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Abstract

This thesis concerns the statistical modelling of animal movement paths given observed GPS
locations. With observations being in discrete time, mechanistic models of movement are
often formulated as such. This popularity remains despite an inability to compare analyses
through scale invariance and common problems handling irregularly timed observations.
A natural solution is to formulate in continuous time, yet uptake of this has been slow,
often excused by a difficulty in interpreting the ‘instantaneous’ parameters associated with a
continuous-time model.

The aim here was to bolster usage by developing a continuous-time model with interpretable
parameters, similar to those of popular discrete-time models that use turning angles and step
lengths to describe the movement process. Movement is defined by a continuous-time, joint
bearing and speed process, the parameters of which are dependent on a continuous-time
behavioural switching process, thus creating a flexible class of movement models. Further,
we allow for the observed locations derived from this process to have unknown error. Markov
chain Monte Carlo inference is presented for parameters given irregular, noisy observations.
The approach involves augmenting the observed locations with a reconstruction of the
underlying continuous-time process.

Example implementations showcasing this method are given featuring simulated and real
datasets. Data from elk (Cervus elaphus), which have previously been modelled in discrete
time, demonstrate the interpretable nature of the model, finding clear differences in behaviour
over time and insights into short-term behaviour that could not have been obtained in discrete
time. Observations from reindeer (Rangifer tarandus) reveal the effect observation error
has on the identification of large turning angles—a feature often inferred in discrete-time
modelling. Scalability to realistically large datasets is shown for lesser black-backed gull
(Larus fuscus) data.
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Chapter 1

Introduction

Movement is fundamental to an animal’s survival, yet the details of such a process are almost
unknown. Wildlife trajectories are difficult to interpret, being a complex, noisy mixture of
decisions that regularly exhibit randomness, non-linearity, and high spatial and temporal
correlations. Internal behavioural states, physical constraints and memory regulate movement,
whilst encounters with the environment, such as landscape, weather and other individuals,
influence this decision-making process (Cagnacci et al., 2010).

Advances in tracking technologies have allowed data collection on individual animal move-
ment at increasing precision and frequency. This has led the way for growth of research into
movement ecology, concerned with questions of patterns in animal movements. Phenomena
of interest include: the underlying mechanisms and causes for animals to move through
space, the constraints affecting this movement (including internal and external influencing
factors), and how these movements shape the animal’s overall ecology. Although the focus
here will be on the analysis of trajectories of individual animals, such research has the
potential to impact other facets of movement ecology, such as: home-range analysis, resource
use/selection and group movement.

The ability to collect observations at increased sampling frequencies has particularly steered
research to study movement in the short-term, motivating the study of behaviours. Although
real movement behaviour is highly complex and dynamic, much of the research in this area
assumes that movement is driven by switches between ‘behavioural modes’ that allow for
differing phases of the trajectory. The growing interest in this area involves identifying these
“statistically detectable signatures” (Fleming et al., 2014a). Driving questions include the
number of behavioural modes present in a trajectory, when/how often transitions between
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these modes occur, and the characterisation of the underlying movement each behaviour
represents.

Although the yearly number of publications on animal movement has doubled over the last
10 years, this remains dominated by the documentation of studies rather than addressing
ecological questions (Holyoak et al., 2008). Large datasets and limiting computational power
lead to a constant trade-off between models that are ecologically realistic and those that
are feasible to implement. Overly complex models may capture the realism of individual
movement but lack the machinery required to fit them and remain inaccessible to ecologists.
In contrast, simplistic models are often employed in an attempt to avoid these complexities,
ignoring the directionality and correlation present in movement (Brownian motion and
Levy flights, for example (Pyke, 2015)). These single parameter models cannot describe
the complex nature of movement, yet often make strong conclusions about it. There is
a requirement for approaches that are able to capture enough realism of trajectories to
address ecological questions on movement, whilst maintaining statistical robustness and
interpretability.

1.1 Movement data

Movement data generally consists of location fixes of an animal (or group of animals) over
a sequence of discrete points in time. For land-based animals such fixes are in the two-
dimensional horizontal plane. Observations of aerial and marine animals are commonly
collected in either the horizontal plane or the one-dimensional vertical direction, and only
rarely in the full three dimensions. A variety of collection methods exist for movement
observations, but Global Positioning System (GPS) will be the focus of the following work
as it is the predominant collection method for modern studies. Historically, collection
was by very high frequency (VHF) radio (Cagnacci et al., 2010; Hebblewhite and Haydon,
2010), and other collection methods for movement (direct or indirect) such as camera traps,
accelerometers and magnetometers exist, but are not discussed further here (see evaluations
in Cooke et al. (2004, 2013); Rutz and Hays (2009); Wilmers et al. (2015)).

The sampling scheme of movement observations vary considerably from sub-second to
multiple days based on the particular focus of study and battery size/life. Sampling frequency
affects the questions explorable from a set of observations; if migration is of interest then
daily observations over multiple years may be sufficient whilst if foraging periods are of
concern then observations may need to be at the short scale, such as minutes. It is important
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that the sampling scheme is at a meaningful temporal scale with regards the animal dynamics
being explored.

The common feature that sampling schemes are often irregular complicates statistical mod-
elling of animal movement. A number of observations may be missing from the regular
sequence of times either randomly or with structure through temporal or locational con-
straints. Small irregularities in sampling times are introduced when a measuring device
attempts regular fixes but is delayed through either sensor, battery or memory limitations.
Structured irregularities in observations may provide information on movement; such as the
times at which seals are underwater making GPS fixes impossible.

A feature of movement data is the autocorrelation in the observed process—an animal’s
location in the near future will depend heavily on its current location. At high sampling
frequencies this correlation is particularly strong and needs consideration when modelling
movement (Cushman, 2010). It is undesirable to apply the informal, ad-hoc methods of
some studies which remove observations until autocorrelation is assumed negligible (Nations
and Anderson-Sprecher, 2006) or inflate parameter error ranges post-analysis (Fieberg et al.,
2010); instead we believe robust techniques that incorporate correlation should be favoured.

Telemetry observations introduce spatial and temporal error in the true location of the animal.
Due to the nature of GPS technology, the level of observation error is closely linked to the
animal’s environment and this introduces autocorrelation in the error process over time. For
GPS devices, such errors are considered to be small at 10–28 m (Frair et al., 2010), but
the level of effect this has on inference will depend on the movement scale of the animal
in question. Further, the error structures obtained from some technologies (e.g. Argos,
see McClintock et al. (2015)) are known to be complex and non-Gaussian.

After the collection of animal locations, movement modelling may be carried out based on a
number of movement metrics (see e.g. Calenge et al. (2009)), including;

• the raw locations themselves,

• the increments in locations (as displacement or ‘velocity’),

• the Euclidean distances between two consecutive locations (‘steps’),

• the compass direction between two consecutive locations (‘bearings’), and

• the change in direction between three consecutive locations (‘turns’).

Note that when considering steps and either bearings or turns together, such a bivariate process
(given an initial location) defines the raw location process. This alternative parametrisation of
movement has been modelled since the early days of telemetry (Marsh and Jones, 1988; Siniff
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and Jessen, 1969) and has proved popular, described as the “intuitive approach” (McClintock
et al., 2014). The development of modelling animal movements based on this metric is
therefore outlined in the following section.

1.2 Discrete-time step-and-turn movement

Probably the earliest example of an approach to movement modelling that has become well-
established by ecologists is the step-and-turn model. The characterisation of movement into
a bivariate time series of turning angles and steps lengths was first used by Siniff and Jessen
(1969) to gain insight into the movement of hares and foxes. The turning angle, φ , is the
angle between three consecutive observed locations and the step length, r, is the straight line
distance between two consecutive observed locations—Fig. 1.1 shows this parametrisation.
Siniff and Jessen (1969), and later models building upon this, propose parametric distributions
for these two variables so that the likelihood given observed locations {Z1, . . . ,ZM} is

p
(
{Z1, . . . ,ZM} | Ω

)
=

M−2

∏
i=1

Φ
(
φi | Ωφ

)M−1

∏
i=1

R
(
ri | Ωr

)
, (1.1)

where Φ and R denote the parametric distributions of the turning angles and steps, respec-
tively, and Ω is the set of parameters defining such distributions. Note that for a set of M
observed locations, there are M−1 derived step lengths and M−2 derived turning angles.
Statistical inference is then concerned with learning about the parameters Ω, given obser-
vations {Z1, . . . ,ZM}. Note from Eq. 1.1 that there is an assumption that the step and turn
processes are independent from one another.

The distance an animal can travel between two locations is constrained to be positive, and
so it is assumed that the step length, r, arises from some positive parametric distribution;

ϕ

r

Observed location 

Fig. 1.1 Parametrisation of movement in the discrete-time step-and-turn model. Define
movement between observed locations by the turning angle, φ , and the step length, r.
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common choices for R in Eq. 1.1 include the gamma and Weibull distributions. The turn
that an animal can achieve between two points in time is unconstrained, but is constrained
to [−π,π] when observed. The turns, φ , are therefore assumed to arise from a wrapped
distribution with such boundaries; options for Φ in Eq. 1.1 include the von Mises (closely
related to the wrapped normal) and the wrapped Cauchy distributions. Often, the underlying
movement is assumed to be a correlated random walk (CRW), so that the turning angle
distribution is centred at zero (Kareiva and Shigesada, 1983) and the animal is most likely to
keep moving in the same direction over a short period of time.

The step-and-turn movement model requires a regular sampling frequency. Proposed ways
to deal with irregularity are ad-hoc, including thinning and interpolation (Edelhoff et al.,
2016). Although it may be feasible to assume the animal exhibits a constant speed between
consecutive locations, making the step length scalable, it is unclear how to apply a similar
assumption with regards the turning angle over differing time lags.

1.2.1 Incorporating behavioural switching

The single state movement model above was first extended to include behavioural switching
in Morales and Ellner (2002), who highlighted the need for multiple behavioural states
and proposed a simple method where movement in beetles switched modes at a single,
fixed time after their release. Flexible multistate switching in a statistical setting was then
introduced in Morales et al. (2004) to incorporate the idea that animals exhibit a number
of distinct movement ‘behaviours’ over time. In this case, a movement behaviour relates
to movement following the single state model of Eq. 1.1, but with a behaviour-specific set
of parameters Ωi (corresponding to behavioural state i) that govern the turning angle and
step length distributions. Morales et al. (2004) use the Weibull and the wrapped Cauchy as
the behaviour-specific distributions for the step lengths and turning angles, respectively. For
example, a ‘foraging’ style behaviour may correspond to a step distribution with low mean
whilst, in contrast, a ‘migratory’ style behaviour may have a high step mean.

The process by which the animal changes its behaviour is assumed to follow a discrete-time
Markov chain (DTMC). This is the process (X(t), t ∈ N) that takes values from a finite (or
countable) set of states and obeys the ‘memoryless’ property; i.e. the future state of the
process depends only on the current state and not the entire history (see e.g. Guttorp (1995)).
Such a process is defined by a one-step transition matrix P = {pi j} for i, j ∈ {1, . . . ,d},
which describes the probability of the state of the process at time t, given the state at time
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t−1, i.e.
pi j = p(X(t) = j | X(t−1) = i).

Given a sequence of observations of the state of the process, X(t), sufficient statistics for
inference regarding the transition matrix P are given by {ni j}, the number of observed
transitions from states i to j in a single time step. The likelihood of the transition matrix is

p
(
{ni j} | {pi j}

)
= p(X(t1))

d

∏
i=1

d

∏
j=1

pni j
i j ,

where p(X(t1)) is the probability of the initial observation. A possibility for p(X(t1)) would
be to assume that the process has reached its stationary distribution at the time of the initial
observation. The stationary distribution is the row vector πππ that satisfies

πππP = πππ,
d

∑
i=1

πi = 1.

If such a distribution exists (see e.g. Guttorp (1995) for existence criteria) then πX(t1) can be
assumed for p(X(t1)).

The distribution of the steps and turns in this multistate model is a mixture of each behavioural-
specific component, resulting in the computationally infeasible likelihood

p
(
{Z1, . . . ,ZM} | Ω,{pi j}

)
=

d

∑
s1=1
· · ·

d

∑
sM=1

p
(
{Z1, . . . ,ZM} | Ω,{s1, . . . ,sM−1}

)
p
(
{s1, . . . ,sM−1}

)
=

d

∑
s1=1
· · ·

d

∑
sM=1

{
p(s1)

M−2

∏
i=1

Φ
(
φi | Ωφ ,si

)M−1

∏
i=1

R
(
ri | Ωr,si

)M−1

∏
i=2

psi−1si

}
, (1.2)

where {s1, . . . ,sM} is the behavioural state sequence. Rather than integrating over all state
process combinations, as in the likelihood above, inference for such a mixture model is carried
out using Bayesian Monte Carlo techniques in standard software, such as WinBUGS (Lunn
et al., 2000). This Bayesian approach makes inference computationally feasible by aug-
menting the unknown state process and using a complete data likelihood. This multistate
movement model gained widespread use, with Beyer et al. (2013) assessing its effectiveness
at decoding the behavioural sequence and estimating parameters with simulated data.

Morales et al. (2004) only assume movement follows a CRW, which was then relaxed in
McClintock et al. (2012) to allow a range of movements such as biased and attractive walks.
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Rather than modelling the turning angle explicitly, McClintock et al. (2012) use the bearing,
which describes the angular direction the animal is facing (i.e. the turns are the increments of
the bearing process). For a biased random walk (BRW), the animal is most likely to keep
moving in a specific direction, and so the bearing process is centred at some non-zero value.
In the case of an attractive walk, the animal is drawn to a specific location; the centre of the
bearing distribution at any point in time is the bearing between the current location and the
location of attraction. The ability to handle irregular sampling schemes was also addressed in
McClintock et al. (2012), implementing an ad-hoc linear interpolation of locations to create
a regularly timed set of ‘observations’. These models were further extended and applied in
Roever et al. (2014) to include habitat covariates in the behavioural process.

1.2.2 Incorporating observation error

State-space models (SSM) extend basic step-and-turn movement models to allow for spatial
observation error (McClintock et al. (2014); McClintock et al. (2012) and see review in
Patterson et al. (2008)). The SSM is a class of models for time series where the process
of interest may not be that observed, and with the additional complexity that the observed
process may be noisy. An SSM assumes that the observed process is dependent only on the
current unobserved value, which in turn is a Markov process (taking real values rather than a
DTMC which takes finite values). Such a model has the structure shown in Fig. 1.2. The
definition of an SSM therefore involves an observation and process model, defined as

observation equation: Z∗t = h(Zt ,εt),

process equation: Zt = g(Zt−1,ζt).

The process h(·) describes the observation error model in terms of the parameters εt and the
process g(·) describes the random process of movement in terms of the parameter ζt . In the
step-and-turn model previously described, the process parameters are ζt = Ω and the process
g(·) is

Zt = Zt−1 + rt−1

(
cos(φt−1)

sin(φt−1)

)
.

Often the error model h(·) is assumed to be Gaussian (McClintock et al., 2012) so that

Z∗t = Zt + et , et ∼ N2 (000,εtI2) ,
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Z*t-1 Z*t Z*t+1

Zt-1 Zt Zt+1

Observed process
(noisy locations)

True process
(true locations)

Fig. 1.2 Structure of an SSM. In this case, observations of the animal’s location have error
and its true location evolves in time based on the step-and-turn model.

where I2 is the identity matrix, however more sophisticated error models for specific telemetry
devices do exist (McClintock et al., 2015).

SSMs are used extensively in the movement modelling literature for the incorporation of
observation error because of their modelling flexibility (Anderson-Sprecher and Ledolter,
1991; Breed et al., 2012; Jonsen et al., 2013, 2005, 2003; Patterson et al., 2010, 2008),
however, fitting these models is not always straightforward. When the model specification is
linear (i.e. Zt = AtZt−1+Bt +ζt) and the error process is Gaussian then fast-fitting algorithms
such as the Kalman filter are available (see Harvey (1990) for a detailed description). As long
as the state of the process at the initial time is Gaussian, the likelihood of the whole process
is also, allowing evaluation of the likelihood. The Kalman filter is a recursive algorithm to
compute the optimal estimate of the true process that sweeps along the time series, predicting
and updating the true state (Zt) based on the observations up to and including that point
in time. Given this optimal estimate and the assumption that the likelihood is Gaussian,
estimates can be made for all unknown parameters in the model.

Although the Kalman filter provides efficient model fitting techniques, when the model
specification is non-linear (as in the step-and-turn movement case given here) the above
assumptions are invalid. In such a case, if the model is almost linear at the time scale of the
filtering process (usually the observation time scale) then the extended Kalman filter can be
implemented. This approach involves linearising the process around an estimate of the mean
and covariance at the current step of the algorithm (Einicke and White, 1999). If the model
specification is highly non-linear and the extended filter cannot be applied, unscented Kalman
filtering can be used, in which a set of points are deterministically sampled around the mean,
that allow for estimation of the covariance that is more robust than that of the extended
filter (Julier and Uhlmann, 1997). Although these approaches exist, they are often difficult
to implement and choose appropriate tuning values for. Alternative estimation techniques
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Zt-1 Zt Zt+1

st-1 st st+1

Observed process
(locations or steps 

and turns)

Hidden process
(behaviour)

Fig. 1.3 Structure of an HMM. In this case, the animal’s true location is observed, but is
dependent upon a hidden behavioural process that follows a DTMC.

involve integrating over the entire state process, which is computationally infeasible in
practice, or applying (computationally feasible but still demanding) Bayesian Monte Carlo
methods to estimate the unobserved state process and parameters (as in McClintock et al.
(2012)).

1.2.3 Efficient modelling with hidden Markov models

Formulating the mixture model of Morales et al. (2004) as a hidden Markov model (HMM)
improves the efficiency of the inference approach. The HMM is a stochastic process compris-
ing of an unobserved DTMC, with state-dependent observation process. As shown in Fig 1.3,
an HMM has the same general structure as an SSM (Fig. 1.2), but models behaviour, not
error. The observed process Z represents the locations (and therefore the steps r and turns φ ),
and the hidden process s is the unobserved behavioural state of the animal. The definition of
these two processes are the same as that described in the Morales et al. (2004) model above.

In comparison with the SSM, in which the unobserved process has continuous states, the
hidden process of the HMM is discrete and thus allows evaluating the infeasible likelihood in
Eq. 1.2 in an efficient way based on the forward algorithm; a recursive algorithm similar to
that of the Kalman filter (see Zucchini et al. (2016) for details). The likelihood is written as

p
(
{Z1, . . . ,ZM} | Ω,{pi j}

)
= πππQ(Z1)PQ(Z2) . . .PQ(ZM)111T,

where 111 is a row vector of ones, P is the one-step transition matrix between states, and Q(Zi)

is the diagonal matrix with elements given by Φ
(
φi | Ωφ , j

)
R
(
ri | Ωr, j

)
for j ∈ {1, . . . ,d},

where d is the number of states. Written in this form, the complexity of the likelihood is linear
with regards the number of observations, and inference becomes feasible either as maximum
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likelihood or Bayesian Monte Carlo. Along with parameter estimation, the unobserved
behavioural process is reconstructed by applying the Viterbi algorithm (see Zucchini et al.
(2016) for details), which is a recursive algorithm that constructs the set of optimal state
sequences (typically used in the classical framework).

The HMM has been used for modelling the behaviours of animals in a number of ways, such
as feeding (Schliehe-Diecks et al., 2012) and dive behaviours (Bagniewska et al., 2013).
Employing an HMM for modelling step-and-turn movement was first introduced by Franke
et al. (2004), but with the simple categorisation (such as slow, medium, fast) of the step
lengths and turning angles rather than an underlying parametric model. Patterson et al.
(2009) give a parametric version with only step lengths, and Langrock et al. (2012) give
the same underlying movement model as Morales et al. (2004), extended by McKellar et al.
(2015) to include environmental covariates in the behaviour process. In comparison, Forester
et al. (2007) employ an SSM for behaviours, modelling this as a continuous-valued variable.
Extensions to the standard HMM include Leos-Barajas et al. (2017); Li and Bolker (2017);
Towner et al. (2016), who all use a behavioural process that is heterogeneous in time to
account for periodicities, such as diurnal variations.

Although HMMs are able to account for missing observations, this is usually under the
assumption that the process causing the missing data is random; often not the case with move-
ment observations. Structure in missing observations leads to biased estimates (Nakagawa
and Freckleton, 2008) unless correctly accounted for, which can be implemented through
including the probability of recording an observation as a function of the system process.
Although this extension is possible it has not been widely implemented regarding animal
movement, despite it being common to have non-random missing observations. Further, the
task of model selection, and in particular the choice of the number of behavioural states, is
non-trivial. Pohle et al. (2017) and Li and Bolker (2017) found that information criterion
often lead to models with a higher than expected number of states. It was found necessary
to include additional states to account for observation errors and outliers, seasonality and
heterogeneity between multiple individuals—particularly a problem in large datasets. Large
numbers of states cause difficulties when interpreting behavioural classifications, being a
construct of poor model fit rather than ecological processes.



1.3 Problems with discrete-time modelling 11

1.3 Problems with discrete-time modelling

The step-and-turn movement models introduced in the previous section are formulated in
discrete time, defining movement only on some pre-determined ‘grid’ of times. Described by
McClintock et al. (2014) as the ‘intuitive’ choice, it is implicitly assumed that the discrete-
time process represents regular observations from the underlying continuous-time movement
process of the animal. The continuous and discrete formulations of movement, however, may
not be fundamentally substitutable in this way (Nams, 2013).

The time scale of a step-and-turn model must be chosen prior to fitting, with model and
inference not being time-scale invariant (McClintock et al., 2014). This places unwarranted
importance on the choice of scale and sampling rates of paths have been shown to have
a large effect on the inferred movement (Codling and Hill, 2005; Rowcliffe et al., 2012).
In particular, discretising a CRW has been shown to result in a trajectory that is no longer
such (Nams, 2013). Often, the times from the observed data are used, which is a potentially
dangerous choice as this may be unrelated to any biologically important time scale for the
animal—particularly one at which movement decisions are made (Harris and Blackwell,
2013). If the behavioural process of the animal is taken to represent regular observations
from the underlying continuous-time behavioural process (as in Langrock et al. (2012);
McClintock et al. (2012); Morales et al. (2004)), the existence of such a process and the effect
of discretisation is not trivial to address. For example, not all DTMCs have a continuous-time
counterpart and such a representation would therefore be invalid.

Even if the time scale is of biological importance, the lack of scale invariance makes
combining sources of data or comparing analyses challenging (Harris and Blackwell, 2013).
Irregularity of movement data therefore presents a challenge for discrete-time models. Further,
the ability to think about an animal’s location between two observations is not trivial as the
lack of scale invariance leads to this being undefined. A somewhat ad-hoc solution is often
given by a simple linear interpolation of the locations at valid time points (Jonsen et al., 2005;
McClintock et al., 2012).

Formulating a model in continuous time reflects the true mechanisms of animal movement
and removes the need to choose an arbitrary time scale. Observations that are irregular
and ‘gappy’ are applied to a continuous-time model with ease, thus offering a flexible
and widely applicable framework resilient to the sampling scheme used (Gurarie et al.,
2016). The model is defined for all real times and so locations at inter-observation times
can be estimated. The practical application of continuous-time models, however, is limited;
statistical inference is often more computationally demanding and non-statisticians have had
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difficulty interpreting the parameters describing infinitesimal quantities (McClintock et al.,
2014). There is therefore a need to develop robust and meaningful continuous-time models
based on easily interpretable movement parameters.

1.4 Aims of this thesis

Through this thesis we aim to increase the accessibility to modelling animal movement in
continuous time by developing a robust, statistical model with interpretable parameters. In
particular, we sought an analogue to the popular discrete-time step-and-turn models with
parameters similar to, e.g., a mean step length. In continuous time, we define this movement
by a joint bearing and speed process.

As in discrete-time models, the following work intends to develop a movement model capable
of behavioural switching, but one defined in continuous time to allow switches at more than
just observation times. Not only is the aim to learn about the parameters defining this process,
but interest also lies in estimating the unobserved behavioural process itself—similar to the
ability to estimate the optimal state sequence via the Viterbi algorithm in an HMM.

Current approaches using steps and turns have often had to make the choice between including
observation error or behavioural switching. Our aim here is to develop methods to incorporate
both these features in a statistically robust way. Interest lies in developing techniques to learn
about both the underlying error process and to estimate the true locations of the animal at
observation times—an important feature when introducing environmental covariates to the
model.

As part of the aim to make continuous-time movement models accessible to practitioners,
the inference methods described in this thesis can be implemented using the R package
CTStepTurn, which is available at https://github.com/a-parton/CTStepTurn. Scripts to
reproduce many of the examples described here are included, covering a range of practical
scenarios with the aim to provide an example base that practitioners can adapt to their
situation.

1.4.1 Outline of thesis

Chap. 2 gives a review of continuous-time animal movement modelling. We focus on work
relating to the aims listed above rather than the full breadth of the current state of the art.

https://github.com/a-parton/CTStepTurn
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In Sect. 2.4 we summarise how the literature on continuous time will relate to the models
developed over Chaps. 3–5.

In Chap. 3 we introduce the proposed model for continuous-time single state movement
based on step lengths and turning angles. This model formulates movement based on the
popular step-and-turn varieties, using bearing and speed processes as analogues for these
metrics in continuous time. This chapter begins by creating movement patterns comparable
to the discrete-time Morales et al. (2004), but in Sect. 3.4 we propose an alternate model
that includes correlation to the speed process in addition to the bearing. We outline a
method for Bayesian inference in the form of an augmentation approach inspired by the
techniques discussed in Chap. 2. These methods are then demonstrated with applications
using simulated datasets. In these examples, inference is also carried out at the observation
time-scale, highlighting the bias in estimation encountered in a ‘discrete-time style’ analysis.

Chaps. 4 and 5 extend the single state movement model to incorporate the aims listed above;
multistate behavioural switching and the presence of observation error, respectively. We
introduce behavioural switching through a continuous-time Markov chain (CTMC) based on
current approaches in Chap. 2. Examples demonstrate the ability of the inference process
using simulated data, and well-known data of elk movements compares these methods with
popular discrete-time HMMs. In the observation error case, we first introduce an independent
model for error and then extend this in Sect. 5.6 to incorporate correlation. We apply single
state movement with error to data from reindeer, and two-state movement with error to
observations of a lesser black-backed gull. A simulation example explores the ability to
estimate both movement and error parameters simultaneously.

In Chap. 6 we discuss the methods presented in Chaps. 3–5 and how they fit within the
current state of continuous-time animal movement in Chap. 2. We provide suggestions for
future work.





Chapter 2

Review of continuous-time modelling

Continuous-time movement models can be seen as the ‘gold standard’ of movement mod-
elling, avoiding the challenges of discrete time through being scale-invariant and respecting
the continuous nature of an animal’s movement (see the discussion on the formulation
of time in Sect. 1.3). Although a number of models formulated in continuous time exist,
their uptake has been somewhat lagging in comparison to the discrete-time step-and-turn
models of Sect. 1.2. Such limited application has mainly been rationalised by the often
inaccessible parameter interpretation and computational demand of continuous-time meth-
ods. The following chapter outlines the existing continuous-time methods for modelling
animal movement data that this thesis aims to build upon to provide intuitive and understand-
able methods. The following is an extension to the author’s edited contribution within the
published review Patterson et al. (2017).

2.1 Modelling movement with diffusion processes

Animal movement models formulated in continuous time are usually based on diffusion
processes—continuous-time Markov processes that are the solution to some set of stochastic
differential equations (SDE). Such processes suit animal movement because their sample
paths are (almost surely) continuous and can contain randomness. Linear, Gaussian diffusion
processes are tractable, and can be ‘combined’ to produce a flexible range of possible trajec-
tories. This section explores the current approaches to modelling movement in continuous
time by focusing on the diffusion processes that form the ‘building blocks’ underpinning
such models.
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2.1.1 Brownian motion

The simplest diffusion process is Brownian motion (BM, or Wiener process), a Gaussian
process with continuous paths and independent increments such that

W (t)∼ N(0, t) , (2.1)

with W (0)= 0 and Cov(W (t),W (s))= s for s≤ t. BM can be characterised as the continuous-
time limit of a simple random walk (Iacus, 2008) and is an important component for more
sophisticated diffusion processes, such as those in the following sections. Extending to d
dimensions, BM is generalised as

WWW (t)∼ Nd (000, tΣ) ,

where Σ is the d-dimensional covariance matrix that scales standard BM in each dimension.
Given a sequence of observations {xxx(t j)} from a process following BM, the likelihood of
such involves the product over each multivariate normal density describing the independent
increments of the process;

p
(
{xxx(t j)} | Σ

)
= ∏

j
(2π)−d/2|∆t jΣ|−1/2 exp(−(∆x′j(∆t jΣ)

−1
∆x j)/2),

where ∆x j = xxx(t j+1)− xxx(t j) and ∆t j = t j+1− t j.

The d-dimensional process derived from BM that is constrained to start at xxx at time s and end
at yyy at time u is referred to as the Brownian bridge (BB, Iacus (2008)), defined for s≤ t ≤ u
in terms of BM as

WWW u,yyy
s,xxx (t) = xxx+WWW (t− s)− t− s

u− s

(
WWW (u− s)− yyy+ xxx

)
,

where WWW is Brownian motion so that(
WWW (t− s)
WWW (u− s)

)
∼ N2d

(000
000

)
,

(
t− s t− s
t− s u− s

)
Σ

 .

Hence WWW u,yyy
s,xxx (t) is given by the multivariate normal distribution

WWW u,yyy
s,xxx (t)∼ Nd

(
xxx+

t− s
u− s

(yyy− xxx),
(u− t)(t− s)

u− s
Σ

)
. (2.2)
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2.1.1.1 Brownian motion as a model for position

As a model for animal movement, BM is simplistic, representing movement that is unbiased,
undirected and has no interaction with the environment. For this reason, it is only of use either
as a component within a switching model (implicitly in Blackwell (1997, 2003), see Sect. 2.3)
or as a purely local model such as Horne et al. (2007). Movement between consecutive,
known locations is estimated by the use of Brownian bridges, scaled by a volatility parameter.

Inference in Horne et al. (2007) involves learning about the variance parameter of BM,
with observations having the likelihood given by Eq. 2.2. Given multiple observations,
the product is taken over each disjoint BB formed between pairs of successive locations.
Because the distribution of an animal’s location at any time is normally distributed with the
estimated variance, quantile regions can be calculated with ease. This kind of interpolation is
informative about utilisation distributions—the marginal distribution of an animal’s location—
and hence habitat use.

Spatial observation error is accounted for in the BB model of Horne et al. (2007) by assuming
independent, identically distributed (iid) normal perturbations with known variance. In
this case inference uses a ‘leave one out’ approach, removing alternate observations and
essentially using only part of the information provided by observations for inference. An
extension enabling estimation of the observation error parameter is not provided and so
sensitivity analysis based on the chosen value is important.

2.1.2 Ornstein-Uhlenbeck process

The Ornstein-Uhlenbeck (OU), or Vasicek, process (Uhlenbeck and Ornstein, 1930) is the
solution to the SDE

dU(t) = β
(
µ−U(t)

)
dt +σ dW (t),

where W (t) is BM. This stationary, Gaussian process is mean-reverting (Dunn and Gipson,
1977), and so has a tendency to drift towards its long-term mean. The process is given in
terms of BM as

U(t) = µ +
σe−β t√

2β
W
(

e2β t
)
,

distributed (based on Eq. 2.1 and Iacus (2008))

U(t)∼ N

(
µ,

σ2

2β

)
.
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The process at a future point in time, given the current value U(0) = u0, is

U(t) = µ +(u0−µ)e−β t +
σ√
2β

W
(

e2β t−1
)

e−β t ,

having the conditional distribution (again, based on Eq. 2.1)

U(t) |U(0) = u0 ∼ N

(
µ +(u0−µ)e−β t ,

σ2

2β

(
1− e−2β t

))
.

Extending to d dimensions, the stationary and conditional distributions, respectively, of the
OU process are

UUU(t)∼ Nd (µµµ,Λ) ,

UUU(t) |UUU(0) = uuu0 ∼ Nd

(
µµµ +(uuu0−µµµ)eBt , Λ− eBt

ΛeB
′
t
)
, (2.3)

where µµµ is a d-dimensional vector, Λ is a d× d covariance matrix, and B is a stable d×
d matrix—that is, eBt → 0 as t→ ∞ (Blackwell, 1997; Dunn and Gipson, 1977). Hence µµµ

describes the centre of the process, with rate of attraction towards the centre controlled by B
and with random variation governed by Λ.

In two dimensions, the distribution of the OU process is unimodal and elliptical. It is
worth noting here the special, circular case in which the matrices B,Λ are isotropic, i.e.
symmetric under rotation and reflection so that B = β I2,Λ = σ2

2β
I2, with β < 0. In this case

the attraction towards the centre µµµ is determined only by the current displacement from the
centre rather than by direction and no significance is placed upon the dimensional system
chosen (Blackwell, 1997). Further, this simplified case is equivalent to two independent,
one-dimensional OU processes with parameters µi,β ,σ

2.

