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I

Abstract

In this thesis we investigate the role of the cell nucleus in processes that
involve nucleus deformation. To begin with, we mathematically model the
motion of molecular motors, using an asymmetric particle model, as a method
to describe one force generation mechanism within a cell. This model is used
to explore the effects of molecular motors working in tandem while attached
to a single object, such as the cell nucleus. We then move on to developing a
analysis tool for use with images of nucleus deformation. This computational
tool uses a simulated annealing energy minimisation method with classical
elasticity to determine the deformation of the nucleus between images, and
from the deformation field, make predictions about the traction force on the
surface of the nucleus which caused the observed deformations. We begin by
treating the nucleus as a homogeneous elastic solid and calculating the trac-
tion force to cause the deformations observed of nuclei as they pass through
channels containing constrictions. We then developed a second model of the
nucleus, where it is instead treated as a thin homogeneous elastic shell. The
shell model of the nucleus was then applied to the same images of nuclei
passing through channels, and the resulting traction forces compared with
the solid model results. Both the solid and shell models of the nucleus were
then developed further to calculate the traction force on a deforming nu-
cleus, when using three dimensional images in the form of a series of z stacks
as input. We also combine the traction force calculations with an iterative
method to calculate Poisson’s ratio from experimental images and compared
this with previously published data of nuclei.
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Nomenclature

Biological syntax used in this thesis, together with brief descriptions are
included below.

• Actin. A protein found in the cytoskeleton. Actin is bound to by the
myosin family of molecular motors.

• Cytoplasm. The cytoplasm of a cell refers to all components within
a cell, with the exception of the cell nucleus.

• Cytoskeleton. The cytoskeleton is a structure within the cytoplasm,
consisting of actin filaments, microtubules and intermediate filaments.

• DNA. Deoxyribonucleic acid. DNA is found within the cell nuclei and
carries the genetic information for the cell. DNA is seen in chromosomes
and is surrounded by the nuclear envelope to help protect the DNA from
damage.

• Dynein. A family of molecular motors which walk towards the minus
(-) ends of microtubules.

• Eukaryotic cells. Eukaryotic cells are cells which contain membrane
bound organelles, such as the cell nucleus, as compared to prokaryotes
which are cells that do not. Typical examples of eukaryotic cells include
most animal and plant cells.

• Kinesin. A family of molecular motors which walk towards the plus
(+) ends of microtubules.

• Metastasis. The process by which cancer cells spread from one part
of the body to another. Typically involves travel from a tumour in
to the blood stream, and then exiting elsewhere in the body to form
secondary tumours.

• Microtubules. Microtubules are long rigid (in comparison to actin
filaments) tubes made of the dimer tubulin.

• Molecular motor. A molecular motor is a molecular scale motor that
exist within biological systems. The families Kinesin and Dynein bind
to microtubules, while the Myosin families bind to actin filaments.
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• Myosin. Myosins are a family of molecular motors which walk along
actin filaments.

• Nuclear envelope. The nuclear envelope is a double layer membrane
surrounding the cell nucleus, separating the cell cytoplasm and the
DNA within the nucleus. The envelope contains nuclear pores which
allow the passage of proteins in to and out of the nucleus.

• Nuclear pores. Nuclear pores are pores on the surface of the nucleus,
which allow the passage of proteins in to and out of the cell nucleus.

• Nucleus. The nucleus of a cell contains the DNA and associated
proteins, surrounded by the nuclear envelope. The nucleus exists in
most eukaryotic cells and is important for continued cell existence.



Chapter 1

Introduction

1
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1.1 Introduction

In this chapter, we briefly describe some specific aspects of cell biology rele-

vant to this thesis. In particular, we first describe the cell, which is relevant

to the whole thesis, and also the cell nucleus, focusing on its role within the

cell. We describe some methods for observing the cell nucleus through exper-

iments using fluorescent dyes to be able to observe the cell nucleus separately

from the surrounding cytoplasm. We also discuss the role of molecular motors

in the cytoskeleton, providing a basis for the analytical model of molecular

motors developed in chapter 2. We introduce physical concepts in each of

the chapters as they become relevant.

1.2 Cells

The cell is the fundamental building block of life, and forms the basis for all

types of life, from single cell bacteria to complicated multicellular animal and

plant organisms. Broadly, the cell consists of the cytoskeleton and associated

proteins, and the cell nucleus.

1.2.1 Imaging cells

The term cell was first used to describe an observation made in 1665 by

Robert Hooke when looking through a microscope at a slice of cork, where

he observed what is now known as the cell wall of the plant. Van Leewenhoek

observed the first protozoa in 1674 and then bacteria in 1683, where these

were identified as evidence of life at microscopic scales, due to the fact that

they exhibited motion. Even now, hundreds of years later, modern research

of cells relies heavily on imaging biological matter to aid in our understand-

ing. Experimental methods of imaging are still among the most important

techniques in understanding the cell, and the different components within

the cell. Chapters 3 to 6 of this thesis focus on modelling the cell nucleus
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as it undergoes deformation. As such, experimental techniques that allow

observations of the nucleus were key to the development of the models we

made. We also briefly detail more recent imaging developments that have

been used in experiments performed by collaborators to obtain the data used

within this thesis.

The ability to identify different aspects of the cell, including the cell

nucleus, has been paramount to enabling detailed studies of the nucleus. One

particular innovation was the use of fluorescence in imaging. As the cell is

largely water based, methods that cause parts of the cell to emit wavelengths

of light were important in enabling the use of light microscopes on biological

samples. One method is to use fluorescent proteins such as Green fluorescent

protein (GFP) tagged to a protein by inserting DNA in to the genome of the

target to be imaged. By placing GFP next to a specific protein, the GFP can

be used as a tag to that protein. Another method is to use fluorescent dyes.

A fluorophore binds to a specific element within the cell. Upon excitation,

the fluorophore emits a wavelength of light which can be recorded using a

fluorescence microscope. The fluorescence can be used to track the location

of a tagged element in the cell, by measuring the intensity of emitted light

over space and time in the resulting images.

Though dyes exist for a number of different biological molecules, the dyes

of interest in this thesis are those which attach to parts of the nucleus. There

are two families of dyes commonly used to stain the cell nucleus. They are

the DAPI and the Hoescht families of dyes. Both of these dyes bind to A-T

rich regions of DNA, and then emit light through fluorescence. The resulting

fluorescence provides an intensity for a given pixel, representing a region in

space. This is then used to determine whether a given pixel contained DNA

or not. As typically the DNA is contained entirely within the nucleus of the

cell, as discussed in section 1.2.2, this allows for the position of the nucleus to

be identified. There are a few examples where the DNA could be outside of

the nucleus in significant quantities, such as a rupture of the nuclear envelope,
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but these cases are not considered in detail within this thesis.

1.2.2 The cell nucleus

The cell nucleus is an organelle which exists in eukaryotic cells. The nucleus

is of particular interest due to applications in medical diagnosis. This is es-

pecially true for the diagnosis of cancers where it has been observed that the

changes to the cell that cause cancerous behaviours also typically causes mea-

surable changes to the nucleus shape [10]. The nucleus consists of two thin

membranes, forming the nuclear envelope, surrounding tightly packed DNA.

In developed cells, DNA is typically stored in the nucleus by having been

tightly wrapped around histones, forming chromosomes[3]. The response of

the nuclear envelope and the DNA to applied forces are important when con-

sidering how best to model the nucleus. We now describe these components

and some related experiments in more detail.

On the inner surface of the nuclear envelope is a layer formed of proteins

from the Lamin A/C and Lamin B families, known as the nuclear lamina.

The nuclear lamina is formed from a dense network of these lamin proteins.

For this thesis, the most important property of the nuclear lamina is that

it is responsible for the stiffness of the cell nucleus. However, the role that

each of the lamin families play in providing the stiffness is a relatively recent

research area, and there is still some debate on the purpose of the lamin A/C

and B1/B2 families in response to applied forces.

The mechanical response of the nuclear lamins in the lamina have been

studied through treatments that inhibit the lamin A proteins, and then ap-

plying mechanical strains to the nucleus [23]. When a cell is deficient in

lamin A/C, they typically have many more misshapen nuclei, as well as

demonstrate a less nucleus more prone to rupture, which is interpreted as

being a less stable nucleus[23].
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1.2.3 Cells in confinement

In chapter 3, we develop a tool for analysis of experimental images of cell

nuclei. The approach we took in developing the model and code was driven in

part by experimental procedures. In this section, we describe some relevant

experiments that helped form the approach used.

Cell confinement is often looked at in the context of cell motility. By

confining the cell, you can limit the motion to one or two dimensions, rather

than the three dimensional motion observed in cells in collagen matrices. The

motion mechanisms used by cells have been seen to differ in confined motion

compared to the three dimensional motion.

Cell motion within confined geometries can be induced through various

experimental techniques, some examples of which include flow driven motion,

such as in flow induced cytometry [26]. Cytometry is where cells are placed in

a fluid flow which rapidly passes them through an imaging device to measure

deformations. Another common approach is the use of chemical gradients to

affect the direction of motion of the cells.

It is also possible for cells to self generate motion in confinement without

any of the above chemical or physical cues causing the motion. This is the

case for the cells confined to channels containing constrictions as shown in the

experimental data in chapters 3 and 4. In the images of the nucleus within

channels, the nucleus has to deform in order to pass through small constric-

tions. This is typically a significantly slower process than the deformation of

the cytoplasm over the same shape change of the surrounding environment.

Similar observations that significantly larger forces are needed to deform the

nucleus have also been reported in micropipette aspiration [31] and Atomic

force microscopy (AFM) experiments [21]. This causes the motion of the

entire cell to slow down while the nucleus undergoes deformation [36]. This

has important applications in medical diagnosis, where the stiffness of the

nucleus can be affected by diseases, such as in cancer. Isolated cancerous

cells have been measured to be softer than normal cells, despite evidence
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indicating that when large numbers of cancerous cells come together forming

tumours, the resulting tumour tissue is stiffer than healthy tissue [5].

As a result of the nucleus being stiffer than the cytoplasm, the forces

required to deform a nucleus are larger than those exerted on the cytoplasm.

This has potential applications in the diagnosis of disease, where observations

of the deformations of the nucleus and cell could be used to determine, for

example, if they are cancerous [26].

1.3 Molecular motors in intracellular processes

In chapter 2, we produce a model of molecular motors pulling a load, where

the load could represent for instance, the nucleus of the cell, to position

the nucleus as the cell undergoes mitosis, or to move vesicles around within

the cell. The cytoskeleton is responsible for a number of active processes in

the cell, including mechanisms of motility. This includes generating motion

of the entire cell as well as intercelluar processes, such as the movement

of vesicles or the cell nucleus. The main components of the cytoskeleton

which are of interest to us are the filaments actin and microtubules and the

molecular motor proteins, myosin, dynein and kinesin. The myosin family

of molecular motor proteins interact with actin filaments, while kinesin and

dynein interact with microtubules.

Molecular motors move in discrete steps along the filaments to which they

bind. This stepping motion has been observed in optical trap experiments,

where molecular motors have been attached to a bead, with the bead held

in place by the pressure of a laser, which is used to exert force on the bead.

The bead then moves in discrete steps away from the starting position as a

molecular motor takes a step, and exerts force on the bead. These experi-

ments have allowed the step size of different motors to be measured. Optical

bead experiments have produced other results including the stall force of a

single motor. The stall force was found by increasing the pressure of the
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laser on the bead, until the motion of the bead is completely inhibited. This

allowed calculation of the maximum force that a motor can bare while still

causing motion of the bead.

The stepping motion of a molecular motor can be broken down in to

multiple steps. First, a adenosine triphosphate (ATP) molecule binds to a

molecular motor, then a hydrolysis process begins to release the energy stored

in the chemical bonds. This is then converted in to kinetic energy by the

motor.
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Molecular Motors
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2.1 Introduction

In this chapter, we model molecular motors moving inside a cell.We have

developed an analytical model of the velocity of a cluster of motors moving

along cytoskeletal filaments. In section 2.2 the fundamental equations of

the Asymmetric Simple Exclusion Process (ASEP) model used to describe

the collective behaviour of stepping molecular motors are derived. We then

extend the results derived by Joanny et al. [7] for a fixed number of motors

on a single track by introducing the ability for motors to bind or unbind to

the filament. In this case, the motors come from an effectively infinite source,

and the effect of this on the steady state behaviour of the system is explored.

In section 2.3, we allow the unbinding rate to vary with the load force carried

by a motor, where the load force increases the unbinding rate exponentially.

Next, in section 2.4 the forces are allowed to have a component dependent

on the speed at which the load moves, in order to represent the drag force

component caused by motion of an object within a fluid, such as the nucleus

within the cytoplasm. Finally in section 2.5, we briefly discuss extending the

model to allow multiple parallel tracks with bound motors.

2.1.1 Molecular motors

Molecular motors are a family of proteins that are capable of turning bio-

chemical energy from adenosine triphosphate (ATP) hydrolysis in to mechan-

ical work. Here we consider the action of cytoskeletal motors that bind to

cytoskeletal filaments, such as the Myosin family of motors which bind to

actin filaments, rather than other types of motors, e.g. the rotary motion

generated in rotational driven motion of e-coli, or the Nucleic acid motors

involved in various DNA binding processes. The decision to model molecular

motors with stepping motion, such as Myosins and Kinesins was motivated

by images such as figures 2.1 and 2.2, where an increase in the amount of the

Actin/Microtubule respectively was observed as the nucleus deforms. One
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possible reason for the observed increase in filaments is that the filaments

are used by motors to exert force on the nuclear lamina, causing the nuclear

deformation.

Myosin molecular motors produce useful work in the cell cytoskeleton,

such as allowing the movement of vesicles within cells, through attachment

and detachment processes to a track made of filamentous actin. The motors

generate work by detaching a head from the filamentous actin, then by con-

suming energy generated through ATP hydrolysis, move the head forward

along the filaments. In Myosin, this occurs by swinging a lever arm further

along the filament, where the motor head is attached at the base, causing

the stepping motion of the motors. Most Myosin family motors have two

heads, which alternate between steps on a filaments in order to walk in a

preferred direction on a filament, typically towards the barbed end of a fil-

ament. The velocity at which a Myosin molecular motor travels depends

strongly on the particular family member considered, with the length of the

arms of the myosin, the rate at which it can undergo hydrolysis,how long

it typically spends bound on a single site, the angle at which it steps at all

contributing to the speed at which they can function. For instance Myosin

II and V have step sizes of 8nm and 36nm respectively, where Myosin V

is typically responsible for transport while Myosin II is used in actomyosin

force generation mechanisms such as muscle contraction.

The other common molecular motors in cells are Kinesin and Dynein,

which walk in a similar fashion to Myosins, along microtubules rather than

actin. Kinesin and dynein are similar to each other, except the have dif-

ferent directions of motion along microtubules, towards the + and - ends

respectively. Microtubules are typically involved in processes that take place

over longer distances than actin, owing to the increased persistence length of

microtubules. For instance, Microtubules, Kinesin and Dynein are typically

involved in intracellular transport of vesicles and organelles, and are capable

of transport velocities of up to 3µm/s. [4]
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(a)

(b)

Figure 2.1: Example of Nucleus of epithelial cells of mice. Figure 2.1a shows
the DNA within the nuclei (red) and figure 2.1b shows the filament actin
(green). There is an increase in actin at the entrance in to the constriction,
along the sides of the constriction/nucleus. Images provided by Hawa Thiam
and Matthieu Piel, Institut Curie.

Molecular motors are one mechanism that cells use to internally generate

force. This can lead to nucleus deformation. for the cell to use to cause

nuclear deformation is through force application by molecular motors. When

some cell nuclei are undergoing deformation, an increase in the number of

filaments used by molecular motors observed. An example of this is shown

in Figure 2.2. The figures show RPE-1 cells, expressing polo-like kinase 4

(PLK4), a regulator of the centrosome, where expression levels of PLK4 have

been reported to be affected in tumours [20]. The image in figure 2.2a is of

nuclei prior to treatment with the antibiotic Doxycycline and figure 2.2b

shows nuclei after treatment. The images show that extra centrosomes have

formed around the nucleus, and the number of microtubules significantly

increased. The nuclei have extended to a more elliptical cross section from

the untreated shape. The direction of elongation is generally close to the

orientation of the microtubules near the nucleus, suggesting they play a role

in the observed shape change. Though molecular motors are not shown

in these images, the use of molecular motors stepping on the tracks is one

possible way for the force required for the observed nuclear deformation to

occur. A similar increase of the filament actin can be seen in the images used

in chapter 3, where nuclei enter in to channels. Similarly to the increase
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(a) (b)

Figure 2.2: Example of Retinal Pigment Epithelial (RPE-1) cells. The nu-
cleus of the cells are stained in blue, microtubules in red and centrosomes
in green. Figure 2.2a shows an example of these nuclei prior to treatment,
and figure 2.2b shows nuclei after treatment with the antibiotic Doxycycline.
Images provided by Pedro Monteiro and Susana Godinho, Barts Cancer In-
stitute, Queen Mary, University of London.

in microtubules deforming upon chemical treatment, when the nucleus is

entering in to the constrictions there is an increase in the amount of actin

around the nucleus. These images of nucleus deformation motivated the

modelling of molecular motors in the following sections of this chapter.

The discrete stepping motion of molecular motors has been observed in

optical bead experiments. These experiments study the properties of molecu-

lar motors through the use of optical traps [37]. A bead is placed in an optical

trap, in a solution containing molecular motors which attach to the bead. As

the motors move with the attached bead, the bead position is measured, and

changes in discrete steps, demonstrating the discrete stepping of the motors

[37]. Th the motion of the bead under the applied pressure allows the mea-

surement of properties of the various Myosins or Kinesins [37, 1] such as the
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step sizes, stepping rates and the stall force for different molecular motors.

2.2 The asymmetric simple exclusion process

model of processive stepping motors

The statistical properties of a collection of moving particles on a track can be

described using a Asymmetric Simple Exclusion Process (ASEP) model. The

ASEP model was originally derived by Frank Spitzer [33] as a mathematical

treatment of interacting moving particles. Since then, it has been expanded

to many transport phenomena, including traffic flow [13], crowd motion[15],

and most relevant to this thesis, the motion of stepping molecular motors. In

this model, we treat molecular motors as pointlike particles moving along one

dimensional tracks. This model allows molecular motors movement in both

directions along the track, but to have biased motion in one direction. This is

similar to describing the motion of motors using a classical Brownian ratchet

where each the stepping motions of each motor are described stochastically

[16, 2].

In the ASEP model, we treat the filaments that the motors walk along as

a series of sites, where each site can be occupied by at most a single motor.

Physically, the size of each site corresponds with the step size of the motors.

A single track is then essentially a one dimensional system with particles

moving forwards and backwards between adjacent sites along the track. A

cartoon showing this process for a single motor bound on a track can be

seen in figure 2.3, showing the stepping rates for that motor pµ and qµ in the

respective directions.

