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Abstract

Part I considers the stereotypic patterns of synaptic connectivity in

neural circuits, referred to as wiring specificity. Two aspects of wiring

specificity are lamina specificity - placing synaptic partners in close

spatial proximity - and synaptic specificity - making the appropri-

ate synaptic connections among many physically adjacent neurons.

Combinatorial expression patterns of surface proteins could be used

to uniquely label neurons for the purposes of synaptic specificity. To

test this model in the worm, the C. elegans nerve ring was volumetri-

cally reconstructed from serial sectioned legacy electron micrographs,

which provides detailed spatial and morphological information of neu-

ral processes in the nerve ring. Comparing the spatial data with the

synaptic wiring diagram shows that the C. elegans nerve ring exhibits

both lamina-like specificity and synaptic specificity. Combinatorial

expression patterns of CAM genes in nerve ring neurons were ana-

lyzed. If a few key conditions regarding gene expression are satisfied,

then the number of known combinatorial CAM expression patterns

is sufficient to uniquely label neurons and can account for more than

90% of the observed synaptic specificity.

Part II develops a new rotatable microfluidic device for simultaneously

imaging calcium activity in bilateral neuron pairs within the same

animal. Typically when imaging calcium activity in C. elegans, only

the left or right side of the animal is imaged. This is due to the

natural orientation of the worm which places neurons on the left and

right side in different focal planes. Our new device allows the animal

to be rotated, placing cells on the right and left side of the animal in

the same focal plane.
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Chapter 1

Introduction

This thesis is motivated by the notion that a biological organism is more than the

sum of its parts. As scientists, we are trained to break a system apart into its com-

ponent pieces, study each piece individually, and then aggregate that information

to better understand how the system works. The problem with this, particularly

in a biological system, is that the behavior of an individual component likely

depends on the behavior of other components in the system. In a perspective

article, Marder & Taylor (2011) argued that biological insights may not come

from considering system components independently but rather by looking at the

interaction of the individual components. With this in mind, this works tries to

apply a systems approach to two different problems related to the nervous system

of the nematode Caenorhabditis elegans (C. elegans). Part I performs a top-down

analysis of wiring specificity in the C. elegans nerve ring, specifically addressing if

different gene expression patterns across neurons can explain how neurons choose

synaptic partners. Part II develops a novel tool for simultaneously imaging cal-

cium activity in left/right bilateral neurons, a step forward for understanding

how neural activity of individual neurons is correlated. While Part I and II are

treated individually, in keeping with the systems approach, they should also be

viewed as being complementary. Part I considers the development of a biological

neural network while Part II considers the activity of that network.
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Part I

Wiring specificity in the C.

elegans nerve ring
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Chapter 2

Wiring specificity in nervous

system development

The brain’s ‘wiring’ allows us to coordinate movement, store memories and learn.

The human brain has on the order of 86 billion neurons with an individual neuron

making and receiving hundreds to thousands of synaptic contacts. Understand-

ing how these contacts are negotiated at the network level in order to create

functioning neural circuitry is of fundamental importance. What are the general

underlying mechanisms implemented by an individual neuron to discriminate

synaptic partners from the many physically adjacent neighboring neurons? How

do the general mechanisms vary across different neurons in order to arrive at a

cohesive neural network? Finally, how robust and with what degree of precision

are these mechanisms implemented during the development of a neural network?

Wiring specificity is the stereotypic patterns of synaptic connectivity in a

neural circuit. Understanding wiring specificity requires solutions to three main

questions. First, how do neurons physically make contact with potential synap-

tic partners? A neuron can only synapse onto a cell at points of physical con-

tact. Therefore, neurons must be placed in close spatial proximity to synaptic

partners. This requires guiding axon and dendrite growth towards the appropri-

ate anatomical region where neurons can come into physical contact with target

cells. Directing neurons to the correct anatomical region is referred to as lamina

specificity. Second, how do neurons identify synaptic partners from the myriad of

neighboring cells? Neurons only make synapses with a fraction of the neighboring

3



2.1 Cell adhesion molecules mediate wiring specificity

cells with which they make physical contact (Hamos et al., 1987). This suggests

that neurons are able to ascertain the identities of their neighboring cells and

correctly identify synaptic partners. Choosing synaptic partners from neighbor-

ing cells is referred to as synaptic specificity. Finally, once synapses are created,

how are the synapses maintained or if need be eliminated? Construction of a

neural network is an ongoing process and does not terminate after initial synap-

tic connectivity has been established. During network activity, frequently used

synapses are strengthened and maintained while infrequently used synapses are

eliminated (Yogev & Shen, 2014). Some organisms may even undergo complete

nervous system rewiring during certain developmental phases (Walthall et al.,

1993; White et al., 1978). In this way, the network is constantly being resculpted

in order to adapt to changing environmental conditions and to minimize the

overall metabolic cost of maintaining neural network activity. This study will

focus on lamina and synaptic specificity with no further discussion on synapse

maintenance and elimination. Readers interested in synapse maintenance and

elimination are directed to following excellent reviews (Shen & Scheiffele, 2010;

Yogev & Shen, 2014).

2.1 Cell adhesion molecules mediate wiring speci-

ficity

It has long been postulated that the molecular diversification of cell adhesion

molecules provides specific surface identities to neurons (de Wit & Ghosh, 2015).

Classic work by Langley (Langley, 1895) and Sperry (Sperry, 1963) showed that

nerve fibers regenerate with striking specificity. They proposed the “chemoaffin-

ity hypothesis which states that neurons possess unique cytochemical labels that

allow neurons to selectively navigate to their target cells (Meyer, 1998). In order

to regulate wiring specificity and synaptic diversity, such surface labels would

need to be expressed in distinct neuronal populations, act in trans with mem-

brane binding partners and be sufficiently diverse to confer unique identities to

both cells and synapse. Genomic and proteomic analysis has identified several

superfamilies of cell adhesion protein that meet these requirements. Of these,
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2.1 Cell adhesion molecules mediate wiring specificity

the most extensively documented are the immunoglobulin superfamily (IgSF),

the Leucine-Rich Repeat (LRR) proteins, cadherin family members and neurex-

ins. These superfamilies are very briefly discussed here with references to more

extensive reviews provided.

Immunoglobulin superfamily

The IgSF proteins, characterized by the presence of an Ig homology domain, are

the largest and most diverse superfamily found in both vertebrates and inverte-

brates (de Wit & Ghosh, 2015; Shimono et al., 2012). The Ig domains possess

a characteristic Ig-fold, formed by two anti-parallel beta-sheets (Barclay, 2003).

IgSF proteins are able to bind specifically to other proteins making them ideal

components for cell-surface receptors and cell adhesion molecules. Members of

IgSF have been shown to play a role in axon pathfinding, synapse formation,

neuronal axon and soma adhesion, axonal maintenance and neurotransmitter re-

ceptor clustering (Carrillo et al., 2015; Yogev & Shen, 2014).

Leucine-Rich Repeat (LRR) proteins

The LRR is a 20-30 amino acid long structural motif and is one of the most

common domain repeats across organisms. LRRs have a flexible structure that

allows them to interact with a large number of diverse ligands, making it a versa-

tile protein interaction motif (Bella et al., 2008). Many extracellular LRR (eLRR)

genes are expressed in the nervous system and exhibit specific expression patterns

(de Wit et al., 2011). LRR proteins have been shown to regulate axon guidance,

synapse specificity, axon myelination and neural circuit stability.

Cadherin superfamily

The cadherin superfamily consists of over 100 transmembrane glycoproteins that

can be grouped in several subfamilies, of which the classic cadherins and the

protocadherins have been the most extensively studied in relation to synaptic

connectivity (Angst et al., 2001; de Wit & Ghosh, 2015; Takeichi, 2007). Their

extracellular domains contain repeated domains called cadherin repeats that con-

tain sequences for calcium binding. Cadherins have been shown to play a role in

5



2.2 Lamina specificity

cell adhesion, cell-cell recognition, cytoskeletal organization, signal transduction

and growth control.

Neurexins

Neurexins are presynaptic cell adhesion molecules that play a key role in neural

circuit assembly and restructuring by interacting with various pre- and postsy-

naptic ligands (Südhof, 2017). The vertebrate neurexin family only consists of

three genes (Nrxn1 -Nrxn3 ), each of which has two promoters for generating long

(α) and short (β) domains. Neurexins exhibit extensive alternative splicing and

the theoretical number of variants ranges in the thousands (Ullrich et al., 1995).

However, only hundreds have been observed experimentally (Schreiner et al.,

2014). Neurexins are primarily expressed by neurons and localized to synapses

(Ushkaryov et al., 1992) and are abundantly produced by astrocytes (Zhang et al.,

2014). Neurexins are expressed early in development before synapse formation

and are thought to play a role in synthesizing synaptic proteins in preparation of

synaptic assembly (Daly & Ziff, 1997).

2.2 Lamina specificity

Lamina specificity requires spatially organizing neurons so that synaptic partners

come into physical contact. Organization of neuropile into distinct anatomical

regions appears to be a common feature of the nervous system. The vertebrate

neocortex, olfactory bulb and visual system all exhibit a stereotyped multi-layered

structure (Baier, 2013; Gilmore & Herrup, 1997; Nagayama et al., 2014; Sanes &

Zipursky, 2010). The layered structures can take the form of continuous planar

lamina (the neocortex and visual system) or as spherical glomeruli (the olfactory

system). The layered structures aggregate synapses with similar functional prop-

erties to restricted anatomical regions. The vertebrate retina is a good illustration

of synaptic aggregation.

The vertebrate retina has six main cell types: photoreceptors (rods and cones),

projection neurons (retina ganglion cells [RGCs]), three types of interneurons

(horizontal cells [HC], amacrine cells [AC] and bipolar cells [BC]) and glial cells
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2.2 Lamina specificity

(Muller glia). The retina is organized into layers with either cell bodies (outer

and inner nuclear layer and the ganglion cell layer) or synapses (the inner and

outer plexiform layers). In the outer plexiform layer (OPL), BCs and ACs receive

synapses from the photoreceptors. In the inner plexiform layer (IPL) the RGCs

receive synapses from the BCs and ACs. Connectivity in the IPL determines the

ON/OFF response properties RGCs have to light, which is crucial for correct

vision. At a few micrometers thick, the IPL has a high synaptic density (approx-

imately one synapse per µm3, Helmstaedter et al. (2013)), making locating and

identifying the correct synaptic partners a challenge. This problem is partially

addressed by further organizing the IPL into sublamina where specific synapses

are formed.

The sublamina specificity of the IPL is in part mediated by a combination of

both homophilic and repulsive interactions of cell adhesion molecules (Baier, 2013;

Shen & Scheiffele, 2010). In the chick retina, three families of immunoglobulin

superfamily (IgSf) adhesion molecules - Dscams, Sidekicks (Sdk) and Contactins

(Cnts) (Yamagata & Sanes, 2008, 2012)- are expressed in non-overlapping sets of

the BCs, ACs and RGCs and concentrated at synaptic sites. Pre- and postsynap-

tic neurons expressing the same molecule arborize to the same sublamina. Reduc-

ing expression levels in the RGCs leads to dendrites losing sublamina confinement.

Ectopic expression of new adhesion proteins cause RGC dendrite and afferent pro-

cesses to mistarget new sublamina (Yamagata & Sanes, 2008). Collectively, these

observations suggest the sublamina specificity is achieved through homophilic

interactions. In the mouse retina, the transmembrane protein semaphorin 6A

(Sema6A) and its receptor plexin A2 (PlexA2) are required for the correct radial

arborization and stratification of the starburst amacrine cells (SAC) (Sun et al.,

2013). PlexA2 is expressed in both ON and OFF SACs, while the Sema6A is

only expressed on ON SACs. Mutant mice lacking Sema6A do not exhibit the

ON/OFF SAC stratification (ON SAC grow in both the ON and OFF layers)

nor the ON SAC radial arborization (ON SAC dendrite branches cross paths)

observed in wild type. These results suggest that sublamina specificity is also

achieved through repulsive interactions.

Lamina specificity appears to be an evolutionary conserved principle for the

structural organization of neural circuits. The Drosophila visual system also ex-
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2.2 Lamina specificity

hibits the sublamina specificity discussed above (Baier, 2013; Sanes & Zipursky,

2010). The first three components of the fly visual system are the retina, lamina

and medulla, which contain approximately 750 column-like units called omma-

tidia, cartridge and column, respectively. Each ommatidia is composed of eight

photoreceptors called retinula (R) cells. There are three classes of R cells – R1-

R6, R7 and R8 – each of which respond to different wavelengths of light (think of

the R cells as the rods and cones of the fly visual system). Unlike the vertebrate

retina, there are no synapses in the fly retina. Instead, R1-R6 neurons project

axons to the lamina, the structure immediately beneath the retina. Lamina neu-

rons (L1-L5) along with R7 and R8 project axons onto distinct layers within the

medulla where they synapse onto interneurons and transmedullary neurons which

project onto the lobula complex. The medulla is divided into 10 layers, with R7,

R8 and L1-L5 arborizing and making synaptic contacts in one or a few of the

outer six layers, M1-M6. R7 and R8 synapses from a single ommatidia and L1-

L5 synapses from a single cartridge are generally restricted to a single medulla

column.

As in the vertebrate retina, CAMs are used to mediate sublamina specificity

in the Drosophila visual system. The classical cadherin N-cadherin mediates the

medulla specificity of R7 and select lamina cells Lee et al. (2001); Nern et al.

(2008). R7 cells lacking N-cadherin terminate in the M3 rather than the M6

layer. Conversely, loss of function of N-cadherin in L3 causes the the cell to

target M6 rather than M3. N-cadherin mediated homophilic interactions also

promote the growth of L5 branches along the growth cone of L2 from the M1

to M2 layer. The leucine-rich repeat (LRR) protein Capricious is sufficient to

promote specificity of R8 (Shinza-Kameda et al., 2006). Capricious is expressed

in R8 and M3, the target of the R8 growth cone. R7 does not express Capricious,

but misexpression in R7 results in targetting of M3. This suggests that Capricious

acts via homophilic interactions.

Understanding lamina specificity could provide insights into the developmen-

tal mechanisms that drive wiring specificity, which could ultimately help illumi-

nate the fundamentals of connectivity patterns and the nature of neural compu-

tation. Lamina specificity has been observed across organisms suggesting that it

is a fundamental mechanism for spatially organizing neuropile (Sanes & Zipursky,
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2.3 Synaptic specificity

2010). This shows that there is value in understanding lamina specificity in sim-

pler organisms, because any developmental mechanism identified in the simple

organism may be applicable to more complex organisms.

This section has focused on the lamina organization of the retina as a model for

lamina specificity, but it is also worth noting that nervous systems also use other

mechanisms to direct neuron projections. For example, transient nonpartner

cells, called guidepost cells, can act as intermediate targets for axon guidance

events. Such cells may be neuronal cells, Cajal Retzius cells and the GABAergic

interneurons in the hippocampus (Sanes & Yamagata, 1999), or non-neuronal

cells, glia cells (Barres, 2008). Further discussion of guidepost cells can be found

in Section 2.5, where the wiring specificity of the model organism C. elegans is

discussed.

2.3 Synaptic specificity

Neurons form synapses with only a fraction of the neurons that they physically

touch. An anatomical analysis of a single X-cell axon in the lateral geniculate

nucleus showed that only 4 of 43 neighboring neurons received synapses from

the X-cell (Hamos et al., 1987). This raises the question of how do neurons

identify synaptic partners among neighboring cells? One particularly attractive

hypothesis is that multigene families of adhesion molecules with distinct binding

properties are either combinatorially or differentially expressed within a neuron

population thereby giving each individual neuron a distinct molecular identity

(Südhof, 2017; Zipursky & Sanes, 2010). If true, then a large number of neurons

could be uniquely identified either by a single gene or a relatively small gene clus-

ter. Two gene families, Dscams in insects and protocadherins in vertebrates, have

emerged as promising molecular candidates for mediating synaptic specificity.

In the Dscam1 gene, alternative exons at three positions in the dscam RNA

have the possibility to generates 19,000 different ectodomain isoforms (Wojtowicz

et al., 2007). Expression of 17,000 of the isoforms has been confirmed by high-

throughput sequencing (Zipursky & Sanes, 2010) each with isoform-homophilic

binding specificity (Sawaya et al., 2008). Moreover, it has been found that single

cells express 10-50 distinct isoforms and that splice isoforms being stochastically
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2.4 The potential role of timing in wiring specificity

expressed, with the same cell types expressing different Dscam1 isoforms (Neves

et al., 2004). Given the large number of variants, the stochastic expression would

leave every cell with a unique Dscam1 signature.

The clustered protocadherins in vertebrates also encode a large diversity of

proteins and has been proposed as the molecular code for neuron individuality in

the brain (Morishita & Yagi, 2007; Yagi, 2012). In mice, exons that encode the ex-

tracellular and transmembrane domain are arranged in three groups (α, β and γ)

that generate 58 protocadherins variants (Wu & Maniatis, 1999). Protocadherins

variants are generated by the alternative use of separate promoters upstream of

each ectoderm. Alternative splicing joins an α or γ ectoderm/transmembrane

exon to a set of three constant exons in the group (Zipursky & Sanes, 2010).

While expression levels and patterns vary among isoforms, the overall impression

is that isoforms are broadly expressed throughout the nervous system and that

the expression overlaps across regions. Single-cell RT-PCR analysis of Purkinje

cells has provided evidence for stochastic, combinatorial expression in individual

cells (Esumi et al., 2005). The parallels with Dscam1 suggest that protocadherins

could define the molecular identify of neurons in the vertebrate nervous system.

2.4 The potential role of timing in wiring speci-

ficity

Timing plays a critical role in nervous system development. Timing of progenitor

cell division is tightly regulated, where neurons from a common pool of progen-

itors will adopt distinct cell fates according to their birth order (Kao & Lee,

2010). Birth-dating and cell lineage studies have shown that the Drosophilla

nerve cord, retina and cerebral cortex are populated by distinct cell types in a

precise temporal sequence (Toma et al., 2016). Studies have shown that this

temporal sequencing is regulated by both internal and external neural stem cell

cues. Heterochronic transplant studies of neural progenitor cells of the ferret cor-

tex showed that the sensing of enviromental cues was dependent on the age of

the cell (Desai & McConnell, 2000; McConnell & Kaznowski, 1991). Early born
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2.4 The potential role of timing in wiring specificity

neural progenitor cells can sense and acquire the cell identities of the environ-

ment to which they are transplanted, while older progenitor cells maintain their

normal cell identities. Thus, it is the combination of intrinsic (gene regulation)

and environmental cues that contributes to the developmental competence of pro-

genitor cells. One canonical example of how these internal and external cues are

regulated is the Notch signaling pathway.

The evolutionarily conserved Notch signaling pathway regulates cell differen-

tiation via intercell communication between adjacent cells (Artavanis-Tsakonas

et al., 1999; Kopan & Ilagan, 2009). Notch influences the decision between al-

ternative cell fates during cell differentiation (Gaiano & Fishell, 2002) and is

important for the maintenance of neural progenitors and the correct timing of dif-

ferentiation (Imayoshi et al., 2010). In the mammalian nervous system, proneural

genes Mash1 and Ngn2 induce expression of Notch ligands such as Deltalike 1

(Dll1) (Castro et al., 2006). Dll1 activates the transmembrane Notch receptor in

neighboring cells causing the Notch intercellular domain (NICD) to be released.

