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Abstract

A common use of predictive models in game analytics is to predict the behaviours of players
so that pre-emptive measures can be taken before they make undesired decisions. A stan-
dard data pre-processing step in predictive modelling includes both data representation and
category definition.

Data representation extracts features from the raw dataset to represent the whole dataset.
Much research has been done towards predicting important player behaviours with game-
specific data representations. Some of the resulting efforts have achieved competitive perfor-
mance; however, due to the game-specific data representations they apply, game companies
need to spend extra efforts to reuse the proposed methods in more than one products.
This work proposes an event-frequency-based data representation that is generally applica-
ble to games. This method of data representation relies only on counts of in-game events
instead of prior knowledge of the game. To verify the generality and performance of this
data-representation, it was applied to three different genres of games for predicting player
first-purchasing, disengagement and churn behaviours. Experiments show that this data-
representation method can provide a competitive performance across different games.

Category definition is another essential component of classification problems. As labelling
method that relies on some specific contions to distribut players into classes can often lead to
imbalanced classification problems, this work applied two commonly used appraoches, i.e.,
random undersampling and Synthetic Minority Over-Sampling Technique (SMOTE), for
rebalancing the imbalanced tasks. Results suggested that undersampling is able to provide
better performance in the cases where the quantity of data is sufficient whereas the SMOTE
has more chances when the dataset is too small to be balanced with the undersampling
approach. Besides, this work also proposes a new category-definition method which can
maintain a distribution of the resultant classes that is closer to balanced. In addition, the
parameters used in this method can also be used to gain insight into the health of the
game. Preliminary experimental results show that this method of category definition is able
to improve the balance of the class distribution when it is applied to different games and
provide significantly better performance than random classifiers.
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Chapter 1

Introduction

1.1 Motivations and Hypotheses

The digital-game industry is one of the fastest growing industries in the world, with over
1500 new products published annually (Bauckhage et al., 2012). Due to the limitations of
past technologies, data analytics was not commonly involved in the process of developing
games. Most games were played off-line, such that their data could hardly be collected. This
fact, however, has dramatically changed in recent decades because of the rapid spread of the
Internet. Nowadays, because most games are played with the Internet connected across a
variety of devices, an enormous number of player behaviours can be collected via telemetry
methods. However, since the raw data collected is often noisy and massive, it is hard to
extract useful information.

Data analytics has been heavily used in recent years to address this issue. Instead
of providing only statistical descriptions of players to inform better decision making, data
mining, an important element of data analytics, can make forecasts of important behavioural
trends such that risks (e.g., the disengaging trends of some players) and opportunities (e.g.,
the trend that some players will become paying users) may be noted in advance (Yannakakis
et al., 2013).

With the rapid growth of both data-driven game development and data-mining tech-
nology, several works have applied data-mining approaches to such tasks as anomalous be-
haviour detection (Ahmad et al., 2009; Kang et al., 2012; Laurens et al., 2007; Mitterhofer
et al., 2009; Woo et al., 2012), player preference modelling (Charles and Black, 2004; Hu-
nicke and Chapman, 2004; Missura and Gärtner, 2009; Pedersen et al., 2010; Shaker et al.,
2010; Togelius et al., 2007, 2011; Yannakakis and Togelius, 2011), player-preference based
AI characters (Aiolli and Palazzi, 2008; Bakkes et al., 2009; Bauckhage et al., 2003; Cowling
et al., 2015), player-disengagement prediction (Borbora et al., 2011; Borbora and Srivastava,
2012; Debeauvais et al., 2014; Drachen et al., 2016; Hadiji et al., 2014; Kawale et al., 2009;
Runge et al., 2014; Tarng et al., 2009) and player-purchasing prediction (Pluskal and Šedivý,
2014; Sifa et al., 2015). Approaches introduced in these works effectively predict the targets
in the games in which they conducted the experiments; however, the common problem is
the data-representation methods applied in these works can hardly be made generic. In the
process of data mining, the data-representation stage aims to transform the raw dataset into
a vectorised information format which is ready for training machine-learning models. In this
format, each vector (also referred to as a feature in data mining) represents one or a combina-
tion of more attributes in the original unprocessed dataset. Therefore, decisions concerning
how to construct these features are often important and can affect the performance of resul-
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tant classifiers. In most of the methods proposed in these works, the limitation of generality
on data representation comes either from the game-specific vectors selected or from a lack of
availability of some features in new games. Specifically, this happens when predictions are
made based on game-specific data representations which use game events that appear only
in a specific type of game (e.g., how many enemies killed in a war game), whereas the latter
issue arises when some features are general enough but are not tracked in some games.

To solve the generality issue of the existing methods, this work introduces (as the main
contribution) a generic data-representation method called event-frequency-based data rep-
resentation, which can be migrated to build feature spaces in different games without any
prior knowledge of them. Instead of extracting specific information from the game dataset
for each player, this approach takes counts of all of the in-game events that happen to (or
are generated by) this player as the data representation. In this way, the actual meanings of
the events become less important. This is also why this data-representation method can be
seamlessly migrated to different game products with minor modifications.

Apart from this issue, which exists in the stage of creating the data representation for
training classifiers, another common issue that can be found in many existing works is the
imbalanced dataset. Because the predictions of players’ future behaviours is a classification
task in machine learning (e.g., whether a player will be leaving the game in the near future
or not), a labelling method is needed to describe the task and to distribute players into
their corresponding classes for predictive purposes. While labelling methods often use some
specific conditions to distinguish players, an imbalanced class distribution can easily be
created if the majority of players can satisfy the defined conditions. Unfortunately, an
imbalanced classification task may lead to imbalanced classifiers.

In this work, two existing approaches are used to solve the imbalance issues found in
three commercial games. Experiments show that both methods are able to help only in
some cases. This suggests that, when a dataset is biased by some labelling method, a
balancing method might help but that stable improvement is not guaranteed. In addition,
some labelling methods might sometimes also lead to small datasets which can hardly be
used for training higher-dimensional classifiers. In this study, when the predictive purpose
is to forecast churn behaviours, the dataset labelled by the churn-labelling method is not
only small (lacking data samples); it also shows a distribution bias in some games. To
deal with this type of issue, this work applied two existed balancing methods and reviewed
their abilities for dealing with the bias issues in this research. This work also offers a new
labelling method called disengagement over varying dates. This labelling method is close
to the concept of churn, which also aims to predict players’ disengagement behaviours, but
it can maintain an approximately balanced distribution while labelling. In addition, this
method also comes with two parameters that can be used to provide insight into the health
of a game. Preliminary results for investigating the ability of this research can be found in
Appendix A.

This section explains the current status of this research area and the challenges it faces. A
basic introduction has been given of the research motivations and main contributions of this
study. To investigate and verify the main contributions, several experiments were conducted
that made extra contributions in different parts of the study. The next section identifies all
the contributions made by this work.
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1.2 Contributions

1.2.1 Main Research Hypotheses

As introduced in Section 1.1, this study offers a generic data-representation method for pre-
dicting player behaviours that is designed to work across different games. To investigate
its utility, the following research hypothesis was proposed: Event-frequency-based data
representation can be used to predict player behaviour with supervised learning
to provide a significantly better performance than random guess and competi-
tive performance while being compared to other state-of-the-art methods, where
applicable. Detailed explanations of this hypothesis can be found in Section 4.5.1.

1.2.2 Contribution Summary

To test both of the main research hypotheses proposed in Section 1.2.1, several contributions
have been made during this research. A summary is given in this section to introduce their
content.

Event Frequency-based data Representation
As the main contribution of this work, a generic data-representation method is proposed
which can form the feature space only on the counts of events created (or experienced)
by players. Because counts of events are content irrelevant, this data-representation
method can be smoothly migrated to a wide range of different game products for
predicting player behaviours. This corresponds to first main research hypothesis stated
in Section 1.2.1. Details of it can be found in Section 4.5.1.

Player First Purchase Behaviour Prediction
To test the hypothesis, this work applies event-frequency-based data representation
to predict players’ first-purchase behaviours in three different commercial games. It
achieved significantly better performance than a random classifier. Details of this
experiment can be found in Chapter 5.

Disengagement Labelling Method A new labelling method named ‘disengagement’ is
proposed in this study which represents the disengaging behaviour of players. Unlike
the commonly applied labelling method called ‘churn’, this method focuses on predict-
ing players’ disengaging trends instead of their exact leaving actions. Developers would
have more time to retain players by using extra care because the player has not yet
decided to leave the game. Further details of this labelling method can be found in
Section 6.1.1.

Player Disengagement/Churn Behaviour Prediction
The event-frequency-based data-representation method are used to predict the play-
ers’ disengagement and churn behaviours to verify the hypothesis. Experiments show
comparisons of classifiers trained with this data-representation method and another
state- of-the-art game-specific data-representation method. Further information about
the experiments is offered in Chapter 6.

An Evaluation of Two Popular Class Balancing Methods
Imbalanced class distribution is another issue that is often seen not only in game data-
mining problems but also in other data-mining research areas. This work discusses the
general causes of imbalanced class distribution using two methods that are commonly
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used to solve this type of issue: random undersampling and SMOTE (synthetic minority
over-sampling technique). Statistical comparisons are given to show that the random
undersampling and SMOTE methods would help improve the performance of classifiers.
Details of these comparisons can be found in Chapter 7

Disengagement Over Varying Dates Labelling method
Based on experiments in which datasets labelled with the churn definition are not large
enough and are sometimes biased for training higher-dimensional data representation,
this work proposes a new, alternative labelling method that aims to use all data sam-
ples while maintaining an approximately balanced dataset. This alternative can help
to solve two common issues discovered in this research: imbalanced and small data
samples. In addition, parameters optimised for balancing in this method can be used
as indicators of the game’s health. Preliminary results have shown classifiers trained in
tasks balanced by this method can perform significantly better than random classifiers.
Further details of it are covered in Appendix A.

1.3 Outline

This thesis is organised as follows:

1. First,a basic introduction to machine learning and data mining is given. At the same
time, several types of metrics are explained that are collected in the game context.

2. Next, a literature review is given of several studies that have attempted to predict
various player behaviours. The data-representation methods applied in these works
are discussed in detail.

3. Afterwards, before diving into experiments, the research methods are discussed. This
section includes a global view of all the consequent experiments.

4. To investigate the utility of event-frequency-based data-representation methods for
predictive tasks, it is first used to predict decisions regarding first purchases in three
commercial games of different genres.

5. In addition, this data-representation method is utilised to predict players’ disengage-
ment. During this experiment, some limitations of the event-frequency-based data-
representation methods are discussed.

6. After the event-frequency-based data-representation method has been tested, another
common issue–the imbalanced dataset, which was discovered while conducting these
experiments–is introduced. Some explanations are given that will enable us to work out
the possible cause of it, and some existing methods are applied to rebalance the dataset.
A possible solution called disengagement over varying dates is also introduced as an
alternative to deal with this type of problem. Experiments show that classifiers trained
under balanced datasets can perform significantly better than a random classifier.

7. Finally, the conclusion is given to summarise the contribution of this work. Based
on some limitations introduced earlier, further work that may be conducted is also
introduced.



Chapter 2

Modelling with Data Mining

From games (Mahlmann et al., 2010) and films (Saraee et al., 2004) to serious areas like
earthquake prediction (Otari and Kulkarni, 2012) and medical diagnosis (Soni et al., 2011),
an increasing number of areas have entered the century of fast growing information. A very
large amount of data is generated every second. According to Hilbert (Hilbert, 2013), in an
average minute in 2012, around 2,000 search queries were received by Google, nearly 700,000
pieces of content were shared by Facebook users and almost 100,000 tweets were produced
by Twitter users. Although data generated in these areas can occur in different formats, a
common problem they face is that the data has been grown so massive that cannot be easily
analysed. As mentioned in Chapter 1, data mining is considered as one of the most reliable
ways for digging meaningful patterns from a very large amount of data.

This chapter offers an introduction to how and what type of game data is commonly
collected in state-of-the-art methods. Next, the basics of data mining (including machine
learning) are reviewed. This introduction covers most important aspects of how data is
processed before and during analysis. Main points in this chapter:

u an overview of the data in games,

u descriptions about data cleaning,

u review of the dimensional reduction methods, and

u review of the machine learning based data mining process.

2.1 The ‘Data’ in Data Mining

As discussed above, since databases have become extremely large, it has never been more
difficult to extract valid information from them. Data mining, also referred to as knowl-
edge discovery from data (KDD), is a promising technology that aims to summarize latent
patterns/models and discover unsuspecting relationships in databases by applying both sta-
tistical approaches and machine-learning algorithms (Han and Kamber, 2011; Hand et al.,
2001). As datasets have become increasingly massive, it is important to make sure that
the data quality is good enough before a data-mining method is applied. This section dis-
cusses the data types that are generally collected and used for behaviour modelling. Next,
it discusses basic data-relevant concepts and how data can be cleaned and simplified.

18
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2.1.1 Game Telemetry

This section offers a basic explanation is given of what data types are generally used for
player behaviour-predictive modelling. According to Drachen (Drachen et al., 2013), game
telemetry is a method whereby developers can collect game data from player clients over
a distance. In the modern game industry, it has become the most widely used method for
collecting game data (Zoeller, 2013) from free-to-play games and even ‘AAA’ titled games.
This is because a game-telemetry system can help a game company not only track the
real-time performance of a game but also record players’ historical behaviours to storage
databases. As introduced by Weber (Weber et al., 2011a), the conventional way to implement
the system is to integrate a client or basic collection logical codes into games and transmit
data to a collection server. Depending on the preferences of different companies, the data
collected might be either formatted or kept raw in the server for the convenience of further
analysis. While transmitting data to collection servers, because exhaustively recording player
behaviours’ in every frame could easily lead to very large cost and heavy transition pressures,
the widely used approach (e.g, used by Google Analytics, Yahoo Flurry, Game Analytics,
Unity, Upsight and Game Sparks) is to transmit data based on the firings of in-game events.
In other words, the game data is only be transmitted in accord with pre-defined, in-game
events. Generally, these events are in-game actions or behaviours, chosen by developers,
which should be able to reflect any update on the status of games and milestones players
achieved. Therefore, it is crucial to design an optimal and informative game-telemetry
system. In most cases, the development of a game-telemetry system is comprised of at
least two elements: game metrics, data storage.

2.1.2 Game Metrics

To perform game analysis, data collected from telemetry would normally be transformed into
a more interpretable format defined as game metrics. For example, in a shooting game, some
samples of game metrics are logs of a player’s shootings behaviours, hitting rate, weapon
preferences, average number of bullets used for killing an enemy and so on. This can be
different in a racing game in which metrics can include players’ movements, final positions,
items used, etc. In other words, game metrics can vary based on game type and game
content. Therefore, generic game data that can be found in all types of games is generally
limited.

As introduced by Drachen (Drachen et al., 2013), game metrics can include three types:
player metrics, process metrics and performance metrics. Of these, process metrics and
performance metrics are more beneficial for adjusting system development and performing
bug fixes than for game-analytics purposes. Player metrics stands for all data related to
players’ behaviours and gameplay tracks. This is the main sort of metric that game analytics
is applied to. The definitions of player metrics can be further split into subcategories (shown
in Figure 2.1). The definitions are as follows:

Customer Metrics
Transactions are commonly seen in modern free-to-play games, and it is necessary to
track the details of each transaction. Associated with player identity, this type of log
could include in-game/out-game payments for game time, products and any items in
the game. An example application of this can be found in the work of (Lim and Harrell,
2013) which uses players’ preferences for hats (an item) in the game, Team Fortress 2
(Valve, 2007), to investigate taste performances.
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Figure 2.1: The Subcategories in Player Metrics (Drachen et al., 2013)

Community Metrics
This type of metric is able to reflect social interactions among players in a game. It
is common for modern games to integrate some social networks, whether third-party
platforms (e.g., Facebook and Twitter) or game-specific platforms (e.g., guilds in World
of Warcraft). These metrics help researchers/developers gain a better understanding of
the behaviours in a social group rather than of individuals. For example, Thurau and
Bauckhage (2010) investigated the evolution patterns of guilds (a form of community)
in the game, World of Warcraft (Blizzard, 2004). At the same time, these metrics can
also be used to find similar styles among players in games. As an example of this,
Kirman and Lawson (2009) discuss how social communities in online games could be
utilised for identifying play styles.

Gameplay Metrics
Gameplay metrics is an important sub-category which represents most general in-game
behaviours. This can be further broken down into interface metrics, in-game metrics
and system metrics.

Interface metrics describe how players interact with the interfaces of a game. For
example, in the main menu of games, metrics are collected concerning which options
are used most by players and what purposes they use them for.

In-game metrics show how players behave in a game. This category is comprised of
any metrics that are related to players’ behaviours during gameplay. It can help to
reflect players’ skills, activities and preferences. For example, Pederson studied how
to model players’ experience in Infinite Mario Bros (Markus-Persson, 2008) by using
in-game metrics such as death rate, jump times and so on (Pedersen et al., 2009).

System metrics record the system status corresponding to operations by players. Level
settings provide an example. Shaker et al. (2010) looked into how to generate game
levels dynamically. He relies on a model which maps the level designs of games into
player experiences.

Game metrics collected could be analysed directly by simple visualisation and basic statistical
methods (Tychsen, 2008). However, to gain a deeper understanding of those metrics, the
preferable way is to apply data-mining methods on them to discover latent patterns and
build predictive models.
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2.1.3 Data Storage

Game metrics collected can be transmitted either to local servers or to some third-party
services. In recent years, several third-party services such as Google Analytics, Yahoo Flurry,
Game Analytics, Unity and Game Sparks have come to provide an easy way to store data
on their servers. The benefits of this storage method are that some basic data visualisations
can be done through these services for quickly gaining initial knowledge of game metrics.
But, to achieve predictive purposes, the data has to be further analysed using data-mining
approaches.

2.1.4 Data Attributes

This section explains one of the most basic concepts in data mining: the ‘attribute’. Accord-
ing to Han and Kamber (2011), data attributes are data fields, each of which represents a
single characteristic/feature of the dataset. A dataset is comprised of data instances (points),
and each data instance has a corresponding value for every data attribute. For example, to
describe the features of a dataset of balls, radius, weight, colour and shape are generally
used as data attributes. In this case, a football would be a data instance the properties of
which can be described with these attributes.

Although data attributes can be very different in varying datasets, they can mainly be
categorised into four types: nominal, ordinal, interval-scaled and ratio-scaled (Stevens, 1946).

Nominal
A nominal data attribute can be considered a categorical variable in which there is
no order among options. For example, the class a student belongs to is a nominal
attribute, because a class name is a choice from all classes and it is meaningless to
compare the name ‘Class A’ to ‘Class B’. A binary data attribute is a special case of a
nominal variable which is sometimes considered a separate type. It is merely a nominal
variable with two choices–for instance, gender (male or female).

Ordinal
An ordinal data attribute is also a categorical variable but relationships exist among
the choices. For example, to answer the question, ‘Are you happy with your salary?’,
the answers could be A) Excellent, B) Good, C) Ok, D) Bad. These four options are
choices/categories, but it is meaningful to say that Option A is more positive than B.

Interval-Scaled
An interval-scaled data attribute is a general numerical variable. There are only two
constraints on this type of value. First, it is meaningless to calculate the division
between two interval-scaled values. Temperature is a good example of this. It is
meaningful to state the difference between 40◦C and 20◦C is 20◦C; however, it is
confusing to claim that 40◦C is twice 20◦C, as it is not true that 40◦C is two times
warmer than 20◦C. In addition, a zero value for an interval-scaled variable is nothing
special relative to other values; e.g., 0◦C is a valid temperature, and it is warmer than
-1◦C.

Ratio-Scaled
A ration-scaled variable is similar to an interval-scaled one except that it is meaningful
for divisional calculation; zero value means the attribute does not exist. Height is a
good example of ratio-scaled measurement. It is not only meaningful to compare two
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Type Example

Nominal Equal Choices: ‘Class A’ and ‘Class B’, ‘Apple’ and ‘Banana’

Ordinal Grades: ‘A+, A, A-, B+’, ‘Very Low, Low, Medium, High, Very High’

Interval-Scaled Temperature: 110◦C’ and 120◦C’, Time on the clock: ‘1:30’ and ‘2:15’

Ratio-Scaled Weight: 20 kg and 10 kg, Height: 50 cm and 10 cm

Table 2.1: Types of Attributes

heights but also reasonable to state that 100 m is twice 50 m. For instance, a building
of 100m is exactly two times taller than one of 50 m. When it is said that the height
of something is zero, it means it has no height.

Table 2.1 gives examples of every single data attribute which can help to further explain the
differences.

2.1.5 Data Cleaning

To reach an acceptable efficiency of collection during runtime, most data is stored in informal
formats along with unpredictable coincidences and random errors. For this reason, metrics
from game telemetry can be both noisy and incomplete. These problems can be introduced
at any time during either the process of data generation or collection. Thus, a cleaning
process is sometimes needed before the analysis to ensure that the data can achieve a certain
standard of reliability. In general, the process of data cleaning is about detecting outliers
and missing values in the database. This section introduces some basics about data cleaning
will be introduced.

Outlier Detection
As a common start for cleaning data, outlier detection is often needed to filter out data
points that do not follow the data distribution. Outliers are outlying observations which
might be generated by coincidence or error during data collection.

Several methods are used for outlier detection. The easiest to implement and most
widely used method for univariate outlier (single dimensional outliers) detection is to
use k times the standard deviation distance from the mean as a criterion (Seo, 2006).
This can be referred to simply as the standard-deviation method. It tries to label a
data point as an outlier if the point is located outside of the region [mean − k ∗ std,
mean + k ∗ std].

However, this criterion assumes that the data follows a normal distribution, which is
not feasible for many practical problems. A modification method which works on data
with any distributions is called a boxplot. It was produced by John Tukey in 1977
(Tukey, 1977). Instead of using mean as the centre of the data space, it splits the
dataset into three quartiles (Q1, Q2, Q3) and uses (Q1 + Q3)/2 as the centre. Thus,
an outlier is called an extreme outlier if it lies outside of the region [Q1 − 3 ∗ IQR,
Q3 + 3 ∗ IQR]. It is called a mild outlier if it lies outside of the region [Q1− 1.5 ∗ IQR,
Q3 + 1.5 ∗ IQR], where IQR is called interquartile range which equals to Q3 −Q1.

Although these easy-to-implement methods work well for a univariate situation, they
are not reliable for multivariate outlier detections. This type of outlier detection is
necessary when an analysis depends on more than one independent variable. In this
case, even if a data point is not an outlier in each dimension of a dataset individually,
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the combination of several dimensions may change the situation (Acuña and Rodriguez,
2004). To solve it, two approaches are typically applied: a minimum-volume ellipsoid
(MVE) estimator and a minimum-covariance determinant (MCD) estimator.

The MVE estimator is fairly easy to understand, as it aims merely to minimise the
area of an ellipsoid which can cover h points out of n (all points) where n/2 6 h < n.
The h stands for the final inlier points (Van Aelst and Rousseeuw, 2009). The MCD
estimator looks for h inlier points whose classical covariance matrix shows the lowest
determinant. It is claimed by Rousseeuw and Driessen (1999) that MCD is a good
replacement MVE as it can not only provide a better statistical performance that
MVE while being calculated but also gives more precise robust distances (Butler et al.,
1993).

Missing Value Imputation
In practical data analysis, it is common to encounter missing values (Little, 1992).
Several approaches have been invented to handle this problem. Generally, methods for
missing value imputation can be considered in two branches: single imputation and
multiple imputation (Donders et al., 2006).

The most commonly used single-imputation methods include the missing indicator and
overall sample mean. Missing indicator methods utilise a separate column of dummy
numbers (0/1) to indicate whether the current line of data is missing or not. This
column is taken into consideration as an individual data attribute during statistical
modelling (Groenwold et al., 2012). However, this method has been proven to lead
to biased estimates of the correlations between independent variables and outcomes
(dependent variables) (Donders et al., 2006; Groenwold et al., 2012). Different from it,
the overall sample mean replaces the missing value simply with the mean of the values
in the same column (data attribute). However, like the missing-indicator method, this
method has been claimed to provide biased correlation (Donders et al., 2006).

Due to the limitations of these simple methods, multiple imputation has become in-
creasingly popular and is claimed to be a good approach which can help to decrease
the effects brought by missing data (Fox-Wasylyshyn and El-Masri, 2005; Yuan, 2010).
The problem with single imputation (i.e., normal method for filling in blanks) is that it
achieves final analytics purposes by assuming that the numbers are ‘true’ or similar to
‘true’. This may easily lead to a problem if the estimated values vary considerably from
the actual values. To solve it, multiple-imputation method first uses several different
estimation methods to form many ‘possible’ datasets. The final analytical result is an
average of analyses from these ‘possible’ datasets. This tries to reduce the variances
caused by value imputations and provides a more reliable result.

2.1.6 Data Reduction and Data Representation

Data collected from practical spaces is often of large quantity and large dimension, which can
cause plenty of time spent or mislead an analysis. To solve this problem, in the area of data
mining, data reduction is an indispensable tool that is needed before any analysis (Han and
Kamber, 2011; Wei, 2010). Data reduction is a technique which aims to reduce the complexity
of data while keeping the result of the analysis almost unchanged. A series of data-reduction
processes is also sometimes referred to as the data representation method, after these data
reduction processes have been applied, the ready-to-use data is now a representation of the
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original dataset. In data mining, the main strategies used to perform data reduction are
dimensional reduction and numerous reduction.

Dimensional Reduction
The dimension of the raw dataset is generally high, which may lead to very large
consumption of computing resources while performing any data analysis. In data
mining, three main branches of approaches can be used in this situation: attribute
subset selection, attribute construction and data compression (Han and Kamber, 2011).

The idea of attribute-subset selection is simple. The method is often used when the an-
alytical objective is more likely to be correlated only with a subset of all data attributes.
For example, when predicting the winning rate of a player, it is more reasonable to
consider behaviours of the player rather than his/her name though the name is also
a valid attribute in the dataset. However, sometimes the relationships between the
independent variable and the analytical purpose are rather complex. To deal with
this issue, a branch referred to as feature selection is more helpful, as it utilises vari-
ous machine-learning algorithms (e.g., linear regression, support vector machine, etc.)
for estimating the relationship factors (e.g., coefficients) between each independent
variable and the analytics purposes. Based on the estimations, variables with higher
estimated relationships can be considered more important factors while lower ones may
be dismissed accordingly (Barbar’a et al., 1997).

Attribute construction aims at generating new and replacing old attributes based sev-
eral raw attributes. For the same example of predicting the winning rate, while observ-
ing players’ behaviours, rather than focusing on their total health reduction and the
number of levels played during the last day, it is probably more meaningful to combine
them and observe the average health reduction over levels (which equals the division
of these raw attributes) during the last day.

When the number of data attributes is much larger than the number of observations
(data points) and a subset or combination of attributes cannot be easily decided (which
happens when the relationships are complicated), a more advanced approach called
data compression is needed. Rather than using the original data attributes, data-
compression methods aim to discover new attributes/features which can form new
data spaces and perform analysis in the new data space instead. The new data space
generated is mostly a transformation of the original data space. The most commonly
used approaches are Principal Components Analysis (PCA) (Sammut and Webb, 2011)
and Discrete Wavelet Transform (DWT) (Barbar’a et al., 1997; Qu et al., 2003).

The idea of PCA is based on singular value decomposition (SVD), which tries to project
the original raw data matrix into the direction that maximises the data-projection vari-
ances. It can also be considered rotating the axis of the original data in the direction
in which the data is spreading most broadly. After the rotation, data is represented
in new attributes (axis) in the new data matrix, where these new attributes are com-
binations of the original ones. A simplified situation can be seen in Figure 2.2, where
the y′ and x′ are the new attributes discovered.

Like PCA, the DWT method also performs rotations on the original axis (attributes);
however, the direction now is not decided by the data-projection variance. In PCA,
the rotation is done via calculations over the whole dataset. Different from it, in DWT,
the transform is first calculated by decompressing data (by splitting signals to ‘main
trends’ and ‘details’) along each axis (column/attribute) into orthogonal wavelets and
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Figure 2.2: The idea of SVD (Barbar’a et al., 1997)

then find the common optimal transformations with the best wavelet coefficients along
each direction. Since the calculation is done on each data axis separately, the efficiency
is faster than PCA (Qu et al., 2003).

Numerosity Reduction
Numerosity reduction is most needed when a dataset is too large to be processed
with limited storage resources and computation time. To decrease the size of the
database, it simply tries to use a smaller set of data to represent the original dataset.
Two categories of methods are being used in this case: parametric methods and non-
parametric methods (Han et al., 2006)

Parametric methods generally try to fit the original data into some models (keep out-
liers at the same time) and then only store a combination of the parameters of the
best-fitted model for representing the dataset. Regression and Log-Linear models are
most commonly used. The regression method is a set of methods which aims to find
correlations between one (or more) independent variable(s) (x1, x2, ..., xn) and a depen-
dent numerical variable (y).In the simplest version, which is called linear regression,
the fitted model can be mathematically shown as in Formula 2.1 where the b stands for
the coefficients and c represents a constant number. Based on the regression result, the
parameters of the model can be used as a representation of the whole dataset (Barbar’a
et al., 1997; Han et al., 2006). The log-linear models work at estimating parameters
that can provide the maximum probabilities that can reconstruct the original, high-
dimensional data points from some smaller subset of lower-dimensional attributes (Han
et al., 2006; Smith, 2004). These parameters are mostly estimated using max-likelihood
methods. Thus, this method can be used for numerosity and dimensional reduction
at the same time (Barbar’a et al., 1997). These parameters can finally be used for
representing the original dataset.

y = b1 ∗ x1 + b2 ∗ x2 + ... + bn ∗ xn + c (2.1)

Without considering models, the non-parametric methods group data points into clus-
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ters and use cluster information to represent the original large-volume dataset. The
most widely used methods are Histogram, Clustering and Sampling. A histogram shows
the distribution of data by binning together data points with the same values along
a selected attribute. As a result, each bin in a histogram represents multiple original
data points. Similar to this, clustering randomly generates centres which merge all
data points around them into clusters by unsupervised machine-learning algorithms
(details are introduced in Section 2.2). In this case, each cluster corresponds to several
original, similar data points. Similarly, the sampling approach tries to utilise a smaller
sample set or subset to represent the original dataset without changing its distribution.
It generally picks out data points by some random algorithms, including random pick
with replacement (take out), random without replacement, random pick from clusters
and stratified random pick. These methods are suitable for different situations. The ob-
jective in applying them is to ensure that every data point shares the same probability
to be selected.

2.2 Machine-learning based Data Mining

After being transformed by several pre-processing methods, the data becomes actionable
for various analyses. As mentioned before, among many data-analysis approaches, data
mining plays a key role in uncovering hidden patterns from data in depth. While basic data-
visualisation methods and statistical tests work on describing the transformed data itself,
data mining is specialised at extracting models from hidden correlations among attributes,
which can be used for multiple purposes.

Working as the core engine of data mining, machine learning is a popular artificial-
intelligence (AI) branch which has been widely used in multiple fields. From spam-email
filtering to online shopping recommendations, NPC controlling in games and transaction
prediction in economics, machine learning has shown its power across many areas. Machine
learning can be described as a collection of algorithms or systems that can enhance their
knowledge and performance with experience (Flach, 2012). From the perspective of use,
it can also be explained as a set of methods that can automatically detect patterns in
data and then predict the future or perform other decision making based on the pattern
recognised (Murphy, 2012). It is so-called ‘machine learning’ because the process of its
experience-based training is similar to the learning behaviour of humans. Based on the
types of tasks that can be solved, machine-learning algorithms can mainly be categorised
into four classes: supervised learning, unsupervised learning, learning association rules and
reinforcement learning (Alpaydin, 2004; Flach, 2012; Hua et al., 2009; Murphy, 2012). Among
them, the first three areas are directly related to data mining, thereby, their definitions will
be briefly introduced in the following sections.

2.2.1 Supervised Learning

A typical supervised learning problem aims to work out correlations between several indepen-
dent data attributes and a labelled target-dependent variable. The problem can be further
split into two subcategories based on how the target is labelled. A problem with a categorical
variable as the target is called classification, whereas it is called regression when the target
is a number to be estimated (Caruana and Niculescu-Mizil, 2006). Figure 2.3 shows the
basic structure of the whole process of supervised learning. Practically, supervised learning
is usually applied for predictive modelling situations. For example, predicting the weather



CHAPTER 2. MODELLING WITH DATA MINING 27

Figure 2.3: Supervised Learning

tomorrow based on the recent climate conditions is a classification problem (Olaiya and
Adeyemo, 2012) and foreseeing the price of a specific stock based on its transaction history
is a regression purpose (Kannan et al., 2010).

Since this study is based on supervised learning, classical algorithms such as Decision
Tree, Logistic Regression and Support Vector Machine are briefly introduced here.

Decision Tree
A decision tree is a model for supervised-learning problems. A standard decision tree
is a hierarchical tree-like data structure following a divide-and-conquer strategy (Al-
paydin, 2010). It is one of the most interpretable models in data mining. It is helpful
for understanding what features could lead to which terminal nodes (categories) (Apté
and Weiss, 1997).

Logistic Regression
Logistic regression is an important statistical-modelling method. According to Hosmer
and Lemeshow (Hosmer and Lemeshow, 2004), it aims at discovering the best-fitting
parametric model which could correctly describe the relationship between multiple
independent variables (also referred to as covariates) and a dependent variable (cate-
gories in supervised learning). It is similar to a linear-regression algorithm in which the
difference is the output of a logistic regression model is dichotomous rather than con-
tinuous. A logistic regression model is useful for solving many classification problems
but cannot be easily interpreted.

Support Vector Machine
Support vector machine is a widely used algorithm for solving both classification and
regression problems. As introduced by Campbell and Ying (Campbell and Ying, 2011),
it first uses bounded-data instances in each class as support vectors and then maps them
into a higher dimension via some kernel functions (e.g., Gaussian kernel). Afterwards,
the algorithm looks for a hyperplane which can separate all canonical hyperplanes
formed by support vectors. Although an SVM model can be used to achieve a promising
accuracy, it can only be used as a black box because the resultant model is not easily
interpretable.
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Figure 2.4: Unsupervised Learning

Besides the algorithms introduced above, another algorithm that is also widely applied in
Machine Learning is the Neural Networks. This algorithm has been developed dramatically
recently and shows its potential to be used across many applications. However, the limitation
of this method is that its performance is correlated not only with the choices of its parameters,
but also with the topology of the network. As Admuthe et al. (2009) discussed in their work,
working out both choices is crucial to a success of a network. Thereby, this research did not
include it as one of the methods to avoid possible topology sensitive results.

2.2.2 Unsupervised Learning

In data mining, another general purpose is to work out some potential patterns or intrinsic
similarities from a dataset. In this case, the algorithm aims at gathering similar data points
into clusters so that each of them represents a specific type of style or behaviour pattern
(Ghahramani, 2004). The situation of unsupervised learning is shown in Figure 2.4. Because
this type of problem is not for prediction, no labelled targets are needed for the training
(i.e., it is unsupervised). Algorithms including k-means, DBSCAN (density-based spatial
clustering of applications with noise), affinity propagation (etc.) are available for processing
data under different situations. An example of an unsupervised learning problem is one that
finds play styles of players in games by their behaviours (Bauckhage et al., 2015).

2.2.3 Mining Association Rules

Another challenging task of data mining is to discover rules (patterns) that are frequently
followed in datasets. Generally, a rule follows the format of ‘A happened, then B happens’
where A and B could be single items or sets of items (Agrawal et al., 1993). This idea sounds
simple, but it requires a very large amount of computing resources when a large dataset is
given. The Apriori algorithm is commonly used for efficiently generating rules from large
datasets. An example of a learning-association rules problem is the recommendation system.
This type of system has become increasingly important in the last few decades because it
is able to discover specific purchasing rules. For example, in Table 2.2, it is easy to see
that there is a strong relationship between ‘mobile phone’ and ‘protection case’; thus, a rule
like ‘customer bought mobile phone, then will buy protection case’ will be possibly true
if it covers at least a specific ratio (threshold) of the whole dataset. Based on rules like
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Customers Item A Item B Item C

Customer A Mobile Phone Protection Case

Customer B Earphone Protection Case Mobile Phone

Customer C Mobile Phone Mobile Charger Protection Case

Table 2.2: Example of item set

this, individual recommendations can be made to different customers by their transaction
histories (Sarwar et al., 2000).

2.3 Summary

This chapter discussed how data can be traced using game-telemetry methods. Afterwards,
the types of game metrics were introduced to show that it is important to cover the types
based on data-analytics objectives. Subsequently, the pre-processing of data–including de-
noising and reduction–was covered. This part includes several methods for both dimensional
and numerosity reduction. Finally, the basic idea of how data mining (with the core of
machine learning) can be used to solve different types of problems was reviewed.

The next chapter covers the important literature that has been generated so far on the
subject of game data mining. At the same time, the contributions and possible limitations
are discussed in detail.



Chapter 3

Game Data Mining

Although the history of applying data mining to games is not as long as it is in other industries
(Yannakakis, 2012), thanks to the development of data-mining technologies, several successful
works have achieved promising results for a variety of specific purposes in different stages of
developing a modern game. The area is nowadays called game data mining(Drachen et al.,
2013).

Main points in this chapter:

u introduction to literature related to anomaly behaviour detection,

u introduction to literature related to player-style modelling,

u introduction to literature related to player-style based AI,

u introduction to literature related to player preference learning and procedure content
generation,

u introduction to literature related to player disengagement prediction, and

u introduction to literature related to player purchasing prediction.

Of all research topics in game data mining, player behaviour modelling is one of the
most basic and important concepts. It aims to detect or summarise patterns of actions that
players have performed in games to achieve a better lifetime value (LTV) and to improve
game development. These models can be either descriptive (for visualising the status of
the dataset) or predictive models. This work is focused on the latter sort. By applying
machine-learning techniques, predictive models can generally help to predict possible trends
(e.g., player engagement, purchase decisions, etc.). Based on the predictive results, some
pre-emptive measurements can be made for enhancing some expected trends and preventing
some unexpected trends. If interpretable algorithms such as decision trees are applied, the
resultant model might also be able to provide the developers with some insights of their
players.

Since the purposes of this study is to come up with a generic data representation that
can achieve competitive results for predicting both disengagement and first-purchase prob-
lems, data representations that have been used in relevant work is introduced in detail in the
literature review. Via discussion, some limitations of the current selection of data represen-
tation in game data mining may become clearer. Grouped by different predictive purposes,
research from the five main commonly researched areas is covered: modelling for anomalous-
behaviour detection, player-style modelling, player-preference learning, preference-based AI,

30
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player-disengagement modelling and player-purchase modelling. These areas sometimes over-
lap with each other.

3.1 Modelling for Anomalous-behaviour detection

Based on the game metrics that have been introduced, several works with different predictive
purposes in games are introduced. In games, especially online games, it is essential to prevent
players from performing illegal operations which would affect the balance of the system and
the experiences of other players. These illegal behaviours can either be cheating or potential
sexual assaults in chat logs. However, because of the large quantity of player data, it is
generally impossible to recognise these deviant players manually. Game data mining based
behaviour detection is a technology that could recognise specific behaviour patterns from
player behaviours.

