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Abstract 

As part of the UK’s energy system transition to a low-carbon electricity supply, 

decentralised energy sources such as small and medium scale wind turbines 

have become increasingly relevant. Decentralised energy generation has a 

central role in a proposed societal pathway to deliver a low-carbon energy 

system transition. Given the vast onshore wind energy potential of Great Britain, 

small and medium scale wind turbines will be a key part in this transition. With 

the introduction of the Feed-in Tariff (FIT) in April 2010, small and medium scale 

wind turbine deployment was expected to increase towards the technical 

potential of the technology, estimated to be up to 400,000 turbines. However, 

only 6,000 wind turbines have been installed in Great Britain since April 2010, 

highlighting there is still significant potential for small and medium scale wind 

turbine deployment.  

To fulfil this potential, an understanding of the influencing factors on previous 

wind turbine adoptions is required. A key part of this analysis is an investigation 

of the wind resource assessment methodology prescribed in the FIT policy. The 

Microgeneration Certification Scheme (MCS) is designed to offer a low-cost and 

quick scoping tool for prospective wind turbine installations. Analysis carried out 

in this work shows that long-term mean near surface wind speed predictions from 

the MCS method have a mean percentage error of 2.36 %. Over the same 

sample of 124 sites across Great Britain, a Boundary Layer Scaling (BLS) 

method, developed in this work, using UK wind map data offered wind speed 

predictions with a mean percentage error of 1.43 %. While these errors appear 

small, they equate, in the most extreme cases, to a difference of over £500 in 

annual FIT payments for a single wind turbine. While the MCS method is 

mandated in the FIT accreditation process, there is a risk that the potential 

financial returns of an installation can be severely miscalculated. 

Using the more accurate wind speed predictions available from the BLS model, it 

is possible to understand the influence of available wind resource on wind turbine 

adoption patterns. Throughout this work, wind turbine adoptions in Great Britain 

from 1995 until 2015 at both local authority and statistical geography resolution 

were analysed. Using a regression model, it is shown that wind resource explains 

up to 34 % of the spatial variance in adoption patterns. A threshold wind speed of 

4.5 ms−1, above which wind turbine deployment is likely, was found in the current 

adoption patterns. These results highlight that while wind resource is an 

important factor, it is not the sole factor which influences wind turbine deployment 

in Great Britain.  
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Previous literature has identified a number of socio-economic factors that have 

influenced adopters of other microgeneration technologies. Using a regression 

model and additional variables, such as land availability and agricultural 

statistics, it is possible to understand the influence of these socio-economic 

factors on wind turbine adoption patterns. The Socio-Economic and Resource 

(SER) model developed in this work highlights that wind turbine adoptions are 

more likely to occur in rural areas where wind resource, availability of land and 

prevalence of agriculture are high. Wind adopters are more likely to be older, 

hold degree-level qualifications and live in a detached home. This regression 

model however, only accounts for up to 65 % of the spatial variance in adoption 

patterns. This is an improvement over using only the resource model, however, 

there are still additional factors which influence wind turbine adoption patterns.  

The additional factors examined in this research were the influence from changes 

to the subsidy level of the FIT and the potential visibility of neighbouring turbines 

on adoption patterns. The visibility of neighbouring microgeneration installations 

has been cited as a factor which raises awareness in adopters, a factor 

particularly prevalent to wind turbines, which are highly visible to close 

neighbours. The influence of these factors was examined using a peer effects 

model in areas of high installations. The model shows that reductions in the FIT 

subsidy level have severely affected deployment. A peer effect from visible 

neighbouring turbines can be seen in these clusters of installations, however, it is 

secondary to the level of FIT subsidy available. In some clusters, evidence for a 

slow diffusion of wind turbines between peers was observed. Overall, the model 

indicates that the subsidy level available from the FIT was more influential than 

the visual peer effects. However, it is anticipated that this peer effect, will 

increase as deployment increases.  

In conclusion, the research has found that adoptions of wind turbines in Great 

Britain are influenced by a number of factors, namely available wind resource, 

rurality of turbine location, income of individual adopters and the subsidy level 

available for energy generation. These findings indicate that the small and 

medium scale wind turbine market in Great Britain is approaching a critical stage 

in its adoption lifecycle. Additionally, the results were used to develop a number 

of potential deployment estimates to understand where future growth in the 

market may occur. To meet these potential deployment estimates, there needs to 

be higher levels of deployment in order to help reduce capital costs. To achieve 

this future deployment, the levels of subsidy available from the FIT need to be 

maintained, in addition to the introduction of a BLS methodology in the FIT policy 

to facilitate more accurate financial assessments. A reduction in capital costs and 
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maintaining of FIT subsidies will increase the number of sites which are 

financially viable for wind turbine installation. Potential new sites must still have a 

sufficient long-term mean wind resource of 4.5 ms−1 or above to be economically 

viable, highlighting the need for the introduction of the more accurate BLS 

methodology. If these conditions occur, deployment of small and medium scale 

wind turbines can increase towards the technical potential and play a central role 

in the transition to a low-carbon electricity market in Great Britain.  
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Chapter 1 – Project introduction 

At the end of World War II, the countries of Western Europe were ravaged 

by war with their economies left decimated. With the introduction of the 

Marshall Plan in 1948, economic prosperity swept across Europe as 

industrial and agricultural production boomed. In the UK, electricity demand 

increased 150 % as economic growth increased in the post-war years [1]. To 

meet this energy demand, the UK government began to exploit their natural 

fossil fuel resources for electricity production. The coalfields of the UK 

provided around 90 % of the UK’s primary energy resources in the 1940’s 

[1]. In the early 1990s, the newly privatised electricity sector began to 

prioritise energy production from North Sea gas in the Dash for Gas. 

However, domestic coal and gas reserves have dwindled, causing the UK to 

import around 40 % of its primary energy in 2015 [2]. Coal and gas fired 

generation accounted for 52 % of all UK electricity supply in 2015 [2]. 

Coupled with decreasing fossil fuel electricity generating capacity [2], the 

ability of the UK’s energy systems to provide sufficient electricity for future 

energy demands is reducing.  

A long-term structural change of the UK’s energy systems is therefore 

required to meet future energy demand. A key consideration of the UK’s 

energy system transition is the “energy trilemma” and any future energy 

system must be designed to provide energy which satisfies the three 

principles of the trilemma [3]. This trilemma, seen in Figure 1, is composed 

of; security of the energy supply, sustainability of the energy and the 

production and affordability of the energy [3]. In the UK electricity market, 

these issues are prevalent due to the UK’s increasing dependency on 

energy imports for ageing generation infrastructure [2]; the need to meet the 

legally binding greenhouse gas (GHG) emission reduction targets of the 

2008 Climate Change Act [4]; the legally binding European Union (EU) 

Directive to provide 15 % of the UK’s total energy supply from renewable 

sources by 2020 [5]; and the fact that in 2014 in England alone, 2.38 million 

households were in fuel poverty [6].  
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Figure 1 — The energy trilemma 

The United Kingdom has one of the highest onshore wind resource 

potentials in Europe [7] and therefore utility-scale and small and medium 

scale wind power will be key components in the UK’s energy system 

transition. Small and medium scale wind turbines can be installed to provide 

energy for a single home or a community of homes [8]. Small and medium 

scale wind turbines are traditionally defined as wind turbines with an 

installed capacity below 500 kW [9, 10]. This definition can be split further 

into: small scale wind turbines as turbines with an installed capacity below 

50 kW [11] while medium scale turbines have an installed capacity above  

50 kW but below 500 kW [10]. In this research, a sample of wind turbines 

installed under the Feed-in Tariff (FIT) was used [12]. In this sample, 98.4 % 

of the wind turbines were small or medium scale wind turbines [12]. Full 

details of the sample used throughout this research are given in Section 1.3.  

1.1 Small and medium scale wind turbines as part of the 
energy system transition 

Small and medium scale wind turbines generate electricity by extracting 

energy from wind flow. Kinetic energy in the wind flow is extracted by the 

blades of the turbine to produce electricity through a generator [13]. 

However, the wind resource available to a wind turbine is highly variable [14] 

and load factors of a wind turbine are therefore, site dependent. For small-

scale turbines in Great Britain, the annual load factor of a wind turbine can 

range from 5 % to 44 %, depending on location [15]. It is therefore likely that 
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a wind turbine adopter may also require electricity from the national grid to 

meet their electricity demands. A wind turbine installation would therefore 

increase the security of an adopter’s energy supply but may not fully mitigate 

the risks.  

Electricity generated on-site by a wind turbine is free, as an adopter has to 

pay no charges to utilise the electricity. However, the levelised cost of the 

electricity (LCOE) from a small scale wind turbine, which considers the 

capital and operating costs incurred to install the turbine is high [16]. For an 

onshore wind turbine rated under 50 kW in 2016, the LCOE is                   

£227 per MWh, this drops to £128 per MWh for onshore turbines rated 

between 100 kW and 1500 kW during the same year [16]. Despite this, 

small-scale wind technologies have a lower hurdle rate, representative of the 

risk associated with not realising a financial return, than either offshore wind 

or nuclear technologies [16]. Therefore, if an adopter is able to secure 

sufficient capital for a wind turbine installation, a wind turbine would 

represent a relatively low risk investment, which can provide affordable 

electricity.  

There are no direct GHG emissions from the production of electricity by a 

small-scale wind turbine [17]. However, GHG emissions and other 

environmental impacts occur during the lifetime of a wind turbine [17].  An 

assessment of a wind turbine’s manufacture, installation and operation has 

shown that a 6 kW wind turbine operating in the UK over a 20 year lifecycle 

with an mean load factor of 19 %, produces 0.048 kgCO2eq/kWh over its 

lifetime [17]. In comparison, grid electricity produced 0.332 kgCO2eq/kWh in 

2015, where the mix of electricity contained 24.6 % renewable energy and 

21 % nuclear energy generation [2]. Without nuclear and renewable energy 

in this electricity mix, the carbon intensity of all UK fossil fuelled electricity 

generation in 2015 would have been 0.618 kgCO2eq/kWh [2]. Additionally, 

during its lifecycle, a wind turbine would have a lower impact on terrestrial 

life through lower air, water and soil pollution than grid electricity which is 

dominated by fossil fuelled thermal power [17]. Installation of a wind turbine 

for electricity generation can therefore be considered more environmentally 

sustainable than the current mix of grid electricity, where the majority of 

electricity is generated using fossil fuelled thermal power.  

While small and medium scale wind turbines are able to meet the aims of 

the energy trilemma, the installation of small-scale wind turbines cannot be 

considered a panacea for the energy system transition. Small-scale wind 

turbines must be part of a wider strategy to achieve an energy system 
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transition, but given the onshore wind resource of the UK [18], they could 

potentially play a key role in societal pathway’s contribution to the energy 

system transition.  

To achieve the energy system transition to a low carbon electricity market, 

three pathways, a state driven, a market driven and a society driven energy 

systems transition have been suggested [19]. These pathways are 

differentiated by the driving force behind the transition. However, in each 

pathway, all three factors play a role with varying degrees of influence [19]. 

The state-driven pathway relies on central government, through various 

bodies, to deliver energy policy which co-ordinates an energy system 

transition with the large-scale commercial electricity generators [19]. The 

market driven pathway envisages an energy system transition driven by 

competition in the electricity market, brought about by high-level policy 

frameworks which force large scale energy suppliers to develop low-carbon 

technologies [19]. The societal pathway involves greater engagement with 

communities and individuals to deliver an increasing number of community 

and individual-level energy systems coupled with increased levels of energy 

efficiency measures to reduce energy demand [19]. In this societal pathway, 

renewable energy adoption decisions are not evaluated solely on a cost-

benefit basis but rather on the wider quality of life benefits [19]. These 

pathways are clearly defined, in terms of the different actors which are the 

driving force behind the deployment. Additionally, there may be other 

transition pathways, such as those illustrated in the National Grid’s Future 

Energy Scenarios (FES) [20]  which contribute to the transition of energy 

systems. All of these pathways are likely to contribute towards the overall 

transition of the UK’s energy systems. The contribution of each pathways will 

depend on the actors of the scenarios and their levels of engagement in an 

energy systems transition. 

For small and medium scale wind turbines to contribute sufficiently to the 

energy system transition, it is this societal pathway which will be most 

influential [19]. Through the societal pathway, small-scale generation or 

microgeneration technologies, such as small scale wind turbines, would 

become commonplace and acceptance of such technologies and their  

utility-scale counterparts would increase [19]. This would also lead to 

changes of the business models in the energy sector, moving away from the 

current scenario, where 95 % of all domestic electricity is supplied by the 

“Big Six” utility companies [3]. The electricity market envisioned under the 

societal pathway is led by energy service companies (ESCOs), who partner 



- 5 - 

with local stakeholders to provide energy for individual communities [19]. 

This causes larger utility companies to adopt the ESCO business model [19]. 

An energy system transition via the societal pathway is typified at the local 

level by smaller-scale generation and greater individual involvement in the 

energy decisions that affect their communities.  

However, to achieve an energy system transition through this societal 

pathway, small-scale renewable energy generation technologies need high 

rates of uptake at an early stage [19]. In this scenario, high levels of early 

deployment lead to rapid growth in the 2020’s, as such technologies move 

into the mainstream [19]. Therefore, for small and medium scale wind 

turbines to contribute to an energy system transition, high levels of 

deployment need to be achieved in the immediate future. The key risk which 

can prevent the high levels of deployment being achieved is the capital cost 

of the small-scale technologies [19], an issue which is particularly prevalent 

for small and medium scale wind turbines. Capital costs for a wind turbine 

rated under 15 kW are estimated to be between £2,000 to £6,000 per kW 

installed [21]. For a 5 kW wind turbine, the capital costs can range from 

£10,000 to £30,000, which is a significant cost for individuals to bear. To 

overcome these high capital costs and promote deployment, the societal 

pathway requires central government to incentivise small-scale electricity 

generation to attract individuals into the market [19]. In Great Britain, this 

incentivisation of small-scale electricity generation has already occurred with 

the introduction of the Feed-in Tariff policy [22]. 

1.2 Feed-in Tariff 

Introduced in April 2010, the Feed-in Tariff (FIT) scheme was designed to 

drive uptake for small-scale low carbon technologies to deliver higher rates 

of deployment [23]. Introduction of the FIT was also designed to engage the 

general public in low carbon electricity generation, to enable broad 

participation by individuals and communities in a “big energy shift” towards a 

low carbon economy [23]. These stated aims are key components of any 

governmental policy to stimulate an energy system transition via the societal 

pathway [19]. The FIT policy is therefore considered a policy intervention by 

the UK government to facilitate an energy systems transition through the 

societal pathway.  

The FIT policy incentivised on-site electricity generation by providing a 

payment for each kWh of electricity produced by an eligible microgeneration 

technology [24]. Solar photovoltaics (PV), wind turbines, hydropower 
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technologies, anaerobic digestion and combined heat and power, with a total 

installed capacity (TIC) of up to 5 MW per site, are eligible for FIT payments 

[25]. The FIT is only available for technologies installed in England, Wales 

and Scotland [25] and therefore it was only within these countries of Great 

Britain that wind turbine deployment was analysed in this project.  

The payments from the FIT policy are provided by, either mandatory or 

voluntary FIT licensees [12]. Mandatory FIT licensees are any licensed 

electricity suppliers with over a quarter of a million domestic electricity 

customers while, voluntary FIT licensees are any licensed electricity 

suppliers, with under a quarter of a million domestic electricity customers, 

who decide to participate [12]. In 2015, there were 9 companies and their 

subsidiaries who were mandatory licensees and 30 companies who were 

voluntary licensees [12]. Each individual who applied for the FIT entered into 

an agreement with one of the licensees, who agreed to provide quarterly 

remuneration based upon the readings of an electricity meter specifically 

installed to monitor the amount of electricity generated by the technology 

[12].  

To qualify for FIT payments, each installation of an eligible technology must 

meet a set of accreditation criteria, which differs depending on the installed 

capacity of the installation. For solar and wind turbine installations under    

50 kW, the Microgeneration Certification Scheme (MCS) is the accreditation 

route, while for installations of all technologies above 50 kW accreditation is 

gained through the ROO-FIT scheme [26]. To gain ROO-FIT accreditation, 

individuals who are considering or have installed a technology must apply 

through the FIT central register [26]. The pre-requisite documentation 

required for accreditation is, approval of planning permission from the local 

planning authority and a grid connection agreement with the transmission or 

distribution network operator [26]. Accreditation via the MCS route requires 

individuals to select an MCS-accredited technology and an MCS-accredited 

installer to complete the installation [26]. To gain accreditation via this route, 

the installation must also meet the MCS installer standards, which set out a 

number of assessments that must be undertaken prior to the construction 

phase of the installation [27]. For a wind turbine installation, these 

assessments cover noise levels and flicker from the turbine as well as 

providing an estimation of the annual energy generation from the proposed 

wind turbine [27].  

An estimation of the annual energy generation of a proposed wind turbine 

must be conducted using the MCS wind resource assessment [27]. The 
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MCS methodology is described as a “simple method using freely available 

wind speed data (NOABL) and simple tabulated correction factors for the 

local terrain, obstructions and turbine height” [27]. The Numerical Objective 

Analysis of Boundary Layer (NOABL) wind speed database is a set of 

gridded long-term mean wind speeds for the whole of the UK [28] and is the 

only freely available wind map in the UK. The calculated MCS mean hub 

height wind speed is then utilised to derive the annual energy production of a 

proposed turbine, from the manufacturer’s data [27]. The manufacturer’s 

estimates of annual energy production are produced using international 

standards [29] and are derived from the independently tested power curve of 

each wind turbine. However, these power curves are typically derived from 

testing at sites with considerable wind resource and therefore, any annual 

energy production estimate derived from this data will be the maximum 

annual energy production of the wind turbine at a mean wind speed.  

The correction factors used in the MCS wind resource assessment attempt 

to remedy inaccuracies in raw NOABL data [30, 31] using a simple, 

empirically based approach. These corrections are fixed and therefore do 

not account for any idiosyncrasies of surface roughness or local conditions 

at a prospective site. It is suggested here that this approach is insufficient to 

provide accurate mean wind speed predictions. If any annual energy 

production estimates produced using an alternative methodology are 

provided during the scoping stage of the small scale wind turbine project, the 

results of the MCS method must be given equal prominence and if the 

additional estimates are significantly greater than the MCS results, it must be 

prefaced with a warning to potential wind turbine adopters [27]. Assessment 

of the annual energy production, through estimation of the wind resource at 

a site, is vital during the initial stages of a wind turbine project [32, 33]. If a 

site is shown to have sufficient wind resource, it is likely that further financial 

resources will be invested to fully characterise the wind resource available to 

a proposed turbine. 

The estimated MCS wind speed is likely to be viewed by potential adopters 

as the upper estimate of long-term mean wind speed of a site and if the 

MCS methodology under-predicts the wind speed, a potential adopter could 

possibly be dissuaded from installing a wind turbine in a location with 

sufficient wind resource. The risk is that the MCS methodology may produce 

inaccurate wind speed estimates and it is argued in this research that if other 

wind resource assessment techniques were available at the initial stages of 
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a wind turbine project, it may be possible to provide more accurate wind 

speed estimates.  

Once a wind turbine installation gains accreditation through either route, the 

adopters are eligible to receive payment for each kWh of on-site electricity 

generation [25]. These payments are guaranteed whether the electricity is 

consumed on-site or exported via a grid connection [25]. The FIT subsidy 

rate at the time the installation is commissioned is guaranteed for the lifetime 

of the installation, which for wind turbines is 20 years. The subsidy level per 

kWh is based upon the total installed capacity of each technology and when 

the installation was registered with Ofgem [25].  

There have been a number of changes in the tariff levels since the 

introduction of the FIT in 2010, with current tariff levels, as of October 2016  

being between 8.33 p/kWh for wind turbines under 1.5kW TIC, and          

0.83 p/kWh for wind turbines with a TIC over 1.5 MW [34]. In addition to the 

payment for on-site electricity production, there is also a flat rate of          

4.91 p/kWh for electricity exported to the wider electricity grid [34]. At the 

beginning of 2016, the tariff bandings for wind turbines were also altered, so 

that all turbines with MCS accreditation gained the same tariff. A full 

breakdown of the changes to tariff bandings and subsidy levels since the 

introduction of the FIT is provided in Table 1. 

 

 

 

 

 

 

 

 

 

 

 

 



- 9 - 

Table 1 — FIT Tariff levels for wind turbines since April 2010 [34] 

Tariffs in 
pence/kWh TIC subsidy level banding 
Date 
installation 
registered 
with Ofgem 

Less 
than 1.5 
kW 

1.5 
kW to 
15 kW 

15 kW 
to 100 
kW 

100 kW 
to 500 
kW 

500 kW 
to 1.5 
MW 

Greater than 
1.5 MW 

1 April 2010 
to 31 March 
2012 41.25  31.91 28.85 22.43 11.32 5.33 

1 April 2012 
to 30 
November 
2012 38.98 30.48 27.66 22.43 11.32 5.33 
1 December 
2012 to 31 
March 2014 22.86 22.86 22.86 19.06 10.33 4.88 
1 April 2014 
to 30 
September 
2014 18.28 18.28 18.28 15.24 8.27 3.5 
1 October 
2014 to 31 
March 2015 16.46 16.46 16.46 13.71 7.45 3.16 
1 April 2015 
to 30 
September 
2015 14.62 14.62 14.62 12.19 6.62 2.80 
1 October 
2015 to 15 
January 2016 13.89 13.89 13.89 10.98 5.96 2.80 

Date 
installation 
registered 
with Ofgem 

Less than or 
equal to 50 kW  

50 kW 
to 100 
kW 100kW to 1.5 MW 

Greater than 
1.5 MW 

16 January 
2016 to 31 
March 2016 8.74 8.74 5.60 0.88 
1 April 2016 
to 30 June 
2016 8.46 7.61 4.89 0.85 
1 July 2016 
to 30 
September 
2016 8.39 6.85 4.40 0.85 
1 October 
2016 to 31 
December 
2016  8.33 6.08 3.92 0.83 
NB. Between 15 January 2016 and 8 February 2016, a pause was placed on 
accreditation.  
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Since December 2012, changes in the FIT subsidy level have been 

implemented using a default degression mechanism [35]. Default degression 

allowed the subsidy level to be reduced based upon the total capacity of all 

wind turbines installed in the preceding period [35]. Initially, the degression 

mechanism was planned to be implemented annually, however, the 

mechanism had a six-monthly review and the option to implement a 

degression of tariff rates at these intervals [35]. The rate of degression 

implemented is related to the difference between the actual installed 

capacity and the expected installed capacity of wind turbines deployed 

during the reference review period [35].  

For wind turbines with a capacity under 100 kW, the expected annual 

deployment is 4.3 MW, while for all other capacities of wind turbine, 

expected annual deployment is 24.5 MW [35]. Should annual deployment 

exceed 300 % of these figures, annual degression of the tariff rate would be 

a 20 % reduction of the subsidy rate [35]. The level of degression reduces to 

a 10 % degression for 150-300 % of expected annual deployment, 5 % for 

75-150 % of expected annual deployment and 2.5 % for less than 75 % of 

expected annually deployment [35]. Should deployment during a six month 

period exceed the expected annual deployment by over 200 %, a six-

monthly degression of 10 % is applied [35]. A 5 % degression every six 

months is applied if deployment exceeds expected deployment by           

100-200 %, while if deployment in the same period is below expected 

deployment, the degression reverts to the annual degression mechanism 

[26]. Since January 2016 a contingent degression mechanism has also been 

introduced [26]. A contingent degression of 10 % is applied quarterly if the 

deployment cap for a technology is reached. These deployment caps for 

each technology are consistent with the tariff bandings for wind turbines, 

seen in Table 1. All wind turbines installations which apply for accreditation 

after the deployment cap has been met will not receive accreditation until the 

next deployment cap period.  

The rationale behind the introduction of the degression mechanism was as a 

cost saving mechanism for the FIT [35]. Introduction of the degression was 

designed to ensure that the FIT was not over-compensating adopters for 

technologies whose capital costs have decreased since the introduction of 

the FIT [35]. However, it was only PV systems in Great Britain that saw any 

major reduction in capital costs during the lifetime of the FIT [36]. In 

comparison, capital costs for wind turbines have remained similar between 

2011 [37] and 2015 [21]. Such a policy mechanism could be detrimental to 
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further wind deployment and may hamper the ability of the societal pathway 

to deliver an energy system transition. Investigation of the influence of the 

degression mechanism on wind turbine deployment was therefore a vital 

part of understanding if wind turbines can play a role in the societal 

pathway’s required energy system transition in Great Britain. As such, the 

influence of changing levels of FIT subsidy on wind turbine adoption patterns 

were studied during this research with the outcomes presented in Chapter 6. 

1.3 Wind turbine deployment under the FIT in Great Britain 

Wind turbine deployment under the FIT in Great Britain on 31st December 

2016 was 7,374 wind turbines, totalling 649 MW of installed capacity [12]. 

However, an industry wide report estimated that 27,819 wind turbines were 

installed between 2005 and 2014 [10]. This industry wide report considered 

all wind turbines under 500 kW in Great Britain and Northern Ireland and 

included off-grid installations [10]. Wind turbines in Northern Ireland, those 

without access to the national electricity grid and wind turbines which are not 

MCS accredited are ineligible for the FIT and this is likely to be one cause of 

the differing deployment estimates. While the industry wide figures were 

significantly higher than the FIT data, there was a lack of detailed 

information in the industry wide figures, upon which analysis could be 

performed and therefore, the FIT installation data was utilised throughout the 

remainder of this project. However, it is worth considering that wind turbines 

outside of the FIT sample have also been installed in the UK.  

The FIT installation data used throughout this project was extracted from 

Ofgem’s central register of quarterly reports of all wind turbine installations 

under the FIT [12]. Within the data sample extracted, there are wind turbine 

installations from January 1995 until December 2016, providing 22 years of 

installation data for analysis [12]. Wind turbines installed prior to 2010 were 

still eligible for the FIT, once they were accredited. The installation sample 

was split by year, as seen in Figure 2, by installation type, as seen in Figure 

3, and by installed capacity, as seen in Figure 4, to understand further wind 

deployment under the FIT [12].  
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Figure 2 — Yearly wind turbine installations and cumulative wind turbine 
installations under the FIT since 2003 [12] 

Figure 2 shows that wind turbine installations under the FIT peaked in 2012, 

with just under 2,500 wind turbines installed during 2012 [12]. Prior to 2012, 

annual wind turbine deployment had been increasing year on year, with 

almost a doubling of wind turbine installation numbers in 2010 and 2011. 

However, following 2012, annual deployment returned to a level similar to 

those seen in 2010 and 2011, of around 1,000 turbines or less per year [12]. 

This temporal installation data suggests that the introduction of the FIT 

policy in 2010 had a significant effect on wind turbine deployment, with    

86.7 % of all wind turbines installed after April 2010 [12]. The largest peak of 

annual deployment in 2012 and the smaller peak in 2014, suggests that 

introduction of the degression mechanism in 2012 and the initial degression 

of the subsidy level in 2014 has affected wind deployment. The data 

presented in Figure 2 reinforces the need to examine the influence of the 

degression mechanism, suggested in Section 1.2. 
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Figure 3 — Number of wind turbine installations for each installation type [12] 

To understand the type of potential adopters in the FIT wind turbine market, 

the data in Figure 3 must be considered. The data demonstrates that wind 

turbines installed under the FIT were predominately installed to provide 

electricity for either domestic or commercial customers. 96.3 % of all wind 

turbines registered under the FIT were for domestic and commercial 

electricity generation, with the 58.9 % of all wind turbines installed for 

domestic energy generation. This highlights that the FIT wind turbine market 

has, so far, been dominated by individuals making the decision to adopt a 

wind turbine for their domestic properties. The data also supports the 

assertion that it is the societal pathway, where individuals are the dominant 

actors in the energy system transition, that is the most appropriate energy 

system transitions pathway for small and medium scale wind turbine 

installations. 
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Figure 4 — Number of domestic and commercial wind turbine installations in 
each of the original FIT capacity bandings [12] 

The number of installations of either domestic or commercial installations in 

each of the original FIT capacity bandings is shown in Figure 4. The data 

highlights that domestic and commercial wind turbines must be considered 

differently. While domestic wind turbines were predominately lower capacity 

turbines, commercial wind turbines typically had much higher installed 

capacities. These differing installed capacities are likely to be a result of the 

differing levels of capital, which domestic and commercial customers were 

able to provide. As a wind turbine is ineligible for the FIT payments if it 

receives any grant for the costs of the installation [26], domestic and 

commercial adopters would have had to provide sufficient capital to cover 

the costs of the installation. Additionally, the adoption process for these wind 

turbines differed, with domestic turbines likely to be adopted by individuals 

while commercial turbines are likely to have been subject to some degree of 

collective decision making process. These factors are important to 

understand when examining the characteristics of wind turbine adoptions 

using either installation or installed capacity data. As discussed, 58.9% of all 

turbines in the installation sample were domestic turbines. However, 85.4 % 

of the total installed capacity of the sample has been installed for 

commercial electricity generation [12]. Analysis of the installation data will 

therefore, focus on the domestic adopters while analysis of the installed 

capacity data will focus on commercial adopters. Each data set was utilised 
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in this work to analyse the factors which have influenced each of these 

different types of wind turbine adopters.  

Initial analysis of current wind turbine deployment under the FIT policy 

highlights that with the introduction of the FIT policy, wind turbine 

deployment has increased. However, current deployment must be 

considered in the context of the number of potential wind turbine installations 

possible in Great Britain to determine if the required levels of deployment for 

the societal pathway are currently being reached.  

 Potential small and medium scale wind turbine 
deployment in Great Britain 

Assessments of the potential for small and medium scale wind turbine 

deployment across the UK or Great Britain have previously been published 

[9, 31, 38]. These assessments range from the unrestricted potential for 

deployment, irrespective of cost [9], to more conservative estimates which 

considered the influence of numerous factors on deployment potential [31]. 

By considering all of these assessments, it was possible to identify what can 

be considered the most appropriate estimate of potential small and medium 

scale wind turbine deployment in Great Britain.  

A 2007 Carbon Trust report estimated that the unrestricted potential 

deployment of small scale wind energy in the UK could provide 41.3 TWh of 

electricity and abate 17.8 MtCO2 annually [9]. 41.3 TWh of electricity would 

represent 13.6 % of total electricity demand in 2015 [2]. In this estimate, it 

was assumed that 90 % of electricity generation would be at rural sites with 

the remaining 10 % of electricity generation at urban sites [9]. This estimate 

also assumed 100 % market penetration of small-scale wind energy and an 

electricity price of 100 p/kWh, which would be offset by an installation of a 

wind turbine [9]. This unrestricted potential deployment is considered by the 

author to be unrealistic and to represent the maximum potential deployment 

of small scale wind turbines in the UK. Realistically, wind turbine deployment 

will never reach this estimated level, because the assumptions of market 

penetration and electricity price were improbable, a fact acknowledged in the 

report [9]. However, it has been included here to demonstrate that the 

unrestricted potential for small-scale wind energy is exceptionally high. The 

estimate, however, only discussed deployment in the context of potential 

electricity generation and provided no wind turbine installations numbers, 

with which the current FIT deployment could be contextualised.  
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Estimates of small and medium scale wind turbine deployment numbers 

were provided in two reports from 2009, prior to the introduction of the FIT 

policy [31, 38]. An Element Energy report was commissioned by the 

Department of Energy and Climate Change to provide quantitative analysis 

of the design of the FIT [38]. James et al. built on the estimates from the 

2007 Carbon Trust report through the use of data collected from wind trials 

of small-scale wind turbines across Great Britain [31]. Each of these reports 

provided potential deployment estimates, however, these estimates differed 

significantly. The Element Energy report estimated that in Great Britain, a 

total of 3.4 million domestic wind turbines could be installed [38]. This figure 

was estimated based upon a mean wind speed from the NOABL wind speed 

database and the rurality of electoral wards [38]. In wards considered non-

urban and that had a mean wind speed above 5.5 ms−1, it was assumed that 

every home, which was not in an apartment complex, would install a wind 

turbine [38]. The estimate from the Element Energy report is considered by 

the author as over-optimistic for two reasons. The assumption that all the 

homes in an area would install a wind turbine seems impractical, as this 

assumed that all residents would be able to afford a wind turbine installation. 

Additionally, use of the NOABL wind speed database as the baseline 

dataset for sufficient wind resource is questionable. NOABL wind speeds 

have been shown to be inaccurate [31, 32] and therefore, this will have had 

an influence on the number of wind turbines which were considered viable. 

The Element Energy potential deployment estimate is therefore considered 

here to over-predict potential wind turbine deployment.  

In comparison, James el al. predicted that a potential 407,950 domestic wind 

turbine installations were possible across Great Britain [31]. Based on the 

market economics of 2009, a minimum mean wind speed of 5 ms−1 from the 

MCS methodology and adequate availability of land or building profiles [31], 

this estimate is considered here as more realistic than the estimate from 

Element Energy. Despite this, there were still assumptions within the James 

et al. estimate that are questionable. It was assumed that for all sites where 

the wind speed and siting criteria were met, a wind turbine would be installed 

[31]. This assumption is considered here to be over-optimistic and relied on 

all residents in the suitable locations to have access to sufficient capital to 

install a wind turbine. Additionally, the wind speed criteria of a minimum 

mean wind speed of 5 ms−1 was based upon the wind speed predictions 

from the MCS methodology and its ability to provide accurate wind speed 

predictions has been questioned in Section 1.2. However, the estimate of 

407,950 wind turbine installation across Great Britain [31] is considered by 



- 17 - 

the author to be the most accurate prediction of the maximum potential of 

small and medium scale wind turbine deployment in Great Britain achieved 

to date.  

Using this maximum potential wind turbine deployment, the current levels of 

wind turbine deployment under the FIT were reconsidered. There is a gap 

between potential and actual deployment of around 400,000 potential wind 

turbines. Therefore, there is significant growth potential in the small and 

medium scale wind turbine market of Great Britain. Should this potential be 

realised, small and medium scale wind turbines can potentially play a vital 

role in the societal pathway’s contribution to an energy system transition in 

the UK electricity market. However, to achieve this, an understanding of why 

this potential growth has not yet been achieved is required and through 

analysis of the current uptake in the wind turbine FIT market, conducted 

during this project, this can be determined.  

The potential deployment estimate of James et al. was based on the market 

economics of 2009 [31]. Given that capital costs of wind turbines between 

2011 and 2015 have not changed dramatically, it was assumed that the 

capital costs of wind turbines in 2009 would have been similar. With the 

introduction of the FIT in 2010, it was assumed that the financial case of a 

wind turbines would become more attractive to potential adopters and 

therefore annual wind turbine deployment would increase dramatically. 

While annual wind turbine deployment did increase following introduction of 

the FIT [12], the increase is not considered by the author as dramatic. 

Introduction of a 31.91 p/kWh FIT subsidy rate for wind turbines rated 

between 1.5 kW and 15 kW [39] resulted in a two-fold increase in the 

financial returns available for on-site electricity generation in 2010. This 

suggests that the assumptions, presented by James et al. [31], that wind 

turbine deployment was solely influenced by the availability of wind resource 

and sufficient land are therefore flawed. The current deployment levels 

suggest that other factors, in addition to these assumed factors, have an 

influence on wind turbine adopters. To bridge the gap between potential 

deployment and actual deployment, an understanding of small and medium 

scale wind turbine deployment characteristics is crucial. By understanding 

the deployment characteristics of wind turbines, it has been possible to 

develop approaches through which the deployment of wind turbines could be 

appropriately analysed.  
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1.4 Spatial and temporal characteristics of wind turbine 
deployment  

Both large-scale renewable energy [40] and microgeneration deployment 

[41] have been shown to have spatial and temporal adoption characteristics. 

These characteristics, relating to where and when such deployment 

occurred creates adoption patterns in renewable energy technology 

deployment data [41]. These patterns can be analysed to understand the 

underlying factors which have influenced them. Previous research has 

focused on the spatial and temporal adoption patterns of PV systems in 

Great Britain [41-43]. To fulfil the potential of small and medium scale wind 

turbines in Great Britain, the factors which drive the spatial and temporal 

adoption patterns of wind turbines must also be investigated. Through this 

investigation, it was possible to determine whether the presence of these 

factors were conducive to promote wind turbine deployment.   

Spatial adoption patterns of small and medium scale wind turbines are likely 

to be driven by multiple factors. The availability of wind resource is likely to 

be an important factor, given the spatially variant nature of wind resource 

and the need for a wind turbine to be able to access sufficient wind resource 

to ensure technical and economic viability. Previous research has also 

suggested that spatial PV adoptions have been influenced by multiple 

demographic and environmental factors [42, 44]. It was envisioned that 

similar factors would have influenced spatial wind turbine adoption patterns. 

These demographic and environmental factors were available from decadal 

census data and formed the basis of the research into spatial adoption 

patterns undertaken during this project.   

The use of decadal census data to examine the spatial adoption patterns 

precludes examination of the temporal adoption patterns during the same 

piece of research. Temporal adoption patterns of PV systems have been 

shown to vary over a time period of months [41]. This was expected to be 

similar in the temporal wind turbine adoption patterns and therefore, decadal 

data would be insufficient to examine these patterns. It has been suggested 

that temporal PV adoption patterns have been influenced by changes to the 

FIT [41] and therefore it was important to investigate if FIT changes also 

influenced temporal wind turbine adoption patterns.  

The introduction of the FIT was the initial stimulus of the societal pathway 

transition to a low-carbon electricity market. The societal pathway relies on 

the engagement of individuals and communities to initially drive the energy 
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system transition. Increased deployment of small and medium scale wind 

turbines offers a visual symbol of the changing face of electricity generation 

in Great Britain. Increased wind turbine deployment also highlights a greater 

level of engagement by individuals who have installed wind turbines and 

may influence their peers to install a wind turbine. Deployment of PV 

systems in neighbourhoods has been shown to lead to an increase in future 

PV deployment in the neighbourhood, due to a visual peer effect from the 

initial PV system [43, 45-47]. It was, therefore, important to examine whether 

wind turbine installations, which are significantly more visible than PV 

systems, exerted a similar influence on neighbouring peers.  

Through analysis of wind turbine adoption patterns, it was possible to 

determine if the factors discussed, had a significant influence on the spatial 

and temporal adoption patterns of small and medium scale wind turbines in 

Great Britain. This research was undertaken due to a lack of literature which 

has previously examined the influence of any factors on adoption patterns. 

To conduct this research, a number of research questions must be 

addressed.  

1.5 Research questions  

To develop an understanding of the influential factors which stimulate wind 

turbine deployment, analysis of the current patterns of small and medium 

scale wind turbine deployment under the FIT was required. The analysis, 

presented in this thesis, is focused solely on wind turbines which were 

eligible for the Feed-in Tariff. The wind turbines analysed had an installed 

capacity under 5 MW and were installed across only England, Wales and 

Scotland. However, 98.4 % of all turbines in this sample had an installed 

capacity under 500 kW [12]. Furthermore, unless explicitly stated when 

referring to wind turbines throughout this thesis, the author will be referring 

to wind turbines which are eligible for the FIT or have previously been 

installed under the FIT.  

Central to any small and medium scale wind turbine installation is the 

assessment of wind resource available and the resulting annual energy 

production and financial returns of the wind turbine. For small-scale wind 

turbines, whose project budgets are considerably smaller than larger scale 

wind turbines [16, 33], the initial scoping stage of the project is crucial. On-

site anemometry is unviable for small scale wind turbines, due to the costly 

requirement for multiple years of data to be collected [33]. Therefore, a desk 

study is typically undertaken to assess wind resource, utilising a wind map 
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and an empirical scaling methodology. At a minimum, this desk study should 

provide an accurate prediction of mean hub height wind speed and power 

density in the wind flow, from which the annual energy production of the 

wind turbine can be estimated [33]. Given the cubic relationship between 

wind speed and power available to a wind turbine [14], an accurate 

assessment of wind speed is vital. The MCS methodology detailed in the FIT 

installer standards is an empirical scaling methodology, which can be utilised 

at the initial stages of a small-scale wind turbine project to provide wind 

speed and annual energy production estimates. However, the approach of 

the MCS has been criticised in Section 1.2 as being insufficient to provide 

accurate mean wind speed predictions. This raised an important question, 

which was addressed in this project;  

Are the wind resource assessment techniques available at the initial 

scoping stage of a wind turbine installation able to predict wind speed 

with sufficient accuracy? 

With the need for an accurate wind speed prediction so important to small 

and medium scale wind turbine projects, it is suggested here that an 

alternative methodology could provide more accurate wind speed predictions 

than the MCS methodology. Previous studies have suggested a boundary 

layer scaling (BLS) technique as suitable for the prediction of the mean wind 

speed of a site [11, 33]. A BLS model applies a number of correction factors 

to a reference wind climatology, based on the surface characteristics of a 

site such as the presence of buildings or trees and surface morphology [11, 

33]. The theoretical basis of the BLS model and the fundamentals of wind 

speed prediction in the boundary layer is presented in Chapter 2 while the 

comparison of the accuracy of wind speed predictions from the BLS and 

MCS methodology will be presented in Chapter 4. 

While the importance of wind resource to ensure the economic viability of a 

wind turbine has been discussed extensively [9, 11, 13, 32, 33, 48-52], the 

influence of the availability of wind resource on wind turbine deployment is, 

as yet, unknown. The spatial variability of wind resource, which is heavily 

influenced by surface morphology and roughness [14], is likely to have 

contributed to the spatial adoption patterns of wind turbine deployment. Wind 

turbines are unlikely to have been installed in areas where the wind resource 

was insufficient to ensure economic viability, however, the exact nature of 

the relationship between wind resource availability and adoption numbers is 

currently unclear. To determine the nature of this relationship, a further 

research question was developed and addressed during this project; 
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What was the influence of wind resource availability on the spatial 

adoption patterns of small and medium scale wind turbines in Great 

Britain? 

Using the wind resource assessment methodology which proved to be most 

accurate in the research of Chapter 4, the influence of wind speed 

availability on spatial adoption patterns in Great Britain is investigated in 

Chapter 5. The analysis of spatial adoption patterns was not limited to the 

influence of wind resource alone. The potential deployment estimates of 

James et al. also considered the availability of land as a factor which 

affected wind turbine deployment [31, 38]. However, the gap between 

potential and actual deployment suggests that the availability of sufficient 

wind resource and land were not the only factors which affected spatial 

adoption patterns.  

Previous literature has discussed a variety of motivations and factors which 

has influenced microgeneration adoptions in the UK [42, 53-56]. The 

majority of this research has focused on PV adopters, given the much higher 

deployment of PV under the FIT [42, 54-56]. The factors which influence 

spatial patterns in wind turbine adoption in Great Britain are relatively 

unknown, due to a lack of literature, despite wind turbine deployment being 

second only to PV deployment under the FIT. In order to identify policy 

recommendations to promote wind turbine deployment, these factors must 

be investigated prompting the research question;  

What factors have influenced the spatial adoption patterns of small and 

medium scale wind turbines in Great Britain? 

The spatial adoption patterns of wind turbine deployment in Great Britain 

were analysed, with respect to a number of factors identified from previous 

literature. The factors selected are reviewed and discussed in Chapter 3, 

while the analysis of the influence that these factors had on spatial wind 

turbine adoption patterns will be presented and discussed in Chapter 5.  

In addition to analysing the spatial adoption patterns of wind turbine 

deployment, the temporal wind turbine adoption patterns must be analysed. 

Introduction of the FIT in April 2010 to promote uptake appears to have had 

an influence on the level of wind turbine deployment. However, the subsidy 

level available from the FIT has changed since 2010 and the influence of 

these changes on temporal adoption patterns must be examined. In addition 

to the temporal changes to the FIT subsidy level, increased deployment of 
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wind turbines in a neighbourhood may have had an influence on an 

individual’s decision to adopt a wind turbine.  

It was important to analyse the factors that influence temporal adoption 

patterns of wind turbine deployment in Great Britain, in order to identify 

policy recommendations that could promote further wind turbine deployment 

through the following research question; 

What factors have influenced the temporal adoption characteristics of 

small and medium scale wind turbine market in Great Britain? 

Temporal factors, their influence on temporal adoption patterns and 

approaches to analysing these influences are discussed in Chapter 3. 

Analysis of the influence of visible neighbouring turbines and the changing 

subsidy levels of the FIT scheme on temporal adoption patterns of wind 

turbine deployment in Great Britain will be presented in Chapter 6.  

1.6 Thesis outline 

Chapter 2 will present a review of the physical phenomena which must be 

considered when predicting wind speeds in the boundary layer. The chapter 

aims to identify the most appropriate approach for this research’s boundary 

layer scaling model, by reviewing previous literature to identify possible 

improvements to the approach which could be included within this research. 

In addition to this, the chapter will present the theoretical basis for estimation 

of the power density in the wind flow, a vital part of estimating the annual 

energy production of any wind turbine.  

Chapter 3 will present a review of previous literature examining the factors 

which have influenced spatial and temporal adoption patterns of 

microgeneration technologies. Initially, the chapter will examine the 

motivation and barriers to adoption, which previous microgeneration 

adopters have experienced. Chapter 3 will then review studies which have 

considered the demographic and environmental factors that have influenced 

adoption, with a view to utilising similar factors during analysis of the spatial 

adoption patterns of wind turbines. In addition to a critical analysis of 

relevant factors, a review of techniques previously utilised to analyse spatial 

adoption patterns of PV systems will be presented. From this review, the 

appropriate approach to analysing the influence of the selected factors on 

spatial wind turbine adoption patterns will be identified. The chapter will 

introduce an examination of the factors that are likely to influence temporal 

wind turbines adoption patterns. Finally, Chapter 3 will present a review of 
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previous studies, which examined the influence of neighbouring 

microgeneration technologies on potential adopters in their neighbourhood. 

Such a review allowed for the most appropriate model, with which to analyse 

the influence of the selected factors on temporal wind turbine adoption 

patterns, to be identified.  

Chapter 4 will introduce the BLS and MCS methodologies and the various 

facets of each model, which have been constructed for this research. As part 

of this research, the reference wind climatologies which were used in each 

methodology will be discussed, as will the methodology for estimated power 

density in the wind flow. The results and analysis of each of the BLS and 

MCS methodologies will be presented with validation of these methodologies 

across 124 sites in Great Britain. Within this chapter, a definition of sufficient 

accuracy in an estimation of wind speed will be provided and used to 

evaluate the results of each wind resource assessment methodology. The 

aim of the chapter is to address the first research question and to determine 

if these methodologies could predict mean wind speed with sufficient 

accuracy. The accuracy of wind speed predictions from the BLS model using 

the differing reference wind climatologies and the results of the power 

density prediction techniques examined will also be presented.  

The most accurate set of wind speed predictions identified in Chapter 4 will 

be utilised in Chapter 5 to identify the influence of wind resource on spatial 

wind turbine adoption patterns in Great Britain. In addition to this, the 

influence of demographic factors, consistent with previous literature will also 

be examined. Both of these data sets and additional environmental factors 

will then be then examined collectively to understand their influence on 

spatial wind turbine adoption patterns across Great Britain. As part of this 

chapter, the data collection and processing which was undertaken will be 

presented and discussed. In addition to the quantitative analysis of wind 

turbine adoption patterns, a qualitative analysis of the residuals of the 

regression models, examining the spatial wind turbine adoption patterns, 

focusing on the areas of low wind turbine deployment will also be presented.  

Chapter 6 will describe a technique for the identification of a number of case 

study areas in Great Britain, where the temporal adoption patterns of wind 

turbines were examined. In these areas, the influence of the temporal 

changes to FIT subsidy levels and a visual peer effect from locally installed 

wind turbines on deployment levels were examined using a peer effects 

model. Development of the peer effects model for each cluster of 
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installations will be presented, in addition to a characterisation of clusters 

and their residents.  

Chapter 7 will recount the conclusions presented in Chapter 4, Chapter 5 & 

Chapter 6 and will also present the overall conclusions for this research. 

These overall conclusions were drawn from the conclusions of each chapter 

and focus on developing an understanding of the small and medium scale 

wind turbine market under the FIT in Great Britain. Potential wind turbine 

deployment estimates, based upon the findings of the research will also be 

presented within Chapter 7. A series of policy recommendations which are 

aimed at promoting future deployment of small and medium scale wind 

turbines will also be outlined. In addition, a reflection of the research 

presented in this thesis will be presented and a number of suggestions for 

future research topics will be offered.  
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Chapter 2 – Small and medium scale wind turbine resource 
assessment techniques 

Prospective wind turbine adopters have identified the economic barriers, 

arising from the capital expenditure required to install a wind turbine and the 

ability of the turbine to payback this capital outlay as the most important 

when considering an installation [8, 53-55]. Financial returns which 

determine the payback period of a small or medium wind turbine can be 

realised from either the payments of the Feed-in Tariff (FIT), for on-site 

generation, exporting to the grid [26], and by offsetting the requirement for 

electricity to be bought from the grid. To determine the potential energy 

generation of a wind turbine, on which these financial returns are estimated, 

the energy and power available within the wind at a prospective site must be 

determined. In order to determine the potential energy, a wind resource 

assessment must be conducted. For small and medium scale wind turbines, 

this assessment must consider the energy available to a turbine from near-

surface wind flow in the atmospheric boundary layer. 

In this chapter, a description of the energy available in the wind and how this 

is characterised over differing timescales will be presented. The 

fundamentals of boundary layer wind flow will be presented, as will a review 

of the fundamentals for estimating wind resource in the boundary layer. As 

part of this review, a boundary layer scaling technique for wind resource 

assessment will be discussed.   

2.1 Energy in the wind  

Wind turbines are designed to capture the kinetic energy in the wind to 

produce electrical power. Kinetic energy in the wind, Ew, is a function of the 

wind speed, u, and mass of air, m;  

𝐸௪ =  
1

2
𝑚𝑢ଶ 

Equation 1 

Theoretical power in the wind, Pw, can be estimated, by substituting the 

mass flow rate of air, ṁ, passing the turbine blades, into the kinetic energy 

equation; 

�̇� =  𝜌𝐴𝑢 

Equation 2 
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𝑃௪ =   
1
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Equation 3 

where, ρ, is the air density and, A, is the area of air passing the turbine 

blades, known as the swept area of the turbine. The relationship between 

available power in the wind and wind speed is shown to be cubic. Wind 

speed is, therefore, the dominant factor in determining the power in the wind 

available to a turbine. However, the power available in the wind and the 

power that can be extracted by a wind turbine differ. 

Power output from a wind turbine is restricted by the Betz limit [57] and the 

mechanical and aerodynamic efficiencies of a turbine. The Betz law states 

that a wind turbine can extract a theoretical limit of 16/27 ≈ 59.3 % of the 

power available in the wind flow [57]. Mechanical and aerodynamic 

inefficiencies of the turbine reduce the amount of power extracted from the 

wind flow further. Inefficiencies of a particular turbine are expressed as a 

coefficient of performance, Cp, a ratio of power extracted by a turbine, Pt, 

and the theoretical power in the wind, Pw; 

𝐶 =  
𝑃௧

𝑃௪
 

Equation 4 

The physical and mechanical limitations of a wind turbine mean that the 

estimated power output of a wind turbine is only a fraction of total power 

available in the wind. A full understanding of the wind speed and its 

variability at a site is therefore, vital when estimated potential power output 

of a wind turbine.  

Wind speed varies due to atmospheric conditions and synoptic variations in 

weather systems [14, 58]. Energy in the wind has been shown to peak at 

three timescales [59].  

Figure 5 shows the three peaks of the synoptic, diurnal and turbulent peaks 

of energy in the wind. Each of the three peaks of energy are the result of 

different factors, which cause wind speed variability.  
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Figure 5 — Energy spectrum of wind speed displaying synoptic, diurnal and 
turbulent peaks in energy in wind at 100 m. Reproduced from [59] 

Synoptic variability in the energy in the wind is the result of synoptic 

movements in weather systems in the atmosphere [14]. Driven by the 

geostrophic wind and the Coriolis effect, changes in the weather systems 

cause variations in the wind speed [14] over a timescale of days, as shown 

in Figure 5. Energy fluxes, in the form of heat in the atmosphere, cause 

diurnal variations in the energy in the wind [58]. As solar irradiance varies 

throughout the day, the magnitude of heat flux in the atmosphere alters, 

causing a variability in wind speed [14]. The diurnal variations in solar 

irradiance and surface heat fluxes result in the diurnal peak in energy in the 

wind [14]. Mechanical and convective turbulence from the surface causes 

the turbulent peak of energy in the wind [59]. Turbulence in the wind flow 

occurs over much shorter timescales, shown in Figure 5 with a peak in 

energy at a minute timescale [59]. However, turbulence in wind flow can 

occur on a timescale of a matter of seconds [58, 60].  

These different timescales must all be considered when assessing the wind 

resource of a prospective turbine site. To accurately describe the 

fluctuations of wind velocity due to turbulence, wind speeds must be 

captured at a timescale at or above 1 Hz, to ensure that the smallest 

fluctuations in wind speed are captured [61]. In order to capture the synoptic 

or diurnal peak, such a short timescale would be ineffective. For the peaks at 

larger timescales, wind speed must be captured either daily for the synoptic 
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or hourly for the diurnal peak. It is therefore impossible to capture all of the 

peaks in energy, using a single timescale for a model.  

The synoptic peak of energy in a site’s wind flow can however, be 

characterised by collection of long-term hourly wind speeds. It is therefore, 

suggested that within this research the use of hourly wind speeds would be 

most suitable, as it allows for two of the three peaks to be characterised 

whilst allowing a long term assessment required for wind resource 

predictions. Typically, hourly wind speeds are collected on-site as ten-minute 

mean wind speeds every hour.  While such a timescale for data collection 

allows the description of the diurnal and synoptic peaks, it does exclude any 

description of the turbulent peak in the energy of wind flow. To include such 

a description of turbulence would require extensive numerical modelling [62, 

63]. For an accurate computational fluid dynamics (CFD) model, the height 

and shape of buildings, trees and other surface obstacles, in addition to 

diurnal atmospheric conditions over each area considered is required [62]. 

For this research project, where the modelling domain was across Great 

Britain and over a timescale of years, the breadth and depth of data required 

to achieve this was unavailable and therefore turbulence could not be 

modelled in this project.  

While the modelling of turbulence is impractical for this research, it cannot 

be excluded completely. The influence of turbulence on wind speed at a site 

can be time averaged using similarity theory [64]. Time averaging of 

turbulent velocity fluctuations from surface elements allows for the influence 

to be included but averages out the influence over a longer timescale. 

Similarity theory is described further in Section 2.2.1.  

 Describing the wind resource  

Variability in the wind resource occurs when the wind speed at the selected 

timescale deviates from the mean wind speed. As discussed, the timescale 

in this project is at best hourly or derived from hourly data, in the case of 

long-term mean wind speeds from wind map data. Variability of a wind 

resource can be defined using the variance of the wind resource, σ2, which is 

the square of the standard deviation of a sample of hourly wind speeds. The 

variance of a sample of wind sample therefore describes how wind speed 

deviates from the mean value for the majority of the sample. The wind speed 

variability can be described statistically by fitting a probability distribution to 

the hourly wind speeds of a site [65]. Traditionally, for wind engineering 

applications, the probability distribution utilised is the two parameter Weibull 

distribution [65-67]. The two parameters of the Weibull distribution are the 
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shape parameter, k, and scale parameter, c, where, u, is a particular wind 

speed [67]. The probability density function, f(u), of a two parameter Weibull 

distribution [67] is expressed as; 

𝑓(𝑢) =  ൬
𝑘

𝑐
൰ ቀ

𝑢

𝑐
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Equation 5 

with the cumulative density function, F(u), expressed as [67]; 

𝐹(𝑢) = 1 − 𝑒𝑥𝑝
ିቀ

௨


ቁ
ೖ

 

Equation 6 

The Weibull parameters can be related to the mean wind speed, 𝑢ത௭, at 

height, z, of the distribution using the gamma function, Γ; 

𝑢ത௭ = 𝑐𝛤 ൬1 +
1

𝑘
൰ 

Equation 7 

The magnitude of the shape factor is directly related to the variance of hourly 

mean wind speeds at a site [68]. The relationship between the shape factor 

and the long-term variance of wind speed, σu
2, [69] can be expressed as; 

𝜎௨
ଶ =  𝑐ଶ ቆ𝛤 ൬1 +

2

𝑘
൰ − 𝛤ଶ ൬1 +

1

𝑘
൰ቇ 

Equation 8  

The long-term variance in the wind speed, σu
2, is composed of two partial 

variances, the synoptic variance, σw
2, and the diurnal variance, σd

2 of a site 

[70]; 

𝜎௨
ଶ ≈  𝜎௪

ଶ +  𝜎ௗ
ଶ  

Equation 9  

The influence of the synoptic or diurnal variability on wind speed differs with 

height, with the synoptic variance dominating at heights above 100 m [59] 

and diurnal variance, more influential closer to the surface [71]. The diurnal 

variance is therefore, the dominant factor when estimating power availability 

in near-surface wind flow which is collected by small and medium scale wind 

turbines, which will have hub heights under 100 m.   

Lower values of the Weibull shape factor represent a wind profile with a 

distribution of wind speeds with higher variance. A shape factor of 2.5 

indicates that the hourly wind speed deviates from the mean wind speed by 

a smaller margin than a value of shape factor of 1.5, where the variance in 

the sample is much greater, as seen in Figure 6 [13].  
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Figure 6 — Comparison of Weibull distribution shapes for differing values of 
shape factor with a constant scale factor of 5 

To estimate the Weibull parameters, a Weibull distribution can be fitted to 

hourly wind speeds. Hourly wind speeds can be collected through on-site 

anemometry.  

However, implementation of on-site anemometry is resource intensive, in 

terms of both time and money [72]. An on-site monitoring regime is required 

to be conducted for upwards of a year, typically 2 or 3 years, to ensure that 

all seasonal or annual variations in the wind are characterised [72]. These 

timescales result in a vast amount of data that must be collected, stored and 

analysed to produce a long-term on-site characterisation of the wind regime 

[72]. Such a monitoring regime could cost in excess of £15,000 for 2 years of 

monitoring at a height of 40 m [72]. The costs of on-site anemometry can be 

prohibitive for smaller wind turbine projects as the cost of such a 

measurement regime is unrealistic, relative to the planned level of 

investment [33].  

For projects where on-site measurement is not practicable, observational 

data can be obtained from one of the monitoring sites across the UK 

operated by the Met Office. The Met Office Integrated Data Archive System 

(MIDAS) sites records the hourly wind speed on-site in conjunction with 

other atmospheric conditions [73]. This observational data from a local 
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MIDAS site can provide a description of wind speed variability at a 

prospective site. However, wind conditions are liable to vary even a short 

distance from the MIDAS site. Differences in the surface roughness 

conditions between the observational and prospective sites can result in 

differing amounts of turbulence in the wind causing different wind speeds. 

Use of the observational data from MIDAS sites is therefore, inappropriate to 

determine wind speed at prospective sites, where there are significant 

changes in topological or surface roughness conditions from the monitoring 

site.  

For sites where no observational data is available or the local MIDAS data is 

considered unsuitable, alternative methods must be utilised to assess a 

site’s available wind resource. Using empirical or statistical methods [11, 33, 

74], modelling of a site’s wind resource can be undertaken.  

Modelling of the wind resource requires an understanding of the governing 

principles which influence wind flow. When estimating wind resource for 

small and medium scale wind turbines, whose hub heights are exclusively 

located within the atmospheric boundary layer, an understanding of wind 

flow in the boundary layer is therefore required.  

2.2 Boundary layer wind flow  

A boundary layer is formed within the atmosphere due to the underlying 

atmospheric subsystems that control the fluxes in energy, mass and 

momentum [75]. The atmospheric boundary layer is directly influenced by 

frictional drag, evaporation and transpiration of atmospheric moisture and 

heat transfer, both within the air and to and from the surface [58].  

The height of the boundary layer can extend from tens of metres up to a 

couple of kilometres [75], depending on the atmospheric processes 

occurring at the time. The height of the boundary layer varies diurnally [14] 

and is dependent on the roughness and topography of the surface and heat 

flux to and from the surface [14, 58, 75]. During the daytime, sunlight heats 

the Earth’s surface causing a transfer of heat into the cooler upper 

atmosphere [14]. The vertical mixing caused by heat flux from the warming 

surface causes the boundary layer to reach a kilometre in height [14]. During 

the night-time, this heat flux is reversed as the Earth’s surface cools and 

buoyancy forces in the atmosphere suppress mixing and reduce boundary 

layer height significantly [14].  
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Figure 7 — Schematic diagram of the atmospheric boundary layer. Taken 
from [58] 

Within the atmospheric boundary layer, there are multiple internal layers 

which are influenced by differing atmospheric phenomena that govern the 

wind flow in these layers [75]. Figure 7 provides a diagrammatic 

representation of the boundary layer structure [58].  

The turbulent surface layer is characterised by fully developed turbulence 

[75], as a result of convection and roughness at the surface [58]. Momentum 

fluxes in the atmosphere caused by drag at the surface and convection from 

the surface, result in the movement of turbulent eddies vertically in the 

turbulent surface layer [58]. As these eddies move vertically in the 

atmosphere, they mix with existing fluid in the layer [58]. During the mixing of 

the eddies, shear stress between the layers with differing velocities is 

produced, contributing to the turbulent flow in the layer [75].  