The NICD moves from the transmembrane region to the nucleus where it dimer-

izes with the DNA binding protein RBPj (Ohtsuka et al., 1999). The NICD-RBPj

complex induces expression of the basic helix loop helix factors Hes1 and Hes5,

which repress expression of proneural genes (including Mash1 and Ngn2 ), thereby

creating a feedback loop between the two cells. Because high Hes1/Hes5 signaling

in one cell reduces levels of Hes1/Hes5 expression in neighboring cells, Notch sig-

naling creates a mutually repressive relationship referred to as lateral inhibition

(Kageyama et al., 2008).

Not surprisingly, CAM genes expression is also spatiotemporally regulated.

N-CAM is a glycoprotien of the immunoglobulin super family that is expressed

on the membrane surface of neurons, glia and muscle (Moore et al., 1987; Weledji

& Assob, 2014). N-CAM exhibits a spatiotemporal expression pattern during

development (Crossin et al., 1985; Moscoso & Sanes, 1995). At the early stage

of neural tube formation, N-CAM is expressed in the neuroepithelium. At later

stages, N-CAM is expressed by postmitotic neurons with a positional dependence

on the anteriorposterior axis (Bally-Cuif et al., 1993). Disruptions of either N-

CAM binding or expression leads to altered morphogenesis (Cremer et al., 1994;
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2.4 The potential role of timing in wiring specificity

Fraser et al., 1988; Tomasiewicz et al., 1993) and synapse formation (Stoenica

et al., 2006).

CAMs are regulated by internal gene products. The N-CAM gene promoter

responds to cues from both homeobox (Hox) and paired box (Pax) gene prod-

ucts. Hox genes encode transcription factors that contain the conserved DNA

binding domain called the homeodomain (Mallo & Alonso, 2013). Pax genes en-

code transcription factors that contain the conserved DNA binding domain called

the paired domain (Blake & Ziman, 2014). Both Hox and Pax genes are required

for proper tissue segmentation during development. In a cotransfection study of

3T3 cells, N-CAM promoter activity was controlled by Hox-2.5 and Hox-2.4 in

a concentration-dependent manner (Jones et al., 1992). Cotransfection of Hox-

2.5 with N-CAM increase N-CAM reporter expression while cotransfection with

Hox-2.4 mitigated reporter expression. Two homeodomain binding sites (HBS)

on the N-CAM promoter were identified, which mediated responsiveness to home-

obox genes. Later experiments showed that the N-CAM promoter was capable

of responding to a variety of different homeodomain proteins (Jones et al., 1993).

Additional cotransfection studies using Cos cells showed that Pax-8 proteins in-

creased N-CAM expression using binding sites on the N-CAM promoter using

paired domain binding sites (PDS) distinct from the HBS above (Holst et al.,

1994), while Pax-6 proteins reduced N-CAM promoter activity (Holst et al.,

1997). Finally, the same group also showed that mutations of HBS and PDS

sequences on the N-CAM promoter leads to defects in N-CAM patterning in the

spinal cord (Holst et al., 1997; Wang et al., 1996).

Neurons likely use CAM proteins to mediate responses to external cues when

selecting synaptic partners. A study from Lohmann and Bonhoeffer suggests

that differences in intracellular signaling could contribute to synaptic specificity

(Lohmann & Bonhoeffer, 2008). They used time-lapse microscopy to examine

changes in intracellular calcium transients in dendritic filopodia after contact

with axons in the CA3 region of the hippocampus. Filopodia frequently make

contact with axons, but only some contacts are selectively stabilized. Filopodia

never made stabilized contacts with inhibitory neurons. Local dendritic calcium

transients were observed shortly after contact formation. Stabilized contacts ex-

hibited a higher frequency of calcium transients compared to temporary contacts.
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2.4 The potential role of timing in wiring specificity

These results suggest that there is a relationship between local intracellular cal-

cium signals and target recognition. Moreover, because calcium transients were

observed after contact formation, but not before; CAMs rather than diffusible

factors are the likely candidates to mediate contact-induced calcium transients.

CAM molecules have been implicated in regulating calcium signals during

neuron growth. Studies have shown that CAMs directly promote axonal growth

via homophilic binding mechanisms (Doherty et al., 1990; Lemmon et al., 1989).

It is believed that CAMs activiate intracellular signaling in order to promote ax-

onal growth because soluble versions of L1 (Doherty et al., 1995) and N-CAM

(Meiri et al., 1998) can promote axonal growth as effectively as CAMs expressed

at the surface of transfected cells. Calcium is a key second messenger that me-

diate the rate and direction of growth cone extension (Mattson & Kater, 1987;

McCaig, 1989; Williams et al., 1992). Studies have shown that growth cone elon-

gation is due to spatial and temporal changes in calcium concentration (Gomez

et al., 1995; Kater et al., 1994). Experiments using barium as the charge carrier

have shown that CAM stimulated neurite outgrowth is modulated by localized

submembrane increases in calcium changes rather than cell-wide changes (Archer

et al., 1999). Furthermore, the CAM stimulated localized calcium fluxes is de-

pendent on the kinase activity of fibroblast growth factor receptor (FGFR). The

proposed signaling pathway is that activation of the FGFR is followed by acti-

vation of phospholipase C (PLC), which generates diacylclycerol (DAG), which

is converted to arachidonic acid, which then activates voltage dependent calcium

channels (VDCC) giving rise to an induced calcium influx (Sheng et al., 2013).

This is supported by the observation that inhibitors of FGFR and PLC reduce

the increase in intracellular calcium levels in response to N-CAM in cultured

hippocampal neurons (Kiryushko et al., 2006). Thus, CAM induced localized

calcium signaling could provide a mechanism for directing neuronal growth.

Interestingly, some aspects of CAM signaling may not require cell adhesion.

When FGFR binds to its ligand FGF, it undergoes dimerization and autophospho-

rylation, triggering signalling cascades (Knights & Cook, 2010). It has been pro-

posed that N-cadherin positively regulates FGFR dimerization, initiating growth-

factor independent signaling (Williams et al., 2001). The FGFR dimerization is

due to the cis-dimerization of N-cadherin, which is distinct from the adhesive
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2.4 The potential role of timing in wiring specificity

activities (Utton et al., 2001). Moreover, it has been demonstrated that down-

stream inhibitors of FGF signaling also inhibit N-cadherin mediated cell motil-

ity (Nieman et al., 1999), suggesting that N-cadherin is able to stimulate FGF-

independent signaling. N-cadherin also affects ligand-dependent FGFR signalling

by preventing receptor internalization, thereby increasing the number of recep-

tors at the membrane surface which leads to sustained activation of FGFR by

FGF (Suyama et al., 2002). This results in the increased migration and motility

of single cells, indicating that cell-cell adhesion is not required. In contrast to N-

cadherins, N-CAM negatively regulates FGF activity, repressing FGF-signalling,

cell proliferation and matrix adhesion (Cavallaro et al., 2001; Francavilla et al.,

2007). There is evidence to suggest that N-CAM can act as a noncanonical ligand

for FGFR and notably both the signaling cascade and the intracellular fate of

N-CAM stimulated FGFR is distinct from those induced by FGF (Francavilla

et al., 2009). A number of studies suggest the interplay between N-CAM and

FGFR may be independent of cell-adhesion. For example, N-CAM-FGFR com-

plexes form on the surface of single cells resulting in FGFR activation (Cavallaro

et al., 2001). Additionally, the FGFR-binding motif and the modules involved in

homophilic interactions are located at significantly distant regions on the N-CAM

ectodomain (Kiselyov et al., 2003; Soroka et al., 2003). Taken together, these re-

sults suggest that cell-adhesion and FGFR-mediated signaling may be distinct

and independent activities of N-CAM. For a review of other CAM transduction

mechanisms which are independent of cell-adhesion, see (Cavallaro & Dejana,

2011).

Finally, we cannot conclude this sections without briefly addressing the role of

microRNAs (miRNA) in the temporal development of the nervous system. MiR-

NAs are a class of non-coding RNAs that induce translational repression or degra-

dation of a target mRNA by imperfect base pairing to its 3’ untranslated region.

The biogenesis and mechanisms of miRNA are discussed elsewhere (Bartel, 2004;

Bushati & Cohen, 2007) and will not be discussed here. MiRNAs play a critical

role in nervous system development (Cao et al., 2016; Fiore et al., 2008), hav-

ing been implicated in neural stem cell proliferation/differentiation (Bian et al.,

2013), neuronal migration (Pedersen et al., 2013), axon outgrowth/guidance (Vo
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2.5 C. elegans as a model of wiring specificity

et al., 2005) and synaptogenesis and synaptic plasticity (Schratt, 2009). In addi-

tion, a number of miRNAs have been found capable of regulating molecules that

mediate the cell-adhesion molecules (Valastyan & Weinberg, 2011). One such

miRNA is miR-8, which regulates CAMs FasIII and Nrg during synapse forma-

tion in Drosophilla(Lu et al., 2014). It is believed that FasIII and Nrg interact

downstream of miR-8 in order to promote accurate target recognition. Moreover,

miR-8 appears to control key efforts on both sides of synapse formation during

embryogenesis. While research on the interaction between miRNAs and CAMs is

still an emerging field, current evidence seems to suggest that miRNA regulated

CAM signaling pathways will be crucial for our understanding wiring specificity

in the nervous system.

In summary, while I do not consider the temporal dynamics of CAM expression

in the present analysis, it is nonetheless a crucial factor in determining the wiring

specificity of the nervous system. Given what is known, it seems plausible that

different CAM genes could be expressed at different developmental time points

and operate on different time scales. Initial expression of some subset of CAM

genes may be used to modulate tissue segmentation and therefore control initial

ganglia placement. Expression of these CAM genes may be internally regulated

by Hox or Pax proteins. Another set of CAM molecules (not necessarily distinct

from the early CAM set) may be expressed later and mediate process guidance

and target recognition in the nerve ring. The later set of CAM molecules may

respond to proper target identification and thereby modulate FGF and other in-

tracellular signaling in order to guide processes into their proper neighborhoods.

This guidance process may not require actual adhesion between cells thereby al-

lowing cells to more quickly find their proper neighborhoods. Eventual adhesions

and synapse formation with proper synaptic targets may then be regulated by

miRNA or other regulatory mechanisms.

2.5 C. elegans as a model of wiring specificity

The nematode C. elegans offers unique advantages for understanding wiring speci-

ficity. The worm has a small nervous system – 302 and 383 neurons in the

hermaphrodite and male, respectively. The synaptic connectivity for both sexes
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2.5 C. elegans as a model of wiring specificity

has been well defined using serial sectioned electron micrographs (Cook et al.,

2017; Jarrell et al., 2012; Varshney et al., 2011; White et al., 1986). C. elegans

is very amenable to genomic studies, with the neurobiology-related gene families

being particularly well documented (Bargmann, 1998; Hobert, 2005). Moreover,

C. elegans has a number of representatives from each of the CAM proteins classes

that have been extensively documented in the development of wiring specificity

of various species (IgSf, LRR, cadherins and neurexins). A number of examples

of wiring specificity in the C. elegans nervous system have already been observed.

Glia-like sheath cells coordinate the synapse formation between interneurons

in the C. elegans thermotaxis circuit (Colón-Ramos et al., 2007). The sheath cell

processes express UNC-6/netrin, a class of proteins involved in axon guidance,

and converge at the point where interneuron AIY synapses onto interneuron RIA.

Both AIY and RIA express the netrin receptor UNC-40/DCC. UNC-40 elicits nor-

mal axon guidance behavior in RIA while in AIY it cell-autonomously promotes

assembly of presynaptic terminals at the point of the sheath cell convergence.

This suggests that the glia-like sheath cells function as guidepost cells during

neural circuit development.

Guidepost epithelial cells act as a placeholder for presynaptic specializations

in the HSN egg-laying motor neurons (Shen & Bargmann, 2003; Shen et al., 2004).

The subcellular synapse localization is mediated by the heterologous interaction

between the two IgSf proteins, SYG-1 and SYG-2. During early HSN synaptoge-

nesis, the SYG-2 ligand is expressed transiently in the epithelial cells while the

SYG-1 receptor is expressed in HSN and localizes to points of synapse formation.

Loss-of-function mutants syg-1 and syg-2 form ectopic synapses onto inappro-

priate targets. This suggests that guidepost cells can be used to determine the

subcellular specificity of synapses.

Subcellular specificity is also achieved through inhibitory Wnt signaling in

the neuromuscular connectivity of motor neuron DA9 (Klassen & Shen, 2007).

Neuromuscular junctions are restricted to a specific part of the DA9 axon. DA9

synapses do not form at the most posterior end of its axon, which has the high-

est concentration of the Wnts LIN-44 and EGL-20 expressed in both DA9 and

surrounding tail cells. Loss-of-function mutants lin-44 and egl-20 form ectopic
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synapses in this DA9 subdomain. Conversely, ectopic expression of LIN-44 in-

hibits synapses formation in adjacent axon segments. This shows that local Wnt

signaling can be used to shape the synaptic domains of neurons.

More recently, it was shown that multiple CAM proteins interact to mediate

wiring specificity in the C. elegans male mating circuit (Kim & Emmons, 2017).

The male-specific sensory neuron HOA synaptically targets the sex-shared in-

terneuron AVG and the sex-shared sensory neurons PHC. The cadherin CASY-1

and IgSf RIG-6 proteins are both expressed in AVG. The neurexin BAM-2 in HOA

binds to CASY-1 and the IgSf SAX-7 in PHC binds to RIG-6. Loss-of-function

mutants casy-1, rig-6 and bam-2 exhibit an altered pattern of presynaptic punta

in the male-specific sensory neuron HOA. The altered synaptic pattern is due to

local fasciculation defects along the HOA-AVG-PHC bundle. Interestingly, the

synaptic defect in HOA is also observed both when PHC is ablated and in sax-7

mutants. This illustrates how multiplexed CAM expression from multiple cells

affects synapse formation in an individual cell.

2.6 Contribution of this work

In 1986, White et al. published their seminal work on the reconstructed wiring

diagram of synaptic connectivity in C. elegans, where they meticulously scored

the synapses between all 302 hermaphrodite neurons from serial sectioned electron

micrographs (EMs). While small additions have been made to the wiring diagram

in the intervening years [Hall & Russell (1991); Varshney et al. (2011)], this

valuable data set has stood the test of time. To date, this remains the only

‘complete’ whole-animal wiring diagram and has been an incredibly useful tool for

experimentally probing the development and function of the C. elegans nervous

system. However, the data set in some sense still remains incomplete because

it does not provide a comprehensive view of the spatial proximity of neurons,

referred to as neuron adjacency. White and colleagues did provide an initial

analysis of neuron adjacency in the nerve ring (White, 1985; White et al., 1983).

They measured the adjacency for roughly half of the NR neurons by counting the

number of EM sections in which neurons made physical contact with neighboring

neurons. While impressive, the data had several limitations. The adjacency data
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was collected from the larval stage 4 data set (JSH), which cannot be directly

compared to the canonical connectivity data collected from a young adult data

set (N2U). Adjacency was only scored for one neuron from each neuron class,

which makes it impossible to asses adjacency variability of neurons within a class.

Finally, only adjacency data for a few selected neurons (AIAR, AIBR, AQR and

PQR) was published (White et al., 1983).

This work presents the first volumetric reconstruction of an organism’s main

neuropile at two different developmental stages. The datasets provide adjacency

data for all neurons with processes in the NR for both the larval stage 4 (L4) and

young adult. Adjacency is quantified by measuring the surface area of membrane

contact between neurons and not simply by counting EM sections. Upon publi-

cation, the data will be made publicly available on wormwiring.org and can be

easily correlated with connectivity and gene expression data.

Knowing the spatial proximity of neurons provides a useful framework for ex-

ploring nervous system development. During nervous system development, cell

surface molecules modulate attraction and repulsion between neurons in order to

ensure that neurons make physical contact with the appropriate partners (Yo-

gev & Shen, 2014). Once appropriate neurons make contact, they must form a

synapse which could require subcellular specificity (Yogev & Shen, 2014). Thus,

it’s not only important to know which neurons make contact and form synapses

but also where along the neurite synapses are formed; all of these processes are

seemingly regulated at the molecular level. Knowing the spatial organization of

neurons has been useful for experimentally probing these mechanisms in other

model organisms. For example, knowing the lamina organization of the verte-

brate retina allowed researchers to identify immunoglobulin superfamily (IgSF)

adhesion molecules which leads to a mismatches in sublamina specificity when

inappropriately expressed (Yamagata & Sanes, 2008). Researchers effectively ex-

ploited the spatial organization of neurons in order to experimentally uncover the

molecular mechanisms that give rise to the lamina structure.

Comparing the spatial data with the synaptic wiring diagram shows that the

C. elegans nerve ring exhibits both lamina-like specificity and synaptic speci-

ficity. A statistical model is developed that captures the variability in synaptic
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connectivity among neurons. The results of the model suggest that synaptic con-

nectivity does not strongly depend on the amount of physical contact between

neurons, but does strongly depend on the cell autonomous characteristics of the

pre- and postsynaptic neuron. With this in mind, wormbase data was used to

analyze the combinatorial expression patterns of CAM genes in nerve ring neu-

rons. If isoforms of alternatively spliced genes are included in the expression,

then the number of known combinatorial CAM expression patterns is sufficient

to uniquely label neurons and can account for more than 90% of the observed

synaptic specificity. Finally, comparing CAM expression patterns of postsynaptic

neurons suggests that multiple gene combinations are used to elicit synapses from

the presynaptic neuron.
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Chapter 3

Volumetric reconstruction of the

C. elegans nerve ring

The nematode C. elegans has a compact well-described nervous system1. The

adult hermaphrodite nervous system consists of 302 neurons interconnected by

more than 6400 chemical synapses and 900 gap junctions (White et al., 1986).

The nervous system is comprised of two mostly independent nervous systems: a

large somatic (282 neurons) and a small pharyngeal (20 neurons) nervous sys-

tem2. The somatic nervous system consists of a head ganglia, a complex head

sensory system, a ventral cord, dorsal cord and a tail ganglia (Thomas & Lock-

ery, 1999). Among wild type worms, neuron structure and cell body positions

are nearly invariant from animal to animal (Durbin, 1987), and it is possible to

identify each neuron in vivo (Sulston et al., 1983), though some variation has

been characterized (Bargmann & Avery, 1995). The 302 neurons are divided into

118 classes based on morphology and synaptic connectivity. Neuron names follow

a standardized nomenclature. In sensory neurons, interneurons and head motor

neurons, the first three letters describe the class of the neuron. The one or two

letter suffix indicates the member of the neuron class and indicates anatomical

placement of the cell body. Suffix letters use L, R, D, and V to distinguish left,

1Unless otherwise stated, all discussion refers to the adult hermaphrodite somatic nervous

system (White et al., 1986), which is considerably less complex than the adult male nervous

system (Jarrell et al., 2012).
2Details of the pharyngeal nervous system are discussed in (Albertson & Thomson, 1976).
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right, dorsal and ventral, respectively. For example, RMDVL is the neuron in the

RMD class whose cell body is located dorsally and to the left. For ventral cord

and dorsal cord motor neurons, the first two letters describe the neuron class and

the suffix is a number which describes the neuron’s sequential placement along

the cord proceeding posteriorly from the nerve ring. For example, VA1 is the

first neuron in the VA class. No suffix is used when a neuron class has only one

member, e.g. DVA. When referring to a neuron class rather than to a specific

neuron, the two or three letter class name will be used.

