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Abstract

Upper Triangular Matrices and Operations in Odd
Primary Connective K-Theory

by
Laura Amy Stanley.

Let UxZyp be the group of infinite invertible upper triangular matrices
with entries in the p-adic integers. Also let Autd, , (¢ Af) be the group
of left /-module automorphisms of ¢ A £ which induce the identity on mod
p homology, where ¢ is the Adams summand of the p-adically complete
connective K-Theory spectrum. In this thesis we construct and prove there
is an isomorphism between these two groups. We will then determine a
specific matrix (up to conjugacy) which corresponds to the automorphism
1 A of £ A £ where 97 is the Adams operation and ¢ is an integer which
generates the p-adic units Z .

We go on to look at the map 1A ¢, where ¢, = (Y71 —1)(¢p?1—7r)--- (YT —
"1 and r = ¢?~! under a generalisation of the map which gave us the
isomorphism. Lastly we use some of the ideas presented to give us a new
way of looking at the ring of degree zero operations on the connective p-local
Adams summand via upper triangular matrices.
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Introduction

This thesis consists of two main results. The first of these gives an iso-
morphism between a group of upper triangular matrices and a specific set
of automorphisms of connective K-Theory. The second takes a particu-
lar automorphism and looks at which matrix this corresponds to under the
isomorphism. Firstly let UsZ, be the group of infinite, invertible upper
triangular matrices with entries in the p-adic integers under matrix multi-
plication. Let ku, be the p-adically complete connective complex K-Theory
spectrum in the stable homotopy category and let ¢ be the Adams sum-
mand relating to it. Denote by Autl, , (¢ Af) the group of left /-module
automorphisms of £ A £ which induce the identity on mod p homology.

Theorem 3.1.3. There is an isomorphism of the form
Ap : UsoZy = Aty g pmoa(€ N D).

The other main theorem of the thesis determines an explicit matrix in
the conjugacy class under this isomorphism of the automorphism 1 A ¥? :
¢ NL€— £AL Here g is an integer which generates the p-adic units Z; and
? is the Adams operation. Let r = ¢?~!.

Theorem 6.4.2. The isomorphism A, can be chosen so that the automor-
phism 1 A ¢Y? corresponds to the matrix

110 00
0r 1 0 0
R=|10072 1 0
00 0 7 1

These two theorems are odd primary versions of theorems of Snaith,
[Sna09, Theorem 3.1.2] and Snaith and Barker, [BS05, Theorem 1.1], which
are both localised at the prime 2. The first of these goes as follows. Let
UZs be the group of infinite, invertible upper triangular matrices with
coefficients in the 2-adic integers, let kus and koo be the spectra in the



stable homotopy category representing 2-adically complete complex and real
connective K-Theory respectively. There is an isomorphism of the form

A2 : UOOZ2 — Aut?eft_ku2_m0d(ku2 VAN kOQ)

where Autloeft_kw_mod(kug A kog) is the group of left kug-module automor-
phisms of kus A koo which induce the identity on mod 2 homology. The
second of these results gives an explicit matrix in the conjugacy class of
the automorphism 1 A ¥3 : kug A kog — kus A koo, where 13 is the Adams
operation.

The isomorphisms A, and Ay are achieved in each case by virtue of the
fact that both £ A ¢ and kus A kos split as infinite wedges of smaller spectra.
In the 2 primary case kus A koo is only used instead of kug A kus because
the splitting of the former is easier to deal with, see [Sna09, Theorem 3.1.6].
In the odd primary case it is useful to split ku, A ku, into p — 1 copies of
£ on both sides of the smash product in order to avoid many copies of the
same information appearing in the result.

This thesis is structured as follows. Chapter 1 introduces all the relevant
background information, standard notation and brief introductions to the
most useful tools which will be used in the rest of the thesis.

Chapter 2 contains an exposition of Kane’s paper ‘Operations in con-
nective K-Theory’ ([Kan81]). The splitting of ¢ A £ into a infinite wedge of
smaller spectra \/,5o¢ A K(n) is a fundamental aspect of the isomorphism
A, and it is very useful to understand how this splitting is constructed and
what properties the ‘pieces’ have. In the paper, all Kane’s results are stat-
edly p-locally. It has been pointed out in other papers, e.g. [CDGMS8S],
that what Kane asserts is only valid in a p-complete setting which we also
discuss.

Once the splitting has been obtained, Chapter 3 establishes the con-
struction and proof of Theorem 3.1.3. This is done by studying maps
between different pieces of the splitting of £ A ¢, i.e. maps of the form
tmn L ANK(m) — £ A K(n). We use the concept of stable isomorphism
classes, introduced by Adams, to determine the stable class of the mod p
cohomology of all the pieces of the splitting. This then becomes the input
data of an Adams Spectral Sequence converging to the p-adic completion of
homotopy classes of maps from one piece of the splitting to another. This
gives us the information that we have a map A, from upper triangular ma-
trices with units on the diagonal to our specific group of automorphisms of
£ N\ £ of the form

Ap : UOOZp — Aut?eft_g_mod(g A 6)

XY Xpmtmn LA\ K@) = 08\ K(0)).

m>=n >0 120

We then establish this map as a group isomorphism.
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Chapter 4 provides some material and calculations required for Chap-
ter 5 which would otherwise break up the flow of the chapter. The main
result is to establish the stable isomorphism class of H*(¢;Z/p) as a B =
Z/p[Qo, Q1]/(Q%,Q3%, QoQ1 + Q1Qo)-module where Qo and Q; are elements
of the Milnor basis of the Steenrod Algebra, namely 3 and P'3 — BP! re-
spectively. This is achieved by looking at a specific action of Qg and Q1 on
H.(¢;Z/p) and calculating their homologies. We finally prove the result by
using and comparing the homologies of H.(¢;Z/p) under @y and @1 with
something called ‘lightning flash modules’, introduced by Adams.

Our aim then is to calculate which matrix, up to conjugacy, 1 A ¢
corresponds to under A,. This is determined by looking at its action on
7« (¢ A £) modulo torsion. In Chapter 5 we find a p-adic basis for gz(riﬁﬁz
using elements introduced in [CCWO1] as a basis for m.(K A ku) ® Z,).
We adapt this basis in an appropriate way following a method of Adams
[Ada95, Chapter 17]. We then go on to explore various properties of this

basis. These include how it relates to the splitting of (AL into \/, 5o ¢AK(n),

what each homotopy group % is precisely and what degree of torsion

is actually being quotiented out. Finally in this chapter we choose generators
for some of the individual homotopy group of each piece of the splitting and
find where they would be represented in a spectral sequence converging to
the homotopy of that piece. We find how to express these generators in
terms of our basis and what effect the induced maps on homotopy (¢ n )« :
(L AN KC(m)) — 7 (¢ A K(n)) have on them.

In Chapter 6 we investigate the effect of the induced map (1 A ¥9),
on our basis elements. Recalling the definition of A, we look at the effect
the induced maps of 1 A ¥9 and Zm>n Xpn,mtmn have on the individual
homotopy groups. Since we know how to express these in terms of our basis
and what effect the maps (tm.n)« and (1A1)?), have on our basis elements we
can equate coefficients and determine the form of the entries in the required
matrix. We then show that this resultant matrix can be conjugated to obtain
the matrix R in Theorem 6.4.2.

Finally Chapter 7 deals with using this knowledge to simplify the study
of topological problems by translation into matrix algebra. The first appli-
cation looks at the map

dn =W = 1) —7) - (@ =" UAL S LNL

and the second uses the ideas of the thesis to present a new way of looking at
the ring of degree zero operations on the connective p-local Adams summand
(9(¢) as a subring of the group of upper triangular matrices with entries in
the p-local integers.

It turns out that there are a few small errors in the published version of
the 2 primary case which I will point out. The splitting of kug A kos used
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in [Sna09] and [BS05] is as follows,

A F,
L: \/ku2/\F4k — kug A koo,

k>0 4k—1
where
9253 ~ \/ Fy,
B Fi_
jop LRl

is the Snaith splitting [Sna74]. It turns out that this splitting is not actually
correct. Instead of the pieces Ff:f - integral Brown-Gitler spectra for the

prime 2 should be used, see [Mah81], [Shi84]. Any other discrepancies will
be pointed out as and when they occur during the course of this thesis.

The odd primary case is not substantially different from the 2 primary
case, the main story is basically the same in that we have analogous results.
However there are many differences in the specifics, it is not simply a case
of replacing 2 by p. This leads to the details of the algebra and proofs being
different and this is where the original work in this thesis lies. Firstly, the
pieces of the splitting are different in the odd primary case to the published
version of the 2 primary case as I have detailed above. Integral Brown-
Gitler spectra for odd primes are needed to split £ A £. Secondly, in the odd
primary case it made sense to split the copy of ku on both sides of ku A ku
into p — 1 copies of £ to avoid dealing with many shifted copies of the same
information.
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Chapter 1

Background Material

The material in this section is a summary of the background material needed
for later chapters. Throughout this thesis we will be working in the category
used by Adams in [Ada95], Boardman’s stable homotopy category. We will
denote based homotopy classes of maps from a based space X to a based
space Y by [X,Y]. Let SX denote the reduced suspension of a based space
X. We will make it clear when we are working with not necessarily based
spaces and will denote the set of unbased homotopy classes of unbased maps
by [X,Y].

1.1 Spectra and localisation

We begin with some preliminary definitions regarding spectra from [Ada95,
Part III] and [Rud98].

Let a CW-spectrum E be a sequence {E,,, s, } for n € Z where each E,
is a CW-complex with a map s, : SE, — E,y; such that s,(SE,) is a
subcomplex of Fy41.

A subspectrum of E is a spectrum F' such that F), is a subcomplex of E,,
for all n and the restriction of the structure maps s, map SF, into Fy 1.

A subspectrum F' C E is cofinal in E if for each cell e € F,, there exists
m such that S™e is in Fy .

A function from a spectrum {E, s, } to a spectrum {F,¢,} is a sequence
of maps f, : B, — F,, such that f,41 05, =1t,0S5f, for all n.

Definition 1.1.1. Consider the set of all cofinal subspectra £/ C E and
functions f’ : E' — F. Two such functions ' : E' — F and f” : E" — F
are equivalent if there exists a third cofinal subspectrum E” C E contained
in E' and E” such that the restrictions of f' and f” to E" coincide. This is
an equivalence relation. A map from F to F' is an equivalence class of such
functions.

Definition 1.1.2. Let I be the unit interval with a disjoint basepoint. For



a spectrum E = {F,, s, }, define the cylinder spectrum to be have nth space
(CYl(E)),, = I'" A E, and maps (IT A E,) A S* EALLNY SN E, 1.

For a spectra E, F, two maps fo, f1 : E — F are homotopic if there is
a map h : Cyl(E) — F such that fy = hip and f; = hi; where ig,i; : E —
Cyl(F) are injections of E into the two ends of the cylinder.

This is an equivalence relation. We will denote homotopy classes of maps
of degree n, i.e. maps which lower the degree by n, between spectra E and

F by [E, Fl,.

Definition 1.1.3. A stable cell of a spectrum is a sequence of the form
{e,Se,---,S¥e,---} where a cell e of E, is not the suspension of a cell in
E,_1. For such a cell, if e of E,, has dimension d then the dimension of the
stable cell beginning with e has dimension d — n.

Definition 1.1.4. A CW-spectrum F is finite if it has finitely many stable
cells.

This is equivalent to saying that a spectrum FE is finite if it is equivalent
to the (de)suspension of the suspension spectrum of a finite CW-complex
X, ie. E=Y"k¥>®X for some k € Z.

Definition 1.1.5. A spectrum F is of finite type if it has finitely many
stable cells in each dimension.

There exists a similar concept of a smash product for spectra as for CW-
complexes however it is rather tricky to define. For a complete construction
of smash product of two spectra see either [Ada95, Part III, Chapter 4] or
[Swi02, Chapter 13]. It is enough for us to know the properties of the smash
product. For spectra E and F' there exists another spectrum E A F such that
EAF is a covariant functor in each argument, it is associative, commutative
and has the sphere spectrum as a unit on each side up to natural equivalence.

Let G be an abelian group. There exists a spectrum MG, known as a
Moore spectrum with the following properties.

0 ifi<O
W(MG)_{ G ifi=0
and
G ifi=0
Hi(MG)_{ 0 ifi>0.

Definition 1.1.6. We define the spectrum E with coefficients in G as
EG =FEANMQG.

Given spectra E and F we define the E-homology and F-cohomology of
F by



o E;(F)=I[S,ENF],
e Ei(F)=IF,E]_;

A spectrum E is a ring spectrum if it has a multiplication map p :
ENE — FE and a unit map n : S — E such that the multiplication is
associative and unital in the same way as a standard ring, i.e. the following
diagrams commute up to homotopy.

pAl
EANEANE EANE EANE
| P 2o
Inp M H
EAE E SANE——>FE<——EAS

n

For spectra E = {E,,, s, } and F' = {F,,, t, }, the wedge of the two spectra
is a the spectrum E'V F with nth space (F V F),, = E,, V F,, and maps

SnVin

(EVF),AS' = (E,VF,)AS' = (E,ASY)V(F,AS") 2% B, iV = (EVF) i1

The functor ¥ : [E, F| — [EE,XF] is an equivalence. We can use this
to define the concept of addition of maps between spectra.

Definition 1.1.7. Let E, F be spectra and let v : S — S? Vv S? be the
pinch map. We can turn [E, F| into an abelian group as follows

[E,F]®[E,F] = [X*E,Y°F| @ [Z2E, X*F]
=[S’ ANE,X*F] @ [S? A E,%*F]
=[(S? ANE)V (S*AE),2?F]

= [(§% v S*) A B, %?F)

WD, [$2 A B, X2F) = [E, F).

We will now go on to think about a certain type of spectrum known as
a connective spectrum.

Theorem 1.1.8. For a spectrum E there exists is a diagram, called its
Postnikov Tower,

1 E 1 E 1 E 1

Tn+1l Tni Tn—ll

e E(n+1) Pn+1 E( Pn E(n_]_) I

n

which commutes up to homotopy and for each n € Z

(’i) ﬂ'l(E(n)) =0 fori>n,



(1) (Tn)s : mi(E) — mi(Ey,)) is an isomorphism for i < n.

Every spectrum E has such a Postnikov Tower and each spectrum E,,) is
unique up to equivalence (i.e. any other spectrum satisfying these conditions
has a map to E,) which induces an isomorphism on homotopy). Consider
the cofibre sequence

F4E™ B,

This gives us a long exact sequence in homotopy

7 (F) LN T«(E) M) T (En))
and so m;(F) = 0 for i < n.

Definition 1.1.9. A morphism ¢ : F' — E such that m;(F) =0 for i < n
and ¢, : m;(F) — m(E) is an isomorphism for ¢ > n is an n-connective
covering of the spectrum E.

A connective covering is a (—1)-connective covering. An n-connective
covering exists for every n and every spectrum E and these are unique up
to equivalence.

In this thesis we will need certain spaces and spectra to be localised
with respect to homology theories (mainly HZ/p,.). This was defined by
Bousfield in [Bou75] and [Bou79], as follows.

Theorem 1.1.10. Given a generalised homology theory E,, there exists a
functor Lg from the homotopy category of based CW-complezes to itself and
a map n:1— Lg such that

12

(i) the map nx : X — Lg(X) induces a homology isomorphism E.(X)
E.(Lg(X)) and

(ii) for any map f: X — Y inducing a homology isomorphism E,(X) =
E.(Y) there exists a unique map r:Y — Lp(X) with rf = nx.

Theorem 1.1.11. Given a spectrum E, there exists a functor Ly from the
stable homotopy category of CW-spectra to itself and a map n : 1 — Lg such
that

(i) the map na: A — Lg(A) induces an E.-homology isomorphism and

(ii) for any map f : A — B inducing an E.-homology isomorphism there
exists a unique map v : B — Lg(A) with rf =na.

Definition 1.1.12. These are called E.-localisation functors.

It follows from the universal property satisfied by Lg that any other
functor with this property is canonically equivalent to Lp.
We will need to be able to compute these localisations for certain con-

nective spectra. In order to do this we will need a few more results from
[Bou79).



Definition 1.1.13. A group G is uniquely p-divisible if for every element
g € G the equation pxr = g has exactly one solution for x € G.

Definition 1.1.14. Two abelian groups G1 and G2 have the same type of
acyclicity if

(i) Gy is a torsion group if and only if G is a torsion group,

(ii) For every prime p, G is uniquely p-divisible if and only if G5 is uniquely
p-divisible.

Notation 1.1.15. Denote the p-local integers by Z,), the p-adic numbers
by Q, and the p-adic integers by Z,. The field of integers modulo p will be
denoted by Z/p.

Let E be a connective spectrum and let G be an abelian group which
has the same type of acyclicity as @,m,(E). In our case we will be looking
at B = HZ,) or HZ/p which have m.(HZy,)) = Z,) and m.(HZ/p) = Z/p.
Thus G will be either Z,) or Z/p respectively. The following theorem is
[Bou79, Theorem 3.1].

Theorem 1.1.16. For E and X connective spectra, Lg(X) ~ Lyqa(X).
The following are the two main examples we will need.

Proposition 1.1.17. In the case of the p-local integers, localising with re-
spect to the Moore spectrum MZ ) is an example of a smashing localisation
1.€.

LMZ(p) (X) ~ XA LMZ(p)(S) ~ XA MZ(p)

where S is the sphere spectrum. Also (LMZ@) (X)) =Zyp e X.
A spectrum X is MZ -local if and only if the groups (X)) are uniquely
q-divisible for all primes q # p.

Proposition 1.1.18. Localisation of a spectrum X with respect to the Moore
spectrum MZ/p is the function spectrum F(X"1MZ/p>, X). Here we de-
note by X~ MZ/p> the desuspension of the Moore spectrum MZ/p™>. If the
homotopy groups m.(X) are finitely generated then T«(Lyzp(X)) = Zp® X.

If a spectrum is localised with respect to HZ,) we will call it p-local,
if a spectrum is localised with respect to HZ/p we will call it p-complete.
The majority of this thesis will be in a p-complete setting, however there is
a small section at the end which uses a p-local setting.

One important result for us will be the E,-Whitehead Theorem, [Bou79,
Lemma 1.2].

Theorem 1.1.19. If spectra X and Y are Ey-local and f : X — Y is an
E.-equivalence then f is a homotopy equivalence.



1.2 The Steenrod Algebra

The Steenrod Algebra is a well known object in Mathematics. The main
references I have used are [Hat02], [MT68] and [Mil58].

Definition 1.2.1. An unstable cohomology operation of type (m,n) for
ordinary cohomology with coefficients in a group G is a function

Ox : H"(X;G) - H"(X; Q)

for each topological space X, fixed integers m,n and group G, which is
natural for any map of spaces f: X — Y, i.e.

H™(Y:G) -2 HM (Y G)

| |
H™(X:G) -2 B (X G)
commutes. In other words, 6 is a natural transformation from H"(—;G) to
H™"(—; Q).

Some of the most important cohomology operations are Steenrod Squares
and Powers. These are in fact stable cohomology operations, i.e. they
satisfy a compatibility with suspension which will be detailed in the following
definition. I will only define Steenrod Powers here as Steenrod Squares are
the corresponding operations when p = 2 which we will not need.

Definition 1.2.2. There exist cohomology operations acting on ordinary
mod p cohomology for p odd called Steenrod Powers of the form

Pl H(X;2/p) — H™ 0=V (X, Z/p)
for all ¢ > 0 and defined for all n, which satisfy the following properties.
1. Additivity: P'(z 4+ y) = P(z) + P'(y).
2. Cartan Formula: P'(z — y) = 3, P/ (z) — P (y).

3. Stability: Pi(o(z)) = o(P(x)) where the map o : H*(X;Z/p) —
H" (XX 7/p) is the suspension isomorphism.

P
4. P(x)=aP =% — - — 2 if 20 = |z,



6. Adem Relations:

papb — Z(_l)a-l—j <<p - lg(i ;jj) - 1) patb—ipi

if a < pb, and

anpb _ _1\a+j (p—1)(b—13) a+b—jpj
S Vs i R

a—pj—1

. Z(_1>a+j+1 <(P —1)(b—-j) - 1> zpa+bfjﬁfpj
J

if a < pb, where (8 is the Bockstein homomorphism associated to the
short exact coefficient sequence

0—>Z/;0£>Z/p2 —Z/p — 0.

We can define the Steenrod Algebra for each odd prime as follows.

Definition 1.2.3. The mod p Steenrod Algebra A, is the non-commutative
polynomial algebra over Z/p in 8,P',P2,... quotiented by the two-sided
ideal generated by the Adem relations and the relation 32 = 0. This is a
graded algebra where |P!| = 2i(p — 1) and |g] = 1

Theorem 1.2.4. For every space X, H*(X;Z/p) is a graded left-module
over A, for all p.

Theorem 1.2.5. For any p, A, is the algebra of all stable cohomology op-
erations for ordinary mod p cohomology.

Definition 1.2.6. An element a € A, is decomposable if it can be written in
terms of operations in A, of lower degree and is indecomposable otherwise.

The indecomposable elements of A,, are 3 and PP for k > 0. So as an
algebra A, is generated by 3 and PP for k > 0.

Definition 1.2.7. In A, a sequence 3P 352P% . is said to be admissible
if ij > €541 + pijy for all j = 0.

Note that a sequence being admissible means that nowhere in the se-
quence does the left-hand side of an Adem relation appear, therefore, in
effect, it cannot be simplified in any way.

Theorem 1.2.8. The admissible monomials in A, form an additive Z/p
-basis for A, for each prime p.

Theorem 1.2.9. The Steenrod Algebra A, for each p is a Hopf algebra.

7



This means that A, has a comultiplication map A : A, — A, ® A, which
has the following effect on the operations

APH) = > PP and A(B)=B®1+14.
it+j=k

Corollary 1.2.10. The dual Steenrod Algebra Ay = Homg,,(Ap, Z/p) for
each p is also a Hopf algebra.

Although infinite, both A, and A} are finite-dimensional in each degree.
Since taking the dual of either algebra is done degree-wise there are no
problems with doing so.

So using that H, and H* are dual with field coefficients, the left action
of A, on H*(X;Z/p) can give us a right action of A, on H,(X;Z/p) via

(za,y) = (z, ay)

fora e Ay, x € H(X;Z/p) and y € H*(X;Z/p). Here (z,y) = 2(y) means
evaluating the function x on the element y when both are in the same degree
and zero otherwise. This gives us a map

At H(X3Z/p) ® Ay — Hu(X3Z/p)
which we can dualise to obtain a coaction map
N HY(X;Z/p) — H*(X; Z/p)©A

where ® denotes the completed tensor product, used to avoid difficulties
with infinite sums. We will always in practice deal with finite complexes or
complexes of finite type so will never need to worry about infinite sums.

In order to describe some elements of A7 we will consider the orbit space
of Z/p acting freely on the unit sphere $2"*! c C" by rotating each factor of
C in C" by an angle of 2?”. This is known as a Lens space which we denote
by Ly, and is a finite complex. This can be considered as the (2n + 1)-
skeleton of the Eilenberg-MacLane space K(Z/p,1) = g—;, we use the Lens
space here to avoid dealing with infinite sums. The mod p cohomology ring
of K(Z/p,1) is given by

H*(K(Z/p,1);Z/p) = Aa) ® Z/p[d]

where |a| = 1, |b] = 2 and b = f[a and A denotes an exterior algebra
over Z/p. The cohomology structure of the Lens space is the same but
truncates at degree 2n + 1. Let My € (Ap)gpr_o be preiprt Tt prpl
then Mpb = v" . For any other monomial ¢ in the operations 8 and PP for
i >0, 6b=0. Similarly (MyfB)a = b*" but for 6 any other monomial in the
same operations, fa = 0.



The action of the map A\* : H*(Lypp; Z/p) — H*(Lnp; Z/p) ® A;, on the
elements a and b is given by

/\*(a):a®1+b®ro+bp®7—1_|_..._|_bﬂ®7r

and
NO)=bR14+P Q&+ +0 @6,

where p” < n is the largest such power of p. This defines elements 73, €

(A})opr—1 and & € (Ap)gpk_o-
Theorem 1.2.11. A; = A(ro, 71, ) @ Z/plér, &ay -+ -]

2p

It can be shown that

if M = M,
if M is any other admissible monomial,

=1 g

and
1 if M =DM,B

(7, M) = { 0 if M is any other admissible monomial.

Standard sign conventions for graded algebras mean that the relations
between the elements are as follows:

&&= &&i
&t = 76
TZ‘Tj = —TjTZ’.

Let R = (r1,7r2,--+) be any infinite sequence of non-negative integers

with only finitely many non-zero terms and let E = (g9,1,---) be any
infinite sequence of zeros and ones with only finitely many ones. Let ¢% =
e . oand TF = 1507 L

Theorem 1.2.12. The set {T5¢8} forms an additive Z/p-basis for Aj.
Let p(E, R) € A, be the dual element to 7E¢E, i.e.

o |1 fE=FE and R=R
<p(E7R)7T § >_{ 0 otherwise.

