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Abstract 

 

Patellofemoral pain (PFP) is a common musculoskeletal complaint and the efficacy of 

current therapies aimed at PFP is limited. The aetiology of PFP is widely considered to be 

multifactorial and as a result the clinical presentation is often heterogeneous. In an attempt 

to address this issue, an international PFP consensus statement, published in 2013, 

highlighted the need to sub-group patients with PFP to enable more stratified interventions.  

 

A multi-methodological approach was used in this thesis. A systematic review of the existing 

imaging literature in PFP demonstrated that PFP is associated with a number of imaging 

features in particular MRI bisect offset and CT congruence angle and that some of these 

features should be modifiable with conservative treatment. A retrospective analysis 

investigating the overall 3D shape and 3D equivalents of commonly used PFJ imaging 

features demonstrated no differences between a group with and without PFP, challenging 

the current perceptions on the structural associations to PFP. A cross-sectional cluster 

analysis using modifiable clinical, biomechanical and imaging features identified four 

subgroups that are present in PFP cohort with a Weak group showing the worst prognosis at 

12 months. Lastly, a pragmatic randomised controlled feasibility study comparing matched 

treatment to usual care management showed that matching treatment to a specific subgroup 

is feasible in terms of adherence, retention and conversion to consent.  

 

In summary, the findings of this thesis improves our understanding of the structural 

associations to PFP; the subgroups that exist within the PFP population; the natural 

prognosis of these PFP subgroups; and the feasibility of targeting treatment at PFP 

subgroups within a clinical trial.  

 

 

Benjamin Drew  
January 2018 
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Chapter 1 - Introduction  

1.1 Background 

Patellofemoral pain (PFP), is a term often used synonymously with anterior knee pain [1]. 

PFP is characterised by a gradual onset of pain related to changes to the patellofemoral joint 

(PFJ) and not associated with any other knee condition [2]. It is often exclusively linked to 

loaded activities such as stairs, running etc.[3] and is rarely reported with unloaded activities 

except for reported pain with prolonged flexion [4]. Experts believe that PFP may be a 

precursor to patellofemoral osteoarthritis [5] forming a disease continuum, however, this link 

remains unsubstantiated at present [6]. 

 

The typical age range for people with PFP is from adolescence up to 40 years. A recent UK 

epidemiological study estimates that one in six adults consulting their general practitioner for 

knee pain will be diagnosed with PFP [7] and in adolescents the reported point prevalence of 

PFP is 6% [8]. Given that UK population estimates show that the 15-39 age group equates 

to over 26% of the whole population [9] and with longitudinal studies revealing that 77 to 

91% of people with PFP will experience pain for over 10 years [10]; the potential societal 

burden from PFP is of concern. People with PFP are known, as a result of the pain, to 

reduce their physical activity [11] which instils negative beliefs toward physical activity and 

may lead to a major impact on their future health [3].  

 

A variety of theories on the origins of pain in PFP have been proposed. These include 

patellar malalignment, abnormal tissue homeostasis, lateral retinacula hyper-innervation and 

subchondral bone irritation [12, 13]. There is still, however, no consensus with regards to 

pathogenesis of PFP. The cause of PFP is widely accepted to be multifactorial in nature and 

an extensive number of associated factors have been identified [14]. These factors have 

been classified as distal (e.g. foot), local (e.g. patellofemoral joint) and proximal (e.g. hip) 

comprising of clinical, biomechanical and imaging features.  

 

Consensus does exist, however, that non-surgical, conservative management is the primary 

treatment of choice [15] . Multimodal treatment is widely considered best practice [16] which 

can include combinations of interventions such as taping, knee orthoses , gait-retraining, foot 

orthoses, muscle strengthening and muscle stretching [17, 18]. Despite this being the 

accepted treatment approach, 62% of adolescents with PFP still report an unfavourable 

outcome following treatment and 40% of young adults from pooled data (n=330) report a 
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similar unfavourable outcome one year following rehabilitation [19]. This shows that the 

variability in treatment outcome remains considerable. 

 

The inconsistency in treatment outcomes suggests sub-groups may exist within the PFP 

population [14]. Currently, there is limited hard evidence to support the existence of sub-

groups or potential for stratification in treatment of PFP. This notion is however supported by 

an international consensus statement, developed by international PFP experts, which states: 

“identification of the subgroups remains the ‘holy grail’ for PFP research” [20]. There is a 

paucity of research investigating the interrelationship between the local, distal and proximal 

factors [20], which may refine potential subgroups further. 

 

Stratified approaches to care for other musculoskeletal conditions have demonstrated 

improved treatment outcomes [21]. With a widespread belief that separate, identifiable 

subgroups exist within the PFP population [20, 22], then there is a clear need to attempt to 

identify these sub-groups. Aligning imaging features to both clinical and biomechanical 

features provides a greater holistic assessment of PFP and an opportunity to develop 

definitive sub-groups. The modelling of outcomes may then allow stratified interventions to 

be developed and limit the likely progression of pathology. 

 

 

1.2 Aims & objectives  

The central hypothesis underpinning this thesis is: 

 

Improved subgrouping of people with PFP based on modifiable features will enable 
stratification and targeting of interventions 

 
The overarching aim of the thesis is to identify PFP subgroups with modifiable features that 

could be targeted with stratified treatment. To fulfil this aim the following objectives were 

identified: 

 

- To determine which imaging features are most associated with PFP 
 

- To analyse the structure of the patellofemoral joint using commonly used imaging 

features converted into their 3D quantitative equivalents 
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- To determine which diagnostic subgroups are present in a PFP cohort by combining 

modifiable clinical, biomechanical and imaging features. 
 

- To explore the prognosis of these data derived subgroups  

 

- To explore the feasibility of a targeted intervention, matched to the characteristic of a 

selected subgroup, compared to usual care management 
 

 

1.3 Thesis structure & overview   

Chapter Two: Narrative literature review   
 
This narrative literature review comprises of five main themes that underpin the thesis: i) 

current clinical, biomechanical and imaging features associated with PFP; ii) current 

interventions for treating PFP; iii) proposed mechanism of action for these interventions; iv) 

predictors of response for these interventions; v) current stratification and classification 

methods used for PFP. These themes are used to demonstrate the need for stratification in 

PFP. This chapter also includes a detailed background to the natural history, pathogenesis, 

risk factors and clinical examination of PFP thus providing context to this thesis. 

 

Chapter Three - Which patellofemoral joint imaging features are associated with 

patellofemoral pain? Systematic review and meta-analysis   
 
This is a systematic literature review and meta-analysis of the imaging features associated 

with PFP. This review aims to control for confounding factors such as loading and knee 

flexion angle in order to compare imaging features and their association to PFP. The 

strengths and weakness of the current literature are discussed in terms of their 

methodological quality and the impact of full weight bearing imaging is also analysed. 

 

Chapter Four - Patellofemoral joint morphology of middle aged people with patellofemoral 

pain measured using 3D MRI quantitative technology: data from the Osteoarthritis Initiative  

 
This is a retrospective analysis of the Osteoarthritis Initiative database using 3D quantitative 

technology. This chapter aims to investigate whether commonly reported imaging features 

converted into their 3D quantitative equivalents differ between those with and without PFP, 
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and between genders. In this chapter, 13 PFP imaging features are investigated between an 

older group (>45 years) with PFP but without osteoarthritis (KL grade =0) and a similar group 

without PFP. Finally, the overall bone shape is explored between groups. 

 

Chapter Five - The development of data-derived subgroups in patellofemoral pain using 

modifiable clinical, biomechanical and imaging features   
 
This is a longitudinal cohort study with a cross-sectional analysis exploring the presence of 

diagnostic subgroups in a PFP cohort by combining modifiable clinical, biomechanical and 

imaging features. This chapter uses a SPSS TwoStep cluster analysis of ten features, 

applied within a two-stage approach, to derive modifiable data driven subgroups from a PFP 

cohort. Relevant patient characteristics such as age, gender BMI etc. are used as 

descriptors within these groups to provide further context. Using a logistic regression, 

adjusted for known confounders, the prognosis of these subgroups is assessed at 12 month 

follow up. 

 

Chapter Six - The effect of targeted treatment on people with patellofemoral pain: a 

pragmatic, randomised controlled feasibility study 
 

This is a feasibility study investigating targeted treatment in PFP. This chapter aims to 

explore the feasibility of a targeted hip strengthening intervention, matched to a subgroup 

with baseline hip weakness, compared to usual care management. In addition, the chapter 

explores the mechanism of effect of the hip strengthening in a group defined as ‘weak’. This 

chapter aims to inform a larger randomised controlled trial in the future as well as improving 

our understanding of why hip strengthening may improve symptoms in people with PFP. 

 
Chapter Seven: Discussion, future directions and conclusions  
 
This closing chapter discusses the main findings of the thesis with reference to any updated 

literature, limitations of the thesis as a whole, the future directions for research and the 

eventual conclusions that can be drawn.
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Chapter 2 - Literature review  

This literature review will aim to explore the need for stratification by showing that 

patellofemoral pain (PFP) is a condition of: i) multifactorial aetiology; ii) with multiple relevant 

targets for intervention; and iii) multiple treatment options with heterogeneous responses. 

Each section of the literature review is summarised critically showing how it links to 

stratification. The addition of sections devoted to terminology, epidemiology and outcomes 

provide context to the review. This review includes literature published up until May 2016.  

An update of the research from May 2016 to present is provided in Chapter 7. 

2.1 Definition  

There is no universally accepted definition of patellofemoral pain (PFP). Table 2.1 shows the 

definitions used in the latest three Cochrane reviews published on the subject of PFP. 

Despite these definitions being different, they do show common themes regarding: the 

location of pain (e.g. pain in the patella region), functional limitations (e.g. pain with load 

activities such as stairs etc.) and exclusion of other differential diagnosis (e.g. patellar 

tendinopathy etc.). It has been suggested that PFP may in essence be a diagnosis by 

exclusion [23].  

 

Table 2.1: Definitions of PFP 
 

Study  Definition 
van der 
Heijden et al. 
(2015) [24] 

Patellofemoral pain syndrome (PFPS) is characterised by retropatellar pain 
(behind the kneecap) or peripatellar pain (around the kneecap), mostly occurring 
when load is put on the knee extensor mechanism such as when climbing stairs, 
squatting, running, cycling or sitting with flexed knees The diagnosis is based on 
these symptoms after excluding other distinct knee pathologies, which potentially 
cause anterior knee pain 
 

Smith et al. 
(2015) [25] 

PFPS is characterised by pain behind and around the patella, which is 
aggravated during prolonged sitting, descending stairs or slopes, squatting or 
kneeling 
 

Callaghan et 

al. (2012) [26] 
Patellofemoral pain syndrome refers to the clinical presentation of knee pain 
related to changes in the patellofemoral joint. Patellofemoral pain syndrome 
usually has a gradual onset of pain with none of the features associated with 
other knee injuries or diseases 
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2.2 Terminology 

The terminology and nomenclature surrounding PFP is widely accepted as being ambiguous 

[1].This poses a problem clinically as there are number of reported examples of 

mismanagement in terms of surgery and conservative treatment [1]. The first published 

description of the PFP clinical presentation we consider today used the term “internal 

derangement of the knee”[27], however, in reality this encompassed both PFJ and 

tibiofemoral joint (TFJ) conditions [28]. In the early 1900s, surgeons began to attribute 

patellar chondral lesions as the source of pain following meniscal surgery. Slowly the term 

“chondromalacia patellae’ was coined and began to be ascribed to the current PFP 

presentation seen today [28]. The presence of chondromalacia patellae has repeatedly been 

shown to be poorly correlated to pain [29] and notably Scott Dye allowed a colleague to 

perform an arthroscopy under no anaesthesia in order to establish which knee structures are 

symptomatic[30]. They found an absence of any sensation over the articular patella cartilage 

suggesting the chondromalacia patellae is very unlikely to be the source of pain in PFP.  

 

The movement away from using the term chondromalacia patellae meant that by the 1970s, 

‘patella malalignment’ begun to be used to describe this clinical presentation [31] and this 

resulted in other terms such as lateral patella pressure syndrome etc. However, due to the 

fact that not all people presenting with PFP have malalignment and with the reported failure 

of many alignment surgeries [31], the term lateral patella pressure syndrome is not currently 

recognised, despite malalignment still being attributed as one of the primary causes for the 

condition.  

 

The terms anterior knee pain (AKP), patellofemoral pain syndrome and patellofemoral pain 

have been used interchangeably. The International Patellofemoral Study Group, with a 

membership of predominantly orthopaedic surgeons, currently advocates the term ‘anterior 

knee pain’ [32]. Thomeé et al. (1999) [33] suggested that AKP encompasses a number of 

distinct pathologies and once these have been excluded patellofemoral pain (syndrome) can 

then be diagnosed. This in essence suggests that PFP is a diagnosis by exclusion. The 

terms anterior knee pain syndrome and patellofemoral pain syndrome, Grelsamer et al. 

(2009) [1] argues, are useless, nonspecific and potentially inappropriate as a syndrome is 

collection of consistent clinical signs and symptoms [1], which due the multifactorial nature of 

PFP, is a definition that PFP does not satisfy. Of particular note is the change in terminology 
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used in the International Patellofemoral Pain Research Retreat consensus documents[14, 

20, 34], published biennially, in which the first consensus statement [34] used patellofemoral 

pain syndrome whereas subsequent publications[14, 20]  have dropped the term syndrome 

potentially in reaction to the published views of Grelsamer et al. (2009) [1]. Currently, it 

appears that the most widely accepted terminology to be patellofemoral pain with the 

majority of publications on this condition choosing to use this nomenclature. Hereafter, 

‘patellofemoral pain’ (PFP) will be the preferred term used in this thesis to encompass all 

synonymous terms including patellofemoral pain syndrome, anterior knee pain and 

chondromalacia patellae. 

 

2.3 Natural History/ Epidemiology 

2.3.1 Natural history of PFP 

PFP was long considered a benign, self-limiting condition that would improve with time [10]. 

A number of longitudinal studies [10, 35-37] have refuted this, with data showing the 

presence of pain persisting in the majority of cases at three to 16 years following diagnosis. 

 

It was firstly shown [36, 37]  that, at an average of four years follow up, 94% (51/54) people 

still reported pain. Of these people, 54% reported the pain to be the same or worse and 52% 

reported some activity restriction. At an average 5.7 years, Blond and Hansen (1998) [35] 

found that 73% still complained of pain with 48% reporting pain worse or the same and 74% 

reporting a reduction in athletic activity. At an 11 year follow-up following diagnosis, 

Stathopulu and Baildam (2003) [10] reported that 91% (20/22) still had pain and that 45% 

(10/22) reported that their daily life is affected. In the largest follow up conducted at 16 years 

[36], 77% (38/49) people were found to still report pain.  

 

These studies show that pain is still present in 73-94% of people up to 16 years follow-up, 

which strongly rejects the view of PFP as a self-limiting condition. They demonstrate that 

pain severity and functional restriction remain unchanged or increased in 48-54% and 45-

74% respectively, although this functional restriction varies in terms of expected demand e.g. 

athletic ability versus daily life[37]. On the other hand, this would still suggest that over half 

experience an improvement in pain over time and supports data which is often omitted in the 

literature, that at 16 years follow up, 73% of the 38 patients with pain reported at least some 

improvement in symptoms. This may explain how PFP was once considered self-limiting.  
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2.3.2 Link between PFP and PFOA 

There is a concern that approximately 50% of PFP cases who report on-going pain and 

functional limitation may develop future patellofemoral osteoarthritis (PFOA), with PFP 

having been implicated as a potential precursor to PFOA [5]. A few studies have supported 

this theory. Utting et al. (2005) [38] found that 22% of patients who had undergone an 

arthroplasty for isolated PFOA reported experiencing PFP symptoms in adolescence and 

early adulthood. This was supported by the results of Thorstensson et al. (2009) [39] who 

showed in a cohort of people with chronic knee pain aged 35-54 years, that 32% (9/28) 

developed isolated PFOA at seven year follow-up having shown no radiographic OA at 

baseline. A comprehensive review of the literature [6] suggests most studies that support the 

associations between PFP and PFOA were not primarily designed to answer this question 

and conclude, despite expert opinion proposing this relationship [5], that current literature is 

unable to substantiate a clear link between both conditions. 

 

2.3.3 Prevalence and incidence of PFP 

The prevalence data surrounding PFP has been widely criticised for its unrepresentative 

sources and so the real-world prevalence remains unknown [40]. Prevalence is defined as 

the number of cases of a particular condition at a single point in time [41]. Callaghan and 

Selfe (2007) [40] conducted a review of the sources of prevalence data, finding that much of 

the prevalence data cited is based on secondary or even tertiary referencing with some of 

the source data considered unrepresentative. The current figures cited in the literature for 

the adult population are typically based on athletes [42] and military personnel [43]. In these 

studies the prevalence is cited to be between 14% and 25% of all knee injuries [42, 43]. In 

the general public, Wood et al. (2011) [7] analysed 57,555 GP diagnostic codes annually in 

the UK to show that ‘patellofemoral disorders’ comprised of 17% (303/1782) of all knee 

consultations. This is comparable to data from the Netherlands [44] which showed that 11% 

of GP diagnostic codes for knee pain was given as ‘patellofemoral pain syndrome’. 

 

Incidence is defined as the number of new cases of a particular condition within the same 

population during a set time period [41]. A review of the literature showed that the incidence 

range was between 9% (over 12 weeks) and 17% (over two years) [45]. This comprised 

almost solely of sporting and military participants, however, it is perhaps understandable 

considering that increased physical activity is a risk factor for the development of PFP. In 

contrast, Boling et al. (2010) [43] followed 1525 midshipman finding a significantly lower 
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incidence rate of 2.2% (over 2.5 years). It is unclear what may have contributed to this lower 

figure, however, the same study does demonstrate that females were over twice as likely to 

develop PFP compared to males suggesting that the female to male ratio of any cohort will 

likely influence the overall incidence reported. 

 

There is a tendency across the majority of epidemiological studies related to PFP to focus on 

a group greater than 18 years old; a feature which may be the result of ethical restrictions 

[46]. A few studies have explored age groups between 10 – 19 years old [8, 47-49]. Two 

studies explored the prevalence of AKP (encompassing a range of conditions including PFP) 

and two specifically focused on PFP [8, 49]. The studies focused on AKP show very similar 

prevalence rates of 27% (183/688) [47] and 27% (331/1210) [48]. Foss et al. (2012) [47], 

under the umbrella term of ‘anterior knee pain’, showed that the other specific conditions 

such as patella tendinopathy, Osgood-Schlatter disease represented 11% of the overall 

figure thus leaving 16% to account for the prevalence of PFP. In adolescent athletes, PFP 

had a prevalence of 16% [49], which is comparable to the data from Foss et al. (2012) [47] 

minus the other conditions e.g. Osgood- Schlatter etc. Mølgaard et al. (2011) [8], [49] only 

found that PFP showed a younger population prevalence of 6%, based on Danish students. 

As prevalence data is often compiled from large distinct populations, it is likely that an 

athletes will present with different risk factors to the general student population [20]. 

Prevalence data recording is also reliant on people seeking treatment from a primary 

clinician. Rathleff et al. (2013) [50] looked at the care seeking behaviour of adolescents with 

PFP showing that 47% (163/344) with insidious knee pain had not sought treatment. The 

reason for this figure is unknown but the authors did show that individuals were more likely 

to seek treatment for traumatic rather than an insidious onset. 

 

As well as the established prevalence of PFP within adolescents, Rathleff et al. (2016) [11] 

has recently showed in a cohort aged 15-19 years (n=504) that compared to other knee 

pathologies, people with PFP showed a significant reduction in both sports and leisure time 

participation over a two year follow up period. As highlighted by the authors, this significant 

reduction in activity for young people with PFP could lead to serious lifestyle consequences 

and a more sedentary lifestyle [11].  

 

2.3.4 Health economics  

In terms of health economics, Tan et al. (2010) [51] provides the only cost-utility analysis of 

exercise for PFP. Based on data from a high quality RCT [52] they showed that whilst direct 
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medical costs were significantly higher in an intervention group, likely as a result of the 

additional physiotherapy intervention. The overall societal costs for the intervention group 

(€1011) were significantly less than control group (€1166) because they included productivity 

costs. Productivity costs were based on the cost of absenteeism and reduced efficiency at 

work (presenteeism). This seems very pertinent considering the PFP population is typically a 

working-age population. However, the results of this study cannot be extrapolated to UK 

healthcare system where healthcare models and direct medical costs are likely to vary.  

 

2.3.5 Risk factors  

The potential risk factors for the development of PFP, taken from prospective cohorts, is 

presented here, with the known associated factors discussed in later sections. The most 

comprehensive work to date [53] systematically reviewed all known risk factors. Table 2.2 

shows the risk factors that have shown significance in leading to the development of PFP. 

Pooling of data was only possible for the following variables: height, weight, BMI, age, peak 

knee extensor torque and peak knee flexor torque. Only reduced knee extensor strength 

was significantly associated as a high risk for future PFP [53] based on variety of testing 

procedures. The results of the review are based on only seven available studies however, 

and as the authors highlight, the cohorts investigated include a disproportionate number of 

military cohorts and so do not necessarily represent the general population [53].
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Table 2.2: Risk factors for the development of PFP  
Adapted from Lankhorst et al. (2012) [53] 

 

 Risk Factors Mean difference (MD) (95% CI) ±* 
Demographic Less height (cm) [54] MD -3.10 (-5.73, -0.47) 

Psychological  Less looking for social support [55] MD -1.78 (-3.44, -0.12) 

Physical fitness Less sports participation ( hours/week) [56] MD -2.38 (-4.03, -0.73) 

More push ups ( number) [57] MD 1.60 (0.22, 2.98) 

Reduced vertical jump (cm) [57] MD -3.39 (-5.95, -0.83) 

Ground reaction force  Less vertical ground reaction force [58] MD -0.30 (-0.58, -0.02) 

Isometric strength Greater knee extension strength (at 85°) [58] MD 24.60 (0.69, 48.51) 

Less knee flexion strength (% BW) [58] MD -0.02 (-0.04, 0.00) 

Less knee extension strength (% BW) [58] MD -0.06 (-0.10, -0.02) 

Isokinetic strength  Greater ratio of peak torque flexors and extensors ( 60 °s) [56] MD 0.06 (0.01, 0.11) 

Greater ratio of peak torque flexors to extensors (240 °s) [56] MD 0.07 (0.01, 0.13) 

Less concentric knee extension (60°s, Nm)  
MD -17.48 (-28.89, -6.07)[56] 

MD -17.60 (-30.70, -4.50)[54] 

Less concentric knee extension (240 °s, Nm) [56] MD -8.27 (-14.22, -2.32) 

Less concentric knee extension (60°s, Nm / BW)  
MD -0.23 (-0.41, -0.05)[56] 

MD -0.24 (-0.42, -0.06)[54] 

Less concentric knee extension (240°s, Nm / BW) [56] MD -0.11 (-0.20, -0.06) 

Less concentric knee extension (60°s, Nm / BMI)  
MD -0.67 (-1.20, -0.14)[56] 

MD -1.08 (-1.72, -0.44)[54] 
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 Risk Factors Mean difference (MD) (95% CI) ±* 
Less concentric knee extension (240°s, Nm / BMI) [54] MD -0.4 (-0.73, -0.07) 

Kinetics  Less knee extension moment (% BW x Height) [58] MD 0.03 (0.00, 0.04) 

Less hip external rotation moment (% BW X Height) [58] MD 0.02 (0.00, 0.04) 

Static Posture Greater medial tibial intercondylar distance in standing (cm) [57] MD 1.50 (0.60, 2.40) 

Greater navicular drop (mm) [58] MD 0.90 (0.04, 1.76) 

Flexibility Less quadriceps flexibility (°) [55] MD -7.59 (-24.35, -0.83) 

Less gastrocnemius flexibility (°) [55] MD -3.10 (-5.83, -0.37) 

General Joint laxity Greater thumb to forearm [55] MD -3.10 (-5.83, -0.37) 

Plantar pressure Less time to maximal pressure on 4th metatarsal head (s)[59] MD -0.02 (-0.06, -0.01) 

Reduced maximal velocity of mediolateral component of the COP during forefoot 

contact[59] 

MD -30.29 (-46.01, -14.57) 

Muscle activation Reduced reflex response time of VMO (ms) [55] MD -1.11 (-2.04, -0.18) 

Reduced reflex response time of VL (ms) [55] MD -1.36 (-2.25, -0.47) 

Greater VMO before VL onset (ms) [55] MD 6.53 (6.13, 6.93) 

± Mean difference between those that develop PFP (case) and those that didn’t (controls). Only statistically significant results are reported ( p <0.05) 

*Positive values favour the cases 
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As expanded on in section 2.8.1, the association of hip dysfunction with PFP has been the 

subject of increasing interest. Since the publishing of the Lankhorst et al. (2012) [53] review, 

a number of studies have added to the literature. In contrast to current belief, recent 

evidence in adolescent athletes has suggested that hip abduction strength [60] and 

increased knee abduction moments [61] were risk factors for PFP, with the authors 

proposing that this may represent an increased effort to control for knee valgus. The 

available data does not allow for this explanation to be substantiated. The only systematic 

review of the literature [62] to date that has explored hip strength as a risk factor for PFP, 

found that despite cross-sectional studies showing that hip weakness is associated to PFP, 

there is no evidence to suggest that a reduction of isometric hip strength leads to PFP. It is 

worth considering however, that isometric strength is the most commonly used measure of 

hip strength in these types of studies. It might be that other types of muscle contraction e.g. 

concentric or eccentric may be more functionally relevant to PFP [62] 

 

2.4 Aetiology 

The aetiology of PFP is unknown [13]. Numerous theories have been proposed, although no 

consensus has yet been reached [14]. Below provides an overview of the suspected 

structures and causes of pain. These theories, however, should not be considered exclusive 

and experts [63] believe they will likely overlap. 

 

2.4.1 Subchondral bone  

The localised stress transmitted through the PFJ is thought to be important in the 

development of PFP and there is a growing support for the patellofemoral stress theory 

shown in Figure 2.1 [12] . The term ‘stress’ is used to describe a loading force applied to an 

object whereas ‘strain’ is the response and deformation of that object from the applied stress 

[64]. It has been shown that people with PFP demonstrate greater PFJ stress [65, 66]. Ho et 

al. (2014) [66] showed that a PFP group demonstrated a 67-118% increase in patellar bone 

strain. Similarly, Farrokhi et al. (2011) [65] showed that PFP demonstrated a 35-66% 

increase in octahedral shear stress (reflects the portion of the stress field that tends to distort 

tissue [65]). It is agreed that articular cartilage is aneural so cannot be considered the source 

of pain [30]. Conversely, subchondral bone, lying immediately beneath the calcified cartilage 

[67] is highly innervated and a possible source of nociceptive pain [12]. Three mechanisms 
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have been proposed for the subchondral bone leading to pain. The first mechanism is based 

on the observed increases in intraosseous fluid [68] as a consequence of increase stress 

and loading. This is known to increase the intermeduallary hypertension, which leads to 

nociceptors in the bone, sensitive to pressure changes to be stimulated [69]. Another 

potential mechanism could be the increase in metabolic activity within the subchondral bone. 

A few studies have found that people with PFP display an increase in tracer uptake within 

the patella and articulating femur when analysed using scintigraphy [70, 71]. However, this 

only correlates with approximately one third of structural damage quantified using MRI [72], 

with scintigraphy showing a greater level of metabolic activity. This discordance may be the 

result of scintigraphy being better at identifying early structural damage or it may be that the 

poor specificity of scintigraphy [71] means that the increased metabolic activity could be 

indicative of another disease or injury [71]. The third possibility is the known presence within 

the subchondral bone of substance P, a nociceptive neurotransmitter found within nerves, 

which have been identified within the subchondral plate of the patellae [73]. 

 

 

 

Figure 2.1: Factors which lead to increased subchondral bone stress 
Reprinted with permission from Springer, Imaging and Musculoskeletal Modelling to 
Investigate the Mechanical Etiology of Patellofemoral Pain [12] 
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2.4.2 Homeostasis  

Scott Dye’s seminal paper published in 1996 [74] proposes the now well recognised tissue 

homeostasis theory to explain the pathogenesis in patellofemoral pain (Figure 2.2). This 

holistic theory considers that PFP may be the result of a multitude of causes including some 

of PFJ structures discussed above. In a collection of papers [13, 74, 75], he proposes that 

these tissues become overloaded once the person moves out of their zone of tissue 

homeostasis and beyond their envelope of function[13, 74] – a term given to the safe 

capacity of a joint to accept, transmit and dissipate load without leading to damage and 

dysfunction. The author stresses that the model should considered dynamic and is one 

which varies significantly between individuals (Dye et al 1996). The envelope of function is 

influenced by four distinct group of factors: i) anatomic e.g. joint morphology; ii) kinematic 

e.g. motion control; iii) physiological e.g. cellular healing capacity; and iv) treatment e.g. 

exercise. Dye et al. (1999) [75] surmises that commonly prescribed treatment such as 

taping, exercise, bracing etc. are primarily restoring the PFJ to its zone of homeostasis. This 

provides theoretical support to the concept of load management, recently advocated by a 

number of experts [16]. Despite the near-universal acceptance of this model, it does appear 

only speculative, as no current method exists to sensitively measure soft tissue homeostasis 

[76] 
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Figure 2.2: A graph representing the envelope of function.  
The zone within the envelope of function (‘zone of homeostasis) is where one can 
safely dissipate loading and avoid injury. The zone above the envelope of function 
(‘zone of supraphysiological overload’) is insufficient to cause macro structural failure 
but repetitive loading within this zone may lead to injury. The uppermost zone (‘zone 
of structural failure’) is where macro structural failure occurs often the result of 
extreme traumatic loading e.g. skiing accident. Reprinted with permission from 
Elsevier, Operative Techniques in Sports Medicine [74] 

 

 

2.4.3  Lateral retinaculum 

The lateral retinaculum is a structure on the lateral aspect of the patella, which comprises of 

converging and interdigitating structures [77, 78]. This complex structure consists of three 

layers: superficial, intermediate and deep [77]. The superficial layer comprises of deep fascia 

which is not attached to patella but laterally thicken to form the iliotibial band (ITB) in the 

lateral thigh. The intermediate layer forms the longitudinal retinaculum with the longitudinal 

fibres of ITB adhering to patella quadriceps tendon and joint capsule adjacent to patellar 

tendon. The deep layers form the transverse retinaculum with superficial and deep fibres of 

the ITB. The substantial deep fibres anchor the lateral edge of the patella to the ITB [77]. 

 

In people with PFP, Fulkerson et al. (1985) [79] found that 33% (26/75) of their cohort 

located their pain to either the lateral or medial retinaculum. The cause of these symptoms 
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has been explored by a number of groups histologically. People with PFP have been shown 

to have increased perineural fibrosis, reduced myelinated fibres [79], vascular 

hyperinnevation, increased substance P and increased neural growth within the retinacula 

[80]. This concept of neural growth within the retinacula has been explored further with 

Sanchis-Alfonso et al. (1998) [81]  showing that those people with high levels of PFP had 

increased nerve diameter and the presence of neuromas. This is in contrast to the people 

with moderate levels of PFP who had a large number of small nerve fibres. Recent 

ultrasound findings have also suggested that the thickness of the retinaculum is greater in 

PFP compared to a group without pain [82]. The reason for this thickening is not explored by 

the authors but may be explained by the histological changes detailed in the earlier studies 

[81]. The generalizability of these findings, however, remains questionable as the findings 

are only based on small sample sizes of ten [82] to sixteen [81] knees. The small samples 

are likely the result of the fact that histological analysis is conducted in vitro using either 

excised tissue from surgery, or cadaveric knees which is less available in young cohort 

whose primary management is conservative treatment. 

 

2.4.4 Infrapatellar fat pad   

The infrapatellar fat pad (IFP) is an extracapsular, extrasynovial structure that is located in 

the anterior compartment of the knee [83] (see Figure 2.3). Despite its exact function being 

unknown, it is seen as serving as reservoir for reparative cells after injury [83]. The IFP has 

been identified as a potential source of pain. Dye et al. (1998) [30] reported severe, localised 

pain when IFP was arthroscopically palpated with only local anaesthesia at the portal sites. 

Saline induced injection into the IFP has shown to reproduce pain pattern associated with 

PFP-pain located to anteromedial and retropatellar region [84, 85]. The cause of the pain 

may also be linked to IFP biomechanics and histology. The pressure applied to the fat pad is 

greatest at full extension (< 20) and also shows a marked increase at extremes of flexion 

(>100) [86]. Histological analyses of fat pad in those with PFP show increases in substance 

P and S-100 protein; however, the association with PFP cannot be substantiated due to the 

lack of control group [87]. A link between IFP oedema and PFJ morphology and 

malalignment has also been explored. Jibri et al. (2012) [88] showed significant differences 

in Insall-Salvati index, a measure of patella height, and patella tilt angle (see 2.7.1) when 

comparing a group with MRI confirmed IFP oedema and a group with normal fat pads. This 

link to PFJ structural changes is supported by more recent work [89] showing that IFP 

oedema correlates with an increase in T2 values in the medial cartilage. In contrast, 

cadaveric studies in which fat pad oedema was simulated, using an inflatable fluid cell 
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positioned by ultrasound, showed no changes in lateral translation or lateral patellar tilt [87]. 

However, this cadaveric model did demonstrate a significant reduction in PFJ contact area at 

near full extension (0-30) [87].  

 

The basic science appears to support the premise that the fat pad may contribute to PFP; 

however, the prevalence of IFP pathology in PFP has not been established. 

 

Figure 2.3: Anatomy of the infrapatellar fat pad  
Reprinted with permission from Taylor & Francis, Physical Therapy Reviews 
[90] 

 

 

2.4.5 Synovium 

The synovial membrane of the knee is the largest in the body [91].The membrane attaches 

to the upper border of the patella and forms a large pouch beneath the quadriceps femoris 

on the distal anterior femur. Below the patella it is separated from the infrapatellar fat pad 

before projecting downward, either side of the femur, to its point of attachment on the 

menisci [91].The synovium is a semipermeable membrane that controls molecular traffic in 

and out of the joint space, maintaining the composition of the synovial fluid which provides 
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nutrients and removes metabolic products for the health of the articular cartilage [92]. Similar 

to the IFP, direct arthroscopic palpation of the synovium was reported as being moderately 

to severely painful [30]. This may be explained by the level of substance P within the 

synovium as it has shown to be higher in a AKP group compared to a group of people with 

total knee replacements and a group of post-operative meniscectomy and anterior cruciate 

ligament reconstructions [93]. This is supported by Bohnsack et al. (2009) [87] who observed 

the same increase of substance P within the synovium of people with AKP as well as an 

increase S-100 protein which is suggestive of a chronic inflammatory state [94]. 

 

2.4.6 Sensory dysfunction 

Any tissue injury is thought to lead to some peripheral sensitisation and sensory change [95]. 

Sensory changes may also reflect the level of chronicity that his often found in individuals 

with PFP [95]. Jensen et al. (2007) [96] were the first group to investigate this phenomenon 

in PFP. They found quantitative sensory differences between PFP and healthy controls in 

terms of tactile stimulation, detection threshold for warmth and detection threshold for cold. 

Nevertheless, they were unable to observe any homogenous subgroups within a PFP 

population of n=91 despite using a range of somatosensory testing variables. This work has 

been expanded subsequently by Rathleff and colleagues in a collection of studies [95, 97] 

that have focused on pain pressure threshold (PPT) measured using algometry. They found 

that people with PFP have a lower PPT than healthy controls across both local sites (patella) 

and distal site (tibialis anterior) [97]. PPT was found to correlate with the duration of 

symptoms supporting algometry as a tool for measuring chronicity [97]. More recent work 

investigated the efficiency of the diffuse noxious inhibition of the nervous system by 

measuring the conditioned pain modulation [95]. It was found by applying pressure to the 

elbow (the conditioned stimulus) and then the knee (the test stimulus) that people with PFP 

have less increase in pain detection and tolerance thresholds[95]. An inability to increase 

thresholds is seen as deficiency in the body’s pain modulatory and inhibitory system [95]. 

 

This emerging evidence may explain pain in subgroup of people PFP but the generalizability 

are limited as most of these findings are based on all female cohorts many of which are 

aged between 15-19 years [95, 97]. Age is considered a determinant of pain perception [98] 

and thus these findings may not reflect the typical PFP aged group up to 40 years. 
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2.4.7 Vascular dysfunction 

In a series of studies [99-101], Selfe and colleagues highlight the possibility of PFP 

heterogeneity in terms of vascular and thermoregulatory function. They found that 18% 

(14/77) of individuals with PFP answer ‘yes’ to the question: ‘Do your legs feel cold even in 

warm surroundings?’ These people also demonstrated greater pain, less physical activity 

and a worse response to exercise. Furthermore, they showed that individuals with 

objectively cold knees (cold to palpation) had a lower activity levels and a worse Modified 

Functional Index Questionnaire (MFIQ) score [101]. This reduced temperature may be linked 

to vascular abnormalities that have been explored by Naslund et al. (2005) [71]. Using a 

novel, non-invasive photoplethysmography, which assess blood volume changes in the 

microvascular bed of tissue [102] they showed significant differences between a PFP and 

healthy individuals in terms of pulsatile blood flow during a knee flexion arc. The explanation 

for how this vascular dysfunction links to pain is unknown. However it has been proposed 

that vascular bending or torsion, a mechanical disruption to the vascular supply, occurs 

leading to episodes of ischemia [103]. This may then create a hypoxic environment, which 

stimulates the production of numerous neurotransmitters within the local tissue, as 

discussed above. 

 

Despite a growing body of literature on this subject, the importance of the vascular system in 

those with PFP still remains highly speculative. One of the biggest challenges is the 

accessibility and validity of the equipment needed to measure these vascular features 

clinically. These features may identify an important subgroup of PFP but future research 

would need to link these vascular changes with more established features of PFP e.g. knee 

strength etc. to demonstrate their clinical significance.  

 

2.4.8 Proprioceptive dysfunction 

Proprioception is the ability to sense the position and movement of limb segments [104]. It is 

widely considered to be important with all knee injuries [104]. However the temporal 

relationship between proprioception and pain is unclear. Callaghan (2011) [105] summarised 

the commonly used measures of proprioception within knee pain research which includes: 

active/passive joint position reproduction; detecting the initiation of passive movement; 

detecting a sensation of vibration; measuring the delay of muscle contraction; reproducing a 

muscle force; and postural sway. Specifically within PFP, the most commonly reported 
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measure of proprioception is active/ passive joint position reproduction. The studies using 

this methodology [106-110] show contradictory results. Some studies show that differences 

between a PFP group and asymptomatic control group exist [106, 107, 111] while others 

show no difference [109, 110, 112] . Callaghan et al. (2008) [107] sub-classified his cohort 

using the accuracy scores from the target angle, revealing subgroups of people with PFP 

who demonstrate either good or poor proprioception. It is plausible that the contradiction in 

the previous studies lies in the innate proprioceptive ability of the individuals recruited. Of 

note, is the work of Selfe et al. (2006) [113] who investigated the optimum number of trials to 

conduct during active/ passive joint position reproduction. They showed that five trials for 

active angle reproduction and six trials for passive angle reproduction allowed the data to 

achieve stabilisation. A subsequent review of the literature shows that the studies finding no 

significant difference [109, 110] performed three repetitions [109], two repetitions [112] and 

unclear the number of repetitions [110]. This is in contrast to the studies that found a 

difference between groups, which performed the optimum number of trials: five trials [106], 

six trials [111] and six trials [107]. The exact mechanism behind this alteration in 

proprioception is unknown.  

 

Proprioceptive dysfunction can also be improved by interventions such as strengthening 

exercises [108] and taping [107, 114]. It has been suggested that taping may stimulate 

cutaneous receptors on the skin, which contribute to proprioceptive information [107, 114]. 

Alternatively, the changes may lie within the brain, as suggested by a study of application of 

patella tape to an asymptomatic group, which resulted in increased activity within the 

cerebellum and decreased activation in the supplementary motor cortex [26, 105]. Improved 

proprioception following strength training may be the result of either reducing the pain 

inhibition or greater patella stability with less tissue stress [108].  

 

The temporal relationship of proprioception remains unclear, thus it is not known whether 

abnormal proprioception causes altered neuromuscular control and leads to the 

development of PFP or whether the pain from PFP disrupts the central processes and 

reduces proprioception [109]. 

 

2.4.9 Psychosocial dysfunction 

The inconsistencies in treatment outcomes for PFP [115] as well as the inability to identify a 

sole, organic cause for the pain; has led to a greater focus on psychosocial factors [116]. 

Catastrophizing, the belief that pain will worsen and nothing that can prevent that [117], has 
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been identified as one of the key psychological attributes associated with PFP. Doménech et 

al. (2014) [118] showed that catastrophizing was the only variable that could be identified as 

a predictor of PF pain. In their study [118], catastrophizing explained 19% variance for pain 

and 28% for disability. This is supported by previous work [119] which has identified that 

people with PFP had a significant reduction in their perception of health control, which will 

contribute to the overall feeling of catastrophization. In a comparison between professional 

and amateur athletes, both with PFP, it was shown that professional athletes demonstrated 

a 44% greater perceived role limitation, which the authors [120] suggest might signify an 

increased level of catastrophizing. This would imply that the expected level of performance/ 

function might make one more susceptible to catastrophization. Other psychosocial factors 

that have been have been shown to be significantly associated with PFP include stress 

[121], anxiety [122] and fear avoidance behaviour [122] . Hostility has also been recognised 

as a potentially important personality trait in PFP. However, the direction of its effect is 

contentious, with Witoński et al. (1998) [123] identifying an increase and Carlsson et al. 

(1993) [121] finding a reduction in hostility. This may be result of Witoński et al. (1998) [123] 

comparing against a group of ACL rupture patients rather than asymptomatic controls.  

 

Despite this emerging evidence, there still remains a paucity of evidence supporting the role 

of psychosocial factors in the development of PFP. The variety of constructs that have been 

explored makes comparison challenging, limiting the adoption into clinical research at 

present. 

 

2.4.10 Link between PFP aetiology and stratification   

This section shows that the aetiology of PFP is multifactorial, one of the first indications for 

stratification [124]. Nine causes of PFP are presented here and many of these remain 

speculative based on a small number of underpowered studies. As highlighted, these 

proposed aetiologies are unlikely to be exclusive [63] and furthermore there is likely to be 

differences in the causes of PFP along the age continuum e.g. adolescents vs. 40 years olds 

[125]. These uncertainties would make stratifying based on aetiology very challenging and 

therefore limits its inclusion within a stratified treatment approach. 
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2.5 Clinical examination 

2.5.1 Clinical history 

Pain is the predominant symptom in PFP and often localized to the patella region as 

depicted in Figure 2.4. PFP is rarely reported in unloaded activities (e.g. lying down) [3] with 

exception of prolonged sitting which has been shown to be associated with a presentation of 

PFP compared to other knee pathologies [126]. Other symptoms often described 

subjectively include joint crepitus, restricted functional activities and joint stiffness [3]. The 

multifactorial nature of PFP continues to make diagnosis difficult. No definitive clinical test 

exists to identify people with PFP [3]. 

 

 

 

 Figure 2.4: Self-reported pain 
Pain location measured using the Navigate pain app. The small images represent 
the pain location of each participant with PFP (n=20). The large image represents an 
average pain location. Reprinted with permission Oxford University Press, Pain 
Medicine[95]. 
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2.5.2 Objective examination 

A number of studies have investigated the diagnostic utility of musculoskeletal tests for PFP 

[127-129] and two studies [23, 130] have reviewed the literature with the aim of selecting the 

best clinical test to aid diagnosis. In the early 1980s, it was shown [128] that the ‘patella 

friction test’ (synonymous with the Clarke test), considered at the time an important test for 

diagnosing PFP, was still positive in 66% of a healthy cohort highlighting the poor diagnostic 

accuracy of clinical tests in PFP. Further work has investigated the diagnostic test probability 

of the following single tests [129]. Using positive likelihood ratios (LR+) (how much to 

increase the probability of the disease if the test is positive) and negative likelihood ratios 

(LR-) (how much to decrease the probability of the disease if the test is negative) the 

following results were found: vastus medialis coordination test (LR+ 2.26; LR- 0.90); the 

patellar apprehension test (LR+ 2.26; LR- 0.79); eccentric test (LR+ 2.34; LR- 0.71). All the 

single tests showed a clinically relevant LR+ of > 2.0 but with no tests reached the <0.5 LR-

deemed clinically relevant by the authors [129]. It has been suggested that test accuracy 

may be improved by combining tests [131]. 

 

The review by Cook et al. (2012) [23] focused on the diagnostic applicability of a 

combination of tests. They showed that two of three of the following tests: pain with resisted 

contraction; pain during squatting; and pain with medial or lateral patella palpation 

demonstrated LR+ 4.0, LR- 0.5 and a post-test probability of 89%. This combination of tests 

was challenged by the outcome of another review [130] which concluded that due to the LR- 

0.2 yielded by the single lest of pain during squatting test, that the combination of tests was 

not diagnostically superior to this single test. Both LR+ and LR- are important in determining 

the accuracy of a diagnostic test.  However, as PFP is widely considered a diagnosis of 

exclusion [23] it could be suggested that greater importance be given to the LR+ as this is 

ruling in the condition. This would mean that the LR+ 4.0 yielded by the combined pain with 

resisted contraction; pains during squatting; and pain with medial or lateral patellar palpation 

may be better to employ in clinical practice. The combined model also showed a greater 

post-test probability compared to pain during squatting test (89% vs. 79%).  

 

There are a number of difficulties with assessing diagnostic test accuracy in this population 

[23]. Firstly, there is no agreed reference test available in which to compare the clinical test. 

MRI and arthroscopy have been used in some studies [23, 132, 133] to rule out competing 

pathology, however, MRI abnormalities have been shown to be highly prevalent with 89% 

(631/710) of older adults without radiographic OA demonstrating MR findings, thus 

questioning the specificity of MRI [134] . Consequently, most studies use the widely 
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accepted diagnostic algorithm which relates to pain reproduction with at least more than two 

functional activities [3]. This system, however, has been questioned by Callaghan et al. 

(2009) [126] who reported that there was no difference in reported pain for these activities 

between a PFP group and group with other soft tissue knee problems. Another consideration 

is that the case-control design does not accurately reflect true clinical practice when a level 

of uncertainty exists which influences the decisions made [23]. This is made more 

challenging by the fact that PFP is known to be heterogeneous in terms of its presentation 

[3].  

 

In summary, debate surrounds whether the combined tests are superior to the single test 

(pain during squatting) when attempting to diagnose PFP. The comparison of post-test 

probability values (above) would suggest that the combined tests should be considered 

current best practice. However, if PFP continues to be considered a diagnosis by exclusion 

then perhaps more emphasis should directed to improving the diagnostic accuracy of 

differential diagnoses such as patella tendinopathy etc.  

 

2.6 Patient reported outcome measures  

A range of patient reported outcome measures (PROMs) have been applied to PFP. 

Adapted from two systematic reviews[135, 136] , Table 2.3 details the description and 

psychometric properties of the main outcomes used in both PFP research and in clinical 

practice. Additional data is provided as a result of a further letter to editor [137] highlighting 

the omission of the Modified Functional Index Questionnaire.  

 

Published thresholds for intraclass correlation coefficients (ICC)[138], effect sizes [139] and 

Cronbach alpha[140] were used to interpret the data in Table 2.3. It shows that all the 

PROMs demonstrate an excellent test-rest reliability [138] except for the Visual Analogue 

Scale (VAS) which shows only good reliability (ICC = 0.60). Using the effect size as measure 

of responsiveness, Anterior Knee Pain scale (AKPS), Functional Index Questionnaire (FIQ), 

VAS, worst VAS (VAS-w), International Knee Documentation (IKDC) and Activity of Daily 

Living Scale (ADLs) all show good responsiveness [139]The Eng & Pierrynowski 

questionnaire and usual VAS (VAS –u) show a moderate responsiveness. Internal 

consistently has only been evaluated for five outcome measures using Cronbach alpha, 

showing that both ADLs and IKDC have excellent [141] and MFIQ, AKP and FIQ have good 

internal consistency. Concurrent validity was established based on looking at the outcome in 
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relation to other established measures. The Eng & Pierrowski questionnaire, Flandry 

questionnaire, VAS-U and VAS-W demonstrate strong validity [139] and AKP, ADLs and 

MFIQ demonstrated moderate validity. 

In addition to the to the psychometric properties of the outcomes, Bennell et al. (2000) [142] 

evaluated the questionnaires by asking people to rank the outcome measures in terms of the 

easiest, the hardest, the most confusing, requires most explanation and best depicts 

symptoms. The Flandry questionnaire was reported to be the most confusing (48.7%), 

requires the most explanation (50%) but was considered to best depict symptoms (45.7%). 

The FIQ was considered the easiest (38.3%) and Eng & Pierrynowski (39.5%) the hardest. 

 

Based on the available data, the systematic review by Esculier et al. (2013) [135] concludes 

that ADLs, AKPS and IKDC are the most recommended PROMs, however, the studies in the 

final recommendation differ considerably from Green et al. (2014) [136] despite only a years 

difference in the search completion ( August 2012 vs. August 2013). Only 6 of the 24 studies 

used by Esculier et al. (2013) [135] were included by Green et al. (2014) [136]. This may be 

result of Esculier et al. (2013) [135] including studies of mixed knee pain that included PFP 

and other pathologies. This potentially affects the external validity of their findings and 

recommendations. Overall, no consensus exists to which specific PROM should be used, 

however, the latest consensus statement [20] suggests that a combination of PROMs to 

capture pain, function and quality of life should be included. 
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Table 2.3: Psychometric properties of patient reported outcomes  
Adapted from [129, 135, 136] 

Instrument name Description Test-retest 
reliability 
(ICC) 

Validity  
(r) 

Responsiveness 
(effect size) 

Internal 
consistency 
(Cronbach α) 

Eng & Pierrynowski 
Questionnaire  

Visual analogue rating evaluated during 
activity e.g. stairs etc. 

0.83-0.92 0.66 (vs. 
Flandry) 

0.76 N/E 

Flandry questionnaire 28-item questionnaire in a visual analogue 
response format that evaluates the severity 
of symptom and activity limitation. Score of 
out 280 (absence of symptoms) 

0.95  0.66 (vs. 
Eng) 

N/E N/E 

Anterior Knee Pain Scale 13-item questionnaire that evaluates pain 
and functional limitation. Score out of 100 
(absence of symptoms) 

0.81-0.90 0.58 (vs. 
FIQ) 

1.15 0.81-0.84 

Functional Index 
Questionnaire 

8 item questionnaire that evaluate functional 
limitations. Total scores range from 0 to 16 
(no limitation) with scores ranked from 0 
(unable) – 2 (no problem) 

0.48-0.94 0.66 (vs. 
Flandry) 

0.32-1.29 0.83-0.86 

Visual analogue Pain Scale / 
Numerical Pain Rating Scale  

Visual or numerical pain scale which 
evaluates perceived current level of pain 

0.60 N/E 0.26-1.22 N/E 

Visual Analogue Pain Scale 
when least pain (VAS-L) 

Visual or numerical pain scale which 
evaluates perceived current level of least 
pain  

0.64-0.74 N/E N/E N/E 

Visual Analogue Pain Scale 
when usual pain (VAS-U) 

Visual or numerical pain scale which 
evaluates perceived current level of average 
pain  

0.56-0.77 0.63 (vs. 
VASW-W) 

0.15-0.75 N/E  

Visual Analogue Pain Scale 
when worst pain (VAS-W) 

Visual or numerical pain scale which 
evaluates perceived current level of worst 
pain  

0.56-0.79 0.63 (vs. 
VAS-U) 

0.02-1.15 N/E 

Activity of Daily Living Scale 
(ADLS) 

14 item scale which evaluates how the 
symptoms affect daily activities and specific 
functional tasks. Scored out of 100 (absence 
of symptoms) 

0.93-0.99 >0.50 (vs. 
GROC) 

0.63-1.26 0.89-0.93 
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International Knee 
Documentation Subjective 
Knee Form (IKDC) 

18 item scale which evaluates symptoms, 
function and sports activities due to knee 
pain. Scored out of 100 (absence of 
symptoms) 

0.92-0.99 N/E 1.13 0.88-0.93 

Modified Functional Index 
Questionnaire (MFIQ) 

10-item questionnaire developed to combine 
both FIQ and AKPs. Scored out of 100 
(worst possible symptoms)  

95% CI ± 
11.2 (SD ± 
5.47) 

rho = 0.42-
0.50 (vs. 
VAS with 
movement) 

N/E 0.83 

ICC = intraclass correlation coefficients; GROC = global rating of change scale; NE = not examined. 
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2.7 Imaging 

2.7.1 Patella malalignment  

Malalignment or maltracking is still considered an important factor in PFP and still the 

prevailing cause of pain [14]. The term malalignment can be misleading as other authors 

have used this term to encompass differences in skeletal alignment and biomechanics 

throughout the whole lower limb [143]. For the sake of clarity, in this review malalignment will 

be used to describe “the translational or rotational deviation of the patella relative to any 

axis” [63] with other biomechanical dysfunction discussed in a later section. 

 

The idea of malalignment begin in the 1970s based on the work of Hughston (1968) [144] 

who suggested that patella malalignment might be a distinct diagnosis, as up until then the 

only diagnoses for AKP were either patella dislocation or chondromalacia patellae. During 

the 1970s, radiographic assessment became more widely used at the PFJ in terms of 

malalignment, and popular measures such as patella tilt [145] were developed to provide a 

mechanistic cause for this presentation of pain. This brought with it the development of a 

number of surgical techniques to address the malalignment. Despite Insall et al. (1983) [146] 

demonstrating that AKP correlated with malalignment; other studies [147] revealed the 

presence of malalignment in asymptomatic populations. This questioned the importance 

placed on the malalignment in PFP. Grelsamer (2000) [63] proposed the idea that 

patellofemoral malalignment may predispose an individual to developing PFP but that a 

‘trigger’ is required such as trauma, overuse etc. 