2.1.2.1 Ornstein-Uhlenbeck process as a model for position

Dunn and Gipson (1977) gave the first method for modelling animal positions in continuous
time, describing two-dimensional positions by an OU process. This kind of process can
be informative about the home range of an animal—the spatial range in which it performs
its daily activities (see recent discussion/review by Börger et al. (2008)). This is often
mathematically defined as the smallest geographical area in which the animal spends a fixed
proportion of time and can be estimated by the equilibrium distribution of the OU process,
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similar to the Gaussian home ranges estimated in Jennrich and Turner (1969). Inference
for the OU parameters in Dunn and Gipson (1977) uses maximum likelihood, based on the
animal beginning movement under its equilibrium distribution and successive observations
arising from the conditional distribution.

The OU process addresses the problem of autocorrelation of position, meaning high frequency
‘bursts’ of observations can be modelled. The OU process, however, will always result in an
estimate of home-range being elliptical and unimodal. For some animals and habitats this
will not be an appropriate assumption (Blackwell, 1997). As with BM, this limits usefulness
as a lone model for movement, but it is an important component in constructing more realistic
models (see Sect. 2.3).

2.1.2.2 Ornstein-Uhlenbeck process as a model for velocity

The continuous-time model of Johnson et al. (2008a) takes the popular movement assumption
of a CRW by directly modelling the velocity, rather than position, of the animal. The velocity
describes the instantaneous rate of change of location, modelled as a bivariate OU process.
In practice, Johnson et al. (2008a) use two independent one-dimensional OU processes (the
circular case described above) as they argue that a non-zero correlation in the velocity process
would lead to unrealistic movement patterns. The persistence assumption, that an animal
will likely keep moving in a similar direction over a short period of time, is incorporated as a
result of the autocorrelation of the OU process. The location of the animal at any time, t, is
found by integrating the velocity process

zzz(t) = zzz0 +
∫ t

0
vvv(u)du.

This results in the location process no longer being Markovian—as in the OU position model
above—as it depends on the entire velocity process prior to time t. However, the combined
process of position and velocity is Markovian.

Observation error in position is incorporated into Johnson et al. (2008a) via a SSM (see
Sect. 1.2.2) with Gaussian distributed errors. Unlike Horne et al. (2007), the parameters
describing observation error in Johnson et al. (2008a) are not assumed known and are
estimated as part of the inference process. In relation to the SSM definition of Sect. 1.2.2,
the observation equation, Z∗t , describes the observed location and the process equation, Zt ,
describes the joint process consisting of the true location and the velocity (because this
joint process is Markovian). Using the SSM framework, Johnson et al. (2008a) use the
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Kalman filter (introduced in Sect. 1.2.2) to carry out statistical inference. The Gaussian error
assumption and the linearity of the OU velocity process are necessary for the Kalman filter
to be valid. The algorithm provides optimal estimates of the process Zt (the unobserved true
locations of the animal as well as the velocity at each observation time) and uses maximum
likelihood to estimate the OU process parameters and the observation error variance. Further,
the Kalman filter can also estimate the location and velocity at missing observation times.

As mentioned above, estimating the home range of an animal is a common metric in move-
ment analyses. The true locations estimated in the Johnson et al. (2008a) method can be used
to calculate the animal’s home range, with a popular method for this being kernel density
estimation. However, a key assumption of such a method is that observations are independent,
yet the locations of an animal are highly correlated. Further, features such as irregularity in
time that cause ‘bunches’ of similarly timed observations to exist bias density estimates. An
extension to Johnson et al. (2008a) is given in Johnson et al. (2011) that allows estimation of
movement summaries, such as home range, in a rigorous way. A Bayesian data augmentation
approach is taken in which samples of the unobserved location process are drawn and used
to gain a Monte Carlo estimate of the summary statistic of interest, allowing uncertainty to
be properly quantified.

Applying the Kalman filter for statistical inference involves assuming that observation errors
are normally distributed. This assumption is often questioned for some tracking technologies
due to the presence of large outliers (e.g. marine animals observed inland) and is thought to
be modelled more closely by a t-distribution that can allow for large errors through heavier
tails (Jonsen et al., 2005). An extension to Johnson et al. (2008a) is presented in Albertsen
et al. (2015) that uses t-distributed errors rather than Gaussian. In order to carry out statistical
inference (because the Kalman filter can no longer be applied), the Laplace approximation
is used to evaluate the integral of interest, in this case integrating over the unobserved true
locations. Using simulations, Albertsen et al. (2015) show that this method improves upon
true location estimation through the heavy-tailed error distribution.

2.2 Modelling movement with general SDEs

The diffusion processes of the previous section arise as solutions to particular cases of the
general SDE

dX(t) = b
(
X(t)

)
dt +σ

(
X(t)

)
dW (t). (2.4)
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A more flexible modelling approach can be achieved by describing movement by an SDE but
without the restriction of needing to find a solution to such. This flexibility is generally at
the expense of computational, and hence statistical, tractability. A number of approaches
consider the case where the SDE derives from basing b(·) in Eq. 2.4 on the gradient of a
harmonic function (Brillinger et al., 2002; Brillinger and Stewart, 1998; Preisler et al., 2004,
2013). Such a function represents the animal’s attraction/repulsion to a particular point, line
or region in a general way. Brillinger and Stewart (1998) and Brillinger et al. (2002) use
specific models that incorporate spherical geometry to allow for a natural representation of
long-range migration along great circle routes. Preisler et al. (2004, 2013) present more
general models, which also include the special, tractable cases of Sect. 2.1.

Some element of approximation is required to fit models of this general type. Typically,
this involves a normal approximation to the movement at each observed time-step. An
approximate likelihood can then be derived and maximised; the quality of the approximation
obviously depends on the frequency of the data compared with the true rates at which
b(·),σ(·) vary.

More sophisticated approaches to inference from SDEs are available, but are rarely used in
a movement context because of the extra computational cost, particularly in the presence
of measurement error. A recent advancement in this area is that of Scharf et al. (2017),
where a range of movement types can be proposed by a general SDE. Although inference
cannot be carried out directly, an augmentation technique is used via multiple imputation,
in which the unobserved movement path is simulated multiple times from an approximate
imputation distribution (such as Buderman et al. (2016) or Johnson et al. (2008a)). A Markov
chain Monte Carlo (MCMC) sampler can be used to make inference about the movement
parameters based on the imputed paths. This approach provides flexible modelling options,
but relies heavily on the assumptions of the approximate imputation distribution.

2.3 Modelling switching behaviour

Animal movement cannot be homogeneous over an extended period of time, yet incorporating
heterogeneity into a continuous-time framework has not been widespread. In the velocity
model of Johnson et al. (2008a) behavioural switching is highly restricted, included only
as a covariate that acts on movement by setting the velocity to zero to create a stationary
state at known times (these times are based on additional tag information). Similarly limited
scenarios include diffusive movement (e.g. BM or correlated velocity) where parameters are
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dependent upon the discrete location of the animal (Ovaskainen, 2004; Ovaskainen et al.,
2008), simplifying to a discrete-time behavioural process (Hanks et al., 2011; Kranstauber
et al., 2014; McClintock et al., 2014) or movement process (Breed et al., 2012; Jonsen et al.,
2005).

The following explores a number of different approaches to modelling that aim to incorporate
heterogeneity in the movement process with time and (in a limited number of methods)
environment. It is important to note that in all the following cases, while it is convenient
to refer to the ‘behaviour process’, the behavioural state potentially has limitations; that
is, the state may reflect a statistical description of movement rather than necessarily being
‘behaviour’ in a true biological sense.

2.3.1 Movement measures

A number of studies have used movement measures to describe and explore types of move-
ment modes. A popular measure is the level of autocorrelation between the step lengths
calculated from observations (Boyce et al., 2010; Gurarie and Ovaskainen, 2011). The sample
autocorrelation function (ACF) is calculated for each time lag h as

ACF(h) =
M(h)−1

∑
M(h)
i=1 (xi− x̄)(xi+h− x̄)

M−1 ∑
M
i=1(xi− x̄)2

,

where M is the total number of observations, M(h) is the number of pairs of observations
at time lag h and x̄ is the sample mean. By estimating the ACF over the range of time lags
between the sampling frequency and period, this gives an indication of the properties of
the time series, such as its order of autoregression. Other measures exist that attempt to
classify movement over time, but are often overly simplistic. These include calculating a
sinuosity/‘straightness’ index by taking the straight-line distances travelled between observed
locations (Bovet and Benhamou, 1988; Postlethwaite et al., 2013), the first-passage/residence
time calculated as the time required to cross a circle of given radius (Barraquand and
Benhamou, 2008; Fauchald and Tveraa, 2003; Lavielle, 2005), and fractal analysis methods
that estimate the degree with which an area has been covered by the animal (Tremblay et al.,
2007). In all cases, these measures can only be used as exploratory tools and are sensitive to
the observation sampling frequency because they often rely on derived quantities such as
step lengths.

The ACF calculation above requires estimation of the mean and variance of the full time series,
yet the usual estimators for these quantities are unreliable when data is highly correlated. In
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contrast, the semivariance function (SVF) contains equivalent information to the ACF, but
avoids estimation of the mean and variance. The SVF measures the variation in a series over
all possible time lags spanning between the sampling frequency and the overall period, given
as

SVF(h) =
1
2

M(h)−1
M(h)

∑
i=1

(xi+h− xi)
2 ,

for lag h. Further, the statistical properties of the SVF are more tractable than the ACF, being
χ2-distributed for a given lag when the underlying process is Gaussian. Based on this, a
robust statistical modelling approach is given in Fleming et al. (2014a,b) using measures of
correlation to identify trends in movement at different time scales.

Fleming et al. (2014a) give the empirical form of the SVF in terms of a set of movement
parameters for a number of popular models, including BM and the OU process, along with
mixtures of models, such as the OU process interspersed with random bouts of foraging
activity. Hence, a flexible range of movement models are considered. The non-stationarity of
movement data due to cycles (such as seasonality) results in the SVF depending not only on
the lag but also the absolute times of the observations. To handle this, Fleming et al. (2014a)
adjust the process by taking a time-average that treats the non-stationarity as a nuisance factor
and leaves only the lag dependence. Given observations, weighted least-squares regression
is used to estimate the parameters in the SVF for each movement model and information
criterion is used for model selection. This technique enables identifying and making inference
on both the different movement behaviours associated with an animal’s trajectory and the
temporal scales over which these behaviours occur. The inference approach of Fleming et al.
(2014a) is improved upon in Fleming et al. (2017) by using the Kalman filter (see Sect. 1.2.2)
to speed up the model fitting process.

Fleming et al. (2014a) is limited by an inability to associate behaviours directly with environ-
mental information or identify the specific behavioural state employed at any one point in
time. Although this problem is still unsolved, a step towards this end is given in Fleming et al.
(2016), presenting methods for inferring the full movement (but not behavioural) trajectory of
the animal. This involves estimating the density of space use between observed locations. As
described in Sect. 2.1.1.1, the BB is often used as a model for between-observation locations,
but is overly simplistic. In Fleming et al. (2016), the more sophisticated movement models
of Fleming et al. (2014a) are used to estimate the space use density. This approach relies
on each model being Gaussian, enabling estimation of the location at unobserved times,
conditional upon the observed locations and chosen model.
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Another step towards identifying the behavioural changes in movement models of this form
is Gurarie et al. (2017), concerned in particular with identifying movement behaviours with
much longer time frames than home ranging and foraging (such as migration). This method
attempts to improve upon the simple methods commonly used for this type of identification,
such as spatial clustering. The location process is the sum of a mean process, m(t), and
an autocorrelated fluctuation process, r(t). A ‘range shift’ is defined as altering the mean
process, with a simple shift example being

m(t) =


m1 if t < t1,

m1 +
(m2−m1)(t−t1)

t2−t1
if t1 ≤ t ≤ t2,

m2 if t > t2,

however more sophisticated models with features such as ‘stopovers’ could be used. In
the case above, the animal has two centres of movement, m1 and m2, with a linear process
controlling the shift between these centres. The autocorrelated fluctuation process then
defines the type of movement around the centre, with standard forms being given for all the
movement models discussed in Fleming et al. (2014a). Inference in Gurarie et al. (2017) is
by likelihood methods similar to Fleming et al. (2014a).

2.3.2 Change point analysis

Gurarie et al. (2009) describe a model that is able to identify heterogeneity and characterise
movement within each ‘behaviour’. Their approach is then applied and compared with those
including the first passage time of Fauchald and Tveraa (2003) and the multistate random
walks of Morales et al. (2004). The underlying movement is parametrised by orthogonal
quantities, coined as ‘persistent’ and ‘turning’ velocities, assumed to follow stationary,
autoregressive Gaussian processes; each described by a mean, variance and autocorrelation
parameter. The persistent and turning velocities are derived from speeds and turning angles,
calculated as averages between observations, hence the reliability of this method will vary
for irregular datasets.

Given a series of movement observations and the time of a single behavioural switch, the
likelihood for the process parameters is simply the product of the two Gaussian functions.
A single behavioural change-point is estimated by maximising this likelihood over all
possible switching times. In turn, the parameters for each behavioural state are estimated
by maximum likelihood using the observations from the respective behavioural state. The
method is extended to any number of behavioural states and change-points by passing a
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discrete moving window (the size of which needs to be chosen) over the observations and
carrying out a single change-point analysis each time. Note that in this model behavioural
switches can only occur at observation times, and hence the behavioural process is not
continuous in time.

Although able to identify behavioural change-points in an animal’s movement path, Gurarie
et al. (2009) cannot group disjoint segments into specific behavioural states. Nams (2014)
allow for this by taking a similar algorithmic approach, comparing an information criterion
to find behavioural change-points. The difference here is that the optimal number of change-
points and their positions are found given a set number of behavioural states. Each partition
of the trajectory is then classified as being one of the behavioural states. This process is
repeated with increasing numbers of behavioural states to find the optimum.

An extension to Horne et al. (2007) allowing for heterogeneity in the movement process over
time is Kranstauber et al. (2012), similar to Gurarie et al. (2009). Although the underlying
movement process, being BM, is continuous, the behavioural process defined by a changing
variance parameter is discrete, being able to ‘switch’ only at observation times. As in Gurarie
et al. (2009), inference involves a sliding window in which all possible switches in behaviour
are considered and compared using information criterion. Other approaches to detecting
behavioural change-points have also been proposed assuming more restrictive, discrete-time
assumptions, based on classification trees (Madon and Hingrat, 2014), segmentation analysis
of cumulative steps (Thiebault and Tremblay, 2013), collinearity of bearings (Byrne et al.,
2009), wavelet analysis (Sur et al., 2014) and clustering techniques (Zhang et al., 2015).

2.3.3 Functional movement models

A number of approaches to modelling movement in continuous time are formulated using
basis functions rather than mechanistic models based on diffusion processes (Brost et al.,
2015; Buderman et al., 2016; Hooten and Johnson, 2017). Such models attempt to fit
a smooth spline to the observed locations to reconstruct the underlying continuous-time
movement path. The location z(t) of the animal is described by the linear combination

z(t) = ∑
i

βiBi(t),

where βi are coefficients determining the weight of the basis functions Bi(·).
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This modelling approach offers versatility, where the specification of the spline used for
interpolating movement can be chosen to allow coefficients at varying ecologically relevant
time scales (Buderman et al., 2016) and a temporal warping technique can be applied to allow
heterogeneous dynamics in the process, mimicking switching movement behaviours (Hooten
and Johnson, 2017). Observation error can be included as a simple Gaussian perturba-
tion (Buderman et al., 2016; Hooten and Johnson, 2017) or as a complex process informed
by auxiliary data such as environmental boundaries to the animal (Brost et al., 2015).

As the estimable quantities of these approaches are the coefficients of splines, rather than
mechanistic parameters such as a ‘mean speed’, the interpretation of these quantities is unclear.
The interpolated splines fit to movement data can post-hoc be used to derive informative
quantities of the path such as speed, persistence and residency times (Buderman et al., 2016),
but these will not have a covariance structure informed from statistical modelling choices
and are only descriptive features. Further, the basis functions Bi(·) must be chosen, which
requires knowledge of both the statistical properties of basis functions and their relation to
ecological processes, possibly rendering such approaches inaccessible to practitioners (Hefley
et al., 2017).

2.3.4 Continuous-time Markov chains

A Markov process is the stochastic process (M(t), t ≥ 0) that obeys the ‘memoryless’
Markov property that realisations of the process in the future depend only on the current
value (Guttorp, 1995). If the process at time t takes realisations from a finite (or countable)
set, and transitions between states are possible at any point in continuous time, then M(t) is a
CTMC.

The CTMC M(t) taking values from a finite state-space with length d can be described by
its generator matrix, G = {gi j} for i, j ∈ {1, . . . ,d}. The value gi j describes the infinitesimal
transition rate from state i to state j. The process can be thought of as residing in state i for
a length of time exponentially distributed with mean 1

−gii
, and then ‘switching’ to another

state j with probability gi j
−gii

, for i ̸= j. An alternative parametrisation (Guttorp, 1995) of the
process is given by the transition rates out of each state, λλλ = {λi}= {−gii}, and the set of
jump probabilities qqq = {qi j}=

gi j
−gii

, for i ̸= j.

Given observed data of a CTMC, sufficient statistics for the process parameters λλλ and qqq are
given by ttt = {ti}, the total observed time spent in each state i, and nnn = {ni j}, the number
of observed transitions from state i to state j (Guttorp, 1995). The likelihood for λλλ and qqq is
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then given by

p
(
ttt,nnn | λλλ ,qqq

)
= exp

(
−∑

i
λiti

)
∏
i̸= j

(
qi jλi

)ni j .

2.3.4.1 Markov behaviour

Blackwell (1997) suggests an extension to the BM and OU position models in Sect. 2.1 to
allow for behavioural ‘switching’. It is assumed that at any point in time the animal exhibits
one of a finite set of behavioural states. The process regarding the behavioural state is
assumed to follow a CTMC. The animal’s movement is then modelled as in Dunn and Gipson
(1977) by an OU process (or a special limiting case being BM), but with the parameters of
such a process being dependent on the behavioural process. When in behavioural state i,
movement follows an OU process with parameters µµµ i,Bi,Λi—see Eq. 2.3.

Statistical inference for these switching models is given in Blackwell (2003), applied to
positional data with known behavioural states at each observation time (however, observations
of behaviour are not necessary, see Blackwell et al. (2015)). Inference is more complicated
than in the Dunn and Gipson (1977) case as the conditional distribution of the animal’s
position—given an earlier position in time—depends on the complete behavioural process
between these two times. This entire behavioural process however, is unknown. The approach
taken by Blackwell (2003) treats the behaviour process as ‘missing’ data and uses Bayesian
Monte Carlo techniques. Quantities of interest are split into three groups and a hybrid MCMC
is carried out, where posterior distributions are sampled from each group separately, using
Gibbs sampling techniques. The three groups are the ‘missing’ complete behaviour process,
the behaviour process parameters and the movement process parameters.

Blackwell (1997, 2003) assumes that the behavioural process is independent of the geograph-
ical position of the animal. Harris and Blackwell (2013) describe spatially heterogeneous
extensions of these models, where movement and behaviour may depend on the discrete
spatial region in which an animal is located at a given instant. Blackwell et al. (2015) give
a method of Bayesian inference for models where switching probabilities may vary with
spatial location, in either discrete or continuous form, and with time. Behaviour is generally
taken to be unknown and is reconstructed as part of the MCMC algorithm. It is worth point-
ing out that a ‘behaviour’ here simply refers to a set of parameter values, and so different
behavioural states may simply represent, for example, similar kinds of movement centred
on different points of attraction. Combined with dependence of the switching probabilities
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on location, this means that these models can represent varied interactions with spatially
complex environments.

The inclusion of observation error is not discussed in the continuous-time OU position
models (Blackwell, 1997; Blackwell et al., 2015; Dunn and Gipson, 1977). An attempt to
address this is given in Nations and Anderson-Sprecher (2006) using an SSM, but at the cost
of formulating the model as a discrete-time version of an OU process. Similarly, McClintock
(2017) ultimately formulates their approach in discrete time. A single state movement model
that is quick to fit but incorporates observation error, such as the velocity model in Johnson
et al. (2008a), is applied and multiple realisations of trajectories are simulated. These are then
used in an multiple imputation approach; repeatedly fitting an HMM with steps and turns to
temporally regular, ‘true’ locations from the simulated trajectories and average over these
fitted models. The behavioural process in this approach is defined in discrete time rather than
the continuous-time process adopted in Blackwell (1997) and the ability to estimate these
behavioural switches was affected by the sampling frequency.

A somewhat different approach to movement modelling is given by Hanks et al. (2015), in
which movement is defined in discrete space, splitting the two-dimensional location space
into a ‘grid’. A CTMC, with states given by the set of location grid cells, is used to model
switches between locations. The movement process is dependent upon environment and
changing behaviours of movement can be included by modelling a heterogeneous chain
that has time-varying switching parameters. This method is promising, with the potential
to describe a wide range of movement behaviours, but is currently limited by its inference
approach. Multiple imputation is employed, reconstructing a continuous-time movement path
via some other movement model, such as Buderman et al. (2016) or Johnson et al. (2008a),
and so this method inherits the assumptions and limitations held by the chosen imputation
model.

2.4 Discussion

This review covered a range of current approaches for modelling animal movement in
continuous time, providing a base for the step-and-turn model developed over the following
chapters. The BB movement model of Horne et al. (2007) is a useful method for the
estimation of location between observations, providing a statistically robust approach in
comparison to the simple linear interpolation assumed in discrete-time step-and-turn models.
Not only can the location between observations be estimated for use in studies concerned
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with environmental covariates at a fine spatial scale, but uncertainty is incorporated allowing
evaluation of credible regions of location use. The model for movement itself, being BM
described by a single parameter, is too simplistic to describe the complex movements of
animals. The model described by Fleming et al. (2014a) does allow for complex movement
patterns, but there is no way to interpolate location. Our model, developed in Chap. 3, aims
to estimate between-observation locations as in Horne et al. (2007), but with more complex
patterns of movement such as those in Fleming et al. (2014a). This includes the realistic
assumption of correlation in the direction of movement (persistence) and the speed of the
animal.

The basis function approaches of Brost et al. (2015); Buderman et al. (2016); Hooten and
Johnson (2017) were designed with the same motivation as Horne et al. (2007); to interpolate
the animal’s location between observations. These methods provide a more adaptable
approach than modelling movement with BM, but this flexibility sacrifices the interpretability
of model parameters as intuitive descriptors of movement. The behavioural process created
by ‘warping’ time creates a continuous-space, continuous-time process that is desirable in
some respects, because it allows a gradual change in the behaviour that enforces correlation
in the movement process. This does, however, hinder the ability to distinctly categorise the
trajectory into decoded behaviours. The behavioural process introduced in Gurarie et al.
(2009); Nams (2013) allows distinct behavioural states, but is formulated in terms of a
persistent and turning velocity; metrics which are less ecologically interpretable than the
standard steps and turns of discrete time. Further, the change point analysis approach relies
heavily on interpolated estimates of these metrics from observations. In Chap. 4, the aim is to
allow discrete behavioural states that can be grouped and directly ‘attributed’ to ecologically
relevant activities. This builds upon the behavioural switching approaches of Blackwell et al.
(2015), incorporating correlation within the movement process so that a gradual change in
the movement is still achieved at behavioural switches.

The movement described by location models using OU processes, such as Blackwell et al.
(2015), allow attraction to a centre but not direct correlation in the direction process (other
than that enforced by the central attraction). This approach is good for describing the
movement of sedentary animals, but not necessarily ranging animals such as reindeer or
migrating birds. In contrast, the OU velocity model of Johnson et al. (2008a) does allow
for persistent movement. The aim in the following is to create similar movement patterns
to Johnson et al. (2008a), but to separate out the speed and direction, as in discrete-time
step-and-turn models, to provide a more interpretable solution than the OU velocity approach
(and other more general SDE models). Although post-processing of the fitted models of
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Blackwell et al. (2015); Johnson et al. (2008a) could separate the inferred movement into
these two quantities, the covariance structure of the speed and bearing would be inherited
from the fitted process. There is a danger that this structure will not be ecologically relevant.
In the following we aim to set the covariance directly for these two processes to ensure that
they are based on ecologically realistic concepts. By including a behavioural process based
on Blackwell et al. (2015) in Chap. 4, the restriction of single state movement in Johnson et al.
(2008a) is overcome. In Chap. 5, the inclusion of observation error similar to Johnson et al.
(2008a) is included, extending the ability of the behavioural switching model of Blackwell
et al. (2015) that does not incorporate error.



Chapter 3

Single state movement

The following chapter introduces a single state movement model, defined in continuous time
and based upon the ideas presented within discrete-time step-and-turn movement models
such as Morales et al. (2004). We present a movement model most similar to such discrete-
time models in Sect. 3.1, with simulation described in Sect. 3.2. An extension describing
more realistic movement is then given in Sect. 3.4. We outline a fully Bayesian method for
carrying out inference on the unknown parameters of the single state movement model in
Sect. 3.3, adopting a data augmentation technique that aids parameter interpretation. Sect. 3.5
demonstrates both of the presented models for movement by applying the inference algorithm
to simulated movement paths, comparing analyses at a number of different time scales. Note
that the following (in part) provides an extended description to that in Parton et al. (2017).

3.1 Analogue of discrete-time movement

In continuous time the turning angles and step lengths of discrete-time models do not make
sense. An equivalent idea is to model a bearing process in place of turning angles and a
speed/distance process to represent the notion of steps.

3.1.1 Bearing process

The bearing process θ(t), for t ≥ 0, represents the direction the animal is facing at time t.
Comparing this with the turning angles featured in discrete-time models, this is an accumula-
tion of instantaneous ‘turns’ up to t in continuous time. We model the bearing by the general
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SDE
dθ(t) = F1(t,θ(t))dt +F2(t,θ(t))dW (t),

where W (t) is the Wiener process (see e.g. Guttorp (1995)) and Fi, for i = {1,2}, are known
functions. A common movement assumption in existing discrete-time models is that of
‘persistence’, implemented by a CRW (Morales et al., 2004). We replicate this assumption
here by allowing θ(t) to evolve according to BM with variance σ2

θ
, and so F1(t,θ(t)) = 0

and F2(t,θ(t)) = σθ . Over a finite period of time, the change in direction the animal is facing
will be normally distributed around a mean of zero. Uncertainty in bearing increases linearly
with time, and correlation between points of the process decreases with increased separation
in time.

The direction an animal is facing at any time is constrained to [−π,π], however, the θ(t)
modelled here is not constrained in this way and can take any real value. For example, given
times 0≤ t < s, it may be that θ(t) = 0 and θ(s) = 2π . Although the animal was facing the
same direction at both times, there is information about the behaviour of the process between
these points, as the animal has performed an entire ‘loop’, with the process between these
points being a BB.

3.1.2 Distance process

At any time t ≥ 0, the animal has travelled a total distance ϕ(t), which is an increasing
quantity representing the accumulation of instantaneous ‘steps’ up to time t. We model the
change in ϕ by the SDE

dϕ(t) = F3(t,ϕ(t))dt +F4(t,ϕ(t))dW (t),

with Fi, for i = {3,4}, known functions. We assume the distance process follows BM with
drift to reflect discrete-time models, so that F3(t,ϕ(t)) = µ and F4(t,ϕ(t)) = σϕ . Over the
finite period of time t the animal travels a mean distance of µt with variance σ2

ϕt. This choice
reflects the realistic assumption that both the expected distance travelled by the animal, and
the variance of such a distance, increases linearly with time. As with discrete-time models,
the distances travelled over disjoint periods of time are independent.

The normality assumption of the BM leads to a positive probability of a negative travelling
distance. However, introducing a constraint on the combination of µ and σ2

ϕ will ensure that
this probability is negligible.
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3.1.3 Joint bearing and distance process

GPS observations of an animal’s movement occur as ZZZ(t) = (X(t),Y (t))T co-ordinate po-
sitions. The joint process given by the bearing and speed defines the location process
with

dX(t) = dϕ(t)cos(θ(t)),

dY (t) = dϕ(t)sin(θ(t)).

3.2 Simulating movement

Realisations of the described movement model, given underlying movement parameters
ΦΦΦ = {σ2

θ
,µ,σ2

ϕ}, can be easily simulated, with an example of such shown in Fig. 3.1.
Simulation of the movement path at an approximate time scale δ t, which can be arbitrarily
fine, is described in the following and summarised in Algorithm 1.

Given the bearing and distance processes at time t ≥ 0,

θ(t +δ t) | θ(t)∼ N
(

θ(t), σ
2
θ δ t
)
, (3.1)

ϕ(t +δ t) | ϕ(t)∼ N
(

ϕ(t)+µδ t, σ
2
ϕδ t
)
. (3.2)

All parameters here represent ‘per unit time’ quantities and are scalable; as opposed to
describing movement at a predetermined observed time scale. It becomes useful now to work
with the differences of ϕ on this refined time scale, recovering the more familiar notion from
discrete-time models of a ‘step’ ν , given as

ν(t) = ϕ(t +δ t)−ϕ(t)∼ N
(

µδ t, σ
2
ϕδ t
)
, (3.3)

highlighting the independence of the ‘steps’ over time.

Given a realisation of the joint bearing and step process, locations in two-dimensional space
are the cumulative sums

X(t +δ t) | X(t),θ(t),ν(t) = X(t)+ν(t)cos
(
θ(t)

)
,

Y (t +δ t) | Y (t),θ(t),ν(t) = Y (t)+ν(t)sin
(
θ(t)

)
. (3.4)



34 Single state movement

Algorithm 1 Simulating single state movement.

1: procedure SIMULATE SINGLE STATE MOVEMENT(ΦΦΦ, {t0, . . . , tm+1})
2: Set initial location

X(t0),Y (t0)← 0

3: Simulate initial bearing (uniform) and step (increment of BM with drift)

θ(t0)∼ U(−π,π)

ν(t0)∼ N(µ(t1− t0), σ
2
ϕ(t1− t0))

4: Initial step and bearing define next location

X(t1)← ν(t0)cos(θ(t0))
Y (t1)← ν(t0)sin(θ(t0))

5: for i ∈ 1, . . . ,m do
6: Simulate conditional bearing (BM) and step (increment of BM with drift)

θ(ti)∼ N(θ(ti−1), σ
2
θ (ti− ti−1))

ν(ti)∼ N((ti+1− ti)µ, (ti+1− ti)σ2
ϕ)

7: Set next location

X(ti+1)← X(t1)+ν(ti)cos(θ(ti))
Y (ti+1)← Y (t1)+ν(ti)sin(θ(ti))

8: end for
9: return Simulated bearings and steps {θθθ ,ννν} and corresponding locations {XXX ,YYY}

10: end procedure
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Fig. 3.1 Examples of single state path simulations. All simulations were for 1,000 time units,
with identical distance parameters {µ,σ2

ϕ}= 1 but with varying bearing parameters, given
by σ2

θ
= {1,0.1,0.01}.

3.3 Fully Bayesian inference

Observations ZZZ of an animal’s two-dimensional location are at a finite, but irregular, series of
times TTT . Direct inference on the movement parameters ΦΦΦ is not possible as the likelihood
of these observations is intractable. This is due to the non-linear relationship between the
locations and the parameters when the bearing and distance processes are unobserved (see
Eq. 3.4). The following describes the approach to carry out inference on the parameters,
given observations, detailing the MCMC algorithm implemented.
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3.3.1 Data augmentation approach

Similar to Blackwell (2003), a data augmentation approach is taken to simplify the rela-
tionship between the observations and the parameters of interest. In this approach, the
augmentation is an approximation to the underlying bearing and distance processes on some
(arbitrarily fine) time scale, displayed in Fig. 3.2. A directed acyclic graph (DAG) of the
model with this augmented, approximate path is given in Fig. 3.3. The hybrid MCMC algo-
rithm splits up the quantities of interest into three groups to update separately, in each case
conditional on all other quantities. In the case where the full conditional distribution can be
directly sampled from, Gibbs sampling is employed, and in all other scenarios the Metropolis-
Hastings (MH) sampler (see below for introduction on sampling methods and Gelman et al.
(2013) for full details). The groups to be separately sampled in sequence are:

• the movement parameters (split into those relating to the bearing and distance pro-
cesses), and

• the unobserved refined path (consisting of bearings and distances).

In the following, Sect. 3.3.2 describes the sampling scheme used for the parameters of the
movement process (bearing and distance). In both cases the sampling is standard, employing
Gibbs and a random walk MH algorithm. Sect. 3.3.3 describes the MH sampling used for the
reconstruction of the unobserved refined path. This includes a novel method of simulation to
create independent proposals within this sampling scheme.

Xj,Yj

Xj+1,Yj+1

ᶚi

ᶟi ᶚi+1

ᶚi+2ᶟi+1

ᶟi+2

Fig. 3.2 Diagram of the augmentation approach to inference. Observed locations, (XXX ,YYY ),
are augmented with a refined movement path, given by an approximation to the underlying
path. The bearings and steps (given by the differences in distance process), (θθθ ,ννν), create the
refined path at a time scale finer than that of the sampling scheme.
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ᷪ

ᶚ ᶟ ᶚ ᶟ ᶚ ᶟ

Fig. 3.3 DAG of the single state movement model with augmentation at an approximate
time scale. In this representation, locations {X ,Y} are shown corresponding to the approx-
imate time scale created for the augmentation of the bearings and steps {θ ,ν}. Note that
observed locations do not occur at each time shown here, but will be less frequently (for ex-
ample, at the times shown in green) and the remaining, unobserved locations are augmented
(deterministically through the augmented bearings and steps).