Notice that p(0,(r,0,0,---)) = P". Let Qx be the element dual to 7,
then Qo = p((1,0,0,---),0) = B. The elements Qi for k& > 0 can be
shown to satisfy the inductive property Qri+1 = [Ppk,Qk] where [z,y] =
Ty — (—1)"”Hy‘yaﬂ is the commutator.

Lemma 1.2.13. The elements p(E, R) form an additive basis for A, dual
to {TFeR),



The elements Qy € (Ap)q,r_1 generate an exterior algebra.

Definition 1.2.14. Let B C A, be the subalgebra generated by Qo and
Q1.

Definition 1.2.15. The left action of A, on itself by using the multiplica-
tion, u, gives us a right action of A, on Aj given by

(fa,y) = ([, ay)
where f € A = Hom(Ap;Z/p) and a,y € A,.

This can be expressed in many different formulae, one that will be use-
ful to us later is the following. We use the notation Af = Xf’ @ f” for
comultiplication in Aj.

Proposition 1.2.16. The right action of A, on A} given above can be
expressed as

b AL @A, - A
f@ar S (=0l (s g p.

Proof. Using the fact that the comultiplication A in Aj is dual to the multi-
plication p in Ay, and that because Aj is finitely generated in each degree we
have Hom(A,, Z/p) ® Hom(A,, Z/p) = Hom(A, ® A,,Z/p), so the following
diagram commutes.

AL © Ay © A, 1en Ar® A,

l(&

Z[p

Using the upper route through the diagram sends f ® a ® y to (f,ay),
which is the definition of our right action of A, on Aj. We can express
this in another equivalent formula by using the lower route through the
commutative diagram, i.e. (fa,y) = (f,ay) can be expressed as

A®1®1l

AR AR A @Ay —> (A, @A) @A, ® A, L)

fRavy— A(f)Ray=> feof @avy
= O fefaoy)=> () ay (" y). O

This can also be viewed in another equivalent way which we will also
make use of later.

Definition 1.2.17. There is a left action of A, on A given in [Sch94, §2.5]
¢: AR A — A
a@ f o Y (=)D a)

10



Let x denote the canonical anti-automorphism of A7.

Proposition 1.2.18. There is a left action of A, on A, given by

Ap @ A% 22X A, @ A A - A
a8 f > a® > S~ D (F ) i (1)1l (7, 0 7,

where the bar denotes the image of an element under the anti-automorphism
x of Aj. This can be made into the right action of A, on A} given in
Proposition 1.2.16 by using x on a € A,.

Proof. Using the anti-automorphism x on A7 both before and after the left
module action of ¢ still gives you a left module action. We also use the fact

that o
N Fefr=> (-nire§
so when we apply ¢ to a ® f € A, ® A we get
Z(fl)lf”l(\f’lﬂal)<f”,a>f’ — Z(fl)|f”\(|f’\+|a\)+\7||7\ F.a)f"
— Z If”Hal (F.a)f".

Since for any a € A, and f € A% we have (a,b) = (a,b), the above left
action can be simplified to

Ay @ A — AS
e f o S (1)1l (g ay g

Using the anti-automorphism to give us a right action of A, on A} we get

A, @A, = A
Foan YOI a) 7 = S e
which is precisely the action v of Proposition 1.2.16. O

1.3 K-Theory and the Adams Splitting

K-Theory

The following material comes mainly from [Ati89] and [Hat04]. In this sec-
tion X is a not necessarily based space, it will be made clear when X has a
basepoint.

Definition 1.3.1. A complex vector bundle of dimension n is a topological
space F together with a map p: E — B for a topological space B such that

11



p~1(b) is a finite dimensional complex vector space and the following local
triviality condition is satisfied. For each b € B there exists an open neigh-
bourhood U of b such that E|y is trivial, i.e. there exists a homeomorphism
h:p Y (U) — U x C" which maps p~1(b) to {b} x C" by a linear map of
vector spaces for all b € U.

We call E the total space, B the base space, p the projection map and
p~1(b) the fibres of the vector bundle.

An isomorphism of vector bundles p; : £y — B and py : By — B,
denoted =, is a homeomorphism h : E; — FEs such that psh = p; which
maps pl_l(b) to py L(b) by a linear isomorphism for each b € B.

We can form the direct sum of two vector bundles over B, p; : E1 — B
and ps : Fs — B, to be the vector bundle over B with total space

E1® By = {(v1,v2) € B1 X Ey : p1(v1) = pa(v2)}

and obvious map F| & Fy — B.

We can also take the tensor product of vector bundles. For p; : £ — B
and po : Fy — B, the tensor product F; ® Fs has total space the disjoint
union of pl_l(b) ®py L(b) for b € B. The topologies of the two original vector
bundles can be combined to give a coherent topology in Fy ® Fo.

Given a vector bundle p : F — B and a map f : A — B there exists
a unique bundle up to isomorphism p’ : f*(E) — A, where f*(FE) is the
pullback of E by f, and a map f' : f*(E) — E such that f’ maps the
fibre in f*(F) over a point a € A isomorphically onto the fibre in E over
the image f(a) € B. We can explicitly write down a pullback bundle as
f*(E)={(a,v) € AXE: f(a) = p(v)} and p’ : (a,v) — a is projection onto
the first factor.

Definition 1.3.2. Let Vect(X) be the set of isomorphism classes of complex
vector bundles over X.

The set Vect(X) is an abelian semi-group with addition given by the
direct sum of vector bundles.

For any abelian semi-group A under @ we can construct the Grothendieck
group of A which is an abelian group. This is formed by taking the quotient
% where F'(A) is the free abelian group generated by the elements of A and

E(A) C F(A) is the subset generated by elements of the form a+a'— (a®a’)
for a,a’ € A.

Definition 1.3.3. Let X be compact Hausdorff. The group K(X) is the
Grothendieck group of Vect(X).

It can be shown that every element of K (X) is of the form [E]— [E'], i.e.
a formal difference of isomorphism classes of vector bundles over X. The
zero element of this group is the class of [E] — [E] for any vector bundle £
and the inverse of the element [E;] — [Es] is [Es] — [E1].

12



Let the trivial vector bundle of dimension n over a based space X be
denoted €". This has as its total space B x C™ and its map p is projection
onto B. For every vector bundle E there exists a bundle E’ such that
E® E' = &" for some n € Ny. So for any element [E;] — [Es] € K(X) there
exists a bundle F3 such that Fo @ F3 = ™, this gives us that [E] — [Es] =
[Er] + [E3] — ([E2] + [E3]) = [E1 @ E3] — [e5] and hence every element of
K (X) can be represented by a formal difference [E] — [¢"] for some n.

Two vector bundles F; and FE5 are said to be stably equivalent, denoted
Ei~ FEs, if B ®e™ = Ey @ e™ for some n. This is an equivalence relation.
It can be shown that two bundles E; and E5 represent the same element in
K (X) if and only if they are stably equivalent.

The tensor product of vector bundles can be extended to formal differ-
ences of vector bundles quite easily i.e.

([Br] = [BE1)([Ba] — [E3]) = By @ By — E1 @ By — By @ B + By @ By

which gives K(X) a commutative ring structure with identity .
A second equivalence relation of vector bundles is given by E; ~ FEs if
Ei1®e™ = Ey @ e™ for some m,n.

Definition 1.3.4. Let X be a compact Hausdorff space, the set of equiva-
lence classes of vector bundles over X under the relation ~ forms an abelian
group with respect to the direct sum of bundles known as the reduced K-
Theory of X, denoted K (X), with identity £°.

Unreduced K-Theory can be thought of as a contravariant functor from
compact Hausdorff spaces to abelian groups using the pullback bundle.
Given a map f : X — Y, this induces a map f* : K(Y) — K(X) by
sending [E] — [E'] to [f*(E)] — [f*(E")] for E and E’ vector bundles over
Y. Similarly reduced K-theory can be thought of as a functor from based,
compact Hausdorff spaces to abelian groups in the same way.

There is a surjection K(X) — K(X) sending E — " to the class of E
under ~ whose kernel is {¢” — " : m,n € Z} = Z. The inclusion of the
basepoint zgp < X induces a map K(X) — K({zo}) = Z which becomes
an isomorphism when restricted to ker(K(X) — K (X)) and so K-Theory

splits as K(X) =2 K(X) & Z.

Theorem 1.3.5. For compact Hausdorff spaces X it can be shown that
K(X) = [X,Z x BU] where BU 1is the classifying space of the infinite
unitary group. For based spaces we have that K(X) = [X,Z x BU] =
Map(7mo(X),Z) x [X,BU]. When X is path-connected this gives us that
K%X) =7 x [X,BU] and K°(X) = [X, BU].

For X a more general space these should be taken as the definitions of
K(X) and K(X).

13



Theorem 1.3.6 (Bott Periodicity). For any based topological space X there
s an isomorphism 3 3
K(X)~ K(5%X).

This can be used to make K-Theory into a cohomology theory. Let
(X,A) be a pair of based compact Hausdorff spaces, then the following
exact sequence can be used to define cohomology groups

K(S?4) = K(S(X/A)) = K(8X) = K(SA) = K(X/A) = K(X) — K(A).

By letting f(({() = K°(X) and using the rules K—"(X) = K(S"X) and
K™(X,A) = K(S"(X/A)) this sequence now becomes

K™2(A) - K YX,A) - K Y(X) = K }(A4) - K°(X,A) - K°(X) = K°(A).

By Bott Periodicity we have that K9(X) = K~2(X) and we can define the
positive side of the theory in a similar way by letting K%(X) = K°(X)
and K2*1(X) = K'(X). A similar process can be performed for unreduced
K-Theory.

Periodic K-Theory is represented by the periodic K-Theory spectrum
K, it has as every even space Z x BU and every odd space U. This spectrum
has coefficient groups

7. (K) = Zu,u™]

where |u| = 2. If we look at the connective cover of K we get the spectrum
ku representing connective complex K-Theory. This has coefficient groups

T (ku) = Zlu).

The Adams Splitting

In this section we will explain that, when localised at an odd prime p, the
spectra K and ku split into a wedge of suspensions of smaller spectra L and
¢ respectively. The following material comes from [Ada69].

Firstly let u : BU x BU — BU be the H-Space multiplication coming
from the direct sum of complex vector bundles and let 7,7 : BU x BU —
BU be projection onto the first and second factor respectively. Consider the
primitive elements of K°(BU) = [BU, BU], i.e. elements a € K°(BU) such
that

p(a) = 71 (a) + m3(a).
Any such a is an operation on K°(X) by composition, looking at primitive
elements guarantees the operations are additive.

We now turn our attention to K-Theory with coefficients in various
subsets of the rational numbers.

Definition 1.3.7. Let R C Q and let

A(R) = {natural additive operations on K°(—; R) for based spaces},

14



A(R) = {natural additive operations on K°(—; R) for based spaces}

and
A(R)g = {a € A(R) : « =0 on K°(S% R) = R}.

Then because we are working with based spaces we have K 0(){ i R) =
R® K°(X;R) so A(R) = R® A(R). Tt can also be shown that A(R) =
R @& A(R)p where the copy of R comes from splitting off Ri where i is the

identity operation.

Proposition 1.3.8. There is a monomorphism
t:A(Ry) — A(R2)

for Ri C Ry C Q.

Proof. We can work out K°(BU; Ry) and K°(BU; Rz) explicitly as follows,
see for example [Cla81]. We have that K°(BU(1)) = Z[z] where z = £ — 1
for ¢ € KY9(BU(1)) the Hopf bundle. Let 1,01, B2,... be the dual basis in
Ko(BU(1)) to the powers 1,z,z%,...in K°(BU(1)). The elements 31, 32, . . .
are polynomial generators for Ko(BU), so Ko(BU) = Z|[B1, B2, - . .]. Now let
~; be the elements dual to 1%, then K Y(BU) is a power series with generators
i, i.e. KO(BU) = Z[y1,72,--.]. So we see that

iv : K%(BU;Ry) = Ri[y1,72,-..] = Ra[y1,72,...] = K°(BU; Ry)

is a monomorphism. The restricted map to the primitive elements A(R;)g =
PK°(BU; Ry) — PK°(BU;Ry) = A(R3)o will also be a monomorphism.
Now we have

A(Ry) = R, & A(R)y)
=R @R & A(R1)o
~ R ® R, ® PK°(BU; Ry)

and similarly for A(R2). The maps between each of the corresponding com-
ponents of A(R;) and A(Rg) are monomorphisms so ¢ is too. O

This means we can look for operations in A(Q) which split K°(—; Q) and
show they also lie in A(Z)) hence splitting K°(—; Z,)) which we denote as
K?..

(p)
The Chern character gives us an isomorphism

ch: K*(X;Q) %’HHQ"(X;Q).

n

p

Let e, be projection from [], H?"(X;Q) onto the 2nth factor

en(ho,h2,~- ?h2n727h2n,h2n+2’” ) — (07 . 70,h2n,07‘ . )
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where h' € H(X;Q). This operation is clearly idempotent in A(Q). Now
for a fixed odd prime p we construct a similar object with one non-zero
coefficient group every 2(p — 1) dimensions. So for a € {0,1,--- ,p—2} and

n=a modp—1let
Ea:Zen.
n

This gives us that
Ea(h07 h27 h47 e ) = (koa k27 k47 o )
where

j2n _ " ifn € a
10 ifn & a.

It can then be shown that the idempotents are defined p-locally.
Theorem 1.3.9. E, € A(Z)).

These operations have the following properties:
(i) E
(i) BoBp =0 a 8.
(iii) >, Eo = 1.
(iv) For z,y € K? )( ) there is a Cartan formula

Eo(zy) = > Ep(z)Ey(y).

Btr=a

This all gives us pairwise orthogonal idempotent operations summing to
1, so we have a corresponding splitting:

p—2
X) 2> BoK{,(X)
a=0

Proposition 1.3.10. The separate pieces have the following properties.

(i) EQK?) is a representable functor by a space BU,, i.e. E, K(p)( ) =
[—, BU,)J.

(ii) For x € EﬁK?p)(X) andy € EVK?p) (X), then zy € E5+7K?p) (X).
(iii) The coefficient groups are

ny Z(p) Zf% c
(p)(S’ )= { 0 otherwise.

16



(iv) ¢ : Eaf(?p)(X) — EQHIN(&)(SQ A X) (the external product with the
0

generator in Elf((p)(SQ)) is an isomorphism.
We can iterate ¢, the above map, p — 1 times to get the isomorphism
EaK(Op)(X) = Ea+(p_1)K?p)(SQ(p_l) AX)= EaK?p)(52(P—1) A X).

Using this periodicity we can extend this to a graded cohomology theory
E? for each « as follows. We define the reduced cohomology groups of this
theory by

0
EaK ) (X)
n -0 1
EoK{, (S A X)
E?0(X) = B K{,) (S*P) A X) = Bo K (X).

We can then define the unreduced version by taking the reduced version on
the desired space with a disjoint base-point, i.e.

EN(X) = ED(X,).

So we see that E* and E} are periodic with period 2(p — 1).
Proposition 1.3.10 (i¢) implies that Ef is represented by a ring spectrum.

Definition 1.3.11. We denote the spectrum representing £ by L and call
this the Adams summand, so Ej(X) = [X, L.

Periodic p-local K-theory has coefficient groups
m(Kp)) = L lu,u™'],
where |u| = 2 and the Adams summand has coefficient groups
(L) = Zy) [uP~t, =P,
The other pieces in the splitting are just suspensions of L;
EQ(X) = EoK{, (X) = E1K(),(S* A X) = E;(X)
which means E{(X) = ¥2EJ(X) and so more generally
Ei(X) =Y E}(X) 2 [X, %?L)..
Hence the spectrum splits:

p—2
~ 27
K = \/ 2L
1=0
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We can also think of the same operations acting on connective K-theory so
a similar result happens in the connective case where we have

p—2

kugp) = \/ £,
i=0

where ¢ is the connective Adams summand.

1.4 Adams Operations

Cohomology operations can be defined for any generalised cohomology the-
ory E by replacing the Eilenberg-MacLane spectrum HG with the desired
spectrum F in Definition 1.2.1. A main example of cohomology operations
are Adams operations on K-Theory. These were first introduced by Adams
in [Ada62] in order to show how many linearly independent vector fields
exist on the sphere S"~!, and subsequently to solve the Hopf invariant 1
problem. The following information has mostly come from [Ati89], [Hat04]
and [Kar78].

Firstly we need to define symmetric and exterior powers on vector bun-
dles.

Definition 1.4.1. Let V be a vector space. The nth symmetric power of
V' is defined to be

SUV)=VE (01 @ @ vy — Vp(1) @+ @ Ug(n) : Vi € V,0 € B).

Definition 1.4.2. Let V be a vector space. The nth exterior power of V is
defined to be

A"(V)=VE (01 @ @ up —8gn(0) (1) @+ @ Up(ny 1 v € V,0 € Byy).

These constructions pass to vector bundles and isomorphism classes of
vector bundles easily. In order to think about these constructions in rela-
tion to K-Theory we need to work out what an exterior power of a formal
difference of vector bundles would be. For vector bundles £ and F' we can
write this as follows

AM(E] — [F]) = Y _(-1)'A"(B)S'(F).

=0

We can use this to define the following power series in K%(X)[¢]

Ai(z) = i AR ()t
k=0
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for € K°(X). From this we can now define the Adams Operations using
the equation

Yula) = 00(a) 15 (g () € KO(X) 1]

where ¢° : K9(X) — K°(X) takes a formal difference [E] — [F] to [¢4m#] —
[4mF] and the dimension of a vector bundle is just the dimension of a fibre
of that bundle, which is locally constant. The kth Adams Operation ¥*(x)
is the coefficient of t* for k € Z.

This definition gives Adams operations on K°(X) for X a compact Haus-
dorff space. It is regrettable that a good reference could not be found for
a construction of the operations ¢* in more generality. All the major ref-
erences on Adams operations construct them for compact Hausdorff spaces
or finite CW-complexes such as [Ati89], [Ada62], [Ada63]. In [AHST71] it
does not discuss the construction of such maps. It is mentioned in [Sul74]
but is approached from a different point of view. These operations can be
constructed for more general spaces and we will now outline a method for
doing so.

For X a compact Hausdorff space, let Vect,,(X) C Vect(X) be the subset
of isomorphism classes of vector bundles of dimension n. Then

Vect,, (X) = ligq[X, Gn(C™)] = [X, BU(n)].

So BU (n) is the representing space for complex vector bundles of dimension
n. We define 1)* on complex n-dimensional vector bundles as above in terms
of exterior powers, this then has the property that if x is a line bundle over X
then ¢*(z) = 2*. By the Yoneda Lemma this gives us a map which we will
denote ¥¥ : BU(n) — BU(n). We have the inclusion BU(n) < BU(n + 1)
given by the addition of the trivial line bundle which is compatible with the
maps . This then gives us a compatible sequence of maps which gives us
a map Y%, : U,BU(n) = BU — BU. We take ¢* : Z x BU — Z x BU to
be idg xng, since Z x BU is the representing space for the functor K° on
based spaces, see Theorem 1.3.5, this gives us the definition of 1* here. In
a similar way to Definition 1.3.7 let

A = {natural additive operations on K°(—) for based spaces}
and let
AT = {natural additive operations on K°(—) for unbased spaces}.

Let X be an unbased space and let X, be the union of X with a disjoint
basepoint. There is an isomorphism A — A™ as follows. Given an operation
a € A, we have ax, : K(X;) — K(X4). We have a natural identification
K%(X,) = K9X) which gives us an operation on K°(X). This then defines
us ¥ on the K-theory of unbased spaces.

These operations have the following properties
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Proposition 1.4.3. (i) ¥*(z + y) = v*(z) + ¢*(y) for all k.
(i1) Y*(zy) = V¥ (x)y* (y) for all k.

(iii) V* (Pl (x)) = o*(z) for all k,1.

(iv) If z is a line bundle then Y*(z) = x*.
(v) For p a prime, YP(z) = 27 mod p.

(vi) For any map f: X — Y, the operations are natural i.e. VF(f*(x)) =
Fr Wk (x).
(vii) For u € K(52"), we have ¥*(u) = k™u for all k.

These operations as defined above are unstable for nearly all k € Z, that
is they are just natural transformations 1* : KO(X) — K9(X). A stable
operation is a family of cohomology operations which commute with the
suspension isomorphisms. The only Adams operations for integral K-Theory
which are stable are 1! = id and ¢ ~! which is complex conjugation. If we
introduce coefficients into K-Theory then this can allow other operations
to become stable. In general for an operation 1* to be stable in K*(—; R),
we need k to be a unit in R. If k is a unit in R, i.e. Z[1] € R C Q then
there is a unique ring spectrum map ¢* : KR — K R such that the following
diagram commutes for all spaces X.

KX)o R—"% L KOX) o R
ul lu
KR(X) —— = KRY(X)

Here KR?(X) = [£*° X, K R] are based maps from the suspension spectrum
of X to the spectrum K R. This process of making an operation 1* stable
is discussed in more detail in [AHS71, Chapter 4].

1.5 The Adams Spectral Sequence

The Adams spectral sequence is a very useful gadget in calculating stable
homotopy groups of spheres, and more generally stable homotopy classes
of maps between spaces. It has many levels of complexity and much has
been written about it over the years. I am not going to explain how it
is constructed in detail as there are quite a few excellent accounts of this
in existing literature, for example [Ada95, Part III, Chapter 15], [McCO01],
[Hat03] and [Koc96]. I will however give an idea of the construction, define
it and outline how to use it, specifically in the way I will use it in later
chapters. The material for this section has come from the above references.
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The construction of the Adams spectral sequence involves producing a
free Ap-module resolution of H *(X;Z/p), for a nice spectrum X. This is
done by using wedges of Eilenberg-MacLane spectra as these are the nearest
thing to having free .4,-module cohomology. This data can then be used to
construct an Adams resolution which is a geometric realisation of the free
Ap-module resolution of H *(X;Z/p). Applying the functor [Y,—]; to the
Adams resolution gives a staircase diagram which allows for the construction
of a spectral sequence.

Theorem 1.5.1. For X a spectrum of finite type and Y a finite spectrum
there exists a spectral sequence of the form

Ey' = Exty (H*(X;Z/p), H*(Y;Z/p))
converging to the p-completion of
Y, X]i—s.
The differentials are of the form
dr . Es’t — Es+r,t+r71
N ' T *
So if we let Y = S, the sphere spectrum, this specialises to
Ey' = Exty (H*(X;Z/p), Z/p) = m—5(X) © Z.
To construct the doubly-graded Ext group first take a left .4,-module
M and form a projective resolution of M, i.e. a long exact sequence of the

form
=P PP —-M-=0

where each P; is a projective 4,-module for ¢ > 0. Then delete M and apply
the functor Hom} (—, V), where N is also a left .Aj,-module and * denotes
the degree of the homomorphism, to get the chain complex

-+« HomY (P2, N) < Hom}y (P, N) - Hom} (Pp, N) « 0.

Taking homology of this chain complex at stage s gives us Extii: (M, N).

An important property of these Ext groups is that they don’t depend on
the resolution taken.

To get from one page of a spectral sequence to another you take homology
at each point with respect to the differential passing through that point. So
each page and its differential determines the next page but not the next
differential, some other information is usually needed to obtain this.

To extract information from a spectral sequence we usually want to know
what the F, page looks like. This can be done easily if the spectral sequence
collapses, this means there exists a natural number R such that once the
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spectral sequence gets to the Rth page all further differentials are then zero
for r > R. From there on taking homology has no effect on the terms of the
spectral sequence so Er = Ep11 =+ = E.

The information you can extract from the F., page of this spectral se-
quence can be used to calculate the p-completion of 7.(X) (in the simpler
case). The terms on the F., page are the quotient groups associated to a
descending filtration of 7, (X) ® Z,, i.e.

(s (X) ® Zp)
Fot(ms(X) © Zp)

S,t ~v
B =

This information hopefully allows you to reconstruct the groups m_4(X)®Z,
however there can be extension problems which might need knowledge about
further structure in order to be solved.

1.6 Spanier-Whitehead Duality

The material in this section is derived and explained in more detail in
[Ada95, Part III, Chapter 5], another good account can be found in [Rav92].

Definition 1.6.1. For a finite spectrum X, there exists a unique finite
spectrum D(X), called the Spanier Whitehead dual of X, such that

[X,Y]. =[S, D(X) A Y],

where S is the sphere spectrum and Y is any other spectrum. This is natural
in both X and Y.

The concept of the Spanier-Whitehead dual is analogous of the concept
of the linear dual of a vector space. If V' is a vector space over a field K,
then its linear dual is V* = Hompg(V, K). The defining property above
corresponds to the property of vector spaces that for any other K-vector
space W, Homg (V, W) 2 Homg (K, V* @ W) = V* @ W.

Example 1.6.2. The Spanier-Whitehead dual of the sphere spectrum is
itself, i.e. D(S) = 5.

