
Representations and Cohomology of Algebraic

Groups

Muhammad F Anwar

A Thesis Submitted for the Degree of PhD

University of York

Department of Mathematics

September 2011



Abstract

Let G be a semisimple simply connected linear algebraic group over an alge-

braically closed field k of characteristic p. In [11], Donkin gave a recursive

description for the characters of cohomology of line bundles on the flag va-

riety G/B with G = SL3. In chapter 2 of this thesis we try to give a non

recursive description for these characters. In chapter 3, we give the first step

of a version of formulae in [11] for G = G2.

In his famous paper [7], Demazure introduced certain indecomposable mod-

ules and used them to give a short proof of the Borel-Weil-Bott theorem

(characteristic zero). In chapter 5 we give the cohomology of these modules.

In a recent paper [17], Doty introduces the notion of r−minuscule weight

and exhibits a tensor product factorization of a corresponding tilting module

under the assumption p ≥ 2h− 2, where h is the Coxeter number. In chapter

4, we remove the restriction on p and consider some variations involving the

more general notion of (p, r)−minuscule weights.
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Chapter 1

Preliminaries

In this chapter we will set up the notation and outline some of the basic con-

cepts in the representation theory of algebraic groups. Most of the material

is given in [18], [19] and [20]. The author has also consulted [26] and [25] for

some details. Throughout this thesis k will denote an algebraically closed

field. Moreover Z will denote the ring of integers, the field of real numbers

will be denoted by R and Q will denote the field of rational numbers. Also

G will always denote a group and our groups will be algebraic unless stated

otherwise. The set of all n×n matrices with entries in k is denoted by Mn(k)

and we will write GLn(k) for the group of n × n invertible matrices with

entries in k and call it the general linear group.

1.1 Representation Theory

Definition 1.1.1. Let k be a field. A k−algebra is a ring A that is also a

k−vector space and

λ(ab) = (λa)b = a(λb)
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for all λ ∈ k, a, b ∈ A.

We will now construct the group algebra that we will denote by kG. Let G

be a group and k be a field. Consider a set {ag ∣g ∈ G} and define kG to be a

vector space with basis ag, g ∈ G. We will now define multiplication on kG.

If ∑
x∈G

λxax and ∑
y∈G

µyay are elements in kG then

(∑
x∈G

λxax)(∑
y∈G

µyay) = ∑
x,y∈G

λxµyaxay = ∑
x,y∈G

λxµyaxy.

Here xy denotes the multiplication of x and y in G. Since G is a group we

have xy = g for some g ∈ G and we can write

∑
x,y∈G

λxµy = ∑
g∈G

λgx−1µx = ∑
g∈G

τg

where τg = ∑
x∈G

λgx−1µx. It is easy to show that this operation makes kG into

a k−algebra.

Definition 1.1.2. Let G be a group. A matrix representation of G is a group

homomorphism ρ ∶ G → GLn(k). We call n the degree of representation

ρ. Similarly a matrix representation of a group algebra kG is a k−algebra

homomorphism

φ ∶ kG→Mn(k)

for some n.

Let φ ∶ kG →Mn(k) be a matrix representation of the algebra kG. Define

V to be the space of column vectors of length n with entries in k then we

can make V into a kG−module by defining gv = φ(g)v, for g ∈ kG and v ∈ V .

The module V is called the module afforded by φ. Conversely let V be a

kG−module with basis v1, v2, ..., vn then we have gvi ∈ V for all g ∈ kG. So gvi
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is a linear combination of v1, v2, ..., vn with the coefficients of vj depending

on i, j and g. We have

gvi =
n

∑
j=1

φji(g)vj.

Define a map φ ∶ G→ GLn(k) by φ(g) = (φij(g)). It is easy to check that this

is a group homomorphism and hence a matrix representation of G. We call

this the matrix representation of G afforded by the module V with respect

to the basis v1, ..., vn.

Definition 1.1.3. A non-trivial kG−module V is called simple (irreducible)

if its only submodules are {0} and V itself. V is called completely reducible

(semisimple) if it is the direct sum of simple submodules.

Theorem 1.1.1. (Maschke’s Theorem) Let G be a finite group and k be a

field. If the characteristic of k does not divide the order of G then every finite

dimensional kG−module is completely reducible.

Recall that the character of a matrix representation ρ ∶ G → GLn(k) is the

function χ ∶ G→ k defined by

χ(g) = trace(ρ(g))

for g ∈ G.

Proposition 1.1.2. (Schur’s Lemma) Let V,W be finite dimensional simple

kG−modules (k algebraically closed) and let θ ∶ V → W be a kG−module

homomorphism.

1. If V is not isomorphic to W then θ = 0.
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2. If V =W then there is a constant λ ∈ k such that

θ(v) = λv

for all v ∈ V .

1.2 Algebraic Groups

In this section we will give a very short overview of algebraic groups. Our

emphasis here will be on linear algebraic groups. For further details of this

rather dense subject the reader is encouraged to see [19] and [8]. Let V be a

set. Define

Map(V, k) = {f ∣ f ∶ V → k}.

We can regard Map(V, k) as a k−algebra by point-wise operations, in par-

ticular the multiplication is defined by fg(x) = f(x)g(x). Let A be a

k−subalgebra of Map(V, k). We have a map εx ∶ A → k, called evalua-

tion at x, defined by εx(f) = f(x) for f ∈ A. For k−algebras A and B we

denote by Homk−alg(A,B) the set of k−algebra homomorphisms from A to

B.

Definition 1.2.1. An affine variety (over k) is a pair (V,A) consisting of

a set V and a finitely generated k−subalgebra A of Map(V, k) such that the

map

V → Homk−alg(A,k)

x↦ εx

is a bijection.
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From now on we will just say that V is an affine variety to mean that we

have a pair (V,A) together with the above bijection. If V is an affine variety

then we will denote A by k[V ] and call it the coordinate algebra of V .

Definition 1.2.2. Let V,W be affine varieties. A morphism of affine vari-

eties is a map φ ∶ V →W such that g ○ φ ∈ k[V ], for every g ∈ k[W ].

Definition 1.2.3. A group G is called a linear algebraic group if G is also

an affine variety such that the multiplication m ∶ G ×G → G and inversion

i ∶ G → G are morphism of affine varieties. Moreover a map φ ∶ G → H,

of algebraic groups is called a morphism of algebraic groups if it is a group

homomorphism and a morphism of affine varieties.

We will only be considering affine varieties in this thesis. All our algebraic

groups will be linear so we will often drop the word linear.

We can assign to each affine variety a topology as follows. Let (V,A) be an

affine variety and S ⊂ A. We define

⋎(S) = {x ∈ V ∣ f(x) = 0 for all f ∈ S}.

then it is not very difficult to show that

1. ⋎(1) = ∅, ⋎(0) = V ;

2. If we have a collection Sj of subsets of A then ⋎(⋃j Sj) = ⋂j ⋎(Sj).

3. For subsets S,T of A we have ⋎(ST ) = ⋎(S)⋃⋎(T ).

Here ST denotes the set {fg∣ f ∈ S, g ∈ T}. It is clear from the above

conditions that the sets ⋎(S) form the closed set of a topology on V . This

topology is called the Zariski topology.
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An algebraic group G is said to be connected if it is connected as a variety.

Let G be an algebraic group and A,B be closed subgroups of G. We define

the commutator group (A,B) to be the group generated by the commutators

xyx−1y−1 where x ∈ A and y ∈ B. We define the derived series of G inductively

by D0G = G and Di+1G = (DiG,DiG) for i ≥ 0. If G is a connected algebraic

group then DiG is a closed normal connected subgroup of G. We say that

G is solvable if DnG = 1G for some n. Similarly we define the descending

central series of G by induction as C0G = G and Ci+1G = (G,CiG) for i ≥ 0.

We call G nilpotent if CnG = 1G for some n. We define a matrix A ∈ GLn to

be unipotent if A − In is nilpotent i.e. (A − In)r = 0 for some r. An element

g ∈ G is called unipotent if for some (hence every) faithful (one to one)

representation ρ ∶ G → GLn(k) the image ρ(g) is unipotent. A subgroup of

G is called unipotent if all its elements are unipotent.

Every algebraic group G has a unique maximal normal solvable subgroup

say H. This subgroup of G is always closed. The connected component of

H is denoted by R(G) and is called the radical of G. Let U(G) denote the

subgroup of R(G) consisting of the unipotent elements in R(G). It is not

difficult to show that U(G) is normal in G. We call U(G) the unipotent

radical of G and it is the largest connected normal unipotent subgroup of G.

Definition 1.2.4. (Semi-simple and Reductive Groups) An algebraic group

G is called semi-simple if the radical of G is trivial. Similarly G is called

reductive if U(G) is trivial.

An algebraic group G is called a torus if it is isomorphic to Dn(k), the sub-

group of GLn consisting of the diagonal matrices, for some n. The maximal

tori are conjugate in G. The dimension n of a maximal torus T is called the
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rank of G. A maximal, closed, connected, solvable subgroup B of G is called

a Borel subgroup of G. All Borel subgroups of G are conjugate. We fix a

Borel subgroup B of G and a maximal torus T ⊆ B of G. Let NG(T ) denote

the normalizer of T in G and ZG(T ) denotes the centralizer of T in G then

the Weyl group W of G is given by NG(T )/ZG(T ). Note that W is a finite

group.

1.2.1 Representation Theory of Algebraic Groups

Now we will say a few words about the representation theory of the algebraic

groups. Let G be a group and V a finite dimensional kG−module with basis

v1, ..., vn. We define the coefficient functions fij ∶ G → k of V with respect

to the given basis by the equations

gvi =
n

∑
j=1
fji(g)vj.

By cf(V ) ⊆ Map(G,k) we denote the coefficient space of V and define it to

be the k−span of {fij ∣1 ≤ i, j ≤ n}.

Definition 1.2.5. Let G be an algebraic group. A finite dimensional

kG−module is said to be rational if cf(V ) ⊆ k[G]. If V is a finite dimensional

kG−module and ρ ∶ G → GLn is a matrix representation afforded by V then

V is rational if and only if ρ is a morphism of algebraic groups. We will call

ρ a rational representation of G in V .

We will denote by mod(G) the category of finite dimensional rational

G−modules. All the modules considered in this thesis are rational unless

stated otherwise. We finish this section with a rather beautiful proposition.
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Proposition 1.2.1. Every (linear) algebraic group G is isomorphic to a

closed subgroup of GLn, for some n. This result justifies the name linear for

linear algebraic groups.

1.2.2 The Lie Algebra of an Algebraic Group

Suppose (V,A) is an affine variety. For x ∈ V we define

Tx(V ) = {α ∶ A→ k ∣ α(fg) = f(x)α(g) + α(f)g(x) for all f, g ∈ A}

and call it the tangent space of V at a point x. Now we define Lie(G) = T1(G)

and we will give Lie(G) a Lie algebra structure. Let V,W be affine varieties

and let x ∈ V, y ∈W . Define a bijection Φ ∶ Tx(V ) ×Ty(W ) → T(x,y)(V ×W )

with Φ(α,β)(a⊗ b) = α(a)β(b), for a ∈ k[V ] and b ∈ k[W ]. Using Φ we will

identify Tx(V ) × Ty(W ) with T(x,y)(V ×W ).

Finally define a map φ ∶ G ×G → G by φ(x, y) = xyx−1y−1 for all x, y ∈ G.

This map φ gives us a differential dφ(1,1) ∶ Lie(G)×Lie(G) → Lie(G) and we

define the bracket operation on Lie(G) by [X,Y ] = dφ(1,1)(X,Y ). We leave

this to the reader to prove that this indeed defines a Lie bracket and makes

Lie(G) a Lie algebras. Details are also given in [8]. We will usually denote

the Lie algebra of G by g.

1.2.3 Weights and Roots

Let Gk be the multiplicative algebraic subgroup of k (considered as the affine

line), then Gk is isomorphic to k× as a group. Suppose also that G is reduc-

tive. If T is a maximal torus of G then we define X(T ) to be the set of mor-

phisms of algebraic groups φ ∶ T → Gk. For a T−module V and λ ∈ X(T ),
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we define V λ = {v ∈ V ∣tv = λ(t)v} to be the λ−weight space of V . Those

λ’s for which V λ is non-zero are called weights of V . Any G−module V is

completely reducible as a T−module. So V decomposes as a direct sum of

its weight spaces and we have V = ⊕
λ∈X(T )

V λ as a T−module.

We call X(T ) the weight lattice of G. It has a structure of a torsion free

abelian group and is isomorphic to Zn for some n. The Weyl group W acts

on T by wt = nwtn−1w where t ∈ T and w = nwT . This action can be extended

to an action on X(T ) by wλ(t) = λ(w−1t) for λ ∈ X(T ),w ∈ W, t ∈ T . Let

e(λ), λ ∈ X(T ) be the canonical basis for the integral group ring ZX(T ).

The character formula for V is defined to be the sum

ch V = ∑
λ

(dimV λ)e(λ), λ ∈X(T ).

Suppose ( , ) is a real, positive definite, symmetric, W−invariant bilinear

form on R ⊗X(T ). Let Φ denote the set of nonzero weights for the action

of T on Lie(G). The elements of Φ are then called the roots of G. We

identify X(T ) with a subgroup of R⊗X(T ). Let E denote the R−span of Φ

in R ⊗X(T ) then the induced bilinear form considered above make (E,Φ)

into a root system with Weyl group W , see e.g. [20] and [10]. A subset S of

Φ is called a set of simple roots if every α ∈ Φ can be written as a Z linear

combination of elements of S i.e. α = ∑
β

xββ where β ∈ S and xβ ∈ Z are

either all nonnegative or all nonpositive.

A root α is called a positive root if xβ ≥ 0 for all β and negative if xβ ≤ 0 for

all β. We will denote the set of positive roots by Φ+ and Φ− will denote the

set of negative roots. For α ∈ Φ we will denote by α∨ the coroot of α and is

given by 2α
(α,α) . The reflection of α denoted sα is given by sα(β) = β − 2(β,α)

(α,α) α.
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It is easy to see that sα sends α to −α. We will denote the number 2(β,α)
(α,α)

by ⟨β,α⟩. For α ∈ S, we denote by Pα the parabolic subgroup containing B

which has α as its only positive root.

As an example of root systems we take G = GLn. Let ei = (0,0, ...,0,1,0, ...,0)

with the ith entry 1 and 0 every where else. The maximal torus T of G is a di-

agonal matrix inG. Suppose T = diag(t1, t2, ..., tn) then ei(diag(t1, t2, ..., tn)) =

ti. The set of roots Φ of G is given by Φ = {ei − ej ∣ 1 ≤ i ≤ n,1 ≤ j ≤ n}, the

set of positive roots Φ+ is given by Φ+ = {ei − ej ∣ 1 ≤ i < j ≤ n}, and the set

of simple roots S is given by S = {ei − ei+1 ∣ 1 ≤ i ≤ n − 1}.

The Weyl group W is generated by the set {sα ∣ α ∈ S}. The action of W on

X(T ) called the dot action is given by

w.λ = w(λ + ρ) − ρ

where w ∈W, λ ∈ X(T ) and ρ is the half sum of the positive roots. We can

give X(T ) a partial order by defining

µ ≤ λ if and only if λ − µ can be expressed as a sum of positive roots.

We call a weight λ dominant if ⟨λ,α∨⟩ ≥ 0 for all α ∈ Φ+. We will denote the

set of dominant weights by X+(T ). We define the r−restricted weights to be

the set

Xr(T ) = {λ ∣ 0 ≤ ⟨λ,α∨⟩ < pr for all α ∈ S}

where p is the characteristic of the field k. The set X1(T ) is simply called

the set of restricted weights.
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1.3 Hopf Algebras and Group Schemes

The main purpose of this section is to define the infinitesimal groups Gr. We

will only be giving the necessary definitions here. For further details please

see [9]. Let k be a field then we will denote the k tensor product by ⊗k or

simply by ⊗ see e.g. [23]. Let A be an associative algebra over k with identity

1A. We define a coalgebra over k as follows

Definition 1.3.1. (Coalgebra) A coalgebra over k is defined to be a triple

(C, δ, ε), where C is a vector space over k and δ ∶ C → C ⊗ C, ε ∶ C → k

called comultiplication and counit respectively are linear maps satisfying

(δ ⊗ idC)δ = (idC ⊗ δ)δ

(ε⊗ idC)δ = (idC ⊗ ε)δ = idC

From now on we will just write C for the coalgebra and we will call δ and

ε the structure maps of C. Let (C, δ, ε) be a coalgebra. A coideal of C is a

subspace I such that δ(I) ≤ C ⊗ I + I ⊗C and ε(I) = 0.

Definition 1.3.2. Let (C, δ, ε) be a coalgebra over k. A right C−comodule

over k is a pair (V, τ), where V is a vector space over k and τ ∶ V → V ⊗C

is a linear map satisfying the following conditions.

(τ ⊗ idC)τ = (idV ⊗ δ)τ

(idV ⊗ ε)τ = idV .

Definition 1.3.3. (bialgebra) A bialgebra over k is a coalgebra (C, δ, ε) such

that C is also an algebra and δ, ε are morphisms of algebra.
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Suppose (C, δ, ε), (C ′

, δ
′

, ε
′) are bialgebras over k. A morphism of bialgebras

is a map φ ∶ C → C
′

such that φ is both an algebra and coalgebra morphism.

We define an antipode of a bialgebra as follows.

Definition 1.3.4. Let (C, δ, ε) be a bialgebra. An antipode of C is a linear

map σ ∶ C → C such that

m(σ ⊗ idC)δ =m(idC ⊗ σ)δ = 1Cε

where m denotes multiplication.

We are now in a position to define Hopf algebras.

Definition 1.3.5. (Hopf algebra) A Hopf algebra is a quadruple (H,δ, ε, σ)

where (H,δ, ε) is a bialgebra and σ is an antipode. Suppose (H,δ, ε, σ),

(H ′

, δ
′

, ε
′

, σ
′) are Hopf algebras. A morphism of Hopf algebras is a map

φ ∶ H →H
′

such that φ is a bialgebra morphism and σ
′ ○φ = φ○σ. Moreover

an ideal m of a Hopf algebra is an algebra ideal, a coideal and σ(m) = m.

We have a relation between affine group schemes and Hopf algebras. Loosely

speaking affine group schemes over k correspond to commutative Hopf alge-

bras over k see e.g. [29].

In order to avoid giving all the details about affine group schemes we say that

G is a group scheme over k to mean that we have in mind a commutative

Hopf algebra over k denoted by k[G]. Let G,H be (affine) group schemes

then we will call φ ∶ G → H a morphism of group schemes if the map

φ# ∶ k[G] → k[H] is a morphism of Hopf algebras. We will call V a left

G−module if we have a structure map τ ∶ V → V ⊗k[G] such that (V, τ) is a

18



k[G]−comodule. Suppose G is a group scheme then we will call H a subgroup

scheme of G if there is a Hopf ideal IH of k[G] such that k[H] = k[G]/IH .

Suppose (H,δ, ε) is a commutative Hopf algebra and m = Ker(ε) then m is a

Hopf ideal. Moreover let m[p] be an ideal generated by fp, f ∈ m then m[p]

is also a Hopf ideal. Now we are able to define the infinitesimal groups Gr.

Definition 1.3.6. Suppose r ≥ 1 then Gr is the affine group scheme such

that

k[Gr] = k[G]/m[pr],

where m[pr] is the Hopf ideal generated by fp
r
, f ∈ m

The main result that we will be using from this section is the following

G1 −modules ≡ restricted g −modules

see e.g. [21].

1.4 Induced Modules and Weyl Modules

Let G be a reductive algebraic group and V a B−module (B a Borel sub-

group). We define the induced module IndGBV to be the space of maps

f ∶ G→ V with the following properties

1. Im(f) is contained in a finite dimensional subspace of V , say V0, and

the restriction f ∶ G→ V0 is a morphism of affine varieties. If f satisfies

this condition then f is called a regular map.
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2. f(bx) = bf(x) for all b ∈ B and x ∈ G. If f satisfies this condition then

f is said to be B−equivariant.

The group G acts on IndGBV by (gf)(x) = f(xg), g ∈ G. The module IndGBV

is a rational G−module. Let kλ be the one dimensional B−module with

weight λ (B acts trivially) then IndGBkλ is nonzero if and only if λ ∈ X+(T )

see [10, theorem 4.3.]. For λ ∈ X+(T ) we will write ∇(λ) = IndGBkλ. We will

denote by kλ the one dimensional B−module with weight λ. We will often

write λ for kλ. The character of ∇(λ) is given by the Weyl character formula

(See [21, II, proposition 5.10]) and we will write χ(λ) for ch ∇(λ).

For λ ∈ X+(T ) there exists an irreducible (simple) G−module with highest

weight λ that we will denote by L(λ). Moreover the modules L(λ), λ ∈

X+(T ) form a complete set of pairwise non-isomorphic simple G−modules.

Now the module ∇(λ) has simple socle L(λ) with the highest weight λ and

is the largest G−module with this property. We define the Weyl module

∆(λ) = ∇(−w0λ)∗ where w0 is the longest element of W and ∗ denotes the

dual. It is not very difficult to see that both ∇(λ) and ∆(λ) have the same

character. Note that due to duality the Weyl module has a simple head L(λ).

If k is a field of characteristic p > 0 then we will call the module L((p − 1)ρ)

the Steinberg module and we will denote it by St.

1.5 Tilting Modules

Let V ∈ mod(G) be a G−module. We define a good filtration of V to be a

filtration 0 = V0 ≤ V1 ≤ V2 ≤ ... ≤ Vn = V such that for each 0 < i ≤ n, Vi/Vi−1 is

either zero or isomorphic to ∇(λi) for some λi ∈X+(T ).
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A tilting module of G is a finite dimensional G−module V such that V and

its dual module V ∗ both admit good filtrations. For each λ ∈X+(T ) there is

an indecomposable tilting module T (λ) which has highest weight λ. Every

tilting module is a direct sum of copies of T (λ), λ ∈ X+(T ) as in [21, E.6,

proposition]. For λ ∈ X+(T ) the tilting module T ((p − 1)ρ + λ) is projective

as a G1−module, where G1 is the first infinitesimal group and ρ is the half

sum of positive roots.

1.6 Vector Bundles

We will now give a definition of vector bundles. Our definition is based on

an account in [3], see also [28] and [5]. We will start by giving a definition of

a family of vector spaces.

Definition 1.6.1. Let X be a variety. A family of vector spaces over X is

a variety E together with a morphism of varieties p ∶ E → X such that

for all x ∈ X the set Ex = p−1(x) has the structure of a vector space. Let

E,F be families of vector spaces over X. A morphism of families is a map

φ ∶ E → F such that the map φx ∶ Ex → Fx is a vector space homomorphism

and the following diagram commutes

X

FE

q

φ

p
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Here p, q are called projection maps, X is called the base space of the family

and E its total space.

For every vector space V we have a product family i.e. if X is a variety then

take E = X × V and define p ∶ E → X by p(x, v) = x so that Ex = {x} × V .

If F is any family then F is called a trivial family if it is isomorphic to some

product family. Let E be a family of vector spaces over X and let Y be

a subvariety of X. Then E is clearly a family over Y with projection p,

p ∶ p−1(Y ) → Y . We call this family the restriction of E to Y and denote it

by E∣Y .

A faimly E of vector spaces over X is called locally trivial if for every x ∈X

there exists an open cover Ux such that the restriction E∣Ux is trivial. We

can now define a vector bundle.

Definition 1.6.2. Let E be a family of vector spaces over X. Then E is

called a vector bundle if E is locally trivial.

It is worth mentioning that there is also a notion of an algebraic vector

bundle. It is known that the two notions are equivalent. In this thesis we

will be using the vector bundles defined as follows. Let G be an algebraic

group and B a Borel subgroup of G. Let V be a B−module. We define a

vector bundle denoted LV by E = G ×B V and X = G/B. Here G ×B V =

G × V / ∼ ,where ∼ is the equivalence relation given by (gb, v) ∼ (g, bv) for

all g ∈ G,v ∈ V and b ∈ B. The projection map p ∶ E → X is given by

p(gb, v) = gb for some g ∈ G and for all b ∈ B. If V is one dimensional then

the vector bundle is called a line bundle. We will denote a line bundle by

Lλ, where λ is the weight of the one dimensional vector space.
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1.7 Cohomology and a Spectral Sequence

We will now briefly discuss cohomology. A version of all the definitions given

below is available for homology. The material is mainly from [4].

Let A be an abelian category. A cochain complex of objects in A consists of

collection of objects C = {Cn∣ n ∈ Z} and a collection of maps δn ∶ Cn → Cn+1

satisfying δn o δn−1 = 0. We say that x has degree n if x ∈ Cn. The cohomology

of a cochain complex C denoted Hn(C) is then given by

Hn(C) = Ker(δn ∶ Cn → Cn+1)
Im(δn−1 ∶ Cn−1 → Cn)

.

A short exact sequence of chain complexes

0→C
′ →C→C

′′ → 0

gives rise to a long exact sequence of cohomology given by

...→Hn(C′) →Hn(C) →Hn(C′′) →Hn+1(C′) →Hn+1(C) → ...

Let G be an algebraic group and B a Borel subgroup of G. For the rest of

the thesis we will be using the cohomology defined by the derived functor of

induction i.e. if M is a B−module then H i(M) = RiIndGB(M). As a k−vector

space H i(M) is isomorphic to the vector bundle cohomology H i(G/B,G ×B

M) as in [27].

Now we will describe the Grothendieck spectral sequence as given in [21].

Proposition 1.7.1. (Grothendieck Spectral Sequence) Let A,A
′

and A
′′

be

abelian categories with F ∶ A → A
′

and F
′ ∶ A

′ → A
′′

the additive functors.

If F
′

is left exact and if F maps injective objects in A to objects acyclic for
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F
′

, then there is a spectral sequence for each object M ∈ A with differential

dr of bidegree (r,1 − r), and we have

En,m
2 = (RnF

′)(RmF)M Ô⇒ Rn+m(F′

oF)M.