The largest collection of neurons is around the nerve ring (NR), so called be-

cause of the shape it takes during development as the pharynx grows through

the surrounding neurons (Altun & Hall, 2011). The NR is essentially an enlarged

commissure1 encircling the pharyngeal isthmus. The NR sits between five ganglia

(anterior, dorsal, lateral, ventral and retrovesicular ganglion; Figure 3.1) and is

often referred to as the ‘brain’ of the worm because it is the most densely in-

nervated part of the nervous system and contains the majority of sensory and

interneurons. There are 180 head and tail neurons that project axons/processes

into the NR and approximately 80% and 60% of all known chemical synapses and

gap junctions, respectively, are contained in the NR. During embryonic develop-

ment, anterior, dorsal and some lateral ganglion neurons (e.g. AVA and RIV)

innervate the NR directly. The remaining neurons first innervate the ventral

nerve cord (VC) via the commissural and longitudinal nerve bundles that join

the VC and the VC in turn innervates the NR. During NR innervation, neurons

must be able to recognize the NR region, make the left/right side choices to en-

ter the NR and then make appropriate synaptic contacts to physically adjacent

neurons. Also at this time, development of head/neck muscles and other support

cells (e.g. glia-like sheath cells) must be coordinated with the longitudinal and

commissure tract development.

Surprisingly, given the NR’s prominence in the C. elegans nervous system,

little is known about the process and control of NR development and in particular

1A commissure is a circumferential tract created by neurons growing through a dorsoventral

route. The NR commisure serves as a junction where left/right bilaterally segregated neurons

can meet and synaptically couple – many left/right neurons from the same class are coupled by

gap junctions in the commisure.
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Figure 3.1: Overview of anatomy and volumetric reconstruction. (A) A worm expressing fluorescent GFP

in its entire nervous system. The bar outlines the segment of the worm (∼30µm) used for the NR volumetric re-

construction from legacy serial EMs (Modified image from Hang Ung, Jean-Louis Bessereau laboratory, France.)

(B) The five head ganglia (anterior, dorsal, lateral, ventral and retrovesicular) with axons/processes that project

into the NR. The NR encircles the pharyngeal isthmus between the anterior and posterior bulbs.(Modified image

from wormatlas.org.) (C) A segmented EM taken from where the VC enters the NR. Neurons are manually

segmented using TrakEM2 where neurons are assigned different colors. The segmentation was performed for

each EM. (D) A 3D reconstruction of neurons AVAL and AVAR generated from the segmentation data.
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the wiring specificity of the NR. This is most certainly due to the high neural

and synaptic density of the C. elegans NR which has 180 processes packed into

300 µm3 and makes studies using fluorescent markers challenging to interpret.

A key piece of missing information is a complete and comprehensive volumetric

map of the spatial organization of axons/processes within the NR commissure.

Recall how characterization of the sublamina of the IPL in the vertebrate retina

aided many developmental insights concerning wiring specificity (Baier, 2013).

While the synaptic connections in the NR have been extensively characterized the

spatial relations between neurons has not. Just as the synaptic wiring diagram

has been a valuable tool for experimentally probing the function of the C. elegans

neural circuits (Emmons, 2015), a volumetric map combined with a map of gene

expression could provide insights into the wiring specificity of neural circuits.

3.1 Reconstructing from legacy serial EMs

The NR was volumetrically reconstructed from legacy serial section electron mi-

crographs (EM) originally published by White et al. (1983). Two NR reconstruc-

tions were performed, one from an adult and the second from a larval stage 4

(L4) worm (approximately 10 hours younter than the adult). Both datasets start

in the anterior ganglia and finish in the ventral ganglia, covering approximately

36 µm (Figure 3.1a). The adult and L4 data series consist of 300 and 400 EM

sections, respectively, each section is ∼90 nm thick. The adult has fewer EM

sections because every other ventral ganglia section was skipped during imaging

(the adult sections may also be slightly thicker). While all 178 axon/processes

in the nerve ring were reconstructed, only somas in the anterior and ventral gan-

glia were reconstructed. Also, the dendritic processes of the amphid and labial

sensory neurons which extend towards the nose from the lateral and anterior gan-

glia, respectively, were not reconstructed. Because these regions of the neuron

processes do not have many synapses, they were not of immediate interest.

The EMs from White et al. (1986) were previously donated from the MRC/LMB

archives to the Hall laboratory. The EMs have since been digitized and are avail-

able at wormimage.org. This study uses the ‘N2U’ and ‘JSH’ data sets which
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were taken from an adult and L4 hermaphrodite, respectively. The synaptic con-

nectivity of these data sets was previously reconstructed by White et al. (1986)

and Varshney et al. (2011), but we used the most recent reconstruction reported

by Cook et al. (2017) and available at www.wormwiring.org. Unlike the data

of Varshney et al. (2011); White et al. (1986), the Cook et al. (2017) data also

contains the spatial locations of synapses and is conveniently stored in a MySQL

database (Xu et al., 2013). The volumetric reconstruction was manually done

using TrakEM2 software (Cardona et al., 2012). The software provides tools to

allow the user to segment neurons, track the segments and stores the data in XML

format. Volumetric reconstructions are generated by combining the tracked seg-

ments. Measurements of the physical contact between neurons was taken directly

from the segmented XML data.

The volumetric data can be visualized using a custom built web app. At the

time of this writing, the web app, MeshApp is available at wormwiring.org and

the source code is available at GitHub. MeshApp is written in javascript using

the three.js library. Wavefront files (.obj) are saved for each neuron using the

TrakEM software, which are then used as the data source for MeshApp. Both

the wavefront files and app are hosted on wormwiring.org, so the user does not

need to download or install anything. To use MeshApp, the user simply goes

wormwiring.org/beta/meshapp, clicks the Select neurons button and inputs the

neuron names into the dialog. The MeshApp can be used to view any number of

nerve ring neurons. Visualization of each neuron can be turned on/off using the

side menu. The color of each neuron can also be adjusted using the side menu.

I constructed an algorithm to measure the physical connectivity between neu-

rons. Two neurons that touch are said to be physically connected. The algo-

rithm measures physical connectivity directly from the segmented XML data,

which consists of the (x, y)-coordinates of the segment boundaries. For every

segmented EM, the algorithm classifies two neuron segments as physically con-

nected if the distance between their respective boundaries is less than 10 pixels

(∼50 nm). To measure the amount of physical contact between neuron segments

in a given image, the algorithm counts the number of boundary points that are

physically connected. Each boundary point is estimated to be 5 nm long, which
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3.1 Reconstructing from legacy serial EMs

Figure 3.2: App for viewing volumetric data. Screenshot of the web app used to view the volumetric data

at wormwiring.org/beta/meshapp.

is used to convert the number of boundary points to a physical length. The to-

tal physical contact between two neurons is the sum of physical contact over all

images.

To check the accuracy of the algorithm, two EM sections were manually scored

for physically connected partners and compared to the algorithm results (data

not shown). In both cases the algorithm outperformed the manual scorer, recog-

nizing connected partners not identified manually. Any failure of the algorithm

to identify adjacent partners (false negatives) was mostly due to poor manual

segmentation. For example, the person doing the segmentation may not have

properly traced around the cell boundary. There were a small number of cases

where the algorithm incorrectly labeled two neurons as connected (false positives).

In these cases, the length of contact was very small and could be screened out in

later analysis by requiring connected partners have a minimum contact length.

Finally, connected partners were previously reported for a small subset of neurons

based on a sparse analysis of physical connectivity in the L4 (White et al., 1983).

Our physically connected partners match those previously reported. Thus, we

concluded that, for appropriately segmented neurons, the algorithm adequately

25



3.2 Metrics for quantifying physical and synaptic connectivity

identifies all physically connected partners.

3.2 Metrics for quantifying physical and synap-

tic connectivity

Network analysis provides a convenient framework for describing how neurons are

both physically and synaptically connected (Newman et al., 2006). A network is

a set of points called vertices which are connected by lines called edges. In our

representation, vertices are neurons and edges are either the physical or synaptic

connections between neurons. A network can be represented in matrix form. I

define two matrices: the adjacency matrix and the synaptic matrix.

The adjacency matrix A describes the physical connectivity of the NR1. Two

neurons that make physical contact are said to be adjacent. The adjacency matrix

A contains elements aij where aij = 1 if neuron i and j are adjacent and aij = 0

if i and j do not make physical contact. The adjacency network is undirected, so

A is a symmetric matrix, i.e. aij = aji. The synaptic connectivity is represented

by the synaptic matrix S where the element sij = 1 if there is a chemical synapse

from the presynaptic neuron i to the postsynaptic neuron j and sij = 0 otherwise.

Unlike physical contacts, synaptic contacts are directed because the presynaptic

neuron signals the postsynaptic neurons. Therefore, in general, sij 6= sji and S is

asymmetric.

The degree of a neuron is the number of connections made by a neuron. Neuron

j is a neighbor of neuron i if there is an edge between i and j. The neighborhood

Ni is the set of neighbors of neuron i. The degree di is the size of Ni. The degree

can be computed from the adjacency matrix A as

di =
n∑
j=1

aij, (3.1)

1The nomenclature here is slightly unfortunate. In standard network and graph theory, the

adjacency matrix is any matrix used to represent a finite graph. However, White et al. (1983)

and Durbin (1987) use adjacency to refer to neurons that make physical contact. For the sake

of biological continuity, I use the term adjacency matrix to specifically refer to the graph of

physical connectivity.
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where n is the number of neurons. Because S is directed, we distinguish between

presynaptic and postsynaptic edges. A chemical synapse from i to j is a presy-

naptic edge for i and a postsynaptic edge for j because i is the presynaptic neuron

and j is the postsynaptic neuron. The presynaptic degree dprei counts the number

of presynaptic edges extending from neuron i to its neighbors,

dprei =
n∑
j=1

sij. (3.2)

The postsynaptic degree dposti counts the number of postsynaptic edges received

by i from its neighbors,

dposti =
n∑
j=1

sji. (3.3)

Degree measures are typically reported as the integer values above, but we nor-

malize the degree by the number of neurons n. The normalized degree is defined

as

d̃i =
1

n

n∑
j=1

aij. (3.4)

The ∼ signifies that the degree is normalized. Both d̃prei and d̃posti are defined

similarly.

The above treats edges as binary, either the edge exists or it does not exist,

but in many instances we want to associate values to each edge. For the ad-

jacency network, we want to quantify the amount of contact between neurons.

For each adjacency edge, we associate two attributes: section contact and touch

density. The section contact wij for edge (i, j) is the number of EM sections

where the physical contact was scored. The touch density tij for edge (i, j) is the

fraction of neuron i’s membrane that makes contact with neuron j. Formally, this

is computed by dividing the number of pixels where i and j touch by the total

surface area of neuron i within our dataset. In general, tij 6= tji because neuron

i and j make the same amount of physical contact with each other but the neu-

rons will have different surface membrane areas. Section contact is useful when

comparing the amount of physical contact with the amount of synaptic contact

because they are in the same units (number of sections). Touch density is useful

for comparing the amount of adjacency between neuron pairs, both within and
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3.3 NR exhibits conserved spatial structure

between datasets, because it is normalized by the cell surface area, thus control-

ling for differences in neuron sizes. For the synaptic network, we also quantify

the amount of synaptic contact between neurons. For each synaptic edge, we as-

sociate the section contact. As with the adjacency section contact, the synaptic

section contact for edge (i, j) is the number of EM sections where a synapse from

i to j was scored.

Finally, we define the connectivity fraction which measures the fraction of

physical contacts that are also synaptic contacts. The connectivity fraction is de-

fined as the ratio of a neuron’s synaptic degree to its adjacency degree. Formally,

the pre and post connectivity fractions are respectively defined as:

Cpre
i =

dprei

di
and Cpost

i =
dposti

di
. (3.5)

3.3 NR exhibits conserved spatial structure

The above metrics already reveal some basic spatial structure in the NR. The ad-

jacency degree distribution is approximately normally distributed (Figure 3.3a).

Thus, the adjacency degree distribution does not exhibit properties found in

other commonly studied networks. For example, the single independent edge

probability found in Poisson distributed networks (Newman et al., 2001) or the

over representation of hubs (nodes with high degree) found in scale-free networks

(Barabasi & Albert, 1999). Instead, it appears that neurons make physical con-

tacts with varying probability with no probability particularly overrepresented.

Neurons typically make physical contact with 40-80 other NR neurons. This only

represents a small fraction (∼ 1/3) of the entire NR population indicating that

NR neurons are spatially segregated.

Touch densities are exponentially distributed (Figure 3.3c). That is, most

touch densities are small – 80% of touch densities take up less than 5% of the cell

membrane – and a few touch densities are relatively large – 10% of touch densities

take up more that 30% of the cell membrane. This suggests that neurons make a

few “preferential” longer contacts with neighboring neurons in addition to making

many more smaller sporadic physical contacts. This is consistent with previous

observations that neuron axons/processes fasciculate the NR in process bundles
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3.3 NR exhibits conserved spatial structure

Figure 3.3: Distribution of physical contacts. (A) Degree distribution of the adult adjacency network

(black). Fit with a binomial distribution (red dashed) and a normal distribution (blue dash). (B) Presynaptic

degree distribution of the adult synaptic network (black). Fit with a binomial distribution (red dash) and a

skew normal distribution (blue dash, skew = 0.53). The L4 networks (not shown) are qualitatively similar

to the adult. (C) Survival distribution of touch densities. Touch density is given as the fraction of surface

membrane that makes physical contact with the adjacent neuron. Also shown is the conditional distribution

function of touch densities for physical contacts that result in at least one synapse. (D) Comparison of inter-

and intraworm variability of neighbor preferences. Survival distribution of similarity of neighbor preferences (τ)

between adult (green) and L4 (red) bilaterally symmetric left/right neurons and between homologous adult and

L4 neurons (blue). Most neurons (> 90%), neighbor preferences are more similar (τ > 0.5) than dissimilar. (E)

Distribution matrix of surface area contact (pixels) across neurons. Neurons are placed in one of six categories

based on their anatomical location and function: sensory (S), mechanosensory (Sm), anterior sensory (Sa), first-

layer interneuron (Ia), second layer interneuron (Ib) and motorneurons. Elements of the matrix are normalized

by row sums such that the sum of each row is 1. Red and blue indicate large and small fractions of physical

contact, respectively.
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3.3 NR exhibits conserved spatial structure

White et al. (1983, 1986), referred to as “neighborhoods”. White et al. (1986)

pointed out that certain neighbors make more persistent contact than others,

while other neighbors move in and out of direct physical contact along the length

of the process. My measurements show that roughly 60% of neighbors will change

over 1-2µm of process length and 10% of neighbors will persist for longer than

10µm of process length (data not shown). So, given that neighbor preferences do

exist, how consistent are these preferences across worms?

The neighbor preferences are both developmentally and bilaterally conserved

between the L4 and the adult. For each neuron, density scores were used to rank

neighbor preferences. Neuron i prefers neuron j over neuron k, if tij > tik. For

neuron i, let Oi be the set of neighbors ordered by increasing preference. The

set Oi can be decomposed into 1
2
M(1 −M) ordered pairs. Let Pi be the set of

ordered pairs from Oi. Now consider neuron j with ordered set Oj which can be

decomposed into the set of ordered pairs Pj. For convenience, we require that set

Oi and Oj have the same set of M neighbors. If this is not the case, we simply

consider the intersection of Oi and Oj. The Kendall rank coefficient is used to

compare the ordered preferences Oi and Oj, given by

τij = 1− 2∆(Pi, Pj)

M(M − 1)
, (3.6)

where ∆(Pi, Pj) is the symmetric difference operation which counts the number

of ordered pairs that belong to either Pi or Pj, but not both. Because τij is

determined from counting the number of different pairs between sets, it can be

interpreted in a probabilistic context (Abdi, 2007). Specifically, for two ordered

sets Oi and Oj, τij can be interpreted as the probability that the sets are in the

same order minus the probability that the sets are in different orders. Thus,

τij provides a measure of conserved neighbor preferences between neurons. The

significance of τij can theoretically always be computed because the ranked sets

Oi and Oj are finite. For details on how to compute the significance, the reader

is referred to Abdi (2007). Here, we will simply note that for sufficiently large

M the sampling distribution of τ converges towards a normal distribution with

mean 0 and variance

σ2
τ =

2(2M + 5)

9M(M − 1)
. (3.7)
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3.3 NR exhibits conserved spatial structure

The associated p-values can then be computed using standard procedures.

For each neuron, we only ranked neighbors that are shared by both the L4

and adult. Correlation coefficients were positive for all neurons, with 80% of

neurons having a τ ≥ 0.5 with p < 0.01 for each neuron (Fig. 3.3d). Therefore,

we can reject the null hypothesis and conclude there is significant agreement

of touch density rankings between the L4 and adult neurons. For comparison,

we computed ranking coefficients for bilaterally symmetric left/right homologous

neurons in both the L4 and adult and arrived at similar scores. This indicates

that the differences in t rankings are not larger than what would be expected

from inter-worm variability.1

We have thus far only focused on the adjacency of individual neurons, but

the NR does exhibit higher level spatial organization. Neurons were classified

into one of six categories based on anatomy and function: sensory (S), amphid

sensory (Sa), mechanosensory (Sm), first layer interneurons (Ia), second layer in-

terneurons (Ib) and motor neurons (M). These categories are discussed in more

detail in Section 4.1. Here, we merely consider the breakdown of synaptic connec-

tivity between these classes. Approximately 90% of amphid sensory surface area

is dedicated to other amphid sensory neurons, first- and second-layer interneu-

rons. Roughly 90% of mechanosensory surface area is dedicated to second-layer

interneurons, motor neurons and other mechanosensory neurons. The anterior

sensory neurons mostly mix with second-layer interneurons. First-layer interneu-

rons mostly mix with amphid sensory and second-layer interneurons. Second-

layer interneurons and motor neurons mostly mix with motor neurons and other

second-layer interneurons. This suggests that the NR exhibits a lamina-like struc-

ture.

1Some outliers are neuron classes ADE/AVD/BAG/FLP/RID/RME/SDQ which consis-

tently had a τ < 0.5; indicating that neighborhood preferences for these neurons are less likely

to be conserved.
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3.4 Synaptic contacts are not correlated with adjacency

3.4 Synaptic contacts are not correlated with

adjacency

Previous studies have suggested that synapse probability is correlated to the

spatial proximity between neurons This has previously been formalized as Peters’

rule, with one simple interpretation being that axons make synapses in direct

proportion to the number of proximal synaptic targets (Binzegger et al., 2004;

Braitenberg & Schüz, 1998). However, there has never been a clear consensus on

how this rule should be applied and evaluated (Rees et al., 2017). Recent studies

have shown that Peters’ rule is not a good predictor of synaptic connectivity

(Kasthuri et al., 2015; Mishchenko et al., 2010; Shepherd et al., 2005), on the other

hand algorithms using variations of Peters’ rule have been able to simulate and

reconstruct synaptic connectivity (Markram et al., 2015; Reimann et al., 2015).