 

The common features considered during an assessment of PFJ alignment are that of tilt and 

lateral displacement. The most commonly considered features applied are patella tilt angle 

and bisect offset. Patella tilt angle was popularised by Ficat et al. (1975) [145] as a cause for 

hyper-pressure within the lateral patella facet and hypo-pressure, leading to malnutrition, in 

the medial patellar facet. There are a number of recognised techniques for measuring the 

lateral patella displacement (Table 2.4). This is also true of patella tilt angle (Table 2.5) with 

a number methods having been applied. Lateral patellar displacement is thought to either 

lead to aberrant loading of the lateral patella facet [148] or hyperinnervation of the retinacula 

[79]. Based on our systematic review of the literature (see Chapter 3), bisect offset, first 

described in 1988 [149] and developed over the 1990s [150], is one of the most commonly 

reported measures of lateral displacement. 
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Table 2.4: Bisect offset assessment methods 
 
Lateral 

displacement Description Schematic 

Bisect offset  Determined by drawing a line connecting the posterior femoral 
condyles and then projecting a perpendicular line anteriorly 
through the deepest portion of the trochlear groove to a point 
where it bisected the patella width line. The bisect offset is 
reported as the percentage of patella width lateral to the midline 
[144]. 

 

Absolute patella 
displacement 

Determined by a line projected anteriorly through most anterior 
point of medial condyle. Distance from this line to medial edge of 
patella is expressed either positively or negatively in millimeters, 
(depending on lateral or medial position) respective of the 
perpendicular line [150]. 

 
 

Lateral patella 
displacement  

Determined by drawing a line joining the summits of the medial 
and lateral femoral condyles and dropping a perpendicular line at 
the level of the summit of the medial condyle. The distance of the 
medial margin of the patella from this perpendicular line is 
measured [151]. 
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Table 2.5: Patella tilt assessment methods 
 
Patella tilt 

 Description Schematic 

Patella Tilt Angle Determined by the angle formed by lines joining the posterior 
femoral condyles and the maximum width of the patella [148]. 

 

Lateral 
patellofemoral 
angle 

Determined by the angle between a line drawn along the lateral 
joint surface of the patella and a line drawn along the anterior 
aspect of the femoral condyles [152]. 
 
 

 
 
 
 
 
 
 

Patella tilt angle II Determined by the angle between the posterior condylar line 
and the maximal patella width line. [153]. 
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The overall importance of PFJ alignment has been questioned in recent years in response to 

the limited correlation between the radiographic measures and symptoms [147]. Other 

theories including the above mentioned tissue homeostasis theory [74] are considered more 

encompassing, however, no theory remains exclusive. With reference to the thoughts of 

Grelsamer (2000) [63], it is likely that patellofemoral malalignment may make an individual 

more predisposed to moving out of the envelope of function and thus leading to pain. The 

fact that not all people presenting with PFP will have radiographical malalignment should not 

be seen a reason to ignore PFJ alignment but a need to identify these subgroups and their 

link to other known features. 

 

The systematic review conducted for Chapter 3 provides an extensive review of the common 

imaging features, and is primarily linked to the known malalignment and maltracking 

features.  With increased access to finite modelling techniques, other features have begun to 

be explored that rely on many inputs including MRI, joint reaction force etc. to derive the 

data. These features are discussed below. 

  

2.7.2 Patellofemoral joint stress 

Subchondral bone as a source of pain in PFP has led to research investigating the stress 

that is applied to the PFJ.  Structurally, patellofemoral joint stress is influenced by the 

contact force, the contact area and the composition of articular surface [154]. Stress is 

proportional to force and inversely proportional to the surface area it acts on [155]. As a 

result increases in patellofemoral contact area may serve to distribute forces over a greater 

surface area and, theoretically, decrease stress to the patellofemoral articular surface [156]. 

In people with PFP, patellofemoral joint stress has been shown to increase with greater 

flexion during weight bearing and with greater extension during non-weight bearing [157, 

158]. However in vitro studies have shown that PFJ reaction force (PFJRF) has a nonlinear 

relationship with PF contact area (Figure 2.5) despite PFP contact area initially increasing 

with PFRF there is a plateau at 500N loads - the approximate load of normal walking [155]. 

Thus with any greater activity demand e.g. running, fast walking, the PFJ contact area 

plateaus and is unable to disperse the increase in PFJRF. Brechter and Powers (2002) [159] 

found no difference in patellofemoral stress during stair ascent or descent and with 

application of a knee brace between groups, however, they did find that people with PFP 

reached peak PFJ stress earlier during early flexion (0-30°). It was hypothesised [159] this 

was the result of reduced contact area at early flexion angles. These findings are consistent 

with Salsich and Perman (2013) [160] who found a significantly lower contact area at 0-20° 
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flexion in a relatively larger group of PFP participants (n= 27) compared to a pain free group. 

PFJ contact area is discussed further in section 2.7.3. 

 

 

Figure 2.5: Relationship between contact area and joint reaction force 
Mean values (solid black lines) together with 95% confidence intervals (grey areas) 
are presented for all eight knees for a representative instance of the stair climbing 
gait cycle (30	knee flexion). Note the plateauing around 500N (solid red line). 
Reprinted with permission of Elsevier, Journal of Biomechanics [155] 

 

 

Rather than seeing patellofemoral stress as a single entity, patellofemoral stress has been 

broken down into separate components; octahedral stress and hydrostatic pressure [65] 

using finite element modelling informed from gait analysis, electromyography (EMG) during 

squat movement and knee MRI. Octahedral stress reflects the portion of stress that distorts 

the tissue whereas hydrostatic pressure reflects the magnitude of the portion of the stress 

that uniformly compress the cartilage [65]. Both octahedral stress and hydrostatic pressure 

have been shown to be increased in both the patella and femur compared to a pain-free 

control group [65]. These findings conflict with the more recent findings of Besier et al. 

(2015) [161] who demonstrated no difference in stress between a PFP and a pain-free group 

using similar measures. These reported differences may be explained by analysing stress at 

different knee flexion angles or by the use of the stair ascent task compared to a squat. 

Figure 2.6 shows that the position of the femur has also been shown to impact PFJ stress 

[162]. An increase in femoral internal rotation of only 5° lead to a significant elevation in 

PF Joint Reaction Force [N] 
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hydrostatic stress and octahedral stress with the PFJ [162] supporting the premise that even 

small changes in femoral control are important. 

 

 

 
 

 Figure 2.6: Increases in cartilage stress in relation to femur rotation 
The increase in darkness of colour is representative of increasing hydrostatic 
pressure at 5° and 10° knee flexion. Reprinted with permission of Wolters Kluwer 
Health Inc, Medicine & Science in Sports Exercise [162] 

 

 

Changes in patellar water content (suggestive of subchondral bone oedema) has been used 

as a surrogate measure for stress [68]. The water content of the patella can be observed by 

using a combination of T2 relaxation and multi fat peak spectral modelling under MRI. Ho et 

al. (2014) [68] measured the patellar water content at three time points: i) prior to running ii) 

following 40 minute run and iii) 48 hours post-running. They showed that patella water 

content increased immediately following activity and returned to pre-running levels after two 

days. These changes were importantly associated with significant changes in pain thus 

providing a potential explanation for the intermittent symptoms experienced by runners with 

PFP. More recently, it has been suggested that bone strain may be a more superior bone 

failure predictor than stress models [66]. Ho et al. (2014) [66] using similar finite element 

modelling showed that people with PFP demonstrated significantly greater peak and 
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average principal strain magnitudes in the patella region. Furthermore they demonstrated 

that cartilage thickness appears negatively associated with peak strain.  
 

2.7.3 Patellofemoral contact area  

As mentioned previously, it has been suggested that people with PFP have a reduced 

contact area during the early part of the flexion [159, 160]. However, these findings are 

dependent upon the method of analysis and quantification. A number of the studies have 

used biomechanical modelling to quantify the stress and contact area at the patellofemoral 

joint [65, 159, 161, 163, 164]. Besier et al. (2005) [154] proposed that patellofemoral contact 

area is influenced by the testing variables such as knee flexion position and physiological 

weight bearing. They showed that the variation between unloaded and loaded conditions 

can lead to an increase in anything between 10 -100% in contact area with an average of 

24%. This suggests that any PFJ imaging data findings need to be interpreted with 

consideration of loading and the knee flexion position. Whereas Besier et al. (2005) [154] 

used a healthy cohort, Salsich and Perman (2007) [165] investigated which factors explained 

patellofemoral contact area in people with PFP. They showed that patellar width and 

tibiofemoral rotation explained 46% of the variation in contact area. The concept of patellar 

width is also supported by Besier et al. (2005) [154] who found a difference between males 

and females in terms of patellofemoral contact area but no difference was found once 

normalised for patellar height and width. This highlights the importance of gender in the 

interpretation of the findings. This gender difference is highlighted in Chapter 4. Due to the 

differences in patellofemoral joint anatomy, data should only be interpreted using gender-

specific thresholds.   

Observing a change in patellofemoral contact area is noteworthy; however, its importance 

can only be considered in relation to the clinical symptoms. There is a paucity of literature 

using contact area as an outcome of intervention and linking this to clinical symptoms. The 

few studies that have explored the link [166, 167] do suggest a relationship between contact 

area and pain. The application of a patellofemoral brace has been shown to increase 

patellofemoral contact area in people PFP with an associated 56% reduction in pain [167] 

thus demonstrating a potential link between structure and pain. Chiu et al. (2012) [166] also 

investigated that effect of an intervention on patellofemoral joint contact area. Using a within 

- group comparison they showed a significant change in contact area following an eight 

week quadriceps strengthening intervention. The combined sample size from both studies of 

people with PFP was relatively small (n =24) suggesting caution is advised when interpreting 
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these findings, however, this demonstrates a promising link between PFJ structure and the 

mechanistic effect of treatment.  

 

All these findings are in contrast to Connolly et al. (2009) [168] who demonstrated higher 

contact area in PFP versus a control group at 15°. It may be that this inconsistency in 

findings may simply be the result of small PFP sample size (n=10) and a type II error. 

However, despite all studies using MRI, the analysis of the images varies greatly. Connolly 

et al. (2009) [168] scored from a digitised image capturing the 3D nature of the 

patellofemoral joint whereas the other studies [159, 167], despite using complex 

biomechanical models to quantify the overall patellofemoral stress, quantify the contact area 

based on only axial MR slices which fail to represent the 3D nature of the PFJ (see Chapter 

4 for further details). This shows that measuring patellofemoral stress and contact area is 

dependent upon a number of factors including MR assessment as well as gender, 

physiological loading, and knee angle position [154]. As a result, a level of caution is 

required when interpreting and generalising the results. 

 

2.7.4 Cartilage thickness 

The composition of articular surface is an important component of PFJ stress and as such 

remains a feature of interest [154]. Cartilage thickness in patellofemoral pain was initially 

explored by quantifying the cartilage thickness at three locations on the patella and femur. 

Draper et al. (2006) [169] demonstrated that males with PFP had a significantly reduced 

patellar cartilage thickness compared to a control group but that there was no difference in 

femoral cartilage. Females demonstrated no difference between PFP and controls for either 

patella or femoral cartilage. However, when results were adjusted for body mass there was 

no difference in either group or gender. This pattern of results is consistent with the findings 

of Connolly et al. (2009) [168] who showed no difference in patellar cartilage thickness 

between a PFP and a healthy control group. In contrast, a number of more recent studies 

[66, 170], both of which used all-female cohorts, found significantly reduced patella cartilage 

thickness compared to pain free control groups. There may be a number of methodological 

reasons for the contrast in findings. Draper et al. (2006) [169] used the modified Outerbridge 

system which aims to classify joint cartilage breakdown. It is apparent that the author was 

attempting to rule out the presence of degenerative change, however, it is also arguable that 

using the Outerbridge classification as an inclusion criteria can introduce a selection bias as 

the classification tool focuses on the loss of cartilage. Perhaps most importantly, both 

Farrokhi et al. (2011) [170] and Ho et al. (2014) [66] used a matched control group that 



 

 

Chapter 2. Literature review  

 

37 

controlled for known confounding factors such as age, body mass index and physical 

activity. This level of adjustment may have led to the detection of differences in cartilage 

thickness between groups. 

 

2.7.5 Quantitative MRI 

Quantitative MRI techniques have recently been explored to further understand the 

composition of cartilage and to offer some link between PFP and PFOA [171]. A number of 

quantitative techniques can be applied. T1 relaxation time detects the changes in 

proteoglycan content of the cartilage [172]. Whereas T2 relaxation time detects the ability of 

the free water protons to move within the cartilage matrix; a measure of cartilage integrity 

[172]. Within PFP, a few studies have shown no difference between PFP and controls in 

terms of T2 relaxation [170, 171]. Differences have been noted in T1 relaxation times in the 

lateral facets with people with PFP demonstrating higher T1 values [173]; however, this is 

not a consistent finding. van der Heijden et al. (2016) [171] found with a much larger sample 

size no difference in T1 relaxation between a PFP and control group. They attribute this to 

the adjustment made for known confounders such as physical activity level. However, in 

contrast to the other variables they investigated T1 values in the lateral femur and patella 

were consistently higher in PFP suggesting a trend towards an agreement with the previous 

study [173]. van der Heijden et al. (2016) [171] also used the most validated method of 

measuring cartilage composition, [174] delayed contrast-enhanced MRI of cartilage 

(dGEMRIC) technique, which measures the change in glycosaminoglycans (GAGs). GAGs 

are thought to precede the loss of cartilage in OA so are considered a suitable indicator of 

early cartilage loss and degeneration [171, 172]. A intravenous contrast agent is given and 

distributes in the cartilage with an inverse relationship to the negatively charged GAGs [175, 

176]. The GAG content can be calculated by differences in T1 values. Despite it being 

considered the most validated method, no differences were noted between groups for T1 

values [171]. 

 

2.7.6 Kinematic MRI 

The application of kinematic MRI for the patellofemoral joint appears to originate from the 

early work of Shellock and colleagues [177]. As PFP is primarily considered to be related to 

dynamic maltracking, the need to visualise tissue during movement seems important. 

Kinematic MRI in its simplest form has been applied to people with patellofemoral pain, with 

individuals positioned supine and the knee adjusted to a variety of angles and with low 

resolution images captured [178, 179]. More recently, groups have begun to explore different 
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techniques. Cine phase contrast (Cine-PC) MR Imaging has been utilised to investigate 

patellofemoral motion in vivo [180-182]. Cine-PC imaging combines two techniques to 

generate tissue velocities in the x, y, and z planes. Cine PC MRI is considered very accurate 

and precise [183], however to ensure this accuracy the procedures requires a number of 

accurate repetitions which is challenging with a symptomatic patient, likely more prone to 

fatigue [184]. The better variant to limit fatigue is Real Time MRI which only requires one 

motion cycle [185]. Real-time imaging has been used by Draper et al. (2009) [148] with 

patellofemoral pain during full weight. This technique is arguably more clinically accurate to 

assess PFP in which pain is elicited in weight bearing [148]. Real time MRI has the added 

advantage that the imaging plane can be continuously defined to track an object [185]. 

 

2.7.7 Link between PFP imaging and stratification   

In summary, this section has identified a number of imaging features which could be 

targeted with treatment - an indication for stratification. It clearly shows that there is a 

growing interest in more complex PFJ imaging features. PFP has been shown to be 

associated with: an increase in PFJ stress and strain; a reduction in PFJ contact area; and 

an increase T1 relaxation times in the lateral patella. These features may have the potential 

to be future treatment targets but currently there is a limited evidence to support 

interventions that would elicit a clinical change in these measures. Patella malalignment 

features e.g. bisect offset, patella tilt etc., in contrast, remain the most commonly 

investigated measures within PFP and known to be modifiable with knee orthoses (see 

section 2.9.4.2) and taping (see section 2.9.3.2). These features should therefore be 

considered for future subgrouping. With a variety of imaging techniques in terms of knee 

flexion position, weight bearing etc. a greater understanding of how these factors affect PFJ 

imaging features and their association with PFP is also warranted. 

 

2.8 Biomechanics 

2.8.1 Hip biomechanics 

2.8.1.1 Strength deficits 

Over the last 10 years more attention has been paid to the role of the hip in PFP [186]. 

Research has sought to quantify and objectify the influence of the hip people with PFP and 

establish hip-specific interventions. It is now well established in the literature that some 

people with PFP demonstrate weakness in concentric [187]; isometric [186, 188-191] and 
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eccentric [192, 193] hip abduction. Furthermore, a recent meta-analysis showed that hip 

abduction strength was a significantly associated to PFP [194]. Many academics and 

clinicians alike support the idea that hip external rotation is also an associated deficit in 

people with PFP [186, 188, 189, 191, 192], however, studies have found contrasting findings 

[193, 195]. The exact reason for this inconsistency is unclear, however, variations in strength 

testing procedures and measurements are likely to have had an influence on the eventual 

findings. The concept of hip strength and activation deficits has been further explored by 

investigating the effect of fatigue on hip kinematics. There is consistent evidence that these 

muscle groups weaken following exertion and that people with PFP show a significantly 

greater reduction than a control group [196, 197]. As highlighted clearly by Lack et al. (2015) 

[198] there is a tendency for ‘strength’ to be used to be used to encompass all types muscle 

contractions whilst these are likely to derive different results. A recent review [199] attempted 

to investigate muscle endurance but was unable to pool the data from studies investigating 

hip muscle endurance in PFP but did find conflicting evidence for differences in hip muscle 

endurance. Souza and Powers (2009) [200] showed 49% and 40% less hip extension and 

pelvic drop repetitions were performed respectively in females with PFP. Whereas 

McMoreland et al. (2011) [201] showed no difference between groups using a isokinetic 

dynamometer to measure total work (in joules) after 30 concentric contractions. The 

influence of bilateral and unilateral pain on hip muscle strength has also been briefly 

considered [202].  It has been shown that people with bilateral PFP have weakness in all hip 

muscle groups compared to those with unilateral PFP who demonstrated no weakness in 

their medial rotators and adductors [202]. The reason for this disparity is unknown yet 

considering the fact that a typical cohort of PFP will include both unilateral and bilateral PFP 

patients so this becomes an important consideration when planning interventions and 

comparing groups. 

 

2.8.1.2 Hip kinematics & kinetics 

An array of tasks have been used to explore the presumed movement dysfunction in people 

with PFP [20]. Running, jumping, stairs and walking have all been investigated, each 

providing unique task demands [200]. Hip internal rotation and hip adduction angle 

displacement are the common metrics investigated [203], however, other proximal features 

might include pelvic obliquity and drop [204, 205]. Stair descent has been selected by a 

number of studies as a task to explore hip kinematics [188, 200, 203, 206, 207] due to the 

fact it is a commonly reported aggravating activity for people with PFP [3], creating a known 

increase in joint load of up to eight times body weight compared to level walking [208]. 
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Contrasting findings in hip kinematics during stair descent have been reported, with some 

studies reporting significant differences in hip internal rotation [200, 207] and hip adduction 

[207] with others finding no differences in either movement plane [188, 203]. Explanation of 

these differences in unclear, however, one of the authors did normalise the hip joint angle to 

zero based on their standing posture during the calibration phase whereas the other study 

quantified hip joint angle regardless of standing posture [200]. The differences observed may 

also reflect  differences in baseline pain, step height, stepping duration [206] and possibly 

baseline hip muscle strength. 

 

2.8.1.3 Neuromuscular activity  

Using EMG, authors have attempted to specifically identify the muscle activity that is 

occurring at the hip joint. A number of studies have shown that the gluteus medius in people 

with PFP, responsible for controlling the transverse and coronal plane of the lower limb, has 

delayed activity and shorter duration in both stairs [195, 209, 210] and running [211] 

compared to healthy controls. Despite being more recognised as a primary hip extensor, 

gluteus maximus is also the primary external rotator of the hip [200]. There is evidence that 

gluteus maximus activation is different between PFP and healthy controls  [200] whereas 

other studies have found no difference [211, 212]. These conflicting findings could be 

explained by studying different points within the stance phase e.g. toe off, heel strike etc. It is 

known, for instances, that the amount of stance phase will influence the amount of gluteus 

maximus activation [213]. 

 

2.8.2 Knee biomechanics 

2.8.2.1 Strength deficits  

Quadriceps weakness remains one of the most recognised associated features of PFP. A 

review of the literature shows that people with PFP display more quadriceps atrophy than 

healthy controls [214] and quadriceps weakness is also the only risk factor for PFP that is 

supported consistently across multiple studies [194]. 

 

2.8.2.2 Vastus Medialis Oblique  

In 1986, McConnell published a seminal paper highlighting the importance of vastus medialis 

oblique (VMO) strength in PFP [215]. Since then a number of studies [85, 216-221] have 

supported this hypothesis suggesting that the VMO has a decreased and delayed activity 

compared to the vastus lateralis (VL). In contrast, other studies [222-227] have disputed this 
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findings by finding no such delay in activity. With consideration of the anatomy, it has been 

suggested that the VMO is most active at increased angles of knee flexion [31]. However, 

the stabilising effect of VMO is less required at these angles when the patella has greater 

containment within the trochlea [31]. In contrast, Jan et al. (2009) [228] showed using 

ultrasound with mean measurement error of 0.22 º, that a PFP group (n=51) had a VMO with 

a more proximal attachment on the patella and lower horizontal fibre angle suggesting a less 

effective medial pull. Nonetheless the clinical meaningfulness of differences in fibre angle of 

3.5 º and insertion attachment of 0.4 mm remains questionable. The clinical implications of 

the findings are convoluted, as there is paucity of literature to support the minimal clinically 

meaningful difference of the EMG readings. It has been suggested that differences in timing 

lower than 5ms can lead to biomechanical difference in healthy male subjects [229], but this 

may not then relate to a symptomatic, commonly female PFP population. It may also be that 

the heterogeneous nature of the PFP population has led to inconsistencies in findings. A 

recent study sub-categorised people into ‘maltrackers’ with excessive patella tilt and bisect 

offset and found that this population had that largest correlation to VMO activation delay 

[230] suggesting VMO might have a clinical effect on patella kinematics.  

 

A few authors have considered the whole of the literature surrounding VMO in PFP. Chester 

et al. (2008) [231] systematically reviewed the current literature and highlighted the on-going 

discrepancy in findings. They suggested number of potential source of heterogeneity that 

surrounds the methodology, population and procedural variations e.g. EMG electrode 

placement, onset determination methods etc. Wong (2009) [232] in their literature review 

categorised studies according to EMG procedural variations demonstrating a large variability 

in the onset determination, with applied onset thresholds varying from one to five standard 

deviations. These onset parameters are important, however, as long as studies standardise 

these onset thresholds for both muscles (VL and VMO) and both groups then this is thought 

to have little effect on the relative activation times and the between group differences 

observed [231]. 

 

2.8.2.3  Knee kinematics & kinetics 

One gait measure that has been shown to differ between PFP and healthy controls is the 

amount of knee flexion in free walking [233-235] and stair use [159, 206, 210, 236, 237]. It 

has been suggested that people with PFP show a reduced knee flexion during stance 

phase. This finding, however, is not universally supported by all the literature [235] and may 

be the result of small sample sizes leading to type II error. Increases in knee flexion have 
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been noted when pain is reduced by the application of tape [238]. This would suggest that 

observed reduction in knee flexion in previous studies might be a pain avoiding strategy. 

Reducing the knee flexion angle is thought to reduce the knee extensor moment thus 

reducing the strength of the overall contraction required [234] . This is considered a common 

strategy for an inhibited muscle group.  

 

Joint coupling variability is an index of the inter-segment system variations necessary to 

allow the movement system to adapt to changing constraints from one situation to the next 

[239]. Joint coupling variability has been highlighted as important for maintaining a healthy 

musculoskeletal system [240]. Lower variability in joint coordination (reduced ability to adapt 

to movement perturbations) is purported to increase soft tissue loading and increase the 

likelihood of pathology [241].  PFP is a condition long thought to be impacted by this reduced 

joint coupling variability [240] in particular across the knee in three movement planes. 

Nevertheless this is not a consistent finding. No differences were found between people with 

and without PFP whilst running at a self-selected pace [242]. Furthermore, a more recent 

study with a larger sample size showed that PFP demonstrated a greater joint coupling 

variability [241] contradicting the historical view. This contrasting finding may be explained 

by only including people with a greater baseline pain (three out of 10 VAS). The increase in 

variability would lend itself to a pain avoiding strategy, reducing stress on inflamed tissue 

[241]. It also conceivable that people with a higher baseline pain will have decreased motor 

control and thus greater movement translation [243]. 

 

2.8.2.4 Flexibility 

Stretching often forms a key component of most multimodal programmes used in 

interventional research studies and reflects the widespread use in clinical practice [16]. The 

muscles targeted for stretching in PFP interventions almost always comprise of muscles 

around the knee joint, which include quadriceps, hamstrings and calf complex. Despite the 

common prescription of such stretches, there are only a few studies to support the 

association of muscle inflexibility and PFP [55, 244-247]. Quadriceps [55, 245, 246] and calf 

(gastrocnemius and soleus) [55, 246] flexibility have been shown to be significantly worse in 

people with PFP compared to asymptomatic controls. Hamstring flexibility is the subject of 

conflicting evidence, with a few studies [244, 247], from the same research group, 

demonstrating a significant difference in hamstring length for PFP, which conflicts with other 

findings [55]. These differences may be the result of different testing procedures, with the 

latter study [55] using the straight leg raise test and measuring the angle of the hip in 
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contrast to the popliteal angle used in the other studies. The popliteal angle has been 

suggested to have a potential ceiling effect, with a number of people found to be able to 

reach full knee extension [248]. The straight leg raise on the other hand  has been criticised 

for being difficult to stabilise the pelvis during testing and for the increased engagement of 

sciatic nerve which may influence the specificity (hamstring length) of the test [249]. It is also 

worth noting that Patil et al. (2010) [244] and White et al. (2009) [247] from the same 

research group actually report the popliteal angle differently in PFP, with the former reporting 

the angle from 0° ( full knee extension) despite arriving at the same conclusions. The effect 

of testing procedure is highlighted by the study by Peeler and Anderson (2007) [245]. They 

had patients undergo a three-week quadriceps programme and then assessed their pre 

interventional changes in quadriceps length using three different testing procedures. For the 

PFP group, significant differences were noted in the pre vs post results obtained using the 

Kendall test (Mean difference [MD] 4º) but no differences noted using the Thomas (MD 0º) 

or Elvey (MD 1º) tests despite all procedures intended to measure the same thing. 

 

2.8.2.5 Joint mobility  

Generalised hypermobility has long been associated with PFP [250] and is anecdotally 

considered to be important factor in the development of PFP . It is surprising, therefore, that 

a limited amount of evidence exists to support any association. Al-Rawi and Nessan (1997) 

[250] compared 115 people with AKP compared to 110 controls finding significantly greater 

hypermobility scores in the AKP group, based on the Beighton score. The understanding of 

why people with hypermobility get PFP may lie in the fact that ligament laxity reduces the 

joint constraints leading to malalignment and subsequent joint stress [181]. Conversely, Al-

Rawi and Nessan (1997) [250] also reveal that 44% of people diagnosed with AKP have 

normal hypermobility scores (0-3) suggesting that subgroups of joint mobility exist. Witvrouw 

et al. (2000) [55] explored whether general joint hypermobility, which included measures of 

thumb apposition to the forearm and knee, elbow and little finger hyperextension 

(components of the Beighton score) predicted the development of PFP.  Of all these 

measures, only a greater thumb to forearm was significant in developing PFP. This contrast 

to the study by Al-Rawi and Nessan (1997) [250] would refute the causative nature of 

general laxity in developing PFP. 

 

The lateral and medial mobility of patella is known to vary within the patellofemoral 

population with some people with excessive and others with limited mobility [251]. The effect 

of patellar mobility is unknown but, in accordance to generalised hypermobility, when a 
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patella is deemed hypermobile there is a perceived loss of patella restraint integrity [252]. 

There are a number of methods to measure patellar mobility: lateral glide only [181]; medial 

glide only [253]; medial and lateral displacement with Patella pusher ( a hand-held force 

gauge) [252]; patellofemoral arthrometer [251] and medial, lateral and total displacement 

with ruler [55, 254]. Witvrouw et al. (2000) [55] showed that baseline patella mobility was not 

predictive of the development of PFP. This is supported by a case-control study [251] that 

analysed patella mobility using a patellofemoral arthrometer showing no difference between 

a group with and without PFP. However, recent statistical subgrouping of a PFP cohort [254] 

has revealed that patella hypermobility was significantly associated with one of their three 

subgroups highlighting its potential importance for the management of PFP. 

 

2.8.3 Foot & Ankle biomechanics 

 

2.8.3.1 Foot plantar pressure 

The link between PFJRF and PFJ stress is discussed in section 2.7.2. showing how ground 

reaction force of the foot has the potential to affect proximal structures i.e. knee, hip etc. It 

has been shown that people with PFP display less ground reaction force during heel strike 

[255]. Despite an overall lower resultant PFJRF, Chen and Powers (2014) [256] did find a 

higher PFJRF in the lateral component of the PFJ. Prospectively, people who develop PFP 

demonstrate a greater and more laterally directed foot pressure at initial contact [59] which 

would support the larger lateral force vector within the PFJ. Focusing on the specific phases 

of gait lateral directed force of the foot was also noted [257]. However, there is some 

discrepancy with the latter study finding significant lateral directed force during the 

propulsion phase rather than initial (heel) contact.  

 

2.8.3.2 Static vs. Dynamic assessment  

Excessive pronation has been widely considered to be associated with PFP [258] however, 

there is an inconsistency in findings [259]. Static measures of foot posture offer clinically 

viable tools that can be used to assess features such as pronation [259]. It has been 

demonstrated that people with PFP are four times more likely than healthy controls to have a 

larger difference between arch height in non-weight bearing compared to weight bearing 

[259]. This measure is similar to navicular drop test, which has purported to be good 

measure of pronation. However, despite the some reported high inter-rater reliability [248] is 

susceptible to error if relying completely on navicular palpation [259]. Ideally assessment of 



 

 

Chapter 2. Literature review  

 

45 

the foot and identification of possible pronation should be determined dynamically, which 

represents real world function. More recently, static pronation determined by the foot posture 

index (FPI), a six-point scoring criteria encompassing many single static measures [260], 

has shown fair to moderate association with dynamic pronation for both peak angle of 

forefoot abduction and earlier rear foot eversion timing in people with PFP [258]. This shows 

some promise that a static tool can predict dynamic function, however, the associations are 

likely muted by the interaction and potential relationship with other kinematic measures such 

tibial or hip rotation. Understanding how the FPI interacts with whole limb kinematics 

remains an important consideration especially when attempting to identify PFP subgroups.  

 

Recently, a series of studies [261-263] provide contrast to previous biomechanical studies 

for PFP by considering the ‘eversion buffer’. The eversion buffer is based on dynamic 

excursion during movement expressed as the quantity of available passive eversion 

(eversion buffer = passive eversion range of movement [ROM] – dynamic eversion ROM) 

(Figure 2.7). This allows calculation of the amount of time the foot has to respond until 

making contact (time to contact = eversion buffer / eversion velocity). Theoretically, this 

appears a logical approach for combining static and dynamic measures by considering the 

range of available movement and the motion control. They showed that runners with PFP 

had a significantly shorter time to contact than healthy runners and this was mostly the result 

of having less eversion ROM [263].The success of interventions such as orthoses may be 

influencing the time to contact, however, based on these results the motion control appears 

less important than the available eversion ROM that might be targeted with joint flexibility.  
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Figure 2.7: Eversion buffer. 
The difference between the eversion range of movement (black line) and the 
dynamic excursion (green line). Reprinted with permission from Elsevier, Gait & 
Posture [263] 

 

2.8.4 Link between PFP biomechanics and stratification   

In summary, similar to the imaging section (2.7.7) this section shows a range of 

biomechanical features which could be targeted with treatment and provides a further 

indication for stratification. Conflicting evidence is available to support abnormal hip 

activation patterns, delayed VMO activity, abnormal patella mobility and increased PFJRF. In 

contrast, there is more evidence to show that PFP is associated with reduced knee strength, 

hip strength, abnormal hip kinematics, abnormal knee kinematics, increased static foot 

pronation and reduced flexibility. These remain viable treatment targets with established 

treatment options (see section 2.9) and thus should be considered for future subgrouping.  
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2.9      Interventions 

2.9.1 Hip targeted interventions 

2.9.1.1 Efficacy 

Exercise is a common feature of almost all PFP treatment. Other adjunctive treatment 

interventions have been explored in isolation that target the hip including bracing [264] and 

trigger point release [190], however, exercise is the mainstay of treatment. This was first 

demonstrated by a case series (n=2) [186] that a purely hip specific strengthening 

programme performed over 14-weeks could improve pain and function. Subsequently, 

further research has aimed at exploring hip specific interventions in a PFP population. These 

positive findings has been supported by a RCT [265] and a case series [266] that have 

shown hip strengthening alone will improve both pain and functional outcomes [265, 266]. 

Differences between a hip-strengthening and a knee strengthening programme have 

supported the assertion that hip specific strengthening can show greater improvement at 4 

weeks [267], 6 weeks [268], 6 months [269] and 2 years [270]. Despite these conclusions, it 

is worth considering that in these studies there were improvements in pain and function for 

both interventions suggesting both exercise types can be used or should be combined. This 

probably explains why further research has explored the combination of knee and hip 

exercises compared to knee exercises alone. Three RCTs [271-273] have shown that the 

combined intervention has a greater improvement compared to knee exercise alone up to 12 

months follow-up [271]. 

 

Whilst considering the favourable results for employing hip strengthening, it is worth noting a 

recent systematic review [274] which actually calculated the correlation coefficient between 

the percentage change in strength and the percentage change in VAS score. They found no 

correlation between hip abductor strength change and pain change (R2= -0.010; p= 0.873) or 

between hip lateral rotator strength change and pain change (R2 = 0.003; p = 0.935). 

Furthermore, they along with a number of other recent reviews [198, 199]  have highlighted 

that a large variance exists in the number of treatment sessions  (from 7 to 24 sessions), 

which in practice is likely to influence the outcome. There is also the factor that exercise 

interventions are largely dependent on the type and application of each exercise [198] ; 

which again varied greatly between studies. This point is demonstrated by a recent RCT 

[275], which compared functional stabilisation training to standard treatment. Functional 

stabilisation training, in essence, shares many features of previous published hip 

strengthening protocols, however, comparisons with hip strengthening would be difficult to 
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make due the different exercises utilised. Furthermore, with interventional-based studies 

there is always a potential for publication bias, which preclude negative findings for 

comparison. 

 

A recent systematic review [276] has identified a number of case-control studies that have 

looked at isolated gait and movement retraining as possible treatment strategies with PFP. 

Prompts given during real-time running, that focus on hip and trunk position, have been 

shown to demonstrate a marked improvement in both pain and function [204, 205]. In 

running, a targeted intervention aimed at addressing gait retraining had a very significant 

reduction in pain of 87% [204] and 91% [205] which are considerably greater reductions than 

a previous reported studies [204]. This approach has been employed outside of running, 

showing that during a single leg squat exercise prompts to correct hip movement and control 

resulted in less pain being reported [277]. These findings strengthen the idea of 

incorporating optimal movement education and instructions into treatment plans. 

 

2.9.1.2 Mechanism of effect of interventions 

People with PFP are thought to present with increased hip adduction and internal rotation 

during movement tasks [278]. It is widely believed that altered kinematics may lead to 

altered patellofemoral joint stress, initiating the first nociceptive input [12]. Subsequently, 

correcting this movement is often seen as desired outcome in interventional studies and 

maybe required to achieve long-term resolution of PFP [276]. Studies have shown that 

following a hip-strengthening regime that significant changes in lower limb kinematics were 

achieved [275, 279]. In contrast, however, a similar number of studies [266, 280]  have found 

that despite a significant improvement in strength that no significant differences were found 

in hip and knee kinematics. The reason for these conflicting results is unknown, however, 

there is a growing movement with the field suggesting that improvements in hip and proximal 

strength are is not necessarily essential for changes in kinematics. With consideration of the 

literature, it is worth noting that major differences exist between the studies. Ferber et al. 

(2011) [280] utilised only a three week strengthening program despite the same author 

suggesting that at least a six week program is required to achieve the desired treatment 

effect [268]. Earl and Hoch (2011) [266] utilised an eight week strengthening program and 

did not find any significant differences in in hip adduction, internal rotation, knee abduction, 

or rear foot eversion ROM during running. However, closer inspection of the participants 

shows that their baseline hip abduction strength was 33% kg/BW, which is much larger than 

the values of 16-29% kg/BW used in other PFP studies [266]. It may be that different people 
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respond to different types of regime and possibly subgrouping could aid this understanding. 

A recently described treatment paradigm [281] suggests that rehabilitation has three distinct 

stages: muscle activation followed by muscle strengthening and finally movement control ( 

see 2.10.1 for further details). With consideration of this paradigm in relation to the Earl and 

Hoch (2011) [266] paper, it may be that these individuals with optimal strength may have 

benefited more from motor control, which may have led to significant changes in kinematics. 

Being able identify groups would allow better selection of treatment and would improve the 

understanding of which groups respond best to certain interventions. This stratification 

approach is discussed further in Chapter 6. 

 

The other potential mechanism surrounds the effect of hip strengthening protocols on knee 

strength. Two RCTs [268, 275] that have recorded pre and post intervention strength 

measures have demonstrated that hip strengthening also provides a significant increase in 

strength for knee extensors [268] and knee flexors [275]. This is probably the result of the 

closed chain nature of the exercises employed in the included studies [198, 275]. This 

suggests that perhaps the mechanism of effect for hip strengthening shares similarities with 

knee strengthening, as detailed in 2.9.2.2. Based on this evidence, future studies should 

investigate mechanisms that are assumed in both approaches, which include lower limb 

kinematics, lower limb kinetics and PFJ alignment changes. 

 

 

2.9.2 Knee targeted interventions 

2.9.2.1 Efficacy 

It is well established in both clinical practice and current evidence that quadriceps 

strengthening is effective in PFP management [282]. The precise method of delivery for 

most effective quadriceps strengthening is not so clear. A number of RCTs have compared 

open kinetic chain (OKC) to closed kinetic chain (CKC) with results showing no difference 

between exercise intervention at six weeks [283] and three months [284]. In contrast, other 

studies [285, 286] have showed significant differences in favour of CKC in terms of pain VAS 

[285] and function [286] (e.g. step down test) at eight weeks. This difference may be the 

result of type 1 error with these studies [285, 286] only using a relatively small sample (n < 

24) compared to the other studies (n> 45). However, in the studies [283, 284] that show no 

difference, on closer inspection there is a trend towards CKC showing a greater 

improvement in terms of pain with functional activity. Furthermore, a few RCTs [287, 288] 

have investigated whether VMO specific exercise produces a different affect to general 
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quads specific exercise. Both found no difference in terms of pain and disability between 

groups at eight weeks [288] and six months [287].  

 

2.9.2.2 Mechanism of effect  

Despite quadriceps exercises being the mainstay of PFP rehabilitation, there is a paucity of 

evidence detailing the mechanistic effect of stronger quadriceps on PFP symptoms. The 

VMO was traditionally seen as cause of PFP and the VMO activity has been seen as a 

potential mechanistic outcome following knee-targeted exercise despite recent work 

questioning its mechanistic importance [289]. Generally the exercises that have utilised 

predominantly knee targeted exercise have demonstrated no significant change in VMO 

response time or changes in VL: VMO timing [285, 290, 291]. However, Ng et al. (2008) 

[290] showed that in a group that used biofeedback in conjunction with the knee exercises 

that a significant change occurred. This could, however, be simply explained by the fact that 

biofeedback increases body awareness, allowing one to selectively activate specific muscle 

groups e.g. VMO more independently [292].  

 

New evidence has begun to further elucidate the mechanism through which knee 

strengthening affects PFP. Chiu et al. (2012) [166] showed that following an eight week knee 

strengthening protocol, significant changes were noted in PFJ contact area, analysed using 

MRI. This was associated with significant reductions in pain and disability. No differences 

were noted in patella tilt angle. This is in agreement with a recent study [293] that assessed 

patella tilt and lateralisation using CT and found no difference following eight weeks of knee 

strengthening. They unfortunately did not assess PFJ contact area so no comparisons can 

be made. The findings of these studies provide a plausible relationship between knee 

extensor strength and PFJ contact area but not with the other common PFJ imaging 

features. Changes in patellofemoral contact area provide a potentially plausible mechanism 

of effect, as this would theoretically mediate the patellofemoral joint stress as discussed in 

section 2.7.3. 

2.9.2.3 Predictors of response for multimodal treatment  

Multimodal physiotherapy is widely considered the accepted standard of treatment for PFP 

[16]. Quadriceps and hip strengthening remain a fundamental component of these 

programmes [282] but whether all patients will benefit strengthening is unknown. The 

importance of identifying predictors of this type of intervention is thus important. A number of 

studies [19, 294-296] have investigated the factors that predict a response to multimodal 

treatment and have identified a range of prognostic factors. It has been highlighted that there 
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is a difficulty with differentiating between prediction and prognostic factors [297]. Prognostic 

factors do not relate to a specific intervention and thus are unable to guide clinical decisions 

[297]. For purpose of this section, the term predictors of poor response has been chosen 

reflecting predictors that determined an unsuccessful response following multimodal 

treatment. The following predictors are shown in Table 2.6. This list demonstrates the large 

degree of inconsistency in the current literature. The precise reason for this inconsistency is 

unclear, however the heterogeneity of the chosen outcomes is likely to have an impact on 

the comparability. The largest cohort(n=330) analysed [19] which was combination of two 

large RCT showed that the duration of symptoms (> 2 months) and baseline knee pain and 

function (AKPS < 70) were the strongest predictors of poor response. However, this study 

highlights another systemic problem with these post-hoc, pre-post study designs that the 

outcome is very dependent upon the selection of the participants. Collins et al. (2013) [19] 

show that knee pain greater than 2 months is a predictor of poor outcome but their inclusion 

criteria was pain for greater than 6 weeks and overall their cohort consisted of 81% 

(252/310) with over two months of pain.  

Table 2.6: Predictors of poor response to multimodal treatment 
 

Predictors of poor response (at baseline) 
Standardised 

coefficient (β) unless 
otherwise stated 

Smaller CSA at the mid-thigh [294] 0.56 

Higher frequency of pain [294] -0.49 

Lower eccentric knee extension [294] -0.44 

Greater lateral deviation of the tibial tubercle ( > 14.6mm) [296] 0.51 

Higher grade of chondromalacia [296] 0.44 

Less change in fear avoidance of physical activity [295] 0.46 

Less change in fear avoidance of work [295] 0.34 

Greater duration of symptoms (> 2 months) *[19] -12.33 

Worse baseline knee pain and function (AKPS < 70) [19] 0.33 

Greater duration of symptoms (>12 months) * [298] 2.90 

Worst pain (VAS) [298] -0.52 

Worst function (AKP score) [298] 0.48 

Older age [299] r = -0.25 ( to VAS) 

Faster reflex response time of VMO [300] r = -0.33  ( to AKP) 

Greater duration of symptoms at 3 months [300] r = -0.65 ( to AKP) 

Less knee strength (between affected and unaffected) [301] r = -0.37 ( to Lysholm) 

*Note the same cohort used at different time points.  

AKP = anterior knee pain scale; VAS visual analogue scale’ Lysholm = Lysholm knee scoring scale; CSA = cross-sectional area; VMO = vastus 

medialis oblique  
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2.9.3 Taping  

2.9.3.1 Efficacy  

In accordance with the prevailing theories around patellar maltracking, tape has been 

commonly applied in a medial direction as means of counteracting the natural, lateral 

movement of the patella and thus improving pain and function [215]. It has commonly been 

applied in combination with exercise or used in isolation [213]. A number of systematic 

reviews [2, 302-305] provide a clear state of the current evidence for the efficacy of tape. 

Consistently there is evidence for tape reducing pain in the immediate to short term [302, 

304, 305]. All the earlier reviews highlight the need for studies to include longer follow-up 

periods, and show that a large variation exists in the taping application and techniques. This 

variation in tape techniques supports a recent systematic review by Barton et al. (2014) [303] 

who reviewed the literature in terms of tailored taping (individualised adjustment for patellar 

spin, rotation and/or tilt) versus untailored taping. They showed that tailored taping appeared 

to provide more pain reduction than the untailored (often medially directed) taping, however, 

concluded similarly to previous reviews that the long-term effects are inconclusive. Of note in 

this review is the inclusion of any study design that included a comparative group. A more 

stringent study selection criterion was applied by a recent Cochrane review. [2] They 

concluded that the current evidence for taping in PFP, based on five small RCTs, was of low 

quality and insufficient to support the effectiveness of tape. 

 

2.9.3.2 Mechanism of effect  

The actual mechanism of effect of taping is still widely debated. The use of taping to improve 

VMO activation has been explored. A number of studies [217, 218, 306-308] show that the 

application of tape in a medial direction will improve the VMO: VL timing, with VMO 

activating earlier than VL which was been noted prior to application. Interestingly, this 

change in ratio of activation showed an increase in VMO activation [217] whilst another 

study noted a decrease in activity but an earlier activation [306-308]. Collectively all these 

studies showing a decrease in activity used a more demanding activity such as single legged 

squats[306, 307] and exercising to fatigue [308], which may have accounted for the 

difference.  

 

A traditional justification for using taping has been to counteract the malalignment of the 

patella. There is conflicting evidence around the effect of taping on the position of the patella 

[305], however much of the conflict appears to arise from comparison of different outcomes, 
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procedures and even populations. Under static XR [292] and CT [309] no change in position 

of the patella was found using a variety of malalignment radiographic outcomes after taping. 

In contrast there are several studies that have demonstrated a change in patellar position 

following tape [310-314]. These may have detected a change by using a larger variety of 

knee flexion angles and better representing the dynamic nature of the PFJ [310, 314]. It is 

also clear that all the studies that utilised MRI, rather than XR [315]and CT [309] detected a 

change. This explanation is unclear as many of the imaging features are applied in exactly 

the same way, regardless of imaging modality. Caution is also advised interpreting these 

findings because what constitutes a ‘normal’ patellar position is unknown [314]. 

 

Tape has also been shown to have an influence on both lower limb kinematics and kinetics 

[213]. It has been demonstrated [316, 317] that the application of patellar tape will increase 

the knee extensor moment during a step-up and stair ambulation task respectively. These 

studies have also shown [317] that tape leads to an increase in knee flexion angle during 

stair ascent and descent. These improvements in kinetics and kinematics could be the result 

of increased confidence during loading tasks in response to reduced pain or could be the 

result of alterations in cortical activity. A few authors who have questioned the importance of 

the direction of the applied taping [217] suggest that cutaneous stimulation and changes in 

proprioception could be the more probable mechanism of effect. Callaghan et al. (2012) [26] 

utilised functional magnetic resonance imaging (fMRI) of the brain and applied patella tape 

to eight healthy participants.  A comparison between the tape and untaped conditions 

showed that application of the tape decreased the activity within the cingulated motor area 

cerebellum (the regions of the brain concerned with the unconscious aspects of 

proprioception). They interpreted this as the tape making the task easier to perform and thus 

leading to less activity in these regions of the brain [26]. At this stage these conclusion are 

only based on eight asymptomatic individuals so the generalisability of these findings is 

limited.  

 

2.9.3.3 Predictors of Response 

The predictors of a likely successful outcome following taping have been investigated in 150 

participants published across two studies [318, 319]. The following factors have been 

identified: i) positive patellar tilt test; ii) tibial varum greater than 5° [319]; iii) lower BMI, 

smaller LPA and iv) larger Q angle [318]. Both studies use a similar testing approach with 

pain score given during a stepping task with and without tape. The consistency in testing 

techniques does allow comparison and synthesis of the data; however, caution is advised 
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over the generalisation of these findings. Both studies have a relatively high age range of 20 

to 60 years compared to the rest of the literature within this field. It is also worth noting that 

Lesher et al. (2006) [319] shares the shame cohort with another study published [320], which 

looked at the predictive factors that affected a lumbopelvic manipulation intervention. These 

papers appear to share the same cohort and were likely conducted at a similar time. What is 

not known is whether there was wash-out period between study interventions to prevent a 

potential carry-over effect [321]. 

 

2.9.4 Knee orthoses 

An expanded version of this review of the literature has been published as: 

Smith TO, Drew BT, Meek TH, Clark AB. (2015). Knee orthoses for treating patellofemoral 

pain syndrome. The Cochrane Library[25] 

 

2.9.4.1 Efficacy 

Knee orthoses, which include knee, braces, sleeves etc. can be used to treat PFP. The 

typical orthosis often made of neoprene comprises of a patella hole with some additional 

straps or buttresses [25]. Despite being considered a viable option for PFP treatment, there 

is no consensus on the use of orthoses for patellofemoral and whether they should be used 

as an adjunct to exercise or in isolation [322]. Our systematic review of the literature [25], 

identified five trials [323-327]  that have explored the efficacy of knee orthoses. Most of the 

trials incorporated the addition of a home therapeutic exercise programme, with the 

exception of Finestone et al. (1993) [324] whose participants continued with basic military 

training. All the studies compared knee orthoses and exercise to an exercise only control 

group showing that the addition of the orthoses did not provide any significant statistical or 

clinical difference in pain or function. Only one study compared knee orthoses to exercise 

alone [325] showing that both groups improved, however, there was no statistical or clinical 

difference between groups. 

 

Despite efforts to synthesise and pool data, there is notable heterogeneity in the studies, 

which may limit the conclusions made. Five different orthoses were used across the five 

studies all with slightly different proposed mechanism of effect and the outcomes used 

varied greatly particularly for the measurement of function. Similar to the outcome of a 

previous review [328], the overall effect of knee orthoses in PFP appears limited, however, 
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the ‘very low’ quality of the current literature does not allow a definitive conclusion to be 

drawn. 

 

2.9.4.2 Mechanism of effect  

There is no consensus to the exact mechanism of the knee orthoses [329]. The design of 

each orthoses will also have different intended mechanistic effects [330]. A number of 

studies [148, 167, 314, 331] have shown that orthoses have a direct effect on the alignment 

and kinematics of the patellofemoral joint. Most of these studies showed that the application 

of a knee orthoses was able to change both the PTA and BSO although Powers et al. (2004) 

[167] found no difference in PTA but a small significant change in BSO. Worrell et al. (1998) 

[314] found significant effects only at 10° flexion. However, this study did not measure at full 

extension, in contrast to the other studies, which appears to be the optimal angle to show the 

most pronounced difference [148]. Powers et al. (2004) [167] also showed that application of 

orthoses had a significant effect on the patellofemoral joint contact area. They showed that 

both the ‘On Track’ brace and ‘Patella Tracking Orthosis’ demonstrated mean increases of 

59.3 mm2 and 52 mm2 in patellofemoral contact area respectively, compared to no brace 

conditions. This would lend itself to reducing the underlying patellofemoral joint stress (as 

discussed in section 2.7.2). These findings are also supported by work based on cadaveric 

studies showing significant reduction in peak and centre of pressure under brace conditions 

[332].. 

 

Outside the potential biomechanical effects, it is presumed that the enclosing nature of the 

brace will provide a level of cutaneous and proprioceptive input [333]. This has been shown 

in a number of studies applying an knee orthoses to an asymptomatic population [334, 335] 

but never shown in PFP population. Selfe et al. (2011) [336] has probably shown the 

strongest link between knee orthoses and potential proprioceptive effects in PFP patients. 

They demonstrated that the application of a knee orthosis during a step descent procedure 

resulted in a significant reduction in the total range of knee movement in both frontal and 

transverse planes compared to both tape and no treatment condition. These authors 

attribute these findings to the likely stimulation of cutaneous receptors, which may enhance 

muscular activity leading to more effective limb control. However, as discussed in 

section 2.4.8 other mechanisms of effect have also been proposed for observed increases in 

proprioceptive function. 

 

2.9.4.3 Predictors of response 
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There is paucity of data showing predictors of response to knee orthoses. Draper et al. 

(2009) [148] highlighted the association between abnormal patella kinematics and the effect 

of knee orthoses. They observed that a subset of patients with abnormal patellar kinematics 

including BSO, PTA displayed a greater effect from the application of the orthoses. It may be 

that the studies exploring the efficacy of knee orthoses may have unintentionally selected 

participants with ‘normal’ baseline patellar kinematics thus reducing the potential for effect. 

This provides some potential justification for subgrouping when applying orthoses.  

 

2.9.5 Foot orthoses   

2.9.5.1 Efficacy  

The use of foot orthoses in the management of PFP is advocated by a systematic review of 

reviews incorporating level 1 evidence with expert opinion [16]. Based on the current 

evidence, two systematic reviews [337, 338] based predominantly on the same RCT [339] 

have recommended that  prefabricated orthoses are more effective in providing a subjective 

global improvement score compared to flat inserts in the short term (six weeks). However, 

this effect is not carried on to 12 or 52 weeks. Since these reviews were published, a further 

RCT has shown that foot orthoses show greater improvements in a similar global 

improvement scale when compared against a wait-see policy [340]. This RCT was also only 

based on short-term follow up (6 weeks) thus the long-term effect of foot orthoses is 

uncertain. 

 

Using foot orthoses in conjunction with physiotherapy would seem appropriate considering 

the evidence to support multimodal treatment. Nevertheless, conflicting evidence exists to 

support addition of physiotherapy based on the current evidence from RCTs. Eng and 

Pierrynowski (1993) [341] showed that an orthosis plus physiotherapy programme provided 

a greater reduction in pain compared to physiotherapy alone at eight-week follow up, 

whereas the greater-powered study by [339] found no difference at a short, moderate or long 

term follow up. This difference may be explained by the Eng and Pierrynowski (1993) [341] 

selecting only patients with pronated foot type (calcaneal or forefoot valgus >6 degrees). 

This application of orthoses, based on selection of participants with more than nine degrees 

calcaneal valgus, has been also been showed to be successful at three months [342]. This 

suggests that tailoring your prescription of orthoses is essential to the overall efficacy of 

using orthotics in combination with physiotherapy. Caution is advised, however, as to 

establish the efficacy of any intervention a control condition is required.  Although unclear 

from most study reporting, Rodrigues et al. (2014) [263] highlights the point that some 
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‘healthy controls’ may be using specialist footwear that mimic a foot orthotic-type intervention 

thus impacting on the conclusion that can be derived. 

 

2.9.5.2 Mechanism of effect  

Despite the promising efficacy of orthoses in treating people with PFP, the mechanism of 

effect has not been demonstrated definitively. Authors suggest that the likely mechanism is 

either mechanical, neuromotor or a combination of both [337]. Mechanically, the application 

of an orthoses has been shown to control predominantly the frontal and transverse knee 

motion [343]. Early research focused on the foot with data showing that orthoses reduced 

the eversion of the foot [261, 343] and internal rotation of knee/ shank [343]. Further 

research has shown that orthoses were also able to significantly reduce the hip adduction 

movement during stair ascent [344]. These biomechanical alterations are likely to normalise 

the patellofemoral joint stress by ensuring better alignment and equalising the force 

distributions around the PFJ[341]. 