A general application of this area is to try to detect bots in multi-player, online, role-
playing games (MMORPG). Bots often exist in MMO games nowadays, because players can
easily get important resources (mostly game-currency related) without even taking the time
to play the game. These bots have been considered large threats to all MMO games, as they
can cause a serious inflation problem in the game economy (Mitterhofer et al., 2009). Several
efforts have been made to detect these bots. Among them, data-mining based approaches
have been achieving competitive results. Research by Mitterhofer et al. (2009) and Kang
et al. (2012) has tried to identify bots by observing their anomalous behaviour in games.
Both works construct player behaviour models based on the history of the behaviours of
players. However, their selections of data representations are not the same.

Of the three sources of literature to be introduced in this section, both Mitterhofer
et al. (2009) and Kang et al. (2012) tend to focus on a specific direction of play behaviours.
Mitterhofer et al. (2009) observe the movement patterns of players (or bots) and utilise the
paths for training the classification models. This is reasonable, as most bots rely on some
specific algorithms to make a move, whereas players’ movements are more random. However,
this solution is highly specific, as the game it investigates must at least contain movement
behaviours. MMO board games such as Hearthstone (Blizzard, 2014) constitute extreme
counterexamples, as there is no movement involved in the game at all. This limitation also
applies to the work by Kang et al. (2012) as the predictive model built by them utilizes
the players’ chats log, which is yet another game-specific concept. In their study, this idea
for detecting bots has been nicely followed out, as bots should chat slightly while ‘playing’
games and their chat contents should be less logical than real human beings in a game with
a chatting system. Instead of filtering out bots only, many researchers have also investigated
the detection of gold-farmer players in MMO games. Gold farming refers to players who mine
virtual resources in the game and sell them for real-world money. As introduced by Ahmad
et al. (2009), although this behaviour is not illegal and can bring fewer threats than bots, it
can still destroy the working order of the ecosystem in a game. To prevent this issue from
occurring in games, previous research relies on pure statistics (Laurens et al., 2007). Few
predictive models have been built. For improvement, Ahmad et al. (2009) propose a feature
space that can be used to identify a player as a potential gold farmer. The features selected
by them are broader than those of Mitterhofer et al. (2009) and Kang et al. (2012). It
includes 16 different attributes from four various directions: i.e., player character, aggregate,
demographic and temporal features. On the basis of these features, the researchers applied
several classification algorithms for achieving predictive purposes. Though Ahmad et al.
(2009) provide a broader selection of features, most of them are still specific to some types



CHAPTER 3. GAME DATA MINING 32

of game and therefore can hardly be extended to other games. Apart from protecting the
ecosystem of a game, another important application of game data mining in anomalous-
behaviour detection is to secure players’ accounts. With the development of online games,
the security issue has become increasingly important in recent decades, as the accounts of
players are often precious because they may either be associated with items purchased in-
game or have consumed a lot of playing time. In addition, if the player has used the same
combination of ID and password in other contexts, the loss of their accounts may bring
unexpected extra threats. Woo et al. (2012) employ a different set of features, including the
RFM (how recently, how frequently and how much) of purchasing behaviours and the login
behaviours associated with IP addresses. However, the IP address information used in the
work may not be available in many games, as it is related to players’ private information.

As can be seen, several studies have tried to use game data-mining approaches to detect
players’ specific behaviours. Most of these works achieve competitive results for detecting
the illegal behaviours. However, due to their selections of features, the data representations
introduced in this section can hardly be migrated to another game–especially a game of a
different type. In fact, this issue is not limited to this area; it also applies to the study area
introduced in the next section.

3.2 Player Style Modelling

Because human beings differ in behaviour, it is rather difficult to satisfy individual players.
To generate personal content or understand the most valuable customer groups, it is crucial
to construct preference models in games. Player Style Modelling is an area that aims to
understand the preferable way that players apply to play games. Models of player-styles
can be used in several different ways, including adapting game settings for specific players
(Charles and Black, 2004; Hunicke and Chapman, 2004) and generating new content for
players (Missura and Gärtner, 2009; Togelius et al., 2007, 2011). This section reviews several
kinds of literature in this area.

Since player-styles are relatively abstract concepts, these styles are generally created by
various machine-learning algorithms for unsupervised learning (Baumgarten, 2010; Drachen
et al., 2009, 2012; Gow et al., 2012; Thawonmas et al., 2006). Though the algorithms consid-
ered in existing studies are similar, the data representations are different. Using pre-defined
play styles in an online game with closed space filled and several landmarks, Thawonmas et al.
(2006) successfully discovered five different movement patterns by treating players’ move-
ment trails as a feature space for discovering different players’ preferences. This selection of
feature space is similar to that in Mitterhofer et al. (2009); the difference is in the way the
players’ trails were represented. Therefore, both works share the same limitations, as these
features work only for games in which players can freely move in some specific space. Other
works have enlarged the selection of features. Both works by (Drachen et al., 2009, 2012)
select several game-specific features from three commercial games: Tomb Raider:Underworld
(Eidos-Interactive, 2008), Tera: Rising (Bluehole, 2011)and Battlefield 2: Bad Company 2
(EA, 2010). They successfully discovered some typical types of users based on visualisations.
These selected features mostly cover two aspects: players’ social activities and players’ per-
formance. On top of their work in 2009, Gow et al. (2012) and Baumgarten (2010) believe
that, because these styles are generated from players across different scenarios, they may be
influenced by complex regularities. Both of these two works used linear discriminant analysis
(LDA) based on selected game-specific features to find the optimal vectors and transform
the original data space into a lower-dimensional space with only the important features.
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Therefore, players’ locations under the reduced data representation space can reflect their
preferences and can be grouped by a further clustering procedure.

As can be found in the literature that aims to detect player-styles with unsupervised
learning approaches, the limitations of features that we observed in the area of anomalous-
behaviour detection still hold. Most studies in this area rely on more complex feature spaces
than those seen in anomalous-behaviour detection. The features selected are more dependent
on player-performance metrics that vary in different games types. Data representations used
in these works can hardly be migrated to others, as the performance of players is mostly
related to the gameplay of games, and investigations can hardly be made without knowing
their content. In game data mining, once players’ preferences have been discovered, in
addition to apply further visualisation analysis to understand player groups, another study
might try to make AI characters learn from these styles to interact with players in a more
realistic manner. The next section introduces studies that are relevant to player-style-based
AI.

3.3 Player Style-based AI

Based on the models built for player styles, rather than just understanding players’ be-
haviours or preferences, the studies introduced in this section looks further into how these
models can be utilised for creating AI-based NPCs (non-player characters). In a game’s
world, an NPC can be either an opponent or other virtual characters involved in the game
world. NPCs, especially opponents, are important actors that can make the game more
interesting and challenging. Unfortunately, compared with the great changes happening
with the graphic technologies of games, current virtual character controls still mostly rely
on scripted behaviours or simple decision trees (Aiolli and Palazzi, 2008). By using player-
behaviour models, it is feasible to create AI-based NPC behaviours which can make games
more challenging and attractive.

For example, like the studies introduced in Section 3.2 and using the unsupervised learn-
ing method K-means, Bakkes et al. (2009) automatically generated clusters of similar player
behaviours with ten self-selected features from an RTS game named Sprint (Spring-Engine,
2008). After the player-style model is built and a current player is classified into the nearest
cluster, corresponding predefined corresponding strategies are applied to the AI behaviours.
Instead of using the similar unsupervised approaches introduced in Section 3.2, Aiolli and
Palazzi (2008); Bauckhage et al. (2003); Cowling et al. (2015) applied supervised learning ap-
proaches to achieve similar targets. As one of the most interpretable of supervised-learning
algorithms, a decision tree was applied by Cowling et al. (2015) for generating a human-
strategy model from gameplay histories of a leading card game Spades (AI-Factory, 2011).
The features used for building the decision tree are abstractions of different possible moves
in the specific Spades games. The strategies described in the tree can act as guidelines for AI
players so that they will make choices similar to those human beings would make and behave
more like real players. Rather than using discovered player preferences as suggestions, both
Aiolli and Palazzi (2008) and Bauckhage et al. (2003) attempt to determine a state-action
mapping function from games based on players’ gameplay logs with machine-learning al-
gorithms. While the choices of features made in the work by Aiolli and Palazzi (2008) are
similar to those made in the work by Cowling et al. (2015) in a board game (Randolph, 1980),
their selections of feature space include not only possible moves but also initial positions and
situations of pieces before capture. Similarly, to discover an efficient mapping function in
the FPS game Quake II, Bauckhage et al. (2003) created neural networks for mapping the
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players’ field of view and velocity in the game to their next actions.
In summary, based on models of player behaviours, both supervised and unsupervised

learning models can be applied for learning some functions that map the status of agents to
their next actions. Among all the studies introduced in this section, the data representations
applied are mostly based on players’ specific behaviour in the types of games to which the
method was applied. This discovery matches what we have seen in two previous research
areas. Player-styles modelling approaches introduced in these two sections aim at finding
players’ potential types or styles while playing a game, these styles can be considered as the
preferences that players follow across the game. However, this is different from investigating
players’ preferences on specific choices in different situations in game. To learn and predict
player’s preferences, another research area named ‘player-preference learning’ has attracted
increasingly attentions, and it will be covered in this next Section.

3.4 Player Preference Learning and PCG (Procedure Con-
tent Generation)

Preference learning has become increasingly important during the last decade not only in
the game research area (Abou-Zleikha and Shaker, 2015; Pedersen et al., 2010; Shaker et al.,
2010; Yannakakis et al., 2009; Yannakakis and Togelius, 2011) but also in many other research
directions (Chu and Ghahramani, 2005; Fürnkranz and Hüllermeier, 2010). In the game
context, the applications of it mainly focus on working out the personal preferences on
games content so that developers could use the models to enhance the game content for
improving players’ experience (Pedersen et al., 2010; Shaker et al., 2010; Yannakakis and
Togelius, 2011).

There are generally three different types of preference learning tasks, they are label
ranking, instance ranking and object ranking respectively (Abou-Zleikha and Shaker, 2015).
In game context, the commonly seen researches (Abou-Zleikha and Shaker, 2015; Mart́ınez
et al., 2010; Pedersen et al., 2010; Shaker et al., 2010; Yannakakis et al., 2009; Yannakakis and
Togelius, 2011) are focused on object ranking that aims at predicting the players’ preference
over pairwise of variations of games based on some known pairwise preference relationships.
The pairwise preference relationships (referred to as player experience) in these works are
represented either by the 2-alternative forced choice protocol with the affective state ‘Fun’
(Yannakakis et al., 2009) or 4-alternative forced choice protocol with the affective states
Engagements, Frustration, Challenge, Predictable and Anxious (Abou-Zleikha and Shaker,
2015; Mart́ınez et al., 2010; Pedersen et al., 2010; Shaker et al., 2010; Yannakakis and To-
gelius, 2011). The performance for each affective state is verified by the number of correctly
classified pairs. Among the research works, Yannakakis et al. (2009), Mart́ınez et al. (2010),
Pedersen et al. (2010) and Abou-Zleikha and Shaker (2015) are focused on the methods that
can be used for predicting pairwise preferences. Yannakakis et al. (2009), Pedersen et al.
(2010) and Mart́ınez et al. (2010) applied ANN (with Genetic Algorithm) in their works
as the main algorithm to achieve the prediction whereas Abou-Zleikha and Shaker (2015)
applied a modified random forest (with Grammatical Evolution) as the classifier. As for
the data representations, all the three mentioned research works applied game specific data
representations in their testing games. The features used by Yannakakis et al. (2009) are
specific gameplay logs in the game Bug-smasher including the press of tile (a location in
the game), the pressure force on the tile, the tile’s colour, the game speed, and the entropy
of bugs’ visits (enemy in the game). Both Pedersen et al. (2010) Abou-Zleikha and Shaker
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(2015) were using the game Super Mario Bros as the test game. The difference in their
selection of data is that, in the work by Pedersen et al. (2010), game-specific features are
classified into controllable features and gameplay features so that the controllable features
can be further used in the future for procedurally generating game content. Instead, in the
work by Abou-Zleikha and Shaker (2015), there were 36 feature selected in total of five types
fully represent players’ gameplay, which is similar to the gameplay features selected in the
work by Pedersen et al. (2010). Data representation applied in the work by Mart́ınez et al.
(2010) is also specifically for the game Maze ball, the selected features include five categories,
i.e., players’ performance, time of staying in specific location, space distance among objects,
players’ input and the visibility of object from camera.

Different from them, several other research works in the preference learning research area
focus on how these preference predictive model can be utilised for creating procedure gen-
erated game content (Shaker et al., 2010; Yannakakis and Togelius, 2011). In both research
works, genetic algorithms were applied for maximising the specific aspects of players’ experi-
ence (represented by 4-alternative forced choice protocol) by generating preferable contents
based on the predictions from preference learning models. Data representation applied in the
work by Shaker et al. (2010) is claimed to be modifiable to work in similar shooting games be-
cause it includes some common concepts in this type of game such as number of times player
shoots, entropy of objects placement, number and concentration of enemies/items/obstacles.
Instead, the work by Yannakakis and Togelius (2011) is a review of how preference learn-
ing models can be built and utilised for PCG. In this work, several different ways of data
representations were covered, including the gameplay data (including how players interact
with games and performance) for model-free methods and the physiological data (electro-
cardiography, galvanic skin response, etc) for model-based methods. While discussions were
made on model-free methods, Yannakakis and Togelius (2011) introduced that the gameplay
data used is often comprised of some general features (such as time spent, performance) with
many game-specific features.

Works introduced in this section achieved certain accuracies towards predicting player’s
preferences of choosing games and some also utilised the resultant models for PCG. However,
similar to other works reviewed, their extractions of features are still game-specific in most
cases. Even though Yannakakis and Togelius (2011) mentioned some features such as time
spent or performance may be general across games, their availabilities are depending on the
data collections of games. Until now, the studies that have been introduced aim to analyse
player behaviours in games to improve the game content with machine-learning methods.
Apart from this, in the game industry, a basic index for assessing the success of a game is
the engagement of its players. The following sections investigate another important research
area for player-disengagement prediction.

3.5 Player Disengagement Modelling

Player engagement, sometimes referred to as retention, is a measurement of how players
engage with a game. As it is one of the most fundamental objectives game companies
would like to achieve, it has become increasingly attractive in both research in the game
industry and in academia. Most studies are focused on three different directions: i.e., player
disengagement/churn prediction, play-time prediction and interest retention. Since this area
is related to the basic benefits of game companies, several studies from both academia and
industry have been published. This section discusses most of these works and their selections
of data-representation methods.
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Player-disengagement prediction generally aims at forecasting the result of a binary clas-
sification problem: i.e., is a player going to leave the game or not. A player-labelling method
commonly used in this area is called churn. According to Runge et al. (2014), this term
refers to players who have entirely stopped playing games. However, while being used, as
Hadiji et al. (2014) suggested, instead of labelling players simply by observing whether he or
she played the game on some day0, a flexible window drlx is given in case this user returns
in the next dchurn (e.g., seven) days. This is for solving the problem of bias, as there are
many churners without a flexible window. At the same time, rather than filter out churners
and take the rest of the non-churners (still highly biased), they attempt to consider only
player behaviours made during a specific period before the current date (i.e., the test date).
The length of this period was designed as two dchurn days (e.g., two weeks), and it takes
the middle of this two dchurn days as the cut-off date. For example, if dchurn equals to
seven, the length of the period to be considered is two weeks before the current date, and
the cut-off date is the end of the first week. Based on the soft-labelling method mentioned
before, the resultant class distribution is better balanced. However, according to their tables
of class distribution, even after applying this approach, the percentage of positive examples
still ranges from 0.883 to 0.998 for 14 of 20 cases–except for the remaining six cases in which
the percentage of positive examples ranges from 0.564 to 0.618. While predicting churn
in the game Race Team Manager (Bigbit-Ltd, 2014), a similarly bias was also observed.
To solve it, another contribution (which is introduced in Chapter 7) is to come up with a
new disengagement-labelling method that is able to maintain an approximately balanced
distribution of resultant classes without losing any samples for predicting behaviour trends.

To discover reliable models, various approaches with different choices of data represen-
tations have been investigated for a range of games (Borbora et al., 2011; Borbora and
Srivastava, 2012; Debeauvais et al., 2014; Drachen et al., 2016; Hadiji et al., 2014; Kawale
et al., 2009; Runge et al., 2014; Tarng et al., 2009). In the modern gaming industry, the
operation models of games range from free-to-play to subscription, because of this, the fea-
ture space that can be extracted from games for representing disengagement/churn may also
vary. For example, Kawale et al. (2009); Runge et al. (2014); Weber et al. (2011b) selected
a range of game-specific features to achieve a competitive predictive performance. In the
work by Runge et al. (2014), their choices of attributes include rounds of games played,
performance accuracy and invites sent which are measurements from a casual game. By
representing players’ disengagement with the number of rounds they played in the game,
Weber et al. (2011b) converted the disengagement prediction into a regression problem. The
choice of features applied in the work by Weber et al. (2011b) is similar but broader than
that of Runge et al. (2014). Several game specific features from four aspects were included:
i.e., mode preference features, control usage features, performance features and playcalling
features (manual or gameflow playcalling), etc. From a special point of view, Kawale et al.
(2009) took social influences into consideration while trying to predict churn. The features
they chose are different from those of Runge et al. (2014) and Weber et al. (2011b). Dur-
ing their experiment, they used undirected graphs to represent players’ social relationships
and then conducted some weighted calculations for extracting both group-engagement and
social-influence features from the graph. The resultant features were utilised for creating
predictive models with several different machine-learning algorithms. However, the results
were not as competitive as other approaches. Game-specific data representations can also
be found in the work by Borbora et al. (2011). In a study of the MMO game, EverQuest II
(Entertainment, 2004), Borbora et al. (2011) utilised 14 game-specific motivational features
such as Number of quests participant in, Number of monster kills, Number of deaths (etc.)
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to predict churners. However, the following year, they started to realise the generality is-
sue and came up with another work for upgrading this selection of in-game attributes into
more comprehensive and general features (Borbora and Srivastava, 2012). Instead of relying
directly on in-game attributes, they first applied a K-means algorithm for clustering both
churner and non-churner players into groups. By comparing their observations over groups
from two classes, they were able to determine churners’ special behaviours in terms of their
engagement, persistence and enthusiasm. All three terms are different functions of session-
related features: i.e, number of sessions per week, sum of session length per week and sum of
inter-session length per week. The selection of features in their work is close to that of Hadiji
et al. (2014). Both studies stress the importance of session-related features. As for com-
parison, the features selected by Hadiji et al. (2014) are number of sessions, number of days
after installation, current absence time, average playtime per session, average time between
sessions, playtime model parameters (the parameters of player based power-law function),
retention value (a function from average from days of play), premium user flag, predefined
spending category, number of purchases and average spending per session. Similar to the
work of Borbora and Srivastava (2012), most of these features are game-content irrelevant.
However, their availability depends highly on how the game data is collected. This is be-
cause many features selected here are based on session and exact-time information, and such
data is sometimes not available if game data is collected via some third-party data-collection
frameworks. For example, Google Analytics is the choice for many game companies, and its
framework uses an event-fired system (information is sent to the server when some prede-
fined event happens in the game). Thus, to gain exact time information, developers have to
include these time messages in some initializing-session and ending-session events. However,
for mobile games or web games, because players can frequently return to the homepage or
switch to different web-pages, the ending event is not fired for sending the required informa-
tion. In addition, the number of days after a player’s installation can only be easily gained
if it was recorded as a constant event. Otherwise, it cannot be calculated if the available
dataset does not contain the full history of players or the data collection was not integrated
when the game launched.

Another general issue with this area is the requirement of data volume. Though these
works achieved competitive results for predicting disengagement, according to their experi-
mental settings, these experiments are able to achieve good accuracy only when more than
half a year of players’ history is available. According to Drachen et al. (2016), this is prob-
ably acceptable for some very successful MMO games but lacks values for newly released
games or free-to-play games. In newly released games, gameplay history is usually short.
Thus there will not be sufficient data available for conducting these experiments. In addi-
tion, the life cycles of free-to-play games are shorter and churning happens more often and
earlier than in other types of games, as there is no loss if players quit. To deal with these
practical issues, Drachen et al. (2016) tried to predict player disengagement/churn in an
early stage by applying a heuristic-based decision tree. They tried to make the judgement
by using features from very early-stage feature windows: i.e., a session, a day or a week
from installations. For their study of the game Jelly Splash (Wooga-Games, 2013), for data
representations, they selected attributes from both installation information (e.g., devices,
geographic location), gameplay features (e.g., total days, total rounds), session information
(e.g., average time between sessions) and game-specific information (e.g., average moves,
average stars). This method can generate reasonable accuracy (ranges from 0.613 to 0.786,
depending on the length of feature window) considering the fact that it relies on a short
period after installation. In fact, to gain better prediction results, most works would use a
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longer but acceptable gameplay history: i.e. ranges from half a month to two months (Hadiji
et al., 2014; Kawale et al., 2009; Runge et al., 2014; Weber et al., 2011b).

As introduced, many works show promise for predicting disengagement. However, like
other research areas, a common problem that is that the features used in the experiments
cannot be migrated into other games: i.e., they are not generic enough. This drawback
may limit the business value of the studies if they are to be applied for commercial use.
This is because, for every new game product, the feature space has to be redesigned for
finding the available game-specific features. As Drachen et al. (2016) mention, free-to-play
game companies–especially medium or small ones–cannot afford to spend much on data
analytics. To constantly migrate existing data analytics products for every new product
would be too difficult for them. This is one of the main problems this study aims to solve.
Section 4.5.1 introduces a new data-representation method called ‘event-frequency-based
data representation’, which can offer better generality. Based on this data-representation
method, case studies are given for predicting disengagement in three different types of game.
Details are given in Chapter 6. Apart from disengagement behaviours, yet another important
factor in evaluating the successful operation of a game is in-game purchases. The next section
discusses relevant studies of both predictions of player purchasing behaviours and revenue.

3.6 Player-purchase Modelling

In game data mining, a study area that is straightforwardly related to a games’ profit con-
cerns the prediction of players’ payment behaviours and associated revenue. However, little
research has been done in this area in recent years. Studies for predicting purchase are
mainly focused on two aspects, i.e., purchase decision prediction (either from non-paying or
paying users) and revenue prediction. In this section, both areas are going to be introduced
with their corresponding studies.

The term conversion rate in games stands for the ratio of paying users to all players. By
applying three standard algorithms (SVM, random forest and decision tree), both Pluskal
and Šedivý (2014) and Sifa et al. (2015) studied how a non-paying user can be converted
into a paying player following different strategies. In modern free-to-play games, a common
strategy is to send offer information to players to encourage their desire to purchase. This
type of information frequently appears at the end of a game round or a level upgrade.
However, Pluskal and Šedivý (2014) claim that it is both annoying and inefficient to push
advertisements to every player. Instead, they aim to predict whether a player will make a
purchase after finishing each game level and only push advertisements to potentially paying
users. Their choices of data representation include 13 different game-specific features (e.g.,
the number of matches, the number of trophies, etc.) over one recent month. Rather than
treat this as a binary classification problem, they upgraded their prior model to a regression
model which aims to predict the exact number of hours before a player is going to make
a purchase after each game session (Pluskal and Šedivý, 2014). Based on the predictions,
offer information can be delivered to players at the most efficient time. Instead of focusing
on the suitable time for pushing offer notifications, Sifa et al. (2015) prefer to predict which
players are likely to become premium (paying) players over the whole game lifetime (i.e.,
whether his/her first purchase will happen). According to Kim (2012), first purchase is an
important concept, for once a user starts to pay, it is easier for him/her to make further
purchases. This is why a similar predictive target was also included as a case in this study.
The relevant experiments are further discussed in Chapter 5. Sifa et al. (2015) built both a
classification model and a regression model. A classification model can be used to predict
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whether a player will make his/her purchase while a regression model can be used to estimate
how many purchases a player will make. Their selection of data representation is broader
than that of Pluskal and Šedivý (2014), as not only some game-specific features are included:
Players’ demographic and game-session related information is also taken into consideration.
Alves et al. (2014) implemented a framework for predicting player revenue (after 180 days of
gameplay) based on spending in the very early stage of playing (the first seven days). Using
a large amount of data, they picked several hundred features to represent the dataset in their
framework. These features came from six categories including appending action, gameplay,
game-progression, social interaction, success metrics and game-setting preferences. Although
some of these selected features can be found in other games, most are game specific.

Sifa et al. (2015), while trying to build the classification model, encountered another
issue: high skew, as shown by the distribution between positive examples (paying users) and
negative examples (non-paying). This is commonly seen in free-to-play games, as a biased
dataset can lead to unreliable classifiers, thereby generating low accuracies for forecasting.
To solve this problem, they applied a technology called the synthetic-minority over-sampling
technique (SMOTE), which generates fake data in the minority class side for balancing the
classification. This is one of the most widely used algorithms in different areas of data
mining. However, it also brings some potential problems which will be further discussed in
this research. The details are discussed in Chapter 7, which also considers possible solutions.

Like what has been discussed concerning player-disengagement prediction, data repre-
sentations applied in this area also lack sufficient generality: i.e., most of the features are
game specific and can hardly be immigrated to other games. The event-frequency-based
data representation is used to provide promising prediction results with a better generality
in Chapter 5. Another thing to note here is that, similar to what was mentioned in Sec-
tion 3.5, bias can also occur in this research area. Unlike Hadiji et al. (2014), Sifa et al.
(2015) use a technology called ‘SMOTE’ for balancing datasets for classification problems.
As discussed, both approaches encounter limitations when faced with either a highly biased
or highly dimensional dataset. An alternative solution that can deal with complex datasets
from this work is explained in Chapter 7.

3.7 Generic Feature Extraction

Research works introduced so far have been investigating how player models can be built
for a wide range of predictive purposes. However, as can be seen, although most selections
of data representations differ, most nevertheless suffer from a common issue: i.e., the lack
of generality. This limitation comes from either the features that are selected based on
game contents or the features that are not tracked. It can be less risky when game-specific
features are applied to their corresponding games. However, this problem quickly grows
and brings extra costs when the data representation must be extended to work with other
games. To solve this problem, this works has come up with a generic feature extraction
approach named ‘event frequency based data representation’ that only relies on the counts
of events that happened in games. The details of this generic data representation will be
further explained in Chapter 4. Before then, in this section, some research works have been
made to tackle the generality issue will be reviewed and will be compared to the method of
this work.

There are generally three different ways that the state of the art research works attempted
to provide methods with better generality, they are relying only on general features (Camilleri
et al., 2017; Shaker et al., 2015; Togelius and Yannakakis, 2016), transfer learning(Shaker
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and Abou-Zleikha, 2016) and general feature extraction(Mart́ınez and Yannakakis, 2011)
respectively. The former two methods can be considered as feature engineering methods
whereas the later one utilises feature mapping between games to port the existed model.

As the most straight-forward approach solution to the generality issue, works by Togelius
and Yannakakis (2016), Camilleri et al. (2017) and Shaker et al. (2015) suggested generality
can be achieved by modelling with only features that can be found across games. In the
work by Togelius and Yannakakis (2016), they reviewed the generality limitation of the
research works on game AI (e.g., Non-player-characters in games) and suggested that, the
latest research should attempt to achieve three types of generality, i.e., game generality, task
generality and user/designer/player generality. The game generality requires methods are
generally applicable across different games; this is also the focus of the work presented in this
thesis. To model behaviours in a general manner, general features such as winning, losing,
achieving rewards and progression or tension curves are suggested to be used. Although
the purposes are different, the features applied in the works by Shaker et al. (2015) and
Camilleri et al. (2017) are similar to each other. While trying to build a model for predicting
player experience, Shaker et al. (2015) firstly applied game-specific features to predict player
experience in two different games (i.e., Super Mario Bros and a first-person shooter game:
Sauerbraten) and then extracted features that can be commonly found between the two
games, i.e., The number of enemies, The number of enemies hit, the average time spent in
each life and the number of rewards received. While sharing some features used in the work
by Shaker et al. (2015), Camilleri et al. (2017) further abstracted and expanded the feature
space to include goal-oriented/opposed events, distance travelled, time spent moving and time
spent since start of the game (or including tutorial).

Results from Shaker et al. (2015) and Camilleri et al. (2017) indicated that generic
features selected across games can achieve high predictive accuracy. However, as mentioned
by Shaker et al. (2015), a limitation of selecting common features as the data representation
is that the availability of features are highly dependent on the genres of games. In other
words, features found in football games may not be available in music games. Taking the
games used in this research as examples (Samples of game data can be found in Table 4.1, 4.2
and 4.3), while using features suggested by Togelius and Yannakakis (2016), the progression
or tension curves can only be found in I Am Playr because the other two games Lyroke and
Race Team Manager are not tracking this information. Features suggested by Shaker et al.
(2015) and Camilleri et al. (2017) are largely missing from the three games, for instance,
distance travelled, The number of enemies and The number of enemies hit are only available
in game Race Team Manager ; the average time spent in each life and time spent moving do
not match the concept of all three games; time spent since start of the game (or including
tutorial) is not tracked in all three games. The methods applied in these previous works are
different from this research, as in this research features are extracted from all the available
events and, thereby, will not suffer from the availability issue.

To deal with the availability issue, transfer learning is also an alternative solution. Instead
of finding common features across games, transfer learning aims at mapping feature space
from a game to another so that the trained model can become applicable in a different one
(Shaker and Abou-Zleikha, 2016). Although the work by Shaker and Abou-Zleikha (2016) is
the only research that applied for player behaviour modelling, transfer learning approaches
have been applied in several other areas for solving problems such as generality and lack of
data Pan and Yang (2010). In the work by Shaker and Abou-Zleikha (2016), they applied
both supervised transfer learning and unsupervised transfer learning to validate if transfer
learning methods can ensure an acceptable performance in the games Super Mario Bros
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and Sauerbraten. In the supervised transfer learning scenario, model is trained in one game
and migrated to another. In the unsupervised learning transfer learning, features of both
games are projected into a third space via (Principle Content Analysis), the output of the
trained model will be projected into that space and then transformed into the space of
the other game. In both case, performance achieved are better than random guess which
indicated that the transfer learning method did take use of the shared low-level information
between the two games. Although the results achieved are promising, a general limitation
with transfer learning is that the source and target needs to be related (Tan et al., 2015).
In other words, the further the content of the game are away from each other, the lower
amount of information might be carried over. Because of this, transfer learning may not
be applicable in all cases for achieving better generality. Although transfer learning is not
applied in this work, as a general method, it can also be applied upon the generic data
representation method applied in this work for tacking problems where the dataset is small.
Further information will be explained in the Section 8.3.

The work that is mostly close to this research is done by Mart́ınez and Yannakakis (2011)
who utilised sequence mining approaches for creating models for player-preference learning
in games. Although the research area in their work is slightly different from player behaviour
prediction, its purpose for applying the sequence mining method is also aimed at providing a
generic data representation. Their sequence mining method first builds up the feature space
by finding frequent events from three pre-defined event groups (i.e., Performance Events,
Navigation Events, Physiological Events) and then merges them into higher-level patterns
when those events happen within a time range. For each pattern to be used, the pattern also
needs be supported by at least a specific number of appearances. Similar to the works done
by Mart́ınez et al. (2010); Pedersen et al. (2010); Yannakakis et al. (2009), an ANN model
was applied to predict players’ preference.

Comparing this feature extraction method to the event frequency based data represen-
tation (details in Section 4.5.1) proposed in this research, although both of them intend to
model player behaviours based on basic events in games, there are two different aspects, they
are:

u The sequence mining approaches applied by Mart́ınez and Yannakakis (2011) extracts
events from three pre-defined event groups (Performance Events, Navigation Events,
Physiological Events) whereas the event frequency based data representation utilises
all raw events from gameplay logs without known information.

u The sequence mining approaches focuses on learning sequence patterns where as the
event frequency based data representation learns from the occurrences of the events
only.

The first difference gives the event frequency based data representations better generality.
However, given that all the raw data are included, it also will lead to higher dimensional
models than the ones built by the sequence mining method which relies on pre-defined groups
of events only. The second difference shows that the learning interests of both methods are
not the same, this research focused on learning the player behaviours based on what and how
many times player did. However, future research may also investigate if a sequence mining
method on raw data can also help to work out important behaviour patterns in games. A
possible research example is covered in Section 8.3.

The literature introduced in this section aim at generalise the methods for modelling
player behaviour for predicting different purposes. Three categories of methods for increasing
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the generality of models have been introduced. They are all able to generalise the predictive
models, but each of them still has limitations in different aspects. In summary, the methods
that utilises only general features may only work on games of similar genres. Similarly,
transfer learning works for mapping features across games, but the method assumes that
games should share some low-level commons. The sequence mining method is the most
generic one, but it was applied on pre-defined event categories instead of raw data, thereby,
it may also suffer from the availability of events depending on how data is collected in games.
Among these approaches, because the sequence mining approach is the closest one to the
contribution of this research, and it was also compared to the event frequency based data
representation. Both methods take different views on the directions for investigating player
behaviours, in this research, the event frequency based data representation focuses on what
players did and their frequencies instead of sequence patterns. But, in future research, other
extensions of this data representation may be investigated as will be discussed in Section 8.3.

3.8 Summary

This chapter considers and revises several research areas in game data mining. As can be seen,
data-mining technology has been used widely in this area for various predictive purposes. A
common problem with most methods applied in player behaviour prediction is their abilities
of being generalised. Although some attempts have been done in the preference learning
area to generalise the player behaviour models, limitations of them have been reviewed in
their corresponding sections. To deal with this issue, a more generic data representation will
be proposed which builds feature space directly from the raw data. In the next chapter, this
method will be described in details, and at the same time, a glance at the research method
of work will be given.



Chapter 4

Player Modelling with Data Mining

Previous chapters discuss how general data-mining technology can be used to model various
player behaviours and what areas existing works have investigated. Among them, player-
purchase and disengaging-behaviour modelling have attracted much attention from both
industrial and academic researchers. However, as explained in the previous chapter, the
generality of existing data representations have prevented many otherwise successful methods
from being widely applied. To solve this issue, a new data-representation method named
event frequency based data representation is introduced as the main contribution of my
research. This data-representation method aims to provide better generality than existing
approaches while providing competitive performance.

This chapter begins by presenting an overview of my experiment. On the basis of this
overview, details of experimental information–including game data sources, labelling meth-
ods, data representations, algorithms and evaluations–are explained. While data repre-
sentations are introduced, the main contribution of this study–event frequency-based data
representation–is explained in detail.

Main points in this chapter:

u a top-level blueprint of this research,

u introduction to the dataset from games that were used in this research,

u descriptions of labelling methods,

u introductions to data representations,

u explanation of the event frequency based data representation,

u introduction of classifier algorithms applied,

u summary of Evaluation methods used, and

u introduction to K-fold cross validation.

4.1 A Glance at The Research

This work is comprised of several experiments for different investigative purposes. Event-
frequency-based data representation acts as its kernel. To understand how all the experi-
ments were conducted and the relationships among them, an overview of the research struc-
ture is given in this section.

43
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Figure 4.1: Structure of research experiments

See Figure 4.1. The top-level blueprint displays six main stages through which an ex-
periment would proceed during the process of player modelling. These six stages are placed
from left to right according to the order in which they are encountered in the procedure of
modelling. As can be seen, the stages are game data, labelling methods, balancing methods,
data representations, feature selection and evaluation. There are several choices in each stage
which stand for different experiment settings for the corresponding stage. Therefore, by fol-
lowing the order from left to right, a complete experiment in this work is a path which links
elements in different stages together. In the following chapters, which explain the details of
the experiments, this figure is reused to show the current path being introduced. In the next
several sections, information about each stage in the blueprint is introduced one stage after
another.

4.2 Game-data Sources

This section introduces the game data that is used in our study. As Chapter 1 indicates, free-
to-play games have developed dramatically in the last few decades, and player modelling has
become increasingly popular in this industry. Therefore, data from these freemium games is
of good value for research. Fortunately, by collaborating with WeR Interactive and Bigbit
Ltd., player-behaviour data from three commercial free-to-games was made available for
investigation.

4.2.1 I Am Playr

Developed by WeR Interactive, I Am Playr (Figure 4.2)is a popular, commercial, first-person
association-football game published free-to-play on Facebook, IOS and Android. During the
game, players take control of a professional football player who is signed by a fictional football
club named ‘River Park F.C.’. The basic content of this game is about simulating the player’s
life, which includes playing matches, training and other entertaining events. During a match,
the game is described by scrolling text until there is a chance to score a goal. Like usual
free-to-play games, this game offers several items for purchase: for instance, shoes, cars and



CHAPTER 4. PLAYER MODELLING WITH DATA MINING 45

Figure 4.2: Screenshot of I Am Playr

Table 4.1: I Am Playr Data Example
Attribute Name Descriptions Examples in data

Timestamp The Unix Time ‘1388534450669’

s Anonymous User ID ‘cb2cc1d11089db88’

v Values related to action ‘1’

l The week in game that player is currently in ‘3’

st1 Level 1 details of event ‘Item’

st2 Level 2 details of event ‘Equip’

st3 Level 3 details of event ‘Boots’

st4 Level 4 details of event ‘IAmHelios’

other luxuries. The data investigated contains gameplay logs of 89,057 players from January
and February of 2014.

The data of I Am Playr was first hosted by an analytics-service provider named Kontagent
(now Upsight) (Upsight, 2007) which then migrated to Google Analytics (Google, 2005). As
introduced in Section 2.1.1, both of the providers apply event-firing based systems. For my
experiment, the data was retrieved from APIs provided by both providers and parsed into an
actionable format. An example of the format can be found in Table 4.1. The event described
is that the player is equipped with an in-game item: a pair of boots called IAmHelios.



CHAPTER 4. PLAYER MODELLING WITH DATA MINING 46

Figure 4.3: Screenshot of Lyroke

Table 4.2: Lyroker Data Example
Attribute Name Descriptions Examples in data

Time The time ‘2014-03-01-00-19-36’

s Anonymous User ID ‘551f72edc26e6f7e’

v Values related to action ‘1’

st1 Level 1 description of event ‘Gameplay’

st2 Level 2 description of event ‘IncorrectAnswers’

st3 Level 3 description of event ‘TaintedLove’

4.2.2 Lyroke

Lyroke (Figure 4.3)is another commercial game investigated in experiments of this research.
This game is also a quality product published by WeR Interactive. It is available on various
platforms including Facebook, IOS and Android. Unlike I Am Playr, the main content of
Lyroke concerns guessing missing lyrics while a song is being played. There are several
modes. In tournament mode, players play a randomly selected song. In challenge mode, a
player can directly challenge friends with songs. The in-game purchases include new songs
and power-up items. Power-up items are used for reducing the game difficulty; for instance,
a ‘bomb’ can directly display the answer, and a ‘clock’ can provide more time. The data
investigated is gameplay logs of 280,338 players from March and April of 2014.