We will be extensively using this spectral sequence in the form

RnIndGPαR
mIndPαB M Ô⇒ Rn+mIndGBM.

1.8 On the Representation Theory of SL3

and G2

We will now consider the representation theory of SL3 and G2. We will

discuss SL3 in more depth and state the results for G2 and leave them to the

reader to verify. Let G = SL3 then we can take the maximal torus T of G to

be the diagonal matrices in SL3 so

T = {g∣ g ∈D3 and det(g) = 1}.

It is clear that dim(T ) = 2. Let t1, t2 ∈ k× be the generators of T then a

typical element t ∈ T will look like

⎛
⎜⎜⎜⎜
⎝

t1 0 0

0 t2 0

0 0 1
t1t2

⎞
⎟⎟⎟⎟
⎠

We can take a Borel subgroup B of G to be the group of lower triangular

matrices in SL3. Recall that λ ∈ X(T ) is defined as a map λ ∶ T → k×.

For SL3 we define maps ω1 and ω2 in X(T ) by ω1(t) = t1 and ω2(t) = t1t2
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then it is clear that X(T ) = Zω1 + Zω2 therefore we can identify X(T ) by

Z2. We will write λ = (r, s) where r, s ∈ Z. Recall that the λ weight space for

a T−module V is defined by

V λ = {v ∈ V ∣ tv = λ(t)v for all t ∈ T}.

We will simply call λ’s the weights of SL3. So in particular we have

V (r,s) = {v ∈ V ∣ tv = tr+s1 ts2v}.

Let α = (2,−1) and β = (−1,2) then the set of roots Φ for SL3 is given by Φ =

{±α,±β,±(α+β)}, the set of positive roots Φ+ is given by Φ+ = {α,β,α+β},

and the set of negative roots Φ− is given by Φ− = {−α,−β,−(α + β)}. Also

SL3 has two simple roots namely α and β. Moreover the Weyl group W of

SL3 is generated by sα and sβ.

Now we consider G = G2. The weights λ of G2 are of the form λ = (r, s)

where r, s ∈ Z. There are two simple roots of G2 given by α = (2,−1) and

β = (−3,2). The set of roots is then defined to be the Z-span of α and β.

1.9 Formulation of the Problem

Finally we will formulate the problem that we will be considering throughout

the chapters 2, 3 and 5. Let G be a reductive algebraic group and B a

Borel subgroup of G. Then G/B is a flag variety. Moreover if B is the

collection of all Borel subgroups of G then we can identify B with G/B

via the correspondence G/B → B such that gB → gBg−1 see e.g. [19].

Let Lλ denote a line bundle on the variety G/B then we consider the i−th
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cohomology groups H i(G/B,Lλ). In Chapter 2 and 3 we take G = SL3 and

G = G2 respectively and try to find the character of H i(G/B,Lλ) when the

characteristic of the field k is a prime p.

Chapter 5 gives cohomology of certain modules appearing in Demazure’s

proof of the Borel-Weil-Bott theorem (characteristic zero).
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Chapter 2

Characters of Cohomology of

Line Bundles on Flag Varieties

2.1 Introduction

In this chapter we will try to calculate the cohomology of line bundles on

flag varieties. The main part of the chapter will consist of results about the

three dimensional flag variety. We will start by giving some of the known

results in this area and then we will give some new results. Most of the new

results are based on Donkin’s results in [11].

For the rest of this chapter G will be a semisimple, simply connected linear

algebraic group over an algebraically closed field k.

2.2 Characteristic Zero Case

If the characteristic of the field k is zero then H i(G/B,L(kλ)) is given by

the following theorem.
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Theorem 2.2.1. (Borel-Weil-Bott)[21, II, chapter 5]

If λ ∈ X+(T ) and w ∈ W then H i(w.λ) = 0 for i ≠ l(w) and H l(w)(w.λ) ≃

H0(λ).

Also the character of H0(λ) is given by Weyl character formula below.

Theorem 2.2.2. (Weyl character formula)[21, II, proposition 5.10]

If λ ∈X+(T ) and w ∈W , define

A(λ) = ∑
w∈W

sgn(w)e(wλ)

then

χ(λ) = A(λ + ρ)
A(ρ)

where ρ is half sum of the positive roots.

The above two theorems resolve the characteristic zero case completely.

2.3 Characteristic p Case

A natural question to ask is what will happen when characteristic of the field

k is a prime p. One would expect the above results to generalize nicely in

this case. But the truth is far from expectation. If i = l(w) then it is not

true in general that H i(w.λ) ≃ H0(λ) (characteristic p). Moreover a weaker

result that ch(H i(w.λ)) = ch(H0(λ)) is also false.

In fact we know very little in the case of characteristic p. Given below are

some of the known results.

Theorem 2.3.1. (Kempf’s vanishing theorem)[21, II, proposition 4.5]

If λ ∈X+(T ) then H i(λ) = 0 for all i > 0.
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Theorem 2.3.2. (Grothendieck vanishing) H i(G/B,LM) = 0 for all i >

dim(G/B).

Theorem 2.3.3. (Serre duality)[21, II, 4.2(10)]

Let d = dim(G/B), then

H i(G/B,LM)∗ ≃Hd−i(G/B,L(M∗⊗k−2ρ)),

where M∗ is dual of M .

The following result by H. Andersen gives a necessary and sufficient condition

for first cohomology modules to be non-zero. Moreover this result also gives

the highest weight for the cohomology module if it is nonzero (see e.g [21, II,

proposition 5.15].

Proposition 2.3.4. (Andersen)

Suppose char(k)= p ≠ 0. Let α ∈ Φ+ be a simple root and λ ∈ X(T ) with

⟨λ,α∨⟩ ≥ 0.

1. Suppose ⟨λ,α∨⟩ = apn − 1 for some positive integers a,n with 0 < a < p.

Then

H1(sα.λ) ≠ 0⇐⇒ λ ∈X+(T ).

2. Let ⟨λ,α∨⟩ =
n

∑
j=0
ajp

j with 0 ≤ aj < p and aj ≠ 0. Suppose there is some

j < n with aj < p − 1. Then

H1(sα.λ) ≠ 0⇐⇒ sα.λ + anpnα ∈X+(T ).

Moreover If λ ∈ X+(T ) then λ is the highest weight of H1(sα.λ). If

not let m be minimal with am < p − 1. Suppose m
′ ≥ m is minimal for

µ = sα.λ+
n

∑
j=m′

ajp
jα ∈X+(T ). Then µ is the highest weight of H1(sα.λ)

and occurs with multiplicity 1.
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The following result tells us when RiIndPαB λ is nonzero. We will be using this

result extensively throughout the thesis.

Proposition 2.3.5. [21, II, proposition 5.2]

Let α ∈ S and λ ∈X(T ).

1. If ⟨λ,α∨⟩ = −1 then RiIndPαB λ = 0 for all i.

2. If ⟨λ,α∨⟩ ≥ 0 then RiIndPαB λ = 0 for all i ≠ 0.

3. If ⟨λ,α∨⟩ ≤ −2 then RiIndPαB λ = 0 for all i ≠ 1.

We will often write ∇α(λ) for IndPαB λ.

Proposition 2.3.6. (The linkage principle)[21, II, 6.17]

Let λ,µ ∈X+(T ). If Ext1G(L(λ), L(µ)) ≠ 0, then λ ∈W ⋅ µ + pZΦ.

Let G = SL2 and let B be a Borel subgroup of G then dim (G/B) = 1. By

Grothendieck vanishing we have H i(M) = 0, for all i > 1. Also by Serre

duality

H1(λ) ≃H0(λ − 2ρ)∗.

This gives us the complete result in this case.

2.4 G = SL3

For the rest of this chapter let G = SL3 unless stated otherwise. Let k be an

algebraically closed field of characteristic p. We will denote the character of

H i(λ) by χi(λ). Since dim G/B = 3, by Grothendieck vanishing H i(M) = 0,

i > 3. Also by Serre duality H3(λ) ≃ H0(λ − 2ρ)∗ and H2(λ) ≃ H1(λ − 2ρ)∗.

So it is sufficient to find ch H1(λ). Also by Kempf’s vanishing theorem
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H i(λ) = 0 for all λ ∈ X+(T ) and i > 0. For λ = (r, s) ∈ X1(T ) we will denote

the character of L(r, s) by χp(r, s) and it is given by

χp(r, s) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

χ(r, s) − χ(r − a, s − a), if r + s + 2 = p + a, a > 0

χ(r, s), otherwise.

Let F ∶ G → G be the Frobenius morphism of G defined by F (g) = (gpij) for

all g = (gij) ∈ G. Let Nα denote the unique two-dimensional indecomposable

B−module with character e(0)+e(−α). Thus there is a non-split short exact

sequence 0→ k−α → Nα → k → 0. We denote by Nα(λ) the module λ⊗Nα and

we write χiα(λ) for χi(Nα(λ)). In [11], Donkin gave a recursive description

for the characters of cohomology of line bundles on the flag variety G/B,

where G = SL3. He gave the result in three parts, p = 2, p = 3 and p ≥ 5. The

result in characteristic p = 2 is given below.

Lemma 2.4.1. (Donkin) For i ≥ 0, integers r, s and α,β simple roots we

have:

1. χi(2r,2s) = χi(r, s)F + χi(r − 1, s − 1)F + χ(1,0)χi(r, s − 1)F

+χ(0,1)χi(r − 1, s)F ;

2. χi(1+2r,2s) = χiα(r+1, s−1)F +χ(1,0)χi(r, s)F +χ(0,1)χi(r, s−1)F ;

3. χi(2r,1+2s) = χiβ(r−1, s+1)F +χ(1,0)χi(r−1, s)F +χ(0,1)χi(r, s)F ;

4. χi(1 + 2r,1 + 2s) = χ(1,1)χi(r, s)F .

Also the result for χiα(r, s) is given by
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Lemma 2.4.2. (Donkin) For i ≥ 0, and integers r, s and a simple root α we

have:

1. χiα(2r,2s) = χi(r−1, s−1)F +χ(1,0)Fχi(r−1, s)F +2χ(0,1)χi(r−1, s)F

+χ(1,0)χiα(r, s − 1)F ;

2. χiα(1+2r,2s) = χiα(r+1, s−1)F +χ(1,0)χi(r, s)F +χ(0,1)χi(r, s−1)F

+χ(1,1)χi(r − 1, s)F ;

3. χiα(2r,1+2s) = χ(0,1)Fχi(r−1, s)F+χi(r−1, s+1)F+2χ(1,0)χi(r−1, s)F

+χ(0,1)χiα(r, s)F ;

4. χiα(1+2r,1+2s) = χiα(r, s)F+χ(1,0)χi(r−1, s+1)F+χ(0,1)χi(r−1, s)F

+χ(1,1)χi(r, s)F .

The above result is the best result available so far which provides us with a

complete description of the characters. But due to the recursive nature of

the result it is very hard to use. In what follows we will try to give a non

recursive description for these characters. The results given rely heavily on

the recursion given in [11].

We will first give a few results on H i(Nα(λ)). The following theorem gives

the cohomology of H i(Nα(λ)), for a dominant weight λ.

Theorem 2.4.3. Let λ ∈X+(T ) and G be a semisimple group. Suppose α is

a simple root.

1. If ⟨λ,αv⟩ > 0 then H i(Nα(λ)) = 0 for i > 0.
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2. If ⟨λ,αv⟩ = 0 then H i(Nα(λ)) = 0 for all i.

Proof. We have a short exact sequence

0→ λ − α → Nα(λ) → λ→ 0.

This gives rise to a long exact sequence of induction given by

0→H0(λ − α) →H0(Nα(λ)) →H0(λ) →H1(λ − α)

→H1(Nα(λ)) →H1(λ) → ...

Now λ ∈ X+(T ) so H i(λ) = 0 for all i > 0 by Kempf’s vanishing theorem.

For ⟨λ,αv⟩ > 0 we have ⟨λ − α,αv⟩ ≥ −1 and H i(λ − α) = 0 because either

⟨λ−α,αv⟩ = −1 or λ−α ∈X+(T ) and the result is true by Kempf’s vanishing

theorem. So H i(Nα(λ)) = 0. This proves 1.

For ⟨λ,αv⟩ = 0 we use the spectral sequence given by

RiIndGPαR
jIndPαB (∇α(ρ) ⊗ (λ− ρ)) = RiIndGPα(∇α(ρ) ⊗RjIndPαB (λ− ρ)). Since

⟨λ,αv⟩ = 0 so ⟨λ − ρ,αv⟩ = −1 and hence RjIndPαB (λ − ρ) = 0.

This gives the result in 2.

Suppose λ ∈ X(T ). Now we will ask the question: when is H i(Nα(λ)) =

H i(λ) ⊕H i(λ − α)? Recall that Nα(λ) is given by the short exact sequence

0 → λ − α → Nα(λ) → λ → 0. So the above statement is definitely true when

λ and λ − α are in different blocks. For a definition of blocks see [15]. The

next two propositions give the precise condition when λ and λ−α are in the

same block.

Proposition 2.4.4. Let G = GL3 and λ = (λ1, λ2, λ3) ∈ X(T ). Let α =

(1,−1,0) be a simple root then λ and λ−α are in the same block if and only

if λ has one of following forms:
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1. (λ2 + pa1, λ2, λ3)

2. (λ1, λ1 + pa2, λ1 + 1 − pa1)

Proof. Using the linkage principle if λ and λ − α are in the same block then

λ−α ∈W ⋅ λ+ pZΦ where W is the Weyl group and Φ is the set of roots. So

there exists some w ∈W and θ ∈ ZΦ such that λ − α = w ⋅ λ + pθ. The Weyl

group for GL3 is the symmetric group S3. We have the following possibilities

1. Let w = I3 then λ and λ − α can not be in the same block because if

they are we would have α ∈ pZΦ which is clearly not possible.

2. Let w = (12) then w ⋅ (λ1, λ2, λ3) = w(λ1 + 1, λ2, λ3 − 1) − (1,0,−1). For

w = (12) if λ and λ −α are in the same block then (λ1 − 1, λ2 + 1, λ3) =

(λ2 − 1, λ1 + 1, λ3) + p(a1, a2, a3). Therefore λ1 = λ2 + pa1, λ1 = λ2 − pa2
and λ3 = λ3 + pa3. This is only possible when a2 = −a1 and a3 = 0.

Hence λ = (λ2 + pa1, λ2, λ3).

3. Let w = (123) then (λ1−1, λ2+1, λ3) = (λ2−1, λ3−1, λ1+2)+p(a1, a2, a3).

Therefore λ1 = λ2+pa1, λ3 = λ2−pa2+2 and λ3 = λ1+pa3+2. So we get

a1 = −a2 −a3 which is always true. Hence λ = (λ2 +pa1, λ2, λ2 +2−pa2).

4. If w = (23) then λ and λ − α can not be in the same block because if

they are we will get pa1 = −1 which is clearly not possible.

5. Suppose w = (132) we get (λ1 − 1, λ2 + 1, λ3) = (λ3 − 2, λ1 + 1, λ2 + 1) +

p(a1, a2, a3). Therefore λ3 = λ1 − pa1 + 1, λ2 = λ1 + pa2 and λ3 = λ1 + 1 +

p(a2+a3). So we get −a1 = a2+a3. Hence λ = (λ1, λ1+pa2, λ1+1−pa1).

6. If w = (13) then λ and λ − α can not be in the same block because if

they are we will get pa2 = 1 which is clearly not possible.

We have the result.
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From proposition 2.4.4, we get the following

Proposition 2.4.5. Let G = SL3 and λ ∈X(T ). If p does not divide ⟨λ,α∨⟩

then

H i(Nα(λ)) ≃H i(λ) ⊕H i(λ − α).

Proof. Since G = SL3 so λ = (r, s), where r, s are integers. From proposition

2.4.4, λ and λ − α are in the same block if and only if λ is in one of the

following forms

1. (pa1, λ2 − λ3)

2. (−pa2,1 + pa2 − pa1)

From these conditions it is easy to see the result.

The proposition 2.4.5 help us a great deal to simplify the recursion. For an

application the results of Donkin given by Lemma 2.4.2 now become

Lemma 2.4.6. For i ≥ 0 integers r, s and a simple root α we have:

1. χiα(2r,2s) = χi(r−1, s−1)F +χ(1,0)Fχi(r−1, s)F +2χ(0,1)χi(r−1, s)F

+χ(1,0)χiα(r, s − 1)F ;

2. χiα(1 + 2r,2s) = χi(1 + 2r,2s) + χi(2r − 1,1 + 2s);

3. χiα(2r,1+2s) = χ(0,1)Fχi(r−1, s)F+χi(r−1, s+1)F+2χ(1,0)χi(r−1, s)F

+χ(0,1)χiα(r, s)F ;
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4. χiα(1 + 2r,1 + 2s) = χi(1 + 2r,1 + 2s) + χi(2r − 1,2s + 2).

We will now give some results about H i(λ).

Proposition 2.4.7. Suppose n > 0 and 0 ≤m ≤ p − 1 then we have

H i(r,−pn(m + 1) − 1) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

H0(r − pn(m + 1), pn(m + 1) − 1), r ≥ pn(m + 1)

0, otherwise.

Proof. Using the spectral sequence we get

H i(r,−pn(m + 1) − 1) = RiIndGB(r,−pn(m + 1) − 1)

= IndGPβR
iInd

Pβ
B (r,−pn(m + 1) − 1) (2.1)

Now RiInd
Pβ
B (r,−pn(m+ 1) − 1) = 0 for all i ≠ 1. So from equation 2.1 we get

H i(r,−pn(m + 1) − 1) = IndGPβRInd
Pβ
B (r,−pn(m + 1) − 1) (2.2)

Using the Serre duality we get

RInd
Pβ
B (r,−pn(m + 1) − 1) = ∇β(−r + 1, pn(m + 1) − 1)∗

and ∇β(−r + 1, pn(m + 1) − 1)∗ = ∇β(r − pn(m + 1), pn(m + 1) − 1) (Using the

SL2 case). Replace the values back in equation 2.2 to get

H i(r,−pn(m + 1) − 1) = IndGPβ∇β(r − p
n(m + 1), pn(m + 1) − 1)

= IndGB(r − pn(m + 1), pn(m + 1) − 1)

Finally IndGB(r−pn(m+1), pn(m+1)−1) ≠ 0 if and only if r ≥ pn(m+1). We

have the result.
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Proposition 2.4.8. Suppose n ≥ 0 then for all r ≥ 2 we have

H1(pn − 1,−pn − r) = 0.

Proof. Let λ = sβ.(pn − 1,−pn − r) = (−r, pn + r − 2) then ⟨λ,β∨⟩ = pn + r − 2.

For r = 1 the result is true by proposition 2.4.7. Now for r > 1 we write

pn + r − 2 =
m

∑
j=0

ajp
j. So by proposition 2.3.4 case 2, we have

H1(pn − 1,−pn − r) ≠ 0⇐⇒ (pn − 1,−pn − r) + ampm(−1,2) ∈X+(T ).

The above statement is true if and only if pn ≥ ampm + 1 and 2ampm ≥ pn + r.

From the first inequality we get n > m but if n > m then 2ampm ≥ pn + r is

never true. Hence the result.

Proposition 2.4.9. Suppose n ≥ 0 and r ≥ 2 then we have

H1(Nβ(pn − 1,−pn − r)) =H1(pn,−pn − r − 2).

Proof. We have the short exact sequence given by

0→ (pn,−pn − r − 2) → Nβ(pn − 1,−pn − r) → (pn − 1,−pn − r) → 0.

Moreover H0(pn − 1,−pn − r) = 0 and H1(pn − 1,−pn − r) = 0 by proposition

2.4.8. So by the long exact sequence of induction we have

0→H1(pn,−pn − r − 2) →H1(Nβ(pn − 1,−pn − r)) → 0.

and hence the result.

Proposition 2.4.10. Suppose n ≥ 0 and r > 0 then we have

H i(Nβ(pn − r,−pn − 1)) =H i(pn − r + 1,−pn − 3).
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Proof. We have the short exact sequence given by

0→ (pn − r + 1,−pn − 3) → Nβ(pn − r,−pn − 1) → (pn − r,−pn − 1) → 0.

Moreover H i(pn − r,−pn − 1) = 0 for all i by proposition 2.4.7. So by the long

exact sequence of induction we have

0→H i(pn − r + 1,−pn − 3) →H i(Nβ(pn − r,−pn − 1)) → 0.

and hence the result.

We would like to point out here that Donkin’s recursive formulas given [11]

are also valid for i = 0. In this chapter we will often be using the phrase ”the

p−expansion of Weyl character of χ(u, v)” to mean that we are considering

the expansion of χ(u, v) using Donkin’s formulas.

2.4.1 The case p = 2

Now we will consider the case p = 2. Kempf’s vanishing theorem implies that

χi(r, s) = 0 when r ≥ 0 and s ≥ 0. Also χi(r, s) = 0, if r = 0,−1 ors = 0,−1 see

e.g. [11, lemma 1,2]. So if χi(r, s) ≠ 0, then either r < −1 or s < −1. Without

loss of generality we will assume that s < −1. The following result gives us

the condition when the result is the same as in characteristic zero.

Proposition 2.4.11. Let p = 2 then χ1(r,−s − 2) = χ(r − s − 1, s) for all

r ≥ 2s, r, s > 0. Moreover

χ1
α(r,−s − 2) = χ(r − s − 1, s) + χ(r − s − 2, s − 1)

and

χ1
β(r,−s − 2) = χ(r − s − 1, s) + χ(r − s − 2, s + 2)

for all r ≥ 2s, r, s > 0.
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Proof. The argument is by induction on r and s. We will divide the proof

into the following cases

1. Suppose r = 1 + 2u and s = 1 + 2v for some positive integers u and v

then

χ1(1 + 2u,1 + 2(−v − 2)) = χ(1,1)χ1(u,−v − 2)F

= χ(1,1)χ(u − v − 1, v)F

= χ(2u − 2v − 1,2v + 1)

= χ(r − s − 1, s).

2. Let r = 2u and s = 2v for some positive integers u and v then

χ1(2u,2(−v − 1)) = χ1(u,−v − 1)F + χ1(u − 1,−v − 2)F + χ(1,0)χ1(u,−v − 2)F

+ χ(0,1)χ1(u − 1,−v − 1)F . (2.3)

To apply induction we need u ≥ 2v − 2 and u ≥ 2v − 1. But by our

assumption u ≥ 2v so both inequalities are clearly true. From equation

2.3 we get

χ1(2u,2(−v − 1)) = χ(u − v, v − 1)F + χ(u − v − 2, v)F + χ(1,0)χ(u − v − 1, v)F

+ χ(0,1)χ(u − v − 1, v − 1)F . (2.4)

Now the p−expansion of Weyl character of χ(2u−2v−1,2v) is given by

χ(2u − 2v − 1,2v) = χ(u − v, v − 1)F + χ(u − v − 2, v)F

+ χ(1,0)χ(u − v − 1, v)F + χ(0,1)χ(u − v − 1, v − 1)F .

(2.5)

Compare equations 2.4 and 2.5 to get

χ1(2u,2(−v − 1)) = χ(2u − 2v − 1,2v).

Hence the result.
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3. Now we take r = 1 + 2u and s = 2v for some positive integers u and v

then

χ1(1 + 2u,2(−v − 1)) = χ1
α(u + 1,−v − 2)F + χ(1,0)χ1(u,−v − 1)F

+ χ(0,1)χ1(u,−v − 2)F

= χ1
α(u + 1,−v − 2)F + χ(1,0)χ(u − v, v − 1)F

+ χ(0,1)χ(u − v − 1, v)F . (2.6)

Now the p−expansion of Weyl character of χ(2u − 2v,2v) is given by

χ(2u − 2v,2v) = χ(u − v, v)F + χ(u − v − 1, v − 1)F

+ χ(1,0)χ(u − v, v − 1)F + χ(0,1)χ(u − v − 1, v)F . (2.7)

If equation 2.6 and 2.7 are the same we must have

χ1
α(u + 1,−v − 2) = χ(u − v, v) + χ(u − v − 1, v − 1).

We will now prove that χ1
α(r,−s− 2) = χ(r − s− 1, s) +χ(r − s− 2, s− 1)

for all r ≥ 2s. If r is odd then the result is true by proposition 2.4.5

and the inductive hypothesis. We have the following two cases left

(a) Suppose r = 2u and s = 2v for some positive integers u and v we

have

χ1
α(2u,2(−v − 1)) = χ1(u − 1,−v − 2)F + χ(1,0)Fχ1(u − 1,−v − 1)F

+ 2χ(0,1)χ1(u − 1,−v − 1)F + χ(1,0)χ1
α(u,−v − 2)F

= χ(u − v − 2, v)F + χ(1,0)Fχ(u − v − 1, v − 1)F + 2χ(0,1)

χ(u − v − 1, v − 1)F + χ(1,0)[χ(u − v − 1, v) + χ(u − v − 2, v − 1)]F .

(2.8)
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Now the p−expansion of Weyl character of χ(2u − 2v − 1,2v) is

given by

χ(2u − 2v − 1,2v) = χ(u − v, v − 1)F + χ(u − v − 2, v)F

+ χ(1,0)χ(u − v − 1, v)F + χ(0,1)χ(u − v − 1, v − 1)F . (2.9)

and the p−expansion of Weyl character of χ(2u − 2v − 2,2v − 1) is

given by

χ(2u − 2v − 2,2v − 1) = χ(u − v − 2, v)F + χ(u − v − 1, v − 2)F

+ χ(1,0)χ(u − v − 2, v − 1)F + χ(0,1)χ(u − v − 1, v − 1)F .

(2.10)

Add equations 2.9, 2.10 and note that

χ(1,0)χ(u−v−1, v−1) = χ(u−v, v−1)+χ(u−v−2, v)+χ(u−v−1, v−2).

to get the result.