 

An abnormal change in neuromotor activity is another possible mechanistic effect [337]. Foot 

orthoses have been shown to reduce the effort and activity of important muscle groups, with 

one study showing a reduction in peak amplitude of gluteus medius during stair ascent [344]. 

Whilst in PFOA, the application of orthoses has been shown to cause a later onset of vastus 

lateralis and lateral hamstring [345]. It may be that a reduction in activity of some muscles 

such as quadriceps can reduce their potential fatigability. Alternatively, a reduction of other 

muscles like hamstrings may be advantageous due to their known over-activity in PFP [346] 

and their proposed impact on rotational tibial alignment and biomechanics [347]. 

 

A further consideration to both the mechanism and potential efficacy is simply the comfort of 

the orthoses. Mills et al. (2012) [348] showed that a less comfortable orthosis resulted in a 

more unfavourable relative increase in hip adduction and a significant increase in VL activity. 

Furthermore, any intervention like orthoses requires an element of compliance. McPoil et al. 

(2011) [349] found that both PFP and controls perceived a contoured orthoses to provide 

greater support and comfort than flat inserts suggesting these would be preferred by 

patients. No difference, however, was found in the number of hours each foot orthoses was 

worn between groups. A clear association between foot orthosis comfort and compliance 

has not been established in PFP. 
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2.9.5.3 Predictors of response 

The predictive factors for a favourable outcome following the prescription of foot orthotics 

have been identified and are shown in Table 2.7. 

 

Table 2.7: Predictors of response to foot orthoses 
 

Type of feature Features 

Static  
 

• Ankle dorsi flexion < 41.3 [350] 
• Midfoot difference from NWB to WB> 10.96 [351] 
• Midfoot difference from NWB to WB > 11.25mm [340] 
• > 2 degrees of forefoot valgus [352] 
• < 78 degrees passive toe extension [352] 
• < 3mm navicular drop [352] 

Dynamic  
 

• Greater rearfoot eversion [350] 
• Foot wear motion control < 5 [350] 

Clinical 
 

• Immediate reduction in pain with single leg squat [350] 
• Usual VAS < 22 [350] 
• Worst VAS < 53.25 [351] 
• Longer duration of symptoms [353] 
• Worse AKPS score [353] 

Demographic 
 

• Age > 25 [351] 
• Height > 165cm [351] 

 

 

 

These results present a number of features that can be used clinically to determine whether 

an orthoses might be useful as an intervention. It is, however, worth noting that the post-hoc 

nature of many of these studies leads to a potential for over-fitting the model. Regardless of 

the varied sample sizes (n= from 26 to 179), the fit of model will be determined by a ratio of 

the sample size to the number of variables. There is also the suggestion that adult predictors 

cannot be extrapolated to an adolescent population. Pitman and Jack (2001) [354] showed, 

in a sample with over a third aged between 11 to 18 years that orthoses lead to 67% 

reduction in pain at 6 months. This may contradict the suggestion made by Vicenzino et al. 

(2010) [351] that being aged over 25 years is a predictor of success based on their cohort 

aged 18 to 40 years.  

 

2.9.6 Link between PFP interventions and stratification   

In summary, this section further supports the need for stratification by highlighting the 

multiple treatment options available for PFP. Strong evidence exists to support both knee 



 

 

Chapter 2. Literature review  

 

59 

and hip strengthening alone and in combination for the management of PFP. However, there 

is conflicting evidence to support any difference in these strengthening regimes with some 

evidence suggesting hip strengthening may achieve desired outcomes earlier. Despite a 

paucity of evidence, the growing use of novel treatment options such as movement 

retraining might be important when it is considered that some PFP cohorts show normal 

strength at baseline and are thus unlikely to benefit from further strength training. Limited 

evidence is available to support the use of both taping and knee orthoses but with some 

evidence suggesting that tailored taping may be more effective than untailored taping. 

Taping and bracing have been shown on MRI studies to consistently alter patella 

malalignment features despite contrasting findings observed under different imaging 

modalities. The other potential mechanisms which include improved proprioception and 

cutaneous activity remain speculative at present due to being based on limited data. 

Moderate evidence exists to support the use of foot orthoses in the short term with no effect 

found at long term follow up. Foot orthoses also remains one intervention to have been used 

within stratified approaches already and demonstrates promising findings, with 79% of 

people with PFP reporting a favourable outcome. The predictors of response for all these 

interventions cover a diverse range of structural, biomechanical, clinical, psychosocial and 

demographic factors which could also explain the heterogeneous response to these 

interventions. 

 

2.10 Stratification & subgrouping   

The presentation of the literature in the preceding sections of this review demonstrates that 

PFP is a condition which: i) has a multifactorial aetiology; ii) likely demonstrates multiple 

relevant targets for intervention; and iii) provides multiple treatment options with 

heterogeneous responses. In this scenario the use of stratification is recommended [124]. 

The idea of stratified medicine was first proposed over 50 years ago [355] by American 

Psychologist, Lee Cronbach[140], who advocated that “we should design treatments not to 

fit the average person but to fit groups with particular aptitude patterns…on the assumption 

that aptitude-treatment interactions exist”. A variety of definitions of stratified medicine are 

shown in Table 2.8. The commons themes from these definitions are: the classification of 

individuals into subgroups/ subpopulations; based on response to treatment or biological 

characteristics; in order to target /tailor treatment; and to improve efficacy, safety and 

economic outcomes.  

  



 

 

Chapter 2. Literature review  

 

60 

 

Table 2.8: Definitions for stratified medicine 
Adapted from [356, 357] 

 

Source Definition  

Prognosis Research 
Strategy  (PROGRESS) 
Partnership 

Stratification of treatment is the act of targeting treatments 
according to biological or risk characteristics shared by subgroups 
of patients 

President’s Council of 
Advisors on Science and 
Technology 

 The tailoring of medical treatment to the individual characteristics 
of each patient. It does not literally mean the creation of medicine 
or medical devices that are unique to a patient but rather the 
ability to classify individuals into subpopulations that differ in their 
susceptibility to particular disease or their response to a specific 
treatment. Preventative or therapeutic interventions can then be 
concentrated on those who will benefit, sparring expense and side 
effect for those who will not  

Academy of Medical 
Sciences 

Stratified medicine is the grouping of patients based on risk of 
disease or response to therapy by using diagnostic test or 
techniques 

Innovate UK Stratified medicine is an effective therapy that requires: 
• A companion diagnostic test 
• A clearly identified group of patients defined by in vitro 

diagnostics, biomarkers, defined algorithms, clinical 
responses, imaging, pathology  

• A molecular level understanding of the disease 
• Availability of both tests and medicines to clinicians  

International Society of 
Pharmacoeconomics and 
Outcome Research  

Stratified/ personalised medicine is the used of genetic or other 
biomarker information to improve the safety, effectiveness and 
health outcomes of patient via more efficiently targeted risk 
stratification, prevention and tailored medication and treatment 
management approaches  

 

 

The graph shown in Figure 2.8 demonstrates the distribution of effects in a typical clinical 

trial and how the treatment effect may be diluted by the inclusion of groups whom the 

treatment is not effective [358]. As Foster et al. (2011) [358] eloquently states in relation to 

musculoskeletal medicine:   

“The analysis of trial data relies on average treatment effects which can mask a 
wide range of individual responses to treatment, including for example patients 
who benefit a great deal along with those who benefit little or not at all. This 
underpins the interest in identifying important subgroups” 
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Figure 2.8: Distribution of the effects of treatment  
Reprinted with permission from Elsevier; Manual Therapy [358] 

 
 

Callaghan (2012) [22] conducted an analysis of all RCTs within the PFP literature up to 2009 

showing that 61% (32/52) reported overall statistical significance when comparing different 

treatment regimes but found a limited attempt to stratify treatment. He found only two 

examples (2/52) [307, 359] that applied criteria to select treatment. However, in both these 

examples participants were excluded from the study, rather than treatment being stratified 

[22]. Analysing the most recent Cochrane review on patellofemoral and conservative 

interventions [24], none of the studies included appear to utilise any stratification or sub-

classification. Outside the methodological rigour of an RCT, some other studies discussed 

below in section 2.10.2 have attempted stratified, targeted treatments without exclusion.  

 

Foster et al. (2011) [358] provides alternative explanations for the lack of treatment efficacy 

and thus the need for stratification as applied to lower back pain. These explanations can 

also be applied in the context of PFP. Firstly, it may be that we just over estimate the 

effectiveness of our interventions. In PFP, intervention groups sample sizes vary from three 

to 65 participants [24] and collectively demonstrate wide confidence intervals suggesting 

studies are not adequately powered to detect a change. Secondly, the non-treatment effects 

of any intervention cannot be ignored. It is plausible that factors such as clinician empathy 

and support are more significant in pain-related conditions such as PFP that often presents 
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to a treating clinician in chronic state. Doménech et al. (2014) [118] have shown recently that 

individuals with PFP present with greater levels of catastrophization, which has been shown 

to be modulated better in other populations, by interventions providing emotional support 

and expectation management [360]. Finally, it has been postulated that those providing 

treatment in the RCTs are not competent or that the treatment itself is not appropriate for the 

desired outcome [361]. Lack et al. (2015) [198] highlight the inconsistencies within the 

programme used to train the hip and proximal components for PFP. They demonstrate the 

many studies employ inadequate treatment dosage in terms of the intensity and frequency of 

the prescribed exercises and that a great deal of variation exists in the literature. To address 

this discrepancy in exercise prescription parameters, Powers (2015) [281] recently 

presented a treatment paradigm that aimed to clinically stratify hip strength training. Three 

distinct phases have been identified anecdotally as: muscle activation, strengthening and 

movement training. This forms an algorithmic approach where each component must be 

considered and satisfied. This work, however, remains unpublished and is based purely on 

anecdotal evidence. It does raise the possibility though that other stratification approaches 

might be in use in current clinical practice without having been subject to the rigours of 

research.  

 

In support of future stratification, the last three International Patellofemoral Retreat 

consensus statements [14, 20, 115] have highlighted the need for diagnostic sub-grouping 

and subsequent treatment stratification within the overall PFP population. The belief is that 

better sub-grouping will allow better targeting of interventions. Within musculoskeletal 

medicine a number of sub-grouping method and designs can be employed. A series of 

studies by Kent and colleagues [362-364] have highlighted the difference in approaches for 

subgrouping in musculoskeletal medicine. The different approaches are detailed below in the 

context of PFP. 

 

2.10.1 Diagnostic subgroups 

Diagnostic subgrouping aims to group individuals based on the pathoanatomical 

characteristics and underlying mechanisms. Over the last 30 years, attempts have been 

made to classify and subgroup the presentation of PFP. These diagnostic sub-groupings are 

detailed in Table 2.9. Historically, classification focused more on patellofemoral disorders i.e. 

any condition affecting the patellofemoral joint. These earlier classification systems were 

primarily designed to guide surgical decisions and are often associated with recipe-like 

prescriptive rehabilitation protocols [22]. It was not until 2005, that Witvrouw et al. (2005) [18] 
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began to consider variations in the associated soft tissue with particular consideration of 

quadriceps activity and activation. More recently, groups have begun to propose 

classifications based on a greater consideration of the multifactorial nature of PFP. Both 

Smith et al. (2013) [365] and Keays et al. (2015) [366] have proposed broad classifications 

which consider important features such age, abnormal kinematics, muscle flexibility and 

psychosocial issues; with the latter even including patellofemoral osteoarthritis which, 

although the link is unproven, is widely considered to form a continuum with PFP [5]. Four 

recent studies have also begun to consider heterogeneity within single imaging feature such 

as patella lateralisation and patella tilt [181, 367, 368] and kinematic factors [243]. 
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Table 2.9: Classification systems of PFP 
 
 

 Study Classification 
Ficat  
1979 [369] 

• Chondromalacia of the lateral facet 
• Chondromalacia of the medial facet- 
• Central chondromalacia-characterized by a localization as a saddle 

straddling the median ridge with symmetrical extension onto the 2 
facets 

• Bipolar chondromalacia-involving the central portion of the 2 facets 
separated by a normal median ridge. 

•  Global or total chondromalacia-involving the totality of both facets 
Merchant  
1986 [370] 

• Isolated trauma 

• Repetitive trauma  

• Patellofemoral dysplasia  
o Lateral patella compression 
o Chronic subluxation of patellae 
o Recurrent dislocation of patellae 

• Chronic dislocation 

• Idiopathic chondromalacia patella 

• Osteochondritis dissecans 

• Synovial plicae 
Merchant  
1994 [371] 

• Trauma 
o Acute 
o Repetitive  
o Late effects 
o Chronic dislocation 

• Patellofemoral dysplasia  
o Lateral patella compression 
o Chronic subluxation of patellae 
o Recurrent dislocation of patellae 

• Idiopathic chondromalacia patella 
• Osteochondritis dissecans 
• Synovial plicae 
• Iatrogenic disorders 

Wilk et al 
1998 [372] 

• Excessive lateral patellar syndrome 
• Global patellar pressure syndrome 
• Patellar instability 
• Chronic subluxation 
• Patellar dislocation 
• Acute patellar dislocation 
• Recurrent patella dislocation 
• Lower extremity biomechanical dysfunction  
• Direct patella trauma 
• Soft tissue lesion 
• Overuse syndrome 
• Apophysitis  
• Osteochondritis dissecans 
• CRPS 
• Combined pathologies 



 

 

Chapter 2. Literature review  

 

65 

 

 

Probably the most comprehensive work on subgrouping to date, which has applied this 

diagnostic approach, has been undertaken by Selfe et al. (2016) [254]. In this multicentre 

feasibility study, 127 people with PFP were statistically sub-grouped using six clinically 

available tests which included quadriceps length, gastrocnemius length, isometric 

quadriceps strength, isometric hip abductor strength, total patellar mobility and foot posture 

Holmes & Clancy  
1998 [373] 

• Patellofemoral instability 
• Patellofemoral pain with malalignment 
• Patellofemoral pain without malalignment 

Witrouw et al  
2005[18] 

• Alignment 
o Absence of malalignment 
o Malalignment of the whole leg 
o Malalignment of PFJ 

• Muscular dysfunction 
o Quadriceps hypotrophy  
o Selective VMO hypotrophy 
o Altered VMO;VL reaction pattern  
o Muscle flexibility 

 
Naslund et al 
2006 [71] 

• Idiopathic AKP 
• Slow bone turnover  
• Diagnoses of pathology 

Sheehan et al 2010 
[181]; 

Harbaugh et al 
2010 [367] 

• MRI lateral maltrackers 
• MRI non-lateral maltrackers 

Dierks  
2011[243] 

• Knee valgus group 
• Hip abduction/adduction group 
• PFP other  

Pal et al 2012 
2012 [368] 

• MRI maltrackers  
• MRI Normal trackers  

Smith et al  
2013 [365] 

• Underlying rotational profile 
• Central tibiofemoral-patellofemoral features 
• Psychosocial issues 

Keays et al 2015 
[366] 

• Hypermobile group of young females group 
• Active older patients with muscle tightness group 
• Dynamic knee valgus group 
• PFOA group  

Selhorst et al 
2015 [374] 

• Fear avoidance group 
• Flexibility group 
• Functional malalignment group 
• Strengthening/ Functional progression group 

Selfe et al 2016 
[254] 

• Strong group (greatest hid abduction, greatest quadriceps strength 
and lowest patella mobility) 

• Weakest group (weakest quadriceps strength, weakest hip abductor 
and shortest quadriceps length) 

• Pronated feet group (highest FPI, highest patella mobility) 
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index. They identified three sub-groups: ‘strong’, ‘weak and tight’ and ‘weak and pronated’ 

(see  

Figure 2.9). The identification of a ‘strong group’ is perhaps most surprising considering that 

quadriceps weakness is accepted as both an associated [194] and a risk factor [53] for PFP . 

This further justifies the need for subgrouping, as the concern is that current treatment 

paradigms may have meant these people would have still received quadriceps strengthening 

as this forms a core component of most multimodal treatment approaches. These diagnostic 

groups are of high clinical utility, only requiring six simple clinical tests without the need for 

expensive equipment. However, due to this intentional clinical utility these subgroups are 

unable to consider factors related to patellofemoral structure [181, 367, 368] and kinematics 

[243] which require expensive equipment such as MRI and 3D motion analysis systems. The 

addition of structural and kinematic outcomes, however, may inform subsequent treatments, 

improve the understanding of the mechanism within these groups and refine these existing 

groups further. The imaging outcomes may also allow the identification of a group with 

osteoarthritic changes. A group with these changes would be considered as having a risk of 

developing future osteoarthritis and may lead to a shift in the focus of future trials.  

 

The Selfe et al. (2016) [254] study also uses unsupervised statistical tests e.g. cluster 

analysis and latent class analysis to identify their subgroups. Unsupervised tests, in contrast 

to supervised tests, do not work backwards from a outcome but instead explore relationship 

between characteristics using cross-sectional data [364]. This allows these subgroups to be 

later studied against a number of treatment targets, which is the proposed plan for Chapter 

5. However, because subgroups identified by unsupervised techniques are not derived from 

a clinical outcome they have sometimes been criticised as having limited clinical relevance 

[363]. This is because clinical interpretation is made post-hoc. Novel statistical methods 

have been recently published [364] that use a two–stage clustering approach which aims to 

address this problem and improve the clinical applicability. More detail is provided in Chapter 

5.  

 



 

 

Chapter 2. Literature review  

 

67 

 

Figure 2.9: Clinical subgroups. 
Reprinted with permission from author [375] 

 

 

2.10.2 Treatment effect modifier subgroups  

Treatment effect modifier subgroups aim to identify individuals most likely to respond 

positively to a particular intervention. A number of studies have used post hoc analysis to 

assess the response to treatment in PFP for tape [318], orthoses [350, 376] and to develop 

clinical predication rules for lumbopelvic manipulation [320] and taping [319]. These studies 

have yielded a number of viable factors that may predict likely response to treatment in PFP 

but only one study has used these findings to support the selection of suitable patients and 

to validate their use.  

 

An RCT by Mills et al. (2012) [340] used predictors, reported in section 2.9.4.3, from 

Vicenzino et al. (2010) [351] to select a specific sub-group of patients who received 

prefabricated foot orthoses. Mills et al. (2012) [340] selected patients if they presented with 

greater than 2 of the following features: i) greater than 10.96mm change in midfoot width 

between WB to NWB; ii) pain severity less than 53/100mm; iii) older than 25 years; and 

shorter than 165cm. They compared this stratified PFP group (n=19) with a PFP group 

(n=20) who received no intervention (wait and see policy). Those in the stratified PFP group 

reported being 79% improved or much improved on a global rating of change scale (GROC). 

This showed a significant difference between groups (p=0.008). Along with their high 

success rate, no individuals in the stratified group reported being worse. This compares 
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positively to the unfavourable recovery (no improvement) of 40-62% reported from previous 

RCTs in PFP without stratification [19, 377]. It does, however, depend on how success is 

defined for a GROC scale. 

 

Consideration of the interventional procedure in Mills et al. (2012) [340] does show, 

however, that stratification was not only based on the predictors. The procedure for selecting 

the orthoses was also determined by participants who based their decision on the level of 

comfort of the orthotic during running. This means that the outcome cannot be entirely 

attributed to stratifying based on predictors but may also be the result of self-stratifying for 

comfort. Furthermore, the study used greater than two predictors. Two predictors in the 

Vicenzino et al. (2010) [351] study was showed to have post-test probability of 60% ( for 

reporting a ‘marked improvement’ on a five point Likert scale) whereas three predictors 

showed a post-test probability of 85%. No justification is provided to why the greater number 

of predictors (i.e. > 3) did not form the selection criteria and thus aiming for a better post-

intervention outcome. One can assume that recruitment becomes more challenging when 

attempting to identify patients that satisfy at least three predictors. 

 

Further evidence from two studies of one-group pre-test-post-test design have shown that 

stratifying patients for gait retraining may optimise treatment outcomes. Both Noehren et al. 

(2010) [204] and Willy and Davis (2013) [205] selected patients with PFP who demonstrated 

abnormal hip mechanics. Both showed that a targeted intervention aimed at addressing gait 

retraining resulted in a significant reduction in pain of 86.5% [204]  and 90.5%[205] -

considerably greater than previous reported studies [278]. Critically this was only based on 

total of 20 runners with PFP across both studies and only provides level 4 evidence, 

however, they do demonstrate some positive signal and thus support the need for further 

research into stratified PFP treatment. 

 

Selhorst et al. (2015) [374] piloted a clinical-decision making algorithm within a similar one-

group pre-test-post-test design for the treatment of PFP that subgroups patients sequentially 

based on fear avoidance, flexibility, functional malalignment and strengthening/ functional 

progression. In essence, the algorithmic approach helps to control for individuals who are 

classified into more than one subgroup. Their results show that all participants (n=21) 

reported a clinically significant change from baseline to six week follow up in both AKPS and 

GROC scales [374]. The concern is that the algorithmic approach is still fundamentally 

multimodal in nature and thus may require an individual to adhere to long treatment 

regimens and/or be prescribed extensive exercise programmes. This impacts on the 
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adoption of the approach into a real life clinical setting where patient adherence and 

departmental economic pressures are known to be barriers [11]. Specifically, this clinical 

algorithm places a large emphasis on flexibility and fear avoidance (1st and 2nd components) 

neither of which, although considered anecdotally important, have strong evidence to 

support their use over other factors. Furthermore the strengthening component is the last 

component of the algorithm and determined by the limb symmetry index which may 

inherently fail to capture weakness in those with bilateral symptoms, which is typically 

reported as the most common presentation in PFP [254]. 

 

2.10.3 Prognostic factor subgroups  

Prognostic factors subgroups are symptoms, signs or other characteristics that indicate a 

subgroup outcome regardless of treatment [362, 363]. A number of prognostic analyses 

have been conducted within the PFP literature [19, 55, 301, 353]. They have demonstrated a 

number of factors that consistently influence future prognosis following predominantly 

multimodal treatment. To date, none of these studies or this subsequent information has 

been used to develop a classification system or to stratify treatment. This reason for this is 

unclear, however, it might be due to that fact that many of the features that have been 

identified e.g. duration of symptoms, baseline AKP etc. are non-modifiable so don’t translate 

to known treatment interventions. 

 

2.10.4 Which stratification approach? 

The decision on which subgrouping approach to take is largely dependent on the desired 

output; however, some important considerations should be made. Treatment effect modifier 

and prognostic groups are typically based on the prediction of one single outcome often for 

one single treatment [364]. Data from these types of design can be limited as predictors of 

pain may not represent the same for function. Diagnostic sub-groups, on the other hand, are 

determined from cross-sectional, baseline data and thus not dependant on outcome [364]. 

This approach lends itself for a range of treatments and outcomes to be targeted in later 

studies [364]. Theoretically it can be considered a ‘pre-phase’ before a treatment modifier or 

prognostic effects are investigated [363]. One concern with diagnostic groups is that they 

don’t link directly to clinical efficacy and derived groups may have little clinical relevance or 

clear treatment targets [364]. To ensure clinical relevance, it would appear appropriate that 

the selection of factors/ variables need to be determined by current evidence to be both 
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clinically modifiable and have a recognised treatment target e.g. quadriceps weakness will 

respond to strengthening regime etc. 

 

2.10.5 Summary  

Patellofemoral pain is a common musculoskeletal complaint in adolescents and young 

adults, and thought to be a precursor to future knee osteoarthritis. Despite a range of 

treatments being available, the current treatment paradigms appear limited, with over a third 

of people continuing with symptoms into later life. It has been proposed that positive 

treatment effects seen in some people with PFP are being cancelled out by negative effects 

observed in others, suggesting a need to identify subgroups within this population. This 

review shows that there is evidence to support a multitude of treatments for PFP and that 

stratifying these treatments appears the optimal way to achieve the best treatment outcomes 

for patients. 

 

The concept of subgrouping and stratification has been hailed as the “holy grail” of PFP 

research, however, the concept remains under-investigated. This review highlights some 

potential approaches to PFP subgrouping although there remains a lack of understanding of 

how the patellofemoral joint structure and lower limb kinematics may contribute to these 

subgroups. Knowledge of the prognosis of these PFP subgroups is also not understood and 

would help guide future research priorities. By aligning all known modifiable features 

highlighted in this review to identify PFP subgroups it is hoped that it will inform the future 

stratified treatment for people with PFP. 

 

The central hypothesis of this thesis can be summarised as follows: 

 
Improved subgrouping of people with PFP based on modifiable features will enable 

stratification and targeting of interventions 
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Chapter 3 - Which patellofemoral joint imaging features are 
associated with patellofemoral pain? Systematic review 

and meta-analysis 

This chapter describes a systematic review and meta-analysis of the imaging 

literature in patellofemoral pain. By controlling for confounding factors such as 

loading and knee flexion the chapter explores which imaging features are associated 

with patellofemoral pain. The results of this chapter have been published as:  

Drew BT, Redmond AC, Smith TO, Penny F, Conaghan PG. (2015). Which 

patellofemoral joint imaging features are associated with patellofemoral pain? 

Systematic review and meta-analysis. Osteoarthritis and Cartilage. 24(2), 224-236 

[378].  

 

3.1 Introduction  

In section 2.7, the reported importance of the structure and the function of the 

patellofemoral joint (PFJ) as an underlying cause of PFP has been described. PFP is 

believed to be caused by abnormal tracking and alignment of the patellofemoral joint 

(PFJ) leading to irritation of the subchondral bone, lateral retinaculum or 

synovium[34]. Recently, the PFJ was established as the most common compartment 

for knee OA [379, 380] and hence the structure of the PFJ has become the subject of 

increased interest. 

 

The PFJ has historically been visualised using X-rays in a static, non-weight bearing 

position. Over the last 20 years, imaging has revolutionised the understanding of the 

knee as a whole [381] with advances in structural visualisation, kinematic 

applications and loading capabilities [382]. A variety of modern imaging modalities 

have been used to assess PFJ structure [151], but no consensus exists on which of 

these image modalities should be used or the key features to image. 
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3.2 Aims 

This chapter aimed to establish which PFJ imaging features using a range of 

commonly available imaging modalities are associated with PFP compared to 

asymptomatic individuals. 

 

3.3 Methods 

3.3.1 Protocol and registration  

This systematic review was performed using a predetermined protocol in accordance 

with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses 

(PRISMA) statement [383]. The study protocol was registered with PROSPERO, 

registration number CRD 42014009503. 

 

3.3.2 Search strategy and study selection 

A systematic literature search of AMED, CiNAHL, Cochrane Central Register of 

Controlled Trials (CENTRAL), MEDLINE, PEDro, EMBASE and SPORTDiscus was 

undertaken from their inception to September 2014.  This search also included a 

secondary electronic search of unpublished and trial registry databases including 

OpenGrey, the WHO International Clinical Trials Registry Platform, Current 

Controlled Trials and the UK National Research Register Archive. The electronic 

search was complemented by hand searching the references of the retrieved articles. 

An example of the search terms used for Medline (also used for the other databases) 

are in Table 3.1. The search terms used were based on terms used by two recent 

Cochrane reviews [2, 24] with relevant terms added.   
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Table 3.1: An example search strategy from Medline 
 

 Search Term Results  
1 Arthralgia/ 

 42891 
 

2 Patella/ 16585 
3 ((patellofemoral or patello-femoral) adj joint).tw. 2795 
4 1 and (or/2-3) 428 
5 2 or 3 18392 
6 1 and 5 428 
7 Patellofemoral pain syndrome/ 1198 
8 ((Patello-femoral or patellofemoral) adj (pain or syndrome 

or dysfunction)).tw. 
2416 

9 ((lateral compression or lateral facet or lateral pressure or 
odd facet) adj syndrome).tw. 

44 

10 Chondromalacia patellae/ 814 
11 ((chondromal$ or chondropath$) adj (knee or patell$ or 

femoropatell$ or femoro-patell$ or retropatell$ or retro-
patell$)).tw. 

849 

12 or/5-10 20745 
13 "anterior knee pain".tw. 2231 
14 12 or 13 21904 
15 (radiograph* or radiogram* or radiology or roentgen* or x-

ray* or x ray* or xray*).tw. 
982319 

16 Magnetic Resonance Imaging/ 744267 
17 (MR imag* or magnetic resonance imag* or MRI).tw. 573363 
18 Computed tomography/ 495319 
19 (CT or computed tomogr* or CTA).tw. 713372 
20 Ultrasonography/ 262969 
21 (USS or ultrasound or ultraso* or sonogra*).tw. 629242 
22 15 or 16 or 17 or 18 or 19 or 20 or 21 3019543 
23 14 and 22 6013 
24 limit 23 to english language 5182 
25 limit 24 to humans  4670 
26 remove duplicates from 25 3231 
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3.3.3 Eligibility criteria 

Studies were selected using the titles and abstracts, independently screened by two 

reviewers (BD, FP). All potential studies had the full text retrieved and were screened 

against the eligibility criteria. Studies were eligible if: 1) they included human 

participants under 45 years diagnosed with PFP; 2) magnetic resonance imaging 

(MRI), computed tomography (CT), ultrasound (US) or x-ray (XR) was used to image 

the patellofemoral joint and local structures; 3) a comparison of PFP cases and a 

healthy control group was provided; 4) they were published in English. 

 

As discussed in section 2.2, the nomenclature around PFP remains ambiguous. PFP 

was determined using published clinical criteria taken from a recent Cochrane review 

[24]. Studies that included participants diagnosed with, but not restricted to, PFP, 

anterior knee pain or chondromalacia patellae were all considered. Despite efforts to 

standardise the terminology [14], chondromalacia patellae is still used 

interchangeably with PFP.  If a study included participants with arthroscopically 

confirmed chondromalacia patellae outside the currently accepted clinical 

presentation of PFP [24] then these studies were excluded. Studies that may come 

under the umbrella term of anterior knee pain including conditions such patella 

tendinopathy and patella dislocation were also excluded if the PFP could not be 

analysed separately. 

 

The extraction of data was initially piloted by two reviewers before the formal 

extraction was undertaken. Two reviewers then used a standardised, piloted form to 

extract data which included: a) study design and methodology; b) patient 

demographics; c) imaging procedure; d) imaging outcomes; e) patient reported 

outcomes; f) outcome date results. Discordance in opinion, regarding eligibility, data 

extraction or quality assessment, was resolved by a third reviewer.   

 

3.3.4 Quality assessment  

The methodological quality of the included studies was assessed by the same two 

reviewers. The Downs & Black Checklist [384] was selected as the preferred quality 

assessment tool. The Downs & Black checklist has been highlighted as one of the 

most comprehensive quality assessment tools for non-randomised studies [385].The 
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tool has established high reliability and validity [384] and is considered relatively 

user-friendly [385]. An alternative choice of tool, would have been the Newcastle-

Ottawa Scale (NOS) [386] which was recommended for cohort and case control 

studies in a recent systematic review of all quality assessment tools [387]. However, 

at the time of the conception of the review, there were concerns about the inter-rater 

reliability of the NOS based on Hartling et al. (2013) [388] who reported only low 

agreement between raters (k=0.29, 95% CI0.10, 0.47) .  

 

The Downs & Black checklist was modified for this chapter in response to its criticism 

that it is time consuming and that not all the criteria are applicable to case-control 

studies [389]. The original 27 items were reduced to 17 items as described 

previously [390] (Table 3.2). Items not applicable for non-interventional studies were 

removed. During assessment, if it was unclear whether an item was satisfied then 

UTD (unable to detect) was added to the form and that item was given a score of 

zero. All included studies were classified using the following quality rating bandings 

which have been used previously in conjunction with Downs & Black checklist [391]: 

low (< 33.3%), moderate (33.4 -66.7%) and high (≥66.8%)[392].  
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Table 3.2: Modified Downs & Black Checklist  
 

 Reporting Yes Partial No Score 
1 Is the hypothesis /aim / objective of the study clearly described?  1  0  
2 Are the main outcomes to be measured clearly described in the Introduction or Methods section?  1  0  
3 Are the characteristics of the patients included in the study clearly described?  1  0  
4 Are the interventions of interest clearly described? 1  0  
5 Are the distributions of principal confounders in each group to be compared clearly described? 2 1 0  
6 Are the main findings of the study clearly described? 1  0  
7 Does the study provide estimates of the random variability in the data for the main outcomes? 1  0  

8 Have the actual probability values been reported (e.g. 0.035 rather than <0.05) for the main outcomes except 
where the probability value is less than 0.001? 

1  0  

 External validity     

9 Were the subjects asked to participate in the study representative of the entire population from which they were 
recruited?  

1  0  

10 Were the subjects who were prepared to participate representative of the entire population from which they 
were recruited? 

1  0  

 Internal validity     
11 Was an attempt to blind those measuring the main outcome? 1  0  
12 If any of the results of the study were based on “data dredging” was this made clear? 1  0  
13 Were the statistical tests used for the main outcomes appropriate? 1  0  
14 Were the main outcome measures used accurate (valid and reliable)? 1  0  
15 Were the case and controls recruited from the same population? 1  0  
16 Was there adequate adjustment for confounding in the analyses from which the main findings were drawn? 1  0  
17 Did the study have sufficient power to detect a clinically important effect? 1  0  
  Total /18  
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3.3.5 Data analysis 

Using the extraction tables the heterogeneity of the included studies was assessed. 

A pooled meta-analysis was conducted if there were no heterogeneity between 

studies in relation to population, assessment procedure or outcome measurement 

method. Meta-analyses compared case and control groups for each PFJ feature 

calculating the standardised mean difference (SMD). SMD was categorised as small 

(SMD ≥ 0.2), medium (SMD ≥ 0.5) and large (SMD ≥ 0.8) [139].  Statistical 

heterogeneity was assessed using I-squared (I2) and Chi-squared tests (X2). When I2 

was greater than 20% and X2 less than p=0.10, a random-effects model was used. 

When I2  was less than 20% and X2  was greater than p=0.10, a fixed-effect model 

was adopted. When substantial heterogeneity was present, a narrative synthesis of 

the literature was presented. Both the narrative synthesis and the meta-analysis 

were interpreted using a best evidence synthesis [393] (Table 3.3) determined by the 

results of the risk-of-bias assessment and the methodological quality of the included 

studies [394, 395].  
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Table 3.3: Best Evidence Synthesis [396] 
 

1 Strong evidence is provided by generally consistent findings in multiple high-
quality cohort studies. 

2 Moderate evidence is provided by general consistent findings in one high-quality 
cohort study and two or more high quality case–control studies or in three or more 
high-quality case–control studies. 

3 Limited evidence is provided by (general consistent) findings in a single cohort 
study, in one or two case–control studies or in multiple cross-sectional studies. 

4 Conflicting evidence is provided by conflicting findings (i.e. <75% of the studies 
reported consistent findings). 

5 No evidence is provided when no studies could be found. 
 

 

3.4 Results   

3.4.1 Study selection 

Figure 3.1 summarises the results of the search strategy. The search identified 5,290 

papers, with 3,852 after duplications were removed. Following screening of the title 

and abstract, 3,702 of these were excluded. Subsequent full text assessment 

identified 46 papers describing 40 studies. Five studies [159, 163] [65, 170] [397-399] 

[66, 68] [294, 400] reported the same study population in more than one paper. 

These papers described different outcomes so were analysed independently, 

although the risk of bias assessment was conducted on only 40 studies to prevent 

the overestimation of effects [401].
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Figure 3.1: Study selection flow diagram 
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3.4.2 Study characteristics  

Study characteristics are presented in Table 3.4. Of the 40 studies included, 22 used 

MRI [65, 66, 68, 148, 159, 160, 163, 165, 166, 168-170, 173, 179, 256, 294, 397-

400, 402-409], of which five included kinematic MRI [148, 179, 404, 408, 409] , eight 

used CT [410-417], six used US  [82, 216, 228, 359, 418, 419] and five used XR  

[413, 420-423]. The review included 1,043 PFP subjects and 839 control subjects. 

The mean age was 27.0 years (range: 14 -40.7 years), with 74.3% women in the 

case group and 69.0% in the control group. The duration of symptoms was reported 

in only 10 of the 40 studies [65, 82, 160, 170, 294, 359, 400, 402, 408, 413, 416, 

422] and ranged from two [160] to 168 months [416].  All except two studies 

presented cross-sectional data [148, 166]. Pain was established in the PFP cohort 

most commonly from reproducible pain in greater than two functional activities [65, 

148, 159, 160, 163, 165, 168, 170, 179, 216, 256, 359, 397-400, 402, 404, 418, 419, 

424]. This was further quantified by five studies that only recruited participants with a 

Visual Analogue Scale (VAS) score greater than 3/10 on these provocation activities 

[65, 160, 165, 170, 179, 256]. A further four studies used the Anterior Knee Pain 

(also known as Kujala scale) score to quantify pain and dysfunction of their PFP 

cohort [148, 169, 400, 402]. In ten studies it was unclear how pain was measured 

[82, 173, 403, 407, 410, 411, 413, 415, 416, 421]. Imaging reliability data was 

presented in 43% (20/46) of the included studies [68, 160, 165, 169, 170, 179, 359, 

398-400, 402, 404, 406, 412, 418, 423-425] (Table 3.5) and most of these studies 

used a single observer. Pooling of reported intraclass correlation coefficients (ICC) 

data was available for MRI bisect offset, patella tilt, patellofemoral contact area, 

Insall-Salvati ratio and sulcus angle showing mean ICCs of 0.92, 0.85, 0.90, 0.96, 

0.82 respectively. Inter -observer reliability data was only presented in seven studies 

[148, 166, 169, 400, 412, 420, 423]. 

 

At the time of writing this review (up to September 2014) the selection of studies 

predominantly focused on malalignment. The update of the literature in section 7.2.1, 

however, shows how semi-quantitative MRI outcomes are becoming more commonly 

investigated. 
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Table 3.4: Sample sizes and population characteristics for each paper 
 

Study Study Design Follow 
up 

Country of 
origin  

e.g. UK, USA 
Population  

e.g. students, athletes Sample size Age 
(years) Female % 

Mean 
Duration 

of 
symptoms 
(months) 

Aglietti et al 
1983[421] Case-control No USA UTD Case = 53 

Control = 150 22 Case = 60.3 
Control = 50 UTD 

Bretcher & Powers 
2002a[159] Case-control 

 
No 
 

USA 
 

Orthopaedic referrals 
 

Case = 10 
Control = 10 
 

34.6 
 

Case = 50 
Control = 50 
 

UTD 
 Bretcher & Powers 

2002b[163] 
Botanlioglu et al 
2013[216] Case-control No Turkey UTD Case = 11 

Control = 22 29.5 Case = 100 
Control = 50 UTD 

Callaghan & 
Oldham 2004[359] Case-control No UK Orthopaedic & Rheumatology 

referrals 
Case = 57 
Control = 10 32.6 Case = 61 

Control = 60 34 

Chen & Powers 
2014 
[256] 

Case-control No USA Orthopaedic referrals & University 
students 

Case = 20 
Control = 20 27 Case =100 

Control = 100 UTD 

Chen et al 
2012[418] Case-control No Taiwan Orthopaedic referrals Case = 26 

Control = 26 27.8 Case = 81 
Control = 81 UTD 

Chiu et al 2012[166] Case-control 8 weeks Hong Kong UTD Case = 9 
Control = 6 33.1 Case = 55.6 

Control = 50 UTD 

Connolly et al 
2009[168] Case-control No Canada Sports Medicine Physician 

referrals 
Case = 10 
Control = 10 27 Case = 100 

Control = 100 UTD 

Draper et al 
2006[169] Case-control No USA UTD Case = 34 

Control = 16 28.8 Case = 64.7 
Control = 50 UTD 

Draper et al 
2009[148] Case-control No USA Orthopaedic & Sports Medicine 

referrals 
Case = 23 
Control = 13 29.4 Case = 100 

Control = 100 UTD 

Eckhoff et al 
1994[415] 

Case-control No USA Failed conservative management Case = 20 
Control = 20 UTD UTD UTD 
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Farrokhi et al 
2011a[170] Case-control s 

 
No 
 

USA 
 

UTD 
 

Case = 10 
Control = 10 

27.4 
 

Case = 100 
Control = 100 
 

87.6 

 Farrokhi et al 
2011b[65] 
Felicio et al 
2011a[397] 

Case-control 

 
 
No 

 

Brazil UTD 
Case = 19 
Control = 20 

 
22.5 Case = 100 

Control = 100 
UTD 

 

Felicio et al 
2012b[399] 
Felicio et al 
2014c[398] 
 
Guzzanti et al 
1994[410] Case-control No Italy Adolescents Case = 27 

Control = 20 14 Case = 77.8 
Control = 50 UTD 

Haim et al 2006 
[422] Case-control No Israel Military soldiers Case = 61 

Control = 25 21.8 Case = 0% 
Control = 0% 19 

Harman et al 
2002[409] Case-control No Turkey UTD Case = 17  

Control = 10 29.4 Case 0% 
Controls 0% UTD 

Ho et al 2014[68] Case-control No  
USA UTD Case = 10 

Control= 10 25.5 Case = 100 
Control = 100 UTD Ho et al 2014b[66] 

Joensen et al 
2001[403] Case-control No Denmark Athletes Case = 24 

Control = 17 21.6 Case =37.5 
Control =35.3 UTD 

Jones et al 
1995[414] Case-control No USA Failed conservative management Case = 40 

Control = 10 UTD Case = UTD 
Control = 50 UTD 

Kim et al 2014[423] Case-control No South Korea Orthopaedic referrals Case =51 
Control =44 27.4 Case = 47 

Control = 50 UTD 

Laprade & Culham 
2003[420] Case - control No Canada Military 

Case =33 
Control = 33 30.9 Case = 33.3 

Control = 33.3 UTD 

Jan et al 2009[424] Case-control No Taiwan Orthopaedic referrals Case = 54 
Control = 54 40.7 Case = 75.9 

Control = 75.9 UTD 

Metin Cubuk et al 
2000[413] Case-control No Turkey Orthopaedic referrals Case = 42 

Control = 40 27 Case = 100 
Control = 100 11 

Muneta et al 
1994[412] Case-control No Japan UTD Case = 60 

Control = 19 21 Case = 100 
Control = 100 UTD 
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Pal et al 2013 [402] Case-control No USA University Orthopaedic and Sport 
Medicine referrals 

Case = 37 
Control = 15 29.7 Case = 54.1 

Control =53.3 3 - 132 

Pattyn et al 
2011[230] Case-control 

 
No 
 

Belgium 
 

Hospital Orthopaedic Surgeon 
referrals 
 

Case = 46 
Control = 30 

23.3 
 

Case = 54.3 
Control = 56.7 
 

17.37 
 Pattyn et al 

2013c[294] 

Pinar et al 
1994[417] Case-Control N/A Turkey UTD Case = 26 

Control = 14 29 Case = 78.5 
UTD 
 
 

Powers 2000b[404] Case-control NAD USA Orthopaedics referrals & university 
students 

Case = 23 
Control = 12 27.9 Control = UTD UTD 

Ribeiro et al 
2010[405] Case-control NAD Brazil UTD Case = 12 

Control = 12 22.5 Case = 100 
Control = 100 UTD 

Salsich & Perman 
2007[165] Case-control No USA UTD Case = 21 

Control = 21 25 Case = 76.2 
Control = 66.7 UTD 

Salsich & Perman 
2013[160] Case-control No USA Multiple sources – including 

community dwelling population 
Case = 27 
Control = 29 25.6 Case = 77.8 

Control = 65.5 > 2 

Schoots et al 2013 
[82] Case-control No Netherlands Sports medicine & Orthopaedic 

referrals 
Case = 10 
Control = 10 29.3 Case =60 

Control = 60 > 6 

Schutzer et al 1986 
[416] Case-control No USA UTD Case = 24 

Control = 10 19 Case = 91.7 
Control = 70 3 - 168 

Souza et al 2010 
[179] 
 

Case-control No 
 USA Orthopaedic referrals & community 

dwelling population 
Case = 15 
Control = 15 29.9 Case = 100 

Control = 100 UTD 

Taskiran et al 1998 
[411] Case- control No Turkey UTD Case = 10 

Controls = 9 27 Case= 100 
Control = 88.9 UTD 

Teng et al 2014 
[406] Case-control No USA UTD Case = 18 

Control = 18 27.3 Case = 100 
Control = 100 UTD 

Thuiller et al 2013 
[173] Case-control No USA Sports Medicine referrals Case = 20 

Control = 10 31.3 Case = 60 
Control = 50 UTD 

Tuncyurek et al 
2010 [407]  Case-control No Turkey Orthopaedics referrals 

Case = 23 
Control = 9 31.3 Case = 52 

Control = 78 UTD 
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Wilson et al 2009 
[419] Case-control No USA UTD Case= 7 

Control = 7 30.6 Case = 71.4 
Control = 57.1 UTD 

Witzonzi & Goraj 
1999 [408] Case - control No Poland UTD Case = 10 

Control = 10 19.1 Case = 100 
Control = 80 8 to 60 

UTD = unable to detect 
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Table 3.5: Imaging methods, outcome measures and results 
 

Study Imaging 
procedure 

Imaging 
position & 
knee angle 

Imaging 
outcome 

Reliability Baseline Results Post-intervention 
results 

Aglietti et al 
1983[421] 

XR 
 
A/P & lateral 

Supine 
 
30-45  

•Patella height (Insall-
Salvati method) 
• Patella height 
(Blackburne & Peel 
method) 
• Sulcus angle  
•Congruence angle  

UTD Insall-Salvati 
Female PFP 1.08 (0.09) vs. Controls 1.06 (0.12) 
Male PFP 1.11 (0.08) vs. Controls 1.01 (0.09); * 
All PFP 1.08 (0.09) vs. Controls 1.04 (0.11); * 
 
Blackburne & Peel 
Female PFP 0.90 (0.12) vs. Controls 0.97 (0.12) 
Male PFP 0.93 (0.08) vs. Controls 0.94 (0.15) 
All PFP 0.91 (0.11) vs. Controls 0.95 (0.13) 
 
SA (°) 
Female PFP 139 (5) vs. Controls 
Males PFP 140 (3) vs. Controls; P<0.005 ** 
All PFP 139 (4) vs. Controls 137 (6); p<0.01* 
 
CA (°) 
Female PFP 2 (11) vs. Controls -10 (6) * 
Male PFP 1 (4) vs. Controls -6 (6); ** 
All PFP -2 (9)  vs. Controls -8 (6); * 
 
*p<0.001 
**p<0.005 

N/A 

Bretcher & Powers 
2002a[159] 

MRI  
 
1.5T 
 
3D SPGR 

Supine 
 
•0° 
•20° 
•40° 
•60° 

•Peak PFJ stress 
•PFJ stress time 
integral 
•peak PFJRF 
•PFJRF time integral  
•mean utilised contact 
area  

UTD  PFJ stress integral (MPa % stance) 
ascent PFP 88.6% vs. Controls 100%  
descent PFP 159.3% vs. Controls 140.6 
 
peak PFJRF (N/kg) 
ascent PFP 25.0 vs. Control 37.3* 
descent PFP 11.9 vs. Controls 14.675; p >0.05 
 
PFJRF time integral (N/kg % stance phase) 
ascent PFP 288.2 vs. Controls 501.9; * 
descent PFP 464.4 vs. Controls 605.9 
 
Mean utilised contact area ( mm2) 
ascent  PFP 250.16 vs. Controls 275.53 

N/A 
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descent PFP 261.46 vs. Controls 276.73 
 
*p<0.05 
NB. Data extrapolated from graphics  

Bretcher & Powers 
2002b[163] 

     
•Peak stress 
•PFJ stress time 
integral 
•PFJRF time integral  
•Mean area 

 Peak PFJ stress (Mpa) 
PFP 5.57 (3.56 vs. Controls 1.97 (0.40) 
 
PFJ stress time integral (Mpa % GC) 
PFP 51.42 (21.94) vs. Controls 22.36 (3.87); * 
 
PFJRF peak force (N/kg -1%GC) 
PFP 7.46 (1.25) vs. Controls 9.51 (1.24); * 
 
PFJRF force-time integral (N/kg -1%GC) 
PFP 84.58 (13.83) vs. Controls 107.21 (14.97);  
 
Mean contact area (mm2) 
PFP 138.31 (60.38) vs. Controls 225.53 (24.25) * 
 
*p<0.05 

N/A 

 
Botanlioglu et al 
2013[216] 

US 
 
Shear Wave 
Elastography 
 
4-15MHz 

Long sitting 
 
0° 

Contraction capacity 
and Contraction ratio 
of  
 
-VL 
-VL at 30 hip 
abduction 
-VMO 
-VMO at 30 hip 
abduction 

UTD Contraction capacity (kPa) 
VL(Neutral) 
Right 
Rest - PFP 13.8 ± 4.2 vs. Controls 16.5± 2.6;  
Cont- PFP 80.6± 26.0 vs. Controls 113.7± 53.2 
Left  
Rest - PFP 15.8± 3.3 vs. Controls 13.9 ± 3.7 
Cont - PFP 98.2±34.3 vs. Controls 122.6±58.1 
VL (30° hip abduction) (kPa) 
Right  
Rest PFP 13.7 ± 6.1 vs. Controls 16.9±4.5;  
Cont PFP 98.5 ± 34.6 vs. Controls 125.5 ± 51.6;  
Left  
Rest PFP 13.3 ± 4.1 vs. Controls 14.6 ± 3.8; p  
Cont PFP 92.2 ± 38.5 vs. Controls 113.7± 42.0;  
 
VMO (Neutral) (kPa) 
Right-  
Rest PFP14.2 ± 4.0 vs. Controls 11.4 ± 3.7;  
Cont PFP 116.2± 45.2 vs. Controls 139.1±47.6;  
Left 
PFP 13.0±3.3 vs. Controls 12.1±3.5;  
Cont PFP 103.9±39.3 vs. Controls 157.6±31* 
 

 
 

N/A 
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VMO (30°) (kPa) 
Right  
Rest PFP 12.1±3.6 vs. Controls 12.4±5.1;  
Cont PFP101.8±28.3 vs. Controls 160.6 ± 46.1 *  
Left  
Rest PFP 11.6±3.7 vs. Controls 9.6 ±2.3;  
Cont PFP 102.9 ±41.1 vs. Controls 168.3± 37.3* 
 
Contraction ratio (VL & VMO) (kPa) 
VL (Neutral) 
PFP 5.32± 2.48 vs Controls 7.30 ± 4.93;  
VL (30) 
PFP 7.41 ± 5.45 vs Controls 7.03 ± 3.08 
VMO (Neutral) 
PFP 7.60±3.78 vs Controls 12.52 ±4.94; * 
VMO (30) 
PFP 8.72 ±5.35 vs Controls 15.91 ± 7.54; * 
 
*p<0.05 

Callaghan & 
Oldham 2004[359] 

US 
 
Static B 
Compound 

Mid way between 
lateral joint line & 
greater 
trochanter 
 
0° 

CSA of quadriceps Intra-observer 
 
ICC 0.99; SEM 
0.29cm2 

CSA of quadriceps (cm2) 
Female PFP 16.82 (4.6) vs. 18.07 (5.5) 
Male PFP 20.03 (3.8) vs. 23.07 (2.3) 
Total PFP 18.06 (4.6) vs. 20.08 (5.1) 
 

 
N/A 

Chen & Powers 
2014[256] 
 

MRI 
1.5T 
 
Sagittal, frontal  & 
axial 

Supine – 
unloaded 
&loaded 
 
20,40, 60° 

• Resultant PFJR 
• Peak 

anterior/posterior 
force 

• Peak medial/lateral 
force 

• Peak 
superior/inferior 
force 

UTD Resultant PFJRF 
Walking = PFP 7.8 (1.2) vs. Control 9.8 (1.3) 
Stair descent = PFP 21.9 (2.9) vs. Controls 28.4 (3.2) 
Stair ascent =PFP 29.8 (3.0) vs. Controls 35.7 (3.1) 
Running= PFP 44.2 (5.0) vs. Controls 54.8 (5.3)  
 
Posterior force  
Walking  = PFP 6.4 (1.8) vs. Controls 8.0 (2.1) 
Stair descent = PFP 20.9 (2.3) vs. Controls 27.7 (2.9) 
Stair ascent = PFP 28.2 (3.1) vs. Controls 34.5 (4.1) 
Running = PFP 41.2 (4.2) vs. Controls 51.6 (4.7) 
 
Superior force 
Walking = PFP 5.1 (1.0) vs. Controls 6.7 (1.4) 
Stair descent = PFP 5.1 (1.3) vs. Controls 6.9 (1.1) 
Stair ascent = PFP 6.5 (1.7) vs. Controls 8.9 (2.1) 
Running = PFP 15.0 (2.4) vs. Controls 18.9 (3.0) 
 
Lateral force  

N/A 
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Walking = PFP 1.8 (0.6) vs. Controls 1.6 (0.8) 
Stair descent = 7.2 (1.5) vs. Controls 3.3 (1.2) 
Stair ascent= 7.8 (1.6) vs. Controls 4.1 (1.3) 
Running = 8.0 (1.4) vs. Controls 3.8 (1.2) 

Chen et al 
2012[418] 

US 
 
M-mode 200Hz 

Supine 
 
Intersection of M 
line and the 
upper margin of 
the patella 

• Electrical mechanical 
delay (EMD) 

Intra-observer 
 
VMO EMD (ICC 
0.81) 
 
VL EMB (ICC 
0,92) 

EMD (ms) 
VMO PFP (37.3 +/- 0.7) vs. Control (25.9 +/- 0.7) * 
VL PFP (18.4 +/- 0.5) vs. Control (25.1 +/- 0.5) * 
 
p<0.001* 

N/A 

Chiu et al 
2012[166] 

MRI 
 
1.5T (axial T1 
weighted)  
 
Or  
 
3.0T (fast supplied 
gradient echo) 
 

Supine 
 
20° 

• PFJ contact area 
• Patellar tilt angle 

Intra-observer 
PFJ contact area 
(ICC 0.91) 
 
Patella tilt (0.85) 
 
Inter-observer  
 
ICC 0.78 
 
 
 

PFJ Contact area (cm2) 
PFP (187,43 ± 51.96 ) vs Controls (217,65 ± 75.24)  
 
Patella tilt angle (°) 
PFP (16.61± 7.52) vs Controls (16.17 ± 6.52)  

PFJ Contact area pre/post 
difference  (cm2) 
• PFP (58.89 ± 17.53) vs. 
Controls (17.30 ± 26.77); p< 
0.001 
 
Patella tilt angle pre/post 
difference (°) 
• PFP (0.94 ± 7.41) vs. 
Controls (3.16 ± 3.22); p= 0.5 
 
 
Kujala Patellofemoral Score 
• PFP baseline (70.6 ± 5.46) 
vs. PFP post-training (83.8 ± 
7.01); p <0.001 
 
Numeric pain rating scale  
• PFP baseline (6.8 ± 0.67) vs. 
PFP post-training (2.8 ± 1.64); 
p< 0.001 