The ASEP model treats molecular motors as having the following prop-

erties. Each motor is capable of moving in both directions along the track,

with the forward stepping rate pµ and backwards stepping rate qµ. These

rates describe the average time taken for a motor to move from one site to

a neighbouring empty site in the corresponding direction. The stepping pro-
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q
μ p

μ

Direction of forward motion

Figure 2.3: Cartoon showing a particle representing a molecular motor, and
a small segment of the track representing the filament that the motor walks
on. Each particle µ has stepping rates pµ forwards and qµ backwards. The
stepping rates can be varied for different motors.

cess for a single motor is shown in figure 2.3. Each step taken by a motor

is of a fixed length of one site in the corresponding direction to an adjacent,

unoccupied site in either forwards or backwards directions.

Each motor can also be allowed to bind or unbind to the filamentous

track. The process of binding or unbinding are described by the binding rate

kon and unbinding rate koff respectively. A simple cartoon of this process is

shown in figure 2.4. A given motor is either bound or unbound to a filament.

A bound motor has a position on a filament, representing the site to which it

is bound and the relative position of that motor compared to the others. An

unbound motor is part of a large, effectively infinite source of motors around

the tracks, which can bind to sites at the rate kon. As with the stepping

rates, each site may only be occupied by a single motor, and a motor cannot

bind to an already occupied site.

The stepping rate of molecular motors has been shown in optical bead

experiments to depend on the load force on the motor [30]. An increase in

load force has been seen to cause an increased stepping rate towards the

load (typically backwards) under large loads in myosin V motors [30].Similar

results are seen in the motion of Myosin II in muscle contraction [29]. Here,

myosin II molecular motors are responsible for sliding filaments together to

cause muscle shortening. By reducing the load force required to contract

muscle, the process has been seen to speed up significantly [29].
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Figure 2.4: Cartoon showing particles binding and unbinding from a track.
The particles bind with rate kon and unbinding with rate koff

One way the dependence of the motor stepping rates on the load force

has been included in the ASEP model by allowing the values of p and q to

vary with the applied force, as exponential functions affecting the stepping

rates for any motor which is under load as shown below [7].

plead = p0e
−fδ (2.1)

qlead = q0e
f(1−δ). (2.2)

Here, f represents the load force on the motor in dimensionless units.

δ is a value that varies from 0 to 1, representing the relative effect of the

increased energy barrier under the load force on the ability of the motor

to step forward, leading to a reduced stepping rate forward. For δ = 0,

the forward stepping rate is unaffected by the motor carrying a load, while

the backwards stepping rate increases strongly for larger forces. For δ = 1

the leading stepping rate decreases strongly under applied forces and the

backwards stepping is unaffected by the load. Specifically, the leading motor

on a given track experiences the load force, while the other motors do not.

The stepping rates of the leading motor are allowed to vary dependent on

the load force f as given in equations 2.1 and 2.2, where the forward and

backwards stepping rates are now proportional to exponential functions of
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...

D1 D2 D3 ... DME E2 D4 D5E3E

Figure 2.5: An example of the matrix description of motor positions. Each
site occupied by a motor is labelled by a D, then a number counting which of
the motors is represented. Each empty site is labelled by an E, with multiple
consecutive sites being labelled by Eemptysites. In this example, the first motor
is labelled D1, then an empty site E, the second motor D2, then two empty
sites by E2, so on. So the matrix product representing this configuration
begins as D1ED2E

2...

the dimensionless force.

Following [12, 11] we studied the properties of a cluster of motors on tracks

with the following matrix method. Each possible configuration of a number

of motors and number of sites can be described through the statistical weight

of the given configuration occurring. Each given site that is unoccupied is

represented by a matrix E, and an site occupied by motor µ is represented

by a matrix Dµ. A combination with n1 holes after the first motor, n2 holes

after the second motor and so on, with M total motors is given by the matrix

product of all the matrices representing the configuration. An example of

this configuration is shown in figure 2.5.

The statistical weight, fn, of the system for a given configuration n is

then the trace of this product

fn(n1, n2, n3, ..., nM) = Tr
(
D1E

n1D2E
n2D3E

n3 ...DME
NM
)
. (2.3)

The probability of being in any given state is found by normalising these

weights by the partition function of the system, which is given by the sum

of all possible states

Zn,m =
∑

n1,n2,...,nM

δ(
∑
nµ,N−M)fn(n1, n2, n3, ..., nM). (2.4)
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For the weights fn to represent the steady state of the system, the differ-

ence between probabilities of a given motor stepping in each direction from

an occupied site into an empty site must be equal to the rate of the site being

occupied, i.e.

pµDµE − qµEDµ = Dµ (2.5)

must hold for each motor µ.

In addition, since particles are unable to overtake each other due to the

exclusion principle of occupied sites, the velocity of the entire cluster of

motors is limited by the velocity of the forward most motor.

The theory set out by Evans [12] was used by Campas et al [7] to show

that for a fixed number of motors, N (i.e. no binding or unbinding allowed),

on a single track given by a ring, the mean velocity of the cluster of motors

is given by

v̄ =

p

[
1− ef

(
q
p

)N] [
1− q

p

]
efδ
[
1− q

p

]
+ ef

[
q
p
−
(
q
p

)N] . (2.6)

The result derived for equation 2.6 presumes that motors are unable to

bind or unbind from the track. We now introduce the effect of unbinding

and binding processes in to the model. If the motors can bind to and from

the track, at rates kon and koff respectively, then we can predict the typical

number of motors bound to the filament.

In the simplest case, we expect that the number of motors bound is

described as a function of the binding and unbinding rates, where kon and

koff are both force independent. In this case, where P (n) is the probability

of having n motors bound, the change in number of motors is given by the

following master equation,
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dPn
dt

= konPn−1 + koffPn+1 − (kon + koff )Pn. (2.7)

To investigate the average collective behaviour of a cluster of motors

capable of binding and unbinding, we consider only the steady state case of

motor behaviour. This requires that the average number of motors bound to

the filament does not change with time, hence dPn
dt

= 0 and the binding rates

and states with n bound motors are related by

konPn−1 = koffPn (2.8)

In the steady state, the number of motors bound therefore depends on

the relation between the binding and unbinding rates, as well as the number

of accessible sites for motors to bind to. We presume that the number of

accessible binding sites on the track is much greater than the number of

motors capable of attaching to the cargo. This assumes that the limiting

rate is the number of motors capable of binding to the cargo rather than

having excess motors but no sites for the motors to bind to. Physically this

means that the size of the motors is far smaller than the cargo.

The mean average number of bound motors and velocity of the cluster of

motors for a maximum number of sites N are given respectively as

n̄ =
N∑
n=0

nPn, (2.9)

v̄ =
N∑
n=0

Pnvn. (2.10)

The probability of being in a state with n bound motors Pn, can be

written for the steady state case as a function of the binding rates kon, koff

and the maximum number of motors bound, N. In the case where the binding

and unbinding rates are constant, then the normalised probability Pn can be
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written explicitly using equation 2.8. This equation can be generalised to

Pn =

(
kon
koff

)m
Pn−m (2.11)

where n−m ≥ 0 and N ≥ n. This can be used to write all the probabilities

in terms of the binding rates and the probability of having no motors bound,

i.e. m = n .

Pn =
kon
koff

n

P0 (2.12)

Since the total sum of the probabilities of all possible states allowed of

the system most be equal to 1, we have

N∑
n=0

Pn =
N∑
n=0

kon
koff

n

P0 = 1. (2.13)

This gives an expression for the probability of being in a state with n

motors bound in terms of only the binding rates,

Pn =

(
kon
koff

)n
∑N

n=0

(
kon
koff

)n =

(
kon
koff

)n
1 +

∑N
n=1

(
kon
koff

)n (2.14)

where the normalisation is found from the summation of all possible

states,
∑N

n=0 Pn = 1.

Since the summation in the denominator is a finite geometric series, we

can rewrite this as

1 +
N∑
n=1

(
kon
koff

)n
=

(
kon
koff

)N+1

− 1

kon
koff
− 1

.

Which gives the full expression for the probability of being in the state

with n bound motors as
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Pn =

(
kon
koff

)n (
kon
koff
− 1
)

kon
koff

N+1 − 1
. (2.15)

In the case where only the leading motor on a track experiences the

load force, the velocity of a state with n motors is given by equation (2.6).

Substituting this velocity expression together with the expression for the

probabilities, equation (2.15) in to equation 2.10 describes the effective speed

of a cluster of motors with the ability to bind to and from the filament. The

velocity in this case is then given by

v̄ =

kon
koff
− 1

kon
koff

N+1 − 1

N∑
n=0

 p
[
1− ef

(
q
p

)n] [
1− q

p

]
efδ
[
1− q

p

]
+ ef

[
q
p
−
(
q
p

)n] ( kon
koff

)n . (2.16)

A comparison of the results with binding given by equation 2.16 with the

results for a fixed number of motors, given by equation 2.6 is shown in figure

2.6. In both cases, the expected velocity for a system with many motors

tends to the difference between the forward and backwards stepping rates,

p− q when the load force is small, and is otherwise limited by the stepping

rate of the forward most motor, pe(−fδ). As the dimensionless force increases

however, there is a sharper decrease in the expected value of velocity for

the case where binding and unbinding occurs, despite currently assuming

the unbinding process to be force independent. This decrease exists because

while the maximum number of motors that can bind is the same as in the

case where binding and unbinding does not occur, the probability of being

in the state with all motors bound would only be equal in the case where

binding is significantly higher than the unbinding rate. As the force increases,

the stepping rate of the leading motor decreases significantly, which then

decreases the expected velocity of the system, despite the lack of direct force

dependence in the unbinding rate.
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Figure 2.6: A comparison of the effect of allowing motors to bind or unbind.
f0 represent the original result given by equation 2.6 with a fixed number
of motors,n=N, showing the velocity at that number of motors. The curves
labelled by f show the result of equation 2.16, where the x axis represents
the maximum number of motors allowed to bind (n sums from 1 to N). In
both cases, the leading motor only feels the load force. In our model, each
motor can bind or unbind from the track at force independent dimensionless
rates kon= 5.0 and unbinding rate koff=2.0. The other parameters used in
plotting both sets of curves are forward stepping rate p = 2.0, backwards
stepping rate q=1.0, energy barrier delta=0.5.
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2.3 Force dependent unbinding

Molecular motors have been seen to have increased unbinding rates when

pulling loads. Single Kinesins pulling loads held in by place by optical force

clamps were shown in [37] to be more susceptible to unbinding, suggesting

the ATP cycle is dependent on the load.

To introduce a force dependent unbinding rate to the model, the expres-

sion for koff is modified so that it now depends on the dimensionless load

force. If k
[0]
off is the load independent unbinding rate, the force dependent

unbinding rate expression is written as

k
[L]
off = k

[0]
offe

fδ. (2.17)

As the model considers that only a leading motor on a track is experienc-

ing the load force, the unbinding rate is separated in to components for the

leading and all other following motors. For n motors bound in a state, the

unbinding rate for the cluster of motors is altered as

koff →
1

n
k

[L]
off +

n− 1

n
k

[0]
off . (2.18)

The new master equation for this system is then given by

dPn
dt

= konPn−1+

(
1

n+ 1
k

[L]
off +

n

n+ 1
k

[0]
off

)
Pn+1−

(
kon +

1

n
k

[L]
off +

n− 1

n
k

[0]
off

)
Pn.

(2.19)

with the steady state solution given by

konPn−1 =

(
1

n
k

[L]
off +

n− 1

n
k

[0]
off

)
Pn. (2.20)

As before, the probability of being in a state with n motors bound where
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n ≥ 1 is now given by

Pn =

(
nkon

(n−1)k[0]+klead

)n(
nkon

(n−1)k
[0]
off+klead

− 1

)
(

nkon

(n−1)k
[0]
off+klead

)N+1

− 1

(2.21)

.

The resulting effective velocity for a maximum of N motors is shown in

figure 2.7. This figure shows the effect of increasing the load force felt by the

leading motors while increasing the maximum number of available sites for

motors to attach to.

Figure 2.7: Dimensionless velocity against number of bound motors pulling
varied dimensionless forces where the leading motors unbinding rate is now
force dependent. The other parameters used are forward stepping rate p =
2.0, backwards stepping rate q=1.0, energy barrier delta=0.5, binding rate
kon= 5.0 and dimensionless unbinding rate koff=2.0

2.4 Velocity dependent drag force

Often the cargo carried by molecular motors is in a fluid. For instance, the

nucleus of a cell is moved around within the cytoplasm of the cell by micro-
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tubules attaching to the nuclear envelope [35] with applications in various

processes such as in the division of animal cells [3].

In the case of an object moving in a fluid, one might expect there to be

a term in the force felt which is proportional to the velocity of the moving

object, representing the drag force on the object opposing its motion. This is

now added to the model by allowing the total force opposing felt by a leading

motor to be given by

ftot = f[0] + fdrag = f[0] + bv (2.22)

where f[0] is the dimensionless, velocity independent force discussed pre-

viously, and b is a term which measures the relative contribution of the

dimensionless velocity to the dimensionless force terms.

Figure 2.8: Dimensionless velocity against number of bound motors pulling
varied dimensionless forces where the leading motors unbinding rate is now
force dependent and the motor experiences a drag force proportional to the
velocity. The other parameters used are forward stepping rate p = 2.0,
backwards stepping rate q=1.0, energy barrier delta=0.5, binding rate kon=
5.0 ,dimensionless unbinding rate koff=2.0 and drag coefficient b=1.0

Figure 2.8 shows the effect of allowing both a drag force and motors to
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have a force dependant unbinding. Values of b on the order of magnitude

1.0 show no significant difference from figure 2.7. The results for b=1.0 are

shown in this figure to demonstrate the effect of introducing a drag term.

The two main changes from the previous figure are that in all cases, the

collective velocity of the motors is lowered, and in the dimensionless force

f[0] = 1.00 case, the number of motors required for forward motion decreases

slightly to one fewer motors required for motion.

2.5 Multiple tracks with motors

Motors and filaments are capable of cooperative behaviour beyond the sin-

gle track motion discussed so far. The simplest case would be a series of

filamentous tracks aligned in parallel and with the same orientation of the

barbed/pointed ends. This would allow a series of motors to collectively walk

along separate filaments while pulling a load. If the force is shared equally

between each of the T tracks with motors bound on each, then the force

pulled by each motor only needs to be f
T

, where f is the total force required

for motion. Motors on multiple tracks could allow for motion where greater

forces are required than the typical stall force of a molecular motor (on the

order of pN). This could have applications, for instance, when motors are

repositioning the nucleus rather than a smaller vesicle. In this simple model,

the results of equations 2.6,2.16 and figures 2.6,2.7 would be altered by re-

placing any instances of the force f by the force divided by the number of

tracks, f
T

, and produce the same results otherwise. More complicated models

involving tracks crossing, different alignments of tracks, allowing motors to

step between different close tracks are all possible but are beyond the scope

of the analytical work in this chapter.
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2.6 Discussion and conclusions

In this section we have described an asymmetric particle model and applied

it to the motion of molecular motors. We first introduced the basic model

as detailed in [7], where predictions for the motion of a fixed number of

motors were introduced. The model was then improved by allowing motors

to unbind and bind to the track with fixed rates kon and koff . This allowed

us to predict the effects of changing the number of motors on the collective

speed. We then saw that in this model there was a decrease in the effective

speed where the number of bound motors was significantly less than the force

pulling capabilities of a single motor, and for a small force, the number of

motors saturated for kon > koff , and returned to the effective speed with no

binding processes.

Next, directed by the force dependence seen in experiments of motors

pulling beads in optical traps, we allowed the unbinding rates to be force

dependant, varying as koff = k
[0]
offe

−fδ. In keeping with the idea that only

the leading motor feels any force from the load, the leading motor had the

aforementioned unbinding rate, while the other motors kept the constant

unbinding and all motors shared the same, constant binding rate. Again we

saw as a result that the global maximum velocity decreased for large applied

forces, while smaller forces had little effect on the collective motion.

Finally, we took in to consideration the surrounding medium which mo-

tors exist in. As the cytoplasm around the nucleus is typically fluid like, one

might expect any motion of a organelle through the fluid to exert a additional

drag force component on the organelle. This was included in the model by

allowing there to be a term in the applied force proportional to the velocity

at which the cluster of motors moves. As shown in figure 2.8, the effect of

including the effects of a non zero drag coefficient can entirely prevent mo-

tion, compared to the prior cases where motion was slowed, but not entirely

prevented. This implies that a significant component of any force in nuclear

motion within cells is to enable motion through the surrounding medium.
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3.1 Introduction

In this chapter, we look at the deformation of dendritic cell nuclei as the cells

pass through channels containing constrictions. In section 3.2 we then intro-

duce the method used to confine the cells, and the geometry of the channels

used. Section 3.3 then describes the staining method used to image the cells,

cell nuclei and the DNA within. Sections 3.4 and 3.5 then introduce the

process we used to convert these images from raw data to a form appropriate

to be used in our model of nuclear deformation. In section 3.6 we justify the

treatment of the cell nucleus as an elastic object, and the Poisson’s ratio used

in our model. We then describe our model of the nucleus as a homogeneous

elastic solid in section 3.8 and present our results.

3.2 Cell nuclei in confinement

The behaviour of cells and their nuclei in confinement is of interest for a

number of reasons. Perhaps most importantly is that this has potential

applications in identification of disease which affect the cells and/or nuclei,

such as cancer. A cancer cell is metastatic when it is able to leave the current

tumour and travel elsewhere in the body to form a secondary tumour. In

order to leave an existing tumour, the cancerous cells typically enter in to the

blood stream through a capillary, and then leave again at a later point [3].

This requires the cell and nucleus to deform on entry and exit to the blood

stream. Understanding how this occurs could potentially lead to improved

treatment of cancer. This has therefore lead to a number of studies looking

at deforming cells and nuclei.

There are a number of ways to experimentally observe cell and nuclear

deformation. These include for example the use of micropipettes, where nu-

clei are drawn in to a pipette [31], microfluidic devices where the nuclei pass

through various geometries [8, 28], which can cause or allow nuclear defor-

mations. The majority of this chapter focuses on modelling nuclei confined
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within channels, as in figure 3.2. The principles can however be applied to

any general elastic deformation. The channels and constrictions as shown in

figure 3.2 are formed with three sides of Polydimethylsiloxane (PDMS) and

the final side of glass, through which imaging occurs. A cartoon represen-

tation of the geometry of a segment of the channel is shown in figure 3.1.

The xy plane of the confocal images taken as in figure 3.2 demonstrate the

channel varying in width, y, in order to form constrictions through which a

cell and its nucleus must deform to pass through. The size of the channel

in the out of plane directions is also decreases from in the region of the con-

striction. In the channels used in these experiments provided by Matthieu

Piel and Hawa Thiam [28], the dimensions of the channel (before and after

the constrictions) are width W = 7µm, and height H = 4.7 ± 0.11. The

constrictions have a width W = 2µm, height H = 3.43µm± 0.33µm and the

length of the constrictions are L = 20µm [28].

x

y

z

Figure 3.1: A cartoon of the channel with constriction geometry, showing a
simple three dimensional representation of the channels formed in experiment
by the group of Matthieu Piel [28]. The axes used in this chapter are as shown
in the diagram, with x being the direction of motion along the channel and
constriction, y being the in plane direction with a width W = 2µm and the
out of plane direction z, with height in the constriction H = 3.43µm.
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3.3 Images of cell nuclei

One of the more common methods of investigating cells is the use of imaging.