Like the I Am Playr dataset, the dataset used from Lyroke was first stored in Upsight
and then moved to Google Analytics. Likewise, the data was retrieved from provided APIs
and parsed into actionable formats. Table 4.2 shows an example of the ready-to-use format,
which means the player selected a wrong answer to the current challenge for the song ‘Tainted
Love’.
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Figure 4.4: Screenshot of Race Team Manager

Table 4.3: Race Team Manager Data Example
Attribute Name Descriptions Examples in data

User ID Anonymous User ID ‘0E61685B-75D5-
42A5-A4CA-

DC905BF055E8’

Country The country of the user ‘United Kingdom’

Time Stamp The date of current event ‘18/09/2015’

App version The app version running ‘2.3’

EventCategory Description of event category ‘Race’

EventLabel Description of event info ‘CornerOvertake’

EventAction Description of event action ‘Succeed’

EventValue Values related to event ‘0’

4.2.3 Race Team Manager

Race Team Manager (Figure 4.4) is a free-to-play game developed by Bit Ltd. It is available
across all mobile platforms. The game was picked as the ‘editor’s choice’ after its first launch
on the App Store. Its gameplay allows players to take the role of the manager of a team
who can control how racing cars should drive to pass, avoid collisions, reduce tire-replacing
time and adjust driving styles. This experiment used full gameplay logs of 113,872 players
between October 2015 and January of 2016.

The data from this game was collected by Google Analytics. Through the API, data
was retrieved and parsed into a similar format, which was used for WeR Interactive games
for easier pre-processing. An example event in the game can be found in Table 4.3. This
example shows that a player successfully performed a pass around the corner in the race.
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4.3 Labelling Methods

The second stage in player modelling is labelling. Labelling is essential to binary classi-
fication problems which categorises data samples into two groups for different predictive
purposes: e.g., players need to be labelled as disengaging and non-disengaging players in
a disengagement-prediction task. Therefore, this stage is decided by predictive purposes.
For instance, if used to predict players’ disengaging behaviours, the labelling method named
‘churn’ can be a good candidate. In this work, disengagement and first-purchase prediction
act as the main predictive targets. Therefore, labelling methods related to these purposes
are applied. In addition to the existing labelling methods, three new labelling methods which
aim to solve either disengagement or first-purchase related problems are introduced in this
work. Details of the labelling methods are given in corresponding chapters.

4.4 Balancing Methods

Of all the predictive tasks discussed in this work, one notable issue is that the datasets
which result from any labelling method are often biased. For example, in a first-purchase
prediction problem, players are labelled according to whether they have made any purchases
in the past. It often happens that most users are non-paying ones, such that only a small
number of people can be paying players. In machine learning, the training of classifiers in
biased situations may lead to unexpected performances. According to López et al. (2013),
the impact mainly comes from two aspects. First, when a dataset is biased, it will be
difficult to identify the minor class correctly because some exceptional and significant cases
might exist in the minor class that are not even covered by the training data. Second, most
classification algorithms have been designed for balanced datasets. Because of this, they are
not necessarily able to provide reliable performances. Once the frequency of examples from
the minor class is small enough, algorithms will tend to ignore these examples and classify
all of them as the major class to achieve better prediction results.

Therefore, some extra efforts have been made to generate balanced classification prob-
lems. Two widely used methods including random under-sampling and SMOTE. These
methods are applied to balance the distribution between classes generated by different la-
belling methods. Because of some existing limitations with these balancing methods, this
work offers a new labelling method for generating balanced classes for disengagement pre-
diction. Its details are discussed in Chapter 7.

4.5 Data Representation

The next stage in the blueprint is data representation. Several methods for representing the
data have been reviewed in Chapter 3. However, as explained, most of the current methods
involve a lack of the generality such that they cannot be applied across games. This section
introduces, as the main contribution of this research, a new data-representation method
named event-frequency-based data representation.

4.5.1 Event Frequency-based data representation

The limitation on generality in game metrics mostly comes from two aspects: game-specific
and availability. The first aspect is easy to understand: I.e., a data representation that is
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Figure 4.5: Problem for calculating session length

The game-session lengths of players A and B are different. However, since the time between the first
and last recorded events are the same, their game-session lengths will be considered the same.

formed by game-content features can hardly be applied to a game with different content–
especially for games in other genres. For instance, player behaviours in football games can be
very different those in a music game. The second reason is mostly based on the design of the
data-collection system of a game. For example, the length of a game session is reasonably
generic across games (Hadiji et al., 2014), but this may not be collected if the data-collection
system is not designed to handle it. When session information is not directly available, an
alternative way to calculate the session length is to identify the difference between the ‘last’
and the ‘first’ event in the same session. However, this may become unreliable when the
example shown in Figure 4.5 happens.

Thus, to solve both problems, a new data-representation method needs to be both game-
content irrelevant and able to take whatever game event is available. Although many efforts
have been made to achieve various predictive purposes (e.g., disengagement and purchase) in
the area of game data mining, as discussed in Section 3.5 and 3.6, the most widely investigated
approaches are unable to provide data-representation methods which are generic enough to
be migrated to different games without adaptation. To cope with this issue, a new generic
data-representation method is introduced as the main contribution of my research in this
section.

A possible solution is to use counts of the appearance of each event to represent the
dataset for individual players. This is inspired by a similar model widely used in text
mining (Zhang et al., 2010). The model is called ‘bag of words’: Words in an article are
enumerated and considered a single dimension (feature) (Cormack, 2007). This approach
makes sense, because the frequency of words can reflect some information about the whole
article. Likewise, in the context of games, it is possible that the frequency of events a player
performs or experiences can also hide valuable patterns. Furthermore, the use of event-
frequency can provide good enough generality, as it is content irrelevant and can use any
event that happens in the game.

To verify this conjecture, the main contribution of this work –event-frequency based
data representation– relies only on the number of occurrence of events in a game. Table 4.5
gives a subset example of the feature space that was built in the game I Am Playr while
predicting players’ disengagement behaviours. In this example, the three randomly selected
events are “LevelUpOffer-MissOut–Unset”, “Video-Played–MD10a-playrmp4” and “Player-
Trophy-UnlockItem-IAmTyphon”. Their definitions can be found in Table 4.4. Taking
Player 1 as an example, he/she missed 10 times of the level-up offer named ‘unset’, has



CHAPTER 4. PLAYER MODELLING WITH DATA MINING 50

Table 4.4: Example event explanation
Event Name Explanation

LevelUpOffer-
MissOut–Unset

The number of times that player
missed a level up offer called ‘unset’

Video-Played–
MD10a-

playrmp4

The number of times that player
played a video (generally when a

milestone is reached)

Player-Trophy-
UnlockItem-
IAmTyphon

The number of times that player
unlocked a trophy named

‘IAmTyphon’

Table 4.5: Event Frequency Data Representation
LevelUpOffer-

MissOut–Unset
Video-Played–

MD10a-
playrmp4

Player-Trophy-
UnlockItem-
IAmTyphon

Player 1 10 1 1

Player 2 9 1 1

Player 3 8 1 0

Player 4 3 1 1

Player 5 9 0 1

played the video ‘MD10a’ and has unlocked the trophy ‘IAMTyphon’. As only the counts of
the events are used, their actual meanings become less important in this data representation.
This is also why this data-representation method can be applied across different games for
multiple predictive purposes. Therefore, the hypothesis of my research is as follows:

Event-frequency-based data representation can be used to predict player be-
haviour with supervised learning to provide a significantly better performance
than random guess and competitive performance while being compared to other
state-of-the-art methods, where applicable.

In this hypothesis, to be more precise, “Method A provides a significantly better per-
formance than Method B’ represents the situation where, in all cases of an experiment, the
p-values resulting from two-tailed t-tests conducted between A and B are less than 0.01,
as well as the t-values and effect-sizes are both positive. Instead, “Method A provides a
competitive performance while being compared with Method B” stands for the situation
that, in most cases of an experiment, A can either provide significantly better performance
than B or there is no significant difference (p-value is larger than 0.01) found between A and
B.

4.5.2 Game Specific Data Representation

To compare event-frequency-based data representation for predicting players’ disengagement
behaviours, this work also implements a game-specific data-representation method intro-
duced by Runge et al. (2014). The details of this data-representation method are introduced
in Chapter 6.

As for predicting players’ first purchases, to the best of my knowledge, only a few works
(Sifa et al., 2015) have aimed at the same predictive purpose. Unfortunately, most of the
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features used in the data representation are not available in the game datasets used in this
study. Therefore, to predict players’ first-purchase behaviours, a random classifier was used
as the baseline for comparison with event frequency-based data representation.

4.6 Feature Selection

Though event-frequency-based data representation is able to provide good generality thanks
to its features, it has its limitations. Highly dimensionality is the largest issue with this
data-representation method, as there are often thousands of events (features) to be analysed
simultaneously in a good game. For example, in the game I Am Playr, 2,635 unique events are
experienced or generated by players. High-dimensional data can have two negative impacts:
i.e., an extra-complex model, and overfitting (Guyon and Elisseeff, 2003). An extra-complex
model cannot be understood by human beings; therefore, it is difficult to visualise and analyse
an extra-complex model. The latter impact, overfitting, is a general issue in machine learning
that often affects the reliability of predictive models. A detailed explanation of overfitting is
given in Section 4.9. To solve these problems, dimensional reduction, introduced in Section
2.1.6, can act as the solution. Feature selection is extensively used in dimensional reduction to
decrease the dimension of the represented dataset by keeping only the most relevant features
(relative to the current predictive target). In this work, a tree-based ensemble method called
random forest was applied to all cases for computing the importances of features and helping
to determine the most relevant ones. This algorithm has been widely applied in machine
learning for feature selection in various areas (Genuer et al., 2010).

In addition to the basic statistical methods introduced in Section 2.1.6, another group of
widely used feature-selection methods are tree-based ensemble methods. This group includes
methods such as tree-bagging and random forest. Unlike the approaches introduced before,
these methods are machine-learning algorithms which are also capable of solving general
classification problems. Among them, tree-bagging is most naive tree-based ensemble ap-
proach. During its construction procedure, it simply trains several decision-tree classifiers
(introduced in Section 2.1.6) on random samples with replacement (which means that, exam-
ples can be selected more than once) from the given training set Breiman (1996). As for the
classification, for an unseen example, it votes among predictions from all separate classifiers
and uses the major choice. When training separate decision trees, rather than select the
next splitting node from all feature candidates, a random forest classifier selects only from
a subset of all feature candidates (called feature bagging) Breiman (2001). This is to solve
the problem that some important features will be overly selected in most decision trees to
be aggregated in the tree-bagging method.

After pre-processing, the importances of each feature are ranked and normalised accord-
ing to their criteria (e.g., ‘gini’ and ‘information gain’), as decided by the trees, so that
the more valuable features can be easily extracted by giving a threshold. In this work, the
threshold is set to be the mean of all features’ importances: That is, the attributes whose
importance score is larger than the mean value of all are selected. The implementation of
random forest is based on the scikit-learn package in Python 2.7.

4.7 Classification Algorithms

In this work, for easier comparison with other works, classification algorithms such as decision
tree, logistic regression and SVM are used as the main classifiers. These classifiers are all
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Table 4.6: Parameter Selection Ranges for Algorithms Applied
Parameters Selection Range

Decision Tree
criterion entropy, gini

min samples split random integer from [2, 20]
min samples leaf random integer from [2, 20]

Logistic Regression C random float from an expo-
nential probability density
distribution with a scale
(1/lambda) of 100

Support Vector Machine
kernel (Gaussian) radial basis func-

tion kernel
C random float from an expo-

nential probability density
distribution with a scale
(1/lambda) of 100

gamma random float from an expo-
nential probability density
distribution with a scale
(1/lambda) of 0.05

widely applied in the game-data mining area for several predictive purposes. For instance,
they are used in research work including but not limited to Ahmad et al. (2009); Borbora
et al. (2011); Drachen et al. (2016); Hadiji et al. (2014); Kang et al. (2012); Lee et al. (2014);
Runge et al. (2014); Woo et al. (2012). The definitions of these algorithms were introduced
in Section 2.2.1. Because these algorithms make predictions based on some main hyper-
parameters. The pre-defined ranges of the parameters can be found in Table 4.6. During
the training process, in each round of the search, a set of parameters is randomly taken
within the given range, and three-fold cross validation is used for evaluating the quality of
the classifier with the current selection of parameters. The content of k-fold cross-validation
is introduced in Section 4.9 with explanation, as needed.

All algorithms and the random search applied in the experiments are based on imple-
mentations provided by a Python (version 2.7) library called Scikit-learn (version 0.18)
(Pedregosa et al., 2011).

4.8 Evaluation Methods

This section describes how the experiments conducted in this work were evaluated. In this
first part, the confusion matrix–which provides the basis of all applied measurements–is given
in Table 4.7.

4.8.1 Confusion Matrix

The evaluation methods applied in my study are ROC (receiver operating characteristic),
PRC (precision-recall-curve) and Cohen’s kappa. Since all measurements are based on the
concept of the confusion matrix, some explanations about the matrix and its related low-level
measurements are introduced in this section.

A confusion matrix can be considered a display of results from a classifier which is able
to show the difference between predicted and actual classes (Visa et al., 2011). An ordinary
confusion matrix is comprised of four measurements. Their definitions are offered in Table
4.7. In this example, there are 50 positive and 50 negative examples in the dataset. As can
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Table 4.7: Confusion Table

Predicted Positive Predicted Negative

Actual Positive 40 (True Positives) 10 (False Negatives)

Actual Negative 13 (False Positives) 37 (True Negatives)

be seen from the example, the 40 samples which are correctly categorised as positive are
called true positives; the rest of the ten samples, which are wrongly labelled as negative, are
called false negatives. Likewise, the 37 samples which were correctly labelled as negative are
true negatives, and the rest of the 13 samples are false positives.

Three commonly used low-level measurements can be calculated from this matrix: preci-
sion, recall (true-positive rate) and the false-positive rate. Their formulas can be found from
Equation Group 4.1. As can be seen, precision and recall focus on displaying the classifier’s
ability towards predicting positive samples only whereas the false positive rate also considers
whether this classifier wrongly predicts many negative samples as positive. These measure-
ments usually act as important components in top-level evaluation methods that are widely
used.

Precision = True Positives
True Positives+False Positives

Recall (True Positive Rate) = True Positives
True Positives+False Negatives

False Positives Rate = False Positives
False Positives+True Negatives

(4.1)

4.8.2 Top-level Measurements

In machine learning, the top-level evaluation methods are often chosen for various purposes.
Among all widely used measurements, accuracy (shown in Equation 4.2) is the most basic and
best known. It measures the ratio of correctly classified samples (both positive or negative)
in all samples. It is able to give a reflection of how a classifier performs globally, but it is
less informative in several cases.

One of the commonly seen problems is that, when the data is biased, accuracy is not
able to reflect the real performance of a classifier. For example, in a player-purchasing
prediction problem, if 90% of players are non-paying users, though the resultant accuracy
can be quite high, a less meaningful classifier may have been generated. This is because
classifiers are able to reach high accuracy simply by labelling every sample non-paying users,
though this is generally not acceptable. In problems like this, an accuracy of 70% with
an expected accuracy (random guess) of 40% is generally better than an accuracy of 80%
with an expected accuracy of 70%. To correctly show the performance of classifications
in a biased situation, a widely used statistical test called Cohen’s kappa is introduced in
this work to achieve an ‘upgraded accuracy’. Originally proposed for a different purpose,
Cohen’s kappa was first introduced by Cohen as a measurement for calculating inter-raters
agreements (Cohen, 1960). A Cohen’s kappa score k ranges within [−1, 1]. A positive
k indicates that two observers agree with each other by the degree of k, whereas on the
contrary, observers disagree with each other by the degree of k. In the case of classification,
suppose that the actual classes of instances are taken as one observer while the predicted
classes of them are another observer. Thus, the calculation of agreement between these two
observers can be considered the performance measurement of the model. Cohen’s kappa can
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be imagined simply as the performance normalised by its distribution baselines. Cohen’s
kappa comprises two parameters: po and pe, where po is the accuracy and pe is the random-
guess baseline based on its data distribution. The random-guess baseline pe normalises
the accuracy po on imbalanced datasets. Because a Cohen’s kappa score measures how
the classification performance is better than a random guess, its score will always be 0
for a random classifier. Equation 4.3 shows how it is calculated, ap, pp, an and pn stand
for ‘actual positive proportion’, ‘predicted positive proportion’, ‘actual negative proportion’
and ‘predicted negative proportion’, respectively. The variables tp, fn fp and tn here stand
for the number of ‘true positives’, ‘false negatives’, ‘false positives’ and ‘true negatives’,
respectively.

Accuracy

Accuracy =
tp + tn

tp + fp + tn + fn (4.2)

Cohen’s Kappa
total = tp + tn + fp + fn

positiveactual =
tp + fn

total

positivepredicted =
tp + fp

total

negativeactual =
fp + tn

total

negativepredicted =
fn + tn

total

pe = positiveactual · positivepredicted
+negativeactual · negativepredicted

po =
tp + tn

total

k =
po − pe
1− pe

(4.3)

Although Cohen’s kappa is able to provide a more reliable accuracy, it does not distinguish
the performance for predicting samples from either class. Because of this, it is less informative
when the positive and negative classes do not share the same importance; thus, some trade-
offs need to be made between them. In other words, given a high Cohen’s kappa score,
it is difficult to determine whether the classifier is good at predicting one class only (the
major class in the biased situation) or has an average performance for predicting both sides.
However, in practical problems, it often appears that only one class is more important; this
class may often change in different periods. For example, in the churn prediction problem,
while the game is in its first launching period, it is generally more important to retain new
supporters. During this period, the accuracy measure for predicting non-churners is generally
more helpful. On the contrary, after the game has been operated for a while and has gained
some loyal supporters, it would be more helpful to predict the churners more accurately to not
lose the existing players. In this case, the AUPRC (area under precision-recall curve) would
be a better candidate (Saito and Rehmsmeier, 2015). A precision-recall (PR) curve is formed
by the precisions and recalls calculated from confusion matrices (introduced in Section 4.8.1)
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Figure 4.6: PRC curves for 10-fold cross validation while predicting disengagement with the
event frequency based data representation

while varying the internal cut-off decision thresholds used by classifier algorithms (Davis and
Goadrich, 2006). Area under the curve is often used as the performance of the classifier. The
maximal area (perfect classifier) under a PR curve is 1. The cut-off decision threshold is a
standard probability used in the algorithm for deciding whether a sample should be positive
or negative. For example, in a churn prediction problem, for a sample to be predicted when
the score generated by an algorithm is 0.6, the classifier may label the sample as positive,
because 0.6 is larger than 0.5. In this case, 0.5 is the cut-off decision threshold we used here.
However, 0.5 may not be the perfect number in all cases. Sometimes a trade-off will be made
to ensure that the classifier is more serious to make a decision to label a sample as positive.
For this purpose, the threshold should be increased. An example of a group of PR-curves
can be found in Figure 4.6 where each PR curve shows the performance of a classifier trained
in each fold of the 10-fold cross validation while predicting disengagement in I Am Playr.
Each point that comprises the curve represents a cut-off decision threshold. Because the
PR curve is comprised of precisions and recalls, it is a good indicator for the performance
of predicting positive samples, but for the same reason, the PR curve is correlated with the
class distribution of the dataset, and its area of a random baseline curve increases along with
the proportion of positive samples in the training dataset. In this work, while the predictive
task is imbalanced, the percentage of positive examples is used in all examples as the area
under the PR curve of a random classifier. This is a commonly used approximation suggested
by both Keilwagen et al. (2014) and Saito and Rehmsmeier (2015).

Though AUPRC can be reliably applied for measuring performance where the positive
class is more important, it is not a good candidate for measuring the comprehensive per-
formance of the classier for predicting both classes (Davis and Goadrich, 2006)–unless it
was applied twice by exchanging the positive and negative classes. In this work, to show
the performance of the proposed event-frequency-based data representation, evaluations of
AUPRC for taking both classes as the positive class are shown for each experiment. Cohen’s
kappa works better in this case, as it shows a single score which does not distinguish either
class. However, as explained by Jeni et al. (2013), Cohen’s kappa is affected by a dataset
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Figure 4.7: ROC curve for 10-fold cross validation while predicting disengagement with the
event frequency based data representation

that is biased on either side. Therefore, it is not good at reflecting a classifiers’ performance
in imbalanced situations. To show a comprehensive measurement of the performance of
classifiers for predicting both classes in a manner that is not affected by biased situations,
the AUROC (area under receiver operating characteristic curve) often turns out to be an
optimal choice. A ROC curve is formed by true-positive and false-positive rates, where the
area under this curve comprehensively measures the general performance of this classifier
under different cases. An example of a group of ROC curves can be found in Figure 4.7
where there are 10 ROC curves generated from 10-fold cross validation for predicting play-
ers’ disengagement behaviours in I Am Playr. The maximal area (perfect classifier) under
a ROC curve is equal to one. Because the true-positive rate focuses only on the correct
prediction of positives for all positive samples, and because the false-positive rate concerns
only the wrong prediction of positives for all negative samples, both of the measurements
are 0.5 for a random classifier. Therefore, the AUROC of a random classifier is always equal
to 0.5 which does not change with the skew of the dataset. However, because AUROC is
not sensitive to the data distribution, it may not show a significant difference for the same
classifier being tested under experiments conducted under different data distributions (Jeni
et al., 2013; Saito and Rehmsmeier, 2015). In this case, measurements such as AUPRC and
Cohen’s kappa can help to determine the difference (Davis and Goadrich, 2006). Table 4.8
gives a brief summary of all three measurements.

4.9 Overfitting and K-fold Cross-validation

Overfitting is a common issue in machine learning which can seriously affect the reliability
of models built. It often leads to a trained model that works great on the training dataset
but does not have the generality needed to solve any unseen problems. Figure 4.8 shows a
simple regression problem which can help to explain the problem. In this figure, black dots
are training data that classifiers see during the training of the model; white dots are testing
data unknown while training. In a regression problem, the task is to find a line which can
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Table 4.8: A brief summary of measurements being applied in this work
Measurement Name Imbalanced

Data Impact
Random
Classifier

Performance

Area Under PR curve Yes, performance
is positively

correlated with
proportion with

positive examples

Can be
approximated as
ratio of positive

examples

Cohen’s Kappa Yes, performance
decreases with

bias to any class

0.0

Area Under ROC curve No 0.5

Figure 4.8: Overfitting Problem

minimise the sum of distances from all data points to the line. The left sub-figure uses a
linear (less complex) model to fit in the data points; the right one uses a non-linear (more
complex) model. By looking at the training data (black dots) only, the more complex model
is able to pass all training-data points and has no error whereas the simpler model is worse.
However, when both models are used to predict unseen data points (white dots), the simpler
model has a lower error than the complex one. In this case, the complex model is said to be
affected by overfitting. Therefore, as can be seen from this example, more complex (higher
dimensional) models are more likely to face an overfitting issue, as they can cover more
cases in training examples including these outliers. However, for the same reason, in a larger
dataset (the ratio between ‘normal data’ and outliers is generally higher), more complex
models can generally give better predictions.

Overfitting happens when machine-learning algorithms capture both needed information
and misleading random noises at the same time (Lee et al., 2006). As has been discussed in
the above example, this situation often appears when the data is not quantitatively sufficient
compared to the complexity of the model to be trained. This is because the lack of data
points can confuse the classifier about what the ‘normal’ data points are and what the
outliers are, as their quantities are small. Assuming that, in an extreme situation in which
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the amount of real information is the same as the outliers, an algorithm may hardly decide
which is the best path to follow. For this reason, the resultant classifier is able to display a
good performance only in the training set; it shows bad generality when facing other unseen
samples. In other words, the performance shown by the classifiers trained in this case is
unreliable.

To get rid of the overfitting impact and show the reliable performance, K-fold cross-
validation is a widely used method of evaluation (Arlot et al., 2010). This method splits the
whole dataset into K pieces, and repeats similar experiments K times on different training
and testing sets. The algorithm it follows can be found in Algorithm 1. Notice that, in each
repeated experiment, the training set and testing set are independent of each other: That is,
the classifiers trained are always tested by unseen samples. In this work, a commonly used
10-fold cross-validation was applied to every experiment.

Algorithm 1 K–Fold Cross Validation

1: procedure K–Fold Cross Validation
2: Split Dataset into k pieces
3: resultSet = { }
4: for each piece i ∈ k do
5: testingSet = i, trainingSet = k \ i
6: Train classifier with trainingSet
7: Test classifier with testingSet and store in currentResult
8: resultSet = resultSet ∪ currentResult
9: end for

10: Calculate averaged result from elements in resultSet
11: end procedure

As was introduced in Section 4.6, several experiments in this work use feature selection
as an essential part. In this case, a special modification of K-fold cross-validation has to be
made. Since all experiments were performed with 10-fold cross-validation, feature selection
should be applied for each of the ten repeated experiments separately instead rather than
to the whole dataset. This is because, if the feature selection was done before splitting, all
data points would attend the selection, during this process, some data which only meant to
be known by the testing set after splitting will also be included by mistake. This may break
the idea of k-fold cross-validation, which tries to keep the testing set unseen from the view of
the training set at any sub-experiment and can sometimes cause bias. Therefore, Algorithm
1 for k-fold cross-validation was modified to Algorithm 2 when feature selection was enabled.

4.10 Summary

This chapter provides an overview of the experiments that were conducted in this work.
There are seven stages to each experiment: game data sources, labelling methods, balanc-
ing methods, data representations, feature selection, classification algorithms and evaluation
methods. The basic information has been introduced respectively for each stage of an experi-
ment. In summary, Algorithm 3 depicts how classifiers are trained in the experiments of this
work. In this algorithm, Training Set X is ready for the training process, which has been
processed by any data representation, and the label Y is chosen based on different labelling
methods. Based on the experimental procedure introduced here, the case studies conducted
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Algorithm 2 K–Fold Cross Validation with Feature Selection

1: procedure K–Fold Cross Validation with Feature Selection
2: Split Dataset into k pieces
3: resultSet = { }
4: for each piece i ∈ k do
5: testingSet = i, trainingSet = k \ i
6: Get selectedFeatureSet via Feature selection based on trainingSet
7: Filter trainingSet to trainingSetSelected by only keeping selectedFeatureSet
8: Filter testingSet to testingSetSelected by only keeping selectedFeatureSet
9: Train classifier with trainingSetSelected

10: Test classifier with testingSetSelected and store in currentResult
11: resultSet = resultSet ∪ currentResult
12: end for
13: Calculate averaged result from elements in resultSet
14: end procedure

Algorithm 3 The Simplified Complete Modelling Process

1: procedure Train(RawData R)
2: Get ready-to-use Dataset X by selected data representation from R
3: Get label list Label Y with selected labelling methods from R
4: Split Dataset X and Label Y into k pieces
5: resultSet = { }
6: for each piece i ∈ k do
7: testingSet = i, trainingSet = k \ i
8: Get selectedFeatureSet via Feature selection based on trainingSet
9: Filter trainingSet to trainingSetSelected by only keeping selectedFeatureSet

10: Filter testingSet to testingSetSelected by only keeping selectedFeatureSet
11: Apply balancing method in trainingSetSelected
12: Select the algorithm as the training classifier
13: Perform random search (3 Fold Cross Validation) on trainingSetSelected to

find best hyper-parameters for the classifier
14: Set the classifier with the best hyper-parameters
15: Train the classifier with trainingSetSelected
16: Test the classifier with testingSetSelected and store in currentResult
17: resultSet = resultSet ∪ currentResult
18: end for
19: Calculate averaged result from elements in resultSet
20: end procedure
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in the following chapters with event frequency-based data representation for predicting dif-
ferent purposes will start to be discussed. In the next chapter, the case studies start with
a popular predictive target, first purchase. Experiments conducted for predicting first pur-
chases will help to investigate both the generality and performance that can be brought by
applying event-frequency-based data representation.



Chapter 5

Predicting First Purchase

The previous chapter introduced the basic approach to my experiments. From this chap-
ter onwards, experiments performed to investigate both the generality and performance of
event-frequency-based data representations are discussed. As was introduced in Chapter
3, revenue-related predictive purposes have attracted many studies in the game-analytics
area. In this chapter, as one of the most important revenue related predictive purpose, the
player’s first-purchasing behaviour is used as the predictive target. The first part of this
chapter reviews the state-of-the-art in this area. Next, the results from the experiment of
predicting first purchases with event-frequency-based data representation are displayed and
discussed. As mentioned in Section 4.6, since event-frequency-based data representation is
a highly dimensional approach, feature selection is added for dimensional reduction to see if
a less-complex model can be generated without losing significant accuracy.

Main points in this chapter:

u introduction to the problem of first purchase

u case studies for predicting first purchase, and

u experiments for investigating the effect caused by feature selection.

5.1 First Purchase

Game revenue comes from different sources depending on the business model. In the mod-
ern game industry, two main types of monetization are typically used: i.e., fixed pricing
(including subscription for online games) and ‘freemium’ pricing strategies (Marchand and
Hennig-Thurau, 2013). In the fixed-pricing case, except for its paid basic content, modern
games usually provide extra content as an in-game purchase, such as downloadable content
(DLC). These purchases can be considered in-game purchases. On the other hand, the main
content of freemium games is often free of charge. However, in-game items, such as special
skins and powerful items are the sources of revenue. This type of strategy can usually be
found in mobile games and web games, in which the in-game purchases act as the main
sources of revenue. As can be seen, no matter which business model a game runs, in-game
purchasing behaviours are important–especially for the ‘freemium’ games. Because it is the
most revenue-related topic, purchasing-behaviour prediction is important to any company,
because once a predictive model is built, developers are able to determine the important
potential purchases in their games so that special care can be taken of these players for
achieving better revenue.

61
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Figure 5.1: Experiment of First Purchase Prediction

As described in Section 3.6, many efforts have been made to predict purchase behaviours.
However, except for a recent study by Sifa et al. (2015), most studies in this area are not
focused on players’ first-purchase decisions. As discussed in Section 4.5.2, we attempted to
conduct an experiment that would allow us to compare event-frequency-based data repre-
sentation (introduced in Section 4.5.1) with the features used by Sifa et al. (2015). However,
because most of the features they chose were not available for testing in our game datasets,
the comparison was not successfully made. Details of the availability issue are further ex-
plained in Section 5.2. First purchase is a special and important behaviour among all pur-
chasing behaviours. This is because the first purchase is the point at which a non-paying
player becomes a paying one. According to Kim (2012), once a player has made his/her
first purchase, it is very often the case that he or she will start paying for more items. To
investigate whether the first purchase can be successfully foreseen, event-frequency-based
data representation is utilised.

5.2 First-purchase prediction

In this section, the experiment of predicting players’ first purchase with event frequency-
based data representation is going to be shown and discussed. This experiment follows the
procedure shown in Figure 5.1.

5.2.1 Experiment Information

Game Data Sources
To investigate the generality of event-frequency-based data representation, it was ap-
plied to the three games in different genres introduced in Section 4.2: I Am Playr ,
Lyroke and Race Team Manager .

Labelling method
In this work, the first-purchase prediction is considered a binary classification problem:
That is, players are simply labelled as either paying or non-paying users in accord with
whether they have purchased any item in the game.
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Table 5.1: The availability of the game-specific features used in the study by Sifa et al.
(2015) in the three games of this research

I Am Playr Lyroke Race Team Manager

Country NA NA Yes

Device NA NA Yes

Move Count ND ND ND

Active Opponents ND ND Yes

Logins & Game rounds Yes Yes Yes

Skill-1,2,3 ND ND ND

Reached Goals Yes Yes ND

World Number ND ND ND

Number of Interactions ND ND ND

Number of Purchases Yes Yes Yes

Amount Spent Yes Yes Yes

Playtime NA NA NA

Last Inter-session Time NA NA NA

Last Inter-login Time NA NA NA

Inter-login time distribution NA NA NA

Inter-session time distribution NA NA NA

Correlation on time NA NA NA

Mean and Deviation on Time NA NA NA

Country Segments NA NA NA

Balancing Method
As mentioned in Section 4.4, it is often in first-purchase prediction that the distribution
of resultant classes after labelling is biased to one side. To solve this problem, we
attempted to apply two approaches for balancing the class distribution. This chapter
considers the first method, random undersampling, which was applied for balancing the
class distribution. Random undersampling is a commonly used approach that has been
used in multiple areas (López et al., 2013). It randomly removes data samples from
the major class until the size of both classes becomes the same (Chawla, 2005). The
other balancing method we tried is called SMOTE (synthetic minority over-sampling
technique); however, due to the computational complexity problems of SMOTE, the
experiment with SMOTE was not successfully finished when this thesis was written.
Details concerning this attempt are introduced in Chapter 7.

Data representation
As it is the main contribution of this research, event-frequency-based data represen-
tation was used as the main method for representing the dataset. As was mentioned
in Section 4.5.2, this data-representation method is compared with the game-specific
features used in another existed study by Sifa et al. (2015). However, as shown in
Table 5.1, the availability of the features used in their work is quite limited for testing
in our game datasets. In this table, ND stands for ‘not defined in the current game
context, NA for ‘not available’ and Yes for ‘available’. The event-frequency-based data
representation was compared to a random classifier to see if this data-representation
method is able to provide reasonable performance.
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Figure 5.2: Examples of Players in Making First Purchase Class. The circles stand for
purchases that players made. For example, Player C made three purchases. Thus, the
training data to be considered is selected from two weeks before the date of first purchase.

As for the dataset used in this work, a time period of two weeks before players’ first-
purchase behaviour was used as the observation window. For players who made pur-
chases, features captured by event-frequency-based data representation are events that
happened during the two weeks before their first purchases (shown in Figure 5.2). But
for players who have not made any purchase before, training features are events which
happened during two weeks before a randomly selected date (shown in Figure 5.3).

One additional thing to note is that, in this work, players were assumed to make
their first purchase on a specific date if no other purchases happened before this date
recorded in the dataset. This assumption has to be made because the whole history of
players is not available in the dataset, which makes it impossible to determine when
the ‘real’ first payment was made after a player had signed up for the game or whether
it ever took place.

Classification Algorithms
As discussed in Section 4.7, we applied decision tree, logistic regression and SVM
in this experiment. The definitions of these methods were offered in Section 2.2.1.
Hyper-parameters used in these algorithms were decided by a random-search method
(introduced in 4.7) from the candidates included in Table 4.6.

Evaluation
In this experiment, the evaluation methods utilised are the areas under PR and ROC
curves and Cohen’s kappa. As discussed in Section 4.8, the area under the PR curve
reflects the performance of classifiers for predicting positive examples, whereas the
Cohen’s kappa score and the area under the ROC curve help to show the comprehensive
performance of the classifiers generated.



CHAPTER 5. PREDICTING FIRST PURCHASE 65

Figure 5.3: Examples of Players in the Non-first-purchase Class. Because no one in this class
has made any purchase, a random date is chosen, and two weeks before that date is selected
as training data.

5.2.2 Experiment Details and Results

This section shows the results of predicting first purchase with event frequency-based data
representation. This experiment aims to determine whether event-frequency-based data
representation can be applied across different games and can provide a good predictive
performance.

I Am Playr
In the experiment conducted on I Am Playr, there are 489 players who at least pur-
chased one item and 88,568 non-paying ones. As mentioned before, it is natural to
observe a highly biased situation when predicting first purchases, and a biased situa-
tion may bring negative effects to the classifiers being trained. Therefore, to get rid of
its effect on training the classifier, the random-undersampling method is included as
a sub-process of the whole training process in this section. The clear structure of this
training process was introduced in Algorithm 3. This balancing process did improve
the performance of the classifiers, and its details can be found in Chapter 7. In this
game, while event-frequency-based data representation acts as the data-representation
approach, there are 2,460 features (game events) that have been experienced by these
selected players. Some features may not have been experienced by a subset of players
in some 10-fold split pieces, but to keep the features being used consistent across all
cases, events were summarised before the 10-fold cross-validation.

To show if event-frequency-based data representation can offer reasonable performance,
a random classifier was added as a baseline to show the difference in performance. As
has been discussed in 4.8, the area under both PR curves can be approximated with
the ratio of positive examples in the class, whilst the area under the ROC curve and the
Cohen’s kappa score will always be 0.50 and 0.0, respectively, for a random classifier
under any class distributions.

The result for predicting first purchase with event-frequency-based data representation
in I Am Playr is shown in Table 5.2. In the table, as discussed in Section 4.8.2,
the evaluation measurements applied include the area under the PR curve (with both
classes act as positive examples), the area under the ROC curve and the Cohen’s
kappa score. All measurements (including the area under the PR curves of random
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Table 5.2: Performance for predicting first-purchase behaviours with event-frequency-based
data representation of the dataset of I Am Playr (balanced by random undersampling)

Event Feature Based
Data Representation

Random
Classifier

T-Value P-Value Effect-Size
(Cohen’s D)

AUPRC (first
purchase)

LogisticRegression 0.38631±0.01606 0.00549 2.2496e+01 3.2106e-09 10.0606
DecisionTree 0.49320±0.00746 0.00549 6.1987e+01 3.7325e-13 27.7215

SVM 0.07478±0.00680 0.00549 9.6723e+00 4.7187e-06 4.3256

AUPRC (non
first purchase)

LogisticRegression 0.99954±0.00018 0.99451 2.6209e+01 8.2724e-10 11.7212
DecisionTree 0.99983±0.00003 0.99451 1.8867e+02 1.6792e-17 84.3754

SVM 0.99976±0.00001 0.99451 4.0886e+02 1.5943e-20 182.8487

AUROC
LogisticRegression 0.97515±0.00491 0.50000 9.1848e+01 1.0898e-14 41.0756

DecisionTree 0.97141±0.00430 0.50000 1.0407e+02 3.5446e-15 46.5403
SVM 0.95860±0.00207 0.50000 2.0982e+02 6.4548e-18 93.8344

KAPPA
LogisticRegression 0.15555±0.00372 0.00000 3.9631e+01 2.0627e-11 17.7234

DecisionTree 0.11900±0.00506 0.00000 2.2330e+01 3.4289e-09 9.9861
SVM 0.07448±0.00241 0.00000 2.9346e+01 3.0235e-10 13.1238

classifiers) shown in the table are rounded up for easier display. As for the algorithms,
classifiers such as logistic regression, decision tree and support vector machine (SVM)
were applied. As for the columns of the table, the event-frequency and the random
classifier columns show the prediction accuracy (measured by three different criteria)
brought by the event-frequency-based data representation and a random classifier. To
the right of them, the ‘t-value’ and ‘p-value’ columns show the results of two-tailed
t-tests conducted between the results of event-frequency-based data representation and
a random classifier. Along with it, the effect sizes (represented by Cohen’s D) were
also computed and provided in the table to show the size of the differences between
the event-frequency-based data representation and the random classifier. The numbers
shown after the ± sign are SEMs (standard error of the mean) calculated from 10-fold
cross-validation.