3.3.1.1 Markov chain Monte Carlo methods

Often in Bayesian statistics the posterior distribution of interest cannot be written in a
closed form. However, Monte Carlo methods can be applied to samples from the posterior
distribution to estimate quantities of interest, e.g. the sample mean can be used to estimate
the posterior mean. MCMC methods are simulation-based techniques for estimating posterior
distributions in this way by sampling from a probability distribution using a Markov chain
with such an equilibrium distribution (Gelman et al., 2013).

3.3.1.1.1 The Metropolis-Hastings algorithm The MH algorithm is a popular MCMC
method for sampling from a probability distribution whose density function is known up to
some constant of proportionality. If p(XXX) is the target distribution to sample from, and the
current value of the Markov chain is given by XXX t , then a proposal YYY for the next sample in the
chain XXX t+1 is given by some proposal distribution Q(YYY |XXX t). This proposal is then accepted
with the probability given by

min
(

1,
p(YYY )Q(XXX t |YYY )
p(XXX t)Q(YYY |XXX t)

)
. (3.5)
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If accepted, XXX t+1 = YYY , otherwise XXX t+1 = XXX t (Gelman et al., 2013).

The choice of initial value and proposal distribution will affect the algorithm’s efficiency at
reaching the equilibrium distribution p(XXX). Where possible, the proposal distribution will be
chosen to be symmetric, so Q(XXX t |YYY ) = Q(YYY |XXX t), simplifying Eq. 3.5. This is achieved with
a Normal random walk for proposals, i.e. YYY ∼MVN(XXX t ,Σ) for some covariance Σ.

3.3.1.1.2 The Gibbs sampler Gibbs sampling is the special case of the MH algorithm,
in which the full conditional distribution of each dimension of XXX t , given by p(Xt,i|XXX t,−i),
can be directly sampled from. Iterate over each dimension in turn, using the full conditional
distribution as the proposal distribution, and the MH ratio reduces to 1 (accepted at every
step (Gelman et al., 2013)).

The ‘one dimension at a time’ approach, proposing in turn from Qi(Yi|XXX t) (not always equal
to p(Yi|XXX t,−i)) and accepted/rejected based on the full conditional distribution p(·|XXX t,−i) via
the MH ratio above is known as the MH-within-Gibbs, or Metropolis-within-Gibbs, sampler.

3.3.2 Sampling the movement process parameters

Sampling the movement process parameters is carried out conditional on complete observa-
tion of the refined path (as part of the overall Gibbs sampler). The movement parameters are
split into those relating to the bearing and distance processes and updated separately due to
their conditional independence, described in the following.

3.3.2.1 Sampling the bearing process parameter

The bearing parameter describes the variance of BM, the conjugate distribution of which
is the inverse gamma. Assuming such a conjugate prior allows direct sampling from the
posterior conditional distribution as a Gibbs step, summarised in Algorithm 2. The bearings,
distributed according to Eq. 3.1, can be normalised as

δθθθ

δ ttt
iid∼ N

(
0,σ2

θ

)
,

where δθi = θi+1−θi.
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Assume a uniform distribution for the initial bearing. The posterior full conditional distribu-
tion is simplified as

p
(

σ
2
θ | µ,σ2

ϕ ,θθθ ,ννν ,ZZZ
)
= p

(
σ

2
θ | θθθ

)
,

defined as

σ
2
θ | θθθ ∼ IG

(
aθ +

m−1
2

, bθ +
1
2

m−1

∑
i=1

(
δθ i

δ t i

)2
)
,

when assuming the conjugate prior σ2
θ
∼ IG(aθ ,bθ ) and where m is the number of points

on the refined path. Appendix A.1.1 gives additional details showing the derivation of this
posterior distribution.

Algorithm 2 Sample conditional bearing process parameter.
1: procedure SAMPLE BEARING PROCESS PARAMETER(θθθ , ttt,aθ ,bθ )
2: Standardise the turns

θ̄θθ ← δθθθ

δ ttt
3: Calculate posterior shape

a∗θ ← aθ +
m−1

2
4: Calculate posterior rate

b∗θ ← bθ +
1
2

m−1

∑
i−1

θ̄
2
i

5: Sample from conditional posterior

σ
2
θ ∼ IG(a∗θ ,b

∗
θ )

6: return σ2
θ

7: end procedure

3.3.2.2 Sampling the distance process parameters

The parameters of the distance process are updated simultaneously using a random walk MH
step with independent proposals for each parameter. Since both parameters are constrained
to be positive, independent univariate Gaussians truncated below at zero are used as proposal
distributions to generate the step in the random walk. As the distance process parameters
are expected to be correlated with one another, dependent proposals can be used to improve
performance of the algorithm through a multivariate Gaussian truncated below at zero.
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The posterior conditional distribution, up to a constant, needed for the MH step is

p
(

µ,σ2
ϕ | σ2

θ ,θθθ ,ννν ,ZZZ
)
= p

(
µ,σ2

ϕ | ννν
)

∝ p
(

µ,σ2
ϕ

)
p
(

ννν | µ,σ2
ϕ

)
= p

(
µ,σ2

ϕ

) m

∏
i=1

p
(

νi | µ,σ2
ϕ

)
,

where p
(

µ,σ2
ϕ

)
is an appropriate prior probability and p

(
νi | µ,σ2

ϕ

)
is the probability of

the refined steps, corresponding to the distribution given by Eq. 3.3. In a simultaneous update
of the distance process parameters the above is calculated for both current and proposed sets
and the standard MH acceptance ratio is then used to decide whether to accept the proposed
parameters. Algorithm 3 summarises this.

Algorithm 3 Sample conditional distance process parameters.

1: procedure SAMPLE DISTANCE PROCESS PARAMETERS(µ,σ2
ϕ ,ρ,ννν , ttt)

2: Sample proposal distance parameters

{µ∗,σ2
ϕ

∗} ∼ TN∞
0

(
{µ,σ2

ϕ},ρ
)

3: Evaluate proposal ratio (on the log scale)

Q← ℓ
(
{µ,σ2

ϕ} | {µ∗,σ2
ϕ

∗},ρ
)
− ℓ
(
{µ∗,σ2

ϕ

∗} | {µ,σ2
ϕ},ρ

)
4: Evaluate posterior ratio (on the log scale)

L← ℓ
(

µ
∗,σ2

ϕ

∗)
+ ℓ
(

ννν | µ∗,σ2
ϕ

∗)− ℓ
(

µ,σ2
ϕ

)
− ℓ
(

ννν | µ,σ2
ϕ

)
5: if U(0,1)< Q+L then
6: return Accept proposal, µ∗,σ2

ϕ

∗

7: else
8: return Reject proposal, µ,σ2

ϕ

9: end if
10: end procedure

3.3.3 Reconstructing the unobserved refined path

The key step in this inference algorithm is to sample the unobserved refined path, given by
the bearing and distance/step processes at a refined time scale, conditional on the movement
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parameters. As the full movement path will be large, this step is carried out in short sections
chosen randomly from the complete path. The aim is to simulate the refined path between
two consecutive observation times j and k, conditional on the fixed path outside of these
times and parameters. Such a scenario is displayed in Fig. 3.4. This method can be extended
to span multiple observed locations, and to start/end at points on the refined path that are not
observation times, but those cases are omitted here for simplicity in notation (though are
implemented in all application examples).

The quantities to simulate are those displayed in black in Fig. 3.4, consisting of:

• the bearings {θ1, . . . ,θn−1}, and

• the steps {ν1, . . . ,νn−1}.

The set of refined times {t1 = j, . . . , tn−1} that the bearing and step processes are approxi-
mated over can be chosen and fixed before inference and need not be regular. For a general
discussion on the choice of δ t in an analysis, see Sect. 3.6. The fixed values that are to be
conditioned upon are displayed in green in Fig. 3.4, consisting of:

• the observed locations {ZZZ( j),ZZZ(k)} (at the times { j,k}),
• the bearings {θ0,θn} at the times {t0, tn = k}, and

• the steps {ν0,νn} at the times {t0, tn}.

As the bearing and step processes are given by an approximation, the fixed points are the
values at the refined point immediately before and after the path section of interest, as can be
seen in Fig. 3.4.

{X(j),Y(j)}

{X(k),Y(k)}

ᶚ0

ᶟ0 ᶚ1

ᶚ2

ᶚn -1

ᶚn

ᶟ1

ᶟ2

ᶟn -1

ᶟn

Fixed end values (green)
Values to simulate (black)

Fig. 3.4 Diagram of the section of path over which augmentation with a refined movement
path will occur. Reconstruction is between two consecutive observations, at the times j
and k (points). The bearing and step processes, {θ1, . . . ,θn−1,ν1, . . . ,νn−1}, between the
observations (black) are simulated given fixed endpoints {θ0,θn,ν0,νn} (green).
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Simulating the quantities of interest from the full conditional distribution is not possible due to
the non-linearity of the quantities conditioned upon (i.e. the fixed location ZZZ(k) is a non-linear
sum of the bearings and steps, as given in Eq. 3.4). A path section is proposed from a simpler
distribution that is then accepted or rejected using an MH ratio. An independence sampler
is employed using a novel simulation method to propose a new path section, described in
the following. This method proposes a path section (in part) conditional on the observed
locations, and so is more efficient than simulating purely based on parameters (such as the
simulation of Sect. 3.2).

3.3.3.1 Simulating a refined path proposal

The path proposal begins by simulating the approximate bearing process θθθ
∗ over the times

{t1, . . . , tn−1}, conditional upon the fixed bearings {θ0,θn} at the times {t0, tn} and the
parameters ΦΦΦ. This conditioned process is a BB with variance σ2

θ
. The BB is simulated (Iacus,

2008) as
θ
∗
i = θ0 +M(ti− t0)−

ti− t0
tn− t0

(
M(tn− t0)−θn +θ0

)
, (3.6)

for i ∈ {1, . . . ,n−1}, where M(t) is BM with variance σ2
θ

(see Algorithm 4).

The path proposal is completed by simulating an approximate step process ννν∗. Unlike the
bearings, this proposal will consider the observed locations to provide efficiency against the

Algorithm 4 Simulate bearing proposal.

1: procedure SIMULATE BEARING PROPOSAL({t0, . . . tn},θ0,θn,σ
2
θ

)

2: M1 ∼ N
(

0,(t1− t0)σ2
θ

)
3: for i ∈ 2, . . . ,n do
4: Sample BM

Mi ∼ N
(

Mi−1, (ti− ti−1)σ
2
θ

)
5: end for
6: for i ∈ 1, . . . ,(n−1) do
7: Correct to the BB

θ
∗
i ← θ0 +Mi−

ti− t0
tn− t0

(Mn−θn +θ0)

8: end for
9: return θθθ

∗

10: end procedure
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simulation method of Sect. 3.2. First construct the joint distribution(
ννν

ZZZ(k)

)
| ΦΦΦ,θθθ ∗,F ∼ N

(mmm1

mmm2

)
,

(
Σ1 Σ1,2

ΣT
1,2 Σ2

) , (3.7)

where F = {ZZZ( j),θ0,θn,ν0,νn}. In the above, the marginal distribution of the steps is
ννν ∼ N(mmm1,Σ1). The distance process assumed here results in steps that are independent
through time, and so the distribution of ννν is unaffected by conditioning on {ν1,νn}. Hence,
µµµ1 and Σ1 are constructed from that in Eq. 3.3, with Σ1 being a diagonal matrix.

In Eq. 3.7 the marginal distribution of the fixed end location is ZZZ(k)∼ N(mmm2,Σ2), and the
covariance between ννν and ZZZ(k) is Σ1,2. The fixed end location can be written as

ZZZ(k) = ZZZ( j)+
n−1

∑
i=1

(
νi cos(θ ∗i )
νi sin(θ ∗i )

)
= ZZZ( j)+Aννν ,

where

A =

(
cos(θ ∗1 ) · · · cos(θ ∗n−1)

sin(θ ∗1 ) · · · sin(θ ∗n−1)

)
.

As ZZZ(k) is a linear combination of the steps when the bearings are known, the means and
covariances in Eq. 3.7 are

mmm2 = ZZZ( j)+Ammm1,

Σ1,2 = Σ1AT,

Σ2 = AΣ1AT.

The step process proposal is simulated by further conditioning ννν in Eq. 3.7 upon the location
ZZZ(k). This ensures that the proposed path section will ‘meet up’ with the fixed end location
and ‘agree’ with the full movement path. The sought conditional distribution can be calculated
by standard formulae for conditioning of a normal distribution (Eaton, 2007)

ννν | ΦΦΦ,θθθ ∗,F ,ZZZ(k)∼ N
(

mmm1 +Σ1,2Σ
−1
2
(
ZZZ(k)−mmm2

)
, Σ1−Σ1,2Σ

−1
2 Σ

T
1,2

)
= N

(
µ̂µµ, Σ̂

)
. (3.8)
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This distribution is singular, with the rank of Σ̂ reduced from full by two through conditioning
upon both a known X and Y value. Simulation from a singular distribution can be carried out
following the ‘conditioning by Kriging’ method of Rue and Held (2005) by first sampling
from the marginal distribution

xxx∗ ∼ N(mmm1, Σ1) ,

and then accounting for the linear constraint by setting

ννν
∗ = xxx∗−Σ1,2Σ

−1
2
(
ZZZ( j)+Axxx∗−ZZZ(k)

)
. (3.9)

Algorithm 5 summarises the procedure for proposing the step process. Appendix A.2.1 shows
that the method for sampling ννν∗ is equivalent to sampling from the distribution in Eq. 3.8.

Algorithm 5 Simulate step proposal.

1: procedure SIMULATE STEP PROPOSAL({t1, . . . tn},ν0,νnΦΦΦ,ZZZ( j),ZZZ(k),θθθ ∗)
2: for i ∈ 1, . . . ,(n−1) do
3: Construct unconditional step distribution

m1i ← (ti+1− ti)µ

Σ1i,i ← (ti+1− ti)σ2
ϕ

Σ1i, j ̸=i ← 0

4: Construct linear constraint matrix for fixed end location

A·,i←
(

cos(θ ∗i ) sin(θ ∗i )
)T

5: end for
6: Construct conditional distribution

mmm2← ZZZ( j)+Ammm1

Σ2← AΣ1AT

Σ1,2← Σ1AT

7: Sample unconditional step distribution xxx∗ ∼ N(mmm1,Σ1)
8: Adjust for constraint ννν∗← xxx∗−Σ1,2Σ2

−1 (ZZZ( j)+Axxx∗−ZZZ(k)
)

9: return ννν∗

10: end procedure
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3.3.3.2 Simulating a proposal at the start/end of path

An exception to the given path proposal method occurs when the section is at the start or end
of the full movement path. In such a case, there is no fixed bearing or step at the start or the
end of the section, respectively. Rather than simulating a bearing proposal from a BB, the
simulation is BM with a fixed starting point forwards/backwards in time when at the start/end
of the path, respectively. As the step process is independent over disjoint periods of time, the
lack of an endpoint does not affect the step proposal.

3.3.3.3 Accepting a refined path proposal

The method given for simulating a path section proposal does not take into account the fixed
location at the end of the section when proposing the bearing process. An MH step is required
to assess whether this proposal is accepted. The conditional distribution, up to a constant, is

p
(
θθθ
∗,ννν∗ | ΦΦΦ,F ,ZZZ(k)

)
= p

(
θθθ
∗ | ΦΦΦ,F ,ZZZ(k)

)
p
(
ννν
∗ | θθθ ∗,ΦΦΦ,F ,ZZZ(k)

)
∝ p

(
θθθ
∗ | ΦΦΦ,F

)
p
(
ZZZ(k) | θθθ ∗,ΦΦΦ,F

)
p
(
ννν
∗ | θθθ ∗,ΦΦΦ,F ,ZZZ(k)

)
.

The proposal method has distribution proportional to

p
(
θθθ
∗ | ΦΦΦ,F

)
p
(
ννν
∗ | θθθ ∗,ΦΦΦ,F ,ZZZ(k)

)
.

The MH acceptance ratio is then

p
(
ZZZ(k) | θθθ ∗,ΦΦΦ,F

)
p
(
ZZZ(k) | θθθ ,ΦΦΦ,F

) ,
where

ZZZ(k) | θθθ ∗,ΦΦΦ,F ∼ N(mmm2,Σ2) .

and mmm2,Σ2 must be constructed in each case given the corresponding set of bearings (current
and proposed).

3.4 Movement with correlated speed

The movement model described in Sect. 3.1 provides an analogue to discrete-time models, in
which the distance an animal travels over disjoint time periods is uncorrelated. A number of



46 Single state movement

authors have suggested the need for correlation in movement processes (see e.g. Gurarie et al.
(2016)) and so a more realistic model of movement would assume that these distances are
correlated, with the magnitude of such dependence decaying over time. In such a case, rather
than modelling the distance process of the animal, it is prudent to describe a speed process.

3.4.1 Speed process

At time t ≥ 0 the speed process ψ(t) is modelled by the SDE

dψ(t) = F5(t,ψ(t))dt +F6(t,ψ(t))dW (t),

with Fi, for i = {5,6}, known functions. This SDE is assumed to be a one-dimensional OU
process (Iacus, 2008), with parameters µ,β ,σ2

ψ , and

F5(t,ψ(t)) = β (µ−ψ(t)),

F6(t,ψ(t)) =
√

2βσψ .

Note the σ2
ψ here is the σ2

2β
in Sect. 2.1.2. The animal’s speed is stochastic but correlated,

with a long term average µ and long term variance σ2
ψ . As in the independent distance model,

there is a positive probability of negative speeds, however this can again be made negligible
by placing a constraint on the dependence between the set of speed parameters.

3.4.2 Joint bearing and speed process

Given the bearing and speed at time t ≥ 0, the location process ZZZ is

dX(t) = ψ(t)cos(θ(t)),

dY (t) = ψ(t)sin(θ(t)).

3.4.3 Simulating movement

The speed process can be simulated at a refined time scale δ t as

ψ(t +δ t) | ψ(t)∼ N
(

µ + e−βδ t (
ψ(t)−µ

)
, σ

2
ψ

(
1− e−2βδ t

))
.
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As in the independent distance model, it becomes useful to define the step process

ν(t +δ t) | ν(t) = ψ(t +δ t)δ t | ψ(t)δ t

∼ N

δ t

(
µ + e−βδ t

(
ν(t)
δ t
−µ

))
, δ t2

σ
2
ψ

(
1− e−2βδ t

) , (3.10)

highlighting the correlation of this process.

Path simulation is given by that in Algorithm 1, but replacing line 4 with the equilibrium
distribution

ν(t0)∼ (t1− t0)N(µ,σ2
ψ),

and line 6 with ν(ti)|ν(ti−1) in Eq. 3.10.

3.4.4 Fully Bayesian inference

The following outlines changes to the inference algorithm of Sect. 3.3 to allow for correlated
speed.

3.4.4.1 Sampling the movement process parameters

Inference for the set of movement parameters ΦΦΦ = {σ2
θ
,µ,β ,σ2

ψ}, given observed locations
ZZZ, follows Sect. 3.3.2. Sampling the bearing process parameter remains identical to that of
Sect. 3.3.2.1.

The parameters of the speed process are updated simultaneously using a random walk MH
step, with independent proposals for each parameter, as in Sect. 3.3.2.2. All parameters are
constrained to be positive, and so univariate Gaussians truncated below at zero are used as
proposal distributions to generate the step in the random walk.

The posterior conditional distribution, up to a constant, is

p
(

µ,β ,σ2
ψ | σ2

θ ,θθθ ,ννν ,ZZZ
)

∝ p
(

µ,β ,σ2
ψ

)
p
(

ν1 | µ,σ2
ψ

) m

∏
i=2

p
(

νi | νi−1,µ,β ,σ
2
ψ

)
,

where
ν1 | µ,σ2

ψ ∼ δ t1N
(

µ,σ2
ψ

)
,

and νi | νi−1,µ,β ,σ
2
ψ is distributed as in Eq. 3.10.
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3.4.4.2 Reconstructing the unobserved refined path

The method for sampling a section of refined path when speeds are correlated is that in
Sect. 3.3.3. The only difference is the form of the marginal distribution of the steps (condi-
tional on fixed end steps), introduced in Eq. 3.7. The marginal distribution of ννν is no longer
unaffected by the fixed endpoints once there is correlation. The steps are derived from the
underlying speed process, which is an OU bridge, and the construction of this distribution is
given in the following.

The fixed values ν0,νn are transformed to the speeds ψ0 = ν0/δ t0 and ψn = ν0/δ tn. In the
following, assume (for brevity) that all expressions are also conditional upon

{ΦΦΦ,θθθ ∗,ZZZ( j),θ0,θn}.

By noting that

ψi|ψi−1 = e−β (ti−ti−1)ψi−1 +N
(

µ

(
1− e−β (ti−ti−1)

)
, σ

2
ψ

(
1− e−2β (ti−ti−1)

))
,

the joint distribution {ψ1, . . . ,ψn−1,ψn} | ψ0 can be constructed iteratively as

E(ψi|ψ0) = e−β (ti−ti−1)E(ψi−1|ψ0)+µ

(
1− e−β (ti−ti−1)

)
,

Var(ψi|ψ0) = e−2β (ti−ti−1)Var(ψi−1|ψ0)+σ
2
ψ

(
1− e−2β (ti−ti−1)

)
,

Cov(ψi,ψi+ j|ψ0) = e−β (ti+ j−ti+ j−1)Cov(ψi,ψi+ j−1|ψ0). (3.11)

This joint distribution is partitioned into {ψ1, . . . ,ψn−1} and ψn in order to condition upon
the known value of ψn (by the same method for conditioning upon a normal distribution
given in Eq. 3.8 by Eaton (2007)) to give the bridge distribution {ψ1, . . . ,ψn−1} | ψ0,ψn.
This can be transformed back to the steps {ν1, . . . ,νn−1} to give mmm1,Σ1 by multiplying the
speeds {ψ1, . . .ψn−1} by the time increments {δ t1, . . . ,δ tn−1}. The conditional step proposal
is then carried out as in Algorithm 5, but replacing line 3 with that of Algorithm 6.

When simulating a proposal for a section at the start or end of the path, rather than an OU
bridge, the marginal distribution of ννν is constructed by an OU process either forwards or
backwards in time from the fixed point. This process is the same as that above, but without
the need to condition upon the endpoint ψn.
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Algorithm 6 Correlated step bridge distribution.

1: procedure CONSTRUCT OU BRIDGE({t1, . . . tn}, ,ν0,νn)
2: Transform end steps to speeds

ψ0← ν0/(t1− t0)
ψn← νn/(tn+1− tn)

3: for i ∈ 1, . . . ,n do
4: Conditional mean and variance of OU process

E(ψi|ψ0)←
(

µ + e−β (ti−ti−1)(E(ψi−1|ψ0,)−µ)
)

Var(ψi|ψ0)← Var(ψi−1|ψ0)e−2β (ti−ti−1)+σ
2
ψ

(
1− e−2β (ti−ti−1)

)
5: for j ∈ 1, . . . ,n do
6:

Cov(ψi,ψ j|ψ0)← e−β (t j−t j−1)Cov(ψi,ψ j−1|ψ0)

7: end for
8: end for
9: Condition to construct OU bridge distribution

E(ψ1:(n−1)|ψ0,ψn)← E(ψ1:(n−1)|ψ0)+Cov(ψ1:(n−1),ψn|ψ0)Var(ψn|ψ0)
−1(ψn−E(ψn|ψ0))

Cov(ψ1:(n−1),ψ1:(n−1)|ψ0,ψn)← Cov(ψ1:(n−1),ψn|ψ0)Var(ψn|ψ0)
−1Cov(ψn,ψ1:(n−1)|ψ0)

10: Transform speed distribution to step

mmm1← δδδ tttE(ψ1:(n−1)|ψ0,ψn)

Σ1← δδδ tttCov(ψ1:(n−1),ψ1:(n−1)|ψ0,ψn)δδδ tttT

11: return mmm1,Σ1
12: end procedure
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3.5 Examples with simulated data

Two example implementations of the inference algorithm are presented in this section, using
data simulated with both independent and correlated steps. Both cases demonstrate the ability
of the inference algorithm to correctly estimate the underlying movement parameters and
compare such estimates with those obtained by using only the observed locations (as close
as possible to a ‘discrete-time style’ analysis with this approach). A marked improvement
in estimation is made by using the augmentation approach described in Sect. 3.3. In both
examples the movement parameters were chosen to reflect the types of movement patterns
observed in real data—in particular, the second example assumes a high level of volatility in
the bearing and speed processes to demonstrate the presented methods in a scenario of high
uncertainty in location between observations.

3.5.1 Simulated movement example with independent speed process

This first example provides a demonstration of the methods for inference presented in this
chapter, using simulated data from the model with an independent distance process. The
following results can be comparably reproduced with the single_simulation example
within the repository CTStepTurn available at https://github.com/a-parton/CTStepTurn.

3.5.1.1 Underlying movement and observations

We simulated (following Sect. 3.2) an example movement path with the underlying model in
Sect. 3.1. The movement parameters were

ΦΦΦ = {σ2
θ = 0.5,µ = 50,σ2

ϕ = 30}, (3.12)

and the path simulated at the approximate time scale δ t = 0.01, between the times 0–500.
Such a time scale was chosen as a close approximation to the underlying continuous-time
movement model.

We created observations of the movement path by sub-sampling the simulated locations at
intervals of 500δ t, giving 101 ‘observed’ locations at a time scale of 5. The simulated path,
with corresponding observations, is given in Fig. 3.5. The level of sub-sampling used here
was chosen to create observations that were sufficiently often so that the overall movement

https://github.com/a-parton/CTStepTurn
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Fig. 3.5 The single state, independent step simulated movement path (line). Locations to be
used as observations are included (points).

can be determined by the observations alone, whilst remaining sparse enough so as to allow
a reasonable level of uncertainty as to the unobserved movement between observations.

3.5.1.2 Implementing the inference algorithm

To explore the ability of the inference algorithm presented in Sect. 3.3, this example includes
a number of implementations at a range of time scales for the unobserved refined movement
path.

• Although the true values of the movement parameters used to create the simulated
path are known (Eq. 3.12), the posterior distribution of the parameters for the resulting
simulated path is not. To learn about this distribution, a ‘baseline’ implementation
was carried out assuming full observation of the simulated movement path at the
refined time scale of 0.01. In this case, no augmentation is required and the movement
parameters are sampled according to Sect. 3.3.2.

• To investigate the performance of the full inference algorithm, two example imple-
mentations were carried out with refined time scales of 0.5 and 1 (augmenting 9 and 4
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locations between each pair of observations, respectively). For a general discussion on
the choice of δ t in an analysis, see Sect. 3.6.

• To compare the performance of the algorithm with cases where augmentation is not
used, an implementation with a refined time scale of 5 (the same as the observations)
was carried out. This case is similar to a discrete-time analysis, where the movement
path is treated as fully observed and the observed locations are linearly interpolated to
calculate turning angles and step lengths. As in the ‘baseline’ case above, inference
only involves the movement parameters.

3.5.1.2.1 Initial values The two cases where full inference was implemented require an
initial refined movement path, in both cases constructed by taking an interpolating cubic
spline between the observed locations at the associated refined time scale. Bearing and step
lengths were calculated from these interpolated locations. Using the spline to create the
initial path is ideal as it requires no prior knowledge of the unobserved movement path and is
in some sense an ‘extreme’ initial path because of its smoothness, showcasing the ability of
the algorithm to infer the true movement parameters.

In all cases, initial movement parameters were set as maximum likelihood estimates from the
fixed/initial movement path, given in Table 3.1. When the full simulated path is known, the
initial movement parameters are similar to the true values, as expected. In all other cases the
initial movement parameters underestimate the bearing variance and overestimate the speed
variance.

Extracts of the movement paths (either fixed when fully observed or initial when reconstruc-
tion is required) are given in Fig. 3.6 as locations and in Fig. 3.7 as bearings and speeds. The
similarity of the two initial paths created using interpolating cubic splines can be seen here,

Table 3.1 Initial parameters, perturbation variances and acceptance rates for the implementa-
tions carried out on the independent step simulation.

ΦΦΦ
(0)

ρρρ Acceptance (%)

δ t σ2
θ

(0)
µ(0) σ2

ϕ

(0)
ρµ ρ

σ2
ϕ
{µ,σ2

ϕ} {θθθ ,ννν}

0.01 (simulation) 0.500 49.9 29.9 0.02 0.5 29 -
0.5 0.0563 42.4 39.4 0.2 5 37 3
1 0.107 42.1 78.2 0.2 5 40 1
5 (observation) 0.327 40.6 236 1 500 53 -
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Fig. 3.6 Small section (between the times 0–30) of the initial movement path in the single
state, independent steps simulation example. When the refined time scale was the same as
the observations or simulations, the movement path was known and fixed. When the refined
time scale was 1 or 0.5, the movement path was reconstructed, with initial path given here,
created using an interpolating spline between observed locations. The smoothness of the
interpolating spline results in two paths that are almost indistinguishable here.

as well as the ‘smoothing’ of the processes that occurs as the refined time scale becomes
more coarse.

3.5.1.2.2 Prior information In all four implementations of the algorithm, the movement
parameters were assumed to have flat, uninformative prior distributions. In the case of the
bearing variance, the conjugate prior distribution was an inverse gamma with shape and rate
0.001.

3.5.1.2.3 Implementation For the two implementations in which path reconstruction
was not needed (at the simulation and observation time scales), movement parameters were
sampled 105 times and thinned by a factor of 100 to store 1,000 samples. For the two
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Fig. 3.7 Small section (between the times 0–30) of the initial movement path (as bearings
and speeds) in the single state, independent steps simulation example. When the refined time
scale was the same as the observations or simulation, the movement path was known and
fixed. When the refined time scale was 1 or 0.5, the movement path was reconstructed, with
initial path given here, created using an interpolating spline between observed locations. The
smoothness of the interpolating spline results in two paths that are almost indistinguishable
here.

implementations in which path reconstruction was necessary, movement parameters were
sampled 4×106 times and thinned by a factor of 1,000 to store 4,000 samples. Note that
thinning need only be done for memory storage purposes, improving the computational
run-time. At the observation and simulation time scales, the computational run-time was
at the order of minutes and hours, respectively. For the examples with path reconstruction,
computational time took around 24 hours. Perturbation variances for the independent
truncated Gaussian proposal in the random walk on the distance parameters were set based
on pilot experiments, given in Table 3.1.
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The method for path reconstruction in Sect. 3.3.3 describes reconstruction between two
consecutive observations. In this example, the method employed is an extension to this, in
which a reconstruction can span multiple observations, and can start and end at any point
on the refined path. The reconstructions were carried out in random sections of lengths
between 4–13 points on the refined time scale, with 100 reconstructions for each sample
of the movement parameters. With regards the choice of length for path reconstructions, a
long length will increase the proportion of the path that is being updated at a time and is
obviously desirable. However, longer sub-path lengths incur computational costs through
larger matrix calculations and are less likely to be accepted due to their high dimensionality.
Having a mixture of short sub-path lengths that are easily accepted helps with the mixing
of the algorithm. This idea follows on from such a discussion regarding reconstructing a
behavioural process in Blackwell et al. (2015). The particular choice used here was based
on the acceptance rates in pilot runs: lengths higher than 13 had too low acceptance to be
feasible, and lengths of 4 allowed these short section updates that helped with mixing.

Acceptance rates of the distance parameters (note that the bearing parameter is updated via
Gibbs sampling) and path reconstructions (where applicable) are given in Table 3.1. The
implementations with full observations of the movement path (at time scales of 0.01 and
5) required fewer MCMC iterations because path reconstruction was not needed. In both
these cases, the thinned samples of size 1,000 had an effective sample size (ESS) of 1,000 as
autocorrelation was so low (the ACF is included in the Appendix, Fig. B.3). Longer MCMC
samplers were required for the two implementations in which paths were reconstructed
because of slow mixing. This is to be expected when such a Gibbs sampler is implemented
due to the high correlation between a movement path and its associated parameters. In both
these cases, the thinned samples of 4,000 parameters had ESSs of at least 100 (actual ESS
for each parameter is given in Table 3.2 and the ACF is included in the Appendix, Fig. B.3).
Acceptance rates of path reconstructions were 3% and under in both implementations, but
due to the high dimensionality of the movement path, these rates were deemed acceptable for
this example: in both implementations the ESS of the 100 stored reconstructed locations was
100 for 70% of the points on the path, with only 10 locations having an ESS less than 50. A
discussion on extensions to the inference method that aim to increase path reconstruction
acceptance is given in Sect. 3.6.

