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Abstract

Upper Triangular Matrices and Operations in Odd
Primary Connective K-Theory

by

Laura Amy Stanley.

Let U∞Zp be the group of infinite invertible upper triangular matrices
with entries in the p-adic integers. Also let Aut0

left-`-mod(` ∧ `) be the group
of left `-module automorphisms of ` ∧ ` which induce the identity on mod
p homology, where ` is the Adams summand of the p-adically complete
connective K-Theory spectrum. In this thesis we construct and prove there
is an isomorphism between these two groups. We will then determine a
specific matrix (up to conjugacy) which corresponds to the automorphism
1 ∧ ψq of ` ∧ ` where ψq is the Adams operation and q is an integer which
generates the p-adic units Z×p .

We go on to look at the map 1∧φn where φn = (ψq−1)(ψq−r) · · · (ψq−
rn−1) and r = qp−1 under a generalisation of the map which gave us the
isomorphism. Lastly we use some of the ideas presented to give us a new
way of looking at the ring of degree zero operations on the connective p-local
Adams summand via upper triangular matrices.
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Introduction

This thesis consists of two main results. The first of these gives an iso-
morphism between a group of upper triangular matrices and a specific set
of automorphisms of connective K-Theory. The second takes a particu-
lar automorphism and looks at which matrix this corresponds to under the
isomorphism. Firstly let U∞Zp be the group of infinite, invertible upper
triangular matrices with entries in the p-adic integers under matrix multi-
plication. Let kup be the p-adically complete connective complex K-Theory
spectrum in the stable homotopy category and let ` be the Adams sum-
mand relating to it. Denote by Aut0

left-`-mod(`∧ `) the group of left `-module
automorphisms of ` ∧ ` which induce the identity on mod p homology.

Theorem 3.1.3. There is an isomorphism of the form

Λp : U∞Zp → Aut0
left-`-mod(` ∧ `).

The other main theorem of the thesis determines an explicit matrix in
the conjugacy class under this isomorphism of the automorphism 1 ∧ ψq :
` ∧ `→ ` ∧ `. Here q is an integer which generates the p-adic units Z×p and
ψq is the Adams operation. Let r = qp−1.

Theorem 6.4.2. The isomorphism Λp can be chosen so that the automor-
phism 1 ∧ ψq corresponds to the matrix

R =


1 1 0 0 0 · · ·
0 r 1 0 0 · · ·
0 0 r2 1 0 · · ·
0 0 0 r3 1 · · ·
...

...
...

...
...

. . .

 .

These two theorems are odd primary versions of theorems of Snaith,
[Sna09, Theorem 3.1.2] and Snaith and Barker, [BS05, Theorem 1.1], which
are both localised at the prime 2. The first of these goes as follows. Let
U∞Z2 be the group of infinite, invertible upper triangular matrices with
coefficients in the 2-adic integers, let ku2 and ko2 be the spectra in the
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stable homotopy category representing 2-adically complete complex and real
connective K-Theory respectively. There is an isomorphism of the form

Λ2 : U∞Z2 → Aut0
left-ku2-mod(ku2 ∧ ko2)

where Aut0
left-ku2-mod(ku2 ∧ ko2) is the group of left ku2-module automor-

phisms of ku2 ∧ ko2 which induce the identity on mod 2 homology. The
second of these results gives an explicit matrix in the conjugacy class of
the automorphism 1 ∧ ψ3 : ku2 ∧ ko2 → ku2 ∧ ko2, where ψ3 is the Adams
operation.

The isomorphisms Λp and Λ2 are achieved in each case by virtue of the
fact that both `∧ ` and ku2 ∧ ko2 split as infinite wedges of smaller spectra.
In the 2 primary case ku2 ∧ ko2 is only used instead of ku2 ∧ ku2 because
the splitting of the former is easier to deal with, see [Sna09, Theorem 3.1.6].
In the odd primary case it is useful to split kup ∧ kup into p − 1 copies of
` on both sides of the smash product in order to avoid many copies of the
same information appearing in the result.

This thesis is structured as follows. Chapter 1 introduces all the relevant
background information, standard notation and brief introductions to the
most useful tools which will be used in the rest of the thesis.

Chapter 2 contains an exposition of Kane’s paper ‘Operations in con-
nective K-Theory’ ([Kan81]). The splitting of ` ∧ ` into a infinite wedge of
smaller spectra

∨
n>0 ` ∧ K(n) is a fundamental aspect of the isomorphism

Λp and it is very useful to understand how this splitting is constructed and
what properties the ‘pieces’ have. In the paper, all Kane’s results are stat-
edly p-locally. It has been pointed out in other papers, e.g. [CDGM88],
that what Kane asserts is only valid in a p-complete setting which we also
discuss.

Once the splitting has been obtained, Chapter 3 establishes the con-
struction and proof of Theorem 3.1.3. This is done by studying maps
between different pieces of the splitting of ` ∧ `, i.e. maps of the form
ιm,n : ` ∧ K(m) → ` ∧ K(n). We use the concept of stable isomorphism
classes, introduced by Adams, to determine the stable class of the mod p
cohomology of all the pieces of the splitting. This then becomes the input
data of an Adams Spectral Sequence converging to the p-adic completion of
homotopy classes of maps from one piece of the splitting to another. This
gives us the information that we have a map Λp from upper triangular ma-
trices with units on the diagonal to our specific group of automorphisms of
` ∧ ` of the form

Λp : U∞Zp → Aut0
left-`-mod(` ∧ `)

X 7→
∑
m>n

Xn,mιm,n : ` ∧ (
∨
i>0

K(i))→ ` ∧ (
∨
i>0

K(i)).

We then establish this map as a group isomorphism.
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Chapter 4 provides some material and calculations required for Chap-
ter 5 which would otherwise break up the flow of the chapter. The main
result is to establish the stable isomorphism class of H∗(`;Z/p) as a B =
Z/p[Q0, Q1]/(Q2

0, Q
2
1, Q0Q1 +Q1Q0)-module where Q0 and Q1 are elements

of the Milnor basis of the Steenrod Algebra, namely β and P1β − βP1 re-
spectively. This is achieved by looking at a specific action of Q0 and Q1 on
H∗(`;Z/p) and calculating their homologies. We finally prove the result by
using and comparing the homologies of H∗(`;Z/p) under Q0 and Q1 with
something called ‘lightning flash modules’, introduced by Adams.

Our aim then is to calculate which matrix, up to conjugacy, 1 ∧ ψq
corresponds to under Λp. This is determined by looking at its action on

π∗(` ∧ `) modulo torsion. In Chapter 5 we find a p-adic basis for π∗(`∧`)
Torsion

using elements introduced in [CCW01] as a basis for π∗(K ∧ ku) ⊗ Z(p).
We adapt this basis in an appropriate way following a method of Adams
[Ada95, Chapter 17]. We then go on to explore various properties of this
basis. These include how it relates to the splitting of `∧` into

∨
n>0 `∧K(n),

what each homotopy group πm(`∧K(n))
Torsion is precisely and what degree of torsion

is actually being quotiented out. Finally in this chapter we choose generators
for some of the individual homotopy group of each piece of the splitting and
find where they would be represented in a spectral sequence converging to
the homotopy of that piece. We find how to express these generators in
terms of our basis and what effect the induced maps on homotopy (ιm,n)∗ :
π∗(` ∧ K(m))→ π∗(` ∧ K(n)) have on them.

In Chapter 6 we investigate the effect of the induced map (1 ∧ ψq)∗
on our basis elements. Recalling the definition of Λp we look at the effect
the induced maps of 1 ∧ ψq and

∑
m>nXn,mιm,n have on the individual

homotopy groups. Since we know how to express these in terms of our basis
and what effect the maps (ιm,n)∗ and (1∧ψq)∗ have on our basis elements we
can equate coefficients and determine the form of the entries in the required
matrix. We then show that this resultant matrix can be conjugated to obtain
the matrix R in Theorem 6.4.2.

Finally Chapter 7 deals with using this knowledge to simplify the study
of topological problems by translation into matrix algebra. The first appli-
cation looks at the map

φn = (ψq − 1)(ψq − r) · · · (ψq − rn−1) : ` ∧ `→ ` ∧ `

and the second uses the ideas of the thesis to present a new way of looking at
the ring of degree zero operations on the connective p-local Adams summand
`0(`) as a subring of the group of upper triangular matrices with entries in
the p-local integers.

It turns out that there are a few small errors in the published version of
the 2 primary case which I will point out. The splitting of ku2 ∧ ko2 used
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in [Sna09] and [BS05] is as follows,

L̂ :
∨
k>0

ku2 ∧
F4k

F4k−1
→ ku2 ∧ ko2,

where

Ω2S3 '
∨
k>1

Fk
Fk−1

is the Snaith splitting [Sna74]. It turns out that this splitting is not actually
correct. Instead of the pieces F4k

F4k−1
, integral Brown-Gitler spectra for the

prime 2 should be used, see [Mah81], [Shi84]. Any other discrepancies will
be pointed out as and when they occur during the course of this thesis.

The odd primary case is not substantially different from the 2 primary
case, the main story is basically the same in that we have analogous results.
However there are many differences in the specifics, it is not simply a case
of replacing 2 by p. This leads to the details of the algebra and proofs being
different and this is where the original work in this thesis lies. Firstly, the
pieces of the splitting are different in the odd primary case to the published
version of the 2 primary case as I have detailed above. Integral Brown-
Gitler spectra for odd primes are needed to split `∧ `. Secondly, in the odd
primary case it made sense to split the copy of ku on both sides of ku ∧ ku
into p− 1 copies of ` to avoid dealing with many shifted copies of the same
information.
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Chapter 1

Background Material

The material in this section is a summary of the background material needed
for later chapters. Throughout this thesis we will be working in the category
used by Adams in [Ada95], Boardman’s stable homotopy category. We will
denote based homotopy classes of maps from a based space X to a based
space Y by [X,Y ]. Let SX denote the reduced suspension of a based space
X. We will make it clear when we are working with not necessarily based
spaces and will denote the set of unbased homotopy classes of unbased maps
by [X,Y ]′.

1.1 Spectra and localisation

We begin with some preliminary definitions regarding spectra from [Ada95,
Part III] and [Rud98].

Let a CW-spectrum E be a sequence {En, sn} for n ∈ Z where each En
is a CW-complex with a map sn : SEn → En+1 such that sn(SEn) is a
subcomplex of En+1.

A subspectrum of E is a spectrum F such that Fn is a subcomplex of En
for all n and the restriction of the structure maps sn map SFn into Fn+1.

A subspectrum F ⊂ E is cofinal in E if for each cell e ∈ En there exists
m such that Sme is in Fn+m.

A function from a spectrum {E, sn} to a spectrum {F, tn} is a sequence
of maps fn : En → Fn such that fn+1 ◦ sn = tn ◦ Sfn for all n.

Definition 1.1.1. Consider the set of all cofinal subspectra E′ ⊂ E and
functions f ′ : E′ → F . Two such functions f ′ : E′ → F and f ′′ : E′′ → F
are equivalent if there exists a third cofinal subspectrum E′′′ ⊂ E contained
in E′ and E′′ such that the restrictions of f ′ and f ′′ to E′′′ coincide. This is
an equivalence relation. A map from E to F is an equivalence class of such
functions.

Definition 1.1.2. Let I+ be the unit interval with a disjoint basepoint. For
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a spectrum E = {En, sn}, define the cylinder spectrum to be have nth space

(Cyl(E))n = I+ ∧ En and maps (I+ ∧ En) ∧ S1 1∧sn−−−→ I+ ∧ En+1.
For a spectra E,F , two maps f0, f1 : E → F are homotopic if there is

a map h : Cyl(E) → F such that f0 = hi0 and f1 = hi1 where i0, i1 : E →
Cyl(E) are injections of E into the two ends of the cylinder.

This is an equivalence relation. We will denote homotopy classes of maps
of degree n, i.e. maps which lower the degree by n, between spectra E and
F by [E,F ]n.

Definition 1.1.3. A stable cell of a spectrum is a sequence of the form
{e, Se, · · · , Ske, · · · } where a cell e of En is not the suspension of a cell in
En−1. For such a cell, if e of En has dimension d then the dimension of the
stable cell beginning with e has dimension d− n.

Definition 1.1.4. A CW-spectrum E is finite if it has finitely many stable
cells.

This is equivalent to saying that a spectrum E is finite if it is equivalent
to the (de)suspension of the suspension spectrum of a finite CW-complex
X, i.e. E = Σ−kΣ∞X for some k ∈ Z.

Definition 1.1.5. A spectrum E is of finite type if it has finitely many
stable cells in each dimension.

There exists a similar concept of a smash product for spectra as for CW-
complexes however it is rather tricky to define. For a complete construction
of smash product of two spectra see either [Ada95, Part III, Chapter 4] or
[Swi02, Chapter 13]. It is enough for us to know the properties of the smash
product. For spectra E and F there exists another spectrum E∧F such that
E∧F is a covariant functor in each argument, it is associative, commutative
and has the sphere spectrum as a unit on each side up to natural equivalence.

Let G be an abelian group. There exists a spectrum MG, known as a
Moore spectrum with the following properties.

πi(MG) =

{
0 if i < 0
G if i = 0

and

Hi(MG) =

{
G if i = 0
0 if i > 0.

Definition 1.1.6. We define the spectrum E with coefficients in G as

EG = E ∧MG.

Given spectra E and F we define the E-homology and E-cohomology of
F by

2



• Ei(F ) = [S,E ∧ F ]i,

• Ei(F ) = [F,E]−i.

A spectrum E is a ring spectrum if it has a multiplication map µ :
E ∧ E → E and a unit map η : S → E such that the multiplication is
associative and unital in the same way as a standard ring, i.e. the following
diagrams commute up to homotopy.

E ∧ E ∧ E
µ∧1 //

1∧µ
��

E ∧ E
µ

��

E ∧ E
µ

��
E ∧ E µ

// E S ∧ E

η∧1
99sssssssss ' // E E ∧ S'oo

1∧η
eeKKKKKKKKK

For spectra E = {En, sn} and F = {Fn, tn}, the wedge of the two spectra
is a the spectrum E ∨ F with nth space (E ∨ F )n = En ∨ Fn and maps

(E∨F )n∧S1 = (En∨Fn)∧S1 = (En∧S1)∨(Fn∧S1)
sn∨tn−−−−→ En+1∨Fn+1 = (E∨F )n+1.

The functor Σ : [E,F ] → [ΣE,ΣF ] is an equivalence. We can use this
to define the concept of addition of maps between spectra.

Definition 1.1.7. Let E,F be spectra and let υ : S2 → S2 ∨ S2 be the
pinch map. We can turn [E,F ] into an abelian group as follows

[E,F ]⊕ [E,F ] = [Σ2E,Σ2F ]⊕ [Σ2E,Σ2F ]

= [S2 ∧ E,Σ2F ]⊕ [S2 ∧ E,Σ2F ]

= [(S2 ∧ E) ∨ (S2 ∧ E),Σ2F ]

= [(S2 ∨ S2) ∧ E,Σ2F ]

(υ∧1)∗−−−−→ [S2 ∧ E,Σ2F ] = [E,F ].

We will now go on to think about a certain type of spectrum known as
a connective spectrum.

Theorem 1.1.8. For a spectrum E there exists is a diagram, called its
Postnikov Tower,

· · · 1 // E
1 //

τn+1

��

E
1 //

τn
��

E
1 //

τn−1

��

· · ·

· · · // E(n+1)
pn+1 // E(n)

pn // E(n−1) // · · ·

which commutes up to homotopy and for each n ∈ Z

(i) πi(E(n)) = 0 for i > n,

3



(ii) (τn)∗ : πi(E)→ πi(E(n)) is an isomorphism for i 6 n.

Every spectrum E has such a Postnikov Tower and each spectrum E(n) is
unique up to equivalence (i.e. any other spectrum satisfying these conditions
has a map to E(n) which induces an isomorphism on homotopy). Consider
the cofibre sequence

F
q−→ E

τn−→ E(n).

This gives us a long exact sequence in homotopy

π∗(F )
q∗−→ π∗(E)

(τn)∗−−−→ π∗(E(n))

and so πi(F ) = 0 for i 6 n.

Definition 1.1.9. A morphism q : F → E such that πi(F ) = 0 for i 6 n
and q∗ : πi(F ) → πi(E) is an isomorphism for i > n is an n-connective
covering of the spectrum E.

A connective covering is a (−1)-connective covering. An n-connective
covering exists for every n and every spectrum E and these are unique up
to equivalence.

In this thesis we will need certain spaces and spectra to be localised
with respect to homology theories (mainly HZ/p∗). This was defined by
Bousfield in [Bou75] and [Bou79], as follows.

Theorem 1.1.10. Given a generalised homology theory E∗, there exists a
functor LE from the homotopy category of based CW-complexes to itself and
a map η : 1→ LE such that

(i) the map ηX : X → LE(X) induces a homology isomorphism E∗(X) ∼=
E∗(LE(X)) and

(ii) for any map f : X → Y inducing a homology isomorphism E∗(X) ∼=
E∗(Y ) there exists a unique map r : Y → LE(X) with rf = ηX .

Theorem 1.1.11. Given a spectrum E, there exists a functor LE from the
stable homotopy category of CW-spectra to itself and a map η : 1→ LE such
that

(i) the map ηA : A→ LE(A) induces an E∗-homology isomorphism and

(ii) for any map f : A → B inducing an E∗-homology isomorphism there
exists a unique map r : B → LE(A) with rf = ηA.

Definition 1.1.12. These are called E∗-localisation functors.

It follows from the universal property satisfied by LE that any other
functor with this property is canonically equivalent to LE .

We will need to be able to compute these localisations for certain con-
nective spectra. In order to do this we will need a few more results from
[Bou79].

4



Definition 1.1.13. A group G is uniquely p-divisible if for every element
g ∈ G the equation px = g has exactly one solution for x ∈ G.

Definition 1.1.14. Two abelian groups G1 and G2 have the same type of
acyclicity if

(i) G1 is a torsion group if and only if G2 is a torsion group,

(ii) For every prime p, G1 is uniquely p-divisible if and only ifG2 is uniquely
p-divisible.

Notation 1.1.15. Denote the p-local integers by Z(p), the p-adic numbers
by Qp and the p-adic integers by Zp. The field of integers modulo p will be
denoted by Z/p.

Let E be a connective spectrum and let G be an abelian group which
has the same type of acyclicity as ⊕nπn(E). In our case we will be looking
at E = HZ(p) or HZ/p which have π∗(HZ(p)) = Z(p) and π∗(HZ/p) = Z/p.
Thus G will be either Z(p) or Z/p respectively. The following theorem is
[Bou79, Theorem 3.1].

Theorem 1.1.16. For E and X connective spectra, LE(X) ' LMG(X).

The following are the two main examples we will need.

Proposition 1.1.17. In the case of the p-local integers, localising with re-
spect to the Moore spectrum MZ(p) is an example of a smashing localisation
i.e.

LMZ(p)
(X) ' X ∧ LMZ(p)

(S) ' X ∧MZ(p)

where S is the sphere spectrum. Also π∗(LMZ(p)
(X)) ∼= Z(p) ⊗X.

A spectrum X is MZ(p)∗-local if and only if the groups π∗(X) are uniquely
q-divisible for all primes q 6= p.

Proposition 1.1.18. Localisation of a spectrum X with respect to the Moore
spectrum MZ/p is the function spectrum F (Σ−1MZ/p∞, X). Here we de-
note by Σ−1MZ/p∞ the desuspension of the Moore spectrum MZ/p∞. If the
homotopy groups π∗(X) are finitely generated then π∗(LMZ/p(X)) ∼= Zp⊗X.

If a spectrum is localised with respect to HZ(p) we will call it p-local,
if a spectrum is localised with respect to HZ/p we will call it p-complete.
The majority of this thesis will be in a p-complete setting, however there is
a small section at the end which uses a p-local setting.

One important result for us will be the E∗-Whitehead Theorem, [Bou79,
Lemma 1.2].

Theorem 1.1.19. If spectra X and Y are E∗-local and f : X → Y is an
E∗-equivalence then f is a homotopy equivalence.

5



1.2 The Steenrod Algebra

The Steenrod Algebra is a well known object in Mathematics. The main
references I have used are [Hat02], [MT68] and [Mil58].

Definition 1.2.1. An unstable cohomology operation of type (m,n) for
ordinary cohomology with coefficients in a group G is a function

θX : Hm(X;G)→ Hn(X;G)

for each topological space X, fixed integers m,n and group G, which is
natural for any map of spaces f : X → Y , i.e.

Hm(Y ;G)
θY //

f∗

��

Hn(Y ;G)

f∗

��
Hm(X;G)

θX // Hn(X;G)

commutes. In other words, θ is a natural transformation from Hm(−;G) to
Hn(−;G).

Some of the most important cohomology operations are Steenrod Squares
and Powers. These are in fact stable cohomology operations, i.e. they
satisfy a compatibility with suspension which will be detailed in the following
definition. I will only define Steenrod Powers here as Steenrod Squares are
the corresponding operations when p = 2 which we will not need.

Definition 1.2.2. There exist cohomology operations acting on ordinary
mod p cohomology for p odd called Steenrod Powers of the form

P i : Hn(X;Z/p)→ Hn+2i(p−1)(X;Z/p)

for all i > 0 and defined for all n, which satisfy the following properties.

1. Additivity: P i(x+ y) = P i(x) + P i(y).

2. Cartan Formula: P i(x ^ y) =
∑

j Pj(x) ^ P i−j(y).

3. Stability: P i(σ(x)) = σ(P i(x)) where the map σ : Hn(X;Z/p) →
Hn+1(ΣX;Z/p) is the suspension isomorphism.

4. P i(x) = xp =

p︷ ︸︸ ︷
x ^ · · ·^ x if 2i = |x|,

P i(x) = 0 if 2i > |x|.

5. P0 = id.
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6. Adem Relations:

PaPb =
∑
j

(−1)a+j

(
(p− 1)(b− j)− 1

a− pj

)
Pa+b−jPj

if a < pb, and

PaβPb =
∑
j

(−1)a+j

(
(p− 1)(b− j)

a− pj

)
βPa+b−jPj

−
∑
j

(−1)a+j+1

(
(p− 1)(b− j)− 1

a− pj − 1

)
Pa+b−jβPj

if a 6 pb, where β is the Bockstein homomorphism associated to the
short exact coefficient sequence

0→ Z/p ×p−−→ Z/p2 → Z/p→ 0.

We can define the Steenrod Algebra for each odd prime as follows.

Definition 1.2.3. The mod p Steenrod Algebra Ap is the non-commutative
polynomial algebra over Z/p in β,P1,P2, . . . quotiented by the two-sided
ideal generated by the Adem relations and the relation β2 = 0. This is a
graded algebra where |P i| = 2i(p− 1) and |β| = 1

Theorem 1.2.4. For every space X, H∗(X;Z/p) is a graded left-module
over Ap for all p.

Theorem 1.2.5. For any p, Ap is the algebra of all stable cohomology op-
erations for ordinary mod p cohomology.

Definition 1.2.6. An element a ∈ Ap is decomposable if it can be written in
terms of operations in Ap of lower degree and is indecomposable otherwise.

The indecomposable elements of Ap are β and Ppk for k > 0. So as an

algebra Ap is generated by β and Ppk for k > 0.

Definition 1.2.7. In Ap a sequence βε1P i1βε2P i2 . . . is said to be admissible
if ij > εj+1 + pij+1 for all j > 0.

Note that a sequence being admissible means that nowhere in the se-
quence does the left-hand side of an Adem relation appear, therefore, in
effect, it cannot be simplified in any way.

Theorem 1.2.8. The admissible monomials in Ap form an additive Z/p
-basis for Ap for each prime p.

Theorem 1.2.9. The Steenrod Algebra Ap for each p is a Hopf algebra.
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This means that Ap has a comultiplication map ∆ : Ap → Ap⊗Ap which
has the following effect on the operations

∆(Pk) =
∑
i+j=k

P i ⊗ Pj and ∆(β) = β ⊗ 1 + 1⊗ β.

Corollary 1.2.10. The dual Steenrod Algebra A∗p = HomZ/p(Ap,Z/p) for
each p is also a Hopf algebra.

Although infinite, both Ap and A∗p are finite-dimensional in each degree.
Since taking the dual of either algebra is done degree-wise there are no
problems with doing so.

So using that H∗ and H∗ are dual with field coefficients, the left action
of Ap on H∗(X;Z/p) can give us a right action of Ap on H∗(X;Z/p) via

〈xa, y〉 = 〈x, ay〉

for a ∈ Ap, x ∈ H∗(X;Z/p) and y ∈ H∗(X;Z/p). Here 〈x, y〉 = x(y) means
evaluating the function x on the element y when both are in the same degree
and zero otherwise. This gives us a map

λ∗ : H∗(X;Z/p)⊗Ap → H∗(X;Z/p)

which we can dualise to obtain a coaction map

λ∗ : H∗(X;Z/p)→ H∗(X;Z/p)⊗̂A∗p

where ⊗̂ denotes the completed tensor product, used to avoid difficulties
with infinite sums. We will always in practice deal with finite complexes or
complexes of finite type so will never need to worry about infinite sums.

In order to describe some elements of A∗p we will consider the orbit space
of Z/p acting freely on the unit sphere S2n+1 ⊂ Cn by rotating each factor of
C in Cn by an angle of 2π

p . This is known as a Lens space which we denote
by Ln,p and is a finite complex. This can be considered as the (2n + 1)-
skeleton of the Eilenberg-MacLane space K(Z/p, 1) = S∞

Z/p , we use the Lens
space here to avoid dealing with infinite sums. The mod p cohomology ring
of K(Z/p, 1) is given by

H∗(K(Z/p, 1);Z/p) = Λ(a)⊗ Z/p[b]

where |a| = 1, |b| = 2 and b = βa and Λ denotes an exterior algebra
over Z/p. The cohomology structure of the Lens space is the same but

truncates at degree 2n + 1. Let Mk ∈ (Ap)2pk−2 be Ppk−1Ppk−2 · · · PpP1,

then Mkb = bp
k
. For any other monomial θ in the operations β and Ppi for

i > 0, θb = 0. Similarly (Mkβ)a = bp
k

but for θ any other monomial in the
same operations, θa = 0.
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The action of the map λ∗ : H∗(Ln,p;Z/p)→ H∗(Ln,p;Z/p)⊗A∗p on the
elements a and b is given by

λ∗(a) = a⊗ 1 + b⊗ τ0 + bp ⊗ τ1 + · · ·+ bp
r ⊗ τr

and
λ∗(b) = b⊗ 1 + bp ⊗ ξ1 + · · ·+ bp

r ⊗ ξr
where pr 6 n is the largest such power of p. This defines elements τk ∈
(A∗p)2pk−1 and ξk ∈ (A∗p)2pk−2.

Theorem 1.2.11. A∗p ∼= Λ(τ0, τ1, · · · )⊗ Z/p[ξ1, ξ2, · · · ].

It can be shown that

〈ξk,M〉 =

{
1 if M = Mk

0 if M is any other admissible monomial,

and

〈τk,M〉 =

{
1 if M = Mkβ
0 if M is any other admissible monomial.

Standard sign conventions for graded algebras mean that the relations
between the elements are as follows:

ξiξj = ξjξi

ξiτj = τjξi

τiτj = −τjτi.

Let R = (r1, r2, · · · ) be any infinite sequence of non-negative integers
with only finitely many non-zero terms and let E = (ε0, ε1, · · · ) be any
infinite sequence of zeros and ones with only finitely many ones. Let ξR =
ξr11 ξ

r2
2 . . . and τE = τ ε00 τ ε11 . . ..

Theorem 1.2.12. The set {τEξR} forms an additive Z/p-basis for A∗p.

Let ρ(E,R) ∈ Ap be the dual element to τEξR, i.e.

〈ρ(E,R), τE
′
ξR
′〉 =

{
1 if E = E′ and R = R′

0 otherwise.

Notice that ρ(0, (r, 0, 0, · · · )) = Pr. Let Qk be the element dual to τk,
then Q0 = ρ((1, 0, 0, · · · ), 0) = β. The elements Qk for k > 0 can be

shown to satisfy the inductive property Qk+1 = [Ppk , Qk] where [x, y] =
xy − (−1)|x||y|yx is the commutator.

Lemma 1.2.13. The elements ρ(E,R) form an additive basis for Ap dual
to {τEξR}.
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The elements Qk ∈ (Ap)2pk−1 generate an exterior algebra.

Definition 1.2.14. Let B ⊆ Ap be the subalgebra generated by Q0 and
Q1.

Definition 1.2.15. The left action of Ap on itself by using the multiplica-
tion, µ, gives us a right action of Ap on A∗p given by

〈fa, y〉 = 〈f, ay〉

where f ∈ A∗p = Hom(Ap;Z/p) and a, y ∈ Ap.

This can be expressed in many different formulae, one that will be use-
ful to us later is the following. We use the notation ∆f = Σf ′ ⊗ f ′′ for
comultiplication in A∗p.

Proposition 1.2.16. The right action of Ap on A∗p given above can be
expressed as

ψ : A∗p ⊗Ap → A∗p
f ⊗ a 7→

∑
(−1)|f

′′||a|〈f ′, a〉f ′′.