Because of the bias that has been discovered, the performance measured by AUPRC
(with non-first-purchasers as positive examples) was expected to be high and the
AUPRC (with first-purchasers as positive examples) was expected to be low. This bias
situation can be firstly reflected by the performance of random classifier respectively
in Table 5.2. While being compared with the event frequency based data representa-
tion, significant differences can be found across both cases of AUPRC. By combining
it with t-values and effect-size, it is indicated that the classifier trained with the event-
frequency-based data representation achieved significantly better performance than the
random classifier for predicting both first-purchasers and non-first-purchasers. This is
further verified while AUROC and KAPPA are used as the measurements. As can
be seen, in the six cases of both experiments, the event-frequency-based data rep-
resentation also brought significantly better performance than the random classifier.
While being measured by AUPRC (first-purchasers as positive examples), SVM clas-
sifiers seemed behaving not as good as the other two algorithms. This is possibly
related to its parameter selections. This found will be further observed in the follow-
ing experiments. Another observation to notice is that even though the performance
of event-frequency-based data representation measured Cohen’s Kappa is significantly
better than the random classifiers, the score of all three classifiers are still not high. As
has been introduced in Section 4.8.2, even though the Cohen’s Kappa stays at 0.0 for
a random classifier, different from AUROC, its score is affected by bias in both sides
(more positive or negative examples).
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Table 5.3: Performance for predicting first purchase behaviours with event frequency based
data representation on the dataset of Lyroke (Balanced by the random undersampling
method)

Event Feature
Balanced by

Undersampling

Random
Classifier

T-Value P-Value Effect-Size
(Cohen’s D)

AUPRC (first
purchase)

LogisticRegression 0.20950±0.01448 0.00182 1.3607e+01 2.6213e-07 6.0854
DecisionTree 0.40875±0.00929 0.00182 4.1537e+01 1.3541e-11 18.5761

SVM 0.04072±0.00245 0.00182 1.5046e+01 1.0987e-07 6.7286

AUPRC (non
first purchase)

LogisticRegression 0.99976±0.00009 0.99818 1.6735e+01 4.3453e-08 7.4842
DecisionTree 0.99995±0.00000 0.99818 6.9915e+02 1.2756e-22 312.6676

SVM 0.99995±0.00000 0.99818 1.2734e+03 5.7814e-25 569.5033

AUROC
LogisticRegression 0.97369±0.00479 0.50000 9.3905e+01 8.9300e-15 41.9957

DecisionTree 0.97466±0.00128 0.50000 3.5226e+02 6.0956e-20 157.5337
SVM 0.97468±0.00073 0.50000 6.1856e+02 3.8403e-22 276.6303

KAPPA
LogisticRegression 0.06182±0.00130 0.00000 4.5221e+01 6.3239e-12 20.2236

DecisionTree 0.04642±0.00358 0.00000 1.2309e+01 6.1982e-07 5.5048
SVM 0.02815±0.00127 0.00000 2.1088e+01 5.6873e-09 9.4309

Lyroke
Similar experiments were also conducted on the game Lyroke . In this game, the
degree of imbalance is as serious as it is in the dataset of I Am Playr . After the
players have been labelled, there are 509 players who have paid for in-game items
and 279,829 players who have not made any purchases. Because of this, the random-
undersampling method was also used to train the classifiers. The event-frequency-
based method was used as the data-representation method, and 7,823 events form the
feature space. To determine whether event-frequency-based data representation is able
to provide reasonable prediction for this game, a random classifier was added as the
baseline, just as it was for the experiment on I Am Playr . The performance of the
random classifiers are the same as before. The area under the PR curve is associated
with the ratio of positive examples in the dataset, while the area under the ROC curve
is always 0.5, and the score of Cohen’s kappa is always 0. The results of the experiment
are shown in Table 5.3. The notations are the same as the result table from I Am Playr.

Since similar imbalance was also observed in this experiment, the bias of performance
in both AUPRC measurements are expected to be similar to the situations in I Am
Playr. The degree of the bias can be seen from the performance of random classifiers in
both AUPRC metrics. As for the performance brought by the event-frequency-based
data representation, by comparing it with the random classifier with both AUPRC
measures, observations of the t-values and p-values could show that its performance is
significantly better than random classifiers for predicting both classes. This conclusion
can be also verified by the measurements of AUROC and Cohen’s Kappa. While being
measured by Cohen’s Kappa, the performance achieved by three classifiers are not
high. As has been explained in the experiment of I Am Playr, this metric is affected
by the bias towards both sides. Similar to what was found in the experiment of I Am
Playr, it is notable that while being measured by AUPRC (first-purchasers as positive
examples), the SVM classifiers also seem to have not achieved as good performance as
the other classifiers. This will be validated in the experiment in Race Team Manager.

Race Team Manager
Produced by a different game company, the racing game, Race Team Manager , was
also used to test the performance of event-frequency-based data representation on first-
purchase prediction. In this game, 511 players had purchased at least one item whereas
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Table 5.4: Performance for predicting first purchase behaviours with event frequency based
data representation on the dataset of Race Team Manager (Balanced by the random under-
sampling method)

Event Feature
Balanced by

Undersampling

Random
Classifier

T-Value P-Value Effect-Size
(Cohen’s D)

AUPRC (first
purchase)

LogisticRegression 0.17558±0.01293 0.00299 1.2659e+01 4.8761e-07 5.6614
DecisionTree 0.32289±0.01197 0.00299 2.5344e+01 1.1150e-09 11.3341

SVM 0.08678±0.00896 0.00299 8.8710e+00 9.6073e-06 3.9672

AUPRC (non
first purchase)

LogisticRegression 0.99791±0.00043 0.99701 1.9971e+00 7.6916e-02 0.8931
DecisionTree 0.99984±0.00001 0.99701 2.7513e+02 5.6339e-19 123.0422

SVM 0.99979±0.00008 0.99701 3.4298e+01 7.5141e-11 15.3387

AUROC
LogisticRegression 0.91618±0.00905 0.50000 4.3614e+01 8.7465e-12 19.5049

DecisionTree 0.95073±0.00289 0.50000 1.4807e+02 1.4855e-16 66.2200
SVM 0.95884±0.00333 0.50000 1.3075e+02 4.5501e-16 58.4723

KAPPA
LogisticRegression 0.07357±0.00095 0.00000 7.3098e+01 8.4863e-14 32.6905

DecisionTree 0.05119±0.00142 0.00000 3.4105e+01 7.9034e-11 15.2522
SVM 0.06010±0.00082 0.00000 6.9227e+01 1.3837e-13 30.9595

170,333 players had not made any purchases.

As in previous experiments, the bias in this game is also serious. Therefore, the random-
undersampling method was included during the training process. After applying event-
frequency-based data representation, there are 1,531 features (game events) that have
been experienced by these selected players. The performance of the random classifiers
is decided in the same way as for other games. Table 5.4 displays the performance
of first-purchase prediction done with event-frequency-based data representation. The
notations are the same as in the previous tables.

In Race Team Manager, while being labelled by the first-purchasing categorical def-
inition, the bias is similar to what was observed in the previous two experiments.
Therefore, the performance measured by both AUPRC measurements are expected to
be biased as well. Same as before, this can be found from the biased performance of
random classifiers. In terms of the performance achieved by the event-frequency-based
data representation, as can be seen, excepting only one case (algorithm: logistic re-
gression, measurement: area under the PR curve with non-first-purchase as positive),
the performance for predicting first purchase with this data representation is supe-
rior to that obtained using the random classifier. Given that the performance of the
random classifier is already around 1.00 due to the bias, the performance of the event-
frequency-based data representation in the only exceptional case is also high. While
considering the AUROC measurements, all algorithms display stable performances for
predicting first purchases. Even though the performance of the event-frequency-based
data representation measured by Cohen’s Kappa is also significantly better than the
random classifiers, due to the bias, the means of the score are not high. Similar to the
observations of SVMs found in the two previous experiments, while being measured
by AUPRC (first-purchaser as positive examples), the performance of SVM is not as
good as other classifiers.

5.2.3 Discussion

In all three experiments, the performance brought by event-frequency-based data represen-
tation is significantly better than the random classifier (except for the only case in which
the random guess has already achieved almost 1.0). A summary of the experiments con-



CHAPTER 5. PREDICTING FIRST PURCHASE 69

Figure 5.4: The number of cases where methods achieve significantly better performance
and the number of cases where there is no difference found for predicting first purchasing
behaviours

ducted across three games can be found in Figure 5.4. In this figure, for each measurement,
three stacked bars are used to show the number of cases where the event-frequency-based
data representation (labelled as EF) achieved significantly better performance, the number
of cases where there are no difference found between both methods (labelled as ND), and the
number of cases where the random classifier (labelled as R) achieved better performance.
The evidences indicate that the event-frequency-based data representation is able to pro-
vide a good generality, as it can be easily applied to three different types of games without
special pre-processing and achieves significantly better predictive performance than random
classifiers in almost all cases across the three games.

However, as has been observed across the experiments in the three games, SVM classifiers
did not work as good as the other algorithms for predicting the first purchasers while being
measured by the AUPRC. In order to investigate if the performance of SVMs are affected
by their selections of parameter in these cases, three extra experiments were conducted to
investigate if the parameter selection is substantially affecting the SVM algorithm. Table
5.5 to 5.7 display the performance of SVM classifiers that were trained to predict the first
purchasers with a range of parameter selections. Performance in these table are measured by
the averaged AUPRC of 10-fold cross validation with first purchasing players as the positive
examples, and the error bars show standard error of the mean.

As can be seen, in the experiments conducted in all three game, especially in I Am Playr
and Lyroke, the parameter choices seem to have a substantial impact on the classifier’s
performance. First, in all three games, when the parameter gamma = 100, the mean of the
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Figure 5.5: Investigation of SVM in I Am Playr for Predicting First Purchase

performance of classifier are higher than other cases. Because that the gamma parameter
in SVM stands for the inverse influence radius of each data sample in the support vector,
when larger gamma are more likely to achieve better performance, the model is suggested
to reduce the influence of each data sample in the support vector. This may reflects that the
data samples are noisy in these games, models are suggested not to trust in specific examples
to make decisions. The difference among the three games is that, in I Am Playr, there are
two other cases (gamma = 1, C = 100 or 10 ) which also can provide higher performance
than the rest cases; in Lyroke, the parameter gamma also worked well with 10; and in
Race Team Manager, the performance across different parameter selections worked similar
than the other two games, but cases with gamma = 100 are still outstanding. that in this
experiment, the mean of the performance of classifiers are also high when the gamma = 10.
There results indicate that the random searching applied in this research did not find the
optimal parameter sets of the SVM classifiers. Therefore, through a better fine-tune process,
the performance brought by SVM classifier can be further improved in the future research.

As was mentioned in Section 4.6, a possible limitation of event frequency-based data
representation might be that the models built by it are often highly dimensional. An overly
complex model can contain redundant structures and can easily lead to overfitting when
the quantity of the training data is insufficient. To reduce its dimension, a feature-selection
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Figure 5.6: Investigation of SVM in Lyroke for Predicting First Purchase

process was often included for reducing the number of features to be used. To determine if
a feature-selection process may have a negative impact on the performance of classifiers, the
experiment for predicting first purchases by event-frequency-based data representation with
feature selection enabled is shown in the next section.

5.3 First-purchase Prediction with Feature Selection

The previous section shows that event-frequency-based data representation is able to pro-
vide better performance than random guessing across different games; however, when event-
frequency-based data representation was applied, depending on the complexity of the games,
the model built might be highly dimensional. For example, in I Am Playr , 2,460 events
were used as features. As mentioned above, a redundant model may bring problems such as
over-fitting or may be hard to interpret. Even if a decision tree (the most interpretable clas-
sifier) was applied, the rules generated from a deep tree could hardly be understood. In this
section, a feature-selection method called random forest is used to reduce the model’s com-
plexity. An experiment was conducted to investigate whether a feature-selection algorithm
has any negative impact on performance when event-frequency-based data representation is
used. This experiment follows the routes shown in Figure 5.8.
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Figure 5.7: Investigation of SVM in Race Team Manager for Predicting First Purchase

Figure 5.8: Experiment of First-purchase prediction
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Table 5.5: Performance for predicting first-purchase behaviours with event-frequency-based
data representation (with and without feature selection) on the dataset of I Am Playr (bal-
anced by the random-undersampling method)

Event Feature
Without Feature

Selection

Event Feature with
Feature Selection

T-Value P-Value Effect-Size
(Cohen’s D)

AUPRC (first
purchase)

LogisticRegression 0.38631±0.01606 0.39145±0.01583 -2.1643e-01 8.3109e-01 -0.0968
DecisionTree 0.49320±0.00746 0.49694±0.01072 -2.7162e-01 7.8901e-01 -0.1215

SVM 0.07478±0.00680 0.08266±0.00797 -7.1388e-01 4.8446e-01 -0.3193

AUPRC (non
first purchase)

LogisticRegression 0.99954±0.00018 0.99966±0.00011 -5.0751e-01 6.1796e-01 -0.2270
DecisionTree 0.99983±0.00003 0.99980±0.00004 6.2394e-01 5.4050e-01 0.2790

SVM 0.99976±0.00001 0.99966±0.00011 9.6848e-01 3.4564e-01 0.4331

AUROC
LogisticRegression 0.97515±0.00491 0.97882±0.00412 -5.4278e-01 5.9394e-01 -0.2427

DecisionTree 0.97141±0.00430 0.96634±0.00668 6.0579e-01 5.5222e-01 0.2709
SVM 0.95860±0.00207 0.95822±0.00213 1.2159e-01 9.0457e-01 0.0544

KAPPA
LogisticRegression 0.15555±0.00372 0.16965±0.00384 -2.4995e+00 2.2331e-02 -1.1178

DecisionTree 0.11900±0.00506 0.12010±0.00546 -1.4040e-01 8.8990e-01 -0.0628
SVM 0.07448±0.00241 0.08144±0.00290 -1.7507e+00 9.7021e-02 -0.7829

5.3.1 Experiment Information

As this experiment shares the same predictive purpose as that introduced in Section 5.2,
the game-data sources, labelling methods, balancing methods, classification algorithms and
evaluation methods are identical. The difference is that, in this experiment, rather than
comparing to a random classifier, event-frequency-based data representation is compared to
a feature-selected version of itself to show the performance changes.

5.3.2 Experiment Details and Results

I Am Playr

The experiment was first applied in I Am Playr to investigate if a feature-selection
process can have any impact on the performance of event-frequency-based data repre-
sentation. As mentioned in discussion of the previous experiment, the class distribution
is biased with respect to the non-paying user class, while the first-purchase labelling
method was applied to I Am Playr. As before, a random-undersampling method was
included for training the classifiers.

When event frequency-based data representation was applied, there were 2,460 features
that were experienced by these players. In this experiment, while the random-forest
algorithm was applied for feature selection, only 512.8 (averaged from 10-fold cross-
validation) important features were finally used. According to what was introduced
in Section 4.6, these selected features have higher importance scores than the mean of
the scores from all features.

The results for predicting first purchases with the two versions of event-frequency-
based data representation in I Am Playr are shown in Table 5.5. This table uses
notations similar to those used for the previous experiment. The difference is that the
‘t-value’ and ‘p-value’ columns now show the results of t-tests conducted between the
event-frequency-based data representation and its alternative version with the feature-
selection approach. As before, the effect sizes (represented by Cohen’s D) can display
the size of the difference between these two data representations. SEM values were
also provided after the ± sign of each measurement. According to the p-values shown
in all three experiments, no significant difference can be found between the mean of
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Table 5.6: Equivalence testing on the performance for predicting first-purchase behaviours
with event-frequency-based data representation (with and without feature selection) on the
dataset of I Am Playr (balanced by the random-undersampling method)

Event Feature
Without Feature

Selection

Event Feature with
Feature Selection

P-Value

AUPRC (first
purchase)

LogisticRegression 0.38631±0.01606 0.39145±0.01583 3.7671e-02
DecisionTree 0.49320±0.00746 0.49694±0.01072 1.7459e-03

SVM 0.07478±0.00680 0.08266±0.00797 6.3342e-04

AUPRC (non
first purchase)

LogisticRegression 0.99954±0.00018 0.99966±0.00011 1.0682e-32
DecisionTree 0.99983±0.00003 0.99980±0.00004 3.6807e-44

SVM 0.99976±0.00001 0.99966±0.00011 4.0461e-38

AUROC
LogisticRegression 0.97515±0.00491 0.97882±0.00412 1.0208e-06

DecisionTree 0.97141±0.00430 0.96634±0.00668 2.1127e-05
SVM 0.95860±0.00207 0.95822±0.00213 2.5529e-12

KAPPA
LogisticRegression 0.15555±0.00372 0.16965±0.00384 2.6681e-06

DecisionTree 0.11900±0.00506 0.12010±0.00546 3.5171e-06
SVM 0.07448±0.00241 0.08144±0.00290 1.3045e-09

the performance brought by either version (with or without feature selection) of the
event frequency based data representation.

To investigate if both version are similar enough, this work further conducted a separate
equivalence testing, namely two one-sided test (TOST), to work out if the impact of
the performance brought by the feature selection is within the interval [-0.05, 0.05]. In
a TOST, the null hypothesis is that the difference of two groups of samples is outside
of a given interval. Therefore, a ‘p-value’ less than 0.01 indicates that a significant
similarity (difference within the given interval) is presented between the two groups
Walker and Nowacki (2011). The results of the TOST are shown in Table 5.6. As can
be seen, in all other cases except for the first case (Logistic Regression is used and
measured by AUPRC), the performance difference of both versions (with and without
feature selection) of the event frequency based data representation are significantly
within 0.05. Even in the only exceptional case, the p-value is small enough to be less
than 0.05. In other words, the features selection can be applied to reduce the dimension
of the models without significantly affect their performance in this experiment.

Lyroke
In this experiment, to further test the generality of the conclusion we reached from the
game I Am Playr , similar research experiments are applied to another game: Lyroke .
As observed for I Am Playr , the class distribution shown in Lyroke is biased to non-
paying users. For this reason, the random-undersampling process was applied prior to
the training of the classifiers, as before. The event-frequency-based data representation
used 7,823 unique events to represent the player behaviours in the game. After being
processed by the feature selection, the number of features involved was dramatically
reduced to about 1,481.7 (averaged from 10-fold cross-validation), which is more than
six times the original dimension.

The results of the experiment are shown in Table 5.7. The notations inside the table
are the same as before. Similar to what was observed in I Am Playr, the p-values
and effect sizes in the table indicate, based on any measurement of the three, no



CHAPTER 5. PREDICTING FIRST PURCHASE 75

Table 5.7: Performance for predicting first-purchase behaviours with event-frequency-based
data representation (with and without feature selection) on the dataset of Lyroke (balanced
by the random-undersampling method)

Event Feature Based
Data Representation

Event Feature Based
Data Representation

with Feature
Selection

T-Value P-Value Effect-Size
(Cohen’s D)

AUPRC (first
purchase)

LogisticRegression 0.20950±0.01448 0.21968±0.01455 -4.7050e-01 6.4365e-01 -0.2104
DecisionTree 0.40875±0.00929 0.40528±0.01312 2.0471e-01 8.4010e-01 0.0915

SVM 0.04072±0.00245 0.04373±0.00366 -6.4878e-01 5.2467e-01 -0.2901

AUPRC (non
first purchase)

LogisticRegression 0.99976±0.00009 0.99977±0.00008 -6.1736e-02 9.5145e-01 -0.0276
DecisionTree 0.99995±0.00000 0.99996±0.00000 -7.2997e-01 4.7480e-01 -0.3265

SVM 0.99995±0.00000 0.99995±0.00000 -5.2823e-01 6.0379e-01 -0.2362

AUROC
LogisticRegression 0.97369±0.00479 0.97490±0.00443 -1.7733e-01 8.6123e-01 -0.0793

DecisionTree 0.97466±0.00128 0.97656±0.00171 -8.4798e-01 4.0758e-01 -0.3792
SVM 0.97468±0.00073 0.97539±0.00110 -5.0683e-01 6.1842e-01 -0.2267

KAPPA
LogisticRegression 0.06182±0.00130 0.06589±0.00112 -2.2554e+00 3.6797e-02 -1.0086

DecisionTree 0.04642±0.00358 0.04697±0.00454 -9.1079e-02 9.2844e-01 -0.0407
SVM 0.02815±0.00127 0.02972±0.00115 -8.7188e-01 3.9476e-01 -0.3899

Table 5.8: Equivalence testing on the performance for predicting first-purchase behaviours
with event-frequency-based data representation (with and without feature selection) on the
dataset of Lyroke (balanced by the random-undersampling method)

Event Frequency
Based Data

Representation

Event Frequency
Based Data

Representation with
Feature Selection

P-Value

AUPRC (first
purchase)

LogisticRegression 0.20950±0.01448 0.21968±0.01455 4.1136e-02
DecisionTree 0.40875±0.00929 0.40528±0.01312 6.6401e-03

SVM 0.04072±0.00245 0.04373±0.00366 3.7328e-09

AUPRC (non
first purchase)

LogisticRegression 0.99976±0.00009 0.99977±0.00008 2.6450e-37
DecisionTree 0.99995±0.00000 0.99996±0.00000 1.4188e-63

SVM 0.99995±0.00000 0.99995±0.00000 1.0842e-67

AUROC
LogisticRegression 0.97369±0.00479 0.97490±0.00443 6.5054e-07

DecisionTree 0.97466±0.00128 0.97656±0.00171 1.5419e-14
SVM 0.97468±0.00073 0.97539±0.00110 2.1215e-18

KAPPA
LogisticRegression 0.06182±0.00130 0.06589±0.00112 7.4181e-16

DecisionTree 0.04642±0.00358 0.04697±0.00454 1.0035e-07
SVM 0.02815±0.00127 0.02972±0.00115 2.8292e-16

significant difference is found between the two versions of event-frequency-based data
representation.

Therefore, same as before, a TOST (with the interval [-0.05, 0.05]) was also conducted
in the dataset of Lyroke to work out the similarity between the two versions of the event
frequency based data representations. As can be seen from Table 5.8, similar to what
was observed in I Am Playr, except for the first case (logistic regression was applied
and measured by AUPRC), all other cases indicate that the performance difference
between both versions (with and without feature selection) of the data representation
is significantly within the interval of [-0.05, 0.05]. Likewise, the p-value in the only
exceptional case is also smaller than 0.05. The results match the findings in I Am
Playr that the feature selection can be applied to reduce the dimension of the predictive
models without affecting their performance significantly.

Race Team Manager
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Table 5.9: Performance for predicting first-purchase behaviours with event-frequency-based
data representation (with and without feature selection) on the dataset of Race Team Man-
ager (balanced by the random-undersampling method)

Event Feature Based
Data Representation

Event Feature Based
Data Representation

with Feature
Selection

T-Value P-Value Effect-Size
(Cohen’s D)

AUPRC (first
purchase)

LogisticRegression 0.17558±0.01293 0.17640±0.01672 -3.6651e-02 9.7117e-01 -0.0164
DecisionTree 0.32289±0.01197 0.32245±0.01482 2.1683e-02 9.8294e-01 0.0097

SVM 0.08678±0.00896 0.09216±0.00918 -3.9786e-01 6.9541e-01 -0.1779

AUPRC (non
first purchase)

LogisticRegression 0.99791±0.00043 0.99807±0.00028 -2.8940e-01 7.7558e-01 -0.1294
DecisionTree 0.99984±0.00001 0.99978±0.00007 9.7174e-01 3.4406e-01 0.4346

SVM 0.99979±0.00008 0.99979±0.00008 4.9398e-02 9.6115e-01 0.0221

AUROC
LogisticRegression 0.91618±0.00905 0.91605±0.00941 9.3735e-03 9.9262e-01 0.0042

DecisionTree 0.95073±0.00289 0.94896±0.00347 3.7094e-01 7.1501e-01 0.1659
SVM 0.95884±0.00333 0.95931±0.00340 -9.3650e-02 9.2642e-01 -0.0419

KAPPA
LogisticRegression 0.07357±0.00095 0.07353±0.00122 2.5135e-02 9.8022e-01 0.0112

DecisionTree 0.05119±0.00142 0.05118±0.00160 4.7723e-03 9.9624e-01 0.0021
SVM 0.06010±0.00082 0.05908±0.00093 7.7649e-01 4.4754e-01 0.3473

The two previous experiments show that feature selection can act as an effective tool for
reducing the dimensions of the event-frequency-based data representation model with-
out significantly affecting its performance for predicting first-purchases across games.
In this experiment, this solution is further tested on another game, Race Team Manager
, which is produced by a different game studio. As in previous experiments, because
the same bias situation in class distribution can be found in Race Team Manager , the
random-undersampling balancing method is again included in the process of training
classifiers. While the event-frequency-based data representation was used to represent
player behaviours, there are 1,531 relevant features (game events) in total. As in the
previous two experiments, the random-forest algorithm was applied for selecting the
important features. It helped to reduce the dimension of the model to 357.4 (averaged
from 10-fold cross-validation).

Table 5.9 displays the performance of first-purchase prediction done with event-frequency-
based data representation. According to both p-values and effect sizes, similar results
can be seen in the table: There is no significant difference between results from both
version of event-frequency-based data representation. Identical to the previous exper-
iments, a further TOST was applied to work out the similarity between the results
brought by both versions of the data representation. As can be seen in Table 5.10,
except for the first two cases (Logistic Regression and Decision Tree was applied, mea-
sured by AUPRC), all the rest cases indicate that the performance different between
both data representations is significantly within the interval of [-0.05, 0.05]. Similar
to the previous founds, the p-values of the exceptional two cases are also smaller than
0.05. Therefore, same as before, evidences indicate that the feature selection is benefi-
cial to reduce the dimension of the created models without affecting the performance
of them significantly.

5.3.3 Discussion

Across all three experiments, feature selection seems to act robustly for reducing the dimen-
sions of the event-frequency-based data representation model without significantly affecting
its performance for predicting first purchase in most cases. This suggests that feature selec-
tion is a beneficial method that can work together with event-frequency-based data repre-
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Table 5.10: Equivalence testing on the performance for predicting first-purchase behaviours
with event-frequency-based data representation (with and without feature selection) on the
dataset of Race Team Manager (balanced by the random-undersampling method)

Event Frequency
Based Data

Representation

Event Frequency
Based Data

Representation with
Feature Selection

P-Value

AUPRC (first
purchase)

LogisticRegression 0.17558±0.01293 0.17640±0.01672 2.0273e-02
DecisionTree 0.32289±0.01197 0.32245±0.01482 1.1929e-02

SVM 0.08678±0.00896 0.09216±0.00918 1.9951e-03

AUPRC (non
first purchase)

LogisticRegression 0.99791±0.00043 0.99807±0.00028 7.5110e-26
DecisionTree 0.99984±0.00001 0.99978±0.00007 8.4885e-42

SVM 0.99979±0.00008 0.99979±0.00008 1.2823e-37

AUROC
LogisticRegression 0.91618±0.00905 0.91605±0.00941 9.7030e-04

DecisionTree 0.95073±0.00289 0.94896±0.00347 3.5890e-09
SVM 0.95884±0.00333 0.95931±0.00340 5.4129e-09

KAPPA
LogisticRegression 0.07357±0.00095 0.07353±0.00122 2.7440e-17

DecisionTree 0.05119±0.00142 0.05118±0.00160 8.1514e-15
SVM 0.06010±0.00082 0.05908±0.00093 8.1584e-19

sentation to generate lower-dimensional models, thereby reducing the chance of overfitting.

5.4 Conclusion

Overall, significantly better performance than random classifiers can be achieved by applying
event-frequency-based data representation to the first-purchase prediction problem across
all three games. During the experiments conducted in this chapter, event-frequency-based
data representation showed its generality, as it shows robust performance across all three
different genres of games without any special pre-processing. In addition, since applying
feature selection does not significantly affect the performance brought by event-frequency-
based data representation, to get a more interpretable and lower-dimensional model, feature
selection is recommended for pre-processing of event-frequency-based data representation
when predicting first purchase.

As event-frequency-based data representation was smoothly applied to three different
genres of games and offered a robust performance for predicting players’ first-purchase be-
haviours, its generality has been investigated. To further study its generality with respect to
different predictive purposes, this data-representation method is applied in the next chapter
to predict another important player-behaviour trend: player disengagement.



Chapter 6

Predicting Disengagement

The previous chapter verified the performance of the event-frequency-based data represen-
tation for predicting first purchases across games. To investigate if the data representation
is not only applicable to predicting purchases but also for other player modelling purposes,
in this chapter, event frequency-based data representation will be applied for predicting dis-
engagement behaviours. In general, disengagement is a concept which describes players’
decreasing activity in a game. This type of prediction is important to a game company,
because a game without players is nothing. Once a predictive model of disengagement be-
haviour is built, companies can use it for forecasting disengaging players and trying to prevent
this trend by taking pre-emptive measures.

This chapter investigates the generality and performance of event-frequency-based data
representation. Event-frequency-based data representation is first compared with a random
classifier to predict disengagement in all three commercial games mentioned in Chapter 4.
Next, should the data-representation method achieve a significantly better performance than
the random guess, it will be further compared with another state-of-the-art data represen-
tation method which relies on specific features selected from games (used in the work by
(Runge et al., 2014)). In the two experiments mentioned above, the disengagement-labelling
method (introduced in Section 6.1.1) was used as the predictive target. In the last exper-
iment, event-frequency-based data representation is also applied to predict another similar
concept which is called ‘churn’. This labelling method has been used in several works which
focus on predicting the decision of players to quit a game. These two definitions are slightly
different in their purposes, but both describe players’ disengagement from games. The details
of the churn-labelling method are covered in Section 6.4.1.

Main points in this chapter:

u introduction to the problem of churn and disengagement,

u introduction of the commonly known churn-labelling method,

u introduction of the new disengagement-labelling method,

u description of a game-specific data representation used by Runge et al. (2014),

u case studies for predicting disengagement to verify data representation performance,
and

u case studies for predicting churn to verify data representation performance.

78
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Figure 6.1: Experiment of First-purchase prediction

6.1 Disengagement Prediction with Event-frequency-based Data
Representation

To show if event-frequency-based data representation can be used for other predictive pur-
poses, player disengagement is used as a target. Like the experiment regarding first-purchase
prediction, a random classifier is added as a baseline to help us identify whether event
frequency-based data representation is able to provide better performance. This experiment
follows the path shown in Figure 6.1:

6.1.1 Experiment Information

Game Data Sources
Chapter 5 demonstrated that event-frequency-based data representation can be applied
to all three games for predicting first purchases and for providing performance that
is significantly better than random classifiers. To further verify its generality while
predicting disengagement, all three games (i.e., I Am Playr , Lyroke and Race Team
Manager ) are used again in this experiment.

Labelling Method
The first step of disengagement prediction is to classify players into binary groups (dis-
engaging and non-disengaging) based on their behaviours. Disengagement, sometimes
referred to as churn, is mentioned in some existing works (Hadiji et al., 2014; Runge
et al., 2014). Churn-labelling methods are discussed in detail in their corresponding
sections. Since most of these definitions focus on predicting the disengaging action
whereby players entirely stop playing the game, they can help the developers iden-
tify potentially disengaging players so that pre-emptive measures can be taken to stop
disengagement before it occurs. Unfortunately, as discussed by Runge et al. (2014),
though players’ disengagement can be forecast, it is hard to stop it by giving free
currencies. For this reason, instead of investigating players’ leaving actions, another
labelling method that focuses on players’ disengaging trend is introduced in this work.
Under this labelling method, if a player’s activity trend is predicted to be disengaging,
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developers have more time to retain the player by giving extra care, because the player
has not yet decided to leave the game. This labelling method is called disengagement
in this work. In the disengagement-labelling method, players are labelled with either
category following the procedure below:

1. Divide the dataset into two periods by a middle date.

2. For each player, their total activities (the sum of all event-frequency features) in
both Period 1 and Period 2 are calculated separately and sorted.

3. For each period, the sorted list of total activities is divided into four quartiles.
Players are then ranked between them according to their overall activity.

4. For each player, if his/her rank in a Period 2 minus his/her rank in Period 2 is
greater than two, then he/she would be allocated to the disengagement group.
Otherwise, he/she would be allocated to the non-disengagement group.

Balancing Method
After labelling by the disengagement-labelling approach, players are distributed into
two groups. Like the first-purchase labelling method, imbalanced classes can often
be observed. For example, in I Am Playr , 1,341 and 13,396 players were labelled
as disengaging and non-disengaging, respectively, after the disengagement-labelling
method was applied. As was explained in Section 4.4, imbalanced classes can lead to
unreliable models. To deal with this issue, a naive random-undersampling method was
used to balance the sizes of the binary class in this experiment, similar to what was
done for first-purchase prediction. More approaches have been tried to balance the
dataset. Since this is not the focus of this experiment, the details of these methods are
explained in Chapter 7.

Data Representation
To further verify the generality and performance of the main contribution of this work,
event-frequency-based data representation continues to be applied for predicting dis-
engagement behaviours.

As for the part of the dataset to be used, since the disengagement-labelling method
has already split the entire dataset into two by dates and investigates activity changes
before and after the middle date, behaviours that players exhibited before the middle
date are used for players in either class.

Classification Algorithms
To maintain consistency with the previous experiments, the three algorithms, logistic
regression, decision tree and support vector machine, will continue to be used as the
main methods for building the classification model. As before, the parameters were
optimised with the random search method introduced in Section 4.7.

Evaluation
Because the classification tasks in this experiment have all been balanced by random
undersampling, all measurements are applied, including the area under the PR and
ROC curves and Cohen’s kappa. As discussed in Section 4.8, the area under the PR
curve shows the performance of classifiers for predicting positive examples. Instead,
the Cohen’s kappa score and the area under the ROC curve are good at displaying the
comprehensive performance of the classifiers generated for predicting both classes.
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Table 6.1: Performance for predicting disengagement behaviours with event-frequency-based
data representation on the dataset of I Am Playr (balanced by random undersampling)

Event
Frequency

Based Data
Representa-

tion

Random
Classifier

T-Value P-Value Effect-Size
(Cohen’s D)

AUPRC
(disengaging)

LogisticRegression 0.22±0.0082 0.10 1.3823e+01 2.2896e-07 6.1817
DecisionTree 0.35±0.0097 0.10 2.4022e+01 1.7943e-09 10.7429

SVM 0.22±0.0122 0.10 9.0747e+00 7.9797e-06 4.0583

AUPRC (non
disengaging)

LogisticRegression 0.94±0.0024 0.90 1.6792e+01 4.2185e-08 7.5095
DecisionTree 0.98±0.0010 0.90 7.2658e+01 8.9593e-14 32.4938

SVM 0.97±0.0011 0.90 6.2581e+01 3.4261e-13 27.9872

AUROC
LogisticRegression 0.72±0.0084 0.50 2.4918e+01 1.2961e-09 11.1438

DecisionTree 0.81±0.0066 0.50 4.3719e+01 8.5597e-12 19.5519
SVM 0.78±0.0092 0.50 2.9175e+01 3.1851e-10 13.0473

KAPPA
LogisticRegression 0.20±0.0081 0.00 2.3827e+01 1.9289e-09 10.6557

DecisionTree 0.23±0.0118 0.00 1.8069e+01 2.2189e-08 8.0807
SVM 0.17±0.0107 0.00 1.4804e+01 1.2644e-07 6.6207

6.1.2 Experiment Details and Results

I Am Player
At first, the experiment was conducted on the football game I Am Playr developed
by WeR Interactive. This experiment uses the disengagement-labelling method to
distribute players into binary classes. As discussed above, the process requires the
dataset to be evenly split into two time periods so that players can be labelled according
to their activity differences in between these periods. After labelling, there are 1,354
disengaging and 12,044 engaging players found in the dataset.

Like the situation observed in the first-purchase prediction, this is an imbalanced pre-
dictive problem. In case any negative effect is brought in by the bias, a random-
undersampling method was used in the process of training to balance the class distri-
bution. While event-frequency-based data representation was applied to represent the
dataset, 4,740 events have been experienced by these players.

To determine whether event-frequency-based data representation can provide perfor-
mance that is better than a random guesser, a random classifier was added in this
experiment to test the significance of differences in performance. As introduced in
Section 4.8, the area under the PR curve of a random classifier can be approximated
by the ratio of positive examples in the dataset whereas the area under the ROC curve
and the Cohen’s kappa score are always 0.5 and 0.0, respectively.

The result for predicting first purchases in I Am Playr with event-frequency-based
data representation is shown in Table 6.1. Like the notations used in the previous ex-
periment, the ‘t-value’, ‘p-value’ and effect-size columns were utilised to show the sig-
nificance of differences between the performance brought by the event-frequency-based
data representation and the random guess. In addition, as in the other experiments,
SEMs that were calculated from 10-fold cross-validation can help to reveal any overlaps
between performance. Identical to previous experiments, all measurements shown in
the table are rounded up for easy display.

According to the table, performance scores across all cases indicate that event-frequency-
based data representation is able to provide significantly better performance than a
random classifier. In addition, both the p-value (p < 0.01) and the effect-size indicate
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Table 6.2: Performance for predicting disengagement behaviours with event-frequency-based
data representation on the dataset of Lyroke (balanced by random undersampling)

Event
Frequency

Based Data
Representa-

tion

Random
Classifier

T-Value P-Value Effect-Size
(Cohen’s D)

AUPRC
(disengaging)

LogisticRegression 0.26±0.0042 0.12 3.0429e+01 2.1881e-10 13.6084
DecisionTree 0.30±0.0091 0.12 1.8617e+01 1.7066e-08 8.3258

SVM 0.25±0.0050 0.12 2.4542e+01 1.4836e-09 10.9755

AUPRC (non
disengaging)

LogisticRegression 0.95±0.0019 0.88 3.8628e+01 2.5944e-11 17.2751
DecisionTree 0.97±0.0009 0.88 8.8740e+01 1.4851e-14 39.6859

SVM 0.97±0.0006 0.88 1.4641e+02 1.6441e-16 65.4777

AUROC
LogisticRegression 0.77±0.0044 0.50 5.6903e+01 8.0491e-13 25.4476

DecisionTree 0.78±0.0054 0.50 4.9378e+01 2.8742e-12 22.0825
SVM 0.78±0.0035 0.50 7.5626e+01 6.2521e-14 33.8211

KAPPA
LogisticRegression 0.24±0.0053 0.00 4.2178e+01 1.1808e-11 18.8624

DecisionTree 0.22±0.0077 0.00 2.7377e+01 5.6122e-10 12.2435
SVM 0.21±0.0027 0.00 7.2414e+01 9.2348e-14 32.3845

that the difference is significant. This further verifies the phenomenon found while
predicting first purchases and extends the generality of the data representation. To
ensure that this performance is robust with respect to different games, the observation
was further verified with respect to other games.

Lyroke
To further investigate the generality of event-frequency-based data representation, the
same experiment was also carried out on another game, Lyroke , which is a music
game also produced by WeR Interactive. After the disengagement-labelling method is
applied, 3,494 players are labelled as disengaging and 25,013 players as engaging. As
in the previous experiments, a random-undersampling method was included to ensure
that the resultant predictive models are not biased. After event-frequency-based data
representation was applied, the total number of events that players experiences is 7,395.

The results of the experiment are shown in Table 6.2. The notations applied here
are identical to previous ones. The calculations of the measurements of the random
classifiers remain the same. As the table indicates, the event-frequency-based data
representation is still able to provide significantly better performance than the ran-
dom guess. The significance of the difference can be further verified by observing the
significant test results (p < 0.01) and the effect size.

Results in this experiment further display the robust ability of event-frequency-based
data representation. To further investigate its generality, the next experiment applies
event-frequency-based data representation to another game which is not only in a
different genre but is also produced by another company.

Race Team Manager
The third experimental candidate, the racing game, Race Team Manager , produced
by Bigbit Ltd. was also used for further verification for the same predictive purposes.
After the disengagement-labelling method was applied, 3,416 and 22,957 players are
labelled as disengaging and engaging, respectively.