Below the turbulent surface layer is the roughness sub-layer [58] where flow 

is highly dependent on the roughness of the surface. The elements of 

roughness at the surface cause complex air flow [58]. The complexity of flow 

is dependent on the spatial distribution, size and shape of the roughness 

elements [14]. Wind flow velocity in these different sub-layers is influenced 

by the differing atmospheric fluxes in each layer [14]. The vertical wind 

profile of velocity can be described as a function of height and the magnitude 

of these fluxes [14].  

The vertical velocity profile of wind flow is also dependent on the stability of 

the atmosphere [58]. Atmospheric stability is understood by considering the 
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likely movement of a parcel of air within the atmosphere [14]. As the parcel 

of air moves vertically in the atmosphere, it’s volume increases as 

atmospheric pressure decreases [14]. The vertical movement of the air is 

adiabatic and as it rises, the temperature of the air parcel decreases [14]. 

When the temperature of the air and surrounding atmosphere are equal, 

equilibrium is reached and vertical movement ceases [14]. Vertical mixing in 

the atmosphere occurs when numerous parcels of air are displaced 

simultaneously due to the difference between the bulk temperature of the 

atmosphere and the temperature of the air parcels [14]. The degree of 

vertical mixing is therefore dependent on the variation of temperature with 

height in the atmosphere [14]. At the simplest level, atmospheric stability is 

categorised under three types of conditions; 

Unstable conditions occur when buoyancy forces enhance vertical mixing in 

the atmosphere due to greater heat flux from the surface [58]. Vigorous 

mixing occurs as air parcels rise due to the temperature decreasing rapidly 

with height [14]. Vigorous mixing causes a greater degree of turbulence in 

the atmosphere [14]. 

Stable atmospheric conditions are prevalent when the buoyancy forces 

restrict vertical mixing. Vertical mixing is dampened by cooling of the 

surface. The vertical profile of temperature is shallow as temperature 

variations with height are minimal [14].  

Neutral atmospheric conditions occur when heat flux from the surface is 

virtually zero. The vertical movement of the air parcel therefore reaches an 

equilibrium quickly, as the temperature differential between the air and 

atmosphere is minimal [58]. 

To allow for the modelling of wind resource in the boundary layer, a 

simplification of these processes, by assuming a neutral boundary layer 

where the thermal effects are insignificant, can be utilised. Typically, neutral 

conditions yield higher wind speeds, which are preferential for wind energy 

applications. However, at sites where non-neutrality must be considered, 

stability parameters can be introduced to account for their influence on wind 

speed [76]. In this research, stability was not considered during the 

prediction of mean hub height wind speed and this decision stemmed from 

two factors. The research was developed in part to analyse the accuracy of 

long-term mean wind speed predictions from the MCS and BLS 

methodologies. Each of these methodologies utilised decadal mean wind 

speeds. To derive a suitable and accurate stability parameter would require 

a large amount of historical observational data, from which to estimate 
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atmospheric stability. Such levels of data were unavailable and therefore 

precluded the use of stability in this part of the research. Additionally, the 

diurnal nature of atmospheric stability should be considered only when the 

influence of atmospheric stability can be examined on hourly wind speeds 

and use of a long-term mean wind speed prevented this. The research also 

utilised hourly Numerical Weather Prediction (NWP) data as input data to the 

scaling methodologies. Stability was not considered in this case, as the raw 

NWP data contained an estimation of atmospheric stability from the NWP 

models from which it is derived. Therefore, an additional stability parameter 

would be liable to overestimate the influence of atmospheric stability on 

mean hub-height wind speed and was excluded from this research. A further 

and more in-depth description of the scaling methodologies and input 

datasets utilised within this research is provided in Chapter 4. 

For small and medium scale wind turbines, where hub heights are 

traditionally below 100 m, it is the turbulent surface layer and roughness 

sub-layer which are the most vital to understand. It is within these layers that 

a small and medium scale wind turbine will operate and therefore, it is the 

flow within these layers which must be estimated in a wind resource 

assessment. To estimate the wind speed, the complex processes that 

influence wind flow in the differing sub-layers of the boundary layer must be 

expressed numerically [64]. 

 Similarity theory  

The atmospheric fluxes occurring within the turbulent surface layer cannot 

be effectively described using first principles [14], due to the presence of 

turbulence that causes rapid variations of the wind speed [64]. To estimate 

wind speed within the turbulent surface layer, Monin-Obukhov similarity 

theory can be used [14, 64]. Similarity theory is most appropriately applied 

for onshore sites, where the proposed turbine will have a hub height under 

80 m [77]. Additionally, similarity theory is most appropriate in non-urban 

areas, where the complexity of the terrain and surface obstacles is low. 

Similarity theory is therefore ideal for this research, which is focused on wind 

resource assessment for onshore turbines in non-urban areas. Similarity 

theory provides a description of how atmospheric fluxes affect wind flow in 

the boundary layer [64]. A number of relationships, which average the 

effects of turbulence in the flow, have been developed to create a theory of 

similarity between dimensionless groups [14].  

Similarity theory assumes neutral atmospheric stability and states that the 

mean wind speed has a logarithmic vertical profile in the atmosphere [64]. 
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Mean wind speed is initially derived from the fluctuations of the velocity 

components, due to turbulence as a function of height, z.  

Turbulent fluctuations in the horizontal, u’, and vertical, w’, velocity 

components are assumed to be proportional to the vertical wind speed 

gradient, ∂u/∂z, when expressed in relation to the Prandtl mixing length, l, 

the averaged length-scale of turbulent eddies in the flow;  

𝑢ᇱ =  𝑤ᇱ =  𝑙
𝜕𝑢

𝜕𝑧
 

Equation 10 

The shear stress, τ, acting upon the air flow, due to vertical mixing can be 

expressed by averaging the, u’, and w’, fluctuations in the velocity 

components and incorporating the density of the air, ρ; 

𝜏 =  −𝜌𝑢ᇱ𝑤ᇱതതതതതത =  𝜌𝑙ଶ
𝜕𝑢

𝜕𝑧
ฬ
𝜕𝑢

𝜕𝑧
ฬ  

Equation 11 

To express the shear stress in terms of velocity, a measure of the effect that 

shear stress has on mean wind speed is introduced [58], known as the 

friction velocity, u*;  

𝑢∗ =  ඨ
𝜏

𝜌
 

Equation 12 

The original formulation of the Prandtl mixing length related to wall bounded 

flows and stated that the mixing length was constrained by the presence of 

the walls. In the boundary layer context, the surface is considered to be 

equivalent to the wall and the mixing length is therefore proportional to 

height, z [75];  

𝑙 =  𝜅𝑧 

Equation 13 

The proportionality constant, κ, is the Von Kármán constant which has been 

shown to range in value between 0.32 [78] and 0.43 [79]. However, the 

value of 0.40 is generally accepted for turbulent flow over smooth or rough 

surfaces [78].  

The friction velocity and the Prandtl mixing length description of the velocity 

fluctuations can be combined into the wind shear equation; 

 
𝑢∗

𝜅
 = 𝑧

𝜕𝑢

𝜕𝑧
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Equation 14 

The wind shear equation is then integrated between the surface and height, 

z, for the mean wind speed, ūz; 

 න 𝜕𝑢
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Equation 15 

𝑢തതത =  
𝑢∗

𝜅
log ൬

𝑧

𝑧
൰ 

Equation 16 

where, z0, is the roughness length of the surface.  

The wind speed equation derived under similarity theory is a time-averaged 

approach. As discussed in Section 2.1, this approach averages the effect of 

turbulence occurring on shorter timescales. This approach allows the 

influence of mechanical turbulence to be included within wind speed 

modelling. The mean wind speed equation is only strictly valid for neutral 

conditions [64]. When the neutral assumption is invalid, a stability parameter 

can be included in the mean wind speed equation to characterise the 

turbulence in the wind flow, due to buoyancy [76]. However, as discussed in 

Section 2.2, atmospheric stability was assumed to be neutral during this 

research.  

This derivation shows that mean wind speed is a function of both height and 

the roughness of the surface. Determining the roughness of the surface is 

therefore of vital importance when modelling the wind resource of a site.  

 Surface roughness 

The surface creates turbulence in the wind flow through surface drag and 

forced convection [58]. The aerodynamics of the surface must be 

understood to determine the magnitude of the frictional effects on the 

momentum of wind flow.  

The roughness of the surface is a function of the surface morphology and 

the frictional elements at the surface [11, 58]. Surface morphology and 

frictional elements, such as buildings or trees, create drag at the surface that 

affects the momentum of wind flow [11]. The magnitude of the frictional 

effects is dependent on the spatial size, distribution or density of the 

roughness elements at the surface [14]. Surface drag on wind flow is 

greatest in urban areas, where the density and size of frictional elements are 

highest due to the greater number of large buildings [80]. In forested areas, 
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a comparatively high roughness length is used to account for the frictional 

effect of trees on wind flow [81]. In rural areas, the density and distribution of 

roughness elements is much lower, causing the surface roughness to be 

lower [81].  

The frictional effect on wind flow momentum from the surface must be 

parameterised during wind speed modelling [14]. The parameterisation of 

surface roughness results in a set of aerodynamic parameters that describe 

the frictional effects of surface drag on wind flow [14]. The surface 

aerodynamic properties of surface roughness length, z0, zero-plane 

displacement height, d, and canopy height, zch, were the aerodynamic 

properties, utilised in this research, to describe the frictional effects of the 

surface [11].  

Surface roughness length, z0, is a parameterisation of the drag force exerted 

by surface frictional elements on wind flow [14]. Zero-plane displacement 

height, d, is the effective height of the displaced surface, due to the 

presence of multiple roughness elements [14]. Canopy height, zch, is the 

geometric mean height of roughness elements, such as buildings or trees 

[82]. Zero-plane displacement height and canopy height only become 

influential where the number of roughness elements at the surface is higher, 

such as suburban, urban [80] or densely forested areas [14]. In more rural 

areas, zero-plane displacement height is set to zero as the density of 

roughness elements is low [33]. To account for the zero-plane displacement 

phenomena, the mean wind speed equation can be adjusted to include the 

zero-plane displacement height, d;  

  

𝑢௭തതത =  
𝑢∗

ĸ
log ൬

𝑧 − 𝑑

𝑧
൰ 

Equation 17 

Experimental derivation of the surface roughness is possible on individual 

sites, where data on the vertical wind profile is available [14]. The nature of 

this project, and the desire to offer wind resource assessments on sites 

where no experimental data is available, dictates that parameterisation of 

the surface roughness was necessary. Parameterisation of the surface 

roughness can be undertaken through analysis of the vegetative land cover 

of a site and a body of experimental literature [81, 83, 84]. Using a land 

cover map, the vegetative land cover can be parameterised to surface 

roughness values [33]. A land cover map for the UK exists [85] from which 

surface roughness can be parameterised. Typical values of surface 
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roughness length stated in literature, range from 0.1x10−5 m for still open 

water [14] to 2 m for large cities with heterogeneous building heights and 

layouts [81].  

As with the surface roughness length, the zero-plane displacement height 

can be determined experimentally, either through field tests, wind tunnel 

experiments or use of morphometric methods [82]. Experimental methods 

involve measurements of the vertical wind profile, from which the zero-plane 

displacement height can be calculated [82]. Morphometric methods calculate 

the zero-plane displacement height from the plan and frontal area of 

buildings [80, 82]. However, both experimental and morphometric methods 

require field data to calculate the displacement height. In the absence of 

experimental data, approximations from previous work [86] for both the 

displacement height and the canopy height can be utilised. While the 

approximation of displacement height differs between vegetative land covers 

[87, 88], an approximation for all land surfaces, relating the parameters of 

surface roughness, displacement height and canopy height has previously 

been suggested [86];  

 𝑧 = 10𝑧 , 𝑑 =  
2

3
𝑧  ∴ 𝑑 =  

20

3
𝑧 

Equation 18 

The approximations of displacement and canopy height are both based upon 

the value of surface roughness. This highlights the importance of the surface 

roughness parameterisation when estimating mean wind speed. This places 

a heavy burden on the parameterisation process to yield suitable and 

realistic surface roughness values.  

Parameterisation of the surface roughness is required as the land cover of 

Great Britain is not homogenous. If the land cover was homogenised, a 

single value of surface roughness would be applicable when estimating wind 

speed. The presence of differing surface roughness patches leads to the 

consideration of how wind flow is influenced as it flows over these differing 

patches.  

 Internal boundary layer formation 

As wind flows from one patch of surface roughness to another, the wind flow 

must adjust to the new surface roughness characteristics [89]. Adjustment of 

the wind flow over the new patch of roughness occurs as differing roughness 

patches have differing aerodynamic and likely thermodynamic properties. 

These differing properties of the surface influence the magnitude of 

mechanical and convective turbulence induced in the wind flow. An internal 
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boundary layer (IBL) forms at the interface of the different patches of surface 

roughness [89] as shown in Figure 8. Close to the ground, in neutral 

conditions, an equilibrium layer forms where the wind flow is completely 

adjusted to the new surface roughness [89]. Above this layer and within the 

bulk of the IBL, a blending layer exists, where the vertical velocity gradient is 

gradually adjusting from the logarithmic form of the initial roughness to the 

logarithmic form of the downstream roughness [89].  

 

Figure 8 — Representation of the internal boundary layer growth at the 
transition of different surface roughness patches. Reproduced from [90] 

The size, growth rate and distance over which the adjustment of the wind 

profile occurs is related to the ratio between the roughness patches [89]. The 

vertical wind profile will adjust quickly between two patches of similar 

roughness compared to the time required to adjust to the change between 

two dissimilar roughness patches. The calculation of IBL depth can vary in 

complexity based upon surface characteristics, stability effects and 

atmospheric fluxes [89-91]. While the growth of an internal boundary layer 

will influence the wind speed, the transition over only two surface roughness 

patches is considered as an isolated case. Transition of the wind flow over 

multiple varied roughness patches is a more realistic scenario. Calculation of 

the effect that multiple patches of differing surface roughness on wind speed 

is therefore of greater importance when a realistic estimate of wind speed is 

desired.  
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Differing patches of surface roughness in close proximity will each influence 

wind flow differently and at each interface of surface roughness patch, an 

internal boundary layer will form, as seen in Figure 9 [92]. Each of the IBLs 

will influence the wind speed differently [92].  

 

Figure 9 — Representation of the multiple internal boundary layer growth and 
the concept of blending height. Reproduced from [93] 

A method of describing and quantifying the differing effects from each IBL on 

wind speed is required, while maintaining consistency with similarity theory 

[94]. Similarity theory was originally developed for homogenous surfaces 

[64, 94]. In order for similarity theory to be applicable over heterogeneous 

surfaces, further aerodynamic parameters must be developed [92, 94, 95]. 

Similarity theory is applicable above the blending height, zbh, of a 

heterogeneous surface [95]. Blending height is the height in the atmospheric 

boundary layer, where the influence of each IBL and the frictional effect of 

each surface roughness patch is homogenised [95]. At this height, the 

surface can be considered homogenous and therefore the assumptions of 

similarity theory are valid. At the blending height, the roughness of the 

surface will also be homogeneous [92]. To estimate wind speed at the 

blending height, a description of the roughness of this ‘homogenised’ surface 

is required. This roughness, known as effective roughness, z0eff, is 

equivalent to the surface stress resulting from each patch of the 

heterogeneous surface roughness [92].  
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The parameters of blending height, zbh, and effective roughness, z0eff, are 

known as the regional aerodynamic parameters. Methods of calculating 

regional aerodynamics can range from simple approximations [92] to 

complex computational fluid dynamic simulations of the surface and resulting 

IBL [94]. The basis of all methods of regional aerodynamic calculation is 

however, the surface roughness values [92-95]. This, once again, highlights 

the importance of the surface roughness parameterisation.  

Calculation of the blending height must capture how the different surface 

roughness patches cause fluctuations in the wind speed [92, 94]. By 

determining how each surface roughness influences wind flow individually, 

the growth of the internal boundary layers from each patch can be tracked 

[94]. Tracking of the boundary layer must be examined over a sufficient 

distance of the fetch, to ensure that appropriate variation in surface 

roughness is captured [94]. The required size of the fetch has been shown to 

be a tenth of the suggested boundary layer height [96].  

 Blending height 

A method for calculating blending height which tracks the growth of internal 

boundary layers, using a variability scale has been developed by Bou-Zeid 

et al. using CFD simulations [94]. This method was further extended to 

account for the complex and varied changes in surface roughness [97]. Use 

of a variability scale allows the fluctuations in wind velocity, due to differing 

surface roughness to be quantified in the blending height calculation [97].  

Tracking the growth of the internal boundary layer assesses the turbulent 

velocity fluctuations, due to changes in upwind surface roughness, z0,i, as a 

function across the whole upwind fetch [97]; 

𝑑𝑢ᇱ൫𝑧,௧൯ = ቀ𝑢ᇱ൫𝑧, + 𝑧,௧൯ − 𝑢ᇱ൫𝑧,൯ቁ
ଶ

 

Equation 19 

where the likely turbulent velocity fluctuations, u’, induced by a change in 

surface roughness are compared to the likely turbulent velocity fluctuations 

from the preceding patches of surface roughness, z0,t, in the fetch.  

The inverse ratio of the maximum likely turbulent velocity fluctuations, max 

du’, and mean likely turbulent velocity fluctuations, 𝑑𝑢ᇱ(𝑧,௧
തതതതതതതതതത), in the fetch is 

integrated over the characteristic length scale, Ld, of the fetch to estimate the 

variability scale, Lp, of the fetch; 



- 42 - 

𝐿 =  න ቈ1 −  
𝑑𝑢ᇱ(𝑧,௧
തതതതതതതതതത)

max 𝑑𝑢ᇱ
 𝑑𝑧,௧





 

Equation 20 

The term, Ld, is suggested as the length of the longest path of the upwind 

fetch examined. The variability scale, Lp, can then be utilised to solve for the 

blending height, zbh, iteratively;  
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Equation 21 

where, z0,i, is the roughness length of each patch, fi, is the fraction of the 

fetch which the roughness length covers and N, is the number of patches in 

the fetch. 

Effective roughness must be calculated once the blending height has been 

estimated. Effective roughness will vary with height as the frictional effect of 

the surface diminishes with distance. Effective roughness, as previously 

described, is the spatially averaged roughness of the surface of the whole 

fetch expressed as a single value. Use of the whole fetch requires a 

blending method to calculate effective roughness [11]. An example of the 

fetch used within this research is provided in Chapter 4. 

The blending method for effective roughness initially blends the differing 

friction velocity from two different but equally sized patches of surface 

roughness [11]; 

𝑢∗
ଶ =  

1

2
(𝑢∗ଵ

ଶ + 𝑢∗ଶ
ଶ ) 

Equation 22 

At the blending height, the vertical wind profile is fully adjusted with the 

homogenised roughness of the surface. The friction velocity can then be 

expressed in terms of the roughness length of each patch, z0,1 and z0,2; 

ቆlog ቆ
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Equation 23 

This formulation of effective roughness, z0eff, over two roughness patches 

can be extended to include the whole fetch over which the blending height is 

calculated; 
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Equation 24 

where fi is the fractional size of each patch of roughness in the fetch.  

This blending method allows the effective roughness to be calculated based 

upon the blending height and underlying roughness at surface. The blending 

method can be extended using an effective displacement height, deff, to 

include the zero-plane displacement height, in areas which warrant it. 

Effective displacement height is applied in fetches where the density of the 

roughness elements causes the zero-plane height of mean wind speed to be 

above the surface. Such fetches are likely to be predominately over urban, 

suburban or forested areas. No rigorous analytical method is available for 

the calculation of effective displacement height [11]. An approximation from 

the effective roughness value, identical to the displacement height 

approximation from surface roughness values provided in Section 2.2.2, is 

therefore suggested for this research. These factors of surface and regional 

aerodynamics must be considered when estimating wind speed in the 

boundary layer. 

2.3 Wind resource assessment in the boundary layer  

Description of wind flow in the boundary layer must be central to a wind 

resource assessment at a prospective wind turbine site. Wind resource 

estimation is a vital part of a prospective turbine’s feasibility study [32], 

particularly at the initial stages of the project. For small and medium turbine 

projects, where project budgets can be limited, the cost of a wind resource 

estimation must be as low as possible. To conduct a quick, cheap but 

effective assessment of wind resource, a desk study is undertaken [52]. At a 

minimum, this desk study should provide an accurate prediction of mean hub 

height wind speed and power density in the wind flow, for which annual 

energy production of the wind turbine can be estimated [33].  

To achieve a prediction of mean hub height wind speed, an initial 

assessment of wind resource will utilise a wind map to provide the reference 

wind climatology [33, 52]. Within the UK, two observational based wind 

maps, which provide a long-term mean wind speed are available, the 

Numerical Objective Analysis of Boundary Layer (NOABL) [98] and National 

Climatic Information Centre (NCIC) [99]. However, these wind maps can 

only provide a long-term mean wind speed for each 1 km2 grid square. From 
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the mean wind speeds of the wind maps, power density cannot be estimated 

and the use of a fixed Weibull shape factor to represent wind speed 

distribution and from which power density can be estimated has been 

suggested [11]. However, both power density and hub height wind speed 

can be estimated from the hourly time-series of wind speeds available from 

Numerical Weather Prediction (NWP) data. NWP wind speed data was 

provided for this research by the Met Office, from their UK4 and UKV NWP 

models [100]. These NWP models estimate hourly wind speed at resolutions 

of either 4 km or 1.5 km for UK4 and UKV respectively [100]. These 

reference wind climatologies are discussed in greater detail in Chapter 4. 

 Boundary layer scaling methodologies 

For small and medium turbine projects, NOABL data, which is freely 

available, has been utilised in the reference wind climatology [32]. However, 

multiple studies have questioned the accuracy of NOABL [11, 31, 101, 102]. 

To address the inaccuracies in NOABL wind speed data, a correction 

methodology was introduced [33, 101]. The original methodology has been 

superseded by a correction methodology, as part of the Feed-in Tariff 

accreditation process [27].  

As discussed in Chapter 1, the correction methodology introduced as part of 

the Feed-in Tariff accreditation process is known as the Microgeneration 

Certification Scheme (MCS) wind resource assessment [27, 31]. The MCS 

methodology is a component of the installer’s standards, which must be 

completed for accreditation to be awarded and payments received for 

energy generation by a wind turbine installation [27]. The methodology is 

described as “a simple method using freely available wind speed data 

(NOABL) and simple tabulated correction factors for the local terrain, 

obstructions and turbine height, and hence has a relatively high degree of 

uncertainty” [27]. Implementation of the MCS methodology has been shown 

to improve the accuracy of wind speed predictions when compared to 

unscaled NOABL [31]. Installers are advised to provide other wind speed 

estimates for the site, however, they are informed to treat the results of each 

methodology equally [27]. Despite this caveat, it is entirely possible that the 

MCS methodology could be viewed as a suitable estimation of a site’s wind 

speed given the equal weighting. There are severe flaws within the MCS 

methodology, which excludes any description of surface roughness or 

internal boundary layer formation in the upwind fetch. These flaws suggest 

that the MCS methodology is unsuitable for providing accurate wind 
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resource estimates. An alternative approach to the correction of reference 

wind climatologies, such as NOABL is required.  

Boundary layer scaling (BLS) models offer an alternative methodology to 

estimating wind speed in the boundary layer. BLS models for estimating 

wind speeds for small and medium scale wind turbines have previously been 

published [11, 33, 49]. Originally developed by Best et al. for the Met Office 

[11], the approach involves scaling a reference wind climatology from the 

surface level at 10 m, up to a reference height, before scaling down to the 

blending height and then to the hub height [11, 33]. Two studies have 

utilised 8 classifications of surface roughness on a 1 km resolution as part of 

a BLS model [11, 33]. As previously stated, the importance of surface 

roughness in boundary layer wind speed estimation questions whether 8 

classifications offer sufficient breadth to a BLS model. Additionally, a UK 

land cover map is available on a finer spatial resolution than 1 km [85]. It is 

argued here that surface roughness could be parameterised in this research 

on a finer resolution than 1 km into a greater number of surface roughness 

classifications. In both studies, blending height is assumed to be the larger 

of 10 m or twice the canopy height [11], which results in blending heights of 

between 10 m and 40 m [11]. For areas of highly variable surface 

roughness, blending height has been shown to be significantly higher than 

40 m [94]. The use of these blending height approximations is therefore 

considered unsuitable and an alternative approach to blending height 

calculation is required in this research.  

Weekes and Tomlin increased the size of the upwind fetch to 2 km [33] from 

the 500 m fetch in the original Met Office study [11]. The increase in the size 

of the fetch is based upon a study which indicates that the fetch size must 

exceed by a factor of ten, the reference height [96], which is set at 200 m in 

the Weekes study [33]. In the original Met Office study, regional 

aerodynamics are calculated for the whole fetch, independent of wind 

direction [33]. However, the fetch is split over the four cardinal directions in 

Weekes [33] for the calculation of the regional aerodynamics. Another study 

has also extended the directional dependent calculation of regional 

aerodynamics further into 8 wind direction sectors of 45° [49].  

Both studies have utilised NCIC data as the reference wind climatology [11, 

33] and Weekes and Tomlin complimented this with use of NOABL data as 

an additional reference wind climatology [33]. In the Met Office study, no 

validation of the wind speed estimates is presented [11]. However, Weekes 
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does provide validation for both wind speed and power density predictions 

over 38 sites [33].  

Only NCIC data was utilised in the modified BLS model of Weekes and 

Tomlin, as during the initial comparison, BLS NCIC wind speeds was shown 

to have lower errors than BLS NOABL wind speeds [33]. BLS NCIC 

achieved wind speed predictions with a mean absolute error of 0.70 ms−1 

and mean percentage error of 19.1 % compared to wind speed predictions 

with errors of 0.84 ms−1 and 22.7 % achieved with BLS NOABL [33]. In the 

modified approach, the wind speed predictions were improved achieving 

errors of 0.52 ms−1 and 16.2 %, when using a larger fetch and the 

directionally dependent regional aerodynamic calculations [33]. The adoption 

of the modified approach highlights its ability to offer more accurate wind 

speed predictions with a larger fetch and directionally dependent regional 

aerodynamics. However, the errors achieved suggest that further 

improvements could be introduced to the BLS model in this research to 

further improve wind speed accuracy.  

Within the study, Weekes and Tomlin examined the sensitivity of fetch size, 

concluding that a fetch of 4 km, effectively assessing 2 km upwind from the 

site was the most appropriate fetch size [33]. Based upon this analysis, it is 

concluded that a fetch of 4 km is the most appropriate for this research. 

Further improvements available to this research have been identified with 

the inclusion of the parameterisation of more surface roughness 

classifications and the introduction of a calculation of the blending height.  

A land cover map, from which surface roughness can be parameterised, is 

available on a 25 m resolution [85]. Theoretically, surface roughness can 

therefore be parameterised at 25 m. However, this would be exceptionally 

computationally intensive. The resolution of parameterised surface 

roughness is therefore limited by computational resources. The availability of 

a land cover map at such a fine resolution suggests that the resolution of 

surface roughness that can be achieved in this project is finer than 1 km. In 

addition to a finer resolution of surface roughness, the use of 8 surface 

roughness classification can be extended. The use of 13 surface roughness 

classifications has previously been presented [103] and extension of the 

breadth of surface roughness classification in this research could offer 

significant improvements in the accuracy of BLS wind speed predictions.  

An extension of the breadth of surface roughness classifications is 

predicated on the selected land cover map being able to offer sufficient 

distinction between land uses. Surface roughness is highest in urban and 
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suburban areas [11, 81, 82, 84]. Ideally, a land cover map would offer clear 

distinctions between the differing densities of urban land use to allow for the 

surface roughness of each to be parameterised [82]. However, the land 

cover available for Great Britain offers only two urban categories for urban 

and suburban areas [85]. This will limit the extension of surface roughness 

parameterisation and thus predicted BLS wind speeds in these areas. 

However, BLS modelling can be applied successfully to urban areas with 

appropriate parameterisation of the urban fabric using a morphometric 

model [63]. While this research will predict wind speed in the urban centres 

of Great Britain, no validation will be presented as urban areas are not the 

focus of this research. The breadth of land uses available in more rural 

regions is more applicable for small and medium scale wind turbines, where 

future deployment in the market is more likely [104]. The extension of the 

surface roughness breadth is therefore a suitable improvement available to 

the BLS model in this work.  

The introduction of a finer resolution of surface roughness parameterisation 

leads to questions on whether the estimation of blending height can be 

improved in the proposed BLS model. Increased resolution of surface 

roughness will lead to a parameterisation of the surface with a higher degree 

of variability. High variability of surface roughness causes multiple IBLs to 

form [93] and therefore an approximation of blending height [11] is 

considered insufficient to characterise the regional aerodynamics of a site. 

The calculation of blending height, presented in Section 2.2.3, offers an 

analytical approach to estimating blending height. Introduction of this 

analytical method for blending height estimation can be extended to a 

greater number of wind direction sectors. Weekes and Tomlin utilised four 

wind direction sectors [33], while a study at an urban site utilised eight wind 

direction sectors [49]. Use of a greater number of wind direction sectors in 

study of the urban site suggests that in areas with greater surface roughness 

variability, additional wind direction sectors may also offer better 

characterisation of regional aerodynamics. A BLS model with a finer 

resolution of surface roughness would benefit from additional wind directions 

and it is suggested that twelve, rather than eight, wind directions are 

implemented. Implementation of twelve wind directions of 30° with the finer 

resolution of surface roughness allows any surface roughness variability, 

which influences regional aerodynamics, to be characterised to a greater 

degree. This approach aims to better describe upwind conditions and 

therefore contribute to more accurate wind speed predictions from this 

proposed BLS model in this research. The proposed BLS model and the 
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specifics of the improvements detailed in this section are discussed further in 

Chapter 4.   

 Power density scaling methodologies  

In addition to improvements to the BLS model, the accuracy of power 

density predictions must be considered. Power density is an important facet 

of a desk based wind resource assessment at initial project stages. From the 

power density, the annual energy production of a proposed wind turbine can 

be estimated. 

As discussed previously, the variability in the wind speed is described 

statistically using the Weibull distribution. The Weibull shape factor has been 

shown to be the appropriate factor to describe diurnal variability of near-

surface wind speeds and therefore, the power density available in the wind 

flow [33]. Power density available in the wind is a dimensionless metric [33] 

which allows prospective adopters to understand likely turbine power output, 

irrespective of turbine size or efficiency. Power density of the wind flow, Pd, 

can be estimated from the shape factor, k, and the mean wind speed, ūz, of 

the site [33, 105]; 
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Weekes was unable to offer accurate power prediction using a fixed shape 

factor of 1.8 [33]. A fixed shape factor of 1.8 was originally suggested by 

Best et al. [11]. This factor was derived from the wind speed distribution at 

sites across Europe [106]. Using a fixed shape factor and the modified 

approach, power predictions with a 63 % mean percentage error were 

achieved by Weekes [33]. An approach to power density predictions with 

such a high degree of error are unsuitable as part of a wind resource 

estimation.  

Power density in the wind flow is a function of the variability in the wind 

speed [70]. As discussed, long-term variability in wind speed is composed of 

synoptic and diurnal variability in the wind speed [70]. The influence of the 

synoptic or diurnal variability on wind speed differs with height, with synoptic 

variability dominant at heights above 100 m [59] and diurnal variability more 

influential closer to the surface [71]. The hub heights of small and medium 

scale wind turbines are likely to be below 100 m. Therefore, the diurnal 

variability of wind speed is the factor which must be characterised when 

estimating power availability for small and medium scale turbines.  
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Diurnal variability in wind speed has been shown to be height-dependent, 

with the variability reaching a minimum at the mean reversal height of the 

diurnal cycle [70]. The reversal height is the mean height at which the diurnal 

wind cycle of each site changes phase, from its night time minimum near the 

surface, to the night time maximum higher in the boundary layer. Figure 10 

illustrates the reversal height phenomena with Weibull shape factors, 

recorded at various heights from two onshore sites in the US, published in a 

study by Wieringa [70].  

 

Figure 10 — Weibull shape factors at various heights of two US sites. 
Reproduced here using data taken from [70] 

This reversal height over land is estimated to be an mean height of 80 m 

[70]. However, field trials observed reversal heights of 40 m up to 177 m at 

onshore sites in both the US and the Netherlands [70].  

The relationship between diurnal variability and Weibull shape factor has 

been shown to be inverse [70]. The value of the shape factor is therefore 

height dependent [70]. The shape factor will reach a maximum over land at 

the reversal height where diurnal variability is at a minimum [70].  

The height dependence of the shape factor must therefore, be accounted for 

in the estimation of power density. Shape factor, ks, at the surface, zs, can 

be scaled vertically to account for the reversal height, zr, of the diurnal cycle 

of a site to estimate shape factor, k, at a selected hub height, z [70]; 

𝑘 =  𝑘௦ +  𝑐(𝑧 − 𝑧௦)𝑒
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Equation 26 

where, ck, is an empirical coefficient, calculated as the gradient of a linear 

regression fit of observed vertical shape factors of a site on a log scale 

against height [70]. In the literature, ck, is estimated to be between 0.022 and 

0.023 dependent on site location [70]. These values of ck, are taken from an 
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inland and coastal site respectively [70]. Selection of the most appropriate 

value will be considered during implementation of the shape factor scaling in 

this research. The vertical scaling of shape factor can therefore be 

considered when assessing power density. 

 Proposed research  

This review of current BLS model literature is motivated by a desire to 

understand if the current wind resource assessment techniques in the small 

and medium scale wind turbines market are suitable. Deployment of such 

turbines has been aided by the introduction of the Feed-in Tariff, as 

deployment has increased seven-fold since its introduction in April 2010 [12]. 

The stimulus to deployment provided by the Feed-in Tariff, increases the 

prominence of the MCS wind resource estimation methodology. The severe 

flaws identified in the MCS methodology raise questions over its suitability to 

support future wind turbine deployment.  

To assess the suitability of the MCS methodology, an analysis to compare 

the methodology with the proposed BLS model, described here, will be 

undertaken. No quantified comparison of the MCS has been undertaken 

before, with only a graphical comparison with raw NOABL data presented 

previously [31]. To assess the suitability of each methodology to support the 

future deployment of wind turbines, a definition of “sufficient accuracy” of the 

wind speed predictions from each methodology is required. Predictions of 

wind speed are liable to contain a degree of error, due to any assumptions 

implemented during the prediction process. While these assumptions may 

lead to error, they are a vital part of the prediction process to ensure 

expedient wind speed predictions are produced. The magnitude of the 

intrinsic error in a wind speed prediction, which is considered acceptable and 

will not detrimentally impact the wind resource estimation to a prospective 

consumer, must be determined. Validation of the wind speed predictions 

against observed wind speeds will identify the relative error in each 

prediction. These errors can be translated into estimated annual energy 

production, estimated annual payments under the Feed-in Tariff and 

estimated payback periods to understand how the errors in the wind speed 

prediction impact these metrics. Analysis of the differences in these metrics, 

with those produced using observational wind speeds, will allow a judgement 

on the definition of sufficient accuracy in a wind speed prediction to be 

conducted in this research.  

The proposed BLS model in this project extends advancements made to an 

original BLS approach [11] made by Weekes [33]. The introduction of an 
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analytical approach to regional aerodynamics calculations, over a greater 

number of wind direction sectors using an increased breadth of spatial 

resolution of the surface roughness values are proposed here as 

improvements to the BLS approach, which can be investigated in this 

research. These improvements to the BLS model, coupled with the use of 

NWP data as a reference wind climatology, are aimed at improving the 

accuracy of wind speed predictions. Use of scaled NWP data and 

introduction of a vertical scaling approach to Weibull shape factor are 

designed to improve the accuracy of power density predictions, compared to 

the use of a fixed Weibull shape factor alone.  

With these improvements to the BLS and power density prediction approach, 

it will be possible to determine if the accuracy of the wind speed and power 

density predictions is improved. The value of the improvements to the BLS 

model can be analysed against the results of Weekes [33]. More importantly, 

the ability of the proposed BLS model to offer more accurate wind speed and 

power density predictions than the MCS will be analysed. The proposed 

improvements to the BLS model and the comparison between the wind 

resource assessment methodologies are presented in Chapter 4.  
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Chapter 3 – Factors that influence wind turbine adoption 
patterns in Great Britain  

While the wind resource available to a small and medium scale wind turbine 

is likely to influence wind turbine adoptions, it is suggested here that other 

factors also play a role in an individual’s decision to adopt. In order to fulfil 

the potential of small and medium scale wind turbines in Great Britain and 

contribute to the energy system transition, the factors that influence wind 

turbine deployment must be determined. In determining the factors that 

influence wind turbine adoptions, it was possible to identify a number of 

policy strategies that could be implemented to promote future deployment. 

By examining the factors that influence both spatial and temporal wind 

turbine adoption patterns, it will be possible to answer the second, third and 

fourth research questions posed in Chapter 1. This chapter will establish the 

background for the analysis of the spatial and temporal factors which 

influence a decision to adopt a wind turbine in Great Britain. By reviewing 

the literature on the factors that have influenced previous adopters of other 

microgeneration technologies, it will be possible to identify the appropriate 

factors and analysis techniques required for this research.  

Determination of the influencing factors or motivations on an individual’s  

decision to adopt could be achieved through extensive survey work [53-55]. 

To conduct a survey on adopters of wind turbine receiving the FIT, personal 

information of each would need to be collected. Adopters agree a contract 

with a licensed electricity supplier who remunerates the adopters for energy 

generation under the FIT policy [25]. UK data protection laws prevent the 

licensed electricity suppliers from releasing any personal information about 

these adopters. Survey work was therefore not pursued as a methodology to 

determine the influencing factors on a decision to adopt a small and medium 

scale wind turbine in this research. Alternatively, an analytical approach 

examining the motivations and barriers to microgeneration uptake, identified 

in previous studies, was undertaken.  

The aim of this literature review is to identify the factors which have 

influenced adoption decisions of microgeneration technologies. Literature 

details the motivation and barriers to microgeneration technology adoption 

for those, who are at each differing stages of the installation process [54, 

55]. Ideally, this literature would focus solely on factors which influence a 

decision to adopt a small and medium scale wind turbine. However, due to 
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the comparatively small size of the microgeneration market, many studies 

have considered the influencing factors on the uptake of microgeneration 

technologies collectively [53-55, 107-109]. These influencing factors on the 

uptake of microgeneration will be considered, but with specific focus on the 

factors which are relevant to the uptake of small and medium scale wind 

turbines in Great Britain.  

3.1 Motivations and barriers to uptake  

The motivations and barriers experienced by microgeneration adopters can 

be considered as either financial or non-financial [53-55]. Non-financial 

factors that influence a decision to adopt can be further considered as either 

informational or environmental concerns of the adopters [54, 55]. 

Informational concerns are centred on a potential adopter’s ability to acquire 

impartial information, regarding the likely performance of a microgeneration 

technology, while the self-sufficiency concerns are borne out of potential 

adopter’s desire to protect against rising fuel prices [54, 55].  

Financial barriers to the adoption of microgeneration technologies are 

considered the most important by potential adopters and those who have 

previously installed a microgeneration technology [53-55]. Both those 

considering adoptions and those that have previously adopted have 

identified the capital costs of an installation as most important [54, 55]. In a 

2011 survey undertaken to review the performance of the FIT, 93 % of 

respondents considering a microgeneration installation have contemplated 

delaying the installation until the capital costs of installation reduce [55].  

Financial barriers are extremely prevalent in the wind turbine market, where 

capital costs range from between £2,000 and £6,000 per kW installed [21]. 

When presented with similar cost estimates for a wind turbine installation,  

60 % of respondents suggested they were higher than expected [55]. 

Prospective wind turbine consumers have identified a willingness-to-pay 

(WTP) of between £1,288 [110] and £1,685 per kW installed [108]. These 

WTP estimates are significantly different from the current capital costs of a 

small and medium scale wind turbine. The difference between the current 

price per kW of a wind turbine and the WTP figure demonstrates that 

individuals who have previously installed a wind turbine are likely to have a 

higher WTP than suggested by either Scarpa [110] or Claudy [108]. This 

highlights that the WTP of each individual is subjective [108] and current 

wind turbine adopters were likely to have a higher WTP because they were 
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able to access sufficient capital to afford the current capital costs of an 

installation.  

If a prospective adopter does have sufficient access to capital to afford the 

upfront costs of an installation, a proposed turbine must offer an attractive 

payback period. The payback period of each turbine is governed by the 

financial returns available from a wind turbine. A study of Irish residents 

identified 11 years as an acceptable payback period for small wind turbines 

[108]. In comparison, individuals in Great Britain have suggested a shorter 

payback period is desired for all types of microgeneration technologies [55]. 

The acceptable payback periods differed between an mean of 9.4 years for 

individuals who had previously installed, and 5.5 years for individuals 

considering an installation [55]. However, a suitable payback period and 

WTP have been shown to be determined by adopters, using not only a cost-

benefit evaluation [108]. These values differ depending on each individual’s 

subjective assessments of a technology’s benefits and the individual’s 

personal views [108].  

The ability to gain financial returns through lower energy bills and financial 

incentives for energy generation is one of the key benefits for adopters [54]. 

This motivator and the ability to protect against rising energy costs have 

been identified as the key reasons that individuals consider and then adopt a 

microgeneration technology [54, 55]. These benefits are realised through the 

electricity generation of a wind turbine, for which payments from the FIT are 

available, and which offsets the requirement to buy electricity from the grid 

[53]. The power output of a wind turbine is a function of a number of factors, 

key amongst them being the wind resource available to the wind turbine. To 

ensure that the benefits are sufficient and the payback period for each 

adopter are attractive, there must be sufficient wind resource available on-

site. While an individual’s subjective judgement on the attractiveness of the 

payback period will vary, some areas will not have sufficient wind resource 

to offer any payback on the capital outlay of a turbine. The financial barriers 

to adoption are among the most important to individuals either considering, 

adopting or rejecting microgeneration technologies [54, 55, 108].  

Non-financial motivations are predominately borne out of a desire to be more 

sustainable and self-sufficient. An individual’s desire to become self-

sufficient is cited by 46 % of adopters as a motivation in their decision to 

adopt [55]. A desire for self-sufficiency ties into environmental concerns also 

cited by both adopters and those considering an installation [54, 55]. 

Adopters have also expressed a desire to exhibit their environmental 



- 55 - 

commitment to others as a motivator in their decision to adopt [54]. In 

comparison, individuals considering or having rejected a microgeneration 

technology, cite this factor as less important than other factors, such as 

increasing their home value or protecting from power outages [54]. This 

suggests that the individuals who have adopted, value the social aspects of 

adoption differently than those who are still considering an adoption, thus 

reinforcing the subjective nature of an individual’s adoption decision.  

The informational barrier to adoption stems from individuals being unable to 

find a source of trustworthy or reliable information about a proposed 

installation [54]. Adopters, and those considering an adoption, value this 

barrier much more than those who have previously rejected adoption [54]. 

This highlights that the informational barrier is likely to be influential later in 

the adoption process, after an individual attempts to research the viability of 

a prospective installation. Information regarding the performance of a 

prospective wind turbine are available from a number of sources, including 

installers and manufacturers [55]. However, adopters have identified 

consumer organisations, local or central government as the most trusted 

sources of information when investigating the potential installation of a 

microgeneration technology [55]. It is unlikely that these impartial sources of 

information will be able to offer specific performance information for an 

individual’s proposed wind turbine, and prospective consumers must 

therefore rely on performance estimates from turbine manufacturers and 

installers. Consumers viewed this data as much less impartial [55] as such 

estimates are likely to promote the specific manufacturer’s or installer’s wind 

turbine as most suitable.  

The major theme that can be identified within the literature is the subjective 

nature of the motivation and barriers to adoption. Each individual will value 

the respective motivation and barriers differently [108]. Their perception of 

each of the motivations, barriers and the microgeneration technology itself, 

will influence their decision to adopt. An individual’s perception and adoption 

decisions have been shown to correlate with the demographics of the 

individual [53, 111]. In this project, where surveying was not undertaken, 

analysis of adopter demographics is a suitable method of understanding the 

influencing factors on small and medium scale wind turbine adoptions in 

Great Britain.  
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 Socio-demographic relationship to microgeneration 
adoption  

Studies have analysed the demographics of both adopters and those 

considering an installation of microgeneration technologies [53, 55, 56, 111-

116]. However, none of these studies have specifically focused on wind 

turbine adopters in Great Britain. It is envisaged that wind turbine adopters 

may exhibit similar demographics to adopters of other microgeneration 

technologies. However, the need for wind turbines to be in areas with 

sufficient wind resource, which are likely to be more rural areas, could result 

in the demographics of the wind turbine adopters, differing from those of 

adopters of other microgeneration technologies, which can be viable in 

suburban or urban areas. By examining the demographics of wind turbine 

adopters in Great Britain, it will be possible to understand if wind turbine 

adopters have a common set of demographics. Previous literature has 

shown that adopters of other microgeneration technologies have similar 

demographics [56, 112, 113, 115-117]. These studies have mainly focused 

on six demographic factors; age; income; education; household size; home 

ownership and the social class of adopters [53].  

 Age 

Awareness of microgeneration technologies generally increases with age, 

and peaks between the ages of 50 and 60, before awareness begins to drop 

[109]. This inverted u-shaped correlation between awareness and resident 

age has been shown specifically for micro-wind turbines [109]. However, the 

study only examined awareness of wind turbines, rather than actual 

adoption. Adoption of micro-wind turbines has been shown to decline 

sharply after individuals reach the age of 65 years old [112]. However, this 

study only examined adoption in relation to whether the head of household 

was aged over or under 65 years old [112]. Therefore, no conclusion on the 

influence of adopter age could be drawn from the results, merely that it was 

more likely for adopters to be aged below 65 [112]. Analysis of the age of 

solar photovoltaic (PV) adopters shows that the vast majority of adopters are 

aged over 45 [56]. The results of previous studies suggest that 

microgeneration adopters tend to be older residents who are below 

retirement age. The relationship between adopter age and wind turbine 

adoption is not clearly defined in the literature.  
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 Income 

The role of income in the adoption of microgeneration technology in the UK 

has been examined in PV uptake [56]. Around 40 % of survey respondents, 

who had installed PV systems, had an annual household income of greater 

than £50,000 [56]. While this is a statistically significant difference from the 

national average [56], the study highlighted that respondents still 

experienced the financial barrier of upfront cost [56]. The assertion that 

microgeneration technology adopters have higher levels of income has been 

backed up in other studies, albeit qualitatively [108, 118]. Income of adopters 

is likely to be a much more significant factor for small and medium scale 

wind turbine adoption, as the upfront costs of wind turbines are higher than 

those for PV systems [36].  

 Education 

Microgeneration technologies, particularly PV systems, have been shown to 

be adopted by individuals with higher levels of education. 77 % of PV 

adopters in the UK had a degree-level qualification compared to 30 % 

nationally [56]. Another study, examining the adoption of wood stoves, found 

that the relationship between adoption and education was actually inversely 

proportional [119]. A comparable study found residents with higher 

educational qualifications tended to live in urban areas, which is likely to be 

the cause of inverse relationship with the adoption of wood stoves [120], 

which are less suitable for higher density urban housing. While the literature 

finds a correlation between education and adoption of PV [56, 118, 121, 

122], other factors can influence this correlation. Wind turbines are more 

effective in rural areas due to higher wind resource, whereas those who 

have gained a degree level qualification are more likely to leave rural areas 

for better employment opportunities in cities [123]. However, the exact 

nature of the relationship between education and wind turbine adoption is 

unclear from the literature.  

 House type 

As the size of a household increases, the likelihood of a microgeneration 

adoption also increases [53]. Although there appears to be no relationship 

between awareness of microgeneration and household size [109], it seems 

logical that residents with larger homes would install microgeneration 

technologies. In addition, to having a larger home to heat and power [53], 

residents who live in larger homes are likely to have higher income [53]. This 

is supported by a study that shows that residents who live in detached 



- 58 - 

homes have a higher WTP for wind turbines, than residents of other housing 

types [108]. Conversely, household size may also suggest that residents 

have a larger family to support. In relation to PV adoptions, household size 

has been shown to have a negative effect on adoption [42] which is 

suggested by Balta-Ozkan et al. to be because larger families have lower 

disposal income for an installation. This was contradicted in another survey, 

which found that the presence of children under 16 in a household exhibits 

no influence on microgeneration adoption [53]. In terms of wind turbine 

adoption, it is envisaged that house type could be key as detached homes 

are more likely to have sufficient land available to accommodate a wind 

turbine installation. However, this assertion is untested and was investigated 

during this research.  

 Homeownership 

Homeownership is a key demographic factor in microgeneration adoption 

[53, 109, 118], with 97 % of PV adopters surveyed being homeowners [56]. 

Various studies confirm this [43, 45, 56, 108]. Homeownership is required as 

the homeowners have the power to decide whether to adopt [53]. 

Homeownership is crucial to the “landlord-tenant” dilemma [43, 109, 124], 

which occurs when a residence is rented, neither the landlord or the tenant 

has an incentive to pursue adoption. While the tenant may benefit from 

adoption, it will be the landlord that must provide the capital for an 

installation. Adoption is therefore unlikely when the decision maker does not 

own the property. Homeownership is therefore an important factor which 

influences many microgeneration adoptions, and this is envisaged to be the 

case for wind turbine adoptions.  

 Social class 

Awareness of microgeneration technologies are shown to be highest 

amongst upper middle class residents, likely to be employed as 

professionals or in higher managerial positions [109]. The awareness of 

small scale wind energy is also high in farmers [109]. Adopters of 

microgeneration technologies under the FIT are likely to be in the higher 

social classes of A or B [55]. These social classes cover individuals 

considered as professionals and those in managerial positions. However, an 

issue arises when examining social class in relation to wind turbine adoption 

patterns. Social class is interlinked with education and income [125] as 

individuals with higher educational achievement and income are likely to be 

in a higher social class. Use of social class is therefore useful in an analysis, 
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however, is likely to be a secondary indicator to the influence of education 

and income on adoption.  

 Influence of wind resource on wind turbine adoptions 

In addition to the demographic variables examined in previous studies, other 

factors which influence wind turbine adoptions in Great Britain must be 

considered here. Of the factors, which will be discussed in this chapter, the 

wind resource available to a proposed wind turbine is considered here as 

key.  

The capital costs of a wind turbine are considerably higher than other 

microgeneration technologies [21, 36] and therefore the payback period of 

wind turbines can be considerable. To achieve a suitable payback period, 

sufficient financial returns from the power output of a turbine are required. 

The power output of the wind turbine is directly related to the available wind 

resource. The availability of wind resource is therefore suggestion here as a 

highly influential factor in wind turbine adoptions in Great Britain. This 

assertion is supported when examining the technical potential estimates of 

wind turbines in Great Britain, discussed in Chapter 1. These technical 

potential estimates were based upon sites having sufficient wind resource to 

ensure the technical and financial viability of a wind turbine on these sites 

[31].  

The availability of solar resource was shown to have a positive influence on 

PV adoptions in England and Wales [42]. However, long-term solar 

irradiance across Great Britain has lower spatial variation which is consistent 

with latitude [126]. The power output of a PV system can therefore be 

predicted more efficiently. In comparison, wind resource can vary greatly 

over small distances and the wind resource available to a wind turbine can 

vary rapidly [14]. This places a great emphasis on sufficient wind resource 

being available at a site to ensure that a suitable payback period is 

achieved. The availability of wind resource is likely to be influential on wind 

turbine adoptions. 

Previous literature which offered technical potential estimates for wind 

turbine deployment, defined sufficient wind speed as a long-term mean wind 

speed above either 5 ms−1 [31] or 5.5 ms−1 [38]. However, these estimates 

were created using Microgeneration Certification Scheme scaled NOABL 

wind speeds [31] or unscaled NOABL wind speeds [38] respectively. 

Unscaled NOABL data can be highly inaccurate in certain locations with a 

tendency to over-predict long-term mean wind speed [30, 32] and doubts 
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have been cast here on the suitable of the MCS methodology as an accurate 

wind resource estimation technique, as was detailed in Chapter 2. It was 

therefore prudent to investigate within this research if the definitions of 

sufficient wind speed detailed in previous literature are correct. 

 Additional socio-economic and environmental factors 

considered for analysis 

In addition to the demographic variables from previous studies and the 

influence of wind resource, additional demographics must be considered for 

their inclusion in this research. These additional factors, which are 

considered, will be examined and justification for their inclusion in this 

research will be discussed here.  

The issue of losing money should an adopter move home has been cited by 

previous adopters as a barrier to adoption [54]. It is hypothesised here that 

adopters are therefore unlikely to move home following an installation. The 

number of house sales in a region will be considered for inclusion. With such 

data, it will not be possible to understand if individual adopters within a 

region have moved home since their installation. This data can only offer an 

indication if a high proportion of homes in a region are sold annually. This 

factor is therefore suggested for inclusion in the analysis as a proxy for 

residents not moving home.  

Wind turbines produce electricity and therefore the energy produced by a 

wind turbine will offset the domestic electricity demand of an adopter’s 

residence. It is suggested here that residents with higher domestic 

household electricity consumption will be more motivated to install a wind 

turbine, if their location is suitable. This ties into the findings of previous 

literature that microgeneration adopters have ranked highly a desire to 

achieve lower energy bills and protect against raising energy costs as a 

motivation to adoption [54]. A study of the influencing factors on PV adopters 

in Great Britain also found adopters were more likely to have higher 

domestic electricity demand [42]. Household electricity consumption is 

therefore theorised as an influencing factor on wind turbine adoptions in the 

UK.  

Regions with a comparatively low prevalence of homes with gas-fired central 

heating are likely to be more rural areas. Some rural areas are unable to 

access the national gas grid and therefore homes in these regions will have 

to be heated using another fuel. It is therefore reasonable to assume that the 

higher the number of homes in a region, which do not have gas fired central 
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heating systems, the more rural the area can be considered. In rural areas, it 

is likely there will be higher wind resource and greater land area available. 

These factors have previously been suggested as influencing factors on 

wind turbine deployment through their use as the basis for technical potential 

estimates [31, 38].  

The awareness of wind turbines has been shown to be highest in farmers 

[109]. In addition to the awareness amongst farmers, another study has 

suggested that farms are the ideal locations for wind turbines [31]. It would 

be remiss to conduct analysis of wind turbine adoption patterns and exclude 

data regarding the influence of the presence of agricultural industry in an 

area. 

Areas which are considered rural are likely to have a higher wind resource, 

due to the lower density and distribution of roughness elements at the 

surface [81]. Therefore, the inclusion of environmental variables which 

characterise the rurality of the area are necessary in this research.  

The socio-economic and environmental factors discussed in this section are 

theorised as influencing factors or serve as proxies for influencing factors on 

the adoption patterns of wind turbine installations in Great Britain. While 

analysis of the demographics of adopters will not be able to offer the specific 

motivations of each individual’s decision to adopt, it will be able to 

demonstrate if certain socio-economic factors are likely to influence the 

adoption patterns of small and medium scale wind turbines. Although the 

importance of these motivations or barriers is specific to each individual, a 

prevalence of a certain demographics can highlight that adopters who have 

similar demographics are more likely install. Through analysis of the 

relationship between these demographic factors and wind turbine adoptions 

patterns, it will be possible to understand the influence of each factor on 

adoption patterns. In order to determine this influence, the analysis 

techniques utilised in previous studies examining microgeneration adoptions 

are reviewed to identify the most appropriate technique for the analysis of 

wind turbine adoption patterns in this research. 

 Socio-economic and demographic analysis techniques  

Literature on analysis of the demographics of wind turbine adopters is 

minimal, at best. However, analysis of British PV adopters by Balta-Ozkan et 

al. and American PV adopters by Kwan assessed the influence of a number 

of socio-economic and environmental factors on PV adoption patterns [42, 

44]. The study by Balta-Ozkan analysed PV adoptions on a regional scale in 
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England and Wales [42], while Kwan analysed PV adoptions in US postal 

codes [44]. Both studies implemented regression models to determine the 

influencing factors on spatial adoption patterns of PV systems [42, 44]. 

Balta-Ozkan et al. utilised multiple spatial regression models [42] while, 

Kwan implemented a negative binomial regression [44]. Kwan developed a 

number of categories of socio-economic indicators as the independent 

variables of the regression model, each represented by binary values [44]. 

PV adoptions were also represented by binary values. Use of a binomial 

regression model negates the value of information regarding terms of 

multiple adoptions in a single area, by reducing this to a binary value. 

Additionally, the use of categorical socio-economic indicators only offers the 

ability to identify the existence of an influence rather than examine the 

relative influence of the socio-economic indicators. For this reason, a 

binomial regression model of any form would be unsuitable for this research.  

Balta-Ozkan et al. utilised multiple spatial regression models in order to 

capture the spatial dependency in PV adoption patterns [42]. Analysis of the 

spatial dependency in PV adoptions is implemented to understand the peer 

effects for neighbouring regions [42]. However, this is not the focus of this 

particular piece of analysis. The influence of neighbouring installations on 

wind turbine adoption patterns is discussed in Section 3.2 and examined in 

Chapter 6. This analysis aimed to determine the influencing factors on wind 

turbine adoption patterns, exclusive of the influence of neighbouring wind 

turbine installations. The decision to exclude the influence of neighbouring 

installation from this part of the research stems from the lack of available 

literature. The model presented by Balta-Ozkan et al. is considered a 

complex model and supported by a body of complementary literature. An 

extensive body of literature does not exist for the influence of demographics 

on wind turbine adoptions and therefore the complexity of the model 

developed for this research must be minimal.  It is yet to be established if 

any of the factors discussed here have any influence on wind turbine 

adoption patterns in Great Britain. Therefore, use of a model within minimal 

complexity is required to establish if the factors suggested had any influence 

on wind turbine adoption patterns. Once the influence of these factors has 

been established, then it would be suitable to consider more complex 

models with which to examine the influence of neighbouring wind turbines on 

subsequent wind turbine adoptions.  

To determine the influence of demographic factors on adoption patterns, an 

alternative method must be identified. Balta-Ozkan et al. initially utilised a 
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linear regression model before the ordinary least squares (OLS) regression 

coefficient estimator becomes inefficient in the more complex spatial 

regression model [42]. This approach is also implemented in a study 

examining of the demographics of PV adopters in the San Francisco Bay 

area [45]. Both studies utilised a multi-variate regression approach to 

understand the influence of each demographic factor on respective PV 

adoption patterns. Use of a varied set of demographic variables, discussed 

in Section 3.1.1 in this research, requires the understanding of the influence 

of each individual factor on wind turbine adoption patterns. A linear 

regression approach is therefore considered the most appropriate method 

for the analysis of spatial adoption patterns of wind turbine in Great Britain in 

this research.  

Using this linear regression approach, a number of scenarios can be 

investigated to understand the differing influences on wind turbine adoptions. 

This research has been developed to examine the spatial wind turbine 

adoption patterns. Initially, only the influence of wind resource on wind 

turbine deployment can be examined. The importance of financial barriers 

and motivations for microgeneration adopters [54] results in the available 

wind resource onsite being a key factor when determining a wind turbine’s 

viability. However, the influence of available wind resource on wind turbine 

adoption patterns is currently unclear. This investigation is therefore a vital 

part of this research’s analysis of wind turbine adoption patterns. In addition 

to the influence of wind resource, a definition of sufficient mean wind speed 

required to ensure viability of a wind turbine installation will be examined. 

The current definitions of sufficient mean wind speed provided in the 

technical potential estimates were developed, from what is considered by 

the author, an inappropriate wind speed estimation methodology. It is 

therefore necessary to examine whether the definition of sufficient mean 

wind speed can be refined, using a wind speed estimation technique with 

greater accuracy, available from research presented in Chapter 4  

Current literature on the factors which have influenced microgeneration 

adoptions identified six factors of resident age, income, education, house 

type, homeownership and social class [42, 56, 108, 110-118]. It was 

therefore important to analyse the influence of these factors on wind turbine 

adoption patterns. The results of this analysis were then compared to the 

results of previous studies on microgeneration adoption in Great Britain [42, 

53, 56]. Through this comparison of results, it was possible to understand if 
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British wind turbine adopters have similar demographics to adopters of other 

microgeneration in Great Britain.  

In addition to these demographic factors, it was theorised here that other 

demographic and environmental factors will also have an influence on wind 

turbine adoption patterns. To analyse the influence of the demographic 

factors, in addition to the factors of house sales, domestic electricity 

consumption, types of central heating, prevalence of agricultural in a region, 

availability of land area and mean wind resource, an additional linear 

regression model was developed. A full description of the three regression 

models developed to identify the influence of these factors on spatial wind 

turbine adoption patterns and the results of each model is provided in 

Chapter 5. 

3.2 Influences on the temporal adoption patterns  

The uptake of microgeneration technologies have temporal adoption 

characteristics, in addition to spatial characteristics [41]. Analysis of the 

demographics of wind turbine adopters helps to understand the spatial 

characterisations of adoption. To ensure that the temporal characteristics 

are also understood, a further scheme of research is required to examine 

temporal influences on wind adoptions in Great Britain.  