Connolly et al 
2009[168] 

MRI 
 
3.0T 
 
Sagittal 

Supine 
Loaded 
 
0,15,30 & 45° 

•Contact area 
magnitude 
•Tracking 
•Medial/lateral contact 
area 
•Patella Cartilage 
thickness 
•Congruence index 
•Shape 

UTD Mean total contact area  (mm2) 
15 - PFP 231.3 (49.6) vs. Control 187.2 (31) 
30 - PFP 230.6 (40.3) vs. Controls 236.8 (43.4) 
45 - PFP 334.5 (58.9) vs. Controls 350 (49.6) 
 
Mean medial contact area (mm2) 
15- PFP 56.2 (40.3) vs. Controls 25 (27.9) 
30- PFP 62.4 (40.3) vs. Controls 65.5 (31.1) 
45- PFP 115 (18.7) vs. Controls 115.5(21.7) 
 
Mean lateral contact area - not available 
 

N/A 
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Proximal/distal migration (mm) 
15 - PFP -7.92 (1.6) vs. Controls -8.56 (2.0) 
30- PFP -7.04 (0.88) vs. Controls -6.96 (2.8) 
45- PFP -2.16 (0.96) vs. Controls -2.24 (2.4) 
 
Congruence index (mm-1) 
15 - PFP 0.105 vs. Controls 0.122 
30- PFP 0.115 vs. Controls 0.114 
45 - PFP 0.094 vs. Controls 0.091 
 
Patella Cartilage thickness (mm) 
15 - PFP 2.87 (7.29) vs. Controls 2.608 (4.3) 
30 - PFP 2.84 (4.86) vs. Controls 3.0 (5.4)  
45 - PFP 3.5 (6.75) vs. Controls 3.5 (3.51) 
 
 
NB. Data extrapolated from graphics 

Draper et al 
2006[169] 

MRI 
1.5T 
3D SPGR 

Supine 
0° 

•Patella mean 
cartilage thickness 
• Femoral mean 
cartilage thickness 
• Patella peak 
cartilage thickness 
• Femoral peak 
cartilage thickness 

Intra-observer 
 
Patella cartilage 
(CV 2.8%) 
 
Femoral cartilage 
(CV 2.4%) 
 
Inter-observer 
 
Patella cartilage 
(CV 0.2%) 
Femoral cartilage 
(CV 5.9%) 

Peak patella cartilage thickness (mm) 
Male PFP (n=12) vs. Male controls (n=8) 
Superior - PFP 4.21 (3.61-4.93) vs. Controls 5.15 (3.91-6.39); 
p<0.01* 
Middle - PFP 5.18 (4.24-6.00) vs. Controls 6.06 (4.70-7.51): 
p<0.01* 
Inferior - PFP 4.30 (3.39 -5.26) vs. Controls 4.33 (3.24-5.30) 
 
Mean patella cartilage thickness  (mm) 
Female PFP vs. Female Controls  
Superior - PFP 3.00 (2.51 -3.51) vs. Controls 2.8 (2.19 -3.34) 
Middle - PFP 3.97 (3.05-4.72) vs. Controls 3.83 (2.97 - 4.66) 
Inferior- PFP 2.80 (2.03-3.51) vs. Controls 2.52 (1.89 - 3.29) 
 
Mean femoral cartilage thickness ( mm)s 
 
Male PFP (n=12) vs. Male Control (n=8) 
Superior- PFP 1.58 (1.08 - 2.05) vs. Controls 1.72 (1.25 -2.13) 
Middle- PFP 2.63 (2.10-3.03) vs. Controls 2.32 (1.92-2.85) 
Inferior- PFP 3.18 (2.75-3.69) vs. Controls 3.05 (2.56-3.58) 
 
Female PFP (n=22) vs. Female Control (n=8) 
Superior - PFP 1.36 (0.93 - 1.85) vs. Controls 1.39 (1.06 - 1.84) 
Middle- PFP 2.00 (1.65-2.59) vs. Controls 1.97 (1.62 -2.49) 
Inferior PFP 2.46 (2.06-3.03) vs. Controls 2.36 (1.60 -3.06) 
 
NB. Data extrapolated from graphics 

N/A 
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Draper et al 
2009[148] 

Kinematic MRI 
 
0.5T Open 

90% WB 
 
0 to 60° 

•Bisect offset 
•Patella tilt angle 

 
Intra-observer 
 
Bisect offset (CV 
3%; RMS 4%) 
 
Patella tilt ( 2%’ 
RMS 3%) 
 

PTA (°) 
0° PFP 9.75 (7.0) vs. Controls 4.25 (2.8) 
20° PFP 8.75 (6.9) vs. Controls 4.875 (2.0) 
40° PFP 5.0 vs. Controls 4.75 
60° PFP 3.75 vs. Controls 4.0 
 
BO (%) 
0° PFP 70% (10.1) vs. Control 54.5% (4.8) 
20° PFP 66.3% (10.8) vs. Controls 55% (3.1) 
40° PFP 64.5% (9.5) vs. Controls 55.5% (3.5) 
60°PFP 62.5% (9.8) vs. Controls 57.6% (5.3) 
 
NB. Data extrapolated from graphics 

Patellofemoral stabilising 
brace  
 
PTA (°) 
0° PFP 6.1 (6.7 
20° PFP 6.1 (6.4) 
40° PFP 5.0 (5.8) 
60°- PFP 3.8 (5.6) 
 
BO (%) 
0° PFP 63.7 (9.4) 
20° PFP 62.7 (7.7) 
40° PFP 59.7 (7.4) 
60°- PFP 60.6 (6.9) 
 
Patellofemoral sleeve 
 
PTA (°) 
0° PFP 8.9 (6.1) 
20° PFP 8.9 (4.9) 
40° PFP 5.5 (4.4) 
60°- PFP 3.6 (3.6) 
 
BO (%) 
0° PFP 66.3 (8.9) 
20° PFP 65.6 (7.9) 
40° PFP 61.7 (5.9) 
60°- PFP 61.7 (5.3) 
 
NB. Data extrapolated from 
graphics 

Eckhoff et al 
1994[415] 

CT Proximal to 
intercondylar 
notch 

•Femoral anteversion 
•Lateral patellofemoral 
angle 
•Sulcus angle 
•Congruence angle 

 Femoral anteversion 
PFP 23° (±12) vs Controls 18° (±7); p<0.01 * 
 
NS difference between PFP and controls in femoral anteversion 
and correlation with patella orientation [no data available] 

N/A 

Farrokhi et al 
2011a[170] 

MRI 
3.0T 
3D SPGR 

25% WB 
 
0,15 & 45° 

•Hydrostatic pressure 
• Octahedral shear 
stress 

UTD Peak patella hydrostatic pressure 
Stress @ 15°- PFP 2.0 (0.5) vs. Control 1.3 (0.5) * 
Stress @ 45°- PFP 3.2 (0.8) vs. Control 2.7 (0.7)  
All angles - PFP 2.6 (2.2-2.9) vs. Control 2.0 (1.7-2.3) * 
 
Mean patella hydrostatic pressure  
Stress @ 15° - PFP 0.8 (0.2) vs. Control 0.6 (0.2) * 
Stress @ 45° PFP 1.2 (0.3) vs. Control 0.9 (0.2)* 

N/A 
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All angles - PFP 1.0 (0.9 - 1.1) vs. Control 0.8 (0.6-0.9); * 
 
Peak femur hydrostatic pressure 
Stress @ 15° - PFP 2.1 (0.5) vs. Control 1.4 (0.4); * 
Stress @ 45° - PFP 3.7 (1.2) vs. Control 3.0 (0.6);  
All angles  - PFP 2.9 (2.5-3.3) vs.  Control 2.2 (1.8-2.6)* 
 
Mean femur hydrostatic pressure 
Stress @ 15° - PFP 0.8 (0.1) vs. Control 0.6 ( 0.1)* 
Stress @ 45° - PFP 1.3 (0.3) vs. Control 1.1 (0.2)  
All angles - PFP 1.1 (0.9-1.2) vs. Control 0.9 (0.7-1.0) * 
 
Peak patella octahedral shear stress 
Stress @ 15° - PFP 0.6 (0.2) vs. Control 0.3 (0.1)* 
Stress @ 45° - PFP 1.3 (0.7) vs. Control 0.9 (0.3) 
All angles - PFP 1.0 (0.8-1.1) vs Control 0.6 (0.4-0.8); p<0.05* 
 
Mean patella octahedral shear stress 
Stress @ 15° - PFP 0.4 (0.1) vs. Control 0.2 (0.2); p<0.05* 
Stress @ 45° - PFP 0.6(0.1) vs. Control 0.5 (0.1); p>0.05 
All angles - PFP  0.5 (0.4-0.5) vs. Control 0.3 (0.3 -0.4); p<0.05* 
 
Peak femur octahedral shear stress 
Stress @ 15° - PFP 0.6 (0.2) vs. Control 0.4 (0.1)* 
Stress @ 45° - PFP 1.2 (0.4) vs. Control 1.0 (0.2) 
All angles  - PFP 0.9 (0.8 -1.0) vs. Control 0.7 (0.6-0.8)* 
 
Mean femur octahedral stress 
Stress @ 15° - 0.4(0.1) vs. Controls 0.2 (0.2); * 
Stress @ 45° - 0.6 (0.1) vs. Controls 0.5 (0.1);  
All angles - PFP 0.5 (0.4-0.5) vs. Controls 0.4 (0.3-0.4)* 
 
p<0.05* 
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Farrokhi et al 
2011b[65] 

MRI 
3.0T 
 
Axial 
 

Supine 
0° 

• Patella cartilage 
thickness 
• T2 Relaxation time 

Intra-observer 
 
Patella cartilage 
thickness (CV 
0.018; SEM 
0.018) 
 
Patella cartilage 
T2 (CV 0.013; 
SEM 0.294) 

Patella cartilage thickness (mm) 
Lateral facet- PFP 2.4± 0.32 vs. Controls 2.79 ± 0.36* 
Medial facet - PFP 2.33 ± 0.39 vs. Controls 2.72± 0.57 
Total - PFP 2.37 ± 0.33 vs. 2.76± 0.43* 
 
Patella cartilage T2 relaxation time (ms) 
Lateral facet - PFP 32.81 ± 1.33 vs. Controls 32.46 ± 2.70 
Medial facet - PFP 31.59 ± 1.96 vs. Controls 30.80 ± 1.80 
Total - PFP 32.50 ± 1.37 vs. Controls 31.78± 2.22 

Post exercise percentage 
change 
 
Patella cartilage thickness 
Lateral facet- PFP -2.10 ± 3.99 
vs. -8.91 ± 4.14* 
Medial facet - PFP -6.65± 5.41 
vs. -10.97± 7.33 
Total - PFP -4.44± 3.27 vs. 
Controls -10.00 ± 4.18* 
 
Patella cartilage T2 
relaxation time 
Lateral facet - PFP -1.92±6.25 
vs. Controls -0.38±4.75 
Medial facet - PFP 1.25 ±6.25 
vs. Controls 1.50±5.75 
Total - PFP -2.25±5.50 vs. 
Controls 0.25±4.02 
 
p<0.05* 

Felicio et al 
2011a[397] 

MRI 
1.5T 
Axial 

Supine 
0,15,30,45° 

•Patella tilt angle  
• Bisect offset 

 PTA (°) 
OKC 15 - PFP 8.5 ( 7.4) vs Controls 7.0 (5.6) 
OKC 30 - 6.9 (4.5) vs Controls 6.0 (4.8) 
OKC 45 - 7.7 (4.9) vs Controls 7.4 (4.7) 
 
CKC 15 - PFP 7.8 (7.5) vs Controls 7.8(6.3)  
CKC 30- PFP 5.1 ( 4.7) vs Controls 6.0 (4.3) 
CKC 45 - PFP 7.0 (3.5) vs Controls 6.8 (4.6) 
BO (%) 
OKC 15 - PFP 59.8 ( 8.9) vs Controls 56.3 (8.5) 
OKC 30 - PFP 54.3 (4.5) vs Controls 52.8 (4.5) 
OKC 45 - PFP 56.8 (8.8) vs Controls 53.1 (5.5) 
 
CKC 15 - PFP 61.0 ( 11.2) vs Controls 56.7 (10.0) 
CKC 30 - PFP 53.1 (4.8) vs Controls 52.8 (4.5) 
CKC 45 - PFP 54.6 (5.0) vs Controls 53.0 (5.6) 

N/A 

Felicio et al 
2012b[399] 

MRI 
1.5T 
Axial 

Supine 
0,15,30,45° 

• Patella tilt angle  
• Bisect offset  
• Sulcus angle 

SA (ICC >0.75) 
PTA (ICC >0.75) 
BO (ICC >0.75) 

15° of knee flexion 
SA  
Rest - PFP 140.71 (10.97) vs. Control 140.11 (11.09) 
OKC - PFP 145.07 (11.14) vs. Controls 147.29 (12.21) 
CKC – PFP 148.92 (9.71) vs. Controls 147.82 (12.14) 
 
PTA 

N/A 
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Rest – PFP 7.475 (6.24) vs. Controls 8.07 (6.79) 
OKC - PFP 8.35 (7.38) vs. Controls 7.02 (6.05) 
CKC - PFP 7.86 (7.23) vs. Controls 7.38 (6.97) 
 
BO 
Rest - PFP 55.18 (10.05) vs. Controls 50.61 (7.82) 
OKC - PFP 57.84 (8.17) vs. Controls 56.51 (7.99) 
CKC - PFP 60.64 (10.27) vs. Controls 56.33 (9.76) 
30° of knee flexion 
SA  
Rest - PFP 129.58 (10.3) vs. Controls 129.465 (8.03) 
OKC - PFP 133.44 (8.95) vs. Controls 134.23 (9.49) 
CKC - PFP 135.46 (9.01) vs. Controls 136.31 (8.37) 
 
PTA 
 Rest - PFP 8.2 (4.29) vs. Controls 6.91 (5.83) 
OKC - PFP 6.58 (4.68) vs. Controls 5.29 (5.69) 
CKC - PFP 5.42 (4.42) vs. Controls 6.14 (5.32 
 
BO 
Rest - PFP 53.64 (5.78) vs. Controls 52.15 (5.195) 
OKC - PFP 54.55 (5.48) vs. Controls 52 (4.51) 
CKC – PFP 52.56 (4.69) vs. Controls 52.99 (4.56) 
45° of knee flexion 
SA  
Rest –PFP 123.97 (8.84) vs. Controls 125.9 (7.01) 
OKC - PFP 126.57 (6.86) vs. Controls 129.39 (6.96) 
CKC - PFP 127.83 (8.03) vs. Controls 130.3 (8.96) 
 
PTA 
Rest - PFP 9.045 (3.78) vs. Controls 8.07 (4.75) 
OKC - PFP 7.21 (5.02) vs. Controls 6.6 (5.11) 
CKC- PFP 6.49 (3.27) vs. Controls 6.0 (5.33) 
 
BO 
Rest – PFP 54.94 (5.68) vs. Controls 53.45 (4.59) 
OKC- PFP 55.55 (8.22) vs. Controls 52.47 (5.02) 
CKC- PFP 53.51 (4.49) vs. Controls 52.77 (4.79 
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Felicio et al 
2014c[398] 

MRI 
1.5T 
 
Axial & Sagittal 

Supine 
15°,30°,45° 

Insall-Salvati index Insall-Salvati 
(ICC>0.75) 
 

 

Insall-Salvati index 
Rest 
15 - PFP 1.07 (0.14) vs Controls 1.08 (0.11) 
30 - PFP 1.09 (0.13) vs Controls 1.07 (0.15) 
45- PFP 1.10 (0.19) vs Controls 1.13 (0.17) 
OKC 
15 - PFP 1.19 (0.15) vs Controls 1.19 (0.16) 
30- PFP 1.21 (0.17) vs Controls 1.21 (0.15) 
45 - PFP 1.19 (0.14) vs Controls 1.24 (0.19) 
CKC 
15- PFP 1.22 (0.15) vs Controls 1.18 (0.15) 
30- PFP 1.21 (0.17) vs Controls 1.19 (0.18) 
45- PFP 1.19 (0.16) vs Controls 1.25 (0.21) 

N/A 

Guzzanti et al 
1994[410] 

CT Supine 
15° 

•Congruence angle 
(CA)  
 •Congruence angle 
with quadriceps 
contraction (CAc),  
•Patellar tilt 
angle (PTA)  
•Patellar tilt angle with 
quadriceps 
contraction (PTAc), 
 •Sulcus angle (SA) 
,•Trochlear depth (TD) 

UTD CA 
Males PFP 20.0 (16) vs. Controls -11.6(8)  
Females PFP 13.8 (21) vs. Controls -13.5 (8) 
Total - PFP 15.4 (21) vs. Controls -12.5(8) 
 
PTA 
Males PFP 10.3 (7) vs. Controls 13.5 (5) 
Females PFP 3.2 (10) vs. Controls 15.6 (5) 
Total PFP 5.0 (10) vs. Controls 14.5 (5) 
 
CAc 
Males 26.0 (20) vs. Controls -10.7(8) 
Females 25.1 (23) vs. Controls -12.3 (8) 
Total 25.3 (22) vs. Controls -11.5(8) 
 
PTAc 
Males 9.9 (8) vs. Controls 13.4 (5) 
Females 2.5 (11) vs. Controls 14.5 (5) 
Total 4.4 (11) vs. Controls 13.9 (5) 
 
SA 
Males PFP 146(6) vs. Controls 124 (8) 
Females - PFP 148 (12) vs. Controls 130 (7) 
Total PFP 147 (10) vs. Controls 127 (8) 
 
TD 
Males PFP 7.3 (2) vs. Controls 12.9 (2) 
Females PFP 6.6 (3) vs. Controls 11.3 (2) 
Total PFP 6.8 (3) vs. Controls 12.1 (2) 

N/A 

Haim et al 
2006[422] 

XR 
 

Supine 
30° 

• Insall-Salvati index  
• Sulcus angle 

 
UTD 

Patellar subluxation 
PFP15 (25%) vs. Controls 1 (4%); p= 0.032 N/A 
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Lateral & axial • Merchant angle 
• Laurin angle 
• Patella subluxation 
• Subcondral sclerosis 

 
 
 
 
 

 
Subchondral sclerosis  
PFP 2 (3%) vs. Controls 0 
 
SA (°) 
PFP 139 ± 5.1 vs. Controls 138 ± 5.8 
 
Laurin angle (°) 
PFP 9.9 ± 4.1 vs. Controls 10.8 ± 5.6 
 
Merchant angle (°)  
 PFP −4.2 ± 9.9 vs. Controls −5.4 ± 14 
 
Insall-Salvati index   
PFP 1.03 ± 0.15 vs. Controls 1.02 ± 0.11;  

Harman et al 
2002[409] 

Kinematic MRI 
 
0.3T Open 
 
MRF with spoiled 
gradient echo 

Prone 
0-45° 

•PTA 
•CA 
•SA 
•Patella height 

UTD Case group 
2 normal  
10 Lateralisation 
2 Patella tilt 
2 Lateralisation & patella tilt  
4 medialisation of patella  
 
Control group  
All normal (i.e. median ridges of the patella were in a centralised 
position relative to the femoral trochlear grooves through active 
flexion) 

N/A 

Ho et al 2014[68] MRI 
3.0T 
 
1. 3D IDEAL pulse 
sequence2.3D 
SPGR 
 
3. sagittal 3D 
SPGR 
 
4. axial D SPGR 
 

1. Supine 
2. 25 % WB 

(45°) 
3. Supine 
4. Supine 

 

•Patella cartilage 
thickness 
• Peak maximum 
strain 
• Peak minimum strain 

Intra-observer 
 
Patella cartilage 
(ICC 0.99; SEM 
0.18mm) 

Cartilage thickness 
PFP 2.54 ± 0.38 vs. Control 3.07 ± 0.44; p =0.008 * 
 
Minimum principal strain  
Peak 
PFP -2635.5 ± 1755.7 vs. Controls -1236.9 ± 734.2; 0.038 * 
Average 
-247.4 ± 125.6 vs. Controls -142.9 ± 60.2; p =0.029 * 
 
Maximum principal strain  
Peak 
2617.2 ± 1815.3 vs. Controls 1201.6 ± 796.1; p =0.036 * 
Average 
251.9± 117.4 vs. Controls 150.5 ± 62.3; p =0.027 

N/A 

Ho et al 2014b[66] MRI 
3.0T 
 

Supine 
0° 

• Total water content 
• Lateral patella 
content  

UTD Total patella water content (%) 
PFP 15.4 ± 3.5 vs Controls 10.3 ± 2.1%; p=0.001* 
 

N/A 
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3D SPGR with 
IDEAL and single 
relaxation (e.g. 
1,T2) 

• Medial patella water 
content 

Lateral patella water content (%) 
PFP 17.2 ± 4.2 vs Controls 11.5 ± 2.4%; p =0.002* 
 
Medial patella water content (%) 
PFP 13.2 ± 2.7 vs Controls 8.4 ± 2.3%; p<0.001 * 

Joensen et al 
2001[403] 

MRI 
1.0T 
 
3D SPGR 

Supine 
0° 

Articular cartilage 
lesion grade 1-4 

 
UTD 

Articular cartilage lesions 
None - PFP 7 (29.2%) vs Controls 13 (76.6%); OR  1.0  
Grade 1 - PFP 11 (45.8%) vs Controls 1 (5.9%); OR 20.4 (2.2 - 
193)  
Grade 2 - PFP 4 ( 16.7%) vs Controls 2 (11.8%); OR 3.7 (0.5 - 
25.6) 
Grade 3 - PFP 1 (4.2%) vs Controls 1 (5.9%); OR 1.9 (0.1 - 34.4) 
Grade 4 - PFP 1 (4.2%) vs Controls 0 (0%); 

N/A 

Jones et al 
1995[414] 

CT 
 
Transaxial 

Supine 
20 

Tibial tubercle 
lateralisation 

UTD Tibial tubercle lateralisation (mm)  
PFP 11 (11.9 ± 0.5) vs Controls 6 (6.5 ± 0.4); p<0.05* N/A 

Kim et al 2014[423] XR 
 
Merchant view 

Supine 
100% WB 
45° 

•Patella tilt angle  
•patellofemoral angle 
 •congruence angle  
 •subluxation distance 
 •lateral patella 
displacement 

Intra-observer (k 
0.87) 
 
Inter-observer (k 
0.85) 

PTA (°) 
PFP  WB  1.67 (6.71)  vs Controls WB 3.66 (2.00) ; p<0.0001 
PFP NWB 10.27 (9.00) vs Controls NWB 5.33 (2.46) 
 
Lateral patellofemoral angle (°) 
PFP WB 14.60 (4.65) vs Controls WB 11.30 (4.73); p =0.0035 
PFP NWB 7.20 (3.72) vs Controsl NWB 6.82 (3.81) 
 
Subluxation distance 
PFP WB -2.79 (2.13) vs Controls WB  -1.96 (1.80); 0.0150 
PFP NWB -0.21 (3.72) vs Controls NWB -1.04 (2.75) 
 
Lateral patella displacement  
PFP WB -3.67 (2.38) vs Controls WB -3.45 (3.65); p < 0.0001 
PFP NWB 1.40 (5.46) vs Controls -3.45 (3.65) 
CA (°) 
PFP WB -14.29 (11.33) vs Controls -8.70 (2.39); p<0.0001 
PFP NWB 3.59 (13.73) vs Controls -3.53 (4.51) 

N/A 

Laprade & Culham 
2003[420] 

XR 
 
Merchant view 

Supine & sitting 
35° 

• Lateral patella angle 
•Laurins angle  
• Congruence angle 
• Patella height  
(Catons ratio) 
• Femoral sulcus anlge  
•patella anlgle 

Intra-observer 
 
 ICC 0.43 to 0.89 
 
Intra-observer 
 
ICC 0.83 to 0.96 

SA  (°) 
PFP 139.6 ± 9.1  vs. Controls 141.3 ± 6.2 ; p  
 
PTA (°) 
PFP 124 ± 6.8 vs. Controls 125.5 ± 5.6  
 
Lateral patella angle (°) 
Unloaded - PFP 12.5 ± 6.6 vs. Controls 10.6 ± 4.4;  
Loaded - PFP 13.1 ± 7.5 vs. Controls 11.2 ± 4.2;  
CA (°) 

N/A 
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Unloaded = - 21.2 ± 11.1 vs. Controls -19.6 ± 7.4;  
Loaded = -18.1 ± 18.3 vs. Controls -23.7 ± 9.8;  
 
Caton's ratio  
PFP 1.00 ± 0.18 vs. Controls 1.03 ± .19 ; p=0.59 

Jan et al 2009[424] US 
 
5 to 12MHz linear 
array 

Supine 
 
Distal insertion of 
medial border of 
the patella to the 
most proximal 
insertion of the 
upper margin 

 
• VMO Insertion level 
• VMO Fibre angle  
• VMO Volume 

Intra-observer 
 
VMO insertion 
level (ICC 0.87; 
SEM 0.22) 
 
VMO Fibre angle 
(ICC 0.86; SEM 
3.38) 
 
VMO Volume 
(ICC 0.87; SEM 
0.57) 

VMO Morphological Characteristics 
Insertion level (cm) 
PFP 2.0 ± 0.7 (1.8-2.2) vs. Controls 2.4 ± 0.5 (2.3-2.6); p=0.006* 
 
Fibre angle (°)  
PFP 51.6 ± 9.0 (49.5-54.5) vs. Controls 56.7± 6.4 (53.3 -57.8); 
p=0.016* 
 
Volume (cm3) 
PFP 1.8 ± 1.5 (1.6-2.4) vs. Controls 3.0 ± 2.2 (2.3-3.5); p=0.024* 

N/A 

Metin Cubuk et al 
2000[413] 
 

CT 
 
XR 
 
Lateral  

CT- Supine 
0° 
 
XR -Supine 
30° 

• Tibial tubercle 
rotation angle 
•Patellar height 

UTD 
 

Insall-Salvati 
PFP 1.10 vs. Control 1.09; p > 0.01 
 
Modified Insall-Salvati 
PFP 1.75 vs. Control 1.75 
 
Caton 
PFP 0.89 vs. Control 0.92 
 
Blackburne 
PFP 0.75 vs. Control 0.81 

N/A 

Muneta et al 
1994[412] 

CT  
 
Between patella 
centre and tibial 
tubercle 

Supine 
 
Unloaded 

• Relationship 
between tibial tubercle 
& patella tilt 
• Relationship 
between tibial tubercle 
& external rotation 

UTD Tibial tubercle rotation angle  
67.5° (± 4°) vs. Control 70° ( ± 3.8°); p<0.01* 
 
Tibial rotation angle  
PFP 34.1° (± 8.7°) vs. Control 33° ( ± 7.3°); P >0.01 
 
 

N/A 

Pal et al 2013c[402] MRI 
0.5T open 
 
3D fast spoiled 
gradient echo 
sagittal sequence  

90% bodyweight 
  
5° 

•Caton-Deschamps 
•Blackburne-Peel 
•Insall-Salvati 
•Modified Insall-Salvati 
•Patellotrochlear 
•Bisect offset index 
•Patella tilt angle 

  
Caton-Deschamps  
PFP 1.10 vs. Controls 0.90; P<0.01* 
Blackburne-Peel 
PFP 1.00 vs. Controls 0.75; P<0.01* 
Insall-Salvati 
PFP 1.25 vs. Controls 1.00; P<0.01 * 
Modified Insall-Salvati 

N/A 
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PFP 1.35 vs. Controls 1.10; P<0.01 * 
Patellotrochelar  
PFP 0.25 vs. Controls 0.30 
 
PFP with patella alta vs. PFP with normal patella height  
AKP - PFP 72 ± 12 vs. Controls 74 ± 15; p 0.782 
 
PFP with patella maltracking vs. PFP with normal tracking  
AKP - PFP 70 ± 11 vs. Controls 75 ± 15; p =0.406 

Pattyn et al 
2011[400] 

MRI 
3.0T 
 
Axial 

Supine 
0° 

Cross sectional area 
of VMO, VL and Total 
Quadriceps at: 
-mid thigh 
- patella level 

Intra-observer 
CSA (ICC 0 976 -
0.998) 
 
Inter-observer 
CSA (ICC 0 672 - 
0.989) 

Patella level (cm²) 
VMO - PFP 16.67 (4.97) vs Controls 18.36 (5.25); p=0.040* 
VL - PFP 5.90 (3.30) vs Controls 6.5 (2.66); p=0.0192 
VMO:VL - 3.53 (1.99) vs Controls 3.02 (0.86) 
 
Midthigh level (cm²) 
VM:VI - PFP 31.47 (8.28) vs Controls 33.26 (8.92) 
VL - PFP 24.83 (5.43) vs Controls 27.19 
RF - PFP 11.23 (2.59) vs Controls 12.11 (3.18); p=0.006* 
 
Total Quadriceps - PFP 66.99 (15.06) vs Controls 70.83 (15.30) 
 
 

N/A 

Pattyn et al 
2013c[294] 

 
mfMRI 
3.0T 
Axial 

Supine 
0° 

T2 rest & shift for: 
• VMO,  
• VM: VI  
• VL 

UTD T2 rest 
VMO  
Male PFP 45.57 ±  4.59 vs Controls 43.52 ± 3.03 
Female PFP 46.11 ±  2.88 vs Controls 47.42 ±  3.24 
Total PFP 45.86 ± 3.73 vs Controls 45.69 ± 3.67 
 
VM:VI 
Male PFP 43.39 ±  2.17 vs Controls 43.74 ±  2.34 
Female PFP 43.09 ± 1.61 vs Controls 44.75 ±  2.17; p=0.007* 
Total PFP 43.23 ±  1.87 vs Controls 44.32 ±  2.25; p =0.025* 
 
VL 
Male PFP 42.18 ± 2.38 vs Controls 41.66 ± 1.58;  
Female PFP 42.91 ±  2.12 vs Controls 43.73 ± 1.64 
 
T2 shift  
VMO 
Male PFP 6.04 ±  4.12 vs Controls 6.22 ±  2.47;  
Female PFP 4.09 ± 3.13 vs Controls 4.29 ±  2.51 
 
VM:VI 
Male PFP  5.85 ± 2.61 vs Controls 7.16 ± 2.90; p  

N/A 
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Female PFP 4.68 ±  1.98 vs Controls 5.60 ±  1.92 
Total PFP 5.21 ±  2.34 vs Controls 6.28 ±  2.48;  
 
VL 
Male PFP 5.59 ± 2.84 vs Controls 5.59 ± 2.20;  
Female PFP 3.94 ±  2.27 vs Controls 5.16 ±  2.42;  
Total PFP 4.69 ±  2.65 vs Controls 5.35 ±  2.30;  
 
 
 
 
 
 

Pinar et al 
1994[417] 
 

CT 
 
Mid patella position 

Supine 
0,20,30,40 & 60° 

•Patella tilt angle 
•Sulcus angle 
•Congruence angle 

UTD Based on 38 symptomatic knees) 
Tilt & lateralisation = 12 knees 
Lateralisation = 4 knees 
Medialisation = 5 knees 
Lateral to medial instability = 1 
Tilt = 1 
Normal = 15 

N/A 

Powers 2000b[404] Kinematic MRI 
 
1.5T 
Fast spoiled 
GRASS axial  

Prone 
0-45° 

•Bisect offset  
•Medial patella tilt 
•Lateral patella tilt 
•Sulcus angle 

Intra-observer 
 
Patell tilt (ICC 
0.66 -0.82; SEM 
2.9° 
 
Bisect offset (ICC 
0.66 -0.82; SEM 
3.4%) 
 
Sulcus angle 
(ICC 0.66 -0.82; 
SEM 2.0°) 

PTA 
0° = PFP 10.0 (10.) vs Controls 3.6 (4.0) 
9° = PFP 11.0 (9.8) vs Controls 4.0 (3.2) 
18° = PFP 10.0 (7.2) vs Controls 3.6 (3.8) 
27°= PFP 11.6 (6.0) vs Controls 4.2 (3.4) 
36° = PFP 11.0 (5.2) vs Controls 7.2 (2.8) 
45° = PFP 11.4 (5.2) vs Controls 9.6 (4.6) 
 
Mean PFP 10.7° vs Control 5.5°; p<0.02* 
 
BO 
0° = PFP 62.0 (18.0) vs Controls 52.9 (10.5) 
9° = PFP 60.5 ( 16.75) vs Controls 52.9 (11.25) 
18°= PFP 55.35 (12.0) vs Controls 53.2 (7.5) 
27°= PFP 54.9 (6.4) vs Controls 52.5 (7.3) 
36° = PFP 55.6 ( 6.2) vs Controls 53.2 (4.2)  
45° = PFP 56.3 (7.8) vs Controls 56.3 (7.8) 
 
Mean PFP 57.9% vs Control 53.8% 
 
SA 
0° = PFP 153.6 (11.2) vs Controls 146.0 (5.2) 
9° = PFP 153.4 ( 10.6) vs Controls 145.6 (4.0) 
18°= PFP 152.6 (10.2) vs Controls 144.0 (4.0) 

N/A 
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27°= PFP 146.2 (4.6)  vs Controls 143.2 (4.4) 
36° = PFP 143.6 (4.6)  vs Conrols 142.6 ( 4.0) 
45° = PFP 138.6 (6.0) vs Controls 138.6 ( 6.0) 
 
Mean PFP 149.4° vs Controls 144.6° 
 
NB. Data was extrapolated from graphics 
 

Ribeiro et al 
2010[405] 

MRI 
0.5`T 
 
Sagittal & axial  

Supine 
30° 

•Sulcus angle 
•Patella tilt angle  
•Patella displacement 
•Congruence angle 

UTD SA 
PFP 140.23 (7.74) vs Controls 133.58 (5.62); p = 0.02* 
 
CA 
PFP -8.51 (8.30) Controls -20.35 (9.26); p=0.01 * 
 
PTA 
PFP 12.85 (3.97) vs Controls 11.73 (4.19);  
 
PD 
PFP 1.93 (4.46) vs Controls 4.38 (3.48) 

N/A 

Salsich & Perman 
2007[165] 

MRI 
1.5T 
 
1. Sagittal T1-
weighted 
3-D FSPGR series 
 
2. Fat-suppressed 
3D FSPGR - axial 
images 
perpendicular to 
PFJ 
 
 

Supine 
 
0° 

•Contact area  
•Tibiofemoral rotation 
angle  
•Bisect offset index 
•Patella tilt angle  
•Patella width 

Intra-observer 
 
Patellofemoral 
contact area (ICC 
0.90) 
 
Bisect offset (ICC 
0.93) 
 
Patella tilt (ICC 
0.86) 
 
Patella width 
(ICC 0.99) 

Contact area (mm2) 
PFP 191.6 (38.3) vs. Controls 220.3 (44.5) 
BO (%) 
PFP 0.69 (0.12) vs. Controls 0.62 (0.07) 
PTA (°) 
PFP 12.4 (7.7) vs. Controls 9.0(6.1) 
Tibiofemoral rotation angle (°)  
PFP 5.2 (5.7) vs. Controls 3.5 (5.6) 
Patella width (mm2) 
PFP 39.4 (2.7) vs. Controls 42.3 (3.5) 

N/A 

Salsich & Perman 
2013[160] 

MRI 
1.5T 
 
• Sagittal T1 
weighted 3D 
FSPGR 
 
• axial fat 
suppressed 3D 
FSPGR 

Supine 
0,20 & 40° 

•Contact area  
•Tibiofemoral rotation 
angle  
•Bisect offset index 
•Patella tilt angle 

Intra-observer	
Contact area 
(ICC 0.90; SEM 
15.46mm2) 
Bisect offset (ICC 
0.93; SEM 
0.02%) 
Patella tilt angle 
(ICC 0.86; SEM 
1.39°) 

Contact area (mm²) 
0 - PFP 203.8 (45.5) vs. Controls 224.1 (46.6); p = 0.05* 
20 - PFP 276.8(56.2) vs. Controls 316.7 (82.8) ; p=0.02* 
40 - PFP 388.5 (99.3) vs. Controls 427.3 (113.7) ; p =0.24 
 
Tibiofemoral rotation angle (°) 
0° - PFP 5.2(5.6) vs. Controls 4.0 (4.6) 
20° - PFP -1.2 (4.2) vs. Controls -2.5 (5.2) 
40°- PFP -4.9 (5.1) vs. Controls -5.3 
 
BO (%) 

N/A 
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Tibiofemoral 
rotation angle 
(ICC 0.93; SEM 
1.17°) 
	
 

0° - PFP 0.69 (0.13) vs. Controls 0.64 (0.09); p =0.04 * 
20°- PFP 0.56 (0.07) vs. Controls 0.53 (0.06) 
40°- PFP 0.54 (0.05) vs. Controls 0.54 (0.05) 
 
PTA (°) 
0° - PFP 12.5 (7.6) vs. Controls 9.22 (5.8); p =0.04* 
20° - PFP 6.7 (5.2) vs. Controls 6.0 (4.1) 
40° - PFP 4.4 (3.9) vs. Controls 5.3 (4.1) 
 
PFP sub group (medial collapse movement pattern) vs. 
Controls  
 
Contact area (mm²) 
0° PFP sub 191.3(46.3) vs. Controls 224.1(46.6); p =0.02* 
20° - PFP sub 261.5 (61.8) vs. Controls 316.7  (82.8); p= 0.01 * 
40°- PFP sub 370.8 (112.1) vs. Controls 427.3  (113.7) 
 
Tibiofemoral rotation angle (°) 
0° - PFP 6.4 (5.9) vs. Controls 4.0 (4.6); p = 0.07 
20°- PFP -1.1 (4.5) vs. Controls -2.5 (5.2); p=0.20 
40°- PFP -5.6 (5.4) vs. Controls -5.3 (4.9); p= 0.89 
 
BO (%) 
0° - PFP 0.67 (0.14) vs. Controls 0.64 (0.09) 
20°- PFP 0.56 (0.08) vs. Controls 0.53 (0.06)  
40° - PFP 0.54 (0.05) vs. Controls 0.54 (0.05)  
 
PTA (°) 
0° - PFP 12.6° (8.3) vs. Controls 9.22°  (5.8); p= 0.06 
20°- PFP 7.7°  (6.0) vs. Controls 6.0° (4.1) 
40°- PFP 5.3° (3.9) vs. Controls 5.3°  (4.1) 

Schoots et al 
2013[82] 

US 
5cm 13 MHz linear 
 
Transvers plane 

Supine 
10° 
 
 

Thickness of lateral 
retinaculum (from 
edge of patella) at: 
 •0.5cm 
•1.0 cm 
•1.5cm  

UTD Thickness of lateral retinaculum 
0.5cm - PFP 4.0 (1.3) vs. Control 3.0 (0.25) 
1.0cm - PFP 3.9 (1.2) vs. Control 1.0 (0.15) 
1.5cm - PFP 4.0 (1.5) vs. Controls 3.0 (0.3) 
Total - PFP 4.0 (1.4) vs. Controls 3.0 (0.1) 

N/A 

Schutzer et al 
1986[416] 

CT 
 
Transaxial mid-
patellar 

Supine 
0-30° 

•Femoral trochlear 
angle 
•Femoral trochlear 
depth 
•Patella tilt angle 
•Congruence angle 

UTD PFP lat (n=11) vs. PFP non lat (n = 13) vs. Controls (n=10) 
 
CA  
0°  PFP lat 32° vs. PFP non lat 0° vs. Control 5° 
5°  PFP lat 22° vs. PFP non lat 2° vs. Control -2° 
10° PFP lat 18° vs. PFP non lat -5° vs. Control 2° 
20° PFP lat 9° vs. PFP non lat  -5° vs. Control 2° 

N/A 
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30° PFP lat 4° vs. PFP non lat -4° vs. Control -2° 
 
Femoral trochlear angle 
0° PFP lat 159 vs. PFP non lat 142° vs. Control 146° 
5° PFP lat 147° vs. PFP non lat 132° vs. Controls 144° 
10°PFP lat 143° vs. PFP non lat 130° vs. Controls 139° 
20°PFP lat 139 vs. PFP non lat 128 vs. Controls 133° 
30°PFP lat 131° vs. PFP non lat 126° vs. Controls 128° 
 
PTA 
0°PFP lat 8 °vs. PFP non lat 15° vs. Control 18° 
5°PFP lat 9° vs. PFP non lat 12° vs. Control 18° 
10° PFP lat 11° vs. PFP non lat 9 vs. Controls 18° 
20°PFP lat  13 vs. PFP non lat 7 vs. Controls 17 
30°PFP lat 10° vs. PFP non lat 7 vs. Controls 17 

Souza et al 
2010[179] 
 

Kinematic MRI 
 
0.5T open 
 
Axial-oblique 

100% WB 
 
0-45° 

•Lateral patella 
•displacement (%) 
•Lateral patella tilt (°) 
•Femoral rotation (°) 
•Patella rotation (°) 

Intra-observer  
Bisect offset (ICC 
0.91; SEM 3.6%) 
Patella tilt (ICC 
0.95; 1.3°) 
Femoral rotation 
(ICC 0.96; SEM 
1.0°)  
Patella rotation 
(ICC 0.99; SEM 
0.7°) 
 
 

Lateral patella displacement (Bisect offset (%) 
 
0 - PFP 75.2 (8.4) vs Controls 58.2 (7.2) 
15-PFP 64 (4.4) vs Controls 53.2 (4.8) 
30-PFP 57.6 (7.6) vs Controls 51.2 (2.4) 
45 - PFP 57.6 (6.0) vs Controls 53.2 (2.0) 
 
UTD 
 
0- PFP 12.8 ( 5.4) vs Controls 7.5 (4.0) 
15- PFP 8.8 ( 4.0) vs Controls 5.6 (2.0) 
30 - PFP 7.8 (4.4) vs Controls 5.4 (2.4) 
45 - PFP 6 (3.8) vs Controls 5.8 (3.7) 
 
Femoral rotation (°)  
 
0 - PFP 12.1 (5.1) vs Controls 6.0 (5.4) 
15- PFP 6.0 ( 2.1) vs Controls 0.9 (6.0) 
30- PFP 3.0 (5.1) vs Controls 0.3 ( 4.5) 
45 - PFP 2.4 ( 3.3) vs Controls -0.3 (5.1) 
 
Patella rotation (°) 
 
0- PFP -2.1 ( 6.3) vs Controls -0.9 (7.2) 
15 - PFP - 3.7 (5.4) vs Controls -3.0 (6.0) 
30 - PFP -4.0 (6.0) vs Control -4.0 (5.4) 
45- PFP -3.6 (5.7) vs Controls -6.0 (6.6) 

N/A 

Taskiran et al 
1998[411] 

CT 
 

Supine 
0,15,30 &45° 

•Congruence angle 
•Sulcus angle ` 

UTD 
 

 CA  
0° QU = PFP 24.7 (11.7) vs. Controls 14.9 (13.9) N/A 



 

Chapter 3. Systematic review 

103 

Mid-patellar axial •Patella tilt angle 
 

0° QC = PFP 37.2 (9.1) vs. `Controls 25.3 (17) 
15° QU = PFP 23.8 (10) vs. Controls 8.1 (13.2) 
15° QC = PFP 28.2 (12.9) vs. Controls 18 (15.9) 
30° QU = PFP 8.9 (7.8) vs. Controls 1.0 (10.8) 
30° QC = PFP 7.7 (9.6) vs. Controls 0.5 (11.7) 
45° QU = PFP -6.2 (9.9) vs. Controls  -5.8 (9.4) 
45° QC = -10.3 (5.4) vs. Controls -8.9 (5.8) 
 
PTA 
0° QU = 11.7 (5.1) vs. Controls 13.3 (5.3) 
0° QC = 13.7 ( 6.3) vs. Controls 10.9 (5.1) 
15° QU = 10.7 (4.7) vs. Controls 9.9 (4.1) 
15° QC = 12.3 (7.2) vs. Controls 9.2 ( 4.1)  
30° QU = 7.0 (3.9) vs. Controls 9.0 (5.7) 
30° QC = 6.0 (4.3) vs. Controls 6.8 (3.9) 
45° QU = 7.2 (4.4) vs. Controls 9.1 ( 5.2) 
45° QC = 5.9 ( 3.6) vs. Controls 7.2 (3.4) 
 
QC - quadriceps contracted; QU = quadriceps uncontracted)  
 
Sulcus angle - not reported 

Teng et al 
2014[406] 

MRI 
1.5T 
FSPGR-axial 

Supine 
25%WB 
0,20,40,60° 

•Bisect offset 
•Patella tilt angle  
•Sulcus Angle 
•Lateral trochlear 
inclination 
•Insall-Salvati Ratio 

Intra-observer 
 
Bisect offset (ICC 
0.95-0.99) 
 
Patella tilt angle 
(ICC 0.95-0.99) 
 
Sulcus Angle 
(ICC 
0.95-0.99) 
 
Lateral trochlear 
inclination (ICC 
0.95-0.99) 
 
Insall-Salvati 
Ratio (ICC 0.95-
0.99) 

BO (%) 
0 - PFP 71.7 (12) vs Controls 62.7 (10.9) 
20- PFP 62.1 (11.3) vs Controls 55.9 (6.4) 
40- PFP 60.9 (11.2) vs Controls 52.8 (6.9) 
60- PFP 58.9 (10.0) vs Controls 55.3(4.8) 
 
PTA (°) 
0- PFP 15.5 (7.0) vs Controls 12.9 (6.2) 
20- PFP 15.1 (7.8) vs Controls 11.6 (5.0) 
40- PFP 12.1 (7.1) vs Controls 8.9 (4.5) 
60- PFP 8.5 (6.1) vs Controls 8.5 (4.1) 
 
SA (°) 
0- PFP 168.5 (13.5) vs Controls 166.4 (13.7) 
20- PFP 149.0 (6.5) vs Controls 149.8 (7.1) 
40- PFP 138.4 (8.8) vs Controls 136.4 (8.8) 
60-PFP 132.4 (7.1) vs Controls 129.9 (6.2) 
 
LTI 
0 - PFP 14.9 (5.4) vs Controls 17.9 (8.3) 
20- PFP 19.5 ( 6.2) vs Controls 22.9 (3.4) 
40- PFP 22.6 (5.4) vs Controls 25.2 (4.7) 
60-PFP 22.9 (3.7) vs Controls 24.1 (4.8) 

N/A 
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Insall Salvati Ratio 
0- PFP 1.16 (0.16) vs Controls 1.14 (0.15)  
20- PFP 1.09 (0.16) vs Controls 1.06 ( 0.13) 
40-PFP 1.11 (0.18) vs Controls 1.06 (0.14) 
60- PFP 1.10 (0.17) vs Controls 1.06 (0.14) 

Thuiller et al 
2013[173] 

MRI 
3.0T 
 
•T2 weighted fat 
suppressed FSE - 
sagittal & axial 
• T1 weighted FSE 
 
 

Supine 
0° 

•Mean T1 value total 
patellofemoral 
cartilage 
•Mean T1 value 
medial facet  
•Mean T1 value lateral 
facet  
 
•Mean T2 value total 
patellofemoral 
cartilage 
•Mean T2 value 
medial facet  
•Mean T2 value lateral 
facet  
 
 
 
 

UTD T1 value 
 
Total - PFP 44.6 ± 4.6ms vs. Controls 41.99 ± 3.21 ms; p=0.14 
Medial - PFP 42.2 ± 5.4ms vs. Controls 41.42 ± 4.09ms; p=0.69 
Lateral - PFP 46.3 ± 4.9ms vs. Controls 42.32 ± 3.67ms; p 
=0.031* 
 
T2 value 
 
Total - PFP 36.8 ± 7.9ms vs. Controls 37.28 ± 4.12ms; p =0.87 
Medial - PFP 36.8 ± 7.9 vs. Controls 38.04 ± 3.45ms; p=0.39 
Lateral - PFP 37.4± 7.7 vs. Controls 36.86 ± 5.21ms; p=0.37 
 
T1 medial: lateral ratio 
PFP 0.92 ± 0.05 vs. 0.98 ± 0.03; p =0.01* 

N/A 

Tuncyurek et al 
2010[407] 

MRI 
0.23T 
 
T1 weighted non 
fat saturated 
conventional spin-
echo - sagittal & 
coronal 

Supine 
30° 

•Patella tendon 
surface area 
•Patella tendon length  
•Patella tendon 
thickness 

UTD Surface area (mm2) 
PFP 1393.6 ± 300.7 vs. Controls 1287.5 ± 293.1; p =0.2 
 
Thickness (mm) 
PFP 4.53 ± 0.90 vs. Controls 4.58 ± 0.99; p=0.2 
 
Length (mm) 
PFP 53.2 ± 7.5 vs. Controls 52.9 ± 8.3; p=0.2 

N/A 

Wilson et al 2009 
[419] 
 

US 
 
14Mhz B Mode 
 
Sagittal & axial 
 
 

Siting  
60 

•VMO resting tendon 
length 
•VMO cross-sectional 
area 
•VL resting tendon 
length 
•VL cross sectional 
area 

 Tendon resting length (mm) 
VMO - PFP 18.69 (2.66) vs. Control 18.66 (3.4) ; p = 0.985 
VL - PFP 52.32 (5.71) vs. Controls 55.17 (5.46); p = 0.360 
 
Cross-sectional area (mm2) 
VMO - PFP 56.14 (16.87) vs. Controls 59.14 (11.81); p=0.707 
VL - PFP 48.71 (20.25) vs. Controls 52.57 (14.95); p=0.692 

N/A 

Witzonzi & Goraj 
1999 [408] 
 

Supine 
Kinematic 
MRI 

0°, 10°, 20°, 
30° loaded 
& 

• Patella tilt angle 
• Sulcus angle 
• Congruence angle 

UTD   Congruence angle (°) 
With contraction 
0° - PFP -1.3 ± 15.5 vs. Control -8.4 ± 15.2; 
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1.5T 
 

19 unloaded 
 

 10° PFP -0.5 ± 17.0 vs. Controls -10.2 ± 13.3 
20 °- PFP 0.5 ± 18.6 vs. Controls -13.9± 10.6 
30°- PFP 1.5 ± 20.5 vs. Controls -16.3 ± 10.8; 
Without contraction 
0° -PFP 0.5 ± 15.9 vs. Controls -7.8 ± 11.3 
10° -PFP 0.4 ± 16.3 vs. Controls -9.3 ± 9.5 
20 °- PFP 0.1 ± 16.6 vs. Controls -12.1 ± 7.8; 
30° - PFP -0.5 ± 18.7 vs. Controls -13.3 ± 8.0 
 Patella tilt (°) 
With contraction 
0°- PFP 8.3 ± 6.5 vs. Controls 15.9 ± 4.8 
10° - PFP 8.3 ± 6.5 vs. Controls 16.5 ± 5.8 
20 °- PFP 9.5 ± 7.9 vs. Controls 16.9 ± 6.9 
30° -PFP 10.5 ± 9.0 vs. Controls 16.8 ± 7.7 
Without contraction 
0° - PFP 5.6 ± 9.8 vs. Controls 12.7 ± 4.6 
10° - PFP 5.3 ± 9.3 vs. Controls 13.1 ± 5.8 
20 ° - PFP 5.9 ± 9.8 vs. Controls 13.7 ± 6.9 
30° - PFP 6.0 ± 10.6 vs. Controls 14.1 ± 7.0 
 Sulcus angle (°) 
0° - PFP 150.8 ± 5.7 vs. Controls 149.2 ± 5.3 
10° - PFP 148.4 ± 6.3 vs. Controls 148.7 ± 3.3 
20 ° - PFP 144.3 ± 7.4 vs. Controls 146.6 ± 3.6 
30° - PFP 140.8 ± 8.2 vs. Controls 144.5 ± 3.4 

US = ultrasound; CT =computed tomography; MRI=magnetic resonance imaging; XR =x-�ray; SA = sulcus angle; CA = congruence angle; A/P = anterior -posterior; VMO = vastus medialis oblique; VL =vastus lateralis; PFJRF 

=patellofemoral joint reaction force; PFJ = patellofemoral joint; EMD = electrical mechanical delay; OKC = open kinetic chain; CKC = closed kinetic chain; BO = bisect offset; Cont = contraction; Lat = lateral  
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3.4.3 Quality assessment 

The results of the quality assessment are presented in Table 3.6. Based on the 

categorisations used [392], 23 studies were judged as high quality [65, 66, 68, 82, 

148, 160, 165, 166, 168-170, 173, 179, 228, 256, 294, 359, 397-400, 402-404, 418, 

420, 422, 423], with the remaining 17 studies considered of moderate quality [159, 

163, 216, 405-417, 419, 421]. The criteria of best performance using the modified 

Downs & Black checklist were 1,2,3 and 4, which were satisfied by all the included 

studies. The criteria that the included studies performed most poorly were 9, 10, 11, 

15 and 17 (Table 3.2). Criteria 9, 10 and 15 pertained to the documentation of 

population in which participants are recruited. Only half the studies clearly 

documented from where their participants were recruited e.g. hospital, military etc. 

Criterion 11 posed: was an attempt made to blind those measuring the outcome. 