Because of this bias, the random-undersampling process was also included for training
more balanced classifiers, as was done for the other two games. After the event-
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Table 6.3: Performance for predicting disengagement behaviours with event-frequency-based
data representation on the dataset of Race Team Manager (balanced by random undersam-
pling)

Event
Frequency

Based Data
Representa-

tion

Random
Classifier

T-Value P-Value Effect-Size
(Cohen’s D)

AUPRC
(disengaging)

LogisticRegression 0.27±0.0026 0.13 4.9651e+01 2.7355e-12 22.2046
DecisionTree 0.31±0.0050 0.13 3.3773e+01 8.6250e-11 15.1038

SVM 0.30±0.0031 0.13 5.0201e+01 2.4783e-12 22.4504

AUPRC (non
disengaging)

LogisticRegression 0.93±0.0018 0.87 3.2041e+01 1.3805e-10 14.3291
DecisionTree 0.97±0.0006 0.87 1.5558e+02 9.5211e-17 69.5764

SVM 0.97±0.0005 0.87 1.8709e+02 1.8112e-17 83.6691

AUROC
LogisticRegression 0.75±0.0027 0.50 8.7060e+01 1.7637e-14 38.9342

DecisionTree 0.79±0.0028 0.50 9.6364e+01 7.0778e-15 43.0955
SVM 0.80±0.0026 0.50 1.1119e+02 1.9539e-15 49.7268

KAPPA
LogisticRegression 0.25±0.0044 0.00 5.4943e+01 1.1025e-12 24.5712

DecisionTree 0.25±0.0049 0.00 4.8572e+01 3.3315e-12 21.7221
SVM 0.25±0.0038 0.00 6.1738e+01 3.8702e-13 27.6099

frequency-based method was used as the data-representation method, a total of 464
events were related to these players.

The results of disengagement prediction by event-frequency-based data representation
can be found in Table 6.3. Likewise, notations applied in the table are the same as
before.

The results indicate that event-frequency-based data representation is able to signifi-
cantly outperform a random classifier just as the previous experiments on disengage-
ment prediction. P-values and effect sizes shown in the table show the statistical
differences.

6.1.3 Summary

According to results from all three experiments conducted on different games, evidence shows
that the event-frequency-based data representation is able to behave significantly better than
the random guess for predicting disengagement. A summary of all results across the three
experiments is shown in Figure 6.2. The notations in this graph are identical to the one
that summarised experiment results in first-purchase prediction. According to this figure,
the performance that the event-frequency-based data representation achieved is significantly
better than random classifiers.

While being combined with the experiments for predicting first-purchase behaviours, as
can be seen in 6.3, in almost all cases (except for an only case where no significant difference
can be found between both methods), the event-frequency based data representation is able to
provide significantly better performance. Thereby, it further indicates that event-frequency-
based data representation exhibits good generality not only for different games but also for
various predictive purposes.

As mentioned in Section 4, a potential problem event-frequency-based data representation
may face is that a complex model can contain redundant features. Therefore, in the cases in
which the model needs to be simplified or interpreted, a feature selection algorithm can act
as a possible solution, as it did for first-purchase prediction. In the next section, the random
forest is added as the feature selector for reducing the dimension of the models, just as it
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Figure 6.2: The number of cases where methods achieve significantly better performance
and the number of cases where there is no difference found for predicting disengagement
behaviours

was for first-purchase prediction.

6.2 Disengagement Prediction with Event-frequency-based Data
Representation with Feature Selection

As discussed above, complex models are more likely to cause overfitting problems when the
quantity of the training data is insufficient. To reduce the dimensionality of the resultant
model, applying feature selection as a pre-processor is a common strategy. This section
aims determine whether a commonly used feature-selection approach can affect prediction
performance. The random-forest feature selector is tested in the disengagement-prediction
experiment. The experiments in this section follow the path shown in Figure 6.4:

6.2.1 Experiment Information

Unchanged experiment settings
As in previous experiments, to ensure that the effects caused by the feature selection
are not limited to any individual example, experiments were conducted on all three
games. These games are I Am Playr , Lyroke and Race Team Manager , all of which are
depicted in Figure 6.4. As for the experimental settings, the experiment in this section
stays the same as in the previous section except that a feature-selection algorithm is
added for comparison.
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Figure 6.3: The number of cases where methods achieve significantly better performance
and the number of cases where there is no difference found for predicting churn behaviours

Figure 6.4: Experiment of First Purchase Prediction
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Table 6.4: Performance for predicting disengagement behaviours with event-frequency-based
data representation (with and without feature selection) on the dataset of I Am Playr (bal-
anced by random undersampling)

Event
Frequency

Based Data
Representa-

tion

Event
Frequency

Based Data
Representa-

tion with
Feature

Selection

T-Value P-Value Effect-Size
(Cohen’s D)

AUPRC
(disengaging)

LogisticRegression 0.22±0.0082 0.22±0.0080 -5.6009e-02 9.5595e-01 -0.0250
DecisionTree 0.35±0.0097 0.35±0.0158 6.6394e-02 9.4780e-01 0.0297

SVM 0.22±0.0122 0.22±0.0103 5.1473e-02 9.5952e-01 0.0230

AUPRC (non
disengaging)

LogisticRegression 0.94±0.0024 0.95±0.0026 -1.2804e+00 2.1666e-01 -0.5726
DecisionTree 0.98±0.0010 0.97±0.0010 8.9687e-01 3.8163e-01 0.4011

SVM 0.97±0.0011 0.97±0.0011 2.1749e-01 8.3027e-01 0.0973

AUROC
LogisticRegression 0.72±0.0084 0.73±0.0086 -9.8101e-01 3.3959e-01 -0.4387

DecisionTree 0.81±0.0066 0.80±0.0068 9.4222e-01 3.5855e-01 0.4214
SVM 0.78±0.0092 0.78±0.0081 5.9181e-02 9.5346e-01 0.0265

KAPPA
LogisticRegression 0.20±0.0081 0.22±0.0098 -1.2392e+00 2.3118e-01 -0.5542

DecisionTree 0.23±0.0118 0.21±0.0105 6.4914e-01 5.2444e-01 0.2903
SVM 0.17±0.0107 0.18±0.0083 -8.9762e-01 3.8124e-01 -0.4014

Feature Selection
In the feature-selection stage, event-frequency-based data representation with feature
selection is conducted, and the results will be compared with the experimental results
from Section 6.1, in which the feature selection was not applied. Similar to what
has been done in Chapter 5, the random-forest algorithm was selected to reduce the
dimensionality of the models built by event-frequency-based data representation. For
example, in I Am Playr , 4,740 events were experienced by all the players used in the
experiment. After processing by the random-forest feature selector, the dimension was
reduced to 1,111.9 (Averaged from 10-fold cross-validation). As discussed in Section
4.6, these selected features are those whose importance scores (calculated by random
forest) are larger than the mean of the scores of all features.

6.2.2 Experiment Details and Results

I Am Playr
This experiment was first tested on I Am Playr . As mentioned just above, the number
of events in this game that were taken as features by the event-frequency-based data
representation was reduced from 4,740 to 1,111.9. This experiment aims to determine if
this process might affect the performance of event-frequency-based data representations
when predicting disengagement.

As Table 6.4 indicates, after all measurements across three different classifiers are
considered, no significant difference is found between the two versions of the event-
frequency-based data representations. Therefore, similar to what has been investigated
in first purchasing prediction experiments, TOST was also conducted here for figuring
out if the performance of classifiers were significantly affected by the feature selection.
Same as before, the interval [-0.5, 0.5] was used in TOST. Results can be found in
Table 6.5. As the results indicate, the difference of performance between the two
versions of event frequency based data representation is significantly within the pre-
defined interval. This supports the solution found in first purchasing prediction that
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Table 6.5: Equivalence testing on the performance for predicting disengagement behaviours
with event-frequency-based data representation (with and without feature selection) on the
dataset of I Am Playr (balanced by the random-undersampling method)

Event
Frequency

Based Data
Representa-

tion

Event
Frequency

Based Data
Representa-

tion with
Feature

Selection

P-Value

AUPRC
(disengaging)

LogisticRegression 0.22±0.0082 0.22±0.0080 3.4618e-04
DecisionTree 0.35±0.0097 0.35±0.0158 1.1494e-02

SVM 0.22±0.0122 0.22±0.0103 4.5653e-03

AUPRC (non
disengaging)

LogisticRegression 0.94±0.0024 0.95±0.0026 2.3400e-10
DecisionTree 0.98±0.0010 0.97±0.0010 7.1961e-18

SVM 0.97±0.0011 0.97±0.0011 4.0982e-17

AUROC
LogisticRegression 0.72±0.0084 0.73±0.0086 4.2915e-03

DecisionTree 0.81±0.0066 0.80±0.0068 3.8189e-04
SVM 0.78±0.0092 0.78±0.0081 6.3591e-04

KAPPA
LogisticRegression 0.20±0.0081 0.22±0.0098 1.1519e-02

DecisionTree 0.23±0.0118 0.21±0.0105 1.5217e-02
SVM 0.17±0.0107 0.18±0.0083 9.2460e-03

feature selection can be used for reducing the dimension of classifiers without affect
their performance significantly.

Lyroke
Identical to Lyroke , the random-forest feature selector also decreased the number of
features used in this game. After processing, the dimensions of the model were dropped
to 1,728.9 (averaged from 10-fold cross-validation) from 7,395.

As can be seen from Table 6.6, performance comparisons are similar to what was
observed for I Am Playr. No significant difference can be seen in the two versions
of event-frequency-based data representations. Because of this, the TOST was also
conducted in this game for working out the similarity between the two versions of
the event frequency based data representation. As can be seen from Table 6.7, the
performance difference between the two versions are within the interval [-0.5, 0.5] with
a significant probability. This further supports the observations that feature selection
was able to reduce the dimension of feature space without affecting the performance
significantly,

Race Team Manager
The last game investigated is Race Team Manager . The number of events in this game
is 464, which is slightly less than the other two products. However, the reduction ratio
is similar. After processing by the random-forest algorithm, this number was reduced
to 107.7 (averaged from 10-fold cross-validation).

According to Table 6.8, the results are similar to what was observed for the other two
games; there is no significant difference in any case. Based on the TOST that was
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Table 6.6: Performance for predicting disengagement behaviours with event-frequency-based
data representation (with and without feature selection) on the dataset of Lyroke (balanced
by random undersampling)

Event
Frequency

Based Data
Representa-

tion

Event
Frequency

Based Data
Representa-

tion with
Feature

Selection

T-Value P-Value Effect-Size
(Cohen’s D)

AUPRC
(disengaging)

LogisticRegression 0.26±0.0042 0.26±0.0037 -3.3164e-02 9.7391e-01 -0.0148
DecisionTree 0.30±0.0091 0.31±0.0069 -5.2692e-01 6.0468e-01 -0.2356

SVM 0.25±0.0050 0.26±0.0044 -5.4864e-01 5.8999e-01 -0.2454

AUPRC (non
disengaging)

LogisticRegression 0.95±0.0019 0.95±0.0017 2.2544e-01 8.2417e-01 0.1008
DecisionTree 0.97±0.0009 0.97±0.0008 -1.1868e-01 9.0685e-01 -0.0531

SVM 0.97±0.0006 0.97±0.0003 -5.0246e-01 6.2144e-01 -0.2247

AUROC
LogisticRegression 0.77±0.0044 0.76±0.0035 5.7329e-01 5.7354e-01 0.2564

DecisionTree 0.78±0.0054 0.78±0.0047 -2.4150e-01 8.1189e-01 -0.1080
SVM 0.78±0.0035 0.79±0.0021 -6.6926e-01 5.1182e-01 -0.2993

KAPPA
LogisticRegression 0.24±0.0053 0.23±0.0057 4.7872e-01 6.3790e-01 0.2141

DecisionTree 0.22±0.0077 0.22±0.0059 2.1542e-01 8.3187e-01 0.0963
SVM 0.21±0.0027 0.21±0.0025 7.6445e-01 4.5451e-01 0.3419

Table 6.7: Equivalence testing on the performance for predicting disengagement behaviours
with event-frequency-based data representation (with and without feature selection) on the
dataset of Lyroke (balanced by the random-undersampling method)

Event
Frequency

Based Data
Representa-

tion

Event
Frequency

Based Data
Representa-

tion with
Feature

Selection

P-Value

AUPRC
(disengaging)

LogisticRegression 0.26±0.0042 0.26±0.0037 6.4968e-08
DecisionTree 0.30±0.0091 0.31±0.0069 9.6367e-04

SVM 0.25±0.0050 0.26±0.0044 1.8668e-06

AUPRC (non
disengaging)

LogisticRegression 0.95±0.0019 0.95±0.0017 1.5121e-13
DecisionTree 0.97±0.0009 0.97±0.0008 8.1708e-19

SVM 0.97±0.0006 0.97±0.0003 1.0121e-23

AUROC
LogisticRegression 0.77±0.0044 0.76±0.0035 1.8213e-07

DecisionTree 0.78±0.0054 0.78±0.0047 2.3695e-06
SVM 0.78±0.0035 0.79±0.0021 1.2731e-09

KAPPA
LogisticRegression 0.24±0.0053 0.23±0.0057 1.2319e-05

DecisionTree 0.22±0.0077 0.22±0.0059 9.6698e-05
SVM 0.21±0.0027 0.21±0.0025 2.6617e-10
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Table 6.8: Performance for predicting disengagement behaviours with event-frequency-based
data representation (with and without feature selection) on the dataset of Race Team Man-
ager (balanced by random undersampling)

Event
Frequency

Based Data
Representa-

tion

Event
Frequency

Based Data
Representa-

tion with
Feature

Selection

T-Value P-Value Effect-Size
(Cohen’s D)

AUPRC
(disengaging)

LogisticRegression 0.27±0.0026 0.26±0.0033 3.8950e-01 7.0147e-01 0.1742
DecisionTree 0.31±0.0050 0.30±0.0035 1.3676e+00 1.8826e-01 0.6116

SVM 0.30±0.0031 0.30±0.0031 5.7277e-02 9.5496e-01 0.0256

AUPRC (non
disengaging)

LogisticRegression 0.93±0.0018 0.94±0.0018 -1.7382e+00 9.9261e-02 -0.7773
DecisionTree 0.97±0.0006 0.96±0.0007 3.1955e-01 7.5299e-01 0.1429

SVM 0.97±0.0005 0.97±0.0005 1.3808e-01 8.9171e-01 0.0618

AUROC
LogisticRegression 0.75±0.0027 0.75±0.0039 -7.5910e-01 4.5762e-01 -0.3395

DecisionTree 0.79±0.0028 0.79±0.0033 1.0702e-01 9.1595e-01 0.0479
SVM 0.80±0.0026 0.80±0.0027 8.2876e-02 9.3487e-01 0.0371

KAPPA
LogisticRegression 0.25±0.0044 0.25±0.0049 4.3235e-01 6.7063e-01 0.1934

DecisionTree 0.25±0.0049 0.25±0.0053 3.0895e-01 7.6091e-01 0.1382
SVM 0.25±0.0038 0.25±0.0050 2.0910e-01 8.3672e-01 0.0935

also conducted in this game, the results help to further verify that the feature-selection
algorithm would not significantly affect the performance of the event-frequency-based
data representation while reducing the dimension of the models.

6.2.3 Summary

Experiments in this section show that the performance impacts brought by feature selection
is significantly within the pre-defined interval [-0.5, 0.5]. Similar to what was observed
in the experiments for predicting first purchases, the experiments conducted for predicting
disengagement also indicate that feature selection can help generate more interpretable, less-
complex models for further investigations when used together with event-frequency-based
data representation.

Compared with the random guess, all previous experiments introduced in this chapter
show that event-frequency-based data representation can provide reasonable performance.
In addition, it will be more challenging to compare this data-representation method with
another state-of-the-art approach for investigating its competency. Given that several works
have accomplished similar things in this area, a game-specific data representation is added
in the next section for comparison.

6.3 Disengagement Prediction with Event-frequency-based and
Game-specific Data Representation

Experiments considered in the previous sections show that the event frequency-based data
representation is able to offer a predictive performance that is significantly better than a
random classifier with or without feature selection. Since many of the state-of-the-art works
which applied game-specific data representations might also be able to achieve promising
performance for predicting similar purposes, the event-frequency-based data representation
could become more valuable only if it is able to provide a better generality while still main-
taining a competitive performance. As has been introduced in Section 4.5.1, the event-
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Table 6.9: Equivalence testing on the performance for predicting disengagement behaviours
with event-frequency-based data representation (with and without feature selection) on the
dataset of Race Team Manager (balanced by the random-undersampling method)

Event
Frequency

Based Data
Representa-

tion

Event
Frequency

Based Data
Representa-

tion with
Feature

Selection

P-Value

AUPRC
(disengaging)

LogisticRegression 0.27±0.0026 0.26±0.0033 1.3552e-09
DecisionTree 0.31±0.0050 0.30±0.0035 2.6106e-06

SVM 0.30±0.0031 0.30±0.0031 1.5096e-09

AUPRC (non
disengaging)

LogisticRegression 0.93±0.0018 0.94±0.0018 1.3643e-12
DecisionTree 0.97±0.0006 0.96±0.0007 1.9073e-21

SVM 0.97±0.0005 0.97±0.0005 3.9924e-23

AUROC
LogisticRegression 0.75±0.0027 0.75±0.0039 1.3615e-08

DecisionTree 0.79±0.0028 0.79±0.0033 1.1708e-09
SVM 0.80±0.0026 0.80±0.0027 1.1789e-10

KAPPA
LogisticRegression 0.25±0.0044 0.25±0.0049 1.2511e-06

DecisionTree 0.25±0.0049 0.25±0.0053 2.9688e-06
SVM 0.25±0.0038 0.25±0.0050 4.1425e-07

frequency-based data representation is said to be competitive when it could provide signifi-
cantly better or at least no significance can be found in most cases while being compared with
another game-specific data representation. In this section, one of the classical game-specific
data representations introduced in the work by Runge et al. (2014) is added for comparison.
Experiments introduced in this section follow the paths shown in Figure 6.5:

6.3.1 Experiment Information

Unchanged Experiment Settings
To keep the experiments in this sections focused on their investigation targets, most of
the experiment settings will remain the same. At first, all three games will be tested to
show that the conclusion from this experiment is applicable not just to some specific sit-
uations. The experiments in this section aim to predict disengagement behaviour, and
the balancing method (random undersampling) that was applied to balance the resul-
tant class distribution remains unchanged. To avoid possible effects, feature selection
was not used in the experiments of this section. Finally, all the applied classification
algorithms and evaluation approaches were kept the same.

Data Representation
The research target of the experiments in this section are in the stage of data represen-
tation. As Figure 6.5 shows, in addition to event-frequency-based data representation,
another data-representation method was added which is game specific. This game-
specific data-representation method originally appeared in the study by Runge et al.
(2014), which aims to predict another players’ behaviour called churn. The churn
behaviour is another labelling method that is slightly different from disengagement.
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Figure 6.5: Experiment of Disengagement Prediction

Table 6.10: The availability of the game-specific features used in the study by Runge et al.
(2014)

I Am Playr Lyroke Race Team Manager

Rounds played Yes Yes Yes

Accuracy ND Yes Yes

Invites sent Yes Yes Yes

Days in game Yes NA NA

Last Purchase Yes Yes Yes

Days since last purchase Yes Yes Yes

Details of it are introduced in Section 6.4. The reason for choosing this game-specific
data-representation method for comparison is that most of the features utilised in the
work by Runge et al. (2014) can be found in the game data used in this study. The
details of the situation can be found in Table 6.10. The notation in this table is the
same as in Table 5.1: ND stands for ‘not defined in the current game context’, NA for
‘not available’ and Yes for ‘available’. As can be seen from Table 6.10, though several
features applied in this data-representation method can generally be found to some
extent, some features are missing from the three games to be investigated. That is,
‘Accuracy’ is missing from I Am Playr and ‘Days in the game’ is missing from both
Lyroke and Race Team Manager .

6.3.2 Experiment Details and Results

I Am Playr
As described in Section 6.1, the dataset labelled by the disengagement is shown to
be biased toward the negative class (non-disengaging players). Because of this, the
random-undersampling method is included for training classifiers to avoid bias. To
determine if event-frequency-based data representation is able to achieve competitive
performance, the raw game dataset was represented by both event-frequency-based and
game-specific data representation. With event-frequency-based data representation
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Table 6.11: Performance for predicting disengagement behaviours with both event-frequency-
based and a game-specific data representation on the dataset of I Am Playr (balanced by
random undersampling)

Event
Frequency

Based Data
Representa-

tion

Game-specific
Data Repre-

sentation

T-Value P-Value Effect-Size
(Cohen’s D)

AUPRC
(disengaging)

LogisticRegression 0.22±0.0082 0.18±0.0036 4.4538e+00 3.0672e-04 1.9918
DecisionTree 0.35±0.0097 0.21±0.0059 1.1842e+01 6.2474e-10 5.2958

SVM 0.22±0.0122 0.22±0.0086 2.6412e-02 9.7922e-01 0.0118

AUPRC (non
disengaging)

LogisticRegression 0.94±0.0024 0.96±0.0021 -4.7246e+00 1.6911e-04 -2.1129
DecisionTree 0.98±0.0010 0.97±0.0010 4.3684e+00 3.7047e-04 1.9536

SVM 0.97±0.0011 0.97±0.0009 2.4979e+00 2.2405e-02 1.1171

AUROC
LogisticRegression 0.72±0.0084 0.73±0.0060 -9.1878e-01 3.7036e-01 -0.4109

DecisionTree 0.81±0.0066 0.76±0.0062 4.6070e+00 2.1886e-04 2.0603
SVM 0.78±0.0092 0.77±0.0060 1.0227e+00 3.2000e-01 0.4574

KAPPA
LogisticRegression 0.20±0.0081 0.17±0.0071 3.1280e+00 5.8114e-03 1.3989

DecisionTree 0.23±0.0118 0.18±0.0063 3.1165e+00 5.9606e-03 1.3937
SVM 0.17±0.0107 0.19±0.0087 -1.1920e+00 2.4875e-01 -0.5331

applied, there were 4,740 features (events) to be used as the feature space, whereas
there were five features to be used by the game-specific data representation.

Table 6.11 shows the results of comparing the differences in performance of the two
different data-representation methods. The notations in the table are the same as in
the previous experiments. As can be seen, there are six of 12 cases in which event-
frequency-based data representation achieved significantly better results than game-
specific data representation and five of 12 cases in which there was no significant
difference can be found between both data representations. This suggests that event-
frequency-based data representation is able to provide competitive performance. The
only exceptional case happens when the logistic regression is applied and the area
under the PR curve (non-disengaging as positive) is used as the evaluation metric.
This matches the findings from the work by Runge et al. (2014), which suggests that
logistic regression works best with their selection of features.

As a sub-summary, the results found for I Am Playr indicate that the event-frequency-
based data representation could bring competitive accuracy to the prediction of disen-
gagement trends. To ensure that this solution can still hold for other cases, the same
experiment was also tried on Lyroke .

Lyroke
As mentioned above, to further verify the experimental results observed for I Am Playr,
the same experiment conducted for Lyroke is introduced in this section. As was men-
tioned concerning previous experiments, the dataset labelled with the disengagement-
labelling method has also been shown to be biased. Based on the behaviours of players,
there were 7,395 events utilised as the feature space when event-frequency-based data
representation was applied. As with I Am Playr , five features were used when the
game-specific data representation was applied.

The results for predicting disengagement with both data-representation methods can be
found in Table 6.12, where the notations are the same as for the others. As can be seen
from the table, the performance comparison is rather one-sided, as the event-frequency-
based data representation did well for the prediction in Lyroke. For all cases in this
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Table 6.12: Performance for predicting disengagement behaviours with event-frequency-
based and game-specific data-representation methods on the dataset of Lyroke (balanced
by random undersampling)

Event
Frequency

Based Data
Representa-

tion

Game-specific
Data Repre-

sentation

T-Value P-Value Effect-Size
(Cohen’s D)

AUPRC
(disengaging)

LogisticRegression 0.26±0.0042 0.16±0.0028 1.9282e+01 1.8095e-13 8.6230
DecisionTree 0.30±0.0091 0.21±0.0049 8.7198e+00 7.0348e-08 3.8996

SVM 0.25±0.0050 0.22±0.0026 5.6468e+00 2.3418e-05 2.5253

AUPRC (non
disengaging)

LogisticRegression 0.95±0.0019 0.93±0.0015 8.4931e+00 1.0349e-07 3.7982
DecisionTree 0.97±0.0009 0.95±0.0005 1.4680e+01 1.8471e-11 6.5653

SVM 0.97±0.0006 0.95±0.0005 1.6291e+01 3.2141e-12 7.2855

AUROC
LogisticRegression 0.77±0.0044 0.63±0.0052 1.9087e+01 2.1540e-13 8.5361

DecisionTree 0.78±0.0054 0.70±0.0025 1.2769e+01 1.8439e-10 5.7107
SVM 0.78±0.0035 0.73±0.0025 1.2445e+01 2.8024e-10 5.5655

KAPPA
LogisticRegression 0.24±0.0053 0.08±0.0040 2.2412e+01 1.3374e-14 10.0230

DecisionTree 0.22±0.0077 0.13±0.0026 1.0654e+01 3.3412e-09 4.7645
SVM 0.21±0.0027 0.14±0.0019 1.8872e+01 2.6175e-13 8.4398

table, event-frequency-based data representation was able to achieve significantly better
predictive performance. The only exception happens when SVM is applied as the
classier and the area under the PR curve (non-disengaging as positive) is used for
measuring the performance. As results indicate, the observation is similar to what was
seen for I Am Playr : the event-frequency-based data representation is able to provide
competitive results compared with those achieved by game-specific data representation.
Finally, in the next section, another game, Race Team Manager , which was developed
by Bigbit Ltd is also used for investigation.

Race Team Manager
Finally, the experiment was also conducted on a racing game: Race Team Manager .
In this game, the ratio between disengaging players and non-disengaging players is also
biased. Therefore, the random-undersampling method is also included in the training
process. After the event-frequency-based data representation was applied, there were
464 events selected to represent the dataset. As in the previous experiments, five
features were utilised by the game-specific data representation.

Table 6.13 indicates that there is no significant difference found between the perfor-
mance brought by both data representations in most cases. First, as can be seen from
the table, in three cases of 12, event-frequency-based data representation still achieves
significantly (p<0.01) better performance than the game-specific data representation
and eight of 12 cases in which both data-representation methods work more closely with
each other. This gives more support to the previous conclusion: that event-frequency-
based data representation is able to achieve competitive performance in comparison
with other state-of-the-art approaches. Their similarity can be confirmed by the p-
values and the effect sizes. The only exception occurred when logistic regression was
used as the classifier and the performance was measured by the area under the PR
curve (non-disengaging players as positive). This matches the findings made for Ly-
roke: that the game-specific data representation works best with the logistic-regression
algorithms. Therefore, though the results achieved by event-frequency-based data rep-
resentation are not significantly better than the game-specific results in most cases (as
was observed in the other two games), event-frequency-based data representation still
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Table 6.13: Performance for predicting disengagement behaviours with event-frequency-
based and game-specific data-representation methods on the dataset of Race Team Manager
(balanced by random undersampling)

Event
Frequency

Based Data
Representa-

tion

Game-specific
Data Repre-

sentation

T-Value P-Value Effect-Size
(Cohen’s D)

AUPRC
(disengaging)

LogisticRegression 0.27±0.0026 0.24±0.0051 5.1009e+00 7.4671e-05 2.2812
DecisionTree 0.31±0.0050 0.29±0.0042 2.5134e+00 2.1694e-02 1.1240

SVM 0.30±0.0031 0.30±0.0054 -6.6658e-01 5.1349e-01 -0.2981

AUPRC (non
disengaging)

LogisticRegression 0.93±0.0018 0.95±0.0008 -1.0152e+01 7.0793e-09 -4.5400
DecisionTree 0.97±0.0006 0.96±0.0039 1.0774e+00 2.9551e-01 0.4818

SVM 0.97±0.0005 0.97±0.0007 1.4780e+00 1.5670e-01 0.6610

AUROC
LogisticRegression 0.75±0.0027 0.73±0.0038 3.0247e+00 7.2831e-03 1.3527

DecisionTree 0.79±0.0028 0.79±0.0037 -5.4226e-01 5.9429e-01 -0.2425
SVM 0.80±0.0026 0.80±0.0037 4.7206e-01 6.4256e-01 0.2111

KAPPA
LogisticRegression 0.25±0.0044 0.17±0.0037 1.4500e+01 2.2693e-11 6.4847

DecisionTree 0.25±0.0049 0.24±0.0052 6.6700e-01 5.1323e-01 0.2983
SVM 0.25±0.0038 0.25±0.0060 -8.7974e-01 3.9060e-01 -0.3934

achieves competitive results for predicting disengagement behaviour.

6.3.3 Summary

A summarised chart can be found in Figure 6.6. To recap, this chart is a summary of
performance across the previous experiments in the three commercial games. For each mea-
surement, there are three stacked bars, and they are the number of cases where the event-
frequency-based data representation achieved significantly better performance (labelled as
EF), the number of cases no significant difference are found between both data representa-
tions (labelled as ND), and the number of case where the game-specific data representation
achieved significantly better performance (labelled as GF). Each stacked bar is formed by
the performance brought by the three applied algorithms. As can be seen from the figure,
in all cases across the three games, event-frequency-based data representation was able to
perform competitively for predicting disengagement while being compared to a state of the
art game-specific data representation. This is because in most cases, it can provide signif-
icantly better performance or there is no significant performance difference found between
the event-frequency-based data representation and the game-specific data representation.

Combining with its performance for predicting the first purchase behaviour, this new-
data representation method can be considered a competitive alternative for player-behaviour
modelling where there is a requirement of generality for various predictive purposes in mul-
tiple games.

Though event-frequency-based data representation has achieved competitive performance
in most cases so far, the complexity of the model might sometimes be an issue in some extreme
situations. During all our experiments, there was a challenging predictive purpose which was
affected by this shortcoming. Details of it are shown in the next section.

6.4 Churn Prediction

As event frequency-based data representation has been successfully used to predict both
first purchases and disengagement across three different games, a challenging experiment
predicting churn-labelling method is used in this section to show some limitations of this
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Figure 6.6: The number of cases where methods achieve significantly better performance
and the number of cases where there is no difference found for predicting disengagement
behaviours

data-representation method. As has been mentioned above, event-frequency-based data rep-
resentation is a highly dimensional method which sometimes may lead to complex predictive
models. Therefore, as discussed in Section 4.9, when the number of training samples is too
small compared with the number of events selected for building models, an unreliable classi-
fier might be built–either because the data cannot cover all the important patterns (Raudys
et al., 1991) or because of overfitting. In other words, when this happens, the model may not
be able to provide good performance for predicting unseen situations (Rokach and Maimon,
2014).

During the course of my study, the churn-labelling method proposed by Runge et al.
(2014) was offered as a challenging experiment that provided smaller datasets for training
classifiers with the higher-dimensional event-frequency-based data representation. This is
because, according to the definition introduced in Section 6.4.1, the labelling method focuses
only on highly valued (paying and highly active) players. This largely reduces the number
of training samples. Because of this, experiments in this section are expected to be chal-
lenging and may affect the event-frequency-based data representation (higher-dimensional)
more than the game-specific data representation (lower-dimensional). Experiments that were
tested in this section follow the path shown in Figure 6.7.

6.4.1 Experiment Information

Unchanged experiments
Experiments conducted in this section aim to investigate the performance of event-



CHAPTER 6. PREDICTING DISENGAGEMENT 96

Figure 6.7: Experiment of First-purchase prediction

frequency-based data representation for predicting churn. Therefore, except for the
labelling methods, experimental settings such as game-data sources, balancing meth-
ods, data representation, feature selection, classification algorithms and evaluation
approaches stay the same.

Churn Labelling Method
As mentioned in Section 3.5, another disengagement concept, named churn, has been
investigated by several other researchers. Although there are different ways to define
churn (Borbora and Srivastava, 2012; Hadiji et al., 2014; Kawale et al., 2009; Runge
et al., 2014), they all refer to a player leaving a game. Building predictive models for
this behaviour is valuable because they can be used to forecast when some player is
going to make a decision to leave. Based on these predictions, game companies are
able to take extra care on these churning players and try to prevent their leaving by
pre-emptive measures.

As was mentioned concerning the experiments for comparing data representations, the
work by Runge et al. (2014) is among the previous papers which aim to predict churn
behaviour. In their definition of churn, only high-valued players are considered to be
valid predictive objectives. More precisely, a player who is active and highly valued
is said to be churning on a specific day (day 0) if he/she starts 14 consecutive days
of inactivity from any days between day 0 and day 6. This definition contains three
conditions. First, to be considered, a player has to be a high-value player. A player is
said to be highly valued if he/she is in the top 10% of the players who are sorted by
the revenue generated. In addition, for a player to be considered, he/she must also be
an active player. This is defined by observing whether a player has played the game
at least once between days-14 and day-1. Finally, the last condition, which focuses on
players who start 14 consecutive days of inactivity from any days between day 0 and
day 6, is depicted in Figure 6.8.
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Figure 6.8: Churn Definition by Runge et al. (2014). Player A is not churning because he/she
has an activity point at around Day 2 and his/her next activity occurs only at around Day
12, and 12 - 2 = 10 < 14. Players B and C are both churning, because more than 14 days
have passed since their last activity in period, ‘Day0 −Day6′, and next activity after Day
6. Player D is a special case: He/she has an activity at Day 1 but no activity in the period
‘Day0 − Day6′. In this case, an activity will be assumed at Day 0. Depending on that,
there are fewer than 14 days between Day 0 and Player D’s next activity, so Player D is not
churning.

6.4.2 Experiment Details and Results

I Am Playr
In I Am Playr , after being labelled by the churn-labelling method, there are 132
churning users and 124 non-churning ones. Compared to previous experiments, the
balancing ratio is better but the number of data samples is relatively small. In this
section, since the random-undersampling method is used for balancing, the number
is lower during the training of classifiers. More than the number of samples, there
are 2,394 events that have been experienced by the event-frequency-based data rep-
resentation for representing the behaviours of these players. This number gives this
experiment a high chance of encountering problems caused by smaller datasets. Re-
garding game-specific data representation, five features were extracted from the game
data, as in the previous experiment.

Results for predicting churn (balanced) in I Am Playr are shown in Table 6.14. Accord-
ing to the table, it is clear that event-frequency-based data representation does not work
as well as in previous experiments. Compared to previous experiments in which train-
ing examples were sufficient, the performance brought by event-frequency-based data
representation has been affected. In addition, lower-dimensional game-specific method
works significantly better (p<0.01) than event-frequency-based data representation in
three cases of 12. All of these cases occurred when logistic regression was applied as the
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Table 6.14: Performance for predicting churn behaviours with both event-frequency-based
and a game-specific data-representation methods for the dataset of I Am Playr (balanced
by random undersampling)

Event
Frequency

Based Data
Representa-

tion

Game-Specific
Data Repre-

sentation

T-Value P-Value Effect-Size
(Cohen’s D)

AUPRC
(churning)

LogisticRegression 0.50±0.0146 0.73±0.0330 -6.2042e+00 7.4388e-06 -2.7746
DecisionTree 0.69±0.0198 0.71±0.0294 -6.1259e-01 5.4781e-01 -0.2740

SVM 0.66±0.0339 0.63±0.0359 4.9108e-01 6.2931e-01 0.2196

AUPRC (non
churning)

LogisticRegression 0.54±0.0203 0.71±0.0387 -3.7367e+00 1.5101e-03 -1.6711
DecisionTree 0.72±0.0302 0.68±0.0315 7.4615e-01 4.6521e-01 0.3337

SVM 0.47±0.0495 0.53±0.0366 -9.8403e-01 3.3814e-01 -0.4401

AUROC
LogisticRegression 0.50±0.0254 0.72±0.0334 -4.8367e+00 1.3236e-04 -2.1630

DecisionTree 0.66±0.0324 0.71±0.0245 -1.0217e+00 3.2046e-01 -0.4569
SVM 0.51±0.0283 0.57±0.0365 -1.2560e+00 2.2517e-01 -0.5617

KAPPA
LogisticRegression 0.09±0.0597 0.34±0.0607 -2.8311e+00 1.1073e-02 -1.2661

DecisionTree 0.29±0.0558 0.36±0.0517 -8.8857e-01 3.8595e-01 -0.3974
SVM 0.06±0.0297 0.07±0.0515 -2.3972e-01 8.1326e-01 -0.1072

Table 6.15: Performance for predicting churn behaviours using both event-frequency-based
data representation (balanced by random undersampling) and a random guess on the dataset
of I Am Playr

Event
Frequency

Based Data
Representa-

tion

Random
Classifier

T-Value P-Value Effect-Size
(Cohen’s D)

AUPRC
(churning)

LogisticRegression 0.50±0.0146 0.52 -1.2287e+00 2.5033e-01 -0.5495
DecisionTree 0.69±0.0198 0.52 8.2906e+00 1.6626e-05 3.7077

SVM 0.66±0.0339 0.52 4.0192e+00 3.0218e-03 1.7974

AUPRC (non
churning)

LogisticRegression 0.54±0.0203 0.48 2.5345e+00 3.1999e-02 1.1335
DecisionTree 0.72±0.0302 0.48 7.2755e+00 4.6859e-05 3.2537

SVM 0.47±0.0495 0.48 -2.9400e-01 7.7543e-01 -0.1315

AUROC
LogisticRegression 0.50±0.0254 0.50 1.0078e-01 9.2194e-01 0.0451

DecisionTree 0.66±0.0324 0.50 4.7352e+00 1.0661e-03 2.1176
SVM 0.51±0.0283 0.50 4.2816e-01 6.7860e-01 0.1915

KAPPA
LogisticRegression 0.09±0.0597 0.00 1.3535e+00 2.0891e-01 0.6053

DecisionTree 0.29±0.0558 0.00 4.9493e+00 7.9203e-04 2.2134
SVM 0.06±0.0297 0.00 1.8477e+00 9.7713e-02 0.8263

classifier. Except for these, in all other cases, there has been no significant difference
in the performance achieved by both event-frequency-based data representation and
the game-specific data representation. Because neither data-representation method
produced results as good as those obtained in previous experiments that utilized more
data samples for training, the results from Table 6.14 are also compared to a random
classifier.