Proof. Using the fact that the comultiplication ∆ in A∗p is dual to the multi-
plication µ in Ap, and that because A∗p is finitely generated in each degree we
have Hom(Ap,Z/p)⊗Hom(Ap,Z/p) ∼= Hom(Ap⊗Ap,Z/p), so the following
diagram commutes.

A∗p ⊗Ap ⊗Ap
1⊗µ //

∆⊗1⊗1
��

A∗p ⊗Ap

〈 , 〉
��

A∗p ⊗A∗p ⊗Ap ⊗Ap
∼= // (Ap ⊗Ap)∗ ⊗Ap ⊗Ap

〈 , 〉 // Z/p

Using the upper route through the diagram sends f ⊗ a ⊗ y to 〈f, ay〉,
which is the definition of our right action of Ap on A∗p. We can express
this in another equivalent formula by using the lower route through the
commutative diagram, i.e. 〈fa, y〉 = 〈f, ay〉 can be expressed as

f ⊗ a⊗ y 7→ ∆(f)⊗ a⊗ y =
∑

f ′ ⊗ f ′′ ⊗ a⊗ y

7→ 〈
∑

f ′ ⊗ f ′′, a⊗ y〉 =
∑

(−1)|f
′′||a|〈f ′, a〉〈f ′′, y〉.

This can also be viewed in another equivalent way which we will also
make use of later.

Definition 1.2.17. There is a left action of Ap on A∗p given in [Sch94, §2.5]

φ : Ap ⊗A∗p → A∗p
a⊗ f 7→

∑
(−1)|f

′′|(|f ′|+|a|)〈f ′′, a〉f ′.
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Let χ denote the canonical anti-automorphism of A∗p.

Proposition 1.2.18. There is a left action of Ap on A∗p given by

Ap ⊗A∗p
1⊗χ // Ap ⊗A∗p

φ // A∗p
χ // A∗p

a⊗ f � // a⊗ f̄ � // ∑(−1)|f̄
′′|(|f̄ ′|+|a|)〈f̄ ′′, a〉f̄ ′ � // ∑(−1)|f

′′||a|〈f ′, a〉f ′′,

where the bar denotes the image of an element under the anti-automorphism
χ of A∗p. This can be made into the right action of Ap on A∗p given in
Proposition 1.2.16 by using χ on a ∈ Ap.

Proof. Using the anti-automorphism χ on A∗p both before and after the left
module action of φ still gives you a left module action. We also use the fact
that ∑

f̄ ′ ⊗ f̄ ′′ =
∑

(−1)|f
′||f ′′|f ′′ ⊗ f ′

so when we apply φ to a⊗ f̄ ∈ Ap ⊗A∗p we get∑
(−1)|f

′′|(|f ′|+|a|)〈f̄ ′′, a〉f̄ ′ =
∑

(−1)|f
′′|(|f ′|+|a|)+|f ′||f ′′|〈f ′, a〉f ′′

=
∑

(−1)|f
′′||a|〈f ′, a〉f ′′.

Since for any a ∈ Ap and f ∈ A∗p we have 〈ā, b〉 = 〈a, b̄〉, the above left
action can be simplified to

Ap ⊗A∗p → A∗p
a⊗ f 7→

∑
(−1)|f

′′||a|〈f ′, ā〉f ′′.

Using the anti-automorphism to give us a right action of Ap on A∗p we get

A∗p ⊗Ap → A∗p
f ⊗ a 7→

∑
(−1)|f

′′||a|〈f ′, ¯̄a〉f ′′ =
∑

(−1)|f
′′||a|〈f ′, a〉f ′′

which is precisely the action ψ of Proposition 1.2.16.

1.3 K-Theory and the Adams Splitting

K-Theory

The following material comes mainly from [Ati89] and [Hat04]. In this sec-
tion X is a not necessarily based space, it will be made clear when X has a
basepoint.

Definition 1.3.1. A complex vector bundle of dimension n is a topological
space E together with a map p : E → B for a topological space B such that
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p−1(b) is a finite dimensional complex vector space and the following local
triviality condition is satisfied. For each b ∈ B there exists an open neigh-
bourhood U of b such that E|U is trivial, i.e. there exists a homeomorphism
h : p−1(U) → U × Cn which maps p−1(b) to {b} × Cn by a linear map of
vector spaces for all b ∈ U .

We call E the total space, B the base space, p the projection map and
p−1(b) the fibres of the vector bundle.

An isomorphism of vector bundles p1 : E1 → B and p2 : E2 → B,
denoted ∼=, is a homeomorphism h : E1 → E2 such that p2h = p1 which
maps p−1

1 (b) to p−1
2 (b) by a linear isomorphism for each b ∈ B.

We can form the direct sum of two vector bundles over B, p1 : E1 → B
and p2 : E2 → B, to be the vector bundle over B with total space

E1 ⊕ E2 = {(v1, v2) ∈ E1 × E2 : p1(v1) = p2(v2)}

and obvious map E1 ⊕ E2 → B.
We can also take the tensor product of vector bundles. For p1 : E1 → B

and p2 : E2 → B, the tensor product E1 ⊗ E2 has total space the disjoint
union of p−1

1 (b)⊗p−1
2 (b) for b ∈ B. The topologies of the two original vector

bundles can be combined to give a coherent topology in E1 ⊗ E2.
Given a vector bundle p : E → B and a map f : A → B there exists

a unique bundle up to isomorphism p′ : f∗(E) → A, where f∗(E) is the
pullback of E by f , and a map f ′ : f∗(E) → E such that f ′ maps the
fibre in f∗(E) over a point a ∈ A isomorphically onto the fibre in E over
the image f(a) ∈ B. We can explicitly write down a pullback bundle as
f∗(E) = {(a, v) ∈ A×E : f(a) = p(v)} and p′ : (a, v) 7→ a is projection onto
the first factor.

Definition 1.3.2. Let Vect(X) be the set of isomorphism classes of complex
vector bundles over X.

The set Vect(X) is an abelian semi-group with addition given by the
direct sum of vector bundles.

For any abelian semi-group A under ⊕ we can construct the Grothendieck
group of A which is an abelian group. This is formed by taking the quotient
F (A)
E(A) where F (A) is the free abelian group generated by the elements ofA and

E(A) ⊂ F (A) is the subset generated by elements of the form a+a′−(a⊕a′)
for a, a′ ∈ A.

Definition 1.3.3. Let X be compact Hausdorff. The group K(X) is the
Grothendieck group of Vect(X).

It can be shown that every element of K(X) is of the form [E]− [E′], i.e.
a formal difference of isomorphism classes of vector bundles over X. The
zero element of this group is the class of [E]− [E] for any vector bundle E
and the inverse of the element [E1]− [E2] is [E2]− [E1].
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Let the trivial vector bundle of dimension n over a based space X be
denoted εn. This has as its total space B × Cn and its map p is projection
onto B. For every vector bundle E there exists a bundle E′ such that
E ⊕E′ ∼= εn for some n ∈ N0. So for any element [E1]− [E2] ∈ K(X) there
exists a bundle E3 such that E2 ⊕ E3

∼= εn, this gives us that [E1]− [E2] =
[E1] + [E3] − ([E2] + [E3]) = [E1 ⊕ E3] − [εn] and hence every element of
K(X) can be represented by a formal difference [E]− [εn] for some n.

Two vector bundles E1 and E2 are said to be stably equivalent, denoted
E1 ≈ E2, if E1 ⊕ εn ∼= E2 ⊕ εn for some n. This is an equivalence relation.
It can be shown that two bundles E1 and E2 represent the same element in
K(X) if and only if they are stably equivalent.

The tensor product of vector bundles can be extended to formal differ-
ences of vector bundles quite easily i.e.

([E1]− [E′1])([E2]− [E′2]) = E1 ⊗ E2 − E1 ⊗ E′2 − E′1 ⊗ E2 + E′1 ⊗ E′2

which gives K(X) a commutative ring structure with identity ε1.
A second equivalence relation of vector bundles is given by E1 ∼ E2 if

E1 ⊕ εn ∼= E2 ⊕ εm for some m,n.

Definition 1.3.4. Let X be a compact Hausdorff space, the set of equiva-
lence classes of vector bundles over X under the relation ∼ forms an abelian
group with respect to the direct sum of bundles known as the reduced K-
Theory of X, denoted K̃(X), with identity ε0.

Unreduced K-Theory can be thought of as a contravariant functor from
compact Hausdorff spaces to abelian groups using the pullback bundle.
Given a map f : X → Y , this induces a map f∗ : K(Y ) → K(X) by
sending [E] − [E′] to [f∗(E)] − [f∗(E′)] for E and E′ vector bundles over
Y . Similarly reduced K-theory can be thought of as a functor from based,
compact Hausdorff spaces to abelian groups in the same way.

There is a surjection K(X) → K̃(X) sending E − εn to the class of E
under ∼ whose kernel is {εm − εn : m,n ∈ Z} ∼= Z. The inclusion of the
basepoint x0 ↪→ X induces a map K(X) → K({x0}) ∼= Z which becomes
an isomorphism when restricted to ker(K(X) → K̃(X)) and so K-Theory
splits as K(X) ∼= K̃(X)⊕ Z.

Theorem 1.3.5. For compact Hausdorff spaces X it can be shown that
K(X) ∼= [X,Z × BU ]′ where BU is the classifying space of the infinite
unitary group. For based spaces we have that K̃(X) ∼= [X,Z × BU ] ∼=
Map(π0(X),Z) × [X,BU ]. When X is path-connected this gives us that
K0(X) = Z× [X,BU ] and K̃0(X) = [X,BU ].

For X a more general space these should be taken as the definitions of
K(X) and K̃(X).
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Theorem 1.3.6 (Bott Periodicity). For any based topological space X there
is an isomorphism

K̃(X) ∼= K̃(S2X).

This can be used to make K-Theory into a cohomology theory. Let
(X,A) be a pair of based compact Hausdorff spaces, then the following
exact sequence can be used to define cohomology groups

K̃(S2A)→ K̃(S(X/A))→ K̃(SX)→ K̃(SA)→ K̃(X/A)→ K̃(X)→ K̃(A).

By letting K̃(X) = K̃0(X) and using the rules K̃−n(X) = K̃(SnX) and

K̃−n(X,A) = K̃(Sn(X/A)) this sequence now becomes

K̃−2(A)→ K̃−1(X,A)→ K̃−1(X)→ K̃−1(A)→ K̃0(X,A)→ K̃0(X)→ K̃0(A).

By Bott Periodicity we have that K̃0(X) ∼= K̃−2(X) and we can define the
positive side of the theory in a similar way by letting K̃2i(X) = K̃0(X)
and K̃2i+1(X) = K̃1(X). A similar process can be performed for unreduced
K-Theory.

Periodic K-Theory is represented by the periodic K-Theory spectrum
K, it has as every even space Z×BU and every odd space U . This spectrum
has coefficient groups

π∗(K) = Z[u, u−1]

where |u| = 2. If we look at the connective cover of K we get the spectrum
ku representing connective complex K-Theory. This has coefficient groups

π∗(ku) = Z[u].

The Adams Splitting

In this section we will explain that, when localised at an odd prime p, the
spectra K and ku split into a wedge of suspensions of smaller spectra L and
` respectively. The following material comes from [Ada69].

Firstly let µ : BU × BU → BU be the H-Space multiplication coming
from the direct sum of complex vector bundles and let π1, π2 : BU ×BU →
BU be projection onto the first and second factor respectively. Consider the
primitive elements of K̃0(BU) ∼= [BU,BU ], i.e. elements a ∈ K̃0(BU) such
that

µ∗(a) = π∗1(a) + π∗2(a).

Any such a is an operation on K̃0(X) by composition, looking at primitive
elements guarantees the operations are additive.

We now turn our attention to K-Theory with coefficients in various
subsets of the rational numbers.

Definition 1.3.7. Let R ⊂ Q and let

Ã(R) = {natural additive operations on K̃0(−;R) for based spaces},
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A(R) = {natural additive operations on K0(−;R) for based spaces}

and
A(R)0 = {α ∈ Ã(R) : α = 0 on K̃0(S0;R) ∼= R}.

Then because we are working with based spaces we have K0(X;R) ∼=
R ⊕ K̃0(X;R) so A(R) = R ⊕ Ã(R). It can also be shown that Ã(R) ∼=
R ⊕ A(R)0 where the copy of R comes from splitting off Ri where i is the
identity operation.

Proposition 1.3.8. There is a monomorphism

ι : A(R1)→ A(R2)

for R1 ⊂ R2 ⊂ Q.

Proof. We can work out K0(BU ;R1) and K0(BU ;R2) explicitly as follows,
see for example [Cla81]. We have that K0(BU(1)) = Z[[x]] where x = ξ − 1
for ξ ∈ K0(BU(1)) the Hopf bundle. Let 1, β1, β2, . . . be the dual basis in
K0(BU(1)) to the powers 1, x, x2, . . . in K0(BU(1)). The elements β1, β2, . . .
are polynomial generators for K0(BU), so K0(BU) = Z[β1, β2, . . .]. Now let
γi be the elements dual to β1

i, thenK0(BU) is a power series with generators
γi, i.e. K0(BU) = Z[[γ1, γ2, . . .]]. So we see that

i∗ : K0(BU ;R1) = R1[[γ1, γ2, . . .]]→ R2[[γ1, γ2, . . .]] = K0(BU ;R2)

is a monomorphism. The restricted map to the primitive elements A(R1)0 =
PK0(BU ;R1) → PK0(BU ;R2) = A(R2)0 will also be a monomorphism.
Now we have

A(R1) ∼= R1 ⊕ Ã(R1)
∼= R1 ⊕R1 ⊕A(R1)0

∼= R1 ⊕R1 ⊕ PK0(BU ;R1)

and similarly for A(R2). The maps between each of the corresponding com-
ponents of A(R1) and A(R2) are monomorphisms so ι is too.

This means we can look for operations in A(Q) which split K0(−;Q) and
show they also lie in A(Z(p)) hence splitting K0(−;Z(p)) which we denote as
K0

(p).
The Chern character gives us an isomorphism

ch : K∗(X;Q) ∼=
∏
n

H2n(X;Q).

Let en be projection from
∏
nH

2n(X;Q) onto the 2nth factor

en(h0, h2, · · · , h2n−2, h2n, h2n+2, · · · ) = (0, · · · , 0, h2n, 0, · · · )
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where hi ∈ H i(X;Q). This operation is clearly idempotent in A(Q). Now
for a fixed odd prime p we construct a similar object with one non-zero
coefficient group every 2(p− 1) dimensions. So for α ∈ {0, 1, · · · , p− 2} and
n ≡ α mod p− 1 let

Eα =
∑
n

en.

This gives us that

Eα(h0, h2, h4, · · · ) = (k0, k2, k4, · · · )

where

k2n =

{
h2n if n ∈ α
0 if n 6∈ α.

It can then be shown that the idempotents are defined p-locally.

Theorem 1.3.9. Eα ∈ A(Z(p)).

These operations have the following properties:

(i) E2
α = Eα.

(ii) EαEβ = 0 if α 6= β.

(iii)
∑

αEα = 1.

(iv) For x, y ∈ K0
(p)(X) there is a Cartan formula

Eα(xy) =
∑

β+γ=α

Eβ(x)Eγ(y).

This all gives us pairwise orthogonal idempotent operations summing to
1, so we have a corresponding splitting:

K0
(p)(X) ∼=

p−2∑
α=0

EαK
0
(p)(X).

Proposition 1.3.10. The separate pieces have the following properties.

(i) EαK
0
(p) is a representable functor by a space BUα, i.e. EαK

0
(p)(−) ∼=

[−, BUα].

(ii) For x ∈ EβK0
(p)(X) and y ∈ EγK0

(p)(X), then xy ∈ Eβ+γK
0
(p)(X).

(iii) The coefficient groups are

EαK̃
0
(p)(S

n) =

{
Z(p) if n

2 ∈ α
0 otherwise.
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(iv) φ : EαK̃
0
(p)(X) → Eα+1K̃

0
(p)(S

2 ∧ X) (the external product with the

generator in E1K̃
0
(p)(S

2)) is an isomorphism.

We can iterate φ, the above map, p− 1 times to get the isomorphism

EαK̃
0
(p)(X) ∼= Eα+(p−1)K̃

0
(p)(S

2(p−1) ∧X) = EαK̃
0
(p)(S

2(p−1) ∧X).

Using this periodicity we can extend this to a graded cohomology theory
E∗α for each α as follows. We define the reduced cohomology groups of this
theory by

Ẽ0
α(X) = EαK̃

0
(p)(X)

Ẽ−1
α (X) = EαK̃

0
(p)(S

1 ∧X)

...

Ẽ−2(p−1)
α (X) = EαK̃

0
(p)(S

2(p−1) ∧X) ∼= EαK̃
0
(p)(X).

We can then define the unreduced version by taking the reduced version on
the desired space with a disjoint base-point, i.e.

Enα(X) = Ẽnα(X+).

So we see that Ẽ∗α and E∗α are periodic with period 2(p− 1).
Proposition 1.3.10 (ii) implies that E∗0 is represented by a ring spectrum.

Definition 1.3.11. We denote the spectrum representing E∗0 by L and call
this the Adams summand, so E∗0(X) ∼= [X,L]∗.

Periodic p-local K-theory has coefficient groups

π∗(K(p)) = Z(p)[u, u
−1],

where |u| = 2 and the Adams summand has coefficient groups

π∗(L) = Z(p)[u
p−1, u−(p−1)].

The other pieces in the splitting are just suspensions of L;

Ẽ0
0(X) = E0K̃

0
(p)(X) ∼= E1K̃

0
(p)(S

2 ∧X) = Ẽ−2
1 (X)

which means Ẽ0
1(X) = Σ2Ẽ0

0(X) and so more generally

E∗1(X) = Σ2E∗0(X) ∼= [X,Σ2L]∗.

Hence the spectrum splits:

K(p)
∼=

p−2∨
i=0

Σ2iL.
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We can also think of the same operations acting on connective K-theory so
a similar result happens in the connective case where we have

ku(p)
∼=

p−2∨
i=0

Σ2i`,

where ` is the connective Adams summand.

1.4 Adams Operations

Cohomology operations can be defined for any generalised cohomology the-
ory E by replacing the Eilenberg-MacLane spectrum HG with the desired
spectrum E in Definition 1.2.1. A main example of cohomology operations
are Adams operations on K-Theory. These were first introduced by Adams
in [Ada62] in order to show how many linearly independent vector fields
exist on the sphere Sn−1, and subsequently to solve the Hopf invariant 1
problem. The following information has mostly come from [Ati89], [Hat04]
and [Kar78].

Firstly we need to define symmetric and exterior powers on vector bun-
dles.

Definition 1.4.1. Let V be a vector space. The nth symmetric power of
V is defined to be

Sn(V ) = V ⊗n/〈v1 ⊗ · · · ⊗ vn − vσ(1) ⊗ · · · ⊗ vσ(n) : vi ∈ V, σ ∈ Σn〉.

Definition 1.4.2. Let V be a vector space. The nth exterior power of V is
defined to be

Λn(V ) = V ⊗n/〈v1 ⊗ · · · ⊗ vn − sgn(σ)vσ(1) ⊗ · · · ⊗ vσ(n) : vi ∈ V, σ ∈ Σn〉.

These constructions pass to vector bundles and isomorphism classes of
vector bundles easily. In order to think about these constructions in rela-
tion to K-Theory we need to work out what an exterior power of a formal
difference of vector bundles would be. For vector bundles E and F we can
write this as follows

Λn([E]− [F ]) =
n∑
i=0

(−1)iΛn−i(E)Si(F ).

We can use this to define the following power series in K0(X)[[t]]

Λt(x) =

∞∑
k=0

Λk(x)tk
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for x ∈ K0(X). From this we can now define the Adams Operations using
the equation

ψt(x) = ψ0(x)− t d

dt
(log Λ−t(x)) ∈ K0(X)[[t]]

where ψ0 : K0(X)→ K0(X) takes a formal difference [E]− [F ] to [εdimE ]−
[εdimF ] and the dimension of a vector bundle is just the dimension of a fibre
of that bundle, which is locally constant. The kth Adams Operation ψk(x)
is the coefficient of tk for k ∈ Z.

This definition gives Adams operations on K0(X) for X a compact Haus-
dorff space. It is regrettable that a good reference could not be found for
a construction of the operations ψk in more generality. All the major ref-
erences on Adams operations construct them for compact Hausdorff spaces
or finite CW-complexes such as [Ati89], [Ada62], [Ada63]. In [AHS71] it
does not discuss the construction of such maps. It is mentioned in [Sul74]
but is approached from a different point of view. These operations can be
constructed for more general spaces and we will now outline a method for
doing so.

For X a compact Hausdorff space, let Vectn(X) ⊆ Vect(X) be the subset
of isomorphism classes of vector bundles of dimension n. Then

Vectn(X) ∼= lim−→
m

[X,Gn(Cm)] ∼= [X,BU(n)].

So BU(n) is the representing space for complex vector bundles of dimension
n. We define ψk on complex n-dimensional vector bundles as above in terms
of exterior powers, this then has the property that if x is a line bundle over X
then ψk(x) = xk. By the Yoneda Lemma this gives us a map which we will
denote ψkn : BU(n)→ BU(n). We have the inclusion BU(n) ↪→ BU(n+ 1)
given by the addition of the trivial line bundle which is compatible with the
maps ψkn. This then gives us a compatible sequence of maps which gives us
a map ψkBU : ∪nBU(n) = BU → BU . We take ψk : Z× BU → Z × BU to
be idZ×ψkBU , since Z×BU is the representing space for the functor K̃0 on
based spaces, see Theorem 1.3.5, this gives us the definition of ψk here. In
a similar way to Definition 1.3.7 let

Ã = {natural additive operations on K̃0(−) for based spaces}

and let

A+ = {natural additive operations on K0(−) for unbased spaces}.

Let X be an unbased space and let X+ be the union of X with a disjoint
basepoint. There is an isomorphism Ã→ A+ as follows. Given an operation
α ∈ Ã, we have αX+ : K̃(X+) → K̃(X+). We have a natural identification

K̃0(X+) ∼= K0(X) which gives us an operation on K0(X). This then defines
us ψk on the K-theory of unbased spaces.

These operations have the following properties
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Proposition 1.4.3. (i) ψk(x+ y) = ψk(x) + ψk(y) for all k.

(ii) ψk(xy) = ψk(x)ψk(y) for all k.

(iii) ψk(ψl(x)) = ψkl(x) for all k, l.

(iv) If x is a line bundle then ψk(x) = xk.

(v) For p a prime, ψp(x) ≡ xp mod p.

(vi) For any map f : X → Y , the operations are natural i.e. ψk(f∗(x)) =
f∗(ψk(x)).

(vii) For u ∈ K̃(S2n), we have ψk(u) = knu for all k.

These operations as defined above are unstable for nearly all k ∈ Z, that
is they are just natural transformations ψk : K0(X) → K0(X). A stable
operation is a family of cohomology operations which commute with the
suspension isomorphisms. The only Adams operations for integralK-Theory
which are stable are ψ1 = id and ψ−1 which is complex conjugation. If we
introduce coefficients into K-Theory then this can allow other operations
to become stable. In general for an operation ψk to be stable in K∗(−;R),
we need k to be a unit in R. If k is a unit in R, i.e. Z[ 1

k ] ⊆ R ⊆ Q then
there is a unique ring spectrum map ψk : KR→ KR such that the following
diagram commutes for all spaces X.

K0(X)⊗R
ψk⊗1 //

µ

��

K0(X)⊗R
µ

��
KR0(X)

(ψk)∗

// KR0(X)

HereKR0(X) = [Σ∞X+,KR] are based maps from the suspension spectrum
of X to the spectrum KR. This process of making an operation ψk stable
is discussed in more detail in [AHS71, Chapter 4].

1.5 The Adams Spectral Sequence

The Adams spectral sequence is a very useful gadget in calculating stable
homotopy groups of spheres, and more generally stable homotopy classes
of maps between spaces. It has many levels of complexity and much has
been written about it over the years. I am not going to explain how it
is constructed in detail as there are quite a few excellent accounts of this
in existing literature, for example [Ada95, Part III, Chapter 15], [McC01],
[Hat03] and [Koc96]. I will however give an idea of the construction, define
it and outline how to use it, specifically in the way I will use it in later
chapters. The material for this section has come from the above references.
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The construction of the Adams spectral sequence involves producing a
free Ap-module resolution of H̃∗(X;Z/p), for a nice spectrum X. This is
done by using wedges of Eilenberg-MacLane spectra as these are the nearest
thing to having free Ap-module cohomology. This data can then be used to
construct an Adams resolution which is a geometric realisation of the free
Ap-module resolution of H̃∗(X;Z/p). Applying the functor [Y,−]t to the
Adams resolution gives a staircase diagram which allows for the construction
of a spectral sequence.

Theorem 1.5.1. For X a spectrum of finite type and Y a finite spectrum
there exists a spectral sequence of the form

Es,t2 = Exts,tAp(H̃
∗(X;Z/p), H̃∗(Y ;Z/p))

converging to the p-completion of

[Y,X]t−s.

The differentials are of the form

dr : Es,tr → Es+r,t+r−1
r .

So if we let Y = S, the sphere spectrum, this specialises to

Es,t2 = Exts,tAp(H̃
∗(X;Z/p),Z/p) =⇒ πt−s(X)⊗ Zp.

To construct the doubly-graded Ext group first take a left Ap-module
M and form a projective resolution of M , i.e. a long exact sequence of the
form

· · · → P2 → P1 → P0 →M → 0

where each Pi is a projective Ap-module for i > 0. Then delete M and apply
the functor Hom∗Ap(−, N), where N is also a left Ap-module and * denotes
the degree of the homomorphism, to get the chain complex

· · · ← Hom∗Ap(P2, N)← Hom∗Ap(P1, N)← Hom∗Ap(P0, N)← 0.

Taking homology of this chain complex at stage s gives us Exts,∗Ap(M,N).
An important property of these Ext groups is that they don’t depend on

the resolution taken.
To get from one page of a spectral sequence to another you take homology

at each point with respect to the differential passing through that point. So
each page and its differential determines the next page but not the next
differential, some other information is usually needed to obtain this.

To extract information from a spectral sequence we usually want to know
what the E∞ page looks like. This can be done easily if the spectral sequence
collapses, this means there exists a natural number R such that once the
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spectral sequence gets to the Rth page all further differentials are then zero
for r > R. From there on taking homology has no effect on the terms of the
spectral sequence so ER = ER+1 = · · · = E∞.

The information you can extract from the E∞ page of this spectral se-
quence can be used to calculate the p-completion of π∗(X) (in the simpler
case). The terms on the E∞ page are the quotient groups associated to a
descending filtration of π∗(X)⊗ Zp, i.e.

Es,t∞
∼=

F s(πt−s(X)⊗ Zp)
F s+1(πt−s(X)⊗ Zp)

.

This information hopefully allows you to reconstruct the groups πt−s(X)⊗Zp
however there can be extension problems which might need knowledge about
further structure in order to be solved.

1.6 Spanier-Whitehead Duality

The material in this section is derived and explained in more detail in
[Ada95, Part III, Chapter 5], another good account can be found in [Rav92].

Definition 1.6.1. For a finite spectrum X, there exists a unique finite
spectrum D(X), called the Spanier Whitehead dual of X, such that

[X,Y ]∗ ∼= [S,D(X) ∧ Y ]∗

where S is the sphere spectrum and Y is any other spectrum. This is natural
in both X and Y .

The concept of the Spanier-Whitehead dual is analogous of the concept
of the linear dual of a vector space. If V is a vector space over a field K,
then its linear dual is V ∗ = HomK(V,K). The defining property above
corresponds to the property of vector spaces that for any other K-vector
space W , HomK(V,W ) ∼= HomK(K,V ∗ ⊗W ) ∼= V ∗ ⊗W .

Example 1.6.2. The Spanier-Whitehead dual of the sphere spectrum is
itself, i.e. D(S) = S.

There are other corresponding properties between Spanier-Whitehead
duals of spectra and linear duals of vector spaces.

Lemma 1.6.3. The dual of a dual is isomorphic to the spectrum itself

D(D(X)) ∼= X.

Lemma 1.6.4. Taking duals commutes with the smash product

D(X ∧ Y ) ∼= D(X) ∧D(Y ).
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These two properties can be looked at as the analogues of the following
two properties of finite dimensional vector space duals, V ∗∗ ∼= V and (V ⊗
W )∗ ∼= V ∗ ⊗W ∗.

There is another property of Spanier-Whitehead duality which gener-
alises the concept of Alexander duality. For a finite CW-complex X, we can
embed X into Sn for some n ∈ N. Alexander duality then states that

Hk(X) ∼= Hn−1−k(Sn \X)

where Sn \X is the complement of X in Sn.
Because we are dealing with finite spectra we can view the spectrum X

as the (de)suspension spectrum of a finite CW-complex X ′. Following the
method above we can embed X ′ in Sn and then D(X) is just a suitably
shifted version of the suspension spectrum of Sn \X ′. We get an analogous
property to Alexander duality; for any generalised cohomology theory E,

Ek(X) ∼= E−k(D(X)).

We now look at how the action of the Steenrod algebra behaves with
respect to Spanier-Whitehead duality.