A usual method in live cell imaging is the use of fluorescent dyes to stain

specific elements within a cell such as DNA or a chosen protein. Fluorescent

labelling is used to identify the nucleus of the cell. The stained material then

fluoresces, which can then be imaged using light microscopes.

In the context of imaging the nucleus, the two dyes typically used are

Hoescht or DAPI (4’,6-diamidino-2-phenylindole). Both of these dyes are

used to stain the DNA within the nucleus. The two dyes vary in, among

other things, emitted wavelength of light, as well as different toxicity levels

depending on the cell. Both DAPI and Hoescht can be used in live cell

imaging. The dye chosen typically depends on the resistance of the family of

examined cells to the toxicity of the dye.

Another area of interest in fluorescent microscopy of the cell nucleus has

been the nuclear lamins. The nuclear envelope includes the network sur-

rounding the cell nucleus, including the nuclear lamina. The nuclear lamina

is of particular interest in this thesis, as it is responsible for providing me-

chanical support to the nucleus. The main contributor to the stiffness of the

nucleus is thought to be the lamin A family proteins within the lamina[23].

Through staining of both the DNA and lamins as a cell travels through a nar-

row constriction, it has been seen that the nuclear envelope can be ruptured,

to allow for passage[28, 9].

3.4 Conversion of nucleus images to an out-

line

In order to determine the deformation field of a nucleus between frames

of a video, we first convert the images of the nucleus such as figure 3.2

into a form useful for input in to our code. We do this by converting each
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Figure 3.2: (Top) Confocal microscopy image of a mouse dendritic bone
marrow cell, entering a constriction in a microfabricated channel. (Bottom)
Fluorescent microscopy image of the nucleus of the same cell, stained with
DAPI. Images provided by H Thiam and M. Piel. The scale bar is 4.3µm.
The constriction width in this image is 2µm[28].

image of the nucleus in to an outline given by a list of coordinates using

existing functionality of the image analysis software imageJ, with the method

as follows.

We start by opening the video of the nucleus to be converted with imageJ.

Then we use the “Set Threshold” tool to convert an image of the nucleus from

a image where each pixel has a varying fluorescence in to a binary image

where a pixel is either fluorescing or not. The dye used in the images show

stained DNA, which we interpret from the binary images that fluorescing

pixels represent the area within the nucleus, and that dark pixels are outside

of the nucleus. The level at which the threshold is set is chosen for each

video to be at the level before noise begins to appear in the form of scattered

isolated fluorescing pixels in the background of the image, away from nucleus.

Once the threshold is set, using the analyse particles tool, also within

imageJ, converts an entire video from the binary image in to an outline of all

particles within the image. Since the nucleus is the only fluorescing object

within the image, this provides a single curve in each frame, representing the

edge of the nucleus in the two dimensional plane of the image. We then fit

a cubic function to the curve using the magic wand and fit spline tools. The

list of points on this spline is then exported to a text file for use as an input
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file for each of the modelling steps which follow.

3.5 Averaging of different images

The curves drawn in section 3.4 can be noisy, and lead to irregularities in

the calculation of the deformation field and related properties, as will be

shown in section 3.12. In addition, each run of our model takes significant

computation time. In order to analyse a larger set of images, rather than

execute the model on each video frame individually, we looked at the average

shapes of cell nuclei. This allows us to generate the average force required

for the average typical deformation of a nucleus, while not requiring orders

of magnitude increases in computational time.

First, each video frame is aligned approximately in time, by position rel-

ative to the channel entrance. This is so that images averages are generated

using the nucleus at similar states. The chosen averages are the nucleus

prior to entry (the frame before the nucleus begins deforming in to the con-

striction), the nucleus entering (chosen as the first frame where the nucleus

begins deforming in to the channel), the nucleus entirely within the channel

(the first frame where the rear of the nucleus completely passes the constric-

tion entrance), the nucleus exiting (the first frame where the nucleus passes

the constriction exit) and the nucleus after leaving the constriction (the first

frame where the rear of the nucleus has moved past the constriction exit).

Then we use the outline of the nucleus in each video at one of the above

shared time points to generate an average nucleus shape. The average shape

is generated for each of the time points described previously by first finding

each frame where the nucleus has the appropriate position relative to the

channel constriction. This provides the list of outlines to use to generate

the average shape from the various files, which are taken as described in

section 3.4. The average outline is then generated by first repositioning each

individual outline to have centre of mass at (0,0). Then in this reference
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frame, spokes are drawn radially outwards from the centre of mass to the

outline at fixed angular values, in order to find the average position at a

list of angles. Spokes are placed every 2π
n

, where n is the average number of

pixels making up the outline from all input shapes. Then the coordinates of

each spoke at the same angle for each shape are summed up and divided by

the number of input shapes to give the final average nucleus shape at each

angle from all the nuclei at that time point.

3.6 Physical properties of the cell nucleus

The remainder of this chapter focuses on modelling nuclei that are confined

within channels. The channels contain constrictions that are smaller than

the cell nucleus, so that the nucleus is forced to deform in order to pass

through the channels. The images used in the analysis here, as in figure 3.2,

are provided by H. Thiam and M. Piel. these nuclei are moving through

the channels without any external applied forces, such as an applied flow,

neither is there a preferred direction of motion, such as through a chemotactic

gradient. Any forces or deformations of the nucleus observed are therefore self

generated by the cell observed. Our aim is to develop a mathematical model

and software which can be used to analyse images of nuclear deformation such

as figure 3.2. This analysis will determine the force fields applied to a nucleus

for a given shape change observed between frames of a video. This could then

allow for comparison with candidate force generation models in the future.

To begin, in this section, we look at whether the nucleus undergoes any

significant volume change, in order to help quantify the appropriate Poisson’s

ratio to be used in modelling the nucleus as an elastic object (see section 3.7

for justification of the treatment of the nucleus as an elastic object).

Figure 3.4 shows the change in area of cell nuclei as they travel along a

channel and through a constriction. The nuclei are seen to undergo small

variations in area as they travel along the channel in the absence of a constric-
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Figure 3.3: Average shapes of the dendritic cell nuclei as they pass through
the channel constriction. Figure 3.3a shows the average nuclei shape from 71
images, just before the constriction, 3.3b as the nucleus begins entering the
constriction from 56 images,3.3c while the nucleus is fully in the constriction
from 71 images, 3.3d as the nucleus is exiting the constriction from 55 im-
ages, and figure 3.3e is the average shape of the nucleus after it has left the
constriction from 71 images.

tion. Once a nucleus reaches a constriction it then undergoes a significant

deformation in order to pass through the constriction. While undergoing
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Figure 3.4: The relative area change of dendritic cell nuclei as travel through
a channel of cross sectional shape 7µm by 5µm and they enter and travel
through 2µmby 3.43µm constrictions. The area of each nucleus is rescaled by
the average area of the cell nucleus prior to entering in to the constriction.
The time axis is centred on the peak value of area. There is a significant
area change as each nucleus encounters, deforms in to, and then exits a
constriction.

deformation, the nucleus is seen to undergo a large increase in nucleus area,

resulting in the peak seen in figure 3.4. Upon exiting the constriction, the

nuclei then rapidly regain similar shapes and areas as seen prior to entry.

Figure 3.5 shows the profile of a cell nuclei while contained within the

channel, prior to entering a constriction. Each slice of the image shows the

cross section at a different height of the same nucleus. The nucleus is shaped

in such a way that it fills the channel and constriction entirely in the out of

plane direction, giving the same x-y profile at different heights.
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Figure 3.5: An example of the profile of one of the dendritic cell nuclei within
a channel, but outside of any constriction. Each slice shows a different height
of the same nucleus. The nucleus is shaped in such a way as to fill the channel
in the Z direction.

We have established in figure 3.4 that there is an area change in the images

of the dendritic nuclei. If the nuclei change volume as they pass through

the channels, the volume change can be used to determine the Poisson’s

ratio of the nuclei. We now use these images of nuclei passing through the

constrictions to calculate if there is any measurable volume change of these

nuclei.

To determine whether there is any measurable volume change of the nuclei

as they pass through the constriction, we calculate an estimate of each nu-

cleus volume. The channel cross section dimensions (width in plane × height

out of plane) are 7µm × 4.7µm outside the constriction, and2µm × 3.43µm

inside the constriction. The total volume of the nucleus is measured by cal-

culating the area of the nucleus within the constriction and outside of the

constriction to find two area values, Ain and Aout. The two values are then

multiplied by the heights of the constriction, hin and hout respectively. This

method of estimating the nucleus volume assumes that the nucleus fills the

channel in the out of plane direction, both inside and outside of the constric-

tion. This is motivated by images such as those in 3.5 whereby the nucleus

profile is minimally changed between different z stacks representing different

heights of the same nucleus.

Figure 3.6 shows the mean volumes of each nucleus, where the mean is

calculated over all frames at that position relative to the constriction. The

three time points are 1) before the nucleus enters the constriction, 2) while
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any part of the nucleus is between the constriction entry and exit, and 3)

after the nucleus has exited the constriction. Figure 3.7 shows the volumes

rescaled by the mean volume of the given nucleus before entry, at the same

time points as in 3.6.

There is no clear pattern of volume increase or decrease in either of these

graphs. In addition, there is no statistical difference between the mean

volumes over all the nuclei before the constriction (240± 90)µm3, in the

constriction,(223± 67)µm3 or after the constriction (235± 57)µm3.
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Figure 3.6: The mean volume of each nucleus in µm3 before the constriction,
inside the constriction and after the constriction. Each mean value is calcu-
lated using every frame in the corresponding position of the nucleus relative
to the constriction.

Another method to determine whether there is any volume change of the

nucleus within the channels is to observe the density of DNA within the cell.

As DNA is the most dense component within the nucleus, observing how

the density of the DNA changes with position in the channel could indicate

if there are any significant volume changes. If the nucleus does increase in

volume, the average density of materials within the nucleus, including the

DNA should decrease by more than the change in the dimensions of the
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Figure 3.7: The mean volumes of each nucleus, renormalised by the mean
volume of the nucleus before entry in to the constriction. Each mean value
is calculated using every frame in the corresponding position of the nucleus
relative to the constriction.

channel in to the constriction and vice versa if the nucleus is compressed.

In order to measure the average intensity of fluorescing pixels, the back-

ground of the images considered must be removed. This was done using the

existing software within imageJ, which uses a “rolling ball” method, in order

to remove the background of images [34]. However, as in the example shown

in [34], this typically leaves the background as pixels with small, but non zero

values of fluorescence. In order to accurately count the number of fluorescing

pixels, these must not be counted when computing the mean intensity value.

To do this, the average intensity of all the pixels in a given image is

calculated. The mean value and standard deviation of the fluorescence of

the pixels is then calculated. Then each image is decreased by an amount

given by

Inew = Iold − Ĩ − aσ (3.1)

where Inew is the intensity with the background removed , Iold is the intensity
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with background, Ĩ is the mean intensity of all pixels, σ is the standard

deviation of the intensities and a is a value that is dependent on the image.

The value of a is increased in increments of 0.1 from 0, until the number of

fluorescing pixels matches that of the area of the curves around the nuclei,

which were previously drawn by hand, using the threshold tool and selection

tools within imageJ, for each given image and frame.

Figure 3.8: The average intensity of fluorescing pixels against position of 80
cell nuclei travelling through channels containing constrictions. The constric-
tion entrance in each video is positioned at x=0. Each video of a nucleus is
renormalised by the maximum value of average intensity seen in the video.

The change in DNA intensity at each x coordinate as shown in figure 3.8

to between 60−70% is also consistent with the change in height of the channel

from 5µm outside of the constriction to 3.43µm within the constriction, i.e.
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the constriction is approximately 70% of the height of the channel.

As shown by the results demonstrating no measurable volume change and

DNA density changes consistent with the changes in height of the channel

and constriction , we treat the nucleus as an incompressible elastic material

with Poisson’s ratio of ν = 0.5 for the remainder of this chapter.

3.7 Continuum elasticity relations

In this thesis, the nucleus is treated as an elastic object, as assumed for

example by [6, 17]. This is motivated by the fact that the cell nucleus has

been seen to display a significantly more elastic response to applied forces

than the surrounding cytoplasm in micropipette aspiration experiments [31,

18]. These experiments occur over a time scale of minutes. This is a similar

time scale as the experiments of nuclei entering to channels. This justifies

the assumptions that the nucleus on these time scales is elastic and not

viscoelastic. The mechanical properties of the nucleus have also been inves-

tigated using atomic force microscopy. The indentations observed, caused by

small applied forces demonstrate that the nucleus is stiffer than surrounding

cytoplasm [25]. In the microchannel experiments analysed below, the nucleus

is seen to regain its original shape after exiting a constriction, implying it is

behaving elastically.

In order to describe the nucleus behaviour a continuum approach is used,

justified by the relevant properties of the nucleus as a whole on length scales

much larger than the constituent molecules.

The standard constitutive equation for a continuum linear elastic solid

obeying Hooke’s law is given by [24]

σij =
E

1 + ν

(
uij +

ν

1− 2ν
ukkδij

)
(3.2)

where σij is the stress tensor, E is the Young’s modulus, ν is Poisson’s ratio
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and uij is the strain tensor. The subscripts label tensor elements and δij is

the Kronecker delta function. Repeated indices use the standard Einstein

summation convention. The strain tensor is defined by:

uij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

+
1

2

∂uk
∂xi

∂uk
∂xj

)
(3.3)

where ui is the displacement and xi is the position vector. In chapter 5, to

compare with published data, we use the linear version of this strain tensor,

which is only valid for small deformations, while in this chapter we use the

full expression, as the nonlinear terms are not negligible here. The free energy

density, f , of a deformed elastic solid expressed in terms of the strain, uij,

and stress tensors ,σij is given by ([24]);

f =
1

2
σijuij. (3.4)

The traction force is defined as the external force on a unit area of the

surface of a body. For an elastic object it is given by ([24]);

ti = σijnj, (3.5)

where nj represent the components of the normal to the surface.

3.8 Nucleus as a homogeneous elastic solid

We consider two models of the nucleus in this thesis. In this chapter, we

treat the nucleus as a homogeneous elastic solid, and in a later chapter as a

thin elastic shell.On a simple level, the nucleus is an envelope (the nuclear

membrane and lamina) surrounding the water, DNA and associated proteins

within. The nuclear lamina consists of nuclear lamins of the families A/C

and B1/B2. The lamin A/C families are known to give the elastic response

to the nucleus, while B family lamins do not contribute significantly [23].
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The response of the internal elements however are not so clear. The DNA

is tightly packed within the nucleus, by wrapping the chromosomes tightly

around histones to a fraction of the uncompressed volume. In this section

we treat the internal elements as an elastic solid with the same properties as

the nuclear lamina.

In order to treat the nucleus as an elastic solid, the deformation field

within the nucleus must be defined. The deformations are considered around

the centre of mass reference frame of the nucleus. Physically, this means that

the centre of mass has no deformation between any two given images, i.e. the

deformation field at (0, 0, 0) is (ux, uy, uz) = (0, 0, 0). The deformation field

of the rest of the body is defined such that it is a function of the deformation

of the nucleus boundary. In the model defined here, the deformation field is

assumed to decrease linearly to zero from each boundary point towards the

centre of mass.

In order to accommodate the assumption of a deformation field decreas-

ing lineally along the radial direction, the calculations of derivatives in this

model are performed using polar coordinates in the 2d plane seen in images.

However, the coordinates and deformation fields read in and calculated are

known in Cartesian coordinates. In order to minimize computation time,

these derivatives are calculated as given below, using the forms of numerical

derivatives for varying spatial positions between mesh points.
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∂ux(x(i,j), y(i,j))

∂r
=
ux(x(i,j+1), y(i,j+1))− ux(x(i,j−1), y(i,j−1))

r(i,j+1) − r(i,j−1)

(3.6)

∂uyx(i,j), y(i,j)

∂r
=
ux(x(i,j+1), y(i,j+1))− ux(x(i,j−1), y(i,j−1))

r(i,j+1) − r(i,j−1)

(3.7)

∂u
(i,j)
x

∂θ
=
Ri+1u

(i+1,j)
x ∆θi −Ri−1u

(i−1,j)
x ∆θi+1 + ux(x(i,j))((∆θi+1)2 − (∆θi)

2)

∆θi+1∆θi(∆θi + ∆θi+1)

(3.8)

∂u
(i,j)
y

∂θ
=
Ri+1u

(i+1,j)
y ∆θi −Ri−1u

(i−1,j)
y ∆θi+1 + uy(x(i,j))((∆θi+1)2 − (∆θi)

2)

∆θi+1∆θi(∆θi + ∆θi+1)
.

(3.9)

(3.10)

Where Ri+1 is the ratio of the radius at point i + 1 to the radius at point

i. Similar expressions are used for the innermost and outermost shapes, but

replaced with forward/backward finite difference methods respectively.

The factors of Ri in the latter two equations are included to scale for

small variations in the radius between points.

These equations, together with the standard relations between Cartesian

and polar coordinates allow the strains to be numerically evaluated from

equation 3.3 in the Cartesian coordinate basis directly.
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Figure 3.9: Cartoon of the nucleus shape in a channel. The cartoon shows a
nucleus beginning to deform as it enters in to a constriction within the chan-
nel, forming a protrusion. The cartoon represents the shape of the nucleus
as it enters in to the constriction. Here, the nucleus decreases in height (z)
by a fraction 3.3

5.0
, as in the data for the constrictions used in this chapter.

3.9 Strain components in the third direction

Figure 3.5 shows that the cell nucleus contained in a channel has the same

cross section at different heights (z). We assume that the outlines of cell

nuclei that that can be seen in the images (such as figure 3.2) represent the

central plane of the nucleus. Therefore we assume that the nucleus curvature

in the z direction is zero, both within the channel and inside the constriction.

These assumptions mean that, prior to entering the channel, the nucleus has

zero curvature in the out of plane direction with the same cross section at

each height as shown in figure 3.9. When inside the constriction, we assume

that the nucleus still has the same cross section as seen in the single plane
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observed in the out of plane direction, up to the new, smaller constriction

height. This approximation that the nucleus has the same cross section

throughout the entire channel and/or constriction is used for the nucleus at

all time steps.

Rather than calculating the strain from a known deformation as in the

xy plane, we treat these nuclei as incompressible elastic materials. For an

incompressible material, the strain in the out of plane direction is defined by

the incompressibility condition that the trace of the strain tensor must be

zero for a incompressible material. In this case that means that the strain

component in the out of plane direction, zz is

uzz = −(uxx + uyy) (3.11)

Since the deformation in the out of plane direction, uz, varies only along

the channel direction, x, under these approximations, the strain component

in the yz direction is given as

uyz = uzy =
1

2

(
∂uy
∂z

+
∂uz
∂y

+
∂uk
∂y

∂uk
∂z

)
= 0. (3.12)

The deformation in z changes with the x direction at the entrance and

exit of the constrictions. The deformation in z is therefore proportional to

Heaviside functions, and the change in height of the channel to the constric-

tion. The deformation in z can be written using four Heaviside functions to

give a deformation of Lconz − Lchanz on entering, and Lchanz − Lconz on exiting

as:

uz =
(
Lconz − Lchanz

)
(H(xi + ux − xent)−H(xi − xent) +H(xi − xexit)−H(xi + ux − xexit))Az.