(b) Now let r = 2u and s = 1 + 2v for some positive integers u and v

we have

χ1
α(2u,−3 − 2v) = χ(0,1)Fχ1(u − 1,−v − 2)F + χ1(u − 1,−v − 1)F

+ 2χ(1,0)χ1(u − 1,−v − 2)F + χ(0,1)χ1
α(u,−v − 2)F . (2.11)

Using the inductive hypothesis we get

χ1
α(2u,−3 − 2v) = χ(0,1)Fχ(u − v − 2, v)F + χ(u − v − 1, v − 1)F + 2χ(1,0)

χ(u − v − 2, v)F + χ(0,1)[χ(u − v − 1, v) + χ(u − v − 2, v − 1)]F .

(2.12)

The p−expansion of Weyl character of χ(2u−2v−2,1+2v) is given

by

χ(2(u − v − 1),1 + 2(v)) = χ(u − v − 2, v + 1)F + χ(u − v − 1, v − 1)F

+ χ(1,0)χ(u − v − 2, v)F + χ(0,1)χ(u − v − 1, v)F . (2.13)

41



and the p−expansion of Weyl character of χ(2u − 2v − 3,2v) is

χ(1 + 2(u − v − 2),2(v)) = χ(u − v − 1, v − 1)F + χ(u − v − 3, v)F+

χ(1,0)χ(u − v − 2, v)F + χ(0,1)χ(u − v − 2, v − 1)F . (2.14)

Add equations 2.13,2.14 and note that

χ(0,1)χ(u−v−2, v) = χ(u−v−2, v+1)+χ(u−v−1, v−1)+χ(u−v−3, v).

to get the result.

4. Finally suppose r = 2u and s = 1 + 2v for some positive integers u and

v then

χ1(2u,1 + 2(−v − 2)) = χ1
β(u − 1,−v − 1)F + χ(1,0)χ1(u − 1,−v − 2)F

+ χ(0,1)χ1(u,−v − 2)F

= χ1
β(u − 1,−v − 1)F + χ(1,0)χ(u − v − 2, v)F

+ χ(0,1)χ(u − v − 1, v)F . (2.15)

Now the p−expansion of Weyl character of χ(2u−2v−2,1+2v) is given

by

χ(2u − 2v − 2,1 + 2v) = χ(u − v − 2, v + 1)F + χ(u − v − 1, v − 1)F

+ χ(1,0)χ(u − v − 2, v)F + χ(0,1)χ(u − v − 1, v)F .

(2.16)

If equation 2.15 and 2.16 are the same we must have

χ1
β(u − 1,−v − 1) = χ(u − v − 2, v + 1) + χ(u − v − 1, v − 1).

We will now prove that χ1
β(r,−s− 2) = χ(r − s− 1, s) +χ(r − s− 2, s+ 2)

for all r ≥ 2s. If s is odd then the result is true by proposition 2.4.5

and the inductive hypothesis. We have the following two cases left
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(a) First we take r = 2u and s = 2v for some positive integers u and v

then

χ1
β(2u,2(−v − 1)) = χ1(u − 1,−v − 2)F + χ(0,1)Fχ1(u,−v − 2)F

+ 2χ(1,0)χ1(u,−v − 2)F + χ(0,1)χ1
β(u − 1,−v − 1)F . (2.17)

Using the inductive hypothesis we get

χ1
β(2u,2(−v − 1)) = χ(u − v − 2, v)F + χ(0,1)Fχ(u − v − 1, v)F + 2χ(1,0)

χ(u − v − 1, v)F + χ(0,1)[χ(u − v − 1, v − 1) + χ(u − v − 2, v + 1)]F .

(2.18)

Also the p−expansion of Weyl character of χ(2u − 2v − 1,2v) is

given by

χ(1 + 2(u − v − 1),2v) = χ(u − v, v − 1)F + χ(u − v − 2, v)F

+ χ(1,0)χ(u − v − 1, v)F + χ(0,1)χ(u − v − 1, v − 1)F . (2.19)

and the p−expansion of Weyl character of χ(2u − 2v − 2,2v + 2) is

χ(2(u − v − 1),2(v + 1)) = χ(u − v − 1, v + 1)F + χ(u − v − 2, v)F

+ χ(1,0)χ(u − v − 1, v)F + χ(0,1)χ(u − v − 2, v + 1)F . (2.20)

Add 2.19,2.20 and note that

χ(0,1)χ(u−v−1, v) = χ(u−v−1, v+1)+χ(u−v, v−1)+χ(u−v−2, v).

(2.21)

to get the result.

(b) In our very last case we consider r = 1 + 2u and s = 2v for some

positive integers u and v then

χ1
β(1 + 2u,−2(−v − 1)) = χ(1,0)Fχ1(u,−v − 2)F + χ1(u + 1,−v − 2)F

+ 2χ(0,1)χ1(u,−v − 2)F + χ(1,0)χ1
β(u,−v − 1)F . (2.22)
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Using the inductive hypothesis we have

χ1
β(1 + 2u,2(−v − 1)) = χ(1,0)Fχ(u − v − 1, v)F + χ(u − v, v)F + 2χ(0,1)

χ(u − v − 1, v)F + χ(1,0)[χ(u − v, v − 1) + χ(u − v − 1, v + 1)]F .

(2.23)

The p−expansion of Weyl character for χ(2u − 2v,2v) is given by

χ(2(u − v),2v) = χ(u − v, v)F + χ(u − v − 1, v − 1)F

+ χ(1,0)χ(u − v, v − 1)F + χ(0,1)χ(u − v − 1, v)F . (2.24)

and the p−expansion of Weyl character of χ(2u − 2v − 1,2v + 2) is

χ(1 + 2(u − v − 1),2(v + 1)) = χ(u − v, v)F + χ(u − v − 2, v + 1)F

+ χ(1,0)χ(u − v − 1, v + 1)F + χ(0,1)χ(u − v − 1, v)F . (2.25)

Add equations 2.24 and 2.25 and note that

χ(1,0)χ(u−v−1, v) = χ(u−v, v)+χ(u−v−2, v+1)+χ(u−v−1, v−1).

(2.26)

to get the result.

This completes the proof.

Corollary 2.4.12. Let p = 2. Then the sequence

0→H1(r − 2,−s − 1) Ð→H1(Nα(r,−s − 2)) Ð→H1(r,−s − 2) Ð→ 0

is exact for all r ≥ 2s.
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Proof. We know that the sequence

H1(r − 2,−s − 1) φÐ→H1(Nα(r,−s − 2)) ψÐ→H1(r,−s − 2)

is exact meaning Imφ = Kerψ. Moreover by proposition 2.4.11, we have

χ1
α(r,−s − 2) = χ1(r,−s − 2) + χ1(r − 2,−s − 1).

Let X = H1(r − 2,−s − 1), Y = H1(Nα(r,−s − 2)) and Z = H1(r,−s − 2).

Now Imψ ≃ Y /Kerψ ≃ Y /Imφ, therefore dim Y = dim Imφ + dim Imψ. It is

clear that dim Imψ ≤ dim Z. Also by the character result we have dim Y =

dim X + dim Z. Now dim Imφ = dim Y − dim Imψ ≤ dim Y − dim Z = dim X.

This implies dim Imφ ≤ dim X. We have proved that dim Imφ ≤ dim X and

dim Imψ ≤ dim Z but dim Y = dim X + dim Z so we must have the equality.

This proves that φ is injective and ψ is surjective and hence the result.

The only region left to consider is when r < 2s. We will give here a few special

cases to give us an idea how the general case may look like. The proof is by

repeated application of recursive formulas and is very easy but long. We will

leave it to the reader to verify. The cases s = −2,−3,−5 are already given in

[11].

χ1(r,−4) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

χ(0), r = 2

χ(r − 3,2), r ≥ 3

0, otherwise.
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χ1(r,−6) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

χ(0,2), r = 4

χ(0,4) + χ(0,1), r = 5

χ(1,4) + χ(0), r = 6

χ(2,4) + χ(0,1)F , r = 7

χ(r − 5,4), r ≥ 8

0, otherwise.

χ1(r,−7) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

χ(0,1), r = 4

χ(1,1), r = 5

χ(0,5) + χ(1,0), r = 6

χ(r − 6,5), r ≥ 7

0, otherwise.

χ1(r,−8) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

χ(0), r = 4

χ(1,0), r = 5

χ(0,2)F + χ(0,1), r = 6

χ(r − 7,6), r ≥ 7

0, otherwise.

χ1(r,−9) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

χ(r − 8,7), r ≥ 8

0, otherwise.

χ1(r,−10) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

χ(0,6), r = 8

χ(r − 9,8), r ≥ 9

0, otherwise.

46



χ1(r,−11) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

χ(0,5), r = 8

χ(1,5), r = 9

χ(0,9) + χ(1,4), r = 10

χ(1,9) + χ(1,3), r = 11

χ(2,9) + χ(1,2), r = 12

χ(3,9) + χ(1,1), r = 13

χ(4,9) + χ(1,0) + χ(0,1)χ(0,1)F 2
, r = 14

χ(5,9) + χ(1,1)χ(0,1)F 2
, r = 15

χ(6,9) + χ(1,0)χ(0,1)F 2
, r = 16

χ(r − 10,9), r ≥ 17

0, otherwise.

Proposition 2.4.13. χ1(2n,−2n − 2) = χ(0,2n − 2), for all n ≥ 0.

Proof. The argument is by induction on n. The result is true for n = 1 by

above special cases. Suppose the result is true for n − 1. Using the recursive

formula we have

χ1(2n,−2n − 2) = χ1(2n−1,−2n−1 − 1)F + χ1(2n−1 − 1,−2n−1 − 2)F

+ χ(1,0)χ1(2n−1,−2n−1 − 2)F + χ(0,1)χ1(2n−1 − 1,−2n−1 − 1)F . (2.27)

Now by proposition 2.4.8 we have χ1(2n−1 − 1,−2n−1 − 2) = 0. Also χ1(2n−1 −

1,−2n−1 − 1) = 0 and χ1(2n−1,−2n−1 − 1) = χ(0,2n−1 − 1) by proposition 2.4.7.

the equation 2.27 becomes

χ1(2n,−2n − 2) = χ(0,2n−1 − 1)F + χ(1,0)χ(0,2n−1 − 2)F . (2.28)
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Finally compare equation 2.28 with the p−expansion of Weyl character of

χ(0,2n − 2) to get the result.

Proposition 2.4.14. Suppose n ≥ 0 then we have χ1(2n − 1,−2n) = χ(0,2n −

2). Also

χ1
α(2n,−2n − 1) = χ(0,2n − 1).

Proof. The argument is by induction on n. The result is clearly true for

n = 0. Using the recursive formulas we get

χ1(2n − 1,−2n) = χ1
α(2n−1,−2n−1 − 1)F + χ(1,0)χ1(2n−1 − 1,−2n−1)F

+ χ(0,1)χ1(2n−1 − 1,−2n−1 − 1)F . (2.29)

Now χ1(2n−1 −1,−2n−1 −1) = 0 by proposition 2.4.7. Also the p−expansion of

Weyl character of χ(0,2n − 2) gives

χ(0,2n − 2) = χ(0,2n−1 − 1)F + χ(1,0)χ(0,2n−1 − 2)F .

So if the result is true we must have χ1
α(2n−1,−2n−1 − 1) = χ(0,2n−1 − 1). We

will show this by induction on n. The result is clearly true for n = 1. Now

by the recursive formula we get

χ1
α(2n,−2n − 1) = χ(0,1)Fχ1(2n−1 − 1,−2n−1 − 1)F + χ1(2n−1 − 1,−2n−1)F

+ 2χ(1,0)χ1(2n−1 − 1,−2n−1 − 1)F + χ(0,1)χ1
α(2n−1,−2n−1 − 1)F .

(2.30)

Now χ1(2n−1 − 1,−2n−1 − 1) = 0 by proposition 2.4.7. Using the inductive

hypothesis equation 2.30 becomes

χ1
α(2n,−2n − 1) = χ(0,2n−1 − 2)F + χ(0,1)χ(0,2n−1 − 1)F

= χ(0,2n − 1). (2.31)
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Substituting from equation 2.31 to equation 2.29 and using the inductive

hypothesis we get the result.

Proposition 2.4.15. χ1(2n,−2n) = χ(1,2n − 2) for all n ≥ 0.

Proof. We argue by induction on n. The result is clearly true for n = 0.

Suppose the result is true for all t < n then we have

χ1(2t,−2t) = χ(1,2t − 2).

Now for n = t + 1 we get

χ1(2t+1,−2t+1) = χ1(2t,−2t)F + χ1(2t − 1,−2t − 1)F

+ χ(1,0)χ1(2t,−2t − 1)F + χ(0,1)χ1(2t − 1,−2t)F . (2.32)

From propositions 2.4.14 and 2.4.7 we get that χ1(2t − 1,−2t) = χ(0,2t − 2)

and χ1(2t − 1,−2t − 1) = 0. Also χ1(2t,−2t − 1) = χ(0,2t − 1) by proposition

2.4.7. The equation 2.32 becomes

χ1(2t+1,−2t+1) = χ(1,2t−2)F +χ(1,0)χ(0,2t−1)F +χ(0,1)χ(0,2t−2)F . (2.33)

Compare the p−expansion of Weyl character of χ(1,2t+1 − 2) with equation

2.33 to get the required result.

Proposition 2.4.16. Suppose n ≥ 0 then we have χ1(2n + 1,−2n) = χ(1,2n −

2). Also

χ1
α(2n,−2n − 1) = χ(0,2n − 1).

Proof. The argument is by induction on n. The result is clearly true for

n = 0. Using the recursive formulas we get

χ1(2n + 1,−2n) = χ1
α(2n−1 + 1,−2n−1 − 1)F + χ(1,0)χ1(2n−1,−2n−1)F

+ χ(0,1)χ1(2n−1,−2n−1 − 1)F . (2.34)
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Now χ1(2n−1,−2n−1 − 1) = χ(0,2n−1 − 1) by proposition 2.4.7. Also by propo-

sition 2.4.15 we get χ1(2n−1,−2n−1) = χ(1,2n−1 − 2). The proposition 2.4.5

gives

χ1
α(2n−1 + 1,−2n−1 − 1) = χ(1,2n−1 − 1) + χ(0,2n−1 − 2).

The equation 2.34 becomes

χ1(2n + 1,−2n) = [χ(1,2n−1 − 1) + χ(0,2n−1 − 2)]F + χ(1,0)

χ(1,2n−1 − 2)F + χ(0,1)χ(0,2n−1 − 1)F . (2.35)

Also the p−expansion of Weyl character of χ(1,2n − 2) gives

χ(1,2n − 2) = [χ(1,2n−1 − 1) + χ(0,2n−1 − 2)]F + χ(1,0)

χ(1,2n−1 − 2)F + χ(0,1)χ(0,2n−1 − 1)F . (2.36)

Compare equations 2.35 and 2.36 to get the result.

Proposition 2.4.17. Suppose n ≥ 0 then we have χ1(2n−1,−2n+1) = χ(1,2n−

3).

Proof. The argument is by induction on n. The result is clearly true for

n = 0. Using the recursive formulas we get

χ1(2n − 1,−2n + 1) = χ(1,1)χ1(2n−1 − 1,−2n−1)F

= χ(1,1)χ(0,2n−1 − 2)F

= χ(1,2n − 3).

Proposition 2.4.18. Suppose n ≥ 0 then we have χ1(2n,−2n + 1) = χ(2,2n −

3).
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Proof. The argument is by induction on n. The result is clearly true for

n = 0. Using the recursive formulas we get

χ1(2n,−2n + 1) = χ1
β(2n−1 − 1,−2n−1 + 1)F + χ(1,0)χ1(2n−1 − 1,−2n−1)F

+ χ(0,1)χ1(2n−1,−2n−1)F . (2.37)

Now χ1(2n−1 − 1,−2n−1) = χ(0,2n−1 − 2) by proposition 2.4.14. Also

χ1(2n−1,−2n−1) = χ(1,2n−1 − 2) by proposition 2.4.15. Moreover proposition

2.4.5 gives

χ1
β(2n−1 − 1,−2n−1 + 1) = χ1(2n−1 − 1,−2n−1 + 1) + χ1(2n−1,−2n−1 − 1)

Using propositions 2.4.7 and 2.4.17, equation 2.37 becomes

χ1(2n,−2n + 1) = [χ(1,2n−1 − 3) + χ(0,2n−1 − 1)]F + χ(1,0)χ1(0,2n−1 − 2)F

+ χ(0,1)χ1(1,2n−1 − 2)F . (2.38)

Compare equation 2.38 with the p−expansion of Weyl character of χ(2,2n−3)

to get the result.

Proposition 2.4.19. Suppose n ≥ 0 then we have χ1(2n+1,−2n+1) = χ(3,2n−

3).

Proof. The argument is by induction on n. The result is clearly true for

n = 0. Using the recursive formulas we get

χ1(2n + 1,−2n + 1) = χ(1,1)χ1(2n−1,−2n−1)F

= χ(1,1)χ(1,2n−1 − 2)F

= χ(3,2n − 3).
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Proposition 2.4.20. Suppose r, n > 0 then we have

χ1(2n,−2n − r) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

χ(0,2n − r), n ≥ r − 1

0, otherwise.

Proof. We argue by induction on r. The result is true for r = 1 by proposition

2.4.7. Suppose the result is true for all t−1 < r. For r = t we have the following

two possibilities.

1. Suppose t is even then t = 2u for some positive integer u we have

χ1(2n,−2n − 2u)

= χ1(2n−1,−2n−1 − u)F + χ1(2n−1 − 1,−2n−1 − u − 1)F

+ χ(1,0)χ1(2n−1,−2n−1 − u − 1)F + χ(0,1)χ1(2n−1 − 1,−2n−1 − u)F .

(2.39)

By proposition 2.4.8 we have χ1(2n−1−1,−2n−1−u−1) = 0 and χ1(2n−1−

1,−2n−1 − u) = 0. Using the inductive hypothesis we get

χ1(2n,−2n − 2u) = χ(0,2n−1 − u)F + χ(1,0)χ1(0,2n−1 − u − 1)F . (2.40)

Compare equation 2.39 with the p−expansion of Weyl character of

χ(0,2n − 2u) to get the result.

2. Now suppose r = 2u + 1 for some positive integer u then we have

χ1(2n,−2n − 2u − 1)

= χ1
β(2n−1 − 1,−2n−1 − u)F + χ(1,0)χ1(2n−1 − 1,−2n−1 − u − 1)F

+ χ(0,1)χ1(2n−1,−2n−1 − u − 1)F . (2.41)
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By proposition 2.4.8 we have χ1(2n−1 − 1,−2n−1 − u − 1) = 0. Also by

proposition(16) we have χ1
β(2n−1−1,−2n−1−u) = χ1(2n−1,−2n−1−u−2).

Using the inductive hypothesis we get

χ1(2n,−2n−2u−1) = χ(0,2n−1−u−2)F+χ(0,1)χ1(0,2n−1−u−1)F . (2.42)

Compare equation 2.42 with the p−expansion of Weyl character of

χ(0,2n − 2u − 1) to get the result.

2.4.2 The case p = 3

We will now give a version of the results given in the above section in p = 3.

The following proposition tells us when the result is the same as in charac-

teristic zero.

Proposition 2.4.21. Let p = 3 then χ1(r,−s − 2) = χ(r − s − 1, s) for all

r ≥ 3s, r, s > 0. Moreover

χ1
α(r,−s − 2) = χ(r − s − 1, s) + χ(r − s − 2, s − 1)

and

χ1
β(r,−s − 2) = χ(r − s − 1, s) + χ(r − s − 2, s + 2)

for all r ≥ 3s, r, s > 0.

Proof. The proof is again by induction and the recursive formulas given in

[11]. As in characteristic p = 2 there are many cases to consider. We will

outline some of the cases below.
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1. First let r = 2 + 3u and s = 2 + 3v for some positive integers u and v

then we have

χ1(2 + 3u,−3v − 4) = χ(2,2)χ1(u,−v − 2)F

= χ(2,2)χ(u − v − 1, v)F

= χ(3u − 3v − 1,2 + 3v).

This proves the result in this case.

2. Next we take r = 1 + 3u and s = 1 + 3v for some positive integers u and

v then we have

χ1(1 + 3u,−3v − 3) = χ(1,0)[χ1(u,−v − 1) + χ1(u − 1,−v − 2)]F

+ χ(0,2)χ1(u − 1,−v − 1)F + χ(2,1)χ1(u,−v − 2)F

= χ(1,0)[χ(u − v, v − 1) + χ(u − v − 2, v)]F

+ χ(0,2)χ(u − v − 1, v − 1)F + χ(2,1)χ(u − v − 1, v)F . (2.43)

Now the p−expansion of Weyl character of χ(3u−3v−1,1+3v) is given

by

χ(3u − 3v − 1,1 + 3v) = χ(1,0)[χ(u − v, v − 1) + χ(u − v − 2, v)]F

+ χ(0,2)χ(u − v − 1, v − 1)F + χ(2,1)χ(u − v − 1, v)F .

(2.44)

Compare equations 2.44 and 2.43 to get the result.

3. Now consider r = 3u and s = 3v for some positive integers u and v then
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we have

χ1(3u,−3v − 2) = χ(0,1)[χ1(u,−v − 1) + χ1(u − 1,−v − 2)]F

+ χ(2,0)χ1(u,−v − 2)F + χ(1,2)χ1(u − 1,−v − 1)F

= χ(0,1)[χ(u − v, v − 1) + χ(u − v − 2, v)]F

+ χ(2,0)χ(u − v − 1, v − 1)F + χ(1,2)χ(u − v − 1, v − 1)F . (2.45)

Now the p−expansion of Weyl character of χ(3u−3v−1,3v) is given by

χ(3u − 3v − 1,3v) = χ(0,1)[χ(u − v, v − 1) + χ(u − v − 2, v)]F

+ χ(2,0)χ(u − v − 1, v − 1)F + χ(1,2)χ(u − v − 1, v − 1)F .

(2.46)

Compare equations 2.45 and 2.46 to get the result.

4. Let r = 2+ 3u and s = 1+ 3v for some positive integers u and v then we

have

χ1(2 + 3u,−3v − 3) = χ(0,1)χ1
α(u + 1,−v − 2)F + χ(2,0)χ1(u,−v − 1)F

+ χ(1,2)χ1(u,−v − 2)F

= χ(0,1)χ1
α(u + 1,−v − 2)F + χ(2,0)χ(u − v − 1, v − 1)F

+ χ(1,2)χ(u − v − 1, v)F . (2.47)

Now the p−expansion of Weyl character of χ(3u−3v,1+3v) is given by

χ(3u − 3v,1 + 3v) = χ(0,1)[χ(u − v, v) + χ(u − v − 1, v − 1)]F

+ χ(2,0)χ(u − v, v − 1)F + χ(1,2)χ(u − v − 1, v)F . (2.48)

If equations 2.47 and 2.48 are equal we must have

χ1
α(u + 1,−v − 2) = χ(u − v, v) + χ(u − v − 1, v − 1).
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We will now show that χ1
α(r,−s−2) = χ(r−s−1, s)+χ(r−s−2, s−1). By

proposition 2.4.5 the result is true whenever r ≠ 3u for some positive

integer u. We will now cover the case when r = 3u and we have the

following cases for s.

(a) Let s = 3v then we get

χ1
α(3u,−3v − 2) = χ(0,1)[χ1(u − 1,−v − 2) + χ(1,0)χ1(u − 1,−v − 1)]F

+ χ(2,0)χ1
α(u,−v − 2)F + 2χ(1,2)χ1(u − 1,−v − 1)F

= χ(0,1)[χ(u − v − 2, v) + χ(1,0)χ(u − v − 1, v − 1)]F + χ(2,0)

[χ(u − v − 1, v) + χ(u − v − 2, v − 1)]F + 2χ(1,2)χ(u − v − 1, v)F .

(2.49)

Now the p−expansion of Weyl character of χ(3u − 3v − 1,3v) is

given by

χ(3u − 3v − 1,3v) = χ(0,1)[χ(u − v, v − 1) + χ(u − v − 2, v)]F

+ χ(2,0)χ(u − v − 1, v)F + χ(1,2)χ(u − v − 1, v − 1)F .

(2.50)

And the p−expansion of Weyl character for χ(3u − 3v − 2,3v − 1)

is

χ(3u − 3v − 2,3v − 1) = χ(0,1)[χ(u − v − 2, v) + χ(u − v − 1, v − 2)]F

+ χ(2,0)χ(u − v − 2, v − 1)F + χ(1,2)χ(u − v − 1, v − 1)F .

(2.51)

Add equations 2.50 and 2.51 and compare it with equation 2.49

to get the result.
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(b) Now suppose s = 3v + 2 then we have

χ1
α(3u,−3v − 4) = χ(1,0)[χ1(u − 1,−v − 1) + χ(0,1)χ1(u − 1,−v − 2)]F

+ χ(0,2)χ1
α(u,−v − 2)F + 2χ(2,1)χ1(u − 1,−v − 2)F

= χ(1,0)[χ(u − v − 1, v − 1) + χ(0,1)χ(u − v − 2, v)]F + χ(0,2)

[χ(u − v − 1, v) + χ(u − v − 2, v − 1)]F + 2χ(2,1)χ(u − v − 2, v)F .

(2.52)

Now the p−expansion of Weyl character of χ(3u− 3v − 3,2+ 3v) is

given by

χ(3u − 3v − 3,2 + 3v) = χ(1,0)[χ(u − v − 2, v + 1) + χ(u − v − 1, v − 1)]F

+ χ(0,2)χ(u − v − 1, v)F + χ(2,1)χ(u − v − 2, v)F .

(2.53)

And the p−expansion of Weyl character for χ(3u − 3v − 4,3v + 1)

is

χ(3u − 3v − 4,3v + 1) = χ(1,0)[χ(u − v − 1, v − 1) + χ(u − v − 3, v)]F

+ χ(0,2)χ(u − v − 2, v − 1)F + χ(2,1)χ(u − v − 2, v)F .

