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Abstract 
 

The main focus of this research is to develop improved version of spiral dynamic algorithm 

(SDA) and srtificial bee colony algorithm (ABC) for solving various kinds of optimization 

problems. There are eight new algorithms developed in this research based on ABC and 

SDA. The first modification is on the initial distributions based on chaotic maps trajectory, 

random and opposition based learning. This adaptive initial distribution is used in all 

proposed algorithms. Second modification is to use spiral radius and chaotic rotational angle 

in modified SDA. Furher modifications include proposition of three adaptive ABC algorithms 

based on the modification of step size using exponential, linear and combination of both 

linear and exponential functions. Investigations have shown that SDA is a fast and simple 

algorithm but is subject to getting trapped in local optima and it lacks diversity in the search, 

while ABC is able to get accurate output at the expense of high computational time and slow 

convergence. Thus, the research further embarks on hybridisation of SDA and ABC, taking 

advantage of capabilities of both algorithms and three hybrid algorithms are thus proposed. 

The performances of the proposed algorithms are evaluated and assessed in single objective, 

multi-objective type and in practical optimization problems. Statistical and significant tests 

are used in the evaluations. Furthermore, comparative assessments of the performances of the 

proposed algorithms are carried out with their predecessor algorithms. The results show that 

the proposed algorithms outperform their predecessor algorithms with high accuracy and fast 

convergence speed. 
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Chapter 1 

Introduction 

 
1.1 Introduction 

This chapter presents an overview of the research is conducted.  Background to the research 

is initially discussed to highlight the research issues and the problem statements. Then, a 

briefly description of bio-inspired algorithms is given along with the research objectives and 

the research contributions.  

1.2 Research background 

Optimization is a technique of finding the best solution to a problem under given 

circumstances [1]. A practical example is to find the best possible route for a salesman in 

order to have maximum sales with minimum cost. Thus, the main goal of the optimisation is 

to minimise the cost (effort) and to get maximum profit (benefit). 

Mathematically, strategies are devised so that finding optimum solution is tailored to 

searching for either maximum or minimum point in the search space. These mathematically 

defined landscapes are categorised into multimodal and unimodal types. A unimodal 

landscape is characterised by having only one optimum (minimum or maximum) point. A 

multimodal landscape, on the other hand, has more than one optimum point, among which 

one is expected to be the global optimum. Thus, an optimisation strategy is formulated to 

search for and find the global optimum point in the landscape, based on fitness evaluation of 

the search point, referred to as the objective function, formulated as:- 

 

Minimize or maximize        [                    ] , where     

Subject to 

                        

                         

where,   are parameter variables in a parameter space.    is function of inequality 

constraints,     is function of equality constraints, K is number of inequality constraints, and 
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L is number of equality constraints. If   =1 the formulation becomes single-objective 

problem and for   greater than 1 the formulation becomes a multi-objective problem  and it 

is called multi-objectives problems [2][3]. 

Early developments of optimisation algorithms are mainly gradient based [4]. 

Newton’ method [5] and line search [6] are examples of gradient based algorithms.  The 

advantage of these algorithms is that they are fast in computational time because of their 

simple structure, which make them suitable to handle continuous problems, convex and 

simple nonlinearity problems. However due to their search strategy, it is difficult to find the 

global optimum in a multimodal problem and in dealing with real world problems. These 

algorithms easily get trapped in local optima and hence do not achieve accurate solution [7]. 

Thus, in such situations, an approach to achieve optimum solution is desired. 

In recent years, optimisation techniques based on the adaptation of natural phenomena 

and biological behaviour referred to as evolutionary algorithms have become popular among 

researchers. These algorithms are gradient free and do not need differentiation operation to 

perform search. Thus, they can be used in many optimisation problems and are able to give 

good quality of solution in each iteration. Nature-inspired and bio-inspired optimization 

algorithms can be categorized as metaheuristic type. A metaheuristic algorithm is a method of 

solving general problems [8] using the structure of heuristic optimisation strategies and it 

may result in efficient way to perform the search. In a metaheuristic algorithm, the search of 

unknown optimal point in the search space (feasible area) is done in random manner and 

certain parameters of the algorithm need to be set in initial stages by the user in order for the 

algorithm to work properly. The most important factor that gives the metaheuristic 

optimization merit in solving problems is a balance strategy between exploration and 

exploitation. Exploration in the optimisation context is the phase for search of new solution in 

the unexplored areas within a feasible region. It can increase the chance to find good solution 

(not guaranteed). While exploitation is the process to focus the search in small area within 

which a good solution has been found in the exploration phase. Too much exploration can 

increase the convergence speed but it may result in the algorithm getting trapped at local 

optimum and may not improve the solution. Searching a solution based on a previously 

discovered solution during exploitation phase can increase the chance of finding a much 

better solution. However, extensive exploitation will result in slower convergence toward the 

global optimum. In reality, there is no guarantee that the balanced strategies between 
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exploration and exploitation can produce a good solution and fast convergence speed because 

there will be trade-off between both [9][10]. 

Evolutionary algorithms (EAs) have been widely used by many researchers for 

obtaining optimal solutions to various problems of single objective problem and multi 

objective types. It also has good potential in solving real problems [11][12]. In this research, 

EAs are classified into two categories, namely bio-inspired and nature inspired algorithms. 

Bio-inspired algorithms are based on the behaviour of living organisms such as bacteria, 

animals, birds, insects, etc. while a nature-inspired algorithm is based on natural phenomena 

such as spiral pattern [13]. The advantage of EA is that it has the ability to adapt and organize 

itself during exploration and exploitation [14][15][16]. EA also uses randomisation and 

deterministic method during exploration. This kind of approach enables the algorithm to 

reduce the probability of getting trapped at local optima [17][18]. 

Examples of biological inspired algorithm are :- Genetic algorithms (GAs) are 

inspired from the process of human genetic evolution [19][20], artificial bee colony algorithm 

(ABC) is based on the behaviour of real honey bee foraging the flower nectar, particle swarm 

optimization (PSO) is based on the communication behaviour of bird of fish flocking 

[21],[22]. Bat algorithm (BA) is based on the echolocation behaviour of bats [23]. bacteria 

foraging algorithm (BFA) are inspired from Escherichia coli bacteria foraging pattern [24]. 

Dorigo proposed ant colony optimization (ACO) algorithms based on the movement of ants 

[25] [26], Yang [27] developed  firefly algorithm (FA) based on the light pattern produced by 

swarm of firefly. Examples of nature-inspired algorithms are lightning search algorithm 

(LSA) based on natural phenomenon of lightning [28], galaxy-based search algorithm [29], 

harmony search algorithm based on musical phenomena [30][31]. 

Real world applications are in general complex and solving such problems using optimisation 

strategies is challenging. Moreover, there is no guarantee that the solution generated by the 

algorithm can be the global optimum. The high number of dimensions and nonlinearity of the 

problem can reduce the chance to find the best possible solution. Real world applications in 

which optimisation algorithms have been used include optimisation of fuzzy control of wheel 

chair lifting and balancing [32], optimization of PID controller for automatic voltage 

regulation [33] and optimization of design parameters of a composite structure [34]. Further 

applications include stock price prediction [35] and optimisation of drug during therapy [36]. 

A review of the literature has revealed the importance of optimisation algorithms in solving 
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real world problems. However, it is not possible to solve all types of problems with the 

developed algorithms, and hence further research is needed to develop enhanced and 

powerful strategies for solving a range of single and multi-objective optimisation problems. 

Thus, the research presented in this thesis has embarked on development of improved 

algorithms based on artificial bee colony (ABC) optimisation and spiral dynamic 

optimisation algorithm (SDA). 

1.3 Artificial bee colony optimisation algorithm 

The ABC algorithm was initially proposed by Karoboga [37]. The algorithm is inspired by 

the bee colony and their behaviour during food foraging. Because of the ABC structure, it has 

good strategies during exploration, is able to memorise important information, has multi 

character and is able to perform local search efficiently [16]. Detailed description of ABC is 

given in chapter 2. 

1.4 Spiral dynamic optimisation algorithm 

Spiral dynamic algorithm (SDA) is based on the spiral pattern such as in tornados, galaxy 

pattern, nautilus shell [38]. SDA has a simple structure with only 2 control parameters. This 

simple structure and dynamic step size enables SDA to execute the search in short time. 

However, in high dimension problems, SDA easy trapped at local optimum. SDA is 

described in detail in chapter 2. 

1.5 Research aim and objectives 

The main target of the research is to develop improved versions of SDA and ABC 

optimisation algorithms and to test and validate their performances in several benchmark 

functions and applications. The SDA may be improved in terms of accuracy by taking 

advantage of its fast computational time and fast convergence but it easily gets trapped at 

local optima when dealing with various types of problems. The ABC, on the other hand, is 

able to give accurate result in solving complex problems, but suffers from slow convergence 

and slow computational speed. Based on the advantages of both algorithms, there is great 

potential to combine SDA and ABC either in integrative or collaborative manner, to lead to 

significant improvement for both algorithms in terms of fitness accuracy and convergence 

speed. For assessment of robustness and accuracy, the proposed algorithms will be subjected 

to tests in various optimisation problems. Firstly, the proposed algorithms will go through 
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extensive testing using well known single and multi-objective benchmark functions such as 

sphere function or Ackley function. These benchmark functions have various types of fitness 

landscape from unimodal to multimodal. The algorithms will also be tested using 30 

benchmark functions created during 2014 Congress on Evolutionary Computation 

(CEC2014). Moreover, the proposed algorithms are further tested in several practical 

applications.  

The objectives of the research are as follows:- 

1) To propose modified versions of ABC and SDA algorithms for better performance in 

terms of convergence speed and global optimum value in comparison to their classical 

predecessor algorithms. 

2) To investigate the performances of the proposed ABC and SDA with different types 

of numerical benchmark functions, and carry out a comparative assessment of their 

performances with those of their predecessor algorithms. 

3) To test and investigate the performances of the proposed algorithms in a set of 

practical applications, and to assess the results in comparison with performances of 

their predecessor algorithms.  

1.6 Research contributions and publications 

The contributions of the research include the following:- 

Contribution 1: Modified spiral dynamic algorithms 

To ensure good quality of solutions is placed in the search space during initial distribution 

of the population, the combination of chaotic, random and opposition-based learning 

distribution has been proposed. This novel approach enables to produce initial solution 

near to the optimal value and leads the algorithm to perform the search relatively faster. 

By changed the fix value of spiral radius and spiral angle with chaotic maps pattern it will 

lead this modified algorithm to perform better than the original SDA. 
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Contribution 2: Modified artificial bee colony algorithms 

The search strategies of original ABC have been modified to enhance the exploration 

capabilities of onlooker bee and employed bee. The bee movement in search area in the 

onlooker and employed stages has been modified to let the bees move to the food source 

in exponential manner and in a linear trajectory motion.  

Contribution 3: Hybrid spiral dynamic and artificial bee colony algorithms 

Three proposed hybrid version of algorithms is created based on the combination of ABC 

and SDA. The first hybrid algorithm incorporates the reset strategy of ABC in scout bee 

stages into SDA and is able to reset the non-performing point in SDA. While in the 

second proposed hybrid version, the ABC and SDA algorithms are placed in sequential 

order. The ABC will execute first to perform the exploration and then SDA will take over 

to perform the exploitation. In third and last proposed hybrid version, adopts the ABC 

search strategy into SDA where it will perform local search around each spiral point 

All of the proposed algorithms has been tested using several benchmark functions and the 

results have been compared with SDA and ABC. The algorithm has also been ranked using 

Kruskal-Willis test and subjected to the reliability of performance test. 

The following publications arising from this research have been produced to date and further 

publications are in progress. 

1. Hashim, M. R., Hyreil A. K, Tokhi, M. O. (2017). Optimal Tuning of PD controller 

using Modified Artificial Bee Colony Algorithm. Journal of Telecommunication, 

Electronic and Computer Engineering (JTEC) - accepted 

2. Hashim, M. R., Tokhi, M. O. (2016). Greedy Spiral Dynamic Algorithm with 

application to controller design. IEEE Conference on Systems, Process and Control 

(ICSPC 2016), Melaka, Malaysia, 16-17 December 2016 10.1109/SPC.2016.7920698 

3. Hashim, M. R., Tokhi, M. O. (2016). Enhanced Chaotic Spiral Dynamic Algorithm 

with Application to Controller Design. IEEE 6
th

 International Conference on Power 

and Energy (PECON 2016). Melaka, Malaysia .18-29 November 2016 

4. Hashim, M. R., Tokhi, M. O. (2016). Chaotic Spiral Dynamic Algorithm. 19th 

International Conference on Climbing and Walking Robots and the Support 

Technologies for Mobile Machines, London, UK, 12 –14 September 2016, pp. 551-

558. 

 

https://doi.org/10.1109/SPC.2016.7920698


7 
 

5. Hashim, M. R., Tokhi, M. O. (2016). Control of a Single Link Flexible Manipulator 

System Using Enhanced Chaotic Spiral Dynamic Algorithm. Poster session presented 

at the ACSE PGR Symposium 2016. Department of Automatic Control and Systems 

Engineering, the University of Sheffield, United Kingdom. 

6. Hashim, M. R., Hyreil A. K., Tokhi, M. O. (2015). Control of a Single Link Flexible 

Manipulator System Using Simple Modified Artificial Bee Colony Optimisation 

Algorithm. Poster session presented at the ACSE PGR Symposium 2015. Department 

of Automatic Control and Systems Engineering, the University of Sheffield, United 

Kingdom. 

 

1.7 Organisation of the thesis 

The thesis has been organised as follows: 

Chapter 1:- This chapter presents overall introduction of research background, problem 

statement, aims and objective, methodology of the research, contribution and list of 

publication.  

Chapter 2:- This chapter contains description and overview of original artificial bee colony 

optimisation algorithm and spiral dynamic algorithm. The development of ABC and SDA is 

also discussed in this chapter. 

Chapter 3:- This chapter introduces the development of the proposed algorithms based on 

ABC and SDA.  

Chapter 4:- This chapter presents the testing of the original and proposed algorithms using 

various benchmark test functions. The problems used in the tests include unconstrained single 

objective and constrained single objective benchmark functions. Performances of the 

algorithm are validated with statistical analysis. 

Chapter 5:- This chapter presents the testing of the original and proposed algorithms in multi 

objective problems. Performances of the algorithms are validated with several performance 

metrics. 

Chapter 6:- This chapter presents testing of the algorithms on several engineering 

applications. The applications considered include tuning of PD fuzzy controller of a single 

link manipulator system and several practical applications. 

Chapter 7:- This chapter summarises the works carried out and makes suggested 

recommendations for further work.  
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Chapter 2 

Spiral Dynamic Algorithm and Artificial Bee Colony 

Optimisation Algorithm: An Overview 

2.1 Introduction 

Optimisation algorithms have been used in many areas for solving various types of problems. 

This chapter provides a description of spiral dynamic algorithm (SDA) and artificial bee 

colony algorithm (ABC). The SDA is based on natural evolution while ABC is based on the 

behaviour of honeybee foraging the honey. Recent modifications, variations and applications 

of SDA and ABC are also highlighted. 

2.2  The spiral dynamic algorithm 

In 2011, Spiral dynamic algorithm was introduced by Tamura and Yasuda [39][38] inspired 

by the natural spiral patterns in nature such as shape of DNA molecule, spiral pattern of 

tornado, hurricanes and galaxy. They started with two dimensional problems based on the 

model created from logarithmic spiral. SDA has a simple structure, relatively low 

computational time and is easy to program. The algorithm has diversification in early stage of 

the search where the aim in this stage is to perform global exploration in the search area in 

order to find better solution. Following the exploration stage the algorithm will perform the 

search for better possible solution around the good solution found during early search phase. 

This intensive search toward the best possible solution is called intensification. In SDA, by 

using logarithmic spiral as a model, the diversification and intensification strategies can be 

fulfilled in naturally because the spiral movements exponentially converge to the centre of 

the spiral [40]. Adaptation of logarithmic spiral in terms of exploration and exploitation can 

be shown in Figure 2.1 where it clearly shows that the diversification happens in early stage 

and the small step size becomes smaller in the later stage during which intensification occurs. 

The SDA search begins from initial point to next point in anti-clock wise direction and 

continues toward the centre of spiral at the inner layer. In this process, the step size will 

reduce gradually as the search points approaches the centre of spiral. This will allow the SDA 

to reach the global optimum for different types of problems of uni-modal and multi modal 

nature. The SDA also converges faster because in each iteration it will carry the best fitness 
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and this fitness gives guidance to the spiral search to move toward the optimal point in that 

iteration.  

 

(a) Early spiral (25 points)     (b) after Spiral (25 points) 

Figure 2.1 :- Spiral Trajectory (adopted from [38]) 

 The mathematical model for n-dimension of SDA is defined in equation (2.1)                                 

                     [          ] 
               (2.1) 

where   is rotational angle between 0 and 2π,      is identity matrix ,    is centre of spiral,   

is iteration number,   is spiral radius ranging between 0 and 1 while,         = 

     (                   ) ,      is composition rotation matrix, where 

    (                   ) is rotation       matrix. The general mathematical   

dimensional spiral model using     (                   ) can be expressed as:- 

    (                   )  ∏(∏          
   

 

   

(          ))

   

   

 (2.2) 

Figure 2.2 shows that the values of r and   can change the behaviour of spiral model. 

   

Case (1) , r=0.95,    
 ⁄  Case (2) , r=0.90,    

 ⁄  Case (3) , r=0.95,    
 ⁄  

Figure 2.2 : Spiral model behaviour (adopted from [38]) 
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Generally, the SDA performance is based on the parameters r and θ. It is possible that the 

search point may settle at a local optimum and increasing the number iteration may not help 

the algorithm to converge to global optimum or better point. A further issue that arises is that 

in case of high dimension problems the computational time increases as sizes of the matric in 

the spiral model become bigger. Algorithm 2.1 shows the pseudo code of the spiral dynamic 

algorithm. 

Algorithm 2.1 : Spiral dynamic algorithm 

1: 
Objective function of      , set search point,  , spiral radius; , spiral angle,  , 

upper and lower boundary of search space, maximum iteration     

2: Initialisation: 

3: Set initial points                    in the search space at random 

4: Choose the centre of spiral    as          ,     

5: while iteration,  ≤ maximum iteration,     do 

6:     for all   to   do 

7: 
        Updating    ;                      [          ] 

     

          

8:     End for 

9:     Updating   ;       
                 (       )              

10:           

11: end while 

 

2.3  Variations of Spiral Dynamic Algorithm 

Approaches adopted by researchers on development of improved optimisation algorithms 

have included either by modification to search method or by combining two or more 

algorithms. The literature is, however, limited in the work on modification or improvement of 

SDA. 

Tamura and Yasuda [38] have evaluated the performance of SDA in comparison to the SDA, 

PSO algorithm and DE algorithm in 4 types of benchmark functions with different spiral 

angles. They have shown, after 100 trials with different sizes of dimensions, the SDA 

outperformed DE and PSO with the spiral angle    ⁄  .  
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SDA has been applied to solving various real problems. It has simple structure and because of 

this, the computational time is relatively short.  However, it has been noted that the algorithm 

can easily get trapped in local optima when exposed to solving high dimension problems 

[41][42][43]. There has been an attempt to resolve this issue. For example, Nasir et al. [44] 

proposed an adaptive formulation by varying the size of radius and displacement of spiral 

model in order to resolve this issue.  

In the original SDA, the rotational angle and rotational radius remained unchanged 

throughout the searching process. Nasir et al. [45] proposed to vary the values of rotational 

angle and radius according linear, quadratic and exponential function. They also used fuzzy 

logic method as a non-mathematical approach to find a good point in the search space by 

establishing relationship between fitness values and radius of spiral. The algorithm has been 

tested using several unimodal and also multimodal benchmark functions with different value 

of dimensions. In a further work Nasir et al.  [44], introduced modified rotational radius and 

also rotational angle to replace the standard parameter. The modified angle and radius may 

change to different value in each iteration depending on the deviation of fitness value and 

global fitness value. This approach has been used to optimise parameters of an autoregressive 

model of a flexible manipulator system. The results show that the proposed algorithm 

outperformed the original SDA.  

Many researchers have adopted a strategy of hybridisation of an original algorithm with other 

algorithms to increase their performance. For example Nasir et al. [46] have hybridised SDA 

and BFA. This algorithm can increase the exploration capability by letting bacteria swim and 

tumble in spiral pattern during exploration. The authors have used this algorithm to optimise 

PID parameters for hub angle of flexible manipulator system and the results show that the 

algorithm can tune the controller very well. However, the authors report that algorithm 

performs well in solving low dimension problems.  

With the adaptive methods in [45][44] , the values of radius and rotational angle are not 

constant but vary in each iteration and thus result in improved performance. Thus based on 

the idea of varying the step size or radius/angle of spiral, Nasir et al.  [47] proposed a hybrid 

scheme by combining SDA and BFA. They proposed two different strategies based on how 

bacteria swim. In the first strategy, the bacteria swim in spiral manner toward optimum value 

while in the second strategy a random approach is used. In random approach, the bacteria 

swim freely in current position, and this can increase the chance of finding optimum value 
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but in spiral swimming type, the direction of search are predetermined by spiral direction. 

The results of the test using non-parametric Freidman and Wilcoxon on eight benchmark 

functions, show that the spiral swimming type perform better than random swimming type.  

Nasir et al. [41] incorporated an elimination dispersal method of BFA in SDA to increase the 

exploration capability of the algorithm. By increasing the potential to find more good 

solutions in the search space, the problem of settling in local optimum can be reduced. 

Various benchmark function tests and analyses have been used to evaluate the strategy. The 

authors have also proposed hybrid strategy between SDA and BFA by making bacteria to 

swim in spiral pattern [42]. They used the method to optimize a single link manipulator 

system controller.  They developed two types of hybrid strategy by incorporating SDA into 

BFA where the integration is in a sequential manner. The execution is done by execute the 

SDA or BFA first then the other will follow. They have reported that this strategy can 

overcome the high dimension problem facing by the algorithm in [46]. The first proposed 

hybrid algorithm can give better fitness accuracy but the computational time is the major 

drawback in this strategy because the time taken to execute both SDA and BFA stages is 

longer compared with original SDA. The algorithm has been developed by placing spiral 

search pattern during exploration in the chemotaxis phase.  During the search, the bacteria are 

directed in spiral manner toward the best possible solution in every iteration. For the 2
nd

 

hybrid scheme reported in [42], the proposed algorithm is an improved version of the 1
st
 

scheme. According to the author, the improvement of computational time can be achieved by 

replacing dispersal, elimination and reproduction in BFA chemotaxis stage with spiral model. 

Thus, in the first stage, bacteria chemotaxis is invoked to perform the exploration and in the 

next stage the exploitation occurs based on the spiral movement.  

To enhance the performance of SDA Nasir and Tokhi [41] focused on search strategy of the 

final solution in each iteration by introducing an additional step called elimination and 

dispersal adopted from BFA. The main structure of this algorithm is the same as the original 

SDA but at the end of the iteration, the elimination and dispersal is triggered. By doing so, 

the problem of getting trapped at local optimum is eliminated. The results of comparative 

tests of the algorithm with original SDA and BFA on four benchmark functions and the result 

show that the strategy can increase the performance of SDA.  

Tsai et al. [48] have reported a modified version of SDA, referred to as distributed spiral 

optimisation (dSO) for data mining. The introduced an oscillation stage adopted from genetic 
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algorithm mutation operator to reduce the possibility of SDA getting trapped at local optima. 

They tested the algorithm in solving clustering problems, and the results show that dSO is 

able to solve clustering problems.   

Parallel manipulators are known to have high accuracy and able to cater bigger loads in 

comparison to serial manipulators, but dealing with singularity is a matter of concern. To 

solve this issue, Ashok  [49] used SDA and PSO, where he aimed to tried to get better slider 

position of the system and the results show that SDA outperform PSO.  

There have also been attempts to use the SDA algorithm in solving multi objective IIR filter 

design problems with the objective to minimize the time delay and to get matching frequency 

response [50]. From the results, show that SDA was able to optimise the digital filter and 

match the desired specification setting.  

2.4 Artificial bee colony optimization algorithms 

The artificial bee colony algorithm was introduced by Karaboga [37] based on the behaviour 

of real honey bee in finding the flower nectar and their knowledge sharing about the quality 

of nectar among them. Karaboga also developed ABC based on developed model of honey 

bee colony by [51] . To find the optimum point, the algorithm moves the possible solutions 

into the search space as inspired by the movement of real honey bee foraging the nectar and 

based on the information about the nectar shared by other bees [52]. In principle, the task in 

the bee hive is performed by designated individual bees; the employed bee, onlooker bee and 

scout bee [53]. They have different tasks to maximize the amount of nectar located in the 

hive by performing the self-organization and efficient of labour delegation for each bee. 

Robustness, easy to use and flexibility are the main advantages of ABC [52]. The ABC is 

requires only three control parameters, namely bee size, maximum cycle number and limit 

trigger [54][55].  

This section will explain the basic concept of real honey bee foraging the nectar and 

theoretical concept of classical ABC algorithm including the process step and pseudo-code. 

This section further presents recent developments in ABC including recent modification, and 

hybridisation. 
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2.4.1 Classical artificial bee colony algorithm  

In classical ABC algorithm, the quality of the food source (flower nectar) is represented by 

the value of fitness and is be based on its location/position. Basically nectar from flower is 

the main food source for Honey Bee. The quality or the best food depends on many factors 

such as the location, distance between hive and food source, the nectar richness and also the 

level of difficulties during foraging. The food source is a possible solution vector of the 

problem where the position of the food source will be in a D dimensional space or search 

space. The computational agent in ABC algorithm can be divided into three groups: onlooker 

bees, employed bees and scout bees. The employed bees are those that have a specific food 

source that they are presently exploiting or foraging. They also bring in together the 

information about the distance and direction of the food source and also the quality of the 

food source. The onlooker bee waits in the dance floor inside the hive for the information 

brought by employed bee and will choose the food source based on that information. The 

information exchange between employed bee and onlooker bee regarding the quality of the 

food sources will take place in the dance floor inside the hive. The pattern of the dance will 

show the quality level of the nectar. The name of this dance is waggle dance. The higher 

quality of nectar can attract more onlooker bees to go to the corresponding food source. The 

role of scout bee is to perform random search to find a new food source. In the ABC 

algorithm, the number of employed bees is equal to the number of onlooker bees, and that is 

equal to the half of food source size. The steps involved in searching for the best possible 

solution in ABC can be described as follows [34][56] [57]. 

The initial population is randomly generated with an   -dimensional vector and distributed in 

the search space by scout bees and this stage can be referred to as exploration phase. The     

is the   th food source for the   –dimensional vector in the population. The distribution are 

represented as 

                           (2.3) 

where food source,                           and      are the upper and lower 

boundaries of search space for the dimension   and    is size of population. The fitness of 

population is evaluated and each of the food source generated during this stage is randomly 

assign to employed bees. 
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The next step is exploitation phase by employed bees and onlooker bees. This phase is 

divided into two stages; employed bee stage and onlooker bee stage. In employed bee stage, 

after scout bee has performed exploration, the employed bees start to collect nectar and go 

back to the hive. The employed bees will dance in the dance floor to share the information 

about food source with onlooker bees. In this process, employed bees will produce 

modification to the solution (position) based on the visual information of the neighbour 

solution. The employed bees will check the quality of food source (fitness) and the modified 

solution. If the quality of food source is better compared to the previous one, the employed 

bees will remember that food source location and forget the previous one. But if the modified 

solution is not improved, the employed bees will keep the location of previous one in their 

memory and forget the current solution. These stages can be described as a comparison 

between two food sources visually by employed bees and they will create new position in 

their memory based on the fitness value. The modified position of food source in this stage is 

given by 

                            (2.4) 

where     is new position of solution,     is previous solution and     is neighbour solution. 

with                            The neighbour position of solution    is randomly 

chosen and it must not be the same with position of solution   . The function of            

in the equation is to control the position of neighbour food source within    . The 

perturbation on the position      will become smaller as the difference     and     getting 

smaller. Thus, the step size reduces when the search approaches the best solution in the 

search space. 