Proposition 1.6.5. For a finite spectrum X, an element α ∈ Ap acts on
H−∗(D(X);Z/p) as the dual of χ(α) in A∗p would act on H∗(X;Z/p), i.e.
the following diagram commutes where |α| = a.

H−n(D(X);Z/p) α //

∼=
��

H−n+a(D(X);Z/p)
∼=

��
Hn(X;Z/p)

χ(α)∗
// Hn−a(X;Z/p)

We will only ever use this when looking at the action of the subalgebra
B, see Definition 1.2.14. Since χ(Q0) = −Q0 and χ(Q1) = −Q1, we have
that H−∗(DX;Z/p) is isomorphic as a left B-module to H∗(X;Z/p) where
Q0 and Q1 act (up to sign) via their duals.

As stated in Definition 1.6.1 in order to have the Spanier-Whitehead
dual of a spectrum X you need X to be finite. We will now look at a
particular method of showing a spectrum is finite which we will use later
on, this material comes from [BM04, Section 3].

Definition 1.6.6. A spectrum is bounded below if there exists n ∈ Z such
that πi(X) = 0 for i < n (X is (n+ 1)-connected for some n ∈ Z).

The main result we will need later is the following.

Proposition 1.6.7. A bounded below p-complete spectrum with finitely gen-
erated mod p homology is the p-completion of a finite spectrum.
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It is stated in [BM04, Remarks 1.2(v)] that a finite type p-complete
spectrum, i.e. one with mod p homology finitely generated in each degree,
is the p-completion of a finite type p-local spectrum, i.e. one with p-local
homology finitely generated in each degree. So if X is a finite type p-
complete spectrum then X = Xp for a finite type p-local spectrum X , where
Xp denotes the p-completion of the spectrum X . If the original spectrum X
is bounded below then we can take X to be bounded below also.

Using the proof of [BM04, Theorem 3.3] it is possible to construct some-
thing known as a minimal spectrum Y and a homotopy equivalence Y → X
such that if X has finitely generated p-local homology, then Y will have
finitely many p-local stable cells corresponding to the generators and re-
lations in H∗(X ;Z(p)). Hence we have a model for X as a p-local finite
spectrum.

We know from Proposition 1.1.17 that p-localisation is an example of a
smashing localisation, so we can deduce that a spectrum built from finitely
many p-local cells is the p-localisation of a finite spectrum. This means our
finite p-local spectrum Y is the p-localisation of a finite spectrum Z and so
we now have that X is equivalent to the p-completion of the finite spectrum
Z.

1.7 Thom Spectra

The material in this section is mostly from [Rud98].

Notation 1.7.1. We will denote a homotopy from a space X to a space B
as gt : X → B, which is a family of maps for t ∈ I such that gt(x) = g(x, t)
where g : X × I → B is continuous.

Definition 1.7.2. A map p : E → B has the homotopy lifting property with
respect to a space X if given a homotopy gt : X → B and a map g̃0 : X → E
which lifts g0, i.e. pg̃0 = g0, then there exists a homotopy g̃t : X → E which
lifts gt.

Definition 1.7.3. A fibration is a map p : E → B which has the homotopy
lifting property with respect to all spaces X. The spaces p−1(b) ⊂ E are
called the fibres.

Example 1.7.4. The simplest example of a fibration is θn, the trivial fi-
bration of rank n. This is given by the projection map onto the first factor
X × Cn → X. Here all the fibres are a copy of Cn.

Definition 1.7.5. (i) An F -fibration for a topological space F is a fibra-
tion ξ such that all the fibres are homotopy equivalent to F .

(ii) An (F, ∗)-fibration is an F -fibration ξ with a section sξ such that the
fibres (Fx, sξ(x)) are pointed homotopy equivalent to (F, ∗) for all x in
the base space of ξ.
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Definition 1.7.6. A universal F -fibration is an F -fibration γF = {pF :
EF → BF } such that every F -fibration over a CW-complex X is equivalent
to the pullback f∗γF for some map f : X → BF , and two such maps
f, g : X → BF are homotopy equivalent if and only if f∗γF and g∗γF are
equivalent.

The space BF is the classifying space for F -fibrations.

It can be shown that for all spaces F , γF exists. Furthermore BF can be
chosen to be a CW-complex which is unique up to homotopy equivalence.

Definition 1.7.7. Let Fn-objects be (Sn, ∗)-fibrations. These are classified
by a space B(Sn,∗) denoted BFn and the universal Fn-object is denoted γnF .

Let BFn be the telescope (the homotopy direct limit) of the finite se-
quence {BF1 → . . . → BFn}, this is a subcomplex of BF , the telescope
of the infinite sequence {BF1 → BF2 → . . .}. The set {BFn} gives an
increasing filtration of BF . Because BFn is homotopy equivalent to BFn,
the universal Fn-object γnF is also an Fn-object over BFn.

Definition 1.7.8. A stable F-object α over X is a map f : X → BF . The

stabilisation of an Fn-object α = {f : X → BFn} is the map X
f−→ BFn ↪→

BF .

Definition 1.7.9. Let α = {p : Y → X} be an Fn-object with section s.
The Thom space of α is defined to be T (α) = Y/s(X).

Every morphism ϕ : α→ β of Fn-objects induces a map T (ϕ) : T (α)→
T (β) so T is a functor from Fn-objects to spaces.

Theorem 1.7.10 (Thom Isomorphism Theorem). In the case of spherical
fibrations, for every abelian group G and every i there are isomorphisms

Hi(X;G) ∼= H̃i+n(T (α);G)

and
H i(X;G) ∼= H̃ i+n(T (α);G)

where α = {p : Y → X} is an Fn-object.

For a CW-complex X, let α = {f : X → BF} be a stable F-object. Let
X = {X0 ⊂ X1 ⊂ · · · ⊂ Xn ⊂ · · · } be a CW-filtration of the space X such
that ∪nXn = X and f(Xn) ⊂ BFn. Let fn : Xn → BFn be the restriction
of the map f , i.e. fn(x) = f(x) and let ζn = f∗n(γnF ).

Proposition 1.7.11. If in : Xn → Xn+1 is the inclusion then i∗n(ζn+1) =
ζn ⊕ θ1.
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Definition 1.7.12. We define the Thom spectrum

T (X, α) = {T (ζn), sn},

the maps sn are as follows

sn = TIin,ζn+1 : ST (ζn) = T (ζn ⊕ θ1)→ T (ζn+1)

where Iin,ζn+1 : i∗n(ζn+1) → ζn+1 is the canonical map associated to the
pullback.

The homotopy type of a Thom spectrum does not depend on the fil-
tration used so this can be left out of the notation and we can just write
T (X, α) ' T (α).

If α = {f : X → BFk} is an Fk-object and αst is its stabilisation then
the nth term in T (αst) is T (α ⊕ θn−k) for n > k. This means that the
nth term in the Thom spectrum Tn(αst) = Σn−kT (α) and so there is an
isomorphism

T (αst) ∼= Σ−kΣ∞T (α)

and we have that the Thom spectrum is equivalent to the (de)suspension of
the suspension spectrum of a CW-complex.

1.8 Künneth Formulas

This is a general term for a formula which links the (co)homology of a
product space to the (co)homology of the two factors.

In the case of ordinary singular homology we have the following result
(see [Hat02, Theorem 3B.6]).

Theorem 1.8.1. If X and Y are CW-complexes and R a principal ideal
domain then there are natural short exact sequences

0→ H∗(X;R)⊗H∗(Y ;R)→ H∗(X × Y ;R)→ Tor1(H∗(X;R), H∗(Y ;R))→ 0

which split.

Corollary 1.8.2. When the coefficients are taken to be a field F the Tor
term is zero and so

H∗(X;F )⊗H∗(Y ;F ) ∼= H∗(X × Y ;F ).

We have a corresponding result in cohomology giving us that for F a
field

H∗(X;F )⊗H∗(Y ;F ) ∼= H∗(X × Y ;F ).

This style of formula can be generalised to other (co)homology theories,
for example in [Ati89, Corollary 2.7.15], Atiyah gives a Künneth formula for
K-Theory. The case for a general ring spectrum E can be found in [Ada95]
and [Swi02, Theorem 13.75] and is as follows.
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Theorem 1.8.3. Let E be a ring spectrum and X and Y spectra.

(i) If E∗(X) is a flat right Ẽ∗(S)-module or E∗(Y ) a flat left Ẽ∗(S)-module
then

E∗(X)⊗Ẽ∗(S) E∗(Y ) ∼= E∗(X ∧ Y ).

(ii) If E∗(X) is a finitely generated free right Ẽ∗(S)-module or E∗(Y ) a
finitely generated free left Ẽ∗(S)-module then

E∗(X)⊗Ẽ∗(S) E
∗(Y ) ∼= E∗(X ∧ Y ).

As explained in [Ada95], the flatness condition is satisfied in the cases
we will need it for e.g. HZ/p, K, S.
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Chapter 2

Kane’s Splitting

2.1 Introduction

Here I will give an exposition of [Kan81] in order to provide the background
material necessary for the following sections.

The main result of [Kan81] is the following splitting of ` ∧ ` involving
the finite spectra K(n), where we use the notation ` to mean the p-complete
Adams summand.

Theorem 2.1.1. There is a homotopy equivalence of the form

` ∧ ` ' ` ∧
∨
n>0

Σ2n(p−1)K(n).

The splitting is constructed by Kane in a p-local setting i.e. using Bous-
field localisation with respect to the homology theory HZ(p). During the
construction of the spectra K(n), Kane asserts that there is a filtration of
the space Ω2S3〈3〉 which induces a certain filtration on its homology. It
has been pointed out in [CDGM88] that they do not have a proof of this
unless the space is localised with respect to mod p homology. We will pro-
ceed by localising spaces with respect to mod p homology where stated and
interpret the splitting as a statement about p-complete spectra rather than
p-local spectra. Where results from [Kan81] are quoted, we will actually be
quoting the p-complete versions of these results. A different interpretation
of the p-local splitting of ` ∧ ` in terms of minimal Adams resolutions is
given in [Lel84] however this relies on the result of Kane’s splitting rather
than being an alternative splitting proved from scratch.

2.2 Construction of the Spectra K(n)

The spectra {K(n)}n>0 are certain Thom spectra known as Integral Brown-
Gitler spectra. The 2-primary versions were first introduced by Mahowald
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in [Mah81] for the 2-local splitting of ko ∧ ko. The odd primary versions of
them are given in [Kan81] however a more explicit and detailed account of
the construction of these spectra is given in [CDGM88] and [Kna97, Chapter
3].

We have an algebra isomorphism

H∗(Ω
2S3;Z/p) ∼= Λ(a0, a1, . . .)⊗ Z/p[b1, b2, . . .]

where |ai| = 2pi− 1, |bi| = 2pi− 2 and Λ denotes an exterior algebra. There
is a weight function on monomials in H∗(Ω

2S3;Z/p) given by

wt(ai) = wt(bi) = pi and wt(ab) = wt(a) + wt(b).

This filtration can be realised at space level giving an increasing filtration
Fn(Ω2S3) such that H∗(Fn(Ω2S3);Z/p) ⊂ H∗(Ω

2S3;Z/p) is the span of
monomials of weight less than or equal to n.

Let S3〈3〉 be the 3-connective cover of S3 so that πi(S
3〈3〉) = 0 for i 6 3

and πi(S
3〈3〉) ∼= πi(S

3) for i > 3. There is a homotopy fibration

Ω2S3〈3〉 → Ω2S3 → S1

which splits as a product giving Ω2S3 ' Ω2S3〈3〉 × S1. Since we have
H∗(Ω

2S3;Z/p) ∼= H∗(Ω
2S3〈3〉;Z/p) ⊗H∗(S1;Z/p) and H̃∗(S

1;Z/p) ∼= Z/p
in degree 1, we know that

H∗(Ω
2S3〈3〉;Z/p) ∼= Λ(a1, a2, . . .)⊗ Z/p[b1, b2, . . .]

which is the span of monomials of weight divisible by p. The filtration of
Ω2S3 induces a filtration of H∗(Ω

2S3〈3〉;Z/p) given by

Fn(H∗(Ω
2S3〈3〉;Z/p)) = H∗(Fn(Ω2S3);Z/p) ∩H∗(Ω2S3〈3〉;Z/p),

the span of monomials of weight divisible by p and less than or equal to
n. In [CDGM88] it is stated that they do not know of an argument for this
filtration being induced by an actual filtration of the space Ω2S3〈3〉, as Kane
states this but never proves it. An argument is given in [CDGM88] for this
happening when the spaces are localised with respect to mod p homology.

Recall that Xp denotes Bousfield localisation of a space X with respect
to the homology theory HZ/p [Bou75].

Definition 2.2.1. Let the space An be defined by the homotopy fibration

An → (Fpn+1(Ω2S3))p → S1
p ,

where the second map is the HZ/p-localisation of the composite of the maps

Fpn+1(Ω2S3)→ Ω2S3 → S1.
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By [Bou75, Proposition 12.7] this means that An is HZ/p-local. The
following theorem is proved in [CDGM88, Theorem 1.3].

Theorem 2.2.2. The homotopy fibration of Definition 2.2.1 is equivalent
to a product fibration and H∗(An;Z/p) ∼= Fpn(H∗(Ω

2S3〈3〉;Z/p)) hence
H∗(An;Z/p) is the span of monomials of weight divisible by p and less than
or equal to pn.

In [Mah79, 2.6, 2.7] Mahowald constructs a spherical fibration ξ over
Ω2S3

p which, when the Thom space of ξ is pulled back to Ω2S3〈3〉p to form
T (ξ|Ω2S3〈3〉p) is the Eilenberg-MacLane spectrum HZp.

Definition 2.2.3. When the Thom space of ξ is further pulled back via the
commutative diagram

An //

in
��

(Fpn+1(Ω2S3))p

��
Ω2S3〈3〉p // Ω2S3

p

to the Thom spectrum T (ξ|An), this is the nth integral Brown-Gitler spec-
trum B1(n).

The map in : An → Ω2S3〈3〉p when Thomified gives a monomorphism
in homology

T (in) : B1(n)→ HZp

sending ai to χ(τi) and bi to χ(ξi) where

H∗(HZp;Z/p) ∼= Λ(χ(τ1), χ(τ2), . . .)⊗ Z/p[χ(ξ1), χ(ξ2), . . .].

Here ξi and τi are the elements of the dual Steenrod Algebra A∗p defined in
section 1.2 with |ξi| = 2pi− 2 and |τi| = 2pi− 1 and χ is the canonical anti-
automorphism. This monomorphism sends H∗(B1(n);Z/p) into the span of
monomials of weight less than or equal to pn in H∗(HZp;Z/p) where

wt(χ(τi)) = wt(χ(ξi)) = pi and wt(ab) = wt(a) + wt(b).

Proposition 2.2.4. Each B1(n) is the p-completion of a finite spectrum.

Proof. It is stated in [Rud98, Chapter IV, Theorem 5.23(i)] that for any
stable F-object α over a CW-complex X, we have πi(Tα) = 0 for i < 0.
B1(n) is a Thom spectrum produced in this way over the CW-complex
An hence B1(n) is bounded below. It can be seen above that the mod p
homology of B1(n) is finitely generated and so we can use Proposition 1.6.7
and the discussion following to show that B1(n) is the p-completion of a
finite spectrum.
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There exist pairings of the spectra B1(n) of the form

B1(n) ∧B1(m)→ B1(n+m)

whose mod p homology homomorphism is compatible with the multiplication
in H∗(HZp;Z/p).

Definition 2.2.5. Let K(pn) := B1(n) and K(pn + i) := K(pn) for 1 6
i 6 p− 1.

The pairings on the spectra B1(n) give pairings on the spectra K(n).
For example, in the case where the p-adic expansions of m =

∑
i αip

i and
n =

∑
i βip

i satisfy αi + βi < p for all i, the spectra {K(n)}n>0 have multi-
plication maps between themselves

µm,n : K(m) ∧K(n)→ K(m+ n)

such that the induced map in cohomology µ∗m,n : H∗(K(m + n);Z/p) →
H∗(K(m);Z/p)⊗H∗(K(n);Z/p) is injective, see [Lel84, 1.2(iii)].

2.3 Properties of the Spectra K(n), K and `

In this section we will look at the homology and cohomology of the spectra
K(n) as modules over a subalgebra of the Steenrod Algebra. We will then
go on to define the spectra K(n) and hence K and give its homology as well
as the homology of `. This will set us up for the final section where we will
construct the splitting of ` ∧ `.

Consider H∗(K(n);Z/p) as a module over the Steenrod Algebra Ap.
Consider the left ideal of Ap

I(n) = Apβ +
∑
i>n

p

Apχ(P i).

Proposition 2.3.1. H∗(K(n);Z/p) ∼= Ap/I(n) as an Ap-module.

Recall the Milnor elements of Ap

Q0 = β

Q1 = P1β − βP1

where |Q0| = 1, |Q1| = 2p − 1. Here Q2
0 = Q2

1 = 0 and Q0Q1 = −Q1Q0

so we can also look at H∗(K(n);Z/p) as a graded module over the exterior
algebra B = Λ(Q0, Q1).

Definition 2.3.2. Let L be the B-module with generators gi, i ∈ Z, where
|gi| = 2i(p− 1) and relations Q1(gi) = Q0(gi+1).
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We can picture L in the following way where a gi denotes a copy of Z/p
generated by gi and Q1gi also denotes a copy of Z/p with generator Q1gi.
An arrow denotes a non-trivial action of either Q0 or Q1 as indicated.

Q1g−2 Q1g−1 Q1g0 Q1g1 Q1g2==z
z

z
z

z g−1

Q0

OO

Q1

99ttttttttt
g0

Q0

OO

Q1

::uuuuuuuuuu
g1

Q1

;;vvvvvvvvv
Q0

OO

g2

Q0

OO

Q1

;;vvvvvvvvv

OO�
�
�

Definition 2.3.3. For t > 0, let L(t) be the B-module quotient of L by the
submodule generated by {gi|i < 0 or i > t}.

We can picture L(t) as follows.

Q1g0 Q1g1

···

Q1gt−1

g0

Q1

<<yyyyyyyy
g1

Q0

OO

Q1

;;vvvvvvvvv
g2

Q0

OO >>|
|

|
|

|

<<y
y

y
y

y gt

Q0

OO

Hence each L(t) is finite dimensional over Z/p.

Proposition 2.3.4.

H∗(K(n);Z/p) ∼= L(ν)⊕ F

as B-modules where F is a free B-module of finite rank and ν = νp(n!)
where νp is the p-adic valuation function.

Definition 2.3.5. Let N be the Z/p-linear dual of L. So N is the B-module
with generators hi, for i ∈ Z, where |hi| = 2i(p − 1) + 1 and Q0(hi) =
Q1(hi+1).

Pictorially N looks like this:

Q1h−1 Q1h0 Q1h1 Q1h2 Q1h3OO�
�
�

h−1

Q0

OO
Q1

ddIIIIIIIII

h0

Q0

OO
Q1

ccGGGGGGGGG
h1

Q1

ccGGGGGGGGG
Q0

OO

h2

Q0

OO
Q1

ccGGGGGGGGG

``A
A

A
A

A

Definition 2.3.6. Trivially let N(0) = L(0) = Z/p{g0}. For t > 0, we let
N(t) be the B-submodule of N generated by {hi|1 6 i 6 t}.

So N(t) is as follows.

Q1h1 Q1h2 Q1h3

···

Q0ht

h1

Q1

ccHHHHHHHHH
Q0

OO

h2

Q0

OO
Q1

ccHHHHHHHHH

``A
A

A
A

A
ht

``A
A

A
A

A
Q0

OO

Kane proves Proposition 2.3.4 so we will prove the dual statement here.
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Proposition 2.3.7. H∗(K(n);Z/p) ∼= N(ν)⊕F ′ as B-modules where F ′ is
a free B-module of finite rank.

Proof. The Universal Coefficient Theorem tells us that H∗(K(n);Z/p) ∼=
HomZ/p(H∗(K(n);Z/p),Z/p) and we know that H∗(K(n);Z/p) ∼= L(ν)⊕F .
We can show that the dual of L(ν) is N(ν). We can see that

L(t) = Z/p{g0, g1, · · · , gt, Q1g0, Q1g1, · · · , Q1gt−1}

and
N(t) = Z/p{h1, · · · , ht, Q1h1, · · · , Q1ht, Q0ht}.

Both have dimension 2t+ 1 over Z/p. L(t) is a left B-module, so naturally
HomZ/p(L(t),Z/p) is a right B-module via the action (f.b)(−) = f(b.−) for
b ∈ B and f ∈ HomZ/p(L(t),Z/p). We know that as a Z/p-vector space, the
dual of L(t) is as follows

(L(t))∗ = Z/p{g∗0, g∗1, · · · , g∗n, (Q1g0)∗, (Q1g1)∗, · · · , (Q1gn−1)∗},

where ∗ denotes the dual basis. So to define an isomorphism from (L(t))∗

to N(t) we send

g∗i 7→


Q1h1 if i = 0
Q1hi+1 = Q0hi if 1 6 i 6 t− 1
Q0ht if i = t

and
(Q1gi)

∗ = (Q0gi+1)∗ 7→ hi+1 for i = 0, · · · , t− 1.

This is a bijection so we just need to check it is consistent with the B-module
actions, i.e. that (Q1gi)

∗Q0 = g∗i+1 and (Q1gi)
∗Q1 = g∗i for i = 0, · · · , t− 1.

But this is true because

((Q1gi)
∗Q0)(gi+1) = (Q1gi)

∗(Q0gi+1)

= (Q1gi)
∗(Q1gi)

= 1

and the evaluation of (Q1gi)
∗Q0 on any other element of L(t) is zero. Sim-

ilarly we have ((Q1gi)
∗Q1)(gi) = (Q1gi)

∗(Q1gi) = 1 and the evaluation on
any other element of L(t) is zero. So we have shown that (L(t))∗ ∼= N(t) as
B-modules and hence

H∗(K(n);Z/p) = N(ν)⊕ F ′.

Definition 2.3.8. Let

K(n) = Σ2n(p−1)K(n)

and let
K =

∨
n>0

K(n).
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Now look at the algebra structure and the B-module structure of both
H∗(K;Z/p) and H∗(`;Z/p).

The product maps µm,n for the spectra K(n) give us an algebra structure
on H∗(K;Z/p), and Kane shows that

H∗(K;Z/p) = Λ(α2, α3, . . .)⊗ Z/p[β1, β2, . . .]

as an algebra where |αn| = 2pn − 1 and |βn| = 2pn − 2. Also the B-module
structure is given by

Q0(αn) = βn, Q1(αn) = βpn−1,

the action of both Q0 and Q1 on βn is zero.
We know from [Ada95, Part III, Proposition 16.6] that H∗(`;Z/p) =

Ap/ApB. The generator in H0(`;Z/p) = [l,HZ/p]0 gives a monomorphism

H∗(`;Z/p)→ H∗(HZ/p;Z/p) = Λ(χ(τ0), χ(τ1), . . .)⊗ Z/p[χ(ξ1), χ(ξ2), . . .].

Under this embedding we can identify the homology of ` as follows

H∗(`;Z/p) = Λ(χ(τ2), χ(τ3), . . .)⊗ Z/p[χ(ξ1), χ(ξ2), . . .]

with B action

Q0(χ(τn)) = χ(ξn), Q1(χ(τn)) = χ(ξn−1)p.

2.4 The Splitting

We now show that proving the splitting ` ∧ K ' ` ∧ ` reduces to producing
a map f : K → ` ∧ ` with certain properties.

There is an algebra isomorphism

∆ : H∗(K;Z/p)→ H∗(`;Z/p)
αn 7→ χ(τn),

βn 7→ χ(ξn)

which is also an isomorphism of B-modules.
This map ∆ cannot be realised by a homotopy equivalence K → `, nor

can

1⊗∆ : H∗(`;Z/p)⊗H∗(K;Z/p)→ H∗(`;Z/p)⊗H∗(`;Z/p)

by a map ` ∧ K → ` ∧ `. So we aim to find an isomorphism closely related
to 1⊗∆ which can be realised by a homotopy equivalence.

Notice that H∗(`;Z/p) ⊗ H∗(K;Z/p) and H∗(`;Z/p) ⊗ H∗(`;Z/p) are

H∗(`;Z/p)-modules via ` ∧ ` ∧ K µ∧1−−→ ` ∧ K and ` ∧ ` ∧ ` µ∧1−−→ ` ∧ `.
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Definition 2.4.1. We can define increasing filtrations {Jn} on H∗(`;Z/p)⊗
H∗(K;Z/p) and {Gn} on H∗(`;Z/p)⊗H∗(`;Z/p) as follows.

Jn = H∗(`;Z/p)⊗ (α2, . . . , αn, β1, . . . , βn),

Gn = H∗(`;Z/p)⊗ (χ(τ2), . . . , χ(τn), χ(ξ1), . . . , χ(ξn))

where (α2, . . . , αn, β1, . . . , βn) is the ideal of H∗(K;Z/p) generated by the
set {α2, . . . , αn, β1, . . . , βn} and similarly for Gn.

Proposition 2.4.2. We can produce a map f : K → ` ∧ ` such that

f∗(αn) = 1⊗ χ(τn) mod Gn−1

f∗(βn) = 1⊗ χ(ξn) mod Gn−1
(2.1)

and
f∗ is multiplicative. (2.2)

This produces the required splitting via the map

Ω : ` ∧ K 1∧f−−→ ` ∧ ` ∧ ` µ∧1−−→ ` ∧ `. (2.3)

The induced map Ω∗ : H∗(`;Z/p)⊗H∗(K;Z/p)→ H∗(`;Z/p)⊗H∗(`;Z/p)
is a map of left H∗(`;Z/p)-modules. Also Ω∗ preserves the filtrations i.e.
Ω∗(Jn) ⊆ Gn. So there is an induced map between the associated graded
H∗(`;Z/p)-modules Jn

Jn−1
→ Gn

Gn−1
which is equal to the map induced by

the isomorphism 1 ⊗ ∆ by properties (2.1) and (2.2). So Ω∗ induces an
isomorphism in Z/p homology. Since ` ∧ ` and ` ∧ K are both p-complete
(i.e. HZ/p∗-local) spectra, this map is a homotopy equivalence by Theorem
1.1.19.

Properties (2.1) and (2.2) reduce to easier to check conditions.
Property (2.1) reduces to

Condition 2.4.3.

f∗(β1) = 1⊗ χ(ξ1)− χ(ξ1)⊗ 1.

Let H∗(K(n);Z/p) = H(n), then H∗(K;Z/p) = ⊕n>0H(n) and the map
f∗ : H∗(K;Z/p)→ H∗(` ∧ `;Z/p) becomes the collection

f(n) : H(n)→ H∗(` ∧ `;Z/p).

Let E = (e0, e1, . . .) be an exponential sequence, i.e. all the ei are non-
negative integers and only finitely many are non-zero, and let the last non-
zero entry be es.
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Definition 2.4.4. Define

H(E) =

(
e0⊗
i=1

H(1)

)
⊗ · · · ⊗

(
es⊗
i=1

H(ps)

)

f(E) : H(E)→

∑
j ej⊗
i=1

H∗(` ∧ `;Z/p)

f(E) = f(1)⊗e0 ⊗ · · · ⊗ f(ps)⊗es .

Let n =
∑t

i=0 nip
i be the p-adic expansion of n, and let

E(n) = (n0, n1, . . . , nt, 0, 0, . . .).

Property (2.2), f∗ is multiplicative, reduces to the following two diagrams
commuting.

Condition 2.4.5. If n 6= ps, s > 0:

H(E(n))
f(E(n)) //

��

⊗∑
j nj

i=1 H∗(` ∧ `;Z/p)

��
H(n)

f(n)
// H∗(` ∧ `;Z/p)

Condition 2.4.6. If n = ps:

⊗p
i=1H(ps−1)

f(ps−1)⊗p //

��

⊗p
i=1H∗(` ∧ `;Z/p)

��
H(ps)

f(ps)
// H∗(` ∧ `;Z/p)

The vertical maps in the above diagrams are repeated multiplication
within H∗(K;Z/p) and H∗(` ∧ `;Z/p).

A few background results about Eilenberg-MacLane spectra are needed.
The first two of these are proved in [Mar74], the third follows.

• [X,Y ]→ HomAp(H
∗(Y ;Z/p), H∗(X;Z/p)) is an isomorphism if either

X = HZ/p or Y = HZ/p.

• Given an isomorphism α : H∗(X;Z/p)→ N ⊕ F where F is a free Ap
module, there exist spectra Y and Z and a map k : Y ∨ Z → X such
that H∗(Y ;Z/p) = N , H∗(Z;Z/p) = F and k∗ = α.

• Let H∗(X;Z/p) be a free B-module. Then

` ∧X =
∨
i

ΣniHZ/p.
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We now complete our exposition of Kane’s paper by outlining the proofs
of 2.4.3 and 2.4.5 to give the idea of the construction of the map f . To
prove Condition 2.4.6 is similar to 2.4.5 but has the added problem that the
equivalent object to H∗(G;Z/p) (defined in the proof) in that case is not a
free B-module.