3.5.1.3 Movement parameter results

The sampled movement parameters for all implementations are given as trace plots in the
Appendix, Fig. B.2, with the true value highlighted. The Heidelberger and Welch diagnostic
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Fig. 3.8 Sampled (log) bearing variance against mean speed (thinned and with burn-in time
omitted) for the single state, independent step simulation (points). True parameter values are
highlighted (lines).

was used to evaluate convergance of the implementations (Heidelberger and Welch, 1983).
This is a test that recursively discards 10% of the chain (until 50% has been discarded)
and uses the Cramer-von-Mises criterion to test the null hypothesis that the chain is from a
stationary process based on the mean of the process. In this example, all implementations
passed Heidelberger and Welch convergence diagnostics (implemented using the coda
package (Plummer et al., 2016)), and the ESS for each parameter is given in Table 3.2. The
trace plots highlight the high autocorrelation in σ2

ϕ , which describes the variability of the
distance process. Correlation between σ2

θ
, the variability of the bearing process, and µ , the

mean drift of the distance process, can also be seen. This is to be expected given a fixed set
of observations; the longer a path is between two fixed locations the more tortuous that path
must be.
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Fig. 3.9 Sampled (log) speed mean against variance (thinned and with burn-in time omit-
ted) for the single state, independent step simulation (points). True parameter values are
highlighted (lines).
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Scatter plots of the posterior sampled movement parameters are given in Figs. 3.8–3.9 (on
a log scale). The former compares the bearing variance and the speed mean and the latter
compares the speed mean with variance. Each panel shows one of the four implementations
to avoid overplotting and the true value is highlighted with lines. As expected, there is little
error in parameter estimation when there is full observation of the simulated path (top left),
however this implementation was carried out only as a ‘best-case’ comparison for the other
scenarios. The two runs in which the path needed to be reconstructed (for δ t = 0.5 top
right and for δ t = 1 bottom left) show similar results for the parameter estimates, with high
correlation between the sampled values. The true parameter values have been captured well,
with samples centred more closely on the true value when the refined time scale is smaller,
providing a better approximation to the underlying process. The final run using only the
observed locations without any refinement to the path (bottom right) has performed badly in
parameter estimation. Both the bearing variance and the speed mean have been consistently
underestimated and the speed variance overestimated.

Posterior credible intervals are given in Table 3.2 and Fig. 3.10. Kernel density estimates
are given in the Appendix, Fig. B.1. All of these summaries use thinned samples, with
burn-in (assumed to be the first eighth of each run) discarded. The ‘discrete-time style’
implementation does not contain the true parameter values in a 95% credible interval,
underestimating the bearing variance and mean speed and overestimating the speed variance.
The 95% credible intervals when the refined time scale was 0.5 are shown to be closer to
the true simulation values than the coarser approximation at time scale 1, but in both cases
contain the true value for all parameters. The credible intervals for the implementation with
full observation of the simulated path capture the true values, as expected, however note that
these are not centred on the true value for the distance parameters, instead favouring lower
values.

These results demonstrate the ability of the presented method for inference to estimate param-
eters. Just a small refinement (four intermediate locations between each pair of observations)
is shown to improve parameter estimation greatly over analysing the observations directly,
particularly with regards to the distance parameters. Further refinement to the movement path
provides a better approximation to the underlying movement process, and when doubling the
level of reconstruction here the parameter estimates were improved upon.
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Fig. 3.10 Box plots of the movement parameters (using thinned samples and with burn-in
time omitted) for the single state, independent steps simulation. True parameter values are
highlighted (horizontal lines).
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Table 3.2 Credible intervals for the movement parameters in the single state, independent
step simulation. The true values used to simulate the observations were {0.5,50,30}, with
the implementation highlighted if the true value is not included in the estimate. The ESS for
each parameter is also given. When path reconstruction was not needed, this was taken from
the 1,000 samples thinned from 105 iterations. When path reconstruction was implemented,
this was taken from the 4,000 samples thinned from 4×106 iterations.

2.5% 50% 97.5% ESS

σ2
θ

0.01 (Sim) 0.494 0.500 0.507 1000
0.5 0.380 0.472 0.594 858
1 0.366 0.454 0.565 612
5 (Obs) 0.254 0.329 0.445 1000

µ

0.01 (Sim) 49.396 49.882 50.353 1000
0.5 47.795 49.189 50.629 406
1 47.244 48.598 49.907 242
5 (Obs) 39.371 40.626 42.018 1000

σ2
ϕ

0.01 (Sim) 29.525 29.879 30.239 1000
0.5 11.026 33.957 80.392 214
1 7.750 31.855 73.643 106
5 (Obs) 183.460 241.229 334.539 1000

3.5.1.4 Path reconstruction results

Examples of 100 path reconstructions for the two implementations at time scales of 1 and
0.5 are given in detail in Fig. 3.11 and in full in Fig. 3.12. There is no uncertainty around the
observed locations, and so each path reconstruction passes exactly through these locations. As
expected, the locations at the times halfway between observations have the most uncertainty.

Fig. 3.12 demonstrates the ability to estimate the underlying movement between observed
locations. When two observations are further apart from one another (such as the first two
observations in the top left of Fig. 3.11), the reconstructed paths are more similar to one
another, and uncertainty in location is generally low. However, when the true movement path
involved a large curve (such as that in the bottom right of Fig. 3.11) there is more uncertainty
in the intermediate locations, with reconstructed paths exploring the two possibilities of
curving between the observations (albeit with one route having higher support).
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Fig. 3.11 Detailed path reconstructions between the times 0–30 (grey) for the single state,
independent step example. Path reconstruction only occurred when the time scale was 0.5 or
1. The simulated path is given (solid black) along with the path used to initialise the MCMC
sampler (dashed black).

3.5.2 Simulated movement example with correlated speed process

This second example demonstrates the extended movement model that includes correlation
in the speed process and highlights the difficulty in estimating such a feature when only
considering movement at the sampling time scale. This example features more volatile
movement in both the bearing and speed processes, expected to lead to higher uncertainty in
unobserved location.

3.5.2.1 Underlying movement and observations

Movement under the correlated speed process in Sect. 3.4 was simulated with movement
parameters

ΦΦΦ = {σ2
θ = 0.7,µ = 15,β = 0.1,σ2

ψ = 20}, (3.13)

at the approximate time scale δ t = 0.01, between the times 0–500. Observations of the
movement path were created as in the previous example, subsampling the simulation to give
101 ‘observed’ locations at a time scale of 5 . The simulated path, with observations, is given
in Fig. 3.13.
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Fig. 3.12 Full path reconstructions (grey) for the single state, independent step simulation.
Note that reconstruction only occurred for the implementations at time scales 0.5 and 1. The
simulated path is also given (black).
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Fig. 3.13 The single state, correlated step simulated movement path (line). Observations are
included (points).
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Table 3.3 Initial parameters, perturbation variances and acceptance rates for the implementa-
tions carried out using the correlated step simulation.

ΦΦΦ
(0)

ρρρ Acceptance (%)

δ t σ2
θ

(0)
µ(0) β (0) σ2

ψ

(0)
ρµ ρβ ρ

σ2
ψ
{µ,β ,σ2

ψ} {θθθ ,ννν}

0.01 (sim.) 0.696 14.7 0.0673 14.9 0.5 0.001 10 2 -
0.5 0.138 11.4 0.0374 19.4 0.1 0.001 1 18 2
1 0.207 11.4 0.0697 19.2 0.1 0.001 1 25 1
5 (obs.) 0.427 11.0 0.0922 14.2 0.3 106 9 42 -

3.5.2.2 Implementing the inference algorithm

As in the previous example, four implementations were carried out at varying refined time
scales. Using the simulation time scale (0.01) with full knowledge of the movement path
provided a ‘baseline’ on the posterior distribution of the parameters. Two implementations
of the full inference algorithm were carried out at time scales of 0.5 and 1, and finally at the
time scale of the observations (5).

3.5.2.2.1 Initial values The initial refined movement path for the implementations at
times 0.5 and 1 was created as in Sect. 3.5.1.2, extracts of which are shown in Figs. 3.14
and 3.15 along with the fixed paths for the implementations at times 0.01 and 5. The initial
movement parameters are given in Table 3.3.

3.5.2.2.2 Prior information and implementation Prior distributions and sample run
length were set as in the previous example. Perturbation variances for the speed parameters,
and acceptance rates are given in Table 3.3. The ACF of the sampled parameters is included
in the Appendix, Fig. B.6, and the ESS in Table 3.4.

3.5.2.3 Movement parameter results

Sampled movement parameters for all four implementations are given as trace plots in the
Appendix, Fig. B.5, with the true value highlighted. Note that the trace for β in the case
where δ t = 5 is not included here, but given in Fig. B.4 because of its magnitude. All
implementations passed Heidelberger and Welch convergence diagnostics apart from β when
δ t = 5, and the ESS is given in Table 3.4.
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The ESS for the speed correlation parameter, β , in the case where the refined time scale
was equal to the observation time scale was low (3), highlighted by the trace plot in the
Appendix, Fig. B.4. This parameter could not be estimated with the information provided
at this time scale, highlighting an important issue with analyses at such a coarse time scale.
The correlation parameter features as an exponential term in the conditional distribution of
the speed (e−δ tβ ), and so once β is above 5, this exponential term is below 10−10 (the true
value would lead to 0.6). At the observation time scale the parameter could not be estimated,
and instead sampling drifted around the space where β was large (and the exponential term
approximately zero).

Scatter plots of the posterior sampled movement parameters for all implementations are
given in Figs. 3.16–3.17 (on a log scale). The former compares the bearing variance and the
speed mean while the latter compares the speed correlation with variance. Each panel shows
one of the four implementations to avoid overplotting and the true values are highlighted
with lines. As expected, there is little variability in parameter estimation when there is full
observation of the simulated path (top left). However, the most variability can be seen in the
estimation of the mean speed and there is a strong relationship between the speed correlation
and variance.
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Fig. 3.14 Small section (between the times 0–40) of the initial movement path used within
the single state correlated step simulation. When the refined time scale was the same as the
observations, the movement path was fixed. When the refined time scale was the same as the
simulation, the true simulated path was assumed known and fixed. When the refined time
scale was 1 or 0.5, the movement path was reconstructed, with initial path given here, created
using an interpolating spline between observed locations.
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Fig. 3.15 Small section (between the times 0–40) of the initial movement path (as bearings
and speeds) used within the single state correlated step simulation. When the refined time
scale was the same as the observations, the movement path was fixed. When the refined time
scale was the same as the simulation, the true simulated path was assumed known and fixed.
When the refined time scale was 1 or 0.5, the movement path was reconstructed, with initial
path given here, created using an interpolating spline between observed locations.
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Fig. 3.16 Sampled (log) bearing variance against mean speed (thinned and with burn-in time
omitted) for the single state, correlated step simulation (points). True parameter values are
highlighted (lines).
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Fig. 3.17 Sampled (log) speed correlation against variance (thinned and with burn-in time
omitted) for the single state, correlated step simulation (points). True parameter values are
highlighted (lines).
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The two runs in which the path needed to be reconstructed (for δ t = 0.5 top right and for
δ t = 1 bottom left) show similar results for parameter estimates, with a relationship between
the speed correlation and variance (as present when δ t = 0.01). The true parameter values
have been captured well, with little difference between the two implementations.

Using only the observed locations without refinement to the path (bottom right) performed
poorly in parameter estimation. Both the bearing variance and speed mean have been
consistently underestimated and the speed correlation parameter vastly overestimated (under-
estimating the level of correlation in the speed). Only the long-term variance of the speed
process includes the true value within the posterior samples.

Posterior credible intervals are given in Table 3.4 and Fig. 3.18. Kernel density estimates
are given in the Appendix, Fig. B.7. All of these summaries use thinned samples of the
movement parameters, with burn-in (assumed to be the first eighth of each run) discarded.
The implementation in which the refined time scale was equal to the sampling scheme
only contains the true parameter values in a 95% credible interval for the speed variance,
underestimating other parameters. The 95% credible intervals when the refined time scale
was 0.5 are shown to be similar to the coarser approximation at time scale 1, containing the
true value for all parameters.

The results here demonstrate the ability of the inference method presented for estimating
movement parameters. Just a small refinement (four intermediate locations between each
pair of observations) is shown to improve parameter estimation greatly over analysing the
observations directly, particularly with regards to the speed correlation parameter which
could not be estimated in the latter case.

3.5.2.4 Path reconstruction results

Examples of 100 path reconstructions for the implementations at time scales of 1 and 0.5 are
given in Fig. 3.19, showing the full movement path. Movement overall has been captured well
but there can be seen to be more uncertainty in location between observations than that seen
in the previous example. This is to be expected due to the higher volatility of the simulation.
Fig. 3.20 shows a detailed portion of the movement path with a smaller set of reconstructions
(4) for clarity. This figure highlights a section of the path when there is a ‘loop’ in the
simulation between two observed locations (at which there is no uncertainty). This kind of
movement feature proved to be difficult to capture in the reconstructions because of the high
uncertainty when such a feature exists. However, although there is high uncertainty as to
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Fig. 3.18 Box plots of the movement parameters in the single state, correlated step simulation
(using thinned samples and with burn-in time omitted). True parameter values are highlighted
(horizontal lines). Note that β is not included here when δ t = 5 as it could not be estimated.
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Table 3.4 Credible intervals for the movement parameters in the single state, correlated step
simulation. The true values were {0.7,15,0.1,20} with implementation highlighted if the
true value is not included in the estimate. Note that summary statistics for β when δ t = 5
are not included here as it could not be estimated. The ESS for each parameter is also given.
When path reconstruction was not needed, this was taken from the 1,000 samples thinned
from 105 iterations. When path reconstruction was implemented, this was taken from the
4,000 samples thinned from 4×106 iterations..

2.5% 50% 97.5% ESS

σ2
θ

0.01 (Sim) 0.687 0.695 0.704 1000
0.5 0.516 0.660 0.851 360
1 0.494 0.633 0.805 600
5 (Obs) 0.330 0.428 0.581 1000

µ

0.01 (Sim) 13.455 14.700 16.244 277
0.5 12.281 14.236 16.447 943
1 12.066 14.019 15.956 2332
5 (Obs) 10.232 11.032 11.726 1000

β

0.01 (Sim) 0.084 0.128 0.177 200
0.5 0.025 0.107 0.276 144
1 0.036 0.107 0.242 321
5 (Obs) - - - 3

σ2
ψ

0.01 (Sim) 11.326 15.685 23.828 183
0.5 10.866 18.879 39.432 342
1 10.263 18.012 34.056 814
5 (Obs) 11.251 14.587 19.311 950
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specific locations, the actual presence of a ‘loop’ appears in the majority of reconstructions,
as shown.

3.6 Discussion

This chapter introduced a framework for modelling animal movement in continuous time
based on the popular movement metrics of step lengths and turning angles. A method for
statistical inference via the augmentation of a refined path that is assumed to approximate
continuous time has been described and demonstrated on simulated observations.

The underlying model for movement described in Sect. 3.1 is based on the CRW ideas of
discrete-time models such as Morales et al. (2004), assuming that the distance travelled
over disjoint sections of times are independent from one another. The continuous-time
formulation, however, allows missing and irregular observations to be handled with ease.
The model introduced in Sect. 3.4 assumes that there is correlation in the distance process.
Note that even if this model were to have a β ≫ 0, hence virtually no correlation in speed,
the two models would still differ in the accumulation of uncertainty with time. The correlated
speed model has some similarities with the velocity-based continuous-time model of Johnson
et al. (2008a) but is more intuitive, enabling a separation of speed and direction that matches
empirical observations well. Parameter interpretation is simpler when separated in this
way, describing aspects of movement such as a mean travelling speed and a volatility to the
direction of movement. Although continuous-time models based on co-ordinate locations,
such as Johnson et al. (2008a) or Blackwell et al. (2015), could be applied, with post-
processing carried out to determine the distributions of speeds and bearings, the covariance
structure of such distributions, and hence the implicit shape of the path, will not be the same
as that defined by the model here. Ecological justification for such a covariance structure
may be difficult or lacking, whereas the model here is directly defined by these quantities
and motivated by ecological ideas.

For a given time interval, the distribution of the change in direction given by this continuous-
time model will always be a wrapped Gaussian centred at zero. A von Mises distribution
(often used to model turning angles in discrete-time models such as McClintock et al. (2012))
centred at zero is similar to this, but a von Mises (or other circular) distribution centred at
±π is not. In fact, no natural continuous-time process for change in direction would lead
to such a distribution when observed at regular intervals. Such a distribution would require
the expected rate of change of bearing to be non-zero, leading to paths that consistently
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Fig. 3.19 Full path reconstructions (grey) for the single state, correlated step simulation.
Note that reconstruction only occurred for the implementations at time scales 0.5 and 1. The
simulated path is also given (black).
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Fig. 3.20 Examples of a small section of the sampled refined path reconstructions (green) for
the single state, correlated step simulation. The simulated path is given (solid black) along
with initial paths (dashed black).
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form loops. While this may be appropriate occasionally we do not feel it is realistic in most
published applications. It seems more likely that such a distribution emerges only as an
artefact of some other process e.g. ignored measurement error (Hurford, 2009) or attraction
to a particular location in space. The classification of movement with a mean turning angle
of ±π in a number of discrete-time applications (the elk example of Morales et al. (2004)) is
questionable. The ecological interpretation of a ‘foraging’ style movement would be better
modelled as having a uniform turning angle, such as σ2

θ
→ ∞ in the continuous-time model

here. However, other modelling choices exist for the bearing process that could describe
ecologically realistic movement. Rather than BM increments, an OU process centred at zero
would create correlation in the increments of the bearing process, or directed movement
could be achieved by considering the change in bearing required to reach an attractive centre.

Although the approach for inference in Sect. 3.3 involves an approximation to the underlying
continuous-time model, advantages remain over discrete time because the parameters of the
model are scalable (as they represent parameters of a continuous time model) rather than a
‘per observation time’ parameter. Reducing the time scale of the refined path will provide
a ‘better’ approximation to the underlying model and improve upon discrete-time analyses,
although this does come with a computational cost. A refined path with more points will
be more costly to evaluate the likelihood of (when sampling movement parameters) and
there will have to be more updates to the refined path to compensate for the increase in
refined locations needing reconstruction. Simulation experiments on the effect of varying
δ t (Sect. 3.5) show that great improvements to parameter estimation could be made against
using only observations by augmenting with as little as four locations between observation
pairs. Improving the approximation with further refinement was found to increase accuracy of
estimation further, but incurred the cost of additional computation time. Future analyses must
make a decision on what is the acceptable trade off between the accuracy and computational
cost required to address the relevant ecological questions.

The augmentation approach employed in the inference method furthers the aim for compre-
hensible inference. The ability to view examples of path reconstructions, such as those in
Figure 3.11, aids in understanding the movement type associated with a given combination
of parameters. Sampling a large number of reconstructions highlights the uncertainty in
location, which can then be used to estimate the space/resource use of the animal at the local
scale. With the resolution of environmental covariates increasing, this information can be
correctly combined with local scale movement rather than assuming only the covariate values
corresponding to directly observed locations are important. This gives an equivalent, for
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step-and-turn models, of the BB approach of Horne et al. (2007). For discussion of the wider
issues of linking movement and resource use, see for example Johnson et al. (2008b).

The inference method of Sect. 3.3 led to low path reconstruction acceptance rates in the
examples Sect. 3.5. The acceptance of a path section is based on the likelihood of the known
end location, given a set of bearings. The acceptance rate could potentially be improved
by altering the proposal distribution for the bearings. Possibilities include a random walk
perturbation of the current set of bearings, or (more favourable for mixing purposes) a
proposal with mean given by a mixture of both the underlying BB and the current set of
bearings.

The methods presented in this chapter assume that movement follows a single behavioural
mode, which is unrealistic for animal tracks covering an extended period of time. Behavioural
switching that builds on this model in continuous time is addressed in Chapter 4, based on the
work of Blackwell et al. (2015) to include switching between a finite number of ‘behavioural
states’ that represent quantitative or qualitative differences in movement. Further, the methods
here assume that observation error is negligible. This is not the case in most GPS data sets,
and so the ability to correctly account for this error is important. Chapter 5 extends the model
here to a framework for incorporating observation error.



Chapter 4

Multistate movement

Chap. 3 introduced a continuous-time movement model based on similar quantities to
those of popular discrete-time ‘step and turn’ models. This provides familiar descriptive
parameters for estimation whilst respecting the inherent continuous-time characteristic of
movement—hence has the ability to handle missing and irregular observations with ease.
Describing only single state movement limits this model to applications with short term
sampling periods (Morales and Ellner, 2002), and so the aim of this chapter is to introduce
a statistical, multistate movement model in continuous time able to provide intuitive and
easily interpretable parameters for the non-statistical user. Multistate switching movement is
introduced by extending the model of Chap. 3 to include a CTMC behavioural process.

Sect. 4.1 introduces the proposed multistate model, with simulation described in Sect. 4.2.
An extension to the inference method previously described, given observed telemetry data,
that incorporates multistate movement is outlined in Sect. 4.3. This method assumes no
direct observations of the behaviour itself. The use and interpretability of this method is then
demonstrated on simulated (Sect. 4.4) and real (Sect. 4.5) datasets. Note that the following
(in part) provides an extended description to that presented in Parton and Blackwell (2017).

4.1 Model for multistate switching

To reflect the changing behaviours of an animal over time, a switching model is employed for
a ‘behavioural process’, where different movement characteristics are associated with each
state/behaviour (Blackwell, 1997; Blackwell et al., 2015; McClintock et al., 2012; Morales
et al., 2004). In the following, the behavioural process is taken to be a CTMC with switching
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rates λλλ and probabilities qqq (see Sect. 2.3.4 and Guttorp (1995)). The animal will follow
behavioural state i for a length of time exponentially distributed with rate λi, before switching
to state j with probability qi, j.

Within a behaviour there is a corresponding set of parameters describing movement as in
either Sect. 3.1 or 3.4. With this extension in place the marginal joint process of bearing and
speed is not Markovian, however the joint process of behaviour, bearing and speed is. The
movement of the animal is parametrised by the set ΦΦΦ = {ΦΦΦB,ΦΦΦM}, with

ΦΦΦB = {λi,qi, j}
ΦΦΦM = {σ2

θ ,i,µi,βi,σ
2
ψ,i}

for i ̸= j ∈ {1, . . . , p}, where p is the number of behavioural states.

4.2 Simulating movement

Realisations of movement given parameters ΦΦΦ can be easily simulated, summarised in Al-
gorithm 7 and with an example in Figs. 4.1 and 4.2. The behavioural process is simulated
according to a CTMC with generator matrix defined by ΦΦΦB. Assume that the trajectory begins
in equilibrium, so that the initial behavioural state is simulated from the equilibrium distribu-
tion corresponding to the generator matrix defined by ΦΦΦB. This equilibrium distribution, πππ ,
is found by solving the global balance equations

−πiλi = ∑
j ̸=i

π jλ jq j,i, (4.1)

for i∈ {1, . . . , p}. The remainder of the behavioural process is then simulated by a conditional
process. Given a current behaviour B(t) = s, this involves drawing the time until the next
switch from an exponential distribution with rate λs and then choosing the new behaviour
j ̸= s with probability qs, j. Simulation ceases at the point where the time of the next switch
exceeds the final time the simulation is to be carried out over.

Given a simulated realisation of the behavioural process, movement is simulated approx-
imately at a time scale δ t, which can be arbitrarily fine scale. Note however, that this
approximation time scale must (at least) include all times of behavioural switches. If the
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Fig. 4.1 An example of a simulated movement path with two behavioural states. The top
panel shows the simulated behavioural process in time, and the bottom two panels show the
bearing and speed processes. Each panel is additionally coloured by behavioural state; state 1
characterised by slow movement with high bearing variance and state 2 characterised by fast,
directed movement. Corresponding locations are in Fig. 4.2.
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Fig. 4.2 The locations corresponding to the simulation of two-state movement in Fig. 4.1.

behaviour at time t is B(t) = s, then the bearing and speed are given as

θ(t +δ t) | θ(t),B(t) = s∼ N
(

θ(t), σ
2
θ ,sδ t

)
, (4.2)

ψ(t +δ t) | ψ(t),B(t) = s∼ N
(

µs + e−βsδ t(ψ(t)−µs), σ
2
ψ,s

(
1− e−2βsδ t

))
, (4.3)

assuming the correlated speeds model of Sect. 3.4. For the remainder of this chapter it will
be assumed that the speed process follows this correlated model, however, note that the
independent model of Sect. 3.1 could equally be implemented. Again, the familiar notion of
a ‘step’ is recovered by ν(t) = ψ(t)δ t.

As in single state movement, given the joint process of bearings and speeds, the Euler-
Maruyama approximation of location in 2-dimensional space is given by the cumulative
sums

X(ti) = X(t0)+
i−1

∑
j=1

ν(t j)cos(θ(t j)),

Y (ti) = Y (t0)+
i−1

∑
j=1

ν(t j)sin(θ(t j)). (4.4)
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Algorithm 7 Simulating multistate movement.

1: procedure SIMULATE MULTISTATE MOVEMENT(ΦΦΦ, {t0,T})
2: Simulate the initial behavioural state

B(t0)∼Multinomial(πππ)
t← t0

3: Simulate the time to the first behavioural switch

t∗ ∼ Exp
(

λB(t)

)
4: while t + t∗ < T do
5: Simulate the behaviour to switch into

B(t + t∗)∼Multinomial
(

qqqB(t),·

)
6: Update t← t + t∗

7: Simulate the next behavioural switch time

t∗ ∼ Exp
(

λB(t)

)
8: end while
9: Create set of times {t0, . . . , tm+1} for movement to be simulated over (containing at

least all behavioural switch times)
10: Simulate movement according to Algorithm 1, with movement parameters at each

time t corresponding to B(t) (see Eq. 4.2).
11: return Simulated behaviour, bearings and steps {BBB,θθθ ,ννν} and corresponding loca-

tions {XXX ,YYY}
12: end procedure
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4.3 Extending the method for fully Bayesian inference

As in Chap. 3, observed locations ZZZ are taken at a finite, but irregular, series of times TTT . As
before, the relationship between the locations and parameters when the bearing and speed
processes are unobserved makes the likelihood intractable. This is further complicated by the
unobserved behavioural process, where there is the possibility of multiple switches between
observations. This section describes the extension to the Bayesian inference algorithm of
Chap. 3 that can be used given observed locations and a pre-specified number of behavioural
states, p.

4.3.1 Data augmentation approach

The data augmentation approach of Blackwell (2003) is taken by supplementing the observed
locations with the times of all behavioural switches. Here, as in the single state case in
Chap. 3, augmentation also includes an approximation to the underlying bearing and speed
processes on some (arbitrarily fine) time scale, as shown in Fig. 4.3. The augmented model
is also given as a DAG in Fig. 4.4. The hybrid MCMC algorithm splits the quantities of
interest into groups to update separately, in each case conditional on all other quantities. In
cases where the full conditional distribution can be directly sampled from, Gibbs sampling
is employed, and in all other scenarios the MH sampler is used (Gelman et al., 2013). The
groups to be separately sampled from are:

• the behavioural parameters (ΦΦΦB),

• the movement parameters (ΦΦΦM) (split into bearing and speed processes), and

• the unobserved refined path of behavioural switches, bearings and speeds (BBB,θθθ ,ννν).

Sects. 4.3.2 and 4.3.3 describe the sampling schemes used for the behavioural and movement
parameters, respectively. In both cases the sampling is standard, employing Gibbs sampling
and a random walk MH algorithm. Sect. 4.3.4 describes the MH algorithm used for the
reconstruction of the unobserved refined path, which now includes the behavioural process
in addition to the bearings and speeds. Although reconstruction of the bearings and speeds is
at an (arbitrarily fine) approximation, the behavioural process remains exact.
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movement path. The refined path consists of the behavioural process in continuous time
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Fig. 4.4 DAG of the multistate movement model with augmentation at an approximate time
scale. In this representation, locations {X ,Y} are shown corresponding to the approximate
time scale created for the augmentation of the behaviours, bearings and steps {B,θ ,ν}. Note
that observed locations do not occur at each time shown here, but will be less frequently (for
example, at the times shown in green) with the remaining locations augmented through the
definition of the bearings and steps.
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4.3.2 Sampling the behavioural process parameters

The behavioural process parameters are sampled conditional on complete observation of the
behavioural process. Conjugate distributions for the switching rates (λλλ ) and probabilities (qqq)
of a CTMC are gamma and Dirichlet, respectively. Assuming such conjugate priors allows
direct sampling from the posterior conditional as a Gibbs step (Blackwell, 2003), summarised
below and in Algorithm 8.

The full conditional distribution is simplified as

p(ΦΦΦB | BBB,θθθ ,ννν ,ZZZ,ΦΦΦM) = p(ΦΦΦB | BBB)

and is the posterior for a fully observed CTMC. Although BBB describes the times and states
of all switches, sufficient statistics for such a process are given by ai, the total time spent in
state i, and bi, j, the number of transitions from state i to state j. Given independent prior
distributions

λi ∼ Gam(ci, di),

qi,1, . . . ,qi,p ∼ Dir( fff i),

the posterior conditional distribution is

λi | BBB∼ Gam(ci +
p

∑
j=1

bi, j, di +ai),

qi,1, . . . ,qi,p | BBB∼ Dir( fff i +bbbi),

for i ∈ {1, . . . , p} and bbbi = {bi,1, . . . ,bi,p}. Additional details showing the derivation of this
posterior distribution are given in Appendix A.1.2.

4.3.3 Sampling the movement process parameters

The movement process parameters are sampled conditional on complete observation of the
refined path (both behaviour and movement) and the behavioural parameters. The movement
parameters are split into those relating to the bearing and speed processes and updated
separately, described in the following.



4.3 Extending the method for fully Bayesian inference 85

Algorithm 8 Sample conditional behavioural process parameters.

1: procedure SAMPLE BEHAVIOUR PARAMETERS(BBB,{c1, . . . ,cp},{d1, . . . ,dp},{ fff 1, . . . , fff p})
2: Calculate sufficient statistics {a1, . . . ,ap},{bbb1, . . . ,bbbp} from BBB
3: for i ∈ 1, . . . , p do
4: Calculate posterior parameters

c∗i ← ci +∑
j ̸=i

bi j,

d∗i ← di +ai,

fff ∗i ← fff i +bbbi.

5: Sample from the conditional posterior

λi ∼ Gam
(
c∗i ,d

∗
i
)
,

qi1, . . . ,qip ∼ Dir
(

fff i
)
.

6: end for
7: return λλλ ,qqq
8: end procedure

4.3.3.1 Sampling the bearing process parameters

There is a bearing process parameter describing the variance of the BM for each behavioural
state. As in the single state method of Chap. 3, assuming an inverse gamma prior for this
variance allows direct sampling from the posterior conditional distribution as a Gibbs step
(as shown in Appendix A.1.1). In this case, the bearings parameters are independent and
for each behavioural state will each have an inverse gamma prior, which need not be the
same. Each variance parameter is then sampled sequentially by following the method in
Sect. 3.3.2.1 and Algorithm 2. Assume the initial bearing, θ1, is uniformly distributed. For
behavioural state i,

p
(

σ
2
θ ,i | µµµ,βββ ,σσσ2

ψ ,ΦΦΦB,BBB,θθθ ,ννν ,ZZZ
)
= p

(
σ

2
θ ,i | θθθ

)
,

where

σ
2
θ ,i | θθθ ∼ IG

aθ ,i +
mi

2
, bθ ,i +

1
2 ∑

j
B(t j)=i

δθ j

δ t j

 ,

and where σ2
θ ,i ∼ IG(aθ ,i,bθ ,i) and mi is the number of points on the refined path following

behavioural state i.
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4.3.3.2 Sampling the speed process parameters

The speed process parameters for all behavioural states are updated simultaneously using a
random walk MH step, with independent proposals for each parameter. Since all movement
parameters are constrained to be positive, independent univariate Gaussians truncated below
at zero are used as the proposal step in the random walk.

The posterior conditional distribution, up to a constant, is

p
(

µµµ,βββ ,σσσ2
ψ | σσσ2

θ ,ΦΦΦB,BBB,θθθ ,ννν ,ZZZ
)

= p
(

µµµ,βββ ,σσσ2
ψ | ΦΦΦB,BBB,ννν

)
∝ p

(
µµµ,βββ ,σσσ2

ψ | ΦΦΦB,BBB
)

p
(

ννν | µµµ,βββ ,σσσ2
ψ ,ΦΦΦB,BBB

)
= p

(
µµµ,βββ ,σσσ2

ψ

)
p
(

ν1 | µµµ,σσσ2
ψ ,ΦΦΦB

) m

∏
i=2

p
(

νi | νi−1,B(ti−1) = j,µ j,β j,σ
2
ψ, j

)
.

Here, p
(

µµµ,βββ ,σσσ2
ψ

)
is the density of an appropriate prior distribution of the speed parameters,

and
p
(

νi | νi−1,B(ti−1) = j,µ j,β j,σ
2
ψ, j

)
,

is the conditional distribution of the steps, given by the distribution in Eq. 4.3. Assume the
animal begins movement in equilibrium and that the initial step arises from the equilibrium of
the OU speed process. The behaviour before the path begins is unknown (with no observed
information relating to it). The density of the initial step is given by integrating over all
possible behavioural states based on the equilibrium distribution of the Markov behavioural
process,

p
(

ν1 | µµµ,σσσ2
ψ ,ΦΦΦB

)
=

p

∑
j=1

p
(

ν1 | µ j,σ
2
ψ, j

)
p
(

j | ΦΦΦB
)
,

where
ν1 | µ j,σ

2
ψ, j ∼ (t2− t1)N

(
µ j,σ

2
ψ, j

)
,

and p
(

j | ΦΦΦB
)
= π j is the probability of being in state j given that the CTMC with parameters

ΦΦΦB is in equilibrium (see Eq. 4.1 for the equilibrium distribution of a CTMC).

