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Abstract	

Evidence has emerged for a subpopulation of human T cells that express TLR2, a pattern 

recognition receptor ordinarily found on innate immune cells. A cross-modulation pathway 

between TLR2 and CCR5, a chemokine receptor involved in cell migration, has been 

reported in human monocytes by the Signoret lab. CCR5 is expressed by several subsets 

of T cells and notably takes part in the pathogenesis of cancer and HIV-1 infection. Whilst 

a TLR2/CCR5 double-expressing T cell population has been previously reported, its 

function is unclear, and the possibility of a TLR2/CCR5 communication pathway is yet to 

be explored. Expansion of this population could allow functional characterisation, and 

elucidate the conditions favouring generation of these cells.   

Frozen monocyte-depleted human PBMCs were expanded using 9-day PHA/IL2 

stimulation. TLR2+ T cells were identified by flow cytometry, and were characterised as a 

mixed population of TLR2+ CD25+ cells that can also express CCR5, CD4, CD8, CD45RO 

and FoxP3. This subpopulation was detected after three days of PHA stimulation, but 

could not be expanded in presence of IL2 and disappeared from culture by day 9, 

suggesting a transient cell phenotype. These experiments were repeated with a cell 

preparation from freshly isolated PBMCs; the same subpopulation could be identified, but 

the results suggest that the majority of TLR2+CD25+ cells are also CD45RO+ and CCR5+. 

Following a literature review, alternative stimulation conditions thought to favour TLR2 

expression were tested. As with PHA/IL2, no significant expansion of the TLR2+ CCR5+ 

subpopulation was observed. A downmodulation experiment was carried out assessing 

the impact of TLR2 and CCR5 specific ligands on the cell surface expression of their 

receptors. TLR2 ligand stimulation did not affect CCR5 cell surface levels, indicating that 

receptor regulation on these cells may differ from that of monocytes. However, further 

experiments should be carried out before conclusions are drawn. 
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1. Introduction	

 

1.1 The immune system: an overview 

All vertebrates possess an immune system that allows the recognition and elimination of 

invading pathogens, microorganisms responsible for disease.1 This immune system 

consists of specialist circulating blood cells (leukocytes), immune tissues and organs. 

Leukocytes are actively involved in the response to infection, while immune tissues (e.g. 

bone marrow) and organs (e.g. thymus) are primarily sites of leukocyte production, 

storage, maturation and activation.2 

 

1.1.1 Leukocytes: the specialized cells of the immune system  

Leukocytes are a diverse group of cells that take part in the inflammatory response, a 

process aiming to fight infection and prevent and/or repair tissue damage caused by injury 

or insult to the body.3 Subsets of leukocytes play different roles in the inflammatory 

response; some are responsible for recognising and destroying pathogens, others repair 

tissue damage, and some play a regulatory or modulatory role.4 Additionally, leukocytes 

secrete a wide range of molecules that target pathogens or serve communication-related 

functions. These molecules include antimicrobial peptides, which have direct pathogen-

killing effects, as well as cytokines and chemokines, the chemical messengers 

responsible for leukocyte recruitment, activation and regulation. Cytokines and 

chemokines exert their effects by binding to specific cell-surface receptors, initiating 

intracellular signalling pathways that dictate cell behaviour.5,6 This mechanism allows 

communication, regulating the different stages of the overall immune response.7  Cells 

can be grouped according to the branch of the immune system that they belong to; either 

the innate (non-specific) immune system or the adaptive (antigen-specific) immune 

system. Leukocytes are then further divided into smaller subsets within the two groups 

based upon their function and specific markers they express. Innate leukocytes include 
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neutrophils, monocytes, macrophages and dendritic cells while adaptive leukocytes 

consist of B and T cells; lymphocytes.2 

In broad terms, the innate and adaptive immune responses represent the non-specific 

initial response to infection/tissue damage, and then the pathogen-specific response that 

occurs several days afterwards. However, there is considerable overlap, and 

communication between the cells involved in the two different responses is required for 

effective pathogen clearance.8 (see Figure 1 for an overview of the interactions between 

the innate and adaptive immune response)9 

 

1.1.2   The innate immune response 

The innate immune system provides the initial inflammatory response to infection or tissue 

damage. It allows a rapid response to occur to pathogens without the need for recognition 

of their specific type and without having encountered them before. In the event of 

infection, innate immune cells are able to quickly identify foreign cells by distinguishing 

between self and non-self.10  This is achieved by the recognition of molecules that are 

produced by or expressed on the surface of pathogens, known as pathogen-associated 

molecular patterns (PAMPs). PAMPs are a group of small, highly conserved molecules 

expressed by pathogens but not mammalian cells. They are often essential for the 

survival of a pathogen and can also act as virulence factors, allowing effective 

colonisation of a host organism.11 A notable example is lipotechoic acid (LTA), a molecule 

found on the surface of Gram-positive bacteria, that facilitates adhesion between host and 

bacterial cells.12 As PAMPs are common to large groups of pathogens and are often 

required for cell survival, they allow innate immune cells to successfully distinguish 

between host and pathogen based on a relatively small selection of molecules.  

In addition to foreign cells, damaged or dying cells are also recognised and targeted for 

destruction.  Innate immune cells are sensitive to the presence of molecules released 

during tissue damage or cell death: damage-associated molecular patterns (DAMPs). 

Recognition of PAMPs/DAMPs results in a rapid, antigen-independent response, causing 

the clearance of dead and dying cells as well as pathogens.13 This can be achieved 
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through phagocytosis, the process whereby leukocytes engulf and destroy unwanted 

material, ranging from cell fragments to entire pathogens. This process is enhanced by 

complement, a complex system whereby multiple plasma proteins in the blood assemble 

transmembrane channels (membrane attack complexes or MACs) on the surface of 

damaged or pathogenic cells, compromising their cell membrane.14 As part of this 

cascade, cells can also be coated in complement proteins in a process known as 

opsonisation, marking them for destruction by phagocytes.15  

In order to achieve these effects, innate immune cells utilize a variety of intracellular 

signalling pathways. Recognition of DAMPs and PAMPs is dependent on pattern 

recognition receptors (PRRs).10 PRRs include the Toll-like receptor group (TLRs), a class 

of highly-conserved, single spanning transmembrane receptors present on the surface of 

certain leukocytes including neutrophils, macrophages, dendritic cells and monocytes, all 

of which are phagocytes.16,17 Some TLRs are also found on the membrane of the early 

endosome, a compartment within phagocytes that holds ingested microbial components.18 

Binding of TLRs to DAMPs/PAMPs leads to activation of innate leukocytes, resulting in 

increased cytokine and chemokine production and secretion, which recruits both innate 

and adaptive immune cells into the area.19 

The innate immune response is advantageous in the early stages of inflammation; it 

quickly recognizes a broad spectrum of pathogens, and inhibits their spread. However, it 

is a non-specific response, and relies upon a small group of molecules for pathogen 

recognition. Pathogens lacking certain PAMPs, or possessing mutated versions of the 

molecules are able to evade detection. They may also produce PRR inhibitor molecules 

that block binding of their ligands, preventing pathogen recognition.20  In these cases, the 

innate immune response may be ineffective in entirely eradicating an infection. The 

adaptive immune system can then be employed to provide a pathogen-specific response 

to the infection. This is achieved through cytokine- or chemokine-mediated recruitment of 

adaptive immune cells, as well as through antigen presentation. Certain phagocytic cells 

(e.g. macrophages, dendritic cells) are classed as antigen-presenting cells (APCs). These 

are cells that possess major histocompatibility complex class II (MHCII) molecules, 

membrane receptors that display peptides from the surface of pathogens (antigens) to 
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adaptive immune cells.  This allows recognition of a specific pathogen to occur, resulting 

in the activation of the adaptive immune response. 21  The toll-like receptors also play an 

active part in this process; for example, dendritic cells must first be activated by the 

binding of TLR ligands in order to mature into antigen presenting cells.22 

 

1.1.3 The adaptive immune response 

The adaptive immune response, otherwise known as the specific immune response, is the 

second phase of inflammation. It allows a specialized response to individual pathogens, 

targeting them directly via pathogen-specific antigens.23 This response is mediated by B 

and T cells, which are collectively known as lymphocytes. They originate in the bone 

marrow as common lymphoid progenitor cells; B cells complete their maturation in the 

lymph nodes, whereas T cells mature in the thymus and tonsil.  At this stage, the 

lymphocytes possess microbe-sensing mechanisms with affinity for a single pathogenic 

antigen. This is achieved through random gene recombination, allowing extensive 

diversity within B cell receptors (BCR) on the surface of B cells, and T cell receptors 

(TCR) on the surface of T cells. Inevitably, this process leads to the development of 

autoreactive cells; lymphocytes specific to the antigens expressed by host cells. To 

combat this, B and T cells are “tested” for autoreactivity within their respective maturation 

sites; cells that recognise self-antigen are stimulated to undergo apoptosis (a form of 

programmed cell death) to ensure they do not target host tissues.24  

In terms of function, B cells are primarily responsible for antibody production, which allows 

them to immobilize pathogens as well as highlighting them for destruction by T cells. 

When the B cell is activated via antigen-binding to the BCR and/or stimulation by a helper 

T cell, it begins a process known as clonal expansion, rapid division of the B cell to 

produce large numbers of identical effector cells. These are released into the 

bloodstream, where they commence antibody production.25  Antibodies, or 

immunoglobulins, are glycoprotein molecules with a hypervariable region at one end 

which is able to bind to antigens, as well as a conserved Fc region, that is able to bind to a 

certain class of Fc receptor on other immune cells.26 These antibodies are secreted during 
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the immune response and bind to pathogens; this may neutralize the microbe by blocking 

surface receptors, cause agglutination, whereby antibody-coated microbes are attached 

together and immobilized, or simply mark the pathogen as a target for phagocytosis via 

stimulation of Fc receptors on phagocytic cells.2 

T cells are divided into subsets, and play complex roles in the inflammatory response, 

which will be discussed further below.  

A unique feature of the adaptive immune response is its ability to recognize previously 

encountered pathogens. A small subset of B and T cells specific to a certain pathogen 

remain in circulation beyond the resolution of an infection, and are able to expand if the 

individual is re-infected. These cells are memory cells, and their activation results in a 

rapid response in the event of a second infection by a pathogen.  

 

1.1.4 T cells  

T cells are a diverse group of lymphocytes, which are subdivided into many classes 

relating to their varied functions.27 They mature in the thymus, a lymphoid organ located 

beneath the sternum in humans. 28  This is where T cells develop their T cell receptor, an 

antigen-sensing device that is assembled through rearrangement of the genes that code 

for its structure, analogous to the B cell receptor in B lymphocytes. The thymus also 

serves as the site where appropriate cells are selected; after TCR gene rearrangement, 

they undergo positive selection in the outer layer of the thymus, the thymic cortex, where 

they are offered a peptide bound to an APC. This ensures that they are indeed functional, 

and depending on the class of MHC (class I or class II), they are stimulated to express 

either the CD8 receptor or the CD4 receptor respectively (immature T cells express both). 