The results are shown in Table 6.15 and Table 6.16. As can be seen, there are five
cases where the classifiers trained with the event-frequency-based data representation
behaved significantly better than random classifiers. Although the classifiers trained
with the game-specific data representation did better with eight cases in which classi-
fiers behave significantly better than random classifiers, there ae still four cases when
there is no significant different found between it and random classifiers. Compared
with the results of previous experiments, this result suggests that the classification
problem might be more challenging with limited data samples for training and that it
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Table 6.16: Performance for predicting churn behaviours using both game-specific data rep-
resentation (Balanced by random undersampling) and a random guess on the dataset of I
Am Playr

Game-Specific
Data Repre-

sentation

Random
Classifier

T-Value P-Value Effect-Size
(Cohen’s D)

AUPRC
(churning)

LogisticRegression 0.73±0.0330 0.52 6.2418e+00 1.5112e-04 2.7914
DecisionTree 0.71±0.0294 0.52 6.3089e+00 1.3950e-04 2.8214

SVM 0.63±0.0359 0.52 3.1172e+00 1.2374e-02 1.3941

AUPRC (non
churning)

LogisticRegression 0.71±0.0387 0.48 5.5420e+00 3.6012e-04 2.4785
DecisionTree 0.68±0.0315 0.48 5.9494e+00 2.1550e-04 2.6606

SVM 0.53±0.0366 0.48 1.2576e+00 2.4019e-01 0.5624

AUROC
LogisticRegression 0.72±0.0334 0.50 6.1520e+00 1.6831e-04 2.7513

DecisionTree 0.71±0.0245 0.50 7.9494e+00 2.3285e-05 3.5551
SVM 0.57±0.0365 0.50 1.9230e+00 8.6633e-02 0.8600

KAPPA
LogisticRegression 0.34±0.0607 0.00 5.3021e+00 4.9247e-04 2.3712

DecisionTree 0.36±0.0517 0.00 6.6496e+00 9.3779e-05 2.9738
SVM 0.07±0.0515 0.00 1.3416e+00 2.1258e-01 0.6000

is beneficial to apply data representation with fewer features in this case.

In the next part, to determine whether the observations from this experiment represent
a general case when the churn-labelling method was applied, the results from the same
experiment tested on a different game (Lyorke) are shown for comparison.

Lyroke
As in I Am Playr , in Lyroke , after being labelled by the churn-labelling method,
there are 127 churning users and 103 non-churning ones. Like what was observed with
respect to I Am Playr , the balancing ratio is better than the disengagement prediction
problems, but the number of samples is even smaller than in the churn-prediction
experiment in I Am Playr and much smaller than in the previous examples, such as
in first-purchasing and disengagement prediction.

Since the random-undersampling method is used for balancing, the number will be
even smaller during the training process. As for the dimensions (number of features)
to be used for event-frequency-based data representations, 4,462 events have been
experienced by these players. As before, the five features were used by the game-
specific based data representation. Therefore, as in the experiment with I Am Playr,
the chance for hitting issues brought by smaller datasets is high in this experiment as
well.

As can be seen from Table 6.17, event-frequency-based data representation still did not
work as well as for other predictive purposes. However, according to both Figure 6.18
and Figure 6.19, the performance achieved by the event-frequency-based data repre-
sentation and the game-specific data representation used in this game seem to be more
stable than that in the I Am Playr experiment. In both tables, except for a single
case (SVM, measured by AUPRC with non-churning players as positive) while using
the event-frequency-based data representation, in other cases, the classifiers trained
with both data representation achieved significantly better performance than random
classifiers. One possible reason for this result, is that the represented feature space of
this game is less variable than that of I Am Playr when labelled by the churn-labelling
method and that both the inference pattern and its related noises are consistent across
cross-validations. Second, according to Table 6.17, the game-specific data represen-
tation worked best with SVM in this case; it achieved a significantly better (p<0.01)
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Table 6.17: Performance for predicting churn behaviours with event-frequency-based and a
game-specific data representation on the dataset of Lyroke (balanced by random undersam-
pling)

Event
Frequency

Based Data
Representa-

tion

Game-Specific
Data Repre-

sentation

T-Value P-Value Effect-Size
(Cohen’s D)

AUPRC
(churning)

LogisticRegression 0.77±0.0361 0.86±0.0286 -1.8664e+00 7.8362e-02 -0.8347
DecisionTree 0.82±0.0283 0.82±0.0279 -1.7960e-02 9.8587e-01 -0.0080

SVM 0.78±0.0198 0.82±0.0171 -1.5492e+00 1.3873e-01 -0.6928

AUPRC (non
churning)

LogisticRegression 0.79±0.0317 0.83±0.0335 -6.2301e-01 5.4109e-01 -0.2786
DecisionTree 0.81±0.0248 0.80±0.0300 4.6290e-01 6.4899e-01 0.2070

SVM 0.56±0.0358 0.71±0.0343 -3.0446e+00 6.9744e-03 -1.3616

AUROC
LogisticRegression 0.78±0.0310 0.84±0.0274 -1.2895e+00 2.1353e-01 -0.5767

DecisionTree 0.80±0.0272 0.78±0.0310 3.5705e-01 7.2520e-01 0.1597
SVM 0.71±0.0163 0.77±0.0218 -2.2851e+00 3.4654e-02 -1.0219

KAPPA
LogisticRegression 0.48±0.0631 0.55±0.0556 -7.3721e-01 4.7050e-01 -0.3297

DecisionTree 0.42±0.0530 0.48±0.0402 -8.2804e-01 4.1849e-01 -0.3703
SVM 0.24±0.0270 0.38±0.0422 -2.6102e+00 1.7716e-02 -1.1673

Table 6.18: Performance for predicting churn behaviours with both event-frequency-based
data representation (balanced by random undersampling) and a random guess at the dataset
of Lyroke

Event
Frequency

Based Data
Representa-

tion

Random
Classifier

T-Value P-Value Effect-Size
(Cohen’s D)

AUPRC
(churning)

LogisticRegression 0.77±0.0361 0.55 5.6221e+00 3.2494e-04 2.5143
DecisionTree 0.82±0.0283 0.55 8.8974e+00 9.3766e-06 3.9790

SVM 0.78±0.0198 0.55 1.0878e+01 1.7681e-06 4.8649

AUPRC (non
churning)

LogisticRegression 0.79±0.0317 0.45 1.0389e+01 2.6019e-06 4.6462
DecisionTree 0.81±0.0248 0.45 1.4024e+01 2.0208e-07 6.2717

SVM 0.56±0.0358 0.45 2.8396e+00 1.9415e-02 1.2699

AUROC
LogisticRegression 0.78±0.0310 0.50 8.6952e+00 1.1307e-05 3.8886

DecisionTree 0.80±0.0272 0.50 1.0384e+01 2.6118e-06 4.6441
SVM 0.71±0.0163 0.50 1.2044e+01 7.4651e-07 5.3861

KAPPA
LogisticRegression 0.48±0.0631 0.00 7.2344e+00 4.8978e-05 3.2353

DecisionTree 0.42±0.0530 0.00 7.4712e+00 3.8063e-05 3.3412
SVM 0.24±0.0270 0.00 8.5048e+00 1.3532e-05 3.8035

performance than event-frequency-based data representation did when measured by
the area under the PR curve (non-churning as positive). However, as has been exam-
ined in the first-purchase prediction experiments, broader parameter-tuning process
may bring better results for SVM classifiers. Except for these cases, all the rest of
the 12 cases show that there have been no significant difference found between the
performance of the two data-representation methods.

The observations made in this experiment were better than those made in the I Am
Playr experiment. In this experiment, in most cases, there have been no signifi-
cant difference found between the event-frequency-based data representation and a
lower-dimensional game-specific data representation. In the last experiment, the same
experimental settings are tested on Race Team Manager .

Race Team Manager
In Race Team Manager , situations are the same as in the other two games. When
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Table 6.19: Performance for predicting churn behaviours with both the game-specific data
representation (balanced by random undersampling) and a random guess on the dataset of
Lyroke

Game-Specific
Data Repre-

sentation

Random
Classifier

T-Value P-Value Effect-Size
(Cohen’s D)

AUPRC
(churning)

LogisticRegression 0.86±0.0286 0.55 1.0108e+01 3.2706e-06 4.5207
DecisionTree 0.82±0.0279 0.55 9.0621e+00 8.0709e-06 4.0527

SVM 0.82±0.0171 0.55 1.4972e+01 1.1467e-07 6.6956

AUPRC (non
churning)

LogisticRegression 0.83±0.0335 0.45 1.0677e+01 2.0682e-06 4.7751
DecisionTree 0.80±0.0300 0.45 1.1007e+01 1.6011e-06 4.9226

SVM 0.71±0.0343 0.45 7.3671e+00 4.2492e-05 3.2947

AUROC
LogisticRegression 0.84±0.0274 0.50 1.1794e+01 8.9231e-07 5.2744

DecisionTree 0.78±0.0310 0.50 8.6302e+00 1.2019e-05 3.8595
SVM 0.77±0.0218 0.50 1.1841e+01 8.6235e-07 5.2956

KAPPA
LogisticRegression 0.55±0.0556 0.00 9.3204e+00 6.4073e-06 4.1682

DecisionTree 0.48±0.0402 0.00 1.1213e+01 1.3693e-06 5.0146
SVM 0.38±0.0422 0.00 8.5401e+00 1.3086e-05 3.8193

Table 6.20: Performance for predicting churn behaviours using event-frequency-based and
game-specific data representations on the dataset of Race Team Manager (balanced by ran-
dom undersampling)

Event
Frequency

Based Data
Representa-

tion

Game-Specific
Data Repre-

sentation

T-Value P-Value Effect-Size
(Cohen’s D)

AUPRC
(churning)

LogisticRegression 0.78±0.0253 0.91±0.0178 -3.7992e+00 1.3136e-03 -1.6991
DecisionTree 0.81±0.0175 0.85±0.0175 -1.2058e+00 2.4349e-01 -0.5393

SVM 0.83±0.0285 0.89±0.0231 -1.6192e+00 1.2278e-01 -0.7241

AUPRC (non
churning)

LogisticRegression 0.36±0.0490 0.51±0.0636 -1.8266e+00 8.4389e-02 -0.8169
DecisionTree 0.27±0.0329 0.40±0.0533 -1.9251e+00 7.0173e-02 -0.8609

SVM 0.30±0.0460 0.41±0.0721 -1.2284e+00 2.3512e-01 -0.5494

AUROC
LogisticRegression 0.52±0.0432 0.73±0.0411 -3.2945e+00 4.0301e-03 -1.4733

DecisionTree 0.50±0.0376 0.59±0.0382 -1.6821e+00 1.0982e-01 -0.7522
SVM 0.55±0.0577 0.69±0.0531 -1.6176e+00 1.2314e-01 -0.7234

KAPPA
LogisticRegression 0.03±0.0417 0.25±0.0497 -3.2274e+00 4.6726e-03 -1.4433

DecisionTree 0.03±0.0375 0.13±0.0243 -2.1333e+00 4.6920e-02 -0.9540
SVM -0.04±0.0451 0.17±0.0621 -2.6436e+00 1.6511e-02 -1.1822

the churn-labelling method was applied, 206 churning and 54 non-churning players
were labelled. The dataset of this game is even more challenging for highly dimen-
sional event-frequency-based data representation. This is because the dataset is not
only biased to one side but also includes few training-data samples. As before, the
number of samples will be even less after processing by the random-undersampling
balance method. In terms of data representations, 373 events are selected by event-
frequency-based data representation while five features are used by the game-specific
data representation.

The results for the churn-prediction experiment in Race Team Manager are shown
in Table 6.20. As can be seen, in most cases (nine of 12), there is no significant
difference shown between the two data representations. Similar to what was observed
with respect to I Am Playr , the game-specific-based data-representation method works
best with a logistical regression classifier and achieves significantly better performance
when measured by three different measurements. Although classifiers trained with
both data-representation methods seem to behave well, because the class distribution
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in this game is biased, the real performance needs to be verified by comparison with
the random classifier.

Table 6.21: Performance for predicting churn behaviours with both the event data repre-
sentation (balanced by random undersampling) and a random guess on the dataset of Race
Team Manager

Event
Frequency

Based Data
Representa-

tion

Random
Classifier

T-Value P-Value Effect-Size
(Cohen’s D)

AUPRC
(churning)

LogisticRegression 0.78±0.0253 0.79 -3.4326e-01 7.3928e-01 -0.1535
DecisionTree 0.81±0.0175 0.79 1.1503e+00 2.7966e-01 0.5144

SVM 0.83±0.0285 0.79 1.1108e+00 2.9544e-01 0.4968

AUPRC (non
churning)

LogisticRegression 0.36±0.0490 0.21 2.8909e+00 1.7858e-02 1.2929
DecisionTree 0.27±0.0329 0.21 1.7964e+00 1.0599e-01 0.8034

SVM 0.30±0.0460 0.21 1.8457e+00 9.8019e-02 0.8254

AUROC
LogisticRegression 0.52±0.0432 0.50 4.6467e-01 6.5321e-01 0.2078

DecisionTree 0.50±0.0376 0.50 -1.1862e-01 9.0818e-01 -0.0530
SVM 0.55±0.0577 0.50 8.5367e-01 4.1543e-01 0.3818

KAPPA
LogisticRegression 0.03±0.0417 0.00 5.9618e-01 5.6575e-01 0.2666

DecisionTree 0.03±0.0375 0.00 6.5654e-01 5.2791e-01 0.2936
SVM -0.04±0.0451 0.00 -8.2127e-01 4.3271e-01 -0.3673

Table 6.22: Performance for predicting churn behaviours using both event-data representa-
tion (balanced by random undersampling) and a random guess on the dataset of Race Team
Manager

Game-Specific
Data Repre-

sentation

Random
Classifier

T-Value P-Value Effect-Size
(Cohen’s D)

AUPRC
(churning)

LogisticRegression 0.91±0.0178 0.79 6.1186e+00 1.7524e-04 2.7363
DecisionTree 0.85±0.0175 0.79 2.8589e+00 1.8813e-02 1.2786

SVM 0.89±0.0231 0.79 3.9517e+00 3.3461e-03 1.7672

AUPRC (non
churning)

LogisticRegression 0.51±0.0636 0.21 4.5344e+00 1.4172e-03 2.0278
DecisionTree 0.40±0.0533 0.21 3.3728e+00 8.2201e-03 1.5084

SVM 0.41±0.0721 0.21 2.6342e+00 2.7173e-02 1.1780

AUROC
LogisticRegression 0.73±0.0411 0.50 5.2694e+00 5.1428e-04 2.3565

DecisionTree 0.59±0.0382 0.50 2.2450e+00 5.1423e-02 1.0040
SVM 0.69±0.0531 0.50 3.3146e+00 9.0183e-03 1.4823

KAPPA
LogisticRegression 0.25±0.0497 0.00 4.7118e+00 1.1017e-03 2.1072

DecisionTree 0.13±0.0243 0.00 4.9336e+00 8.0927e-04 2.2064
SVM 0.17±0.0621 0.00 2.6703e+00 2.5608e-02 1.1942

As can be seen from Table 6.21 and Table 6.22, the classifiers trained using event-
frequency-based data representation is not able to provide performance that is signifi-
cantly better than the random classifiers in any case. This indicates that the classifiers
are not well trained by an insufficient quantity of training examples. Although the clas-
sifiers trained with the game-specific data representation achieve better performance,
similar to what was observed for I Am Playr, there are still four of 12 cases in which
there has been no significant difference found between its performance and that of a
random classifier.

6.4.3 Summary

Results from this experiment in three games raise two important points. First, as sum-
marised in Figure 6.9, in most of the cases (29 case out of 36 cases), there have been no
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Figure 6.9: The number of cases where methods achieve significantly better performance
and the number of cases where there is no difference found for predicting churn behaviours

significant differences can be found between both data representations. The lower dimen-
sional game-specific data representations achieved slightly better performance as there are
7 out of 36 cases where it displayed significantly better performance. Comparing to the
previous cases where the event-frequency-based data representation achieved more promis-
ing performance, when the dataset is quantitatively insufficient, the models generated can
be unreliable, thereby causing their performance to be less effective and to behave like a
random classifier. The game-specific data-representation method relies on fewer features to
achieve better performance in several cases; but it still suffers from the problem of the lim-
ited number of data samples. This suggests that, for training classifiers – especially those
represented by higher-dimensional data representations, such as event-frequency-based data
representations – quantitatively sufficient training samples are needed to maintain reliability.

6.5 Discussion

This chapter has applied event-frequency-based data representation to predict player dis-
engagement behaviours. The method is able to achieve competitive performance across all
three games. Combining these findings with the results obtained from the study of predicting
first purchases, event-frequency-based data representation exhibits good generality and can
achieve competitive performance for various predictive purposes. These experiments well
support the hypothesis made in this study: Event-frequency-based data representation
can be used to predict player behaviour with supervised learning to provide a sig-
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nificantly better performance than random guess and competitive performance
while being compared to other state-of-the-art methods, where applicable.. How-
ever, based on the discoveries in the churn-prediction experiments, while the quantity of the
dataset is insufficient, the performance that can be brought by event-frequency-based data
representation may be affected. As discussed, this is because the number of data samples
is too small for training the higher-dimensional classifiers formed by event-frequency-based
data representation. Since the limited number of samples is caused by the churn-labelling
method in this case, a possible solution is to work out an alternative labelling method which
is close to churn but is able to use most of the information from the raw data. This work
also conducted some preliminary research into a new labelling method called disengagement
over varying dates that uses this strategy. Details of this method can be found in Section A.

In addition, taking all three predictive experiments into consideration, a notable phe-
nomenon is that the class distribution might be highly biased (i.e., the majority of players
will be categorised into one class) when the players are labelled by any of the following
labelling methods: first purchase, disengagement and churn. As discussed in Section 4.4,
performance of classifiers trained under biased situations might be affected. Apart from
that, as can be seen from the experiments reported in the last two chapters, while the test
dataset is biased, the measurements by the area under the PR curve will become less infor-
mative, as a random classifier can already achieve a very high (or very low, depending on
the bias direction) performance and therefore can hardly be used as a reference to reflect the
real performance of the classifiers. Besides, as discussed in Section 4.8.2, the performance
measured by Cohen’s kappa will be affected as well. A common approach to this type of
problem is to apply a balancing method for balancing the classes before modelling to create
better classifiers. Although, the random-undersampling method was applied as the default-
balancing approach in previous experiments, it is not the only solution for balancing class
distributions. In this work, another commonly used method, SMOTE, was also applied.
Different from the random-undersampling, SMOTE applies the opposite strategy (oversam-
pling) to achieve the balance. Investigations into whether these balancing methods would
help improve the performance of classifiers are shown in the next chapter.



Chapter 7

Biased Player Behaviour Modelling

Previous chapters have used event-frequency-based data-representation for different predic-
tive purposes and has achieved competitive results under the situations where the number
of training examples is sufficient. As one may have noticed, a common fact that appeared
during these examples is that the class distribution (the ratio between the number of sam-
ples in positive and negative classes) resulting from these labelling methods is highly biased
before it is processed by the balancing method.

7.1 Bias in Data Mining

The biased-classification problem is common. It occurs in data-mining applications in many
areas (Chawla, 2005; Chawla et al., 2002; Grzymala-Busse et al., 2005; Gu et al., 2008;
Longadge and Dongre, 2013) and may have negative effects on the reliability of the resultant
classifiers–especially for their ability to predict the class with minor examples. In the game
context, this often happens because most labelling methods distribute players into groups by
way of some pre-defined criteria. For example, in the disengagement-labelling method, the
statement, ‘if the activity level of a players decreases by at least two levels, the player will be
labelled as disengaging; otherwise, he or she is to be labelled as engaging’, is an example of
categorising players into classes based on the criterion activity level. This is similar to first-
purchasing prediction in which the splitting condition is whether a player has purchased any
item. Likewise, churn definitions by Runge et al. (2014) exhibit the same problem: Players
who were active on any date between days 0 and 6 are labelled churning players if no more
activity is seen in the next two weeks. A common problem with these labelling methods is
that a specific splitting condition has to be defined in the dataset for categorizing samples.
However, depending on the facts in different datasets, this line for splitting is not necessarily
drawn in the middle, and when it is biased to one side, the resultant classification problem
will also be highly biased.

Sometimes, this type of problem can be handled simply. In previous chapters, we in-
troduced a commonly used method, random undersampling, which can be used to balance
the class distribution. With this approach, all the experiments that were shown in previous
chapters were pre-balanced before they were used to train classifiers. However, a drawback
of this random-undersampling method is that, if the dataset is highly biased to one side, or
if the original dataset is small, too many data samples will have to be given up to achieve the
ideal balance, which, in return, may lead to weak classifiers. As discussed in 4.9 and Section
6.4, a quantitatively insufficient dataset is more likely to lead to weak classifiers when the
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dimension of the classifiers is high. To solve this problem, a widely used alternative balancing
approaches named SMOTE will be introduced and compared to the random-undersampling
method. Instead of removing data samples from the major class, because this method applies
oversampling strategy to create synthetic data for the minor class, all available information
can be kept. Based on the discussions of their comparison, this work also presents a new
labelling method named disengagement over varying dates for disengagement prediction in
Appendix A, preliminary results show that this approach is able to maintain an approxi-
mately balanced distribution of resultant classes without losing any samples. At the same
time, the classifiers trained under this condition are performing significantly better than
random guesses.

Main points in this chapter:

u investigate the impacts that can be brought by the bias of dataset in disengagement,
first purchase and churn predictions. Based on these, the influence brought by the
random undersampling can also be analysed,

u introduction to a classification balancing approach called SMOTE,

u description of the experiment for predicting disengagement and churn while being bal-
anced by SMOTE

7.2 Disengagement prediction – Biased

Chapter 6 of this work shows that event-frequency-based data representations are able to
achieve competitive predictive performance for predicting players’ disengagement trends.
However, the successful results achieved are based on a dataset that has been well balanced
with help from the random-undersampling method. In this section, to show the possible
negative impacts an imbalanced dataset may bring, the same experiment is conducted on the
raw, imbalanced dataset that was labelled by the disengagement-labelling method without
any balancing. Based on this experiment, comparisons will enable us to determine whether
the random-undersampling method has helped to improve the performance of classifiers. All
three games, including I Am Playr , Lyorke and Race Team Manager , are used for the
investigation. The experiments covered can be found in Figure 7.1.

7.2.1 Experiment Information

Most settings in these experiments remain the same as they were in the balanced situations
introduced in Chapter 6. As can be seen in Figure 7.1, the only change happens when
the balancing approach is selected. Different from before, the experiments in this section
compare the situations under both imbalanced (raw) and balanced datasets (with random
undersampling). Because the classification problems in this chapter are highly biased, po-
tential performance improvements are expected from applying the random undersampling
balancing method. Due to that AUROC is not sensitive to the balance changes, when choos-
ing the evaluation methods, AUPRC and Cohen’s kappa score can be more effective in the
result tables for showing the difference. A detailed explanation of the reason for this is given
in Section 4.8.2. Additionally, Figure 7.1 shows that feature selection has been disabled for
both version to get rid of any possible uncontrollable influences.
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Figure 7.1: Balancing Investigation Experiment of Disengagement Prediction

Table 7.1: Performance for predicting disengagement behaviours with event-frequency-based
data representation on the dataset of I Am Playr (with and without balancing)

Event
Frequency
without

Balancing

Event Feature
Balanced by
Undersam-

pling

T-Value P-Value Effect-Size
(Cohen’s D)

AUPRC
(disengaging)

LogisticRegression 0.19±0.0056 0.22±0.0082 -2.6596e+00 1.5962e-02 -1.1894
DecisionTree 0.27±0.0138 0.35±0.0097 -4.1478e+00 6.0442e-04 -1.8550

SVM 0.28±0.0522 0.22±0.0122 1.1722e+00 2.5642e-01 0.5242

AUPRC (non
disengaging)

LogisticRegression 0.91±0.0020 0.94±0.0024 -8.8866e+00 5.3170e-08 -3.9742
DecisionTree 0.96±0.0018 0.98±0.0010 -5.1248e+00 7.0918e-05 -2.2919

SVM 0.97±0.0011 0.97±0.0011 -7.7043e-01 4.5104e-01 -0.3445

AUROC
LogisticRegression 0.59±0.0077 0.72±0.0084 -1.1040e+01 1.9089e-09 -4.9371

DecisionTree 0.72±0.0142 0.81±0.0066 -4.9508e+00 1.0328e-04 -2.2141
SVM 0.75±0.0097 0.78±0.0092 -2.5738e+00 1.9124e-02 -1.1510

KAPPA
LogisticRegression 0.11±0.0068 0.20±0.0081 -7.9530e+00 2.6651e-07 -3.5567

DecisionTree 0.21±0.0213 0.23±0.0118 -5.8819e-01 5.6371e-01 -0.2630
SVM 0.00±0.0000 0.17±0.0107 -1.4804e+01 1.6056e-11 -6.6207

7.2.2 Experiment Details and Results

I Am Playr
At first, the results of the experiment conducted in I Am Playr are shown. As men-
tioned in Section 6.1.1, 1,354 and 12,044 players are labelled as disengaging and non-
disengaging, respectively, in the raw situation. To simplify, the ratio between the
two classes is around 1:8.895, which indicates that this classification problem is highly
imbalanced. In addition, under this situation, the event-frequency feature space was
formed by 4,740 events.

Results of the experiment can be found in Table 7.1. The notations shown are the same
as in the experiments of previous chapters. Before diving into the results, to recap,
event-frequency-based data representation is able to provide a competitive performance
for predicting disengagement under a balanced situation. The results are brought to
this table for easier comparison. As can be seen from the result table, in seven of 12
cases, the undersampling method helped to improve the performance of the classifiers
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Table 7.2: Performance for predicting disengagement behaviours with event-frequency-based
data representation on the dataset of Lyroke (with and without balancing)

Event
Frequency
without

Balancing

Event Feature
Balanced by
Undersam-

pling

T-Value P-Value Effect-Size
(Cohen’s D)

AUPRC
(disengaging)

LogisticRegression 0.29±0.0042 0.26±0.0042 4.1890e+00 5.5148e-04 1.8734
DecisionTree 0.26±0.0033 0.30±0.0091 -4.4558e+00 3.0541e-04 -1.9927

SVM 0.24±0.0072 0.25±0.0050 -1.1948e+00 2.4767e-01 -0.5343

AUPRC (non
disengaging)

LogisticRegression 0.95±0.0011 0.95±0.0019 -5.4212e-01 5.9439e-01 -0.2424
DecisionTree 0.96±0.0007 0.97±0.0009 -7.9837e+00 2.5230e-07 -3.5704

SVM 0.97±0.0006 0.97±0.0006 -1.3102e+00 2.0659e-01 -0.5860

AUROC
LogisticRegression 0.77±0.0033 0.77±0.0044 8.7409e-01 3.9358e-01 0.3909

DecisionTree 0.73±0.0042 0.78±0.0054 -6.9993e+00 1.5557e-06 -3.1302
SVM 0.77±0.0035 0.78±0.0035 -1.6372e+00 1.1895e-01 -0.7322

KAPPA
LogisticRegression 0.07±0.0042 0.24±0.0053 -2.2786e+01 1.0025e-14 -10.1903

DecisionTree 0.14±0.0070 0.22±0.0077 -7.5927e+00 5.1158e-07 -3.3956
SVM 0.00±0.0000 0.21±0.0027 -7.2414e+01 1.1918e-23 -32.3845

significantly. The results indicate that the classifiers were significantly improved in
most cases after the dataset was balanced by random undersampling. While being
trained with the raw dataset, the most serious case can be found when SVM was
applied, as the classifier and its performance was measured by Cohen’s kappa. In
this case, its performance is similar to that of a random classifier (which gives 0.0
in Cohen’s kappa), which cannot be accepted in practical problems. However, this
situation improved significantly when random undersampling was used to process the
raw dataset. It is notable that, because the test dataset is biased, the measurements
with the area under the ROC curve are more reliable than either the area under the
PR curve or Cohen’s kappa, as both can be affected by the bias (Jeni et al., 2013). As
can be seen from the area under the ROC curve, in two of three cases, the classifiers
behave significantly better when balanced by the random-undersampling method. To
verify that the phenomenon found in this experiment is unique, the same experiment
has been further tested in another two commercial games.

Lyroke
As was seen with respect to I Am Playr , the impact of a biased classification is serious.
To verify the generality of this issue, the same experiments conducted on Lyroke are
also introduced in this section. Unlike the balanced version seen in Section 6.1.1,
though no balancing method was applied, this classification problem is highly biased
to one side. There are only 3,495 disengaging players and 25,012 non-disengaging users
(the ratio is around 1:7.16). While the event-frequencies were used to provide the data
representation, a total of 7,395 events were used as features for training classifiers.

Table 7.2 shows what happens when event-frequency-based data representation is used
to predict disengagement in the raw situation. As with I Am Playr , studied in Chapter
6, event-frequency-based data representation was able to provide competitive predic-
tion in Lyroke under a balanced situation. However, when the classification problem
is highly biased to one side, the performance is much affected. As the table indicates,
in six of the 12 cases, the classifiers’ performance can be improved by the random-
undersampling balancing method. Except for one case (classifier: logistic regression,
measurement: area under the PR curve when the disengaging players are positive ex-
amples), the random-undersampling method is able either to bring up the performance
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Table 7.3: Performance for predicting disengagement behaviours with event-frequency-based
data representation on the dataset of Race Team Manager (with and without balancing)

Event
Frequency
without

Balancing

Event Feature
Balanced by
Undersam-

pling

T-Value P-Value Effect-Size
(Cohen’s D)

AUPRC
(disengaging)

LogisticRegression 0.27±0.0024 0.27±0.0026 4.9298e-01 6.2799e-01 0.2205
DecisionTree 0.28±0.0029 0.31±0.0050 -5.2250e+00 5.7197e-05 -2.3367

SVM 0.30±0.0050 0.30±0.0031 7.2357e-01 4.7863e-01 0.3236

AUPRC (non
disengaging)

LogisticRegression 0.92±0.0025 0.93±0.0018 -2.7320e+00 1.3687e-02 -1.2218
DecisionTree 0.96±0.0006 0.97±0.0006 -8.9669e+00 4.6528e-08 -4.0101

SVM 0.97±0.0006 0.97±0.0005 1.6936e-01 8.6740e-01 0.0757

AUROC
LogisticRegression 0.73±0.0049 0.75±0.0027 -2.8740e+00 1.0097e-02 -1.2853

DecisionTree 0.75±0.0031 0.79±0.0028 -7.4621e+00 6.5084e-07 -3.3371
SVM 0.81±0.0030 0.80±0.0026 1.9591e-01 8.4688e-01 0.0876

KAPPA
LogisticRegression 0.05±0.0041 0.25±0.0044 -3.2153e+01 2.3534e-17 -14.3791

DecisionTree 0.13±0.0051 0.25±0.0049 -1.5904e+01 4.8238e-12 -7.1124
SVM 0.01±0.0034 0.25±0.0038 -4.4606e+01 6.9706e-20 -19.9482

of classifiers or at least performs as well as the bias cases. In addition, similar to
what was observed with respect to I Am Playr , the SVM acts like a random classifier
when measured by Cohen’s kappa in this game. In addition, when the area under the
ROC curve is used in the measurements, the random-undersampling method brings
significant improvements to the performance of a decision-tree classifier, whereas no
significant difference can be noted when the other classifiers are used. This further
verifies the observation made in the I Am Playr experiment: that when the target
is to get a classifier with the ability to predict both classes, classifiers trained on the
balanced dataset are more likely to have better or at least similar performance than
classifiers trained with the biased dataset. Finally, the last game developed by a dif-
ferent company is also tested in the next section.

Race Team Manager
The same experiment was also conducted in Race Team Manager , where 3,416 and
22,957 players showed a trend of disengaging and engaging, respectively. Like the
other two experiments, the bias is serious: The ratio is about 1:6.72. After the event-
frequency-based data representation was applied, 464 game events could be used as
features.

Table 7.3 displays the results of the experiment. Results for predicting first purchases
with event-frequency-based data representation are displayed in Table 7.3. Similar
to what was found in the study of Lyroke , in six of the 12 cases, the performance
of classifiers is significantly improved when the dataset is processed by the random-
undersampling method. In other words, the classifiers trained under a biased class
distribution have fewer chances to provide a reliable performance. As in the other two
experiments, SVM still performs like a random classifier when measured by Cohen’s
kappa in the original, biased dataset. As before, when the target is to achieve a clas-
sifier that can be used to predict both classes (with the area under the ROC curve
being the prior consideration), the performance of a decision-tree classifier is signifi-
cantly improved, whereas the other two classifiers behave like they did when they were
trained with the raw, imbalanced dataset. This further helps to support the obser-
vation that the classifiers trained with a balanced dataset exhibit significantly better
performances in most cases. While considering their performance for predicting both
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Figure 7.2: The number of cases where methods achieve significantly better performance
and the number of cases where there is no difference found for predicting disengagement
behaviours with undersampling

classes, classifiers tend to behave like those trained with the imbalanced dataset and
behave significantly better in some cases.

7.2.3 Summary

Three experiments were conducted on different commercial games for understanding how
a biased classification problem can affect the reliability of the trained classifier. As sum-
marised in Figure 7.2, in most cases of these three experiments, a common fact is that
classifiers trained under the raw biased datasets can be significantly improved by a random-
undersampling balancing method. This indicates that the bias of class distribution may lead
to weak classifiers in several cases. Serious problems can be found when SVM is applied as
the classifier and measured by Cohen’s kappa. The performance the classifiers achieved, in
this case, are similar to those of a random classifier. In addition, while the target is to get a
classifier that has the ability to predict both classes (i.e., the area under the ROC curve was
considered), classifiers trained with a balanced dataset behave significantly better than those
trained with the biased dataset in several cases and behave like them in the rest of the cases.
According to the results of the experiment, the classifiers are more likely to achieve better
predictive results, and the bias can be effectively improved for predicting disengagement by
using a balancing method like random-undersampling.

In the next section, to verify the generality of the observations made in this section,
similar experiments will be conducted with respect to another highly biased problem: First-
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Figure 7.3: Balancing Investigation Experiment of First Purchase Prediction

purchasing prediction.

7.3 First-purchase prediction – Biased

Experiments in the last section show that the random-undersampling method is able to make
significant improvements to the quality of models used for predicting the disengagement
behaviours in most cases. As another successful predictive task in which event-frequency-
based data representation behaved competitively, first-purchasing tasks have been shown to
be highly biased in all three of the games we worked on. In this section, the performance
of classifiers trained with the raw dataset (highly biased) is compared with the performance
of those processed by undersampling to determine whether random undersampling always
helps in this highly biased task. Because that the bias in these experiments are serious as
well, improvements are also expected from the random undersampling balancing method.
The experiments covered are depicted in Figure 7.3.

7.3.1 Experiment Information

While most of the experimental settings used in this section were kept the same as those
discussed in Section 5.2.2, as can be seen in the Figure 7.3, a change is made at the stage in
which the balancing approach is selected. This is done to determine whether the random-
undersampling method can help with the first-purchasing prediction problem.

7.3.2 Experiment Details and Results

I Am Playr
As was explained in Section 5.2.2, the first-purchasing problem is also highly biased.
When labelled by the first-purchasing labelling method, as introduced in Section 5.2.2,
there were 489 players who at least purchased one item and 88,568 non-paying ones.
This ratio is about 1:181.12, which is more serious than that encountered in the datasets
considered in the disengagement-prediction problems. After the event-frequency-based
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Table 7.4: Performance for predicting first-purchasing behaviours with event-frequency-based
data representation on the dataset of I Am Playr (with and without balancing)

Event
Frequency
without

Balancing

Event Feature
Balanced by
Undersam-

pling

T-Value P-Value Effect-Size
(Cohen’s D)

AUPRC (first
purchase)

LogisticRegression 0.71±0.0189 0.39±0.0161 1.2335e+01 3.2349e-10 5.5164
DecisionTree 0.76±0.0107 0.49±0.0075 1.9210e+01 1.9296e-13 8.5909

SVM 0.24±0.0636 0.07±0.0068 2.5111e+00 2.1800e-02 1.1230

AUPRC (non
first purchase)

LogisticRegression 1.00±0.0002 1.00±0.0002 -1.7919e+00 8.9978e-02 -0.8014
DecisionTree 1.00±0.0001 1.00±0.0000 -5.6973e+00 2.1072e-05 -2.5479

SVM 1.00±0.0001 1.00±0.0000 -1.6818e+00 1.0987e-01 -0.7521

AUROC
LogisticRegression 0.95±0.0101 0.98±0.0049 -2.1638e+00 4.4174e-02 -0.9677

DecisionTree 0.90±0.0101 0.97±0.0043 -5.9087e+00 1.3594e-05 -2.6425
SVM 0.95±0.0036 0.96±0.0021 -1.5067e+00 1.4924e-01 -0.6738

KAPPA
LogisticRegression 0.67±0.0119 0.16±0.0037 3.9600e+01 5.8186e-19 17.7097

DecisionTree 0.74±0.0104 0.12±0.0051 5.0791e+01 6.8506e-21 22.7145
SVM 0.02±0.0159 0.07±0.0024 -3.3961e+00 3.2191e-03 -1.5188

data representation was applied, 2460 events can be included for representing the
players’ behaviours.

Results of the experiment can be found in Table 7.4, where the notations shown are
the same as for the experiments in the previous chapters. The results are surprisingly
quite different from what was observed in the disengagement-prediction cases. As can
be seen from the table, random undersampling was not able to provide significant dif-
ferences in most cases. On the contrary, in four of 12 cases, the classifiers trained on
the raw dataset behave significantly better, whereas random undersampling improved
the performance in only three of 12 cases. And in the cases in which undersampling
helped, one of them is less informative because it happened when the area under the
PR curve was used, and the non-first purchasers were considered as positive exam-
ples, due to the bias, the random guess can even reach a similar score in this case.
Although the experiments in Section 5.2.2 show that classifiers trained with the under-
sampling method are able to achieve significantly better performance than a random
classifier, the observation in this experiment issues a warning about using a random-
undersampling method. This method involves removing data points from the dataset
for balancing, and in a very highly biased dataset like this, too much data needs to
be removed. When some important informant is removed, the classifiers might also be
negatively impacted. However, notice that although random undersampling did not
help as much as it did in the disengagement-prediction tasks, if the target is to get a
classifier which is good at predicting both classes (while measured by the area under
the ROC curve), the random-undersampling method can still help decision tree achieve
significantly better results with the other two cases, as did the classifiers trained on
the raw dataset. This observation still matches what has been seen for predicting
disengagement.

Lyroke
To see if the problem found in As can seen in I Am Playr , the same experiments
were also run in Lyroke , too. As introduced in Section 5.2.2, when labelled by the
first purchasing labelling method, the raw dataset is more biased (with a ratio of
1:594.76) than that of I Am Playr . In this game, there are 509 first paying users and
279,829 players who have not purchase any game item. When event-frequency-based
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Table 7.5: Performance for predicting first-purchasing behaviours with event frequency-based
data representation on the dataset of Lyroke (with and without balancing)

Event
Frequency
without

Balancing

Event Feature
Balanced by
Undersam-

pling

T-Value P-Value Effect-Size
(Cohen’s D)

AUPRC (first
purchase)

LogisticRegression 0.49±0.0254 0.21±0.0145 9.1937e+00 3.2039e-08 4.1116
DecisionTree 0.95±0.0080 0.41±0.0093 4.1697e+01 2.3208e-19 18.6474

SVM 0.06±0.0125 0.04±0.0025 1.2495e+00 2.2750e-01 0.5588

AUPRC (non
first purchase)

LogisticRegression 1.00±0.0000 1.00±0.0001 1.0716e+00 2.9807e-01 0.4792
DecisionTree 1.00±0.0000 1.00±0.0000 -2.3137e+00 3.2710e-02 -1.0347

SVM 1.00±0.0000 1.00±0.0000 -1.8741e+00 7.7248e-02 -0.8381

AUROC
LogisticRegression 0.98±0.0030 0.97±0.0048 1.4202e+00 1.7264e-01 0.6351

DecisionTree 0.96±0.0063 0.97±0.0013 -2.3751e+00 2.8864e-02 -1.0622
SVM 0.97±0.0058 0.97±0.0007 -1.3897e+00 1.8158e-01 -0.6215

KAPPA
LogisticRegression 0.48±0.0261 0.06±0.0013 1.5043e+01 1.2294e-11 6.7272

DecisionTree 0.94±0.0075 0.05±0.0036 1.0292e+02 2.1609e-26 46.0260
SVM 0.00±0.0000 0.03±0.0013 -2.1088e+01 3.8518e-14 -9.4309

data representation was used, a total of 7,832 events were used as features for training
classifiers.