After all of the employed bees have completed their task, they will share the information 

gathered during foraging with onlooker bees that wait in the dance floor in the hive. The 

onlooker bees will evaluate the information about the food source and will choose the best 

solution based on the highest recruiting probability (fitness value),    . The higher quality of 

nectar can attract more onlooker bees to go to the corresponding food source. The selection of 

probability of the solution in the original ABC is based on roulette wheel selection scheme. 

Fitness and recruiting probability can be calculated as 
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Based on ‘roulette-wheel’ selection method, the onlooker bee will follow one employed bee 

to the selected food source based on the value of recruiting probability. The onlooker bees 

will choose the highest value of probability because it is likely to have more chance to be 

optimized. This new selected food source position can be calculated and expressed using 

equation (2.4).   

Abandonment of non-improvement food source will happen if the fitness value cannot be 

improved anymore by any food source position within the predetermined limit setting. In this 

stage the bee assigned at deserted food source position will change its role to scout bee. The 

scout bee will find new food source and replace the abandoned food source with the new one 

using 

  
 
     

 
          (    

 
     

 
) (2.7) 

The search process for the optimal value by employed and onlooker bees continue repeating, 

and the repetition will stop when the Maximum cycle number (MCN) has been reached. 

Algorithm 2.2 shows the pseudo code the main process of ABC [57]. 

Algorithm 2.2 : ABC algorithm 

1: 
Objective function of      , Number of Food (NF), Number of Bee, Limit value, 

upper and lower boundary of search space, maximum iteration     

2: Initialization: 

3: Set initial points              (       ) in the search space at random 

4: Evaluate the population fitness 

5: Iteration = 1 

6: while iteration,   ≤ maximum iteration,     do 

7:     for all     to    do 

8:  Produced new food source using                             

9:  Evaluate the fitness of new food source     

10:         
Compare fitness between     and     and choose the better one. (greedy 

selection) 

11:  If the solution is not improved                 

12:     End for 
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13:  Calculate the probability,                 using equation (2.6) 

14: end while 

15         

16: repeat 

17:  If random <                then 

18:   Produced new food source using                             

19:  Evaluate the fitness of new food source     

20:  
Compare fitness between     and     and choose the better one. (greedy 

selection) 

21:  If the solution is not improved                 , otherwise          

22:        

23:  End if 

24: Until        

25: If               then 

26:  
Replace abundant food source with a new food source using  

  
 
     

 
          (    

 
     

 
) 

27: End if 

28: Keep the best solution  

29: Iteration = iteration +1 

30: Until (iteration = MCN) 

 

2.4.2 Comparison and variation techniques in artificial bee colony algorithm 

Initially, ABC was designed to solve numerical problems [22]. The early stages of ABC, 

have included performance evaluations using different types of well-known benchmark 

functions. Comparisons with several evolutionary algorithms have also has been carried out. 

Performance of ABC have been compared with GA,PSO and PS-EA in optimizing  

multivariable functions [58]. Karaboga and Basturk [59] have used ABC to solve multi-

dimensional problems and have assessed its performance in comparison with DE,EA and 

PSO. To demonstrate the robustness of ABC in dealing with different types of problems it 

has been tested with a large set of benchmark functions together with GA,DE,EA and PSO 

algorithms [60]. Krishnanand [61] compared performances of five types of optimization 

algorithms including ABC with five standard benchmark functions. The algorithms 

considered were ABC, PSO, IWO, GA and AI. Mala [62] compared the performances of 

ABC with ACO (Ant Colony Optimization) and the results showed that the ABC performed 

much better than  ACO. Karaboga and Akay [63] investigated the effect of problem 

dimension on the performance of ABC,harmony search (HS), and Bee Algorithm (BA) in 

unimodal and multimodal benchmark functions.  
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To extend the performance evaluation of ABC, Karaboga and Basturk [64] were tested the 

ABC in solving constrained problems. The performances of ABC were tested in 13 different 

constrained benchmark functions and were compared with DE and PSO algorithms. The 

results show that ABC was able to handle the constrained problems. Mezura-Montes and 

colleagues [65][66] introduced an elitist ABC algorithms to tackle constrained real parameter 

problems. The potential of ABC in solving single objective problems in continuous search 

spaces has attracted many researchers to look for approaches to improve its convergence 

speed, processing time and to increase its accuracy. To improve ABC performance, some 

modifications have been proposed.  

A new search mechanism based on fixed point theorem of contractive mapping in Banach 

spaces was proposed by Quan [67]. The method has shown improvement in convergence rate 

of ABC in solving the multimodal problems. The problem of premature convergence and 

easily getting trapped at local optimum was reported by Lee and Cai [68]. To solve this issue, 

they proposed a new diversity strategy that can give the balance between exploration and 

exploitation. Tsai et al. [69] have reported that the exploitation ability of ABC can be 

enhanced by incorporating universal gravitation into the movement of onlooker bees. Their 

proposed algorithm is referred to as interactive ABC (IABC). In the classical ABC, the 

movement of onlooker bee is limited to the selected nectar and random nectar. By using 

universal the gravitation concept, the relationship between the employed bees and onlooker 

bees can improve the exploitation capability of ABC. They have tested the performance of 

IABC in three well know benchmark functions and have reported increase in exploitation 

capability of the algorithm. Other researcher found that the ABC is good in exploration 

phases but perform poorly during exploitation [70] and have proposed modification to the 

search equation in order to improve the exploitation. By using the best solution value into 

searching process, Yi and He [71] proposed an enhanced version of ABC called novel ABC 

(NABC). They reported improved convergence speed in experiments using several test 

functions. As the roulette wheel selection may lead to premature convergence, Bao and Zing 

[72] replaced the roulette selection with three (3) different selection methods namely 

disruptive, tournament and rank selection. They reported that using those selection strategies 

lead to better search diversity and avoid premature convergence.  

Another approach of modification that can be used to make ABC algorithm more accurate 

and fast, is to combine the classical ABC or modified ABC with other types of optimization 

algorithm. This combination can be called as a hybrid-ABC. One of the hybrid-ABC was 
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introduced by Kang et al. [73] where they combined a Neldar and Mead method in structural 

inverse analysis. The approach can solve problems with high dependency of variables; 

combining the ABC with neldar and mead algorithm will help the ABC to adapt to complex 

surface topologies. Hybrid ABC - GA has been used to find the optimal PI tuning in a motor 

drive [74]. Hybrid artificial bee colony algorithm with bacterial foraging optimization 

algorithm has been presented by Zhong et al. [75], where they applied this technique in the 

exploitation stage of onlooker bee and employed bees and the results have shown significant 

improvement in term of convergence speed. Tsai et al. [76] have proposed a hybrid strategy 

combining cat swarm optimization (CSO) and ABC and have tested the performance of  

algorithm was tested using 5 benchmark functions.  Li and Chan [77] have proposed a hybrid 

strategy between ABC and  Recursive least square estimator (RLSE) in order to tune and 

train the complex neural fuzzy system design by them. El-Abd [78] used ABC to improve the 

personal best of PSO and this hybrid version was tested in CEC05 benchmark functions. 

Neelima and Murthy [79] have replaced the onlooker bee phase with  random walk function 

in BAT algorithm.  They reported that approach will enhance the exploration. Li et al. [80] 

incorporated variable neighbourhood search strategy into ABC and the result achieved 

enhanced performance in comparison to ABC in terms of convergence speed. Other hybrid 

implementations in ABC are shown in Table 2.1 

Table 2.1:- ABC hybrid implementation 

Algorithm Reference 

ABC + Quantum Evolutionary algorithm [81] [82] 

ABC + Genetic Algorithm [83] [84] 

ABC + greedy heuristic + local search [85] 

ABC + Greedy Randomized Adaptive Search 

Procedure (GARPS) 
[86] 

ABC + Greedy Sub tour Crossover [87] 

ABC + Disruptive selection [88] 

ABC + PSO [89][78] 

ABC + Hooke Jeeves pattern search [90] 

ABC + Cat Swarm (CSO) [76] 

ABC + Recursive least square estimator (RLSE) [77] 

ABC + BAT  [79] 

ABC + variable Neighbourhood search [80] 
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2.5 Applications  

The ABC algorithm has been used in many applications. One of the application is controllers 

design. Karaboga and Akay [53] have designed a PID controller and have compared the 

design outcome with those of bee and harmony search algorithms. Shayeghi et al. [91] used 

ABC to obtain the best PID parameters for solving the load frequency control problems. A 

hybrid algorithm of ABC has been used in image restoration that was corrupted by noise [77]. 

Table 2.2 further application using ABC optimization algorithm in different fields.  

Table 2.2: A list of applications of ABC algorithm 

Area Domain Application References 

Control engineering Optimal Tuning of PID Controllers [92], [53],[93], [94]  

Electronic 

/communication 

engineering 

Cluster Based Wireless Sensor Network Routings [95] 

Radio signal [96] 

Filter design [97] 

Civil engineering 
Truss structure design 

Composite structure design 

[98] 

[34] 

Neural networks Training Feed-Forward Neural Networks [56] 

Electrical engineering 
Power System Stabilizer Design for a Turbo-Generator 

in a Single-Machine Power System 
[91] 

Others field 

Solving Traveling Salesman Problem [99] 

Image processing [77] [100] 

Data Mining [79] 

Health [101] 

Transportation and logistic [102] 

 

2.6 Summary  

In this chapter, a review of ABC and SDA has been presented with detailed description of the 

realisation process of both algorithms. A comparative assessment of variants of the algorithm 

as featured in the literature has been highlighted along with modifications and improvements 

as reported by researchers. In the next chapter, the new approaches will be proposed in order 

to improve the performance of ABC and SDA.  
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Chapter 3 

The SDA and ABC based Algorithms 

 
3.1 Introduction 

This chapter presents the details of the proposed optimization algorithms developed based on 

SDA and ABC. The focus of the development of proposed algorithms is to improve the 

performance of SDA and ABC in convergence speed and accuracy. There are eight new 

algorithms have been developed based on ABC and SDA. The first modification is on the 

initial distributions based on chaotic maps trajectory, random and opposition based learning 

(OBL). This adaptive initial distribution is used in all the proposed algorithms. An adaptive 

SDA algorithm is proposed using chaotic spiral radius and chaotic rotational angle. Three 

adaptive ABC algorithms are proposed based on the modification of the step size. The step 

sizes in the adaptive ABC algorithms are based on the exponential, linear and combination of 

both linear and exponential functions.  Three hybrid versions of SDA and ABC are proposed. 

Good feature of both algorithms are used. Figure 3.1  shows the proposed set of algorithms 

and their linkages.  

 

 
Figure 3.1:- The proposed algorithms 
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3.2 Chaotic opposition based learning initialization 

Population distribution during initialization is crucial to ensure the convergence speed and the 

quality of the final solution. Most of the evolutionary algorithms using random initial 

distribution to generate the initial population [103]. Without any prior knowledge, the initial 

population is randomly distributed in the allowable search space. But in some cases, the 

initial solutions distribution can be in opposite position of the optimal point or far from the 

optimal point [104]. In such a case, the computational time will increase [105]. The 

opposition based learning (OBL) approach proposed by H.R. Tizhoosh [106] are used here to 

enhance the quality of initial distribution of population and it may increase the quality of 

initial distribution toward the optimum point. The opposition concept can be seen in many 

areas such as opposition element in physics, in language, party politics, probability, religion 

and philosophy [107]. The balance between entities can come from the opposition. For 

example, the boiling water is hot and the temperature of the boiling water can be reduced 

using cold water. To learn something new, many start to learn at random. Known algorithms 

such as GA and PSO begin at random. But when dealing with the complex problems the 

random distribution guess can be distributed near to the optimal point so as to increase the 

convergence speed but it can also be far from it [108]. If the good solutions are at the 

opposite locations, the searching time will increase and the algorithm can potentially get 

trapped at local optimum point. There are no guarantees, that the random distribution can 

give a good initial solution. OBL has previously been used for improvement of simulated 

annealing algorithm, ant colony optimization, differential evolution and PSO[109][110]. 

Shahryar [111] has confirmed  that taking random and their opposites values, in the absence 

of prior information, can accelerate the searching process to the optimal solution. Shahryar 

also compared the performance of opposition and randomness in differential evolution. And 

showed that the opposition based learning was able to enhance the capability of the 

algorithm. The OBL distribution is described as follows:  

Let definition – let   in an interval [   ]   [   ]  to be a real number. While the opposite 

value of    can be denoted by  ̌ , see Figure 3.2 and can be defined as follows: 

  ̌        (3.1) 

 

Figure 3.2: - Illustration of a point and its opposite point [108] 
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In a D-dimensional space the OBL can be defined by applying equation (3.1) in each 

dimension. Let                 to be a point inside D-dimensional search space where 

            are real numbers and   [     ]. The opposite point of    can be defined by 

their opposite positions   ̆   ̆       ̆ where   ̆           

The initialization of population based on opposition-based solution,     is generated by 

                       (3.2) 

where   {        },   {        },   is number of solutions and   is dimension size. 

While        and        are the minimum and maximum boundaries of the search space. 

    is the random solution and     is the oposite solution of the random solution. 

To increase the chance of getting a good solution during initial distribution, the combination 

of OBL and chaotic maps is proposed. By replacing the random initialization with chaotic 

distribution, the better initial population can be produced and the convergence speed can be 

increased [112][113]. The relations are used to generate chaotic initial population 

distribution. 

                               (3.3) 

                   (3.4) 

where    is the initial population,      is chaotic sequence,       is minimum boundary and 

     is maximum boundary, and     is random generator. The logistic maps are used in this 

initial distribution. 

In this initialization approach, three types of distribution are used. The first distribution is 

random type,    , followed by chaotic distribution,     and finally, the opposition based,    . 

All these distribution are executed and their fitness evaluated, following which the solutions 

are rank based on their fitness evaluation. Three sets of solution are thus produced in this 

method, where 2/3 un-performing solutions are discarded and only the top rank (1/3) of 

solutions are used as an initial distribution. The method is referred to as chaotic opposition 

based (chaotic-OB) distribution. The computation steps of this method can be seen in 

Algorithm 3.1. 
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Algorithm 3.1 : Chaotic opposition based learning distribution (Chaotic-OB)  

1: Set number of search point   where      

2: Set    ,     and     

3: Randomly set starting point of chaotic           
4: for all   to   do 

5:                     (       ) 

6:             
7: end for 

8: While       do 
9:       While       do 

10:                             (             ) 

11:                   
12:       end while 

13:       
14: end while 

15: Set    ,     and     

16: While       do 
17:       While       do 

18:                                 (             ) 

19:                   
20:       end while 

21:       
22: end while 

23:       While       do 

24:                                   

25:                   
26:       end while 

27:       
28: end while 

29: Choose the fittest solutions from {              } as initial distribution. 

  

 

A comparison between random distribution and Chaotic-OB distribution in the search space 

was carried out by testing these methods on multimodal two dimensional Griewank 

benchmark function in the range [-600,600] (Figure 3.3). The result shown in Figure 3.4 

demonstrates that the new initialization method is able to produce a good initial solutions. As 

an example, In Figure 3.4(h), the distribution of solutions in the search space by chaotic-OB 

distribution were near to the optimal point, while by using random distribution in Figure 

3.4(g) , the solution were scattered everywhere in search space. The Chaotic-OB 

distribution’s intention is to ensure that good quality of initial solutions are produced. The 

method enables the algorithm to reach the optimal point faster compared using used random 

distribution. 
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Figure 3.3 Griewank benchmark function (adapted from matlab works website) 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 
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(f) 

 

(g) 

 

(h) 

Figure 3.4: The initial distribution in search space using random and Chaotic-OB 

distribution 

 

3.3 Improved spiral dynamic algorithms 

3.3.1 Chaotic spiral dynamic algorithm 

In evolutionary optimization algorithms, exploration to find the best possible solution is 

crucial , where during the exploration the algorithm should have the ability to perform the 

search around good solutions in the search space and must have good exploitation ability to 

converge to the best possible solution [114]. Thus, the exploration and exploitation must be 

balanced to produce accurate output. Due to the stochastic nature of the EA, there is no clear 

boundary between the exploration and exploitation. This drawback lead the algorithm to 

easily get trapped in local optima [115]. Many researchers have attempted to devise strategies 

for exploration and exploitation to ensure the performance of EA is enhanced. One of the 

methods that have been used to improve the performance of EA is to use chaos theory 

[116][117]. Chaos theory is based on the principle of chaotic dynamic system [118]. In the 

chaotic dynamic system, the initial conditions are highly sensitive where small changes in 

initial condition can give radically different results [119][120]. Although the chaotic map 

looks like it behaves randomly, but it has deterministic criteria and by determining the pattern 

of the map, it can provide chaotic behaviour [121].  

Saremi et al. [122]  integrated 10 types of chaotic maps into GA to improve the capability of 

selection, emigration and also the mutation probability. By using tinker bell chaos map into 

absorption coefficient and random parameter, Coelho [123] improved firefly algorithm to get 
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good result in tuning PID controller. Coelho [124] replaced random sequences in PSO with 

Henon maps to diversify the population and it preventing the algorithm to get trapped at local 

optima. 

As described before in the previous chapter, SDA facing problem of easily get trapped at 

local optimum because the spiral trajectory moves with constant step size. By using chaotic 

map, oscillatory movement can be inserted into the SDA to give some randomisation 

behaviour in distribution of population [125]. The chaotic spiral dynamic algorithms are 

shown in this section that use chaotic map in initial population distribution and during next 

point movement phase.  

In classical SDA, the radius of spiral is constant through the whole searching process. In this 

case, the potential for the algorithm to trap at local optimum is high. To improve the 

performance of SDA and also to overcome the problem of algorithm getting trapped at the 

local optima during the search process, the chaotic maps are introduced into the SDA. Two 

novel approaches by using chaotic maps are presented in this section. The first algorithm is 

devised by replacing the rotational radius,   with the chaotic sequence maps and the second 

algorithm is devised by replacing the angle,   with chaotic sequence maps. By adding chaotic 

sequence in SDA, the SDA step size will become more dynamic and this will help the 

algorithm escape from trap at local optima. The mathematical formulation of chaotic spiral 

dynamic algorithm (CSDA) is given as 

                             [                  ] 
               (3.5) 

where       is given by chaotic maps with scale value from 0 to 1.       is chaotic rotational 

angle with angle between 0 to 2π,      is identity matrix ,    centre of spiral,   is number of 

iterations,   is number of points,         =      (                   ) ,      is 

composition rotation matrix, where     (                   ) is rotation       matrix and 

  is a spiral point. A pseudo-code of CSDA is shown as follows 

Algorithm 3.2 :- Chaotic spiral dynamic algorithm  

1: Objective function of       

2: Initialisation: 

3:   Set upper and lower boundary of search space 

4:   Set maximum iteration,     

5:   Set number of search point   where      
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6:   Set chaotic spiral radius,         where       is chaotic singer map [-1,1] 

7:   Set spiral angle,   where        

8:   Set initial points                    in the search space using Chaotic-OB  

9: 
  Choose the centre of spiral    as       

                (     )      

        

10: while iteration,  ≤      do 

11:     for all   to   do 

12: 

        Updating    ;  

                             [                  ] 
    

           
 

 

13:     End for 

14:     Updating   ;       
                 (       )              

15:           

16: end while 

 

3.3.2 Statistical test for selection of suitable chaotic maps for CSDA algorithm 

There are many types of chaotic maps available to use in CSDA. But the question is, which 

one is most suitable to lead the CSDA to be faster and give accurate results. The statistical 

significant test is performed in order to choose the best chaotic maps. In this section, on-

parametric test Kruskal-Wills is used for statistical significant analysis with various types of 

chaotic maps. Table 3.1 shows the list of chaotic maps that will be used in this statistical 

significant test. Kruskal-Willis test enables to evaluate the significant data difference between 

more than 2 groups. The methods are created based on one way anova and Wilcoxon rank 

sum test. All samples are assumed to be from the same group of continuous distribution and 

that they are mutually independent. All the data will be rank by Kruskal-Willis test. The main 

hypothesis for this test is that the algorithms perform the same and their median is the same. 

If Kruskal-Willis test shows that at least one algorithm is different from others, the 

hypothesis is rejected at 95% confidence interval. These tests are run based on 95% 

confidence interval and the simulations are run 30 times for each algorithm. If there are 

significant improvements compared to the other CSDA variations the p-value will be less 

than 0.05. In this test, 10 chaotic maps are used in CSDA (based on the work by Saremi et al.  

[122]) and each is in 6 benchmark functions (Table 3.2) in 10, 30, 50 and 70 dimensions. The 

selection of number of dimensions for this experiment is based on the work of Karaboga [57]. 

It is sufficient to evaluate the performance of algorithms. As most benchmark functions 
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constitute minimisation problems, the lowest rank in Kruskal-Willis test show that algorithms 

are most likely able to perform better compared to others. 

Table 3.1:- Chaotic Maps mathematical expression 

Chaotic 

map 
Mathematical expression Range 

Chebyshev         (          ) [-1,1] 

logistic 
                   

 
[0,1] 

Iterative         (
  

  

*        [-1,1] 

Gauss      {

                 
 

         
           

 [0,1] 

Tent      {

  

   
               

  

 
             

 [0,1] 

Sine      
 

 
         [0,1] 

Circle         (     (
 

  
)            )                   [0,1] 

Piecewise      

{
 
 
 

 
 
 

  

 
                          

    

     
                    

      

     
           

    

 
                 

       [0,1] 

Singer       (              
         

             
 )        [0,1] 

sinusoidal         
                [0,1] 

 

Table 3.3 to Table 3.6 show the numerical results in all tested dimensions for CSDA and 

original SDA algorithm. The results show that the CSDA outperformed SDA in all cases. The 

standard deviation was also improved with CSDA, which implies that CSDA was able to give 

a stable results. The results also show that good output was achieved with four of the chaotic 

maps. There were sine map, circle map, singer map and sinusoidal map. The main reason for 

ability of these 4 chaotic maps to improve CSDA is the initial starting point and the 

distribution pattern. Table 3.7 shows the statistical significant test for CSDA using Kruskal-

Willis non parametric test, where the lowest rank shows that the algorithm has performed 

better. In this test, the CSDA using singer map was in lowest rank, which implies that the 

singer map enabled the CSDA to reach the lowest optimal point in most tested benchmark 
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functions. Thus, the singer maps will be used in CSDA in all subsequent experiments and 

tests. Mathematical expressions and associated ranges of the maps used in this work are 

shown in Table 3.2.  

Table 3.2:- Benchmark functions 

Function Mathematical formulations Range 

Sphere ∑   
 

 

   
 [-5.12,5.12] 

Ackley       .    √
 

 
∑   

 
 

   
/     .

 

 
√∑          

 

   
/       [-32,32] 

Rosenbrock ∑*   (       
 )

 
+         

   

   

 [-5,10] 

Griewank 
 

    
∑   

  ∏    (
  

√ 
*

 

   

 

   
   [-600,600] 

Rastringin     ∑[  
             ]

 

   

 [-5.12,5.12] 

Schwefel            ∑     (√|  |)

 

   

 [-500,500] 

Note:-global minimum for all benchmark functions,     
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Table 3.3 :- CSDA performance result for benchmark function in dimension D=10 
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Table 3.4:- CSDA performance result for benchmark function in dimension D=30 
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Table 3.5:- CSDA performance result for benchmark function in dimension D=50 
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Table 3.6:- CSDA performance result for benchmark function in dimension D=70 
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Table 3.7:- CSDA Statistical significant test 
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3.4 Improved artificial bee colony optimization algorithms 

3.4.1 Adaptive artificial bee colony optimization algorithm  

The ABC was created based on the behaviour of honey bee finding the flower nectar.  So far, 

the classical ABC gives a good results and is an efficient optimization technique compared 

with other optimization algorithms. The ABC is good during exploration in finding good 

possible solution but its performance during exploitation is poor affecting its convergence 

speed [126]. For an optimisation algorithm to perform efficiently, it is crucial to have a 

balance between exploration and exploitation. Exploration is the ability to find the global 

optimum and exploitation is the process to apply the known information to find for better 

possible solutions. Some modifications on the foraging movement behaviour in finding the 

nectar have been proposed in recent years such as [127]–[133]. These modifications have 

focused on balancing between exploration and exploitation and the results have shown that 

the modified ABC has performed better than the original ABC. 

In the adaptive ABC (AABC) proposed here, instead of using random step size, dynamic step 

size based on the fitness value of current search location in the searching area is used. The 

approach leads to a higher convergence speed and better accuracy since the movement of 

bees to the next possible solution is guided by their fitness value. If the value of fitness is 

large, the corresponding location in the search space is far from the optimum solution. Small 

fitness, on the contratary, indicates that the solution arrived by the is good and near to the 

optimum point. Small step size will give more opportunity to perform the search within the 

current position while larger step size will allow the bees to search away from the current 

position and the make bee move faster to the optimum point. By varying the search radius 

within specified range [     ] and using combination of exponential and linear trajectory 

good variation of step size can be realised through the iteration;    is set to the lower range 

(  ) and    is set to the high range (   ). 

In order to further improve the ABC algorithm an acceleration constant,   , is introduced into 

the algorithm along with the best solution so far,     and the chaotic maps. The   is 

adaptively implemented from dynamic step size and the concept is based on the work of 

Nasir [134]  with some modifications as described below. The search in AABC is formulated 

as follows 
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           (       )       (      )  (3.6) 

where     is the new possible solution depending on the previous solution    .    is the best 

so far solution in  th parameter with the ability to fine tune the step size and to ensure the 

algorithm does not get trapped at local optimum.     is neighbour solution,     is random 

value in [-1,1] and       is chaotic map ranging from -1 to 1; this chaotic map is used to give 

sense of randomness to the step size.   is non-negative and controls the value of step size. 

In the next subsection, three modified versions of ABC algorithms are presented. These are 

Chaotic linear adaptive artificial bee colony (CLABC) algorithm, Chaotic exponential 

adaptive artificial bee colony (CEABC) algorithm and Chaotic linear exponential adaptive 

artificial bee colony (CLEABC) algorithms. The modifications provided empowers the 

algorithms with dynamic and efficient exploration and exploitation capability. Beside the 

introduction of best solution so far and chaotic maps in equation (3.6) , two types of 

acceleration constant namely chaotic exponential and chaotic liner  acceleration are 

introduced. The acceleration constant can  alter the movement direction of the bee.  

3.4.1.1        Chaotic linear adaptive artificial bee colony algorithm 

In the CLABC algorithm, the fitness difference between the best fitness so far and the best 

fitness in current iteration is formulated in linear form;   

      .  
  

  (|       (   )    |)
⁄ /     (3.7) 

where    is linear acceleration constant,     is a tunable maximum bee step size with the 

value must be choose within [0,-1].    is maximum radius in particular itterations with the 

value must be choose within [0,-1].     is positive constant to be tuned heuristically,    is a 

positive scalling factor .    is the best so far solution in  th parameter while        (   ) is 

finess value in particular food location.Tuneable parameters           have the role to 

ensure that    does not grow too big or not too small. By applying    into ABC, the step size 

for next location is more effective and dynamic. The role of the best fitness in current cycle, 

   is to ensure those bees are flying toward the best position in a particular cycle. When 

|       (   )    | is small the  
  

  (|       (   )   |)
 will become big, the bee will search 
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near to the maximum step size. And when the |       (   )    | is big, the 

  

(|       (   )   |)
 will become small, the bee will search for possible solution near to the 

minimum step size. This movement of search will vary linearly and depending on the fitness 

value of current iteration and also in particular food location. The update relation for CLABC 

is thus given as 

            (       )        (      )   (3.8) 

 

3.4.1.2 Chaotic exponential adaptive artificial bee colony algorithm 

In the CEABC algorithm, the step size is modified to ensure the searching movements for the 

best solution are more dynamic and efficient. Instead of using the concept of random 

movement, the exponential constant,    is been introduced.    enables to control the size of 

step size exponentially. The exponential characteristic can lead the searching toward to the 

optimum point. The CEABC uses an exponential function for updating the new location of 

bee as follows 

      .  
  