29,30 This designates their functional role within the adaptive immune system; CD8 cells are 

classed as cytotoxic or killer T cells, whereas CD4 cells are helper T cells, which are able 

to recruit CD8 cells during infection. Once their purpose has been set, they can progress 

to the negative selection process in the thymic medulla. APCs within the medulla present 

the T cells with self-antigens, deleting cells which are found to be autoreactive, preventing 

their release into the peripheral tissues. 31 



	

Figure 1: Interactions between the innate and adaptive phase of an immune response. Blue arrows represent steps in response. 1. DAMPs/PAMPs produced 
by pathogens or damaged cells, respectively, are recognised by antigen-presenting cells via TLRs. 2. These cells are phagocytosed by the APCs. 3. Pathogens are 
destroyed by the release of cytotoxic substances via lysosomes into the endosomal space. 4. Antigens on the pathogen cell surface are processed for presentation 
on the surface of dendritic cells. 5. Antigens are presented to B and T cells via MHCI (CD8 T cells) and MHC II (CD4 T cells and B cells) on the surface of the 
dendritic cells, activating them. 6. B and T cells are activated and expand in number. B cells secrete antibodies. 7. Activated T cells and antibodies are released into 
the bloodstream, and travel to the site of infection. 8. B cells secrete antibodies specific to the pathogen identified by the APCs, neutralising the pathogen and 
flagging it for destruction by CD8+ T cells. CD8+ cytotoxic T cells produce cytotoxic cytokines to destroy pathogens. Activated macrophages from step 3 are also 
recruited to the site of infection by chemokines released by CD4 T cells.  



	

 
Once maturation is complete, the naïve T cells reside in lymphoid tissue reservoirs such 

as the lymph nodes, tonsil and spleen. Upon phagocytosis of a foreign pathogen, APCs 

process pathogenic antigens into smaller peptide fragments that are then bound to MHC I 

and II. These fragments are then presented to T cells, until a TCR is found that has affinity 

for the peptide. This activates the T cell, and it undergoes clonal expansion to produce 

large numbers of specific T cells that are then released into the bloodstream. They are 

recruited to the area of inflammation by chemokines released by other leukocytes.32 

Many subsets of CD8 and CD4 T cells exist, each serving a specific function and 

possessing a signature combination of surface receptors (see Figure 2: T cell subsets and 

functions).33 These groups include effector T cells, which are directly involved in the 

immune response, memory T cells, which provide a record of encountered pathogens, 

and modulatory T cells such as regulatory T cells (Tregs) that control the action of other T 

cells as well as other leukocytes.  

	

 

 

Figure 2: T cell subsets. T cells are derived from the same lymphoid progenitor cells as B cells in 
the bone marrow. Growth factors determine the terminal differentiation of T cells into their ultimate 
phenotypes. 
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1.1.5 Regulatory T cells 

Regulatory T cells represent a modulatory subset of the T cell population. They are 

characterised by their expression of the nuclear transcription factor FoxP3 on human T 

cells; the majority of Tregs are CD4-expressing (although some subsets of CD8 Tregs are 

thought to exist); they also possess high surface levels of the activation marker CD25, the 

alpha-chain of the IL-2 receptor.34,35 Their regulatory function allows tolerance of non-

harmful foreign material and reduce tissue damage caused by overexuberant immune 

responses via their anti-inflammatory effect. Tregs are also able to recognise autoreactive 

T cells that have escaped deletion in the thymus, and can destroy aberrant cells via 

granzyme or perforin secretion, causing apoptosis.36  

Regulatory T cells respond readily to the presence of IL-2, a pro-inflammatory cytokine 

produced by other T-cells, meaning that they are activated by the chemokine in areas 

where large numbers of conventional T cells are present.37  This serves to prevent 

excessive numbers of T cells accumulating, and stops any excessive inflammation 

causing unnecessary tissue damage. Control of inflammation is crucial in situations such 

as viral lung infection, where inadvertent destruction of the respiratory membranes can 

have fatal effects.38 

It also allows tolerance of self-antigens to occur, as well as to non-harmful foreign 

particles by suppressing inflammatory events.39  There are many situations where it is not 

advantageous to eliminate non-harmful bacteria. For example, the microbiome in the gut 

is important for micronutrient metabolism as well as providing healthy competition to 

prevent bacteria, such as pathogenic strains of Esterichia coli, from forming harmful 

colonies.40,41 In addition, other commensal organisms like Bacteroides fragilis often 

asymptomatically infect the GI tract.42 An absence of Tregs in this circumstance has been 

found to cause inflammation, leading to the formation of lesions and the onset of colitis.43  

Depletion or dysfunction of Tregs in human and mouse models leads to the development 

of inflammatory and autoimmune diseases such as systemic lupus erythematosus (SLE) 

and psoriasis vulgaris. Conversely, Tregs have been shown to be recruited by tumours in 

order to help them evade the immune response, with high numbers of Tregs in the tumour 

microenvironment associated with poor disease prognosis.44 
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1.2 T cells and TLR2 

1.2.1 Function of TLR2  

TLR2 is a member of the Toll-like receptor family, a series of receptors that serve to 

recognise PAMPs and initiate a pro-inflammatory response.45,46 Toll-like receptors are a 

set of highly conserved pattern recognition receptors, specialised to recognise a wide 

range of pathogens including bacteria, fungi and viruses. There are ten different classes 

of TLR in humans, which are present on the cell membrane or the on the endosome, the 

space created in phagocytic cells when a pathogen is engulfed and contained before its 

degradation (see Figure 3).  

TLR2 is typically found on cells of the innate immune system, such as monocytes and 

neutrophils, acting as an initial non-specific response to the presence of invading bacteria 

in the body. This leads to the release of inflammatory cytokines, which are responsible for 

numerous inflammatory effects, and are able to activate and regulate the function of T 

cells in the case of infection. These include TNF-α, and members of the interleukin (IL) 

family, including IL-2.47,48 

Dysfunction of the TLR2-mediated recruitment pathway has profound effects on immune 

regulation. In the situation of bacterial presence in the bloodstream (bacteraemia), high 

concentrations of TLR2 ligands produced by bacteria such as LTA, derived from the 

Gram-positive bacterium Staphylococcus aureus, recruit large numbers of TLR2-

expressing leukocytes. This leads to massive systemic inflammation, causing destruction 

of healthy tissues and potentially lethal sepsis.49 In the case of antibiotic-resistant strains 

of bacteria, such as methicillin-resistant S. aureus (MRSA) prognosis is extremely poor, 

and leads to thousands of deaths every year, especially in the developing world where 

access to healthcare is difficult.50,51 
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1.2.2 Evidence for TLR2-expressing T cells 

More recently, evidence has emerged that TLR2 is expressed by subpopulations of T 

cells, both in humans and mice. Regulatory and memory T cells have been reported to 

harbour varying levels of TLR2 on their cell surface. The function of TLR2 in this situation 

is unclear, given that it is primarily associated with the innate immune response.  

One piece of evidence for the role of TLR2 on T cells relates to the receptor’s endogenous 

ligands. TLR2 has many endogenous ligands, including DAMPs such as biglycan, human 

cardiac myosin and the heat shock proteins HSP60 and HSP70. The binding of these 

DAMPs to TLR2 signals that damage has occurred, recruiting immune cells into the area. 

This allows cells of both the innate and adaptive immune response to move into the area 

of inflammation.52  

TLR2-expressing T cells are also known to play a crucial role in the development of 

disease. Wang et al observed an increase in the number of murine Th17 T cells that 

expressed TLR2 during Group A streptococcal infection; Bao et al found that 

Figure 3: Human Toll-like receptors. Toll-like receptors are typically found on the cell or 
endosomal membrane of cells of the innate immune system. They serve to recognise pathogens 
and initiate chemokine signalling that recruits immune cells to sites of infection, or signals for the 
destruction of internalised pathogens.  
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Pseudomonas aeruginosa-derived N-(3-oxododecanyl)-L-homoserine caused an increase 

in RNA and surface expression of TLR2  in human T cells.53,54  Both of these studies 

discuss the role that TLR2 may play in the development of chronic infection and the 

presence of biofilms, suggesting that sepsis resulting from overproliferation of T cells in 

these diseases may be mediated by TLR2.  Another role for TLR2 in chronic infection 

relates to its role in S. aureus infection, specifically in more virulent strains, including 

methicillin-resistant S. aureus (MRSA). Chronic inflammation during MRSA-related sepsis 

is thought to be mediated by the ligation of TLR2 by S. aureus-derived LTA in regulatory 

and Th17 T cells.53  

 

1.2.3 Regulatory T cells and TLR2 

Regulatory T cells are one of the subpopulations of T cells that have been reported to 

express TLR2 in humans and mice.  In terms of functional pathways beyond cell 

recruitment, there is evidence to suggest that TLR2 acts to control expansion and 

proliferation of regulatory T cells in mice, with TLR2 knockout animals experiencing 

significantly reduced numbers of Tregs compared to their wild type counterparts.55  Given 

that TLR2 is able to induce the release of chemotactic chemokines that recruit innate 

immune cells in response to DAMPs and PAMPs, it is probable that it serves the same 

purpose on regulatory T cells. This would result in the accumulation of Tregs in areas of 

inflammation to allow them to offset damage that may be caused to healthy cells. As 

Tregs are known to be activated by the release of the pro-inflammatory cytokine IL2, it is 

likely that signalling via TLR2 serves a similar purpose, allowing recruitment through 

TLR2-mediated chemokine release.56 The fact that the addition of TLR2 ligands has been 

observed to maintain and expand the circulating Treg population adds further weight to 

this theory. Tregs are vital for the mediation of the inflammatory response, and so 

mechanisms for recruiting and retaining them at sites of inflammation must exist for Tregs 

to serve their purpose.  

It is also possible that other organisms are able to hijack this pathway. Most successful 

pathogens have evolved to evade their host’s immune response in order to enhance their 
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own survival. There is evidence to suggest that a range of TLR2 ligands, including 

bacterial lipoprotein (BLP) and the synthetic TLR2 ligand Pam3CSK4, are able to recruit 

and expand Treg numbers.55,57 It is postulated that this induces an immunosuppressive 

effect that is advantageous in bacterial infection and aids pathogen survival. This 

phenomenon is also seen in C. albicans infection in mice, suggesting that TLR2- 

dependent Treg recruitment could play a significant role in the development of chronic 

disease.58  

 

1.3  CCR5 and TLR2  

1.3.1 Role of CCR5  

CCR5 is a G-protein coupled chemokine receptor that ordinarily plays an important role in 

cell migration and activation in inflammation.59 It possesses seven-transmembrane loops, 

associated with a G-protein, allowing downstream signalling in response to external 

stimulus (see Figure 4).  However, it is known to act as a co-receptor for HIV-1 entry into 

cells.60 This has effects on susceptibility to HIV infection in the population; for example, 

individuals homozygous for the Delta32 genetic mutation of the gene encoding CCR5 do 

not express the receptor, and can be exposed to HIV without becoming infected.61 

Additional to this, some CCR5 ligands have been shown to provide anti-HIV action by 

downmodulation of CCR5 on T cells, another area recently explored by the Signoret 

group.62 It is also thought that CCR5 is an important factor in cancer pathogenesis, with 

evidence that it plays a part in recruiting regulatory T cells into tumours to assist in 

immune system evasion, notably in colorectal cancer and nasopharyngeal carcinoma.63,64 

CCR5 is known to be expressed on some memory and regulatory T cells; TLR2 

expression has also been reported in these subsets.65 
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1.3.2  Possibility of a double-expressing T cell population 

It is known that both TLR2 and CCR5 can be expressed by regulatory and memory T 

cells, meaning that a double-expressing population may well exist. However, this has not 

been demonstrated, and the role of a double-expressing population remains unclear.  

A TLR2 and CCR5-expressing population would possess the ability to be recruited to 

areas of inflammation, both by the recognition of PAMPs/DAMPs through TLR2, and via 

CCR5-mediated chemotaxis driven by endogenously-produced chemokines. This would 

be advantageous in the case of Tregs, drawing them to sites of inflammation where they 

are needed to mediate damage caused by effector cells. However, it is more likely that the 

purpose of CCR5 is independent of TLR2 expression.   