Consequently, there is no consensus on if Peters’ rule can predict connectivity.

Comparison of the adjacency and synaptic networks shows that there is no

direct correlation between physical and synaptic contacts in the C. elegans NR.

The adjacency degree distribution is normally distributed (Figure 3.3a) while the

presynaptic degree distribution has a skewed normal distribution (Figure 3.3b).

A linear map from physical to synaptic contacts would shift or scale but not

skew the degree distribution, suggesting any possible relation is likely nonlinear.

For each neuron, there is minimal correlation between d̃ and d̃pre (r = 0.25,

Figure 3.4a) while there is some correlation between d̃ and d̃post (r = 0.68, Figure

3.4b), possibly suggesting that there are pre- and postsynaptic mechanisms that

operate independently. Ultrastuctural analysis of the rat hippocampal neuropile

suggested that axo-dendritic touch density is a good predictor of synapse density

(Mishchenko et al., 2010). However, in the NR dataset there is no significant

correlation between the amount of physical contact and synapse size (r = 0.25,

Figure 3.4c) nor between the amount of physical contact and the number of

synapses (r = 0.42, Figure 3.4d). Finally, both Cpre and Cpost exhibit large

variation across neurons (Figure 3.4e,f) and there is essentially no correlation

between Cpre and Cpost (r=0.02, data not shown). This suggests that synaptic

properties are likely different for each neuron. Collectively, these results suggest

that there is no simple linear relationship between physical and synaptic contacts.
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3.4 Synaptic contacts are not correlated with adjacency

Figure 3.4: Correlations between adjacency and synaptic contacts. (A-B) The normalized presynap-

tic degree (d̃pre) versus the normalized adjacency degree (d̃). (B) The normalized postsynaptic degree (d̃post)

versus d̃. (C) For every pair of synaptic partners, the number of synaptic sections versus the number of adja-

cency sections. (D) For every pair of synaptic partners, the number of synapses versus the amount of physical

contact (pixels). (D-E) The distribution of pre (Cpre) and post (Cpost) connectivity fractions. The correlation

coefficients (r), mean (µ) and standard deviation (σ) are given.
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Chapter 4

Measuring wiring specificity

4.1 NR exhibits lamina-like structure

In order to assess how the nerve ring is physically organized, the spatial positions

of neural processes and synapses within the NR was mapped. Because of its

torus shape, spatial positions in the NR are conveniently characterized in terms

of cylindrical coordinates (r,φ,z) (Fig. 4.1a). The radius (r) is measured as the

distance from the outer edges of the pharynx to the neuron or synapse. The

azimuth angle (φ) is measured with respect to the ventral axis, with positive

φ moving in the clockwise direction. The z coordinate gives the position along

the anterior-posterior axis of the worm. For each EM section, both r and φ are

plotted as a function of z for both right and left side neurons (Fig. 4.1c-d).

Neurons within the same category typically exhibit similar r distances along z.

Most neurons complete a half cycle around the nerve ring, starting at φ = 0 or

φ = ±π and stopping at φ = ±π or φ = 0, respectively. A few neurons will

cycle around more than half of the NR (e.g. AIB) and still some wrap completely

around the NR (e.g. AQR). Organization patterns in the NR are more easily

observed by grouping neurons into one of six categories: mechanosensory, anterior

sensory, amphid sensory, first-layer interneurons, second-layer interneurons and

motor neurons.

With few exceptions, the first two categories consist of sensory neurons in the

anterior ganglion that send processes into the NR. The first category, mechanosen-

sory neurons respond to touch stimuli and primarily innervate motor neurons and
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4.1 NR exhibits lamina-like structure

Figure 4.1: Spatial organization of the NR. (A) Positions of neurons/synapses are given in terms of cylin-

drical coordinates (r, φ, z). r is the distance to the outer edge of pharynx. φ is azimuth angle with respect

to the ventral axis; +φ is clockwise; −φ is anti-clockwise. z is the position along the anterior-posterior axis.

(B) Heuristic model for the NR organization. Neurons are grouped into 6 categories: anterior sensory (cyan),

mechanosensory (yellow), amphid sensory (blue), first-layer interneurons (pink), second-layer interneurons (ma-

genta), motor neurons (green). See main text for explanation. (C) Radial distance (r) of neuron processes (left),

synaptic outputs (middle) and synaptic inputs (right) as a function of z. Red dashed lines show z positions of

representative EM sections, shown in E. (D) φ as a function of z for neuron processes, synaptic outputs and

synaptic inputs. (E) Representative EM sections taken from z positions given in (C).
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4.1 NR exhibits lamina-like structure

muscles within the inner segments of the NR. This placement of mechanosensory

neurons has obvious implications for synaptic connectivity and ultimately behav-

ior. The majority of mechanosensory synaptic output is onto motor neurons and

muscle. By placing mechanosensory neurons next to motor neurons and muscle,

the nervous system reduces the delay between touch stimuli and resulting behav-

ior. The benefits of this are straightforward. If a predator is close enough to

touch the animal, then the animal needs to be able to respond and escape with

minimal delay. The second category, anterior sensory neurons consists of the re-

maining sensory neurons in the anterior ganglia. The majority of these neurons

are primarily involved in O2 sensation and CO2 avoidance. Other functions of

these neurons include lifespan regulation and pheromone sensing. These neurons

primarily innervate the outer segments of the NR along with interneurons. Thus,

sensory information from these neurons incurs more processing steps.

The third category consists of the amphid sensory neurons which have cell

bodies in the lateral ganglion. Amphid sensory cell bodies send processes that

wrap circumferentially around the ventral body wall muscles and then fasciculate

together into a large nerve bundle under the ventral ganglion where they are

surrounded by interneurons and motor neurons. The processes begin in the lower

quadrants of the nerve bundle (Fig. 4.1e), but then migrate to the outside and

eventually to the upper quadrants of the nerve bundle. Once the amphid sensory

processes enter the nerve ring, they appear to mix more freely with first-layer and

to a lesser extent second-layer interneurons. Unlike mechanosensory neurons, the

amphid sensory neurons have large r distances, placing these neurons in the outer

segments of the NR. The amphid sensory processes extend the shortest distance

into the nerve ring. They are among the first processes to enter the NR from

the posterior side and are among the first posterior processes to terminate at the

commissure.

Interneurons have cell bodies in posterior ganglia and send processes anteri-

orly into the NR. The interneurons are separated into two categories first- and

second-layer, based on synaptic connectivity. The first-layer interneurons receive

significant synaptic input from the amphid sensory neurons. These neurons follow

and mix with amphid sensory neurons within the NR and proceed only slightly

farther than amphid sensory neurons into the NR. First-layer interneurons are
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4.2 NR exhibits synaptic specificity

followed by second-layer interneurons. Second-layer interneurons mix with first-

layer interneurons and motor neurons and bridge the connectivity between the

two neuron categories. Among interneurons, second-layer interneurons proceed

the farthest into the NR, allowing more opportunity for contact with motor neu-

rons.

The final category consists of motor neurons which form neuromuscular junc-

tions onto head muscle arms. Motor neuron cell bodies are located in both the

anterior and posterior ganglia and thus innervate the NR from both sides. Coming

from either side, motor neurons primarily mix with mechanosensory and second-

layer interneurons. Motor neurons primarily innervate the inner segments of the

NR, conveniently placing them next to head muscle arms. Unlike most sensory

and interneurons, motor neurons span the entire length of the NR along the

z-axis.

In summary, the NR exhibits clear macro-level spatial organization. It is useful

to think of the NR in terms of overlapping layers (Fig. 4.1b). Mechanosensory

and motor processes span the entire length of the NR within the inner cylindrical

segments. The anterior sensory processes extend posteriorly within the outer

cylindrical segments along the entire length of the NR. From the posterior side,

amphid sensory neurons are the first to enter and terminate within the outer

cylindrical segments. The first- and second-layer interneurons then fill the gap

between amphid sensory and motor neurons. This macro-level organization is

both bilaterally conserved between left/right neurons and between the L4 and

adult. To be clear, this abstract spatial model of the NR is a simplification

because it attempts to place neuron categories that are continuously mixing into

discreet layers. However, the model provides a useful heuristic for thinking about

the spatial organization within the NR.

4.2 NR exhibits synaptic specificity

Synapse specificity refers to the precision with which neurons choose synaptic

partners. A number of studies have shown that neurons only make synapses

with a small fraction of their neighbors (Hamos et al., 1987; White et al., 1986).

Some have taken this as support that neurons actively choose synaptic partners
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4.2 NR exhibits synaptic specificity

from surrounding cells (Shen & Scheiffele, 2010). However, a small connectivity

fraction only indicates that a small number of synaptic partners are chosen, it

does not rule out that the synaptic partners were chosen randomly.

Before proceeding, it is useful to develop some terminology. Left/right neuron

pairs are referred to as homologous neurons. For example, (ASHL,ASHR) and

(AVAL,AVAR) are both homologous neuron pairs. Because AVAL and AVAR are

physically adjacent neighbors of ASHL and ASHR,respectively, we say that AVA

is a homologous neighbor of ASH. Bilaterally conserved synaptic connections are

synaptic connections that occur on both the left and right side of the animal.

For example, the synaptic connections ASHL→AVAL and ASHR→AVAR are

bilaterally conserved connections. We also say that ASH→AVA is a symmet-

ric connection. A synaptic connection that is not bilaterally conserved, i.e. a

synaptic connection that occurs on either the left or right side, is said to be an

asymmetric connection. An asymmetric connection on the left side is said to be

left asymmetric while an asymmetric connection on the right side is said to be

right asymmetric.

One way to test if synaptic partners are chosen randomly is to assess if the

number of symmetric connections could have occurred randomly. I tested the

null-hypothesis that the observed number of symmetric connections is random.

I compared the actual number, ca, of symmetric connections with the expected

number, ce, of symmetric connections had synaptic partners been chosen ran-

domly. If ca > ce and the probability of randomly observing ca connections is

small, then the null-hypothesis can be rejected.

The expected number of random symmetric connections is computed as fol-

lows. Let M be the number of homologous neighbors, s the number of symmetric

connections, al the number of left asymmetric connections and ar the number of

right asymmetric connections. The left and right connectivity fraction are given

by s+al
M

and s+ar
M

, respectively. The left/right connectivity fractions are assumed

to be constant while the choice of synaptic partners is random. The number of

ways of randomly choosing s+al synaptic partners from M neighbors is given by

the binomial coefficient
(
M
s+al

)
. The number of ways of choosing s + ar synaptic

partners from M neighbors is
(
M
s+ar

)
. The number of possible combinations be-

tween the left and right homologous neuron is given by
(
M
s+al

)(
M
s+ar

)
. The number

38



4.2 NR exhibits synaptic specificity

of ways of having s symmetric connections is given by the multinomial coefficient(
M

s, al, ar

)
=

(
M

s

)(
M − s
al

)(
M − s− al

ar

)
. (4.1)

Therefore, the probability of randomly having s symmetric connections is given

by

p(s) =

(
M

s,al,ar

)(
M
s+al

)(
M
s+ar

) . (4.2)

To test the null hypothesis, we need to compute the probability of having s or

greater symmetric connections. Without loss of generality, assume that al ≤ ar.

Then the maximum possible number of symmetric connections is s+al. Let k be

a dummy variable such that 0 ≤ k ≤ al. Note that if the number of symmetric

connections is increased to s + k, then the number of left and right asymmetric

connection must be reduced to al − k and ar − k, respectively. The number of

possible ways of having s+ k symmetric connections is given by(
M

s+ k, al − k, ar − k

)
=

(
M

s+ k

)(
M − s− k
al − k

)(
M − s− al
ar − k

)
. (4.3)

Then the probability of having s+ k symmetric connections is given by

p(k) =

(
M

s−k,al−k,ar−k

)(
M
s+al

)(
M
s+ar

) , (4.4)

where the probability is a function of k and not s + k because s is held con-

stant while k is allowed to vary. Finally, the probability of observing at least s

symmetric connections is given by

Pr(k ≥ 0)) =

al∑
k=0

p(k). (4.5)

Using the standard Type I error rate α = 0.05, we say that a given pair of

homologous neurons exhibit specificity if Pr(k ≥ 0) ≤ 0.05. Here, we have

computed the probability of bilaterally conserved presynaptic connections, but

the probability of bilaterally conserved postsynaptic connections is computed in

a similar way.

I computed the probability of pre- and postsynaptic bilaterally conserved con-

nections for each pair of homologous neurons in both the L4 and adult. Most
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neurons (>60%) have probabilities less than 0.05, indicating that for most neurons

the conserved connections are statistically not random and the null-hypothesis

can be rejected (Figure 4.2a-b). Hence, the connectivity appears to be speci-

fied. I find that 45% of neurons have both pre- and postsynaptic connections

specified, 41% of neurons have either pre- or postsynaptic connections specified

and for 14% of neurons we cannot rule out that both pre- and postsynaptic con-

nections are random (Figure 4.2c). It should be noted that the second group

contains neurons which either have relatively few presynaptic connections (e.g.

locomotion interneurons AVA/AVB/AVE/AVD which have significant synaptic

output in the body but not the NR) or relatively few postsynaptic connections

(e.g. many sensory neurons), which could explain why probability of conserved

matches is so high. For the third group of neurons, I find that less than half of

the synaptic connections are bilaterally conserved. For the SDQ neurons, this is

due to morphological differences. For the other neurons, this could suggest that

these neurons are developmentally or functionally different.

In addition to testing if conserved connections are random, I also tested if

developmentally conserved connections are random. Developmentally conserved

connections are synaptic connections that occur in both the L4 and the adult.

For example, if the synaptic connection ASHL→AVAL is present in both the L4

and the adult, the connection is said to be developmentally conserved. If the

appropriate substitutions are made, equation (4.5) can also be used to compute

the probability of observing at least s developmentally conserved connections.

Specifically for a given neuron, let M the number of shared neighbors in both

the L4 and the adult, let al be the number of synaptic connection in the L4

but not the adult and let ar be the number of synaptic connections in the adult

but not the L4. The probability of developmentally conserved connections is

less that 0.05 for ∼ 60% of neurons (Figure 4.2a-b). In general, I also find

that many neurons either have pre- or postsynaptic developmentally conserved

connections. Thus, in addition to be bilaterally conserved, synaptic connections

are also developmentally conserved.
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Figure 4.2: Probability of conserved connections. (A) Distribution function of the probability of presy-

naptic connections the are bilaterally conserved in the adult (blue), L4 (green) and developmentally conserved

between the L4 and adult (black). (B) Distribution function of the probability of bilaterally and developmentally

conserved postsynaptic connections. (C) Plot of bilaterally conserved presynaptic vs. postsynaptic connections

in the adult. Outlier homologous neurons are labeled. Homologous neurons are considered outliers if both the

pre- and postsynaptic probabilities are greater than α = 0.05. In all plots, red dashed line marks where the

probability is 0.05.
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4.3 NR exhibits subcellular specificity

4.4 Modeling synaptic connectivity

Specified synaptic connections occur with higher probability than would be ex-

pected by chance, but what factors increase or decrease the probability of synapse

formation? In this section, I outline the framework of a statistical model that will

be used to address this question. The model will be used to predict the number of

synaptic connections for each neuron and will be evaluated based on how closely

the predicted value matches the measured number of synaptic connections.

The model starts by defining the probability of a synaptic connection between

neurons i and j. Let Xij and Yij be two random variables that relate i to j. The

random variable Xij describes some measured quantity, e.g. the physical contact,

and Yij = 1 if there is a synaptic connection from i to j and Yij = 0 otherwise.

Then the joint probability function (p.f.) fXY (x, y) describes the sample space

of possible connections and fX(x) is the marginal p.f. from summing over all

possible Yij ∈ {0, 1}. The probability of a synaptic connection from i to j given

Xij = x is

Pr(Yij = 1|Xij = x) =
Pr(Yij = 1 ∩Xij = x)

Pr(Xij)
=
fXY (x, 1)

fX(x)
, (4.6)

where the middle expression is the definition of a conditional probability. Thus,

in order to compute the synapse probability, we only need to compute fXY (x, 1)

and fx(x) which can be derived from the associated distribution functions (d.f.)

FXY (x, 1) and FX(x), respectively. The final expression of synapse probability is

given by

Pr(x) =
F ′XY (x, 1)

F ′X(x)
. (4.7)

where F ′XY and F ′X are the derivatives of the distribution functions and on the

left I have dropped the more formal notation of Equation (4.6) for clarity.

In practice, deriving the distribution functions from the data is straightfor-

ward. FX(x) is the cumulative distribution of possible X values and FXY (x, 1)
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4.4 Modeling synaptic connectivity

is the cumulative distribution of all X values where there is also a synaptic con-

nection. The distributions are then fit with a modified logistic equation,

g(x) = A

(
1

D + e−Bx
− C

)
(4.8)

where A, B, C and D are constants determined using the Levenberg-Marquardt

algorithm for least squares curve fitting. For the random values of X analyzed in

this study (touch density and p-score, see below), equation (4.8) provided a good

fit for the distribution functions. Equation (4.7) states that the derivatives of the

distribution functions are needed, which are given by the derivative of (4.8),

g′(x) = A

(
Be−Bx

(D + e−Bx)2

)
. (4.9)

In summary, synapse probability is computed by (i) deriving the distribution

functions from the data, (ii) computing the constants needed to fit the distri-

bution functions with (4.8), (iii) plugging the constants into (4.9) to determine

the derivatives of the distribution functions and (iv) plugging the derivatives into

(4.7) to compute the probability.

In practice, I found that (4.7) can be ill-conditioned depending on the behavior

of the distribution functions. As FX → 1 for x → ∞, the derivative F ′X → 0

which can cause the expression in (4.7) to go to infinity. This behavior was

mitigated by deriving an equivalent expression for (4.7). Let h = FXY

FX
, then the

chain rule for derivatives gives

h′ =
F ′XY
FX
− F ′XFXY

(FX)2
(4.10)

Rearranging terms gives the expression

F ′XY
F ′X

=
FX
F ′X

h′ + h (4.11)

So alternatively, the synapse probability can be computed as

Pr(x) =
FX(x)

F ′X(x)
h′(x) + h(x). (4.12)

I assessed the model’s ability to capture variation in synaptic connectivity

among neurons by comparing the actual number of synaptic connections for each
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neuron with the value predicted by the model. Let the random variable Zi =

Yi1 + Yi2 + · · · + YiM be the total number of synaptic connections that neuron

i makes with its M neighbors. Yij is binomially distributed and I assume that

each synaptic connection is made independently of all the other connections.

Therefore, the expected number of synaptic connections is given by

E(Zi) =
M∑
j

Pr(Yij = 1|Xij = x) (4.13)

with variance

V ar(Zi) =
M∑
j

Pr(Yij = 1|Xij = x)(1− Pr(Yij = 1|Xij = x)) (4.14)

I next compute the p-value, the probability of observing a discrepancy as great

or greater by chance between the actual and expected number of synaptic con-

nections. A representative p-value for all the neurons is computed using the

Benjamini-Hochberg procedure (Benjamini & Hochberg, 1995; Benjamini & Yeku-

tieli, 2001), which corrects for the increased chance of observing a Type I error

(i.e. falsely rejecting the null hypothesis) and has greater statistical power than

the more commonly used Bonferroni correction (Perneger, 1998). For m neurons,

the p values are arranged in ascending order, p1 ≤ p2 ≤ . . . ≤ pm, and each

p value is adjusted to pai = min (mpi/i, 1). The multiple hypothesis adjusted p

value is defined as padj = min ({pai }), which is then compared to the false dis-

covery rate α = 0.05. When padj < 0.05, we reject the null-hypothesis that the

model captures the variation in synaptic connectivity.