(2.54)

Add equations 2.53 and 2.54 and compare it with equation 2.52

to get the result.

(c) Finally we have the case when s = 1+3v which follows exactly the

same as the above two cases. We will omit the details.

This completes the result in this case.
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Corollary 2.4.22. Let p = 3. Then the sequence

0→H1(r − 2,−s − 1) Ð→H1(Nα(r,−s − 2)) Ð→H1(r,−s − 2) Ð→ 0

is exact for all r ≥ 3s.

Proof. We know that the sequence

H1(r − 2,−s − 1) φÐ→H1(Nα(r,−s − 2)) ψÐ→H1(r,−s − 2)

is exact meaning Imφ = Kerψ. Moreover by proposition 2.4.21, we have

χ1
α(r,−s − 2) = χ1(r,−s − 2) + χ1(r − 2,−s − 1).

Let X = H1(r − 2,−s − 1), Y = H1(Nα(r,−s − 2)) and Z = H1(r,−s − 2).

Now Imψ ≃ Y /Kerψ ≃ Y /Imφ, therefore dim Y = dim Imφ + dim Imψ. It is

clear that dim Imψ ≤ dim Z. Also by the character result we have dim Y =

dim X + dim Z. Now dim Imφ = dim Y − dim Imψ ≤ dim Y − dim Z = dim X.

This implies dim Imφ ≤ dim X. We have proved that dim Imφ ≤ dim X and

dim Imψ ≤ dim Z but dim Y = dim X + dim Z so we must have the equality.

This proves that φ is injective and ψ is surjective and hence the result.

As explained in characteristic p = 2 the only region left to consider is when

r < 3s. We will give here a few special cases to give us a sense of the general

case.

χ1(r,−2) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

χ(r − 1,0), r > 0

0, otherwise.
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χ1(r,−3) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

χ(0,1), r = 2

χ(1,1), r = 3

χ(2,1), r = 4

χ(3,1) + χ(0,1)χ(0,2)F , r = 5

χ(r − 2,1), r ≥ 6

0, otherwise.

χ1(r,−4) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

χ(r − 3,2), r ≥ 3

0, otherwise.

χ1(r,−5) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

χ(0,1), r = 3

χ(0,3) + χ(0), r = 4

χ(r − 4,3), r ≥ 5

0, otherwise.

Now we will try to give a version of all the results given for p = 2 in the case

of p = 3.

Proposition 2.4.23. χ1(3n,−3n − 2) = χ(0,3n − 2), for all n ≥ 0.

Proof. The argument is by induction on n. The result is true for n = 1 by the

special cases above. Suppose the result is true for n − 1. Using the recursive

formula we have

χ1(3n,−3n − 2) = χ(0,1)[χ1(3n−1,−3n−1 − 1) + χ1(3n−1 − 1,−3n−1 − 2)]F

+ χ(2,0)χ1(3n−1,−3n−1 − 2)F + χ(1,2)χ1(3n−1 − 1,−3n−1 − 1)F . (2.55)
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Now by proposition 2.4.8 we have χ1(3n−1 − 1,−3n−1 − 2) = 0. Also χ1(3n−1 −

1,−3n−1 − 1) = 0 and χ1(3n−1,−3n−1 − 1) = χ(0,3n−1 − 1) by proposition 2.4.7.

The equation 2.55 becomes

χ1(3n,−3n − 2) = χ(0,1)χ(0,3n−1 − 1)F + χ(2,0)χ(0,3n−1 − 2)F . (2.56)

Finally compare equation 2.56 with the p−expansion of Weyl character of

χ(0,3n − 2) to get the result.

Proposition 2.4.24. Suppose n ≥ 0 then we have χ1(3n − 1,−3n) = χ(0,3n −

2). Also

χ1
α(3n,−3n − 1) = χ(0,3n − 1).

Proof. The argument is by induction on n. The result is clearly true for

n = 0. Using the recursive formulas we get

χ1(3n − 1,−3n) = χ(0,1)χ1
α(3n−1,−3n−1 − 1)F + χ(2,0)χ1(3n−1 − 1,−3n−1)F

+ χ(1,2)χ1(3n−1 − 1,−3n−1 − 1)F . (2.57)

Now χ1(3n−1 −1,−3n−1 −1) = 0 by proposition 2.4.7. Also the p−expansion of

Weyl character of χ(0,3n − 2) gives

χ(0,3n − 2) = χ(0,1)χ(0,3n−1 − 1)F + χ(2,0)χ(0,3n−1 − 2)F .

So if the result is true we must have χ1
α(3n−1,−3n−1 − 1) = χ(0,3n−1 − 1). We

will show this by induction on n. The result is clearly true for n = 1. Now

by the recursive formula we get

χ1
α(3n,−3n − 1) = χ(1,0)[χ1(3n−1 − 1,−3n−1) + χ(0,1)

χ1(3n−1 − 1,−3n−1 − 1)]F + χ(0,2)χ1
α(3n−1,−3n−1 − 1)F

+ 2χ(2,1)χ1(3n−1 − 1,−3n−1 − 1)F . (2.58)
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Now χ1(3n−1 − 1,−3n−1 − 1) = 0 by proposition 2.4.7. Using the inductive

hypothesis equation 2.58 becomes

χ1
α(3n,−3n − 1) = χ(1,0)χ(0,3n−1 − 2)F + χ(0,2)χ(0,3n−1 − 1)F

= χ(0,3n − 1). (2.59)

Replacing value from equation 2.59 to equation 2.57 and using the inductive

hypothesis we get the result.

Proposition 2.4.25. χ1(3n,−3n) = χ(1,3n − 2) for all n ≥ 0. Also

χ1
β(3n − 1,−3n) = χ(0,3n − 2).

Proof. We argue by induction on n. The result is clearly true for n = 0.

Suppose the result is true for all t < n then we have

χ1(3t,−3t) = χ(1,3t − 2).

Now for n = t + 1 we get

χ1(3t+1,−3t+1) = [χ1(3t,−3t) + χ1(3t − 1,−3t − 1)

+ χ1
β(3t − 1,−3t) + χ1

α(3t,−3t − 1)]F

+ chL(ρ)[χ1(3t,−3t − 1) + χ1(3t − 1,−3t) + χ1(3t − 1,−3t − 1)]F . (2.60)

From propositions 2.4.14 and 2.4.7 we get that χ1(3t−1,−3t) = χ(0,3t−2) and

χ1(3t − 1,−3t − 1) = 0. Also χ1(3t,−3t − 1) = χ(0,3t − 1) by proposition 2.4.7.

Moreover χ1
α(3t,−3t − 1) = χ(0,3t − 1) by proposition 2.4.24. The equation

2.60 becomes

χ1(3t+1,−3t+1) = [χ(1,3t − 2) + χ1
β(3t − 1,−3t) + χ(0,3t − 1)]F

+ chL(ρ)[χ(0,3t − 1) + χ(0,3t − 2)]F . (2.61)
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Now the p−expansion of Weyl character of χ(1,3t+1 − 2) is given by

χ(1,3t+1 − 2) = [χ(0,3t − 2) + χ(1,3t − 2) + χ(0,3t − 1)]F

+ chL(ρ)[χ(0,3t − 1) + χ(0,3t − 2)]F . (2.62)

Now if equations 2.61 and 2.62 are equal we must have χ1
β(3t − 1,−3t) =

χ(0,3t − 2). We will prove this by recursion. We have

χ1
β(3t − 1,−3t)

= χ(0,1)[χ1(3t−1 + 1,−3t−1 − 1) + χ(1,0)χ1(3t−1 − 1,−3t−1 − 1)]F

+ χ(2,0)χ1
β(3t−1 − 1,−3t−1)F + 2χ(1,2)χ1(3t−1 − 1,−3t−1 − 1)F . (2.63)

From proposition 2.4.7 we get that χ1(3t−1 + 1,−3t−1 − 1) = χ(1,3t−1 − 1) and

χ1(3t − 1,−3t − 1) = 0. The equation 2.63 becomes

χ1
β(3t − 1,−3t) = χ(0,1)χ(1,3t−1 − 1)F + χ(2,0)χ(0,3t−1 − 2)F . (2.64)

Compare this with the p−expansion of Weyl character χ(0,3t − 2) to get the

required result.

Proposition 2.4.26. Suppose n ≥ 0 then we have χ1(3n + 1,−3n) = χ(1,3n −

2).

Proof. The argument is by induction on n. The result is clearly true for

n = 0. Using the recursive formulas we get

χ1(3n + 1,−3n) = χ(1,0)[χ1(3n−1,−3n−1) + χ1(3n−1 − 1,−3n−1 − 1)]F + χ(0,2)

χ1(3n−1 − 1,−3n−1)F + χ(2,1)χ1(3n−1,−3n−1 − 1)F . (2.65)
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Now χ1(3n−1,−3n−1 − 1) = χ(0,3n−1 − 1) by proposition 2.4.7. Also by propo-

sition 2.4.25 we get χ1(3n−1,−3n−1) = χ(1,3n−1 − 2) and χ1(3n−1 − 1,−3n−1) =

χ(0,3n−1 − 2) by proposition 2.4.24. The equation 2.65 becomes

χ1(3n + 1,−3n) = χ(1,0)χ(1,3n−1 − 2)F + χ(0,2)χ(0,3n−1 − 2)F

+ χ(2,1)χ(0,3n−1 − 1)F . (2.66)

Also the p−expansion of Weyl character of χ(1,3n − 2) gives

χ(1,3n − 2) = χ(1,0)χ(1,3n−1 − 2)F + χ(0,2)χ(0,3n−1 − 2)F

+ χ(2,1)χ(0,3n−1 − 1)F . (2.67)

Compare equations 2.66 and 2.67 to get the result.

Proposition 2.4.27. Suppose n ≥ 0 then we have χ1(3n−1,−3n+1) = χ(1,3n−

3).

Proof. The argument is by induction on n. The result is clearly true for

n = 0. Using the recursive formulas we get

χ1(3n − 1,−3n + 1) = χ(1,0)χ1
α(3n−1,−3n−1 − 1)F + χ(0,2)

χ1(3n−1 − 1,−3n−1 − 1)F + χ(2,1)χ1(3n−1 − 1,−3n−1)F .

(2.68)

Now χ1(3n−1−1,−3n−1−1) = 0 by proposition 2.4.7. Also by proposition 2.9 we

have χ1
α(3n−1,−3n−1−1) = χ(0,3n−1−1) and χ1(3n−1−1,−3n−1) = χ(0,3n−1−2).

The equation 2.68 now becomes

χ1(3n − 1,−3n + 1) = χ(1,0)χ(0,3n−1 − 1)F + χ(2,1)χ(0,3n−1 − 2)F . (2.69)

Compare equation 2.69 with the p−expansion of Weyl character of χ(1,3n−3)

to get the result.
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Proposition 2.4.28. Suppose n ≥ 0 then we have χ1(3n,−3n + 1) = χ(2,3n −

3).

Proof. The argument is by induction on n. The result is clearly true for

n = 0. Using the recursive formulas we get

χ1(3n,−3n + 1) = χ(0,1)[χ1(3n−1,−3n−1) + χ1(3n−1 − 1,−3n−1 − 1)]F

+ χ(2,0)χ1(3n−1,−3n−1 − 1)F + χ(1,2)χ1(3n−1 − 1,−3n−1)F . (2.70)

Now χ1(3n−1 − 1,−3n−1) = χ(0,3n−1 − 2) by proposition 2.4.24. Also

χ1(3n−1,−3n−1) = χ(1,3n−1 − 2) by proposition 2.4.25. Moreover proposition

2.4.7 gives χ1(3n−1 − 1,−3n−1 − 1) = 0. Equation 2.70 becomes

χ1(3n,−3n + 1) = χ(0,1)χ(1,3n−1 − 2)F + χ(2,0)χ(0,3n−1 − 1)F

+ χ(1,2)χ(0,3n−1 − 2)F . (2.71)

Compare equation 2.71 with the p−expansion of Weyl character of χ(2,3n−3)

to get the result.

Proposition 2.4.29. Suppose n ≥ 0 then we have χ1(3n+1,−3n+1) = χ(3,3n−

3).

Proof. The argument is by induction on n. The result is clearly true for

n = 0. Using the recursive formulas we get

χ1(3n + 1,−3n + 1)

= [χ1
β(3n−1 − 1,−3n−1 + 1) + χ1

α(3n−1 + 1,−3n−1 − 1) + χ1(3n−1,−3n−1)

+ χ1(3n−1 − 1,−3n−1 − 1)]F + chL(ρ)[χ1(3n−1,−3n−1) + χ1(3n−1,−3n−1 − 1)

+ χ1(3n−1 − 1,−3n−1)]F . (2.72)
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By proposition 2.4.5 we have

χ1
β(3n−1 − 1,−3n−1 + 1) = χ1(3n−1 − 1,−3n−1 + 1) + χ1(3n−1,−3n−1 − 1)

and

χ1
α(3n−1 + 1,−3n−1 − 1) = χ1(3n−1 + 1,−3n−1 − 1) + χ1(3n−1 − 1,−3n−1).

Also using proposition 2.4.7, 2.4.24 and 2.4.25 the equation 2.72 becomes

χ1(3n + 1,−3n + 1)

= [χ(1,3n−1 − 3) + χ(0,3n−1 − 1) + χ(1,3n−1 − 1)

+ χ(0,3n−1 − 2) + χ(1,3n−1 − 2)]F + chL(ρ)

[χ(1,3n−1 − 2) + χ(0,3n−1 − 1) + χ(0,3n−1 − 2)]F . (2.73)

The p−expansion of Weyl character of χ(3,3n − 3) is given by

χ(3,3n − 3)

= [χ(1,3n−1 − 3) + χ(0,3n−1 − 1) + χ(1,3n−1 − 1)

+ χ(0,3n−1 − 2) + χ(1,3n−1 − 2)]F + chL(ρ)

[χ(1,3n−1 − 2) + χ(0,3n−1 − 1) + χ(0,3n−1 − 2)]F . (2.74)

Hence the result.

Proposition 2.4.30. Suppose r, n > 0 then we have

χ1(3n,−3n − r) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

χ(0,3n − r), n ≥ r − 1

0, otherwise.

Proof. We argue by induction on r. The result is true for r = 1 by proposition

2.4.7. Suppose the result is true for all t−1 < r. For r = t we have the following

three possibilities
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1. Suppose t = 2 + 3u for some positive integer u we have

χ1((3n,−3n − 3u − 2))

= χ(0,1)[χ1(3n−1,−3n−1 − u − 1) + χ1(3n−1 − 1,−3n−1 − u − 2)]F

+ χ(2,0)χ1(3n−1,−3n−1 − u − 2)F + χ(1,2)χ1(3n−1 − 1,−3n−1 − u − 1)F .

(2.75)

By proposition 2.4.8 we have χ1(3n−1−1,−3n−1−u−1) = 0 and χ1(3n−1−

1,−3n−1 − u) = 0. Using the inductive hypothesis we get

χ1(3n,−3n−3u−2) = χ(0,1)χ(0,3n−1−u−1)F +χ(2,0)χ(0,3n−1−u−2)F .

(2.76)

Compare equation 2.76 with the p−expansion of Weyl character of

χ(0,3n − 3u − 2) to get the result.

2. Now suppose r = 3u + 1 for some positive integer u then we have

χ1(3n,−3n − 3u − 1)

= χ(1,0)χ1
β(3n−1 − 1,−3n−1 − u)F + χ(0,2)χ1(3n−1,−3n−1 − u − 1)F

+ χ(2,1)χ1(3n−1 − 1,−3n−1 − u − 1)F . (2.77)

By proposition 2.4.8 we have χ1(3n−1−1,−3n−1−u) = 0. Also by propo-

sition 2.4.5 we have χ1
β(3n−1 − 1,−3n−1 − u) = χ1(3n−1,−3n−1 − u − 2).

Using the inductive hypothesis we get

χ1(3n,−3n−3u−1) = χ(1,0)χ(0,3n−1−u−2)F +χ(0,2)χ(0,3n−1−u−1)F .

(2.78)

Compare equation 2.78 with the p−expansion of Weyl character of

χ(0,3n − 3u − 1) to get the result.
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3. Finally let r = 3u for some positive integer u then we have

χ1(3n,−3n − 3u)

= [χ1(3n−1,−3n−1 − u) + χ1(3n−1 − 1,−3n−1 − u − 1)

+ χ1
β(3n−1 − 1,−3n−1 − u) + χ1

α(3n−1,−3n−1 − u − 1)]F

+ chL(ρ)[χ1(3n−1,−3n−1 − u − 1) + χ1(3n−1 − 1,−3n−1 − u)

+ χ1(3n−1 − 1,−3n−1 − u − 1)]F . (2.79)

By proposition 2.4.8 we have χ1(3n−1−1,−3n−1−u) = 0. Also by propo-

sition 2.4.5 we have χ1
β(3n−1 − 1,−3n−1 − u) = χ1(3n−1,−3n−1 − u − 2).

Using the inductive hypothesis we get

χ1(3n,−3n − 3u) = [χ(0,3n−1 − u) + χ(0,3n−1 − u − 2)

+ χ1
α(3n−1,−3n−1 − u − 1)]F + chL(ρ)χ(0,3n−1 − u − 1)F . (2.80)

Now the p−expansion of Weyl character of χ(0,3n − 3u) is given by

χ(0,3n − 3u) = [χ(0,3n−1 − u) + χ(0,3n−1 − u − 2) + χ(0,3n−1 − u − 1)]F

+ chL(ρ)χ(0,3n−1 − u − 1)F . (2.81)

If the equations 2.80 and 2.81 are the same then we must have

χ1
α(3n−1,−3n−1 − u − 1) = χ(0,3n−1 − u − 1).

This completes the proof.

67



2.4.3 The case p ≥ 5

In this section we take p ≥ 5 try to give simplify the recursion in this case.

The following proposition tells us when the result is same as in characteristic

zero.

Proposition 2.4.31. Let p ≥ 5 then χ1(r,−s − 2) = χ(r − s − 1, s) for all

r ≥ ps, r, s > 0. Moreover

χ1
α(r,−s − 2) = χ(r − s − 1, s) + χ(r − s − 2, s − 1)

and

χ1
β(r,−s − 2) = χ(r − s − 1, s) + χ(r − s − 2, s + 2)

for all r ≥ ps, r, s > 0.

Proof. The proof is again by induction and the recursive formulas given in

[11]. As in characteristic p = 2,3 there are many cases to consider. We will

outline some of the cases below.

1. First let r = a + pu and s + 2 = −p + 2 + a + pv for some positive integers

u and v and 0 ≤ a ≤ p − 2 then we have

χ1(a + pu, p − 2 − a − pv)

= χ(p − 1, a)χ1(u,−v − 1)F + χ(a, p − 2 − a)[χ1(u,−v)

+ χ1(u − 1,−v − 1)]F + χ(p − 2 − a, p − 1)χ1(u − 1,−v)F .

Apply the inductive hypothesis to get

χ1(a + pu, p − 2 − a − pv)

= χ(p − 1, a)χ(u − v, v − 1)F + χ(a, p − 2 − a)[χ(u − v + 1, v − 2)

+ χ(u − v − 1, v − 1)]F + χ(p − 2 − a, p − 1)χ(u − v, v − 2)F . (2.82)
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The p−expansion of Weyl character of χ(p− 1+ p(u− v), a+ p(v − 1)) is

given by

χ(p − 1 + p(u − v), a + p(v − 1))

= χ(p − 1, a)χ(u − v, v − 1)F + χ(a, p − 2 − a)[χ(u − v + 1, v − 2)

+ χ(u − v − 1, v − 1)]F + χ(p − 2 − a, p − 1)χ(u − v, v − 2)F . (2.83)

Compare equations 2.82 and 2.83 to get the result.

2. Now suppose r = p−1+pu and s+2 = −a+pv for some positive integers

u and v and 0 ≤ a ≤ p − 2 then we have

χ1(p − 1 + pu, a − pv)

= χ(p − 1, a)χ1(u,−v)F + χ(a, p − 2 − a)χ1
α(u + 1,−v − 1)F

+ χ(p − 2 − a, p − 1)χ1(u,−v − 1)F .

Apply the inductive hypothesis to get

χ1(p − 1 + pu, a − pv)

= χ(p − 1, a)χ(u − v + 1, v − 2)F + χ(a, p − 2 − a)χ1
α(u + 1,−v − 1)F

+ χ(p − 2 − a, p − 1)χ(u − v, v − 1)F . (2.84)

The p−expansion of Weyl character of χ(a+p(u−v+1), p−2−a+p(v−1))

is given by

χ(a + p(u − v + 1), p − 2 − a + p(v − 1))

= χ(p − 1, a)χ(u − v + 1, v − 2)F + χ(a, p − 2 − a)[χ(u − v + 1, v − 1)

+ χ(u − v, v − 2)]F + χ(p − 2 − a, p − 1)χ(u − v, v − 1)F . (2.85)

If the equations 2.84 and 2.85 are the same we must have

χ1
α(u + 1,−v − 1) = χ(u − v + 1, v − 1) + χ(u − v, v − 2).

69



We will now prove that

χ1
α(r,−s − 2) = χ(r − s − 1, s) + χ(r − s − 2, s − 1).

By proposition 2.4.5 the result is true if r ≠ pu for some positive integer

u. We will now take r = pu and we have the following cases for −s − 2:

(a) Let −s − 2 = p − 2 − pv for some positive integer v then

χ1
α(pu, p − 2 − pv)

= χ(0, p − 2)[χ(1,0)χ1(u − 1,−v) + χ1(u − 1,−v − 1)]F + χ(p − 1,0)

χ1
α(u,−v − 1)F + 2χp(p − 2, p − 1)χ1(u − 1,−v)F .

Using the inductive hypothesis we have

χ1
α(pu, p − 2 − pv)

= χ(0, p − 2)[χ(1,0)χ(u − v, v − 2) + χ(u − v − 1, v − 1)]F

+ χ(p − 1,0)[χ(u − v, v − 1) + χ(u − v − 1, v − 2)]F

+ 2χp(p − 2, p − 1)χ(u − v − 1, v − 2)F . (2.86)

The p−expansion of Weyl character of χ(p− 1+ p(u− v), p(v − 1))

is given by

χ(p − 1 + p(u − v), p(v − 1))

= χ(p − 1,0)χ(u − v, v − 1)F + χ(0, p − 2)[χ(u − v + 1, v − 2)

+ χ(u − v − 1, v − 1)]F + χ(p − 2, p − 1)χ(u − v, v − 2)F . (2.87)

and the p−expansion of Weyl character for χ(p − 2 + p(u − v), p −

1 + p(v − 2)) is

χ(p − 2 + p(u − v), p − 1 + p(v − 2))

= χ(p − 1,0)χ(u − v − 1, v − 2)F + χ(0, p − 2)[χ(u − v − 1, v − 1)

+ χ(u − v, v − 3)]F + χ(p − 2, p − 1)χ(u − v, v − 2)F . (2.88)

70



Add equations 2.87, 2.88 and note that

χ(1,0)χ(u−v, v−2) = χ(u−v+1, v−2)+χ(u−v−1, v−1)+χ(u−v, v−3).

(2.89)

to get the result.

(b) Now let −s − 2 = p − 2 − b − pv for some positive integer v then

χ1
α(pu, p − 2 − b − pv)

= 2χp(p − 2, p − 1 − b)χ1(u − 1,−v)F + χp(0, p − 2 − b)[χ1(u − 1,−v − 1)

+ χ(1,0)χ1(u − 1,−v)]F + 2χp(p − 2 − b, b − 1)χ1
α(u,−v − 1)F

+ χp(p − 1 − b, b)χ1
α(u,−v − 1)F + 2χp(b, p − 2)χ1(u − 1,−v − 1)F

+ χp(b − 1,0)[χ1(u − 1,−v) + χ(0,1)χ1(u − 1,−v − 1)]F .

Using the inductive hypothesis we have

χ1
α(pu, p − 2 − b − pv)

= 2χp(p − 2, p − 1 − b)χ(u − v, v − 2)F + χp(0, p − 2 − b)[χ(u − v − 1, v − 1)

+ χ(1,0)χ(u − v, v − 2)]F + 2χp(p − 2 − b, b − 1)[χ(u − v, v − 1)

+ χ(u − v − 1, v − 2)]F + χp(p − 1 − b, b)[χ(u − v, v − 1)

+ χ(u − v − 1, v − 2)]F + 2χp(b, p − 2)χ(u − v − 1, v − 1)F

+ χp(b − 1,0)[χ(u − v − 1, v − 2) + χ(0,1)χ(u − v − 1, v − 1)]F .

(2.90)

The p−expansion of Weyl character of χ(p − 1 − b + p(u − v), b +

p(v − 1)) is given by

χ(p − 1 − b + p(u − v), b + p(v − 1))

= χp(p − 2, p − 1 − b)χ(u − v, v − 2)F + χp(0, p − 2 − b)[χ(u − v + 1, v − 2)
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+ χ(u − v − 1, v − 1)]F + χp(p − 2 − b, b − 1)[χ(u − v, v − 1)

+ χ(u − v − 1, v − 2)]F + χp(p − 1 − b, b)χ(u − v, v − 1)F

+ χp(b, p − 2)χ(u − v − 1, v − 1)F + χp(b − 1,0)[χ(u − v − 1, v)

+ χ(u − v, v − 2)]F . (2.91)

and the p−expansion of Weyl character of χ(p−2−b+p(u−v), b−

1 + p(v − 1)) is

χ(p − 2 − b + p(u − v), b − 1 + p(v − 1))

= χp(p − 2, p − 1 − b)χ(u − v, v − 2)F + χp(0, p − 2 − b)[χ(u − v − 1, v − 1)

+ χ(u − v, v − 3)]F + χp(p − 2 − b, b − 1)[χ(u − v, v − 1)

+ χ(u − v − 1, v − 2)]F + χp(p − 1 − b, b)χ(u − v − 1, v)F

+ χp(b, p − 2)χ(u − v − 1, v − 1)F + χp(b − 1,0)[χ(u − v, v − 1)

+ χ(u − v − 2, v − 1)]F . (2.92)

Add equations 2.91, 2.92 and note that

χ(0,1)χ(u−v−1, v−1) = χ(u−v−1, v)+χ(u−v, v−2)+χ(u−v−2, v−1).

and

χ(1,0)χ(u−v, v−2) = χ(u−v+1, v−2)+χ(u−v−1, v−1)+χ(u−v, v−3).

to get the result.

