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ABSTRACT 

Parasitic protozoa of the genus Leishmania cause a spectrum of disease, affecting 12 million 

people worldwide. This project aimed to investigate the effect of Leishmania donovani infection 

on the gene expression of healthy/WT (Black 6) and immunocompromised (RAG2KO) mice. 

Differences in the gene expression of parasites in inoculum and tissue were also elucidated.  

WT and RAG mice were infected using an L. donovani inoculum, and were euthanised after 28 

days. Harvested spleens (and the inoculum) were used to generate RNA samples, from which 

mRNA was isolated and purified. Transcriptome data was generated using dual RNA-Seq 

approaches from the mRNA samples. After appropriate pre-processing, data underwent a number 

of bioinformatic analyses to explore differential gene expression, such as Gene Ontology, Gene 

Set Enrichment, and KEGG Pathway analysis.  

Comparison of different mouse spleen transcriptomes revealed that even in uninfected mice, WT 

mice more highly express genes related to immunoglobulins when compared with their 

immunocompromised counterparts. Healthy mice were found to react to infection through the 

induction of inflammatory response, and the production of NOX generating species. RAG mice still 

upregulated immunoglobulin-related genes in response to infection, despite their inability to 

generate antibodies, T-cells, and B-cells. However, RAG modulation of haeme and iron 

metabolism may contribute to defence against the parasites despite a lack of acquired immunity.  

Differences in the amastin, the key glycoprotein on the surface on intracellular-stage parasites, 

are apparent between the inoculum and tissue parasites, which may reflect microenvironment 

adaptation. Additionally, tissue-derived parasites showed significant upregulation of genes 

related to gene expression control, such as histones and DNA-packing.  

These experiments are among the first attempts to in vivo transcriptome sequence mice and 

Leishmania simultaneously, a powerful approach giving insight to action and reaction. However, 

these techniques are not without challenge, such as low parasite read counts. 
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CHAPTER 1: INTRODUCTION 

1.1 LEISHMANIASIS 

1.1.1 OVERVIEW 

The leishmaniases are a broad spectrum of diseases caused by protozoan parasites of the genus 

Leishmania, affecting humans and animals across a distribution covering five continents, mainly in 

the Middle East and South America (Pace 2014). Symptoms range from mild, self-curing 

cutaneous lesions to potentially fatal visceral organ damage (Reithinger et al. 2007; Kaye and 

Scott 2011). Borne by sandfly vectors, and with latent populations in rodent and dog reservoirs, 

over 350 million people are at risk, with 12 million affected globally (Pace 2014; Okwor and 

Uzonna 2016; WHO 2016). Leishmaniasis contributes a significant burden on global health; among 

parasitic diseases, leishmaniasis is the second biggest cause of mortality and the third highest 

cause of morbidity (in terms of DALYs) (Reithinger et al. 2007; Pace 2014). 

 

1.1.2 CLINICAL DISEASE AND SUBTYPES 

Leishmaniasis manifests in one of three disease tropisms, causing cutaneous, visceral, or 

mucocutaneous disease, depending on the infecting Leishmania species. Cutaneous leishmaniasis 

(CL), predominantly caused by L. major, is the most commonly occurring form of the disease, 

causing approximately 1.2 million new cases each year (Pace 2014). Though rarely fatal, CL can 

cause severe scarring and disfigurement of areas exposed to the sandfly vector, with 

psychological and social implications (Reithinger et al. 2005; Kedzierski et al. 2006; Okwor and 

Uzonna 2016). Mucocutaneous leishmaniasis (MCL) is relatively rare, with only 25,000 new cases 

each year, and occurs when the host immune response allows parasites to escape cutaneous 

lesions, months or years after infection (Pace 2014). MCL is most often caused by L. braziliensis, 

though can be caused by other Leishmania species (Kedzierski et al. 2006; Reithinger et al. 2007; 

Maretti-Mira et al. 2012). Visceral leishmaniasis (VL or kala-azar) is the most severe form of the 

disease, and is responsible for 0.4 million new infections every year. VL occurs in both the New 

World, where the causative agent is L. infantum (also known as L. chagasi), and the Old World, 

where L. donovani is responsible (WHO 2016). Untreated VL is often fatal, and patients develop 

severe disease with symptoms such as splenic and hepatic organomegaly (WHO 2013; Pace 2014). 

Drug treatment for VL is often lengthy and toxic, and severe post-treatment complications can 

occur, such as post kala-azar dermal leishmaniasis, or PKDL (WHO 2013; Pace 2014; Tschoeke et 

al. 2014). 
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Table 1: A summary of the different forms of leishmaniasis. Although each form can be caused by 
several Leishmania species, the most common are listed.  

Type of 
leishmaniasis 

Signs and symptoms Location of symptoms Typical causative 
agents 

Cutaneous (CL) Cutaneous lesions which 
can lead to severe scarring 

Areas of skin exposed to 
sandfly bites such as the 
face, arms and hands 

L. major 

Mucocutaneous 
(MCL) 

Destruction of mucosal 
membranes and nearby 
soft tissue, which can lead 
to disfigurement 

Mucosal membranes, 
typically starting in the 
nose and progressing 
through the respiratory 
tract 

L. braziliensis 

Visceral (VL) Fever, diarrhoea, 
organomegaly 

Visceral organs, especially 
the liver and the spleen 

L. infantum/chagasi 
and L. donovani 

Post kala-azar 
dermal (PKDL) 

Rash, papules, lesions, loss 
of pigmentation 

Anywhere on the skin L. infantum/chagasi 
and L. donovani 

 

1.1.3 EVOLUTION AND TAXONOMY 

Although technically eukaryotes, Leishmania diverged from other eukaryotes very early on. 

Leishmania are classified in the Kinetoplastea class, characterised by circular DNA organelles 

known as kinetoplasts. Along with human parasites Trypanosoma brucei and Trypanosoma cruzi, 

Leishmania are considered members of the order Trypanosomatida (Akhoundi et al. 2016).  

Modern Leishmania taxonomy is still unresolved. However, there is some agreement on the 

division of the genus into subgenus Viannia, containing New World Leishmania species such as L. 

braziliensis and L. guyanensis, and subgenus Leishmania, which contains some Old World 

paleotropical species including L. donovani, L. infantum and L. major, and some New World 

neotropic species such as L. mexicana (Akhoundi et al. 2016).  
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Figure 1. A simplified taxonomy of the major human-infective Leishmania species, adapted from 
Akhoundi et al. 2016. 

 

1.2 LIFE CYCLE AND INFECTION 

1.2.1 OVERVIEW 

Leishmania species require two hosts to complete their life cycles, one mammalian, and one 

invertebrate. Across these stages, Leishmania may take the form of long, slender promastigotes in 

infective (metacyclic) and non-infective (procyclic) forms, or rounded intracellular amastigotes 

(Gluenz et al. 2010; Pace 2014). 
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Figure 2. Taken from the centre of disease control and prevention (www.cdc.gov). Mammalian 
host stages are shown in blue, with sandfly stages in red.  

 

Different life cycle stages show distinct morphological, biochemical and transcriptomic profiles. 

These changes reflect adaptation to various microenvironments in the vector and host (Cohen-

Freue et al. 2007; Saxena et al. 2007; Franco et al. 2012; Moradin and Descoteaux 2012). As 

promastigotes differentiate into amastigotes, the parasites change shape, reduce their flagellum 

to a small tip, replace their surface lipophosphoglycan (LPG) coat with amastin, and undergo a 

number of gene expression changes, for example, changing their metabolic pathway preference 

from glucose and proline to amino acid and fatty acid beta oxidation (Gluenz et al. 2010; Franco et 

al. 2012; Fiebig et al. 2015). In order to tightly manage the differentiation between life cycle 

stages, gene expression is under fine control, and many subsets of genes are differentially 

expressed between stages. For example, genes upregulated in amastigotes are typically 

transporters, surface proteins, signalling molecules and cell growth related. Genes upregulated in 

promastigotes are mostly related to motility, respiration and biosynthesis (Saxena et al. 2007; 

Rastrojo et al. 2013; Fiebig et al. 2015). 

Leishmania do not usually regularly undergo sexual reproduction, instead relying on a number of 

binary fissions at different life cycle stages to expand their population in the vector and the host 

(Killick-Kendrick 1990; Ravel et al. 2006). Despite the theoretical advantages of sexual 

http://www.cdc.gov/
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recombination in a host-parasite system, there are costs associated with it, and Leishmania 

appears to prefer asexual reproduction. However, the presence of hybrid genotypes in some 

natural populations, as well as linkage equilibrium studies, suggest that sexual reproduction does 

occur, albeit at very low frequencies (Victoir and Dujardin 2002; Ravel et al. 2006; Kazemi 2011; 

Cantacessi et al. 2015). 

 

1.2.2 LEISHMANIA INFECTION OF THE MAMMALIAN HOST  

The first stage of the life cycle in the mammalian host begins when sandflies of the genus 

Lutzomyia (in the New World) and Phlebotomus (Old World) take a blood meal from a mammalian 

host and are induced to regurgitate a bolus of parasites, through parasite secretion of 

Promastigote Secretory Gel (PSG), into the bite wound (Reithinger et al. 2007; Pace 2014). 

Infective metacyclic promastigotes, previously inhabiting the fly gut, enter the site along with a 

complex mixture of immunomodulators (Maxwell-Silverman and Reiner 2012). Pro-inflammatory 

components of the inoculum, such sandfly saliva, recruit white blood cells to the site for 

predation, while Leishmania-secreted microvesicles known as exosomes are taken up by host cells 

to induce a pro-parasite phenotype and interfere with the developing immune response by 

targeting cell signalling pathways (Reithinger et al. 2007; Kaye and Scott 2011; Maxwell-Silverman 

and Reiner 2012; Atayde et al. 2015). The parasites manage to avoid complement lysis in blood 

through steric hindrance, achieved by long surface lipophosphoglycan (Franco et al. 2012).  

 

 

Figure 3. Taken from Atayde et al. 2015. The sand fly vector injects pro-inflammatory saliva 
components and Leishmania-secreted exosomes with the parasite bolus.  
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1.2.3 UPTAKE OF PARASITES INTO HOST CELLS  

Through a variety of mechanisms, promastigotes are taken up into cells that are recruited to the 

invasion site, such as macrophages or dendritic cells (Reithinger et al. 2007; Kaye and Scott 2011; 

Maxwell-Silverman and Reiner 2012). Care must be taken by the promastigotes when entering the 

cells, as incorrect uptake can activate cellular antimicrobial defences such as reactive oxygen 

species production, leading to parasite death (Franco et al. 2012). Instead, promastigotes enter 

the cell through pathways that avoid triggering such reactions.  

The major uptake pathways used by Leishmania rely on zippering phagocytosis mechanisms, and 

do not activate antimicrobial defences (Kaye and Scott 2011; Franco et al. 2012). For example, 

mannose-binding lectin binds to the Leishmania LPG coat, allowing for the uptake via the C3 

convertase and C3b generation complement receptor pathway (Franco et al. 2012; Moradin and 

Descoteaux 2012).  Several other pathways/receptors are also used, such as the mannose-fucose 

receptor, attachment of C-reactive protein to LPG and the CRP receptor, and recruitment of 

lysosomes to the cell surface via damage caused by flagellar beating in a manner similar to 

Trypanosoma cruzi (Forestier et al. 2011; Franco et al. 2012).  

 

1.2.4 EVADING THE IMMUNE SYSTEM 

An alternate non-activatory pathway into a host macrophage, known more commonly as the 

trojan horse mechanism, involves uptake into a non-macrophage white blood cell such as a 

neutrophil, inducing apoptosis, and being taken up by persisting in the apoptotic blebs into a 

macrophage, the preferred host cell (Kaye and Scott 2011). By hiding within the immune cells 

themselves, and producing low levels of pathogen-associated molecular patterns (PAMPs), 

Leishmania can effectively obscure their presence from the host immune system. 

In addition to concealing themselves inside host cells, Leishmania are also master regulators of 

host immunity (Jaramillo et al. 2011; Kaye and Scott 2011). Gp63, a Leishmania surface protease, 

cleaves mTOR, a host kinase involved in translation regulation. The downstream consequence of 

this is a generalised inhibition of host protein synthesis, creating a more permissive environment 

for infection (Jaramillo et al. 2011). Other experiments have shown that Leishmania are able to 

manipulate the phenotype and activation status of their host cells in order to reduce production 

of antimicrobial NOx species (Franco et al. 2012). 
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1.2.5 INTRACELLULAR SURVIVAL 

The host cell is no safe haven, and the promastigotes must prevent fusion of the endosome that 

contains them with host cell lysosomes, which contain hydrolytic enzymes strong enough to 

destroy bacterial pathogens (Kaye and Scott 2011; Franco et al. 2012; Moradin and Descoteaux 

2012). The promastigotes prevent fusion by preventing the maturation and acidification of the 

phagosome for long enough to differentiate into the next life cycle stage, developing into 

amastigotes which show immunity to the harsh environment they are contained within 

(Reithinger et al. 2007; Kaye and Scott 2011; Moradin and Descoteaux 2012). The amastigotes 

then develop the endosome into a parasitophorous vacuole, in which they draw nutrients from 

the host cell and multiply by binary fission (Reithinger et al. 2007). Pathology is thought to be 

caused by a complicated set of cellular and immune interactions including neutrophils, natural 

killer cells, and dendritic cells (Reithinger et al. 2007). 

 

1.2.6 TRANSMISSION TO SANDFLY HOSTS 

The next stages of the Leishmania life cycle occur in the sandfly host. Cells parasitised by 

amastigotes are ingested with a blood meal taken from an infected human host (Reithinger et al. 

2007). Depending on their life cycle stage, Leishmania may inhabit a number of digestive tract 

microenvironments. Though typically considered only minor life cycle stages, paramastigotes are 

found inhabiting the mouthparts and oesophogus, haptomonads at the stomodeal/cardiac valve, 

and leptomonads and nectomonads can be found at various gut locations (Killick-Kendrick 1990; 

Schlein 1993).  
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Figure 4. Taken from Schlein 1993. The gut of the sand fly is divided by the arrows into A, foregut, 
B, thoracic midgut, C, abdominal midgut and D, hindgut. The development of Leishmania 
promastigote stages are indicated as p, paramastigote, h, haptomonad, i, infective promastigote, 
and n, nectomonad. 

 

Once inside the fly gut, contained within the midgut peritrophic membrane, amastigotes 

differentiate into non-infective procyclic promastigotes which undergo replication (Killick-

Kendrick 1990). The parasite LPG surface coat grants protection against the hydrolytic digestive 

enzymes of the sandfly digestive tract (Franco et al. 2012). To avoid being excreted, 

promastigotes transform into nectomonads, which attach to the fly gut epithelium using flagella 

(Killick-Kendrick 1990; Schlein 1993; Gluenz et al. 2010). Galectins are expressed in the sandfly 

midgut, unique to each species. Parasite LPG is the critical molecule for attachment to galectin, 

which also shows polymorphism between species (Kamhawi et al. 2004; Franco et al. 2012; 

Abrudan et al. 2013). Since attachment to the midgut is essential for survival, the compatibility of 

parasite LPG to host galectin dictates vector species tolerance (Kamhawi et al. 2004). In order to 

migrate to the foregut, the nectomonads differentiate into leptomonads, which replicate again 

before finally transforming into metacyclic promastigotes, ready for infection (Killick-Kendrick 

1990; Schlein 1993).   
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1.3 DIAGNOSIS, TREATMENT AND CONTROL  

1.3.1 OVERVIEW 

Current treatments and strategies for control are dependent upon region (Rai et al. 2013; WHO 

2013). Diagnosis relies mostly on direct visualisation of parasites through culture or microscopy, 

or through detection of parasite DNA through PCR-based methods. Anti-Leishmania antibody 

serology tests exist with mixed reliability (Reithinger et al. 2007; WHO 2010; Moore and 

Lockwood 2011; WHO 2013). The most commonly used drug treatments include pentostam, 

glucantime, amphotericin B, pentamidine, paromomycin and miltefosine for both CL, VL and their 

variants (Croft et al. 2006; Perry et al. 2013; Pace 2014). Treatments are often expensive and 

considered a major contributing factor in the poverty of affected patients. Patients are often too 

sick to work and thus unable to afford treatments; leishmaniasis also leaves patients susceptible 

to opportunistic infections. (WHO 2013; Okwor and Uzonna 2016). 

 

Table 2: An overview of key treatments for leishmaniasis. 

Drug treatment Disease Mechanism Caveat 

Pentavalent 
antimonials e.g 
Pentostam and 
glucantime 

Cutaneous, visceral 
and mucocutaneous 

Currently unknown; 
thought to be related to 
inhibition of metabolism 
and protein synthesis 

Severe hepatic and 
renal toxicity; painful 
administration 

Amphotericin B Visceral and 
cutaneous 

Induction of pore 
formation in membranes 

Expensive in 
liposomal form 

Pentamidine Second-line for 
visceral, cutaneous 
and diffuse 
cutaneous 

Inhibition of polyamine 
synthesis and 
mitochondrial 
membrane potential 
interference 

Resistance develops 
quickly, so treatments 
must be used 
sparingly 

Miltefosine Visceral, cutaneous 
and diffuse 
cutaneous 

Interference with 
apoptosis and sterol 
biosynthesis 

High relapse rate, 
particularly on the 
Indian Subcontinent 

 

1.3.2 CURRENT TREATMENT PROGRAMMES  

Pentavalent antimonials such as pentostam (sodium stibogluconate, or SSG) and glucantime 

(meglumine antimoniate) have been used to treat leishmaniasis for over 60 years (Croft et al. 

2006). The drugs are administered through injection, and have severe toxic side effects 

(Reithinger et al. 2007; Perry et al 2013). The exact mechanisms through which antimony-based 
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treatments are thought to work are currently unknown, though research suggests inhibition of 

protein synthesis, glycolysis and metabolism (Croft et al. 2006; Perry et al. 2013). 

As with many anti-parasitic drugs, amphotericin B was initially developed as an antifungal before 

being adapted for anti-leishmanial use. The major sterol in mammalian cells is cholesterol, but in 

target organisms such as Leishmania, the major sterol is ergosterol instead; Amphotericin B has a 

high affinity for ergosterol, binding and causing pore formation in membranes (Croft et al. 2006). 

Pentamidine has been used as a second-line treatment for VL, CL and diffuse CL, and is thought to 

have antimicrobial activity through inhibition of polyamine synthesis and interfering with 

mitochondrial membrane potential (Croft et al. 2006).  

The antibiotic paromomycin works through an unknown mechanism in Leishmania, though in 

bacteria it interferes with biosynthesis through binding to the 16S rRNA (Croft et al. 2006).  

Originally trialled as an anti-cancer drug, miltefosine interferes with sterol biosynthesis pathways 

to kill Leishmania parasites (de Morais-Teixeria et al. 2011; Rai et al. 2013).  

 

1.3.3 APPLICATION OF COMBINATION THERAPIES  

Although initially used alone, many drugs are now being used in combination therapies. A number 

of advantages exist for combination therapies over monotherapies, for example, shorter 

treatment regimens using smaller doses are typically cheaper and more effective than 

monotherapies (van Griensven et al. 2010).  

Smaller doses of each individual drug reduce the associated toxic side effects and shortens the 

treatment duration, increasing treatment regime compliance. Combination therapy is also 

associated with lower rates of mortality and complications, when compared with single drug 

treatments (van Griensven et al. 2010). Combination therapies may also be more effective in 

patients with co-infections such as TB or HIV, where ‘classical’ single-drug treatments often fail 

(van Griensven et al. 2010; Trinconi et al. 2014). 

Treatments together can have additive effects, working synergistically to achieve better results 

than they would have individually. While not all treatment combinations achieve this effect, some 

display a high level of activity enhancement, for example, amphotericin B and miltefosine, or SSG 

with paromomycin (Croft et al. 2006; Trinconi et al. 2014).  

 

1.3.4 TREATMENT RESISTANCE 

As with antibiotics, the time from deployment resistance is highly variable, and dependent on a 

number of factors. Some treatments, such as pentavalent antimonials, have been used as a front-
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line drug for over 60 years with resistance only developing recently - whereas some much more 

recently licensed treatments, paromomycin or miltefosine, for example, had reports of resistance 

almost immediately (Croft et al. 2006).  

The majority of resistance is thought to be attributable to overuse and misuse of drugs. Widely 

used pentavalent antimonials are available over-the-counter which is likely a major contributor to 

overuse (Croft et al. 2006; van Griensven et al. 2010). A large proportion (73%) of patients were 

found to seek medical advice from non-qualified practitioners, who may give inappropriate usage 

instruction. One survey found that only 26% of patients followed official treatment guidelines, for 

example, patients often took breaks from treatment citing fears about renal toxicity (Reithinger et 

al. 2005; Croft et al. 2006). Poor healthcare infrastructure in countries where leishmaniasis is 

common means that delays in diagnosis and treatment are common, allowing infection to more 

thoroughly establish and making treatment less effective (van Griensven et al. 2010). 

Combination therapy is a common approach to tackling resistance in infectious disease, for 

example, use of dual therapies is becoming increasingly common in the treatment of malaria 

(Trinconi et al. 2014). In the case of leishmaniasis, use of combination therapies to deter the 

development of resistance is expected to be relatively effective, given that current drug 

treatments span a number of chemical classes and targets. A consequence of delaying the 

appearance of resistance using combination therapies is the extension of the usefulness of 

current drugs as effective treatments (van Griensven et al. 2010). Ideally, however, resistance can 

be dealt with by simply developing new drugs for new targets, to help avoid cross-resistance 

(Croft et al. 2006). 

 

1.3.5 TREATMENT EFFICACY 

A number of host factors are known to influence treatment efficacy, such as pharmacokinetics 

and immune status. (Reithinger et al. 2007; Moore and Lockwood 2011; Perry et al. 2013; Rai et 

al. 2013; Fernandes et al. 2016) In particular, pentavalent antimonial drugs and pentamidine 

appear affected by the host T-cell response, which is important in HIV co-infections and other 

patients suffering from immunosuppression. Other drugs such as miltefosine and amphotericin B 

appear unaffected by T-cell response (Croft et al. 2006). 

Leishmania factors may also affect treatment potency (Croft et al. 2006; Rai et al. 2013; 

Fernandes et al. 2016). Natural variance in species and strain will affect the parasite’s ability to 

tolerate drug pressure, for example, antimonial drugs such as glucantime appear to be especially 

effective against some species (Croft et al. 2006). A number of mechanisms exist to cope with 
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drugs such as decreased uptake, increased export, metabolic inactivation and sequestration (Croft 

et al. 2006; Perry et al. 2013).  

 

1.3.6 APPROACHES TO VACCINES AND CURRENT DEVELOPMENTS  

Unusually for a parasitic disease, leishmaniasis is thought to be controllable by vaccination 

(Kedzierski et al. 2006; Gillespie et al. 2016). Compared with other parasitic diseases, Leishmania 

has a relatively simple life cycle, and patients show general resistance to reinfection (Kedzierski et 

al. 2006). Leishmanisation, a method used historically in the Soviet Union, Iran and Israel, 

involving injection of live parasites, has seen recent safety measures introduced such as drug 

sensitivity and suicide genes for a controlled infection. Infections were typically performed on the 

leg to avoid facial scarring (Kedzierski et al. 2006; Reithinger et al. 2007; Kumar and Engwerda 

2014; Gillespie et al. 2016). 

More modern attempts at developing a vaccine have considered DNA vaccines, recombinant 

proteins, sandfly salivary proteins, and attenuated parasites (Kedzierski et al. 2006; Reithinger et 

al. 2007; Kumar and Engwerda 2014). Use of dead promastigotes in clinical trials were deemed 

safe, but ultimately failed to induce a protective immune response. Live, attenuated parasites can 

allow for the development of a full immune response, but the method through which they are 

attenuated may cause rapid elimination from the body, preventing such a response progressing 

(Kedzierski et al. 2006; Kumar and Engwerda 2014). There is always a minor risk in using 

attenuated parasites that they may regain pathogenic capacity.  

No vaccine is currently licensed for leishmaniasis, though several have progressed to various 

stages of clinical trial. LEISH-F2 and LEISH-F3 are based on antigen epitopes expressed in bacteria, 

and have both progressed to phase II trials. (Gillespie et al. 2016). Ad5-KH uses an adenovirus 

vector to deliver two Leishmania antigens, and is also currently undergoing clinical trials (Maroof 

et al. 2012). Other vaccines, such as LiESAp-MDP and Leish-111F, show some potential but are 

limited by parasite genetic variation - the vaccines only provide protection against species that are 

genetically close to the species from which the vaccine was generated (Kumar and Engwerda 

2014). 

 

1.3.7 VECTOR CONTROL, ECOLOGICAL CONTROL, ALTERNATIVE STRATEGIES  

A wide variety of strategies are applied to control both CL and VL, largely relying on insecticides 

and reducing potential reservoirs.  
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For some Leishmania species, humans are the sole reservoirs, such as L. donovani and L. tropica 

(WHO 2010). In the case of many others, particularly in the Mediterranean, stray dogs and a 

variety of other wild mammals may act as reservoirs (Kedzierski et al. 2006; WHO 2010; Pace 

2014; WHO 2016). Mass culling of stray dogs has historically been shown to be ineffective. 

Instead, to control spread via dog reservoirs, insecticide-impregnated collars has been used to 

great success in reducing VL incidence in countries such as Brazil and Iran (WHO 2010; Cantacessi 

et al. 2015). Destruction of reservoir habitats proximal to settlements has also been effective, 

such as the destruction of gerbil burrows (WHO 2010).  

Vector control has many facets. WHO recommends an integrated approach in order to interrupt 

leishmaniasis transmission, using chemicals, environmental management and personal protection 

(WHO 2010). Use of chemical insecticide sprays in domestic and animal housing is an effective 

way to reduce exposure to sandflies, in addition to impregnated and sprayed nets (Pace 2014).  