4.5 Touch density does not predict connectivity

Synaptic connections require a minimal amount of mutual contact between neu-

rons, but does the likelihood of a synaptic connection increase with the amount

of contact? Two observations suggest that synaptic connectivity does not depend

strongly on the amount of physical contact. First, the distribution function of

synaptic connections as a function of touch density shows that 40% of synaptic

connections require less that 1% of membrane contact (Figure 4.3). Second, there
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is no correlation between touch density and the number of synapses formed be-

tween neurons (Figure 3.4c-d). These observations show that (i) synapses require

very little contact between neurons and (ii) the number and size of synapses does

not strongly depend on the amount of physical contact. But does more contact

increase the probability of forming at least one synapse between neurons?

Durbin (1987) noted that over as little as 10 EM sections of mutual contact,

there is a sharp rise in synapse frequency. I also observe a similar correlation

between touch density and synapse likelihood. Let the random variable X be

the touch densities. Figure 4.3 shows the marginal distribution function FX(x)

of touch densities and the distribution function FXY (x, 1) of touch densities that

result in a synaptic connection. The probability of forming a synaptic connection

as a function of touch density x is computed using (4.12). Most of the increase

in synapse probability occurs over 10% of membrane contact, after which the

probability asymptotes to 0.7. This shows that more contact between neurons

may increases the chances of a synapse but does not guarantee a synapse. But

does touch density predict synaptic connectivity?

For each neuron, I loop through each of its neighbors, look up the touch density

and the subsequent probability of a synaptic connection from Figure 4.3b. The

predicted number of synaptic connections is then the sum of these probabilities.

I then compute the probability of observing a discrepancy as large or larger

between the predicted and actual number of synaptic connections. For both pre-

and post synaptic connections, probability of discrepancy is p < 0.05 (Figure 4.3c-

d). Thus, the null-hypothesis that touch density is a good predictor of synaptic

connectivity must be rejected.

4.6 Connectivity fraction product predicts con-

nectivity

I now consider a model where the probability of a synaptic connection depends

on the pre and post connectivity fraction. In this model, I assume that every

neuron has independent probabilities of being pre- or postsynaptic and that the

pre- and postsynaptic probabilities of any two neurons are independent. Define
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4.6 Connectivity fraction product predicts connectivity

Figure 4.3: Touch density does not predict connectivity (A) The dashed line is the marginal distribution

of touch densities. Solid line is the joint distributions of touch densities with an associated synaptic contact.

(B) Probability of forming a synaptic connection as a function of touch density. (C-D) Touch density does not

predict the number of synaptic connections, p < 0.05.
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the random variable

Xij = Cpre
i Cpost

j (4.15)

where Cpre
i is the pre connectivity fraction of neuron i and Cpost

j is the post

connectivity fraction of neuron j (see Equation 3.5). In words, Xij reflects the

product of probabilities that neuron i is presynaptic and neuron j is postsynaptic.

I call Xij the product score from neuron i to neuron j. For brevity, I will refer

to the product score as simply the p-score in the remainder of this study. The

reader should be careful not to confuse p-score and p-value.

The marginal distribution FX(x) of all p-scores and the joint distribution

FXY (x, 1) of p-scores with a synaptic connection are given Figure 4.4(a). The

probability of a synaptic connection, computed using (4.12), is given in Figure

4.4b. The number of synaptic connection predicted by the p-score model is in

close agreement with the actual number of connections (Figure 4.4c-d). The

probability of as large or larger discrepancy is p > 0.5. Thus, the null hypothesis

that the probability of synaptic connection depends on the product of pre and

post connectivity fractions cannot be rejected.

I tested the robustness of this model in two ways: by comparing left/right con-

nectivity and by comparing L4/adult connectivity. For left/right connectivity, I

determined distributions of p-scores for neurons on the left side of the animal and

then used the derived probability to predict the number of connections on the

right side of the animal. For both the L4 and adult, the derived left probability

function predicts the actual number of connections on the right with p > 0.05

(data not shown). Thus, the model is robust to intra-worm variability. For

L4/adult connectivity, I determined the distribution of p-scores for L4 neurons

and then used the derived probability to predict the number of synaptic connec-

tions in the adult. The derived L4 probability function is not a good predictor of

synaptic connections in the adult (p < 0.05, data not shown). Thus, the model is

not robust to developmental differences in synaptic connectivity between the L4

and adult. This could be an indicator that there are continuing developmental

changes in the pre- and postsynaptic properties of neurons from the L4 to the

adult. These continued developmental changes could account for the increased

connectivity observed in the adult relative to the L4. At this point, it is worth

addressing a few points concerning the p-score model.
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4.6 Connectivity fraction product predicts connectivity

Figure 4.4: P-score model predicts connectivity. (A) The dashed line is the marginal distribution of p-

scores. Solid line is the joint distributions of p-scores with an associated synaptic contact. (B) Probability

of forming a synaptic connection as a function of p-score. (C-D) P-scores predict the number of synaptic

connections, p > 0.5.
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It is not obvious that the p-score model should predict synaptic connectivity

as well as it does. One may be tempted to interpret the connectivity fractions

as synaptic probabilities. In which case, the synapse probability could be the

product of the pre- and postsynaptic probability. However, there are a few reasons

why this is faulty reasoning. First, the connectivity fractions are not probabilities.

The connectivity fraction is a single measurement of the likelihood that a neuron is

pre- or postsynaptic. In order to properly estimate the true pre- and postsynaptic

probabilities of a neuron, one would have to make repeated measurements of the

connectivity fractions for each neuron. As it stands, I have only one adult and one

L4 connectivity fraction for each neuron, which is insufficient to characterize the

pre- and postsynaptic probabilities. Second, I assessed the p-score model’s ability

to capture variation in synapse probability not the mean. The p-score model is

essentially an average synapse probability approximated from the connectivity

fractions. However, there is no obvious reason to expect the synapse probabilities

to be tightly distributed around the mean. Indeed, for the touch density model the

distribution around the mean was large, which caused the model to be rejected.

That the p-score model is able to predict the actual synaptic connectivity in the

data, indicates the spread of synapse probabilities around the mean is quite small.

This suggests that the p-scores are a good description of the data.

Unlike touch density, it is difficult to provide a precise physical interpretation

of the p-score. The p-score is the product of connectivity fractions which in turn

are simplified representations of the connectivity properties of neurons. There are

are likely many underlying molecular mechanisms that work in combination and

have evolved over time to give rise to the observed connectivity fractions. The

p-score is a very simple way of scoring how these mechanisms link neighboring

neurons. Higher p-scores are correlated with a higher synapse probability (Figure

4.4b).

Finally, what are the biological implications of this result? The two assump-

tions of the model are (i) neurons have a pre and post connectivity fraction and

(ii) the synapse probability is proportional to the product of the pre and post

connectivity fractions of neighboring neurons. The first assumption indicates that

the mechanisms for giving and receiving a synapse are different, which is consis-

tent with what has been observed experimentally. For example, the cell adhesion
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4.6 Connectivity fraction product predicts connectivity

proteins neurexin and neuroligin are known to help bind cells at the synaptic cleft

and are expressed in the pre- and postsynaptic neuron, respectively. The second

assumption indicates that the synapse probability depends on the connectivity

properties of both the pre- and postsynaptic neurons and that these properties

are largely independent. One could imagine a scenario where the synapse proba-

bility is only determined by connectivity traits of either the pre- or postsynaptic

neuron, but not both. However, the p-score model suggests that the pre- and

postsynaptic neurons have cell autonomous pre and post connectivity traits, re-

spectively, and it is the interaction of these traits that determines the probability

of a synapse. Furthermore, the pre and post connectivity properties interact in

a nonlinear way to give rise to the synapse probability (Figure 4.4b). Finally,

the p-score model is probabilistic and its ability to predict connectivity suggests

that synapses are formed in a probabilistic manner. Previously, I showed that

there are more bilaterally and developmentally conserved synaptic connections

than would be expected by chance. In light of the p-score model, these results

suggest that conserved synaptic connections are synaptic connections that occur

with very high probability. Assumption (ii) would then suggest that the con-

served synaptic connections involve pre and post connectivity traits that increase

synapse probability. Conversely, the nonconserved synaptic connections can still

occur, but they occur with a decreased probability. This could suggest that it is

the differential expression of pre and post connectivity traits among neurons that

mediates the synaptic specificity in the NR.
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Chapter 5

Combinatorial CAM expression

can support synaptic specificity

Synaptic specificity requires that neurons be able to identify synaptic partners

from the pool of physically adjacent cells. In the vertebrate central nervous,

there is on the order of 104 cell types, making the task of uniquely labeling cells

challenging. What molecular-genetic mechanisms exist that could uniquely label

such a vast number of cells? One proposal is that unique cell labels could be cre-

ated by the combinatorial expression of a small-number of cell surface molecules

(Baier, 2013). Informal calculations indicate that 3× 1010 variations of clustered

protocadherins could be expressed in each neuron in the brain (Yagi, 2012) and

experimental finding have shown that surface proteins can exist in tens of thou-

sands of isoforms each with their own binding affinities (Wojtowicz et al., 2007).

The information-carrying capacity of combinatorial codes is very large and would

grow exponentially with each additional molecule. A combinatorial code with

two molecules x and y could encode 4 unique labels (not x and not y, x and not

y, y and not x, x and y). For N molecules, the number of possible labels is 2N .

To encode unique labels for each of the 180 C. elegans NR neurons would only

require 8 molecules (28 = 256) and there are at least 35 CAM genes expressed in

the NR (Table 5.1). So theoretically, the combinatorial expression model could be

a plausible explanation for the observed synaptic specificity in the NR. However,

this calculation is overly simplistic, because it does not take into account the

actual expression patterns of the C. elegans NR nor how expression patterns are
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5.1 CAM expression in the C. elegans NR

coordinated between synaptic partners. A critical assessment of the feasibility

of the combinatorial expression model should address whether or not the known

expression patterns in the NR are sufficiently unique to allow neurons to dis-

criminate between synaptic partners and other nonsynaptic physically adjacent

cells.

5.1 CAM expression in the C. elegans NR

In a review of the C. elegans neuronal genome, Hobert (2005) identified 106

CAM genes. Wormbase (WS259) identifies 3950 genes that are expressed in the

head neurons (Wormbase, 2017). Comparing the two lists, there are 55 CAM

genes that are expressed in NR neurons. These CAM genes were placed into one

of two categories, CAM I and CAM II, based on how precisely the expression

patterns have been characterized. CAM I consists of 35 genes whose expression

in the NR has been clearly identified and linked to specific neurons (Table 5.1).

CAM II consists of 17 genes that are said to be expressed in all NR neurons

or for whom subsets of NR neurons are not clearly identified (Table 5.2). For

example, expression of the CAM II gene egl-15 is observed in hypodermal cells,

sex myoblasts, the type I vulva muscles and some “unidentified” head neurons

(Huang & Stern, 2004). Because the head neurons were not clearly identified, egl-

15 was placed in CAM II. In order to keep the results as conservative as possible,

CAM II neurons were removed from the analysis and only CAM I genes were

considered. Henceforth, when CAM genes are mentioned, it should be understood

that the CAM I genes are being referenced.

The expression of CAM genes in the NR is sparse with neurons typically

expressing a relatively small number of genes and single genes being expressed

across multiple neurons. There are 28 NR neurons that have no known CAM

expression and were subsequently removed from the analysis. However, most of

the remaining neurons express up to 5 CAM genes (Figure 5.1d) and over 60%

of CAM genes are expressed in at least 5 neurons (Figure 5.1e). Neuron PVT

expresses the most CAM genes (11) and gene cam-1 is expressed in the most

neurons (70). There is no discernible structure to the expression matrix (Figure

5.1a). A number of algorithms were applied to the matrix (e.g. diagonalization
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5.1 CAM expression in the C. elegans NR

and bipartite graph clustering), but none yielded any meaningful oranizational

insights.

Relatively few neurons have unique expression patterns. Expression patterns

were determined from the expression matrix Eij, where Eij = 1 if neuron i

expresses gene j and Eij = 0 otherwise (Figure 5.1a). Hence, the ith row of

the expression matrix can be used to generate a binary string that labels the

expression pattern of the ith neuron. Two neurons are said to have equivalent

expression patterns if they have equivalent expression labels. The NR hase 64

unique gene expression labels. Neurons with equivalent expression labels can

conveneiently be displayed in a network graph, where edges exist between pairs of

neurons with equivalent expression labels. The resulting graph shows 10 isolated

neurons that do not share an expression label with any other neuron (Figure

5.2). The remaining neurons are linked to at least one other neuron, forming

expression clusters. Much of this clustering can be attributed to homologous

neurons in the same class (e.g. ASHL and ASHR) having the same expression

patterns, but there are 15 clusters that consist of neurons from more than one

class. Thus, despite 35 CAM genes being expressed in the NR, there are not

enough expression patterns to uniquely label each neuron.

The relatively few expression labels and the large number of expression clus-

ters would seem to suggest that there are not enough combinatorial expression

patterns to satisfy the combinatorial expression model. However, given the spatial

segregation of neurons, the expression label of neurons only needs to be locally

unique, i.e. expression labels only need to be unique in the adjacency neigh-

borhood of a given neuron. Furthermore, if a neuron only needs to distinguish

between synaptic and nonsynaptic neighbors, then the uniqueness requirement is

even weaker. The synaptic partners of a neuron may share expression labels and

nonsynaptic neighbors of a neuron may share expression labels, but the overlap

of expression labels between synaptic partners and nonsynaptic neighbors should

be minimized.

To check for local uniqueness, I computed the fraction of posynaptic expres-

sion labels that are not shared by nonsynaptic neighbors. For each neuron, the

expression label of each postsynaptic neuron was determined. The expression

label of each postsynaptic neuron was then compared to the expression labels of
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5.1 CAM expression in the C. elegans NR

Figure 5.1: CAM expression in the NR. (A) Matrix of CAM genes (rows) expressed in the NR neurons

(columns). (B) Fraction of postsynaptic connections that have locally unique cam expression labels without (-)

and with (+) alternative splicing. (C) Average expression differential between postsynaptic and nonsynaptic

neighboring neurons without and with alternative splicing. (D) Histogram of the number of genes expressed in

an individual NR neuron. (E)Cumulative distribution of the number of NR neurons that express a given gene.

(F) Histogram of the number of isoforms of CAM genes expressed in the NR. Error bars represent standard

deviations.
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Figure 5.2: CAM expression clustering. Graphs showing which neurons have the same CAM expression

patterns without (A) and with (B) alternative splicing. Neurons that have the same CAM expression pattern

are connected by an edge. Alternative splicing gives less clusters and thus more uniquely labeled neurons.
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the neuron’s nonsynaptic physically adjacent neighbors. I counted the number

of times a postsynaptic expression label matched at least one of the nonsynaptic

neighbors expression labels. The number of matches were counted and divided by

the total number of comparisons made. The local uniqueness score was computed

as 1 minus this fraction, i.e.

local uniqueness = 1− # of expression label matches

# of expression label comparisons
. (5.1)

The local uniqueness fraction is 0.65 indicating that only 2/3’s of postsynaptic

neurons are distinguishable from nonsynaptic neighbors based on CAM expression

patterns (Figure 5.1b).

The low local uniqueness fraction can in part be attributed to how matches

were determined. Matches are assessed by comparing a single postsynaptic ex-

pression label to the expression labels of all nonsynaptic neighbors. If the postsy-

naptic expression label is equivalent to at least one nonysnaptic expression label,

then a match is scored. However, most bilaterally symmetric neurons have the

same expression patterns. Thus, for example, if a neuron synapses onto AIBL and

is also physically adjacent to AIBR, then a match will be scored because AIBL and

AIBR have equivalent expression labels. If comparisons between bilaterally sym-

metric neurons are excluded, then the local uniqueness fraction increases to about

0.85. However, there is no compelling biological justification for making such an

exclusion. Under the combinatorial expression model, if a neuron synapses onto

AIBL then why would the same neuron not also synapse onto AIBR if both AIBL

and AIBR have equivalent expression labels? Thus, we cannot make exceptions

for bilaterally symmetric neurons without violating the combinatorial expression

model.

These results suggest that the currently defined CAM genes expression pat-

terns cannot sufficently provide unique labels that differentiate between synaptic

partners and nonsynaptice neighbors in the NR. More unique expression labels

are required for the combinatorial expression model to be feasible. To increase

the number of expression labels, we must either increase the number of CAM

genes or consider isoform protein expression of the current CAM genes. Evidence

from other organisms suggest that the diversity in isoforms expression of surface
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proteins could be used to generate unique cell labels (Zipursky & Sanes, 2010) and

it has been shown that alternative splicing of a Lamellipodin homolog (MIG-10)

is required for the synapse response to netrin in some C. elegans neurons (Stavoe

et al., 2012). With this in mind, I assessed if alternative splicing of CAM genes

could be used to uniquely label neurons.

5.2 Alternative splicing is a necessary condition

for the combinatorial expression model

Alternative splicing allows for a gene to code for multiple isoforms of proteins.

Alternatively spliced CAM genes yield slightly different surface proteins which

could sufficiently differentiate cells and allow neurons to identify synaptic part-

ners. Compared to other oraganisms, C. elegans has relatively little isoform

diversity. It is estimated that up to 25% of protein-coding genes in C. elegans ex-

hibit alternative splicing (Wani & Kuroyanagi, 2017) compared to 95% in humans

(Pan et al., 2008). Moreover, there are rarely more than 10 isoforms expressed

by an alternatively spliced CAM gene, compared to the thousands to tens-of-

thousands expressed in other organisms (Zipursky & Sanes, 2010). However, the

C. elegans nervous system is also significantly smaller and may not require such

isoform diversity.

There are 15 CAM genes with known alternative splicing. These genes can

code up to 9 isoforms (Figure 5.1f). Unfortunately, precise isoform expression of

CAM genes in NR neurons is not generally known. Instead, I simulated alterna-

tive splicing by randomly assigning splice variants. For example, neuron ADAL

expresses CAM genes cam-1 and sax-7 which have 3 and 6 splice variants, respec-

tively. In the simulation, neuron ADAL is randomly assigned one of the 3 splice

variants for cam-1 and one of the 6 splice variants for sax-7, each with equal prob-

ability. This is repeated for each neuron. Because splice variants are simulated,

each neuron has many possible expression patterns instead of a single expression

pattern. For example, ADAL has 6× 3 = 18 possible expression patterns due to

the splice variants of cam-1 and sax-7. The number of possible ways of assigning
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expression patterns to all neurons is then the product of these possible individ-

ual arrangements for each neuron. There are ∼ 10190 possible ways of assigning

expression patterns to all of the NR neurons. It is computationally prohibitive

to test all 10190 possible combinations. Instead, 1000 assignments were randomly

sampled and the mean results taken. On average, there are 140 unique expression

patterns when alternative splices are randomly assigned. There are now only 22

clusters and 107 isolated nodes in the expression graph (Figure 5.2b). The av-

erage local uniqueness fraction is 0.9, indicating 90% of postsynaptic expression

labels are distinguishable from nonsynaptic neighbors.