In a simultaneous update of the speed parameters, the posterior conditional density is
calculated for both the current and proposed values and combined with the proposal density
(independent univariate truncated Gaussians in this case), similar to that summarised in
Algorithm 3. The standard MH ratio is used to decide on the acceptance of the proposal.
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4.3.4 Reconstructing the unobserved refined path

The central idea to this inference approach is the ability to reconstruct the unobserved path,
conditional on the parameters. The approach of Chap. 3 is employed, but extended to also
reconstruct the behavioural process. This section will outline reconstruction between three
consecutive observations, but as in the previous chapter, this can be extended to span longer
intervals if necessary. This scenario is displayed in Fig. 4.5, with three fixed, consecutive
observations (points). The longer path section is required in this case because the behavioural
process is reconstructed in continuous time, and so is fixed exactly at the endpoints on the
chosen section. If only two consecutive observations were used, then the behaviour at
observation times would remain constant.

The quantities simulated are those displayed in black in Fig. 4.5, consisting of:

• the behavioural process B between the times j and l,

• the bearings {θ1, . . . ,θn−1}, and

• the steps {ν1, . . . ,νn−1}.

The set of refined times {t1 = j, . . . , tn−1} that the bearings and step processes are approx-
imated over are no longer fixed (as in Chap. 3) and will be discussed further below. Note
that although an approximation is made to the bearing and step processes, the behavioural
process remains exact. The set of {θ1, . . . ,θτ−1} and {ν1, . . . ,ντ−1} take the path to the
observed location at the observation time tτ = k. Similarly, the set of {θτ , . . . ,θn−1} and
{ντ , . . . ,νn−1} then take the path to the fixed location at the time tn = l.

The fixed values conditioned upon are displayed in green in Fig. 4.5, consisting of:

• the observed locations at the ends of, and within, the path section {ZZZ( j),ZZZ(k),ZZZ(l)}
• the behaviours {B( j),B(l)} at the times j, l,

• the bearings {θ0,θn} at the times {t0, tn}, and

• the steps {ν0,νn} at the times {t0, tn}.

As the bearing and step processes are given by an approximation, the fixed points are the
values of the respective process at the refined point immediately before and after the path
section of interest, as in Figure 4.5. In contrast, because the behavioural process remains
exact, the fixed points are at the times j and l.

The reconstruction of the refined path is sampled by an MH step, with proposal distribution
described in the following.
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Fig. 4.5 Section of the full refined path to update over when there are multiple behavioural
states. Fixed endpoint locations are given at the times j and l. The behavioural process
(represented here by solid (state 1) and dashed (state 2)) is simulated with fixed endpoints
{B( j),B(l)}. The bearing and step processes, {θ1, . . . ,θn−1,ν1, . . . ,νn−1}, are simulated
given fixed endpoints {θ0,θn,ν0,νn}. All simulations are also conditioned upon the fixed
observed location at the time k.

4.3.4.1 Simulating the behavioural proposal

A behavioural proposal BBB∗ is simulated between the times j and l, given known values
{B( j),B(l)} and parameters ΦΦΦB. The distribution of this process is a CTMC bridge, and is
simulated here by a rejection method.

A CTMC with parameters ΦΦΦB with state B( j) at time j is simulated until time l (see method
in Sect. 4.2 and lines 3–8 of Algorithm 7). If the final state is not equal to B(l), then
the proposal is instantly rejected. Otherwise, the path proposal continues (still with the
possibility of rejection when considering the complete path proposal in the MH step). Less
‘naive’ approaches to this simulation, explicitly taking into account the endpoint, could
be implemented (see e.g. Hobolth and Stone (2009); Rao and Teh (2013); Whitaker et al.
(2017)), however this simple method performed well in our examples that follow.

4.3.4.2 Setting the refined time scale

Given the behavioural simulation, the set of refined times {t1, . . . , tn−1} is created. This
sequence can no longer be fixed before implementing the MCMC sampler, as in the previous
chapter, because it must include the times of behavioural switches, which change (having
just simulated a new realisation). There are numerous ways to choose such a set of times, as
long as switch and observation times are included. In the examples that follow, the sequence
is chosen to include all necessary times, whilst remaining approximately on some time scale
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δ t, the choice of which can be made prior to inference. The sequence {t1, . . . , tn−1} forms
the times to simulate the bearings and speed over, as in Fig. 4.5.

4.3.4.3 Simulating the bearing proposal

The bearing proposal θθθ
∗ over the times {t1, . . . , tn−1} is simulated conditional on the fixed

bearings {θ0,θn} at the times {t0, tn = l}, the proposed behaviours BBB∗ and the parameters ΦΦΦ.
The distribution of this process is a BB with time-varying parameter, dependent on behaviour.
To simulate from such a distribution, a transformation is implemented to account for the
inhomogeneous variance parameter.

The times {t1, . . . , tn−1, tn} are transformed, weighted by the bearing variance for the be-
havioural state at each corresponding time, to give a process with a homogeneous variance of
one. Therefore, t ′0 = t0 and

t ′i = t ′i−1 +σ
2
θ ,B(ti−1)

(ti− ti−1),

for i ∈ {1, . . . ,n}. The BB (with variance one) is simulated on the set of transformed times,
given the values {θ0,θn} at the end times {t ′0, t ′n}. Hence

θ
∗
i = θ0 +M(t ′i − t0)−

t ′i − t0
t ′n− t0

(
M(t ′n− t0)−θn +θ0

)
,

for i ∈ {1, . . . ,n−1}, where M(t) is standard BM (Iacus, 2008).

4.3.4.4 Simulating the step proposal

To propose the steps ννν∗ a joint distribution similar to Eq. 3.7 is constructed:(
ννν(

ZZZ(k), ZZZ(l)
)T

)
| ΦΦΦ,θθθ ∗,BBB∗,F ∼ N

(mmm1

mmm2

)
,

(
Σ1 Σ1,2

ΣT
1,2 Σ2

) , (4.5)

where F = {ZZZ( j),B( j),B(l),θ0,θn,ν0,νn}.

The marginal distribution of the steps in Eq. 4.5 is given by ννν ∼ N(mmm1,Σ1). The form
of mmm1,Σ1 arises from the speed process (from which ννν is derived) being an OU bridge
with inhomogeneous parameters. The method to calculate this follows the approach in
Sect. 3.4.4.2 whilst accounting for the proposed behaviour at each time point. The fixed
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values ν0,νn are transformed to give speeds ψ0 = ν0/δ t0 and ψn = νn/δ tn. In the following,
assume (for brevity) that all expressions are conditional upon

{ΦΦΦ,BBB∗,θθθ ∗,ZZZ( j),B( j),B(l),θ0,θn}.

By noting that

ψi|ψi−1 = Qiψi−1 +N
(

µB(ti−1) (1−Qi) , σ
2
ψ,B(ti−1)

(
1−Q2

i

))
,

where
Qi = e−βB(ti−1)

(ti−ti−1),

the joint distribution {ψ1, . . . ,ψn} | ψ0 can be constructed iteratively with

E(ψi|ψ0) = Qi E(ψi−1|ψ0)+µ (1−Qi) ,

Var(ψi|ψ0) = Q2
i Var(ψi−1|ψ0)+σ

2
ψ

(
1−Q2

i

)
,

Cov(ψi,ψi+ j|ψ0) = Qi Cov(ψi,ψi+ j−1|ψ0).

This joint distribution is partitioned into {ψ1, . . . ,ψn−1} and ψn to condition upon the known
value of ψn using standard conditioning of a multivariate normal (Eaton, 2007) to give
the joint distribution {ψ1, . . . ,ψn−1} | ψ0,ψn. This distribution can be transformed back to
steps {ν1, . . . ,νn−1} (giving mmm1,Σ1) by multiplying the speeds {ψ1 . . . ,ψn−1} by the times
{δ t1, . . . ,δ tn−1}.

The locations
(
ZZZ(k), ZZZ(l)

)T can be written as

(
ZZZ(k)
ZZZ(l)

)
=

(
ZZZ( j)
ZZZ( j)

)
+


∑

τ−1
i=1

(
νi cos(θ ∗i )
νi sin(θ ∗i )

)

∑
n−1
i=1

(
νi cos(θ ∗i )
νi sin(θ ∗i )

)


=
(
ZZZ( j),ZZZ( j)

)T
+Aννν , (4.6)

where

A =


cos(θ ∗1 ) · · · cos(θ ∗

τ−1) 0 · · · 0
sin(θ ∗1 ) · · · sin(θ ∗

τ−1) 0 · · · 0
cos(θ ∗1 ) · · · cos(θ ∗

τ−1) cos(θ ∗τ ) · · · cos(θ ∗n−1)

sin(θ ∗1 ) · · · sin(θ ∗
τ−1) sin(θ ∗τ ) · · · sin(θ ∗n−1)

 .
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As in Sect. 3.3.3.1, the marginal distribution of the locations in Eq. 4.5 is(
ZZZ(k),ZZZ(l)

)T ∼ N(mmm2,Σ2) , (4.7)

and the covariance between ννν and
(
ZZZ(k),ZZZ(l)

)T is Σ1,2. The means and covariances in
Eq. 4.5 are calculated as

mmm2 =
(
ZZZ( j),ZZZ( j)

)T
+Ammm1, (4.8a)

Σ1,2 = Σ1AT, (4.8b)

Σ2 = AΣ1AT. (4.8c)

The step process proposal is simulated by further conditioning ννν in Eq. 4.5 upon the locations(
ZZZ(k),ZZZ(l)

)T. This ensures that the proposed path section will pass through the observation
at time k and meet up with the fixed end location at time l to agree with the full path. The
sought conditional distribution (Eaton, 2007) is

ννν | ΦΦΦ,BBB∗,θθθ ∗,F ,ZZZ(k),ZZZ(l)

∼ N
(

mmm1 +Σ1,2Σ
−1
2

((
ZZZ(k),ZZZ(l)

)T−mmm2

)
, Σ1−Σ1,2Σ

−1
2 Σ

T
1,2

)
= N

(
µ̂µµ, Σ̂

)
. (4.9)

This distribution is singular, with the rank of Σ̂ having been reduced by four through condi-
tioning upon two known locations. Simulation can be carried out following the method in
Sect. 3.3.3.1, by first sampling from the marginal distribution

xxx∗ ∼ N(mmm1, Σ1) ,

and then accounting for the linear constraint by setting

ννν
∗ = xxx∗−Σ1,2Σ

−1
2

((
ZZZ( j),ZZZ( j)

)T
+Axxx∗−

(
ZZZ(k),ZZZ(l)

)T
)
.

4.3.4.5 Simulating a proposal at the start/end of path

An exception to the given path proposal method occurs when the section is at the end of the
full movement path, for which there is no fixed behaviour, bearing or step at the end of the
section (otherwise, those quantities would never change). In such a case, the simulation of
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the behaviour proposal is a CTMC forwards in time but without the need to carry out the
rejection step described above. The bearing proposal is simulated by transforming the set of
times to create BM with constant variance of one, but then simulating merely from BM on
these transformed times rather than a bridge, i.e. θ ∗i = θ0 +M(ti′− t0). Lastly, the marginal
distribution of the steps is created as described above, but without the final step to condition
upon the fixed ψn. The acceptance/rejection of the proposed path section is then the same as
that in the following.

In a similar fashion, if the section is at the start of the full movement path, the simulation
must be altered. The behavioural process is simulated backwards in time from the fixed end
point of the section. Simulating from the reverse-time CTMC is equivalent to simulating
from the chain with parameters {λ̂λλ , q̂qq}, where

λ̂i = λi, q̂i j = q ji
πi

π j
,

and πππ is the stationary distribution of the CTMC. Similarly, the bearings are simulated from
BM on the transformed times but in reverse from the fixed end point, i.e θ ∗i = θn−M(tn− ti′).
The marginal step distribution is formed following the same approach as that described, but
in which the Qi is calculated by taking the OU process in reverse-time so that

ψi|ψi+1 = Qiψi+1 +N
(

µB(ti) (1−Qi) , σ
2
ψ,B(ti)

(
1−Q2

i

))
,

where
Qi = e−βB(ti)

(ti+1−ti),

and again with no fixed ψ0 to condition upon in the final step. The acceptance/rejection of
the proposal is the same as that below.

4.3.4.6 Accepting a refined path proposal

The path proposal method described does not take into account the fixed location at the end
of the section when simulating the behaviours or the bearings. An MH step assesses whether
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this proposal is accepted. The conditional distribution, up to a constant, is

p
(
BBB∗,θθθ ∗,ννν∗ | ΦΦΦ,F ,ZZZ(k),ZZZ(l)

)
= p

(
BBB∗,θθθ ∗ | ΦΦΦ,F ,ZZZ(k),ZZZ(l)

)
p
(
ννν
∗ | BBB∗,θθθ ∗,ΦΦΦ,F ,ZZZ(k),ZZZ(l)

)
∝ p

(
BBB∗,θθθ ∗ | ΦΦΦ,F

)
p
(
ZZZ(k),ZZZ(l) | BBB∗,θθθ ∗,ΦΦΦ,F

)
p
(
ννν
∗ | BBB∗,θθθ ∗,ΦΦΦ,F ,ZZZ(k),ZZZ(l)

)
= p

(
BBB∗ | ΦΦΦ,F

)
p
(
θθθ | BBB∗,ΦΦΦ,F

)
p
(
ZZZ(k),ZZZ(l) | BBB∗,θθθ ∗,ΦΦΦ,F

)
p
(
ννν
∗ | BBB∗,θθθ ∗,ΦΦΦ,F ,ZZZ(k),ZZZ(l)

)
.

The simulation method employed to create the proposal has density proportional to

p
(
BBB∗ | ΦΦΦ,F

)
p
(
θθθ | BBB∗,ΦΦΦ,F

)
p
(
ννν
∗ | BBB∗,θθθ ∗,ΦΦΦ,F ,ZZZ(k),ZZZ(l)

)
.

The MH acceptance ratio involves the probability of the observed and fixed end location,
given behaviour and bearings, requiring the distribution of

(
ZZZ(k), ZZZ(l)

)T in Eq. 4.7,

p
((

ZZZ(k), ZZZ(l)
)T | BBB∗,θθθ ∗,ΦΦΦ,F

)
p
((

ZZZ(k), ZZZ(l)
)T | BBB,θθθ ,ΦΦΦ,F

) ,

where mmm2,Σ2 must be constructed in each case given the corresponding set of behaviours and
bearings (current and proposed).

4.4 Simulated example

The following example applies the methods of this chapter to a simulated dataset with two
behavioural states. This example demonstrates the ability of the algorithm to estimate the
underlying parameters and reconstruct the unobserved behavioural process. The follow-
ing results can be reproduced with the multi_simulation example within the repository
CTStepTurn available at https://github.com/a-parton/CTStepTurn.

https://github.com/a-parton/CTStepTurn
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4.4.1 Underlying movement and observations

Two-state movement following Sect. 4.1 was simulated according to Sect. 4.2 with parameters

ΦΦΦB = {λ1 = 0.01,λ2 = 0.015},
ΦΦΦM = {σ2

θ ,1 = 0.8,µ1 = 15,β1 = 0.07,σ2
ψ,1 = 40,

σ
2
θ ,2 = 0.05,µ2 = 40,β2 = 0.02,σ2

ψ,2 = 400},

between the times 0–1000 at an approximate time scale of around 0.01. Note that the actual
time scale in this case was not always exactly 0.01 because behavioural switching occurs
continuously in time and any switch time is included in the simulated time scale. The set of
parameters chosen were based on the results of pilot runs carried out on movement data of a
lesser black-backed gull (for details on this data, see the example of Sect. 5.4 and Garthe
et al. (2016b)), with behavioural state 1 describing tortuous movement with low speed and
state 2 describing directed movement with high speed that is highly variable in the long term
but strongly correlated in the short term.

Observations of the movement path were created by sub-sampling the simulation at intervals
of 500, giving 200 observations at a time scale of 5. The simulated path, with corresponding
observations, is given in Figs. 4.6 and 4.7 as locations and bearings/speeds, respectively.
Note that although the observations are shown to be coloured by underlying behavioural state,
the only information used in this example is location, with the behaviour left unobserved.
However, it is assumed known that there are two behavioural states present.

From Fig. 4.7, although the mean speed in state 2 is much higher than state 1, the high
volatility of the speed process leads to bouts of simulated speeds that are of the same
magnitude as the slower state 1. The behavioural parameters lead to longer average residency
times in state 1 than state 2, including a short residencies in state 1 (times 0–11.3) and
state 2 (times 576.3–582.3), which will be informative about the limitations of the algorithm
when reconstructing the unobserved behavioural process. Because behavioural switches can
occur between observation times, the uncertainty around the exact time of switches will be
investigated in the following.
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Fig. 4.6 Simulated two-state movement path, coloured by behaviour (line). Observed
locations are included (points), coloured here by corresponding behavioural state. Note that
the observations used in this example are only locations, and the behaviour is unknown.

4.4.2 Implementing the inference algorithm

4.4.2.1 Initial values

An initial movement path was created at a refined time scale of one by taking an interpolating
cubic spline between observed locations. This gave a reconstruction of around four unknown
locations between each pair of observations. Although this is a small refinement to the set
of observations, it was shown in Sect. 3.5.2 that further refinement improved parameter
estimation marginally but at the cost of a significant increase in computational speed. The
reconstruction scale implemented here was chosen to provide computational speed with the
assumption that a better approximation to the underlying continuous-time process would
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Fig. 4.7 Simulated two-state movement path. Top and middle: Simulated bearings and
speeds, respectively, coloured by behavioural state. Bottom: Simulated behavioural process.
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not make significant improvement to parameter estimation. The choice of refinement in the
multistate case is explored further in the example of Sect. 5.4.

The initial behavioural process at corresponding times was set by identifying any points
on the movement path with speed above 20 and setting these as behavioural state 2. This
initial configuration is shown in Fig. 4.8 as bearings/speeds and as locations in the Appendix,
Fig. B.8. Comparing Figs. 4.7 and 4.8, the initial speed process can be seen to replicate
the overall trends of the true simulation, but the bearing and behavioural configurations are
different to the true simulation, with a much higher switching rate.

Initial movement parameters were set as estimates from this initial configuration, given as

{σ2
θ ,1

(0)
= 0.271,µ(0)

1 = 11.6,β (0)
1 = 0.109,σ2

ψ,1
(0)

= 23.9},

{σ2
θ ,2

(0)
= 0.0138,µ(0)

2 = 31.9,β (0)
2 = 0.0151,σ2

ψ,2
(0)

= 75.7}.

Note that initial behavioural parameters need not be guessed as they can be sampled as a
Gibbs step based on the initial path configuration.

4.4.2.2 Prior information

To avoid state label switching, a prior was placed on the movement parameters specifying
that µ1 < µ2, so that state 1 would remain as the slower state. Uninformative priors were
set for the behavioural switching parameters, λ1,λ2, and the bearing parameters, σ2

θ ,1,σ
2
θ ,2,

given by gamma distributions with shape and rate both equal to 0.001. The speed parameters
all had flat prior distributions.

4.4.2.3 Implementation

The algorithm of Sect. 4.3 was applied for 107 iterations, with each iteration consisting of a
single parameter update and 100 refined path updates on random sections of the path with
lengths between 4–14 points. Perturbation standard deviations for the speed parameters were
based on pilot runs as

{ρµ,1 = 0.13,ρβ ,1 = 0.017,ρ
σ2

ψ ,1
= 2.7},

{ρµ,2 = 0.18,ρβ ,2 = 0.0144,ρ
σ2

ψ ,2
= 2.1}.
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Fig. 4.8 Initial configuration of the two-state movement path. Top and middle: Initial
bearings and speeds, respectively, coloured by behavioural state. Bottom: Initial behavioural
process.
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The resulting acceptance rates were 30% and 3.2% for the speed parameters and refined
movement path, respectively. The rejection sampling of the behavioural process proposal
resulting in less than 20% of path proposals being instantly rejected. Samples were thinned
(for memory storage purposes) by a factor of 1,000 with the first 4,000 samples treated
as burn-in, leaving 6,000 samples for estimation with ESS given in Tables 4.1 and 4.2.
Computational run-time for this implementation was between 3–4 days.

4.4.3 Behavioural parameter results

Posterior samples of the (log) behavioural parameters are in Fig. 4.9, kernel density estimates
are given in the bottom panels of Fig. 4.11, and the sample trace in the Appendix, Fig. B.9.
Posterior summary statistics are given in Table 4.1. For both states, the posterior mode is an
underestimate of the true switching rate, but the true value is captured within the posterior
estimates (contained within the 95% credible intervals in both cases).

−7

−6

−5

−4

−3

−8 −7 −6 −5 −4

ln(λ1) (switching rate out of state 1)

ln
(λ

2) 
(s

w
itc

hi
ng

 r
at

e 
ou

t o
f s

ta
te

 2
)

Fig. 4.9 Posterior samples of the behavioural parameters (on a log scale) for the two-state
simulation example (grey points); λ1 is the switching rate out of state 1 and λ2 is the
switching rate out of state 2. True values are highlighted (black point).
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Table 4.1 Posterior credible intervals (2.5%,50%,97.5% quantiles) and ESS of the sampled
behavioural parameters in the two-state simulation example. True values were {0.01,0.015}.
The ESS is taken from the 6,000 samples thinned from 6×106 iterations.

2.5% 50% 97.5% ESS

λ1 0.00134 0.00531 0.0140 583
λ2 0.00189 0.00822 0.0224 840

4.4.4 Movement parameter results

Posterior samples of the (log) movement parameters are in Fig. 4.10, kernel density estimates
are given in the top four rows of Fig. 4.11, and the sample trace in the Appendix, Fig. B.9.
The left panel of Fig. 4.10 shows the bearing parameter against the mean speed, both of
which are estimated well in each state.

The right panel of Fig. 4.10 shows the speed correlation against long term variance, with
highly correlated samples. These lie along a linear relationship between the two parameters,
with the true values being reasonably captured for state 1 (grey), but biased for state 2
(green). The linear relationship present corresponds to the short term variance of the speed
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Fig. 4.10 Posterior samples of the movement parameters (on a log scale) for the two-state
simulation example, coloured by behavioural state. True values are highlighted (black
target).
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Fig. 4.11 Posterior kernel density estimates of the parameters for the two-state simulation
example (black). True values are highlighted (grey).
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process, where both the correlation and variance parameters feature; given as

σ
2
ψ

(
1− e−10β

)
,

for the observation time scale. The kernel density estimate for this movement measure is
given in Fig. 4.12 and the sample trace in the Appendix, Fig. B.10, showing estimation for
this feature to be much better than the long term speed variance for state 2. To understand
why this is the case, consider the true value for the effect the correlation parameter has on
the speed variance at the observation time scale (1− e−10β ); given as 0.503 and 0.181 for
the two behavioural states, respectively. For this quantity to be almost 1 (taken here to be
over 0.98), and hence no correlation present because the short term speed variance is equal
to the long term variance, the time scale would have to be 50 and 200, for the two states
respectively. The residency times in state 1 from the true behavioural process were

{11.3,125,140,32.4,341}.

There are bouts of time spent in state 1 that are longer than this time period (50) so that
correlation in the speed process has been able to deteriorate. For state 2, the true residency
times were

{75.6,104,87.6,5.94,77.1},

and so there are no sojourns in state 2 that are longer than the time period required for that
state (200). It is likely that this is the reason that both the long and short term speed variance
can be estimated for state 1 (and β , σ2

ψ and σ2
ψ(1− e−10β ) can all be estimated), but for

state 2 only the short term speed variance can be estimated (σ2
ψ(1− e−10β )) and not the long

term variance (σ2
ψ , and hence separate β and σ2

ψ ).

Posterior summary statistics are given in Table 4.2 for the movement parameters, split
by behavioural state. As discussed above, β and σ2

ψ cannot be estimated separately for
the second state, and so the true values are not included in the credible intervals given.
Additionally, the short term speed variance for state 1 is over-estimated and does not include
the true value; this could be due to over-dispersed sampled steps in state 1 at uncertain
behavioural switching times (i.e. larger steps being misclassified). The remaining parameters
are estimated well and included in the credible intervals given.
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Fig. 4.12 Posterior kernel density estimates of the short-term speed variance (at the observa-
tion time scale) for the two-state simulation example (black). True values are highlighted
(grey).

Table 4.2 Posterior credible intervals (2.5%,50%,97.5% quantiles) and ESS for the sampled
movement parameters, split by state, in the two-state simulation example. True values are
included, highlighted in bold for parameters not included in the 95% credible interval. The
ESS is taken from the 6,000 samples thinned from 6×106 iterations.

2.5% 50% 97.5% True ESS

State 1

σ2
θ ,1 0.561 0.702 0.884 0.8 584

µ1 13.1 16.9 20.3 15 711
β1 0.0330 0.0782 0.146 0.07 238
σ2

ψ,1 38.1 63.1 135 40 135

σ2
ψ,1

(
1− e−10β1

)
21.3 33.8 56.4 20.1 74

State 2

σ2
θ ,2 0.0482 0.0706 0.107 0.05 584

µ2 27.0 34.4 43.4 40 193
β2 0.0279 0.0760 0.145 0.02 189
σ2

ψ,2 77.3 130 307 400 74

σ2
ψ,2

(
1− e−10β2

)
47.7 68.2 101 72.5 547
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4.4.5 Path reconstruction results

Calculated from posterior samples of the reconstructed behavioural process, Fig. 4.13 shows
the probability of being in each behaviour throughout the course of the sampling period. The
algorithm has successfully identified the majority of the true behavioural process correctly.
The behavioural process between the times 87–544, which starts in state 1 and includes
two bouts of movement in state 2 before ending once again in state 1, has been estimated
well. The posterior behavioural probabilities closely match the switching times in the true
behavioural process, with little uncertainty surrounding them.

As an example of successful reconstruction, take the part of the movement path between the
times 300–475, shown in Fig. 4.14. At the start of the period shown, the posterior probability
of being in state 2 was correctly identified as approximately 1 (2/6,000 reconstructions were
classified incorrectly as state 1). As time reached the true switch time, increasing numbers
of the reconstructions identified a switch; at the true time of the switch around 40% of the
reconstructions had switched into state 1 and over 95% of the reconstructions had switched
by time 328 (2 observations after the true switch). For the full period between the times
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Fig. 4.13 Posterior probability of residing in each behavioural state over time, calculated from
the sampled reconstructions of the behavioural process (grey bars). The taller a bar at a given
time, the higher the proportion of sampled reconstructions classified as that behaviour (so
each bar for state 1 and 2 sum to a constant value). The true, simulated behavioural process
is included (black line) and points along the horizontal axis highlight the times/frequency
of observations.
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328–442 (the next switch occurred at time 456) the posterior probability of correctly residing
in state 1 was over 98%. The probability of being in state 2 then begins to increase from this
point, with 45% of the reconstructions having switched into state 2 by the time of the true
switch, until over 95% of reconstructions had switched by time 466 (again, 2 observations
after the true switch). This section of the full path demonstrates the ability of the algorithm
to identify the underlying behavioural process, with uncertainty highest at the actual switch
times, and spanning a period around the switch time of less than 20 in both cases.

From Fig. 4.13, the times of the switches for the two bouts in state 2 at the start and end of
the path (starting at times 11 and 923), have not been estimated with as much reliability as
that previously discussed. Although the presence of a switch is correctly identified there
is a large amount of uncertainty as to when the switches occur. Further, the times with the
highest uncertainty around the state of process are earlier than the true switch time in both
cases; 50% of the reconstructions had switched to state 1 by time 75 when the true switch
occurred at time 86.9 and, similarly, 50% had switched to state 2 by time 894 when the true
switch occurred at time 922.9.

An example of a scenario in which the algorithm struggles to correctly identify the true
behavioural process is given at the beginning of the movement path, as shown in Fig. 4.15.
The true behavioural process started in state 1 but switched to state 2 at time 11, with only
3 observations being within the initial bout in state 1. Fig. 4.15 shows that the algorithm had
difficulty correctly identifying this part of the behavioural process. At time 0, the posterior
probability of correctly being in state 1 was only 31% and once the true switch occurred at
time 11, the posterior probability of being in state 2 was over 90%. The presence of this
bout in state 1 was considered, but with low posterior probability; this could be due to the
residence time in state 1 only being for a short amount of time and also that this occurred at
the start of the path where it is expected there would be most uncertainty about the initial
state of the process.

A further example of an inability to correctly reconstruct the behavioural process is the even
shorter residence in state 2 at time 576, shown in Fig. 4.16. This behavioural sojourn lasts
a period of 5.94 with only a single observation included within that time. As a result, this
sojourn is missed entirely by the algorithm with only 2/6,000 reconstructions considering a
behavioural bout over this period. This section highlights a limitation of the algorithm and
reconstruction process, but one that is expected to be unavoidable for such a short sojourn. It
is important to note, however, that at least these methods do have the capacity to allow for
the estimation of unobserved sojourns, whereas discrete-time models would not.
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Fig. 4.14 A section of the path reconstruction with high certainty. Top left: Posterior
samples of the reconstructed, refined movement path between the times 310–470, coloured
by behavioural state (state 1 grey, state 2 green). Black targets highlight the true location
of a switch into state 1 at time 316 and back into state 2 at time 456. Top right: Simulated
movement path over the same period of time (line) with observations highlighted (points).
Bottom: Posterior probability of residing in behavioural state 2 over the period of time
300–475 (solid, black), with true behavioural process included (dashed, grey).



4.4 Simulated example 107

0

11.3

0

100

200

−200 −100 0 100

X

Y

0

100

200

−200 −100 0 100

X

Y

0.00

0.25

0.50

0.75

1.00

0 5 10 15 20

Time

P
ro

ba
bi

lit
y 

of
 b

ei
ng

 in
 b

eh
av

io
ur

al
 s

ta
te

 2

Fig. 4.15 An uncertain section of the path reconstruction. Top left: Posterior samples of the
reconstructed, refined movement path between the times 0–20, coloured by behavioural state
(state 1 grey, state 2 green). Black targets highlight the true location of a switch, starting
in state 1 at time 0 and switching into state 2 at time 11. Top right: Simulated movement
path over the same period of time (line) with observations highlighted (points). Bottom:
Posterior probability of residing in behavioural state 2 over the period of time 0–20 (solid,
black), with true behavioural process included (dashed, grey).
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Fig. 4.16 A section of the path reconstruction with misclassification of a behavioural sojourn.
Top left: Posterior samples of the reconstructed, refined movement path between the times
535–750, coloured by behavioural state (state 1 grey, state 2 green). Black targets highlight
the true location of a switch into state 1 at time 544, into state 2 at time 582 and back into
state 1 at time 576. Black points highlight the three observations; immediately before,
during and after the sojourn into state 2. Top right: Simulated movement path over the same
period of time (line) with observations highlighted (points). Bottom: Posterior probability
of residing in behavioural state 2 over the period of time 510–750 (solid, black), with true
behavioural process included (dashed, grey).



4.5 Two-state movement in elk 109

4.5 Two-state movement in elk

The following example applies the methods of this chapter to well known GPS data from
elk (Cervus elaphus), which have previously been modelled in discrete time. This example
demonstrates the interpretable nature of the multistate, continuous-time model by finding
clear differences in behaviour over time and insights into short-term behaviour that could not
have been obtained in discrete time.

4.5.1 Elk-115 observations

A set of 194 ‘daily’ GPS observations from the elk tagged as ‘elk-115’ are used in this
example (see https://bitbucket.org/a_parton/elk_example for data and to reproduce this work).
These observations were introduced and modelled as part of a larger set consisting of four
elk in the discrete-time, step-and-turn model of Morales et al. (2004), and more recently
modelled in the vignette of the R package moveHMM (Michelot et al., 2016) applying the
HMM of Langrock et al. (2012). The observations are shown in Fig. 4.17, indicating two
distinct movement modes: slow, volatile movement where observations are over-plotted, and
fast, directed movement where observations are sparse.

Morales et al. (2004) fit a number of models to the larger dataset containing the observations
from elk-115, with the model most similar to that described in this chapter being what they
describe as the ‘double switch’ model. This is the model described in section 1.2.1, where
there are fixed switching probabilities between states. Two states are implemented, which in
turn govern a mixture of CRWs describing the movement process. In the vignette of moveHMM
the larger dataset is used to demonstrate a two-state HMM with switching dependent on
environment. For comparison with the methods here, the reproduced analysis shown in
Fig. 4.21 does not include this environmental information and so is the same underlying
movement model as the ‘double switch’ in Morales et al. (2004). In both these discrete-
time applications, ‘exploratory’ and ‘encamped’ states were identified as having mean daily
turning angles of close to zero and π , respectively. The implications of turn distributions not
centred at zero was discussed in Sect. 3.6.

In this example, the model of Sect. 4.1 with two behaviours is applied to the elk-115
observations. The original analysis in Morales et al. (2004) described the majority of
observations as being daily, but with some taken at 22 and 26 hour intervals. In order to
handle this irregularity, they divided the observed straight line step lengths by the sampling
time frame to approximate daily steps. A method transforming the observed turning angles

https://bitbucket.org/a_parton/elk_example
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Fig. 4.17 Observed ‘daily’ locations of Elk-115 (points linked chronologically with lines).
Note that observed points are displayed here with transparency to highlight the times where
multiple observations were captured in the same/similar location.

to some daily approximation is unclear, and so these remained as the observed values in
their analysis. The open-access version of the elk data does not include the times of the
observations, and rounding of the Morales et al. (2004) ‘daily step lengths’ meant that the
original observation times could not be ascertained. The analysis carried out here follows that
in the vignette of moveHMM, using the observed locations, but assuming that these were all at
24 hour intervals. The continuous-time formulation of the model presented in this chapter
would easily allow for these irregularly timed observations (and missing observations, if
applicable) to be handled if exact observation times were known.