The ability to receive government incentives such as the Feed-in Tariff (FIT) 

is an important motivator for microgeneration adopters [53, 55]. Financial 

returns available from FIT payments increase the financial viability of wind 

turbines, increasing the number of locations in which a wind turbine would 

be cost effective. The FIT is therefore hypothesised here to be an influencing 

factor on uptake of wind turbines in Great Britain. However, changes have 

been made to the levels of financial subsidy available to wind turbines since 

the introduction of the FIT April 2010 [34]. Subsidy levels have been reduced 

from 31.91 p/kWh in April 2010 to 8.33 p/kWh in October 2016 for wind 

turbines, with a capacity greater than 1.5 kW but not exceeding 15 kW [34]. 

These temporal changes in subsidy levels will reduce the financial viability of 

prospective turbines and are likely to influence temporal wind turbine 

adoption patterns.  

In addition to the FIT subsidy level changes, the influence of visible 

neighbouring turbines can also be examined. Around 20 % of 

microgeneration adopters have cited viewing a neighbouring installation as a 

motivation for their decision to adopt [55]. The visibility of wind turbines is 
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considerably higher than other microgeneration technologies, as a wind 

turbine can potentially be seen by neighbours a number of kilometres away 

[127]. The influence of visible neighbouring turbines has a temporal nature. 

As new turbines are installed in a neighbourhood, the influence on a 

neighbour’s decision to adopt a wind turbine may increase. Examination of 

the subsidy level changes to the FIT and the visibility of neighbouring wind 

turbines is required to understand the factors which influence temporal wind 

turbine adoption patterns in Great Britain.  

 Feed-in Tariff  

The introduction of the FIT in April 2010 was intended to drive uptake of a 

range of small-scale low carbon electricity technologies by offering 

guaranteed financial returns to adopters [23]. Assessment of FIT policy 

design in other European countries highlighted that the introduction of such 

a policy can drive deployment of PV systems but has little to no effect on 

onshore wind deployment [128]. However, this study only considered 

deployment before 2008, prior to the introduction of the FIT in Great Britain 

[128]. Two studies have highlighted that the FIT has created demand for PV 

systems in Great Britain [41, 129]. Both studies highlighted that changes to 

the FIT levels has induced peaks in monthly installation numbers [41, 129]. 

Literature on the effect of the FIT on wind turbine installations in Great 

Britain is lacking and therefore the effect of subsidy changes on wind turbine 

installation numbers was examined in this research.  

Reductions in the FIT subsidy level in April 2012, December 2012 and April 

2014 were all proceeded by a peak of wind turbine installations in the month 

prior to the change. The presence of these peaks highlights that the FIT and 

particularly the level of subsidy available, play a role in a consumer’s 

decision to adopt. Adopters who are able to install a wind turbine prior to a 

reduction in the tariff level are guaranteed the higher tariff for the lifetime of 

the FIT, which is currently 20 years [26]. The desire to access higher levels 

of subsidy is likely to be an underlying cause for these peaks in monthly 

installations. These peaks are similar to those seen in PV installations [41, 

129]. However, Snape [41] associated the peaks of PV installations with 

announcements of a change in FIT subsidy, rather than change in the 

subsidy level. Announcements of changes in the subsidy level available 

typically occurs 3 to 6 months prior to the change coming into effect [35]. 

The difference between the timing of peaks in installations of PV and wind 

turbine is due to the different timeframes required to complete an installation 

of each technology. PV systems can be installed considerably more quickly 
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than wind turbines and therefore when a change in FIT is announced, the 

peak of installations in PV will occur before the peak of wind turbine 

installations. The peak in PV installation data therefore appears to be 

associated with the announcement, rather than the change in subsidy level.  

Since December 2012, changes in the FIT subsidy level have been due to 

an degression mechanism [35]. Degression allows for the subsidy level to be 

reduce based upon the total installed capacity of wind turbines in the 

preceding period [35]. The degression mechanism was introduced for non-

PV technologies to ensure consistence with the degression mechanism 

introduced for PV FIT subsidy levels [35]. This was despite significantly 

higher levels of PV deployment [12] and the reticence of non-PV 

technologies stakeholders, expressed during the consultation phase of the 

tariff review [35].  

Since its introduction, the degression mechanism for wind turbines has been 

implemented once annually and three times at the six-month period. As a 

result, deployment appears to have slowed in the small and medium scale 

wind turbine market as tariff levels have dropped by 60 % since December 

2012 [34]. In comparison, the rate of monthly installations increased after the 

introduction of the FIT in April 2010 but prior to subsidy level cut in 

December 2012. The changing rate of monthly wind turbines installations 

suggests that introduction of the degression mechanism and subsequent 

changes in the subsidy level have influenced the deployment rates of wind 

turbines. This analysis must be extended to understand to what extent these 

subsidy level changes have temporally influenced wind turbine adoptions 

patterns.  

 Visibility of wind turbines  

The influence of visible microgeneration technologies raises awareness of 

these technologies in the neighbours of the adopters [55]. 19 % of 

microgeneration adopters and 27 % of those considering an installation have 

identified seeing a neighbouring installation as a factor which has prompted 

their interest in pursuing an installation [55]. A previous study has suggested 

that the visual influence of PV installations has an effect on the subsequent 

PV adoptions of their neighbours [43]. The visibility of wind turbines is higher 

than other microgeneration technologies, such as PV systems, due to the 

high hub and blade tip heights of a wind turbine. It is therefore logical to 

question whether neighbouring wind turbine installations have had a similar 

influence on the adoption patterns of their neighbours. To understand this 
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influence, the radius over which this visible influence from a turbine may act 

must be determined.  

The visibility radius of a wind turbine is dependent of the height and size of 

the turbine, the topography of the turbine site, the position of the neighbour 

who is viewing the turbine [130] and the atmospheric conditions, such as 

haze or sky colour, when the turbine is viewed [127]. However, studies have 

shown that a wind turbine with a hub height of around 50 m is visible within 

10 km of the installation [127, 130, 131]. Lower capacity wind turbines, such 

as those examined in this research, are likely to have a hub height below   

50 m and therefore the visibility radius of these turbines will be lower. 

However, it is likely that wind turbine installations will exert an influence on 

prospective adopters further than 10 km away. The influence of a visible 

turbine on immediate neighbours is limited to those with direct line of sight 

from their residences. However, if the turbine siting is located near transport 

routes, it is possible that an installation will be visible to a greater number of 

individuals, including those outside of the immediate neighbour. The viewing 

of an installation during a prospective adopter’s journey could prompt 

interest in their own wind turbine installation. The distance over which a wind 

turbine can be viewed by neighbours is specific to each installation and each 

neighbour. To investigate the influence of a turbine’s visibility on a 

neighbour’s decision to adopt, it should be considered over a number of 

distances.  

A wind turbine’s visibility also influences neighbours in a temporal nature. 

The installation of a wind turbine is not completed overnight and therefore an 

installation will be viewed throughout its construction phase. However, the 

time at which the influence begins to act during the construction phase will 

differ between neighbours. Neighbours with prior knowledge of wind turbines 

are likely to recognise that a wind turbine is being constructed earlier than 

those without prior knowledge [127]. To ensure that the influence of a visible 

turbine begins to act at the same time for all neighbours, the visibility of a 

turbine is considered to be influential only once the turbine is fully 

operational. This choice is in line with literature, where the influence of PV 

systems is only considered to act on neighbours, once an installation has 

been completed [45].  

The influence that a neighbour experiences will also increase temporally as 

the number of turbines within their neighbourhood increases. The degree to 

which each new turbine influences individuals is dependent on the siting and 

physical characteristics of each turbine, however, the overall influence will 
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increase as new turbines are installed. An increasing number of turbines is 

likely to exert a greater influence on a neighbour, with multiple turbines more 

easily distinguishable than a single turbine [130].  

In addition to the changing visual influence of wind turbines as new 

installations become operational, there is a temporal aspect stemming from 

the individuals who view the turbines. The level of influence of visual 

microgeneration installations increases between those who have adopted 

and those considering a microgeneration technology [55]. The difference 

between the proportion of current adopters and potential adopters who were 

influenced by a visible microgeneration installation [55] suggests that 

individuals at different stages of the adoption process are affected by this 

visual influence differently. The data indicates that those who adopt later are 

more likely to be influenced by the visibility of a wind turbine than those who 

adopt earlier. The results suggest that the characteristics of adopters and 

the degree to which different factors influence their decision to adopt will 

change as uptake increases. These different individual adopter 

characteristics must be understood when considering the temporal adoption 

patterns of wind turbines in Great Britain.  

 Temporal adoption characteristics 

A description of adopters at different stages of an innovative technology’s 

market growth is offered in Rogers’ Diffusion of Innovations model [132]. 

This model has previously been utilised as the theoretical basis of an 

analysis of PV adoption in the UK [42]. In addition, microgeneration 

technologies have previously been considered as an innovative technology, 

in terms of adoption rates [108, 118]. It is therefore likely that characteristics 

of wind turbine adopters in Great Britain will fit with the adopter 

characteristics in Rogers’ Diffusion of Innovations model.  

Rogers’ model offers a framework to understand why, and at what rate, an 

innovation such as a new technology spreads [132]. Rogers’ model states 

that diffusion of the innovation occurs within a social system as members of 

the system communicate regarding the innovation [132]. Once a member 

learns of an innovation, there is theorised to be a multi-stage adoption 

process of which knowledge of the innovation is the initial stage [132]. 

Awareness of micro-wind turbines is high amongst British residents, with 69 

% of respondents having a basic knowledge of the technology [55]. The 

majority of residents in Great Britain have therefore reached at least the 

knowledge stage of diffusion. The knowledge stage is followed by the 

persuasion stage, where the individual seeks further information regarding 
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an innovation [132]. Once an individual has gathered sufficient information, a 

decision to adopt occurs [132]. This decision to adopt is categorised based 

upon whether the decision is made by an individual, collectively by all 

members of the social group or by an individual in a position of power [132]. 

For small scale wind turbines, it is typically individuals who make this 

decision, with some community wind installations occurring following a 

collective decision making process involving multiple individuals. The 

decision to adopt is either positive or negative, with individuals who make a 

positive decision becoming known as adopters [132].  

Rogers’ model characterises individuals based upon when their adoption 

occurs, in terms of overall market share, as shown in Figure 11 [132].  

 

Figure 11 — Rogers’ Diffusion of Innovation model. Reproduced from [132] 

This characterisation categorises adopters into one of five adopter 

categories. The five categories, summarised in Table 2 describe the 

characteristics and values of each adopter category [132].  
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Table 2 — Summary of adopter category characterisation and values [132] 

Adopter Category Characterisation and Values  
Innovators Innovators are willing to take on a higher level of risk 

associated with a new innovation and have the financial 
means to offset any failures. Innovators have the technical 
knowledge required to understand the technical complexities 
of a new innovation. In a social context, innovators are likely 
to be less connected within their local social system, making 
their opinions less influential to others in the same social 
system.  

Early Adopters Considered as the opinion makers and role-models in the 
local social system. They are more connected within the local 
social system making their opinion more influential. Adoptions 
by early adopters helps to decrease the uncertainty 
surrounding the viability of a new innovation for future 
adopters.  

Early Majority Early majority adopters have a much longer lead time 
between knowledge of the innovation and adoption. A longer 
deliberation period is common as they are more likely to 
spend a longer time gaining information about an innovation. 
The longer lead time also occurs as the early majority wish to 
understand the earlier adopters’ experience following their 
adoption. 

Late Majority  Adoption for late majority members is usually out of economic 
necessity and because of increasing peer pressures. The 
majority of the social system must have adopted to motivate 
the late majority to adopt. Late majority requires much of the 
uncertainty surrounding an innovation to have dissipated prior 
to their adoption.  

Laggards Laggards are the last in the social system to adopt and 
require the uncertainty of an innovation to dissipate fully 
before adoption. Laggards hold much more traditional views 
on innovations and are suspicious of new innovations. 
Economic constraints of the laggards makes them extremely 
cautious in their decision to adopt.  

 

Of the five categories of adopters described in Table 2, it is the first three 

categories which are considered here to be prevalent in the small and 

medium scale wind turbine market. Based upon current deployment levels, it 

is suggested here that the current adopters in the market are more likely to 

exhibit the characteristics of innovators, early adopters and possibly, early 

majority in some cases.  

Innovators are typically more adventurous in terms of adoption of a new 

innovation [132]. This leads them to accept the higher risk associated with a 

new innovation as the innovation has not matured significantly [132]. An 

innovator’s acceptance of this higher risk leads them to have a short time 

period between the knowledge and decision stages of the adoption process 
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[132]. Early adopters are also willing to accept a high level of risk and their 

adoption helps to decrease the uncertainty surrounding an innovation for 

future adopters [132]. As with innovators, the time between the knowledge 

and decision for early adopters is considered short, although this time does 

exceed that of an innovator. In comparison, early majority adopters consider 

adoption of an innovation for much longer before a decision to adopt, 

empirically shown to be almost twice as long as innovators or early adopters 

[132]. This longer time period stems from early majority adopters wishing to 

gather a greater volume of information and allows them to assess the 

advantages and disadvantages of an innovation [132]. This longer lead time 

also allows early majority adopters to assess the perceived risks of 

adoptions from early adopters and allows the innovation to mature further 

and reduce the uncertainty of an adoption [132]. During this consideration 

period, early majority adopters are likely to garner knowledge about the 

adoption experience from early adopters [132]. This makes early adopters 

key to the continuing diffusion of an innovation.  

Early adopters are seen as opinion makers in the social system and serve 

as role models for later adopters [132]. Their role in the social system is due 

to an early adopter’s level of communication with other members of the 

social system [132]. Early adopters have a greater deal of communication 

with other members of the social system, compared to innovators who tend 

to have a greater number of social connections with members outside of the 

local social system [132]. The number of connections in the social system 

dictates the level of influence that these adopters have. 

Communication of an innovation is categorised into two major channels; 

mass communication and interpersonal communication [132]. Mass 

communication transmits to a wider audience, whereas interpersonal 

communication is a personal exchange of information between individuals 

[132]. For the small and medium scale wind turbine market in Great Britain, 

deployment is low and therefore mass communication is likely to be 

important for current adopters. Traditionally, mass communication is 

considered as stemming from mass media formats such as radio and 

television [132]. However, mass communication in the wind turbine market is 

suggested here as not being limited to traditional mass media formats. The 

visibility of a wind turbine can be considered a form of mass communication 

as the turbine can be seen by neighbours a number of kilometres away. The 

visible wind turbine communicates to multiple individuals the viability of an 

installation in a particular region. It is therefore argued here that this is a 
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form of mass communication, which can influence potential adopters through 

observational learning [43, 133]. As potential adopters view a wind turbine in 

their neighbourhood, they are able to observe and begin to learn about the 

operation of a wind turbine [133]. This observational learning extends the 

potential adopter’s knowledge and increases their awareness. The increase 

in a potential adopter’s knowledge and awareness can cause them to 

advance to the next adoption stage and eventually to a positive adoption 

decision. The visibility of a wind turbine installation is therefore considered 

an important method of communicating the diffusion of the wind turbines in 

Great Britain.  

The communication of the positive aspects of installing a wind turbine will be 

better received by prospective consumers with similar characteristics to the 

adopter imparting the information [132]. The degree of similarity or 

homophily between neighbours increases the effectiveness of the 

communication flow [132]. Homophily occurs when individuals share similar 

beliefs, education and socioeconomic status [132]. Geographical proximity 

also creates homophily, due to increased contact with neighbours [134]. If 

homophily exists between neighbours, a neighbour’s decision to adopt could 

influence others in the neighbourhood to adopt through the visibility of the 

neighbouring wind turbine. However, the homophilous nature of peers in a 

social system can also be a barrier to diffusion of the innovation out of this 

system to other individuals [132]. Heterophilic individuals are too different, in 

terms of beliefs and socio-economic status, for the communication to be 

valued by either, thereby halting the diffusion of the innovation. Therefore, in 

order to investigate the influence of the neighbouring wind turbine on a 

decision to adopt, areas where homophily between peers is present must be 

considered. 

The areas that are likely to be utilised to investigate the influence of visible 

neighbouring wind turbines are likely to be areas with a high numbers of 

wind turbine installations. It is within these areas with high levels of 

deployment that the influence of a peer’s wind turbine installation can be 

best examined. If an area has only a few installations, any peer effect may 

be indistinguishable or negligible. Areas of high installation offer a greater 

number of adoptions which can be utilised to investigate the influence of 

peer effects on subsequent adoptions.  

 Peer effects  

To analyse the peer effects which influence a neighbour’s decision to adopt 

a wind turbine, the types and sources of peer effects must be discussed. 
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Peer effects can be categorised into one of three different peer effects [135, 

136]; 

 endogenous effects;  

 exogenous effects; and 

 correlated effects. 

Each of these effects influences an individual’s behaviour. However, the 

source of the effect differs between the different peer effects. Endogenous 

effects are characterised by an individual’s behaviour mirroring those of 

others in the same group and motivated by the behaviour of the social group 

[135]. Exogenous effects are the effects on an individual’s behaviour that 

result from an externality of the social group [135]. Correlated effects are a 

result of individuals in the social group having similar characteristics or 

environmental views, which drives their similar behaviour [135].  

The visual influence of a wind turbine is therefore considered an 

endogenous peer effect. This conclusion is supported by past literature 

where previous microgeneration installations have been considered to have 

an endogenous effect on the adoption decisions of peers [43, 45]. Use of a 

peer effects model is therefore suitable to examine the influence of visible 

neighbouring turbines on subsequent decisions to adopt wind turbines.  

Development of the peer effects model in this research was based upon 

research into the influence of peer effects in the uptake of PV systems [43, 

45-47, 137]. Literature regarding the peer effects on uptake of wind turbine 

in Great Britain is lacking, hence the reliance on peer effects literature for 

another microgeneration technology. The novelty of this work therefore lies 

in the previously unexamined influence of peer effects on temporal wind 

turbine adoptions in Great Britain.  

 Peer effects literature  

Previous literature has examined the influence from visible PV systems on a 

neighbourhood’s PV adoption patterns [43, 47]. The peer effects literature is 

primarily for PV adoptions either in the United States of America (US) [45, 

46] or Germany [47, 137], with only Richter examining PV system adoptions 

under the Feed-in Tariff in the England and Wales [43]. Rode and Weber 

[47] and Richter [43] suggest that the peer effect from a visible PV system 

can lead to observational learning [43] by subsequent adopting peers. Rode 

and Weber argue that observational learning between peers is possible 

without direct social interaction of the peers [47]. This assertion is consistent 
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with the definition of wind turbine visibility as a form of mass communication 

under Rogers’ Diffusion of Innovation model [132].  

All of the literature identifies that a peer effect between previously installed 

neighbouring PV systems and adoptions can be observed [43, 45-47, 137]. 

Richter found that this effect is small but significant in the UK [43], while 

Bollinger and Gillingham and Graziano et al. found a stronger effect on PV 

adoption in US states [45, 46]. Graziano et al. and Rode and Weber both 

demonstrated that a peer effect has no effect after certain distances, 

estimated to be 4 km in the US [46] or 1 km in Germany [47]. The visual 

peer effect from a wind turbine is likely to be influential over a greater 

distance, as the visibility characteristics of a wind turbine differ greatly from 

PV system. 

Further research by Palm, examined how the peer effects differed when PV 

adopters had had direct contact with previous adopters, known as an active 

peer effect or had seen PV installations, known as a passive peer effect 

[138]. Palm suggests that the active peer effect is of greater importance than 

the passive visual peer effect in PV adoptions in the Swedish 

neighbourhoods examined [138], contrasting with other literature which 

places equal importance on either peer effect [45, 46]. While Palm’s results 

show the greater importance of an active peer effect, the results of the study 

show that a passive peer effect still exerts an influence on neighbours [138]. 

Palm extended his research further to examine how an individual’s 

perception of PV technologies differed depending the type of peer effect 

which each adopter experiences [138]. For adopters who were influenced by 

the passive peer effect, 41 % of the respondents agreed that the passive 

peer effect indicated the PV could be considered a “low-risk” investment 

[138]. 54 % of the respondents also stated that the passive peer effect 

demonstrated that PV systems were technically and economically feasible in 

the neighbourhood, while 38 % suggested a passive peer effect caused 

them to adopt sooner [138]. The ability of passive peer effects to alter an 

individual’s perception on the feasibility of the technology is an important 

finding for wind turbine adoptions. As discussed, the technical and thus 

economic feasibility of a wind turbine is dependent on the wind resource of a 

neighbourhood. The fact that a passive peer effect can demonstrate such 

feasibility suggests that it will be influential in the wind turbine market. As 

wind turbines are installed, each turbine further demonstrates that a wind 

turbine installation is both technically and economically feasible in the 
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neighbourhood, increasing the likelihood that a potential adopter will pursue 

an installation.  

The previous studies also show that a peer effect can be observed in PV 

markets which are subsidised [43, 47, 137], which is particularly relevant for 

this work. It is theorised in this research that the ability to receive a financial 

subsidy from the FIT is an influencing factor on the temporal adoption 

patterns of wind turbines. The fact that a peer effect has been seen in 

similarly subsidised microgeneration markets demonstrates that choice of 

the peer effects model in this work is suitable.  

Despite the presence of subsidies for energy generation from PV systems in 

both Great Britain [25] and Germany [139], none of the peer effects models 

examining adoption in either country included the specific subsidy levels 

available for generation [43, 137]. The FITs in Great Britain and Germany 

are similar, offering payments per kWh of generation and including a degree 

of degression of the subsidy level [139, 140]. In each of these peer effects 

studies, the influence of subsidy degression was included through the use of 

fixed effects in the model to represent the influence of a tariff [43, 47]. This 

approach is considered as insufficient for this work. While fixed effects in a 

peer effects model will model the influence of temporal changes to a subsidy 

level across all potential adopters, where information regarding the actual 

subsidy changes are available, inclusion of the fixed effects appears 

unnecessary. Data regarding the FIT subsidy degression for wind turbine is 

available for this project. Therefore, the FIT subsidy degression warrants 

inclusion in the peer effects model developed in this work to understand its 

relative temporal influence on small and medium scale wind turbine 

adoptions.  

An alternative policy which promotes deployment has been included in the 

study of PV uptake in Connecticut (CT) by Graziano et al. [46]. Solarize CT 

promotes PV adoptions by partnering with installers and targeting residents 

of a single town or county [141]. Over a fixed time period, residents are able 

to sign up for an installation and with each resident registered, the unit price 

of the an installation for all residents decreases [141]. The presence of the 

Solarize CT policy was shown to be significant influencing factor on PV 

adoption rates in Connecticut [46]. This result shows that the influence of a 

policy in a peer effects model can be examined and therefore inclusion of 

the FIT in this research is justified.  

In the peer effects models, where the data restrictions required analysis to 

be conducted on postal codes, the concept of potential adopters was 
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introduced [43]. The concept was introduced to account for the fact that not 

all households in a postal code may be suitable for a microgeneration 

installation [43]. Richter defined potential PV adopters as all owner-occupied 

homes in a postcode district [43]. Selection of only owner-occupied homes in 

a district is a result of the “landlord-tenant” dilemma [43, 109, 124], 

discussed in Section 3.1.1.5. While all owner-occupied homes are suitable 

for PV installation, it is likely that additional factors such as available wind 

resource will need to be considered when estimating the number of potential 

wind turbine adopters in a region. The potential adopter metric estimated in 

this project must therefore include additional conditions to offer a realistic 

number of potential homes in each region at which a wind turbine may be 

adopted.  

The definition of potential adopters highlights that a peer effects model 

essentially examines the decision maker of the household. With the potential 

adopter metric, it is assumed that a decision to adopt is led by a single 

individual. This may be unrealistic for partners who live together, with the 

decision to adopt likely to be a joint decision. However, the assumption is 

that these partners will be similar and therefore their judgement of the 

benefits of a microgeneration technology will also be similar. This model of a 

single decision maker in a household is in line with the previous literature 

[45], which assumed that a household and it’s residents will decide together 

whether to install a microgeneration technology. 

The timing of the decision to adopt a microgeneration technology is one well 

examined in the peer effects literature on the diffusion of solar photovoltaics 

[43, 45-47]. This issue is covered thoroughly due to the “reflection” problem 

of examining endogenous peer effects [136, 142]. The reflection problem 

arises as individuals may be influenced to make a decision while 

simultaneously influencing others in the peer group [136]. This problem 

makes it difficult to discern the influence on an individual’s decision to adopt 

from their simultaneous influence on others [136]. However, in the adoption 

of microgeneration technologies, there is a solution to address this problem. 

A decision to adopt a microgeneration is not instantaneous and there is a 

time lag between the initial decision to adopt and completion of the 

installation. Previous models examining peer effects and PV adoptions 

therefore included a time lag of the “installed base” to negate the reflection 

problem [43, 45, 46]. This time lag exists for small and medium scale wind 

turbines, which must pass through assessment and evaluation stages before 

an installation can be completed. This creates a time lag between an 
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adopter deciding to adopt and completing the wind turbine installation, when 

the peer effect will begin to act. Previous literature selected time lags 

between a single day [45] and quarter-years [43, 46]. The lead time for a 

wind turbine is likely to range between a single month and up to a year, 

depending on the specific requirements of each proposed turbine and the 

site.  

To implement the necessary time lag, an “installed base” of previously 

installed wind turbines must be defined. In previous literature, where an 

installed base was utilised, it was defined as the number of previous 

installations in the neighbourhood [43, 45]. The installed base, bi,t-1, is the 

number of installations, Ii,t-1, in previous time steps, t-1, across all 

neighbours, j, in the social neighbourhood, C; 

𝑏,௧ିଵ =    𝐼,௧ିଵ





௧ିଵ

௧ୀ

 

Equation 27 

The inclusion of an installed base allows the influence of all previously 

installed wind turbines to be examined, rather than just wind turbines 

installed in the previous time step. This is vital in the wind turbine peer 

effects model, where the diffusion is expected to be slow. Stemming from 

the high capital costs of a wind turbine, which means a decision to adopt 

requires significant consideration by prospective installations. Unlike some 

literature which finds a diminishing peer effect on PV adoptions in time [46], 

it is likely that the influence of visible wind turbines will persist over much 

longer time period. Therefore, inclusion of the installed base in this research 

is vital, as this influence may only be effective after a longer time period. 

Without an installed base, the specific turbines which influenced a 

subsequent decision to adopt in the neighbourhood may be excluded from 

the peer effects model.  

The majority of peer effects literature on microgeneration adoption include 

some characterisation of the socio-economic and demographic data of 

adopters [43, 45, 46]. Bollinger and Gillingham included a characterisation of 

the demographics of adopters to understand the social spill over effects that 

adopter demographics may have on peer effects [45]. The results of the 

study find that larger households, with more residents and longer commutes, 

have a higher peer effect on others [45]. In this work, there has been an 

inclusion of the socio-economic influences prior to initialisation of the peer 

effects model. Clusters of high levels of wind turbine deployment can be 
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identified, from the results of the research on the spatial wind adoption 

patterns, and used as case studies for the peer effects models to account for 

the influence of demographic factors on wind turbine adoptions.  

Clustering of installations is discussed in some literature in the context of 

adopter “self-selection” [43, 46]. Self-selection occurs when residents with 

similar social status and beliefs form social groups [135, 142]. Self-selection 

has been suggested as a reason for spatial clustering of installations, as 

individuals who have a similar propensity to adopt a microgeneration 

technology will reside close to each other [43]. Additionally, self-selection of 

a peer’s social group can lead to correlated behaviour, which when 

examined may appear to be due to an endogenous peer effect [43, 45, 142]. 

A degree of homophily between residents, which could indicate that self-

selection may occur, is required for diffusion of the innovation to occur [132]. 

Imitation and observational learning, which have been suggested to occur 

from the visual presence of microgeneration technology [43, 46, 47] are 

social mechanisms that require homophily of residents for diffusion to occur.  

The final of the classic endogenous identification problems, along with the 

reflection and self-selection problem, is the correlated unobservables 

problem [43, 45-47, 137, 142]. Correlated unobservables, in the adoption of 

microgeneration, may stem from the influence of local marketing campaigns 

[43]. These unobservables will influence the adoption rate as residents who 

are likely to adopt will be aware that installers are available to install a 

technology. This influence can lead to spurious identification of an 

endogenous effect between peers [142]. While this may be an issue within 

this research, as there is no data regarding local marketing campaigns 

available, the use of clusters of installations may mitigate this slightly. The 

formation of the clusters themselves will be driven by an influence or a 

number of influences. It is entirely possible that a local marketing campaign 

by an installer may have caused such cluster formation. While the correlated 

unobservables are not limited to local marketing campaigns, any other 

influential factors, which have not been examined, are also likely to stimulate 

cluster formation. While the use of the clusters in this research will mitigate 

the influence of these unobservables, they must be considered when 

analysing the results of the peer effects model.  

The technical specification of any peer effects model is crucial to ensure that 

the endogenous peer effect is estimated correctly. The models described in 

previous literature are limited to three different types; pooled ordinary least 

squares (OLS) models [43, 45], first-difference models [43, 45] and fixed or 
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random effects models [46, 47, 137]. Each type of model was selected 

based upon the specification and breadth of data available in each project 

[46, 47, 137]. Fixed or random effects in a peer effects model are included to 

account for the three identification problems discussed [43, 46, 47, 142]. 

Inclusion of these effects is designed to control for their influences. Fixed 

effects are included where an influence is consistent across all residents 

while random effects are included when the influence is likely to vary 

between residents. Inclusion of the fixed or random effects in a peer effects 

model may be suitable for this research, due to the influence of correlated 

unobservables. However, previous literature has discussed the use of 

random effects in a peer effects model with a time lagged installed base 

variable [45]. Use of the time lagged installed base can contain factors 

modelled in the random effects, leading to an inconsistent estimation of the 

endogenous effect [45]. Inclusion of the fixed and random effects in this 

research is considered to account for the identification problems of self-

selection. 

First difference models examine peer effects by assessing the influence on 

adoption rate of changes between the model variables in sequential time 

steps [43, 45]. Utilised to mitigate the requirement for the inclusion of fixed 

effects [43], first difference models are the preferred models in some 

literature [43, 45]. By assessing the change in adoption rates as a function of 

the change in other independent variables, a first difference model 

essentially examines the influence from adoptions in the preceding time 

steps alone. Examination of the influence that adoptions in the preceding 

time step have on adoptions in the current time step implies that diffusion of 

the innovation is rapid and can occur within the time lag specified in each 

model. This limits a first difference model’s effectiveness in assessing the 

peer effects of wind turbine adoptions. As discussed, wind turbine diffusion 

is likely to be a slower process than PV diffusion. The influence of a visible 

wind turbine will be act over a much longer timescale than PV systems, due 

to the higher capital costs, which potential adopters are likely to consider for 

a longer time prior to adoption. Use of a first difference model would ignore 

this slow diffusion process by only examining installations in the preceding 

time steps, rather than all previous installations. A first difference model is 

therefore not considered suitable for this research.  

A pooled OLS model has been included in previous literature to examine 

peer effects [43, 45]. By pooling the data, the peer effect can be estimated 

for all turbines in the neighbourhood, rather than for individual turbines [45]. 
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While estimating the peer effect of individual turbines would allow for 

comparison with the results from previous literature, this is difficult when 

examining the influence of visible wind turbines. The visibility of a wind 

turbine is dependent on a number of factors, which are not consistent for all 

residents or wind turbines in any cluster. The peer effect of each visible 

turbine will therefore be subjective for each resident. Use of a pooled OLS 

model discounts this subjective visibility of each turbine and considers only 

the peer effect of all the visible turbines in the neighbourhood. With the 

inclusion of the degression of the FIT, the pooled OLS model is therefore 

considered as the most appropriate model for the peer effects model 

developed in this work.  

The review of literature presented here addresses the factors that are likely 

to influence both the spatial and temporal wind turbine adoption patterns in 

Great Britain, and the techniques which can be utilised to analyse these 

influences. The level of the influence of each factor was investigated through 

two pieces of research. Analysis of the influence of the factors of resident 

age, income, education, house type, homeownership and social class house 

sales, domestic electricity consumption, types of central heating, prevalence 

of agricultural in a region, availability of land area and mean wind resource 

on spatial wind turbine adoption patterns using multiple regression models 

will be presented, discussed and analysed in Chapter 5. The influence of 

changing levels of FIT subsidy and the presence of neighbouring wind 

turbines on temporal wind turbine adoption patterns in case study areas 

using a peer effects model, which will be presented, discussed and analysed 

in Chapter 6. 
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Chapter 4 – Boundary layer scaling model for wind resource 
assessment 

Wind resource assessments are vital in determining the potential financial 

returns of a wind turbine. A wind resource assessment must be accurate to 

ensure that the estimated power output and financial returns represent 

reality as closely as possible. For small and medium scale wind turbines, the 

wind resource assessment methodologies at the initial stages of the project 

are vital. Due to the smaller project budgets of smaller wind turbine 

installations, the viability of a site must be determined as quickly and cheaply 

as possible. Previous studies have highlighted flaws in the current 

methodologies available at this stage of a small and medium scale wind 

turbine project in Great Britain [32, 33]. Appropriate wind resource 

assessment tools are crucial to support future deployment of small and 

medium scale wind turbines and the wider move towards a low-carbon 

economy in Great Britain. 

As discussed in Chapter 2, a boundary layer scaling (BLS) approach to wind 

speed prediction is proposed in this project. The BLS model has been 

developed in this research to supersede the MCS methodology, which is 

currently required for wind turbines to gain accreditation under the FIT 

scheme in Great Britain. The accuracy of the MCS methodology is 

questioned in this work and it is perceived that more accurate wind speed 

estimations are available from the BLS model. To test this perception, wind 

speed predictions from each methodology must be produced. Using these 

wind speed predictions, it is possible to analyse their accuracy to determine 

which of the methodologies is considered the most suitable to support future 

wind turbine deployment.  

The proposed BLS model in this research also introduces a number of 

potential improvements to a previous BLS model by Weekes [33]. The 

introduction of an analytical approach to regional aerodynamics calculations, 

over a greater number of wind direction sectors using an increased breadth 

and spatial resolution of the surface roughness values are the proposed 

improvements in this work’s BLS approach. These improvements to the BLS 

model are aimed at improving the accuracy of wind speed predictions. An 

analytical approach which quantifies the error within the wind speed 

predictions from the BLS model will be able to determine the value of these 
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improvements and identify future advances that could increase the accuracy 

of wind speed predictions from future BLS models.  

In addition to wind speed predictions, power density predictions from hourly 

BLS NWP data will be compared to power density predictions achieved 

using a fixed Weibull shape factor. A fixed shape factor is commonly used 

for power density predictions when using wind map data [11, 33, 122]. 

However, the hourly time-series of NWP data allows for the Weibull shape 

factor to be calculated. These power density predictions, in addition to those 

gained when scaling BLS NWP data for the diurnal cycle’s reversal height 

were analysed for their accuracy to determine the most suitable approach to 

power density predictions.  

The research presented in this chapter was developed to understand if the 

accuracy of wind speed and power density predictions from small and 

medium scale wind turbines in Great Britain can be improved. For such 

turbines, where project budgets are limited, the ability to accurately estimate 

the wind resource of a site is key. Through the improvements that are 

presented in this chapter, it is hoped that future deployment can be 

supported to achieve the technical potential of small and medium scale wind 

turbines in Great Britain.  

4.1 Methodology 

 Boundary layer scaling methodology 

The boundary layer scaling approach that was utilised in this research is 

based on a BLS model originally developed by the Met Office [11]. The 

boundary layer scaling methodology has three scaling steps, as shown in 

Figure 12;  

1. Wind speed from a raw reference wind climatology was scaled to a 

reference height of 200 m. Scaling to the reference height allowing 

any frictional effects contained in the raw climatology to be removed.  

2. Wind speed at the reference height was scaled to the blending height 

of each wind direction sector of the fetch. The blending height and 

effective roughness length were calculated for each of the twelve wind 

direction sectors of a site.  

3. Wind speed at the blending height of each wind direction sector was 

scaled to the desired hub height of the wind turbine. Based on the 

individual surface roughness for each site, this scaling accounted for 

the aerodynamics of the site, such as multiple roughness elements, 
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which necessitated the introduction of the displacement height in the 

wind speed calculation. At this final scaling step of the model, the 

long-term mean hub height wind speed was estimated through a 

frequency weighting of the hub height wind speeds in each wind 

direction sector.  

 

Figure 12 — A graphical representation of the boundary layer scaling 
technique used in this project. Reproduced from [33] 

Wind speed at this reference height, uref, must be independent of any local 

or regional roughness effects [33]. Fixed reference heights have been 

suggested by some authors [11, 33], while a formulation of the reference 

height, based on internal boundary layer (IBL) height has also been 

suggested [49]. The reference height has been suggested as the top of the 

boundary layer. However, this would require a consideration of the Coriolis 

effect on wind speed, and would depart from similarity theory, upon which 

the BLS model is based [11]. A suitable reference height for this research 

was therefore selected as the top of the turbulent surface layer, which was 

estimated at a height of 200 m here, for a rural to urban transition of 

roughness patches where the blending height will be at its highest [11].  

The reference wind climatology, u10, at a height of 10 m, z10, was scaled to 

the reference height, zref, of 200 m using a fixed roughness length, z0ref, of 

0.14 m, for all reference wind climatologies used within this work, to 

calculate wind speed at the reference height, uref of each site; 
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𝑢 =  𝑢ଵ  
log( 𝑧 𝑧)⁄

log( 𝑧ଵ 𝑧)⁄
 

Equation 28 

From the reference height, the wind speed must be scaled to the blending 

height. Inclusion of the blending height in the BLS model assumes that the 

vertical wind profile has completely adjusted to the underlying surface 

roughness changes. By scaling wind speed to the blending height, a 

description of how multiple surface roughness changes across the whole 

fetch influences the wind speed at a site has been included in the BLS 

model. The wind speed at the blending height, ubh, must therefore be 

calculated. Wind speed at the reference height was scaled to the blending 

height, zbh, using the regional displacement height, deff, and the effective 

roughness of the upwind fetch, z0eff; 

𝑢 =  𝑢  
log( (𝑧 −  𝑑) 𝑧 )⁄

log( (𝑧 −  𝑑) 𝑧)⁄
 

Equation 29 

In sites, where the displacement height was not applicable, the regional 

displacement height was set to zero. It is unlikely that the hub heights of 

small and medium scale wind turbines will be above the blending height. The 

wind speed at the blending height must therefore be downscaled to the 

appropriate hub height. This presents a problem as it is reasonable to 

assume that the hub height will be within the blending layer of the IBL and 

the logarithmic vertical profile of wind flow is still adjusting to a new surface 

roughness in the fetch. It was therefore assumed that for each site, the 

neutral logarithmic vertical wind profile was in equilibrium with the surface 

roughness of each specific site. Wind speed at the blending height, ubh, can 

therefore be scaled to the desired hub height, zhh, using the aerodynamics of 

each site, the displacement height, dsite and surface roughness length of the 

site, z0site. For sites, where no displacement height was required, such as 

those with a low spatial distribution of roughness elements, displacement 

height was set as zero. Wind speed at the hub height, uhh, set at 10 m in this 

work for validation purposes, was calculated as;  

𝑢 =  𝑢  
log( (𝑧 − 𝑑௦௧) 𝑧௦ )⁄

log( (𝑧 − 𝑑௦௧) 𝑧௦௧ )⁄
 

Equation 30 

If the desired hub height was below the canopy height, zch, of the site, the 

vertical profile of mean wind speed changed from a logarithmic profile to an 
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exponential profile [11]. The wind speed at the hub height below the canopy 

height was calculated as;  

𝑢 =  𝑢exp ൬−9.6𝜆

(𝑧 − 𝑧)

𝑧
൰ 

Equation 31 

where, λf, is the frontal surface area of an obstacle to wind flow, set as 0.3 in 

this project to represent high density urban areas [11] and, uch, is the wind 

speed at the canopy height. Use of the exponential vertical wind profile was 

very limited in this project, as it only applies for densely urban areas where 

the canopy height is likely to be above the hub height at 10 m.  

As seen in each of the boundary layer scaling equations, the surface and 

regional aerodynamics of each site are crucial. As discussed in Chapter 2, 

the aerodynamics, regional or site specific, originate from the surface 

roughness value, z0.  The surface roughness values were utilised in the 

explicit calculations of regional aerodynamics and the approximations of the 

displacement height. The values of surface roughness were therefore 

considered thoroughly in this work’s BLS model.  

 Surface Roughness and Aerodynamic Parameterisation 

In this work, 13 surface roughness classifications were developed for use in 

the BLS model. Implementation of 13 surface roughness values is, as 

discussed in Chapter 2, an improvement over previous BLS models. 

Previous BLS models have only utilised 8 surface roughness classifications 

[11, 33] which were developed for the original Met Office model [11]. Given 

the considerable influence of the surface roughness value in the BLS model, 

use of a greater number of surface roughness classifications is an essential 

novelty in this work.  

Surface roughness, z0, was parameterised in this work based upon likely 

obstacles on the surface, the vegetation of the surface and the topology and 

morphology of the surface. All of these factors were considered when 

parameterising the appropriate surface roughness values. In order to 

parameterise the surface roughness for the whole of Great Britain, a land 

cover map which described the land use across Great Britain was utilised. 

Using the definitions of land use within the land cover map, it was possible to 

estimate the features of the surface, such as vegetative land cover or size of 

buildings or trees. The surface roughness value could then be 

parameterised for each of the land use categories in the land cover map. 
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Figure 13 — The 25 m raster Land Cover Map 2007 in the UK. Reproduced 
from [85]. Note: Northern Ireland was excluded from the research as the 
Feed-in Tariff is not available in this territory 

The Land Cover Map (LCM) 2007 [85] from the Centre for Ecology and 

Hydrology (CEH), seen in Figure 13, was utilised in this work. LCM 2007 

provided land use in 23 separate categories at a 25 m raster across Great 

Britain [85]. Of the 23 land use categories in the LCM, only 2 categories 

describe suburban or urban areas. Roughness in suburban and urban areas 

can differ greatly depending on building density and building heights [82]. 

Ideally, the LCM would offer much greater detail regarding the differing 

urban land covers to allow for a detailed parameterisation of surface 

roughness in these areas. However, this detail was not available in the LCM. 

As discussed in Chapter 2, a BLS model can be implemented in urban areas 

through extensive calculations of the aerodynamics of the urban fabric [61, 

63]. The breadth of land uses available in more rural regions, which is the 

focus of this work, was more applicable for small and medium scale wind 

turbines, where future deployment in the market is considered more likely 

[104].  

An extensive literature review of published surface roughness values was 

undertaken [11, 81, 84, 143, 144] and the 13 surface roughness 
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classifications were developed during this research. Each classification was 

developed based upon the land cover described in each category of the 

LCM and the corresponding surface roughness values in the literature. For 

each surface roughness classification, multiple surface roughness values 

were described in the literature, typically from experimental field tests. To 

select the most appropriate surface roughness value for this work, the 

majority of the surface roughness classifications were given the mean value 

of the ranges from the literature. In cases where the mean value was 

skewed, the most commonly reported value in the literature was utilised.  

Each of the 23 land use categories in the LCM were associated with one 

surface roughness value, as seen in Table 3. Raw LCM data on a 25 m 

raster was parameterised to a surface roughness value at 25 m and then 

blended to a 100 m resolution, by averaging of all of the 25 m surface 

roughness values in the 100 m grid square. This resulted in each hectare or 

10,000 m2 of Great Britain being associated with a surface roughness value. 

This choice of resolution was dictated by the available computational 

resources but was a finer resolution of surface roughness than previous 

studies, which used a 1 km grid square of surface roughness [11, 33]. The 

finer spatial resolution of surface roughness in this research offered a better 

characterisation of the frictional effects of the surface. Wind turbines with 

lower hub heights will capture near-surface winds for energy generation and 

therefore better characterisation of surface roughness at a finer spatial 

resolution was designed to improve the accuracy of near-surface wind speed 

prediction.   
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Table 3 — The 13 surface roughness classifications and their roughness 
lengths used for each of the 23 categories in this project 

LCM 2007 
Category 

Surface Roughness 
Classification 

Roughness Length 
(m) 

Reference 

Saltwater 
Freshwater 

Water 0.0002 [143] 

Supra-littoral Rock Sand 0.029 [144] 
Improved 
Grassland 
Calcareous 
Grassland 
Neutral Grassland 

Grassland 0.04 [84] 

Rough Grassland Rough Grassland 0.05 [84] 
Bog 
Fens, Marsh & 
Swamps 
Saltmarsh 

Wetland 0.09 [143] 

Arable Arable 0.105 [81] 
Heather Grassland 
Heather 

Heather 0.12 [84] 

Rock & Sediment 
Littoral Rock 

Coastal & Rock 0.28 [143] 

Montane Habitats 
Inland Rock 

Mountains 0.40 [84] 

Suburban Suburban 0.55 [82] 
Mixed Woodland Mixed Woodland 0.76 [11] 
Coniferous 
Woodland 

Other Woodland 1.05 [84] 

Urban Urban 1.1 [84] 

 

From the surface roughness values, the displacement height, d, was 

approximated for each grid square of surface roughness. The approximation 

of displacement height from surface roughness values, z0, is based on the 

empirical relationship between canopy height, zch, and displacement height, 

d, suggested by Garratt [145] and discussed in Grimmond and Oke [82], with 

respect to morphometric data from 7 different cities; 

𝑧 = 10𝑧  ;  𝑑 =  
2

3
𝑧  

∴ 𝑑 =  
20

3
𝑧 

Equation 32 

Approximation of displacement height was implemented since calculation of 

displacement height requires the frontal and plan area of all frictional 

elements in the domain [33, 146]. As discussed earlier in the section, such 

data for the whole of Great Britain was unavailable, necessitating the use of 

approximations in this research. In rural areas, the density of roughness 
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elements is such that the displacement height will be effectively zero. The 

displacement height approximation was therefore only implemented for the 

final five surface roughness classifications of Table 3. However, the impact 

of using an approximation of displacement height is likely to be greater in 

suburban areas, where the influence of height variability in surface 

roughness elements has been shown to exhibit a larger influence on surface 

drag [80]. 

While surface roughness values parameterise the frictional effects of the 

surface, the roughness values were also utilised in the calculation of the 

regional aerodynamics, the blending height and effective roughness length 

of the fetch. 

 Blending Height and Effective Roughness of Fetch 

Formation of an internal boundary layer (IBL) as wind flow passes over 

different patches of roughness necessitates the need to calculate the 

blending height in the BLS model. At this height, the differing frictional 

effects of each surface roughness patch are homogenised. Previous studies 

have utilised a fixed blending height in a BLS model [11, 33]. With the 

introduction of a finer surface roughness parametrisation in this research, a 

greater variability of surface roughness is likely to be observed. Greater 

variability of surface roughness cause more IBLs to form and therefore a 

fixed blending height is considered insufficient for this work’s BLS model.  

Blending height was calculated by tracking the growth of the IBLs as the 

wind flows over differing roughness patches in the fetch. The influence of 

each change in roughness patch on the depth of each IBL must be captured 

in the blending height calculation.  

To track the growth of the IBLs in the fetch, the fluctuations in wind velocity, 

u’, due to changes in surface roughness were captured. The change in wind 

velocity due to roughness changes across the whole fetch, du’(z0,t), were 

identified by examining the influence of a single patch of roughness, z0,i, on 

velocity fluctuations, in the context of all the fluctuations due to roughness in 

the preceding fetch, z0,t; 

𝑑𝑢ᇱ൫𝑧,௧൯ = ቀ𝑢ᇱ൫𝑧, + 𝑧,௧൯ −  𝑢ᇱ൫𝑧,൯ቁ
ଶ

 

Equation 33 

The variability in wind flow velocity due to roughness changes in the fetch 

was parameterised into a single variability scale, Lp for each wind direction in 

the fetch. The maximum likely velocity change, du’max, and mean likely 
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velocity change, 𝑑𝑢ᇱ(𝑧,௧
തതതതതതതതതത), in the fetch represent the velocity fluctuations 

which result in the highest and mean height of the IBLs in the fetch. These 

characteristic velocity fluctuations in the fetch were integrated over the 

characteristic length scale of the fetch, Ld, to calculate the variability scale, 

Lp; 

𝐿 =  න ቈ1 −  
𝑑𝑢′(𝑧,௧
തതതതതതതതതത)

𝑑𝑢ᇱ
௫

 𝑑𝑧,௧





 

Equation 34 

In this work, the characteristic length scale, Ld, was set at 2,828 m. This 

distance equates to the length of central path in each wind direction sector 

and was calculated from the size of the upwind fetch of 2 km in either 

direction. 

The blending height, zbh, of each wind direction sector was solved iteratively, 

using the variability scale, Lp; 

ቆ
𝑧

1.7ĸ𝐿 + 𝑍
ቇ

ଶ

=   ቌ
𝑓

(ln
𝑧

𝑧,
)ଶ

ቍ

ே

ୀଵ

 

Equation 35 

where, z0,i, was each individual roughness patch and, fi, was its fraction of 

surface coverage in the fetch across all patches in the fetch, N. Effective 

roughness is the spatially averaged roughness of the surface of the fetch of 

the wind direction sector. Effective roughness across the fetch varies with 

height as the frictional effect of the surface diminishes with height. Using a 

blending method, the effective roughness, z0eff, was calculated as a function 

of the blending height, zbh, in each wind direction sector; 

ቆ
൫𝑍 − 𝑑൯

𝑧
ቇ

ିଶ

=   𝑓 ቆ
(𝑍 − 𝑑)

𝑧,
ቇ

ିଶ

 

Equation 36 

using each patch of roughness length, z0,i, and displacement height of the 

patch, di. Regional displacement height of the wind direction sector, deff¸ and 

displacement height, di, of each roughness patch were approximated from 

the surface roughness value of each patch, using the approximation 

described in Section 4.1.1.1. Initially, deff, was approximated from the highest 

roughness length in each wind direction sector before an approximation from 

effective roughness was possible.  
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Regional aerodynamics were included in the BLS model to account for the 

effect of surface roughness in the upwind fetch of the site. To ensure that 

sufficient upwind variability was captured, the size of the fetch must be 

appropriately defined. A previous study has examined the sensitivity of fetch 

size on wind speed prediction accuracy from a BLS model [33]. The study 

found that an upwind fetch of 2 km offered the lowest error in wind speed 

[33]. It is noted however, that the surface roughness was spatially coarser 

and the number of wind direction sectors was lower in this previous study 

[33] than in this work. With a coarser surface roughness and lower number 

of wind direction sectors, it would be expected that a larger fetch may be 

required to capture sufficient variability at the surface. Selection of a 2 km 

upwind fetch is therefore considered to be sufficient in this work’s BLS 

model. 

A 2 km upwind fetch resulted in a 4 km by 4 km fetch surrounding each site. 

This 16 km2 grid square around a site was then split into 12 wind direction 

sectors of 30° each. Use of 12 wind direction sectors is a novelty for this 

work’s BLS model, as previous BLS models have used only 4 wind direction 

sectors of 90° [33] or 8 wind direction sectors of 45° [49]. To capture the 

variability of the surface roughness in each wind direction sector, the surface 

roughness of each fetch was collected. Use of surface roughness values at 

0.01 km2 resulted in each wind direction sector containing around 130 

different patches of surface roughness. To calculate the regional 

aerodynamics of a site with sufficient accuracy but in a timely manner, all of 

these 130 different patches could not be included. Use of a central path 

through each wind direction sector was therefore implemented. Selection of 

the longest route from the edge of the fetch to the site being assessed 

allowed sufficient surface roughness variability to be captured for the 

regional aerodynamics calculation. Use of the central path concept did 

exclude roughness patches in the fetch which could influence the calculation 

of the regional aerodynamics. However, the influence of regional 

aerodynamics have been shown to be the least sensitive in a BLS model 

[147]. A sensitivity analysis conducted during the development of the model 

showed that the difference between the mean absolute error of wind speed 

predictions using either the central path or all roughness patches in a wind 

direction to calculate regional aerodynamics was less than 0.004 ms−1. Use 

of the central path was therefore considered suitable for this research.  

Figure 14 presents a diagrammatic representation of the central path 

through the three wind direction sectors of the site. The central path is 
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highlighted in red indicating the patches of surface roughness which are 

included in the regional aerodynamic calculations.  

 

Figure 14 — Diagrammatic representation of central path of surface 
roughness taken from three wind direction sectors of the between 0 
and 90 for regional aerodynamic calculations 

The regional aerodynamics of each of the 12 wind directions were calculated 

and utilised in the BLS equations described in Section 4.1.1. For each site, 

the wind speed at the hub height was calculated in each wind direction 

sector. Using observational wind direction data from a nearby monitoring 

site, the relative frequency of each wind direction sector at the wind turbine 

site was estimated. The hub height wind speed in each wind direction sector 

was then weighted by the relative frequency of the wind direction sector. The 

mean wind speed at the desired hub height of a site was then calculated as 

a summation of the weighted wind speeds from each of the twelve wind 

direction sectors. 

The BLS method described here allowed for the mean wind speed of a 

prospective wind turbine site to be calculated. As discussed in the initial 

stages of this chapter, the BLS model was developed in this work to 

compare the accuracy of wind speed predictions available, with those from 

the MCS methodology.  

 Microgeneration Certification Scheme model  

The Microgeneration Certification Scheme (MCS) method is included as part 

of the wind turbine installer standards of the MCS accreditation process [27]. 
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For a wind turbine to gain the accreditation required to receive Feed-in Tariff 

(FIT) payments, the MCS methodology must be conducted.  

The mean wind speed is determined in the MCS methodology by scaling raw 

Numerical Objective Analysis of Boundary Layer (NOABL) wind speed data 

[27]. Mean wind speeds from the MCS, ūMCS, are calculated by correcting 

raw NOABL data at 10 m, ūNOABL, using a scaling factor, Cf; 

𝑢തெௌ =  𝐶𝑢തேை 

Equation 37 

The scaling factor, Cf, is a function of the ratio between the hub height of the 

turbine, zhh, and the height of the highest local obstacle, zlo, and the terrain 

classification of a site, Tc. A local obstacle is defined as any solid item, such 

as a wall, or semi-permeable item, such as a tree, which is wider than 0.5 m, 

with a height greater than a quarter of the hub height of the proposed turbine 

[27]. A representation of the area surrounding a turbine considered when 

assessing the height of local obstacles is given in Figure 15. 

 

Figure 15 — Representation of the area surrounding a turbine site when 
considering the size of local obstacles in the MCS methodology. 
Modified from [27] 

To conduct the MCS methodology, a site survey to identify the 

characteristics of the site and the surrounding area is required. In this work, 

site surveying was not possible due to the large domain covered in the 

mapping approach and therefore assumptions had to be made regarding the 

local obstacle height and the terrain classification of a site.  

In lieu of observational data regarding local obstacle heights at each site, an 

approximation was developed in this work to estimate the height of the local 

obstacles from surface roughness values. Following the approach of 

Grimmond and Oke, the height of the highest local obstacle was 

approximated as 10z0, equivalent to the canopy height of a site [82].  
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The terrain of a site is classified in the MCS methodology into one of five 

categories which covers different terrain types from flat grassland up to 

dense urban areas. The classes are structured so that the higher the 

classification, the rougher the surface is liable to be. When considering 1 km 

upwind and 500 m downwind of a turbine, the terrain is classified as the 

highest terrain classification identified within this monitoring zone [27].  

Terrain classification of each site was estimated in this work from the surface 

roughness values of the BLS model. The surface roughness values were 

banded into five categories corresponding to the terrain classes presented in 

the MCS method [27], as seen in Table 4. 

Table 4 — Surface roughness value ranges used to determine the MCS terrain 
classification 

 

Once the terrain classification and local obstacle height of each site was 

determined, the correct scaling factor could be identified. These scaling 

factors ranged from 0.05 for a wind turbine in densely urban areas with a 

local obstacle at a similar height as the hub height, to 1.32 for a wind turbine 

with a hub height of 100 m in flat grassland with no local obstacles [27].  

The value of the scaling factors highlight that at most sites, the MCS 

methodology reduces the wind speed of the raw NOABL. Around 66 % of 

the scaling factors apply a reduction to the raw NOABL data. Given that raw 

NOABL has been shown to over predict [31, 32], this skew in the scaling 

factors of the MCS is unsurprising. This approach taken in the MCS appears 

to be designed to correct inaccurate NOABL data rather than offering a full 

consideration of the aerodynamics of the site and their influence of wind 

speed.   

Range of surface 
roughness values, z0, 
(m) 

MCS terrain classification and description [27] 

< 0.041. Category 1 – Flat grassland, parkland or bare soil without 
hedges and only a few isolated obstructions.  

>= 0.041 and < 0.104. Category 2 – Gently undulating countryside, fields with crops, 
fences or low boundary hedges and few trees. 

>= 0.104 and < 0.54. Category 3 – Farmland with boundary hedges, occasional 
small farm structures, houses and trees etc. 

>= 0.54 and < 1.1. Category 4 – Woodland or low rise urban/suburban areas (e.g. 
domestic housing) with a plan area density of up to about      
20 %. 

> 1.1. Category 5 – Dense urban areas and city centres (e.g. 
buildings of four-stories or higher) with a plan area density 
greater than about 20 %. 



- 95 - 

In comparison, the BLS model analysed fetch conditions over a greater 

distance and applied multiple corrections to produce a mean wind speed 

prediction. While simplicity is preferred when presenting a standardised 

correction methodology as it must be quick and easy to conduct, the 

complexity of a site’s wind conditions is neglected through use of a single 

correction factor in the MCS methodology.  

While caveats are given in the installer standards regarding the degree of 

uncertainty in the MCS methodology, it is also noted that presentation of any 

alternative wind resource assessment methodology must not be given 

greater significance than the results of the MCS methodology [27]. 

Additionally, installers are instructed to offer a warning if the alternative 

methodology predicts a mean wind speed greater than the MCS 

methodology [27]. It is foreseeable that the MCS methodology could be 

treated by installers and prospective consumers as an accurate 

representation of a site’s mean wind speed. This could lead to a site’s 

viability being incorrectly estimated and lead to wind turbines either not 

being installed on viable sites or installed on unviable sites. The estimated 

MCS wind speed could also be viewed by potential adopters as the upper 

estimate of long-term mean wind speed of a site and if the MCS 

methodology under-predicts the wind speed, a potential adopter could 

possibly be dissuaded from installing a wind turbine in a location with 

sufficient wind resource. The suitability of the MCS methodology to support 

future deployment of wind turbines in Great Britain is therefore questioned in 

this research. To determine the suitability of the MCS, the accuracy of its 

wind speed predictions across a sample of sites in Great Britain is presented 

in Section 4.2.  

 Reference wind climatology  

To predict mean hub height wind speed from either the MCS or BLS model, 

a reference wind climatology was required. A reference wind climatology 

provides a raw wind speed, which can be scaled with either methodology. In 

total, four reference wind climatologies were utilised in this work; two wind 

map climatologies and two Numerical Weather Prediction (NWP) 

climatologies.  

The wind maps of the Numerical Objective Analysis of Boundary Layer 

(NOABL) and National Climatic Information Centre (NCIC) were utilised in 

this work. In addition to these observational based wind speed databases, 

Numerical Weather Prediction (NWP) wind speed data from the UK Met 

Office’s UK4 and UKV models have been utilised as reference wind 
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climatologies. NOABL data was used in the BLS and MCS models, while 

NCIC data was only used in the BLS model. Only the NOABL wind speed 

data was utilised in the MCS methodology as this is specified in the FIT 

installer standards and the MCS methodology was designed to correct only 

NOABL data [27].  

 NOABL wind resource map 

The Numerical Objective Analysis of Boundary Layer (NOABL) wind speed 

map provided a decadal mean estimation of wind speed for each 1 km grid 

square of the UK. NOABL was created using a wind flow model [98] with 

initialisation data taken from between 1975 and 1984 at 56 observational 

sites across the UK [98]. The NOABL wind flow model interpolated the 

observed wind field in three dimensions on a finite difference grid [98]. The 

wind field was then adjusted to account for the effects of terrain and 

corrected using surface roughness values at each grid point [98].  

Using local surface roughness values derived from the topology within 5 km 

of each site, the observed wind speed from each station was scaled using a 

power log law, from 10 m to the top of the boundary layer, set at 60 m [98]. 

The meso-scale wind speed at the top of the boundary layer was scaled 

down using the fixed power log law exponent of 0.14 [98]. The power log law 

exponent was considered “most appropriate for smooth level terrain such as 

flat grassland” [98]. The use of fixed power law exponents within NOABL 

was designed to “obtain wind speeds appropriate to a terrain with uniform 

surface roughness” [98].  

For areas where the use of the power log law was insufficient to predict the 

wind speed accurately, a correction for orography was applied to the 

estimated wind speed [28]. A Laplacian transformation of topological data 

indicated the areas where the topology varied greatly and therefore the 

scaled wind speed required an orography correction [28].  

Validation of the NOABL wind speed data found that there was a mean 

difference of 0.1 ms−1 between the measured and predicted wind speeds 

[98]. However, this was performed at only two sites [98] and other studies 

have shown that the wind speeds in NOABL have a greater degree of 

inaccuracy, particularly in urban areas, where over prediction could be as 

high as 40 % [30, 101]. The use of a single exponent value for vertical 

interpolation that represents flat grassland [98] also raises questions about 

the accuracy of the predicted NOABL wind speeds. Wind speeds would be 

expected to be much higher in areas of flat grassland, and this could be the 
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underlying reason for the inaccuracy in areas with higher surface roughness 

[30, 101]. Additionally, the surface roughness of Great Britain is not uniform 

and therefore the use of a single exponent value is inappropriate. NOABL 

has been utilised for previous boundary layer scaling studies [11, 33, 49, 

101] and it is therefore suitable as a reference wind climatology in this work. 