Table 7.5 shows how event-frequency-based data representation performs in predicting
the first-purchase behaviours in the raw situation. Like what has been observed in I
Am Playr , random undersampling is not able to make significant improvements to
the performance of classifiers. As was the case with I Am Playr , there are four of 12
cases in which the classifiers trained on the raw dataset behaved significantly better
whereas there is only one case in which random-undersampling significantly helped.
This verifies that the random-undersampling method is sometimes risky if too much
information needs to be removed. However, like what has been found for I Am Playr ,
if the target was to train classifiers that can predict both classes (measured by the area
under ROC), the, though random-undersampling did not help improve the performance
of the classifiers significantly, it did not have any negative effects either.

Race Team Manager
Finally, the same experiments have also been done in Race Team Manager where there
are 511 first purchasers and 170,333 players who did not make any purchases. As in the
previous two games, the bias ratio in this game is about 1:333.33, which is also highly
biased. When event-frequency-based data representation is applied, 1,531 events are
included.

Table 7.6 displays the performance classifiers reached when trained under both the raw
dataset and the dataset balanced by random undersampling. Unlike the other experi-
ments, in this experiment, random undersampling helped to improve the performance
significantly in four of 12 cases, whereas the classifiers trained on the raw dataset were
able to achieve better performances in two of 12 cases. By comparing the results in
this game to those of the other two, we can see that whether random-undersampling
helps is dependent on the dataset. However, as can be seen, when measured by the area
under the ROC curve, in two of the three cases the random-undersampling method was
able to bring significant benefits to the performance of the classifiers. This matches
the observations made for the other two games.
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Table 7.6: Performance for predicting first-purchasing behaviours with event-frequency-based
data representation on the dataset of Race Team Manager (with and without balancing)

Event
Frequency
without

Balancing

Event Feature
Balanced by
Undersam-

pling

T-Value P-Value Effect-Size
(Cohen’s D)

AUPRC (first
purchase)

LogisticRegression 0.23±0.0139 0.18±0.0129 2.4944e+00 2.2570e-02 1.1155
DecisionTree 0.29±0.0217 0.32±0.0120 -1.2500e+00 2.2732e-01 -0.5590

SVM 0.08±0.0111 0.09±0.0090 -4.4975e-01 6.5826e-01 -0.2011

AUPRC (non
first purchase)

LogisticRegression 1.00±0.0003 1.00±0.0004 -2.0845e+00 5.1630e-02 -0.9322
DecisionTree 0.99±0.0002 1.00±0.0000 -3.0347e+01 6.5414e-17 -13.5718

SVM 1.00±0.0003 1.00±0.0001 -2.8128e+00 1.1515e-02 -1.2579

AUROC
LogisticRegression 0.86±0.0147 0.92±0.0091 -3.3067e+00 3.9231e-03 -1.4788

DecisionTree 0.62±0.0115 0.95±0.0029 -2.6364e+01 7.8077e-16 -11.7904
SVM 0.94±0.0096 0.96±0.0033 -2.1863e+00 4.2242e-02 -0.9778

KAPPA
LogisticRegression 0.25±0.0194 0.07±0.0010 8.5592e+00 9.2409e-08 3.8278

DecisionTree 0.31±0.0274 0.05±0.0014 8.8089e+00 6.0548e-08 3.9395
SVM 0.02±0.0139 0.06±0.0008 -2.7002e+00 1.4645e-02 -1.2076

7.3.3 Summary

As has been summarised in Figure 7.4, different from the expectations of the research, the
experiments described in this section issue a warning concerning the use of the random-
undersampling method for balancing classification problems. When the bias is serious, re-
moving too much information is risky in most cases. In addition, whether the random-
undersampling method can still help in this case is dependent on individual datasets. How-
ever, similar to what was discovered while predicting disengagement behaviours, a common
observation made in all three games is that, if the target is to get a classifier that can predict
both classes well (measurement by the area under ROC), random undersampling is able to
help in most cases and at least not bring significantly negative impacts. Therefore, depending
on the predictive target and the datasets, one may consider whether random undersampling
is the right technology.

Until now, experiments have shown that random-undersampling is able to help in most
cases for predicting disengagement and some cases for predicting first-purchase with risks.
However, even for the first-purchase prediction, we have shown in Section 5.2.2 that the
performance of classifiers is significantly better than the random classifiers. As discussed in
Section 6.4, the real challenging task happens when the total number of samples is not large
enough. When this happens, the performance of classifiers created with higher-dimensional
data representations might be affected. The experiments of Section 6.4 shown so far are
about performance of classifiers trained with dataset that has been balanced with the random
undersampling, in the next section, it is meaningful to investigate classifiers that were trained
with its raw imbalanced dataset and work out if a random-undersampling method was able
to help in the cases when the dataset is relatively small.

7.4 Churn prediction – Biased

As a challenging predictive purpose introduced in Section 6.4, when the event-frequency-
based data representation is used for predicting churn, the number of samples seems to
become insufficient for this highly dimensional method. This situation becomes even more
challenging when the dataset is highly biased (for example, when the churn-labelling method
was applied to Race Team Manager ) and the random-undersampling method was applied.
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Figure 7.4: The number of cases where methods achieve significantly better performance
and the number of cases where there is no difference found for predicting first purchase
behaviours with undersampling

In this section, classifiers trained with the raw, imbalanced dataset are compared to the
undersampling balanced situations to determine whether the random-undersampling method
still helps in this challenging case. As in the previous section, all three games–I Am Playr
, Lyorke and Race Team Manager –are used for the comparison. The experiments covered
are depicted in Figure 7.5.

7.4.1 Experiment Information

While most of the experimental settings used in this section are the same as those shown in
Section 6.4 (as can be seen in Figure 7.5), the only change happens at the stage in which the
balancing approach is selected. To determine whether random-undersampling is still able
to help in this challenging situation, classifiers trained without any balancing method were
included for the comparisons.

7.4.2 Experiment Details and Results

I Am Playr
As discussed in 6.4, when the churn labelling is applied to the game, the bias situation
is not very serious (132 churners and 124 non-churners). Therefore, though random
undersampling is applied, it may lead to little difference. As explained above, the
number of data samples is relatively small compared to the dimensionality (2,394) of



CHAPTER 7. BIASED PLAYER BEHAVIOUR MODELLING 116

Figure 7.5: Balancing Investigation Experiment of Churn Prediction

Table 7.7: Performance for predicting churn behaviours with event-frequency-based data
representation on the dataset of I Am Playr (with and without balancing)

Event
Frequency
without

Balancing

Event Feature
Balanced by
Undersam-

pling

T-Value P-Value Effect-Size
(Cohen’s D)

AUPRC
(churning)

LogisticRegression 0.49±0.0144 0.50±0.0146 -3.2460e-01 7.4923e-01 -0.1452
DecisionTree 0.66±0.0219 0.69±0.0198 -1.0184e+00 3.2200e-01 -0.4554

SVM 0.71±0.0279 0.66±0.0339 9.9225e-01 3.3423e-01 0.4437

AUPRC (non
churning)

LogisticRegression 0.54±0.0229 0.54±0.0203 1.3884e-01 8.9111e-01 0.0621
DecisionTree 0.61±0.0344 0.72±0.0302 -2.2975e+00 3.3801e-02 -1.0275

SVM 0.67±0.0443 0.47±0.0495 2.9349e+00 8.8506e-03 1.3125

AUROC
LogisticRegression 0.49±0.0261 0.50±0.0254 -4.4546e-01 6.6130e-01 -0.1992

DecisionTree 0.59±0.0294 0.66±0.0324 -1.4967e+00 1.5181e-01 -0.6693
SVM 0.51±0.0208 0.51±0.0283 -1.8168e-01 8.5786e-01 -0.0813

KAPPA
LogisticRegression 0.02±0.0534 0.09±0.0597 -7.6034e-01 4.5689e-01 -0.3400

DecisionTree 0.09±0.0557 0.29±0.0558 -2.4738e+00 2.3553e-02 -1.1063
SVM 0.00±0.0000 0.06±0.0297 -1.8477e+00 8.1152e-02 -0.8263

the event-frequency-based data representation model. For this reason, the performance
of classifiers shown in Table 7.7 might be close to random classifiers in several cases.

Results of the experiment can be found in Table 7.7, where the notations shown are the
same as in the experiments of the previous chapters. As can be seen, little significant
difference is found between classifiers trained on the imbalanced and on the under-
sampled dataset, as expected. The only exceptional case (measurement: area under
the PR curve with the non-churners as positive, classifier: SVM) is when the random-
undersampling method brought significant negative impacts to the performance of the
classifiers. This might because, some important information was removed when the
random-undersampling method was applied. This experiment shows that there might
be limited effects that a random-undersampling method can bring to the performance
of classifiers when the number of data samples is relatively small. In addition, it may
sometimes affect the quality of the classifiers if important information was removed by
chance. To verify the observations from this experiment, similar experiments from the
other two games are also shown.
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Table 7.8: Performance for predicting churn behaviours with event-frequency-based data
representation on the dataset of Lyroke (with and without balancing)

Event
Frequency
without

Balancing

Event Feature
Balanced by
Undersam-

pling

T-Value P-Value Effect-Size
(Cohen’s D)

AUPRC
(churning)

LogisticRegression 0.75±0.0289 0.77±0.0361 -2.9401e-01 7.7211e-01 -0.1315
DecisionTree 0.85±0.0305 0.82±0.0283 6.4880e-01 5.2466e-01 0.2902

SVM 0.79±0.0291 0.78±0.0198 4.1100e-01 6.8592e-01 0.1838

AUPRC (non
churning)

LogisticRegression 0.80±0.0301 0.79±0.0317 7.7560e-02 9.3903e-01 0.0347
DecisionTree 0.83±0.0274 0.81±0.0248 3.1918e-01 7.5327e-01 0.1427

SVM 0.63±0.0417 0.56±0.0358 1.3367e+00 1.9797e-01 0.5978

AUROC
LogisticRegression 0.78±0.0267 0.78±0.0310 -4.9334e-03 9.9612e-01 -0.0022

DecisionTree 0.81±0.0344 0.80±0.0272 3.5259e-01 7.2849e-01 0.1577
SVM 0.72±0.0310 0.71±0.0163 2.4523e-01 8.0906e-01 0.1097

KAPPA
LogisticRegression 0.46±0.0518 0.48±0.0631 -2.2090e-01 8.2766e-01 -0.0988

DecisionTree 0.49±0.0699 0.42±0.0530 7.6619e-01 4.5350e-01 0.3426
SVM 0.03±0.0481 0.24±0.0270 -3.5784e+00 2.1482e-03 -1.6003

Lyroke
As with I Am Playr , as discussed in Section 6.4, the bias is not serious (127 churners
and 103 non-churner) in this case. For this reason, little difference might be found
between the classifiers trained on the raw, imbalanced dataset and the undersampled
dataset in Table 7.8.

Table 7.8 shows how the random-undersampling method has influenced the perfor-
mance of the classifiers. As can be seen, the results shown in this table are similar to
what was noticed in I Am Playr where no difference is found between the two situa-
tions in most cases. This might be because the bias in both games was not serious and
random undersampling did not remove much information to reach the balancing point.
The only exceptional case (measurement: Cohen’s kappa, classifier: SVM) shows that
random undersampling helped to improve the performance of the classifiers in this case
only.

Race Team Manager
Unlike the datasets of other games, after processing by the churn-labelling method, this
dataset shows a high bias. This fact makes the game more challenging for the random-
undersampling method, as the original number of samples is only 260 (206 churners and
54 non-churners), which will be further reduced to 108 by the random-undersampling
method. Therefore, even though this dataset is highly biased, improvements from
random-undersampling are not expected to be significant.

Table 7.3 displays the results of the experiment. Similar to expected, though this
dataset is highly biased and the number of samples has been even reduced by the
random-undersampling method, no significant difference can be found in the compari-
son. This suggests that, if the original dataset is not quantitatively sufficient relative
to the dimensionality of the models, random undersampling can hardly improve the
situation.

7.4.3 Summary

This section reports on three experiments that were conducted to predict churn, which is a
challenging predictive task because of the quantitative limitation of the labelled dataset. As
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Table 7.9: Performance for predicting churn behaviours with event-frequency-based data
representation on the dataset of Race Team Manager (with and without balancing)

Event
Frequency
without

Balancing

Event Feature
Balanced by
Undersam-

pling

T-Value P-Value Effect-Size
(Cohen’s D)

AUPRC
(churning)

LogisticRegression 0.78±0.0209 0.78±0.0253 -2.0248e-02 9.8407e-01 -0.0091
DecisionTree 0.81±0.0097 0.81±0.0175 -2.9703e-02 9.7663e-01 -0.0133

SVM 0.79±0.0306 0.83±0.0285 -7.1713e-01 4.8250e-01 -0.3207

AUPRC (non
churning)

LogisticRegression 0.27±0.0370 0.36±0.0490 -1.2846e+00 2.1520e-01 -0.5745
DecisionTree 0.31±0.0491 0.27±0.0329 6.7847e-01 5.0610e-01 0.3034

SVM 0.23±0.0292 0.30±0.0460 -1.0974e+00 2.8691e-01 -0.4908

AUROC
LogisticRegression 0.46±0.0408 0.52±0.0432 -9.7574e-01 3.4213e-01 -0.4364

DecisionTree 0.49±0.0320 0.50±0.0376 -1.1562e-01 9.0924e-01 -0.0517
SVM 0.46±0.0554 0.55±0.0577 -1.0665e+00 3.0029e-01 -0.4770

KAPPA
LogisticRegression -0.06±0.0518 0.03±0.0417 -1.1912e+00 2.4906e-01 -0.5327

DecisionTree 0.07±0.0583 0.03±0.0375 6.5183e-01 5.2275e-01 0.2915
SVM 0.00±0.0000 -0.04±0.0451 8.2127e-01 4.2224e-01 0.3673

can be seen from the summarised Figure 7.6, the random-undersampling method behaves
randomly in these experiments and was not able to make signification improvements in
most cases. In addition, as can be found in the study of I Am Playr , this balancing
method may sometimes have a negative impact on the performance of classifiers if some
important information is removed by chance. This matches some cases that we noticed when
predicting first purchases. Combining all investigations conducted for understanding the
random-undersampling method, we might conclude that a random-undersampling method
is more likely to be beneficial to the training of classifiers if the number of data samples is
sufficient compared to the dimensionality of the data representations. In addition, it might
sometimes have a negative impact if important information is removed. To help with the
drawbacks of the random-undersampling method, an alternative, balanced approach, named
SMOTE, may help to improve the performance of the classifiers without removing further
important information.

7.5 SMOTE Balancing

SMOTE, short for synthetic-minority over-sampling technique, was introduced by Chawla
et al. (2002). Instead of removing samples by random undersampling, this method generates
synthetic data samples for the minor class by oversampling based on their k nearest neigh-
bours. The original algorithm needs a parameter to control how many samples in minor class
needs to be oversampled. To accurately balance the classification problem, in this work, this
algorithm modified it to keep creating new synthetics based on samples in the minor class
until the difference between two classes disappears. The modified SMOTE can be found in
Algorithm 4.

This algorithm can balance class distributions for training more reliable classifiers based
on limited resources. However, it also suffers from two aspects of problems. First, according
to Wang et al. (2006), SMOTE cannot be used to generate synthetic data for balancing
while the target classes are not linearly separable. The reason can be easily discovered in
Figure 7.7. In addition, in some of the experiments to be shown in this section, if the data
representation is highly dimensional (e.g., event frequency-based data representation) and
the amount of synthetic data to be generated is large (while the data is highly biased to
one side), SMOTE will require much time for generating these synthetic data samples. For
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Figure 7.6: The number of cases where methods achieve significantly better performance
and the number of cases where there is no difference found for predicting churn behaviours
with undersampling

Algorithm 4 SMOTE For Balancing

1: procedure SMOTE For Balancing
2: diff = numberOfSamplesInMajorClass - numberOfSamplesInMinorClass
3: generatedNumber = 0
4: minorClassCopy = Copy(minorClass)
5: while generatedNumber < diff do
6: Pick random sample i ∈ minorClassCopy
7: Find its k nearest neighbours k neighbours
8: Get a random neighbour n from k neighbours
9: Create an empty sample x

10: for each feature f used in data representation do
11: random discount c ∈ [0, 1]
12: x[f ] = i[f ] + (n[f ]− i[f ]) ∗ c
13: end for
14: minorClass = minorClass ∪ x
15: generatedNumber += 1
16: end while
17: end procedure
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Table 7.10: The specifications of the server for running the experiments
Specifications Details

CPU 8 cores

Memory 56 GB

Storage 400 GB

Operating System Windows Server 2012

Figure 7.7: On the left, when the classes can be linearly separated, SMOTE is able to
generate new synthetic data in the right place. However, when the classes can only be split
by a non-linear classifier, SMOTE may create new synthetic data on the wrong side.

examples, in this work, while the SMOTE method was applied for balancing the predicting
first purchase, because the difference between the number of paying users and non-paying
users is large ( 489:885,681 in I Am Playr , 509:279,829 in Lyroke and 511:170,333 in Race
Team Manager ) and the dimensionality of the event frequency-based data representation is
high (2,460 events in I Am Playr , 7,832 events in Lyroke and 1,531 events in Race Team
Manager ), although the experiment has kept running for seven days on the server described
in Table 7.10, the results still cannot be gained. Because of this, while investigating the
improvements that might be brought by SMOTE in sections 7.6 and 7.7, the experiments
concerning first-purchase prediction are not included.

As Section 4.9 explains, this work runs every experiment with 10-fold cross-validation
to avoid overfitting problems. SMOTE, as an oversampling method, can easily lead to
overfitting problem (as it generates many synthetic data points similar to the original ones)
if the classifiers trained are not tested in the right way. It would be natural to perform
SMOTE upon the whole dataset first and then run a normal 10-fold cross-validation on
the oversampled dataset. However, though 10-fold cross-validation was applied to avoid
overfitting, the split training and testing set are no longer independent, as synthetic samples
distributed in the testing set might be generated based on some samples that were left out of
the training set. To solve this issue, the way to combine k-fold cross-validation and SMOTE
is to generate synthetic samples only inside each experiment so that the test set has already
been kept away and is therefore guaranteed to be blind for the classifiers. The modified
k-fold cross-validation with SMOTE can be found in Algorithm 5.
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Algorithm 5 K–Fold Cross-validation with SMOTE

1: procedure K–Fold Cross-validation with SMOTE
2: Split Dataset into k pieces
3: resultSet = { }
4: for each piece i ∈ k do
5: testingSet = i, trainingSet = k \ i
6: OverSampledTrainingSet = SMOTEForBalancing(trainingSet)
7: Train classifier with OverSampledTrainingSet
8: Test classifier with testingSet and store in currentResult
9: resultSet = resultSet ∪ currentResult

10: end for
11: Calculate averaged result from elements in resultSet
12: end procedure

This section introduces another alternative balancing method SMOTE which is better
for dealing with small datasets because it performs oversampling instead of undersampling
on data samples. However, because no method is perfect for all types of problems, the
detailed procedure and its potential drawbacks have also been covered. In the next section,
experiments will be tested in all three games and compared with the random-undersampling
method to evaluate the performance of SMOTE.

7.6 Disengagement Prediction – SMOTE

To determine whether the SMOTE method is able to replace the random undersampling ap-
proach, this section tests the disengagement prediction. As was observed in the experiments
shown in Section 7.2, random-undersampling method is already able to make a positive
impact in most cases. Therefore, the experiments in this section focus on investigating
whether the SMOTE method is able to make a difference. In each experiment, the per-
formance of classifiers trained with a SMOTE-balanced dataset are not only be compared
with those trained with the raw dataset but are also be compared with those trained with
the random-undersampling method. As has been investigated by Dittman et al. (2014),
random undersampling are expected to achieve better performance across the three games.
Experiments in this section follow the procedure in Figure 7.8.

I Am Playr
The disengagement in I Am Playr , as introduced in the experiment with the random-
undersampling method, is highly biased to the negative (non-disengaging) side where
the ratio is around 1:8.895 (1,354 and 12,044 players on either side, respectively).

Tables 7.11 and 7.12 display the comparison between the performances of classifiers
trained under the balanced (by SMOTE) dataset and those trained under the raw
(imbalanced) dataset and the other balanced (by random undersampling) dataset. As
can be seen upon considering the comparison of SMOTE and the raw dataset, in five
of 12 cases, the SMOTE balancing method did significantly improve the performance
of the classifiers. However, according to Table 7.12, this is not as good as the classifiers
trained under the random-undersampled dataset. As can be seen, there are three cases
in which random undersampling did significantly better but only one case in which
SMOTE significantly helped the classifiers. This suggests that SMOTE is able to help
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Figure 7.8: SMOTE Investigation Experiment of Disengagement Prediction

Table 7.11: Performance for prediction disengagement with SMOTE on the dataset of I Am
Playr

Event Feature
without

Balancing

Event Feature
Balanced by

SMOTE

T-Value P-Value Effect-Size
(Cohen’s D)

AUPRC
(disengaging)

LogisticRegression 0.19±0.0056 0.25±0.0089 -5.2301e+00 5.6573e-05 -2.3390
DecisionTree 0.27±0.0138 0.28±0.0052 -4.5857e-01 6.5203e-01 -0.2051

SVM 0.28±0.0522 0.21±0.0109 1.3983e+00 1.7902e-01 0.6253

AUPRC (non
disengaging)

LogisticRegression 0.91±0.0020 0.94±0.0033 -5.8370e+00 1.5765e-05 -2.6104
DecisionTree 0.96±0.0018 0.96±0.0008 2.4267e+00 2.5962e-02 1.0852

SVM 0.97±0.0011 0.97±0.0012 -1.3240e-01 8.9614e-01 -0.0592

AUROC
LogisticRegression 0.59±0.0077 0.71±0.0097 -9.2225e+00 3.0573e-08 -4.1244

DecisionTree 0.72±0.0142 0.66±0.0100 3.6181e+00 1.9664e-03 1.6181
SVM 0.75±0.0097 0.78±0.0085 -2.0486e+00 5.5373e-02 -0.9162

KAPPA
LogisticRegression 0.11±0.0068 0.25±0.0119 -9.2718e+00 2.8217e-08 -4.1465

DecisionTree 0.21±0.0213 0.19±0.0065 8.5339e-01 4.0466e-01 0.3816
SVM 0.00±0.0000 0.18±0.0084 -2.0509e+01 6.2377e-14 -9.1720

Table 7.12: Performance for prediction disengagement with SMOTE or undersampling on
the dataset of I Am Playr

Event Feature
Balanced by
Undersam-

pling

Event Feature
Balanced by

SMOTE

T-Value P-Value Effect-Size
(Cohen’s D)

AUPRC
(disengaging)

LogisticRegression 0.22±0.0082 0.25±0.0089 -2.3803e+00 2.8556e-02 -1.0645
DecisionTree 0.35±0.0097 0.28±0.0052 5.7235e+00 1.9951e-05 2.5596

SVM 0.22±0.0122 0.21±0.0109 7.1722e-01 4.8245e-01 0.3207

AUPRC (non
disengaging)

LogisticRegression 0.94±0.0024 0.94±0.0033 1.2191e+00 2.3852e-01 0.5452
DecisionTree 0.98±0.0010 0.96±0.0008 1.1996e+01 5.0753e-10 5.3647

SVM 0.97±0.0011 0.97±0.0012 6.3140e-01 5.3572e-01 0.2824

AUROC
LogisticRegression 0.72±0.0084 0.71±0.0097 9.3849e-01 3.6042e-01 0.4197

DecisionTree 0.81±0.0066 0.66±0.0100 1.1654e+01 8.0695e-10 5.2119
SVM 0.78±0.0092 0.78±0.0085 6.4243e-01 5.2869e-01 0.2873

KAPPA
LogisticRegression 0.20±0.0081 0.25±0.0119 -2.9943e+00 7.7820e-03 -1.3391

DecisionTree 0.23±0.0118 0.19±0.0065 2.4687e+00 2.3805e-02 1.1040
SVM 0.17±0.0107 0.18±0.0084 -1.0109e+00 3.2546e-01 -0.4521
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Table 7.13: Performance for prediction disengagement with SMOTE on the dataset of Lyroke
Event Feature

without
Balancing

Event Feature
Balanced by

SMOTE

T-Value P-Value Effect-Size
(Cohen’s D)

AUPRC
(disengaging)

LogisticRegression 0.29±0.0042 0.27±0.0033 2.1944e+00 4.1571e-02 0.9814
DecisionTree 0.26±0.0033 0.27±0.0073 -1.4955e+00 1.5212e-01 -0.6688

SVM 0.24±0.0072 0.28±0.0075 -3.2814e+00 4.1477e-03 -1.4675

AUPRC (non
disengaging)

LogisticRegression 0.95±0.0011 0.95±0.0014 5.4585e-01 5.9187e-01 0.2441
DecisionTree 0.96±0.0007 0.95±0.0008 8.4455e+00 1.1231e-07 3.7770

SVM 0.97±0.0006 0.97±0.0006 -3.8566e+00 1.1561e-03 -1.7247

AUROC
LogisticRegression 0.77±0.0033 0.76±0.0031 1.4538e+00 1.6321e-01 0.6502

DecisionTree 0.73±0.0042 0.63±0.0086 9.6870e+00 1.4536e-08 4.3322
SVM 0.77±0.0035 0.80±0.0039 -4.1658e+00 5.8075e-04 -1.8630

KAPPA
LogisticRegression 0.07±0.0042 0.24±0.0062 -2.0818e+01 4.8173e-14 -9.3100

DecisionTree 0.14±0.0070 0.15±0.0066 -1.4963e+00 1.5190e-01 -0.6692
SVM 0.00±0.0000 0.23±0.0066 -3.3105e+01 1.4030e-17 -14.8052

Table 7.14: Performance for prediction disengagement with SMOTE or undersampling on
the dataset of Lyroke

Event Feature
Balanced by
Undersam-

pling

Event Feature
Balanced by

SMOTE

T-Value P-Value Effect-Size
(Cohen’s D)

AUPRC (non
disengaging)

LogisticRegression 0.26±0.0042 0.27±0.0033 -2.4769e+00 2.3402e-02 -1.1077
DecisionTree 0.30±0.0091 0.27±0.0073 2.6687e+00 1.5658e-02 1.1935

SVM 0.25±0.0050 0.28±0.0075 -2.6159e+00 1.7503e-02 -1.1699

AUPRC (non
disengaging)

LogisticRegression 0.95±0.0019 0.95±0.0014 9.1493e-01 3.7232e-01 0.4092
DecisionTree 0.97±0.0009 0.95±0.0008 1.5193e+01 1.0409e-11 6.7944

SVM 0.97±0.0006 0.97±0.0006 -2.7009e+00 1.4625e-02 -1.2079

AUROC
LogisticRegression 0.77±0.0044 0.76±0.0031 3.2515e-01 7.4882e-01 0.1454

DecisionTree 0.78±0.0054 0.63±0.0086 1.3813e+01 5.0776e-11 6.1774
SVM 0.78±0.0035 0.80±0.0039 -2.5976e+00 1.8190e-02 -1.1617

KAPPA
LogisticRegression 0.24±0.0053 0.24±0.0062 -2.4524e-01 8.0905e-01 -0.1097

DecisionTree 0.22±0.0077 0.15±0.0066 6.4008e+00 5.0124e-06 2.8625
SVM 0.21±0.0027 0.23±0.0066 -2.7530e+00 1.3089e-02 -1.2312

in some cases but is not able to offer a performance that can match the random-
undersampling method. This observation will be further verified with respect to the
other two games.

Lyroke
Experiments show that random-undersampling is also able to significantly improve the
performance of classifiers trained in the imbalanced dataset of Lyroke . To determine
the performance of SMOTE in this game, similar experiments have also been done for
comparisons.

Tables 7.13 and 7.14 gave an overview of how SMOTE affects the performance of
classifiers compared to the raw dataset and the random-undersampling method. As
can be seen, SMOTE was able to significantly improve the quality of classifiers in five of
12 cases. However, as in the experiment with I Am Playr , the improvements brought
by SMOTE are not as good as those in the random-undersampling method. According
to Table 7.14, the classifiers trained with the random-undersampling method are able
to behave significantly better in three cases, whereas there is no case in which SMOTE
offered better results. As similar observation can be made with respect to both games
produced by WeR Interactive. It will be meaningful to further test the experiment in
Race Team Manager , which was developed by a different company.
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Table 7.15: Performance for prediction disengagement with SMOTE on the dataset of Race
Team Manager

Event Feature
without

Balancing

Event Feature
Balanced by

SMOTE

T-Value P-Value Effect-Size
(Cohen’s D)

AUPRC
(disengaging)

LogisticRegression 0.27±0.0024 0.27±0.0033 1.8360e-01 8.5638e-01 0.0821
DecisionTree 0.28±0.0029 0.27±0.0034 4.8327e-01 6.3473e-01 0.2161

SVM 0.30±0.0050 0.29±0.0047 1.9462e+00 6.7409e-02 0.8704

AUPRC (non
disengaging)

LogisticRegression 0.92±0.0025 0.94±0.0041 -2.4298e+00 2.5795e-02 -1.0867
DecisionTree 0.96±0.0006 0.94±0.0012 1.0643e+01 3.3925e-09 4.7599

SVM 0.97±0.0006 0.97±0.0005 1.3550e+00 1.9217e-01 0.6060

AUROC
LogisticRegression 0.73±0.0049 0.75±0.0062 -2.2445e+00 3.7611e-02 -1.0038

DecisionTree 0.75±0.0031 0.65±0.0099 9.6382e+00 1.5700e-08 4.3103
SVM 0.81±0.0030 0.80±0.0029 1.6140e+00 1.2391e-01 0.7218

KAPPA
LogisticRegression 0.05±0.0041 0.25±0.0038 -3.3734e+01 1.0051e-17 -15.0864

DecisionTree 0.13±0.0051 0.17±0.0058 -4.3006e+00 4.3053e-04 -1.9233
SVM 0.01±0.0034 0.24±0.0038 -4.3979e+01 8.9722e-20 -19.6681

Table 7.16: Performance for prediction disengagement with SMOTE or undersampling on
the dataset of Race Team Manager

Event Feature
Balanced by
Undersam-

pling

Event Feature
Balanced by

SMOTE

T-Value P-Value Effect-Size
(Cohen’s D)

AUPRC
(disengaging)

LogisticRegression 0.27±0.0026 0.27±0.0033 -2.3665e-01 8.1560e-01 -0.1058
DecisionTree 0.31±0.0050 0.27±0.0034 5.3366e+00 4.5066e-05 2.3866

SVM 0.30±0.0031 0.29±0.0047 1.6147e+00 1.2377e-01 0.7221

AUPRC (non
disengaging)

LogisticRegression 0.93±0.0018 0.94±0.0041 -7.0653e-01 4.8891e-01 -0.3160
DecisionTree 0.97±0.0006 0.94±0.0012 1.6420e+01 2.8133e-12 7.3430

SVM 0.97±0.0005 0.97±0.0005 1.2564e+00 2.2504e-01 0.5619

AUROC
LogisticRegression 0.75±0.0027 0.75±0.0062 -2.3608e-01 8.1604e-01 -0.1056

DecisionTree 0.79±0.0028 0.65±0.0099 1.2739e+01 1.9175e-10 5.6970
SVM 0.80±0.0026 0.80±0.0029 1.5351e+00 1.4215e-01 0.6865

KAPPA
LogisticRegression 0.25±0.0044 0.25±0.0038 7.1131e-01 4.8601e-01 0.3181

DecisionTree 0.25±0.0049 0.17±0.0058 1.0488e+01 4.2691e-09 4.6904
SVM 0.25±0.0038 0.24±0.0038 7.1627e-01 4.8301e-01 0.3203

Race Team Manager
Because experiments show that SMOTE was able to help (though not as much as
random undersampling) in both games developed by WeR Interactive, experiments
were also conducted using Race Team Manager , which was developed by a different
company.

Results of experiments shown in both tables 7.15 and table 7.16 indicate worse re-
sults for SMOTE compared to the other two games. In Race Team Manager , while
comparing the classifiers trained under the raw dataset, SMOTE was only able to sig-
nificantly improve their performances in three cases, whereas those trained under the
raw dataset also achieve a significantly better performance in two cases. This suggests
that SMOTE did not help much in this case. Compared to random undersampling, the
results turn out to be clearer, as the classifier trained with the random-undersampling
method achieved significantly better performance in four cases whilst those trained
with SMOTE did better in no cases.
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Figure 7.9: The number of cases where methods achieve significantly better performance
and the number of cases where there is no difference found for predicting disengagement
behaviours with SMOTE

7.6.1 Summary

In summary, according to the three experiments described in this section, SMOTE
can be used for balancing purposes. As can be seen in Figure 7.9, SMOTE was
able to help to improve the performance of the classifiers trained in some cases (es-
pecially for Cohen’s Kappa). However, as can be found in Figure 7.10, similar to
what was expected, while predicting disengagement in these three games, the random-
undersampling method achieved better improvements in most cases. This suggests
that the random-undersampling method is more helpful in cases where the dataset
is quantitatively sufficient. This matches the conclusion that suggested by Dittman
et al. (2014). In the next section, to determine whether random-undersampling can
outperform SMOTE in cases in which the number of data samples is limited, results
of experiments conducted for predicting the churning behaviours are discussed.

7.7 Churn Prediction – SMOTE

Experiments in the last section show that SMOTE is able to help predict players’ disen-
gagement behaviours in several cases. However, when the number of samples is sufficient,
random-undersampling performs better than SMOTE for improving the performance of clas-
sifiers. In this section, SMOTE is tested with respect to predicting churn when the number
of samples is insufficient for highly dimensional data representations such as the event-
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Figure 7.10: The number of cases where methods achieve significantly better performance
and the number of cases where there is no difference found for predicting disengagement
behaviours with SMOTE and undersampling

frequency-based method. As discussed in Section 7.4, given that the distribution of classes
is close to balance in both I Am Playr and Lyroke , the difference might not be outstanding
between classifiers trained with SMOTE and the random-undersampling method. However,
due to the high bias shown in Race Team Manager , it is worth investigating if an oversam-
pling method can be more helpful than the undersampling method in this case. Experiments
in this section follow the procedure in Figure 7.11.

I Am Playr

As discussed above, the bias in I Am Playr is relatively small (132:124 between churn-
ing and non-churning players). Therefore, little difference was expected among the
comparisons shown in tables 7.17 and 7.18. However, as the table displays, when com-
paring the classifiers trained with SMOTE and those trained with raw data, except
for one case in which SVM behave significantly better, there is no significant different
found between classifiers trained under both situations in most cases. Besides, there is
even a case where the SVM classifier trained with the raw data behaves better. This
indicates that SMOTE is not able to bring significant help to the training of classifiers
when the class is relatively balanced. According to Table 7.18, SMOTE behaves like
random undersampling in this case except where random-undersampling did better.
Combining this experiment and that introduced in Section 7.4, a balancing method
might not be needed for a classification problem which has a distribution that is close
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Figure 7.11: SMOTE Investigation Experiment of Churn Prediction

Table 7.17: Performance for prediction churn with SMOTE on the dataset of I Am Playr
Event Feature

without
Balancing

Event Feature
Balanced by

SMOTE

T-Value P-Value Effect-Size
(Cohen’s D)

AUPRC
(churning)

LogisticRegression 0.49±0.0144 0.49±0.0142 -1.3194e-01 8.9650e-01 -0.0590
DecisionTree 0.66±0.0219 0.66±0.0239 -2.2462e-01 8.2480e-01 -0.1005

SVM 0.71±0.0279 0.64±0.0430 1.2936e+00 2.1214e-01 0.5785

AUPRC (non
churning)

LogisticRegression 0.54±0.0229 0.54±0.0202 -4.5157e-02 9.6448e-01 -0.0202
DecisionTree 0.61±0.0344 0.59±0.0265 2.9936e-01 7.6810e-01 0.1339

SVM 0.67±0.0443 0.45±0.0572 2.9113e+00 9.3150e-03 1.3020

AUROC
LogisticRegression 0.49±0.0261 0.49±0.0244 -8.0133e-02 9.3702e-01 -0.0358

DecisionTree 0.59±0.0294 0.58±0.0296 3.4477e-01 7.3426e-01 0.1542
SVM 0.51±0.0208 0.55±0.0369 -9.0066e-01 3.7966e-01 -0.4028

KAPPA
LogisticRegression 0.02±0.0534 0.04±0.0591 -2.8251e-01 7.8078e-01 -0.1263

DecisionTree 0.09±0.0557 0.13±0.0521 -5.0808e-01 6.1757e-01 -0.2272
SVM 0.00±0.0000 0.10±0.0326 -3.0074e+00 7.5620e-03 -1.3450

Table 7.18: Performance for prediction churn with SMOTE or undersampling on the dataset
of I Am Playr

Event Feature
Balanced by
Undersam-

pling

Event Feature
Balanced by

SMOTE

T-Value P-Value Effect-Size
(Cohen’s D)

AUPRC
(churning)

LogisticRegression 0.50±0.0146 0.49±0.0142 1.9610e-01 8.4673e-01 0.0877
DecisionTree 0.69±0.0198 0.66±0.0239 7.3316e-01 4.7290e-01 0.3279

SVM 0.66±0.0339 0.64±0.0430 4.1570e-01 6.8254e-01 0.1859

AUPRC (non
churning)

LogisticRegression 0.54±0.0203 0.54±0.0202 -1.9626e-01 8.4660e-01 -0.0878
DecisionTree 0.72±0.0302 0.59±0.0265 2.9393e+00 8.7672e-03 1.3145

SVM 0.47±0.0495 0.45±0.0572 2.0629e-01 8.3888e-01 0.0923

AUROC
LogisticRegression 0.50±0.0254 0.49±0.0244 3.7938e-01 7.0884e-01 0.1697

DecisionTree 0.66±0.0324 0.58±0.0296 1.8213e+00 8.5217e-02 0.8145
SVM 0.51±0.0283 0.55±0.0369 -6.8266e-01 5.0351e-01 -0.3053

KAPPA
LogisticRegression 0.09±0.0597 0.04±0.0591 4.5671e-01 6.5334e-01 0.2042

DecisionTree 0.29±0.0558 0.13±0.0521 2.0464e+00 5.5603e-02 0.9152
SVM 0.06±0.0297 0.10±0.0326 -9.7859e-01 3.4075e-01 -0.4376
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Table 7.19: Performance for prediction churn with SMOTE on the dataset of Lyroke
Event Feature

without
Balancing

Event Feature
Balanced by

SMOTE

T-Value P-Value Effect-Size
(Cohen’s D)

AUPRC
(churning)

LogisticRegression 0.75±0.0289 0.75±0.0283 5.5481e-02 9.5637e-01 0.0248
DecisionTree 0.85±0.0305 0.84±0.0291 1.2715e-01 9.0023e-01 0.0569

SVM 0.79±0.0291 0.79±0.0199 8.9577e-02 9.2961e-01 0.0401

AUPRC (non
churning)

LogisticRegression 0.80±0.0301 0.80±0.0321 -4.2521e-02 9.6655e-01 -0.0190
DecisionTree 0.83±0.0274 0.79±0.0336 7.7132e-01 4.5053e-01 0.3449

SVM 0.63±0.0417 0.60±0.0239 5.5410e-01 5.8633e-01 0.2478

AUROC
LogisticRegression 0.78±0.0267 0.78±0.0268 6.6880e-02 9.4741e-01 0.0299

DecisionTree 0.81±0.0344 0.79±0.0378 4.8699e-01 6.3214e-01 0.2178
SVM 0.72±0.0310 0.72±0.0181 -3.5678e-02 9.7193e-01 -0.0160

KAPPA
LogisticRegression 0.46±0.0518 0.47±0.0498 -1.3587e-01 8.9343e-01 -0.0608

DecisionTree 0.49±0.0699 0.37±0.0731 1.0682e+00 2.9953e-01 0.4777
SVM 0.03±0.0481 0.26±0.0565 -2.8775e+00 1.0021e-02 -1.2868

Table 7.20: Performance for prediction churn with SMOTE or undersampling on the dataset
of Lyroke

Event Feature
Balanced by
Undersam-

pling

Event Feature
Balanced by

SMOTE

T-Value P-Value Effect-Size
(Cohen’s D)

AUPRC
(churning)

LogisticRegression 0.77±0.0361 0.75±0.0283 3.4565e-01 7.3362e-01 0.1546
DecisionTree 0.82±0.0283 0.84±0.0291 -5.3299e-01 6.0056e-01 -0.2384

SVM 0.78±0.0198 0.79±0.0199 -4.0285e-01 6.9180e-01 -0.1802

AUPRC (non
churning)

LogisticRegression 0.79±0.0317 0.80±0.0321 -1.1661e-01 9.0846e-01 -0.0521
DecisionTree 0.81±0.0248 0.79±0.0336 5.1784e-01 6.1087e-01 0.2316

SVM 0.56±0.0358 0.60±0.0239 -1.0888e+00 2.9059e-01 -0.4869

AUROC
LogisticRegression 0.78±0.0310 0.78±0.0268 6.6629e-02 9.4761e-01 0.0298

DecisionTree 0.80±0.0272 0.79±0.0378 2.0239e-01 8.4188e-01 0.0905
SVM 0.71±0.0163 0.72±0.0181 -4.0488e-01 6.9034e-01 -0.1811

KAPPA
LogisticRegression 0.48±0.0631 0.47±0.0498 1.0277e-01 9.1928e-01 0.0460

DecisionTree 0.42±0.0530 0.37±0.0731 4.5240e-01 6.5639e-01 0.2023
SVM 0.24±0.0270 0.26±0.0565 -2.5797e-01 7.9936e-01 -0.1154

to balanced. Instead of improvement, they might even bring negative effects in some
cases.