Outline proof of Condition 2.4.3. By definition K =
∨
n>0K(n) so we need

to produce maps fn : K(n) → ` ∧ `. The first two of these are f0 : K(0) =
S0 → `∧ ` and f1 : K(1) = S2p−2 → `∧ `. Now (f1)∗(β1) is spherical, i.e. in
the image of the mod p Hurewicz map

h : π∗(X)→ H∗(X;Z)→ H∗(X;Z/p),

so up to a unit, f∗(β1) = 1⊗ χ(ξ1)− χ(ξ1)⊗ 1 which is (2.4.3).

Outline proof of Condition 2.4.5. The rest of the fns are constructed by in-
duction. Suppose fn has been constructed for n < N and construct fn for
n = N . Either N = ps for some s > 0 or N 6= ps.

Assume N 6= ps, so N = N0 + N1p + · · · + Nkp
k with

∑
iNi > 1. For

the sequence E(N) = (N0, N1, . . . , Nk, 0, 0, . . .) let

K(E(N)) = (K(1)∧N0) ∧ · · · ∧ (K(pk)∧Nk)

f(E(N)) : K(E(n))→ (` ∧ `)∧
∑
iNi

f(E(N)) = f(1)∧N0 ∧ · · · ∧ f(pk)∧Nk .

Also let q : K(E(N)) → K(N) and r : (` ∧ `)∧
∑
Ni → ` ∧ ` be repeated

multiplication in K and ` respectively. Now we will explain how to construct
fN to make the following diagram commute

K(E(N))
f(E(N)) //

q

��

(` ∧ `)∧
∑
iNi

r

��
K(N)

fN
// ` ∧ `

Because we are using mod p homology, the Künneth formula will ensure
that (2.4.5) holds. The next map fN is produced via the following diagram

G
� � //

j
��

` ∧G
1∧j

��
K(E(N)) � � //

q

��

` ∧ K(E(N))
1∧(r◦f(E(N))) //

1∧q
��

` ∧ ` ∧ `
µ∧1

��
K(N) � � // ` ∧ K(N) ` ∧ `
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where G is the fibre of the map q. Completing the diagram with the bottom
right map will give us fN . From the multiplication on K we have that
q∗ : H∗(K(N);Z/p)→ H∗(K(E(N));Z/p) is injective. We also know that

H∗(K(N);Z/p) = Σ2N(p−1)L(νp(N !))⊕ F
H∗(K(E(N));Z/p) = Σ2N(p−1)L(νp(N !))⊕ F ′

where F and F ′ are free B-modules. The map

q1 : L(νp(N !)) ↪→ H∗(K(N);Z/p)� H∗(K(E(N));Z/p)→ L(νp(N !))

is an isomorphism because q∗ is an isomorphism in degree 2N(p − 1) and
the B-module structure of L(νp(N !)) then means q1 is an isomorphism. So
H∗(G;Z/p) = coker q∗ = F

F ′ is free because any quotient of free B-modules
of finite rank is free. This means `∧G =

∨
i ΣniHZ/p. Because `∧G is the

fibre of 1 ∧ q, completing the square is the same as showing

φ : ` ∧G 1∧j−−→ ` ∧ K(E(N))
1∧(r◦f(E(N)))−−−−−−−−−→ ` ∧ ` ∧ ` µ∧1−−→ ` ∧ `

is trivial and φ is trivial if and only if φ∗ : H∗(` ∧G;Z/p)→ H∗(` ∧ `;Z/p)
is trivial. We can ‘unsmash’ one side of the composite φ with ` to get that
φ∗ is trivial if

G
j−→ K(E(N))

f(E(N))−−−−−→ (` ∧ `)
∑
Ni r−→ ` ∧ `

is trivial in mod p homology. We know im j∗ = ker q∗ so we just need that
ker q∗ = ker r∗f(E(N))∗. Let pk < N < pk+1 and let A = Λ(α2, . . . , αk) ⊗
Z/p[β1, . . . , βk]. The fn have been constructed for n < N so let γs =
(fps−1)∗(αs) for 2 6 s 6 k and ∆t = (fpt−1)∗(βt) for 1 6 t 6 k. Let
B ⊂ H∗(` ∧ `;Z/p) be the free subalgebra generated by {γs} ∪ {∆t}, then
B = E(γ2, . . . , γk) ⊗ Z/p[∆1, . . . ,∆k]. There is an algebra isomorphism
ψ : A ∼= B. We also have embeddings H(s) ⊂ A for s < N and ψ restricted
to H(s) is (fs)∗ = f(s). Then the following diagram commutes;

H(E(N)) //

q∗

��

⊗∑
Nj

i=1 A
∼= //

��

⊗∑
Ni

1 B //

��

⊗∑
Nj

i=1 H∗(` ∧ `;Z/p)

r∗

��
H(N) // A

∼= // B // H∗(` ∧ `;Z/p)

the horizontal maps are injections and the composite of the top horizontal
maps is f(E(N))∗, so ker q∗ = ker r∗f(E(N))∗.
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Chapter 3

The Upper Triangular Group

3.1 Overview

The main aim of this chapter is to produce a p-local analogue of the 2-local
theorem of Snaith, [Sna09, Theorem 3.1.2]. This provides an identification
between p-adic infinite upper triangular matrices and certain operations on
complex connective K-theory.

Let ku be the p-adic connective complex K-theory spectrum and let ` be
the p-complete Adams summand. The smash product `∧` is a left `-module
via the multiplication µ : ` ∧ `→ ` coming from the fact that ku and hence
` is a ring spectrum:

` ∧ ` ∧ ` µ∧1−−→ ` ∧ `.

Definition 3.1.1. Let Endleft-`-mod(`∧ `) be the ring of left `-module endo-
morphisms of `∧` of degree zero. Of these, the ones that can be inverted, i.e.
the group of units of this ring, are the left `-module automorphisms of `∧ `
which we shall call Autleft-`-mod(`∧`). These form a group under composition
of functions. Because they are invertible these are homotopy classes of left
`-module homotopy equivalences. Finally denote by Aut0

left-`-mod(` ∧ `) the
subgroup of these homotopy equivalences consisting of those which induce
the identity map in mod p homology i.e. f ∈ Aut0

left-`-mod(`∧ `) means that
f∗ = id : H∗(` ∧ `;Z/p)→ H∗(` ∧ `;Z/p).

Definition 3.1.2. Let U∞Zp be the group of invertible infinite upper tri-
angular matrices with entries in the p-adic integers.

The group structure of U∞Zp is given by matrix multiplication; because
these matrices are upper triangular each column is of finite height, so when
multiplying, the sum for each entry of the product matrix is also finite. Any
element of U∞Zp is a matrix X = (xi,j) for i, j ∈ N0, where all xi,j ∈ Zp and
xi,j = 0 for i > j. For an infinite upper triangular matrix with p-adic entries
to be invertible it is necessary and sufficient for it to have p-adic units on
the diagonal.
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The main theorem of this chapter is as follows:

Theorem 3.1.3. There is an isomorphism of groups of the form

Λ : U∞Zp
∼=−→ Aut0

left-`-mod(` ∧ `).

As explained in the previous chapter, from [Kan81] we have a p-adic
splitting of the form

` ∧ ` ' ` ∧
∨
n>0

K(n).

We want to study left-`-module maps of the form ` ∧ ` → ` ∧ `. Because
there exists a splitting of ` ∧ ` we only need to look at left-`-module maps
from any one piece of the splitting to any other piece, i.e. maps of the form

φm,n : ` ∧ K(m)→ ` ∧ K(n)

for each m, n > 0.
We will use a suitable Adams spectral sequence to show that there exist

particular maps
ιm,n : ` ∧ K(m)→ ` ∧ K(n)

which are represented by generators of certain groups on the E2 page of
the spectral sequence. This E2 page consists of Ext groups which we will
calculate using the theory of stable isomorphism classes. Once we have the
maps ιm,n we can define our isomorphism below.

Definition 3.1.4. Let the map Λ be as follows

Λ : U∞Zp → Aut0
left-`-mod(` ∧ `)

X 7→
∑
m>n

Xn,mιm,n : ` ∧ (
∨
i>0

K(i))→ ` ∧ (
∨
i>0

K(i)).

The rest of the chapter will proceed in the following way. Section 3.2
covers the theory of stable isomorphism classes and results needed later
concerning Ext groups. The main result of this section is Theorem 3.2.13
which identifies the stable isomorphism class of the mod p cohomology of
K(n). Section 3.3 then sets up the required Adams spectral sequence. The
results of the previous section are used to identify the E2 term and then to
show that the spectral sequence collapses at the E2 term for dimensional
reasons. We then pick generators of the groups on the E2 page to give the
maps ιm,n used in the definition of Λ above. The spectral sequence is then
further analysed to show, in Proposition 3.3.6, that Λ is bijective. Finally
we show in Proposition 3.3.7 that the choice of the maps ιm,n can be made
in such a way that Λ is a group isomorphism.
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3.2 Stable Isomorphisms and Ext Groups

A main ingredient in the proof of Theorem 3.1.3 is the idea of stable iso-
morphisms which were first introduced by Adams. The following definitions
and theory come from [Ada95, Part III, Chapter 16] and are explored in
more detail there. Another good reference for modules over Hopf algebras
and their cohomology is [Mar83].

We start by working over a general Hopf algebra to introduce the general
techniques before specialising to the subalgebra B of the Steenrod Algebra
introduced in Definition 1.2.14.

Definition 3.2.1. Let A be a connected graded finite dimensional Hopf
algebra over a field K. Two graded left A-modules M and N are stably
isomorphic, which we will denote M u N , if there exist free A-modules F
and G such that M ⊕ F ∼= N ⊕G.

Lemma 3.2.2. Stable isomorphism is an equivalence relation.

Proof. • M ⊕ F ∼= M ⊕ F for any free A-module F , so M uM .

• If M u N then M ⊕ F ∼= N ⊕G for free A-modules F,G, this clearly
works in both directions so N uM .

• If M u N and N u L then we know M⊕F ∼= N⊕G and N⊕H ∼= L⊕J
for free A-modules F,G,H and J . So

M ⊕ F ⊕H ∼= N ⊕G⊕H
∼= N ⊕H ⊕G
∼= L⊕ J ⊕G

and since F ⊕H and J ⊕G are free A-modules we have M u L.

We can take tensor products of stable isomorphism classes so that for
A-modules M and N , the tensor product of their stable classes is the stable
class of M⊗N . For this to be well-defined we note that the A-module A⊗N
where we take A acting diagonally via the comultiplication is isomorphic as
a left A-module to A ⊗ N where A acts by multiplication within the left
factor of A.

Definition 3.2.3. Let ‘1’ be the graded A-module with the ground field K
in degree 0 and zero in other degrees. The action of A on 1 is trivial, i.e.
for any k ∈ K we have a.k = 0 for all a ∈ An where n > 0 and A0 = K acts
as multiplication within K.

Definition 3.2.4. An A-module M is invertible if there exists another class
M ′ such that M ⊗M ′ u 1. Then we write M−1 = M ′.
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From here onwards the theory is for A the graded exterior algebra K[x, y]
where |x| < |y| and |x| and |y| are both odd unless K has characteristic 2.
This ensures that A is a Hopf algebra with x and y primitive, i.e. ∆(x) =
x ⊗ 1 + 1 ⊗ x where ∆ is the comultiplication on A and similarly for y. In
our case we want A = B = Λ[Q0, Q1], where Q0 = β has degree 1 and
Q1 = P1β − βP1 has degree 2p− 1 and K = Z/p for an odd prime p.

Definition 3.2.5. Let Σ be the B-module with Z/p in degree 1, this is
invertible with inverse Σ−1, the B-module with Z/p in degree −1. Also
Σa = Σ⊗ Σ⊗ · · · ⊗ Σ︸ ︷︷ ︸

a

is the module with Z/p in degree a.

Definition 3.2.6. Let ε : B → Z/p be the augmentation map of B, i.e. if
we think of B as the Z/p-vector space Z/p{1, Q0, Q1, Q0Q1}, ε is determined
by taking the basis element 1 ∈ B to 1 ∈ Z/p and all other basis elements
Q0, Q1 and Q0Q1 to 0 ∈ Z/p. Let I be the augmentation ideal of B; that
is I = ker(ε). So I = Z/p{Q0, Q1, Q0Q1} as a Z/p-vector space. Again
Ib = I ⊗ I ⊗ · · · ⊗ I︸ ︷︷ ︸

b

.

Remark 3.2.7. For s > 0, Exts,tB (M,K) only depends on the stable iso-
morphism class of M .

Adams gives a method for calculating stable isomorphism classes for the
case where p = 2 which carries over to the odd prime case; the following
result is in [Ada95, Part III, Theorem 16.3].

Theorem 3.2.8. For a finite dimensional graded module M over an ex-
terior algebra K[x, y] as above with H∗(M ;x) and H∗(M ; y) both being of
dimension 1 over K, M is invertible and stably isomorphic to ΣaIb = Σa⊗Ib
for unique a, b ∈ Z.

In order to determine a and b Adams gives us the following formulae:

Hi(Σ
aIb;x) =

{
K if i = a+ b|x|
0 otherwise,

and

Hj(Σ
aIb; y) =

{
K if j = a+ b|y|
0 otherwise.

Because x and y are in different degrees, we can solve these equations for
the values a and b which will be unique.

Here H∗(M ;x) =
kerx

imx
is taking homology with respect to the action of

the element x and similarly for y.

Definition 3.2.9. For a B-module M , let M∗ denote its Z/p-linear dual
i.e. M∗ = Hom∗Z/p(M,Z/p).
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This will be graded in the following way; a homomorphism from some-
thing in degree m to Z/p in degree zero will have degree −m.

Adams proves in [Ada95, Part III, Lemma 16.2] that I is invertible with
inverse I−1 u I∗. We know that I = Z/p{Q0, Q1, Q0Q1} so has a copy of
Z/p in degrees 1, 2p − 1 and 2p and that Q0 and Q1 act by increasing the
degree by 1 and 2p − 1 respectively. In contrast I∗ has copies of Z/p in
degrees −1, 1−2p and −2p and Q0 and Q1 still act by increasing the degree
by 1 and 2p− 1 respectively.

Lemma 3.2.10. I−b u (Ib)∗ = Hom∗Z/p(I
b,Z/p).

Proof. Because I is free and finitely generated over Z/p we have that (I ⊗
I)∗ ∼= I∗⊗ I∗, this means we have (Ib)∗ ∼= (I∗)b, and stably we have (I∗)b u
(I−1)b. We know that I−1 has Q0 homology in degree −1 and Q1 homology
in degree 1−2p so by the Künneth formula (I−1)b will have Q0 homology in
degree −b and Q1 homology in degree (1− 2p)b. By the criteria of Theorem
3.2.8 this is then stably isomorphic to I−b.

Remark 3.2.11. In a similar way it is shown in [Ada95, Part III, Lemma
16.3(i)] that for any invertible B-module M , its linear dual M∗ is its inverse
stable isomorphism class.

The B-modules Σ and I give us a couple of dimension-shifting isomor-
phisms for Ext groups.

Lemma 3.2.12. There exist isomorphisms of Ext groups of the form

Exts,tB (I ⊗M,Z/p) ∼= Exts+1,t
B (M,Z/p)

Exts,tB (ΣaM,Z/p) ∼= Exts,t−aB (M,Z/p)

for s > 0 and M a B-module.

Proof. For a B-module M , from the short exact sequence

0→ I ⊗M → B ⊗M →M → 0

comes a long exact sequence of Ext groups

· · · → Exts,tB (B⊗M,Z/p)→ Exts,tB (I ⊗M,Z/p)→ Exts+1,t
B (M,Z/p)

→ Exts+1,t
B (B ⊗M,Z/p)→ · · ·

and since B ⊗M is a free B-module, Exts,tB (B ⊗M,Z/p) = 0 for s > 0 and
so

Exts,tB (I ⊗M,Z/p)
∼=−→ Exts+1,t

B (M,Z/p)

for all s > 0. It is also true from construction that Exts,tB (ΣaM,Z/p) ∼=
Exts,t−aB (M,Z/p).
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Recall from Proposition 2.2.4 that the spectrum K(n) is equivalent to the
p-completion of a finite spectrum, i.e. K(n) ' Yp for some finite spectrum
Y . With a slight abuse of notation, when we take the Spanier-Whitehead
dual and write D(K(n)) we really mean take the dual of the finite spectrum
Y and complete later. This is not a problem as everything we are working
with is in a p-complete setting so using the underlying finite spectrum and
p-completing after will not make a difference.

We are now in a position to calculate the stable isomorphism classes
of both H∗(K(n);Z/p) and H∗(D(K(n));Z/p). We will need both of these
facts in the next section in order to simplify the spectral sequence we will
construct there.

Theorem 3.2.13. The stable isomorphism class of H∗(K(n);Z/p) can be
written as Σ2n(p−1)−νp(n!)Iνp(n!).

Proof. In [Kan81, Lemma 8:3, Lemma 8:4], Kane provides the following
facts:

H(H∗(K(n);Z/p);Q0) = Z/p in dimension 0 and

H(H∗(K(n);Z/p);Q1) = Z/p in dimension 2νp(n!)(p− 1).

Recall that K(n) = Σ2n(p−1)K(n), so

H∗(K(n);Z/p) = H∗(Σ2n(p−1)K(n);Z/p)

= H∗−2n(p−1)(K(n);Z/p),

and thus for s ∈ N0,

H(H∗(K(n);Z/p);Q0) = Z/p in dimension 2n(p− 1) and

H(H∗(K(n);Z/p);Q1) = Z/p in dimension 2(p− 1)(νp(n!) + n).

Using Theorem 3.2.8 we can then deduce that we have a stable isomorphism

H∗(K(n);Z/p) u Σ2n(p−1)−νp(n!)Iνp(n!).

Lemma 3.2.14. There is a stable isomorphism

H∗(D(K(n));Z/p) u Σνp(n!)−2n(p−1)I−νp(n!).

Proof. The Universal Coefficient Theorem gives us the following B-module
isomorphism

H∗(K(n);Z/p) ∼= Hom∗Z/p(H−∗(K(n);Z/p),Z/p).

We know from Remark 3.2.11 that for any B-module, its linear dual is
its inverse stable isomorphism class. From Theorem 3.2.13 we have that
H∗(K(n);Z/p) u Σ2n(p−1)−νp(n!)Iνp(n!), hence we have

H−∗(K(n);Z/p) u Σνp(n!)−2n(p−1)I−νp(n!).
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Recall from Proposition 1.6.5 that Spanier-Whitehead duality gives us the
B-module isomorphism

H∗(D(K(n));Z/p) ∼= H−∗(K(n);Z/p),

which proves the result.

One last result we will need in the next section is the following.

Lemma 3.2.15. Ext∗,∗B (Z/p,Z/p) = Z/p[c, d] where c ∈ Ext1,1
B and d ∈

Ext1,2p−1
B .1

Proof. This statement is proved in [Rav86, Lemma 3.1.9] with a minor mis-
take, so we shall prove the statement here also. Let Γ = Λ(x) be the
exterior Hopf algebra over Z/p on one generator x. We will first calculate
Ext∗,∗Γ (Z/p,Z/p). Take an injective Γ-resolution of Z/p as follows

0→ Z/p→ Γ
∂−→ Γ

∂−→ Γ
∂−→ · · ·

where ∂ is the Γ-homomorphism where ∂(1) = x and ∂(x) = 0. We can
do this because Γ is a finite dimensional Hopf algebra and therefore self-
injective. Now we apply the functor HomΓ(Z/p,−) to get

0→ HomΓ(Z/p,Γ)
∂∗−→ HomΓ(Z/p,Γ)

∂∗−→ · · · .

We know that HomΓ(Z/p,Γ) ∼= Z/p via the isomorphism which sends f ∈
HomΓ(Z/p,Γ) to λ ∈ Z/p where f(1) = λx. This must be the case as any
such map f is determined by its value on 1 and we must have f(1) = λx
for some λ ∈ Z/p otherwise f would not be a Γ-homomorphism. Now the
maps ∂∗ on a map f are obtained by post-composition with f and are still
determined by their action on 1, i.e.

(∂∗f)(1) = ∂ ◦ f(1) = ∂(λx) = λ∂(x) = 0.

Hence all the boundary maps are zero so when we take homology we get
a copy of Z/p in every homological degree. Let the generator of the Ext1

group be y. Because this map sends 1 to x it raises degree by |x| and so lies

in Ext
1,|x|
Γ (Z/p,Z/p). The composition product on Ext groups gives us that

the generators for the Ext2, Ext3 groups and so on are y2, y3 respectively.
Hence Ext∗,∗Γ (Z/p,Z/p) ∼= Z/p[y]. Now our exterior algebra B is isomorphic
to Λ(Q0)⊗ Λ(Q1) and Ext groups come with an external pairing

Ext∗,∗Λ(Q0)(Z/p,Z/p)⊗ Ext∗,∗Λ(Q1)(Z/p,Z/p)→ Ext∗,∗B (Z/p,Z/p),

which by the Künneth theorem gives us an isomorphism of vector spaces
between the two. This is also an isomorphism of rings which gives us that
Ext∗,∗B (Z/p,Z/p) ∼= Z/p[c] ⊗ Z/p[d] ∼= Z/p[c, d] where c and d are in the
degrees stated above.

1A lot of authors would use the notation v0 and v1 instead of c and d.

45



3.3 The Spectral Sequence

We want to look at automorphisms of ` ∧ ` which induce the identity on
mod p homology. When looking at the separate pieces of the splitting we
use the following lemma to translate this into a condition on the maps φm,n.

Lemma 3.3.1. Let E be a ring spectrum and F be spectra such that F '
F1 ∨ F2. There is an isomorphism of groups of the form

End0
left-E-mod(E ∧ F )

∼=−→
⊕

16i,j62

Hom0
left-E-mod(E ∧ Fi, E ∧ Fj)

f 7→ f11 ⊕ f12 ⊕ f21 ⊕ f22

where Hom0
left-E-mod(E∧Fi, E∧Fj) means that if i = j the morphism induces

the identity on mod p homology and if i 6= j the morphism induces the zero
map on mod p homology, i.e. (f11)∗ and (f22)∗ are the identity maps and
(f12)∗ and (f21)∗ are the zero maps.

Proof. An element of Endleft-E-mod(E∧F ) automatically splits into its com-
ponent parts as homomorphisms between each of the pieces,

Endleft-E-mod(E ∧ F ) ∼=
⊕

16i,j62

Homleft-E-mod(E ∧ Fi, E ∧ Fj).

We now restrict to the maps inducing the identity on mod p homology, i.e.
given an element f ∈ End0

left-E-mod(E ∧F ), this induces the identity map on
H∗(E ∧ F ;Z/p). So f must restrict to the identity maps on the homology
of each piece E ∧Fi, hence (f11)∗ and (f22)∗ must be the identity maps. We
must also have (f12)∗ and (f21)∗ being the zero maps otherwise f∗ would
not then be the identity map. In other words;

f∗ = (f11 ⊕ f12 ⊕ f21 ⊕ f22)∗

= (f11)∗ ⊕ (f12)∗ ⊕ (f21)∗ ⊕ (f22)∗

= 1⊕ 0⊕ 0⊕ 1 = id .

We consider Aut0
left-`-mod(` ∧ `) ⊂ End0

left-`-mod(` ∧ `) so, analogously to
this lemma, we need to have (φm,m)∗ = id for every m > 0 and (φm,n)∗ the
zero map for every m, n > 0, m 6= n.

Since we are looking at left-`-module maps, each map φm,n is determined
by its restriction to S0 ∧ K(m) → ` ∧ K(n). This is an element of the
homotopy group [K(m), `∧K(n)]. By Proposition 2.2.4 we know that K(m)
is the p-completion of a finite spectrum, i.e. K(m) = Yp for some finite
spectrum Y . Since ` ∧ K(n) is p-complete

[K(m), ` ∧ K(n)] = [K(m), ` ∧ K(n)p] = [Yp, ` ∧ K(n)]p = [Y, ` ∧ K(n)]p.
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Now because Y is a finite spectrum we can take its Spanier-Whitehead
dual so our homotopy group becomes [S0, ` ∧ K(n) ∧D(Y )]p. We can take
the p-completion of D(Y ) without changing the homotopy group and, as
mentioned in the last section, we will refer to D(Y )p as D(K(m)).

To study this homotopy group we are going to use the Adams spectral
sequence whose E2 term is as follows:

Es,t2 = Exts,tAp(H
∗(D(K(m)) ∧ K(n) ∧ `;Z/p),Z/p)

∼= Exts,tAp(H
∗(D(K(m));Z/p)⊗H∗(K(n);Z/p)⊗H∗(`;Z/p),Z/p)

∼= Exts,tAp(H
∗(D(K(m));Z/p)⊗H∗(K(n);Z/p)⊗Ap ⊗B Z/p,Z/p)

∼= Exts,tAp(H
∗(D(K(m));Z/p)⊗H∗(K(n);Z/p)⊗B Ap,Z/p)

∼= Exts,tB (H∗(D(K(m));Z/p)⊗H∗(K(n);Z/p),Z/p), (3.1)

via the Künneth theorem. In [Ada95, Part III, Proposition 16.6], Adams
gives us that H∗(`;Z/p) ∼= Ap⊗B Z/p, it is then shown in [Ada95, Part III,
Proof of Proposition 16.1] that for an Ap-module M we have an isomorphism
of left Ap-modules

(Ap ⊗B Z/p)⊗M ∼= Ap ⊗B M

where Ap acts diagonally on the left-hand side by the comultiplication and
on the right-hand side by multiplication within Ap. We also use a standard
change of rings isomorphism of the form

ExtAp(Ap ⊗B M,Z/p) ∼= ExtB(M,Z/p).

We know that the sphere spectrum is finite and that the spectra K(n)
and D(K(m)) are also finite. Recall from section 2.3 that

H∗(`;Z/p) ∼= Λ(χ(τ2), χ(τ3), . . .)⊗ Z/p[χ(ξ1), χ(ξ2), . . .]

where τi, ξj ∈ A∗p and χ is the canonical anti-automorphism. In a similar
way to Proposition 1.6.7, a p-complete spectrum with mod p homology of
finite type is the p-completion of finite type spectrum. We know ` is bounded
below as it is connected and we can see that the mod p homology of ` is
finitely generated in each degree as a Z/p-vector space, so ` is of finite type
and the conditions of the Adams spectral sequence are satisfied. Hence the
spectral sequence converges to

Es,t∞ = [S0, D(K(m)) ∧K(n) ∧ `]t−s ⊗ Zp = πt−s(D(K(m)) ∧K(n) ∧ `)⊗ Zp.

Proposition 3.3.2. For the spectral sequence above we have for s > 0,

Es,t2
∼= Ext

s+νp(n!)−νp(m!),t−2(n−m)(p−1)+νp(n!)−νp(m!)
B (Z/p,Z/p).
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Proof. Using Theorem 3.2.13, Lemma 3.2.14 and Lemma 3.2.12 from the
previous section we get that for s > 0,

Es,t2
∼= Exts,tB (Σνp(m!)−2m(p−1)I−νp(m!) ⊗ Σ2n(p−1)−νp(n!)Iνp(n!),Z/p)
∼= Exts,tB (Σ2(n−m)(p−1)+νp(m!)−νp(n!)Iνp(n!)−νp(m!),Z/p)
∼= Ext

s+νp(n!)−νp(m!),t−2(n−m)(p−1)+νp(n!)−νp(m!)
B (Z/p,Z/p).

Lemma 3.3.3. Our spectral sequence above collapses at the E2 term and so
E∗,∗2 = E∗,∗∞ .

Proof. From above we know that the E2 term of our spectral sequence
away from the line s = 0 is isomorphic to a sum of shifted copies of
Ext∗,∗B (Z/p,Z/p) ∼= Z/p[c, d]. Here, all non-zero terms are in even total
degrees and the shifts given above have even total degrees so there are no
non-trivial differentials when s > 0. Showing there are no non-trivial differ-
entials when s = 0 is done for a more general case when p = 2 in [Ada95,
Part III, Lemma 17.12]; however the method is the same. Consider an ele-
ment e ∈ E0,t

2 where t ≡ 1 mod 2 (if t ≡ 0 mod 2 then everything would
be in even total degree and there would be no non-trivial differentials for de-
gree reasons). We will proceed by induction. Suppose that di = 0 for i < r,
then the spectral sequence would have Es,t2

∼= Es,tr . For c ∈ Ext1,1
B (Z/p,Z/p)

we have cdr(e) = dr(ce) because the spectral sequence we are looking at is
one of modules over Ext∗,∗B (Z/p,Z/p). We know ce = 0 as this would be in
odd total degree and there are no elements in odd total degree away from
the s = 0 line, hence dr(ce) = 0. Because, away from the s = 0 line, the
E2 = Er page of the spectral sequence reduces to a polynomial algebra with
c as one of the generators, multiplication by c is a monomorphism on Es,tr
for s > 0. So if

cdr(e) = dr(ce) = 0,

then we must have dr(e) = 0 which completes the induction.

Lemma 3.3.4.

π0(D(K(m)) ∧ K(n) ∧ `)⊗ Zp =

{
0 if n > m

Zp if n 6 m.

Proof. We want to study π0(D(K(m)) ∧ K(n) ∧ `)⊗ Zp, which corresponds
to the s = t line of the E∞ page of the spectral sequence, so we want to look
at the groups {Es,s2 |s > 0}. This information comes from Extu,vB (Z/p,Z/p)
where

u = s+ νp(n!)− νp(m!) and (3.2)

v = s− 2(n−m)(p− 1) + νp(n!)− νp(m!). (3.3)
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This gives us that v−u = 2(m−n)(p−1). If n > m then u > v and we know
that all groups below the diagonal of u = v are zero in Extu,vB (Z/p,Z/p),
hence π0(D(K(m)) ∧ K(n) ∧ `)⊗ Zp = 0 if n > m.