There are other corresponding properties between Spanier-Whitehead
duals of spectra and linear duals of vector spaces.

Lemma 1.6.3. The dual of a dual is isomorphic to the spectrum itself
D(D(X)) = X.
Lemma 1.6.4. Taking duals commutes with the smash product

D(X AY) = D(X)AD(Y).
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These two properties can be looked at as the analogues of the following
two properties of finite dimensional vector space duals, V** 2 V and (V ®
W) = V> W

There is another property of Spanier-Whitehead duality which gener-
alises the concept of Alexander duality. For a finite CW-complex X, we can
embed X into S™ for some n € N. Alexander duality then states that

Hy(X) & H™7H(S™\ X)

where S™ \ X is the complement of X in S™.

Because we are dealing with finite spectra we can view the spectrum X
as the (de)suspension spectrum of a finite CW-complex X’. Following the
method above we can embed X’ in S™ and then D(X) is just a suitably
shifted version of the suspension spectrum of S\ X’. We get an analogous
property to Alexander duality; for any generalised cohomology theory F,

Ey(X) = E*(D(X)).

We now look at how the action of the Steenrod algebra behaves with
respect to Spanier-Whitehead duality.

Proposition 1.6.5. For a finite spectrum X, an element a € A, acts on
H™(D(X);Z/p) as the dual of x() in A}, would act on H.(X;Z/p), i.e.
the following diagram commutes where |a| = a.

H~"™(D(X); Z/p) —*> H-"t%(D(X); Z/p)

| |

Hn(X§Z/p) Hn—a(X;Z/p)

a)*

We will only ever use this when looking at the action of the subalgebra
B, see Definition 1.2.14. Since x(Qo) = —Qo and x(Q1) = —Q1, we have
that H *(DX;Z/p) is isomorphic as a left B-module to H,(X;Z/p) where
Qo and Q7 act (up to sign) via their duals.

As stated in Definition 1.6.1 in order to have the Spanier-Whitehead
dual of a spectrum X you need X to be finite. We will now look at a
particular method of showing a spectrum is finite which we will use later
on, this material comes from [BMO04, Section 3].

Definition 1.6.6. A spectrum is bounded below if there exists n € Z such
that m;(X) =0 for i <n (X is (n + 1)-connected for some n € Z).

The main result we will need later is the following.

Proposition 1.6.7. A bounded below p-complete spectrum with finitely gen-
erated mod p homology is the p-completion of a finite spectrum.
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It is stated in [BMO04, Remarks 1.2(v)] that a finite type p-complete
spectrum, i.e. one with mod p homology finitely generated in each degree,
is the p-completion of a finite type p-local spectrum, i.e. one with p-local
homology finitely generated in each degree. So if X is a finite type p-
complete spectrum then X = &), for a finite type p-local spectrum X, where
A&, denotes the p-completion of the spectrum &'. If the original spectrum X
is bounded below then we can take X to be bounded below also.

Using the proof of [BM04, Theorem 3.3] it is possible to construct some-
thing known as a minimal spectrum Y and a homotopy equivalence ¥ — X
such that if X has finitely generated p-local homology, then Y will have
finitely many p-local stable cells corresponding to the generators and re-
lations in H.(X;Z,)). Hence we have a model for X' as a p-local finite
spectrum.

We know from Proposition 1.1.17 that p-localisation is an example of a
smashing localisation, so we can deduce that a spectrum built from finitely
many p-local cells is the p-localisation of a finite spectrum. This means our
finite p-local spectrum Y is the p-localisation of a finite spectrum Z and so

we now have that X is equivalent to the p-completion of the finite spectrum
Z.

1.7 Thom Spectra

The material in this section is mostly from [Rud98].

Notation 1.7.1. We will denote a homotopy from a space X to a space B
as g : X — B, which is a family of maps for ¢ € I such that g,(z) = g(x,t)
where g : X x I — B is continuous.

Definition 1.7.2. A map p : E — B has the homotopy lifting property with
respect to a space X if given a homotopy ¢g; : X = Bandamap go: X — FE
which lifts gg, i.e. pgo = go, then there exists a homotopy g; : X — E which
lifts gt.

Definition 1.7.3. A fibration is a map p : F — B which has the homotopy
lifting property with respect to all spaces X. The spaces p~(b) C E are
called the fibres.

Example 1.7.4. The simplest example of a fibration is 6", the trivial fi-
bration of rank n. This is given by the projection map onto the first factor
X x C" — X. Here all the fibres are a copy of C".

Definition 1.7.5. (i) An F-fibration for a topological space F'is a fibra-
tion £ such that all the fibres are homotopy equivalent to F.

(ii) An (F,x)-fibration is an F-fibration { with a section s¢ such that the
fibres (Fy, s¢(x)) are pointed homotopy equivalent to (F, ) for all z in
the base space of &.
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Definition 1.7.6. A universal F-fibration is an F-fibration vp = {pp :
Er — Br} such that every F-fibration over a CW-complex X is equivalent
to the pullback f*yp for some map f : X — Bp, and two such maps
f,g9 : X — Bp are homotopy equivalent if and only if f*yr and g*vyp are
equivalent.

The space Br is the classifying space for F-fibrations.

It can be shown that for all spaces F', yr exists. Furthermore Br can be
chosen to be a CW-complex which is unique up to homotopy equivalence.

Definition 1.7.7. Let F,,-objects be (S™, x)-fibrations. These are classified
by a space B(gn ) denoted BJF, and the universal F;,-object is denoted .

Let BF, be the telescope (the homotopy direct limit) of the finite se-
quence {BF; — ... = BJF,}, this is a subcomplex of BF, the telescope
of the infinite sequence {BF; — BFy — ...}. The set {BF,} gives an
increasing filtration of BF. Because B.JF, is homotopy equivalent to B.JF,,
the universal F,-object 7% is also an F,-object over BF,.

Definition 1.7.8. A stable F-object o over X is a map f: X — BF. The

stabilisation of an Fp-object a« = {f : X — BJF,} is the map X EN BF, —
BF.

Definition 1.7.9. Let o« = {p : Y — X} be an F,-object with section s.
The Thom space of « is defined to be T'(a) = Y/s(X).

Every morphism ¢ : & — 8 of F,-objects induces a map T'(¢) : T'(a) —
T(B) so T is a functor from Fy,-objects to spaces.

Theorem 1.7.10 (Thom Isomorphism Theorem). In the case of spherical
fibrations, for every abelian group G and every i there are isomorphisms

Hi(X;G) = Hiyn(T(); G)
and ' N

H'(X:G) = H™(T(); G)
where oo = {p: Y — X} is an F,-object.

For a CW-complex X, let « = {f : X — BF} be a stable F-object. Let
X={XoC Xy C--CX,C--} bea CW-filtration of the space X such
that U,X,, = X and f(X,) C BF,. Let f,: X,, — BJF, be the restriction
of the map f, i.e. fu(x) = f(x) and let (" = fr(v%).

Proposition 1.7.11. If i, : X,, — X1 is the inclusion then i (¢"T!) =
oot
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Definition 1.7.12. We define the Thom spectrum
T(X,0) ={T(C"), sn},
the maps s, are as follows
S =TTy, v+ ST(C") = T(C" @ 6) — T(C™)

where I; cn+1 : 05 (¢"T) — ("*! s the canonical map associated to the
pullback.

The homotopy type of a Thom spectrum does not depend on the fil-
tration used so this can be left out of the notation and we can just write
T(X,a) ~T(«a).

If a ={f:X — BFy} is an Fi-object and ay is its stabilisation then
the nth term in T(ag) is T(a ® 0" %) for n > k. This means that the
nth term in the Thom spectrum Tj,(as) = X" *T(a) and so there is an
isomorphism

T(ogt) = B7F8%T(a)

and we have that the Thom spectrum is equivalent to the (de)suspension of
the suspension spectrum of a CW-complex.

1.8 Kiunneth Formulas

This is a general term for a formula which links the (co)homology of a
product space to the (co)homology of the two factors.

In the case of ordinary singular homology we have the following result
(see [Hat02, Theorem 3B.6]).

Theorem 1.8.1. If X and Y are CW-complexes and R a principal ideal
domain then there are natural short exact sequences

0— H.(X;R)® H.(Y;R) — H.(X x Y; R) — Tor,(H.(X;R), H.(Y;R)) = 0
which split.

Corollary 1.8.2. When the coefficients are taken to be a field F' the Tor
term is zero and so

H.(X;F)® H,(Y;F) = H (X x Y; F).

We have a corresponding result in cohomology giving us that for F' a
field
H(X;F)@ H(Y;F) 2 H (X xY; F).

This style of formula can be generalised to other (co)homology theories,
for example in [Ati89, Corollary 2.7.15], Atiyah gives a Kiinneth formula for
K-Theory. The case for a general ring spectrum E can be found in [Ada95]
and [Swi02, Theorem 13.75] and is as follows.
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Theorem 1.8.3. Let E be a ring spectrum and X and Y spectra.

(i) If E.(X) is a flat right E.(S)-module or E.(Y) a flat left E.(S)-module
then
E(X) ®p, 5 E(Y) = E(X AY),

(ii) If E*(X) is a finitely generated free right E*(S)-module or E*(Y) a
finitely generated free left E*(S)-module then

E*(X) @ p.(s) B (V) = B (X AY).

As explained in [Ada95], the flatness condition is satisfied in the cases
we will need it for e.g. HZ/p, K, S.
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Chapter 2

Kane’s Splitting

2.1 Introduction

Here I will give an exposition of [Kan81] in order to provide the background
material necessary for the following sections.

The main result of [Kan81] is the following splitting of ¢ A ¢ involving
the finite spectra K (n), where we use the notation ¢ to mean the p-complete
Adams summand.

Theorem 2.1.1. There is a homotopy equivalence of the form

(AL~ N\ S (n).

n>0

The splitting is constructed by Kane in a p-local setting i.e. using Bous-
field localisation with respect to the homology theory HZ,. During the
construction of the spectra K (n), Kane asserts that there is a filtration of
the space Q253(3) which induces a certain filtration on its homology. It
has been pointed out in [CDGMS88] that they do not have a proof of this
unless the space is localised with respect to mod p homology. We will pro-
ceed by localising spaces with respect to mod p homology where stated and
interpret the splitting as a statement about p-complete spectra rather than
p-local spectra. Where results from [Kan81] are quoted, we will actually be
quoting the p-complete versions of these results. A different interpretation
of the p-local splitting of ¢ A £ in terms of minimal Adams resolutions is
given in [Lel84] however this relies on the result of Kane’s splitting rather
than being an alternative splitting proved from scratch.

2.2 Construction of the Spectra K(n)

The spectra { K (n)},>0 are certain Thom spectra known as Integral Brown-
Gitler spectra. The 2-primary versions were first introduced by Mahowald
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in [Mah81] for the 2-local splitting of ko A ko. The odd primary versions of
them are given in [Kan81] however a more explicit and detailed account of
the construction of these spectra is given in [CDGMS88] and [Kna97, Chapter
3].

We have an algebra isomorphism

H,.(Q%S%.Z/p) = Aag, ay,...) @ Z/plby, ba, .. ]

where |a;| = 2p° — 1, |b;] = 2p' — 2 and A denotes an exterior algebra. There
is a weight function on monomials in H,(Q2S%;7Z/p) given by

wt(a;) = wt(b;) =p* and  wt(ab) = wt(a) + wt(b).

This filtration can be realised at space level giving an increasing filtration
F(9283) such that H.(F,(Q2S%);Z/p) C H.(Q2S3;Z/p) is the span of
monomials of weight less than or equal to n.

Let S3(3) be the 3-connective cover of S so that 7;(S3(3)) = 0 for i < 3
and 7;(S3(3)) = m;(S3) for i > 3. There is a homotopy fibration

0253(3) - 0283 - St

which splits as a product giving Q253 ~ Q253(3) x S}. Since we have
H (Q°S%Z/p) = H.(2*S°(3);Z/p) ® Hi(S";Z/p) and H.(S";Z/p) = Z/p
in degree 1, we know that

H,(Q2S3(3); Z/p) = Alay, as,...) @ Z/plby, by, .. ]

which is the span of monomials of weight divisible by p. The filtration of
0252 induces a filtration of H,(225%(3);Z/p) given by

Fu(H (Q°8%(3); Z/p)) = Ho(Fo(Q*S°); Z/p) 0 H(Q*SP(3); Z/p),

the span of monomials of weight divisible by p and less than or equal to
n. In [CDGMS8S] it is stated that they do not know of an argument for this
filtration being induced by an actual filtration of the space Q253(3), as Kane
states this but never proves it. An argument is given in [CDGMS8] for this
happening when the spaces are localised with respect to mod p homology.

Recall that X, denotes Bousfield localisation of a space X with respect
to the homology theory HZ/p [Bou75].

Definition 2.2.1. Let the space A,, be defined by the homotopy fibration
An = (Fpns1(Q225%)), = 5,
where the second map is the HZ/p-localisation of the composite of the maps

Fpn+1(228%) — Q%83 — st
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By [Bou75, Proposition 12.7] this means that A,, is HZ/p-local. The
following theorem is proved in [CDGMS88, Theorem 1.3].

Theorem 2.2.2. The homotopy fibration of Definition 2.2.1 is equivalent
to a product fibration and H.(An;Z/p) = Fon(H.(Q2S3(3);Z/p)) hence
H.(Ayn;Z/p) is the span of monomials of weight divisible by p and less than
or equal to pn.

In [Mah79, 2.6, 2.7] Mahowald constructs a spherical fibration £ over
QQSI‘? which, when the Thom space of ¢ is pulled back to 2253(3),, to form
T(£]2253(3),) is the Eilenberg-MacLane spectrum HZ,.

Definition 2.2.3. When the Thom space of £ is further pulled back via the
commutative diagram

An (Fpn+1(925’3))p

{7

0253(3), ——= Q253

to the Thom spectrum T'(¢|A4,,), this is the nth integral Brown-Gitler spec-
trum Bj(n).

The map i, : A, — 9293(3), when Thomified gives a monomorphism
in homology
T(in) : B1(n) — HZ,

sending a; to x(7;) and b; to x(&;) where

H,(HZy;Z/p) = AMx(11), x(72), - ..) ® Z/p[x(&1), x(&2), - - .

Here &; and 7; are the elements of the dual Steenrod Algebra A} defined in
section 1.2 with |&;| = 2p' — 2 and |7;| = 2p’ — 1 and x is the canonical anti-
automorphism. This monomorphism sends H.(Bj(n);Z/p) into the span of
monomials of weight less than or equal to pn in H,(HZ,;Z/p) where

wt(x(7)) = wt(x(&)) =p°  and  wt(ab) = wt(a) + wt(b).
Proposition 2.2.4. Each Bi(n) is the p-completion of a finite spectrum.

Proof. 1t is stated in [Rud98, Chapter IV, Theorem 5.23(i)] that for any
stable F-object o over a CW-complex X, we have m;(Ta) = 0 for i < 0.
Bi(n) is a Thom spectrum produced in this way over the CW-complex
A, hence Bi(n) is bounded below. It can be seen above that the mod p
homology of Bj(n) is finitely generated and so we can use Proposition 1.6.7
and the discussion following to show that Bj(n) is the p-completion of a
finite spectrum. O
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There exist pairings of the spectra Bj(n) of the form
Bl(n) AN Bl(m) — Bl(n + m)

whose mod p homology homomorphism is compatible with the multiplication
in H,(HZy;Z/p).

Definition 2.2.5. Let K(pn) := Bi(n) and K(pn + i) := K(pn) for 1 <
1 <p— 1.

The pairings on the spectra Bj(n) give pairings on the spectra K(n).
For example, in the case where the p-adic expansions of m = )", a;p' and
n =Y, Bip’ satisfy a; + B; < p for all 4, the spectra {K (n)},>0 have multi-
plication maps between themselves

P 2 K(m) A K(n) — K(m+n)

such that the induced map in cohomology iy, , : H*(K(m + n);Z/p) —
H*(K(m);Z/p) ® H*(K(n);Z/p) is injective, see [Lel84, 1.2(iii)].

2.3 Properties of the Spectra K(n), K and /¢

In this section we will look at the homology and cohomology of the spectra
K (n) as modules over a subalgebra of the Steenrod Algebra. We will then
go on to define the spectra K(n) and hence K and give its homology as well
as the homology of ¢. This will set us up for the final section where we will
construct the splitting of £ A £.

Consider H*(K(n);Z/p) as a module over the Steenrod Algebra A,.
Consider the left ideal of A,

I(n) = ApB+ > Ax(PY).

i>2
Proposition 2.3.1. H*(K(n);Z/p) = Ap/Z(n) as an Ap-module.
Recall the Milnor elements of A,
Qo=p
Q1 =P's - pP!

where |Qo| = 1, |Q1] = 2p — 1. Here Q3 = Q% = 0 and QoQ1 = —Q1Qo
so we can also look at H*(K (n);Z/p) as a graded module over the exterior

algebra B = A(Qo, Q1).

Definition 2.3.2. Let L be the B-module with generators g;, ¢ € Z, where
lgi| = 2i(p — 1) and relations Q1(g;) = Qo(gi+1)-
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We can picture L in the following way where a g; denotes a copy of Z/p
generated by g¢; and Q1¢; also denotes a copy of Z/p with generator Q1g;.
An arrow denotes a non-trivial action of either Qg or Q1 as indicated.

Q19-2 Q19-1 Q190 Q191 Q192
7 A
7/
P TQ% TQ% TQ% TQ%{ !
d g-1 90 g1 92 !

Definition 2.3.3. For ¢t > 0, let L(t) be the B-module quotient of L by the
submodule generated by {g;|i < 0 or i > t}.

We can picture L(t) as follows.

Q190 Qg Q19t—1
s 7
s -
R
90 g1 92 g Gt

Hence each L(t) is finite dimensional over Z/p.
Proposition 2.3.4.
H*(K(n);Z/p) = L(v)® F

as B-modules where F' is a free B-module of finite rank and v = v,(n!)
where v, 1s the p-adic valuation function.

Definition 2.3.5. Let N be the Z/p-linear dual of L. So N is the B-module
with generators h;, for i € Z, where |h;| = 2i(p — 1) + 1 and Qo(h;) =
Q1(his1)-

Pictorially IV looks like this:

Q1h_1 Q1ho Q1h1 Q1hs Q1hs3
A N
| Y TQ& TQ& TQ& TQO\
N
l h_1 ho hl h2 b

Definition 2.3.6. Trivially let N(0) = L(0) = Z/p{go}. For t > 0, we let
N(t) be the B-submodule of N generated by {h;|1 <1 < t}.

So N(t) is as follows.

Qi Q1ho Q1hs v Qo
\& T \& T \\ N T
Qo Qo < — N |Qo
N\ N
h1 h2 b ht

Kane proves Proposition 2.3.4 so we will prove the dual statement here.
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Proposition 2.3.7. H.(K(n);Z/p) = N(v)® F' as B-modules where F' is
a free B-module of finite rank.

Proof. The Universal Coefficient Theorem tells us that H*(K(n);Z/p) =
Homy,(H.(K(n); Z/p), Z/p) and we know that H*(K(n); Z/p) = L(v)® F.
We can show that the dual of L(v) is N(v). We can see that

L(t) =Z/p{g0. 91, , Gt: Q190, Q101 , Q1gt—1}

and

N(t) =Z/p{h1, - s he,Qiha, -+, Q1he, Qohu}.
Both have dimension 2t + 1 over Z/p. L(t) is a left B-module, so naturally
Homg,,,(L(t),Z/p) is a right B-module via the action (f.b)(—) = f(b.—) for
b€ B and f € Homgy,,(L(t),Z/p). We know that as a Z/p-vector space, the
dual of L(t) is as follows

(L(t))* = Z/P{Qsa gra T 79527 (ngO)*’ (ngl)*7 B (ngn—l)*}a

where * denotes the dual basis. So to define an isomorphism from (L(t))*
to N(t) we send

Q1h ifi=0
gi =< Qihit1 =Qoh; f1<i<t—1
Qohy ifi=t¢t

and
(Q19:)" = (Qogi+1)" ¥ hiy1 fori=0,--- ¢t —1.
This is a bijection so we just need to check it is consistent with the B-module

actions, i.e. that (Q19:)*Qo = gj,, and (Q19:)*Q1 = gj fori =0,--- ;¢ — 1.
But this is true because

((Q19:)*Q0)(gi+1) = (Q19:)* (Qogi+1)

= (
= (Q19:)"(Q19:)
=1

and the evaluation of (Q1g;)*Qo on any other element of L(t) is zero. Sim-

ilarly we have ((Q19:)*@Q1)(g:;) = (Q19:)*(Q19;) = 1 and the evaluation on
any other element of L(t) is zero. So we have shown that (L(t))* = N(t) as
B-modules and hence

H.(K(n);Z/p) = N(v)® F'. O
Definition 2.3.8. Let
K(n) = 22"~V (n)

and let

K=\/K(n).

n=0
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Now look at the algebra structure and the B-module structure of both
H.(K;Z/p) and H.(¢(;Z/p).

The product maps fi, ,, for the spectra K (n) give us an algebra structure
on H,(K;Z/p), and Kane shows that

H.(K;Z/p) = Maz,as,...) ® Z/p[p1, B2, .. ]

as an algebra where |a,| = 2p" — 1 and |5, | = 2p™ — 2. Also the B-module
structure is given by

Qo(an) = Bn, Q1(an) = B4,

the action of both @)y and ()1 on f3, is zero.
We know from [Ada95, Part III, Proposition 16.6] that H*(¢;Z/p) =
A,/ A,B. The generator in HY(¢;Z/p) = [l, HZ/p]o gives a monomorphism

H.((;Z/p) — H.(HZ/p; Z/p) = A(x(70), X(11),---) @ Z/p[x (1), x(§2); - - ]

Under this embedding we can identify the homology of ¢ as follows

H.(6;Z/p) = AMx(72), x(73),--.) ® Z/p[x(&1), x(&2), - - -]

with B action

Qo(x(1)) = x(&n),  Qi(x(7n)) = x(&n-1)".

2.4 The Splitting

We now show that proving the splitting £ A K ~ ¢ A £ reduces to producing
amap f: K — ¢ AL with certain properties.
There is an algebra isomorphism

A H.(K;Z)p) — H.(¢;Z)p)
Qp = X(Tn)7

B X(fn)

which is also an isomorphism of B-modules.
This map A cannot be realised by a homotopy equivalence X — ¢, nor
can

1® A Ho(6;Z/p) ® Hi(K; Z/p) — Hi (G Z/p) ® Hi (4 Z/p)

by a map £ AKX — ¢ A L. So we aim to find an isomorphism closely related
to 1 ® A which can be realised by a homotopy equivalence.
Notice that H.(¢;Z/p) @ H.(K;Z/p) and H.(¢;Z/p) ® H.(¢;Z/p) are

H.(6;Z/p)-modules via €A LAK 25 0AK and €ALA LS o ne,
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Definition 2.4.1. We can define increasing filtrations {.J,,} on H.(¢;Z/p) ®
H.(K;Z/p) and {G} on H.(¢;Z/p) @ H,.(¢;Z/p) as follows.

Jn = H*(€7 Z/p) @ (0427 cee 7an7617 cee 7571)7
Gn = H*(ev Z/p) X (X(TQ)7 cee 7X(Tn)7X(§1)7 ) X(gn))

where (ag,...,an,B1,...,0) is the ideal of H,(K;Z/p) generated by the
set {ag,...,an, B1,...,0n} and similarly for G,,.

Proposition 2.4.2. We can produce a map f: K — € AL such that

filan) =1® x(m) mod Gp—1

(2.1)
fe(Bn) =1®@ x(§n) mod Gp-1
and
fx is multiplicative. (2.2)
This produces the required splitting via the map
QA DL onene 2 on. (2.3)

The induced map Q. : H.(; Z/p)QH.(K;Z/p) — H.(¢;Z/p)RH({; Z/p)
is a map of left H,(¢;Z/p)-modules. Also €2, preserves the filtrations i.e.
Q(Jn) € Gp. So there is an induced map between the associated graded
H.(¢;Z/p)-modules i GC:’; which is equal to the map induced by
the isomorphism 1 ® A by properties (2.1) and (2.2). So Q. induces an
isomorphism in Z/p homology. Since ¢ A ¢ and ¢ A K are both p-complete
(i.e. HZ/p«-local) spectra, this map is a homotopy equivalence by Theorem
1.1.19.

Properties (2.1) and (2.2) reduce to easier to check conditions.

Property (2.1) reduces to

Condition 2.4.3.

f(B1) = 1@ x(&1) — x(&) @ 1.

Let H.(K(n); Z/p) = H(n), then H.(K;Z/p) = @n=0H (n) and the map
fot H(K;Z/p) — H (¢ AN L;7Z/p) becomes the collection

fn): H(n) = H (LN CZ] D).