The remaining two cases are very similar to the above case so we

leave them to the reader.

3. Now suppose r = p − 2 − a + pu and s + 2 = −p + 1 + pv for some positive
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integers u and v and 0 ≤ a ≤ p − 2 then we have

χ1(p − 2 − a + pu, p − 1 − pv)

= χ(p − 1, a)χ1(u − 1,−v)F + χ(a, p − 2 − a)χ1
β(u − 1,−v + 1)F

+ χ(p − 2 − a, p − 1)χ1(u,−v)F .

Apply the inductive hypothesis to get

χ1(p − 2 − a + pu, p − 1 − pv)

= χ(p − 1, a)χ(u − v, v − 2)F + χ(a, p − 2 − a)χ1
β(u − 1,−v + 1)F

+ χ(p − 2 − a, p − 1)χ(u − v + 1, v − 2)F . (2.93)

The p−expansion of Weyl character of χ(p − 2 − a + p(u − v + 1), p − 1 +

p(v − 2)) is given by

χ(p − 2 − a + p(u − v + 1), p − 1 + p(v − 2))

= χ(p − 1, a)χ(u − v, v − 2)F + χ(a, p − 2 − a)[χ(u − v, v − 1)

+ χ(u − v + 1, v − 3)]F + χ(p − 2 − a, p − 1)χ(u − v + 1, v − 2)F .

(2.94)

If the equations 2.93 and 2.94 are the same we must have

χ1
β(u − 1,−v + 1) = χ(u − v, v − 1) + χ(u − v + 1, v − 3).

We will now prove that

χ1
β(r,−s − 2) = χ(r − s − 1, s) + χ(r − s − 2, s + 2).

By proposition 2.4.5 the result is true if s + 2 ≠ pv for some positive

integer v. We will now take s + 2 = pv and we have the following cases

for r:

73



(a) Let r = p − 2 + pu for some positive integer u then

χ1
β(p − 2 + pu,−pv)

= χ(p − 2,0)[χ(0,1)χ1(u,−v − 1) + χ1(u − 1,−v − 1)]F + χ(0, p − 1)

χ1
β(u − 1,−v)F + 2χp(p − 1, p − 2)χ1(u,−v − 1)F .

Using the inductive hypothesis we have

χ1
β(p − 2 + pu,−pv)

= χ(p − 2,0)[χ(0,1)χ(u − v, v − 1) + χ(u − v − 1, v − 1)]F

+ χ(0, p − 1)[χ(u − v, v − 2) + χ(u − v − 1, v)]F

+ 2χp(p − 1, p − 2)χ(u − v, v − 1)F . (2.95)

The p−expansion of Weyl character of χ(p − 1 + p(u − v), p − 2 +

p(v − 1)) is given by

χ(p − 1 + p(u − v), p − 2 + p(v − 1))

= χ(p − 1, p − 2)χ(u − v, v − 1)F + χ(p − 2,0)[χ(u − v + 1, v − 2)

+ χ(u − v − 1, v − 1)]F + χ(0, p − 1)χ(u − v, v − 2)F . (2.96)

and the p−expansion of Weyl character for χ(p − 2 + p(u − v), pv)

is

χ(p − 2 + p(u − v), pv)

= χ(p − 1, p − 2)χ(u − v, v − 1)F + χ(p − 2,0)[χ(u − v, v)

+ χ(u − v − 1, v − 1)]F + χ(0, p − 1)χ(u − v − 1, v)F . (2.97)

Add equations 2.96, 2.97 and note that

χ(0,1)χ(u−v, v−1) = χ(u−v, v)+χ(u−v+1, v−2)+χ(u−v−1, v−1).

(2.98)

to get the result.
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(b) Now let r = p − 2 − b + pu for some positive integer u then

χ1
β(p − 2 − b + pu,−pv)

= 2χp(p − 1 − b, p − 2)χ1(u,−v − 1)F + χp(p − 2 − b,0)

[χ1(u − 1,−v − 1) + χ(0,1)χ1(u,−v − 1)]F

+ 2χp(b − 1, p − 2 − b)χ1
β(u − 1,−v)F + χp(b, p − 1 − b)

χ1
β(u − 1,−v)F + 2χp(p − 2, b)χ1(u − 1,−v − 1)F

+ χp(0, b − 1)[χ1(u,−v − 1) + χ(1,0)χ1(u − 1,−v − 1)]F .

Using the inductive hypothesis we have

χ1
β(p − 2 − b + pu,−pv)

= 2χp(p − 1 − b, p − 2)χ(u − v, v − 1)F + χp(p − 2 − b,0)

[χ(u − v − 1, v − 1) + χ(0,1)χ(u − v, v − 1)]F

+ 2χp(b − 1, p − 2 − b)[χ(u − v, v − 2) + χ(u − v − 1, v)]F

+ χp(b, p − 1 − b)[χ(u − v, v − 2) + χ(u − v − 1, v)]F

+ 2χp(p − 2, b)χ(u − v − 1, v − 1)F + χp(0, b − 1)

[χ(u − v, v − 1) + χ(1,0)χ(u − v − 1, v − 1)]F . (2.99)

The p−expansion of Weyl character of χ(p− 1− b+ p(u− v), p− 2+

p(v − 1)) is given by

χ(p − 1 − b + p(u − v), p − 2 + p(v − 1))

= χp(p − 1 − b, p − 2)χ(u − v, v − 1)F + χp(b − 1, p − 2 − b)

[χ(u − v − 1, v + 1) + χ(u − v, v − 1)]F

+ χp(p − 2 − b, b − 1)[χ(u − v + 1, v − 2) + χ(u − v − 1, v − 1)]F

+ χp(p − 2, b)χ(u − v − 1, v − 1)F + χp(b, p − 1 − b)
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χ(u − v, v − 2)F + χp(0, b − 1)[χ(u − v, v − 1)

+ χ(u − v − 1, v − 2)]F . (2.100)

and the p−expansion of Weyl character for χ(p−2−b+p(u−v), pv)

is

χ(p − 2 − b + p(u − v), pv)

= χp(p − 1 − b, p − 2)χ(u − v, v − 1)F + χp(b − 1, p − 2 − b)

[χ(u − v − 1, v) + χ(u − v, v − 2)]F

+ χp(p − 2 − b,0)[χ(u − v, v) + χ(u − v − 1, v − 1)]F

+ χp(p − 2, b)χ(u − v − 1, v + 1)F + χp(b, p − 1 − b)

χ(u − v − 1, v)F + χp(0, b − 1)[χ(u − v, v − 1)

+ χ(u − v − 2, v)]F . (2.101)

Add equations 2.100, 2.101 and note that

χ(0,1)χ(u−v, v−1) = χ(u−v, v)+χ(u−v+1, v−2)+χ(u−v−1, v−1).

and

χ(1,0)χ(u−v−1, v−1) = χ(u−v, v−1)+χ(u−v−2, v)+χ(u−v−1, v−2).

to get the result.

The remaining two cases are very similar to the above case so we

leave them to the reader.

4. Suppose r = p − 1 − a + pu and s + 2 = −p + 1 + b + pv for some positive

integers u and v with
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1 ≤ a, b < p and a + 2b,2a + b ≤ p then we have

χ1(p − 1 − a + pu, p − 1 − b − pv)

= χp(p − 1 − a, p − 1 − b)χ1(u,−v)F + χp(a − 1, p − 1 − a − b)

χ1
β(u − 1,−v + 1)F + χp(p − 1 − a − b, b − 1)χ1

α(u + 1,−v − 1)F

+ χp(p − 1 − b, a + b − 1)χ1(u − 1,−v)F + χp(a + b − 1, p − 1 − a)

χ1(u,−v − 1)F + χp(b − 1, a − 1)[χ1(u,−v) + χ1(u − 1,−v − 1)]F .

Apply the inductive hypothesis and the results proved above for

χ1
α(r,−s) and χ1

β(r,−s) we get

χ1(p − 1 − a + pu, p − 1 − b − pv)

= χp(p − 1 − a, p − 1 − b)χ(u − v + 1, v − 2)F + χp(a − 1, p − 1 − a − b)

[χ(u − v, v − 1) + χ(u − v + 1, v − 3)]F + χp(p − 1 − a − b, b − 1)

[χ(u − v + 1, v − 1) + χ(u − v, v − 2)]F + χp(p − 1 − b, a + b − 1)

χ(u − v, v − 2)F + χp(a + b − 1, p − 1 − a)χ(u − v, v − 1)F

+ χp(b − 1, a − 1)[χ(u − v + 1, v − 2) + χ(u − v − 1, v − 1)]F . (2.102)

The p−expansion of Weyl character of χ(p − 1 − a − b + p(u − v + 1), b −

1 + p(v − 1)) is given by

χ(p − 1 − a − b + p(u − v + 1), b − 1 + p(v − 1))

= χp(p − 1 − a, p − 1 − b)χ(u − v + 1, v − 2)F + χp(a − 1, p − 1 − a − b)

[χ(u − v, v − 1) + χ(u − v + 1, v − 3)]F + χp(p − 1 − a − b, b − 1)

[χ(u − v + 1, v − 1) + χ(u − v, v − 2)]F + χp(p − 1 − b, a + b − 1)

χ(u − v, v − 2)F + χp(a + b − 1, p − 1 − a)χ(u − v, v − 1)F
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+ χp(b − 1, a − 1)[χ(u − v + 1, v − 2) + χ(u − v − 1, v − 1)]F . (2.103)

Compare equations 2.102 and 2.103 to get the result.

All the remaining cases are very much similar to the above case. We leave

the details to the reader.

Corollary 2.4.32. Let p ≥ 5. Then the sequence

0→H1(r − 2,−s − 1) Ð→H1(Nα(r,−s − 2)) Ð→H1(r,−s − 2) Ð→ 0

is exact for all r ≥ ps.

Proof. We know that the sequence

H1(r − 2,−s − 1) φÐ→H1(Nα(r,−s − 2)) ψÐ→H1(r,−s − 2)

is exact meaning Imφ = Kerψ. Moreover by proposition 2.4.31, we have

χ1
α(r,−s − 2) = χ1(r,−s − 2) + χ1(r − 2,−s − 1).

Let X = H1(r − 2,−s − 1), Y = H1(Nα(r,−s − 2)) and Z = H1(r,−s − 2).

Now Imψ ≃ Y /Kerψ ≃ Y /Imφ, therefore dim Y = dim Imφ + dim Imψ. It is

clear that dim Imψ ≤ dim Z. Also by the character result we have dim Y =

dim X + dim Z. Now dim Imφ = dim Y − dim Imψ ≤ dim Y − dim Z = dim X.

This implies dim Imφ ≤ dim X. We have proved that dim Imφ ≤ dim X and

dim Imψ ≤ dim Z but dim Y = dim X + dim Z so we must have the equality.

This proves that φ is injective and ψ is surjective and hence the result.

The only region left to consider is when r < ps. We will list here a version of

the propositions proved earlier for p = 2 and p = 3 in the case of p ≥ 5.
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Proposition 2.4.33. χ1(pn,−pn − 2) = χ(0, pn − 2), for all n ≥ 0.

Proof. The argument is by induction on n. The result is clearly true for

n = 0. Suppose now n > 1 and the result is true for n−1. Using the recursive

formula we have

χ1(pn,−pn − 2)

= χ(p − 1,0)χ1(pn−1,−pn−1 − 2)F + χ(0, p − 2)[χ1(pn−1,−pn−1 − 1)

+ χ1(pn−1 − 1,−pn−1 − 2)]F + χ(p − 2, p − 1)χ1(pn−1 − 1,−pn−1 − 1)F .

(2.104)

Now by proposition 2.4.8 we have χ1(pn−1 − 1,−pn−1 − 2) = 0. Also χ1(pn−1 −

1,−pn−1 − 1) = 0 and χ1(pn−1,−pn−1 − 1) = χ(0, pn−1 − 1) by proposition 2.4.7.

The equation 2.104 becomes

χ1(pn,−pn−2) = χ(p−1,0)χ(0, pn−1−2)F +χ(0, p−2)χ(0, pn−1−1)F . (2.105)

Finally compare equation 2.105 with the p−expansion of Weyl character of

χ(0, pn − 2) to get the result.

Proposition 2.4.34. Suppose n ≥ 0 then we have χ1(pn − 1,−pn) = χ(0, pn −

2). Also

χ1
α(pn,−pn − 1) = χ(0, pn − 1).

Proof. The argument is by induction on n. The result is clearly true for

n = 0. Using the recursive formulas we get

χ1(pn − 1,−pn)

= χ(p − 1,0)χ1(pn−1 − 1,−pn−1)F + χ(0, p − 2)χ1
α(pn−1,−pn−1 − 1)F

+ χ(p − 2, p − 1)χ1(pn−1 − 1,−pn−1 − 1)F . (2.106)
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Now χ1(pn−1 −1,−pn−1 −1) = 0 by proposition 2.4.7. Also the p−expansion of

Weyl character of χ(0, pn − 2) gives

χ(0, pn − 2) = χ(p − 1,0)χ(0, pn−1 − 2)F + χ(0, p − 2)χ(0, pn−1 − 1)F .

So if the result is true we must have χ1
α(pn−1,−pn−1 − 1) = χ(0, pn−1 − 1). Now

by [11, 6.3, lemma1(iii)], we have

χ1
α(pn−1,−pn−1 − 1) = χ1(pn−1,−pn−1 − 1) + χ1(pn−1 − 2,−pn−1 + 1).

Now χ1(pn−1 − 2,−pn−1 + 1) = 0 and χ1(pn−1,−pn−1 − 1) = χ(0, pn−1 − 1) by

proposition 2.4.7. This completes the proof.

Proposition 2.4.35. χ1(pn,−pn) = χ(1, pn − 2) for all n ≥ 0.

Proof. We argue by induction on n. The result is clearly true for n = 0.

Suppose the result is true for all t < n then we have

χ1(pt,−pt) = χ(1, pt − 2).

Now for n = t + 1 we get

χ1(pt+1,−pt+1)

= χp(p − 2, p − 2)χ1(pt − 1,−pt)F + χp(0, p − 3)[χ1(pt,−pt)

+ χ1(pt − 1,−pt − 1)]F + χp(p − 3,0)χ1
β(pt − 1,−pt + 1)F

+ χp(p − 2,1)χ1(pt,−pt − 1)F + χp(1, p − 2)χ1(pt,−pt)F

+ χp(0,0)χ1
α(pt + 1,−pt − 1)F . (2.107)

From propositions 2.4.34 and 2.4.7 we get that χ1(pt − 1,−pt) = χ(0, pt − 2)

and χ1(pt − 1,−pt − 1) = 0. Also χ1(pt,−pt − 1) = χ(0, pt − 1) by proposition

2.4.7. Moreover

χ1
α(pt + 1,−pt − 1) = χ1(pt + 1,−pt − 1) + χ1(pt − 1,−pt)
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and

χ1
β(pt − 1,−pt + 1) = χ1(pt − 1,−pt + 1) + χ1(pt,−pt − 1)

by proposition 2.4.5. The equation 2.107 becomes

χ1(pt+1,−pt+1)

= χp(0, p − 3)χ(1, pt − 2)F + χp(p − 3,0)[χ(1, pt − 3) + χ(0, pt − 1)]F

+ χp(p − 2,1)χ(0, pt − 1)F + χp(1, p − 2)χ(1, pt − 2)F

+ χp(0,0)χ1
α(pt + 1,−pt − 1)F . (2.108)

Compare the p−expansion of Weyl character of χ(1, pt+1 − 2) with equation

2.33 to get the required result.

Proposition 2.4.36. Suppose n ≥ 0 then we have χ1(pn + 1,−pn) = χ(2, pn −

2). Also

χ1
β(pn−1 − 1,−pn−1) = χ(0, pn−1 − 2).

Proof. The argument is by induction on n. The result is clearly true for

n = 0. Using the recursive formulas we get

χ1(pn + 1,−pn)

= χp(p − 1, p − 3)χ1(pn−1 − 1,−pn−1 − 1)F + χp(0, p − 4)

χ1
α(pn−1,−pn−1 − 1)F + χp(p − 4,1)χ1

β(pn−1 − 1,−pn−1)F

+ χp(p − 4,1)χ1(pn−1 − 1,−pn−1)F + χp(2, p − 2)χ1(pn−1,−pn−1 − 1)F

+ χp(1,0)[χ1(pn−1,−pn−1) + χ1(pn−1 − 1,−pn−1 − 1)]F . (2.109)

Now χ1(pn−1,−pn−1 − 1) = χ(0, pn−1 − 1) by proposition 2.4.7. Also by propo-

sition 2.4.35 we get χ1(pn−1,−pn−1) = χ(1, pn−1 − 2) and χ1(pn−1 − 1,−pn−1) =

χ(0, pn−1 − 2) by proposition 2.4.34. Moreover

χ1
α(pn−1,−pn−1 − 1) = χ(0, pn−1 − 1)
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The equation 2.109 becomes

χ1(pn + 1,−pn)

= χp(0, p − 4)χ(0, pn−1 − 1)F + χp(p − 4,1)χ1
β(pn−1 − 1,−pn−1)F

+ χp(p − 4,1)χ(0, pn−1 − 2)F + χp(2, p − 2)χ(0, pn−1 − 1)F

+ χp(1,0)χ(1, pn−1 − 2)F . (2.110)

Also the p−expansion of Weyl character of χ(2, pn − 2) gives

χ(2, pn − 2)

= χp(0, p − 4)χ(0, pn−1 − 1)F + χp(p − 4,1)χ(1, pn−1 − 2)F

+ χp(p − 3,2)χ(0, pn−1 − 2)F + χp(2, p − 2)χ(0, pn−1 − 1)F

+ χp(1,0)χ(1, pn−1 − 2)F . (2.111)

Compare equations 2.110 and 2.111 to get the result.

Proposition 2.4.37. Suppose n ≥ 0 then we have χ1(pn−1,−pn+1) = χ(1, pn−

3).

Proof. The argument is by induction on n. The result is clearly true for

n = 0. Using the recursive formulas we get

χ1(pn − 1,−pn + 1) = χ(p − 1,1)χ1(pn−1 − 1,−pn−1)F + χ(1, p − 3)

χ1
α(pn−1,−pn−1 − 1)F + χ(p − 3, p − 1)χ1(pn−1 − 1,−pn−1 − 1)F . (2.112)

Now χ1(pn−1 − 1,−pn−1 − 1) = 0 by proposition 2.4.7. Also by proposition

2.4.34 we have χ1
α(pn−1,−pn−1 − 1) = χ(0, pn−1 − 1) and χ1(pn−1 − 1,−pn−1) =

χ(1, pn−1 − 2). The equation 2.112 now becomes

χ1(pn−1,−pn+1) = χ(p−1,1)χ(1, pn−1−2)F+χ(1, p−3)χ(0, pn−1−1)F . (2.113)
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Compare equation 2.113 with the p−expansion of Weyl character of χ(1, pn−

3) to get the result.

Proposition 2.4.38. Suppose n ≥ 0 then we have χ1(pn,−pn + 1) = χ(2, pn −

3).

Proof. The argument is by induction on n. The result is clearly true for

n = 0. Using the recursive formulas we get

χ1(pn,−pn + 1)

= χp(p − 3, p − 2)χ1(pn−1 − 1,−pn−1 − 1)F + χp(1, p − 4)

χ1
α(pn−1,−pn−1 − 1)]F + χp(p − 4,0)χ1

β(pn−1 − 1,−pn−1)F

+ χp(p − 4,0)χ1(pn−1 − 1,−pn−1)F + χp(2, p − 3)χ1(pn−1,−pn−1 − 1)F

+ χp(0,1)[χ1(pn−1,−pn−1) + χ1(pn−1 − 1,−pn−1 − 1)]F . (2.114)

Now χ1(pn−1 − 1,−pn−1) = χ(0, pn−1 − 2) and χ1
α(pn−1,−pn−1 − 1) = χ(0, pn − 1)

by proposition 2.4.34. Also

χ1(pn−1,−pn−1) = χ(1, pn−1 − 2) by proposition 2.4.25. Moreover proposition

2.4.7 gives χ1(pn−1 − 1,−pn−1 − 1) = 0. Equation 2.114 becomes

χ1(pn,−pn + 1)

= χp(1, p − 4)χ(0, pn−1 − 1)F + χp(p − 4,0)[χ(0, pn−1 − 2)

+ χ(0, pn−1 − 2)]F + χp(p − 4,0)χ(0, pn−1 − 2)F

+ χp(2, p − 3)χ(0, pn−1 − 1)F + χp(0,1)χ(1, pn−1 − 2)F . (2.115)

Compare equation 2.115 with the p−expansion of Weyl character of χ(2, pn−

3) to get the result.
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Proposition 2.4.39. Suppose n ≥ 0 then we have χ1(pn+1,−pn+1) = χ(3, pn−

3).

Proof. The argument is by induction on n. The result is clearly true for

n = 0. Using the recursive formulas we get

χ1(pn + 1,−pn + 1)

= χp(p − 3, p − 3)χ1(pn−1 − 1,−pn−1 − 1)F + χp(1, p − 5)

χ1
α(pn−1,−pn−1 − 1)F + χp(p − 5,1)χ1

β(pn−1 − 1,−pn−1)F

+ χp(p − 5,1)χ1(pn−1 − 1,−pn−1)F + χp(3, p − 3)χ1(pn−1,−pn−1 − 1)F

+ χp(1,1)[χ1(pn−1,−pn−1) + χ1(pn−1 − 1,−pn−1 − 1)]F . (2.116)

By proposition 2.4.34 we have χ1
α(pn−1,−pn−1 − 1) = χ(0, pn−1 − 1). Also using

proposition 2.4.7, 2.4.34 and 2.4.35 the equation 2.116 becomes

χ1(pn + 1,−pn + 1)

= χp(1, p − 5)χ(0, pn−1 − 1)F + χp(p − 5,1)[χ(0, pn−1 − 2)

+ χ(0, pn−1 − 2)]F + χp(p − 5,1)χ(0, pn−1 − 2)F

+ χp(3, p − 3)χ(0, pn−1 − 1)F + χp(1,1)χ(1, pn−1 − 2)F . (2.117)

The p−expansion of Weyl character of χ(3, pn − 3) is given by

χ(3, pn − 3)

= χp(1, p − 5)χ(0, pn−1 − 1)F + χp(p − 5,1)[χ(0, pn−1 − 2)

+ χ(0, pn−1 − 2)]F + χp(p − 5,1)χ(0, pn−1 − 2)F + χp(3, p − 3)

χ(0, pn−1 − 1)F + χp(1,1)χ(1, pn−1 − 2)F . (2.118)

Hence the result.
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Proposition 2.4.40. Suppose r, n > 0 then we have

χ1(pn,−pn − r) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

χ(0, pn − r), n ≥ r − 1

0, otherwise.

Proof. We argue by induction on r. The result is true for r = 1 by proposition

2.4.7. Suppose the result is true for all t−1 < r. For r = t we have the following

possibilities

1. Suppose t = p − 2 then

χ1(pn,−pn − p + 2)

= χ(p − 1,0)χ1(pn−1,−pn−1 − 1)F + χ(0, p − 2)[χ1(pn−1,−pn−1)

+ χ1(pn−1 − 1,−pn−1 − 1)]F + χ(p − 2, p − 1)χ1(pn−1 − 1,−pn−1)F .

(2.119)

By proposition 2.4.7 we have χ1(pn−1 − 1,−pn−1 − 1) = 0 and

χ1(pn−1,−pn−1 − 1) = χ(0, pn−1 − 1). Also by proposition 2.4.34 we get

χ1(pn−1 − 1,−pn−1) = χ(0, pn−1 − 2) and χ1(pn−1,−pn−1) = χ(1, pn−1 − 2).

The equation 2.119 becomes

χ1(pn,−pn − p + 2)

= χ(p − 1,0)χ(0, pn−1 − 1)F + χ(0, p − 2)χ(1, pn−1 − 2)F

+ χ(p − 2, p − 1)χ(0, pn−1 − 2)F . (2.120)

Compare equation 2.120 with the p−expansion of Weyl character of

χ(0, pn − p + 2) to get the result.
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2. Now suppose t = p − 1

χ1(pn,−pn − p + 1)

= χ(p − 1, p − 2)χ1(pn−1 − 1,−pn−1)F + χ(p − 2,0)

χ1
β(pn−1 − 1,−pn−1 + 1)F + χ(0, p − 1)χ1(pn−1,−pn−1)F . (2.121)

By proposition 2.4.34 we get χ1(pn−1 − 1,−pn−1) = χ(0, pn−1 − 2) and

χ1(pn−1,−pn−1) = χ(1, pn−1 − 2). Moreover χ1
β(pn−1 − 1,−pn−1 + 1) =

χ1(pn−1 − 1,−pn−1 + 1) + χ1(pn−1,−pn−1 − 1) by proposition 2.4.5. The

equation 2.121 becomes

χ1(pn,−pn − p + 1)

= χ(p − 1, p − 2)χ(0, pn−1 − 2)F + χ(p − 2,0)[χ(1, pn − 3)

+ χ(0, pn − 1)]F + χ(0, p − 1)χ(1, pn−1 − 2)F . (2.122)

Compare equation 2.122 with the p−expansion of Weyl character of

χ(0, pn − p + 1) to get the result.