Only 17.5% (7/40) of the studies we were able to determine whether the person/s 

interpreting the images were blinded to group allocation. Criterion 17 posed: did the 

study have sufficient power to detect clinically important effect. Only 17.5% (7/40) of 

studies [160, 173, 228, 256, 359, 402, 420] clearly documented how they calculated 

their sample size.  
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Table 3.6: Quality assessment  
 

 
 Study  

Q1 
(/1) 

Q2 
(/1) 

Q3. 
(/1) 

Q4. 
(/1) 

Q5. 
(/2) 

Q6. 
( /1) 

Q7. 
(/1) 

Q8. 
(/1) 

Q9 
(/1) 

Q10. 
(/1) 

Q11. 
(/1) 

Q12. 
(/1) 

Q13. 
(/1) 

Q14. 
(/1) 

Q15. 
(/1) 

Q16. 
(/1) 

Q17. 
(/1) 

Total 
(/18) 

% 
Score 

Aglietti et al 
1983[421] 1 1 1 1 1 1 1 0 UTD UTD UTD 1 1 1 UTD 1 0 11 61.1 

Botanlioglu et al 
2013[216] 1 1 1 1 1 1 1 1 UTD UTD UTD 1 1 UTD UTD 1 0 11 61.1 

Bretcher & Powers 
2002[159] 

1 1 1 1 1 0 1 1 1 1 UTD 1 1 0 1 0 0 12 66.7 Bretcher & Powers 
2002b[163] 
Callaghan & 
Oldham 2004[359] 1 1 1 1 2 1 1 1 1 1 UTD 1 1 1 1 1 1 17 94.4 

Chen & Powers 
2014[256] 1 1 1 1 1 1 1 1 1 1 UTD 1 1 1 UTD 1 1 15 83.3 

Chen et al 
2012[418] 1 1 1 1 1 1 1 1 1 1 UTD 1 1 1 UTD 0 0 13 72.2 

Chiu et al 
2012[166] 1 1 1 1 1 1 1 1 UTD UTD 1 1 1 1 1 0 0 13 72.2 

Connolly et al 
2009[168] 1 1 1 1 1 1 1 0 1 1 UTD 1 1 1 1 1 0 14 77.8 

Draper et al 
2006[169] 1 1 1 1 2 1 1 1 UTD UTD UTD 1 1 1 1 1 0 14 77.8 

Draper et al 
2009[148] 1 1 1 1 2 1 1 1 1 1 UTD 1 1 1 1 1 0 16 88.9 

Eckhoff et al 
1994[415] 1 1 1 1 0 0 1 0 0 0 UTD UTD 1 1 UTD 0 0 7 38.9 
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Farrokhi et al 
2011a[170] 

1 1 1 1 2 1 1 1 UTD UTD UTD 1 1 1 1 1 0 14 77.8 Farrokhi et al 
2011b [65] 
Felicio et al 
2011a[397] 

1 1 1 1 2 1 1 1 UTD UTD UTD 1 1 1 1 1 0 14 77.8 Felicio et al 2012b 
[399] 
Felicio et al 2014c 
[398] 
Guzzanti et al 1994 
[410] 1 1 1 1 1 1 1 0 UTD UTD UTD 1 1 1 UTD 1 0 11 61.1 

Haim et al 2006 
[422] 1 1 1 1 2 1 1 1 1 1 0 1 1 1 1 1 0 16 88.9 

Harman et al 2002 
[409] 1 1 1 1 0 1 0 0 UTD UTD UTD 1 0 1 UTD 0 0 7 38.9 

Ho et al 2014 [68] 
1 1 1 1 2 1 1 1 UTD UTD UTD 1 1 1 1 1 0 14 77.8 Ho et al 2014b [66] 

Joensen et al 2011 
[403] 1 1 1 1 2 0 1 0 1 1 1 1 1 1 1 1 0 15 83.3 

Jones et al 1995 
[414] 1 1 1 1 0 1 1 0 UTD UTD UTD 1 1 UTD 1 0 0 9 50 

Kim et al 2014 [423] 1 1 1 1 1 1 1 1 1 1 UTD 1 1 UTD 1 0 0 13 72.2 
Laprade & Culham 
2003 [420] 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 0 1 17 94.4 

Jan et al 2009 [424] 1 1 1 1 2 1 1 1 1 1 0 1 1 1 0 1 1 16 88.9 
Metin Cubuk et al 
2000 [413] 1 1 1 1 1 1 1 0 UTD UTD UTD 1 1 UTD UTD 0 0 9 50 

Muneta et al 1994 
[412] 1 1 1 1 1 1 1 0 UTD UTD UTD 1 1 1 UTD 0 0 10 55.6 

Pal et al 2013c 
[402] 1 1 1 1 2 1 1 1 1 1 UTD 1 1 1 1 1 1 17 94.4 

Pattyn et al 
2012a[400] 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 0 17 94.4 
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Pattyn et al 2013c 
[294] 
Pinar 1994 [417] 1 1 1 1 1 1 0 0 UTD UTD UTD 1 0 1 UTD 1 o 9 50 
Powers 2000 [404] 1 1 1 1 1 1 1 0 1 1 UTD 1 1 1 1 1 0 14 77.8 
Ribeiro et al 2010 
[405] 1 1 1 1 1 1 1 1 UTD UTD UTD 1 1 1 1 0 0 12 66.7 

Salsich & Perman 
2007[165] 1 1 1 1 1 1 1 1 UTD UTD 1 1 1 1 UTD 1 0 13 72.2 

Salsich & Perman 
2013[160] 1 1 1 1 1 1 1 1 UTD UTD 1 1 1 1 UTD 1 1 14 77.8 

Schoots et al 
2013[82] 1 1 1 1 1 1 1 1 1 1 1 1 1 UTD 0 0 0 13 72.2 

Shultzer et al 
1986[416] 1 1 1 1 1 1 0 0 UTD UTD UTD 0 1 UTD UTD 0 0 7 38.9 

Souza et al 
2010[179] 1 1 1 1 2 1 1 1 1 1 0 1 1 1 UTD 1 0 15 83.3 

Taskiran et al 1998 
[411] 1 1 1 1 1 1 1 0 UTD UTD UTD 1 1 1 UTD 1 0 11 61.1 

Teng et al 2014 
[406] 1 1 1 1 1 1 1 0 UTD UTD 1 1 1 1 UTD 0 0 11 61.1 

Thuiller et al 2013 
[173] 1 1 1 1 1 1 1 1 1 1 UTD 1 1 1 0 0 1 14 77.8 

Tuncyurek et al 
2010 [407] 1 1 1 1 1 1 1 1 UTD UTD UTD 1 1 UTD UTD 1 0 11 61.1 

Wilson et al 2009 
[419] 1 1 1 1 1 1 1 1 UTD UTD UTD 1 1 1 UTD 0 0 11 61.1 

Witzonzi & Goraj 
1999 [408] 1 1 1 1 1 1 1 0 UTD UTD UTD 1 1 UTD UTD 1 0 10 55.6 

 No. of studies 
scoring Yes  

40 40 40 40 50 37 37 25 17 17 7 38 38 31 18 24 7     

% of studies 
scoring Yes 

100 100 100 100 62.3 92.5 92.5 62.5 42.5 42.5 17.5 95 95 77.5 45 60 17.5     

UTD = Unable to detect;  Q1:  Is the hypothesis/aim/objective of the study clearly described?; Q2: Are the main outcomes to be measured clearly described in the Introduction or Methods section?; Q3: Are the characteristics of 

the patients included in the study clearly described?; Q4: Are the interventions of interest clearly described?; Q5: Are the distributions of principal confounders in each group to be compared clearly described?; Q6: Are the 
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main findings of the study clearly described?; Q7: Does the study provide estimates of the random variability in the data for the main outcomes?; Q8: Have the actual probability values been reported ( e.g. 0.035 rather than 

<0.05) for the main outcomes except where the probability value is less than 0.001: Q9: Were the subjects asked to participate in the study representative of the entire population from which they were recruited?; Q10: Were 

the subjects who were prepared to participate representative of the entire population from which they were recruited; Q11: Was an attempt to blind those measuring the main outcome?; Q12: If any of the results of the study 

were based on “data dredging” was this made clear?; Q13: Were the statistical tests used for the main outcomes appropriate?; Q14: Were the main outcome measures used accurate (valid and reliable)?; Q15: Were the case 

and controls recruited from the same population?; Q16: Was there adequate adjustment for confounding in the analyses from which the main findings were drawn?; Q17: Did the study have sufficient power to detect a clinically 

important effect? 
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3.4.4 Synthesis of results  

MRI features (patellofemoral contact area, patellar tilt, patellar bisect offset, patellar 

cartilage T2 relaxation times and sulcus angle) and CT features (congruence angle) 

were the only imaging features that yielded homogenous data appropriate for meta-

analysis. These features are demonstrated schematically in Figure 3.2. If 

discrepancies were noted in either the knee loading status, assessments of the 

imaging feature or knee flexion angle, then features were not considered for meta-

analysis. The results of the meta-analyses are displayed in Table 3.7. 

 
 

 

Figure 3.2.  Measurement of patella alignment 
Line A to B forms the patella width. Line E to F forms a line along the most 
posterior femoral condyles. Point D is located at the deepest point of the 
trochlear groove. Point C is the bisecting point of the perpendicular line through 
the AB line. Line G bisects the sulcus angle to form a zero reference and line H 
is the projected from the apex of the sulcus angle through the most dorsal part 
of the patella. A) Bisect offset  = (length of AC / length of BC) X 100%; B) 
Congruence angle  = angle formed between G line and H line; C) Patella tilt = 
the angle formed by line between AB and EF [406] 
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Funnel plots were considered to examine the bias in meta-analyses. A funnel plot is 

a scatter plot of the treatment effects against the study precision. In the absence of 

any bias the plot should resemble an inverted symmetrical funnel [426]. Typically 

bias identified by funnel plots is attributed to publication bias, however, other sources 

of biases including selective reporting and poor methodological design may be the 

cause of funnel asymmetry [426]. Based on published guidelines [427], funnel plots 

were not indicated as none of the meta-analyse conducted in this chapter included 

more than 10 studies. Fewer than 10 studies reduces the power of identifying real 

asymmetry [426] and increases the likelihood of a spurious result.  
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Table 3.7: Result of the meta-analysis  
 

Imaging feature Outcome Studies Total 
Participants Statistical Method Effect Estimate 

MRI Patellofemoral 
Contact area (mm2) 

Patellofemoral Contact Area 
at 20° under load 2 71 Std. Mean Difference (IV, Fixed, 95% CI) -0.53 [-1.01, -0.06] 

MRI Patella Tilt (°) 

Patella tilt at 0° under load 6 235 Std. Mean Difference (IV, Fixed, 95% CI) 0.63 [0.37, 0.90] 

Patella tilt at 20° under load 4 
 143 Std. Mean Difference (IV, Fixed, 95% CI) 0.35 [0.02, 0.69] 

 
 Patella tilt at 30° without 
load 2 63 Std. Mean Difference (IV, Fixed, 95% CI) 0.25 [-0.24, 0.75] 

Patella tilt at 45° under load 3 104 Std. Mean Difference (IV, Fixed, 95% CI) 0.14 [-0.25, 0.54] 
Patella tilt at 0°under full 
weight bearing 2 66 Std. Mean Difference (IV, Fixed, 95% CI) 0.99 [0.47, 1.52] 

MRI Bisect Offset (%) 

Bisect offset at 0 ° under 
load 6 235 Std. Mean Difference (IV, Random, 95% 

CI) 0.99 [0.49, 1.49] 

Bisect offset at 20 ° under 
load 3 128 Std. Mean Difference (IV, Random, 95% 

CI) 0.73 [0.29, 1.17] 
 

Bisect offset 40° under load 3 127 Std. Mean Difference (IV, Random, 95% 
CI) 0.61 [-0.09, 1.31] 

Bisect offset at 45° under 
load 3 104 Std. Mean Difference (IV, Random, 95% 

CI) 0.39 [-0.13, 0.92] 

Bisect offset at 60 ° under 
load 2 72 Std. Mean Difference (IV, Fixed, 95% CI) 0.50 [0.02, 0.98] 

Bisect offset 0° under full 
weight bearing 2 66 Std. Mean Difference (IV, Fixed, 95% CI) 1.91 [1.31, 2.52] 

MRI T2 Relaxation Times 
(ms) 

T2 Relaxation times at 0° 
without load 2 130 Std. Mean Difference (IV, Fixed, 95% CI) -0.01 [-0.35, 0.34] 

MRI Sulcus angle (°) Sulcus angle at 0° under 
load 2 71 Std. Mean Difference (IV, Random, 95% 

CI) 0.44 [-0.17, 1.05] 
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Sulcus angle at 30° without 
load 2 63 Std. Mean Difference (IV, Random, 95% 

CI) 0.43 [-0.48, 1.35] 

CT Congruence angle (°) 

Congruence angle at 15 ° 
under load 2 66 Std. Mean Difference (IV, Random, 95% 

CI) 1.40 [0.04, 2.76] 

CT Congruence angle at 15 ° 
without load 2 66 Std. Mean Difference (IV, Random, 95% 

CI) 1.24 [0.37, 2.12] 
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3.4.5 Magnetic Resonance Imaging 

Of the twenty-two studies that used MRI, sixteen studies [65, 66, 68, 148, 160, 165, 

166, 168-170, 173, 179, 256, 294, 397-400, 402-404, 428] were judged as high 

quality. Controlling for the knee loading status, assessment of the imaging feature 

and knee flexion angle, patella bisect offset at 0 degrees with load demonstrated the 

largest SMD (0.99; 95% CI: 0.49, 1.49; moderate evidence) based on five high 

quality and one moderate quality study (Figure 3.3).This was the only MRI feature 

which presented with a large SMD [139]. Five other features demonstrated a medium 

SMD [139].These included: patella bisect offset at 20 degrees with load (0.73; 95% 

CI: 0.29, 1.17; limited evidence), patella tilt at 0 degrees with load (0.63: 95% CI: 

0.37, 0.90; moderate evidence), patella bisect offset at 40 degrees with load (0.61; 

95% CI:-0.09, 1.31; limited evidence), patellofemoral contact area at 20 degrees with 

load (-0.53; 95% CI: -1.01,-0.06; limited evidence)  and patella bisect offset at 60 

degrees with load (0.50; 95% CI 0.02, 0.98; limited evidence). 

 

A small SMD was found for the pooling of sulcus angle at 0° with load (0.44; 95% CI: 

-0.17, 1.05; limited evidence), sulcus angle at 30° without load (0.43; 95% CI: -0.48, 

1.35; limited evidence), patella tilt at 20° with load (0.35; 95% CI: 0.02,0.69; 

moderate evidence), patella tilt at 30° without load (0.25; 95% CI: -0.24, 0.75; limited 

evidence), T2 Relaxation time at 0° with without load (-0.01; 95% CI: -0.35,0.34; 

limited evidence). The data for patellofemoral joint reaction force (PFJRF) was 

considered inappropriate for pooling as its outputs were produced via computational 

modelling, with imaging as only one component. For the data not amenable to 

pooling, there was limited evidence to support a difference between PFP and a 

control group with regards to: congruence angle at 20° [408]and 30° [405]without 

load; T1 value of the lateral patellofemoral cartilage without load [173]; articular 

lesions of the patella [403]; peak PFJRF; and patella cartilage thickness in males 

[169]. There was conflicting evidence to support a difference in patella cartilage 

thickness in women [66, 168-170] and no evidence to support differences in patella 

tendon morphology [407]. 
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A 

B 

C 

Figure 3.3: Forest plots 
A) MRI bisect offset at 0° under load; B) CT congruence angle at 15° under load; C) CT congruence angle at 15° without load 
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3.4.6 Ultrasound 

US was used to assess PFP imaging features in four studies [82, 228, 359, 418]. 

These were all judged as high quality. Pooling of data was not appropriate due to the 

variety of outcome features analysed and the different assessment techniques used. 

For the data not amenable to pooling, there was limited evidence, from single 

studies, to support a difference between PFP and control group in terms of: a 

reduction in vastus medialis oblique (VMO) contraction ratio and capacity [216]; an 

increase in VMO electrical mechanical delay and a reduction in vastus lateralis (VL) 

delay[418];  and a difference in VMO fibre angle, insertion level and volume [228].  

 

3.4.7 Computed Tomography 

CT was employed in eight studies, all of which were judged as moderate quality. 

Pooling of data was limited for congruence angle [410, 411, 416, 417]; patella tilt 

angle [410, 411, 416, 417]; sulcus angle [410, 417] since studies either: did not 

provide adequate data [417]; it was unclear whether their participants’ knee was 

loaded or unloaded [416]; or they adopted different measurement techniques for 

patella tilt angle [410]. Pooling was appropriate for congruence angle at 15 degrees 

without load and congruence angle at 15 degrees under load. Both features 

demonstrated a large SMD (1.24; 95% CI 0.37, 2.12; limited evidence) and (1.40 

95% CI: 0.04, 2.76; limited evidence) respectively, based on two studies [410, 416] 

(Figure 3.4). For the data not amenable to pooling there is limited evidence to 

support a difference between PFP and a control group with regards to: congruence 

angle at 15° without load [411]; tibial tubercle rotation angle at 0° without load [412, 

413]; trochlear depth at 15° without load [410]. Conflicting evidence exists for patella 

tilt at 15° with load [410, 411]. 

 

3.4.8 X-ray 

XR features were assessed in five studies. Of these, three were judged as high 

quality [420, 422, 423] and two as moderate quality [413, 421]. The following features 

were considered for meta-analysis: sulcus angle [420-422], congruence angle [420-

422], Insall-Salvati index [421, 422] and lateral patellofemoral angle [420, 423]. It was 

not possible to pool data for any of these XR features however, due to variations in 

the knee flexion angle. For the data not amenable to pooling there was limited 

evidence to support a difference between PFP and a control group with regards to: 
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congruence angle at 45° with load [421, 423] but no evidence at 35° [420]. There 

was limited evidence to support sulcus angle at 45° without load [421, 423] but no 

evidence to support it at 30°[422] and 35° [420] .There was conflicting evidence for 

Insall-Salvati index at 30° without load [413, 421, 422] and no evidence for lateral 

patellofemoral angle at 35° [420] and 45° [423] without load.  

 

3.4.9 Sensitivity analysis  

Two studies included in the meta-analysis [148, 179] used a full weight-bearing 

procedure to load the PFJ during imaging. Analysing appropriate features under full 

weight bearing separately demonstrated a marked increase in the SMD (Figure 3.4) 

of MRI patella bisect offset at 0 degrees with load (1.91; 95% CI: 1.31,2.52; limited 

evidence) and MRI patella tilt at 0 degrees with load (0.99; 95% CI: 0.47,1.52; limited 

evidence).  



 

Chapter 3. Systematic review 

119 

 
A 

B 

Figure 3.4: Forest plots for full weight bearing studies.  
A) MRI bisect offset at 0° under full weight bearing B) MRI patella tilt at 0° under full weight bearing 
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3.5 Discussion 

This systematic review suggests that an increased MRI bisect offset at 0° knee 

flexion under load and CT-derived congruence angle at 15° knee flexion with and 

without load are both associated with PFP. This is based on a large SMD as 

determined from moderate and limited evidence respectively.  A medium SMD was 

identified for the association between PFP and the following MRI features:  patella tilt 

and patellofemoral contact area. Limited evidence existed to support the association 

of PFP with other features of MRI, US, CT and XR. 

 

As highlighted in Chapter 2, Lankhorst et al. (2013) [194]  provides a comprehensive 

review into a broad range of factors associated with PFP (searched up to November 

2010). Unlike Lankhorst et al. (2013) [194], the current analysis did not restrict 

inclusion by sample size to improve inclusivity [429] and together with inclusion of 

more recent studies, this resulted in over 70% of the current review studies being 

different from Lankhorst et al. (2013) [194]. The present review also controlled for 

variables such as imaging modality, knee flexion angle, and knee loading, known to 

influence the homogeneity of the imaging outcomes [154]. 

 

Sufficient homogeneity was only demonstrated by MRI and CT studies and thus 

deemed appropriate for meta-analysis. Bisect offset measured with MRI was most 

amenable to pooling across a variety of knee flexion angles demonstrating medium 

to large SMDs. This is notable as bisect offset has been shown to be the most 

statistically significant feature in the progression of PFJ joint space narrowing over a 

five-year period in adults with symptomatic knee pain aged 70-79 years [430]. 

Considerable clinical heterogeneity was present in the studies utilising XR and US. 

Studies using XR reported outcomes with subtle variations in knee flexion angle or 

assessment techniques that limited the pooling of data. The imaging features used in 

US were distinctly different and so offered no potential for pooling.  

 

The sensitivity analysis demonstrated an increase in SMD for both patella tilt and 

bisect offset when MR images were acquired under upright full weight bearing. This 

is in contrast to previous studies that have shown that bisect offset is more 

pronounced in the supine position when investigating people with PFP under both 
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supine-loaded and upright full weight bearing conditions [164, 425]. The reason for 

this disparity is unclear, however, it may be explained by the fact that the previous 

studies selected people with excessive patella lateralisation, whereas the studies 

included in the current review likely contained a range of patella alignments. Another 

possibility is that the control group in the current review demonstrated an average 

reduction in bisect offset under full weight bearing, which may also explain the 

increased SMD.  

 

An on-going debate surrounds imaging under load [367]. The concept of ‘weight 

bearing’ has been challenged by Harbaugh et al. (2010) [367] who suggest that 

quadriceps activity is the primary determinant of patella position in PFP rather than 

the axial loading. Studies that use full weight bearing in this chapter employed a 0.5 

Tesla (T) open, upright scanner and the field strength of 0.5T may have affected 

image quality [431, 432]. Full weight bearing conditions also have the potential to 

elicit pain during the procedure [185]. In PFP, pain is recognised as having an 

inhibitory effect on quadriceps [433]. Altering quadriceps activity may influence the 

validity of the results by affecting patellar orientation [367].  

 

A number of limitations in the literature were identified based on participant selection. 

Firstly, a number of the included studies [65, 66, 68, 148, 168, 170, 179, 256, 397-

399, 404-406, 413] used all female cohorts, and of these studies only a few selected 

a matched cohort.  Controlling for gender, knee flexion angle and loading of the knee 

has been advocated because these factors have been reported to influence the PFJ 

mechanics and the comparisons made [154]. Furthermore, only half the studies 

clearly stated the recruitment source of participants e.g. hospital, military etc. 

Extrapolating results taken from a military or very physically active group and 

applying them to a more sedentary community dwelling population is likely to affect 

the external validity. Secondly, the quantification of pain in the PFP cohort was 

inconsistent. Over two thirds of the included studies selected participants based on 

reproducible pain with functional activities, however the number of provocative 

activities required for diagnosis and inclusion varied from one [169, 406, 412, 417, 

422, 423] to five [166, 408, 409].  The use of the VAS to quantify pain on provocation 

activities was used in six studies [65, 160, 165, 170, 179, 256, 406] . The duration of 

symptoms was also poorly reported, with fewer than a quarter of the included studies 

documenting the duration of PFP, and in these studies the data was presented 

differently (e.g. mean duration, range of duration). The duration of symptoms is 

important, as this has been shown in PFP to be a predictor of poor long-term 
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outcomes [19]. The effect of the duration of symptoms in relation to structural 

imaging findings is unknown. It is known however, that long term pain will lead to 

muscle inhibition [433] and thus there is a probability that a reduction in quadriceps 

strength and activity could influence the PFJ structural features observed. 

 

A number of limitations were identified in terms of the imaging assessment and 

outcomes for the included studies. Fewer than a quarter of included studies clearly 

recorded who interpreted the images [82, 160, 165, 166, 294, 400, 403, 406, 420]. A 

person’s level of experience interpreting imaging has been demonstrated to affect 

the accuracy of the analysis [434] and the level of confidence drawn from their 

findings. Furthermore, only a few studies documented whether the person analysing 

the images was blinded to group allocation. Blinding of allocation in this type of study 

design should be achievable [435] and lack of blinding raises the concern of 

confirmation bias [435].  The reliability of the imaging assessment was reported in 

fewer than half the included studies. Generally, the ICCs showed a moderate to high 

reliability for the MRI variables: bisect offset, patella tilt angle, patellofemoral contact 

area, Insall-Salvati index and sulcus angle, supporting the use of these features in 

future studies.  

 

A recent international expert consensus group highlight the need for sub-grouping of 

the PFP population [20]. The current review demonstrated a number of PFJ imaging 

features associated with PFP suggesting that these features should be considered 

as important components of future stratification. In addition, although most of the 

included studies employed cross sectional analyses, two studies did employ an 

interventional pre-post study design [148, 166]. These studies detected a significant 

change in patellofemoral contact area following strengthening exercise [166] and 

patellofemoral bisect offset and patella tilt following patella bracing [148]. As these 

imaging features have been shown to be modifiable it highlights the opportunity of 

using imaging features clinically as a treatment target 

 

3.6 Limitations of the current review  

Study selection remains challenging in terms of the PFP nomenclature and the fact 

that historically, the condition has been referred to by a variety of other names [436]. 

In the present review, over 20% of the studies used terms differing from 



 

Chapter 4. 3D imaging study  

123 

patellofemoral pain or patellofemoral pain syndrome. This makes study selection 

challenging with selection of the studies based on the description of the condition 

when more ambiguous terms are used. We attempted to minimise the potential bias 

in this process by using two reviewers to select studies and a third independent 

mediator.  

 

From a study design perspective, the cross-sectional nature of the studies means the 

results from the current review cannot imply causality. Furthermore, the small sample 

sizes used in many of the included studies may influence the validity of the results. 

However, meta-analyses were possible for a number of imaging features thus 

increasing the overall sample size and improving statistical power [437].  

 

With consideration of the methodology, determining whether an image was captured 

under load was based on a dichotomised value (loaded/ unloaded) rather than 

quantifying the exact load which may be important [367]. Only a few studies reported 

the quantity of loading so a comparison between studies was not possible. It was 

also apparent that some potential data for the review was the outcome of complex 

modelling such as finite element modelling. Where possible these imaging features 

were isolated and reported, however, the features that could not be isolated should 

be considered for a separate, future review.  

 

3.7 Conclusion 

The analyses within this chapter suggests that PFP is associated with a number of 

imaging features, in particular MRI bisect offset and CT congruence angle analysed 

at 0° knee flexion and 15° knee flexion respectively. A degree of caution in 

interpretation of this data is advised, however, due to the role of both features being 

derived from only moderate and limited evidence respectively. The results of this 

systematic review suggest that future studies need to clearly document the specific 

population in which participants are recruited and to improve reporting of imaging-

related issues. The inclusion of two interventional studies demonstrates that imaging 

features are potentially modifiable [148, 166] supporting their use in clinical 

subgrouping as shown in Chapter 5 and the presence of twenty- two studies 

reporting MRI features informs the investigation in Chapter 3. Limitations identified in 

terms of participant selection and imaging assessment will be further addressed in 

the following chapters.  
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Chapter 4 - Patellofemoral joint morphology in middle-aged 
people with patellofemoral pain measured using 3D 

quantitative analysis: data from the Osteoarthritis Initiative 

 

This chapter describes a retrospective study which employed novel technology to 

create 3D equivalents of commonly used patellofemoral joint imaging features and 

overall 3D bone shape to investigate whether these features differed between people 

with and without patellofemoral pain and between genders. The results from this 

chapter have been published as: Drew BT, Bowes MA, Redmond AC, Dube B, 

Kingsbury S, Conaghan PG. (2017). Patellofemoral morphology is not related to pain 

when using 3D quantitative analysis: data from the Osteoarthritis Initiative. 

Rheumatology. 56 (12), 2135-2144. [438]. 

 

4.1 Introduction 

The findings of Chapter 3 show a number of MRI features associated with PFP [378]. 

Features such as patella medial-lateral position and patella tilt were shown to be 

associated with PFP in small cohorts [378] (section 3.4.4). However, these findings 

were predominantly based on radiographic methods that have inherent limitations 

arising from their 2D methodology [439]. These studies typically used methods 

originally designed for radiographs and applied them to single MRI slices [439]. This 

type of ‘2D’ measurement is not optimal, as it does not control for the position of the 

leg within the image. For example, a difference in patella alignment or shape may be 

genuine or may be caused by the object’s pose, the combined relative position and 

rotation of the bones [440, 441] (see Figure 4.1). From a practical perspective, these 

manual assessment methods are also user-dependent and time-consuming, making 

it difficult to analyse features for large datasets [442].  
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Figure 4.1: The apparent shape of the patella after small translations and 
rotations 

 

1) Shows the outline of the mean patella in the coronal plane; 2) outline at 
the same height in the coronal plane but with patella rotated by 10° around 
the medial-lateral axis; 3) outline at the same height but with the patella 
rotated by 10° around the anterior-posterior axis; 4) patella translated 10mm 
superiorly, plus both rotations (2) and (3). The overall outline of the patella 
varies despite being the same 3D shape and object.  

 

 

The utilisation of supervised machine learning with Active Appearance Models 

(AAMs) [443], provides a solution to these recognised imaging shortfalls. This 3D 

quantitative analysis uses the statistics of shape and image information, calculated 

from a training set of images, and uses the resulting model to match to new images 

[444] (see 4.3.4.). This automated segmentation is capable of accurate identification 

of the shape and appearance of bone, providing an accurate, faster and highly 

reliable solution for analysing large imaging datasets [443, 445]. A major benefit is 

that the 3D imaging measures are not influenced by the pose of the object [446].  

 

Previous studies have considered the shape of the patellofemoral joint (PFJ) using 

statistical shape models [447, 448] but these have included only asymptomatic 

individuals in small cohorts and have failed to consider the differences in the PFJ 

anatomy that exist between gender [449, 450].   

 

4.2 Aims 

The primary aim of this study was to use modern image analysis technology to 

investigate the differences between 3D imaging features (based on existing 
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radiographic measures) and overall bone shape for people with and without PFP in a 

large cohort; and to investigate whether any single 3D imaging feature, or 

combination of features, was associated with the presence of pain. As evidence 

suggests there are differences in PFJ morphology between genders [449-451], the 

secondary aim was to validate the measures used by exploring whether these 

features could significantly discriminate men and women. 

  

4.3 Methods  

The data used in this chapter was taken from the publically available Osteoarthritis 

Initiative (OAI) database. 

 

4.3.1 Summary of the Osteoarthritis Initiative (OAI) 

The Osteoarthritis Initiative (OAI) is a multicentre longitudinal, observational study 

[452] comprising of those with knee osteoarthritis (OA) and those at risk of knee OA 

aged between 45-79 years. The study database includes 4796 participants with an 

extensive range of patient reported, clinical and imaging data publically available. 

The overall recruitment aim of the OAI was to enrol equal numbers of males and 

females of which at least 23% were from ethnic minorities with or at risk of 

symptomatic tibiofemoral OA [452]. Scans were performed bilaterally using 3.0 T 

MRI and the following MRI sequences were employed (see Table 4.1). Bilateral 

radiographs were used to determine the Kellgren & Lawrence (KL) grade using 

posterior-anterior views in a fixed flexion standing position. 
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Table 4.1: MRI sequences used in the OAI 
 

MRI Sequences 
Sagittal 3D DESS WE 
Coronal MPR 3D DESS WE 
Axial MPR 3D DESS WE 
Coronal IW TSE FS 3200 29 
Sagittal IW TSE FS 3200 30 
Coronal T1 3D FLASH WE 
Sagittal T2 MAP 120 mm FOV 
DESS: double-echo steady state; Multiplanar reconstruction; IW: intermediate weighted; WE: water excitation; 

TSE: turbo spin echo; FOV: field of view. 

 

4.3.2 Setting 

Data was retrieved at the 24-month time point from the OAI. This time point was 

chosen because this was the only time point when pain location (one of our selection 

criteria) was recorded. A Knee Pain Map was recorded asking the patient to use their 

fingertip to point to the locations of pain. Only pain located to the patella was 

included in this study. The full OAI database can be found at: https://oai.epi-ucsf.org/ 

 

4.3.3 Participants  

All patients at each Institutional Review Board (IRB) approved study site provided 

informed consent. The OAI study and the public use of all data used in the study 

were approved by the committee on Human Research, University of California, San 

Francisco (IRB approval number 10-00532). This chapter has been reported here in 

accordance to the Strengthening the Reporting of Observation Studies in 

Epidemiology (STROBE) guidelines [453]  

 

Our PFP group was selected based on fulfilling all the following criteria: the presence 

of pain reported in the patella region by the participant (using a Knee Pain Map); 

knee pain when using stairs - taken from the Western Ontario and McMaster 

Universities Osteoarthritis Index (WOMAC) pain subscale question; and a 

tibiofemoral joint KL grade of 0. Participants with any history of knee surgery in either 

knee, including replacement surgery, were excluded from the analysis. When 

bilateral knee pain was identified, the knee with the highest pain score on stair use 

was selected. If both knees had the same severity of pain, the right leg was chosen. 

One knee was selected for the control group based on fulfilling all the following: no 

pain in the patella region indicated by the participant; overall WOMAC score of 0; a 
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numerical rating scale (NRS) score of 0; KL grade of 0; and no history of surgery. 

Matching was considered but not applied in order to optimise the sample size for this 

high dimensional data set i.e. a large number of potential correspondences are 

required to specify a specific point (see 4.4.2 for further details). The MRI data and 

associated clinical data was gathered from the selected participants and the MRIs 

then analysed using AAMs (see 4.3.5) 

 

4.3.4 An overview of Active Appearance Modelling  

The 3D quantitative analysis used is based on the Active Appearance Models 

developed by Cootes et al. (2001) [443]. Modern applications of AAMs include 

treatment planning in cardiology [454], neurology[455] as well as its recognised use 

in facial recognition [456]. Active appearance modelling is a specific form of statistical 

shape modelling (SSM). SSM can provide 3D morphological data that could be used 

to understand pathophysiology, non-invasively in vivo [457]. Historically, joint shape 

is reliant on manual segmentation, the process of dividing an image into different 

regions and performed on individual MRI slices. This is particularly used for 

quantitative imaging measures as described in Chapter 3. Clearly these measures 

are labour intensive and not feasible for large datasets without many months of 

manual segmentation [444, 445]. If the geometrical shape is manually segmented 

enough from a representative population then a segmented region of interest can be 

analysed by statistics in order to allow the application of SSM. The process involves 

identifying a large number of anatomical equivalent landmarks (correspondences) on 

a mean shape, which allows for automated recognition in a target image - similar to 

face recognition software. The statistics behind this SSM uses principal component 

analysis (PCA) in which the correspondences are data points. These data points are 

constructed into eigenvalues (how much variance of data in a particular direction) 

and eigenvectors (the direction the line of data). The PCA finds the line that explains 

the most variation with the fewest axes possible –often the eigenvector with the 

highest eigenvalue. PCA is also able to reduce the dimensionality of the data by 

stripping the data down to its basic components, which is essential for analysing 

complex 3D data. This ‘trained SSM’ is then able to recognise the same object or 

part of an object in any target image it encounters allowing for accurate, automated 

segmentation [457] 
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The second generation SSM is the active shape model (ASM), which advances this 

approach to control for the natural variation that exists within the same tissue. This 

statistical algorithm fits the data to the target image to ensure the best fit. Advancing 

the ASM further, the third generation of this approach and the technology used in this 

chapter is the active appearance modelling (AAM). The AAM utilises the grey scale 

texture, which considers the gradient, corners and any other points of interest [444] 

to more accurately define the shape. In the training set, a 5-6 rim is applied to ensure 

that the model learns the grey scale texture allowing this to be identified and 

matched to target images in encounters. This is depicted schematically in Figure 4.2. 

 

 

 

Figure 4.2: A schematic diagram of Active Appearance Modelling 
 
To start with, the model is located in the lower left of the true position (solid 
grey). The texture is then sampled and compared to appearance model. The 
corresponding residuals are shown in the next image, which suggests move 
to the upper right. The final image brings model closer to true position and 
appearance. Reprinted with permission from Elsevier, Medical Image 
Analysis [458]. 
 

 

4.3.4.1 How does AAM address previous imaging shortfalls? 

The 3D quantitative imaging analysis utilises the centroid of the feature. The centroid 

can be thought of as the geometrical centre of gravity representing the average 

position between the x, y and z axes [459]. The centroid is a more robust descriptor 

of an imaging feature’s location rather than relying on the midpoint of points in single 

slice 2D image. The 2D midpoint points are thought to be influenced by the errors in 

peripheral single pixels that may occur due to problems with acquisition or noise 

[460] as well as the highlighted inconsistencies in testing procedures. The centroid 

also represents an accepted, consistent reference location rather than relying on 

different reference locations for difference features. For example, the reference 
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location for congruence angle is the deepest part of sulcus (see Figure 3.2) whereas 

the patella tilt uses the posterior condyles (see Table 2.5.). 

 

4.3.5 Data sources  

In this chapter, the bone surfaces for the trochlear femur and the subchondral patella 

were obtained by automatic segmenting using AAMs of the selected participant 

MRIs. The AAMs for the femur and patella joint surfaces (Figure 4.3) were built from 

an independent training set of 96 examples acquired using the DESS-we MRI 

sequence chosen so as to contain examples from each stage of OA. Anatomical 

regions of subchondral bone were outlined on the mean patella and femur shapes 

using the correspondence points of the model, as previously described [445]. In this 

case, the PFJ surfaces were identified (Figure 4.3). An advantage of this method is 

that each automatic segmentation of an individual PFJ surface is automatically fitted 

with a dense set of anatomically corresponded landmarks, which can be used for 

measurements or for registration of examples. 

 

This study relies on the ability of the AAM to accurately represent the 3D shape of 

the trochlear femur and the patella. Accuracy was assessed using 96 leave-one-out 

models, which were then fitted to the missing example. Distances from the known 3D 

surface to the AAM-searched surfaces were calculated as point-to-surface distance 

(mm) at each point in the model. Mean error (calculated using the root-mean-square 

method [RMS]), and 95th percentile errors were calculated. 
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Figure 4.3: Coordinate frame and model extent, facet regions 
 
A) Model extent – articulating surfaces plus small amount of bone surface 
beyond the articulating surface.  Inferior boundary of trochlear femur is 
defined as the anterior edge of the menisci in the mean model 
 
B) Axes are taken from the mean model: X axis – anterior-posterior (anterior 
+ve); Y axis – superior-inferior (superior +ve); Z axis – medial-lateral (lateral 
+ve); Coronal plane – looking along the x axis (in the +ve direction); Axial 
plane – looking along the y axis (in the +ve direction); Sagittal plane – looking 
along the z axis (in the +ve direction)  
 
C) Facet regions of medial and lateral trochlear femur, and medial and lateral 
patella 

 

A B 

C 
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The patella sub-region was defined as the subchondral area of the patella, together 

with a ‘halo’ of approximately 10mm around the subchondral plate. The femoral sub-

region was defined as the trochlear subchondral region of the femur, using the 

anterior edge of the menisci as the boundary of this region, plus a similar halo 

around the region. These two regions were combined into a single shape model, 

describing 95% of the variance in the shape, and the principal components for each 

individual PFJ surface were recorded. 

 

4.3.6 Variables  

We evaluated whether there were between-group differences in terms of the 

following thirteen 3D imaging features: patella medial-lateral position (mm), patella 

inferior-superior position (mm), patella anterior-posterior position (mm), medial 

patella facet area (mm2), lateral patella facet area (mm2), medial to lateral patella 

facet area (ratio), sulcus angle (°) [461], congruence angle (°) [461], medial trochlear 

inclination (°) [406], lateral trochlear inclination (°) [406], patella medial-lateral tilt (°), 

patella rotational alignment (°) and patellofemoral contact area (ratio). These 3D 

imaging features were converted from a range of standard MRI features derived from 

the systematic review in Chapter 3. 

 

An outline of the methods used to assess the imaging features, using the surfaces 

shown in Figure 4.3 are shown in Table 4.2. All PFJ surfaces were rigidly aligned 

with the mean shape, using a least squares fitting method, which fitted only the femur 

region. The x, y and z-axes were defined as anterior-posterior, superior-inferior and 

medial-lateral respectively (coordinate frame Figure 4.3). The geometrical centre of 

gravity (COG) was calculated for patella and femur surfaces of each knee separately.  

 

To determine the translation of the patella relative to the femur position, differences 

between the patella and femoral COGs were calculated along the x, y and z-axes. 

Angles between the medial and lateral facets of the patella and femur were 

calculated as follows: correspondence points within the facets were identified in the 

model as previously described (Figure 4.3) [445], and these masks were used to 

consistently identify these facets in each knee. For each knee bone surface, a plane 

was fitted to each of the medial patella, lateral patella, medial trochlea and lateral 
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trochlea facets, and the angle calculated between the pairs of planes projected onto 

the x, y and z-axes.  

 

Patella contact area was defined as the area of patella surface, which intersects with 

vectors normal to the trochlear femur at each correspondence point (based on the 

mean model Figure 4.3), and expressed as a ratio of the total patella surface area. 

The sulcus angle, congruence angle and both the medial and lateral trochlear 

inclination angles were measured using planes established in the mean model 

(Table 4.2). The relationship between the area of the medial and lateral facets was 

expressed as a ratio (MP: LP ratio). Patella tilt and rotational alignment was 

established by rigidly aligning each individual patella with the mean patella, and 

recording the rotation from the mean patella.  For the direction of patella tilt and 

rotational alignment see Table 1.  
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Table 4.2: 3D imaging features 

PFJ Feature Description 3D assessment method Graphical representation 

Patella medial-
lateral position 

(mm)  

Position of the patella 
with respect to the 
femur in the medial-

lateral direction 
(lateral = +ve) 

Distance between the centre of gravity of the femur and the 
patella in the coronal plane when projected onto the z (medial-

lateral) axis 
 

  

Patella inferior 
superior position 

(mm)  

Position of the patella 
with respect to the 

femur in the superior-
inferior direction 
(superior = +ve) 

Distance between the centre of gravity of the femur and the 
patella when projected onto the y (superior-inferior) axis. 

 

Patella anterior-
posterior position 

(mm)  

Position of the patella 
with respect to the 
femur in the anterior-

posterior direction 
(anterior = +ve) 

Distance between the centre of gravity of the femur and the 
patella when projected onto the x (anterior-posterior) axis. 
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Medial patella 
facet area (mm2)  

3D surface area of the 
medial facet tAB area of the region shown as MP 

 
Lateral patella 

facet area (mm2)  
3D surface area of the 

lateral facet tAB area of the region shown as LP See figure for medial patella facet 

Medial patella 
facet to lateral 

patella facet ratio  

The ratio of the medial 
and lateral facet area 

 

The ratio of the medial and lateral facet area 
 

See figure for medial patella facet 

Sulcus angle (°) 

The angle between 
the medial and lateral 
trochlear facets in the 
axial plane (viewed 

along the y-axis) 
 

The angle between planes fitted to the medial and lateral 
trochlear facets, viewed along the y axis (degrees) 

 

 

Congruence 
angle (°) 

 

The difference in the 
sulcus angle and the 
angle between the 

patellar facets in the 
axial plane (viewed 

along the y axis) 

Calculate the patellar facet angle as per the sulcus angle, but 
using the patellar facets.  Congruence angle is sulcus angle 

minus the patellar facet angle 

 



 

Chapter 4. 3D imaging study  

136 

Medial trochlear 
inclination (°)  

 

The angle between 
the medial trochlear 

femur and the medial-
lateral axis in the axial 

plane 

The angle between a plane fitted to the medial trochlear of the 
femur (see Fig 1) and the medial-lateral axis (x axis), when 

viewed along the y axis 

 

Lateral trochlear 
inclination (°) 

The angle between 
the lateral trochlear 

femur and the medial-
lateral axis in the axial 

plane 

The angle between a plane fitted to the lateral trochlear of the 
femur (see Fig 1) and the medial-lateral axis (x axis), when 

viewed along the y axis  

 

Patella medial-
lateral tilt (°) 

Rotation of the patella 
with respect to the 
femur in the axial 

plane 

Following rigid alignment of the combined femur/patella 
surfaces using only the femur points, rotation of the patella 

around the y axis (+ve – rotated laterally, -ve rotated medially) 
compared to the mean position of the patella; 
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Patella rotational 
alignment (°) 

Rotation of the patella 
with respect to the 

femur in the sagittal 
plane 

Following rigid alignment of the combined femur/patella 
surfaces using only the femur points, rotation of the patella 

around the x axis (+ve – rotated superiorly, -ve rotated 
inferiorly) compared to the mean position of the patella; 

 

 

Patellofemoral 
contact area 

(ratio)  

The percentage of 
patella coverage in 
relation to the femur 

The percentage of patella surface which intersects with normal 
from the trochlear femur 

 

+ve = postive direction; -ve = negative direction; tAB = total area of subchondral bone 
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4.4 Statistical analysis  

Statistical analysis was carried out in SPSS software, version 21.0 (Armonk, NY: IBM 

Corp). Descriptive statistics were used to describe the main characteristics of the 

study population and were presented as mean (SD) where appropriate for 

continuous variables, and frequency and percentages for categorical variables. For 

simple comparison between groups, independent sample t-tests were used to 

compare the mean differences for all the thirteen 3D imaging features. Graphical 

exploration of the data was performed to ensure that assumptions of normality were 

valid prior to performing the t-tests.  

 

4.4.1 Multiple testing  

Repeated statistical testing leads to multiple testing and thus increases the chances 

of a type 1 error [462]. As a rule, adjusting the significance level is recommended 

and commonly a Bonferroni correction is applied, however, there are situations when 

the Bonferroni is too conservative [463]. Armstrong (2014) [463] suggests that 

Bonferroni corrections are not indicated when multiple t-tests are applied and the 

individual tests are important. This could be considered the case with this chapter. In 

contrast, they also suggest Bonferroni should be applied when a large number of 

tests are carried out without a pre-planned hypotheses in an attempt to find any 

results that are significant [463]. Although a clear aim was stated (see 4.2), no 

specific features were hypothesised and thirteen different features were investigated. 

A decision was made to apply a Bonferroni correction to minimise the effect of an 

experiment wise error and the level of significance set at α = 0.004 (0.05/13).  

 

4.4.2 Controlling for confounders  

Gender has been highlighted as an important confounder in PFJ structure [12]. There 

are number of data-analytical techniques that can be applied to control for 

confounders. These can be broadly classified into: non-model based techniques 

(stratification and matching) and model based techniques (regressional analyses)  

 

4.4.2.1.1 Non-model based techniques 
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Non-model based adjustment techniques are conducted without underlying model 

assumptions. Stratification involves the dividing participants into categories based on 

a confounding factor [464]. Matching involves the selection of patients with similar 

values of a confounding factor in both groups [464]. The advantages and limitations 

of the stratification and matching are typically similar [465]. The advantages of both 

these methods is that they allow clear interpretation of the results and do not have to 

comply to any model assumptions about the outcome and covariates [465]. The 

major limitation is that multiple covariates are difficult to deal with leading to potential 

empty strata or mismatches of cases during matching.  Furthermore, in the context of 

Chapter 3, both these approaches also reduce the available sample size. For 

example, stratifying by gender reduces the size of the PFP group to 67 female and 

48 males.  

 

4.4.2.1.2 Model based techniques  

Multivariable statistical techniques offer the ability to reduce bias by including a 

number of covariate factors in order to adjust the effect. Multivariable techniques 

have the advantage of optimising sample size and retaining the original sample. One 

of the recognised drawbacks of adjustment through modelling occurs if there is a lack 

of covariate overlap between groups that can lead to increased bias and variance 

[466]. Matching provides warnings of this problem, whereas this is not highlighted 

during multivariable modelling. In the context of Chapter 3, however, the gender 

covariate is equally distributed across both groups thus the problem does not apply 

in this scenario. 

 

4.4.2.1.3 Preferred method for controlling for confounders 

As only one covariate (gender) was considered for this analysis then stratification or 

matching would appear to be viable approaches. However, as a result of the high 

dimensionality of data in 3D shape there was a need to optimise the sample size as 

much as possible. So, in order to retain the sample size, a decision was made to use 

a gender-adjusted multivariable regression model.  

 

4.4.3 Logistic regression models  

Logistic regression models were used to identify whether any of the 3D imaging 

features, or a combination of features, were associated with PFP. Firstly, univariable 
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models were performed on all thirteen features to establish their individual 

association with PFP. For the two ratio variables (medial patella facet area to lateral 

patella facet and patellofemoral contact area) values were categorised based on the 

median value into lower than median and higher than median. This was then 

followed by multivariable models adjusted for gender.  

 

4.4.3.1 Directed acyclic graph (DAGs) 

To achieve parsimony and also mitigate the effects of collinearity, the relationship of 

a selected number of 3D imaging features was considered for the multiple logistic 

models. As recommended by Zuur et al. (2010) [467], biological knowledge and 

clinical understanding was used for variable selection to ensure a pragmatic model.  

The variable selection was based on the directed acyclic graph approach [468], 

which has been employed in other studies [442] to allow appropriate model 

specification. A DAG is graphical representation of causal effects and an approach 

for understanding relationships of variables [468]. Effectively, the DAG aims to 

identify the ancestor (a direct cause or indirect cause of a particular variable) and the 

descendent (a direct effect or indirect effect of a particular variable). Figure 4.4 and 

Figure 4.5 show a simplified version of the DAGs used for the trochlear variables 

(medial trochlear inclination, lateral trochlear inclination, sulcus angle and 

congruence angle) and cartilage variables (lateral patella facet area, medial patella 

facet area, patellofemoral contact area and medial patella facet and lateral patella 

facet ratio). In the scenario when an ancestor and descendant are identified then the 

ancestor is retained and the descendant omitted [468]. 

 

This approach results in parsimonious models being chosen without the risk of over 

adjustment; although causality was not explicitly assumed from our models. An 

imaging feature was thus excluded from the model if one or more of the other 

imaging features were required for its formation and thus highly correlated. 

Accordingly, the medial patella facet to lateral patella facet ratio and patellofemoral 

contact area were omitted, as they are derived using both the medial and lateral 

patella facet area. The congruence angle and sulcus angle were omitted, as they are 

both built from the medial and lateral trochlear inclination.  

 

In addition to the DAG, a correlation matrix was computed to investigate the 

dependence between the variables retained and to ratify my clinical decisions. Both 
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lateral patella facet area and medial patella facet area (r=0.99) (Table 4.3) and 

medial trochlear inclination and lateral trochlear inclination (r =-0.49) (Table 4.4) 

demonstrate significant association, however, in the absence of any clinical hierarchy 

for these variables neither could be removed based on clinical grounds. Based on 

guidance from Field (2013) [469], as there are no statistical grounds for omitting one 

variable over another then its suggested that the only solution is to acknowledge 

these background interactions in the eventual model  
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Figure 4.4: Directed acyclic graph to illustrate the relationship between 
trochlear morphological variables 
Black circles indicates variables removed from the eventual model 

 

 

 

Figure 4.5: Directed acyclic graph to illustrate the relationship between patella 
cartilage variables  
Black circles indicates variables removed from the eventual model 

Medial trochlear 

inclination 

Sulcus angle 

 

Congruence angle 

 

Lateral trochlear 
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Lateral patella facet 

area 

Patellofemoral 
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Table 4.3: Correlation of retained variables medial and lateral patella facet area 
 

 Medial patella 
facet area 

Lateral patella facet area 

Medial patella facet area 1 0.99* 
Lateral patella facet area 0.99* 1 

 

*Significant at p = < 0.01 

 

 

Table 4.4: Correlation of retained variables medial and lateral trochlear 
inclination 

 

 

*Significant at p = < 0.01 

 

4.4.3.2 Knee based vs. Person Based Analysis 

Debates surrounds the preferred unit of analysis when dealing with paired data [470]. 

The potential approaches to data analyses for Chapter 4 were: i) a person-based 

analysis, analysing single knees for each participant; or ii) a knee-based analysis 

analysing both knees (specifically all symptomatic knees). Due to the known 

correlations between knees, ‘double dipping’ the data [470] and analysing at knee 

level creates a lack of independence of the data and violates the statistical 

assumptions [471]. Conversely, a person-based analysis relies on the participants 

selecting a knee. Typically the ‘worst’ knee is selected, however, as Doherty and 

Jones (1998) [472] highlight the ‘worst’ knee may vary from week to week and 

attributing separate scores to each knee is difficult. There is also a suggestion that 

the ‘best’ knee is a better method as an individual can compensate to a degree for a 

poorer knee [471]. Other possible selection criteria include selecting the dominant 

limb or collapsing paired data into single measures by taking the average [470]. Even 

with the best intention for a person-based analysis, as each knee has three 

compartments there is still an argument that pooling of data is occurring [472] 

 

 Medial trochlear 
inclination 

Lateral trochlear 
inclination 

Medial trochlear inclination 1 - 0.49* 
Lateral trochlear inclination  - 0.49* 1 
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If a knee-based analysis is used, the statistical plan needs to be evaluated in order to 

conform to statistical assumptions. Possible solutions include spreading the analyses 

and analysing each side separately, however, this has the effect of reducing 

statistical power and makes results difficult to interpret especially if results are 

different [471]. For Chapter 4, consideration was made to using both approaches. 

Ancillary analysis of those participants within the PFP group with two knees, which 

satisfied the inclusion criteria, showed only 19 additional knees. It was deemed that 

these additional knees would have limited impact on the statistical power and thus 

did not justify the introduction of the more advanced statistical techniques e.g. 

generalised estimating equations (GEE). Furthermore, conceptually this chapter 

investigates whether any of these 3D structural features predict pain. If the outcome 

was solely structural progression this would justify a knee-based analysis [470], 

however, as pain is multidimensional construct [473] then person based factors may 

play a significant role. These reasons justify the use of a person-based analysis with 

the ‘worst’ knee selected from highest pain score (WOMAC score) given during 

stairs.      

 

4.4.4 Linear discriminant analysis 

Linear discriminant analysis (LDA) of 3D shape explored whether any overall 3D 

shape or spatial position of the bones could discriminate between those with and 

without PFP, irrespective of the pre-selected thirteen imaging features. Linear 

Discriminant analysis (LDA) is indicated when evaluating the ability of variables to 

linearly discriminate between any groupings. LDA has been used previously as a 

statistical means of investigating gender recognition [474, 475]. The validity of this 

approach was examined by assessing if the method could discriminate between men 

and women, who are known to have different bone shapes [450]. Using the masks in 

Figure 4.3, the bone surface of the trochlear femur, and the subchondral patellar 

were extracted from each knee (533 knees). These corresponded points were used 

to build a shape model of the isolated PF joint, which accounted for 98% of the 

shape variance. This resulted in 40 principal components.  Subsequently, individual 

PF joints were represented as a series of principal components, which taken together 

provide an accurate representation of the 3D shape of the two bones, and includes 

the position and articulation of the femur and patella. 

 

LDA of two groups expressed as 40 principal components is expected to find at least 

one hyper-plane capable of separating out the groups (expressed as the distance 
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between the two means of the groups projected onto the LDA hyperplane).  A Monte 

Carlo experiment was used to assess whether the separation achieved by LDA of the 

groups was better than that expected by chance [476]. Monte Carlo experiments are 

statistical analyses using random samples. The Monte Carlo experiment mimics the 

important elements of the experiment and replicates these at random to solve a 

deterministic problem [476]. Sawilowsky (2003) [476] identified that Monte Carlo 

experiments could be used in applied statistics to: i) compare smaller samples under 

realistic data conditions; ii) implementation of hypothesis testing that is more efficient 

than permutation testing when there is too many possible data combinations. This 

justifies the use of Monte Carlo in Chapter 4, as the sample is relatively small in 

terms of the high level of dimensionality of the data and the stochastic nature of the 

data correspondences. For 10,000 repeats, each knee was randomly assigned a 

label in the same proportions as the dataset.  A pseudo p-value is calculated from 

the number of repeats, which provides a better segmentation than the actual 

labelling. 

4.5 Results 

Based on our inclusion criteria we included 115 in the PFP group and 438 in the 

control group. The mean age was 59.7 years (SD 8.78) for the PFP group and 63.6 

years (SD 9.14) for the control group, with 58.2% and 52.9% women in the PFP and 

control groups respectively. The mean BMI was 27.5kg/m2 (SD 5.29) for the PFP 

group and 26.9 kg/m2 (SD 4.52) for the control group. 