If we let n 6 m, take for example n = m = 0 (the general case is very
similar), then we have E∗,∗2 = E∗,∗∞ = Ext∗,∗B (Z/p,Z/p) = Z/p[c, d] where

c ∈ Ext1,1
B and d ∈ Ext1,2p−1

B . More specifically, Es,s2 = Es,s∞ = Z/p{cs}. For
each s, this group is the filtration quotient F s

F s+1 . Using the ring structure of
the spectral sequence we know that the Es,s2 terms are a polynomial algebra
on the variable c. When we pass to the E∞ term, this is the following algebra

π0(D(K(m)) ∧ K(n) ∧ `)⊗ Zp ∼=

{ ∞∑
i=0

xic
i : xi ∈ Z/p

}
∼= Zp

which is filtered by ideals and where multiplication by c in the algebra
corresponds to multiplication by p in Zp.

Definition 3.3.5. Let ιm,n : ` ∧ K(m) → ` ∧ K(n) be a map which is
represented in the spectral sequence by a choice of generator of

E
(m−n)−νp(n!)+νp(m!),(m−n)−νp(n!)+νp(m!)
2 .

Also let ιm,m be the identity on ` ∧ K(m).

Recall in Definition 3.1.4 we defined the map

Λ : U∞Zp → Aut0
left-`-mod(` ∧ `)

X 7→
∑
m>n

Xn,mιm,n : ` ∧ (
∨
i>0

K(i))→ ` ∧ (
∨
i>0

K(i)).

Proposition 3.3.6. The map Λ of Definition 3.1.4 is a bijection.

Proof. It is clear that
∑

m>nXn,mιm,n at least defines an endomorphism of
` ∧ `. From the set up of the spectral sequence we were already limiting
ourselves to left-`-module maps so each of the ιm,ns must be. The maps will
be invertible for the same reason the matrices are, the coefficients of the
identity maps on each of the pieces are units.

Let m > n. Any non-zero Extu,vB (Z/p,Z/p) group is isomorphic to Z/p

generated by c
(2p−1)u−v

2(p−1) d
v−u

2(p−1) . If u and v are as in (3.2) and (3.3) then this
group is generated by

cs+(n−m)+νp(n!)−νp(m!)dm−n.

We already have m > n so all we need for this group to be non-zero is
s > (m− n)− νp(n!) + νp(m!).

Let m > n and look at non-trivial homotopy classes of left-`-module
maps of the form

φm,n : ` ∧ K(m)→ ` ∧ K(n)
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which induce the zero map on mod p homology as stipulated in Lemma 3.3.1.
These are represented in the spectral sequence as elements in Es,s2 = Es,s∞
with s > 0 as if s = 0 then

E0,∗
∞ = Ext0,∗

A (H∗(−;Z/p),Z/p) = Hom∗A(H∗(−;Z/p),Z/p)

which, if non-trivial, means being detected by mod p homology.
We know s > (m− n)− νp(n!) + νp(m!) so the map φm,n is represented

in
E
j+(m−n)−νp(n!)+νp(m!),j+(m−n)−νp(n!)+νp(m!)
∞

for some integer j > 0.
We can see from drawing the spectral sequence that if

E
(m−n)−νp(n!)+νp(m!),(m−n)−νp(n!)+νp(m!)
∞ = Z/p{x}

then
E
j+(m−n)−νp(n!)+νp(m!),j+(m−n)−νp(n!)+νp(m!)
∞ = Z/p{cjx}.

From the ring structure of the spectral sequence, see Lemma 3.3.4, we see
that multiplication by c in the spectral sequence corresponds to multiplica-
tion by p on π0(D(K(m)) ∧ K(n) ∧ `)⊗ Zp ∼= Zp, so we get that

φm,n = γpjιm,n

for some p-adic unit γ and integer j > 0.
If m = n then we can use the same methods as above to look at terms

of the form Es,s2 = Es,s∞ for s > 0. We cannot ignore the E0,0
2 term this time

though. However we find that

E0,0
2 = Ext0,0

B (H∗(D(K(m));Z/p)⊗H∗(K(m);Z/p),Z/p)
= HomB(H0(D(K(m));Z/p)⊗H0(K(m);Z/p),Z/p)
= HomB(Z/p,Z/p) ∼= Z/p.

So we similarly get that
φm,m = γpjιm,m

for a unit γ and some j > 0. The map φm,m induces the identity on mod p
homology if and only if j = 0, which gives us p-adic units on the diagonal of
our infinite matrices under the map Λ. We can see now that since we have
φm,n inducing the zero map on homology and φm,m inducing the identity
map, by Lemma 3.3.1, the resultant map on ` ∧ ` once all the pieces have
been put together will induce the identity on homology and hence lie in
Aut0

left-`-mod(` ∧ `).
We can see that Λ is surjective because once we have picked a generator,

ιm,n, for the copy of Z/p corresponding to π0(D(K(m))∧K(n)∧ `)⊗Zp, all
other elements are just multiples of this generator. We can also see that Λ is
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injective as the only matrix which maps to the identity on `∧ ` under Λ will
be the identity matrix as this corresponds to a single copy of the identity
map on ` ∧ K(m) for all m. Hence Λ is a bijection.

Proposition 3.3.7. We can choose the maps ιm,n in such a way that Λ
is an isomorphism of groups. As before let ιm,m be the identity map on
` ∧ K(m), let ιm+1,m be as already described, then let

ιm,n = ιn+1,nιn+2,n+1 · · · ιm,m−1

for all m > n+ 1. Then we have that

ιm,n ◦ ιk,l =

{
ιm,n ◦ ιk,m = ιk,n if k > l = m > n,

0 otherwise.

Proof. We look at the relationship between the product ιm,n ◦ ιk,m and ιk,n.
Let s(m,n) = m−n− νp(n!) + νp(m!), then we know ιm,n is represented by
a generator of

Ext
s(m,n),s(m,n)
B (Σ2(n−m)(p−1)+νp(m!)−νp(n!)Iνp(n!)−νp(m!),Z/p),

ιk,m is represented by a generator of

Ext
s(k,m),s(k,m)
B (Σ2(m−k)(p−1)+νp(k!)−νp(m!)Iνp(m!)−νp(k!),Z/p)

and ιk,n is represented by a generator of

Ext
s(k,n),s(k,n)
B (Σ2(n−k)(p−1)+νp(k!)−νp(n!)Iνp(n!)−νp(k!),Z/p).

Each of these groups is a copy of Z/p.
The product ιm,n ◦ ιk,m is represented by the product of the representa-

tives under the pairing of Ext groups

Exts,s(ΣaIb,Z/p)⊗ Exts
′,s′(Σa′Ib

′
,Z/p)→ Exts+s

′,s+s′(Σa+a′Ib+b
′
,Z/p)

induced by the isomorphism ΣaIb ⊗ Σa′Ib
′ ∼= Σa+a′Ib+b

′
. We can identify

this pairing using the following diagram:

Exts,s(ΣaIb,Z/p) ⊗ Exts
′,s′(Σa

′
Ib
′
,Z/p) //

∼=
��

Exts+s
′,s+s′(Σa+a

′
Ib+b

′
,Z/p)

Exts+b,s−a(Z/p,Z/p) ⊗ Exts
′+b′,s′−a′(Z/p,Z/p) // Exts+s

′+b+b′,s+s′−a−a′(Z/p,Z/p)

∼=

OO

The bottom pairing is the Yoneda splicing and is an isomorphism when all
the groups are non-zero as any non-zero Ext group here is a copy of Z/p.
The vertical isomorphisms are the dimension shifting isomorphisms

Exts,tB (I ⊗M,Z/p) ∼= Exts+1,t
B (M,Z/p)
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and
Exts,tB (ΣaM,Z/p) ∼= Exts,t−aB (M,Z/p)

from Lemma 3.2.12. Since s(k,m) + s(m,n) = s(k, n) this diagram com-
mutes in our case and so the top pairing is an isomorphism whenever the
groups are non-zero. Hence up to a p-adic unit uk,m,n we have

ιm,n ◦ ιk,m = uk,m,nιk,n.

Hence we can chose the maps ιm,n in the way stated above.
Now Λ is a group isomorphism because

Λ(X)Λ(Y ) =

(∑
m>n

Xn,mιm,n

)∑
k>l

Yl,kιk,l


=

∑
k>l=m>n

Xn,mYl,kιm,nιk,l

=
∑
k>l>n

Xn,lYl,kιk,n

=
∑
k>n

(XY )n,kιk,n

= Λ(XY ).

Hence we have now proved Theorem 3.1.3.
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Chapter 4

Stable classes

4.1 Introduction

In order to prove a result in the next chapter and in an attempt not to break
up its flow, I have decided to separate the material needed into this chapter.

The main result of this chapter is the following.

Proposition 4.1.1. The stable isomorphism class of H∗(`;Z/p) as a B-
module is

∞⊗
i=1

p−1⊕
j=0

Σj(2pi−2pi−1−πp(i−1))Ij(πp(i−1))

where πp(i) = pi−1
p−1 .

In order to prove this we will look at the Q0 and Q1 homologies of
H∗(`;Z/p). We will show that H∗(`;Z/p) decomposes as stable B-modules
into a product of sums of smaller submodules such that the individual Q0

and Q1 homologies of the submodules are both one dimensional over Z/p.
We will then work out which degree this copy of Z/p is in. In Theorem
3.2.13 we identified the stable class of H∗(K(n);Z/p) using results about its
Q0 and Q1 homologies proved in [Kan81]. Here we will work out the Q0 and
Q1 homologies of H−∗(`;Z/p) explicitly and work out its stable class and
then dualise this statement to find the stable class of H∗(`;Z/p). Note here
that although we have an infinite tensor product in the statement above,
the expression is finite in each degree.

Recall from Proposition 1.2.16 that a right action of the Steenrod algebra
Ap on its dual A∗p is given by

ψ : A∗p ⊗Ap → A∗p
f ⊗ a 7→

∑
(−1)|f

′′||a|〈f ′, a〉f ′′.
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Let a bar over an element denote the image of that element under the
anti-automorphism χ of A∗p. Recall also from Proposition 1.2.18 that the
right action above can be obtained from the left action

Ap ⊗A∗p
1⊗χ // Ap ⊗A∗p

φ // A∗p
χ // A∗p

a⊗ f � // a⊗ f̄ � // ∑(−1)|f̄
′′|(|f̄ ′|+|a|)〈f̄ ′′, a〉f̄ ′ � // ∑(−1)|f

′′||a|〈f ′, a〉f ′′,

by using the anti-automorphism on a ∈ Ap.
It is stated in [Kna95] that

π∗(` ∧HZ/p) ∼= H∗(`;Z/p) ∼= Z/p[ξ̄1, ξ̄2, . . .]⊗ Λ(τ̄2, τ̄3, . . .).

Recall that using the Universal Coefficient Theorem gives us

H∗(`;Z/p) ∼= Hom∗Z/p(H−∗(`;Z/p),Z/p)

so we will be working with π−∗(` ∧ HZ/p) for the rest of this chapter.
Our actions of Q0 and Q1 will still act by raising degrees by 1 and 2p − 1
respectively rather than lowering degrees. So we will be taking ξi to be in
degree 2− 2pi and τi to be in degree 1− 2pi in π−∗(` ∧HZ/p).

4.2 Calculating Homologies

Proposition 4.2.1. The Q0 homology of π−∗(` ∧ HZ/p) is isomorphic to
Z/p[ξ̄1].

Proof. The actions of Q0 and Q1 on the generators of π−∗(` ∧ HZ/p) are
given in [Kna95, Equation 1.1] but we can work them out explicitly here.
The elements Q0 and Q1 are derivations by [Mil58, Section 6] and we can
work out the action of each of them on the generators of π−∗(` ∧ HZ/p)
to calculate their homology. Using the description of the action of Ap on
A∗p given in Proposition 1.2.18, this will involve working out the effect of
the left action of Q̄0 and Q̄1 under φ on the conjugates of the generators of
π−∗(`∧HZ/p) and then conjugating the result. We can then use this to see
the effect of the right action of Q0 and Q1 on π−∗(` ∧HZ/p) by using χ on
Q̄0 and Q̄1. We know the effect of the comultiplication on the conjugates of
the generators above (see [Sch94, Theorem 1.10.2]);

∆ξk =
∑

06i6k

ξp
i

k−i ⊗ ξi

and
∆τk = τk ⊗ 1 +

∑
06i6k

ξp
i

k−i ⊗ τi.

Using the facts that Qk is dual to τk and the anti-automorphism has the
following effect; Q̄k = −Qk, we then can conclude that 〈−τk, Q̄k〉 = 1 and
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the pairing of any other monomial with Q̄k gives us zero for k ∈ {0, 1}.
From this it can be shown that the result of the left action of Q̄0 under φ on
ξi is zero and on τi is −ξi. Hence when we include both conjugations and
conjugate Q̄0 we have that the result of the right action of Q0 under ψ on
ξ̄i is zero and on τ̄i is −ξ̄i.

We can then see that π−∗(`∧HZ/p) splits as complexes with differential
Q0 in the following way,

π−∗(` ∧HZ/p) ∼= Z/p[ξ̄1]⊗
∞⊗
j=2

Z/p[ξ̄j ]⊗ Λ(τ̄j).

We can now use the Künneth formula to find the Q0 homology of π−∗(` ∧
HZ/p), i.e.

H(π−∗(` ∧HZ/p);Q0) ∼= H

Z/p[ξ̄1]⊗
∞⊗
j=2

Z/p[ξ̄j ]⊗ Λ(τ̄j);Q0


∼= H(Z/p[ξ̄1];Q0)⊗

∞⊗
j=2

H(Z/p[ξ̄j ]⊗ Λ(τ̄j);Q0).

Since H(Z/p[ξ̄j ]⊗ Λ(τ̄j);Q0) = 0 for all j and H(Z/p[ξ̄1];Q0) = Z/p[ξ̄1] we
have

H(π−∗(` ∧HZ/p);Q0) ∼= Z/p[ξ̄1]

as required.

Proposition 4.2.2. The Q1 homology of π−∗(` ∧ HZ/p) is isomorphic to
Z/p[ξ̄1, ξ̄2, . . .]

(ξ̄p1 , ξ̄
p
2 , . . .)

.

Proof. Using results stated in the previous proof we can see that the result
of the left action of Q̄1 under φ on ξi is zero and on τi is −ξpi−1. So the right
action of Q1 under ψ on ξ̄i is zero and on τ̄i is −ξ̄pi−1. Powers of any ξ̄i which
are less than p will not be in the image of Q1, they also get sent to zero by
Q1 and so all such monomials appear as non-trivial homology classes.

In a similar way to the previous proof π−∗(` ∧ Z/p) splits as complexes
with differential Q1 in the following way,

π−∗(` ∧ Z/p) ∼=
∞⊗
j=2

Z/p[ξ̄j−1]⊗ Λ(τ̄j).

Now we can use the Künneth formula to find theQ1 homology of π−∗(`∧Z/p)
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i.e.

H(π−∗(` ∧ Z/p);Q1) ∼= H

 ∞⊗
j=2

Z/p[ξ̄j−1]⊗ Λ(τ̄j);Q1


∼=
∞⊗
j=2

H(Z/p[ξ̄j−1]⊗ Λ(τ̄j);Q1).

We can see that H(Z/p[ξ̄j−1]⊗ Λ(τ̄j);Q1) =
Z/p[ξ̄j−1]

(ξ̄pj−1)
and so we get

H(π−∗(` ∧ Z/p);Q1) ∼=
∞⊗
j=2

Z/p[ξ̄j−1]

(ξ̄pj−1)
∼=

Z/p[ξ̄1, ξ̄2, . . .]

(ξ̄p1 , ξ̄
p
2 , . . .)

.

4.3 Lightning Flash Modules

Before we can prove Proposition 4.1.1 we need to introduce one further
element first given by Adams.

Definition 4.3.1. For i ≥ 1, let Mi be a finite-dimensional submodule of
π−∗(` ∧HZ/p) such that

(i) H(Mi;Q0) ∼= Z/p generated by ξ̄p
i−1

1 and

(ii) H(Mi;Q1) ∼= Z/p generated by ξ̄i.

These are constructed following the method of [Ada95, Part III, Propo-
sition 16.4]. We can view these submodules as so called ‘lightning flash’
modules, the first three of which are shown below. These diagrams are to
be interpreted in the same way as those already introduced in section 2.3;
an element stands for a copy of Z/p generated by that element and an arrow
indicates a non-trivial action of either Q0 or Q1 (the more vertical of the
arrows correspond to the action of Q0 and the more horizontal of the arrows
to the action of Q1).

M1 : ξ̄1

M2 : −ξ̄2 −ξ̄p1

τ̄2

Q0

>>|||||||| Q1

44jjjjjjjjjjjjjjjjjjjjjj

M3 : −ξ̄3 −ξ̄p2 −ξ̄p−1
2 ξ̄p1 −ξ̄2ξ̄(p−1)p

1 −ξ̄p
2

1

· · ·

44hhhhhhhhhh

τ̄3

HH�������

88rrrrrrrrrrrrrr
ξ̄p−1
2 τ̄2

EE�������

66mmmmmmmmmmmmmmmm
ξ̄p−2
2 τ̄2ξ̄

p
1

@@��������
44jjjjjjjjjj

τ̄2ξ̄
(p−1)p
1

>>}}}}}}}}

77nnnnnnnnnnnnnn
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Using Theorem 3.2.8 we can work out the following.

Lemma 4.3.2. The stable classes of the modules Mi are

Mi u Σ
−(2p2−4p+1)pi−1−1

p−1 I
1−pi−1

p−1 .

Lemma 4.3.3. Let Mk
i = Mi ⊗ · · · ⊗Mi be the tensor product of k copies

of Mi. Then H∗(M
k
i ;Q0) ∼= Z/p in degree (2− 2p)kpi−1 generated by ξ̄kp

i−1

1

and H∗(M
k
i ;Q1) ∼= Z/p in degree (2− 2pi)k generated by ξ̄ki .

Proof. The B-submodules Mi are all chain complexes of Z/p-vector spaces,
taking Q0 as the differential (or a sum of chain complexes with differential
Q1 as explained in Proposition 4.2.2). So by the Künneth theorem

H∗(M
2
i ;Q0) ∼= H∗(Mi;Q0)⊗H∗(Mi;Q0)

and similarly for higher powers and for Q1, the rest follows.

Proof of Proposition 4.1.1. We can put these submodules together in the
following way

∞⊗
i=1

p−1⊕
j=0

M j
i = (1 +M1 +M2

1 + · · ·+Mp−1
1 )(1 +M2 +M2

2 + · · ·+Mp−1
2 ) . . .

such that we have a bijection between the generators of the homology of
⊗∞i=1⊕

p−1
j=0 M

j
i and the homology of π−∗(`∧HZ/p) with respect to both Q0

and Q1.
For the Q0 homology we need to show that every generator of the ho-

mology of π−∗(` ∧HZ/p) can be expressed as a generator of the homology
of ⊗∞i=1 ⊕

p−1
j=0 M

j
i and vice versa. The generators of the Q0 homology of

π−∗(`∧HZ/p) are all possible powers ξ̄j1. The generators of the Q0 homology

of ⊗∞i=1⊕
p−1
j=0M

j
i are all possible products

∏∞
k=0 ξ̄

αkp
k

1 for αk ∈ {0, . . . , p−1}.
Or alternatively, as formal power series, we can express this claim as

∞∏
i=1

(1 + ξ̄p
i

1 + ξ̄2pi

1 + · · ·+ ξ̄
(p−1)pi

1 ) =

∞∑
j=0

ξ̄j1.

There is a bijection between these two sets of generators because given any
j > 0 we can use its p-adic expansion to express it uniquely as

j =

∞∑
k=0

αkp
k

where αk ∈ {0, . . . , p−1} so the term ξ̄j1 appears exactly once in the product
as

ξ̄j1 = ξ̄
∑∞
k=0 αkp

k

1 =

∞∏
k=0

ξ̄αkp
k

1 .
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For the Q1 homology, the generators of the homology of π−∗(` ∧HZ/p)
are all products of the form ξ̄l11 ξ̄

l2
2 . . . ξ̄lrr where ls ∈ {0, · · · , p−1} and r > 0.

The generators of the Q1 homology of ⊗∞i=1 ⊕
p−1
j=0 M

j
i are again products of

this form. It is fairly clear to see that each term ξ̄l11 ξ̄
l2
2 . . . ξ̄lrr in π−∗(`∧HZ/p)

appears exactly once in the product

∞∏
i=1

(1 + ξ̄i + ξ̄2
i + · · ·+ ξ̄p−1

i ).

Because π−∗(` ∧HZ/p) and all the Mis are B-modules, the map

(1+M1 +M2
1 + · · ·+Mp−1

1 )(1+M2 +M2
2 + · · ·+Mp−1

2 ) . . .→ π−∗(`∧HZ/p)

induces an isomorphism on Q0 and Q1 homology. Hence the two sides are
stably isomorphic by [Ada95, Part III, Lemma 16.7]. We can now dualise
this isomorphism and get that

HZ/p∗(`) u (1+M∗1 +M∗1
2 + · · ·+M∗1

p−1)(1+M∗2 +M∗2
2 + · · ·+M∗2

p−1) . . . .

Recall from Remark 3.2.11 that for any B-module, its linear dual is its
inverse stable isomorphism class. It then follows that

M∗i u Σ
(2p2−4p+1)pi−1+1

p−1 I
pi−1−1
p−1

by Lemma 4.3.2 which gives the result.
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Chapter 5

A Basis for
π∗(`∧`)
Torsion

In this chapter we find a basis for the torsion free part of the homotopy
groups π∗(` ∧ `). To do this we follow methods introduced by Adams in
[Ada95]. We then study some of the properties of this basis including how it
relates to Kane’s splitting and what order of p-torsion is present in π∗(`∧`).
In the last section we then explore its behaviour with relation to the Adams
spectral sequence with the intention of assessing what effect the maps (ιm,n)∗
of Definition 3.1.4 have on the individual homotopy groups. This will then
allow us to compare this with the effect of (1∧ψq)∗ in Chapter 6 and hence
work out the matrix corresponding to 1 ∧ ψq under the isomorphism given
in Definition 3.1.4.

It might have been interesting, given more time, to compare the basis
that we find here with elements studied in [BR08, §9,10] of the torsion free
part of `∗`. These are derived by different methods to the ones used here
and are used to study the multiplicative structure of `∗`.

5.1 Finding a Basis

In [Ada95, Part III, Chapter 17] Adams studies the torsion free part of
π∗(ku ∧ ku) by looking at its image in π∗(ku ∧ ku) ⊗ Q = Q[u, v] where
u ∈ π2(ku) and v ∈ π2(ku) are the generators for the two copies of ku.
Here we carry out the analogous process for π∗(` ∧ `). The main result
is Theorem 5.1.10, which gives us a Zp-basis for the torsion free part of
π∗(` ∧ `). Returning to Adams’ method, we are looking p-adically so we
need to consider the image of π∗(ku ∧ ku) in π∗(ku ∧ ku) ⊗ Qp = Qp[u, v].
The following theorem is a p-adic version of [Ada95, Part III, Theorem 17.5]:

Theorem 5.1.1. For f(u, v) ∈ Qp[u, v] to be in the image of π∗(ku∧ ku) it
is necessary and sufficient for f to satisfy the following two conditions.

(i) f(kt, lt) ∈ Zp[t] for all k, l ∈ Z×p .
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(ii) f(u, v) is in the subring additively generated by

ui

m(i)

vj

m(j)

for i, j > 0 where m(i) = p

⌊
i

p−1

⌋
and similarly for j.

Proposition 5.1.2. The subring required for the second condition above is

Zp

 ui

p

⌊
i

p−1

⌋ . vj

p

⌊
j

p−1

⌋ : i, j > 0

 = Zp
[
u, v,

up−1

p
,
vp−1

p

]
.

Proof. Each side is symmetric in u and v so we only need to look at one of
these. It is clear we have the inclusion ‘⊆’ as any monomial in u on the LHS
can be made from generators on the RHS, i.e.

ui

p

⌊
i

p−1

⌋ =
uk(p−1)+l

p

⌊
k(p−1)+l
p−1

⌋ =

(
up−1

p

)k
ul

for k ∈ N0, 0 6 l 6 p− 2.
To show the opposite inclusion ‘⊇’ we look at any monomial in u on the

RHS which will be of the form

ua
(
up−1

p

)b
=
ub(p−1)+a

pb

for a, b ∈ N0. If 0 6 a 6 p − 2 this is obviously included in the LHS. If
a > p − 1 we can express a in the form c(p − 1) + d, where 0 6 d 6 p − 2,
then

ub(p−1)+a

pb
=
u(b+c)(p−1)+d

pb
= pc

u(b+c)(p−1)+d

pb+c

which is still included in the LHS. Hence we have the necessary equality.

We want an analogue of Theorem 5.1.1 for π∗(` ∧ `). We know the
following fact.

π∗(` ∧ `)⊗Qp = π∗(ku ∧ ku) ∩Qp[u
p−1, vp−1] ⊆ Qp[u, v]. (5.1)

Hence we only need to consider powers of u and v of the form u(p−1)k and
v(p−1)l for k, l ∈ N0. The analogue of Theorem 5.1.1 for π∗(`∧`) is as follows.

Corollary 5.1.3. For f(u, v) ∈ Qp[u, v] to be in the image of π∗(`∧ `) it is
necessary and sufficient for f to satisfy the following two conditions.

(i) f(kt, lt) ∈ Zp[t] for all k, l ∈ Z×p .
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(ii) f(u, v) is in the subring Zp
[
up−1

p , v
p−1

p

]
.

Proof. Using (5.1), the subring required for the second condition becomes

Zp
[
u, v,

up−1

p
,
vp−1

p

]
∩Qp

[
up−1, vp−1

]
= Zp

[
up−1

p
,
vp−1

p

]
.

A basis is given in [CCW01, Proposition 3] for π0(K∧ku)⊗Z(p) consisting
of {hk(w) : k > 0} where w = u−1v and

hk(w) =
k∏
i=1

w − qi−1

qk − qi−1
.

Here r = qp−1 for q an integer coprime to p which is a topological generator
of Z×p as explained in Proposition A.1. Now consider the elements

ukhk(w) =
k∏
i=1

v − qi−1u

qk − qi−1
,

where we split up the factors of u and v and get rid of any negative powers
of u. These are then elements of π∗(ku ∧ ku) ⊗ Z(p). We can multiply by
u in this way because π∗(ku ∧X) is a left π∗(ku)-module for any spectrum

X. Because we are looking for a basis for π∗(`∧`)
Torsion rather than π∗(ku∧ku)

Torsion we
only want to consider (p− 1)st powers of both u and v and of q. Hence the
polynomials which we start with are given below.

Notation 5.1.4. I will now let û = up−1, v̂ = vp−1 and ρ = 2(p − 1) in
order to simplify the algebra in the next two chapters.

Definition 5.1.5.

cρk =
k∏
i=1

v̂ − ri−1û

rk − ri−1
∈ Qp[û, v̂]

where r = qp−1 for q as above and k ∈ N. Also let c0 = 1.

Following the method of [BS05] we want to create out of these, elements
which lie in the subring given in Corollary 5.1.3 (ii). This involves taking
the elements cρk and multiplying them by exactly the right power of p so
they lie in Zp[ ûp ,

v̂
p ]. This process brings us to the following polynomials.

Definition 5.1.6. Define

fρk = p
pk−Sp(k)
p−1

−k
cρk = pνp(k!)

k∏
i=1

v̂ − ri−1û

rk − ri−1

where Sp(k) is the sum of the digits in the p-adic expansion of k and νp(k!) =
k−Sp(k)
p−1 as shown in Proposition A.4.
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Proposition 5.1.7. The elements fρk lie in Zp[ ûp ,
v̂
p ] for all k ∈ N0.

Proof. By Propositions A.3 and A.4 we know

νp

(
k∏
i=1

(rk − ri−1)

)
= νp(k!) + k

is the p-adic valuation of the denominator of cρk. We also know that fρk
can have at most k factors of p in the denominator to lie in the ring Zp[ ûp ,

v̂
p ]

since there are k factors. Hence the least power of p we needed to multiply
cρk by is (νp(k!) + k)− k = νp(k!).

We then produce elements of Zp[ ûp ,
v̂
p ] which satisfy both conditions of

Corollary 5.1.3 out of these fρks by following the method of [Ada95, Part
III, Proposition 17.6]. He recommends taking each element fρk, multiplying
it by ûi for all non-negative values of i and then dividing by the largest
power of p which will leave the resultant element satisfying both conditions
of Corollary 5.1.3. There comes a stage for each k where past this you
cannot divide by any more powers of p. The full list of elements we obtain
is detailed in the following definition.

Definition 5.1.8.

Fi,j,k := ûi
(
û

p

)j
fρk

where k > 0, 0 6 j 6 νp(k!) and i = 0 if j < νp(k!) or i > 0 if j = νp(k!).