 

1.4 GENE EXPRESSION SYSTEMS IN KINETOPLASTIDS  

1.4.1 OVERVIEW 

Despite being taxonomically eukaryotic, Leishmania and other kinetoplastids show highly 

divergent genome organisation and regulation of gene expression when compared with features 

associated with classical eukaryotes (Kazemi 2011; Rastrojo et al. 2013; Tschoeke et al. 2014; 

Fiebig et al. 2015).  

 

1.4.2 GENOME ORGANISATION 

Kinetoplastids show highly divergent methods of controlling gene expression when compared 

with other eukaryotes, and this is reflected by their genome organisation. Genes are arranged in 

tandem arrays, typically containing between 10 and 100 genes not necessarily related by function 

or homology. These genes lack introns, promoters and enhancers, and are transcribed together as 

a single giant polycistron (Clayton and Shapira 2007; Saxena et al. 2007; Kramer 2012; Cantacessi 

et al 2015). In addition to unusual organisation, polycistronic transcripts also undergo unusual 

post-transcriptional processing. Mature mRNA is generated through trans-splicing, a process 

which attaches a 39nt ‘splice leader’ (SL) sequence to the 5’ end of the transcripts, and 

polyadenylates the 3’ end (Clayton and Shapira 2007; Kazemi 2011; Siegel et al. 2011; Kramer 

2012; Rastrojo et al. 2013). 
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Figure 5. Taken from Landfear 2003. Splice leader (SL) RNAs are transcribed from SL genes. 
Multiple ORFs are transcribed together in a polycistronic transcript, which are separated into 
individual mature mRNAs through trans-splicing. This process involves the addition of the SL to 
the 5’ end of the transcript, and polyadenylation of the 3’ end. 

 

1.4.3 REGULATION OF TRANSCRIPTION 

Around 8% of the genes in the human genome code for DNA-binding proteins, on top of other 

DNA-regulatory elements such as transcription factors, promoters and enhancers (Kramer 2012). 

In kinetoplastids, chromatin-remodelling enzymes are massively under-represented, with RNA 

polymerase II promoters and enhancers are almost entirely absent as protein-coding gene 

expression is regulated through alternative methods (Clayton and Shapira 2007; Kazemi 2011; 

Cantacessi et al. 2015). Instead, transcriptional start and stop sites are marked by epigenetic 

variation such as histone protein variants, base variants such as base J, and histone modifications 

(Siegel et al. 2011; Van Luenen et al. 2012). Exceptions to the absence of promoter elements do 

exist - the only well characterised RNA polymerase II promoter is for the splice leader RNA gene, 

for example (Kazemi 2011).  

 

1.4.4 A COMBINED APPROACH TO GENE REGULATION 

Due to the general lack of promoter and enhancer elements, polycistron transcription occurs at 

approximately the same rate, causing a basal level of gene transcription (Kramer 2012; Fiebig et 

al. 2015). Given that kinetoplastids are still able to react to environmental stimuli and undergo 
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differentiation, gene regulation must occur post-transcriptionally (Clayton and Shapira 2007). This 

is likely achieved through a combination of mRNA stability mediated by elements in the 3’ UTR, 

signalling cascades, riboswitches and RNA thermometer-like elements, protein localisation, 

stability and degradation, and phosphorylation events (Clayton and Shapira 2007; Cohen-Freue et 

al. 2007; Siegel et al. 2011; Kramer 2012; Cantacessi et al. 2015).  

 

1.4.5 GENOMIC FLEXIBILITY 

The first Leishmania genome to be sequenced was L. major, revealing a genome of 32.8Mbp, with 

8,311 protein-coding genes predicted (Ivens et al. 2005; Tschoeke et al. 2014). The genomes of 

Leishmania species show an unusually high degree of conservation when compared to other 

microbes that have been diverged for similar periods of time; L. major, L. infantum and L. 

braziliensis average 8,300 protein-coding genes, of which 99% were highly syntenic (Peacock et al. 

2007; Mannaert et al. 2012; Tschoeke et al. 2014). Very few unique genes exist among each 

species, with L. braziliensis, L. infantum and L. major showing 47, 27 and 5 unique genes 

respectively (Tschoeke et al. 2014). 

Old world species of Leishmania such as L. major, L. donovani and L. infantum have 36 

chromosomes; however, this is not true for all Leishmania species, as others such as L. braziliensis 

and L. mexicana have 35 and 34 respectively, due to chromosome fusion events. In L. mexicana 

group species, chromosomes 8 and 29, and 20 and 6 have fused; in L. braziliensis group species, 

20 and 34 have fused (Ivens et al. 2005; Peacock et al. 2007; Mannaert et al. 2012; Lachaud et al. 

2014). The exact number of chromosome copies varies between chromosome, species, strain and 

population, but the haploid genome totals between 29 and 33 Mb in size (Cantacessi et al. 2015). 

Across 6 chromosomes studied using fluorescent in-situ hybridisation, L. infantum, L. tropica and 

L. amazonensis appear primarily disomic, while L. donovani is more heterogeneous, with different 

chromosomes showing monosomy, disomy and trisomy (Lachaud et al. 2014). L. braziliensis is 

primarily triploid, with some tetrasomic chromosomes, and a single hexasomic chromosome 

(Mannaert et al. 2012). 

In addition to their unusual genome organisation and expression system, Leishmania are also 

unusual even within trypanosomatids in their tolerance to chromosome number variation and 

genomic plasticity (Kazemi 2011; Cantacessi et al. 2015; Fiebig et al. 2015). In most eukaryotes, 

euploidy such as haploidy or diploidy is common, and variation is often indicative of disease. 

Through gene dosage consequences, changes in ploidy can be severely detrimental, even lethal. 

However, Leishmania appear tolerant to such changes, with no measurable consequence in terms 

of cell growth (Mannaert et al. 2012; Lachaud et al. 2014).  
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Populations of Leishmania, even within the same infection, exhibit mosaic aneuploidy, in which 

chromosome copy number variation exists between individuals, from monosomy to pentasomy. 

(Lachaud et al. 2014; Cantacessi et al. 2015). A number of potential functions have been 

suggested for the amplification of genes or chromosomes in Leishmania. These changes in gene 

dosage can be brought about through whole chromosome duplication, whole genome 

duplication, or just a translocation of the target gene to another chromosome (Mannaert et al. 

2012). The ability of Leishmania to vary their genotype/karyotype, and therefore their phenotype, 

within a clonal population is considered an inherent advantage (Sterkers et al. 2012). 

Variation in gene dosage by ploidy or copy number change is likely a useful mechanism in 

adapting to different environments and microenvironments, in response to the changing 

conditions within a host (Mannaert et al. 2012; Sterkers et al. 2012; Rogers et al. 2014). It has also 

been suggested that gene dosage may contribute to the differences in tissue tropism between 

Leishmania species, as well as regulating pathogenicity and virulence (Sterkers et al. 2012; 

Cantacessi et al. 2015) 

Several studies have noted chromosomal amplification as a response to the presence of anti-

leishmanial drugs, both in vivo and in vitro. Deliberate induction of drug resistance is associated 

with chromosomal and genes-specific amplification in experimental studies, though the 

chromosomes amplified in response to drug resistance induction have been found to revert in 

some cases, after the pressure in question was relieved (Mannaert et al. 2012; Lachaud et al. 

2014). Resistance to sodium arsenate and methotrexate has been observed with gene 

amplification between 2 and 20-fold.  Amplifications have also been implicated in the resistance 

of Amphotericin B and pentostam (Kazemi 2011). The extent of resistance may correlate with the 

number of copies of the gene conveying resistance; this would agree with other experimental 

data implying that a correlation between post-transcriptional dosage and chromosome copy 

number exists (Downing et al. 2011; Mannaert et al. 2012).  

The mechanisms underlying ploidy and copy number variation changes in Leishmania are poorly 

characterised, though techniques exist to study changes at both single cell and population level, 

such as fluorescent in-situ hybridisation, or FISH (Sterkers et al. 2012). Given the inconsistency of 

changes in ploidy, the mechanism is unlikely to be a simple cause-and-effect – i.e the mechanism 

will likely involve multiple steps, proteins, and genes (Rogers et al. 2014). 
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1.5 MICE AS MODEL ORGANISMS FOR IMMUNOLOGICAL STUDY  

1.5.1 OVERVIEW 

Mus musculus domesticus is the subspecies of house mouse commonly used as a model animal in 

scientific laboratories. Considered an “unsung hero” of biology, the contribution mice have made 

to our current understanding of immunology is immense (Viney et al. 2015). Commonly used 

strains such as Black 6 and BALB/c mice were derived from the fancy mouse trade during the 

1920’s, but have undergone considerable selective pressure to increase growth rate and reduce 

the age at which they sexually mature (Viney et al. 2015). 

In terms of the structure of their immune system, mice are broadly similar to humans, with both 

innate and acquired branches, and analogous organs (Metas and Hughes 2004). However, the 

mouse immune system is less aggressive than the human immune system; mice tend to tolerate 

pathogens rather than attempt clearance, in order to reduce immunopathology (Zschaler et al. 

2014). However, when compared with wild mice, laboratory mice are known to have 

hyperreactive cytokine responses to the presence of pathogens, likely due to a lack of natural 

exposure to such threats. The relative lack of response in wild mice is likely advantageous, as the 

reduced inflammation avoids immunopathology (Viney et al. 2015; Abolins et al. 2017). 

Although the overall architecture of the mouse immune system is akin to that of humans, there 

are some significant differences. Across the entire genome, only 75% of mouse genes have 1:1 

human orthologues, and immune genes are no exception (Belizário 2009). Cytokines show 

differential functions, as well as several human cytokines being absent, and novel cytokines being 

present in mice (Zschaler et al. 2014). The proportions of immune cells are also different; mice 

blood is lymphocyte rich, consisting of 70-95% lymphocytes and 10-25% neutrophils (Metas and 

Hughes 2004). Laboratory mice show a low proportion of activated CD4+ and CD8+ T-cells, B-cells, 

macrophages and DCs when compared with wild mice, likely as a consequence of their sterile 

environment (Abolins et al. 2017). Patterns of surface proteins, such as CD markers and toll-like 

receptors, also vary when comparing human and mouse immune cell types; cells undergo slightly 

different development and maturation processes (Metas and Hughes 2004). Mice make IgA, IgD, 

IgE and IgM, but have several distinct subclasses absent in humans (Metas and Hughes 2004). As 

with the ratio of activated cells, serum concentrations of immunoglobulins in laboratory mice 

have been found up to 370x lower than their wild counterparts (Abolins et al. 2017). 

 

1.5.2 INFLUENCE OF STRAIN ON IMMUNOLOGY 

Despite considerable inbreeding, basic, unmodified laboratory mouse strains are considered 

immunocompetent, displaying extensive variation on immune phenotype. Differences between 
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strains can lie in single point mutations or through variation in complex, multilocus traits (Sellers 

et al. 2012). Strains are known to vary both in components of the innate immune system, such as 

pattern recognition receptors (Toll-like receptors, C-lectin receptors, etc.), and in the adaptive 

immune system, in proportions of T-cells and B-cells, and the use of regulatory microRNAs (Sellers 

et al. 2012). For example, Black 6 mice disproportionately respond with Th1 cells, known for their 

importance in the clearance of intracellular pathogens, which other strains, such as BALB/c, have 

a Th2 bias in their response. These differences among strains amount to differences in 

susceptibility, resistance, response and disease progression (Sellers et al. 2012). 

Use of immunodeficient mice has been paramount in the study of reductive immunology. Defects 

in the immune system can be natural, transgenic, genetically engineered, or induced through 

mutation (Belizário 2009). Typically, immunodeficient strains have faulty major histocompatibility 

complexes, defective T-cells or B-cells, or knockouts of particular cytokines, receptors or 

transcription factors (Belizário 2009). Genetically engineered mice with defective adaptive 

immune systems commonly have issues with chronic inflammatory disorders, such as colitis 

(Sellers et al. 2012).  

RAG mice are immunodeficient knockout mice with defective adaptive immune systems. The RAG 

genes (recombination activating genes), as the name suggests, are DNA recombinases crucial in 

the activation of VDJ recombination, used in the generation of T- and B-cell receptor diversity, and 

the production of immunoglobulins. Faults in receptor and immunoglobulin generation prevent 

the development and maturation of T-cells and B-cells, but do not affect innate immunity or other 

physiological or behavioural aspects (Mombaerts et al. 1992; Shinkai et al. 1992; Thompson 1992; 

Belizário 2009). Generation of RAG mice involves the deletion of either of the Rag1 or Rag2 genes 

(Mombaerts et al. 1992; Thompson 1992; Belizário 2009). RAG mice have been used in a wide 

range of studies, investigating lymphocyte differentiation, immune response to tumourigenesis, 

metastasis, autoimmunity, chemotherapy and infectious disease (Belizário 2009).  

 

1.5.3 MICE IN THE STUDY OF VISCERAL LEISHMANIASIS  

Mice have been used as model animals in the study of leishmaniasis for over 40 years. Given how 

relatively easy they are to keep and to breed, experiments involving captive mice also restrict the 

influence of the environment (Liplodová and Demant, 2006; Loría-Cervera and Andrade-Narváez, 

2014). A wide array of topics within leishmaniasis infection biology have been studied using 

mouse models, such as cytokines, cell types, signalling cascades, antileishmanial defences, disease 

progression, and vaccine development (Loría-Cervera and Andrade-Narváez, 2014). However, the 

data from mouse studies should not be directly used to support conclusions about human disease 

- not only are the host species different, genetically and immunologically, but experimental 
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conditions do not mimic those of natural infections, and as such the results should not be 

expected to behave as a natural human infection would (Loría-Cervera and Andrade-Narváez, 

2014; Loeuillet et al. 2016).  

A number of experimental design choices can affect end results, which may to some extent 

explain discrepancies in data even when using the same animal model (Loría-Cervera and 

Andrade-Narváez, 2014; Loeuillet et al. 2016). The genetic background of both the host and the 

parasite - from species to strain - is known to influence disease outcome. The transmission of 

parasites is critically important to the disease manifestation. Site of inoculation (e.g 

subcutaneous, intraperitoneal), inclusion of immunogenic sandfly saliva, parasite life cycle stage, 

origin of parasites in terms of culture, and parasite dose have all been documented to influence 

transmission success (Loría-Cervera and Andrade-Narváez, 2014; Loeuillet et al. 2016). For 

example, the number of parasites administered can change the course of an infection. In BALB/c 

mice, low numbers of parasites inoculated subcutaneously caused a Th1 response leading to 

disease resolution. A higher dose of parasites was found to induce a Th2 response, causing 

chronic disease (Ahmed et al. 2003). 

Despite the potential for inconsistent results, mouse work on leishmaniasis has yielded a number 

of important discoveries (Liplodová and Demant, 2006; Loría-Cervera and Andrade-Narváez, 

2014). For example, in mice, disease outcome can largely be predicted by measurable 

immunological features. A Th1 immune response leads to the production of interferon gamma, a 

pattern seen in leishmaniasis-resistant mice. Susceptible mice instead show a Th2 response, 

producing IL-4 and allowing disease progression (Ahmed et al. 2003).  

Mice have also been used to study the effect of host genetic background on infection, and to 

investigate how specific phenotypic traits and genes relate to infections. Mice have extremely 

well-studied genomes, and the genetic makeup of each strain is well known, making mice 

excellent candidates for studying genetic background (Liplodová and Demant, 2006; Loría-Cervera 

and Andrade-Narváez, 2014).  

Susceptibility to leishmaniasis in mice was found to be multigenic, especially for CL. Two genes in 

particular were found to be important in determining resistance to infection; Slc11a1 and H2. 

Slc11a1 is known to mediate the host’s early defence against infection, found at the Lsh locus on 

mouse chromosome 1. Wild type mouse strains such as CBA show resistance associated with this 

locus, but BALB/c and C57BL/6 both appear to have mutations in this gene, causing susceptibility 

(Bradley et al. 1979; O’Brien et al. 1980). H2 encodes the Major Histocompatibility Complex 

(MHC), involved in antigen presentation and complement defences. In mice, H2 decides the 

progression of late leishmaniasis, given its involvement in the adaptive immune system. A number 
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of different H2 alleles exist in mice, some of which confer resistance to leishmaniasis even in 

strains designated susceptible by their Slc11a1 mutation (Roberts et al. 1997). 

 

1.7 PROJECT CONTEXT: CRACK IT 

1.7.1 OVERVIEW 

The CRACK IT initiative awards grants to research that facilitates replacement, reduction and 

refinement of animal use in research and business, organised and granted by the national council 

for the 3 Rs. Under the project title of ‘Virtual Infectious Disease Research’, 5 experiments took 

place to feed data and analyses into a computational simulation of Leishmania infection, intended 

to reduce the number of animals used by replacement with a hypothesis-testable model. This 

project will analyse samples generated by the fifth CRACK IT experiment, which examines the 

effect of host immune pressure on Leishmania; previous experiments on Leishmania have 

explored pharmacokinetics, immune response and the effect of parasite strain on the host. This 

particular experiment was designed to study the effect of host immunocompetence and genetic 

background on both the host and parasite, using genomic and transcriptomic data.  

 

1.7.2 MODELLING INFECTION 

The previous model of Leishmania infection was built using Petri Net mathematical modelling, 

intended for use in drug evaluation. The model, based on L. donovani infection, simulated the 

formation of granulomas in the liver, and was highly accurate in estimating experimental results 

compared to data generated in vivo mouse infections (Albergante et al. 2013; Timmis et al. 2016).  

Data and analyses from the CRACK IT 5 experiment will be fed into a new model, which is 

intended to simulate L. donovani infection in spleen tissue. The spleen was chosen as the focus 

instead of the liver as the spleen is considered clinically more relevant, and a more useful 

indicator of clinical disease.  

Although similar, there are key differences between the immune systems of humans and mice. 

Computational models can still be useful in understanding disease such as infection features, 

expected cell population dynamics and downstream consequences of changes. 

 

1.8 PROJECT AIMS 

The nature of the data, together with the choice of processing and analysis methods, allows for 

simultaneous investigation of both host and parasite transcriptome and genome.  
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• To characterise the differences in the transcriptomes of wild type and 

immunocompromised RAG2 KO mice. 

• To compare the transcriptomes of uninfected mice with those infected with L. donovani. 

• To ascertain the relationship between the RNA profile of L. donovani inoculum samples 

and parasites isolated after 28 days infection of a RAG2 KO mouse 

• To examine the effect of an adaptive immune system on the parasites can be seen by 

comparing the samples from WT and RAG mice. 
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CHAPTER 2: METHODS 

2.1 INOCULUM PRODUCTION AND INOCULATION 

2.1.1 PARASITE CULTIVATION 

Dr Helen Ashwin performed all animal work, parasite isolation, and RNA extractions. One 6-8 

week old B6.RAG2KO.CD45.1Cg mouse was infected with Leishmania donovani amastigotes via 

lateral tail vein intravenous injection. After 3 months, the mouse was euthanised and its spleen 

harvested. 

 

2.1.2 INOCULUM PREPARATION 

Extracted spleens were stored in incomplete RPMI media. A glass homogeniser was used to gently 

lyse the tissue to a single-cell suspension. The suspension was transferred into a 50ml tube and 

RPMI media was added until the volume equalled 20ml. The tube was centrifuged at 800 RPM for 

5 minutes, after which the pellet was discarded but the supernatant retained. The amount of 

supernatant was measured and a clean 50ml falcon tube was internally coated with 25mg of 

saponin per 20ml supernatant. The supernatant was added to the saponin-coated tube and 

mixed. After being left for 5 minutes at RT, the tube was centrifuged at 3100 RPM for 10 minutes. 

The pellet was examined for RBCs; if the RBCs were present, the previous two steps were 

repeated. Else, the supernatant was discarded and the pellets underwent 3 wash steps by 

resuspension in 25ml RPMI and then centrifuging for 10 minutes at 3100 RPM. After the final 

wash step, the pellet was resuspended in 20ml RMPI media. Keeping the needle inside a falcon 

tube to prevent contamination, the suspension was passed through a 26-guage (brown) needle 2-

3 times, using a 10ml syringe, to break up clumps of parasites. The amastigotes were counted 

using a sterile parasite counter, and resuspended to a concentration of 1.5 x 108 parasites per ml. 

The inoculum was kept at 37C to prevent the amastigotes differentiating into promastigotes.  

 

2.1.3 INFECTION PROCEDURE 

A total of 19 mice were used in this experiment (table 3). 6-8 week old mice were inoculated by 

lateral tail vein intravenous injection, with 200µl of inoculum (containing approximately 3 x 107 L. 

donovani amastigotes), which was first passed through a needle as in 2.1.2 to prevent clumping. 

Additional mice were left uninfected to serve as controls. Mice were not treated with antibiotics 

to avoid aberrant inflammatory and immune responses. 28-days post infection the mice were 

euthanised and their spleens harvested.  
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Table 3. An overview of the mice used in the experiment. 

 Mouse Background 

Infection status  B6.CD45.1 (WT) B6.RAG2KO.CD45.1Cg (RAG) 

Infected 5 5 

Uninfected 5 4 

 

 

2.1.4 PARASITE BURDEN CALCULATION 

After being harvested, spleens and livers from infected mice were tested for parasite burden. 

Each organ was weighed and cross-sectioned; the cut face of the tissue was dabbed against a 

glass microscope slide to leave an impression. The slide was stained with Giemsa in order to 

differentiate mouse cells and parasite cells. 1,000 mouse cells are counted for their associated 

amastigote count, which is then used to calculated Leishman-Donovan Units (LDU). LDU are the 

standard measure of tissue parasite burden for Leishmania infections. LDU can be calculated 

according to the following formula: 

 

𝐿𝐷𝑈 =  
𝑎𝑚𝑎𝑠𝑡𝑖𝑔𝑜𝑡𝑒 𝑐𝑜𝑢𝑛𝑡 𝑝𝑒𝑟 1,000 ℎ𝑜𝑠𝑡 𝑐𝑒𝑙𝑙 𝑛𝑢𝑐𝑙𝑒𝑖

𝑜𝑟𝑔𝑎𝑛 𝑤𝑒𝑖𝑔ℎ𝑡 (𝑔)
 

 

2.2 RNA SAMPLE COLLECTION AND CLEANING  

2.2.1 INOCULUM RNA COLLECTION 

Parasites were semi-purified from spleen samples from a mouse prepared in the manner 

described in 2.1.1. using the isolation procedure described in 2.1.2. RNA was extracted from 

purified L. donovani parasites using a Zymo Research Direct-zol RNA MiniPrep Kit, per 

manufacturer’s instructions. 

 

2.2.2 MOUSE RNA COLLECTION 

RNA extraction from mouse spleen, using 5mg of tissue per sample, was performed using Qiagen 

miRNeasy micro kit (ID: 217084), per manufacturer’s instructions. Spleen tissue collected from 

infected mice will contain both mouse and Leishmania RNA given the presence of the parasite in 

the host tissues. 
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2.2.3 DNASE TREATMENT OF RNA SAMPLES  

DNAse treatment of RNA extracts was performed using Qiagen RNAse-free DNAse kit for DNAse 

treatment (ID: 79254), per manufacturer’s instructions.  

 

2.2.4 MAGNETIC BEAD CLEANING OF RNA SAMPLES  

RNA samples were cleaned after DNAse treatment using AMPure XP beads (ID: A63881). The 

beads were warmed to room temperature for 30 minutes, and resuspended by gently vortexing. 

Beads were added to the sample at a volume ratio of 1.8:1 beads to sample, e.g. for 50µl of 

sample add 90µl beads. After a gentle vortex, the suspension was left for 5 minutes to allow 

binding. The tubes were placed on a magnetic separation rack and left for 3 minutes. With the 

tubes still on the rack, the supernatant was carefully removed without disturbing the beads. To 

wash the beads, the tube was filled with 70% ethanol, and left for 30 seconds. Then, the ethanol 

was removed and fresh ethanol was added again for a total of 2 wash steps. After washing, the 

beads were left to air dry for around 5 minutes, but observed to prevent over-drying and cracking. 

When the ethanol was fully evaporated, the beads were resuspended in 50µl of water or Tris 

EDTA (TE) buffer, first using a pipette, and then a vortex. The sample was left for 3 minutes then 

placed back onto the magnetic rack until the solution was clear. The clear supernatant – 

containing the cleaned RNA - was transferred to a clean tube. 

 

2.3 MEASURING RNA/DNA QUALITY 

Several different instruments were used to measure RNA and cDNA quality throughout the RNA 

cleaning and library prep process.  

Before and after the RNA samples were cleaned using the magnetic bead protocol, the samples 

were run on an Agilent 2100 BioAnalyser, using Agilent RNA 6000 Pico kits and chips, per 

manufacturer’s instructions. Additionally, after being prepared into cDNA libraries, the 

BioAnalyser was also used to measure DNA quality using Agilent High Sensitivity DNA kits and 

chips, per manufacturer’s instructions. 

The NanoDrop 1000 spectrophotometer was used per manufacturer’s instructions to screen RNA 

samples for contaminants using 230:260 and 260:280 ratios; the Qubit 3.0 and Qubit HS RNA 

assay kits were used for more precise quantification.  
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2.4 LIBRARY PREPARATION 

After cleaning and dilution, the RNA samples were prepared into cDNA libraries for Illumina 

sequencing by myself and Dr Sarah Forrester. mRNA was separated from 10ng - 1µg of total RNA 

using the NEBNext Poly(A) mRNA magnetic isolation module, and then converted into cDNA using 

the NEBNext Ultra RNA library prep for Illumina kit, both per manufacturer’s instruction. For step 

1.9, section 1.9A was followed in accordance with the choice of multiplex oligo kits. The samples 

were multiplexed using index primers from the NEBNext Multiplex Oligos for Illumina (Index 

Primers Set 1) per manufacturer’s instruction (see Table 4 below for exact index use). 

 

2.5 PIPPIN PREP AND SEQUENCING 

cDNA libraries were selected for quality by concentration and BioAnalyser trace. Libraries with 

low concentration or libraries that deviated significantly from the manufacturer’s recommended 

trace were discarded. 