CCR5 serves as an essential receptor for regulatory T cells; it is known to be needed for 

recruitment of effector and memory Tregs to areas of inflammation. Additional to this, 

CCR5 is known to play a key role in the suppressive effect of Tregs; notably, Chang et al 

found that CCR5-/- murine Tregs were unable to suppress anti-tumour CD8+ T cells in 

vivo.66 TLR2, however, is only expressed by a small subset of Tregs, and is associated 

with a memory phenotype. These cells patrol the body for an extended period of time, 

Figure 4: CCR5 structure and location. CCR5 is a G-protein-coupled receptor, located in the cell 
membrane of both innate and adaptive leukocytes. It consists of an extracellular N-terminal 
domain and an intracellular C-terminal domain connected by seven transmembrane loops, and 
associates with a G-protein at the C-terminus. 
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providing a long-lasting anti-inflammatory effect, possibly to prevent states of chronic 

inflammation from occurring. Memory regulatory T cells exist in an activated state without 

antigenic stimulus for an extended period of time, originally defined by Loblay et al as 

being greater than 9 months. This allows peripheral tolerance to occur, preventing the 

onset of autoimmune disease. Memory regulatory T cells also exist that have been 

pathogen-stimulated, maintaining their antigen-specificity after the infection has been 

resolved. 67  They are thought to mediate the rapid killing response by CD8+ cells during 

the enhanced secondary response to a previously-encountered pathogen. Further to this, 

it has been found that naive regulatory T cells in mice do not cause suppression of CD8+ 

responses, only T cells that have been previously exposed to pathogenic antigens.68 They 

also allow maternal tolerance of a foetus during pregnancy through sustained suppression 

of an immune response to the non-self-antigens expressed by foetal cells.69 

However, it has been shown that memory Tregs are usually only a transient phenomenon, 

occurring during inflammatory events, and so isolating this population in vitro may present 

a challenge.70 This could explain why a TLR2-expressing T cell population is dependent 

on TCR stimulation, as regulatory T cells only adopt a memory phenotype during periods 

of inflammation and the release of pro-inflammatory TCR ligands. This effect could be 

mimicked by the use of anti-CD3 antibody, a technique used in several papers to induce a 

TLR2-expressing population.  

Evidence for the existence and role of a double-expressing population remains scant. It 

clear that further research is needed to determine whether such a subset of T cells exists. 

If so, it may be possible to elucidate the function of this population and the role it plays 

within the overall immune response.  

 

1.3.3 Evidence for a TLR2- dependent downmodulation pathway for CCR5 

Previous research by the Signoret lab has provided evidence that TLR2 downmodulates 

CC receptors 1,2 and 5 in human monocytes to inhibit their chemotaxis after pathogen 

recognition, allowing monocytes to accumulate at the site of pathogen invasion. However, 
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no such effect was seen with T cells, which were used as a control to further highlight the 

downmodulation seen in monocytes.71 

In contrast to this, McKimmie et al found evidence that TLR2 ligation by bacterial 

lipoprotein does indeed lead to a downregulation of CCR5 mRNA in mouse CD4 T cells.72 

However, the CCR5 receptor differs both structurally and functionally between murine and 

human T cells, meaning that this result needs to be replicated in human T cells before 

conclusions can be drawn.73  

It is also possible that the small numbers of TLR2 expressing T cells present in human 

blood mean that the presence of a downmodulation pathway has been overlooked. The 

large numbers of non-TLR2-expressing T cells present in fresh human blood mean that 

the methods used may not have been sensitive enough to show appreciable 

downmodulation of CCR5 on T cells. As the evidence for a TLR2+ population focuses on a 

small subset of memory and regulatory T cells, looking at them in isolation may reveal that 

a downmodulation pathway does indeed exist. Issues with maintaining Tregs in culture 

also could also be a reason why this population has not been identified. Regulatory T cells 

normally exist in very small numbers in the blood of healthy individuals, and their survival 

is dependent on cell-cell contact in vitro.  Another issue is that regulatory T cell numbers 

are known to decline with age, and vary dramatically between individuals, with numbers 

between 0.6-15% being reported.74,75  

 

1.3.4 Significance of the downmodulation pathway in T cells 

Given that CCR5 is known to be a HIV-1 co-receptor, the presence of a downmodulation 

pathway could potentially present an interesting therapeutic target. If TLR2 ligation does 

indeed lead to the downmodulation of CCR5 from the membrane on some T cells, then 

this could be used to preserve T cell numbers in infected individuals by preventing viral 

entry in Tregs, as recently shown by Hirsch et al.76  Additional to this, evidence has 

emerged that TLR2 plays its own role in the pathogenesis of HIV. Recently, it has been 

reported that HIV-1 replication is enhanced by TLR2 ligation in human CD4+ CCR6+ T 

cells.77 It has also been observed that TLR2 ligation by HIV-1 structural proteins increases 
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the expression of pro-viral RNA, and results in an increase in CCR5 expression in T 

cells.78 This raises interesting questions about the interplay between the two receptors, 

and provides more compelling evidence that a cross-talk pathway indeed exists.  

Drawing this evidence together presents a question: As CCR5 and TLR2 can be 

expressed on regulatory and memory T cells, as well as regulatory memory T cells, then 

we hypothesize that a subset of these cells exists that co-expresses both receptors. If this 

is the case, then does a similar downmodulation pathway to that found in monocytes exist 

in co-expressing T cell populations? 

 

1.4  Project aims 

The aims of this project were to determine 1) whether TLR2-expressing cells are found in 

human blood; 2) whether a subpopulation of double-expressing TLR2+CCR5+ cells can be 

identified; 3) determine the phenotype of such cells as well as the culture conditions that 

favour their growth and finally; 4) test the possibility of a cross-downmodulation between 

TLR2 and CCR5 on these cells.  
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2. Materials	and	methods	

 

2.1  Reagents and antibodies 

Tissue culture reagents and secondary antibodies were purchased from Invitrogen; other 

reagents were from Sigma-Aldrich, unless stated. Purified LTA from S aureus and ultra-

pure lipopolysaccharide (LPS; Escherichia coli 0111:B4) were purchased from Invivogen. 

The CCR5 ligand MIP1b was sourced from Peprotech, and AOP-RANTES was a gift from 

Dr Oliver Hartley.  Antibodies were sourced from multiple manufacturers, detailed in Table 

1. 

2.2  Primary cell isolation and culture 

Fresh peripheral blood mononuclear cells (PBMCs) were obtained from healthy donors 

(from apheresis cones taken from single donors; supplied by the NHS Blood and 

Transplant Service, United Kingdom) by density gradient centrifugation with the use of 

Lymphoprep (Axis-Shield). Monocytes were separated from lymphocytes by adherence to 

gelatine-coated plates, and cultured in RPMI containing 20mM HEPES, 10% fetal bovine 

serum, FBS, (PAA Gold), 100 U/mL penicillin, 0.1 mg/mL streptomycin, and 2mM l-

glutamine.  

The monocyte-depleted supernatant removed from the adherence plates was cultured, as 

well as samples of non-monocyte-depleted PBMCs.  Activated lymphoblasts were 

established from lymphocytes by 3 days of culture in RPMI containing 10% fetal bovine 

serum (PAA Gold), 100 U/mL penicillin, 0.1 mg/mL streptomycin, and 2mM l-glutamine. 

Phytohemagglutinin (PHA) was added to media at a concentration of 5 μg/ml for 3 days of 

culture followed by 9 days of culture in media containing 100 U/mL interleukin-2 (IL-2) 

(PeproTech), added at 3 day intervals (see Figure 5: Fresh blood preparation) 
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Frozen monocyte-depleted PBMCs were prepared using the protocol above and 

transferred on day 0 of culture into freezing medium (90% FBS, 10% dimethylsulfoxide) 

before storage in vapour-phase liquid nitrogen. Cells were defrosted at 37°C in a water 

bath, before transfer into complete RPMI for culture and establishment of lymphoblasts 

using methods detailed above.  

  

Fresh apheresis cone, containing human 
blood 

Isolation of PBMC fraction via 
gradient centrifugation 

Monocytes and monocyte- 
depleted PBMCs 

Total PBMCs 

Figure 5: Fresh blood preparation. Fresh apheresis cones were obtained from the NHS Blood and 
Transplant service. Density gradient centrifugation with Lymphoprep (Axis Shield) was used to 
obtain PBMCs from the blood contained within the cone. The monocyte-depleted fraction was 
obtained from the supernatant of a gelatine adherence plate for use in experiments. Total PBMCs 
were also used in experiments. 
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Antibody clone Specificity Isotype Type Manufacturer 

MC5 CCR5 IgG2a Purified (produced in 
house) 

OKT3 CD3 IgG2a Purified Abcam 

UCHT1 CD3 IgG1 Purified eBioscience 

T2.5 CD4 IgG2a Purified/FITC 
conjugated Abcam/Biolegend 

RPA-T8 CD8 IgG1 Purified/FITC-
conjugated Biolegend 

3.9 CD11c IgG1 FITC-conjugated eBioscience 

BC96 CD25 IgG1 
Purified/ 

PerCp/Cy5.5 
conjugated 

eBioscience/Caltag 

HI100 CD45RA IgG1 Purified eBioscience 

UCHL1 CD45RO IgG2a Purified eBioscience 

PCH101 FoxP3 IgG2a Biotin-
conjugated BD Biosciences 

TALB5 HLA-DR IgG2a Purified eBioscience 

Isotype control Anti-mouse IgG1 IgG1 

Purified/ 

biotin-conjugated 

 

Cell 
Signalling/Novus 

 

Isotype control Anti-mouse 
IgG2a IgG2a Purified eBioscience 

 

Table 1 :	List of antibodies used in experiments.
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2.3  Cytokine/receptor ligand stimulation 

Stimulation of cells was carried out between days 3-6 (after 3 days culture in PHA) or 

days 6-9 (after 3 days culture in PHA then 3 days culture in IL-2). 24-well tissue culture-

treated plates (Dow Corning) were seeded with cells at a density of 1x106 /ml and 

combinations of the following stimulants were added: 10ng/ml IFN-a, 10 ng/ml S. aureus-

derived LTA, 10ng/ml E. coli-derived lipopolysaccharide (LPS) and 2mg/ml plate-bound 

anti-CD3. Anti-CD3 was bound to plates by addition of UCHT1 or OKT3 monoclonal 

antibodies (Abcam) in phosphate-buffered saline (PBS), followed by a 2 hour incubation at 

37°C to allow the antibody to adhere to the plate. The supernatant was then aspirated 

away, and the plates were washed three times in sterile PBS at 20°C before being 

allowed to dry. Cells and other stimulants were added then directly to the wells, 

suspended in media. For representative combinations of stimulants, see Figure 6: Sample 

stimulation plate.  

 

	

Figure 6: Sample stimulation plate. Anti-CD3 (clone OKT3 or UCHT1) was plate-bound by 
incubation of a 2mg/ml solution in non-tissue culture treated plates before removal and washing 
with PBS.  Cells (fresh total PBMCs or fresh/defrosted monocyte-depleted PBMCs) were added to 
wells suspended in RPMI. Stimulants were added to directly wells at appropriate concentrations 
(see Materials and Methods: Cytokine/receptor ligand stimulation).   
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2.4  Staining for flow cytometric analysis 

Cells were added to non-tissue culture-treated 96 well plates (Dow Corning) at a density 

of 4-10x106 cells/ml suspended in 25µl FACS buffer (PBS with 10% FBS and 0.05% 

sodium azide). 25µl primary antibody solution (5-10µg/ml antibody in 

FACS/permeabilization buffer to give a final concentration of 2.5-5µg/ml) in FACS buffer 

was added per well, then the plate was incubated on ice in the dark for 1 hour. Three 

washes (centrifugation at 1200 RPM for 3 minutes) were carried out before resuspension 

in FACS buffer. Staining with secondary antibodies was carried out using the same 

methods and concentrations as the primary antibodies. 