 

4.5.1 Primary aim  

Overall group comparison showed no statistically significant differences between 

people with and without PFP for any of the thirteen 3D imaging features (all p > 

0.004) (Table 4.5). In addition, the sensitivity analysis similarly showed no statistically 

significant differences for any of the 3D imaging features (results not shown).  

 

Univariable models showed no association between the individual 3D imaging 

features and PFP (Table 4.6). Results from the multivariable models revealed that 

combining 3D imaging features also showed no significant association with PFP (p > 

0.05) and all the odds ratios remain close to the value of 1 indicating a lack of 

relationship to pain having adjusted for gender (Table 4.6). 
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Table 4.5: The mean difference between PFP and No PFP groups 

     

Feature 

Groups (Mean (SD)) 

Mean Difference (95% CI) P value 
a
 PFP  No PFP  

Patellofemoral contact area (ratio) 0.41 (0.16) 0.41 (0.15) 0.00 (- 0.03,0.03) 0.83 
Patella medial-lateral position (mm -1.17 (2.25) - 1.02 (2.37) - 0.15 (- 0.63, 0.33) 0.54 
Patella inferior-superior position (mm) - 21.03 (4.42) - 21.34 (4.66) 0.30 (- 0.62, 1.23) 0.52 
Patella anterior-posterior position (mm) 20.23 (2.04) 20.31 (1.93) - 0.08 (- 0.48, 0.32) 0.69 
Congruence angle (°) 9.04 (5.80) 8.68 (5.80) 0.36 (- 0.84, 1.55) 0.56 
Patella medial/ lateral tilt (°) - 0.14 (3.33) 0.00 (3.31) 0.35 (- 0.84, 1.55) 0.56 
Medial trochlear Inclination (°) 30.39 (4.27) 30.44 (4.02) - 0.05 (- 0.89, 0.55) 0.90 
Lateral trochlear Inclination (°) - 25.52 (3.11) - 25.54 (2.70) 0.02 (- 0.55, 0.59) 0.93 
Patella rotational alignment (°) - 0.01 (2.53) 0.18 (2.77) - 0.18 (- 0.75, 0.37) 0.63 
Medial patella facet area (mm

2
) 524.41 (81.57) 533.38 (85.12) - 8.96 (- 26.34, 8.40) 0.31 

Lateral patella facet area (mm
2
) 667.45 (108.47) 681.48 (112.90) -14.03 (- 37.08, 9.02) 0.23 

Medial patella facet to lateral facet (ratio) 0.79 (0.02) 0.79 (0.02) 0.00 (- 0.00, 0.01) 0.18 
Sulcus angle (°) -124.09 (6.55) -124.01 (5.80) - 0.07 (-1.30, 1.15) 0.91 

a. Independent Samples T-test
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Table 4.6: The association between thirteen 3D imaging features and patellofemoral pain 

 

Imaging feature 

Univariable (unadjusted) Multivariable (Gender-adjusted) 
a
 

OR (95% CI) P- value OR (95% CI) P- value 

Patellofemoral contact area (lower) 0.97 (0.65, 1.47) 0.89 0.95 (0.63, 1.43) 0.79 
Patella medial-lateral position  (mm) 0.97 (0.89, 1.06) 0.54 0.97 (0.89, 1.06) 0.50 
Patella inferior-superior position (mm) 1.02 (0.97, 1.06) 0.53 1.01 (0.97, 1.06) 0.65 
Patella anterior-posterior position  (mm) 0.98 (0.88, 1.09) 0.69 1.00 (0.89, 1.12) 0.99 
Congruence angle (°) 1.01 (0.98, 1.05) 0.56 1.01 (0.98, 1.05) 0.52 
Patella medial/lateral tilt (°) 0.98 (0.93, 1.05) 0.68 0.99 (0.93, 1.05) 0.64 
Medial trochlear inclination (°) 0.99 (0.95,1.05) 0.90 0.99 (0.94, 1.04) 0.73 
Lateral trochlear inclination (°) 1.00 (0.93, 1.08) 0.93 1.01 (0.94, 1.09) 0.80 
Patella rotational alignment (°) 0.98 (0.90, 1.05) 0.51 0.97 (0.90, 1.05) 0.45 
Medial patella facet area  (mm2) 0.99 (0.99, 1.00) 0.31 0.99 (0.99, 1.00) 0.65 
Lateral patella facet area  (mm2) 0.99 (0.99, 1.00) 0.23 0.99 (0.99, 1.00) 0.49 
Medial patella facet to lateral patella facet (lower) 0.55 (0.36, 0.83) 0.01 0.56 (0.36, 0.85) 0.01 
Sulcus angle (°) 0.99 (0.96, 1.03) 0.91 0.99 (0.96, 1.03) 0.72 
Gender (female) 1.24 (0.81, 1.88) 0.31   
 

Combined imaging features 
b 

 

Patella medial-lateral position  (mm)  0.98 (0.89, 1.09) 0.73 
Patella inferior-superior position (mm)  1.00 (0.95, 1.06) 0.93 
Patella anterior-posterior position  (mm)  1.03 (0.89, 1.18) 0.66 
Patella medial/lateral tilt (°) 0.97 (0.89, 1.05) 0.47 
Medial trochlear inclination (°) 0.99 (0.94, 1.07) 0.98 
Lateral trochlear inclination (°) 1.03 (0.93, 1.14) 0.52 
Patella rotational alignment (°) 0.96 (0.89, 1.05) 0.37 
Medial patella facet area  (mm2) 1.01 (0.99, 1.03) 0.25 
Lateral patella facet area  (mm2) 0.99 (0.98, 1.00) 0.18 
 

a. Adjusted for gender (female). OR: Odds ratio; CI: confidence interval  

b .    Variables removed: Medial patella facet to lateral facet (ratio); Sulcus angle (°); Congruence angle (°); Patellofemoral contact area (ratio) 
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4.5.2 Secondary aim 

The results of the LDA showed that the overall 3D shape was unable to significantly 

discriminate between groups with and without PFP showing a classification of 55.5%.  

The pseudo p-value from the Monte Carlo experiment was p=0.79, indicating that the 

PFP/without PFP labeling separated out the groups no better than random chance. 

In contrast, the overall 3D shape was able to significantly discriminate between men 

and women with a classification of 90.6%. The pseudo p-value from the Monte Carlo 

experiment was (p < 0.0001), indicating that it is unlikely that there is any labeling 

that separates the groups out better than gender. An orthogonal projection of the 

gender differences is shown in Figure 4.6. 

 

4.5.3 Assessing the accuracy of the model  

The accuracy of the model was conducted using root mean squared (RMS) error. 

RMS is calculated by firstly obtaining the total squared error expressed as the sum of 

the individual squared errors. The total squared error is then divided by the sample 

size and then the square root of this mean square error forms the RMS [477]. The 

advantaged of the RMS is that it is expressed in the units of interest thus improving 

the interpretation of the error [477]. RMS mean point-surface accuracy of the femur 

and patella AAMs was 0.12mm, 95th percentile 0.38mm.  The voxel sizes were 0.36 x 

0.36 x 0.7mm in size. This demonstrates that the model is accurate at almost all 

points to within one pixel on the MRI image.  
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Figure 4.6: An orthogonal view of the gender difference 
 
This shows that in men the patella shape extended more superiorly leading 
to higher overall COG. The higher COG found in men was not result of the 
patella sitting more cephalic as the bottom of the patella was similarly 
positioned in both genders. Image courtesy of Imoprhics™ Ltd 

 

4.6 Discussion 

The findings of this chapter suggest that when commonly used patellofemoral 

imaging features are examined using accurate 3D quantification, no statistically 

significant differences are found between a group with and without PFP.  

Furthermore, no single 3D imaging feature, or combination of features, was 

associated with the presence of PFP.  The results of the LDA experiment shows, 

using bone shapes fitted with sub-voxel accuracy, that there is nothing within the 3D 

shape of the joint able to classify the presence of PFP better than chance; at least 

using shape expressed as principal components. 

 

In this analysis the lack of association of the 3D imaging features with PFP is robust 

but is in contrast to previous reports based on 2D imaging shown in Chapter 3. A 

recent systematic review [478] of patellofemoral morphology, in patellofemoral 

osteoarthritis (PFOA), demonstrated strong evidence that PFOA is associated to 

trochlear (femoral) morphological features. A possible explanation for the contrast to 

the present findings is highlighted by a previous study [367] of 30 knees assessed by 

MRI, which also found a lack of differences in femoral shape between people with 

and without PFP. By subgrouping people with PFP into lateral and non-lateral 
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maltracking groups, Harbaugh et al. (2010) [367] found that these subgroups lie on 

opposite sides of the healthy average, suggesting that underlying subgroups may be 

masking the differences between people with and without PFP[367]. A lack of 

established thresholds to define PFJ imaging feature subgroups did not allow this to 

be verified in the current chapter but strengthens the case for subgrouping as 

addressed in Chapter 5. 

 

These findings further contrast with a MRI study of 240 knees [479], which showed 

that a medially inclined patella (similar to medial patella tilt in this analysis) was 

associated with less pain. This disparity may be because the assessments were 

performed on a single MR slice at the mid-point of the patella in the sagittal plane, 

and as noted previously, these methods may be open to measurement error by not 

controlling for relative limb position and orientation. Shibanuma et al. (2005) [441] 

showed that alterations in limb position led to statistically significant differences in the 

PFJ features recorded for both men and women. Patella alignment values including 

medial-lateral position and tilt have been shown to be influenced by the relative tibial 

and femoral rotation and varus angulation [440]; whilst single slices along one plane 

are known to misrepresent the true anatomy of the PFJ [480] ( see Figure 4.1). 

 

The PFJ imaging features used to inform the development of the 3D features in the 

current chapter have been published previously [164, 170, 406, 479]. Our findings 

are comparable to a previous study that analysed trochlear morphology in 881 

middle-aged knees using MRI [481]. Stefanik et al. (2012) [481] reported similar 

values for sulcus, lateral trochlear inclination and medial inclination angles of 130.9°, 

25° and 24.4° respectively, though the novel assessment methods used here 

preclude direct comparison with Stefanik et al. (2012) [481]. This is because, in 

contrast to traditional methods, the geometrical centre of gravity was used here as a 

more representative reference point for 3D shape (see Section 4.3.4.1).  The use of 

statistical shape models has also been applied previously in the PFJ [447], however, 

this is the first time these methods have been employed on a large, symptomatic 

group with a comprehensive range of traditional features converted into their 3D 

equivalents. 

 

Gender is widely considered to influence PFJ imaging features [449-451]. Validation 

of these new 3D imaging features was achieved by using the shape data from the 3D 

imaging features, coded as principal components, showing that gender was 

classified at a 90% level of accuracy. This is similar to the classification of 93.5% in 
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sex determination using 3D computed tomography features of the patella in vitro 

[450]. Our model expands on this work by applying 3D MR imaging features from 

both the patella and femoral trochlea in vivo.  Given that there are significant 

differences by gender for PFJ imaging features, it seems likely that previous studies 

have been affected by a mix of genders within their sample. Subsequent review of 

Chapter 3 (systematic review) showed that, of studies including mixed gender 

cohorts, 80% failed to report women and men separately. Therefore previous studies 

may simply have been describing differences related to their gender mix. As a result, 

it is recommended that future studies follow the lead of recent studies [294] by 

reporting gender separately or conducting single gender analyses. 

 

4.6.1 Limitations  

This chapter presents with a number of limitations with regards to the sample and 

methodology  

 

Sample. This analysis was conducted on a sample older than a typical PFP patient 

and thus caution is advised when extrapolating these findings to a younger 

population. Furthermore, all selected patients had KL grade 0 within the tibiofemoral 

joint but there were no lateral or skyline x-rays available to view the PFJ 

radiographically. Without lateral or skyline x-ray we cannot assert that all participants 

were without radiographic PFOA, however previous studies have suggested that in 

the absence of OA in the tibiofemoral joint, approximately 75% of this age cohort will 

have no other compartmental OA [380, 482]. Despite being a large sample size 

compared to previous literature, the sample size is probably still small considering 

the high dimensionality of the data, which may have limited the power of the 

analyses to detect differences. 

 

Methodology. The features were based on MRI images taken in non-weight bearing 

with no knee flexion. As highlighted in Chapter 3, weight bearing and knee flexion are 

known to influence the features observed [12, 378] and may have impacted on the 

overall findings.  In this chapter, PFP was determined at a single time point (24 

months) and pain based on dichotomised value (pain/no pain) rather than a graded 

severity scale. It is possible that a relationship between imaging and pain is more 

likely when the pain outcome is more sensitive with a greater number of grading 

levels [395]. Our analysis included a range of quantitative 3D measures, together 

with an examination of the principal components from the associated shape model. 
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The use of principal component analysis for one of the measures may have resulted 

in the loss of some 3D information, and it is possible that other advance methods of 

shape analysis and machine learning could reveal a relationship that our methods 

cannot.  

 

4.7 Conclusion  

The analysis within this chapter shows using 3D quantitative analysis that no 

statistically significant differences were found between people with and without PFP. 

These 3D findings are in contrast to the current perception, which has relied on 

studies using what are effectively 2D measurements applied with a lack of consistent 

joint positioning. Analyses of the overall 3D shape in relation to gender validates 

these novel 3D measures and also suggests that future PFP cohort analyses should 

be stratified for gender. Further work is needed to assess whether 3D quantitative 

analysis can discriminate shape differences related to PFP in a younger population, 

more representative of the real-world PFP population. 
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Chapter 5 - The development of data-driven diagnostic 

subgroups for people with patellofemoral pain using 

modifiable clinical, biomechanical and imaging features 

 

This chapter describes a longitudinal cohort study with a cross-sectional analysis 

which identifies subgroups within a PFP cohort using clinical, biomechanical and 

imaging features. By following up participants at 12-months, the chapter also 

describes the prognosis of these subgroups.  

 

5.1 Introduction  

As highlighted in Chapter 2, unfavourable outcomes for patients with PFP have been 

attributed to the belief that subgroups within the PFP population respond differently 

to treatment [20]. However, a paucity of evidence currently exists for subgrouping 

and subsequent stratification of care.  

 

Recommendations for subgrouping research suggests that prior to testing the effect 

of subgrouping, a hypothesis-setting stage is required which attempts to identify 

clinically important subgroups and explore the prognostic effect attributed to 

subgroup membership [363] (Figure 5.1). Data-driven diagnostic subgroups are 

advantageous as they can later be studied against a range of treatments [364, 483] 

rather than groups being based on the response to only one treatment (i.e. treatment 

effect modifiers). Diagnostic PFP subgroups have been suggested by a number of 

studies based on single factors [180, 230, 243, 367]. However, only a few studies 

[254, 366, 374] have identified diagnostic subgroups comprising of multiple factors 

from multiple domains. Of these studies, only Selfe et al. (2016) [254] derived 

subgroups from rigorous statistical methods. The three diagnostic subgroups they 

identified are of high clinical utility, requiring only six simple clinical tests. However, 

these subgroups are unable to incorporate PFJ structure [180, 230] and 

biomechanics, testing of which requires complex equipment and evaluation [243, 

484]. Overall, the prognostic value of these subgroups remains unknown [485]. 



 

 

Chapter 5. PFP subgrouping  

154 

5.2 Aims 

The primary aim of this chapter was to combine modifiable clinical, biomechanical 

and imaging features to identify data-driven diagnostic subgroups within a PFP 

cohort. Based on data from a 12-month follow-up, the secondary aim was to explore 

the prognosis of these data driven subgroups.  

5.3 Methods  

5.3.1 Study design 

This longitudinal cohort study comprised of a cross-sectional analysis and a 12-

month follow-up. Figure 5.1 shows the conceptual stages of research into 

subgrouping [363] in which the stages considered in Chapter 5 are highlighted in 

grey. This chapter will consider the hypothesis setting stage whereby the aim to is 

identify clinical important subgroups from a range of characteristics and generate a 

hypotheses in terms of prognostic factors [362]. Ethical approval was obtained 

(14/NE/1131) and all participants completed written informed consent prior to 

entering the study.  
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Figure 5.1: Conceptual stages of research into subgroups. 
Adapted from Kent et al. (2010) [363] 
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5.3.2 Selection of the sample size  

The sample size was based on the recommended rule of thumb for cluster analyses 

of n =2k (whereby k is the number of variables) [486]. For our model, variables were 

analysed within selected health domains: strength impairment, flexibility impairment, 

movement impairment and structural impairment. We allowed at most 6 variables (k), 

representing the selected domains and thus requiring a minimum of 64 participants 

(26). To account for a potential 20% drop-out rate, we aimed to recruit 77 

participants. This chapter was reported in accordance with the Strengthening the 

Reporting of Observational studies in Epidemiology (STROBE) guidelines [453]. 

 

5.3.3 Setting 

All assessments were conducted at a UK teaching hospital from November 2014 to 

April 2016. Participants from the general population were recruited from a local 

National Health Service (NHS) musculoskeletal service via clinician referral, posters 

in local sports clubs and university alumni. Further electronic searches of the local 

NHS musculoskeletal database were also made for patients previously diagnosed 

with either ‘anterior knee pain’ or ‘patellofemoral pain’.  

 

5.3.4 Participants  

Participant eligibility was based on: i) being aged 18-40 years; ii) with an insidious 

onset of anterior or retropatellar knee pain; and iii) pain on two or more of the 

following activities: prolonged sitting, kneeling, squatting, running, patellar palpation, 

hopping, stair walking, stepping down or isometric quadriceps contraction [115]. 

Participants were excluded if: i) clinical examination showed another cause of knee 

pain such as, but not restricted to: meniscal pathologies, quadriceps tendon injuries, 

patella tendinopathy, tibial tubercle apophysitis; bursitis; ii) any history of significant 

knee surgery; iii) any competing pathology identified on the MRI report [127]; iv) any 

contraindication to MRI ; and v) any physiotherapy or podiatric treatment within the 

last three months. Previously published recommendations made by Cook et al. 

(2010) [127] were applied using available MRI reports. The MRI results were not 

used to confirm PFP but to exclude participants with competing diagnoses. 

Competing diagnoses included, the same conditions considered during clinical 

examination, such as patella tendinopathy, meniscal tears etc. Despite the 

recognised debate around the association between symptoms and imaging features, 
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the use of this an extra layer of eligibility criteria was seen to improve the likelihood of 

a more accurate diagnosis of PFP [127]. 

 

5.3.5 Variables 

In order to select appropriate, clinically relevant variables for analysis, consideration 

was made to using directed acrylic graphs (DAGs) [487], as used in Chapter 4. 

However, for the DAG to be constructed it relies on the identification of an outcome 

variable (Y) e.g. relationship X on Y [468]. During this cross-sectional analysis, no 

outcome variable is present with all variables considered exclusive.  

 

To capture the multifactorial nature of PFP; a range of features were considered to 

inform the diagnostic subgrouping. Variables were derived from systematic reviews 

which identified features associated with PFP [194, 378, 488] and from analyses 

conducted for this thesis (see 5.3.6) informed from Chapter 2 (literature review). 

Variables were selected if they satisfied all the following criteria:  

i) supported association with PFP from at least two or more studies; 

ii) published thresholds and/or normative data that can be used to clinically 

interpret findings; 

iii) considered clinically modifiable with conservative treatment. 

 

5.3.6 Justification for selected variables  

The justification for the variables selected for the cluster analyses is presented 

below. Forest plots were created to support the interpretation and to justify the 

selection of variables using published guidance [489]. Variables are presented within 

local (e.g. knee), distal (e.g. ankle) and proximal (e.g. hip) regions as applied 

previously [14]. 

 

5.3.6.1 Local variables  

5.3.6.1.1 Local clinical features 

Patella mobility was considered for inclusion as this was one of the clinical test 

utilised by Selfe et al. (2016) [254]. Figure 5.2 shows that neither the pooled 

estimates of patella lateral (MD -0.03 [-0.94, 0.88]; Z = 0.07; p= 0.94) (Figure 5.2a), 

patella medial (MD 0.22 [-0.76, 1.21]; Z = 0.44; p= 0.66) (Figure 5.2b) or total patella 

mobility (MD -0.15 [-1.26, 0.97]; Z = 0.26; p = 0.79) (Figure 5.2c) showed an 
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association with PFP. Based on our selection criteria this was not included but total 

patella mobility was collected and reported descriptively across the subsequent 

subgroups.  

 

5.3.6.1.2 Local biomechanical features 

Peak knee flexion angle was included despite a number of single studies showing no 

significant difference between PFP and controls. Figure 5.2d shows a meta-analysis 

of five studies measuring peak knee flexion angle. The inclusion was justified 

because when data is pooled, due to Crossley et al. (2004) [236] contributing a 

relatively larger sample size and 32.7% weight of the overall pooled sample, it shows 

that reduced peak knee flexion angle is significantly associated to PFP (MD -0.35 [-

0.67, -0.03]; Z = 2.14; p = 0.03).The selection of knee extensor strength is supported 

by the meta-analysis by Lankhorst et al. (2013) [194] (MD -37.47 [-71.75, -3.20]; Z 

=2.14; p=0.03). 

 

5.3.6.1.3 Local imaging features 

The meta-analyses in Table 3.7 support the inclusion of MRI bisect offset and MRI 

patella tilt. Despite the findings in Table 3.7, MRI patellofemoral contact area has no 

published thresholds and limited normative data to allow interpretation of clusters 

and MRI sulcus angle has not been shown to be modifiable with conservative 

interventions so was not considered 
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a) 

 
 
b)  

 
c) 

d) 

 

Figure 5.2: Forest plots of local variables 
a) patella lateral mobility (mm); b) patella medial mobility (mm); c) total patella 

mobility (mm); d) peak knee flexion angle (º). 
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5.3.6.2 Distal variables 

5.3.6.2.1 Distal clinical features 

As discussed in Chapter 2, there are a number ways in which foot posture has been 

measured and represented. Figure 5.3a shows a meta-analysis of three studies 

measuring foot pronation and the association of increased foot pronation with PFP 

(MD 1.04 [0.63, 1.45]; Z = 5.00; p <0.001). However, the methods applied are slightly 

varied. The methods include foot posture index [490], relaxed foot posture using 

motion capture [491] and rearfoot angle using a goniometer [492]. The presumed 

heterogeneity in methods may indicate that a meta-analysis is not appropriate, 

however, an I2 = 3% indicates that these constructs show homogeneity which is 

perhaps unsurprising considering they are aiming to measure the same construct. 

Foot posture index was chosen over the other available methods as it has validated 

thresholds [260] that allow easier interpretation of eventual clusters. 

5.3.6.2.2 Distal biomechanical features 

Figure 5.3b shows that peak ankle dorsiflexion angle was not associated with PFP 

(MD 0.16 [-0.38, 0.71]; Z = 0.58; p= 0.56) so this variable was not included. 

. 

 
a) 

 
 
 
b) 

 
 

Figure 5.3: Forest plots for distal variables 
a) static foot posture; b) peak ankle dorsiflexion angle (°) 
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5.3.6.3 Proximal variables 

5.3.6.3.1 Proximal clinical features  

Static Q-angle was not included despite being shown to be associated with PFP 

[194] (MD 2.08 [0.64, 3.53]; Z =2.83; p=0.005) based on nine separate studies. It is 

widely debated whether static Q-angle is clinically modifiable with conservative 

interventions [194] thus this feature did not meet the selection criteria. 

5.3.6.3.2 Proximal biomechanical features  

In terms of hip strength, both hip abductor strength (MD -3.30 [-5.60, -1.00]; Z =2.81; 

p=0.005) and hip external rotation strength (MD -1.43 [-2.71, -0.16]; Z = 2.21; 

p=0.03) are supported by the meta-analyses by Lankhorst et al. (2013) [194]. Based 

on measurements taken on 501 athletes, hip abduction strength and hip external 

rotation strength have been shown to be highly correlated (r=0.66; p <0.01) [493]. 

Due to the fact that hip internal rotation angle kinematics were also included, a 

decision was made to select only the hip abductor angle in order to represent frontal 

plane movement and to prevent collinearity of variables (between hip abductor and 

external rotation strength).  

 

In terms of kinematics, the pooled estimates of hip internal rotation angle during stair 

descent (Figure 5.4a) demonstrates that a greater hip internal rotation angle is 

associated with PFP (MD 1.01 [0.42, 1.61]; Z =3.33; p = <0.001). Figure 5.4b and 

Figure 5.4c show that hip adduction angle (MD 0.51 [-0.26, 1.28]; Z = 1.31; p = 0.19) 

and hip flexion angle (MD 0.31 [-0.39, 1.01]; Z=0.88; p = 0.38) during stair descent 

has no association with PFP so these variables were not included. 
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.a)  

 
b)  

 
c) 

 

Figure 5.4: Forest plots of proximal variables 
a) hip internal rotation angle (°); b) hip adduction angle (°); c) hip flexion angle 

(°)
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5.3.6.4 Regional variables 

5.3.6.4.1 Regional clinical features  

Figure 5.5a and Figure 5.5b show that a reduced quadriceps length (MD -0.54 [-0.98, -0.11]; 

Z = 2.46; p=0.01) and reduced hamstring length (MD -0.55 [-1.02, -0.08]; Z = 2.31; p=0.02) 

are associated with PFP. To calculate the hamstrings flexibility, on this occasion when the 

SD was not available for Patil et al. (2010) [244] it was estimated from the White et al. (2009) 

[247] data as it is known that this is the same research group and the same individual 

measuring the angle. This estimation approach was based on methodology used in previous 

meta-analyses [194].  

 

The pooled estimates calculated for gastrocnemius length (Figure 5.5c) showed no 

association with PFP (MD -0.64 [-1.73, 0.44]; Z = 1.16; p=0.25) partly due to the contrasting 

relationship found in Barton et al. (2010) [258] i.e. PFP more flexible than control group. 

However, gastrocnemius was shown to be associated to PFP in at least two studies [55, 

246] – satisfying the criteria set in Section 5.3.5. Furthermore, Selfe et al. (2016) [254] found 

gastrocnemius to be one of three variables (along with hip abductor and knee extensor 

strength) that demonstrated significant different across all subgroups. This demonstrates the 

discriminatory effect of gastrocnemius and justifies the inclusion of this measure in the study. 
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a)  

 
b)  

 
c) 

 

Figure 5.5: Forest plots of regional variables 
a) quadriceps length; b) hamstring length; c) gastrocnemius length 
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5.3.7 Data sources  

An overview of the supporting evidence for the selected variables is provided (see 

Table 5.1). Figure 5.6 illustrates how the variables were collected. Participants completed 

assessments in the following order: clinical, biomechanical and MRI. Additional variables 

including patient related factors (e.g. demographic data and patient reported outcomes 

measures) and supplementary clinical descriptors were collected and applied to each of the 

final subgroups.  

 

Table 5.1: A summary of supporting evidence 
 

Potential Variables Supportive Evidence Type of evidence 

MRI patella tilt Lankhorst et al. (2013) [194], Drew et 
al. (2015) [378] 

Systematic review  

MRI bisect offset Drew et al. (2015) [378] Systematic review 
Peak Hip Abductor strength Lankhorst et al. (2013) [194] Systematic review 

Peak knee extensor strength Lankhorst et al. (2013) [194] Systematic review 

Peak angle hip internal 
rotation 

Souza and Powers (2009) [200], 
McKenzie et al. (2010) [207] 

Case-control studies 

Peak knee flexion angle 

Grenholm et al. (2009) [206], McKenzie 
et al. (2010) [207], Brindle et al. (2003) 
[210], Crossley et al. (2004) [236], 
Salsich et al. (2001) [494] 

Case-control studies 

Hamstring flexibility Patil et al. (2010) [244], White et al. 
(2009) [247] 

Case-Control studies 

Quadriceps flexibility 
Witvrouw et al. (2000) [55], Peeler and 
Anderson (2007) [245], Piva et al. 
(2005) [246] 

Case-control studies 

Gastrocnemius flexibility Witvrouw et al. (2000) [55], Piva et al. 
(2005) [246] 

Case-control studies 

Static foot pronation 
Barton et al. (2010) [258], Levinger and 
Gilleard (2005) [491], Powers et al. 
(1995) [492] 

Case-control studies  
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Figure 5.6: Assessment procedures for the selected variables 
a) Hamstring flexibility; b) Quadriceps flexibility; c) Gastrocnemius flexibility; d) Foot posture index; e) Biodex hip abductor strength; f) 
Biodex knee extensor strength; h) MRI bisect offset: length of AC / length of BC x 100%; i) MRI patella tilt: angle formed by a line between 
AB and EF; 
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5.3.8 Clinical assessment  

The hamstrings (Figure 5.6a), quadriceps (Figure 5.6b) and gastrocnemius (Figure 5.6c) 

flexibility were measured using a digital inclinometer in accordance with previously published 

methods [495]. The static foot posture (Figure 5.6d) was measured using the Foot Posture 

Index (FPI)(Table 5.2) [496].  

 

Digital inclinometers have shown intraclass correlation coefficients (ICCs) of 0.53-0.98 for 

the knee [497] and 0.91-0.97 for the ankle [498] range of movement. Compared to the 

universal two-arm goniometer, digital inclinometer do not rely on exact anatomical 

positioning of both lever arms thus on for a PFP population known to vary in body mass 

profile [254] there is less likelihood for human error [497]. Caution has also been advised 

about using both methods interchangeably due to the limits of agreement up to 20 degrees 

[499] so in this thesis only digital inclinometers were used.  

 

5.3.8.1 Hamstring flexibility  

Figure 5.6a shows how hamstring flexibility was measured. The passive knee extension test 

was chosen instead of the straight leg raise test which measures the angle of the hip [55]. 

The passive knee extension test has been shown to be associated to PFP [244, 246, 247] 

and shown to have excellent reliability [500]. With the participant supine, the digital 

inclinometer was used to ensure the thigh was positioned at 90 degrees at the hip. The leg 

was then passively extended to the point of firm resistance to the movement [247] whilst the 

other hand supported the thigh. The digital inclinometer was placed on a mid-point of the 

tibia and the angle recorded. Three measurements were taken and a mean value recorded. 

 

5.3.8.2 Quadriceps flexibility  

Figure 5.6b shows how quadriceps flexibility was assessed. The passive prone knee bend 

was selected in accordance with previous studies in PFP [55, 495]. This method was 

selected instead of the Elvey test [245] that has been used in other PFP studies [245, 246] 

because it is thought that the planted foot of the contralateral limb would help prevent 

compensatory posterior pelvic rotation. The participant was placed in prone towards the 

edge of the plinth. The contralateral leg was placed on the floor at 90 degrees hip range of 

movement. The leg was passively flexed to the point of firm resistance and the digital 
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inclinometer placed on the mid tibia where the angle was recorded. Three measurements 

were taken and a mean value recorded. 

 

5.3.8.3 Gastrocnemius flexibility 

Figure 5.6c shows the gastrocnemius flexibility was measured. The weight bearing (WB) 

ankle dorsiflexion test was chosen as this has been used in previous studies for PFP [55, 

344] and has shown an association to PFP [55]. Other studies assessing the gastrocnemius 

flexibility in PFP have used measures in prone lying [246] and supine lying [501].WB and 

NWB measures have only showed moderate correlation [502] so using these measures 

interchangeably is not advised and WB has been shown to produce more than twice than 

that of NWB [502]. Using the WB test in this thesis will produce a greater ROM and a value 

that most represents true length. A 0.6m line was marked on floor and the participant was 

advised to lean against the wall with the tested limb behind the contralateral limb and both 

toes pointing anteriorly. The participants were asked to keep the tested limb extended at the 

knee and attempt to maximally flex the ankle whilst keeping the heel on floor [55, 495]. The 

mid tibia angle was measured using the digital inclinometer. Three measurements were 

taken and a mean value recorded. 

 

5.3.8.4 Foot posture index  

The Foot posture index is a six item clinical tool that quantifies the static foot position with 

the criteria shown in Table 5.2  [503]. Participants stood in double limb support in a relaxed 

stance (Figure 5.6d). They were advised to march on the spot for few seconds in order to 

adopt a comfortable stance [503]. Each item of the FPI derives a score from -2 to +2 

depending on item description. The values are tallied, with large positive values indicating a 

pronated foot posture [503].



169 
 

 

Chapter 5. PFP subgrouping  

 

 

Table 5.2: How to score the foot posture index  
– adapted from Redmond (2005) [42] 
 

Construct 
Score 

-2 -1 0 1 2 
1) Talar head palpation Talar head palpable on 

lateral side but not on 
medial side 
 

Talar head palpable 
on lateral side/ 
slightly palpable on 
medial side 

Talar head equally 
palpable on lateral 
and medial side 

Talar head slightly 
palpable on lateral 
side/ palpable on 
medial side 

Talar head not 
palpable on lateral 
side but palpable on 
medial side 

2) Supra and infra lateral 
malleolar curvature 

Curve below the 
malleolus either straight 
or convex 

Curve below the 
malleolus concave 
but flatter more than 
the curve above the 
malleolus 

Both infra and 
supra malleolar 
curves roughly 
equal  

Curve below the 
malleolus more 
concave than curve 
above malleolus 

Curve below the 
malleolus markedly 
more concave than 
curve above 
malleolus 

3) Calcaneal frontal plane 
position  

More than an estimated 
5° inverted (varus) 

Between vertical and 
an estimated 5° 
inverted (varus) 

Vertical Between vertical 
and an estimated 
5° everted (valgus) 

More than an 
estimated 5° everted 
(valgus) 

4) Prominence in the region of 
the talonavicular joint  

Area of TNJ markedly 
concave 

Area of the TNJ 
slightly but definitely 
concave 

Area of the TNJ flat Area of TNJ 
bulging slightly  

Area of TNJ bulging 
markedly 

5) Congruence of the medial 
longitudinal arch 

Arch high and acutely 
angled towards the 
posterior end of the 
medial arch 

Arch moderately high 
and slightly acute 
posteriorly  

Arch height normal 
and concentrically 
curved 

Arch lowered with 
some flattening in 
the central portion 

Arch very low with 
severe flattening in 
the central portion- 
arch making ground 
contact  

6) Abduction/ adduction of the 
forefoot on the rearfoot 

No lateral toes visible. 
Medial toes clearly 
visible  

Medial toes clearly 
more visible than 
lateral  

Medial and lateral 
toes equally visible  

Lateral toes clearly 
more visible than 
medial  

No medial toes 
visible. Lateral toes 
clearly visible  



170 
 

 

Chapter 5. PFP subgrouping  

 

 

5.3.9 Biomechanical assessment 

 

5.3.9.1 Strength testing  

The Biodex isokinetic system 4 (IRPS Mediquipe, UK) was used to assess muscle strength.  

Data was collected by Biodex Advantage Software (IRPS Mediquipe, UK). Biodex has 

shown test- retest reliability of 0.95 ICC for knee extensor strength [504] and 0.81-0.95 ICC 

for hip abduction strength [192]. The testing procedure for both hip abduction and knee 

extensor strength commenced with practice testing on the contralateral limb before moving 

onto the index limb. Testing the index limb second minimises any learning-effect variability 

[505]. Weighing of the limb was completed prior to each testing to allow for automatic gravity 

correction for all torque data [506]. For the assessment of hip abduction strength, the 

participant was positioned in a side-lying position and the symptomatic side superior in a 

neutral angle (0° flexion, abduction, rotation) (Figure 5.6h). This positional procedure is in 

accordance with previously published literature [200]. 

 

For the assessment of knee extensor strength, the angle of testing was set at 60°/s which is 

considered safer and better tolerated by people with knee pain [507] (Figure 5.6i). The same 

testing protocol was used for both hip and knee strength and included three sub-maximal 

practice movements, similar to previous strength testing protocols used in PFP [508]. 

Participants were then asked to perform five maximal effort movements. During testing, the 

participant was verbally encouraged to push away and towards the pad during testing [509].  

 

The concentric strength measures of interest were: i) peak hip abduction torque based on 

the maximum hip abduction torque across five repetitions; (ii) peak knee extension torque 

based on the maximum knee extension torque across five repetitions. These strength 

measures were normalised to body weight (Nm/kg). 

 

5.3.9.2 An overview of isokinetic dynamometers   

An isokinetic dynamometer i.e. Biodex is a rotation device with a fixed axis of rotation which 

can apply a constant, user selected angular velocity [510] – the rate of change in angular 

displacement. Figure 5.7 shows how the angular velocity is monitored continuously at 

approximately 1,000 times per second as the individual applies force to the arm. This 

represents a closed feedback loop mechanism in which the actual velocity is constantly 
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compared to the pre-set target angular velocity [510]. If the actual velocity exceeds the 

target velocity a braking mechanism is initiated and vice versa for reduced actual velocity 

[510]. The output from the IKD, in this context the peak torque, is based on the moment of 

force around the axis of rotation when adjusted for the moment exerted by the braking 

system and gravitational moment (corrected automatically in Biodex using the passive 

weight of the particular segment) [510].  

 

 
  

 

Figure 5.7: Feedback loop mechanism controlling the angular velocity  
– adapted from Payton and Bartlett (2007) [510] 

 
 

 

5.3.9.3 Kinematic testing 

Three-dimensional kinematics were assessed during stair descent using a VICON-passive, 

10-camera, motion capture system (Vicon Nexus Version 1.6; Vicon Motion Systems, Oxford 

Metrics, Oxford, UK). The marker configuration for the chapter was based on the calibrated 

anatomical systems technique (CAST) [511]. The CAST methodology, first proposed by 

Cappozzo et al. (1997) [511], is seen as the gold standard protocol for 3D kinematic 

analyses [512] (Figure 5.8). The benefit of the CAST model is that it allows measurement in 

six degrees of freedom [512]. It uses ‘static’ markers placed on recognised anatomical 

Applying braking 
If actual velocity < target then decrease braking moment 
If actual velocity > target then increase braking moment 

Angular velocity sensor reading 
the actual angular velocity 

Compare the actual velocity to the target 
(pre-set) angular velocity 
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landmarks to calibrate the model and define the proximal and distal segments. The 

‘dynamic’ tracking markers (mounted plates comprising of four retroreflective markers) then 

capture the movement and the interaction between these marker sets to allow modelling of 

the segment [512]. This marker protocol is able to isolate angular movement within the 

rotational plane which is not possible with a single marker placement [512]. This justifies the 

use this protocol in the following chapter for measuring the hip in the transverse plane. 

Tracking clusters were positioned to the lateral thighs, lateral shanks and sacrum. A static 

calibration trial was collected prior initiating the stairs. In order to determine anatomical 

reference points, retroreflective markers were attached to distal 1st metatarsal, distal 5th 

metatarsal, lateral and medial femoral epicondyles, right and left greater trochanters, right 

and left iliac crests and anterior superior iliac spines (ASIS) and posterior superior iliac 

spines (PSIS). Knee and ankle joint centres were calculated based on midpoint between the 

femoral epicondyles and malleoli respectively [513]. Hip joint centres were based on the 

recommendations made by Bell et al. (1989) [514]. Additional markers were used to control 

for marker occlusion by the stairs which included proximal 1st metatarsal, sustenaculum tali, 

lateral talar process, proximal calcaneus, and calcaneal tuberosity.  

 

A B 

  

Figure 5.8: Marker set up for stair descent 
A) anterior view; B) posterior view 

 

 

 

5.3.9.4 Stair descent 
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Motion capture has been widely used in PFP research to provide a greater understanding of 

kinematics and kinetics. Studies have captured data during a number of functional activities 

including walking, [258] stair ascent [494], stair descent [188] running [204], single leg squat  

[515] and jumping[516]. Barton et al. (2011) [517] has suggested that task selection should 

be made with consideration of a task that is likely to reproduce pain and is known to be 

limiting in PFP. It is widely considered that people with PFP report experiencing pain with 

both running and stair descent [126]. Discussion with the patient and public involvement 

(PPI) group suggested that stair descent would be more appropriate as many people with 

PFP will not run as a result of their pain.  

 

5.3.9.5 Selection of gait cycle  

The choice of gait cycle is thought to influence the findings observed [518]. Whatling and 

Holt (2010) [518] investigated the differences between two gait cycles by measuring knee 

kinematics from different steps during stair descent. Using a three-stair set up, as used in 

Chapter 5 and 6, they showed in a small sample (n=10) no difference in kinematics between 

cycles which included peak knee flexion. 

 

Based on a similarly small sample (n=10), Yu et al. (1997) [519] found that a gait cycle 

between a middle step to the floor showed the lowest reproducibility. These findings were 

based on multiple correlations between joint angles of the ankle, knee and hip in three 

planes. The authors [519] attribute this variation to the sudden loss of constraint in the step 

length after transitioning to the floor although it’s unclear why this motor performance would 

change between the three trials. Nevertheless, in accordance with these findings the gait 

cycle in Chapter 5 was exclusively analysed during initial contact on the second step in order 

to minimise the influence of transitioning from the platform or to the floor.  

 

Figure 5.9 shows the gait cycle for stair descent. The gait cycle for the involved limb 

(determined from the subjective examination) was completed in accordance with previous 

studies [520] analysing stair descent. Participants were asked to descend the stairs at a self-

selected speed. Each participant completed a minimum five successful stair descents. The 

descent was deemed successful when the involved limb was placed on the second step in 

the absence of any stumbles or hesitation. The kinematics of interest were: i) peak hip 

internal rotation angle of the thigh with respect to the pelvis; ii) peak knee flexion angle of the 

thigh with respect of the shank were calculated using the an X-Y-Z Euler rotation sequence 

[521] 
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Figure 5.9: Stair descent gait cycle  
Reprinted with permission of Elsevier, Gait & Posture[520] 

 

 

5.3.10 MRI assessment 

Sagittal, transverse and coronal plane images were acquired with a 3.0T scanner (Siemens 

Magnetom Verio, Siemens Healthcare, Germany) while participants were supine with the 

knee in extension and the quadriceps relaxed. The imaging protocol is shown in Table 5.3. 

 

Table 5.3: MRI sequences showing key imaging parameters 
 

 Sequences 
Field of 

view 
(FoV) 

Resolution Slice 
thickness 

Repetition 
time (ms) 

Time to 
echo 
(ms) 

Flip 
angle 

1 PD TSE TRA FS 150 384 x 70% 3mm 3540 35 150 

2 PD TSE COR 
FS 160 320 x 100% 3mm 4610 33 150 

3 PD TSE SAG 
FS 160 384 x 70% 3mm 3630 34 150 

4 STIR COR 160 320 x 80% 4mm 4190 41 150 
 

5 T2 TSE SAG FS 160 384 x 70% 3mm 5100 82 150 
6 T1 TSE SAG 150 384 x 100% 2mm 71 19 160 

7 T1 VIBE SAG 
3D 150 416 x 100% 0.6mm 10 1.64 30 

 PD = proton density; TSE = turbo spin echo ; TRA = transverse: COR = coronal ; FS = fat suppression ; SAG = sagittal ; STIR = short 

tau inversion recovery ; VIBE = Volumetric interpolated breath-hold examination 
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The two variables of interest were MRI bisect offset (BSO) and MRI patella tilt angle (PTA) 

which measure the alignment of the patella. Figure 5.6h and Figure 5.6i show how both BSO 

and PTA were calculated respectively. The intra-reliability for both BSO and PTA was 

established for a single reader (a Consultant Musculoskeletal Radiologist) by re-scoring 10 

participants scans. This showed an ICC (3, k) 0.94 (95% CI 0.74, 0.99) for BSO and an ICC 

(3, k) 0.98 (95% CI 0.91, 0.99) for PTA. In addition to the selected variables, a MRI 

osteoarthritis knee semi-quantitative score (MOAKS) [522] was calculated to quantify the 

degree of patellofemoral osteoarthritis (PFOA). PFOA was defined [523] by the presence 

(>1) within the patella and/or trochlear of i) a definitive osteophyte ii) partial or full thickness 

cartilage loss. 

 

5.3.11 Statistical analysis 

Statistical analysis was carried out in SPSS software, version 21.0 (Armonk, NY: IBM Corp). 

The proposed statistical analysis will apply data-driven statistical analysis. Data-driven 

analysis can be broken into two methods supervised and unsupervised [362]. Supervised 

techniques work backwards from an outcome by applying statistical techniques such as 

regression analysis. Unsupervised techniques do not use a dependant variable or outcome 

but instead look for relationships between characteristics and applying statistical techniques 

such as cluster analysis. The strengths and weaknesses of these methods are presented in 

Table 5.4. 

 

Table 5.4: Strengths and weaknesses of data-driven statistical techniques  
Adapted from Kent et al. (2010) [362] 

 

Statistical technique Examples Strength Weaknesses 

Supervised technique  Regression 
analyses 

Direct face validity as 
subgroups derived using 
clinically relevant variable 
(dependant outcome) 

Dependant outcome will 
greatly influence the 
nature of the subgroups 
e.g. pain vs. return to 
work 

Unsupervised 
technique  Cluster analyses 

Can later be studied 
against a range of 
treatments 
 
Subgroup is not 
dependant on only one 
outcome 

Potential for subgroups to 
have no clinical relevance  
 
More exploratory in 
nature  
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The reliance on solely data-driven cluster analysis can lead to subgroups being difficult to 

interpret and apply clinically [364]. As a result, a two-stage approach advocated by Kent et 

al. (2015) [364] was applied using the SPSS TwoStep cluster analysis (TwoStep CA). This 

approach requires variables to be classified into health domains. Guidance for this 

classification process was based on a previous classification for PFP [18] with domain 

names revised to reflect modern understanding. The 10 selected variables were classified 

into the health domains by the candidate and a clinical expert supporting this chapter with 

five and 30 years of specialist interest in PFP respectively. 

 

5.3.12 Summary of the SPSSTwoStep cluster analysis  

The TwoStep CA, first introduced by Chiu et al. (2001) [524], was developed to address the 

shortfall of traditional cluster analysis approaches. The algorithm allows the handling of 

mixed data types (both continuous and categorical), automatic selection of cluster numbers 

(using either Schwarz Bayesian information criterion [BIC] or Akaike information criterion 

[AIC] ) and more efficient handling of large datasets [524]. The TwoStep CA is made of two 

components (‘steps’) that are computed together automatically. Step one is the pre-

clustering stage where data is allocated to coarse set of sub clusters and step two uses 

agglomerative hierarchical cluster techniques [524]. In comparison with other traditional 

hierarchical cluster algorithms, Gelbard et al. (2007) [525] showed the TwoStep CA was the 

best performing compared to eleven other algorithms in terms of matching to original 

clusters of established datasets. Conversely, one drawback highlighted by a few authors 

[526, 527] is that despite being able to handle mixed data types there is problem with how 

this is represented. TwoStep gives different weighting to categorical and continuous 

variables with categorical variables implicitly given a greater weighting. Subsequently, a 

cluster profile will be influenced by the different combinations of categorical and continuous 

variables [526]. Kent et al. (2014) [527] recently compared TwoStep CA, Latent Class 

Analysis and SNOB with the Latent Class shown to outperform TwoStep CA in terms of 

higher cluster sensitivity and better handling of mixed data. However, for the purposes of 

Chapter 5, the data at each stage will not include mixed data types; continuous at stage one 

and categorical at stage two. Kent et al. (2014) [527] also showed that the sensitivity of 

cluster detection for TwoStep CA is markedly less than the other cluster analysis methods 

showing a difference of 4 -37 clusters across four datasets. Nevertheless, Selfe et al. (2016) 

[254] points out that the cluster solution should be feasible to implement into clinical practice. 

Clearly a 37-cluster solution is not feasible and the average solution number for the Latent 

Class was 8.5 (across four datasets), which is still likely to lack feasibility and clinical 
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applicability. As clinical applicability and interpretation will determine the number of cluster 

solutions then a software’s cluster detection sensitivity should have limited impact. 

 

5.3.12.1 First stage of clustering 

The first stage of clustering, of the two-stage approach, was performed only within each 

health domain. This was conducted using the TwoStep CA analysis using a log-likelihood 

similarity measure. One of its benefits over hierarchical cluster analysis (HCA) is that it is 

capable of dealing with binary outcomes. According to the developers of the statistical 

software [528], clustering binary outcomes using hierarchical cluster analysis should be 

avoided. Binary variables were expected so a TwoStep CA chosen instead. A HCA was, 

however, applied as a means of validating the eventual stability of the clusters.   

 

The optimal number of cluster solutions was derived using the Schwartz Bayesian 

Information Criterion (BIC). Prior to performing the cluster analysis, data variance, normality 

and outliers were checked.  After completing the first stage of clustering, cross tabulation 

was used to observe how the variables were distributed across the clusters within each 

domain. Variables were compared between clusters to inform cluster interpretation, at two-

tailed significance (p<0.05). Independent samples t-tests (for two clusters) and ANOVA (for 

greater than two clusters) with Tukey post-hoc tests were performed for continuous 

variables. Chi-squared tests with Bonferroni-adjusted pairwise multiple comparisons were 

calculated for categorical variables. Labeling the clusters (hereafter referred to as groups) 

was guided predominantly by statistical differences and normative means derived from 

published literature (Table 5.5) to form the domains (categorical variables). For both BSO 

and PTA, previous thresholds have been established under a full weight bearing protocol 

[230] but only BSO shown to differ under non-weight bearing [425]. To account for these 

procedural differences, an extra 5% was added to the published thresholds for BSO. 

 

The stability of cluster solutions from both stages was examined against a hierarchical HCA 

performed using Wards methods, with a squared Euclidean distance similarity measure and 

standardized to Z scores. For the HCA, the agglomeration schedule was used to identify 

coefficients of the cluster procedures. Tables were constructed for each domain showing the 

coefficient change at each cluster stage. This allows identification of large changes (or 

‘jumps’) in coefficient, which indicates the preferred number of groups. Kappa coefficients 

were calculated to quantify the stability between TwoStep CA and HCA methods and 

interpreted using recognised criteria [529]. 
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5.3.12.2 Second stage of clustering 

Using the first stage domains and the same methodology, a second stage clustering was 

performed to identify groups across all domains. TwoStep CA is also known to be sensitive 

to the order of cases [527]  so a random number generated order was computed and kappa 

coefficients (k) calculated to compare with the original order. Similar to the first stage, the 

groups were cross tabulated and compared clinically and statistically between groups. 
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Table 5.5: Subgrouping variable mean (SD) and normative data or defined thresholds 
 

Subgrouping variable Mean (SD) 
Normative data 

- 2 SD - 1 SD Mean + 1 SD 
Peak hip abductor strength (Nm/kg) [530] 1.5 (0.4) 1.4 1.6 2.1 2.5 
Peak knee extensor strength (Nm/kg) [530] 1.5 (0.6) 1.2 1.9 2.4 2.9 
Peak angle hip internal rotation (°) [531] - 8.8 (5.6) -27.6 - 16.8 -5.8 4.8 
Peak knee flexion angle (°) [531] 74.9 (10.0) 54.8 64.1 73.4 82.7 
Quadriceps flexibility (°) [55] 125.1 (10.1) 99.4 115.8 132.2 148.6 
Gastrocnemius flexibility (°) [55] 38.8 (6.8) 22.0 28.6 35.2 41.8 
Hamstring flexibility (°)[532] * 154.0 (10.1) 127.1 136.9 146.7 156.5 
 Defined Threshold 
Foot posture index [260] 4.3 (2.9)  6 
MRI bisect offset (%) [402, 425] * 57.2 (7.4) 68.3% (65 +5%) 
MRI patella tilt (°)[425]* 8.7(4.5) 9° 
 * Gender specific thresholds combined  
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5.3.12.3 Subgroup prognosis 

To determine the prognosis of the eventual groups, a logistic regression was applied with an 

11-point Global Rating of Change Scale (GROC) (score from -5 to +5) as an outcome and 

dichotomised into favourable (≥ 2 points) and unfavourable outcome [533]. The model was 

adjusted for factors known to influence prognosis in PFP [19, 298] which included duration of 

symptoms (categorised into 3-12 months; greater than 12 months); baseline Anterior Knee 

Pain Score (AKPs) [534] (continuous outcome) as well as treatment attendance (categorised 

into Yes or No). Duration of pain as a continuous outcome violates the assumption of 

normality (Figure 5.10). The decision was to categorise the outcome in accordance with how 

it has been analysed in previous literature [19, 298]. Collins et al. (2013) [19] categorised 

duration of symptoms to: 3-6, 6-12 and >12 months. Applying this method to this chapter 

only revealed n= 10 for the first category thus the 3-6 months and 6-12 months categories 

were combined  For those participants lost to follow up without GROC and treatment 

attendance data, outcomes were estimated using multiple imputations on the assumption 

that data was missing at random. Twenty imputed datasets were created [535]. In addition to 

the final analysis model variables, the imputation model included previous treatment at 

baseline and worst numerical rating score (NRS) as predictive auxiliary variables (Table 5.6 

and Table 5.7). A sensitivity analysis was conducted examining the differences between the 

original and imputed datasets.  

 

a b 

  

Figure 5.10: Duration of pain 
a) Distribution of duration of pain; b) Normal Q-Q plot for duration of pain 
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5.3.13 Multiple imputation  

Multiple imputation is a statistical technique used for handling missing data [536]. Multiple 

imputation commonly assumes the data to be missing at random (MAR) and uses the 

distribution of the known (observed) data to estimate the missing values [536]. A framework 

used for classifying missing data [537] identifies the following types of missing data:  

 

• Missing completely at random(MCAR) – no systematic difference between missing 

values and observe values[538] ;  

• Missing at random (MAR) –  the probability of data being missing does not depend on 

the unobserved data but conditional on the observed data [536];  

• Missing not at random (MNAR) - systematic difference exist between the missing values 

and the observe values even after observed data is considered [538].  

 

The dataset was explored to understand whether there was any reason for the missingness 

and the pattern of missingness. Initially, a logistic regression was used to determine whether 

missingness (Missing or Not Missing) was influenced by the other values. This was done 

separately for both GROC and treatment attendance. Pearson correlations were then 

calculated in order to select auxiliary variables (coefficient >0.7) 

 

It is shown in Table 5.6 and Table 5.7 that worst NRS predicted the missingness of GROC at 

12 months and previous treatment (and baseline AKP) predicted the missingness of 

treatment attendance. Pearson correlations showed that no variables showed any 

correlation greater than 0.7 and so no further auxiliary variables were included based on 

correlation. 