However, the deficiencies in the raw NOABL data must be considered when 

scaling for wind speed predictions. 

 NCIC Wind Resource Map  

The NCIC wind resource map provided a long-term mean wind speed for 

each 1 km grid square of the UK. NCIC was created by the Met Office [99] 

using observational data from 220 meteorological stations between 1971 to 

2000 to create a gridded dataset of climatic parameters, including wind 

speed [99]. To create the wind map, a regression analysis and an inverse 

distance weighting interpolation of observational data was implemented [99].  

The regression analysis variables utilised for the wind speed observations 

were: easting and northings to capture spatial variation; elevation to capture 

altitude effects; mean altitude within a 5 km radius of an observational 

station to capture the effects of terrain shape and; the percentage of open 

water within a 5 km radius of a grid point [99]. Following the regression 

analysis, the observational wind speed data was either normalised to make 

them dimensionless or converted to regression residuals prior to 

interpolation [99]. These techniques are implemented to remove any 

geographic effects, such as topological influences in the observational wind 

speed data [99].  

An inverse distance weighting method was applied to the regression 

residuals to create a gridded set of wind speeds [99]. Interpolation was 

undertaken on station data within a given radius from the interpolation point. 

The selected observational data was weighted based upon distance from the 

interpolation point [99]. The interpolated values were added to the 

regression residuals or normalised observational data to estimate the mean 

wind speed in each grid square [99].  

The NCIC has significant advantages over the NOABL data, namely the use 

of a greater number of meteorological stations and a longer span of 

observational data. Both NOABL and NCIC offer long-term mean wind 

speed estimates at heights of 10 m, 25 m or 45 m [99]. These heights are 

considered typical turbine hub heights, however, installers require the ability 

to estimate long-term mean wind speed at the specific hub height of the wind 
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turbine. This is why the BLS model has, in part, been included to offer this 

functionality to potential adopters.  

To utilise the wind map data as a reference wind climatology in the BLS 

model, wind speed at the reference height was required. As discussed, wind 

speed at the reference height must be independent of local or regional 

effects [33]. To utilise wind map data from any height as a reference wind 

climatology, it was scaled to the reference height. Using a reference 

roughness length, z0ref, of 0.14 m for both the NOABL and NCIC data [11], 

the wind map data was scaled to the reference height in the BLS model.  

The reference of roughness length of 0.14 m was suggested in the original 

Met Office report for ‘open countryside’, which was taken the Met Office’s 

Unified Model [11]. This reference roughness was also used within the 

creation of the NOABL data to represent flat grassland [98]. Use of this 

assumed reference roughness length was to remove any frictional effects 

within the reference wind climatology. Therefore, use with the NOABL data 

was more appropriate as this roughness length was applied across the 

modelling domain [98]. However, the roughness length within the NCIC data 

was less clear, as these wind speeds were estimated using a statistical 

approach [99]. Selection of the reference roughness length must be guided 

by the roughness lengths utilised during data creation, and for the NCIC data 

the exact values of these were undetermined. Use of a variable reference 

roughness length derived from the land cover map was considered. 

However, without the ability to determine the appropriateness of these 

values, it could introduce additional frictional effects to the climatology data 

rather than remove them. The reference roughness length of 0.14 m was 

therefore utilised for the NCIC data in this work, following communication 

with the Met Office.  

To determine power density, when utilising wind map data, required the use 

of a fixed shape factor. These wind maps only provide a single mean wind 

speed, to which a Weibull distribution cannot be fitted. A fixed Weibull shape 

factor of 1.8 [11] has previously been suggested when estimating power 

density with wind map data. This fixed shape factor was suggested by the 

Met Office [11] and derived from the observed shape factors of wind speed 

distributions from a number of sites across Europe [106]. Use of the fixed 

shape factor for power density prediction has been shown to have significant 

errors [33]. However, use of the fixed shape factor is the only suitable 

method for power density predictions with long-term mean wind map data. 



- 99 - 

To estimate power density accurately requires an hourly time-series of wind 

speed data to which a Weibull distribution can be fitted.  

 Numerical Weather Prediction data  

Numerical Weather Prediction (NWP) data was available from two of the Met 

Office’s operational forecast models, the UK4 and UKV models [100] as a 

reference wind climatology. Operational forecast models are part of the Met 

Office Unified Model (UM) which produces both global and limited area NWP 

data [100] by unifying forecasting and climate models [148]. Limited area 

operational NWP models simulate large-scale atmospheric processes and 

sub-grid scale processes including convection, radiation and cloud 

microphysics [149, 150]. Within the UKV model, there is no convection 

parameterisation as the grid length is considered small enough to capture 

the effects [150], while the UK4 model operated with a mass flux based 

convection scheme [149, 150]. NWP models assimilate high-resolution data 

from radars or satellite [150] every 3 hours [149] to initialise their model runs.  

UK4 and UKV are meso-scale operational models that cover the UK, with a 

horizontal resolution of 4.4 km and 1.5 km respectively [100]. UK4 and UKV 

models are run at 6 hour intervals daily to produce an hourly forecast 

spanning 48 hours from each run [100]. Each model has 70 vertical levels, 

with a finer vertical resolution in the boundary layer, providing 7 heights 

below 200 m [100]. Both NWP datasets were available for this research at 

the 8 lowest heights of the models; 10 m, 20 m, 35 m, 50 m, 100 m, 150 m,   

200 m and 500 m. NWP data at 500 m has not been included as the 

reference height of the BLS model was set at 200 m.  

Hourly time-series of wind speeds from the NWP models were available for 

this research. UK4 data was available from 2002 to 2012 while the UKV data 

was only available from 2010 to 2014, as the UKV model only became fully 

operational in 2011 [100]. NWP data was only utilised in the BLS model as a 

reference wind climatology. At each site assessed, each hourly wind speed 

of raw NWP was scaled to the hub height using the BLS approach, 

described in Section 4.1.1, to create a BLS NWP time-series. It was from 

these scaled time-series that a long-term mean wind speed of the site was 

calculated. To allow for a consistent comparison with the scaled wind map 

data, only a long-term mean wind speed was estimated from the BLS NWP 

data.  

Unlike the BLS wind map data, a Weibull distribution could be fitted to the 

hourly time-series of BLS NWP data. Using the maximum likelihood method 
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[67], the Weibull distribution was fitted to each time-series of BLS NWP at 

the selected hub height and the Weibull parameters of shape, k, and     

scale, c, were estimated. Using the Weibull shape factor, the power density 

in the wind flow of each site could be estimated.  

 Scaling of Weibull shape factor for power density 
prediction 

Power density in the wind flow is a function of the variability in the wind 

speed [70]. Power density of the wind flow, Pd, can be estimated using a 

gamma function, Γ, transformation of the shape factor, k, and the mean wind 

speed, ūz, of the site [33, 105]; 
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Equation 38 

The Weibull shape factor describes the long-term variability in the wind 

speed at a site [70]. The long-term variability in wind speed is composed of 

the synoptic and diurnal variability of the wind speed [70]. The diurnal 

variability of wind speed has been shown to be the dominant factor that 

influences near-surface power density and must be characterised when 

estimating power density available to small and medium scale wind turbines 

[70].  

Diurnal variability in wind speed has been shown to be height-dependent, 

with the variability reaching a minimum at the mean reversal height of the 

diurnal cycle [70]. The relationship between diurnal variability and Weibull 

shape factor has been shown to be inverse [70] and therefore the value of 

the shape factor is considered height dependent [70]. The shape factor 

reaches a maximum over land at the reversal height of the diurnal cycle, 

where diurnal variability is at a minimum [70].  

This reversal height over land is estimated in literature to be at an mean 

height of 80 m [70]. Without experimental field data available in this 

research, it was not possible to calculate the reversal height of each site. 

Literature identified the reversal height to range between 60 m and 80 m for 

onshore sites [70]. In this work, the reversal heights of 60 m, 70 m and 80 m 

were tested at each site. 

The height dependence of the shape factor must be accounted for in the 

estimation of power density from BLS NWP data. Shape factor, ks, at the 

surface, zs, was scaled vertically to account for the reversal height, zr, of the 
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diurnal cycle of a site to estimate shape factor, k, at a selected hub height, z 

[70]; 

𝑘 =  𝑘௦ +  𝑐(𝑧 − 𝑧௦)𝑒
ቀି 

௭ି௭ೞ
௭ೝି௭ೞ

ቁ
 

Equation 39 

where, ck, is an empirical coefficient, estimated as the gradient of a linear 

regression fit of observed vertical shape factors of sites on a log scale 

against height [70]. In this work, the value of ck, was estimated to be 0.022, 

based upon the values described in the literature [70].  

BLS NWP data from all original forecasting heights available has been 

scaled around the reversal height to understand if the accuracy of the power 

density predictions could be improved with this technique.  

 Validation data  

To determine the accuracy of wind speed and power density predictions, 

validation using observational data was required. The Met Office’s Integrated 

Data Archive System (MIDAS) Land and Marine Surface Stations is a 

network of weather monitoring stations across the UK which collect multiple 

weather variables [73]. Of the weather variables collected, wind speed in 

knots and wind direction in degrees at 10 m above the ground was collected 

[73]. As the observational validation data was available at 10 m, this dictated 

the choice of 10 m as the hub height for each of the scaling methodologies 

examined in this research. The observational wind speed measurements are 

either hourly wind speeds, or 10-minute mean wind speeds, which are 

sampled every hour to represent hourly wind speeds [73]. The hourly wind 

speed observations from each MIDAS site were utilised to calculate a long-

term mean wind speed for each site from which the wind speed predictions 

from either the MCS or BLS model were validated. A Weibull distribution was 

also fitted to the hourly wind speed observations to derive the shape factor, 

which was then used to validate the power density predictions. 

From a larger sample of stations across Great Britain, 124 sites were 

selected to provide validation data for this research, seen in Figure 16. The 

124 sites were selected using two criteria: sites that were operational 

between 2002 and 2012; and sites that achieved an hourly data coverage of 

90 % or above during this decade.  
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Figure 16 — Location of the 124 MIDAS sites used for validation in this work. 
The site classification of each MIDAS site is also detailed 

A decadal mean wind speed at each observation site was required as the 

NOABL provided only a decadal mean wind speed, the shortest time period 

of observational data used in either wind map. The data coverage 

requirement of above 90 % hourly coverage during this decade was to 

ensure that sufficient variability of the wind speed at each site was captured. 

Such high levels of hourly data coverage allowed the capture of synoptic and 

diurnal variability in the observational wind speed.  

Each of the 124 sites were classified visually from Ordnance Survey maps to 

determine their surrounding terrain and likely roughness elements [33]. This 

visual classification accounted for the presence of coastlines in the vicinity of 

the site, the likely types of buildings and vegetative land cover surrounding 

the site and the presence of any topological features, which could influence 

wind speed. This process allowed classification of the sites into one of four 

categories; coastal; mountain; rural and suburban, as indicated in Table 5 

and seen in Figure 16.  



- 103 - 

Table 5 — Number of sites in each site classification sample 

Site classification Number of sites in sample 
Coastal 50 
Mountain 10 
Rural 53 
Suburban 11 

 

Site classifications allowed the effects of the physical characteristics of the 

different terrain on the accuracy of wind speed predictions to be investigated 

[33]. Analysis in these differing terrains allowed any deficiencies in each 

methodology to be identified.  

To determine the accuracy of wind speed predictions, error metrics that 

allowed for a consistent comparison of the errors in each wind speed 

prediction were required. Two metrics; mean absolute error (MAE) and 

mean percentage error (MPE) were selected to assess the accuracy of the 

wind speed predictions produced during this research [33].  

Mean absolute error is defined as; 

𝑀𝐴𝐸 =  
1

𝑁
ห𝑢ത௦, −  𝑢തௗ,ห

ே 

ୀଵ

 

Equation 40 

where, ūpred,i, is the predicted long-term mean wind speed at site, i, and, 

ūobs,i, is the observed long-term mean wind speed at site, i, and, N, is the 

sample size.  

Mean percentage error is defined as; 

𝑀𝑃𝐸 =  
100 %

𝑁


൫𝑢ത௦, −  𝑢തௗ,൯

𝑢ത௦,
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Equation 41 

The mean absolute error and mean percentage error validation metrics were 

selected to offer a different assessment of the error within a wind speed 

prediction. Through examination of the absolute error in a wind speed 

prediction, the mean abolute error metric offered a comparison of the relative 

intrinsic error of each methodology. Mean percentage error, however, was 

able to indicate whether a methodology over or under predicted the wind 

speed. The metric was in a form that ensured when the prediction of wind 

speed was below the observed value, the resulting mean percentage error 

was negative.  



- 104 - 

By selecting validation sites with a high degree of hourly data coverage, the 

hourly observation data of each site could be fitted with a Weibull distribution 

to understand the distribution of wind speeds at the site. The observed 

Weibull distribution parameters from each site were used to validate power 

density predictions, calculated from the Weibull shape factor of a distribution 

fitted to the BLS NWP data. To assess the accuracy of power density 

predictions, a further metric for validation was required.  

Predicted power densities at a site were validated by the observed power 

density of the site [33], using a dimensionless power density metric, Pd,norm;  

𝑃ௗ, =  ቈ
𝛤(1 + 1 𝑘ௗ)⁄

𝛤(1 + 1 𝑘௦)⁄


ଷ
𝛤(1 + 3 𝑘௦)⁄

𝛤(1 + 3 𝑘ௗ)⁄
 

Equation 42 

where, kpred, is the predicted shape factor, kobs¸ is the observed shape factor 

and Γ is the gamma function.  

The size of the validation sample used for each reference climatology varied 

due to changes in modelling approaches of the reference climatologies. All 

of the 124 validation sites were available for the NOABL and UK4 data. 123 

validation sites were available for the NCIC data, with one of the sites in the 

Shetland Islands unavailable. 121 validation sites were available for UKV 

validation with all of the sites in the Shetland Islands outside the modelling 

domain of UKV model. While the sample size differed slightly between the 

reference wind climatologies, the use of mean error metrics across each 

sample allowed for a consistent comparison between the different wind 

speed predictions from each reference wind climatology.  

 Comparison with past work  

The introduction of an analytical approach to regional aerodynamics 

calculations, over a greater number of wind direction sectors using an 

increased breadth and spatial resolution of the surface roughness values, 

were proposed as improvements to the BLS approach. Details of the 

improvements in these areas were discussed in greater detail in Sections 

4.1.1.1 and 4.1.1.2.  

To understand if these improvements improved the accuracy of either the 

wind speed or power density predictions, the results of this work were 

compared with the results of a previous BLS model [33]. In the previous 

study by Weekes, the validation sample was only 38 sites across Great 

Britain. While this validation sample is smaller than the sample selected for 
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this research, the study utilised the same validation metrics [33] which 

allowed for a comparison between the results of the studies. 

The inclusion of these novel approaches was designed to advance the 

capability of the BLS model to provide more accurate wind speed predictions 

than previously possible. The differences between this work’s and the 

previous study’s BLS model are summarised in Table 6. The value of these 

improvements to the BLS will be assessed in Section 4.2.5. 

Table 6 — Summary of improvements to the BLS model suggest in this work 

Model facet Weekes approach [33] This work’s approach 
Spatial resolution of surface 
roughness 

1 km2 0.01 km2 

Breadth of surface 
roughness classifications 

8 roughness classifications 13 roughness classifications 

Number of wind direction 
sector 

4 sectors of 90° 12 sectors of 30° 

Regional aerodynamic 
estimation 

Either fixed or estimated 
from canopy height of each 
wind direction sector 

Analytical solution applied 
across the whole fetch for 
each of the twelve wind 
direction sectors 

 

 Sufficient accuracy  

To determine the suitability of each approach to wind speed prediction 

described in this chapter, a definition of sufficient accuracy in wind speed 

predictions was required. Predictions of wind speed are liable to contain a 

degree of error, due to the assumptions implemented during the prediction 

process. While these assumptions may lead to error, they are a vital part of 

the prediction process to ensure expedient wind speed predictions are 

produced. The magnitude of the intrinsic error in a wind speed prediction 

which is considered acceptable, and will not detrimentally impact the wind 

resource estimation to a prospective consumer, must therefore be 

determined. In this work, validation of the wind speed predictions against the 

observed wind speed can identify the relative error in each prediction. These 

errors were then translated into estimated annual energy production, annual 

payments under the FIT and payback periods to understand how each of 

these estimations differed as the relative error in the wind speed prediction 

altered. These financial metrics were compared against the financial metrics 

calculated using the wind speed predictions with zero error. Analysis of the 

differences between these metrics allowed a judgement on the definition of 

sufficient accuracy in a wind speed prediction to be offered.  
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To estimate sufficient accuracy in wind speed predictions, the wind speed 

predictions must be converted to the estimated energy and power outputs of 

a wind turbine. As discussed in Chapter 2, the energy and power output of a 

wind turbine is dependent on the specifics of each wind turbine. To define 

sufficient accuracy in the wind speed predictions, the power curve of a 

specific wind turbine must be selected. The most common capacity of a wind 

turbine installed under the FIT is a 5 kW wind turbine, with 20 % of all 

turbines installed by December 2016 having a capacity of 5 kW [12]. The 

power curve of a 5 kW wind turbine was therefore selected. A smaller 

capacity turbine will produce less power than a larger capacity turbine at the 

same hub height wind speed. Therefore, meeting the financial viability 

thresholds will be more difficult for a smaller wind turbine, due to this lower 

power output. The financial metrics produced using a 5 kW wind turbine 

were therefore considered as a worst case scenario and would require the 

highest wind speed possible to ensure financial viability. This fact, coupled 

with the high levels of 5 kW wind turbine installations, motivated the 

selection of a comparatively low capacity wind turbine.  

All wind turbines with an installed capacity of 50 kW or less wishing to 

receive the FIT payments must be an MCS accredited wind turbine [26]. 

Each MCS accredited wind turbine must be field tested by an independent 

assessor to determine its power curve and reference annual energy 

production. The turbine selected for this work was the Evance R9000 5 kW 

wind turbine [151]. The wind turbine was accredited by the Building 

Research Establishment, following field tests from November 2009 to June 

2010 at two sites in Hoswick, Shetland and Pendeen, Cornwall [151]. The 

calculated power curve of the Evance R9000 is shown in Figure 17.  

Using the wind turbine’s power curve, the annual energy production of the 

turbine was calculated and from this, the annual FIT payments and likely 

payback periods were estimated. However, as also discussed previously, 

the variability of site’s wind speed expressed as the Weibull parameters was 

also required. While the scale factor can be obtained from the mean wind 

speed [11], the shape factor must be estimated. A shape factor of 1.8 has 

previously been suggested for predicting power density using wind map data 

[11] and this shape factor was utilised in this work.  
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Figure 17 — Calculated power curve of Evance R9000 5 kW wind turbine. 
Errors bars represent standard uncertainty in power output 
measurements from manufacturers data [151] 

Of the three metrics for defining sufficient accuracy, the calculation of annual 

energy production was considered the most important. The other two metrics 

are derived directly from the annual energy production estimate but use a 

more comprehendible quantification of the implications of wind speed error, 

hence their inclusion in this research. The annual energy production of a 

wind turbine in kWh, Eyear, was estimated as; 

𝐸௬ = (365.25 × 24)  𝑃(𝑢)

௨

𝑓(𝑢) 

Equation 43 

where P(ui), is the power output at a specific hub height wind speed, ui, and 

f(ui), is the probability of wind speed, ui, derived from the Weibull distribution 

fitted to hourly wind speeds. Annual energy production estimate was then 

converted to annual estimated FIT payments and payback period of the wind 

turbine. 

The FIT tariff used in the FIT payment estimate for a 5 kW turbine in October 

2015 was 13.89 p/kWh [34]. At the time the analysis was conducted, this 

was the lowest tariff rate, however, this has since changed. However, to 

ensure consistency with the selected electricity price and the cost estimates 

only available from 2015, the tariff level from October 2015 was retained. 
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These FIT payments are only available for 20 years [26]. The FIT payment 

formed part of the payback period calculation. Financial returns of a wind 

turbine are composed of two parts, the FIT payments and the financial 

savings realised from not purchasing electricity from the grid. Average 

electricity price for Great Britain in 2015 was 15.95 p/kWh and the 

calculation assumed an mean annual domestic electricity consumption of 

3,800 kWh [152]. This electricity price was calculated from 11 years of data 

available from Department of Energy and Climate Change (DECC) for the 

mean price of standard electricity consumption [152]. The assumption was 

made in this work that the FIT subsidy level and price of domestic electricity 

would remain constant and that no electricity was exported to the grid. The 

annual energy production of the wind turbine was therefore utilised to 

calculate the financial savings an adopter could achieve by installing a wind 

turbine. Addition of the FIT payments and the savings from offsetting 

electricity resulted in the gross profit available from a wind turbine. However, 

wind turbines incur operational and maintenance costs during their lifespan, 

which were included in this calculation.  

The capital and operation costs of a wind turbine are specific to each wind 

turbine. However, no specific costs for the Evance 5 kW turbine could be 

collected. Capital costs have been estimated for small scale onshore wind in 

Great Britain [21]. The median estimate of the capital cost of a wind turbine 

rated between 1.5 kW and 15 kW is £3,991 per kW installed, while the 

operation costs for the same capacity turbines are estimated to be £66 per 

kW per year [21]. For the selected 5 kW turbine in this work, the estimated 

capital costs of the wind turbine were £19,955, while the operational costs 

were £300 per year. Using these costs, it was possible to estimate the 

payback period, Pb, of a 5 kW turbine; 

𝑃 =  
𝐶𝑎𝑝𝑒𝑥

ቀ൫𝐹𝐼𝑇௬ + 𝐸𝑙𝑒𝑐௬൯ − 𝑂𝑝𝑒𝑥௬ቁ
 

Equation 44 

where, Capex, is the capital expenditure, FITyear, is the annual FIT payment, 

Elecyear, is the savings on grid electricity per year and Opexyear is the annual 

operational costs of the wind turbine.  

While these metrics provide information about the potential returns of a 5 kW 

wind turbine, the analysis was designed to assess the influence of wind 

speed error on the results of these metrics. The analysis was therefore run 

over a number of scenarios to determine what can be considered sufficient 

accuracy in a wind speed prediction.  
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The analysis was run for seven mean wind speeds of 4.0 ms−1, 4.5 ms−1,  

5.0 ms−1, 5.5 ms−1, 6.0 ms−1, 6.5 ms−1, 7.0 ms−1, and the scale factor of the 

Weibull distribution at each of these mean wind speeds was calculated. At 

these five mean wind speeds, a baseline estimate of each metric was 

calculated and against this baseline estimate, the influence of wind speed 

prediction error was analysed. A range of mean absolute errors from a      

0.1 ms−1 error up to a 3 ms−1 error in long-term mean wind speed were 

utilised. Through analysis of the annual energy production, annual FIT 

payments and payback period, what can be considered sufficient accuracy 

within a wind speed prediction was determined. With a definition of sufficient 

accuracy, a framework in which to analyse the suitability of the wind speed 

predictions from the BLS and MCS methodology was developed.   

4.2 Results and analysis 

The results and analysis in this chapter will focus on five major topics which 

have been discussed throughout the chapter; 

1. Definition of sufficient accuracy in wind speed prediction. 

2. Analysis of the accuracy of wind speed predictions at 10 m from the 

MCS methodology and the BLS model using both the NOABL and 

NCIC wind map data as the reference wind climatology. 

3. Analysis of NWP data as a reference wind climatology for the BLS 

model. 

4. Analysis of the accuracy of power density predictions available from; a 

fixed shape factor of 1.8, BLS NWP data and vertically scaled BLS 

NWP data. 

5. Analysis of the impact of improvements of the BLS model in this work, 

when compared to a previous BLS study by Weekes [33]. 

 Definition of sufficient accuracy  

To determine the influence of wind speed error on the estimates of annual 

energy production, annual FIT payments and payback period, the baseline 

estimates with a zero error were calculated. Table 7 presents the baseline 

estimates of each metric for a 5 kW wind turbine at seven different mean 

wind speeds.  
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Table 7 — The baseline estimates of annual energy production, annual FIT 
payment and payback period for a 5 kW wind turbine at seven different 
mean wind speeds 

Mean wind speed 
(ms−1) 

4.0 4.5 5.0 5.5 6.0 6.5 7.0 

Annual energy 
production 
(kWh/year) 

5,374 7,384 9,499 11,624 13,684 15,614 17,370 

Annual FIT 
payment (£/year) 

786 1,080 1,389 1,699 2,001 2,283 2,539 

Payback period 
(years) 

15.2 10.4 7.8 6.2 5.2 4.5 4.0 

 

Figure 18 and Figure 19 show the difference in annual energy production 

and annual FIT payment estimates, due to error in the wind speed prediction 

at the seven mean wind speeds. Figure 20 shows the change in estimated 

payback period of the wind turbine due to error in the wind speed prediction.  

 

Figure 18 — Absolute difference in annual energy production estimates of a  
5 kW wind turbine due to wind speed prediction error 
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Figure 19 — Absolute difference in annual FIT payments estimates of a 5 kW 
wind turbine due to wind speed prediction error 

 

Figure 20 – Absolute difference in payback period estimates of a 5 kW wind 
turbine due to wind speed prediction error 

Initially, the results highlight that wind speed prediction error is most 

influential at lower wind speeds. Given this conclusion, the difference in each 

metric at an mean wind speed of 4 ms−1 will be considered the worst case 
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scenario in this analysis. Selection of a worst case scenario allowed the 

error in wind speed to be examined when it was at its most influential on FIT 

payment and payback period estimates and sufficient accuracy in wind 

speed prediction could be best defined.  

Analysis of the estimates at 4 ms−1 concluded that a wind speed prediction 

methodology which was able to achieve a mean absolute error of 0.5 ms−1 or 

less can be considered sufficiently accurate. With this absolute error at a 

mean wind speed of 4 ms−1, the annual energy production and annual FIT 

payments were 37 % larger than the baseline estimate, which equated to an 

over prediction of 2,010 kWh/year and £293 per year respectively. The 

payback period at this error in wind speed prediction was 5 years less than 

the baseline payback period. Selection of 0.5 ms−1 as the maximum absolute 

error was motivated by the increasing errors in each financial metric 

resulting from higher absolute error in wind speed prediction. With a 0.6 ms−1 

error in wind speed prediction, the annual energy production and FIT 

payment estimates had a 45 % percentage error. Therefore, with a wind 

speed prediction which was not sufficiently accurate, the financial returns of 

a wind turbine installation could be estimated incorrectly by almost a half. 

This is considered unacceptable and could lead to wind turbine installations 

being carried out in locations where the wind resource is unsuitable. While 

the errors in the financial returns with a mean absolute error of 0.5 ms−1 were 

around a third, this degree of absolute error was the maximum perceived as 

permissible.  

The definition of sufficient accuracy suggested here was taken from the 

worst case scenario and at higher mean wind speeds, a 0.5 ms−1 error 

resulted in smaller differences in the annual energy production. At an mean 

wind speed of 5.0 ms−1 or above, an absolute error of 0.5 ms−1 equated to 

an error of 22 % or less in the annual energy production estimate, while this 

fell further, to a 14 % error at a mean wind speed of 6.0 ms−1. This definition 

of sufficient accuracy is therefore considered suitable and was utilised in the 

analysis of the BLS and MCS methodologies.  

 Comparison of MCS and BLS models 

The BLS and MCS methodologies have been analysed for their suitability to 

provide sufficiently accurate wind speed predictions for prospective small 

and medium scale wind turbine adopters. Wind speed predictions from five 

different models were compared as part of the analysis; unscaled or raw 

NOABL data, unscaled or raw NCIC data, BLS model using NOABL, BLS 

model using NCIC and MCS scaled NOABL.  
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Wind speed predictions for each of the five models were estimated at a hub 

height of 10 m to ensure that validation by the observational data could be 

undertaken. This analysis was developed to determine if BLS model could 

provide a more accurate prediction of long-term mean near-surface wind 

speeds than those available from the MCS methodology. Use of the differing 

wind maps as reference wind climatologies in the BLS allowed for the 

identification of the most appropriate reference wind climatology for accurate 

wind speed predictions. Comparison with the raw wind map data at 10 m 

allowed for any improvement in wind speed prediction accuracy offered by 

the BLS model to be identified. The results of this analysis are presented in 

Figure 21 and Table 8. 

 

Figure 21 — Error in wind speed prediction of each prediction methodology 
and raw wind map data, validated by observational wind speeds. Left: 
Mean absolute error. Right: Mean percentage error. Large boxes are the 
interquartile range showing the 25th, 50th and 75th percentile values, 
small squares are the mean error, whiskers are the 5th and 95th percentile 
values and crosses are the 1st and 99th percentile values of each sample 

Table 8 — Summary of mean error in each prediction methodology and raw 
wind map data from MAE and MPE metrics 

 

The most accurate wind speed predictions were achieved from the BLS 

model when using the NCIC wind map data as the reference climatology. 

BLS NCIC wind speeds had a lower mean percentage and mean absolute 

error than the MCS wind speed. The results presented in Figure 21 and 

Table 8 therefore show that that the BLS model offered more accurate wind 

speed predictions than the MCS methodology. The MAE interquartile range 

of the BLS NCIC was lower than the MCS, 0.44 ms−1 in the BLS NCIC 

Error Metric 
(mean error) 

Raw 
NOABL 

BLS 
NOABL 

Raw NCIC BLS NCIC MCS 

MAE (ms−1) 0.86 0.80 0.35 0.49 1.01 
MPE (%) 13.36 8.71 5.50 1.43 2.36 
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compared to 1.02 ms−1 in the MCS sample. This trend was continued in the 

5th/95th and 1st/99th percentile ranges, where the BLS NCIC wind speeds 

had a smaller range of absolute error across both percentile ranges than the 

MCS wind speeds. The same conclusion was drawn for the MPE results. 

The interquartile range of the BLS NCIC was 18.1 % while for the MCS, it 

was 34.4 %. The percentile ranges of the percentage error results showed 

that the MCS range was almost double that of the BLS NCIC. Crucially,     

60 % of the sites had a BLS NCIC wind speed which was below the 0.5 ms−1 

threshold of sufficient accuracy compared to only 35 % of site’s predicted 

MCS wind speeds. These results highlight that BLS NCIC can be considered 

a more suitable methodology for prospective wind adopters than the MCS 

methodology at a prediction height of 10 m. The errors in the BLS NCIC 

wind speed were significantly lower than the MCS wind speeds and 

therefore can offer a more accurate prediction of long-term mean wind 

speed.  

This improvement in wind speed predictions over the MCS methodology was 

also seen in the BLS NOABL wind speeds. The MAE of the BLS NOABL 

sample was below that of the MCS sample, while its interquartile and both 

percentile ranges were all smaller than the MCS. While the improvement in 

wind speed accuracy of the MCS was not as significant for the BLS NOABL 

as it was for the BLS NCIC, it was an important improvement to achieve. 

This improvement is considered important for two reasons. Firstly, it 

highlights that NOABL data can be scaled more effectively using a BLS 

approach rather than the MCS approach. Secondly, there are commercial 

considerations regarding use of the NCIC wind map data. It is owned fully by 

the Met Office and therefore it’s use as part of a future wind resource 

assessment technique may be limited by these commercial considerations. 

However, the results here indicate that use of NOABL data as the reference 

wind climatology to the BLS model could offer more accurate wind speed 

predictions than the MCS methodology, offsetting the concern around use of 

the NCIC wind map data. 

The difference between the accuracy of the wind speeds of the BLS using 

NOABL and NCIC identified which is the most appropriate reference wind 

climatology for the BLS model. The error in the BLS NCIC wind speed was 

also lower than those of the BLS NOABL wind speed. The mean error from 

both error metrics of the BLS NCIC wind speeds was below that of the BLS 

NOABL wind speeds. In all of the percentile ranges of either the MAE or 

MPE results, the BLS NCIC had a much smaller range than the BLS 
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NOABL. These results show that to offer the most accurate wind speed 

predictions, the BLS model should utilise NCIC data as the reference wind 

climatology.  

Raw NCIC wind speeds were more accurate across both metrics than its 

raw NOABL counterparts. The MAE and MPE of the raw NCIC was half that 

the raw NOABL. The accuracy of the raw NCIC was so significantly greater 

than the raw NOABL that the 1st/99th percentile of the absolute and 

percentage error of raw NCIC as less than the 5th/95th percentile range of the 

same metrics for the raw NOABL. This result is in line with previous literature 

which found that raw NOABL data is highly inaccurate [31, 32].  

The accuracy of raw NCIC was such that the wind speeds had a lower MAE 

than that of the BLS NCIC wind speeds. BLS NCIC wind speed did, 

however, have a lower MPE across the sample. In both the absolute and 

percentage error, raw NCIC had a smaller interquartile and this trend 

remained consistent in the percentile ranges of the percentage error metric. 

However, in the absolute error metric, the 5th/95th and 1st/99th percentile of 

the BLS NCIC were smaller than the raw NCIC. These smaller percentile 

ranges for the BLS NCIC showed that the BLS model was able to improve 

the accuracy of the outlier wind speeds in the raw NCIC. This improvement 

of the outliers in the raw NCIC was likely to be due to the inclusion of a more 

accurate surface roughness parameterisation in the BLS model.  

While the percentile ranges were reduced, the lower MAE in the raw NCIC 

must be understood to determine if application of the BLS model to the NCIC 

wind map data was suitable. Lower absolute error in raw NCIC wind speeds 

stems from the methodology which created the NCIC wind map. 220 MIDAS 

stations provided observational data for the interpolation and regression 

used to create the NCIC data [99]. It is therefore highly likely the 124 MIDAS 

sites, used for validation in this research, were part of the original 220 sites 

used to create the NCIC data. Raw NCIC data at these MIDAS sites 

therefore required little or no interpolation during creation of the NCIC, which 

resulted in the raw NCIC data being very close to the observational wind 

speeds. It is therefore exceptionally difficult for the BLS model to improve on 

the accuracy of raw NCIC at the validation sites selected in this work. An 

additional sample of validation sites, outside those 220 stations in the 

original NCIC sample, would be required to fully validate the performance of 

the BLS NCIC against the raw NCIC. However, it is likely that such sites 

would be commercial wind turbine sites and this additional validation data 

was not available for this research.  
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The BLS model does have certain advantages over raw climatology data. 

The BLS model can offer wind speed predictions at variable hub heights 

whereas raw data is only available at selected heights above ground level 

[99]. The BLS model can be adjusted for any hub height a prospective 

adopter wishes to analyse, a likely part of any due diligence on a prospective 

site. The BLS model presented can also provide wind speed predictions on a 

much finer spatial resolution than the raw climatology data. BLS wind 

speeds can be provided for each 0.01 km2 of Great Britain whereas the raw 

wind map data is only available on a 1 km2 grid square. For near-surface 

winds where the influence of surface roughness is high and thus the spatial 

variability in wind speed liable to be higher, this finer spatial resolution of 

wind speeds offers prospective adopters a crucial advantage in assessing a 

wind turbine’s viability. These advantages in the BLS model offer 

considerable value over the use of raw climatology data alone, when 

assessing the technical and financial viability of a prospective wind turbine 

site.  

The value added by the BLS model to wind speed predictions was further 

analysed by examining the results split into the site classifications of the 

validation sites. This analysis allowed the merits of the BLS model in each of 

the four site classifications to be understood. Figure 22 shows both error 

metrics of the differing wind speed predictions split across the site 

classifications. In the coastal, rural and suburban sites, the results mirror 

those observed when examining the error in wind speed predictions across 

the whole sample.  

 

Figure 22 — Error in wind speed prediction of each methodology and raw 
wind map in each of the four site classifications. Left: Mean absolute 
error. Right: Mean percentage error 

However, at the mountain sites, the MPE results deviated from this trend. 

The MPE of the BLS model with either reference wind climatology exhibited 
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an over-prediction in wind speed, whereas the raw wind maps under-

predicted the wind speed at the same sites. The over-prediction in BLS wind 

speeds was likely to be due the lack of orographic correction in the BLS 

model. No description of orographic wind speed change was included in the 

BLS model and the scaling of wind speeds at these mountain sites was 

based on the surface roughness values alone. At the mountain sites in the 

sample, the surface roughness alone appeared to be insufficient to 

accurately scale the wind speeds, resulting in the over-prediction in wind 

speed from the BLS model.  

The performance of the MCS methodology was typified by the results in 

Figure 22. In the majority of site classifications, MCS wind speeds had the 

highest MAE of all of the scaled wind climatologies. At the coastal sites, 

MCS had a MAE of 0.97 ms−1, compared to 0.46 ms−1 for BLS NCIC and 

0.59 ms−1 for BLS NOABL wind speeds. This was replicated in the MPE 

results at coastal sites, where MCS wind speeds had an MPE of -10.51 % 

while BLS wind speeds had MPEs of -0.74 % and -1.67 % using NCIC and 

NOABL respectively. For 73 % of coastal sites, the MCS under-predicted the 

wind speed. A similar trend was observed in the MAE results for rural and 

suburban areas, with MCS wind speeds exhibiting the greatest absolute 

error of the scaled wind climatologies. Only at the suburban sites did the 

MCS methodology achieve a significant improvement in MPE over the BLS 

NOABL, a 6.19 % error compared to 16.51 %. However, in this sample of 

sites, BLS NCIC wind speeds achieved an MPE of 0.70 %. These results 

further highlight the differences between the BLS and MCS methodologies 

and the greater accuracy of estimated wind speeds available using the BLS 

methodology. The results in each site classification also highlighted that the 

scaling of wind speeds in the MCS methodology is insensitive to terrain type. 

In comparison to the BLS model, where the scaled wind speed may be over-

predicted compared to the raw wind map data, MCS consistently reduced 

the wind speed in all areas. The MCS methodology reduced wind speeds in 

all areas, irrespective of surface roughness at the site, whereas the wind 

speed predictions of the BLS model could be over-predicted at sites where 

the raw wind map data under-predicted the wind speed. While the MCS 

approach is suitable in areas where the raw NOABL was inaccurate, it is not 

considered suitable for all areas.  

The estimated MCS wind speed is likely to be viewed by potential adopters 

as the upper estimate of long-term mean wind speed of a site as, if an 

additional energy production estimate is significantly greater than the MCS 
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results, it must be prefaced with a warning to potential wind turbine adopters 

[27]. Therefore, at sites where the MCS under-predicts the wind speed, there 

is a risk that a potential adopter could reject a wind turbine installation in a 

location with sufficient wind resource. 48.8 % of sites examined here had 

MCS wind speeds which were less than the observed long-term mean wind 

speeds. Therefore, the technical feasibility of potentially half of the sites in 

this sample could be misrepresented using the MCS methodology. This 

highlights that the MCS methodology is unsuitable as the wind resource 

assessment required as part of the FIT accreditation process.  

The results of this section highlight two important conclusions; the 

deficiencies of the MCS methodology and the greater suitability of the BLS 

model, which can improve wind speed prediction accuracy when using NCIC 

rather than NOABL as a reference wind climatology. 

The limitations of the MCS, in that it offered the most inaccurate scaled wind 

speed prediction, highlights its inappropriateness as a wind resource 

assessment for small and medium scale wind turbines. By comparison, the 

BLS model offered a more appropriate scaling of the wind map data, based 

upon a site’s surface roughness. This improvement in the scaling of the raw 

wind map data and subsequent improved accuracy of wind speed 

predictions emphasised that the BLS is a more robust methodology than the 

MCS methodology. Replacement of the MCS methodology with the BLS 

methodology within the FIT accreditation process would ensure that 

prospective installers were able assess the viability of a site using a long-

term mean wind speeds, which have been shown to be significantly more 

accurate. The assessment of a site’s viability would therefore have a lower 

degree of risk and sites could be assessed effectively with the BLS model, 

ensuring that project budgets are not misspent.  

The BLS model can offer the most accurate wind speed prediction to 

prospective installers and adopters when scaling the NCIC data, rather than 

the NOABL wind map data. While the BLS NOABL wind speeds were more 

accurate than the MCS, the wind speeds of BLS NCIC were significantly 

more accurate than the MCS. However, due to commercial constraints, use 

of the NCIC as a reference wind climatology may not be possible. In such a 

case, use of NOABL in the BLS model would offer more accurate wind 

speeds than the MCS. The role of the reference wind climatology was 

investigated further to understand if hourly NWP data was a suitable 

reference wind climatology for the BLS model.  
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 Numerical Weather Prediction data as reference wind 
climatology 

Hourly NWP wind speed data from both the Met Office’s UK4 and UKV 

models were analysed, to determine their suitability as a reference wind 

climatology to the BLS model. NWP wind speed data offered an hourly time 

series of wind speed predictions for a site, rather than a long-term mean 

wind speed such as those available from wind map data. NWP data was 

available at 7 heights ranging from 10 m to 200 m for each of the 124 

validation sites from the UK4 model and for 121 validation sites from the 

UKV model. The BLS model scaled each hourly wind speed of NWP data 

from the forecasting height to a hub height of 10 m, from which a long-term 

mean wind speed was calculated, to allow for validation by the long-term 

mean observational wind speeds. 

Initially, BLS NWP wind speeds scaled from a forecasting height of 10 m 

were compared to the wind speeds from raw NWP at 10 m, presented in 

Figure 23 and Figure 24. For both NWP data sets, the raw NWP forecast at 

10 m out-performed the BLS NWP forecast at 10 m in both error metrics. 

The MAE of raw UK4 at 10 m was 1.43 ms−1 compared to 1.58 ms−1 for the 

BLS NWP forecast from the same height. The difference between MAE of 

raw UKV and BLS NWP was similar, with a MAE of 1.04 ms−1 in the raw data 

compared to 1.29 ms−1 for the BLS NWP. These results highlight a key 

difference between the UK4 and UKV in that, UKV data provided more 

accurate wind speeds. This is because UKV was modelled on a finer spatial 

resolution allowing for a better characterisation of wind speeds at 10 m.  

A possible underlying cause of raw NWP data offering more accurate wind 

speed predictions than the BLS NWP is the parameterisation of atmospheric 

stability in the NWP models. While the BLS model assumed a simple 

logarithmic vertical wind profile due to neutral atmospheric stability, both the 

UK4 and UKV modelled the atmospheric stability effects from the surface 

heat exchange and turbulence. The modelling of atmospheric stability effects 

on wind speed, resulted in a more realistic vertical wind profile in the NWP 

data. The more realistic vertical wind profile outweighed the effect of more 

realistic surface roughness from the BLS model and resulted in raw NWP 

outperforming the BLS NWP data at 10 m.  
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Figure 23 — Mean absolute error of BLS NWP from all forecasting height and 
raw NWP at 10 m, validated by observational wind speeds. Left: UK4 
data. Right: UKV data. Large boxes are the interquartile range showing 
the 25th, 50th and 75th percentile values, small squares are the mean 
error, whiskers are the 5th and 95th percentile values and crosses are the 
1st and 99th percentile values of each sample 

 

Figure 24 — Mean percentage error of BLS NWP from all forecasting height 
and raw NWP at 10 m, validated by observational wind speeds. Left: UK4 
data. Right: UKV data. Large boxes are the interquartile range showing 
the 25th, 50th and 75th percentile values, small squares are the mean 
error, whiskers are the 5th and 95th percentile values and crosses are the 
1st and 99th percentile values of each sample 

BLS NWP data from all forecasting heights was scaled to 10 m, shown in 

Figure 23 and Figure 24, and then analysed to determine which height of 

NWP data offered the most accurate wind speeds when scaled using the 

BLS model. For the BLS UK4, it was possible to predict wind speed with a 

MAE of 0.81 ms−1 when scaling UK4 data forecast at 150 m. The MPE of 

wind speeds from the same height of BLS UK4 were also the lowest 

available in the sample at −1.02 %. These errors in the wind speed were an 

improvement on those in the raw UK4 data at 10 m. Using UK4 data forecast 

at 150 m, the percentile ranges were also smaller in the absolute error 

metric than for the raw UK4 at 10 m, while the percentile ranges of the 

percentage error were similar. In the BLS UKV, the lowest MPE in wind 

speed at 0.69 % was achieved scaling UKV forecast at 100 m. This MPE 
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was an improvement over the percentage error in the raw UKV at 10 m. 

However, the MAE of BLS UKV was never lower than the MAE of the raw 

UKV at 10 m. The results showed that to achieve the most accurate wind 

speed prediction from BLS NWP data, the NWP data utilised as reference 

wind climatology must be forecast higher in the atmosphere. For UK4 data, 

data forecast at 150 m must be utilised while data forecast at 100 m must be 

utilised from UKV data as the reference wind climatology to the BLS model. 

NWP data forecast at these heights contain a description of the large-scale 

flow in the atmosphere. These large-scale flows characterise the synoptic 

variability in the wind speed. Coupling this description of large-scale 

atmospheric wind flow with the description of surface roughness from the 

BLS resulted in the comparatively accurate wind speed predictions. 

However, use of either NWP data as the reference wind climatology to the 

BLS model was not able to produce wind speed predictions with sufficient 

accuracy. In no sample of BLS NWP data did the percentage of sites with a 

sufficiently accurate wind speed prediction exceed 40 %. The highest 

percentage of sites which achieved this threshold was 47 % of sites in the 

raw UKV sample at 10 m. These results show that ultimately the BLS model 

was unable to scale the NWP data effectively and the wind speed 

predictions of BLS NWP were not more accurate than those achieved when 

scaling wind map data. Challenges still remain in improving the prediction of 

near-surface winds using high resolution NWP data as a reference wind 

climatology to the BLS model. However, the results from this work are not 

without merit for future developments of the BLS model. This research has 

identified that the NWP forecast higher in the atmosphere was most suitable 

for wind speed predictions from the BLS model. The availability of validation 

data sets, not used within forecast data assimilations of the NWP models, 

would perhaps provide a more stringent test of the different methodologies. 

Unfortunately, as previously discussed, such validation data is likely to be 

taken from commercial wind turbine sites, which were unavailable for this 

research due to their commercial nature. Future improvements can be made 

to how the BLS model incorporates the vertical wind profile within the NWP 

data during the wind speed prediction process. With multiple heights of NWP 

data available, the vertical wind profile could be estimated prior to 

implementation of the BLS model. Using this estimated vertical wind profile, 

the BLS model can be adjusted to account for this, either in through the 

parametrisation of a stability parameter for the BLS model or inclusion of the 

estimated vertical wind profile, in place of the logarithmic vertical wind profile 

in the BLS model. Implementation of such improvements would require a 
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significant amount of research to identify the most appropriate technique. 

The focus of this research, however, was to understand if NWP data could 

be implemented as the reference wind climatology to the current BLS model. 

The results clearly show that this is not the case and with the current BLS 

model, wind map data is still the most appropriate choice of reference wind 

climatology.  

Despite the challenges of accurately estimating near-surface long-term 

mean wind speed from the BLS model, hourly NWP data offered the ability 

to predict power density which is unavailable when using wind map data as 

the reference wind climatology. 

 Power density predictions 

Weibull distributions were fitted to each BLS NWP dataset scaled to a hub 

height of 10 m and the shape factor of each distribution utilised to predict 

power density. The dimensionless power density predictions from the fitted 

shape factors were then compared to the dimensionless power density 

achieved using a fixed shape factor of 1.8, the shape factor suggested when 

estimating power density using wind map data [11]. A power density 

prediction which is equal to the observed power density would have a 

dimensionless power density of 1.  

As shown in Figure 25, the fixed shape factor of 1.8 provided the 

dimensionless power density closest to the observed power density, 

achieving a mean dimensionless power density of 0.97. In comparison, all of 

the BLS NWP data over-predicted power density, resulting in mean power 

densities ranging from 1.07 for BLS UK4 from 20 m to 1.15 for BLS UKV at 

200 m. In both BLS NWP datasets, the mean dimensionless power density 

increased as the forecasting height of the NWP data increased.  
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Figure 25 — Dimensionless power density from BLS NWP from all forecasting 
height and fixed shape factor of 1.8. Left: UK4 data. Right: UKV data. 
Large boxes are the interquartile range showing the 25th, 50th and 75th 
percentile values, small boxes are the mean error, whiskers are the 5th 
and 95th percentile values and crosses are the 1st and 99th percentile 
values of each sample 

The over-prediction of power density contradicted the under-prediction of 

wind speeds, seen in the MPE of both BLS NWP datasets. The over-

prediction in power density from BLS NWP data was caused by the lack of 

extreme wind speeds in the raw NWP data. This resulted in the Weibull 

distribution that was fitted to the BLS NWP data being narrower, with a 

higher shape factor, than the Weibull distribution which described the 

observational wind speeds, causing the over-prediction in power density.  

As discussed in Section 4.1.4, the Weibull shape factor can be scaled 

vertically to account for the reversal height of the diurnal cycle, where shape 

factor is at a maximum, at a site [70]. This vertical scaling of the shape 

factors was undertaken with reversal heights of 60 m, 70 m and 80 m 

selected in this work for comparison.  

Figure 26 shows the dimensionless power density achieved using a vertical 

scaling of shape factors fitted to BLS UK4 and BLS UKV from 20 m, using 

each reversal height. NWP data at 20 m was selected as it had the smallest 

error in the initial analysis of dimensionless power density from the BLS 

NWP data. The lower dimensionless power density error was due to a more 

accurate description of diurnal variation of near-surface wind speeds in the 

NWP data at 20 m.  
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Figure 26 — Dimensionless power density from BLS NWP from 20 m scaled 
from reversal heights of 60 m, 70 m and 80 m and fixed shape factor of 
1.8 without a vertical scaling. Left: UK4 data. Right: UKV data. Large 
boxes are the interquartile range showing the 25th, 50th and 75th 
percentile values, small boxes are the mean error, whiskers are the 5th 
and 95th percentile values and crosses are the 1st and 99th percentile 
values of each sample 

Vertical scaling of shape factors fitted to BLS NWP data offered significant 

improvements in power density predictions over BLS NWP without a vertical 

scaling. Vertical scaling of the shape factor from BLS NWP data at 20 m 

resulted in a dimensionless power density of 0.98 for BLS UK4 and of 0.99 

for BLS UKV. The differences in dimensionless power density between the 

reversal height were marginal, with the scaling for reversal height of 60 m 

offering the most accurate power densities. Introduction of the reversal 

heights also marginally decreased the percentile ranges of the power 

densities. 

The dimensionless power densities achieved with the vertical scaling were 

an improvement over the BLS NWP data alone. Introduction of the vertical 

scaling is therefore a suitable technique when predicting power density from 

BLS NWP data. However, it must be noted that where BLS NWP is not 

available, use of a fixed shape factor of 1.8 has been shown here to be a 

suitable alternative for estimating power density. The power density 

predictions using a fixed shape, shown in Figure 26, achieved a mean 

dimensionless power density of 0.97. This approach can therefore be 

considered suitable for estimating power density when only wind map is data 

available at a proposed site.  

However, scaling of NWP data forecast at a height of 100 m or 150 m 

provided the most accurate wind speed predictions. This highlights that 

different facets in the raw NWP data affect the accuracy of wind speed and 

power density predictions separately. For the most accurate mean wind 

speed predictions from the BLS model, a description of large-scale 
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atmospheric flow available in NWP data, forecast between 100 m or 150 m 

is most suitable for the BLS model. However, the description of diurnal 

variation of wind speeds available in NWP data forecast at 20 m can be 

scaled most effectively to provide the most accurate power density 

predictions. These different descriptions of wind flow variations available in 

the different forecasting heights of raw NWP data account for the selection 

of different heights of NWP data for wind speed or power density predictions.  

 Value of BLS improvements  

Within this work, a number of improvements were implemented in the BLS 

model. These improvements to the BLS model were designed to improve the 

accuracy of wind speed predictions. To quantify the value of these 

improvements, the accuracy of the wind speed predictions must be 

compared to a previous study by Weekes [33]. As discussed in Section 

4.1.6, there have been four improvements suggested for this work’s BLS 

model: a finer spatial resolution of the surface roughness, a greater number 

of surface roughness classifications, a greater number of wind direction 

sectors at each site and the calculation of regional aerodynamics in each of 

these wind direction sectors. The previous study examined the wind speed 

predictions of a BLS model using only NCIC data as the reference wind 

climatology [33]. The accuracy of these wind speed predictions was 

validated over 38 sites, which were split between coastal, rural, suburban 

and urban sites [33]. Of the 38 sites in the previous study, 26 sites were 

included in the validation sample of this work. It is therefore not to possible 

to examine the value of the improvements over the same sample of sites 

and the comparison was conducted using the wind speed predictions across 

the whole sample of each study. Additionally, as the site classifications in the 

previous study included urban rather than mountain sites, it will not be 

possible to assess the improvements in these sites. However, at the coastal, 

rural and suburban sites, this comparison was possible.  

The previous study assessed wind speed accuracy with the mean absolute 

and mean percentage error metrics [33], The previous study predicted BLS 

NCIC wind speeds with a MAE of 0.52 ms−1 and a MPE of 16.2 % [33]. By 

comparison in this work, BLS NCIC wind speeds were predicted with a MAE 

of 0.48 ms−1 and a MPE of 1.48 %. The results of this comparison show that 

over the sample of each study, this work’s BLS model was able to predict 

wind speed with a lower mean error. The lower error in this work’s BLS 

NCIC wind speeds show that the improvements to the BLS model were able 

to increase the accuracy of wind speed predictions.  
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The added value of the improvements was further analysed across the site 

classifications from each study. In the coastal, rural and suburban sites, this 

work’s BLS model achieved wind speed predictions with lower mean 

absolute and mean percentage error than the previous study [33]. In the 

previous study, the MAE of wind speeds at coastal, rural and suburban sites 

were 1.03 ms−1, 0.57 ms−1 and 0.65 ms−1 respectively [33]. At the same site 

classifications in this work’s BLS model, the MAE of wind speeds were    

0.46 ms−1, 0.50 ms−1 and 0.48 ms−1 for the coastal, rural and suburban sites 

respectively. This reduction in wind speed prediction error was more 

significant in the MPE metric. Coastal sites in the previous study had a MPE 

of 18.9 % whereas this reduced to −0.74 % at the coastal sites examined in 

this work’s BLS model. This significant reduction in MPE was also seen at 

the rural and suburban sites. The MPE of the wind speed prediction reduced 

from 10.9 % to 3.25 % in rural sites and from 18.0 % to 0.70 % at suburban 

sites between the studies.  

While this research has focused on wind speed prediction at sites in Great 

Britain, the results of the BLS model can be compared to other studies which 

estimated wind speed in other locations. It will then be possible to 

understand how the BLS model and the improvements presented here 

compared to other near-surface wind prediction methodologies, applied in 

locations outside of Great Britain. Where wind map data is unavailable, 

reanalysis data can be downscaled to predict near-surface wind speeds 

[153, 154]. Reanalysis data is created using climate models and typically 

provide hourly wind speed prediction on a horizontal resolution of around   

30 km [155]. Comparison of wind speed accuracy with previous studies can 

be problematic, as each study examined sites in differing topology, utilised 

predict wind speed at different heights and validated using differing metrics 

[153, 154]. Additionally, reanalysis data can be extracted as hourly wind 

speed estimations and therefore many studies examined the accuracy of 

downscaling these hourly wind speeds [153, 154]. Despite these differences, 

a comparison of the accuracy of wind speed predictions with those produced 

from the BLS model can be offered. A study of wind speed prediction at sites 

on the US Great Plains, using the Climate Forecast System Reanalysis data, 

showed that without a bias correction, wind speed reanalysis data below    

80 m exhibited a mean bias of −0.5 ms−1 [153]. With a bias correction, the 

mean bias improved to a level equivalent to that seen in the results of the 

BLS model [153]. In a study which examined sites in complex terrain in 

Portugal and used multiple reanalysis data sets, hourly wind speeds 

predictions at 60 m across all of the sites, exhibited mean bias between    
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0.3 ms−1 and 0.5 ms−1 [154]. However, the mean bias in the wind speed 

predictions was around 1.0 ms−1 for sites, with an mean wind speed below 4 

ms−1 and around 0.5 ms−1 for locations with a mean wind speed between 4 

ms−1 and 8 ms−1 [154]. The results from this study demonstrate that, at sites 

in complex terrain, reanalysis data can achieve more accurate wind speed 

predictions than the BLS model [154]. Mean bias in wind speed prediction is 

analogous to the mean absolute error metric used in this study and therefore 

the results show that are similar to those achieved by the improved BLS 

model in this work. This demonstrates that the improvements included in this 

research’s BLS model have added significant value and are relevant to other 

locations, as they demonstrate the ability of the scaling techniques to 

improve upon reference climatology data, provided that sufficiently detailed 

land use data is available for a particular region. The methodology may be 

particularly useful for regions where very high resolution (~1 km) reference 

wind data cannot be obtained, but where a more detailed land use data set 

can be developed for use within the BLS method 

These results reinforce the conclusion that the improvements to this work’s 

BLS model are able to improve wind speed prediction accuracy. The 

increased resolution of surface roughness and the calculation of directionally 

dependent regional aerodynamics in this work’s BLS model improved the 

wind speed prediction accuracy. These results indicate that future 

developments of the BLS model should include these improvements.  

4.3 Conclusions 

A boundary layer scaling model using NOABL, NCIC and NWP data as 

reference wind climatologies was investigated to determine the accuracy of 

wind speed and power density predictions at a hub height of 10 m. This 

analysis was undertaken to understand if the BLS model could offer wind 

speed predictions with greater accuracy than MCS methodology. 

Additionally, a vertical scaling technique of the Weibull shape factor to 

improve the accuracy of power density predictions, when compared to a 

fixed shape factor of 1.8 was also investigated. A comparison with a 

previous BLS model [33] was also undertaken to analyse if the 

advancements in the calculation of regional aerodynamic parameters and 

increased resolution of surface roughness included in this work has 

improved the accuracy of wind speed predictions from the BLS model.  

The most accurate wind speed predictions from the BLS model were 

achieved with NCIC data as the reference wind climatology. BLS NCIC wind 
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speeds had significantly lower errors than the MCS wind speeds over the 

validation sample. BLS NOABL wind speeds were also shown to have lower 

errors than the MCS wind speeds, across the validation sample. The BLS 

NCIC wind speeds were shown to be sufficiently accurate at 60 % of the 

validation sites, in comparison to around 33 % of sites with a sufficiently 

accurate MCS wind speed. These results show that the BLS NCIC model 

can be considered a more suitable wind resource assessment technique 

than the MCS. This conclusion has policy implications for the FIT scheme. 

The MCS methodology is the prescribed minimum resource assessment for 

wind turbines under 50 kW to gain the requisite accreditation to qualify for 

FIT payments. Implementation of a BLS model with NCIC wind map data as 

the prescribed wind resource assessment under the FIT could offer a more 

accurate long-term mean wind speed predictions to prospective wind energy 

developers. The caveat with this suggestion is the commercial constraints of 

the raw NCIC wind map. It may not be possible to implement a BLS NCIC 

model if commercial constraints around the use of the NCIC are not 

resolved. Implementation of the BLS NOABL could therefore be considered. 

The BLS NOABL provided more accurate wind speeds than the MCS and 

offered wind speeds with sufficient accuracy at 40 % of the sites. However, 

the accuracy of BLS NOABL wind speed was less than that of the BLS NCIC 

wind speeds. Implementation of the BLS NCIC would offer prospective wind 

turbine installers in Great Britain a more accurate wind resource assessment 

from which a site’s viability can be determined quickly.  

Analysis of the wind speed predictions available when using NWP data as 

the reference wind climatology to BLS model was undertaken. Utilising NWP 

data as a reference wind climatology, the BLS model was unable to improve 

the accuracy of long-term mean near-surface wind speed estimates when 

compared to raw NWP data alone. The high resolution NWP data offered a 

realistic vertical wind profile by modelling the stability effects from the 

surface heat exchange and turbulence, as opposed to the assumption of 

neutral atmospheric stability in the BLS model. This realistic vertical wind 

profile in the raw NWP data was likely to be the underlying cause of the 

more accurate long-term mean near-surface wind speed prediction. 

However, the raw NCIC and NWP data for wind speed predictions at 10 m 

were more accurate than the BLS NCIC, as a result of the validation sites for 

this work being included in the original observational dataset used in the 

creation of raw NCIC data and the assimilation data used to initialise the 

NWP model. Validation using a sample of sites outside of the original 



- 129 - 

observational sites sample used in the development of NCIC data, in 

addition, to data from existing wind turbine sites at hub heights other than  

10 m, would provide a more rigorous validation of the wind speeds produced 

from the BLS model. This additional validation sample would allow it to be 

determined if the results observed during this research were due to 

limitations of the BLS model or limitations of the observational data 

available. However, such data is difficult to obtain due to its commercial 

sensitivity. Nevertheless, the BLS model can provide a vertical profile of 

mean wind speeds, which is unavailable from the raw NCIC data alone. A 

vertical wind profile of a site is necessary when selecting the appropriate hub 

height of a prospective wind turbine.  