Libraries that were of an acceptable quality were further optimized by genomics technician Dr 

Sally James (University of York) by performing a pippin prep on a BluePippin, using an M1 marker, 

2% agarose gel, selecting for 200-600bp, through use of a BEF2010 kit (per manufacturer’s 

instruction).  

After the pippin prep the libraries were sent to the University of Leeds NGS facility to be 

sequenced on an Illumina platform HiSeq 3000, with a read length of 125bp, an insert size of 

300bp, non-directional paired-end reads. Table 4 lists the multiplex index and flow cell lane of 

each sample. Samples were sequenced in a single run, split across two flow cell lanes, limiting 

potential batch effects. A PhiX spike was included but not analysed as the RNA samples were 

balanced in terms of GC content and diversity.  
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Table 4. Lane and multiplex index planning for Illumina sequencing of each library.  

Flow cell lane Sample Index 

1 WT INF – 01 1 

1 WT INF – 02 2 

1 WT INF – 03 3 

1 RAG INF – 12 4 

1 RAG INF – 13 5 

1 WT CONTROL – 06 6 

1 WT CONTROL – 07 7 

1 WT CONTROL – 08 8 

1 INOCULUM – 03 12 

2 RAG CONTROL – 16 1 

2 RAG CONTROL – 17 2 

2 RAG INF - 11 3 

2 RAG CONTROL – 18 4 

2 WT INF – 05 5 

2 RAG INF – 14 6 

2 INOCULUM – 01 7 

2 INOCULUM – 02 8 

 

2.6 DATA PRE-PROCESSING 

The pre-processing and analysis of the sequenced libraries was performed using a combination of 

Python and R packages, Linux-based freeware and specific programs for the manipulation of 

genomic data. Further computational analysis based on transcriptomic data was performed using 

various web services, reliant upon principles of enrichment analysis, which look at overall patterns 

of gene expression across a dataset, rather than looking at individual genes, gene families or 

biochemical pathways. 

 

2.6.1 CUTADAPT 

The Python package CutAdapt (https://cutadapt.readthedocs.io/en/stable/, version 1.12) was 

used to remove residual sequencing adaptors from reads (Martin 2011).  The adaptors are short 

nucleotide sequences used for guiding the sequences of interest onto the sequencing platform 

through Watson-Crick base pairing. Adaptors are sequenced along with the sequence of interest 

and must be removed computationally, as they cannot efficiently be removed chemically. 

CutAdapt does not actually remove reads from the library, such that the number of input and 

output reads will always be the same. Even reads that were entirely trimmed will still be listed, as 

having a read length of 0 (Martin 2011). 

~/.local/bin/cutadapt \ 

-a AGATCGGAAGAGCACACGTCTGAACTCCAGTCAC \ 

-A AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGTAGATCTCGGTGGTCGCCGTATCATT \ 

-o output_R1_trim.fastq.gz \ 

https://cutadapt.readthedocs.io/en/stable/
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-p output_R2_trim.fastq.gz \ 

input_R1.fastq.gz \ 

input_R2.fastq.gz \ 

 

-a specifies the forward adaptor sequence to be trimmed 

-A specifies the reverse adaptor sequence to be trimmed 

-o specifies the forward read output file name and directory 

-p specifies the reverse read output file name and directory, after which the forward and reverse 

input files are listed. 

 

2.6.2 SICKLE 

After CutAdapt, the files were processed further with Sickle (https://github.com/najoshi/sickle, 

version 1.33), to remove low quality reads, with a PHRED score of <20 (Joshi and Fass 2011). 

Additionally, Sickle can remove any unpaired single reads, and pairs of reads where one read of 

the two passes quality and length criteria, but not the other. Low quality reads contain bases that 

have not reliably been called, i.e. it is likely that the correct base in the sequence has been 

misidentified, and such reads must be removed computationally. While CutAdapt can also be 

used for this process, Sickle will output singletons and pairs into separate files, and is commonly 

used as a follow-up program after adaptor trimming.  

./sickle pe \ 

-f input_R1_trim.fastq.gz \ 

-r input_R2_trim.fastq.gz \ 

-t sanger \ 

-o output_R1_trim_sick.fastq \ 

-p output_R2_trim_sick.fastq \ 

-s output_R0_trim_sick.fastq \ 

-q 20 

-l 20 

 

-f specifies the forward read input file 

-r specifies the reverse read input file 

-t specifies the quality scoring method used to generate the fastqs. Illumina reads use the same 

method of scoring base quality – before processing. 

-o specifies the forward read output file 

https://github.com/najoshi/sickle
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-p specifies the reverse read output file 

-s specifies the output of unpaired/ singleton reads  

-q is the threshold for PHRED score, below which a base is removed 

-l is the minimum length the reads are trimmed to before being discarded  

 

2.6.3 ALIGNMENT OF SEQUENCING DATA 

2.6.3.1 INDEX GENERATION 

The STAR (Spliced Transcripts Alignment to a Reference) RNA-Seq alignment program was used to 

map the processed reads to a reference genome (https://github.com/alexdobin/STAR, Dobin et 

al. 2013). The STAR aligner is fast, easily parallelised, and splice aware, and thus useful for analysis 

of transcriptomic data. Reads were aligned to genomes rather than to transcriptomes as the focus 

of the experiment was gene expression rather than splice variants. In order to map reads to a 

genome using the STAR aligner, a genome index must first be generated from reference FASTA 

files, which contain sequence data, and annotation GTF files, which contain information about 

gene structure. To produce an index containing both mouse and Leishmania data at the same 

time, the files were simply concatenated. An index was generated from the Mus musculus 

GRCm38 reference genome (version 84) and the Leishmania donovani BPK282a1 reference 

genome (version 28) using the following STAR (2.5.2b) command.  

STAR \ 

--runThreadN 16 \ 

--runMode genomeGenerate \ 

--genomeDir /input_genome/directory/ \ 

--genomeFastaFiles combined_reference_genome.fasta \ 

--sjdbGTFfile combined_annotations.gtf 

--sjdbOverhang 123  

--genomeSAindexNbases 13  

--genomeChrBinNbits 13 

 

--runThreadN specifies the number of threads on which to run the program 

--runMode specifies what mode to run the program in – in this case, index generation 

--genomeDir specifies the path to the genome directory  

--genomeFastaFiles specifies the FASTA file of the reference genome 

--sjdbGTFfile specifies the GTF (annotation) file of the reference genome 

https://github.com/alexdobin/STAR
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--sjdbOverhang specifies the length of genomic sequence using in constructing the splice junction 

database. For most purposes, it is equal to the read length – 1.  

--genomeSAindexNbases specifies a value for scaling the index according to genome size 

--genomeChrBinNbits specifies a value for reducing RAM consumption when large reference 

genomes are used 

 

2.6.3.2 READ ALIGNMENT 

After generating a genome index, STAR can be run in a different mode in order to align the 

trimmed reads of each sample to a reference genome, in this case, the concatenated reference 

listed above containing both the mouse and Leishmania donovani reference genomes (Dobin et 

al. 2013).  The singleton reads separated by Sickle were not included in the alignment. 

STAR \ 

--runThreadN 32 \ 

--genomeDir …/Mouse_donovani_combined/ \ 

--readFilesIn input_R1_trim_sick.fastq input_R2_trim_sick.fastq \ 

--outSAMtype BAM Unsorted \ 

--outFileNamePrefix input_alignment \ 

--outFilterScoreMinOverLread 0 \ 

--outFilterMatchNminOverLread 0 \ 

--outFilterMatchNmin 40 \ 

 

--readFilesIn specifies the forward and reverse input FASTQ files 

--outSAMtype specifies the SAMtools file type to be outputted 

--outFileNamePrefix specifies the prefix for output files 

--outFilterScoreMinOverLread specifies the output to be filtered so that only alignments with the 

specifies score or above are returned, normalised to read length  

--outFilterMatchNminOverLread specifies the output to be filtered so that only reads with 

matching the specified score or above are returned, normalised to read length 

--outFilterMatchNmin specifies the output to be filtered so that only reads with matching the 

specified score or above are returned 

Setting outFilterMatchNmin to 40 means that the read can be locally aligned, despite repetitive 

sequence, such as the splice leader (SL) sequence, at one end of the read. The read is not rejected 

as long as at least 40 base pairs of the read matches the reference, even if the presence of the SL 
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sequence prevents the entire read aligning. Reads where only one of the pair map are discarded 

with unmapped reads. 

 

2.6.4 READ COUNTING 

After alignment, Python package HTSeq-count was used to count reads aligning to each gene on 

the reference (https://htseq.readthedocs.io/en/release_0.9.1/index.html, version 0.5.4p5). 

HTSeq-count uses a BAM/SAM (Binary or Sequence Alignment Map) file, in this case produced by 

the STAR alignment process, and a GTF annotation file, to determine the number of reads aligned 

with each exon (Anders et al. 2015). HTSeq-count was run in union mode, which allows reads to 

be assigned to an exon even if the full read does not map (such as those with SL sequences).  

Additionally, the SAMtools software (http://samtools.sourceforge.net/, version 0.1.18) was used 

to manipulate, sort and convert different alignment information into formats suitable for other 

software (Li et al. 2009). In order to only input uniquely mapping reads into HTSeq-count, a bash 

script and SAMtools were used to filter and sort the alignment produced by STAR, removing non-

uniquely mapping reads.   

for b in sample1.bam sample2.bam sample3.bam 

do 

### Need to annotate if you put in like this. Opens the SAM file and extracts the header, and saves it to a sam 
file  

samtools view -H $b > $b.header.sam 

### opens bam file extracts uniquely mapping reads and appends them to a file containing the header and 
calls this the uniquely mapping BAM  

samtools view $b | awk '{if ($5 == 255) print $0}' | cat $b.header.sam - | samtools view -Sb - > 
$b.uniquely_mapping.bam 

## command for the htseq counting  

htseq-count -m union -f bam $b.uniquely_mapping.bam annotations.gtf > $b.counts 

 done 
 

-m specifies which mode to run HTSeq-count in 

-f specifies the format of the input data 

> tells the program to save the results in a new file with the suffix .counts 

This script was used to loop through sample STAR alignments, and using SAMtools, produce a file 

containing only the headers (-H), equivalent to gene name. After producing this file, the alignment 

was opened with SAMtools and filtered using awk; the alignment contains a tag in column 5 ($5) 

which, when equal to 255, means that the read aligned to only one location. Genes that were 

tagged as unique were then joined back with the header file using cat, the result of which is a file 

https://htseq.readthedocs.io/en/release_0.9.1/index.html
http://samtools.sourceforge.net/
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containing a list of genes and their uniquely-mapping only reads. Reads mapping to multiple 

locations in the reference genome were discarded from future analyses; only pairs of reads that 

mapped uniquely were used (i.e if one read of a pair was non-unique, the pair was discarded).  

The list of uniquely mapping reads can then be fed into HTSeq-count in order to generate a table 

of reads counts for each gene. 

 

2.7 DIFFERENTIAL EXPRESSION ANALYSIS  

Using the read count table produced by HTSeq-count, edgeR, a Bioconductor R package, 

(http://bioconductor.org/packages/release/bioc/html/edgeR.html, version 3.18.1) was used to 

determine which genes were differentially expressed between samples (Robinson et al. 2010). 

EdgeR was used to fit the data to a negative binomial model, a commonly used model in RNA-Seq 

for combating statistical bias known as ‘overdispersion’ seen in the Poisson distribution (McCarthy 

et al. 2012). The generalised linear model function, glmFit, was used to fit the data, which was 

then normalised between libraries, within groups, and across the dataset, by calculating 

dispersion, which estimates the biological coefficient of variation (BCV) between samples. For 

each pairwise comparison, Log2FoldChange was calculated, and the generalised linear model 

applied to test and identify differentially expressed genes, with false discovery rate set to 0.05. 

EdgeR gives comparable results to more prevalent DESeq2, and both rely on the negative 

binomial model, but EdgeR handles gene expression at extremes (i.e very high or very low) 

differently (Schurch et al. 2016; Zhang et al. 2014). 

An overview of the bioinformatic analysis techniques and the data produced from each can be 

seen in figure 6 below. 

 

http://bioconductor.org/packages/release/bioc/html/edgeR.html
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Figure 6. Experimental overview, detailing the different analyses performed on the same 
transcriptome data, and the origin of each type of plot generated. 

 

2.7.1 DATA IMPORT AND TRANSFORMATION 

Three R libraries were necessary to calculate differentially expressed genes, sort files, perform 

statistics, and plot data. 

library(edgeR) 

library(limma) 

library(fields) 

Data were transformed into a matrix for pairwise comparison, using ‘sgroup’ as a factor. sgroup is 

a vector containing columns imported from the user-specified design, providing group names, i.e 

infected, uninfected, RAG, WT. as.formula(~-1+sgroup) applies pairwise comparisons, creating a 

matrix from a data frame, which is necessary for further calculations.  
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modelformula = as.formula(~-1+sgroup) 

dmat = model.matrix(modelformula) 

rownames(dmat) <- rownames(designtab) 

 

2.7.2 INITIAL CALCULATIONS AND NORMALISATION  

Lists of genes and counts were added to the differentially expressed gene list (before calculations) 

using edgeR function DGEList, and saved as object ‘dgl’. Genes with zero counts (across all 

samples) were removed; if any sample contained one read for the gene in question then the gene 

was retained for analysis. Counts per million, the read count of the gene divided by the size of the 

library (in millions), and the mean counts per million for each group, were also calculated. CPM is 

used to compare expression between libraries of different sizes. 

dgl <- DGEList(counts <- as.matrix(counttab),group=sgroup, genes=annotab, remove.zeros=T) 

cpmval <- cpm(dgl) 

xcpm <- log2(rowMeans(cpmval)) 

 

Normalisation is then applied to individual libraries, within groups, and across the dataset by 

dispersion calculations, again using edgeR functions, which allows the library data to be 

compared. 

dgl <- calcNormFactors(dgl) 

dgl <- estimateGLMCommonDisp(dgl,dmat) 

dgl <- estimateGLMTrendedDisp(dgl,dmat,min.n=500) 

dgl <- estimateGLMTagwiseDisp(dgl,dmat) 

 

Dispersion was plotted. 

plot(xcpm,dgl$tagwise.dispersion,cex=0.4) 

points(xcpm,dgl$trended.dispersion,cex=0.4,col="green") 

abline(h=dgl$common.dispersion[1],col="cyan") 

 

2.7.3 CALCULATION OF DIFFERENTIAL EXPRESSION 

In order to find evidence of differential expression, the data were fitted to the model, in this case, 

the ‘fitres’ function checking if object ‘dgl’ (the list of genes) matches the model ‘glm’ (generalised 

linear model). This process normalises data between groups for comparison. Setting the contrast 

to ‘cmat’ ensures pairwise comparisons; glmLRT performs pairwise comparisons of read counts 

for each gene and each sample.  

fitres <- glmFit(dgl,dmat) 
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glmLRT(fitres,contrast=cmat[,j]) 

The FDR was set to 0.05 and applied as a filter to the results of the model fitting. 

fdrcut <- 0.05 

de.yes.no <- as.matrix(FDR < fdrcut) 

All genes in the edgeR generated list had a p-value and FDR smaller than or equal to 0.05; these 

genes were used to produce the MA and PCA plots described below. After the differentially 

expressed gene list (DEG list) was generated, further criteria were manually applied to reduce less 

reliable and less relevant results, summarising a larger dataset into a smaller and more 

manageable one. Results were considered less reliable if their read counts were extremely low; 

small fold changes were considered less biologically relevant. In addition to the p-value and FDR 

cut offs, criteria were also applied to the log CPM (counts per million) and to log FC (fold change) 

for several further analyses. To filter out genes with very low read counts, only genes with a 

logCPM of 1 or greater were included. In order to exclude genes with small changes in expression 

level, only genes with a logFC above or equal to 1.5, or below or equal to -1.5 were used. Analyses 

reliant on this reduced set of data are designated as ‘filtered’. 

 

2.7.4 PLOTTING DATA 

MA plots were generated from unfiltered data for each pairwise comparison. MA plots, named 

after their axes (M being the expression magnitude, and A being the mean average counts per 

gene, or coverage) aim to compare the distribution of genomic data (i.e the overall expression of 

genes) between two samples. MA plots visualise bias and trends in gene expression, and indicate 

whether data requires further normalisation, as well as displaying which genes are significantly 

differentially expressed, and at what fold-change.  

fc <- logFC 

fc[(fc)>10] <- 10 

fc[ fc < -10] <- -10 

x11() 

par(mfcol=mfcol) 

for(k in 1:npanel) { 

    ylab <- colnames(logFC)[k] 

    i <- which(de.yes.no[,k]) 

    maPlot(x=NULL,y=NULL,logAbundance= xcpm, logFC = fc[,k], xlab = "log2CPM", ylab = ylab, 

        de.tags= i,pch = 19, cex = 0.3, smearWidth = 0.5, panel.first = grid(), 

    smooth.scatter = FALSE, lowess = FALSE,na.rm =TRUE) 

    } 
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PCA (principal component analysis) plots were generated from unfiltered data to compare the 

relative similarity of samples. PCA transformations attempt to reduce the variance of data in 

multiple dimensions into as few dimensions as possible. In the case of RNA-Seq data, PCA plots 

visualise the overall statistical differences (such as batch effects) between the p-values and logFC 

of samples and groups of samples. 

pcaplot <- 
function(count,sgroup,snumber=NULL,filename="PCAplot",figtype="png",pch=16,cex=0.8,display=FALSE,col=
NULL) 

{ 

if(is.null(snumber)) {snumber=gsub("Sample_","",colnames(count)); snumber=gsub("sample_","",snumber)} 

print(snumber) 

    labels=paste(sgroup,snumber,sep="_") 

wx <- count 

    wx[wx <= 0 ] <- 1 

        pc <- princomp(wx) 

    ld <- pc$loadings 

    if(is.null(col)) {col <- rep(0,length(sgroup)) 

        for(k in 1:length(unique(sgroup))) col[sgroup %in% unique(sgroup)[k]] <- k 

    } else col=col 

    pch=pch 

    cex=cex 

      if(!is.null(filename)) { 

        if(!is.null(figtype)) {  

        par(mar=c(6,4,3,2)) 

        xlim=c(min(ld[,2]),max(ld[,2])) 

        xlim[1]=xlim[1] - (max(ld[,2])- min(ld[,2]))*0.1 

        xlim[2]=xlim[2] + (max(ld[,2])- min(ld[,2]))*0.1 

        plot(ld[,2],ld[,3],cex=cex,col=col,pch=pch,xlim=xlim,main="PCA plot",xlab="2nd Component",ylab="3rd 
component",cex.axis=1.2,cex.lab=1.2) 

        text(ld[,2],ld[,3],labels,col=col) 

        dev.off() 

      } 

 

Euclidean distance heatmaps were also generated in order to visualise the relative similarity of 

each sample, and highlight differences between groups. As with the PCA plot, the heatmaps were 

also built from p-value and logFC data. Euclidean distance heatmaps are useful in demonstrating 

overall group characteristics, as well as pairwise comparisons displaying how distinct each 

individual sample is. 

corrheatmap <- function(count,sgroup,snumber=NULL,filename=NULL,figtype="png",useorder=NULL) { 
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if(is.null(filename)) x11() else { 

  mtc=match(figtype,c("png","pdf","jpeg","bmp","tiff")) 

  switch(mtc, 

   png(file=paste0(filename,".png")), 

   pdf(file=paste0(filename,".pdf")), 

   jpeg(file=paste0(filename,".jpeg")), 

   bmp(file=paste0(filename,".bmp")), 

   tiff(file=paste0(filename,".tiff")) 

  )} 

 if(is.null(snumber)) {snumber=gsub("Sample_","",colnames(count)); snumber=gsub("sample_","",snumber)}; 

labels=paste(sgroup,snumber,sep="_") 

 layout(matrix(c(1,2),1,2),widths=c(7,1)) 

 par(mar=c(7,7,5,3)) 

 cnd <- as.character(sgroup) 

 if(is.null(useorder)) o <- order(cnd) else o <- useorder 

 cnd <- cnd[o] 

 ucnd <- unique(cnd) 

 corr <- cor(count[,o]) 

 gsize <- NULL 

 for(k in 1:length(ucnd)) gsize <- c(gsize,sum(cnd %in% ucnd[k])) 

 cgsize <- cumsum(gsize) 

 at0 <- c(0,cgsize[-length(ucnd)]) 

 at <- (cgsize + at0 +1)/2  

 atl<- cgsize+0.5 

 print(ucnd) 

 grpbar <- NULL 

 for(k in 1:length(ucnd)) grpbar <- c(grpbar,rep(ifelse(k %% 2 !=0,NA,1),gsize[k])) 

 colbar <- seq(min(corr),max(corr),(max(corr)-min(corr))/255) 

 labels <- format(c(min(corr),min(corr)/2+max(corr)/2,max(corr)),digits=3) 

 corr <- rbind(corr,grpbar) 

 image(1:(nrow(corr)),1:(ncol(corr)),corr,xlab="",ylab="",col=tim.colors(256),xaxt="n",yaxt="n",main="Sample 
correlation heatmap") 

 abline(h=atl,lwd=2) 

 abline(v=atl,lwd=2) 

 if(1) { 

 axis(side=1,at=1:(length(cnd)+1),labels=c(paste(cnd,snumber[o],sep="_"),"group"),las=2,cex.axis=1) 

 axis(side=2,at=1:length(cnd),labels=paste(cnd,snumber[o],sep="_"),las=2,cex.axis=1) 

 axis(side=4,at=at,labels=ucnd,cex.axis=1,las=2) 

 } else {  
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 axis(side=1,at=1:(length(cnd)+1),labels=c(snumber[o],"group"),las=2,cex.axis=1.2) 

 axis(side=2,at=1:length(cnd),labels=snumber[o],las=2,cex.axis=1.2) 

 axis(side=4,at=at,labels=ucnd,cex.axis=1.2,las=3) 

 } 

 par(mar=c(14,1,10,6)/2) 

 image(x=1,y=1:256,z=matrix(colbar,nrow=1),col=tim.colors(256),xaxt="n",yaxt="n",xlab="",ylab="") 

 axis(side=4,at=c(1,128,255),labels=labels,cex.axis=1.2) 

 if (!is.null(filename)) dev.off() 

} 

 

2.8 STATISTICS AND PLOTS IN R 

2.8.1 SIMPLE REGRESSION AND T-TEST ANALYSIS 

R Studio version 3.3.3 was used to perform basic regression analyses and Student’s T-tests on 

some of the experiment metrics and statistics reported by STAR, HTSeq-count etc. looking for 

relationships between different measures such as parasite burden and percentage of reads 

mapping to the Leishmania genome. Simple R scripts were used, such as the following, to perform 

regressions and T-tests: 

library(ggplot2) 
 
leish_regression = data.frame( 
  LDU = c(12, 14, 21, 29, 34, 37, 37, 42), 
  percent_L = c(0.24, 1.47, 2.55, 0.15, 0.12, 3.03, 1.6, 0.21) 
) 
 
ggplot(leish_regression, aes(x=LDU, y=percent_L)) + 
  geom_point(shape=1) + 
  geom_smooth(method=lm, se=FALSE) 
 
fit <- lm(percent_L ~ LDU, data = leish_regression) 
summary(fit) 
 
host_LDU = data.frame( 
  host = c(1, 1, 1, 1, 2, 2, 2, 2), 
  LDU = c(34, 29, 42, 12, 14, 37, 21, 37) 
) 
 
host_percent_L = data.frame( 
  host = c(1, 1, 1, 1, 2, 2, 2, 2), 
  percent_L = c(0.12, 0.15, 0.21, 0.24, 1.47, 1.6, 2.55, 3.03) 
) 
 
t.test(LDU ~ host, host_LDU) 
t.test(percent_L ~ host, host_percent_L) 

 

2.8.2 GENE PANELS 

In addition to basic regression analysis, R Studio was also used to generate heatmaps of filtered 

fold-change data drawn from significant (p ≤ 0.05) mouse edgeR results, in order to compare 

expression of specific genes between samples. Three ‘panels’ of genes were selected, covering 
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expression data from key cytokines, chemokines, and CD markers. Genes showing significant fold 

change in samples were included in the heatmap, which was generated according to the following 

script: 

install.packages("gplots") 
library(gplots) 
install.packages("RColorBrewer") 
library(RColorBrewer) 
library(readr) 

heatmap_test <- read.csv("cytokine_panel.csv") 
map <- heatmap_test 
attach(map) 

maplabs<-map[,1]  

map<-map[,2:4] 

map_mat<-data.matrix(map) 

 

my_palette <- colorRampPalette(c("blue", "white", "red"))(n=100) 

 

pdf("plot.pdf") 

heatmap.2(map_mat, Rowv=FALSE, na.color="grey", col=my_palette, labRow = maplabs, density.info = 
"none", trace=c("none"), dendrogram = c("none"), scale = c("column"), cexCol = 0.7, cexRow = 0.6) 

dev.off() 

 

maplabs contains the names of the genes involved in the panel, separated from the values. map, 

the fold change values, was transformed into data matrix map_mat in order to be plotted into a 

heatmap using the heatmap2 function of the gplots package. Samples with no significant fold 

change for the gene in question were designated grey using NaN (not a number). Instead of 

displaying logFC values, the heatmap.2 function instead calculates Z-score, which scales and 

smooths the values of each row such that the changes are comparable. 

 

2.9 GENE SET ENRICHMENT ANALYSIS  

Gene set enrichment analysis (GSEA) was performed using the Broad Institute website 

(http://software.broadinstitute.org/gsea/msigdb/annotate.jsp), website version 6.1 and MSigDB 

version 6.1, last accessed 28/06/17 (Subramanian et al. 2005). GSEA is used to compare patterns 

of gene expression changes, for example, changes in expression typically associated with infection 

or cancer. One criticism of GSEA is that the datasets have a high degree of redundancy. For 

example, when calculating overlap between the different Hallmark sets, on average, 21% of genes 

overlap with another set; one set had over 75% of its genes overlap with another Hallmark set 

(see accompanying material A2 for full results). Although the curated datasets have a degree of 

overlap with each other, they are still useful for recognising similarities in expression changes. 

http://software.broadinstitute.org/gsea/msigdb/annotate.jsp)
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Filtered lists of mouse genes were checked against Motif (C3), Immunological (C7), KEGG Pathway 

(CP:KEGG) and Hallmark (H) datasets for overlap. No gene sets were available for use with 

Leishmania data.  