Let E = (eg,e1,...) be an exponential sequence, i.e. all the e; are non-
negative integers and only finitely many are non-zero, and let the last non-
zero entry be eg.
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Definition 2.4.4. Define

Z]’ €j
f(B): HE) = (X H.((AGZ/p)
i=1
fB) = f(H)%0 @@ f(p*)7.
Let n = Zf:o nip’ be the p-adic expansion of n, and let
E(n) = (ng,n1,...,14,0,0,...).

Property (2.2), f. is multiplicative, reduces to the following two diagrams
commuting.

Condition 2.4.5. If n £ p* s > 0:

F(E(m) .
H(E(n)) Q=" H, (6N 6 Z)p)

| |

H.(¢NL;Z)p)

Condition 2.4.6. If n = p*:

s—1\®
Q7 H. (A GL/p)

| |

H(p®) o) H.(¢ A0 Z)p)

i 1H(p871)

1=

The vertical maps in the above diagrams are repeated multiplication
within H,(KC;Z/p) and H.(¢ A L;Z)p).

A few background results about Eilenberg-MacLane spectra are needed.
The first two of these are proved in [Mar74], the third follows.

o [X,Y] = Homyu,(H*(Y;Z/p), H*(X;Z/p)) is an isomorphism if either
X =HZJ/porY = HZ/p.

e Given an isomorphism « : H*(X;Z/p) - N & F where F is a free A,
module, there exist spectra Y and Z and amap k:Y V Z — X such
that H*(Y;Z/p) = N, H*(Z;Z/p) = F and k* = a.

e Let H*(X;Z/p) be a free B-module. Then

(ANX =\/S"HZ/p.

7
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We now complete our exposition of Kane’s paper by outlining the proofs
of 2.4.3 and 2.4.5 to give the idea of the construction of the map f. To
prove Condition 2.4.6 is similar to 2.4.5 but has the added problem that the
equivalent object to H*(G;Z/p) (defined in the proof) in that case is not a
free B-module.

Outline proof of Condition 2.4.3. By definition K =\/, .4 K(n) so we need
to produce maps f, : K(n) — £ A £. The first two of these are fy : K(0) =
SO~ Aaland f1:K(1) = S?~2 — (AL Now (f1)«(B1) is spherical, i.e. in
the image of the mod p Hurewicz map

h:m(X) = HJ(X;Z) - H(X;Z/p),
so up to a unit, fi(51) =1® x(&1) — x(&1) ® 1 which is (2.4.3). O

Outline proof of Condition 2.4.5. The rest of the f,s are constructed by in-
duction. Suppose f, has been constructed for n < N and construct f,, for
n = N. Either N = p® for some s > 0 or N # p°.

Assume N # p*, so N = Ny + Nip + -+ + NypF with >, N; > 1. For
the sequence E(N) = (No, N1, ..., N, 0,0,...) let

K(E(N)) = (/C(I)ANO) A A (/C(pk)/\Nk)
)) s K(E(n)) = (€A £)N2iNi
FE(N)) = F1) N0 Ao A F(pF) Ve,

=
&
=

Also let g : K(E(N)) — K(N) and r : (£ A0 2Ni — ¢ A€ be repeated
multiplication in IC and ¢ respectively. Now we will explain how to construct
f~n to make the following diagram commute

K(E(N)) F(E(N)) (€ A QNN
K(N) . CNY

Because we are using mod p homology, the Kiinneth formula will ensure
that (2.4.5) holds. The next map fy is produced via the following diagram

G ¢ NG
I
K(E(N)) ¢ AK(B(N)) =20 EOD g
q 1/\ql uAl
K(N)C (AK(N) 2y
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where G is the fibre of the map ¢q. Completing the diagram with the bottom
right map will give us fy. From the multiplication on K we have that
¢ H*(K(N);Z/p) - H*(K(E(N)); Z/p) is injective. We also know that

H*(K(N);Z/p) = Z*N =D L(1y(NY) @ F
H*(K(E(N)); Z/p) = Z*NP=D L(1,(N1)) © F

where F' and F’ are free B-modules. The map
@1 : L(vp(N)) = H*(K(N); Z/p) — H*(K(E(N)); Z/p) = L(vp(N'))

is an isomorphism because ¢* is an isomorphism in degree 2N (p — 1) and
the B-module structure of L(v,(N!)) then means ¢; is an isomorphism. So
H*(G;Z/p) = coker ¢* = % is free because any quotient of free B-modules
of finite rank is free. This means /AG = \/, X" HZ/p. Because ¢ A G is the
fibre of 1 A g, completing the square is the same as showing

(rof(E(N)))

6 NG L e AK(BIN)) 2 NN NN

is trivial and ¢ is trivial if and only if ¢, : H.(¢ A G;Z/p) — H.(L A\ C;Z)p)
is trivial. We can ‘unsmash’ one side of the composite ¢ with ¢ to get that
¢y is trivial if
G 3 BN LED (oA NI g n g

is trivial in mod p homology. We know im j, = ker g, so we just need that
ker g, = kerr. f(E(N))«. Let p* < N < p*1 and let A = A(az,...,q) ®
Z/p|Bi,-..,Bk). The f, have been constructed for n < N so let s =
(fps—1)x(as) for 2 < s < k and Ay = (fpe-1)«(Be) for 1 <t < k. Let
B C H*({ A 4;Z/p) be the free subalgebra generated by {7vs} U {A:}, then
B = E(y2,...,7) ® Z/p[A1,...,Ag]. There is an algebra isomorphism
Y A= B. We also have embeddings H(s) C A for s < N and % restricted
to H(s) is (fs)« = f(s). Then the following diagram commutes;

H(E(N)) — Q=N A4 ——>QFN B——= Q=N H,(t A t;2/p)

H(N) A — B H.({ NG Zp)

R

the horizontal maps are injections and the composite of the top horizontal

maps is f(E(N))«, so ker g, = kerr, f(E(N)).,. O

38



Chapter 3

The Upper Triangular Group

3.1 Overview

The main aim of this chapter is to produce a p-local analogue of the 2-local
theorem of Snaith, [Sna09, Theorem 3.1.2]. This provides an identification
between p-adic infinite upper triangular matrices and certain operations on
complex connective K-theory.

Let ku be the p-adic connective complex K-theory spectrum and let £ be
the p-complete Adams summand. The smash product £A £ is a left £-module
via the multiplication p : £ A ¢ — £ coming from the fact that ku and hence
¢ is a ring spectrum:

ANV LN

Definition 3.1.1. Let Endjegs-moq (¢ A £) be the ring of left £-module endo-
morphisms of /Af of degree zero. Of these, the ones that can be inverted, i.e.
the group of units of this ring, are the left f~-module automorphisms of ¢ A ¢
which we shall call Autjefs_g-mod (¢A€). These form a group under composition
of functions. Because they are invertible these are homotopy classes of left
¢-module homotopy equivalences. Finally denote by Autl. , (¢ A ) the
subgroup of these homotopy equivalences consisting of those which induce
the identity map in mod p homology i.e. f € Autde , (¢ Af) means that
fe=1d: H.(¢(NCZ)p) — H (LN Z]p).

Definition 3.1.2. Let UxZ, be the group of invertible infinite upper tri-
angular matrices with entries in the p-adic integers.

The group structure of Uy Z), is given by matrix multiplication; because
these matrices are upper triangular each column is of finite height, so when
multiplying, the sum for each entry of the product matrix is also finite. Any
element of UsZ,, is a matrix X = (x; ;) for i, j € Ng, where all z; ; € Z, and
x;,; = 0 for ¢ > j. For an infinite upper triangular matrix with p-adic entries
to be invertible it is necessary and sufficient for it to have p-adic units on
the diagonal.
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The main theorem of this chapter is as follows:

Theorem 3.1.3. There is an isomorphism of groups of the form
A . UOOZp i Aut?eft_é_mod(f AN g)

As explained in the previous chapter, from [Kan81] we have a p-adic
splitting of the form
(AL~ N N\ K(n).
n=0
We want to study left-£-module maps of the form ¢ A ¢ — ¢ A £. Because
there exists a splitting of £ A £ we only need to look at left-¢-module maps
from any one piece of the splitting to any other piece, i.e. maps of the form

G EANK(m) — LA K(n)

for each m, n > 0.
We will use a suitable Adams spectral sequence to show that there exist

particular maps
tmn L NK(m) = LA K(n)

which are represented by generators of certain groups on the F, page of
the spectral sequence. This Fs page consists of Ext groups which we will
calculate using the theory of stable isomorphism classes. Once we have the
maps ty,,, we can define our isomorphism below.

Definition 3.1.4. Let the map A be as follows

A UOOZP - AUt?eft-f-mod(g A £)
XY Xnmtman LA\ K@) = 01\ K@),

m>=n =0 >0

The rest of the chapter will proceed in the following way. Section 3.2
covers the theory of stable isomorphism classes and results needed later
concerning Ext groups. The main result of this section is Theorem 3.2.13
which identifies the stable isomorphism class of the mod p cohomology of
K(n). Section 3.3 then sets up the required Adams spectral sequence. The
results of the previous section are used to identify the E5 term and then to
show that the spectral sequence collapses at the Es term for dimensional
reasons. We then pick generators of the groups on the Ey page to give the
maps Ly, used in the definition of A above. The spectral sequence is then
further analysed to show, in Proposition 3.3.6, that A is bijective. Finally
we show in Proposition 3.3.7 that the choice of the maps ¢y, can be made
in such a way that A is a group isomorphism.
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3.2 Stable Isomorphisms and Ext Groups

A main ingredient in the proof of Theorem 3.1.3 is the idea of stable iso-
morphisms which were first introduced by Adams. The following definitions
and theory come from [Ada95, Part III, Chapter 16] and are explored in
more detail there. Another good reference for modules over Hopf algebras
and their cohomology is [Mar83].

We start by working over a general Hopf algebra to introduce the general
techniques before specialising to the subalgebra B of the Steenrod Algebra
introduced in Definition 1.2.14.

Definition 3.2.1. Let A be a connected graded finite dimensional Hopf
algebra over a field K. Two graded left A-modules M and N are stably
isomorphic, which we will denote M = N, if there exist free A-modules F
and G such that M @ F =2 N ¢ G.

Lemma 3.2.2. Stable isomorphism is an equivalence relation.
Proof. e MdF =M F for any free A-module F', so M = M.

o If M = N then M & F = N @ G for free A-modules F, G, this clearly
works in both directions so N = M.

e If M = Nand N = L then we know M®F 2 NOG and NOH = LpJ
for free A-modules F,G, H and J. So

MeFeH=2NdGeH
=ENOH®G
2LoJoG

and since FF @ H and J @ G are free A-modules we have M = L. [

We can take tensor products of stable isomorphism classes so that for
A-modules M and N, the tensor product of their stable classes is the stable
class of M ® N. For this to be well-defined we note that the A-module A® N
where we take A acting diagonally via the comultiplication is isomorphic as
a left A-module to A ® N where A acts by multiplication within the left
factor of A.

Definition 3.2.3. Let ‘1’ be the graded A-module with the ground field K
in degree 0 and zero in other degrees. The action of A on 1 is trivial, i.e.
for any k € K we have a.k = 0 for all a« € A,, where n > 0 and Ay = K acts
as multiplication within K.

Definition 3.2.4. An A-module M is invertible if there exists another class
M’ such that M ® M’ = 1. Then we write M1 = M’.
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From here onwards the theory is for A the graded exterior algebra K|z, y]
where |z| < |y| and |z| and |y| are both odd unless K has characteristic 2.
This ensures that A is a Hopf algebra with z and y primitive, i.e. A(x) =
x®1+1®x where A is the comultiplication on A and similarly for y. In
our case we want A = B = A[Qo, Q1], where Q9 = [ has degree 1 and
Q1 = P13 — BP! has degree 2p — 1 and K = Z/p for an odd prime p.

Definition 3.2.5. Let ¥ be the B-module with Z/p in degree 1, this is
invertible with inverse ¥ =1, the B-module with Z/p in degree —1. Also
Y=Y ®RY®- - ®X% is the module with Z/p in degree a.

a

Definition 3.2.6. Let € : B — Z/p be the augmentation map of B, i.e. if
we think of B as the Z/p-vector space Z/p{1, Qo, Q1, QoQ1}, € is determined
by taking the basis element 1 € B to 1 € Z/p and all other basis elements
Qo, Q1 and QoQ1 to 0 € Z/p. Let I be the augmentation ideal of B; that
is I = ker(e). So I = Z/p{Qo,Q1,Q0Q1} as a Z/p-vector space. Again
P=I®l® - I

b

Remark 3.2.7. For s > 0, Extgt(M, K) only depends on the stable iso-
morphism class of M.

Adams gives a method for calculating stable isomorphism classes for the
case where p = 2 which carries over to the odd prime case; the following
result is in [Ada95, Part III, Theorem 16.3].

Theorem 3.2.8. For a finite dimensional graded module M over an ex-
terior algebra K[xz,y| as above with H.(M;xz) and H.(M;y) both being of
dimension 1 over K, M is invertible and stably isomorphic to 2¢I° = @ T°
for unique a, b € Z.

In order to determine a and b Adams gives us the following formulae:

K ifi=a+0b|z|

(yarb, —
Hi(3" 17 ) { 0  otherwise,

and il
K ifj=a+b
(sagh. N _ j=a+bly
H;(Z 1% y) { 0  otherwise.

Because x and y are in different degrees, we can solve these equations for
the values a and b which will be unique.

ki

Here H.(M;z) = .erx

i
the element x and similarly for y.

is taking homology with respect to the action of

Definition 3.2.9. For a B-module M, let M* denote its Z/p-linear dual
Le. M* =Homy , (M,Z/p).
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This will be graded in the following way; a homomorphism from some-
thing in degree m to Z/p in degree zero will have degree —m.

Adams proves in [Ada95, Part 111, Lemma 16.2] that I is invertible with
inverse 11 = I*. We know that I = Z/p{Qo,Q1,QoQ1} so has a copy of
Z/p in degrees 1, 2p — 1 and 2p and that Qg and @1 act by increasing the
degree by 1 and 2p — 1 respectively. In contrast I* has copies of Z/p in
degrees —1, 1 —2p and —2p and Qg and @)1 still act by increasing the degree
by 1 and 2p — 1 respectively.

Lemma 3.2.10. [7° = (I%)* = HomE/p(Ib,Z/p).

Proof. Because [ is free and finitely generated over Z/p we have that (I ®
I)* = I* ® I'*, this means we have (I°)* = (I*)?, and stably we have (I*) =
(I71)®. We know that I~! has Qo homology in degree —1 and @; homology
in degree 1 —2p so by the Kiinneth formula (I~!)® will have Qg homology in
degree —b and @)1 homology in degree (1 —2p)b. By the criteria of Theorem
3.2.8 this is then stably isomorphic to I7°. O

Remark 3.2.11. In a similar way it is shown in [Ada95, Part III, Lemma
16.3(1)] that for any invertible B-module M, its linear dual M* is its inverse
stable isomorphism class.

The B-modules ¥ and I give us a couple of dimension-shifting isomor-
phisms for Ext groups.

Lemma 3.2.12. There exist isomorphisms of Ext groups of the form
Ext$ (I © M, Z/p) = Ext$ ™ (M, Z/p)
Ext (M, Z/p) = Ext~*(M, Z/p)
for s >0 and M a B-module.

Proof. For a B-module M, from the short exact sequence
0=-1IM—->BM—-M—0
comes a long exact sequence of Ext groups

= Ext (BoM, Z/p) — Ext (I @ M,Z/p) — Ext (M, Z/p)
— Ext5T(Be M, Z/p) — - --
and since B ® M is a free B-module, Ext%’t(B ® M,Z/p) =0 for s > 0 and

SO
Ext3 (I ® M,Z/p) = Ext$ ™ (M, Z/p)

for all s > 0. It is also true from construction that Ext‘Bt(E“M ,Z./p)
Ext (M, Z/p).

O
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Recall from Proposition 2.2.4 that the spectrum K(n) is equivalent to the
p-completion of a finite spectrum, i.e. K(n) =~ Y, for some finite spectrum
Y. With a slight abuse of notation, when we take the Spanier-Whitehead
dual and write D(KC(n)) we really mean take the dual of the finite spectrum
Y and complete later. This is not a problem as everything we are working
with is in a p-complete setting so using the underlying finite spectrum and
p-completing after will not make a difference.

We are now in a position to calculate the stable isomorphism classes
of both H*(K(n);Z/p) and H*(D(K(n));Z/p). We will need both of these
facts in the next section in order to simplify the spectral sequence we will
construct there.

Theorem 3.2.13. The stable isomorphism class of H*(K(n);Z/p) can be
written as $2nP—1)—vp(n!) frp(nt)

Proof. In [Kan81, Lemma 8:3, Lemma 8:4], Kane provides the following
facts:

H(H*(K(n);Z/p);Qo) = Z/p in dimension 0 and
H(H*(K(n);Z/p); Q1) = Z/p in dimension 2v,(n!)(p — 1).

Recall that K(n) = 2"~V K (n), so
H*(K(n); Z/p) = H*(Z*"""VK (n); Z/p)
= H*2"0=D(K (n); Z/p),
and thus for s € Ny,

H(H*(K(n);Z/p); Qo) = Z/p in dimension 2n(p — 1) and
H(H*(K(n); Z/p); Q1) = Z/p in dimension 2(p — 1)(vp(n!) + n).

Using Theorem 3.2.8 we can then deduce that we have a stable isomorphism
H*(K(n); Z/p) & 5 ®~ D) pro(nt), 0
Lemma 3.2.14. There is a stable isomorphism
H*(D(K(n)); Z/p) & £)=2n0-1) [-25(n),

Proof. The Universal Coefficient Theorem gives us the following B-module
isomorphism

H*(K(n); Z/p) = Homy,(H_.(K(n): Z/p), Z/p).

We know from Remark 3.2.11 that for any B-module, its linear dual is
its inverse stable isomorphism class. From Theorem 3.2.13 we have that
H*(K(n); Z/p) = £2Me=1)=vp() () hence we have

H_*(IC(n), Z/p) ~ EVP(n!)*2n(p*1)Ipr(n!)'
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Recall from Proposition 1.6.5 that Spanier-Whitehead duality gives us the
B-module isomorphism

H*(D(K(n)); Z/p) = H_.(K(n); Z/p),
which proves the result. ]

One last result we will need in the next section is the following.

Lemma 3.2.15. Ext3"(Z/p,Z/p) = Z/plc,d] where ¢ € Extjlé1 and d €
Extl 11

Proof. This statement is proved in [Rav86, Lemma 3.1.9] with a minor mis-
take, so we shall prove the statement here also. Let I' = A(x) be the
exterior Hopf algebra over Z/p on one generator z. We will first calculate
Ext*(Z/p,Z/p). Take an injective I-resolution of Z/p as follows

0=z/p-T2Sr051% ...

where 0 is the I'-homomorphism where 9(1) = x and d(z) = 0. We can
do this because I' is a finite dimensional Hopf algebra and therefore self-
injective. Now we apply the functor Homp(Z/p, —) to get

0 — Homp(Z/p, T') 2 Homp(Z/p,T') L ...
We know that Homrp(Z/p,I") = Z/p via the isomorphism which sends f €
Homrp(Z/p,T') to A € Z/p where f(1) = Az. This must be the case as any
such map f is determined by its value on 1 and we must have f(1) = Az
for some A\ € Z/p otherwise f would not be a I'-homomorphism. Now the
maps 0, on a map f are obtained by post-composition with f and are still
determined by their action on 1, i.e.

(0 f)(1) = Do f(1) = d(\x) = Ad(x) = 0.

Hence all the boundary maps are zero so when we take homology we get
a copy of Z/p in every homological degree. Let the generator of the Ext!
group be y. Because this map sends 1 to x it raises degree by |z| and so lies
in Ext;’lx‘ (Z/p,Z/p). The composition product on Ext groups gives us that
the generators for the Ext?, Ext® groups and so on are 32, 3° respectively.
Hence Ext{™(Z/p, Z/p) = Z/ply]. Now our exterior algebra B is isomorphic

to A(Qo) ® A(Q1) and Ext groups come with an external pairing

Ext) o) (Z/p, Z/p) ® Exty,(Z/p, Z/p) — Extg"(Z/p, Z/p),

which by the Kiinneth theorem gives us an isomorphism of vector spaces
between the two. This is also an isomorphism of rings which gives us that
Exty"(Z/p,Z/p) = Z/p|c] @ Z/p|ld] = Z/plc,d] where ¢ and d are in the
degrees stated above. O

LA lot of authors would use the notation vy and v; instead of ¢ and d.

45



3.3 The Spectral Sequence

We want to look at automorphisms of ¢ A ¢ which induce the identity on
mod p homology. When looking at the separate pieces of the splitting we
use the following lemma to translate this into a condition on the maps ¢, .

Lemma 3.3.1. Let E be a ring spectrum and F be spectra such that F' ~
Fy VvV Fy. There is an isomorphism of groups of the form

(=23

End?eft—E—mod(E A F) - @ Hom?eft—E—mod(E NE, BN F])

1<i,j<2

f=fuu® fiz® for @ fa

where Homly, p . (EAF;, EAFj) means that if i = j the morphism induces
the identity on mod p homology and if i # j the morphism induces the zero
map on mod p homology, i.e. (fi1)« and (fa2)s are the identity maps and
(f12)« and (fa21)« are the zero maps.

Proof. An element of Endjefp.mod (E A F') automatically splits into its com-
ponent parts as homomorphisms between each of the pieces,

Endieft-g-mod(E A F) = @D Homiefr-pmod(E A Fy, E A F).

1<i,j<2

We now restrict to the maps inducing the identity on mod p homology, i.e.
given an element f € Endly p .o1(EAF), this induces the identity map on
H.(E N F;Z/p). So f must restrict to the identity maps on the homology
of each piece E A Fj, hence (f11)« and (fa2)« must be the identity maps. We
must also have (fi2). and (f21).« being the zero maps otherwise f, would
not then be the identity map. In other words;

o = (f11 @ f12 ® fo1 ® fa2)«
= (f11)« B (f12)« @ (f21)« @ (f22)«
=1900041=id. O

We consider Autle , (¢ AL) C Endlg s noa( A L) so, analogously to
this lemma, we need to have (¢, m )« = id for every m > 0 and (¢y,n)+ the
zero map for every m, n > 0, m # n.

Since we are looking at left-/-module maps, each map ¢,, ,, is determined
by its restriction to S® A K(m) — ¢ A K(n). This is an element of the
homotopy group [K(m), ¢ AK(n)]. By Proposition 2.2.4 we know that IC(m)
is the p-completion of a finite spectrum, i.e. K(m) = Y}, for some finite
spectrum Y. Since £ A K(n) is p-complete

[K(m), ¢ A K (n)] = [K(m), £ A K(n)p] = [Yp, EAK(0)]p = [V EAK(1)]p-
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Now because Y is a finite spectrum we can take its Spanier-Whitehead
dual so our homotopy group becomes [S?, ¢ A K(n) A D(Y)],. We can take
the p-completion of D(Y) without changing the homotopy group and, as
mentioned in the last section, we will refer to D(Y"), as D(K(m)).

To study this homotopy group we are going to use the Adams spectral
sequence whose Fs term is as follows:

Ey' = Ext’y (H*(D(K(m)) AK(n) A £;Z/p), Z/p)

=~ Ext}y (H*(D(K(m)); Z/p) @ H*(K(n); Z/p) ® H*(¢;Z/p), Z/p)
=~ Ext’y (H*(D(K(m)); Z/p) © H*(K(n); Z/p) ® A, ®5 Z/p,Z/p)
=~ Exty (H*(D(K(m)); Z/p) @ H*(K(n); Z/p) ®p Ay, Z/p)

= Exty (H*(D(K(m)); Z/p) ® H*(K(n); Z/p), Z/p), (3.1)

) A
)
)
)

via the Kiinneth theorem. In [Ada95, Part III, Proposition 16.6], Adams
gives us that H*(¢;Z/p) = A, ®p Z/p, it is then shown in [Ada95, Part III,
Proof of Proposition 16.1] that for an A,-module M we have an isomorphism
of left A,-modules

(Ap @B Z/p) @ M = A, @ M

where A, acts diagonally on the left-hand side by the comultiplication and
on the right-hand side by multiplication within A,. We also use a standard
change of rings isomorphism of the form

Exta, (A, ®p M,Z/p) = Extg(M,Z/p).