3. Now suppose t = p − b − 2, where 1 ≤ b < p and 1 + 2b,2 + b ≤ p then

χ1(pn,−pn − p + b + 2)

= χp(p − 2, p − 1 − b)χ1(pn−1 − 1,−pn−1)F + χp(0, p − b − 2)

[χ1(pn−1,−pn−1) + χ1(pn−1 − 1,−pn−1 − 1)]F

+ χp(p − b − 2, b − 1)χ1
α(pn−1,−pn−1 − 1)F + χp(p − b − 2, b − 1)

χ1(pn−1,−pn−1 − 1)F + χp(b, p − 2)χ1(pn−1 − 1,−pn−1 − 1)F

+ χp(b − 1,0)χ1
β(pn−1 − 1,−pn−1)F . (2.123)

By proposition 2.4.34 and 2.4.35 we get χ1(pn−1−1,−pn−1) = χ(0, pn−1−

2) and χ1(pn−1,−pn−1) = χ(1, pn−1 − 2). Also χ1(pn−1 − 1,−pn−1 − 1) = 0
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by proposition 2.4.7. Moreover χ1
α(pn−1,−pn−1 − 1) = χ(0, pn−1 − 1) by

proposition 2.4.34. The equation 2.123 becomes

χ1(pn,−pn − p + b + 2)

= χp(p − 2, p − 1 − b)χ(0, pn−1 − 2)F + χp(0, p − b − 2)χ(1, pn−1 − 2)F

+ χp(p − b − 2, b − 1)χ(0, pn−1 − 1)F + χp(p − b − 2, b − 1)χ(0, pn−1 − 1)F

+ χp(b − 1,0)χ(0, pn−1 − 2)F . (2.124)

Compare equation 2.124 with the p−expansion of Weyl character of

χ(0, pn − p + b + 2) to get the result.

4. Finally let t = a − 1, where 1 ≤ a < p and a + 2,2a + 1 ≤ p. The case is

similar to the above case so we omit the details.

2.5 Summary of Results and Conclusion

In the last part we will give a list of all the results proved in this chapter.

The following result helps us simplify the recursive formulas of χiα(λ).

Proposition 2.5.1. Let G = SL3 and λ ∈X(T ). Suppose α is a simple root

of G. If p does not divide ⟨λ,α∨⟩ then

H1(Nα(λ)) ≃H1(λ) ⊕H1(λ − α).

The next two results partially answer the question: When the result if the

same as in characteristic zero? We would like to point out that there are

some other instances when this condition holds.
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Proposition 2.5.2. We have χ1(r,−s − 2) = χ(r − s − 1, s) for all r ≥ ps,

r, s > 0. Moreover

χ1
α(r,−s − 2) = χ(r − s − 1, s) + χ(r − s − 2, s − 1)

and

χ1
β(r,−s − 2) = χ(r − s − 1, s) + χ(r − s − 2, s + 2)

for all r ≥ ps, r, s > 0.

Corollary 2.5.3. The sequence

0→H1(r − 2,−s − 1) Ð→H1(Nα(r,−s − 2)) Ð→H1(r,−s − 2) Ð→ 0

is exact for all r ≥ ps.

The remaining results outline some of the cases in which we were able to

find a non-recursive result. All the results are valid for all p > 0. The reader

might wonder why we gave the proves in separate cases earlier in the chapter.

There are two reasons for this. One because Donkin’s formulas are different

in these cases. It is not yet clear if the formulas for p = 2 and p = 3 can be

deduced from formulas for p ≥ 5. Although we do believe that this might be

possible (work in progress). But even if we know that the formulas are same

in all positive characteristics, we found it almost impossible to get a sense of

the results without working in a particular characteristic.

Proposition 2.5.4. Suppose n > 0 and 0 ≤m ≤ p − 1 then we have

H i(r,−pn(m + 1) − 1) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

H0(r − pn(m + 1), pn(m + 1) − 1), r ≥ pn(m + 1)

0, otherwise.
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Proposition 2.5.5. Suppose n ≥ 0 then for all r ≥ 2 we have

H1(pn − 1,−pn − r) = 0.

Proposition 2.5.6. χ1(pn,−pn − 2) = χ(0, pn − 2), for all n ≥ 0.

Proposition 2.5.7. Suppose n ≥ 0 then we have

χ1(pn + r,−pn) = χ(r + 1, pn − 2), for r = −1,0,1.

Also

χ1
α(pn,−pn − 1) = χ(0, pn − 1).

Proposition 2.5.8. Suppose n ≥ 0 then we have

χ1(pn + r,−pn + 1) = χ(r + 2, pn − 3), for r = −1,0,1.

Also

χ1
β(pn − 1,−pn) = χ(0, pn − 1).

Proposition 2.5.9. Suppose r, n > 0 then we have

χ1(pn,−pn − r) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

χ(0, pn − r), n ≥ r − 1

0, otherwise.

Conclusion

The results of this chapter help us a great deal to simplify the recursive

formulas of Donkin. A significant progress has been made towards finding

a result which describes χi(r, s) completely. There are still many cases to

handle but we were unable to spot a pattern in these cases.
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Chapter 3

Towards a Recursive

Description for Characters of

Cohomology of Line Bundles

On G2 in Characteristic 2

3.1 Introduction

Let k be an algebraically closed field of characteristic p. Let G be an algebraic

group of type G2 and B a Borel subgroup of G. Suppose M ∈ mod(B) and

Pλ ∈ mod(G), where Pλ is projective on restriction to the first infinitesimal

subgroup G1 (of G of type G2). The representation theory of G has been

discussed briefly in chapter 1. Let U1 denote the radical of G1. We will

denote by Q̂r(λ) the projective cover of L(λ) as a GrT− module. If N =MF

then we will write M = N−1. We will assume the following conjecture due to

Donkin in this chapter see e.g. [13]. The conjecture is known to be true for
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p ≥ 2h − 2, where h is the Coxeter number of G.

Conjecture. (Donkin)

Let λ ∈ X1(T ) then the restriction of the indecomposable tilting module

T (2(p − 1)ρ +w0λ) to G1 is indecomposable. This implies that T (2(p − 1)ρ +

w0λ) is isomorphic to Q̂1(λ) as G1T−module.

We will also be extensively using the following result without reference see

e.g. [21, II, propostion 5.20].

Proposition 3.1.1. Suppose char(k) = p ≠ 0.

1. We have H1(B,−pnα) = k for all α ∈ S and n ∈ N.

2. For all µ ∈ X(T ) with µ ≠ −pnα for all α ∈ S and n ∈ N we have

H1(B,µ) = 0.

In this chapter we will try to give a recursive description for the characters of

cohomology of line bundles on G. The method we will use here was developed

by Donkin in [12]. Application of the method for G = SL3 is given in [11] and

has been discussed extensively in the previous chapter. First we will say a

few words about the method and how it works and then we will try to apply

it to G2. We would like to remark here that although the method given in

[12] is very impressive it relies mostly on finding the U1−invariants of M ⊗Pλ
which is not always easy to find.

The precise result is given below see e.g. [12, proposition 1.1b].
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Proposition 3.1.2. (Donkin) Suppose that, for λ ∈ X1, we have modules

Pλ,Qλ ∈ mod(G) which are projective on restriction to G1 and that Pλ ≃

Q̂1(λ) ⊕Qλ, as G1T−modules. Then for all M ∈ mod(B) and i ≥ 0 we have

χi(M) = ∑
λ∈X1

chL(λ)∗χi(H0(B1, Pλ ⊗M)−1)F

− ∑
λ∈X1

chL(λ)∗χi(H0(B1,Qλ ⊗M)−1)F (3.1)

The result given in proposition 3.1.2 is not the most general case but it is

sufficient for application to G2. The most general formula is given in [12].

As remarked in [12, remark 1] if Qλ∣G1T ≃ Q̂1(λ) then the proposition 3.1.2

becomes

χi(M) = ∑
λ∈X1

chL(λ)∗χi(H0(B1,Qλ ⊗M)−1)F .

It will become clear later on that the condition Qλ∣G1T ≃ Q̂1(λ) does not

always hold for G2 and hence we will be using the original formula. For

the rest of this chapter G will denote the algebraic group G2 unless stated

otherwise.

Recall that there are two simple roots of G given by α = (2,−1) and β =

(−3,2). The Weyl group W is generated by sα and sβ and is a finite group

of order 12. We will denote by s(λ) the orbit sum of λ under the action of

the Weyl group W i.e. s(λ) = ∑
µ∈Wλ

e(µ). We will also some times denote by

s(λ) the orbit of λ when no confusion arises. We will first take p = 2.

3.2 The case p = 2

Suppose that the characteristic of the field k is 2. We will now specialize

proposition 3.1.2 for this case. Recall that for p = 2 on restriction to G1, G
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has four simple modules L(0,0), L(1,0), L(0,1) and L(1,1). Also for λ ≠ 0

we have Pλ = T (2ρ − λ) and Qλ = 0. For λ = 0 we take P0 = T (2,2)′ , where

T (2,2)′ denotes the non-Steinberg component of St⊗ St and Q0 = 2T (2,1).

Here T (µ) denotes the tilting module with highest weight µ see section 1.5.

The details of this will becomes clear as we go on to find the tensor product

of the simple modules. So proposition 3.1.2 now becomes

χi(a, b) = ch L(0,0)χi(H0(B1, T (2,2)′ ⊗ (a, b))−1)F

+ ch L(1,0)χi(H0(B1, T (1,2) ⊗ (a, b))−1)F

+ ch L(0,1)χi(H0(B1, T (2,1) ⊗ (a, b))−1)F

+ ch L(1,1)χi(H0(B1, T (1,1) ⊗ (a, b))−1)F

− 2ch L(0,0)χi(H0(B1, T (2,1) ⊗ (a, b))−1)F (3.2)

In order to calculate all the terms in this formula we need to first calculate

the tensor product of all the simple modules and then their U1−invariants.

We will finally incorporate all the information back into equation 3.2 to get

the formulas.

3.2.1 Tensor product of simple modules

In this section we will calculate the tensor product of the simple modules of

G. We will denote L(1,1) by St.

1. L(0,0) ⊗ St = St

2. L(1,0) ⊗ St = T (2,1) = Q(0,1). This is true because

HomG(L(0,1), L(1,0) ⊗ St) = HomG(L(0,1) ⊗L(1,0),St) = k.
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3. Now consider L(0,1) ⊗ St. We need to calculate the following homo-

morphism spaces to decompose this module.

(a) HomG(L(0,0), L(0,1) ⊗ St) = 0.

(b) HomG(L(1,0), L(0,1) ⊗ St) = k.

(c) HomG(L(0,1), L(0,1)⊗St) = HomG(L(0,1)⊗L(0,1),St).We need

to calculate χ(0,1)2 to find the dimension of this Hom space.

s(0,1) = s(0,1)χ(0,0)

= χ(0,1) + χ(−3,2) + χ(3,−2) + χ(−3,1)

= χ(0,1) − χ(1,0) − χ(0,0)

Therefore

χ(0,1) = s(0,1) + s(1,0) + 2s(0,0)

We have

χ(0,1)2 = χ(0,1)χ(0,1)

= χ(0,2) + χ(3,0) + χ(−3,3) + χ(−3,2) + χ(0,0)

+ χ(1,1) + χ(2,0) + χ(−2,2) + χ(1,0) + χ(0,1)

+ χ(0,1)

= χ(0,2) + χ(3,0) − χ(1,1) − χ(1,0) + χ(0,0)

+ χ(1,1) + χ(2,0) − χ(0,1) + χ(1,0) + χ(0,1)

+ χ(0,1)

= χ(0,2) + χ(3,0) + χ(2,0) + χ(0,1) + χ(0,0)

Since ch St does not appear in the character of L(0,1) ⊗ L(0,1)

we have dim HomG(L(0,1), L(0,1) ⊗ St) = 0.
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(d) Finally we need to find HomG(St, L(0,1) ⊗ St). We will calculate

χ(0,1)χ(1,1) to get its dimension.

χ(0,1)χ(1,1) = χ(1,2) + χ(4,0) + χ(−2,3) + χ(−2,2) + χ(1,0)

+ χ(2,1) + χ(0,2) + χ(3,0) + χ(2,0) + χ(0,1) + 2χ(1,1)

= χ(1,2) + χ(4,0) − χ(0,2) − χ(0,1) + χ(1,0) + χ(2,1)

+ χ(0,2) + χ(3,0) + χ(2,0) + χ(0,1) + 2χ(1,1)

= χ(1,2) + χ(4,0) + χ(1,0) + χ(2,1) + χ(3,0)

+ χ(2,0) + 2χ(1,1)

Hence dim HomG(St, L(0,1) ⊗ St) = 2. Combining the above re-

sults we get

L(0,1) ⊗ St = 2St⊕ T (1,2) = 2St⊕Q(1,0).

4. Finally we need a decomposition of St ⊗ St. We will first calculate

χ(1,1)2. For this we need the orbits listed in table 3.1.

s(1,1) = s(1,1)χ(0,0)

= χ(1,1) + χ(5,−2) + χ(−5,3) + χ(4,−3) + χ(−4,1)

+ χ(1,−2) + χ(−5,2) + χ(5,−3) + χ(−4,3)

= χ(1,1) − χ(2,0) + χ(0,0) + χ(0,0) − χ(2,0)

= χ(1,1) − 2χ(2,0) + 2χ(0,0)

Therefore χ(1,1) = s(1,1) + 2χ(2,0) − 2χ(0). Also

s(2,0) = χ(2,0) + χ(−2,2) + χ(4,−2) + χ(−4,2) + χ(2,−2) + χ(−2,0)

= χ(2,0) − χ(0,1) − χ(1,0)

Hence χ(2,0) = s(2,0) + χ(0,1) + χ(1,0). Moreover χ(1,0) = s(1,0) +

s(0,0) and χ(0,1) = s(0,1) + s(1,0) + 2s(0,0) so

χ(2,0) = s(2,0) + s(0,1) + 2s(1,0) + 3s(0,0).
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We have

χ(1,1) = s(1,1) + 2s(2,0) + 2s(0,1) + 4s(1,0) + 4s(0,0)

χ(1,1)2 = χ(2,2) + χ(0,3) + χ(−4,4) + χ(5,−2) + χ(−3,2)

+ χ(0,0) + χ(−4,3) + χ(6,−2) + χ(−3,4) + χ(5,0)

+ 2χ(3,1) + 2χ(−3,3) + 2χ(1,2) + 2χ(4,0) + 2χ(−2,3)

+ 2χ(−2,2) + 2χ(1,0) + 4χ(2,1) + 4χ(0,2) + 4χ(3,0)

+ 4χ(2,0) + 4χ(0,1) + 4χ(1,1)

= χ(2,2) + χ(0,3) − χ(2,1) − χ(2,0) − χ(1,0)

+ χ(0,0) − χ(2,0) − χ(3,0) − χ(1,2) + χ(5,0)

+ 2χ(3,1) − 2χ(1,1) + 2χ(1,2) + 2χ(4,0) − 2χ(0,2)

− 2χ(0,1) + 2χ(1,0) + 4χ(2,1) + 4χ(0,2) + 4χ(3,0)

+ 4χ(2,0) + 4χ(0,1) + 4χ(1,1)

= χ(2,2) + 2χ(3,1) + χ(5,0) + χ(1,2) + χ(0,3)

+ 3χ(2,1) + 2χ(4,0) + 2χ(0,2) + 3χ(3,0) + 2χ(1,1)

+ 2χ(2,0) + 2χ(0,1) + χ(1,0) + χ(0,0).

Therefore dim HomG(St,St⊗ St) = 2 and we get

St⊗ St∣G1 = Q0 ⊕ 2Q(0,1) ⊕ 16St
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s(1,1) s(2,0) s(0,1) s(1,0)

(1,1) (-1,-1) (2,0) (0,1) (1,0)

(-1,2) (1,-2) (-2,2) (3,-1) (-1,1)

(5,-2) (-5,2) (4,-2) (-3,2) (2,-1)

(-5,3) (5,-3) (-4,2) (3,-2) (-2,1)

(4,-3) (-4,3) (2,-2) (-3,1) (1,-1)

(-4,1) (4,-1) (-2,0) (0,-1) (-1,0)

Table 3.1: Orbits of (1,1), (2,0), (0,1) and (1,0)

3.2.2 The U1−invariants

Now we will calculate H0(U1,X), where X is one of the modules given in

1,2,3 and 4. We will be using the notation Nαβα(λ) to mean we have module

with weights λ,λ − α,λ − α − β,λ − α − β − α. Similarly we will be using the

notations Nβαβ(λ), Nαβ(λ), Nβα(λ) and their variations.

1. H0(U1, L(0,0) ⊗ St) = (−1,−1).

2. Now we consider H0(U1, L(1,0) ⊗ St). We know that

ch H0(U1, L(1,0) ⊗ St) = (ch L(1,0))e(−1,−1).

From table 3.2 we get
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s(1,0) +(−1,−1) ⊕λ∈X1(T ) kλ ⊗ZF
λ

(1,0) (0,−1) (0,1) + 2(0,−1)

(−1,1) (−2,0) (0,0) + 2(−1,0)

(2,−1) (1,−2) (1,0) + 2(0,−1)

(−2,1) (−3,0) (1,0) + 2(−2,0)

(1,−1) (0,−2) (0,0) + 2(0,−1)

(−1,0) (−2,−1) (0,1) + 2(−1,−1)

Table 3.2: Base two expansion of (ch L(1,0))e(−1,−1)

⎛
⎜
⎝

(−1,0)

(0,−1)

⎞
⎟
⎠

F

⊕ (0,1) ⊗
⎛
⎜
⎝

(0,−1)

(−1,−1)

⎞
⎟
⎠

F

⊕ (1,0) ⊗
⎛
⎜
⎝

(0,−1)

(−2,0)

⎞
⎟
⎠

F

Also the B−socle is given by

(0,−1) ⊕ (−2,0) ⊕ (−3,0) ⊕ (0,−2) ⊕ (−2,−1).

Moreover Ext1B((−1,0), (0,−1)) = 0 and Ext1B((0,−1), (−1,−1)) = 0.

There is an extension from (0,−1) to (−2,0) given by Nα(0,−1). There-

fore we have

H0(U1, L(1,0) ⊗ St) =[(−1,0) ⊕ (0,−1)]F ⊕ (0,1) ⊗ [(0,−1) ⊕ (−1,−1)]F

⊕ (1,0) ⊗Nα(0,−1)F

3. Now we take H0(U1, L(0,1) ⊗ St). We know that

ch H0(U1, L(0,1) ⊗ St) = (ch L(0,1))e(−1,−1).

From table 3.3 we get
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

(1,−1)

(−1,0)

(0,−1)

(−2,0)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

F

⊕ (0,1) ⊗

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

(0,−1)

(−2,0)

(1,−2)

(−1,−1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

F

⊕ (1,0) ⊗

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

(−1,0)

(0,−1)

(−2,0)

(−1,−1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

F

⊕2(1,1) ⊗ (−1,−1)[F ]

We will denote by Z(i,j) the (i, j)−part of H0(U1,M) when we write it

in the above form, where i, j = 0,1. We get

ZF
(0,0) ⊕ (0,1) ⊗ZF

(0,1) ⊕ (1,0) ⊗ZF
(1,0) ⊕ (1,1) ⊗ZF

(1,1).

The B−socle is given by

[(−2,0) ⊕ (−1,0)]F ⊕ (0,1) ⊗ [(−1,−1)]F ⊕ (1,0)⊗

[(−1,0) ⊕ (−2,0) ⊕ (−1,−1)]F ⊕ 2(1,1) ⊗ (−1,−1)F

We now consider each module Z(i,j) separately.

(a) Consider the module Z(0,0). We can see that

Ext1B((0,−1), (−2,0)) = k

and this extension is given by Nα(0,−1). Now

Ext1B((−1,0),Nα(0,−1)) = H1(B,Nα(1,−1)) = 0

Moreover Ext1B((1,−1), (−1,0)) = k and this extension is given by

Nα(1,−1). We get

Z(0,0) = Nα(0,−1) ⊕Nα(1,−1)
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weights +(−1,−1) ⊕λ∈X1(T ) kλ ⊗ZF
λ

(0,1) (−1,0) (1,0) + 2(−1,0)

(3,−1) (2,−2) (0,0) + 2(1,−1)

(−3,2) (−4,1) (0,1) + 2(−2,0)

(3,−2) (2,−3) (0,1) + 2(1,−2)

(−3,1) (−4,0) (0,0) + 2(−2,0)

(0,−1) (−1,−2) (1,0) + 2(−1,−1)

(1,0) (0,−1) (0,1) + 2(0,−1)

(−1,1) (−2,0) (0,0) + 2(−1,0)

(2,−1) (1,−2) (1,0) + 2(0,−1)

(−2,1) (−3,0) (1,0) + 2(−2,0)

(1,−1) (0,−2) (0,0) + 2(0,−1)

(−1,0) (−2,−1) (0,1) + 2(−1,−1)

(0,0) (−1,−1) (1,1) + 2(−1,−1)

(0,0) (−1,−1) (1,1) + 2(−1,−1)

Table 3.3: Base two expansion of (ch L(0,1))e(−1,−1)
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(b) We will now consider the module Z(0,1). It is easy to see that

Ext1B((1,−2), (−1,−1)) = k

and this extension is given by Nα(1,−2). Also

Ext1B((−2,0),Nα(1,−2)) = H1(B,Nα(3,−2)) = k

So there is a unique extension from Nα(1,−2) to (−2,0). This

extension is given by Nβα(−2,0), where Nβα(−2,0) is a submodule

of ∇(1,0). Lastly we want to check if there is an extension from

Nβα(−2,0) to (0,−1). Now

Ext1B((0,−1),Nβα(−2,0)) = H1(B,Nβα(−2,1))

We have a short exact sequence of modules given by

0→ (−3,0) → Nβα(−2,1) → Nβ(−2,1) → 0.

Now H1(B, (−3,0)) = 0 by [21, 5.20 proposition]. Also

H1(B,Nβ(−2,1)) = k therefore by the long exact sequence of in-

duction we have H1(B,Nβα(−2,1)) = k. Hence there is a unique

extension from Nβα(−2,0) to (0,−1) and this extension is given

by Nαβα(0,−1), where Nαβα(0,−1) is a submodule of ∇(1,0) and

is self dual. We get

Z(0,1) = Nαβα(0,−1).

(c) Now we will consider the module Z(1,0). We can see that

Ext1B((−2,0), (−1,−1)) = H1(B, (1,−1)) = 0

and there is no extension from (−1,−1) to (−2,0). Also

Ext1B((0,−1), (−2,0)) = H1(B, (−2,1)) = k

101



and

Ext1B((0,−1), (−1,−1)) = H1(B, (−1,0)) = 0.

So there is a unique extension from (−2,0) to (0,−1) and this

extension is given by Nα(0,−1). Lastly

Ext1B((−1,0),Nα(0,−1)) = H1(B,Nα(1,−1)) = 0

So there is no extension from Nα(0,−1) to (−1,0). We get

Z(1,0) = (−1,−1) ⊕Nα(0,−1) ⊕ (−1,0)

Combine the above cases to get

H0(U1, L(0,1) ⊗ St) = [Nα(0,−1) ⊕Nα(1,−1)]F ⊕ (0,1) ⊗Nαβα(0,−1)F

⊕ (1,0) ⊗ [(−1,−1) ⊕Nα(0,−1) ⊕ (−1,0)]F

⊕ 2(1,1) ⊗ (−1,−1)F

4. Finally we consider H0(U1,St⊗ St). We know that

ch H0(U1,St⊗ St) = (ch L(1,1))e(−1,−1).

From table 3.4 we get

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

(0,0)

2 ∗ (1,−1)

4 ∗ (−1,0)

(−3,1), (2,−2)

4 ∗ (0,−1)

2 ∗ (−2,0)

(−1,−1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

F

⊕ (0,1) ⊗

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

(−1,0)

(2,−2)

4 ∗ (0,−1)

2 ∗ (−2,0)

2 ∗ (1,−2)

4 ∗ (−1,−1)

(−3,0)

(0,−2)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

F

⊕ (1,0) ⊗

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

(1,−1)

2 ∗ (−1,0)

(−3,1)

4 ∗ (0,−1)

4 ∗ (−2,0)

2 ∗ (1,−2)

2 ∗ (−1,−1)

(−3,0)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

F
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⊕(1,1) ⊗

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

2 ∗ (0,−1)

2 ∗ (−2,0)

2 ∗ (1,−2)

2 ∗ (−3,0)

2 ∗ (0,−2)

2 ∗ (−2,−1)

4 ∗ (−1,−1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

F

we can write this as

ZF
(0,0) ⊕ (0,1) ⊗ZF

(0,1) ⊕ (1,0) ⊗ZF
(1,0) ⊕ (1,1) ⊗ZF

(1,1).

The B−socle is given by

[(−1,−1) ⊕ 2 ∗ (−2,0) ⊕ 2 ∗ (0,−1) ⊕ 2 ∗ (−1,0) ⊕ (0,0)]F⊕

(0,1) ⊗ [(0,−2) ⊕ 3 ∗ (−1,−1) ⊕ 2 ∗ (0,−1)]F⊕

(1,0) ⊗ [(−3,0) ⊕ (−1,−1) ⊕ 3 ∗ (−2,0) ⊕ (−1,0)]F⊕

(1,1) ⊗ [2 ∗ (−2,−1) ⊕ 2 ∗ (−1,−1)]F

We will now consider each module Z(i,j) separately.