(3.13)

Where H(x) are Heaviside functions, Lconz is the height of the constriction,

Lchanz is the channel height, xi is the x position of a point on the undeformed
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shape, ux is the deformation along x that point undergoes, and xent and

xexit are the entrance and exit x positions of the constriction entrance and

exit respectively. The combination of the first two Heaviside terms returns

a value 1 if the point xi is outside the constriction, and xi + ux is inside the

constriction. Similarly, the second two terms return a value of −1.0 if the

nucleus goes from inside the constriction to outside. In order to meet the

incompressibility condition, A is a position dependent value given by

A =
−uxx + uyy

(Lconz − Lchanz ) (H(xi + ux − xent)−H(xi − xent) +H(xi − xexit)−H(xexit + ux − xi))
(3.14)

which simplifies the expression of uz to

uz = −(uxx + uyy)z. (3.15)

so that the incompressibility condition is met.

Using the first form of the expression for uz gives the final components

of the strain as

uxz = uzx =
(
Lconz − Lchanz

)
(δ(xi + ux − xent)− δ(xi − xent)

+δ(xi − xexit)− δ(xexit + ux − xi))Az.

As the images represent the central plane of the nucleus within the chan-

nel, for z = 0, this gives

uxz = uzx = 0. (3.16)

While in general a non zero σzz stress term exists, the curved surface of

the nucleus is defined so that its normal is perpendicular to the ẑ direction.

Therefore the σzz term does not contribute to the traction force on the surface

seen in images. The traction force on the central plane can then be solved

based on the two dimensional problem, as the traction over the central plane
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is unaffected by the edges.

3.10 Simulated annealing to determine defor-

mation fields.

In order to determine the deformation field between two images of cell nu-

clei, the nucleus must be tracked from image to image. One common method

to determining the deformation fields between images is by following known

‘landmarks’ in the images [38, 27]. A landmark is a recognisable area that

can be used to determine a local deformation field. The global deformation

field is then extrapolated from the local deformation of landmarks. However,

due to the complex nature of the nucleus deformation field, together with

the limited resolution currently resolvable, means there are no consistently

reliably identifiable landmarks in the DAPI stained images of the nucleus

described above. A different approach is needed in order to determine the

deformation field, and subsequently all values calculated from the deforma-

tion fields between images.

As there is no direct way to currently observe the deformation of given

elements of the nuclei between a series of DAPI stained images such as figure

3.2, due to the limits in spatial and temporal resolution, there is no unique

mapping between two images of nuclei. Instead we determine the defor-

mation field through an energy minimisation simulated annealing routine.

That is, we seek the mapping that minimises the free energy of the deforma-

tion,given by equation 3.4, and we assume that this mapping describes the

physical deformation the nuclei undergoes. In addition, to minimise compu-

tational time, we only calculate the deformation field for the outline of the

nucleus from each image. Then where necessary, the deformation field for

any elements inside the nucleus we extrapolated from the deformation of the

boundary as described below.

An image such as 3.2 is be converted in to an outline as described in
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section 3.4. Then with two such outlines, we can calculate the deformation

field between the two outlines. For example this can be applied to two

sequential frames from a video of images such as figure 3.2, where the nucleus

deforms between the first and second images.

In this case, we refer to the first image as the source image and the second

as the target image. Initially we set the deformation field between the source

and target image boundaries as a somewhat arbitrary mapping between the

source and target image boundaries to obtain an approximation of the defor-

mation field. This mapping is chosen by assuming that elements that make

up the boundary maintain sequential order during any deformations and that

initially, each pixel from the source boundary shape ends up on a pixel on the

target shape. We then refine the deformation by using a simulated annealing

approach to minimise the free energy of deformation.

To define the arbitrary mapping, the input lists of the boundary and

target coordinates are remeshed, so that each list has the same number of

elements, chosen to match the number of points on the input target shape.

That is, the number of points on the source shape are either increased or

decreased by adding or removing points respectively. The resulting curve

representing the source shape has the same number of points as the target

shape, evenly spaced in angular position.

The arbitrary initial mapping is then determined by setting each point on

the target to map to one of the points in the source, such that the combination

has the lowest possible starting energy of mappings between these points.

The deformation field is then perturbed to find configurations with lower

free energy. An element of the source shape is chosen at random by generating

a random number between 0 and the number of points on the surface. The

deformation field is then perturbed by moving this element towards one of its

nearest neighbours along a straight line on the source boundary. The chosen

element then has a direction of perturbation chosen at random, forwards or

backwards along the curve, and is then perturbed a tenth of the distance
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towards the chosen neighbour.

The energy of the new configuration is calculated. If the free energy of

deformation decreases, the new deformation location is recorded as a new

minimal energy configuration. If the free energy increases the energy by an

amount ∆E, the configuration is kept if the energy change when compared

with exp(−∆E
kbt

) is greater than a randomly generated number between 0 and

1. If not, then the change is discarded, and a new perturbation performed,

as in standard simulated annealing procedures, which can are described in

more detail in[22, 14].

3.10.1 Alignment of the nucleus to remove translation

In order to define the deformation field between two images of cell nuclei

under motion, we must choose a point to register the images. Initially we

consider two cases, firstly where the centre of mass of the nuclei are aligned

by the centres of mass, and then where the nuclei are aligned by the rearmost

or forwardmost point of the nucleus. The distinction between the two cases

is important, as it changes the deformation field at all points along the sur-

face of the nucleus. This in turn affects the strain through the assumption

that the deformation field drops linearly to zero at the centre of mass and

therefore stress and traction forces, as well as the Poisson’s ratio if we choose

to calculate it (see later chapter 5) using the found deformation field.

The aim is to remove the force free translational motion of the nuclei

between the two images, so that the deformation field calculated is only that

of the shape change of the nuclei. For the first case we look at, the nucleus is

aligned by placing the centre of mass of each nucleus at the origin. This was

chosen to remove any extrinsic motion of the nucleus from the deformation

field calculations, and physically represents a deformation of an object fixed

in place at the centre of mass. To align the nucleus images around the centre

of each of their masses, we calculate the centre of mass of the nucleus using

the input outline of the nucleus. When the polygon forming the nucleus
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outline consists of N points, the approximation to centre of mass of a general

polygon is given by

(xjc, y
j
c) =

1

6A

N∑
i=1

((xiyi+1 − xi+1yi)(xi + xi+1, yi + yi+1)). (3.17)

where (xjc, y
j
c) are the coordinates of the centre of mass of frame j of the

video, A is the area of the polygon, and (xi, yi) are the coordinates of each

pixel on the boundary making up the polygon representing the nucleus, and

the surface of the polygon is a closed loop such that the final point N connects

directly to the point i=1. The nuclei are then aligned by setting the centres of

mass of the shapes representing the nuclei between sequential shape changes

to be equal. i.e. for a single video, the the shapes observed in two sequential

frames j and j+ 1 where frame j represents the undeformed shape and j+ 1

represents the deformed shape, would have the centres of masses aligned by

(xjc, y
j
c) = (xj+1

c , yj+1
c ). (3.18)

Each point in the corresponding frame j is then redrawn around the centre

of mass by subtracting the value of the centre of mass from every point in

the polygon. This shifts the shape along the x and y axes by −(xjc, y
j
c). This

is repeated for the frame being deformed to j + 1 as well, with the centre of

mass (xj+1
c , yj+1

c ), so that both the undeformed frame and deformed frames

have centres at the origin (0, 0). The deformation field and all fields derived

from it can then be calculated for the centre of mass aligned shapes.

For the second case, the nucleus is now aligned by the rearmost (or for-

wardmost) point of the outline. This was chosen to better represent the

deformation field on entry in to a constriction, where the of the motion in

the laboratory frame is of the leading edge of the nucleus deforming as it

enters in to a constriction. Comparatively, the rear edge moves forward less

than the front edge, meaning it has relatively smaller motion compared to
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the leading edge. Given this behaviour on entering in to constrictions, it

is likely that the nucleus deformation will be better approximated by this

approach instead of the centre of mass method described above, as this will

provide minimal deformation to the rear of the nucleus and larger deforma-

tions towards the front in to the channel, and leads to larger forces generated

at the leading edge. This is discussed in more detail in section 3.10.2

The rearmost point of the nucleus is found by iterating through each point

on the surface of the polygon approximating the nuclear shape, and taking

the point with smallest xi as the nucleus moves from left to right through

the channel (the largest xi is used if the nucleus is moving in the opposite

direction). Once the smallest value of the x coordinate is found, at point

(xjs, y
j
s) for image j, the two images j and j + 1 are aligned by setting the

values of the rearmost points equal, i.e.

(xjs, y
j
s) = (xj+1

s , yj+1
s ). (3.19)

This is done by repositioning the two shapes are then as in the first case, by

shifting the polygons so that the respective rears of the shapes, are placed

at the same location in space (xjs, y
j
s) = (xj+1

s , yj+1
s ). The undeformed source

shape is placed so that the centre of mass is still at the origin, (xjc, y
j
c) = (0, 0),

i.e. the points on the undeformed shape are shifted by (xjc, y
j
i ), where (xjc, y

j
c)

is the centre of mass of the undeformed shape. Then the deformed target

shape is placed so that the rear of the target shape in the centre of mass

configuration is at (xjs, y
j
s) in the frame of the undeformed shape. This means

that the deformed shape is moved by (xj+1
s , yj+1

s ) − (xjs, y
j
s) − (xj+1

c , yj+1
i )),

i.e. the deformed shape is placed at its centre of mass, and then shifted along

the x axis so that the rear is aligned with the undeformed shape.

The deformation fields are then calculated with the shapes now aligned

by the rear most points on the two shapes.
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3.10.2 Alignment of undeformed and deformed nuclear

shapes

In section 3.10.1, we described two limiting models of the relative positioning

of the nuclei in the source and target shapes. The relative position where

translation is removed from the images is likely to be between the two lim-

iting cases described in that section. However the limits on both the spatial

and temporal resolution of the nuclei in the images prevent the translation

component of the motion from being identified precisely from any given se-

ries of images. There are limitations as to how often an image of the cell

nucleus can be captured, meaning that we do not see the nucleus position

at the same point in space relative to the constriction in each video. As a

result, the positioning of the nucleus generally falls in to one of five broader

positions (before the constriction, entering in to the constriction, inside the

constriction, leaving the constriction and after the constriction). Conse-

quently, direct observation of the nucleus deformation between frames of the

video is problematic. Due to the spatial limitations, it is also not possible to

identify any landmarks within the nucleus which could be used to determine

the deformation of the entire nucleus.

In order to estimate the location where the deformed nucleus should be

placed relative to the undeformed nucleus, we measured how the position of

the front and rear of the nucleus changed between frames. Measurements of

the change in the front and rear change position of each nucleus were taken

between frames at each of the five positions (before the constriction, entering

in to the constriction, inside the constriction, leaving the constriction and

after the constriction).

Figure 3.10 shows the changes in position of the rear of each nucleus,

against the change in position of the front of the same nucleus, with a linear

fit of the form y = mx + c. The gradient of the lines of best fit, as shown

in each of the graphs, provides an estimate of the how far the front position

of the nucleus will move, given a change in the rear position, or vice versa.
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Figure 3.10: These figures show the change in the rear position of each
nucleus against the change in leading position of the same nucleus. Each
point in each of the graphs represents one nucleus. (a) shows the changes
as the nucleus moves from before the constriction to beginning to enter the
constriction. (b) shows the changes from when the nucleus is entering the
constriction, to when it is fully in the constriction. (c) shows when the nuclei
are moving from in the constriction to leaving the constriction. Finally,
(d) shows the nucleus as they go from leaving the constriction to having
fully exited the constriction. The best fit lines in each image are for (a):
y = 0.47(±0.04)x+(2.23±1.48), for (b): y = 0.37(±0.05)x+0.68(±2.81), for
(c): y = 1.02(±0.18)x+ 19.4014(±5.179) and for (d): y = 1.00(±0.1375)x+
24.52± 4.38.

The intercept with the y axis measures how much the rear of the nucleus

will move when the front of the nucleus does not change position. The y

intercept is near zero in figures 3.10a and 3.10b, consistent with the nucleus
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being unable to move the rear without the front of the nucleus deforming

as it entering the constriction, as the out of plane direction is already filled

by the nuclei volume. In figures 3.10c and 3.10d, the y intercept is larger

than from zero, representing the nucleus filling the volume in the out of plane

direction and unlike the entry position the nucleus can move freely into the

larger space post-constriction.

The gradient provides an estimate of where the point of zero deformation

should be between each average deformation of the nucleus. The nuclei are

initially aligned by the centres of mass, and then shifted an amount along

the x axis, to reflect the change given by the ratio of the change in position

of the rear to the change in position of the front of the nuclei. As the nuclei

are orientated so that they all move in the positive x direction, the value of

the ratio is always positive. If the ratio of the change in the rear position to

the change in the front position, m, is m ≥ 1, then the rear moved more than

the front, and the target nucleus shape is shifted forwards in space relative

to the undeformed nucleus. Vice versa if the ratio is in the range 0 ≤ m ≤ 1,

then the nucleus is shifted in the opposite direction.

The distance that we shift the entire target shape along x is proportional

to the relative change in the rear or front position compared to the sum of the

changes to the rear and the front in the respective directions. The proportion

of the distance to move in the given direction is

∆r −∆f

∆r + ∆f
=
m− 1

m+ 1
(3.20)

where ∆r and ∆f are the changes in the rear/front of the nucleus position

between the undeformed and deformed shapes when aligned in the centre of

mass frames respectively. The values used to shift each target shape are

given in table 3.1.
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Position Gradient Shift of nucleus position
from centre of mass

Before to entering 0.47 −0.36|∆r|
Entering to in 0.37 −0.46|∆r|
In to exiting 1.02 0.01|∆f |

Exiting to out 1.00 0.00|∆f |

Table 3.1: The changes in position used to shift the target shape. ∆r and
∆f represent the changes between the rear and front position of the nuclei
respectively, in the centre of mass frame.

3.11 Solid nucleus model results and discus-

sion

We present here the results of the traction force calculations for the dendritic

cell nuclei travelling through channels and entering in to constrictions for

three different methods of alignment. First, the traction forces are found

for nuclei aligned by fixing the centre of mass of the nuclei. Then for nuclei

where they are fixed at the rearmost point of the nucleus between images.

Finally, we look at the case where the nuclei are aligned at a point within

the nucleus, determined from the difference between the distances the front

and rear of the nuclei move during deformation. The aim of each of these

different alignment choices is to remove translation from the images, and find

the forces which cause the deformation of the nucleus.

3.12 Traction force using a single nucleus video

In section 3.5, we discussed the importance of using an average nucleus shape

instead of any single image of the nucleus. Figure 3.11 shows the deformation

and traction fields using images of a single nucleus, as it begins to enter a

constriction. As defined in section 3.7, the traction force is the results of

taking the product of the calculated stress tensor and the normal vector
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Figure 3.11: (a) shows the deformation field an example nucleus from prior
to the constriction, to the shape of the nucleus as it begins entering the
constriction. (b) shows the traction force field causing the deformation
shown in (a). The black outline is the undeformed shape, while the green
outline is the deformed shape. In (a) the blue arrows represent the final
deformation field found between the images. The deformed shape is moved
a distance +1.7 pixels along the x direction, from the centre of mass
aligned position (see section 3.10.2). In (b), the red arrows represent the
traction force direction and magnitude, with each arrow scaled such that
one unit of length on the axes represents a traction force of 1kPa. The
nucleus has zero curvature in the out of plane direction, as shown in figure 3.1.
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to the surface at that point, ti = σijnj. In figure 3.11, the deformation

shown has been calculated using the energy minimisation method discussed

earlier in this chapter. The input shapes are noisy in comparison to the

average shapes, as described in section 3.5. This is responsible for the lack of

symmetry in the outlines, as can be seen from the overlayed outlines in figure

3.11, where the shape for y > 0 is significantly different to y < 0. The noise

then leads to non intuitive deformation and traction fields, compared to what

one might expect for the nucleus entering in to a constriction. For instance,

near the rear of the nucleus in this example, there is a significant downwards

component to the force, as a result of a lack of symmetry in the shape.

These single images could be useful, for example if comparing the force in a

given deformation with some known force generation mechanism, such as the

intensity of observed filaments as discussed in Chapter 2. However they are

harder to compare with predictions for forces that cause shape changes of the

nucleus during movement through a constriction. Instead, we now use the

average shapes of nuclei for the remainder of this and the following chapter

where the images of nuclei moving through channels containing constrictions

are considered.

3.13 Results for average shaped nucleus

3.13.1 Centre of mass aligned nuclei for ν = 0.5

Firstly we examined the behaviour of cell nuclei where the nuclei were aligned

between images by their centres of mass. This means the deformation field

from the source shape to the target shape was assumed to be zero at the

centre of mass of both shapes. The deformation field in the centre of mass

frame represents a nucleus that does not have any forward motion, and so is

only an approximation of the deformation experienced by the nuclei travelling

through the channels. This version of the model could be applied to nuclei

within cells changing shape, but not undergoing motion, such as in the steps
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leading up to cell division.
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Figure 3.12: (a) shows the deformation field of the nucleus from the average
shape of 71 nuclei prior to the constriction, to the average shape of 56 nuclei
as they begin entering the constriction. (b) shows the traction force field
causing the deformation shown in (a). The black outline is the undeformed
shape, while the green outline is the deformed shape. In (a) the blue
arrows represent the final deformation field found between the images.
The deformed shape is moved a distance +1.7 pixels along the x direction,
from the centre of mass aligned position (see section 3.10.2). In (b), the
red arrows represent the traction force direction and magnitude, with each
arrow scaled such that one unit of length on the axes represents a traction
force of 1kPa. The nucleus has zero curvature in the out of plane direction,
as shown in figure 3.1.
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Figure 3.12 shows the traction force for the deformation of the average

shape of the nucleus, where the images of the nucleus are aligned at the

origin (0,0). The force distribution shows an almost constant magnitude force

at the rear of the nucleus outwards, towards the direction of deformation.

The direction of the traction force then swaps from outwards to inwards

nearer, the centre of the body, as one might expect where the deformation

is of the nucleus being compressed in that direction.The traction force then

increases in magnitude towards the leading edge of the nucleus, perpendicular

to the direction of the motion, except near the very front, where the traction

direction rapidly switches towards the direction along the channel.

We then look at the same outlines of nuclei, but instead with the two

shapes aligned at the rear, then compare the resulting traction fields.