Cells were then fixed in FACS buffer with 3% paraformaldehyde for 20 minutes or 1% 

formaldehyde overnight before one wash in quenching solution (50mM ammonium 

chloride in PBS), then quenching by resuspension in 100µl of quenching solution 

overnight.  

Intracellular staining for the nuclear transcription factor FoxP3 was carried out by first 

permeabilizing cells in permeabilization buffer (FACS buffer + 0.1% saponin from quillaja 

bark) for 15 minutes, then centrifugation and resuspension in 25µl of permeabilization 

buffer. Biotin-conjugated FoxP3 and biotin-conjugated IgG1 isotype control antibody 

solutions were added to appropriate wells, and incubated for on ice in the dark for 1 hour. 

Three washes were carried out, then cells resuspended in 200µl FACS buffer.  

Flow cytometry was carried out on samples transferred into round-bottomed polystyrene 

tubes on a Becton Dickinson LSRFortessa X-20 flow cytometer (BD Biosciences) and 

results were analysed using FlowJo software (TreeStar). 

 

2.5  Downmodulation experiment 

A downmodulation experiment was carried out as previously described on day 3 of 

culture, after 96 hours of PHA stimulation but before addition of IL-2.62 Briefly, 100µl cells 

at a density of 1x106/ml were added to round-bottomed polypropylene tubes (Falcon), 
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then centrifuged and resuspended in 1ml  binding medium, BM, (100ml stock solution 

made up as 10ml of RPMI-10x (Sigma), 89 ml distilled water and sodium hydroxide 

solution added dropwise to achieve pH ≈ 7). 1ml were added to round-bottomed 

polystyrene tubes (100ml stock solution made up as 10ml RPMI, 1ml HEPES, CCR5-

specific ligand (MIP-1β,100ng/ml or AOP-RANTES, 100ng/ml) and TLR2-specific ligands 

(LTA, 1ng/ml) were added.  The tubes were transferred to a 37°C water bath, and 

incubated for 90 minutes with gentle shaking every 10-15 minutes. The tubes were then 

removed and placed on ice to halt binding, then transferred into a 96-well plate containing 

ice-cold BM and stained as normal for FACS analysis. This experiment was carried out on 

defrosted monocyte-depleted PBMCs as well as monocyte-depleted PBMCs and the 

isolated monocyte fraction for comparison. 
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3.	Results	

3.1 Rationale for use of PHA/IL-2 stimulated PBMCs 

PHA/IL-2 stimulated PBMCs were used as a source of expanding T cells for use in our 

experiments. The rationale for this relates to the reduced proliferative capacity of T cells in 

isolation, and the requirement of accessory cells for expansion. The Signoret lab 

possesses an abundant stock of frozen monocyte-depleted PBMCs, which contain fewer 

monocytes than fresh total PBMCs, but still readily expand in response to PHA/IL2 

stimulation.62	 The defrosted cell population that remained in culture consisted mainly of T 

cells, with other leukocytes such as monocytes, macrophages and B cells also present in 

smaller numbers. These cells were observed to decrease in culture over time, with very 

few non-T cells remaining after 6 days. This makes defrosted monocyte-depleted PBMCs 

a useful source of T cells for initial experiments, although fresh total PBMCs were also 

used for comparison. As the proliferative capacity and survival of T cells has been shown 

to be diminished by cryopreservation, use of fresh total PBMCs allows confirmation of the 

results seen with frozen cells, as well as allowing the influence of accessory cells such as 

monocytes, more accurately reproducing conditions found in vivo.79,80  

The number of monocytes remaining in the monocyte-depleted fraction varies between 

samples, and depends upon experimental technique as well as variation in the number of 

circulating monocytes in the blood of individual donors. Fresh blood is also likely to 

contain other cell populations that do not survive the freezing process, including 

neutrophils, B cells and macrophages. It is possible that the influence that these 

accessory cells have upon T cells in culture could affect their proliferation and receptor 

expression, providing evidence that is more similar to the situation in vivo.  

Regulatory T cells have been observed to exhibit reduced suppressive activity after 

freezing and thawing, and to express lower levels of L-selectin than non-frozen cells, 

suggesting that the freeze/thaw process can cause T cells to behave in a different manner 

than cells in vivo.81 As this is the case, the strategy employed in our experiments was to 

use frozen monocyte-depleted PBMCs to provide initial evidence that could be further 

explored later through the use of fresh total PBMCs. 
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PHA/IL-2 stimulation was chosen as a method of expanding the cells without inhibiting 

CCR5 expression, as is the case when using other standard methods of cell expansion 

such as anti-CD3/anti-CD28, something that has also been observed in the Signoret lab. 

82,83 PHA is a plant-derived lectin that acts as a mitogen, sensitising T cells to IL-2 

stimulation by upregulating expression of the IL-2 receptor, leading to their proliferation in 

culture. It has been observed that monocytes act as accessory cells during PHA/IL2 

stimulation, and are required to present PHA to effectively cross-link the TCR in order to 

expand cells.84 As the populations of interest may consist of small numbers of T cells, it 

was desirable to be able to use either defrosted monocyte-depleted PBMCs or total 

PBMCs subjected to PHA/IL2 stimulation in order to expand the total T cell population.  

The approach taken in our experiments was to compare defrosted monocyte-depleted 

PBMCs using standard expansion with PHA/IL2 to those grown in a variety of stimulation 

conditions that have been reported to enhance TLR2 or CCR5 expression taken from a 

review of literature. Studies reporting methods for increasing the population of TLR2+ cells 

are listed in Table 2A; papers reporting methods of generating CCR5-expressing T cells 

as well as a paper describing a CCR5+ TLR2+ double-expressing subpopulation are 

detailed in Table 2B.  

Flow cytometric analysis was used to define the phenotype of T cell populations of 

interest. These experiments were then repeated on a fresh sample of total PBMCs in 

order to compare the results obtained. A downmodulation experiment was then carried out 

with chemokines known to activate cells via CCR5 (AOP-RANTES and MIP1β) as well as 

the TLR2 ligand LTA in order to examine any differences in expression between the two 

receptors that could potentially be caused by a communication pathway. 
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Study Receptor 
expressed 

by cells 
 

T cells used and selection 
methods 

Culture 
medium 

Conditions of 
culture 

Additions to 
culture medium 

Timings Comments 

Komai-Koma et al, PNAS 
200465 TLR2 

CD45RA+ (naïve)  (and 
CD45RO+ (memory).) 

CD4+ T cells isolated by 
negative selection using MACS 
microbeads (Miltenyi Biotech) 
and sorted by double positive 

selection for CD4+ and CD3+ by 
FACS. 

RPMI 
1640 
+10% 
FCS. 

37°C with 5% CO2- 
cultured with anti-
CD3 and IFN -α 

after selection in 24-
well plates. 

Cultured with 
plate-bound anti-
CD3* (1-5μg/ml) 
and IFN-α (100-
1000 units/ml). 

 
*Induction of TLR2 

expression was 
found to be TCR 

activation- 
dependent. 

Experiments were 
carried out 72hr 
after stimulation 

began. 

IFN-α was found in this study to 
enhance TLR2 expression in CD45RA+ 

T cells. 
(Memory cells were found to 
constitutively express TLR2.) 

Cell-surface TLR2 expression peaked 
between 12 and 72hr after activation 

and continued to remain at high levels 
up to 92hr. 

Nyirenda et al, J Immunol 
201185 

TLR2 

CD4+ T cells isolated from 
PBMCs using MACS 

microbeads Treg cell isolation kit 
(Miltenyi Biotec); depletion of 

non-CD4+ T cells then positive 
selection of CD25+. 
Multiple separate 

subpopulations of Tregs (defined 
as being FOXP3+) isolated from 

PBMCs by FACS. 

RPMI 
1640 +5% 

FCS. 

37°C- 2.5x 103 

cells/well (96 well U-
bottom plate) 

Cultured with 
plate-bound anti-
CD3 (1μg/ml) and 

anti- CD28 
(1μg/ml). 

Experiments 
carried out 48 or 

72 hrs after 
stimulation 

began. 

TLR2 was found to be particularly 
highly expressed by 

CD45RA+CD25++  (“resting” Tregs) and 
CD45RA-CD25+++ (“activated” Tregs) 

 
Table 2A:  Techniques for generating TLR2 positive T cells, taken from a review of available literature 
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Study Receptor 
expressed 
by cells 

T cells used and selection 
methods 

Culture medium Conditions 
of culture 

Additions to culture 
medium 

Timings Comments 

Abraham et al, J 
Autoimmun 200886 

Tregs 
(CCR5) 

CD4+ T cells positively 
selected from PBMCs 
(Dynabeads M-450 CD4 
beads)- some were isolated 
from frozen PBMC samples 

RPMI 1640 +10% 
FCS. 

37°C with 
5% CO2. 

Plate bound anti-CD3 
(1μg/ml) , recombinant 
human IL-2 (10U/ml) . 

Incubated with 
plate-bound anti-
CD3 for 5 days, 
then moved to 
uncoated plates 
with the addition 
of human IL-2. 
Cultured for 10-
13 days before 
analysis. 

Stimulation of CD4 T cells with 
anti-CD3 induces regulatory 
phenotype that suppresses self-
reactive PBMCs. 
 
Cells are anergic once regulatory 
phenotype established. 

Schmidt et al, PLOS One 
2016 87 

Tregs 
(CCR5) 

Naive CD4+ T cells were 
positively selected using with 
MACS Naive CD4+ T cell kit 
from fresh PBMCs isolated 
from buffy coats. 

RPMI + 10% FCS 
for one night then 
serum-free X-Vivo 
medium with 1% 
Glutamax and 
100U/ml IL-2 for 
rest of experiment. 

37°C with 
5% CO2. 

Plate bound anti-CD3 
(5μg/ml) and 100U/ml 
IL2 throughout the 
stimulation period. 
0.4 μg/ml anti-CD28 and 
10ng/ml TNF- α1 added 
over 6 day incubation, 
plus10nM all-trans 
retinoic acid (ATRA). 

1 night 
incubation, then 6 
days with 
stimulation.  

FoxP3 expression with 5ng/ml 
TNF- α1 and 0.4 μg/ml CD28 was 
comparable to expression with 
5ng/ml TNF- α1 and 1μg/ml CD28. 
Overnight incubation with RPMI 
carried out to deplete adherent 
monocytes. 

Thibault et al, J Immunol 
2007 88 

TLR2 and 
CCR5 

CD45RA (naive) and CD45 
RO (memory)- negative 
selection using 
immunomagnetic selection. 
Bulk CD4+ T cells were then 
sorted into memory and 
naive cells by negative 
immunomagnetic selection.  

RPMI +10% FCS 37°C with 
5% CO2. 

IL-2 (30 U/ml), 
Pam3Csk4 (5 μg/ml) and 
crosslinked  anti-CD3 
(OKT-3 at 1 μg/ml with 
goat anti-mouse at 5 
μg/ml) or control PHA-
L+ IL-2 

Exposure to 
Pam3Csk4 and/or 
anti-CD3 (clone 
OKT3) for 24 or 
72 hrs after 
selection.  

Stimulation of TLR2 with the 
agonist Pam3Cysk4 resulted in 
expression of CCR5 by naive and 
memory T cells- memory had the 
highest expression, with 10.0% 
expressing when stimulated with 
Pam3Csk4 alone, increasing to 
15.5% of cells expressing with the 
addition of OKT3, compared to 
PHA + IL-2 which resulted in 
13.7% of memory cells expressing 
CCR5.  
 