We know these elements lie in Zp[ ûp ,
v̂
p ] and hence satisfy Theorem 5.1.1

condition (ii) so we now check that they satisfy Theorem 5.1.1 condition (i).

Proposition 5.1.9. Let

f(u, v) =

(
û

p

)νp(k!)

fρk and g(u, v) =

(
û

p

)νp(k!)+1

fρk.

Then f(lt,mt) ∈ Zp[t, t−1] for l,m ∈ Z×p but there exists some l,m ∈ Z×p
such that g(lt,mt) 6∈ Zp[t, t−1].

Proof. Now

f(u, v) =

(
û

p

)νp(k!)

pνp(k!)
k∏
i=1

v̂ − ri−1û

rk − ri−1

= ûνp(k!)
k∏
i=1

v̂ − ri−1û

rk − ri−1
.
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So

f(lt,mt) = (lt)νp(k!)(p−1)
k∏
i=1

(mt)p−1 − ri−1(lt)p−1

rk − ri−1

= (lt)νp(k!)(p−1)
k∏
i=1

tp−1(mp−1 − ri−1lp−1)

rk − ri−1
,

which we need to lie in Zp[t, t−1] for l, m ∈ Z×p . We know l has no factors

of p so we can ignore the term lνp(k!)(p−1) as this lies in Z×p . Turning our
attention to the other factor we need

k∏
i=1

mp−1 − ri−1lp−1

rk − ri−1
∈ Zp.

In other words we need the p-adic valuation of the numerator to be greater
than or equal to the p-adic valuation of the denominator which is true by
Propositions A.5 and A.3. Hence each element in the list above satisfies both
the conditions of Corollary 5.1.3. In order to show g(lt,mt) 6∈ Zp[t, t−1] for
some l, m ∈ Z×p take l = 1 and m = qk. Then

g(t, qkt) =

(
tp−1

p

)νp(k!)+1

pνp(k!)
k∏
i=1

rktp−1 − ri−1tp−1

rk − ri−1

=
(tp−1)νp(k!)+1

p
tk(p−1) 6∈ Zp[t, t−1].

By [Ada95, Part III, Chapter 17] we have a monomorphism

π∗(` ∧ `)
Torsion

→ π∗(` ∧ `)⊗Qp
∼= Qp[

û

p
,
v̂

p
].

By Corollary 5.1.3 and the proceeding work we know that the list of elements
in Definition 5.1.8 all lie in the image of π∗(`∧`)

Torsion inside Qp[
û
p ,

v̂
p ]. It just

remains to show that these form a basis. This is done using the following
analogue of [Ada95, Part III, Proposition 17.6].

Theorem 5.1.10. (a) The intersection of the subring satisfying condition
(i) of Corollary 5.1.3 with Qp[û, v̂] is free on the Zp[û]-basis cρk for
k > 0.

(b) The following polynomials are a Zp-basis for π∗(`∧`)
Torsion

Fi,j,k = ûi
(
û

p

)j
fρk

where k > 0, 0 6 j 6 νp(k!) and i = 0 if j < νp(k!) or i > 0 if
j = νp(k!).
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Proof. To prove part (a) we should first notice that the elements cρk do
satisfy condition (i) of Corollary 5.1.3 by Proposition 5.1.9 and so do Zp[û]-
linear combinations of them. It is clear that they are linearly independent.
We now need to show that given any polynomial f(u, v) ∈ Qp[û, v̂] sat-
isfying condition (i) of Corollary 5.1.3 we can write this as a Zp[û]-linear
combination of the cρks. We can separate homogeneous components and
just consider f homogeneous of degree ρn. We can write f as

f(u, v) = λ0û
n + λ1û

n−1cρ + λ2û
n−2c2ρ + · · · .

Assume as an inductive hypothesis that λ0, λ1, . . . , λs−1 lie in Zp. Let the
sum of the remaining terms be

g(u, v) = λsû
n−scρs + λs+1û

n−s−1cρ(s+1) + · · · .

This sum must also satisfy condition (i) of Corollary 5.1.3. To determine λs
let u = t and v = qst, then

g(t, qst) = λst
(p−1)n

and hence λs ∈ Zp. The initial case for λ0 works in the same way and this
completes the induction.

To prove part (b) we need another piece of notation; let

nk := numerator of cρk =
k∏
i=1

(v̂ − ri−1û).

In any given degree ρk there are k + 1 Qp-basis elements

nk, ûnk−1, û
2nk−2, . . . , û

k.

In order to produce the elements Fi,j,k we divided each of the above elements
by the highest power of p which would leave it satisfying both conditions
(i) and (ii) of Corollary 5.1.3. For an element ûins the power of p leaving it
satisfying the respective conditions is

(i) ps+νp(s!),

(ii) ps+i.

Hence the power of p we divided by in this case was min{ps+νp(s!), ps+i}. Now
going back to our elements Fi,j,k, we have shown that Fi,j,k for the given
range satisfy conditions (i) and (ii) of Corollary 5.1.3 and so do Zp-linear
combinations of them. Now consider a general element f(u, v) ∈ Qp[û, v̂],
homogeneous of degree ρk which satisfies conditions (i) and (ii) of Corollary
5.1.3. We can write f as

f(u, v) =
λ0

pa0
ûk +

λ1

pa1
û(k−1)n1 +

λ2

pa2
û(k−2)n2 + · · ·
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where λi ∈ Zp for i > 0. By part (a) we know that

as 6 νp(denominator of cρs) = s+ νp(s!)

by Proposition A.3. We also need to show that as 6 (k − s) + s = k and
then we have expressed f as a Zp-linear combination of the elements Fi,j,k.
Let the inductive hypothesis for a downwards induction be that as′ 6 k for
s′ > s. Let the sum of the remaining terms be

g(u, v) =
λ0

pa0
û+ · · ·+ λs

pas
ûk−sns,

which must also satisfy conditions (i) and (ii) of Corollary 5.1.3. The top
coefficient λs

pas is the coefficient of ûk−sv̂s so because g satisfies condition (ii)
of Corollary 5.1.3 we must have that as 6 (k − s) + s = k. The first step
of the induction works in the same way on the top coefficient of f and the
induction is complete.

5.2 Properties of the Basis

In this section we consider how the basis we have found above relates to
Kane’s splitting of ` ∧ ` as given in Theorem 2.1.1.

Definition 5.2.1. Let

Gm,n =
πm(` ∧ K(n))

Torsion
.

Then we have

G∗,∗ =
⊕
m,n

Gm,n ∼=
π∗(` ∧ `)
Torsion

.

Proposition 5.2.2. For each n > 0

Gm,n =

{
Zp if m is a multiple of ρ and m > ρn

0 otherwise.

Proof. It is given in [Kan81, Proposition 9:2] that π∗(`∧K(n))
Torsion is a Zp[û]-

module with generators

{l0, l1, . . . , lν : ν = νp(n!), |lj | = ρj}

and relations {plj+1 = ûlj : 0 6 j < νp(n!)}. If we take the relations into
account, then, as a Zp-module,

π∗(` ∧K(n))

Torsion
∼= Zp{l0, l1, . . . , lν−1, û

ilν : ν = νp(n!), i > 0}.
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This means there is a copy of Zp in every degree of the form ρj for j > 0.
Recall that

K(n) = ΣρnK(n),

so when we look at G∗,n we find that there is a copy of Zp in every degree
of the form ρk for k > n.

Definition 5.2.3. For m > l, define the elements gρm,ρl ∈ Zp[ ûp ,
v̂
p ] to be

the element produced from fρl lying in degree ρm, i.e.

gρm,ρl =

{
F0,m−l,l if m 6 νp(l!) + l,
Fm−l−νp(l!),νp(l!),l if m > νp(l!) + l.

Lemma 5.2.4. The elements {gρm,ρl : 0 6 l 6 m} form a basis for Gρm,∗.

Proof. The elements {gρm,ρl : 0 6 l 6 m} are precisely all of the basis
elements Fi,j,k which lie in homotopy degree ρm.

I will now give an algebraic lemma which will be needed in the next
section concerning how to express a power of û

p times a particular gρm,ρl in
term of our basis in Theorem 5.1.10.

Lemma 5.2.5. For 0 6 i 6 m− 1,

(
û

p

)νp(m!)

gρm,ρi =


1

pνp(m!)+m−νp(i!)−i û
νp(m!)−νp(i!)+m−i

(
û
p

)νp(i!)
fρi if m 6 νp(i!) + i,

1

pνp(m!) û
νp(m!)−νp(i!)+m−i

(
û
p

)νp(i!)
fρi if m > νp(i!) + i.

Proof. Using Definition 5.2.3

(
û

p

)νp(m!)

gρm,ρi =


(
û
p

)νp(m!)+m−i
fρi if m 6 νp(i!) + i,

ûm−i−νp(i!)
(
û
p

)νp(i!)+νp(m!)
fρi if m > νp(i!) + i,

=


ûνp(m!)+m−i

pνp(m!)+m−i fρi if m 6 νp(i!) + i,

ûνp(m!)+m−i

pνp(m!)+νp(i!)
fρi if m > νp(i!) + i.

These can now be expressed as some power of p times a basis element
(i.e. a power of û times a power of û

p times an element fρi). In the case
where m > νp(i!) + i,

ûνp(m!)+m−i

pνp(m!)+νp(i!)
fρi =

1

pνp(m!)
ûνp(m!)−νp(i!)+m−i

(
û

p

)νp(i!)

fρi.

We can do this so long as the power of u we take out and put in the û
p factor

is not more than the original power of u we had. So we need

νp(i!)(p− 1) 6 (νp(m!) +m− i)(p− 1),
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i.e.
νp(i!) + i ≤ νp(m!) +m

which is trivially true.
In the case m 6 νp(i!) + i we have

ûνp(m!)+m−i

pνp(m!)+m−i fρi =
1

pνp(m!)+m−νp(i!)−i û
νp(m!)−νp(i!)+m−i

(
û

p

)νp(i!)

fρi.

For this to be true we again only need

νp(i!) + i ≤ νp(m!) +m.

Lemma 5.2.6. Let G̃m,n = πm(`∧K(n)), then G̃m,n ∼= Gm,n⊕Wm,n where
Wm,n is a finite elementary abelian p-group, i.e. G̃m,n contains no torsion
of order larger than p.

Proof. This is proved for the case p = 2 in [Ada95, Part III, Chapter 17], the
odd primary analogue is similar. We require two conditions in order to apply
the two results of Adams necessary to prove this. Firstly that Hr(`∧ `;Z) is
finitely generated for each r which is true (see [Ada95, p.353]) and secondly
that, as a B-module, H∗(` ∧ `;Z/p) is stably isomorphic to ⊕iΣa(i,p)Ib(i,p)

where b(i, p) > 0 and a(i, p) + b(i, p) ≡ 0 mod 2.
We can now prove the second of these conditions. We know the stable

class of H∗(`;Z/p) from Proposition 4.1.1. Using the Künneth formula and
Proposition 4.1.1

H∗(` ∧ `;Z/p) ∼= H∗(`;Z/p)⊗H∗(`;Z/p)

∼=
∞⊗
i=1

p−1⊕
j=0

Σj(2p
i−2pi−1−πp(i−1))Ij(πp(i−1)) ⊗

∞⊗
i=1

p−1⊕
j=0

Σj(2p
i−2pi−1−πp(i−1))Ij(πp(i−1))

where πp(i) = pi−1
p−1 . When we look at a(i, p) + b(i, p) for an individual

Σj(2pi−2pi−1−πp(i−1))Ij(πp(i−1)) we have

j((2p2 − 4p+ 1)pi−1 + 1)

p− 1
+
j(pi−1 − 1)

p− 1
=
j(2p2 − 4p+ 2)pi−1

p− 1
= 2j(p− 1)pi−1

which is even. Since the assumption is true of all the pieces, the assumption
is true of any product and so of H∗(` ∧ `;Z/p).

Given these assumptions we can now apply [Ada95, Part III, Lemma
17.1] which states that H∗(ku ∧ `;Z) and hence H∗(` ∧ `;Z) has no torsion
of order higher than p. Then from [Ada95, Part III, Proposition 17.2(i)] we
know that the Hurewicz homomorphism

h : π∗(ku ∧ `)→ H∗(ku ∧ `;Z)

is a monomorphism. Since this is true of ku ∧ ` it follows that the same is
true of ` ∧ ` and so the result follows.
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Definition 5.2.7. We have a projection map

` ∧ ` '
∨
n>0

` ∧ K(n)→ ` ∧ K(n)

which induces a map on homotopy

π∗(` ∧ `)→ π∗(` ∧ K(n)).

Define Pn to be the map induced from this by tensoring with Q to annihilate
torsion, i.e.

Pn : G∗,∗ → G∗,n.

Lemma 5.2.8. Pn(gρn,ρl) = 0 if l < n.

Proof. Since Gm,n is torsion free we can consider just whether Pn(gρn,ρl) is
zero in G∗,n ⊗Qp. Let l < n, then for α(n, l) ∈ N0

gρn,ρl =
uρn−ρl

pα(n,l)
fρl ∈ uρn−ρl

πρl(` ∧ `)
Torsion

⊗Qp ⊂
πρn(` ∧ `)
Torsion

⊗Qp.

We know Pn projects onto the K(n) piece so Pn(gρn,ρl) lies in π∗(`∧K(n))
Torsion . We

also know Pn commutes with multiplication by u so, from above, Pn(gρn,ρl)

is uρn−ρl times an element of
πρl(`∧K(n))

Torsion . We know that the homotopy of
` ∧ K(n) is trivial in degrees less than ρn by Proposition 5.2.2, hence the
result follows.

This lemma tells us that gρn,ρn has a non-zero component in Gρn,n and
that all other elements gρn,ρl for l < n do not have a component in Gρn,n. In
the next section we will define a generator for Gρn,n and express it explicitly
in terms of gρn,ρi for i 6 n.

5.3 The Elements zρm

Now we choose labels for some of the generators of certain homotopy groups.

Definition 5.3.1. Let zρn be a generator for Gρn,n ∼= Zp and let z̃ρn be any
element in G̃ρn,n ∼= Gρn,n ⊕Wρn,n where the first co-ordinate is zρn.

Proposition 5.3.2. In the Adams spectral sequence

Es,t2
∼= Exts,tAp(H

∗(` ∧ K(n);Z/p),Z/p) =⇒ πt−s(` ∧ K(n))⊗ Zp

the class of z̃ρn is represented in either E0,ρn
2 or E1,ρn+1

2 .
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Proof. Consider the Adams spectral sequence

Es,t2 = Exts,tAp(H
∗(` ∧ K(n);Z/p),Z/p)

∼= Exts,tAp(H
∗(`;Z/p)⊗H∗(K(n);Z/p),Z/p)

∼= Exts,tAp(Ap ⊗B Z/p⊗H∗(K(n);Z/p),Z/p)
∼= Exts,tAp(Ap ⊗B H

∗(K(n);Z/p),Z/p)
∼= Exts,tB (H∗(K(n);Z/p),Z/p)
=⇒ πt−s(` ∧ K(n))⊗ Zp.

Here we have used the same isomorphisms mentioned to obtain equation
(3.1) such as the Künneth formula, a change of rings isomorphism etc. We
know from Theorem 3.2.13 that H∗(K(n);Z/p) u Σρn−νp(n!)Iνp(n!). So

Es,t2
∼= Exts,tB (Σρn−νp(n!)Iνp(n!),Z/p)
∼= Ext

s+νp(n!),t−ρn+νp(n!)
B (Z/p,Z/p).

We see that the E2 term is isomorphic to a shifted version of Ext∗,∗B (Z/p,Z/p) ∼=
Z/p[c, d] with c ∈ Ext1,1

B and d ∈ Ext1,2p−1
B (see Lemma 3.2.15). Recall that

z̃ρn ∈ G̃ρn,n = πρn(` ∧ K(n)) ∼= Zp ⊕Wρn,n.

The spectral sequence gives us information about the filtration of G̃ρn,n =
πρn(` ∧ K(n)), i.e. we have a filtration

· · · ⊂ F i ⊂ · · ·F 2 ⊂ F 1 ⊆ F 0 = πρn(` ∧ K(n))⊗ Zp.

Here t− s = ρn so t = ρn+ s, and the filtration gives us

F i

F i+1
(πρn(` ∧ K(n))⊗ Zp) ∼= Ei,ρn+i

∞
∼= Ei,ρn+i

2

as the spectral sequence collapses because all non-zero elements are in even
total degree. We know from the ring structure of the spectral sequence that
multiplication by c in the spectral sequence corresponds to multiplication
by p in homotopy groups. So in our filtration we have pF i ⊆ F i+1. Because
we know from Lemma 5.2.6 that Wρn,n is an elementary abelian p-group we

know that pWρn,n = 0 so Wρn,n must be represented in E0,ρn
2 .

Looking in more detail at the spectral sequence we know that each non-
zero group is a copy of Z/p{crds} for some r, s ∈ N0, i.e. each filtration
quotient is as follows

F i

F i+1
(πρn(` ∧ K(n))⊗ Zp) ∼= Z/p{crds}.
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Multiplication by c gives us the next filtration quotient i.e.

F i+1

F i+2
(πρn(` ∧ K(n))⊗ Zp) ∼= Z/p{cr+1ds}

and this corresponds to multiplication by p within the homotopy groups.
Solving the extension problems using the ring structure of the spectral se-
quence gives us that pF i = F i+1 for all i = 1, 2, 3, . . . and that F 0 ∼= F 1 ∼=
Zp.

Assume that the generator z̃ρn is represented in Ej,ρn+j
2 for j > 2, then

we must have that z̃ρn ∈ F j . Because to pass from one filtration group
to the next involves multiplication by p we must have had some generator
z̃′ρn ∈ F 1 such that pj z̃′ρn is a generator for F j+1. Inside F j+1 it must be
true that there exists some γ ∈ Zp such that

pjγz̃′ρn = pz̃ρn.

By taking out a factor of p we have

p(pj−1γz̃′ρn − z̃ρn) = 0

hence we must have pj−1γz̃′ρn − z̃ρn ∈ Wρn,n because nothing else has any
torsion. This implies that in Gρn,n, zρn has a factor of p which contradicts
that fact that we chose zρn to be a generator of Gρn,n ∼= Zp.

We can now give a more explicit description of the generators zρn in
terms of our basis elements gρm,ρl.

Proposition 5.3.3. The generators zρm ∈ πρm(`∧`)
Torsion have the following form

zρm =

m∑
i=0

pβ(m,i)λρm,ρigρm,ρi

where λs,t ∈ Zp if s 6= t, λs,s ∈ Z×p and

β(m, i) =

{
νp(m!) if m > νp(i!) + i,
νp(m!) +m− νp(i!)− i if m 6 νp(i!) + i.

Proof. Because {gρm,ρl : 0 6 l 6 m} form a basis for Gρm,∗ by Lemma 5.2.4,
we can express our element zρm in terms of this basis as follows

zρm = λρm,ρmgρm,ρm + λ̃ρm,ρ(m−1)gρm,ρ(m−1) + · · ·+ λ̃ρm,0gρm,0 (5.2)

where λρm,ρm, λ̃ρm,ρl ∈ Zp. When the projection map Pm : Gρm,∗ → Gρm,m
is applied, this acts as the identity on zρm and as the zero map on all gρm,ρl
where m 6= l by Lemma 5.2.8. Hence

zρm = Pm(zρm) = Pm(λρm,ρmgρm,ρm + · · ·+ λ̃ρm,0gρm,0)

= λρm,ρmPm(gρm,ρm).
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This shows us that the coefficient λρm,ρm must be a unit otherwise zρm
would have a factor of p and this contradicts the fact that we chose it to
be a generator of Gρm,m ∼= Zp. We know by definition that for all m > 0,
gρm,ρm = fρm hence the above equation gives us

zρm = λρm,ρmPm(fρm)

in Gρm,m. We can now multiply by the largest power of û
p possible to leave

the result still lying in G∗,m and we get(
û

p

)νp(m!)

zρm = λρm,ρmPm

((
û

p

)νp(m!)

fρm

)

which lies in Gρ(νp(m!)+m),m. By multiplying equation (5.2) by
(
û
p

)νp(m!)
we

now have the following relation in Gρ(νp(m!)+m),m ⊗Qp(
û

p

)νp(m!)

zρm =

(
û

p

)νp(m!)

λρm,ρmfρm +
m−1∑
i=0

λ̃ρm,ρi

(
û

p

)νp(m!)

gρm,ρi.

(5.3)
We already know the left hand side of this equation lies in Gρ(νp(m!)+m),m

so now we just need to know how many factors of p each λ̃ρm,ρi must have
to ensure that, once the right hand side is expressed in terms of the basis in
Theorem 5.1.10, all the coefficients are p-adic integers.

Using Lemma 5.2.5 we can see that if m 6 νp(i!) + i we have(
û

p

)νp(m!)

gρm,ρi =
1

pνp(m!)+m−νp(i!)−i û
νp(m!)−νp(i!)+m−i

(
û

p

)νp(i!)

fρi

and so in equation (5.3) we need our coefficient λ̃ρm,ρi to be divisible by
pνp(m!)+m−νp(i!)−i in Zp, hence we choose λ̃ρm,ρi = pβ(m,i)λρm,ρi for λρm,ρi ∈
Zp as in the statement of the Proposition.

Similarly when m > νp(i!) + i we have(
û

p

)νp(m!)

gρm,ρi =
1

pνp(m!)
ûνp(m!)−νp(i!)+m−i

(
û

p

)νp(i!)

fρi

and so in equation (5.3) we need λ̃ρm,ρi to be divisible by pνp(m!) in Zp, hence
we choose λ̃ρm,ρi = pβ(m,i)λρm,ρi for λρm,ρi ∈ Zp as in the statement of the
Proposition.

Proposition 5.3.4. In Proposition 5.3.2, z̃ρn is actually represented in

E0,ρn
2 .
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Proof. We will assume that z̃ρn is represented in E1,ρn+1
2 in the spectral

sequence and obtain a contradiction. From Lemma 5.3.2 we know that
the spectral sequence in question collapses and the E2 page is obtained as
follows,

Es,t2
∼= Ext

s+νp(n!),t−ρn+νp(n!)
B (Z/p,Z/p).

We know that this is a shifted version of Ext∗,∗B (Z/p,Z/p) ∼= Z/p[c, d] (see
Lemma 3.2.15) so we can work out that on the line s = 1 the non-zero groups

are E1,ρn+1
2 , E

1,ρ(n+1)+1
2 , . . ., E

1,ρ(n+νp(n!)+1)+1
2 and each of these is a single

copy of Z/p. Using the multiplicative structure of the spectral sequence we

know that if there is a class w ∈ Ej,ρ(n+j)+1
2 and the group E

j,ρ(n+j+1)+1
2 is

non-zero then there exists a class w′ ∈ Ej,ρ(n+j+1)+1
2 such that pw′ = ûw.

In other words if w is represented by cxdy in the spectral sequence where
x > 1, y > 0 then w′ is represented by cx−1dy+1. We can apply this theory

to z̃ρn ∈ E1,ρn+1
2 , since we know that E

1,ρ(n+νp(n!)+1)+1
2 is non-zero there

must exist a class w ∈ E1,ρ(n+νp(n!)+1)+1
2 such that

û1+νp(n!)z̃ρn = p1+νp(n!)w.

This implies that û1+νp(n!)z̃ρn is divisible by p1+νp(n!) in G∗,∗ however this
contradicts the proof of Proposition 5.3.3, hence z̃ρn must be represented in

E0,ρn
2 .

Lemma 5.3.5. In the spectral sequence

Es,t2
∼= Exts,tB (H∗(K(n);Z/p),Z/p) =⇒ πt−s(` ∧ K(n))⊗ Zp,

up to multiplication by a unit,
(
û
p

)i
(pz̃ρn) is represented by cνp(n!)+1−idi for

0 6 i 6 νp(n!) and ûj
(
û
p

)νp(n!)
(z̃ρn) is represented by dνp(n!)+j for j > 1.

Proof. From Proposition 5.3.4 we know that in the spectral sequence

Es,t2
∼= Exts,tB (H∗(K(n);Z/p),Z/p) =⇒ πt−s(` ∧ K(n))⊗ Zp

z̃ρn is represented in E0,ρn
2 . By the multiplicative structure of the spectral

sequence this means that pz̃ρn is represented in E1,ρn+1
2 . From the proof of

Proposition 5.3.2 we know that Es,t2
∼= Ext

s+νp(n!),t−ρn+νp(n!)
B (Z/p,Z/p) so

E1,ρn+1
2

∼= Ext
1+νp(n!),1+νp(n!)
B (Z/p,Z/p)

∼= Z/p〈c1+νp(n!)〉. (5.4)

We know from [Ada95, Part III, Lemma 17.11] that in our spectral se-
quence, multiplication by c and d correspond to multiplication by p and û
respectively on homotopy groups. We list below some homotopy elements of
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π∗(` ∧ K(n)) with a choice of corresponding representatives in the spectral
sequence.

Homotopy element Representative

pz̃ρn c1+νp(n!)(
û
p

)
(pz̃ρn) cνp(n!)d(

û
p

)2
(pz̃ρn) cνp(n!)−1d2

...
...(

û
p

)νp(n!)
(pz̃ρn) cdνp(n!)

û
(
û
p

)νp(n!)
(z̃ρn) dνp(n!)+1

û2
(
û
p

)νp(n!)
(z̃ρn) dνp(n!)+2

...
...

From this table it is clear to see that the descriptions given in the statement
of the Lemma are correct.

Recall from Definition 3.3.5 the maps

ιm,n : ` ∧ K(m)→ ` ∧ K(n)

which were maps represented in the spectral sequence

Es,t2
∼= Exts,tB (H∗(D(K(m));Z/p)⊗H∗(K(n);Z/p),Z/p)
=⇒ πt−s(D(K(m)) ∧ K(n) ∧ `)⊗ Zp

by a choice of generator of

E
(m−n)−νp(n!)+νp(m!),(m−n)−νp(n!)+νp(m!)
2 .

These were crucial in defining the isomorphism Λ of Definition 3.1.4 as for
any given automorphism in Aut0

left-`-mod(` ∧ `) their coefficients determined
the entries in the matrix corresponding to that automorphism.

Proposition 5.3.6. For m > n, the map induced in the (ρm)th homotopy
group

(ιm,n)∗ : Gρm,m → Gρm,n

satisfies the following condition

(ιm,n)∗(zρm) = µρm,ρnp
νp(m!)−νp(n!)û(m−n)zρn

for some p-adic unit µρm,ρn.
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Proof. We know that z̃ρm is any element in Gρm,m ⊕ Wρm,m whose first
co-ordinate is zρm, we also know that Wρm,m has torsion of order p at the
highest by Lemma 5.2.6. In order to forget about the torsion we will prove
the analogous result for the element pz̃ρm = pzρm; then by linearity the
required result will be true for zρm.

We already know from equation (5.4) in the proof of Lemma 5.3.5 that
in the spectral sequence

Es,t2
∼= Exts,tB (H∗(K(m);Z/p),Z/p) =⇒ πt−s(` ∧ K(m))⊗ Zp,

pz̃ρm is represented in E1,ρm+1
2

∼= Ext
1+νp(m!),1+νp(m!)
B (Z/p,Z/p), up to a

unit, by c1+νp(m!).
Recall from Chapter 3 that in the spectral sequence

Es,t2
∼= Exts,tB (H∗(D(K(m));Z/p)⊗H∗(K(n);Z/p),Z/p)
=⇒ πt−s(D(K(m)) ∧ K(n) ∧ `)⊗ Zp

the maps ιm,n : ` ∧ K(m)→ ` ∧ K(n) described there are represented in

E
m−n−νp(n!)+νp(m!),m−n−νp(n!)+νp(m!)
2

∼= Ext
m−n,(m−n)(ρ+1)
B (Z/p,Z/p)

∼= Z/p〈dm−n〉.

Using the pairing of Ext groups described in the proof of Proposition
3.3.7

Exts,t(ΣaIb,Z/p)⊗ Exts
′,t′(Σa′Ib

′
,Z/p)→ Exts+s

′,t+t′(Σa+a′Ib+b
′
,Z/p)

we get an induced pairing on the E2 pages of the respective Adams spec-
tral sequences. Since in all cases the spectral sequences collapse for degree
reasons this passes to the E∞ pages too. This pairing also respects the filtra-
tion on each of the spectral sequences as the Ext group pairing is, in essence,
reducing everything to a splicing of ExtB(Z/p,Z/p) ∼= Z/p[c, d] with itself,
which is just polynomial multiplication. So the Ext group pairing passes to
a pairing of spectral sequences giving us a map

Exts,tB (H∗(D(K(m));Z/p)⊗H∗(K(n);Z/p),Z/p)⊗ Exts
′,t′

B (H∗(K(m);Z/p),Z/p)

→ Exts+s
′,t+t′

B (H∗(K(n);Z/p),Z/p).