3.13.2 Rear aligned nuclei for ν = 0.5

In order to more closely model the behaviour of the nuclei, we now consider

other alignments beyond placing both deformed and undeformed nuclei so

that the centre of mass of both is at (0, 0). Here, we positioned the deformed

nuclei so that the rear of the deformed cell nucleus starts at the same position

prior to energy minimisation as the undeformed shape. To find the initial

alignment, both the deformed and undeformed shapes are placed in the cen-

tre of mass frame. The most negative x value of both the deformed and

undeformed is then found. The deformed nucleus shape is then shifted along

the x axis by the difference between the most negative x coordinates of the

undeformed and deformed shapes respectively, (xundeformedmin−xdeformedmin)

so that the rear of the deformed shape aligns with the rear of the undeformed

shape. The centre of mass of the undeformed shape is kept at (0, 0) and the

deformation of the outline is still assumed to drop to zero linearly at the

centre of mass of the undeformed shape.

Figure 3.13 shows the results of the deformation field and traction when

the rear points are initially aligned. The rears are not exactly aligned after
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Figure 3.13: (a) shows the deformation field of the nucleus from the average
shape of 71 nuclei prior to the constriction, to the average shape of 56 nuclei
as they begin entering the constriction. (b) shows the traction force field
causing the deformation shown in (a).
The black outline is the undeformed shape, while the green outline is the
deformed shape. In (a) the blue arrows represent the final deformation field
found between the images. The deformed shape is moved a distance +1.7
pixels along the x direction, from the centre of mass aligned position (see
section 3.10.2). In (b), the red arrows represent the traction force direction
and magnitude, with each arrow scaled such that one unit of length on the
axes represents a traction force of 1kPa. The nucleus has zero curvature in
the out of plane direction, as shown in figure 3.1.

the simulated annealing algorithm as a small amount of volume is lost from

where the points move slightly, due to the assumption of perturbations occur-
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ring on linear segments between points. The volume loss is limited (change

from rear is around 0.2pixels), and so not considered further here.

3.13.3 Aligned nuclei for ν = 0.5

Lastly, we look at aligning the nuclei based on the average shape changes, at

a point between the centre of mass and the rear/front aligned cases, based on

the changes in front and rear positions given in figure 3.10. Figures 3.14-3.17

show the deformations and traction forces between the five averaged shapes

of the nucleus. The figures show the deformation and associated traction

fields prior to the constriction to beginning to enter (figure 3.14), entering to

fully in the constriction (figure 3.15), from in the constriction to beginning

to leave (figure 3.16) and from leaving the constriction to after having fully

left the constriction (figure 3.17). Each of the deformed shapes are shifted

along x relative to the undeformed shape from the centre of mass position,

by the amount given in table 3.1.

In figure 3.14, the nucleus begins to enter the constriction. The resulting

traction force shows compression everywhere except close to the rear and

front of the nucleus, as in the centre of mass aligned case. At the leading

edge, there are outwards forces, with a small increase in magnitude at the

front compared to the centre aligned example shown in figure 3.12. Similarly

there is a small decrease in magnitude of the force at the rear. These changes

are as we would expect when the deformed shape position is moved along

the positive x direction, relative to the undeformed shape.

The traction force as the nucleus goes from entering to fully inside the

constriction, shown in figure 3.15 has a positive x component almost every-

where. This is an unsurprising result, given that earlier we found that the

front of the nucleus moves more compared to the rear of the nucleus in this

part of the deformation process than in any of the other time steps, as shown

in figure 3.10b. There is a small region of points near the rear that show a

rear facing traction force, where the nucleus still deforms in that direction.
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However this is notably a smaller region than in the other figures. This is

likely to be the result of the front of the nucleus moving more than the rear

of these nuclei.

The next figure, 3.16, shows the traction force as the nucleus changes

shape from the shape taken inside the constriction to the shape on beginning

to exit. Because of the curve representing the undeformed shape being almost

parallel to the x axis, the traction arrows over that region are therefore almost

perpendicular to the x direction, due to the definition of the traction used

in equation 3.5. The traction force is larger in magnitude near the front

than the rear, due to the larger deformation of the front in plane than at the

rear. Also noticeable in this diagram are the points making up the surface,

preferring to move closer together nearer the origin (0, 0) than at the ends

during the energy minimisation process, causing more points along the lines

near the centre than at the ends. This effect was not as noticeable in figure

3.14, where the figure outline was more uniform around the origin.

The final figure, 3.17 shows the traction force on the nucleus as it changes

shape from the average shape during exit of the constriction, to the average

shape taken when the nucleus has fully left the constriction. The average

shapes used are notably similar to the shapes taken before the constriction

and on entering, as we would expect from an object displaying elastic be-

haviour. The magnitude of the force is now significantly larger at the rear

than at the front, which coincides with the rear of the nucleus now deforming

more to regain the shape prior to entry in to the constriction, when the front

of the nucleus has already left the constriction.

These figures demonstrate the model we have created, which we used to

determine the traction force from experimental data. However, this com-

putational model is not restricted to nuclei within channels and could be

applied to any images of deforming nuclei, if appropriate assumptions are

made about the deformation in the out of plane direction. This could also

be used if the images provided information about the out of plane direction,
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as is the case in chapter 6.
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Figure 3.14: (a) shows the deformation field of the nucleus from the average
shape of 71 nuclei prior to the constriction, to the average shape of 56 nuclei
as they begin entering the constriction. (b) shows the traction force field
causing the deformation shown in (a). The black outline is the undeformed
shape, while the green outline is the deformed shape. In (a), the blue arrows
represent the final deformation field found between the images. The deformed
shape is moved a distance +1.7 pixels along the x direction, from the centre
of mass aligned position (see section 3.10.2). In (b), the red arrows represent
the traction force direction and magnitude, with each arrow scaled such that
one unit of length on the axes represents a traction force of 1kPa. The nucleus
has zero curvature in the out of plane direction, as shown in figure 3.1.
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Figure 3.15: (a) shows the deformation field of the nucleus from the aver-
age shape of 56 nuclei entering the constriction, to the average shape of 71
nuclei within the constriction. (b) shows the traction force field causing the
deformation shown in (a). The black outline is the undeformed shape, while
the green outline is the deformed shape. In (a) the blue arrows represent
the final deformation field found between the images. The deformed shape is
moved a distance +1.7 pixels along the x direction, from the centre of mass
aligned position (see section 3.10.2). In (b), the red arrows represent the
traction force direction and magnitude, with each arrow scaled such that one
unit of length on the axes represents a traction force of 1kPa. The nucleus
has zero curvature in the out of plane direction, as shown in figure 3.1.
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Figure 3.16: (a) shows the deformation field of the nucleus from the average
shape of 71 nuclei within the constriction, to the average shape of 55 nuclei as
they begin exiting the constriction. (b) shows the traction force field causing
the deformation shown in (a). The black outline is the undeformed shape,
while the green outline is the deformed shape. In (a) the blue arrows represent
the final deformation field found between the images. The deformed shape is
moved a distance +1.7 pixels along the x direction, from the centre of mass
aligned position (see section 3.10.2). In (b), the red arrows represent the
traction force direction and magnitude, with each arrow scaled such that one
unit of length on the axes represents a traction force of 1kPa. The nucleus
has zero curvature in the out of plane direction, as shown in figure 3.1.
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Figure 3.17: (a) shows the deformation field of the nucleus from the average
shape of 55 nuclei exiting the constriction, to the average shape of 71 nuclei
after they have fully exited the constriction. (b) shows the traction force field
causing the deformation shown in (a). The black outline is the undeformed
shape, while the green outline is the deformed shape. In (a) the blue arrows
represent the final deformation field found between the images. The deformed
shape is moved a distance +1.7 pixels along the x direction, from the centre
of mass aligned position (see section 3.10.2). In (b), the red arrows represent
the traction force direction and magnitude, with each arrow scaled such that
one unit of length on the axes represents a traction force of 1kPa. The nucleus
has zero curvature in the out of plane direction, as shown in figure 3.1.
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3.14 Summary

In this chapter, we have described the computational model that we have

created for analysing the deformation of cell nuclei. The cell nuclei were

modelled as a homogeneous elastic solid. We then used a simulated annealing

algorithm to determine the deformation between two outlines by minimising

the energy of deformation. To demonstrate the model being used, we ap-

plied the model to images of nuclei moving through channels, provided by

Matthieu Piel and Hawa Thiam. Based on our analysis of the area change

of these nuclei and the change in florescence intensity of the DNA within

the nucleus, we determined that these nuclei behave like an incompressible

elastic material.

We described a method to convert those images into outlines. These

outlines were then used as input data to the model, comparing the use of a

single image to the use of the average shapes generated from a large number

of nuclei images. These images were used to generate the deformation and

traction fields shown in figures 3.14 to 3.17, as an example of the calculation

of the forces that caused the deformation of a nucleus in the experiment of

nuclei confined within channels.

In the following chapter, we build on this model with a second description

of the nucleus, where instead of treating the nucleus as a homogeneous elastic

solid, it is described as a thin elastic shell. Another possible approach would

be to consider other elastic models that could be applied to the nucleus, such

as viscoelastic behaviour or different nonlinear elasticity models. However

further elastic solid models are beyond the scope of this thesis.



Chapter 4

Nuclear deformation: Shell
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4.1 Introduction

In this chapter we will discuss modelling the cell nucleus as a thin elastic

shell, rather than as a homogeneous elastic solid as in the previous chapter.

We have produced a computational model similar to the previously discussed

solid nucleus model to determine the deformation, strain, stress and traction

fields of a deforming thin shell.

The chapter briefly describes the differential geometry needed to calcu-

late the strain in a general coordinate system, and how to convert the data

from a Cartesian deformation to a strain in the basis used to calculate the

strains, and then the resulting strain back to the Cartesian equivalent. This

is then applied to the average shapes of the nucleus deforming, as in the prior

chapter, to determine the traction fields during deformation if the nucleus

behaves as a thin elastic shell. We then compare these results with the solid

model traction forces for the same nuclear shapes, and discuss the effect of

treating the nucleus as a thin shell.

4.2 Cell nucleus as a thin elastic shell

In the previous chapter, we treated the cell nucleus as a homogeneous elastic

solid capable of deforming.In this chapter, we propose a second model of the

nucleus, where we treat only the nuclear lamina as having an elastic response

to deformation, rather than the entirety of the nucleus. We model the nuclear

lamina, which surrounds the DNA and other contents within the nucleus, as

a thin elastic shell.

The approximation of the nuclear lamina as a thin elastic shell is moti-

vated by the assumption that the nuclear lamins of types A and B, which

have been shown to provide mechanical stability to the nucleus [23], respond

to deformations like an elastic material. In addition, the relative volume of

the nuclear lamina is assumed to be a relatively small fraction of the total

volume of the nucleus. This is consistent with measurements of the thickness
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of the nuclear lamina, which is typically on the order of 100nm,. Compared

to the height of the nucleus in these constrictions, which is limited to 2µm

within the constriction, this is estimated as 0.1µm∗2
2µm

≈ 10% of the nucleus

height at the most constricted. The nuclear lamina is considered to be a ho-

mogeneous elastic material, with the same properties over the entire lamina

surface, as in the solid model in the previous chapter.

In the images of the nucleus, the method to determine the deformation

of the nuclear outline as described in section 3.10 is used again here.

As the strains are calculated using only on the deformation of the elastic

lamina, the stress and traction values then calculated from these strains only

represent the induced stress and force required for the surface, and not the

inner material. This means that the traction forces calculated only represent

the force required to cause the deformation of the elastic shell, and not to

deform the contents of the nucleus. This effectively assumes that the material

inside the elastic shell is completely compressible, requiring no additional

force to deform.

In order to calculate the deformation field through the energy minimi-

sation method, minimising the free energy of deformation given in equation

3.4, requires that we are able to calculate both the stress and strain over the

nucleus surface. In order to calculate the strain for the nucleus as a thin

elastic shell, we use the thin shell approximation. The thin shell approxima-

tion here means all derivatives across the normal direction of the surface are

negligible in comparison to the derivatives along the tangential directions.

In comparison to the solid model nucleus case, where we required the

deformation field to be defined inside the nucleus, assuming the nucleus is

a thin shell together with the thin shell approximation instead defines the

strain over the elastic body entirely. We do not need to define the deformation

inside the body, as was required for the elastic solid model of the nucleus.

To incorporate the thin shell approximation in to a shell model of the

nucleus, we therefore calculate the strains in the normal and tangential coor-
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dinate basis (s1, s2,n), before transforming the values back in to Cartesian

coordinates.

4.2.1 Differential geometry of surfaces

In order to generally describe the more complicated unknown surface in the

general tangent and normal coordinate basis, and calculate values along the

surface, we first describe the general form of the derivatives using differential

geometry. The general forms involve the curvatures of the surface and the

christoffel symbols of the surface, and an analytic method to calculating the

derivatives is given below.

Briefly, a surface X(s1, s2,n) described by two tangential directions s1, s2

and the normal direction n has an associated metric tensor given by the

derivatives of the surface along each of the directions at each point.

gij =

(
∂X(s1, s2, n)

∂xi
· ∂X(s1, s2, n)

∂xj

)
(4.1)

For a positively oriented surface, where by definition when travelling along

the curve describing the surface, the interior of the curve is on the left, the

outwards normal to the surface is then given by

n = es1 × es2 =
∂X(s1, s2, n)

∂s1

× ∂X(s1, s2, n)

∂s2

. (4.2)

Then, for a surface with two tangent vectors e and e′ with components

in the basis (x, y, · · · ) represented by subscripts, the metric tensor is given

as

g =


ex · e′x ey · e′y · · ·
ex · e′x ey · e′y · · ·

...
...

. . .

 (4.3)

The christoffel symbols are written in terms of the metric tensor as
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Γkij =
1

2
gkl
(
∂gil
∂xj

+
∂gjl
∂xi
− ∂gij
∂xl

)
. (4.4)

Similarly, the curvature of the surface, measured as the rate of change of

the normal direction along the surface can be expressed as a tensor, Cij.

A thin shell surface can be written as a function of only the two tangent

directions, X(s1, s2,n), and so the metric tensor is a 2x2 matrix, with the

components s1 and s2 representing two tangent directions along the surface.

g =

(
es1 · es1 es1 · es2
es1 · es2 es2 · es2

)
. (4.5)

The derivatives along the surface of the basis vectors are then given in

terms of the curvature and metric as

∂ej

∂xi
= Cijn + Γkijek. (4.6)

Using these relations, we can describe any thin shell surface, for instance

those seen in images of the nucleus. Because the images considered are only

in two dimensions, an analytical approach is used to describe the out of

plane direction s2,which will discussed in the following section, while the in

plane images provide s1 from the outline. The normal direction is assumed

outwards, and an assumption that the shape must be symmetric in the out

of plane direction requires that the normal also be in the XY plane seen in

images, and so can be determined purely from the s1 tangent vector. As the

surface is flat in the out of plane direction, the vector in the out of plane

direction is easily defined as a unit length vector parallel to the z axis. As

such the metric tensor is the identity and the christoffel symbols are all zero,

leaving only the curvature terms in the shell model of this particular out of

plane direction shape. However, this is included in the computational model

to allow for use with other, more complicated shapes if necessary, however

this is beyond the scope of this thesis.
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Using these equations from differential geometry, it is then possible to

calculate the strain in an arbitrary coordinate system.

4.2.2 Shell model calculations

In the two dimensional plane XY seen in images, we define the s1 direction

as the in plane tangent direction, orientated so that the normal direction n

is directed outwards. The s1 and n components of the strain are calculated

numerically in our model, through substitution of the above expressions in

to the general form of the strain tensor

uij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

+
∂ui
∂xk

∂uj
∂xk

)
(4.7)

We assume that the surface of the nucleus has zero curvature in the

out of plane direction, and that the two dimensional images represent the

deformation as motivated by the assumption that the nucleus fills the channel

at all times as in section 3.9. As the surface has in the out of plane direction,

the curvature in this direction is zero at the planes observed in the images,

meaning the derivative of the normal vector in this direction is zero.

In this section, the curvature tensor components are

C =

 (
∂n
∂s1

)
· es1

(
∂n
∂s1

)
· es2(

∂n
∂s2

)
· es1

(
∂n
∂s2

)
· es2

 =

( (
∂n
∂s1

)
· es1 0

0 0

)
(4.8)

where the two of the terms with derivatives of s2 are zero, because the

derivative of the normal vector is zero in the s2 direction. The term
(
∂n
∂s1

)
·es2

is also zero, because the derivative of the normal vector is perpendicular to

the s2 direction, hence the dot product with es2 is zero. The remaining term

is calculated numerically. Later, in chapter 6, the full curvature tensor is

evaluated numerically when using three dimensional data.



CHAPTER 4. NUCLEAR DEFORMATION: SHELL MODEL 75

4.3 Converting between (x, y, z) and (s1, n, s2)

bases

In order to perform the calculations in the shell model, we need to be able

to convert values between the Cartesian (x,y,z) basis and the (s1, n, s2) ba-

sis. The values that need to be expressed in the two bases are either vectors

(deformation, traction) or second order tensors (strain, stress). Because the

difference between the chosen bases is a rotation of the coordinate axes. we

use a combination of rotation matrices to convert the values of the deforma-

tion between the two bases. We define the angle from the x axis to s1 to

be given by θ and the angle from the z direction to s2 is given by φ. The

vector deformation is converted from the Cartesian basis (x, y, z) through a

rotation around z, so that the x axis is aligned to the s1 direction, and y is

rotated by the same angle. If the normal direction is in the x-y plane, then

y will be aligned to the normal direction. In this chapter, the normal is in

the x-y plane which then requires s2 to be parallel or antiparallel to z. If the

surface direction s2 was not parallel to z, then a further rotation of the vector

is performed. The vector is rotated by angle φ around the s1 direction, so

that the vector is expressed in the (s1, n, s2) basis. As we assumed that the

nucleus fills the channel in the out of plane direction, s2 is parallel to z and

so the angle of rotation is zero in this chapter. However the full rotation

expression is used later in chapter 6.

The components of a rotation matrix R are given by R = ei ·e′j, where the

unprimed are the basis vectors in the starting configuration (here, Cartesian

coordinates) and the primed vectors are the basis vectors in the new configu-

ration, the (s1, n, s2) basis. We perform the rotation in two steps, dependent

on two angles θ and φ.

θ is the angle between the tangent to the nucleus in the xy plane, s1

and the x axis as shown in figure 4.1. The direction of s1 relative to the

Cartesian axes can be found numerically at any point on the surface using
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s
1
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xθ

Figure 4.1: Example showing the (s1, n) basis components compared to the
in plane (x, y) coordinates, at a chosen point on the surface.

the neighbouring points. The direction of s1 at a point i can be approximated

by the normalised vector of the straight line between points i+ 1 and i− 1,

which have coordinate changes given by (xi+1 − xi−1, yi+1 − yi−1, 0). s1 is a

normalised vector and given by the following expression

s1 =
(xi+1 − xi−1, yi+1 − yi−1, 0)√
(xi+1 − xi−1)2 + (yi+1 − yi−1)2

. (4.9)

The angle between the x direction and the s1 direction at point i can then

be calculated using the inverse tangent, arctan((yi+1 − yi−1)/(xi+1 − xi−1)).

