Capacity Planning in Virtualised
Environments Using Model Driven
Engineering

Rafidah Binti Pakir Mohamad

Doctor of Philosophy

University of York

Computer Science

October 2015

Abstract

Capacity planning is an important activity in computing for optimising re-
source usage while avoiding performance degradation. The demand for com-
puting resources is triggered by application workloads running on virtual
or physical machines. With today’s technology, resource scalability can be
achieved through server virtualisation, by having scalable virtual machines
running on a physical server. However, these scalable virtual resources run on
limited physical resources, especially in small to medium scale data centres.
The management of virtual and physical resources impacts upon applica-
tion performance and introduces a cost for all parties. There is a need to
measure the virtual and physical resource requirements in facilitating cost-
effective capacity planning. This research identifies three main management
phases for a capacity planning process for a data centre implementing server
virtualisation: capturing application workloads, managing virtual resources
and managing physical resources. This research proposes an approach that
leverages domain specific modelling and model transformation to estimate
resource requirements based on predicted application workloads for certain
time periods. Model-Driven Engineering (MDE) was utilised to automate
the identified process. A transparent, automated and repeatable MDE pro-
cess for generating predictions for resource usage from workload models and
sets of Domain Specific Modelling Languages (DSMLs) that allow resource
and workloads logs as well as predicted workloads to be precisely captured
using models were designed, implemented and evaluated with case studies.
The MDE process exploits model transformation, comparison and merging,
is modularised so that it can be configured for different kinds of capacity
planning applications and technical infrastructures.

Contents

Abstract 2
Contents 3
List of Tables 7
List of Figures 8
List of Listings 14
List of Algorithms 16
Acknowledgements 17
Declaration 18
1 Introduction 19
1.1 Background 19
1.1.1 Capacity Planning in Virtualised Environments 21

1.1.2 Model Driven Engineering 22

1.2 Motivation 23
1.3 Research Scope 23
1.4 Research Hypothesis 24
1.5 Research Objectives. 25
1.6 Research Methodology 26
1.7 Research Outcomes 28
1.8 Thesis Structure. 28
1.8.1 Chapter 2: Literature Review 29

1.8.2 Chapter 3: Model Driven Engineering 29

1.8.3 Chapter 4: Domain Analysis 29

1.8.4 Chapter 5: Design of MDE Solutions 29

1.8.5 Chapter 6: Applications of MDE Solutions 29

1.8.6 Chapter 7: Evaluation 30
1.8.7 Chapter 8: Conclusion 30

2 Literature Review 31
2.1 Introduction 31
2.2 Data Centres 31
2.2.1 Virtualisation 34
2.2.2 Type of Virtualisation 34
2.2.3 Server Virtualisation 35
2.2.3.1 Components of Server Virtualisation 35

2.2.4 Cost-Efficiency in Data Centres 37
2.2.5 Server Utilisation 39

2.3 Resource Management 39
2.3.1 Capacity Planning 40
2.3.1.1 Resource Estimation and Prediction Techniques 40

2.3.1.2 Resource Usage Monitoring Tools 42

2.3.2 Physical and Virtual Data Centres Capacity Planning . 43

2.4 Software Performance Engineering 44
2.5 Chapter Summary 45
3 Model Driven Engineering 46
3.1 Introduction 46
3.2 Modelsin MDE 46
3.2.1 Domain Specific Modelling 48
3.2.1.1 Domain Specific Modelling Language 48

3.2.1.2 Model Transformation 50

3.3 MDE Technologies 51
3.3.1 Eclipse Modelling Framework 53
332 Epsilon. 54
3.3.2.1 Epsilon Object Language 55

3.3.2.2 Epsilon Transformation Language 56

3.3.2.3 Epsilon Generation Language 59

3.4 Chapter Summary 60
4 Domain Analysis 61
4.1 Introduction 61
4.2 Capacity Planning Phases 61
4.2.1 Capacity Planning Framework 62
4.2.1.1 Capturing Application Workloads 63

4.2.1.2 Virtual Resource Requirements Estimation and

Selection of VM Packages 64
4.2.1.3 Consolidating VM Requirements to Physical

Resource Requirements 64

4.3 Analysis of Research Scope 64
4.3.1 Application Resource Requirement Analysis 65
4.3.2 Estimating Virtual Resource Requirements 67

4.4 Benefitsof DSM 67
4.5 Technical Challenges 68
4.6 Research Contribution 69
4.7 Chapter Summary 69
Design of the MDE Solutions 71
5.1 Imtroduction 71
5.2 Resource Requirement Analysis 71
5.2.1 DSMLs Design of ReRA 74
5.2.2 Model Management Activitiesin ReRA 84

5.3 Virtual Resource Requirement 96
5.3.1 DSMLs Design of VIiRR 96
5.3.2 Model Management Technique 98

5.4 Chapter Summary 100
Applications of MDE Solutions 101
6.1 Introduction 101
6.2 Implementation Plan 102
6.3 System Requirements 103
6.4 Virtualised Environment 104
6.5 Extensionof ReRA 108
6.5.1 Additional and Extended DSMLs of ReRA 111
6.5.2 Additional Model Management Activities of ReRA . . 115

6.6 First Case Study: Media Stream 117
6.6.1 ReRA of the Media Stream Application. 118
6.6.2 ViRR of the Media Stream Application 121

6.7 Second Case Study: Part of Speech Tagging 129
6.7.1 ReRA of the Part-of-Speech Tagger Application 129
6.7.2 ViRR of the Part of Part-of-Speech Tagger Application 130

6.8 Chapter Summary 135
Evaluation 136
7.1 Evaluation Plan 136
7.2 Third Case Study: Image Filtering 137

7.2.1 ReRA of Image Filtering Application 140

7.2.2 ViRR of the Image Filtering Application 140

7.3 Evaluation of Modularity 144
7.3.1 Modularity in ReRA L. 145

7.3.2 Modularity in VIRRo 146

7.4 Evaluation of Reuse 146
741 Reusein ReRA 147

742 Reusein VIRR 148

7.5 Evaluation of Extensibility 149
7.5.1 Extensibility in ReRA 149

7.5.2 Extensibility in VIRR 0L 149

7.6 Evaluation of Completeness 150
7.6.1 Completenessin ReRA 150

7.6.2 Completenessin VIiRR 151

7.7 Predictive Capability Evaluation. 152
7.8 Evaluation of the System Requirements 158
7.9 Chapter Summary 160

8 Conclusion 161
8.1 Introduction 161

8.2 Research Contribution 162
8.3 Research Limitation 164
8.4 Future Work 165
8.5 Closing Remarks 166
Appendices 167
A Web Servers Analysis oL 168

B VBoxManage Resource Parameters 170

C Part-of-Speech Tagger Case Study Graphs 173

D Image Filter Case Study Graphs 192

E Sample of Log Recordings to Log Models 229

F Reusability Analysis 239

G Programs 241
List of Abbreviations 259
References 260

List of Tables

2.1

2.2

6.1

7.1
7.2
7.3

F.1

Techniques and Tools for Workload Generation and Resource

Estimation. 41
Physical and Virtual Data Centre Capacity Planning. 43
System Components that Satisfy the System Level Require-

ments to Apply the Proposed MDE Solutions. 104
Image Filter Case Study 139
Image Filter Workloads 153
Predicted Resource Requirements. 156

Average Percentages of Reusability of Proposed MDE Solutions. 240

List of Figures

1.1

1.2

2.1
2.2
2.3
24
2.5
2.6
2.7

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

4.1
4.2

5.1

5.2
2.3

The relationship between parties involved for the management

phases by implementing virtualised environments. 21
Research Methodology. 26
An Evolution of Data Centres 32
Overview of Distributed Computing [32]. 33
Before and After Implementing Server Virtualisation. 35
Server Virtualisation Components. 36
Type of Hypervisor. Adapted from [2]. 37
Average Cost in Data Centres. 38
Data Centres Virtual and Physical Resource Provisioning [67]. 38
MDE Standards and Tools. Adapted from [52]. 47
Types of Languages in Computer Science [13] 49
Relationship between the real world, model and metamodel [76]. 49
Components of DSML [23] 50
Basic concepts of Model Transformation [24]. 51
The layers in MOF architecture [85]. 52
Sample of Ecore Diagram for MySchool Metamodel. 54
The Structure and Languages in Epsilon [1]. 55
Sample DSMLs of University and Student Record. 58
Capacity Planning Framework in Virtualised Environments. . 62
Process of Resource Requirement Analysis. 66

The General ReRA Process together with a Set of Models and
Model Management Activities (indicated by Roman numerals
and Italics) to Facilitate the Capacity Planning Process in a

Virtualised Environment. 72
DSMLs of ReRA. 75
The Design of Application WorkloadLog DSML. 76

5.4

5.5
5.6
5.7
5.8

5.9
5.10

5.11
5.12
5.13

5.14
5.15

5.16

6.1

6.2
6.3

6.4

6.5
6.6
6.7
6.8

6.9

Example of extended Application WorkloadLog instance for web
application (this figure originates from the Media Stream case
study which is presented in Chapter 6). For the DSML, refer

Figure 5.3 and Figure 6.7. 7
The Design of ResourceLog DSML. 78
Example of ResourceLog Instance (for the DSML, see Figure 5.5). 79
The Design of WorkloadRequestVsTime DSML. 80
Example of WorkloadResourceVsTime Instance (for the DSML,

see Figure 5.7). Lo L 80
The Design of ResourceVsWorkload DSML. 81
Example of ResourceVsWorkload Instance (for the DSML, see

Figure 5.9). 82
The Design of WorkloadPattern DSML. 82
The Design of ResourceRequirementAnalysis DSML. 83
Example of ResourceRequirementAnalysis Instance (for the

DSML, see Figure 5.12). 83
Sample of capacity monitoring graphs. 90
Example of resource utilisation graphs for CPU based on work-

loads. 95
DSMLs of ViRR for an application. 97
Implementation (Exploratory Phase) and Evaluation Plan of

the Research. 0. 102
The architecture of the virtualisation environment. 106

The ReRA Process with DSMLs and Model Management Tech-
niques for Web Applications in the VBoxManage environment.

(The numbers represent the flow of activities involved together

with model management programs.) 109
DSMLs Design for ReRA. VBozVMmetrics and DiskUsageLog
DSMLs are VirtualBox virtualisation environment specific. Re-
questLog DSML is specific for Web Applications and the others

are general. 110
The design of DiskUsageLog DSML. 112
The design of VBoxVMMetrics DSML. 113
The design of RequestLog which extends the Application Work-
loadLog DSML specifically for web applications. 114
Example of RequestLog instance (for the DSML, see RequestLog
DSML in Figure 6.7). 115
Media stream workload pattern simulated with JMeter. 119

6.10 Statistical results of resource usage of CPU(A), memory(B),
incoming network(C) and outgoing network(D) for the number
of workloads (requests to view a video file).

6.11 The table structure of the CVS file showing the statistical
analysis of average reading of resource metrics for the request
being processed.o

6.12 Extracted equations for resource metrics of the CVS data file.

6.13 Overview of ViRR DSMLs for the Media Stream Application.

6.14 Object diagram represents WPMediaStream Workload model. .

6.15 Object diagram represents ResourceRequestPlan model based
on the WPMediaStreamWorkload model.

6.16 Overview of ViRR DSMLs for the part-of-speech tagger Ap-
plication.

7.1 Evaluation Plan of the Research.

7.2 Overview of VIRR DSMLs for the Image Filtering Application.

7.3 Object diagram of predictive capability evaluation.
7.4 Actual and estimated resource usage.

C.1 Part-of-speech tagger requests pattern for large file size. . . .
C.2 The CPU usage (%) observation with VBoxManage for the
simulated requests to process large files.
C.3 The CPU usage of the simulated part-of-speech tagger re-
quests to process large files.
C.4 The memory utilisation of the simulated part-of-speech tagger
requests to process large files.
C.5 The incoming network traffic received by the application based
on the simulated part-of-speech tagger requests to process
large files.
C.6 The outgoing network traffic transferred by the application
based on the simulated part-of-speech tagger requests to pro-
cess large files.o
C.7 The storage usage recorded based of the simulated part-of-
speech tagger requests to process large files.
C.8 Table structure of CVS file for the statistical analysis of aver-
age reading of resource metrics to process large size files. . . .
C.9 Statistical results of resource usage to process large files. . . .
C.10 Formula retrieved to process large files based on average (mean)
TESOUICE USAZE. .« « v« v v e e e e e e e e e e
C.11 Part-of-speech tagger requests pattern for medium file size. . .

10

138
142
155
157

. 174

177
178

179
180

C.12 The CPU usage of the simulated part-of-speech tagger re-

quests to process medium files. L. 181
C.13 The memory utilisation of the simulated part-of-speech tagger
requests to process medium files. L. 181

C.14 The incoming network traffic received by the application based
on the simulated part-of-speech tagger requests to process me-
dium files. 182
C.15 The outgoing network traffic transferred by the application
based on the simulated part-of-speech tagger requests to pro-

cess medium files. 182
C.16 The storage usage recorded based of the simulated part-of-

speech tagger requests to process medium files. 183
C.17 Table structure of CVS file for the statistical analysis of aver-

age reading of resource metrics to process medium size files. . 183
C.18 Statistical results of resource usage to process medium files. . . 184
C.19 Formula retrieved to process medium files based on average

(mean) resource USAge.o oo 185
C.20 Part-of-speech tagger requests pattern for small file. 186
C.21 The CPU usage of the simulated part-of-speech tagger re-

quests to process small files. 187
C.22 The memory utilisation of the simulated part-of-speech tagger

requests to process small files. 187

C.23 The incoming network traffic received by the application based
on the simulated part-of-speech tagger requests to process
small files. 188
C.24 The outgoing network traffic transferred by the application
based on the simulated part-of-speech tagger requests to pro-

cesssmall files. oo 188
C.25 The storage usage recorded based of the simulated part-of-

speech tagger requests to process small files. 189
C.26 Table structure of CVS file for the statistical analysis of aver-

age reading of resource metrics to process small size files. . . . 189
C.27 Statistical results of resource usage to process small files. . . . 190
C.28 Formula retrieved to process small files based on average (mean)

TESOUTCE USAZE. .+« v v v e v e e et e e e e e 191

D.1 Resource utilisation graphs (A-E) and simulated workload pat-

tern(F) for large images with default filter. 194
D.2 Statistical analysis of resource utilisation to process large im-
ages with default filter. 195

11

D.3 Formula retrieved to process large images with default filter

based on average (mean) resource usage. 196
D.4 Resource utilisation graphs (A-E) and simulated workload pat-
tern(F) for large images with GrayScale filter. 198
D.5 Statistical analysis of resource utilisation to process large im-
ages with GrayScale filter. 199
D.6 Formula retrieved to process large images with GrayScale filter
based on average (mean) resource usage. 200
D.7 Resource utilisation graphs (A-E) and simulated workload pat-
tern(F) for large images with Negate filter. 202
D.8 Statistical analysis of resource utilisation to process large im-
ages with Negate filter. 203
D.9 Formula retrieved to process large images with Negate filter
based on average (mean) resource usage. 204
D.10 Resource utilisation graphs (A-E) and simulated workload pat-
tern(F) for medium images with default filter. 206
D.11 Statistical analysis of resource utilisation to process medium
images with default filter.o 207
D.12 Formula retrieved to process medium tmages with default filter
based on average (mean) resource usage. 208
D.13 Resource utilisation graphs (A-E) and simulated workload pat-
tern(F) for medium images with Grayscale filter. 210
D.14 Statistical analysis of resource utilisation to process medium
images with Grayscale filter. 211
D.15 Formula retrieved to process medium images with Grayscale
filter based on average (mean) resource usage. 212
D.16 Resource utilisation graphs (A-E) and simulated workload pat-
tern(F) for medium images with Negate filter. 214
D.17 Statistical analysis of resource utilisation to process medium
images with Negate filter. 215
D.18 Formula retrieved to process medium images with Negate filter
based on average (mean) resource usage. 216
D.19 Resource utilisation graphs (A-E) and simulated workload pat-
tern(F) for small images with default filter. 218
D.20 Statistical analysis of resource utilisation to process small im-
ages with default filter. 219
D.21 Formula retrieved to process small images with default filter
based on maximum resource usage. 220
D.22 Resource utilisation graphs (A-E) and simulated workload pat-
tern(F) for small images with Grayscale filter. 222

12

D.23 Statistical analysis of resource utilisation to process small im-
ages with Grayscale filter.
D.24 Formula retrieved to process small images with Grayscale filter
based on maximum resource usage.
D.25 Resource utilisation graphs (A-E) and simulated workload pat-
tern(F) for small images with Negate filter.
D.26 Statistical analysis of resource utilisation to process small im-
ages with Negate filter.
D.27 Formula retrieved to process small images with Negate filter
based on average (mean) resource usage.

13

Listings

3.1
3.2

3.3
3.4
3.5
3.6
6.1

6.2
6.3

6.4

6.5

6.6

6.7

6.8

7.1

7.2

BE.1

E.2

E.3

EMF Codes to Create School Metamodel. 53
Sample EOL Codes to Create a Model conforming to School

Metamodel. 56
ETL Concrete Syntax[47]. 57
Sample ETL rules. 57
Sample Main EGL Program. 59
GT.egl Program., 59
VBoxManage script to collect VM resource utilization for every

second. 105
Configuration in apache2.conffile 107

EOL program (DiskUtilToVBDisk.eol) transfers storage in-
formation from DiskUsageLog Model to VBoxVMDMetrics Model.116
ETL program (VBMetricsToResourceMetrics.etl) transfers se-

lected resource metrics parameter to ResourceLog Model. . . . 117
Rule to Transform the WordPress Media Stream Workloads

to VM Request Plan. 126
Rule to Transform the WordPress Media Stream Workload
Time Slot to VM Resource Requirement. 127
Rule to transform the Part-of-Speech Tagger Application Work-
loads to VM Request Plan. 133
Rule to Transform the Part-of-Speech Tagger Application Work-
load Time Slot to VM Resource Requirement. 133
Rule to transform the Image Filtering Application Workloads

to VM Request Plan. 141
Rule to Transform the Image Filtering Application Workload
Time Slot to VM Resource Requirement. 143
Sample of request log recording in access.log file in Apache

web server L 229
Example of the RequestLog model in XML form generated
based on request log in Listing E.1 231
Sample of VBoxMetrics resource usage log recording 233

14

E.4

E.5
E.6
E.7

G.1
G.2

G.3

G4

Example of the VBozVMMetrics model in XML form gener-

ated based on resource usage log in Listing E3. 235
Sample of disk utilisation log recording with df utility 236
Example of the DiskUsageLog model in XML form generated

based on disk usage log in Listing E.5 237

Example of the ResourceLog model in XML form generated
by merging DiskUsageLog and VBoxVMMetrics models that
presented in Listing E.6 and E.4 respectively 238
Complete DiskUtilToVbDisk.eol. 241
Complete ETL Program with Rules to Transform the Media
Stream Application Workload to VM Resource Requirement

Complete ETL Program with Rules to Transform the Part-
of-Speech Tagger Application Workload to VM Resource Re-
quirement Plan.o 000 246
Complete ETL Program with Rules to Transform the Image
Filter Application Workload to VM Resource Requirement Plan.251

15

List of Algorithms

O W N~

Workload Logs to a WorkloadLog Model
Resource Usage Logs to a ResourceLog Model
Sort, Compare & Merge Workload and Resource Models . . .
Producing a ResourceVsWorkload Model
Producing Analysis Model
Transforming Application’s Workloads to VmRequestPlan

16

Acknowledgements

Firstly, I thank All Mighty God for making this thesis possible. I am sincerely
thankful to my both supervisors, Dr. Dimitris Kolovos and Prof. Richard
Paige for their invaluable encouragement, guidance, solid supervisions and
continuous motivations throughout my doctoral research studies.

I would also like to thank my internal examiner, Dr. Fiona Polack for her
comments and feedback from the initial assessment until the current stage.

I thank all the technical staff in the Department of Computer Science for
their constant technical support internally and externally. Non-stop support
by Alex Cooper is really appreciated. I also thank Dr. Derek Wang for his
technical support in initial infrastructure setting.

I would also like to thank my friends and colleagues who have supported me
along the way by offering me valuable advice, by sharing expertise and also
experience.

I would like to express my warmest appreciation to my husband, Noorul
Ameen Mohamed Eliyas for his patience, support and understanding. Last,
but by no means least, I also express my gratitude to my four loving children
who enrich my life and my PhD studies in colourful ways.

17

Declaration

I declare that this thesis is a presentation of original work and I am the sole
author. This work has not previously been presented for an award at this,
or any other, University. All sources are acknowledged as References.

List of Publications:

1. Rafidah Pakir Mohamad, Dimitrios S. Kolovos, and Richard F.
Paige. Resource Requirement Analysis for Web Applications
Running in a Virtualised Environment. In Cloud Comput-
ing Technology and Science (CloudCom), 2014 IEEE 6th In-
ternational Conference on, pages 632-637, Dec 2014. doi:
10.1109/CloudCom.2014.134. URL http://www.computer.org/csdl/
proceedings/cloudcom/2014/4093/00/4093a632-abs.html

2. Rafidah Pakir Mohamad, Dimitrios S. Kolovos, and Richard F. Paige.
Cloud Computing Workload and Capacity Management Using Domain
Specific Modelling. In CloudMDE Workshop, co-located with ECMFA
2012. CEUR Proceedings, July 2012. URL http://www2.imm.dtu.dk/
conferences/ECMFA-2012/workshops/?page=CloudMDE

3. Rafidah Pakir Mohamad, Dimitrios S. Kolovos, and Richard F. Paige.
Modeling Workloads, SLAs and their Violations in Cloud Computing.
In Christopher M. Poskitt, editor, Fourth York Doctoral Symposium on
Computer Science. Department of Computer Science, The University
of York, UK, October 2011. URL http://www.cs.york.ac.uk/ftpdir/
reports/2011/YCS/468/YCS-2011-468.pdf

18

http://www.computer.org/csdl/proceedings/cloudcom/2014/4093/00/4093a632-abs.html
http://www.computer.org/csdl/proceedings/cloudcom/2014/4093/00/4093a632-abs.html
http://www2.imm.dtu.dk/conferences/ECMFA-2012/workshops/?page=CloudMDE
http://www2.imm.dtu.dk/conferences/ECMFA-2012/workshops/?page=CloudMDE
http://www.cs.york.ac.uk/ftpdir/reports/2011/YCS/468/YCS-2011-468.pdf
http://www.cs.york.ac.uk/ftpdir/reports/2011/YCS/468/YCS-2011-468.pdf

Chapter 1

Introduction

1.1 Background

A data centre is a central computing repository for storage, telecommunica-
tions and other associated components. Studies show that server utilisation
in real world data centres is estimated between 5% and 20% [7, 8]. In addi-
tion, servers are rarely completely idle and only reach 10% to 50% of their
maximum utilisation level [10]. These show that servers in real data centres
are underutilised. However, underutilised servers still consume a great deal
of electricity when idle [18, 75]. Furthermore, additional energy is needed for
cooling the heat produced by the underutilised servers.

Running a data centre can be very expensive. Cost-effective data centre man-
agement by implementing virtualisation and server consolidation are possible
solutions to maximise server utilisation [75]. Server virtualisation reduces the
number of physical servers by having several virtual machines running on a
single server. Intelligent resource management reduces the power consump-
tion in data centres by having fewer servers and, as such, require less cooling.

Implementing server virtualisation separates the computing resources in a
data centre into physical and virtual resources. Virtual resources are com-
pletely isolated server installations within a normal physical server. These
work like real standalone servers, while in reality they still share the phys-
ical resources of the hosting server; such architectures make use of wvirtual
machines (VMs). In addition to reducing cost by minimising the number
of servers, virtualisation also has other advantages. The VMs can be mi-
grated to another physical server and mirrored as often as needed for multi-

19

processing. Usually, VMs are also called instances or guest machines, and
they are scalable. To optimize physical server utilisation, VMs are allocated
to physical servers based on the workload pattern stated in the Service Level
Agreement (SLAs) [35]. Even though VMs are scalable, they need to be
managed properly to minimise failure on a physical machine [37].

Virtualisation can be used to create multiple virtual data centres within
a physical data centre. Therefore, virtualised environments comprise two
components. The first component is the physical data centre, which is typ-
ically operated by a data centre management team and provides a physical
computing infrastructure. In this work, they are referred to as the phys-
ical infrastructure provider (PiP). The second component is the virtual data
centre, managed by the virtual servers management team, which adminis-
ters the virtual resources in the virtual environments provided by the PiP
and they are referred as the wirtual infrastructure provider (ViP). A ViP
usually owns a number of virtual machines running at unknown locations
in physical data centres. Managing these virtual machines is called virtual
data centre management. Physical resources in physical data centres may be
shared by a number of ViPs through the creation of VMs. Virtualisation as
an enabling technology for resource sharing has been commonly adopted in
many computing environments, such as in grid, cluster or cloud computing.
Cloud computing is an approach which aims to minimise costs for both con-
sumers and providers of the services; software, platform and infrastructure.
It employs the concept of utility computing first proposed in 1965 [63].

The focus of this research is on capacity planning for the virtual and phys-
ical data centres which based on application workloads. Capacity planning
is a process of resource management to ensure that sufficient resources are
allocated to satisfy the required level of computing demand [37]. In virtu-
alised environments, two types of capacity planning are conducted. Firstly,
virtual data centre capacity planning defines the VM resource requirements
to the PiP to host the application. This process is performed by the ViP
and strongly depends on the fluctuation of application workloads [21, 37].
Secondly, the physical data centre capacity planning allocates physical re-
sources to virtual machines, based on the VMs’ resource requirements. This
process is performed by the PiP in the physical data centre. It is essential
that there are sufficient resources in virtual and physical data centres. This
can be done by performing effective capacity planning, which will avoid over-
provision of resources whilst at the same time maintaining the required level
of performance.

Operating a physical data centre can be very costly: it requires a suitable

20

Virtual DC
Management

Workload Physical DC

Virtual
Management

infrastructure
Provider (ViP)

Physical
infrastructure
Provider (PiP)

End Users
(EV)

Physical
Data Centre

Figure 1.1: The relationship between parties involved for the management
phases by implementing virtualised environments.

place to house computing equipment, which consumes a substantial amount
of power both in functioning and for cooling. Sufficient physical resources
need to be provided by PiP as required by ViP to create VMs. On the other
hand, the ViP is still responsible for the capacity planning of their virtual
data centre, to ensure the acceptable performance of applications running in
the virtual environments. Techniques such as auto-scaling [27, 54, 86] and
cloning [53, 79] enables VM capacity to be more elastic, which allows the VM
to be resized on demand. These techniques need to be considered in virtual
data centre capacity planning. The elastic virtual machines are created using
limited physical resources. Therefore, there is a need to consolidate virtual
machine demand into the available physical resources as a process in physical
data centre capacity planning.

1.1.1 Capacity Planning in Virtualised Environments

Three management phases can be identified in performing capacity planning
in a virtualised environment; i) application workload management by captur-
ing application workloads and the usage of resources that they have triggered
for resource requirement analysis and estimation of future workloads and re-
source requirements [9, 21, 25, 34, 65, 69], ii) virtual data centre manage-
ment by estimating virtualised resource requirements [4, 21, 25, 28, 55, 69|
and iii) physical data centre management by estimating physical resource
requirements [27, 28, 46, 78|. Figure 1.1 shows the relationship between the
identified phases and the related parties in performing capacity planning by
implementing virtualised environments.

Workloads generated by end users utilise the virtual machine resources in
virtual data centres. The ViP needs to provide sufficient resources with the
correct specifications of virtual machines offered by the PiP. This is to as-
sure the adequate performance of the hosted applications and minimise the
cost by not over-provisioning the resources. Previous work focuses only on a
particular application, while in practice multiple applications act as services

21

managed by a ViP. Each application’s workload is different depending on
its behaviour, software design and the technologies it builds on. Moreover,
resource requirements are initiated by application workloads. Capturing re-
source requirement based on the application workloads is required in capacity
planning process.

Existing capacity planning approaches, focus either on estimating VM re-
source requirements based on single application workloads or on managing
physical resources in physical data centres. Abrahao et al. [4], Delimitrou
and Kozyrakis [25], Mark et al. [55], Roy et al. [69] proposed operational
models for capacity planning in virtual data centres. On the other hand,
Dougherty et al. [27], Ejarque et al. [28], Khazaei et al. [46], Sun et al. [7§]
proposed cost and operational models for physical data centres. To enable
comprehensive capacity planning and end-to-end traceability of resource re-
quirements, it is important to integrate these phases under a common frame-
work. Integrating application workload, virtual capacity and physical capa-
city management in a unified framework can deliver significant benefits in
terms of automation and traceability. A systematic and transparent process
in performing capacity planning based on known application workloads as-
sists the prediction of future resource requirement in virtual and physical
data centres.

The main computing resources of interest in capacity planning are: CPU,
memory, storage, and bandwidth (incoming and outgoing network) use. Cer-
tain works have combined all those resources as a unit [4, 69] while oth-
ers study only a selected component or a selection of specific components.
Ejarque et al. [28], Tan et al. [80] focus on CPU and memory usage and
Sun et al. [78] include storage in their study. Additionally, Delimitrou and
Kozyrakis [25] explore the combination of four components by extending their
studies to include network resources.

1.1.2 Model Driven Engineering

MDE is a well known approach to software engineering which advocates
constructing precise models using Domain Specific Modelling Languages
(DSMLs). These models are managed using automated tools such as trans-
formation, analysis and validation engines, and model-to-text generator [70].
MDE enables reusability of the DSMLs and model management techniques.
The use of models to represent abstraction of the real world has been widely
practised in many areas of knowledge [45]. To improve understanding of the
concepts within the domain, abstraction is used to reduce their complexity.

22

In this work, Domain Specific Modelling (DSM) is utilised to facilitate rigor-
ous specification and automated analysis in the context of capacity planning.
A DSML-based approach to support capacity planning in virtualised envir-
onments is proposed in this thesis. The novelties are:

i. Domain Specific Modelling Languages (DSMLs) that allow workloads
and resources to be precisely captured using models.

ii. A transparent, automated and repeatable MDE process for generating
predictions for resource demand from estimated workload models.

iii. The MDE process, which exploits model transformation, comparison and
merging, is modularised so that it can be configured for different kinds
of capacity planning applications and technical infrastructures.