 

Table 2B: Techniques for generating CCR5+ and CCR5+ TLR2+ T cells taken from a review of available literature.  
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3.2 Monocyte-depleted PBMCs 

In order to identify a TLR2-expressing population, defrosted monocyte-depleted PBMCs 

were stained for flow cytometric analysis, using different combinations of markers to 

confirm phenotypes of TLR2-expressing cells (see Tables 1 and 3). Cells were tested at 

day 0, directly after defrosting, but no TLR2-expression could be detected via flow 

cytometry (not shown).  PHA/IL2 stimulation was then used to assess if TLR2 receptor 

expression could be seen after activation and expansion (see Materials and Methods: 2.2 

Primary cell isolation and culture).  Flow cytometric analysis was carried out at day 3 of 

culture, after stimulation with PHA but before IL2 was added.  T cells were defined as 

CD3+ cells. Live/dead staining was used in order to exclude dead cells from the analysis 

(results not shown). Figure 7 demonstrates the gating strategy for one representative set 

of results of n=12, and shows that TLR2+ T cells could be identified as one subset based 

on TLR2 positive fluorescence signal and their unique forward vs side scatter (FSC vs 

SSC). These cells were classified as subpopulation A. A second CD3+ subpopulation was 

identified, subpopulation B, which was found not to contain significant numbers of TLR2+ 

cells. Both subpopulations were found to be present in all donor samples based on this 

gating strategy, with TLR2-expression limited to subpopulation A. This subpopulation was 

found to be larger in terms of FSC vs SSC than the rest of the T cell population. 

Combined with the fact that no TLR2+ cells could be found at day 0 before addition of 

PHA, this suggests that these cells were activated lymphoblasts rather than naïve T 

cells.89  

 

3.2.1 PHA/IL2 stimulation kinetics 

At day 3, after stimulation with PHA, it was possible to identify TLR2+ T cells in 

subpopulation A. Cells were subsequently expanded for a total of 12 days in PHA/IL2 in 

order to appraise changes in the population over time and the effect of IL-2. CCR5 

expression has been observed to slowly increase over 12 days of stimulation with IL-2. 90 

However, no substantial evidence currently exists for changes in TLR2 expression.  
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Antibody combination Secondary antibodies Purpose

TLR2+CCR5
Anti-mouse IgG1-488+ 

IgG2a-647. Isolation of double-expressing population.

TLR2+CCR5+
LIVE/DEAD

Anti-mouse IgG1-488+ 
IgG2a-647. Confirmation of viability of population.

CD3+TLR2
Anti-mouse IgG1-488+ 

IgG2a-647. Allows gating on CD3+ cells to only consider 
T cell populations

CD4-FITC+CCR5 Anti-mouse IgG2a-647.

Assessment of proportion of expressing 
population that is CD4+/CD8+

CD4-FITC+TLR2 Anti-mouse IgG1-488.

CD8-PE+CCR5 Anti-mouse IgG2a-647.

CD8-PE+TLR2 Anti-mouse IgG1-488.

CD11c-FITC+CCR5 Anti-mouse IgG2a-647.

Negative control- CD11c is a marker of non-T 
cells (e.g. monocytes).

CD11c-FITC+TLR2 Anti-mouse IgG1-488

CD25 +CCR5
Anti-mouse IgG1-488 + 

IgG2a-647 Assessment of whether T cell population is 
activated.

CD45RO+TLR2 Anti-mouse IgG1-488+ 
IgG2a-647

Assessment of whether T cells are memory 
(CD45RO+) or naïve/effector T cells 

(CD45RO-)

Foxp3-biotin+CCR5
Anti-mouse IgG2a-647+ 

streptavidin-PE.
Assessment of whether T cells are regulatory 

phenotype (Foxp3+)
Foxp3-biotin+TLR2

Anti-mouse IgG1-488+ 
streptavidin-PE

Table 3: Summary of antibody combinations used for flow cytometric analysis in the 
experiments presented in the results section. 
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Total population Isolation of singlets 

n= 14 
(Representative 
results from one 

donor shown) 

Isotype control CD3 

Fluorescence intensity 

Isotype control TLR2 

Fluorescence intensity 

Figure 7: Gating strategy for TLR2-expressing T cell subpopulation. Cells were double-
stained for CD3 to define T cell populations, and TLR2. FSC-A vs FSC-H was used to isolate 
singlet populations. A gate was set on CD3+ cells by comparing CD3 fluorescence intensity vs 
SSC to an isotype control. TLR2 fluorescence intensity vs SSC was used to define a TLR2+ T 
cell gate by comparison to an isotype control. The TLR2+ T cell subpopulation was overlaid on a 
scatter plot of FSC vs SSC for the total T cell population in order to set gates for the TLR2+ 
subpopulation (Subpopulation A) and a non-TLR2+ T cell subpopulation (Subpopulation B). 

Subpopulation	A	
31.2%	

Subpopulation	B	
30.2%	

T	cells	
67.9%	

TLR2+	
10.4%	

Singlets	
96.1%	
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Cells were taken from culture every 3 days in order to observe subpopulation size on days 

3,6,9 and 12 of culture. However, through live/dead staining, it was found that the majority 

of the cells (>50%) had died in culture by day 12 (data not shown), and so only days 3, 6 

and 9 were considered.  

 

 

 

 

 

 

 

	

Figure 8 shows variation in TLR2+ cell percentages in the T cell Subpopulation A over 

time. 

When comparing receptor expression kinetics for all the donors over the course of the 9-

day stimulation, it appeared that the percentage of cells expressing TLR2 remains 

relatively stable, despite cell death within the overall population. Upon examination of data 

from 6 different donors, the percentage of TLR2 expression within the small subpopulation 

A follows a similar trend to the percentage represented by these cells in the overall 

population (see Figure 9A). However, Figure 9B demonstrates that the number of live 

cells in Subpopulation A decreases over time, suggesting that the cells are disappearing 

from culture. It appears that whilst the subpopulation itself changes in size, expression of 

the receptors on these cells is not affected by the number of live cells present in culture. 

n.b. As there is overlap between the error bars for the box plots in Figure 9B, no statistical 

significance can be inferred from this set of results in terms of mean numbers of live cells 
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Fluorescence intensity-TLR2 

Figure 8:TLR2 expression in Subpopulation A over 9 days of stimulation. Cells were 
singly- stained for TLR2 expression and analysed using flow cytometry. Gating was carried 
out to define Subpopulation A, using the gating strategy outlined in Figure 7. Histograms of 
stained cells (red histograms) were overlaid on isotype controls (grey shaded histograms) 
and gated to indicate percentage TLR2-expressing cells in Subpopulation A. Experiments 
were carried out for n=12 donors; representative results shown from one donor. 

TLR2+	
49.82%	

TLR2+	
53.14%	

TLR2+	
38.53%	
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for each day over four different experiments. However, it is possible that this downward 

trend may become statistically significant with further repeats of the experiment.  

 
 

 

 

 

 

 

 

After confirming the presence of TLR2+ cells in Subpopulation A, CCR5 expression was 

then examined (Figure 10); CCR5 is known to be widely expressed by CD4+ T cells, so a 

subpopulation of CCR5+cells was expected to be present within the sample.91 Cells 

stained for CCR5 were analysed by flow cytometry and the presence of CCR5+ cells in 

Subpopulation A was assessed using the same FSC/SSC gating strategy described in 

Figure 7 (see Figure 10).   
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Figure 9: TLR2 expression in Subpopulation A over 9 days of stimulation, and percentage live 
cells in Subpopulation A. Cells were single- stained for TLR2 expression and fixable live/dead stain 
was added to assess viability. Subpopulation A was identified using the gating strategy described in 
Figure 7. A. TLR2 expression over a 9 day stimulation with PHA/IL2; each coloured line represents 
results for a single donor. B: Percentage live cells within Subpopulation A. This experiment was carried 
out on n=4 donors. 
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A distinct CCR5-expressing fraction could be seen in Subpopulation A, which raised the 

possibility of a subset of cells expressing both TLR2 and CCR5 being present in the 

Fluorescence intensity- CCR5 expression 

SS
C

 

Isotype control Subpopulation A 

Figure 10: CCR5 expression in Subpopulation A.  Cells were singly- stained for CCR5 
expression and analysed using flow cytometry Subpopulation A was identified using gating 
strategy described in Figure 7. A scatter plot of CCR5 fluorescence intensity vs SSC was 
used to identify CCR5-expressing cells, using an isotype control for comparison. 
Representative results shown from a single donor; this experiment was carried out on n=12 
donors. 

Figure 11: Evidence of double-expressing subpopulation.  Cells were single- stained for TLR2 
expression and analysed using flow cytometry. Subpopulation A was identified using gating strategy 
described in Figure 7.  Quad gates were set on appropriate isotype controls; double-stained cells 
appear in Q2. Representative results shown from a single donor; this experiment was carried out on 
n=12 donors. 
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subpopulation.  Co-staining for CCR5 and TLR2 was used in combination with live/dead 

staining to try and identify a possible double-expressing subpopulation (see Figure 11).	 

After identifying Subpopulation A using our gating strategy (see Figure 7), quad gates 

were applied to a CCR5 and TLR2 double-stained sample, based on appropriate isotype 

controls.  This allowed observation of TLR2+, CCR5+ and CCR5+ TLR2+ cells within 

Subpopulation A. While variations in the size of each subset of cells were seen with 

different donors, a small number of live double-positive cells could consistently be found, 

and makes up 22.9% of Subpopulation A in the example shown in Figure 11 .  

 

 
 

 
 

 

Once this double-expressing population had been identified, kinetics experiments were 

carried out to compare numbers of CCR5+ and CCR5+ TLR2+ cells over time. As with the 

TLR2 kinetics experiments, cells were expanded for 9 days in PHA/IL2, with staining 
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Figure 12: Percentage CCR5 expression and percentage of a double-expressing subpopulation in 
Subpopulation A over 9 days of stimulation. Cells were double- stained for CCR5 and TLR2 
expression and analysed using flow cytometry., Quad gates were set as detailed in Figure 11, and 
percentage expression was recorded over 9 days of stimulation. This experiment was carried out on n=4 
donors. 
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carried out on days 3, 6 and 9. Flow cytometric analysis was used to ascertain the 

percentage of expressing cells present in Subpopulation A compared to the total cell 

population (see Figure 12) 

 
Despite donor variability, we see that there is no expansion of the CCR5+ cell population 

over time, with numbers remaining relatively constant in most cases. The double-

expressing population also appears to remain relatively stable over the 9-day period. 

Whilst a small expansion of the TLR2+ T cell population can be observed, it appears that 

no significant expansion of the CCR5+ TLR2+ T cell population occurs using defrosted 

monocyte-depleted PBMCs. However, as the TLR2+ population is so small, variability 

between donors would have a large effect on cell numbers. It is possible that use of a 

larger number of cells to begin with could lead to expansion of the TLR2+ fraction, allowing 

it to be characterised more effectively. Since Subpopulation A does not appear to expand 

in culture, the implication is that these cells are anergic, and cannot be expanded.92 In 

either case, the use of fresh PBMCs could confirm whether a larger starting population is 

needed. As regulatory T cells have been observed by Abraham et al and Schmidt et al to 

express CCR5, it is possible that they make up some of the subpopulation of interest.86,87 

However, Tregs are thought to expand poorly and exhibit reduced suppressive function 

after defrosting, so the use of fresh cells could elucidate whether this is causing them to 

fail to expand.81 

Day 3 was subsequently chosen as an appropriate day to use for future experiments, as 

the largest CCR5/TLR2 double- positive population could be identified within 

Subpopulation A on this day of culture.  