 

2.10 GENE ONTOLOGY ANALYSIS 

Gene ontology (GO) analysis was performed, using the GOrilla website for filtered mouse data, 

last accessed 05/06/17 (http://cbl-gorilla.cs.technion.ac.il/, Eden et al. 2009), and for Leishmania 

genes, website TriTrypDB’s (version 32) gene ontology function was used, also using filtered data, 

last accessed 05/06/17 (http://tritrypdb.org/tritrypdb/, Aslett et al. 2010). 

GO analysis examines lists of differentially expressed genes, to determine if any particular 

category of gene, such as immune signalling genes or brain development genes, are expressed at 

a higher (over-enrichment) or lower (under-enrichment) level than expected. Hypergeometric 

statistical tests are performed to determine the likelihood that the enrichment is a coincidence, 

by comparing the gene set of interest against a standard background set (Eden et al. 2009). From 

this data it is possible to see what pathways, organs/tissues, and systems are involved in an 

organism’s reaction to change.  

To visualise the GO analysis results, the website REVIGO (http://revigo.irb.hr/) was used with 

default settings, using the GO database data from Jan 2017, UniProt DB data from March 2017, 

last accessed 27/06/17 (Supek et al. 2011).  

 

2.11 PATHWAY VISUALISATION 

In order to visualise fold changes in gene expression across multiple genes in a biochemical 

pathway, the Pathview website (https://pathview.uncc.edu/) was used (software version 1.14.0), 

last accessed 05/07/17 (Luo and Brouwer 2013). Insufficient KEGG data is available for use of 

Pathview with Leishmania, but mouse KEGG data is much more substantial, allowing for 

visualisation. 

Initially pathway selection was set to ‘auto’, allowing the website to choose the most appropriate 

pathways for visualising the filtered input data, after which pathways of particular interest were 

selected manually, such as those suggested by gene ontology analysis, or immunity-related 

pathways. Default graphics and colour settings were used.  

 

 

 

http://cbl-gorilla.cs.technion.ac.il/
http://tritrypdb.org/tritrypdb/
http://revigo.irb.hr/
https://pathview.uncc.edu/
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CHAPTER 3: RESULTS 

3.1 EXPERIMENTAL DESIGN 

In order to generate mouse and parasite RNA samples for comparing transcriptomes under 

different conditions, mouse strains of varied genetic background were chosen for infection with L. 

donovani (Figure 7). Black 6 mice were chosen for their aggressive immune response when faced 

with Leishmania infection; RAG2 KO variants were chosen as contrast, as a model of low immune 

pressure. Using transcriptome samples from these two genetic backgrounds and infection 

statuses, it was possible to determine differences in the baseline transcriptomes of the mice, 

identify genes involved in a healthy immune response, and determine the way RAG2 KO mice 

respond to infection. 

Dual RNA-Seq approaches also allowed for the isolation of parasite transcriptome data from 

mixed mouse/parasite RNA samples. Additional libraries were prepared from an inoculum, to 

compare Leishmania transcriptomes over time during infection. 

 

 

Figure 7. Experimental design overview. The L. donovani amastigote inoculum (grey) was used to 

infect 10 mice, 5 of each genetic background (pink). 9 mice (5 WT and 4 RAG) remained 

uninfected to serve as controls (blue). After 28 days, the spleen, liver and blood were harvested 

from euthanised mice. A minimum of 4 mice were used for each condition to serve as biological 

replicates. 3 samples were generated from the same inoculum RNA sample to serve as technical 

replicates. 
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Due to time constraints, cDNA libraries for Illumina sequencing were only generated from spleen 

and inoculum RNA samples. A minimum of three libraries were generated for each condition for 

statistical robustness (table 5). 

Table 5. A summary of the RNA and cDNA samples prepared from the experiment. 

CONDITION NO. OF RNA SAMPLES 
GENERATED 

NO. OF cDNA LIBRARIES 
GENERATED 

B6 WT uninfected 5 3 

B6 WT infected 5 4 

B6 RAG2KO uninfected 4 3 

B6 RAG2KO infected 5 4 

Leishmania inoculum 3 (technical replicates) 3 (technical replicates) 

 

3.2 PRE-CLEANING RNA QUALITY 

3.2.1 SPLEEN RNA SAMPLES 

RNA sample quality was checked after DNAse treatment, but before magnetic bead cleaning, in 

order to check for sample degradation that may have occurred during storage, and contamination 

with salts and other chemicals left over from the extraction and DNAse treatments. RNA Pico 

BioAnalyser chips were used for the spleen samples. Spleen total RNA samples show a mean RNA 

integrity number (RIN) score of 8.28, ranging from 6.00 – 9.40, with a mean score of 8.28 (table 6). 

All samples show a score above 6.00, the standard quality threshold. Sample concentration 

ranged from 2.156ng/µl to 7.178ng/µl, with an average of 4.874ng/µl. Concentration was 

measured to ensure that enough RNA was present in the sample to continue to the cleaning 

stage. 18S and 28S rRNA ratios are used as an indicator of degradation. For the spleen RNA 

samples, the rRNA ratio varied from 0.8 to 1.1, with a mean of 1.0. On other platforms, a standard 

ratio of 2.0 is typically used as a sign of good quality. However, on the BioAnalyser, it has been 

noted that even good quality RNA can struggle to meet the 2.0 standard (Imbeaud et al. 2010). 

Additionally, the mouse rRNA RIN score is affected by the presence of Leishmania rRNA, which 

instead comes in three peaks rather than two. The Leishmania peaks are obscured by the relative 

abundance of the mouse RNA.  

Figures 8a and 8b show the electrophoresis gels produced by the BioAnalyser. The two bands 

correspond to mouse 18S and 28S rRNAs, which can be seen as the peaks in figure 8c. Leishmania 

rRNA peaks cannot be seen on the gel as the mouse rRNAs are massively more abundant and 

obscure the presence of the Leishmania peaks. Spleen samples 10 and 18 show mild degradation, 

indicated by grey banding, which was likely caused by over-vortexing. 
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Figure 8a, b & c – Assessment of pre-cleaning RNA quality.  Agilent RNA Pico BioAnalyser Chip 

Results, with vertical axis showing fragment size in nucleotides. 8a – spleen samples 1-11. 8b – 

spleen samples 12-19.  8c – sample 1 trace.
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Table 6. Assessment of pre-cleaning RNA. Agilent RNA Pico BioAnalyser chip results of spleen RNA 

samples.  

Sample background and 
no. 

RIN score Concentration 
(ng/µl) 

rRNA ratio 
(28s/18s) 

WT infected – 1  8.50 5.970 1.1 

WT infected – 2  8.40 5.623 1.0 

WT infected – 3  8.20 5.176 1.1 

WT infected – 4  8.50 5.134 1.1 

WT infected – 5  8.40 5.413 1.1 

WT uninfected – 6  8.50 4.711 1.1 

WT uninfected – 7  7.80 5.181 1.0 

WT uninfected – 8  8.30 5.065 1.1 

WT uninfected – 9 7.70 4.781 1.1 

WT uninfected – 10 6.00 5.045 0.9 

RAG infected – 11 8.30 4.290 1.0 

RAG infected – 12 8.70 5.262 1.0 

RAG infected – 13 9.20 6.007 0.9 

RAG infected – 14 9.10 7.178 1.0 

RAG infected – 15 9.40 4.198 1.0 

RAG uninfected – 16 7.80 4.688 0.8 

RAG uninfected – 17  8.70 4.355 1.0 

RAG uninfected – 18  6.80 2.373 0.9 

RAG uninfected – 19  9.10 2.156 0.9 

 

3.2.2 INOCULUM RNA SAMPLES 

Parasite total RNA, isolated from the inoculum, also underwent pre-cleaning assessment as 

storage issues caused the degradation of a number of samples. Two samples underwent 

assessment via BioAnalyser RNA pico chip, and one was chosen for further use, and split into 

three samples to act as technical replicates.  

The parasite RNA samples show a lower average RIN score – 6.15 – but still pass the 6.00 quality 

standard (table 7). The rRNA ratio for the parasite RNA is not useful as a measure of quality as 

parasite rRNA does not show only two peaks (28S and 18S) as mammalian RNA does, reflecting 

the divergence between mammalian and kinetoplastid rRNA. Instead, the parasite RNA shows 3 

peaks (figures 9a & 9b) representative of the smaller rRNAs used to assemble the ribosome 

(Zhang et al. 2016). 

Given the slightly higher RIN score, and higher concentration, the first RNA sample was selected 

to be used as technical replicates. 

 

 

 

 



57 
 

Table 7 – Assessment of pre-cleaning parasite RNA. Agilent RNA Pico Chip BioAnalyser results of the 

parasite RNA.  

Sample no. RIN score Concentration 
(ng/µl) 

rRNA ratio 
(28s/18s) 

1 6.20 6.027 0.0 

2 6.10 4.474 0.0 

 

 

Figure 9a & 9b – Assessment of pre-cleaning parasite RNA. 9a - Agilent RNA Pico Chip BioAnalyser 

results of parasite RNA, showing the three bands corresponding to Leishmania rRNA peaks. 9b – 

inoculum sample 1 trace showing three rRNA peaks. 
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3.3 POST-CLEANING RNA QUALITY 

3.3.1 SPLEEN RNA SAMPLES 

RNA quality was checked again after magnetic bead cleaning, to remove small fragments of RNA 

that may have been produced by degradation. Spleen RNA samples show a range of RIN scores 

from 6.30-9.70, with an average of 8.73, showing that RIN score has been slightly increased by the 

magnetic cleaning procedure (table 8). Sample concentration has reduced, given that degraded 

RNA is being removed from the sample. The average concentration after cleaning was 3.215ng/µl, 

with a range of 1.934 to 4.420ng/µl. rRNA ratios improved slightly with cleaning, bringing the 

average up to 1.1, and ranging from 0.8 to 1.3. 

Samples 10 and 18 still show minor degradation, but sample 10 has improved in RIN score from 

6.00 to 6.30 (figure 10). Sample 18 appears to have a slightly lower RIN score, but is still above the 

quality threshold of 6.00. 

 

Table 8. Assessment of post-cleaning RNA. Agilent RNA Pico BioAnalyser results for post-cleaning 

spleen RNA samples. 

Sample background and 
no. 

RIN score Concentration 
(ng/µl) 

rRNA ratio 
(28s/18s) 

WT infected – 1  9.10 3.335 1.1 

WT infected – 2  9.50 2.468 1.0 

WT infected – 3  9.40 1.934 1.3 

WT infected – 4  9.60 2.193 1.1 

WT infected – 5  9.70 2.759 1.2 

WT uninfected – 6  9.40 2.533 1.3 

WT uninfected – 7  9.20 2.346 1.2 

WT uninfected – 8  9.00 3.985 1.0 

WT uninfected – 9 8.00 3.587 1.2 

WT uninfected – 10 6.30 3.536 0.9 

RAG infected – 11 8.90 3.187 1.0 

RAG infected – 12 8.80 4.420 1.2 

RAG infected – 13 9.30 3.508 1.1 

RAG infected – 14 9.20 3.503 1.0 

RAG infected – 15 9.30 3.197 1.0 

RAG uninfected – 16 7.60 3.569 0.8 

RAG uninfected – 17  8.10 3.907 0.9 

RAG uninfected – 18  6.60 3.884 0.9 

RAG uninfected – 19  8.90 3.246 0.9 
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Figure 10. Assessment of post-cleaning RNA. Agilent RNA Pico BioAnalyser results, vertical axis 

showing fragment size in nucleotides. 10a – spleen samples 1-11. 10b – spleen samples 12-19. 

After being run through the BioAnalyser, samples were additionally prepared for more precise 

concentration quantification using the Qubit (table 9). These samples were not diluted 1/20 for 

testing, as they were for the BioAnalyser, which is why there is a drastic difference in 

concentration. Qubit quantification allowed for appropriate dilution of the sample for cDNA 

library preparation. 

Table 9. Assessment of post-cleaning RNA. Qubit results for post-cleaning spleen RNA samples.  

Sample background 
and no. 

In Original 
(ng/µl)  

In Qubit tube (pg/ml)  Approximate 1/20 
(ng/µl) 

WT infected – 1  75.600 378000 3.780 

WT infected – 2  36.000 180000 1.800 

WT infected – 3  43.400 217000 2.170 

WT infected – 4  45.200 226000 2.260 

WT infected – 5  38.000 190000 1.900 

WT uninfected – 6  29.000 145000 1.450 

WT uninfected – 7  36.400 182000 1.820 

WT uninfected – 8  29.000 145000 1.450 

WT uninfected – 9 36.400 182000 1.820 

WT uninfected – 10 33.200 166000 1.660 

RAG infected – 11 27.800 139000 1.390 

RAG infected – 12 25.200 126000 1.260 

RAG infected – 13 34.000 170000 1.700 

RAG infected – 14 34.800 174000 1.740 

RAG infected – 15 34.800 174000 1.740 

RAG uninfected – 16 31.400 157000 1.570 

RAG uninfected – 17  15.700 78500 0.785 

RAG uninfected – 18  32.400 162000 1.620 

RAG uninfected – 19  79.800 399000 3.990 
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3.3.2 INOCULUM RNA SAMPLES 

Parasite RNA was not run on a BioAnalyser chip after magnetic bead cleaning; instead, uncleaned 

RNA was cleaned, measured with the NanoDrop and Qubit, before being immediately used in 

cDNA library prep (tables 10 and 11). 260:280 and 260:230 ratios of 2 and 2.0 – 2.2 are used as 

indicators of sample purity, with significant deviations indicative of contamination. The nanodrop 

absorbance ratio results for the parasite RNA sample do not indicate contamination. 

 

Table 10. Cleaned purified parasite RNA nanodrop results. 

NanoDrop 

Sample no. ng/µl 260:280 260:230 

1 68.200 2.20 2.38 

 

Table 11. Cleaned purified parasite RNA qubit results. 

Qubit 

Sample no.  In Original (ng/µl)  In Qubit tube (pg/ml)  

1 53.000 265000 

   

3.4 PRE-SEQUENCING LIBRARY QUALITY 

cDNA libraries were quality assessed using Agilent BioAnalyser HS DNA chips prior to sequencing. 

These results are shown in table 12. Average fragment size for the libraries is 381.5bp, with a 

range of 341 – 464bp. Library concentration showed a high level of variance, with a range from 

0.71028 ng/µl to 343.02313 ng/µl. The low concentration is evident from the gel (11d). However, 

libraries are pooled in equimolar concentrations prior to sequencing. 

Spleen sample 12 has two entries in the table, as two libraries were pooled together after the chip 

was run and submitted as one sample for sequencing. Figure 11c shows one of the sample 12 

libraries with a significant gap in fragment size at around 320bp, indicative of a poor quality 

library. Such a gap is also present in sample 8 (figure 11a) but is not as pronounced. Parasite cDNA 

libraries (fig. 12) do not show substantial fragment gaps. Figure 13 shows examples of acceptable 

and poor quality cDNA libraries. 
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Table 12. Agilent BioAnalyser HS DNA results for cDNA libraries  

Sample background 
and no. 

Average size 
(bp) 

Size distribution 
in CV (%) 

Concentration 
(ng/µl) 

Molarity 
(pmol/l) 

Inoculum – 1 397 30.6 20.9296 88474 

Inoculum – 2 438 33.0 11.60027 45432.1 

Inoculum – 3 464 30.1 10.25117 37548.5 

WT infected – 1  362 37.1 11.39127 54536.6 

WT infected – 2  369 33.3 14.72119 67389.2 

WT infected – 3  366 34.4 28.44802 132971.8 

WT infected – 5 373 35.9 10.99224 50807.5 

WT uninfected – 6 381 33.7 18.07308 80817 

WT uninfected – 7 393 33.1 15.52196 67429.1 

WT uninfected – 8 399 30.4 8.64519 36600 

RAG infected – 11 341 22.7 2.94052 13873.2 

RAG infected – 12 346 35.3 343.02313 1713187.6 

RAG infected – 12 356 30.4 16.47886 76777.4 

RAG infected – 13 348 31.8 13.34578 64171.8 

RAG infected – 14  366 29.3 9.90055 44963.8 

RAG uninfected – 16 403 29.6 4.54839 18972 

RAG uninfected – 17 372 26.1 0.71028 3151.6 

RAG uninfected – 18 402 30.4 6.32234 26638.7 

 

 

Figure 11. Assessment of cDNA library quality. Agilent BioAnalyser HS DNA results. a, b and c have 

vertical axes showing fragment size in bp. Due to a technical failure with the chip, d instead shows 

elution time in seconds, which cannot be converted to bp. 11a – Spleen samples 1-8. 11b – spleen 

sample 12. 11c – spleen samples 12-14. 11d – spleen samples 11a, 16-18. 

 

 

 

 



62 
 

 

Figure 12. Assessment of pre-sequencing cDNA library quality. Agilent BioAnalyser HS DNA results 

for parasite inoculum libraries. 

 

 

Figure 13. Examples of good and poor quality cDNA library curves. Agilent BioAnalyser HS DNA 

curves for spleen cDNA libraries, with vertical axis showing fluorescent units. 13a shows a library 

with a good quality curve (WT infected 02). 13b shows a library with entire fragment fractions 

missing, signifying a poor quality library (RAG infected 11 – not sequenced – another cDNA library 

was generated and used instead). 
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3.5 POST-SEQUENCING LIBRARY QUALITY 

17 cDNA libraries were sequenced by the University of Leeds NGS facility and returned in the form 

of pairs of FASTQ files, each containing forward (R1) and backward (R2) reads for each library 

(table 13).  The total number of sequences returned ranges from 29,004,444 to 205,331,092, with 

an average of 88,662,474. Equimolar amounts of cDNA were used to produce the libraries, and as 

such the difference in the number of reads between each library is likely a result of the library 

content, and non-normal distribution causing preferential amplification.  

FastQC was used to determine metrics, such as sequence length, GC content etc. Between sample 

variation exists, as aforementioned, the number of reads varies between samples, however the 

number of forward and backward reads of each library are identical, though some variation exists 

between the per base quality scores (Figure 14a) as a consequence of the Illumina sequencing 

process. 
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Figure 14. 14a - FastQC read quality profiles for forward (left) and reverse (right) reads of the 

WI01 library. The Y-axis is the PHRED score, which is a measure of the reliability of the base call. 

PHRED scores below 20 (shaded red) are considered too unreliable for use in the alignment 

process. Score of above 30 (shaded green) are considered good quality, which equates to a base 

calling error rate of 0.1%. The data are presented as whisker-and-box plots. The yellow boxes 

show inter-quartile range, with central red lines representative of the median value. The blue 

trace line represents mean quality. Upper and lower whiskers show the 10% and 90% points. 14b 

– FastQC GC distribution profile for the WC08 library. The blue curve shows the theoretical 

distribution, while the red curve shows the actual GC % per read. The Y-axis is number of reads, 

and the X is mean GC %.  
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Parasite libraries show a GC content reflective of the L. donovani genome content at around 59% 

(Zhou et al. 2004). The GC content of the mouse (and mixed) libraries is slightly lower, with an 

average of 49.5% (Figure 14b). Though the GC content of the mouse genome as a whole is around 

42%, there is a marked difference in the content between introns and exons, at 46% and 53% 

respectively, which may explain the discrepancy in GC content between the whole genome and 

the transcriptome (Zhou et al. 2004). 

Table 13. Initial FastQC statistics for unprocessed libraries. 

GROUP SAMPLE 
NUMBER 

TOTAL READ 
COUNT (R1+R2) 

GC CONTENT (%) 

Parasite inoculum 1 116821560 58 

Parasite inoculum 2 77002940 57 

Parasite inoculum 3 83813960 59 

WT infected 1 29004444 50 

WT infected 2 40779458 50 

WT infected 3 39964422 50 

WT infected 5 118921726 50 

WT uninfected 6 131594816 50 

WT uninfected 7 86331978 49 

WT uninfected 8 89671554 50 

RAG infected 11 61641644 50 

RAG infected 12 205331092 49 

RAG infected 13 50464610 49 

RAG infected 14 109784794 50 

RAG uninfected 16 50765902 48 

RAG uninfected 17 72667356 49 

RAG uninfected 18 142699796 49 

 

3.6 CUTADAPT AND SICKLE 

3.6.1 CUTADAPT 

CutAdapt was used to remove illumina universal sequencing adaptors. This trims the reads to 

remove any adaptor sequences. CutAdapt had no effect on the total number of sequences or GC 

content for each library, as it does not remove sequences; even those trimmed entirely are still 

listed with a length of 0. Instead of being a uniform 151bp long, after CutAdapt, the sequence 

length varied from 0bp, where the entire read had been dismissed (but still indexed), to 151, 

where the read was untouched by the CutAdapt process.  

After CutAdapt processing, sample library statistics are identical to those in table 13, aside from 

the differences in sequence length discussed above. 
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3.6.2 SICKLE 

Sickle is another pre-processing program, used to remove unreliable (low quality) base calls from 

reads. Reads are trimmed until either the read has an overall score of 20 or higher, or the read 

reaches 20bp. Reads that reach 20bp without improving the score to above 20 are removed. The 

library GC content of some libraries was changed by 1% by this process.  

Given that reads were removed from libraries by Sickle, the range and average of total sequences 

after CutAdapt and Sickle processing reduced slightly (table 14). The lowered range is 28,510,446 

to 201,644,280, and the lowered average number of sequences is 87,164,197.  

Sickle produces an additional output file to the forward (R1) and reverse (R2) input files – R0. The 

R0 file contains singlet discarded reads, which are not used in any further processing or analysis. 

Sickle is configured to make use of paired-end reads, so if one read in a pair fails quality filtering, 

both reads are removed. Figure 15 demonstrates the effects on library quality that processing 

with CutAdapt and Sickle have (15a & b), and also shows the kinds of read that are discarded as 

R0 (15c). 

Table 14. Sample library FastQC statistics after processing with CutAdapt and Sickle.  

GROUP SAMPLE 
NUMBER 

TOTAL READ 
COUNT (R1+R2) 

GC CONTENT (%) 

Parasite inoculum 1 114173872 58 

Parasite inoculum 2 75575478 57 

Parasite inoculum 3 82218296 60 

WT infected 1 28510446 50 

WT infected 2 40155420 50 

WT infected 3 39350032 50 

WT infected 5 117154558 50 

WT uninfected 6 129431340 50 

WT uninfected 7 84860046 49 

WT uninfected 8 88157566 50 

RAG infected 11 60828052 50 

RAG infected 12 201644280 50 

RAG infected 13 49458988 50 

RAG infected 14 108044906 50 

RAG uninfected 16 49931272 48 

RAG uninfected 17 71666382 49 

RAG uninfected 18 140630422 49 

 

 

 

 



67 
 

 

 

 

Figures 15a, b & c showing FastQC library profiles of RI11: a, before CutAdapt and Sickle 

treatment. b, after treatment. c, discarded R0 reads. 

 

3.7 READ ALIGNMENT AND COUNTING 

3.7.1 STAR ALIGNMENT 

After trimming low-quality bases and reads from libraries, the reads were locally aligned to the 

reference genome, using the STAR aligner and the index generated from the concatenated 

genomes of Mus musculus GRCm38 (version 84) and Leishmania donovani BPK282a1 (version 28). 

The mouse genome contains 47,643 annotated genes, while the Leishmania genome contains 

8,195. Reads that have matches to multiple places in the combined genome are flagged and 

excluded from the final output alignment. STAR counts paired-end mate pairs as one single read, 

which is why the numbers of input, mapping etc. reads appear half of what the original library 

contained (table 15). On average, 90.69% of reads mapped uniquely, with 8.49% mapping to 

multiple places across the genomes (table 15). Reads can map to multiple locations if there is a 

true extra copy of a gene, such as a duplication, but also if a read has a strong match to more than 

one location in the genome, and the aligner is unable to determine which position is correct. 

Not all reads will have mapped to genomic features. Some will map to introns or repeats, which is 

why unique and non-unique read percentages do not add up to 100% (table 15). No library had 

more than 1.35% of reads fail to map to a genomic feature. 
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Table 15. STAR alignment reports showing proportions of uniquely and non-uniquely mapping 

reads. Read pairs are treated by STAR as a single read, which is why numbers appear smaller than 

the original library size. 

Sample Input reads  Uniquely 
mapping 
reads 

Unique 
reads 
(%) 

Non-uniquely 
mapping 
reads 

Non-
unique 
reads (%) 

Non-feature 
mapping 
reads (%) 

Parasite inoculum - 1 57086936 52310083 91.63 4169449 7.30 1.07 

Parasite inoculum - 2 37787739 34714858 91.87 2633327 6.97 1.16 

Parasite inoculum - 3 41109148 37705204 91.72 2920239 7.10 1.18 

WT infected - 01 24956536 22998916 92.12 1713134 6.86 1.02 

WT infected - 01 35833191 31179239 87.01 4169317 11.64 1.35 

WT infected - 03 70315211 64064282 91.11 5773473 8.21 0.68 

WT infected - 05 30414026 26437018 86.92 3745225 12.31 0.77 

WT uninfected - 06 100822140 91223063 90.48 8760840 8.69 0.83 

WT uninfected - 07 24718494 21556421 87.17 2871928 11.61 1.22 

WT uninfected - 08 54022453 48312335 89.43 4989471 9.24 1.33 

RAG infected - 11 64715670 59532096 91.99 4905506 7.58 0.43 

RAG infected - 12 42430023 39025800 91.98 3185858 7.51 0.51 

RAG infected - 13 44078783 40958089 92.92 2920523 6.63 0.45 

RAG infected - 14 14255223 13115511 92.00 1078764 7.57 0.43 

RAG uninfected - 16 20077710 18187255 90.58 1814232 9.04 0.38 

RAG uninfected - 17 19675016 18246089 92.74 1353235 6.88 0.38 

RAG uninfected - 18 58577279 52807365 90.15 5455071 9.31 0.54 

 

3.7.2 HT-SEQ COUNT 

After alignment, HT-Seq count was used to count the number of reads at each genomic feature, 

which are coding regions such as genes and RNA genes. Similarly to STAR, HT-Seq count counts 

pairs of mated reads as one read, so alignment statistics appear halved when compared with the 

total library size. 