     (  (|       (   )    |))
⁄ /     (3.9) 

where    is constant exponential acceleration,           are constant to be tuned 

heuristically and     acts as scaling factor.     is a tunable maximum bee step size with value 

within [0,-1].    is maximum radius in particular itterations with the value must be choose 

within [0,-1].  The positive scaling factor    will control the value of    (  |       (   )  

  |) not to grow big when the fitness deviation is large and    is used to scale down the  

  

(     |         (   )   |)
   to the become very small and this will lead the bee go to the 

nearest position of the optimum point. The other processes follow the original ABC. The 

CLABC is mathematically formulated as 

            (       )        (      )   (3.10) 
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3.4.1.3  Chaotic linear exponential adaptive artificial bee colony algorithm 

In the CLEABC algorithm, a linear acceleration constant,    and exponential acceleration 

constant,    are used together. The search strategies of bees are been modified to enhance the 

exploration capabilities of onlooker bee and employed bees. The bee movement in the search 

area in onlooker bee and employed bee stages are modified to let the bees move to the food 

sources exponentially and then adjust their position linearly. The update equation of 

CLEABC is given as 

                    (       )        (      )   (3.11) 

where       is the new possible solution depending on the previous solution    .    is the best 

so far solution in  th parameter with the ability to fine tune the step size and to ensure the 

algorithm does not get trapped at local optimum.     is neighbour solution,     is random 

value in [-1,1], and       is chaotic map ranging from -1 to 1; this chaotic map is used to 

give sense of randomness to the step size. The non-negative acceleration constant,   controls 

the value of step size.  

3.4.2 Computational steps of adaptive artificial bee colony algorithm 

The main computation steps of adaptive ABC are similar to those of the original ABC 

discussed in chapter 2 with some changes. The first change is the formulation of new position 

of solution in onlooker bee and employed bee stages and the second chance is the initial 

distribution using chaotic and opposition based learning method as described earlier. As 

mention earlier, three types of formulation are used in the AABC for provision of new 

positions of solutions leading to the CLABC, CEABC and CLEABC algorithms. The 

computation steps of the AABC algorithm are given in the pseudo code below 

Algorithm 3.3: Adaptive Artificial Bee Colony Algorithm (AABC) 

1: 
Objective function of      , Dimension, D, Number of Food, NF, Number of Bee, 

Limit value, upper and lower boundary of search space, maximum iteration     

2: Initialization: 

3: Set initial Distribution of population,  in the search space using Chaotic-OB 

4: Evaluate the population fitness 

5: Iteration = 1 

6: while iteration,   ≤ maximum iteration,     do 

7:     for all     to    do 
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8:  

Produced new food source  

                   (       )        (      )   

                   (       )        (      )   

                    (       )        (      )   

9:  Evaluate the fitness of new food source     

10:         
Compare fitness between     and     and choose the better one. (greedy 

selection) 

11:  If the solution is not improved                 

12:     End for 

13:  Calculate the probability,                 using equation (2.6) 

14: end while 

15         

16: repeat 

17:  If random <                then 

18:   

Produced new food source using  

                   (       )        (      )   

                   (       )        (      )   

                    (       )        (      )   

19:  Evaluate the fitness of new food source     

20:  
Compare fitness between     and     and choose the better one. (greedy 

selection) 

21:  If the solution is not improved                 , otherwise          

22:        

23:  End if 

24: Until        

25: If               then 

26:  
Replace abundant food source with a new food source using  

  
 
     

 
          (    

 
     

 
) 

27: End if 

28: Keep the best solution  

29: Iteration = iteration +1 

30: Until (iteration = MCN) 

 

3.5 Hybridisation of spiral dynamic algorithm and artificial bee colony 

algorithm 

Combining more than two algorithms is an alternative way to improve the performance of the 

algorithms. Such strategies use the best features in each algorithm to create new algorithms. 

The expectation in a hybrid strategy is that the algorithm should be more accurate and able to 
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outperform the original algorithms in solving problems in applications [135]–[146]. The 

proposed new hybrid algorithms using SDA and ABC are introduced in this section. 

These combinations of algorithms are developed based on the explanations in introduction of 

ABC and SDA in the previous chapters. The ABC is a good algorithm but as its structure 

consists of multiple search agents, during exploration and exploitation, it struggles in case of 

high dimension problems. The time taken to run the algorithm can be considered long 

because of this issue. However, ABC is able to give good and accurate final value. SDA, on 

the other hand, can easily get trapped at local optimum because of fix trajectory (lack of 

randomness) but in one hand, the execution time of SDA is relatively short. Taking the 

advantages of both algorithms, three types hybrid algorithms are proposed. The first 

algorithm is to improve the SDA by embedding scout bee into SDA. The second algorithm is 

to use spiral trajectory from SDA in ABC and the third hybrid algorithm in this research is 

combination of both algorithms in series where SDA will perform exploration while in later 

stage ABC will perform the exploitation. 

3.5.1 Scout bee spiral dynamic algorithm 

In the proposed Scout bee spiral dynamic algorithm (SBSDA), a scout bee phase is 

introduced to ensure that the algorithm does not get trapped at local optima and its 

performance is improved. The scout bee phase is adopted from ABC algorithm. Although a 

new phase is introduced, the main body of SDA is still maintained with Chaotic-OB initial 

distribution. 

In the SBSDA, the scout bee will act as a reset button when SDA is trapped in local optimum 

point after iteration count. The reset mechanism is are trigger by predetermined value of 

limit. The limit counter will increase by 1 when the solution is not improved in each iteration. 

When the limit value is reached the non-improved solutions will regenerate to the new 

solutions by random distribution. When the new solutions are randomly reproduced, the 

centre of spiral and the best solution from the past iteration together with new solutions are 

used to lead the spiral movement to better optimum points in next iteration. The limit will 

reset back to 0 if the solution is improved. The mathematical formulation to reproduce the 

new solution is defined as:- 

  
 
     

 
          (    

 
     

 
) (3.12) 
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where   is a dimensional vector,    is a solution,         ,      and      is the 

boundaries of the search space. The computation steps of SSDA are shown in pseudo code 

below 

Algorithm 3.4: Scout Bee Spiral Dynamic Algorithm 

1: Objective function of       

2: Initialisation: 

3:   Set upper and lower boundary of search space 

4:   Set maximum iteration,     

5:   Set number of search point   where      

7:   Set spiral angle,   where        

8:   Set initial points                    in the search space using Chaotic-OB 

9: 
  Choose the centre of spiral    as       

                (     )      

        

10: while iteration,  ≤      do 

11:     for all   to   do 

12: 
        Updating    ;  

                     [          ] 
               ( 1. 1 ) 

 

13:     End for 

14:     Updating   ;       
                 (       )              

25: If               then 

26: 
Replace non improved point  with a new point distribution using  

  
 
     

 
          (    

 
     

 
) 

27: End if 

  

15:           

16: end while 

3.5.2 Spiral bee algorithm 

The spiral bee algorithm (SBA) is created from combination of chaotic map, searching 

technique of ABC and searching movement/direction of SDA. Firstly, the initial distribution 

of food source is made using Chaotic-OB distribution. Chaotic-OB distribution is used to 

ensure the initial population is from good solutions. In step 2, an employed bee moves to the 

new food source in spiral pattern using logistic chaotic map as a spiral radius,       . The 

mathematical formulation for new food source        is given as 

 

                             [                  ] 
    

           
(3.13) 
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where       is given by chaotic maps with scale value from 0 to 1.       is chaotic rotational 

angle with angle between 0 to 2π,      is identity matrix ,    is centre of spiral,   is number of 

iterations,   is number of points,         =      (                   ) ,      is 

composition rotation matrix, where     (                   ) is rotation       matrix. To 

enhance the exploitation capability in local region, a new step was introduced by creating 

local search around the         point in random step size. By doing this, the searching can 

be focused in small area where the possibility of finding good solution will increase. The 

search for the new point         within this area is produced by  

                                (3.14) 

where         represents new position of solution is,         is previous solution and     

is neighbour solution, and                 The neighbour position of solution    is 

randomly chosen and it must not be the same with position of solution   . The function of 

random value,    in the equation is to control the position of neighbour food source within 

       . The difference between values of         and     getting smaller will create 

smaller perturbation on position       . Thus, the step size reduces as the search 

approaches the best solution in the search space. 

After producing       , The greedy selection is applied between solution        and 

       . The Fitness of the two solutions is evaluated and the best value will be decided 

based on their fitness. If the         is better compared to       , it will chosen as center 

of spiral, otherwise it will keep the previous location will be kept. This process will repeat 

until the termination criteria criterion is satisfied. The steps of SBA algorithm are presented in 

pseudo code below. 

 

Algorithm 3.5: Spiral bee algorithm 

1: 
Objective function of      , Dimension, D, Number of Food, NF, Number of Bee, 

Limit value, upper and lower boundary of search space, maximum iteration     

2: Initialization: 

3: Set initial Distribution of population,  in the search space using Chaotic-OB 

4: Evaluate the population fitness 

5: Iteration = 1 

6: while iteration,   ≤ maximum iteration,     do 

7:     for all     to    do 

8:  Produced new food source in spiral trajectory 
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                             [                  ] 
    

           

9:  Evaluate the fitness of new food source    

10  Move the bee in random near    

11                                  

12:  Evaluate the fitness of new food source    

13:         
Compare fitness between         ,         and    , then choose the better 

one. (greedy selection) 

14:  If the solution is not improved                 

15:     End for 

16:  Calculate the probability,                 using equation (2.6) 

17: end while 

18:         

19: repeat 

20:  If random <                then 

21:   

Produced new food source using  

                             [                  ] 
    

           

22:  Evaluate the fitness of new food source         

23:  Move the bee in random near    

24:                                  

25:  Evaluate the fitness of new food source         

26:  
Compare fitness between         ,         and    , then choose the 

better one. (greedy selection) 

27:  If the solution is not improved                 , otherwise          

28:        

29:  End if 

30: Until        

31: If               then 

32:  
Replace abundant food source with a new food source using  

  
 
     

 
          (    

 
     

 
) 

33: End if 

34: Keep the best solution  

35: Iteration = iteration +1 

36: Until (iteration = MCN) 

3.5.3 Hybrid artificial bee colony spiral dynamic algorithm 

The hybrid artificial bee colony spiral dynamic (HABCSD) algorithm is a series type hybrid 

strategy where the ABC and SDA parts of the algorithm are in a sequential order. In this 

algorithm, the first part includes chaotic exponential adaptive artificial bee colony algorithm 

(CEABC) and the second part is a chaotic spiral dynamic algorithm (CSDA). Combination of 
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these two algorithms can reduce the risk of algorithm to get trapped at local optimum and 

may speed up the algorithm to converge. 

The algorithm used in the first part of HABCSD is CEABC. In this stage, the initial 

distribution are done randomly. This method of distribution will allow the solutions to spread 

more widely and cover large area in the search space. The search for the next solution in 

onlooker bee and employed bee stage is then performed in exponential way together with 

chaotic maps pattern. The exponential step size and chaotic map give chance to the bees to 

move dynamically and have the potential to find good food sources much better. There are no 

scout bees in this stage to reset the solution if the food is depleted. The scout bee phase from 

the original ABC is incorporated into the last stage after execution of CSDA. The best 

solution found is stored and be used as a center of spiral in the next part of HABCSD. 

The exploitation phase takes place in the second part of HABCSD, where, the CSDA method 

is used. Instead of moving straight toward to the global optimum, it is better for bees to find 

good food sources in wide area along their way to the global point. This can be fulfilled by 

moving the bees in spiral pattern. The bees will fly to find the food sources in spiral pattern 

where chaotic maps are for radius and the values will change in each iteration. In the first 

movement of bees, the bees move in dynamic step size to the local optimal point. Then in a 

later phase of spiral bee movement, the bees are move toward to the global optimal point. 

Thus be said, by moving dynamically toward the optimal point, the bees are able to explore 

the whole area in the search space and get to a good final solution. 

After exploration by CEABC and exploitation by CSDA, the best solution found is stored, 

and after that, the whole process repeats over and over again until the maximum number of 

iterations is reached. In order to reduce the chances of HABCSD algorithm getting trapped at 

local optimum, the scout bee phase is introduced in the last phase of HABCSD. The limit 

counter of scout bee will trigger by 1 in each iteration of unimproved solution. When the 

limit reaches a predetermined value, the solutions in particular population will change to the 

new solution in random.  

The part of HABCSD is an exploration phase, where the movement of bees is in random 

directions. The second part of HABCSD is exploitation phase during which, the bees move in 

spiral pattern and they are guided to the global optimal point. This action enable to produce 

good final solutions. The steps of HABCSD algorithm are presented in pseudo code below. 
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Algorithm 3.6:- Hybrid artificial bee colony spiral dynamic algorithm 

1: 
Objective function of      , Dimension, D, Number of Food, NF, Number of Bee, 

Limit value, upper and lower boundary of search space, maximum iteration     

2: Initialization: 

3: 
Set initial Distribution of population,  in the search space using algorithm 1(initial 

Chaotic-OBL distribution) 

4: Evaluate the population fitness 

5: Iteration = 1 

6: while iteration,   ≤ maximum iteration,     do 

7:     for all     to    do 

8:  
Produced new food source  

                   (       )        (      )   

9:  Evaluate the fitness of new food source     

10:         
Compare fitness between     and     and choose the better one. (greedy 

selection) 

11:  If the solution is not improved                 

12:     End for 

13:  Calculate the probability,                 using equation (2.6) 

14: end while 

15         

16: repeat 

17:  If random <                then 

18:   
Produced new food source using  

                   (       )        (      )   

19:  Evaluate the fitness of new food source     

20:  
Compare fitness between     and     and choose the better one. (greedy 

selection) 

21:  If the solution is not improved                 , otherwise          

22:        

23:  End if 

24: Until        

25:   Set spiral angle,   where        

26: 
  Choose the centre of spiral    as       

                (     )      

        

27: while iteration,  ≤      do 

28:     for all   to   do 

29: 

        Updating    ;  

                             [                  ] 
    

           
 

 

30:     End for 

31:     Updating   ;       
                 (       )              
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32:           

33: If               then 

34:  
Replace abundant food source with a new food source using  

  
 
     

 
          (    

 
     

 
) 

35: End if 

36: Keep the best solution  

37: Iteration = iteration +1 

38: Until (iteration = MCN) 

 

3.6 Summary 

In this chapter, the proposed algorithms based on the SDA and ABC have been described. In 

the first algorithm, the initial distribution modified and the novel Chaotic-OB has been 

developed and used as an initial distribution for all proposed algorithms. The chaotic maps 

are then used in CSDA to give dynamic movement and to help SDA escape from trapped at 

local optima. The introduction of three adaptive ABC with different step sizes enable to 

improve the accuracy of ABC. In the three hybrid versions of ABC and SDA, the use of good 

features from both algorithms enable to help the proposed hybrid algorithms move toward the 

optimum point more efficiently. The hybrid strategies also give balance between exploitation 

and exploration and thus leading the algorithm to achieve better performance. In the next 

chapter, the proposed algorithms will be tested with single objective of unconstrained and 

constrained optimization problems. The performances of the proposed algorithms will also be 

assessed in comparison to those of original ABC and SDA. 
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Chapter 4 

Single Objective Unconstrained and Constrained 

Problems 

 

4.1 Introduction  

This chapter present the performance analyses of the proposed algorithms in unconstrained 

and constrained single objective optimisation problems. In unconstrained single objective 

problems, the algorithms are tested in ten standard benchmark functions and in sixteen 

CEC2014 benchmark functions. While in the constrained problems, the algorithms are tested 

in ten (10) CEC 2006 constrained benchmark functions and in five engineering design 

problems. All the test benches have varieties of problem landscapes, dimensions and 

complexity levels. Non-parametric test and parametric test are used to evaluate the 

performances of the algorithms in comparison to the original SDA and ABC.  

The experiments are carried out using personal computer with CPU Intel ® core i7-3.40Ghz, 

256G solid state drive and 8 GByte memory. The algorithm are coded using MATLAB 

R2015b as a programming and simulation software platform.  

4.2 Single objective problems 

In single objective optimisation problems, the optimum point is either maximum or minimum 

point. An example is by arranging the raw material stock, the staff and the marketing is to 

efficiently maximize the profit. In such examples the objective function,        is often 

defined as minimisation or maximisation cost function [147]. According to [8] the local 

optimum is an optimum point in subset of   and global optimum is an optimum point for all 

the domain  . Figure 4.1 shows the location of minimum and maximum point for local and 

global optimum. 
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Figure 4.1:- Diagram of maximum and minimum point 

The unconstrained optimisation problem can be represented as:- 

                               

where                        

The   number of variables   located within the search space are bounded by the lower bound, 

   and upper bound,   . 

The all proposed algorithms are tested in single objective unconstrained optimisation 

problems with 10, 30 and 50 dimensions. There are 10 standard benchmark functions and 16 

CEC2014 benchmark functions used to evaluate the performance of the proposed algorithms. 

These standard benchmark functions are from Simon [148] and have widely been used by 

researchers to test their algorithms in comparison to other algorithms [148]–[151]. They are 

also suitable to evaluate the proposed algorithms because they have different types of 

characteristics and fitness landscape surfaces with different levels of complexity. Table 4.1 

shows the standard benchmark functions used in the experiments where most of the optimal 

points,    are located at zero. 
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Table 4.1: Standard benchmark functions [149]. 

 

Another set of benchmark function used in the tests are based on IEEE congress on 

evolutionary computation (CEC 2014). [152]. These comprise 16 functions with various 

properties and different fitness landscapes. These benchmark functions are used to test the 

performance of the proposed algorithms, as they possess features that are more advanced with 

complicated landscapes to solve. The functions further have different optimal points to 

challenge the algorithms. Table 4.2 shows the list of CEC 2014 benchmark functions together 

with their properties and their optimal points,   .  

 

 

 

 

 

 

No Benchmark function Type Properties 𝒇 = 𝒇(𝒙 
 ) 

 1( ) Sphere Unimodal  
Continuous, convex has no local 

minima except for the global one 
0 

 2( ) Ackley Multimodal 
Many local minimum,  continous, 

scalable and non-separable. 
0 

 3( ) Rosenbrock Unimodal 
The global minimum lies in a 

narrow, parabolic valley 
0 

 4( ) Griewank Multimodal 
Many local minimum and it 

regularly distributed 
0 

 5( ) Rastrigin Multimodal 
Many local minimum and it 

regularly distributed 
0 

 6( ) Schwefel Multimodal Many local minima 0 

 7( ) Levy Multimodal Many local minima 0 

 8( ) Sum Squares Function Unimodal 
No local minimum, one global 

minimum, continuous, convex  
0 

 9( ) Dixon-Price Function Unimodal Continuous, non-separable 0 

 10( ) 
Rotated Hyper-

Ellipsoid Function 
Unimodal Continuous, convex 0 
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Table 4.2: Summary of the CEC’14 test functions  [152] 

 

4.2.1  Performance measurement 

The performances of the proposed algorithms are tested and evaluated with the original 

algorithms, ABC and SDA in solving the single objective optimisation problems. To ensure 

the proposed algorithms are good in solving those problems, reliability tests of the algorithms 

are carried out using the method reported by Kasdirin [153] where the success criterion is set 

at 10e-4 . This objective of the test is to assess the capability of the proposed algorithms to 

reach predetermined threshold point (in this test the threshold is 10e-4). If the algorithm is 

able converge to or beyond the threshold point, that run can be said as a successful run and 

Function Name of Benchmark function Properties 
𝒇 

= 𝒇(𝒙 
 ) 

 11( ) 
Rotated High Conditioned Elliptic 

Function 

Unimodal, non-separable, quadratic ill-

conditioned 
100 

 12( ) Rotated Bent Cigar Function 
Unimodal, non-separable, smooth but 

narrow ridge 
200 

 13( ) Rotated Discus Function 
Unimodal, non-separable, with one 

sensitive direction 
300 

 14( ) 
Shifted and Rotated Rosenbrock’s 

Function 

Multimodal, non-separable, having a 

very narrow valley from local optimum 

to global optimum 

400 

 15( ) 
Shifted and Rotated Ackley’s 

Function 
Multimodal, non-separable 500 

 16( ) 
Shifted and Rotated Weierstrass 

Function 

Multimodal, non-separable, continuous 

but differentiable only on a set of points 
600 

 17( ) 
Shifted and Rotated Griewank’s 

Function 

Multimodal, non-separable, rotated 

Shifted 
700 

 18( ) Shifted Rastrigin’s Function 
Multimodal, separable, local optima’s 

number is huge 
800 

 19( ) 
Shifted and Rotated Rastrigin’s 

Function 

Multimodal, non-separable, local 

optima’s number is huge 
900 

 20( ) Shifted Schwefel’s Function 

Multimodal, separable, local optima’s 

number is huge and second better local 

optimum is far from the global optimum 

1000 

 21( ) 
Shifted and Rotated Schwefel’s 

Function 

Multimodal, non-separable, Local 

optima’s number is huge and second 

better local optimum is far from the 

global optimum 

1100 

 22( ) 
Shifted and Rotated Katsuura 

Function 

Multimodal, non-separable, Continuous 

everywhere yet differentiable nowhere 
1200 

 23( ) 
Shifted and Rotated HappyCat 

Function 
Multimodal, non-separable 1300 

 24( ) 
Shifted and Rotated HGBat 

Function 
Multimodal, non-separable 1400 

 25( ) 

Shifted and Rotated Expanded 

Griewank’s plus Rosenbrock’s 

Function 

Multimodal, non-separable 1500 

 26( ) 
Shifted and Rotated Expanded 

Scaffer’s F6 Function 
Multimodal, non-separable 1600 
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the number of fitness evaluation and time taken to reach that threshold point is recorded for 

further evaluations.  But if in that run the algorithm fails to converge to the threshold point, 

that run will be indicated as unsuccessful or labelled as ‘US’. By calculating the percentage 

of success rate (SR) the reliability of the algorithm to reach the fitness value within 

predefined number of fitness evaluations (NFEs) can be evaluated. The SR is given as 

   
   

    
      

where     is the number of successful runs and      is the number of runs. The average 

success rate           is given as:- 

          
∑    

    

   

    
                     

where      is total functions used. 

Beside using reliability test to check the performance of algorithms, the non-parametric and 

parametric tests are also used to show the performance of the proposed algorithms verses the 

original algorithms. In the parametric test, to be considered as a good algorithm, the mean 

value should be small to show that the algorithm is able to converge to the optimal value. The 

standard deviation shows how far the optimal values deviate from average. A small value of 

deviation indicates that the algorithm is more stable and more accurate. Non-parametric test 

is used to check the significant improvement by the proposed algorithms in comparison to the 

original SDA and ABC.  

In this research, the non-parametric Kruskal-Wallis test is used. The Kruskal Wallis test are 

enable to compare or to evaluate the significant difference from more than two groups. In the 

test, the samples from all groups must be mutually independent and must be in the same 

population distribution group. Kruskal-Wallis test is one way variance test where the 

hypothesis is that, all the groups perform the same and in the same median. The hypothesis is 

rejected when the p-value is less than 0.05 confident interval, where at least one of the groups 

is significantly different compared to others. In the experiments, the smallest rank value 

indicates that the algorithm perform better to reach the global optimum.  

Nine algorithms are evaluated, two of which are the original SDA and ABC. Table 4.3 shows 

the initial parameters for the tests. These initial parameters are used in all tests for fair 
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performance comparison of the algorithms. To evaluate the robustness and stability of the of 

the proposed algorithms, each algorithm is tested in 30 independent runs for each problem. 

The numerical results consist of the mean, standard deviation and the best result obtained in 

each test. The 30 independent runs is commonly used by researchers in the field to evaluate 

the performances of their algorithms and it provides opportunity for researchers to perform 

fair comparison with other algorithms with same parameter settings [148]–[151] . 

Table 4.3:- Initial Parameter for single objective tests 

4.2.2 Standard benchmark functions tests 

In this section, the performances of the proposed algorithms and the original algorithms are 

assessed with ten standard benchmark functions. The statistical results of the proposed 

algorithms based on 30 independent runs with different dimensions (10, 30, 50 and 70) are 

shown in Tables 4.4 – 4.7, where the smallest average optimum value indicates that the 

algorithm is able to produce a solution near to the global optimum point. The standard 

deviations are also shown for demonstrating the robustness of the algorithms, where the 

lowest standard deviation means the optimal solutions generated is more consistent and 

stable. The best and worse optimal value are also recorded to show the performance of 

algorithm in the search space. The best average results are highlighted in bold font. In Table 

4.4, the statistical results with 10 dimension are presented. It is noted that the original SDA 

with 10 dimension could not reach near to the optimal point in all benchmark functions as it 

apparently got trapped at local optimum. The results shown in Tables 4.5, 4.6 and 4.7 indicate 

similar issues for SDA in dimension 30, 50 and 70.  The original ABC, on other hand, was 

able to converge to the near optimal point in all benchmark functions for all dimensions. The 

proposed algorithms, as noted outperformed the original SDA in all benchmark functions. 

 Algorithms 

Parameters ABC SDA CSDA CLABC CEABC CLEABC SBSDA SBA HABCSDA 

  - 0.95 0.95 - - - 0.95 0.95 0.95 

  - 450 450 - - - 450 450 450 

  - 30 30 - -  30 30 30 

Limit 100 - - 100 100 100 100 100 100 

NF 30 - - 30 30 30 30 30 30 

itter 1600 1600 1600 1600 1600 1600 1600 1600 1600 

 (0)     0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 

   - - - 1 1 1 - - - 

 2 - - - 0.5 0.5 0.5 - - - 

 1 - - - 0.5 0.5 0.5 - - - 

 2 - - - 0.8 0.8 0.8 - - - 
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The featured integration of ABC and SDA has enabled HABCSDA to outperform all 

algorithms in at least 5 benchmark functions for all tested dimensions by converging nearest 

to the optimal point. It is also noted that HABCSDA achieved a good result in    with 

dimension 10. However, in dimensions 30, 50 and 70, ABC performed better. Table 4.4 

shows that the modified versions of ABC (CEABC, CLABC and CLEABC) performed better 

than the original ABC, while in the modified version of SDA, CSDA performed better than 

SDA in all benchmark functions in all tested dimensions. 