1.2 Motivation

Current capacity monitoring tools are able to collect, store and display re-
source metrics over time in order to help operators to identify resource usage
patterns. However, this is not always sufficient for virtual environments; re-
source usage patterns need to be associated with the workload that is being
processed at the time to enable better-informed capacity planning. Sets of
DSMLs together with model management techniques are proposed to facil-
itate the capacity planning process. In the domain of interest of this study,
the information required to populate the models can be gathered from logs
recording the workload processed by an application running in a virtualised
environment, and logs recording the resource usage of the VM that hosts the
application. Log analysis is conducted in the initial phase to capture applic-
ation workload with the resource usage and define the workloads estimation
model. Later, capacity planning for virtual and physical data centres can be
performed with a traceable approach based on the workload models and the
relationship between workloads and the resource usage they have triggered.

1.3 Research Scope

This study focuses on the design of DSMLs and model management tech-
niques to facilitate capacity planning in virtualised environments. The scope
of this work is as below:

23

i. Capturing the application-specific relationship between application
workload with the resource usage and to define workload estimation.

ii. Estimating virtual resource requirements for predicted workloads for a
defined time period.

The research provides a fully integrated solution for capacity planning process
in virtualised environments using DSM. A number of DSMLs are developed,
implemented and evaluated in order to capture application workloads and
express virtual machine resource requirements. The selection process of vir-
tual machine packages offered by PiP and the integration of the virtual data
centre management phase with the physical data centre management phase
is briefly discussed and suggested as future work.

1.4 Research Hypothesis

The hypothesis of this work is that MDE and DSML techniques can be used
to support modular and reusable capacity planning in virtualised environ-
ments. Capacity planning is a process to ensure that resources in a data
centre are sufficient to support its computational needs. One criteria of ca-
pacity planning is to ensure the infrastructure resources are sufficient with
the demand of workloads. Capacity planning involves estimation of infra-
structure resources such as storage, processors, memory and bandwidth over
a future period. In this work, capacity planning is restricted to the estima-
tion of CPU, memory, incoming network and outgoing network in virtualised
environments that run a single application. A Virtualised environment in
a data centre is implemented to optimised computing resource utilisation
by sharing computing resources. Chapter 2 provides detailed discussion on
capacity planning and virtualisation. In this context:

i. modular means that every step of the capacity planning process is self-
contained and the structure of its expected inputs and outputs is spe-
cified in a rigorous manner;

ii. reusable means that steps/components can be shared between different
capacity planning processes.

DSML enables a high level of abstraction by allowing the specifications being
captured in a modular manner. The details of the specifications are captured
with concrete models conforming to the DSML. The modularity in DSML
enables reusability, where the models and its activities can be utilised to fa-

24

cilitate capacity planning of different applications. Model management tech-
niques can be used to manipulate the details captured in the model. These
features of MDE can be utilised to automate a transparent capacity plan-
ning process to estimate the resource requirements based on the predicted
workloads of an application.

Domain specific modelling (DSM) has been adopted in many fields such as
automotive [45], telecommunications [22], transportation [81] and many other
safety-critical systems. There is possibility of utilising MDE in data centre
and, in this work, DSM is utilised in capacity planning to facilitate rigorous
specification and the automated analysis of workloads.

1.5 Research Objectives

In MDE, models are used as core artefacts that drive the entire software
development process. The models represent abstractions of the domain of
interest. These domain-specific models raise the level of abstraction by spe-
cifying the solution in a language that directly uses concepts and rules from
the domain. MDE techniques such as domain-specific modelling, model-to-
model, text-to-model and model-to-text transformation are the MDE fea-
tures utilised in this work. The modularity of those techniques makes the
process in the domain self-contained within models. This also promotes re-
usability, saving effort from repetitive tasks and reducing the semantic gap
between the problem and the implementation.

The use of MDE in capacity planning in virtualised environments raises four
research objectives. The objectives which drive the research are as follows:

i. To identify the capacity planning phases processes in virtualised envir-
onments based on a systematic literature review.

ii. To design systematic and model-based processes with a focus on the
initial capacity planning phases.

iii. To design and implement DSMLs and model management techniques to
support the identified processes.

iv. To evaluate the modularity and reusability of the proposed DSMLs and
model management techniques.

Systematic literature reviews were conducted to explore the domain by identi-
fying the phases involved in performing capacity planning in a virtualised

25

environment. A high level framework of capacity planning which includes
the related phases was designed based on the scope of the research. The
literature review defines the concepts to include in a systematic process, cur-
rent practices and the possibility of utilising MDE. Therefore, the literature
review was conducted as the first objective. As the second objective, sys-
tematic processes were designed by further exploring the domain within the
scope. The third objective is to design the DSMLs and model management
techniques as MDE solutions to support the processes identified under the
second objective. The proposed MDE solutions were implemented with se-
lected tools in a virtualised environment as implementation. Case studies
were used to apply the proposed MDE solutions. The fourth objective is
to evaluate the modularity and reusability of the proposed MDE solutions
with an additional case study. The plan for achieving the objectives of this
research is presented as the research methodology in the following section.

1.6 Research Methodology

Experimental and exploratory research methods are applied in performing
this research work. In order to achieve the research goals, nine main steps
were performed. Figure 1.2 shows the research methodology and flow of the
steps.

@ 3. Setting-up &

configuration of
infrastructure for the

5. Selection and
configuration of
realistic case studies.

2. Design the _ experiments.
1. Review the framework and
literature. identify the ~ 2. Design and

technologies.

development of DSMLs
and model management

techniques (MDE task).
- 6. Implementation

and experimentation
with two case
studies.

2 S
7. Refine the A
9. Justify the 8. Evaluation with a configurations and
contribution. further case study. improve the MDE
task.)

Figure 1.2: Research Methodology.

26

Detailed descriptions of the steps are as follows:

1. A literature review on the history of data centres, virtualisation, re-
source management and capacity planning. In addition, a literature
review on model driven engineering with a focus on domain specific
modelling and model management techniques were also carried out.

2. A framework for capacity planning process in virtualised environment
was developed. At the same time, the hardware and software require-
ments used to facilitate the development, implementation and evalu-
ation of the research work were identified.

3. The infrastructure to perform the experiments for implementation and
evaluation was set-up. The configuration of the infrastructure to log
information regarding the application workloads and resource usage as
input data was performed.

4. In parallel to setting up the infrastructure, design and development of
the DSMLs and the related model management techniques were con-
ducted.

5. A selection of realistic case studies to be used for implementation and
evaluation were identified.

6. Implementation of the developed DSMLs and model management tech-
niques were performed by repeating the experiments with two case
studies.

7. The developed DSMLs and model management techniques were refined.
This process was repeated with several simulations with the selected
case studies to improve the metamodels and the model management
techniques. At the same time, the infrastructure used in this work
was also improved to produce the required logging information. The
applications from the case studies were reconfigured to provide accurate
log information and relevant resource utilisation.

8. The experimental evaluation method was used by applying the pro-
posed MDE solutions with a third case study. Step 7, stated above,
is an initial phase of the experimental evaluation method and is called
the exploratory phase. The system requirements and technical facil-
ities were identified and developed in the exploratory phase. In the
second phase, an evaluation was conducted to measure the reusabil-
ity and modularity of the proposed MDE solutions with an additional
third case study. For the evaluation case study, a resource-intensive vir-
tualised web application was used, which required extending the core

27

capacity planning domain-specific languages and transformations. Ad-
ditionally, the extensibility, completeness and prediction capability of
the proposed MDE solution were evaluated.

9. The usefulness of the proposed solution in answering the research goals
was assessed.

The steps in the research methodology are aligned to achieve the research
objectives discussed in Section 1.5. Steps 1 and 2 were conducted to achieve
the first objective. Step 4 was performed to obtain the second objective.
Consequently, steps 3, 5, 6 and 7 were designed to achieve the third objective.
Finally, steps 8 and 9 were implemented to achieve the fourth objective.

1.7 Research Outcomes

The proposed work is aimed at assisting capacity planning managers who
are providing and/or using a virtualised environment to estimate future re-
source requirements in physical and virtual data centres. This is achieved by
integrating three management phases in performing capacity planning in vir-
tualised environments. Sets of DSMLs and model management techniques
are proposed as a traceable and modular solution. It is anticipated that
using DSML models to specify workloads will render capacity management
more flexible, precise and effective. The practicality of using the suggested
approach is measured by using two cases studies during implementation and
evaluated with a third case study.

1.8 Thesis Structure

The remainder of this thesis consists of eight chapters. Chapters 2 and 3 draw
upon the scientific research literature to provide background and motivation
for the research proposal presented in Chapter 4. Chapter 5 discusses the
design of the DSMLs and model management techniques as MDE solutions
to automate the identified capacity planning processes. The application of
MDE solutions was carried out on two case studies and were demonstrated in
Chapter 6. To further evaluate the practicality and reusability of the MDE
solutions, a third case study was conducted. Chapter 8 concludes this report
and provides directions for future work. A brief description of each chapter
follows:

28

1.8.1 Chapter 2: Literature Review

This chapter provides a comprehensive review of related literature. It covers
the evolution of data centres up to the current paradigm called “cloud com-
puting”. Server virtualisation as a key enabler technology in resource sharing
are discussed. Also, server utilisation and capacity planning in virtualised
environments are presented. The research gap is identified and a possible
solution is outlined.

1.8.2 Chapter 3: Model Driven Engineering

This chapter provides an overview of Model Driven Engineering (MDE) and
DSM. The use of DSMLs and tools related to modelling is discussed. Finally,
the overall review of the chapter is presented with a possible solution for
the research challenges identified in Chapter 2, by utilising model driven
technologies and techniques.

1.8.3 Chapter 4: Domain Analysis

The overall aim of the proposed research is outlined along with the research
plan. The proposed framework to facilitate capacity planning in virtualised
environments is elaborated upon.

1.8.4 Chapter 5: Design of MDE Solutions

The detailed design of the DSMLs and its associate model management tech-
niques are discussed. Two processes, ReRA and ViRR were automated with
the proposed MDE solutions.

1.8.5 Chapter 6: Applications of MDE Solutions

This chapter discusses the application of the proposed MDE solutions with
two cases studies in a virtualised environment. The design of the infrastruc-
ture to perform the experiments is also presented. The outcome of applying
the MDE solutions for each case studies by reusing and extending the pro-
posed MDE solutions are discussed.

29

1.8.6 Chapter 7: Evaluation
The evaluation to demonstrate the validity of the proposed solution was

conducted with a third case study. The assessment process and the results
are presented in this chapter.

1.8.7 Chapter 8: Conclusion
The conclusion and future work are discussed in this final chapter. The

contributions and limitations of the proposed solution are discussed and dir-
ections for future work are identified.

30

Chapter 2

Literature Review

2.1 Introduction

This chapter provides an overview of resource management in the field of com-
puting generally, and in virtualised environments specifically. The chapter
begins with a discussion on data centres; we argue that the techniques
used for resource management processes are related to the evolution of data
centres. It discusses the concept and the key terms of virtualised environ-
ments which later inspired the popularity of cloud computing as utility com-
puting. This chapter generally focuses on resource management activities in
a data centre where capacity planning is a main concern. The chapter con-
cludes with a review of possible solutions for capacity planning in virtualised
environments.

2.2 Data Centres

A data centre is a component which consists of a number of servers and
facilities for computing. Data centres are also referred to as server rooms and
server farms. As per Telecommunications Infrastructure Standard for Data
Centres (TTA-942)!, the evolution of data centres started with the creation of
the first computer UNIVAC in the 1940s. Later in the 1950s, IBM introduced
its mainframe computer [44]. The first distributed computing system was
used in an airline reservation system which went into full operation with two

'http://www.adckrone.com/eu/en/webcontent/support/pdfs/enterprise/
generic/102264be.pdf

31

http://www.adckrone.com/eu/en/webcontent/support/pdfs/enterprise/generic/102264be.pdf
http://www.adckrone.com/eu/en/webcontent/support/pdfs/enterprise/generic/102264be.pdf

: Micro Grid Clusters Cloud
Mainframe Computer Computing Computing Computing
1965 . 1980s 1990 1995 2006
77
1997
Virtual Memory Hardware Desktop Virtualisation

Server, Network & Storage Virtualisation

1985

Figure 2.1: An Evolution of Data Centres

powerful IBM mainframes, sixteen data storage devices and 1,000 terminals
in 1965 [19].

The evolution of data centres from the era of mainframes until today’s cloud
computing is illustrated in Figure 2.1. Mainframes were very powerful ma-
chines and were also very expensive to operate and maintain. The mainframe
provided the full computing facilities and the users accessed the mainframe
through terminals. Terminals are input and output devices communicating
with the mainframe without computer processing. The next generation of
computing involved microcomputers, which were initially only able to run
office usage applications. The main applications still ran in the mainframe
and microcomputers replaced the terminals. Then the technology gradually
moved to grid computing, commodity clusters, virtualised clusters, and more
recently to cloud computing [32]. Virtualisation was introduced in 1965 with
virtual memory hardware virtualisation [43, 44]. Since that, the subsequent
technology in the evolution of data centres has enhanced the virtualisation
concept as a backbone for resource optimisation and cost reduction.

Grid computing, commodity clusters, virtualised clusters, and cloud comput-
ing are categories of distributed systems [32]. In distributed computing, end
users access the applications hosted in the computing machines located in the
data centres. Figure 2.2 shows an overview of distributed computing which
include cluster, grid, supercomputer, Web 2.0 and cloud computing [32].
Cloud and Web 2.0 are more towards service oriented and highly scalable.
However cluster and supercomputer are application oriented but supercom-
puter is more scalable compare to cluster. Cluster computing focuses on
traditional application-oriented systems. Where else, grid computing is used
in both application-oriented and service-oriented systems. Resource sharing

32

Scale Distributed Systems
Supercomputers
y Clouds
Grids
Clusters
Web 2.0
- - - h
Application Services
Oriented Oriented

Figure 2.2: Overview of Distributed Computing [32].

features of grid computing are utilised by both cloud and cluster computing.
On the other hand, there are differences between cloud and grid computing
in terms of the business model, architecture, resource management, pro-
gramming model, application model and security model [32]. Virtual and
psychical resource provisioning are two key steps in executing application
requests under grid resources in cloud computing [67].

This section discusses of cluster computing, grid computing and cloud com-
puting according to Foster et al. [32]. Cluster computing makes use of mul-
tiple servers which are interconnected. These form a single, highly available
system, whereas grid computing enables federated dynamic resource sharing.
This can also be considered as a combination of several clusters. Resources
of grid computing are accessible through a network by several institutions.
These resources are normally used for a common use by the institutions.
Cloud is mainly connected through the internet and supports various types
of services such as Software as a Service (SaaS), Platform as a Service (PaaS)
and Infrastructure as a Service (IaaS).

The subjects of implementing virtualisation in distributed computing and
optimised computing resource utilisation by sharing computing resources are
discussed in the following sections.

33

2.2.1 Virtualisation

Virtualisation has existed since the beginning of the mainframe era as illus-
trated in Figure 2.1. In 1965, mainframes with virtual memory hardware
technology were used in industry [43]. Later after 1985, server virtualisa-
tion, network virtualisation and storage virtualisation emerged to optimise
resource utilisation. Desktop virtualisation was introduced in 1997 where
multiple operating systems were able to operate in a desktop. Section 2.2.2
discusses these virtualisation types in detail.

Virtualisation is a framework or methodology for dividing the
computing resources of a computer into multiple execution en-
vironments. Hardware and software partitioning, time-sharing,
partial or complete machine simulation, emulation, quality of ser-
vice, and many others are the concepts or technologies related to
virtualisation [43].

2.2.2 Type of Virtualisation

Four common types of virtualisation are listed below [43]:

i.

ii.

1il.

1v.

Server Virtualisation

Server virtualisation facilitates resource optimisation where a number
of virtual machines run independently on a single server. This reduces
the requirement to have many physical servers which directly reduces
the cost of purchasing and operating the physical servers. Furthermore,
electric power consumption also decreases with fewer physical servers
running with optimised resource utilisation.

Virtual Networks

Create an illusion that the end users are connected directly to an organ-
isation network and resources, without a direct physical connection to
the internet. Virtual networks are also called virtual private networks

(VPNs).

Virtual Storage
Storage virtualisation enables end users and applications to access scal-
able and redundant physical storage.

Desktop Virtualisation
Multiple operating systems are run on a single computer and allows a
user to switch between them.

34

R -- Physical Server 1

Physical Server1 . ---- S - Physical Server 2

Virtual Server 1

................

OSA R AN
{ :
1 1
i H
Physical Server 2. i OSA ¥y 4
Virtual Server 2 :
|:> RS T Physical Server 3
. P, 1+ i
0SB N it
OosB |
1
______________ g

w

Physical Server

N,
~.

..

0SC N 0S¢

Figure 2.3: Before and After Implementing Server Virtualisation.

2.2.3 Server Virtualisation

In server virtualisation, a single physical server appears as many virtual
servers [43]. Each virtual server runs the same or different operation systems
individually. This provides greater computing resources utilisation with less
computing equipment, lower power consumption and also supports multiple
operating systems. The operating systems and the applications running in it,
are concurrently accessible with a selected network configuration. Figure 2.3
illustrates the differences before and after implementing server virtualisation.
Fewer physical servers are required to operate an equal number of operating
systems. At the same time, this maximises physical server resource utilisation
and minimises the number of physical servers.

2.2.3.1 Components of Server Virtualisation

Server virtualisation, mainly consists of three components; host, guest and
hypervisor [66]. These components are illustrated in Figure 2.4. The host is
the physical server or physical machine (PM) used to set the virtualisation
environment. The guest is the VM that runs within the host. The guest
shares the physical resources of the host with other virtual machines running
in the same host and with the host itself. However, it behaves as an individual
server. A hypervisor is also called a virtual machine monitor (VMM) and it

35

Host

Hypervisor

Figure 2.4: Server Virtualisation Components.

is installed on the host to manage the virtualised environment. It is a piece of
computer software, firmware or hardware that is installed on the host, which
creates and runs virtual machines. There are mainly two types of hypervisor;
Typel and Type 2. Figure 2.5 illustrates the differences between these types.

A Typel hypervisor is installed onto bare metal or directly on the hard-
ware platform (i.e. on hardware). The hypervisor runs directly on the base
operating system of the host’s hardware. It controls itself and also mon-
itors the guest’s operating systems. The hypervisor supports two types of
full virtualisation; share kernel virtualisation and kernel level virtualisation.
Shared kernel virtualisation takes advantages of the Linux and UNIX op-
erating systems. The system kernel is shared between the guests and the
host. Examples of Typel hypervisors supporting shared kernel virtualisation
are Linux VServer, Solaris Zones and Containers, FreeVPS and OpenVZ.
Kernel level virtualisation leverages the latest generations of CPUs from In-
tel and AMD (x86 processor). In kernel level virtualisation, the hypervisor
itself manages the host hardware and guest operating systems. Xen, VM-
ware ESX Server and Microsoft’s Hyper-V are some hypervisors that provide
kernel level virtualisation.

A Type2 hypervisor is installed onto an existing operating system of the
host and supports paravirtualisation. Under paravirtualisation, the kernel
of the guest operating system is modified specifically to run on the hyper-
visor. Therefore, the hypervisor performs the task on behalf of the guest
kernel. VMware Workstation, Microsoft Virtual PC, and Oracle VirtualBox
are examples of Type2 hypervisor.

In terms of performance, A Typel hypervisor provides superior performance
since there compared to Type2 [20]. However, studies conducted by Adams
and Agesen [5] for x86 virtualisation show that Type2 is better in terms of

36

Full Virtualisation (Type 1) Para Virtualisation (Type 2)

Shared Kernel Virtualization Kernel Level Virtualization

Host Hardware Host Hardware Host Hardware

Figure 2.5: Type of Hypervisor. Adapted from [2].

performance for memory management. Selection of an appropriate hyper-
visor as a tool to facilitate virtualisation is determined by many factors such
as cost and performance.

2.2.4 Cost-Efficiency in Data Centres

Managing a large data centre is very expensive [50] and the PiP needs to
take all necessary actions to improve cost-efficiency. Virtualisation and server
consolidation are solutions for maximising server utilisation [75]. Server vir-
tualisation optimises physical server’s resource utilisation by having several
virtual machines running on a single server, thus reducing the number of
switched on physical servers in data centres. Intelligent resource manage-
ment reduces power consumption in data centres by having fewer switched
on servers and as such requiring less cooling.

Figure 2.6 shows the average cost in data centres based on percentages of
cost components discussed by Greenberg et al. [38] and the total cost of
data centres in the world in 2007 [50]. Servers include hardware such as
CPUs, memory and storage disks. Infrastructure refers to power distribution
units (PDU) or electric wiring and cooling facilities in data centres. Also,
Power Consumption represents electricity costs and Network refers to links,
bandwidth and equipment for networking purposes.

According to Quiroz et al. [67], VM Provisioning consists of creating VM
instances to host each application request, whilst matching the specific char-

37

Power
Consumption
$1.1B
15%

Server
$3.3B
45%

Infratructure
$1.8B
25%

Figure 2.6: Average Cost in Data Centres.

acteristics and requirements of a request. Mapping and scheduling these
requests onto distributed PMs is called Resource Provisioning. Figure 2.7 il-

lustrates virtual machine and physical machine resource provisioning in data
centres [67].

To optimize PM utilisation, VMs can be allocated to PMs based on the
workload patterns stated in Service Level Agreements (SLAs); this technique
is known as SLA-oriented resource allocation [17]. The ViP and PiP need to

Data Center . Application
Wide Sl Specific
Short-term |(1) VM Provisioning (3 Run-time Management
[
a
8
Long-term |(2) Resource Provisioning) Workload Modeling

Figure 2.7: Data Centres Virtual and Physical Resource Provisioning [67].

38

estimate virtual and physical resource requirements accordingly. Resource
demand is commonly estimated based by recording and extrapolating on
observed (real) workloads [65].

2.2.5 Server Utilisation

Server utilisation is the extent to which resources provided by a server are
actively used. Commonly, the percentage of processor being used is measured
to indicate the usage level. Disk, memory and network are also important
metrics in measuring server utilisation. Studies show that server utilisation in
real world data centres is estimated between 5% and 20% [7, 8]. Furthermore,
an observation for 5000 servers for 6 months showed that the servers are
rarely completely idle and these servers operate between 10% to 50% of their
maximum utilisation level [10]. This shows that servers in real data centres
are typically underutilised. However, these underutilised servers still consume
a lot of electricity to stay on [18, 75]. Additional energy is also needed for
cooling the heat produced by underutilised servers. Server virtualisation is
a widely adopted approach to maximise server utilisation [75].

2.3 Resource Management

Resources in a data centre are separated into physical and virtual [67]. VMs
as virtual resources are completely isolated server installations within a PM
(host). A VM operates like a real standalone server, while in reality it shares
physical resources of the host. The main advantage of a VM is that it can be
migrated to another physical server and mirrored as much as needed for multi-
processing. In order to conduct resource management, capacity planning is
the initial activity. Since a virtualised environment has two types of data
centres (physical and virtual), there is a requirement to conduct capacity
planning by the respective parties in these data centres. Physical data centre
capacity planning is determined by estimating the resource requirements for
running various specifications of VMs. This demand for VMs is triggered
by end users’ workload and virtual data centre capacity planning allows the
VM’s resource requirements to be estimated.

39

2.3.1 Capacity Planning

Capacity planning (in general) is a process to ensure that resources in a data
centre are sufficient to support its computational needs. In this process,
available system resources are observed, performance is measured, and re-
source usage patterns are extracted to forecast the resources that need to be
allocated to serve future workloads [74]. Capacity planning is an important
activity to estimate the needs for computing resources and their cost. Tradi-
tionally, purchasing computing resources was a solution to overcome resource
limitations in a data centre. Sometimes, leasing computing resources is also
appropriate if the need is only for a temporary period and leasing is more
cost-effective than buying. Mechanisms are implemented to estimate the fu-
ture resource requirements as a capacity planning process. This procedure is
not transparent, this is discussed further in the work of Allspaw [6] wherein
he shares his experience in performing capacity planning.

Capacity planning in virtual environments aims to ensure that allocated
virtual computing resources such as CPU, memory, storage and network
bandwidth will be sufficient to support future computational needs. In this
process, available system resources are observed and performance is meas-
ured [6, 74]. Also, resource usage patterns are determined to forecast the
resources that need to be allocated to serve future workloads in compliance
with the service’s Quality of Service (QoS) requirements [65]. To achieve this,
it is necessary to identify incoming workloads, to monitor resource usage, and
to associate resource usage with the workloads that triggered it.

2.3.1.1 Resource Estimation and Prediction Techniques

Several approaches have been proposed in order to estimate resource require-
ments for different types of applications. A synthetic workload generator tool
proposed in [9] evaluates the performance of VMs by performing synthetic
requests on multi-tier web applications. In [21], a benchmark model is pro-
posed to estimate the number of VMs required for hosting media stream
applications based on their memory and disk requirements. Roy et al. [69]
propose a resource allocation algorithm that estimates the number of required
VMs based on statistical predictive techniques by considering the challenges
of auto-scaling. Microscopic and macroscopic approaches to predict resource
consumption for data centres by statistically characterising resource usage
patterns are proposed in [80]. The microscopic approach focuses on resource
usage prediction for a specific node; it demonstrates that using both CPU

40

and memory usage data can improve the forecasting performance compared
to a baseline method of calibrating CPU usage.

Web Ap- | Workloads Workload Es- | Parameter Access
plication | Generator timation from Log File.
Type
Multi-user | Workload Spe- | Probabilistic Input, output, states,
cification Lan- | Finite State | transitions and probab-
guage (WSL) [9]. | Machine and | ility of a transition.
SPECweb99, Maximum
SURGE, SWAT | Likelihood
and httperf. Estimation [9].
Jean 2 model Semantic de- | not applicable
scriptions [28].
KOOZA [25]. Markov Chain | Storage: block size,
Models for stor- | type, randomness and
age, processor | inter-arrival times. Pro-
and memory. | cessor: CPU utilization.
Simple queuing | Network: arrival-rate.
for network.
not applicable Autoregressive | Number of visits to a
moving aver- | single page from the
age method | total number of cus-
(ARMA) [69]. | tomers, number of ma-
chines providing the ser-
vice demand and the
think time for clients.
Data In- | not applicable Kernel Canon- | Map time, reduce time,
tensive ical Correlation | total execution time,
Analysis [34]. map output bytes,
HDFS bytes written,
and locally written
bytes.
Media Medisyn [21] Mathematical | Time, file name, dur-
streaming model in a | ation, file size, avail-
tool called | able wusers’” bandwidth
MediaProf. and elapse end time.

Table 2.1: Techniques and Tools for Workload Generation and Resource

Estimation.

41

Various parameters are accessed from the application logs for each category
of workload, since the nature of each category is different. Furthermore, it is
difficult to establish generic workload prediction mechanisms. This is because
the behaviour of the users of each application as well as its architecture and
implementation style make each workload pattern unique.

Previous workload patterns and their associated system parameters are es-
sential to estimate future workload. For this purpose, parameters required
for each category of applications have been compiled in Table 2.1. Mainly
statistical approaches have been used to estimate future workloads such as
KCCA [34], PCA [80], regression analysis [69], and Maximum Likelihood Es-
timation [9]. Table 2.1 summarises the techniques and tools used for workload
generation as well as the workload estimation methods and parameters used
in these works. Besides these tools, JMeter! is an open source load genera-
tion tool used to simulate workload for multi category of applications and is
widely used for performance testing.

Overall, statistical prediction techniques were used to estimate resource re-
quirements as demonstrated by Islam et al. [42], Weisberg [84]. The ideal
method depends on the relationship between resource usage patterns and the
currently active workload.

2.3.1.2 Resource Usage Monitoring Tools

Capacity planning requires analysts to monitor resource usage over a number
of dimensions: in terms of load (e.g., requests), over time, over outputs,
etc. Such analyses rely on the tools available for monitoring resource usage.
These include Ganglia?, VBoxManage?®, CloudWatch?* and Solarwinds®. Such
tools are able to collect information related to the usage of resources such as
CPU, memory, storage and network by a virtual machine and at predefined
intervals (e.g. every 1 second). Furthermore, the operating systems of the
VMs are also able to record resource utilisation through utility programs
(e.g. the UNIX “top” program) [6]. This information can be stored for
further processing and visualisation.

'http://jmeter.apache.org/
’http://ganglia.sourceforge.net/
3https://www.virtualbox.org/
“http://aws.amazon.com/cloudwatch/
Shttp://www.solarwinds.com/uk/

42

http://jmeter.apache.org/
http://ganglia.sourceforge.net/
https://www.virtualbox.org/
http://aws.amazon.com/cloudwatch/
http://www.solarwinds.com/uk/

Capacity | Cost Model Operational Models
Planning
Virtual Reward and pen- | Normal and surge operations model [4].
Data alty based on re- | Markov Chain Models; for storage, pro-
Centre spond time [4]. cessor and memory and simple queue
model for network [25]. Decision retrieving
media file from memory or disk [21]. Min-
imum resource requirement [28]. Gradu-
ally increase the number of machines to
identify the right number of resources re-
quired by calling the Mean Value Ana-
lysis [69]. Kalman filter, double expo-
nential smoothing, and Markov predic-
tion [55].
Physical Customer Prior- | Surplus resource distribution [28]. Pre-
Data ity model [28]. | booted and preconfigured VM instances
Centre Cost with energy | with common feature [27]. Markov
consumption chain technique [46]. Multi-dimensional
and cost of VM | Resource Integrated Scheduling al-
creation [27]. gorithm [78].

Table 2.2: Physical and Virtual Data Centre Capacity Planning.

2.3.2 Physical and Virtual Data Centres Capacity
Planning

To be cost-effective, a sufficient amount of resources need to be allocated for
the installation of VMs. This is to ensure an acceptable level of performance
for the hosted applications and to minimise the over-provisioning or under-
provisioning of resources. A PiP needs to run a minimum number of physical
servers with optimum utilisation to fulfil a ViP’s VM demands with the
agreed response time for VM creation. The methods implemented in the
environments need to be considered in capacity planning.