In infected mouse samples, an average 98.82% of reads mapped to the mouse genome (table 16). 

In the uninfected mouse samples, up to 2.94% of reads aligned to the Leishmania genome despite 

the absence of the parasite in the host. This indicates that a small proportion of reads are being 

attributed to the Leishmania genome through random chance. Though this is not ideal, it is 

possible that this is a consequence of the increased error tolerance settings that were changed in 

order to compensate for the presence of splice leader sequences in Leishmania reads.  

Similarly, despite procedures in place to remove mouse cells from the parasite inoculum sample, 

up to 28.53% of reads still aligned to the mouse genome. The three parasite inoculum technical 

replicates were all generated from the same RNA sample, stored in the same manner, and 

processed in a batch together on the same day using the same kit. Despite this, one sample shows 

considerably less contamination (only 0.4%) compared to the other two technical replicates 

(19.28% and 28.53%). No explanation for this difference could be established, but the 

transcriptome results for the replicates were extremely similar. 
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Given that the data for mouse and Leishmania were analysed separately, i.e the lists of mouse 

and Leishmania genes were separated, the issues discussed above have likely not significantly 

affected analysis. 

 

Table 16. HT-Seq count results showing read alignment statistics. 

Sample Total reads 
aligned 

Reads aligning 
to mouse 

Reads aligning 
to mouse (%) 

Reads aligning 
to Leishmania 

Reads aligning to 
Leishmania (%) 

PI01 16,736,482 3226871 19.28 13509611 80.72 

PI02 11,611,158 3312428 28.53 8298730 71.47 

PI03 11,753,093 46997 0.40 11706096 99.60 

WI01 5,895,142 5888259 99.88 6883 0.12 

WI02 8,251,608 8234004 99.79 17604 0.21 

WI03 8,238,564 8225928 99.85 12636 0.15 

WI05 23,961,993 23904382 99.76 57611 0.24 

WC06 26,321,499 26313533 99.97 7966 0.03 

WC07 16,986,980 16981707 99.97 5273 0.03 

WC08 17,952,881 17947556 99.97 5325 0.03 

RI11 11,728,813 11429324 97.45 299489 2.55 

RI12 39,928,136 38717814 96.97 1210322 3.03 

RI13 9,676,481 9533990 98.53 142491 1.47 

RI14 21,292,528 20949294 98.40 343234 1.60 

RC16 10,197,422 10188113 99.99 9309 0.01 

RC17 13,881,742 13863407 99.88 18335 0.12 

RC18 28,174,339 27347320 97.06 827019 2.94 

 

3.8 SAMPLE METRIC REGRESSION AND CORRELATION ANALYSES  

A number of simple regression analyses and t-tests were performed in order to determine 

significant correlations or relationships between sample metrics such as organ weight, host 

genetic background, percentage of reads mapping to each genome, and percentage of uniquely 

mapping reads. 

 

3.8.1 EFFECT OF MOUSE GENETIC BACKGROUND AND PARASITE BURDEN  

Table 17 displays data collected from mice at the time of euthanasia. The parasite burden and 

organ/body weight data was analysed in combination with sequencing and mapping information 

to determine if any relationships were present.  
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Table 17. Mouse LDU, body weight and organ weight statistics. Uninfected mice do not have LDU 

values, as LDU is a measure of parasite burden. 

Sample Body weight (g) Spleen LDU Spleen weight (g) Liver LDU Liver weight (g) 

WI01 21.48 34 0.49 106 1.43 

WI02 20.4 42 0.49 100 1.67 

WI03 20.53 29 0.47 112 1.36 

WI05 21.09 12 0.67 72 1.54 

WC06 15.93 N/A 0.07 N/A 0.72 

WC07 18.03 N/A 0.06 N/A 0.75 

WC08 17.86 N/A 0.06 N/A 0.85 

RI11 17.09 21 0.03 1458 0.68 

RI12 21.33 37 0.03 827 0.68 

RI13 18.65 14 0.03 1267 0.91 

RI14 21.22 37 0.04 1717 1.01 

RC16 18.58 N/A 0.03 N/A 0.86 

RC17 18.93 N/A 0.03 N/A 0.89 

RC18 18.67 N/A 0.04 N/A 0.68 

 

No statistically significant difference was observed in the spleen LDU between WT Black 6 mice 

and RAG2KO mice (table 18). This was to be expected as the mice were euthanised specifically on 

day 28, when the parasite burdens are expected to be similar despite the presence/absence of an 

immune system.  

 

Table 18. Welch’s two-sample t-test results 

Hypothesis t-value Degrees of 
freedom 

p-value 95% confidence 
interval 

LDU and host genetic background 0.23256 5.954 0.829 -19.08267, 
23.0867 

Percentage of reads mapping to the 
Leishmania genome and host genetic 
background 

-5.2553 3.0318 0.01307 -3.1759404,  
-0.7890596 

 

The relationships between spleen LDU and spleen weight, liver weight, and total mouse body 

weight were also investigated and no significant correlation was found (table 19). The spleen and 

liver weights of WT mice increased considerably during infection as white blood cells infiltrated 

the tissues. This process was absent in RAG2KO mice. However, despite the differences in organ 

weight, the LDU remained the same. RAG2KO mice were no different in body weight to WT mice.  

 

Table 19. Regression analysis statistics for parasite burden and host background metrics. 

Factor 1 Factor 2 F-statistic P-value Significance 

Spleen LDU Spleen weight 0.00283 0.9589 Not significant 

Spleen LDU Liver weight 0.1028 0.7567 Not significant 

Spleen LDU Body weight 1.795 0.2171 Not significant 
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After alignment of reads to the reference genomes, further regression analyses were performed 

to determine a relationship between parasite burden and proportion of Leishmania reads, if any.  

 

Table 20. Regression analysis statistics for parasite burden and alignment metrics. 

Factor 1 Factor 2 F-statistic P-value Significance 

Spleen LDU % mapping to Leish 0.00053 0.9824 Not significant 

Spleen LDU % mapping to mouse 0.00071 0.9796 Not significant 

Spleen weight % mapping to Leish 20.7 0.0039 Significant 

 

Given that the parasite burden was not statistically different between WT and RAG2KO mice, it is 

unsurprising that no significant relationship was found between spleen LDU and the percentage of 

reads mapping to either the mouse or L. donovani genome, when the LDU was fitted as a single 

dataset instead of being separated by background (table 20 and figure 16). However, the 

difference in spleen weights between the two sets of mice was found to show a significant 

relationship to the percentage of reads mapping to the Leishmania genome. A lower proportion 

of the tissue weight was attributable to mouse cells in RAG2KO samples. In WT samples, most of 

the tissue weight can be found in the infiltrated white cells. A further t-test confirms that there 

was a significant (p = 0.0131) difference between the percentage of reads mapping to the 

Leishmania genome for each mouse background (Table 18). 
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Figure 16. Plot showing the relationship between spleen LDU and the percentage of reads 

mapping to the Leishmania genome. Each library is represented by two points – a blue point 

showing the percentage of reads mapping to the mouse genome, and a red point showing the 

percentage of reads mapping to the Leishmania genome. The lines show the average percentage 

for each mouse and Leishmania data across LDU. 

 

3.8.2 SEQUENCING COVERAGE STATISTICS  

Due to the selective nature of RNA sequencing, statistics on read depth and average coverage are 

not as useful an indicator for how accurate a representation of the genome – or in this case, 

transcriptome – is. Instead, comparing the number of genes found in the sample with a known 

number of genes or annotations can relay how thoroughly represented a transcriptome is. 
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Table 21. Mouse gene expression statistics. Genes considered “expressed” have a minimum read 

count of 1 across all samples. Only genes with a non-zero read count were considered for 

calculating the median. 

Sample No. of mouse 
genes 
expressed 

No. of mouse 
genes not 
expressed 

Median no. 
of reads per 
gene 

Percentage of 
mouse genes 
expressed 

Inoculum – 01 20777 26866 40 43.6 

Inoculum – 02 20674 26969 41 43.4 

Inoculum – 03 10292 37351 2 21.6 

WT infected - 01 20570 27073 137 43.2 

WT infected – 02 19848 27795 193 41.7 

WT infected – 03 24052 23591 190 50.5 

WT infected - 05 21149 26494 112 44.4 

WT uninfected - 06 26383 21260 162 55.4 

WT uninfected – 07 22387 25256 79 47.0 

WT uninfected – 08 24756 22887 122 52.0 

RAG infected – 11 25245 22398 137 53.0 

RAG infected – 12 24417 23226 108 51.2 

RAG infected – 13 24275 23368 114 51.0 

RAG infected – 14 20994 26649 60 44.1 

RAG uninfected – 16 21499 26144 70 45.1 

RAG uninfected – 17 21813 25830 71 45.8 

RAG uninfected - 18 21813 25830 119 45.8 

 

Table 21 shows that for both inoculum and mixed RNA samples, mouse genes are present. 21.6% 

of mouse genes are still represented in the ‘purest’ inoculum sample. For mixed RNA samples, 

between 41.7% and 55.4% of mouse genes are found to be expressed, with an average of 47.9%. 

Mammalian cells would not be expected to express each gene concurrently so an average such as 

this is not unusual. For expressed genes, the average number of reads is 103, with the median for 

each sample ranging from 2 – 193. The inoculum samples all have a median of below 41, with the 

‘purest’ inoculum sample only having a median of 2 reads per mouse gene.  
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Table 22. Leishmania gene expression statistics. Genes considered “expressed” have a minimum 

read count of 1 across all samples. Only genes were with a non-zero considered for calculating the 

median. 

Sample No. of Leish 
genes 
expressed 

No. of Leish 
genes not 
expressed 

Median no. 
of reads per 
gene 

Percentage of 
Leish genes 
expressed 

Inoculum – 01 8041 154 1151 98.1 

Inoculum – 02 8031 164 711 98.0 

Inoculum – 03 8028 167 1002.5 98.0 

WT infected - 01 3416 4779 1 41.7 

WT infected – 02 4649 3546 2 56.7 

WT infected – 03 7935 260 72 96.8 

WT infected - 05 7715 480 27 94.1 

WT uninfected - 06 7991 204 105 97.5 

WT uninfected – 07 7812 383 13 95.3 

WT uninfected – 08 7902 293 29 96.4 

RAG infected – 11 3883 4312 1 47.4 

RAG infected – 12 3070 5125 1 37.5 

RAG infected – 13 2997 5198 1 36.6 

RAG infected – 14 3412 4783 1 41.6 

RAG uninfected – 16 5444 2751 2 66.4 

RAG uninfected – 17 4812 3383 2 58.7 

RAG uninfected - 18 7400 795 5 90.3 

 

Gene expression statistics for Leishmania genes can be seen in table 22. For both the inoculum 

and RAG infected samples, almost 100% Leishmania genes can be detected in the sample. The 

average for the WT infected samples is much lower at 71.8%. However, even in uninfected mouse 

samples, up to 96.8% of Leishmania genes are still being detected with at least 1 read in the 

sample. The average number of reads per gene in the inoculum samples is 98. For infected mouse 

samples, the average is 80.1. For uninfected samples, the average is considerably lower, at 52.8 

reads per gene, similar to the number of mouse reads in the inoculum samples. The presence of 

reads aligning to the Leishmania genome in uninfected samples is indicative of an underlying 

technical issue, as few reads – if any – should align to the parasite genome if no parasite is 

present in the host tissues. 

Only 135 of the total 8,224 annotated Leishmania genes are without a single read detected in any 

of the inoculum samples (Data available in accompanying material A1). Given in this analysis, the 

threshold for expression is the alignment of a single read, very few genes are uniquely expressed 

in each inoculum sample; only 14 in PI01, 7 in PI02, and 6 in PI03 (figure 17). Similarly, only a few 

genes are found expressed in two inoculum samples but not the third.  
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Figure 17. A Venn diagram showing the number of genes not expressed in each of the inoculum 
samples, where expressed means at least one read aligns. For example, 135 are absent from all 
three samples (black), 9 genes (yellow) are not found in PI02, while 14 genes (green) are missing 
from PI02 and PI03.  

 

 

3.9 WT UNINFECTED VS. RAG UNINFECTED 

Gene count data produced by HT-Seq count was transformed appropriately for use with edgeR. 

For comparisons of gene expression between mouse samples, all reads mapping to the 

Leishmania genome were filtered out of the analysis. Similarly, for Leishmania analysis, reads 

aligned to the mouse genome were excluded. 

In the following analyses, the read count data interpreted by edgeR was used for comparing 

patterns of gene expression between samples of different backgrounds. This differential 

expression data was further processed in order to analyse enrichment and pathway patterns to 

discover overall trends in the differences and responses between each condition (see figure 6). 

This analysis compares the gene expression of uninfected, resting profiles of mice from the two 

different genetic backgrounds – the WT black 6 mice and the RAG2 KO mice.  
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3.9.1 EDGER ANALYSIS 

3.9.1.1 DIFFERENTIAL GENE EXPRESSION 

EdgeR (3.18.1) was used to identify differentially expressed genes through pairwise comparisons 

between wild type and RAG background mice, and uninfected and infected mice.  Genes that 

were differentially expressed were annotated using gene coordinates from annotations in the 

TriTrypDB database. Of the 30,976 genes with non-zero read counts, edgeR found that 6,439 were 

significantly (p ≤ 0.05) differentially expressed between the uninfected WT and uninfected RAG 

mice (20.78% of non-zero count annotated genes). Differentially expressed genes were then 

filtered using a log CPM cut off of 1, and a log2FC of +/- 1.5, the number of differentially 

expressed genes was reduced to 1,223 (3.95%, 81% failed the logFC/logCPM cutoff) (table 23).  

Few of the most significantly differentially expressed genes are directly related to the immune 

system. A handful – Ifi44, Mt2 and Oas1g – have antiviral connotations, but are more highly 

expressed in the RAG samples (Kitamura et al. 1994; Kumar et al. 2000; Ghoshal et al. 2001). 

Clec4a2, a C-type lectin receptor, is known to act as an immune signal receptor, but is also found 

to be more highly upregulated in RAG samples (Kanazawa et al. 2001). However, Ebf1, a 

transcription factor associated with B-lymphocyte differentiation, is expressed much more highly 

in the WT mice (Lin and Grosschedl 1995).  

Table 23. The 20 most significantly differentially expressed genes, comparing uninfected WT and 

RAG samples, ordered by FDR q-value. Full results table in accompanying material A1. 

Gene name logCPM logFC FDR Gene description 

Mmrn1 4.85 -2.79 2.78E-26 multimerin 1 

Chil3 6.35 -3.10 8.44E-26 chitinase-like 3 

Ifi44 5.26 -2.91 1.43E-25 interferon-induced protein 44  

Mt2 4.96 -3.11 5.95E-20 metallothionein 2 

Npl 4.51 -2.32 2.13E-19 N-acetylneuraminate pyruvate lyase  

Oas1g 4.02 -2.49 2.13E-19 2'-5' oligoadenylate synthetase 1G 

Gm15675 4.84 2.75 3.12E-19 predicted gene 15675  

Fpr2 4.94 -2.59 2.22E-18 formyl peptide receptor 2  

Cmah 6.61 2.55 2.86E-18 cytidine monophospho-N-acetylneuraminic acid hydroxylase  

Alox12 6.06 -2.10 5.81E-18 arachidonate 12-lipoxygenase  

Sbk1 5.89 3.42 9.75E-18 SH3-binding kinase 1  

Clec4a2 5.29 -2.26 1.52E-17 C-type lectin domain family 4, member a2  

Aff3 5.29 2.85 1.52E-17 AF4/FMR2 family, member 3  

Ebf1 5.37 4.30 1.71E-17 early B cell factor 1  

Rhof 5.55 1.82 1.88E-17 ras homolog family member F (in filopodia)  

Thbs1 7.36 -2.25 2.36E-17 thrombospondin 1  

Pde5a 5.16 -2.39 2.36E-17 phosphodiesterase 5A, cGMP-specific  

Gm9025 3.23 -3.28 3.27E-17 predicted gene 9025  

Rgs18 5.36 -2.50 3.43E-17 regulator of G-protein signaling 18  

Ttpal 6.04 1.69 3.77E-17 tocopherol (alpha) transfer protein-like  

 

3.9.1.2 MA PLOT 

MA plots are used to demonstrate the differences in fold change and average gene expression 

between samples or groups of samples. Figure 18 shows the MA plot generated from unfiltered 
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edgeR results. Both the WT and RAG samples show a number of genes that are only expressed in 

one sample or the other (orange), of which 119 are expressed only in RAG samples, and 468 are 

expressed only in WT. Slightly more of the differentially expressed genes (red) appear to be 

expressed in the RAG samples; 6728 genes are expressed more highly in RAG samples, while 6149 

are expressed more highly in WT samples. Most genes are expressed between +/- 5 logFC, though 

expression ranges from -7.5 logFC to +8.6 logFC, with 330 genes being expressed outside the +/- 5 

logFC metric.  

 

 

Figure 18. MA plot comparing uninfected WT and RAG samples. Each dot is representative of a 

gene. Genes with a positive logFC value are more highly expressed in the WT samples; those with 

a negative logFC value are more highly expressed in the RAG samples. Black dots are not 

considered differentially expressed, red dots are considered differentially expressed, and orange 

is representative of genes that are exclusively expressed in one group.   

 

3.9.2 ENRICHMENT ANALYSIS 

3.9.2.1 GENE SET ENRICHMENT ANALYSIS  

Gene Set Enrichment Analysis was performed via the Broad Institute web interface (version 6.1, 

last accessed 28/06/17). Lists of differentially expressed genes are submitted to the database and 

compared with motif (C3), immunological (C7), KEGG Pathway (CP:KEGG) and hallmark (H) sets. 

Hallmark sets are built by collecting data from the same strictly defined biological process or 

state; DNA motif sets are built from sequences containing highly conserved cis-regulatory regions. 
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Significant overlap between gene lists and the defined sets are returned, along with ratio of 

overlapping genes to set size, p-value, FDR, and number of overlapping genes. By comparing the 

data with that of the GSEA database, insight can be gained in what kind of immunological, 

metabolic or other response the host is undergoing, and inidcate what types of cells are being 

recruited.  

Overlaps were detected between the differentially expressed gene list and 42 gene sets in the 

database (table 24). Of these overlaps, 20 matches were for immunological gene sets, 20 for 

hallmark gene sets, and 2 for DNA motif sets.  

The majority of overlaps were related to immune cells. A wide variety of cell types were listed, 

including CD4 and CD8 T-cells, B-cells, monocytes, myeloid cells, myeloid and plasmacytoid DCs, 

macrophages and NK cells.  IL-10, IL-6 and IL-2 were listed as notable stimulating factors. Several 

immune-related overlaps were detected for Hallmark sets, such as complement response, 

inflammatory response, and interferon gamma response.  

 

Table 24. Gene Set Enrichment Analysis results for genes differentially expressed between 

uninfected RAG2 KO and uninfected WT mice, ordered by FDR/q-value. P-value and overlap size 

have been omitted. Only the top 20 overlaps are reported when using the Broad Institute web 

interface. Full results table in accompanying material A2. 

Gene Set Description Genes in 
set 

Overlapping 
genes / set 
size FDR q-value 

Genes having at least one occurrence of the highly conserved motif M92 TGCTGAY in 
the region spanning up to 4 kb around their transcription start sites. The motif does not 
match any known transcription factor binding site. 1085 0.0857 1.39E-36 

Genes up-regulated in comparison of healthy B cells versus healthy myeloid cells. 200 0.23 3.35E-36 

Genes down-regulated in T cells: CD8A versus CD8A CD8B. 200 0.23 3.35E-36 

Genes up-regulated in comparison of naive CD8 T cells versus day 0 monocytes. 200 0.215 1.74E-32 

Genes up-regulated in comparison of naive CD4 CD8 T cells versus monocytes cultured 
for 0 days. 200 0.21 1.79E-31 

Genes up-regulated in comparison of B cells from influenza vaccinee at day 7 versus 
monocytes from influenza vaccinee at day 7. 200 0.21 1.79E-31 

Genes down-regulated in bone marrow-derived macrophages with IL10 knockout and 
45 min of stimulation by: LPS versus LPS and IL10. 200 0.21 1.79E-31 

Genes up-regulated during transplant rejection. 200 0.2 4.58E-29 

Genes up-regulated in comparison of systemic lupus erythematosus CD4 T cells versus 
systemic lupus erythematosus myeloid cells. 200 0.195 4.97E-28 

Genes up-regulated in comparison of B cells from influenza vaccinee at day 7 post-
vaccination versus myeloid dendritic cells (mDC) at day 7 post-vaccination. 200 0.195 4.97E-28 

Genes down-regulated in NKT cells versus CD8A T cells. 200 0.195 4.97E-28 

Genes down-regulated in monocyte-derived dendritic cells: control versus treated with 
LGALS1. 200 0.195 4.97E-28 

Genes down-regulated in untreated spleen: DUSP1 knockout versus wildtype. 177 0.209 1.03E-27 

Genes down-regulated in B lymphocytes: expressing IgM BCR fusion and untreated 
versus expressing IgMG BCR fusion and treated by anti-HEL. 166 0.2169 1.45E-27 

Genes up-regulated in comparison of naive CD4 T cells versus day 0 monocytes. 200 0.19 5.89E-27 

Genes up-regulated in comparison of B cells versus monocytes. 200 0.19 5.89E-27 

Genes having at least one occurrence of the highly conserved motif M7 TGANTCA in the 
region spanning up to 4 kb around their transcription start sites.  2485 0.0487 7.23E-26 

Genes down-regulated in B lymphocytes treated by anti-HEL and expressing BCR 
fusions with: IgM versus IgMG. 170 0.2 8.14E-25 

Genes up-regulated in comparison of naive B cells versus day 0 monocytes. 200 0.18 1.01E-24 

Genes up-regulated in comparison of B cells from influenza vaccinee at day 7 post-
vaccination versus plasmacytoid dendritic cells (pDC) at day 7 post-vaccination. 200 0.18 1.01E-24 
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3.9.2.2 GENE ONTOLOGY ANALYSIS  

Similarly to GSEA, gene ontology (GO) analysis examines lists of differentially expressed genes for 

enrichment of particular biological categories, such as metabolisms, enzyme activity, or pathways. 

The categories are divided into biological process, which checks for biological sub-systems such as 

the immune system; molecular function, which looks at less high-level processes such as protein 

activity; and cellular component, which finds patterns in the cellular localisation of genes. 

A total of 59 GO terms were found to be enriched in the DEG list provided to GOrilla (last accessed 

05/06/17); 44 biological processes, 3 molecular functions and 12 cellular components (table 25). 

The average p-value was 3.22E-04, ranging from 9.98E-04 to 3.61E-09.  

Although many GO categories are very broad, such as “biological regulation”, “localisation” or 

“binding”, enrichment of more narrow categories can be insightful. For this DEG list, multiple GO 

terms involving peptidase, nitrogen compound metabolism and hydrolase activity are mentioned 

(figure 19, table 25). Nitrogen compound metabolism is also shown with a large bubble, indicating 

several related genes are involved. 

For hypergeometric tests such as those performed in Gene Ontology Analysis, a threshold p-value 

of 0.05 is fairly relaxed. However, the application of more stringent p-values, such as p = 0.01 or 

0.001 to our results considerably reduces the number of informative GO terms; when p = 0.001 

only 4, very general GO terms are reported: “cellular process”, “single-organism process”, “single-

organism cellular process”, and “positive regulation of biological process”. Similarly, with p = 0.01, 

the only standout term listed was “positive regulation of hydrolase activity”. 
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Figure 19. A REVIGO plot visualising the most enriched terms (p ≤ 0.05) in the uninfected WT vs 

uninfected RAG differentially expressed gene list. Significance is shown on the y-axis in log10 p-

value. The number of genes and terms collapsed into the category are displayed by both the x-axis 

and the bubble size. 
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Table 25. Top 20 Gene Ontology results for the genes differentially expressed between uninfected 

Black 6 and uninfected RAG2 KO mice. Process = biological process, function = molecular function, 

component = cellular component. Full results table in accompanying material A3. 

Type Description p-value 

Process single-organism process 3.61E-09 

Process single-organism cellular process 1.21E-08 

Process cellular process 4.93E-08 

Process positive regulation of biological process 5.19E-07 

Process biological_process 8.91E-07 

Process positive regulation of cysteine-type endopeptidase activity involved in apoptotic process 1.15E-06 

Process positive regulation of peptidase activity 2.43E-06 

Process positive regulation of endopeptidase activity 2.43E-06 

Process positive regulation of cysteine-type endopeptidase activity 2.43E-06 

Process positive regulation of hydrolase activity 5.84E-06 

Process biological regulation 9.68E-06 

Process cellular component organization or biogenesis 1.34E-05 

Process cellular component organization 1.34E-05 

Process positive regulation of cellular process 1.59E-05 

Function protein binding 9.21E-06 

Function binding 9.95E-06 

Component cell part 8.01E-07 

Component intracellular organelle 7.52E-06 

Component intracellular part 1.02E-05 

Component intracellular vesicle 2.13E-05 

 

 

3.9.3 PATHVIEW 

PathView (1.14.0) was used to visualise differentially expressed genes across whole pathways, 

based on KEGG IDs. The web interface can be used to automatically select appropriate pathways 

to draw from the data based on enrichment significance, or manual pathways can be selected for 

print out. Both automatically selected pathways and manually chosen immunology and infection-

related pathways were chosen for visualisation.  