3.2.2 Characterisation of Subpopulation A 

Further characterisation was carried out to ascertain the phenotypes of cells present 

within the subpopulation. Firstly, CD4 and CD8 staining was carried out to identify whether 

the cells belonged to a cytotoxic or helper T cell lineage. Most evidence relating to a 

TLR2+ population has focused on CD4+ populations, so a majority of CD4+ cells was 

expected.93  
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The T cell fraction of Subpopulation A was identified by gating on a CD3+ population, 

which identified a distinct population based on FSC vs SSC. This population was then 

examined to appraise CD4 vs CD8 expression within the T cells, then was compared to 

the non-TLR2+ Subpopulation B, as well as to the overall cell population (see Figure 13).  

 

 

 

 

 

 

 

 

 

 

Figure 13: CD4/CD8 characterisation of Subpopulation A.  Cells were single-stained for CD4 or 
CD8. Subpopulation A was identified using the gating strategy detailed in Figure 7, and a gate was 
set using FSC vs SSC. CD4+ and CD8+ cells were identified using fluorescence intensity vs SSC, 
compared to isotype controls. This experiment was carried out on n= 6 donors (representative 
results from one donor shown).  
 

 

 

Subpopulation A was found to be a mixed population, composed of mostly CD4+ T cells, 

(defined as either CD4+ or CD3+ CD8- depending upon antibody combinations available at 

the time of the experiment) with the mean expressing fraction on day 3 = 71.9%. CD8 

expression in these populations was substantially lower, with a mean of 25.6% of 

expressing cells in Subpopulation A, and a small number of non-T cells making up the 

remainder (n=6). The proportions of CD4+ and CD8+ cells in Subpopulation A did not differ 

from the CD4/CD8 percentages in the total population (results not shown).  

 
 

Further characterisation was carried out based on this information. TLR2 and CCR5-

expressing cells have been observed to be of regulatory and memory phenotypes; as this 
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is the case, co-staining was carried out to evaluate the expression of the nuclear 

transcription factor FoxP3, a marker of human T cells (see Figure 11), and the surface 

receptor CD25, a component of the IL2 receptor and therefore an activation marker (see 

Figure 12). 

CD45RO was found to be expressed by a large proportion of cells in Subpopulation A on 

day 3 (30.3- 60.1%), suggesting a sizeable memory T cell subpopulation. Furthermore, 

19.6-50.1% of TLR2+ cells were found to co- express CD45RO. Greater variation could be 

seen in FoxP3 expression, ranging from 6.33-73.0% of TLR2+ cells, possibly due to the 

very small numbers of FoxP3 cells present, which caused problems with accurate gating. 

Despite this, a distinct TLR2+ subpopulation can be seen in the FoxP3+ subpopulation, 

although results were still variable, with TLR2+ cells making up 7.55-53.7% of FoxP3 

expressing cells.  

Whilst FoxP3+CCR5+ T cells can be identified (results not shown), the numbers of FoxP3+ 

TLR2+ and TLR2+CCR5+ cells are so small that it was impossible to identify a convincing 

subpopulation that expressed all three receptors through triple staining experiments; the 

number of identifiable triple-positive cells was <50 in all cases (results not shown). This 

meant it was impossible to distinguish between actual triple stained cells and artefact.  

CD25 and TLR2 co-staining was also carried out to assess the activation status of the 

TLR2+ subpopulation (see Figure 12). CD25 was found to be expressed by 72.7-93.5% of 

TLR2+ cells, suggesting that the majority of the subpopulation is made up of activated T 

cells. 
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Figure 14: CD45RO and FoxP3 expression within Subpopulation A.  Cells were double-stained 
for FoxP3/TLR2 and CD45RO on Day 3. The FSC/SSC gating strategy described in Figure 4 was 
used to define Subpopulation A.  Fluorescence intensity vs SSC was used to sequentially gate on 
expressing populations compared to isotype controls. Sequential gating was used to define 
subsets of cells. A. TLR2 expression on CD45RO+ and FoxP3+ cells. CD45RO and FoxP3 
expressing subpopulations represent 40.9% and 27.8% of Subpopulation A respectively.  8.75% of 
CD45RO+ cells express TLR2; 53.7% of FoxP3+ cells express TLR2. B:  Expression of CD45RO or 
FoxP3 on TLR2+ cells. TLR2+ expressing cells represent ~ 25% of Subpopulation A.  47.6% of 
TLR2+ cells express CD45RO; 22.6% of TLR2+ cells express FoxP3. Experiments were carried out 
on n=5 donors; representative results from one donor shown.  
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3.3 Fresh total PBMCs 
	
A major problem with the previous experiments related to the size of the subpopulation of 

interest. Additionally, questions were raised about the viability of regulatory T cells after 

freezing and thawing.  As this was the case, fresh blood samples were used in order to 

ascertain whether a greater number of TLR2+/CCR5+ cells could be obtained and a 

discrete subpopulation identified. These cells were stained with primary antibodies for the 

same markers as in previous experiments in order to examine whether they were in a 

different state of activation. This was especially relevant due to the monocytes now 

present in the blood; most monocytes did not survive after being defrosted. 

 

 

 

 

2. PerCp-
Cy5.5-

coupled  
Mouse anti-
human CD25

2. Alexa Fluor 
488- coupled 
anti-mouse 

IgG1

1. Mouse anti-
human TLR2

Figure 15:CD25 expression within Subpopulation A.  Cells were double-stained for CD25 and 
TLR2. Subpopulation A was identified using the gating strategy described in Figure 7.  A scatter plot 
of fluorescence intensity vs SSC was used to set gates for TLR2+ and CD25+ cells, by comparison to 
isotype controls.  Percentage TLR2+ cells in Subpopulation A= 8.49%; percentage CD25+ cells in 
TLR2-expressing subpopulation= 93.5%. n.b Non-stained control used for comparison to CD25 as no 
appropriate isotype control was available at the time of experiment.  Experiments were carried out on 
n=3 donors; representative results from one donor shown. 
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In the fresh blood samples, a large monocyte population was easily identifiable through 

examining CD11c fluorescence intensity vs SSC, with monocytes making up 10.3% of 

cells in Subpopulation A, compared to 7.64% in the total cell population (see Figure 16). 

This number decreased on Day 6, with 3.92% monocytes remaining in Subpopulation A, 

and 1.1% in the total population. Gating of Subpopulation A was carried out to avoid the 

main monocyte population, based on the distinct FSC vs SSC associated with the T cell 

population. Co-staining with CD3 and/or CD11c were used in order to confirm only T cells 

were being appraised for receptor expression.  

Fluorescence intensity

Fluorescence intensity

Isotype control
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CD11c

CD11c Subpopulation A
Total population

Day 3

Fluorescence intensity

Fluorescence intensity

Isotype control

Isotype control

CD11c

CD11c Subpopulation A
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Figure 16 Identification of monocytes in fresh blood samples. Cells were singly stained for 
CD11c. FSC-A vs FSC-H was used to isolate singlet populations (not shown). Fluorescence 
intensity vs SSC was used to gate on expressing populations compared to an isotype control 
within Subpopulation A and the total cell population. Numbers represent percentage expression of 
Subpopulation A or total cell population, to demonstrate the percentage of monocytes present in 
each. A gate was applied for the main monocyte population and its location based on FSC vs SSC 
was determined. This was overlaid on a scatter plot of the overall cell population, demonstrating its 
position relative to Subpopulation A. 
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3.3.1: PHA/IL2 stimulation kinetics 

PHA/IL2 stimulation was used to expand fresh total PBMCs and monocyte-depleted 

PBMCs, using the same methods used in expansion of defrosted monocyte-depleted 

PBMCs (see Materials and Methods:  Primary cell culture and isolation). The gating 

strategy described in Figure 7 was used to identify Subpopulation A, which was found to 

contain TLR2+, CCR5+ and TLR2+ CCR5+ cells within the CD3+ subpopulation (see Figure 

11). We observed that the percentage of live cells in the sample increased over the 9 days 

of culture, suggesting that after a recovery period post-isolation, the cells were actively 

expanding in culture (see Figure 17). As with frozen cells, the TLR2+ CCR5+ 

subpopulation was largest on Day 3, with double-expressing cells making up 14.0% of the 

total cell population, notably higher than in the frozen monocyte-depleted PBMCs where 

the numbers rarely exceeded 1% of the total cell population on day 3 (see Figure 9A). 

This is possibly due to better survival of cells in culture than with defrosted PBMCs, 

influence of accessory cells, or the effect of the freeze/thaw cycle on regulatory T cells. 

However, this subpopulation decreased markedly in size over the 9 day stimulation, 

representing 3.71% and 1.21% of the total cell population on days 6 and 9 respectively. 

Total CCR5 expression in Subpopulation A increased considerably by day 9, in 

agreement with previously published data regarding T cells stimulated with PHA/IL2.62 

This suggests that the decreased size of the double-expressing subpopulation is not due 

to cells dying in culture, as the overall number of live cells within Subpopulation A 

increased over the nine days, unlike in the defrosted samples.  

It appears that the double-expressing subpopulation does not expand with PHA/IL2 

stimulation with fresh or defrosted PBMCs. However,it was not possible to carry out a 

triple co-stain with live/dead dye, anti-TLR2 antibody and anti-CCR5 for this particular 

experiment, and so dead cells could not be excluded from the analysis of the double-

stained cells as they had been in the defrosted blood samples. Additionally, due to time 

constraints, this experiment was only carried out on one fresh blood sample. As this is the 

case, this experiment needs to be repeated before conclusions can be drawn. 
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Figure 17: TLR2 and CCR5 expression in a fresh blood sample Cells were double-stained for 
CCR5 and TLR2. Fixable LIVE/DEAD stain was used to assess cell viability; only live cells were 
considered in the analysis. Subpopulation A was identified using the gating strategy described in 
Figure 7. Staining was undertaken at days 3, 6 and 9, before addition of mitogens. Fluorescence 
intensity vs SSC scatter plots were used to identify  CCR5+ and TLR2+ cells in Subpopulation A, 
compared to isotype controls; numbers represent expressing cells as percentage of total cell 
population.  Quad gates were set on appropriate isotype controls to identify double-positive 
CCR5/TLR2 cells (red-outlined quadrants); numbers represent expressing cells as percentage of 
Subpopulation A.  
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Figure 18: CD45RO and FoxP3 expression within Subpopulation A within a fresh blood 
sample.  Cells were double-stained for FoxP3/TLR2 and CD45RO on Day 3. The FSC/SSC gating 
strategy described in Figure 4 was used to define Subpopulation A.  Fluorescence intensity vs SSC 
was used to sequentially gate on expressing populations compared to isotype controls. Sequential 
gating was used to define subsets of cells. A. TLR2 expression on CD45RO+ and FoxP3+ cells. 
CD45RO and FoxP3 expressing subpopulations represent 47.5% and 3.34% of Subpopulation A 
respectively. 14.0% of CD45RO+ cells express TLR2; 23.0% of FoxP3+ cells express TLR2. B:  
Expression of CD45RO or FoxP3 on TLR2+ cells. TLR2+ expressing cells represent ~ 10% of 
Subpopulation A.  89.4% of TLR2+ cells express CD45RO; 0.93% of TLR2+ cells express FoxP3. 
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After examining the kinetics of TLR2 and CCR5-expressing populations, characterisation 

of the cells was carried out to compare with the results from defrosted cells. Cells were 

double-stained for CD45RO and TLR2, and FoxP3 and TLR2. Flow cytometric analysis 

was then undertaken, using the same gating strategy as with defrosted PBMCs (see 

Figure 18).  