Several methods for performing capacity planning from the ViP and PiP
perspective are outlined in Table 2.2. The methods are divided into cost and
operational models for respective capacity planning. Capacity planning in
virtual data centres is performed by ViP whereas the computing resources are
virtually managed based on application workloads. On the other hand, PiP
performs capacity planning in physical data centres based on VM demand

43

triggered by application workload.

The basic computing resource components in capacity planning are CPU,
memory, storage, disk and network use [6]. Certain works have combined all
those resources as a unit, such as Abrahao et al. [4], Roy et al. [69]. On the
other hand, the following studies only selected a component or a selection
of specific components. Work presented in Ejarque et al. [28], Tan et al.
[80] focuses on CPU and memory usage, Sun et al. [78] also include storage
in their study, while Delimitrou and Kozyrakis [25] explore the combination
of four components by extending their studies to include network resources.
Ganapathi et al. [34] explores the execution time of data intensive workloads
for scheduling and resource allocation.

2.4 Software Performance Engineering

Software performance engineering (SPE) is a broad research area that is
mainly concerned with to the study of methods and techniques for improv-
ing the performance of software systems. SPE is an adjacent research area to
capacity planning, however, since this thesis focuses on predicting resource
requirements for existing applications - rather than improving the perform-
ance of these applications - this section does not provide a broad review of
SPE literature. Of particular interest however, is the work on frameworks
such as the Palladio Component Model (PCM) and Descartes.

PCM is a mature meta-model for component-based software architectures
(CBSE) which contains resource and workload models as SPE compon-
ents [11]. Resource metrics in resource models are defined individually
within the resource container (server) and workload is classified as open and
closed. A general metamodel of software workloads is presented in PCM. The
Descarters meta-model (DMM) is an architecture-level modelling language
for Quality-of-Service and resource management of IT systems, infrastruc-
tures and services [51]. PCM and a subset of DMM have been used to
predict software performance of online applications [15, 16].

In SPE, three categories of performance model parameters are defined and
those are operational profile (probability software used by user), workload
and resource demand [11, 82]. The workload is divided into open and closed
workload based on user classification. An open workload is triggered by
users that are not known in advance such as users of the World Wide Web
while a closed workload is triggered by known users such as users of a specific

44

software in a local area network. The resource demands represent the amount
of resources that a software requires to complete its task.

In this thesis, workload is defined as a task that a software needs to process.
The processing of this workload triggers the resource demand. The type of
workload is categories according to the software. For example, in web ap-
plications, workloads are initiated through browser requests. Other software,
such as database management systems or operating systems has their own
workload types. In the approach proposed later on in this thesis, each ap-
plication has its own workload DSML to capture the predicted workload, as
opposed to a generic metamodel provided by methods such as PMC. A dedic-
ated metamodel enables precision and conciseness while a generic metamodel
eliminates the upfront metamodelling effort. In this work, the former were
prioritised over the latter.

2.5 Chapter Summary

As the aim of this research is to provide a solution for capacity planning in
virtualised environments which comprise virtual and physical data centres, a
review of the evolution of data centres was presented. The literature review
continued with a field survey on virtualisation. Resource management is
closely related to the operational cost of data centres and capacity planning
is required to estimate realistic resource requirement. Therefore, resource
management and costing in data centres were discussed. A literature sur-
vey on capacity planning related to resource estimation techniques for web
applications and tools to monitor resource usage was also conducted and
approaches for capacity planning in virtual and physical data centres were
reviewed.

The next chapter proceeds with a review of Model-Driven Engineering and
Domain-Specific Modelling principles and techniques, which are used in the
context of the capacity planning framework developed in this work.

45

Chapter 3

Model Driven Engineering

3.1 Introduction

This project investigates the potential of Model Driven Engineering (MDE)
for supporting capacity planning. MDE is an engineering approach that
treats models as first-class artefacts and advocates constructing rigorous
models using Domain Specific Modelling Languages (DSMLs). There are
many standards compliant with MDE principles, some of which are illus-
trated in Figure 3.1 are Model Drivel Architecture, Model Integrated Com-
puting and Software Factories. In MDE, models are managed using auto-
mated tools such as transformation, merging and comparison engines, model-
to-text and text-to-model generators. Figure 3.1 also unillustrated respective
tools for the identified standards. In this thesis, Domain Specific Modelling
(DSM) and model transformation are utilised for the purposes of capacity
planning. This chapter presents an overview of the main concepts, tools and
processes related to MDE.

3.2 Models in MDE

The main principle of MDE is “Everything is a Model” [12]. Therefore, it is
useful to explore the definition of model before further exploring MDE. The
Oxford Dictionary defines model as':

'http://oxforddictionaries.com/definition/model

46

http://oxforddictionaries.com/definition/model

Principles . 3 .
Model-Driven Engineering

(MDE)
Standards
. Model oth
MOd?I Driven Integrated Software St derd
Architecture Computing Factories andards

(MDA)

(MIC)

Tools

Generic Model
Environment
(GME)

Eclipse Modelling
Framework
(EMF)

Microsoft

Support for DSL Qi

Figure 3.1: MDE Standards and Tools. Adapted from [52].

[noun]

1 a three-dimensional representation of a person or thing or of a
proposed structure, typically on a smaller scale than the original.
2 a thing used as an example to follow or imitate.

3 a simplified description, especially a mathematical one, of a
system or process, to assist calculations and predictions.

4 a person employed to display clothes by wearing them.

5 a particular design or version of a product.

Jverb] (models, modelling, modelled; US models, modelling, mod-
elled)

6 fashion or shape (a three-dimensional figure or object) in a mal-
leable material such as clay or wax.

7 (model something on/after) use (a system, procedure, etc.) as
an example to follow or imitate.

8 display (clothes) by wearing them.

In the context of models in MDE, definition of number 5 and 7 are most
suitable to define a model. Traditionally in Software Engineering, models
have been used as initial design sketches mainly aimed for communicating
ideas among software engineers. MDE promotes models as core artifacts
that drive the entire software development process. The use of models to
represent abstractions of the real world has been widely practised in many
areas of knowledge [33]. Schmidt [70] and Favre [31] state that a model

47

in MDE represents an abstraction of a domain of interest. Domain-specific
models raise the level of abstraction by specifying the solution in a language
that directly uses concepts and rules from the domain of interest [45].

In MDE, models are interactive artefacts that are manipulated by model
management operations [48]. Models can be used to generate a software
system through a series of automatic transformations [24, 73]. Software de-
velopment focusing on models, moves the software development task from
programmer to domain expert, this arguably increases productivity, whilst
reducing development time [71, 72, 73]. Hutchinson et al. [40, 41] point out
that the benefits of using MDE in practice are the abilities to: i) quickly
respond to changes in requirements, ii) improve communication with stake-
holders, and iii) increase productivity, maintainability, and portability.

3.2.1 Domain Specific Modelling

Domain Specific Modelling (DSM) is the practice of creating models for a
specific domain with Domain Specific Modelling Languages (DSMLs) suitable
for that domain [76]. The rationale behind DSM is that each application
domain is characterised by its own set of abstractions which are represented
precisely and effectively using tailored modelling languages instead of generic
languages.

3.2.1.1 Domain Specific Modelling Language

In Computer Science, there are two main types of languages [13, 26]: Domain
Specific Languages (DSLs) and General Purpose Languages (GPLs). DSML
is a branch under DSL; Figure 3.2 shows the relationship between them [13].

A DSML consists of five fundamental components [23]: 1i)concrete syn-
taxr as human-centric representation, ii) abstract syntaz as computer-centric
presentation, iii) semantic domain which is defined as a separate model, iv)
display mapping which links the abstract syntax to the concrete syntax, and
v) semantic mapping which links the abstract syntax to the semantic domain.
Figure 3.4 illustrates the relationship between these components.

A metamodel is a model that specifies the language, concepts, and constraints
of other models [45]. The word ‘metamodel’ is a synonym of ‘DSML’. A model
is said to conform to its metamodel if it uses only the concepts defined in the
metamodel and does not violate the defined constraints [12, 62]. Figure 3.3
shows the relationship between the domain, model and metamodel.

48

Computer Science
Languages

-
-

G

Iy

” i
ki =

Domain Specific General Purpose
Languages (DSL) Languages (GPL)

"
-

-

Domain Specific Other General

. Other Domain General Purpose
Modeling Languages L Modalta | Purpose
(DSML) pecific Languages odeling Languages Languages

Figure 3.2: Types of Languages in Computer Science [13]

Domain Model Metamodel

“Real World” | describes | Model Elements | describes| Metamodel
Elements Elements

Figure 3.3: Relationship between the real world, model and metamodel [76].

Domain analysis, designing an abstract syntax and mapping the syntax to
semantics are the processes involved in designing a DSML [23, 64]. Metamod-
els do not always need to be designed from scratch; they often reuse and
build atop existing metamodels [23, 30]. Reuse has been shown to increase
productivity and reduces the development time [71, 72, 73]. Emerson and
Sztipanovits [30] identified the following benefits of metamodel reuse:

i. The avoidance of duplication of effort.

ii. The emergence of high-quality reusable metamodel frag-
ments.

iii. The recognition of key metamodelling patterns and best
practices.

iv. A significant reduction in the time-to-market for new
DSMLs.

49

concrete abstract semantic
Syntax syntax domain

display / semantic

mapping Mappin

Figure 3.4: Components of DSML [23]

3.2.1.2 Model Transformation

Transformation is a fundamental concept in computer science, especially in
software engineering [73]. This concept has been around since the appearance
of second generation languages (2GLs) where programs written in assembly
language were transformed to machine code by a compiler. The compiler
behaves as a transformation engine, where the written computer programs are
converted into machine code. This is called program transformation [24, 83].
The same concept is applied in MDE using code generation where source
code is generated by a model transformation [73]. Czarnecki and Helsen [24]
discussed that program transformation and model transformation are closely
related but they are not identical. Czarnecki and Helsen [24] point out that:

...program transformation systems are typically based on
mathematically oriented concepts such as term rewriting, attrib-
ute grammars, and functional programming, model transforma-
tion systems usually adopt an object-oriented approach for rep-
resenting and manipulating their subject models.

According to Czarnecki and Helsen [24], model transformation is a process
where a set of transformation rules are applied to transform one or more
source models and produce one or more target models as output. Figure 3.5
shows the basic concepts of model transformation with a single source model
and target model (in the general case a transformation can consume/produce
more than one models).

20

Refers to Refers to

Source Metamodel —————— | Transformation Definition ————— | Target Metamodel
Conforms to Executes Conforms to
Reads : Writes
Source Model Y Transformation ' » Target Model
Engine

Figure 3.5: Basic concepts of Model Transformation [24].

Model transformation can be classified into model-to-model, model-to-text
and text-to-model transformation [13]. In model-to-model transformation,
input models are transformed into other models which can be expressed in
a different DSML. Models can be also transformed into textual artefacts
such as code, documentation and human-readable reports. This is known as
model-to-text transformation. The source of model-to-model and model-to-
text is a model or several models. However, in text-to-model transformation,
the model is the target and the textual artefacts are the source from which
the model is constructed.

3.3 MDE Technologies

MDE technologies largely provide automated model management facilities
such as transformation engines and generators to analyse and synthesise vari-
ous types of artifacts [70]. MDE standards such as MDA, MIC and Software
Factories are available with their respective modelling tools as technology for
MDE [52]. Models are abstract representations of real world and modelling is
the process of creating the models conforming to their metamodel. Therefore,
before the creation of the models, their metamodel need to be established.
The process of designing the metamodel is called as metamodelling [60]. On
top of these process, meta-metamodelling is required to enable the creation
of metamodel. Meta of metamodel is needed to describe the metamodel [31].
It is referred to as a meta-metamodel which are implemented using available
MDE tools. Paige and Rose [61] highlight that the criteria to support MDE
are as following:

MDE can be supported by any modelling language that (a) has
a metamodel /grammar/well-defined structure; and (b) has auto-
mated tools that allow the construction and manipulation of mod-
els.

51

M3 Meta-metamodelling language

PN

instance of instance of

M2 UML metamodel Other metamodel
instan;e of m:\emce of mstance of
M| Class Sequence Activity
diagram diagram diagram
instemce‘ ofy instan.ce of m:;'me of
MO Domain

e.g a biological ecosystem

Figure 3.6: The layers in MOF architecture [85].

For example, Ecore is meta-metamodel in Meta Object Facility (MOF') where
metamodels are describe using the Ecore structures. MOF! is an architecture
to define meta-metamodels in Model Driven Architecture (MDA) standards.
MDA is an approach to using models in software development and created
by the Object Management Group (OMG) consortium? [56].

There are four layers in MOF architecture [3, 14, 85]: i) M3 is a top layer
providing a metamodelling language, ii) M2 is a second layer to specify
metamodels using M3, iii) M1 is the third layer which contain models con-
form to the metamodels in M2 and iv) M0 is the object layer representing
real-world domain being modelled. Figure 3.6 shows the layers in MDA [85].

Other metamodelling technologies such as GOPRR?, MetaDepth?, or pure
XML can be used to construct, manipulate and manage the model [61]. The
following sections discus existing technologies that support MDE. Discussion
is focused on Eclipse Modelling Framework® and Epsilon® as these technolo-
gies are used in this work.

Thttp://www.omg.org/mof/

http://www.omg.org/mof/
3http://www.metacase.com/support/45/manuals/graphi%20metamodeling.pdf
‘http://astreo.ii.uam.es/~jlara/metaDepth/
Shttp://www.eclipse.org/modeling/emf/
Shttp://www.eclipse.org/gmt/epsilon/

52

http://www.metacase.com/support/45/manuals/graphi%20metamodeling.pdf
http://astreo.ii.uam.es/~jlara/metaDepth/
http://www.eclipse.org/modeling/emf/
http://www.eclipse.org/gmt/epsilon/

3.3.1 Eclipse Modelling Framework

The Eclipse Modelling Framework (EMF) is an open source modelling frame-
work that has been developed as a pragmatic implementation of the MOF
metamodelling architecture [13]. It provides stable and well maintained
tool support for modelling activities, such as a graphical editor for defin-
ing metamodels and tools for automatically generating model editors from a
metamodel. EMF is well established and widely used. It unifies Java, XML,
and UML where metamodels can be defined using a UML modelling tool, an
XML schema, or Java code [77]. In this thesis, EMF is used to implement
the MDE approach. The data types in EMF Ecore Diagrams have prefix ‘E’.
For example, string data type is referred to as EString and applies to others.
However, this is not applied in EMF codes.

Listing 3.1: EMF Codes to Create School Metamodel.

1 @namespace (uri="School” , prefix="")
2 package School;

3 class School{

4 attr String name;

5 attr String address;

6 val Room[l..%] rooms;

7 val CentralClock[1] CC;

8
9

}
10 class Room{
11 attr String name;
12 val Buzzer[1] buzzer;
13}
14
15 class Buzzer{
16 attr String Id;
17 ref CentralClock[1] CC;
18 }

19
20 class CentralClock{attr String name;}

Ecore is the metamodelling language of EMF [77]. Metamodels for example
in Figure 3.7 shows the Ecore diagram for a contrived School metamodel. The
same metamodel can be defined in a textual form as illustrated in Listing 3.1.

On top of EMF, Epsilon [47] is a model management framework that interacts
with EMF models to perform common MDE activities (e.g. model-to-model
and model-to-text transformation, model validation, model comparison and
merging). The following section discusses in detail the structure and the
facilities provided by Epsilon.

93

B school

— . Z name:EString]
= address : EString
Fooms
CiC
1.7 1
H Room H Buzzer o H centralClock

buzzer

= name : EString *ﬁl- = Id : EString = name : EString

Figure 3.7: Sample of Ecore Diagram for MySchool Metamodel.

3.3.2 Epsilon

The name Epsilon stands for Extensible Platform of Integrated Languages for
Model Management. It is a platform offering consistent and interoperable
task-specific languages for model management tasks such as model trans-
formation, code generation, model comparison, merging, refactoring and val-
idation [47]. The core language of Epsilon is the Epsilon Object Language
(EOL). A combination of the procedural style of JavaScript and the powerful
model querying capabilities of OCL (Object Constraint Language)® is used
in this interpreted model-oriented language [47].

Epsilon provides several task-specific languages for model management and
utilities for modelling [47]. It provides Eclipse-based development tools and
an interpreter that executes programs written in its languages. Epsilon is
a component of the Eclipse Modelling project and provides strong support
for EMF. However, it is not bound to EMF and the support for EMF is
implemented as a driver of the Epsilon Model Connectivity (EMC) layer.
Figure 3.8 illustrates the structure, the languages and the drivers in Epsilon.

In this work, three languages of Epsilon are used to develop model manage-
ment programs to facilitate the capacity planning process. These languages
are Epsilon Object Language (EOL) [48], Epsilon Transformation Language
(ETL) [49] and Epsilon Generation Language (EGL) [68]. The following
section discusses them in detail.

http://www.omg.org/spec/0CL/

o4

http://www.omg.org/spec/OCL/

Model Refactoring (EWL) | Pattern Matching (EPL) | Model Validation (EVL)

Model Comparison (ECL) Model-to-model Transformation (ETL)

Model Merging (EML) | Code Generation (EGL) Model Migration (Flock)

é;, extend

Epsilon Object Language (EOL) = JavaScript + OCL

Task-specific
languages

Epsilon Model Connectivity (EMC)

b implement ‘%‘

8

E E Eclipse Modeling Framework (EMF) Schema-less XML
th >

<5 | Meta DataRepository (MDR) Csv Bibtex MetaEdit+ *

£

[¥]

1}

b=

Figure 3.8: The Structure and Languages in Epsilon [1].

3.3.2.1 Epsilon Object Language

EOL is an imperative programming language for creating, querying and
modifying EMF models. The aim of EOL is to provide a reusable set of
common model management facilities where task-specific languages can be
implemented. Beside this, EOL can be used as a general-purpose standalone
model management language to automate tasks that do not fall into the
scope of task-specific languages such as ETL, EGL and others.

EOL programs are organized in modules where a body and a number of
operations are defined. The body is a block of statements that are evaluated
when the module is executed. Each operation defines the kind of objects on
which it is applicable (context), a name, a set of parameters and optionally
a return type.

Listing 3.2 shows an example of an of EOL program that creates an EMF
model. Using this program, a model conforming to the School metamodel
defined in Figure 3.7 can be created. The produced model will have a model
element of type School with a CentralClock object and three Room objects.
The creation of the model in the model must satisfy the structural constraints
defined in the metamodel. For example the object School can only have one

95

ContralClock object and at least a Room object. Other model management
activities such as querying and modifying existing EMF models can be per-
formed with EOL programs. In this thesis, EOL is used to update, compare
and merge models.

Listing 3.2: Sample EOL Codes to Create a Model conforming to School
Metamodel.

//get School information

var sch : School := new School;

var CClock : CentralClock := new CentralClock;
sch .name:="SampleSchool ’ ;

sch.CC = CClock;

//get room and buzz information
for (i in Sequence{1..3}){
var room : Room := new Room;
room .name:=’'Room’ + 1i;
sch.rooms.add (room) ;

© 00 N O Utk W N

_= e =
w N = O

var buzz : Buzzer := new Buzzer;
buzz.Id :="Buzz’ + i;
buzz .CC := CClock ;

room. buzzer := buzz;

== =
(@ RGBT

._.
3
-

3.3.2.2 Epsilon Transformation Language

ETL is a rule-based model-to-model transformation language that supports
transforming many input to many output models, rule inheritance, lazy and
greedy rules, and the ability to query and modify both input and output
models. Source and target models are required with the rules to implement
the transformation. Listing 3.3 shows the concrete syntax of ETL. The body
of transformation rules is specified in EOL (e.g. Listing 3.3 in line 10 and
12, statement+). An example of implementing ETL were demonstrated with
Listing 3.4 and Figure 3.9.

26

Listing 3.3: ETL Concrete Syntax[47].

1 (@abstract)?

2 (Qlazy)?

3 (@primary)?

4 rule <name>

5 transform <sourceParameterName>:<sourceParameterType>
6 to (<rightParameterName>:<rightParameterType>
7 (, <rightParameterName>:<rightParameterType >)*
8 (extends (<ruleName>,)x<ruleName>)? {

9

10 (guard (:expression)|({statement+}))?

11

12 statement+

13 }

Figure 3.9 shows sample metamodels to explain ETL program in Listing 3.4.
Since it is required to have source and target models in implementing ETL,
two metamodels (University and Student Record) are used as an example.
In Listing 3.4, “S” is a university model created conforming to Univer-
sity and “T” is student record model created conforming to StudentRecord
metamodel. The ETL program presented in Listing 3.4 transform the S
model to T model (the University model are transformed to StudentRecord)
model according to the defined rules.

Listing 3.4: Sample ETL rules.

1 rule StudentToTranscript

transform S: University!Student

to T:StudentRecord! Transcript {
T.student := S.name;
T.items.addAll(S.grades.equivalent ());

}

rule ModuleGradeToTransItem
transform G: University!Grade
to TI:StudentRecord! TranscriptItem {
TI.module:=G. module .name;
TI.mark:=G.mark;

© 00 N O Utk W N

== =
N = O

_.
w
—

For example, models to conform to the University and the Student Record
metamodels in Figure 3.9 are used in ETL program in Listing 3.4. A Univer-
sity model has student information such as student name, modules taken by
the student and also the grade obtained for those modules. A StudentRecord
model captures transcripts information for all the student. The ETL pro-
gram transforms a University model to a StudentRecord model according to

57

H module

= lecturer : EString
= name : EString

H student
= name : EString

1 I |
student 1
module

H Grade L
= mark : EIntegerObject | grades

0.% H Transcriptitem
H Transcript | items | = module : EString
L ,
= student : EString o k= mark : Elnt

Figure 3.9: Sample DSMLs of University and Student Record.

the two defined rules (StudentToTranscript and ModuleGradeTo Transltem).
In StudentToTranscript rule, information (eg. student name and grades) of
all the student captured in the University model (S) are transformed to an
individual Transcript object of the StudentRecord model (T). The Module-
GradeToTransItem rule, transforms the grade of the modules taken by the

28

student to Transcriptitem object of StudentRecord model. Line number 5 in
Listing 3.4 invokes the ModuleGradeTo Transltem rule.

3.3.2.3 Epsilon Generation Language

EGL is a template-based model-to-text language for generating code, docu-
mentation and other textual artefacts from models. EGL supports content-
destination decoupling, protected regions for mixing generated with hand-
written code and template coordination.

Listing 3.5: Sample Main EGL Program.

1 \%

2 var tran: Sequence;

3 tran := S!Transcript.alllnstances;

4

5 for (t in tran){

6 var genTxt : Template := TemplateFactory.load (’GT.egl’);
7 genTxt.populate('tranl’ t);

8 genTxt.store(t.student +’.txt’ ,true);

9

10 \ %]

The concrete syntax of EGL is similar to that of other template based text
generation languages, such as PHP. The tag pair [% %] is used to define
a dynamic section and text not enclosed in the tag pair is a static section.
Listing 3.6 illustrates EGL program named GT.elg with dynamic and static
sections. This program is called by another EGL template as presented in
Listing 3.5.

Listing 3.6: GT.egl Program.

1 Student name : [\%=tranl.student \%]

2 Subject Mark

3 .

4 \% for (j in tranl.items){ \%]

5 \%=j .module \%][\%="\t\t\t"\%] [\%=j.mark \%]
6 \% } \%]

7

EGL in this work is used to produce charts (using the Google Graph! library)
to visualise the results of the various tasks of the capacity planning process.

'https://developers.google.com/chart/

29

https://developers.google.com/chart/

3.4 Chapter Summary

Analysis of the literature suggests that MDE with DSM can be applied in
various domains by constructing DSMLs for the domains of interest. In
Chapter 2, the domain of interest was presented and the possibilities of util-
ising DSM and model analysis techniques to solve the identified problem
were discussed. This chapter discussed concepts and technologies related to
modelling, metamodelling and automated model management.

The following chapters discuss the utilisation of MDE in performing capacity
planning specifically for virtualised environments.

60

Chapter 4

Domain Analysis

4.1 Introduction

Based on the literature review presented in Chapter 2, three main phases
are identified in conducting capacity planning in virtualised environments.
These phases are elaborated upon and discussed in detail in this chapter with
a suggested framework for utilising MDE generally and DSM specifically.
The benefits of using DSM in this research are also discussed. Along with
an analysis of the literature, the scope, contribution and challenges of the
research are considered.

4.2 Capacity Planning Phases

Three important phases are identified in running applications in virtualised
environments. Firstly, managing fluctuating workloads initiated by end-users
which consume the virtual resources of virtual machines used for hosting.
Secondly, managing virtual machine resources, which are used to run the ap-
plications in a virtual data centre; and finally, managing physical resources in
physical data centres. Previous research has treated these phases in isolation.
This work proposes an integrated framework for capacity management from
the end-user to the infrastructure service provider. A set of domain specific
modelling languages (DSMLs) makes it possible to facilitate the integrations
of these three phases.

Each application hosted on a virtual machine has its own unique character-

61

1 1
By PiP
1

|
VMPackage-
DSL
AP workload3 I7, VMRequest-
: : | s Service Packages

VMallocation
-DSL

Virtual Capacity Management

Workload Management Physical Capacity Management

| Resource
8 Optimization
Ap, " IT’" | v
I VM Selection VM
VM-DSL PM-DSL
Logs Resource Requirement | |
Analysis formulas I I
Phase 1: I Phase 2: I Phase 3:
1 1

Figure 4.1: Capacity Planning Framework in Virtualised Environments.

istics (e.g. due to differences in requirements, architecture, implementation
technologies) as such workload specification models are unique to each applic-
ation. These can be expressed using a DSML tailored to the application. A
DSML can precisely capture all the parameters needed to express actual and
estimated user workloads, and the workload models can then be analysed
and consolidated in order to estimate virtual and physical resource usage.
While applications are unique and each of them requires its own DSML to
specify its workload, it is anticipated that a single domain specific language
will be sufficient to express virtual machine workload specifications by cap-
turing requirements for CPU, memory and other resources of interest over
time. Virtual machine workload models can be used to perform capacity
management, in order to achieve an acceptable balance between perform-
ance and cost. Moreover, the information captured in the virtual machine
demand model (VM-DSL) can be used to optimise physical resources in the
PiP’s data centre.

4.2.1 Capacity Planning Framework

In this work we propose an MDE framework for managing the different phases
of capacity planning in an integrated way. The framework consists of Do-
main Specific Languages which are used to model the resource requirements
estimates in each phase. The framework also uses model transformations
to transform resource requirement models across the different phases of the
process.

62

Figure 4.1 illustrates the flow of information through the different phases
of capacity planning, the responsible stakeholders, and the MDE artefacts
involved in each phase. Estimation of virtual resource requirements based
on known application workloads is necessary for costing and performance
management. The virtualisation technology (i.e. the virtualisation type and
architecture), affect the performance of the VMs and also resource require-
ments. Resource requirement analysis needs to be performed in the selected
virtualised environment to predict the virtual capacity requirements. There-
fore, estimating virtual resource requirement is performed by ViP based on
known workload information captured by the application owner.

Understanding the application workload patterns is beyond the scope of this
research. Business analysis or long term analysis [65] of the workload de-
mand are examples of ways to predict the application workload. Estim-
ated workloads are captured with a unique WL-DSL for each application.
Then, the transformation to virtual machine requirements is performed by
ViP, while estimation of physical resource requirements is performed by PiP.
The proposed framework with DSMLs for modelling virtual machine pack-
ages (VMpackages) and allocation of virtual machines to physical resources
(VMallocation) is presented in Figure 4.1. Workload, virtual capacity and
physical capacity management are clearly illustrated as three separate phases
with their associated DSMLs represented as parallelograms. Transformations
are used to map application workloads into unified VM requirements, to dis-
tribute unified VM requirements across a set of available VM packages, and
finally to allocate VMs to physical machines. In the following sections, these
three phases are discussed in detail and requirements are elicited for an in-
tegrated framework that can support end-to-end capacity planning.

4.2.1.1 Capturing Application Workloads

The application owner who hosts their services on ViP-managed resources
needs to estimate the total resource requirements over different time peri-
ods in order to satisfy the QoS (Quality of Service) requirements of their
services [36]. Resource requirements are based on the estimated applica-
tion workload over specific time periods. Since each application is unique, an
application-specific workload DSL (WL-DSL) is essential to capture its work-
load estimates. Application workload models conforming to their respective
WL-DSL are constructed based on the expectations and previous experience
of the application owner (e.g. number of users expected to interact with the
application over a certain period of time, types of actions these users are

63

expected to perform). While each application demonstrates its own charac-
teristics, all WL-DSLs need to provide constructs for capturing information
related to the time period in which each workload estimate refers to. These
constructs can be pulled up into a core WL-DSL which application-specific
WL-DSLs can inherit from.

4.2.1.2 Virtual Resource Requirements Estimation and Selection
of VM Packages

The second phase involves estimating the virtual machine resource require-
ments based on the information captured in the application workload models.
Resources such as CPU, memory, storage and bandwidth can be calculated
from workload models using dedicated model-to-model transformations in
the form of VM requirement models conforming to the VMRequest-DSL.
Such model-to-model transformations are highly-specific to the application
in question and need to be composed by the application owner as they are
based predominately on domain knowledge and past experience. Later, the
required virtual resources are mapped to a cost-efficient configuration of con-
crete VM packages offered by the PiP providers through another round of
model-to-model transformations.

4.2.1.3 Consolidating VM Requirements to Physical Resource
Requirements

In this last phase of the process, virtual machine requirements captured as
VM-DSL models are consolidated and allocated to physical resources avail-
able in the PiP’s data centre. PM-DSL can be used to model the physical
resources available in the physical data centres. The VMallocation-DSL then
captures possible allocations of VMs selected by the application owner un-
der different optimization methods such as round-robin [46], greedy [28, 78],
green [27] and surplus [28].

4.3 Analysis of Research Scope

This chapter provides an overview of full integrated solution for capacity
planning from application workloads (phase 1) to virtual resources require-
ments (phase 2) and continue to physical resource requirements (phase 3).

64

This research focuses on integrating phase 1 and phase 2 by utilising Model
Driven Engineering.

