ with α. This is shown in Fig.4.6. On the one hand,

the position of the core as a function of the gradient is represented in Fig.4.6 (a). Some

of the simulations are also shown in Fig.4.6 (b)-(d). In the latter, it is Mx that has been

colour-represented, as for Ni the out of plane magnetization at the core is too large with
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respect to that at the domain walls for these to be observed.

Figure 4.6: (a) Y coordinate of the vortex core as a function of α for Ni squares with C = 0.
(b), (c) and (d) show the x-component of magnetization for α = 0, α = 0.75 × 106kJ/m4 and
α = 1.5 × 106kJ/m4 respectively. The black arrows in (b)-(d) represent the direction of the in-
plane magnetization.

It must be noted that a positive anisotropy gradient, α > 0, is now the result of a

negative strain gradient, dε/dy < 0, as nickel has a negative magnetostriction, B1 ≈

−6.2MJ/m3. Thus, the vortex core now shifts along the direction of the strain gradient.

However, the main difference with respect to Galfenol, is that the effect of the strain-

induced anisotropy on the core displacement is significantly bigger in nickel. A usual

experimental strain of 10−3 corresponds to an anisotropy gradient of α ≈ 16× 106kJ/m4

for Fe81Ga19 and α ≈ 6 × 106kJ/m4 for Ni. For this value of strain, a displacement of

|ycore| ≈ 200 nm is achieved in Galfenol, Fig.4.2 (b), whereas a gradient of α = 3×106kJ/m4

is enough to obtain a displacement of |ycore| > 500 nm for nickel, Fig.4.6 (a). This is due

to the fact that Ni has a lower Ms and thus, the shape anisotropy competing against the

magnetoelastic energy is weaker than in Fe81Ga19.

An offset in the strain induced anisotropy, C, once again plays an important role in the

shifting of the core. Fig.4.7 shows the location of the core as a function of C for a gradient
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|α| = 1.5× 106kJ/m4.

Figure 4.7: Position of the vortex core as a function of C for the simulated 2 µm Ni squares with
α = +1.5× 106kJ/m4 (blue squares) and α = −1.5× 106kJ/m4 (red dots).

The symmetry about y = 0 is observed once again when the gradient is reversed.

However, the behaviour of the core displacement with C is different from the one seen

in Fig.4.3. While negative values of C reduce the strain-induced displacement, positive

offsets now help to increase it. For instance, for C = 1.5kJ/m3 a shifting of ≈ 500 nm

is observed in comparison to the ≈ 400 nm-displacement that occurs in the asymmetric

case, C = 0. Indeed, for C = 1.5kJ/m3, Fig.4.8, the increasing compressive strain in +ŷ

enlarges the domain whose magnetization points along −x̂ to such an extent that the core

is pushed even more to the bottom edge of the square.

Figure 4.8: Simulated 2×2 µm2 Ni square for α = +1.5× 106kJ/m4 and C = +1.5kJ/m3.

Therefore, a non-symmetric strain is in this case favourable to achieve a bigger

translation of the core if it leads to a less compressed structure, C > 0. This way,
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when a tensile strain along x̂ is acting over the whole element, C > 1.5kJ/m3, the core

displacement along the vertical is maximized, |ycore| ≈570 nm. If the strain acting in the

Ni element is on average compressive, C < 0, the core displacement is reduced, but even

for C = −3kJ/m3 the displacement is still bigger than 100 nm. Thus, the results show

that vortex core displacement is easier to achieve in the Ni square than in the Galfenol

square.

Given the nice results found for the 2 µm Ni and Fe81Ga19 squares, a preliminary analysis

of some other structures was made, which included circular geometries. Fig.4.9 (a) shows

the vertical position of the vortex core in a 2 µm Ni disc as a function of the gradient α

applied to the structure. The behaviour looks similar to that of the Ni square, although

a smaller core displacement is achieved for the same value of the gradient. Fig.4.9 (b)

and Fig.4.9 (c) show the magnetic configuration of the element when there is no strain

applied, α = 0, and when an antisymmetric gradient of α = 3 × 106kJ/m4 is acting on it

respectively. The out of plane magnetization is colour-represented revealing the vortex

core in red, and the in-plane magnetization is represented by the black arrows which

show the in-plane anticlockwise flux. As can be seen, when a strain gradient is applied,

the Mx component is increased in more than half the upper part of the disc while the My

component is increased in the very bottom. This results in a vortex core displacement of

≈ 350 nm along −ŷ. More computations and further analysis will be performed for this

geometry but the results so far look promising for inducing vortex core translation on

this element as well.