Future improvements can be achieved by adjusting how the BLS model 

operates with the vertical wind profile within the NWP data. The vertical wind 

profile could be estimated from the multiple heights of NWP data prior to 

implementation of the BLS model. The BLS model can be adjusted to 

account for the change in vertical profile, through the use of a stability 

parameter or inclusion of the estimated vertical wind profile in place of the 

logarithmic vertical wind profile. Implementation of these improvements 

could be included in future work. The results of the BLS NWP in this 

research clearly show that with the current BLS model, the NCIC wind map 

data is still the most appropriate choice of reference wind climatology.  

While wind speed predictions using BLS NWP were insufficiently accurate, 

power density predictions achieved using a vertical scaling of shape factors 

fitted to BLS NWP data were encouraging. Mean power density predictions, 

using this approach, improved upon those achieved using a fixed Weibull 

shape factor of 1.8, the only possible method when using long-term mean 

wind map data. Vertically scaled BLS NWP data achieved mean power 

densities of 0.99 while the fixed factor of 1.8 achieved a mean dimensionless 

power density of 0.97. The high resolution time-series data available from 

NWP data therefore has clear advantages over the use of a fixed shape 

factor for power density predictions. However, at sites where the NWP data 

is unavailable, use of a fixed shape factor is a suitable alternative to predict 

power density.  

Improvements in the BLS model, in the form of advancements of the 

regional aerodynamic calculations with an increased spatial resolution of 

surface roughness have been shown to offer improvements in wind speed 

prediction accuracy. When compared to a previous BLS model, without 

these facets, the wind speed predictions of this work’s BLS model were 
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shown to improve accuracy across the sample of sites examined. These 

results vindicate the inclusion of these improvements, which should be 

included in all future developments of the BLS model.  

As part of the research, a wind map for Great Britain was created using the 

BLS NCIC model. This wind map at a hub height of 10 m, presented in 

Figure 27, could be published to replace current wind maps. However, 

publishing of this wind map or any other at different heights would require 

consent from the owners of the datasets used as inputs to the BLS model. In 

addition to this wind map at 10 m, other wind maps at higher heights have 

also been created and could potentially be published. However, it is 

suggested here that publication of the wind maps would not be the most 

effective method of disseminating the results of this research. Dissemination 

of the BLS model will be discussed further in Chapter 7.  

 

Figure 27 — BLS NCIC wind map at 10 m of Great Britain 
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The results presented in this chapter show that the BLS model is a more 

suitable wind resource assessment methodology than the MCS 

methodology. BLS NCIC wind speed predictions were significantly more 

accurate than the MCS wind speeds. It is therefore suggested that this 

configuration of the BLS model should replace the MCS in the FIT 

accreditation scheme. The more accurate wind speeds available from the 

BLS NCIC will also be taken forward into further research in this project. 

Using the BLS NCIC wind speeds, it will be possible to determine the 

influence of available wind resource on wind turbine deployment in Great 

Britain. This research on the influence of wind resource on wind turbine 

deployment will be presented in Chapter 5.  
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Chapter 5 – Socio-economic and resource analysis of spatial 
wind turbine adoption patterns 

Accurate wind resource assessments can aid the future deployment of small 

and medium scale wind turbines by ensuring that wind turbines are sited in 

suitable locations. For small and medium scale wind turbines in Great Britain 

to reach the levels of deployment required for the societal or thousand 

flowers pathway suggested by Foxon, to deliver an energy systems 

transition, deployment needs to increase towards the upper estimate of 

potential wind turbine deployment [19]. The upper estimate of potential 

deployment, 407,950 installations across both domestic and non-domestic 

sites in Great Britain, estimated by James et al., was based upon three 

factors: sufficient wind resource, adequate land area, and suitable building 

profiles for a turbine installation [31]. Current deployment of small and 

medium scale wind turbines in Great Britain, as of December 2016, was 

7,374 installations [12]. Given the gap between actual and potential 

deployment, it is argued here that the factors assumed in James et al. alone 

are not sufficient to explain trends in wind turbine adoption patterns.  

To test this assertion, current wind turbine adoption patterns must be 

analysed. Wind turbines installed under the FIT are predominately below   

15 kW capacity, with 64.0 % of total installations under this capacity [12]. 

Additionally 58.9 % of all installations are for domestic energy generation 

[12]. The uptake of small and medium scale wind turbines in the FIT market 

has therefore been dominated by individuals making adoption decisions. 

Analysis of the wind turbine adoption patterns conducted in this work 

focused predominantly on the factors that have influenced domestic 

adopters to install a wind turbine. As discussed in Chapter 1, wind turbine 

adoption patterns have both spatial and temporal characteristics. This 

chapter will present a scheme of research which was developed to analyse 

the factors which influence the spatial wind turbine adoption patterns of 

Great Britain.  

As discussed in Chapter 3, a number of demographic and environmental 

factors have been suggested in this work as likely to exert an influence on 

an individual’s decision to install a small and medium scale wind turbine. 

This chapter will present a regression analysis developed to determine the 

influence of these suggested factors, examining specifically the influence of 

wind resource alone before incorporating the additional factors suggested in 
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Chapter 3. The structure of the variables in the regression analysis will be 

discussed and the formation of multiple regression models using subsets of 

the available variables will be presented. Results and analysis of these 

regression models will be presented allowing the influence of the examined 

factors on small and medium scale wind turbine adoptions in Great Britain to 

be determined.  

5.1 Methodology  

To determine the influence of factors suggested in Chapter 3, an analysis 

framework must be established. Previous studies have applied regression 

analysis techniques to determine the influence of some demographic 

variables on the spatial deployment patterns of other microgeneration 

technologies [42, 44]. While spatial dependency between the residents has 

been exhibited in the deployment patterns of PV systems [42, 45], this has 

not been established for wind turbine adoption patterns in Great Britain. As 

literature regarding the influencing factors on spatial wind turbine adoption 

patterns in Great Britain is minimal, it is argued here that initially an 

approach using a regression model, which does not consider spatial 

dependency, was the most appropriate to establish this.  

Use of a non-spatial linear regression model allowed the influence of each 

suggested factor to be analysed to understand the factors that have 

influenced spatial wind turbine adoption patterns. A non-spatial linear 

regression model was defined as [156]; 

𝐲 =  𝛽 + 𝛽𝐱 +  𝛆 

Equation 45 

where y is a N × 1 vector of the dependent variable observations, x is a N × 

K vector of explanatory or independent variables while β0 is the intercept 

term of fitted regression line, βn is the parameter vector or regression 

coefficient of each of the independent variables and ε is the residual term of 

the linear regression model [156]. The residual term of each observation, εi, 

in the model is calculated as the difference between the predicted value, ŷi, 

and the actual value of the observation, yi; 

𝜀 = 𝑦 − 𝑦ො 

Equation 46 

The value of βn is commonly estimated using an ordinary least squares 

(OLS) technique [156] and it was an OLS regression coefficient estimation 
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that was utilised in the analysis presented in this chapter. To implement this 

regression model, the dependent and independent variables for the 

regression model must be collected and analysed. In this research, the 

dependent variable was deployment data for wind turbines installed under 

the FIT in Great Britain, while the independent variables were the factors 

which were suggested to influence the spatial adoption patterns of wind 

turbines.  

 Dependent variable 

Deployment data for small and medium scale wind turbines under the FIT in 

Great Britain is available from Ofgem [12]. The quarterly reports provide 

information regarding individual wind turbines installed under the FIT 

including: the commissioning and application dates; the installed capacity of 

the wind turbine; whether the installation was for domestic, commercial or 

industrial energy generation; and location identifiers (IDs) for some wind 

turbines in the report [12]. The data selected for this work’s analysis was 

published in January 2017 and included all installations accredited from 1st 

April 2010 to 31st December 2016 [12]. Wind turbines in the report were 

installed between 1995 and 2016 and provided 22 years’ worth of 

installations [12]. Turbines installed prior to the FIT were still eligible for 

payments, once they were accredited under the FIT. A total of 6,814 wind 

turbine installations across Great Britain were identified as suitable for this 

analysis from the reports [12].  

In this work, a spatially dependent regression model was not implemented, 

however, the observations of wind turbine installations utilised in this 

research were recorded with a spatial location, in the form of the location IDs 

included in the register. These location IDs provided the location of each 

wind turbine at a statistical geography spatial unit. Statistical geographies 

are defined geographical areas within national territories, in which census 

data are recorded. Statistical geographical boundaries are constructed using 

population data to ensure that each statistical geographical unit covers a 

similar number of residents, so that the collected census data for each 

geography unit can be comparable [157]. The statistical geography units are 

not of uniform shape or size, as the boundaries of each were recalculated 

after the collation of decadal population data from each census [157, 158]. 

Statistical geographies are hierarchal, which allows for aggregation of the 

smallest statistical geographies into larger statistical geographies. For 

England and Wales, statistical geographies from the 2011 census were 

developed and constructed by the Office of National Statistics [159]. The 
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statistical geographies for Scotland from the same census are managed by 

National Records for Scotland [160]. 

Use of statistical geographies allowed the observations of wind turbine 

adoptions to be utilised as the dependent variable in the regression model. 

Each of the statistical geographies, in which a wind turbine adoption had 

occurred, served as individual observations of the dependent variable within 

the regression models. The selection of statistical geography in the project 

was therefore crucial. Given the comparatively low number of wind turbine 

installations, a statistical geography with a comparatively small geographical 

area was required.  

 Statistical geography 

The wind turbine installations selected from the Ofgem register were 

recorded at either Lower Super Output Areas (LSOA) [157] for English and 

Welsh installations or Data zones (DZ) [158] for Scottish installations. These 

are the smallest geographical areas of the respective statistical geographies 

of England & Wales or Scotland. LSOAs and DZs were developed to cover a 

maximum of 3,000 and 1,000 residents respectively [157, 158]. The 

hierarchal nature of statistical geographies allowed aggregation from the 

smallest statistical geographies to either Middle Super Output Areas (MSOA) 

for England and Wales or Intermediate zones (IZ) for Scotland [157, 161]. 

These areas could be further aggregated to local authority (LA) boundaries 

[159, 160]. MSOAs and IZs cover a maximum of 15,000 and 6,000 residents 

respectively. To perform analysis of wind turbine adoption patterns in this 

research, an appropriate statistical geography had to be selected.  

Selection of the appropriate statistical geography was guided by the number 

of areas with at least a single wind turbine adoption. Only 5.6 % of all LSOAs 

or DZs had at least one installation compared to 16.2 % of all MSOAs or IZs. 

The percentage of LSOAs and DZs with a wind turbine installation was 

considered too low for analysis and therefore wind turbine adoption patterns 

were analysed on MSOA and IZ resolution, known as the statistical 

geography (SG) resolution, in this project. The wind turbine installation data 

sample at the SG spatial resolution was for 6,814 wind turbines across 1,377 

regions across Great Britain. The total sample was composed of 3,946 

installations in 1,081 regions of England and Wales and 2,868 installations in 

296 regions of Scotland.  

Selection of the SGs of MSOA and IZ for the adoption patterns analysis 

raised issues regarding the compatibility of the different SGs for England 
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and Wales or Scotland. Each SG covered a different number of maximum 

residents, which could lead to discrepancies in the analysis as the 

demographic data of each region was derived from a differing sample size of 

residents. Removal of the Scottish data from the sample was considered. 

However, because 38.9 % of all installations selected for this analysis are 

situated in Scotland [12] and the considerable wind resource available in 

Scotland [106], this would have severely limited the conclusions that could 

be drawn from the results, limiting the effectiveness of the analysis. 

The mismatch between the number of residents in the MSOAs and IZs 

motivated the decision to include analysis of wind turbine adoptions on the 

local authority (LA) resolution. LAs are administrative rather than SG, with 

380 different LA areas across Great Britain. A previous study examined 

photovoltaic (PV) adoption data at a higher statistical geographies, selecting 

Nomenclature of Territorial Units of Statistics (NUTS) 3 [42]. NUTS3 regions 

are composed of either single LA regions with a large geographical area or 

groups of smaller LAs regions. Introduction of analysis at LA in this chapter 

was therefore considered suitable, given that a previous study analysed PV 

adoptions in areas with a larger geographical area [42].  

The number of wind turbine installations and the total installed capacity in 

each SG and in each LA, is presented in Figure 28 and Figure 29 

respectively. These four datasets yielded two different wind turbine adoption 

patterns at two different resolutions, which were utilised as the dependent 

variables in the regression models. The choice of both wind turbine 

installation numbers and installed capacity in each region was motivated by 

the different characteristics of wind turbine adoption patterns available in 

each dataset. Wind turbine installation data in this analysis was dominated 

by domestic wind turbine installations, while the installed capacity data was 

dominated by commercial wind turbine installations. Therefore, utilisation of 

both sets of wind turbine adoption pattern data allowed the influences on 

these different types of users in the wind turbine market to be examined. The 

percentage of each different wind turbine installation type in the two 

deployment data samples used in this work is detailed in Table 9.  
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Table 9 — Proportion of installation types in different samples utilised in this 
work 

Installation type Installation number 
sample 

Installed capacity sample 

Domestic 63.3 % 9.2 % 
Commercial  33.1 % 83.8 % 
Community 2.20 % 2.1 % 
Industrial 1.35 % 4.9 % 
Total in Sample 6,814 wind turbines 468,255 kW 

 

 

Figure 28 — Wind turbine installations at statistical geography level. Left: 
Installed capacity in each SG. Right: Installations in each SG 

The spatial distribution of wind turbine installations highlights a key 

difference between wind turbine adoption data at LA or SG resolution. Figure 

29 which presents the wind turbine adoptions at LA, demonstrates a wide 

coverage of wind turbine adoptions, with the majority of LAs containing at 

least one wind turbine installation. However, when this data was analysed at 

SG, the distribution of installations was sparser with many areas without a 

single wind turbine installation. While this was to be expected when 

examining on a finer spatial resolution, it highlighted that the distribution of 

wind turbine adoptions at LA level was composed of enclaves of installations 

in SGs in each LA.  
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Figure 29 — Wind turbine installations at local authority level. Left: Installed 
capacity in each LA. Right: Installations in each LA 

 Independent variables  

To analyse the influence of demographic factors on the wind turbine 

adoptions, the demographic data had to be collected and analysed prior to 

implementation of the regression models. Demographic data for Great 

Britain was available from the UK Census [161]. The SGs in this analysis 

were calculated from the 2011 census data. Therefore, the demographic 

data collected from the 2011 census was also utilised in this work. The 

census provided a wide variety of demographic statistics for residents of the 

UK. Due to the fact that the FIT was not available in Northern Ireland, only 

census data from England, Wales and Scotland was collected for this 

research [161]. For England and Wales, census data was available from the 

Office of National Statistics [161] while National Records for Scotland 

provided census data for Scotland [161].  

Selection of the demographic variables for the analysis was guided by 

previous literature on the demographics of microgeneration adopters [42, 44, 

56, 108, 110-120, 122]. Initially, the demographics of age, income, 

education, household size, homeownership and social class, which have 

been examined in previous studies were selected for each SG and LA [42, 
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56, 108, 110-118]. In addition to these variables, other census variables 

were also collected for analysis. Data on the martial status, number of 

dependent children, house sales, domestic electricity consumption, central 

heating types of home, industry classifications and geographical area of 

each SG and LA were extracted from the census for use in this work’s 

analysis. As well as the census variables, data considering the farming 

statistics of each SG region was also collected from governmental sources 

[162-164]. Data regarding the long-term mean wind speed in each SG was 

calculated from the BLS model presented in Chapter 4. All of the data were 

collected from continuous datasets. The data sources and any data 

processing requirements of each data set collected is detailed in Table 10. 
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Table 10 — Data sources, data processing and notes of independent variables considered for inclusion in the analysis 

Independent variable Units  Country Source Census 
code 

Spatial 
resolution  

Data processing 

Age* Years England and Wales 2011 Census - ONS KS101EW MSOA - 

Scotland 2011 Census - NRS KS101S DZ Aggregated to IZ 

Income* £/week  England and Wales ONS – 2008 NA MSOA - 

Scotland SNS - 2013 NA IZ - 

Education* % of 
residents 

England and Wales 2011 Census - ONS QS501EW MSOA - 

Scotland 2011 Census - NRS QS501S DZ Aggregated to IZ 

Home-ownership* % of homes England and Wales 2011 Census - ONS QS405EW MSOA - 

Scotland 2011 Census - NRS QS405S DZ Aggregated to IZ 

House type* % of homes  England and Wales 2011 Census - ONS QS402EW MSOA - 

Scotland 2011 Census - NRS QS402S DZ Aggregated to IZ 

Social class % of 
residents 

England and Wales 2011 Census - ONS QS607EW MSOA - 

Scotland 2011 Census - NRS QS607S DZ Aggregated to IZ 

Industry classifications* % of 
residents 

England and Wales 2011 Census - ONS QS605EW MSOA - 

Scotland 2011 Census - NRS QS605S DZ Aggregated to IZ 

Farming statistics Count/km2 England DEFRA NA LA Estimated at MSOA 

Wales Welsh Government NA “Small Area” 
statistics 

Aggregated to MSOA 

Scotland Scottish Government NA LA Estimated at IZ 

House sales* Sales/year England and Wales ONS NA MSOA  

Scotland Registers of Scotland NA IZ  
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Domestic energy 
consumption* 

Mean 
kWh/year 
per SG 
region 

England and Wales DECC NA MSOA - 

Scotland DECC NA IZ - 

Type of central heating* % of homes England and Wales 2011 Census - ONS QS415EW MSOA - 

Scotland 2011 Census - NRS QS415S DZ Aggregated to IZ 

Area* km2 England and Wales 2011 Census - ONS NA MSOA - 

Scotland 2011 Census - NRS NA IZ - 

Wind speed* ms−1 Great Britain BLS NCIC wind speed 
dataa 

NA SG - 

* - Variable was included in analysis 
ONS – Office of National Statistics 
NRS – National Records of Scotland 
SNS – Scottish Neighbourhood Statistics 
DECC – Department of Energy and Climate Change 
DEFRA – Department of Environment, Fisheries and Rural Affairs 
KS – Census key statistics 
QS – Census quick statistics 
EW – England and Wales 
S – Scotland 
a - Created using the boundary layer scaling model presented in Chapter 4 
NB. All data, except the wind speed data, was collected under the Open Government License 



- 142 - 

The specifics of each variable must be understood to ensure that the 

regression coefficient estimated for each variable could be interpreted 

accurately. Therefore, each of the variables in Table 10 will be discussed 

here and conclusions regarding their inclusion in the regression model will 

be presented. 

The age variable utilised in this analysis was the median age of residents in 

each SG or LA [161]. Adopter income in this analysis was collected from 

estimates of the median weekly total household income in each SG, 

produced in 2008 in England and Wales and in 2013 in Scotland. These 

income estimates were normalised by the average median weekly 

household, calculated at £638 per week from all the SGs in Great Britain. 

This process effectively results in the income variable being dimensionless. 

The normalisation process was implemented to ensure that any skew from 

outlier income estimates in the sample was mitigated in the regression 

model. Both the age and income variables were selected for the regression 

model, based upon the findings of previous studies which examined their 

influence on the uptake of other microgeneration technologies [55, 56].  

The education variable selected from the census was the percentage of 

residents in each SG with “Level 4” qualifications. Level 4 qualifications are 

defined as degree-level qualifications, Level 4 or 5 National Vocational 

Qualifications, higher level Business and Technology Education Council 

qualifications or any professional qualifications such as accountancy and 

nursing qualifications [161]. This was the highest level of qualification 

recorded in the 2011 census and was selected based on the findings of 

previous microgeneration adopter literature [56].  

Homeownership was included in the regression models from a census 

variable which described the percentage of residents in a SG who either 

owned their homes outright or owned their homes under a mortgage 

agreement [161]. The percentage of residents in each of these two 

categories was combined to describe the number of homes which are 

owner-occupied in each SG. Previous literature has stated that adopters are 

more likely to live in detached homes [53]. A census variable which describe 

the percentage of properties which are classified as detached homes in each 

SG was also collected from the census data.  

Multiple social class variables were considered for inclusion in the analysis, 

as it has been examined in a previous study [55], with a range of socio-

economic classifications (SEC) available from the census. The SEC 

variables are derived from a resident’s occupation, specifically their relative 
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level of seniority with a business [165]. However, as discussed, social class 

of a resident is related to the resident’s income and educational level. A high 

degree of correlation was found to exist between the social class variables 

and the income and educational variables, which have been specifically 

examined in previous literature [55, 56]. Such a high level of correlation 

between variables in a regression model has a severe limiting effect on the 

results of the model [166] and, therefore, the social class variables were not 

included in this work.  

Previous literature has highlighted the suitability of farms as locations for 

wind turbines [31, 167] and therefore a variable describing the prevalence of 

agriculture in a region was required within the regression model. Using an 

industry classification variable available in the census, it was possible to 

examine whether wind turbine adoptions were prevalent in regions with high 

levels of agriculture. The industry classifications in the 2011 census provided 

21 differing classifications of resident occupation [168]. A classification for 

the percentage of residents who are employed in the agricultural, forestry or 

fisheries industry was available from the census. Regions in which a high 

percentage of residents who were classified in this industry classification are 

likely to have a relatively high level of agricultural industry and therefore only 

this industrial classification which describes the percentage of residents in a 

region who are employed in the agricultural, forestry or fisheries industry 

was included in the regression model.  

In addition to the industry classification, farming statistics on the area farmed 

and the number of farms in each LA were available for England & Wales and 

Scotland [162, 163]. To ensure that these statistics were available for this 

analysis, each variable had to be estimated for the SGs in England and 

Scotland. The farming statistics in Wales were available at “small-area” 

geographies [164] and could be aggregated up to the SGs in Wales. Using a 

weighting derived from the area of the SGs in each LA, the farming statistics 

were split into the relevant SGs. However, there are severe limitations to this 

estimation approach. The exact proportion of farmed land and the number of 

farms in a SG could not be determined or validated. With the inclusion of the 

industry classification in the regression model, it was deemed unnecessary 

to include the estimation of farmed land and number of farms in the 

regression models.  

The risk of losing money invested in a microgeneration technology has been 

cited as a barrier to adoption by potential adopters [54]. Therefore, variables 

that characterise the number of house sales in each region were considered 
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for inclusion. The total number of annual house sales in each SG were 

available over a 20-year period. For England and Wales, data was available 

for each SG between 1996 and 2016 [169], while in Scotland this data was 

for house sales in each SG between 1993 and 2013 [170]. From this data, 

an mean number of annual house sales in each region of Great Britain was 

calculated. The mean number of annual house sales was then made 

dimensionless by the total number of homes in an SG. This process was 

required as the total number of homes in each SG was not consistent and 

therefore, the absolute number of house sales would not be comparable 

across regions. The mean percentage of annual house sales in a SG was 

then utilised in the regression models. There were limitations to using house 

sale data as a proxy for residents remaining in their homes following a wind 

turbine installation. As a mean percentage of house sales was utilised, it was 

not possible to identify if the homes which were sold in the region were the 

homes which had a wind turbine installation. Additionally, a decision to move 

home can be motivated by family reasons, employment opportunities or a 

desire to live in a different area, which could outweigh the desire not to lose 

money on a wind turbine investment. However, without data regarding the 

length of time a resident has lived in a home, the proxy of house sale data 

was suggested as the most suitable method of examining if residents who 

are less likely to move home will adopt a wind turbine.  

Mean annual domestic electricity consumption was available for each SG. 

The mean annual domestic electricity consumption data was taken from sub-

national consumption statistics produced by the Department of Energy and 

Climate Change in 2011 [171]. The mean annual electricity consumption in 

each region was estimated in kWh. These figures were calculated from the 

total supply of electricity to each region and the total number of electricity 

meters in each region. The inclusion of mean domestic electricity demand 

was motivated by a previous study which showed that individuals with a 

higher electricity demand were more likely to install a PV system [42]. 

Inclusion of the mean domestic electricity demand in this model was to test if 

this was true for wind turbine adopters.  

The percentage of homes in a region with a specific type of central heating 

system was selected for this analysis. The number of homes with either   

gas-fired or electric powered central heating were collected from the census. 

The selection of these central heating variables were selected as a proxy for 

a region’s rurality. Regions with a lower number of homes that utilise       

gas-fired central heating are likely to be more rural, as less homes in the 
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region are unable to access the gas grid. The selection of the electric central 

heating variable was motivated by a desire to understand if wind turbines 

were installed to provide domestic electricity for space heating requirements 

or household electricity demand.  

The availability of land has been suggested as a factor that influences wind 

turbine adopters and to analyse this influence, the geographical area of each 

SG was included. The statistical geographies were created based upon the 

population density and therefore, in a larger geographical area, it is likely 

that each residence will have a greater area of land available for a wind 

turbine installation. The geographical area of each SG were calculated from 

the boundary data of each region [159, 160]. Using geographical information 

software, the area of each region in square kilometres (km2) was calculated 

for inclusion in the regression model.  

All the census data discussed here was extracted as a percentage of 

residents or homes within a SG. Use of percentages in the census variables 

allowed for direct comparison of regions where the number of residents or 

homes was not consistent.  

 Influence of wind speed on wind turbine adoptions  

Previous literature has discussed the importance of accuracy in a wind 

resource estimation for small scale wind turbines in Great Britain [32]. 

However, literature on the influence of available wind resource on small and 

medium scale wind turbine deployment in Great Britain is lacking. To 

determine the influence of wind resource on wind turbine adoptions in Great 

Britain, a separate regression model was developed. This regression model 

will be presented in Section 5.2.1.  

Wind speed predictions from the boundary layer scaling (BLS) model 

presented in Chapter 4 were utilised as the wind resource metric in this 

analysis. 68.5 % of all wind turbines installed under the Feed-in Tariff have 

an installed capacity below 15 kW [12]. The 5 kW wind turbine, detailed in 

Chapter 4, has a hub height of around 15 m [151] and therefore this height 

was selected as representative of the likely hub height of wind turbines 

adopted in Great Britain. Wind speeds at 15 m from the BLS NCIC model 

were predicted for each hectare of all regions of Britain.  

Wind turbine installations at SG level have no specific location in the region. 

Consequently, the long-term mean wind speed for the exact location of the 

wind turbine cannot be determined. To mitigate this, the long-term mean 

wind speed for each SG was suggested here as measure of the wind 
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resource available for all wind turbines in the region. Selection of the mean 

wind speed of a region alone would not include a description of a site with a 

higher wind resource that may be located in the SG and would be a more 

suitable location for wind turbine installation. Wind turbine adoption patterns 

were therefore analysed against the wind speed metrics of the mean, 

maximum, median or modal wind speed at 15 m in each region. These wind 

resource metrics were initially analysed to understand which was the most 

appropriate wind speed metric to be taken forward into the further regression 

model.  

In addition to the influence of available wind resource on deployment, the 

minimum wind speed required for deployment was also analysed. Previous 

literature, which offered the technical potential estimates of wind turbine 

deployment, defined sufficient wind speed for an installation as either a long-

term mean wind speed above 5 ms−1 [31] or above 5.5 ms−1 [38]. However, 

these estimates were created using either MCS corrected NOABL [31] or 

unscaled NOABL [38] respectively. As shown in Chapter 4, the BLS NCIC 

data was the most accurate scaling methodology for wind speed prediction. 

It was therefore sensible to assess if the estimation of minimum wind speed 

required for deployment was still consistent when using BLS NCIC data.  

To estimate the minimum wind speed that is likely to be required for wind 

turbine deployment, a multifaceted approach was developed. Initially, 

through analysis of the mean wind speed in regions where wind turbines 

have previously been adopted, it was possible to identify the lowest mean 

wind speed in a SG, which has been considered technically viable by current 

wind turbine adopters. However, as discussed previously, use of the mean 

wind speed metric across a region would not provide a description of any 

locations in a region, where the mean wind speed was higher and therefore 

a turbine would be better located. Therefore, additional analysis must be 

included to counter this issue. 

This additional analysis aimed to determine the minimum wind speed 

required to ensure that a 5 kW wind turbine achieved a certain payback 

period. An acceptable payback period of a wind turbine is a subjective 

judgement from each adopter [108] and therefore a range of payback 

periods were analysed. The lifetime of the FIT is 20 years [26] and therefore 

20 years was selected as the maximum payback period. Payback periods of 

10 and 5 years were also selected, based upon the mean payback periods 

viewed as acceptable by current microgeneration adopters and those 

considering an adoption in Great Britain [55]. The minimum wind speed 
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required for deployment was calculated in line with the methodology of the 

financial metrics set out in Chapter 4. The payback period was calculated 

based upon the financial returns from FIT payments for generation and 

savings made by offsetting the requirement to buy electricity from the grid. A 

FIT payment of 13.89 p/kWh [34] and an average electricity price of 15.95 

p/kWh [152] were utilised in this analysis. This electricity price was 

calculated from 11 years of data available from DECC for the average price 

of standard electricity consumption [152]. This data was adjusted for 

inflation, from 2010 prices, and assumed an annual standard electricity 

consumption of 3,800 kWh [152]. At the time the analysis was conducted, 

this was the lowest FIT tariff rate, however, this has since changed. To 

ensure consistency with the cost estimates, which were only available from 

2015, the electricity price and tariff level from October 2015 were retained for 

this analysis.  

Using these variables, it was possible to calculate the minimum mean wind 

speed required to meet the three payback periods discussed. Using the 

results of both schemes of analysis, the minimum mean wind speed required 

for wind turbine deployment was suggested. Using the wind speeds 

available from BLS NCIC, this minimum wind speed estimate was envisaged 

to be more accurate than those derived from either MCS corrected NOABL 

[31] or unscaled NOABL [38] wind speed.  

 Analysis of independent variables 

A total of 12 demographic and environmental variables were taken forward 

from the initial data set, described in Section 5.1.2, for further analysis prior 

to implementation of the regression models. The 12 variables and the 

abbreviations that were used within this chapter are detailed in  

 

 

 

 

 

 

 

Table 11. 
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Table 11 — Independent variables included in regression models 

Variable name Abbreviation 
in this work 

Variable name Abbreviation 
in this work 

Median age of residents in 
region 

Age Percentage of homes 
in a region with gas-
fired central heating  

GasCH 

Dimensionless median 
weekly household income 
in region 

Income Percentage of homes 
in a region with electric 
powered central 
heating 

ElecCH 

Percentage of residents in 
region with degree-level or 
equivalent qualifications 

Educa Mean annual domestic 
electricity consumption 
in a region  

AveElec 

Percentage of homes in a 
region which are owned 

Owned Geographical area of 
each region 

Area 

Percentage of homes in a 
region which are detached 
homes 

Detach Long-term mean wind 
speed at 15 m in each 
region  

ū 

Percentage of residents 
who are employed in either 
the agricultural, forestry or 
fisheries industry 

IndA Dimensionless  mean 
number of house sales 
in a region 

HouseSales 

 

Initially, the variables were assessed to understand if a normalisation was 

required. For the variables extracted from the census, all those except Age, 

AveElec, Area and ū, were provided in the form of percentages for each 

region, which were comparable across all regions and therefore no further 

normalisation to make these variables dimensionless was required. For the 

variables of median age and mean electricity consumption, no normalisation 

was applied. The mean value of each of these variables, 44 years for 

median age and 3,800 kWh for mean electricity consumption, was utilised as 

a reference point for relative influence of each variable in the regression 

models. For example, if the median age was shown to have a negative 
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regression coefficient, it would be concluded that wind turbine adopters were 

generally below this mean age. For the wind speed variable, a normalisation 

process was possible, however, given that it was investigated separately 

from the other demographic variables, the wind speed values extracted from 

the BLS model remained unchanged. For the geographical area of a region, 

no normalisation was possible, as this data was heavily skewed. A 

normalisation of these variables could have increased the skew of the 

variables and adversely influenced their results from the regression models.  

The presence of skewed variables, such as the area variable, suggested 

that the possibility of transforming the independent variable should be 

analysed. The transformation of each variable was tested to identify the 

most appropriate transformation required for each variable in the regression 

model. In total, ten transformations were considered for each of the 

demographic and environmental variables and are presented in Table 12.  

Table 12 — Ten transformations of each independent variable considered 

Transformation 
Number 

Transformation 
Formula 

Transformation 
Number 

Transformation 
Formula 

1 𝑥 6 √𝑥 

2 𝑙𝑜𝑔ଵ 𝑥 7 𝑥ଶ 

3 1 𝑥ଶ⁄  8 𝑥ଷ 

4 1 √𝑥⁄  9 𝑎ଵ𝑥 + 𝑎ଶ𝑥ଶ 

5 1 𝑥⁄  10 𝑎ଵ𝑥 + 𝑎ଶ𝑥ଶ + 𝑎ଷ𝑥ଷ 

 

The relationship between each dependent variable and each transformed 

variable was assessed and the transformation of each variable which yielded 

the highest coefficient of determination was deemed the appropriate 

transformation of each independent variable. The differing combinations of 

transformations for each dependent variable were analysed to develop a 

unified set of transformations of the independent variables to be used in all 

the regression models. In total, only three of the ten transformations were 

utilised, with the transformation of each variable presented in Table 13 

Table 13 — Transformation applied to each independent variable 

Variable Transformation Applied  Variable Transformation 
Applied  

Age 𝑥 GasCH 𝑥 

Income 𝑥 ElecCH 𝑥 

Educa 𝑥ଷ AveElec 𝑥 

Owned 𝑥 Area 𝑙𝑜𝑔ଵ 𝑥 

Detach 𝑥 ū 𝑥 

IndA √𝑥 House Sales 𝑥 
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Figure 30 — Comparison of left: raw area variable and right: transformed area 
variable 

The influence of the transformation and the rationale for their inclusion is 

illustrated best by Figure 30. The untransformed area variable, shown on the 

left of Figure 30, is heavily skewed with a long-tail distribution. Caused by a 

large number of SG regions in the sample with small geographical areas, the 

skew in the untransformed data could adversely affect the estimated 

regression coefficient. The transformed area variable, after undergoing a 

logarithmic transformation can be seen on the right of Figure 30. This data is 

more evenly distributed and therefore was less likely to skew the estimation 

of the regression coefficient.  

Only the education, industry classification and area variables were 

transformed. While the transformations were assessed using the R2 value, 

the quantitative outcome of the transformation was to normalise the 

distribution of these variables. As shown in Figure 30 for the area variable, 

the transformation of the education and industry variable prior to the 

regression normalised their distribution. This was particularly important for 

the industry variable where the range of the untransformed variable was 

small with the maximum value of 22%. Similar to the area variable, the 

majority of the regions have low levels of agricultural industry leading to a 

skewed distribution. The transformation of the educational, industry and area 

variables prior to the regression model effectively normalised their 

distribution which meant that estimation of the regression coefficient was 

adversely influenced.  

Minimal use of transformed variables allowed the regression model to 

assess the linear relationship between wind turbine adoptions and each 

independent variable. As no inverse transformations of the variables were 

required, the direction of the relationship between each transformed variable 

and the dependent variable was the same as the untransformed set of each 
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variable. The transformations influenced the value of the regression 

coefficients of the models, but as discussed were required to ensure that 

heavily skewed variables did not adversely affect the results of the 

regression model. This allowed for consistent analysis of the transformed 

and untransformed variables in the regression models to determine their 

influence on wind turbine adoptions in Great Britain.  

The regression models in this chapter were undertaken in R, version 3.2.3 

[172]. Within R, the “lmtest” [173] and “sandwich” [174] packages were 

utilised to provide the statistical packages to conduct the regression analysis 

and diagnostic tools to verify the models. Additionally, some data processing 

was conducted using MATLAB R2013b [175] under an academic license. 

Any maps presented in this chapter were created in MATLAB and visualised 

in ArcMap 10.2.2 [176].  

5.2 Regression models and results 

In total, three regression models were created to analyse the influence of: 

wind resource; the five demographic factors of age, income, education, 

homeownership and house type previously suggested in literature; and the 

other suggested demographic and environmental factors discussed 

throughout this chapter. The four dependent variables of: wind turbine 

installations at LA level (LA Inst); installed capacity of wind turbines at LA 

level (LA Cap); wind turbine installations at SG level (SG Inst) and installed 

capacity of wind turbines at SG level (SG Cap) were used in each of the 

three models described.  

 Wind resource regression model  

Using the BLS NCIC wind speeds predicted at a hub height of 15 m, the 

influence of wind resource on wind turbine adoptions was analysed. The 

general form of the wind resource regression model was as follows; 

logଵ(𝑊𝑇) =  𝛽 + 𝛽ଵ𝑢 + 𝜀 

Equation 47 

where log10(WTi) was a N × 1 vector of logarithmic transformations of wind 

turbine installations or installed capacity in region, i, ui was a N × 1 vector of 

wind speed metrics of each region while β1 was the regression coefficient of 

each wind speed metric, εi was the residual term in each region and β0 is the 

intercept term of the model.  
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As discussed, four wind speed metrics, the maximum, mean, median and 

modal wind speed in each region, were initially examined. Multiple wind 

speed metrics were initially analysed as the mean wind speed of a region 

may not accurately describe sites with a higher mean wind resource in the 

region which would be more suitable for a wind turbine installation. To 

determine which of these metrics was considered the most appropriate and 

therefore to be investigated further, the coefficient of determination (R2) of 

each model using each wind speed metric was calculated, and the results 

are presented in Table 14. 

 

 

Table 14 — Coefficient of determination for each wind resource regression 
model with different wind speed metrics as the independent variables 

 Wind speed metric  
Dependent 
variable 

Maximum 
(R2) 

Mean (R2) Median 
(R2) 

Mode (R2) Sample 
Size 

LA Cap 0.081 0.220 0.210 0.139 285 
LA Inst 0.125 0.345 0.326 0.243 285 
SG Cap 0.061 0.095 0.093 0.056 1377 
SG Inst 0.173 0.202 0.187 0.136 1377 

 

As seen in Table 14, the highest R2 value was observed in the wind resource 

regression models which used the mean wind speed of a region at 15 m as 

the independent variable. The mean wind speed of each region was 

therefore used as the wind speed metric in the subsequent regression 

models of this work.  

The wind resource regression models utilising mean wind speed as the 

independent variable were analysed further to determine the influence of 

wind resource on wind turbine adoptions. The regression coefficients, β1, 

estimated to describe the influence of the mean wind speed of a region on 

the dependent variable, are presented in Table 15. 

Table 15 — Wind regression models for each dependent variable 

 Intercept, β0 Regression coefficient, β1 R2 
LA Cap -0.500 0.589*** 0.220 
LA Inst -1.298*** 0.453*** 0.345 
SG Cap 0.376*** 0.271*** 0.095 
SG Inst -0.606*** 0.202*** 0.202 

*** — Significant at 99 % 
**  — Significant at 95 % 
*   — Significant at 90 % 
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The scatter plots of mean wind speed at 15 m against each dependent 

variable and the apparent fit from each regression model are presented in 

Figure 31 and Figure 32.  

 

Figure 31 — Scatter plots of wind resource regression models with installed 
capacity as the dependent variable. Left: LA level. Right: SG level 

 

Figure 32 — Scatter plots of wind resource regression models with 
installations as the dependent variable. Left: LA level. Right: SG level 

The trend in all of the apparent fits, shown by the straight lines on each plot, 

from the regression models was that the availability of wind resource has a 

positive influence on wind turbine adoptions. Regions with a higher mean 

wind speed were more likely to have a higher number of wind turbine 

installations and higher installed capacity. The regression coefficient of the 

mean wind speed in each model was significant as seen in Table 15. Mean 

wind speed and more broadly, wind resource is therefore concluded to be a 

significant influencing factor on wind turbine adoptions in Great Britain. This 

conclusion supports the findings in literature on PV adoptions which 

highlighted that the availability of solar resource was a significant influencing 

factor [42]. Additionally, this conclusion is supported by previous literature, 

which highlighted that the financial returns of a microgeneration installation 
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were considered most important by adopters [54, 55]. The level of wind 

resource available to a wind turbine directly influences the financial returns 

through the financial incentives available from the FIT. Therefore, it is 

concluded that wind resource is an influencing factor on wind turbine 

adoptions. 

The influence of wind resource appeared to differ between the dependent 

variables of the regression model. The coefficients of determination, R2, 

were higher for the regression models using installations as the dependent 

variable. The difference between R2 values of the installed capacity and 

installation models highlighted that wind resource, as an independent 

variable, could explain a greater degree of the variance in the adoption 

patterns of installation compared to the adoption patterns of installed 

capacity. The underlying reason for this is the different installation types and 

thus different types of wind turbine adopters, which were dominant in the 

installed capacity or installation data samples. Domestic wind turbine 

installations dominate in the installation data and therefore the results of the 

model suggest that wind resource was a more influential factor in domestic 

rather than commercial wind turbine projects. Commercial wind turbine 

projects are likely to have a higher installed capacity to provide sufficient 

electricity for a commercial site which has higher electricity demand than 

domestic homes. It is likely that the electrical demand of the individual sites 

and the ability to raise sufficient capital for a turbine will have had an 

influence on the capacity of wind turbine installed. However, a higher 

capacity turbine is also likely to have a higher hub height than 15 m to 

access higher wind speeds. Therefore, in these non-domestic wind turbine 

projects, it is likely that the mean wind speed at 15 m used in this research 

did not describe the wind speed captured by the higher capacity turbine and 

resulted in the lower influence observed in the results.    

Conversely, while the R2 values were lower, the regression coefficients 

estimated in the installed capacity models were higher than the comparable 

regression coefficients estimated in the installation models. The difference 

between the regression coefficients demonstrates that in regions with higher 

mean wind resource, the regression models predicted that higher capacity 

wind turbines would be installed. Adopters of higher capacity wind turbines 

were likely to desire higher wind resource, to ensure that the financial 

returns of a turbine were maximised and installed in regions with a higher 

mean wind resource, hence the results of the model.  
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Each of the regression models also showed that wind resource was likely to 

be one of multiple factors that influenced a wind turbine adoption. The 

highest R2 of all of the models is only 0.345 for installations at LA level. Wind 

resource was therefore only able to explain, at most, 35 % of the variance in 

the wind adoption patterns of Great Britain. This suggests that there were 

other factors that influenced British wind turbine adopters. This conclusion 

highlights the rationale of developing other regression models in this work, 

which examined the influence of additional factors on wind turbine adoption 

patterns in Great Britain.  

 Minimum deployment wind speed 

As wind resource was an influential factor on wind turbine adoptions, it was 

vital to understand the predicted minimum wind speed required for wind 

turbine deployment. Previous estimates have suggested a long-term mean 

wind speed of either 5 ms−1 [31] or 5.5 ms−1 [38] is required for wind turbine 

deployment. However, these estimates were produced using either MCS 

NOABL or raw NOABL data, which were both shown in Chapter 4 to be 

inaccurate for wind speed prediction. With estimated wind speeds available 

from the BLS NCIC, which had a greater degree of accuracy than either 

MCS NOABL or raw NOABL, it was possible to determine the long-term 

mean wind speed which was considered to be the viability threshold for 

deployment.  

Initially, the mean wind speed of regions with at least a single wind turbine 

installation were examined. Through this analysis, it was possible to 

determine the minimum mean wind speed that current adopters have 

considered sufficient for a wind turbine to be viable. Figure 33 shows the 

histogram of mean wind speeds of LAs and SGs with at least a single wind 

turbine installation. 
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Figure 33 — Histogram of mean wind speeds of either LAs or SGs with at 
least a single wind turbine installation 

Figure 33 showed that the lowest mean wind speed of any region with a 

wind turbine installation was just above 3 ms−1. However, only 0.04 % of all 

turbines were installed in a region with such a low mean wind speed. It was 

concluded that the mean wind speed of the region was not likely to be 

representative of the mean wind speed at the site of this wind turbine. 

Similarly, this was considered the case for the wind turbines installed in 

regions with a mean wind speed below 4 ms−1. Only 1.5 % of all turbines 

were installed in a region with a mean wind speed below 4 ms−1. It was 

therefore concluded that the minimum mean wind speed required for 

deployment was between 4 ms−1 and 4.5 ms−1. Only a small percentage of 

wind turbines, 6.4 % at LA level and 8.3 % at SG level, were sited in regions 

with a mean wind speed below 4 ms−1. In regions with a mean wind speed 

between 4.5 ms−1 and 5 ms−1, wind turbine deployment increased 

dramatically. 30 % of all turbines at LA level and 26 % of all turbines at SG 

level were sited in regions with a mean wind speed between 4.5 ms−1 and    

5 ms−1. While these results indicated a minimum wind speed for deployment, 

they must be treated with caution. As seen in regions with a mean wind 

speed below 4 ms−1, the mean wind speed may not be representative of the 

actual mean wind speed of the turbine site. The calculation of the minimum 

mean wind speed required to achieve certain payback periods was therefore 

conducted.  
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Analysis of the minimum wind speed required to achieve payback periods of 

20, 10 and 5 years was conducted. As discussed in Section 5.1.2.1, the 

payback period was calculated for a 5 kW turbine using a Weibull shape 

factor of 1.8, an average electricity price of 15.95 p/kWh [152] and a FIT 

payment of 13.89 p/kWh [34]. The results of this analysis are presented in 

Table 16.  

Table 16 — Minimum mean wind speed required to meet payback period 
thresholds for 5 kW wind turbine 

Payback period 
threshold (Years) 

Mean wind speed (ms−1) Actual payback time at 
mean wind speed  

20 3.8 18 years, 5 months 
10 4.6 9 years, 9 months 
5 6.2 4 years, 10 months 

 

The results of Table 16 supported the conclusions drawn from Figure 33, 

that the minimum wind speed of between 4 ms−1 and 4.5 ms−1 was required 

for deployment. To achieve a payback of under 20 years, a mean wind 

speed of at least 3.8 ms−1 was required. However, this payback period at  

3.8 ms−1 of 18 years represented the minimum wind speed required for the 

wind turbine to payback within the lifetime of the FIT. Realistically, the 

payback period desired by potential adopters would be lower and therefore a 

higher mean wind speed would be required. Individuals considering a wind 

turbine installation have cited 11 years as a minimum desired payback 

period [108]. To achieve such a payback period, a mean wind speed of       

4.5 ms−1 was required. It is therefore concluded that the minimum mean 

wind speed required for further wind turbine deployment in Great Britain is 

4.5 ms−1. At a mean wind speed of 4.5 ms−1, a 5 kW wind turbine is 

predicted to pay back the capital expenditure required to install in 10 years 

and 4 months. However, it is noted that the minimum wind speed was 

determined using the FIT tariff from October 2015. With lower tariff rates, a 

higher minimum wind speed would likely be required for deployment.  

The minimum wind speed of 4.5 ms−1 required for deployment, presented 

here, was lower than previous estimates. This was a result of the use of 

more accurate wind speeds estimates from the BLS NCIC model used in this 

analysis. The new minimum wind speed calculated in this analysis has an 

impact on the number of regions across Great Britain which have a sufficient 

mean wind speed. At 5 ms−1, 22.5 % of all SGs have a sufficient mean wind 

speed, whereas 51.2 % of all SGs have a mean wind speed of 4.5 ms−1 or 

above. This conclusion therefore, has a consequence on future potential 
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deployment estimates, as it has been shown here that there are more SGs 

in which a wind turbine could be installed. However, the impact of these 

findings on actual deployment may be less than predicted. While this 

analysis demonstrated that payback of a 5 kW turbine can be achieved in 

around 10 years in regions with a mean wind speed above 4.5 ms−1, whether 

this is considered an acceptable payback period is subjective to each 

individual adopter.  

 Demographic regression model 

The variables included in the demographic model were; the median age of 

residents, Agei, dimensionless median weekly income of residents, Incomei, 

percentage of residents with degree-level or equivalent qualifications, 

Educai, percentage of homes that are owner-occupied, Ownedi and the 

percentages of homes which are detached, Detachi. The general form of the 

demographic regression model was as follows; 

logଵ(𝑊𝑇) =  𝛽 + 𝛽ଵ𝐴𝑔𝑒 + 𝛽ଶ𝐼𝑛𝑐𝑜𝑚𝑒+ 𝛽ଷ𝐸𝑑𝑢𝑐𝑎
ଷ+ 𝛽ସ𝑂𝑤𝑛𝑒𝑑+ 𝛽ହ𝐷𝑒𝑡𝑎𝑐ℎ

+ 𝜀 

Equation 48 

where log10(WTi) was a N × 1 vector of logarithmic transformations of wind 

turbine installations or installed capacity in region, i, β1…n was the regression 

coefficient of each of the demographic variable included, εi was the residual 

term in each region and β0 was the intercept term of the model. The 

education term underwent a cubic transformation, based upon the initial 

analysis of the independent variables presented in Section 5.1.3. 

The estimated regression coefficients of each demographic variable in each 

regression model are detailed in Table 17. 
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Table 17 — Regression coefficients of each variable in the four demographic 
regression model, installed capacity at LA resolution, LA Cap, number 
of installations at LA resolution, LA Inst, installed capacity at SG 
resolution, SG Cap and number of installations at SG resolution, SG Inst 

Variable LA Cap LA Inst SG Cap SG Inst 
Age, β1 0.005 

(0.214) 
0.037** 
(2.362) 

-0.010* 
(-1.656) 

0.012*** 
(4.169) 

Income, β2
 -3.118*** 

(-6.709) 
-1.795*** 
(-6.474) 

-1.282*** 
(-10.392) 

-0.644*** 
(-9.804) 

Education, β3 14.223*** 
(2.792) 

11.75*** 
(3.928) 

1.208 
(1.161) 

2.415*** 
(4.594) 

Owned, β4 2.177 
(1.646) 

-0.622 
(-0.744) 

0.662** 
(2.097) 

-0.244 
(-1.521) 

Detached homes, β5 1.833*** 
(2.933) 

1.692** 
(4.121) 

1.247*** 
(6.282) 

0.901*** 
(8.351) 

Constant, β0 2.256*** 0.228 1.992*** -0.064 
R2 0.258 0.314 0.110 0.189 
t-test value for each coefficient is included in the parentheses  
*** — Significant at 99 %  
**  — Significant at 95 % 
*   — Significant at 90 % 

 

The regression coefficients estimated in each model, presented in Table 17, 

highlighted the relative influence of each variable on wind turbine adoptions. 

The demographic model suggests that the number of wind turbine 

installations was higher in regions where the median age of residents was 

higher. The age of the wind turbine adopters was likely to be higher than 44 

years of age, the mean age for the sample analysed in the demographic 

model. It was noted that the age variable was only shown to be significant in 

the demographic models which utilised installations as the dependent 

variable. This links into the difference between installed capacity and 

installation data, discussed in Section 5.2.1. Turbines with a higher installed 

capacity are likely to be installed for non-domestic requirements. When 

examining the installation data, which is dominated by domestic adopters, 

the age of adopters becomes a significant factor which influenced wind 

adoptions. This finding is in line with previous literature, which showed that 

adopters of PV systems were likely to be aged over 45 [56]. The influence of 

adopter age was likely to be due to older adopters having capital to invest, 

following an accumulation through their working life [53]. Additionally, 

adopters aged around 45 may be approaching their peak career income 

[177], and be planning and saving for retirement. Adoption of a wind turbine 

may represent a method of protecting against rising fuel bills after retirement 

[178].  
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While wind turbine adopters could be reaching peak career earnings, the 

model results indicated that they may have a lower than mean weekly 

income. This is in sharp contrast to other literature, which suggested that PV 

adopters have higher than mean income [56]. However, the cause of this 

result regarding the influence of income was likely to be borne out of where 

wind turbines were installed. Wind turbines are likely to be more effective in 

rural areas, where the mean weekly incomes of residents were lower than 

national average. The mean weekly income in rural areas of the sample was 

around £515 per week, below the mean across the whole sample of £638 

per week. This factor was likely to be the underlying cause of the negative 

regression coefficients for income observed in the demographic model. This 

result does not necessarily indicate that individual adopters of wind turbines 

in these regions have lower than average incomes, rather that they were 

likely to live in regions where the mean income of all residents was lower 

than the national average.  

Additionally, the outcome of the demographic model indicates that it may 

have been the capital which an adopter has accumulated, rather than weekly 

income, having a greater influence on a decision to adopt. Previous literature 

has suggested that an adopter’s accumulated capital rather than annual 

household income was more influential for PV adoptions across Great 

Britain [42]. It is therefore suggested here that while an adopter’s weekly 

income may have played a role in an individual decision to adopt a wind 

turbine in Great Britain, it was likely that an adopter had sufficient capital 

saved and this may have had a greater influence on a decision to adopt than 

the weekly income of the adopter alone.  

Wind turbine adoptions, both in terms of installed capacity and installation 

numbers was shown to increase in regions where high levels of adopters 

had a degree-level or equivalent education. This finding is in line with 

previous literature which suggested a positive correlation between adopter 

education and PV adoption [56, 118, 121, 122]. The link between adopter 

education and wind turbine adoption is also in agreement with Rogers’ 

description of the educational levels of earlier adopters of new innovations 

[132]. Earlier adopters of a new innovation are likely to have higher levels of 

education attainment, as they are more likely to be able to understand the 

technical complexities of a new innovation and therefore are more likely to 

adopt [132]. This conclusion was supported by the results of the 

demographic models, which showed that a resident’s level of education had 

a positive influence on wind turbine adoption patterns.  
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The regression coefficients for the homeownership variable were shown to 

not be significant, except for the model examining installed capacity of wind 

turbines at SG level. In this model, homeownership was shown to be a 

positive influence on the installed capacity of turbines in a region. This result 

is somewhat contradictory given that the installed capacity data was 

dominated by commercial installations, whereas the homeownership 

variable included only the ownership of domestic homes. It is therefore 

concluded that the result of this demographic model was coincidental with 

regions with high capacity turbines for commercial use were also likely to 

have been regions with high levels of domestic homeownership.  

While homeownership has not been shown to be significant in the majority of 

the demographic models, it is still likely to have been an influence on 

individual decisions to adopt a wind turbine. The highest levels of 

homeownership are usually observed in suburban areas. Suburban areas 

are not as suitable for wind turbine adoptions, due to the likely lower wind 

resource than more rural areas [179], where homeownership could be lower. 

Lower homeownership in rural areas could be linked to increasing numbers 

of second or holiday homes, which have increased rural house prices and 

resulted in lower levels of owner-occupiers of the homes in these areas 

[180]. It is therefore envisaged that wind turbine adopters may live in regions 

where the levels of homeownership were comparatively low, however, they 

are likely own their home which allowed them to install a wind turbine. This 

would be consistent with the issues of the landlord-tenant dilemma [53] and 

other literature which had suggested that homeownership is an important 

factor in microgeneration adoptions [43, 45, 56, 108].  

While homeownership may not have been shown to be influential, the 

percentage of detached homes of a region was shown to be a significant 

factor which influenced wind turbine adoption patterns in Great Britain. The 

demographic model showed that wind turbines were installed in areas where 

the number of detached homes was high. This conclusion is consistent with 

previous literature which suggested that higher levels of detached homes in 

a region had a positive effect on PV adoptions [42]. The influence of an 

adopter’s house type is particularly important for wind turbines, which are at 

their most effective in regions where the housing density is low and wind 

speed is likely to be higher. This is likely to be the underlying cause of the 

significant relationship, shown in the demographic models. The influence of 

detached homes shown in the model was likely to be centred around the 

greater availability of land for a wind turbine installation at a detached house.  
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Overall, the demographic models showed that current adopters of wind 

turbines in Great Britain were likely to be older, live in a region with a lower 

than mean income, hold a degree-level or equivalent qualification and live in 

detached home. It was possible that the adopter may own their home, 

however, the results of the demographic model did not conclusively prove 

this. These findings are significant as no previous research has identified 

any demographic profile of wind turbine adopters in Great Britain.  

The scatter plots of predicted against actual installed capacity or installations 

from each demographic regression model are presented in Figure 34 and 

Figure 35. 

 

Figure 34 — Scatter of log predicted vs actual installed capacity from the 
demographic model, where the line represents one to one relationship. 
Left: LA level. Right: SG level 

 

Figure 35 — Scatter of log predicted vs actual installations from the 
demographic model, where the line represents one to one relationship. 
Left: LA level. Right: SG level 

Overall, the scatter plots in Figure 34 and Figure 35 showed the factors 

included in the demographic model offered a relatively good description of 

the variance in wind turbine adoption patterns. Explanation of the variance 

was considered better in the demographic models at LA than in the SG 

model, where the scatter was closer to the line representing an y = x 
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relationship in each plot. However, an interesting phenomenon was 

observed in these scatter plots. For each demographic model, there 

appeared to be an upper limit of the predicted value of the dependent 

variable. It was more apparent in the SG models, where the predicted 

logarithmic installed capacity did not exceed 2.5 while predicted logarithmic 

installations did not exceed 1. This phenomenon suggests that the variables 

of the demographic model were only able to explain a proportion of the 

variance in current wind turbine adoption patterns. This was further 

supported by the R2 values of each demographic model, which were at a 

similar level to those of the wind resource regression model. The R2 values 

suggested that while the factors of the demographic variables could explain 

some of the variance in wind turbine adoption patterns, additional factors 

may be able to improve the R2 values further.  

Additionally, the fact that the predicted dependent variables from the 

demographic model did not exceed certain levels suggests that the 

demographic variable were only able to explain the underlying cause of 

individual decisions to adopt. In areas where there was higher wind turbine 

deployment, the factors included in the demographic model were insufficient 

to explain this variance. It was therefore, logical to extend the demographic 

model to include other factors suggested as being influential, including the 

mean wind speed of each region.  

 SER regression model 

The demographic regression model was extended to include the variables of 

percentage of residents employed in the agriculture industry, IndAi, 

percentage of homes with gas central heating, GasCHi, percentage of 

homes with electric central heating, ElecCHi, mean annual domestic 

electricity consumption, AveEleci, the mean number of house sales annually 

in a region, HouseSalesi, the geographical area, Areai, and mean wind 

resource of each region, ūi. Inclusion of these variables in the demographic 

model allowed the influence of these additional factors on wind turbine 

adoption patterns to be analysed. These variables were included to 

determine whether they could better explain the variance in wind turbine 

adoption patterns. With the inclusion of these variables, the new regression 

model, known as the Socio-Economic and Resource (SER) regression 

model was developed. The general form of the SER regression model was 

as follows; 
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logଵ(𝑊𝑇) =  𝛽 + 𝛽ଵ𝐼𝑛𝑐𝑜𝑚𝑒 + 𝛽ଶ𝐸𝑑𝑢𝑐𝑎
ଷ + 𝛽ଷ𝐷𝑒𝑡𝑎𝑐ℎ + 𝛽ସඥ𝐼𝑛𝑑𝐴

+ 𝛽ହ𝐺𝑎𝑠𝐶𝐻 + 𝛽𝐸𝑙𝑒𝑐𝐶𝐻 + 𝛽𝐴𝑣𝑒𝐸𝑙𝑒𝑐 + 𝛽଼𝐻𝑜𝑢𝑠𝑒𝑆𝑎𝑙𝑒𝑠

+ 𝛽ଽ 𝑙𝑜𝑔ଵ(𝐴𝑟𝑒𝑎) + 𝛽ଵ𝑢ത + 𝜀 

Equation 49 

where log10(WTi) was a N × 1 vector of logarithmic transformations of wind 

turbine installations or installed capacity in region, i, β1…n was the regression 

coefficient of each of the variables included in the SER model, εi was the 

residual term in each region and β0 was the intercept term. The variables of 

age and homeownership were removed from the SER model. 

Homeownership was removed as it was shown to not be significant in the 

demographic model and therefore inclusion in the SER model would be 

superfluous. The age variable was removed due to collinearity with the 

industrial classification variable. These variables were found to have a 

Pearson correlation coefficient of 0.56 in the LA data and 0.46 in the SG 

data. Removal of the age variable allowed the influence of agricultural 

industry in a region to be examined in the SER model using the industry 

classification variable. Age was the only factor removed during the 

modelling, although other pairs of variables had higher correlation factors. 