 

The imputation model included variables used in the original model (symptom duration, 

baseline AKP, treatment attendance) plus the auxiliary variables of previous treatment and 

worst NRS 
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Table 5.6: Predictors of Global Rating of Change Scale (GROC) missingness 
 

Predictors  Multivariable  
OR (95% CI)  P- value 

Age 0.8 (0.7,1.0) 0.06 
Gender (female) 13.9 (0.9, 205,8) 0.06 
BMI 1.1 (0.9, 1.3) 0.13 
Physical activity  1.3 (0.9, 1.9) 0.22 
Duration of symptoms  0.9 (0.9, 1.0) 0.84 
Anterior Knee Pain scale 0.9 (0.8, 1.0) 0.12 
Worst NRS 0.5 (0.2, 0.9) 0.03* 
S-LANNS 1.1 (0.9, 1.3) 0.18 
Working hours 0.9 (0.9, 1.0) 0.21 

*Significant at <0.05  
 

 

 

Table 5.7: Predictors of Treatment attendance missingness 
 

Predictors  Multivariable  
OR (95% CI)  P- value 

Age 0.8 (0.7,1.1) 0.26 
Gender (female) 0.4 (0.0, 9.8) 0.59 
BMI 0.9 (0.8, 1.2) 0.79 
Working hours 0.9 (0.9,1.0) 0.63 
Duration of symptoms  1.0 (0.9, 1.0) 0.17 
Anterior Knee Pain scale 0.8 (0.7, 0.9) 0.048* 
Worst NRS 0.6 (0.3, 1.2) 0.17 
Previous treatment (No)  214.9 (3.8, 12173.5) 0.009* 
Clinician referral (No) 6.7 (0.3,164.3) 0.24 

*Significant at <0.05  
 

 

 

5.4 Results  

5.4.1 Participants 

In total, 148 participants were invited to participate in the study. Twenty-four of these 

declined to take part and 47 were excluded following eligibility screening.  Seventy-seven 

participants were consented to the study. Based on previous procedures for PFP recruitment 

[127], the MRI reports for all participants were checked for competing diagnoses. Seven 

participants were withdrawn at baseline due to competing diagnoses which included patellar 

tendinopathy (n=3), meniscal tear (n=2), infrapatellar bursitis (n=1) and one participant who 

was unable to tolerate the MRI due to unexpected claustrophobia (n=1).Seventy participants 

were included in the cluster analyses at baseline. Table 5.8 shows the characteristics for the 

participants analysed at baseline. Of these 70 participants, 58 completed outcomes at 12 

months (dropout rate 17.1%). There were no significant baseline differences between the 



183 
 

 

Chapter 5. PFP subgrouping  

 

participants who dropped out (n=12) and those that completed the outcomes at 12 months 

(n=58). 	

 

Table 5.8: Participant characteristics and descriptors. Values are means (SD) unless 
stated otherwise 
 

Characteristics  Baseline cohort (n=70) 
Age (years) 31.03 (5.32) 
No (%) of females 43 (61.4) 
BMI 26.25 (5.52) 
Height 1.71 (0.09) 
Weight 76.65 (18.57) 
Physical activity level (hours/week) 3.12 (2.59) 
Median (interquartile range) duration of knee pain (months) 35.50 (18.0-73.5) 
No (%) of participants who had received previous treatment  53 (75.7) 
No (%) with bilateral knee pain 36 (51.4) 
Beighton score (/9)[539] 2.75 (2.48) 
Anterior Knee Pain Scale 77.19 (11.73) 
Worst pain 4.59 (2.28) 
Average pain 2.96 (1.83) 
No (%) of participants with joint crepitus  40 (57.1) 
 % Impact on work productivity (WPAIQ subscale) [540] 15.48 (23.02) 
S-LANSS [541] 5.16 (5.41) 
WPAIQ: Work Productivity and Activity Impairment Questionnaire; S-LANSS: Self completed Leeds Assessment of Neuropathic Symptoms and Signs 

Pain Scale ; NRS: Numerical Rating Scale 
 

 

 

5.4.2 Stability and profiling of the clusters 

Figure 5.11 provides an overview of the results at each stage of clustering. At both the first 

cluster stage (5.4.2.1) and second cluster stage (5.4.2.2), the results of the TwoStep CA 

solutions were compared with the HCA to verify the stability of the cluster solutions. In 

addition, at both stages profiling and interpretation of the groups from the TwoStep CA was 

guided by the statistical differences between groups and interpreted using the normative 

data. 
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Figure 5.11: Two stage cluster approach
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5.4.2.1 First cluster stage  

5.4.2.1.1 Flexibility domain  

The TwoStep CA identified a two cluster solution (Table 5.9) and the HCA a three cluster 

solution (Table 5.10).The HCA proposed three clusters to account for the differences in 

gastrocnemius and hamstring length. Being able to distinguish between a flexible hamstring 

and flexible gastrocnemius group is unlikely to be clinically useful. Therefore, collapsing 

down to a two-cluster solution appears preferential. The TwoStep CA shows that, statistically 

all the variables in Group 1 were significantly greater than Group 2 despite the clinical profile 

only indicating greater hamstring flexibility. Based on the TwoStep CA findings, Group 1 was 

labelled ‘Greater Flexibility’ and Group 2 ‘Normal Flexibility’.  

 

5.4.2.1.2 Strength domain  

 

The TwoStep (Table 5.11) and HCA (Table 5.12) proposed the same number of clusters and 

yielded the same clinical and statistical profiles. The TwoStep provides a more equal 

distribution across the two groups. The clinical and statistical profile mimic each other with 

the clinical profile providing context to the results suggesting the Group 1 is ‘Normal 

strength’ and Group 2 is ‘Very weak’.  

 

5.4.2.1.3 Movement domain  

Both cluster methods proposed a three cluster solution (Table 5.13 and Table 5.14). Group 1 

from the TwoStep CA is similar to Group 3 from the HCA. Both show a statistically significant 

increase in hip internal rotation angle without it being considered to have clinically increased. 

The TwoStep CA, shows that Group 1 differed statistically from each of the other two groups 

in terms of peak knee flexion and peak hip internal rotation. Group 2 is similar in both cluster 

methods except that the findings of the HCA showed no statistical difference for peak knee 

flexion angle. In terms of the TwoStep CA, Group 2 differed statistically from each of the 

other two groups in terms of peak knee flexion and based on the normative data it’s also 

borderline (+1SD) in terms of showing an increase in peak knee flexion. Group 3 is similar to 

Group 1 from HCA. Both showed a statistical and clinical reduction in knee flexion. Based on 

all these findings, Group 1 was labelled ‘Increased hip internal rotation’, Group 2 labelled 

‘Increased knee flexion’ and Group 3 labelled ‘Reduced knee flexion. 
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5.4.2.1.4 Structural domain  

The TwoStep CA proposed a three-cluster solution (Table 5.15) whereas the HCA 

(Table 5.16) proposed two cluster solution. By applying a three-cluster solution, a third 

cluster (Group 3) represents individuals with a PTA value indicating more medial bias which 

is lost if the solution is constrained to only two clusters. Using the TwoStep CA solution, 

Group 1 was statistically different to all other groups for BSO and FPI and the clinical profile 

suggests excessive scores for all variables based on the defined thresholds. Group 2 

clinically has increased patella tilt angle but the mean value was very similar to Group 1 

(10.7º vs 10.3º). Group 3 shows an increased medial tilt which was statistically significant 

but no clinical thresholds exists for medial bias so labelling was led solely by the statistics. 

Based on these findings, Group 1 was labelled ‘Increased BSO and FPI’, Group 2 labelled 

‘Normal’ and Group 3 labelled ‘Increased medial PTA’. 
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Table 5.9: TwoStep cluster solutions for flexibility domain 
 

 Two Step 
MD (95% CI)  1 2 

Distribution (n) 29 41 
Hamstring length (°) 162.18 * > 1 SD 148.25 µ 13.93 (10.36, 17.50) 
Gastrocnemius length (°) 41.42 * µ 36.89 µ 4.54 (1.41, 7.66) 
Quadriceps length (°) 131.28 * µ 120.79 µ 10.49 (6.30, 14.69) 

Clinical Profile Flexible 
hamstrings 

Normal 
Flexibility  

Statistical Profile Greater flexibility Normal 
flexibility  

* Significantly different from other groups (p <0.05) 

µ = clinical value within the normal clinical threshold; > 1SD = greater than 1 standard deviation from the normative mean 

 
 
 

 

Table 5.10: Hierarchical cluster solutions for flexibility domain 
 
 Three cluster solution 
 1 2 3 

Distribution (n) 37 12 21 
Hamstring length (°) 149.32 µ 169.27* > 1SD 153.57 µ 
Gastrocnemius length (°) 35.07 µ 36.26 µ 46.71* > 1SD 
Quadriceps length (°) 121.95† µ 126.42 µ 130.00 µ 

Clinical Profile Normal 
flexibility Flexible hamstring Flexible 

gastrocnemius 

Statistical Profile Tighter 
quadriceps Flexible hamstring Flexible 

gastrocnemius 
* Group significantly different from each of the other two (p <0.05)  

† All groups significantly different from each other (p<0.05). 
µ = clinical value within the normal clinical threshold; > 1SD = greater than 1 standard deviation from the normative mean 
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Table 5.11: TwoStep cluster solutions for strength domain 
 

 TwoStep 
MD (95% CI)  1 2 

Distribution (n) 30 40 
Knee extension 
strength (Nm/kg) 2.05 * µ 1.14 < 2SD 0.91 (0.71, 1.10) 

Hip abduction 
strength (Nm/kg) 1.80 * µ 1.2 < 2SD 0.60 (0.45, 0.76) 

Clinical Profile Normal strength Very weak  
Statistical Profile Normal strength Less strength  
* Significantly different from the other group (p <0.05) 

µ = clinical value within the normal clinical threshold; < 2SD = less than 2 standard deviation from the normative mean 
 
 

 

 

Table 5.12: Hierarchical cluster solutions for strength domain 
 

 Hierarchical 
 1 2 

Distribution (n) 11 59 
Knee extension strength (Nm/kg) 2.39* µ 1.37 < 2SD 
Hip abduction strength (Nm/kg) 2.13* µ 1.33 < 1SD 

Clinical Profile Normal strength Weak hip and very 
weak knee 

Statistical Profile Normal strength Less strength 

* Significantly different from the other group (p <0.05) 
µ = clinical value within the normal clinical threshold; < 2SD = less than 2 standard deviation from the normative mean; 

 < 1SD = less than 1 standard deviation from the normative mean 
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Table 5.13: TwoStep cluster solutions for movement domain 
 

 TwoStep Group comparison; MD 

(95% CI)  1 2 3 
Distribution (n) 29 24 17 

Peak knee flexion 
angle(°) 77.05 † µ 81.76† µ 61.69† < 1SD 

1 vs 2; -4.70 (-8.93, -.47) 
1 vs 3; -15.35 (10.67, 20.04) 
2 vs 3; -20.06 (-24.92, -15.20) 

Peak hip internal 
rotation (°) -3.82 * µ -12.89 µ -11.53 µ 

1 vs 2; 9.07 (6.68, 11.47) 
1 vs 3; 7.71 (5.05, 10.36) 
2 vs 3; -1.37(-4.12, 1.39) 

Clinical Profile Normal 
movement 

Normal 
movement 

Reduced knee 
flexion 

 

Statistical Profile Increased 
hip IR 

Increased 
Knee 
flexion 

Reduced knee 
flexion 

 

* Group significantly different from each of the other two (p <0.05) 
† All groups significantly different from each other (p<0.05). 

µ = clinical value within the normal clinical threshold; < 1SD = less than 1 standard deviation from the normative mean; 

 

  
 
 
 
Table 5.14: Hierarchical cluster solutions for movement domain 

 
 Hierarchical  
 1 2 3 

Distribution (n) 26 23 21 
Peak Knee 
Flexion Angle (°) 65.43* µ 82.48 µ 78.44 µ 

Peak hip internal 
rotation angle  (°) -10.14 µ -12.88 µ -2.69* µ 

Clinical Profile Reduced knee 
flexion (trend) 

Increased knee 
flexion (trend) 

Hip internal rotation 
(trend) 

Statistical 
Profile 

Reduce knee 
flexion Normal movement Increased hip 

internal rotation 
* Group significantly different from each of the other two (p  <0.05) 

µ = clinical value within the normal clinical threshold 
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Table 5.15: TwoStep cluster solutions for structural domain 
 

 TwoStep Group comparison; MD 

(95% CI)  1 2 3 
Distribution (n) 10 43 17 

Foot posture index  8* >t 3.7 µ 3.5 µ 
1 vs 2; 4.23(2.10; 6.36) 
1 vs 3; 4.53 (2.11, 6.95) 
2 vs 3; -0.30 (-2.04, 1.44) 

Bisect Offset (%) 70.3† >t 56.6† µ 50.9† µ 
1 vs 2; 13.72 (9.87, 17.56) 
1 vs 3; 19.36 (14.99, 23.72) 
2 vs 3; 5.64 (2.50, 8.78) 

Patella tilt angle (°) 10.3 >t 10.7 >t 2.5* µ 
1 vs 2; -0.40 (-2.87, 2.06) 
1 vs 3; 7.81 (5.01, 10.60) 
2 vs 3; 8.21 (6.20, 10.22) 

Clinical Profile 
Pronated feet 
& patella 
maltracking 

Increased lateral 
patella tilt Normal 

 

Statistical Profile 
Increased 
bisect offset & 
foot posture 

Normal  Increased medial 
patella tilt angle 

 

* Group significantly different from each of the other two (p <0.05)  

† All groups significantly different from each other (p<0.05). 

µ = clinical value within the normal clinical threshold; >t = exceeds the normative threshold 
 

 
 
 

Table 5.16: Hierarchical cluster solutions for structural domain 
 

 Hierarchical 
 1 2 

Distribution (n) 30 40 
Bisect offset (%) 61.03* µ 54.28 µ 
Patella tilt angle (°) 10.91* >t 6.96 µ 
Foot posture index  6.8* >t 2.43 µ 

Clinical Profile Pronated foot & Increased 
patella tilt angle Normal 

Statistical Profile Excessive structure  Normal structure 
* Significantly different from other group (p  <0.05) 

µ = clinical value within the normal clinical threshold; >t = exceeds the normative threshold 
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5.4.2.2 Second cluster stage  

During the second cluster stage, four groups were identified from the cluster patterns 

(Table 5.17). This cluster solution was compared to the random case ordering showing a 

substantial agreement [529] between orders, k  = 0.68 ( p< 0.001, 95% Confidence Intervals 

[CI] 0.55, 0.81). Comparison with the output from the HCA cluster solution (Table 5.18) 

showed a moderate agreement, k = 0.59 (p < 0.001, 95% CI 0.46, 0.73). Profiling of the 

clusters identified the following groups:  

 

5.4.2.2.1 Strong group 

The Strong group showed a significantly greater hip abductor (1.8 Nm/kg) and knee 

extensor strength (2.1 Nm/kg) compared to each of the other groups. Their gastrocnemius 

flexibility was also significantly greater compared to the Weak group (40.5 ° vs 35.0°). Based 

on the clinical thresholds, this group demonstrated all variables within normal limits including 

the strength measures. This group had significantly more males (59.3% vs 9.1%) and 

significantly less functional disability (i.e. higher AKP) compared to the Weak group (82.4 vs 

73). They also had a significantly smaller Insall-Salvati ratio compared to the Pronation & 

Malalignment group (1.2 vs 1.4) and the greatest patellofemoral contact area (154.1 mm2) 

(non-significant). 

 

5.4.2.2.2 Pronation & Malalignment group 

The Pronation & Malalignment group showed the largest BSO (73.6%) and FPI (8.0) which 

was statistically significant compared to each of the other groups. Based on the clinical 

thresholds, this group showed a mean BSO and FPI value that exceeded the defined 

thresholds suggesting increased patella malalignment and foot pronation. In addition, 

clinically they exceeded the defined normative threshold for PTA (10.3°) and demonstrated 

marked weakness in hip abductor strength (< 2 SD) and moderate weakness in knee 

extensor strength (< 1 SD). This group showed the highest BMI (29.4 kg/m2) and duration of 

symptoms (73.9 months) but neither was statistically significant across groups. They showed 

the highest Insall-Salvati ratio which was significantly greater than the Strong group and the 

lowest patellofemoral contact area (109.5 mm2) (non-significant). Within this group, 30% and 

40% of the group had MRI defined osteophytes and PFOA respectively. Compared to all 

other groups, both these variables showed a p-value of 0.02 but this was not considered 

statistically significant based on Bonferroni adjustment (p <0.008). 
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5.4.2.2.3 Weak group 

The Weak group demonstrated the least hip abductor strength (1.1 Nm/kg) and knee 

extensor strength (1.0 Nm/kg) but with only the hip abductor strength showing statistical 

significance between the Flexible and Strong group This group also demonstrated the least 

gastrocnemius flexibility which was significantly lower compared to the Strong group. Based 

on the clinical thresholds, this group demonstrated marked weakness for both hip abductor 

(< 2 SD) and knee extensor strength (<2 SD) with all other variables within normal limits. 

This group comprised of a significant number of females (90.9%), with the lowest AKPS 

compared to the Strong group. They also demonstrated significantly lower physical activity 

compared to the Flexible group (1.7 vs 4.9 hours/ week). 

 

5.4.2.2.4 Flexible group 

The Flexible group demonstrated the greatest quadriceps (135.7°), gastrocnemius (43.4°) 

and hamstring flexibility (158.0°) with quadriceps being statistically different to each of the 

other groups and gastrocnemius and hamstring statistically different to the Weak group. 

Based on the clinical thresholds, this group demonstrated greater flexibility for 

gastrocnemius (> 1 SD) and hamstrings (> 1 SD) in addition to a moderate weakness in hip 

abductor strength (< 1 SD) and knee extensor strength (< 1 SD). All the other variables were 

within normal limits including quadriceps flexibility. This group was significantly more 

physically active compared to the Weak group. 
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Table 5.17: Mean values (SD) across the four subgroups 
 

Variables 

2nd stage subgroups 
 

ANOVA Strong 
(n=27) 
Mean (SD) 

 
Pronation & 
Malalignment 
(n=10) 
Mean (SD) 

Weak 
(n=22) 
Mean (SD) 

 
Flexible 
(n=11) 
Mean (SD) 

Peak hip abductor strength(Nm/kg) 1.8 (0.3) † 1.3 (0.5) 1.1 (0.3) * 1.4 (0.2) * F =19.67 p <0.001 
Peak knee extensor strength (Nm/kg) 2.1 (0.5) † 1.4 (0.6) 1.0 (0.3) 1.3 (0.1) F = 24.502 p <0.001 
Peak angle hip internal rotation (°) -9.1 (5.4) -10.8 (6.3) -7.0 (5.1) -9.9 (5.9) F = 1.448 p = 0.24 
Peak knee flexion angle (°) 73.5 (10.5) 73.6 (13.4) 75 (9.4) 79.6 (11.0) F = 1.032 p = 0.38 
Quadriceps flexibility (°) 125.0 (10.3) 122.1 (11.3) 121.4 (6.1) 135.7 (8.0) † F = 6.75 p < 0.001 
Gastrocnemius flexibility (°) 40.5 (6.8) § 37.5 (7.5) 35.0 (4.6) * § 43.4 (6.4) * F = 5.53 p = 0.002 
Hamstring flexibility (°) 155.4 (11.8) 154.0 (10.3) 150.3 (6.9) 158.0 (9.3) F = 1.81 p = 0.15 
Foot posture index 3.7 (2.3) 8.0(2.1) † 3.6 (2.8) 3.8 (3.0) F = 8.17 p< 0.001 
MRI bisect offset (%) 55.4 (6.3) 70.3 (4.7) † 54.1 (4.4) 55.6 (3.1) F = 25.49 p < 0.001 
MRI patella tilt (°) 8.1 (5.2) 10.3 (4.9) 8 (4.2) 9.8 (2.8) F =0.96 p = 0.41 
      
Patient related factors 
 
Age (years) 30.7 (5.13) 30.6 (5.3) 30.1 (6.2) 34 (2.9) F =1.45, p=0.24 
Gender (male %) 16 (59.3) * 5 (50.0) 2 (9.1) * 4 (36.4) x2 = 13.52, p =0.004 
BMI (kg/m2) 24.9 (4.6) 29.4 (7.8) 27.3 (5.7) 24.8 (3.3) F =2.27, p =0.09 
Physical activity (hours/week) 3.5 (2.4) 3.1 (2.6) 1.7 (1.6) * 4.9 (3.3) * F=4.713, p=0.005 
Duration of pain (months) 52.3 (58.9) 73.9 (72) 59.4 (68.8) 57.7 (82.7) F=0.25, p=0.86 
Previous treatment (%) 17 (63.0%) 8 (80.0%) 18 (81.8%) 10 (90.9%) x2 = 4.31, p =0.23 
Bilaterality (%) 15 (55.6) 5 (50) 12 (54.6) 4 (51.4) x2 = 1.28, p =0.74 
Beightons score (/9)[539] 2.1 (2.3) 3.8 (2.6) 2.8 (2.3) 3.3 (3.0) F=1.35, p=0.27 
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Anterior Knee Pain Score 82.4 (9.7) * 75.1 (12.4) 73 (11.5) * 74.5 (12.9) F=3.29, p=0.03 
Average NRS 2.4 (1.6) 3.3 (2.7) 3.2 (1.6) 3.5 (1.6) F=1.38, p=0.26 
Worst NRS 4.0 (1.9) 4.2 (3.0) 5.0 (2.3) 5.5 (2.2) F=1.42, p=0.24 
S-LANSS [541] 4.1 (5.4) 5.1 (6.6) 6.9 (5.4) 4.2 (3.9) F=1.21, p=0.31 
 WPAIQ subscale - % impact on work 
productivity  [540] 

8.5 % (15.4) 21.25% (26.9) 26.67% (25.9) 9% (25.1) F=2.90, p =0.04 

      
Supplementary clinical descriptors  
 
Total patella mobility (mm) 12.8 (4.6) 14.8 (5.0) 12.1 (4.4) 13.5 (4.0) F =0.82, p=0.49 
MRI cartilage loss (≥1) 9 (33.3) 6 (60%) 9 (40.9%) 3 (27.3%) x2 = 2.894, p =0.41 
MRI osteophyte (≥1) 7 (25.9%) 4 (40%) 0 (0%) 0 (0%) x2 = 12.73, p = 0.005 
PFOA (OA present %) 4 (14%) 3 (30%) 0 (0%) 0 (0%) x2 =8.81, p=0.03 
Contact area (mm2) 154.1 (39.2)  109.5 (44.8)  118.0 (55.8) 127.7 (55.8)  F=3.24, p=0.03 
Insall-Salvati (ratio) 1.2 (0.1) * 1.4 (0.1) * 1.3 (0.2) 1.2 (0.2) F =4.19, p=0.009 

† Different from each of the other three groups (p<0.05) 

* Subgroup pairs different (p<0.05) 

§ Subgroup pairs difference (p<0.05) 
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Table 5.18: Mean values (SD) across the four subgroups generated by hierarchical cluster analysis 
 

Variables 

2nd stage subgroups 
 

Group1 
 (n= 13) 
Mean (SD) 

Group 2 
 (n= 12) 
Mean (SD) 

Group 3 
(n= 29) 
Mean (SD) 

 
Group 4 
 (n= 16) 
Mean (SD) 

Peak hip abductor strength(Nm/kg) 1.9 (0.3) 1.8 (0.3) 1.2 (0.4) 1.3 (0.3) 
Peak knee extensor strength (Nm/kg) 2.1 (0.6) 2.1 (0.5) 1.2 (0.4) 1.3 (0.3) 
Peak angle hip internal rotation (°) -10.1 (4.9) -8.2 (5.9) -7.3 (5.5) -10.8 (5.6) 
Peak knee flexion angle (°) 73.6 (12.7) 75.1 (10.9) 73.4 (9.1) 78.7 (8.5) 
Quadriceps flexibility (°) 129.7 (10.7) 122.6 (7.8) 120.0 (7.3) 133.0 (9.7) 
Gastrocnemius flexibility (°) 41.2 (6.9) 39.6 (7.9) 35.8 (4.7) 41.6 (7.5) 
Hamstring flexibility (°) 165.6 (7.3) 144.5 (6.1) 149.8 (6.3) 159.4 (8.3) 
Foot posture index 3.4 (2.1) 5.6 (3.0) 3.7 (2.8) 5.3 (3.4) 
MRI bisect offset (%) 55.1 (6.0) 62.2 (10.0) 54.7 (5.7) 59.6 (7.0) 
MRI patella tilt (°) 7.8 (5.4) 12.1 (2.3) 7.2 (4.5) 9.4 (4.0) 
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5.4.3 Prognosis of subgroups  

No clinically meaningful differences were noted between the original (Table 5.19) and 

imputed results and so the imputed dataset is presented. Overall the subgrouping variable 

was not statistically significant for predicting a favourable outcome (p=0.26). The results of 

the logistic regression (Table 5.20), using the Strong group (55% [15/27] favourable 

outcome) as the reference group, showed that there were no statistically significant 

differences between the groups in the odds of a favourable outcome. Descriptively, the 

Weak (31% [7/22]; Odds Ratio [OR] 0.30; 95% CI 0.07, 1.36) and the Pronation & 

Malalignment (50% [5/10]; OR 0.64, 95% CI 0.11, 3.66) groups were less likely to report a 

favourable outcome at 12 months. However, the Flexible group (63% [7/11]; OR 1.24, 95% 

CI 0.20, 7.51) were more likely to report a favourable outcome. 

 

 

Table 5.19: Multiple logistic regression using original (non-imputed) data 
 

Subgroup Multivariable a 

OR (95% CI) b P- value 

Pronators & maltrackers 0.50 (0.08, 2.95) 0.44 
Weak group 0.27 (0.06, 1.33) 0.11 
Flexible group 1.32 (0.20, 8.89) 0.77 
Duration of symptoms (>12 months)  0.06 (0.01, 0.65) 0.02 
Baseline AKP 1.03 (0.97, 1.08) 0.36 
Treatment (no treatment) 0.45 (0.13, 1.53) 0.20 

a. Adjusted for duration of symptoms (> 12 months); baseline AKP; treatment (no treatment) 
b. Reference group: Strong group 

 

 

 

Table 5.20: Multiple logistic regression exploring the association between subgroups 
and likelihood of a favourable outcome at 12 months 

 
Subgroup Multivariable a 

OR (95% CI) b P- value 

Pronation & Malalignment group 0.64 (0.11,3.66) 0.62 
Weak group 0.30 (0.07, 1.36) 0.12 
Flexible group 1.24 (0.20, 7.51) 0.82 
Duration of symptoms (>12 months)  0.08 (0.01, 0.77) 0.03 
Baseline AKP 1.03 (0.98, 1.09) 0.28 
Treatment (no treatment) 0.51 (0.15, 1.70) 0.27 

a. Adjusted for duration of symptoms (> 12 months); baseline AKP; treatment (no treatment) 

b. Reference group: Strong group 
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5.4.4 Determining a favourable outcome  

A few approaches have been applied in previous PFP research to determine the 

‘improvement’ of an intervention. The most common method is to use the Global Rating of 

Change Scale (GROC) and this has been applied in most of the recognised longitudinal 

analyses in PFP to date [19, 298, 377]. The thresholds used to determine improvement in 

the GROC are based on the recommendations from Kamper et al. (2009) [533] and modified 

depending on the number of scale points used in GROC e.g. 7 point versus 11 point scale. 

Alternative approaches have been applied recently. The study by Ferber et al. (2015) [268] , 

the largest RCT to date in PFP (n=199), determined improvement via two methods: i) 

improvement in AKP of 8 points and VAS on 2 points; ii) improvement in AKP of 8 points or 

VAS on 2 points. 

 

The current study used an 11-point GROC and applied a 2 point threshold based on these 

recommendations [533]. However, consideration was made to relationship between these 

improvement thresholds. Using the original data (n=57) (not the imputed dataset), GROC 

improvement was cross-tabulated with: i) AKP or VAS improvement and ii) AKP and VAS 

improvement and descriptive results reported. 

 

Comparison between GROC and AKP and VAS in terms of reporting favourable outcome 

shows only 31% (9/29) agreement but does show a 93% (26/28) agreement in terms of 

reporting an unfavourable outcome (Table 5.21). When GROC is compared to AKP or VAS 

the agreement for reporting a favourable outcome increases to 69% (20/29) but the 

agreement in terms of no improvement reduces to 39% (11/28) (Table 5.22).  

 

Overall, the data from GROC shows that 51% (29/57) reported a favourable outcome 

compared to 19% (11/57) using the AKP and VAS approach and 65% (37/57) using the AKP 

or VAS approach. An improvement in half the sample, using the GROC, is perhaps more 

representative of the success rate observed in clinical practice at 12 months where 1 in 2 

patients will improve rather than 1 in 5 [52]. The AKP or VAS approach shows a similar but 

slightly greater favourable outcome, however, GROC is the most commonly used outcome in 

PFP for this type of analysis and would allow future comparison with other studies. GROC 

was therefore retained as the method to determine improvement. The differences noted 

between GROC and AKP and VAS does, however, highlight the caution of comparing 

predictors across multiple studies if the threshold for ‘improvement’ is defined differently.  
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Table 5.21 Cross tabulation of GROC and ‘AKP and VAS’ thresholds 
 
  AKP and VAS 

  0 1 Total 

GROC 
0 26 2 28 
1 20 9 29 

 Total 46 11 57 
 

 
 
 

Table 5.22 Cross tabulation of GROC and ‘AKP or VAS’ thresholds  
 

  AKP or VAS  

  0 1 Total 

GROC 
0 11 17 28 
1 9 20 29 

 Total 20 37 57 
 
 

 

5.5 Discussion  

This chapter has demonstrated that four subgroups within a PFP cohort can be identified 

using modifiable clinical, biomechanical and imaging features that are potentially amenable 

to treatment. There was no statistical significance between the groups in the odds of a 

favourable outcome, descriptively however, the Weak group were the least, and the Flexible 

group the most, likely to report a favourable outcome at 12 months  

 

This chapter has further enhanced our knowledge of PFP subgroups by incorporating 

recognised biomechanical and imaging features to refine previously identified subgroups 

based on clinical measures. The four groups identified in the current chapter are comparable 

to four empirical subgroups identified previously but these were not derived statistically [366, 

374]. Deriving subgroups using cluster analyses, like the current chapter, Selfe et al. (2016) 

[254] identified three subgroups: ‘Weak & Tighter’, ‘Strong’ and ‘Weak & Pronated’. The 

clinical tests they used included some of the same measures of quadriceps flexibility, 

gastrocnemius flexibility and FPI as used in the current chapter. Knee extensor and hip 

abductor strength were also used but were measured isometrically. Despite identifying only 

3 groups, the groups identified by Selfe et al. (2016) [254] showed some similarities to those 
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of the current chapter. Both strong groups demonstrated high strength measures and were 

comprised predominantly of men. The Weak group show similarities with the Selfe et al. 

(2016) [254] Weak & Tighter group in terms of lowest strength, physical activity and poor 

functional scores. The Pronation & Malalignment and Flexible groups in the current chapter 

show some similarities with the Selfe et al. (2016) [254] Weak & Pronated group in terms of 

high FPI and the greatest gastrocnemius flexibility. The lack of complete agreement between 

studies is likely the result of slight variations in statistical methodology and the fact that the 

study reported in this chapter incorporated imaging and biomechanical features. 

Furthermore, the Selfe et al. (2016) [254] study had a slightly lower mean age (26 years) and 

a higher proportion of females (84%) which may have also contributed to the different 

categorisations. Nevertheless, these findings combined provide further support for the 

existence of these PFP subgroups, thereby providing a basis for a stratified rehabilitation 

management approach.  

 

This chapter shows the long-term outcome of statistically derived PFP subgroups using 

clinical, biomechanical and imaging features. Despite finding no statistical significance in 

terms of 12 month outcomes, there was a directional trend showing that the Weak group 

were the most likely to report an unfavourable outcome at 12 months. This is perhaps 

unsurprising as this group were found to have the weakest hip abductor and knee extensor 

strength both statistically and clinically compared the other groups and report the least 

physical activity and worst AKP scores. Less knee strength [301, 510] and poor baseline 

function [298] have previously been shown to lead to a poor long-term response to treatment 

in PFP. The Flexible group which showed the greatest flexibility in quadriceps, 

gastrocnemius and hamstrings and being the most physically active were the most likely to 

report a favourable outcome. This group may represent people who, due to their increased 

physical activity, are transiently exceeding joint loading which has been linked to an increase 

in PFP symptoms [68]. Simple activity modification may have explained the improvement in 

this group, however this is difficult elucidate from the data available. Only one other study 

[366]  has investigated the long-term follow up of PFP subgroups, which were empirically 

derived. In a three-year follow up, Keays et al. (2015) [366] reported no improvement in pain 

for any of their four subgroups: hypermobile stance group; hypomobile group; faulty 

movement pattern group; and PFOA group. The contrast in findings to the current chapter 

may be the result of a longer follow-up period or that groups were derived clinically rather 

than statistically. Furthermore, they recruited a wider age group of participants (13-82 years) 

which may have contributed to the observed discordance. 
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5.5.1 Clinical Implications  

The identification of diagnostic subgroups provides the opportunity for a range of 

interventions to be matched accordingly [363] and largely confirms the subgroups identified 

by Selfe et al. (2016) [254] . With the exception of the Strong group, all the other groups 

were considered clinically weak. This disparity in strength between the Strong group and the 

other groups is shown graphically in Figure 5.12. This shows graphically that, by applying 

the 1 SD threshold (Figure 5.12) to the normative data, only members of the Strong group 

were classed as normal strength for both the knee and hip. With the exception of four 

members of the other subgroups who showed normal strength in either knee extension or 

hip abduction, all the members of the other subgroups demonstrated clinical weakness in 

both hip abductor and knee extensor strength. These results provide a rationale for 

continuing to prescribe standard knee and hip strengthening based exercises, associated 

with current practice [542], to the other three subgroups but with a greater consideration of 

the exercise parameters (load, repetitions etc.) which are known to influence strength gains 

in PFP [543] .  

 

As the Strong group showed normal strength levels they are unlikely to gain any further 

benefit from additional routine strengthening exercises [544]. This group may instead be 

better targeted with movement retraining based interventions which have been shown to be 

effective in runners with PFP [204, 205, 276]. The Pronation & Malalignment group 

demonstrated excessive structural features (largest BSO and FPI) and therefore might 

benefit from passive interventions such as knee braces and foot orthotics which have been 

showed to reduce BSO [148] and FPI [490] respectively. From a clinical service provision 

viewpoint, these prognostic findings highlight who might be unlikely to benefit from additional 

treatment [21, 357]. Our findings suggest that the most active, Flexible group may represent 

a self-limiting form of PFP which may require simple advice on load management [545] and 

limited follow up. In contrast, the Weak group may require increased service provision with 

more physiotherapy input. The prognosis of PFP subgroups remains a research priority and 

further evaluation of other datasets is required before these results can be applied within 

clinical practice.  
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Figure 5.12: Clinical profile of the subgroups in terms of knee extensor and hip 
abductor strength.  
Line represents < 1 SD 

 

 

5.5.2 Limitations 

Sample size. These chapter findings are based on a relatively small cohort, however, the 

use of a rule of thumb [486] for cluster analysis was intended to minimise the over fitting of 

data. Dolnicar (2002) [546] conducted a review into 248 studies that utilised data-driven 

cluster analysis which was not specific to medicine and instead related to business 

administration but demonstrates that sample sizes vary between 10 to 20 000 with a mean 

of 698. The number of variables used varied between 10-66 with a mean of 17. This author 

suggested that whilst no rules exist, consideration should be made to the question: is the 

dimensionality of the variables too high for the cases to be grouped? In response to this 

concept of dimensionality and absence of any other recommendations, Dolnicar (2002) [546] 

supports the rule of thumb (n=2k) advocated by Formann (1984) [486] an authority on latent 

class analysis and used in this chapter. Furthermore, consideration was made to the fact 

that the prevalence of PFP has been shown to be just over 10% in the general public [7, 44] 

and up to 25% in more active populations such as athletes or military [42]. Recruiting to a 

single site, predominantly from the National Health service (NHS) has been acknowledged 

as being challenging [375]. Consideration was made to the feasibility of achieving 
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recruitment within a 24-month period. Despite, the benefit of identifying patients via the 

SystmOne database (see 5.3.3), these people are of working age with likely dependants e.g. 

children and/or elderly relatives competing for their time.  

 

Assessment. Strict criteria were used for the selection of variables and in particular to the 

selection of movement domain variables which were related to the assessment task i.e. stair 

descent. It is known that other kinematic variables would have satisfied selection criteria 

based on other tasks such as running. Stair descent was selected in consultation with a 

patient and public involvement group and is considered to be achievable for both active and 

sedentary individuals thus identified subgroups are likely to represent the wider population.  

 

Prognostic homogeneity. One of the concerns with using a cross-sectional subgrouping 

approach is that causal homogeneity does not necessarily imply prognostic homogeneity 

[358]. For example, individuals that are grouped together based on baseline features may 

still demonstrate a different symptom course over time or respond differently to the same 

treatment. This is demonstrated by the Weak group who collectively showed a reduced odds 

of favourable outcome (0.30 [0.07, 1.36]) but still had 46% (7/15) of members that did show 

a favourable outcome and two members of the group that reported a GROC score of 4. 

There is no pattern in the data to explain these elevated scores.  

 

Cluster profiling. To support the interpretation and clinical profiling of the groups normative 

data was used. For the MRI bisect offset and MR patella tilt gender-specific thresholds were 

combined as the complexity of the statistics did not allow for this additional factor. The 

findings of Chapter 4 (3D imaging study) suggested this not good practice due to the known 

differences in joint shape for males and females. Nevertheless, group profiling was 

predominantly driven by the statistical profile and informed using the normative data (which 

incorporated the thresholds) so the effect of combining data should have been minimised. 

 

5.6 Conclusions  

The data presented in this chapter suggests that using modifiable clinical, biomechanical 

and imaging features that four data-driven diagnostic subgroups can be identified. These 

PFP subgroups provide the opportunity for a range of interventions to be matched 

accordingly. Furthermore, an improved understanding of the prognosis of subgroups could 

inform future service provision suggesting increased investment in the management of the 
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Weak group and potential disinvestment in the Flexible group, however, this warrants further 

investigation. Further research is required to explore whether these subgroups can be 

replicated in larger PFP data sets and whether treatment can be matched to the respective 

subgroups. Despite the likely clinical implications, this study design does not allow us to 

conclude that a stratified treatment approach would be effective; this will be explored within 

the next chapter. 
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Chapter 6 - The effect of targeted treatment on people with 

patellofemoral pain: a pragmatic, randomised controlled 

feasibility study 

 

This chapter describes a randomised controlled feasibility study investigating a 

targeted hip strengthening intervention, matched to a subgroup with baseline hip 

weakness and compared to usual care management. The chapter also explores the 

mechanism of action for hip strengthening in a subgroup defined as ‘weak’. The 

results from this chapter have been published as: Drew BT, Conaghan PG, Smith 

TO, Selfe J, Redmond AC. (2017). The effect of targeted treatment on people with 

patellofemoral pain: a pragmatic, randomised controlled feasibility study. BMC 

Musculoskeletal Disorders. 18 (1), 338. [544]. 

 

6.1 Introduction  

In Chapter 5, four diagnostic subgroups were identified, in parallel to this chapter, by 

combining clinical, biomechanical and imaging features. It is thought that subgroups 

of people with PFP will benefit from being stratified and matched to specific 

interventions [22]. Despite successive international consensus papers since 2011 

recommending subgrouping [14, 20, 34, 547], very little literature has focused on 

targeted therapy.  

 

As highlighted in the literature review (Chapter 2), reduced hip muscle strength is 

considered an important associated feature of PFP [62].  Previous studies have 

reported promising clinical outcomes after prescribing hip strengthening exercises 

[265, 268, 271, 273, 275]. Individuals with PFP typically present with a propensity 

towards increased hip adduction and internal rotation during dynamic movement 

[548]. These kinematics have been shown to be significant predictors of PFP [549], 

thought to be linked to increasing patellofemoral joint contact stress [162]. Correcting 

this altered movement pattern is often seen as a desired outcome in interventional 

studies [198].  
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Conflicting findings surround the mechanistic effect of hip strengthening in PFP [198]. 

Some studies have demonstrated a post-interventional change in kinematics [275, 

279], whilst others have reported no change [266, 280]. The explanation for the 

conflict in findings is unclear, however, the previous studies showing no kinematic 

change [266, 280] have included athletic cohorts and with one of the cohorts [266] 

clearly showing a higher than normal baseline strength. As expanded on in Chapter 

2, recently PFP has been classified into three subgroups: ‘strong’, ‘weak and tighter’ 

and ‘weak and pronated foot’ [254]. Of these subgroups, 22% were classified into the 

‘strong’ subgroup with higher knee extension and hip abduction strength. This group 

is unlikely to gain anything from a treatment approach based on strengthening. A 

strengthening intervention would likely have the greatest effect on the kinematics of 

those with baseline weakness.  

 

6.2 Aims 

Based on the evidence, there is a need to explore stratified treatment approaches for 

PFP in large trials. To ensure the success and effectiveness of such trials however, a 

number of feasibility questions need to be answered. The primary aim of this chapter 

was therefore to explore the feasibility of providing treatment matched to the specific 

clinical criteria of a selected subgroup compared to usual care (UC) management to 

inform a future stratified approach to PFP treatment. The a priori selection of a 

subgroup with a specific characteristic such as hip abductor weakness also provides 

the opportunity, as a secondary aim, to explore the mechanism of effect recently 

advocated for trials of physical interventions [550]. 

 

6.3 Methods  

6.3.1 Study design  

This chapter reports a pragmatic, randomised controlled feasibility study in which 

participants were selected from the 70 PFP participants in Chapter 5. Twenty-six 

participants were identified from the larger group (n=70) on the basis of having hip 

abductor weakness at clinical examination and were randomised into receiving either 

a matched treatment (MT) or UC in a 1:1 ratio. Ethical approval was obtained prior to 

commencement of the study (14/NE/1131). All participants completed written 
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informed consent prior to entering the study. The chapter has been reported in 

accordance with Consolidate Standard of Reporting Trials (CONSORT) [551] and 

Template for Intervention Description and Replication guidelines. (TiDieR) [552]. It 

was also registered on the ISRCTN registry (ISRCTN74560952). 

 

6.3.2 Justification of feasibility methodology  

The Medical Research Council (MRC) complex interventions guidance [553] provides 

a framework for developing and evaluating interventions like the stratified approach 

to PFP (Figure 6.1). This thesis is broadly based on the on the first three stages of 

the MRC complex interventions [553]. The pre-clinical phase is satisfied by Chapter 2 

(literature review) and Chapter 3 (systematic review) whist Chapter 5 (PFP 

subgrouping) satisfies the modelling phase. The Exploratory trial phase is exploring 

the feasibility of a stratified intervention and forms the work in this chapter.  

 

A debate surrounds the terms ‘pilot’ and ‘feasibility’ and how they affect the actual 

design [554]. The National Institute for Health Research (NIHR) separates these two 

designs by suggesting that the feasibility study is a piece of research done before a 

main study to answer ‘ Can this study be done?’ whereas the pilot study is miniature 

version of the main study. Eldridge et al. (2016) [554] suggests that, despite this 

clear differentiation, feasibility still remains the overarching concept of both designs 

and that a pilot study is often considered a subset of feasibility. The work undertaken 

in this chapter is reported as a feasibility study because, as advised by Lancaster et 

al. (2004) [555], rate of recruitment, acceptability, outcomes measures etc. were the 

primary outcomes. Furthermore, the selected subgroup (hip abductor weakness) was 

chosen as this could be easily identified clinically, however, this group has been 

further refined from the parallel work in Chapter 5. As a result, the findings of this 

chapter could be not be seen as miniature version of the main study but ultimately as 

a means of establishing the feasibility of targeted treatment in PFP. 
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Figure 6.1:  Phases of Medical Research Council (MRC) complex intervention 
guidance 
 Reprinted with permission from BioMed Central Ltd. [556] 
 

 

6.3.3 Participants  

Recruitment occurred between November 2014 to April 2016 from a large 

musculoskeletal and rehabilitation service through clinician referrals.  Participants 

were identified from the SystmOne database (a local electronic healthcare 

database), posters displayed in the local hospital and a university alumni volunteers’ 

website. Eligibility criteria were assessed both verbally and clinically to ensure that 

the inclusion criteria were addressed fully (Table 6.1). The most symptomatic knee, 

self-selected by the participant, was designated the index limb. Participants were 

stratified based on hip abductor strength measured using a Biodex isokinetic system 

4 (IRPS Mediquipe, UK). Hip abductor weakness was based on thresholds defined a 

priori from age and gender normative data [530] (Table 6.1). The relevant normative 

mean minus one standard deviation (-1 SD) was used as the threshold for allocation 

to the “weak” stratum based on previous recommendations [260].   
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Table 6.1: Participant eligibility criteria 
 

Inclusion criteria 

• Aged 18-40 years 
• Reported insidious (non-traumatic) onset of anterior or retropatellar knee pain;  

• Pain on two or more of the following activities: prolonged sitting, kneeling, squatting, 
running, patella palpation, hopping, stair walking, stepping down or isometric 
quadriceps contraction 

• Peak hip abduction torque values [530] :   Females [18-29 years] ≤ 94.1 Nm; Females 
[30-39 years] ≤  75.8 Nm; Males [18-29 years] ≤  144.1 Nm; Males [30-39 years] ≤ 139 
Nm 

Exclusion criteria 

• Presence of inflammatory arthritis; knee pain referred from the hip or lumbar spine; any 
history of significant knee surgery; other causes of knee pain such as, but not restricted 
to: meniscal pathologies, quadriceps tendon injuries, patella tendinopathy, tibial 
tubercle apophysitis; bursitis  

• Received any treatment within the last three months including physiotherapy, podiatry 
etc. 

 

6.3.4 Sample size  

This chapter was designed to recruit 12 participants per group based on previous 

guidance for feasibility studies of this design [557]. Participants were followed up to 

eight weeks post-intervention as this has previously shown to be sufficient time to 

demonstrate an effect in PFP [265-267].  

 

6.3.5 Randomisation  

The random allocation sequence was made according to the output from a random 

number generator and concealed within pre-sealed, opaque envelopes [558]. All 

allocation and randomisation was conducted by the candidate (BD). 

 

6.3.6 Blinding  

The outcome assessor was unblinded, however, patient reported outcome measures 

(PROMs) were completed in a separate room with no input from the assessor. The 

biomechanical outcomes were acquired in accordance to a strict study protocol to 

minimise variation and bias [559]. Furthermore, the output from the biomechanical 

outcomes are automated which makes the lack of blinding less of an issue.  

 

6.3.7 Interventions  



 

Chapter 6. Feasibility study 

209 

Participants randomised to the MT group were asked to attend six supervised 

sessions of approximately 30 minutes in duration once per week for six weeks at a 

local hospital. Each week they also performed two additional sessions on non-

consecutive days independently at home, with the intervening days allowing 

adequate rest [560]. The intervention comprised of three exercises aimed at targeting 

coronal, sagittal and transverse strength of the hip using resistance bands (see 

Table 6.2). The choice of exercises was informed from previous RCTs using hip 

strengthening in PFP [265, 271], discussion with clinical experts and with 

consideration of the exercises shown to provide the greatest isolated gluteal activity 

[561, 562]. The order of exercises was compiled based on the clinical experience of 

the candidate and advice from clinical experts supporting this chapter. Consideration 

was made to the recommended determinants of resistance exercise [563] when 

developing the intervention. The intervention aimed to gradually progress participants 

over six-weeks from non-weight bearing exercises to dynamic full weight bearing 

whilst minimising the amount of quadriceps activity to ensure that the hip strength 

was being targeted. The inclusion of isometric exercises was in accordance with 

previous hip strengthening regimes in PFP [273, 564] and recommendations from the 

clinical experts supporting this chapter. An exercise diary issued to participants each 

week provided pictures and descriptions of the prescribed exercises.  

 

The sessions were face to face, 1:1 sessions provided by the candidate, a senior 

musculoskeletal physiotherapist with over nine years of clinical experience. During 

these sessions, participants were given education and justification of the treatment to 

support adherence. Each week at least one of the exercises would change with the 

aim of providing variation and minimising tedium [565]. The supervision sessions 

served as a means of ensuring both treatment fidelity and tailoring. Fidelity was 

ensured by checking the exercise technique and making corrections to performance 

prior to these being performed independently at home. Subsequent visits ensured 

this instruction had been correctly applied or not. Tailoring the intervention based on 

progressive loading was in line with current recommendations [198]. Participants 

were issued yellow (least resistance), red or green (most resistance) resistance 

tubing (66fit Ltd ™) and were allowed to take it home. To progress the load and 

resistance, a Borg Rate of Perceived Exertion scale (RPE) [566] was used based on 

the recommendations when using resistance band [567]. A RPE of >6 was 

considered desirable [560] and participants were monitored after a few repetitions to 

ensure this was what was being achieved.  As participants were stratified for 

strength, the intervention required participants to perform ten repetitions within three 
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sets as recommended for strength training [560]. Participants were advised to ensure 

the time under tension was eight seconds (three seconds concentric, two seconds 

isometric hold and three seconds eccentric contraction). The selection of the hold 

times for the isometric exercises were chosen to cause a significant fatigue (a RPE 

of >6) by the end of the second set which has been suggested to be an appropriate 

level of stimulus for muscle strengthening [568]. Strengthening was performed on 

each leg alternatively providing a standardised rest between sets. Exercise diaries, 

issued to participants, provided a reminder of the exercises and allowed a measure 

of adherence. Participants were asked to document each time each exercise was 

performed on their diary sheet and return these at each visit. 

 

Participants randomised to the UC group continued with the same management of 

their condition as they were planning to receive prior to the commencement of the 

study. This included planned physiotherapy, podiatry or no intervention, depending 

upon participant preference. The type of management and number of sessions was 

recorded for the UC group at follow-up. 
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Table 6.2: Overview of the matched treatment programme 
 

Week Exercise options & progression a Sets & repetitions 
Basic level b Moderate level High level Very high level 

1 
Side-lying hip abduction  + yellow band  + red band + green band 3 x 10  
Double leg bridging  Single leg bridging  + 10s holds + 20s holds 3 x 5 
Side-lying external rotation  + yellow band  + red band + green band 3 x 10 

2 
Side-lying hip abduction  + yellow band  + red band + green band 3 x 10 
Side-lying external rotation  + yellow band  + red band + green band 3 x 10 
Prone lying hip extension + yellow band  + red band + green band 3 x 10 

3 
Prone lying hip extension + yellow band  + red band + green band 3 x 10 
Hip raises on lateral step + yellow band  + red band + green band 3 x 10 
Standing hip external rotation against wall  + 10s hold + 20s holds + 30s holds 3 x 5 

4 
Hip raises on lateral step + yellow band  + red band + green band 3 x 10 
Standing hip external rotation against wall  + 10s holds + 20s holds + 30s holds 3 x 5 
Standing hip extension  + yellow band  + red band + green band 3 x 10 

5 
Standing hip extension  + yellow band  + red band + green band 3 x 10 
Lateral walking hip abduction + yellow band + red band  + green band - 10 x 10 steps  
Lateral walking hip external rotation + yellow band + red band  + green band - 10 x 10 steps 

6 
Lateral walking hip abduction + yellow band + red band  + green band - 10 x 10 steps 
Lateral walking hip external rotation + yellow band + red band  + green band - 10 x 10 steps 
Quadrupled bent knee hip extension + yellow band  + red band + green band 3 x 10 

a Level determined using a Borg Rate of Perceived Exertion scale (RPE) 

b Using body weight unless otherwise stated
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6.3.8 Outcomes 

There is a lack of agreed guidelines for outcomes in feasibility studies [555]. 

Therefore the primary feasibility outcomes were adapted from recommendations 

made by Bugge et al. (2013) [569] and Shanyinde et al. (2011) [570]. The questions 

posed by Bugge et al. (2013) [569] ( 

 

Table 6.3 ) offered a structure in which to analyse the feasibility comprehensively. 

These questions satisfied the important broad groups of feasibility: process (key 

aspects of the study e.g. recruitment rates), resources (time and resource problems 

during the study), management (human and data management problems) and 

scientific value (treatment safety and effect) [571]. 

 

Table 6.3: Feasibility outcomes*  
 

Methodological issues  

 
1. Did the feasibility/pilot study allow a sample size calculation for the main trial? 
2. What factors influenced eligibility and what proportions of those approached were 

eligible? 
3. Was recruitment successful 
4. Did eligible participants consent? 
5. Were participants successfully randomized and did randomization yield equality in 

groups? 
6. Were blinding procedures adequate? 
7. Did participants adhere to the intervention? 
8. Was the intervention acceptable to the participants? 
9. Was it possible to calculate intervention costs and duration? 
10. Were outcome assessments completed? 
11. Were outcome measured those that were the most appropriate outcomes? 
12. Was retention to the study good? 
13. Were the logistics of running a multicenter trial assessed? 
14. Did all components of the protocol work together? 

 

*adapted from Bugge et al. (2013) [569]  



213 
 

Chapter 6. Feasibility study 

 

 

6.3.8.1 Feasibility outcomes  

6.3.8.1.1 Recruitment and eligibility:  

Recruitment and eligibility was assessed using the rate of eligibility (%), the 

conversion of eligible to consent (%) and a breakdown of recruitment sources. 

6.3.8.1.2 Randomisation & blinding:  

The success of randomisation was assessed based on any problems being 

highlighted and whether the randomisation process yielded broad equality in both 

groups based on the difference in baseline characteristics. Intervention blinding is not 

possible for a physiotherapeutic intervention of this nature [572] and thus this could 

not be measured. 

6.3.8.1.3 Adherence & acceptability:  

 Adherence was assessed by the adherence rate to treatment (%) using exercise 

diaries and adherence to appointments (%) based on the number of ‘unable to 

attends’ (UTAs). The acceptability was assessed by the attrition rate (%). 

6.3.8.1.4 Outcome measures:   

The outcome data was assessed based on the amount of missing data (%) found in 

each case report form. 

6.3.8.1.5 Resources & study management:  

The study management was assessed qualitatively by the candidate in terms of the 

logistics of running the study and the safety of all study components.  

6.3.8.1.6 Treatment efficacy:  

PROMs provided assessments of the efficacy for the chapter in terms of 

improvements in pain and disability at eight-week follow-up. The following outcomes 

were selected based on current Initiative on Methods, Measurement and Pain 

Assessment in Clinical Trials(IMMPACT) guidelines [573]: 

 

• Pain was assessed using two numerical rating scales (NRS) with a 11-point scale 

for: i) the average pain in the knee over the last week ii) the worst pain in the 

knee over the last week.  
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• Function was assessed using the Anterior Knee Pain scale (AKPS), a 13-item 

knee specific self-reported questionnaire [534] in which 100 is the maximum 

achievable score and lower scores indicate greater pain and disability 

• Rating of change measured on a 11-point global rating of change scale (GROC) 

anchored with “very much worse” to “completely recovered” [533]. Responses 

were dichotomised with values greater than 0 (“unchanged”) indicating an 

improvement. 