Table 4.4: -Results of benchmark function with 10 dimension 

 

  ABC SDA CSDA CLABC CEABC CLEABC SBSDA SBA HABCSDA 

 1 

Avg 9.53E-17 1.70E+01 5.23E+00 6.92E-17 3.51E-25 2.47E-29 4.80E+00 1.94E-16 3.67E-29 

SD 3.60E-17 1.81E+01 4.94E+00 1.48E-17 1.11E-24 7.75E-29 5.47E+00 8.70E-17 1.16E-28 

worse 1.91E-16 4.98E+01 1.44E+01 8.31E-17 3.51E-24 2.45E-28 1.82E+01 3.09E-16 3.67E-28 

best 5.84E-17 2.68E-01 1.24E+00 3.48E-17 8.98E-46 2.50E-50 5.18E-01 8.39E-17 2.39E-55 

 2 

Avg 8.35E-15 1.92E+01 1.58E+01 5.51E-15 8.88E-16 8.88E-16 1.64E+01 2.72E-14 8.88E-16 

SD 1.07E-15 1.06E+00 1.72E+00 1.72E-15 0.00E+00 0.00E+00 3.62E+00 1.10E-14 0.00E+00 

worse 1.15E-14 2.03E+01 1.82E+01 7.99E-15 8.88E-16 8.88E-16 2.00E+01 4.35E-14 8.88E-16 

best 7.99E-15 1.71E+01 1.22E+01 4.44E-15 8.88E-16 8.88E-16 9.42E+00 1.51E-14 8.88E-16 

 3 

Avg 3.73E-02 5.11E+03 9.28E+02 4.35E-02 6.11E+00 6.27E+00 2.13E+03 5.72E-02 2.54E-02 

SD 3.42E-02 9.81E+03 2.81E+03 3.71E-02 1.07E+00 1.61E+00 6.62E+03 4.61E-02 2.81E-02 

worse 1.27E-01 3.15E+04 8.93E+03 1.44E-01 7.06E+00 7.84E+00 2.10E+04 1.46E-01 7.73E-02 

best 5.75E-03 8.74E-01 2.23E-01 1.71E-02 4.55E+00 3.38E+00 1.16E+00 1.49E-02 9.74E-04 

 4 

Avg 1.48E-03 6.32E+01 3.07E+01 3.44E-16 0.00E+00 0.00E+00 1.06E+01 1.96E-03 0.00E+00 

SD 2.97E-03 7.20E+01 2.07E+01 1.05E-15 0.00E+00 0.00E+00 7.18E+00 3.69E-03 0.00E+00 

worse 7.43E-03 1.97E+02 6.88E+01 3.33E-15 0.00E+00 0.00E+00 2.75E+01 1.01E-02 0.00E+00 

best 1.11E-16 2.35E+00 9.39E+00 0.00E+00 0.00E+00 0.00E+00 1.69E+00 1.11E-16 0.00E+00 

 5 

Avg 0.00E+00 9.19E+01 4.73E+01 0.00E+00 0.00E+00 0.00E+00 5.04E+01 1.28E-14 0.00E+00 

SD 0.00E+00 2.91E+01 2.77E+01 0.00E+00 0.00E+00 0.00E+00 1.65E+01 1.56E-14 0.00E+00 

worse 0.00E+00 1.25E+02 1.13E+02 0.00E+00 0.00E+00 0.00E+00 8.06E+01 4.26E-14 0.00E+00 

best 0.00E+00 3.41E+01 2.06E+01 0.00E+00 0.00E+00 0.00E+00 3.22E+01 0.00E+00 0.00E+00 

 6 

Avg 1.27E-04 2.57E+03 1.58E+03 1.27E-04 1.27E-04 3.26E+02 1.21E+03 -1.9E+173 1.27E-04 

SD 4.17E-13 8.04E+02 9.24E+02 0.00E+00 4.39E-13 1.02E+02 4.04E+02 -1.9E+173 4.39E-13 

worse 1.27E-04 3.07E+03 2.85E+03 1.27E-04 1.27E-04 4.57E+02 1.93E+03 -1.48E+06 1.27E-04 

best 1.27E-04 4.34E+02 6.51E+02 1.27E-04 1.27E-04 1.20E+02 7.90E+02 -1.9E+174 1.27E-04 

 7 

Avg 8.20E-17 7.43E+00 6.12E+00 1.04E-16 9.55E-17 1.44E-16 4.98E+00 1.76E-16 1.12E-16 

SD 9.69E-18 5.90E+00 3.95E+00 4.06E-17 1.29E-17 6.76E-17 2.79E+00 8.09E-17 5.21E-17 

worse 9.54E-17 2.12E+01 1.34E+01 2.12E-16 1.10E-16 2.61E-16 1.06E+01 3.07E-16 2.21E-16 

best 6.61E-17 9.09E-01 1.53E+00 6.37E-17 7.04E-17 4.48E-17 1.46E+00 4.29E-17 5.86E-17 

 8 

Avg 7.61E-17 1.40E+02 6.96E+01 5.08E-17 2.20E-189 2.47E-17 1.21E+02 1.80E-16 0.00E+00 

SD 1.53E-17 2.20E+02 4.22E+01 1.56E-17 0.00E+00 1.06E-17 1.31E+02 9.92E-17 0.00E+00 

worse 1.05E-16 7.58E+02 1.45E+02 8.17E-17 2.20E-188 4.45E-17 4.06E+02 3.27E-16 0.00E+00 

best 5.27E-17 3.07E+01 6.13E+00 2.59E-17 0.00E+00 1.30E-17 3.12E+00 6.95E-17 0.00E+00 

 9 

Avg 2.76E-09 4.01E+02 8.33E+02 3.16E-06 6.67E-01 1.25E-05 1.12E+03 5.42E-05 1.35E-05 

SD 2.84E-09 7.32E+02 1.81E+03 3.70E-06 1.53E-16 1.35E-05 1.69E+03 5.37E-05 1.18E-05 

worse 8.26E-09 1.78E+03 5.60E+03 1.16E-05 6.67E-01 4.08E-05 4.70E+03 1.58E-04 3.65E-05 

best 2.00E-11 1.12E-06 1.71E-07 9.83E-08 6.67E-01 1.27E-06 3.95E-03 4.45E-06 4.26E-07 

 10  

Avg 7.67E-17 1.95E+04 6.55E+03 4.46E-17 0.00E+00 2.44E-17 6.46E+03 1.83E-16 0.00E+00 

SD 2.24E-17 1.58E+04 5.18E+03 1.20E-17 0.00E+00 9.67E-18 5.21E+03 8.07E-17 0.00E+00 

worse 1.02E-16 4.53E+04 1.91E+04 6.86E-17 0.00E+00 4.33E-17 1.80E+04 2.73E-16 0.00E+00 

best 2.62E-17 1.10E+03 1.61E+03 2.67E-17 0.00E+00 1.35E-17 1.11E+03 8.36E-17 0.00E+00 
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Table 4.5: -Results of benchmark function with 30 dimension 

 

Table 4.5  shows the results of tests of seven proposed algorithms and the two original 

algorithms for 30 dimensional benchmark functions and Table 4.6  and Table 4.7  show the 

results in 50 and 70 dimensions respectively. As noted in those tables, all algorithms 

struggled to reach the optimal point as the problem dimension increased from 10 to 70. It is 

also noted that the proposed algorithms were able to deal with the problems effectively in 

multimodal problems (               . In unimodal benchmark problems                 , 

the proposed algorithms CEABC,CLEABC and HABCSDA were able to achieve more 

accurate results, but the ABC outperformed other algorithms in unimodal function     in 

30,70 dimensional problems and       in 50 dimensional dimension problems.  

In case of the hybrid algorithms, it is clearly noted that HABCSDA performed better than 

others. HABCSDA was able to handle the high dimensional problems effectively as shown in 

  ABC SDA CSDA CLABC CEABC CLEABC SBSDA SBA HABCSDA 

 1 

Avg 8.07E-16 1.58E+02 3.64E+01 5.64E-16 1.07E-48 6.80E-25 5.26E+01 2.67E-11 4.26E-34 

SD 1.51E-16 4.95E+01 2.12E+01 9.18E-17 3.39E-48 2.14E-24 2.02E+01 3.84E-11 1.35E-33 

worse 1.13E-15 2.06E+02 6.28E+01 7.11E-16 1.07E-47 6.77E-24 1.05E+02 1.31E-10 4.26E-33 

best 6.38E-16 5.30E+01 8.08E+00 4.64E-16 2.67E-170 7.45E-147 3.38E+01 1.30E-12 8.36E-180 

 2 

Avg 2.52E-10 2.00E+01 1.94E+01 2.99E-13 8.88E-16 8.88E-16 1.93E+01 7.46E-05 8.88E-16 

SD 1.10E-10 5.98E-01 6.38E-01 1.10E-13 0.00E+00 0.00E+00 7.19E-01 3.84E-05 0.00E+00 

worse 5.06E-10 2.04E+01 2.05E+01 5.44E-13 8.88E-16 8.88E-16 2.03E+01 1.56E-04 8.88E-16 

best 8.21E-11 1.84E+01 1.86E+01 1.75E-13 8.88E-16 8.88E-16 1.77E+01 3.00E-05 8.88E-16 

 3 

Avg 5.93E-02 6.99E+04 7.92E+04 5.41E-01 2.63E+01 2.75E+01 2.11E+04 1.10E+00 8.80E-01 

SD 8.45E-02 6.88E+04 8.08E+04 7.55E-01 1.24E+00 5.37E-01 2.15E+04 1.56E+00 6.80E-01 

worse 2.84E-01 2.52E+05 2.18E+05 2.48E+00 2.75E+01 2.80E+01 5.24E+04 5.29E+00 2.11E+00 

best 2.61E-03 1.21E+04 4.88E+03 2.92E-02 2.35E+01 2.61E+01 9.94E+01 4.62E-02 1.55E-01 

 4 

Avg 9.99E-04 5.34E+02 2.06E+02 2.57E-12 0.00E+00 0.00E+00 1.83E+02 1.37E-03 0.00E+00 

SD 3.00E-03 1.86E+02 1.39E+02 8.10E-12 0.00E+00 0.00E+00 9.19E+01 3.91E-03 0.00E+00 

worse 9.99E-03 6.88E+02 5.67E+02 2.56E-11 0.00E+00 0.00E+00 3.66E+02 1.25E-02 0.00E+00 

best 2.22E-16 1.90E+02 7.63E+01 1.11E-16 0.00E+00 0.00E+00 1.47E+01 2.90E-09 0.00E+00 

 5 

Avg 1.93E-13 3.28E+02 2.51E+02 3.07E-13 0.00E+00 0.00E+00 2.47E+02 4.69E-05 0.00E+00 

SD 1.20E-13 1.03E+02 8.50E+01 7.34E-13 0.00E+00 0.00E+00 4.65E+01 1.26E-04 0.00E+00 

worse 4.55E-13 4.61E+02 4.62E+02 2.39E-12 0.00E+00 0.00E+00 3.31E+02 4.03E-04 0.00E+00 

best 5.68E-14 1.95E+02 1.61E+02 0.00E+00 0.00E+00 0.00E+00 1.90E+02 2.31E-07 0.00E+00 

 6 

Avg 1.19E+01 8.72E+03 7.60E+03 3.82E-04 1.35E+02 1.69E+03 5.15E+03 -1.90E+33 1.72E+02 

SD 3.55E+01 2.70E+03 2.63E+03 2.85E-07 9.34E+01 1.45E+02 2.17E+03 6.02E+33 1.40E+02 

worse 1.18E+02 1.09E+04 1.04E+04 3.83E-04 2.59E+02 1.87E+03 9.74E+03 -2.97E+07 4.75E+02 

best 3.82E-04 4.50E+03 3.50E+03 3.82E-04 3.82E-04 1.42E+03 3.30E+03 -1.90E+34 4.47E-04 

 7 

Avg 8.55E-16 3.67E+01 3.02E+01 1.08E-12 3.78E-11 5.06E-13 3.40E+01 4.29E-11 1.22E-10 

SD 1.41E-16 8.70E+00 7.74E+00 2.44E-12 2.51E-11 4.56E-13 1.79E+01 2.60E-11 1.47E-10 

worse 1.17E-15 4.82E+01 4.61E+01 7.96E-12 7.29E-11 1.23E-12 8.20E+01 8.26E-11 5.16E-10 

best 7.28E-16 2.14E+01 2.14E+01 5.01E-14 3.78E-12 6.30E-14 1.98E+01 1.10E-11 1.98E-11 

 8 

Avg 7.48E-16 7.14E+03 2.72E+03 4.35E-16 0.00E+00 2.61E-16 1.91E+03 1.51E-09 0.00E+00 

SD 1.17E-16 3.89E+03 2.28E+03 1.49E-16 0.00E+00 6.88E-17 7.23E+02 2.35E-09 0.00E+00 

worse 9.92E-16 1.10E+04 8.94E+03 6.26E-16 0.00E+00 3.28E-16 3.32E+03 7.82E-09 0.00E+00 

best 5.50E-16 1.54E+03 1.08E+03 1.31E-16 0.00E+00 9.36E-17 8.06E+02 1.95E-10 0.00E+00 

 9 

Avg 1.02E-03 8.91E+04 9.06E+03 2.22E-02 6.67E-01 2.07E-02 1.57E+04 4.97E-02 4.47E-02 

SD 7.00E-04 6.14E+04 6.60E+03 2.38E-02 4.20E-07 2.15E-02 1.53E+04 5.06E-02 5.59E-02 

worse 2.44E-03 2.27E+05 2.02E+04 8.41E-02 6.67E-01 8.04E-02 4.05E+04 1.79E-01 1.91E-01 

best 2.79E-04 2.55E+04 4.75E+01 2.45E-03 6.67E-01 8.29E-03 3.79E+03 1.18E-02 5.27E-03 

 10  

Avg 7.90E-16 2.84E+05 1.28E+05 4.99E-16 1.26E-95 2.95E-16 1.51E+05 3.54E-08 0.00E+00 

SD 1.11E-16 1.74E+05 1.01E+05 1.19E-16 3.99E-95 8.65E-17 3.94E+04 3.24E-08 0.00E+00 

worse 9.81E-16 5.34E+05 3.90E+05 7.36E-16 1.26E-94 4.46E-16 2.26E+05 9.66E-08 0.00E+00 

best 6.64E-16 8.35E+04 5.19E+04 3.11E-16 0.00E+00 1.58E-16 9.90E+04 1.57E-09 0.00E+00 
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Table 4.7. Adaptation of scout bee into SDA has enhanced the search capability of SBSDA to 

ensure it does not get trapped at local optima.  

The statistical performance measurements show that the CSDA and SBSDA were able to 

avoid local optimum problems and outperform the original SDA. Adaptive ABC based on the 

modified step size outperformed the original ABC in most of the problems. The hybrid 

version HABCSDA was able to converge near to the optimal effectively in multimodal 

problems and had high accuracy in dealing with unimodal problems.  

Figure 4.2 and Figure 4.3 show the convergence of algorithms in 10 and 50 dimensional 

problems. These convergence plots are based on 30 independent runs. As noted in Figure 4.2 

ABC, CLABC, CEABC, SBA, CLEABC, HABCSDA converged faster in the first 1000 

iterations. It is also noted that CLEABC and CEABC jumped straight to the minimum 

optimal point for all functions in less than 100 iteration. HABCSDA performed very well in 

all functions for 10 dimensional problems. The HABCSDA converged slowly in early stage 

of iteration, but in the exploitation stage, HABCSDA reached the optimal point faster than 

others. Although CSDA and SBSDA are developed to resolve the problem of SDA getting 

trapped at local optima, they only improved slightly better than SDA. 

Most of the proposed algorithms performed well in low dimensional problems. To further 

evaluate the performance of the algorithms they were tested in 70 dimensional problems as 

shown in Figure 4.3. As noted, HABCSDA converged to the optimal point in most of the 

benchmark functions except in function   . The exponential trajectory helped CEABC and 

CLEABC to converge faster to the minimum point except in functions      . In function   , 

only HABCSDA was able to go further toward the optimal point. Consistent trapping at local 

optimum happened for SDA and SBSDA. It appears that the scout bee was not able to lead 

SDA to solve the given problems efficiently. 

The statistical and convergence analyses show that the proposed algorithms outperformed the 

original algorithms. Combination of SDA and ABC has enable HABCSDA to converge to the 

optimal point faster than other algorithms with more accurate results. The proposed ABC 

variants have performed well in all problems. 
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Table 4.6: -Results of benchmark function with 50 dimension 

 

 

 

 

 

 

 

 

  ABC SDA CSDA CLABC CEABC CLEABC SBSDA SBA HABCSDA 

 1 

Avg 4.40E-13 2.91E+02 1.11E+02 1.23E-15 3.37E-21 2.92E-20 1.24E+02 2.14E-07 5.15E-267 

SD 4.83E-13 8.72E+01 2.06E+01 2.63E-16 1.07E-20 8.32E-20 6.12E+01 9.78E-08 0.00E+00 

worse 1.61E-12 3.63E+02 1.40E+02 1.62E-15 3.37E-20 2.65E-19 2.86E+02 4.13E-07 5.15E-266 

best 6.47E-14 1.04E+02 8.15E+01 8.07E-16 0.00E+00 6.38E-43 7.02E+01 1.00E-07 0.00E+00 

 2 

Avg 2.66E-05 2.02E+01 1.98E+01 3.23E-08 8.88E-16 2.31E-15 1.98E+01 1.78E-02 8.88E-16 

SD 1.41E-05 4.07E-01 3.90E-01 2.51E-08 0.00E+00 1.83E-15 4.47E-01 9.09E-03 0.00E+00 

worse 5.61E-05 2.06E+01 2.03E+01 9.17E-08 8.88E-16 4.44E-15 2.04E+01 3.91E-02 8.88E-16 

best 1.06E-05 1.94E+01 1.92E+01 6.47E-09 8.88E-16 8.88E-16 1.92E+01 7.09E-03 8.88E-16 

 3 

Avg 7.69E-01 3.46E+05 1.79E+05 3.15E+01 4.70E+01 4.77E+01 2.07E+05 1.78E+01 2.78E+01 

SD 5.15E-01 1.80E+05 1.27E+05 2.53E+01 6.80E-01 3.35E-01 1.73E+05 2.59E+01 1.92E+01 

worse 1.61E+00 7.38E+05 4.65E+05 7.52E+01 4.78E+01 4.82E+01 6.48E+05 8.07E+01 4.88E+01 

best 3.76E-02 1.51E+05 6.33E+04 1.00E+00 4.59E+01 4.70E+01 5.25E+04 6.58E-01 3.68E+00 

 4 

Avg 1.80E-05 8.28E+02 3.78E+02 1.86E-12 0.00E+00 0.00E+00 3.97E+02 8.61E-03 0.00E+00 

SD 5.38E-05 3.86E+02 8.91E+01 5.71E-12 0.00E+00 0.00E+00 9.50E+01 1.21E-02 0.00E+00 

worse 1.79E-04 1.23E+03 4.74E+02 1.81E-11 0.00E+00 0.00E+00 5.52E+02 3.32E-02 0.00E+00 

best 1.26E-10 2.95E+02 1.79E+02 5.55E-16 0.00E+00 0.00E+00 2.72E+02 1.00E-04 0.00E+00 

 5 

Avg 4.98E-01 6.56E+02 4.06E+02 6.55E-12 0.00E+00 0.00E+00 4.36E+02 1.72E+00 0.00E+00 

SD 4.98E-01 1.51E+02 5.53E+01 3.49E-12 0.00E+00 0.00E+00 5.63E+01 1.44E+00 0.00E+00 

worse 1.00E+00 7.84E+02 4.95E+02 1.40E-11 0.00E+00 0.00E+00 5.33E+02 5.03E+00 0.00E+00 

best 7.40E-08 4.40E+02 3.07E+02 2.73E-12 0.00E+00 0.00E+00 3.62E+02 2.64E-03 0.00E+00 

 6 

Avg 5.37E+02 1.74E+04 1.06E+04 3.19E+02 8.51E+02 3.92E+03 1.17E+04 -8.39E+274 7.92E+02 

SD 2.75E+02 2.65E+03 4.59E+03 1.45E+02 3.03E+02 1.36E+02 4.43E+03 -8.39E+274 3.90E+02 

worse 9.01E+02 1.94E+04 1.75E+04 5.21E+02 1.42E+03 4.22E+03 1.72E+04 -4.65E+05 1.36E+03 

best 1.18E+02 1.03E+04 6.50E+03 1.18E+02 3.62E+02 3.78E+03 6.60E+03 -8.39E+275 1.21E+02 

 7 

Avg 1.89E-12 6.05E+01 5.21E+01 7.85E-08 7.44E-07 1.17E-07 5.78E+01 8.13E-07 5.07E-06 

SD 1.17E-12 8.78E+00 1.21E+01 7.32E-08 4.91E-07 1.91E-07 1.03E+01 4.94E-07 7.45E-06 

worse 4.29E-12 7.42E+01 7.62E+01 2.41E-07 1.40E-06 6.57E-07 7.93E+01 1.63E-06 2.55E-05 

best 4.69E-13 4.47E+01 2.97E+01 1.22E-08 1.48E-07 1.55E-08 4.15E+01 2.55E-07 6.66E-07 

 8 

Avg 3.50E-11 2.86E+04 1.66E+04 9.69E-16 1.82E-34 8.09E-16 1.01E+04 7.42E-06 0.00E+00 

SD 2.50E-11 7.93E+03 1.21E+04 2.14E-16 5.75E-34 2.29E-16 4.79E+03 5.10E-06 0.00E+00 

worse 9.61E-11 3.46E+04 3.26E+04 1.21E-15 1.82E-33 1.15E-15 1.87E+04 1.54E-05 0.00E+00 

best 7.49E-12 7.27E+03 6.41E+03 6.38E-16 0.00E+00 4.73E-16 4.63E+03 9.80E-07 0.00E+00 

 9 

Avg 6.65E-02 6.34E+05 1.43E+05 9.01E-01 6.67E-01 5.05E-01 2.31E+05 1.52E+00 6.13E-01 

SD 5.07E-02 3.47E+05 5.40E+04 5.32E-01 2.53E-07 1.82E-01 1.40E+05 1.44E+00 1.48E-01 

worse 1.92E-01 1.19E+06 2.07E+05 2.12E+00 6.67E-01 6.67E-01 5.78E+05 4.62E+00 6.75E-01 

best 1.95E-02 1.26E+05 6.88E+04 3.59E-02 6.67E-01 2.26E-01 7.26E+04 3.16E-01 2.00E-01 

 10  

Avg 7.58E-10 1.11E+06 4.90E+05 1.51E-15 1.73E-44 9.91E-16 6.38E+05 2.82E-04 0.00E+00 

SD 8.68E-10 3.63E+05 1.01E+05 2.42E-16 5.48E-44 5.98E-16 2.94E+05 3.35E-04 0.00E+00 

worse 2.46E-09 1.52E+06 6.40E+05 1.76E-15 1.73E-43 2.52E-15 1.16E+06 1.06E-03 0.00E+00 

best 7.27E-11 4.77E+05 3.67E+05 9.73E-16 0.00E+00 3.98E-16 2.62E+05 9.77E-06 0.00E+00 
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Table 4.7: -Results of benchmark function with 70 dimension 

 

 

 

 

 

  ABC SDA CSDA CLABC CEABC CLEABC SBSDA SBA HABCSDA 

 1 

Avg 8.54E-09 3.76E+02 1.76E+02 1.79E-12 5.52E-19 1.04E-19 2.46E+02 1.49E-05 5.08E-229 

SD 4.76E-09 1.57E+02 3.00E+01 1.59E-12 1.36E-18 2.36E-19 9.95E+01 8.79E-06 0.00E+00 

worse 1.66E-08 5.50E+02 2.29E+02 5.82E-12 4.39E-18 7.65E-19 5.20E+02 2.84E-05 5.08E-228 

best 3.78E-09 1.92E+02 1.30E+02 5.54E-13 5.76E-98 3.19E-37 1.87E+02 3.47E-06 0.00E+00 

 2 

Avg 3.96E-03 2.04E+01 2.01E+01 6.75E-06 4.09E-15 6.57E-15 2.00E+01 2.43E-01 3.73E-15 

SD 1.72E-03 2.67E-01 4.29E-01 2.57E-06 2.62E-15 1.83E-15 3.32E-01 2.95E-01 2.25E-15 

worse 6.60E-03 2.07E+01 2.08E+01 1.16E-05 7.99E-15 7.99E-15 2.04E+01 1.06E+00 7.99E-15 

best 1.12E-03 1.98E+01 1.96E+01 3.60E-06 8.88E-16 4.44E-15 1.95E+01 4.92E-02 8.88E-16 

 3 

Avg 3.06E+00 7.65E+05 4.10E+05 6.42E+01 6.67E+01 6.75E+01 4.17E+05 6.20E+01 4.39E+01 

SD 3.12E+00 3.07E+05 1.87E+05 4.11E+01 1.07E+00 6.20E-01 1.50E+05 3.31E+01 2.66E+01 

worse 9.64E+00 1.22E+06 8.16E+05 1.17E+02 6.78E+01 6.84E+01 7.29E+05 1.00E+02 6.87E+01 

best 2.12E-07 3.82E+05 2.13E+05 1.98E+00 6.47E+01 6.68E+01 2.69E+05 7.06E+00 9.83E+00 

 4 

Avg 2.88E-05 1.42E+03 7.33E+02 5.57E-07 0.00E+00 0.00E+00 6.65E+02 3.16E-02 0.00E+00 

SD 3.57E-05 4.60E+02 3.19E+02 1.76E-06 0.00E+00 0.00E+00 1.72E+02 2.70E-02 0.00E+00 

worse 1.15E-04 1.77E+03 1.62E+03 5.57E-06 0.00E+00 0.00E+00 1.09E+03 7.06E-02 0.00E+00 

best 9.80E-07 7.14E+02 5.29E+02 3.23E-11 0.00E+00 0.00E+00 4.10E+02 6.46E-04 0.00E+00 

 5 

Avg 6.28E+00 9.50E+02 7.54E+02 7.47E-08 0.00E+00 0.00E+00 6.69E+02 1.00E+01 0.00E+00 

SD 2.54E+00 2.19E+02 1.98E+02 4.91E-08 0.00E+00 0.00E+00 7.89E+01 4.65E+00 0.00E+00 

worse 1.05E+01 1.15E+03 1.10E+03 1.57E-07 0.00E+00 0.00E+00 8.05E+02 1.90E+01 0.00E+00 

best 2.07E+00 6.46E+02 5.81E+02 2.09E-08 0.00E+00 0.00E+00 5.44E+02 4.86E+00 0.00E+00 

 6 

Avg 1.66E+03 2.01E+04 1.14E+04 1.23E+03 2.19E+03 7.34E+03 9.55E+03 -9.42E+196 2.22E+03 

SD 2.83E+02 6.29E+03 4.50E+03 3.13E+02 4.73E+02 1.92E+02 5.45E+02 -9.42E+196 3.06E+02 

worse 2.10E+03 2.68E+04 2.39E+04 1.88E+03 2.83E+03 7.63E+03 1.07E+04 -1.79E+05 2.62E+03 

best 1.07E+03 1.32E+04 8.32E+03 7.20E+02 1.34E+03 7.10E+03 8.73E+03 -9.42E+197 1.68E+03 

 7 

Avg 2.98E-08 1.23E+02 9.40E+01 2.61E-05 1.01E-04 1.11E-05 8.80E+01 4.89E-05 6.40E-04 

SD 4.28E-08 3.53E+01 1.95E+01 2.44E-05 6.50E-05 8.53E-06 7.91E+00 8.62E-05 1.17E-03 

worse 1.55E-07 2.13E+02 1.33E+02 6.93E-05 2.14E-04 2.53E-05 9.87E+01 2.92E-04 3.88E-03 

best 3.63E-09 7.66E+01 6.67E+01 4.01E-06 2.31E-05 1.70E-06 7.52E+01 2.94E-06 2.52E-05 

 8 

Avg 1.05E-07 4.75E+04 2.66E+04 1.56E-11 5.13E-19 5.56E-13 2.09E+04 4.01E-04 1.54E-57 

SD 6.05E-08 2.19E+04 1.86E+04 1.33E-11 1.22E-18 7.05E-13 9.16E+03 2.97E-04 4.86E-57 

worse 2.43E-07 6.88E+04 6.34E+04 4.65E-11 3.77E-18 2.06E-12 3.83E+04 8.71E-04 1.54E-56 

best 2.47E-08 1.95E+04 1.23E+04 4.67E-12 0.00E+00 2.63E-14 1.19E+04 4.51E-05 0.00E+00 

 9 

Avg 2.38E+00 1.62E+06 8.98E+05 5.11E+00 6.67E-01 6.99E-01 1.21E+06 9.52E+00 7.10E-01 

SD 2.52E+00 6.94E+05 3.35E+05 3.04E+00 1.02E-05 1.02E-01 3.08E+05 5.80E+00 8.97E-02 

worse 7.08E+00 3.15E+06 1.48E+06 9.82E+00 6.67E-01 9.89E-01 1.67E+06 1.74E+01 9.61E-01 

best 1.48E-01 9.59E+05 5.59E+05 1.34E+00 6.67E-01 6.67E-01 5.91E+05 1.36E+00 6.67E-01 

 10 

Avg 6.52E-06 2.28E+06 1.40E+06 4.50E-10 3.21E-19 2.85E-11 1.31E+06 2.64E-02 8.17E-98 

SD 1.39E-05 6.95E+05 6.60E+05 3.16E-10 1.02E-18 2.07E-11 4.20E+05 2.71E-02 2.58E-97 

worse 4.52E-05 2.94E+06 2.72E+06 9.53E-10 3.21E-18 7.58E-11 2.05E+06 8.36E-02 8.17E-97 

best 1.14E-07 1.05E+06 8.43E+05 5.99E-11 0.00E+00 3.66E-12 8.18E+05 2.49E-03 0.00E+00 
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Figure 4.2:- Convergence plot with 10 dimensional standard benchmark functions , (a)Sphere, (b)Akcley, (c)Rosenbrock, (d)Griewank, (e)Rastringin, 

(f)Schwefel. 
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Figure 4.3:- Convergence plot with 70 dimensional standard benchmark functions , (a)Sphere, (b)Akcley, (c)Rosenbrock, (d)Griewank, (e)Rastringin, (f)Schwefel. 
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4.2.2.1      Reliability test 

Table 4.8 and Table 4.9 show results of success rates (SRs) of algorithms for all benchmark 

functions with associated dimensions. As noted, SDA, CSDA and SBSDA were not able to 

reach the threshold marker 10e-4 mainly due to the spiral trajectory not been efficient enough 

to ensure these algorithms to go further to the optimal point. It is further noted the algorithms 

failed to score the success rate in Rosenbrock benchmark function. The algorithms did not 

perform well in 50 and 70 dimensional Dixon Price benchmark function. This failure is due 

to the complexity of the landscape and as the approach was not able to lead the algorithm to 

threshold marker 10e-4 in this kind of problems. 