These results suggest that alternative splicing is a necessary conditon for the

combinatorial expression model in the C. elegans NR. Making the additional

assumption that alternatively spliced genes will encode for isoform proteins in-

creases both the number of unique expression labels and the local uniqueness

fraction. Including alternative splicing solves the major problem encountered

above, namely, discriminating between bilaterally symmetric neurons. The vast

majority of neuron classes express at least one CAM gene with a splice variant

(Table 5.3). The results suggest that alternative gene splicing could be used to

distinguish between neurons within the same class. Interestingly, a large number

of neuron classes express cam-1 (Figure 5.3) which is required for asymmetric cell

division (Forrester et al., 1999), indicating cam-1 is required for differentiating

cells. However, no single alternatively spliced gene is expressed across all neuron

classes, indicating that no single alternatively spliced gene is used to differentiate

intra-class neurons.

5.3 Neurons make use of multiple expression

patterns for synaptic connectivity

Are there specific gene patterns that induce synapse formation? On average,

there is a difference of 4 to 5 genes between postsynaptic neurons and nonsynaptic

neighbors (Figure 5.1c). This indicates that, on average, there is a cluster of genes

that differentiate postsynaptic and nonsynaptic neurons. These gene clusters are

good candidates for gene combinations that elicit synapse formation because the
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Figure 5.3: Expression of alternatively spliced genes. The number of neurons expressing alternatively

spliced genes.

gene clusters are found in the postsynaptic partner and not in the nonsynaptic

neighbor. Assuming this is the case, the next logical question is whether there

is a single gene cluster or multiple gene clusters that elicit a synapse in a given

presynaptic neuron. To address this question, gene expression patterns of post-

synaptic neurons were compared and the unique gene clusters were determined.

For this part of the analysis, alternative splicing was not considered.

Some care must be taken when comparing postsynaptic expression because

most synapses are polyadic. A synapse is polyadic when there is more than one

neuron that is identified as postsynaptic partners (Figures 5.4a). This is due

to the nature of chemical synapses between C. elegans neurons. In C. elegans

electron micrographs, chemical synapses are identified by dark electron-dense

regions near the membrane in the presynaptic neuron. The electron-dense regions

are referred to as the presynaptic density. The neurons directly apposed to the

presynaptic density are scored as the postsynaptic partners. If only one neuron

is directly apposed to the presynaptic density, the synapse is monadic. If more

than one neuron is directly apposed to the presynaptic density, the synapse is

polyadic. Roughly 60% of synapses in the NR are polyadic.

Special attention needs to be given to polyadic synapses because it is unclear
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Figure 5.4: Distinct expression clusters among postsynaptic neurons. (A) Presynaptic neurons can have

multiple postsynaptic partners. For monadic synapses, the presynaptic density is apposed to a single neuron.

For polyadic synapses, the presynaptic density is apposed to multiple postsynaptic neurons. Image taken from

wormatlas.org. (B)Distribution of the number of unique gene clusters. Gene clusters are from the combined

expression of all postsynaptic partners at a synapse.
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how polyadic synapses in the NR behave. It has been shown that all postsynaptic

cells at polyadic neuromuscular junctions in the ventral cord are stimulated by the

presynaptic neuron (Liu et al., 2007), but similar studies have not been done for

neurons in the NR. Hence, it is unclear whether one or all of the neurons apposed

to the presynaptic density are actually active postsynaptic partners. However,

many of the polyadic postsynaptic partners are bilaterally (left/right) and devel-

opmentally (L4/adult) conserved suggesting that they could be functional. What

is particularly relevant here is that some of the neurons that have been erroneously

labeled as postsynaptic may exhibit different expression patterns from the “cor-

rect” postsynpatic neurons. Therefore, by including the erroneous neurons which

may have different gene expression patterns, we may overcount the number of

unique gene clusters expressed by postsynaptic neurons.1 To avoid this, the gene

expression patterns for all scored postsynaptic neurons at a synapse were com-

bined into a single expression pattern. The single gene expression pattern is the

union of all the genes expressed by the postsynaptic neurons. Therefore, any

differences in gene expression from a “wrong” postsynaptice neuron will be offset

by the “correct” postsynaptic neurons.

The algorithm used to determine the number of unique gene clusters among

postsynaptic neurons is as follows. For each neuron, the synapses are identified

and the combined gene exression of the postsynaptic neurons is determined. Let

Li be the list of unique clusters for presynaptic neuron i and let e1, e2, . . . , em be

the lists of genes expressed by the postsynaptic neurons at each of the m synapses

for neuron i. Unique gene clusters were identified in the following way. Start by

placing e1 into Li and give it the new label l1. Next compare e2 with l1. If there

is a subset of genes common to both e2 and l1, then replace l1 with this common

gene subset. Otherwise, place e2 into Li and give it the new label l2. Next,

repeat this process with e3, comparing it to all elements in Li. Do the same for

the remaining expression patterns. After all comparisons have been made, the

final list Li will have distinct elements that are the smallest nonoverlapping gene

1I did also consider polyads in the previous analysis comparing gene expression patterns

between postsynaptic neurons and nonsynaptic neighbors. Controlling for polyadic synapses

did not have any noticeable effect on the results. Therefore, for brevity and clarity, these results

were not included in the previous analysis.
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clusters between the postsynaptic neurons. Note that it may be the case that

a gene cluster only consists of one gene. Pseudocode for the above algorithm is

given in Appendix 5.B.

The majority of neurons have multiple distinct expression clusters among

their postsynaptic neurons (Figure 5.4b). Only ∼30% of neurons have a single

distinct postsynaptic expression cluster while the remaining neurons mostly have

2 to 3 distinct expression clusters. These results suggest that for a given neuron

multiple postsynaptic genes clusters can elicit a synapse. Such a set-up offers a

number of benefits. By not rigidly enforcing a single gene cluster for each neuron,

the network has more flexibility in how it is wired together. Furthermore, using

mulitple gene clusters provides a mechanism for neurons to coordinate subcellular

specificy of synapse formation. These points are discussed further in the next

chapter.
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5.A CAM gene lists

Table 5.1 CAM genes with well characterized expression in NR neurons. Pre and

post columns indicate whether genes are expressed in the pre- and/or postsynaptic

neuron.
CAM I genes

Protein family Gene name Pre Post Isoforms

Ig domain

cam-1 + + 3

ver-3 + + 1

igcm-1 + + 1

igcm-2 + + 1

oig-1 + + 1

oig-3 + + 1

rig-1 + + 2

rig-3 + + 1

rig-4 + + 1

rig-5 + + 7

rig-6 + + 4

ncam-1 + + 3

sax-3 + + 2

sax-7 + + 6

lad-2 + + 1

syg-1 + + 2

syg-2 + + 7

unc-40 + + 1

unc-5 + + 6

zig-1 + + 1

zig-2 + + 1

zig-3 + + 1

zig-4 + + 1

zig-5 + + 1

zig-8 + + 1

madd-4 + + 3

Ig + LRR pxn-2 + + 1

eLRR

slt-1 + + 1

tol-1 + + 1

dma-1 + + 1

cadherins

cdh-3 + + 1

fmi-1 + + 3

casy-1 + + 3

neurexin superfamily nlr-1 + - 1

neurexin ligands
lat-1 - + 3

nlg-1 - + 9
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5.A CAM gene lists

Table 5.2 CAM genes that do not have well characterized expression in NR

neurons.
CAM II genes

Protein family Gene name Pre Post Isoforms

Ig domain

egl-15 + + 16

mig-6 + + 3

oig-2 + + 1

oig-4 + + 1

oig-5 + + 1

zig-6 + + 1

zig-7 + + 1

zig-10 + + 1

igeg-1 + + 2

Ig + LRR

pxn-1 + + 1

iglr-1 + + 1

iglr-3 + + 2

eLRR

fshr-1 + + 2

+ + 1

lron-9 + + 4

lron-14 + + 2

cadherins cdh-4 + + 1

neurexin superfamily
nrx-1 + - 13

bam-2 + - 1
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5.A CAM gene lists

Table 5.3 Alternatively spliced CAM genes expressed in bilaterally symmetric

neurons.
Bilaterally expressed alt. spliced genes

Neuron class Genes

ADA cam-1,sax-7

ADE cam-1

ADF syg-1

ADL cam-1,syg-1

AIB ncam-1,rig-1,rig-6

AIM cam-1

AIN cam-1,ncam-1,rig-1,rig-5,syg-1

AIY cam-1,lat-1,nlg-1

AIZ cam-1,madd-4,syg-2

ALM cam-1,rig-6,sax-7

ALN cam-1,syg-2

ASE unc-5

ASG madd-4

ASH cam-1

ASI cam-1,ncam-1

ASJ ncam-1

ASK cam-1

AUA cam-1,rig-1,rig-5,rig-6

AVA cam-1,rig-1,rig-6,sax-3

AVB cam-1,ncam-1,rig-1,rig-6,sax-3

AVD cam-1,rig-1,rig-5,sax-3

AVE cam-1,ncam-1,rig-1,rig-6

AVH cam-1,madd-4,rig-1,syg-1

AVJ cam-1,rig-1

AVK cam-1,madd-4

BDU cam-1

FLP cam-1

HSN cam-1,fmi-1,nlg-1,rig-6,sax-3,syg-1

IL1 sax-7

IL2 sax-7,unc-5

OLL casy-1,madd-4,sax-7,unc-5

OLQ sax-3,sax-7,unc-5

PLN syg-2

PVC cam-1,ncam-1,rig-1,rig-6,sax-3

PVP fmi-1

PVQ cam-1,fmi-1,sax-3

RIA madd-4,unc-5

RIB rig-6

RIC cam-1,madd-4,rig-1,rig-5,rig-6,syg-2

RIF rig-5,rig-6,syg-1

RIG syg-1

RIM cam-1,rig-6,syg-1,syg-2

RIV cam-1

RMD cam-1,casy-1,rig-1,rig-5,rig-6,sax-3

RME cam-1,madd-4,rig-6

RMG cam-1,sax-3,sax-7

SAA rig-5,rig-6,syg-1

SDQ cam-1,fmi-1

SIA rig-6,sax-3,syg-1

SIB rig-6,sax-3,syg-1

SMD casy-1,rig-1,rig-5,rig-6,sax-3

URA nlg-1

URB nlg-1

URX cam-1,rig-6
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5.B Algorithm to find synaptic gene clusters

5.B Algorithm to find synaptic gene clusters

Algorithm 1 Find distinct postsynaptic expression clusters

Input: A presynaptic neuron i.

Output: List L of distinct gene expression clusters.

1: S ← synapse list of i

2: L := empty list

3: while S do

4: s← pop synapse from S

5: e← union of gene expression for postsynaptic neurons in s

6: if L is empty then push e

7: for l in L do

8: temp := e ∩ l
9: if temp 6= ∅ then

10: L← push temp

11: else

12: l := temp
return L
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Chapter 6

Discussion and future directions

How neural circuits achieve wiring specificity remains an open question in de-

velopmental neurobiology. Two important aspects of wiring specificity are lam-

ina specificity, placing synaptic partners in close spatial proximity, and synaptic

specificity, choosing synaptic partners from the myriad of physically adjacent

neighboring cells. The combinatorial CAM expression model has been proposed

as the mechanism that neurons use to discriminate between synaptic partners and

nonsynaptic neighbors. In essence, the model states that cells use combinations

of cell surface proteins to uniquely label and thereby identify synaptic partners.

CAM gene expression data combined with the wiring diagram of which neurons

are synaptically coupled is critical for assessing the feasibility of the model, but

equally important is knowing which neurons make physical contact without being

synaptically coupled. The former provides a list of possible CAM expression pat-

terns linked to synapse formation, but the latter can be used to test if expression

labels of synaptic partners are indeed distinguishable from the expression labels

of nonsynaptic neighbors.

This work set out to test the feasibility of the combinatorial CAM expression

model in the C. elegans NR, the “brain” of the worm. The wiring diagram of the

worm has been known for over 30 years (White et al., 1986), but detailed spatial

information of neural processes within the NR has unfortunately been absent until

now. For the first time, this work presents a complete volumetric reconstruction

of an animal’s major neuropile at two different developmental stages, the larval

L4 and young adult. The new volumetric data proved to be critical for rigorously
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establishing and characterizing the wiring specificity in the C. elegans NR, which

in turn provided biological insights as to what key gene expression conditions

must be satisfied in order for the combinatorial CAM expression model to be

feasible.

Wiring specificity specificity has never been rigorously characterized in the C.

elegans NR. Studies from the Shen lab have provided empirical evidence demon-

strating wiring specificity in the C. elegans ventral cord (Klassen & Shen, 2007;

Shen & Bargmann, 2003; Shen et al., 2004) and one of their studies did demon-

strate that glial cells act as guidepost cells which are critical for synapse formation

between the NR neuron AIY and RIA (Colón-Ramos et al., 2007). Studies from

the Hobert lab have have shed some light on the transcriptional factors regulat-

ing neural development and synapse formation (Howell et al., 2015). White and

colleagues generated the electron micrographs used in this study and provided

ample anecdotal evidence of conserved neighborhoods in the NR (White et al.,

1983, 1986), illustrating that the NR exhibits some type of spatial specificity in

neural process placement. But at what level is synaptic wiring specified in the

NR?

There are at least two models that could support the reproducible synaptic

connectivity observed in the NR. In the first model, neural process placement is

strictly controlled such that neurons only make physical contact with potential

synaptic partners. Because process placement is strictly controlled, neurons can

randomly synapse onto their neighboring neurons and the “correct” synapses will

be made with high probability. In the second model, neural process placement

is slightly more relaxed which requires neurons to be more discriminative when

identifying synaptic partners. In this model, neurons randomly making synaptic

connections would lead to a lower probability of the “correct” synapses being

made. In order to make the “correct” synapses, neurons must somehow dis-

tinguish synaptic partners from neighboring cells. Thus, neurons must exercise

synaptic specificity.

This analysis shows that the second model is correct. Process placement

within the NR does appear to be regulated, forming a lamina-like structure that

is both bilaterally and developmentally conserved. However, process placement

is not so tightly regulated that it could account for the number of bilaterally
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and developmentally conserved synaptic connections in the NR. Indeed, 86% of

NR neurons exhibit either pre- or postsynaptic connection that are statistically

unlikely to be random. Thus, in addition to lamina-like specificity, NR neurons

also exhibit synaptic specificity.

Given that there is synaptic specificity, what variables affect synaptic speci-

ficity? This study focused on two possible variables: the amount of physical

contact between neurons and the independent connectivity characteristics of the

pre- and postsynaptic neuron.

If we assume a model where synapse probability depends on the amount of

physical contact between neurons, then synapse specificity could be determined

by the amount of mutual contact. Synaptic partners would be expected to have

more physical contact than nonsynaptic neighbors. Synapses could still be formed

probabilistically, but synapses would be biased toward neurons pairs that make

more physical contact. This study shows that this model can be rejected. There

is little correlation between synapse formation and the amount of physical contact

between neurons. Furthermore, a model where synapse probability only depends

on the amount of physical contact between neurons cannot capture the variability

in synaptic connectivity across neurons.

However, a model where synapse probability depends on the cell-autonomous

connectivity properties of the pre- and postsynaptic neuron does capture the

variation in synaptic connectivity. In this model, the presynaptic neuron makes

a synapse with some fraction of its neighbors (Cpre), the postsynaptic neuron

receives a synapse from some fraction of its neighbors (Cpost) and the synapse

probability depends on the product of both. The key assumption of this model

is that the pre and post connectivity fractions are independent, suggesting that

synapse probability is largely determined by the cell-autonomous properties of

the pre- and postsynaptic neuron. This is in agreement with the combinatorial

CAM expression model.

Using CAM expression data obtained from Wormbase, this study shows that

combinatorial CAM expression could support synaptic specificity provided that

alternatively spliced CAM genes are differentially expressed among neurons. The

combinatorial expression of just 8 surface molecules is theoretically sufficient to

generate unique labels for the 180 NR neurons. However, in practice this is not
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the case. Expression of CAM genes is sparse and overlapping, but many neighbor-

ing neurons share the same expression labels. Thus, using only the known CAM

expression, there would be no way for neurons to reliably distinguish between

synaptic partners and nonsynaptic neighbors. However, stochastically expressing

isoforms of known alternatively spliced genes substantially increases the number

of unique expression labels. Stochastic isoform expression has been observed in

other organisms and has been proposed as a mechanism for uniquely labeling

cells (Zipursky & Sanes, 2010). Typically, transcription reporter studies have

shown that left/right homologous neurons express the same CAM genes. How-

ever, we observe that some neurons will make physical contact with both the left

and right homologous neurons while only synapsing onto either the left or right

neuron. This cannot be explained by the combinatorial CAM expression model if

alternative splicing is not considered. However, if alternative splicing is stochas-

tically assigned in the model, many of the left/right homologous are assigned

unique expression labels. Moreover, when alternative splicing is included in the

model, 90% of synaptic partners are distinguishable from nonsynaptic neighbors.

Finally, this study shows that multiple gene clusters elicit synapses in a presy-

naptic neuron. If the combinatorial CAM expression model is true, then there

are two possible variations. In the first variation, for a given neuron only one

gene combination will elicit a synapse. I refer to this as the single key model. In

the second variation, for a given neuron multiple gene combinations can elicit a

synapse. I refer to this as the key ring model. If the single key model is true,

then all of the post synaptic neurons for a given presynaptic neuron should share

some common gene expression pattern. This is rarely the case, indicating that

the key ring model is correct.

There are a number of interesting implications for the key ring model. First,

utilizing multiple gene combination ‘keys’ for eliciting a synapse affords some

level of robustness during synaptic wiring of a neural circuit. If only a single gene

combination key were used then every postsynaptic neuron would have to have

the correct key for each presynaptic neuron from which it receives a synapse. If

at any point the neuron lost the key expression, then that synaptic connection

would be lost. Allowing for multiple gene combinations in the key ring model

means that if one key is ‘lost’ then the neuron could fall back on another key to
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elicit the synapse. Second, the key ring model offers a mechanism for controlling

synaptic connectivity with subcellular specificity. The ordering of synapses along

neural processes in the NR appears to be mostly conserved between left/right ho-

mologous neurons and between equivalent L4/adult neurons (White et al., 1986).

This suggests that synapses are made with subcellular specificity. This could be

explained by the key ring model where different molecular ‘locks’ are distributed

along the length of the neural process. Then at each lock only postsynaptic

neurons with the appropriate molecular key can elicit a synapse. In this way,

the presynaptic neuron controls where along its process the specific postsynaptic

neurons can elicit synapses.