In order convert the components of a vector, such as the deformation vector,

which is measured in the Cartesian basis, to the basis determined by the

curve for the calculations, we use a rotation matrix Rθ which rotates around

the z axis by the angle θ.

Rθ is similar to the standard rotation matrix, however as rotating both

axes by θ would rotate the y axis on to the negative of the normal direction,

the expression is slightly different

Rθ =

 cos(θ) sin(θ) 0

sin(θ) − cos(θ) 0

0 0 1

 (4.10)
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The angle φ is the angle between the z axis and the s2 direction,rotated

around s1. However, φ is zero in this case, as the nucleus has zero curvature

in the out of plane direction and s2 is parallel to the z direction.

The deformation vector can be expressed in the new basis representing

the surface by the transformation

u(s1, n, z) = RT
θ u(x, y, z) (4.11)

This value is then rotated through angle φ around s1, where the components

of s1 are known from the points on the curve making up the shape. For

a point i with neighbours i + 1 and i − 1, where the curve is orientated

clockwise, the vector s1 is given by s1 = (xi+1−xi−1,yi+1−yi−1,0)
|s1| , where |s1| is a

normalisation constant to give a unit vector.

The full rotation of the vector components to express them in the new

basis is given as

u(s1, n, z) = RT
φR

T
θ u(x, y, z). (4.12)

A similar approach is used to convert the strain tensor from the basis it

is calculated in, (s1, n, s2) back to Cartesian coordinates.

U(s1, n, z) = RφRθU(s1, n, s2)RT
θ R

T
φ . (4.13)

In this chapter, due to the assumption of zero curvature of the nucleus

surface in the out of plane direction, φ = 0. However the full expression is

included in the computational model to allow for use with other shapes of

nuclei, or three dimensional data as in chapter 6.

4.4 Shell model results

4.4.1 Traction forces for an incompressible shell
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Figure 4.2: (a) shows the deformation field of the nucleus from the average
shape of 71 nuclei prior to the constriction, to the average shape of 56 nuclei
as they begin entering the constriction. (b) shows the traction force field
causing the deformation shown in (a). The black outline is the undeformed
shape, while the green outline is the deformed shape.
In (a) the blue arrows represent the final deformation field found between
the images. The deformed shape is moved a distance +1.7 pixels along the
x direction, from the centre of mass aligned position (see section 3.10.2).
In (b), the red arrows represent the traction force direction and magnitude,
with each arrow scaled such that one unit of length on the axes represents a
traction force of 0.5kPa. The nucleus has zero curvature in the out of plane
direction, as shown in figure 3.1.
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Figure 4.3: (a) shows the deformation field of the nucleus from the average
shape of 56 nuclei entering in to the constriction, to the average shape of
71 nuclei when they are fully inside the constriction. (b) shows the traction
force field causing the deformation shown in (a). The black outline is the
undeformed shape, while the green outline is the deformed shape. In (a) the
blue arrows represent the final deformation field found between the images.
The deformed shape is moved a distance +7.3 pixels along the x direction,
from the centre of mass aligned position (see section 3.10.2). In (b), the red
arrows represent the traction force direction and magnitude, with each arrow
scaled such that one unit of length on the axes represents a traction force
of 0.5kPa. The nucleus has zero curvature in the out of plane direction, as
shown in figure 3.1.
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Figure 4.4: (a) shows the deformation field of the nucleus from the average
shape of 71 nuclei inside the constriction, to the average shape of 55 nuclei as
they begin exiting the constriction. (b) shows the traction force field causing
the deformation shown in (a). The black outline is the undeformed shape,
while the green outline is the deformed shape. In (a) the blue arrows represent
the final deformation field found between the images. The deformed shape
is moved a distance +0.15 pixels along the x direction, from the centre of
mass aligned position (see section 3.10.2). In (b), the red arrows represent
the traction force direction and magnitude, with each arrow scaled such that
one unit of length on the axes represents a traction force of 0.5kPa. The
nucleus has zero curvature in the out of plane direction, as shown in figure
3.1.
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Figure 4.5: (a) shows the deformation field of the nucleus from the average
shape of 55 nuclei exiting the constriction, to the average shape of 71 nuclei
after they have fully left the constriction. (b) shows the traction force field
causing the deformation shown in (a). The black outline is the undeformed
shape, while the green outline is the deformed shape. In (a) the blue arrows
represent the final deformation field found between the images. The deformed
shape is moved a distance 0.0 pixels along the x direction, i.e. is kept at the
centre of mass aligned position (see section 3.10.2). In (b), the red arrows
represent the traction force direction and magnitude, with each arrow scaled
such that one unit of length on the axes represents a traction force of 0.5kPa.
The nucleus has zero curvature in the out of plane direction, as shown in
figure 3.1.
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As in the previous chapter, we present the results of our shell model

traction force calculations. We applied our model to videos of dendritic cell

nuclei as they travelled through channels containing constrictions. Figures

4.2-4.5 show the traction and deformation fields output for the averaged

shapes of the nucleus passing through the constriction.

The deformation fields are different to the deformation fields found in fig-

ures 3.14-3.17. This is unsurprising given the energy of deformation (which

is minimised to determine the final deformation field) is dependent on the

strain of the material. In the solid model, points on the deformed shape were

positioned to minimise radial distance. In the shell model, the deformation

minimises the number of points in regions of high curvature. This is due

to the term in the strain calculations proportional to the curvature in plane

along s1, multiplied by the normal deformation at that point, un. Having

fewer points in these regions outweighs the energy cost of having larger vari-

ations in the deformation field between neighbours, and so lowers the final

energy of deformation.

The traction force in each figure is parallel to the surface at that point.

This is due to the incompressibility condition. This can be understood in the

(s1, n, s2) basis. The nn component of the strain is zero for the shell, while

the other terms are in general non-zero. Then in this basis, the stress terms

can be written explicitly as

σij =
E

1 + ν

(
uij +

ν

1− 2ν
(ukkδij)

)
. (4.14)

However, the incompressibility condition means that ukk = 0 over the body

regardless of basis. As such this equation simplifies to

σij =
E

1 + ν
(uij) . (4.15)



CHAPTER 4. NUCLEAR DEFORMATION: SHELL MODEL 83

Writing each component explicitly in this basis would give

σs1s1 =
E

1 + ν
(us1s1)

σs1n =
E

1 + ν
(us1n)

σs1s2 =
E

1 + ν
(us1s2)

σnn =
E

1 + ν
(unn) = 0

σns2 =
E

1 + ν
(uns2)

σs2s2 =
E

1 + ν
(us2s2)

where, t = σ · n, with n = (0, 1, 0) as the unit normal in this basis, the

resulting traction is

t =

 σs1s1 σs1n σs1s2

σs1n σnn σns2

σs1s2 σns2 σs2s2


 0

1

0

 =

 σs1n

σnn

σns2

 =

 σs1n

0

0

 . (4.16)

In the incompressible limit, σnn is zero due to the dependence on the unn

component of strain only, and σns2 is zero due to the symmetry in s2, under

the assumption that the images represent the central plane of the nucleus.

This means the traction is parallel or antiparallel to the s1 direction in the

incompressible limit for a thin elastic shell. In general, the magnitudes of

the traction force are smaller than for the equivalent elastic solid deformation

shown in chapter 3. This is due to the thin shell approximation setting one

component of the strain to zero,whereas in the solid chapter, both in plane

directions had non-zero strains. It should be noted when comparing the

figures for the shell results, to make the results more visible, the traction
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arrows are scaled by 0.5kPa where in chapter 3 they were scaled by 1kPa.

This means that any of the traction force arrow would have twice the length

in the shell traction images to represent the same magnitude of traction force.

4.4.2 Traction force for a compressible elastic shell (ν =

0.4)

In figures 4.2-4.5, the traction force is parallel to the surface. This then raises

the question of whether treating the elastic shell as an incompressible mate-

rial properly includes the force required to cause any shape changes of the

internal parts of the nucleus, which may not necessarily be an incompressible

elastic material. To demonstrate that the result of traction arrows being par-

allel to s1 is due to the incompressibility condition, we include a result, figure

4.6. In this figure, the nucleus shell is given a Poisson’s ratio of ν = 0.4. The

magnitudes of the traction force are larger than in figures 4.2-4.5 due to the

inclusion of the second term in the stress calculation, where the full stress

equation is given by equation 4.14. For an incompressible elastic material,

the second term is zero, whereas it is in general non zero for a compressible

elastic material. Therefore this results in larger stresses, and consequently

the larger traction forces, as shown in figure 4.6. This figure shows a signif-

icant component of the traction force is perpendicular to s1, in comparison

with the incompressible examples.

4.5 Summary

In this chapter, we have extended the computational model from the previous

chapter for analysing the deformation of cell nuclei. The additions described

in this chapter described the nucleus as a thin, homogeneous elastic shell,

representing the nuclear lamina. We summarised the differential geometry

needed to calculate the components of the strain tensor in the general basis
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(s1, n, s2). The values of the metric, christoffel symbols and curvature tensor

were then applied to the geometry of nuclei as they move through a channel.

The shell model was then applied to the average shape of nuclei as shown

in figures 3.3(a)-(e) in Chapter 3.5. For an incompressible elastic shell, this

resulted in traction forces of smaller magnitudes than in the correspond-

ing incompressible elastic solid, and with the traction forces parallel to the

surface. The forces being parallel to the surface was a result of the incom-

pressible condition, as shown in the comparison in figure 4.6, where the shell

was allowed to compress with a Poisson’s ratio of 0.4. In this figure, the

resulting tractions were no longer parallel to the surface, and were of a larger

magnitude due to the additional terms in the stress calculation.
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Figure 4.6: The calculated deformation and traction fields as in figure 4.2,
but with Poisson’s ratio given by ν = 0.4 and Youngs modulus E=5000Pa.
(a) shows the deformation field of the nucleus from the average shape of 71
nuclei prior to the constriction, to the average shape of 56 nuclei as they
begin entering the constriction. (b) shows the traction force field causing the
deformation shown in (a). The black outline is the undeformed shape, while
the green outline is the deformed shape. In (a) the blue arrows represent
the final deformation field found between the images. The deformed shape
is moved a distance 0.0 pixels along the x direction, i.e. is kept at the centre
of mass aligned position (see section 3.10.2). In (b), the red arrows represent
the traction force direction and magnitude, with each arrow scaled such that
one unit of length on the axes represents a traction force of 1.0kPa. The
nucleus has zero curvature in the out of plane direction, as shown in figure
3.1.
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5.1 Introduction

In this chapter we discuss calculating the Poisson ratio of a nucleus. In

chapters 3 and 4,we treated the nucleus as an incompressible elastic material

(ν = 0.5), but this is not always the case. We discuss a method for numeri-

cally calculating the Poisson ratio. We then compare this method to a recent

paper which claims to have observed auxetic behaviour in nuclei.

5.2 Numerical calculation of Poisson’s Ratio

The assumption that the nucleus fills the channel in the out of plane direction

at all times and the observed changes in area in the two dimensional plane

measured in images, imply that the nuclei are able to change volume. For

a compressible nucleus, the goal is to determine the value of the Poisson’s

ratio,ν, from a general series of images of nuclear deformation. We require

a physically meaningful estimate of ν to determine the traction field of the

material through the energy minimisation process described in 3.10. In this

section we describe an iterative method, using the relation between the area

change of the nuclei and the elastic constants, and the simulated annealing

method described in section 3.10, to determine the Poisson’s ratio from a

series of the images of a cell nucleus deforming as follows.

For a chosen Poisson’s ratio, it is possible to determine the deformation,

strain, stress and traction fields through an energy minimisation approach,

using our Monte Carlo simulations.

The strain and stress induced in the nuclei should be directly related

to the relative change in area of the shape and the Poisson’s ratio of the

material.

The bulk modulus, K, of a material can be expressed in terms of the

pressure induced in a material undergoing deformation,
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K = −V dp

dV
(5.1)

where the negative sign convention implies that a positive pressure is com-

pressive.

For a material which completely fills a channel of size Lz in the out of

plane direction, this can be rewritten in terms of the area, A,

K = −V dp

dV
= −V dp

dV
= −LzA 1

Lz

dp

dA
= −A dp

dA
. (5.2)

Then using the well known relationship between elastic constants, this

expression can be rewritten in terms of the Young’s modulus, E, and Poisson’s

ratio, ν.

K =
E

3 (1− 2ν)
→ ν =

1

2
− E

6K
. (5.3)

In the finite limit, this gives the expression for Poisson’s ratio in terms of

the area change and pressure on the surface as

ν =
1

2
−
E∆A

A

6∆p
=

1

2
−
E∆A

A

6p
. (5.4)

Where by assuming that the initial shape is undeformed, and that the pres-

sure on the surface prior to deformation is zero on the surface, then ∆p is

replaced with p, the pressure on the deformed shape. This essentially assumes

that the pressure p is that which causes the deformation of the material. The

strain, stress and traction fields will be known and vary at different positions

on the nuclei for a given Poisson’s ratio. Since the area change is a global

property of the nucleus undergoing deformation, by comparing the values of

the area change with the average pressure, the Poisson’s ratio can be deter-

mined.

The pressure is defined as the hydrostatic pressure at each point, i.e. p =
1
3
σii where the repeated indices represent the Einstein summation convention.
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p is calculated as a series of values related to the local deformation of the

body, and so varies at each position. The mean value of p is calculated by

weighting the stress at each point by the length of segment of the boundary

that the stress at that point represents. For a point i on the nucleus boundary

at coordinates (xi, yi), the neighbouring points on the boundary i + 1 and

i − 1 have coordinates (x±i, y±i) respectively. The stress components and

pressure are then calculated at each point on the body and the pressure at

each point is weighted using the distance between i and the midpoints of i±1

in each direction as(√
∆xi
2.0

2

+
∆yi
2.0

2

+

√
∆xi−1

2.0

2

+
∆yi−1

2.0

2
)
pi (5.5)

where ∆xi = xi+1 − xi,∆yi = yi+1 − yi and pi is the hydrostatic pressure at

point i.

The mean weighted pressure used to calulate Poisson’s ratio for a nucleus

with boundary consisting of N points is then given as

p̄ =
1

L

N∑
i=1

(√
∆xi
2.0

2

+
∆yi
2.0

2

+

√
∆xi−1

2.0

2

+
∆yi−1

2.0

2
)
pi (5.6)

where L is the total length of the curve representing the nucleus (L =∑N
i=1

√
(∆xi)2 + (∆yi)2).

We then calculate the Poisson’s ratio of a cell nucleus using an itera-

tive method combining the equations for mean hydrostatic pressure, with

Poisson’s ratio as given in equation 5.4 and the deformation field found by

minimisation of the energy of deformation. As the pressure can vary with

position, while the volume (or area) change is measured as a property of the

entire nucleus, the average value of p over the entire body is used, where

the pressure at each point i, pi is weighted by the distance along the nucleus

surface between the midpoints of the nearest neighbours at i+ 1 and i− 1.

First a initial Poisson’s ratio is chosen (unless stated otherwise, the value
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of the Poisson’s ratio is initially assumed to be ν = 0.40 in this thesis).

This value is then used to calculate the energy of deformations, and through

the Monte Carlo simulations described in section 3.10, the minimal energy

deformation field is found. Then for this deformation field, the strain and

stress are calculated. The stress then provides the hydrostatic pressure for

the nucleus. Substituting this value of the pressure in to equation 5.4 then

gives a new estimate for ν. The value of ν is then iterated over for the same

deformation field, with the stress recalculated for each new ν until the input

and calculated values return the same value (the threshold between new and

old values of ν is set to be (νnew − νold) < 10−3 unless otherwise stated).

When a new value of ν is found, the deformation field is then calculated

again with the new value of ν. This iterative process is repeated until the

Poisson’s ratio no longer changes with the new deformation field iteration

step.

This method allows us to estimate the Poisson’s ratio for a nucleus based

on the deformations seen in the images.

5.2.1 General expressions

Poisson’s ratio can be expressed in terms of Young’s modulus, E, and Bulk

modulus, K, as

ν =
1

2
− E

6K
. (5.7)

The bulk modulus measures the change in volume, ∆V , of an elastic ob-

ject with deformation field u, where the deformation is caused by an applied

pressure, p. In the small strain limit, K can be expressed as a derivative of

the volume change as
1

K
= − 1

V0

∂V

∂p
. (5.8)

We can approximate this in the finite limit, as changing from a volume V0

of the undeformed elastic object to volume V of the deformed object, under



CHAPTER 5. POISSON’S RATIO OF CELL NUCLEI 92

a pressure change where zero pressure is defined as the undeformed state, so

∆p = p.

Then
1

K
≈ − 1

V0

∆V

∆p
= −1

p

∆V

V0

. (5.9)

Using this expression of the bulk modulus, the equation for Poisson’s ratio

under small deformations can be written as

ν =
1

2
−
E∆V

V0

6p
. (5.10)

If the pressure causing the deformation is the hydrostatic pressure, p is

defined in terms of the stress tensor as

p =
1

d
σii =

1

3
(σxx + σyy + σzz) (5.11)

where d is the number of dimensions used in the system, and the right hand

side of the equation is the relation written explicitly in three dimensional

Cartesian coordinates.

In addition, the ratio of relative volume change to original volume is equal

to the trace of the strain tensor,

∆V

V0

= uii = uxx + uyy + uzz.

In general then, Poisson’s ratio can be evaluated using any of the equiv-

alent equations:

ν =
1

2
− Euii

2σii
(5.12)

ν =
1

2
−
E∆V

V0

6p
(5.13)

ν =
1

2

E∆V
V0

6/dσii
. (5.14)



CHAPTER 5. POISSON’S RATIO OF CELL NUCLEI 93

5.2.2 Uniaxial stress

First we consider a uniaxial stress along the z axis. This requires that the

nucleus deforms in such a way that only the σzz stress term is non-zero, while

the other components are zero, i.e.

σxx = σxy = σxz = σyy = σyz = 0.

The xx and yy terms being zero put constraints on the strains in those

directions. Writing the stress terms out explicitly gives the following equa-

tions

σxx =
E

1 + ν

(
uxx +

ν

1− 2ν
(uxx + uyy + uzz)

)
=

E

(1 + ν) (1− 2ν)
((1− ν)uxx + ν (uyy + uzz))

= 0

σyy =
E

(1 + ν) (1− 2ν)
((1− ν)uyy + ν (uxx + uzz))

= 0.

So we have two constraints for the strains,

(1− ν)uxx + ν (uyy + uzz) = 0 (5.15)

(1− ν)uyy + ν (uxx + uzz) = 0 (5.16)

Subtracting one of these equations from the other leads to the condition

that

uxx = uyy. (5.17)
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Substituting this in to either of the equations 5.15 or 5.16 gives

0 = ((1− ν)uxx + ν (uxx + uzz)) .