Table 4.8:- Results of success rate (SR) 

F D 
ABC SDA CSDA CLABC CEABC 

SR NFE SR NFE SR NFE SR NFE SR NFE 

   

10 1 2400 0 - 0 - 1 1560 1 630 

30 1 8280 0 - 0 - 1 5910 1 2670 

50 1 13560 0 - 0 - 1 10350 1 5040 

70 1 20460 0 - 0 - 1 15900 1 7740 

   

10 1 6870 0 - 0 - 1 3810 1 1590 

30 1 21120 0 - 0 - 1 12540 1 5550 

50 1 37380 0 - 0 - 1 21750 1 10230 

70 0 - 0 - 0 - 1 30060 1 15750 

   

10 0 - 0 - 0 - 0 - 0 - 

30 0 - 0 - 0 - 0 - 0 - 

50 0 - 0 - 0 - 0 - 0 - 

70 0 - 0 - 0 - 0 - 0 - 

   

10 0 - 0 - 0 - 1 19020 1 1200 

30 1 31140 0 - 0 - 1 17070 1 4950 

50 1 34230 0 - 0 - 1 17940 1 7170 

70 1 42000 0 - 0 - 1 33600 1 10380 

   

10 1 8100 0 - 0 - 1 3750 1 1020 

30 1 36060 0 - 0 - 1 11340 1 3570 

50 0 - 0 - 0 - 1 19290 1 6660 

70 0 - 0 - 0 - 1 28410 1 10350 

   

10 1 11310 0 - 0 - 1 10380 1 14010 

30 0 - 0 - 0 - 1 42960 0 - 

50 0 - 0 - 0 - 0 - 0 - 

70 0 - 0 - 0 - 0 - 0 - 

   

10 1 2730 0 - 0 - 1 3180 1 3300 

30 1 9660 0 - 0 - 1 12180 1 15720 

50 1 17310 0 - 0 - 1 22530 1 29190 

70 1 25830 0 - 0 - 1 29760 1 40740 

   

10 1 2820 0 - 0 - 1 2010 1 1200 

30 1 9630 0 - 0 - 1 7530 1 5310 

50 1 15960 0 - 0 - 1 12660 1 9180 

70 1 23700 0 - 0 - 1 18660 1 14430 

   

10 1 13650 0 - 0 - 1 17670 1 - 

30 1 47970 0 - 0 - 0 - 0 - 

50 0 - 0 - 0 - 0 - 0 - 

70 0 - 0 - 0 - 0 - 0 - 

    

10 1 2910 0 - 0 - 1 2670 1 1530 

30 1 10890 0 - 0 - 1 9000 1 6810 

50 1 20700 0 - 0 - 1 16800 1 12690 

70 1 28590 0 - 0 - 1 23880 1 18960 
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Adaptive ABC, CLEABC were able to meet the success rate criterion in smallest number of 

fitness evaluations (NFEs) in                     and this implies that CLEABC was the 

fastest algorithm to converge and hit the 10e-4 marker. The HABCSDA was the fastest 

algorithm to converge in      . As a summary, 3 adaptive ABC algorithms achieved 100% 

success rate in most of the benchmark functions where the combination of exponential and 

linear trajectory helped CLEABC to be the faster algorithm to converge to 10e-4 point with 

100% success rate, while SDA, and SDA based proposed algorithm failed in this test. 

Table 4.9:- Results of success rate (SR) (cont.) 

F D 
CLEABC SBSDA SBA HABCSDA 

SR NFE SR NFE SR NFE SR NFE 

   

10 1 360 0 - 1 3060 1 2070 

30 1 1500 0 - 1 10260 1 8010 

50 1 2550 0 - 1 18180 1 13980 

70 1 3780 0 - 1 25650 1 17820 

   

10 1 1170 0 - 1 11910 1 6630 

30 1 4500 0 - 1 38010 1 21360 

50 1 6690 0 - 0 - 1 25440 

70 1 9480 0 - 0 - 1 26910 

   

10 0 0 0 - 0 - 0 - 

30 0 0 0 - 0 - 0 - 

50 0 0 0 - 0 - 0 - 

70 0 0 0 - 0 - 0 - 

   

10 1 660 0 - 0 - 1 26100 

30 1 3750 0 - 1 47970 1 24060 

50 1 6720 0 - 0 - 1 25200 

70 1 7290 0 - 0 - 1 27150 

   

10 1 780 0 - 1 10830 1 7170 

30 1 2280 0 - 1 36060 1 24270 

50 1 3780 0 - 0 - 1 25230 

70 1 5070 0 - 0 - 1 25950 

   

10 0 - 0 - 0 - 1 10560 

30 0 - 0 - 0 - 0 - 

50 0 - 0 - 0 - 0 - 

70 0 - 0 - 1 450 0 - 

   

10 1 4050 0 - 1 4020 1 2490 

30 1 12090 0 - 0 - 1 9030 

50 1 21210 0 - 1 20130 1 16440 

70 1 28050 0 - 1 27750 1 22740 

   

10 1 750 0 - 1 3510 1 2580 

30 1 2940 0 - 1 13950 1 8670 

50 1 5670 0 - 1 30690 1 16380 

70 1 8610 0 - 1 45870 1 22560 

   

10 1 18810 0 - 1 23700 1 12210 

30 0 - 0 - 0 - 0 - 

50 0 - 0 - 0 - 0 - 

70 0 - 0 - 0 - 0 - 

    

10 1 960 0 - 1 5370 1 3240 

30 1 3480 0 - 1 25050 1 11310 

50 1 5940 0 - 1 42450 1 19320 

70 1 9450 0 - 0 - 1 24570 
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4.2.2.2     Parametric test:-  Statistical significant test 

In this significant test, Kruskal-Wallis test is used. The results are based on 30 runs and 95% 

confidence interval. All the data consists of average rank and the p-value is recorded. There 

will be a significant improvement for an algorithm if the p-value is less than 0.05. Table 4.10 

shows the outcome from the significant test using Kruskal-Wallis method for the algorithms 

with dimensions 10, 30, 50 and 70. As noted, all algorithms in all tested conditions have 

shown` significant difference among them. To see which algorithm is most significant than 

others, the result are ranked from smallest to largest. The smallest rank indicates the 

algorithm has the most significant difference than others. While the largest rank means that 

the algorithm is likely to have less significant difference from others. It is clear from the 

results that HABCSDA had the most significant difference than others with average mean 

rank of 44.69 and rank 1.18. Three adaptive ABC (CEABC, CLABC&CLEABC) algorithms 

had 2
nd

,3
rd

 and 4
th

 lowest rank. Thus, these three adaptive ABC algorithms were significantly 

different than original ABC. Although CSDA and SBSDA had 2
nd

 and 3
rd

 highest rank 

respectively, CSDA and SBSDA still showed significant difference than original ABC. It can 

be concluded that the modified version of ABC and HABCSDA performed better and 

showed significant improvement as compared with the original algorithms and other 

proposed algorithms 
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Table 4.10 : Result of significant test for standard benchmark functions. 

 

 

4.2.3 CEC2014 benchmark functions tests 

In this section, the performances of the algorithms are tested in 16 CEC2014 benchmark 

problems with dimensions 2, 10, 30 and 50. Each algorithm was run 30 times and the results 

were recorded. The error, average, standard deviation, worse and best results of the 

algorithms are presented in Table 4.11 - 4.12 with dimensions 2, 10, 30 and 50. The smallest 

error obtained is indicated with bold font. 

Table 4.11 shows the statistical results for 2 and 10 dimensional problems. It is noted that, for 

2 dimensional problems, most of the proposed algorithms were able to reach near to the 

optimal point except the CSDA and SBSDA.  The function 𝒇   is unimodal problem, but as 

noted all algorithms struggled to reach the optimal point. The deviation from the average 

F D ABC SDA CSDA CLABC CEABC CLABC SBSDA SBA HABCSDA p-value 

 1 

10 133.10 236.30 221.90 112.40 53.00 43.40 218.30 161.00 40.10 1.03E-48 

30 135.80 253.40 187.40 111.20 39.50 69.80 217.70 168.50 36.20 5.26E-47 

50 141.50 252.20 173.60 111.50 48.05 77.90 215.30 171.50 27.95 2.32E-44 

70 137.50 244.90 204.70 107.50 63.40 61.60 232.90 167.50 16.60 3.20E-50 

 2 

10 137.45 246.50 169.70 115.55 51.50 51.50 224.30 171.50 51.50 1.45E-44 

30 135.34 244.28 220.28 105.45 45.50 45.50 214.59 165.66 45.50 5.32E-67 

50 135.50 242.00 218.00 105.50 39.50 57.50 216.50 165.50 39.50 4.90E-51 

70 137.50 243.70 224.50 107.50 40.75 64.60 214.30 167.50 37.15 3.86E-49 

 3 

10 56.90 227.90 195.50 69.20 172.10 180.80 201.20 74.60 41.30 2.29E-41 

30 135.34 244.28 220.28 105.45 45.50 45.50 214.59 165.66 45.50 1.87E-45 

50 135.50 242.00 218.00 105.50 39.50 57.50 216.50 165.50 39.50 6.05E-49 

70 137.50 243.70 224.50 107.50 40.75 64.60 214.30 167.50 37.15 3.56E-41 

 4 

10 142.10 235.10 235.40 71.60 57.50 57.50 206.00 156.80 57.50 2.61E-50 

30 135.34 244.28 220.28 105.45 45.50 45.50 214.59 165.66 45.50 1.13E-51 

50 135.50 242.00 218.00 105.50 39.50 57.50 216.50 165.50 39.50 1.29E-51 

70 137.50 243.70 224.50 107.50 40.75 64.60 214.30 167.50 37.15 9.84E-52 

 5 

10 83.00 246.80 211.10 83.00 83.00 83.00 218.60 128.00 83.00 5.40E-49 

30 135.34 244.28 220.28 105.45 45.50 45.50 214.59 165.66 45.50 3.08E-50 

50 135.50 242.00 218.00 105.50 39.50 57.50 216.50 165.50 39.50 5.61E-52 

70 137.50 243.70 224.50 107.50 40.75 64.60 214.30 167.50 37.15 7.16E-51 

 6 

10 86.00 245.90 217.10 104.00 86.00 165.80 213.20 15.50 86.00 2.43E-49 

30 135.34 244.28 220.28 105.45 45.50 45.50 214.59 165.66 45.50 5.40E-44 

50 135.50 242.00 218.00 105.50 39.50 57.50 216.50 165.50 39.50 3.42E-49 

70 137.50 243.70 224.50 107.50 40.75 64.60 214.30 167.50 37.15 1.78E-49 

 7 

10 48.20 230.30 227.00 82.10 81.50 114.20 219.20 128.00 89.00 1.08E-38 

30 135.34 244.28 220.28 105.45 45.50 45.50 214.59 165.66 45.50 3.87E-49 

50 135.50 242.00 218.00 105.50 39.50 57.50 216.50 165.50 39.50 2.28E-49 

70 137.50 243.70 224.50 107.50 40.75 64.60 214.30 167.50 37.15 1.06E-46 

 8 

10 137.60 228.20 222.20 107.00 32.00 77.90 226.10 159.50 29.00 2.77E-50 

30 135.34 244.28 220.28 105.45 45.50 45.50 214.59 165.66 45.50 2.55E-51 

50 135.50 242.00 218.00 105.50 39.50 57.50 216.50 165.50 39.50 3.36E-51 

70 137.50 243.70 224.50 107.50 40.75 64.60 214.30 167.50 37.15 1.47E-50 

 9 

10 15.50 203.00 205.40 63.80 180.50 94.40 230.90 126.50 99.50 1.49E-41 

30 135.34 244.28 220.28 105.45 45.50 45.50 214.59 165.66 45.50 3.78E-48 

50 135.50 242.00 218.00 105.50 39.50 57.50 216.50 165.50 39.50 3.65E-45 

70 137.50 243.70 224.50 107.50 40.75 64.60 214.30 167.50 37.15 1.51E-46 

 10 

10 132.80 238.40 219.50 106.70 30.50 79.10 218.60 163.40 30.50 1.07E-50 

30 135.34 244.28 220.28 105.45 45.50 45.50 214.59 165.66 45.50 2.75E-51 

50 135.50 242.00 218.00 105.50 39.50 57.50 216.50 165.50 39.50 1.43E-51 

70 137.50 243.70 224.50 107.50 40.75 64.60 214.30 167.50 37.15 2.47E-51 

Average 126.56 241.47 216.39 102.79 52.76 66.63 216.27 157.00 44.69  

Average
(rank) 

4.55 8.93 7.83 3.85 1.68 2.55 7.23 5.83 1.18  
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value was also big. In function 𝒇   , most of the algorithms except SDA had zero error which 

means that those algorithms reached the optimal point and had very high accuracy with small 

or no-standard deviation. Although SDA did not perform well in this function, the SDA 

standard deviation was small and still considered good.  The adaptive ABC performed well in 

all multi-modal functions 𝒇   𝒇   𝒇   𝒇   𝒇   𝒇  . On the other hand, HABCSDA 

outperformed other algorithms in all functions except in functions 𝒇   𝒇   𝒇   𝒇  . While 

for 10 dimensional problems, as noted in Table 4.11, HABCSDA performed well with lowest 

error in all functions except in functions 𝒇   𝒇   𝒇  . Similar in 2 dimensional problems, the 

SDA and variants of SDA struggled to reach the optimal point with small error. On the other 

hand, the adaptive ABC performed well with small error.  

Table 4.12 show the statistical results for 30 and 50 dimensions problem. When the 

dimension is increased, once against the hybrid algorithm, HABCSDA proved it able to 

handle high dimensional problems. The nearest competitor of HABCSDA was the original 

ABC. 
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Table 4.11: Numerical Results of benchmark function with 2 and 10 dimension 

F D Stat ABC SDA CSDA CLABC CEABC CLEABC SBSDA SBA HABCSDA 

    

2 
Error 1.86E+02 2.74E+05 7.48E+02 3.17E+02 3.61E+02 2.26E+02 6.26E+02 3.92E+01 4.09E+01 

SD 1.75E+02 7.23E+05 1.01E+03 2.66E+02 2.86E+02 1.65E+02 9.26E+02 4.20E+01 3.85E+01 

10 
Error 2.74E+05 2.77E+08 2.19E+08 2.62E+05 3.51E+05 3.38E+05 1.75E+08 1.77E+05 1.51E+05 

SD 2.13E+05 2.78E+08 2.13E+08 1.91E+05 3.96E+05 4.09E+05 1.65E+08 1.14E+05 5.97E+04 

    

2 
Error 1.61E+01 6.24E+07 5.62E+07 1.93E+01 1.28E+01 8.39E+00 5.82E+06 8.42E+01 7.44E+00 

SD 3.02E+01 1.54E+08 1.11E+08 2.41E+01 9.36E+00 7.07E+00 1.08E+07 6.23E+01 7.29E+00 

10 
Error 2.54E+02 1.70E+10 1.64E+10 3.30E+02 1.19E+02 2.73E+02 2.02E+10 3.24E+02 9.37E+01 

SD 1.94E+02 3.48E+09 6.47E+09 3.85E+02 1.23E+02 2.96E+02 3.81E+09 3.28E+02 1.40E+02 

    

2 
Error 1.65E+01 6.05E+05 1.45E+06 7.83E+01 1.58E+01 6.75E+00 7.01E+03 3.81E+01 7.48E+00 

SD 2.08E+01 1.18E+06 3.13E+06 8.11E+01 2.12E+01 8.30E+00 7.80E+03 3.10E+01 8.27E+00 

10 
Error 3.99E+02 1.24E+07 4.17E+06 4.35E+02 4.98E+02 4.37E+02 1.63E+06 2.73E+02 2.72E+02 

SD 3.90E+02 1.28E+07 7.74E+06 3.09E+02 2.20E+02 2.09E+02 2.54E+06 1.85E+02 1.82E+02 

    

2 
Error 0.00E+00 7.56E+00 3.19E+00 2.22E-07 0.00E+00 0.00E+00 2.28E+00 0.00E+00 0.00E+00 

SD 0.00E+00 1.57E+01 3.81E+00 3.53E-07 0.00E+00 3.28E-14 2.50E+00 2.68E-14 0.00E+00 

10 
Error 2.17E-01 4.16E+03 3.67E+03 1.29E+00 2.83E-01 6.07E-01 3.75E+03 1.24E+00 5.89E-02 

SD 1.50E-01 1.36E+03 1.58E+03 1.87E+00 2.15E-01 4.49E-01 1.68E+03 9.31E-01 3.04E-02 

    

2 
Error 0.00E+00 1.73E+01 1.65E+01 0.00E+00 0.00E+00 0.00E+00 1.89E+01 0.00E+00 0.00E+00 

SD 0.00E+00 3.79E+00 3.71E+00 1.89E-14 0.00E+00 0.00E+00 2.93E+00 2.68E-14 0.00E+00 

10 
Error 1.84E+01 2.02E+01 2.02E+01 1.70E+01 1.69E+01 1.83E+01 2.01E+01 2.01E+01 2.00E+01 

SD 4.97E+00 2.16E-01 2.77E-01 4.91E+00 6.56E+00 3.87E+00 2.07E-01 1.99E-02 5.88E-02 

    

2 
Error 0.00E+00 5.89E-02 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

SD 0.00E+00 1.86E-01 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

10 
Error 2.09E+00 1.31E+01 1.35E+01 2.72E+00 2.38E+00 2.42E+00 1.22E+01 3.85E+00 2.00E+00 

SD 5.51E-01 1.57E+00 2.09E+00 6.58E-01 7.03E-01 6.02E-01 1.46E+00 4.82E-01 5.93E-01 

    

2 
Error 3.57E-05 8.88E-03 8.88E-03 6.62E-04 2.99E-06 1.18E-05 6.16E-03 2.67E-05 0.00E+00 

SD 1.12E-04 1.58E-02 8.79E-03 1.92E-03 6.31E-06 3.26E-05 3.34E-03 4.40E-05 0.00E+00 

10 
Error 2.62E-02 9.07E+01 9.69E+01 4.54E-02 1.95E-02 3.52E-02 8.54E+01 2.72E-02 9.47E-03 

SD 1.79E-02 1.64E+01 2.28E+01 2.62E-02 1.24E-02 2.49E-02 1.26E+01 1.19E-02 1.08E-02 

    

2 
Error 0.00E+00 1.29E+00 8.95E-01 0.00E+00 0.00E+00 0.00E+00 9.95E-02 0.00E+00 0.00E+00 

SD 0.00E+00 1.49E+00 1.19E+00 0.00E+00 0.00E+00 0.00E+00 3.15E-01 0.00E+00 0.00E+00 

10 
Error 4.32E-12 1.42E+02 1.51E+02 7.01E-09 2.05E-12 2.27E-12 1.21E+02 0.00E+00 0.00E+00 

SD 1.34E-11 2.37E+01 2.68E+01 1.20E-08 4.04E-12 6.64E-12 3.38E+01 1.83E-12 3.79E-14 

    

2 
Error 0.00E+00 8.43E+00 1.10E+01 0.00E+00 0.00E+00 0.00E+00 7.85E+00 0.00E+00 0.00E+00 

SD 0.00E+00 4.25E+00 3.80E+00 0.00E+00 0.00E+00 0.00E+00 1.95E+00 0.00E+00 0.00E+00 

10 
Error 9.96E+00 1.28E+02 1.37E+02 1.13E+01 1.44E+01 1.14E+01 1.27E+02 1.07E+01 7.77E+00 

SD 1.70E+00 3.11E+01 3.12E+01 2.21E+00 2.08E+00 2.19E+00 2.33E+01 2.64E+00 2.38E+00 

    

2 
Error 0.00E+00 8.29E+01 5.19E+01 2.68E-10 0.00E+00 0.00E+00 2.89E+01 3.54E-02 0.00E+00 

SD 0.00E+00 7.00E+01 4.50E+01 8.45E-10 0.00E+00 1.31E-13 2.06E+01 9.81E-02 0.00E+00 

10 
Error 1.63E-01 9.94E+02 9.04E+02 2.56E-01 2.07E+00 1.98E-01 1.10E+03 3.43E+01 1.05E-01 

SD 4.95E-02 6.75E+02 3.07E+02 9.03E-02 1.66E+00 7.88E-02 5.39E+02 6.00E+00 8.11E-02 

    

2 
Error 5.29E-06 1.56E+02 1.31E+02 1.31E-04 1.64E-03 3.93E-04 1.01E+02 1.10E-01 7.85E-08 

SD 1.62E-05 3.93E+01 6.33E+01 3.36E-04 3.22E-03 1.24E-03 4.82E+01 1.36E-01 2.48E-07 

10 
Error 2.75E+02 1.94E+03 2.13E+03 3.50E+02 2.90E+02 2.88E+02 1.95E+03 5.53E+02 2.22E+02 

SD 8.51E+01 6.46E+02 4.08E+02 1.21E+02 9.22E+01 7.88E+01 3.53E+02 1.02E+02 6.40E+01 

    

2 
Error 9.56E-02 6.90E-01 1.54E-01 5.80E-02 6.07E-02 7.01E-02 5.41E-01 6.29E-02 7.43E-02 

SD 4.64E-02 1.55E+00 4.87E-01 2.66E-02 3.23E-02 4.11E-02 1.14E+00 3.96E-02 3.53E-02 

10 
Error 2.60E-01 1.12E+00 7.97E-01 2.54E-01 2.75E-01 2.66E-01 1.42E+00 2.75E-01 2.91E-01 

SD 5.75E-02 1.34E+00 4.45E-01 4.36E-02 6.00E-02 6.43E-02 6.94E-01 9.57E-02 5.91E-02 

    

2 
Error 3.71E-03 1.08E+00 1.08E+00 9.86E-03 6.36E-04 6.59E-03 7.15E-01 6.59E-03 1.14E-02 

SD 1.83E-03 2.66E-01 3.01E-01 7.97E-03 9.15E-04 4.86E-03 1.40E-02 6.04E-03 7.69E-03 

10 
Error 1.61E-01 6.04E+00 6.20E+00 1.75E-01 1.73E-01 1.52E-01 5.95E+00 1.37E-01 1.17E-01 

SD 2.48E-02 8.98E-01 1.17E+00 3.66E-02 2.25E-02 2.56E-02 1.03E+00 1.69E-02 2.24E-02 

    

2 
Error 1.21E-02 1.47E+00 1.45E+00 1.52E-02 1.43E-02 1.27E-02 1.86E+00 7.89E-03 3.81E-03 

SD 5.27E-03 8.57E-01 1.06E+00 8.21E-03 5.28E-03 7.16E-03 9.72E-01 3.26E-03 2.23E-03 

10 
Error 1.97E-01 4.13E+01 2.62E+01 2.21E-01 2.03E-01 2.05E-01 3.28E+01 1.07E-01 1.61E-01 

SD 2.53E-02 2.53E+01 2.10E+01 3.72E-02 2.06E-02 1.67E-02 2.39E+01 2.48E-02 1.92E-02 

    

2 
Error 9.28E-09 2.20E+00 5.85E-01 1.05E-05 0.00E+00 3.36E-06 3.50E-02 0.00E+00 0.00E+00 

SD 2.68E-08 3.23E+00 1.70E+00 2.92E-05 1.52E-13 1.03E-05 5.00E-02 2.23E-12 0.00E+00 

10 
Error 1.24E+00 5.69E+04 3.28E+04 1.53E+00 1.49E+00 1.36E+00 2.88E+03 1.89E+00 1.10E+00 

SD 1.78E-01 8.50E+04 6.33E+04 4.64E-01 2.67E-01 2.76E-01 1.62E+03 3.76E-01 1.36E-01 

    

2 
Error 5.14E-04 7.33E-01 7.35E-01 1.13E-04 7.58E-05 8.94E-05 6.44E-01 5.94E-04 0.00E+00 

SD 1.53E-03 2.44E-01 2.15E-01 1.07E-04 1.22E-04 2.31E-04 3.04E-01 5.58E-04 1.86E-13 

10 
Error 2.47E+00 4.66E+00 4.54E+00 2.62E+00 2.47E+00 2.41E+00 4.67E+00 3.14E+00 2.35E+00 

SD 3.25E-01 1.12E-01 2.24E-01 2.53E-01 2.46E-01 2.27E-01 6.04E-02 9.58E-02 2.66E-01 
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Table 4.12: Numerical Results of benchmark function with 30 and 50 dimension 

F D Stat ABC SDA CSDA CLABC CEABC CLEABC SBSDA SBA HABCSDA 

    

2 
Error 2.06E+07 1.47E+09 1.51E+09 3.02E+07 2.10E+07 1.98E+07 1.18E+09 2.00E+07 1.40E+07 

SD 1.04E+07 1.58E+09 1.32E+09 8.51E+06 6.01E+06 7.56E+06 7.40E+08 6.46E+06 6.80E+06 

10 
Error 3.31E+07 9.67E+09 8.58E+09 3.90E+07 2.33E+07 2.47E+07 6.48E+09 6.16E+07 2.31E+07 

SD 1.47E+07 3.90E+09 5.06E+09 1.34E+07 9.39E+06 6.53E+06 3.80E+09 1.46E+07 8.45E+06 

    

2 
Error 2.66E+03 1.58E+11 1.68E+11 3.12E+04 1.09E+04 4.95E+03 1.46E+11 6.73E+03 7.68E+02 

SD 3.29E+03 2.17E+10 2.28E+10 3.02E+04 8.89E+03 3.81E+03 3.19E+10 9.10E+03 1.45E+03 

10 
Error 1.47E+05 3.13E+11 3.13E+11 2.90E+06 1.86E+05 1.14E+05 3.20E+11 2.46E+05 1.45E+04 

SD 1.36E+05 4.03E+10 3.86E+10 7.00E+06 1.28E+05 1.10E+05 3.22E+10 1.93E+05 1.15E+04 

    

2 
Error 1.91E+03 4.20E+06 1.16E+06 3.51E+03 2.44E+03 2.79E+03 2.67E+05 3.49E+03 1.34E+03 

SD 1.22E+03 1.04E+07 8.14E+05 4.09E+03 1.87E+03 2.90E+03 5.49E+04 2.40E+03 1.32E+03 

10 
Error 8.66E+03 1.75E+06 6.61E+05 1.14E+04 6.63E+03 1.04E+04 4.62E+05 3.27E+04 8.98E+03 

SD 4.54E+03 3.97E+06 3.93E+05 4.34E+03 1.93E+03 2.81E+03 7.61E+04 1.63E+04 2.50E+03 

    

2 
Error 6.37E+01 5.02E+04 4.65E+04 9.31E+01 8.21E+01 8.19E+01 4.25E+04 8.89E+01 5.94E+01 

SD 2.79E+01 9.40E+03 1.09E+04 1.95E+01 2.55E+01 9.16E+00 1.20E+04 1.54E+01 2.85E+01 

10 
Error 1.39E+02 1.22E+05 1.06E+05 2.21E+02 1.69E+02 1.51E+02 7.98E+04 1.43E+02 1.20E+02 

SD 2.59E+01 3.08E+04 4.58E+04 4.13E+01 3.18E+01 3.21E+01 4.00E+04 3.63E+01 1.58E+01 

    

2 
Error 2.04E+01 2.07E+01 2.07E+01 2.04E+01 2.04E+01 2.04E+01 2.06E+01 2.05E+01 2.04E+01 

SD 5.34E-02 3.38E-01 3.81E-01 3.65E-02 3.30E-02 3.96E-02 2.91E-01 4.39E-02 3.54E-02 

10 
Error 2.06E+01 2.07E+01 2.07E+01 2.06E+01 2.06E+01 2.06E+01 2.06E+01 2.07E+01 2.06E+01 

SD 2.95E-02 2.58E-01 3.05E-01 2.23E-02 4.73E-02 3.43E-02 2.94E-01 4.78E-02 3.28E-02 

    

2 
Error 1.76E+01 4.55E+01 4.60E+01 1.87E+01 1.75E+01 1.75E+01 4.47E+01 1.96E+01 1.67E+01 

SD 1.56E+00 5.71E+00 4.85E+00 9.86E-01 1.79E+00 1.34E+00 4.46E+00 1.50E+00 1.84E+00 

10 
Error 3.67E+01 7.87E+01 8.62E+01 4.05E+01 3.81E+01 3.80E+01 7.79E+01 4.52E+01 3.75E+01 

SD 8.03E-01 8.35E+00 3.10E+00 1.68E+00 2.24E+00 2.81E+00 5.42E+00 2.27E+00 1.44E+00 

    