Applying the presented methodology to multiple animals in the same way as moveHMM, by
pooling information across individuals and estimating a set of population parameters, could
be implemented by a simple extension to the current R code but is not attempted here for
simplicity. Following Morales et al. (2004) and the vignette of moveHMM, observation error is
assumed to be negligible here (though see Chap. 5). Interest thus involves inference on the
eight movement parameters, consisting of a bearing variance and three speed parameters for
each of the two states.

Using daily observations leaves large portions of the elk’s movement unobserved, and so it is
expected that the reconstructed movement paths, and thus parameters, for this example will
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be uncertain in comparison to previous examples. Rather than a full ecological analysis, this
example is included as a proof of concept for the presented methods and to highlight some of
the possible dangers when analysing daily observations in discrete time. For comparison, an
example of single state movement on a dataset with a sampling scheme of 2 minutes is given
in Sect. 5.3, with uncertainty in location being much lower.

4.5.2 Implementing the inference algorithm

4.5.2.1 Initial values

An initial movement path was created at a time scale of 2 hours by taking an interpolating
cubic spline between observations. The choice of a 2 hour time scale gives around 11 un-
known locations for reconstruction between each pair of observations, thought to provide
an acceptable trade-off between computational cost and approximation to continuous time
(see Sect. 3.6 for further discussion of δ t). The corresponding initial behavioural config-
uration was set by identifying any points on this path with speed above 100 metres per
hour. The initial path is shown as both locations and bearings/speeds in Fig. 4.18 and the
Appendix, Fig. B.11, respectively. Initial parameters were set as estimates from this initial
path configuration, given as

{σ2
θ ,1

(0)
= 2,µ(0)

1 = 100,β (0)
1 = 0.115,σ2

ψ,1
(0)

= 160},

{σ2
θ ,2

(0)
= 0.1,µ(0)

2 = 500,β (0)
2 = 0.08,σ2

ψ,2
(0)

= 1800}.

4.5.2.2 Prior information

A prior distribution specifying an upper bound on the ratio of the speed parameters to avoid
the presence of negative speeds in both states was applied. To define state 2 as ‘exploratory’,
a Gaussian prior with mean 0.05 and standard deviation of 0.1 was placed on the bearing
variance. All remaining movement parameters had flat priors.

The same prior was placed on both switching rates, being a gamma distribution with rate 4 and
shape 0.1. This was chosen to limit the rate of behavioural switching, strongly discouraging
switching occurring at time frames much shorter than the sampling scheme. Such a prior
leads to the 90% prior credible interval for the residency time being (6,7×1013) hours. It
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Fig. 4.18 Initial path for the elk-115 example, coloured by the initial behavioural configura-
tion.

is believed this prior is vague when compared with the posterior credible intervals for the
switching rates (see below).

4.5.2.3 Implementation

The algorithm of Sect. 4.3 was applied for 4.8×106 iterations, with each iteration consisting
of a single parameter update and 100 refined path updates on random sections of path with
lengths ranging 4–24 points (i.e. 8–48 hours, see Sect. 3.5.1.2 for a discussion on the choice
of sub-path length). The choice here was based on acceptance rates in pilot runs: lengths
higher than 24 had too low acceptance to be feasible, and lengths of 4 allowed these short
section updates that helped with mixing. Perturbation variances for the speed parameters were
influenced by a pilot run. Samples were thinned (for memory storage purposes) by a factor
of 1,000 and the first quarter were treated as a ‘burn-in’ period, leaving 3,600 stored samples
of parameters and reconstructed paths. Computational run-time for this implementation was
around 5 days.
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4.5.3 Behavioural parameter results

A scatter plot of the posterior (log) samples for the two switching rates that define the
behavioural process is shown in Fig. 4.19. The trace of the sampled parameters and kernel
density estimates are provided in the Appendix, Figs. B.12–B.13. The behavioural parameters
pass standard convergence diagnostics (Heidelberger and Welch), with ESS of over 125,
taken from the 3,600 samples thinned from 3.6×106 iterations. The sample trace and scatter
plots show high positive correlation between the switching rates. A clear difference in
residency time was inferred for the two behavioural states, differing in magnitude by a factor
of 10, with state 1 (the ‘encamped’ state) having the longer residence time.

Posterior summary statistics for the switching rates are given in Table 4.3. The sampled mode
of the mean switching rate leads to a residency time of 6.4 days for state 1 and 19.2 hours
for state 2. The given 90% credible intervals correspond to a mean residence time in state 1
being between 4–11 days and in state 2 between 10–36 hours.

−4
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−2

−6.5 −6.0 −5.5 −5.0 −4.5 −4.0

ln(λ1)

ln
(λ

2)

Fig. 4.19 Posterior samples of the behavioural parameters (on a log scale) for elk-115: λ1
is the switching rate out of the ‘encamped’ state and λ2 is the switching rate out of the
‘exploratory’ state.
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Table 4.3 Posterior credible intervals (5%,50%,95% quantiles) of the sampled behavioural
parameters in the elk-115 example.

5% 50% 95%

λ1 0.00391 0.00651 0.0105
λ2 0.0275 0.0520 0.0959

4.5.4 Movement parameter results

The posterior samples of the movement parameters are given in Fig. 4.20, coloured by
behavioural state. The trace of the sampled parameters and kernel density estimates are
provided in the Appendix, Figs. B.12–B.13. These show clear differences in inferred
movement types between the two behavioural states.

The movement parameters for state 1 have a low ESS and do not pass standard convergence
diagnostics, due to the parameters σ2

θ
and β . The bearing variance for the ‘encamped’ state

is so high as to produce uniform turns at the observation time scale. Hence, samples of this
parameter move slowly around high values that lie above this threshold; Fig. 4.20 shows that
σ2

θ
is not only high, but highly spread for state 1 (top panel, black). As discussed previously,

the correlation parameter appears as an exponential term in the speed likelihood (see Eq. 4.3),
and values greater than 1 lead to an exponential of less than 10−10 at the observation time
scale. This parameter is ‘drifting’ around the sample space and cannot be estimated, see
Fig. 4.20 (bottom panel, black), it can only be inferred that this parameter has a high value.
The movement parameters for state 2 pass standard convergence diagnostics (Heidelberger
and Welch) with ESS of over 75 (taken from the 3,600 samples thinned from 3.6× 106

iterations.).

Posterior summary statistics of the parameters are given in Table 4.4. Behavioural state 1
has high σ2

θ
and low µ—defining volatile, slow movement categorised here as ‘encamped’.

The uniform turns at the observation time scale (due to σ2
θ ,1 having median of 5.61 squared

radians per hour) means the bearing of the elk is effectively unknown at these times. The
median for long term exploratory speed is given by 77.3 metres per hour. A high β and low
σ2

ψ , describes speeds that are effectively uncorrelated in the short term (the mean expression
of the speed process in Eq. 4.3 is dominated by the first term involving the ‘mean speed’
parameter rather than the second term involving the ‘current speed’) and have low variation
in the long term.
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Fig. 4.20 Posterior samples of the state-dependent movement parameters (on log scale) for
elk-115. Top: joint sample space between bearing parameter and the mean speed. Bottom:
joint sample space between the speed correlation and the long-term speed variance.
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Table 4.4 Posterior credible intervals (5%,50%,95% quantiles) for the sampled movement
parameters, split by state, in the elk-115 example.

5% 50% 95%

Behaviour 1
(‘encamped’)

σ2
θ

2.87 5.61 16.4
µ 68.8 77.3 90.2
β 0.627 1.45 1.94
σ2

ψ 2,160 2,820 3,390

Behaviour 2
(‘exploratory’)

σ2
θ

0.274 0.389 0.521
µ 519 638 855
β 0.170 0.245 0.340
σ2

ψ 34,300 47,600 66,400

Behavioural state 2, the ‘exploratory’ state, has low σ2
θ

and high µ , reflecting fast, straight
movement. The median long term exploratory speed for is 638 metres per hour, with speeds
that are highly correlated in the short term (through a low β ) but with high variation in the
long term (through a high σ2

ψ ).

4.5.5 Path reconstruction results

Based on the posterior samples of the path reconstruction, Fig. 4.21 (top panel) shows the
probability of being in behavioural state 2 throughout the course of the sampling period.
Additionally, the corresponding state probabilities estimated by fitting an HMM, as in the
vignette of moveHMM (but using the larger dataset of tracks from four elk), are shown (bottom
panel). The points along the horizontal axis indicate the times at which observations were
taken. The two models can be seen to identify the same areas of the movement path as
being in the ‘exploratory’ state, however the residency times in this state differ, with the
HMM classifying three long stays in state 2 in the middle of the observation period whilst
the continuous-time model includes more frequent switching over this period.

The estimated residency of the exploratory state (90% credible interval leading to a mean
residence time between 10–36 hours) and the probabilities of residency shown in Fig. 4.21
suggest that there are parts of the movement path where short sojourns of fast movement
occur. This can be further seen in Fig. 4.22, showing the sampled residency times calculated
from the reconstructed paths. In fact, from the sampled behavioural reconstructions, 73% of
the residencies in behavioural state 2 were less than the 24 hour sampling scheme (respective
proportion for state 1 was 17%).
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Fig. 4.21 Top: probability of residing in behaviour 2 (‘exploratory’) over time, estimating
from the sampled path reconstructions. Bottom: probability of residing in behaviour 2 using
the R package moveHMM (Michelot et al., 2016). Points are included along the horizontal axes
to highlight the times/frequency of observations.

Fig. 4.23 shows four examples (one per plot) of the reconstructed refined movement path,
coloured by corresponding behavioural state. The difference in movement types between
the two identified states is highlighted here, showing the same interpretation of movement
as Morales et al. (2004) and the vignette of moveHMM: a slow ‘encamped’ state (black) and
fast ‘exploratory’ state (green). These path reconstructions aid in the interpretation of the
movement parameters and give insight into the space use of the animal between observations.

Fig. 4.24 shows a detailed portion of the movement path between 3 consecutive observations
with 40 reconstructed path examples displayed. Plotting a number of reconstructions in this
way highlights the extent of uncertainty between observations, and the areas that have a high
density of residency. The area covered by the reconstructions in the left panel of Fig. 4.24 is
displayed within the full area of observations by the shaded rectangle in the top right panel
for reference. Additionally, the probability of being in state 1 over the time period displayed
is given in the bottom right panel. Starting at observation 114, the probability of moving
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Fig. 4.22 Kernel density estimates of the sampled residence time in each behavioural state,
based on reconstructed path samples (black). Additional lines give the exponential distribu-
tion with rate given by the maximum likelihood of the sampled residencies (green) and with
rate given by the median of the sampled behavioural parameters (orange).

into the ‘encamped’ state increases (as also seen by the density of black sections in the path
reconstructions) until it is equally uncertain which state the animal is in. As the animal
moves towards the location of observation 116, the probability of being in the ‘encamped’
state decreases rapidly.

In Figs. 4.23 and 4.24, it can be seen in a number of places that the reconstruction involves a
switch into and back out of state 1 between two consecutive observations. The exact time
when these short (between observation) switches occur vary over the sampled reconstructions,
but their presence has high probability. For example, in Fig. 4.24, there can be seen to be a
number of short sections of black, ‘encamped’ sojourns between observations 115–6, but
their location and the time that they occur between the two observations varies. There is
information in the observations indicating a sojourn has occurred, but when is uncertain.
Being able to extract such qualitative information on short term behaviours from observations,
albeit with uncertainty, gives extra insight into the movement that is not possible when
switches can only occur at the observation time-scale.
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Fig. 4.23 Four examples of reconstructed refined movement paths for elk-115. For each
example, the reconstructed refined path is displayed as a linearly interpolated path. The
path is coloured in each case by the corresponding behaviour, highlighting the difference in
movement characteristics resulting from the parameters associated with each state.

4.6 Discussion

This chapter extended the continuous-time step-and-turn movement model of Chap. 3 to
include multistate, behavioural switching. The movements of animals are complex and in
order to model this for an extended period of time, the different kinds of movement modes
must be taken into account (Morales and Ellner, 2002). Not considering the behavioural
process of the animal biases estimates of movement metrics (Nakagawa and Freckleton,
2008) and resource selection analyses (Roever et al., 2014). The model for behavioural
switching implemented here follows the lead of popular movement models (Blackwell, 1997;
Blackwell et al., 2015; Langrock et al., 2012; McClintock et al., 2012; Morales et al., 2004),
using a Markov chain to describe the switching process, which is autoregressive with order
one. Alternative extensions to this work that may be applicable to a variety of scenarios are
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Fig. 4.24 The uncertainty in location and behavioural configuration for a short section of the
elk-115 observations. Left: 40 example refined path reconstructions (lines) between three
consecutive locations (orange points), coloured by inferred behavioural state. Top right:
full set of observations, with the three observations 114–6 highlighted and the area covered
by the reconstructions in the left panel shaded in grey. Bottom right: probability of residing
in state 1, calculated from posterior path reconstructions.

the semi-Markov model—as suggested in Langrock et al. (2012)—or a stochastic process
with a slower decaying memory—as discussed in Fleming et al. (2014a).

In contrast to discrete-time models such as Langrock et al. (2012); McClintock et al. (2012);
Morales et al. (2004), the Markov chain applied here is continuous in time. As in Blackwell
et al. (2015), this allows switching between observation times. This lessens the ecological
importance placed upon the discrete-time scale used for analysis (often the sampling time
scale), and allows for the consideration of whole behavioural sojourns between successive
observations. Such short behavioural bouts are identified in the elk example of Sect. 4.5,
in which there was a high posterior probability of remaining in the fast, travelling state
for less than the 24 hour sampling period. There is, however, a limit to the behavioural
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information that can be extracted between successive observations; this is highlighted in the
simulation example of Sect. 4.4 in which a short behavioural sojourn containing only a single
observation is not identified by the inference algorithm.

Although the method for inference presented here uses a refined approximation to the
continuous-time movement process, the behavioural process remains exact throughout—as
in Blackwell et al. (2015). Advantages remain with this approach even when the refined path
is at the same time scale as a comparative discrete-time analysis. Benefits arise from the aug-
mentation approach used, based on Blackwell et al. (2015), because posterior reconstructions
of the behavioural process can be used to investigate the uncertainty around switching times.
An example analysing this uncertainty is presented in the simulation example of Sect. 4.4.

A rejection method is used in the inference approach of Sect. 4.3 to simulate a behavioural
reconstruction proposal between two fixed behaviours. In the naive approach used, a proposal
is simulated from an unconstrained Markov chain, and instantly rejected if this does not
agree with the fixed endpoint. This simple method was found to work reasonably well in the
two examples within this chapter (20% and 18% of proposals were rejected as a result of
this method in the simulation and elk examples, respectively), however, in applications with
higher numbers of behavioural states this rejection rate is expected to become infeasible. A
number of other simulation methods exist that could be used in place of this simple rejection
method (for example, see Hobolth and Stone (2009); Rao and Teh (2013); Whitaker et al.
(2017)). In particular, implementation of the methods of Hobolth and Stone (2009) have
recently been released through the R package ECctmc (Fintzi, 2017).

The examples of this chapter have only explored two-state implementations. Although
examples with higher numbers of states can be implemented with the methods described
in this chapter, the feasibility of this on a computational front is questionable; a larger
sample space for the unknown behavioural process will lead to slower mixing and longer
computational run times. Avenues to make the inference approach more efficient to allow for
implementations with three or more behavioural states are discussed further in Chapter 6.

Throughout this chapter it has been assumed that the number of behavioural states present in
a trajectory are known, and that the transition rates between behaviours are constant. Fixed
numbers of behaviours are common in other movement models (Blackwell et al., 2015;
Morales et al., 2004) and are not thought to be a restrictive assumption because the states
should have ecological relevance to be interpreted, and so should be loosely identifiable (such
as the ‘encamped’ and ‘exploratory’ states in the elk example of Sect. 4.5). Although the
methods here could potentially be extended to allow for an unknown number of behavioural
states using a reversible jump MCMC algorithm, we feel this is an unnecessary complication,
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with a danger of identifying ‘behavioural states’ that describe constructs such as observation
error rather than differing movement behaviours—as identified previously in similar discrete-
time methods (Li and Bolker, 2017; Pohle et al., 2017). Although it may not be necessary to
allow varying numbers of states, it would be desirable to allow the switching rates between
them to depend on spatial covariates (Morales et al., 2004) or on location itself. Depending
on the duration of study, it may also be useful to allow varying rates with time, perhaps
periodically to reflect daily or annual cycles. Both these extensions could be addressed,
without any additional approximation, using the framework in Blackwell et al. (2015), applied
there to movement models directly based on location (rather than velocity or steps and turns)
with heterogeneity in both space and time. More generally, some more of the complexity
of behaviour could be captured by including an additional ‘resting’ state, likely to occur at
particular times of the day, with low or zero speed and perhaps a high variance to represent
the ‘forgetting’ of bearing while resting.



Chapter 5

Incorporation of observation error

The movement models of Chaps. 3 and 4 do not take into account the error present in GPS
observations of animal location, despite such error being known to occur. The following
describes a simple model for observation error (Sect. 5.1) and how the approach for Bayesian
inference described in the previous chapters can be extended to accommodate the presence
of noisy observations (Sect. 5.2). Note that the following (in part) provides an extended
description to that presented in Parton et al. (2017).

The methods of Sect. 5.2 are demonstrated through an example on a small subset of noisy
observations from a single reindeer in Sect. 5.3, showing how inferred movement paths are
more persistent when error is introduced. The effect the refined path approximation has on
parameter estimation is explored in an example on gull movement in Sect. 5.4, identifying
possible limitations in the identifiability of both the speed parameters and the observation
error. This limitation is investigated further using a simulated data example in Sect. 5.5 by
comparing inference at a number of levels of assumed error.

Methods to extend the independent model for observation error are given in Sect. 5.6 to
incorporate the somewhat more realistic assumption of correlation in the error process.
However, note that this has not been applied in practice.

5.1 Independent model for observation error

Observations of location, ZZZ∗, are assumed to have been taken with error from the true,
underlying movement path that is described in Sects. 3.1 and 3.4. Hence, the true locations,
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ZZZ, are those in Eq. 4.4 and the observed locations are

ZZZ∗(t j) =

(
X∗(t j)

Y ∗(t j)

)
=

(
X(t j)

Y (t j)

)
+

(
ε j,x

ε j,y

)
. (5.1)

The observation error, ε , is assumed to be a circular, bivariate Gaussian, that is independent
and identically distributed in space and time, hence ε j,· ∼N(0,σ2

ε ). The relationship between
the unobserved path and the observations is given in Fig. 5.1. Note that the underlying
movement process remains the same, and we are essentially generalising the special case
given in previous chapters where ZZZ∗ = ZZZ, i.e. ε = 0. Interest lies in making inference about
the parameters ΦΦΦ and the observation error variance σ2

ε . Note that Fig. 5.1 displays a single
behavioural state for simplicity, but could equally be applied to the multistate model of
Chap. 4.

5.2 Extending the method for fully Bayesian inference

Given a set of noisy observations, Bayesian inference on the parameters ΦΦΦ and observation
error variance σ2

ε follows the same approach as Sect. 4.3, but with the addition of error. The
observations are augmented with an approximate reconstruction of the underlying movement
path, and a hybrid Gibbs sampler is used to conditionally sample in turn from:

• the behavioural parameters (if applicable),

• the movement parameters,

• the observation error variance, and

Xj,Yj

Xj+1,Yj+1

ᶚi

εj,X,εj,Y

ᶚi+1

ᶚi+2ᶟi+1

ᶟi+2

ᶟi

εj+1,X,εj+1,Y

X*j,Y*j

X*j+1,Y*j+1

Fig. 5.1 Relationship between the observed locations (large points), the ‘true’ underlying
locations at observation times (small points), and the unobserved refined path (line).
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• the unobserved refined path.

A DAG of the movement model with observation error is given in Fig. 5.2. Sampling the
parameters ΦΦΦ is identical to that of Sects. 4.3.2 and 4.3.3—both are unaffected by the presence
of error because they are independent of this when conditioned upon full observation of
the behaviour and movement processes. The following describes the (standard) method for
sampling the observation error parameter. The extension to the previously described method
for reconstructing the refined movement path is then described, generalising to allow for
independent Gaussian errors. The following methods supersede that of Chaps. 3 and 4, with
such being the special case where σ2

ε has a known value of zero.

ᷪ

ᶚ ᶟ ᶚ ᶟ ᶚ ᶟ

ᶥᶗ

Fig. 5.2 DAG of the movement model with augmentation at an approximate time scale when
observation error is present. In this representation, locations {X ,Y} are shown corresponding
to the approximate time scale created for the augmentation of the behaviours, bearings and
steps {B,θ ,ν}. Observed locations {X∗,Y ∗} do not occur at each point on the augmented
time scale, but will be less frequently (for example, at the times shown in green).
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5.2.1 Sampling the observation error parameter

The observation error parameter describes the variance of a Gaussian distribution. The
conjugate distribution for this is the inverse gamma; assuming such a prior allows direct
sampling from the posterior conditional distribution as a Gibbs step (as in the case of sampling
the bearing parameter, shown in Appendix A.1.1). Given the observed locations ZZZ∗ and the
reconstruction of the refined path {θθθ ,ννν}, the observation error εεε can be calculated using
Eqs. 4.4 and 5.1. The posterior full conditional distribution simplifies to

p
(

σ
2
ε | ΦΦΦ,BBB,θθθ ,ννν ,ZZZ∗

)
= p

(
σ

2
ε | θθθ ,ννν ,ZZZ∗

)
,

where

σ
2
ε | θθθ ,ννν ,ZZZ∗ ∼ IG

aε +M, bε +
1
2

M

∑
i=1

2

∑
j=1

εi j

 ,

when the prior for the error variance is given by the conjugate σ2
ε ∼ IG(aε , bε) and M is the

number of observations.

5.2.2 Reconstructing the unobserved refined path

The general approach for sampling the unobserved path is the same as that described in
Sects. 3.3.3 and 4.3.4. As in the latter, reconstruction will be outlined between three consecu-
tive observations as this is the minimum necessary to update the level of observation error.
This scenario is displayed in Fig. 5.3, again omitting the presence of multiple behavioural
states for simplicity but this does not affect the approach. Here, both observations (large
points) and ‘true’ locations (small points) are shown.

The quantities to be simulated are those displayed in black in Fig. 5.3, consisting of:

• (if applicable) the behavioural process B between the times j and l,

• the bearings {θ1, . . . ,θn−1},
• the steps {ν1, . . . ,νn−1}, and

• the true location ZZZ(k) (implicitly through the simulation of the bearings and steps).

The set of {θ1, . . . ,θτ−1} and {ν1, . . . ,ντ−1} takes the path to the true (rather than ob-
served) location ZZZ(k) at the observation time tτ = k. Similarly, the set of {θτ , . . . ,θn−1} and
{ντ , . . . ,νn−1} takes the path to the fixed, true location ZZZ(l) at the time tn = l.
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Fig. 5.3 Section of the full refined path to update over when observation error is present. Fixed
endpoint locations are given at the times j and l. There is observation error on these locations,
but only the ‘true’ locations are required for the reconstruction. The bearing and step
processes, {θ1, . . . ,θn−1,ν1, . . . ,νn−1}, are simulated given fixed endpoints {θ0,θn,ν0,νn}
and the fixed observed location at the time k. Note that the reconstruction will allow error on
the observation at time k so will not pass directly through it as in Chap. 4.

The fixed values that are to be conditioned upon are displayed in green in Fig. 5.3, consisting
of:

• the true locations at the ends of the path section {ZZZ( j),ZZZ(l)} (hence the observed
locations {ZZZ∗( j),ZZZ∗(l)} do not affect the reconstruction and are not considered from
this point onwards),

• the observed location within the path section ZZZ∗(k),

• (if applicable) the behaviours {B( j),B(l)} at the times j, l,

• the bearings {θ0,θn} at the times {t0, tn = l}, and

• the steps {ν0,νn} at the times {t0, tn}.

The reconstruction of the refined path is sampled by an MH step, with the simulation of the
refined path proposal following Sects. 3.3.3 and 4.3.4, but having been extended to allow for
the error associated with the observation ZZZ∗(k).

5.2.2.1 Simulating a refined path proposal

The behavioural (if applicable) and approximate bearing process proposals, {BBB∗,θθθ ∗}, are
carried out identically to that in Sects. 4.3.4.1 and 4.3.4.3 as the proposal is independent of
the observed locations.
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Consider the joint distribution of the steps and true locations given in Eq. 4.5, but where
F = {ΦΦΦ,σ2

ε ,ZZZ( j),B( j),B(l),θ0,θn,ν0,νn}, with values for mmm1,mmm2,Σ1,Σ1,2,Σ2 remaining
the same as in Sect. 4.3.4.4. In this scenario the locations

(
ZZZ(k),ZZZ(l)

)T have not been fully
observed. What has been observed is

(
ZZZ∗(k),ZZZ(l)

)T, where

(
ZZZ∗(k),ZZZ(l)

)T |
(
ZZZ(k),ZZZ(l)

)T
,BBB∗,θθθ ∗,F ∼ N

((
ZZZ(k),ZZZ(l)

)T
, Σε

)
, (5.2)

with Σε = diag(σ2
ε ,σ

2
ε ,0,0). The approximate step proposal is simulated from the conditional

distribution

ννν | BBB∗,θθθ ∗,F ,ZZZ∗(k),ZZZ(l)

∼ N
(

mmm1 +Σ1,2 (Σ2 +Σε)
−1
((

ZZZ∗(k),ZZZ(l)
)T−mmm2

)
, Σ1−Σ1,2 (Σ2 +Σε)

−1
Σ

T
1,2

)
= N

(
µ̂µµ, Σ̂

)
, (5.3)

based on Eqs. 5.2 and 4.9.

An extended version of the ‘conditioning by Kriging’ method of Rue and Held (2005) is used
to simulate from Eq. 5.3, involving first sampling a realisation of unconditional steps and a
realisation of the true location

xxx∗ ∼ N(mmm1, Σ1) ,

yyy∗ ∼ N
((

ZZZ∗(k),ZZZ(l)
)T

, Σε

)
,

and then accounting for the linear constraint by setting

ννν
∗ = xxx∗−Σ1,2(Σ2 +Σε)

−1
((

ZZZ( j),ZZZ( j)
)T

+Axxx∗− yyy∗
)
. (5.4)

It can be shown (see Appendix A.2.2) that the distribution of ννν∗ is given by that in Eq. 5.3.

5.2.2.2 Simulating a proposal at the start/end of path

When simulating a proposed path section that lies at the start of the complete movement path,
the location at the time j must also include observation error (as there is no need to ‘match’ it
up with some remainder of the movement path). Similarly, when at the end of the complete
movement path, the location at the time l must include observation error. In both these cases,
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in addition to the changes to the algorithm described for these special cases in Sect. 4.3.4.5,
the observation error covariance is altered to Σε = σ2

ε I4 (rather than diag(σ2
ε ,σ

2
ε ,0,0)).

5.2.2.3 Accepting a refined path proposal

The conditional distribution, up to a constant, is

p
(
BBB∗,θθθ ∗,ννν∗ | ZZZ∗(k),ZZZ(l)

)
= p

(
BBB∗,θθθ ∗ | ZZZ∗(k),ZZZ(l)

)
p
(
ννν
∗ | BBB∗,θθθ ∗,ZZZ∗(k),ZZZ(l)

)
∝ p

(
BBB∗,θθθ ∗

)
p
(
ZZZ∗(k),ZZZ(l) | BBB∗,θθθ ∗

)
p
(
ννν
∗ | BBB∗,θθθ ∗,ZZZ∗(k),ZZZ(l)

)
,

where every term in the above is also conditioned upon F . The simulation method employed
to create the proposal has density proportional to

p
(
BBB∗,θθθ ∗ |F

)
p
(
ννν
∗ | BBB∗,θθθ ∗,F ,ZZZ∗(k),ZZZ(l)

)
.

The MH acceptance ratio involves the marginal probability of the locations ZZZ∗(k) and ZZZ(l),
given a set of behaviours and bearings. This is given by(

ZZZ∗(k),ZZZ(l)
)T | BBB∗,θθθ ∗,F ∼ N(mmm2, Σ2 +Σε) ,

noting the addition of the observation error covariance required for the marginal distribution
of the noisy location ZZZ∗(k) (from combining Eq. 5.2 with the marginal distribution of(
ZZZ(k),ZZZ(l)

)T).

5.3 Noisy observations of single state reindeer movement

The following example applies the methods of this chapter to a small subset of GPS data from
reindeer (Rangifer tarandus). This example aims to demonstrate the impact of incorporating
observation error into analysis rather than providing an informative ecological analysis and,
for simplicity, implements only single-state movement. The inclusion of observation error is
shown to have the effect of ‘smoothing’ out the movement process between a number of the
observed locations, driven by the overall persistence that the full set of observations suggests.
The following results can be reproduced with the single_reindeer_error example within
the repository CTStepTurn available at https://github.com/a-parton/CTStepTurn.

https://github.com/a-parton/CTStepTurn
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Fig. 5.4 Observed 2 minute locations of reindeer ‘b53.10’ (points, linked chronologically
with lines).

5.3.1 Reindeer-b53.10 observations

A set of 50 GPS observations, taken at 2 minute intervals from the reindeer tagged as ‘b53.10’
were used. These observations form part of a larger dataset spanning a week, taken of
multiple reindeer walking in the Malå herding community in northern Sweden, and collected
by Anna Skarin. A short sample of the full dataset was chosen as multistate movement is
obviously present in sampling periods spanning multiple hours. The observations used here
are shown in Fig. 5.4, suggesting movement that is generally persistent but with a number of
observations closely separated with ‘large turns’ between them.

In this example the single state model with correlated speed process of Sect. 3.4 is applied
to the b53.10 observations, with an assumed model for observation error following the
independent Gaussian perturbation described in Sect. 5.1. Interest thus involves learning
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about the four movement parameters (consisting of a bearing variance and a speed mean,
correlation and variance) along with the additional parameter describing the extent of ob-
servation error. Due to the observations here being at a fine time scale (2 minutes), it is
expected that observation error will have a large effect on inference regarding the movement
parameters. This is due to the high signal-to-noise ratio resulting from the level of expected
observation error from GPS and the small distances being travelled over 2 minutes.

5.3.2 Implementing the inference algorithm

5.3.2.1 Initial values

The refined time scale for this example was chosen as 0.25 minutes, providing reconstruction
at 7 locations between each pair of successive observations. Having observations at a
frequent time scale suggests that only a small amount of additional reconstruction should be
required as little uncertainty is expected. The approximation chosen was thought to provide
a reasonable trade off between computational efficiency and flexibility of the underlying
movement path (through providing a good approximation to continuous time).

The initial movement path at the refined time scale of 0.25 minutes was created by first
perturbing the observed locations to create an initial set of ‘true’ locations. This followed the
assumed Gaussian model for observation error, with variance of 100. The initial path was
then created by taking an interpolating cubic spline between the initial ‘true’ locations. The
initial bearing and speed process are shown in the Appendix, Fig. B.14 and, similarly, the
initial location process is shown by the black line in Fig. 5.7. Initial movement parameters
were set as estimates from this path configuration, given as

ΦΦΦ
(0)
M = {σ2

θ

(0)
= 0.422,µ(0) = 22.3,β (0) = 0.100,σ2

ψ

(0)
= 175},

σ
2
ε

(0)
= 100.

5.3.2.2 Prior information

A prior distribution specifying an upper bound on the ratio of the speed parameters to avoid
the presence of negative speeds was applied (see Eq. 3.10). Additionally, a half normal prior
was placed on the speed correlation parameter β with scale 2.25. Because β is featured within
a decaying exponential term in the conditional distribution of the OU process (Eq. 3.10),
once it becomes large (what value this is depends on the refined time scale in use) such a
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term becomes zero and its value cannot be determined. At such a stage an MH sampler will
drift around the parameter space above this threshold, and an example of where such an
event occurred is given in the single state example at the observation time scale in Sect. 3.5.2.
The placement of the prior on β discourages large values (90% quantile at 2.46 and median
at 1.01) so that if there is little correlation in the speed process the MH sampler does not
drift unnecessarily. However, for values of β that are within an estimable range, this prior is
uninformative.

The conjugate prior for the bearing parameter σ2
θ

is inverse gamma. In this example, this
prior was defined with shape and scale both equal to 0.5. Such a prior is uninformative, being
heavy-tailed with 90% prior credible interval being (0.260,254) and prior median 2.20.

The conjugate inverse gamma prior for the observation error variance parameter was defined
with shape 2 and rate 200. A 90% prior credible interval is (42.2,563) and the prior median is
119 and the mean is 200. This prior was chosen to reflect the belief that GPS observation error
would be present, discouraging negligible levels of error, and also that it is expected from
previous studies that levels of error are as high as 20 m. The prior is therefore concentrated
around the region of values lead to a non-negligible probability of producing errors upto
20 m (i.e. looking at within two standard deviations). All remaining parameters (speed mean
and long term variance) had flat priors.