The paired variables with higher correlation coefficients were those variables 

which were expected to be have a degree of correlation, such as agricultural 

industry and levels of gas central heating which had a -0.84 correlation 

coefficient. To determine the variables that must be removed, the variance 

inflation factor was calculated. This approach was iterative to develop a set 

of variables where the collinearity between the variables was minimised. It 

was through this approach that the age variable was ultimately removed 

from the SER model. The regression coefficients of the SER model are 

presented in Table 18.  
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Table 18 — Regression coefficients of each SER regression model, installed 
capacity at LA resolution, LA Cap, number of installations at LA resolution, 
LA Inst, installed capacity at SG resolution, SG Cap and number of 
installations at SG resolution, SG Inst 

Variable LA Cap LA Inst SG Cap SG Inst 
Income, β1 -1.433*** 

(-2.595) 
-0.841*** 
(-3.452) 

-0.558*** 
(-4.109) 

-0.080 
(-1.328) 

Education, β2
 1.879 

(0.351) 
2.730 
(1.205) 

-2.986*** 
(-2.679) 

-0.151 
(-0.359) 

Detached homes, β3 -0.172 
(-0.298) 

-0.264 
(-1.01) 

0.057 
(0.313) 

-0.026 
(-0.356) 

Agricultural industry, β4 2.270 
(1.141) 

1.093 
(1.061) 

1.951*** 
(3.888) 

1.903*** 
(7.532) 

Gas central heating, β5 -0.712 
(-0.667) 

-1.027* 
(-1.915) 

0.165 
(0.89) 

-0.198** 
(-2.211) 

Electric central heating, β6 -4.035 
(-1.618) 

-1.106 
(-0.984) 

-0.722 
(-1.636) 

-0.232 
(-1.027) 

Mean electricity 
consumption, β7 

-2.01E-4 
(-0.729) 

-1.11E-4 
(-0.851) 

1.15E-4** 
(2.121) 

7.29E-6 
(0.307) 

Mean house sales, β8 7.768 
(1.065) 

3.743 
(1.249) 

3.832** 
(2.528) 

1.140* 
(1.88) 

Area of region, β9 0.861*** 
(4.574) 

0.670*** 
(8.372) 

0.193*** 
(2.986) 

0.055* 
(1.877) 

Mean wind speed, β10 0.118 
(1.24) 

0.058 
(1.225) 

0.109*** 
(3.71) 

0.094*** 
(6.166) 

Constant, β0 2.041 0.787 0.414 -0.333* 
R2 0.411 0.624 0.187 0.430 

Breusch-Pagan (BP) 
statistic 

21.2** 15.2 20.3** 118.7*** 

Durbin-Watson (DW) 
statistic 

1.87* 1.71*** 1.54*** 1.42*** 

t-test value for each coefficient is included in the parentheses  
*** — Significant at 99 %  
**  — Significant at 95 % 
*   — Significant at 90 % 
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The initial comment which must be made regarding the SER model is the 

results of the Breusch-Pagan (BP) test of heteroskedasticity [181] and the 

Durbin-Watson (DW) test for autocorrelation [182]. These tests are 

commonly used diagnostic tests for a regression model. The BP test 

examines whether the residuals of the model are randomly distributed and 

not dependent on the values of the independent variables of the model 

[181]. An example of heteroskedasticity is shown in Figure 36 and shows a 

sample of the residuals plotted against the fitted values from the SG Inst 

SER model. As discussed, the residuals should be randomly distributed 

around the dashed line, which represents a residual value of zero. However, 

this is not seen in Figure 36 where the residuals appear clustered for lower 

fitted values and thus exhibiting the heteroskedasticity of the model. 

 

Figure 36 — A graphical example of heteroskedasticity in regression 
residuals 

The value of BP test is calculated by performing an auxiliary regression 

using the residual values as the dependent variable and the fitted values as 

the independent variable [181]. The coefficient of determination of this 

auxiliary regression and the sample size is used to calculate the BP test 

value, with its significance calculated using the chi-squared distribution 

[173]. Table 18 shows that the SG Inst SER model has the highest BP test 

value and therefore exhibited the highest level of heteroskedasticity in this 

model’s residuals.  

The DW test examines whether the residuals of the regions in the model 

exhibited correlation with each other [182]. An example of autocorrelation is 

shown in Figure 37 and shows a sample of the residuals plotted against the 

identification number of each SG from the SG Inst SER model. Where no 

autocorrelation would be observed, the residuals would exhibit a more 

random distribution.  
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Figure 37 — A graphical example of autocorrelation in regression residuals 

The residuals observed in Figure 37 show that residuals in certain areas of 

Great Britain are similar. While the SG identification numbers are not always 

sequential for neighbouring SGs, the identification numbers are typically 

sequential from some areas of Great Britain. Therefore, the peaks seen in 

Figure 37 demonstrate that residuals of SGs in some areas of Great Britain 

are similar and autocorrelation can be observed in the regression residuals.  

The value of the DW test always a lies between 0 and 4 with a test value of 

2 indicating no autocorrelation in the residuals [183]. A DW test value below 

2 indicates that positive autocorrelation has been observed, where the 

residuals of neighbouring regions have the same sign while test values 

above 2 indicate negative autocorrelation [183]. The DW test values in Table 

18 indicate that positive autocorrelation was observed in the model 

residuals, with the values closer to 0 being shown to be more significant.  

The presence of autocorrelation or heteroskedasticity in the residuals could 

lead to biased and inconsistent estimation of the regression coefficient [184]. 

In previous literature, these issues have been mitigated through use of a 

spatially dependent model [42, 156]. However, where a spatially dependent 

model has been used, a number of previous studies were available that 

indicated that a spatially dependent model was the most suitable model. 

Literature which examined the spatial dependency in wind turbine adoption 

patterns in Great Britain was not available, which motivated the choice of a 

linear regression model to examine the influence of the selected variables in 

the SER models. Where heteroskedasticity and autocorrelation were 

identified in the residuals of this research’s SER regression model, a 

heteroskedastic and autocorrelation consistent covariance matrix was used 

to correct the estimated regression coefficients. This is the case for the 



- 168 - 

majority of the SER models, however for the SER model at LA Cap, only 

heteroskedasticity was observed and therefore only a heteroskedasticity 

consistent covariance matrix was used to correct these regression 

coefficients.  

In the SER model, the influence of the income variable was shown to be 

negative. As with the demographic model, this regression coefficient was the 

result of wind turbines being installed in rural areas and the influence of a 

resident’s accumulated capital on a decision to adopt. The education and 

house type variables were not shown be significant in any of SER models, 

except for the SER model for installed capacity at SG level. The 

insignificance in the majority of the models suggested that these factors 

were less influential in the SER model and the presence of additional 

variables in the SER models were better able to explain areas of higher wind 

turbine deployment. It is suggested here that the variables of education and 

house type still had a positive influence on individual wind turbine adoption 

decisions, but in terms of areas of higher deployment, there were other 

factors which had a greater influence. This explains the significantly negative 

education variable in the SER model for installed capacity at SG level. 

Regions with a high installed capacity are likely to have multiple high 

capacity turbines and these regions are likely to be extremely rural to ensure 

that each turbine has sufficient wind resource. In these areas, the number of 

residents with degree-level qualifications is likely to be minimal [123], 

causing the negative regression coefficient observed in the SER model.  

The first of the additional variables included in the SER model was the 

industry classification, which detailed the percentage of residents who were 

employed in the agricultural, forestry or fishery industry. The results of the 

SER model showed that at SG resolution, the presence of agriculture had a 

positive influence on the installed capacity and number of wind turbines in a 

region. Around 10 % of all farms in Britain have a wind turbine [167], as 

farmers try to diversify their income streams and provide a source of 

electricity for their operations. Agricultural land is ideal for wind turbine 

installations, as farms are likely to have sufficient land and wind resource. 

Additionally, wind turbines do not require vast land area for the installations 

allowing the field in which it is installed to still be utilised for grazing or crop 

cultivation, highlighting their suitability to provide energy for agricultural 

operations. It is these underlying factors that are likely to have caused the 

significant positive regression coefficient observed in the SER model results.  
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The importance of rurality for a wind turbine adoption was shown in the SER 

model through the negative relationship between the number of wind turbine 

installations and the percentage of homes with gas central heating in a 

region. Such a relationship highlighted that in regions where the percentage 

of homes with gas central heating was lower, the level of wind turbine 

deployment was likely to be higher. Areas with fewer homes with gas central 

heating are more likely to be rural areas, as less homes in these regions are 

able to access the gas grid. The majority of SG regions with a geographical 

area of 50 km2 or greater, had less than the national average of 78 % of 

homes connected to the gas grid. The inclusion of the variable concerning 

electric central heating was motivated by a desire to understand if wind 

turbines are installed to provide electricity for space heating. The SER model 

however, showed that the percentage of homes with electric central heating 

in a region was insignificant suggesting that the primary use of the electricity 

generated by a wind turbine was not for electrical space heating 

requirements.  

Mean annual domestic electricity use was shown to have a significant 

influence for installed capacity at SG level. However, the installed capacity 

data was dominated by commercial turbines while the electricity variable 

described domestic electricity consumption only. This result was likely to be 

caused by installations of high capacity turbines in regions with larger homes 

and therefore higher domestic electricity consumption. Domestic electricity 

consumption was shown to be insignificant for installations at SG, the SER 

model most likely to identify the influence of the factor on domestic adopters. 

Previous microgeneration adopters have suggested that saving energy and 

protecting against higher fuel costs was a motivating factor for adoption [54]. 

It is therefore likely that a desire to offset electricity use through installation 

of a wind turbine was a factor in individual decisions to adopt to wind turbine, 

however, on the wider sample examined here, the influence of domestic 

electricity consumption could not be determined.  

Previous literature has suggested that microgeneration adopters have 

viewed losing money, if they move house, as a barrier to adoption [54]. 

However, the results of the SER model suggest that wind turbine 

deployment was higher in areas where the percentage of mean annual 

house sales was higher. This result, observed at SG level in the SER 

models, could have been caused by multiple reasons, although it is doubted 

here that the number of house sales in a region had a major influence on an 

individual’s decision to adopt a wind turbine. The underlying cause could be 
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that the house sale variable described other homes in a region without a 

wind turbine that were being bought and sold, while the adopters in the 

region did not sell their homes. This highlights the uncertainty of using the 

house sale variable as a proxy to understand if adopters were more likely to 

stay in their homes after they installed a wind turbine. To determine this 

influence on an adopter’s decision to install a wind turbine, survey work to 

investigate individual motivating factors would be required. However, as 

discussed, this was outside of the scope of this project.  

The final variables in the SER model of geographical area and mean wind 

speed of the region reinforced the conclusion that the rurality of a region was 

an influential factor on wind turbine adoptions patterns. Both factors were 

shown to be significant, with the geographical area of the region being 

significant in all the SER models while mean wind speed was significant in 

the SER models at SG level.  

Lower population density in a region resulted in the region having a larger 

geographical area. Lower population density is likely to result in lower 

housing density, suggesting that each property has a larger estate or more 

rural land is available on which a wind turbine could be installed. With the 

exception of woodland, rural land cover has a lower surface roughness than 

urban land covers. This lower surface roughness in rural areas has a lesser 

effect on wind flow momentum, resulting in a higher mean wind speed in the 

region. The increased deployment of wind turbines in these areas was 

because of adopters wishing to exploit the higher wind resource and having 

sufficient land on which a wind turbine could be installed. These results for 

the wind speed variable at SG level in the SER model support the findings of 

the wind resource regression model, presented in Section 5.2.1. However, at 

LA level, the wind speed variable was shown to be insignificant in the SER 

models.  

In the SER models at LA resolution, only the income and area variables 

were shown to be significant. The reasoning behind this lies in the relative 

geographical sizes and number of residents covered by either the LA or SG 

geographies. LA geographies covered a mean of 160,000 residents with 

Birmingham City Council, the largest LA region, covering over a million 

residents. In comparison, a SG covered a mean of 7,200 residents. The 

demographic variables at LA level were averaged over a much greater 

sample of residents. Therefore, in an LA, it was likely that a greater number 

of residents had demographics that were vastly different from the mean 

demographic value of the LA. In comparison at SG level, the sample of 
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residents was smaller and therefore the distribution of demographics across 

the residents of a single region was likely to be narrower. This was likely to 

be the underlying cause of the lack of significance of most variables in the 

LA model. While this was a limitation of the model, the significance of 

income and area variables at LA showed that the rurality of the region was 

the most influential factor on wind turbine adoptions  

Evidenced by the significance of the variables for income, agricultural 

industry, gas central heating, geographical area and wind resource in the 

SER model at SG, these results support the conclusion that wind turbines 

were more likely to be installed in rural areas. The major conclusion of the 

SER model is therefore the influence of rurality on wind turbine adoptions in 

Great Britain. While this is an intuitive conclusion, no previous literature has 

proved this and therefore these findings are considered novel. 

While the regression coefficients of the SER model explained the influence 

of each variable on wind turbine adoptions, the development of the SER 

model was also motivated to understand if the inclusion of additional 

variables in the SER model could explain more of the variance in wind 

turbine adoptions patterns. To analyse this, the apparent fits from the SER 

models were examined. The scatter plots of predicted against actual 

installed capacity or installations from each SER regression model are 

presented in Figure 38 and Figure 39. 

 

Figure 38 — Scatter of log predicted vs actual installed capacity from SER 
model, where the line represents one to one relationship. Left: LA level. 
Right: SG level 
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Figure 39 — Scatter of log predicted vs actual installations from SER model, 
where the line represents one to one relationship. Left: LA level. Right: 
SG level 

The most immediate conclusion that can be drawn from the apparent fits of 

the SER model was the increase of the R2 values from those achieved in 

either the demographic or wind resource regression models, peaking at 

0.624 in the SER model for installations at LA level. An improvement in the 

R2 values demonstrated that a larger proportion of the variance in wind 

turbine adoption patterns was explained by the additional variables included 

in the SER model. Therefore, inclusion of the additional variables in the SER 

model presented was justified.  

The scatter plots of the SER model’s predicted values differ from those of 

the demographic model. Where the demographic models appeared to be 

limited in accurately predicting the number of turbines in regions of high 

deployment, this limitation appears to be overcome, in part, in the SER 

model. In the SER models at LA, this was particularly apparent as the 

scatter of these models appeared linear to a greater degree than the 

corresponding scatter plots of the demographic models results. This 

highlights that the inclusion of variables, which described the rurality of a 

region, in the SER model improved the accuracy of the predicted value of 

both the installed capacity and wind turbine installations at LA. The 

difference between these models at LA was caused by the different adopters 

examined in either the installed capacity or installation data. Regions with 

higher installed capacity were likely to have a higher number of non-

domestic wind turbine projects. In these projects, it was likely that the 

adoption decision was made by multiple individuals and therefore, the 

motivating factors of such an adoption may not be captured in the variables 

of the SER model, hence the lower R2 values. 

Factors not included in the SER model were also likely to contribute to the 

scatters at SG. For the SER model examining installed capacity at SG level, 
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the scatter was similar to that of the demographic model, albeit with a wider 

range of predicted values. This wider range of predicted values was due to 

inclusion of the rural factors in the SER model. However, there still appeared 

to be factors that limited the accuracy of the predicted installed capacity from 

the SER model. This was likely to stem from the different factors that were 

influential for commercial projects, rather than domestic projects. For the 

SER models examining installations, the scatter was improved from the 

demographic model. The R2 values of these SER models were almost 

double the R2 value of the corresponding demographic model, further 

proving that inclusion of the additional variables to describe the influence on 

domestic adopters was justified. However, there was still a large degree of 

variance which was unexplained in the SER model. While some of the 

unexplained variance in wind turbine adoption patterns may be the result of 

the subjective judgement of adopters, it is envisaged that variance due to the 

subjective judgement of adopters would not account for such a high degree 

of unexplained variance.  

Previous literature has identified that a spatial dependency [42] between 

regions has influenced PV adoptions in Great Britain and this observed 

spatial dependency could be the result of a peer effect influencing PV 

adopters [42]. Visible neighbouring PV systems can influence others in the 

neighbourhood to adopt a PV system [43]. It is suggested here that these 

peer effects may be influential on wind turbine adopters in Great Britain, as 

wind turbines are considerably more visible than PV systems. To determine 

if the peer effects may be present in the wind turbine market, the residuals of 

the SER model were examined to identify if any spatial dependency could be 

observed.  

Using the DW test for autocorrelation, it was proved that a spatial 

dependency could be observed in the residuals of the SER models, 

indicating that there was a spatial element which influenced adoption 

patterns and was not considered in the SER model [42]. It is suggested here 

that this spatial dependency was, in part, as a result of peer effects between 

adopters in neighbourhoods. Therefore, a peer effects model was developed 

in this research to examine this influence in a number of case study areas 

and this model is presented in Chapter 6.  

 Model residuals  

A qualitative analysis assessed the residuals of the SER model to identify in 

which areas of Great Britain, the SER models were able to accurately 

estimate wind turbine deployment. The residual term of each region, εi, in the 
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model, as discussed in Section 5.1, was calculated as the difference 

between the predicted value of wind turbine deployment, ŷi, from the SER 

model and the actual value of wind turbine deployment, yi; 

𝜀 = 𝑦 −  𝑦ො 

Equation 50 

The residuals of each SER model are presented in Figure 40 and Figure 41. 

In these figures, negative residuals were coloured in blue with the darker 

blue indicating that a region had a lower negative residual. A negative 

residual value demonstrates that the SER model predicted that greater wind 

turbine deployment was possible than has actually occurred. The regions 

coloured in red have positive residuals with a darker red showing a higher 

positive residual value. A positive residual value was the result of the level of 

wind turbine deployment being above the prediction from the SER model. 

Additionally, some regions were coloured grey, which showed that the 

residual value was closer to zero. In Figure 38, regions coloured grey had a 

residual value between -9 kW and 10 kW while in Figure 39, regions 

coloured grey had a residual value between -0.9 and 1 installation.  

The majority of regions in the SER models at either LA or SG had similar 

residuals, in terms of the sign of the residual. However, in some areas, 

particularly the Scottish Highlands, Scottish Borders and Mid Wales, the 

residuals of the SER model at SG level differed from the residuals in the 

SER models at LA. Each SER model estimated different regression 

coefficients for each independent variable and it was these differing 

regression coefficients which resulted in the differing predicted values and 

residuals at either SG or LA level. Despite these differences in the predicted 

values from each SER model, there were some areas where the residuals 

were similar in all the SER models. These areas, typically, had negative 

residuals, coloured blue in Figure 40 and Figure 41, demonstrating that there 

may have been factors which impeded wind turbine deployment in these 

areas.  
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Figure 40 — Residuals of the SER models examining installed capacity. Left: 
LA level. Right: SG level 

 

Figure 41 — Residuals of the SER models examining installations. Left: LA 
level. Right: SG level 

One of the factors that may have impeded wind turbine deployment in Great 

Britain was the presence of National Parks and other regions where the 

development of wind turbine projects was restricted. Wind turbine 
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installations are not prohibited within these environmentally protected areas, 

however, development of any kind must conserve the landscape and scenic 

beauty of the area [185]. There are wind turbine installations within these 

environmentally protected areas, as planning permission within the National 

Parks is controlled by each National Park Authority [185]. The location of the 

National Parks in Great Britain can be seen in Figure 42 which are shown in 

conjunction with both the residuals from the SER model for installations at 

SG and the number of wind turbine installations at SG level. Despite these 

installations in environmentally protected areas, the SER model over-

predicted the number of installations within these regions, which resulted in 

the negative residuals. These areas were predicted to have higher levels of 

deployment, as they were rural areas with higher wind resource. The 

presence of these environmentally protected areas has therefore impeded 

the theoretical wind deployment, as number of wind turbine projects 

predicted in the SER model were unlikely to gain the requisite planning 

permission. While it is not suggested here that planning restrictions in these 

areas should be relaxed, it is merely a qualitative explanation of the SER 

residuals. 

 

Figure 42 — Left: location of National Parks in Great Britain, middle: residuals 
of SER model for installations at SG and right: wind turbine installations 
at SG 

Some areas of low deployment could also be the result of restrictions in the 

planning process for small scale wind turbines. Planning permission for wind 

turbines is not required if they meet a set of criteria, which would classify the 
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wind turbine as a permitted development [186]. However, the set of criteria 

are exceptionally restrictive stating that a permitted wind turbine must not 

have a swept area above 3.8 m2 and the tip height of the turbine must not 

exceed 15 m [186]. For a wind turbine to have a swept area of less than    

3.8 m2, the turbine blades must not exceed a metre in length. In comparison, 

the 5 kW wind turbine, presented in Chapter 5, has a swept area of 24 m2 

[151]. It is therefore likely that the majority of wind turbines installed in Great 

Britain would require planning permission. The planning process can be 

burdensome for small wind turbine projects as adopters could be requested 

to produce costly studies, more typical of larger scale turbines [167]. Such 

requests increase the costs of the project and, coupled with any delays in 

the planning decisions, risk missing key project dates, which can result in 

small wind turbine projects running over budget and potentially being 

scrapped [167]. While it was not possible to determine where such planning 

issues have previously impeded deployment, it was possible that some 

areas of Great Britain have lower wind turbine deployment as a result.  

In addition to planning constraints, wind turbine deployment could be 

impeded by the proximity of aviation infrastructure, such as airports or 

Ministry of Defence (MoD) sites. Any site that is classified as ‘safeguarded 

land’ cannot be used for a wind turbine installation [187]. While the definition 

of safeguarded land is broad, it is typically considered as land surrounding 

an airport and its associated radar equipment [187]. For the MoD sites, it is 

likely that any land surrounding an MoD site would be restricted, however, 

this information was not publicly available. Low levels of deployment in 

regions, which have been identified by the SER model as suitable for greater 

deployment, could be the result of safeguarding land restrictions.  

Lower deployment in areas could simply be because of individual’s 

subjective views on wind turbines. Deployment of microgeneration 

technologies requires active engagement by those considering adoption 

[118]. 75 % of survey respondents when asked who was responsible to 

stimulate the uptake of microgeneration suggested central government 

compared to only 8 % suggesting this uptake was the responsibility of 

individuals [188]. While the FIT has been introduced by central government 

to stimulate uptake, this is an incentive based scheme which requires 

individual engagement to achieve greater deployment. It is likely that wind 

turbine deployment in some regions was lower than expected due to lack of 

engagement or desire by residents to install a wind turbine.  
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Greater penetration of the PV market due to the FIT may have limited wind 

turbine deployment. The number of PV systems installed in Great Britain 

was over 750,000 by December 2016 [12] and were installed in the majority 

of regions in Great Britain [41]. It is likely that in regions which would be 

suitable for a wind turbine installation, deployment may have been impeded 

by the deployment of PV systems in the region. It is unlikely that a domestic 

adopter would have sufficient capital for both a wind turbine and a PV 

installation and therefore if their neighbours had installed a PV system, they 

may be more inclined to opt for a PV rather than wind turbine installation 

[43]. Therefore, it is suggested here that the growth of the PV market under 

the FIT may have impeded wind turbine deployment in some regions.  

Even in regions where there are individuals with sufficient desire and capital 

to consider adopting a wind turbine, there is the possibility of local opposition 

which may lead to a planning application being rejected. Residents opposed 

to local wind turbine developments are more likely to engage in the planning 

process [189] and these opponents are likely to cite various issues 

surrounding the turbine construction and operation to oppose the 

development [190]. It is therefore likely that if neighbours have a negative 

view of wind turbines, they will raise these objections during the planning 

process, resulting in a wind turbine deployment being delayed during the 

planning process. which could lead to the projects being scrapped.  

Within the SER model residuals, there were also areas of positive residuals 

and, particularly from the SER model at SG, these areas of positive 

residuals appeared to be geographically clustered. These “clusters” of higher 

than expected installations and installed capacity seemed to occur in 

numerous areas around Great Britain. This clustering appears to be 

prevalent in Cornwall, East Anglia, North East Scotland and Southwest 

Wales. The underlying cause of these higher than predicted installations 

could be the result of multiple factors. It is possible the presence of a local 

marketing campaigns promoting wind turbine deployment, local councils who 

were particularly favourable towards wind turbine installations or these areas 

having numerous residents who were interested and motivated to install a 

wind turbine. Additionally, these regions of high levels of deployment could 

be the result of the peer effects from wind turbines installed in a 

neighbourhood. The influence of the peer effects in wind turbine deployment 

and clustering of installations will be examined in Chapter 6.  
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5.3 Conclusions  

A series of regression models were developed to determine the influence of 

several factors on wind turbine adoptions in Great Britain. These models 

were developed as no previous literature had examined the influencing 

factors on spatial wind turbine adoption patterns in Great Britain. 

Additionally, by understanding the factors that have influenced wind turbine 

adoption patterns, it will be possible to identify a number of policy strategies 

which could be introduced to promote future deployment.  

Initially, a regression model examining the influence of mean wind speed of 

a region at a hub height of 15 m was developed. Mean wind speed of a 

region was shown to have a significant positive influence on wind turbine 

adoptions. The influence of available wind resource showed that adopters of 

wind turbines have, in part, decided to adopt based upon the prospect of 

financial returns being available from a wind turbine. These financial returns 

increase as the electrical output of the wind turbine, due to higher wind 

resource, increases. The results of this regression model suggested that the 

financial motivation to adopt a wind turbine was significant and thus turbines 

were installed in areas where they were financially and technical viable. 

Using the coefficient of determination values from each model, it was shown 

that the mean wind speed of a region could explain, at most, around 35 % of 

the variance in wind turbine adoption patterns. This result showed that while 

wind resource was significant, there was still a substantial degree of 

variance in the adoption patterns left unexplained.  

In addition, an examination of the minimum mean wind speed required for 

deployment was also undertaken. Using a multi-faceted approach which 

examined the mean wind speed in regions with wind turbine installations and 

the estimated payback period of an example turbine, a mean wind speed of 

4.5 ms−1 was identified as the minimum wind speed required for deployment. 

90 % of all SGs with at least a single wind turbine installation had an mean 

wind speed of 4.5 ms−1 or above. Additionally, at 4.5 ms−1 and using current 

market prices for electricity and FIT subsidy level, a 5 kW wind turbine would 

pay back in 10 years and 4 months, marginally inside the 11 years, 

previously cited by wind turbine adopters as a suitable payback period [108].  

The development of the additional regression models in this research was 

motivated by a desire to explain a greater degree of the variance in wind 

turbine adoption patterns. Previous literature has identified that an 

individual’s age, income, level of education, house type and homeownership 
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has influenced whether they adopt a microgeneration technology [42, 56, 

108, 110-118]. While these factors have been examined for other 

microgeneration technologies, these factors have not been examined for 

wind turbine adoptions in Great Britain. The results of this model showed 

that wind turbine adopters in Great Britain are likely to be older, have a 

degree-level qualifications and live in a detached home. It was also shown 

that adopters are likely to live in a region which has a lower than mean 

weekly income, which suggests that the regions in which wind turbine were 

installed are likely to be rural areas. In rural areas, mean income is typically 

lower than the national average, which was the underlying cause of the 

significant negative regression coefficient observed in the demographic 

model. However, the positive residuals seen in some of the rural regions 

could be the result of weathy land owners, who own the farms, having 

sufficient capital to afford a wind turbine installation. While these land 

owners have sufficient capital, their workers, who live in the local area, earn 

below the national avearge weekly wage which caused the lower avvearge 

weekly income in these SGs. The coefficient of determination values of the 

demographic models were similar in magnitude to those from the wind 

regression models. This showed that the demographic factors can explain a 

similar degree of variance in wind turbine adoption patterns as the mean 

wind speed. However, there was still a large degree of variance which was 

unexplained.  

A final regression model, known as the SER model, was developed to 

incorporate some of the demographic factors, the mean wind speed and 

other suggested variables and examine their influence on wind turbine 

adoptions in Great Britain. The results of the model suggest wind turbine 

adoptions were installed in rural areas, where there was a greater availability 

of land and wind resource. This was evidenced by the significance of larger 

geographical area, higher mean wind speed, higher levels of agricultural 

industry, lower income and lower levels of gas central heating in a region in 

the SER model. While the factors of education and house type weren’t 

significant in the SER model, this was due to the presence of additional 

variables in the SER models, which were better able to explain areas of 

higher deployment. The education and house type of an adopter were likely 

to therefore have a positive influence on individual wind turbine adoption 

decisions, but in terms of areas of higher deployment, the other factors in the 

SER model offered a better explanation of the variance in the adoption 

patterns. The highest coefficient of determination from any of the SER 

models was 0.624, almost twice that of the preceding two regression 
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models. These results showed that inclusion of the additional variables could 

better explain the variance in wind turbine adoptions of Great Britain. 

However, there was still variance in the wind turbine adoption patterns which 

was unexplained. It was theorised here that factors outside of those 

examined in the SER model could explain this additional variance. Based 

upon the presence of autocorrelation in the residuals of each SER model, it 

was suggested that the peer effects of previously installed neighbouring 

wind turbines may have had an influence on wind turbine adoption patterns.  

The overall conclusion of the analysis presented in this chapter is that wind 

turbine adoptions were more likely to occur in rural areas, where the 

availability of land and wind resource was greater. Wind turbine adopters in 

Great Britain were likely to be older, have a degree-level qualification, live in 

a detached home, work in the agricultural industry or live in an area where 

the level of agricultural industry was high. Adopters were also likely to live in 

a region where the mean income was below the national average. While 

these conclusions are seemingly intuitive, the results and conclusions here 

have not previously been presented in literature, highlighting the novelty and 

significance of this work.  

This research was developed to understand how to promote future wind 

turbine deployment to meet the levels of deployment required for the societal 

pathway to deliver the transition to a low-carbon electricity market. By 

understanding the factors which influenced previous wind turbine adopters, it 

may be possible to identify how to promote deployment through a number of 

policy strategies. The results of the SER models also indicate that there are 

regions in Great Britain where there is potential for further deployment. The 

regions of the Highlands surrounding Inverness, the Scottish Borders north 

of Newcastle, southern Cumbria, the regions surrounding Lincoln, the 

regions around Northampton and Cambridge and the south coast of England 

appear to be the locations with the greatest potential for future deployment 

as current wind turbine deployment in these regions is currently lower than 

predicted by the SER models. However, the adoption of microgeneration 

technologies has been shown to have both spatial and temporal 

characteristics [41]. To develop policy strategies that will effectively promote 

deployment in these regions, both characteristics must be understood. While 

the model presented in this chapter examined the spatial characteristics of 

wind turbine adoption, the factors that influence the temporal adoption 

patterns must also be analysed. The spatial dependency observed in the 

residuals of the SER model suggests that the peer effect of wind turbines 
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installed in a neighbourhood may influence an individual’s decision to adopt. 

An examination of the factors that influence the temporal wind turbine 

patterns is presented in Chapter 6. 
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Chapter 6 – Peer effects modelling of temporal wind turbine 
adoption patterns 

While the Socio-Economic and Resource (SER) model of Chapter 5 

examined the influence of a number of factors on spatial wind turbine 

adoption patterns in Great Britain, the influence of the Feed-in Tariff (FIT) 

was not included in that research. The influence of the FIT on wind turbine 

adoptions in Great Britain has not previously been analysed either in this 

project or in other studies. A previous study has suggested that the 

introduction of a FIT policy caused greater wind turbine deployment in both 

Germany and Spain [191]. It is therefore likely that the availability of 

incentives for energy generation will have been a motivating factor for wind 

turbine adopters. This assertion was also supported by the findings of 

previous literature which showed that adopters ranked financial incentives 

highly, as a motivating factor for their adoption of a microgeneration 

technology [54, 55]. However, changes to the subsidy level available under 

the FIT have occurred since 2012 [34] and it is the influence of these 

changes on temporal adoption patterns which was of particular interest in 

this research.  

The temporal nature of changes to the FIT subsidy level could not be 

included in the SER model and therefore must be examined in an alternative 

model. The presence of autocorrelation in the residuals of the SER model 

demonstrated that a spatial dependency existed between the regions of 

Great Britain and the adopters within these regions. This observed spatial 

dependency may be indicative of the influence which visible wind turbines, 

previously installed in a neighbourhood, had on a prospective adopter’s 

decision to adopt a wind turbine. The visibility of microgeneration 

technologies has been cited by previous microgeneration adopters as a 

factor that raised their interest in installing a microgeneration technology 

[55]. Additionally, the visibility of PV systems has been shown to have a 

positive peer effect on neighbours, influencing them to adopt a PV system 

[43, 45-47]. Any peer effect from neighbouring turbines in a cluster would be 

considered an endogenous peer effect [43, 45]. The spatial dependency 

exhibited in the SER model results and the greater visibility of wind turbines 

demonstrate that it was important to investigate in this research if such a 

peer effect was present in the British wind turbine market. 
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To examine the temporal influence of both the changes to the FIT subsidy 

level and wind turbines installed in a neighbourhood on an adoption 

decision, a peer effects model has been developed. The peer effects model 

was applied to a number of case study areas of Great Britain, which were 

shown to have a greater number of wind turbine installations than predicted 

by the SER model. In these areas where the number of wind turbine 

installations was high, it is theorised here that the influence of endogenous 

peer effects from neighbouring turbines and influence of the FIT subsidy 

changes was most likely to be observed. 

These areas of high levels of wind turbine deployment were identified by 

determining the difference between the actual wind turbine deployment and 

the predicted level of wind turbine deployment estimated using the SER 

model. The difference between these two variables is known as the residual 

value of a region and was positive when actual deployment was greater than 

predicted by the SER model. Using the residuals of the SER model on the 

statistical geography (SG) resolution, it was possible to identify a number of 

case study areas or clusters for analysis.  

This chapter will present the statistical method used to identify clusters of 

regions across Great Britain where the peer effects model was applied. The 

peer effects model will be presented in Section 6.2. The peer effects 

observed in this model were then analysed to determine if the factors had a 

significant influence on temporal wind turbine adoption patterns in these 

clusters.  

6.1 Methodology and results  

The peer effects model developed during this work was the culmination of 

multiple pre-processing steps, as seen in Figure 43. Each of these pre-

processing steps took data from previous research, both the SER residuals 

from Chapter 5 and the wind speed estimation data from Chapter 4. 

Additionally, data was also taken from a number of publicly available 

datasets. Each pre-processing step provided an input to the peer effects 

model. In the development of the peer effects model, there were three major 

strands of work; cluster identification, seen in the first pre-processing box of 

Figure 43; cluster characterisation and calculation of the number of potential 

adopters in a region, described in the second pre-processing box of Figure 

43 and finally, development of the peer effects model, including pre-

processing of the model variables, seen in the final two pre-processing 

boxes and the modelling box of Figure 43. In this chapter, the cluster 
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identification methodology and its results will be presented in Section 6.1.1, 

cluster characterisation methodology and results will be presented in Section 

6.1.3, and the peer effects model development and results will be presented 

in Sections 6.1.4 and 6.2 and discussed in Section 6.3.  

 

Figure 43 — Process flowchart for peer effects modelling 

The peer effects model developed and presented in this chapter was 

undertaken in R, version 3.2.3 [172]. Within R, the “lmtest” [173] and “plm” 

[192] packages were utilised to provide the statistical packages and 

functions required to conduct the peer effects model. The identification of the 

clusters was conducted in R using the “spdep” package [193] and the k-

nearest neighbour analysis was conducted in SPSS v 21.0 [194]. 

Additionally, some data processing was conducted using MATLAB R2013b 

[175] under an academic license. Any maps presented in this chapter were 

created in MATLAB and visualised in ArcMap 10.2.2 [176]. 

 Clusters of installations 

To identify any clusters of installations in the spatial adoption patterns, 

analysis of the installation data was undertaken. However, analysis of the 

raw installation numbers could identify clusters of installations which arose 

as a result of the prevalence of favourable socio-economic or environmental 

factors. To mitigate this, the residuals of the Socio-Economic and Resource 

(SER) model, presented in Chapter 5, were utilised.  
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Each region, at both SG resolutions, examined in the SER model had a 

residual value. Regions in which the SER model did not explain the high 

number of installed wind turbines and therefore had a positive residual 

value, indicated that additional factors may have influenced wind turbine 

deployment in these areas. It was within a selected number of these regions 

that the influence of the peer effects was examined. 

The residuals from the SER model which examined wind turbine installation 

numbers on the SG level were selected to identify clusters. Given the likely 

visibility radius of a wind turbine of up to 12.5 km, considered in this project, 

the use of local authority (LA) areas in the peer effects model was 

considered insufficient. For the LAs with a large geographical area, this 

maximum visibility radius may not extend past their boundaries and 

therefore the analysis would not examine any spatial dependency between 

regions and the adopters of the regions. However, examination of the spatial 

dependency could be achieved by analysing the influence of the visual peer 

effects of neighbouring wind turbines on subsequent adoptions in clusters of 

multiple geographically smaller SG regions. As discussed, 63 % of wind 

turbine installations were for domestic use, compared to only 9 % of the total 

installed capacity installed for domestic use. Therefore, the ability to analyse 

the influence of each factor on domestic adopters motivated the choice of 

the SER residuals in this research, which are presented in Figure 44. 
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Figure 44 — Residuals of the SER model for installations at SG 

 Cluster identification methodology  

To identify clusters of SG regions, suitable for analysis in the peer effects 

model, the residual value of each region must be analysed to determine if it 

was statistically significant or merely a misspecification within the SER 

model. Using the Local Moran’s I metric [195], it was possible to analyse the 

significance of the residuals in each region and to identify clusters of 

statistically significant areas of wind turbine installations. This technique was 

also used to identify clusters in PV adoption patterns within Great Britain by 

Snape [41]. Local Moran’s I, Ii, was used to determine the significance of a 

region’s residual value by examining the value of the residual of the region, 

εi, in comparison with the mean residual value of the neighbouring regions, 𝜀;̅ 

𝐼 =  
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Equation 51 

where, εj,  was the residual value of the neighbouring region, n, was the 

number of neighbours and, wij, was the spatial weight matrix (SWM), the 

influence of each neighbouring region, j, on the selected region, i. Choice of 

the size of the SWM was crucial in identifying the clusters. Given that the 
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aim of this clustering analysis was to identify areas in which to examine the 

influence of the visibility of a neighbouring turbine, it was judicious to adopt 

the distances of the likely visibility radii of a wind turbine for the SWM.  

It has been shown that a wind turbine with a hub height of 45 m can be 

identified by observers up to 10 km away from the turbine, depending on the 

atmospheric conditions [127]. To account for the likely hub heights of 

turbines examined within this research, four different visibility radii were 

utilised. Initially, radii of 5 km and 7.5 km were selected. These distances 

account for the likely lower hub heights of smaller capacity turbines, which 

may not be visible 10 km away. The radii of 10 km and 12.5 km were also 

included. These distances would account for larger capacity turbines with 

hub heights around 50 m, turbines which were sited in visibly advantageous 

locations such as at the crest of a hill, and for those turbines which were 

viewed regularly during journeys by neighbours who resided outside of the 

visibility radii. The influence on neighbours who viewed a turbine during a 

journey may extend over greater distances than the suggested visibility radii. 

However, it is argued here that the influence of such a wind turbine will be 

less for neighbours who reside outside the visibility radii. Due to the likely 

variation in wind conditions between the turbine site and these neighbour’s 

locations, the viewed wind turbine is less likely to demonstrate technical 

feasibility at the neighbour’s property. Four SWMs with the maximum 

distance of 5 km, 7.5 km, 10 km and 12.5 km were therefore implemented in 

this work to account for the subjective visibility of a wind turbine. 

The SWMs were created during this research using a hierarchical 

combination of spatial contiguity methods. Initially, using the centre of each 

region, all SG regions within each selected distance were identified as 

neighbours to the selected region. If the selected region was geographically 

large, this distance method was insufficient as the centre of neighbouring 

regions would be farther than the maximum distance of the SWM. In these 

cases, all neighbours, j, which shared any border with the selected region, i, 

known as queen’s contiguity [196] and seen in Figure 45, were selected. 

Once all appropriate neighbours had been identified, the influence of each 

neighbour was weighted as a function of the total number of neighbours 

identified in the SWM. 
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Figure 45 — Graphical representation of neighbour selection using queen's 
contiguity 

Implementation of queen’s contiguity allowed all regions of Great Britain to 

be examined using the Local Moran’s I metric. While use of queen’s 

contiguity violated the visibility assumptions by including regions which were 

further than the largest visibility radius, it allowed more remote regions to be 

included in the SWMs. These regions must be included in the analysis as 

they are more likely to be suitable for wind turbine installations, based upon 

the findings of the SER model. Queen’s contiguity was used to selected 

neighbours in around 10 % of regions at 5 km distance and 1 % of regions at 

12.5 km distance.  

The Local Moran’s I technique allowed differing types of outlier regions to be 

identified, based on the residual value of the region and the local mean 

residual value of its neighbours [41, 195]. There were four types of outlier 

regions which were identified, with outlier regions being classified as either 

“High-High”, “High-Low”, “Low-High” and “Low-Low” [195]. As seen in Figure 

46, these classifications were derived from the value of a region’s residual 

and the local residual values of its neighbours. Therefore, a region classified 

as High-High had a residual value which was significantly higher than the 

local mean derived from its neighbours, which was also considered high. 

The local mean residual value of neighbouring regions was considered high 

when it was significantly higher than an expected value for the whole 

sample.  
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Figure 46 — Representation of classifications of outlier regions under Local 
Moran's I technique 

The regions which were classified as either “High-High” or “High-Low” were 

the most suitable outlier types for this analysis. In these regions, the residual 

value was statistically significant and higher than the local mean of its 

neighbours. It is theorised here that in these regions, the influence of the 

endogenous peer effect and the FIT degression could be best examined due 

to the greater number of wind turbine adoption decisions which could be 

analysed.  

While the Local Moran’s I identified statistically significant areas, it did not 

identify geographical clusters of statistically significant areas. A region could 

be identified as statistically significant under the Local Moran’s I test due to a 

lack of installations in neighbouring regions. This region would be unsuitable 

for the peer effects model, due to the lack of installations in neighbouring 

regions from which a visual peer effect may be observed. A further method 

was therefore required to identify the geographical clustering of suitable 

outlier regions. Identification of geographical clusters of significant areas was 

conducted using a cluster analysis technique. The k-nearest neighbour 

method allowed the nearest neighbour of a region to be identified and 

classified into clusters [197]. A similar technique has been applied to identify 

annual demand profiles from UK electricity demand data [198] and is a 

commonly used method to identify clusters in a wide range of topics, 

including crime [199] and disease data [200]. 

By minimising the difference in a selected variable, the k-nearest method 

identified the regions which were most similar in this selected variable. In 
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this research’s cluster analysis, the geographical co-ordinate of the centre 

point of each region was the selected variable and therefore the method 

identified regions whose Euclidean distances from each other was smallest 

and therefore were geographically clustered. In this work, the clusters were 

formed of multiple regions. The method initially identified the two outlier 

regions closest to each other and calculated the theoretical centre point of 

these regions. Other geographically close regions were then included in this 

cluster and a new centre point calculated as each region was added to the 

cluster. The process ended when all of the outlier regions were assigned into 

a cluster. This process was run for different numbers of total clusters, 

ranging from 5 clusters, up to 16 clusters. Multiple clusters solutions were 

required to ensure that smaller clusters were not included in larger clusters, 

even if they were geographically isolated from the larger clusters.  

Each cluster solution was then analysed visually to determine its suitability. 

The visual classification was also required to exclude significant regions 

which were isolated and unsuitable for analysis but were grouped to nearby 

clusters using the cluster analysis technique.  

For each cluster identified, a surrounding area to the cluster was also 

selected. In the surrounding areas of the clusters, deployment was typically 

lower than the cluster areas but were selected to determine if a peer effect 

from the cluster areas could be observed in these surrounding areas. 

Selection of the surrounding areas was conducted using queen’s contiguity 

only and all the regions which shared a border with any of the cluster areas 

were selected.  

 Clusters  

The Local Moran’s I technique was implemented using four distances of       

5 km, 7.5 km, 10 km and 12.5 km to identify any statistical significant regions 

at each of these distances. The number of outlier regions identified at each 

distance is presented in Table 19. 

Table 19 — Number of outlier regions identified using the Local Moran's I at 
the distances of 5 km, 7.5 km, 10 km and 12.5 km 

 Distance  
Region  
Outlier Type 

5 km 7.5 km 10 km 12.5 km 

High-High 104 97 91 109 
Low-Low 8 7 5 4 
High-Low 3 7 7 4 
Low-High 10 12 12 9 
Not Significant 8,355 8,357 8,365 8,354 
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The results in Table 19 show that only around 1.5 % of all the regions of 

Great Britain were considered significant outliers at any of the distances 

utilised in the research. The majority of these outlier types were classified as 

High-High, suggesting the majority of the outlier regions had high levels of 

wind turbine deployment, which was under predicted by the SER model. The 

locations of the outlier regions identified at each distance are presented in 

Figure 47 and show that some regions were consistently identified as 

statistically significant at all of the distances considered.  

 

Figure 47 — Location of outlier regions identified under Local Moran's I test 
at, top left: 5 km, top right: 7.5 km, bottom left: 10 km, bottom right: 12.5 
km 
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To identify the clusters, these outlier regions at all distances were combined 

so that any region identified as significant at any distance was considered 

during the cluster identification. All of the outlier regions from all distances 

are presented in Figure 48 with the residuals from the SER model for 

installations at the SG resolution, from which they were identified.  

 

Figure 48 — Left: SER residuals for installations at SG. Right: Outlier regions 
at all distances identified under the Local Moran's I test 

Comparison of all of the outlier regions with the residuals from which they 

were derived, highlighted that the majority of High-High or High-Low outliers 

were regions with high residual values, estimated to have at least 15 more 

wind turbines than predicted by the SER model.  

In total, 12 clusters were identified in this analysis. The locations of the 12 

clusters are presented in Figure 49. For each of the clusters, a surrounding 

area was also selected to assess if any diffusion of the wind turbine 

innovation from the cluster areas could be observed in the surrounding 

areas. The surrounding area of each cluster is presented in Figure 50. 
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Figure 49 — Outlier regions at all distances identified under the Local Moran's 
I and the 12 clusters derived from the High-High and High-Low outlier 
types 

 

Figure 50 — The 12 clusters and the surrounding areas of each cluster 

The number of regions in each cluster and its surrounding area is detailed in 

Table 20.  
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Table 20 — Number of regions in each cluster 

Cluster 
number 

Cluster name Number of 
regions in 
cluster area 

Number of 
regions in 
surrounding 
area 

Total number of 
regions in 
cluster and 
surrounding 
area 

1 East Anglia 30 56 86 
2 Pennines 24 93 117 
3 Cornwall 17 71 88 

4 Aberdeen 17 88 105 
5 East Yorkshire 10 42 52 
6 Scottish Borders 8 104 112 
7 Hebrides 7 18 25 
8 South Wales 7 26 33 
9 Orkney Islands 6 9 15 
10 Shetland Islands 6 1 7 
11 Northumberland 4 38 42 

12 Cumbria 3 16 19 

 

The location of the clusters identified were typically coastal or mountainous 

areas. Additionally, the majority of the clusters were away from major 

conurbations. The locations of the clusters can therefore be considered as 

rural and are likely to have a high wind resource, two factors which 

influenced spatial adoption patterns. These clusters must be characterised 

further to determine the number of potential adopters within each cluster.  

 Potential adopters and cluster characteristics 

Once the clusters and surrounding area had been identified, the number of 

potential adopters in each region selected must be estimated. As discussed 

in Chapter 3, potential adopters are defined as individuals in a region who 

have the possibility to install a wind turbine. This metric was introduced to 

account for factors that would prevent a wind turbine installation, and is 

based on an approach previously published by Richter [43]. When utilised in 

relation to PV adoptions, the number of potential adopters was calculated as 

the number of owner-occupied homes in a region [43]. For wind turbine 

adoptions, it was likely that additional factors would limit wind deployment. 

The demographic model of Chapter 5 identified that house-type, specifically 

the prevalence of detached homes in a region was a significant factor which 

affected deployment. Therefore, the number of owner-occupied detached 

homes in a region formed the basis of the potential adopter metric for this 

research. This data was extracted from cross-sectional data of the 2011 

census, which provided the number of homes in each region which were 

both detached and owner-occupied [161].  
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The influence of wind resource must also be considered in the calculation of 

the potential adopter metric. The results of Chapter 5 have shown that wind 

turbine deployment in Great Britain requires a minimum mean wind speed of 

4.5 ms−1. Inclusion of this wind resource metric as part of the potential 

adopter calculation was therefore required to account for this factor. BLS 

NCIC wind speed estimates from the research in Chapter 4, were produced 

for each 0.01 km2 of the cluster regions. From these wind speed estimates 

across each region in the clusters, the percentage of land area in each 

cluster which had an mean wind speed of 4.5 ms−1 or above was calculated. 

Using this percentage, the potential adopter metric was scaled to account for 

the influence of wind resource on wind turbine deployment.  

Finally, an estimation of the likelihood of planning permission being granted 

to a wind turbine was also included in the potential adopter metric. As 

discussed in Chapter 5, it is likely that the majority of wind turbines were 

subject to planning permission. The planning metric included in this research 

was composed of two parts; the percentage land area of a region covered by 

a restricted planning area and the planning statistics of the local council. The 

percentage land coverage of environmentally restricted planning area, such 

as National Parks and Areas of Outstanding Natural Beauty, was calculated 

by overlaying the location of these environmentally restricted planning areas 

for each region. While planning restrictions apply in these areas, it was 

possible to gain planning consent for a wind turbine installation from the 

relevant body, hence the inclusion of planning statistics from the relevant 

local authorities.  

The local authority planning metric was calculated as the number of large 

scale onshore wind energy projects which have been approved, as a 

percentage of all onshore wind energy projects seeking approval, by the 

relevant local council. This data was selected to approximate the apparent 

support for large scale wind energy projects in the local council. The 

planning data was extracted from the Renewable Energy Planning Database 

(REPD) published by the UK Government for all renewable energy planning 

applications up to January 2017 [201]. While the number of planning 

rejections for utility scale wind turbines by a local authority may be 

influenced by factors others than council support, inclusion of the planning 

metric was important to calculate a more accurate potential adopter metric.  

These factors were then combined to approximate the likely planning 

constraints of a region and this planning constraint metric was then utilised 

to calculate the number of potential adopters in each region, PAi; 
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𝑃𝐴 =  𝑂𝐷  ×  𝑊𝑅  ×  (𝑃𝐶  ×  𝑃𝑆) 

Equation 52 

where ODi was the number of owner-occupied detached homes in a region, 

WRi was the fraction of land area in each region with sufficient mean wind 

speed, PCi was the fraction of land area in the region not covered by an 

environmentally sensitive region and PSi was the fraction of utility-scale wind 

turbines which gained planning permissions from the local council.  

The introduction of the potential adopter metric was a vital part of the peer 

effects methodology. Without a potential adopter metric, it may not be 

possible to identify any peer effects as the model may examine areas with 

only a small number of potential adopters and therefore it would be unlikely 

to observe any peer effect. With the inclusion of the potential adopter metric, 

the peer effects model was able to efficiently estimate the temporal influence 

of neighbouring visible wind turbines and degression of the FIT subsidy rate 

on adoption rates in the clusters.  

 Cluster characteristics  

The total number of potential adopters was calculated for both the cluster 

and their surrounding areas. However, given that each cluster was 

composed of differing numbers of regions, an mean number of potential 

adopters was calculated from the total number of potential adopters in a 

cluster and the number of regions in the cluster. This mean number of 

potential adopters in a single region of a cluster or surrounding area and the 

proportion of all residents considered as potential adopters is presented in 

Table 21.  
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Table 21 — Mean number of potential adopters and proportion of all residents 
classed as potential adopters in each cluster 

Cluster name 

Mean 
number of 
potential 
adopters in 
cluster 
area 

Percentage of 
all residents in 
cluster area 
classified as 
potential 
adopters (%) 

Mean number 
of potential 
adopters in 
surrounding 
area 

Percentage of all 
residents in 
surrounding 
area classified 
as potential 
adopters (%) 

East Anglia 1,345  39.9 954  29.3 
Pennines 558  16.0 251  7.7 
Cornwall 1,237  40.3 867  27.4 
Aberdeen 850  48.2 299  15.3 
East Yorkshire 1,185  35.5 687  19.5 
Scottish 
Borders 

575  
30.6 

321  
18.1 

Hebrides 569  39.7 484  28.8 
South Wales 1,546  43.7 1,084  33.3 
Orkney Islands 700  41.4 434  23.1 
Shetland 
Islands 

578  
40.5 

609  
43.8 

Northumberland 664  16.8 319  10.7 
Cumbria 486  13.0 436  12.6 

 

The mean number of potential adopters was typically higher in the cluster 

areas than the surrounding areas. This could suggest that the clusters may 

have formed due to the greater number of suitable properties within each 

cluster region. The higher mean number of potential adopters in the clusters 

was due predominantly to the higher wind resource available in the cluster 

regions. The lower number of mean potential adopters in the surrounding 

areas also suggested that diffusion to these surrounding areas may have 

been slow as there were fewer potential adopters which could be influenced 

by the visual peer effects from wind turbine installations in the clusters.  

In total, 3,063 wind turbines were installed in the 12 clusters, up to 

December 2016. This accounted for 45 % of the total number of installations 

examined in the SER model, highlighting that the clusters selected in this 

research were the regions with the highest levels of wind turbine 

deployment. In addition to the installations in the cluster areas, there were 

1,270 wind turbines installed in the surrounding areas of all clusters. 

Therefore, a total of 4,333 wind turbine installations across the clusters and 

surrounding areas were examined in the peer effects model, equal to 63.6 % 

of the total installations examined in the SER model.  

Overall, 68.5 % of the wind turbines in the clusters and surrounding area had 

an installed capacity between 1.5 kW and 15 kW, while 67.5 % of these 
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were installed for domestic electricity generation. Therefore, the examination 

of the peer effects in the clusters was primarily focused on the temporal 

adoption patterns of small-scale domestic wind turbines. The number of 

installations in each cluster and the surrounding area is presented in Table 

22.  

Table 22 — Number of wind turbine installations in each cluster 

Cluster 
number 

Cluster name 
Number of 
installations in 
cluster 

Number of 
installations 
in 
surrounding 
area 

Total 
number of 
installations 

1 East Anglia 459 95 554 
2 Pennines 256 118 374 
3 Cornwall 280 215 495 
4 Aberdeen 338 126 464 
5 East Yorkshire 125 68 193 
6 Scottish Borders 224 240 464 
7 Hebrides 184 91 275 
8 South Wales 107 132 239 

9 Orkney Islands 784 51 835 
10 Shetland Islands 188 3 191 
11 Northumberland 70 93 163 
12 Cumbria 48 38 86 
Total 3,063 1,270 4,333 

 

The number of installations in the cluster areas was typically higher than the 

those in the surrounding areas, significantly greater in the East Anglia, 

Orkney and Shetland Islands clusters. However, in the Scottish Borders, 

South Wales and Northumberland clusters, the number of installations was 

greater in the surrounding areas, rather than the cluster areas. This 

suggests that diffusion of wind turbines was not a uniform process and 

differed in each cluster. Selection of these differing clusters therefore 

allowed the influence of the factors on these differing wind turbine diffusion 

rates to be examined.  

As part of the potential adopter calculation, the mean wind speed from the 

BLS NCIC model, at 15 m in each 0.01 km2 or hectare of a region was 

calculated. The total percentage land area of each cluster with an mean 

wind speed of 4.5 ms−1 or above was calculated from this data and is shown 

in Table 23.  
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Table 23 — Percentage area of each cluster with the minimum wind speed of 
4.5 ms−1 or above 

Cluster name 

Percentage of area 
with minimum wind 
speed in cluster 
area (%) 

Percentage of area 
with minimum wind 
speed in surrounding 
area (%) 

Percentage of 
areas with 
minimum wind 
speed in all areas 
(%)  

East Anglia 85.9 77.2 80.2 
Pennines 75.8 50.1 55.4 
Cornwall 96.2 86.5 88.3 
Aberdeen 91.4 76.8 79.2 
East Yorkshire 85.0 74.8 76.8 
Scottish 
Borders 

89.8 74.8 75.9 

Hebrides 99.0 78.4 84.2 
South Wales 95.1 92.9 93.4 
Orkney Islands 98.1 94.5 95.9 
Shetland 
Islands 

100 100 100 

Northumberland 71.1 41.6 44.4 
Cumbria 46.6 66.7 63.6 

 

With the exception of the Cumbria cluster, the majority of each cluster had 

sufficient mean wind speed for deployment. This was similar in the 

surrounding areas of the clusters, except for the area surrounding the 

Northumberland cluster. The mean wind speed in the clusters was higher 

than the average across the whole of Great Britain, where 64.2 % of all 

areas that had an mean wind speed above 4.5 ms−1. This suggests that 

within the clusters, the availability of wind resource is generally high, which 

could have contributed to the high levels of deployment. The factor of wind 

resource was included in the SER model and hence in the residuals which 

were used to identify these clusters, the mean wind speeds in some of the 

clusters were higher than 4.5 ms−1. In the majority of the clusters, at least    

50 % of each cluster’s land area had an mean wind speed above 5.5 ms−1. 

The location of the clusters could also be the underlying cause of the higher 

than mean wind resource. All of the clusters were either in coastal or 

mountainous areas, where the wind resource was likely to be higher. These 

higher wind speeds may have contributed to cluster growth, as it was easily 

demonstrable from previously installed wind turbines that a potential 

adopter’s proposed wind turbine would be technically viable. 

While the wind resource may have been a contributory factor to cluster 

growth, the diffusion of the wind turbine innovation requires a degree of 

homophily between the residents [132]. It was therefore important to assess 
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the resident homophily in each cluster, prior to implementation of the peer 

effects models, to understand if a diffusion of wind turbines was likely to be 

observed in the clusters. 

The demographic variables of age, income and education, which were 

shown to be significant in the SER model, were selected to assess the 

homophily of residents in each cluster. Through examination of the value of 

each demographic variable in each region of a cluster, it was possible to 

understand the variability of these demographics factors across the 

residents in a cluster. Homophily between cluster residents would be seen 

as a lower variability in the demographic factors across residents of the 

cluster regions. Using the coefficient of variation (CV) metric, which is the 

ratio of the standard deviation, σ, and mean value, μ, of each sample [202], 

the relative variability of each demographic variable in a cluster can be 

expressed; 

𝐶𝑉 =  
𝜎

𝜇
 

Equation 53 

Lower values of CV indicate a narrower distribution and therefore a lower 

variability of the sample. The CV for each demographic variable in each 

cluster is presented in Table 24. In addition, a CV for each demographic 

variable across Great Britain is included to offer a comparison.  

Table 24 — Coefficient of variation in each demographic variable in each 
cluster and for all of Great Britain 

Cluster Name Income Age Education 
East Anglia 0.14 0.11 0.17 
Pennines 0.14 0.11 0.32 
Cornwall 0.08 0.09 0.24 
Aberdeen 0.16 0.13 0.52 
East Yorkshire 0.18 0.13 0.35 
Scottish Borders 0.18 0.09 0.34 
Hebrides 0.09 0.07 0.21 
South Wales 0.06 0.08 0.19 
Orkney Islands 0.15 0.08 0.23 
Shetland Islands 0.06 0.06 0.16 
Northumberland 0.21 0.10 0.25 
Cumbria 0.13 0.07 0.24 

Great Britain 0.29 0.15 0.46 

 

Table 24 shows that the variability of the resident income, age and education 

variables in the regions of each cluster were low, in comparison to the 

variability across Great Britain. The results show that the residents within the 
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clusters were likely to be similar in age, income and educational level. The 

residents in the clusters were therefore considered to be homophilic and that 

diffusion of the wind turbine innovation could theoretically occur between the 

residents of the cluster.  

When examining the demographics of the residents in the surrounding 

areas, the CV data showed that the demographics had a higher degree of 

variability, particularly for educational level. This factor may have inhibited 

the rate of wind turbine diffusion from the cluster area to the surrounding 

areas as the residents may not be as similar. To determine if these 

assertions are correct, the results of peer effects model in each cluster must 

be analysed.  

 Peer effects methodology 

The peer effects model was developed in this research to analyse the 

influence of visible wind turbines and changing levels of subsidy from the FIT 

on the temporal adoption patterns within the clusters. As discussed 

previously, the influence of the FIT on wind turbine adoptions in Great Britain 

has not previously been analysed, either in this project or in other studies. It 

is therefore likely that the availability of incentives for energy generation will 

have been a motivating factor for wind turbine adopters. However, changes 

to the subsidy level available under the FIT have occurred since 2012 [34] 

and it is the influence of these changes on temporal adoption patterns was 

of interest in this research.  

The temporal nature of both changes to the FIT subsidy level and the 

number of neighbouring wind turbine installations lent themselves to being 

analysed in a temporal peer effects model. As discussed in Chapter 3, a 

pooled OLS model was identified as the most appropriate method for this 

research’s peer effects model. The visibility of each turbine is dependent on 

the location of each viewer and therefore is different for every resident of the 

clusters. The influence of each visible turbine could not be modelled 

uniformly across all potential adopters in a cluster. Additionally, there was 

likely to be multiple wind turbines visible to each resident, each with a 

varying degree of visibility. The influence of the peer effect from 

neighbouring wind turbines consequently differed for each resident in a 

cluster. Use of a pooled OLS model discounted any subjective visibility of 

each turbine and considered only the influence of the peer effect of all the 

visible turbines in the cluster on a potential adopter [50, 52]. Additionally, a 

pooled OLS model could be used to examine the influence of all previously 

installed wind turbines on the wind turbine adoption rate of the whole cluster.  
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By incorporating the potentially influential factors of previously installed wind 

turbines in the cluster, WTi,t−1, and the Feed-in Tariff subsidy level from the 

previous time step, FITt−1, the influence of each on the wind turbine adoption 

rate of the cluster, ARi,t, at time, t, in region, i, could be examined; 

𝐴𝑅,௧ =  𝛼 + 𝛽ଵ𝑊𝑇,௧ିଵ + 𝛾ଵ𝐹𝐼𝑇௧ିଵ  

Equation 54 

where, α0, was the intercept term of model and the coefficient, β1, was the 

endogenous peer effect while the coefficient, γ1, was the influence of the FIT 

subsidy level. In the peer effects model of this research, the time step was 

set at 3 months.  

The adoption rate in a neighbourhood, ARi,t, was calculated as the number 

of installations in each time step, Ii,t, divided by the number of potential 

adopters, PAi,t, in the neighbourhood at each time step; 

𝐴𝑅,௧ =  
𝐼,௧

𝑃𝐴,௧
 

Equation 55 

While the adoption rate defined the number of installations per potential 

adopter in a region in the current time step, the number of wind turbine 

installations, Ii,t−1, in all previous time steps, t−1, across all neighbours, j, in 

the social neighbourhood, C, was defined as the installed base, WTi,t−1; 

𝑊𝑇,௧ିଵ =    𝐼,௧ିଵ





௧ିଵ

௧ୀ

 

Equation 56 

The inclusion of an installed base allowed the influence of all previously 

installed turbines, rather than just turbines installed in the previous time step 

to be examined. This was vital in the peer effects model, where the diffusion 

of wind turbines amongst the peers in a neighbourhood was expected to be 

slow and it was likely that the influence of visible wind turbines persisted 

over long time periods. Without an installed base metric, the wind turbine or 

turbines which influenced a subsequent decision to adopt in the 

neighbourhood may be excluded from the peer effects model.  