Pathways automatically selected for the uninfected WT vs. uninfected RAG data are ‘neuroactive 

ligand-receptor interaction’, ‘phagosome’ and ‘NK-cell mediated cytotoxicity’. Figure 20 displays 

the pathway for NK-cell mediated cytotoxicity. Genes such as Fas Ligand and Granzyme are 

upregulated in the RAG sample, whereas genes such as Linker for Activation of T-cells (LAT) and 

ZAP70 are upregulated in the WT sample. The absence of a colour gradient – i.e only red or green 

– is indicative of extremes of expression, likely a result of the filtering process in which genes with 

small fold-change differences were removed from the analysis.  
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Figure 20. Natural Killer Cell Mediated Cytotoxicity. Each box is a gene in the pathway; Genes 
displayed in red are upregulated in the WT sample, and green genes are upregulated in the RAG 
sample. Genes displayed in white are not significantly differentially expressed.  

 

Additionally, pathways suggested by GOrilla enrichment data and immunity-related pathways 

were also generated. Figure 21, shows the T-cell receptor signalling pathway, the majority of 

genes (18) in which are significantly upregulated in the WT sample, compared to a single gene 

more highly upregulated in the RAG samples. The B-cell receptor signalling pathway (not shown) 

has an almost identical pattern, in that all genes in the pathway that fold change data is present 

for show upregulation in the WT sample.  
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Figure 21. T-cell Receptor Signalling Pathway. Each box is a gene in the pathway; Genes displayed 

in red are upregulated in the WT sample, and green genes are upregulated in the RAG sample. 

White genes are not significantly differentially expressed.  

 

3.10 WT INFECTED VS. RAG INFECTED 

This section reports the results of comparing gene expression data from infected mice of the two 

different genetic backgrounds, WT B6 and RAG2 KO.  

 

3.10.1 EDGER ANALYSIS 

3.10.1.1 DIFFERENTIAL GENE EXPRESSION 

EdgeR found 3,725 genes differentially expressed between the infected WT and infected RAG 

groups, 12.05% of the 30,976 non-zero read count genes listed. After application of the stringency 

logCPM and logFC criteria, 1,069 were found to be differentially expressed (3.45%, filtering out 

the 71.3% of genes which were below the logFC/logCPM threshold) (table 26). 

A number of killer-lectin related genes are found to be significantly more expressed in RAG mice, 

such as Klra13-ps, Klrb1c, Klrd1, Klrd2 and Klri2. Klra13-ps is a pseudogene, but may be expressed 
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at low levels as a transcript, primarily in bladder and spleen cells (NCBI gene database, last 

accessed 20/04/18, https://www.ncbi.nlm.nih.gov/gene/16631).  

Other killer-lectin related genes are CD markers, for example Klrb1c, which in humans marks IL-17 

producing T-cells (Maggi et al. 2010). Klri2 is associated with NK cell development (Saether et al. 

2005). Two genes associated with antiviral response are also more significantly upregulated in 

RAG mice – Prf1 and Ncr1 (Gazit et al. 2006; van Dommelen et al.2006). 

 

Table 26. The 20 most significantly differentially expressed genes, comparing infected WT and 

RAG samples, ordered by FDR q-value. Full results table in accompanying material A1. 

Gene 
name 

logCP
M 

logFC FDR Gene description 

Klra13-ps 5.69 -4.09 3.02E-34 killer cell lectin-like receptor subfamily A, member 13, pseudogene  

Adamts14 5.09 -3.11 1.34E-30 a disintegrin-like and metallopeptidase (reprolysin type) with 
thrombospondin type 1 motif, 14  

Klrb1c 4.36 -3.70 2.24E-29 killer cell lectin-like receptor subfamily B member 1C  

Prf1 5.27 -2.71 3.05E-29 perforin 1 (pore forming protein)  

Klrd1 5.58 -2.41 7.51E-29 killer cell lectin-like receptor, subfamily D, member 1  

Klrc2 4.85 -3.60 2.34E-27 killer cell lectin-like receptor subfamily C, member 2  

Cd209a 4.08 -4.57 1.04E-26 CD209a antigen  

Btnl9 4.34 -3.13 1.40E-25 butyrophilin-like 9  

Ncr1 5.27 -4.72 5.55E-25 natural cytotoxicity triggering receptor 1  

Ltbp4 5.99 -2.96 5.24E-24 latent transforming growth factor beta binding protein 4  

Klra4 4.49 -5.11 1.05E-23 killer cell lectin-like receptor, subfamily A, member 4  

Gm9025 3.23 -3.63 1.17E-23 predicted gene 9025  

Igfbp3 6.71 -2.28 1.42E-23 insulin-like growth factor binding protein 3  

Klri2 4.78 -3.64 1.96E-23 killer cell lectin-like receptor family I member 2  

Cxcl12 9.20 -3.26 1.96E-23 chemokine (C-X-C motif) ligand 12  

Gzma 6.78 -3.26 3.45E-22 granzyme A  

Abcc3 7.03 -1.86 4.32E-22 ATP-binding cassette, sub-family C (CFTR/MRP), member 3  

Fbln5 5.88 -1.93 8.95E-22 fibulin 5  

Chil1 6.87 2.64 2.23E-21 chitinase-like 1  

Camk2n1 5.23 -2.29 1.69E-20 calcium/calmodulin-dependent protein kinase II inhibitor 1  

 

3.10.1.2 MA PLOT 

Figure 22 shows an MA plot comparing expression in infected WT and RAG samples. 5595 genes 

are more highly upregulated in the WT infected sample, compared to 7283 genes more highly 

expressed in the RAG infected samples. The range of fold change is from -10.2 logFC to 6.4 logFC, 

though 96 only genes are expressed +/- 5 logFC. Both the WT and RAG samples show a large 

number of uniquely expressed genes (orange), of which 98 are unique to the WT mice and 304 

are unique to the RAG mice. 

 

 

 

 

 

https://www.ncbi.nlm.nih.gov/gene/16631
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Figure 22. MA plot comparing infected WT and RAG samples. Each dot is representative of a gene. 
Genes with a positive logFC value are more highly expressed in the WT samples; those with a 
negative logFC value are more highly expressed in the RAG samples. Black dots are not considered 
differentially expressed, red dots are considered differentially expressed, and orange is 
representative of genes that are exclusively expressed in one group.   

 

3.10.2 ENRICHMENT ANALYSIS 

3.10.2.1 GENE SET ENRICHMENT ANALYSIS  

52 overlaps were detected between the DEG list and the GSEA database sets (table 27). 12 of 

these overlaps were for DNA motifs, 20 for hallmark gene sets, and 20 for immunologic gene sets. 

The number of overlapping genes ranged from 8 to 141, with an average of 38. The average p-

value was 2.28E-06, with a range of 1.04E-04 to 1.21E-40. 

As with the uninfected comparison of the two mouse backgrounds, the majority of GSEA overlaps 

were for immune cells and immune response. Cell types flagged include myeloid, B-cells, memory 

B-cells, CD4 and CD8 T-cells, helper T-cells, macrophages, T-regs, and DCs. Cytokines such as IL-6, 

IL-2, IL-10 and TGF were found to be associated with the overlapping gene sets. Hallmark sets 

contained responses to infection, such as overlap with the complement pathway. 
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Table 27. Gene Set Enrichment Analysis results for genes differentially expressed between 

infected and uninfected RAG2 KO mice, ordered by FDR/q-value. P-value and overlap size have 

been omitted. Only the top 20 overlaps are reported when using the Broad Institute web 

interface. Full results table in accompanying material A2. 

Gene Set Description 
  

Genes 
in set 

Overlapping 
genes / set 
size 

FDR/q-value 

Genes having at least one occurrence of the highly conserved motif M7 TGANTCA in 
the region spanning up to 4 kb around their transcription start sites.  2485 0.0567 7.17E-37 

Genes having at least one occurrence of the highly conserved motif M127 
WWTAAGGC in the region spanning up to 4 kb around their transcription start sites.  1896 0.0628 8.76E-35 

Genes encoding proteins involved in processing of drugs and other xenobiotics. 200 0.205 6.49E-30 

Genes having at least one occurrence of the highly conserved motif M169 
TTTNNANAGCYR in the region spanning up to 4 kb around their transcription start 
sites. 2274 0.0536 1.76E-29 

Genes having at least one occurrence of the highly conserved motif M55 TGGAAA in 
the region spanning up to 4 kb around their transcription start sites.  2061 0.0543 2.52E-27 

Genes having at least one occurrence of the highly conserved motif M39 
TCCCRNNRTGC in the region spanning up to 4 kb around their transcription start sites.  1121 0.0696 6.46E-25 

Genes encoding components of blood coagulation system; also up-regulated in 
platelets. 138 0.2174 1.62E-22 

Genes having at least one occurrence of the highly conserved motif M172 
TTGCWCAAY in the region spanning up to 4 kb around their transcription start sites.  1972 0.0507 5.75E-22 

Genes having at least one occurrence of the highly conserved motif M114 
YTCCCRNNAGGY in the region spanning up to 4 kb around their transcription start 
sites. The motif does not match any known transcription factor binding site. 1296 0.0602 4.20E-21 

Genes down-regulated in T reg (FOXP3+) cells from B6 mice: Foxp3-Fusion-GFP versus 
Foxp3-ires-GFP. 172 0.1802 7.35E-21 

Genes having at least one occurrence of the highly conserved motif M46 WTTGKCTG 
in the region spanning up to 4 kb around their transcription start sites.  722 0.0762 5.22E-19 

Genes having at least one occurrence of the highly conserved motif M139 
AAAYWAACM in the region spanning up to 4 kb around their transcription start sites.  1890 0.0481 2.04E-18 

Genes up-regulated in CD4 follicular helper T cells (Tfh) with SH2D1A knockout versus 
wildtype Tfh cells. 200 0.15 6.77E-18 

Genes down-regulated in macrophages: wildtype versus MYD88 knockout. 200 0.15 6.77E-18 

Genes having at least one occurrence of the highly conserved motif M41 TGACAGNY 
in the region spanning up to 4 kb around their transcription start sites.  1524 0.0512 4.21E-17 

Genes defining epithelial-mesenchymal transition, as in wound healing, fibrosis and 
metastasis. 200 0.145 6.75E-17 

Genes having at least one occurrence of the highly conserved motif M161 
TTANWNANTGGM in the region spanning up to 4 kb around their transcription start 
sites. 738 0.0678 3.35E-15 

Genes down-regulated in CD4 T cells treated with IL6: STAT3 knockout versus 
wildtype. 200 0.135 6.89E-15 

Genes up-regulated in HMC-1 (mast leukemia) cells: untreated versus incubated with 
the peptide ALL1 followed by stimulation with T cell membranes. 200 0.13 6.56E-14 

Genes having at least one occurrence of the highly conserved motif M27 
TGGNNNNNNKCCAR in the region spanning up to 4 kb around their transcription start 
sites.  919 0.0577 2.60E-13 

 

3.10.2.2 GENE ONTOLOGY ANALYSIS  

Gene ontology analysis with GOrilla found 69 significantly enriched terms, of which 63 were 

biological processes, 4 molecular functions, and 2 cellular components (table 28). The average p-

value was 2.98E-04, ranging from 9.38E-04 to 1.14E-06.  

GO terms involving cell motility, cell migration and cell movement are particularly abundant. 

Terms associated with phosphorus metabolism and the negative regulation of phosphorylation 

also appear several times. Additionally, terms related to nitrogen compounds and their 

metabolism appear multiple times in the analysis results (figure 23). Use of a stricter p-value 
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reduces significant biologically meaningful GO terms; for p = 0.01, only “nitrogen compound 

metabolic process” and “regulation of cell migration”, and at 0.001, only “regulation of 

locomotion” is considered significant. 

 

 

 

Figure 23. A REVIGO plot visualising the most enriched terms (p ≤ 0.05) in the infected WT vs 

infected RAG differentially expressed gene list. Significance is shown on the y-axis in log10 p-

value. The number of genes and terms collapsed into the category are displayed by both the x-axis 

and the bubble size. 
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Table 28. Top 20 Gene ontology analysis results for genes differentially expressed between 

infected Black 6 mice and infected RAG2 KO mice, ordered by p-value. Process = biological 

process, function = molecular function, component = cellular component. Full results table in 

accompanying material A3. 

Type Description p-value 

Process regulation of locomotion 1.14E-06 

Process regulation of cell motility 1.21E-06 

Process positive regulation of cellular process 1.97E-06 

Process regulation of cellular component movement 2.67E-06 

Process regulation of cell migration 3.32E-06 

Process nitrogen compound metabolic process 4.46E-06 

Process positive regulation of biological process 1.02E-05 

Process regulation of cellular process 1.42E-05 

Process regulation of cell growth 1.89E-05 

Process single-organism process 2.00E-05 

Process organonitrogen compound metabolic process 2.24E-05 

Process single-organism cellular process 2.74E-05 

Process cellular process 3.25E-05 

Process regulation of cellular component organization 4.31E-05 

Process organonitrogen compound biosynthetic process 5.19E-05 

Process regulation of biological process 6.72E-05 

Process negative regulation of metabolic process 9.71E-05 

Process positive regulation of cell motility 1.05E-04 

Component envelope 1.01E-04 

Component organelle envelope 1.01E-04 

 

3.10.3 PATHVIEW 

Pathways selected by enrichment data for the genes differentially expressed between infected 

WT and infected RAG mice include ‘Steroid hormone biosynthesis’, ‘ppar signalling pathway’ and 

‘coagulation and complement cascades’. Figure 24 shows the coagulation and complement 

pathway. The majority of genes, in this case 21, are upregulated in the RAG infected sample, with 

the sole exception of EPCR, endothelial protein C receptor. As with the comparison of the 

uninfected WT and RAG samples, genes showing fold change differences between 1.5 and -1.5 

logFC were filtered out of the analysis, resulting in Pathview displaying extremes of relative 

expression – only red and green. 
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Figure 24. Coagulation and Complement Cascades. Each box is a gene in the pathway; Genes 

displayed in red are upregulated in the WT sample, and green genes are upregulated in the RAG 

sample. White genes are not significantly differentially expressed.  

 

Immunity-related pathways were also generated. T-cell and B-cell receptor pathways (not shown) 

very closely resembled those of the uninfected samples, i.e. the majority of genes in the pathway 

were highly upregulated in the WT samples. Expression data was available for 3 genes in the 

‘Leishmaniasis’ pathway (figure 25). Interferon-, COX2 and iNOS show upregulation in the WT.  
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Figure 25. Leishmaniasis Pathway. Each box is a gene in the pathway; Genes displayed in red are 

upregulated in the WT sample, and green genes are upregulated in the RAG sample. White genes 

are not significantly differentially expressed.  

 

 

3.11 WT UNINFECTED VS. WT INFECTED 

These results compare gene expression data from WT B6 mice in infected and uninfected states.  

 

3.11.1 EDGER ANALYSIS 

3.11.1.1 DIFFERENTIAL GENE EXPRESSION 

After application of the negative binomial distribution and generalised linear model, edgeR 

produced a list of 6,553 genes differentially expressed between infected and uninfected WT 

samples, which is 21.15% of the 30,976 total. After application of logCPM and logFC criteria, the 

number of genes considered differentially expressed reduced to 1,421, 4.59% of the total, filtering 

out the 78.32% of genes which failed the logFC/logCPM criteria (table 29).  
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Two genes involved in the production of reactive oxide species – Fprl1 and Nos2 – are highly 

upregulated in the infected mice, most likely in response to infection (Bylund et al. 2002). Clec4e 

and Lilr4b are both immunoreceptors, associated with macrophages and dendritic cells 

respectively, are both more highly expressed in infected mice (Cao et al. 2006; Wells et al. 2008). 

 

Table 29. The 20 most significantly differentially expressed genes, comparing infected and 

uninfected WT samples, ordered by FDR q-value. Full results table in accompanying material A1. 

Gene name logCPM logFC FDR Gene description 

Chil1 6.87 4.50 1.01E-40 chitinase-like 1  

Igfbp3 6.71 -3.17 2.14E-40 insulin-like growth factor binding protein 3  

Apol11a 6.62 7.21 1.25E-34 apolipoprotein L 11a  

Fpr2 4.94 3.41 5.91E-33 formyl peptide receptor 2  

Nos2 5.32 4.86 4.12E-28 nitric oxide synthase 2, inducible  

Hk3 7.35 2.57 8.13E-27 hexokinase 3  

Abca13 3.16 4.62 1.25E-26 ATP-binding cassette, sub-family A (ABC1), member 13  

F10 4.66 3.31 4.64E-26 coagulation factor X  

Mt2 4.96 3.43 7.99E-26 metallothionein 2  

Clec4e 4.63 4.26 1.53E-25 C-type lectin domain family 4, member e  

Gbp2b 6.08 6.29 3.24E-25 guanylate binding protein 2b  

Upp1 3.44 3.55 1.31E-24 uridine phosphorylase 1  

Lilr4b 5.73 2.43 1.31E-24 leukocyte immunoglobulin-like receptor, subfamily B, member 4B  

Gm4841 4.39 4.73 1.74E-24 predicted gene 4841  

Fcgr4 6.68 3.20 2.02E-23 Fc receptor, IgG, low affinity IV  

Acod1 4.70 6.45 1.84E-22 aconitate decarboxylase 1  

Ms4a6d 4.41 3.06 2.28E-22 membrane-spanning 4-domains, subfamily A, member 6D  

Gm45837 6.32 -1.92 3.67E-22 predicted gene 45837  

Igtp 7.57 2.91 9.19E-22 interferon gamma induced GTPase  

Gbp7 7.55 2.62 3.15E-21 guanylate binding protein 7  

 

3.11.1.2 MA PLOT 

Considerably more genes are found to be expressed more highly in the uninfected samples, with 

8318, while only 4540 are expressed more highly in the infected samples (figure 26). Many genes 

are uniquely expressed in one group or the other (orange); 100 genes are uniquely expressed in 

the infected samples, while 284 are unique to the uninfected samples. The range of LogFC runs 

from -7.5 and 8.6 logFC, however, only 81 genes are expressed +/- 5 logFC.  
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Figure 26. MA plot comparing infected and uninfected WT samples. Each dot is representative of 

a gene. Genes with a positive logFC value are more highly expressed in the infected samples; 

those with a negative logFC value are more highly expressed in the uninfected samples. Black dots 

are not considered differentially expressed, red dots are considered differentially expressed, and 

orange is representative of genes that are exclusively expressed in one group.   

 

3.11.2 ENRICHMENT ANALYSIS 

3.11.2.1 GENE SET ENRICHMENT ANALYSIS 

GSEA found 40 overlaps between the database sets and the DEG list (table 30). Hallmark sets 

accounted for 20 of the overlaps, with the other 20 overlaps being of immunologic gene sets; no 

matches were detected for DNA motif sets. The average number of overlapping genes was 54, 

with a range of 14 to 118. The p-value average was 3.82E-09, ranging from 4.78E-08 to the 

extreme 2.32E-140.  

A number of overlapping gene sets indicated an immune response: for example, a number of sets 

involving naïve vs. effector or memory cells, as well as several gene sets associated with infection 
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responses or immunisation. Overlaps were also detected with hallmark sets involved with 

inflammatory response. 

 

Table 30. Gene Set Enrichment Analysis results for genes differentially expressed between 

infected and uninfected Black 6 mice, ordered by FDR/q-value. P-value and set size ratios have 

been omitted. Only the top 20 overlaps are reported when using the Broad Institute web 

interface. Full results table in accompanying material A2. 

Gene set description Genes in 
set 

k/K FDR/q-value 

Genes up-regulated in comparison of wild type CD8 effector T cells at day 6 
versus those from mice deficient for TRAF6 at day 10. 200 0.59 1.38E-136 

Genes up-regulated in comparison of wild type CD8 effector T cells at day 6 
versus those at day 10. 200 0.535 3.15E-117 

Genes up-regulated in B lymphocytes: control versus stimulated by anti-IgM for 
12h. 182 0.5055 2.41E-97 

Genes down-regulated in CD8 T cells after immunization: day 3 versus day 6. 200 0.47 1.00E-95 

Genes up-regulated in comparison of splenic primary CD8 effector T cells at day 
8 post-acute infection versus splenic secondary CD8 effector T cells at day 8 
post-acute infection. 199 0.4472 4.30E-88 

Genes down-regulated in natural T reg versus T conv. 180 0.4722 1.14E-86 

Genes up-regulated in comparison of effector CD8 T cells versus memory CD8 T 
cells. 200 0.395 9.80E-73 

Genes up-regulated in B lymphocytes: control versus stimulated by anti-IgM for 
2h. 180 0.4222 1.21E-72 

Genes down-regulated in comparison of naïve CD8 T cells versus effector CD8 T 
cells. 200 0.38 1.89E-68 

Genes down-regulated in T reg: induced versus natural. 178 0.3989 1.18E-65 

Genes up-regulated in B lymphocytes stimulated by anti-IgM for 8h: wildtype 
versus NFATC1 knockout. 200 0.36 8.17E-63 

Genes up-regulated after poly(IC) injection: CD8A dendritic cells versus NK cells. 200 0.355 1.91E-61 

Genes encoding cell cycle related targets of E2F transcription factors. 200 0.35 4.39E-60 

Genes up-regulated in B lymphocytes stimulated by anti-IgM: 2h versus 12h. 172 0.3837 1.07E-59 

Genes down-regulated in polymorphonuclear leukocytes (9h): S. aureus 
infection versus control. 200 0.345 9.28E-59 

Genes up-regulated in CD4 T conv: control versus over-expression of IKZF4 173 0.3757 4.13E-58 

Genes up-regulated in polarizing CD4 Th17 cells: wildtype versus RORC 
knockout. 161 0.3913 1.24E-57 

Genes up-regulated in comparison of untreated CD25+ T effector cells at day 7 
versus untreated CD25- T cells at day 7. 200 0.34 1.84E-57 

Genes up-regulated in induced T reg versus T conv. 178 0.3652 3.13E-57 

Genes down-regulated in comparison of untreated CD4 memory T cells from 
young donors versus those treated with TSST at 40 h. 200 0.335 3.50E-56 

 

3.11.2.2 GENE ONTOLOGY ANALYSIS  

GOrilla analysis of the DEG list found significantly 99 enriched GO terms, including 65 biological 

processes, 20 molecular functions, and 14 cellular components (table 31). P-value ranged from 

1.00E-03 to 1.60E-11, with an average of 3.22E-04.  

Many of the enriched GO categories listed involved the metabolism of nitrogen compounds. 

Additionally, terms related to nucleic acid metabolism, DNA processing and DNA replication were 

also common (figure 27). Use of lower p-values such as 0.01 and 0.001 found that “organinitrogen 

compound metabolic process” and “phosphate-containing compound metabolic process”, and 

related terms, were both still significant at the respective values. 
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Figure 27. A REVIGO plot visualising the most enriched terms (p ≤ 0.05) in the uninfected WT vs 

infected WT differentially expressed gene list. Significance is shown on the y-axis in log10 p-value. 

The number of genes and terms collapsed into the category are displayed by both the x-axis and 

the bubble size. 
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Table 31. Gene ontology analysis results for genes differentially expressed between infected and 

uninfected Black 6 mice, ordered by p-value. Process = biological process, function = molecular 

function, component = cellular component. Full results table in accompanying material A3. 

Type Description p-value 

Process cellular metabolic process 1.60E-11 

Process metabolic process 2.36E-11 

Process single-organism cellular process 2.42E-11 

Process single-organism process 2.46E-11 

Process organic substance metabolic process 8.51E-11 

Process nitrogen compound metabolic process 2.95E-10 

Process cellular process 1.32E-09 

Process organonitrogen compound metabolic process 9.64E-09 

Process primary metabolic process 1.77E-08 

Process phosphate-containing compound metabolic process 3.09E-07 

Process phosphorus metabolic process 5.62E-07 

Process biosynthetic process 1.05E-06 

Process single-organism metabolic process 2.24E-06 

Process organic substance biosynthetic process 3.19E-06 

Process positive regulation of cellular process 3.62E-06 

Function ion binding 6.82E-07 

Function catalytic activity 7.25E-07 

Function transferase activity 2.22E-06 

Component membrane-bounded organelle 3.84E-07 

Component organelle 5.34E-07 

 

3.11.3 PATHVIEW 

Enrichment-based PathView figures generated very closely match the GOrilla data, producing 

figures for categories such as ‘pyramidine metabolism’, ‘DNA replication’, and ‘cell cycle’. The 

coagulation and complement cascade pathway was also generated automatically (figure 28). The 

data resembles that of the infected WT vs. infected RAG coagulation and complement pathway. 

Most genes (11 of 15) are upregulated in the uninfected sample. However, in this case, in addition 

to the EPCR upregulated in the infected WT sample, F10 (Factor 10), CR3 and CR4 (complement 

receptors) are also upregulated. Relative expression of samples appears highly polarised as genes 

with smaller differences in fold change have been filtered out of the dataset. 
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Figure 28. Coagulation and complement cascade Pathway. Each box is a gene in the pathway; 

Genes displayed in red are upregulated in WT infected, and green genes are upregulated in WT 

uninfected. White genes are not significantly differentially expressed. 

 

Immunity related pathways reveal that unlike the T-cell and B-cell receptor pathways for the 

previous comparisons, very little differences in expression are detected between the WT infected 

and WT uninfected samples (Figures 29 and 30), with only interferon gamma being upregulated in 

the infected sample, and CD4/8, ITK, p38, CD19, CD21, Ig and Ig being upregulated in the 

uninfected sample.  
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Figure 29. T-cell Receptor Signalling Pathway. Each box is a gene in the pathway; Genes displayed 

in red are upregulated in the infected sample, and green genes are upregulated in the uninfected 

sample. White genes are not significantly differentially expressed.  
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Figure 30. B-cell Receptor Signalling Pathway. Each box is a gene in the pathway; Genes displayed 

in red are upregulated in the infected sample, and green genes are upregulated in the uninfected 

sample. White genes are not significantly differentially expressed.  