5.3.2.3 Implementation

Perturbation variances in the random walk sampler for the speed parameters were assigned
based on a pilot run

ρρρ = {ρµ = 2,ρβ = 0.55,ρ
σ2

ψ
= 10}.

The algorithm of Sect. 5.2 was applied for 107 iterations, with each iteration consisting
of a single parameter update and 50 refined path updates on random sections of path with
lengths ranging 4–15 points (i.e 1–3.75 minutes). Samples were thinned (for memory storage
purposes) by a factor of 2,000 and the first fifth were treated as a ‘burn-in’ period, leaving
4,000 stored samples of parameters and reconstructed refined paths. Computational run-time
for this example was under 24 hours.
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Fig. 5.5 Posterior samples of the movement parameters (on log scale) for the reindeer b53.10
example.

5.3.3 Parameter results

The posterior samples of the movement parameters are given in Fig. 5.5 and shown as
kernel density estimates (which also include the observation error variance parameter) in
Fig. 5.6. For the kernel density estimates, in the cases where non-flat prior distributions were
specified, the prior density is also included. The trace and ACF of all sampled parameters
are given in the Appendix, Figs. B.15 and B.16. These summaries show there to be some
positive correlation (0.34) between the bearing variance and the mean speed, which is to be
expected as a more tortuous path between observations must be longer. There is negative
correlation (0.53) between the correlation and variance of the speed process, i.e. if there is
less correlation in the speed process and it is instead more strongly attracted to the long term
mean then the long term variability in speed is also lower. All other pairs of parameters had
correlation weaker than ±0.2.

Posterior summary statistics of the parameters are given in Table 5.1. The bearing param-
eter describes movement that is persistent/directed, with the 95% quantile of the posterior
reconstructed turns (differences in the bearing process) being less than 0.726 radians (∼ 42 de-
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Fig. 5.6 Kernel density estimates (solid line) of the posterior samples of the movement and
observation error parameters in the reindeer b53.10 example. Estimates are based on thinned
samples with burn-in period discarded. In the cases where non-flat prior distributions were
specified, such a prior density is also included (dashed line).

grees). The 95% posterior credible interval can be seen to be concentrated around a median
lower than that of the prior, being positively skewed but with a non-heavy tail (see Fig. 5.6).

The posterior of the long term mean speed is symmetrical, with median 24.3 metres/minute.
The posterior of β , the correlation parameter of the speed, is concentrated at low values in
contrast to the prior distribution (see Fig. 5.6). The speed process is highly correlated—for
example, the 95% posterior credible interval for the exponential term in the OU process of
Eq. 3.10 at the refined time scale is (0.665,0.963) and the median is 0.842. The posterior of
σ2

ψ leads to the equilibrium distribution of the speeds having high uncertainty, but because of
the high speed correlation (through β ) the short term speed distribution has low variance.

The posterior and prior distributions of the observation error variance have similar medians
(prior 119, posterior 116), however the posterior mode is higher than the prior (prior 66.7,
posterior 107) and the posterior is more concentrated around its mode than the prior.
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Table 5.1 Posterior summary statistics (2.5%,50%,97.5% quantiles) for the sampled move-
ment and observation error parameters in the single state reindeer b53.10 example. ESS is
also included, taken fromThe ESS is taken from the 4,000 samples thinned from 8× 106

iterations.

2.5% 50% 97.5% ESS

σ2
θ

(bearing variance) 0.327 0.638 1.28 191
µ (long term speed mean) 16.7 24.3 33.1 878
β (speed correlation) 0.0740 0.343 0.815 968
σ2

ψ (long term speed variance) 97.9 150 412 192

σ2
ε (observation error variance) 62.1 116 212 2378

5.3.4 Path reconstruction results

The posterior distribution of path reconstruction at the refined time scale of 0.25 minutes is
shown in Fig. 5.7. Each green line represents a single path reconstruction, the black line
highlights the path that the sampler was initialised at, and the observations are displayed by
points. Presenting a number of path reconstructions when error is present, as in Fig. 5.7 which
features 80 distinct reconstructions, may not be useful for aiding in parameter interpretation
but is useful in determining the space-use of the animal and the level of observation error.
Uncertainty in location over time and space use can be informally judged by the ‘width’ and
density of the band of sampled locations running between observations, also highlighting the
observations with high noise.

The posterior reconstructed paths aid in quantifying the error associated with observed
locations. Although the assumed model for observation error is Gaussian with centre at
zero, the posterior distribution of the error at an observation time does not necessarily have
such a distribution. This is demonstrated in Fig. 5.8, showing a section of the movement
path with posterior samples of the ‘true’ locations at two observation points (labelled A
and B). Such errors are then plotted in more detail in the right panels. In both cases, the
majority of errors in the x and y directions are within 20 m, which agrees with the prior
expectation. The shape of the errors, however, differs between the two examples. In the case
of the observation labelled A (top right panel) the distribution of the posterior observation
error appears Gaussian with centre being the observed location, i.e. no error. In contrast,
the observation labelled B (bottom right panel) is skewed with the observed location non-
central to the distribution of the ‘true’ location. Such an event arises when the full set of
observations suggest a movement path that is consistently biased in one direction to the
observation; in the case of location B, the reconstructions form a smooth curve rather than
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Fig. 5.7 Example sampled refined path reconstructions (green lines) for the reindeer b53.10
example with noisy observations. Observations (points) and initial path are highlighted
(black line).

the abrupt ‘corner’ created by linear interpolation and hence the paths consistently lie to the
west of the observed location. Such information on the ‘true’ locations of the path enable
more reliable determination of the animal’s space use.

Although large samples of path reconstructions aid in the estimation of space use and obser-
vation error, when they are considered together it is difficult to identify fine-scale features
of the movement path or interpret the inferred parameter estimates. Fine-scale interpreta-
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Fig. 5.8 The presence of centred and non-centred observation error in the single state reindeer
example. Left: section of the movement path, displaying observations (grey points and
linearly interpolated line), posterior samples of reconstructed paths (green lines), with
corresponding locations at two observation times (black points at A and B). Top right:
posterior samples of error at the time of observation A (black points) with no observation
error highlighted (grey lines). Bottom right: posterior samples of error at the time of
observation B.

tion can be carried out on small numbers of reconstructed paths, such as the five examples
shown in Figure 5.9, taken from equally spaced iterations within the MCMC sampler. The
full movement paths are shown in the left panel, with observations highlighted, allowing
instant correspondence between the inferred parameters and the types of movement path
they define. In this case, the reindeer’s path is persistent, with smooth curves/loops. The
marked difference in the four example reconstructions between pairs of observations suggests
that the linear interpolation employed by discrete time models could be ignoring important
characteristics of movement.

The two highlighted regions in the left panel of Fig. 5.9 are detailed in the right panels.
Between observations 21 and 25 there is a ‘sharp turn’ and the two observations 41 and 42
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create a sequence of ‘double-back’ moves. In a discrete time analysis this would amount
to multiple turns of ±π radians, leading to large estimates of the bearing variance. In this
example, however, the path is reconstructed given the information from all observations,
which in this case suggests persistent movement. To allow for this, the reconstructions
‘smooth out’ the sharp turning behaviour, often with an increase in error around the affected
observations. This results in a smoother corner being reconstructed in all examples between
observations 21 and 25 than a linear interpolation (top right panel of Fig. 5.9). For the
observations 41 and 42 (bottom right panel of Fig. 5.9) the example reconstructions feature
two types of movement; a loop that allows for the ‘double-back’ movement but at a scale less
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Fig. 5.9 Five examples of posterior path reconstructions for the reindeer b53.10 example.
Left: The movement path (line for each reconstruction) with observations (points). The
two grey areas highlight detailed sections featured in the right panels. In both cases,
observations have been numerically labelled by their position in time.
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volatile than linear interpolation, and straight paths that ignore the ‘double-back’ movement
by increasing the level of error around the observations.

5.4 Noisy observations of two-state gull movement

This example applies a two-state movement model with the presence of observation error to
a subset of GPS data from lesser black-backed gulls (Larus fuscus). For further information
on the full data, which is available at Garthe et al. (2016a), see Garthe et al. (2016b). Two
implementations were carried out on this data with differing approximations to the refined
movement path to investigate the effect this has on inferred parameters. In this case, the
differing time approximations had little effect on the inferred behavioural parameters, but led
to differences in the inferred speed parameters and level of observation error.

5.4.1 Gull-3 observations

A subset of 1,001 GPS observations, taken at roughly 3 minute intervals from the gull tagged
as individual 3 (incorporating a sampling period of over 52 hours) are shown in Fig. 5.10.
Unlike the previous examples with elk and reindeer, the gull observations do not have a
regular sampling interval, ranging between 3.05–7.7 minutes and with a mean interval of
3.13. Thus, applying a discrete-time model would require some form of interpolation of
the observations at a regular time scale. A two-state switching model was applied with the
independent Gaussian assumption of observation error.

The two-state model was implemented with two refined time scales, referred to throughout the
following as 0.5 and 1. The actual refined time scale for a given path reconstruction, however,
is dependent upon the times of observations (which are measured to within 0.01 minute
accuracy) and the inferred behavioural switches. For each reconstruction the refined time
scale was chosen as being the sequence of times that included at least all observation
and behavioural switch times and had points spaced no greater than 0.5 and 1 (for each
implementation) minutes apart. Hence, in many cases, this resulted in a refined time scale
that was less than 0.5 or 1 minutes, respectively. Interest here was in comparing the parameter
estimation between the two different approximations.
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Fig. 5.10 Observed locations of gull-3 (points, linked chronologically with lines).

5.4.2 Implementing the inference algorithm

5.4.2.1 Initial values

The initial movement paths for both implementations were created using an interpolating
cubic spline between observations, as in the previous example on reindeer data. The refined
time scale in each of the two cases was chosen to not be greater than 0.5 and 1, and due to
the sampling frequency of the observations, this led to initial refined paths with mean time
scales of 0.44 and 0.78, respectively (with around 4 and 8 locations between each pair of
observations). Initial parameters in each implementation were set as maximum likelihood
estimates of the initial path configuration.
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5.4.2.2 Prior information

As in the elk example, a prior distribution was applied to avoid state label switching by
categorising state 1 as having a lower mean speed than that of state 2. The same prior on
the speed correlation parameter was applied as that in the reindeer example of Sect. 5.3
to avoid drifting if the inferred value was at a level where no speed correlation would be
present (the actual inferred range of this parameter was found to be so much smaller than
this threshold that it was uninformative). The conjugate inverse gamma prior for the error
variance was defined with a shape 5 and rate 300. A 90% credible interval for this was
(32,152), with a median of 62. This was chosen to reflect the belief that some observation
error would be present, but that the level of such is uncertain within the region of realistic
GPS device errors. Due to the distances travelled between observations being large in this
example (in comparison with the reindeer example of the previous section), observation error
is not expected to affect the ability to estimate the movement parameters. The choice of
prior for the error variance here is therefore not expected to be important. All remaining
parameters had flat priors.

5.4.2.3 Implementation

Perturbation variances for the speed parameters were set based on pilot runs, and the inference
algorithm was implemented for 5×106 iterations, with 50 path section updates for every
parameter update (with path section updates ranging between 4–11 points). Samples were
thinned (for memory storage purposes) by a factor of 2,000 and the first fifth treated as burn-
in. Compuational run-time for the two cases were under 4 days, with the implementation at
time scale 0.5 taking longer than that at time scale 1.

5.4.3 Behaviour results

Posterior samples of the behavioural switching parameters for the two implementations are
shown in Fig. 5.11, with sample trace and kernel density estimates given in the Appendix,
Figs. B.17 and B.18. Posterior summary statistics are given in Table 5.2. The two imple-
mentations inferred similar values for the behavioural parameters, with the estimation being
more uncertain in the case where the movement path was estimated at a coarser time scale.
In both cases the inferred switching rate was higher for the travelling state over the forag-
ing state, leading to 90% credible intervals for the expected residency time of (50,100) and
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Fig. 5.11 Posterior samples of the behavioural parameters (on a log scale) for gull-3: λ1 is
the switching rate out of the ‘foraging’ state and λ2 is the switching rate out of the ‘travelling’
state. Implementations with refined time scale of 0.5 left panel and 1 right panel.

(25,50) minutes in states 1 and 2, respectively. The similarity of the inferred behaviour param-
eters between the two implementations is unsurprising due to the behavioural reconstruction
remaining exact in the algorithm for inference.

Table 5.2 Posterior credible intervals (5%,50%,95% quantiles) of the sampled behavioural
parameters in the gull-3 example.

δ t 5% 50% 95%

λ1
0.5 0.0103 0.0146 0.0200
1 0.00990 0.0151 0.0220

λ2
0.5 0.0202 0.0284 0.0392
1 0.0181 0.0274 0.0399

Based on posterior samples of the reconstructed behavioural process, Fig. 5.12 shows the
probability of being in each behaviour throughout the course of the sampling period for
both implementations. The estimated behavioural process is similar in each case, which is
to be expected due to the similarity in estimated behavioural parameters and because the
reconstruction of the behavioural process is exact.
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Fig. 5.12 Posterior probability of residing in each behavioural state over time, calculated
from the sampled reconstructions of the behavioural process (grey bars). The taller a bar at a
given time, the higher the proportion of sampled reconstructions classified as that behaviour
(so each bar for state 1 and 2 sum to a constant value). The times/frequency of observations
is highlighted by points along the horizontal axis. Implementations with refined time scale
of 0.5 top panel and 1 bottom panel.

5.4.4 Movement results

Posterior samples of the movement parameters are shown in Fig. 5.13, with sample trace and
kernel density estimates given in the Appendix, Figs. B.19 and B.20. Posterior summary
statistics are given in Table 5.3. The estimates of the movement parameters for state 1 (forag-
ing state) differ between the two implementations. The bearing parameter σ2

θ
for this state is

so high in each implementation as to produce uniform turning angles, rendering the difference
in estimation of this parameter inconsequential. The estimate of the speed correlation, β ,
and long-term variance, σ2

ψ , in state 1 for the two implementations differ greatly between
the two implementations (although the product of these quantities, determined by the slope
in the scatter plot of Fig. 5.13, is comparable). In contrast, the estimates of the movement
parameters for the travelling state (state 2) are similar for both implementations. The diffi-
culty in estimating the speed correlation, β and variance, σ2

ψ at coarse time approximations
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Fig. 5.13 Posterior samples of the movement parameters (on a log scale) for gull-3. Imple-
mentations with refined time scale of 0.5 left panel and 1 right panel.

was a property previously identified in the example of Sect. 3.5.2. That the uncertainty for
these parameters is much larger for the implementation with coarser approximation to the
movement process suggests that such an approximation is not fine enough to estimate these
features of the movement process for this set of observations.
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Table 5.3 Posterior credible intervals (5%,50%,95% quantiles) of the sampled movement
parameters in the gull-3 example.

State 1 State 2

δ t 5% 50% 95% 5% 50% 95%

σ2
θ

0.5 7.04 9.09 12.4 0.134 0.185 0.239
1 4.76 6.98 10.9 0.129 0.154 0.185

µ
0.5 3.90 22.7 50.1 268 428 599
1 3.89 25.4 69.6 216 389 562

β
0.5 0.0460 0.0715 0.101 0.117 0.178 0.256
1 0.00909 0.0288 0.0506 0.100 0.153 0.218

σ2
ψ

0.5 2830 3990 6060 108000 154000 225000
1 1690 2810 8920 111000 154000 227000

Table 5.4 Posterior credible intervals (5%,50%,95% quantiles) of the sampled observation
error variance in the gull-3 example.

δ t 5% 50% 95%

σ2
ε

0.5 28.6 35.6 43.7
1 35.6 51.7 68.8

5.4.5 Error results

Posterior kernel density estimates of the observation error variance are given in Fig. 5.14
and summary statistics in Table 5.4. The estimation of the level of observation error differed
between the two implementations, estimating smaller levels of error with a better approxi-
mation to the movement process. The coarser approximation has a posterior closer to the
prior distribution. It may be that when the approximation to the continuous-time movement
process is too coarse, the inferred level of error must be large to allow for an inability to
describe the movement process well enough at such an approximation. Alternatively, it may
be that at this level of approximation there is not enough information to estimate the error
variance, and so the posterior is dominated by the prior information. It is unknown whether
the difference in estimated speed parameters is due to the refined path approximation directly,
or whether the estimates differ indirectly because of the difference in inferred observation
error. This lack of identifiability between the movement parameters and the observation error
is explored further in the simulated example of Sect. 5.5, in which the error variance is fixed
at a number of known quantities to investigate the effect this has on movement parameter
estimation.
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Fig. 5.14 Posterior kernel density estimate of the observation error variance for gull-3.
Implementations with refined time scale of 0.5 grey and 1 black. The prior distribution for
the error variance is also included (dashed line).

5.5 Simulated example

The following example applies a restricted version of the methods of this chapter to a
simulated dataset of noisy observations. Given a set of observations simulated with a known
error variance, the simplification applied implements the inference algorithm with the actual
errors unknown, but assuming a known value for the error variance (i.e. the error parameter
is fixed prior to implementation and Sect. 5.2.1 is not carried out). In the following this is
applied for a number of fixed error parameters, from 0 (not considering error on the error-
ridden observations) through a range of values including, and greater than, the true value
used for the simulation. This example demonstrates the effect that the level of observation
error has on the ability to estimate the parameters and reconstruct the unobserved path. The
following results can be reproduced with the single_simulation_error example within
the repository CTStepTurn available at https://github.com/a-parton/CTStepTurn.

5.5.1 Underlying movement and observations

Single state movement following Sect. 3.4 was simulated with parameters

ΦΦΦ = {σ2
θ = 0.7,µ = 20,β = 0.2,σ2

ψ = 80},

https://github.com/a-parton/CTStepTurn
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between the times 0–400 at an approximate time scale of 0.01.

The ‘true’ observations of the movement path were created by sub-sampling the simulated
locations at intervals of 200, giving 200 observations at a time scale of 2. Noise was then
added according to the independent model of Sect. 5.1, with error variance given by

σ
2
ε = 25.

The simulated path, with corresponding true and noisy observations, is given in Fig. 5.15.
Although the level of error applied here appears small at the scale of the full movement
path, the inset, detailed section shows that the error applied alters the movement between
successive observations noticeably and is expected to have a significant effect on the inferred
movement.
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Fig. 5.15 Simulated single state movement path (black line) with true locations at the
observation times (black points) and the locations observed with noise (green points).
Inset panel: detailed section between times 0–40.
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5.5.2 Implementing the inference algorithm

The ability of the algorithm at inferring the movement process in the presence of error, along
with the effect the size of such an error has, is explored through a number of implementations.
The observation error variance parameter was fixed in each run with values ranging at
intervals of 5 between 0–50 (note that the run with variance of 0 is equivalent to ignoring
error and the run with variance of 25 applied the actual variance used to simulated the
observations). To ‘fix’ the error variance, the algorithm of Sect. 5.2 was applied ignoring the
step to sample the error parameter in Sect. 5.2.1. The full inference algorithm, in which the
observation error variance is assumed unknown and estimated, was also implemented for
comparison.

5.5.2.1 Initial values

Each implementation with fixed error variance (with the exception of that with no error) used
the same initial movement path. This was created by drawing a set of ‘true’ observations by
perturbing the observed locations, according to the true underlying model for error. For the
implementation with error variance of zero, the observed locations were used. The path was
then created at a refined time scale of 0.25 by taking an interpolating cubic spline between
the drawn, ‘true’ locations. This gave a reconstruction of seven unknown locations between
each pair of observations. Initial movement parameters were set as estimates from this initial
configuration.

When the observation error variance was assumed unknown, two implementations were
carried out that differed only in the initial values. The initial movement path was created
assuming that the error variance was 25 (the true value) and 50, with the initial value of the
error variance also set at the respective value.

5.5.2.2 Prior information

A half normal prior was placed on the speed correlation parameter β with scale 25 (see the
discussion on this prior in Sect. 5.3.2). Such a prior discourages large values of β (with
95% quantile of 9.82) and so for values of β that are within an estimable range, this is
uninformative. The conjugate, inverse gamma prior for the bearing parameter σ2

θ
was defined

with both shape and scale of 0.001, representing weak information.
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When the observation error variance was assumed unknown a prior was set representing no
information about its value, being an inverse gamma with shape and rate both equal to 0.001.

5.5.2.3 Implementation

The inference algorithm was applied for 5×106 iterations, with each consisting of a single
parameter update and 100 refined path updates on random sections of the path with lengths
between 4–17 points. Perturbation standard deviations for the speed parameters were based
on pilot runs. Samples were thinned (for memory storage purposes) by a factor of 1,000 with
the first 500 samples treated as burn-in (10%), leaving 4,500 samples for estimation with
ESS given in Table 5.5. Each implementation took less than 24 hours in computational time
to complete.

5.5.3 Parameter results

The posterior samples of the parameters are given in Figs. 5.16–5.17, and the trace in the
Appendix, Fig. B.21. Summaries of the posterior distributions are given as kernel density
estimates in Fig. 5.18, boxplots in the Appendix, Fig. B.22, and in Table 5.5.

Fig. 5.16 shows the estimated bearing variance decreasing towards the simulation value as
the error variance is increased. Fig. 5.18 shows that the uncertainty around the estimation of
this parameter also decreases as the error variance is increased. The simulation value has
not been captured well by any of the implementations with error variance less than the true
value, with estimation improving as the error is increased. Both here, and in the reindeer
example of Sect. 5.3. incorporating observation error allows for paths with lower bearing
variance (and higher persistence) than would be the case when observation error is omitted,
and although this is closer to the true value, the presence of this error makes estimation of
the correct bearing parameter more difficult. For example, for the implementation with error
variance set as the true value, the estimation of σ2

θ
was too high, with posterior median of

0.867. For comparison, in the simulation example of Sect. 3.5.2, which did not include error
but also had a bearing parameter of 0.7, the posterior median from the two implementations
were 0.66 and 0.63 (the 97.5% quantile was 0.85 and 0.81, therefore still lower than the
median in this example).

The mean speed was the easiest parameter to estimate; even with the complication of
observation error. Similarly to the bearing parameter, the estimate of the mean speed reduces
as the assumed error is increased (see Fig. 5.16). The uncertainty around such an estimate,
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however, increases as the assumed error does also (see Fig. 5.18), with all implementations
having essentially the same upper estimate of the mean speed but a lower median. This
reflects the findings in the simulation example of Sect. 3.5.2 that did not include error, in
which the uncertainty around the estimate of the mean speed remained high even when the
true simulation at the 0.01 timescale was known. When no observation error is present,
the mean speed is overestimated and not included in the 95% posterior credible interval
in Table 5.5—this is to be expected when the bearing variance is also the highest of all
the implementations. When there is observation error included in the implementation, the
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Fig. 5.16 Posterior samples of the bearing variance against mean speed (on log scale) for the
observation error simulation example, faceted into panels for the level of fixed error variance.
In each case, the true simulation value is given by grey lines.
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Fig. 5.17 Posterior samples of the speed correlation against variance (on log scale) for the
observation error simulation example, faceted into panels for the level of fixed error variance.
In each case, the true simulation value is given by grey lines.

estimate of the mean speed is not improved upon greatly as the error increases past the true
simulation value.

When no, or little, observation error was allowed, the correlation in the speed process could
not be estimated, with the sampled values leading to little correlation in the process. When
the error variance was assumed higher than 20 (with the true value having been 25), the speed
correlation was estimated well (see Fig. 5.17 and Table 5.5), however, once the observation
error becomes large (values of 40 and over) β begins to be underestimated. As the assumed
error increased, the uncertainty around the estimate for the speed correlation reduced, as
shown in Fig. 5.18. The estimates of the long term speed variance are also similar; having
been overestimated when no error was incorporated, with the true value only being included
in the 95% posterior credible interval for error variances of 15 and greater. As shown in



152 Incorporation of observation error

β (speed correlation) σψ
2 (speed volatility)

σθ
2 (turn volatility) µ (speed mean)

0.00 0.25 0.50 0.75 1.00 1.25 100 200 300 400

0.50 0.75 1.00 1.25 1.50 0 10 20 30

0.0

0.1

0.2

0.3

0.000

0.005

0.010

0.015

0.020

0.025

0

1

2

3

4

0.0

2.5

5.0

7.5

de
ns

ity

Error
Variance

00

05

10

15

20

25

30

35

40

45

50

Fig. 5.18 Posterior kernel density estimates of the movement parameters for the observation
error simulation example, shown for each implementation that used a different level of fixed
error variance. In each case, the simulation value is given by grey vertical line.

Figs. 5.18 and B.22, for assumed errors at the true simulation value and greater, the estimate
of the long term speed variance is relatively stable.

For comparison, Fig. 5.19 shows the posterior kernel density estimates of the movement
parameters for the two implementations in which the error variance was assumed unknown
and estimated, and Table 5.6 gives the posterior credible intervals. The initial configuration
of the movement path and error variance parameter can be seen to have had little effect on
the inferred parameter values. Estimated movement parameters are similar to those found
when the error variance was fixed at the true value of 25 (see Table 5.5) and the error variance
parameter has been estimated well in spite of weak prior information.
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Table 5.5 Posterior credible intervals (and ESS) for the movement parameters in the obser-
vation error simulation. The ESS is taken from the 4,500 samples thinned from 4.5×106

iterations. Note that the simulation values were {0.7,20,0.2,80} and the error variance was
25. Intervals that do not contain the true value are highlighted.

σ2
ε 2.5 50 97.5 ESS 2.5 50 97.5 ESS

0

σ2
θ

0.844 1.03 1.28 1719

µ

20.3 22.6 25.0 3269
5 0.806 0.990 1.23 1561 19.9 22.4 25.0 4057
10 0.769 0.950 1.19 1654 19.5 22.2 24.8 4232
15 0.746 0.919 1.17 1550 18.9 21.9 24.9 4368
20 0.713 0.889 1.11 2231 18.4 21.8 24.9 4374
25 0.699 0.867 1.09 2031 18.2 21.6 25.0 4414
30 0.681 0.849 1.06 2865 17.8 21.4 25.0 2374
35 0.660 0.829 1.04 1973 17.6 21.3 24.8 3346
40 0.660 0.819 1.02 1864 17.4 21.2 24.8 3052
45 0.649 0.806 1.01 1839 14.3 21.0 24.9 2993
50 0.638 0.795 0.997 2075 16.9 21.0 24.7 2582

0

β

0.350 0.549 0.836 726

σ2
ψ

103 131 170 1422
5 0.258 0.423 0.665 726 92.0 120 160 1891
10 0.197 0.329 0.542 723 82.9 110 151 1757
15 0.138 0.263 0.451 560 75.9 104 147 1812
20 0.112 0.221 0.379 585 70.3 98.6 149 1270
25 0.095 0.188 0.338 546 65.7 92.9 143 1514
30 0.079 0.171 0.303 531 62.8 90.8 145 478
35 0.071 0.157 0.285 434 61.2 88.7 142 1049
40 0.073 0.148 0.264 641 59.1 86.5 140 1127
45 0.025 0.136 0.249 601 58.3 87.8 316 505
50 0.059 0.133 0.245 424 56.4 84.5 145 894

5.5.4 Path reconstruction results

The posterior distribution of the path reconstruction at the refined time scale of 0.25 minutes
for four of the implementations (no error, error variance of 5, the true error variance of 25,
and the largest error variance of 50) are shown in Fig. 5.20 between the times 0–40. Each
green line represents a single path reconstruction, the circular points highlight the true
locations at observation times, and the square points give the noisy observations.

For the implementation without observation error, the paths must move through each error-
ridden observation, and so if the location process was to be estimated using the density of the
path reconstructions, this implementation would not perform well, with a number of the true
locations being missed by the reconstructed paths. Due to the constraint that the ‘observed’
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Table 5.6 Posterior credible intervals (and ESS) for the movement parameters in the observa-
tion error simulation when the error variance was unknown and estimated. The ESS is taken
from the 4,500 samples thinned from 4.5×106 iterations.

Initial σ2
ε 2.5 50 97.5 ESS 2.5 50 97.5 ESS

25
σ2

θ

0.686 0.855 1.081 1326
µ

17.9 21.5 25.1 2872
50 0.685 0.857 1.089 1307 17.9 21.6 24.8 3818

25
β

0.0800 0.174 0.340 325
σ2

ψ

62.1 92.8 150 915
50 0.0870 0.179 0.334 440 64.1 92.4 143 1201

25
σ2

ε

15.2 28.5 44.9 461
50 15.4 28.2 43.3 429

locations impose upon the implementation, there are fewer likely options for how the path
could progress between these, and so the uncertainty of the estimated location process is low,
with the reconstructions being similar to one another.

When including error, although the space use densities are more uncertain, they are able
to capture the true locations within the estimated location process. The individual path
reconstructions can be seen to reflect the trend in estimated bearing variance, being smoother
and more persistent when observation error is incorporated in comparison to the ‘jagged’
reconstructions when error is suppressed. Comparing the implementations with error vari-
ances of 5, 25 (the true value) and 50, note the observation with high simulated error at
the left of the plotted region (the probability of an error at least this large being simulated
was 0.00012). When the error variance was 25, although this was the value used for the
simulation, the reconstructed paths do not appear to capture this true location well, and pass
symmetrically on either side of the observed location. When the error variance was much
larger, the majority of reconstructed paths lie to the east of the observed location, towards
the true simulated value. This highlights a limitation of the algorithm to identify the true
location when the actual error lies in the extreme tail of the true error distribution.

To evaluate the performance at estimating the actual observation error of each of the 10 im-
plementations in which error was incorporated, Fig. 5.21 shows posterior reconstructions
of the true location at an individual observation time. In this first example, the time chosen
had small actual error between the true simulation and the observation (the black square
and black point are almost indistinguishable), with probability of an error at least this large
under the simulation model of 0.88. The posterior reconstructions of the true location are
given by green points, along with kernel density estimates highlighting the 50%, 75% and
95% quantiles as black contours. For comparison, the prior distribution of the true location
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Fig. 5.20 Examples of the sampled refined path reconstructions between times 0–40 (green
lines) in the observation error simulation example. Panels: reconstructions for four of the
implementations: without observation error, with error variance of 5, with true error variance
of 25 and with error variance of 50. The observations are shown (square points) along with
the true locations at those observation times (circular points).
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implied by the error model with fixed error variance in each implementation is shown by the
orange contours at the same quantile levels. Each implementation in this case has a roughly
circular/symmetric posterior distribution, closely centred around the observed location (the
mean error not differing between the prior and posterior). For the cases with small error
variance, the posterior distribution closely follows the prior model. For larger error variances,
above 30, the posterior distribution of the true location is less dispersed than the prior model,
having lower support for larger errors. Implementing a fixed error variance larger than the
simulation value has made little difference to the inferred true location (for example, the
95% quantiles for the true location when σ2

ε = 25,30,35,40 are similar). This supports the
findings above that the posterior distributions of the movement parameters were similar for
these cases.

Fig. 5.22 gives the performance at estimating the actual observation error for a time point
with larger error than the previous example (the probability of an error at least this large
under the simulation model is 0.049). In this case, the true simulated location is not contained
within the 95% quantile region for the prior model when the error variance was small (less
than 20). In these implementations, the posterior distribution is centred towards the true
location but is not captured well, remaining in a low density region. When the error variance
was fixed at the true simulation value, the true location has been captured well, being in the
highest 50% region of the posterior. This estimation differs little for the implementations
with error variances larger than this. Unlike the previous example, all the implementations
here show posterior estimates with similar levels of uncertainty to their model prior, but with
the posterior mean differing from the prior and the correlation between the x- and y-directions
being non-negligible (the quantiles are distinctly elliptical).

An example of extreme actual observation error is given in Fig. 5.23, in which the prob-
ability of simulating an error at least as large as this was 0.00012 (note that even for the
implementation with the largest error variance, 50, the true location lies outside the model
95% quantile region). For reference, note that this is the observation with large error which
appears towards the left of the location plots in Fig. 5.20. The implementations with error
variance less than the simulation value have not been able to capture the true location, which
lies outside the 95% quantile region in all cases. For the implementations with error variances
equal to the simulation value (25), and higher, the true location has only been estimated well
in the y-direction with large uncertainty in the x-direction (note the non-circular shape of
the posterior distributions). Unlike the previous examples, for this observation time there is
a noticeable difference in the posterior distributions when the error variance is larger than
25, with the estimate of the true location improving as the error variance is increased. As
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Fig. 5.21 Posterior reconstructions of the true location at an individual observation time
(green points and kernel density estimate at 50%,75%,95% quantiles in black contours) in
the observation error simulation example. Panels: reconstructions for the 10 implementations
that included error, with the prior distribution of the true location highlighted in each case
(orange contours also at 50%,75%,95% quantiles). The observation is shown (square
point) along with the true location at that time (circular point). Note that the actual error at
this time was so small that these points are almost indistinguishable.
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Fig. 5.22 Posterior reconstructions of the true location at an individual observation time
(green points and kernel density estimate at 50%,75%,95% quantiles in black contours) in
the observation error simulation example. Panels: reconstructions for the 10 implementations
that included error, with the prior distribution of the true location highlighted in each case
(orange contours also at 50%,75%,95% quantiles). The observation is shown (square
point) along with the true location at that time (circular point). In this case the actual
observation error is reasonably large.
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identified earlier in the discussion of the reconstructions of Fig. 5.20, the posterior mean
location in the x-direction when the error variance was 25 is close to the observed loca-
tion (hence the reconstructions passed to the east and west of the observation). However,
when the error variance was assumed to be larger, the posterior mean lies to the east of the
observation—towards the true location.