(a) Consider the module Z(0,0). Arranging the weights in descending

order we get figure 3.1.
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weights +(−1,−1) ⊕
λ∈X1

kλ ⊗ZF
λ weights +(−1,−1) ⊕

λ∈X1

kλ ⊗ZF
λ

(1,1) (0,1) (0,0) + 2(0,0) 2 ∗ (2,−2) (1,−3) (1,1) + 2(0,−2)

(−1,2) (−2,1) (0,1) + 2(−1,0) 2 ∗ (−2,0) (−3,−1) (1,1) + 2(−2,−1)

(5,−2) (4,−3) (0,1) + 2(2,−2) 2 ∗ (0,1) (−1,0) (1,0) + 2(−1,0)

(−5,3) (−6,2) (0,0) + 2(−3,1) 2 ∗ (3,−1) (2,−2) (0,0) + 2(1,−1)

(4,−3) (3,−4) (1,0) + 2(1,−2) 2 ∗ (−3,2) (−4,1) (0,1) + 2(−2,0)

(−4,1) (−5,0) (1,0) + 2(−3,0) 2 ∗ (3,−2) (2,−3) (0,1) + 2(1,−2)

(−1,−1) (−2,−2) (0,0) + 2(−1,−1) 2 ∗ (−3,1) (−4,0) (0,0) + 2(−2,0)

(1,−2) (0,−3) (0,1) + 2(0,−2) 2 ∗ (0,−1) (−1,−2) (1,0) + 2(−1,−1)

(−5,2) (−6,1) (0,1) + 2(−3,0) 4 ∗ (1,0) (0,−1) (0,1) + 2(0,−1)

(5,−3) (4,−4) (0,0) + 2(2,−2) 4 ∗ (−1,1) (−2,0) (0,0) + 2(−1,0)

(−4,3) (−5,2) (1,0) + 2(−3,1) 4 ∗ (2,−1) (1,−2) (1,0) + 2(0,−1)

(4,−1) (3,−2) (1,0) + 2(1,−1) 4 ∗ (−2,1) (−3,0) (1,0) + 2(−2,0)

2 ∗ (2,0) (1,−1) (1,1) + 2(0,−1) 4 ∗ (1,−1) (0,−2) (0,0) + 2(0,−1)

2 ∗ (−2,2) (−3,1) (1,1) + 2(−2,0) 4 ∗ (−1,0) (−2,−1) (0,1) + 2(−1,−1)

2 ∗ (4,−2) (3,−3) (1,1) + 2(1,−2) 4 ∗ (0,0) (−1,−1) (1,1) + 2(−1,−1)

2 ∗ (−4,2) (−5,1) (1,1) + 2(−3,0)

Table 3.4: Base two expansion of (ch L(1,1))e(−1,−1)
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2 ∗ (1,−1)

4 ∗ (−1, 0)

α

(−3, 1) (2,−2)

4 ∗ (0,−1)

2 ∗ (−2, 0)

(−1,−1)

α

α

α

β

β

α + β

Figure 3.1:

It is easy to see that

Ext1B((−2,0), (−1,−1)) = H1(B, (1,−1)) = 0,

so there is no extension from (−1,−1) to (−2,0). Also

Ext1B((0,−1), (−2,0)) = H1(B, (−2,1)) = k,

hence there is a unique extension from (−2,0) to (0,−1) and this

extension is given by Nα(0,−1). We get figure 3.2.

Now

Ext1B((−3,1),Nα(0,−1)) = H1(B,Nα(3,−2))

= k.

105



2 ∗Nα(0,−1) ⊕ 2 ∗ (0,−1)

(−3,1) (2,−2)

4 ∗ (−1,0)

2 ∗ (1,−1)

Figure 3.2:

The above statement is true because we have a short exact se-

quence of modules given by

0→ (1,−1) → Nα(3,−2) → (3,−2) → 0.

This gives rise to the long exact sequence of induction and we get

H1(B,Nα(3,−2)) = H1(3,−2). By [11, 7.2(2)] we have H1(−prα) =

k so H1(B,Nα(3,−2)) = k. Similarly Ext1B((2,−2),Nα(0,−1)) =

H1(B,Nα(−2,1)) = k. Hence there are unique extensions from

Nα(0,−1) to (−3,1) and fromNα(0,−1) to (2,−2) and these exten-

sions are given by Nβα(−3,1) and Nαα(2,−2) respectively. More-

over

Ext1B((−1,0),Nαα(2,−2)) = k

and

Ext1B((−1,0),Nβα(−3,1)) = k.

Again we have a short exact sequence

0→ Nα(1,−1) → Nβα(−2,1) → (−2,1) → 0.

106



(0,0) ⊕ (−1,−1) ⊕ 2 ∗ (0,−1) ⊕Nαβα(−1,0) ⊕Nβαα(−1,0)

2 ∗ (1,−1)

Figure 3.3:

This gives rise to the long exact sequence of induction and we get

0→H1(Nα(1,−1)) →H1(Nβα(−2,1)) →H1(−2,1) →

H2(Nα(1,−1)) → ...

Moreover we have a short exact sequence

0→ (−1,0) → Nα(1,−1) → (1,−1) → 0.

Using the long exact sequence we get Hi(Nα(1,−1)) = 0 for all i.

Using this we get H1(Nβα(−2,1)) = k. Similarly we can show

that H1(Nαα(3,−2)) = k So there are unique extensions from

Nαα(2,−2) to (−1,0) and from Nβα(−3,1) to (−1,0) and these

extensions are given by Nβαα(−1,0) and Nαβα(−1,0) respectively.

We arrive at figure 3.3.

Now consider

Ext1B((1,−1),Nβαα(−1,0)) = H1(B,Nβαα(−2,1)) = k

Also

Ext1B((1,−1),Nαβα(−1,0)) = H1(B,Nαβα(−2,1)) = k

Hence there are unique extensions from Nβαα(−1,0) to (1,−1)

and from Nαβα(−1,0) to (1,−1) and these extension are given
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by Nαβαα(1,−1) and Nααβα(1,−1) respectively. Combine all the

above results to get

Z(0,0) = (0,0) ⊕ (−1,−1) ⊕ 2 ∗ (0,−1) ⊕ 2 ∗ (−1,0)

⊕Nααβα(1,−1) ⊕Nαβαα(1,−1)

Remark. Note that there is another possible decomposition of

Z(0,1) but that decomposition contradicts the famous conjecture

of Donkin given in [13]. We assume that the conjecture is true

hence we take the above decomposition.

(b) Now we will consider the module Z(1,0). Arranging the weights in

descending order we get figure 3.4. There is a unique extension

from (−3,0) to (−1,−1), because Ext1B((−1,−1), (−3,0)) = k and

this extension is given by Nα(−1,−1). Also

Ext1B((1,−2),Nα(−1,−1)) = H1(B,Nα(−2,1)) = k

So there is a unique extension from Nα(−1,−1) to (1,−2) and this

extension is given by Nαα(1,−2), where Nαα(1,−2) has weights

(1,−2), (−1,−1), (−3,0). Now we will check if there is an extension

from Nαα(1,−2) to (−2,0).

Ext1B((−2,0),Nαα(1,−2)) = H1(B,Nαα(3,−2)) = k

Hence there is a unique extension from Nαα(1,−2) to (−2,0) and

this extension is given by Nβαα(−2,0).

Now we will check to see if there is an extension from Nβαα(−2,0)

to (0,−1). We have

Ext1B((0,−1),Nβαα(−2,0)) = H1(B,Nβαα(−2,1)) = k.
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(1,−1)

2 ∗ (−1, 0)

α

(−3, 1)

(1,−2)

4 ∗ (0,−1)

4 ∗ (−2, 0)

2 ∗ (−1,−1)

α

α

α

β

β

α

(−3, 0)

Figure 3.4:
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(−1,−1) ⊕Nαβαα(0,−1) ⊕ 3 ∗Nα(0,−1)

(−3,1)

2 ∗ (−1,0)

(1,−1)

Figure 3.5:

This is true because we have a short exact sequence given by

0→ Nα(−1,0) → Nβαα(−2,1) → Nβ(−2,1) → 0.

Also Hi(B,Nα(−1,0)) = 0 and H1(B,Nβ(−2,1)) = k, so using the

long exact sequence of induction we get

H1(B,Nβαα(−2,1)) = k,

so there is a unique extension from Nβαα(−2,0) to (0,−1) and this

extension is given by Nαβαα(0,−1). Moreover

Ext1B((0,−1), (−2,0)) = H1(B, (−2,1)) = k.

So there is a unique extension from (−2,0) to (0,−1) and this

extension is given by Nα(0,−1). Combining these we get figure

3.5.

Now we will check if there is an extension from Nα(0,−1) to

(−3,1). We have

Ext1B((−3,1),Nα(0,−1)) = H1(B,Nα(3,−2)) = k
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The above statement is true because we have a short exact se-

quence of modules given by

0→ (1,−1) → Nα(3,−2) → (3,−2) → 0.

This gives rise to the long exact sequence of induction and we get

H1(B,Nα(3,−2)) = H1(3,−2). By [11, 7.2(2)] we have H1(−prα) =

k so H1(B,Nα(3,−2)) = k. Hence there is a unique extension from

Nα(0,−1) to (−3,1) and this extension is given by Nβα(−3,1). We

also have

Ext1B((−1,0),Nβα(−3,1)) = H1(B,Nβα(−2,1)).

Again we have a short exact sequence

0→ Nα(1,−1) → Nβα(−2,1) → (−2,1) → 0.

This gives rise to the long exact sequence of induction and we get

0→H1(Nα(1,−1)) →H1(Nβα(−2,1)) →H1(−2,1) →

H2(Nα(1,−1)) → ...

Moreover we have a short exact sequence

0→ (−1,0) → Nα(1,−1) → (1,−1) → 0.

Using the long exact sequence we get Hi(Nα(1,−1)) = 0 for all

i. Using this we get Hi(Nβα(−2,1)) = k. So there is a unique

extension from Nβα(−3,1) to (−1,0) and this extension is given

by Nαβα(−1,0), where Nαβα(−1,0) is a submodules of ∇(1,0).

Using this we get figure 3.6.
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(−1,−1) ⊕ (−1,0) ⊕Nαβαα(0,−1) ⊕Nαβα(−1,0) ⊕ 2 ∗Nα(0,−1)

(1,−1)

Figure 3.6:

Finally

Ext1B((1,−1),Nαβα(−1,0)) = H1(B,Nαβα(−2,1)) = k.

So there is a unique extension from Nαβα(−1,0) to (1,−1) and

this extension is given by Nααβα(1,−1), where Nααβα(1,−1) is a

submodules of ∇(1,0). Combining all the above results we get

Z(1,0) = (−1,−1) ⊕ (−1,0) ⊕Nαβαα(0,−1)

⊕Nααβα(1,−1) ⊕ 2 ∗Nα(0,−1)

(c) Now we will consider the module Z(0,1). Arranging the weights in

descending order we get figure 3.7. There is a unique extension

from (0,−2) to (−3,0), because Ext1B((−3,0), (0,−2)) = k and this

extension is given by Nβ(−3,0). Also

Ext1B((−1,−1),Nβ(−3,0)) = H1(B,Nβ(−2,1)) = k

So there is a unique extension from Nβ(−3,0) to (−1,−1) and this

extension is given by Nαβ(−1,−1). Now we will check if there is

an extension from Nαβ(−1,−1) to (1,−2).

Ext1B((1,−2),Nαβ(−1,−1)) = H1(B,Nαβ(−2,1)) = k

Hence there is a unique extension from Nαβ(−1,−1) to (1,−2) and

this extension is given by Nααβ(1,−2). Also there is an extension
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2 ∗ (1,−2)

(−1, 0)

(−3, 0)

(2,−2)

4 ∗ (0,−1)
α

2 ∗ (−2, 0)

4 ∗ (−1,−1)

α

β

α

α

(0,−2)

β

β

Figure 3.7:
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2 ∗ (−1,−1) ⊕Nααβ(1,−2) ⊕Nα(1,−2)

2 ∗ (−2,0)

4 ∗ (0,−1)

(2,−2)

(−1,0)

Figure 3.8:

from (−1,−1) to (1,−2) and this extension is by given Nα(1,−2).

Combining above results we arrive at figure 3.8.

Now we will check to see if there is an extension from Nααβ(1,−2)

to (−2,0). We have

Ext1B((−2,0),Nααβ(1,−2)) = H1(B,Nααβ(3,−2)) = k.

So there is a unique extension from Nααβ(1,−2) to (−2,0) and this

extension is given by Nβααβ(−2,0). Also

Ext1B((−2,0),Nα(1,−2)) = H1(B,Nα(3,−2)) = k

Hence there is a unique extension from Nα(1,−2) to (−2,0) and

this extension is given by Nβα(−2,0). We get figure 3.9.

We also have

Ext1B((0,−1),Nβα(−2,0)) = H1(B,Nβα(−2,1)) = k.
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2 ∗ (−1,−1) ⊕Nααβ(1,−2) ⊕Nβα(−2,0)

4 ∗ (0,−1)

(2,−2)

(−1,0)

Figure 3.9:

2 ∗ (−1,−1) ⊕ 2 ∗ (0,−1) ⊕ ((−1,−1) ⊗M) ⊕Nαβα(−2, 0)

(2,−2)

(−1, 0)

Figure 3.10:

So there is a unique extension from Nβα(−2,0) to (0,−1) and this

extension is given by Nαβα(0,−1). Moreover

Ext1B((0,−1),Nβααβ(−2,0)) = H1(B,Nβααβ(−2,1)) = k.

So there is a unique extension from Nβααβ(−2,0) to (0,−1) and

this extension is given by (−1,−1)⊗M , where M = ∇(1,0)/(−1,0).

Using this we get figure 3.10.

Now we will check if there is an extension from Nαβα(0,−1) to
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2 ∗ (−1,−1) ⊕ 2 ∗ (0,−1) ⊕ ((−1,−1) ⊗M) ⊕Nααβα(2,−2)

(−1, 0)

Figure 3.11:

(2,−2). We have

Ext1B((2,−2),Nαβα(0,−1)) = H1(B,Nαβα(−2,1)) = k.

So there is a unique extension from Nαβα(0,−1) to (2,−2) and

this extension is given by Nααβα(2,−2). Combining all the above

results we get figure 3.11.

Finally we will check if there is an extension from Nααβα(2,−2) to

(−1,0). We have

Ext1B((−1,0),Nααβα(2,−2)) = H1(B,Nααβα(3,−2)) = k.

So there is a unique extension from Nααβα(2,−2) to (−1,0) and

this extension is given by (0,−1) ⊗N , where ∇(1,0)/N = (1,0).

Combining all the above results we get

Z(0,1) = 2 ∗ (−1,−1) ⊕ 2 ∗ (0,−1) ⊕ ((−1,−1) ⊗M)

⊕ ((0,−1) ⊗N)

Remark. Note that there is another possible decomposition of

Z(0,1) but that decomposition contradicts the famous conjecture

of Donkin given in [13]. We assume that the conjecture is true

hence we take the above decomposition.
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(d) Finally for the module Z(1,1) we have

Z(1,1) = (−1,−1) ⊕ (−1,−1) ⊗ T (1,0)

Combining the results in (a),(b),(c) and (d), we get

H0(U1,St⊗ St) = [(0,0) ⊕ (−1,−1) ⊕ 2 ∗ (0,−1) ⊕ 2 ∗ (−1,0)

⊕Nααβα(1,−1) ⊕Nαβαα(1,−1)]F

⊕ (0,1) ⊗ [2 ∗ (−1,−1) ⊕ 2 ∗ (0,−1) ⊕ ((−1,−1) ⊗M)

⊕ ((0,−1) ⊗N)]F ⊕ (1,0) ⊗ [(−1,−1) ⊕ (−1,0) ⊕Nαβαα(0,−1)

⊕Nααβα(1,−1) ⊕ 2 ∗Nα(0,−1)]F

⊕ (1,1) ⊗ [(−1,−1) ⊕ (−1,−1) ⊗ T (1,0)]F

Lemma 3.2.1. We have:

1. H0(U1, L(0,0) ⊗ St) = (−1,−1).

2. H0(U1, L(1,0) ⊗ St) = [(−1,0) ⊕ (0,−1)]F ⊕ (0,1) ⊗ [(0,−1)

⊕(−1,−1)]F ⊕ (1,0) ⊗Nα(0,−1)F .

3. H0(U1, L(0,1) ⊗ St) = [Nα(0,−1) ⊕Nα(1,−1)]F ⊕ (0,1) ⊗Nαβα(0,−1)F

⊕(1,0) ⊗ [(−1,−1) ⊕Nα(0,−1) ⊕ (−1,0)]F ⊕ 2(1,1) ⊗ (−1,−1)F .

4. H0(U1,St⊗St) = [(0,0)⊕(−1,−1)⊕2∗(0,−1)⊕2∗(−1,0)⊕Nααβα(1,−1)

⊕Nαβαα(1,−1)]F ⊕ (0,1) ⊗ [2 ∗ (−1,−1) ⊕ 2 ∗ (0,−1) ⊕ ((−1,−1) ⊗M)

⊕((0,−1) ⊗N)]F ⊕ (1,0) ⊗ [(−1,−1) ⊕ (−1,0) ⊕Nαβαα(0,−1)

⊕Nααβα(1,−1)⊕2∗Nα(0,−1)]F⊕(1,1)⊗[(−1,−1)⊕(−1,−1)⊗T (1,0)]F .

117



Now we will write the recursive formulas obtained from the above lemma.

We have the following cases:

1. Suppose (a, b) = (2r,2s), where r, s are integers then the equation 3.2

becomes

χi(2r,2s) = χi(H0(B1, T (2,2)′ ⊗ (2r,2s))−1)F

+ χ(1,0)χi(H0(B1, T (1,2) ⊗ (2r,2s))−1)F

+ χ(0,1)χi(H0(B1, P(2,1) ⊗ (2r,2s))−1)F

+ χ(1,1)χi(H0(B1, P(1,1) ⊗ (2r,2s))−1)F

− 2χi(H0(B1, T (2,1) ⊗ (2r,2s))−1)F

We will calculate each term separately.

(a) First we will take χi(H0(B1, T (2,2)′ ⊗ (2r,2s))−1)

χi(H0(B1, T (2,2)′ ⊗ (2r,2s))−1) = χi(H0(U1, P
′

(2,2) ⊗ (2r,2s))−1)T1

= χi((2r,2s) ⊗H0(U1, T (2,2)′)T1)−1

= χi(r, s) + χi(r − 1, s − 1) + 2χi(r, s − 1) + 2χi(r − 1, s)

+ χi(Nααβα(r + 1, s − 1)) + χi(Nαβαα(r + 1, s − 1)).

(b) Now take χi(H0(B1, T (1,2) ⊗ (2r,2s))−1)

χi(H0(B1, T (1,2) ⊗ (2r,2s))−1) = χi(H0(U1, T (1,2) ⊗ (2r,2s))−1)T1

= χi((2r,2s) ⊗H0(U1, L(0,1) ⊗ St)T1)−1

= χiα(r, s − 1) + χiα(r + 1, s − 1).
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(c) We will now calculate χi(H0(B1, T (2,1) ⊗ (2r,2s))−1)

χi(H0(B1, T (2,1) ⊗ (2r,2s))−1) = χi(H0(U1, T (2,1) ⊗ (2r,2s))−1)T1

= χi((2r,2s) ⊗H0(U1, L(1,0) ⊗ St)T1)−1

= χi(r − 1, s) + χi(r, s − 1).

(d) Finally take χi(H0(B1, T (1,1) ⊗ (2r,2s))−1)

χi(H0(B1, T (1,1) ⊗ (2r,2s))−1) = χi(H0(U1, T (1,1) ⊗ (2r,2s))−1)T1

= χi((2r,2s) ⊗H0(U1,St)T1)−1 = 0.

We will denote the character of χi(Nααβ(r, s)) by χiααβ and

χi(Nαβα(r, s)) by χiαβα. Combine the above results to get

χi(2r,2s) = χi(r, s) + χi(r − 1, s − 1) + 2χi(r, s − 1) + 2χi(r − 1, s)

+ χi(Nααβα(r + 1, s − 1)) + χi(Nαβαα(r + 1, s − 1)) + χiα(r, s − 1)F

+ χiα(r + 1, s − 1)F + χi(r − 1, s)F + χi(r, s − 1)F

− 2χi(r − 1, s)F − 2χi(r, s − 1)F

= χi(r, s)F + χiααβ(r + 1, s − 1)F + χiαβα(r + 1, s − 1)F

+ χiα(r, s − 1)F + χiα(r + 1, s − 1)F + χi(r − 1, s)F + χi(r, s − 1)F .

Similarly we can get χi(2r,1 + 2s), χi(1 + 2r,2s) and χi(1 + 2r,1 + 2s).

The complete result is given in the following lemma.

Lemma 3.2.2. For i ≥ 0, integers r, s and α,β simple roots we have:

1. χi(2r,2s) = χi(r, s)F + χi(r − 1, s − 1) + χiααβα(r + 1, s − 1)F

+χiαβαα(r + 1, s − 1)F + χiα(r, s − 1)F + χiα(r + 1, s − 1)F + χi(r − 1, s)F

+χi(r, s − 1)F ;
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2. χi(2r,1 + 2s) = χi((r − 1, s − 1) ⊗M)F + χi((r, s − 1) ⊗N)F

+χi(r, s − 1)F + χi(r − 1, s − 1)F + χiαβα(r, s − 1)F ;

3. χi(1 + 2r,2s) = 2χi(r − 1, s − 1)F + 2χi(r − 1, s)F + χiαβαα(r, s − 1)F

+χiααβα(r + 1, s − 1)F + 2χiα(r, s − 1)F ;

4. χi(1 + 2r,1 + 2s) = 4χi(r − 1, s − 1)F + χi((−1,−1) ⊗ T (1,0))F .

3.3 Conclusion

In this chapter we have given the first step of the recursive description for

χi(r, s). As it is clear from the above lemma that there are some new modules

appearing in this description. The next step is to find a description, recursive

or otherwise, for these modules. Unfortunately it is very hard to find this

description using the methods available to us. There is also scope to repeat

this process for higher characteristics but we have not tried it yet.
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Chapter 4

A Tensor Product Factorization

for Certain Tilting Modules

4.1 Introduction

The contents of this chapter have been published see [1]. Let G be a semisim-

ple, simply connected linear algebraic group over an algebraically closed field

k of characteristic p > 0. In this chapter we will give a generalization of

the results given by Doty in [17]. In his paper [17], Doty observed that the

tensor product of the Steinberg module with a minuscule module is always

indecomposable tilting. We will show that the tensor product of the Stein-

berg module with a module whose dominant weights are modular minuscule

is a tilting module, not always indecomposable. We also give the decom-

position of such a module into indecomposable tilting modules. Doty also

proved that if p ≥ 2h − 2, then for r−minuscule weights the tilting module is

isomorphic to a tensor product of two simple modules, usually in many ways.

We remove the characteristic restriction on this result. A generalization of
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[11, proposition 5.5(i)] for (p, r)−minuscule weights is also given. We start

by setting up notation and stating some important definitions and results

which will be useful later on. For further explanation please see chapter 1.

Let F ∶ G→ G be the Frobenius morphism of G. Let M be a G− module. In

this chapter we will denote MF r by M [r], r ≥ 1. Let B be a Borel subgroup

of G and T ⊂ B be a maximal torus of G. Recall that Xr(T ) denotes the set

of r−restricted weights. Moreover ∆(λ) and L(λ) denote the Weyl module

and the simple module of highest weight λ respectively. Let T (λ) denote the

tilting module with highest weight λ.

Recall also that for λ ∈Xr(T ), the modules L(λ) form a complete set of pair-

wise non-isomorphic irreducible Gr−modules. For µ ∈X(T ) let Q̂r(µ) denote

the projective cover of L(µ) as a GrT−module see e.g [21] and [22]. The

modules Q̂r(λ), λ ∈ Xr(T ), form a complete set of pairwise non-isomorphic

projective Gr−modules.

A dominant weight λ is called minuscule if the weights of ∆(λ) form a single

orbit under the (usual) action ofW . Equivalently, by [6, chapter VIII, Section

7, proposition 6(iii)], λ is minuscule if −1 ≤ (λ,α∨) ≤ 1 for all roots α. If s(λ) =

∑
µ∈Wλ

e(µ) then λ minuscule implies s(λ) = ch ∆(λ) = ch∇(λ) = chL(λ). For

λ ∈ X+(T ) define λ to be modular minuscule if ⟨λ,β∨0 ⟩ ≤ p, where β0 is the

highest short root. Moreover we define a weight λ ∈ Xr(T ) to be (p, r)-

minuscule if λ =
r−1
∑
j=0

pjλj, where each λj is modular minuscule (and λj ∈

X1(T )). In [17] Doty defines a weight λ to be r−minuscule if λ =
r−1
∑
j=0

pjλj, with

each λj minuscule. Note that λ minuscule implies λ is modular minuscule.

Similarly if λ is r−minuscule then λ is (p, r)−minuscule.
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4.2 Main Results

Definition 4.2.1. For λ =
r−1
∑
j=0

pjλj ∈Xr(T ), λj ∈X1(T ) define

sr(λ) = s(λ0)s(pλ1) ... s(prλr−1).

Proposition 4.2.1. If λ is (p, r)−minuscule then

chT ((pr − 1)ρ + λ) = χ((pr − 1)ρ)sr(λ),

where χ(λ) denotes the Weyl character corresponding to λ ∈X+(T ) as given

in [21, II, proposition 5.10].

Proof. By [10, theorem 5.3] we have if λ ∈ X1(T ) and T ((p − 1)ρ + λ)∣G1

is indecomposable then T ((p − 1)ρ + λ) ⊗ T (µ)[1] ≃ T ((p − 1)ρ + λ + pµ)

for all µ ∈X+(T ). Also by the argument of [10, proposition 5.5] for modular

minuscule (and restricted) λ we get that T ((p−1)ρ+λ)∣G1 is indecomposable.

So we have T ((pr − 1)ρ + λ) = ⊗r−1
j=0 T ((p − 1)ρ + λj)[j]. So chT ((pr − 1)ρ +

λ) = Πr−1
j=0 chT ((p − 1)ρ + λj)[j]. Since each λj is modular minuscule by [10,

proposition 5.5] we get chT ((p−1)ρ+λj) = χ((p−1)ρ)s(λj). Hence chT ((pr−

1)ρ+λ) = Πr−1
j=0 χ((p− 1)ρ)[j]s(λj)[j]. Combine this with the above definition

to get the result.