We know that the sphere spectrum is finite and that the spectra K(n)
and D(K(m)) are also finite. Recall from section 2.3 that

H.(6;Z/p) = A(x(72), x(73), - ) ® Z/p[x(&1), x(&2), - - ]

where 7;,§; € Aj and x is the canonical anti-automorphism. In a similar
way to Proposition 1.6.7, a p-complete spectrum with mod p homology of
finite type is the p-completion of finite type spectrum. We know £ is bounded
below as it is connected and we can see that the mod p homology of /¢ is
finitely generated in each degree as a Z/p-vector space, so £ is of finite type
and the conditions of the Adams spectral sequence are satisfied. Hence the
spectral sequence converges to

ESt = [S°, D(K(m)) AK(n) AM]i—s @ Zp = T—s(D(K(m)) AK(n) A L) @ Zy,
Proposition 3.3.2. For the spectral sequence above we have for s > 0,

Byt 2 Bty () (=2 m) o4l o7, 7 )
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Proof. Using Theorem 3.2.13, Lemma 3.2.14 and Lemma 3.2.12 from the
previous section we get that for s > 0,

Eg’t = Extgt(EVp(m!)*Qm(Pfl)[*Vp(m!) ® EQn(Pfl)*Vp(n!)IVp(n!), Z./p)
= Ext?(22(n—7n)(1v—1)4rl/p(m!)—lfp(n!)_]l/p(n!)—l/p(m!)7 Z./p)
) EXtSB+Vp(n!)—up(m!),t—2(n—m)(p—l)—i—up(n!)—yp(m!) (Z/p, Z/p) 0

Lemma 3.3.3. Our spectral sequence above collapses at the Eo term and so
E*7* — E*7*.
) 00

Proof. From above we know that the Fy term of our spectral sequence
away from the line s = 0 is isomorphic to a sum of shifted copies of
Exty"(Z/p,Z/p) = Z/plc,d]. Here, all non-zero terms are in even total
degrees and the shifts given above have even total degrees so there are no
non-trivial differentials when s > 0. Showing there are no non-trivial differ-
entials when s = 0 is done for a more general case when p = 2 in [Ada95,
Part III, Lemma 17.12]; however the method is the same. Consider an ele-
ment e € Eg’t where t =1 mod 2 (if ¢ = 0 mod 2 then everything would
be in even total degree and there would be no non-trivial differentials for de-
gree reasons). We will proceed by induction. Suppose that d; = 0 for i < r,
then the spectral sequence would have E5" 22 Ef*. For ¢ € Exty' (Z/p, Z/p)
we have cd,(e) = d,(ce) because the spectral sequence we are looking at is
one of modules over Ext"(Z/p,Z/p). We know ce = 0 as this would be in
odd total degree and there are no elements in odd total degree away from
the s = 0 line, hence d,(ce) = 0. Because, away from the s = 0 line, the
E> = FE, page of the spectral sequence reduces to a polynomial algebra with
¢ as one of the generators, multiplication by c¢ is a monomorphism on ES
for s > 0. So if
cdy(e) = dy(ce) =0,

then we must have d,(e) = 0 which completes the induction. O

Lemma 3.3.4.

0 ifn>m

mo(D(K(m)) ANK(n) ANl) @ Zy = {Zp if n < m.

Proof. We want to study mo(D(KC(m)) A K(n) A ¢) ® Z,, which corresponds
to the s = t line of the F, page of the spectral sequence, so we want to look
at the groups {E3”|s > 0}. This information comes from Exty"(Z/p,Z/p)
where

u=s+vy(n!)—rvy(m!) and (3.2)

v==s5—2(n—m)(p—1)+vp(n!) —vp(m!). (3.3)
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This gives us that v —u = 2(m—n)(p—1). If n > m then u > v and we know
that all groups below the diagonal of u = v are zero in Exty"(Z/p,Z/p),
hence mo(D(KC(m)) AK(n) ANl) ® Z, =0 if n > m.

If we let n < m, take for example n = m = 0 (the general case is very
similar) then we have EJ* = EX" = Exty (Z/p,Z/p) = Z/p|c,d] where
¢ € Exty' and d € Extg™ . More specifically, Ey® = E3 = Z/p{c*}. For
each s, this group is the ﬁltratlon quotient Ff - Usmg the ring structure of
the spectral sequence we know that the E3® terms are a polynomial algebra
on the variable c. When we pass to the F, term, this is the following algebra

mo(D(K(m)) AK(n) Al) @ Z, {sz xiGZ/p} ~ 7,

which is filtered by ideals and where multiplication by ¢ in the algebra
corresponds to multiplication by p in Z,,. ]

Definition 3.3.5. Let ¢, : £ A K(m) — ¢ A K(n) be a map which is
represented in the spectral sequence by a choice of generator of

Eémfn)fup(n!)+up(m!),(mfn)fup(n!)+1/p(m!) .

Also let ¢y, m be the identity on £ A K(m).
Recall in Definition 3.1.4 we defined the map

A . UooZp — Aut?eft_g_mod(f A £)

X — Z Xnmbmm : LN (\/ K@) = LA (\/ K(i))

mzn 120 120
Proposition 3.3.6. The map A of Definition 3.1.4 is a bijection.

Proof. 1t is clear that Zm>n nmlm,n at least defines an endomorphism of
£ A F. From the set up of the spectral sequence we were already limiting
ourselves to left-¢-module maps so each of the ¢y, s must be. The maps will
be invertible for the same reason the matrices are, the coefficients of the
identity maps on each of the pieces are units.

Let m > n. Any non-zero Exts"(Z/p,Z/p) group is isomorphic to Z/p

(2p—1)u—v

generated by ¢ 2-1 d2=D . If w and v are as in (3.2) and (3.3) then this
group is generated by

Cs+(nfm)+1/p(n!)fup (m!)dmfn'
We already have m > n so all we need for this group to be non-zero is
s = (m —n) —vp(n!) + vp(m!).

Let m > n and look at non-trivial homotopy classes of left-¢-module
maps of the form

b EAK(m) = LA K(n)
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which induce the zero map on mod p homology as stipulated in Lemma 3.3.1.
These are represented in the spectral sequence as elements in Ey* = B3
with s > 0 as if s = 0 then

EY = Ext (H" (= 2/p), Z/p) = Homy(H* (= Z/p). Z/p)

which, if non-trivial, means being detected by mod p homology.
We know s > (m —n) — vp(n!) + vp(m!) so the map ¢, 5, is represented
in
FItm=n)=vp(n)+up(ml),j+(m—n)—vp(n))+vp(ml)
oo
for some integer j > 0.
We can see from drawing the spectral sequence that if

En =) (m) () vy ()4 (ml) _

then ' ' . ' ' .
Eg;r(m—n)—vp(n‘)ﬂ/p(m~)73+(m—n)—vp(n~)+l’p(m~) = Z/p{dz}.

From the ring structure of the spectral sequence, see Lemma 3.3.4, we see
that multiplication by c in the spectral sequence corresponds to multiplica-
tion by p on mo(D(IC(m)) A K(n) Ab) & Zp = Zy, so we get that

¢m,n = fyijm,n

for some p-adic unit v and integer j > 0.

If m = n then we can use the same methods as above to look at terms
of the form E5* = E3 for s > 0. We cannot ignore the E5" term this time
though. However we find that

EY® = Ext%’ (H*(D(K(m)); Z/p) © H*(K(m); Z/p), Z/p)
= Homp(H(D(K(m)); Z/p) @ H*(K(m); Z/p), Z/p)
= Hompg(Z/p,Z/p) = Z/p.

So we similarly get that '
¢m,m = ﬁ)/p] lm,m

for a unit v and some j > 0. The map ¢y, induces the identity on mod p
homology if and only if j = 0, which gives us p-adic units on the diagonal of
our infinite matrices under the map A. We can see now that since we have
®m,n inducing the zero map on homology and ¢, ,, inducing the identity
map, by Lemma 3.3.1, the resultant map on £ A £ once all the pieces have
been put together will induce the identity on homology and hence lie in
Aut?eft-f-mod (K N E)

We can see that A is surjective because once we have picked a generator,
tm,n, for the copy of Z/p corresponding to mo(D(K(m)) AK(n) ALl) @ Zy, all
other elements are just multiples of this generator. We can also see that A is
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injective as the only matrix which maps to the identity on £ A £ under A will
be the identity matrix as this corresponds to a single copy of the identity
map on ¢ A K(m) for all m. Hence A is a bijection. O

Proposition 3.3.7. We can choose the maps iy in such a way that A
is an isomorphism of groups. As before let vy, m be the identity map on
CAK(m), let tymq1.m be as already described, then let

tmn = n+intnt+2n+1 """ bmm—1

for all m > n+ 1. Then we have that

, o4 b O lkom =tk if k2= 1=m >n,
m,n kil = .
0 otherwise.

Proof. We look at the relationship between the product ¢y, 0 tg 1 and .
Let s(m,n) = m —n —vp(n!) + v,(m!), then we know ¢y, , is represented by
a generator of

Extgm,n),s(m,n) (ZQ(nfm)(pfl)Jer(m!)7Vp(n!)Il/p(n!)71/p(m!), Z/p),
tk,m is represented by a generator of

EXt§k7m)7s(k7m) (EZ(rnfk)(pfl)Jrup(If!)fz/p(m!)jup(m!)fl/p(k!)7 Z/p)

and ¢y, is represented by a generator of
Extgk,n),s(k,n) (EZ(nfk)(pfl)Jrup(k!)71/P(n!)IVp(n!)71/p(k!), Z/p)

Each of these groups is a copy of Z/p.
The product ¢y, © tg m is represented by the product of the representa-
tives under the pairing of Ext groups

Ext®*(2°1°, Z/p) ® Ext™ ' (S 1", Z/p) — Ext*+ =+ (g0t [*+Y 7,/p)

induced by the isomorphism $%I° @ ¢ [V = pota’ [0+ We can identify
this pairing using the following diagram:

Ext™* (81, 2/p) @ Ext™* (591", 2/p) ———— Ext™ " (25 1" 7, /p)
Ext* ™ =%(Z/p, Z/p) @ Ext™ V"'~ (Z/p, 2./ p) — Ext>+ tt4b ks mamal g 7 /p)

The bottom pairing is the Yoneda splicing and is an isomorphism when all
the groups are non-zero as any non-zero Ext group here is a copy of Z/p.
The vertical isomorphisms are the dimension shifting isomorphisms

Ext$ (I © M,Z/p) = Ext3 (M, Z/p)

o1



and
Ext%' (M, Z/p) = Ext% ™ “(M,Z/p)

from Lemma 3.2.12. Since s(k,m) + s(m,n) = s(k,n) this diagram com-
mutes in our case and so the top pairing is an isomorphism whenever the
groups are non-zero. Hence up to a p-adic unit wuy, ,, , we have

tmm O lkom = Uk mnlkn-

Hence we can chose the maps ¢, , in the way stated above.
Now A is a group isomorphism because

A(X)A(Y) = (Z Xn,mhn,n) Z le,kl'k,l

mzn k>l

= Z Xn,myi,kzbm,nbkz,l

k=l=m>n

= Z Xn,lyi,krbk,n

k=l>n

= Z(Xy)n,kbk,n
k>n

= A(XY). O

Hence we have now proved Theorem 3.1.3.
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Chapter 4

Stable classes

4.1 Introduction

In order to prove a result in the next chapter and in an attempt not to break
up its flow, I have decided to separate the material needed into this chapter.
The main result of this chapter is the following.

Proposition 4.1.1. The stable isomorphism class of H*(¢;Z/p) as a B-

module is .
oo p—
® @ 320 (2p' =2p" =7y (i-1)) pi(mp(i—1))
i=1 j=0

where my(i) = F=.

In order to prove this we will look at the )y and @1 homologies of
H*(¢;Z/p). We will show that H*(¢;Z/p) decomposes as stable B-modules
into a product of sums of smaller submodules such that the individual Qg
and @1 homologies of the submodules are both one dimensional over Z/p.
We will then work out which degree this copy of Z/p is in. In Theorem
3.2.13 we identified the stable class of H*(K(n);Z/p) using results about its
Qo and @1 homologies proved in [Kan81]. Here we will work out the Qp and
@1 homologies of H_,(¢;Z/p) explicitly and work out its stable class and
then dualise this statement to find the stable class of H*(¢;Z/p). Note here
that although we have an infinite tensor product in the statement above,
the expression is finite in each degree.

Recall from Proposition 1.2.16 that a right action of the Steenrod algebra
Ay on its dual A7 is given by

VA RA, = A
f®ab—>2 Ml (g7 a) f".
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Let a bar over an element denote the image of that element under the
anti-automorphism x of A7. Recall also from Proposition 1.2.18 that the
right action above can be obtained from the left action

« 1®X * [} * X *
Ay A3 12X A, 0 Ar A A

a® fi a® i S (=) HaD (7 ) i S (1)1 llal (F7 g £,

by using the anti-automorphism on a € A,,.
It is stated in [Kna95] that

m.((NHZ)p) = H (0; Z)p) =2 Z)plér, o, ... ] @ A2, 73, . ...).
Recall that using the Universal Coeflicient Theorem gives us
H*(6;Z/p) = Homg,,(H_.(¢; Z/p), Z/p)

so we will be working with 7_,(¢ A HZ/p) for the rest of this chapter.
Our actions of QQp and @); will still act by raising degrees by 1 and 2p — 1
respectively rather than lowering degrees. So we will be taking &; to be in
degree 2 — 2p’ and 7; to be in degree 1 — 2p’ in 7_(¢ A HZ/p).

4.2 Calculating Homologies

Proposition 4.2.1. The Qo homology of m_.(¢ N HZ/p) is isomorphic to
Z/pl&].

Proof. The actions of Qo and ()1 on the generators of m_.(¢ AN HZ/p) are
given in [Kna95, Equation 1.1] but we can work them out explicitly here.
The elements @y and @ are derivations by [Mil58, Section 6] and we can
work out the action of each of them on the generators of m_.(¢ A HZ/p)
to calculate their homology. Using the description of the action of A, on
Aj, given in Proposition 1.2.18, this will involve working out the effect of
the left action of @y and Q1 under ¢ on the conjugates of the generators of
m_({ NHZ/p) and then conjugating the result. We can then use this to see
the effect of the right action of Q¢ and Q1 on m_.(¢{ A HZ/p) by using x on
Qo and Q1. We know the effect of the comultiplication on the conjugates of
the generators above (see [Sch94, Theorem 1.10.2));

AG =) & 04
0<i<k
and .
A, =7, @1+ Z & e

0<i<k

Using the facts t?at Q) is dual to 7 and the anti—automorph_ism has the
following effect; Qr = —Qk, we then can conclude that (—7x, Qr) = 1 and
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the pairing of any other monomial with Qj gives us zero for k € {0,1}.
From this it can be shown that the result of the left action of Qg under ¢ on
& is zero and on 7; is —§;. Hence when we include both conjugations and
conjugate Qg we have that the result of the right action of Qg under ¢ on
& is zero and on 7; is —&;.

We can then see that 7_.(¢ AN HZ/p) splits as complexes with differential
Qo in the following way,

T (( NHZ[p) = Z/plé1] ® Q) Z/plé;] ® A7)
j=2

We can now use the Kiinneth formula to find the Q¢ homology of m_.(¢ A
HZ/p), i.e.

H(r_(( NHZ/p); Qo) = H | Z/p[&1] ® ® Z/pl&;] @ A(75); Qo

Since H(Z/p[ﬁ_j] ® A(75); Qo) = 0 for all j and H(Z/pl&1); Qo) = Z/pl&1] we
have

H(m_.(¢ NHZ/[p); Qo) = Z/plé1]

as required. ]

Proposition 4.2.2. The Q1 homology of m_.({ N HZ/p) is isomorphic to
Z/plé1, &, - - ]
(SR

Proof. Using results stated in the previous proof we can see that the result
of the left action of Q1 under ¢ on & is zero and on 7; is —&P |- So the right
action of Q; under v on &; is zero and on 7; is —5511. Powers of any f_l which
are less than p will not be in the image of ()1, they also get sent to zero by
()1 and so all such monomials appear as non-trivial homology classes.

In a similar way to the previous proof m_.(¢ A Z/p) splits as complexes
with differential @)1 in the following way,

T (¢ AZ[p) = Q) Z/plEj—1] ® A7)

Jj=2

Now we can use the Kiinneth formula to find the @1 homology of m_.(¢AZ/p)
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ie.

H(r_«(( AZ/p); Q1) = H ®Z/p§] 1] @ A(T)); Q1

Jj=2

=~ ) H(Z/pl&j-1) ® A(7); Q1)
=2

We can see that H(Z/pléj—1] @ A(75); Q1) = Zg#j;] and so we get
T

- Z/pl&-1] o Z/plé1, &, ]
Hln(EAZ/p)i Q) = ® @) @d.

4.3 Lightning Flash Modules

Before we can prove Proposition 4.1.1 we need to introduce one further
element first given by Adams.

Definition 4.3.1. For i > 1, let M; be a finite-dimensional submodule of
m_«(¢{ N HZ/p) such that

(i) H(M;; Qo) = Z/p generated by ffi71 and

(i) H(M;; Q1) = Z/p generated by &;.

These are constructed following the method of [Ada95, Part 111, Propo-
sition 16.4]. We can view these submodules as so called ‘lightning flash’
modules, the first three of which are shown below. These diagrams are to
be interpreted in the same way as those already introduced in section 2.3;
an element stands for a copy of Z/p generated by that element and an arrow
indicates a non-trivial action of either Qo or @1 (the more vertical of the
arrows correspond to the action of )y and the more horizontal of the arrows
to the action of Q)1).

M : 51
My : —& —&
Cy
Q1
T2
_52 (p Dp
/ N
T 52* - 7_2517 (P 1)p
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Using Theorem 3.2.8 we can work out the following.

Lemma 4.3.2. The stable classes of the modules M; are

—@p?—dpt)p'~ 1 1-pi—?

M, =% p—1 I »-1

Lemma 4.3.3. Let Ml-k =M; ®---® M; be the tensor product of k copz'es
of M;. Then H,(MF; Qo) = Z/p in degree (2 —2p)kp'~! generated by§
and H,(MF; Q1) = Z/p in degree (2 — 2p')k generated by &F.

Proof. The B-submodules M; are all chain complexes of Z/p-vector spaces,
taking (o as the differential (or a sum of chain complexes with differential
@1 as explained in Proposition 4.2.2). So by the Kiinneth theorem

H.(M; Qo) = H.(M;; Qo) ® Hy(M;; Qo)
and similarly for higher powers and for )1, the rest follows. O

Proof of Proposition 4.1.1. We can put these submodules together in the
following way

oo p—1 '
QREP M = +M+M A+ + ML+ My + M+ + M)
i=1 j=0
such that we have a bijection between the generators of the homology of

Eal) @g’;é M and the homology of 7_,(¢ A HZ/p) with respect to both Qg
and Q1.

For the ()¢9 homology we need to show that every generator of the ho-

mology of - «({ N HZ/p) can be expressed as a generator of the homology
of ®f§1 EB MJ and vice versa. The generators of the @)y homology of

—«(LNH Z / p) are all possible powers 53 The generators of the Q¢ homology

of ®°°1 69‘;’ OMJ are all possible products []p- 5'11“’ for ay, € {0,...,p—1}.
Or alternatively, as formal power series, we can express this claim as

o0

[ +& +& ... pertr Zﬁj

=1

There is a bijection between these two sets of generators because given any
j = 0 we can use its p-adic expansion to express it uniquely as

[e.9]
i=> apt
k=0

where a, € {0,...,p—1} so the term 5{ appears exactly once in the product
as

[e.9]
g =g ="
k=0
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For the @1 homology, the generators of the homology of m_.(¢ A HZ/p)
are all products of the form dl 52 ... & where ly, € {0,--- ,p—1} and r > 0.
The generators of the @)1 homology of ®2,; @?;3 M are again products of
this form. Tt is fairly clear to see that each term £1€2 ... €l in 7m_,((AHZ/p)
appears exactly once in the product

o0

[[a+&+&+--+&7.

i=1
Because m_.(¢ A HZ/p) and all the M;s are B-modules, the map
(I+M+M2 4+ MP YA+ Mo+ M2+ + MY ... = 7w ((AHZ/p)

induces an isomorphism on Q¢ and @)1 homology. Hence the two sides are
stably isomorphic by [Ada95, Part III, Lemma 16.7]. We can now dualise
this isomorphism and get that

HZ/p*(0) = (1+ M+ M2+ + MP YA+ M+ M2+ MEPY L

Recall from Remark 3.2.11 that for any B-module, its linear dual is its
inverse stable isomorphism class. It then follows that

@p?—ap+1)p' 41 pitlg

]\4>|< ~ Z p—1 I p—1

i =

by Lemma 4.3.2 which gives the result. O
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Chapter 5

A Basis for 2 Torson (5/\@

OI'S101

In this chapter we find a basis for the torsion free part of the homotopy
groups 7«(¢ A £). To do this we follow methods introduced by Adams in
[Ada95]. We then study some of the properties of this basis including how it
relates to Kane’s splitting and what order of p-torsion is present in 7. (¢ A£).
In the last section we then explore its behaviour with relation to the Adams
spectral sequence with the intention of assessing what effect the maps (¢y,.n)«
of Definition 3.1.4 have on the individual homotopy groups. This will then
allow us to compare this with the effect of (1 A7), in Chapter 6 and hence
work out the matrix corresponding to 1 A ¢? under the isomorphism given
in Definition 3.1.4.

It might have been interesting, given more time, to compare the basis
that we find here with elements studied in [BR0S8, §9,10] of the torsion free
part of £,¢. These are derived by different methods to the ones used here
and are used to study the multiplicative structure of /..

5.1 Finding a Basis

In [Ada95, Part III, Chapter 17] Adams studies the torsion free part of
m«(ku A ku) by looking at its image in m.(ku A ku) @ Q = Q[u,v] where
u € ma(ku) and v € ma(ku) are the generators for the two copies of ku.
Here we carry out the analogous process for m.(¢ A £). The main result
is Theorem 5.1.10, which gives us a Z,-basis for the torsion free part of
(£ A £). Returning to Adams’ method, we are looking p-adically so we
need to consider the image of m,(ku A ku) in m(ku A ku) ® Qp = Qp[u, v].
The following theorem is a p-adic version of [Ada95, Part III, Theorem 17.5]:

Theorem 5.1.1. For f(u,v) € Qulu,v] to be in the image of m.(ku A ku) it
is mecessary and sufficient for f to satisfy the following two conditions.

(i) f(kt,1t) € Z,[t] for all k, | € 7.5
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(ii) f(u,v) is in the subring additively generated by
v
m(i) m(j)

"

fori,j =0 where m(i) = pszJ and similarly for j.

Proposition 5.1.2. The subring required for the second condition above is

uP=1 Pl
21,720 :Zp{u,v,, ]
p p

Proof. Each side is symmetric in u and v so we only need to look at one of
these. It is clear we have the inclusion ‘C’ as any monomial in  on the LHS
can be made from generators on the RHS, i.e.

ul uF=1)+ <up1>k l
p{pilJ _p{%J N p ‘

for ke Ny, 0<I<p—2.
To show the opposite inclusion ‘O’ we look at any monomial in u on the
RHS which will be of the form

. uP—1 b_ub(p71)+a
A\ ) T

for a,b € Ng. If 0 < a < p — 2 this is obviously included in the LHS. If
a > p—1 we can express a in the form ¢(p — 1) + d, where 0 < d < p — 2,

then
ub(p71)+a B u(b+0)(p71)+d u(b+0)(p71)+d

_ C
b b =p

P P pb+c

which is still included in the LHS. Hence we have the necessary equality. [

We want an analogue of Theorem 5.1.1 for 7. (¢ A £). We know the
following fact.

Te(L A 0) @ Qp = Tu(ku A ku) N QpuP ™t vP™1 C Qplu, v]. (5.1)

Hence we only need to consider powers of u and v of the form u®~Y¥ and
v~ Dl for k.1 € Np. The analogue of Theorem 5.1.1 for 7, (¢A€) is as follows.

Corollary 5.1.3. For f(u,v) € Qplu,v] to be in the image of (¢ N0) it is
necessary and sufficient for f to satisfy the following two conditions.

(i) f(kt,lt) € Zp[t] for all k, 1 € Z,;.
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(i1) f(u,v) is in the subring Z, [up 17 vp];lj|.

Proof. Using (5.1), the subring required for the second condition becomes

upP~t Pl
Ly |0, v, ——,

-1 ,p—1
[ gyt vy =2, [ 2] o

p p p

A basis is given in [CCWO01, Proposition 3] for mo(K Aku)®Z ) consisting
of {hi(w) : k > 0} where w = v~ v and

i—1

k
w—gq
h(w) =[] — =

z:lq —4q

Here 7 = ¢P~! for ¢ an integer coprime to p which is a topological generator
of Z, as explained in Proposition A.1. Now consider the elements

i—1

k
v — u
u*hy,(w) = H kqf_

_ qi—17
- 4

where we split up the factors of v and v and get rid of any negative powers
of u. These are then elements of m.(ku A ku) ® Z(,). We can multiply by
u in this way because 7, (ku A X) is a left m,(ku)-module for any spectrum
X. Because we are looking for a basis for %g\oﬂ rather than %

only want to consider (p — 1)st powers of both v and v and of q. Hence the

polynomials which we start with are given below.

Notation 5.1.4. I will now let & = P!, % = v~ and p = 2(p — 1) in
order to simplify the algebra in the next two chapters.