 

 

3.12 RAG UNINFECTED VS. RAG INFECTED 

The results reported here are generated from gene expression data from RAG2 KO mice, 

comparing infected and uninfected.  

 

3.12.1 EDGER ANALYSIS 

3.12.1.1 DIFFERENTIAL GENE EXPRESSION 

EdgeR found that 423 genes were differentially expressed between infected and uninfected RAG 

samples, 4.37% of the 30,976 total non-zero count genes. After logCPM and logFC criteria were 

applied, only 87 genes (0.28%, 79.43% were filtered out) were listed as differentially expressed 

(table 32).  

Few of the significantly differentially expressed genes are related to immunology and infection – 5 

are predicted genes, for example. Klrb1a, which is more highly expressed in the uninfected RAG 

mice, is associated with IL-17 producing T-cells in humans (Maggi et al. 2010). 
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Table 32. Top 20 significantly differentially expressed genomic features, comparing infected and 

uninfected RAG samples, ordered by FDR q-value. Full results table in accompanying material A1. 

Gene name logCPM logFC FDR Gene description 

Gm37376 8.29 -1.52 1.37E-03 predicted gene, 37376  

A130071D04Rik 3.29 -1.68 1.37E-03 RIKEN cDNA A130071D04 gene  

Gm16278 6.15 1.65 4.54E-03 predicted gene 16278  

Nanos1 2.21 2.37 7.39E-03 nanos homolog 1 (Drosophila)  

Gm11724 4.45 1.55 7.39E-03 predicted gene 11724  

Gm20490 5.72 1.69 7.39E-03 predicted gene 20490  

Klrb1a 2.10 -2.07 7.75E-03 killer cell lectin-like receptor subfamily B member 1A  

Pif1 4.91 1.66 7.77E-03 PIF1 5'-to-3' DNA helicase  

Kif18b 5.82 1.63 8.30E-03 kinesin family member 18B  

Gm42456 1.45 2.66 8.30E-03 predicted gene 42456  

Rbm38 7.95 1.63 9.22E-03 RNA binding motif protein 38  

Troap 4.17 1.55 9.22E-03 trophinin associated protein  

E2f8 6.81 1.55 1.11E-02 E2F transcription factor 8  

Gfap 3.74 2.18 1.12E-02 glial fibrillary acidic protein  

Cit 6.44 1.54 1.12E-02 citron  

Ankrd9 4.16 1.95 1.12E-02 ankyrin repeat domain 9  

Gch1 5.69 1.79 1.30E-02 GTP cyclohydrolase 1  

Tspan32os 1.97 1.98 1.30E-02 tetraspanin 32, opposite strand  

Slc6a9 6.30 2.00 1.44E-02 solute carrier family 6 (neurotransmitter transporter, glycine), 
member 9  

Ccdc92b 4.34 2.45 1.48E-02 coiled-coil domain containing 92B  

 

3.12.1.2 MA PLOT 

Relatively few features are differentially expressed (red) between the infected and uninfected 

RAG samples (figure 31). Overall, 6454 genes are more highly expressed in the uninfected 

samples, while 6385 are more highly expressed in the infected samples. Most of those considered 

differentially expressed are of higher log2CPM rather than high logFC. Differences in logFC range 

from -6.8 to 6.2, with only 46 genes falling outside of +/-5 logFC.  

As with other comparisons, a considerable number of genes are uniquely expressed in each group 

(orange). 430 genes are uniquely expressed in the infected sample, while only 59 are unique to 

the uninfected sample.  
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Figure 31. MA plot comparing infected and uninfected RAG samples. Each dot is representative of 

a gene. Genes with a positive logFC value are more highly expressed in the infected samples; 

those with a negative logFC value are more highly expressed in the uninfected samples. Black dots 

are not considered differentially expressed, red dots are considered differentially expressed, and 

orange is representative of genes that are exclusively expressed in one group.   

 

3.12.2 ENRICHMENT ANALYSIS 

3.12.2.1 GENE SET ENRICHMENT ANALYSIS 

29 overlaps were found between the GSEA database sets and the DEG list (table 33). 2 overlaps 

matched hallmark gene sets, with 20 matches to immunologic gene sets and 7 matches to DNA 

motif sets. An average of 6 genes overlapped, ranging from 4 to 15.  

The most significant overlap was for the haeme metabolism hallmark set. A number of 

immunologic sets were associated with infection and immune response, including cytokines IL-2, 

IL-6 and IL-10, as well as mentions of “acute infection” and RSV infection. Several immune cell 

types were also listed, including T-regs, T-convs, T-helpers, B lymphocytes, CD4 and CD8 cells, 

NKs, DCs, and PBMCs.  
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Table 33. Gene Set Enrichment Analysis results for genes differentially expressed between 

infected and uninfected RAG2 KO mice, ordered by FDR/q-value. P-value and overlap size have 

been omitted. Only the top 20 overlaps are reported when using the Broad Institute web 

interface. Full results table in accompanying material A2. 

Gene set description Gene in 
set 

overlapping 
genes / set 
size 

FDR/q-value 

Genes involved in metabolism of haeme (a cofactor consisting of iron and porphyrin) 
and erythroblast differentiation. 200 0.065 1.36E-16 

Genes down-regulated in CD4 T conv: control versus over-expression of GATA1 and 
FOXP3  145 0.0483 5.28E-07 

Genes having at least one occurrence of the highly conserved motif M169 
TTTNNANAGCYR in the region spanning up to 4 kb around their transcription start sites.  2274 0.0066 9.59E-06 

Genes having at least one occurrence of the highly conserved motif M96 YGCANTGCR in 
the region spanning up to 4 kb around their transcription start sites.  1294 0.0093 9.59E-06 

Genes down-regulated in CD8 T cells: control versus primary acute viral infection. 196 0.0306 5.64E-05 

Genes up-regulated in macrophages in response to LPS: naïve versus tolerant. 199 0.0302 5.64E-05 

Genes up-regulated in double positive thymocytes stimulated by anti-CD3: ELK4 
knockout versus ELK1 and ELK4 knockout. 200 0.03 5.64E-05 

Genes up-regulated in induced T reg versus T conv. 178 0.0281 9.16E-04 

Genes up-regulated in comparison of wild type CD8 effector T cells at day 6 versus 
those  from mice deficient for TRAF6 at day 10. 200 0.025 1.18E-03 

Genes down-regulated in comparison of peripheral blood mononuclear cells (PBMC) 
from healthy donors versus PBMCs from infant with acute RSV infection. 200 0.025 1.18E-03 

Genes down-regulated in CD8 T cells 3 days after immunization: control versus IL2 
treatment. 200 0.025 1.18E-03 

Genes having at least one occurrence of the transcription factor binding site V$E2F_Q3 
(v7.4 TRANSFAC) in the regions spanning up to 4 kb around their transcription starting 
sites. 227 0.022 2.01E-03 

Genes having at least one occurrence of the highly conserved motif M174 WTGAAAT in 
the region spanning up to 4 kb around their transcription start sites.  924 0.0087 2.19E-03 

Genes having at least one occurrence of the transcription factor binding site 
V$E2F1_Q3 (v7.4 TRANSFAC) in the regions spanning up to 4 kb around their 
transcription starting sites. 244 0.0205 2.44E-03 

Genes up-regulated in polarizing CD4 Th17 cells: wildtype versus RORC knockout. 161 0.0248 9.37E-03 

Genes having at least one occurrence of the highly conserved motif M72 TTCYRGAA in 
the region spanning up to 4 kb around their transcription start sites.  1232 0.0065 9.37E-03 

Genes down-regulated in B lymphocytes stimulated by anti-IgM: 2h versus 12h. 181 0.0221 9.37E-03 

Genes up-regulated in IL10 knockout macrophages stimulated by LPS versus those also 
stimulated by IL10  181 0.0221 9.37E-03 

Genes having at least one occurrence of the highly conserved motif M7 TGANTCA in the 
region spanning up to 4 kb around their transcription start sites 2485 0.0044 9.37E-03 

Genes up-regulated in B lymphocytes: control versus stimulated by anti-IgM for 12h. 182 0.022 9.37E-03 

 

3.12.2.2 GENE ONTOLOGY ANALYSIS  

The differentially expressed gene list was run through GOrilla to check for term enrichment. No 

significant (p < 0.05) GO term enrichment was detected for biological process, molecular function, 

or cellular component. 

Due to the lack of enriched GO terms, REVIGO plots could not be generated. 

 

3.12.3 PATHVIEW 

Insufficient data was available to generate PathView figures. No output was produced for any of 

the GOrilla-suggested pathways, nor any immunity-related pathway. Figures generated from 

enrichment data only contained information about a single gene.  
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3.13 INOCULUM PARASITES VS.  RAG-DERIVED PARASITES 

3.13.1 EDGER ANALYSIS 

3.13.1.1 DIFFERENTIAL GENE EXPRESSION 

When comparing the gene expression of Leishmania in the inoculum and those in RAG mice, 

edgeR found that 3,813 genes were differentially expressed, 47.27% of a possible 8,066. 89 genes 

were found to be differentially expressed after the application of logCPM and logFC criteria, only 

1.1% (97.67% failed to pass the logCPM and logFC thresholds) of the total (table 34). Of the 3,813 

genes originally listed as differentially expressed, 2,911 were filtered by the logFC criteria alone. 

Over three quarters (77.5%) of the differentially expressed genes are either entirely hypothetical 

or putative (Supplementary data A1). Of the 89 DE genes, 41 have putative function (46.1%) and 

28 are labelled as hypothetical (31.5%). The majority of those labelled as hypothetical (75%) had 

no non-hypothetical match in either the NCBI BLAST database nor the TriTrypDB. The remaining 7 

hypothetical genes had matches in either other Leishmania species or other trypanosomatids in 

the TriTrypDB. 

Amastin-related genes are generally more highly expressed in RAG-derived parasites. Two histone 

proteins, H2B and H3, are also more highly upregulated in the RAG-derived parasites, contrasting 

with the upregulation of two nucleases in inoculum parasites (see table 34 and accompanying 

material A1).  

 

Table 34. Top 20 significantly differentially expressed genes, comparing the inoculum parasites 

and parasites derived from RAG mice, ordered by FDR q-value. Full results table in accompanying 

material A1. 

Gene ID logCPM logFC FDR Gene Description 

LdBPK_150660.1 8.31 -2.11 5.73E-119 hypothetical protein, unknown function 

LdBPK_341150.1 9.45 -1.67 1.03E-113 amastin-like surface protein, putative 

LdBPK_251160.1 8.27 -1.89 9.90E-94 aldehyde dehydrogenase, mitochondrial precursor 

LdBPK_201670.1 8.24 -1.53 4.61E-79 hypothetical protein, conserved 

LdBPK_251970.1 7.48 -1.85 1.69E-75 hypothetical protein, conserved 

LdBPK_342660.1 8.23 -1.97 2.47E-73 amastin-like surface protein, putative 

LdBPK_282530.1 7.96 -1.63 7.63E-71 serine hydroxymethyltransferase (SHMT-L) 

LdBPK_120350.1 7.37 1.91 2.05E-68 3'-nucleotidase/nuclease, putative 

LdBPK_171320.1 8.16 -1.70 1.02E-67 histone H2B 

LdBPK_080720.1 10.61 -2.47 6.70E-61 amastin-like protein 

LdBPK_292010.1 6.67 -2.02 1.48E-54 DnaJ domain containing protein, putative 

LdBPK_241150.1 7.61 -1.51 1.77E-49 hypothetical protein, conserved 

LdBPK_101070.1 8.61 -1.61 9.26E-49 histone H3 

LdBPK_360500.1 7.32 -1.50 1.42E-48 dihydrouridine synthase domain protein-like protein 

LdBPK_366980.1 7.20 -1.57 6.80E-48 cytochrome b5-like Heme/Steroid binding domain 
containing protein, putative 

LdBPK_030370.1 6.76 -2.16 2.31E-47 hypothetical protein, conserved 

LdBPK_260040.1 7.25 -1.93 4.59E-45 glycine dehydrogenase, putative 

LdBPK_333390.1 6.95 -1.86 1.09E-42 h1 histone-like protein 

LdBPK_343780.1 5.98 3.41 3.87E-39 hypothetical protein, conserved 

LdBPK_312380.1 6.14 2.34 1.47E-38 3'-nucleotidase/nuclease precursor, putative 
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3.13.1.2 MA PLOTS 

The MA plot showing the expression differences between parasites from the inoculum and RAG-

derived parasites (figure 32) displays relatively fewer genes when compared with mouse samples, 

given that the genome of Leishmania is smaller than that of the mouse, and additionally the 

genome is less well-annotated. In total, 1893 genes are expressed more highly in the inoculum, 

and 1920 more highly in the RAG-derived samples. Only 3 genes are uniquely expressed in the 

inoculum, while 6 are unique to the RAG-derived parasites. Only 38 genes are expressed more 

extremely than +/- 2 logFC, but overall expression ranges from -6.2 to 7.3 logFC. The ‘stripes’ of 

genes that appear between -5 and 0 log2CPM occur when one sample has a very low read count, 

but the other does not. The fold change data from these genes are not necessarily invalid, but 

exact values must be treated with scepticism as limited reads in one sample may cause irregular 

read count scaling and uneven normalisation. 

 

 

 

Figure 32. MA plot comparing inoculum and RAG mouse-derived parasites. Each dot is 

representative of a gene. Genes with a positive logFC value are more highly expressed in the 

inoculum samples; those with a negative logFC value are more highly expressed in the RAG 

samples. Black dots are not considered differentially expressed, red dots are considered 

differentially expressed, and orange is representative of genes that are exclusively expressed in 

one group.   
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3.13.2 ENRICHMENT ANALYSIS 

3.13.2.1 GENE SET ENRICHMENT ANALYSIS  

The gene sets within the GSEA database are built on human and mouse data, and therefore lists 

of Leishmania genes are inappropriate for GSEA. 

 

3.13.2.2 GENE ONTOLOGY ANALYSIS 

Instead of GOrilla, which is unable to generated GO terms from Leishmania data, gene ontology 

analysis was instead performed using the gene ontology function of TriTrypDB. A total of 70 terms 

were found to be significantly enriched (table 35); 15 cellular components, 23 molecular functions 

and 32 biological processes. The average p-value was 1.91E-02, ranging from 4.23E-27 to 4.79E-

02.  

Nucleobase-related, DNA packaging-related and nucleic acid metabolism-related categories 

appear particularly abundant (figure 33). Additionally, sucrose and disaccharide metabolism, 

hydrolase and endonuclease activity, and nitrogen compound metabolism categories are also 

prevalent. Use of 0.01 as a p-value cut off resulted in a single GO term: “nucleobase-containing 

compound catabolism”. “Cellular component” was the only term reported with a threshold of 

0.001 or less. 
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Figure 33. A REVIGO plot visualising the most enriched terms (p ≤ 0.05) in the inoculum parasites 

vs RAG parasites differentially expressed gene list. Significance is shown on the y-axis in log10 p-

value. The number of genes and terms collapsed into the category are displayed by both the x-axis 

and the bubble size. 
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Table 35. Top 20 Gene Ontology results for the genes differentially expressed between inoculum 

parasites and RAG parasites. Process = biological process, function = molecular function, 

component = cellular component. Full results table in accompanying material A2. 

Type Description p-value 

Process nucleobase-containing compound catabolic process 0.0001971 

Process organic cyclic compound catabolic process 0.0004568 

Process cellular nitrogen compound catabolic process 0.0004568 

Process aromatic compound catabolic process 0.0004568 

Process heterocycle catabolic process 0.0004568 

Process cellular catabolic process 0.0012186 

Process DNA catabolic process 0.0017098 

Process organic substance catabolic process 0.0032488 

Process catabolic process 0.0035108 

Process glycine metabolic process 0.0036003 

Function protein heterodimerization activity 0.000871 

Function nucleic acid binding 0.0014595 

Function protein dimerization activity 0.002052 

Component cellular component 4.23E-27 

Component chromosomal part 0.0002664 

Component nucleosome 0.0006427 

Component chromosome 0.0006509 

Component protein-DNA complex 0.0007514 

Component chromatin 0.0007514 

Component DNA packaging complex 0.0007514 

 

3.13.3 PATHVIEW 

PathView builds figures from KEGG data. However, relatively limited KEGG data is available for 

Leishmania and as a result, no figures were able to be generated. 

 

3.14 SAMPLE CROSS-COMPARISON AND EXPRESSION PLOTS 

3.14.1 MOUSE TRANSCRIPTOME DATA 

3.14.1.1 SAMPLE SIMILARITY 

Differential gene expression data produced by edgeR was transformed for the generation of 

correlation heatmaps and PCA plots.  

Figure 34 shows a sample correlation matrix produced from mouse transcriptome data. Both the 

wild type infected and the wild type uninfected (control) samples appear highly similar (dark 

red/dark orange) to other samples from the same background and infection status. WT infected 

samples were between 97.8% and 99.0% similar, with an average of 98.5%; WT uninfected 

samples were all found to be 99.0% similar to each other. RAG sample transcriptomes appear less 

closely related (pale orange/yellow) than the wild type, with infected RAG samples ranging from 

96.6% to 98.2% in similarity, and uninfected RAG samples ranging from 96.1% to 97.2% . The most 

dissimilar transcriptomes are displayed in yellow, showing that the wild type infected 

transcriptome is least similar to the RAG control transcriptome (average similarity 95.5%). 
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However, the scale of the difference between transcriptomes is fairly minor, as the least similar 

transcriptomes still show 0.942 similarity out of a possible 1.000. 

 

Figure 34. Mouse transcriptome Euclidean distance heatmap. Samples that are more similar are 

indicated with dark red; less similar samples are inicated with dark blue. 

 

Two PCA plots were also generated from the mouse transcriptome data, comparing the variance 

of the samples the 1st, 2nd and 3rd components. The 1st and 2nd components, as seen in figure 35, 

do not appear to differentiate the sample clusters much, indicating that overall gene expression in 

the samples is similar. However, figure 36 shows that the 3rd component accounts for a large 

amount of variance between samples, clearly distinguishing the WT infected and uninfected 

samples from each other and the RAG samples. RAG infected and uninfected groups are not so 

easily differentiated, but this is somewhat expected given that, relative to the WT, few genes 

were found to be differentially expressed between the groups. 
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Figure 35. 1st & 2nd PCA components for mouse transcriptome data. WT uninfected samples are 

represented in cyan, WT infected samples are represented in blue, RAG uninfected samples are 

represented in orange and RAG infected samples are in red. 
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Figure 36. 2nd & 3rd PCA components for mouse transcriptome data. WT uninfected samples are 

represented in cyan, WT infected samples are represented in blue, RAG uninfected samples are 

represented in orange and RAG infected samples are in red. 

 

3.14.1.2 GENE PANELS 

Heatmaps displaying fold-changes in expression of key immunology-related genes between 

mouse samples were generated from edgeR data; all genes listed were significantly differentially 

expressed between samples (p ≤ 0.05). Panels of genes were produced for CD (cluster of 

differentiation) markers genes, cytokines, and chemokines. logFC values are transformed into Z-

score by the heatmap.2 function, which smooths and scales the logFC values so that they can 

more easily be compared between rows.  

CD marker genes are used to indicate cell lineage and cell type, for example, distinguishing 

different types of T-cells or B-cells. Figure 37 shows the panel produced for CD marker genes. 

Genes related to CD 209 appear significantly more upregulated in all samples when compared 

with WT infected samples. Colmenares et al. 2002, found that CD 209 acts as a receptor for 

Leishmania amastigotes in human dendritic cells. CD5, CD6, CD79 and CD3-related genes all 

appear more highly expressed in WT infected samples relative to both RAG infected and 
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uninfected mice. Depletion of CD5+ B-cells was found to have no effect on the outcome of L. 

major infections in different mice strains (Babai et al. 1999). CD79+ B-lymphocytes were found to 

be differentially trafficked to the brain in dogs infected with Leishmania chagasi when compared 

with uninfected dogs (Melo et al. 2009).  

 

 

Figure 37. A gene panel displaying the fold changes in key CD marker genes between samples. 

Genes highly upregulated in the first listed sample (L-R: WT infected, WT infected, WT uninfected) 

are represented in red, while those highly upregulated in the second listed sample (L-R: WT 

uninfected, RAG infected, RAG uninfected) are represented in blue. Comparisons for which the 

genes are not differentially expressed are represented with dark grey. 
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Differences in chemokine expression are displayed below in figure 38. Both RAG infected and 

uninfected samples appear to highly express C-C receptor 3 when compared with WT infected 

mice. C-X-C receptor 5 is more highly expressed in WT infected samples than in either RAG 

sample. A number of C-C and C-X-C receptors, such as C-X-C receptors 5 and 2, and C-C receptors 

9, 7, and 5, show differing expression between WT infected and uninfected samples, with no 

overall pattern to expression. Sato et al. 1999 found that mice deficient in C-C R 2 had a reduced 

interferon gamma response when infected with L. donovani. Additional work on relative 

Trypanosoma cruzi found that C-C R 5 is essential for the control of parasite replication and tissue 

inflammation (Hardison et al. 2006). C-C R 7 was found to be upregulated in dendritic cells in upon 

interaction with Leishmania major (Steigerwald and Moll 2005).  

 

Figure 38. A gene panel displaying the fold changes in key chemokine genes between samples. 

Genes highly upregulated in the first listed sample (L-R: WT infected, WT infected, WT uninfected) 

are represented in red, while those highly upregulated in the second listed sample (L-R: WT 

uninfected, RAG infected, RAG uninfected) are represented in blue. Comparisons for which the 

genes are not differentially expressed are represented with dark grey. 
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The relative differences in expression of cytokines are shown in figure 39 (below). Receptors of 

the TNF-alpha superfamily are highly expressed in WT samples when compared with RAG, and in 

WT infected samples when compared with WT uninfected samples. In L. donovani infections, TNF-

alpha is known to be critically important in parasite control, due to its involvement in leukocyte 

recruitment to the liver (Engwerda et al. 2004). Interferon gamma is more highly expressed in WT 

infected samples than in RAG infected samples, and in WT infected samples than WT uninfected 

samples. The role of interferon gamma in leishmaniasis is complex; early formative studies in 

mice, using L. major, found that parasite control was correlated with the presence of interferon 

gamma, and that the absence was associated with disease progression (Kima and Soong 2013).  

 

 

Figure 39. A gene panel displaying the fold changes in key cytokine genes between samples. 

Genes highly upregulated in the first listed sample (L-R: WT infected, WT infected, WT uninfected) 

are represented in red, while those highly upregulated in the second listed sample (L-R: WT 

uninfected, RAG infected, RAG uninfected) are represented in blue. Comparisons for which the 

genes are not differentially expressed are represented with dark grey. 
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3.14.2 LEISHMANIA TRANSCRIPTOME DATA 

3.14.2.1 SAMPLE SIMILARITY 

The correlation heatmap of Leishmania transcriptome data can be seen in figure 40, comparing 

transcriptomes from inoculum parasites and RAG-derived parasites. Reassuringly, the technical 

replicates (PI01 – PI03) are almost identical, showing an extreme degree of similarity, ranging 

from 97.9% to 99.5%. RAG-derived parasites show less similarity to each other than the technical 

replicates (average similarity 87.0%), but appear on average more similar to each other than to 

inoculum samples (average similarity 84.2%). The Leishmania transcriptomes are considerably less 

similar to each other than the mouse samples are to other mouse samples, with the lowest 

Euclidean distance being 0.781 compared with the mouse distance of 0.942. One potential source 

of variation between each of the RAG-derived samples is that the parasites may be affected by 

differences in the kinetics of disease progression from mouse to mouse. 

 

 

Figure 40. Leishmania transcriptome Euclidean distance heatmap. Samples that are more similar 

are indicated with dark red; less similar samples are indicated with dark blue. RI = RAG-infected 

derived parasites; PI = parasite inoculum derived parasites. 

 

Figures 41 and 42 show the PCA plots for the Leishmania transcriptomes. Siginifcant 

differentiation between clusters of samples can be seen on plots of both 1st and 2nd, and 2nd and 

3rd components, indicating the expression profiles of the two groups are dissimilar.  
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Figure 41. 1st & 2nd PCA components for Leishmania transcriptome data. Inoculum-derived 

samples are represented in black, and RAG-derived samples are represented in red. 
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Figure 42. 2nd & 3rd PCA components for Leishmania transcriptome data. Inoculum-derived 

samples are represented in black, and RAG-derived samples are represented in red. 
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CHAPTER 4: DISCUSSION 

4.1 THE MOUSE TRANSCRIPTOME 

4.1.1 DIFFERENCES IN THE RESTING TRANSCRIPTOMES OF WT AND RAG MICE  

A wide variety of immunity-related genes and cell types are found upregulated and enriched in 

WT B6 mice when compared with RAG2KO mice, even in an uninfected state. In terms of raw 

expression, the most highly differentially expressed genes in the WT were related to 

immunoglobulin heavy and light chains, and Fc receptors, indicating these genes are expressed at 

comparatively low levels in RAG mice. Matching this trend, the pathway and GSEA analyses found 

significant enrichment in terms related to immune cells, NK-cell mediated cytotoxicity, and the 

nitrogen metabolism. Overall, the results point to the presence of a resting adaptive immune 

system in one group of samples (WT), and the absence of one in the other (RAG). This was to be 

expected given that a lack of RAG recombinase prevents the development of mature B-cells, T-

cells and immunoglobulins, but no other structural, physical or behavioural defects are present 

(Mombaerts et al. 1992). 

 

Curiously, the most highly expressed genes in RAG mice relative to the WT group are resistin, 

leptin and perilipin 1, which are all involved in the regulation of hunger and adipose tissue (Vaisse 

et al. 1996; Martinez-Botas et al. 2000; Sul 2004). Despite the expression of these diet-related 

genes, no differences in weight or physiology are apparent between the two mice backgrounds. 