Remark. If λ is minuscule then s(λ) = chL(λ) and hence T ((p − 1)ρ + λ) ≃

St ⊗ L(λ) because these are tilting modules with the same character. This

gives us [17, lemma].

Lemma 4.2.2. We have the following:
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1. If µ ∈X+(T ) then T ((pr − 1)ρ) ⊗ T (µ)[r] ≃ T ((pr − 1)ρ + prµ).

2. Suppose λ is minuscule then

St⊗L(λ) ≃ Q̂1((p − 1)ρ +w0λ),

as G1T−modules, where w0 is the longest element of W . In particular

St⊗L(λ)∣G1 is indecomposable.

3. If λ is minuscule and µ ∈X+(T ) then

St⊗L(λ) ⊗ T (µ)[r] ≃ T ((p − 1)ρ + λ + prµ).

Proof. By [21, II, 3.19] with i = 0 we have Str ⊗∇(µ)[r] ≃ ∇((pr − 1)ρ + pnµ)

for every µ ∈ X+(T ). It follows that Str ⊗ V [r] is tilting for every tilting

module V . In particular Str ⊗T (µ)[r] is tilting. By [13, 2.1], Str ⊗T (µ)[r] is

isomorphic to T ((pr − 1)ρ + prµ). This proves part (1).

Since

HomG1T (L((p − 1)ρ +w0λ),St⊗L(λ))

= HomG1T (L((p − 1)ρ +w0λ) ⊗L(λ)∗,St)

= HomG1T (L((p − 1)ρ +w0λ) ⊗L(−w0λ),St) ≠ 0.

we have

St⊗L(λ)∣G1 = Q̂1((p − 1)ρ +w0λ) ⊕Z.

Also by [11, 1.2(2)], ch Q̂1((p−1)ρ+w0λ) = χ((p−1)ρ)ψ, where ψ = ∑aξe(ξ)

and aξ ≥ 0 for all ξ.

Also by [21, II, 11.7, lemma(c)], ch Q̂1((p − 1)ρ +w0λ) is W invariant. This

implies ψ is W invariant. Moreover Q̂1((p − 1)ρ + w0λ) has unique highest

weight (p−1)ρ+λ, so ψ = s(λ)+θ where θ = ∑
µ∈X+(T )

aµs(µ) with µ < λ. But ψ
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is W invariant and ch Q̂1((p−1)ρ+w0λ) is divisible by χ((p−1)ρ) so we must

have ψ = s(λ). So we get Z = 0 and ch Q̂1((p − 1)ρ +w0λ) = ch (St ⊗ L(λ)).

This proves that

St⊗L(λ) ≃ Q̂1((p − 1)ρ +w0λ).

Now by [22, 4.2, Satz], Q̂1((p− 1)ρ+w0λ) is indecomposable as G1−module,

so St ⊗ L(λ) is indecomposable as G1−module. Hence St ⊗ L(λ)∣G1 is inde-

composable. This proves part (2).

Since St⊗L(λ)∣G1 is indecomposable by [13, 2.1] we get

St⊗L(λ) ⊗ T (µ)[r] ≃ T ((p − 1)ρ + λ + prµ).

This gives us the result in part (3).

Proposition 4.2.3. Suppose λ is r−minuscule and µ ∈X+(T ) then

Str ⊗L(λ) ⊗ T (µ)[r] ≃ T ((pr − 1)ρ + λ + prµ).

Proof. Using Steinberg’s tensor product theorem we get

Str ⊗L(λ) ≃
r−1
⊗
j=0

(St⊗L(λj))[j]

where λ is r−minuscule. By remark 4.2, we have

Str ⊗L(λ) ≃
r−1
⊗
j=0

(T ((p − 1)ρ + λj))[j].

Apply lemma 4.2.2(3) inductively to get

Str ⊗L(λ) ≃ T ((pr − 1)ρ + λ).

Now tensor both sides by T (µ)[r] and apply lemma 4.2.2(3) again to get the

result.
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Corollary 4.2.4. Let λ be r−minuscule and µ ∈X+(T ) then:

1. T ((pr − 1)ρ + prµ) ⊗L(λ) ≃ T ((pr − 1)ρ + λ + prµ).

2. If T (µ) is simple then Str ⊗L(prµ + λ) ≃ T ((pr − 1)ρ + prµ + λ).

Proof. By lemma 4.2.2(1) we get Str ⊗ T (µ)[r] ≃ T ((pr − 1)ρ + prµ). Tensor

this with L(λ) to get the result in part (1).

If T (µ) is simple then L(µ) ≃ T (µ). So L(λ) ⊗ T (µ)[r] ≃ L(λ) ⊗ L(µ)[r].

Using Steinberg’s tensor product theorem we get L(λ)⊗L(µ)[r] ≃ L(λ+prµ).

Tensor this with the r−th Steinberg module to get the result in part (2).

Remark. Note that proposition 4.2.4 and its corollary remove the restriction

on p in the corresponding results in [17].

In case λ is modular minuscule it is of interest to determine the decomposition

St⊗L(λ), St⊗∆(λ) and St⊗∇(λ) as a direct sum of indecomposable modules.

In what follows we will show that these are all tilting modules and the direct

sum decomposition is determined by the characters of ∇(λ) and L(λ). We

will also show that if λ is (p, r)−minuscule then Str⊗L(λ) is tilting. We will

also give decomposition of Str ⊗ L(λ) into indecomposable tilting modules.

Lemma 4.2.5. Suppose λ is modular minuscule. Then every weight µ of

V (λ) satisfies pρ + µ ∈X+(T ), where V (λ) = ∆(λ) or ∇(λ).

Proof. If τ is a dominant weight of V (λ) then τ is also modular minuscule

because λ is the highest weight so τ ≤ λ and we can write λ = τ + θ where θ

is a sum of positive roots. Also p ≥ ⟨λ,β∨0 ⟩ = ⟨τ, β∨0 ⟩ + ⟨θ, β∨0 ⟩ ≥ ⟨τ, β∨0 ⟩.
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Let µ be a weight of V (λ) then wµ = τ for some modular minuscule τ ∈X+(T )

and w ∈ W . Let α be a simple root then ⟨pρ + µ,α∨⟩ = p + ⟨w−1τ,α∨⟩ =

p + ⟨τ, (wα)∨⟩. So we need to show that p + ⟨τ, γ∨⟩ ≥ 0 for all roots γ.

Now p+ ⟨τ, γ∨⟩ ≥ 0 for all roots γ ⇐⇒ p+ ⟨τ, (w0γ)∨⟩ ≥ 0 for all roots γ. And

this is true ⇐⇒ p + ⟨w0τ, γ∨⟩ ≥ 0 ⇐⇒ p − ⟨−w0τ, γ∨⟩ ≥ 0 ⇐⇒ p − ⟨τ, γ∨⟩ ≥ 0.

From the last inequality we get ⟨τ, γ∨⟩ ≤ p and since ⟨τ, γ∨⟩ ≤ ⟨τ, β∨0 ⟩ ≤ p we

have the required result.

Recall that if 0 = M0 ≤ M1 ≤ ... ≤ Mt = M is a chain of B−modules and

RIndGBMi/Mi−1 = 0,1 ≤ i ≤ t then for IndGBM we have a sequence 0 = IndGBM0 ≤

IndGBM1 ≤ ... ≤ IndGBMt = IndGBM with IndGBMi/IndGBMi−1 ≃ IndGBMi/Mi−1.

This follows by induction on t. Recall also that RIndGBµ = 0 if ⟨µ,α∨⟩ ≥ −1

for all simple roots α. This follows by Kempf’s vanishing theorem and [21,

II, proposition 5.4(a)].

Proposition 4.2.6. Assume λ is modular minuscule and let V be a finite

dimensional G−module such that µ ≤ λ for all weights µ of V . Then St⊗ V

is a tilting module.

Proof. We will show that St ⊗ V has a ∇−filtration. Let µ be a weight of

V , then µ is a weight of some composition factor L(ν) of V . Now ν ≤ λ, so

⟨ν, β∨0 ⟩ ≤ ⟨λ,β∨0 ⟩ ≤ p, therefore ν is modular minuscule. Moreover µ is a weight

of L(ν) and hence of ∇(ν) and so by lemma 4.2.5 we have pρ + µ ∈X+(T ).

Now choose a B−module filtration of V given by 0 = V0 ≤ V1 ≤ ... ≤ Vt = V with

Vi/Vi−1 ≃ kµi where µi is a weight of V . Then St⊗V = IndGB((p−1)ρ⊗V ) and

(p−1)ρ⊗V has a filtration 0 = (p−1)ρ⊗V0 ≤ (p−1)ρ⊗V1 ≤ ... ≤ (p−1)ρ⊗Vt =

(p − 1)ρ⊗ V .

127



Also for each section (p − 1)ρ ⊗ Vi/Vi−1 we have RIndGB((p − 1)ρ⊗ Vi/Vi−1) =

RIndGB((p−1)ρ⊗kµi) = RIndGB((p−1)ρ+µi) = 0 because ⟨(p−1)ρ+µi, α∨⟩ ≥ −1.

So St⊗ V has filtration with section

IndGB((p − 1)ρ⊗ Vi/Vi−1) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∇(µi), µi ∈X+(T )

0, otherwise.

Therefore St ⊗ V has a ∇−filtration. Also µ∗ ≤ λ∗ for all weights µ∗ of V ∗

and λ∗ is modular minuscule. So St ⊗ V ∗ has a ∇−filtration. Therefore

(St⊗ V ∗)∗ = St⊗ V has a ∆−filtration. Hence St⊗ V is tilting.

Corollary 4.2.7. Suppose λ is modular minuscule then St⊗∆(λ) ≃ St⊗∇(λ).

Proof. By proposition 4.2.6, St ⊗ ∆(λ) and St ⊗ ∇(λ) are tilting modules.

Moreover St ⊗ ∆(λ) and St ⊗ ∇(λ) have the same character and hence are

isomorphic.

Theorem 4.2.8. Let λ be modular minuscule and V be a finite dimensional

G−module such that µ ≤ λ for all weights µ of V . Then

St⊗ V ≃ ⊕
ν∈X+(T )

aν T ((p − 1)ρ + ν)

where ch(V ) = ∑
ν∈X+(T )

aνs(ν).

Proof. By proposition 4.2.6 we have St ⊗ V is a tilting module. Also by

[11, proposition 5.5] we get chT ((p − 1)ρ + ν) = χ((p − 1)ρ)s(ν). Write

ch (V ) = ∑
ν∈X+(T )

aνs(ν) then the tilting modules St⊗ V and

⊕ν∈X+(T ) aνT ((p−1)ρ+ν) have the same character and hence are isomorphic.
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Proposition 4.2.9. Assume λ is (p, r)−minuscule then Str⊗L(λ) is a tilting

module.

Proof. Since λ is (p, r)−minuscule this implies λ ∈ Xr(T ) and λ =
r−1
∑
j=0

pjλj,

where each λj is modular minuscule. Using Steinberg tensor product theorem

we have Str ⊗ L(λ) = ⊗r−1
j=0 (St ⊗ L(λj))[j]. By proposition 4.2.6, St ⊗ L(λj)

is tilting for each λj. We will use mathematical induction to complete the

proof.

Write Str ⊗L(λ) = St⊗L(λ0) ⊗ (St⊗L(λ1) ⊗ St[1] ⊗L(λ2)[1] ⊗ ...⊗ St[r−2] ⊗

L(λr−1)[r−2])[1]. Then using inductive hypothesis and theorem 4.2.8 we have

Str ⊗L(λ) = ⊕µ aµSt⊗L(λ0) ⊗T (µ)[1]. Also by theorem 4.2.8, St⊗L(λ0) =

⊕ν∈X+(T ) bν T ((p−1)ρ+ν). So Str⊗L(λ) = ⊕µ,ν aµbν T ((p−1)ρ+ν)⊗T (µ)[1].

Hence Str ⊗L(λ) is tilting.

Theorem 4.2.10. Let λ be (p, r)−minuscule then

Str ⊗L(λ) ≃ ⊕
ν∈X+(T )

bν T ((pr − 1)ρ + ν)

where chL(λ) = ∑
ν∈X+(T )

bνsr(ν).

Proof. Str⊗L(λ) is tilting by proposition 4.2.9. Also by proposition 4.2.1 we

have chT ((pr − 1)ρ + ν) = χ((pr − 1)ρ)sr(ν). Write chL(λ) = ∑
ν∈X+(T )

bνsr(ν)

then the tilting modules Str ⊗L(λ) and

⊕ν∈X+(T ) bνT ((pr−1)ρ+ν) have the same character and hence are isomorphic.

4.3 Conclusion

In this chapter we have removed the characteristic restriction on Doty’s re-

sults given in [17]. We have also proved that if λ is modular minuscule and
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V is finite dimensional G−module such that µ ≤ λ for all weights µ of V

then St ⊗ V is a tilting module. We have also given the decomposition of

St ⊗ V into indecomposable tilting modules. This in particular given the

decomposition of St⊗∇(λ) and St⊗∆(λ) (λ modular minuscule). We have

also shown that if λ is (p, r)−minuscule then Str ⊗ L(λ) is a tilting module.

We also give its decomposition into indecomposable tilting modules.
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Chapter 5

On the Cohomology of Certain

Homogeneous Vector Bundles

of G/B in Characteristic Zero

5.1 Introduction

The contents of this chapter have been accepted for publication see [2]. Let k

be an algebraically closed field of characteristic zero and let G be a reductive

connected algebraic group over k. Let B be a Borel subgroup of G and

T ⊂ B be a maximal torus of G. Recall that for an algebraic group J ,

we write mod(J) for the category of finite dimensional rational J−modules.

As explained in chapter 1, given an algebraic group J over a field k and a

subgroup H we have the induction functor IndJH ∶ mod(H) → mod(J) see

e.g [21]. For H ≤ J ≤ K and V an H−module we have a Grothendieck

spectral sequence converging to R∗IndKH V , with E2 page RiIndGPαR
jIndPαB V .

For λ ∈ X(T ) we denote by kλ the one dimensional (rational) B−module
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on which T acts via λ. In what follows we will denote kλ simply by λ.

We will also write H i(M) for RiIndGBM . We will denote by Pα/Ru(Pα) the

Pα−module on which the unipotent radical Ru(Pα) acts trivially.

In his famous paper [7] Demazure introduced the indecomposable modules

Vλ,α with weights λ,λ − α, ..., sα(λ), where α is a simple root and sα is the

corresponding reflection. He used these modules to give a short proof of

the Borel-Weil-Bott’s theorem. In this chapter, we consider a generalization

of the module Vλ,α by Mα,r(λ), where Mα,r(λ) = ∇α(rρ) ⊗ (λ − rρ) and

r ≥ 0. We will first show that Mα,r(λ) is the unique (up to isomorphism)

indecomposable B−module with weights λ,λ−α, ..., λ−rα. We determine the

i−th cohomology of Mα,r(λ) for all i. This in particular gives all cohomology

of the modules Vλ,α appearing in Demazure’s paper.

The following proposition along with its corollary shows that Mα,r(λ) is

the unique (up to isomorphism) indecomposable B−module with the given

weights.

Proposition 5.1.1. If V has weights λ,λ − α, ..., λ − rα then V is a direct

sum of copies of Mα,s(µ), where µ is of the form λ − jα, j ≥ 0.

Proof. We will use induction on r to prove the result. The result is clearly

true for r = 0. Now let r ≥ 1 and suppose that the result is true for r − 1. Let

V
′

denote the sum of weight spaces V λ−iα, i > 0. Then V
′

is a B−submodule

of V . By the inductive hypothesis V
′

is a direct sum of copies of Mα,s(µ).

We write V
′

as a direct sum of B−modules, V
′ = X ⊕ Y , with X ≃Mα,s(λ −

α) and Y = ⊕Mα,ti(λ − qiα), ti ≥ 0, qi ≥ 2. We will now check to see

whether there is an extension from Y to λ. Firstly Ext1B(kλ,Mα,ti(λ−qiα)) =

H i(B,−λ⊗Mα,ti(λ−qiα)) = 0, for all qi ≥ 2. This is true because the weights

of −λ⊗Mα,ti(λ − qiα) are −qiα,−(qi + 1)α, ... − (qi + ti)α and H1(B,−jα) = 0
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for all j ≥ 2. This shows that there is no extension from Y to λ. Hence we

can write V = Z ⊕ Y as B−modules, where Z is an extension of X by λ i.e.

X ≤ Z and Z/X ≃ λ.

Now we will check whether there is an extension from X to λ. We have

Ext1B(kλ,X) = Ext1B(kλ,∇α((r − 1)ρ) ⊗ (λ − (r − 1)ρ − α) = H1(B,∇α((r −

1)ρ) ⊗ (−(r − 1)ρ − α)). We get H1(B,∇α((r − 1)ρ) ⊗ (−(r − 1)ρ − α)) =

H0(Pα,∇α((r − 1)ρ) ⊗ ∇α((r − 1)ρ)∗) = k. Hence there is a unique non-split

extension from X to λ.

Using the above extensions we get that V is either λ⊕X⊕Y or Mα,s+1(λ)⊕Y .

Corollary 5.1.2. If V is indecomposable then V =Mα,r(λ).

Proof. The result is clear from the above proposition.

We will now give the cohomology of Mα,r(λ).

5.2 Main results

Consider the module Mα,1(λ), with weights λ,λ − α. The following theorem

gives the i−th cohomology of Mα,1(λ) for all i.

Theorem 5.2.1. Let α be a simple root and λ ∈X(T ) then

H i(Mα,1(λ)) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

H i(λ) ⊕H i(λ − α), ⟨λ,α∨⟩ ≠ 0

0, ⟨λ,α∨⟩ = 0.

Proof. We will give the proof in separate cases.
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1. Let ⟨λ,α∨⟩ ≤ −1. On the second page of the Grothendieck spectral

sequence we have

H i(Mα,1(λ)) = Ri−1IndGPαR
1IndPαB (Mα,1(λ)).

Also since ⟨λ,α∨⟩ ≤ −1, we have IndPαB λ = 0. Moreover Pα/B is one

dimensional so RiIndPαB λ = 0 for all i ≥ 2. Hence from the short exact

sequence

0→ λ − α →Mα,1(λ) → λ→ 0

we get

0→ R1IndPαB (λ − α) → R1IndPαB (Mα,1(λ)) → R1IndPαB (λ) → 0.

Since all modules for Pα/Ru(Pα) are completely reducible (Weyl’s com-

plete reducibility theorem) we have R1IndPαB (Mα,1(λ)) ≃ R1IndPαB (λ −

α) ⊕R1IndPαB (λ). Therefore

H i(Mα,1(λ)) = Ri−1IndGPα(R
1IndPαB (λ − α) ⊕R1IndPαB (λ))

and we get the result.

2. For ⟨λ,α∨⟩ = 1 we get that RjIndPαB (λ−ρ) is zero for all j ≠ 0. Therefore

∇α(ρ) ⊗∇α(λ − ρ) = ∇α(λ). Hence H i(Mα,1(λ)) =H i(λ).

3. Suppose ⟨λ,α∨⟩ ≥ 2. On the second page of the spectral sequence we

have

RiIndGPαR
jIndPαB (∇α(ρ) ⊗ (λ − ρ)) = RiIndGPα(∇α(ρ) ⊗RjIndPαB (λ − ρ)).

For ⟨λ,α∨⟩ ≥ 2 we have that RjIndPαB (λ−ρ) is zero for all j ≠ 0. There-

fore H i(Mα,1(λ)) = RiIndGPα(∇α(ρ) ⊗ ∇α(λ − ρ)). Since the weights of
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∇α(ρ) are ρ and ρ − α, by a special case of the Clebsch-Gordan for-

mula we get ∇α(ρ) ⊗ ∇α(λ − ρ) ≃ ∇α(λ) ⊕ ∇α(λ − α) (we are working

in characteristic zero) and hence

H i(Mα,1(λ)) =H i(λ) ⊕H i(λ − α).

4. Finally we consider the case ⟨λ,α∨⟩ = 0. We have ⟨λ − ρ,α∨⟩ = −1 and

hence RjIndPαB (λ− ρ) = 0 for all j. So we get H i(Mα,1(λ)) = 0 for all i.

This completes the proof.

Now take Mα,r(λ) for all r ≥ 0. The i−th cohomology of this module is given

by the following theorem.

Theorem 5.2.2. Let r ≥ 0, λ ∈X(T ), m = ⟨λ,α∨⟩ and s = ⟨λ − rρ,α∨⟩; then

H i(Mα,r(λ)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⊕r
t=0H i(λ − tα), ⟨λ,α∨⟩ ≤ −1

⊕r
t=0H i(λ − tα), ⟨λ,α∨⟩ > r

and r ≤ s

⊕s
t=0H i(λ − tα), ⟨λ,α∨⟩ > r

and r > s

⊕r
t=0H i(tρ − (t − 2 −m)α), 0 ≤ ⟨λ,α∨⟩ < r − 1

H i(λ), ⟨λ,α∨⟩ = r

0, ⟨λ,α∨⟩ = r − 1.

Proof. We will use induction on r to prove the result. The result is true for
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r = 1 by theorem 1. Suppose the result is true for r − 1; then

H i(Mα,r−1(λ)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⊕r−1
t=0 H i(λ − tα), ⟨λ,α∨⟩ ≤ −1

⊕r−1
t=0 H i(λ − tα), ⟨λ,α∨⟩ > r − 1

and r − 1 ≤ s

⊕s
t=0H i(λ − tα), ⟨λ,α∨⟩ > r − 1

and r − 1 > s

⊕r−1
t=0 H i(tρ − (t − 2 −m)α), 0 ≤ ⟨λ,α∨⟩ < r − 2

H i(λ), ⟨λ,α∨⟩ = r − 1

0, ⟨λ,α∨⟩ = r − 2.

Now for r we give the result in cases as in theorem 5.2.1.

1. Let ⟨λ,α∨⟩ ≤ −1. On the second page of the spectral sequence we have

H i(Mα,r(λ)) = Ri−1IndGPαR
1IndPαB (Mα,r(λ)).

Moreover we have the short exact sequence

0→Mα,r−1(λ − α) →Mα,r(λ) → λ→ 0.

Also since ⟨λ,α∨⟩ ≤ −1, we have IndPαB (λ) = 0. Moreover Pα/B is one

dimensional so RiIndPαB = 0 for all i ≥ 2. Using the above short exact

sequence we get

0→ R1IndPαB (Mα,r−1(λ − α)) → R1IndPαB (Mα,r(λ)) → R1IndPαB (λ) → 0.

Since all modules for Pα/Ru(Pα) are completely reducible we get

R1IndPαB (Mα,r(λ)) ≃ R1IndPαB (Mα,r−1(λ − α)) ⊕R1IndPαB (λ).
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Therefore

H i(Mα,r(λ)) = Ri−1IndGPα(R
1IndPαB (Mα,r−1(λ − α)) ⊕R1IndPαB (λ)).

Since we are working in characteristic zero we can get

H i(Mα,r(λ)) =H i(Mα,r−1(λ)) ⊕H i(λ).

Now use the inductive hypothesis to get the result.

2. Suppose ⟨λ,α∨⟩ > r. On the second page of the spectral sequence we

have

RiIndGPαR
jIndPαB (∇α(rρ) ⊗ (λ − rρ))

= RiIndGPα(∇α(rρ) ⊗RjIndPαB (λ − rρ)).

For ⟨λ,α∨⟩ > r we have that RjIndPαB (λ − rρ) is zero for all j ≠ 0.

Therefore

RiIndGPαR
jIndPαB (Mα,r(λ)) = RiIndGPα(∇α(rρ) ⊗∇α(λ − rρ)).

Now we have two cases here. Firstly let r ≤ s then we will get

H i(Mα,r(λ)) = ⊕r
t=0H i(λ − tα). Now if r > s then we have

H i(Mα,r(λ)) =
s

⊕
t=0
H i(λ − tα).

3. For 0 ≤ ⟨λ,α∨⟩ < r − 1 we get that RjIndPαB (λ − rρ) is zero for all j ≠ 1.

We get

RiIndGPαR
jIndPαB (∇α(rρ) ⊗ (λ − rρ))

= RiIndGPα(∇α(rρ) ⊗R1IndPαB (λ − rρ)).

Using Serre duality we get (R1IndPαB (λ − rρ))∗ = IndPαB (−λ + rρ − α).

Therefore H i(Mα,r(λ)) = RiIndGPα(∇α(rρ) ⊗∇α(−λ + rρ − α)∗).
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Now let ⟨λ,α∨⟩ =m then we get

H i(Mα,r(λ)) = RiIndGPα(∇α(rρ) ⊗∇α(λ − rρ + (r − 1 −m)α)).

Apply the Clebsch-Gordan formula again to get the result.

4. For ⟨λ,α∨⟩ = r we get thatRjIndPαB (λ−rρ) is zero for all j ≠ 0. Therefore

∇α(rρ) ⊗∇α(λ − rρ) = ∇α(λ). Hence H i(Mα,r(λ)) =H i(λ).

5. Finally we consider the case where ⟨λ,α∨⟩ = r − 1, so ⟨λ − rρ,α∨⟩ = −1

and hence RjIndPαB (λ − ρ) = 0 for all j. So we get H i(Mα,r(λ)) = 0 for

all i.

This completes the proof.

5.3 Conclusion

In this chapter we have proved that in characteristic zero the modulesMα,r(λ)

are unique (up to isomorphism). We have also given the i−th cohomology of

these modules. The modules with weights λ,λ−α, ..., λ− rα are of particular

interest to us in characteristic p as they appear in recursion given in chapter

2 and 3. The module Mα,1(λ) is unique in positive characteristic p and is

denoted by Nα(λ) in [11]. For r > 1 the modules Mα,r(λ) are not always

unique in characteristic p hence we are using the different notation to that

of Nα(λ).
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