The performance of an application hosted in different virtualisation envir-
onments can differ, even though it is handling similar workloads with the
same virtual resources specifications. The performance of VMs in virtualised
environments is closely related to the virtualisation technology used. The vir-
tualisation type and the architecture of virtualisation environments impact
upon the performance of VM. This study focuses on the process of deriving
the relationship between virtual resource requirement and workloads. This
relationship is necessary when estimating resource requirement for specific
virtualised environments in integrating phase 1 and phase 2 of the proposed
framework.

Capacity planning (in general) involves predicting future computing resource
requirements by monitoring a system’s resource usage patterns, and compar-
ing them with known or historical workload patterns. Capacity planning
in virtual environments aims to ensure that allocated virtual computing re-
sources such as CPU, memory, storage and network bandwidth will be suf-
ficient to support future computational needs. In this process, available
system resources are observed and performance is measured [74]. Also, re-
source usage patterns are determined to forecast the resources that need to
be allocated to serve future workloads in compliance with the service’s QoS
requirements [65]. To achieve this, it is necessary to identify incoming work-
loads, to monitor resource usage, and to associate resource usage with the
workloads that triggered it.

Therefore, two detailed modelling solutions are proposed with accompanying
DSMLs. Firstly, Resource Requirement Analysis (ReRA) is performed to
derive application specific formulas for general resource metrics such as CPU,
memory, storage and bandwidth. Secondly, these formulas are used in the
transformation engine to estimate resource requirements based on known
workload patterns. This is called as Virtual Resource Requirement (ViRR).

4.3.1 Application Resource Requirement Analysis

Automating the estimation of resource requirements in the capacity planning
process involves several steps. Resource Requirement Analysis (ReRA) of an
application is the initial step in phase 1 of the framework and its position
is illustrated in Figure 4.1. It involves observing the resource usage and
correlating it with application workloads. DSMLs (and models) are used to

65

Log Files Configurations

v

Workload Simulation

v

Observing Resource
Usage with Workloads
over Time

v

Correlate Resource Usage
with Workloads

v

Statistical Analysis

v

Produce Resource
Requirement Formulas
based on Workloads

Figure 4.2: Process of Resource Requirement Analysis.

precisely specify resource requirements and workloads and to facilitate the
resource requirement analysis process, which then feeds into the remainder
of the capacity planning process.

Information related to usage of selected resources can be extracted from log
files generated by resource monitoring tools. Workloads being processed are
also generally captured in the application log. Resource requirement formulas
for the resource metrics can be obtained by monitoring and analysing the
resource usage of the VMs involved with the workload being processed. The
time granularity of resource usage measurements should be comparable to
the workload log.

ReRA is a process used to analyse resource usage and produce resource re-
quirement formulas based on an individual application workload. Real work-
loads typically comprise a combination of several workload types in a given
application. Resource usage might differ according to workload type. As
ReRA process analyses the resource usage of the identified workload type
individually, simulated workload is used to analyse the resource usage of

66

that workload type. The simulator provides control over the workload being
analysed and enables additional input compares to the real workloads.

Figure 4.2 shows the process involved in ReRA. Information for the initial
models is extracted from various logs files. These files should contain relevant
information and this can be performed by setting the log files configuration.
There is a requirement to simulate the application workload to observe the
usage of resource metrics with the simulated workloads. Later, resource us-
age is correlated with the workload being processed. Statistical analysis is
performed to estimate resource requirements for the workload and a statist-
ical analysis tool is used to produce the resource requirement formulas for
resource metrics. These formulas are used in a transformation of a respective
application in the following section.

4.3.2 Estimating Virtual Resource Requirements

Virtual resource requirements are estimated based on predicted workload
with attributes and formulas produced from ReRA. This step is implemented
as a transformation to produce a VMRequest-DSL models based on respective
WL-DSL models. Since applications are unique by themselves and have their
own WL-DSL, the formulas retrieved for resource requirement estimation are
also unique. Therefore, the transformation (T) used to transform WL-DSL
to VMRequest-DSL is application specific. This process is abbreviated as
ViRR (Virtual Resource Requirement). The long real-time log analysis of
workload recording is required to identify the workload pattern [65]. This
allows the capacity planning manager to estimate workloads based on previ-
ous log recordings. This estimated workload pattern acts as input to predict
resource requirements for a given process.

4.4 Benefits of DSM

DSMLs provide precise and standardised ways to capture these common
concepts and structures, that can be used by many different analysis tools.
The details of the proposed DSMLs are presented in the following chapter,
but first, the overall resource requirement analysis process that can facilitate
capacity planning for web applications, is discussed.

A DSML-based approach is presented to support resource requirement ana-
lysis activities of capacity planning. The novelties are: DSMLs that allow

67

resource and requests logs as well as workloads to be precisely captured as
models, as well as a transparent, automated and repeatable Model-Driven
Engineering (MDE) process for generating predictions for resource usage from
workload models. The MDE process, which exploits model transformation,
comparison and merging, is modularised so that it can be configured for dif-
ferent kinds of capacity planning applications and technical infrastructures.

An additional contribution is the ability to derive a set of application-specific
resource requirement formulas for resource metrics (CPU, memory, network
and storage). We demonstrate the modelling approach in a proof-of-concept
web application examples in the following chapters.

4.5 Technical Challenges

There are several challenges in performing this research work. Below is a list
of such challenges faced throughout the research:

i. Establishing a virtualised environment.
The proposed capacity planning solution is to be implemented in a virtu-
alised environment. Therefore, a virtualised infrastructure is necessary
to implement and evaluate the proposed modelling approach. If the in-
frastructure already exists, this research will be directed to focus more
on modelling activities. Establishing a virtualised environment in itself
is time consuming and requires specialised technical skills.

ii. Time synchronisation.

In the domain of interest in this thesis, the information required to pop-
ulate models gathered from logs recording of the workload processed by
an application running in a virtualised environment. And also, logs re-
cording the resource usage of the VM that hosts the application. One of
the elements used to link the log files is the time recorded in each file.
Therefore, time synchronisation is an important and necessary action
which needs to be taken to handle this issue.

iii. Workload duration.
The correlation is difficult to be performed for the applications’ work-
loads which complete processing with a very small time period. For
example in the case of web applications, the web server records the web
requests as workloads after the completion of the requests. The work-
load simulator generates the following request once it has received the
feedback from the web server of the completion of the previous request.

68

Therefore, there will be a small time interval in generating the following
request to maintain certain number of request. Generally, the resource
monitoring tools are able to capture the resource utilisation up to a
second. If the request completes before the resource monitoring tool
records the resource utilisation, the correlation is difficult to perform
since there is possibility that the request log shows that there is no re-
quest recorded at that time. The suggestion to manage this challenge is
discussed in Chapter 8.

iv. Learning Curve.

The work presented in this thesis involves many technical tools such as
VirtualBox, JMeter, Epsilon, Apache2, PHP, Java and Matlab. Learning
and adopting the relevant tools for constructing the technical solution
is challenging as a beginner. Alongside this, for the novice, producing a
simple solution with MDE is not easy. A basic understanding of the prin-
ciple and terminology of MDE is necessary in addition to understanding
the problem domain.

4.6 Research Contribution

A DSML-based approach to support capacity planning is presented in this
thesis. The objectives, hypothesis and research questions were discussed
in Chapter 1. The novelties of the research are sets of DSMLs that allow
workloads to be precisely captured using models, as well as a transparent,
automated and repeatable MDE process for generating predictions for re-
source usage from workload models. The MDE process, which exploits model
transformation, comparison and merging, is modularised so that it can be
configured for different kinds of capacity planning applications and technical
infrastructures.

4.7 Chapter Summary

The analysis of the problem domain suggests that the integrated framework
with three phases can be implemented by having DSMLs for the domains.
The phases were explained with their respective DSMLs. Although a fully
integrated solution for capacity planning was proposed with the framework,
the focus of the research is in proposing a detailed modelling solution by
integrating phase 1 and 2. The benefits of DSM, the research challenges and

69

the contribution of the proposed solutions were also discussed. The following
chapter explains the design of the proposed framework.

70

Chapter 5

Design of the MDE Solutions

5.1 Introduction

The design of the proposed DSMLs and model management activities to
automate the ReRA and ViRR processes are presented and elaborated upon
in this chapter. The DSMLs are considered together with their features,
management operations, rules and the transformation relationships between
them. The proposed framework was designed to integrate the first two phases
of the capacity planning process as discussed in Chapter 4. The remain-
ing phases are beyond the scope of this work. The set of DSMLs and the
model management activities were designed to automate Resource Require-
ment Analysis process discussed in Section 4.3.1. In this and the following
chapters, the name of the DSMLs and its artefacts including model manage-
ments techniques developed were presented in italics.

5.2 Resource Requirement Analysis

In Section 4.3.1, the general process involved in Resource Requirement Ana-
lysis (ReRA) was discussed. To automate this process, several DSMLs were
designed together with supporting model management programs. Different
types of applications can have different DSMLs to capture information about
their workloads. The detailed discussion of the DSMLs is presented in Sec-
tion 5.2.1, firstly, to give a better overview, the ReRA process is explained
for an application running in a virtualised environment.

71

“JUSWIUOIIATY POSI[BNIIA ® Ul $59001J Sutuue[Ajoeder) o) 9)e)I[oe,] 0} (SOI[R)] pPUR S[RISWNU URWOY Aq
PoYeDIPUI) SAIIIAIDY JUSUWDFRUR]N [OPOJN PUR S[OPOJN JO 10§ ® IIM I9([}950) $50001] YO [RISULK) oY, :T'G oIngI

lepon 7 sydein 13po sisAjeuy uoneIausn
- peopuiopy LZA 1l juswalinbayalinosay e|nwiIod
FETYS) SO} 92IN0SaY
uonesijenyin D ah\f_.mh\f-. ..ﬁ.?__.
spussa]
|2POIA
Buisuna)) “in PEOIOMSAIINOSY
ﬁ.&Nﬁc ‘n sydeuo awi|
FEING)
[2POIA
12POIN

ulanedpeopdonn
awl]sp1sanbaypeolonn 1 N

S|I9poN So071peo|
SI9POIN \
dd
8o07204n0say u fogcoﬂmu__ v
abuawy g aundwio) oS 11

F 4 r 4

HENL n ahéw.h 1

s9|14 S9|d
o7 aBesn 901nosay u 8o peojyiom u

NA FINA

unu 30| laruas uonednddy

alemyos/uonesiddy

n.

80| j001 Bunioyjuow Ajpede)

UJ211Ed PEOMIOM pa1enuiis

72

A graphical illustration of the general ReRA process is shown in Figure 5.1.
An application can run on a single or on multiple (virtual or physical) ma-
chines. The incoming workloads of the application are captured in the ap-
plication server log. The workload logs (Workload Log Files) are parsed to
the Application WorkloadLog model. The hosting virtual machine is mon-
itored by resource monitoring tools which produce resource usage logs (Re-
source Usage Log Files). Parsing the logs into the Application WorkloadLog
and ResourceLog models shields the rest of the process from hard depend-
ency on particular runtimes and VM monitoring tools. The log models are
then compared and merged to produce a WorkloadResourceVsTime model.
Then, transformations are used to produce a correlation (grouping) model
(ResourceVsWorkload). To reconcile any measurement errors, cleaning is
performed. Graphs are generated based upon the WorkloadRequestVsTime
and Resource VsWorkload models.

A suitable statistical analysis method can be applied to produce precise val-
ues. This task is open for future work to further improve the predictive capab-
ility. In this thesis, basic statistical method such as mean, median, maximum
and minimum were calculated to feed into the ResourceRequirementAnalysis
model. Formulas for the resource metrics to be used in the ViRR process were
generated based on the ResourceRequirementAnalysis model. This equation
extraction module was represented with a box labelled as Resource Metrics
Formula Generation in Figure 5.1.

In the Resource Metrics Formula Generation module, an equation extraction
tool can be used to produce respective formulas for each resource metrics.
The input to this module is a text file generated with model-to-text trans-
formation program of the ResourceRequirementAnalysis model. The gener-
ated text file can be any format supported by the equation extraction tool.
The model-to-text transformation program might need to be customised to
produce such format. The information captured in the ResourceRequire-
mentAnalysis model is transformed as input data to the equation extraction
tool with the generated file, such as in a comma-separated-values (csv) file.
The output of the equation extraction tool consists of a set of formulas of
the resource metrics produced based on the input file. Figure 5.2 illustrates
the DSMLs involved and their interactions in automating the ReRA process.
Related DSMLs, together with model management techniques presented in
Figure 5.2, were designed to represent each activity involved in ReRA.

The ReRA process provides modular components for each activity. The mod-
ularity of DSMLS of ReRA process enables changes to a component without
affecting other components. This enables equation extraction to be replaced

73

with appropriate implementations such as applying machine learning. The
machine learning method normally includes statistical analysis. Therefore,
model-to-model transformation in step (vii) in Figure 5.2 can be replaced
with model-to-text transformation to produce input file to the respective
machine learning tool based on raw data captured in ResourceVsWorkload
model. The requirement for using the ResourceRequirementAnalysis model
depends on the statistical analytic capability of the tools used to produce
the equations.

The input file format for different tools may vary. Therefore, the model-to-
text transformation program need to be customised depending to the sup-
ported file format of the tool. The structure of ResourceVsWorkload and
Resource RequirementAnalysis DSMLs are not complex and changing to dif-
ferent tools only involve changes to the model-to-text program to produce
supported file format. The effort required to replace the equation extraction
tool depends on the complexity of the new tool, the format of the input it
expects, the output it produces, and the familiarity of the engineer with the
MDE technologies involved. Given the size of existing transformations (hun-
dreds of lines of code), interfacing a new text-based tool with the system
should not require more than a few hours for an MDE-literate engineer. The
main characteristic of the tool is that it must be able to produce resource
metrics equations with the data feed as input.

The ReRA process, used to retrieve formulas for resource metrics based on
workloads for an application, is discussed above. The design of the DSMLs
is described in the following section and the related model management op-
erations are described in detail in Section 5.2.2.

5.2.1 DSMLs Design of ReRA

As discussed above, a set of DSMLs for automating the resource requirement
analysis process was constructed. Figure 5.2 illustrates the set of DSMLs
and the relationship between them. This figure shows the flow and details
of the DSMLs presented in Figure 5.1. The Roman numerals in both figures
are the model management activities discussed in Section 5.2.2. This section
provides an overview of DSMLs organisation and semantics. The following
are the DSMLs developed for capture the attributes involved in the ReRA
process:

i. Application WorkloadLog
This DSML has abstract classes which can be inherited by the applic-

4

VHOY JO STINSA :¢'C oInsdLg

T [T SoINDSayUE L

i SOUANOSIHUILWL

Buisy : ar = S0IN0 ST yRE L
sisfleuyaoinosay H sisfleuyunoopeoplion g 1sA|eUyUOnE|3Ye0INosayPeo PO H

3|gnogdl @ WL pus
a|qnoa3 : AWI1HEes
JUTT ¢ IUNODPE ORI 0M
Aw- wisned {
Suisuean

“In

~'0 U3 ¢ IUN0D o
53D4N053. wunoopeopoMm H
L'0| sIunoopeoiom

I|gnod3l : buiobing 1M =
I|gqnodgs Bulosuf 313 =
2|qnodly : pasnisid = —
3|qnoad3 : pAsM WYY = 3|qnod3 : bulobino 13N HEOHT AoWEL o

F|qnodl pesn Nd2 = 4 F|qnodgl Bunuosul 3a3n umo_mm_ : Umw.n_m:nu =
a|gnody ;AW o algnoay : pasnysia uLys3 | BWEd o

BUL}ST : AWENPEOHIOM = 3|qnoas : pasm Yy ENEERNE]
UORE[EHE0IN0SaHPECPHOM a|gnogs : pasn Ndd |
2Ignoa3 : swn
plooaybol H Eojuonesinn g

BoUNosayY m

aBiap) g sqedwo) ‘Li0g

LT : N0 =
Fqnoal : bulobino 18 = BuLnsy : aweu o m_..__._umm P AWENPEOHIOM o
3|gqnodly : BUWoIuIEN = PEOPHOM B 3|qnoad3 : FWIPUE o uoypInBjuosianias §

a|gnodl : pasn ysld o B|gQnogs FWIHE}s o

FQnodl ; pEsn YYo= | =0 pio33yBoTpooRIoAM B

2gqnogl : pasn Ndd = Buiisy : aweu o

o [3D iieraA H |
FOINCSIUPECPHOM H 24ODDMIA

Bojaoanosay g

Bijuoo

5

ii.

ation workload log DSML for particular application types. Application
workload information such as start time, end time and workload name
are extracted from the application server log. This information is suf-
ficient to proceed with the ReRA process and the design is illustrated
in Figure 5.3. The configuration of the server is recorded in ‘Server-
Configuration’;, while WorkloadLogRecord records the log recordings of
the workload and ‘VirtualMachine’ stores the information of the VM.
In this thesis, the unit for time is standardised to seconds. Therefore,
‘startTime’ and ‘endTime’ are defined as EDoubel (double data type)
to record floating-point numbers in seconds. Since EMF is used in this
work, the data types presented in Ecore Diagrams have an ‘E’ prefix. The
time captured in log recording is converted to seconds in the execution
of the text-to-model transformation program.

ResourceLog

Information related to usage of selected resources is extracted from log
files generated by the tools monitoring the resource usage of the ma-
chines involved. Figure 5.5 shows the design of ResourceLog DSML. The
time granularity of resource usage measurements should be comparable
to that of the workload log. The CPU and memory allocation of the
machine is captured next to its unique identifier (name). The attrib-
ute cpuSpeed of class Machine represents the speed of a single processor
in the machine, and cpuUnit represents the number of CPUs assigned
to the machine. These values will be later used to convert the per-

ApplicationworkloadlLog

{from ApplicationWorkloadLog.ecore)

— machine
H ApplicationServer je B VirtugiMachine
logRecords 1 :
‘_q—\| 0.* O name : EString
. H workloadLogRecord
config :
= startTime : EDouble
B ServerConfiguration = endTime : EDouble
= workloadMame : EString

Figure 5.3: The Design of Application WorkloadLog DSML.

76

logRecords

WS1: WebServer LR1: LogRecord

‘_ startTime = 39808

. endTime = 39856
workloadName ="GET A"

responseCode =“200"

dataReturnSize="15118773"

machine

M1: Machine
Mame = “192.168.56.1"

LR2: LogRecord

startTime = 39860

endTime = 39908
workloadName ="GET A"
responseCode =“200"

C1: Configuration dataReturnSize="15118772"

logRecords

config
|

maxUser =150
maxLiveUser =100 LR3: LogRecord

waitingTime =5 startTime = 39860

timeOut = 300 endTime = 39908
workloadName =“GET A"
responseCode =“200"
dataReturnSize="15118773"

logRecords

Figure 5.4: Example of extended Application WorkloadLog instance for web
application (this figure originates from the Media Stream case study which
is presented in Chapter 6). For the DSML, refer Figure 5.3 and Figure 6.7.

centage of CPU usage recorded by the resource monitoring tool into an
absolute figure. The same applies to memory — if required — but most
resource monitoring tools supply the actual usage of memory rather than
a percentage. Resource measurements such as CPU, memory, disk and
bandwidth (incoming and outgoing network) are also recorded. In the
respective models, the units used for CPU is Mega Hertz (MHz) and
other resource metrics (memory, disk and bandwidth) were represented
with Mega Bytes (MB) as units. The units used should be consistent
to avoid conversions in automating the model management activities.
Units such as Kilo and others also can be used to represents the resource
metrics values, but it needs to be consistent.

The values recorded in resource usage log and the range supported by
the defined resource metrics type influence the selection of units. The
double data type is selected to capture resource utilisation since it ac-
commodates 15 to 16 digits, with a range of approximately 1.7e308 to

7

H utilisationLog H LogRecord

time : EDouble

CPU_Used : EDouble
RAM Used : EDouble
Disk_Used : EDouble
Net_Incoming : EDouble
Net_Outgoing : EDouble

1 machine

H Machine
&= name : EString
= cpuSpeed : EFloat
= memory : EFloat

OooDoDOoDODODOD

Figure 5.5: The Design of ResourceLog DSML.

1.7e4308. In this thesis, the unit for resource metrics was standardised
to Mega and other units are converted to this unit.

Figure 5.6 demonstrates an instance of the ResourceLog DSML with data
extracted from the resource usage log. In this example, the resource
monitoring tool records resource utilisation for each second and the time
is represented by the ordinal number of the second in the day. The
resource usage log recordings for 3 seconds (39807, 39808 and 39809
seconds of the day) are transformed into individual LogRecord objects.
The number of the log recordings is equivalent to number of LogRecord
objects. The VM configuration with its unique name is captured in a
Machine object.

78

logRecords

: UtilisationLog k : LogRecord
‘_ time = 39807

CPU Used=1.0
machine ? ’ RAM_ Used=1028.0

Disk_Used =71
: Machine v Net Incoming=0
name="ubuntu02” |& g Net_Outgoing=0
cpuSpeed=6000.00 |3 &
w (AT
Memory=2048.00 |% £
=]
: LogRecord
: LogRecord time = 39808

CPU Used=1.25
RAM_ Used =1028.0
Disk_Used =71
Net_Incoming=2389
Net_Outgoing=283442

time = 39809

CPU Used =0.750
RAM_Used = 1028.0
Disk_Used =71

Net Incoming=1959
Net Outgoing=376851

Figure 5.6: Example of ResourceLog Instance (for the DSML, see Figure 5.5).

79

WorkloadResourceVsTime
(from WorkloadResourceVsTime.ecore)
H WorkloadResource £l Resourcelog
= time : EDouble
, esourceloqs = CPU_Used : EDouble
- P = RAM_Used : EDouble
“ | 2 Disk_Used : EDouble
& MNet_Incoming : EDouble
H workload = Net_Outgoing : EDouble
—name: EIStrlng workloads ,l
= t: t
coun o 0.* workloadOf

Figure 5.7: The Design of WorkloadRequestVsTime DSML.

: WorkloadRequest resourcelogs |, Resourcelog workloadof [~ Workload
o, _Uizgojl.o @ orkloads name:';G FTAY
? ; RAM_Used = 1028.0 count=
resourcelogs W Disk_Used =71
: Resourcelog é Net_Incoming=0
time = 39809 3 Net_Outgoing=0
CPU_Used =0.750 9
gﬁr—utfezd:}im&o : Resourcelog workloadOf |, \yorkdoad
Net_Incoming=1959 time = 39808 @uiorkioads | name—GETA’
Net_Outgoing=376851 CPU_Used=1.25 count-1
— RAM_Used=1028.0
“ Disk_Used =71
K % Net_Incoming=2389
2 = Net Outgoing=283442
[=] (=]
z z
: Workload
name="GETA”
count=1

Figure 5.8: Example of WorkloadResourceVsTime Instance (for the DSML,
see Figure 5.7).

80

iii.

1v.

Workload Resource VsTime

The WorkloadResourceVVsTime DSML provides structures for correlat-
ing the occupancy of the system (number of active workloads) with the
usage of each resource at that time. Figure 5.7 illustrates the design of
this DSML. The number of active workloads is obtained by comparing
and merging the Application WorkloadLog and ResourceLog models. For
example, comparing and merging the models presented in Figure 5.4 and
Figure 5.6 produces the model presented in Figure 5.8.

ResourceVs Workload

This DSML provides structures for grouping resource usage information
by the number of concurrent workloads that the application was pro-
cessing at the time of each measurement (i.e. how much CPU/memory
etc. the machine consumed while processing 0, 1, 2 .. n concurrent re-
quests). Figure 5.9 illustrates the design and Figure 5.10 demonstrates
a model that conforms to this DSML.

ResourceVsWorkload

(from ResourceVsWorkload.ecore)

H WorkloadResourceRelation E Resource
= workloadName : EString © time : EDouble
= CPU _Used: EDouble

countOf ¢ 1 RAM_Used : EDouble

=
T e T e = Disk_Used : EDouble
=
=

H WorkloadCount
2 count: Elnt resources
[:]“'k

Net_Incoming : EDouble
Net_Outgoing : EDouble

Figure 5.9: The Design of ResourceVsWorkload DSML.

81

: WorkloadResourceRelation w'orkloadtounts *WorkloadCount ‘resources : Resource

fime = 30807
countOf -
workloadName =“GETA” count=0 CPU_Used=1.0

| countOf RAM_Used = 1028.0
workloadCounts | : WorkloadCount Disk Used=71

Net_Incoming=0
Net_Outgoing=0

resources ‘ count=1

?

: Resource

time=39809

CPU Used=0.750
RAM Used = 1028.0
Disk_Used=71
Net_Incoming=1959
Net Outgoing=376851

: Resource

time = 39808

CPU Used=1.25

RAM Used = 1028.0
Disk_Used=71
Net_Incoming=2389
Net Outgoing=283442

resources

Figure 5.10: Example of ResourceVsWorkload Instance (for the DSML, see
Figure 5.9).

v. WorkloadPattern
The workloads are simulated and the observed arrival sequence is cap-
tured in a WorkloadPattern model. This model is used to adjust syn-
chronisation errors in the Resource VsRequest model caused by differences
in the timestamps reported by the runtime and the VM monitoring tool.
The design of this DSML is presented in Figure 5.11.

WorkloadPattern

(from WorkloadPatterns.ecore)

H WorkloadPattern | pattern H Pattern
——— O workloadCount : Elnt

0." | © startTime : EDouble
O endTime : EDouble

Figure 5.11: The Design of WorkloadPattern DSML.

82

ResourceVsWorkload

(from ResourceVsWorkload.ecore)

H workloadResourceRelation
= workloadName : EString

H Resource
= time : EDouble
= CPU_Used : EDouble
RAM_Used : EDouble
Disk_Used : EDouble
Net_Incoming : EDouble
Net_Outgoing : EDouble

A countOf § 1

0.* | workloadCounts
H WorkloadCount
5 count : Elnt . S50UrCes

0O0O0OD

0)
A

ResourceRequirementAnalysis

(from ResVsWorkloadAnalysis.ecore) —

- ; [
E WorkloadResourceRelationAnalysis H WorkloadCountAnalysis maxResource 1| H ResourceAnalysis
le— minResource 1| = ID: EString
medianResource 1
[meanResource A 1

Figure 5.12: The Design of ResourceRequirementAnalysis DSML.

:WorkloadResourceRelation
Analysis workloadCounts :WorkloadCountAnalysis bmaxResource : Resource
countOf ~ CPU Used=1.0
workloadName ="GETA” count=0 RAM Used = 1028.0
Disk_Used =71

Net_Incoming=0
Net_Outgoing=0

countOf
workloadCounts :WorkloadCountAnalysis

maxResource . count=1

meanResource

: Resource
: Resource : Resource CPU Used=1.0
CPU_Used=1.25 CPU_Used=1.00 __| RAM_Used=1028.0
RAM_Used =1028.0 RAM_Used = 1028.0 meanResource Disk Used =71
Disk_Used =71 Disk_Used =71 Net_Incoming=0
Net Incoming=2389 Net Incoming=2174 Net_Outgoing=0
Net_Outgoing=376851 Net_Outgoing=330147

Figure 5.13: Example of ResourceRequirementAnalysis Instance (for the
DSML, see Figure 5.12).

83

vi. ResourceRequirementAnalysis

This DSML is an extension of Resource Vs Workload and complements the
information stored in models which conforms to the ResourceVsWork-
load DSML. This contains additional information relating to particular
analysis techniques. As illustrated in Figure 5.12, the ResourceVsWork-
load DSML provides constructs for representing basic statistical ana-
lysis measures such as mean, median, maximum and minimum. The
domain expert can select different analytical techniques to synthesise
ResourceVsWorkload models and use them for capacity planning. The
improvement on this DSML and its model management activities is re-
lated to applied equation extraction module. Figure 5.13 shows an in-
stance of this DSML with the average (meanResource) and maximum
(mazResource) resource usage measurements for each number of work-
loads.

5.2.2 Model Management Activities in ReRA

Several model management operations have been implemented for managing
models conforming to the proposed DSMLs. The high level of this process
was illustrated with a flowchart in Figure 4.2. The discussion of the model
management techniques implemented in this thesis is referring to Figure 5.1
together with models conforming to the DSMLs. In addition, the abbrevi-
ations T2M, M2T and M2M stand for; Text-to-Model, Model-to-Text and
Model-to-Model transformations respectively. The operations referred to in
this section have been implemented with relevant components of the Epsi-
lon framework. The functionality of each operation is explained below, in
accordance to the numbering used in Figures 5.1 and 5.2:

i. Workload Logs to WorkloadLog Models
The workload information stored in the workload log is extracted through
a T2M transformation into Application WorkloadLog models. The num-
ber of Application WorkloadLog models is equal to the number of ma-
chines running the application. Each machine has log recordings that are
transformed to their respective Application WorkloadLog models. The
algorithm to produce an Application WorkloadLog model with a name
called WorkloadLog model is demonstrated in Algorithm 1. The input
to this T2M transformation activity is the workloads log recording file
for a virtual machine while the output is an Application WorkloadLog

84

model which contains ApplicationServer, VirtualMachine, ServerCon-
figuration and WorkloadLogRecord objects. The first line creates the
Application WorkloadLog model as workloadLog. Lines 2 to 4 create Ap-
plicationServer, VirtualMachine and ServerConfiguration objects named
as appSer, VM and serConf respectively. The information for VM and
serConf are entered by the user with interfaces provided by the program
(lines 5 to 6). These objects are referred by appSer (lines 7 to 8). The
ApplicationServer is the main class in Application WorkloadLog DSML
and therefore appSer is referred by workloadLog (line 9). The workload
logs are recorded into a file in the event it happened. Therefore, trans-
ferring log recordings into WorkloadLogRecords and assigning them to
ApplicationServer is called in a loop. Lines 10 to 14 demonstrates this
algorithm to process the workload logs of a machine.

Algorithm 1 Workload Logs to a WorkloadLog Model

Input: workloadlogFile : File
Output: workloadLog : ApplicationWorkloadLog

10:
11:
12:
13:
14:

: Create a new workloadLog : ApplicationWorkloadLog
Create a new appSer : ApplicationServer
Create a new VM : VirtualMachine
Create a new serConf : ServerConfiguration
serConf « ... > user inputs the values through interface
VM « ... > user inputs the values through interface
appSer.config < serConf
appSer.machine < VM
workloadLog.add(appSer) > adding ApplicationServer object (appSer)
to WorkloadLog model (workloadLog)
while not workloadlogFile. EOF do
Create a new logRecord : WorkloadLogRecord

logRecord +... > feed the data extracted from log records
appSer.logRecords < logRecord
end while

ii.