Figure 4.9: (a) Vertical position of the vortex core as a function of the gradient α (C = 0) for the
2 µm Ni discs. Mz is shown for (b) α = 0 and (c) α = +3× 106kJ/m4.
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4.2 Experimental results

4.2.1 Experiment E1

At DLS the devices in E1, Fig.3.2 (a), were investigated. The sample consisted of many

Ni devices arranged in 4 rectangular areas in order to study the role of shape anisotropy

on the ability to displace vortex cores with strain. The sample is shown in Fig.4.10.

Each area is delimited by two large rectangles and contains a set of squares and discs of

different sizes. The two geometries are interleaved in columns of different dose, and they

increase in size as one goes down along the column. In addition, the mean dose of the

set changes in each of the 4 areas. This way, a range of sizes that develop properly are

ensured. The smallest devices (<1.5 µm) did not come out at all due to issues with the

e-beam exposure not being optimal. Also, not all the resist could be removed during the

lift-off procedure, affecting the quality of several devices. Despite those issues, a number

of good-quality Ni elements between 2 µm and 6 µm were fabricated.

Figure 4.10: Micrograph of the Ni devices in E1 at the four regions 1-4.

Before loading the sample into the PEEM, the electric contact between the two Au

electrodes was checked. Any shorts between top and bottom were checked by measuring

a capacitance of 2 nF and an infinite resistance between the contacts. A ferroelectric

characterization of the PMN-PT was also performed by measuring the polarization while

a sinusoidal electric field was applied to the substrate using a Radiant ferroelectric tester,

as depicted in Fig.4.11 (a). In agreement with Fig.2.8 (b), the polarization showed a 2-
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stage reversal hysteresis with the amplitude of the field as shown in Fig.4.11 (b). The

ferroelectric hysteresis is characterized by a large saturation and remanent polarization

of Ps ≈10.5 µC/cm2 and Pr ≈ 9.7 µC/cm2 respectively. A coercive field of Ec ≈ 3.6kV/cm

is observed, which corresponds to an electric voltage of Vc ≈ 100V.

Figure 4.11: (a) Sketch of the PMN-PT substrate under a sinusoidal electric field applied along ẑ;
(b) P-E hysteresis loop measured with the ferroelectric tester.

Once the sample was loaded, a XAS scan was performed in order to search for the L3 peak

of nickel. Fig.4.12 (a) shows the X-ray absorption spectrum measured at two different

magnetic regions within the same device. The device is shown in Fig.4.12 (b) and it is in

a 2 anti-parallel domain state.

Figure 4.12: (a) X-Ray absorption spectra at two different magnetic regions of the same device
showing the difference in intensity at the L3 and L2 peaks. In the inset (b), the XMCD image
shows the magnetic configuration of the device which consits in two anti-parallel domains. The
blue (red) cross points the location where the blue (red) dots were measured.

The blue and red cross indicate the regions at which each spectrum, blue and red dots

respectively, was obtained. The photons are left handed circularly polarized in both
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cases. In the scanned energy range, both L3 and L2 peaks can be observed at the expected

energies of ≈ 851.5eV and ≈ 870eV respectively. The difference between the two spectra,

XMCD, reveals the magnetization-sensitive nature of this measurement (§ 3.3.2.1). The

L3 peak corresponding to the magnetic domain with the red cross has a higher intensity

compared to that of the domain with the blue cross, as in these regions the magnetization

is in opposite directions (3.7). As a result, the XMCD-PEEM image1 in the inset shows

the first domain, whose magnetization aligns opposite to the direction of the photons,

in black and the second domain, whose magnetization points along the direction of the

photons, in white.

As Fig. 4.12 (b) reveals, not every device was in a flux closure state after the

demagnetization routine in § 3.3.1.3 was carried out. Thus, flux closure configurations

had to be found first. In Fig.4.13 (a), a 4.5 µm disc where magnetization curls in plane

can be observed. The direction of the magnetization is represented by the orange arrows.

Fig.4.13 (a)-(f) show XMCD-PEEM images of the device when a voltage V is applied

accross the PMN-PT. These images are shown together with the ferroelectric loop of the

substrate as a function of the voltage.