Definition 5.1.5.

o —ritly .
Cok = 1_[1 R € Qpla, 1]
1=

where r = ¢P~! for ¢ as above and k € N. Also let ¢y = 1.

Following the method of [BS05] we want to create out of these, elements
which lie in the subring given in Corollary 5.1.3 (ii). This involves taking
the elements c,;, and multiplying them by exactly the right power of p so

they lie in Zp[%, 193] This process brings us to the following polynomials.
Definition 5.1.6. Define

pk—Sp(k)

| o —ri-lg
fpk:p Pl k)H 1

r’L

where S, (k) is the sum of the digits in the p-adic expansion of k and v, (k!) =

%”l(k) as shown in Proposition A.4.
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Proposition 5.1.7. The elements f,. lie in Zp[%, %] for all k € Ny.

Proof. By Propositions A.3 and A.4 we know

k
Vp <H(’I“k - ri_1)> =vp(k!) +k

=1

is the p-adic valuation of the denominator of c,,. We also know that f,
can have at most k factors of p in the denominator to lie in the ring Z [p o]
since there are k factors. Hence the least power of p we needed to multiply

Cor by is (vp(K!) + k) — k = vp(K!). O

u v

We then produce elements of Z [5 5] which satisfy both conditions of
Corollary 5.1.3 out of these f,s by following the method of [Ada95, Part
II1, Proposition 17.6]. He recommends taking each element f,, multiplying
it by @' for all non-negative values of i and then dividing by the largest
power of p which will leave the resultant element satisfying both conditions
of Corollary 5.1.3. There comes a stage for each k where past this you
cannot divide by any more powers of p. The full list of elements we obtain
is detailed in the following definition.

F,]k—u< ) fpk

where k>0, 0 < j < vp(k!) and i =0 if j < pp(k!) or i > 0if j = v (K!).

Definition 5.1.8.

We know these elements lie in Z [“ 2] and hence satisfy Theorem 5.1.1

condition (i7) so we now check that they satisfy Theorem 5.1.1 condition (7).
Proposition 5.1.9. Let
i vp(k!) Q vp(k)+1
f(u7v) = <p> fpk and g(u,v) = <p> fpk'

Then f(lt,mt) € Zy[t,t1] for l,m € L} but there exists some l,m € L
such that g(It,mt) & Z,[t,t71].

Proof. Now
~ yp( ' k. _1A
U nyTo -
f(u’ U) e () Vp(k

k. i—1 ~

= ra

rk — pi—1

i=1
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So

—1 p—1
vp (k! (p—1) mt (lt)
Ft,mt) = (1t) e o= 1,1_11 S

P~ 1 mp 1 _ i—llp—l)

vp(k!)(p—1)
lt 8 H k _ pi—1 )

which we need to lie in Z[t,t~!] for [, m € Z)Y. We know [ has no factors

of p so we can ignore the term [*»*)(P~1) a5 this lies in Z, . Turning our
attention to the other factor we need

k _ i—11p—
mP 1_7,1 llp 1

11 s

i=1

In other words we need the p-adic valuation of the numerator to be greater
than or equal to the p-adic valuation of the denominator which is true by
Propositions A.5 and A.3. Hence each element in the list above satisfies both
the conditions of Corollary 5.1.3. In order to show g(It,mt) & Zy[t,t~!] for
some [, m € Z, take l=1and m = ¢®. Then

Ttp 1_7,1 1tp 1

5 tpfl vp(kh)+1 (k)
g(t,q"t) = <p> H e

p—1\vp(k!)+1
= %tk(l?—l) ¢ Zp[t,t_l]. 0]
p

y [Ada95, Part III, Chapter 17] we have a monomorphism

(LN L)
Torsion (“6)(8@”_@?[1?19

U

\@>

J

By Corollary 5.1.3 and the proceeding work we know that the list of elements
in Definition 5.1.8 all lie in the image of =29 ingide Qp[“ ”] It just

Torsion
remains to show that these form a basis. This is done using the following

analogue of [Ada95, Part III, Proposition 17.6].

Theorem 5.1.10. (a) The intersection of the subring satisfying condition
(i) of Corollary 5.1.83 with Qp[u,v] is free on the Zylu]-basis cp for
k>=0.

s (UNL)
Torsion

(b) The following polynomials are a Zy,-basis for

AN ]
YA
Fijr=1' <p> fok

where k > 0, 0 < j < vp(k!) and i = 0 if j < vp(k!) ori > 0 if
J = vp(k!).
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Proof. To prove part (a) we should first notice that the elements c,; do
satisfy condition (i) of Corollary 5.1.3 by Proposition 5.1.9 and so do Zj[u]-
linear combinations of them. It is clear that they are linearly independent.
We now need to show that given any polynomial f(u,v) € Qpla,?] sat-
isfying condition (i) of Corollary 5.1.3 we can write this as a Zy[t]-linear
combination of the c,s. We can separate homogeneous components and
just consider f homogeneous of degree pn. We can write f as

Flu,v) = N@™ + Ma" e, + Aot 2egy 4+

Assume as an inductive hypothesis that Ag, A1, ..., A\s—1 lie in Z,. Let the
sum of the remaining terms be

g(u; U) = )\Sﬂn—scps + )\s+1ﬂn—8—lcp(s+1) 4+

This sum must also satisfy condition (i) of Corollary 5.1.3. To determine A4
let w =t and v = ¢°t, then

g(t,q°t) = At

and hence Ay € Z,. The initial case for Ao works in the same way and this
completes the induction.
To prove part (b) we need another piece of notation; let

k
ny := numerator of c,, = H(@ - ri_lﬁ).
i=1

In any given degree pk there are k 4+ 1 Q,-basis elements

ng, ﬁnk,l, ﬂznk,g, ce ,ﬁk.
In order to produce the elements Fj; ; . we divided each of the above elements
by the highest power of p which would leave it satisfying both conditions
(i) and (ii) of Corollary 5.1.3. For an element 4'ns the power of p leaving it
satisfying the respective conditions is

(1) ps-l—l/p (sh

(i) p*T.

Hence the power of p we divided by in this case was min{p*+*»(*") ps+i} Now
going back to our elements Fj;, we have shown that Fj;; for the given
range satisfy conditions (i) and (ii) of Corollary 5.1.3 and so do Z,-linear
combinations of them. Now consider a general element f(u,v) € Qplu,?],
homogeneous of degree pk which satisfies conditions (i) and (ii) of Corollary
5.1.3. We can write f as

Ao . A _ A2 .
f(u,v) = pT(f)uk + pTllu(k Uy + pTQzu(k Dng + -+



where \; € Z,, for i > 0. By part (a) we know that
as < vp(denominator of c,s) = s+ 1,(s!)

by Proposition A.3. We also need to show that as < (kK — s) + s = k and
then we have expressed f as a Z,-linear combination of the elements Fj ; ;.
Let the inductive hypothesis for a downwards induction be that ay < k for
s’ > s. Let the sum of the remaining terms be

A A
20 ks

g(u’ U) - o pls

which must also satisfy conditions (i) and (ii) of Corollary 5.1.3. The top
coefficient pﬁ‘; is the coefficient of 4*~50° so because g satisfies condition (ii)
of Corollary 5.1.3 we must have that a; < (k — s) + s = k. The first step
of the induction works in the same way on the top coefficient of f and the

induction is complete. ]

5.2 Properties of the Basis

In this section we consider how the basis we have found above relates to
Kane’s splitting of ¢ A £ as given in Theorem 2.1.1.

Definition 5.2.1. Let
Tm(L A K(n))

Torsion

Gm,n =

Then we have
(LN L)

G = @) G = =URD.
Torsion
m,n

Proposition 5.2.2. For each n > 0

)

Zy  if mis a multiple of p and m = pn
Gm n — .
0 otherwise.

that ™ ({AK(n))

Torsion

Proof. Tt is given in [Kan81, Proposition 9:2]
module with generators

is a Zp[ul]-

{lo, i, ..., L v =vp(n), |l;| = pj}

and relations {pl;11 = al; : 0 < j < vp(n!)}. If we take the relations into
account, then, as a Z,-module,

7 (0 A K (n))

Torsion Zp{losly, ... lu—1, @', v = pp(nl),i > 0}.
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This means there is a copy of Z, in every degree of the form pj for j > 0.
Recall that
K(n) =%X"K(n),

so when we look at G, we find that there is a copy of Z, in every degree
of the form pk for k > n. d

Definition 5.2.3. For m > [, define the elements g, n € Zp[%, %] to be
the element produced from f,; lying in degree pm, i.e.

o FO,m—l,l ifm < I/p(l!) + l,
Jom.pl = B i—v, @)y i m > (1) + 1.

Lemma 5.2.4. The elements {gom p : 0 <1< m} form a basis for G«

Proof. The elements {gym,,n : 0 < | < m} are precisely all of the basis
elements Fj ; x which lie in homotopy degree pm. O

I will now give an algebraic lemma which will be needed in the next
section concerning how to express a power of % times a particular g, o in
term of our basis in Theorem 5.1.10.

Lemma 5.2.5. For0<i<m—1,

. N (D o
<ﬁ)yp<m!) pr<mz)+nlL7up<u)fiﬁyp(m!)_yp(1!)+m_z % ’ foi ifm<vp(dl) + 4,
— 9pm,pi = _ . o/ a\vp () . . .
p pvp%m!) uup(m!) vp (i) +m—i (%) fpi me > l/p(Z!) i
Proof. Using Definition 5.2.3
A\ Vp(m!)+m—i . . )
<ﬂ>vp(m!) (%) fpi if m < wp(i!) + 14,
— Gom,pi = vp (i) +vp(ml)
A —f— i o\ P\ P . . .
p m—i—vp(i!) (%) fpi if m > Vp(’L!) + 1,

~vp(m!)+m—i . ' .
%fm’ it m < vp(i!) +14,

,al/p(m!)+m77i
fpi

ity fpi A m > wp(l) 4.

These can now be expressed as some power of p times a basis element
(i.e. a power of 4 times a power of % times an element f,;). In the case
where m > v (i) + 1,

~vp(m!)+m—i N\ vp(ih)
U P(( '))JF - fm' _ % Dﬂ]jp(m!)—yp(i!)-i-m—i <u) P fm..
pup m!)+vp (2! pup m! P

We can do this so long as the power of u we take out and put in the %

is not more than the original power of u we had. So we need

factor

vp(i)(p = 1) < (pp(m!) +m —i)(p - 1),
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ie.
vp(i) +1 < vp(m!) +m

which is trivially true.
In the case m < vp(i!) + i we have

Avp(m!)+m—i ~\ vp(d!
&f: 1 Grem)—vp(@)+m—i (U o o
pup(m!)erfi p pup(m!)+mfup(i!)7i P pe:

For this to be true we again only need

vp(i!) +1 < vp(m!) + m. O

Lemma 5.2.6. Let Gmn =mm((AK(n)), then é’”ﬁ’” = Gn ® Wi n where
Wi 15 a finite elementary abelian p-group, i.e. Gy, contains no torsion
of order larger than p.

Proof. This is proved for the case p = 2 in [Ada95, Part III, Chapter 17|, the
odd primary analogue is similar. We require two conditions in order to apply
the two results of Adams necessary to prove this. Firstly that H.(¢ A¢;Z) is
finitely generated for each r which is true (see [Ada95, p.353]) and secondly
that, as a B-module, H*(¢ A £;Z/p) is stably isomorphic to @; %) [0(i)
where b(i,p) > 0 and a(i,p) + b(i,p) =0 mod 2.

We can now prove the second of these conditions. We know the stable
class of H*(¢;Z/p) from Proposition 4.1.1. Using the Kiinneth formula and
Proposition 4.1.1

H*((NGZ)p) = H*(6Z/p) @ H*(¢;Z/p)

o p—l . . 0 p—l . .
i~ ® EB (2" =2p" " =7y (i-1)) [ (mp (i-1)) ® @ 30 (2p" =2p" " =y (i—1)) [ (mp (i—1))
i=1 j=0 i=1 j=0
wherg Wp(i) = 1;:%11. When we look at a(i,p) + b(i,p) for an individual
Ej(2p172pl_17”1’(’5’71))[‘7'(”17(@'71)) we have

J(2p* —dp+p~t+1) Gt —1)  j@2p* —4p+2pt i1
+ = =2j(p—1)p
p—1 p—1 p—1

which is even. Since the assumption is true of all the pieces, the assumption
is true of any product and so of H*({ A 0;7Z/p).

Given these assumptions we can now apply [Ada95, Part III, Lemma
17.1] which states that H,(ku A ¢;Z) and hence H,(¢ A ¢;Z) has no torsion
of order higher than p. Then from [Ada95, Part III, Proposition 17.2(i)] we
know that the Hurewicz homomorphism

h:mo(kunt) — Ho(ku N\ l;Z)

is a monomorphism. Since this is true of ku A £ it follows that the same is
true of ¢ A £ and so the result follows. O
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Definition 5.2.7. We have a projection map

CnL~= \[LAK(n) = £AK(n)

n=0

which induces a map on homotopy
T(UNL) = T (LA K(n)).

Define P, to be the map induced from this by tensoring with Q to annihilate
torsion, i.e.
P, Gys — Gy

Lemma 5.2.8. P,(gpn ) =0 ifl <n.

Proof. Since Gy, is torsion free we can consider just whether P, (gpn p1) is
zero in Gy p ® Q. Let | < n, then for a(n,l) € Ny

upn—pl

ENY n(EAL
= PN Y

pn—pl
1 €U -
fp Torsion

2 Q).

Torsion

We know P, projects onto the K(n) piece so P, (gpn,p1) lies in % We
also know P, commutes with multiplication by u so, from above, Py, (gpmn. i)
is uP" P! times an element of %. We know that the homotopy of
¢ A K(n) is trivial in degrees less than pn by Proposition 5.2.2, hence the

result follows. O

This lemma tells us that g, ,n, has a non-zero component in Gy, , and
that all other elements g, , for [ < n do not have a component in Gy, . In
the next section we will define a generator for G, , and express it explicitly
in terms of g, »; for ¢ < n.

5.3 The Elements z,,

Now we choose labels for some of the generators of certain homotopy groups.

Definition ~5.3.1. Let z,, be a generator for G, , = Z, and let Z,, be any
element in Gy = Gpnn @ Wpn,n where the first co-ordinate is z,p,.

Proposition 5.3.2. In the Adams spectral sequence

Ey' = Exty (H*(AK(n);Z/p), Z/p) = m—s (£ A K(n)) ® Z

. o 0, 1,pn+1
the class of Zn is represented in either Es™" or E, prtl,
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Proof. Consider the Adams spectral sequence

Ey' = Ext (H*(¢ AK(n); Z/p), Z/p)

(H(
= Ext’y. (H*(6:2/p) ® H*(K(n); Z/p),Z/p)
=~ Ext’y’ (A, ®p Z/p ® H*(K(n); Z/p),Z/p)
= Ext’y’ (A, ©p H*(K(n); Z/p), Z/p)

(H

= Exty (H*(K(n):Z/p). Z/p)
:>7Tt—s(€/\lc( ))®Zp~

Here we have used the same isomorphisms mentioned to obtain equation
(3.1) such as the Kiinneth formula, a change of rings isomorphism etc. We
know from Theorem 3.2.13 that H*(K(n); Z/p) &= Lr—vr() 1) 3o

Eyt = Exty (nen—re ) () 7, /p)
o EXt5B+Vp(n!)at—ﬂn+Vp(n!) (Z/p, Z/p)

o~

We see that the s term is isomorphic to a shifted version of Ext};"(Z/p, Z/p)
Z/ple, d] with ¢ € Exty' and d € Extg™ " (see Lemma 3.2.15). Recall that

Zon € Gonn = Tpn(UAK(1)) 2 Zyp ® W

The spectral sequence gives us information about the filtration of C;’pn’n =
Ton(£ A K(n)), i.e. we have a filtration

CF'C---F?CF'CF'=nm,,(t AK(n)) ®Zp.

Here t — s = pn so t = pn + s, and the filtration gives us
i

il (an(g ANK(n)) ® Zy) = Eég’”*-i ~ E;,pnﬂ

as the spectral sequence collapses because all non-zero elements are in even
total degree. We know from the ring structure of the spectral sequence that
multiplication by ¢ in the spectral sequence corresponds to multiplication
by p in homotopy groups. So in our filtration we have pF* C F*+!. Because
we know from Lemma 5.2.6 that W, ,, is an elementary abelian p-group we
know that pW,, , = 0 so W, , must be represented in Eo’p "

Looking in more detail at the spectral sequence we know that each non-
zero group is a copy of Z/p{c"d®} for some r,s € Ny, i.e. each filtration

quotient is as follows
Tl (Ton(E A K(n)) ® Zp) = Z/p{c"d’}.
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Multiplication by ¢ gives us the next filtration quotient i.e.

Fi+1 ~ r+1 3s

vz Ton(EAK(n)) @ Zp) = Z[p{c"™ d}
and this corresponds to multiplication by p within the homotopy groups.
Solving the extension problems using the ring structure of the spectral se-
quence gives us that pF* = F*1! for all i = 1,2,3,... and that FY = Fl =
L.

Assume that the generator Z,, is represented in E}P" for j > 2, then
we must have that z,, € I J. Because to pass from one filtration group
to the next involves multiplication by p we must have had some generator
Z,, € F! such that p/z) is a generator for F/*!. Inside F/*! it must be
true that there exists some v € Z, such that

pj'72;m = DZpn-
By taking out a factor of p we have
p(Pj7175;;n —Zm) =0

hence we must have p’ _172;m — Zpm € Wyp,n because nothing else has any
torsion. This implies that in G, ., 2pn has a factor of p which contradicts
that fact that we chose z,, to be a generator of Gy, n = Zy. O]

We can now give a more explicit description of the generators z,, in
terms of our basis elements g,m, -

T o (ENL)

Proposition 5.3.3. The generators zpm € -

have the following form

m
Zpm = Zpﬁ(m’z))‘pm,pigpm,pi
=0

where sy € Zy if s # 1, A\ss € Z; and
N[ vp(ml) if m > vp(i!) + 4,
Blm, i) = { vp(m!) +m —vp(il) —i  if m < yp(il) + 4.
Proof. Because {gpm,p : 0 <1 < m} form a basis for G, « by Lemma 5.2.4,

we can express our element z,,, in terms of this basis as follows

Zpm = Apm,pmYpm,pm + :\pm,p(mfl)gpm,p(mfl) +o Tt 5‘mn,OglJWO (5.2)

where Apm. pm, Apm,pl € Zp. When the projection map P, : Gomys — Gomm
is applied, this acts as the identity on z,,, and as the zero map on all g,
where m # [ by Lemma 5.2.8. Hence

Zom = Pin(2pm) = P (Apm,pmGpm,pm + -+ + :\pm709pm,0)

= Apm.om P (Gom,pom)-
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This shows us that the coefficient A, pm must be a unit otherwise z,,
would have a factor of p and this contradicts the fact that we chose it to
be a generator of Gpp m = Zy. We know by definition that for all m > 0,
9pm,pm = fpm hence the above equation gives us

Zpm = )\pm,pmpm(fpm)

in Gym,m. We can now multiply by the largest power of % possible to leave
the result still lying in G ,,, and we get

~\ vp(ml!) A\ Vp(m!)
u\ u\?
(p) Zpm — )\pm,mem ((p) fpm)
vp(m!)

which lies in Gy, (m1)4m),m- By multiplying equation (5.2) by (ﬁ) we
now have the following relation in G, (m1)+m),m ©® Qp

~ v, (ml) ~ Vp(m') m— I/p(ml)
u u ~
me pm pm J pm E )\ pPm pZ gpm p’L'
(]! ) <][ > i=0 ( ) ’

(5.3)
We already know the left hand side of this equation lies in G, (m!)+m),m
so now we just need to know how many factors of p each 5\pm7pl- must have
to ensure that, once the right hand side is expressed in terms of the basis in
Theorem 5.1.10, all the coefficients are p-adic integers.
Using Lemma 5.2.5 we can see that if m < v,(i!) + ¢ we have

~ N\ Vp(m! ~ N\ Vp (1!
<u> p( ) gpm pi = ( 1) ! (|) 'ﬂyp(m!)—yp(i!)—&-m—i <u> p( ) fpi
P ’ pup m!)+m—uvp(i!)—i P

and so in equation (5.3) we need our coeflicient :\pm,pi to be divisible by
premhFm=r@)=i iy 7, hence we choose \pm.pi = PPN pi fOr Apm.pi €
Zy, as in the statement of the Proposition.

Similarly when m > v, (i!) + i we have

i) ~\ vp(i)
u P g - Lﬂup(m!)fyp(i!)+mii i P ‘.
b pm,pr pyp(m!) D i

and so in equation (5.3) we need )\pm pi to be divisible by pr(mY) in Zy, hence
we choose )\pm g = = phlm, ))‘pmmz for X\pm.pi € Zy, as in the statement of the
Proposition. [

Proposition 5.3.4. In Proposition 5.8.2, Z,, 1is actually represented in
0,pn
Ey™".
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Proof. We will assume that Z,, is represented in E;’p "1 in the spectral

sequence and obtain a contradiction. From Lemma 5.3.2 we know that
the spectral sequence in question collapses and the Fy page is obtained as
follows,

Byt = Exty et g, 7).

We know that this is a shifted version of Exty3"(Z/p,Z/p) = Z/plc,d] (see

Lemma 3.2.15) so we can work out that on the line s = 1 the non-zero groups

1p(n+1)+1 1 D41)+1 o
are ELPHL pretnt AL EQ’WHVP(n JFUFL and each of these is a single

copy of Z/p. Using the multiplicative structure of the spectral sequence we
(nt5)+1 (n DL 5

“ ey

and the group Eg’p
(n+j+1)+1

know that if there is a class w € Eg’p

non-zero then there exists a class w' € Eg’p such that pw’ = dw.
In other words if w is represented by ¢*dY in the spectral sequence where

x> 1,y >0 then w is represented by ¢*~1d¥*t!. We can apply this theory

~ , D41)+1
to Z,, € E217lm+1 p(ntvp(nl)+1)+

. 1 .
, since we know that F, is non-zero there

|
must exist a class w € ]5’21”)(7"+yp(n')H)Jrl such that

ﬂl—‘rl/p(n!) 5 1+wvp(

Zom =D .

1+vp( 1+vp(nl)

This implies that "!),%pn is divisible by p in G4« however this
contradicts the proof of Proposition 5.3.3, hence Z,, must be represented in

EYP™, O
Lemma 5.3.5. In the spectral sequence

E;t o Ext;t(H*(lC(n); Z]p), L]p) = m—s(L NK(n)) ® Zy,

i . .
(pZpn) is represented by (M) F1=igi for

up to multiplication by a unit, (%)

. vp(n!) .
0 <i < vp(n!) and W’ (%) " (Zpn) is represented by d»(")+7 for j > 1.
Proof. From Proposition 5.3.4 we know that in the spectral sequence
Ey' = Exty (H*(K(n); Z/p), Z/p) = m—s({ ANK(n)) @ Z,

P By the multiplicative structure of the spectral

pn+1

- 0
Zpn 1s represented in F,
sequence this means that pz,, is represented in E; . From the proof of
Proposition 5.3.2 we know that Ej* = ExtSB+Vp(n!)’t_pn+V”(n!)(Z/p, Z/p) so

Eé’p”“ ~ Ext};yp(n!),uup(n!)(Z/n Z/p)
= 2p(cH ) >4

We know from [Ada95, Part III, Lemma 17.11] that in our spectral se-
quence, multiplication by ¢ and d correspond to multiplication by p and u
respectively on homotopy groups. We list below some homotopy elements of
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(£ AN KC(n)) with a choice of corresponding representatives in the spectral
sequence.

Homotopy element | Representative
pgpn cl+up(n!)
(o | o
N\ 2
(%) (pipn) Cup(n!)—1d2
A\ Vp(n!)
) | o
.\ Vp(n!)
i (%) D (2pn) dl/p(?’l!)“rl
A\ Up(n!)
e | e

From this table it is clear to see that the descriptions given in the statement
of the Lemma are correct. O

Recall from Definition 3.3.5 the maps
tmn LANK(m) = LA K(n)
which were maps represented in the spectral sequence

B5" = Exty (H*(D(K(m)); Z/p) © H*(K(n): Z/p), Z/p)
= m—s(D(K(m)) NK(n) ANl) @ Zy,
by a choice of generator of
Eém—n)—vp(n!)wp(m!)7(m—n)—'/p(n!)+vp(m!)'
These were crucial in defining the isomorphism A of Definition 3.1.4 as for

any given automorphism in Autly , .4(¢ A €) their coefficients determined
the entries in the matrix corresponding to that automorphism.

Proposition 5.3.6. For m > n, the map induced in the (pm)th homotopy

group
(Lm,n)* : Gpm,m — Gpm,n

satisfies the following condition
() ) = BP0

for some p-adic unit ppm pn.
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Proof. We know that Z,,, is any element in Gppmm © Wom,m whose first
co-ordinate is z,,, we also know that W, ,, has torsion of order p at the
highest by Lemma 5.2.6. In order to forget about the torsion we will prove
the analogous result for the element pZ,, = pz,m; then by linearity the
required result will be true for z,,.