A very targeted prediction of this study is that bilaterally symmetric neurons

need to differentially express alternatively spliced genes. A good test case for this

would be the AIB interneurons whose left and right processes extend around the

NR, making them one of the few aphid neurons which innervate both the right

and left side of the NR. As a result, neurons AIBL and AIBR make physical con-

tact with many pairs of bilaterally symmetric neurons. For example, AIBL and

AIBR make physical contact with both the nociceptive sensory neurons ASHL

and ASHR. However, AIBL is only postsynaptic to ASHL and AIBR is only

postsynaptic to ASHR. Thus, ASHL and ASHR are able to differentiate between

AIBL and AIBR, despite both AIB neurons exhibiting equivalent CAM expression

labels. How is this possible? If the combinatorial expression hypothesis is true,

then according to the results of this analysis AIBL and AIBR must differentially

express at least one of their shared alternatively spliced genes (ncam-1,rig-1,rig-6

in Table 5.3). This could be confirmed using fluorescence splicing reporters which

enable visualization of alternative splicing patterns in cells (Wani & Kuroyanagi,

2017). Under an AIB specific promoter (e.g. odr-2 b), a genomic fragment of

interest is cloned upstream of the fluorescent protein marker. The genomic frag-

ment would be cloned from one of the alternatively spliced genes and artificial

termination codons and/or frameshifts would be strategically introduced into the

exons at splice points. Expression of the marker would indicate a specific splicing

pattern. Expression of distinct splice patterns in AIBL and AIBR would provide

supporting evidence for the combinatorial expression model.

72



This study is obviously not without its limitations. The most frequently cited

limitation is the low sample size. The connectivity and volumetric data were both

taken from just two worms, each at a different developmental stage. Low sample

sizes raise legitimate concerns as to the robustness of the results. I have tried

mitigate these concerns by framing questions in a way that allows for maximal

information to be derived from the data. I tried to avoid questions concerning

specific neurons (e.g. ASH, AVA, etc.) which can typically only be addressed with

2-4 data points in this data set. I also tried to avoid questions concerning the

overall NR network because there are only two networks to compare. Instead, I

asked more basic questions relating to the general nature of neurons and synapses

where the neurons could be treated more abstractly. For example, I would not

ask “What is the connectivity fraction of ASH?” Instead, I asked “What is the

distribution of connectivity fractions of NR neurons?” While the first question

limits me to 4 data points to work with (ASHL and ASHR in the adult and L4),

the second question gives me 180 NR neurons from which to derive a distribution.

Also, instead of simply generating statistics about NR connectivity, I tried to take

a model driven approach. Statistically characterizing NR connectivity would

requiring analyzing many worms, while the model approach allowed me to use

data from a few worms to test specific hypotheses. For example, I assumed

models where physical contacts are made at random, synaptic contacts are made

a random and synaptic connectivity depends strongly on touch density. I then

asked if these models are supported by the data and they were not. This allowed

me to conclude that the NR exhibits both lamina-like and synaptic specificity.

A second legitimate concern is noisy and incomplete data. CAM expression

was determined from data curated from Wormbase. I had to remove 17 CAM II

genes from the analysis because the genes could not be linked to specific neurons.

There may be additional CAM genes with NR expression that have not been

reported by Wormbase or that have simply not yet been discovered. However,

additional genes are unlikely to change the major conclusions of this study. While

additional CAM genes would decrease the overall need for isoform expression, it

would not provide the needed isoform expression to distinguish left/right homol-

ogous neurons. Expression studies are typically done with transcription reporters

and aside from a few notable exceptions (expression of gcy-7 in ASEL and gcy-5
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in ASER, for example) left/right homologous neurons typically express the same

promoters. Therefore, unless it was found that the additional CAM genes were

strictly expressed in either the right or left neuron, the additional genes would not

be able to convey left/right identification without considering isoform expression.

Finally, the key ring model was inferred from the observation that postsynaptic

neurons have distinct gene expression labels. Additional CAM genes would not

change this fact.

Ultimately, this study shows that synaptic wiring likely makes use of a com-

plex combinatorial gene expression code. To validate or disprove this model

will likely require more sophisticated and perhaps more creative molecular ap-

proaches. Simple gene knockouts may be used to link genes to specific synapses,

but to unravel the molecular code will require altering genes in well thought out

combinations. The problem becomes even more challenging when isoforms of al-

ternatively spliced genes are considered. One positive takeaway from this study

is that C. elegans exhibits many of the wiring specificity characteristics found in

other organisms, e.g. lamina-like specificity, synaptic specificity and alternative

splicing. This simple model organism could potentially be a powerful tool for

unraveling the complex mechanisms of wiring specificity. Thus, it would appear

that 30 years on, this humble organism still has something to teach us.
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Part II

A rotatable microfluidic device

for simultaneous calcium imaging

of bilateral chemosensory neurons
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Chapter 7

Introduction

Calcium imaging has become a widely used tool for studying the cellular activity

of neurons and muscles. However, imaging multiple cellular structures within a

small animal is challenging because different cellular structures within an organ-

ism are generally not visible within a single focal plane. Thus, imaging multiple

cellular structures requires either optical sectioning techniques using expensive

confocal imaging systems (Nguyen et al., 2016; Schrödel et al., 2013) or the ca-

pability to orient the animal such that the desired cellular structures lie within

the same focal plane. To our knowledge, only two microchip devices have demon-

strated the capability to rotate small animals (specifically C. elegans). The first

device uses a glass capillary tube to pneumatically grab and rotate the worm

within a microchannel (Ardeshiri et al., 2016), while the second device rotates

worms using microvorticies controlled by an acoustic field (Ahmed et al., 2016).

While both devices may be adequate for imaging the structural properties of cells,

the invasive methods used to rotate the worm may interfere with measurements

of neural activity. For example, a number of C. elegans ’ sensory neurons respond

to both light (Hart et al., 1999) and harsh touch(Li et al., 2011) and sufficiently

high ultra-sound pulses can effect C. elegans behavior (Ibsen et al., 2015). Fur-

thermore, these devices have not yet implemented methods of controlled stimulus

delivery needed to measure neuronal responses (Chronis et al., 2007a).

The nematode C. elegans is a popular model organism because of its well

characterized nervous system (White et al., 1986) and its amenability to genetic

study (de Bono & Maricq, 2005). The hermaphrodite C. elegans has 302 neurons
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7.1 Microfluidics as a tool for biological study

that have been assigned to 118 distinct classes according to their topology and

synaptic connections. Of these, 98 neuron classes consist of left/right bilaterally

symmetric neuron pairs which, except for neurons ASE and AWC, have seem-

ingly identical morphology, function and gene expression. Because of how the

worm naturally orients itself, the left/right neuron pairs cannot be viewed simul-

taneously because they lie on different focal planes. Typically, with the above

exceptions, when measuring neural activity using fluorescence imaging, only one

neuron is measured (either left or right) and the other neuron is assumed to

behave similarly. However, this has never been rigorously validated by simulta-

neously viewing left/right neuron pair activity in response to the same stimulus.

Here, we present a novel device for simultaneously imaging neural activity in

left/right bilateral neurons.

7.1 Microfluidics as a tool for biological study

Microfluidic systems are used to manipulate minute fluid volumes using channels

with dimension tens of micrometers wide. At this micron-scale, fluid flow is

easily controlled due to the low Reynolds number (Whitesides, 2006). This ease

of fluid flow offers several advantages for experiments where accurate flow rates,

concentration gradients and shear rates are required. Furthermore, microfluidic

devices are typically made using soft lithography replica molding of a flexible

silicone elastomere, PDMS (polydimethylsiloxane) (Duffy et al., 1998). PDMS

is compatible with aqueous solutions, non-toxic, gas permeable and optically

transparent making it suitable for biological experiments that require microscopic

observation. Microfluidics has been used in studies of cells (Andersson & van den

Berg, 2003), Drosophilla (Lucchetta et al., 2005) and C. elegans.

Microfluidics is having a growing impact on C. elegans research. Microfluidic

devices provide a platform for easily moving and manipulating the worm (Hulme

et al., 2010; Stirman et al., 2010). The devices provide a tool for immobilizing the

worm during imaging studies without the need for glues or anesthetics (Chronis

et al., 2007b; Hulme et al., 2007; Lockery, 2007). The devices allow for more

sophisticated behavioral studies (Zhang et al., 2005; Zimmer et al., 2009) and

longitudinal studies (Hulme et al., 2010; Pincus et al., 2011). High-throughput
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7.2 The ASH neurons mediate nociceptive

imaging (Krajniak & Lu, 2010; Lockery et al., 2012; Stirman et al., 2010), phe-

notype screening (Chung et al., 2008; Crane et al., 2009; Lee et al., 2013), and

laser ablation and nerve regeneration (Allen et al., 2008; Ben-Yakar et al., 2009)

studies have also been performed using microfluidic devices. In short, microflu-

idics is making it easier to perform more rapid and more precise experiments on

the worm.

7.2 The ASH neurons mediate nociceptive

C. elegans contains a number of nociceptive neurons that respond to both me-

chanical and chemical stimuli (Tobin & Bargmann, 2004). Of these neurons, the

bilateral pair of ASH neurons have probably been the most exhaustively stud-

ied. The ASH neurons are associated with the amphid sensory organ. Amphid

sensory neurons have cilia that are directly exposed to the environment through

small pores, enabling them to detect chemical and osmotic repellents (Perkins

et al., 1986). ASH has been shown to detect aversive nose touch (Kaplan &

Horvitz, 1993) and a number of other aversive cues such as: high osmotic strength

(Troemel et al., 1995), SDS (Hilliard et al., 2002), and heavy metals (Sambongi

et al., 1999, 2000). Because of their broad range sensory functionality, ASH

neurons are considered to be polymodal.

Response to nose touch and hyperosmotic solutions is believed to be segre-

gated by different levels of glutamate release from ASH. This is supported by

analysis of glutamate receptors glr-1, glr-2, and nmr-1 which are present in the

command interneurons AVA and AVB. Mutants deficient in glr-1 and glr-2 ex-

hibit no response to nose touch and only partial osmotic avoidance (Maricq et al.,

1995; Mellem et al., 2002). Mutants deficient in nmr-1 exhibit no compromised

nose touch response and full osmotic avoidance. Combined nmr-1,glr-1,glr-2 mu-

tants exhibit a larger defect in osmotic avoidance than either nmr-1 or glr-1,glr-2

mutants (Mellem et al., 2002). This suggests a model where ASH directs avoid-

ance via (excitatory) glutamatergic synapses onto forward (AVB) and backward

(AVA) command interneurons.

Interestingly, many aversive responses mediated by ASH also require other

amphid sensory neurons. The ADL neurons are required for avoidance of high
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7.3 ASE neurons are the primary NaCl chemosensors

osmolarity (Bargmann et al., 1990), octanol (Troemel et al., 1995), copper and

cadmium (Sambongi et al., 1999). The neurons ASK and ASE are required for

avoidance of water-soluble repellents (Sambongi et al., 1999, 2000). Clearly, in

these instances, sensory inputs from ASH are being combined with input from

other amhpid sensory neurons in order to elicit the aversive response (Hilliard

et al., 2002). Furthermore, ASH response to noxious stimuli can vary depending

on the condition of the worm. For example, octanol avoidance is almost entirely

mediated by ASH in well-fed animals, but after an hour of starvation, octanol

avoidance is distributed between ASH, ADL and AWB (Chao et al., 2004). This

switch between the two circuits appears to be governed by a combination of neu-

romodulators: serotonin, dopamine, tyramine, octopamine and numerous neu-

ropeptides (Komuniecki et al., 2012; Mills et al., 2012; Wragg et al., 2007). Thus,

it is possible for one behavior to be governed by multiple sub-circuits.

7.3 ASE neurons are the primary NaCl chemosen-

sors

Chemoattraction to salts is distributed among four pairs of amphid sensory neu-

rons (ADF, ASE, ASG, ASI, ASK and ASJ), of which ASE is the most important

(Bargmann & Horvitz, 1991). In addition, ASE senses other water soluble attrac-

tants, including anions, cations, cAMP, biotin and lysine (Bargmann & Horvitz,

1991). ASE also plays minor roles in avoidance of Cd2+ and Cu2+, which is only

evident when the sensory neurons ASH are missing (Sambongi et al., 1999). ASE

is also a primary CO2 sensor (Bretscher et al., 2011).

Despite being morphologically similar, the neurons ASE left (ASEL) and

ASE right (ASER) exhibit different gene expressions, developmental programs

and physiological properties (Chang et al., 2003; Pierce-Shimomura et al., 2001;

Suzuki et al., 2008). The principal postsynaptic partners of ASEL/R are AIY

and AIB, which in turn interconnect with each other and AIZ (White et al.,

1986). The sensory neurons ASE respond to step changes in NaCl. Calcium

imaging experiments show that ASEL responds with transient depolarization to
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NaCl upsteps while ASER responds with transient depolarization to NaCl down-

steps(Suzuki et al., 2008). This suggests that ASEL and ASER behave like ON

and OFF cells, respectively. The ASE neurons express different ion sensitivities,

where ASEL is primarily sensitive to Na+ ions and ASER is primarily sensitive

to Cl− ions (Pierce-Shimomura et al., 2001; Suzuki et al., 2008). Furthermore,

activation of ASEL with NaCl upsteps promotes bouts of forward locomotion and

activation of ASER with NaCl downsteps promotes turns (Suzuki et al., 2008).

Ablating ASER and applying a NaCl upstep yields a deficit in forward locomo-

tion, suggesting that the positive contribution of ASER to forward locomotion is

the result is desuppression of forward probability (Suzuki et al., 2008).

7.4 Contributions of this work

This work presents a rotatable microfluidic chip that can be used to image neural

activity in C. elegans ’ left/right bilateral neurons. The chip is minimally inva-

sive and implements current established methods of olfactory stimulus delivery.

Rather than rotate the worm within the microchannel, the microchip itself is phys-

ically rotated. Thus, left/right bilateral neurons can be simultaneously imaged

without manipulating the worm and without using expensive optics. To demon-

strate the functionality of the chip, we imaged the calcium activity of ASHL/R

neurons which respond synchronously to noxious stimuli. We find that ASHL

and ASHR can exhibit uncorrelated rise times in their transient response and

uncorrelated response probabilities to mid-range NaCl stimulus. The ASEL/R

neurons, which are known to respond asymmetrically to NaCl, can also exhibit

independent response probabilities within the same worm. We believe that this

new device will provide a useful tool to explore how organisms coordinate bilateral

neural activity.
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Chapter 8

Methods and Results

8.1 Fabrication of a rotatable chip

The cell bodies of left/right symmetric neuron pairs are generally located on

the same coronal plane but lie in different sagittal planes. Because the worm’s

body muscles are located along its ventral and dorsal sides, the worm naturally

orients itself so that it lies on either its left or right side. This places the sagittal

planes parallel to the focal plane, meaning left/right neuron pairs cannot be

viewed simultaneously. A 90◦ rotation about the anterior-posterior axis roughly

places the coronal plane parallel to the focal plane, making simultaneous viewing

possible. Therefore, a simple solution to the left/right imaging problem is to load

the worm into the microfluidic chip, let the worm naturally orient itself and then

rotate the chip by 90◦.

Our rotatable chip design is a modified version of the so-called olfactory

chip (Chronis et al., 2007a) which is designed to examine the neural activity

of chemosensory neurons in response to stimuli. The olfactory chip traps the

worms in a narrow channel in such a way that the nose protrudes into a perpen-

dicular channel where chemical stimuli flows across the nose of the worm (Figure

8.1b). The olfactory chip implements a four-channel system where the flow of

either a stimulus (channel 2) or a control buffer (channel 3) is directed across the

nose of the worm and switching between the stimulus and buffer is controlled by

an external three-way valve that directs flow to one of two side channels (chan-

nels 4-1 and 4-2) (Figure 8.1a). When flow is directed to side channel 1, buffer
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is directed towards the worm. When flow is directed to side channel 4, stimulus

is directed towards the worm (Figure 8.1c). The chip is bonded to a coverslip

through which the worm is imaged and the worm trap is located between two

outlet channels, both of which limit how the chip can be oriented.

To make the olfactory chip rotatable, we made the following modifications.

We moved the outlet channel from behind the worm trap to behind the the four-

channel system (Figure 8.1a). This allowed the worm trap to be moved closer to

the side of the chip. We cut the side of the chip so that the distance between

the side of the chip and the worm trap is less that 1mm. Instead of bonding the

chip to a cover slip, we bonded the chip to a thin layer of PDMS which could be

cut to the dimensions of the chip (Figure 8.1d). This resulted in a self-contained

cuboid chip that could easily be rotated by 90◦ (Figure 8.1e). The advantage

of our design is that neurons can either be viewed in the sagittal plane or the

coronal planes, which we refer to as the top- and side-views, respectively. Figure

8.1f shows the same worm in top-view where only one neuron is visible and from

from the side-view after a 90◦ rotation of the chip where now both the left and

right neurons are visible. In general, we found that when only the left or right

neuron is visible in top-view, then both the left and right neurons are visible

from side-view, which demonstrates that the 90◦ rotation is sufficient to place

left/right neuron pairs in the same focal plane.

8.2 Fluid control system

The fluid control system is a low-cost version of the design presented in Chronis

et al. (2007a). Briefly, a compressed air supply (∼ 10 psi) is coupled to a three-

way air manifold block which serves as the pneumatic inlet for the microfluidic

system. The three outlets of the manifold are each coupled to a 15 ml falcon tube

reservoir. Pneumatic inlets and fluid outlets are created for the reservoirs by

piercing the falcon tube lid with two 19 gauge needles and then fixing the needles

in place with epoxy. One buffer filled tube is coupled directly to channel 3 and

the stimulus filled tube is coupled to channel 2 on the chip. The second buffer

tube is coupled to a 3-way solenoid valve (Lee company/LFAA2403410H) that is

controlled by a custom circuit (see below) which in turn is coupled to channels
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Figure 8.1: Rotatable microfluidic chip. Image created by Jinyang Chung. Used with permission. (a) Fluid

control and imaging setup for the rotatable chip. (b) Image of worm loaded into the trap. (c) Switching between

buffer (blue) and stimulus (red) via flow redirection of the control channels (yellow). (d) Bonding of the chip to

PDMS to create a rotatable cuboid shape. (e) The worm can either be imaged from the top-view or the rotated

side-view. (f) Image of the same worm in top- and side-view.
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4-1 and 4-2 on the chip. Falcon tubes were coupled to the chip using polyethylene

tubing which was inserted into the chip channels using custom metal tubing. The

chip outlet was coupled to a waste reservoir which in turn was connected to a

vacuum pump (∼ 5 psi).

Solenoid valves were driven by a MOSFET transistor whose gate is controlled

by a microcontroller unit (MCU). Serial communication over USB from the PC

operates the MCU (Arduino board). The MCU outputs to the MOSFET gate

which switches the transistor and completes the circuit for the solenoid valve

(Figure 8.2, Table 8.1). A 10 kΩ pull-down resistor ensures that the gate is held

low when the MCU does not send a high signal. A flyback diode protects the

transistor from the reverse voltage-spike that results from the abrupt change in

the magnetic field across the coils of the solenoid valve when power to the coils

is turned off.

(a)

Figure 8.2: Robotic solenoid valve switch. The MCU modulates the gate of a MOSFET transistor which

connects the circuit for the solenoid valve. The 10 kΩ pull-down resistor keeps the gate low when the MCU

does not output the 3.3 V high signal. The flyback diode protects the transistor from voltage spikes that result

when power to the solenoid valve is turned off.
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Table 8.1 Components used in robotic switch.