Resource Usage Logs to Resource Models

Similarly, another T2M transformation extracts ResourceLog Models
from Resource Usage Log Files captured using VM monitoring tools. The
algorithm to perform this transformation is presented in Algorithm 2.
The input is the resource usage log recording file and the output is
ResourceLog model of that machine. The components of ResourceLog
model are UtilisationLog, Machine and LogRecord objects. The first line

85

in Algorithm 2, creates a ResourceLog model with a name resourcelLog.
Lines 2 to 3 creates wtilLog as UtilisationLog object and machine as
Machine object. The machine information is entered by the user with
interface provided by the program and wtilLog.machine refers to that
object (lines 4 to 5). The main component in ResourceLog model is Util-
isationLog object, therefore utilLog is assigned to resourceLog in line 6.
The resource usage log recordings are then transferred into a LogRecord
object called logRecord and assigned to utilLog in a loop to capture the
entire resource usage log records in that file.

Algorithm 2 Resource Usage Logs to a ResourceLog Model

Input: resourcelogFile : File
Output: resourceLog : ResourceLog

=

10:
11:

Create a new resourceLog : Resourcelog

Create a new utilLog : UtilisationLog

Create a new machine : Machine

machine <—... > user inputs the values through interface
util Log.machine < machine

resourcelLog.add(utilLog) > adding UtilisationLog object (utilLog) to
ResourceLog model (resourceLog)

while not resourcelogFile. FOF do

Create a new logRecord : LogRecord
logRecord +... > feed the data extracted from log records
utilLog.logRecords < logRecord

end while

1il.

Sort, Compare & Merge Workload and Resource Models

In this activity, M2M transformation with necessary adjustments, such
as sorting and time conversion, are performed on the models before
they can be compared and merged. The inputs of this operation are
the ApplicationWorkloadLog and ResourceLog models. The output is
a single WorkloadResource VsTime model which combines Application-
WorkloadLog and ResourceLog models. Algorithm 3 shows the logic
in performing this activity. Line 1 creates a WorkloadResourceVsTime
model as workResVT and line 2 creates WorkloadResource object as
workRes which it is referred by workResVT at line 3. The WorkloadLo-
gRecord objects in workloadLog model were sorted according to captured
startTime at line 4. The observation with web applications shows that

86

the workload log is recorded once it complete. Therefore, the order of
the recording is based on completion time (endTime) and need sorting
according to start time to perform correlation with resource usage. The
processor speed stored in ResourceLog model is assigned to a parameter
named processorSpeed at line 5. This value is used to convert percent-
age of CPU usage recording into standardise unit (in this thesis is Mega
Hz) as presented at line 10. The resource usage logs information stored
in ResourceLog model were transformed to ResourceLog of WorkloadRe-
sourceVsTime model and associated workload being processed at that
time are also captured. This operation is presented at lines 8 to 22 in a
loop. Correlation based on time is performed at line 17 by counting the
number of similar workloads being processed at the time the resource
usage was recorded.

87

Algorithm 3 Sort, Compare & Merge Workload and Resource Models

Input: workloadLog : WorkloadLog, resourceLog : Resourcel.og
Output: workResV'T : WorkloadResourceVsTime

1: Create a new workResV'T : WorkloadResourceVsTime

2: Create a new workRes : WorkloadResource
workResV T.add(work Res) > adding WorkloadResource object
(workRes) to WorkloadResourceVsTime model (workResVT)
Sort workloadLog.LogRecord by startTime
processorSpeed <— resourceLog.Utilisation Log.machine.cpuSpeed

@«

for rl € resourceLog.LogRecord do
Create a new resLog : workRes.ResourecLog
resLog.time < rl.time
10: resLog.C PU_Used < (rl.C’PU _Used * processor Speed) /100
11: resLog. RAM Used < rl.RAM _Used
12: resLog.Disk_Used < rl.Disk_Used

13: resLog.Net_Incoming < rl.Net_Incoming
14: resLog.Net_Outgoing < rl.Net_Outgoing

15:

16: Create a new workload : workRes.Workload

17: tmpCount < count of workloadLog.W orkloadLogRecord where it’s
startTime < resLog.time and endTime > resLog.time

18: workload.count < tmpCount

19: workload.name < workloadLog.W orkloadLogRecord.workload N ame
20: workload.workloadsO f < resLog

21: resLog.workloads < workload

22: workRes.resourelLogs < resLog

23: end for

38

iv. Capacity Monitoring Graph Generation

Resource usage and concurrent workloads count graphs are generated
based on time. The outcome of this step is a set of graphs as illustrated
in Figure 5.14 (these graphs originate from the Media Stream case study
which is presented in Chapter 6). These graphs were generated based
on information stored in a WorkloadResource VsTime model by perform-
ing M2T transformation. For example, to produce graphs using Google
graphs, the program needs to produce respective text files in the Google
graphs format.

89

syders surojymuowr Ayoedes jo sidwreg :f1°G 2InSig

(s)ouuny (s)ouuny
00Z'6c 006'8E 009'8E 00L'8E 000°8E 00Z'6E 006°'8E 009°'8¢ 00E€'8E 000'8E
0 0
os oor 2
= =
<
0oL W oog 8
= w0
[=) D
S G O=
osL & 00Tl &
00e 009°L
ajey peopPjIoa (4) uonezinpn obeiols (3)
(syeuny (s)ewiny
00Z'6c 006'8€ 009'8c 00£'8¢ 000°8ET 00Z'6E 006'8E 0098 00E£'8E 000°'8E
[T
oz L0
or = zo &
=
& s
09 g0 =
0g ¥o
Bumnusuel) uopezin }10MiaN (a) Buinjeossy tuonezinn ¥1oAm3aN (D)
(s)ewiny (s)euuny
00Z'6E 006°'8E 009'8¢ 00£'8E 000°'8E 00Z'6E 006'8E 0098 00E£'8E 000°'8E
og 0
=
oot £ oos B
[=] <
= . o
ore o 000'L &
8 =
2 =
oze M oos't &
(a0} 4 000’z
uonezynn Aowspy Amu uonezinn Nd>d> A<u

90

v. Generation of ResourceVsWorkload Model

The WorkloadRequestVsTime model is analysed and synthesised to pro-
duce a Resource VsWorkload model. Multiple resource usage measure-
ments are grouped by the number of concurrent workloads that the ap-
plication was processing at the time they were recorded. The algorithm
to transform a WorkloadRequestVsTime model into a Resource VsWork-
load model and is presented in Algorithm 4. The input for this activity
is WorkloadRequestVsTime model and the output is Resource VsWork-
load model. In Algorithm 4, those models are named as workResV'T and
resVwork. The object of WorkloadResourceRelation class is the base for
Resource VsWorkload model, and it is created as wovr at line 3. The
name of the workload is copied from wls (Workload object of Workload-
RequestVsTime model) at line 4. Individual ReRA process need to be
performed to retrieve resource requirement formulas for a given work-
load type. Therefore, the workload name should be distinctive. At line
5, the set of unique counts of WorkloadRequestVsTime model’s work-
loads (wrt. Workload.count) are captured in a collection variable named
workCountSet. This count represents the number of concurrent workload
being processed at a time. For each workload count in workCountSet, a
WorkloadCount object of WorkloadResourceRelation model (tmpWC') is
created. The count value from Resource VsWorkload model is assigned
to tmpWC' and the resource usage recordings to process that concurrent
workload are transferred into the Resource object of ResourceVsWork-
load model (tmpRes). These operations are conducted in the nested loop
demonstrated at lines 6 to 20.

91

Algorithm 4 Producing a ResourceVsWorkload Model

Input: workResV'T : WorkloadResourceVsTime
Output: resVwork : ResourceVsWorkload

1:
2:
3:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:

wls < all workResV T.workloads and point on first
wrt <— all workResV'T W orkloadResource
createnewwvr : resVwork.Workload Resource Relation > Work-
loadResourceRelation object (wvr) is created and added to ResourceVs-
Workload model
wvr.workload N ame < wls.name
workCountSet <... > a set of unique numbers in wrt.Workload.count
for wCount eworkCountSet do
create new tmpWC' : resVwork.WorkloadCount
tmpW C.count <— wCount
for workload € wls where its count = wCount do
create new tmpRes : resVwork!Resource
tmpRes.time < workload.workloadO f.time
tmpRes.C' PUysed < workload.workloadO f.C PU _Used
tmpRes. RAMysed < workload.workloadO f.RAM U sed
tmpRes.Diskysed < workload.workloadO f.Disk_Used
tmpRes.Netncoming < workload.workloadO f.Net_Incoming
tmpRes.Netoutgoing < workload.workloadO f.Net_Outgoing
tmpW C.resources < tmpRes
end for
wvr.workloadCounts < tmpW C
end for

92

vi.

Vil.

Cleansing

Performing step v (Generation of ResourceVsWorkload Model) can pro-
duce noise that can affect correlation due to time synchronisation issues
between the host and the VMs. WorkloadPattern Model is used to clean
the ResourceVsRequest Model. This step is optional.

Produce Analysis Model

Statistical analysis to get the minimum, maximum, mean and median
value of resource usage measurements was applied to the ResourceVs-
Request model and the results are stored in a ResourceRequirementAna-
lysis model. Algorithm 5 shows the transformation rules applied when
transforming Resource VsWorkload model (source) to ResourceRequire-
mentAnalysis model (target). Lines 3 to 6, transform the relationship
between workload and resource usage (WorkloadResourceRelation of Re-
source Vs Workload model) to analytical values by capturing the number
of workloads (workloadsCounts) and statistical values for the interested
resource metrics along with the workload names (workloadName) into
the ResourceRequiremntAnalysis model. At line 5, the second trans-
formation was applied, where operations were called upon to calculate
the minimum, average, maximum and median resource requirement for
the number of concurrent workloads. These functions were represented
as getMin, getAvr, getMaz and getMedian accordingly at lines 10 to 13
in Algorithm 5.

93

Algorithm 5 Producing Analysis Model

Input: source : ResourceVsWorkload
Output: target : ResourceRequirementAnalysis

1:

10:
11:
12:
13:
14:

create new target.WorkloadResource Relation Analysis —
source.Workload Resource Relation > transformationl is called

rule transformationl transform source. WorkloadResourceRelation to
target. WorkloadResource RelationAnalysis

target.workload N ame <— source.workload N ame
target.workloadCounts < source.workloadCounts > rule
transformation? is called
end rule
rule transformation2 transform source. WorkloadCount to tar-

get. WorkloadCountAnalysis
target.count < source.count
target.minResource < source.get Min()
target.meanResource < source.get Avr()
target.max Resource < source.getMax()
target.medianResource < source.get Median()
end rule

94

viii. Resource Requirement Vs Request Count

A set of graphs are generated to visualise resource metrics and work-
loads relationship obtained through the analysis conducted above. The
graphs are plotted to illustrate the extracted equation (linear, quadratic
and etc.) of resource consumption. For example, Figure 5.15 shows the
example of CPU requirements based on number of workloads being pro-
cessed. Basic statistic elements such as median, mean, minimum and
maximum values were calculated and presented in this type of graph.

CPU Utilization

1,600 B Median
B Mean
1,200 Min
2 .
% B Max.
~ 800
)
Q
]
400
0
0 25 50 75 100
of Workloads

Figure 5.15: Example of resource utilisation graphs for CPU based on work-
loads.

95

ix. Generating Formulas of Resource Metrics
A CSV file is produced by extracting selected statistical data from Res-
ReqAnalysis models. This file is analysed with data analysis tools to
produce correlation formulas for resource metrics. In this research, Mat-
lab was used to produce the formulas. However, any suitable tools can
be used to produce the formulas.

The outcome in performing ReRA are: i) a set of resource requirement for-
mulas for resource metrics and ii) graphical presentations of resource require-
ments based on workloads. The formulas are used in the transformation to
estimate resource requirements based on workload patterns which are cap-
tured in the WL-DSL of the applications.

5.3 Virtual Resource Requirement

In this section, the MDE solutions of the proposed framework are discussed
with an abstract DSMLs for the application workload since each applica-
tion workload is unique. General rules in transforming application workload
to resource requirements and a DSML for capturing resource requirement
schedules are also presented.

5.3.1 DSMLs Design of ViRR

Mainly, two DSMLs are proposed to integrate first two phases of the capacity
planning process in a virtualised environment. Since WL-DSLs is specific to
an application, an abstract DSML named Application Workload which acts
as a common core for individual WL-DSLs is proposed. This DSML is ex-
pandable to model application-specific DSML which capture workloads of a
particular application. An Application workload model is transformed into
a ResourceRequestPlan model using model-to-model transformations. Fig-
ure 5.16 illustrates the abstract syntaxes of the two DSMLs.

Application workloads are specified for hour-long time periods as TimeSlo-
tRequests. Each application has a unique identifier and the capacity planning
period is captured using a startDate and an endDate. Each period is cap-
tured as a TimeSlotRequest with a start time (from) and an end time (o).
The ResourceRequestPlan DSML acts as a resource request calendar for the
capacity planning period. It shows the resource requirements for a particular
application on a daily basis with time slots described in the related WL-DSL.

96

H applicationworkload
I = applicationlD : EString

applicationWorkload
1

H TimeslotWorkload
timeSlotWorkloads | = from : Elnt
0l*= to : Elnt

H DailyRequest
1]

H vmRequestPlan
= applicationMame : EString

vmReguirement
vmRequirements| o « 0.1 . -
" . rom (o]

B slot

Hwvm 1 1
= CPU : EFloat H Time
= memory : EFloat = hour : Elnt
= incomingMetwork : EFloat = minutes : Elnt
= gutgoingMetwork : EFloat = seconds : Elnt
= storage : EFloat

Figure 5.16: DSMLs of ViRR for an application.

A daily resource requirement timetable is generated for a specified capacity
planning period (startDate and endDate of VmRequestPlan).

At this time, Epsilon does not natively support date and time data types.
Therefore, the Date is recorded with three attributes (dd as day of the month,
mm as month of the year and yyyy as the year). These attributes are integers
and the respective model management activity manipulates the values. This
Date format has been applied throughout the thesis. The same was applied to
Time, with hour, minutes and seconds as attributes. The time granularity

97

in ResourceRequestPlan DSML was increased up to seconds, although the
application workloads are specified for hour-long time periods. This is to
enable the usability of the design in the event of application of resource
allocation policy.

5.3.2 Model Management Technique

A model-to-model transformation comprising two transformation rules is
used to map application workloads to virtual machine requirements schedule.
The formulas for resource metrics are retrieved through the model manage-
ment techniques of ReRA process discussed in Section 5.2.2. These formulas
are used in the transformation when estimating resource requirements for the
time slot defined in the application workload model (line 18). Algorithm 6
shows the structure and the rules applied in transforming application work-
loads to resource requirement plans. The input for this activity is an Ap-
plicationWorkload model (source) and the output is a ResourceRequestPlan
model (target). The nested loop in lines 6 to 13 generates a calendar-based
resource requirements plan.

98

Algorithm 6 Transforming Application’s Workloads to VmRequestPlan

Input: source : ApplicationWorkload
Output: target : ResourceRequestPlan

1:

2:
3:

10:
11:
12:
13:
14:
15:
16:
17:
18:

19:

create new target.VmRequest Plan < source.ApplicationW orkload >
rulel is called

rule rulel transform source. ApplicationWorkload — to tar-
get. VmRequestPlan
currentDate <— source.startDate
noO f Days < source.endDate — source.startDate
for i = 0 to noO f Days do
create new requestDate : Date
for timeSlotWorkload € source.timeSlotW orkloads do
create new target.VM <« timeSlotW orkload > rule2 is called
> details of target. VM.slot are captured
end for
currentDate < currentDate + 1 > currentDate to next date
end for
> startdate and enddate of VmRequestPlan are assign
end rule

rule rule2 transform source. TimeSlot Workload to target. VM

. > resource metrics of target. Vm are assign based on ReRA
formulas
end rule

99

5.4 Chapter Summary

The design of the DSMLs and model management activities for ReRA and
ViRR were presented in this chapter. The DSMLs were discussed with their
structure and semantics. The respective model management activities were
presented as algorithms in pseudo-code. The following chapter demonstrates
the implementation of the discussed processes on two case studies.

100

Chapter 6

Applications of MDE Solutions

6.1 Introduction

In this chapter, the implementation plan to apply the proposed MDE solu-
tions presented in Chapter 5 and the requirement to use case studies were
explained. The focus of this chapter is related to implementing the proposed
MDE solutions as an exploratory phase. The system level requirements and
the application of the proposed MDE solutions with two case studies are
discussed in this chapter. The general design of DSMLs together with the
model management operations were discussed in the previous chapter. In this
thesis, the DSMLs and respective model management programs were imple-
mented using EMF (Ecore) and Epsilon. It should be noted that the core
of the proposed approach is not bound to these technologies and that any
other 3-level metamodelling architecture and compatible model management
platform could be used instead for implementation purposes.

Two web applications running in a virtualised environment (VirtualBox) are
used as case studies (Media Stream and Part of Speech Tagging) in this
chapter to demonstrate and refine the proposed approach. An additional
web application was used for evaluation of the proposed MDE solutions and
is elaborated in the following chapter. The architecture of the virtualisation
environment is presented first, before discussing additional DSMLs developed
specifically for each case study. The outcome of each case study, the improve-
ments to the process and the MDE solutions specific to this visualisation
environment are discussed.

101

6.2 Implementation Plan

As discussed in Section 1.6, an experimental research method was employed,
under which method, exploratory is defined as the first phase, which is fol-
lowed by an evaluation phase [29]. In this thesis, an exploratory phase was
conducted as implementation where the proposed MDE solution discussed in
Chapter 5 was applied using EMF(Ecore) and Epsilon with two case stud-
ies running in a virtualised environment. Improvements were made while
applying the proposed MDE solutions in the exploratory phase to provide
sufficient facilities before proceeding to the evaluation phase.

In the exploratory phase, the system requirements and its components were
identified. These were discussed in detail in Section 6.3. Mainly, the tech-
nical tasks were conducted in this phase as preparation for the evaluation.
The implementation of the proposed MDE solutions was reviewed and im-
proved using two case studies running in a virtualised environment. The ideal
case studies for this approach are applications that receive concurrent and
homogeneous requests. The improvements were added to provide sufficient
facilities for evaluation.

In the evaluation phase, a third case study was used to evaluate the reusab-
ility and modularity of the proposed MDE solutions. The findings from the

Experimental Research Method

Exploratory Phase (Implementation) Evaluation Phase
Identify System .| Evaluate the MDE Solutions with
Requirements i Additional Case Study
l l
Provide/Improvise Measure the Research
System Variables
Requirements
v
Sufficient for Analyse the
Evaluation Findings
Apply the
Proposed MDE +
Solutions with Conclude the
Case Studies Research

Figure 6.1: Implementation (Exploratory Phase) and Evaluation Plan of the
Research.

102

evaluation were analysed in Chapter 7 and the conclusions were discussed in
Chapter 8.

The processes involved in both phases are illustrated in Figure 6.1. A detail
discussion of the first phase (implementation) is presented in the following
sections of this chapter. The discussion of the second phase (evaluation) is
presented in the following chapter.

6.3 System Requirements

The general design of DSMLs and model management operations for the
ReRA and ViRR processes were discussed in Chapter 5. The requirements
for the system that implements these processes are listed below:

i. The system shall provide accurate predictions of capacity;
ii. The system shall support multiple statistical analysis techniques;

iii. The system shall make use of rigorously-defined models for all configur-
ation and data collection activities; and

iv. The system shall make use of model management techniques for all val-
idation and transformation activities.

For the processes to be applicable, the following assumptions must hold:

i. The resource utilisation and application workload log recordings for the
application under capacity analysis must be available; and

ii. The virtualisation technology must enable reliable correlation of resource
utilisation and application workload log recordings.

The target user of the proposed solution is a capacity planning manager
who needs to estimate resource requirements for predicted workloads. Target
users are expected to be familiar with the technologies related to the following
components of the system:

i. Resource monitoring tool/s to capture the resource utilisation of the
virtual machine with timestamps.

ii. Workload simulator to generate the workload of the application.

iii. Workload log record which captures the application’s workload being
processed with timestamps.

103

1v.

vi.

Vii.

Viil.

Model management tool to apply the proposed DSMLs and the model
management, operations.

Virtualised environment (server virtualisation) as a platform to host an
application. The hypervisor of the selected virtualised environment may
be either full or para virtualisation.

Applications hosted in the virtualised environment as the case studies.
Ideal case studies for this approach are applications that receive concur-
rent and homogeneous requests.

Statistical method to analyse the correlation between workloads and re-
source utilisation.

Equation extraction tool to produce correlation formulas between work-
load and resource utilisation.

Table 6.1 summarises the tools/methods used to demonstrate the application
of the proposed MDE solutions in this thesis. It is also possible to apply
other related tools/methods which accommodate the discussed components
in order to implement the proposed MDE solutions.

6.4 Virtualised Environment

A virtualised environment is necessary in order to conduct the two case stud-
ies presented in this chapter and it refers to server virtualisation as discussed

No. | Components Tools/Methods
i Model management tool/s | EMF (ecore) and Epsilon
Virtualised environment VirtualBox
iii. Resource monitoring tool/s | VBoxManage and disk file utility
(df)
iv. Workload simulator JMeter
Workload log record Apache log (access.log file)
vi. Application Web applications
Vii. Statistical method Basic statistic (mean, maximum,
minimum, median)
viii. Equation extraction tool Matlab

Table 6.1: System Components that Satisfy the System Level Requirements
to Apply the Proposed MDE Solutions.

104

in Section 2.2.3. The main components of server virtualisation are the hyper-
visor, host and virtual machine. Both Type 1 (full virtualisation) and Type
2 (para virtualisation) hypervisors have different influences on the perform-
ance of the virtual machine [5, 20]. Therefore, the resource requirements for
operating an application in different virtualisation environments might vary.
To facilitate the capacity planning manager, who hosts an application in a
virtualised environment, ReRA provides modular and reusable steps/com-
ponents to produce relevant resource requirement formulas that are specific
to the selected virtualised environment. The formulas are then used in ViRR
to estimate the resource requirements based on the predicted workload of the
application running in that virtualised environment.

In this thesis, the virtualised environment is set-up using VirtualBox!, a
stable and freely available virtualisation product by Oracle. VirtualBox sup-
ports several types of operating systems for host and VMs, such as Linux,
Windows and OS X. The virtualised environment presented in this chapter
uses Linux in both host and VMs, since it is freely available. VirtualBox
comes with a resource monitoring tool called VBoxManage®. The following
is a detailed design of this virtualised environment.

Listing 6.1: VBoxManage script to collect VM resource utilization for every
second.

1 VBoxManage metrics collect —period 1 —samples 1 ServerName?

CPU/Load/User ,CPU/Load /Kernel ,RAM/Usage/Used , Disk /Usage/
Used ,Net /Rate /Rx, Net /Rate /Tx, Guest /CPU/Load /User , Guest /CPU
/Load/Kernel , Guest /CPU/Load/Idle , Guest /RAM/Usage/Total ,
Guest /RAM/ Usage /Free , Guest /RAM/ Usage / Balloon , Guest /RAM/
Usage /Shared , Guest /RAM/ Usage /Cache , Guest / Pagefile /Usage/
Total > FileName.vbm

A server with 2 dual-core 2GHz CPUs, 8GB memory and 300GB disk space
was used to host the virtualised environment. Para virtualisation (virtualisa-
tion Type 2) is implemented in VirtualBox. Therefore, an operating system
(OS) needed to be installed in the host, so Linux OS Ubuntu 12.04 was used.
The resource utilisation of the host and VM can be monitored using VBox-
Manage, where textual resource utilisation information is captured. This
information can be recorded in a text file and the data were extracted to
create a ResourceLog model.

The script in Listing 6.1 shows the VBoxManage commands executed in

'https://www.virtualbox.org
’https://www.virtualbox.org/manual/ch08.html
3The name of the VM needs to be stated replacing ServerName

105

https://www.virtualbox.org
https://www.virtualbox.org/manual/ch08.html

Host Hardware Host OS
(Ubuntu 12.04) VirtualBox

2 Intel dual-core 2GHz CPU
8 GB Memory
300GB Storage

VM (Case Study 1)

| Web server | | Disk util. |

Simulator VM (Case Study 2)

| Web server || Disk util. |

VM (Case Study 3)
| Web server | Disk util.

| VBoxManage |

Figure 6.2: The architecture of the virtualisation environment.

the host used to record the resource utilisations of the VM. The resource
utilisation log information file produced by VBoxManage was recorded with
a “wvbm” extension. A sample of this log file is presented in Listing E.3
and the list of resource parameters managed by VBoxManage is presented in
Appendix B. Since this resource monitoring tool runs in the host, the tool
only consumes computing resources of the host.

A limitation in the storage monitoring capabilities of VBoxManage was iden-
tified via observation of resource utilisation in the second case study. The
reported storage usage metrics do not represent the dynamic changes of disk
usage. Therefore, an additional disk monitoring tool in Ubuntu (disk filesys-
tem utility) was used to record disk utilisation along with VBoxManage for
this virtualised environment. A shell script was used to record disk utilisation
reading into a “log.dsk” file. A sample of this log file is shown in Listing E.5.
Although, this script runs in the VMs, it does not consume many resources,
and as such the influence of monitoring resource usage on the application
workload was ignored.

The architecture of the virtualised environment is presented in Figure 6.2.
The VMs were configured to host the two selected web applications. Each
web application was hosted in a different VM. The workload of web applic-
ations is recorded by the web server that hosts them. In this work, both
applications were hosted in an Apache 2.4 web server and the workload was

106

recorded in the access.log file of the Apache web server. Several configura-
tion tasks may need to be performed to enable the required information to
be recorded. For example, the default recording in the access.log file was
configured to obtain detailed information about each request, such as re-
quest name, start time, end time, response code and size of data returned.
Appendix A shows a list of configuration parameter names for the most com-
monly used web servers.

Listing 6.2 shows the configuration in the Apache web server (apache2.conf)
to produce request log recordings (access.log). Web servers normally have a
default configuration and need to be configured to produce required values.
For example, in Listing 6.2, the default format of the access.log file in line 1
was disabled using the ‘#’ symbol and replaced with the format in line 2. The
meaning of the symbols can be referred at Appendix A. The updated format
increases time granularity from seconds to milliseconds with the additional
parameter ‘%{usec_frac}t’ and also includes the duration it takes to complete
the request with the additional parameter ‘%D’. Analysis of web servers
presented in Appendix A shows a list of configuration parameter names for
the most commonly used web servers. The web servers are configurable to
produce request log recordings as input to produce the RequestLog model
with text-to-model (T2M) transformation program. In this thesis, the T2M
transformation program was written in Java. In EMF, models are can be
presented in XML. Therefore, the T2M program extracts the information
from the access.log file and feeds it into RequestLog model by producing
XML file. Example of access.log file and RequestLog model in XML form are
presented in Listings E.1 and E.2, respectively in Appendix E.

Listing 6.2: Configuration in apache2.conf file

1 #LogFormat "%h %1 %u %t \"%r\” %>s %0 \"%{Referer}i\” \” %{
User—Agent}i\”” combined

2 LogFormat "%h %l %u %t %{usec_frac}t %D \"%r\” %s %0 \” %{
Referer}i\ 7\”%{User—Agent}i\”” combined

The network of the virtualisation environment needed to be configured to
enable communication between the host and the VMs. For example, there
are several ways to configure the network in VBoxManage and a host-only
network was included to enable VM-to-VM and also host-to-VM communic-
ation.

A workload simulator generates application workloads and JMeter was used
to simulate web requests of the applications as workloads. JMeter is an
application to perform load tests on client/server software such as web ap-

107

plications. It also can be used to simulate a heavy load on a server, network
or object to test its strength or to analyse overall performance under different
load types [39]. Running the simulator within the VM where the application
is hosted can consume additional resources. Therefore, the simulator needs
to be installed in an external server. In this work, the simulator was installed
in the host and generated workloads for the applications running in the VMs.

The following sections discuss the implementation of the proposed MDE solu-
tions for the two case studies. Media Stream and Part of Speech Tagging web
applications running in a VirtualBox virtualised environment were used as
case studies in this chapter to demonstrate and refine the proposed MDE ap-
proach. Both case studies had a highly intensive resource utilisation and this
enables workload correlation with resource utilisation. VirtualBox provided
a sufficient virtualisation environment to conduct the research to meet the
system requirements discussed in Section 6.3.

6.5 Extension of ReRA

The general ReRA process together with a set of high level DSMLs was
discussed in Section 5.2. In this chapter, the designed DSMLs were extended
and reused specific to web applications running in the VirtualBox virtualised
environment,.

The specific process used for web applications in the selected virtualised en-
vironment is presented in Figure 6.3. This figure is an extended version of
Figure 5.1 presented in Chapter 5 in which the high level DSMLs described
in Chapter 5 were used. The type and the name of the model management
programs developed to automate the process are presented in the diagram
and the code is available in Appendix G. Additional steps and models are
required to produce ResourceLog models, since more than one resource mon-
itoring tool are used. The use of two resource monitoring tools (VBoxMan-
age and the Ubuntu disk utility) in the virtualisation environment has been
discussed in Section 6.4. The log records produced by VBoxManage and
the Ubuntu disk file system (df) utility were parsed into VBoxVMDMetrics
and DiskUsageLog models, respectively. These two models were merged and
transformed into a ResourceLog model.