5.6 Correlated error process

Observation errors from GPS transmitters have been found to be highly correlated when the
sampling frequency is high (Breed and Severns, 2015). The model for observation error in
Sect. 5.1 that assumes independence in the error process over time should ideally be applied
only when the sampling interval is coarse enough that such an assumption is realistically
valid (thought to be sampling intervals of 15–30 minutes and over (Breed and Severns, 2015)).
The following presents an extension to this simple model that incorporates the realism of
correlation in the observation error process.

The two-dimensional error process, εεε , is assumed to follow a circular OU process with
common mean 0. This process was introduced in Sect. 2.1.2, with the special circular case of
the OU process assuming that the two dimensions are independent from one another (this
assumption was also used in the error model of Sect. 5.1). The error at observation j, given
the error at an earlier observation i, is given by

εεε j | εεε i ∼ N
(

e−κ(t j−ti)εεε i, σ
2
ε

(
1− e−κ(t j−ti)

)
I2

)
, (5.5)

where I2 is the two-dimensional identity matrix, κ > 0 is the correlation parameter and σ2
ε is

the long-term variability. The observed locations are then given by Eq. 5.1, but with εεε now
given by the correlated process described here.

5.6.1 Extending the method for fully Bayesian inference

Inference follows the same approach as that described in previous sections. The parameters
are updated as in Chap. 4. The following describes the method for sampling the two error
parameters from the full conditional distribution and reconstructing a section of the refined
path.
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Fig. 5.23 Posterior reconstructions of the true location at an individual observation time
(green points and kernel density estimate at 50%,75%,95% quantiles in black contours) in
the observation error simulation example. Panels: reconstructions for the 10 implementations
that included error, with the prior distribution of the true location highlighted in each case
(orange contours also at 50%,75%,95% quantiles). The observation is shown (square
point) along with the true location at that time (circular point). In this case the actual
observation error is large.
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5.6.1.1 Sampling the observation error parameters

The two parameters of the error process are updated simultaneously using a random walk
MH step, with independent proposals for each parameter. As both parameters are constrained
to be positive, univariate Gaussians truncated below at zero are used to generate the step in
the random walk. The posterior conditional distribution, up to a constant, is

p
(

κ,σ2
ε | ΦΦΦ,BBB,θθθ ,ννν ,ZZZ∗

)
= p

(
κ,σ2

ε | θθθ ,ννν ,ZZZ∗
)

= p
(

κ,σ2
ε | εεε

)
∝ p

(
κ,σ2

ε

)
p
(

εεε1 | κ,σ2
ε

) M

∏
i=2

p
(

εεε i | εεε i−1κ,σ2
ε

)
,

where p
(

κ,σ2
ε

)
is given by an appropriate prior distribution, the errors εεε are calculated as

previously, the initial error is given by

εεε1 | κ,σ2
ε ∼ N

(
000, σ

2
ε I2

)
,

and εεε i | εεε i−1κ,σ2
ε is distributed as in Eq. 5.5.

5.6.1.2 Reconstructing the unobserved refined path

In contrast to the independent case of Sect. 5.2.2, the actual observation error at the start and
end of the refined path section must be taken into consideration because the process is no
longer independent (this change is highlighted in Fig. 5.24, which should be compared with
Fig. 5.3). To reflect this additional constraint, we now have

F = {ΦΦΦ,σ2
ε ,ZZZ( j),B( j),B(l),θ0,θn,ν0,νn,εεε j,εεε l}.

The underlying movement process has not been changed and so the distribution of the true
locations

(
ZZZ(k),ZZZ(l)

)T remains the same. It is only the model for the observation error that
has changed, and so the relationship between the true and observed locations in Eq. 5.2
becomes(

ZZZ∗(k),ZZZ(l)
)T |

(
ZZZ(k),ZZZ(l)

)T
,BBB∗,θθθ ∗,F ∼ N

((
ZZZ(k),ZZZ(l)

)T
+µµµε , Σε

)
,
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Fig. 5.24 Section of the full refined path to update over when correlated observation error is
present. Fixed endpoint locations are given at the times j and l. Note that in the correlated
case, both the true locations and the actual error at the endpoint times are needed (this
information describes the noisy locations at these times also).

where µµµε ,Σε are constructed using the mean and covariance of an OU bridge between the
known errors εεε j,εεε l . The distribution of the OU bridge can be constructed following the
conditional Gaussian approach used earlier for the marginal step distribution, and is given by

µµµε =


E
(
εk,X
)

E
(
εk,Y
)

εl,X

εl,Y

 , Σε =


Var
(
εk,X
)

0 0 0
0 Var

(
εk,Y
)

0 0
0 0 0 0
0 0 0 0

 ,

where

E
(
εk,·
)
=

(
e−κ(k− j)

(
1− e−2κ(l−k)

)
ε j,·

)
+

(
e−κ(l−k)

(
1− e−2κ(k− j)

)
εl,·

)
1− e−2κ(l− j)

,

Var
(
εk,·
)
= σ

2
ε

1− e−2κ(k− j)−
e−2κ(l−k)

(
1− e−2κ(k− j)

)2

1− e−2κ(l− j)

 .
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Note that the covariance between εk,X ,εk,Y is zero because of the earlier assumption that the
OU error process is circular. The proposal distribution for the steps in Eq. 5.3 then becomes

ννν | BBB∗,θθθ ∗,F ,ZZZ∗(k),ZZZ(l)

∼ N
(

mmm1 +Σ1,2 (Σ2 +Σε)
−1
((

ZZZ∗(k),ZZZ(l)
)T−mmm2−µµµε

)
, Σ1−Σ1,2 (Σ2 +Σε)

−1
Σ

T
1,2

)
,

(5.6)

and can be simulated (additional details on the validity of this are in Appendix A.2.3) as

xxx∗ ∼ N(mmm1, Σ1) ,

yyy∗ ∼ N
((

ZZZ∗(k),ZZZ(l)
)T−µµµε , Σε

)
,

ννν
∗ = xxx∗−Σ1,2(Σ2 +Σε)

−1
((

ZZZ( j),ZZZ( j)
)T

+Axxx∗− yyy∗
)
. (5.7)

5.7 Discussion

Observation error is often lacking from current approaches for modelling movement; with
the exception of SSMs (Patterson et al., 2008), the discrete-time step-and-turn models
(including HMM’s (Langrock et al., 2012)) do not allow for error unless the location space is
discretised (Pedersen et al., 2011). In Pohle et al. (2017), it was shown that neglecting error
leads to the selection of increased numbers of states, resulting in ‘behavioural states’ that
are not ecologically relevant but merely a construct of the model having low support. Rather
than accounting for this problem with a rigorous model for the error, more ad-hoc approaches
are introduced to deal with the problem of increased state selection. Similarly, McClintock
(2017) found that when observation error was present, models were less robust at estimating
the behavioural process. This is a worrisome problem when recent reviews of approaches for
identifying behavioural switches (see e.g. Gurarie et al. (2016)) do not include any approach
to allow for error. Although it is highlighted as an issue (Edelhoff et al., 2016), there has
been a lack of solutions provided other than simply searching for and removing outlier
observations. In addition to problems with behavioural classification, Hurford (2009) showed
that the presence of observation errors leads to discrete-time models identifying non-existent
turning angles of around ±π . With numerous discrete-time step-and-turn models identifying
‘foraging’ behavioural states with small steps lengths and mean turning angles of π , the lack
of allowance for observation error should be prioritised.
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This chapter has explored the introduction of errors on the observed locations, initially
with a model of independent, circular errors and then an extension to this that allows for
correlation in this error process. In both these cases, the errors were assumed to be Gaussian
distributed for the simplicity this brings to the simulation technique used in the inference
algorithm. Previous studies into observation error have argued that the errors produced
by GPS devices are too dispersed for a normality assumption and have opted instead for
t-distributions (Jonsen et al., 2005). It was found in the simulation example of Sect. 5.5 that
large errors were difficult to estimate under the chosen model, and so could be a limitation of
this assumption. However, although the model for error was simple, the posterior distribution
of the true location given the errors is not necessarily a simple Gaussian. The was shown
in both the reindeer example of Sect. 5.3 and the simulation in Sect. 5.5, in which the
distribution of the inferred error was often non-circular and not centred on zero (i.e. the
observed location). Therefore, although this presented a relatively simple model for error,
this is not such a restrictive assumption and the introduction of correlated errors in Sect. 5.6
aims to introduce further realism into the model.

In the examples of Sects. 5.4 and 5.5 the problem of identifiability between the observation
error variance and the movement parameters was discussed. When implementing different
approximations to the underlying movement process, different levels of observation error
variance, and hence speed parameters, were inferred for the gull example. In the simulation
example, fixed levels of observation error variance led to different estimates of the movement
parameters. Although this is the case, and the effects of this identifiability should be explored
further, this should not necessarily be a hindrance to the modelling approach. The levels
of observation error caused by specific GPS devices are well known, and informative prior
knowledge of the error variance can be implemented and useful inferences made about the
movement parameters.





Chapter 6

Discussion and further work

This thesis presents an approach for mechanistic modelling of animal movement that is
defined in continuous time but aims to provide the interpretability found in discrete-time
step-and-turn models. Movement models analogous to the popular models of Langrock et al.
(2012); Morales et al. (2004) in which paths follow a CRW with speed that is independent
over disjoint time intervals is provided, in addition to more realistic movement in which the
speed process features correlation. Distinct behavioural modes are incorporated through a
switching model in continuous time, with the movement process being dependent upon such
behaviours. Gaussian error on observed locations is included, initially as a simple model,
independent in both time and direction, which is then extended to include correlation in time.

Inference for movement, behaviour and error parameters is presented in the form of a hybrid
Bayesian MCMC algorithm, augmenting the observed locations with the true trajectory (both
movement and behaviour). Although the augmentation technique makes inference possible,
this approach also provides comprehensible inference that aids in the interpretation of model
estimates. These methods are demonstrated over a variety of simulated and real examples
to showcase the ability to estimate parameter values, along with the possible ecological
questions that this approach is able to address.

The following provides recommendations for improvement and future extensions and a
discussion of how this work compares with current animal movement modelling.
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6.1 Extending the model for behaviour

The behavioural process introduced in Chap. 4 is a CTMC on a known, finite number of states.
This process is assumed to be homogeneous in time so that the transition rates between states
are constant. As discussed in Sect. 4.6, methods from Blackwell et al. (2015) can be directly
applied to the current methodology to allow for heterogeneous behavioural switching. This
would allow the switching rate to depend on environmental covariates or, more generally,
the location itself and also with time, such as periodic rates where a resting state is more
likely between certain hours of the day. The current methods for inference are provided as
an R package containing the necessary functions. Further work integrating the methods of
this thesis with the location models of Blackwell et al. (2015) in a combined software suite
would be desirable.

The HMM behaviour model of Langrock et al. (2012) discusses the use of semi-Markov
models to describe a switching behavioural model in which the total time spent in a state
affects the switching rate out of such state. Similarly, Fleming et al. (2014a) feature a
stochastic behavioural process with slower decaying memory than an autoregressive process
of order one. These models for behaviour appear more realistic than the current switching
model, and so further work could be carried out regarding implementing semi-Markov
behaviour in a continuous-time framework.

The methods discussed here have assumed that the number of behavioural states is known
prior to analysis. Although it is thought that this number will be informed from ecological
knowledge of the study species to provide interpretable inference, further work is required
regarding how this number of states should be chosen. Likelihood criteria (e.g. Watanabe-
Akaike (WAIC), see Gelman et al. (2013)) could be applied to compare the model fit at a
number of known behavioural states, as is applied in the discrete-time literature (Langrock
et al., 2012), but this has found in practise to be biased towards assigning a large number of
behavioural states (Pohle et al., 2017). Alternatively, an unknown number of states could
potentially be incorporated into the current approach through a reversible jump MCMC
algorithm that can handle the varying numbers of parameters.

6.2 Identifiability in the presence of observation error

Chap. 5 introduced a Gaussian model for error in the observed locations, but in the examples
of Sects. 5.4 and 5.5 potential problems with identifiability between movement and error
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parameters were found. Although this problem is reduced by placing informative prior
distributions upon the error parameter based on well-known error ranges of GPS devices,
further work should be carried out into the relationship that exists between the parameters,
in particular, focusing on the range of values for which these parameters can be effectively
identified and estimated. For those combinations of parameters that cannot be estimated, it
would be useful to identify the association that describes the lack of identifiability. Useful first
steps in this direction will be to investigate known realistic scenarios for the error parameter
(e.g. the error ranges identified in works such as Hurford (2009) and Breed and Severns
(2015)) to identify how strong a prior distribution on this parameter must be to correctly
identify the movement parameters.

In addition to investigating the link between the parameters, more research should be carried
out into the effect that error has on the identification of the behavioural process. In discrete-
time models, errors have been shown to make behavioural estimation difficult (McClintock,
2017; Pohle et al., 2017). In the gull example of Sect. 5.4, the difference in error variance
estimation left the estimated behavioural process and parameters largely unchanged. This is
likely due to the large distances that the gull was travelling between observations, with the
median distance between observations being 91 metres and a 95% quantile interval being (11,
2240) metres, which resulted in the estimated mean speed in the two behavioural states being
around 20 and 400 metres per minute. For the fast moving state, these distances are large in
comparison with the level of observation error, estimated to be up to 11 metres. In studies
where species are travelling smaller distances between observations, the observation error is
likely to become more of an issue and have a larger effect on inference results. For example,
the reindeer example in Sect. 5.3 had an estimated mean speed with median 26 metres per
minute, and so observations taken at 2 minute intervals have a lower signal-to-noise ratio
than in the gull example. If using the extended version of this dataset that displays clear
heterogeneity in the movement process, it is likely that estimation of the behavioural process
would be greatly affected by the level of inferred observation error. In particular, note the
bursts of observations in Fig. 6.1, one of which is shown in detail in Fig. 6.2 in which the
distance between successive locations is between 2–7 metres. Dependent upon the level of
inferred observation error within the model, the behavioural process is likely to feature a
stationary state in which the speed is zero and the distances observed are purely observation
error.
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Fig. 6.1 Extended dataset of observed locations of reindeer b53.10, showing clear hetero-
geneity in the movement process over time, with bursts of similar successive observations.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

7225565

7225570

7225575

7225580

7225585

7225590

692890 692895 692900 692905 692910 692915

X

Y

Fig. 6.2 Section of the reindeer observations of Fig. 6.1, showing a number of successive
observations with distances between of 2–7 metres, where expected observation error is up
to 10 m.
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6.3 Efficiency of the inference algorithm

The MCMC algorithm for inference with augmentation gives interpolated location estimates
at an arbitrarily fine scale. Not only does this aid in the interpretation of model parameters,
but allows estimates (with robust quantification of uncertainty) of location density that can
be combined with environmental covariates to learn about resource selection. The drawback
of this scheme, however, is the slow speed/efficiency. Mixing of the Gibbs MCMC sampler
is slow due to the (obviously) high correlation between the path reconstruction and the
parameters that describe it. As the number of observations increase and the path becomes
larger the high dimensionality of the reconstruction further reduces mixing and the sampler
must be run for higher numbers of iterations to achieve similar ESS.

Solutions that can be explored to improve the efficiency of the current method for inference
include implementing (at least parts of) the algorithm in other languages than R that have
proved to be faster at specific tasks that are repeated often. Examples include inverting
matrices, which is required to simulate a step proposal, that can be calculated quicker in the
intel build of R or python. Other options include exploring parts of the algorithm that can be
parallelised. For instance, path reconstruction proposals that are over disjoint sections of the
path are independent from one another and could potentially be implemented in parallel if a
saving is made despite the computational cost of ‘joining’ the path sections back together.
Options to improve the mixing of the algorithm, and hence improve efficiency through
fewer iterations, should also be explored. It was noted that in the two-state simulation
and elk examples of Chap. 4, 20% and 18%, respectively, of the path proposals were
instantly rejected at the behavioural stage within the rejection simulation. Implementing
more sophisticated CTMC bridge simulations for the behavioural proposal, such as the newly
released ECctmc (Fintzi, 2017) R package could improve path section acceptance, and hence
mixing.

Rather than attempting to improve the efficiency of the current approach to inference, other
methods could be explored. One option would be to formulate the model as an SSM, with
the GPS locations being the observed process, and the joint bearing and speed being the
underlying process. The observed process is non-linear, and so a Kalman filter is not possible,
but a potential approach would be to use particle filtering MCMC (PMCMC, see Andrieu
et al. (2010) for further details). Inference would still follow an augmentation approach,
using Gibbs sampling to alternately update the parameters and the unobserved path, but
with a new method for sampling the path than that used here. Sequential Monte Carlo
methods are employed (a generalisation of the Kalman filter) to simulate path reconstructions
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by passing over each observation in turn. This method for reconstruction would be more
computationally demanding than the approach we have used, but would avoid the slow
mixing brought about by only sampling small sections of the path at a time, and we would
expect a higher acceptance rate.

Part of the approach to inference in the multistate case involves augmenting the unobserved,
complete behavioural process. This allows the parameters corresponding to each state to
be separated and easily sampled as part of the MCMC inference algorithm. However, this
is a costly procedure that involves slow mixing and so methods could be implemented to
avoid this by integrating out the behavioural process, similar to an HMM. Such an approach
is currently being developed in regards the model of Blackwell et al. (2015) (Blackwell 2017,
personal communications). In Blackwell et al. (2015) the unobserved behavioural process
is reconstructed using a Poisson process of potential switches, that is then thinned to give
the actual switch times. Taking the realisation of potential switches formulates the model as
an HMM; there are fixed times where behavioural switches can occur and the probabilities
of switching between pairs of states at each of these times can be calculated. Utilising this
formulation, an overall likelihood for the observed locations can be calculated, rather than a
combination of the separated behaviours. As with the PMCMC approach, the calculation
of the likelihood will be more complex than the current approach but is likely to give an
improvement in efficiency overall because there is no issue of mixing in the behavioural state
sequence (or instant rejections through the proposed behavioural section not agreeing with
the fixed end state).

6.4 Comparison to discrete-time step-and-turn

The movement model developed over Chaps. 3–5 is based in continuous time, but with
parameters and movement patterns based on the discrete-time step-and-turn models such
as Morales et al. (2004). The difference in time formulation allows behavioural switches
to occur continuously in time rather than merely at observation times. When the sampling
scheme is of no biological importance to the animal, as in the 3 hour observations of the
bison example in Langrock et al. (2012), the relevance of the behavioural switching model is
uncertain. In the elk example of Sect. 4.5, although there were general similarities between
the behavioural processes estimated by the continuous- and discrete-time models, clear
differences in residency times were found (see Fig. 4.21). A number of periods of time
with less than 0.5 probability of being in behavioural state 1 in the discrete-time case were
classified with high certainty (over 0.95) of being in state 1 in continuous-time. Although
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both behavioural models are based on Markov chains, this demonstrates the difference in
time formulation. Work quantifying the relationship between the two models would be
useful for future comparisons of real data, including the link between estimated discrete-time
parameters when applied to continuous-time movement paths with varying characteristics,
including time-varying state-switching, as mentioned in Sect. 6.1, and how the estimated
behavioural process is affected by these movement changes.

Many discrete-time examples use movement tracks from multiple animals, either by pooling
this data and estimating a single, shared set of movement parameters between all individuals,
or implementing a heirarchical model in which individual’s movement characteristics may
differ from one another. All of the examples that have been presented here include only
a single individual’s movement, however, the extension to multiple animals that has been
applied in discrete time can be equally applied to the continuous-time setting. The limiting
factor in this case would be the computational feasibility, however, because each individual’s
unknown movement path can be updated within the inference algorithm independently from
one another (and therefore in parallel), with only the movement parameter information
needing to be shared across individuals, it is expected that the compuational increase would
not make this extension impractical.

In a number of discrete-time step-and-turn applications, a behavioural state with mean turning
angle of around ±π is determined. The significance of π turning angles is discussed in
Sect. 3.6, highlighting the concern that this is not a feature of the movement process itself,
but a construct of either the sampling scheme and/or observation error. For instance, for
the elk data in Sect. 4.5 the HMM identifies a behavioural state with a mean turning angle
of -3 (Michelot et al., 2016), and the Morales et al. (2004) model estimates a mean of 3.
In the continuous-time application to this data the corresponding behavioural state has a
turning angle distribution that is uniform at the observation time scale. We believe that this
is a more realistic interpretation of movement in an encamped behaviour. Similarly, in the
reindeer example of Sect. 5.3 a discrete-time analysis would describe tortuous movement
due to a number of observed turning angles of ±π . In the continuous-time approach that
made allowance for realistic levels of observation error, the inferred movement path had high
persistence, indicating the ‘π turns’ as an erroneous consequence of the unaccounted error
(as suggested in Hurford (2009)). Further work should be carried out to both demonstrate
the occurrence of this effect and quantify the conditions under which it occurs. This would
involve movement paths simulated in continuous-time with turning angles centred on zero,
that when sub-sampled and with error applied lead to turning angles of π in a discrete-
time analysis. Although similar analyses have been carried out that identified the bias in
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estimation of step lengths (Rowcliffe et al., 2012) and correlation in turning angles (Nams,
2013) when continuous-time paths are discretised, we are not aware of an empirical study
into the presence of these large turning angles.

The detailed section of reindeer observations in Fig. 6.2 suggests a behavioural bout that
is stationary in location, with observation error accounting for the ‘observed’ movement.
Stationary movement is not addressed in the discrete-time step-and-turn models of Langrock
et al. (2012); Morales et al. (2004), with the distribution describing the step length only
being defined for positive values. In the R package MoveHMM (Michelot et al., 2016), this
issue is addressed by incorporating a zero-inflated step length distribution, however, this is
only implemented if there are actual observed step lengths of zero as observation error is not
incorporated in that model. In contrast, the continuous-time model developed here uses a
speed distribution that allows for step lengths of zero. Future work modelling data of the
type seen in Fig. 6.2 could include prior specification of a stationary behavioural state (the
times at which the animal is in such a state are, of course, still unknown and estimated by
the model) in which the speed process is fixed at zero, and the bearing distribution uniform.
This essentially says that we learn nothing about the bearing of the animal when it is in
the stationary state, other than its bearing once it switches into another state, which would
be determined by the subsequent observations. This restricted case could be implemented
without major modification to the current code for implementing inference.

The model described here assumes that movement follows a CRW, and so the change in
bearing is centred at zero. BRW, such as that included in McClintock et al. (2012), and
attracted walks, such as that in Blackwell et al. (2015), will be more appropriate assumptions
in a variety of applications including migratory species. For instance, the detailed section of
gull data (from Sect. 5.4) in Fig. 6.3 shows multiple trips to the same location, indicating
that the animal has specifically navigated to such a location. Simulating movement under
the continuous-time model that is biased towards a specified location is a simple extension,
however, extending the inference method to account for this would require additional work.
The mean of the bearing process would be dependent upon the combination of the attractive
location and the current location, which would complicate the current simulation method
of proposing bearings without dependence upon the observed locations. Development of
an extension to the current inference algorithm that would allow this movement behaviour
could be a focus for future work, with initial methods following the formulation for directed
movement included in Michelot et al. (2017), in which restrictions are placed upon the
possible sequences of behavioural states that can be performed and the attractive locations
are known.
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Fig. 6.3 Section of the gull observations of Fig. 5.10, showing a number of journeys returning
to the same locations, suggesting directed/attractive movement may be a more appropriate
assumption.

One of the main advantages of modelling in continuous time is the ability to handle irregular
and missing observations with ease, unlike the restrictions placed upon discrete-time models.
In the gull example of Sect. 5.4 the sampling period varied between 3.05–7.77 minutes.
This presented no difficulty for the continuous-time model, in which the refined time scale
chosen for reconstruction need not be regular, and the method to choose the refined times
was easily automated. In a discrete-time analysis of this data, a linear interpolation of
the locations on to a regular time grid would need to be implemented before calculating
the observed turning angles and step lengths. Although the assumption this implies of
constant speed between locations can be justified, the effect this has on the implied turning
angle is not well understood and certainly not ecologically justified. Similarly, in the elk
example of Sect. 4.5 all analyses treated the observation as daily despite the daily movement
rate included alongside the observed locations suggesting that observations were mostly
between 12–36 hours but included a gap spanning multiple days (our analysis also assumed
observations were daily as these rates were not given with enough accuracy to calculate
observation times effectively). Although an HMM could account for a gap of missing
information if the process causing this was random, the information on the displacement
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observed over the gappy data is discarded. This is a disadvantage, particularly in datasets
with many missing observations, and does not occur in the continuous-time approach to
modelling we have presented here.
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Appendix A

Additional details

A.1 Derivation of Gibbs samplers

A.1.1 Sampling the bearing process parameter

In the following, all variables are as defined in Sect. 3.3.2.1. The full conditional posterior
for the bearing process parameter is given by
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A.1.2 Sampling the behavioural process parameters

In the following, all variables are as defined in Sect. 4.3.2. The full conditional posterior for
the behavioural process parameters is given by
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where i, j ∈ {1, . . . , p}.

A.2 Conditioning by Kriging

A.2.1 In the absence of observation error

The following shows that the conditioning by Kriging method for sampling ννν∗ in Sect. 3.3.3.1
is equivalent to sampling from the target distribution in Eq. 3.8. With all variables as those
defined in Sect. 3.3.3.1, the mean and covariance of Eq. 3.9 are given by
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A.2.2 In the presence of independent observation errors

The following shows that the conditioning by Kriging method for sampling ννν∗ in Sect. 5.2.2.1
is equivalent to sampling from the target distribution in Eq. 5.3. With all variables as those
defined in Sect.5.2.2.1, the mean and covariance of Eq. 5.4 are given by
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A.2.3 In the presence of correlated observation errors

The following shows that the conditioning by Kriging method for sampling ννν∗ in Sect. 5.6.1.2
is equivalent to sampling from the target distribution in Eq. 5.6. With all variables as those
defined in Sect.5.6.1.2, the mean of Eq. 5.7 is given by
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The covariance structure in this case is the same as that in Sect. A.2.2, however, note that the
form of Σε in those two cases differs.



Appendix B

Additional figures

B.1 Single state independent steps simulation

The following includes additional figures to those included in the main text for the simulation
example of Sect. 3.5.1 that assumes a single state, independent step process (as described in
Sect. 3.1).
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Fig. B.1 Posterior kernel density estimates of the movement parameters (using thinned
samples and with burn-in time omitted) for the single state, independent step simulation,
with true parameter values used for the simulation (grey). Note that the full height of the
density estimates for the ‘base-line’ implementation is not included.
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Fig. B.2 Movement parameter trace (thinned) in the single state, independent step simulation.
For reference, true parameter values used for the simulation are highlighted (grey).
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Fig. B.3 Autocorrelation in the sampled movement parameters, for the single state, indepen-
dent step simulation. Maximum lag shown is given as 5% of the thinned sample size.
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B.2 Single state correlated steps simulation

The following includes additional figures to those included in the main text for the simulation
example of Sect. 3.5.2 that assumes a single state, correlated speed process (as described in
Sect. 3.4).
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Fig. B.4 Speed correlation trace for the sampling time scale implementation, shown separately
from Fig. B.5. See main text for discussion of the ‘drifting’ displayed here.
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Fig. B.5 Movement parameter trace (thinned) in the single state, correlated step simulation.
True parameter values used for the simulation are highlighted (grey) and the missing β trace
is shown in Fig. B.4.
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Fig. B.6 Autocorrelation in the sampled movement parameters, for the single state, correlated
step simulation. Maximum lag shown is given as 5% of the thinned sample size.
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Fig. B.7 Posterior kernel density estimates of the movement parameters (using thinned
samples and with burn-in time omitted) for the single state, correlated step simulation, with
true parameter values used for the simulation (grey). Note that the full height of the density
estimate of the bearing parameter for the ‘base-line’ implementation is not included, and the
speed correlation parameter is not estimated for the implementation at the sampling time
scale (see main text).
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B.3 Two-state simulation

The following includes additional figures to those included in the main text for the simulation
example of Sect. 4.4 that assumes a two-state, correlated step process.
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Fig. B.8 Initial two-state movement path, coloured by behaviour.



B.3 Two-state simulation 199

λ1 (switching rate out of state 1) λ2 (switching rate out of state 1)

σψ1
2  (speed volatility for state 1) σψ2

2  (speed volatility for state 2)

β1 (speed correlation for state 1) β2 (speed correlation for state 2)

µ1 (speed mean for state 1) µ2 (speed mean for state 2)

σθ1
2  (turn volatility for state 1) σθ2

2  (turn volatility for state 2)

0.0e+00 2.5e+06 5.0e+06 7.5e+06 1.0e+07 0.0e+00 2.5e+06 5.0e+06 7.5e+06 1.0e+07

0.0e+00 2.5e+06 5.0e+06 7.5e+06 1.0e+07 0.0e+00 2.5e+06 5.0e+06 7.5e+06 1.0e+07

0.0e+00 2.5e+06 5.0e+06 7.5e+06 1.0e+07 0.0e+00 2.5e+06 5.0e+06 7.5e+06 1.0e+07

0.0e+00 2.5e+06 5.0e+06 7.5e+06 1.0e+07 0.0e+00 2.5e+06 5.0e+06 7.5e+06 1.0e+07

0.0e+00 2.5e+06 5.0e+06 7.5e+06 1.0e+07 0.0e+00 2.5e+06 5.0e+06 7.5e+06 1.0e+07

0.05

0.10

0.15

0.20

20

30

40

50

0.1

0.2

100

200

300

400

500

0.00

0.03

0.06

0.09

0.6

0.8

1.0

1.2

10

15

20

25

0.0

0.1

0.2

0.3

0.4

50

100

150

200

250

0.000

0.025

0.050

0.075

0.100

Iteration

Fig. B.9 Sample trace of the parameters for the two-state simulation example (black). True
values used for the simulation are highlighted (grey).
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Fig. B.10 Sample trace of the short-term speed variance for the two-state simulation example
(black). True values used for the simulation are highlighted (grey).
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B.4 Two-state movement in elk

The following includes additional figures to those included in the main text for the two-state
example of Sect. 4.5 that uses elk data.
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Fig. B.11 Initial path as bearings and speeds for the elk-115 example, coloured by the initial
behavioural configuration.
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Fig. B.12 Trace of the posterior samples of the movement and behavioural parameters in the
elk-115 example, split by behavioural state. Samples are thinned, and with burn-in period
discarded. Note that the correlation parameter for state 2, β2, is discussed further in the main
text.
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Fig. B.13 Kernel density estimates of the posterior samples of the movement and behavioural
parameters in the elk-115 example, split by behavioural state. Estimates are based on thinned
samples with burn-in period discarded. Note that the correlation parameter for state 2, β2, is
discussed further in the main text.
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B.5 Noisy observations of single state reindeer movement

The following includes additional figures to those included in the main text for the example
of Sect. 5.3 that assumes single state movement observed with noise using reindeer data.
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Fig. B.14 Initial movement path (as bearings and speeds) used within the example of single
state reindeer movement with noisy observations. Initial paths was created used interpolating
splines between perturbations of the observed locations to allow for observation error.
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Fig. B.15 Trace of the posterior samples of the movement and observation error parameters
in the reindeer b53.10 example. Trace is thinned, but includes burn-in period.
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Fig. B.16 Autocorrelation in the MCMC movement and observation error parameter sampler,
for the example of single state reindeer movement with noisy observations. Maximum lag
shown up to 50, constituting 1.25% of the thinned sample size.
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B.6 Noisy observations of two-state gull movement

The following includes additional figures to those included in the main text for the simulation
example of Sect. 5.4 that assumes two-state movement of lesser black-backed gulls, observed
with noise.
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Fig. B.17 Trace of the posterior samples of the behavioural parameters in the gull-3 example,
split by behavioural state. Samples are thinned, and with burn-in period discarded. The
implementation with approximate refined time scale of 1 is displayed in black and that with
time scale 0.5 in grey.
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Fig. B.18 Kernel density estimates of the posterior samples of the behavioural parameters in
the gull-3 example, split by behavioural state. Estimates are based on thinned samples with
burn-in period discarded. The implementation with approximate refined time scale of 1 is
displayed in black and that with time scale 0.5 in grey.
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Fig. B.19 Trace of the posterior samples of the movement parameters in the gull-3 example,
split by behavioural state. Samples are thinned, and with burn-in period discarded. The
implementation with approximate refined time scale of 1 is displayed in black and that with
time scale 0.5 in grey.
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Fig. B.20 Kernel density estimates of the posterior samples of the movement parameters in
the gull-3 example, split by behavioural state. Estimates are based on thinned samples with
burn-in period discarded. The implementation with approximate refined time scale of 1 is
displayed in black and that with time scale 0.5 in grey.
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B.7 Observation error simulation example

The following includes additional figures to those included in the main text for the simulation
example of Sect. 5.5 that assumes single state movement observed with noise.
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Fig. B.21 Sample trace of the posterior distribution of the movement parameters (rows) for
the observation error simulation example, shown for each implementation (columns) that
used a different level of fixed error variance. In each case, the true simulation value is given
by the horizontal line.
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Fig. B.22 Boxplots showing the posterior distribution of the movement parameters for the
observation error simulation example, shown for each implementation that used a different
level of fixed error variance. In each case, the true simulation value is given by grey
horizontal line.
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