We already know from equation (5.4) in the proof of Lemma 5.3.5 that
in the spectral sequence

Ey' = Exty (H*(K(m); Z/p), Z/p) = m—s({ A K(m)) ® Zp,

PZpm is represented in Egl’perl = Ext]lBJrV”(m!)’lerp(m!)(Z/p, Z/p), up to a

unit, by ¢!tve(m),

Recall from Chapter 3 that in the spectral sequence
Eyt = Exty (H*(D(K(m)); Z/p) © H*(K(n); Z/p), Z/p)
= m_s(D(K(m)) AK(n) AN0) @ Z),
the maps ty,n : £ AK(m) — £ A K(n) described there are represented in
E;rb—n—l/p(n!)+vp(m!)7m—n—vp(n!)+Vp(m!) ~ Extg—n,(m—n)(pﬂ)(z/p, Z./p)

> Z/p(d™ "),

Using the pairing of Ext groups described in the proof of Proposition
3.3.7

Ext*!(201%, Z/p) @ Ext®¥ (89 IV Z,/p) — Ext* 4+ (504 4V 7/p)

we get an induced pairing on the Fy pages of the respective Adams spec-
tral sequences. Since in all cases the spectral sequences collapse for degree
reasons this passes to the F, pages too. This pairing also respects the filtra-
tion on each of the spectral sequences as the Ext group pairing is, in essence,
reducing everything to a splicing of Extp(Z/p,Z/p) = Z/plc, d] with itself,
which is just polynomial multiplication. So the Ext group pairing passes to
a pairing of spectral sequences giving us a map

Exty' (H*(D(K(m)); Z/p) © H*(K(n); Z/p), Z/p) ® Exty " (H*(K(m); Z/p), Z/p)

— BExt3 Y (H* (K(n): Z/p), Z/p).
This shows that (¢m,n)«(PZpm) is represented in the spectral sequence
Eyt = Exty (H*(K(n); Z/p), Z/p) = m—s({ AK(n)) @ Z,,

and by adding together the respective bidegrees, we see it is represented by
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a generator of

E21+m—n—l/p (n))+vp(m!),pm+14+m—n—vp(n!)+vp(m!)

= Ext e e e OO ) (g (1 (n); 2/p), 2 )
o EthBerfanp(n!)Jrl/p(m!),pm+1+m*n*1/p(n!)+l/p(m!) (Epn—l/p(n!)ll/p(n!)7 Z/p)

~ EXt1B+mfn+l/p(m!),pm+1+mfn+yp(m!)fpn(Z/p, Z/p)
~ EthB+mfn+up(m!),1+(p+1)(mfn)Jrup(m!) (Z/p, Z/p)
~ Z/p<cl+1/p(m!)dm—n>

Thus (tm,n)«(PZpm) is, up to a unit, represented by ctvp(mhgm=n and all
that remains is to express this element in terms of pz,,.

Using Lemma 5.3.5 we can see that we have two cases for (tmn)«(PZpm),
either the power of d in its representative is at least v,(n!) + 1 (and hence
the power of ¢ in its representative is zero) or not.

In the first case we have m —n > v,(n!) + 1. Then we can use Lemma
5.3.5 to see that d™~" represents

m vp(nl) , |
<p) am—n—up(n.)gpn _ p—up(n.)am—népn

This implies that up to a p-adic unit, (¢tmn)«(PZpm), which is represented by
cttp(m) gm=n_ig equal to

p1+1/p (m!)pfup(n!)amfnépn — pup (m!)fl/p(n!)amfn (pépn) )

In the second case we have m —n < v,(n!) + 1. Hence we can see from
Lemma 5.3.5 that the representative involving d™ ™ is ¢ltvp(nt)—m+ngm—n
and this represents the homotopy element

) o

This gives us that up to a p-adic unit, (tmn)«(PZom), which is represented
by cttve(mgm=n g equal to

~

p1+up(m!)—(1+yp(n!)—m+n) <Z> (pgpn) _ pl/p(m!)—up(n!)am—n(pgpn)_ ]

Now we have an expression for the effect of (¢mn)« on z,m we can, in
the next chapter, look at the specific automorphism 1 A ¢¥? and determine
which matrix it corresponds to under the isomorphism A of Definition 3.1.4.
This will involve working out what effect the induced map (1 A ¢9), has on
the elements z,, and comparing coefficients to determine the entries in the
matrix.
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Chapter 6

The Matrix

6.1 Introduction

In this chapter we will determine the coefficients of the matrix corresponding
to the map 1 A9 : £ AL — £ AL under the isomorphism A of Definition 3.1.4.
We already know what effect the maps (¢, n)« have on our basis elements
Zpm by Proposition 5.3.6. If we now work out what effect the induced map
(I A 97), has on the same basis elements we can then compare the two
using the construction of the isomorphism in Definition 3.1.4 to work out
the necessary coefficients of the matrix.

This particular Adams operation is important; because powers of g are
dense in Z,, the ring of operations ¢°(¢) on the complex connective p-
complete Adams summand is generated as a power series over Z, by ¢ —1
(see [CCWO05, Theorem 5.1]). ! We can now show that 17 induces the
identity map on mod p homology and therefore 1 A ¥? is an element of
Aut?eft—é—mod (6 N E)

Proposition 6.1.1. The map
Vi Ho(6Z)p) — Hi(6Z/p)
1s the identity map.

Proof. We have an augmentation map ¢ : £ — HZ/p such that e, : m.(¢) —
m«(HZ/p) sends 4 € my({) = Zy[d] to zero in m,(HZ/p) and sends any
number a € Zj, to its reduction mod p. Since %, (1) = "' = ra, and Y9,
has no effect on the coefficients, we see that (¢ o 9?), = €,. If we now apply
the functor — A HZ/p to the composition € o )7 we get

¢ANHZ)p Y2 o8 HZ)p Y HZJp A HZp.

We follow [CCWO05] in denoting this Adams operation as 1?; some authors write 1"
where r = P~ for this operation.
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Taking the induced maps in homotopy and using the standard identification
m«(E N F) = F,(F) for spectra E, F', we get the maps

q u N
H.(6:Z/p) L= H(6Z)p) 5 A
where €, is the standard inclusion of the subalgebra

H.(6;Z/p) = AMx(72), x(73),--.) @ Z/p[x(&1), x(&2), - - ]

into the dual Steenrod Algebra. Since the composite (¢ o 1)9), is equal to
the inclusion €,, we see that 19, must be the identity map. ]

6.2 The Effect of 1 A 97 on the Basis

Recall the elements g, ,n given in Definition 5.2.3.

<%>m—n fon if m <wp(n!) +n,
9pm,pn = N\ vp(nl)
qm—n—vp(n!) (%) g fon i m > pp(nl) +n.

In this section we will look at what happens to our basis elements g,m on
under the map (1 A7), where ¥? is the Adams operation. These elements
are defined in terms of the polynomials f,; = p”P(k!)cpk given in Definition
5.1.6, so we first we need to look at the effect of (1 A %), on the elements

fpk-
Lemma 6.2.1.

(1 A @Z)q)*(fpm) = Tmfpm +pyp(m)ﬁfp(m—1)
form > 1.

Proof. Recall the polynomials

given in Definition 5.1.5. The map (1 A ¢?), fixes u, multiplies v by ¢, and
so 0 by = ¢?~!, and is additive and multiplicative. So we have
mo . i—1p m-1 . i—15
. O—r'" 0 O—1r" 0
Tmcﬂm + UCp(m—1) = " H m
i=1 i=1



H r0 — r'u o—r1la
1 rm _ ’I“i ,,nm—l _ T_l
1=
m—1 . i ~ ~
T —Tru TV — U
- H rm i \ pm o _q
=1
m—1 in
TV —T"Uu
- rm o pt
=0
m .
H TV — rJ 1U
N rm — il
Jj=1

Now

(LAY (fom) = 2™ (1A YD) (Cpm)

_ pyp(m!)rmcpm +pl/p(m!)—l—IJp((m—l)!)—I/p((m—l)!)racp(m_l)

= 1" fom + pl'p(m!)*l/p((mfl)!)ﬁfp(mil)'
Because v,(m!) — vp((m —1)!) =1, <(mL—'l)') = vp(m) we then have that

(LAPD)(fom) =1 fom +Pyp(m)ﬁfp(m—l)
for m > 1 as stated. O

Proposition 6.2.2. The action of (1 A ¢?), on our basis elements is as
follows

ngpm,pm + pyp(m)+lgpm,p(m—1) Zf m>p,

m + pg —1 ifm=p

LAY, _ ) T 9pm,pm pm,p(m—1) : )
(AT (gpm,pom) ™ Gom,pm + Gpm.p(m—1) ifl<m<p—1,

9070 me =0.

In the 2 primary case the result [BS05, Proposition 3.3] should read as
follows

9k94k,4k + 2y2(k)+394]€74(k,1) if & > 3,

92gs.s + 23984 if k=2
1A 3 * = ' 7 1 ?
(LA Y?)s(gak,ak) 9944+ 2940 ifk=1,

90.0 if k=0.
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Proof. Using Lemma 6.2.1 and Definition 5.2.3 we get that

U
(1 A wq)*(gpm,pm) = rmfpm +pyp(m)+1 <p> fp(mfl)

(m)

1
= ngpm,pm + pyp * Gom,p(m—1)

for m > p. If m = p then from Definition 5.2.3 we have
(1A ¢q)*(gpm,pm) =7" fom + pyp(m)'&fp(m—l)
= 1" Gpom.om + PIpm,p(m—1)

and
«*\Ypm,pom ) = pm,pm pm,p(m—1)
(LA D) (gpm,pm) =19 +g
fori<m<p-1. O

Proposition 6.2.3. When m > n

(LA (gpm.pon)

rngpm,pn + 9pm,p(n—1) me > Vp<n!) +n,
= Tngpm,pn +pyp(n!)+nimgpm,p(n—1) Zf Vp((n - 1)') +n—1<m< Vp(n!) +n,
Tngpnl,pn +pl’p(n)+lgpm,p(n—1) me g I/p((n — 1)') +n — 1.

In the 2 primary case the result [BS05, Proposition 3.4] should read as
follows. When k > [

(1A Y*) s (gar,a1)
9" gak, a1 + Gaka0-1) if 41 — a(l) < 2k,

= 99 gapar + 24700 g 40mry il —a(l) —va(l) -3 < 2k < 4l —a(l),
9 gapear + 232 M g 4 if 2k < 4l — a(l) — vo(l) — 3 < 41 — a(l).

Proof. For the first case let’s take m > vp(n!) +n. Then using Lemma 6.2.1
we have

A\ V(1))
(1A DD)w(gpmpn) = (1 Ap9), (,amnl/p(n!) <Z> fpn)

~vp(n!)
u-r ~
: nl) (r" fon + pyp(n)“fp(n—l))

m—n—uvp(n!

- pr(

qmen ~m—n-+1

n Up(n u
-7 ]Wfp”—'_pp( )7fp(n—1)

pr(n!)
ﬁm—n—&-l

= Tngpm,pn + Wfp(n—l)‘
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Since

vp((n =1 +n—-1=py(n!)+n—-rvp(n!)+,((n—-1)" -1
=1p(n!) +n—1p(n) —1
<m-—vp(n)—1<m

we have

-\ wp((n=1))
AM—nN —U, n— ! u P
Gpm,p(n—ry = @7 (7D) <p> fon—1)

amfn+1
- pro((n=1)D Fotn-1)
amfnJrl
~ e =vp(n) Totn=1)-

This gives us that

(LA YD) (Gpom,on) =" Gom,on + Gpm,p(n—1)-

Now let m < vp(n!) + n, then

(1A 97)(Gpmpn) = (1A ). ((Z) i fpn>

- pm—n (r" fon + pyp(n)ﬂfp(nfl))

,&m—n—i—l

=1"Gpm,pn + mep(n—l)'

Now one of the two following cases will apply
(i) vp((n =1 +n—-1<m<yy(n!)+n,
(i) m<yp((n—1)+n—1.

Case (i): Here

1 (1)) Q vp((n—1)")
Gom,p(n—1) = U P ' <p> fp(n—l)

ﬂm—n—&—l

- pup«n—l)!)f pln=1):

Substituting this back into the above equation we have

(1 A wq)*(gpm,pn) — rngpm,pn + pup((n—l)!)—‘rup(n)—m+ngpm7p(n_1)

N_
= Tngpm,pn + pup(n.) m+n9pm,p(n—1)'
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Case (ii): Here

p

When substituted back into the above equation we have

A\ m—n-+1
u
Gpom,p(n—1) = <> fp(n—l)-

(LA YD) (Gpmopn) = 1" Gpm,pn + pyp(n)ﬂgpm,p(n—l)'

6.3 The Coefficients of the Matrix

Let A € UxZy be a matrix such that under the isomorphism in Definition
3.1.4
A(A) =1 AyL

The rest of this subsection will be devoted to proving the following result
on the form of A.

Proposition 6.3.1. The matriz A corresponding to the map 1A : AN —
LN L under the isomorphism A has the following form:

1 vy ap2 aop3z aopa

0O r wv1 a3 aia
A= 0 O 7“2 (%) a4
0 0 0 g

where r = ¢P~' for q a topological generator of the p-adic units, v; € Ly for
alli >0 and a;; € Zy for alli,j > 0.

Before we can prove this we need the following lemma concerning ex-
pressing 4" " gyn, pi in terms of gpm pi-

Lemma 6.3.2.
pm_ngpm,pi if n
’”gpn,pi — pup(z!)—n—l-zgpm,m if n
Gpm.pi if vp(i!

Proof. From Definition 5.2.3 we know that

,&m

~—

+r<n<<m.

S\ n—1
g g (%) Foi it n < vy(il) + 4,
pn.pt = ) s\ vp(ih)
m—n+n—i—vy(il) (ﬁ) b it > (i) + 1,

%fm if n < yp(a!) + 1,
]%fpi ifn> Vp(i!) + 1.
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Comparing this with the original definition
g::—::fpi if m < wp(2!) + 1,
Gt S\ B im s (i) 4
we get the formulas in the statement. O

Recall the following expression from Proposition 5.3.3:

Zpm = E p pm,pz gpm pz)

where \s; € Zy, if s # ¢, A\s s € Z,; and
N ovp(ml) if m > v, (i!) + 14,
Blm,i) = { vp(m!) +m —vp(i!) —i  if m <wp(il) + 1.
Proof of Proposition 6.3.1. Using Definition 3.1.4 we have that

Z An,m(Lm,n)*(me) = (1 A d]q)*('zpm)

nm
m
Z (m.¢) pm pz 1 Nl ) (gpm,pi)'
=0

Also by expanding out the left hand side of this equation and using Propo-
sition 5.3.3 and Proposition 5.3.6 we get that

Z An,m(bm,n)*(zpm)

n<m

= Am,mzpm + Z An7mupm7pnp'jp(m!)_Vp(n!)am—nzpn

n<m

m
= Am,m Zpﬁ(mﬂ))‘pm,pigpm,pi

n
1 — 1 A — ;
+ Z ZAnvmﬁ‘pm,pnpyp(m') v () gm npﬁ(n’z))‘pn,pigpmpi

n<m {=0
X
where 1t,m pn € Zp . Hence we have

m

Z pﬂ(m’i)kﬂmapi (1 A wq)* (gpm pi) = Am,m Z pﬁ(m ! Apm,piGpm.pi
=0

vp(m!)—vp(n!) rm—n n,i
+ ZZAn,mMpm,pnp p(mh)=vi( )u pﬁ( ))\pn,pigpn,pi- (62)

n<m =0
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We want to determine the A, ,,s by equating coefficients in Equation
(6.2) above. Firstly let m = 0, then by Proposition 5.3.3 we know zy =
)\0709070 = )\070 S Z;;. Then

20 = (L A7) (20) = A0,0(20,0)+(20) = Ao,020

which means Apg = 1.

We will now split the rest of the proof into three cases. Case (i): Let
1 <m < p—1. From Equation (6.2) we can use Proposition 6.2.2 and
equate the coefficient of g,m pm:

m
" Xom,pm = AmmApm,pm

which gives us that A,, , = ™.

Looking at the terms which will contribute to the coefficient of g, p(m—1),
we can use the first case given in Proposition 6.2.3 on the left hand side of
Equation (6.2). We find that

(pﬁ(mvm))\pm,p'm + pﬁ(mﬂnil)Apm,p(mfl)Tmil)gpm,p(mfl)

m,m—1
= Am,mpﬁ( ))\pm,p(m—l)gpm,p(m—l)

+ Am—l,mUpm7p(mfl)pr(mI)71/?((mi1)!)pﬁ(mi1’m71))\p(mfl),p(mfl)ﬂgp(mfl),p(mfl)-
From Lemma 6.3.2 we know that in this case 4g,m—1),p(m—1) = Gpm,p(m-1)
and from Proposition 5.3.3 we know that S(m,m—1) =0 and 3(m, m) = 0,
hence the coefficient of g,,, ,(m—1) 18 given by

Apm.pm A pmp(m—1)"" " = " Apmp(m—1) - Am—1.mtpm,p(m—1)Ap(m—1),p(m—1)

which gives us that

_ -1 -1 -1
Am—l,m - Mpm,p(m—l))\p(m—l),p(m—l)((Tm - rm))\ﬁmuﬂ(mfl) + )‘pm,pm)
which is a p-adic unit.
Case (ii): Let m = p. From Equation (6.2) and Proposition 6.2.2 we
have that the coefficient of g,m ,m on each side is given by

m
r )\pm,pm = Am,m)\pm,pma

hence we have A,, ,, =" as before.

We can look at the terms which will contribute to the coefficient of
9pm,p(m—1)- Using the second case given in Proposition 6.2.3 on the left
hand side of equation (6.2) we get

(pﬂ(m’m))‘pmmmp + pﬂ(m’m_l))‘pm,p(mfl)rm_l)gpm,ﬂ(mfl)
= Am,mpﬁ(m’mi1)>‘p7n,p(m—1)gpm,p(7n—l)

up(m!)—1/,,((m—l)!)pﬁ(m—lﬂn—l))\p(mil ~

+ Am—Lmupm,p(mfl)p ),p(m—1)UGp(m—1),p(m—1)-
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From Lemma 6.3.2 we know that in this case 4g,im—1),p(m—1) = Jpm,p(m—1)-
We also know from Proposition 5.3.3 that S(m,m — 1) = vp(p!) = 1 and
B(m,m) = 0. This gives us that the coefficient of g, ,(m—1) is given by

Apm,omP+PA i p(m—1)7"

= 1" DApm p(m—1) T Am—1,mpm, p(m—1)PAp(m—1),p(m—1)
which gives us that

Am—1m = Hop 1) 1) o) T = "™ Xpmpm—1) + Apmpm)
which is a p-adic unit.

Case (iii): Now assume m > p. We find that A, ,, = r" in the same
way as given in the other two cases.

Using the third case given in Proposition 6.2.3 on the left hand side of
equation (6.2), we can look at all the terms which will contribute to the
coefficient of g,,, p(m—1) and we get

(p,é’(m,m))\ (m)+1 + pﬁ(m,mfl))\

v, m—1
pm,pmP " pm,p(m—1)T )gpm,p(m—l)

m,m—1
= A mp”* ))‘pm,p(mfl)gpm,p(mfl)

+ Amf1,m,ulpm,p(7n—l)pup(ml)7Vp((mil)!)pﬂ(m71)m71))\p(m—1),p(m—1)ﬁgp(m—l),p(m—l) .

and we can

From Lemma 6.3.2 we have that g, ,(m-1) = %gp(m,l)yp(m,l),

work out that
Blm,m — 1) = vy(m!) +m — vy((m — 1)) — (m — 1) = vy(m) + 1.
Hence the coefficient of g, y(m—1) is given by

vp(m)+1 + pup(m)—i-l)\ m—1

Apm,pmP pm,p(m—1)T

(m)+1

= rmpyp(m)H)‘pm,pmfl + Am—1,mbpm,p(m-1)P"” Ap(m—1),0(m—1);

which gives us that
_ -1 -1 -1
Am-1m = Mpm,p(mfl)kp(mfl),p(mfl)((rm = ") Aom,p(m—1) — Apm,pm)

which is a p-adic unit. O

6.4 Conjugation

In this subsection we prove the odd primary analogue of [BS05, Theorem
4.2]. The proof in [BS05] is incomplete; however a finishing argument ap-
pears in [Sna09, §5.4.6] which completes the proof. A more succinct proof
from an idea suggested by Francis Clarke also appears as [Sna09, Theorem
5.4.3] however with typographical errors. The proof we will give here follows
the argument suggested by Clarke.
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From Proposition 6.3.1 we know A has the form

Vo Go,2 Gap3 ao4
r U1 a13 ai4
0 7“2 () a4
0

o
Il
oo o+

0 3 wvg

where r = ¢P~! as before for g a topological generator of the p-adic units,
v; € Z,y for alli > 0 and a;; € Z,, for all i,j > 0.

Let

1 0 O 0 0

0 vo O 0 0

E=1] 0 0 v 0 0

0 0 0 VoU1V2 0

lying in UsZy, then its inverse is

1 0 0 0 0
0 vyt 0 0 0
gl 0 0 oilv! 0 0
0 0 0 wvyloytugt 0

and we can conjugate A by F to get

1 1 c2 co3 coa
0 r 1 C13 Ci14
BAE ' =Cc=[00 7 1 ¢
00 0 ¥ 1

for some ¢ € Z,,.
We want to know if we can turn C' into a more desirable form, i.e. get
rid of all the terms above the superdiagonal and produce a matrix

110 0 0
0O r 1 0 0
R=|1007* 1 0
00 0 r 1
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Theorem 6.4.1. There exists a matric U € UxZy, such that UCU~! =R.
Moreover one is giwven by U = (u;;)ij>0 € UscZy where the first row is

chosen to be
L1 =0
%7 0 otherwise

and the next row is defined recursively from the previous one as follows;

j—2
. L . . . J AV
Uit1,j = (E :“%,SCSJ> +ui g1+ (17— ")

s=1

Proof. Let U be the matrix defined recursively above. We need to show
that U € UxZp. 1t is clear that u; ; € Z, for 4,5 > 0. It can be shown that
u;; = 0if 4 > j by induction on 7. It is true from the formula that u; 9 = 0.
Now assume that u;_1 ; = 0 for all j <i—1. By the formula above for i > j,

] i—1
Uijj = Ui—15-1+ (17 =77 )i 5.

Now one of two cases will apply. Firstly we have j < i—1, in which case both
u;—1,j—1 and u;_1 ; are zero by assumption. Or in the second case j =i —1,
in which case w;_1 j_1 is still zero but now u;_1 ; may not be zero however
its coefficient is (r*~! — r*~1) = 0 and so the induction is complete.

We are left needing to show u;; € Z; for all ¢ > 0, then U will be
invertible. We will do this by induction. Clearly upo = 1 is in Z;. Now
assume that u;; € Z;, we show that means ;41,41 € Z; too. We know

_ i+l i
Uil = Ui + (1" = r")ugi

from the definition. Fermat’s Little Theorem tells us that » — 1 =0 mod p
so rtl —yt = pi(r —1) = 0 mod p, and by assumption u;; € Z, . Hence
Ui+1,4+1 is a unit plus something divisible by p and so is also a unit. So by
induction u;; € Z, for all i > 0 and hence U is invertible.

Now we just need to show that UCU ! = R so we will compare entries
(UC);; and (RU); ;. Diagonally (UC);; = r'u;; = (RU);,;. Now let j > i,
the entries of UC and RU are given as follows:

(UC)ij = wiicij + Uiit1Civry + -+ uija¢j-a;5 + uij1+rlui;
j—2
= <: :uivscsvj> + ulh]_l + Tjulvj
5=t

and
i
(RU)ij = r'uij + wit1,j-
From our recurrence relation for the entries u; ; we know that

Jj—2
E j %
( “iﬁscsvj> U1 T U= U T

s=1
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and so we get that
(UC)i; = (RU); ;.

Hence (UC);; = (RU); ; for all i, > 0 and j > 1. O

Our chosen U is just one example of a matrix which will work, any
coefficients can be chosen for the first row of the matrix providing upo =1
or any unit, we just choose all of the others to be zero to simplify things.

So in summary we have shown the following result.

Theorem 6.4.2. Under the isomorphism A the automorphism 1 A? cor-
responds to a matriz in the conjugacy class of

0
0
1
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0
1
r2
0

=
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SO O
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Chapter 7

Applications

7.1 The Map 1A ¢, and the Matrix X,,.

In this chapter we will use Theorem 6.4.2 to obtain and study further infor-
mation on the map

IANGn=1A@T =) —1) ... (I =" AL = EAL

The analogous map was first studied by Milgram in [Mil75] in relation to
real connective K-Theory ko localised at the prime 2. The method used here
is the method used in [BS05, Theorem 5.4] to produce the 2-local analogue
of Theorem 7.1.8. In the 2 primary case, the formulae in [BS05, Theorem
5.4(iv)| for finding entries in the analogous 2 primary version of the matrix
X, (as defined below) are incorrect. The formulae I have stated in Theorem
7.1.8(iii) with rs replaced by 9s will hold true (as will the proof) for the
prime 2.