This shows that (ιm,n)∗(pz̃ρm) is represented in the spectral sequence

Es,t2
∼= Exts,tB (H∗(K(n);Z/p),Z/p) =⇒ πt−s(` ∧ K(n))⊗ Zp

and by adding together the respective bidegrees, we see it is represented by
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a generator of

E
1+m−n−νp(n!)+νp(m!),ρm+1+m−n−νp(n!)+νp(m!)
2

∼= Ext
1+m−n−νp(n!)+νp(m!),ρm+1+m−n−νp(n!)+νp(m!)
B (H∗(K(n);Z/p),Z/p)

∼= Ext
1+m−n−νp(n!)+νp(m!),ρm+1+m−n−νp(n!)+νp(m!)
B (Σρn−νp(n!)Iνp(n!),Z/p)

∼= Ext
1+m−n+νp(m!),ρm+1+m−n+νp(m!)−ρn
B (Z/p,Z/p)

∼= Ext
1+m−n+νp(m!),1+(ρ+1)(m−n)+νp(m!)
B (Z/p,Z/p)

∼= Z/p〈c1+νp(m!)dm−n〉

Thus (ιm,n)∗(pz̃ρm) is, up to a unit, represented by c1+νp(m!)dm−n and all
that remains is to express this element in terms of pz̃ρn.

Using Lemma 5.3.5 we can see that we have two cases for (ιm,n)∗(pz̃ρm),
either the power of d in its representative is at least νp(n!) + 1 (and hence
the power of c in its representative is zero) or not.

In the first case we have m − n > νp(n!) + 1. Then we can use Lemma
5.3.5 to see that dm−n represents(

û

p

)νp(n!)

ûm−n−νp(n!)z̃ρn = p−νp(n!)ûm−nz̃ρn.

This implies that up to a p-adic unit, (ιm,n)∗(pz̃ρm), which is represented by
c1+νp(m!)dm−n, is equal to

p1+νp(m!)p−νp(n!)ûm−nz̃ρn = pνp(m!)−νp(n!)ûm−n(pz̃ρn).

In the second case we have m− n < νp(n!) + 1. Hence we can see from
Lemma 5.3.5 that the representative involving dm−n is c1+νp(n!)−m+ndm−n

and this represents the homotopy element(
û

p

)m−n
(pz̃ρn).

This gives us that up to a p-adic unit, (ιm,n)∗(pz̃ρm), which is represented
by c1+νp(m!)dm−n, is equal to

p1+νp(m!)−(1+νp(n!)−m+n)

(
û

p

)m−n
(pz̃ρn) = pνp(m!)−νp(n!)ûm−n(pz̃ρn).

Now we have an expression for the effect of (ιm,n)∗ on zρm we can, in
the next chapter, look at the specific automorphism 1 ∧ ψq and determine
which matrix it corresponds to under the isomorphism Λ of Definition 3.1.4.
This will involve working out what effect the induced map (1 ∧ ψq)∗ has on
the elements zρm and comparing coefficients to determine the entries in the
matrix.
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Chapter 6

The Matrix

6.1 Introduction

In this chapter we will determine the coefficients of the matrix corresponding
to the map 1∧ψq : `∧`→ `∧` under the isomorphism Λ of Definition 3.1.4.
We already know what effect the maps (ιm,n)∗ have on our basis elements
zρm by Proposition 5.3.6. If we now work out what effect the induced map
(1 ∧ ψq)∗ has on the same basis elements we can then compare the two
using the construction of the isomorphism in Definition 3.1.4 to work out
the necessary coefficients of the matrix.

This particular Adams operation is important; because powers of q are
dense in Zp, the ring of operations `0(`) on the complex connective p-
complete Adams summand is generated as a power series over Zp by ψq − 1
(see [CCW05, Theorem 5.1]). 1 We can now show that ψq induces the
identity map on mod p homology and therefore 1 ∧ ψq is an element of
Aut0

left-`-mod(` ∧ `).

Proposition 6.1.1. The map

ψq∗ : H∗(`;Z/p)→ H∗(`;Z/p)

is the identity map.

Proof. We have an augmentation map ε : `→ HZ/p such that ε∗ : π∗(`)→
π∗(HZ/p) sends û ∈ π∗(`) = Zp[û] to zero in π∗(HZ/p) and sends any
number a ∈ Zp to its reduction mod p. Since ψq∗(û) = qp−1û = rû, and ψq∗
has no effect on the coefficients, we see that (ε ◦ψq)∗ = ε∗. If we now apply
the functor − ∧HZ/p to the composition ε ◦ ψq we get

` ∧HZ/p ψq∧1−−−→ ` ∧HZ/p ε∧1−−→ HZ/p ∧HZ/p.
1We follow [CCW05] in denoting this Adams operation as ψq; some authors write ψr

where r = qp−1 for this operation.
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Taking the induced maps in homotopy and using the standard identification
π∗(E ∧ F ) ∼= F∗(E) for spectra E,F , we get the maps

H∗(`;Z/p)
ψq∗−−→ H∗(`;Z/p)

ε∗−→ A∗p

where ε∗ is the standard inclusion of the subalgebra

H∗(`;Z/p) = Λ(χ(τ2), χ(τ3), . . .)⊗ Z/p[χ(ξ1), χ(ξ2), . . .]

into the dual Steenrod Algebra. Since the composite (ε ◦ ψq)∗ is equal to
the inclusion ε∗, we see that ψq∗ must be the identity map.

6.2 The Effect of 1 ∧ ψq on the Basis

Recall the elements gρm,ρn given in Definition 5.2.3.

gρm,ρn =


(
û
p

)m−n
fρn if m 6 νp(n!) + n,

ûm−n−νp(n!)
(
û
p

)νp(n!)
fρn if m > νp(n!) + n.

In this section we will look at what happens to our basis elements gρm,ρn
under the map (1 ∧ ψq)∗ where ψq is the Adams operation. These elements
are defined in terms of the polynomials fρk = pνp(k!)cρk given in Definition
5.1.6, so we first we need to look at the effect of (1 ∧ ψq)∗ on the elements
fρk.

Lemma 6.2.1.

(1 ∧ ψq)∗(fρm) = rmfρm + pνp(m)ûfρ(m−1)

for m > 1.

Proof. Recall the polynomials

cρk =

k∏
i=1

v̂ − ri−1û

rk − ri−1
∈ Qp[û, v̂]

given in Definition 5.1.5. The map (1 ∧ ψq)∗ fixes u, multiplies v by q, and
so v̂ by r = qp−1, and is additive and multiplicative. So we have

rmcρm + ûcρ(m−1) = rm
m∏
i=1

v̂ − ri−1û

rm − ri−1
+ û

m−1∏
i=1

v̂ − ri−1û

rm−1 − ri−1

=
m∏
i=1

v̂ − ri−1û

rm−1 − ri−2
+ û

m−1∏
i=1

v̂ − ri−1û

rm−1 − ri−1
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=
m−1∏
i=1

v̂ − ri−1û

rm−1 − ri−1

(
v̂ − rm−1û

rm−1 − r−1
+ û

)

=
m−1∏
i=1

rv̂ − riû
rm − ri

(
v̂ − r−1û

rm−1 − r−1

)

=

m−1∏
i=1

rv̂ − riû
rm − ri

(
rv̂ − û
rm − 1

)

=

m−1∏
i=0

rv̂ − riû
rm − ri

=

m∏
j=1

rv̂ − rj−1û

rm − rj−1

= (1 ∧ ψq)∗(cρm).

Now

(1 ∧ ψq)∗(fρm) = pνp(m!)(1 ∧ ψq)∗(cρm)

= pνp(m!)rmcρm + pνp(m!)+νp((m−1)!)−νp((m−1)!)ûcρ(m−1)

= rmfρm + pνp(m!)−νp((m−1)!)ûfρ(m−1).

Because νp(m!)− νp((m− 1)!) = νp

(
m!

(m−1)!

)
= νp(m) we then have that

(1 ∧ ψq)∗(fρm) = rmfρm + pνp(m)ûfρ(m−1)

for m > 1 as stated.

Proposition 6.2.2. The action of (1 ∧ ψq)∗ on our basis elements is as
follows

(1∧ψq)∗(gρm,ρm) =


rmgρm,ρm + pνp(m)+1gρm,ρ(m−1) if m > p,

rmgρm,ρm + pgρm,ρ(m−1) if m = p,

rmgρm,ρm + gρm,ρ(m−1) if 1 6 m 6 p− 1,

g0,0 if m = 0.

In the 2 primary case the result [BS05, Proposition 3.3] should read as
follows

(1 ∧ ψ3)∗(g4k,4k) =


9kg4k,4k + 2ν2(k)+3g4k,4(k−1) if k > 3,

92g8,8 + 23g8,4 if k = 2,
9g4,4 + 2g4,0 if k = 1,
g0,0 if k = 0.
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Proof. Using Lemma 6.2.1 and Definition 5.2.3 we get that

(1 ∧ ψq)∗(gρm,ρm) = rmfρm + pνp(m)+1

(
û

p

)
fρ(m−1)

= rmgρm,ρm + pνp(m)+1gρm,ρ(m−1)

for m > p. If m = p then from Definition 5.2.3 we have

(1 ∧ ψq)∗(gρm,ρm) = rmfρm + pνp(m)ûfρ(m−1)

= rmgρm,ρm + pgρm,ρ(m−1)

and
(1 ∧ ψq)∗(gρm,ρm) = rmgρm,ρm + gρm,ρ(m−1)

for 1 6 m 6 p− 1.

Proposition 6.2.3. When m > n

(1 ∧ ψq)∗(gρm,ρn)

=


rngρm,ρn + gρm,ρ(n−1) if m > νp(n!) + n,

rngρm,ρn + pνp(n!)+n−mgρm,ρ(n−1) if νp((n− 1)!) + n− 1 < m 6 νp(n!) + n,

rngρm,ρn + pνp(n)+1gρm,ρ(n−1) if m 6 νp((n− 1)!) + n− 1.

In the 2 primary case the result [BS05, Proposition 3.4] should read as
follows. When k > l

(1 ∧ ψ3)∗(g4k,4l)

=


9lg4k,4l + g4k,4(l−1) if 4l − α(l) 6 2k,

9lg4k,4l + 24l−α(l)−2kg4k,4(l−1) if 4l − α(l)− ν2(l)− 3 6 2k < 4l − α(l),

9lg4k,4l + 23+ν2(k)g4k,4(l−1) if 2k < 4l − α(l)− ν2(l)− 3 < 4l − α(l).

Proof. For the first case let’s take m > νp(n!) +n. Then using Lemma 6.2.1
we have

(1 ∧ ψq)∗(gρm,ρn) = (1 ∧ ψq)∗

(
ûm−n−νp(n!)

(
û

p

)νp(n!)

fρn

)

= ûm−n−νp(n!) û
νp(n!)

pνp(n!)
(rnfρn + pνp(n)ûfρ(n−1))

= rn
ûm−n

pνp(n!)
fρn + pνp(n) û

m−n+1

pνp(n!)
fρ(n−1)

= rngρm,ρn +
ûm−n+1

pνp(n!)−νp(n)
fρ(n−1).
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Since

νp((n− 1)!) + n− 1 = νp(n!) + n− νp(n!) + νp((n− 1)!)− 1

= νp(n!) + n− νp(n)− 1

< m− νp(n)− 1 < m

we have

gρm,ρ(n−1) = ûm−n+1−νp((n−1)!)

(
û

p

)νp((n−1)!)

fρ(n−1)

=
ûm−n+1

pνp((n−1)!)
fρ(n−1)

=
ûm−n+1

pνp(n!)−νp(n)
fρ(n−1).

This gives us that

(1 ∧ ψq)∗(gρm,ρn) = rngρm,ρn + gρm,ρ(n−1).

Now let m 6 νp(n!) + n, then

(1 ∧ ψq)∗(gρm,ρn) = (1 ∧ ψq)∗

((
û

p

)m−n
fρn

)

=
ûm−n

pm−n
(rnfρn + pνp(n)ûfρ(n−1))

= rngρm,ρn +
ûm−n+1

pm−n−νp(n)
fρ(n−1).

Now one of the two following cases will apply

(i) νp((n− 1)!) + n− 1 < m 6 νp(n!) + n,

(ii) m 6 νp((n− 1)!) + n− 1.

Case (i): Here

gρm,ρ(n−1) = ûm−n+1−νp((n−1)!)

(
û

p

)νp((n−1)!)

fρ(n−1)

=
ûm−n+1

pνp((n−1)!)
fρ(n−1).

Substituting this back into the above equation we have

(1 ∧ ψq)∗(gρm,ρn) = rngρm,ρn + pνp((n−1)!)+νp(n)−m+ngρm,ρ(n−1)

= rngρm,ρn + pνp(n!)−m+ngρm,ρ(n−1).
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Case (ii): Here

gρm,ρ(n−1) =

(
û

p

)m−n+1

fρ(n−1).

When substituted back into the above equation we have

(1 ∧ ψq)∗(gρm,ρn) = rngρm,ρn + pνp(n)+1gρm,ρ(n−1).

6.3 The Coefficients of the Matrix

Let A ∈ U∞Zp be a matrix such that under the isomorphism in Definition
3.1.4

Λ(A) = 1 ∧ ψq.
The rest of this subsection will be devoted to proving the following result
on the form of A.

Proposition 6.3.1. The matrix A corresponding to the map 1∧ψq : `∧`→
` ∧ ` under the isomorphism Λ has the following form:

A =


1 υ0 a0,2 a0,3 a0,4 · · ·
0 r υ1 a1,3 a1,4 · · ·
0 0 r2 υ2 a2,4 · · ·
0 0 0 r3 υ3 · · ·
...

...
...

...
...

. . .


where r = qp−1 for q a topological generator of the p-adic units, υi ∈ Z×p for
all i > 0 and ai,j ∈ Zp for all i, j > 0.

Before we can prove this we need the following lemma concerning ex-
pressing ûm−ngρn,ρi in terms of gρm,ρi.

Lemma 6.3.2.

ûm−ngρn,ρi =


pm−ngρm,ρi if n 6 m 6 νp(i!) + i,

pνp(i!)−n+igρm,ρi if n 6 νp(i!) + i < m,

gρm,ρi if νp(i!) + i < n 6 m.

(6.1)

Proof. From Definition 5.2.3 we know that

ûm−ngρn,ρi =


ûm−n

(
û
p

)n−i
fρi if n 6 νp(i!) + i,

ûm−n+n−i−νp(i!)
(
û
p

)νp(i!)
fρi if n > νp(i!) + i,

=

{
ûm−i

pn−i
fρi if n 6 νp(i!) + i,

ûm−i

pνp(i!)
fρi if n > νp(i!) + i.

81



Comparing this with the original definition

gρm,ρi =

{
ûm−i

pm−i
fρi if m 6 νp(i!) + i,

ûm−i

pνp(i!)
fρi if m > νp(i!) + i,

we get the formulas in the statement.

Recall the following expression from Proposition 5.3.3:

zρm =

m∑
i=0

pβ(m,i)λρm,ρi(gρm,ρi)

where λs,t ∈ Zp if s 6= t, λs,s ∈ Z×p and

β(m, i) =

{
νp(m!) if m > νp(i!) + i,
νp(m!) +m− νp(i!)− i if m 6 νp(i!) + i.

Proof of Proposition 6.3.1. Using Definition 3.1.4 we have that∑
n6m

An,m(ιm,n)∗(zρm) = (1 ∧ ψq)∗(zρm)

=
m∑
i=0

pβ(m,i)λρm,ρi(1 ∧ ψq)∗(gρm,ρi).

Also by expanding out the left hand side of this equation and using Propo-
sition 5.3.3 and Proposition 5.3.6 we get that∑

n6m

An,m(ιm,n)∗(zρm)

= Am,mzρm +
∑
n<m

An,mµρm,ρnp
νp(m!)−νp(n!)ûm−nzρn

= Am,m

m∑
i=0

pβ(m,i)λρm,ρigρm,ρi

+
∑
n<m

n∑
i=0

An,mµρm,ρnp
νp(m!)−νp(n!)ûm−npβ(n,i)λρn,ρigρn,ρi

where µρm,ρn ∈ Z×p . Hence we have

m∑
i=0

pβ(m,i)λρm,ρi(1 ∧ ψq)∗(gρm,ρi) = Am,m

m∑
i=0

pβ(m,i)λρm,ρigρm,ρi

+
∑
n<m

n∑
i=0

An,mµρm,ρnp
νp(m!)−νp(n!)ûm−npβ(n,i)λρn,ρigρn,ρi. (6.2)
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We want to determine the An,ms by equating coefficients in Equation
(6.2) above. Firstly let m = 0, then by Proposition 5.3.3 we know z0 =
λ0,0g0,0 = λ0,0 ∈ Z×p . Then

z0 = (1 ∧ ψq)∗(z0) = A0,0(ι0,0)∗(z0) = A0,0z0

which means A0,0 = 1.
We will now split the rest of the proof into three cases. Case (i): Let

1 6 m 6 p − 1. From Equation (6.2) we can use Proposition 6.2.2 and
equate the coefficient of gρm,ρm:

rmλρm,ρm = Am,mλρm,ρm

which gives us that Am,m = rm.
Looking at the terms which will contribute to the coefficient of gρm,ρ(m−1),

we can use the first case given in Proposition 6.2.3 on the left hand side of
Equation (6.2). We find that

(pβ(m,m)λρm,ρm + pβ(m,m−1)λρm,ρ(m−1)r
m−1)gρm,ρ(m−1)

= Am,mp
β(m,m−1)λρm,ρ(m−1)gρm,ρ(m−1)

+Am−1,mµρm,ρ(m−1)p
νp(m!)−νp((m−1)!)pβ(m−1,m−1)λρ(m−1),ρ(m−1)ûgρ(m−1),ρ(m−1).

From Lemma 6.3.2 we know that in this case ûgρ(m−1),ρ(m−1) = gρm,ρ(m−1)

and from Proposition 5.3.3 we know that β(m,m−1) = 0 and β(m,m) = 0,
hence the coefficient of gρm,ρ(m−1) is given by

λρm,ρm+λρm,ρ(m−1)r
m−1 = rmλρm,ρ(m−1)+Am−1,mµρm,ρ(m−1)λρ(m−1),ρ(m−1)

which gives us that

Am−1,m = µ−1
ρm,ρ(m−1)λ

−1
ρ(m−1),ρ(m−1)((r

m−1 − rm)λρm,ρ(m−1) + λρm,ρm)

which is a p-adic unit.
Case (ii): Let m = p. From Equation (6.2) and Proposition 6.2.2 we

have that the coefficient of gρm,ρm on each side is given by

rmλρm,ρm = Am,mλρm,ρm,

hence we have Am,m = rm as before.
We can look at the terms which will contribute to the coefficient of

gρm,ρ(m−1). Using the second case given in Proposition 6.2.3 on the left
hand side of equation (6.2) we get

(pβ(m,m)λρm,ρmp+ pβ(m,m−1)λρm,ρ(m−1)r
m−1)gρm,ρ(m−1)

= Am,mp
β(m,m−1)λρm,ρ(m−1)gρm,ρ(m−1)

+Am−1,mµρm,ρ(m−1)p
νp(m!)−νp((m−1)!)pβ(m−1,m−1)λρ(m−1),ρ(m−1)ûgρ(m−1),ρ(m−1).
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From Lemma 6.3.2 we know that in this case ûgρ(m−1),ρ(m−1) = gρm,ρ(m−1).
We also know from Proposition 5.3.3 that β(m,m − 1) = νp(p!) = 1 and
β(m,m) = 0. This gives us that the coefficient of gρm,ρ(m−1) is given by

λρm,ρmp+pλρm,ρ(m−1)r
m−1

= rmpλρm,ρ(m−1) +Am−1,mµρm,ρ(m−1)pλρ(m−1),ρ(m−1)

which gives us that

Am−1,m = µ−1
ρm,ρ(m−1)λ

−1
ρ(m−1),ρ(m−1)((r

m−1 − rm)λρm,ρ(m−1) + λρm,ρm)

which is a p-adic unit.
Case (iii): Now assume m > p. We find that Am,m = rm in the same

way as given in the other two cases.
Using the third case given in Proposition 6.2.3 on the left hand side of

equation (6.2), we can look at all the terms which will contribute to the
coefficient of gρm,ρ(m−1) and we get

(pβ(m,m)λρm,ρmp
νp(m)+1 + pβ(m,m−1)λρm,ρ(m−1)r

m−1)gρm,ρ(m−1)

= Am,mp
β(m,m−1)λρm,ρ(m−1)gρm,ρ(m−1)

+Am−1,mµρm,ρ(m−1)p
νp(m!)−νp((m−1)!)pβ(m−1,m−1)λρ(m−1),ρ(m−1)ûgρ(m−1),ρ(m−1).

From Lemma 6.3.2 we have that gρm,ρ(m−1) = û
pgρ(m−1),ρ(m−1), and we can

work out that

β(m,m− 1) = νp(m!) +m− νp((m− 1)!)− (m− 1) = νp(m) + 1.

Hence the coefficient of gρm,ρ(m−1) is given by

λρm,ρmp
νp(m)+1 + pνp(m)+1λρm,ρ(m−1)r

m−1

= rmpνp(m)+1λρm,ρm−1 +Am−1,mµρm,ρ(m−1)p
νp(m)+1λρ(m−1),ρ(m−1),

which gives us that

Am−1,m = µ−1
ρm,ρ(m−1)λ

−1
ρ(m−1),ρ(m−1)((r

m−1 − rm)λρm,ρ(m−1) − λρm,ρm)

which is a p-adic unit.

6.4 Conjugation

In this subsection we prove the odd primary analogue of [BS05, Theorem
4.2]. The proof in [BS05] is incomplete; however a finishing argument ap-
pears in [Sna09, §5.4.6] which completes the proof. A more succinct proof
from an idea suggested by Francis Clarke also appears as [Sna09, Theorem
5.4.3] however with typographical errors. The proof we will give here follows
the argument suggested by Clarke.
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From Proposition 6.3.1 we know A has the form

A =


1 υ0 a0,2 a0,3 a0,4 · · ·
0 r υ1 a1,3 a1,4 · · ·
0 0 r2 υ2 a2,4 · · ·
0 0 0 r3 υ3 · · ·
...

...
...

...
...

. . .


where r = qp−1 as before for q a topological generator of the p-adic units,
υi ∈ Z×p for all i > 0 and ai,j ∈ Zp for all i, j > 0.

Let

E =


1 0 0 0 0 · · ·
0 υ0 0 0 0 · · ·
0 0 υ0υ1 0 0 · · ·
0 0 0 υ0υ1υ2 0 · · ·
...

...
...

...
...

. . .


lying in U∞Zp, then its inverse is

E−1 =


1 0 0 0 0 · · ·
0 υ−1

0 0 0 0 · · ·
0 0 υ−1

0 υ−1
1 0 0 · · ·

0 0 0 υ−1
0 υ−1

1 υ−1
2 0 · · ·

...
...

...
...

...
. . .


and we can conjugate A by E to get

EAE−1 = C =


1 1 c0,2 c0,3 c0,4 · · ·
0 r 1 c1,3 c1,4 · · ·
0 0 r2 1 c2,4 · · ·
0 0 0 r3 1 · · ·
...

...
...

...
...

. . .

 .

for some ci,j ∈ Zp.
We want to know if we can turn C into a more desirable form, i.e. get

rid of all the terms above the superdiagonal and produce a matrix

R =


1 1 0 0 0 · · ·
0 r 1 0 0 · · ·
0 0 r2 1 0 · · ·
0 0 0 r3 1 · · ·
...

...
...

...
...

. . .

 .
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Theorem 6.4.1. There exists a matrix U ∈ U∞Zp such that UCU−1 = R.
Moreover one is given by U = (ui,j)i,j>0 ∈ U∞Zp where the first row is
chosen to be

u0,j =

{
1 if j = 0
0 otherwise

and the next row is defined recursively from the previous one as follows;

ui+1,j =

(
j−2∑
s=i

ui,scs,j

)
+ ui,j−1 + (rj − ri)ui,j .

Proof. Let U be the matrix defined recursively above. We need to show
that U ∈ U∞Zp. It is clear that ui,j ∈ Zp for i, j > 0. It can be shown that
ui,j = 0 if i > j by induction on i. It is true from the formula that u1,0 = 0.
Now assume that ui−1,j = 0 for all j < i−1. By the formula above for i > j,

ui,j = ui−1,j−1 + (rj − ri−1)ui−1,j .

Now one of two cases will apply. Firstly we have j < i−1, in which case both
ui−1,j−1 and ui−1,j are zero by assumption. Or in the second case j = i− 1,
in which case ui−1,j−1 is still zero but now ui−1,j may not be zero however
its coefficient is (ri−1 − ri−1) = 0 and so the induction is complete.

We are left needing to show ui,i ∈ Z×p for all i > 0, then U will be
invertible. We will do this by induction. Clearly u0,0 = 1 is in Z×p . Now
assume that ui,i ∈ Z×p , we show that means ui+1,i+1 ∈ Z×p too. We know

ui+1,i+1 = ui,i + (ri+1 − ri)ui,i+1

from the definition. Fermat’s Little Theorem tells us that r− 1 ≡ 0 mod p
so ri+1 − ri = ri(r − 1) ≡ 0 mod p, and by assumption ui,i ∈ Z×p . Hence
ui+1,i+1 is a unit plus something divisible by p and so is also a unit. So by
induction ui,i ∈ Z×p for all i > 0 and hence U is invertible.

Now we just need to show that UCU−1 = R so we will compare entries
(UC)i,j and (RU)i,j . Diagonally (UC)i,i = riui,i = (RU)i,i. Now let j > i,
the entries of UC and RU are given as follows:

(UC)i,j = ui,ici,j + ui,i+1ci+1,j + · · ·+ ui,j−2cj−2,j + ui,j−1 + rjui,j

=

(
j−2∑
s=i

ui,scs,j

)
+ ui,j−1 + rjui,j

and
(RU)i,j = riui,j + ui+1,j .

From our recurrence relation for the entries ui,j we know that(
j−2∑
s=i

ui,scs,j

)
+ ui,j−1 + rjui,j = ui+1,j + riui,j
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and so we get that
(UC)i,j = (RU)i,j .

Hence (UC)i,j = (RU)i,j for all i, j > 0 and j > i.

Our chosen U is just one example of a matrix which will work, any
coefficients can be chosen for the first row of the matrix providing u0,0 = 1
or any unit, we just choose all of the others to be zero to simplify things.

So in summary we have shown the following result.

Theorem 6.4.2. Under the isomorphism Λ the automorphism 1 ∧ ψq cor-
responds to a matrix in the conjugacy class of

R =


1 1 0 0 0 · · ·
0 r 1 0 0 · · ·
0 0 r2 1 0 · · ·
0 0 0 r3 1 · · ·
...

...
...

...
...

. . .

 .
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Chapter 7

Applications

7.1 The Map 1 ∧ φn and the Matrix Xn.

In this chapter we will use Theorem 6.4.2 to obtain and study further infor-
mation on the map

1 ∧ φn = 1 ∧ (ψq − 1)(ψq − r) . . . (ψq − rn−1) : ` ∧ `→ ` ∧ `.

The analogous map was first studied by Milgram in [Mil75] in relation to
real connective K-Theory ko localised at the prime 2. The method used here
is the method used in [BS05, Theorem 5.4] to produce the 2-local analogue
of Theorem 7.1.8. In the 2 primary case, the formulae in [BS05, Theorem
5.4(iv)] for finding entries in the analogous 2 primary version of the matrix
Xn (as defined below) are incorrect. The formulae I have stated in Theorem
7.1.8(iii) with rs replaced by 9s will hold true (as will the proof) for the
prime 2.

Recall that we let U∞Zp be infinite upper triangular matrices with entries
in Zp which are invertible. In practice this means they must have p-adic units
on the diagonal. This is the multiplicative group of units of the ring Ũ∞Zp
of upper triangular matrices with entries in the p-adic integers. Generalising
the group isomorphism Λ of Theorem 3.1.3 we can construct the following
diagram

U∞Zp Λ
∼=

//

∩
��

Aut0
left-`-mod(` ∧ `)

∩
��

Ũ∞Zp λ
// Endleft-`-mod(` ∧ `)

where λ|U∞Zp = Λ. The map Λ was constructed by sending a matrix A ∈
U∞Zp to Λ(A) =

∑
m>nAn,mιm,n. The same process can be applied to a

matrix A′ ∈ Ũ∞Zp by letting

λ(A′) =
∑
m>n

A′n,mιm,n
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to obtain a left-`-module endomorphism of ` ∧ `. This is a multiplicative
map by the same argument given for Λ in the proof of Proposition 3.3.7.

By moving from U∞Zp to Ũ∞Zp it is now possible to use the additive
structure given by matrix addition. The concept of addition in the group
Endleft-`-mod(` ∧ `) was given in Definition 1.1.7.

Now for A,B ∈ Ũ∞Zp we have

λ(A+B) =
∑
m>n

(A+B)n,mιm,n

=
∑
m>n

An,mιm,n +
∑
m>n

Bn,mιm,n

= λ(A) + λ(B).

From Theorem 6.4.2 we know that the map 1∧ ψq corresponds under Λ
to an element in the conjugacy class of the matrix R, where, for r = qp−1,

R =


1 1 0 0 0 · · ·
0 r 1 0 0 · · ·
0 0 r2 1 0 · · ·
0 0 0 r3 1 · · ·
...

...
...

...
...

. . .

 .

This means that there exists a matrix H ∈ U∞Zp such that

1 ∧ ψq = λ(HRH−1).

We also have that 1∧ 1 = λ(I) where I is the infinite identity matrix, hence

1 ∧ ri = λ(riI).