 

6.3.8.2 Mechanistic outcomes  

6.3.8.2.1 Kinematics 

The secondary aim of this chapter was to explore the potential mechanistic effects of 

hip strengthening on the selected sample. A selection of biomechanical variables 

were selected a priori to prevent subsequent data mining [574]. The testing 

procedures are described in section 5.3.9.3. The stair set-up and procedure is shown 

in Figure 6.2. Stair descent was selected as this is a known aggravating factor for 

PFP [3], deemed challenging enough to observe a kinematic change[575] but 

achievable for both active and sedentary participants.  

 

Data collected using the Vicon system described in Chapter 5 was analysed in Visual 

3D (C-Motion, Rockville, Maryland). The pre-selected kinematics of most theoretical 

interest for explaining the proposed mechanism of action of the MT intervention were 

i) peak hip internal rotation angle (peak IR) of the thigh with respect to the pelvis; ii) 

peak hip adduction angle (peak ADD) of the thigh with respect to the pelvis; iii) total 

coronal hip range of movement (coronal ROM); iv) total transverse hip (ROM) 

(transverse ROM). These were calculated using the an X-Y-Z Cardan rotation 

sequence [521]. A reduction in the magnitude of all the kinematic variables measured 

post-intervention was considered a favourable outcome.  

6.3.8.2.2 Muscle strength  

A Biodex system 4 (IRPS Mediquipe, UK) isokinetic dynamometer (IKD) was used to 

assess muscle strength. The testing procedures are described in section 5.3.9.1. 

Data was collected by Biodex Advantage Software (IRPS Mediquipe, UK). The 

isokinetic strength measures of interest were i) peak hip abduction torque based on 

the maximum hip abduction torque across five repetitions; ii) peak knee extension 

torque based on the maximum knee extension torque across five repetitions. 
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Figure 6.2: Stairs and platform 
Participants descended the stairs at a self-selected speed. Each participant 
completed a minimum five successful stair descents. The descent was 
deemed successful when the index limb was placed on step two in the 
absence of any stumbles or hesitation. The gait cycle of interest was similar 
to that used in previous studies [520] between step two and ground floor. The 
variables of interest were captured during stance phase; between toe on and 
toe off on step two. 

 

6.3.9 Statistical methods  

Statistical analysis was undertaken using SPSS (version 21.0 (Armonk, NY: IBM 

Corp). As hypothesis testing is not advised for this size and type of exploratory study 

design [555], descriptive statistics along with point estimates, confidence intervals 

and effect sizes were presented for all PROMs and biomechanical outcomes. Within-

group changes for all kinematic variables were expressed as a percentage change of 

the total ROM. Feasibility outcomes were described using descriptive statistics. To 

determine where possible, a quantifiable measure of the feasibility outcomes, 

predetermined thresholds were used to indicate either success or strategies required 

(Table 6.4). Where it was not possible to use quantitative data to demonstrate 

success, outcomes were reported narratively. 
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Table 6.4: Thresholds for feasibility outcomes 
 

Outcome Indicator Successful 
Unsuccessful - 

strategies required 

Recruitment & 
eligibility 

Conversion to 
consent (%) > 90 < 90 

Adherence & 
acceptability 

Adherence rate to 
treatment (%) > 90 < 90 

Adherence to 
appointment (%) > 90 < 90 

Attrition rate (%)  < 10  > 10 

Outcome 
measures Missing data (%) <5 >5 

Treatment 
efficacy 

Average NRS MD  > 1.5 [576] MD < 1.5 
 

Worst NRS MD > 1.5 [576] MD < 1.5 
 

AKPs MD > 8 [577] MD < 8 
 

MD = mean difference; NRS = numerical rating scale 

 

6.4 Results 

6.4.1 Feasibility outcomes 

Figure 6.3 shows that 14 participants were randomised to MT and 12 participants to 

UC.  Of the participants in the UC group, 55% received formal physiotherapy 

treatment, which may or may not have included a strengthening component. The 

remaining UC participants reported continuing with their normal self-management.  
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Figure 6.3: Flow of participants through the study 
 

 

6.4.1.1 Recruitment and eligibility 

 Over 15 months, of the 70 who were screened, 26 were eligible based on hip 

weakness; an eligibility rate of 37.1%. All 26 eligible participants consented to the 

study (100% conversion to consent). Recruitment was predominantly from the 

SystmOne database 54% (14/26). Direct clinician referrals 15% (4/26), posters 23% 

Assessed for eligibility (n= 70) 

Randomised (n= 26) 

• Allocated to matched 

treatment (n= 14) 

• Received allocated 

• Allocated to usual care (n= 

12) 

• Received treatment (n= 5) 

• Lost to follow up (n=0) 

• Discontinuation of 

intervention (n=1) 

• Lost to follow up (n=1) 

Reason: Work commitments 

 

• Analysed (n= 13) 

None excluded from analysis 

 

• Analysed (n= 11) 

None excluded from analysis 

 

Allocation 

Follow up 

Analysis 

Enrolment 

Normal hip abductor strength 

(n=44) 
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(6/26) and a university alumni online advert 8% (2/26) accounted for the other 

sources of recruitment. 

 

6.4.1.2 Randomisation and blinding 

No practical problems were highlighted in the randomisation procedure. The 

randomisation yielded reasonable equality in terms of demographics and baseline 

symptoms (see Table 6.5). The only notable difference was the larger number of 

people with bilateral knee pain in the MT compared to the UC group (64% vs. 33.3% 

respectively).  

 

 

Table 6.5: Baseline characteristics. Values are means (SD) unless stated 
otherwise 
 

Characteristics  MT group (n=14) UC group (n=12) 

Age (years) 29.1 (6.3) 29.3 (5.5) 
No (%) of females  7 (50%)  8 (66.7) 
Body Mass Index (kg/m2) 25.9 (4.8) 27.7 (7.9) 
Median (interquartile range) duration of knee 
pain (months) 

30 (16.5 - 75.25) 33 (10.5 -54) 

Physical activity (hours/week) 3.1 (2.6) 3.9 (3.7) 
No (%) with bilateral knee pain  9 (64.3) 4 (33.3) 
Anterior Knee Pain Scale  74.6 (9.9) 74.75 (12.3) 
Worst pain 4.7 (1.68) 5.4 (2.3) 
Average pain 3.0 (1.4) 3.9 (2.2) 
No of participants who had received 
previous treatment (%) 

10 (71.4)  9 (75.0) 
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6.4.1.3 Adherence and acceptability   

At post-treatment (8 weeks) follow-up, two participants did not complete the study, an 

attrition rate of 8%. In the MT group, one participant did not attend their second 

treatment session and was then lost to follow up. In the UC group, one participant 

was unable to complete the post-treatment analysis due to work commitments. 

Table 6.6, illustrates that in the MT group, five participants reported a 100% 

adherence to treatment with an overall average adherence to treatment of 94%. 

Treatment sessions required rearranging on seven occasions; three times for illness, 

three times for work commitments and once for childcare. This shows an adherence 

to appointment rate of 92%. Data on adherence to treatment and appointments was 

not collected in the UC group. 

 

6.4.1.4 Outcome measures 

 All questionnaires were completed fully without any missing data yielding a missing 

data indicator of 0%. 

 

6.4.1.5 Treatment efficacy 

Based on the GROC, overall the MT group demonstrated a larger improvement 

compared to UC group (61.54% vs. 9.09% respectively). The MT group 

demonstrated a greater improvement in AKP score compared to UC group (Mean 

Difference (MD) -6.41, 95% CI: 14.23, 1.41) with a medium effect size (d=0.70) (see 

Table 6.7). Both worst pain NRS (-0.41; 95% CI: -1.93, 1.12) and average pain NRS 

(-0.02, 95% CI: -1.01, 0.96) demonstrated no difference between groups.  

 

6.4.1.6 Resources and study management 

 The 9% of appointments that needed rescheduling required time to make these 

changes. No safety issues were reported.  
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Table 6.6: Adherence to treatment for MT group 
 

Participant Week 1 (%) Week 2 %) Week 3 (%) Week 4 (%) Week 5 (%) Week 6 (%) Participant adherence (%) 

1 100 100 100 100 100 100 100 
2 100 100 100 100 100 100 100 
3 100 100 100 100 100 100 100 
4 100 100 100 100 66.66 33.33 83.33 
5 100 100 100 100 100 100 100 
6 100 100 66.66 33.33 100 66.66 77.77 
7 100 100 100 100 100 100 100 
8 66.66 100 100 100 100 100 94.44 
9 100 100 100 66.66 33.33 100 83.33 

10 100 100 100 66.66 100 100 94.44 
11 66.66 100 100 100 100 100 94.44 
12 100 100 100 100 66.66 100 94.44 

13 * - - - - - - - 
14 100 100 88.88 100 100 100 98.15 

Weekly adherence (%) 94.87 100 96.58 96.58 89.74 92.31 93.87 

* Patient 13 did not attend (DNA) after the first session.
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Table 6.7: Clinical outcomes. Mean (SD) unless otherwise stated 
 

Outcome Group Baseline (SD) 
Post Treatment 

(SD) 

Mean difference 
(baseline –post) 

(SD) 

Confidence 
intervals (95%) 

Mean difference (MT-
Control) 
(95% CI) 

ES (d) (MT- 
Control) 

AKP 
MT 75.08 (10.09) 80.31 (8.66) - 5.23 (10.17) - 11.37, 0.91 - 6.41 (-14.23, 1.41) 0.70 
UC 73.64 (12.23) 72.45 (16.94) 1.18 (7.91) - 4.13, 6.49 

       

Worst NRS 
MT 4.85 (1.68) 4.62 (2.10) 0.23 (2.05) - 1.01, 1.47 - 0.41 (-1.93, 1.12) 0.23 
UC 5.27 (2.33) 4.64 (2.16) 0.64 (1.43) - 0.33, 1.59 

       

Average NRS 
MT 3.08 (1.38) 2.46 (1.33) 0.62 (1.33) - 0.19, 1.42 - 0.02 (-1.01, 0.96) 0.02 
UC 3.73 (2.19) 3.09 (1.87) 0.64 (0.92) 0.02, 2.28 

  

GROC 
MT  61.5% (8/13)     
UC  9.1% (1/11)     

AKP = anterior knee pain scale; MT = matched treatment; UC = usual care group; NRS = numerical rating scale: GROC = global rating of change scale; ES = effect size 
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6.4.2 Mechanistic outcomes  

The results from the mechanistic outcomes are shown in Table 6.8. Evaluation of the 

peak torque measures showed that both MT and UC groups showed an increase in 

peak hip abductor torque from baseline to follow up but no evidence of a systematic 

effect between groups was observed (-0.63 Nm; 95% CI: -13.35, 12.09). In terms of 

peak knee extensor torque, the UC group showed a much larger increase yielding a 

MD of 7.96 Nm (95% CI -2.88, 18.79; d = 0.62).  

 

The between-group comparisons of the kinematics showed that the MT group had a 

reduction in peak IR whereas the UC had a slight increase (1.70°; 95% CI: -2.56, 

5.97) yielding a small effect size (d = -0.34). Both MT and UC groups showed an 

increase in peak ADD (-0.17° vs. -0.04° respectively). Coronal ROM showed that the 

MT group had a reduction whereas the UC group showed a slight increase (1.12°; 

95% CI: -0.72, 3.06) yielding a medium effect size (d = -0.53). Transverse ROM 

showed an increase in both the MT and UC groups (-0.32° vs. -0.78°) respectively. 

 

The within-group comparisons of the kinematic outcomes are presented in 

Figure 6.4. The MT intervention led to a reduction in peak IR of 13.1% of the total 

transverse ROM. There was a small reduction in coronal ROM (4.8%) whilst peak 

ADD and transverse ROM demonstrated a small increase. The UC group 

demonstrated an increase for all kinematic variables. 
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Table 6.8: Mechanistic outcomes. Mean (SD) unless otherwise stated 
 

Outcome Group Baseline (SD) Post Rx (SD) Mean 
difference 
(baseline-
post) (SD) 

Confidence 
intervals 
(95%) 

Mean difference (MT-
UC) (95% CI) 

ES (d) (MT - UC) 

Hip abductor 
strength (Nm) 

MT 91.02 (28.45) 99.40 (27.89) 8.39 (15.28) - 17.62, 0.85 - 0.63 (-13.35, 12.09) - 0.04 UC 81.82 (31.76) 89.57 (33.43) 7.76 (14.59) - 17.56, 2.05 
       
Knee extensor 
strength (Nm) 

MT 91.44 (28.21) 93.12 (27.19) 1.677 (14.57) - 10.48, 7.12 7.96 (-2.88,18.79) 0.62 UC 94.32 (44.10) 103.95 (46.09) 9.64 (10.15) - 16.46, - 2.82 
       
Peak Hip Adduction 
(°) 

MT 5.74 (2.70) 5.92 (2.79) - 0.17 (2.84) -1.89, 1.54 - 0.14 (-3.12, 2.85) 0.04 UC 3.70 (3.68) 3.74 (4.99) - 0.04 (4.18) -2.84, 2.77 
       
Peak Hip Internal 
Rotation (°) 

MT - 4.49 (3.26) - 5.95 (5.26) 1.45 (4.98) - 1.56, 4.46 1.70 (-2.56, 5.97) - 0.34 UC - 6.11 (4.82) - 5.86 (7.22) - 0.25 (5.06) - 3.65, 3.15 
       
Total coronal hip 
ROM (°) 

MT 9.77 (3.62) 9.29 (2.60) 0.47 (2.19) - 0.86, 1.79 1.12 (-0.72, 3.06) - 0.53 UC 10.04 (4.69) 10.74 (4.79) - 0.70 (2.27) - 2.23, 0.82 
       
Total transverse hip 
ROM (°) 

MT 11.08 (2.65) 11.39 (2.08) - 0.32 (2.49) - 1.83, 1.19 0.46 (-1.45, 2.38) - 0.20 UC 9.12 (5.76) 9.90 (5.02) - 0.78 (1.93) - 2.08, 0.52 
        
MT = matched treatment; UC = usual care group; ROM = range of movement; ES = effect size 
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Figure 6.4: Percentage change of total range of movement in kinematic outcomes 

(post intervention – baseline) 

Percentage (%) change in range of movement labelled in box for MT group (blue) and 
UC group (green) 
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6.5 Discussion  

This chapter aimed to: i) determine the feasibility of treatment matched to the specific 

characteristics of selected PFP sub group and ii) explore the proposed mechanism of effect 

of employing strengthening in a subgroup with baseline hip weakness. A definitive 

randomised controlled trial (RCT) appears achievable in terms of adherence, attrition, 

eligibility and outcome data. Some consideration is required to develop strategies to 

enhance the ability to quantify clinical differences between groups. In terms of the potential 

mechanism of effect for hip strengthening, an improvement was shown for peak hip internal 

rotation angle following matched treatment. 

 

6.5.1 Feasibility outcomes 

Using our eligibility thresholds for selecting a ‘weak’ hip group, we predetermined that for 

feasibility; eligibility should reach or exceed 32%. Our observed eligibility rate of 37% 

provides reassurance. This eligibility rate for hip weakness is less than the 88% (at 1SD) 

reported by Selfe et al. (2016) [254] but may be explained by the current chapter measuring 

an isokinetic contraction rather than an isometric contraction and as a consequence the 

different strength thresholds applied. In order to minimise potential bias, future multicentre 

RCTs would also need to ensure cross-site calibration of the isokinetic systems and site 

visits to monitor fidelity of the strength assessment procedures. 

 

A greater adherence to treatment has been associated with an increased probability of better 

outcomes in people with PFP [11]. An adherence to treatment and adherence to 

appointments over 90% is promising. Approximately 30% (4/13) achieved complete 

adherence to all treatment sessions and only 9% of appointments required rearranging. The 

adherence rate in this chapter is comparable to a larger RCT [268] which had a 80.3% 

adherence rate for a six week hip strengthening in PFP. It is anticipated that rearranging 

appointments for participants would be more challenging for a larger sample over multiple 

sites. Consequently, strategies to enhance adherence with the use of activity monitoring 

technology and reminder services need to be considered [578]. Unfortunately, two 

systematic reviews [578, 579] provide no conclusive strategies for enhancing the adherence 

in physiotherapy interventions. The novel use of the BandCizer™ has been explored 

recently in PFP [580], which is a sensor applied to the theraband that measures the stretch 
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and thus load applied. Employing an activity monitoring technology like this provides an 

objective measure of treatment adherence but also measures whether the quantity of the 

loading is sufficient [581]. 

 

Between group differences showed no differences for either the average or worst NRS 

values. This might be explained by the difference in almost a score of one in average 

baseline NRS, a feature that would likely be minimised in a larger full-scale trial. Previous 

RCTs [268, 339] have also used eligibility criteria requiring a minimum NRS score of three 

out of 10 pain score. Setting a minimum pain score as part of the inclusion criteria e.g. at 

least 3 out of 10 on a visual analogues scale, is suggested for a future RCT. 

 

The outcome measures were fully completed with no missing data. Equality between groups 

was only clearly different in terms of the proportion of participants with bilateral knee pain. 

This is notable as bilateral knee pain has been suggested to indicate poorer prognosis [301] 

and may influence the clinical outcomes seen. Consideration of matching to confounding 

variables such as bilaterality should be considered.  

 

The AKP score did not reach the predetermined minimal clinically important difference 

(MCID) of eight points [577] between groups, although there was a trend (mean difference 

6.4 points) towards a meaningful benefit. AKP score evaluates functional limitations as a 

result of PFP and, despite the strength gains, the motor skill development needed for 

functional gains may require a longer intervention duration [582]. Our findings are similar 

however, to the only other RCT [340] to have stratified a PFP cohort which investigated a 

foot orthotic intervention over six weeks. Mills et al. (2012) [340] selected their participants 

based on predictors shown to predict success with foot orthotics, which included age, height, 

baseline pain severity and a static foot measure. They also found a significant difference 

between groups in terms of GROC with no differences in AKP score or VAS pain.  They 

suggest that GROC is able to capture the multidimensional nature of PFP (characterised by 

pain, disability and functional limitation) compared to AKP score and VAS pain which are 

more one dimensional [340].  

 

6.5.2 Mechanistic outcomes  

The group receiving the matched treatment (MT) showed a reduction of approximately 13% 

for peak IR. This is important considering that an increase peak IR has been associated with 

PFP during stair descent [200, 207]. This reduction in peak IR occurred with a slight increase 

of their transverse ROM suggesting that following treatment, people in the MT group were 
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initiating stance phase in a more desirable externally rotated hip position. A reduction in 

peak IR and a slight increase in peak ADD are perhaps surprising considering that 

participants were stratified for hip abductor weakness. However, recent strength measures 

conducted on 501 healthy athletes [493] have shown that hip abductor and hip external 

rotation strength are highly correlated (r=0.66) indicating this subgroup were likely to have 

also demonstrated weakness into both hip abduction and external rotation. Measuring hip 

external rotation in addition to hip abduction strength should be considered for future clinical 

trials to further understand the mechanism of effect. 

 

Both groups demonstrated similar increase in hip strength, which is likely the result of over a 

third of participants in the UC group being engaged in physiotherapy. Post-hoc analysis of 

those participants in the UC group who received no treatment show an increase of only 3.9 

Nm in hip abductor strength. This is almost less than half the increase shown by the whole 

UC group (mean 7.76 Nm). In the MT group the change in hip strength was 9%, which is a 

comparable improvement to previous hip strengthening programmes over a similar training 

duration [266, 273]. There is some discrepancy around the expected gains from a hip 

strengthening programme [274]. This may be the result of known differences in strength 

gains between untrained and trained individuals [565]. PFP is recognised as being present in 

both very active and sedentary people [3]. In the current chapter, self-reported physical 

activity (hours/week) varied from as much as 0 to 10 hours per week in the MT group, which 

may reflect an individual’s level of training.  Muscular strength increases are reported to be 

approximately 40% in untrained to 16% in trained individuals over a four week to two year 

period [565].  

 

With reference to the delivery of this intervention within a multicenter RCT, one challenge 

with using strength as a selection feature across multiple sites is that different IKDs devices 

may give varied results due to differences in calibration, testing procedures, personal and 

verbal feedback. In terms of the testing procedures and verbal feedback, a standard 

operating procedure would need to be used in order to standardise the procedures and site 

visits would need to be scheduled to ensure assessment fidelity. In terms of the IKD 

calibration, regular calibration before use would be enforced, however, no guidance exists 

for cross-site calibration. Cross-site calibration processes have been applied previously for 

other medical equipment used in research [583]. In line with procedural checks used at 

single sites, a set weight (provided with the IKD) could be taken to each site prior to 

beginning of the study and be checked along with the scheduled fidelity visits. 
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The increase in strength for both groups, but with only kinematic improvements seen in the 

MT group, might suggest that strength, on its own, cannot explain the improvement seen in 

peak IR. Direct comparison with previous studies [266, 275, 279, 280] remains difficult due 

to the differences in assessment tasks (e.g. running, stairs etc.) and the specific kinematic 

outcomes (e.g. peak, average angles etc.) investigated. Previous studies [266, 280] that 

have observed the effect of hip strengthening on running kinematics in people with PFP 

found no change in kinematics despite increases in hip abductor strength. Only Baldon et al. 

(2014) [275] reported changes in kinematics, during a single leg squat, following a hip 

strengthening programme. Yet, this training programme, did include constant feedback on 

lower limb alignment which suggests a more movement retraining approach[276] rather than 

pure strength training. It remains possible that the improvements observed in peak IR in the 

current chapter were the result of using progressive loading within a tailored treatment 

regime and selecting participants who were most likely to benefit from strengthening.  

 

6.5.3 Limitations  

This chapter presents with several limitations related to the study design, outcomes and 

intervention.  

 

Study design: Firstly, in relation to the study design, the study was performed in a single 

centre. Future RCTs would be required to be multicentre to improve generalisability, which is 

anticipated to introduce new feasibility issues. The findings of the current chapter would, 

however, inform the documentation of standard operating procedures in terms of 

recruitment; data collection and intervention provision to ensure any future study could be 

operationalised across different geographical locations.  

 

Outcomes: In terms of outcomes, any kinematic changes are very dependent upon the task 

used [575]. In the current chapter we used stairs descent which may not demanding enough 

to utilise these strength increases and elicit large changes in the frontal and transverse plane 

[584]. Stairs were chosen based on recommendations from the patient and public 

involvement group involved in the programme of work.   

 

With regards to measuring strength, consideration was made to normalising strength to body 

weight as is done in Chapter 5. Normalising strength measurements is recognised as 

particularly important when comparing between different body sizes e.g. males vs. females 

[585]. The normative data was, stratified for age and gender thus there was some natural 
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anthropometric control. In this context, with the aim of identifying weakness, failing to 

normalise to body weight may lead to recruiting smaller people. Bazett-Jones et al. (2011) 

[585] highlights strength is commonly normalised by body mass but that this may wrongly 

assume a proportional relationship [586] . Instead, to reflect this variable relationship an 

allometric scaling component can be applied to body mass [586] informed from an allometric 

scaling analyses. This process may be more accurate, however, practically the complex 

analysis involved would have prevented participants being identified and then randomised at 

the same visit. Delays in randomisation may have had a detrimental impact on recruitment 

and retention.  

 

In this chapter, the collective BMI, height and weight of both groups were 26.8 kg/m2, height 

1.7m, 75.9 kg respectively. As mentioned, these participants were recruited from a larger 

group of 70 PFP cases analysed in Chapter 5. A sensitivity analysis of the other PFP 

patients (n=44) whose hip strength was not weak enough to be included in this chapter show 

that their collective BMI, height and weight was 26.1 kg/m2, 1.7m, 76.5kg. This reassuringly 

shows that the participants are representative of the wider PFP population and that, in this 

case, not normalising strength to body weight does not appear to have led to the recruitment 

of smaller participants.  

 

The current chapter did not blind assessors to group allocation, which could lead to potential 

bias [587]. Every effort was made for participants to complete PROMs in isolation and 

objective biomechanical outcomes were acquired in accordance with strict protocols with 

little chance of introducing bias. Future RCTs should make every effort to introduce outcome 

assessor blinding and consider measuring the level of this outcome assessor blinding [588]  

 

Intervention: Lastly, limitations related to the intervention concern the nature of the UC 

group. The use of a UC group was intended to represent the heterogeneity of management 

available in real, daily practice and thus improve the external validity [589]. For the purposes 

of exploring the mechanism of hip strengthening, however, the fact that over half of the UC 

group received physiotherapy input potentially dilutes the between-group findings. 

Comparison with a control group receiving no active intervention would remedy this issue. 
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6.6 Conclusion  

The potential benefits associated with stratification and subgrouping within PFP have been 

advocated since the first International Patellofemoral Pain Retreat Consensus statement 

[34]. This chapter suggests that targeted treatment for hip abductor weakness in people with 

PFP provides a greater improvement in overall function and self-reported improvement in 

comparison to usual care. Additionally, the improvements seen in peak IR following MT 

suggest this may be a plausible mechanism of effect for hip strengthening when treatment is 

matched to an appropriate subgroup. Strategies to enhance the ability to detect clinical 

difference should be considered and might be improved by selection of participants with a 

minimum pain score. Ultimately, a pragmatic, multicentre RCT with a sufficiently powered 

cohort appears achievable and should be conducted to determine the clinical and cost-

effectiveness of a stratified treatment approach versus usual care for people with PFP. 
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Chapter 7 - Discussion, future directions and conclusions 

 

7.1 Thesis synopsis  

This thesis is concerned with the stratification of PFP and specifically describes: the 

structural associations to PFP; the subgroups that exist within PFP; the natural prognosis of 

these PFP subgroups; and the feasibility of targeting PFP subgroups within a clinical trial. 

The observations made in this thesis in Chapters 3, 4, 5 and 6 are summarised as follows: 

 

Chapter 3 - Which patellofemoral joint imaging features are associated with 

patellofemoral pain? Systematic review and meta-analysis  

 

The aim of this chapter was to establish which PFJ imaging features are associated with 

PFP compared to those without PFP. Forty studies describing 1043 people with PFP and 

839 controls were included.  

 

• This systematic review demonstrated that PFP is associated with a number of PFJ 

imaging features, in particular, MRI bisect offset and CT congruence angle. 

Furthermore, some of the features identified, including MRI bisect offset and MRI 

patella tilt, have been shown to be modifiable with conservative interventions.  

• A sensitivity analysis showed the effect of full weight bearing (FWB) on imaging 

outcomes and demonstrated that under FWB, differences between a PFP and a 

healthy control group increased.  

•  Limitations within the literature were found in terms of the participant selection and 

outcome assessment.  Poor reporting of the recruitment source and failure to report 

the reliability of the imaging assessment were considered largely responsible for 

these conclusions.  
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Chapter 4 - Patellofemoral joint morphology of middle aged people with 

patellofemoral pain measured using 3D MRI quantitative technology: data from the 

Osteoarthritis Initiative  

 

The aim of this chapter was to investigate whether 3D equivalents of commonly used PFJ 

imaging features and overall 3D bone shape differ between people with and without PFP 

and to explore whether the overall 3D bone shape differed between genders. This analyses 

included 115 people with PFP and 438 without PFP. 

 

• This cross-sectional analysis from a large cohort demonstrated that no single or 

combined differences were found between a group with and without PFP for either 

the overall 3D shape or thirteen 3D imaging features.  

• However, significant differences were found between men and women, with the 

overall 3D shape able to classify gender with a 90% level of accuracy. 

• None of the 3D PFJ imaging features could be used to inform Chapter 5, however, 

this study highlights the importance of gender when interpreting imaging data. 

• The findings suggest that previous outcomes using 2D methods may have been the 

result of mixed gender cohorts and thus future studies should ensure that 

adjustments are made for gender and that this is considered when interpreting 

findings.  

 

Chapter 5 - The development of data-derived subgroups in patellofemoral pain using 

modifiable clinical, biomechanical and imaging features 

 

The aim of this chapter was to identify diagnostic subgroups within PFP cohort using 

modifiable clinical, biomechanical and imaging features and to explore the prognosis of 

these subgroups at 12 months follow up. This longitudinal cohort study with cross-sectional 

analysis included 70 people with PFP. 

 

• This two-stage, SPSS TwoStep cluster analysis identified four subgroups: Strong 

group, Pronation & Malalignment group, Weak group and Flexible group. 

• The prognosis of these subgroups at 12 months showed, with reference to the Strong 

group, that the Weak group was the least likely to report a favourable outcome and 

the Flexible most likely. However, there were no statistical significance between 

groups in odds of a favourable outcome. 
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• Targeting treatment by matching interventions according to the subgroup baseline 

characteristics should be explored. 

• Further research is required to see if subgroups can be replicated in larger PFP data 

sets and whether these subgroups can show different long-term outcomes. 

 

 

Chapter 6 - The effect of targeted treatment on people with patellofemoral pain: a 

pragmatic randomised controlled feasibility study 

The aim of this pragmatic randomised controlled feasibility study was to explore the 

feasibility of treatment matched to a specific clinical characteristic of a selected PFP 

subgroup compared to usual care (UC) management and to explore the mechanism of 

action for hip strengthening when targeted to a group defined as ‘weak’. This study included 

26 people with PFP; 14 in the matched treatment (MT) group and 12 in the UC group. 

 

• The finding from the feasibility study indicates that a larger study is achievable in 

terms of high rates of adherence, retention and conversion to consent.  

• Treatment efficacy showed promising findings in terms of self-reported improvement 

(using a GROC scale); however, strategies to enhance the ability to detect clinical 

differences are indicated.  

• The mechanism of action for hip strengthening when targeting a group with defined 

hip weakness appears to be related to improvements in peak hip internal rotation.  

 

7.1.1 Overall summary  

In summary, this thesis has demonstrated that imaging features, in particular MRI features 

(measured in 2D) may be associated with PFP. Once converted into their 3D equivalents, 

however, the same differences were not observed in a large, older group with PFP. Using 

this knowledge of imaging features combined with clinical and biomechanical features four 

subgroups were identified in the PFP population with the Weak group the least likely to 

report a favourable recovery at long term follow up. The feasibility of targeting PFP 

subgroups has shown positive outcomes in terms of conversion to consent, missing data, 

attrition and adherence to both treatment and appointments whilst also highlighting the need 

for strategies to enhance the ability to detect clinical differences. On the whole, this indicates 

that a future multicentre RCT focusing on the stratification of PFP is achievable.  
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7.2 Thesis discussion  

The findings derived from this thesis are supplemented below by an update of the extant 

literature since Chapter 2 was written. This has been presented within themes that have 

arisen from the overall findings of this thesis: imaging in PFP; subgrouping in PFP, prognosis 

of PFP subgroups and stratifying treatment in PFP. Details regarding the study design are 

included to offer methodological guidance to pre-existing shortfalls in the current literature. 

 

7.2.1 Imaging in PFP 

The findings of this thesis (Chapter 3) indicate that when loading status and flexion angle are 

controlled for, a number of MRI features are associated with PFP. In contrast, the study in 

Chapter 4 which converted common MRI features into their 3D equivalent found no 

difference between groups with and without PFP.  

 

The apparent contrasting findings within this thesis could be the result of the 3D features 

providing greater accuracy in Chapter 4 (using the centroid as the reference point). This 

would suggest that all previous studies (and those included in the systematic review in 

Chapter 3) may have been influenced by inconsistencies in joint positioning or lack a 

standard reference point [438]. Alternatively, it may be because the findings of Chapter 4 

were obtained in an older population and therefore may not reflect the results of younger 

population more synonymous with PFP.  

  

The thesis findings are primarily based on malalignment-type features. None of the identified 

studies in the systematic review in Chapter 3 (which subsequently informed the measures in 

Chapter 4) investigated semi-quantitative MRI features. Semi-quantitative features focus 

more on structural abnormalities of the PFJ and have been proposed to be potentially 

important in PFP [590]. However, the few recent studies [590, 591] to have investigated 

semi-quantitative features have shown only minimal differences between groups with and 

without PFP. The only differences to have been noted are in the extensor mechanism and 

medial plica [591] but these findings from this recent study could simply be result of including 

a broader AKP group or the lack of covariate adjustment. As suggested recently [590], the 

failure to detect differences may lie in the fact that other clinical or biomechanical features 

e.g. kinematic, strength factors etc. might need to be present in order for the imaging 

features to cause pain [590].  
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Overall, based on the findings of this thesis imaging features, in particular MRI measures, 

should be considered for future clinical trials and utilised more in clinical practice as they 

have been demonstrated to be associated to PFP (Chapter 3), highlighted as being 

potentially modifiable (Chapter 2 and 3) and shown to differ across PFP subgroups (Chapter 

5). However, it is recommended that these conclusions should be re-evaluated once further 

research has investigated the 3D features in a younger PFP population.  

 

7.2.2 Subgrouping in PFP 

Work has begun to explore subgrouping and stratification within PFP [254, 366, 374] but the 

findings of this thesis represent the first time that clinical features have been integrated with 

modifiable biomechanical and modifiable imaging features to identify PFP subgroups. The 

findings of this thesis show that four subgroups can be identified from a PFP cohort: ‘Strong’, 

Pronation & Malalignment’, ‘Weak’ and ‘Flexible’ subgroups.  

 

These subgroups show many similarities to the subgroups identified by Selfe et al. (2016) 

[254]. The addition of the imaging features, in particular MRI bisect offset, was an important 

factor for determining the ‘Pronation & Malalignment’ subgroup whereas the kinematic 

features showed no statistical difference across subgroups and thus appear a less important 

factor. Both the findings of the work described in this thesis and the Selfe et al. (2016) [254] 

study identified a ‘Strong’ group which supports the theory that a PFP subgroup exists with 

normal strength. This challenges current practice with a recent survey of UK 

physiotherapists [542] highlighting that 98% of physiotherapists prescribe closed chain 

strengthening exercise. This ‘Strong’ subgroup is unlikely to benefit from further 

strengthening and probably requires alternative interventions.   

 

A recent editorial on stratification in musculoskeletal pathology [485] suggest that the overall 

aim of stratification should be to focus on cross-domain combinations. This is essentially the 

outcome of Chapter 5, however, due to the lack of supporting evidence for their inclusion, 

psychological and lifestyle factors were not included in the cluster analysis although were 

reported descriptively. A recent systematic review [592] on the psychological features 

present in PFP suggest that catastrophizing, anxiety and depression are correlated to 

physical function. However, correlation can only provide a strength of the linear relationship 

and is unable to account for the latent constructs involved in these complex relationships 



236 
 

 

Chapter 7. Discussion  

 

 

[469]. It is also still clear that there is a lack of consistency in the psychological constructs 

investigated both in terms of the nomenclature and the outcome measures used. This would 

still limit the inclusion of these constructs in Chapter 5 (PFP subgrouping). In terms of 

lifestyle factors, body mass index (BMI), not directly investigated before in PFP, has recently 

been shown to be higher in PFP compared to healthy controls [593]. With reference to the 

subgroups in Chapter 5, the potential for overweight PFP subgroups is demonstrated with 

two of the subgroups the Pronation & Malalignment group and the Weak group showing 

mean BMI values that would be classed as overweight (> 25 kg/m2). BMI remains a viable 

treatment target for future studies in PFP as weight reduction programmes have significantly 

improved those with knee OA [594]. 

 

Overall the subgroups identified in this thesis represent groups derived statistically using a 

unique combination of biomechanical, clinical and imaging features. Being intentionally 

based on modifiable features has ensured that subgroups are more likely to have clear 

treatment targets e.g. the Weak group is likely to respond to strengthening exercises etc. 

Based on recent evidence more consideration should be given to including psychological 

and lifestyle factors as these subgroups are investigated in larger data sets.  

 

 

7.2.3 Prognosis of PFP subgroups 

The prognostic analyses in this thesis (Chapter 5) suggests that despite finding no formal 

statistical difference, there was a trend towards the Weak subgroup being the least likely and 

the Flexible subgroup most likely to report a favourable outcome. It is speculated that the 

Weak subgroup who also report the most disability showed less improvement because both 

reduced knee strength and poor baseline function are known to lead to a poor long-term 

response to treatment in PFP [298, 301, 510]. Alternatively, the Flexible subgroup who had 

the highest physical activity might represent a group transiently exceeding joint loading and 

who are able to improve with simple rest and load management [595]. 

 

Only one other study has explored the long-term prognosis of PFP subgroups [596]. Similar 

to Chapter 5, Keays et al. (2016) [596] also found no statistical difference between PFP 

subgroups for pain and disability at follow up. These results and the thesis findings suggest 

that there are minimal differences in the long-term outcomes for PFP subgroups. It is worth 

noting however, that the unorthodox study design and the inclusion of participants with a 
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mean age of 45 years ( range 13-82 years) in the Keays et al. (2016) [596] study precludes a 

direct comparison with the findings of the prognostic analysis in this thesis. Furthermore, 

both findings are based on low statistical power due to the relatively small sample sizes used 

and thus the prognostic outcomes of PFP subgroups remains inconclusive. Prognostic 

outcomes also remain largely the selection of covariates for statistical testing [597]. A recent 

systematic review [483] examined all the studies which investigated prognostic factors in 

PFP found that the only prognostic factor which was consistently identified was ‘duration of 

symptoms’ [483] thus supporting the selection of covariates used in Chapter 5. 

 

Overall, the differences in long-term outcomes for PFP subgroups remain equivocal, 

although the inclusion of recognised covariates for the prognostic analyses in this thesis 

strengthens the conclusions that can be drawn from the findings. The trends towards an 

unfavourable outcome would suggest that more attention should be made to identifying the 

Weak group and research prioritised to identify the best management for this subgroup. 

 

 

7.2.4 Stratifying treatment in PFP 

The most recent International PFP consensus statement [115] again highlights the 

importance of stratification and targeted treatment. The results of this thesis demonstrated 

that in people with PFP selected for hip abductor weakness and targeted with progressive, 

isolated hip strengthening exercises, nearly two thirds reported an improvement at 8 weeks 

compared to fewer than ten percent of people receiving usual care. This improvement 

appears related to changes in lower limb kinematics (a reduction in peak internal rotation 

angle). 

 

The few previous studies stratifying treatment are highlighted within this thesis but recently 

another study has been published [598] which uses similar methodology to Chapter 6 

(feasibility study). Mølgaard et al. (2017) [598] investigated the effect of foot-targeted 

exercise and orthoses when patients were selected for an increased calcaneal valgus angle. 

Their findings also show that targeted treatment led to a significant improvement in pain (at 

four months) but no difference between groups at 12 months. Mølgaard et al. (2017) [598] 

selected covariates for analysis according to any baseline differences. Adjusting for baseline 

differences is discouraged by current guidelines [551] because what is important is the 

magnitude of the effect on the outcome, rather than the significance between groups [599]. 
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Ill-informed adjustments may weaken the conclusions from this recent study [598] but their 

findings do corroborate the effectiveness of this treatment approach. 

 

Overall, the positive outcomes shown by the feasibility study in this thesis and the similar 

outcomes observed by previous [340] and recent studies [598] supports the benefit of 

stratified treatment in PFP. Taken together these findings highlight the need for a future 

definitive multicentre RCT on targeted treatment in PFP and the need to ensure that 

improvements are maintained long term (≥ 12 months). 

 

7.2.5 Study design in PFP studies  

Since writing the narrative literature review in Chapter 2, the latest patellofemoral pain 

consensus statement [115, 547] has been published following the biennial International 

Patellofemoral Pain Research Retreat in 2015. This statement has, for the first time, clearly 

defined PFP as “ pain around or behind the patella, which is aggravated by at least one 

activity that loads the patellofemoral joint during weight bearing on a flexed knee (e.g. 

squatting, stairs, running, jumping)” [115]. This is important as the findings of Chapter 2 & 3 

show that eligibility criteria vary in terms of the number of activities that need to reproduce 

pain; potentially limiting the comparison between cohorts. The PFP cohort used in Chapter 5 

& 6 recruited participants which were aggravated by two activities. Theoretically, using a less 

strict definition of one aggravating activity should make recruitment easier. However, post 

hoc analysis of the potential participants that failed screening (n=47) in Chapter 5 suggests 

that none of these failed due to the number of aggravating activities (i.e. only reporting one 

activity). This suggests that people with PFP are typically affected by more than one 

aggravating activity. Ultimately, this more recently accepted definition will provide consensus 

for future eligibility criteria in PFP research and strengthen any future comparisons between 

studies. 

 

The feasibility of targeted treatment in PFP was the focus of Chapter 6. The intervention 

duration of six weeks was based on previous literature and usual care, and not standardised 

in order to be pragmatic. Pragmatic trials aim to investigate interventions that will be useful 

within an everyday clinical setting, to maximise applicability [600]. Based on a recent survey 

into current UK practice of PFP [542], there may be some iterative improvements needed for 

the methods used in Chapter 6. In this survey of UK based physiotherapists [542], the 

majority of respondents would see their patients for 3-6 sessions; similar to the 6 sessions 
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used in Chapter 6. However, the result of this survey [542] show that a large variation exists 

for the typical length of treatment from 3 weeks to 6 months. The weekly sessions used in 

Chapter 6 may represent a more intense physiotherapy intervention compared to standard 

UK clinical practice. Careful consideration needs to be made of this detail when designing 

future interventional studies that are intended not only to reflect current clinical practice but 

also to be implemented successfully. 

 

The improvement seen in Chapter 6 was made using a six week treatment period so there 

remains the possibility that a longer treatment period may have led to more people reporting 

a favourable outcome. The targeted treatment delivered by the Mølgaard et al. (2017) [598] 

study employed double the treatment period (3 sessions per week during a 12 week period) 

compared to Chapter 6 (3 sessions per week during a 6 week period) but despite this they 

only showed an successful outcome in 60% (12/20) ( versus 67% in Chapter 6) receiving 

their matched treatment. This could contradict the theory that a longer treatment period in 

Chapter 6 would have led to more people reporting a favourable outcome. Instead, in 

addition to the hip strength, targeting the other characteristics of the subgroup (e.g. knee 

strength or physical activity) refined in Chapter 5 might improve the number of favourable 

outcomes reported. 

 

The encouraging feasibility outcomes shown in Chapter 6 supports the future design of a 

definitive randomised controlled trial focused on stratified treatment in PFP. Based on the 

evidence above, this could be enhanced by: careful consideration of the clinical eligibility and 

the use of the current recommended criteria [115, 547]; allowing a more pragmatic approach 

to the length of the treatment period which reflects current practice; and targeting more 

refined subgroups ( based on more than one characteristic) – as identified in Chapter 5 (PFP 

subgrouping). 

 

7.3 Limitations of the current work  

The limitations of each chapter have been discussed in detail in the relevant chapters. To 

contextualise the main findings of the thesis an overview of the thesis limitations concerning 

the research design and outcome measures is provided here.  

 

7.3.1 Sample size 
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The sample sizes of the preceding chapters within this thesis varied considerably. The 

sample size used in Chapter 4 benefited from a pre-existing data set in which to select 

relatively large comparative groups and the sample size used in Chapter 6 was deemed 

appropriate for a feasibility design. Chapter 5 relied on a recruitment of an age group 18-40 

years old. Prior consideration was made to the difficulties with recruitment and retention of 

this ‘emerging adulthood’ group [601] following discussion with experts. This age group are 

known to be experiencing many life changes including graduating, entering the job market, 

having children, moving house etc. [601] which may limit their recruitment availability. As a 

result, a realistic recruitment target of n = 77 was considered achievable for a single-centre 

site for patient with PFP. A larger sample size would enable more substantial clusters and 

reduce the potential for spurious groupings [602]. An attempt to address this issue was 

made by using a two-stage clustering process which is considered a dimensionality 

reduction technique [364] as described in Chapter 5. The impact that the sample size has on 

the final clusters will only become apparent once validation of these subgroups are made on 

other cohorts of people with PFP [254, 364] as suggested in Chapter 5. 

 

7.3.2 Treatment duration  

A treatment duration of 6 weeks was used in Chapter 6 based on previous literature. The 

intention in this chapter was to explore the feasibility in terms of recruitment, adherence and 

retention. As a result, a standardised treatment duration was selected in order not to 

introduce another independent variable. It is plausible that both clinical and mechanistic 

outcomes might require a longer duration for these outcomes to show a greater effect. One 

of the potential issues for a longer treatment duration, however, could be its deleterious 

effect on adherence [603] and the increase in resources e.g. staff costs, time etc.  

 

7.3.3 Non-weight bearing MRI  

As mentioned in the preceding chapters, the MRI data used in Chapter 4 and 5 were based 

on supine, non-weight bearing scan MRI protocols. The sensitivity analysis, shown in 

Chapter 3, demonstrates that this will have an impact on imaging outcomes including bisect 

offset and patella tilt. Weight bearing and loaded scans were not used in this thesis as a 

weight bearing MRI scanner was not available and no protocols existed within the 

department to safely load the knee. Consideration was made to this potential issue when 

understanding the findings in Chapter 4 and adjustments were made to the normative MRI 
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data for interpretation of the subgroups in Chapter 5. These adjustments should have 

minimised the impact of procedural variation.  

 

7.3.4 Marker based motion capture  

One of the inherent problems with marker-based motion capture analysis is the likely 

systematic error introduced by skin artefact and the test-retest reliability of such data [604]. 

The industry standard CAST marker set up was applied, which has previously shown high 

test-rest reliability [605, 606]. A systematic review of three dimensional kinematic gait 

measurements [607] suggest that the reliability of sagittal and coronal kinematic measures 

are on average greater than 0.7 (coefficients of multiple correlations or interclass correlation 

coefficients). This would suggest that the peak knee flexion angle used in Chapter 5 and the 

peak hip abduction angle and total coronal hip ROM used in Chapter 6 are adequately 

reliable measures. Caution is advised, however, when interpreting the peak hip rotation 

angle results in both Chapter 5 and 6 as the same review showed that overall hip transverse 

rotation demonstrated the lowest reliability and the widest variation, compared to other 

planes. Nonetheless, they [607] did identify at least five studies that showed a small error 

indicating that a greater reliability value for hip transverse measurement is achievable. [607]. 

Previous literature shows that hip transverse plane kinematics during stair descent for PFP 

patients yields an promising between-day reliability of ICC 0.75 with a SEM of 4°[188]. One 

of the potential factors influencing the retest reliability is the known discordance between 

skin markers and the movement actually occurring in the underlying bone [604]. A 

comparison of skin markers with surgical attached bone-pin markers demonstrated this 

discrepancy [604] and highlights the need to consider this fact when interpreting these 

findings clinically. Nevertheless, the alternative bone–pin markers are not a viable option for 

any of the experiments conducted in thesis due to their invasive nature. 

 

7.4 Directions for Future Research  

7.4.1 Imaging in PFP 

Imaging in PFP appears to be important as structural differences have been reported in this 

thesis to exist between those with and without pain. However, the contrast in findings 

between the extant literature using 2D measures (Chapter 3) and careful 3D analysis 

(Chapter 4) which removes many projectional problems which confound this area adds 
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substantially to the debate on the importance of imaging in PFP. To address these issues, 

firstly the 3D PFJ features developed in Chapter 4 need to be explored in a younger 

population with PFP and investigated longitudinally to see whether changes in pain and 

disability are related to changes in shape. Likewise, if followed up for long enough these 3D 

PFJ features could provide a useful biomarker for elucidating the potential link between PFP 

and PFOA. Finally, the effect of conservative interventions such as hip strengthening or foot 

orthoses on structural features should be explored, similar to the investigation by Chiu et al. 

(2012) [166] which has been discussed in the preceding chapters. 

 

7.4.2 Link between PFP and PFOA 

Experts believe that PFP may represent a precursor to the development of PFOA [5]. In the 

subgrouping in Chapter 5, the only published MRI definition for PFOA [523] was applied, and 

thus osteophytes were scored accordingly. This definition was developed from a Delphi 

consensus panel [523] that considered the presence of an osteophyte important enough to 

be one of the two components of their agreed definition (a definite osteophyte and partial or 

full thickness cartilage loss). A recent systematic review [608] including 85 studies on the 

prevalence of PFOA concluded that the prevalence of BML and cartilage defect was 32% 

and 52% respectively in two symptomatic populations, one over and one under 50 years. 

This was based on cartilage and BMLs only as the osteophyte component was omitted and 

thus the prevalence of PFOA may be overestimated in this review [608]. In support of this 

osteophyte omission, the original Delphi study [523] does state that what constitutes a 

‘definite osteophyte’ within the PFJ needs to be further delineated. Therefore future research 

is required to explore the characterisation of a PFJ osteophyte and agree on the exact 

definition of PFOA. 

 

The findings from Chapter 5 suggest that the Pronation & Malalignment group showed the 

most MRI features (osteophytes & cartilage loss) associated with PFOA. Understanding the 

possible link between PFP and future PFOA continues to be of great importance to the PFP 

research community [5] and, as highlighted in section 7.4.1, recent studies are beginning to 

develop suitable outcomes and biomarkers to identify this relationship. A recent study 

showed that those that reported having adolescent AKP were 7.5 times more likely to 

develop symptomatic PFOA later in life [609] which supports previous findings [38] . One of 

the major problems with these retrospective designs is the approximately 50 years of recall 

needed. Ultimately, this question will only be answered by prospective longitudinal studies 
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with data captured from individuals at regular time points from adolescence to late 

adulthood. Ancillary research is also essential to ensure that appropriate techniques and 

biomarkers e.g. imaging features are available to identify the potentially subtle transition into 

an osteoarthritic state [610].  

 

7.4.3 Subgrouping in PFP 

While this thesis used robust methods to identify subgroups, consideration should be given 

to including additional features for which evidence has developed since the conception of 

the thesis. As discussed, there was a paucity of research on psychosocial factors and thus 

none of these factors satisfied the variable selection criteria. Firstly, future research should 

consider refining subgroups using variables such as catastrophizing, fear avoidance etc. 

Emerging evidence around somatosensory function has also indicated that both adults [611-

613] and adolescents [614, 615] with PFP have significantly reduced pain pressure threshold 

(PPT). As a result, future research is warranted to see how pain pressure thresholds might 

relate to the subgroups identified from this thesis  

 

Investigating the prognosis of the subgroups suggested in Chapter 5 is a key strength of this 

thesis. Crepitus is a commonly reported feature of PFP [3] which has previously been under 

investigated in terms of its effect on patient outcomes. A recent qualitative investigation [616] 

on the effect of crepitus on health beliefs highlighted that crepitus may ultimately lead to fear 

avoidance behaviour which as noted by the author “are in direct conflict with the usual aims 

of a physiotherapy intervention” [616]. Therefore it remains possible that the presence and/or 

negative beliefs held about crepitus may be confounding the prognostic outcomes seen. 

Further research is required to investigate the impact of crepitus on physiotherapy outcome 

and consideration should be made to adjusting for presence of crepitus during analyses. 

 

7.4.4 Mechanism of action for PFP interventions 

Without the knowledge of how exercise enhances pain and function in PFP, then future 

therapeutic interventions cannot be optimised [617].  Future PFP interventions should be 

required to consider the task and function they aim to improve. During even more 

demanding tasks such as running and stairs descent, the range of hip movement is minimal 

with the muscles instead required to provide a quick, efficient stabilising function [618]. 

Accordingly, one novel mechanism recently explored the rate of force development (RFD) 

[618]. It has been shown in people with PFP that impairments in RFD exist during hip 
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abduction and hip extension but vary between the levels of torque. These results suggest 

that future research should explore the effect of a more explosive, power based rehabilitation 

on clinical outcomes and subsequent kinematics.  

 

The effect of education on patient outcomes is relatively under investigated in PFP [377]. 

Education did form part of the first session of the intervention in Chapter 6, however, this 

included more a justification of the proposed treatment rather than formal education on 

managing PFP. A recent RCT [545]  investigating runners with PFP demonstrated that 

education alone provided significant improvement in all pain outcomes (VAS during running, 

at worst and usual) and the addition of either gait retraining or exercise provided no 

additional benefit. As expected, education alone resulted in no differences in mechanical 

outcome including strength measures and running mechanics. This raises the question of 

what the mechanism of action might be for education in this group. To answer this question 

qualitative research is needed to understand how people with PFP are benefiting from 

education. Additionally, this concept of education alone needs to be explored within the 

general population with PFP as the content and the delivery is likely to differ from runners. 

 

7.4.5 Stratified PFP interventions  

The findings of this thesis have shown that targeting treatment in PFP is feasible. This 

provides an important foundation for designing a future definitive multicentre RCT to 

investigate the clinical and cost effectiveness of targeted treatment in PFP. Further research 

should be directed towards discovering interventions that match to the novel subgroups 

identified in this thesis and thus allowing each subgroup to be individually targeted, in 

particular those subgroups less likely to improve with standard treatment. In these future 

studies, outcomes need to be measured at short, medium and long term time points. They 

also need to include a mechanistic assessment to provide knowledge on the mechanism of 

effect and allow the subsequent refinement of the matched interventions.  

 

7.5 Addressing the central hypothesis 

The central hypothesis of this thesis was that “improved subgrouping of people with PFP 

based on modifiable features will enable stratification and targeting of interventions”. 

The programme of work within this thesis used a set of linked research projects designed to 
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examine and address the gaps within the current literature and inform the development of 

subgroups within the PFP population using modifiable features. The subsequent feasibility 

study (Chapter 6) demonstrated the potential success of target treatment and supports the 

future evaluation of stratified treatment, utilising these PFP subgroups, beyond this PhD 

thesis. Overall this would suggest that the findings of the thesis support the central 

hypothesis. 

 

7.6 Conclusion 

PFP is a multifactorial condition with inconsistent treatment outcomes and is considered by 

many to be a potential precursor to future PFOA. Subgroups are thought to exist in PFP but 

currently this theory remains under-investigated. The work described in this thesis has 

improved the understanding of the PFJ structure and identifies a number of features 

associated with PFP. The advanced 3D quantitative imaging analysis highlights the impact 

that inconsistent imaging position and mixed gender analysis may be having on these 

morphological findings. Aligning this structural knowledge to existing biomechanical and 

clinical features enabled the identification of four subgroups: ‘Strong’,’ Pronation & 

Malalignment’, ‘Weak’ and ‘Flexible’. At 12 months follow up, these subgroups showed a 

trend towards different odds of reporting a favourable outcome. This suggests that attention 

should be focused on identifying and targeting treatment at the subgroups less likely to 

improve or subgroups more amenable to a specific intervention. Targeting PFP subgroups 

as demonstrated in this work appears to be feasible in terms of conversion to consent, 

missing data, attrition and adherence. Now that novel subgroups have been identified and 

targeted treatment shown to be conceptually feasible; future research should aim to 

investigate this stratified approach within adequately powered multicentre clinical trials.
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