Electronic Components

Component Type/Model

MCU Genuino 101 Intel® Curie� Microcontroller

Flyback diode 1N4002S 1A Silicon Rectifier

MOSFET transistor 2N7000G small signal MOSFET

3/2 Solenoid valve Lee Co. part#: LFAA1201610H

8.3 Image acquisition

For each experiment, a single worm was manually loaded into channel 1 of the

microfluidic chip. Worms were loaded in CTX buffer (4 mM KH2PO4/K2HPO4

pH 6, 1 mM CaCl2 and 1 mM MgSO4) using a 1 mL syringe by eluting a single

worm in a 5 mL droplet of CTX buffer, drawing the worm into the syringe and

then injecting the worm into the chip. Once injected, the worm is slowly pushed

into the trap by controlling the plunger of the syringe (Figure 8.1b). After the

worm is in the trap, the worm is allowed to settle for 6 minutes before commencing

imaging. Prior to imaging, the chip was rotated 90◦ to place the left and right

neurons in the same focal plane (Figure 8.1c). During imaging, worms were

subjected to a salt solution pulse (CTX plus NaCl at the desired concentration)

and calcium responses were recorded.

Imaging was performed on a fluorescence microscope (BIM800F, Bioimager)

equipped with a 40x long distance working lens (BIM5-40xF, numerical aperture

= 0.6, working distance = 2.2 mm, Bioimager) and mercury lamp (Bum-HBOB,

100W, Bioimager), 10% Neutral density filter (Model, company) and FITC filter

(ex: 480 15 nm / em: 535 20 nm, Chroma Technology Corporation). Images were

captured with EMCCD camera (Ixion, Andor Technology Ltd) with an exposure

time of 31 - 100 ms. Image acquisition and stimulus delivery was coordinated

with a custom MicroManager plugin (Edelstein et al., 2015).
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8.4 Adaptive neuron tracking

8.4 Adaptive neuron tracking

While the worm body is mostly fixed in the microfluidic chip, the worm can still

exert small translational movements within the trap making long term calcium

imaging challenging. If the worm remained perfectly fixed for the duration of the

experiment, then a fixed ROI around the soma could be defined for fluorescence

analysis. However, head movements by the worm and settle changes of pressure

in the chip will cause translational movements of the neurons. Manually tracking

the neurons through each frame would be laborious and time consuming, therefore

automated visual tracking methods are preferred. To this end, we implemented

a method of adaptive cross-correlation filters know as minimum output sum of

squared errors (MOSSE) (Bolme et al., 2010).

The cross-correlation is a measure of the similarity of two signals. Suppose

we have two signals f and h. The cross-correlation of these two signals is defined

as

(h ? f)[n] =
∞∑
−∞

h∗[m]f [m+ n].

If f and h have a “similar” shape, then the cross-correlation is maximal when the

two functions are aligned. Now let f be the part of the image with the soma. For

tracking purposes, we want to pick a filter h that maximizes the cross-correlation

response g, which we assume to be Gaussian. In other words, we need to compute

h which solves the equation

g = h ? f.

Computational speed is enhanced by computing the cross-correlation in the

Fourier domain with the Fast Fourier Transform (FFT). The 2D transforms of

the input image F = F(f) and filter H = F(h) are computed. The Convolution

Theorem states that the Fourier transform of a convolution is equal to the product

of the pointwise product of the Fourier transforms. Hence, the Fourier transform

of the response G = F(g) is

G = H∗ � F (8.1)

where � is the Hadamard product denoting element-wise multiplication. The

response function g is obtained from G by taking the inverse FFT. Hence, for an
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image with p pixels, the upper bound of the computational time is determined

by the cost of computing the forward and inverse FFT which is O(p log p).

The MOSSE algorithm produces an optimal filter from a set of training im-

ages. The algorithm starts with an initial set of training images fi with corre-

sponding outputs gi. In practice, the initial training images are generated by

taking the first frame and applying small random affine transformations. The

outputs are assumed to be a 2D Gaussian shape with a peak centered on the tar-

get of the tracking frame fi. Training is done in the Fourier domain. Rearranging

terms in Equation 8.1 shows that the filter is computed as

H∗i =
Gi

Gi

(8.2)

where the division is performed element-wise. The optimal filter that maps the

training images to the desired training outputs is the filter H the minimizes the

difference between the actual and desired output of the convolution. This sets up

the following minimization problem

min
H∗

∑
i

|H∗ � Fi −Gi|2. (8.3)

Solving the optimization problem is not difficult because the computation is ele-

mentwise in the frequency domain. That is, each element of H (indexed by ω and

ν) can be written in terms of its real and imaginary component, i.e. Hω,ν and

H∗ω,ν , respectively. We differentiate each element of Equation 8.3 with respect to

each H∗ων and set equal to 0,

0 =
∂

∂H∗ων

∑
i

|H∗ � Fi −Gi|2. (8.4)

It is straightforward to solve Equation 8.4 to get a closed form expression of the

MOSSE filter:

H∗ =

∑
iGi � F ∗i∑
i Fi � F ∗i

. (8.5)

This can be interpreted as the correlation between the input image and desired

output divided by the energy spectrum of the input image.

We find that the MOSSE algorithm provides excellent performance for track-

ing neurons in our imaging data. The tracker is able to track neurons of varying
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degrees of expression levels in real time. Moreover, the MOSSE algorithm can be

used to independently track multiple neurons in the same image.

Once the neurons have been tracked it is straightforward to compute the

fluorescence, because within the tracking window the neurons remain fixed. The

tracking window is extracted from the movie and the neurons can be segmented

within the tracking window. We found it easiest to manually segment the neurons

using predefined geometries such as rectangles or circles that encapsulated the

region of interest (ROI) around the neuron or soma, respectively. The background

was then defined as all pixels within the tracking window not in the ROI. The

fluorescence Fm of the ROI was taken to be the mean pixel value within the ROI.

Similarly, the background fluorescence Fb was defined as the mean pixel value

within the background. The fluorescence was computed as F = Fm − Fb. The

baseline fluorescence F0 was defined as the average change in fluorescence during

3 seconds prior to stimulus delivery. The change in fluorescence was computed

as ∆F = F − F0. The calcium activity of the neuron was computed as the

normalized relative change in fluorescence, ∆F/F0.

8.5 ASHL and ASHR can exhibit uncorrelated

responses

The ASH left and right neurons (ASHL and ASHR, respectively) are considered

to be the major nociceptive sensory neurons in C. elegans (Tobin & Bargmann,

2004); responding to mechanical, osmotic and chemical stimuli (Kaplan & Horvitz,

1993). Previously, ASH activity has been measured in response to these stimuli

using the GCaMP calcium indicator (Chronis et al., 2007a; Larsch et al., 2013).

However, it was assumed that ASHL and ASHR responded synchronously while

only imaging ASHL or ASHR. To confirm that ASHL and ASHR do indeed re-

spond synchronously, we simultaneously imaged ASHL and ASHR in response to

a range of NaCl concentrations.

ASH responds to high concentrations of NaCl, possibly due to the high osmo-

larity, but not to low concentrations of NaCl, which is known to be an attractant
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for the worm (Bargmann et al., 1990). We tested if ASHL and ASHR exhibit syn-

chronous calcium responses within the same worm in response to 3 second pulses

of low (100 mM), medium (200-300mM) and high (500mM) concentrations of

NaCl using the calcium indicator GCaMP. The GCaMP was expressed under the

ASH specific promoter sra-6 (strain CX10979, a kind gift from the Bargmann

lab). We hypothesized that ASHL and ASHR would give synchronous responses

to low and high NaCl concentrations, but left open the possibility of a middle

range where the left/right responses could be less synchronized.

To test ASHL and ASHR responses, worms were imaged in side-view in the

rotatable chip. ASH neurons respond to blue light, which is required to stimulate

the GCaMP. In order to inure ASH neurons to blue light stimulation, worms

were preexposed to blue light for 60 seconds immediately before stimulus deliv-

ery. Worms were then given a 3 second NaCl pulse and calcium responses were

recorded.

As expected, neither ASHL nor ASHR responded to 100 mM in the 8 animals

tested (Figure 8.3a). Conversely, ASHL and ASHR always responded to 500 mM

in the 16 animals tested. For 300 mM, both ASHL and ASHR responded in 4 of

6 animals and neither ASHL nor ASHR responded in the remaining 2 animals.

Interestingly, for 200 mM, we observed animals where either ASHL or ASHR

responded (2 of 12 animals, Figure 8.3b). For the remaining 10 animals, either

both ASH neurons responded (5 of 10) or none of the ASH neurons responded (5

of 10).

We next computed the correlation between the ASHL and ASHR calcium

responses. Analyzing the correlations between left and right neurons does re-

quire some care. We could take a statistical approach and compute a correlation

coefficient (e.g. a Pearson correlation), but this assumes that the data is inde-

pendently drawn from some distribution. However, our data points are clearly

not independent because it is a time series, where the data point at time ti is

somehow linked to data points at ti−1 and ti+1. In signal processing, the standard

practice for measuring the similarity of two series is to take the cross-correlation.

However, cross-correlations are more appropriate for analyzing patterns in time

series where there is some repeated stimuli or noise rather than transient signals

in response to a single stimulus pulse, as in the case of our data. Therefore,
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Figure 8.3: ASH NaCl responses. (A) Breakdown of ASHL and ASHR responses for 0, 100, 200, 300 and 500

mM NaCl. There were three cases: neither ASHL nor ASHR responded (blue), both ASHL and ASHR responded

(purple) and either ASHL or ASHR responded (green). (B) Individual traces where ASHL exhibits a response

but ASHR does not (left) and where ASHR exhibits a response but ASHL does not (right). White background

shows the basal line activity before 3 sec 100 mM NaCl pulse. Red background indicates the duration of the

pulse.
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8.5 ASHL and ASHR can exhibit uncorrelated responses

we need to construct a more appropriate metric for measuring correlation in our

data. Fortunately, we can take advantage of the structure exhibited in the ASH

transient signals.

We compared the rise and fall time of ASHL and ASHR neurons in response

to 500 mM NaCl. Both ASHL and ASHR consistently respond to 500 mM,

making it the ideal condition for comparing the signals of the two neurons. Both

ASH neurons exhibit increasing calcium activity during the 3 second NaCl pulse

(Figure 8.4a). The calcium signals peak shortly after the end of the NaCl pulse, at

which point the calcium activity slowly returns to baseline levels over the course

of tens of seconds. Hence, we defined the rise time as the portion of the signal

during the 3 second pulse and the fall time as the portion of the signal during

the 30 seconds after the pulse.

Both the rise and fall times were analyzed in the same way. First, the ASHL

and ASHR signals were scaled to be between 0 and 1, and the trajectory of

ASHL vs. ASHR was plotted. For rise times, the trajectory moves forward in

the positive x and y direction (Figure 8.4b, color of points goes to red moving

up the diagonal). For fall times, the trajectory moves in the negative x and y

direction (Figure 8.4c, color of points goes to red moving down the diagonal). If

the two signals were perfectly correlated, then their trajectory would fall along

the diagonal of the plot. If ASHL rises (falls) before ASHR, then the trajectory

moves below (above) the diagonal. If ASHR rises (falls) before ASHL, then the

trajectory moves above (below) the diagonal. Therefore, an intuitive measure of

correlation is the distance of the trajectory from the diagonal.

Let ~F (t) be the vector that describes the fluorescence trajectory of ASHL

and ASHR at time t. At time t, ~F (t) =
(
x(t)
y(t)

)
where x(t) and y(t) are the scaled

fluorescence of ASHL and ASHR, respectively, at time t (Figure 8.5). Let ~c be the

vector that points along the perfectly correlated diagonal. A proper correlation

measure should give both the distance between ~F and ~c and should also indicate

whether ~F is above or below the diagonal. Both pieces of information can be

derived from the cross-product ~F (t) × ~c. The distance is given by |~F (t)×~c|
|~c| . Let

~k be the unit vector normal to the (x, y) plane. If the product (~F (t) × ~c) · ~k is

positive, then ~F is below the diagonal. Conversely, if the product is negative,
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Figure 8.4: ASH 500 mM NaCl response. Top: Data from representative individual worm. (A) ASHL

(blue) and ASHR (green) trace. (B) ASHL vs. ASHR during 3 sec pulse. (C) Response following the pulse.

Colors indicate time after pulse. Dashed line represents a perfectly correlated response. Middle: Data from

16 worms. (D) Heat map of fluorescence response for ASHL (L) and ASHR (R) neurons. Neurons from same

worm are in consecutive rows. Solid red line and dashed red line are pulse on and off times, respectively. (E)

Correlated responses during 3 sec pulse. (F) Correlated responses after pulse. (G) Distribution max correlation

coefficients when pulse is on. (H) Distribution of max correlation coefficients after pulse.
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then ~F is above the diagonal. Putting the above expression together, we define

the time dependent correlation as

ρ(t) =
√

2
~F (t)× ~c
|~c|

· ~k, (8.6)

where the
√

2 factor ensures the coefficient is scaled to [−1, 1]. In practice, we

find that trajectories ~F are strictly above or below the diagonal, i.e. ~F does not

oscillate across the diagonal. Therefore, for simplicity, we can reduce the time

dependent coefficient to a single value by taking the coefficient with the largest

magnitude, ρmax. To find ρmax, we find the ti that produces the largest coefficient

in Eq (8.6), then ρmax = ρ(ti). Using this metric, ρmax = 0 indicates ASHL and

ASHR are perfectly correlated, ρmax > 0 indicates ASHL rises before ASHR and

ρmax < 0 indicates that ASHR rises before ASHL.

Figure 8.5: Fluorescence correlation between ASHL and ASHR. The vector ~F (t) describes the fluores-

cence trajectory (curve) and ~c is the diagonal vector. See text for explanation.

In general, we find that the rise time is less correlated than the fall time. The

spread of the ρmax distribution for rise times is larger than that for the fall times

(Figure 8.4g-h). This discrepancy in rise and fall time correlations is in part likely

due to the different time constants for the rise and fall times. Typically, the rise

of the ASH transient signal occurs over hundreds of milliseconds, while the return

to baseline occurs over tens of seconds. The fast rise times means that once one

ASH neuron is triggered, it quickly outpaces the other (Figure 8.4e). However,

once the stimulus is removed, the slow decay times mean that the ASH neurons

can keep pace with each other.
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These results clearly show that ASHL and ASHR do not respond simulta-

neously to the NaCl pulse. This response differential is likely not due to one

neuron being exposed to the stimulus before the other. Relative to the worms,

the stimulus typically comes from either the ventral or dorsal direction. Hence,

both ASHL and ASHR should be exposed to the stimulus at approximately the

same time. At least, the differential in exposure time should be much less than

the response time differential. Indeed, we find no correlation between the worm’s

orientation in the chip and whether ASHL or ASHR responds to the stimulus

first (data not shown). Taken together, this result could suggest that stimulus

responses of ASHL and ASHR are independent.

8.6 ASEL and ASER exhibit independent re-

sponses

The ASE neurons are the main neurons that modulate chemoattraction to salts

(Bargmann & Horvitz, 1991). Despite being morphologically similar, the neu-

rons ASE left (ASEL) and ASE right (ASER) exhibit different gene expressions,

developmental programs and physiological properties (Chang et al., 2003; Pierce-

Shimomura et al., 2001; Suzuki et al., 2008). Calcium imaging experiments show

that ASEL responds to upsteps in NaCl concentration, while ASER responds to

downsteps in NaCl concentration (Suzuki et al., 2008). Typically, either ASEL

or ASER is imaged in response to NaCl upshift or downshifts, but the neurons

are not imaged together. We imaged ASEL and ASER within the same worm in

response to a range of NaCl upshift and downshifts.

We expressed GCaMP under the flp-6 promoter, which is expressed in both

ASEL and ASER. A 3kb genomic fragment immediately upstream of the flp-6

gene was PCR amplified from wormbank fosmid WRM068aB09 using primers 5’–

ACAGGCCGGCCGAAGACTAAGGTGTTCGATCG and 3’– AAACCCGGGC-

CACGAGAGTTCATATTCTGG. The amplicon was inserted into a pSM:GCaMP3

vector (also a kind gift of the Bargmann lab) using restriction sites Fse1 and Sma1.

Germline transformation were carried out by standard microinjection techniques
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(Mello et al., 1991). flp-6 ::GCaMP was co-injected with a unc-122 :RFP coele-

mocyte marker at concentrations of 60 ng/µL and 20 ng/µL, respectively, into a

wild type (N2 Bristol) worm obtained from the Caenorhabditis Genetics Center

(Minneapolis, MN, USA).

We simultaneously tested the ASEL and ASER response to upsteps and down-

steps of 100 NaCl. To test both neurons, worms were given a 60 second NaCl

pulse. We expected ASEL to respond to the beginning of the pulse and ASER

to the end of the pulse. We tested 22 worms (Figure 8.6). For 12 worms both

ASEL and ASER responded, for 7 worms only ASEL responded, for 2 worms only

ASER responded and for 1 worm neither ASEL nor ASER responded. Because

there was an appreciable number (9/22) of worms where either ASEL or ASER

responded but not both, it suggests that the two neurons respond independently

to NaCl within the same worm.

Figure 8.6: ASE 100 mM NaCl response. ASEL (L) and ASER (R) responses to 100 mM NaCl upstep

(solid red line) followed by a downstep (dashed red line) 60 sec later. Data from 22 worms.
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Chapter 9

Discussion

This work presents a novel rotatable microfluidic chip that can be used to image

left/right bilateral neurons in C. elegans. Unlike other chips that have previously

demonstrated the ability to rotate the worm (Ahmed et al., 2016; Ardeshiri et al.,

2016), our device does not require physical manipulation of the worm. Instead,

the chip itself is rotated, placing left/right bilateral neurons in the same focal

plane. Furthermore, our chip has adapted currently established methods for

stimulus delivery (Chronis et al., 2007a), meaning left/right neural responses to

olfactory stimuli can be reliably measured in an individual animal.

We demonstrated the functionality of the rotatable chip by imaging calcium

responses of ASE and ASH to various concentrations of NaCl. ASEL and ASER

are known to have asymmetric responses to NaCl, which was easily observed in

our chip. However, it was not previously known that ASEL and ASER respond

independently to stimuli. We differentiate between independent response, where

response of one neuron does not inform the other, and asynchronous responses,

where the two neurons respond to different stimuli. That ASEL and ASER do

not always respond to NaCl in the same worms suggesting the responses are

independent.

As expected ASHL and ASHR responded synchronously to both low (≤ 100

mM) and high (500 mM) concentrations of NaCl. However, while ASHL and

ASHR did typically respond synchronously to mid-range concentrations (200-400

mM), we did observe a small number of instances where either ASHL responded

or ASHR responded but not both. Moreover, we found the rise times of ASHL
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and ASHR are not always correlated. Taken together, these results could suggest

that the responses of ASHL and ASHR are independent.
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Sfyrakis, K., Shi, Y., Shillcock, J.C., Silberberg, G., Silva, R.,

Tauheed, F., Telefont, M., Toledo-Rodriguez, M., Tränkler, T.,

Van Geit, W., D́ıaz, J.V., Walker, R., Wang, Y., Zaninetta, S.M.,

DeFelipe, J., Hill, S.L., Segev, I. & Schürmann, F. (2015). Recon-
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