Lyroke
As with I Am Playr , because the bias is not serious (127 churners and 103 non-churner)
in Lyroke , little difference was expected. Tables 7.19 and Table 7.20 further verify
this expectation, as no significant difference is found between any of the comparisons
of the three datasets (the raw dataset, the SMOTE-balanced dataset and the random-
undersampling-balanced dataset). As with I Am Playr , combining the results from
Section 7.4 suggests that, whenever The bias is not serious, it might not be ideal to
include a balancing method.

Race Team Manager
Unlike the two previous experiments, the dataset labelled by the churn definition in
Race Team Manager shows high bias towards the churning side. In this case, a bal-
ancing method is needed. However, because the number of samples in this dataset is
already small while being used for training a highly dimensional model, it is risky to
use the random undersampling method. SMOTE in this is more likely to be helpful
in this case as it utilises the limited information to create synthetic training examples.
But, due to the small number of samples, any balancing method may hardly make a
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Table 7.21: Performance for prediction churn with SMOTE on the dataset of Race Team
Manager

Event Feature
without

Balancing

Event Feature
Balanced by

SMOTE

T-Value P-Value Effect-Size
(Cohen’s D)

AUPRC
(churning)

LogisticRegression 0.78±0.0209 0.79±0.0230 -2.1467e-01 8.3244e-01 -0.0960
DecisionTree 0.81±0.0097 0.89±0.0153 -3.9578e+00 9.2270e-04 -1.7700

SVM 0.79±0.0306 0.83±0.0247 -8.4412e-01 4.0968e-01 -0.3775

AUPRC (non
churning)

LogisticRegression 0.27±0.0370 0.28±0.0377 -3.4201e-02 9.7309e-01 -0.0153
DecisionTree 0.31±0.0491 0.38±0.0398 -1.0030e+00 3.2914e-01 -0.4486

SVM 0.23±0.0292 0.25±0.0242 -2.8195e-01 7.8119e-01 -0.1261

AUROC
LogisticRegression 0.46±0.0408 0.47±0.0486 -9.7642e-02 9.2330e-01 -0.0437

DecisionTree 0.49±0.0320 0.61±0.0414 -2.1929e+00 4.1691e-02 -0.9807
SVM 0.46±0.0554 0.55±0.0387 -1.2300e+00 2.3453e-01 -0.5501

KAPPA
LogisticRegression -0.06±0.0518 -0.02±0.0548 -4.3425e-01 6.6926e-01 -0.1942

DecisionTree 0.07±0.0583 0.15±0.0641 -8.4417e-01 4.0965e-01 -0.3775
SVM 0.00±0.0000 -0.06±0.0496 1.2267e+00 2.3574e-01 0.5486

Table 7.22: Performance for prediction churn with SMOTE or undersampling on the dataset
of Race Team Manager

Event Feature
Balanced by
Undersam-

pling

Event Feature
Balanced by

SMOTE

T-Value P-Value Effect-Size
(Cohen’s D)

AUPRC
(churning)

LogisticRegression 0.78±0.0253 0.79±0.0230 -1.7591e-01 8.6233e-01 -0.0787
DecisionTree 0.81±0.0175 0.89±0.0153 -3.0554e+00 6.8114e-03 -1.3664

SVM 0.83±0.0285 0.83±0.0247 -8.4299e-02 9.3375e-01 -0.0377

AUPRC (non
churning)

LogisticRegression 0.36±0.0490 0.28±0.0377 1.2465e+00 2.2854e-01 0.5575
DecisionTree 0.27±0.0329 0.38±0.0398 -2.0026e+00 6.0515e-02 -0.8956

SVM 0.30±0.0460 0.25±0.0242 9.4540e-01 3.5697e-01 0.4228

AUROC
LogisticRegression 0.52±0.0432 0.47±0.0486 7.9619e-01 4.3630e-01 0.3561

DecisionTree 0.50±0.0376 0.61±0.0414 -1.9496e+00 6.6972e-02 -0.8719
SVM 0.55±0.0577 0.55±0.0387 3.1666e-02 9.7509e-01 0.0142

KAPPA
LogisticRegression 0.03±0.0417 -0.02±0.0548 6.7551e-01 5.0794e-01 0.3021

DecisionTree 0.03±0.0375 0.15±0.0641 -1.5934e+00 1.2847e-01 -0.7126
SVM -0.04±0.0451 -0.06±0.0496 3.5504e-01 7.2669e-01 0.1588

significant difference. As can be seen in Table 7.21, compared to the classifiers trained
on the balanced dataset, SMOTE was able to provide significantly better performance
in one case where the decision tree is the classifier and the area under PRC was ap-
plied as the measurement. And in the same case, in Table 7.22, SMOTE also achieved
better performance than the random-undersampling method. Except in this case, no
differences among the three datasets were found. This shows that, in a biased dataset
in which the number of data samples is insufficient for the training, both the under-
sampling method and the SMOTE are unable to help much, although SMOTE shows
some potentials that might work better than the random-undersampling method.

7.7.1 Summary

SMOTE has been applied to all three games for predicting players’ churn behaviours in this
section. As has been introduced in the experiments in I Am Playr and Lyroke, as the bias
was not serious, no significant difference is expected to be brought by SMOTE. In addition,
although the bias condition is worse in Race Team Manager, because the quantity of
data samples is small, no significant difference is expected as well. Figure 7.12 verifies the
expectations that SMOTE was not able to bring significant improvements in most cases. By
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Figure 7.12: The number of cases where methods achieve significantly better performance
and the number of cases where there is no difference found for predicting churn behaviours
with SMOTE

comparing both the random undersampling method and SMOTE in Figure 7.13, although
no significant differences can be found in most cases, it is notable that there was one case
that random undersampling method achieved significantly better performance and one case
SMOTE did better. The case when SMOTE did significantly better happens in Race Team
Manager (can also be found in Table 7.21). This case is special as the size of this data sample
is small. It indicates that SMOTE might have the potential to behave better than random-
undersampling given a smaller dataset. This is reasonable because SMOTE combines the
information of the minor class for generating neighbours. However, this improvement may
not be significant when the number of minor examples is too small and important information
is not included.

Combining results until now in this chapter, as can be found in Figure a balancing method
such as random undersampling or SMOTE would help in most cases when the number of
data samples is sufficient for a predictive task. However, though the labelling method has
led to a dataset in which the quantity of data examples is relatively small for training highly
dimensional classifiers, neither of the methods could make significant improvements to the
performance of the classifiers. When the bias of the population is serious or the dataset is too
small to contain important information, traditional approaches can hardly make an effective
change to the variety of the original dataset. Taking SMOTE as an example, although
synthetic examples can be generated for filling the gap between the classes, because the
generated examples are combinations of the existing samples, a breakthrough can hardly be
made to add in fresh populations to the dataset. To find a solution to this problem, this
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Figure 7.13: The number of cases where methods achieve significantly better performance
and the number of cases where there is no difference found for predicting churn behaviours
with SMOTE and undersampling

work proposes an alternative disengagement-labelling method that may avoid the appearance
of bias. While aimed at predicting player’s disengagement behaviours, this new approach is
named disengagement over varying dates. Preliminary research have been done to investigate
if this method can be used for balancing the classification, details of this method can be found
in Appendix A.

7.8 Conclusion

Prior works have provided several approaches to predicting player-behaviour trends including
disengagement and purchasing: Hadiji et al. (2014); Runge et al. (2014); Xie et al. (2014,
2015). Many of these are already able to provide promising performances. However, most
of the labelling methods applied in these works were overly restrictive: The instances in the
datasets were split into classes by satisfying some specific conditions. For this reason, the
resultant class distributions of these definitions are often imbalanced. This type of issue can
easily lead to biased classifiers during the training process. In addition, when the labelling
method results in too few data samples for training, highly dimensional data representation
can hardly work.

Two main conclusions can be addressed with the results of this chapter. First, based
on the fact that event-frequency-based data representation was used to predict players’ be-
haviours such as disengagement, first purchase and churn without being balanced, it is sug-
gested that a biased dataset without balancing can easily lead to not well-trained classifiers.
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To deal with this problem, random undersampling and SMOTE were applied to improve
the performance of classifiers; however, when the important information is missing from the
minor class or the total number of data samples is too small, neither of these two methods
help.

To deal with this case, a new labelling method called disengagement over varying dates
is also proposed. It can be applied to ensure the distribution of data samples to be more
closed to balanced without removing any information. The details of this method can be
found in Appendix A.



Chapter 8

Conclusion

Previous chapters have covered all experiments that were conducted in this research. During
these experiments, several contributions have been made for addressing various purposes. In
this chapter, a review is given for these contributions based on results from the experiments.
Next, the limitations of some of the contributions are covered and suggestions are given that
may help in these cases. Finally, some potential future research is discussed which may help
to improve the contributions of this work.

8.1 Contributions

8.1.1 Main Research Hypothesis

In this work, two main research hypotheses have been explored. The first is that, event-
based game-data representation can be used to predict player behaviour with
supervised learning and can provide a better performance compared to random-
guess and other state-of-the-art methods in a wide range of games. This study
aims to investigate the ability of the proposed event-frequency-based data representation.

The other main hypothesis is that, the disengagement-over-varying-dates labelling
method can be used to make use of all data samples while maintaining an ap-
proximately balanced dataset, and that parameters optimised for balancing can
be used as indicators of a game’s health. This study investigates the new labelling
method (named disengagement over varying dates), which is designed to give an alternative
way to deal with the possible bias and lack of data problems in some datasets caused by the
widely used churn-labelling method.

8.1.2 Contribution Summary

Several contributions have been made over the course of this study. In this section, all the
contributions made by this work are summarised and reviewed. Discussions are given on
how well the hypotheses were supported based on the results of the experiments.

Event Frequency-based data Representation
In this work, a review has been given of several studies that have attempted to predict
player behaviours using data-mining approaches in games. One of the common limita-
tions of these works lies in their inability to be generic: The proposed methods cannot
readily be migrated to different products. Aimed at working out a possible solution
to the limitation from the selection of data representation, this work first analysed the
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reasons for the low generality of existing works (in Section 4.5.1). It was claimed that
the generality of a data representation often comes from two aspects: game-specific
and availability. Some existing works have worked to solve the game-specific issues by
relying only on some session-based features; however, the session related information is
not always collected in games, and it often may not be accurate enough. To cope with
these two problems at the same time, as the first main contribution, this work takes
the counts of any collected events (player behaviours or system events) as the data
representation. In this way, because only counts of events are used instead of their
actual meanings, there is no need to understand the true meaning of the events before
the method can be applied. For the same reason, this method is not restricted to any
specific game, and the same implementation of the data representation can be easily
extended to work for different games. Besides, since this approach takes any events
that are collected in games, it is able to maximise the use of the data and reduce the
chances of encountering availability issues. To investigate its performance, the first
hypothesis in Section 8.1.1 was proposed.

Player First-purchase behaviour Prediction
To verity this hypothesis, this work uses event-frequency-based data representation to
predict players’ first-purchase behaviours in three different commercial games. In the
relevant experiments, event-frequency-based data representation exhibited its general-
ity, as it shows robust performance across all three different genres of games without
any special pre-processing and is able to provide promising predictive performance
which is significantly better than random guesses. This gives positive support to the
hypothesis made for this data-representation method.

Disengagement-labelling method
The churn-labelling method has been widely used to represent disengaging behaviours
in games. It focuses on predicting disengaging actions in which players entirely stop
playing a game. However, Runge et al. (2014) discuss the fact that players who have
been predicted to churn can hardly be held back by simple in-game rewards. To give de-
velopers an earlier chance to deal with possible churning users, a new labelling method
called ‘disengagement’ was introduced that focuses instead on players’ disengaging
trends.

Player Disengagement/Churn Behaviour Prediction
To further validate the hypothesis concerning event-frequency-based data representa-
tion, it has been further used to predict players’ disengaging behaviours with both the
newly proposed disengagement-labelling method and the churn-labelling method used
in the work by Runge et al. (2014). During the experiments, the game-specific data
representation introduced in the work by Runge et al. (2014) was also added for com-
parison. Experiments predicting the disengagement (labelled) behaviours show that
event-frequency-based data representation exhibits good generality and can achieve
competitive performance. Combined with the experiments for predicting the first-
purchase behaviours, both experiments offer positive support to the first hypothesis
made in this study. However, during the experiment in which event-frequency-based
data representation was applied to predict players’ churn behaviours, we saw that clas-
sifiers trained with the event frequency-based data representation can in most cases still
achieve competitive performance compared with those trained with game-specific data
representations. This hypothesis was not well supported, as there are cases in which
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the classifiers trained with the event frequency-based data representation behaved like
random classifiers. As discussed in Section 6.4, this might be caused by the limited
number of examples available for training, as classifiers (especially higher-dimensional
ones) can hardly be well trained under this situation.

A Review of Two Popular Class-balancing Methods

A general problem in data-mining research is that the class distribution can be biased if
the labelling method distributes training examples into different classes by some fixed
conditions. In this work, the general causes of a biased classification problem were dis-
cussed and two widely used methods–random undersampling and SMOTE (Synthetic
Minority Over-sampling Technique)–were introduced. In Chapter 7, statistical com-
parisons were given to show whether random undersampling and SMOTE would help
reduce class bias such that the performance of the classifiers can be improved. Based on
experiments, summaries were given for these two methods, and it was suggested that
random undersampling is more likely to achieve better performance when the number
of data samples is large enough, whereas SMOTE is better able to be used with smaller
datasets. If the data sample is too small, none of the methods help significantly.

Disengagement-over-varying-dates labelling method

Two important problems faced by some experiments in this study are lack of data
samples and biased class distribution. As discussed in sections 6.5 and 7.1, both of
the issues can be found when the churn-labelling method is applied, as the predictive
methods and classifiers trained in this situation cannot behave well. To provide more
reliable classifiers for predicting player behaviours, the second main contribution of this
work is to propose an alternative labelling method that also reflects players’ disengaging
behaviours but is able to use all data samples while maintaining an approximately
balanced dataset. In addition, parameters optimised for balancing in this method can
be used as indicators of a game’s health. To investigate its effects, the second hypothesis
in Section 8.1.1 was proposed. Experiments in Section A show that this labelling
method can help balance the class distribution and provide a larger dataset in all three
commercial games for predicting players’ disengagement behaviours. Classifiers trained
under this situation were able to behave significantly better than a random classifier.
This result supports the hypothesis proposed and suggests that this labelling method
can be an alternative when reliable classifiers cannot be reached for predicting the
original churn behaviours.

8.2 Limitations

The previous section offers a summary of all the contributions that have been made in this
work. As the main contribution, event-frequency-based data representation can be migrated
to different games and is able to offer competitive performance for the prediction of various
player behaviours when the data sample is sufficient. However, when a game contains a
large number of game events, event-frequency-based data representation may result in a
higher-dimensional feature space. This is known as the ‘curse of dimensionality’ in data-
mining. It is often faced while facing large-scaled data-mining problems (Marimont and
Shapiro, 1979). In terms of the computing resources, the system memory might often be
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filled with the highly dimensional feature space. A solution offered in this work is to use
sparse matrices rather than dense ones for storage. This is because players’ behaviours are
rather sparse in the highly dimensional space, as some behaviours may only be exhibited
by specific players. Regarding interpretations, while facing a highly dimensional data space,
although an interpretable algorithm can be applied for the prediction of future behaviours,
the resultant model may still be barely readable. As discussed in Section 4.6, a feature-
selection process before training is able to help decrease the dimension of the resultant
models and thereby render them more interpretable.

8.3 Future Work

Incremental Event-frequency-based Data Representation
As has been explained, the most notable limitation of event-frequency-based data rep-
resentation is its high dimensionality when the number of events in games is large.
Several approaches (including disengagement over varying dates introduced in Ap-
pendix A) considered in this work have already been attempted to ensure that the
highly dimensional models are well trained. Another limitation might be the model
through periods, because, while operating a game, developers often release new con-
tents with patches or DLCs. In this case, some new events will be added to the system
and others will be removed. To make sure the model can handle unseen game content
in the future, a potential improvement might be to use a hashing-based event-frequency
feature space to replace the current method that includes all living events in a game.
This method may offer two benefits and a potential drawback. At first, it will help
the model trained to be used for predicting the player behaviours in the game when
minor changes happen to the games. For unseen events, a hashing mechanism can
always ensure that any event will have some location (collisions may happen) in the
feature space. In addition, this feature can also be used to limit the dimensions of the
model. Developers can limit how many events they would like to handle by reducing
the entries of the hashing algorithm. On the contrary, when the number of entries
for a game is too small, some hashing collision may frequently happen, which might
affect the performance of the model. Future research might focus on investigating the
relationships between the number of hash entries and the performance of the model to
find optimal solutions for this alternative method.

In addition, as has been introduced, the concept behind event-frequency-based data
representation is similar to that behind the ‘bag-of-words’ algorithm (Wallach, 2006)
used in NLP (natural-language processing) problems. From the perspective of NLP,
this method treats a game as an article for text mining. Therefore, similarly, to improve
this event-frequency-based data representation method, other text-mining approaches
such as words embedding (Levy and Goldberg, 2014) might also be brought in for
further analysis.

Sequence Mining Data Representation and Transfer Learning
As has been reviewed in Section 3.7, Mart́ınez and Yannakakis (2011) applied sequence
mining for behaviour modelling method achieving better generality. This idea can also
be used as a variation of the event-frequency-based data representation. In order to
investigate the sequence patterns, instead of aggregating the counts of events happened
in game, an alternative way is to represent a player’s behaviour as a list of events or-
dered by timestamps. Although similar methods of what Mart́ınez and Yannakakis
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(2011) did can be used for building up the feature space from this point, alternatively,
because temporal information (timestamp) is included in this case, deep learning mod-
els such as Convolutional Neural Networks (Collobert et al., 2011) and Long-Short
Term Memory (Hochreiter and Schmidhuber, 1997) might be used for automatically
computing the feature space from the raw sequences of events in their shallow layers.
The benefits of doing so is that transfer learning methods can be then naturally ap-
plied to these models. For example, as introduced by Oquab et al. (2014), while a
CNN model needs to be transferred to another dataset, while making sure the input
shape the same in both dataset (can be achieved by fixing number of events observed
or grouping them into same sized chunks), one can freeze the parameters of the CNN
layers while adapting (re-train) the deeper layers of the models to the new dataset
(which is lack of data samples). Similarly, in an LSTM model, one can freeze the
LSTM layers for the same purpose. This research direction may be further investigate
as it could help to bring the rapidly developed deep learning approaches to the event
frequency based data representation for better predictive abilities.

Trend Over Varying Dates
Preliminary experiments (details in Appendix A) show that disengagement-over-varying-
dates labelling is able to provide an effectively trained classifier should the original
labelling method (such as churn or disengagement) lead to biased or quantitatively
insufficient datasets. Except for predicting players’ retention-related concept, this la-
belling method might also be extended to substitutions of other predictive targets that
often lead to biased or small datasets. For example, while predicting whether a current
paying user might still pay in the future, players are usually categorized into binary
classes. In this case, the class distribution might often be biased to ‘won’t pay for other
things’. In the original disengagement-over-varying-dates labelling method, players are
distributed into different classes by observing if those who have finished prr rounds
of games can still play another por rounds. Similarly, in the context of purchasing
behaviours, to achieve a better environment (more balance, more training samples)
for training classifiers, the strategy for labelling players can be changed to consider
whether a player can still purchase another por item after they have purchased prr
items.

8.4 Closing Remarks

This work has delivered a generic data-representation method that can be migrated to differ-
ent games for predicting player behaviours. It has achieved competitive results in most cases
introduced in this work. Because of its generality, applications of this data-representation
method can easily maintain a consistent pipeline across games. Recent research has shown
that, although the game industry is growing quickly and its expected growth is faster than
that of the film industry in 2013 and 2018, the life cycles of games (especially for mobile
games) are, on the contrary, getting shorter (Egenfeldt-Nielsen et al., 2016). This situation
may create extra application opportunities for this method, because, when more games are
produced in a shorter period of time, a predictive system designed based on event-frequency-
based data representation may remain the same.
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Appendix A

Disengagement Over Varying Dates

A.1 Definition

Regarding its definition, to solve the problem faced by the current definitions, the class labels
of players in disengagement predictions are defined by two varying parameters: prr (prior
rounds) and por (post rounds). Prior rounds stands for the quantities of rounds that a player
has completed before a splitting date T (T may vary for different players), whilst post rounds
represents the number of rounds he/she finished after that date. Note that prr and por are
parameters that need to be manually decided, whereas T is simply the date when a player
finished prr rounds of games. Based on this, a player is considered to be disengaging who
finished prr rounds before some T but cannot finish por rounds afterwards. Equation A.1
shows a formal way to describe this labelling method. To get the best distribution between
the resultant two classes, an optimisation algorithm such as genetic algorithm (which is
used in this work) is recommended for finding the best combination of prr and por. The
optimal combination of parameters can not only help to group players into more balanced
classification tasks; it also give extra insight into the game. The details are introduced
in Section A.2. In this work, the genetic algorithm was used with 5000 generations, 10
candidates and 0.5 mutation rate to find the smallest distance between the two classes.

From the perspective of predictive purpose, unlike traditional churn–which aims to de-
scribe players who are entirely leaving the game–this disengagement over varying dates
stresses detecting disengaging trends, which is similar to the original disengagement-labelling
method introduced in Chapter 6.

A.2 Insights from parameters

As has been mentioned, whenever the optimal combination of prr and por is found, extra
important insights can be fetched from them. After optimisation, the resultant prr can be
seen as an indicator of the game’s health with regard to retention. Because players are evenly
split into disengaging and engaging groups after the date T, a higher prr shows that the game
keeps players engaged longer: i.e., most players have played many (prr) rounds before half
of them will show a disengaging trend. On the other hand, a lower prr indicates that half
of the players start to display a disengaging trend after only a few plays. This suggests that
a negative first impression of the game is an important factor in discouraging players from
continuing to engage with the game. Additionally, por indicates how long a company has to
prevent players’ disengaging decisions by attempting an intervention (e.g. offering in-game
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Figure A.1: Experiment of Disengagement Over Varying Dates Prediction

bonuses). A larger por means that most players are able to play many rounds of games after
T and before disengaging, whilst on the contrary, a small por means that most players will
disengage soon after T.

A.3 Experiment Details and Results

This section defines and considers the benefits of the new labelling method named disen-
gagement over varying dates. To determine whether it is a competitive replacement for the
disengagement or original churn method, its application to all three games used in previous
experiments is shown in the next section. It is notable that, when the labelling method has
been changed, the predictive problem cannot be considered the same as the previous one
because the datasets are different. Because of this, classifiers trained with the disengagement
over varying date-labelling methods will not be compared with the performance of classifiers
trained with either the disengagement-labelling method or the churn-labelling method. In-
stead, the experiments will first focus on showing whether disengagement-over-varying-dates
labelling results in a well-balanced dataset which uses all available data points to ensure a
quantitatively sufficient dataset for dealing with highly dimensional algorithms. By com-
paring random classifiers, experiments will also show if the classifiers can perform well with
the highly dimensional event-frequency-based data representation when the dataset has been
labelled by this definition. Experiments in this section follow the procedure in Figure A.1.

total = total rounds played

player label =

{
disengaging, if total − prr < por
engaging, otherwise

(A.1)

I Am Playr
In I Am Playr , though balanced by disengagement labelling, the dataset is highly
biased with 1,354 disengaging and 12,044 disengaging players (1:8.895). In addition,
when the churn-labelling method was applied, although the dataset is not seriously
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Table A.1: Performance for Comparisons on Disengagement Over Varying Dates on the
dataset of I Am Playr

Event Feature
without

Balancing

Random
Classifier

T-Value P-Value Effect-Size
(Cohen’s D)

AUPRC
(disengaging
over varying

dates)

LogisticRegression 0.97±0.0009 0.53 4.9431e+02 2.8897e-21 221.0601
DecisionTree 0.97±0.0006 0.53 6.4673e+02 2.5723e-22 289.2264

SVM 0.95±0.0020 0.53 2.0674e+02 7.3745e-18 92.4556
AUPRC (non
disengaging
over varying

dates)

LogisticRegression 0.96±0.0010 0.47 4.8341e+02 3.5312e-21 216.1897
DecisionTree 0.95±0.0014 0.47 3.2613e+02 1.2195e-19 145.8502

SVM 0.91±0.0060 0.47 6.8851e+01 1.4531e-13 30.7913

AUROC
LogisticRegression 0.97±0.0008 0.50 5.4234e+02 1.2543e-21 242.5407

DecisionTree 0.96±0.0011 0.50 4.0607e+02 1.6959e-20 181.5987
SVM 0.94±0.0030 0.50 1.3716e+02 2.9574e-16 61.3408

KAPPA
LogisticRegression 0.79±0.0031 0.00 2.4340e+02 1.6971e-18 108.8522

DecisionTree 0.77±0.0039 0.00 1.8886e+02 1.6641e-17 84.4604
SVM 0.72±0.0067 0.00 1.0212e+02 4.1999e-15 45.6706

imbalanced, the number of available examples is only 256 (132 churners and 124 non-
churners). On the contrary, disengagement over varying dates was able to provide
better training conditions. While the labelling method was applied, the prr and por
found by the genetic algorithm, which minimised the distances between the two classes
were both 2s in I Am Playr . This optimal combination of parameters suggests that
the game is not retaining players very well because half of the players can only finish
two rounds before deciding to leave the game. In addition, because por is also two, it
means that players that decide to leave will churn after two rounds. This suggests that
actions need to be made quickly to prevent this trend. While being categorised by the
prr and por, the ratio of the number of players in two classes is 1:1.118, which is close
to balance. Regarding the number of data samples, there are 19,243 positive examples
(who are unable to finish two rounds after two gameplay rounds) and 17,217 negative
examples (who are still able to finish two rounds after two gameplay rounds). This
is much larger than the dimension of the event frequency-based data representation,
which is 4,740.

Results for predicting disengagement over varying dates can be found in Table A.1. As
can be seen, because the dataset is both quantitatively sufficient and close to balanced,
the performance of classifiers trained in this case behaves significantly better than
the random guess. This can also be verified by the effect-size column. To verify the
observation found, experiments will also be tested on the other two games.

Lyroke

Similar to I Am Playr , the disengagement-labelled dataset in Lyroke is highly biased
to one side (3,495 disengaging players and 25,012 non-disengaging users) whereas the
churn-labelled dataset is balanced but lacks data samples (127 churners and 103 non-
churner). To improve the situation, disengagement over varying dates was applied as
well. When applied, the optimal combination of prr and por is found to be one and
two, respectively. Compared to I Am Playr , the health of Lyroke is worse, as the prr
is smaller, which means half its players can finish only one round of the game before
they churn. Because por is two, which is the same as the por of I Am Playr , quick
actions need to made before players disengage.

Table A.2 depicts the experiment for predicting players’ disengagement over varying
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Table A.2: Performance for Comparisons on Disengagement Over Varying Dates on the
dataset of Lyroke

Event Feature
without

Balancing

Random
Classifier

T-Value P-Value Effect-Size
(Cohen’s D)

AUPRC
(disengaging
over varying

dates)

LogisticRegression 0.98±0.0004 0.59 9.0437e+02 1.2582e-23 404.4465
DecisionTree 0.97±0.0002 0.59 1.4506e+03 1.7899e-25 648.7470

SVM 0.97±0.0007 0.59 4.9656e+02 2.7735e-21 222.0701
AUPRC (non
disengaging
over varying

dates)

LogisticRegression 0.96±0.0006 0.41 9.3065e+02 9.7222e-24 416.2005
DecisionTree 0.96±0.0003 0.41 1.9206e+03 1.4318e-26 858.9276

SVM 0.95±0.0017 0.41 3.0056e+02 2.5431e-19 134.4129

AUROC
LogisticRegression 0.97±0.0005 0.50 9.3238e+02 9.5615e-24 416.9721

DecisionTree 0.96±0.0003 0.50 1.4482e+03 1.8168e-25 647.6722
SVM 0.96±0.0012 0.50 3.6281e+02 4.6733e-20 162.2540

KAPPA
LogisticRegression 0.81±0.0027 0.00 2.8528e+02 4.0666e-19 127.5810

DecisionTree 0.79±0.0019 0.00 3.8599e+02 2.6765e-20 172.6203
SVM 0.76±0.0039 0.00 1.8636e+02 1.8760e-17 83.3427

dates in Lyroke . As can be seen from the table, the performance of classifiers trained
with event-frequency-based data representation under this balanced and quantitatively
sufficient dataset is better than that of the random classifiers in all cases. This matches
what has been observed in the experiment of Lyroke. Finally, because I Am Playr
and Lyroke are developed by the same developer, the same labelling method was also
applied on Race Team Manager .

Race Team Manager
Unlike the two previous games, Race Team Manager is special not only because it is
developed by a different company but also because its dataset is more challenging. As
is reviewed in Section 7.4 and 7.7, when it is labelled by the churn-labelling method,
the number of data samples available for training is much more limited than in the
other games. This makes matters very challenging for highly dimensional data repre-
sentations such as the event-frequency-based approach. In addition, the dataset also
displays high bias towards the positive (churning) side, which is yet another factor that
may affect the quality of trained classifiers. Experiments show that both the random-
undersampling method and SMOTE are unable to improve performance significantly.
Therefore, the target of this experiment is focused on investigating whether the dataset
labelled by disengagement over varying dates can provide a better training environ-
ment for the highly dimensional classifiers that result in more reliable performance.
During the experiment, when disengagement over varying dates was applied, the best
combination found by the genetic algorithm was prr = 3 and por = 1, respectively.
Unlike the previous two games, half of the players are able to play three rounds of the
game before they leave it, which is better than the other two games. However, given
that por is only one, there is an urgent requirement for this game to prevent the trend
of player disengagement. This can also be verified by the fact that, when churn was
used as the labelling method, more players are labelled as churners than non-churners.
After being labelled by disengagement over varying dates, there are 62,355 disengaging
players and 51,518 non-disengaging players, which is close to balanced.

As can be seen from Table A.3, as before, the classifiers trained with event-frequency-
based data representation are able to perform significantly better than the random
classifiers. This difference can also be verified with the effect size.
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Table A.3: Performance for Comparisons on Disengagement Over Varying Dates on the
dataset of Race Team Manager

Event Feature
without

Balancing

Random
Classifier

T-Value P-Value Effect-Size
(Cohen’s D)

AUPRC
(disengaging
over varying

dates)

LogisticRegression 0.98±0.0005 0.55 7.7313e+02 5.1588e-23 345.7564
DecisionTree 0.98±0.0006 0.55 6.4817e+02 2.5213e-22 289.8706

SVM 0.99±0.0005 0.55 8.9983e+02 1.3164e-23 402.4173
AUPRC (non
disengaging
over varying

dates)

LogisticRegression 0.98±0.0003 0.45 1.5306e+03 1.1043e-25 684.5068
DecisionTree 0.98±0.0004 0.45 1.3281e+03 3.9605e-25 593.9504

SVM 0.98±0.0002 0.45 2.3330e+03 2.4864e-27 1043.3645

AUROC
LogisticRegression 0.99±0.0003 0.50 1.6530e+03 5.5265e-26 739.2369

DecisionTree 0.98±0.0005 0.50 9.1315e+02 1.1534e-23 408.3721
SVM 0.98±0.0002 0.50 2.1068e+03 6.2275e-27 942.1757

KAPPA
LogisticRegression 0.88±0.0010 0.00 8.7478e+02 1.6972e-23 391.2150

DecisionTree 0.87±0.0011 0.00 7.7735e+02 4.9124e-23 347.6417
SVM 0.87±0.0010 0.00 8.6994e+02 1.7842e-23 389.0482

A.4 Summary

This section introduced a new disengagement-labelling approach named disengagement over
varying dates that is able to maintain an approximately balanced distribution of resultant
classes without losing any data samples. In a disengagement prediction, rather than selecting
disengaging players by hard-coded specific conditions, this method partitions the database
by defining a varying splitting date that is controlled and generated from two constant pa-
rameters, prr and por, for individual players. A player was said to be disengaging or not by
Equation A.1. To get the smallest distance between the resultant classes, a searching algo-
rithm is needed for optimising the two parameters. In this work, a standard genetic algorithm
was applied to the optimisation; but other methods (e.g., gradient search) may also work.
To evaluate the performance of this labelling method, it was first applied to three different
commercial games for creating approximately balanced classes, and the classifiers trained
in this situation were compared to those that were trained in the dataset labelled by the
original churn-labelling method with balancing processes. In all three games, disengagement
over varying dates successfully balances the distribution of classes (between disengagement
and non-disengagement) and provides more reliable classifiers.

It is notable that, though disengagement over varying dates is a concept similar to that
involved in the widely used churn or disengagement-labelling methods, they are still different
predictive tasks. Although the predictive targets are not exactly the same, this method can
be a good substitution whenever a reliable classifier cannot be successfully trained given the
original churn or disengagement. This can be considered a trade-off between an original
predictive target with unreliable classifiers and a similar predictive target with much more
reliable classifiers plus extra game-health indicator parameters, where the latter is competitive
in terms of benefits for practical problems.
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László A Jeni, Jeffrey F Cohn, and Fernando De La Torre. Facing imbalanced data–
recommendations for the use of performance metrics. In Affective Computing and In-
telligent Interaction (ACII), 2013 Humaine Association Conference on, pages 245–251.
IEEE, 2013.

Ah Reum Kang, Huy Kang Kim, and Jiyoung Woo. Chatting pattern based game bot
detection: do they talk like us? KSII Transactions on Internet & Information Systems, 6
(11), 2012.

K Senthamarai Kannan, P Sailapathi Sekar, M Mohamed Sathik, and P Arumugam. Finan-
cial stock market forecast using data mining techniques. In Proceedings of the International
Multiconference of Engineers and computer scientists, volume 1, page 4, 2010.



REFERENCE 149

Jaya Kawale, Aditya Pal, and Jaideep Srivastava. Churn prediction in mmorpgs: A social
influence based approach. In Computational Science and Engineering, 2009. CSE’09.
International Conference on, volume 4, pages 423–428. IEEE, 2009.

Jens Keilwagen, Ivo Grosse, and Jan Grau. Area under precision-recall curves for weighted
and unweighted data. PLoS One, 9(3):e92209, 2014.

Jin Baek Kim. An empirical study on consumer first purchase intention in online shopping:
integrating initial trust and tam. Electronic Commerce Research, 12(2):125–150, 2012.

Ben Kirman and Shaun Lawson. Hardcore classification: Identifying play styles in social
games using network analysis. In Entertainment Computing–ICEC 2009, pages 246–251.
Springer, 2009.

P. Laurens, R.F. Paige, P.J. Brooke, and H. Chivers. A novel approach to the detection of
cheating in multiplayer online games. In Engineering Complex Computer Systems, 2007.
12th IEEE International Conference on, pages 97–106, July 2007. doi: 10.1109/ICECCS.
2007.11.

Seong Jae Lee, Yun-En Liu, and Zoran Popovic. Learning individual behavior in an educa-
tional game: A data-driven approach. In Educational Data Mining 2014, 2014.

Yunjin Lee, Seungyong Lee, Ioannis Ivrissimtzis, and Hans-Peter Seidel. Overfitting control
for surface reconstruction. In Symposium on Geometry Processing, pages 231–234. Citeseer,
2006.

Omer Levy and Yoav Goldberg. Dependency-based word embeddings. In ACL (2), pages
302–308, 2014.

Chong-U Lim and D.F. Harrell. Modeling player preferences in avatar customization using
social network data: A case-study using virtual items in team fortress 2. In Computational
Intelligence in Games (CIG), 2013 IEEE Conference on, pages 1–8, 2013. doi: 10.1109/
CIG.2013.6633636.

Roderick JA Little. Regression with missing x’s: a review. Journal of the American Statistical
Association, 87(420):1227–1237, 1992.

Rushi Longadge and Snehalata Dongre. Class imbalance problem in data mining review.
arXiv preprint arXiv:1305.1707, 2013.
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