Recall that we let U, Zj, be infinite upper triangular matrices with entries
in Z;, which are invertible. In practice this means they must have p-adic units
on the diagonal. This is the multiplicative group of units of the ring UOOZP
of upper triangular matrices with entries in the p-adic integers. Generalising
the group isomorphism A of Theorem 3.1.3 we can construct the following
diagram

UsoZyp = Autieg gmoa (¢ A 0)
mJ{ ml
UsoZyp A Endief;-g-mod (£ A €)
where Az, = A. The map A was constructed by sending a matrix A €

Usolip to AM(A) =3 _2n
matrix A’ € UxZ, by letting

AA) = Z A;z,mbm,n

m>2n

Ap mtmn. The same process can be applied to a

88



to obtain a left-f~-module endomorphism of ¢ A £. This is a multiplicative
map by the same argument given for A in the proof of Proposition 3.3.7.
By moving from UZj, to UOOZP it is now possible to use the additive
structure given by matrix addition. The concept of addition in the group
Endiett r-mod (¢ A £) was given in Definition 1.1.7.
Now for A, B € ﬁooZp we have

MA+B)=> (A+ B)nmlmn

mzn

= Z An,mLm,n + Z Bn,mbm,n
m2=n mzn

= A(4) + A(B).

From Theorem 6.4.2 we know that the map 1 A ¥? corresponds under A
to an element in the conjugacy class of the matrix R, where, for r = ¢?~!,

110 00
0O r 1 0 0
R=| 00 1 0
0 0 1

0 r

This means that there exists a matrix H € UxZ, such that
LAY? = NHRH™").
We also have that 1 A1 = A(I) where I is the infinite identity matrix, hence
LAT = \(r'T).
Definition 7.1.1. Let
bn = (Y1 = 1T —7) - (YT ="
and let R, = R —r""'I € UxZ, and X, = RiRo -+ Ry, € UxZy,.
Proposition 7.1.2. 1A ¢, = A(HX,H™!)
Proof. Using the definition above and previous discussion

LA @7 ="l = (LAgT) — (LA™



Hence when we look at 1 A ¢,, we see that

IAGp=1A @7 =1)(p7 — 1) (7 —r™h)
= (IA@I =1)AA QT =r)-- (1AW —r"T)
= NHR H YWA(HRyH™)---NHR,H™ )
MHRH'HRyH ' -.-HR,H™)
MHRiRy---R,H™ )
MNHX,H™Y). O

Before we can prove our main result Theorem 7.1.8, we first need to
introduce Gaussian polynomials.

Definition 7.1.3. A Gaussian polynomial is of the form
[n] B ﬁ 11—
1 <0 1— it
where n,7 € Ng.

We will need the value of this polynomial when x = r which will be
denoted mr The lemma below can be used to show inductively that the
Gaussian polynomials are indeed polynomials.

Lemma 7.1.4. The following analogue of Pascal’s identity holds for Gaus-

stan polynomials:
[n] _ i [n — 1] [n - 1] .
], 1—1], o],

Proof.

_ 1—3 1— Té_l 7 ( rn71+1) pn—t N 1 — pnt |
i 1—pi—1-J I—r (1—=r)(1-1r%
i—3

1— ,,,nflfj (1 _ ,rnfi+1)(1 _ Tn)
L—ri13  (1—r)(1—r)

J=0

_i_ll—r”_j_ n
Al i i,

Jj=0
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Another tool we will use in the proof of Theorem 7.1.8 is splitting up
the matrix R, as detailed below, in order to make calculating powers of it
much easier.

Definition 7.1.5. Let

100 00
0Or 0 0 O
D=]00 72 0 0
00 0 2 0
and
01000
00100
sS—|1 00010
00001

Then R=D + S.

The three facts in the following lemma are easy to prove.

Lemma 7.1.6.
10 0 0 0
07 0 0 0
pDi—| 0 0 72 0 0 ,
0 0 0 % 0
J
T N——
0 ... 01000
; 0 00100
ST=1 o 00010
0 00001
and SD =rDS.

Lemma 7.1.7. For two matrices D, S € UOOZP such that SD = rDS and
any n € Ng we have

(D+S)" = 'n m TDiS”_i. (7.1)



Proof. We can show this by induction. In the case where n = 1 we have
(D+ S)! = [ ] S+ [ ] D = S + D which is obviously true. Now assume
the statement is true for (D + S)" !, then we have

n—

D+ sy (

n

1 [ 1] TDis"—l—Z) (D + S)

0
n— -1

iqon—1—1 - i on—1i
[ ] D'S D+ E [ ; }TD S

7

I
=

1=0

s
Il
_.o

n—1
n— ] pn—l—ipitlgn=1-i | Z [n _ 1} pign—i
2
i=0 T

3

=0

We can now reindex the first sum by letting j = ¢ + 1 and obtain

n—1
Z |:Z : i:| Tn—ijSn—j + Z |:77, ; 1:| Dign—i

j=1 =0

n—1
ot b e b Y
i J—1], J Ay 0 I, n—1},

S <
—

|
(]

m DI§" 4 D" 4 5"

1w

<.
3 |l

m Dign—i
—o Ly

<.

as required, using Lemma 7.1.4. O

Now we can state and prove the main theorem of this section which
gives us more detailed and specific information on how the map ¢, relates
to the pieces of the splitting. We will also use a p-local version of part (i) in
Theorem 7.2.2 in the next section. Let €2 denote the homotopy equivalence
giving Kane’s splitting, i.e.

Q:\/LAK(n)— AL,

n>0
Theorem 7.1.8. (i) The first n columns of X,, are trivial.
(ii) Let Cy, be the mapping cone of the restriction of  to the first n ‘pieces’
of the splitting of £ N4, i.e.

Cy = Cone <Q|: \V E/\IC(m)—M/\é)

o<m<n—1
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(iii)

which is also a left £-module. Then in the p-complete stable homotopy
category there exists a commutative diagram of left £-module spectra of

the form

ol —

N A

Ch

where T, is the cofibre of ) and bn is determined up to homotopy by
the diagram.

Forn > 1 we have
(Xn)sste=0ifc<0orc>n

and for 0 < ¢ < n we have

- . _1\n—i no 4 (s—1 i—c) n i
(Kot = (A irla o [sz_c]

Proof. (i) The result is certainly true of X; = R;. We will proceed to

prove the result for all n > 1 by induction. Assume that the first
n columns of X,, are trivial, i.e. (X,);; = 0if j < n. By definition
Xn+1 = XpRpq1. We also know that (R,1);; = 0 unless (4, j) = (s, s)
or (s,s+ 1) and that (Ry41)n+1,n+1 = 0 also. Now

(Xnt1)ij = (Xn)ij-1(Rny1)j—15 + (Xn)ij(Rnt1)j

which is zero if j < n because (Xy,)ij—1,(Xn)i; =0. If j =n+1,

(Xn—i—l)i,n—i-l = (Xn)i,n(Rn-‘rl)n,n—i-l + (Xn)i,n+1(Rn+l)n+1,n+l
which is zero because (X,,)in, (Rnt1)n+1,n+1 = 0.

From Lemma 7.1.2 we know that 1 A ¢, = A(HX,H'). In order for
1 A ¢y, to factor via C), (and the diagram to commute) we need to show
that HX,,H ! corresponds under \ to a left /~-module endomorphism
of Vin>0f AK(m) which is trivial on each piece /AKC(m) where m < n—1.
The map A\(H X,, H 1) acts trivially on pieces AK(m) where m < n—1
if each map

tm A NK(m) = L NK(E)

has coefficient zero when m < n — 1 in the explicit description of
MHX,H™1'). This gives us that (HX,H !)x,, needs to equal zero
when m < n — 1. This is true though because we know from part
(i) that the first n columns of X,, are trivial, and since H is upper
triangular and invertible, this means the first n columns of H X, H !
are also trivial.
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(iii) For the first part, we know all the R;s are upper triangular matrices
so X, will be too, hence (X,,)ss+c = 0 if ¢ < 0. We can show that
(Xn)s,s+e¢ = 0 if ¢ > n by induction on n. The initial case for the
induction is X where this clearly holds. Assume that (X,—1)ss4ec =0
if c >n—1. As in part (i), we know that X,, = X,,_1R, and that
(Xn)z’,j = (Xn—l)i,j—l(Rn)j—l,j+(Xn—1)i,j(Rn)j,j- Now let j > n, then

(Xn)s,erj = (anl)s,sfjfl(Rn)erjfl,erj + (anl)s,s+j(Rn)s+j,s+j

and this is zero because both (X,,—1)ss+j—1 and (Xp,—1)ss+; are zero
by the inductive hypothesis, hence the induction is complete.

In order to prove the second part we are going to first consider the
matrix R rather than X,,. Recall from Definition 7.1.5 that we can
think of R as the matrix sum D + S. Then we have that

R" = (D + S)".

Using Lemma 7.1.6 we can see that any product of the form D!S’ can
be expressed as the matrix

J
0 ... 01 0 0 O
o 0O -~ 0 0 7 0 0
DS7=109 ... 000 0 % 0
0O --- 00 0 0 ¢

In other words a single entry can be written as

=i if =g 4+

0 otherwise.

(D'ST)s = {

Recall that
SD =rDS

so, although the multiplication is non-commutative, there is a simple
relation between the two orderings. Now to be able to find any entry
in the matrix R", using Lemma 7.1.7, we have a formula in terms of
the matrices D?S7, equation (7.1), for which we know all the entries.
Hence

" [n

(R")s,s4c = (D +.5)")s,54c = Z [Z] (D'S"")s 54

i=0 T
For any particular value of ¢ at most one term in this sum is non-zero,
namely the ¢ = n — ¢ term if 0 < ¢ < n. So we have that

(R")sse = [

n

n—=c n—c

:| (Dn_CSC)s,s+c: |: " :| T(S_l)(n_c)-

94



We can now use this information to produce a formula for the required
entries in the matrix X,. By [CCWO01, Proposition 8] we know

Xn: (R—l)(R—r)(R_,r.n—l)
St v
=0 r

As before, to produce the entry in the (s, s+ ¢)th place in X,, we just
need to know the entries in the same place in all the powers of R in
the above sum, hence

(Xadowre = S (1) in(5) [”] ()i

]

_ 'n (—1yir("2) m L i ] Hs=1)(i—c).

7 —C

The final sum has been reduced from a sum starting from 0 to a sum
starting from c¢ as the second Gaussian polynomial for ¢ < ¢ is zero.
O

7.2 K-Theory Operations

The next application we will consider provides us with another way of view-
ing a ring of operations on p-local complex connective K-Theory. We will
work in this chapter in the p-local stable homotopy category. In a slight
abuse of notation let £ now denote the Adams summand of p-local complex
connective K-Theory (rather than the p-complete version) for the rest of this
section. Let 0002@) be the ring of upper triangular matrices with entries
in the p-local integers and using standard notation let E*(F') = [F, E]_, for
spectra F, F'.

For the following application we will need to use the theory of filtered
topological rings. A good reference for this is [Nor68, Chapter 9]. Recall that
a decreasing filtration on a ring R is a family of two-sided ideals { R}, },>0
such that R,,+1 C R, for all n > 0. This gives the ring a filtration topology.
The identity map induces a map for each n > 0

Rn—l—l — Rn

which together give us the following sequence of maps

E%E%...e R %i% R
Ry Ry R, 1 R, Ry

— ...

Let R = @n }% be the inverse limit of this system. The ring is complete if

the obvious map R — Ris an isomorphism.
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Definition 7.2.1. We can define a filtration on UOOZ(p) by letting the first
n columns be zero, i.e. for n € N, let

U, = {X € ﬁOOZ(p) 1T = 0 lfj < n}

This gives us a decreasing filtration

UOOZ(p):UQDUlDUQD"'

where each U, is a two-sided ideal of UOOZ(p).

Filtering by columns gives us a two-sided ideal because our matrices are
upper triangular, this would not be the case if we filtered by rows. This can
be regarded as the natural filtration on UOOZ(p). Also UOOZ(p) is complete
with respect to this topology.

Theorem 7.2.2. The ring of degree zero operations of the Adams summand
of complex connective p-local K - Theory, £°(¢), is isomorphic as a topological

ring to the completion of the subring of UscZy) generated by R.

Proof. Define a map }
a fo(f) — UOOZ(p)

by saying « is the continuous ring homomorphism determined by sending
Y1 € 0(0) to R € UsZy). Recall that ¢, = (7 —1)(xp—71) - (7 —r"1).
Because of the definition of o we know that a(¢,) = (R—1)(R—7)--- (R —
) = X,

We have the following description of ¢9(¢) from [CCWO05, Theorem 4.4]

KO(E) = {Z ApPn - Ay € Z(p)} .
n=0

This is complete in the filtration topology when filtered by ideals

<€0(£>)m = { Z An®n : Gn € Z(p)} .

n=m

We know a(¢y) = X, and by Theorem 7.1.8 (i) we know that the first n
columns of X, are trivial hence a(¢y,) € U,. This tells us that « respects the
[e.e]

filtration and so when applied to infinite sums o (7 g andn) = > v g anXn
is well defined (each entry in the matrix is a finite sum).

Let S = {ZTJLO anR" : an € Zy,), N € NO}. It is clear that S C im(«).

Because « is continuous and UOOZ(p) is complete it follows that the com-
pletion of S is precisely the image of a. Finally because we know ker o =
{02 g andn = a, =0 for all n} it is clear that « is injective. O
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This gives us quite a nice way of looking at £°(¢) which is in its own right
a quite complex ring. Because the filtration on UOOZ(p) is the most natural
one to pick this in turn makes the filtration on ¢°(¢) appear more natural.

In exactly the same way we can obtain a description of ku(p)o(ku(p)) as

the completion of the subring of UOOZ(p) generated by

11 0 0 O
0 g 1 0 O
R = 0 0 q2 1 0
00 1

0 ¢

The proof follows as above using the description of k:u(p)o(km(p)) given in
[CCWO05, Theorem 2.2] as

(0.9]
ku(p)o(k:U(p)) = {Z anfh, & ay € Z(p)}
n=0

where ¢, = (7 = 1)(? —q) - (7 = ¢" ).

We can obtain a similar description of a ring of 2-local operations on real
connective K-Theory. In a similar way to above define UOOZ(Q) to be the
ring of upper triangular matrices with entries in the 2-local integers and let

11 0 0 0
09 1 0 0

2
3(2)2009 1 0
00 0 9 1

Theorem 7.2.3. The ring of degree zero operations of real connective 2-local
K-Theory k0(2)0(k0(2)) is isomorphic as a topological Ting to the completion
of the subring of UOOZ(Q) generated by Ro).

Proof. Using the description of kO(Q)O(k0(2)) given in [CCWO05, Theorem
9.3(1)] as

k:o(Q)O(ko(z)) = {Z CnPn : Gn € Z(z)}

n=0
where ¢, = (3 —1)(¢* = 9) - - (¢p3 — 9"~ 1), the proof follows in exactly the
same way as the previous Theorem. O

The topological bialgebra (°(¢) is Z,-dual to Lo(f), where L is the
periodic Adams summand. We have a basis for Lo(¢) given in [CCWO5,
Proposition 4.2] of {f,(2) : n > 0} where z = (u~!v)P~1 and

n i—1
. z—r
fn('z) - H i1
=1
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The action of £°(£) on Lo(¢) is determined by the action of ¢ which multi-
plies v by ¢ and acts as the identity on u hence ¥9f(2) = f(rz). We look at
the action of ¥? on the basis elements and find that

D fa(z) = " fu(2) + faoa (2).

This means that the action of /9 on the basis {f,(z) : n > 0} of Lo(¢) is
given by the matrix R.

This is not a coincidence but just two different ways of getting to the
same answer. This way involves looking at the action of % on the basis
for Lo(¢) which gives you exactly R and the other way as demonstrated
in Chapter 5 involves looking at the basis for the whole graded object £, (¢)
and, via maps between the pieces of the splitting, looking at the action of ¢
again but not keeping track what happens to the particular basis elements
in any degree. This ambiguity over what happens to specific basis elements
is taken care of by the fact that the matrix you produce is not precisely R
but something in the conjugacy class of R.

In a similar way k:u(p)o(ku(p)) has as its dual K, (ku(,)). A basis for
K)o (kuy)) is given by [CCWOL, Proposition 3] as {h,(w) : n > 0} where

w = u"tv and . -
w—q'~
h(w) = H _—

n _ i—1
i=1 q q

The action is again determined by that of ¥¢ and we have that
Yrhpyw = ¢"hp(w) + hp—1(w).

So the action is given by the matrix R’.

A similar statement is also true of the action of kO(z)O(kO(Q)) on its dual
KO(Q)O(ICO(Q)). A basis for KO(Q)O(k0(2)) is given in [CCWO05, Proposition
9.2(1)] of {gn(x) : n > 0} where z = (u~'v)? and

n ,
x— 91
ga(z) =11 o g1
i=1
In this case the action is determined by 13 which acts on the basis elements
as

V2 gn(@) = 9"gn(x) + gn-1(z).

So the action is given by the matrix R(g).
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Appendix A

Results about p-adic
valuations

Let p be an odd prime and let v, be the p-adic valuation function. The
two primary versions of the first four of these statements appear in [BS05,
Proposition 2.3 - Proposition 2.6].

Proposition A.1. For any integer n > 0,
vp(r?" —1) =n+1,
where 7 = ¢~ and q € Z, is a topological generator (i.e. q generates a
dense subgroup of Z,' ).
Proof. We know
1= (=) T P T e e 4 1), (A.1)

We can choose ¢ to be a particular integer coprime to p which generates a
dense subset of Z;. This happens if ¢ is primitive modulo p? that is if 7 is
a generator for (Z/p?)*. So we can assume (q,p) = 1.
Let’s first deal with the second factor of equation (A.1).
A R
=P P DT P TP P 4]

n—1
= [J7 @D 4+ 02 ot 17, (A.2)

k=0
Each of the n brackets of the form (rpk(p_l) N Rt 1) for
k € Np, has one and only one factor of p as follows. We know r =1 mod p

by Fermat’s Little Theorem so »* = 1 mod p for all s € Ny. There are p
terms in each bracket all congruent to 1 mod p so

pPP=1) 4 p " -2) gt ] = p mod p.
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Hence we know p divides each bracket. We also know that qW(pQ) =1
mod p? where (p?) = (p—1)p is Euler’s totient function. Hence ¢?~1P = 1
mod p? i.e. 7P =1 mod p?. Each summand in all but the first bracket of
equation (A.2) is of the form PP M for m = 0,1,...,p—1, so all terms are
congruent to 1 mod p? and hence each bracket bar the first is congruent to p
mod p? and hence does not have a factor of p?. If we take the first bracket of
equation (A.2) and combine it with the remaining factor in equation (A.1)
we have
(r—=1)P P2+ 1) =P — 1

We know each bracket has a factor of p so p?|r? — 1, we just need that
p3 £ rP — 1 then the statement will follow.

We have that § generates (Z/p?)*, this means g generates (Z/p®)* also.
We know q‘P(pg) =1 mod p? by Euler’s Theorem. Since g generates (Z/p3)*
and there are ¢(p?) elements in (Z/p3)*, this is the lowest power of ¢ which
is congruent to 1 mod p> hence no lower power of ¢ can be congruent to 1
mod p?. But p(p — 1) < p?(p — 1) = () so ¢?® Y # 1 mod p?, hence
p3 P —1. O

Proposition A.2. For any integerl > 1,
vp(rt = 1) = yp(l) + 1.
Proof. We can factorise
=D =@-DE""+r 244 1).

We know that v,(r — 1) = 1 as follows. Firstly p|r — 1 by Fermat’s Little
Theorem. Also g generates (Z/p?)* so q@(pQ) is the lowest power of ¢ which
is congruent to 1 mod p?. Since p — 1 < p(p — 1) = @(p?), r cannot be
congruent to 1 mod p? and so p? {r — 1.

If p|l we can factorise further:

R D) = (P P D) T P 1),

If p|]% we can continue this process until there are no more factors of p, i.e.

p 1 # for some k € Ny. So we have factorised out v,(l) brackets. From

Proposition A.1 we know the p-adic valuation of each of the brackets is 1.

The remaining term is a sum of - terms each of the form r™ for some

m € Ng. By Fermat’s Little Theorem we know each of these r =1 mod p
!

so the whole remaining term is congruent to oF mod p Z0 mod p. O

Proposition A.3. For any integer 1 > 1,

!
Vp (H(rl - ri1)> =, () + L.

i=1
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Proof. Expanding the product gives

l
H(rl —r = =Dt -t =) =

1(—1)

=r 2 (=D =D)EE =1 (= 1),

So when we take the valuation,

l
vy (HW - >> — (T ) (= 1) (T = ) (e — 1)

i=1
=0+ (p()+ 1)+ (p(l —=1) + 1)+ -+ + (1p(1) + 1)
=r,((l-1)1-2)...1)+1
= (I + L. O
Proposition A.4. For any integer 1 > 1,

pl — Sp(l)

vp(l) +1= p—

)

where Sp(l) is the sum of the digits of 1 in its base p expansion, i.e. if
I =lo+lhip+lap*+--- withl; € {0,1,...,p—1} then Sp(1) = lo+l1+la+---.

Proof. Let | = Zf»io lip'. We have
vp(l!) = i {ZJ .
— | p/

Jj=1

Also HDJ = Zﬁgl li+1pi, L%J = Zfi_(f ngpi and so on. Combining these
we get,

Adding these equations we get
L+l =lo+ 0+ +prp(ll) = Sp(l) + prp(l)

and rearranging gives the result. O
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Proposition A.5.
k .
Up (F[(mp_1 — rz_llp_1)> > (k) +k
i=1
for alll, m € Z; and k € N.
Proof. Let fi, : Qp x Q, — Q, be given by

Yl i )
fe(l,m) = pre(RD+E

The proposition is equivalent to saying that fi(Z;,Z;) C Z,.

This can be checked on a dense subset of Z. Since f, is continuous and
Z,, is closed in Qp the result is then true for Z;j. The dense subset we will
use is D = {¢’|j > 0}.

Let | = ¢* and m = ¢°. Then

So we just need that Vp(Hle(rs — ) > (k) + k.
Firstly we consider the case where |s —t| > k — 1. Then

k k
vy <H(rs - Ti—lwﬁ)) =y, (H(Ts_t_i—H o 1))

i=1 i=1

k
= (p(s—t—i+1)+1)

k
=, (H(s—t—i+1)>+k

)

using Proposition A.2. So we need

%<wﬁzf%ﬂ>+k>%w0+k

(Is —t])!
vp ((\s—t—k!)') > vp(k!).
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Now the highest power of p less than k will be a factor of k! and so will
every power of p less than this. Since % is the product of a run of
k consecutive elements of Z, like k!, a multipfe of each of the powers of p
featuring in k! will feature in % too plus possibly some higher powers
of p. Hence the p-adic valuation of % will be equal or greater than
that of k!.

Finally, let |s—t| < k—1, then there will be a factor of (rl*~t —rls=t) =0
in the product, hence the whole product will be zero and since 1,(0)“ =" o0

the proposition will be trivially true.

O
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Glossary

Qp The p-adic numbers. 5
Z,, The p-adic integers. 5

Zp) The p-local integers. 5

A, The mod p Steenrod Algebra. 7
A, The dual mod p Steenrod Algebra. 8

B The exterior algebra A(Qo, @1). 10
B The Bockstein homomorphism. 7

BU The classifying space for the group U. 13

A =1

cor Tl St 61

D(X) The Spanier-Whitehead dual of a spectrum X. 22

fpk pyp(k)cpk. 61

9pm,pi The element of Gy, ; produced from f,; lying in degree pm. 66

Gmn ﬂm(f/\IC(n))®Zp‘ 65

Torsion

Gmn Gmn ® Wy where Wy, ,, is a finite elementary abelian p-group. 67
HZ7/p The mod p Eilenberg-MacLane spectrum. 4
tmn A map from £ A K(m) to A K(n). 49

K The periodic K-theory spectrum. 14

KC(n) The nth ‘piece’ in Kane’s splitting. 33
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ku The connective K-theory spectrum. 18

¢ The connective Adams summand. 18

A An exterior algebra. 8
v, The p-adic valuation function. 99

Pt Steenrod Power i. 6

y* The kth Adams operation. 19

g An integer which is primitive modulo p. 99

Q1 The kth Milnor element of A,. 9

r ¢P~t. 99

R The matrix . 85

p2(p—1). 61
Sp(1) The sum of the digits of [ in its base p expansion. 101
4 uP~l. 61

Zpm A generator for G, . 68

Zpn A generator for C;’,m,n. 68
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