Similar results were found to the frozen samples; TLR2+ cells were present in the 

CD45RO+ and FoxP3+ subpopulations, although the number of double-expressing cells as 

a percentage of Subpopulation A was smaller (2.19% CD45RO+ TLR2+ and 0.25% 

FoxP3+ TLR2+). This is most likely due to the higher proportion of other cell types (e.g. 

monocytes) in the fresh sample compared to the frozen cells (see Figure 16). 

CD25 expression was also assessed; again, cells were single stained for CD25 and gated 

after flow cytometric analysis in the same manner as the defrosted samples (see Figure 

19).	 

	

	
Figure 19: CD25 expression within Subpopulation A within a fresh blood sample.  Cells were 
single-stained for CD25 and TLR2.  Subpopulation A was identified using the gating strategy 
described in Figure 7. A scatter plot of fluorescence intensity vs SSC was used to set gates for 
TLR2+ and CD25+ cells, by comparison to isotype controls. Numbers represent the percentage of 
expressing cells within Subpopulation A.  
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Due to the antibodies available in the lab at the time of staining, it was not possible to co-

stain for CD25 and TLR2 with the fresh PBMCs. However, it was found that a similar 

percentage of CD25+ cells could be found in Subpopulation A as in the defrosted 

monocyte-depleted PBMCs. Additionally, a similar percentage of TLR2+ cells and CD25+ 

cells were present in Subpopulation A (11.1% and 12.2% respectively).  It is therefore 

possible that the majority of TLR2+ cells in Subpopulation A are CD25+ in both fresh and 

frozen samples. This means that CD25 could be a significant marker of this 

subpopulation.  

	
3.4 Stimulation experiments 
	
After the identification of a double-expressing subset of cells within Subpopulation 1, 

stimulation conditions were taken from papers that had reported TLR2+ T cell 

subpopulations in order to determine if these cells could be expanded through addition of 

stimulants to cells cultured in 24-well plates (see Tables 2A and 2B). LTA and LPS were 

added as they are known TLR2 ligands; IFN-a was added as it has been observed to 

expand the TLR2+ T cell population. Plate-bound anti-CD3 was added as there is 

evidence that TLR2-expression is TCR stimulation-dependent. Addition of anti-CD3 and 

anti-CD28 is a standard method of expanding PBMCs; however, anti-CD28 has been 

shown to downmodulate CCR5 expression.94 However, anti-CD3 stimulation alone has 

been shown to enhance the T cell population, although it is not known whether this affects 

cell survival in culture due to the lack of a second mitogenic signal.  

Using frozen samples, no significant change in the number of TLR2 expressing cells was 

seen using combinations of these stimulants compared to a non-stimulated control (see 

Figure 20). It appears that the TLR2-expressing population cannot be expanded by these 

methods in a monocyte-depleted PBMC population.  
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In this experiment, it appears that addition of a combination of anti-CD3 and IFNα caused 

a reduction in CCR5 expression, resulting in lower fluorescence intensity than the isotype 

control. There is evidence that IFNα affects the expression of CCR5 on CD4+ and CD8+ T 

cells, and it has been observed to both upregulate receptor expression, which is at odds 

with the evidence from this experiment.95 However, this phenomenon has only been 

observed in one set of experiments; further investigation is needed before conclusions 

can be drawn.  

 

Figure 20: Stimulation experiments using frozen monocyte-depleted PBMCs. Cells were 
stimulated using conditions from a review of the literature, Table 2.  Cell were then double-stained for 
TLR2 and CCR5. Subpopulation A was identified using the gating strategy described in Figure 4. 
Quad gates were set on an isotype control and applied to scatter plots of CCR5 fluorescence intensity 
vs TLR2 fluorescence intensity. 



	 53	

3.5 Downmodulation experiments 

A very small subpopulation of TLR2+ CCR5+ cells could be identified in our experiments, 

which could not be expanded with the stimulation methods that we tried. As we were 

unable to increase the number of these cells, we decided to carry out a downmodulation 

experiment on Day 3 with a fresh blood sample to investigate whether any evidence of 

cross-talk could be observed between TLR2 and CCR5. TLR2- and CCR5-specific ligands 

were added in binding medium before incubation for 2 hours to allow receptor binding to 

occur. Cells were placed on ice to halt binding, and staining for flow cytometric analysis 

was carried out (see Materials and methods: Downmodulation experiment). 

CCR5 exhibited a decrease in surface expression upon addition of the CCR5-ligands 

AOP-RANTES and MIP-1b, but no change was seen with the TLR2- ligands LTA or LPS 

(see Figure 21). TLR2 expression was not affected at all by addition of any ligands. This 

means that no evidence could be found in this case for crosstalk between the two 

receptors. However, this experiment was only carried out once, so these results should be 

verified through further investigation.   
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Figure 21: Downmodulation experiment. Cells were removed from culture on Day 3, suspended 
in binding medium and treated with the TLR2 ligand LTA, the CCR5 ligands RANTES or MIP-1b, or 
binding medium alone and incubated for 2 hours to allow ligand binding. Cells were then single-
stained for TLR2 and CCR5. FSC-A vs FSC-H was used to isolate singlet populations (not shown). 
TLR2 fluorescence intensity vs SSC was used to identify the TLR2-expressing T cell subpopulation 
by comparison to an isotype control, and a gate was set on this population based on FSC vs SSC. 
Histograms of each stimulation condition were overlaid on an appropriate isotype control (dotted 
black histograms) and non-treated cells (grey shaded histograms).  
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4. Discussion	

	
This project aimed to examine potential TLR2 and CCR5 expressing T cell populations. 

We wished to examine the phenotypes of the cells, and to ascertain the conditions that 

favoured their growth and expansion, before investigating a potential cross-talk pathway 

between the two receptors.  

In order to fulfil these objectives, we used PBMC-derived cells in order to isolate small 

numbers of TLR2+, CCR5+ and TLR2+CCR5 cells within a T cell subpopulation, 

designated Subpopulation A. Receptor kinetics were examined over a period of 9 days in 

culture to investigate changes in receptor expression.  Stimulation experiments were also 

performed to see if Subpopulation A could be expanded through the addition of mitogens, 

cytokines and receptor-ligands taken from a review of literature.  Finally, a 

downmodulation experiment was carried to explore a potential cross-talk pathway.  

The existence of a TLR2+ subpopulation was confirmed through single staining for flow 

cytometry. Co-staining was carried out to define the subpopulation, which was found to 

contain CCR5, CD4, CD8, CD25, CD45RO and FoxP3 positive cells (see Figure 22). 

Triple-staining was also used to try and identify a FoxP3+ TLR2+ CCR5+ regulatory T cell 

population. It was found that 0.96-22.6% of Subpopulation A comprises FoxP3+ TLR2+ 

cells. However, as this percentage represents relatively few cells, and numbers of TLR2+ 

CCR5+ cells are also very small, it was not possible to differentiate cells that co-express 

FoxP3, TLR2 and CCR5 from background fluorescence.  

It was found that TLR2+ cells were activated, as they were only detectable after PHA 

stimulation, a lectin mitogen that cross-links the TCR, resulting in expression of the IL2 

receptor, indicating an activated state of these T cells. Staining for CD25, a component of 

the IL2 receptor, found that 100% of Subpopulation A was CD25+, suggesting that the 

whole population was activated. CD45RO and TLR2 co-staining was carried out, and, 47-

89.4% of TLR2+ cells within Subpopulation A were found to express CD45RO. Despite 

donor variability in expression, it appears that the majority of TLR2+ cells belong to a 

memory T cell population.  
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As TLR2 expression could be associated with expression of CD25, FoxP3 and CD25, it is 

therefore reasonable to conclude that at least some of these cells express all of these 

receptors, although only a minority seem to express FoxP3. Figure 22 summarises 

potential combinations of CCR5, CD45RO, CD25 and FoxP3 within these subpopulations. 

However, more complex staining will need to be carried out in the future out to assess 

whether all four receptors are actually co-expressed on these cells. 

 

 

 

 

 

 

 

 

 

Figure 22: Combinations of possible phenotypes within Subpopulation A. Red text denotes 
marker combinations that have been observed in Subpopulation A; black text denotes potential 
phenotypes that may exist in the subpopulation. 
 

There are two main subsets of cells that appear to be present in the TLR2+ subpopulation; 

memory and regulatory T cells, identified by CD45RO and FoxP3 expression respectively. 

Both of these markers have been observed to be expressed by both CD4+ and CD8+ T 
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observed to express CD45RO, FoxP3 and CD25, resting, activated effector or memory 

regulatory T cells could be responsible for the phenotypic markers present in this 

subpopulation. FoxP3 and CD45RO have been reported to be expressed by all three 

subsets, and this appears to be the case with our cells; CD25 expression is found in all of 

the cells; however, it is unclear where the CD25 expression we have seen in 

Subpopulation A falls in terms of being high expressing or variable as reported in the 

review from Rosenblum et al.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4: List of markers of regulatory T cell subsets, adapted from Rosenblum et al. Green 
cells denote receptor expression and levels observed on cells in Subpopulation A; blue cells 
denote receptor expression observed on cells in Subpopulation A where relative levels of receptor 
expression are unknown. 

Regulatory T cell subset

Resting Activated effector Memory

Phenotypic 
markers

CD25hi CD25 expression 
variable CD25hi

CD44hi CD44hi CD44hi

CD45RAhi CD45RAlow CD45RAlow

CD45ROlow CD45ROhi CD45ROhi

CD69low CD69hi CD69 expression 
unknown

L-selectinhi L-selectinlow L-selectinlow

CD127low CD127low

CD27hi

BCL-2hi

CTLA4low

HLA-DRlow

BCL-2low

CTLA4hi

HLA-DRhi‡

BCL-2hi

CTLA-4hi

HLA-DR expression 
not defined

ICOSlow ICOShi ICOShi

Ki67low Ki67hi Ki67low

KLRG1hi KLRG1 expression 
not defined

Chemokine
receptors

CCR7hi CCR7low CCR7low

Transcription 
factors FOXP3hi FOXP3hi FOXP3hi
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Whilst Subpopulation A appears to express higher levels of CD25 than Subpopulation B, it 

is not clear whether a separate high-expressing subpopulation exists that we have not 

seen in our samples. This means that the specific phenotype of these cells remains 

uncertain, and further investigation should be carried out to more definitively characterise 

this subpopulation.  

CCR5 is known to be expressed by a variety of regulatory T cells, and plays an important 

role in cell migration.97 Notably, whilst TLR2 expression has been observed in regulatory T 

cells, it has not yet been attributed to resting, activated effector or “memory regulatory” T 

cell subsets. 55 We were unable to establish with confidence a FoxP3+ TLR2+ Treg 

subpopulation that also expressed CCR5. However, nearly all TLR2+ cells in 

Subpopulation A for the fresh PBMCs were also CCR5+ at day 3, whereas the percentage 

of FoxP3+ cells within the TLR2+ cells was less than 1%.  CCR5 may well be expressed 

by these TLR2+ regulatory T cells, however, a larger number of cells would need to be 

characterised in the future to assess whether this is the case. 

A large proportion of the TLR2+ cells were CD45RO+, but not FoxP3+, meaning the 

majority of the TLR2+ population fall into the memory phenotype. This has been reported 

by Komai Koma et al and Thibault et al, who both suggest that TLR2 is constitutively 

expressed by CD45RO+ T cells.65,88 Thibault et al also observed that these CD45RO+ 

TLR2+ cells are anergic, which is in line with the results from our experiments, and 

explains why we are unable to expand them.  Co-staining with CD45RO and CCR5 was 

not possible with the antibodies available in the lab; however, in the fresh PBMCs at day 

3, 89% of TLR2-expressing cells in Subpopulation A were CD45RO+. It can therefore be 

inferred that Subpopulation A is TLR2/CD25/CCR5/CD45RO cells. Notably, the 

CD45RO/CD25 phenotype was also reported to express TLR2 and CCR5 by Thibault et 

al.88 However, as this has only been observed in fresh PBMCs from one donor, and to a 

much lesser extent with defrosted cells, this should be investigated further with more fresh 

samples.   
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 It is clear that the small TLR2+ subpopulation in our experiments is a mixture of cells, 

likely to contain TLR2+ CD25+ CCR5+ CD45RO+ cells, and also a very small number of 

TLR2+ CCR5+ CD25+ CD45RO+ FoxP3+ cells. These cells include both CD4+ and CD8+ 

cells, although we did not have the time to investigate the relationship of CD4 and CD8 to 

the other markers; however, a higher proportion of cells seem to be CD4-positive.  