Figure 4.13: PEEM-XMCD images showing the evolution of the in-plane magnetization of a
4.5 µm circular device in response to the electric voltage applied across the sample: (a) 0V,
(b) -50V, (c) -100V; (d) 0V, (e) 50V and (f) 100V. The P-V loop of the PMN-PT is shown in the
background.

1The XMCD images were obtained by processing the individual PEEM images with IGOR Pro according
to (3.7) and analysed with ImageJ.
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First, negative voltages were applied. The voltage was increased in steps of |10| Volts

until -150V were reached. Throughout the sweep no evident changes were observed

until a voltage of ≈ −100V was applied, Fig.4.13 (c). At this point, the magnetization

that was pointing perpendicular to the direction of the light, which appeared in grey in

the XMCD-PEEM image, realigns parallel and anti-parallel to the direction of photons,

in white and black respectively. As a result, the flux closure is lost and the magnetic

configuration turns into a 2-domain state. The voltage was then swept back to 0V

and reversed to positive values. The two-domain state prevails until the flux closure

configuration is retrieved at 100 V, Fig.4.13 (f). That is, near the coercive field, Vc ,

magnetization switches between a flux closure state and a two-domain state. This is

consistent with a strain-induced switching at the voltages where polarization reversal of

the PMN-PT leads to an in-plane strain in the structure.

Several other elements were found in the flux-closure state relevant to this study. Fig.4.14

(a) shows a 4.5 µm square displaying 4 in-plane domains whose magnetization aligns

along the directions indicated once again by the orange arrows. Fig.4.14 (b) shows a

4.5 µm disc where the magnetization curls in-plane in an anti-clockwise sense. The

PEEM does not allow for the resolution of the small vortex core whose diameter can

be smaller than 20 nm. However, as in these two geometries the exchange induced

instability of the flux-closure configuration requires the formation of a vortex core, the

presence of the latter is assumed. The bowed domain boundaries in the square in Fig.4.14

(a) seem to correspond very well to the domain walls revealed by the micromagnetic

simulations in Fig.4.6 (c). This could be indicative of a remanent strain gradient acting

on the elements. The same applies for the disc in Fig.4.14 (b).

Figure 4.14: XMCD-PEEM images of devices showing bowed domain walls in a flux closure state.
Orange arrows represent the direction of the magnetization.

A 5 µm square showed a similar 4-domain magnetic configuration when a voltage of

100V was being applied across the substrate, Fig.4.15 (a). As can be observed, the

domains pointing along ±x̂ are larger than the ones pointing along ±ŷ, which suggests
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that a strain along x̂ is acting on the structure (see Fig.4.1(b)). When the voltage was

further increased, there was a modification of the domain pattern. From Fig.4.15 (a)

to Fig.4.15 (f) the domain in white, whose magnetization points along +x̂ is enlarged

by about 1.58% at the expense of a decrease of the domain in black aligned along −x̂.

At the same time, a small x-component develops at the top left of the element. If the

displacement of the vortex core (expected at the union of the 4 in-plane domains) respect

to the 100V case is plotted, Fig.4.16, the result is a translation of the core of ≈ 345 nm

along the vertical. As the magnetic domains do not join in a perfect single point, there is

some uncertainty when locating the vortex core within the square. However, the trend of

the core moving up along ŷ is clear.

Figure 4.15: PEEM-XMCD images of a 5 µm
square for (a) 100V, (b) 120 V, (c) 140 V, (d)
160 V, (e) 180 V, and (f) 200V.

Figure 4.16: Displacement rcore(V ) − rcore(100V )
along x̂ (black circles) and ŷ (blue squares) of the
vortex core as a function of the voltage applied
across the PMN-PT. The error bars represent a
radius of 5 pixels around the location of the core.

This behaviour resembles the displacement of the core studied with OOMMF in § 4.1.2

but with the core moving in the opposite direction, suggesting a strain gradient along −ŷ.

However, as the gradient arises from the complex ferroelastic structure of the PMN-PT,

the profile of the strain is probably more complicated than the one implemented with

OOMMF and a thorough study on the ferroelectric domain configuration is needed to

quantify it.