In addition to the installed base of previously installed wind turbines in the 

cluster, the FIT variable of the peer effects models, FITi,t−1, must be 

considered. 63.3 % of all turbines examined in the peer effects model had an 

installed capacity above 1.5 kW and less than or equal to 15 kW and 

therefore the subsidy level for wind turbines matching these capacities was 
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chosen [34]. The subsidy level for this banding ranged from 31.91 p/kWh in 

April 2010 to 8.33 p/kWh in December 2016, as seen Figure 51 and Table 

25 [34]. 

Table 25 — Subsidy levels for wind turbines utilised in peer effects model 

Time period  Subsidy level 
(p/kWh) 

Time period  Subsidy level 
(p/kWh) 

April 2010 to March 
2012 

31.91 
April 2015 to September 
2015 

14.62 

April 2012 to 
November 2012 

30.48 Oct 2015 to March 2016 13.89 

December 2012 to 
March 2014 

22.86 April 2016 to June 2016 8.46 

April 2014 to 
September 2014 

18.28 
July 2016 to September 
2016 

8.39 

October 2014 to March 
2015 

16.46 
October 2016 to 
December 2016 

8.33 

 

A decision to adopt a small or medium wind turbine is not instantaneous, 

and there will be a time lag between the initial decision to adopt and 

completion of the installation, when the visual peer effect would begin to 

influence neighbours. Therefore, the installed base variable was time 

lagged. Lagging of the installed base variable also addressed the reflection 

problem, seen in some previous peer effects models where peers are 

influenced and influence others within the same time step [136]. A time lag 

of 3 months was selected for the peer effects model in this work. Such a 

time lag represented a short lead time for a wind turbine installation, but was 

selected to ensure that a sufficient number of time steps were available.  

In addition to the time lag for the installed base, a time lag of the FIT subsidy 

level was also introduced. This time lag of the FIT was selected due to the 

presence of peaks in the monthly wind turbine installation data, seen in 

Figure 51. These peaks were the result of an impending tariff change, which 

were typically announced 3 months before the subsidy level is implemented 

[35]. It was therefore reasonable to assume that potential adopters in the 

clusters were aware of an imminent change in the FIT subsidy, 3 months 

before the change occurred. Lagging of the tariff variable in the peer effects 

model allowed this phenomenon to be modelled.  
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Figure 51 — Monthly wind turbine installations across Great Britain receiving 
FIT payments compared to changes in the FIT subsidy levels available 
between 2006 and 2016 [12] 

Figure 51 shows the number of monthly wind turbine installations across 

Great Britain since 2006, in comparison with changes in the level of FIT 

subsidy available for wind turbines rated above 1.5 kW and less than or 

equal to 15 kW. The number of monthly installations appears linked to the 

tariff rate available and peaks of installations occur prior to a change in the 

tariff level. This suggests that the changes to the tariff have influenced wind 

turbine deployment, hence why it has been investigated in this peer effects 

model. 

The wind turbine installation data which was utilised in the peer effects 

model was the same installation data from Ofgem [34] used in the models of 

Chapter 5. This dataset provided wind turbine installations from January 

1995 to December 2016. With a time step of 3 months, there were 88 time 

steps available to be investigated in the model. The peer effects model was 

split into three time periods, prior to April 2010, between April 2010 to 

November 2012 and from December 2012 onwards. Each of these periods 

represented three distinct periods of the lifetime of the FIT policy, “Pre-FIT”, 

“Phase One of FIT” and “Phase Two of FIT”. The split across these time 

periods was based upon the data shown in Figure 51 and shows the 
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influence of the tariff level during these three periods on wind turbine 

deployment.   

Prior to April 2010, the only funding available for microgeneration 

technologies was from the Low Carbon Buildings Programme (LCBP) [203]. 

The LCBP provided grants for microgeneration installations including      

£4.6 million for 940 wind turbine installations [203]. During this period in the 

sample of data used here, 1,008 wind turbines were installed, which were 

later able to gain accreditation under the FIT.   

From April 2010 and November 2012, the initial phase of the FIT, known as 

Phase One of the FIT policy, occurred [22]. During this time, the tariff level 

was between 31.91 p/kWh and 30.48 p/kWh [34] and the number of wind 

turbine installations totalled 3,815 in 32 months [12].  

In December 2012, Phase Two of the FIT began and FIT subsidy levels 

reduced through the degression mechanism in the policy. As seen in Table 

25, subsidy levels fell from 22.86 p/kWh in December 2012 to 8.33 p/kWh in 

December 2016 [34]. The number of installations during these 49 months 

was 2,532 [12].  

The peer effects model was run over 88 3-month periods over 22 years of 

data for each cluster. Each year was subdivided into 3 month periods 

starting in January, April, July and October of each year. As discussed, the 

peer effects model for each cluster was split between January 1995 and 

January 2010 for the Pre-FIT period, April 2010 and July 2012 for the Phase 

One period and October 2012 onwards for the Phase Two period. In total, 

there were 60 quarters in the Pre-FIT period, 10 quarters in the Phase One 

period and 16 periods in the Phase Two period.  

6.2 Peer effects model results  

The peer effects model was run for the cluster areas, and also for the cluster 

and surrounding areas, to determine if a diffusion of wind turbine deployment 

was observed in the surrounding areas. The results of the peer effects 

model for each cluster were not intended for a quantitative comparison with 

those of other clusters. Each cluster was presumed to be different in terms 

of potential adopters and adoption rates and while some clusters may exhibit 

similar peer effects, the rationale was to examine the influence of peer 

effects in different locations across Great Britain.  

The coefficients estimated in the peer effects model were not comparable 

given the different units of wind turbine installations and the Feed-in Tariff. 
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However, these values must be comparable during the analysis and 

therefore, the t-test value for the significance of each variable in the peer 

effects model was also reported. These t-test values allowed for the 

comparative significance of each variable to be assessed.  

Across all of the clusters, no consistent description of when or how each 

factor influenced a decision to adopt could be observed. The differing 

geographical sizes and number of installations in each cluster resulted in the 

factors influencing adopters differently in each cluster. Therefore, a single 

conclusion on the influence of the endogenous peer effect or the FIT subsidy 

levels on temporal wind turbine adoption patterns could not be formulated. 

However, there were some key temporal adoption characteristics observed 

in a number of clusters. In some of the clusters, different adoption 

characteristics were observed during the different time periods modelled. 

This section will present these key results using the results of some clusters 

to illustrate the adoption characteristics. The results of the peer effects 

model in each cluster will be presented in the Appendix of this thesis. A 

further discussion of the likely underlying causes of these results will be 

presented in Section 6.3. 

The first key result which was observed in all of the clusters modelled was 

that the number of installations increased dramatically after the introduction 

of the FIT in April 2010. In all of the clusters, at least 82 % of all total wind 

turbines were installed after April 2010, with 97 % and 95 % of all turbines in 

the East Yorkshire and East Anglia clusters installed after April 2010, with 

the evidence for this in the East Anglia cluster shown in Table 26. With the 

introduction of the FIT, an increased number of wind turbines will have been 

considered as an attractive investment by potential adopters. Despite the 

increased number of installations during Phase One, the significance of the 

FIT was not seen more prominently during this phase in the peer effects 

model. A lack of temporal change in the FIT during Phase One and the 

splitting of the peer effects model between the time periods caused this lack 

of significance for the FIT during Phase One. This idiosyncrasy of the peer 

effects model which caused this result will be discussed further in Section 

6.3. 

The increase in the number of installations during Phase One caused an 

increase in the significance of the endogenous peer effect from neighbouring 

wind turbines in 8 of the 12 clusters. The significance of the endogenous 

peer effect in these 8 clusters either peaked during Phase One or increased 

in Phase Two. These two characteristics were likely the result of either 
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factors in the peer effects model, having a greater influence on temporal 

adoption rates in the relevant clusters. 

 Peak of endogenous peer effect in Phase One  

The results of the East Anglia cluster, seen in Table 26, typified the temporal 

adoption characteristic which saw a peak in the endogenous peer effect 

during Phase One.  

Table 26 — Peer effects model for the East Anglia cluster 

 Cluster Areas Only Cluster and Surrounding Areas 

Variable Pre-FIT Phase One Phase Two Pre-FIT 
Phase 
One 

Phase 
Two 

Peer effect from 
wind turbines, β1 

1.79E−05 
(1.535) 

1.24E−04*** 
(5.042) 

6.40E−06** 
(2.31) 

1.58E−03 
(1.066) 

1.32E−03 
(1.4) 

1.81E−05 
(0.615) 

Feed-in Tariff, γ1  
−3.19E−05 
(−1.085) 

8.08E−06*** 
(3.911) 

 
1.52E−03 
(0.572) 

2.16E−05* 
(1.702) 

Intercept, α0 3.52E−06*** 1.05E−03 −1.35E−04*** 9.45E−05 −4.76E−02 −3.06E−04 
R2 0.004 0.229 0.089 0.002 0.002 0.002 
N 1800 330 510 5160 946 1462 

t-test value of each coefficient is included in the parentheses 
*** — Significant at 99 %  
** — Significant at 95 % 
* — Significant at 90 %   

 

The results of Table 26 are indicative of a key temporal adoption 

characteristic, where the financial subsidy available from the FIT had the 

greatest influence over the wind turbine adoption rates. As discussed, the 

endogenous peer effect observed during Phase One was the result of a 

greater number of installations caused by the introduction of the FIT. During 

this phase, the endogenous peer effect peaks in significance before it 

dropped during Phase Two. In Phase Two, the degression of the FIT had 

greater significance than the endogenous peer effect. The increased 

significance of the FIT during this phase demonstrates that the reducing 

subsidy level is likely to have caused a drop in the adoption rates of the 

cluster. This is evidenced by the positive coefficient estimated during Phase 

Two, which demonstrated that as the FIT reduced so did the adoption rate of 

the cluster. This was also likely the cause of the reduction in the 

endogenous peer effect in Phase Two. It is therefore suggested that in 

clusters, such as East Anglia, the temporal adoption characteristics were 

influenced to a greater degree by the FIT.  

While the East Anglia cluster has been used as an example in this chapter, 

this characteristic was also observed in the Pennine, East Yorkshire, 

Northumberland and Cumbria clusters. In these clusters, the percentage 

areas of the cluster which had an mean wind speed of 4.5 ms−1 or above 

were low in comparison to other clusters. In the Cumbria cluster, only 47 % 
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of the hectares in the cluster had a sufficient wind speed, the lowest 

percentage of all the clusters which exhibited this temporal adoption 

characteristic. It is suggested that the comparatively lower wind speeds in 

these clusters have contributed to the influence of the FIT on the adoption 

patterns. With a lower mean wind speed, the financial incentives available 

for a proposed wind turbine are likely to have to be high, to ensure that 

revenue from the turbine pays back the investment in a suitable time period. 

As the subsidy level of the FIT decreased, potential adopters within these 

clusters are likely to have concluded that a wind turbine would represent an 

investment with too much risk and decided not to pursue an installation, 

hence the drop in the adoption rates.  

This temporal adoption characteristic was the most common characteristic 

observed in the results of the peer effects model presented in this chapter. 

Its presence in five of the twelve clusters, the highest proportion of the 

clusters which exhibited similar adoption characteristics, shows that the 

influence of the FIT on temporal adoption patterns was considerable. 

 Peak in endogenous peer effect in Phase Two  

In contrast, the results of the Cornwall and Scottish Borders clusters and to a 

lesser extent, the Aberdeen cluster displayed a different temporal adoption 

characteristic. In these clusters, the endogenous peer effect increased 

during Phase Two. The results of the Cornwall clusters are shown in Table 

27. 

Table 27 — Peer effects model for the Cornwall cluster 

 Cluster Areas Only Cluster and Surrounding Areas 
Variable Pre-FIT Phase One Phase Two Pre-FIT Phase One Phase Two 
Peer effect 
from wind 
turbines, β1 

1.64E−05** 
(2.354) 

7.48E−05*** 
(6.347) 

1.80E−05*** 
(18.379) 

9.59E−05*** 
(6.196) 

2.50E−04* 
(1.854) 

2.36E−05*** 
(5.348) 

Feed-in Tariff, 
γ1 

 −5.56E−05 
(−1.031) 

1.15E−05*** 
(2.916) 

 −1.28E−04* 
(−1.732) 

9.48E−06*** 
(5.139) 

Intercept, α0 9.81E−06*** 1.80E−03 −2.00E−04*** 1.84E−05*** 4.09E−03* −1.60E−04*** 
R2 0.005 0.194 0.171 0.007 0.053 0.073 
N 1020 187 289 5280 968 1496 
t-test value of each coefficient is included in the parentheses 
*** — Significant at 99 %  
** — Significant at 95 % 
* — Significant at 90 %   

 

The increase in the significance of the endogenous peer effect observed 

during Phase Two was the major difference in these clusters, to those 

previously discussed. The significance of the endogenous peer effect from 

neighbouring wind turbines during Phase Two was likely to be as a result of 

a slow diffusion of the wind turbine innovation between the cluster residents. 
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During Phase Two, the greater significance of the endogenous peer effect 

suggested that, despite the FIT subsidy reducing, the diffusion of wind 

turbines between peers was occurring. This led to a greater number of wind 

turbines being installed during Phase Two in the Cornwall cluster.  

The slow diffusion time, which was observed in these clusters, was likely to 

be the result of early majority adopters, who have a longer lead time 

between knowledge and adoption than earlier adopters, installing wind 

turbines in these clusters during the final time period. Coupled with 

comparatively high mean wind speed, 74 % of the Cornwall cluster had an 

mean wind speed above 5.5 ms−1, these early majority adopters have 

decided that the risk associated with a wind turbine installation had been 

sufficiently diminished in this final time period. Through observational 

learning, early majority adopters may have been able to view operational 

wind turbines within the clusters to gather knowledge and observed the 

viability of wind turbines. This function of peer effect was observed in the 

diffusion of residential PV systems in Sweden [138]. The ability to observe 

operational wind turbines within these clusters is likely to have convinced 

later adopters, that despite the reducing subsidy rate available from the FIT, 

a wind turbine was still a viable investment.  

Another feature that was common to these clusters was the significance of 

the endogenous peer effect in the Pre-FIT period. There were a number of 

wind turbines installed in these clusters prior to the introduction of the FIT. 

Linked to the longer time between knowledge and adoption for early majority 

adopters, these early wind turbines may have influenced later adopters by 

demonstrating the technical feasibility of a wind turbine in the cluster over a 

long time period. In the clusters described here, the significance of the 

endogenous peer effect during the Pre-FIT period was lower than in other 

periods.  

 Peak in endogenous peer effect in Pre-Fit Period  

In some clusters, the endogenous peer effect was most significant during the 

Pre-FIT period. This phenomenon was seen in the Shetland and Orkney 

Islands clusters. The peer effects model results for the Shetland Islands are 

shown in Table 28.  
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Table 28 — Peer effects model for the Shetland Islands cluster 

 Cluster Areas Only Cluster and Surrounding Areas 
Variable Pre-FIT Phase One Phase Two Pre-FIT Phase One Phase Two 
Peer effect 
from wind 
turbines, β1 

1.24E−04*** 
(7.676) 

5.23E−05 
(1.567) 

2.23E−05 
(1.249) 

1.25E−04*** 
(7.75) 

6.08E−05** 
(2.055) 

2.22E−05 
(1.381) 

Feed-in 
Tariff, γ1 

 −6.65E−04** 
(−2.106) 

3.39E−05* 
(1.927) 

 −7.07E−04** 
(−2.559) 

3.57E−05** 
(2.282) 

Intercept, 
α0 

4.19E−05 2.17E−02** −2.88E−04 3.54E−05 2.30E−02** −3.28E−04 

R2 0.144 0.108 0.040 0.148 0.138 0.047 
N 360 66 102 420 77 119 
t-test value of each coefficient is included in the parentheses 
*** — Significant at 99 %  
** — Significant at 95 % 
* — Significant at 90 %   

 

In the Shetland Islands cluster, a different pattern of influencing factors on 

adopters was observed, in comparison to other clusters. In the cluster areas, 

an endogenous peer effect was seen in the Pre-FIT period, however, where 

the endogenous peer effect was not significant during Phase One and 

Phase Two, it was the FIT which became influential. It appears that the 

introduction of the FIT has reduced the significance of the visual peer effects 

from neighbouring wind turbines in these clusters.  

During Phase One, the FIT was shown to be significant but was estimated to 

have a negative coefficient. This is indicative of the peak in installations 

during the final quarter of 2012, seen in Figure 51. This peak was caused by 

adopters wishing to secure a higher tariff rate before the impeding 25 % 

reduction in tariff rate. This peak in installations caused a rise in the adoption 

rate during the final time step of Phase One. The peak occurred when the 

tariff was 30.48 p/kWh, which was the lower of the two tariffs rates examined 

during Phase One of the peer effects model. The peer effects model 

therefore assumed that in Phase One, the relationship between adoption 

rate and FIT level was negative given the rise in adoption rate at a lower 

tariff rate.  

The endogenous peer effect observed in the Pre-FIT period is likely to be 

the result of early adopters within these clusters installing wind turbines. 

Coupled with the considerable wind resource on these Scottish Islands,     

87 % of the Orkney and 100 % of the Shetland Islands have an mean wind 

speed above 5.5 ms−1, these adopters have decided prior to April 2010 that 

a wind turbine was a viable investment, possibly motivated by the ability to 

gain a grant to cover the capital costs from the LCBP [203]. These adoptions 

by early adopters, considered to be opinion leaders in Rogers’ diffusion 

model, appear to have exerted a significant peer effect on others during this 
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Pre-FIT period. However, in the time periods that followed, the results of the 

peer effects model suggest that the level of financial subsidy available from 

the FIT dictated the adoption rates in these clusters, as evidenced by the 

peak in installations, observed as a significant negative coefficient estimated 

for the FIT during Phase One.  

In these later time periods, it is likely that adopters were more likely to exhibit 

the characteristics of the early majority adopters. Less willing to assume a 

larger degree of financial risk, these adopters may have been influenced 

more by the changing subsidy rates to install wind turbines, rather than by 

the peer effects of the early turbines. In order to secure a higher tariff level, 

adopters in these clusters have installed prior to change in the tariff levels, 

leading the adoption rates to vary in line with the subsidy rate, as evidenced 

by the significance of the FIT during Phase One and Two shown in Table 28. 

This characteristic of temporal adoption, which was seen more prominently 

in other clusters, highlights that different adoption characteristics can be 

observed during different time periods of the same cluster. 

 Function of the endogenous peer effect 

The final adoption characteristic was most evident in the results of the South 

Wales and Hebrides clusters. In these clusters, the significance of the 

endogenous peer effect was greater in the surrounding area than the cluster 

area. The results for the South Wales cluster are shown in Table 29. 

Table 29 — Peer effects model for the South Wales cluster 

 Cluster Areas Only Cluster and Surrounding Areas 

Variable Pre-FIT 
Phase 
One 

Phase 
Two 

Pre-FIT Phase One Phase Two 

Peer effect from 
wind turbines, β1 

1.16E−05* 
(1.785) 

2.43E−05 
(1.149) 

8.96E−06 
(1.107) 

2.53E−05*** 
(3.284) 

7.10E−05*** 
(4.662) 

2.06E−05*** 
(5.745) 

Feed-in Tariff, γ1 
 −8.18E−06 

(−0.143) 
−4.66E−08 
(−0.017) 

 −2.23E−05 
(−0.417) 

9.36E−06*** 
(4.348) 

Intercept, α0 6.46E−06* 2.96E−04 1.79E−05 8.59E−06*** 7.76E−04 −1.35E−04*** 
R2 0.008 0.018 0.010 0.008 0.060 0.050 
N 420 77 119 1980 363 561 
t-test value of each coefficient is included in the parentheses 
*** — Significant at 99 %  
** — Significant at 95 % 
* — Significant at 90 %   

 

The significance of the endogenous peer effect observed in the surrounding 

area but not in the cluster areas was due to the greater number of 

installations in the surrounding area than in the cluster areas during all the 

time periods. This result illustrated that the influence of any endogenous 

peer effect was apparently a function of the total number of turbines across 

all regions, rather than a higher number of turbines in a small number of 
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regions. This result suggests, due to the differing visibility of each turbine for 

a resident, that if a resident viewed more turbines in the area surrounding 

their home, it was more influential on a decision to adopt than a greater 

number of turbines in their immediate neighbourhood.  

This result is in contrast to some previous literature on peer effects in PV 

adoptions which suggested that the influence of the peer effect increased 

when neighbours where closer to PV systems [46, 47]. The results of the 

South Wales cluster showed that for wind turbines, the peer effect was 

influenced by more visible turbines rather than proximity. 

In the surrounding area, the endogenous peer effect was observed in the 

majority of the clusters. However, it was typically less significant than the 

endogenous peer effect observed in the adjoining cluster area. These results 

suggest that while the endogenous peer effect did influence some potential 

adopters outside of the clusters, the lack of homophily between residents of 

the cluster and surrounding area is likely to have limited the diffusion outside 

of the cluster. The surrounding areas for the majority of the clusters were 

geographically large and therefore the turbines within the clusters may not 

have been visible to all residents, reducing the significance of the influence.  

These temporal adoption characteristics observed in the results of the peer 

effects model of the clusters, are considered here as the most important to 

be discussed, to understand the likely causes of these adoption 

characteristics. While some brief explanations have been offered in this 

section, Section 6.3 will discuss the adoption characteristics and the likely 

causes for these further.  

6.3 Discussion  

The temporal adoption characteristics that will be discussed are: the 

influence of the Feed-in Tariff; the influence of the visual peer effect and how 

this occurs between adopters; and the adopter characteristics of wind 

turbine adopters in these clusters. In addition, the formation of the clusters 

will also be addressed.  

 Influence of the Feed-in Tariff 

In all of the clusters, the number of installations increased during the Phase 

One period from the preceding period. Across all of the clusters, there was a 

500 % increase in the number of wind turbine installations from the Pre-FIT 

period. The underlying cause for this increase in installations in all clusters 

was likely to be the introduction of the Feed-in Tariff. Introduction of the FIT 
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subsidy improved the financial case for wind turbines, as the FIT provided 

payments for energy generation and reduced the payback period of a wind 

turbine. A reduced payback period of a wind turbine promoted the rapid 

uptake seen in Phase One. However, the results of the peer effects model 

for the FIT do not appear to support this, as changes to the FIT were not 

shown to be significant during Phase One.  

Despite higher levels of deployment during Phase One, the lack of 

significance of the FIT was a result of how the peer effects model operates. 

The peer effects model was reliant on a temporal change in the variables to 

identify any influence on the dependent variable. The subsidy level only 

changed once during Phase One and did not capture any change in the 

adoption rates caused by the introduction of the FIT, due to the split of the 

model between time periods. The peer effects model was therefore 

considered less suitable to examine the influence of the FIT during Period 

One, given this lack of temporal change in the subsidy level. Despite the lack 

of significance observed in the peer effects models, the influence of the 

introduction of the FIT can be seen Figure 52, where the number of 

installations in the clusters increases dramatically after 2010.  

 

 

Figure 52 — Yearly installations in all clusters from 2004 to 2012 
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Given the apparent influence of the FIT and its lack of significance during 

Phase One, the question of the suitability of using a peer effects model to 

examine the influence of the FIT is a valid one.  

The influence of the changing subsidy level on temporal wind turbine 

adoption rates was seen in seven clusters during the Phase Two period. The 

increase in the significance of the FIT observed during Phase Two also 

typically caused a reduction in the significance of the endogenous peer 

effect during this period. As the FIT subsidy level reduced so did the number 

of wind turbine adoptions per quarter. This suggests that reducing subsidy 

levels affected the financial viability of some wind turbines, causing potential 

adopters to either delay or scrap their proposed wind turbine installations. 

This result justified the use of the peer effects model to examine the 

influence of the FIT.  

This result also suggested that introduction of the degression mechanism 

has slowed wind turbine deployment in the clusters. It is also likely that this 

phenomenon, will have occurred in the temporal adoption patterns outside of 

the clusters. This assertion was supported by the cumulative installation 

curve, shown in Figure 53, where the rate of wind turbine deployment across 

the whole of Great Britain slowed following the first degression step to   

22.86 p/kWh in December 2012. In the following months, the rate of 

deployment slowed further as the subsidy level available from the FIT 

underwent further degression steps. Coupled with the results of the peer 

effects model which showed the significant influence of subsidy level on 

adoption rates after December 2012, the reasoning behind the introduction 

of the degression mechanism in the FIT policy must be examined.  
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Figure 53 — Cumulative installations of wind turbines across Great Britain 
receiving FIT payments and changes in the FIT subsidy levels available 
[12] 

The degression mechanism was first introduced in 2012 in conjunction with 

a tariff change, while the first degression of the FIT subsidy level for wind 

turbines occurred in April 2014 [35]. Introduction of the degression 

mechanism for wind turbines was in line with those introduced for PV 

systems. The degression mechanism was introduced to “ensure that tariffs... 

reflect latest evidence on technology costs…reducing overcompensation of 

investors. The review also aims to drive cost reductions” [204]. The rationale 

behind the degression mechanism was to ensure that as the capital costs of 

a technology reduced, the level of subsidy available was comparative to 

ensure that the market remained competitive [204].  

A reduction in capital costs has occurred in the PV market, from around 

£3,500 per kW in 2011 [37, 205] to around £1,500 per kW in 2015 [21]. A 

cost reduction on this scale has not been seen in the wind turbine market of 

Great Britain. Median capital costs of a wind turbine have stayed consistent 

at around £4,000 per kW between 2011 [37] and 2015 [21]. A report 

commissioned by the Department of Energy and Climate Change (DECC), 

as part of the consultation process prior to introduction of the degression 

mechanism, even suggested that wind turbine capital costs had increased 

since 2010 [206]. Despite this, the degression mechanism was introduced to 

decrease the level of FIT subsidy available for wind turbines.  
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The impact of the degression mechanism on the wind turbine and PV 

markets of Great Britain has been different. Figure 54 shows the number of 

cumulative installations of PV systems across Great Britain compared to the 

subsidy level available from the FIT. 

 

Figure 54 — Cumulative installations of photovoltaic systems across Great 
Britain receiving FIT payments and changes in the FIT subsidy levels 
available [12] 

Comparison of the cumulative installation curves of wind turbines and PV 

systems following the reductions in subsidy level is striking. The rate of 

deployment of PV systems remained consistent following the tariff 

degressions, whereas the rate of wind turbine deployment reduced following 

tariff degressions. The reductions in the capital costs of a PV system meant 

that, even with a reduced subsidy level, an installation would have offered a 

suitable payback period for potential adopters. The number of PV systems 

installed and the initial level of FIT subsidy available has also contributed to 

a reduction in the capital costs of PV systems. This, however, has not been 

the case for wind turbines, where deployment has been around a tenth of PV 

systems and the reduction of the subsidy level has slowed deployment.  

However, the rationale for introduction of the degression mechanism was 

predicated on the capital costs of a wind turbine reducing as they had for PV 

systems. This reduction in capital costs did not occur within the wind turbine 

market. Thus, the supply chain of the wind turbine market were unable to 

gain any cost advantages in their manufacturing and distribution processes 

that would have reduced capital costs. The capital costs of wind turbines 



- 218 - 

have remained similar and rather than limiting overcompensation to adopters 

as intended, the degression mechanism has limited future wind turbine 

deployment in Great Britain. This demonstrates that the wind turbine market 

still requires subsidies from the FIT to promote future uptake.  

It is argued here that introduction of the degression mechanism for wind 

turbines has damaged the market and has prevented any potential 

reductions in capital cost. The rationale for its introduction in 2012 appears 

arbitrary, without forethought of the long-term effects on the market and was 

driven by a desire to reduce FIT policy administration costs, rather than 

support deployment. It has had a severe effect on wind turbine adoption 

rates in the clusters and across Great Britain and therefore it is suggested by 

the author that to promote future wind turbine deployment, the degression 

mechanism for wind turbines must be removed from the FIT policy. Should 

the degression mechanism remain a central part of the FIT remuneration 

policy, it risks jeopardising the ability of the small and medium scale wind 

turbine market to provide the levels of deployment required for the societal 

pathway to deliver a transition to a low-carbon energy system in Great 

Britain. 

 Influence of visual peer effects  

While the influence of the FIT was most significant during Phase Two in the 

majority of the clusters, the influence of the visual peer effect was observed 

throughout all three time periods. This highlighted that although the influence 

of the FIT appeared to be dominant in some clusters, especially in Phase 

Two, an increased number of visible wind turbines in a cluster did have an 

influence on the subsequent wind turbine adoption rates of the clusters.  

One of the features apparent from the results of the peer effects model was 

that the endogenous peer effect was a function of the total number of visible 

wind turbines in a cluster rather than proximity to high levels of wind turbine 

deployment. This was most evident in the results of the South Wales cluster 

where a high level of deployment in a lower number of regions resulted in a 

low endogenous peer effect compared to an increased number of turbines 

across a greater number of regions. This result is counter to some results of 

the influence of endogenous peer effects on PV systems adopters, which 

have suggested that the magnitude of such a peer effect was a function of 

neighbour proximity [46, 47]. However, the difference between the results of 

peer effects in the PV and wind turbine market is likely to be the result of the 

differing visibility characteristics of each technology. Wind turbines are 
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visible over a greater distance than PV systems and are visibly operational 

as the turbines blades turn, whereas PV systems have no moving parts.   

Each visible wind turbine in a cluster and surrounding area was likely to offer 

a greater opportunity for observational learning, and allowing a potential 

adopter to observe more wind turbines in operation across a greater number 

of locations increased the chance of adoption. Given the operational 

characteristics of a wind turbine, this result suggested potential adopters 

were influenced more by the ability to observe a wind turbine [138]. During 

the knowledge phase of the adoption process, each potential adopter was 

able to view operational wind turbines within their neighbourhood to 

understand if such an installation would be suitable for them [132]. This 

process allowed potential adopters to evaluate the merits of a wind turbine, 

including the available wind resource in their neighbourhood, without the 

need for financial investment to gain this information. By observing multiple 

turbines, adopters could base their decision upon a sample of turbines, 

rather than a single wind turbine, thus increasing their confidence that such 

an investment was worthwhile. Observational learning is therefore theorised 

here to be the likely underlying mechanism that caused the visual 

endogenous peer effect observed in the result of this research’s peer effects 

model. This theory was suggested by Richter as the underlying mechanism 

of the peer effects observed in the PV market of the UK [43].  

The endogenous peer effect was observed in all three phases, however, the 

underlying causes are likely to have been different in each phase. Where the 

endogenous peer effect was significant during the Pre-FIT phase, this peer 

effect is likely to be motivated by adopter characteristics. This phase was the 

earliest examined in this research and therefore the adopters during this 

period were most likely to be considered as early adopters. While early 

adopters usually install later than innovators, they have more influence in the 

local social system. The endogenous peer effect observed within the Pre-FIT 

period is likely to be the result of early adopters, who are seen as opinion 

leaders in the local social system, influencing others to install a wind turbine. 

Where the endogenous peer effect was seen during Phase One, it is likely to 

be the result of an increased number of installations. With the increased 

number of wind turbines, the opportunities for observational learning will 

have increased for potential adopters. Coupled with the ability to earn 

revenues for energy generation, the prevalence of visible operational wind 

turbines is likely to have resulted in the endogenous peer effect, seen in the 

peer effects model results. Due to the limitations of the peer effects model, it 
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was not possible to determine from the results whether the FIT or 

endogenous peer effect was most significant during this period. However, it 

is likely that the endogenous peer effect seen during Phase One was as a 

result of the influence of the FIT which increased the number of wind 

turbines being installed. Therefore, it is assumed here that the endogenous 

peer effect would have been lower during the Phase One period if the FIT 

had not been available. This conclusion highlights that the FIT was the most 

significant influence on temporal adoption patterns in the majority of clusters 

examined.  

In three of the clusters, the significance of the endogenous peer effect 

appears to have outweighed the influence of the FIT during Phase Two. In 

the majority of clusters, the endogenous peer effect decreased in Phase 

Two, however, in these three clusters, the significance of the endogenous 

peer effect increased in Phase Two. In two of the Scottish clusters, which 

this characteristic was observed, an increase in the number of installations 

compared to the previous time periods was observed. The financial 

incentives available from the FIT reduced during Phase Two and therefore it 

was likely that the greater number of installations during this period was due 

to the slow diffusion process of the wind turbine between adopters in these 

clusters. 

Wind turbines installed earlier in the cluster have influenced decisions to 

adopt during Phase Two. The turbines installed during either the Pre-FIT or 

Phase One periods influenced peers in the neighbourhood over a long 

period of time. This slow diffusion process was likely to be the result of 

adopters during Phase Two being considered part of the early majority [132]. 

This type of adopter requires a longer lead time between knowledge of the 

innovation and adoption [132]. During this long lead time, such adopters 

gather as much information as possible regarding the innovation and wait for 

the risk associated with the innovation to reduce before they adopt [132]. 

This was seen in the peer effects model as a slow diffusion time, which was 

likely to cause the higher adoption rates during Phase Two in some clusters. 

Early majority adopters within the clusters could observe the neighbouring 

wind turbines for a longer time to understand if a wind turbine was a suitable 

investment for them. In these clusters, the wind resource was considered 

high and therefore neighbouring wind turbines were likely to be operational 

for long periods of time. This demonstrated to these later adopters that the 

financial returns of their potential turbine were likely to be favourable, 

mitigating some of the potential financial risk of a wind turbine investment 
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which increased with the reducing FIT subsidy. Once a potential adopter 

was satisfied that a wind turbine would represent a worthwhile investment in 

their neighbourhood, they would be more likely to install a wind turbine. The 

slow diffusion time led to the increased significance of the endogenous peer 

effect observed during Phase Two in these clusters.  

The fact that the influence of the visual peer effect has been observed during 

this research has implications for future wind turbine deployment strategies. 

Any strategies to promote future deployment of wind turbines could be 

designed to promote uptake using the endogenous peer effect. A future 

policy could aim to promote wind turbine deployment by initially increasing 

adoption in a neighbourhood, with the stated aim of using the endogenous 

peer effect from these initial turbines to promote further deployment [207]. 

The initial deployment within a neighbourhood would have to be significant, 

to ensure that enough opportunities for observational learning would be 

available for potential adopters. The effectiveness of such a policy would be 

limited by the visibility radius of the turbines. Therefore, any such policy 

would have to be introduced in areas where the potential for future wind 

turbine deployment is high.  

 Adopter characteristics  

The results of the peer effects model suggest that currently, in the clusters 

examined, the majority of potential adopters are likely to exhibit the traits of 

the early majority. The results of the peer effects model offer an indication of 

the position along the innovation curve of wind turbines in these clusters.  

As discussed, early majority adopters take a longer time between gaining 

knowledge and adoption of an innovation to understand how such an 

innovation will benefit their lives, hence the slow diffusion time observed. 

Additionally, these adopters are more sensitive to financial constraints than 

earlier adopters, which accounts for the influence of the FIT observed in the 

results. Based on these observations, it is concluded here that current wind 

turbine adoptions account around for a quarter of eventual wind turbine 

deployment in these clusters [132].  

Therefore, results of the peer effects model suggest that, in the clusters 

examined, the wind turbine innovation is approaching or has reached the 

“chasm” in its adoption lifecycle [208]. This chasm, initially theorised by 

Moore, occurs when adopters in different adopter categories have different 

expectations of an innovation. While earlier adopters may adopt a wind 

turbine to display their environmental credentials, later adopters are more 



- 222 - 

concerned with the financial benefits available from an installation. To “cross 

the chasm” and move into the mainstream, the risk surrounding an 

innovation must reduce to ensure that later adopters are confident of 

receiving a return on their investment [132]. Should this occur, the diffusion 

of the innovation can become self-sustaining and allow the innovation to be 

adopted by the majority of potential adopters [208].  

For wind turbines to cross the chasm, in these clusters, deployment needs to 

increase. However, to increase deployment requires political support. As the 

financial case for a wind turbine becomes weaker with each degression of 

the FIT, it is currently likely that deployment rates will stall and fail to fulfil the 

technical potential. With either higher tariff rates or a reduction of capital 

costs of wind turbines, it may be possible for wind turbines to cross the 

chasm. Within these clusters, it may be likely that increased levels of face-

to-face verbal communication between peers could promote deployment as 

previous adopters share their experiences of wind turbine adoption. 

However, it is an improved financial case for wind turbines that is more likely 

to have a greater impact on later adopters in the clusters.   

It is only within the clusters modelled during this research, that any definitive 

conclusions on the characteristics of the adopters can be formed. It is clear 

from the results that diffusion of wind turbines in these clusters was not 

uniform. It is therefore assumed that in areas not examined within this 

research, adopter characteristics will be different. It is likely that potential 

adopters in other areas will exhibit the traits of earlier adopters. The clusters 

were areas of high levels of wind turbine deployment and therefore any area 

outside the cluster may have greater potential for wind turbine deployment. It 

is assumed that the adoption lifecycle is most advanced in these clusters 

and in other areas outside the clusters, this adoption lifecycle has not 

advanced as far and therefore the adopters in these areas are more likely to 

be early adopters. However, further work would be needed to test this 

hypothesis.  

 Cluster formation 

It is reasonable to investigate why these clusters initially formed. By 

examining the clusters and their residents, it may be possible to identify 

reasons for their formation. Formation of these clusters may have been 

motivated by the influences examined during the peer effects model. In all 

clusters prior to 2010, less than 20 % of the total wind turbine installations 

had occurred. Therefore, it could have been the introduction of the FIT which 

has caused the high levels of deployment observed in the clusters. However, 
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there must have been contributing factors that caused these clusters to form, 

otherwise it would be expected that similar levels of wind turbine deployment 

would have seen across all of Great Britain.  

The cause of cluster formation has also been addressed in some peer 

effects literature, when discussing correlated unobservables in a peer effects 

model [43, 45-47, 137, 142]. In the context of a peer effects model 

examining microgeneration uptake, the correlated unobservable discussed 

most prominently was the influence of a local marketing campaign by a 

company who installed microgeneration technologies [43]. A local marketing 

campaign would increase residents’ awareness of wind turbines. Such a 

marketing campaign would only be profitable for the company if they 

targeted an area with sufficient wind speed to ensure a wind turbine 

installation was financially viable. Investigation of the mean wind speeds in 

the clusters suggested that the majority of them would be considered 

suitable for such marketing campaign. By a company offering discounts for 

installations or implementing a scheme similar to Solarize CT, where the unit 

price of the microgeneration technology decreases with each installation 

[141], the number of wind turbine installations in a cluster would be likely to 

increase quickly. No evidence of any marketing campaigns in these clusters 

could be found and without surveying the individual adopters, it is difficult to 

determine if such a campaign occurred and caused cluster formation.  

Clustering of installations was also discussed in some literature in the 

context of adopter “self-selection” [43, 46]. Self-selection occurs when 

residents with similar social status and beliefs form social groups [135, 142]. 

Other authors have identified this self-selection as a reason for spatial 

clustering of installations as individuals who have a similar propensity to 

adopt a microgeneration technology, reside close to each other [43]. The 

clusters identified in this analysis could be the result of homophily of 

residents in the clusters. Identification of the clusters, through use of the 

SER residuals already contained information regarding the relative socio-

economic factors of each cluster. The demographics of the residents in the 

clusters, shown in Section 6.1.3.1, were also similar. This indicates that 

homophily between cluster residents was high and could have caused these 

clusters to form. Self-selection by the adopters, who decide to purchase 

properties close to others who were likely to install wind turbines could have 

caused the clusters to form. There is no method to test the self-selection 

hypothesis without surveying the adopters to understand their motivations 

for purchasing their homes and installing a wind turbine.  
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It is highly likely that adopters in the clusters will have been required to gain 

planning permission for their wind turbine from the local council. In the 

clusters, it was possible that the councils which granted the planning 

permission were favourable towards wind turbine installations. Given the 

high levels of wind resource in each clusters, wind turbine installations may 

be viewed by local councils as a way of meeting any local renewable energy 

targets which they have might set. While any local renewable energy targets 

may be set at council level, national planning policy states that “local 

planning authorities should…contribute to energy generation from renewable 

or local carbon sources” [185]. Research conducted by the University of 

Edinburgh and shared with the author, found that in the majority of the 

clusters, the relevant local authorities have a strategic plan to promote 

renewable and low carbon energy sources and either investment or 

ambitions to invest in low carbon energy projects [209]. This would suggest 

that the local councils, which administer the regions of the clusters were 

likely to be more favourable towards a planning application for a small wind 

turbine, leading to increased deployment in these clusters. While this was 

not consistent in all of the clusters, it may be a contributing factor in the 

formation of some of the clusters selected.  

The results of the SER model have shown that agricultural industries are 

likely to be prevalent in the clusters. The National Farmers Union (NFU), as 

part of a wider steering group, have advocated that farmers should diversify 

their incomes through the installation of renewable energy technologies on 

their land [210]. This promotion of renewable energy by the NFU was likely 

to raise awareness in farmers and it is possible that any farmer who decided 

to adopt would consult the NFU for advice on which wind turbine to install 

and which company to install the turbine. 25 % of all adopters have indicated 

that they found their installer through a source other than the internet or 

friends and family [55]. It was possible that these alternative sources could 

include a trade body such as the NFU. Promotion of renewable energy by 

the farmers’ union may therefore have contributed to formation of the 

clusters, where the level of agricultural industry was high.  

While all of these factors may have contributed to formation of a cluster in 

certain instances, it is more likely that a combination of these factors will 

have caused cluster formation. As seen in the results of the peer effects 

model, each cluster was unique and therefore the combination of the 

contributing factors required for cluster formation is likely to have been 

unique.  
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6.4 Conclusions 

The peer effects model was developed to examine the temporal adoption 

patterns of wind turbines in several clusters. Investigating the influence of 

the visible neighbouring wind turbines or changes to the subsidy rate 

available from the FIT, the peer effects model results showed that numerous 

temporal adoption characteristics influenced by either factor could be 

observed in the clusters. The model also provided results which offered a 

depiction of how the adopters of wind turbines have changed over time in 

these clusters.  

The influence of neighbouring visible turbines was observed in the majority 

of the clusters, particularly during the time period after the introduction of the 

FIT. It is concluded here that the endogenous peer effect from these turbines 

did influence potential adopters. However, the increase in the number of 

wind turbine installations, seen in this period, can be attributed to the 

introduction of the FIT rather than the endogenous peer effect. The 

endogenous peer effect was likely to be an influencing factor in an adopter’s 

decision to install when it was observed during the period prior to April 2010. 

In a minority of clusters, the endogenous peer effect was at its most 

significant during the final time period modelled. In these cases, it was the 

slow diffusion time of the wind turbine innovation between peers in the social 

system which caused this result.  

However, it was the FIT which was the most significant influence on 

adopters during this final time period in many of the clusters examined. As 

the subsidy rate available from the FIT decreased during this period, the 

adoption rates within these clusters also decreased. This suggests that 

adopters were influenced to a greater degree by the subsidy level changes 

rather than the increased number of visible wind turbines. Coupled with the 

increase in installations, due its introduction in April 2010, it has been 

concluded that currently the FIT is the dominant influence on temporal wind 

turbine adoption patterns in these clusters. The significance of the FIT 

observed in this peer effects model has implications for future deployment 

which is likely to be hampered by future degressions.  

The influence of the FIT indicated that potential adopters of wind turbines 

within these clusters are likely to exhibit the characteristics of early majority 

adopters. A long time between knowledge and adoption and an increasingly 

focus on the financial benefits of a wind turbine are the common attributes of 

an early majority adopter, a characteristic seen in the temporal adoption 
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patterns of the clusters. The increasing significance of the FIT during the 

later time periods suggests that potential adopters were increasingly 

influenced by the financial benefits, and with reducing subsidy levels, 

decided against installing a wind turbine. Additionally, in the clusters where 

the endogenous peer effect was most significant during Phase Two, this is 

indicative of the longer lead time which early majority adopters typically 

exhibit. In the clusters where this was observed, it is likely that these early 

majority adopters have decided that a wind turbine was a suitable 

investment, despite the lower tariff rates.  

The research presented in this chapter, when considered in conjunction with 

the results of previous chapters, offers a clear representation of the position 

of the wind turbine market under the FIT in Great Britain. The significance of 

rural factors, observed in the results of Chapter 5, and the findings of this 

chapter suggest that currently the wind turbine market is relatively immature. 

The significance of the FIT suggests that current adopters are focused on 

the financial benefits of wind turbines and therefore installations only occur 

in locations where the wind resource and availability of land is sufficient to 

offer a return on an investment. These factors, coupled with the 

comparatively high capital costs of wind turbines, suggest that the market 

has significant potential for future growth.  

An understanding of the potential for growth in the wind turbine market will 

allow a number of policy suggestions to promote deployment to be provided. 

By determining where and how future growth in the market may occur, it will 

be possible to recommend policies to precipitate this deployment. Any policy 

recommendations must also consider the results presented in this chapter 

and understand how to use the influences examined here to promote 

deployment. Estimates of potential wind turbine deployment in Great Britain 

and a number of policy suggestions to achieve this are provided in Chapter 

7.  
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Chapter 7 – Project conclusions and policy 
implications 

To achieve the energy systems transition required to meet the renewable 

energy generation targets agreed to by the UK government [5], deployment 

of decentralised energy such as small and medium scale wind turbines could 

be important. Through high levels of wind turbine deployment, the societal 

pathway could contribute to the delivery of this energy systems transition. 

However, the high levels of deployment required are not currently being 

achieved as wind turbine deployment has only reached 7,374 by December 

2016 [12], despite a potential for up to 400,000 wind turbines across Great 

Britain [31]. To achieve higher deployment, current wind turbine adoption 

patterns of Great Britain and the factors which have influenced these 

patterns were examined. From the results of this research, a number of 

policy recommendations to promote future deployment are suggested and 

will be outlined in Section 7.3.  

A project of research was developed to assess a variety of factors which 

have influenced wind turbine adoption patterns. In total, three schemes of 

research were developed and presented in Chapter 4, Chapter 5 and 

Chapter 6 of this thesis. Chapter 4 presented a boundary layer scaling (BLS) 

methodology for wind speed predictions and offered a comparison of the 

accuracy of the BLS model using different reference wind map climatologies 

with the Microgeneration Certification Scheme (MCS) methodology. In 

addition to this comparison, Numerical Weather Prediction (NWP) data was 

utilised for wind speed and power density predictions from the BLS model. 

Chapter 5 examined the influence of various factors on spatial wind turbine 

adoptions patterns of Great Britain. Along with mean wind speed from the 

BLS model, various demographic and environmental factors were examined 

to understand their influence on spatial wind turbine adoption patterns. 

Chapter 6 examined the influence of previously installed neighbouring wind 

turbines and the changing levels of subsidy available from the FIT on the 

temporal wind turbine adoption patterns in a number of case study areas 

across Great Britain.  

While the conclusions of the work offer the fullest picture of the small and 

medium turbine market under the Feed-in Tariff in Great Britain, the 

research is not without its limitations. The BLS model research of Chapter 4 

was validated against a series of observational sites and therefore the 
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accuracy of the wind speed predictions away from these sites is untested, 

While the sample size of 124 sites is considered sufficient to allow 

conclusions of the accuracy of these predictions to be drawn, the sample did 

not include any sites in urban areas. Therefore, the accuracy of the BLS 

wind speeds in this work are untested. Additionally, the ability to disseminate 

the results of the research may be limited as the input data used to create 

these results were provided under academic license for this project.  

The limitations of the research presented in Chapter 5 and Chapter 6 

stemmed from the use of statistical models to determine the influencing 

factors on wind turbine deployment. By using statistical models, the factors 

identified during this research are those which influenced the majority of 

adopters. Therefore, there could have been some individual adopters which 

were influenced by factors that were either considered uninfluential during 

this research or were not included in the study. These limitations ultimately 

stem from the subjective nature of adoption for each individual and the 

different factors which influence each individual adopter.   

Bringing together these different pieces of research, it was possible to 

identify a number of factors which have influenced wind turbine adoptions in 

Great Britain. These schemes of research were developed to answer the 

research questions posed in Chapter 1 and the answer to each of these 

questions, formulated using the results of the research will be presented in 

Section 7.1. From the results of each chapter, an overall conclusion of the 

project was formed and a number of potential deployment estimates along 

with a number of policy suggestions for promoting wind turbine deployment 

were developed. This overall conclusion, the potential deployment estimates 

and the policy suggestions are presented in Section 7.2.  

7.1 Research questions  

The research questions of this project were; 

1. Are the wind resource assessment techniques available at the 

initial scoping stage of a wind turbine installation able to predict 

wind speed with sufficient accuracy? 

2. What is the influence of wind speed availability on spatial adoption 

patterns of small and medium scale wind turbines in Great Britain? 

3. What factors influence the spatial adoption patterns of small and 

medium scale wind turbines in Great Britain? 
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4. What factors influence the temporal adoption characteristics of 

small and medium scale wind turbine market in Great Britain? 

To answer the first research question, the results of the BLS model was 

considered. These results demonstrated that the MCS methodology, the 

currently mandated wind resource assessment technique at initial scoping 

stage for wind turbines receiving the FIT is, in the majority, unable to predict 

wind speed with sufficient accuracy, estimated in this research to be a 

maximum absolute error of 0.5 ms−1. The MCS methodology was only able 

to predict wind speed with sufficient accuracy at 33 % of the validation sites 

examined. This improved to 60 % of sites when using BLS NCIC to predict 

long-term mean wind speed at 10 m. These findings suggest that the answer 

to the first research question is negative, as the MCS is a wind resource 

assessment technique at the initial scoping stages of a project. Replacement 

of the MCS methodology with the BLS model within the FIT accreditation 

process would provide a wind resource assessment technique which offers 

wind speed predictions with sufficient accuracy at a greater number of sites.  

Using the improved wind speed prediction technique of the BLS NCIC at a 

hub height of 15 m, the second research question could be answered. The 

influence of wind resource availability on the spatial variability of wind turbine 

adoption patterns was shown to be at most 32 %. A further investigation of 

the factors which also influenced spatial adoption patterns and addressed 

the third research question, found that wind turbine adoptions were more 

likely to be installed in rural areas, where there was a greater availability of 

land and wind resource. Wind turbine adopters were likely to be older, have 

a degree-level qualification and live in a detached home. The research also 

highlighted that adopters are likely to live in regions with lower than mean 

household income, reinforcing the conclusion regarding the suitability of rural 

areas for wind turbine installations. Inclusion of these additional factors 

increased the explanation of variance in the spatial adoption patterns, 

peaking at 62 % in the SER model developed during this research. These 

findings answer the second and third research questions, demonstrating that 

wind resource availability and the factors of adopter age, educational 

attainment, house type, location and rurality of an adopter’s home had a 

significant influence on spatial wind turbine adoption patterns. 

The final research question was answered using the research presented in 

Chapter 6. The presence of neighbouring wind turbines and the subsidy 

level available from the FIT were shown to have had an influence on the 

temporal adoption patterns of wind turbines in a number of case study areas. 
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The introduction of the FIT in April 2010 increased deployment dramatically, 

leading to greater numbers of wind turbines, exerting an influence on 

neighbouring potential adopters. In some cases, the reduction of the FIT 

subsidy level in December 2012 resulted in a decrease in deployment. 

However, in other clusters, the slow diffusion of wind turbines had still 

influenced a sufficient number of potential adopters to cause a rise in wind 

turbine deployment numbers after December 2012. The results of this 

research address the final research question and demonstrate that the 

endogenous peer effect of neighbouring wind turbine installations and 

degression of the FIT subsidy levels have influenced the temporal wind 

turbine adoption patterns of Great Britain.  

The results and conclusions of the research have therefore addressed each 

of the research questions. The research undertaken utilised a number of 

novel approaches to answer these research questions. The research which 

examined the influencing factors on wind turbine adoption patterns, both 

spatial and temporal were novel research, which had not been published 

previously. The improvements to the BLS model presented in this research, 

offered novel advancements to this wind resource assessment technique for 

small and medium scale wind turbines. The combination of these novel 

approaches has offered the most comprehensive examination of the factors 

that influenced the wind turbine market under the FIT in Great Britain 

currently available. 

7.2 Overall conclusions and implications 

The results of the research suggest that the wind turbine market in Great 

Britain is approaching the “chasm” within its adoption lifecycle [208]. This 

chasm has been suggested by Moore [208] and is caused by the different 

expectations of an innovation held by early adopters and the early majority. 

An innovation must mature sufficiently during the early adopter phase to 

ensure that the innovation meets the expectation of the early majority [208]. 

Should this happen, deployment of the innovation could become self-

sustaining and less reliant on subsidies to promote deployment [208]. Moore 

suggests that this chasm is most commonly seen in “disruptive” innovations 

which create new markets and move away from established markets [208]. It 

is argued here that wind turbines can be considered a disruptive innovation 

as they represent a move away from a centralised energy generation 

market, which is currently seen in the UK electricity market. Therefore, this 
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chasm will exist in the wind turbine market of Great Britain and considering 

how to cross the chasm is vital to increase deployment.  

Overall, current uptake of wind turbines has fallen due to the reduction in FIT 

subsidy levels, with only 12 % of all wind turbine installations occurring after 

2014 [12]. The findings of the SER model, that wind turbine adoptions have 

occurred in mostly rural area, suggest that the wind turbine market is still in 

its infancy having only reached the early adopter phase of its lifecycle. In 

these rural areas, wind turbines are more likely to be financially viable, due 

to large areas of open space and higher wind resource, which will allow a 

wind turbine to offer better financial returns. Due to the high capital costs of 

a wind turbine, potential adopters require the potential financial returns to be 

as attractive as possible. While this is a subjective judgement by each 

potential adopter [108], the SER and peer effects research suggests that 

currently, residents of rural areas are inclined to judge that the financial 

returns are attractive enough to install. This finding suggests that small and 

medium scale wind turbines have not crossed the chasm in their adoption 

lifecycle.  

The results of the SER model suggest that wind turbine adopters are 

typically older adopters. This finding suggests that only adopters who have 

been able to save sufficient capital over their lifetime were able to afford a 

wind turbine installation. This is further supported by the fact that an 

adopter’s weekly income was shown to not be a positive influence on 

adoption. Therefore, it is concluded that the accumulated capital of adopters 

had a more significant influence on wind turbine adoptions. These results 

suggest that the high capital costs of wind turbine are currently a significant 

barrier to adoption and this barrier will need to be overcome for wind 

turbines to cross the chasm in their adoption lifecycle.  

There is evidence from the peer effects model, that in some clusters early 

majority adopters have begun to install wind turbines, demonstrating that the 

chasm can be bridged. The slow diffusion process observed during the final 

phase of some of the peer effects model runs, where deployment increased 

despite subsidy level cuts, indicated that some early majority adopters were 

installing wind turbines. These early majority adopters, within the clusters, 

have been able to observe neighbouring turbines in operation and 

understand that within their neighbourhoods such a wind turbine could be an 

attractive investment. It was only within these clusters of high levels of 

deployment, where the early majority adopters have been observed. It was 

therefore concluded that the wind turbine market is still in its infancy and 
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current adopters are likely to be early adopters in most areas of Great 

Britain.   

 Potential deployment scenarios 

As this research has investigated the factors which influence wind turbine 

adoption patterns, it is possible to offer estimates of the potential for future 

wind turbine deployment in Great Britain. Initially, an estimate of the 

unrestricted potential for deployment was made for comparison with those 

previously published in literature. The potential for deployment at current 

market rates of tariff level was then estimated and it was also possible to 

analyse how the levels of potential deployment may change if the FIT 

subsidy rates altered.  

The scenarios were developed as a prediction of the unrestricted and 

potential future deployment. Each incorporated the results of the research to 

predict where future wind turbine deployment may occur. The development 

of these scenarios is also coupled with a number of policy suggestions, 

presented in Section 7.3, which identify strategies to potentially facilitate the 

deployment presented in these scenarios. The methodology and rationale 

for each scenario will also be provided and where possible, will be discussed 

in the context of other potential deployment estimates. All of these 

deployment scenarios were produced on the statistical geography (SG) 

resolution for number of wind turbine installations. Therefore, these 

scenarios are considered as an estimation of the potential deployment in the 

small-scale domestic market. 

 Unrestricted potential scenario 

Initially, the unrestricted potential for wind turbine deployment was assessed. 

Based solely on the availability of sufficient wind resource and the number of 

adopters who own a detached home in a region, this scenario demonstrates 

the maximum number of wind turbines which could be installed in Great 

Britain. However, this scenario does not account for any financial, 

demographic or social factors which have been identified as influencing 

factors within this work. Additionally, this scenario does not account for 

current deployment. The scenario, presented in Figure 55, can therefore be 

considered as the maximum level of wind turbine deployment possible, but 

as a scenario that is unlikely to occur.  
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Figure 55 — Unrestricted potential wind turbine deployment scenario, as 
number of wind turbine installation in each SG region 

The scenario, presented in Figure 55, estimated that across Great Britain, a 

total of 2 million wind turbines could potentially be installed. This scenario 

was developed using the number of detached homes which are owned in 

each region and the percentage land area of each region with an mean wind 

speed of 4.5 ms−1 or above at 15 m above ground level. The number of 

owned and detached homes in each region was scaled by the percentage 

area of the region with sufficient wind speed. For example, for a region with 

100 detached homes and 30 % of the region with sufficient wind speed, an 

unrestricted potential of 30 wind turbines was estimated.  

With the exception of the major cities of Great Britain, all of the regions are 

estimated to have the potential for at least a single wind turbine installation. 

Unrestricted potential deployment is typically lowest in the suburban areas 

and peaks in the rural areas, where the wind resource is high. The 

distribution of potential deployment across regions in this scenario is 

presented in Figure 56. 
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Figure 56 — Distribution of unrestricted potential deployment between 
regions in this scenario 

The majority of regions, 37 % in this scenario, were estimated to have zero 

wind turbines. These regions are those located in major cities and therefore 

the wind resource is estimated to be not sufficient at 15 m. However, 

previous work has estimated that the potential for wind turbines in major 

cities could be greater [179]. By examining the wind resource available for 

building-mounted turbines, which will have hub heights higher than 15 m, 

Millward-Hopkins et al. estimated that up to 9,500 wind turbines were 

possible in Leeds alone [179]. This potential in urban areas was not 

considered in any scenario produced during this research, however previous 

research does demonstrate that the potential for growth in the market in 

urban areas does exist. 

Around 30 % of regions were estimated to have the potential for between 

100 and 1,000 wind turbine installations. This shows that there is significant 

unrestricted potential for growth in the wind turbine market. However, as 

discussed, this scenario did not account for any demographic and social 

influences and therefore resulted in a high estimate of potential deployment. 

It is considered here unlikely that wind turbine deployment in Great Britain 

will ever meet the levels described in this scenario. This unrestricted 
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deployment scenario was compared with the Element Energy estimate, 

discussed in Section 1.3.1 which predicted that 3.4 million wind turbines 

could be deployed, compared to just over 2 million predicted here [38]. The 

difference between these two estimates is likely to relate to the inclusion of 

the potential adopter metric in this scenario. The Element Energy estimate 

assumed that a wind speed of 5.5 ms−1, from the NOABL data was required 

[38], while this research’s estimate assumed a wind speed of 4.5 ms−1 from 

the BLS NCIC. While these minimum wind speeds differ, sites examined in 

this research which were predicted to have a mean wind speed close to 5.5 

ms−1 using the NOABL data were predicted to have a wind speed around 4.5 

ms−1 using the BLS NCIC model developed in this research. It is therefore 

concluded that the differing potential deployment scenarios stem from the 

inclusion of the potential adopter metric in the unrestricted potential 

deployment presented here. The Element Energy prediction assumed that 

the rurality of an electoral ward resulted in a wind turbine being installed at 

all homes in the wards [38]. However, the potential adopter metric used here 

considered only the house types of residents of an SG region, in addition to 

the wind resource, and it is the inclusion of this factor, which resulted in a 

lower unrestricted potential deployment estimate presented here.  

This scenario was presented here to highlight the levels of potential 

deployment which could be achieved in a perfect market. However, it is 

considered unlikely that wind turbine deployment will ever reached these 

levels and therefore more realistic estimates of potential deployment were 

produced. 

 Current market rates scenario 

The current market rates scenario was developed from the results of the 

SER and peer effects model and was composed of three parts: prediction of 

deployment from the SER model results; prediction of the influence of peer 

effects in clusters areas; and prediction of the influence of peer effects 

outside of cluster areas. The current market rates scenario was developed 

using the Feed-in Tariff subsidy rate of 13.89 p/kWh, which has been used 

throughout this project. This scenario also used the minimum mean wind 

speed of 4.5 ms−1 at 15 m required for deployment.  