 PHA/IL2 stimulation proved to be the only successful method of generating a significant 

number of TLR2-expressing cells; other methods used, such as stimulation with anti-CD3, 

did not.  Addition of IL2 does not seem to enhance this expression, with the numbers of 

TLR2+ cells declining after day 3, and the TLR2+ CCR5+ subpopulation disappearing from 

culture in fresh samples. It is possible that this relates to cross-linking of the TCR by PHA; 

Komai Koma et al. report that TLR2 expression is TCR-activation dependent.65 However, 

anti-CD3 stimulation also cross-links the TCR, and we did not see the same numbers of 

TLR2-expressing cells when this method was used (see Figure 20). It seems that PHA 

stimulation is able to induce TLR2-expression via a different route. PHA is a plant-derived 

lectin rather than a T cell-specific antigen, and there is evidence that it also activates cells 

via other pathways as well as cross-linking the TCR. PHA has been reported to stimulate 

CD2, with cell expansion occurring in a CD3-independent fashion.98 There is evidence 

that regulatory T cells are dependent on CD2-stimulation in order to differentiate into 

antigen-specific Tregs.99 This causes cell anergy, which could explain the failure of our 

cells to expand. In addition, naïve T cells have been observed to express CD45RO after 

CD2-stimulation.100 This could explain the differences we have observed in PHA and anti-

CD3-stimulated cells. Future experiments should be undertaken to explore whether TLR2 

is expressed when T cells are stimulated with anti-CD2, and if this leads to generation of 

the phenotypes that we observe in our cells.  

The function of these TLR2+ cells is also unclear. Jin et al observed that PAMP binding to 

TLR2 has the ability to activate T cells.101 It is possible that the TLR2 stimulation-pathway 

is an alternative, antigen-independent means of activation for these cells. This could be 

advantageous in the case of regulatory T cells for general antigen-independent 

recruitment to sites of bacterial entry, where they can exert an anti-inflammatory effect on 

other leukocytes, preventing unnecessary tissue damage from occurring. Evidence for this 
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is conflicting; TLR2 has been seen to enhance suppressive function of Tregs, whereas 

Nyirenda et al suggest it reduces suppressive function.102,85 

The case for this pathway in memory T cells is less compelling; by their very nature, 

memory T cells are required to be antigen-specific in order to allow a response to 

previously-encountered antigen. It is possible that their role relates to cell recruitment and 

migration rather than activation, but it is unclear why this would be the case. 

The fact that we were unable to observe downmodulation with the TLR2+CCR5+ T cell 

subpopulation suggests that the role of TLR2 on T cells may differ from TLR2 on 

monocytes, and a communication pathway between TLR2 and CCR5 does not exist in T 

cells. However, it is also possible that we did not have enough cells present in our sample 

to see this effect. Additionally, the downmodulation experiments previously conducted by 

the Signoret lab on monocytes were undertaken between days 7-21; we used PBMCs at 

day 3. It is possible that in the future, with greater number of cells, they could be isolated 

and cultured alone over a longer period of time to see if any downmodulation can be 

seen.  

Another question raised is why this cell population would be anergic. It has been reported 

that this is the case with regulatory and memory T cells. However, the reason for this is 

yet to be elucidated. There is the possibility that the cells are not anergic at all, and the 

reduction in expressing cells is due to T cell plasticity, a phenomenon whereby T cells are 

able to change their phenotype in response to stimulation.103 If PHA stimulation of CD2 is 

what is causing the expression of TLR2 and the expression of memory and regulatory 

phenotypes in these cells, then a lack of stimulation in the following days may cause a 

reversal of this state. In this case, sustained expression of TLR2 would expected with re-

stimulation with PHA or anti-CD2. Further experiments in order to explore this possibility 

should be undertaken in the future.   

At this point, we have established a crude method for the consistent identification of a 

TLR2+ T cell subpopulation. However, there is a clear need to expand these cells in order 

to achieve full phenotyping and functional characterisation.  There are several methods 

that could be attempted in the future to achieve this. As we have established that addition 

of PHA is the best method for generating this subpopulation (potentially via a CD2-
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mediated pathway), it is possible that re-stimulation with PHA or anti-CD2 every 3 days 

could maintain or expand the cells. Other stimulation conditions could also be trialled, as 

we now have a better idea of the phenotype of these cells. IL-7/IL-15 stimulation is of 

particular interest, as it has been shown to generate a memory regulatory T cell, a 

potential phenotype for our TLR2+CCR5+ subpopulation.104  

Isolating these cells for culture alone could also be of benefit; the majority of studies that 

have reported TLR2-expressing T cells have isolated certain subsets, such as CD4+ cells, 

in their experiments (see Tables 2A and 2B). This could be achieved through the use of 

magnetic bead-based cell selection, or use of fluorescence-activated cell sorting, and 

could help to expand the population of interest.  
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4.1 Conclusions 

	
The experiments we have carried out have confirmed TLR2+ and TLR2+ CCR5+ T cells 

exist in our samples, and that these cells are a mixed population. They consist of Tregs, 

memory cells and a mix of CD4+ and CD8+ cells. The majority of TLR2+ cells appear to be 

TLR2/CCR5 double-expressing, and the subpopulation seems to be CD25+, based on 

staining for CD25 as well as the fact that the TLR2+ is only identifiable after PHA 

stimulation.  

We were unable to expand our cells, and this impacted our ability to fully characterise the 

subpopulation. It does appear, however, that this is a transient phenotype that disappears 

from culture. This could be directly caused by the withdrawal of PHA stimulus. 

Alternatively, the temporary nature of the phenotype could be functional; it is possible that 

these cells require further cytokine or antigen stimulation after activation in order to 

proliferate. Observation of the behaviour of this subpopulation in vivo could elucidate the 

cause of this transient phenotype. 

Other groups have reported the existence of this subpopulation, and have reported that it 

other methods of stimulation can be used to induce TLR2 expression, including anti-CD3, 

TLR2 ligands (such as LTA) or IFN-a (see Tables 2A and 2B). However, we were unable 

to see any increase in TLR2 expression with these methods. One explanation for this 

could be our use of live/dead stain in order to discriminate between viable positive cells 

and non-specific antibody binding to dead cells or cell fragments. Fixable live/dead stain 

was not readily available at the time when the papers in Table 2 were published, and 

there is no mention in any of the studies of using staining to assess cell viability. It is also 

possible that TLR2 expression was easier to identify, as the authors of the papers used 

isolated cell subpopulations, such as pure CD45RO+ or CD4+ cells. As the sample size is 

so small, differences in sample quality, and variation in numbers of cell subsets between 

donors has a large impact on our results. In addition, the presence of monocytes made 

the characterisation of the TLR2+ subpopulation more problematic, especially in the fresh 

total PBMCs. The use of isolated cells could resolve these issues, and should be used in 
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the future to see if differences in expression can be seen between PHA/IL2 stimulation 

and the alternative stimulation methods set out in Tables 2A and 2B.  

The significance of this cell population is unclear; however, we do have an idea of some of 

the phenotypes that can be found within the TLR2+ subpopulation. TLR2 is thought to play 

a role in regulating the suppressive function of Tregs, and there is evidence that CCR5 

has a similar function. This could be an important pathway when considering the role of 

regulatory T cells in the pathogenesis of cancer and autoimmune disease. A better 

understanding of the pathways that control the ability of Tregs to suppress other immune 

cells could allow the development of drugs that mediate their anti-inflammatory action. 

Possible uses for this could include disrupting the recruitment of Tregs by tumours, or the 

prevention of the excessive inflammation characteristic of autoimmune conditions.44 

However, careful investigation of these pathways would be needed in order to assess the 

clinical implications and potential for adverse effects caused by the disruption of Treg 

function, given the links between loss of Tregs and autoimmune diseases such as lupus 

erythematosus and rheumatoid arthritis.105 This would  require large numbers of cells 

belonging to the identified subpopulation, and therefore a method for their expansion 

would need to be established. Additionally, this subpopulation does not encompass all of 

the regulatory T cell population, and so may not be a suitable target for systemic therapies 

targeting Treg dysfunction. 

The role of TLR2 on memory T cells is less obvious, and possibly relates to the 

maintenance of their memory function. However, dysfunction of these cells is known to 

cause autoimmune reactions, as the cells continue to cause inflammation long after 

antigen stimulation has ceased.106 Again, an understanding of a communication pathway 

involving TLR2 would be of benefit, and could possibly provide a therapeutic target for the 

regulation and control of dysfunctional cells. 

The downmodulation experiment that we carried out did not produce evidence of a 

communication pathway between TLR2 or CCR5. However, the fact that we found all of 

the TLR2+ cells in our fresh sample to also express CCR5 suggests that there possibly is 

a link between the two receptors. It is possible that there is a pathway that links TLR2 and 

CCR5 expression, but that it is different than the one seen in monocytes. Conversely, 
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when the Signoret lab examined the monocyte downmodulation pathway, the small 

subpopulation of TLR2+ T cells was not detectable when compared to the high levels of 

TLR2 expression on monocytes.62 It is therefore possible that our threshold for detection 

of downmodulation on these T cells is simply not low enough to pick up small changes in 

TLR2 or CCR5 expression, and that a cross-talk pathway does indeed exist for these 

cells. 

It is clear there are many questions raised by our experiments; whilst our methods are 

relatively crude, we have established that this previously-reported subpopulation can 

indeed be found in fresh and frozen PBMCs. Furthermore, we have found CD25 to be a 

possible marker of this subpopulation, and have confirmed that there is expression of 

CCR5, CD45RO and FoxP3 within these cells.  We have been able to build a solid basis 

for future research, and it is likely that further investigation of these cells will yield 

interesting results.  
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5. Abbreviation	list	

APC: Antigen-presenting cell 

BCR: B cell receptor 

BM: Binding medium 

CCR5: CC receptor 5 

CD: Cluster of differentiation (e.g. CD4, CD8) 

DAMP: Damage-associated molecular pattern 

FBS: Fetal bovine serum 

FoxP3: Forkhead box P3 

FSC: Forward scatter 

FSC-H: Forward scatter- height 

FSC-H: Forward scatter- area 

HEPES: (N-2-hydroxyethylpiperazine-N′-2-ethanesulfonic acid) 

IFNa: Interferon-alpha 

IL: Interleukin (e.g. IL-2) 

LPS: Lipopolysaccharide 

LTA: Lipotechoic acid 

MAC: Membrane attack complex 

MHC: Major histocompatibility complex 

MRSA: Methicillin-resistant Staphylococcus aureus 

PAMP: Pathogen-associated molecular pattern 

PBMCs: Peripheral blood mononuclear cells 

PBS: Phosphate-buffered saline 

PHA: Phytohaemagglutinin 

PRR: Pattern-recognition receptor 

SSC: Side scatter 

SSC-H: Side scatter- height 

SSC-H: Side scatter- area 

Th17: T helper 17 

TCR: T cell receptor 

TLR2: Toll-like receptor 2 

Treg: Regulatory T cell	
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