The overall design and the relationship of the DSMLs are presented in Fig-
ure 6.4. The RequestLog DSML is specific to web applications and was de-
signed by extending Application Workload. Additional two DSMLs to capture

108

(-surerdoxd

JUSWOSRURUI [9POTI [IIM 19719507 PIAJOAUL SOIJIAIIOR JO MO[8} Juesaldal SToquuinu o)) ‘JUSUIUOIIAUS oFRURIXOL A

9} Ul mQOMudOSQQJQ goM\ I0] w@SUﬂQQOQ_HL PQ@E@%@Q@E [PPOIN Pu® STINS UM SS9001d YVYHOY 92U, ‘29 @Mﬂwﬂm
_w.w.._cz_._.Ic_mE_w.w
weiSord 193 @ . : |§aueaw [Q0N EISNS0)
® sydeig | 1Bexmamsal & 13O sisAjeuy (= BInuwiIo
wesSoid 13 & 1sanbay juawauinbayaninosay T
weaSoud 103 £ I8N0 OUL.JOmwm
weiFoid enep 2 j12'sh|euyiuawalinbayadinosay @#ENE ‘6
B
ispon [F |03 pANAIUEB[D £ [2PON
3|y al Suisues)) 'g PEOPJIOASASIIN0SAY
uones!|enuIA D
33
spusga loa"peoplomsneLaWILSA S NIZIAL £ _ Jm%ﬂﬂm%ﬁ% sudelo awi
_mw.x.EmemgﬂM 4 L@WD 1

I2POIN
uIa11edpEOPIOAN

1822w baysay [

[9PON
W] SARDINOSIYPEO]IOAA

[13°53113|N22N0S3YO0 [SILIBINGA &)
|02 451Q9A0LIZNYSIO _@

WZW ¥

S|2po \ q |03°|BpoEWILsACLs|BpowsSoT £ \ S|epoN
80720un0say \ sF1sN g 21edwo) °g / fo71s9nbay

L

I2PoinN I2PoiN

SojaBesnysig \\ SOLBAINAXOGN

erel[2powisa,,.,
nbayofotaysedy 5
WZL'T

_Dw.—ms_vdzto\mﬁ oS "E

enel"|apoloL
S0T501BNINAXOEA 5

wign auwpu

enel"laponad ..
esrpisigoLSouag v

ysprawpu

SBEUE X0

SINEZL'C

F07 152nbay

AN a

unJ Jo Janiss gapn

P niunqn) Aamn sip

alemyos/uoizedlddy

ula)led PEOIOA Pale|nuiis

109

‘TeISURS oIe s1aj0 oY) pue suoryeorddy gopp 103 ogads St TINS(] bo7gsanbay -oyads JUSTUOIIATS
UOTJRSI[RNIIIA XO[RNIIIA o€ STINS(HoTobvs)ysyT PUR SOUUPUNALOTA "VHOY I10J USso(] STINSA :F'9 oInsig

1 SoINOSSUUESW

-

-

T =20UNOSayUEIpaLU

-~

buisy : al = & SoINGs Iy

SISA|EUYROINOSaY m

1sAeuyiunoopECHIoM H

3|gnog3 AWILPpUE =
3|qnoa3 ¢ AWILHEIS o
IUIT UNODPEOPOM =

wilogsued] °

AV

»

0

a|gnog3 : bulobingTian
3|gnog3 @ Buioouian
B|gnoa3l : pasn ysia
B|noal : pasm Ty
2qnoa3a : PIsn Ndd
2|qnoQ3 : awn

pooooo

22Inosald

JuIg ¢ UNoD o
hunoopecpom H
SIUNODPEOPJOM | . 0

T @§i03unoa

Buins3 : sweNpEOpUIOM =

224N0say m

waogsued) N g

UDE|FY204N0sIHPECPIOM §

JOpECpIOM

SISAELUUONE[3YAOIN0SAYPEDPIOM H

3|gnodl : Bulobino 1EM o

2qnogl : Buuooul iz =
a|gnogs : pasn ysid o
B|ENodl : PEsATAYYE o
3|gqnea3l pasn Ndd o
3|gnoal : Fwn o

plooaybol §

18043 Aowaw =
10|43 paadsndsy o
Bullsy aWweu o

ENEENE]

3|gnoad3l : 2besn o
Buuiss : sweu o

BuLysy @ sweu =

wasfs2)d {

3|qnog3l : swn o

piooadbo] {

wiogsuel] g 2519

SUILPEA [
Tlaupew

I
I
uoREsIIMAsIa §

Buls3 : wNaY3ZISEIER =
Bulsy : sponssuodsal o

2|gnod3 : oAy =
I|gnoa3l : FuiLbumem =
JUIF : ABSMRATREW o

T UBSOXEW =

p-ooagbol §

uopeanbyuod H

0

i)

SPEOJOM

U N0D o
Buisy : sWweu o

3|gqnogl : BuoBingTian
3|gnoa3 : Buioour I8N
2|gqnogd ;s pesn ysid
2|gnoas ; pasn vy
a|qnoa3 : pasn ndd
3|gnoq3g @ s

ooooan

=]

PEOPLOM H

- SDOT7=s5In0sa] J

Boisounosay H

POINOSaYPEOPLUOM

dznEsaEm §

A%

Bulsy swenpeopUom o
3|gqnoa3 : sWILpUs o
3QNoal : BWILES o

| piolayboipoopiop §

BuLis3 : Bweu =

< suowioA |

[]
L= LonpinByues A =]

2|qnods : e3oL 3|=bed 152no

3|qnoa3a | FYIED NYE I53ND
2|gnogs : a4eysTINYY 158N
3|gnog3 : uo||eg INYYIseND
3|qnodl @ eaddTINYY I5eND
2|qnods : el L VY 353N
3|gnoa3 : 2|prNdo71seN0
3|qnogl ¢ |euwiEy Ndl71seno
3|gnogd3 : 435N Nd271seND
a|gnoal : BuloBinoTian
3|gnodl : Buloourian
2|qnoa3 : pesn 4sia
2|gnog3 : pasn vy
3|qnods : [EudEy NdD
3|qnoa3 : 1asnTNdo
|gqnoal ; awn

ooooDooDoOoDooooDODODOdG

1E0[43 : Aowaw

Jug : punnds

jeol43 : paadsnds

Bulisy @ aweu
BUILREN

T

oooao

aulysew

0

spiooaybo| Bojuonesinn §

puaooaybor E

110

the log recordings from VBoxManage and the Ubuntu disk utility specific to
the virtualised infrastructure were used. The other DSMLs and model man-
agement activities in Figure 6.4 are as presented in Chapter 5. Detailed
discussion on these additional DSMLs and model management techniques
follows.

6.5.1 Additional and Extended DSMLs of ReRA

Three additional DSMLs were specifically developed for this experiment.
DiskUsageLog and VBoxVMDMetrics are VirtualBox specific and RequestLog
is specific for web applications. The following are the additional DSMLs:

i. DiskUsageLog

Captures information related to disk utilisation. The storage usage (kilo
bytes) of the file systems in the machine is captured together with the
reading time. The storage usage unit is converted to megabytes with
the model management activity discussed in Section 6.5.2 to ensure that
the units are standardised. Figure 6.5 shows the design of this DSML.
This DSML is designed specifically to capture log recording of the disk
filesystem wutility. An example of this log is presented in Listing E.5.
The time of LogRecord in Figure 6.5 represents the second of the day to
enable correlation based on time.

111

ii.

DiskUsagelog
(from DiskUsagelog.ecore)

H DiskUtilisation _-IthRecDrdsh H LogRecord

0.*| = time : EDouble

machineIl
filesystems), 0.*

H Machine
- FileSyst
= name : EString 5 File gf;e.m
= name: ring

© usage : EDouble

Figure 6.5: The design of DiskUsageLog DSML.

VBoxVMMetrics

Captures information related to the resource utilisation parameters of
the VM which are produced by VBoxManage. Along with this, the VM
specifications such as the CPU speed (MHz), memory (MBs) allocated
and number of CPU units are captured. The abstract syntax of this
DSML is illustrated in Figure 6.6. The attributes of LogRecord repres-
ent the resource metrics produced by VBoxManage. A sample of this
log recording is presented in Listing E.3. The time in LogRecord stands
for the seconds of the day. The log recording does not provide date
and machine information. Therefore, the information of Date and Ma-
chine is input through the interface of the related T2M program. Date
information is captured to allow a time adjustment to be performed if
necessary. For example, in the virtualised environment, VBoxManage
acquires time information from the BIOS which is not automatically ad-
justed for daylight savings. However, the OS is automatically updated
with daylight savings. Therefore, an adjustment of the time recorded is
required for the resource utilisation recorded within VBoxManage. This
configuration information is later transferred to the ResourceLog model.

112

E Date
= dd : EInt

= LogRecord

= time : EDouble
— 2 A = CPU_User : EDouble
= yyyy : Elnt = CPU_Kernal : EDouble
" = RAM Used : EDouble
date ID_ = Disk_Used : EDouble
P = Net_Incoming : EDouble
B utilisationLog E’M = Net_Outgoing : EDouble
0.* | 2 Guest_ CPU_User: EDouble
machineI = Guest_CPU_Kernal : EDouble
1 = Guest_CPU_Idle : EDouble
H Machine = Guest_RAM_Total : EDouble
© name : EString = Guest_RAM_Free : EDauble
= cpuSpeed : EFloat = Guest_RAM_Ballon : EDouble
= cpulnit : EInt = Guest_ RAM_Share : EDouble
= memory : EFloat = Guest_RAM_Cache : EDouble
= Guest_Pagefile_Total : EDouble

Figure 6.6: The design of VBoxVMMetrics DSML.

iii. RequestLog

This application DSML is specific for web applications. It inherits classes
from the Application WorkloadLog, which is where information related
to incoming requests is captured. These include; the start time, end
time and the name of each workload (request) extracted from the web
server’s request log. This information is common to most web servers and
the analysis is presented in Appendix A. The web server’s configuration
(maximum users, maximum live users, waiting time, and time out) is
also captured as an instance of the Configuration class. Multiple models
that conform to this DSML can be generated if the application is running
on multiple machines.

113

H ApplicationServe H VirtualMachine

= name : EString
config | 4

H wWorkloadlogRecord
= startTime : EDouble

= endTime : EDouble

= workloadMName : EString

H servercon figuration

A

E webServer EH Machine
H Configuration El LogRecord
= maxUser : EInt = responseCode : EString
= maxLiveUser : EInt = dataSizeReturn : EString
= waitingTime : EDouble
= timeOut : EDouble

Figure 6.7: The design of RequestLog which extends the Application Work-
loadLog DSML specifically for web applications.

Figure 6.7 illustrates the design of the RequestLog and Application Work-
loadLog DSMLs and the relationship between them for web applications.
Figure 6.8 demonstrates an instance of the RequestLog DSML capturing
data extracted from a typical request log. A web server runs in a virtual
machine with certain configuration. The requests processed in a web
server are captured in the web server’s log. Figure 6.8 shows an example
of a ReqestLog model with three requests extracted from log recordings
together with its virtual machine (machine) and web server configuration
details.

114

6.5.2 Additional Model Management Activities of
ReRA

Since resource utilisation is recorded with two resource monitoring tools, ad-
ditional model management activities are required to manage the respective
models. These activities are discussed below:

i. Resource Usage Logs to Resource Models
Two programs were written to extract resource utilisation information
through a text-to-model (T2M) transformation. The VBoxVMMetric-
sLogToModel program extracts the recording of resource utilisation from

workloadName =“GET A”
responseCode ="200"
dataReturnSize="15118773"

logRecords
WS1: WebServer LR1: LogRecord
. startTime = 39808
’ endTime = 39856
v workloadName ="GET A"
= responseCode ="200"
g dataReturnSize="15118773"
M1: Machine "'é'
[=]
Name = “192.168.56.1" 2| | LR2: LogRecord
3]
. =| | startTime=239860
b= || endTime = 39908
] workloadName ="GET A"
responseCode ="200"
Cl: Cunﬂguratiun da‘t‘aRe‘turnSiZE‘="15118??2”
maxUser = 150
maxLivelser =100 LR3: LogRecord
waitingTime =5 o — 59860
timeOut = 300 & startTime =
me-y © endTime = 39908
o
[#]

Figure 6.8: Example of RequestLog instance (for the DSML, see RequestLog
DSML in Figure 6.7).

115

VBoxManage and creates VBoxVMMetrics models. The DFLogDiskUs-
ageModel program produces DiskUsageLog models based on information
recorded by the Ubuntu disk utilisation tool. The programs create the
models in XML form with the information extracted from the log record-
ing text. Samples of resource usage log recordings and its model in XML
form are presented in Listing E.3 to E.6 in Appendix E. In the scenario
of using single resource monitoring, a T2M transformation direct to the
ResourceLog model is sufficient and step 4 in Figure 6.3 is not required.

Listing 6.3: EOL program (DiskUtilTo VBDisk.eol) transfers storage in-
formation from DiskUsageLog Model to VBoxVMMetrics Model.

//vbLog=UtilisationLog objects of VBoxVMmetrics model;
//diskLog=LogRecord objects of DiskUsageLog model;

// fs=FileSystem objects of DiskUsageLog model;

var totalDisk = 0.00;

var tempVL : Set = new Set;

for (vl in vbLog.logRecords){
var dl=diskLog.selectOne (1|
vl.time. floor ());
if (dl.isDefined ()){
totalDisk = 0.00;
for (fs in dl.filesystems){
totalDisk = totalDisk + fs.usage;
}

// convert kilobyte to megabyte

vl.Disk_Used = totalDisk /1024.00;

17} else {tempVL.add(vl);}

18 }

19 //to remove the last object if possible

20 if (tempVL.size ()>0){vbLog.logRecords.removeall (tempVL);}

l.time. floor ()=

© 00 N O Utk W N

e e el
S UL W N = O

ii. Manage Multi-Resource Models to a Resource Model
The disk utilisation information captured in the DiskUsageLog model
is transferred to the VBoxVMMetrics model by the DiskUtilToVB-
Disk.eol program. Later, a model-to model (M2M) transformation com-
putes and selects the resource metrics from the attributes identified in
the VBoxVMDMetrics model. The code in Listing 6.3 shows the EOL
script that transfers storage information from DiskUsageLog Model to
VBoxVMMetrics Model. Listing 6.4 shows the ETL model-to-model

116

(M2M) transformation that transforms selected parameters as resource
metrics into the ResourceLog model.

Listing 6.4: ETL program (VBMetricsToResourceMetrics.etl) transfers
selected resource metrics parameter to ResourceLog Model.

1 rule vbMetricsToResourceMetrics

2 transform s : vbModel! UtilisationLog

3 to t : resModel! UtilisationLog {

4 t. machine = s.machine;

5 t.logRecords =s.logRecords.equivalent () ;
6 }

7

8 rule vbLogRecordToResLogRecord

9 transform s : vbModel!LogRecord

10 to t : resModel!LogRecord {

11 t.time = s.time;

12 t.CPU_Used = 100.00 — s.Guest_CPU_Idle;
13 t .RAM_ Used = s.Guest_ RAM _Total — s.Guest_RAM Free;
14 t.Net_Incoming = s.Net_Incoming;

15 t.Net_Outgoing = s.Net_Outgoing;

16 t.Disk_Used = s.Disk_Used;

17}

6.6 First Case Study: Media Stream

A prototype media web stream application was developed using WordPress!
with a media plug-in called Stream Video Player?. WordPress is an open
source blogging tool and content management system (CMS) based on PHP
and MySQL. The Stream Video Player plug-in for WordPress is one of the
most popular and most complete video-audio player WordPress plug-ins. As-
suming the quality of the videos is the same, the workload for this application
is characterised by number of users’ request to view a live video. The im-
plementation of MDE solutions for ReRA and ViRR processes for this case
study is discussed in the following sections.

http://wordpress.org/about/
’https://wordpress.org/plugins/stream-video-player/

117

http://wordpress.org/about/
https://wordpress.org/plugins/stream-video-player/

6.6.1 ReRA of the Media Stream Application

Workload (request) information is retrieved from Apache’s log file and a
resource usage log file is generated using the VBManage monitoring tool
which comes with VirtualBox. To carry out the ReRA process, additional
configuration data is needed. This data can only be gathered from the specific
application under test, and the experimental set-up (e.g., web server used,
maximum number of users, number of CPUs, etc.). For this case study, the
default Apache server configuration is used. The default configuration defines
a request timeout of 300 seconds, a queuing time of 5 seconds, and an upper
limit of 150 concurrent requests and 100 live requests. A virtual machine
with 3 CPUs and 2GB of memory was used and VBoxManage was configured
to capture and store resource usage measurements in a log. VBoxManage
operates on the host server and therefore its operation does not interfere with
that of the virtual machine.

This parameterised data is then transformed into ResourceLog models us-
ing the T2M transformations discussed in Section 6.3 (Resource Usage Logs
to Resource Models). Artificial workloads involving concurrent requests,
R, where R = {1, 10,20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150}
were generated with JMeter, following the request pattern illustrated in Fig-
ure 6.9. The play time of the video file used was about 48 seconds and the
application buffer the streaming shorter than play time. The configuration
setting shows the request pattern for more than 100 concurrent requests,
shown in Figure 6.9.

In this stage, the limitation of VBoxManage in recoding storage usage was not
realised since the application was not making use of storage space. Therefore,
the programs that were performing text-to-model transformations created
RequestLog and ResourceLog models. DiskUsageLog and VBoxVMDMetrics
DSMLs together with their model management programs were not developed
during the implementation of this case study.

The simulation of workloads created two log files; 1) a request log file produced
by the web server (access.log by Apache) and ii) a resource usage log file pro-
duced by the VM monitoring tool (name.vbm by VBoxMange). Both log
files were transformed into RequestLog and ResourceLog models using text-
to-model transformations. These two models were then sorted, compared and
merged based on time, to produce a single model (Workload RequestVsTime).
Resource usage and occupancy graphs are produced using a model-to-text
transformation. These graphs are presented in Figures C.3, C.4, C.5, C.6,
and C.7 respectively for CPU, memory, incoming network, outgoing net-

118

Workload Rate
200

150 0

100]

of Workloads

50

) HHHHH \

38,000 38,300 38600 38,900 39,200
time(s)

Figure 6.9: Media stream workload pattern simulated with JMeter.

work and storage. Subsequently, the WorkloadResourceVsTime model was
transformed to a ResourceVVsWorkload model by correlating the calculated
occupancy and resource usage. The noise introduced due to technical con-
straints in the implementation environments (time synchronisation between
host and VMs) is then removed by examining the WorkloadPattern model.

Then, statistical analysis was performed on the ResourceVsWorkload model
in order to calculate formulas that can predict resource usage for arbitrary
workloads. Figure 6.10 illustrates the statistical analysis performed to cal-
culate the minimum, maximum, average and median resource requirements
to process the workload. All other figures of the same type of Figure 6.10,
which are available in Appendix C and D, hold the same. The workload
presented in Figure 6.10 are the number of concurrent user requests to view
a video file as. The ResourceRequirementAnalysis model captures the out-
put of the statistical analysis and the mean values were transformed into a
CSV file using model-to-text transformation. This CSV file was then ana-
lysed with equation extraction module to retrieve formulas for the resource
metrics. In this research, Matlab was used and it is open to explore other
equation extraction module such as machine learning as future work.

Figure 6.11 shows the average reading of resource metrics as output of model-
to-text transformation which produces a CSV file. This CSV file is used as

119

“(9]y 09pIA ® MBIA 0] S$)senbal) SPROYIOM JO Iaquunu a3 I0j ((])YI0m)au

Surogimo pue (DH)yIomjou Jurwoour ‘(g)Arowewr ‘(y)NJD JO 98eSN 90INO0SAI JO SHMSAI [BIIISIIRIS ()9 oIS
SpDOJYI0M JO # spoopyiom fo #
00l =7 09 14 0 0oL =73 0§ g¢ 0
00 0000
gzl G/00
= =
2 g
o R 050 &
xeiN [l m xen [l W
U 2 un | "
! g'Le . 5220
uesi\ [uesi\ [
veren 0% (q) veipsn M 00£0(4)
Buipiwisuel) :uonezinn }iomeN Buiniaasy :uonezinn yiomeN
spopiom Jo # sppopyiom Jo #
ool =7 0s o14 0 0ol =7 0§ Ge 0
00l 0
oSl 0oy
3 3
3 S
_ 00z S 008 3
xeNl —— = xen [l 3
N
VA sz U 00z’
uesi\ [l uesi\ [l
veipel M e (g) veipsiy 009'} (v)

uoneziyn Aowspy

uoneziinn Nda

120

A B = D E F

1 Request CPU Memaory Storage RxMNet TxMet

2 0 0 111 706 0 0
3 1 2.25 111 706 1483 308545
4 10 30.93333 127.1556 706 14268 3115048
3 20 52.46512 136 706 28120 6203030
7] 30 7172093 154.9767 706 42187 9293574
7 40 105.7674 174.1395 706 56460 12437346
8 50 126.4186 188.6279 J06 70962 15583402
9 60 155.7143 200.4524 J06 85364 18717048
10 70 181.7143 212.1429 706 98935 21684548
11 80 214.8571 227.0714 J06 112519 24677496
12 90 243.7143 241.4286 J06 127470 27851876
13 100 275.4286 253.3571 J06 139020 320344812
14 110 292.5714 270.5952 706 173494 33691032
15 120 340.0976 282.2927 J06 170996 36734908

Figure 6.11: The table structure of the CVS file showing the statistical ana-
lysis of average reading of resource metrics for the request being processed.

input to the equation extraction tool (Matlab in this thesis). Figure 6.12
shows the outcome of the equation extraction module, which also holds for
all other figures of the same type, which are available in Appendix C and D.
In this case study, the equations extracted are as following: C'PU = 2.8 x
#requests + 15, Memory = 1.438 x #requests + 120, IncomingN etwork =
1458.3 x #requests, OutgoingN etwork = 30590 % #requests and Storage =
706. The formulas can be used twofold: to both inform the current capacity
planning process, but also to support prognostics, though of course many
iterations of experiments must be carried out to increase confidence in the
validity of the formulas. This is a simple case study where the only variable
considered was the number of requests. Additional variables are considered
in the subsequent case studies.

The following sections discuss the Virtual Resource Requirement (ViRR)
process for the case study.

6.6.2 ViRR of the Media Stream Application

The resource requirement schedule to process the workload of an application
is captured in ResourceRequestPlan model. It represents a daily resource
request time table (VMRequestPlan and DailyRequest) further decomposed

121

9 elep SAD 24l JO SOLIot 90110SaI 10] mﬁosdﬂdw pejoenxy :GI°9 @MSWT@

ok 00k 08 09 OF 0c D@Oh
leaul| —
- |abeiols e {904
=A
| 90.L loos
& 4904
't L L L it @Dh
(3)
ock 00t .D_w [0;z] or 0z ozL 0oL o8 09 or ford
Jeaul] — leaul |
soman BuloBine e 1l Homiap Guiwoou| e 150
- 4 N .| F
B'BGZL - XEBGHL = A
SOD+29S LT L + X.G00+2FEC0€ = A e 5L
L
L
L - Z
ot il JOIRS
(a) (2)
0zl 0oL 08 09 Or 0z o] ozl 0ol 0g 09 O 0Z 0
e T T 0oL e T T 00k
I ndo e
AIOWaW e oSt
1001
F <002
PELLL + X860 L = A a0z
-0SZ
/ FO0OY - XpZ5LT =K 00E
[
: oog + 00t
(9) (v)

122

‘uoryeor[ddy wrea1)g eIpaJ oY) 0] STINS HHIA JO MOIAILA() €T 2In3I

180143 : paydiemabeanIadoapiaabelane o
18043 : 3beIokE o U3 ¢ SO3PIAJCIBGUINY o
3 : SpUIAS o 1€0]43 : piowganbuiobine o PEOPHIOANO|S3WI L WEBNSEIP3NAM B PEORIOMWEBNSEIRIN M F
W3 sANUI o 18043 : JomBNBuIWoIU o
WE:aney o 1e0l43 : Lowsw o
ETIE 1043 NdD o
! 0} ! woly . E T
o 0 suawannbayuwn

|
Buuys3 : swenuonesdde o

ue|disanbayuwp 5]

v

W30} =00
W[WOl o [SPECHIOI0]5aWT
PDOYIOAO)S3U]

bus3 : quoneddde o

poopyioMuoRoIddy 5

123

into multi-hour slots. Resource requirements are estimated based on informa-
tion provided by the Application Workload model which defines the workload
for each hourly slot (TimeSlotWorkload) of each calendar period of interest
(Date). Since the structure of each application’s workload is unique, a spe-
cific DSML is required to capture its features by extending core classes of
the Application Workload DSML.

In this case study, the WordPress media stream workload (WPMediaStream-
Workload) DSML was designed to capture the application workload. The
number of user requests to view the file is captured with numberOfVideos
however, there is a possibility that the users do not watch the entire video.
Therefore, the average percentage of the video being watched online is also
captured (averageVideoPercentage Watched). Figure 6.13 shows the over-
view of ViIRR DSMLs for the WordPress Media Stream Application and
Figure 6.14 shows a contrived WPMediaStream Workload model. The work-
load is divided into 5 time slots for days in the second half of the year 2014
(01/07/2014 to 31/12/2014).

The daily resource requirement schedule to manage the workload was cap-
tured in ResourceRequestPlan model. Therefore, WPMediaStream Workload
model was transformed to ResourceRequestPlan model using formulas pro-
duced from the ReRA process performed above. Listing 6.5 and 6.6 illustrate
the ETL transformation that computes the resource requirements of the ap-
plication. As discussed above, the formula for resource metrics were retrieved
from ReRA using Matlab. A custom Java tool (tools.DateTool at line 3 in
Listing 6.5) was used to calculate number of days (line 15) and respective
dates (line 24) for the selected calendar period. The complete ETL program
combines these two rules is presented in Listing G.2 in Appendix G. For
example, the outcome by transforming WPMediaStream Workload model (il-
lustrated in Figure 6.14) with the rules defined in the ETL transformation is
ResourceRequestPlan model (illustrated in Figure 6.15).

124

timeSlotWorkload

WP1 : WPMediaStreamWorkload

applicationWorkload

TSW1: WPMediaStreamTimeSlotWorkload

applicationID = “MyTube”

startDate

endbate gy
<&
<@
<@

D1: Date

DD = 01
MM =07
YYYY= 2014

applicationWorkload
timeSlotWorkload

applicationWorkload
timeSlotWorkload
applicationWorkload

timeSlotWorkload

D2: Date

applicationWorkload

from=0

to=9

numberOfVideos =50
averageVideoPercentageWatched = 0.8

TSW2: WPMediaStreamTimeSlotWorkload

timeSlotWorkload

from=9

to=12

numberOfVideos =500
averageVideoPercentageWatched = 0.95

TSW3: WPMediaStreamTimeSlotWorkload

DD= 31

MM =12
YYYY= 2014

from=12

to=14

numberOfVideos =20
averageVideoPercentageWatched = 0.65

TSW4: WPMediaStreamTimeSlotWorkload

TSW5: WPMediaStreamTimeSlotWorkload

from =18

to=24

numberOfVideos =100
averageVideoPercentageWatched = 0.95

from = 14

to=18

numberOfVideos =500
averageVideoPercentageWatched = 0.7

Figure 6.14: Object diagram represents WPMediaStream Workload model.

Listing 6.5: Rule to Transform the WordPress Media Stream Workloads to
VM Request Plan.

1 pre {

2 var myTubeWorkload = S!WPMediaStreamWorkload. all . first () ;
3 var dateTool = new Native(” tools.DateTool”);

1)

5

6 rule WPMediastreamWorkloadToVmRequestPlan

7 transform s : S!WPMediaStreamWorkload

8 to t : T!VmRequestPlan {

9

10 t.applicationName = s.applicationID ;

11 t . vmRequirements.addAll(s.timeSlotWorkloads. equivalent ());
12

13 // defining start and end date

14

15 noOfDays = dateTool.countDays(startDate, endDate);

16 currentDate = startDate;

17

18 for (i in Sequence{1l..noOfDays}){

19 //create daily request

20

21 for (timeSlotWorkload in s.timeSlotWorkloads){
22 t.createSlots (reqDate, timeSlotWorkload);

23 }

24 currentDate = dateTool.tomorrow (currentDate);
25

26 //assign start and end date

27 }

126

Listing 6.6: Rule to Transform the WordPress Media Stream Workload Time
Slot to VM Resource Requirement.
1 rule WPTimeSlotWorkloadToVmRequirement

2
3
4
5
6
7
8
9

10
11

12
13
14
15

16
17
18
19
20

21
22
23
24
25

26
27
28
29 }

transform timeSlotWorkload : S!WPMediaStreamTimeSlotWorkload
to vin : T!Vm {

var duration : Integer;

//hours to seconds

duration:=(timeSlotWorkload . ‘to‘—timeSlotWorkload . from)
*3600;

//average CPU requirement (MHz)
vin.CPU=(2.8xtimeSlotWorkload . numberOfVideos+15.0) %
timeSlotWorkload . averageVideoPercentageWatched

i

//average memory requirement (MB)
vm. memory=(1.438+timeSlotWorkload . numberOfVideos+120.0) x
timeSlotWorkload . averageVideoPercentageWatched

)

//average incoming network requirement (MB)

vm. incomingNetwork=
(1458.3«timeSlotWorkload . numberOfVideos) *
timeSlotWorkload . averageVideoPercentageWatched

i

//average outgoing network requirement (MB)

vm. outgoingNetwork=
(30590.0xtimeSlotWorkload . numberOfVideos) x
timeSlotWorkload . averageVideoPercentageWatched

i

//average storage requirement (MB)
vim. storage = 706.00;

127

0 = spuooas
0= Ss=1nunwu
tZ= 1noy

0"09/ = @Beios
0'050906% = H1omiapBulosino
S 8ESBET = 4omiapNBulwooul

[PPOWL PDOJYLO A WDILLGDIPI N J M OYD UO Poseq [opOWl U] J159nbayfaainosay syuosordor urerderp 100lqQ :G1°9 oansiyg

THA SO 133/qo wia an1adsas 03 BuLuafar yaym spoalgo
10JS & UMO WY 2ADY FRTHA 02 Z4d s122/qo 1sanbayApog

TI9°05F = Adowaw
ST08C = NdD

sw -

(0 = spuocosas
0= S=1nunw
8T = dnoy

o1

win SN

UAMOoYs Jou 40

uswsnnbayuan
_L/ unjdina Jo s1aalfgo wa g

swg

0 = spuodas
0= sapnuiw
ZT = 4noy

oay

. OIE

umoysiou suo Tya fo swafgorois 7

5105

ETTIH

0 = spuooas
0= s21nuiw
6 = Jnoy

o1

0 a0/ = a@8eioms

LOTXSTE'T = 4omiapySuloSino
S Z69Z69 = WlomiaySunwoou
SO L6l = Mowaw

SCFFET = NdD

win SZINN

wawannbayguwna

2wy -

0 = spuodas
0= s=apnuiw
5 = Jnoy

[EEeN N

. 0|5 :

awi] -

0 = spuoaas
0= s21nuiw
0 = 4noy

o3

0'o0s=aBeaols

s10|s

0°009EZZT = MomianSuloFino
O'ZEERS = Hromgan Sulwooul
TS'EST = Adowaw

00 FET = NdD

WA STINA

isenbayAieq iTya

sanbayhpeq :ygTHaQ | 1sanbayipeq :zua
.W s1edis=nbay
| o
] m B
=] N FTOZ = AAAA | 12 FTOE = AAAA
m Ww T = WIN | (3 L0 =
Te=aqaa |- Z0=aa
23eqd ‘¥8TA =3eq ‘¢d
i\
m
=0
S
[~F]
= @
SWENVENI STV +SAnLARW,, = gluopedydde
suBBAINbIHWA uejgisanbayuwp tue|dINA
v
o
=1
o
.DIMT
m
SiuaaJinbayua L
K TTOEZ = AAAA
L0 = N
. aiegisanbaa 10=aa
23ed ‘1A

awannbayun

swi] -

oa) ‘

0o1s -

s10[5

128

6.7 Second Case Study: Part of Speech Tag-
ging

The second case study was developed using PHP and an open-source part-of-
speech tagging tool named lexicon!. In a part-of-speech tagging application,
a process of tagging up the words in a text as corresponding to a particular
part of speech (e.g. verb, noun, adjective) is performed. This case study
highly consume all the interested resource metrics. I Samples of tags are NN
for noun, NNS for plural noun, VB for verb, VBD for verb past tense and oth-
ers. For example the string, “The purpose of this walk-through is to provide
a computer role-playing game.” is tagged as “The/DT purpose/NN of/IN
this/DT walk-through/NN is/VBZ to/TO provide/VB a/DT computer/NN
role/NN playing/VBG game/NN.”