2 
Error 4.44E-02 8.80E+02 5.86E+02 5.57E-01 5.07E-02 3.77E-02 6.89E+02 4.10E-02 3.50E-03 

SD 3.43E-02 4.14E+02 6.87E+01 1.77E-01 5.20E-02 2.37E-02 2.46E+02 2.64E-02 7.67E-03 

10 
Error 4.91E-01 2.30E+03 2.59E+03 1.34E+00 7.57E-01 5.60E-01 2.14E+03 7.72E-01 1.12E-01 

SD 1.00E-01 8.55E+02 5.47E+02 2.22E-01 1.94E-01 1.35E-01 7.07E+02 1.22E-01 4.92E-02 

    

2 
Error 1.25E+00 5.31E+02 5.38E+02 6.71E+00 5.39E+00 2.55E+00 5.24E+02 1.81E+00 3.78E-10 

SD 6.49E-01 7.22E+01 2.72E+01 1.00E+00 9.17E-01 1.31E+00 8.22E+01 7.51E-01 8.20E-10 

10 
Error 8.66E+00 1.00E+03 9.82E+02 2.60E+01 2.05E+01 1.12E+01 9.68E+02 1.00E+01 2.84E+00 

SD 2.35E+00 5.29E+01 4.50E+01 4.36E+00 5.12E+00 2.48E+00 5.26E+01 3.99E+00 1.43E+00 

    

2 
Error 1.06E+02 6.64E+02 6.78E+02 1.06E+02 1.21E+02 1.20E+02 5.77E+02 1.16E+02 1.00E+02 

SD 1.32E+01 7.09E+01 4.89E+01 1.18E+01 1.37E+01 1.51E+01 1.01E+02 1.30E+01 1.53E+01 

10 
Error 2.17E+02 1.29E+03 1.28E+03 2.60E+02 2.44E+02 2.53E+02 1.22E+03 2.78E+02 2.32E+02 

SD 2.03E+01 6.44E+01 9.66E+01 2.98E+01 2.04E+01 2.30E+01 1.14E+02 1.93E+01 3.22E+01 

    

2 
Error 6.25E+00 5.49E+03 5.15E+03 1.63E+01 3.46E+01 1.89E+01 5.06E+03 6.00E+01 4.62E+00 

SD 3.42E+00 1.45E+03 1.31E+03 8.21E+00 4.80E+01 3.66E+01 9.07E+02 4.51E+01 2.19E+00 

10 
Error 4.31E+01 9.07E+03 9.60E+03 3.78E+02 3.01E+02 1.78E+02 9.78E+03 8.96E+01 7.06E+01 

SD 3.97E+01 1.06E+03 1.87E+03 9.27E+01 1.12E+02 7.94E+01 1.53E+03 4.18E+01 4.89E+01 

    

2 
Error 2.71E+03 6.69E+03 6.63E+03 2.82E+03 2.82E+03 2.61E+03 6.40E+03 3.04E+03 2.35E+03 

SD 2.85E+02 1.52E+03 1.87E+03 1.99E+02 2.82E+02 3.65E+02 1.16E+03 4.39E+02 3.35E+02 

10 
Error 5.55E+03 1.23E+04 1.24E+04 6.12E+03 5.85E+03 5.78E+03 1.18E+04 7.27E+03 5.11E+03 

SD 3.25E+02 2.07E+03 2.91E+03 4.38E+02 5.36E+02 4.99E+02 1.33E+03 2.26E+02 5.83E+02 

    

2 
Error 5.01E-01 2.03E+00 2.26E+00 5.53E-01 5.27E-01 5.30E-01 2.55E+00 7.88E-01 4.86E-01 

SD 6.48E-02 1.14E+00 7.48E-01 1.01E-01 4.83E-02 9.74E-02 8.37E-01 8.62E-02 6.92E-02 

10 
Error 6.83E-01 2.03E+00 3.52E+00 6.99E-01 6.51E-01 6.26E-01 3.43E+00 9.89E-01 5.66E-01 

SD 3.24E-02 6.19E-01 1.20E+00 6.40E-02 8.27E-02 9.44E-02 9.26E-01 1.14E-01 8.86E-02 

    

2 
Error 2.87E-01 1.13E+01 1.18E+01 3.04E-01 3.36E-01 2.82E-01 1.13E+01 4.42E-01 2.86E-01 

SD 2.66E-02 1.29E+00 1.47E+00 5.29E-02 2.67E-02 2.12E-02 1.42E+00 3.69E-02 2.54E-02 

10 
Error 4.56E-01 1.30E+01 1.36E+01 4.95E-01 4.86E-01 4.64E-01 1.38E+01 4.99E-01 3.81E-01 

SD 2.39E-02 1.13E+00 1.31E+00 4.36E-02 4.20E-02 4.67E-02 7.31E-01 2.65E-02 2.47E-02 

    

2 
Error 2.08E-01 3.18E+02 2.82E+02 2.35E-01 2.19E-01 2.23E-01 2.22E+02 2.42E-01 2.24E-01 

SD 2.32E-02 1.84E+02 1.26E+02 1.80E-02 1.36E-02 1.63E-02 9.76E+01 2.41E-02 1.97E-02 

10 
Error 2.94E-01 3.30E+02 2.43E+02 3.00E-01 2.93E-01 2.83E-01 3.10E+02 3.66E-01 2.88E-01 

SD 1.43E-02 1.59E+02 2.60E+01 1.81E-02 2.27E-02 3.01E-02 1.24E+02 4.49E-02 2.23E-02 

    

2 
Error 1.62E+01 5.62E+06 1.50E+07 1.83E+01 1.58E+01 1.77E+01 4.22E+05 1.75E+01 1.34E+01 

SD 3.11E+00 8.67E+06 2.21E+07 3.10E+00 2.84E+00 2.02E+00 3.89E+05 2.06E+00 2.35E+00 

10 
Error 3.78E+01 1.84E+08 2.53E+08 4.55E+01 4.36E+01 4.01E+01 8.71E+07 4.44E+01 3.18E+01 

SD 6.86E+00 1.10E+08 2.07E+08 6.09E+00 5.13E+00 5.69E+00 8.12E+07 5.22E+00 5.16E+00 

    

2 
Error 1.10E+01 1.40E+01 1.40E+01 1.12E+01 1.10E+01 1.12E+01 1.39E+01 1.19E+01 1.09E+01 

SD 3.22E-01 1.71E-01 2.61E-01 2.69E-01 2.41E-01 3.63E-01 3.66E-01 3.56E-01 3.10E-01 

10 
Error 1.99E+01 2.43E+01 2.40E+01 2.00E+01 1.97E+01 2.01E+01 2.41E+01 2.11E+01 2.00E+01 

SD 4.77E-01 2.35E-01 3.19E-01 2.20E-01 4.14E-01 3.65E-01 2.65E-01 4.32E-01 2.93E-01 
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4.2.3.1  Parametric test:-  Statistical significant test (CEC2014) 

In this significant test, Kruskal-Wallis test is used and the results are based on 30 runs and 

95% confidence interval. The data consists of average rank and the p-value is recorded. There 

will be significant improvement for an algorithm if the p-value is less than 0.05. 

Table 4.13 shows the outcome from the significant test using Kruskal-Wallis method for the 

algorithms with dimensions 2, 10, 30 and 50. The algorithms were tested in 16 CEC 

benchmark functions used in previous test. As noted all algorithms in all tested conditions 

had significant difference among them. To see which algorithm is most significant than 

others, the result are ranked from smallest to largest. The smallest rank indicates the 

algorithm is the most significant than others. While the largest rank means that the algorithm 

is likely to have less significant difference from others. The results, as noted, clearly show 

that HABCSDA was the most significantly different that others with average mean rank 

59.19 and rank 1.75. Algorithms CLEABC, CEABC and CLABC were with 2
nd

 ,3
rd

 and 5
th

 

lowest rank. Although the CSDA and SBSDA had 2
nd

 and 3
rd

 highest rank respectively, 

CSDA and SBSDA still showed significant difference than original SDA. It can be concluded 

that the hybrid version of ABC and SDA algorithm were capable to perform well and 

significantly better than the original algorithms and other proposed algorithms in CEC2014 

benchmark functions problems. 

Table 4.13: Result of significant test for CEC2014 benchmark functions 

F D ABC SDA CSDA CLABC CEABC CLEABC SBSDA SBA HABCSDA p-value 

    

2 166.70 221.60 135.20 158.90 126.20 145.70 141.50 59.90 63.80 8.66E-18 
10 92.60 224.90 229.10 96.20 105.50 99.20 222.50 75.80 73.70 1.82E-35 
30 92.90 223.10 228.80 140.60 85.10 88.40 224.60 86.30 49.70 5.62E-39 
50 58.00 235.90 229.30 118.00 92.80 68.20 217.30 160.00 58.00 3.98E-42 

    

2 100.40 221.00 236.30 91.70 62.30 74.60 219.20 145.40 68.60 1.45E-39 
10 69.34 222.97 218.10 101.52 105.86 104.72 236.52 114.76 50.41 2.35E-52 
30 115.40 226.10 235.10 157.10 61.10 92.60 215.30 87.20 29.60 8.74E-45 
50 102.10 226.90 225.10 161.80 81.10 76.60 230.50 115.00 18.40 6.71E-45 

    

2 97.30 243.40 237.70 159.80 105.80 82.30 227.80 132.60 86.20 4.03E-30 
10 113.90 238.70 221.00 98.00 83.30 108.80 216.80 67.70 71.30 8.42E-37 
30 113.90 238.70 221.00 98.00 83.30 108.80 216.80 67.70 71.30 8.42E-37 
50 42.70 233.50 233.20 104.80 67.60 94.60 215.80 165.70 79.60 1.18E-42 

    

2 68.00 220.40 232.10 165.50 68.00 90.50 224.00 83.00 68.00 1.27E-48 
10 73.70 232.70 219.50 125.30 64.70 113.30 224.30 143.30 22.70 4.14E-45 
30 101.30 234.20 225.50 128.00 65.00 93.20 216.80 112.10 43.40 8.99E-40 
50 114.70 239.50 229.30 156.10 76.00 89.50 213.70 75.70 43.00 1.36E-41 

    

2 86.00 222.50 217.70 95.00 86.00 86.00 236.30 104.00 86.00 4.05E-48 
10 88.70 212.90 160.40 118.10 117.80 112.40 132.20 150.20 126.80 3.34E-08 
30 81.50 183.50 186.50 124.40 89.00 121.10 161.90 189.80 81.80 1.29E-14 
50 109.30 181.90 172.30 94.60 106.60 97.00 129.70 214.30 131.80 2.17E-12 

    

2 134.00 147.50 134.00 134.00 134.00 134.00 134.00 134.00 134.00 2.14E-03 
10 80.00 228.50 235.10 103.10 60.50 85.40 212.90 159.80 54.20 1.98E-42 
30 83.30 227.00 227.90 113.00 80.00 71.30 221.60 143.30 52.10 4.33E-40 
50 79.00 220.90 249.70 122.50 44.20 79.30 211.90 167.50 62.50 9.45E-45 
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2 98.75 125.15 185.45 158.60 110.15 131.45 195.95 171.50 42.50 3.83E-17 
10 72.80 227.60 231.80 126.80 92.00 109.40 217.10 102.50 39.50 1.34E-39 
30 92.00 232.10 219.20 165.50 86.60 87.80 225.20 92.00 19.10 8.10E-46 
50 111.10 227.80 235.60 167.50 63.40 76.60 219.10 118.90 17.50 2.29E-47 

    

2 114.50 210.05 194.90 114.50 114.50 114.50 127.55 114.50 114.50 1.02E-27 
10 95.00 227.00 238.10 163.10 76.25 84.95 211.40 100.40 23.30 3.81E-46 
30 140.30 225.20 227.30 160.70 57.50 92.60 224.00 76.40 15.50 1.83E-49 
50 141.10 238.60 224.80 161.80 65.80 88.60 219.10 78.40 19.30 1.99E-47 

    

2 90.50 222.50 238.70 90.50 90.50 90.50 215.30 90.50 90.50 6.03E-51 
10 151.40 223.40 232.10 96.80 68.60 101.30 221.00 88.40 36.50 3.54E-42 
30 125.00 232.10 236.00 67.70 70.10 118.40 208.40 107.00 54.80 1.20E-39 
50 84.10 232.60 231.70 114.40 40.60 100.00 218.20 145.60 70.30 2.73E-40 

    

2 66.50 235.25 227.45 92.30 66.50 89.00 213.80 162.20 66.50 4.42E-48 
10 135.10 225.50 221.00 41.20 69.60 83.20 230.00 165.50 48.40 2.05E-47 
30 101.60 228.80 223.40 116.30 55.70 77.00 224.30 157.10 35.30 1.28E-44 
50 137.00 220.10 229.10 155.60 33.80 102.50 227.30 66.50 47.60 2.90E-47 

    

2 104.00 239.00 222.35 101.30 64.55 75.50 215.15 156.20 41.45 1.11E-43 
10 79.10 221.90 232.10 102.80 70.70 80.00 222.50 162.80 47.60 8.76E-43 
30 104.60 226.70 225.50 102.50 86.30 75.20 224.00 135.20 39.50 7.09E-40 
50 92.20 231.10 226.90 111.10 62.80 84.10 224.50 167.50 37.30 1.27E-43 

    

2 151.40 90.65 58.85 153.20 193.10 165.50 77.00 152.00 177.80 5.21E-16 
10 110.30 165.20 200.30 86.30 92.00 100.70 241.70 101.30 121.70 1.09E-21 
30 83.90 212.00 224.60 92.00 67.40 82.10 231.50 168.20 57.80 1.73E-40 
50 79.90 204.10 241.30 103.90 96.70 69.40 236.80 167.20 38.20 1.25E-43 

    

2 23.90 239.60 239.60 117.50 80.90 100.10 197.30 98.30 122.30 1.81E-42 
10 126.80 225.20 227.90 122.60 107.90 90.80 223.40 61.40 33.50 1.40E-41 
30 120.50 220.70 234.20 84.20 57.80 54.80 221.60 165.20 60.50 8.00E-45 
50 112.30 219.10 228.10 121.60 78.40 93.40 235.30 129.10 20.20 1.67E-41 

    

2 118.10 223.40 218.60 116.60 105.50 104.30 234.50 70.70 27.80 4.04E-41 
10 116.00 236.90 215.90 132.50 106.70 117.50 223.70 16.40 53.90 1.97E-45 
30 71.60 227.30 234.50 115.70 54.50 86.60 214.70 127.70 86.90 1.29E-38 
50 80.30 232.40 212.90 93.50 83.00 67.40 231.20 145.40 73.40 5.64E-39 

    

2 68.30 249.20 178.40 165.20 118.40 150.50 158.60 68.90 62.00 2.35E-32 
10 105.20 234.50 232.70 103.40 65.60 83.60 209.30 146.00 39.20 5.39E-42 
30 76.70 229.70 229.40 119.00 85.10 113.90 217.40 110.30 38.00 1.42E-39 
50 118.60 233.50 237.40 125.50 72.70 86.50 211.60 121.60 30.10 4.62E-41 

    

2 88.10 227.60 227.30 114.20 90.20 83.00 221.60 152.00 15.50 4.98E-45 
10 76.40 230.60 216.50 101.00 79.70 63.80 229.40 164.90 57.20 9.01E-43 
30 66.80 230.30 226.10 95.60 74.00 94.40 220.10 158.00 54.20 1.26E-41 
50 49.00 242.20 218.20 83.80 83.50 94.60 222.10 160.00 84.10 1.52E-40 

Average 97.59 220.86 217.91 119.13 82.67 95.05 210.10 123.42 59.19  

Average
(rank) 

3.50 8.16 7.86 4.72 2.59 3.42 7.20 4.66 1.75  
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4.3 Constrained single objective optimisation problems 

In some cases, constraint maybe included to the objective function and created constrained 

optimisation problems. In general the constrained optimisation problem can be represented 

as:- 

                               

Subject to                                                       

                   

where   is feasible solution if and only if   inequality constraint is more than zero and   

equality constraint is equal zero. The details of technique for unconstrained and constrained 

optimisation problems can be found in [8]. 

4.3.1 Approaches for constrained single objective optimisation problems 

There are several methods reported in the literature when dealing with constrained problems. 

These include penalty functions, decoder, special operator (representation and operator) and 

separation of objective function and constraint and hybrid method [154]. In this research, the 

penalty function method is used to handle the constrained problem. his is because it is simple 

and easy to use [155] .Moreover, nonlinear constrained problems can be handled with penalty 

functions [156] . The penalty function is based on the mathematical programming method a 

constrained problem is changed to an unconstrained optimization problem [157].  The general 

form of objective function with penalty is the following:- 

Min   𝒙⃗⃗   𝒇 𝒙⃗⃗     𝒙⃗⃗                                       (4.1) 

where       is the expanded objective function,       is the original objective function and 

      is the penalty function. The main objective to get optimal solution is to gain small 

fitness of infeasible solution. When the problem has constrains, the constraint value is added 

into the objective function. By doing this, the penalty value is also considered to get a low 

value of fitness of infeasible solution. This low value of fitness is expected in minimization 

problems. Although the execution of this method is simple, it requires fine tuning of penalty 

coefficient value and this tuning value is different for each type of problem. The simplest 

method of penalty function is the death penalty. In this method, it will avoid to use infeasible 

solution during the search, which means that the infeasible solution is eliminated from the 
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search process. Other types of penalty method include static penalty, adaptive penalty and 

dynamic penalty [158]. In this research, the static penalty function is used, where  the original 

objective function       is penalised by      . So the final objective will be reduced based on 

the value of penalty. The general form of static penalty function is given as:-  

  𝒙⃗⃗     ∑ (   𝒙⃗⃗  )
  

     ∑ (   𝒙⃗⃗  )
  

                          (4.2) 

where   and   are penalty coefficients and represent the importance of         and       . The 

penalty coefficient values are problem dependant. Fine-tuning of penalty coefficients   and   

is crucial to ensure that valuable information can be extracted accordingly. This fine-tuning is 

based on trial and error method, as the penalty coefficient are problem dependent. 

4.3.2 Experiments on constrained optimisation problems 

This section, the proposed algorithms are tested in single objective constrained optimisation 

problems. Ten constrained benchmark functions from test set CEC2006 are used to evaluate 

the accuracy, robustness and efficiency of the algorithm. Moreover, the algorithms are further 

tested in five engineering design constrained problems.  

4.3.2.1   Constrained benchmark functions 

Ten standard benchmark functions are used to evaluate the performance of the proposed 

algorithms. The benchmark functions have different types of characteristics and landscapes. 

In the algorithms the population size was set to 30 and the number of iterations to 1600 (NFE 

= 48,000). In these tests, all problem inequalities were changed to equalities based on 

Suganthan works [159]. Table 4.14 and 4.15 show the statistical results for the algorithms. 

Table 4.14 shows the statistical values for the original ABC and SDA with non-hybrid 

proposed algorithms. As noted, CEABC outperformed other algorithms for average and best 

optimal point in functions       . while in functions       CEABC was able to provide 

lowest optimal point in average. The robustness of CEABC was better except in function    . 

In functions   , CSDA achieved the best solution among the algorithms but the average and 

standard deviation showed inconsistency because the SDA algorithm variant still suffers from 

trapping at local optima.  
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Table 4.14:- Numerical result of SDA and ABC variants in solving constrained benchmark functions 

  Stat       ABC SDA CSDA CLABC CEABC CLABC 

   best 1.393E+00 1.390E+00 1.390E+00 1.390E+00 1.390E+00 1.390E+00 1.391E+00 

Avg  1.390E+00 1.390E+00 1.616E+00 1.444E+00 1.405E+00 1.437E+00 

SD  2.388E-14 2.093E-16 3.051E-01 9.607E-02 3.261E-02 5.990E-02 

worse  1.390E+00 1.390E+00 2.341E+00 1.615E+00 1.492E+00 1.531E+00 

   best -3.067E+04 -3.240E+04 -3.278E+04 -3.293E+04 -3.285E+04 -3.325E+04 -3.277E+04 

Avg   -3.224E+04 -3.212E+04 -3.204E+04 -3.246E+04 -3.278E+04 -3.251E+04 

SD   1.222E+02 5.957E+02 6.921E+02 4.342E+02 5.600E+02 2.612E+02 

worse   -3.209E+04 -3.096E+04 -3.083E+04 -3.185E+04 -3.164E+04 -3.213E+04 

   

best -6.962E+03 -7.949E+03 1.476E+05 -4.365E+03 -7.948E+03 -9.000E+03 -7.948E+03 

Avg   -7.949E+03 2.736E+07 -1.357E+03 -7.555E+03 -9.000E+03 -7.948E+03 

SD   1.203E-03 4.102E+07 1.485E+03 5.387E+02 0.000E+00 3.631E-01 

worse   -7.949E+03 1.064E+08 -3.189E+01 -6.965E+03 -9.000E+03 -7.948E+03 

   

best 2.431E+01 2.388E+01 1.343E+02 3.484E+01 2.441E+01 2.425E+01 2.441E+01 

Avg   2.495E+01 2.808E+02 7.631E+01 2.548E+01 2.467E+01 2.472E+01 

SD   9.231E-01 9.274E+01 4.726E+01 9.270E-01 4.558E-01 4.517E-01 

worse   2.679E+01 4.086E+02 1.652E+02 2.667E+01 2.533E+01 2.552E+01 

   

best -9.600E-02 -9.583E-02 -9.583E-02 -2.096E+01 -9.583E-02 -9.583E-02 -9.583E-02 

Avg   -6.915E-02 -5.685E-02 1.748E+01 -9.581E-02 -9.581E-02 -9.580E-02 

SD   3.443E-02 3.648E-02 5.592E+01 2.724E-05 3.147E-05 5.020E-05 

worse   -2.913E-02 -2.538E-02 1.430E+02 -9.576E-02 -9.575E-02 -9.571E-02 

   

best 6.806E+02 6.786E+02 6.885E+02 1.442E+03 6.786E+02 6.790E+02 6.786E+02 

Avg   6.787E+02 1.642E+04 1.230E+04 6.787E+02 6.803E+02 6.788E+02 

SD   3.892E-02 2.993E+04 8.406E+03 1.140E-01 1.813E+00 2.856E-01 

worse   6.788E+02 7.813E+04 2.802E+04 6.789E+02 6.826E+02 6.793E+02 

   

best 7.500E-01 7.494E-01 7.514E-01 7.504E-01 7.529E-01 7.536E-01 7.505E-01 

Avg   7.576E-01 1.115E+01 3.369E+01 7.610E-01 7.696E-01 7.674E-01 

SD   1.562E-02 1.898E+01 5.001E+01 5.119E-03 1.236E-02 1.725E-02 

worse   8.004E-01 5.156E+01 1.251E+02 7.657E-01 7.863E-01 7.947E-01 

   

best 9.617E+02 9.618E+02 9.641E+02 9.746E+02 9.618E+02 9.619E+02 9.621E+02 

Avg   1.090E+03 9.709E+02 4.771E+04 9.663E+02 9.627E+02 9.652E+02 

SD   3.981E+02 1.205E+01 7.914E+04 3.444E+00 7.404E-01 2.916E+00 

worse   2.223E+03 9.976E+02 2.528E+05 9.700E+02 9.635E+02 9.681E+02 

   

best -1.905E+00 -2.097E+00 8.273E+03 8.057E+03 -2.092E+00 -2.094E+00 -2.092E+00 

Avg   -2.077E+00 8.670E+03 8.942E+03 -2.081E+00 -1.997E+00 -2.059E+00 

SD   2.121E-02 3.087E+02 8.346E+02 9.066E-03 7.189E-02 3.096E-02 

worse   -2.024E+00 9.240E+03 1.023E+04 -2.067E+00 -1.913E+00 -2.013E+00 

    

best -8.660E-01 -8.717E-01 -2.884E-01 2.479E+02 -8.715E-01 -8.710E-01 -8.702E-01 

Avg   -8.623E-01 8.848E+02 8.943E+03 -8.689E-01 -8.648E-01 -8.658E-01 

SD   1.454E-02 1.938E+03 6.648E+03 3.169E-03 5.868E-03 6.214E-03 

worse   -8.287E-01 6.284E+03 1.996E+04 -8.652E-01 -8.584E-01 -8.553E-01 

 

Table 4.15 shows that, the ABC component in the hybrid algorithm HABCSDA helps this 

algorithm to dominated the top league in functions                in providing the best 

solution. In terms of robustness by referring to the standard deviation values, HABCSDA was 

able to provide small deviations but the deviation from the average was large in function   . 
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Table 4.15:- Numerical result of Hybrid variants in solving constrained benchmark functions 

  1.393E+00 ABC SDA SBSDA SBA HABCSDA 

   best 6.786E+02 1.390E+00 1.390E+00 1.390E+00 1.390E+00 1.390E+00 

Avg 6.787E+02 1.405E+00 1.390E+00 2.187E+00 1.390E+00 1.390E+00 

SD 3.892E-02 3.546E-02 2.093E-16 9.056E-01 2.455E-16 2.388E-14 

worse 6.788E+02 1.504E+00 1.390E+00 3.385E+00 1.390E+00 1.390E+00 

   
best 

-
3.067E+04 -3.240E+04 -3.278E+04 -3.266E+04 -3.276E+04 -3.283E+04 

Avg   -3.224E+04 -3.212E+04 -3.221E+04 -3.231E+04 -3.236E+04 

SD   1.222E+02 5.957E+02 4.932E+02 3.660E+02 3.311E+02 

worse   -3.209E+04 -3.096E+04 -3.107E+04 -3.171E+04 -3.158E+04 

   

best 
-

6.962E+03 -7.949E+03 1.476E+05 -8.603E+02 -7.949E+03 -7.949E+03 

Avg   -7.949E+03 2.736E+07 6.421E+03 -7.175E+03 -7.432E+03 

SD   1.203E-03 4.102E+07 9.550E+03 2.420E+03 5.078E+02 

worse   -7.949E+03 1.064E+08 3.180E+04 -2.866E+02 -6.636E+03 

   

best 2.431E+01 2.403E+01 1.343E+02 3.361E+02 2.435E+01 2.388E+01 

Avg   2.514E+01 2.808E+02 6.728E+02 2.700E+01 2.495E+01 

SD   1.310E+00 9.274E+01 3.096E+02 2.567E+00 9.231E-01 

worse   2.856E+01 4.086E+02 1.175E+03 3.288E+01 2.679E+01 

   

best -9.600E-02 -9.583E-02 -9.583E-02 -9.583E-02 -9.583E-02 -9.583E-02 

Avg   -6.915E-02 -5.685E-02 -6.027E-02 -8.208E-02 -7.127E-02 

SD   3.443E-02 3.648E-02 3.601E-02 2.792E-02 3.731E-02 

worse   -2.913E-02 -2.538E-02 -2.513E-02 -2.914E-02 -8.259E-03 

   

best 6.806E+02 6.786E+02 6.885E+02 6.845E+02 6.786E+02 6.786E+02 

Avg   6.790E+02 1.642E+04 1.824E+03 6.788E+02 6.790E+02 

SD   5.092E-01 2.993E+04 1.473E+03 2.894E-01 5.092E-01 

worse 7.500E-01  6.801E+02 7.813E+04 5.422E+03 6.794E+02 6.801E+02 

   

best -8.717E-01 7.495E-01 7.514E-01 7.494E-01 7.496E-01 7.495E-01 

Avg -8.623E-01 7.687E-01 1.115E+01 8.230E-01 7.645E-01 7.687E-01 

SD 1.454E-02 2.340E-02 1.898E+01 1.085E-01 2.419E-02 2.340E-02 

worse -8.287E-01 8.305E-01 5.156E+01 1.000E+00 8.296E-01 8.305E-01 

   

best 9.617E+02 9.618E+02 9.641E+02 9.628E+02 9.618E+02 9.621E+02 

Avg   1.090E+03 9.709E+02 2.354E+03 9.650E+02 9.650E+02 

SD   3.981E+02 1.205E+01 2.905E+03 3.476E+00 2.486E+00 

worse   2.223E+03 9.976E+02 8.592E+03 9.723E+02 9.677E+02 

   

best 
-

1.905E+00 -2.095E+00 8.273E+03 2.684E+02 -2.025E+00 -2.097E+00 

Avg   -2.067E+00 8.670E+03 6.689E+03 5.697E+02 -2.077E+00 

SD   3.641E-02 3.087E+02 2.324E+03 1.702E+03 2.121E-02 

worse   -1.971E+00 9.240E+03 7.847E+03 5.412E+03 -2.024E+00 

    

best -8.660E-01 -8.707E-01 -2.884E-01 4.816E+02 -8.715E-01 -8.717E-01 

Avg   -8.544E-01 8.848E+02 2.383E+03 -8.349E-01 -8.623E-01 

SD   2.448E-02 1.938E+03 1.472E+03 3.587E-02 1.454E-02 

worse   -8.032E-01 6.284E+03 5.707E+03 -7.561E-01 -8.287E-01 

 

4.3.2.2  Engineering constrained problems 

For further investigation of performance, the algorithms were tested in five engineering 

design problems. The problems are spring design [160], welded beam design [161], pressure 

vessel design [162], speed reducer design [163] and gear ratio for train design [164] 

problems. All these problems are nonlinear type. Similar with methods used in the 

constrained benchmark functions test, penalty function method is used to solve these 

engineering design problems. The best value, the worse value, standard deviation and average 

are recorded from 30 runs of simulation per algorithm.  
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(a)  Welded beam  

In this design problem the objective is to find the minimum cost of fabrication of welded 

beam. The mathematical formulation of fabrication of welded beam is:- 

              
                       

The set of constraints that needs to be considered is as follows 
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Table 4.16:- Result of welded beam problem 

 

Table 4.16 shows the design results of welded beam problem. As noted, the SBSDA achieved 

the best optimum value with small standard deviation. The design parameters              

were are within the predetermined range. Figure 4.4, shows the convergence of the 

algorithms for the welded design problem. Initial distribution of ABC was slightly different 

compared to others due to the random initial distribution where from the 30 trial runs for 

ABC algorithm 2 trials showed the initial population quite high and it resulted the ABC to 

start at different value. As noted, all the proposed algorithms slowly converged to the best 

point where the fastest was CEABC. The HABCSDA could not compete with other 

algorithms in solving the welded beam design. Overall, the performances of all proposed 

algorithms were far better than those of the original algorithms. 