This can then be rearranged for ν to give

ν = −uxx
uzz

. (5.18)

We now demonstrate that the same result occurs from the general equa-

tion for Poisson’s ratio. Using equation (5.12)

ν =
1

2
− Euii

2σii

=
1

2
− E (uxx + uyy + uzz)

2 (σxx + σyy + σzz)

=
1

2

(
1− E (2uxx + uzz)

(σzz)

)
(5.19)

In the case of a uniaxial stress, the Young’s modulus, E, is the ratio between

the zz components of stress and strain, Euzz = σzz. Substituting this value

into equation (5.19) gives
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ν =
1

2

(
1− σzz (2uxx + uzz)

uzzσzz

)
=

1

2

(
1− (2uxx + uzz)

uzz

)
=

1

2

(
uzz − (2uxx + uzz)

uzz

)
=

1

2

(
−2uxx
uzz

)
= −uxx

uzz
(5.20)

(5.21)

However, this equation is only valid if the stress is non-zero only in one

direction.

5.2.3 Biaxial stress

To illustrate that the above relation is only true for uniaxial stress, we now

look at the case where two of the components along the axial directions of

the stress tensor are non-zero, while the others are zero.

Let σxx and σzz be non-zero, while the other terms are zero, so

σxy = σxz = σyy = σyz = 0.

As in the uniaxial case, by using the expression of the stress written in

terms of strain components, as well as the elastic constants (E and ν) and

setting the yy component of stress to be zero, (σyy = 0), we have

σyy =
E

(1 + ν) (1− 2ν)
((1− ν)uyy + ν (uxx + uzz))

= 0.
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The constraint on the yy component of the strain is then

uyy =
−ν

1− ν
(uxx + uzz) .

Or, rearranged for ν,

ν = − uyy
uxx − uyy + uzz

. (5.22)

This result can also be obtained from the general Poisson’s ratio expres-

sion by assuming σyy = 0, for the biaxial case.

ν =
1

2
− Euii

2σii

=
1

2

(
1− E (uxx + uyy + uzz)

σxx + σzz

)
The zz term of the strain can be written in terms of the stress components

as

uzz =
1

E
((1 + ν)σzz − ν (σxx + σzz))

=
1

E
(σzz − νσxx) .

Rearranged for E this gives

E =
1

uzz
(σzz − νσxx) (5.23)

The same result can be shown with the xx term of strain, giving

E =
1

uxx
(σxx − νσzz) . (5.24)
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Adding these equations as (5.23)∗uzz+(5.24)∗uxx gives

Euzz + Euxx = (σxx + σzz) (1− ν)

E(uzz + uxx) = (σxx + σzz) (1− ν)

E =
(σxx + σzz)

(uzz + uxx)
(1− ν)

Substituting this value in for E gives

ν =
1

2

(
1− E (uxx + uyy + uzz)

σxx + σzz

)
=

1

2

(
1− (σxx + σzz) (1− ν) (uxx + uyy + uzz)

(uzz + uxx) (σxx + σzz)

)
=

1

2

(
1− (1− ν) (uxx + uyy + uzz)

(uzz + uxx)

)
=

1

2

(uxx + uzz − (1− ν) (uxx + uyy + uzz))

(uzz + uxx)

2ν (uzz + uxx) = −uyy + ν (uxx + uyy + uzz)

ν (uxx − uyy + uzz) = −uyy

ν = − uyy
(uxx − uyy + uzz)

(5.25)

in agreement with equation (5.22) for Poisson’s ratio in case of biaxial

stress. In the case of uniaxial stress, where uxx = uyy, this reduces back to

the expression found for the uniaxial Poisson’s ratio, as shown in equation

(5.18).

5.2.4 Biaxial strain

In the paper that will be looked at in the following sections, they state that

“We choose to apply a one-dimensional compression to the ES cells using

only the lateral walls, but not the top and bottom ones.”. In addition, they

also calculate the strain of the nucleus in two dimensions only, “Finally, the
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MATLAB PROGRAM calculates the strain of the nucleus (cell) in both

dimensions”.

Here we derive the results for a nucleus that is not constrained in the out

of plane direction, and then deforms in such a way that the strain in the out

of plane direction is zero, uyy = 0.

Poisson’s ratio can then be expressed from the expression of uyy,

uyy =
1

E
((1 + ν)σyy − ν (σxx + σyy + σzz)) (5.26)

0 = (1 + ν)σyy − ν (σxx + σyy + σzz) (5.27)

0 = σyy − ν (σxx + σzz) (5.28)

ν =
σyy

σxx + σzz
. (5.29)

The same result can be obtained from the general expression of Poisson’s

ratio, equation (5.12), as follows

ν =
1

2
− Euii

2σii
(5.30)

=
1

2

(
1− E (uxx + uzz)

σxx + σyy + σzz

)
(5.31)

Expressing the xx and zz components of strains in terms of the stress,for

uyy = 0 we have

uxx =
1

E
(σxx − ν (σyy + σzz)) (5.32)

uzz =
1

E
(σzz − ν (σxx + σyy)) . (5.33)

Therefore,

E (uxx + uzz) = (σxx + σzz) (1− ν)− 2νσyy (5.34)
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Using this expression in equation (5.31), we have

ν =
1

2

(
1− (σxx + σzz) (1− ν)− 2νσyy

σxx + σyy + σzz

)
(5.35)

2ν =
(σxx + σyy + σzz)− (σxx + σzz) (1− ν)− 2νσyy

(σxx + σyy + σzz)

(5.36)

2ν (σxx + σyy + σzz) = σyy + ν (σxx + 2σyy + σzz) (5.37)

ν (σxx + σzz) = σyy (5.38)

ν =
σyy

σxx + σzz
(5.39)

Expressing this solution for ν by writing the stress components in terms

of the strains demonstrates that this is not equivalent to −uxx
uzz

.

5.3 Poisson ratio comparison with existing

work

The poisson ratio of a material measures the way it changes shape when forces

are applied to it. In this section we compare the results of our approach with

that of the published work in the paper of K. Chalut et al. [19], where they

claim to have found nuclei with negative poisson ratios.

In the paper, they state that they have calculated the Poisson ratio as

follows. “For small strains, the Poisson’s ratio can be approximated by the

negative of the transverse over axial strain. Thus for axial strains smaller

than 0.5 we approximated the Poisson’s ratio by fitting the nuclear transverse

strain versus axial strain data to a linear function”.

These two sentences seem to explain two different methods that are seem-

ingly incompatible in measuring the same value.

The first implies that for small strains, they should be measuring the
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value

ν = − utt
uaa

. (5.40)

This is equivalent to the uniaxial stress condition, as shown in section

5.2.2.

The second sentence implies that they want to measure

ν = − ∂utt
∂uaa

. (5.41)

where utt and uaa are the transverse and axial strains respectively.

Elsewhere in the paper, the transverse and axial strains are defined in

terms of the deformation between shapes as

utt =
t′ − t
t

(5.42)

uaa =
a′ − a
a

. (5.43)

Where a,t are the ellipsoidal radii along the axial and transverse directions

of the undeformed shape, and a′,t′ are the ellipsoidal radii along the axial

and transverse directions. These are equivalent to the expressions of strain

for an extending bar in one dimensional strain.

Figure 5.1 is reproduced from the paper [19]. It has been modified to

have coloured regions which under the first definition of the strain as given

by equation 5.40 would represent non-physical poisson ratios. Under this

definition, the green region would have poisson ratios of ν > 0.5 and the

blue region represents poisson ratios of ν < −1.0. Three of the nuclei as

circled and labelled A,B and C have been compared with the poisson ratio

calculation through our iterative energy minimisation method.

By assuming that the nuclear deformation are from circular nuclei, in

units so that the radius of the undeformed nucleus is 1, we can estimate from

figure 5.1 the ellipses that were deformed to under the first strain definition

using equations 5.42 and 5.43.
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Figure 5.1: Figure adapted from the paper [19] with permission from the
Royal society of Chemistry. Three of the nuclei, labelled A,B and C are
in different regions where under definition 5.40 they would have different
Poisson ratio behaviour under the definition in equation 5.40.

Nucleus uaa utt a t a′ t′ - utt
uaa

A -0.02 0.05 1 1 0.98 1.05 0.40
B -0.15 0.12 1 1 0.85 1.12 1.25
C 0.05 0.15 1 1 1.05 1.15 -0.33

Table 5.1
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Each is chosen from a different region on the diagram. The definition of

poisson ratio in 5.40 is used to calculate the column ν = − utt
uaa

. Nucleus A

is predicted to be in the region of ν > 0, behaving like a typical material, B

is in the region where this definition predicts an non-physical poisson ratio,

and the strains found on nucleus C predict auxetic behaviour of the nucleus.

To conclude that the behaviour of the nucleus is auxetic, the authors of

the paper took different nuclei under different deformations, and therefore

different strains in the axial and transverse directions, and fit a best fit line

to the data, and used the gradient of this line to estimate the strain under

the definition from equation 5.41.

5.4 Comparison between results in [19] and

output of my calculations and poisson ra-

tio model

In this section, we make comparisons between the paper by Kevin and our

model, using the shapes derived from figure 5.1 and given in table 5.1. We

compare three shapes from the model by K Chalut et al.[19] model, which

each correspond to a different region in the elastic response as measured by

the poisson ratio.

5.4.1 Strain comparisons

We first look at the strain outputs from our model in comparison with those

provided in the paper. We first look at our model in the centre of mass

aligned mode. Here, we compare the calculated strains with the values pre-

dicted for circle/ellipse deformations in the paper using formula 5.42 and

5.43. The assumptions about the deformation of the nucleus in the out of

plane direction for these comparisons are as in our analysis of the data pro-

vided by Hawa Thiam and Matthieu Piel in Chapters 3 and 4. Briefly, we
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Figure 5.2: The strains calculated for Nucleus A,B and C with the shape
parameters as in Table 5.1

assume that the elliptical shape represents the central plane of the nucleus,

and that as a result of the symmetry of the deformation, that the strain in

the out of plane direction is zero. We therefore are assuming the biaxial

strain condition derived above.

Figures 5.2a-5.2c show the strains calculated for the three chosen nuclei.

The deformation of each nucleus is chosen as an circle with radius 1 in these

units, going to an ellipse, with the axes of the ellipse given by (parallel to x

axis under this definition) radius 1.05, and transverse radius (parallel to the

z axis) 0.98. Under definitions 5.42 and 5.43, the strains should be constant

values across the body given by
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uaa = uxx = +0.05, (5.44)

utt = uzz = −0.02. (5.45)

Which is consistent with the calculated strains from our model, as shown in

figure 5.2a.

Similarly for nucleus B, deforms from a circle to an ellipse with axial axis

radius 1.12, and transverse axis radius 0.85. Under definitions 5.42 and 5.43,

the strains should be constant values across the body given by

uaa = uxx = +0.12, (5.46)

utt = uzz = −0.15. (5.47)

Nucleus C deforms from a circle to an ellipse chosen as an ellipse with axes

(parallel to x axis under this definition) radius 1.15, and transverse radius

(parallel to the z axis) 1.05. Under definitions 5.42 and 5.43, the strains

should be constant values across the body given by

uaa = uxx = +0.15, (5.48)

utt = uzz = +0.05. (5.49)

5.4.2 Poisson Ratios

Figures 5.3a,5.3b and 5.3c show the results of the poisson ratio calculation

using our model to analyse the circle to ellipse deformations. Using this

method, the poisson ratio of Nucleus A was found to converge to 0.5, the

poisson ratio of nucleus B was slightly negative , and the poisson ratio of C

was in the region 0.0 < ν < 0.5.
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Figure 5.3: Poisson’s ratio calculated using the biaxial strain condition
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5.5 Discussion

In the paper by K. Chalut et al [19], the Poisson’s ratio of stem cell nuclei

were measured in the small strain case, assuming that the resulting stress was

uniaxial. However, as shown in figure 5.1, the uniaxial stress approximation

leads to Poisson’s ratios which are non-physical. The non-physical results are

displayed in figure 5.1 by the shaded regions, where the blue shaded region

represents ν < −1.0 and the green shaded region represents ν > 0.5. The

nuclei within these regions are outside the physical limits of ν. These physical

limits are set by the relations between ν and the definitions of the Young’s

modulus E, the Bulk modulus K and shear modulus µ, where the latter three

are defined as E,K, µ > 0, leading to the requirements that 0.5 > ν > −1.0.

The nuclei used in the analysis in the paper are separated in to two

regimes based on size, called large and small nuclei. The large nuclei were

defined as the nuclei with 25% largest areas and the small nuclei were those

with the 25% smallest areas. We propose that these two regimes require

different approximations in order to accurately describe the volume of the

nuclei and the deformation that they experience in the out of plane directions.

If the nuclei are significantly smaller than the channel, we propose they

should be treated differently to the large nuclei. The long axis of the small

nuclei reach lengths of up to 14µm, while the channel height in that direction

is 16µm. For this case, we propose that the uniaxial stress approximation,

as used in the original work is appropriate. The uniaxial case assumes an

symmetric deformation in the out of plane direction to that of the in plane

long axes deformation, as shown in section 5.2.2.

For the large nuclei, which have long axes of similar lengths to the chan-

nel size before entry (15 − 16µm) and grow to (22 − 24µm) while inside

the constriction, the uniaxial stress approximation is no longer appropriate.

Instead we suggest that for the large nuclei, the Poisson’s ratio should be

calculated using the biaxial strain condition instead. This is due to size of

the channels compared to the nucleus. For the uniaxial stress, as the paper



CHAPTER 5. POISSON’S RATIO OF CELL NUCLEI 107

states, they presume that a one dimensional compression is applied to the

cells using only the lateral walls, and so the cells are not constrained in the

out of plane direction. This approximation is appropriate for the small nu-

clei, whose long axes are smaller than the constriction size in the out of plane

direction. However, for the large nuclei, the walls of the constriction prevent

this deformation from being possible. As we are unable to measure the exact

deformation in this out of plane direction from the data provided with the

paper, we presume that it deforms in such a way that the stress in the out

of plane direction is zero, as detailed in the above Biaxial strain derivation

in section 5.2.4.

In the biaxial strain condition, the two in plane directions have non-zero

strain components while the out of plane direction strain component is zero.

This corresponds to the stress in the out of plane direction being non-zero,

but with no change in the deformation in the out of plane direction, meaning

the strain in that direction is zero. The assumption here then is that because

the nucleus completely fills the channel in the out of plane direction before

and after entering the constriction, it does not deform in the out of plane

direction, filling the channel entirely in and outside of the constriction.

In our results presented here, the biaxial approximation is applied to

the nuclei (A), (B) and (C) as highlighted in figure 5.1, and the iterative

method to determine a value of Poisson’s ratio as describe in section 5.2 was

used. In our results, each nucleus is treated as a homogeneous elastic solid,

and the undeformed and deformed shapes are aligned by their respective

centres of mass. As in figures 5.2a-5.2c, we calculated the strains for the

each of the three chosen nuclei. The output values match the assumption of

constant strains across the body, and the values found are consistent with

the approximation of the strain in each direction as u = δl
l0

, where u is the

strain in a direction with elliptic axis length change deltal, from a starting

length l0. The Poisson ratios found represent three different regimes as we

expected, though not in the regions predicted by simply assuming ν = − utt
uaa

.
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We found nucleus (A) to behave as near incompressible, Nucleus (B) could

still be displaying auxetic behaviour under this model and Nucleus (C) in the

regime 0.0 < ν < 0.5. The result for nucleus (B) suggests that, based on this

data and model, the nuclei could still be exhibiting auxetic behaviour under

this model, though the conclusions that all the nuclei display this behaviour

is not replicated by this approach.

The result for nucleus (A) suggests an non-physical result, in that though

there should be a volume change, we predicted it is incompressible. How-

ever, given the data presented in the publication, we cannot identify whether

the selected nuclei belonged to the larger set of nuclei, or the smaller set,

so whether the biaxial strain or uniaxial stress condition is appropriate for

nucleus (A) is unclear. The result of nucleus A approaching incompressible

when there should be a volume change may be because of the assumption

about the nucleus shape being incorrect in the out of plane direction.

5.6 Summary

In this chapter, we have used the computational model from chapter 3 for

a homogeneous elastic solid to determine the deformation, strain,stress and

traction of deforming cell nuclei, combined with a iterative method to cal-

culate Poisson’s ratio. We then compared the results from our model with

published experimental data measuring the Poisson Ratio of nuclei.
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6.1 Introduction

In this chapter, we develop the models of the nucleus discussed earlier in

chapter 3 and 4 to allow for the use of three dimensional input data, rather

than making assumptions about the shapes of the nucleus in the out of plane

direction, as was done in earlier chapters. We begin by describing the changes

in implementation from the two dimensional model, including the form of the

input data, and a method for allowing the simulated annealing algorithm to

perform perturbations in the out of plane direction. We then adapt the

calculation of Poisson’s ratio from Chapter 5 for use with three dimensional

data. We then present some results using three dimensional images of nuclei.

6.2 Differences in implementation from 2d model

6.2.1 Conversion of images from experimental data for

use in the three dimensional version of our model

In chapter 3.4, we detailed the method used to generate outlines of cell nuclei

from a two dimensional image. We now use a similar approach to convert

a series of z stacks into an input file for use with the three dimensional

version of our code. As in the earlier chapter, we use existing functionality

in the software imageJ [32], to convert each single image into an outline as

in chapter 3.4. Each outline is then treated as the shape of the nucleus at a

given height, as defined by the distance between z stacks. Figure 6.1 shows

a cartoon example of the conversion of several z stacks into outlines and how

the full shape represented by the stacks is approximated by connecting them

with straight lines at a constant angle relative to the centre of mass.

The mesh representing the shape of the nucleus is formed from the z

stacks as follows. First, we converted each stack into an outline following the

procedure described in chapter 3.4. We then chose a reference stack, to be

used to generate the mesh representing the nucleus. To generate, the mesh,
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Figure 6.1: Example of the conversion of a series of zstacks in to the multiple
outlines that make up the input shape in to our model.

we developed an algorithm to alter the input outlines as follows.

The first step of the algorithm is to change the number of points repre-

senting each stack. All the non-reference stacks on both the source and the

target shape have points increased or decreased in order to have the same

number of points as the reference stack. The number of points on each stack

is reduced or increased by calculating the ratio r of the number of points in

the reference stack nref to the number of points in the current stack ncurr,

r =
nref
ncurr

. (6.1)

The new outline with the same number of points as the reference stack is

created by placing a point every r/L along the existing curve, where L is the
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entire length of the curve. This results in a curve with the same number of

points as the reference stack. This is repeated for every stack in both the

target and source images, so that every stack has the same number of points.

The algorithm then aligns all the z stacks of the source shape, so that

the list of points in each stack are located at the same angles in the x-y

plane. This is done to have the coordinate system be (r, θ, s2) in the solid

model and (s1, n, s2) in the shell model, where r and θ have the standard

polar coordinate definition, s1 is the distance along the surface in the x-y

plane along each outline in the x-y planes, s2 is the direction along the mesh

between points at a constant angle in each stack, and n is the direction

normal to the surface.
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Figure 6.2: Cartoon showing the directions s1 and s2. s1 is the in plane
tangent direction along the outline of the nucleus, while s2 is the tangent
direction between different stacks at a fixed angle.