Initially, the different between the actual and predicted wind turbine 

deployment, known as the residuals, of the SER model for installations at 

the statistical geography (SG) level were selected. In regions where the 

residuals were negative, it was assumed that the number of installations 

estimated by the SER model would be achieved. Where the residual value 
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was a non-integer, it was assumed that any residual value less than −0.65 

would equate to a single installation. Therefore, for a region with a residual 

value of −2.30, it was estimated that there would be the potential for 2 wind 

turbines, while for a region with a residual value of −0.8, the estimate would 

be a single wind turbine.  

From these deployment estimates from the SER model residuals, the 

influence of the endogenous peer effect on potential deployment was 

estimated. For regions not included as a cluster area in the peer effects 

model, an adoption rate of 0.5 % was estimated. This adoption rate was the 

national average, calculated as the total number of wind turbine installations 

over the total number of potential adopters in Great Britain. For regions 

which were part of a cluster, the adoption rate was set at 2.7 %, the mean 

adoption rate across all the clusters.  

The number of potential adopters, using the approach presented in Chapter 

6, was recalculated for each region to account for the potential deployment 

estimated by the SER model. The new estimate of potential adopters was 

then multiplied by either the national adoption rate for regions outside of the 

clusters or the mean adoption rate in the clusters, for regions in a cluster, to 

estimate the potential deployment due to the visual peer effect.  

Addition of the estimates of potential deployment from the SER model and 

the peer effects model then created the overall potential deployment 

estimate at current market rates, presented in Figure 57. 
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Figure 57 — Potential deployment estimate at current market rates. Left: 
Potential new deployment. Right: Total potential deployment, which 
includes currently installed wind turbines 

This potential further deployment scenario predicted that at current market 

rates, an additional 13,882 wind turbines could be installed. In this scenario, 

it was estimated that 8,455 wind turbines would be installed across 3,866 

regions, which have not previously had a wind turbine installed within them. 

The remaining 5,427 wind turbines would be installed in regions where a 

turbine has been installed. In total, it was estimated that 20,696 wind 

turbines, including those currently operating, could potentially be installed 

across Great Britain. In this scenario, the majority of the potential 

deployment would occur in regions where no wind turbines have previously 

been installed.  

This potential deployment scenario estimates significantly fewer wind turbine 

installations are possible than the technical potential estimate of James et al 

[31]. While James et al. estimated a technical potential for around 400,000 

wind turbines [31], this potential deployment scenario estimates that only 

20,000 wind turbines may be possible. This is only 5 % of the estimated 

technical potential by James et al. [31] and around 1 % of the unrestricted 

potential presented in Section 7.2.1.1. The markedly lower estimate of 

potential deployment presented here shows that there are still significant 

barriers to adoption in the wind turbine market. The significance of age in the 

SER model suggests that only older adopters, with significant capital saved, 
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are able to install a wind turbine. It is therefore concluded here that the 

financial barrier of the upfront costs of a wind turbine is currently the most 

significant barrier to adoption. Policy suggestions on how to overcome this 

barrier and to attract a greater number of adopters, particularly younger 

adopters, to the wind turbine market will be provided in Section 7.3.  

 Reduction of tariff rate scenario 

The reduction of the tariff rate scenario was developed using the same three 

concepts as the previous scenario. However, in this scenario, it was 

assumed that the tariff rate would fall to 8.33 p/kWh. This tariff rate was the 

rate for wind turbines with a capacity below 50 kW in December 2016 [34]. 

This is considered a reduction in the tariff rate as a higher tariff rate of   

13.89 p/kWh has been utilised during all the financial estimates presented in 

this thesis.  

The reduction of the tariff rate influenced each of the three predictions which 

composed this potential deployment scenario. With a reduction of the tariff 

rate, the minimum wind speed required for deployment increased to          

5.1 ms−1. This affected the prediction from the SER model, which was 

adjusted to account for this different minimum wind speed. In each region, 

the percentage of land area with this minimum wind speed was calculated 

and was divided by the percentage land area with a minimum wind speed of 

4.5 ms−1. The prediction from the SER model at current market rates, 

SERpred_curr, was then multiplied by this ratio to estimate the potential 

deployment from the first component, SERpred_redu; 

𝑆𝐸𝑅ௗ_ௗ௨ =  
% 𝑙𝑎𝑛𝑑 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑟𝑒𝑔𝑖𝑜𝑛 𝑤𝑖𝑡ℎ ū = 5.1 𝑚𝑠ିଵ

% 𝑙𝑎𝑛𝑑 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑟𝑒𝑔𝑖𝑜𝑛 𝑤𝑖𝑡ℎ ū = 4.5 𝑚𝑠ିଵ
 × 𝑆𝐸𝑅ௗ_௨ 

Equation 57 

The reduction in tariff rate was also assumed to influence the adoption rates, 

due to peer effect. The ratio between the tariff rates of 8.33 p/kWh and  

13.89 p/kWh adjusted the adoption rates outside the clusters to 0.30 %, 

down from 0.50 % utilised in the current market rates scenario. This ratio 

also reduced the assumed adoption rates in the clusters from 2.70 % to  

1.62 %. These adoption rates were then utilised to predict the potential 

deployment, due to the peer effects and combined with the adjusted SER 

prediction. This produced the potential deployment scenario with a reduced 

tariff rate of 8.33 p/kWh, which is presented in Figure 58.  
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Figure 58 — Potential deployment estimate with a reduction of tariff rates. 
Left: Potential new deployment. Right: Total potential deployment, 
which includes currently installed wind turbines 

In this scenario, the potential for an additional 4,727 wind turbines was 

estimated. This potential deployment was composed of 2,000 turbines 

across 1,023 regions, currently without a wind turbine installation and 2,727 

turbines in 313 regions where deployment has previously occurred. In total, 

it was predicted that 11,541 turbines, including those currently operational, 

would eventually be installed across Great Britain. This scenario differs 

greatly from the current market rates scenario, as it estimated that potential 

deployment will be only a third of that at current market rates. Additionally, 

this scenario predicts that the majority of potential deployment will occur in 

regions, which currently have a wind turbine installed within them whereas, 

at current market rates, the majority of potential deployment was predicted to 

be in regions where there is no current wind turbine deployment. This 

scenario predicted the lowest level of potential deployment and highlights 

the potential consequences of further reducing FIT tariff rates on future 

deployment of wind turbines.  

 Increase of tariff rate scenario 

Two scenarios which considered the influence of an increase of the FIT tariff 

rate are presented here. The first scenario assumed an increase of the tariff 

rate to 18.28 p/kWh, the tariff rate from April 2014 until September 2014, 
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while the second scenario assumed a tariff rate of 31.91 p/kWh, the initial 

tariff rate in April 2010 for turbines with a capacity less than 15 kW but 

greater or equal to 1.5 kW [34].  

Two scenarios for an increase in the tariff rate were included in this analysis 

to illustrate how different increases may influence potential deployment. 

Additionally, these two tariffs represent what is considered here as a realistic 

increase, 18.28 p/kWh and the maximum potential increase of the tariff level, 

31.91 p/kWh. It is assumed here that under the current political conditions, 

the tariff may only be increased to a level similar to 18.28 p/kWh, if it were to 

be increased at all. However, if the deployment of microgeneration were to 

be prioritised by central government, it is possible that the tariff rate could 

increase towards 31.91 p/kWh, hence the development of the potential 

deployment scenario using this tariff rate.  

These assumed tariff rates influenced each of the components of the 

potential deployment estimates in a similar way to that discussed in Section 

7.2.1.3. The changes to the minimum wind speed and the adoption rates 

used within each scenario are detailed in Table 30. 

Table 30 — Changes to minimum wind speed and adoption rates assumed 
with increased tariff rates 

 
Current market 
rates – 13.89 p/kWh 

Increased tariff 
rate – 18.28 p/kWh 

Increased tariff 
rate – 31.91 p/kWh 

Minimum wind 
speed at tariff rate 
(ms−1) 

4.5 4.4 3.9 

Adoption rate 
outside of cluster 
area (%) 

0.50 0.66 1.15 

Adoption rate 
inside of cluster 
area (%) 

2.70 3.55 6.20 

 

The minimum wind speeds and adoption rates at each increased tariff rate 

adjusted the predicted potential deployment estimates from both the original 

SER and peer effects prediction. The potential deployment scenario for a 

tariff rate of 18.28 p/kWh is presented in Figure 59, while the potential 

deployment scenario for a tariff rate of 31.91 p/kWh is presented in Figure 

60. 
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Figure 59 — Potential deployment estimate at 18.28 p/kWh. Left: Potential 
new deployment. Right: Total potential deployment, which includes 
currently installed wind turbines 

 

Figure 60 — Potential deployment estimate at 31.91 p/kWh. Left: Potential 
new deployment. Right: Total potential deployment, which includes 
currently installed wind turbines 
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The potential deployment scenario for a tariff rate of 18.28 p/kWh estimated 

that an additional 16,964 wind turbines could be installed, while in the 

scenario using 31.91 p/kWh, this increased to 26,708 wind turbines. In both 

scenarios, the majority of this potential deployment was estimated to occur 

in regions with no wind turbines currently installed. In the scenario at     

18.28 p/kWh, there are 9,987 turbines in these regions compared to 6,977 in 

regions which currently have a wind turbine installed within them. This 

increased to 14,907 turbines in regions with no current deployment and 

11,801 turbines in regions with wind turbines currently deployed, in the  

31.91 p/kWh potential deployment scenario. These scenarios are 

significantly below the technical potential, with the scenario using a tariff 

level of 31.91 p/kWh only estimating around 8 % of the technical potential 

estimated by James et al [31]. At this tariff rate, estimated potential 

deployment was only 1.6 % of the unrestricted potential presented in Section 

7.2.1.1. This supports the idea that there are still significant barriers to 

adoption in the market which must be overcome to fulfil the technical 

potential of small and medium scale wind turbines in Great Britain.   

Table 31 — Potential deployment estimates developed or considered in this 
research 

Scenario Potential deployment 
estimate (Wind turbine 
installation numbers) 

Notes 

Unrestricted potential ~2 million Based upon minimum wind 
speed and suitable house 
type in region 

Current market rate 20,696 Tariff rate = 8.33 p/kWh  
Reduction of tariff rate 11,541 Tariff rate = 13.89 p/kWh 
Increase in tariff rate 27,030 Tariff rate = 18.28 p/kWh 
Increase in tariff rate  33,522 Tariff rate = 31.91 p/kWh 

Element Energy estimate 
[38] 

~3.4 million  Based on minimum wind 
speed and rurality of 
electoral wards 

James et al. estimate [31] ~400,000 Based upon minimum wind 
speed and availability of 
land  

 

The major feature of the potential deployment scenarios presented here is 

that potential for growth in the wind market is estimated to be in regions 

where no deployment has previously occurred. In all of the scenarios, with 

the exception of the scenario using 8.33 p/kWh, up to 60 % of potential 

deployment was estimated to occur in regions with no previous wind turbine 

deployment. This demonstrates that the future growth in the market is 
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possible across Great Britain and potentially wind turbines could be installed 

in almost half of the SGs of Great Britain. This is supported by the total 

potential deployment from the current market rates scenario, shown in 

Figure 61, which shows that wind turbine deployment could be widespread, 

with only the densely populated cities estimated here to have no potential 

deployment.  

 

 

Figure 61 — Current wind turbine deployment and total potential deployment 
at current market rates. Left: Current deployment. Right: Total potential 
deployment 

Figure 61 shows that at current market rates, it has been estimated that all 

the regions of Central England have the potential for at least one wind 

turbine. However, the areas which have the highest estimated potential for 

deployment appear to be East Anglia, Cornwall and South Wales, regions 

which were selected as clusters in Chapter 6. The majority of the clusters 

examined in the peer effects model were estimated to potentially have 

greater than mean wind turbine deployment. In these clusters, this potential 

deployment has been estimated to be increased by the peer effect. Of the 

areas not including in the peer effects research, it is the areas of the 

Highlands surrounding Inverness, the Scottish Borders north of Newcastle, 

and the region surrounding Lincoln which were estimated to have the 

greatest potential for future deployment.  
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While these potential deployment scenarios considered how changes to the 

tariff rate may influence future uptake of small and medium scale wind 

turbines, the cost estimate of wind turbines remained consistent in each 

scenario. Therefore, these potential deployment estimates can be 

considered as estimates which demonstrate how the wind turbine market 

may grow until it crosses the chasm in its adoption lifecycle, as discussed in 

Chapter 6. It is assumed that if wind turbines cross this chasm, the capital 

costs of wind turbines will reduce significantly. This reduction in capital costs 

will have an effect on the payback period of the turbines and thus the 

minimum wind speed required for deployment. Should a reduction in costs 

occur, it is suggested here that actual deployment may be higher than the 

scenarios presented here.  

While these scenarios assumed an increase of the tariff rate would stimulate 

deployment, such a policy change would be unlikely in the current political 

climate. However, a decrease in the capital costs or an increased electricity 

price could improve the financial case of a wind turbine and may cause a 

similar effect on future deployment. To achieve the potential deployment 

scenarios presented here, the financial case of a wind turbine must be 

improved and a range of options could potentially result in the improvement 

of the financial case. This again highlights that the financial barriers of 

adoption are likely to be significant and while the non-financial barriers have 

been shown to influence adoptions, the policy suggestions to promote future 

wind turbine deployment presented here will focus on improving the financial 

case of a wind turbine.  

7.3 Policy suggestions  

To increase wind turbine deployment and cross the chasm to a position 

where the market can flourish as part of the UK’s sustainable energy system 

transition, capital costs of wind turbines must reduce. Capital costs of wind 

turbines have stayed consistent at around £4,000 per kW between 2011 [37] 

and 2015 [21]. Despite the increased deployment of wind turbines, a 

reduction of capital cost has not been realised. This suggests that 

manufacturers and installers have been unable to utilise any cost 

advantages to reduce the unit cost of a wind turbine. To achieve cost 

advantages, such as economies of scale and advancement along the 

technology learning curve, deployment must increase. Therefore, a 

circularity evolves where to increase deployment, capital costs must reduce 

and to reduce capital costs, deployment must increase. A policy or series of 
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policies must therefore be introduced to allow for deployment at the current 

price point.  

Such a policy could introduce a financial subsidy or aid, for either potential 

adopters to promote deployment or manufacturers to reduce capital costs. 

Given that the FIT policy currently exists which aids potential adopters, it 

appears more likely that any additional policy that will be introduced would 

also be aimed at aiding potential adopters. FIT policies have been 

suggested as the most effective way to promote rapid deployment of 

renewable energy technologies [211]. Therefore, the policy 

recommendations of this project will solely focus on helping potential 

adopters, either through reform of the FIT policy or other policies which 

focus on providing finance options to potential adopters.  

 Changes to the current FIT policy  

Initially, alterations to the remuneration mechanism of the FIT policy are 

recommended here. While the policies that are suggested here may not be 

the least cost route, they are designed to achieve societal benefits while 

aiding in the transition to a low carbon electricity system. Currently, the 

subsidy level available to wind turbine adopters is based only on the 

commissioning date and installed capacity of the wind turbine. The spatial 

adoption patterns of wind turbine demonstrate that adoption across Great 

Britain has not been uniform. Some areas have higher deployments than 

others, despite the residents of these areas having similar demographics 

and experiencing similar environmental characteristics. To promote uptake 

in areas where there the results of this research suggest that there is the 

potential for higher wind turbine deployment, the introduction of regional 

Feed-in Tariffs could be considered. By offering preferential subsidy levels in 

some areas, it would increase the number of locations in which wind turbines 

will be financial viable. Additionally, it is suggested that the form of the FIT is 

altered in these regions. By also offering preferential tariff rates during the 

initial phases of the scheme, known as a front-end loaded tariff model [211], 

wind turbine deployment in the selected regions could increase rapidly. The 

proposed policy change is envisaged to guarantee a higher initial tariff for 

adopters in a region to attract potential adopters to the market, as was seen 

in the FIT of Germany [212]. After a set time period, the tariff rate would 

revert to a lower rate for the remaining lifespan of the wind turbine.  

Such a change to the remuneration policy would promote uptake in areas 

which could begin to exert an endogenous peer effect on neighbours. 

However, the issue of selecting the appropriate regions and subsidy level 
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would require careful consideration. The results of the SER highlight some 

areas which would be ideal for such a regional FIT, however, to which level 

the subsidy is set would require further investigation. The SER results, and 

particularly the residuals of the SER model, highlight areas or regions where 

current deployment is below what is estimated in the SER model. This 

suggests that these regions are prime for deployment as the demographics 

of the residents share some similarities to the regions where deployment has 

been higher. The results of the SER model suggest that the regions of the 

Highlands surrounding Inverness, the Scottish Borders north of Newcastle 

and the region surrounding Lincoln are most likely to be the regions in which 

this policy should be initially considered. In these areas, wind turbine 

deployment was lower than predicted by the SER model and the potential 

deployment estimates suggested that there is significant growth which can 

be achieved in the wind turbine market of these areas. Such a change can 

be considered as a temporary measure in selected areas to kick start 

deployment before the FIT reverts to the national level, once deployment 

has increased sufficiently and the endogenous peer effect may become 

more influential. This regional FIT is suggested to have societal benefits as 

well as economic benefits for those adopters able to access the increased 

regional FIT. It is envisaged that the regional FIT would promote a boom in 

deployment as adopters install wind turbines to access the higher tariff rates 

available. This increase in deployment would offer a clear and visible symbol 

to neighbours that wind turbines are technically and economically viable 

within their neighbourhood. Through the endogenous peer effect, observed 

in the clusters examined in this research, it is hoped that this could promote 

further deployment in the neighbouring regions. The societal benefit of the 

policy and the endogenous peer effect which could potentially occur due to 

increased deployment is a key benefit which must be considered during the 

design of the policy.  

An alternative approach to changing the subsidy level available to adopters 

would be to introduce a progressive tariff model, linking the tariff level to the 

electricity generated by each installation. This approach can be considered 

as a longer-term solution to promote wind turbine deployment nationwide 

and would be considered as a replacement to the degression mechanism, 

currently implemented in the FIT policy. The subsidy level for each kWh 

generated will be guaranteed for a set amount of electricity generation. For 

example, a 5 kW wind turbine could earn a subsidy level of 20 p/kWh for the 

first 1,000 kWh produced on-site per year, followed by 10 p/kWh for the next 

3,000 kWh and 5 p/kWh for the next 5,000 kWh and 2 p/kWh for all 
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generation above 9,000 kWh. While these generation and tariff figures serve 

as an example, they illustrate how the progressive tariffing scheme proposed 

here could remunerate adopters.  

In contrast to the current degression mechanism, which reduces tariff levels 

for all entrants based upon the prior deployed capacity, this policy change 

aims to attract potential adopters and alter their subsidy level based upon on 

their generation output alone. The current degression mechanism is causing 

potential adopters to either postpone or scrap their proposed wind turbine 

installation, as the financial support is not sufficient to ensure an acceptable 

payback period. The proposed changes to the tariff would provide greater 

financial support. This style of remuneration model is designed to be 

beneficial for lower generation producers, likely to be domestic or smaller-

scale commercial users. The progressive tariff system described, offers 

greater payments for lower annual energy generation than the current tariff 

levels, while reducing the overall level of payments for higher annual 

electricity generation production, when compared to current tariff levels, as 

seen in Table 32.  

Table 32 — Estimated annual payments under the FIT using either the current 
rate or the proposed progressive tariff rate 

Annual energy 
generation (kWh) 

FIT payments at        
8.33 p/kWh 

FIT payments under 
progressive tariff 

1,500  £12,495   £25,000  

3,800  £31,654   £48,000  

5,000  £41,650   £55,000  

7,500  £62,475   £67,500  

10,000  £83,300   £77,000  

15,000  £124,950   £87,000  

20,000  £166,600   £97,000  

 

The rationale behind this proposed model is to promote uptake for domestic 

adopters and increase deployment towards the estimates presented in 

Section 7.2.1.4. The proposed policy change for a scaled tariff linked to 

generation is also more likely to promote deployment in areas of lower wind 

resource. In areas, where the wind resource is higher, a remuneration policy 

which offers higher tariff rates for greater generation may be more suitable. 

Such a policy would improve the financial case for larger turbines and 

possibly increase the carbon reduction achieved through the deployment of 

higher capacity wind turbines.  
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However, by guaranteeing a higher rate of tariff for the initial tranches of          

generation, adopters who are less likely to generate higher levels of 

electricity will be able to receive a higher payment for each kilowatt-hour 

produced. Lower generation would be expected in areas of lower wind 

resource and therefore such a remuneration model would increase the 

financial viability of wind turbines in such areas. Therefore, this model would 

ideally increase the number of regions in which a wind turbine is financially 

viable and attract a greater number of adopters to the market. Such a model 

would also increase the security of financial returns for adopters [211]. The 

results of Chapter 6 showed that changes to the FIT, which were only 

announced shortly before they occurred, had an adverse effect on wind 

turbine adoption rates. Therefore, the suggested change to the FIT would be 

required to be a long-term policy and any changes to the tariff rate would 

require a longer time between announcement and enactment than is 

currently used in the FIT. This would allow potential adopters sufficient time 

to evaluate the suitability of an installation and the potential effect of a tariff 

rate change on the viability of their prospective installation. Additionally, fixed 

price FIT models, which this proposed model and the current form of the FIT 

are, increases the participation of more risk-averse investors [211]. By 

guaranteeing a level of financial return, these investors are able to predict 

inward cash flow more securely from a fixed price model, increasing their 

likelihood to invest [211]. Such investors are likely to be in the early majority 

and by implementing such a change to the remuneration model of the FIT, 

can aid in crossing the chasm of the wind turbine adoption lifecycle and 

potentially attract sufficient numbers of adopters to achieve the levels of 

deployment required for the societal pathway to deliver the low-carbon 

energy systems transition.  

While the progressive tariff model proposed here may be a policy which 

cannot be considered as a least cost route to achieving an energy systems 

transitions, it does have other benefits for adopters. By installing a wind 

turbine, adopters are able to protect themselves somewhat against the 

dilemmas of the energy trilemma. A wind turbine installation can, to some 

extent, protect adopters from rising energy prices by offsetting the need to 

buy electricity from the grid. By offsetting the need to buy grid electricity, 

adopters are also able to protect themselves from the risks of energy 

security and provide sustainable energy to cover their electrical demand. As 

the policy allows potential adopters to predict inward cash flow more 

accurately, these benefits could prove crucial as potential adopters assess 

the suitability of such an investment on more than a cost-benefit analysis. 
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These potential benefits, particularly becoming more self-sufficient and 

protecting against rising energy costs have been shown to be important 

motivating factors to those who have or are considering microgeneration 

technologies [54]. 

 Further financial support for potential adopters 

While these changes to the remuneration policy of the FIT are likely to 

increase deployment, they do not address an important issue identified in 

the potential deployment scenario. Neither policy suggestion would be able 

to overcome the financial barrier of initial investment costs and would only 

attract potential adopters with sufficient capital to afford the capital costs of 

wind turbines. As seen in the results of the SER model, these adopters are 

likely to be older residents who have been able to accumulate sufficient 

capital over their working life. However, the potential for growth with this type 

of adopter alone is limited, as demonstrated by the potential deployment 

scenario estimates which were significantly below the technical potential 

estimate. Therefore, alternative policy suggestions, which address this 

financial barrier of the high capital costs must be considered to attract 

younger adopters to the market.  

A survey of British residents found that 57 % of those actively investigating a 

microgeneration installation were aged below 45, with two-thirds of this 

group aged under 35 [55]. However, only 32 % of microgeneration adopters 

were aged under 45, compared to 49 % of adopters who were aged over 55 

[55]. This demonstrates that younger residents are more likely to be 

engaged in the transition to a low-carbon electricity market, but face 

significant barriers to adoption. 91 % of respondents in the same survey 

suggested that the upfront capital costs of a microgeneration technology was 

off-putting with 56 % of these respondents suggesting they would be not be 

able to install without financial aid to cover the capital costs [55]. These 

findings are in agreement with the conclusion draw from the results of the 

SER model and that to attract young adopters to the wind turbine market, 

financial aid must be available to fund the capital costs of an installation. 

Attracting younger adopters is crucial for the wind turbine market and more 

broadly, the transition to the low-carbon electricity market. The results of this  

survey of British residents [55] suggests that providing financial aid could 

attract younger adopters and therefore increase the deployment of wind 

turbines, towards the level required for the societal pathway to deliver an 

energy system transition. Two possible finance options will therefore be 
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discussed here as a way to attract young adopters to the wind turbine 

market.  

The initial policy suggestion to provide financial aid focuses on the provision 

of capital to allow individuals using a scheme, similar to one operated in 

Germany, where low-interest loans are provided to finance the installation of 

a renewable energy technology [213, 214]. These loans are provided by the 

German-state owned development bank, KfW, and are guaranteed at a fixed 

rate, typically 1.31 %, for up to 20 years [213]. The conditions of the loan can 

also include a repayment-free start-up period [213]. In Germany, these loans 

are available to private individuals in conjunction with a Feed-in Tariff for 

electricity generation [213, 214]. Such a policy could be introduced in Great 

Britain to promote wind turbine deployment. The Green Investment Bank, 

established in 2012, could provide finance to fund individual wind turbine 

installations [215]. The KfW raise their capital on the financial markets, using 

government bonds and a similar scheme could be used to allow the Green 

Investment Bank to raise sufficient capital to support significant future wind 

turbine deployment. Currently the Green Investment Bank is unable to raise 

funds and relies on private investment [215]. However, the Green 

Investment Bank typically invests in larger scale green projects [215] and 

therefore would require further reformation to provide finance to private 

individuals. By providing low-interest loans to individuals, the Green 

Investment Bank could promote wind turbine deployment. These loans 

would allow a potential adopter to fund either all or the majority of the capital 

costs required for a wind turbine to be installed. With the revenues 

generated through either FIT payments or savings from offsetting electricity 

purchased from the grid, the loan could be repaid over the lifetime of the 

turbine. Such a finance scheme would allow younger adopters who own a 

suitable site for a turbine, likely to be their own home but are unable to 

provide sufficient capital to overcome the financial barrier and install a wind 

turbine. It is envisaged here, given the high levels of younger potential 

adopters who are actively investigated installing a microgeneration 

technology, that such a scheme could increase wind turbine deployment 

significantly and possibly lead to wind turbine deployment above the 

prediction provided in Section 7.2.1. However, provision of these loans 

requires that individuals own their homes and have adequate availability of 

land area and wind resource at their property to ensure the revenue from the 

turbine was sufficient to make the repayments. With a low-interest rate on 

potential loans, it is assumed that the minimum wind speed required for 

deployment may be marginally below that predicted during this research. 
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However, individuals would require sufficient land and the right to authorise 

an installation on this land. Therefore, it is possible that while this policy may 

attract a greater number of adopters, there will still be potential adopters who 

will be unable to install a wind turbine.  

An alternative approach would be to facilitate the financing of community 

energy projects by local residents. A scheme that allowed residents to invest 

in community wind energy projects would promote wind deployment and 

engage those residents in the energy system transition by allowing them to 

make energy decisions that affect their communities [19]. Community energy 

schemes could also access low-interest loans, such as those suggested 

previously for individuals, to fund the installation. Schemes in Denmark and 

Germany have seen successful community energy schemes that are either 

community-led or partnered with local businesses, universities or 

commercial developers [216]. To finance these schemes, loans were 

available in Germany from KfW [217, 218], while in Denmark, the schemes 

were part-owned between the commercial and community partners with the 

revenues from the scheme shared [216]. These schemes involve either a 

single large-scale renewable energy installation or multiple smaller-scale 

installation to provide energy for the whole community [216]. The schemes in 

Denmark and Germany were typified by local stakeholder engagement to 

overcome local opposition and demonstrated the long history of energy co-

operatives in these countries [216]. By contrast, community energy schemes 

in Great Britain have struggled and have been affected by changes to the 

Feed-in Tariff and local opposition [216]. Therefore, future community 

energy schemes in Great Britain need to address these problems. 

Community Energy England and the Energy Saving Trust are able to 

promote community energy by providing advice on how to form an energy 

co-operative, attract local residents to invest and facilitating contacts in the 

local council and potential partners [219]. Therefore, the framework to 

facilitate greater community engagement and partnering of local councils 

and businesses is currently available for community energy projects. 

However, it is the inability to raise funds which has hindered some 

community energy projects [220]. In Germany, KfW provides low-interest 

loans for community projects [218, 221] and it is suggested that the 

proposed changes to the Green Investment Bank, previously discussed, 

could be extended to provide finance for community projects. These loans 

could be used to fully finance the schemes or be used in conjunction with 

resident and partner investment [220, 222]. These proposed changes are 

envisaged to be a central part of the societal pathway to energy system 
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transition in Great Britain. They could result in a greater number of Energy 

Saving Companies (ESCOs) who would operate the community energy 

schemes and would see a greater number of residents becoming involved in 

energy decisions which affect their communities [3]. These are the central 

pillars of the proposed energy system transition under the societal pathway 

[19].  

Both the financing options discussed here are predicated on changes being 

made to how the Green Investment Bank operates and greater support from 

central government. Through the provision of government bonds to the 

Green Investment Bank and the creation of a community energy advisory 

body, it will possible for wind turbine deployment to increase past the 

potential deployment scenarios towards the technical potential. As 

discussed, the Green Investment Bank must be reformed to provide 

financing to private individuals and small communities, as it currently only 

provides funds for large-scale green projects [220]. A scheme, known as the 

Green Deal, provided funding to British individuals to retrofit their homes with 

energy-efficiency measures [223]. However, the Green Deal is no longer 

being funded by central government and is close to failure [223]. The failings 

of the Green Deal policy were centred on how it was marketed to consumers 

and the financing of the loans to cover the retrofitting [223]. The loans were 

offered with uncompetitive interest rates, between 2 % and 4 % and typically 

higher than available from high street banks at the time, and the qualification 

criteria for these loans required the savings made from the energy-efficiency 

measures to cover the repayments [223]. Therefore, for many residents, the 

financing options available under the Green Deal were unattractive [223]. 

Additionally, the Green Deal was marketed with a focus on the financial 

benefits of retrofitting [223]. However, consumers do not install these 

measures solely for financial returns, but rather value the broader benefits of 

greater comfort and wellbeing [224]. Therefore, any policy which offers loans 

to finance future wind turbine deployment should be designed to avoid the 

failings of the Green Deal. By offering low-interest loans, which are available 

for a wide range of projects and the structuring of the repayments to 

consider the individual circumstances of each project, it is likely that any new 

policy would be more successful. Additionally, promotion of the policy should 

adopt a holistic approach and emphasise the wider benefits available from 

wind turbine deployment rather than focus solely on the financial returns 

available. By providing the means to overcome the barriers which currently 

exist, it will be possible to attract a greater number of a younger adopters to 

the wind energy market.  
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These changes to how future installations are funded and how the 

remuneration from the FIT operates would require alterations to the FIT 

contracts, which adopters and electricity suppliers who provide the payments 

enter into. However, if such changes were to be introduced, it would 

represent an opportunity for further reformation of the FIT administration 

process.  

 Additional policy suggestions  

The MCS methodology has a prominent position in the FIT accreditation 

procedure and all wind turbine installers are required to conduct a wind 

resource assessment using the methodology to receive FIT payments [26]. 

Despite it being referred to as a wind resource methodology with a “relatively 

high degree of uncertainty“ [27], any additional wind resource estimates 

provided to potential adopters “must not be given greater prominence than 

the standard estimate and must have an associated warning that they 

should be treated with caution if they are significantly greater than the result 

given by the standard method” [27]. It is therefore entirely likely that the wind 

resource estimate provided by the MCS methodology may be treated as a 

methodology with sufficient accuracy, which this research has shown is not 

the case. This has been shown to be incorrect in the BLS research of 

Chapter 6 and therefore it is suggested that the MCS methodology should 

be replaced in the FIT accreditation process for wind turbines. Ideally, the 

BLS NCIC would replace the MCS methodology in the FIT policy, as this 

was shown to be the most accurate wind resource assessment technique. 

However, due to commercial constraints surrounding the NCIC data utilised 

in the BLS model, this may not be practicable. Alternatively, the BLS NOABL 

could be implemented instead of the MCS methodology, as this was also 

shown to be more accurate than the MCS. However, the wind speed 

predictions of BLS NOABL have been shown to be less accurate than the 

BLS NCIC and therefore its introduction would not be as effective. Replacing 

the MCS methodology is a vital part of the FIT policy reform required to 

support future wind deployment in Great Britain.  

While replacing the MCS methodology with the BLS model would offer more 

accurate long-term mean wind speed, this needs to be easily accessible to 

potential adopters and installers. For practitioners to implement the BLS 

model, it requires that they have access to either the NCIC or NOABL wind 

map and the surface roughness map created during this research. There are 

constraints on the commercial usage of both the NCIC and surface 

roughness map, which would need to be addressed. This procedure also 
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requires these practitioners to possess the requisite skills to properly 

implement the BLS model. In order for practitioners to implement the BLS 

model, in it’s current form, it would require the development of a standard 

operating procedure which could be followed to produce the mean BLS wind 

speed at a prospective site. Throughout this research, the BLS model was 

developed in the MATLAB programming environment and therefore 

currently, practitioners would need a license for this software to implement 

the BLS model. The price for a commercial MATLAB license is £1,800, a 

price point which is likely to be prohibitive for smaller wind turbine installer 

firms and individual potential adopters. Therefore, the BLS model in the form 

created during this research is considered here as unsuitable for the majority 

of potential small and medium wind turbine projects. 

To ensure that the results of this research are available to the adopters who 

will directly benefits, the output of the BLS model needs to be available 

within an alternative format. Creation of a web-based tool would allow the 

results of the BLS model to be easily disseminated. It is envisaged that 

practitioners would be able enter their location, likely to be in postcode form 

and their proposed hub heights to extract the long-term mean wind speed 

from the BLS model. The proposed tool would perform the necessary 

calculations behind the graphical user interface and would present only the 

mean wind speed and likely power density to the user. For such a tool to be 

successful, it is suggested here that simplicity for the users is crucial. It is 

therefore suggested that the tool be freely available and require minimal 

data entry from the user.  

However, for this tool to use the BLS NCIC data, which was the most 

accurate scaled wind speed data examined during this research, assent for 

the owners of the NCIC wind map data and the land use data would be 

required. Previous discussion with the Centre for Ecology and Hydrology 

(CEH) have indicated that the surface roughness data created from their 

land cover map could be made available for research purposes. This is also 

true of the NCIC wind map data, which it’s owners the Met Office allow 

access for research purposes. The proposed tool is likely to be used for 

commercial use and therefore further discussions would be required with the 

dataset owners to ensure that a web-based BLS model could be published.  

While the current FIT policy has served the PV market in Great Britain well, 

as evidenced by almost 800,000 installations, it has not functioned as 

effectively for the wind turbine market. The current system only provides the 

details of approved installers and technologies to consumers. It is therefore 
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these wind turbine installers who will undertake the wind resource and 

financial assessments for prospective consumers. While solar resource is 

relatively consistent with latitude, wind resource has been shown to vary 

spatially over short distances. A prospective consumer therefore must place 

their trust in the installer to provide an accurate wind resource estimation, 

which is vital in determining financial viability. Less than 10 % of all 

individuals considering a microgeneration installation in Great Britain have 

stated that they considered an installer as a trusted source of information 

[55]. It is therefore proposed that an independent body should be formed to 

provide impartial advice on the suitability of a proposed site, including an 

independent estimation of wind resource. Impartial advice from an 

independent body provides potential adopters a reference point, from which 

to evaluate the estimates offered by installers, who have a vested interest in 

a potential adopter purchasing their services. Additionally, this independent 

body could provide an alternative source of freely available wind speed data. 

While the NOABL data is currently freely available, the results of this 

research showed it to be of insufficient accuracy. Any future independent 

body could provide long-term mean wind speeds from the BLS model to 

potential adopters, from which they will be able to evaluate the estimates of 

potential energy and financial returns provided by a wind turbine installer 

using a more accurate estimate of long-term mean wind speed.  

While reformation of the FIT policy will be able to promote future 

deployments, additional reforms can be implemented to aid wind turbine 

deployment. Introduction of clear pathways for wind turbine planning 

applications would aid deployment [167]. By establishing the criteria on 

which a wind turbine will be considered during the planning process allows 

potential adopters to understand the likelihood of their applications being 

accepted. While each planning application for a wind turbine is site specific, 

it will be possible to develop a set of planning criteria, either nationwide or by 

each local council on which a wind turbine would be assessed. This would 

allow installers and their customers to evaluate an application prior to 

submission and would also streamline the process for planning officers. 

Additionally, a timetable for wind turbines and more generally, decentralised 

energy planning applications could be developed to ensure that potential 

adopters can meet key project dates without any delays from the planning 

process. These changes to the planning process for wind turbines would 

ensure that project budgets are not wasted, due to either delays in the 

planning process or rejection of the applications [167].  
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These proposed reforms could promote deployment in the wind turbine 

market under the FIT in Great Britain. The reforms would provide significant 

drivers in the market which could lead to a reduction in the capital costs of 

wind turbines in Great Britain. This reduction in capital costs is likely to lead 

to further deployment, as more locations become financially viable for a wind 

turbine. Such a development in the market would represent the crossing of 

the chasm in the adoption lifecycle of wind turbines, as it is likely that uptake 

may become more self-sustaining and less reliant on subsidies, following a 

reduction in the capital costs of small and medium scale wind turbines. 

Future deployment is vital in the wind turbine market in Great Britain and 

would allow the market to fulfil its technical potential. Increased deployment 

of wind turbines is also crucial to ensure that the societal pathway is able to 

deliver the required energy system transition across Great Britain. 

7.4 Future work  

During the course of the research and based upon the findings, a number of 

opportunities for future work have been identified. These opportunities focus 

on: improving the performance and accessibility of the BLS model and; use 

of surveying to determine individual adopter’s motivations for a wind turbine 

installation in Great Britain.  

Advancements to the BLS model that are proposed here focus on a wider 

validation sample of observational sites, developing improvements to offer 

more accurate wind speed predictions for mountain sites and to 

accommodate the use of NWP data. Additionally, the development of a web-

based tool using the BLS model to allow developers and installers to access 

the results of this research.  

The performance of the raw NCIC data and the NWP data, which offered 

more accurate wind speed predictions than available from the BLS model, 

stems from the assimilation dataset used to create either the NCIC or NWP 

data. The observational sites used in the validation sample of this research 

was likely to be part of the assimilation dataset of both the raw NCIC and 

NWP data. As the observational data was used to create or initiate the wind 

speeds in these datasets, it is likely that the prediction from each model will 

be highly representative of the actual wind speed. This is why the wind 

speed predictions from the BLS model were shown to be less accurate than 

those from either the raw NCIC and NWP data. Therefore, future work 

should develop an additional validation sample of observational data. The 

additional validation sample should not include any MIDAS sites, which are 
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likely to be part of the assimilation data for NWP data and possibly used in 

the creation of the NCIC data. It is likely that observational wind speed data 

would be taken from existing wind turbines sites. It was not possible to 

gather such data during this project and therefore it is likely that 

development of an additional validation sample could be a long-term project 

which requires the cooperation of the adopters to allow for long-term 

monitoring of the wind speed at their sites. Additionally, an enhanced 

validation sample could include observational wind speeds at heights other 

than 10 m, which was the only height at which wind speed was validated in 

this research. This enhanced validation sample would allow the performance 

of the BLS model to be compared with the raw NCIC and NWP data to be 

fully validated. This work would determine whether the results of the 

research presented in Chapter 4 was the result of limitations of the BLS 

model or limitations of the validation sample available.  

Development of the BLS model for mountain sites should include an 

orography correction methodology, which estimates wind speed change due 

to topological change. The results of the BLS research highlighted that at 

sites where the topological change was complex, the accuracy of wind 

speed available from the BLS using either NCIC or NOABL was considered 

low. This was due to the lack of an orographic correction within the BLS 

model. Introduction of an orographic correction through analysis of terrain 

data would allow the BLS model to correct a reference wind climatology in 

mountain sites more effectively. An orographic correction for the BLS model 

would be based on a methodology developed for correcting NWP wind 

speed forecasts for sub grid orography [100, 225]. Based upon topological 

data, this correction methodology would apply a roughness and height 

adjustment to a raw wind speed prediction, which for the BLS model would 

be the reference wind climatologies of NCIC or NOABL wind maps. These 

corrections account for the changes in wind speed which occur as wind 

flows over a hill [226]. This orography correction methodology would allow 

the BLS model to account for topological change in areas, where the BLS 

model over-predicted the wind speed. The overall value of this improvement 

to the BLS is considered to be low, certainly in Great Britain. In these 

mountain sites of Great Britain, it may be more suitable to utilise the raw 

reference wind climatology data as the estimation of long-term mean wind 

speed from these datasets exhibited greater accuracy than the scaled 

methodologies in this research. It is also highly likely that more advanced 

wind resource estimation techniques may be suitable for highly complex 

terrain. The value of adding an orographic correction to the BLS model is 
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likely to be higher if the BLS model was applied to other countries. 

Additionally, implementation of an orographic correction must be tested 

thoroughly to ensure that any parameterisation of orography within an input 

climatology is not overestimated. Each of the input climatologies utilised in 

this work contained an orographic correction [98-100] and therefore an 

additional orographic correction in the BLS model, if not appropriately 

developed, could adversely affect the accuracy of wind speed predictions.  

Improvements could also be made to the BLS model when utilising NWP 

data as the reference wind climatology. The results of the research have 

highlighted that the BLS model was not currently suitable for scaling NWP 

data, evidenced by the wind speed predictions having lower accuracy than 

the raw NWP data. The lack of accuracy in the BLS NWP wind speed stems 

from the incompatibility of the assumption of a logarithmic vertical wind 

profile under neutral stability in the BLS model equations and the realistic 

vertical wind profile offered in the raw NWP data. To address this factor, 

changes must be implemented in the BLS model to maximise the value of 

using NWP data as its reference wind climatology. The hourly time-series of 

wind speed in the NWP data can offer significant value for wind resource 

assessments of small and medium scale wind turbines, if scaled correctly. 

To achieve this, the BLS model should be modified to include a correction to 

account for the stability effects contained in the raw NWP data. By analysing 

the vertical wind profile in the raw NWP at multiple heights, it will be possible 

to understand how the modelled vertical wind profile differs from the 

assumed logarithmic vertical profile in the BLS model. A correction factor 

can then be applied during the estimation of the BLS NWP wind speed to 

account for this difference. The correction factor would have to be developed 

for each hourly wind speed as atmospheric stability differs with diurnal 

changes of atmospheric conditions. The need to develop a correction factor 

for each hour would be an intensive process, and one that must be carefully 

considered and validated. However, this change would allow the BLS model 

to maximise the potential of NWP data as a reference wind climatology. It 

would also allow the BLS model to enhance the value of the wind resource 

assessment by offering a description of seasonal and annual variations in a 

proposed site’s wind regime.  

In addition to these improvements to the BLS model, consideration of how 

this research can be disseminated into the market is required. Currently, the 

only freely available wind speed database for the UK is the NOABL 

database. Development of a web browser based tool, from which potential 
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adopters and installers could extract the BLS wind speed for their proposed 

site will allow for the results of this project to be applied to real-world 

situations. Ideally, this tool would utilise the BLS NCIC wind speeds as these 

were shown to be the most accurate of the scaling methodologies examined. 

However, there may be commercial constraints on use of the raw NCIC and 

Land Cover Maps, which may limit the use of BLS NCIC data in any 

proposed tool. If these commercial constraints do affect the implementation 

of BLS NCIC, BLS NOABL could be considered as an alternative source of 

wind speeds for the proposed tool. Such a tool would allow potential 

adopters to extract a long-term mean wind speed at any hub height for their 

site, which has been shown to be more accurate than raw NOABL. A 

development of this tool would also allow potential adopters to use the BLS 

wind speed as a reference point against which they can assess any further 

wind resource estimates. Such a tool is currently being created and trialled 

at the University of Leeds. 

Opportunities for future work with regards to the research conducted for the 

SER and peer effects model is centred on the use of survey work to analyse 

an individual wind turbine adopter’s motivations for installing. Survey work 

was not conducted during this project, as the adopters could not be identified 

due to privacy laws. Therefore, any future work which focused on surveying 

wind turbine adopters must overcome this barrier. Through greater 

partnership and collaboration with the electricity suppliers and regulatory 

bodies, it may be possible to gain access to these wind turbine adopters. If 

this were possible, these adopters can be surveyed to identify their individual 

motivations for installing a wind turbine.  

Any survey work that would be considered could be conducted as either a 

cross-sectional survey or a longitudinal survey of wind turbine adopters in 

Great Britain. A cross-sectional survey would allow for a single snapshot of 

an adopter’s motivations and views on their wind turbine installation, while a 

longitudinal survey would allow for an adopter’s perception of a wind turbine 

to be analysed over the wind turbine’s lifecycle. Each of these survey types 

have their merits and implementation of both would allow differing factors to 

be analysed. Cross-sectional survey work would allow the motivations to an 

individual’s decision to adopt to be identified. This would allow any future 

work to understand if these motivations are different between early and later 

adopters. A cross-sectional survey is likely to yield results which would focus 

on factors similar to those examined in the SER and peer effects research of 

this project. It is envisaged that a cross-sectional survey could offer a 
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definitive explanation of the underlying causes of the results presented in 

this project. The results of a cross-sectional survey would also allow for a 

spatio-temporal modelling of the uptake of wind turbine installations under 

the Feed-in Tariff in Great Britain. In comparison, a longitudinal survey of 

wind turbine adopters would allow for an individual adopter’s views and 

perception of their wind turbine installation over its lifespan be analysed. 

This research would analyse the operation of the Feed-in Tariff and any 

other financial incentives, including those proposed in Section 7.3, and how 

these have influenced wind turbine adopters. These research surveys, which 

can supplement the results presented in this thesis, will allow for an 

understanding of the individual motivations and perceptions of adopters in 

the wind turbine market of Great Britain. The results of such surveys could 

potentially be used to propose policy reforms which could promote future 

wind turbine deployment.  

7.5 Wider context for the research 

While this project has examined the small and medium scale wind turbine 

market in Great Britain, the results must be considered in the wider context 

of the electricity market of UK. The electricity market and particularly the 

generating sources of electricity in the market are slowly beginning to 

change. Despite renewable energy, both large and small scale, recently 

contributing it’s highest proportion of the UK’s electricity mix, 25 % in 2016 

[227], it is still a market dominated by fossil fuel generation. As both 

domestic and international reserves of fossil fuels, begin to become scarce, 

the need for an energy systems transition in the UK becomes greater, year 

on year. The role of the small and medium scale wind turbine market in this 

transition can be crucial, more for its influence on the population through the 

societal pathway rather the overall contribution to the electricity mix.  

As individuals and communities seek to ensure that the energy for their 

homes and businesses is economically and environmentally sustainable, the 

role of decentralised energy such as wind turbines becomes increasingly 

important. These technologies allow individuals to govern how their 

electricity is produced and protects them from increasing energy prices. 

Increased deployment of wind turbines demonstrates to other potential 

adopters that a change is possible, through the highly visible construction of 

a wind turbine. High levels of decentralised energy deployment could lead to 

the energy systems transition that is required in this country. While small and 
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medium scale wind turbines are not the panacea, they are an important part 

of the solution across Great Britain.  
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Appendix 

This appendix provides the results of the peer effects model in each of the 

12 clusters which were described in Chapter 6. 

The results of the peer effects model for the East Anglia cluster is presented 

in Table 33. 

Table 33 — Peer effects model for the East Anglia cluster 

 Cluster Areas Only Cluster and Surrounding Areas 
Variable Pre-FIT Phase One Phase Two Pre-FIT Phase One Phase Two 

Peer effect 
from wind 
turbines, β1 

1.79E−05 
(1.535) 

1.24E−04*** 
(5.042) 

6.40E−06** 
(2.31) 

1.58E−03 
(1.066) 

1.32E−03 
(1.4) 

1.81E−05 
(0.615) 

Feed-in 
Tariff, γ1 

 
−3.19E−05 
(−1.085) 

8.08E−06*** 
(3.911) 

 
1.52E−03 
(0.572) 

2.16E−05* 
(1.702) 

Intercept, 
α0 

3.52E−06*** 1.05E−03 −1.35E−04*** 9.45E−05 −4.76E−02 −3.06E−04 

R2 0.004 0.229 0.089 0.002 0.002 0.002 
N 1800 330 510 5160 946 1462 
t-test value of each coefficient is included in the parentheses 
*** — Significant at 99 %  
** — Significant at 95 % 
* — Significant at 90 %   

 

The results of the peer effects model for the Pennine cluster is presented in 

Table 34. 

Table 34 — Peer effects model for the Pennine cluster 

 Cluster Areas Only Cluster and Surrounding Areas 
Variable Pre-FIT Phase One Phase Two Pre-FIT Phase One Phase Two 
Peer effect 
from wind 
turbines, β1 

1.20E−04 
(1.607) 

1.98E−04*** 
(3.616) 

3.53E−05*** 
(2.832) 

1.72E−03* 
(1.898) 

1.47E−03** 
(2.405) 

7.08E−04 
(1.249) 

Feed-in 
Tariff, γ1 

 −4.69E−05 
(−0.745) 

7.87E−06** 
(2.341) 

 1.25E−04 
(0.058) 

7.07E−05 
(1.216) 

Intercept, 
α0 

1.20E−05** 1.49E−03 −1.33E−04** 1.80E−05 −2.91E−03 −1.57E−03 

R2 0.022 0.253 0.064 0.048 0.005 0.029 
N 1440 264 408 7020 1287 1989 
t-test value of each coefficient is included in the parentheses 
*** — Significant at 99 %  
** — Significant at 95 % 
* — Significant at 90 %   

 

The results of the peer effects model for the Cornwall cluster is presented in 

Table 35. 
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Table 35 — Peer effects model for the Cornwall cluster 

 Cluster Areas Only Cluster and Surrounding Areas 
Variable Pre-FIT Phase One Phase Two Pre-FIT Phase One Phase Two 
Peer effect 
from wind 
turbines, β1 

1.64E−05** 
(2.354) 

7.48E−05*** 
(6.347) 

1.80E−05*** 
(18.379) 

9.59E−05*** 
(6.196) 

2.50E−04* 
(1.854) 

2.36E−05*** 
(5.348) 

Feed-in 
Tariff, γ1 

 −5.56E−05 
(−1.031) 

1.15E−05*** 
(2.916) 

 −1.28E−04* 
(−1.732) 

9.48E−06*** 
(5.139) 

Intercept, 
α0 

9.81E−06*** 1.80E−03 −2.00E−04*** 1.84E−05*** 4.09E−03* −1.60E−04**
* 

R2 0.005 0.194 0.171 0.007 0.053 0.073 
N 1020 187 289 5280 968 1496 
t-test value of each coefficient is included in the parentheses 
*** — Significant at 99 %  
** — Significant at 95 % 
* — Significant at 90 %   

 

The results of the peer effects model for the Aberdeen cluster is presented in 

Table 36. 

Table 36 — Peer effects model for the Aberdeen cluster 

 Cluster Areas Only Cluster and Surrounding Areas 
Variable Pre-FIT Phase One Phase Two Pre-FIT Phase One Phase Two 
Peer effect 
from wind 
turbines, β1 

6.07E−05*** 
(2.677) 

9.22E−05*** 
(5.491) 

2.19E−05*** 
(5.612) 

8.31E−05** 
(1.982) 

2.34E−04 
(1.601) 

7.93E−05** 
(2.138) 

Feed-in 
Tariff, γ1 

 1.47E−04* 
(1.885) 

1.16E−05*** 
(3.726) 

 −1.20E−03* 
(−1.864) 

3.73E−05 
(1.458) 

Intercept, 
α0 

1.50E−05*** −4.55E−03* −1.85E−04*** 2.60E−05* 3.87E−02* −5.42E−04 

R2 0.032 0.158 0.079 0.000 0.006 0.004 
N 1020 187 289 6300 1155 1785 
t-test value of each coefficient is included in the parentheses 
*** — Significant at 99 %  
** — Significant at 95 % 
* — Significant at 90 %   

 

The results of the peer effects model for the East Yorkshire cluster is 

presented in Table 37 

Table 37 — Peer effects model for the East Yorkshire cluster 

 Cluster Areas Only Cluster and Surrounding Areas 
Variable Pre-FIT Phase One Phase Two Pre-FIT Phase One Phase Two 
Wind 
Turbines, 
β1 

−3.79E−06 
(−0.092) 

1.01E−04*** 
(2.793) 

2.64E−05*** 
(2.787) 

5.98E−05*** 
(2.932) 

5.01E−04* 
(1.783) 

2.63E−04 
(1.319) 

Feed-in 
Tariff, γ1 

 −1.64E−04 
(−1.6) 

6.97E−06 
(1.397) 

 −2.61E−04 
(−1.53) 

3.97E−05 
(1.173) 

Intercept, 
α0 

3.79E−06 5.34E−03 −1.33E−04 3.66E−06* 8.52E−03 −8.46E−04 

R2 0.000 0.103 0.077 0.003 0.045 0.051 
N 600 110 170 3120 572 884 
t-test value of each coefficient is included in the parentheses 
*** — Significant at 99 %  
** — Significant at 95 % 
* — Significant at 90 %   
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The results of the peer effects model for the Scottish Borders cluster is 

presented in Table 38. 

Table 38 — Peer effects model for the Scottish Borders cluster 

 Cluster Areas Only Cluster and Surrounding Areas 
Variable Pre-FIT Phase One Phase Two Pre-FIT Phase One Phase Two 
Peer effect 
from wind 
turbines, β1 

3.06E−04** 
(2.533) 

3.38E−04*** 
(10.463) 

4.56E−05*** 
(20.074) 

2.43E−04*** 
(2.672) 

3.83E−04*** 
(10.759) 

5.87E−05*** 
(4.012) 

Feed-in 
Tariff, γ1 

 7.46E−05 
(0.51) 

2.85E−05 
(1.328) 

 −1.69E−04* 
(−1.901) 

9.22E−06*** 
(2.916) 

Intercept, 
α0 

2.14E−05* −2.33E−03 −5.55E−04 1.08E−05*** 5.40E−03* −1.67E−04*** 

R2 0.099 0.637 0.156 0.040 0.279 0.082 
N 480 88 136 6720 1232 1904 
t-test value of each coefficient is included in the parentheses 
*** — Significant at 99 %  
** — Significant at 95 % 
* — Significant at 90 %   

 

The results of the peer effects model for the Hebrides cluster is presented in 

Table 39. 

Table 39 — Peer effects model for the Hebrides cluster 

 Cluster Areas Only Cluster and Surrounding Areas 
Variable Pre-FIT Phase One Phase Two Pre-FIT Phase One Phase Two 
Peer effect 
from wind 
turbines, β1 

8.87E−05** 
(2.161) 

6.51E−05 
(1.646) 

3.19E−05*** 
(3.469) 

8.40E−05*** 
(4.68) 

1.33E−04*** 
(5.073) 

2.92E−05*** 
(4.328) 

Feed-in 
Tariff, γ1 

 −1.27E−04 
(−0.469) 

3.07E−05*** 
(3.161) 

 −1.77E−04* 
(−1.765) 

2.16E−05*** 
(3.971) 

Intercept, 
α0 

1.98E−05* 4.56E−03 −5.05E−04*** 2.50E−05** 5.80E−03* −3.16E−04*** 

R2 0.045 0.042 0.087 0.014 0.139 0.061 
N 420 77 119 1500 275 425 
t-test value of each coefficient is included in the parentheses 
*** — Significant at 99 %  
** — Significant at 95 % 
* — Significant at 90 %   

 

The results of the peer effects model for the South Wales cluster is 

presented in Table 40. 

Table 40 — Peer effects model for the South Wales cluster 

 Cluster Areas Only Cluster and Surrounding Areas 
Variable Pre-FIT Phase One Phase Two Pre-FIT Phase One Phase Two 
Peer effect 
from wind 
turbines, β1 

1.16E−05* 
(1.785) 

2.43E−05 
(1.149) 

8.96E−06 
(1.107) 

2.53E−05*** 
(3.284) 

7.10E−05*** 
(4.662) 

2.06E−05*** 
(5.745) 

Feed-in Tariff, 
γ1 

 −8.18E−06 
(−0.143) 

−4.66E−08 
(−0.017) 

 −2.23E−05 
(−0.417) 

9.36E−06*** 
(4.348) 

Intercept, α0 6.46E−06* 2.96E−04 1.79E−05 8.59E−06*** 7.76E−04 −1.35E−04*** 
R2 0.008 0.018 0.010 0.008 0.060 0.050 
N 420 77 119 1980 363 561 
t-test value of each coefficient is included in the parentheses 
*** — Significant at 99 %  
** — Significant at 95 % 
* — Significant at 90 %   



- 277 - 

 

The results of the peer effects model for the Orkney Islands cluster is 

presented in Table 41. 

Table 41 — Peer effects model for the Orkney Islands cluster 

 Cluster Areas Only Cluster and Surrounding Areas 
Variable Pre-FIT Phase One Phase Two Pre-FIT Phase One Phase Two 
Peer effect 
from wind 
turbines, β1 

1.61E−04*** 
(13.284) 

1.02E−04*** 
(11.21) 

2.67E−05*** 
(4.735) 

1.18E−04*** 
(3.507) 

1.14E−04*** 
(7.447) 

2.95E−05*** 
(3.682) 

Feed-in 
Tariff, γ1 

 5.38E−06 
(0.051) 

1.54E−05** 
(2.446) 

 −1.12E−04 
(−0.862) 

3.02E−05*** 
(2.99) 

Intercept, 
α0 

1.51E−05** −1.49E−04 −2.65E−04** 1.35E−05** 3.75E−03 −4.45E−04** 

R2 0.282 0.639 0.252 0.101 0.263 0.073 
N 360 66 102 900 165 255 
t-test value of each coefficient is included in the parentheses 
*** — Significant at 99 %  
** — Significant at 95 % 
* — Significant at 90 %   

 

The results of the peer effects model for the Shetland Islands cluster is 

presented in Table 42. 

Table 42 — Peer effects model for the Shetland Islands cluster 

 Cluster Areas Only Cluster and Surrounding Areas 
Variable Pre-FIT Phase One Phase Two Pre-FIT Phase One Phase Two 
Peer effect 
from wind 
turbines, β1 

1.24E−04*** 
(7.676) 

5.23E−05 
(1.567) 

2.23E−05 
(1.249) 

1.25E−04*** 
(7.75) 

6.08E−05** 
(2.055) 

2.22E−05 
(1.381) 

Feed-in 
Tariff, γ1 

 −6.65E−04** 
(−2.106) 

3.39E−05* 
(1.927) 

 −7.07E−04** 
(−2.559) 

3.57E−05** 
(2.282) 

Intercept, 
α0 

4.19E−05 2.17E−02** −2.88E−04 3.54E−05 2.30E−02** −3.28E−04 

R2 0.144 0.108 0.040 0.148 0.138 0.047 
N 360 66 102 420 77 119 
t-test value of each coefficient is included in the parentheses 
*** — Significant at 99 %  
** — Significant at 95 % 
* — Significant at 90 %   
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The results of the peer effects model for the Northumberland cluster is 

presented in Table 43. 

Table 43 — Peer effects model for the Northumberland cluster 

 Cluster Areas Only Cluster and Surrounding Areas 
Variable Pre-FIT Phase One Phase Two Pre-FIT Phase One Phase Two 
Peer effect 
from wind 
turbines, β1 

7.82E−05* 
(1.823) 

1.22E−04** 
(2.072) 

1.78E−05 
(1.066) 

9.95E−05 
(0.624) 

6.65E−05 
(0.205) 

1.81E−05 
(0.408) 

Feed-in 
Tariff, γ1 

 1.27E−04 
(0.498) 

8.43E−06 
(0.907) 

 3.44E−04 
(0.244) 

2.46E−06 
(0.098) 

Intercept, 
α0 

2.67E−05 −3.97E−03 −1.36E−04 9.41E−05 −1.00E−02 1.40E−04 

R2 0.014 0.089 0.026 0.000 0.000 0.000 
N 240 44 68 2520 462 714 
t-test value of each coefficient is included in the parentheses 
*** — Significant at 99 %  
** — Significant at 95 % 
* — Significant at 90 %   

 

The results of the peer effects model for the Cumbria cluster is presented in 

Table 44. 

Table 44 — Peer effects model for the Cumbria cluster 

 Cluster Areas Only Cluster and Surrounding Areas 
Variable Pre-FIT Phase One Phase Two Pre-FIT Phase One Phase Two 
Peer effect 
from wind 
turbines, β1 

4.33E−04 
(1.314) 

5.53E−04*** 
(5.197) 

8.43E−05** 
(2.164) 

4.10E−04*** 
(5.235) 

4.62E−04*** 
(5.299) 

8.45E−05*** 
(4.69) 

Feed-in 
Tariff, γ1 

 9.16E−05 
(0.171) 

4.59E−05 
(1.211) 

 −3.23E−04 
(−1.273) 

2.18E−05** 
(2.009) 

Intercept, 
α0 

4.67E−05 −3.12E−03 −7.12E−04 8.00E−06 1.05E−02 −3.09E−04 

R2 0.086 0.453 0.092 0.084 0.136 0.069 
N 180 33 51 1140 209 323 
t-test value of each coefficient is included in the parentheses 
*** — Significant at 99 %  
** — Significant at 95 % 
* — Significant at 90 %   

 