4.2.2 Experiments E2 and E3

To look at the 2 µm squares in E2 and E3, magnetic force microscopy (§ 3.3.2.3)

measurements were performed. The main difference between MFM and PEEM-XMCD

is that the first one is sensitive to the out of plane component of magnetization, Mz,
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whereas PEEM in grazing angle geometry is sensitive to Mx and My . Thus, MFM enables

the imaging of the domain walls and ideally the vortex core in the structures under study.

What is more, MFM has a better resolution than the XMCD-PEEM technique which eases

the observation of the small vortex core shifts that the micromagnetic simulations have

predicted (§ 4.1.1). The idea is to image the magnetostrictive elements in the Landau

configuration and measure the effects of the strain gradient generated in the PMN-PT

when a voltage is applied through the Au electrodes as represented in Fig.3.2 (E2) and

Fig.3.2 (E3). There has not been enough time to perform this study yet, but the steps

realized so far towards this goal will be shown in this section.

The squares shown here are Fe81Ga19. Even if the simulations showed that Galfenol

elements are less affected by a strain induced anisotropy gradient, see Fig.4.2 (c) and

Fig.4.6 (a), they are easier to image with the MFM in comparison to Ni. Indeed, Fe81Ga19

has a larger Ms (Table 3.1) which results in a bigger Mz in the device, as shown by the

OOMMF simulations which displayed a Mz at the core of the order of 1 × 106A/m for

Fe81Ga19 and 2 × 105A/m for Ni. Also, as Ms(Fe81Ga19) > Ms(Ni), the demagnetization

energy (2.17) in Galfenol is larger and it is easier for these structures to form flux closure

states in the first place.

AFM images of the Au arms facing the 2 µm Fe81Ga19 square are shown in Fig.4.17 (a)

and Fig.4.17 (c) for E2 and E3 respectively. This and the rest of AFM/MFM images that

will be shown in this section have been processed with the software Gwyddion. Among

other corrections, faulty lines have been removed and the data have been properly

levelled. The topography measurements reveal electrodes with a thickness of around

150-200 nm and approximately 40 nm-thick squares. The main distances extracted from

the AFM measurements are indicated in light grey. Figures 4.17 (b) and 4.17 (d) show

the profile of the scan line that crosses the centre of the Fe81Ga19 element in Fig.4.17 (a)

and Fig.4.17 (c) respectively. The white feature at the bottom of the square in Fig.4.17 (c)

reveals a very high edge which indicates the presence of PMMA under the ferromagnetic

layer that was not removed during the lithography process. This effect was reduced by

soaking the sample in ACE again.
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Figure 4.17: (a) and (c) are topography images of the Fe81Ga19 elements between the Au
electrodes in E2 and E3 respectively. (b) and (d) are profiles of the scan line crossing the centre of
the element in (a) and (c) respectively.

Fig.4.18 (a) shows the topography of the square in E3 prior to the additional soaking.

Here, the presence of the PMMA extends beyond the bottom edge of the square and

includes part of the left edge and the right edge of the device. Fig.4.18 (b) shows the

magnetic contrast as measured by MFM. As can be observed, the tall edges, in addition

to making surface mapping more difficult, prevent the measurement of the magnetic

forces in a wide area given that the phase difference for the magnetic signal ∆φmag ≈ 0.3o

is lower than that arising from the resist, ∆φresist ≈ 0.45o. This makes the interpretation

of the magnetic properties of the square difficult.

Figure 4.18: (a) topography and (b) magnetic contrast of the Fe81Ga19 element in E3 before
soaking the sample in ACE.

The topography of the Galfenol elements after the extra cleaning is shown in Fig.4.19 (a)

and Fig.4.19 (c) for E2 and E3 respectively. The mean height of the structures is 39±2 nm

and 42 ± 2 nm respectively. Comparing Fig.4.18 (a) with Fig.4.19 (c), the improvement

achieved with the ACE can be observed. The left and right edges of the element are now
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sharper, although some resist still remains especially in the bottom edge. Fig.4.19 (b) and

Fig.4.19 (d) are the corresponding magnetic contrast images showing the Mz component

of the squares in E2 and E3.

Figure 4.19: (a) and (b) show the topography of the Fe81Ga19 elements in E2 and E3 respectively.
(c) and (d) show the magnetic contrast in the squares in E2 and E3 respectively.

Both elements show what seems to be a Landau flux closure similar to Fig.4.1 (a).