The last step completed by this part of our algorithm is to ensure that

the target and source shapes have the same number of stacks making up

each image. This is done in order to define the initial deformation field from

the source to the target shape. The algorithm does this by increasing or

decreasing the number of stacks in the target shape to match the number

of stacks in the source shape. In order to modify the number of stacks

in the target shape, the top and bottom stacks are kept fixed-. The total

number of stacks is then done by using the assumption that each of the
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stacks is connected by linear segments. This linear interpolation between

the input stacks from the data allows gives an estimate to the shape of the

nucleus at any height. Using the interpolation, a new stack is placed at

each height zj from the bottom most stack, where the height zj is given in

terms of the number of stacks before this remeshing step on the target and

source,Ntarget, Nsource respectively and the separation of the stacks in the

experimental images, zsep as

zj =
Ntarget

Nsource

zsep. (6.2)

This results in the target shape being represented by a series of equally spaced

in height z stacks, with the source and target shapes now having the same

number of stacks.
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Figure 6.3: An example of the deformed shape before (a) and after (b) the
remeshing algorithm. In this example, the source nucleus shape has one extra
stack, so the number of stacks on the target shape is increased by one, using
the method in chapter 6.2.1. The points on each stack have also been placed
so that the smallest angle point is the first element in the list, and the lowest
stack in the remeshed shape shifted to be at z = 0 to align the target and
source shapes by the lowest stack.
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6.2.2 Perturbations of z stacks in the out of plane di-

rection

Figure 6.4: Example of the perturbation performed in three dimensions when
using input three dimensional data. A potential perturbation is performed
by selecting a stack at random, as shown by the arrow from the left cartoon
to the right cartoon. The perturbation is then performed by moving the
stack in the target shape either upwards or downwards, as shown by the
blue outline on the right hand image, which in this example was perturbed
upwards.

In addition to the perturbations in the x-y plane, with a full set of three

dimensional data, we perform perturbations in the out of plane direction too.

The x-y perturbations are performed using the same method on each stack as

in the case with a single stack, as detailed in chapter3.10, while the method

used for out of plane perturbations is described below.

Firstly, a z stack other than the top/bottom stacks is chosen at random.

The top and bottom stacks are excluded in order to maintain the same total

height of the mesh. Rather than perturbing a single point, as in the perturba-

tions within the x-y plane, the out of plane perturbations occur by moving all

the points on the selected z stack. Secondly, after selecting a stack, a random

direction upwards/downwards (positive/negative s2 directions respectively)
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for the perturbation is selected. Each of the points on the chosen stack is

moved in the appropriate direction 10% of the height between the selected

stack and the next stack. An example of a perturbation is shown in figure 6.4.

As the points were remeshed to all be at the same angle between different

stacks, each point is moved along the straight line towards the point on the

stack it is being deformed towards, to the new height for the z stack. Thirdly,

in a similar fashion to the perturbations in the x-y plane, the energy of the

new deformation at each point, in terms of the stress and strain tensors, is

calculated using

f =
1

2
σijuij. (6.3)

There are two conditions where we choose to keep the newly perturbed de-

formation field. The first is where the perturbed deformation field causes the

energy of deformation to decrease in comparison to the deformation prior to

perturbation. The second is if the exponential of the energy change is bigger

than a randomly generated number, i.e. exp −∆E
kbT

> R, for a randomly gen-

erated number R, using the standard simulated annealing method, described

in more detail earlier in chapter 3.10. These perturbations are performed

until the minimal energy configuration is found, at which point, the chosen

deformation, strain, stress and traction fields are output.

6.2.3 Calculation of values using three dimensional data

In earlier chapters, we used assumptions about the out of plane dimension

to calculate the traction force causing deformations of the nucleus. Using

a series of z stacks as input in to our model representing three dimensional

data, the assumptions that need to be made about the out of plane direction

are relaxed in comparison to the two dimensional case.

Using three dimensional data, the third direction in both solid and shell

cases is given by the tangent vector, s2, defined as the direction along the

mesh between points at a constant angle in each stack, as mentioned in
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section 6.2.1. As the shape is now known in the out of plane direction, we

can calculate each of the deformation, strain and stress fields needed to find

the traction force directly.

The outwards normal vector is found from the cross product of the two

tangent vectors, s1 and s2 as

n =
s1 × s2

|s1 × s2|
. (6.4)

The strain is calculated as before, using the full expression for the deriva-

tives of the deformation. Because the co-ordinate system is defined by the

input shapes entirely here, the coordinates can be defined so that for the

shell, each of the components of the tangent vectors and normal can be de-

fined to be unit length. The tangent and normal basis being made of unit

length vectors gives a metric tensor of

gij = δij (6.5)

i.e. the identity matrix.

The same is true for the inverse of the metric, which is also the identity.

This means all the christoffel symbols, Γkij are zero for these calculations,

which simplifies the calculations of the derivatives along the surface. In

general, the derivatives along the surface of the basis vectors are then given

in terms of the curvature and metric as

∂ej

∂xi
= Cijn + Γkijek. (6.6)

where in the shell case, the indices represent one of the tangent vectors. In

the case of using three dimensional input data, this simplifies leaving only

the curvature tensor term proportional to the normal, Cij.

The curvature is defined as the rate of change of the normal vector in
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each of the tangent directions,

Cijej =
∂n

∂xi
. (6.7)

As the tangent directions are chosen as linearly independent vectors, so

that si · sj = δij, i.e. 1 is 1 = j and 0 otherwise. Each component of

the curvature can be numerically calculated at each point on the surface by

taking the dot product of equation 6.7 in the appropriate direction. The

equations numerically evaluated for each component are given as follows

Cs1s1 =
∂n

∂s1

· es1

Cs1s2 =
∂n

∂s1

· es2

Cs2s1 =
∂n

∂s2

· es1

Cs2s2 =
∂n

∂s2

· es2

.

6.3 Results

As in chapters 3 and 4, we present the results of our model applied to an

example of a nucleus undergoing deformation. The example shown in fig-

ures 6.5 and 6.6 uses images of a RPE-1 cell nucleus, expressing inducible

Plk4, provided by Pedro Monteiro and Susana Godinho. In this experiment,

they imaged the nucleus of cells before and after treating the cell with the

antibiotic doxycycline. This causes the cells to aquire extra centrosomes,

with more microtubules forming which causes the nucleus to extend in the

direction of the orientation of the microtubules. Here we use a image of the

nucleus, prior to treatment, as the undeformed shape, and another image of
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a nucleus, after the doxycycline treatment, as the deformed shape.Unlike in

chapters 3 and 4, no averaging is performed on these images, and the results

shown in figures 6.5 and 6.6 use only a single nucleus image for each shape

of the nucleus.

In figure 6.5, we show the results of using our model where we have

treated the nucleus as a homogeneous elastic solid, using a series of z stacks

to represent the three dimensional shape of the nucleus. Figure 6.6 uses the

same input data, instead treating the nucleus as a homogeneous elastic shell.

These nuclei are treated as a compressible elastic material (Poisson’s ratio

ν < 0.5). When using the two dimensional data in chapters 3 and 4, we as-

sumed the behaviour in the out of plane direction matched the requirements

for incompressibility. Here there is an observable volume change between

the undeformed and deformed shapes and therefore they cannot be incom-

pressible. For the purposes of this example, we assume a Poisson’s ratio of

ν = 0.4.

In the example of a solid nucleus, shown in figure 6.5, the top and bottom

layers have shrunk during the s1 energy minimisation process, where s1 is as

shown in figure 6.2. The change in area can be seen when comparing the final

shape to the shape prior to energy minimisation as shown in figure 6.3. This

did not occur in the equivalent shell results. This can be explained because

the solid model treats this nucleus as a filled three dimensional shape. This

assumption affects the closed surface on the top and bottom of the nucleus.

The top and bottom surfaces shrink where it is energetically preferable to

shrink the surface around the centre of mass. This did not occur in the shell

model of the nucleus, as the decrease in size does not necessarily have the

same benefit in energy reduction from decreasing the deformation around the

centre of mass that is seen in the solid model of the nucleus. Instead, the

shell model shows a more significant change in the positions of the stacks of

the deformed shape along s2 (where s2 is as shown in figure 6.2), where they

move to minimise the deformation normal to the surface to reduce the terms
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Figure 6.5: The results of our model treating the nucleus as a homogeneous
elastic solid, applied to images of a RPE-1 cell nucleus before and another
image of a nucleus after being treated with doxycycline. (a) and (b) show
the undeformed (prior to treatment) and deformed (after treatment) shapes
found after the energy minimisation procedure. The blue arrows in (c) show
the final deformation field from the undeformed to the deformed shape. The
red arrows in (d) represent the traction field causing the deformation shown
in (c), and they are scaled such that one unit of length on the axes represents
a traction force of 10kPa. This example uses Young’s modulus E = 5000Pa
and Poisson’s ratio ν = 0.4.
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Figure 6.6: The results of our model treating the nucleus as a homogeneous
elastic shell, applied to images of a RPE-1 cell nucleus before and another
image of a nucleus after being treated with doxycycline. (a) and (b) show
the undeformed (prior to treatment) and deformed (after treatment) shapes
found after the energy minimisation procedure. The blue arrows in (c) show
the final deformation field from the undeformed to the deformed shape. The
red arrows in (d) represent the traction field causing the deformation shown
in (c), and they are scaled such that one unit of length on the axes represents
a traction force of 10kPa. This example uses Young’s modulus E = 5000Pa
and Poisson’s ratio ν = 0.4.
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in the strain proportional to the normal deformation. As in chapters 3 and

4, the magnitudes of the traction forces are generally smaller when treating

the nucleus as a elastic shell rather than a solid.

These images demonstrate the use of our computational model with three

dimensional data input from a series of z stacks, in both the solid and shell

modes, for a compressible nucleus.

6.4 Conclusions

In this chapter, we have extended the computational model described in

chapters 3 and 4 to calculate the deformation and traction of cell nuclei

from three dimensional data given by a series of z stacks. We extended the

method used to convert images in to two dimensional data for use with three

dimensional data. In order to allow the nucleus to deform in the out of plane

direction, we then added an additional component to the meshing algorithm.

This addition allowed the computational model to increase or decrease the

number of stacks that make up the deformed shape, if it does not initially

match the number of stacks in the undeformed shape. This is used to allow

a one to one mapping to be defined between the undeformed and deformed

shapes, for each point on each stack of the undeformed shape. Perturbations

of entire stacks was allowed in order to allow for deformations along the s2

direction. We then used images of RPE-1 nuclei to provide an example of

using this model to calculate traction forces using three dimensional data.
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7.1 Summary

In this thesis, we have presented work to help analyse and understand the

deformation of cell nuclei.

In chapter 2, we developed an analytical model of the motion of molecular

motors, using a Asymmetric Simple Exclusion Process model to describe the

observed discrete stepping motion of the molecular motors.

In chapters 3, 4 and 6, we created a computational tool used to predict

the deformation of nuclei based on simulated annealing energy minimisation

simulations. This enabled us to predict the traction forces required to deform

nuclei from experimental images. In chapters 3 and 4, we used two dimen-

sional data and approximations of the shape in the out of plane direction,

whilst in chapter 6 used a series of z stacks to represent the three dimen-

sional shape of the nucleus. Chapter 3 described a model where the nucleus

was treated as a homogeneous elastic solid, while in chapter 4 the nucleus

was treated as a thin homogeneous elastic shell. Chapter 6 extended both of

these models to use three dimensional data.

In chapter 5, we used the simulated annealing model together with an

iterative method to determine the Poisson’s ratio of nuclei, comparing results

with an existing publication.

7.2 Future work

One extension to the work presented in chapters 3, 4 and 6 could be to com-

pare the traction forces predicted with force generation mechanisms within

the cell that could be deforming the nucleus. In both the nucleus deforming

to enter in to constriction experiments shown in figure 7.1 and when cells

were treated with doxycycline, as in figure 7.2, florescence microscopy ob-

servations showed an increase in actin and microtubules respectively. These

could be used by the cell to cause the observed deformations. The trac-

tion forces could be compared with the density of the respective filaments
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through a comparison of the intensity of emitted light in stained images, with

the magnitude of the traction force calculated at that point on the nucleus

surface. As the intensity of the emitted light should be representative of the

amount of the stained biological matter at that point in an image, if the

traction is caused by a particular filament, we would expect some correlation

between the density of the filaments near the surface and the traction forces

needed at each position on the surface.

(a)

(b)

Figure 7.1: An image showing the increase in actin as a nucleus enters a
channel. The DNA within the nucleus is shown in red in (a), while actin is
shown in green in (b). There is an increase in the amount of actin along the
sides of the constriction where the nucleus enters the constriction. Images
provided by Hawa Thiam Matthieu Piel.

(a) (b)

Figure 7.2: Images showing the increase in microtubules around a nucleus
(a) prior to treatment and (b) a nucleus after treatment with Doxycycline.
The DNA within the nucleus is shown in blue, while microtubules are shown
in red and centrosomes in green. There is an increase in the amount of
microtubules around the nucleus after treatment. Images provided by Pedro
Monteiro and Susana Godinho.

In Chapter 5, we performed calculations of Poisson’s ratio, ν, with two
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dimensional data and approximations of the shape in the out of plane di-

rection. With 3D data as a series of z stacks, we could perform a similar

calculation, but with a direct measurement of the volume of the cell nucleus.

Briefly we suggest one this could be done.

Δz

( i ,  j )

(i+1,  j )

(i+1,  j +1)

( i ,  j +1)

Ai,j

Ai,j+1

Centre 
of mass 
position 
(in xy 
plane)

A

Figure 7.3: Cartoon example showing the positions of the coordinates used
to estimate the volume of a segment of the curve between two z stacks. The
volume is then calculated between the two stacks by finding the areas of the
two triangles formed by the points (i, j),(i+ 1, j) and (i, j + 1),(i+ 1, j + 1)
around the centre of mass, and assuming that the surface formed by the four
points is a flat plane.

In the case of a compressible material, to calculate the Poisson’s ratio we

would need to first find the volume change between undeformed and deformed

shapes. Once the input source and target shapes have been remeshed as

described in chapter 6, to have the same number of points on each stack,

and each stack remeshed to have points at the same list of angles on each

stack, as described in chapter 6.2.1, the volume can be calculated from the

three dimensional mesh as follows. The volume of the shape between each

z stack is then found by using the distances around the centre of mass at

points (i, j),(i+1, j),(i, j+1) and (i+1, j+1). These points form triangular

shapes in the xy plane. The volume of each segment, an example of which is

shown in figure 7.3 can be used to calculate the volume of the entire shape.
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In the figure, the areas of the triangles formed by the points (i, j),(i + 1, j)

and the centre of mass is labelled Ai,j, similarly the area of the triangle given

by (i, j + 1),(i + 1, j + 1) and the centre of mass is shown by Ai,j+1. As we

assume the points are joined by a flat plane between stacks, the outline of

the shape always forms a similar triangle at each value of z between the two

planes observed from experimental data. Each intermediate triangle, having

an area A as shown by the green outline. The volume can be calculated by

integrating over all the triangle areas between the two known planes. As the

angle between the points θi is the same between stacks, assuming the length

of the positions increases/decreases linearly between stacks, each triangle

area A can be written as:

A =
sin(θ)

2

(
li,j + (li,j+1 − li,j)

z

zsep
)

)(
li+1,j + (li+1,j+1 − li+1,j)

z

zsep
)

)
(7.1)

vi,j =

∫ z=zsep

z=0

Adz =
sin(θ)

6
zsep

(
li,j+1

(
li+1,j+1 +

li+1,j

2

)
+ li,j

(
li+1,j+1

2
+ li+1,j

))
(7.2)

The total volume occupied between the z stacks is then the sum of vi,j

over all points on the z stacks, i.e.

V =
∑
i

∑
j

vi,j (7.3)

where vi,j is given in equation 7.2. In cases where the nucleus is bounded

at the top and bottom z stacks, for example, when the nucleus and cell are

attached to a surface, this value represents the total volume of the nucleus. If

the nucleus is free at either or both ends, there would be an additional volume

given in the region above/below the plane seen in the image. However, the

way to treat this value would depend on the experimental set up, e.g. if the
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nucleus was free on one end, while bounded on another, the free end could

be treated as a spherical cap while the bottom stack assumed to have zero

volume below it.

In the two dimensional case, Poisson’s ratio ν was calculated using an

iterative method as described in chapter 5. One of the steps involved in the

iterative calculation was calculating the average pressure over the surface.

With two dimensional data, the pressure at each point was weighted by the

distance equal to half the total line length between each of the neighbouring

points. When three dimensional data is input in to our model, the pressure

at each point would need to be weighted differently. For instance, weighted

by an area segment representing the region the pressure acts on.

In this case, the weighting for each point would be given by the area

between midpoints of the nearest neighbours. For a point (i, j), the nearest

neighbours in the in plane direction are (i ± 1, j) and in the out of plane

direction are (i, j±1). As the surface between different z stacks and between

points in plane are approximated as being connected by straight lines in both

directions, this causes the area segment to be rectangular. The area between

the midpoints of the neighbouring points is given by

Ai,j =
1

4
|Xi+1,j −Xi−1,j||Xi,j+1 −Xi,j−1|. (7.4)

If the stack currently being weighted is on the top or bottom of the shape,

the weighting is instead modified to

Atopi,j =
1

4
|Xi+1,j −Xi−1,j||Xi,j −Xi,j−1|. (7.5)

Aboti,j =
1

4
|Xi+1,j −Xi−1,j||Xi,j+1 −Xi,j|. (7.6)

respectively, making these areas approximately half the value of the other

stacks, as the shape above or below the top and bottom stacks is unknown.

This would allow the poisson’s ratio to be predicted from three dimen-
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sional experimental data, and therefore avoid the potential non-physical re-

sults as mentioned in chapter 5, where assumptions were made about the out

of plane behaviour.

Another addition that could improve the results is how the innards of the

nucleus should be treated. In chapter 3 we presented a model of the nucleus

as a homogeneous elastic solid, and in chapter 4, as a homogeneous elastic

shell with contents that freely deform with no contribution to the stress on

the surface. These provide two extreme limits for describing the behaviour of

the nucleus as an elastic material. The nuclear lamina is typically assumed

to behave elastically, while the contents of the nucleus can show viscoelastic

behaviour. In the solid model, we assumed that the entire nucleus displayed

the same elastic properties throughout. The viscoelasticity could be incorpo-

rated by using a viscoelastic model where the viscous term is negligible on the

surface to replicate the elasticity of the lamina, but non-negligible viscosity

inside the body of the nucleus to represent the contents of the nucleus.
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7.3 Conclusions

In this thesis we have studied the deformation of the nucleus. To do this,

we have developed a computational model for analysing images of nucleus

deformation. In this model, we used the laws of continuum mechanics and

classical elasticity theory to describe the nucleus of a cell as an elastic mate-

rial. These simulations could be applied to a wide range of nuclei, or indeed,

any elastic material undergoing deformation. This could have applications

in medical identification of diseased cells, as well as uses in identifying force

generation mechanisms causing observed deformations.
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