Definition 7.1.1. Let

φn = (ψq − 1)(ψq − r) · · · (ψq − rn−1)

and let Rn = R− rn−1I ∈ Ũ∞Zp and Xn = R1R2 · · ·Rn ∈ Ũ∞Zp.

Proposition 7.1.2. 1 ∧ φn = λ(HXnH
−1)

Proof. Using the definition above and previous discussion

1 ∧ (ψq − rn−1) = (1 ∧ ψq)− (1 ∧ rn−1)

= λ(HRH−1)− λ(rn−1I)

= λ(HRH−1 − rn−1I)

= λ(HRH−1 −Hrn−1IH−1)

= λ(H(R− rn−1I)H−1)

= λ(HRnH
−1).
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Hence when we look at 1 ∧ φn we see that

1 ∧ φn = 1 ∧ (ψq − 1)(ψq − r) · · · (ψq − rn−1)

= (1 ∧ (ψq − 1))(1 ∧ (ψq − r)) · · · (1 ∧ (ψq − rn−1)

= λ(HR1H
−1)λ(HR2H

−1) · · ·λ(HRnH
−1)

= λ(HR1H
−1HR2H

−1 · · ·HRnH−1)

= λ(HR1R2 · · ·RnH−1)

= λ(HXnH
−1).

Before we can prove our main result Theorem 7.1.8, we first need to
introduce Gaussian polynomials.

Definition 7.1.3. A Gaussian polynomial is of the form[
n

i

]
=

i−1∏
j=0

1− xn−j

1− xj−i

where n, i ∈ N0.

We will need the value of this polynomial when x = r which will be
denoted

[
n
i

]
r
. The lemma below can be used to show inductively that the

Gaussian polynomials are indeed polynomials.

Lemma 7.1.4. The following analogue of Pascal’s identity holds for Gaus-
sian polynomials: [

n

i

]
r

= rn−i
[
n− 1

i− 1

]
r

+

[
n− 1

i

]
r

.

Proof.

rn−i
[
n− 1

i− 1

]
r

+

[
n− 1

i

]
r

= rn−i
i−2∏
j=0

1− rn−1−j

1− ri−1−j +
i−1∏
j=0

1− rn−1−j

1− ri−j

=

i−3∏
j=0

1− rn−1−j

1− ri−1−j (1− rn−i+1)

(
rn−i

1− r
+

1− rn−i

(1− r)(1− ri)

)

=
i−3∏
j=0

1− rn−1−j

1− ri−1−j
(1− rn−i+1)(1− rn)

(1− r)(1− ri)

=
i−1∏
j=0

1− rn−j

1− ri−j
=

[
n

i

]
r

.
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Another tool we will use in the proof of Theorem 7.1.8 is splitting up
the matrix R, as detailed below, in order to make calculating powers of it
much easier.

Definition 7.1.5. Let

D =


1 0 0 0 0 · · ·
0 r 0 0 0 · · ·
0 0 r2 0 0 · · ·
0 0 0 r3 0 · · ·
...

...
...

...
...

. . .


and

S =


0 1 0 0 0 · · ·
0 0 1 0 0 · · ·
0 0 0 1 0 · · ·
0 0 0 0 1 · · ·
...

...
...

...
...

. . .

 .

Then R = D + S.

The three facts in the following lemma are easy to prove.

Lemma 7.1.6.

Di =


1 0 0 0 0 · · ·
0 ri 0 0 0 · · ·
0 0 r2i 0 0 · · ·
0 0 0 r3i 0 · · ·
...

...
...

...
...

. . .

 ,

Sj =



j︷ ︸︸ ︷
0 . . . 0 1 0 0 0 · · ·
0 · · · 0 0 1 0 0 · · ·
0 · · · 0 0 0 1 0 · · ·
0 · · · 0 0 0 0 1 · · ·
... · · ·

...
...

...
...

...
. . .


and SD = rDS.

Lemma 7.1.7. For two matrices D,S ∈ Ũ∞Zp such that SD = rDS and
any n ∈ N0 we have

(D + S)n =

n∑
i=0

[
n

i

]
r

DiSn−i. (7.1)

91



Proof. We can show this by induction. In the case where n = 1 we have
(D + S)1 =

[
1
0

]
r
S +

[
1
1

]
r
D = S + D which is obviously true. Now assume

the statement is true for (D + S)n−1, then we have

(D + S)n =

(
n−1∑
i=0

[
n− 1

i

]
r

DiSn−1−i

)
(D + S)

=
n−1∑
i=0

[
n− 1

i

]
r

DiSn−1−iD +
n−1∑
i=0

[
n− 1

i

]
r

DiSn−i

=

n−1∑
i=0

[
n− 1

i

]
r

rn−1−iDi+1Sn−1−i +

n−1∑
i=0

[
n− 1

i

]
r

DiSn−i

We can now reindex the first sum by letting j = i+ 1 and obtain

n∑
j=1

[
n− 1

j − 1

]
r

rn−jDjSn−j +

n−1∑
i=0

[
n− 1

i

]
r

DiSn−i

=
n−1∑
j=1

([
n− 1

j − 1

]
r

rn−j +

[
n− 1

j

]
r

)
DjSn−j +

[
n− 1

0

]
r

Sn +

[
n− 1

n− 1

]
r

Dn

=

n−1∑
j=1

[
n

j

]
r

DjSn−j +Dn + Sn

=
n∑
j=0

[
n

j

]
r

DjSn−j

as required, using Lemma 7.1.4.

Now we can state and prove the main theorem of this section which
gives us more detailed and specific information on how the map φn relates
to the pieces of the splitting. We will also use a p-local version of part (i) in
Theorem 7.2.2 in the next section. Let Ω denote the homotopy equivalence
giving Kane’s splitting, i.e.

Ω :
∨
n≥0

` ∧ K(n)→ ` ∧ `.

Theorem 7.1.8. (i) The first n columns of Xn are trivial.

(ii) Let Cn be the mapping cone of the restriction of Ω to the first n ‘pieces’
of the splitting of ` ∧ `, i.e.

Cn = Cone

(
Ω| :

∨
06m6n−1

` ∧ K(m)→ ` ∧ `

)

92



which is also a left `-module. Then in the p-complete stable homotopy
category there exists a commutative diagram of left `-module spectra of
the form

` ∧ `
1∧φn //

πn ""EEEEEEEE ` ∧ `

Cn
φ̂n

<<yyyyyyyy

where πn is the cofibre of Ω| and φ̂n is determined up to homotopy by
the diagram.

(iii) For n > 1 we have

(Xn)s,s+c = 0 if c < 0 or c > n

and for 0 6 c 6 n we have

(Xn)s,s+c =
n∑
i=c

(−1)n−ir(
n−i
2 )+(s−1)(i−c)

[
n

i

]
r

[
i

i− c

]
r

.

Proof. (i) The result is certainly true of X1 = R1. We will proceed to
prove the result for all n > 1 by induction. Assume that the first
n columns of Xn are trivial, i.e. (Xn)i,j = 0 if j 6 n. By definition
Xn+1 = XnRn+1. We also know that (Rn+1)i,j = 0 unless (i, j) = (s, s)
or (s, s+ 1) and that (Rn+1)n+1,n+1 = 0 also. Now

(Xn+1)i,j = (Xn)i,j−1(Rn+1)j−1,j + (Xn)i,j(Rn+1)j,j

which is zero if j 6 n because (Xn)i,j−1, (Xn)i,j = 0. If j = n+ 1,

(Xn+1)i,n+1 = (Xn)i,n(Rn+1)n,n+1 + (Xn)i,n+1(Rn+1)n+1,n+1

which is zero because (Xn)i,n, (Rn+1)n+1,n+1 = 0.

(ii) From Lemma 7.1.2 we know that 1 ∧ φn = λ(HXnH
−1). In order for

1∧φn to factor via Cn (and the diagram to commute) we need to show
that HXnH

−1 corresponds under λ to a left `-module endomorphism
of ∨m>0`∧K(m) which is trivial on each piece `∧K(m) wherem 6 n−1.
The map λ(HXnH

−1) acts trivially on pieces `∧K(m) where m 6 n−1
if each map

ιm,k : ` ∧ K(m)→ ` ∧ K(k)

has coefficient zero when m 6 n − 1 in the explicit description of
λ(HXnH

−1). This gives us that (HXnH
−1)k,m needs to equal zero

when m 6 n − 1. This is true though because we know from part
(i) that the first n columns of Xn are trivial, and since H is upper
triangular and invertible, this means the first n columns of HXnH

−1

are also trivial.
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(iii) For the first part, we know all the Ris are upper triangular matrices
so Xn will be too, hence (Xn)s,s+c = 0 if c < 0. We can show that
(Xn)s,s+c = 0 if c > n by induction on n. The initial case for the
induction is X1 where this clearly holds. Assume that (Xn−1)s,s+c = 0
if c > n − 1. As in part (i), we know that Xn = Xn−1Rn and that
(Xn)i,j = (Xn−1)i,j−1(Rn)j−1,j+(Xn−1)i,j(Rn)j,j . Now let j > n, then

(Xn)s,s+j = (Xn−1)s,s+j−1(Rn)s+j−1,s+j + (Xn−1)s,s+j(Rn)s+j,s+j

and this is zero because both (Xn−1)s,s+j−1 and (Xn−1)s,s+j are zero
by the inductive hypothesis, hence the induction is complete.

In order to prove the second part we are going to first consider the
matrix R rather than Xn. Recall from Definition 7.1.5 that we can
think of R as the matrix sum D + S. Then we have that

Rn = (D + S)n.

Using Lemma 7.1.6 we can see that any product of the form DiSj can
be expressed as the matrix

DiSj =



j︷ ︸︸ ︷
0 . . . 0 1 0 0 0 · · ·
0 · · · 0 0 ri 0 0 · · ·
0 · · · 0 0 0 r2i 0 · · ·
0 · · · 0 0 0 0 r3i · · ·
... · · ·

...
...

...
...

...
. . .


.

In other words a single entry can be written as

(DiSj)s,t =

{
r(s−1)i if t = s+ j

0 otherwise.

Recall that
SD = rDS

so, although the multiplication is non-commutative, there is a simple
relation between the two orderings. Now to be able to find any entry
in the matrix Rn, using Lemma 7.1.7, we have a formula in terms of
the matrices DiSj , equation (7.1), for which we know all the entries.
Hence

(Rn)s,s+c = ((D + S)n)s,s+c =

n∑
i=0

[
n

i

]
r

(DiSn−i)s,s+c.

For any particular value of c at most one term in this sum is non-zero,
namely the i = n− c term if 0 6 c 6 n. So we have that

(Rn)s,s+c =

[
n

n− c

]
r

(Dn−cSc)s,s+c =

[
n

n− c

]
r

r(s−1)(n−c).
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We can now use this information to produce a formula for the required
entries in the matrix Xn. By [CCW01, Proposition 8] we know

Xn = (R− 1)(R− r) · · · (R− rn−1)

=
n∑
i=0

(−1)n−ir(
n−i
2 )
[
n

i

]
r

Ri.

As before, to produce the entry in the (s, s+ c)th place in Xn we just
need to know the entries in the same place in all the powers of R in
the above sum, hence

(Xn)s,s+c =

n∑
i=0

(−1)n−ir(
n−i
2 )
[
n

i

]
r

(Ri)s,s+c

=
n∑
i=c

(−1)n−ir(
n−i
2 )
[
n

i

]
r

[
i

i− c

]
r

r(s−1)(i−c).

The final sum has been reduced from a sum starting from 0 to a sum
starting from c as the second Gaussian polynomial for i 6 c is zero.

7.2 K-Theory Operations

The next application we will consider provides us with another way of view-
ing a ring of operations on p-local complex connective K-Theory. We will
work in this chapter in the p-local stable homotopy category. In a slight
abuse of notation let ` now denote the Adams summand of p-local complex
connective K-Theory (rather than the p-complete version) for the rest of this
section. Let Ũ∞Z(p) be the ring of upper triangular matrices with entries
in the p-local integers and using standard notation let E∗(F ) = [F,E]−∗ for
spectra E,F .

For the following application we will need to use the theory of filtered
topological rings. A good reference for this is [Nor68, Chapter 9]. Recall that
a decreasing filtration on a ring R is a family of two-sided ideals {Rn}n>0

such that Rn+1 ⊆ Rn for all n > 0. This gives the ring a filtration topology.
The identity map induces a map for each n > 0

Rn+1 → Rn

which together give us the following sequence of maps

R

R0
← R

R1
← · · · ← R

Rn−1
← R

Rn
← R

Rn+1
← · · · .

Let R̂ = lim←−n
R
Rn

be the inverse limit of this system. The ring is complete if

the obvious map R→ R̂ is an isomorphism.
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Definition 7.2.1. We can define a filtration on Ũ∞Z(p) by letting the first
n columns be zero, i.e. for n ∈ N, let

Un = {X ∈ Ũ∞Z(p) : xi,j = 0 if j 6 n}.

This gives us a decreasing filtration

Ũ∞Z(p) = U0 ⊃ U1 ⊃ U2 ⊃ · · ·

where each Un is a two-sided ideal of Ũ∞Z(p).

Filtering by columns gives us a two-sided ideal because our matrices are
upper triangular, this would not be the case if we filtered by rows. This can
be regarded as the natural filtration on Ũ∞Z(p). Also Ũ∞Z(p) is complete
with respect to this topology.

Theorem 7.2.2. The ring of degree zero operations of the Adams summand
of complex connective p-local K-Theory, `0(`), is isomorphic as a topological
ring to the completion of the subring of Ũ∞Z(p) generated by R.

Proof. Define a map
α : `0(`)→ Ũ∞Z(p)

by saying α is the continuous ring homomorphism determined by sending
ψq ∈ `0(`) to R ∈ Ũ∞Z(p). Recall that φn = (ψq−1)(ψq− r) · · · (ψq− rn−1).
Because of the definition of α we know that α(φn) = (R− 1)(R− r) · · · (R−
rn−1) = Xn.

We have the following description of `0(`) from [CCW05, Theorem 4.4]

`0(`) =

{ ∞∑
n=0

anφn : an ∈ Z(p)

}
.

This is complete in the filtration topology when filtered by ideals

(`0(`))m =

{ ∞∑
n=m

anφn : an ∈ Z(p)

}
.

We know α(φn) = Xn and by Theorem 7.1.8 (i) we know that the first n
columns of Xn are trivial hence α(φn) ∈ Un. This tells us that α respects the
filtration and so when applied to infinite sums α (

∑∞
n=0 anφn) =

∑∞
n=0 anXn

is well defined (each entry in the matrix is a finite sum).

Let S =
{∑N

n=0 anR
n : an ∈ Z(p), N ∈ N0

}
. It is clear that S ⊆ im(α).

Because α is continuous and Ũ∞Z(p) is complete it follows that the com-
pletion of S is precisely the image of α. Finally because we know kerα =
{
∑∞

n=0 anφn : an = 0 for all n} it is clear that α is injective.
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This gives us quite a nice way of looking at `0(`) which is in its own right
a quite complex ring. Because the filtration on Ũ∞Z(p) is the most natural
one to pick this in turn makes the filtration on `0(`) appear more natural.

In exactly the same way we can obtain a description of ku(p)
0(ku(p)) as

the completion of the subring of Ũ∞Z(p) generated by

R′ =


1 1 0 0 0 · · ·
0 q 1 0 0 · · ·
0 0 q2 1 0 · · ·
0 0 0 q3 1 · · ·
...

...
...

...
...

. . .

 .

The proof follows as above using the description of ku(p)
0(ku(p)) given in

[CCW05, Theorem 2.2] as

ku(p)
0(ku(p)) =

{ ∞∑
n=0

anϕ
′
n : an ∈ Z(p)

}
where ϕ′n = (ψq − 1)(ψq − q) · · · (ψq − qn−1).

We can obtain a similar description of a ring of 2-local operations on real
connective K-Theory. In a similar way to above define Ũ∞Z(2) to be the
ring of upper triangular matrices with entries in the 2-local integers and let

R(2) =


1 1 0 0 0 · · ·
0 9 1 0 0 · · ·
0 0 92 1 0 · · ·
0 0 0 93 1 · · ·
...

...
...

...
...

. . .

 .

Theorem 7.2.3. The ring of degree zero operations of real connective 2-local
K-Theory ko(2)

0(ko(2)) is isomorphic as a topological ring to the completion

of the subring of Ũ∞Z(2) generated by R(2).

Proof. Using the description of ko(2)
0(ko(2)) given in [CCW05, Theorem

9.3(1)] as

ko(2)
0(ko(2)) =

{ ∞∑
n=0

anϕn : an ∈ Z(2)

}
where ϕn = (ψ3− 1)(ψ3− 9) · · · (ψ3− 9n−1), the proof follows in exactly the
same way as the previous Theorem.

The topological bialgebra `0(`) is Z(p)-dual to L0(`), where L is the
periodic Adams summand. We have a basis for L0(`) given in [CCW05,
Proposition 4.2] of {f̂n(z) : n > 0} where z = (u−1v)p−1 and

f̂n(z) =

n∏
i=1

z − ri−1

rn − ri−1
.
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The action of `0(`) on L0(`) is determined by the action of ψq which multi-
plies v by q and acts as the identity on u hence ψqf̂(z) = f̂(rz). We look at
the action of ψq on the basis elements and find that

ψqf̂n(z) = rnf̂n(z) + f̂n−1(z).

This means that the action of ψq on the basis {f̂n(z) : n > 0} of L0(`) is
given by the matrix R.

This is not a coincidence but just two different ways of getting to the
same answer. This way involves looking at the action of ψq on the basis
for L0(`) which gives you exactly R and the other way as demonstrated
in Chapter 5 involves looking at the basis for the whole graded object `∗(`)
and, via maps between the pieces of the splitting, looking at the action of ψq

again but not keeping track what happens to the particular basis elements
in any degree. This ambiguity over what happens to specific basis elements
is taken care of by the fact that the matrix you produce is not precisely R
but something in the conjugacy class of R.

In a similar way ku(p)
0(ku(p)) has as its dual K(p)0

(ku(p)). A basis for
K(p)0

(ku(p)) is given by [CCW01, Proposition 3] as {hn(w) : n > 0} where

w = u−1v and

hn(w) =
n∏
i=1

w − qi−1

qn − qi−1
.

The action is again determined by that of ψq and we have that

ψqhnw = qnhn(w) + hn−1(w).

So the action is given by the matrix R′.
A similar statement is also true of the action of ko(2)

0(ko(2)) on its dual
KO(2)0

(ko(2)). A basis for KO(2)0
(ko(2)) is given in [CCW05, Proposition

9.2(1)] of {gn(x) : n > 0} where x = (u−1v)2 and

gn(x) =

n∏
i=1

x− 9i−1

9n − 9i−1
.

In this case the action is determined by ψ3 which acts on the basis elements
as

ψ3gn(x) = 9ngn(x) + gn−1(x).

So the action is given by the matrix R(2).
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Appendix A

Results about p-adic
valuations

Let p be an odd prime and let νp be the p-adic valuation function. The
two primary versions of the first four of these statements appear in [BS05,
Proposition 2.3 - Proposition 2.6].

Proposition A.1. For any integer n > 0,

νp(r
pn − 1) = n+ 1,

where r = qp−1 and q ∈ Z×p is a topological generator (i.e. q generates a
dense subgroup of Z×p ).

Proof. We know

rp
n − 1 = (r − 1)(rp

n−1 + rp
n−2 + · · ·+ r2 + r + 1). (A.1)

We can choose q to be a particular integer coprime to p which generates a
dense subset of Z×p . This happens if q is primitive modulo p2 that is if q is
a generator for (Z/p2)×. So we can assume (q, p) = 1.

Let’s first deal with the second factor of equation (A.1).

rp
n−1 + rp

n−2 + · · ·+ r + 1

= (rp−1 + rp−2 + · · ·+ r + 1)(rp
n−p + rp

n−2p + · · ·+ rp + 1)

=
n−1∏
k=0

(rp
k(p−1) + rp

k(p−2) + · · ·+ rp
k

+ 1). (A.2)

Each of the n brackets of the form (rp
k(p−1) + rp

k(p−2) + · · · + rp
k

+ 1) for
k ∈ N0, has one and only one factor of p as follows. We know r ≡ 1 mod p
by Fermat’s Little Theorem so rs ≡ 1 mod p for all s ∈ N0. There are p
terms in each bracket all congruent to 1 mod p so

rp
k(p−1) + rp

k(p−2) + · · ·+ rp
k

+ 1 ≡ p mod p.
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Hence we know p divides each bracket. We also know that qϕ(p2) ≡ 1
mod p2 where ϕ(p2) = (p−1)p is Euler’s totient function. Hence q(p−1)p ≡ 1
mod p2 i.e. rp ≡ 1 mod p2. Each summand in all but the first bracket of
equation (A.2) is of the form rp.p

k−1m for m = 0, 1, . . . , p−1, so all terms are
congruent to 1 mod p2 and hence each bracket bar the first is congruent to p
mod p2 and hence does not have a factor of p2. If we take the first bracket of
equation (A.2) and combine it with the remaining factor in equation (A.1)
we have

(r − 1)(rp−1 + rp−2 + · · ·+ r + 1) = rp − 1.

We know each bracket has a factor of p so p2|rp − 1, we just need that
p3 - rp − 1 then the statement will follow.

We have that q generates (Z/p2)×, this means q generates (Z/p3)× also.
We know qϕ(p3) ≡ 1 mod p3 by Euler’s Theorem. Since q generates (Z/p3)×

and there are ϕ(p3) elements in (Z/p3)×, this is the lowest power of q which
is congruent to 1 mod p3 hence no lower power of q can be congruent to 1
mod p3. But p(p − 1) < p2(p − 1) = ϕ(p3) so qp(p−1) 6≡ 1 mod p3, hence
p3 - rp − 1.

Proposition A.2. For any integer l > 1,

νp(r
l − 1) = νp(l) + 1.

Proof. We can factorise

(rl − 1) = (r − 1)(rl−1 + rl−2 + · · ·+ r + 1).

We know that νp(r − 1) = 1 as follows. Firstly p|r − 1 by Fermat’s Little

Theorem. Also q generates (Z/p2)× so qϕ(p2) is the lowest power of q which
is congruent to 1 mod p2. Since p − 1 < p(p − 1) = ϕ(p2), r cannot be
congruent to 1 mod p2 and so p2 - r − 1.

If p|l we can factorise further:

(rl−1 + rl−2 + · · ·+ 1) = (rp−1 + rp−2 + · · ·+ 1)(rl−p + rl−2p + · · ·+ rp + 1).

If p| lp we can continue this process until there are no more factors of p, i.e.

p - l
pk

for some k ∈ N0. So we have factorised out νp(l) brackets. From
Proposition A.1 we know the p-adic valuation of each of the brackets is 1.
The remaining term is a sum of l

pk
terms each of the form rm for some

m ∈ N0. By Fermat’s Little Theorem we know each of these rm ≡ 1 mod p
so the whole remaining term is congruent to l

pk
mod p 6≡ 0 mod p.

Proposition A.3. For any integer l > 1,

νp

(
l∏

i=1

(rl − ri−1)

)
= νp(l!) + l.
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Proof. Expanding the product gives

l∏
i=1

(rl − ri−1) = (rl − 1)(rl − r)(rl − r2) . . . (rl − rl−1)

= r
l(l−1)

2 (rl − 1)(rl−1 − 1)(rl−2 − 1) . . . (r − 1).

So when we take the valuation,

νp

(
l∏

i=1

(rl − ri−1)

)
= νp(r

l(l−1)
2 ) + νp(r

l − 1) + νp(r
l−1 − 1) + · · ·+ νp(r − 1)

= 0 + (νp(l) + 1) + (νp(l − 1) + 1) + · · ·+ (νp(1) + 1)

= νp(l(l − 1)(l − 2) . . . 1) + l

= νp(l!) + l.

Proposition A.4. For any integer l > 1,

νp(l!) + l =
pl − Sp(l)
p− 1

,

where Sp(l) is the sum of the digits of l in its base p expansion, i.e. if
l = l0 +l1p+l2p

2 +· · · with li ∈ {0, 1, . . . , p−1} then Sp(l) = l0 +l1 +l2 +· · · .

Proof. Let l =
∑N

i=0 lip
i. We have

νp(l!) =
∞∑
j=1

⌊
l

pj

⌋
.

Also
⌊
l
p

⌋
=
∑N−1

i=0 li+1p
i,
⌊
l
p2

⌋
=
∑N−2

i=0 li+2p
i and so on. Combining these

we get

l = l0 + p

⌊
l

p

⌋
⌊
l

p

⌋
= l1 + p

⌊
l

p2

⌋
...⌊

l

pj

⌋
= lj + p

⌊
l

pj+1

⌋
.

Adding these equations we get

l + νp(l!) = l0 + l1 + · · ·+ pνp(l!) = Sp(l) + pνp(l!)

and rearranging gives the result.
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Proposition A.5.

νp

(
k∏
i=1

(mp−1 − ri−1lp−1)

)
> νp(k!) + k

for all l, m ∈ Z×p and k ∈ N.

Proof. Let fk : Qp ×Qp → Qp be given by

fk(l,m) =

∏k
i=1(mp−1 − ri−1lp−1)

pνp(k!)+k
.

The proposition is equivalent to saying that fk(Z×p ,Z×p ) ⊆ Zp.
This can be checked on a dense subset of Z×p . Since fk is continuous and

Zp is closed in Qp the result is then true for Z×p . The dense subset we will
use is D = {qj |j > 0}.

Let l = qt and m = qs. Then

k∏
i=1

((qs)p−1 − ri−1(qt)p−1) =
k∏
i=1

(rs − ri−1rt).

So we just need that νp(
∏k
i=1(rs − ri−1rt)) > νp(k!) + k.

Firstly we consider the case where |s− t| > k − 1. Then

νp

(
k∏
i=1

(rs − ri−1rt)

)
= νp

(
k∏
i=1

(rs−t−i+1 − 1)

)

=
k∑
i=1

νp(r
s−t−i+1 − 1)

=

k∑
i=1

(νp(s− t− i+ 1) + 1)

= νp

(
k∏
i=1

(s− t− i+ 1)

)
+ k

= νp

(
(|s− t|)!

(|s− t− k|)!

)
+ k

using Proposition A.2. So we need

νp

(
(|s− t|)!

(|s− t− k|)!

)
+ k > νp(k!) + k

i.e.

νp

(
(|s− t|)!

(|s− t− k|)!

)
> νp(k!).
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Now the highest power of p less than k will be a factor of k! and so will
every power of p less than this. Since (|s−t|)!

(|s−t−k|))! is the product of a run of
k consecutive elements of Z, like k!, a multiple of each of the powers of p
featuring in k! will feature in (|s−t|)!

(|s−t−k|)! too plus possibly some higher powers

of p. Hence the p-adic valuation of (|s−t|)!
(|s−t−k|)! will be equal or greater than

that of k!.
Finally, let |s−t| 6 k−1, then there will be a factor of (r|s−t|−r|s−t|) = 0

in the product, hence the whole product will be zero and since νp(0)“ = ”∞
the proposition will be trivially true.

103



Glossary

Qp The p-adic numbers. 5

Zp The p-adic integers. 5

Z(p) The p-local integers. 5

Ap The mod p Steenrod Algebra. 7

A∗p The dual mod p Steenrod Algebra. 8

B The exterior algebra Λ(Q0, Q1). 10

β The Bockstein homomorphism. 7

BU The classifying space for the group U . 13

cρk
∏k
i=1

v̂−ri−1û
rk−ri−1 . 61

D(X) The Spanier-Whitehead dual of a spectrum X. 22

fρk pνp(k)cρk. 61

gρm,ρl The element of Gm,l produced from fρl lying in degree ρm. 66

Gm,n
πm(`∧K(n))⊗Zp

Torsion . 65

G̃m,n Gm,n ⊕Wm,n where Wm,n is a finite elementary abelian p-group. 67

HZ/p The mod p Eilenberg-MacLane spectrum. 4

ιm,n A map from ` ∧ K(m) to ` ∧ K(n). 49

K The periodic K-theory spectrum. 14

K(n) The nth ‘piece’ in Kane’s splitting. 33
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ku The connective K-theory spectrum. 18

` The connective Adams summand. 18

Λ An exterior algebra. 8

νp The p-adic valuation function. 99

P i Steenrod Power i. 6

ψk The kth Adams operation. 19

q An integer which is primitive modulo p. 99

Qk The kth Milnor element of Ap. 9

r qp−1. 99

R The matrix


1 1 0 0 0 ···
0 r 1 0 0 ···
0 0 r2 1 0 ···
0 0 0 r3 1 ···
...

...
...

...
...

. . .

. 85

ρ 2(p− 1). 61

Sp(l) The sum of the digits of l in its base p expansion. 101

û up−1. 61

zρn A generator for Gρn,n. 68

z̃ρn A generator for G̃ρn,n. 68
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Verlag, Basel, 2009.

[Sul74] Dennis Sullivan. Genetics of homotopy theory and the Adams
conjecture. Ann. of Math. (2), 100:1–79, 1974.

[Swi02] Robert M. Switzer. Algebraic topology—homotopy and homol-
ogy. Classics in Mathematics. Springer-Verlag, Berlin, 2002.
Reprint of the 1975 original [Springer, New York; MR0385836
(52 #6695)].

109