 

 

Param ABC SDA CSDA CLABC CEABC CLEABC SBSDA SBA HABCSDA 

Best 1.70E+00 1.69E+00 1.73E+00 1.73E+00 1.75E+00 1.71E+00 1.67E+00 1.72E+00 1.87E+00 

 1 0.50 0.327 0.832 0.664 0.543 0.600 0.489 0.834 0.583 

 2 1.48 1.945 1.114 0.966 1.144 1.138 1.400 0.769 0.945 

 3 7.16 9.166 4.779 7.986 8.592 7.485 7.750 7.615 10.000 

 4 0.33 0.205 0.736 0.266 0.231 0.301 0.280 0.303 0.202 

Avg 1.95E+00 2.28E+00 2.47E+00 2.06E+00 1.87E+00 1.95E+00 1.88E+00 1.92E+00 2.03E+00 

SD 1.79E-01 8.41E-01 6.51E-01 1.72E-01 8.55E-02 1.82E-01 3.04E-01 1.87E-01 1.81E-01 

Worse 2.15E+00 4.56E+00 3.73E+00 2.32E+00 1.95E+00 2.24E+00 2.67E+00 2.37E+00 2.33E+00 

 



76 
 

 

Figure 4.4 :- Convergence plot of Welded-beam design problems 

 

(b) Gear Train design problem 

In this design problem the objective is to find the best number of gear teeth to ensure the train 

gear ratio is at the best. The mathematical formulation of the train gear ratio is:- 

     (
 

      
 

    

    
*
 

 

The gear teeth should be within the range 12 to 60, and the constraints are 
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Table 4.17: Results of gear train design problem 

 

The results in Table 4.17 show that the SBA with modified spiral trajectory performed the 

best in finding the best design parameter for gear train ratio. However, the smallest standard 

deviation from average found in this design problem was achieved with CLABC. The value 

of design parameter of gear design was also within the pre-setting range. Figure 4.5 shows 

the convergence of algorithms for the gear train design problem where all the algorithms 

converged near to the optimal point. As noted all algorithms converged to the optimal point 

in less than 10 iterations. 

 

Figure 4.5:- :- Convergence plot of gear train design problems 

Param ABC SDA CSDA CLABC CEABC CLEABC SBSDA SBA HABCSDA 

best 1.65E-03 1.66E-03 3.43E-03 1.65E-03 1.65E-03 1.65E-03 2.00E-03 7.55E-08 1.65E-03 

 1 60.00 60.000 59.249 60.000 60.000 60.000 60.000 150.824 60.000 

 2 12.00 16.826 12.005 12.000 12.000 12.000 12.000 45.363 12.000 

 3 55.49 60.000 56.143 55.488 55.488 55.488 55.666 58.390 55.488 

 4 60.00 16.505 56.076 60.000 60.000 60.000 58.911 143.657 60.000 

Avg 1.65E-03 8.49E-02 1.84E-01 1.65E-03 1.65E-03 1.65E-03 1.10E-02 6.18E-04 1.65E-03 

SD 1.91E-18 2.13E-01 2.34E-01 1.60E-18 1.19E-17 2.35E-18 8.54E-03 6.35E-04 2.67E-18 

worse 1.65E-03 6.11E-01 7.09E-01 1.65E-03 1.65E-03 1.65E-03 2.73E-02 1.65E-03 1.65E-03 

 



78 
 

(c) Tension/compression spring design problem 

In this design problem the objective is to find the best value of coil diameter, wire diameter 

and number of coils to ensure the weight of spring can be minimised. The mathematical 

formulation of the spring design beam is:- 

             
    

The challenge in this problem is that during the design the deflection, shear stress and surge 

frequency need to be taken into consideration and the values must be less than or equal to 

zero. The list of constraints are thus as follows  
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Table 4.18:- Results of compression spring design problem 

 

In this design, as shown in Table 4.18, six algorithms including the original ABC and the five 

proposed algorithms (CLABC, CEABC, CLEABC, SBSDA, HABCSDA) achieved the same 

best optimal values. Among these the SBSDA had a large standard deviation. Figure 4.6 

shows the convergence of algorithms for the spring design problem. The best among the top 6 

performed algorithms was CEABC. 

Param ABC SDA CSDA CLABC CEABC CLEABC SBSDA SBA HABCSDA 

best 1.27E-02 1.28E-02 1.37E-02 1.27E-02 1.27E-02 1.27E-02 1.27E-02 1.31E-02 1.27E-02 

 1 0.05 0.057 0.053 0.052 0.051 0.052 0.089 0.064 0.055 

 2 0.38 0.498 0.391 0.363 0.349 0.370 0.912 0.625 0.452 

 3 9.99 14.249 12.663 10.974 11.766 10.688 15.000 4.887 7.377 

 4 1.28E-02 5.92E-02 5.38E-02 1.28E-02 1.27E-02 1.28E-02 4.70E+15 1.43E-02 1.28E-02 

Avg 2.10E-04 8.77E-02 7.54E-02 6.03E-05 1.30E-05 7.73E-05 1.49E+16 1.35E-03 8.50E-05 

SD 1.33E-02 2.42E-01 2.26E-01 1.29E-02 1.27E-02 1.30E-02 4.70E+16 1.74E-02 1.30E-02 

worse 1.27E-02 1.28E-02 1.37E-02 1.27E-02 1.27E-02 1.27E-02 1.27E-02 1.31E-02 1.27E-02 
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Figure 4.6 :- Convergence plot of spring design problems 

(d) Pressure vessel design problem 

In this design problem the objective is to find the best thickness of spherical head, spherical 

inner radius, length of cylinder and cylinder thickness to ensure the minimum cost of 

fabrication of the vessel can be achieved. The mathematical formulation of the fabrication of 

pressure vessel design is  

                            
          

           
    

The challenge in this problem is that during the design; there is thickness limitation where the 

thickness of cylinder and the spherical head must be within 0 to 100. While the inner radius 

of spherical head, cylinder and length of the cylinder must within 10 to 200 range. Thus, the 

constraints are 
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Table 4.19:-Results of pressure vessel design problem 

 

As noted in the results in Table 4.19, the ABC was the most robust algorithm in solving the 

pressure vessel design problem. While the bee movement in spiral manner helped SBA to 

reach the best optimal point, it deviated quite far from average value, thus was not robust. 

Although in this problem ABC was the most qualified candidate to find the best optimal 

point, the proposed hybrid version HABCSDA was the second best algorithm in finding the 

best design parameters. The convergence characteristics of the algorithms in solving this 

problem are shown in Figure 4.7. 

 

Figure 4.7:- :- Convergence plot of pressure vessel design problems 

Param ABC SDA CSDA CLABC CEABC CLEABC SBSDA SBA HABCSDA 

best 5.91E+03 6.59E+03 8.02E+03 5.95E+03 6.03E+03 2.31E+03 2.31E+03 1.41E+03 5.91E+03 

 1 0.81 1.768 3.160 0.822 0.833 0.810 0.894 0.854 0.794 

 2 0.40 1.649 2.677 0.402 0.406 0.427 0.442 0.423 0.391 

 3 41.90 50.991 103.638 42.074 42.575 41.975 46.338 44.150 40.831 

 4 179.41 200.000 79.716 177.479 178.488 179.086 194.233 152.915 193.066 

Avg 5.99E+03 3.37E+05 8.16E+04 6.07E+03 6.15E+03 5.68E+03 5.12E+04 5.35E+03 6.00E+03 

SD 4.42E+01 6.24E+05 1.19E+05 8.52E+01 9.64E+01 1.19E+03 9.10E+04 1.61E+03 7.39E+01 

worse 6.05E+03 2.07E+06 3.12E+05 6.16E+03 6.23E+03 6.19E+03 2.49E+05 6.17E+03 6.14E+03 
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(e) Speed reducer design problem 

In this design problems the objective is to find the minimum weight of speed reducer. The 

mathematical formulation of weight of speed reducer is:- 

               
          

                               
    

   

There are 7 design parameters (         involved and to get the minimum of weigth of 

speed reducer these parameters should be within specific range of values. The list of 

constraints to adhere to is 
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Table 4.20:- Result of speed reducer design problem 

 

 

As noted from the results in Table 4.20, the CLABC,CEABC,HABCSDA exhibited 

themselves as the best proposed algorithms in solving the speed reducer design problem with 

standard deviation of zero . and after 48,000 NFE. This implies that these algorithms are 

highly robust in solving this kind of problems. The worst performer was the original SDA. 

Figure 4.8 shows the convergence of the algorithms for speed reducer design problem. As 

noted, CEABC converged near to optimal point faster than others, while CSDA,SDA and 

SBSDA were not able to go below 2600. This problem occurred as the algorithm was trapped 

at local optimum in most of the trial runs. 

Param ABC SDA CSDA CLABC CEABC CLEABC SBSDA SBA HABCSDA 

best 2.43E+03 2.45E+03 2.49E+03 2.43E+03 2.43E+03 2.43E+03 2.45E+03 2.43E+03 2.43E+03 

 1 2.60 2.600 2.600 2.600 2.600 2.600 2.600 2.600 2.600 

 2 0.70 0.700 0.700 0.700 0.700 0.700 0.700 0.700 0.700 

 3 17.00 17.193 17.000 17.000 17.000 17.000 17.174 17.000 17.000 

 4 7.30 7.301 8.010 7.300 7.300 7.300 7.796 7.300 7.300 

 5 7.30 7.536 7.454 7.300 7.300 7.300 7.970 7.300 7.300 

 6 2.95 3.237 3.000 2.952 2.952 2.952 3.105 2.952 2.952 

 7 5.00 5.149 5.100 5.000 5.000 5.000 5.000 5.000 5.000 

Avg 2.43E+03 2.64E+03 2.60E+03 2.43E+03 2.43E+03 2.43E+03 2.61E+03 2.43E+03 2.43E+03 

SD 0.00E+00 1.75E+02 9.93E+01 0.00E+00 0.00E+00 4.79E-13 1.41E+02 4.82E-12 0.00E+00 

worse 2.43E+03 3.00E+03 2.79E+03 2.43E+03 2.43E+03 2.43E+03 2.83E+03 2.43E+03 2.43E+03 
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Figure 4.8:- :- Convergence plot of Speed Reducer design problems 
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4.3.2.3 Comparative results with other algorithms 

The performances of the proposed algorithms were compared with those of other 8 

algorithms (based on comparative study by Kasdirin [153]). These include teaching learning 

based algorithm, TLBO, Improve ant colony, IACO, coevolutionary particle swarm 

algorithm, CPSO, cuckoo search, CS, firefly algorithm with nonlinear spread factor, FA-

NSF, firefly algorithm with exponential spread factor, FA-eSF, invasive weed optimisation 

with exponential spread factor, IWO-eSSF and modified invasive weed optimisation with 

exponential seeds,  and MIWO-eSSF. The comparative results are shown in Table 4.21. 

Table 4.21:- Comparative results of algorithms 

 Pressure vessel Spring design Welded beam Speed reducer 

 best Std dev best Std dev best Std dev best Std dev 

TLBO 6.06E+03 1.85E-12 1.27E-02 2.12E-06 1.73E+00 6.77E-16 2.994E+03 4.62E-13 

IACO 6.06E+03 6.72E+01 1.27E-02 3.49E-05 1.73E+00 9.20E-03 NA NA 

CPSO 6.06E+03 8.65E+01 1.27E-02 5.20E-05 1.73E+00 1.29E-02 NA NA 

CS 6.06E+03 5.03E+02 NA NA NA NA 3.0E+03 4.96E+00 

FA-NSF 5.90E+03 2.54E+02 1.27E-02 2.37E-04 1.68E+00 1.30E-01 2.86E+03 2.66E+00 

FA-eSF 5.93E+03 3.05E+02 1.27E-02 9.83E-04 1.68E+00 6.84E-02 2.86E+03 3.12E+00 

IWO-eSSF 5.89E+03 2.94E+02 1.27E-02 1.42E-06 1.72E+00 1.89E-01 2.98E+03 1.64E+00 

MIWO-

eSSF 

5.90E+03 1.62E+02 1.27E-02 3.18E-07 1.70E+00 1.70E-01 2.98E+03 2.13E+00 

ABC 5.91E+03 4.42E+01 1.27E-02 1.33E-02 1.70E+00 1.79E-01 2.43E+03 0.00E+00 

SDA 6.59E+03 6.24E+05 1.28E-02 2.42E-01 1.69E+00 8.41E-01 2.45E+03 1.75E+02 

CSDA 8.02E+03 1.19E+05 1.37E-02 2.26E-01 1.73E+00 6.51E-01 2.49E+03 9.93E+01 

CLABC 5.95E+03 8.52E+01 1.27E-02 1.29E-02 1.73E+00 1.72E-01 2.43E+03 0.00E+00 

CEABC 6.03E+03 9.64E+01 1.27E-02 1.27E-02 1.75E+00 8.55E-02 2.43E+03 0.00E+00 

CLEABC 2.31E+03 1.19E+03 1.27E-02 1.30E-02 1.71E+00 1.82E-01 2.43E+03 4.79E-13 

SBSDA 2.31E+03 9.10E+04 1.27E-02 4.40E+16 1.67E+00 3.04E-01 2.45E+03 1.41E+02 

SBA 1.41E+03 1.61E+03 1.31E-02 1.74E-02 1.72E+00 1.87E-01 2.43E+03 4.82E-12 

HABCSDA 5.91E+03 7.39E+01 1.27E-02 1.30E-02 1.87E+00 1.81E-01 2.43E+03 0.00E+00 

 

As noted in Table 4.21, the good features from ABC and SDA helped the proposed hybrid 

algorithm to reach the optimal point better than other algorithms. It is also noted that most of 

the proposed algorithms were better than other algorithms with good accuracy and small 

standard deviation. As a conclusion in this comparative study, the proposed algorithms 

showed potential to solve various problems with constrained parameters. 
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4.4 Summary 

In this chapter, the performances of the proposed algorithms (CSDA, CLABC, CEABC, 

CLEABC, SBSDA,SBA, and HABCSDA) in comparison to those of their predecessor 

algorithms, ABC and SDA have been assessed. All of the algorithms have been tested and 

been evaluated in ten single objective standard benchmark functions and sixteen CEC2014 

benchmark functions. The performance measurements have included non-parametric test, 

parametric test and convergence plots. The capability of the proposed algorithm in dealing 

with constrained problems has been tested and evaluated in ten CEC2006 benchmark 

functions and in five constrained engineering design. 

Most of the proposed algorithms have potential to solved various unconstrained and 

constrained problems. The best proposed algorithm in most of the problems so far is hybrid 

version of SDA and ABC, HABCSDA. HABCSDA has been shown to be able to reach the 

best optimal point and have quick convergence in solving given problems. 
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Chapter 5 

Multi Objective Problems 

 

5.1 Introduction  

This chapter presents the performance assessment of the proposed algorithms and their 

predecessor algorithms in multi-objective problems. The algorithms are used to solve two 

objectives problems in seven benchmark functions consisting of constrained and 

unconstrained problems and in one practical problem. The selected problems have various 

landscapes, dimensions and level of complexity. The performances of the algorithms are 

based on the visualization of Pareto front and three performance matrices, namely spacing, 

maximum spread and hyper volume.  

5.2 Multi-objective optimization 

The mathematical formulation for multi objective optimization problems with   objective s 

can be expressed as 

Minimize        [                    ] , where     

Subject to 

                        

                         

where   represents parameter variables in a parameter space.    is function of inequality 

constraint,     is function of equality of constraint, K is number of inequality constraints, and 

L is number of equality constraints.  

Multi-objective problems are difficult to solve. The reason is that optimal solutions are not 

unique and there will be tread-off between all objectives, where some will win and some will 

lose. Favourable solutions are non-dominated solutions, referred to as Pareto front optimal 

points [165]. Thus, the Pareto set forms the most suitable optimal solutions. In the tests here, 

the Pareto optimality and Pareto dominance methods are used to assess solutions of the multi-

objective problems. An objective function vector     can be said as a non-dominated objective 

vector        when no other solution,      enable to improve at least for one objective function 
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without degrading/affecting other objectives. This set of non-dominated solutions can also be 

called as a Pareto optimal set and the set creates a Pareto front. For a dominated solution 

vector, the solution      dominates solution     where         is better than        for at least 

one objective function or for all objective functions.  

 5.3 Multi-objective approach 

There are many techniques available in solving more than one objective problem. The 

approaches are divided into two categories; (1) Pareto based and (2) Non-Pareto based. 

Pareto based methods such as non-dominated sorting (NSGA-I & NSGA-II) and niched 

Pareto (NPGA) in genetic algorithms and simple evolutionary multi-objective (SEMO) are 

widely used to solve multi-objective problems. Pareto based approaches are slow 

convergence to the optimal Pareto front, and do not provide information between two 

solutions. Non-Pareto based approaches are known able to tackle multi-objective problems 

[166]. Weighted sum approach, aggregation method, vector evaluated, e-constrained method 

are examples of non-Pareto based approaches for solving multi objectives problems. 

Basically, a non-Pareto approach converts the objective into scalar objective function. This 

method is easy to use, provides good selection in Pareto front [167][168][169] and works 

efficiently with local search methods [170][171]. 

In the tests carried out here, the weight sum method is used. This method is suitable to use 

and is easy to implement  in solving multi-objective problems [172]. This approach has been 

successfully implemented by researchers for solving multi-objective optimization problems 

[153][173]. The method is mathematically formulated as 

  ∑    

 

   

 

where    is real-valued weighting        and ∑    .  
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5.4 Multi-objective benchmark problems 

The algorithms are tested in seven multi-objective benchmark functions and in one practical 

multi-objective problem. The summary of the benchmark problems is shown in Table 5.1. 

The corresponding mathematical formulations and constraints are shown in appendix A. 

Table 5.1:- Summary of the multi-objective benchmark functions 

 

5.5 Performance assessment  

Two types of performance assessment are carried out; qualitative and quantitative. The first 

one is qualitative assessment is done through visualization of the Pareto front. The 

quantitative assessments used comprise three performance matric, namely hypervolume, 

spacing and maximum spread [174][175], where the true Pareto set is considered unknown. 

The aim of these assessments is to establish how well the non-dominated points are 

distributed along the Pareto front (able to cover most of the objectives). These assessments 

are also used for convergence performance of the algorithms, where the closeness of the 

Pareto front approximation to the true Pareto front is measured. The spacing and maximum 

spread are used to assess the coverage/diversity of the non-dominated point along the Pareto 

front while hypervolume test enable to evaluate the convergence and diversity of Pareto 

optimal points along the Pareto front.  

 

Function Problems types Search domain 

 𝑂1 SCH 1 [124] Unconstrained problems  10    10 

 𝑂2 Kursawe Unconstrained problems 
 5     5 

0    3 

 𝑂3 CTP 1 Constrained problems 
0   1  1 

0   2  1 

 𝑂4 Constr-Ex Constrained problems 
0.1   1  1 

0   2  5 

 𝑂5 Binh and Korn Constrained problems 
0   1  5 

0   2  3 

 𝑂6 Chankong and Haimes Constrained problems 
 20   1  20 

 20   2  20 

 𝑂7 Osyczka and Kundu Constrained problems 

0   1 ,  2 ,  6  10 

1   3 ,  5  5 

0   5  6 

 𝑂8 Four bar plane truss Practical problems Refer to  table 5-2 

 



Spacing, S – this method was developed by Shotkey in 1995 [176] , and enables to evaluate 

how well (diversity) the non-dominated solutions are distributed within the approximation 

Pareto front. Basically, S is a Euclidean distance between adjacent solutions in the 

approximation Pareto front [177] and is mathematically formulated as 

  √
 

   
∑ (    )

  

   
 

where   is the average distance between adjacent solutions,    ∑ |  
    

 
|       

   

        ,   
      

 
 is Lth objective of           solutions, n is number of non-dominated 

points distributed along the Pareto front. The aim is to get the smallest spacing. Smallest 

value of S indicates that the non-dominated solutions are distributed well on the Pareto front 

[178]. If the non-dominated solutions are equally distributed, the spacing value should be 

zero. 

Maximum spread (  𝒙 )- this performance matric was proposed by Zitzler [179]. The 

spread is required to be maximum, where each of the objective values should be within 

maximum and minimum Pareto front points. Mathematical formulations of MaxS is given as 

     √∑           

 

   

 

where,   is an objective function,     and    represent maximum and minimum values for 

     objective and   is Euclidean distance. To ensure the Pareto front is completely 

covered the reference front MaxS should converge from zero to one [153] [179].  

Hypervolume      –HV is a popular performance measurement for multiobjective 

problems. HV can evaluate the convergence and diversity criterion of Pareto set.  HV is 

determined by calculating the volume of the objective area dominated by Pareto optimal 

points and reference point,r. Larger HV indicates that the Pareto set is better in terms of 

objective tread-offs. An example and detailed procedure of measurement of HV has been 

presented by Lucas [180] and Auger et. el. [174][181]. Figure 5.1 shows the computation of 

HV for solution and reference point,r in the objective space (adopted from [174]). 
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Figure 5- 1:-The computation of HV for u- solution and reference point,r in objective space  (adopted 

from [174]) 

5.6 Experimentation 

The initial parameter settings used for the algorithms are shown in Table 5.2. The population 

size was set to 30 and the number of iterations to 1000. For HV measurement, the reference 

point needs to be set for each problem. Table 5.4 shows the HV reference point. 

Table 5.2:- Multi-objective algorithms initial parameters for all algorithms 

 

Table 5.3:- HV reference points 

Fcn Reference point 

 𝑂  [10 9] 

 𝑂  [-6 8] 

 𝑂  [1.2 1.2] 

 𝑂  [1.2 1.2] 

 𝑂  [140 60] 

 𝑂  [900 100] 

 𝑂  [10 410] 

 𝑂  [1400 0.05] 

 

 Algorithms 

Parameters ABC SDA CSDA CLABC CEABC CLEABC SBSDA SBA HABCSDA 

  - 0.95 0.95 - - - 0.95 0.95 0.95 

  - 450 450 - - - 450 450 450 

  - 30 30 - -  30 30 30 

Limit 100 - - 100 100 100 100  100 

NF 30 - - 30 30 30 30  30 

itter 1000 1000 1000 1000 1000 1000 1000 1000 1000 

 (0)     0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 

   - - - 1 1 1 - - - 

 2 - - - 0.5 0.5 0.5 - - - 

 1 - - - 0.5 0.5 0.5 - - - 

 2 - - - 0.8 0.8 0.8 - - - 
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Figures 5.2 to 5.9 show the Pareto sets obtained for the benchmark problems. Table 5.4 

shows the performance assessment results where the bold font indicates the best value in the 

individual assessment metric. 

Table 5.4:- Performance results of the algorithms 

 

As noted in Table 5.4, for MO1, HABCSDA performed very well with maximum spread and 

space between non-dominated solutions, where it had a good distribution along the Pareto 

front, while SDA showed good convergence as it achieved highest HV. Figure 5.2 shows that 

solutions of the algorithms were distributed well along the Pareto front for function 

FCN ABC SDA CSDA CLABC CEABC CLEABC SBSDA SBA HABCSDA 

 𝑂1  

HV 1.26E-01 1.43E-01 1.32E-01 1.26E-01 1.26E-01 1.26E-01 1.30E-01 1.26E-01 1.29E-01 

MS 1.78E-03 1.85E-03 4.29E-03 1.78E-03 1.78E-03 1.78E-03 5.23E-03 1.78E-03 9.38E-03 

SP 4.16E+01 5.81E+01 4.97E+01 4.16E+01 4.16E+01 4.16E+01 4.43E+01 4.16E+01 3.33E+01 

 𝑂2  

HV 1.77E+02 1.71E+02 1.54E+02 1.77E+02 1.77E+02 1.77E+02 1.71E+02 1.77E+02 1.71E+02 

MS 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 

SP 0.00E+00 2.36E+00 4.95E+00 0.00E+00 0.00E+00 0.00E+00 1.79E+01 0.00E+00 0.00E+00 

 𝑂3  

HV 5.94E-01 2.61E-01 2.71E-01 5.66E-01 5.40E-01 5.66E-01 2.68E-01 5.94E-01 8.67E-01 

MS 8.36E-01 8.34E-01 8.36E-01 8.36E-01 8.36E-01 8.36E-01 8.26E-01 8.36E-01 8.36E-01 

SP 1.78E-02 9.23E-03 1.53E-02 1.94E-02 2.07E-02 1.94E-02 1.73E-02 1.78E-02 2.39E-02 

 𝑂4 

HV 9.82E+00 9.81E+00 9.39E+00 9.82E+00 9.82E+00 9.82E+00 9.86E+00 9.82E+00 1.08E+01 

MS 5.86E-01 5.82E-01 5.95E-01 5.86E-01 5.86E-01 5.86E-01 5.90E-01 5.86E-01 5.86E-01 

SP 4.18E-02 5.44E-02 3.88E-02 4.18E-02 4.18E-02 4.18E-02 3.28E-02 4.18E-02 3.36E-02 

 𝑂5  

HV 2.16E+03 1.87E+03 1.95E+03 2.16E+03 2.16E+03 2.16E+03 2.46E+03 2.16E+03 2.08E+03 

MS 4.51E-02 1.57E-01 1.50E-01 4.51E-02 4.51E-02 4.51E-02 5.57E-02 4.51E-02 4.52E-02 

SP 1.09E-02 1.29E-02 1.22E-02 1.09E-02 1.09E-02 1.09E-02 9.56E-03 1.09E-02 1.16E-02 

 𝑂6  

HV 1.75E+05 5.07E+04 5.03E+04 1.75E+05 1.75E+05 1.75E+05 5.89E+04 1.75E+05 6.82E+04 

MS 2.88E-02 4.84E-02 4.97E-02 2.88E-02 2.88E-02 2.88E-02 2.74E-02 2.88E-02 3.05E-02 

SP 1.49E-01 1.06E-01 1.71E-01 1.49E-01 1.49E-01 1.49E-01 1.24E-01 1.49E-01 1.53E-01 

 𝑂7  

HV 2.88E+05 3.35E+05 2.26E+05 4.45E+05 4.45E+05 4.45E+05 2.20E+05 4.45E+05 2.86E+05 

MS 7.07E-01 7.13E-01 7.10E-01 7.07E-01 7.07E-01 7.07E-01 7.07E-01 7.07E-01 7.07E-01 

SP 5.07E+00 2.11E-01 3.87E-01 5.47E+00 5.47E+00 5.47E+00 4.39E-01 6.04E+00 2.09E+00 

 𝑂8  

HV 2.26E+00 3.45E+00 3.51E+00 2.26E+00 2.26E+00 2.26E+00 2.93E+00 2.26E+00 2.26E+00 

MS 7.07E-01 6.42E-01 6.46E-01 7.07E-01 7.07E-01 7.07E-01 6.43E-01 7.07E-01 7.07E-01 

SP 0.00E+00 4.62E-03 3.89E-03 0.00E+00 0.00E+00 0.00E+00 5.80E-03 0.00E+00 0.00E+00 
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 𝑂  except with those of SDA and CSDA, where the SDA and CSDA solutions were quite 

far from the Pareto front. They appear to have failed to solve this simple multi-objective 

problem due to the spiral trajectory. 