The application receives a number of text files to be tagged, returns the
tagged files to the user and also stores the received text files. This case
study utilised all the interested resource metrics and very CPU intensive.
The first case study is network, CPU and memory intensive while this case
study include storage utilisation.

6.7.1 ReRA of the Part-of-Speech Tagger Application

The Apache 2 web server was used with its default configuration on a virtual
machine with 4 CPUs and 2GB of memory. VBoxManage was configured to
record resource usage into a log file. In conducting this case study, a limita-
tion of VBoxManage was discovered, whereby the disk utilisation recording
does not represent the changes in disk usage (it records the same value even
though the storage usage changes). Therefore, the disk utility monitoring
tool of the operating system was used to capture storage utilisation of the
VM. In this case study, two resource monitoring tools were used and the
resource utilisation log files were transformed into two models (VBox VM-
Metrics and DiskUsageLog). These models were synthesised to produce a
ResourceLog model. The same DSMLs and model management techniques
used in the first case study were reused on top of an additional DSML for
resource utilisation recording.

Simulated workloads involving concurrent requests, R, where R =
{1,2,3,4,5,6,7,8,9,10,100} were generated with JMeter. There was a CPU

http://phpir.com/part-of-speech-tagging

129

http://phpir.com/part-of-speech-tagging

bottleneck in processing the workload of this application in the virtualised
environment. A total of 4 CPU units were used to set the virtualisation en-
vironment on the physical machine and the VM hosted should not consume
more than this. The experiments were also performed with smaller number
of CPU units, however using the maximum of 4 CPU units shows better de-
pendencies on the number of CPU. For example, the graphical illustration of
CPU utilisation in Figure C.2 shows that the CPU utilisation reached 100%
when the number of requests is equal to the number of CPU. The observa-
tion shows that each request fully utilised a CPU unit (as discussed above
part-of-speech tagging is a CPU-heavy task). Therefore smaller numbers of
concurrent requests were simulated to illustrated resource utilisation.

In addition to the number of concurrent requests, the size of the files
processed had an impact on the resource usage. As proof-of-concept im-
plementation, three files representing three file size categories, S, where
S = {147035,57765,21291} bytes with respective words count, C, where
C = {24767,10873,3781} were processed. Therefore, three sets of experi-
ments were conducted to analyse resource usage of the simulated workloads
for the three size categories (large, medium and small).

The ReRA process presented in Section 6.5 was fully utilised to analyse each
workload of the part-of-speech tagger application. The outcomes of imple-
menting ReRA with this application are presented in Appendix C. Three sets
of graphs were produced by performing ReRA for each workload category.
The first set of graphs show the resource utilisation and simulated concurrent
requests of a particular workload. The second set of graphs shows the correla-
tion between resource usage and number of concurrent workloads using basic
statistical analysis (mean, median, minimum and maximum). The third set
of graphs shows the outcome of equation extraction using the mean values
of the resource usage with Matlab. The outcome of the equation extraction
are presented in Figure C.10, C.19 and C.28 in Appendix C. These formulas
were used in the ViRR process to estimate future resource requirements.

6.7.2 ViRR of the Part of Part-of-Speech Tagger Ap-
plication

A ResourceRequestPlan model captures resource requirement schedule to pro-
cess the workload of an application with a daily resource request time table
(VMRequestPlan and DailyRequest) on an hourly basis with time (Slot).
The resource requirement is estimated based on information provided by

130

‘uoryeoriddy 1083wy yooads-jo-jred o) 10] STINS HHIA JO MOIAIDA() :9T°Q 2INSTI]

3 spuodEs o 1e0l43 : 3beuols o
W sANUIW o 18043 : JomyanBuoBine o
WE N0y o 1B0}47 : omiaMbuIoIul o
awll g 1eol43 : Uowsw o
1 I IEOH43 NdD o
o woly wh g
0 R
JawaInbagwA suaWaNbaywa
|

Buiys3 : awenuoieddde o
ue|disanbaywa §

WE A =
WIE NN o
WE:dd o

saz153])

0| W3 : s3i0segquInY o
fiobaedazis @ azis o

371584 H

||ELUS
wnipaw —
abie| -
fobaegazis =
< <UDNEJIWNUZ > >

peopopolsaw iabbe aads §

pecpiomiabbelyaads §

v

W[E: 0o
W[E: woel o

POOPYIOMIO)S3UN]

EPEOPIONNI0]5 3

W[E A =
WE NN o
WE ' dd =

peopiopuonesdde

buuisa : quoneadde o

DO IOMUODINddY [

131

the Application Workload model, which defines the workload per hourly slot
(TimeSlot Workload) for the calendar period of interest (Date).

Since a specific DSML is required to capture unique features of application
workloads, the Speech Tagger Workload) DSML was designed by extending the
core classes of Application Workload DSML. The number of files involved for
the part-of-speech tagging process is captured with (numberOfFiles). Files
are categorised according to their sizes and the FileSize class is added to cap-
ture this feature. The file size is captured using three file categories (large,
medium and small). It is assumed that the percentage of file categories be-
ing processed at each timeslot is different, therefore percentages is used to
capture this information. Figure 6.16 shows the overview of ViRR DSMLs
design for the part-of-speech tagger application. The SpeechTagger Workload
DSML is specific to that application; however, it is an extension of Applica-
tion Workload DSML.

Defining the workload timeslots is beyond the scope of this case study since
it involves business planning for that particular application. However, for
testing purposes, similar workload timeslots as in the first case study are
used, whereby there are 5 time slots for each day between 01/07/2014 to
31/12/2014.

The SpeechTaggerWorkload model was transformed to a ResourceRequest-
Plan model using formulas produced through the ReRA process performed
for this application. The transformation produced a daily resource require-
ment schedule for the workload in the ResourceRequestPlan model. List-
ing 6.7 illustrates the rule to transform the Part-of-Speech tagger applic-
ation workloads to resource requirement plan. The formulas for resource
metrics are retrieved from ReRA using statistical data analysis as discussed
in Section 6.7.1. Listing 6.8 transforms the Part-of-Speech Tagger application
workload time slot to VM resource requirement schedule. The complete con-
crete transformation of rules in Listing 6.7 and 6.8 is presented in Listing G.3
in Appendix G.

132

Listing 6.7: Rule to transform the Part-of-Speech Tagger Application Work-
loads to VM Request Plan.

1 pre {

2 var mySpeechTaggerWorkload=S!SpeechTaggerWorkload. all. first ()

)

3 var dateTool=new Native(” tools.DateTool”);

1)

5

6 rule SpeechTaggerWorkloadToVmRequestPlan

7 transform s : S!SpeechTaggerWorkload

8 to t : T!VmRequestPlan {

9 t.applicationName = s.applicationID ;

10 t . vmRequirements.addAll(s.timeSlotWorkloads. equivalent ());
11 // defining start and end date

12 noOfDays = dateTool.countDays(startDate, endDate);

13 currentDate = startDate;

14 for (i in Sequence{1l..n00fDays}){

15 //create daily request

16 for (timeSlotWorkload in s.timeSlotWorkloads){
17 t.createSlots (reqDate, timeSlotWorkload);

18 }

19 currentDate = dateTool.tomorrow (currentDate);
20 }

21 //assign start and end date

22 }

Listing 6.8: Rule to Transform the Part-of-Speech Tagger Application Work-
load Time Slot to VM Resource Requirement.
1 rule SpeechTaggerTimeSlotWorkloadToVmRequirement

2 transform timeSlotWorkload : S!SpeechTaggerTimeSlotWorkload

3 to vm : T!Vm {

4 //declaration of variables;

5 for (fileSize in timeSlotWorkload. fileSizes){

6 //formulas retrived from ReRA to process small files are

used (Figure 6.47)

7 if (fileSize.size = SizeCategory#small){

8 smallFileCPU=(5.2152% fileSize . numberOfFiles.pow(3))
—(188.59% fileSize . numberOfFiles.pow(2)) +(2069.5%
fileSize .numberOfFiles) —129.9;

9

10 smallFileMemory=(0.2727« fileSize . numberOfFiles.pow(3))
+(1.4333 xfileSize .numberOfFiles.pow(2))+(43.554x
fileSize .numberOfFiles) +64.48;

11

12 smallFileNetIn=(0.1271xfileSize .numberOfFiles.pow(3))

—(3.7384x fileSize . numberOfFiles.pow(2)) +(36.104x
fileSize .numberOfFiles) —2.1564;

133

13
14

15
16
17
18
19

20
21
22
23
24
25
26
27
28

29
30
31
32
33
34
35
36
37
38
39
40

41
42
43

44 }
45

}

smallFileNetOut=(0.1909x* fileSize .numberOfFiles.pow(3))

—(5.6324x fileSize . numberOfFiles.pow(3))+ (54.541x

fileSize .numberOfFiles.pow(3)) —3.8293;

smallFileStorage=1.3296%fileSize .numberOfFiles+1302.04;

//formulas retrived from ReRA to process medium files

used (Figure 6.38)

else if (fileSize.size = SizeCategory#medium){
mediumFileCPU = ... //CPU formula
mediumFileMemory = ... //memory formula
mediumFileNetIn = ... //incoming network formula
mediumFileNetOut = ... //outgoing network formula
mediumFileStorage = ... //outgoing network formula

}

//formulas retrived from ReRA to process large files

used (Figure 6.29)

else if (fileSize.size = SizeCategory#large){
mediumFileCPU = ... //CPU formula
mediumFileMemory = ... //memory formula
mediumFileNetIn = ... //incoming network formula
mediumFileNetOut = ... //outgoing network formula
mediumFileStorage = ... //outgoing network formula

}
}

//get resource requirements
v . CPU=getMaximum (smallFileCPU , mediumFileCPU , largeFile CPU) ;
v . memory=getMaximum (smallFileMemory , mediumFileMemory ,

largeFileMemory) ;
.incomingNetwork=getMaximum (smallFileNetIn ,mediumFileNetIn
,largeFileNetIn);
.outgoingNetwork=getMaximum (smallFileNetOut ,
mediumFileNetOut ,largeFileNetOut) ;
.storage=getMaximum (smallFileStorage ,mediumFileStorage ,
largeFileStorage);

46 operation getMaximum(x,y,z) : Any{
var max = X;

47
48
49
50
51 }

if (y > max) { max = y; }
if (z > max) { max = z; }

return max;

are

are

134

6.8 Chapter Summary

In this chapter, two case studies were used to demonstrate that the DSMLs
and semi-automated processes presented in the previous chapter can be used
to support parts of the capacity planning process in different applications.
In particular, the implementations demonstrate that valuable information
in the form of resource utilisation graphs together with resource metrics
formulas can be produced to aid in capacity planning. The application of
proposed MDE solution with two case studies hosted in a virtualised environ-
ment shows that the developed DSMLs and model management techniques
are modular and reusable. The modularity and reusability of the proposed
MDE solutions were evaluated using an additional case study in the following
chapter.

135

Chapter 7

Evaluation

This thesis has presented a couple of DSML sets that allow workloads to be
captured precisely using models, as well as a transparent, automated and
repeatable MDE process. This MDE approach assists the capacity planning
manager to estimate the resource requirements from the application workload
models. The MDE process exploits model transformation, comparison and
merging as model management techniques. The core approaches were demon-
strated in Chapter 5 with sets of DSMLs and model management techniques.
In Chapter 6, the core approaches were extended by applying it to web ap-
plications hosted in a virtualisation environment. The implementation using
two case studies shows that, the proposed MDE approach demonstrated in
Chapter 5 are modular and reusable, making it possible to perform capacity
planning for an application hosted in a virtualised environment. To evaluate
further the modularity, reusability, completeness and extensibility of the pro-
posed DSMLs and the MDE process for the framework, a third case study
was conducted which is discussed in this chapter. This case study is also a
web application hosted in the same virtualised environment to evaluate the
extended solution demonstrated in Chapter 6. Sets of synthetic workloads
were generated to conduct ReRA and the retrieved formulas were applied in
the ViRR process, as presented in Chapter 6.

7.1 Evaluation Plan

In Section 6.2, an overview of the evaluation plan was discussed as the second
phase of the experimental research method. Figure 7.1 illustrates the flow of
the evaluation plan executed with an additional third case study.

136

The third case study was also a resource-intensive web application running
in the virtualised environment configured for the previous two case studies
discussed in Chapter 6. Therefore, the application type and the infrastruc-
ture used in exploratory and evaluation case studies are the same. However,
the evaluation case study differs from the previous case studies in terms of
the functionality of the application and the characteristics of the workload.
The first case study related to videos, while the second related to text files
and the third is related to images. The attributes of the workloads used to
manage those entities in the respective web applications are different. For
example, the third case study has a filter type attribute to differentiate the
request types in addition of number of images and image size. The second
case study considers text file size and number of text file, while the first
considers the number of video and average video percentage watched.

The modularity and reusability of the proposed MDE solutions are the vari-
ables, as defined in the hypotheses. Additional variables such as the com-
pleteness and extensibility of the proposed MDE solutions were also evalu-
ated. To evaluate the predictive approach, additional synthetic workloads
were generated to compare the actual resource consumptions with the pre-
dicted resource requirements.

An analysis of the findings will be discussed to measure the fulfilment of
the system level requirements presented in Chapter 6. The conclusion of the
research will be elaborated in the following chapter.

7.2 Third Case Study: Image Filtering

An image filtering web application was exclusively used as a third case study
to evaluate the desired variables of the proposed MDE solutions in perform-
ing capacity planning in virtualised environments. This application was de-
veloped using PHP’s image filtering utilities!. Three types of image filters
(grayscale, negate and default) were used in this application. The application
receives a number of images to be filtered, applies the requested filters, sends
the filtered files to the user and also stores them on the server. This applic-
ation intensively utilises all resources (CPU, memory, network and storage)
of interest. For the purpose of this case study, the images were categorised
into three sizes; large, medium and small.

Thttp: //www.php.net/manual /en/function.imagefilter.php

137

Evaluate the MDE Solutions with
Additional Case Study

Measure the Research
Variables

Analyse the
Findings

-

Conclude the
Research

Figure 7.1: Evaluation Plan of the Research.

The Image Filtering application was hosted in a VM running in the Vir-
tualBox virtualisation environment as discussed in Chapter 6. As in the
previous two case studies, Apache2 web server was used to host the Image
Filtering application. Therefore, the same structure of log recording was
configured to reuse the text-to-model programs which initiate the creation of
the RequestLog, VBoxVMDMetrics and DiskUsageLog models. Subsequently,
all the programs and DSMLs discussed in Chapter 6 for ReRA and ViRR
were utilised and the practicality was evaluated.

A virtual machine with 4 CPUs and 2GBs of RAM was used to host this
application. A maximum of 4 CPU units was used to better highlight the
dependency on the number of CPU units utilised. Our observations show
that each request utilised a CPU unit until the selected image filtering process
completed. For example, a CPU unit was fully utilised to process a request,
2 CPU units were fully utilised to process two concurrent requests, 3 CPU
units were utilised to process three concurrent requests and the maximum of
4 CPU units were utilised to process four and above concurrent requests.

VBoxManage was configured to record resource usage into a log file. The
disk utility monitoring tool of the operating system was used to capture
storage utilisation of the VM. Therefore, two resource monitoring tools as in
the second case study were used and the resource utilisation log files were
transformed into two models (VBozVMMetrics and DiskUsageLog). These

138

Image # of Im- | Original | Size After Filtering (bytes)
Cat- ages Size of
egories Images

(bytes)

Grayscale Negate Default

Large 200 822,244 760,241 577,887 1,825,686
Medium | 500 247,539 213,287 130,371 421,941
Small 2,000 81,809 80,304 55,607 82,161

Table 7.1: Image Filter Case Study

models were synthesised to produce a ResourceLog model. The DSMLs and

model management techniques used in the second case study were reused in
ReRA and ViRR processes.

Workloads involving concurrent requests, R, where R =
{1,2,3,4,5,6,7,8,9,10} were generated using JMeter. Since a CPU
bottleneck was observed in the VM when processing the workload of this
application, a small number of concurrent requests was simulated to measure
the application workload. In addition to concurrent requests, the size of the
images and the filter type also impact resource usage.

The image filtering application used for the evaluation was a synthetic case
study. Therefore, to simplify the technicality, the size of the images was
categorised into three types (large, medium and small). Since there are also
three types of filter used to analyse resource requirement to process three
types of image sizes, nine sets (3 types of images X 3 types of filters) of
experiments were conducted. These experiments aimed to analyse resource
usage triggered by the simulated workload categories by using DSMLs and
model management techniques proposed in Chapter 6.

Images that need to be processed were stored in a client site (in this configur-
ation, the host). For example, 200 large images were used and the locations of
the images (path), together with the filter type to be implemented were cap-
tured in a csv file. This csv file was used in the JMeter to simulate respective
workloads. The time taken to process smaller images was less, therefore the
number of files was increased for smaller images to ensure sufficient logs were
collected for analysis. Filtered images were returned to the client and were
also stored in the server (VM). Table 7.1 shows the number of files used to
analyse resource usage for each image category. The size of images before
and after filtering is also presented in Table 7.1 since these values influence
network usage and storage.

139

The experiments undertaken to collect empirical data and the outcomes of
performing ReRA activities are discussed in the following section.

7.2.1 ReRA of Image Filtering Application

The workloads for the image filtering application were categorised into 9 types
(3 filter types x 3 image categories). The ReRA process was used to retrieve
formulas for the resource metrics from the nine identified workloads. In this
section, the practicality of the process and the reusability of the proposed
MDE solutions are evaluated.

The ReRA process presented in Chapter 6 was fully utilised to analyse each
workload of the image filtering application. The outcomes of implement-
ing ReRA with this application are presented in Appendix D. Three sets
of graphs were produced by performing ReRA for each workload category.
The first set of graphs show the resource utilisation and simulated concur-
rent requests of a particular workload. The second set of graphs shows the
correlation between resource usage and number of concurrent workloads us-
ing basic statistical analysis (mean, median, minimum and maximum). The
third set of graphs shows the outcome of further analysis with Matlab using
the mean values of the resource usage to produce formulas using equation
extracting module of Matlab.

The designed DSMLs for ReRA process and the developed programs
to perform model management techniques (text-to-model, model-to-model
and model-to-text) were reused without modifications. The ReRA
process was utilised systematically and the obtained formulas for the
resource metrics of the generated workloads are presented in Fig-
ure D.3, D.6, D.9, D.12, D.15, D.18, D.21, D.24 and D.27 in Appendix D.
These formulas were used in the ViRR process to estimate future resource
requirements.

7.2.2 VIiRR of the Image Filtering Application

The resource requirements schedule for processing the workloads of the ap-
plication of interest, in the form of a daily resource request time table is
captured in the ResourceRequestPlan model. Resource requirements are es-
timated based on information provided by the Application Workload model,
which defines the workload for time-long slots (TimeSlot Workload) for each

140

calendar period (startDate and endDate) of interest. The time-long slots
(from and to attributes in TimeSlotWorkload) can be used to support vari-
ous levels of granularity (such as hours, minutes or seconds). The selection
of the time unit affects the transformation and the extensibility of the re-
lated transformation program is presented in lines 230-252 of Listing G.4 for
createTime operation. In this section, the application of the proposed MDE
solutions of the ViRR process is presented.

An ImageFilterWorkload DSML was designed by extending classes of the
Application Workload DSML. Only this DSML was designed to replace the
application workload DSML of the previous two case studies since it is spe-
cific to the structure and behaviour of this application. In a time period,
various categories of workloads (workload) may be processed. To capture
this information, the start time (from) and end time (fo) of processing the
image filtering workloads were stored in ImageFilter TimeSlot Workload. The
workloads in this case study were defined using: the number of images to be
processed (numberOflmages), the image size category (size), and the type
of filter to be used to process the images (filter). Images are categorised
according to their sizes (using the values large, medium and small); the
SizeCategory class is designed to capture these values. The filter type is
defined in the Filter enumeration with negate, grayscale and default as lit-
erals. Figure 7.2 shows the overview of the ViRR DSLMs designed for the
image filtering application.

Listing 7.1: Rule to transform the Image Filtering Application Workloads to
VM Request Plan.

1 pre {

2 var myIlFWorkload = S!ImageFilterWorkload . all. first ();

3 var dateTool = new Native(” tools.DateTool”);

4}

5

6 rule ImageFilterWorkloadToVmRequestPlan

7 transform s : S!ImageFilterWorkload

8 to t : T!VmRequestPlan {

9 t.applicationName = s.applicationID ;

10 t .vmRequirements.addAll (s.timeSlotWorkloads . equivalent ());
11 // defining start and end date

12 noOfDays = dateTool.countDays(startDate, endDate);

13 currentDate = startDate;

14 for (i in Sequence{1l..noOfDays}){

15 //create daily request

16 for (timeSlotWorkload in s.timeSlotWorkloads){
17 t.createSlots (reqDate, timeSlotWorkload) ;

18 }

141

‘uoryeorddy Surieg(r oSew] o) 10] STINS HHIA JO MOIAIOA() :Z) 2InSI

[[ELLIS ynepEp -
18043 : 3beiols o dE L AE o WnIpaw - 3easiesd -
JUE : SpUDas o €043 : lomaNbBulobne = fobaedazis @ 325 o abue| - apeBau -
JUT ¢ SANUIL o 1E0[43 : HoMENBUIWoIU o U3+ sabewjpEqUINU = foBaedazs 5 =d 5
U3 Inoy o 1BOHT : owsw o pPeopUodl H < <UONEIBWNUE> =l <<uoielaWwnua > >
ETIy =] IBOH3 I NdD = I -
wh g
T T 0 g
1 e ’ PEO[IOANIO[S3WILI3YI3bewW] § PEOPHOM3HI30EW]
BWwAINbaywA sjuawannbaywa

bus3 : awenuoneddde o m_\...

ue|disanbaywa § WE:0lm | g
I3 © WOk o EpEopIoAoGIIn
poopioANosauUn]

peopdopmucnieddde

Buuis3: quoneadde o
PoGIYIoUORDNddy B

142

19 currentDate = dateTool.tomorrow (currentDate);

20 }
21 //assign start and end date
22 }

The formulas of resource metrics produced from the ReRA process in Sec-
tion 7.2.1 were used for transforming ImageFilterWorkload model to Re-
sourceRequestPlan models. Listing 7.1 illustrates the rule to transform the
image filtering application workloads to resource requirement plan. The ap-
plication processes various workloads within a day and this behaviour is re-
peated throughout the selected period. This behaviour is similar to the other
two case studies, therefore the ETL transformation that translates workload
to a VM request plan remains the same as for the two previous case studies.
Listing 7.2 illustrates an outline of the rule that transforms each time slot of
the image filtering application to respective VM resource requirements. The
formulas for resource metrics are retrieved from ReRA using statistical data
analysis as discussed in Appendix D. In the complete transformation, the
formulas are applied within lines 5 to 39 depending on the type of file size
and the type of the filter. The complete concrete transformation is presented
in Listing G.4 in Appendix D.

Listing 7.2: Rule to Transform the Image Filtering Application Workload
Time Slot to VM Resource Requirement.

1 rule ImageFilterTimeSlotWorkloadToVmRequirement

2 transform timeSlotWorkload : S!ImageFilterTimeSlotWorkload

3 to vm : T!Vm {

4 //declaration of variables

5 for (wl in timeSlotWorkload.workloads){

6 if (wl.size = SizeCategory#small){

7 if (wl.filter = Filter#‘default ‘) {

8 //apply formulas retrieved from ReRA to process small
images with default filter (Figure C.21)

9 }

10 else if (wl.filter = Filter#negate){

11 //apply formulas retrieved from ReRA to process small
images with negate filter (Figure C.27)

12 }

13 else if (wl.filter = Filter#grayscale) {

14 //apply formulas retrieved from ReRA to process small
images with grayscale filter (Figure C.24)

15 }

16 }

17 else if (wl.size = SizeCategory#medium){

18 if (wl.filter = Filter#‘default ‘){

19 //apply formulas retrieved from ReRA to process medium

143

20
21
22

23
24
25

26
27
28
29
30

31
32
33

34
35
36

37
38
39
40
41
42
43
44
45

}

images with default filter (Figure C.12)

}

else if (wl.filter = Filter#negate){

//apply formulas retrieved from ReRA to process medium
images with negate filter (Figure C.18)

else if (wl.filter = Filter#grayscale) {

//apply formulas retrieved from ReRA to process
medium images with grayscale filter (Figure C.15)

}

else if (wl.size = SizeCategory#large){

}
}

if (wl.filter = Filter#‘default ‘) {

//apply formulas retrieved from ReRA to process large
images with default filter (Figure C.3)

}

else if (wl.filter = Filter#negate){

//apply formulas retrieved from ReRA to process large
images with negate filter (Figure C.9)

}

else if (wl.filter = Filter#grayscale) {

//apply formulas retrieved from ReRA to process large
images with grayscale filter (Figure C.6)

}

//get resource requirements

vim.CPU = getMaximum (parameters) ;

vin.memory = getMaximum (parameters) ;

vi. incomingNetwork = getMaximum (parameters)
vm. outgoingNetwork = getMaximum (parameters) ;

7.3 Evaluation of Modularity

MDE which utilise modularity, responds quickly to the changes in re-
quirements, and also increases productivity, maintainability, and portabil-
ity [40, 41]. In this thesis, a couple of DSML sets and model management
techniques were proposed to facilitate capacity planning in virtualised envir-
onments. The design of DSMLs for ReRA and ViRR processes, as presented
in Chapter 5, is self-contained to ensure that every step of the capacity plan-
ning process is modular in nature. The applications of the proposed MDE
approach with two case studies, presented in Chapter 6, demonstrate that

144

the steps are modular. Every automated /semi-automated step of ReRA and
ViRR was portable and responded rapidly to the changes in requirements.
The input and output of the DSMLs and their structure are specified in a
rigorous manner to support modularity.

7.3.1 Modularity in ReRA

In Chapter 5, six DSMLs and nine model management activities were de-
signed to enable modularity by being self-containing within the step. The
input and output of the DSMLs were managed by respective model man-
agement activities. In Chapter 6, two additional DSMLs (VBozMetrics and
DiskUsageLog) were designed to capture the resource usages from two log files
into corresponding models. Model management programs were developed to
produce the required output from those models to feed into the core Re-
sourceLog model. The modification involved in capturing the resource usage
logs does not affect other steps in the ReRA process due to modularity.

Modularity allows several steps to be processed simultaneously since it min-
imises dependency. Capturing workload records into an Application Work-
loadLog model and resource usage records into a ResourceLog model can be
conducted concurrently. These two steps are opening activities that initiate
the ReRA process. Modular design aids those two separate activities to be
executed concurrently.

Other steps require input from previous activity, but those steps may be
extended to produce the required core models. For example, a selected stat-
istical method can be applied to the ResourceVsWorkload model to generate
a ResourceRequirementAnalysis model. The structure of the ResourceRe-
quirementAnalysis DSML may differ from the design proposed in the thesis,
to align it with the applied statistical method. These changes only affect the
model management techniques related to that DSML.

Modularity also allows different equation extraction tools to be used in produ-
cing formulas for the resource metrics. The ReRA process provides a modular
component for equation extraction which can be replaced with appropriate
implementations such as machine learning. The design of the ResourceRe-
quirementAnalysis DSML may be customised according to the selected equa-
tion extraction tools.

The modularity qualifies selected DSMLs to be used for other purposes. For
example, it is also possible to use Application WorkloadLog and ResourceLog
models for various analyses related to application workload and resource

145

monitoring respectively. Modularity also makes selected steps optional. For,
example, cleansing activity can be excluded if the data collection does not
produce any noise.

7.3.2 Modularity in ViRR

In the ViRR process, the Application Workload model captures the predicted
workload of an application and is application specific. This model will be
transformed into a ResourceRequirementPlan model to estimates the resource
requirements for the defined schedule with model-to-model transformation.
The changes in Application Workload DSML specific to an application only
affect the transformation program which generates a Resource Requirement-
Plan model. The modularity feature applied in ViRR does not affect changes
to the ResourceRequirementPlan DSML although there are changes in the
Application Workload DSML, as demonstrated by all three case studies.