These genes are also expressed highly in the RAG samples when comparing WT and RAG mice 

under infection. 

 

4.1.2 CHARACTERISTICS OF A HEALTHY IMMUNE RESPONSE  

Comparing the transcriptomes of a WT mouse at rest and during infection should give an 

indication of how mouse gene expression reacts to the presence of the Leishmania parasite. 

Serum amyloid A3, a protein associated with acute inflammatory response, is the most highly 

upregulated gene in infected mice when compared with uninfected mice (Shimizu et al. 1992). 

Additionally, pathway analysis shows coagulation and complement cascades as being more highly 

expressed in infected mice. GO analysis shows enrichment for nitrogen and hydrogen peroxide 

metabolic processes and cellular detoxification, while GSEA matches a number of the genes found 

to be differentially expressed with immune memory and inflammatory response. The presence of 

pro-inflammatory genes, along with genes related to immune memory and nitrogen metabolic 

processes, is suggestive of an active immune system, aggressive in response to an infection 

(Franco et al. 2012). Healthy mice are known to respond to L. donovani infection in 2 phases, 

corresponding to innate and acquired immunity (Lipoldová and Demant 2006). Evidence of both 
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phases can be seen in our own data, from upregulation in complement cascades and immune 

memory genes.  

 

4.1.3 IMMUNOCOMPROMISED RESPONSE TO INFECTION 

Given the lack of acquired immunity in RAG2 KO mice, and their consequent inability to generate 

pathogen-targeting immunoglobulins, T-cells, and B-cells, mice rely solely on their innate immune 

system to deal with infections. RAG mice are known to have high levels of NK cell activity 

(Belizário 2009) but other studies have found mice that are NK cell deficient are still able to clear 

the liver of L. donovani unimpeded (Lipoldová and Demant 2006). This indicates that NK cells are 

not crucial in the immune system’s attempts to clear parasites.  

 

Comparatively fewer genes were found to be differentially expressed between the RAG infected 

and uninfected samples - under 100 genes, when, for example, comparing uninfected WT and 

RAG mice found over 1,200. However, a small number of differentially expressed genes still 

constitutes a difference and a potential response to infection. In the infected samples, the most 

highly upregulated genes are related to immunoglobulins - heavy variable and light kappa chains. 

It’s possible that the presence of Leishmania in the body is being detected, triggering a response 

to infection, and the initial genes relevant for initiating an acquired immune response are being 

upregulated; however, even if transcripts for immunoglobulins are being produced, this does not 

necessarily translate into the production of antibodies. B-cell progenitors and precursors are still 

present in the bodies of RAG mice, which may explain the apparent upregulation of B-cell-related 

immunity, but without RAG recombinase, the cells do not reach maturity. 

 

Too few genes were differentially expressed between the samples for GO and pathway analysis. 

GSEA, however, found that a number of the differentially expressed genes matched with the 

Hallmark set for haeme metabolism. The role of iron metabolism in Leishmania infections is 

complicated, but indirect evidence suggests that the availability of iron from the host may affect 

the success of the parasite (Silva-Gomes et al. 2013). Depriving the parasite of iron, and the 

additive effect of iron involvement in NOX and reactive oxygen species, is thought to have a 

leishmanicidal activity (Silva-Gomes et al. 2013). Thus, in modulating the expression of genes in 

the haeme metabolic pathway, infected RAG mice may be attempting to defend themselves 

despite the lack of acquired immunity.  
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4.1.4 COMPARING IMMUNE REACTIONS TO OTHER INTRACELLULAR PATHOGENS  

The majority of transcriptomic profiling work on the effects on the host of other Leishmania 

species has been done on isolated macrophages rather than whole-tissue RNA samples, or multi-

organ profiling. Given that the macrophages are both home to the parasites, and responsible for a 

portion of defence, highlighting macrophage response is insightful. However, the influence of 

genetic background and subsequent differential gene expression can decide the outcome of an 

infection in humans and mice. For example, in human L. braziliensis infections, patients that 

developed mucocutaneous leishmaniasis from cutaneous infection were found to have 

differential expression in genes that were involved in inflammatory response and cell migration 

(Maretti-Mira et al. 2012). Another recent study on L. braziliensis, based on transcriptomes 

generated from skin lesion biopsies, found that patients with and without detectable parasite 

transcripts had considerably different gene expression profiles. Samples positive for parasite 

transcripts showed upregulation of cell migration, cellular cytotoxicity, and inflammation; 

negative samples instead were found to upregulate genes related to skin defences and epidermal 

cell development (Christensen et al. 2016). 

 

As with Leishmania infections, the presence of obligate intracellular protist Toxoplasma gondii has 

a notable effect on the host transcriptome. Unsurprisingly, a number of immunity related genes 

are upregulated during infection, such as immunoglobulins, chemokines, interferons, and MHC II, 

in similar inflammatory patterns to those of Leishmania infection (Tanaka et al. 2013). As with 

human Leishmania infections, the outcome of mouse infections with T. gondii can be determined 

by the host gene expression profile - symptomatic mice had higher expression of TGF-β and 

interferon regulatory factor 4 (Tanaka et al. 2013). 

 

In the same manner, the success of murine malaria Plasmodium berghei infection is strongly 

influenced by host genetic background. BALB/c and B6 mice are known to have different resting 

and immunological gene expression profiles, like B6 and RAG mice. Pre-infection gene expression 

patterns can be analysed to convey information about resistance; mice with higher resting 

expression of immune response and defence related genes are more likely to resist infection than 

mice with comparatively lower levels of expression. For example, B6 mice are known to have 

relatively low levels of such genes, leaving them both susceptible to infection and sluggish to 

respond (Lovegrove et al. 2006).  

 

Similarly, resistance to infection with intracellular bacterial pathogens are determined by genetic 

background and gene expression. In 4 strains of mice infected with Mycobacterium tuberculosis, 

hosts displayed varying patterns of resistance and susceptibility. It was found that macrophages 



119 
 

from more susceptible mice stimulated recruitment of cell types that caused inflammatory 

immunopathology rather than microbial clearance (Keller et al. 2004). Listeria monocytogenes, 

another vacuole-residing bacterial pathogen, infects intestinal epithelial cells and hepatocytes 

though surface receptors (Pamer 2004). Unmodified mice of different genetic backgrounds are 

known to show differential susceptibility and resistance; A/J mice were found to be extremely 

susceptible to infection, while Black 6 mice were resistant to inoculation, showing slower bacterial 

dissemination and less severe lesions (Czuprynski et al. 2003).  

 

Given that mouse reaction to the above mentioned intracellular pathogens - and intracellular 

stages of P. berghei infection - it appears that mice have a generalised response to infection 

(Schnappinger et al. 2006), consisting of a carefully controlled inflammatory response, 

immunoglobulins, chemokines and cytokines. This reaction is apparent in the B6 WT mice upon 

infection with L. donovani, but given the lack of ability to coordinate an acquired immune 

response, absent in the RAG mice. 

 

4.2 THE LEISHMANIA TRANSCRIPTOME 

4.2.1 PARASITES BEFORE AND AFTER INFECTION 

Of 8,224 possible genes annotated on the L. donovani reference genome, 8,066 had at least 1 

read detected in either the inoculum or RAG-derived samples, implying good overall coverage. 

However, almost 50% of genes were considered differentially expressed by edgeR (before 

filtering), which may be a consequence of the significantly lower level of reads in the RAG-derived 

samples. After filtering, which involved a minimum logCPM threshold, only 1.1% of genes were 

considered differentially expressed. 

 

Almost 8% of the short list of genes found to be differentially expressed between Leishmania in 

RAG mice and those in inoculum were amastins and amastin-like proteins. Amastins are surface 

glyco-proteins known for their life-cycle stage dependent expression; as the name suggests, 

amastins are highly expressed by amastigotes, replacing the LPG coat of promastigotes (Saxena et 

al. 2007). Given that both the inoculum and RAG-derived parasites are amastigotes, and that 

different amastins were upregulated or downregulated in different samples, this may reflect 

attempts to react to different microenvironments, i.e. culture or host tissue. 

 

Previous studies on the transcriptomic differences between axenic and intracellular amastigotes 

found that 13% of Leishmania mexicana transcripts had a significant difference in abundance 

(Fiebig et al. 2015). The same study found that the most highly expressed genes in axenic 
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parasites - when compared to intracellular amastigotes - were related to proteolysis, DNA binding 

and nucleosomes (Fiebig et al. 2015). Our own results are in agreement with this data, as raw 

fold-change data showed significant upregulation of histones and histone-like proteins in RAG-

derived parasite samples, in addition to gene ontology analysis revealing enrichment for DNA 

packing and nucleic acid metabolism-related genes.  

 

Additionally, amastigotes are known to adapt to intracellular life by changing their metabolic 

preference from glucose and proline to amino acid and fatty acid beta oxidation, a change which 

may be reflected in the gene ontology analysis detection of enrichment of genes related to 

glycine, serine and disaccharide metabolisms (Fiebig et al. 2015). 

 

4.2.2 OBTAINING A “TRUE” SNAPSHOT OF GENE EXPRESSION  

The reliability of the conclusions drawn from the Leishmania data may be called into question 

when considering the ultra-low read counts in RAG-derived samples, and other technical issues. 

Before the application of the extra reliability criteria to the differentially expressed genes list 

produced by edgeR, almost 50% of the total genes detected across all Leishmania samples were 

considered differentially expressed. Applying a minimum threshold for log counts per million to 

ensure genes with only a handful of reads are excluded from the analysis cuts the number of 

genes that are considered differentially expressed to only 1%. Although edgeR attempts to 

compensate for low read counts, for genes where one library has a count in the hundreds, and 

the other library has a read count of less than 10, it can be hard to reliably and robustly scale and 

normalise appropriately. For example, analysis found that no genes were uniquely expressed in 

the RAG-derived samples, 8 genes were found to be uniquely expressed in the inoculum-derived 

parasites, which could be a symptom of low read counts.  

 

Obfuscating problems with read count discrepancies is the relatively poor annotation of the L. 

donovani reference genome. Although the most up-to-date reference genome available was used 

to align reads to, of the 89 genes found to be differentially expressed, 28 were entirely 

hypothetical, with a further 41 having declared putative function and 11 having a noted similarity 

(e.g amastin-like) to another protein - leaving only 11% of genes with a concrete, known function. 

40% of the most highly differentially expressed genes are entirely hypothetical, which has a 

knock-on impact on the analyses which build upon the differentially expressed gene list, such as 

enrichment analyses. By comparison, the analyses based on the mouse genome generated 

differentially expressed gene lists with an average of 7.7% protein-like genes and 12.1% 

hypothetical genes, leaving 80.2% of genes with a known, confirmed function.  
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Continuing the discussion of potential technical issues, the unexplained inconsistency with the 

inoculum technical replicates may have affected the results: BioAnalyser analysis of RNA and 

cDNA samples found no significant difference between the technical replicates, library sizes were 

similar in terms of total reads sequenced before and quality control, and in terms of uniquely 

mapping reads. PCA and Euclidean distance plots show that the transcriptomic profiles of the 

three replicates are almost identical. The mapping process was repeated in case of alignment 

error but the results were the same; it is still entirely unknown why there was such a drastic 

difference in the percentage of reads mapping to each genome for the 3rd technical replicate, and 

whether this has impacted the analysis. 

 

Leishmania have additional complexities to add to their analysis in their genome organisation and 

gene expression systems. For example, the abundance of transcripts may or may not have direct 

functional consequences. Leishmania are highly unusual, when compared with the majority of 

studied organisms, in their regulation of expression, which is largely post-transcriptional and post-

translational (Rastrojo et al. 2013). Theoretically, most genes are expected to be expressed at a 

similar, basal level (Kramer 2012). With the above in mind, changes in transcript abundance may 

not have a direct effect on protein levels. Rastrojo et al. 2013 found that transcript abundance 

and protein levels only roughly correlate, and as such, may not be a good measure for changes in 

gene expression (Cohen-Freue et al. 2007; Kramer 2012; Rastrojo et al. 2013). Similarly, 

Leishmania species are not only constitutively aneuploid, but additionally exhibit mosaic 

aneuploidy on a population level (Downing et al. 2011; Sterkers et al. 2011; Lachaud et al. 2014; 

Rogers et al. 2014). The abundance of gene transcripts will be directly affected by the copy 

number of the gene, and the ploidy of the chromosome - as genes are expressed at a similar rate, 

an extra copy will essentially double the level of expression (Kramer 2012; Dumetz et al. 2017; 

Iantorno et al. 2017). RNA sequencing is not used for the detection of ploidy or CNV - but DNA 

sequencing would allow for the detection of changes in ploidy/CNV through read depth, which in 

turn could be applied to RNA data to compensate for - or compare to - differences between 

groups of samples.  

 

Finally, compromises made in the experimental design process may waiver some of the legitimacy 

of the findings. Due to problems finding an adequate solution for storing RNA samples early on in 

the experiment, the mixed mouse/Leishmania RNA samples and the inoculum RNA sample were 

generated from two entirely separate experiments, more than 6 months apart, as the original 

inoculum sample degraded in storage. Although the inoculums were generated using identical 

methods, it is entirely possible that the parasites further adapted to the RAG mice in which they 

were cultivated in during the time between experiments, and that adaptation is what the 
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differential gene expression analysis is detecting, rather than a true “before and after”, where a 

parasite is adapting to a new host. It could also be argued that the process of parasite isolation 

itself prevents the examination of “before and after” snapshots of the Leishmania transcriptome - 

the inoculum results instead show a parasite reacting to the shock of being extracted from the 

spleen, resuspended in culture and treated with chemicals. The process of extracting and 

purifying amastigotes from tissue takes at least 40 minutes, and must be performed promptly, as 

exposure to room temperatures is enough to trigger differentiation into the promastigote life 

cycle stage. Given that Leishmania can react to the temperature that quickly, it is not 

unreasonable to assume that the parasites are also capable of reacting to other environmental 

stresses with similar speed.  

 

4.3 IMPACT OF METHODOLOGY 

4.3.1 THE CHALLENGES OF ANALYSING DUAL RNA -SEQ DATA 

Every technique and method has inherent flaws. RNA sequencing approaches have, for example, 

biases introduced by the biochemistry of library prep and next-generation sequencing platforms 

(Zhang et al. 2014). Measures of abundance are affected by nucleotide composition and gene 

length; sequencing depth and sample replicates can have significant effect on results; alternative 

splicing, isoforms, biological and technical variation further complicates things (Zhang et al. 2014). 

However, methods have been optimised to, wherever possible, eliminate or reduce such bias. For 

example, during library prep, to ensure unbiased coverage of the transcriptome, random primers 

were used for the conversion of RNA into cDNA. Additional steps to normalise metrics affected by 

gene length and library size are undertaken by edgeR (Robinson et al. 2010). 

 

The relative abundance of host RNA when compared with parasite RNA is a particular challenge 

for dual RNA Seq approaches. The M. musculus genome, at 2.5Gb, is almost 70 times larger than 

the L. donovani genome at 32.4Mb (Downing et al. 2011). If genome size was equal to the amount 

of RNA produced, this difference in genome size would cause a far larger proportion of the RNA to 

belong to the mouse.  

Without even considering the percentage of genes that are actually expressed, mammalian 

genomes are widely understood to have an extremely high proportion of non-transcribed DNA, in 

the form of pseudogenes, transposons, and other “junk” DNA – in humans, as much as 98% of 

genome is thought to be non-coding (Chi 2016). Our own data shows that while Leishmania 

express the majority of their genome (99.3% of annotated genes have a read count of >10), mice 

express relatively less, with 21.4% of genes having a read count of <10. Despite this difference, 

the tissue from which the mixed RNA samples were generated from contain substantially more 
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mouse cells than Leishmania cells, such that the proportion of host RNA is much higher. 

Consequently, in mixed host-parasite samples, the amount of Leishmania RNA is relatively low, 

contributing to low read counts and poor transcriptome coverage.  

Similar CRACKIT dual RNA-Seq experiments using mice and L. donovani found that the methods 

used were sufficient to generate enough Leishmania data for robust statistical analysis (Kaye et al. 

2017). However, these previous experiments had used a different strain of mouse – BALB/c – 

which show a difference in their immune response to the B6 used in this experiment. BALB/c mice 

are known for their Th2-biased adaptive response, while B6 mice have a Th1 bias (Sellers et al. 

2012). Th1 responses are known for their ability to clear intracellular parasites (such as L. 

donovani) and as such, B6 are able to cope with infection. BALB/c mice, with their Th1 response, 

are unable to clear the parasites (Sellers et al. 2012). The stronger immune response to 

intracellular parasites in B6 mice may be a contributing factor in the low abundance of parasite 

reads from the mixed host/parasite RNA samples. 

 

4.3.2 COPING WITH ALIGNER TOLERANCE 

Increasing the error tolerance of the STAR aligner will have very likely increased the number of 

errors in the overall alignment process, as the tolerance is a blanket process, and not targeted 

specifically to deal with splice leader sequences. The presence of Leishmania-aligned reads in the 

uninfected mouse samples are almost certainly evidence of overly tolerant aligner settings. 

Investigation of the incorrectly aligned reads, such as their dispersion across the genome, and the 

nature of the region, such as non-coding or coding, may have held clues as to the extent and 

effects of the alignment choices. Overall, the settings chosen mean that as long as a minimum of 

40bp of the read matches the reference genome, the read will not be rejected. In retrospect, the 

issue of the splice leader sequences could have been solved by a simple CutAdapt treatment, by 

specifying the “adaptor” as the same as the splice leader sequence. With no SL sequence present 

in any of the reads, the alignment settings can be stricter, and more accurate. For example, the 

end-to-end setting for STAR uses a much harsher algorithm for calculating alignment score, and 

would produce a much more reliable alignment (Dobin et al. 2013). Another option, or an 

additional option, would be to computationally separate the reads during the alignment process, 

mapping each library to the genomes of both the host and the parasite – only in two separate 

runs, instead of together in a concatenated file. This has the advantage of not confusing the 

placement of genes that might be highly conserved between genomes, however unlikely that may 

be for taxonomically distant M. musculus and Leishmania.  
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4.3.4 THRESHOLDS OF EXPRESSION AND SIGNIFICANCE 

In addition to inappropriate alignment settings, the decision to consider the alignment of a single 

read to a gene as evidence of the gene’s expression was also unsuitable. The highest raw read 

count for any mouse gene was 578,310, and 169,473 for Leishmania, which further highlights the 

potential noise introduced by the low threshold. A more appropriate threshold could have been 

chosen by statistically examining either raw or normalised read counts.   

 

Given the low read counts of the Leishmania genes and how the majority of “significant” (p ≥ 

0.05) genes are filtered when even minor logFC filtering is applied, it’s likely that the single-read 

threshold was even more inappropriate for the Leishmania data. The conclusions drawn from the 

data are extremely unreliable, even though the read counts have been normalised and had 

statistical tests applied. 

 

4.3.5 MODELLING DIFFERENTIAL GENE EXPRESSION 

Various statistical distributions are used to model the probability of a random read drawn from 

the library mapping uniquely to the target of interest. Early RNA sequencing work found that data 

typically fitted a Poisson distribution, where the variance of the dataset was equal to the mean, 

rather than the Gaussian distribution used for microarray work. However, as RNA-Seq included 

more biological replicates, it was found that the Poisson distribution underestimated variance, an 

issue known as overdispersion (Zhang et al. 2014). The negative binomial distribution was found 

to better model dispersion, accounting for overdispersion, even when few biological replicates 

are available, and is now commonly used by differential gene expression software (Robinson et al. 

2010; Zhang et al. 2014). As such, other distributions are available for use in detection of 

differential gene expression, but are not considered as appropriate for RNA Seq analysis.  

 

Zhang et al. 2014 also tested edgeR against other differential expression software, such as 

Cufflinks/Cuffdiff2 and DESeq. EdgeR was found to be more effective at finding true positives, 

however, the other software was better if false positives are a concern of the dataset. As with 

choice of distribution/model, other DE detection software are available, but may not be as 

appropriate.  

 

4.4 APPLICATION OF FINDINGS 

4.4.1 CONTRIBUTION TO THE CRACKIT MODEL  

Due to the constraints of time and the unexpectedly low read counts for Leishmania in the mixed 

RNA samples, the aims of this project changed focus from studying the transcriptome of the 
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parasite to that of the host. The original intention was to populate a complex computer model of 

L. donovani infection with bioinformatic data about the response of the parasite to the immune 

pressure of the host. Unfortunately the parasite data are insufficient for the original purpose of 

the experiment, and combined with the decoupling of the inoculum and mouse parasite 

experiments, means the in vivo experiment will likely have to be repeated.  

 

However, some use may still come from the mouse data and the little available parasite data. 

Providing additional data to a large project such as the CRACKIT project is useful in establishing 

context for other data types, such as pharmacokinetic/pharmacodynamic and imaging data 

(Timmis et al. 2016). More experimental mouse data to support a model’s assumptions and fine 

tune parameters could also be useful (Albergante et al. 2013; Timmis et al. 2016). More 

specifically, empirical evidence for relevant immunological details - such as the regulation of 

cytokines and CD markers - could even be used to help design thresholds and parameters of the 

model (Albergante et al. 2013). Aside from the inner workings of the model, qualitative 

characteristics generated from the bioinformatics data may also be used to validate in silico 

models, for example, the extent of biological variance and stochasticity, and whether model 

heterogeneity reflects these accurately (Albergante et al. 2013; Timmis et al. 2016). 

 

4.4.2 EXTRAPOLATING POTENTIAL 

Although the data generated from this project might not be used for its original purpose, it can 

still be utilised for other research. First and foremost, given that the experiment is most likely to 

be repeated, the methodology and experimental design choices can be refined in order to achieve 

better results with regards to the collection of Leishmania transcriptome data. Mouse 

transcriptome data may also be useful for researchers studying Leishmania or other pathogens 

outside of the CRACKIT project, for example, the comparison between WT B6 and RAG2KO mice 

has potential to be used in the study of immunodeficient mice. Or, a study comparing mouse 

response to intracellular infections may make use of the transcriptomes of uninfected and 

infected B6 mice. 

 

4.5 FUTURE WORK 

4.5.1 IMPROVEMENTS TO EXPERIMENTAL DESIGN  

Given that the experiment is likely to be repeated, several lessons can be learned from this 

project. One obvious improvement is to use RNA from the same inoculum used to infect the mice, 

rather than a second inoculum generated months after the original experiment, in order to better 

obtain a picture of Leishmania adaptation to the host. Additionally, steps can be taken to improve 
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the yield of Leishmania RNA in the mixed samples; for example, using a mouse strain known to 

have a less strong immune response to maximise parasite growth. Previous studies on other 

trypanosomatids have attempted to solve problems similar to those faced by dual host-

Leishmania studies. In terms of isolation of parasite cells from blood and tissue, Mulindwa et al. 

2014 found Diethylaminoethyl cellulose columns to be especially effective at separating 

Trypanosoma brucei parasites from whole blood. Use of splice leader sequences to selectively 

prime cDNA synthesis and PCR amplification is also an effective way to ensure a better parasite to 

host signal ratio (Mulindwa et al. 2014). 

 

Further work could also be undertaken in understanding transcript heterogeneity for both host 

and parasite. Though more study may be necessary in order to better interpret Leishmania data, 

it has been suggested that the presence of multiple SL sites and differential use of UTRs and 

polyadenylation may have significant effect on the parasite transcriptome (Rastrojo et al. 2013). 

Additional analyses on the available data could also be insightful. Exclusion of reads mapped to 

multiple locations in the genome(s) reduces the ambiguity in the placement of the read. However, 

in the case of the Leishmania genome, the presence of tandem gene arrays means that reads 

would not uncommonly correctly map to multiple loci. Instead of entirely ignoring these reads 

during analysis, they can be analysed through use of specific tools to appropriately estimate the 

coverage of the involved genes, or by randomly deciding between the placements of each read in 

order to not lose data. For a more comprehensive understanding of the immunology 

underpinning changes in gene expression, Chaussabel analysis, which involves analysing 

transcriptome data for cell-type and response-specific biomarkers, would help characterise the 

differences in mouse immune responses (Chaussabel et al. 2008). This type of analysis could 

establish which branches of the immune system – such as innate or acquired, or Th1 and Th2 – 

are responsible for the differences in transcriptomes. Venn diagrams comparing significantly 

expressed genes between samples would also be a useful addition in highlighting the differences 

in immune responses. For a more biochemical approach, inclusion of ligand data for the various 

receptors found significantly differentially expressed between samples, such as the cytokine and 

chemokine receptors included in the gene panels, may indicate whether the changes in gene 

expression have a strong biological effect.  

 

4.5.2 APPLICATION OF NOVEL TRANSCRIPTOMICS APPROACHES  

Alternative methods to study the host and parasite transcriptomes are available. If the objective 

of the experiment is to provide data to inform a model, it could be argued that although no longer 

cutting edge, microarray analysis could be useful. Using a microarray would allow for the study of 
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specific targets, such as those being coded into the model, though poor annotation of the 

Leishmania genome would make production of Leishmania probes more difficult.  

 

A multi-omics approach, including genomics and proteomics, would provide better context for the 

transcriptome profiles and better support claims about changes in gene expression. More 

specifically, DNA sequencing of Leishmania inoculum and RAG-derived samples may contribute to 

determining their response to host immune pressure, as Leishmania are well-established in their 

reactive genomic flexibility (Mannaert et al. 2012; Sterkers et al. 2012; Rogers et al. 2014). 

Proteomics work would be extremely valuable, to validate whether changes in the parasite 

transcriptome correlate with protein levels, or if their alternative methods of gene regulation 

render transcriptome data meaningless. 

 

Use of innovative techniques such as single-cell transcriptome sequencing would be invaluable in 

future work. Single-cell based techniques would allow for the reduction of ‘background noise’ 

with regards to other cells in the tissue, for example, isolating macrophages and other immune 

cells from the mouse spleen, or better purification of Leishmania amastigotes from mouse tissue. 
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