 
Figure 5.2:-  Pareto set of algorithms for     

 

For MO2, algorithms based on ABC algorithm achieved good convergence and coverage 

with zero spacing, large HV and small maximum spread within the Pareto front. Zero implies 

that the non-dominated solutions are distributed equally along the Pareto front.  Solutions 

achieved with SDA,CSDA and SBSDA were scattered quite far from the Pareto front. The 

distribution of solutions for all algorithms for MO2 can be seen in Figure 5.3.  

 
Figure 5.3:-  Pareto set of algorithms for     

 

Figure 5.4 shows the Pareto set for MO3. As noted solutions with most of the algorithms 

were distributed along the Pareto front but the spiral movement for SDA, CSDA and SBA 
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could not lead the solutions to the Pareto front. Although it not scattered far from the Pareto 

front, the solution are grouped at the right end of the Pareto front (obj1=1) and based on the 

numerical results in Table 5.4, SBSDA and SDA has good coverage but do not have a good 

convergence. Based on the HV values the HABCSDA had a good convergence. 

 
Figure 5.4:- Pareto set of algorithms for     

 

 
Figure 5.5:- Pareto set of algorithms for     

 

Based on the results in Figure 5.5 and Table 5.4, SDA and SBSDA with small spacing and 

maximum of spread achieved non-dominated solutions distributed well along the Pareto 
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front. HABCSDA achieved good convergence with the highest HV. Similar to MO3, the 

dominated solution achieved with SDA based algorithms in solving MO4 were scattered at 

the right end of the Pareto front. Figure 5.6 and Figure 5.7 show the Pareto set of MO5 and 

MO6 respectively. As noted,  for MO5, the solution were distributed well but some of the 

solutions were pushed away from the Pareto front while for MO6 the solutions from SDA 

,SBSDA and HABCSDA scattered near to the Pareto front while solutions from other 

algorithms were distributed well along the Pareto front. Based on the numerical results most 

of the proposed algorithms except SDA, CSDA and HABCSDA performed well for MO5 and 

MO6. 

 
Figure 5.6:- Pareto set of algorithms for     

 
Figure 5.7:- Pareto set of algorithms for     
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MO7 is a constrained problem and hard to solve. The Pareto set of MO7 can be seen in 

Figure 5.8. Based on the numerical results, the non-dominated solutions from SBA,CLEABC, 

CLABC and CEABC showed good diversity and good convergence. The chaotic maps could 

not resolve the trapping issue of algorithm at local optima and was not able to lead the CSDA 

to perform well in this kind of problem. 

 
Figure 5.8:- Pareto set of algorithms for     

 

 

Figure 5.9:- Pareto set of algorithms for     
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MO8 is the practical multi-objective problem. As noted in Figure 5.9, most of the solutions 

were scattered behind the Pareto front and the numerical results in Table 5.4 show that the 

spacings for ABC, CEABC, CLABC, CEABC,SBA and HABCSDA were distributed 

equally. The CSDA provided good convergence. It is seen that, the proposed algorithms 

outperformed the original algorithms in solving MO8 problem. 

5.7 Summary 

The proposed algorithms were tested in eight multi-objective problems. The aim of the tests 

were to compare the performance of the proposed algorithms with those of SDA and ABC. It 

has been shown through visualization of Pareto sets distribution and numerical results that the 

proposed algorithms have outperformed the original algorithms in most of the test problems.  

Thus, it can be concluded that, the proposed algorithms are able to find best non-dominated 

solutions with good diversity and convergence in solving multi objective problems. 

 

 

 

 

 

 

 

 

 

 

 

 

  



97 
 

Chapter 6 

Engineering Applications 
 

6.1 Introduction 

The performances of the proposed algorithms were tested in chapters 4 and 5 using 

benchmark functions and the results showed that they outperformed the original SDA and 

ABC. In this chapter, the proposed algorithms are tested in four engineering/practical 

applications. The first of these is tuning of proportional derivative (PD) fuzzy controller for 

set-point tracking of hub angle of a single link manipulator system. The second application is 

minimization of shipping refined oil cost to Japan. The third application is to find the optimal 

number of flat television sets needed to sell in order to get a maximum profit margin. The 

fourth application is to find the minimum weight of the car in car impact designs. The 

applications considered have different levels of complexity and have received noticeable 

attention from researchers. However, SDA and ABC based algorithms have not been used in 

these applications. Thus, the test results of the proposed algorithms in these applications will 

add to current body of knowledge. 

6.2 Control of flexible manipulator system 

In this section, the proposed algorithm and its predecessor algorithms are used to optimize 

PD fuzzy controller of a single link flexible manipulator system (SLMS). The SLMS model 

used in this experiment has been developed by Azad [182] and Poerwanto [183] . Figure 6.1 

shows a schematic representation of the SLMS rig. Detailed description the SLMS 

development can be found in several previous works  [46] [134][184][185][186]. 

While conventional proportional, integral, derivative (PID) controllers have gained popularity 

in large sectors of industrial applications, their tuning could be tedious and time consuming. 

Moreover, conventional approaches of PID tuning may not yield optimal design. In case of 

more complex control paradigms, such as fuzzy logic and neural networks the design process 

become more complex. 
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(a)                                                                                                     (b) 

Figure 6.1: Schematic diagram(a) and schematic representation (b) of the SLMS rig ( Adopted from 

Azad [182]) 

 

Optimization algorithms have been shown as viable candidates for optimal design of 

controllers to their desired specifications. Kasdirin [153] has used firefly and invasive weeds 

algorithms to obtain optimised twenty five membership function (MF) PD- like fuzzy 

controller for SLMS. Supriyono [187] used bacterial foraging algorithm (BFA) to tune the 

PD controller for input tracking SLMS. Nasir et al. [188] used hybrid BFA and SDA to 

design the controller of SLMS. Adaptive BFA [189] and genetic algorithm [190][191] have 

been used to tune the SLMS controller. In this experiment, the main focus is to control the 

hub angle using PD controller and PD-like fuzzy controller. The proposed algorithms, SDA 

and ABC are used to tune the controller parameters.  

 

The mathematical formulation of PID controller is:- 

              ∫         

     

  
 

where      is the error.   ,    and    are the proportional, integral and derivative gain that 

need to be tuned for a desired system performance. There are two types of methods commonly 

used for tuning PID controllers; (a) manual tuning, via heuristic trial and error approach, 

which proves to be tedious and depends on experience. (b) The Ziegler-Nichols method, 

which is based on known mathematical model of the system to be controlled. Table 6.1 shows 

the generic effects of PID gains on system response. 
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Table 6.1:- Effect of PID gains on system response 

Parameter          

             Decrease Decrease Small decrease 

                 Small change Increase Small decrease 

                       Decrease Big Decrease No change 

𝑂          𝑂  Increase Increase Small decrease 
 

Although PID is a common and popular controller in many applications, due to the 

nonlinearity of SLMS, PD-fuzzy logic control is a more effective control mechanism for 

achieving accurate hub angle trajectory [153]. Thus in this experiment, the PD-Fuzzy logic 

control is used for SLMS. The setting  and structure of PD-fuzzy controller in this experiment 

are based on [153].  

As shown in Figure 6.2, the value of    and   ,         is the fuzzy parameters need to be 

optimized by the proposed algorithms. In total, ten (10) values of fuzzy parameters together 

with the derivative gain    and proportional gain    need to be tune in order to get accurate 

trajectory of SLMS. 

 

(a) 

 

(b) 

Figure 6.2: Fuzzy input  (a) error        (b) Change of error,       
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The fuzzy logic controller with a Takagi-Sugeno fuzzy inference system (FIS) is used here. As 

shown in Figure 6.3, the fuzzy logic controller has 2 inputs and 1 output. The error,      and 

change of error,       are the inputs. The input signal to the SLMS can be representing as   . 

The      is the difference between reference input and hub angle. While        is change of 

error and can be formulated as                  , where k is sample number. The 

range of the input should be between [-1, 1]. The membership function type used in this 

experiment is triangle type. Five fuzzy rules are defined in each input and the output will have 

twenty-five fuzzy rules. The fuzzy rules base is shown in Table 6.2. To ensure the input signal 

of SLMS is sufficient enough, the fuzzy scaling factor K is set to 500. The constant values 

output of fuzzy rules are set as: - NB=-1, NS =-0.5, ZO=0, PS = 0.5 and PB=1 and the FIS 

output range is [0, 1]. The integral absolute error is used as an objective function. Thus the 

objective function is:- 

      ∫|    |                     

where, the error      is the difference between set point angular position and actual angular 

position. 

 

Figure 6.3:- PD fuzzy control system 

Table 6.2:- Fuzzy rules 

 
NB NS ZO PS PB 

NB PB PB PB PS ZO 

NS PB PS PS ZO NS 

ZO PS ZO ZO ZO NS 

PS PS ZO NS NS NB 

PB ZO NS NB NB NB 

 𝑒 𝑘  
𝑒 𝑘  
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The reference input to SLMS used here is a bang-bang signal with positive step at 50 degrees 

and negative step -50 degrees and duty cycle 12 seconds. There are 12 parameters that need 

to be optimised. 10 from membership function values and 2 controller gains    and   . 

Table 6.3 and 6.4 show the system response parameters achieved, where subscript 1 and 2 

refer to first and second cycles of the bang-bang input applied. Table 6.5 shows results of 

membership parameters and gains. Figure 6.4 shows the system response with the optimised 

controller, and Figure 6.5 shows the convergence plots of the algorithms. 

It is noted in Table 6.3 and 6.4 that the system response with CLEABC tuned controller 

reached faster to the 50 degrees hub angle with zero overshoot and to -50 degrees with zero 

undershoot, and the time taken to settle at 0 degree was 578 ms. HABCSDA tuned controller, 

among the hybrid optimisation algorithms, achieved the fastest system response. Most of the 

proposed algorithms achieved low system response overshoot and undershoot. The CSDA 

tuned controller performed the worst with slow and high system response overshoot.  

Table 6.3:- Numerical result of time domain response of SLMS hub angle for non-hybrid algorithms 

Parameters ABC SDA CSDA CLABC CEABC CLEABC 

Settling time (s),     1.179 1.518 1.018 893.649m 743.137m 1.139 

Rise time (s),     409.807m 476.541m 441.718m 399.649 462.752m 389.132m 

Overshoot,   𝑂   0 12.82 2.32 3.10 2.36 0 

Undershoot,       0 49.605 0 48.993 49.702 0 

Settling time (s),     1.545 1.718 3.957 1.192 1.260 1.1220 

Rise time (s),     603.009m 673.094m 578.440m 631.025 662.577m 578.440m 

Overshoot,   𝑂   7.32 26.17 6.18 7.83 5.54 16.66 

Undershoot,       2.60 1.36 0.70 1.48 0.48 1.78 

Settling time (s),     0 1.593 1.451 718.907m 798.463m 1.137 

Rise time (s),     441.718m 483.786 694.128m 431.201 483.786 399.649m 

Overshoot,   𝑂   0 5.36 0 0.88 0.68 0 

Undershoot,       0 0.4 0 0.5 0.24 0 
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Table 6.4:- Numerical result of time domain response 

of SLMS hub angle for hybrid algorithms 

Parameters SBSDA SBA HABCSDA 

Settling time (s),     1.168 1.079 1.105 

Rise time (s),     389.132m 378.615m 389.132 

Overshoot,   𝑂   0.14 0.72 0.30 

Undershoot,       48.130 49.219 49.319 

Settling time (s),     1.194 1.633 1.603 

Rise time (s),     599.474m 578.440m 578.440m 

Overshoot,   𝑂   11.65 16.26 12.41 

Undershoot,       2.32 0.94 2.50 

Settling time (s),     1.151 1.091 1.112 

Rise time (s),     420.684m 431.201m 452.235m 

Overshoot,   𝑂   0 0 0 

Undershoot,       0 0 0 

 

 

 
Figure 6.4:- Hub angle response of SLMS 
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Figure 6.5 shows the convergence plots of the algorithms for control optimisation of the 

SLMS. The first algorithm that reached the best optimum point in this problem was CLABC. 

Although CLEABC started from a distant point, it reached the optimum point in less than 15 

iterations. Most of the proposed algorithms reached nearest to the best point except CSDA.  

 
Figure 6.5:- Convergence plot algorithms for SLMS controller design 
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Table 6.5:- Results of optimum parameter of membership function and    and    gain. 

Algorithm 
Error, 

      

Change of Error, 

      
      𝒇 𝒙  

ABC 

   0.4877    0.8771 

0.0213 0.1134 3.79E+06 

   0.7687    0.4967 

   0.6083    0.2271 

   0.1888    0.2955 

   0.3898    0.5937 

SDA 

   0.5010    0.3265 

0.0434 0.0788 4.26E+06 

   0.7203    0.6700 

   0.1795    0.1583 

   0.0741    0.4252 

   0.7197    0.0662 

CSDA 

   0.4263    0.7792 

0.0893 0.3924 4.17E+06 

   0.0528    0.7399 

   0.3771    0.9197 

   0.3031    0.1489 

   0.5606    0.4848 

CLABC 

   0.1213    0.4727 

0.0997 0.1833 3.77E+06 

   0.0613    0.5624 

   0.9630    1.0000 

   0.0685    0.6417 

   0.9197    0.7665 

CEABC 

   0.0331    0.2462 

0.0605 0.1314 3.83E+06 

   0.6517    0.4889 

   0.7151    0.5143 

   0.8238    0.7884 

   0.3152    0.0000 

CLEABC 

   0.6643    0.0149 

0.0808 0.1651 3.83E+06 

   0.4146    0.0000 

   0.3501    0.4594 

   0.3237    1.0000 

   0.9398    0.1101 

SBSDA 

   0.9152    0.4819 

0.1387 0.9997 3.79E+06 

   0.2064    0.6520 

   0.8864    0.4435 

   0.9101    0.4731 

   0.5142    0.2677 

SBA 

   1.0000    0.4276 

0.1383 0.9901 3.92E+06 

   1.0000    1.0000 

   0.0586    0.7431 

   1.0000    0.0511 

   0.8971    0.5275 

HABCSDA 

   0.5924    0.5677 

0.0213 0.1134 3.89E+06 

   0.0274    0.7706 

   0.6602    0.1895 

   0.1714    0.1073 

   0.5502    0.2138 
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6.3 Transportation cost of refined oil via Malacca Straits 

This objective in this problem is to reduce the cost of transportation of refined oil to Japan via 

Malacca Straits. This problems is based on work by Edgar [192].  The shipping cost is in 

dollar per kilolitre ($/kL). The algorithms used in this experiment will find the best value of 

tanker size      and refinary capacity      in order to get the best cost of shipping. There are 

additional cost needs to be considered and need to be include in total cost of shipping. There 

are customs charges, loading and unloading fees, sea berth cost, piping cost, warehouse cost, 

crude oil cost, insurance fees, interest rate cost and freight cost. Some of these costs are 

calculated fix per year. The mathematical formulation of the cost of transportation of refined 

oil via sea is given as 

 

              
          

       

   
 

            
      

              
 

          
     

   
 

 
            

      

   
 

       [             ]
     

              
 

           
       

   
 

 
      [             ]

              
 

where, 

Yearly fix cost,       , crude oil price,    
      

  
  insurance fees,    

     

  
   custome 

fees,    
     

  
  interest rate,       number of ports,      land cost,   

    

    

        

Table 6.6 shows that after 30 time runs, all the algorithms reduced the shipping cost of 

refined oil to Japan via Malacca Straits by $425.85/kL with the best value of tanker size      

of 4.39E-03 dwt and refinery capacity      of 1E12 bbl/day.  The deviation from average for 

ABC, CLABC, CEABC, CLEABC and HABCSDA was the smallest. This implies that the 

cost variation at the end of run was small and thus can be said those algorithms were stable in 

producing the cost. 

The convergence plots in Figure 6.6 show that SDA,CSDA, SBSDA did not reach the 

optimum point and the apparently trapped at local optima. The CLABC was the fastest to 

reach the optimum cost in 150 iterations, while HABCSDA needed 171 iterations to reach the 

optimum point. 
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Table 6.6:- Statistical results of shipping cost of refined oil problems 

Param ABC SDA CSDA CLABC CEABC CLEABC SBSDA SBA HABCSDA 

Best 4.26E+02 4.26E+02 4.26E+02 4.26E+02 4.26E+02 4.26E+02 4.26E+02 4.26E+02 4.26E+02 

Avg 4.26E+02 4.26E+02 4.26E+02 4.26E+02 4.26E+02 4.26E+02 4.26E+02 4.26E+02 4.26E+02 

SD 2.31E-13 7.60E+11 1.11E+09 2.31E-13 2.31E-13 2.31E-13 3.87E+11 1.81E-01 2.31E-13 

Worse 4.26E+02 2.97E+12 4.41E+09 4.26E+02 4.26E+02 4.26E+02 1.91E+12 4.27E+02 4.26E+02 

 

 

 
Figure 6.6:- Convergence plots of algorithms for shipping cost of refined oil problem 
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6.4 Profit maximization of selling television sets 

In this experiment, the objective is to estimate the maximum profit gain per year by colour Television 

(TV) manufacture when 19” and 21” flat screen TVs are sold. This problem has been featured in the 

work of Yahya [173] .The price of 19” flat screen TV,   is $339, while 21” flat screet TV is $60 more 

expensive. To produce both models, the Manufacturing Company needs to spend $195 for each 19” 

flat screen TV and $225 for each 21” flat screen TV. The total operation cost for this production,   is 

$400,000. Based on the supply and demand, the price of the TV is expected to be drop by $0.013 for 

each 19” flat screen TV sold and the price of 21” flat screen TV is expected to be lower by $0.014 for 

every unit sold. The mathematical formulation of the profit made in selling TV set is 

               

Cost to produce flat screen TV,                             ,   

Total sales of flat screen TV,                  

Price tag for one 19” flat screen TV,                             ,   

Price tag for one 21” flat screen TV, q                           

        

Table 6.7:- Statistical results of profit maximization of selling television sets 

 ABC SDA CSDA CLABC CEABC CLEABC SBSDA SBA HABCSDA 

Best $553,641.0256 

   4735.04 4735.04 4735.04 4735.04 4735.04 4735.04 4735.04 4735.04 4735.04 

   7042.74 7042.74 7042.74 7042.74 7042.74 7042.74 7042.74 7042.74 7042.74 

Avg 553,641.0256 

SD 0 

 

As noted in the statistical results in Table 6.7, the best profit is $553,641.0256. To achieve 

this value, the manufacture must sell 4736 sets of 19” flat screen TV and 7043 sets of 21” flat 

screen TV. All the proposed algorithms found the optimum profit margin in 1600 iterations. 

The statistical parameter resulting from the search was with zero standard deviation. As noted 

in the convergence plot in Figure 6.7, the HABCSDA was the fastest one to reached the 

optimal cost in 78 iterations while the slowest one to converge is SDA (268 iterations). 

CSDA, CLABC, CEABC, CLEABC, SBSDA, SBA converged to the optimal point within 

97, 129, 142, 140, 49, 142 iterations respectively. 
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Figure 6.7:- Convergence plot of profit maximization of selling television sets 

 

6.5 Car side impact design 

This practical engineering design problem by Gu et al. [193] is about the car side impact 

design (Figure 6.8). The objective of design is to minimize the total car weight and to 

enhance the performance of car side impact crash. 

 

Figure 6.8:- FEM model of car side impact (adopted from Zhang et. el)[194] 

The mathematical model of total car weight is given as 



109 
 

                                                    

The design parameters for this problem are B-pillar thickness     , B-pillar reinforcement 

thickness     , floor side inner tickhness     , cross members thickness     , door beam 

thickness     , door beltline reinforcement thickness    , roof rail thickness     , B-pillar 

inner material     , floor side inner material     , height barrier       and hitting possition 

     .According to Zhang et al.   [194] and Yahya [173] the problem has ten constrained 

parameters to take  into consideration in this design. These constraints are used to ensure the 

impact or injury to human inside the car during side crash is minimum [195]. Table 6.8 shows 

the list of constrained parameters and the corresponding mathematical models are given as  

Table 6.8:- Constrained parameters list 

Constrained Descriptions 

   Load in abdomen 

    Dummy upper chest 

    Dummy middle chest 

    Dummy lower chest 

    Upper rib deflection 

    middle rib deflection 

    lower rib deflection 

     V-pillar at middle point 

   Pubic force 

    Velocity of front door at v-pillar 
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Table 6.9 shows the statistical results achieved with the algorithms. As noted, five of the 

proposed algorithms, HABCSDA, SBA, CLEABC, CEABC and CLABC outperformed other 

algorithms in robustness and lowest average weight of the car in this design problem. ABC 

also performed well in this experiment. The SDA and its variants did not reach the optimal 

point in this design problem.  Although five algorithms reached the optimal value at the end 

of run, but as noted in the convergence plots in Figure 6.9, CEABC reached the optimal point 

after 43 iterations followed by CLEABC. The slowest to converge to the optimal point from 

these five top algorithms is SBA. SDA, SBSDA and CSDA got stuck at 23kg and above. 

Table 6.9:- Statistical results of car side impact design problems 

 ABC SDA CSDA CLABC CEABC CLEABC SBSDA SBA HABCSDA 

Best 22.9047 23.4068 23.6811 22.2329 22.2329 22.2329 23.0547 22.2329 22.2329 

   0.5000 0.5791 0.5018 0.5000 0.5000 0.5000 0.6724 0.5000 0.5000 

   0.5000 1.3155 0.5000 0.5000 0.5000 0.5000 0.8888 0.5000 0.5000 

   0.5000 0.5471 0.5012 0.5000 0.5000 0.5000 0.5987 0.5000 0.5000 

   0.5000 0.6560 0.8439 0.5000 0.5000 0.5000 0.7084 0.5000 0.5000 

   0.5000 1.1729 0.5020 0.5000 0.5000 0.5000 0.8285 0.5000 0.5000 

   0.5000 0.7174 0.6330 0.5000 0.5000 0.5000 1.3689 0.5000 0.5000 

   0.5000 0.8386 1.0456 0.5000 0.5000 0.5000 0.5521 0.5000 0.5000 

   0.1920 0.1920 0.1920 0.1920 0.1920 0.1920 0.1920 0.1920 0.1920 

   0.3450 0.3450 0.3450 0.3450 0.3450 0.3450 0.3450 0.3450 0.3450 

    -30.0000 -3.9554 28.7004 -30.0000 -30.0000 -30.0000 -5.9247 -30.0000 -30.0000 

    30.0000 -17.1380 29.3238 30.0000 30.0000 30.0000 22.2336 30.0000 30.0000 

Avg 22.9047 27.9743 27.3353 22.2329 22.2329 22.2329 27.4987 22.2329 22.2329 

SD 0.0000 2.3922 2.3208 0.0000 0.0000 0.0000 2.5429 0.0000 0.0000 

Worse 22.9047 31.7274 32.8483 22.2329 22.2329 22.2329 31.5280 22.2329 22.2329 
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Figure 6.9:- Convergence plots of algorithms for car side impact design 

 

6.6  Summary 

Four practical/engineering problems have been used to test the proposed algorithms and their 

predecessor algorithms. These have included PD-fuzzy controller design for SLMS, 

minimization of shipping refined oil cost to Japan via Malacca Straits, profit maximization of 

selling flat television sets and minimization of weight in car side impact design. The results 

have shown that the proposed algorithms outperformed the original algorithms in solving the 

given practical problems. 
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Chapter 7 

Conclusions and future work 
 

7.1       Conclusions 

An investigation of ABC and SDA algorithms and new types of algorithms has been carried 

out in this research. The objectives of this research have been to introduce modifications and 

hybridisations on the original ABC and SDA in order to enhance their performances in terms 

of accuracy, robustness and their convergence speed in solving various types of problems. 

The research has resulted eight modifications leading to seven new algorithms. The new 

algorithms thus arrived at have been tested and their performances have been assessed in 

various types of benchmark functions, including standard benchmark functions and CEC2013 

benchmark functions, as well as selected complex engineering/practical applications. The 

results have shown that the developed algorithms outperform their predecessor algorithm in 

term of accuracy, convergence speed and efficiency. 

The contributions of this research to knowledge can be summarised as follows: 

a) In order to get a good quality of initial solution distribution, combinations of 

opposition based learning, random and chaotic distribution have been proposed. This 

novel approach enable to produce initial solutions near to the optimal value and able 

to speed up the algorithms to converge. This proposed initial distribution have been 

incorporated in all the proposed algorithms. 

b) The SDA has been reformulated by replacing the spiral radius and spiral angle by 

chaotic patterns. Chaotic trajectory has helped the algorithm to escape from traps of 

local optima. This new algorithm has been referred to as CSDA.  

c) Three adaptive algorithms have been proposed by incorporating chaotic maps with 

adaptive step sizes, using exponential and linear trajectory formulations, into the ABC 

algorithm. The proposed adaptive algorithms have been referred to as CLABC, 

CEABC and CLEABC.  

d) Three hybrid algorithms have been developed based on SDA and ABC. These have 

been referred to as SBSDA, SBA and HABCSDA. SBSDA uses scout bee features in 

ABC to solve the problem of SDA getting trapped at local optima. Similarly, For 

SBA, The bee’s movement is ABC has been converted into spiral movement in order 
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to improve the local search capability. The 3
rd

 hybrid version is HABCSDA. 

HABCSD algorithm is a series type hybrid strategy where the structure of algorithms 

is placed in a sequential order. Combination of these two algorithms in series can 

reduced the potential algorithm to trap at local optimum and may speed up the 

algorithm to converge. 

e) The performances of the proposed algorithms have been assessed in single-objective 

and multi-objective optimisation problems. The single-objective problems have 

included ten unconstrained standard benchmark functions, sixteen CEC 2013 

unconstrained benchmark functions, ten CEC 2006 constrained benchmark functions, 

five constrained engineering problems, and further five practical/engineering 

problems of constrained and unconstrained nature. The assessments have been carried 

out in comparison with the original ABC and SDA and the results have shown the 

superiority of the proposed algorithms in solving complex uni-modal and multi-modal 

problems of complex nature with great accuracy and efficiency. 

In conclusion, the proposed algorithms have the capability to solve various types of problems 

including single objective constrained and unconstrained problems, multi-objective problems 

of complex and practical nature. 

7.2 Recommendations for future work 

For future works, the proposed algorithms can be extended to:- 

a) Real time applications – It is recommended to test and assess the proposed algorithms 

in real time applications. The algorithms achieve accurate results in simulated 

environments. However, the computing requirements in real-time applications would 

require careful consideration of matching the computing needs of the algorithm with 

computing resources.  

b) Although the proposed ABC algorithms are able to give accurate result, their 

convergence speeds are impressive, especially for real-time applications. New types 

of fitness evaluation and bee selection can be considered for further modifications to 

speed up their convergence further. 

c) SDA is fast responding algorithms, but its accuracy is not impressive and gets trapped 

at local optima. The proposed SDA based algorithms are able to resolve these issues. 

However, their performance in solving high dimension are not impressive. In order to 
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increase the accuracy and convergence speed in high dimension problems, it is worth 

to investigate modifications on the square matrix of spiral trajectory pattern. This 

square matrix become big as the dimension gets high and consumes a lot of 

computing time. 
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Appendix A:- Mathematical Formulation of benchmark problems used 
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