However, this time, the domain walls could not be resolved as neatly as in the Permalloy

element that had been previously measured as a test, Fig.3.14 (c). The magnetic contrast

in Fig.4.19 (b) and Fig.4.19 (d) appears blurry and the domain walls cannot be resolved

well. This effect is probably due to the roughness of the surface. Fig.4.20 (a) and Fig.4.20

(b) are 3D images of one of the Fe81Ga19 squares and the Permalloy element respectively.

With NanoScope Analysis the average roughness, Ra, and the root mean square roughness,

Rq, of the data within the box defined by the dashed lines were calculated.

Figure 4.20: 3D images of (a) the Fe81Ga19 square in E2 and (b) the Permalloy element in the
waveguide used previously as a test sample, Fig.3.13.
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According to the results, which are indicated in the figure, the Fe81Ga19 element is

rougher. Such height variations can affect the magnetic measurement given that the

magnetic signal is only of around 0.32o. This effect was not observed with the PEEM

because this technique is sensitive to the in-plane component rather than the one

perpendicular to the sample. The roughness of the Fe81Ga19 elements probably arises

from the substrate and has ultimately been transferred to the ferromagnetic devices on

top.

The following step will be making the connections between the electrodes in order to

apply a voltage to the structure. However, because small displacements of the vortex core

(at the crossing point) are being sought, smoother samples might be needed to precisely

locate the vortex core within the element.



Chapter 5

Conclusions and outlook

In the present work, the effects of a strain induced anisotropy gradient in Ni and Fe89Ga19

thin-film elements displaying a flux-closure vortex state have been investigated. For the

elements, both square and circular geometries have been considered.

First, 2 µm Ni and Fe89Ga19 elements have been simulated using OOMMF. A strain

gradient has been simulated by introducing a uniaxial anisotropy gradient arising from

the magnetoelastic energy. The micromagnetic simulations have shown that, unlike

spatially uniform strains [18], antisymmetric strain gradients induce vortex core shifts

of hundreds of nanometres. The translation of the core occurs along the direction of the

gradient and increases with the latter until the magnetostatic energy starts dominating

over the magnetoelastic contribution. For nickel, core translations bigger than 500

nm have been observed. The effect is smaller for the Fe81Ga19 element, but large

displacements of around 320 nm can still be achieved. Finally, non-symmetric strains

have also been studied by the introduction of an offset, C, to the anisotropy gradient.

Such an offset can affect significantly the core displacement depending on the structure.

In nickel, the offset can both increase or reduce core displacement. In Galfenol, the effect

of the offset is detrimental and can reduce the displacement to such an extent that there

is almost no motion of the vortex core.

Then, three experiments were designed to induce an anisotropy gradient to a

ferromagnetic element. The architecture of the device is always a magnetoelectric

heterostructure, wherein electric fields applied to a piezoelectric substrate generate

magnetoelastic anisotropy in the element via magnetostriction effects. In order to

generate the gradient, the first experiment (E1) exploits the ferroelastic multi-domain
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configuration of a PMN-PT substrate. A PMN-PT substrate was sandwiched between two

Au contacts and an electric voltage was applied between the two while XMCD-PEEM

measurements were performed. The domain configuration of the Ni elements changes

as an electric voltage is applied. The changes observed for one of the nickel squares

displaying a Landau flux closure indicate translation of the vortex core. However, a

thorough study of the ferroelastic domain configuration of the PMN-PT is still needed

to gain information about the strain acting on the structure. One of the approaches

that is being considered is to image the ferroelectric domains via piezoresponse force

microscopy (PFM).

The second and third experiments (E2 and E3), create a strain gradient between two

metallic electrodes patterned on top of the PMN-PT in a similar way to [32], where a

Fe81Ga19 element is located. MFM measurements were performed in this case to track the

position of the vortex core. Magnetic contrast seems to point to a Landau configuration

which would mean the presence of a vortex core at the union of the domain walls.

However, the domain walls could not be resolved very well possibly due to the roughness

of the surface, making it difficult to precisely locate the vortex core within the element.

Unfortunately, there has been no time to study the application of an electric voltage to

the structure. The idea is to use indium wire to make the contact between the electrodes

and measure any changes on the magnetic configuration with the MFM. The strain would

be quantified by measuring the stretching of the ferromagnetic elements. Experiments

E2 and E3 are particularly exciting because unlike E1 they would provide full control

on the strain gradient and hence, on the translation of the vortex core. This opens the

possibility for a low energy mechanism to excite vortex core dynamics.
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