7.4 FEvaluation of Reuse

This section discusses the level of reusability of the proposed core MDE
solutions presented in Chapter 5 and also of the applied MDE solutions.
Table F.1 summaries the average percentages of reusability of both MDE
solutions. The first column in Table F.1, list the two processes developed
in this research (ReRA and ViRR), the second column represents the arte-
facts categories which were grouped by DSMLs and model management tech-
niques, the third column represents the individual core MDE artefacts dis-
cussed in Chapter 5 and the fourth column identifies the core artefacts that
had been reused and the additional artefacts developed during implementa-
tion, as demonstrated in Chapter 6. The average reuse percentages of the core
MDE artefacts are presented in the fifth column (% of Reuse Compared to
Core MDE Artefact) with three sub-columns which evaluate the individual
artefacts, artefacts categories (DSMLs and model management techniques
separately) and processes (artefacts used in the process), accordingly.

Table F.1 also shows the average reuse percentages of the applied MDE
solutions with the third case study discussed in Section 7.2. The third case
study was used to measure the level of reusability of the extended MDE
solutions specific to web applications operating in the VirtualBox virtualised
environment. This set-up has been used to represent cloud-based applications
at the time of writing that are suitable for ReRa and ViRR processes as i) the

146

applications run in a virtualised environment, ii) precise resource utilisation
metrics can be extracted using VM monitoring and iii) application requests
and responses and their associated times are recorded by default by the
web server. The reuse of concrete artefacts demonstrated in Chapter 6 is
presented in the sixth column (Artefact for evaluation Case Study) and the
reuse percentage of applied MDE artefacts in the third case study is presented
in the seventh column by dividing it into artefact, artefact categories and
process.

7.4.1 Reuse in ReRA

In applying the core MDE solutions to automate the ReRA process, an
additional RequestLog DSML was designed for capturing web application
workloads by extending the Application WorkloadLog core DSML. Due to
certain limitations (related to the recording of storage utilisation) of the
VBoxManage resource monitoring tool in VirtualBox, two additional DSMLs
(DiskUsageLog and VBoxVMDMetrics) were designed to consolidate those re-
source DSMLs, and a model-to-model model transformation was developed
to transform multi-resource models into a single model that conform to the
core ResorceLog DSML. These improvements were presented in Chapter 6
by applying the core MDE with web applications’ case studies in VirtualBox
virtualisation environment. The rest of the core MDE artefacts proposed
for the ReRA process were fully reused (66.67% of DSMLs and 90% of the
model management programs were reused, as presented in Table F.1). On av-
erage, 78.33% of the core DSMLs and model management programs applied
in ReRA reuse the core MDE solutions. The statistics values are influenced
by the effort required to customise text-to-model transformation programs to
capture log recording structure to the respective log models. The structures
of those log files differ across infrastructure although the required values are
recorded. Once those text-to-model transformation programs are implemen-
ted for that infrastructure, the programs are reusable for other applications
run in that infrastructure.

The presented reusability figures are heavily influenced by the similarity of
the applications used in the three case studies. Applications with heterogen-
eous/irregular workloads are more likely to require substantial extension /re-
work, hence reducing the level of reuse.

In Section 7.2, the applied MDE artefacts were further evaluated with the
third case study and it demonstrates that all of the MDE artefacts used
in previous case studies were fully reused without additional work being

147

required to automate the ReRA process. This shows that the developed
MDE artefact of ReRA may be completely reused in other web applications
running in the VirtualBox virtualisation environment. DiskUsagelLog and
VBoxVMMetrics DSMLs are specific to VirtualBox due to the storage read-
ing limitation in VirtualBox. These DSMLs might not be required in the
situation when another virtualised platform is used. The ResorceLog DSML
is sufficient to capture the resource utilisation records. The implementation
of core MDE solutions for ReRA is specific to the type of application and
also to the capabilities of the resource monitoring tool used to record resource
utilisation. The level of reusability might differ slightly for other technology
infrastructures and all of the core MDE solutions may be reusable for various
technologies.

The required effort for implementing the proposed ReRA solutions in differ-
ent platforms consists primarily of in customising the text-to-model trans-
formation programs that read log recordings of workloads and resource util-
ization according to the log structure. The functionality of those programs is
the same. The design of proposed core DSMLs and other model management
techniques are reusable for various applications across platforms.

7.4.2 Reuse in ViRR

To automate the ViRR process, both core DSMLs were reused and an applic-
ation specific workload DSML had to be developed. Moreover, to transform
the application workload into a resource request plan, the core model-to-
model transformation had to be customised. This customisation is related
to the behaviour of an application workload for the time slots and also im-
plements the retrieved formulas from ReRA. Therefore, out-of-the-box re-
use only reached 43.33% for the application of ViRR in this case study as
presented in Table F.1. However, the Resource RequestPlan DSML was reused
without modification for all case studies.

The level of reuse of the core MDE solutions is higher for ReRA than for
ViRR. The implementation of the ViRR process is specific to the applica-
tion itself since the workloads of an application are unique. For example,
the MDE solutions of ViRR for the Media Stream case study and the Part-
of-Speech case study presented in Chapter 6 significantly differed, despite
the fact that both of them are web applications. However, the ViRR pro-
cess for both applications was the same where the core MDE solutions were
reused with additional MDE solutions specific to those applications. The
complexity of application specific Application Workload DSML affects the

148

model-to-model transformation program at implementation level. The effort
to customise the model-to-model transformation program increases with the
complexity of the application. The formulas retried from the ReRA process
need to be applied in the transformation program; therefore, the reusability
of this program is reduced, although the functionality is the same.

7.5 Evaluation of Extensibility

This section evaluates the extensibility of the MDE solutions for the ReRA
and ViRR processes. The modular feature of the proposed solution is the
key enabler for this feature.

7.5.1 Extensibility in ReRA

The case studies demonstrate that the core MDE solutions of ReRA are ex-
tensible. Referring to Table F.1, 3 additional DSMLs (RequestLog, DiskUs-
ageLog and VBVMDMetrics) were developed to capture log information for
the web applications hosted in VirtualBox. The RequestLog DSML was de-
signed specifically to capture the log information of a web application by
extending the Application Workload DSML. DiskUsageLog and VBVMMet-
rics DSMLs were designed to capture the resource usage logs in VirtualBox
in order eventually to produce a ResourceLog model. Model-to-model trans-
formations were used to merge the DiskUsageLog and VBVMMetrics models
to form a single resource model conforming to the core ResourceLog DSML.

7.5.2 Extensibility in ViRR

The MDE solutions of the ViRR process are application-specific and highly
dependent on the workloads of the application of interest. More specific-
ally, the core Application Workload DSML needs to be extended to fit the
structure and behaviour of the application in question. This DSML is highly
abstract and fully reusable and extensible. The ResourceRequestPlan DSML
was reused completely without modification. The model-to-model transform-
ation involved in this process also needs to be extended for the application
of interest, as discussed in Section 5.3.2.

149

7.6 Evaluation of Completeness

This section evaluates the completeness of the ReRA and ViRR processes.
The completeness was measured by the level of reusability. The MDE artefact
which was fully reused without modification is complete.

7.6.1 Completeness in ReRA

Referring to Table F.1, an additional 3 DSMLs (RequestLog, DiskUsageLog
and VBVMDMetrics) were developed to capture logs information by applying
the core MDE solutions for web applications hosted in VirtualBox. The
core DSMLs and model management programs developed to automate the
ReRA process were completely reused. The applied DSMLs specific to web
applications were also fully reused with the third case study. Therefore, those
DSMLs are classified as complete regarding the requirement to capture the
information for the ReRA process.

In the scenario of applying the proposed MDE solutions to other types of
application running under a different virtualisation technology, the initial
text-to-model transformation programs used to capture log information into
the respective log models needed to be developed. However, the functionality
of those text-to-model transformation programs is similar, as discussed in
Section 5.2.2. The core DSMLs of ReRA are reusable and able to be extended
for various technology infrastructures. On the other hand, the developed
model management programs are semi-automated. The success in applying
the semi-automated ReRA process with the 3 case studies demonstrates the
completeness of the proposed MDE solutions.

In applying different statistical methods, which is suggested as future study,
the ResourceRequirementAnalysis DSML might need modifications to cap-
ture the features of that method. There is also flexibility in adopting other
equation extracting tools/methods based on data gathered from the Re-
sourceRequirementAnalysis model. Applying other statistical methods or
adopting different equation extracting tools will affect the model manage-
ment techniques applied to the ResourceRequirementAnalysis model and it
may be implemented without affecting the other steps in ReRA.

150

7.6.2 Completeness in ViRR

In automating the ViRR process, the designed ResourceRequestPlan DSML
that acts as a resource request calendar for the capacity planning period was
applied as it is and reused without modification in all 3 case studies. There-
fore, the ResourceRequestPlan DSML can be classified as complete as evalu-
ated with the case studies. The Application Workload DSML which captures
the predicted application workload is application-specific and was extended
to additional DSML, specific to the application of interest. However, the
core Application Workload DSML was reused by extending it to application-
specific DSML which captures the workloads of a particular application. This
DSML is an expandable and the model management program that transforms
the Application Workload model to ResourceRequestPlan model needs to be
updated accordingly together with the formulas retrieved from ReRA.

151

7.7 Predictive Capability Evaluation

The evaluation discussed in Sections 7.3 to 7.6, evaluates the variables of
the proposed MDE artefacts in conducting capacity planning in virtualised
environments. Additionally, to evaluate the predictive capability by utilising
the proposed MDE solutions, a small experiment was conducted with the
image filtering application.

As to proof the concept, at random, five workloads for the image filtering ap-
plication were simulated with JMeter. The simulation was conducted for 600
seconds. Each workload was processed continuously for 60 seconds. Table 7.2
summarises the simulated workloads. The first column represents the name
given to the simulated workload to enable traceability with Figure 7.3 and
Table 7.3. The second and third columns represent the start and end times
of that workload respectively. These time units were captured as seconds of
the day. The fourth column represents the number of concurrent workloads
being processed and the last column gives a description of the workloads.

A virtualisation setup that able to accurately monitor resource usage is re-
quired for evaluation. After unsuccessful experimentation with more complex
infrastructures and applications (e.g. Eucalyptus and OpenStack for virtual-
isation and JPetStore as a use-case), a decision was made to use VirtualBox
and simpler, uniform workload applications. A major implication of using
VirtualBox is that workloads can only be executed on a single physical ma-
chine, thus limiting the capacity for larger-scale evaluation. Despite the lim-
itations of the evaluation setup, the principles of the proposed processes are
also relevant to larger scale setups of uniform workload applications as long
as workload logs can be captured and be reliably co-related with resource
utilisation. On the other hand, the applicability of the proposed processes to
applications with heterogeneous workloads cannot be assessed at all through
the evaluation as conducted.

The information on the simulated workloads presented in Table 7.2 was cap-
tured in the ImageFilterWorkload model. Figure 7.3 illustrates the Image-
FilterWorkload model as an object diagram that has five workloads with
the features defined in Table 7.2. The workload names (Workload Name)
in Table 7.2 are presented with small rectangles on the right side of the
ImageFilter TimeSlot Workload objects in Figure 7.3.

The ImageFilterWorkload model was transformed to a ResourceRequestPlan
model using the formulas produced through the ReRA process, as discussed
in Section 7.2.1. The formulas used to estimate resource requirements in

152

transforming the application workload to resource requirements are presen-
ted in Table 7.3. Column “Workload Name”, “Start Time”, “End Time” and
“Workload Description” in Table 7.3 represent the same columns in Table 7.2.
Column “Total Concurrent Workloads” represents the total workloads being
processed for various workload types and graph Workload Rate in Figure 7.4
shows this value. The number of concurrent requests for each workload rep-
resented as “x” in Table 7.3 and the respective formulas using this value.
Rows in Table 7.3 have been grouped according to the workload name. For
example, wl to w3 represent a single request being processed at a time and
values for each resource type (CPU, memory, incoming network and outgoing
network) are calculated with resource metrics formulas retrieved from ReRA.
Workloads w4 and w5 managed three different types of requests at a time.

Work- | Start | End # of | Description
load Time | Time | Work-

Name load

wll 33518 | 33578 | 3 3 concurrent requests to process
small images with negate filter.

wl2 33638 | 33698 | 2 2 concurrent requests to process
large images with grayscale fil-
ter.

wl3 33758 | 33818 | 4 4 concurrent requests to process
medium images with default fil-
ter.

wl4 33878 | 33938 | 2 2 concurrent requests to process

medium images with negate fil-
ter, 1 concurrent requests to pro-
cess large images with default fil-
ter and 3 concurrent requests to
process small images with gray-
scale filter.

wlb 33998 | 34058 | 3 3 concurrent requests to process
small images with negate filter,
2 concurrent requests to process
large images with grayscale filter
and 4 concurrent requests to pro-
cess medium 1mages with default

filter.

Table 7.2: Image Filter Workloads

153

Therefore the rows for these workloads are further divided according to the
request type being processed. In this work, maximum resource requirement
for each resource metric to run the process the workload are used as bench-
marks. This is to ensure that the resource allocation is sufficient to run the
application. Therefore, the maximum values which are highlighted in bold
in Table 7.3 were used for estimation. The transformation rules also apply
this method to predict resource requirements.

The transformation of Listing G.4 was then used to produce a daily resource
requirement schedule to predict the workload in the ResourceRequestPlan
model. In this thesis, the maximum resource requirement was used for predic-
tion and other possible statistical methods are open to explore to improvise
the prediction. The implementation gathering maximum resource require-
ment was stated between line 195 and 204 in Listing G.4 and the values were
presented in bold in Table 7.3.

The predicted resource requirements and the actual resource consumption
are presented in Figure 7.4. The results observed are generally consistent
with the predictions made through ReRA and ViRR. The estimated CPU
resource requirements are slightly lower than actual CPU consumption. The
estimated memory requirements are slightly higher than the actual memory
consumption. The estimated incoming and outgoing network resource re-
quirements are in line with the actual resource consumption. The underes-
timation of resources will affect the application performance and overestim-
ation will increase the cost. This evaluation was conducted to demonstrate
that it is possible to apply the proposed approach in estimating the resource
requirements. However, further improvement through applying a better stat-
istical method such as machine learning to achieve a more precise estimation
is suggested. In addition, evaluation with cloud-based applications running
in large scale virtualised environments offers another avenue for future work.

154

‘uoryenpeas Ajiqedes aargorpaid jo wrerderp 109(q() ¢, 9ISy

neyop =Jayly
98ue| =az1S

T =sagewi40Jaqwnu

PEODIIOMA |

91e8au =11y
wnipaw=azIs

¢ =so8ewi4QJ4aqwnu

PEOPIOMAI |

Mnejap =133y
wnipaw=azIs

t =s98ewijQ4aqwnu

PEOPIOMAI |

o|easAe.d =iay1y
98ue| =az1S

Z =sagewi{QJaqwinu

peopom4] :

9|easAeus =12y 1y i neyap =43y 9|easAeusd =19y 14 91e3au =41y
|lews =azis wnipsw=azis a8.e| =azis |lews =azis
€ =sadewi4QJaqunu ¥ =sadewijQJaqunu ¢ =s98ewi4QJaqwnu € =sa8ewi404aqwnu
pPeopjIoMdl : peopjiomd] : PEOPMOMA] : PEOPIOMII :
< =
(=] o
= =
o o
= S S
MVA N (N
SPEOIOM =
QD
> 8S0%€ 01
866€E€ :WOJ}
peoion10|SawI] 133 1{98ew:
8E6EE 0} gIm
—speoprom P 8L8EE ‘Woly
peopjiopio|Sawi] 1331498 ew):
vim
8T8EE 01 STOTZ = AAAA
mv|;o_v_‘_0>> 8G/EE ‘woly 80 = NIN
P =3 = S0=aa
PEOPIONI0|SBWI] 13} 1498 ew|: 3 B 3 0
glm 2 b |2 aeq:
s B B
869¢€€ 01 va, W nJMv -
8E9EE :Woly S B Z b — STOT = AAAA
PH o 9 s 3 I 80 =ININ
peopjioro|Sawi] 9)j14aSew: m. S a9 =1 s0o=adq
zim 7|2
® ?1eq:

91e8au =11y
|lews =azis

€ =saewij0Jaqunu

—speoprom P

8/S€€ 0}
8TSEE ‘WOl

PEOPIOMAI |

TIm

peopjioMIo|SawWLLISY 195 W]:

. peopjiopia}14aSew) :

speopIoIo|SaW}

gluoneosidde

155

“(P[Og UT UMOYS ‘PoJOD[as 9IoM SOT[RA TNTIIXRUL) SJUSTLIMDOY] 90IN0SaY] PaIdIpald €/, 9 el

1581 - %5026 69811 — XF'88L1L £806.L + 85011 — XB'EI6Z + 3]y jeuLiou yum|
65 962F + XZF BEZ|PY 9FOE + X958V L[Z0T) |X96F 3L + XTI¥E |67 0F99 XCOGOC — XSIS] sabew wrpaw $s3301d
- £X9009°6 —X10L0°9 —XP08ZL0°0 g £ 0] §}Sanbal JUsLINJU0I ¥
868°15 —XZ2098% 8629, —X/561.L £5°G/1 — X6'5005 + Jayly areasAaub yum|

057102 + XEEC65|L6°8E01 + X166 /8L p6l | LI6'OL + XBLLBS|BF LLSY X285 — X1 €l sabewn ab.ef ssasoid 6 850vE | BGBEC Glm g
—:X1982°C —XLLGE € £ 0] s1sanbal Juaunauoa g
1L 051 + X8'689¢ G08¥L + GZS 6L + X1G8F ¢ PP EEZ + XPELT + Jay a1ebau unm
58414 + XL 'ZEZ|21L 6899 ¥ZLBE + X00°¢9Z|50°98 +XE0501 0|6E €825 X027 — XJBCL 6 sabew) jews ssaoid o)
— XP995 ¥ — X96509| -2y 150000 £ £ sisanbal JuaLNIUod £
SET5C ~ XL ETK e 2898L + 01251 — ¥e s6ag +| /2 31E0SA3D
PZ'G0CY + XG6 Z2E|08 C069 X8 L6 8168 | XOCL'C +X/BS5 00 EPTC XJZ 1S — XEEL L sabew jrews ssalaid o)
— XJGGF o d — X80FFED 0 T B s)sanbal uauniuod ¢

66} ¢

V6L — Xl gel 855 ¥F — X66719€ B0PEY — XLTHLE + Jaji yneap uum|

51995 +X10€°98|52 v +XC00'Gr|09'9G) | LPB'98 + XEDL'60 ZLVEET | i e e sabewy ab.ey ss001d 9 8c6EE | 8./8EE vim L4
—¢Xgolee —XO¥28'l z € 01 sisanbal Juaunouod |
66°8¢) - %L LSEL M ESL Z0LLL - X5 /88T + a8y s1ebau ynm|
£8EL61 +¥98°591|82€LET - XFEQL + XL VOZ|PS 68 86T 6L + XLZL'G |SLESEY XJEGCE — XG0T b sabew wnpaw ss2301d
- Xg/09 9 —;X£981 8 z B 0] s]sanbal uaunauol g
£1°G81 —X5'0Z61 B698LL - %8811 £80°6/ + 85011 - X6E 162 J3NU HINesp unm

65962 + X2V 8EC|PY 9veT + X958 LIIZ°0Z) | X96F 01 +XC1E8 |6y ores || XG9'GO% — XEJ8] sabewr wnipaw sss0.d| ¥ 2L9EE | 8GLEE £1M 5
- :X9009°6 - X10.0°9| — XF08220°0 T B 0} §15anbal JUaLNIUod ¥
868715 —XZ0'98¥% 8529, -X/S6LL £GG/L — X600 + Jayl areasAaub yum|

06101 + XECT BG(16°8E0L + X166 LBy P6L | LI6QL +XBLUBSBYIIGY | ooaee C) e sabewr ab.ey ss001d 869EE | BE9EE Zim Z
—¢X19827¢ —XLIGE E € 01 sisanbal JuaunJuod g
LL 0S| + X8 689¢ 50 8vl + S¢S 6L + X158 ¢ PPEET + X eLbT a3 s1ebau unm

%8414 + XL ¢EC|ZH 6899 XZ16¢ + zX90°€9¢|50'98 +Xe0501 0|6e°e82G | XP9ZIT - XIESLE sabew jjews ssa301d £ 8JGEE | BLGEE i b
- XP995 ¥ — X9650 9 —XZFF150000 : F 0} S}Sanhal JuaLNIuod £

anje B|nwo an|e einuuod| ane, E|nuo an|e einuuog|(X158nbai ualnouoa| speopiiom
= : 4 = : 4 = : 4 = : 4 10 #) suondussag |juaunsuon EﬂEF (s) swn nﬂEmu oN
Wiomyap Buiobing ylomyap Buiwoou| Kowapy ndo PEOIHIOM leyoL pu3 HES | PEOPIOM

156

"95BSN 92IN0SOI pojetur)se pue [enilpy fL QHSMWW

1en1ow il
[ET rslawn
00L"FE 0S6'EE [alal== S osoEe 00S5'EE 00L'#E 0S6°EE aos'Ee 0S9'EE OO0SEE
_ oo 0oo°L
ﬁ | L SE =+ 00s’ L 9
iy =
=, =
. = . &=
a5 g oo’z B
= L
= =
L & oos'E B
ook oo00's
21eY PEROIMICA uonezinn abe1ols
paiewns3 @l enov Il parewnns3 @ 1enov Il
[EIET (s)awn
004 FE 056'EE 008'€E 0S9°EE 00G'EE a 00L'#E 0S6°EE 0o0s'EE O0SO'EE 00S°EE o
z z
= =
¥ = b =
= —
5 _ 5
a =]
Il
-] s
BunMUISWel | S uwoIyeZinn YUoMmlismM Guiaaoay (uonezZIinn Yloamgan
paiewilsl g 1eniov Il parewnss Ml leniy Il
[T (=) awn
00L"¥E 056'EE 00g'€E 0S9°EE 00G'EE a 00L'#E 0S6°EE 00s°EE O0S9'EE O0S°EE o
osz = ooo’e 2
3 I
=1 =
= . &=
oS = 000y F
E =
05. = ooo'e B
Qo0 [alalal:]

uoneznn fowaw

uoneznn Ndo

157

7.8 Evaluation of the System Requirements

The usability of the proposed MDE approach can be achieved by satisfying
the defined system requirements together with the possible implementation
of components to automate the approach. The system level requirements of
the research were defined in Section 6.3 together with its components and the
tools/methods used in this research. The system level requirements listed in
Section 6.3 are as below:

i. Requirement 1: The system shall provide accurate predictions of capa-
city;

ii. Requirement 2: The system shall support multiple statistical analysis
techniques;

iii. Requirement 3: The system shall make use of rigorously-defined models
for all configuration and data collection activities; and

iv. Requirement 4: The system shall make use of model management tech-
niques for all validation and transformation activities.

The evaluation of predictive capability was conducted with the third case
study as discussed in Section 7.7. This demonstrates that the proposed
approach is possible to be used in estimating the resource requirements. Sig-
nificant results were produce by comparing actual and estimated values for
resource utilisation. Therefore, Requirement 1 was satisfied; however, im-
provement with machine learning techniques is suggested as future work.

The modularity of DSMLS of ReRA process enables changes to a compon-
ent without effecting other components. The modular component enables
multiple statistical analysis techniques to be implemented. An equation ex-
traction been used can be replaced with appropriate implementations such as
applying machine learning. This capability can fulfil Requirement 2 however
the evaluation of this requirement is lay beyond the scope of this research.

Sets of DSMLs were defined and applied with three case studies for ReRA
and ViRR. Rigorously-defined models conforming to the proposed DSMLs
were used in the entire research for all configurations and data collection
activities. This demonstrates the fulfilment of Requirement 8 as presented
in Chapter 5, Chapter 6 and Section 7.2.

Text-to-Model, Model-to-Model and Model-to-Text transformations together
with model validation were utilised as the model management techniques.
These model management techniques were used for handling the models and

158

also the input/output of the related models. This demonstrates that Require-
ment 4 was achieved, as presented in Chapter 5, Chapter 6 and Section 7.2.

Additional requirements that lay beyond the scope of this research are listed
below:

i. The system shall enable full automation of the capacity planning process.

ii. The system shall be applicable for an application running on multiple
virtual machines.

The requirements that lie outside the scope of this research are discussed in
Section 8.4. The applications of the proposed MDE approach with two case
studies, presented in Chapter 6 and also with the evaluation case studies in
Section 7.2, generally demonstrate that all of the system level requirements
listed in Section 6.3 were satisfied.

The usability of the proposed approach was demonstrated by applying it to
three web applications running in a virtualised environment, as discussed in
Chapter 6 and Section 7.2. In this research, applications that receive many
concurrent and homogeneous requests, which are compatible within the ca-
pacity of the hosting infrastructure to serve were used. The case studies in
this work cannot be used to evaluate the applicability of the approach to ap-
plications that receive irregular and/or heterogeneous requests. To achieve
this, more complex applications (e.g. enterprise resource planning systems)
involving heterogeneous workloads should be deployed and monitored. Des-
pite the limited scope of the evaluation, there are still elements of practical
usefulness, as applications with similar properties to those used in the evalu-
ation case studies exist in the real world (e.g. document conversion services
such as Convert API and video transcoding services such as Amazon’s Elastic
Transcoder). To demonstrate further real-world relevance, additional case
studies should be conducted on such large-scale systems of this type.

The usability of the approach can also not be fully evaluated in the absence
of experiments that involve real users (e.g. capacity managers). To gener-
alise further the usability of the proposed solution, additional research or
evaluation is required with applications hosted in larger and more complex
virtualisation setups. Collaboration with industries that manage cloud-based
applications which receive concurrent and homogeneous requests is sugges-
ted as additional research. The usability of the proposed approach can be
achieved by satisfying the defined system requirements together with the
possible implementation of components that are suitable for the selected en-
vironment.

159

7.9 Chapter Summary

The transparent and systematic capacity planning process proposed in this
thesis was evaluated with an image filter web application as a third case
study. The ReRA and ViRR processes were conducted with the proposed
DSMLs and associated model management techniques to evaluate the usage
of the proposed MDE solutions. A comparison between the actual and es-
timated resource utilisation was performed and discussed. The satisfaction
at achieving the defined system requirement was discussed in this chapter.

160

Chapter 8

Conclusion

8.1 Introduction

This thesis presents a systematic and semi-automated MDE approach to sup-
porting the initial phases of capacity planning in a virtualised environment.
Two processes (one for resource requirements analysis and the second for
resource requirements estimation) were designed, along with a set of DSMLs
and model management techniques to support reuse and some automation.
Resource requirement analysis (ReRA) analyses the resource usage pattern,
demonstrates various types of graphs and produces formulas which correlate
resource usage with application workloads. The second process estimates the
virtual resource requirement (ViRR) based on formulas driven from ReRA
and also known workload patterns of an application. The practicality and
potential of the proposed approach was demonstrated through web applic-
ations running in VirtualBox virtualised environment. The use of DSMLs
allows engineers to abstract information and characteristics from concrete
tools (for implementing web applications, for monitoring, for analysing logs),
and to automate analysis tasks in a precise, flexible and systematic way.
The research in this thesis has been carried out to investigate the following
hypothesis, stated in Section 1.4:

The hypothesis of this work is that MDE and DSML techniques
can be used to support modular and reusable capacity planning in
virtualised environments. In this context:

. modular means that every step of the capacity planning pro-
cess s self-contained and the structure of its expected inputs

161

and outputs is specified in a rigorous manner;

ii. reusable means that steps/components can be shared between
different capacity planning processes.

To answer this hypothesis, the following objectives were defined in Sec-
tion 1.5:

i. To identify capacity planning phases processes in virtualised environ-
ments based on a systematic literature review.

ii. To design systematic and model-based processes with a focus on the
initial capacity planning phases.

iii. To design and implement DSMLs and model management techniques to
support the identified processes.

iv. To evaluate modularity and reusability of the proposed DSMLs and
model management techniques.

The following sections summarise the contributions of the thesis in relation
to the hypothesis and research objectives. The limitations of the research
and future research work are discussed in the following sections.

8.2 Research Contribution

The ReRA and ViRR processes integrate the first and second phases of the
capacity planning framework as discussed in Section 4.2. In this thesis,
MDE was utilised to automate the processes to enable the capacity mod-
elling of applications running in virtualised environments. This was success-
fully achieved by automating the ReRA and ViRR processes with 3-level
metamodelling architecture for three web applications running in a virtual-
ised environment. Therefore, the contributions made in this thesis are as
listed below:

i. The thesis contributes a three-phase framework for capacity planning in
virtualised environments. Capacity planning involves predicting future
computing resource requirements by monitoring a system’s resource us-
age patterns against different workloads [6]. Capacity planning in virtu-
alised environments is a multi-phase process that involves various stake-
holders. In this thesis, the capacity planning in virtualised environments

162

ii.

111

1v.

were clearly defined with a high level framework which integrates the
identified processes in three phases.

The thesis contributes ReRA and ViRR process to integrate the ini-
tial two phases. The identified process in the first two phases of the
framework were systematically defined to provide transparent and or-
ganised flow. The resource requirement analysis (ReRA) process, ana-
lysed the resource usage pattern, demonstrated various types of graphs
and produced formulas which correlated resource usage with application
workloads. The second process, virtual resource requirement (ViRR)
estimated the required resources based on formulas driven from ReRA
together with known workload pattern of an application.

The thesis contributes a couple of DSML sets and model management
techniques to automate ReRA and ViRR processes. Utilising a Model-
Driven Engineering (MDE) approach allows for abstraction of the re-
spective concrete tools and to automate analysis tasks in a precise,
flexible and systematic way by using model management languages and
tools. Sets of DSMLs and model management techniques were designed,
implemented and evaluated to semi-automate the processes. The DSMLs
allow resource and request logs, as well as workloads, to be precisely cap-
tured using models, as well as a transparent, automated and repeatable
MDE process for generating predictions for resource usage from work-
load models. The MDE process, which exploits model transformation,
comparison and merging, is modularised so that it can be configured
for different kinds of capacity planning applications and technical infra-
structures.

The thesis also contributes the practicality and potential of applying
the proposed MDE solutions through three web applications running in
VirtualBox virtualised environment. The proposed core MDE solutions
are modular, reusable and extensible to various technologies.

. The thesis opens new research opportunities by implementing the

DSMLs using EMF /Ecore standardised technologies which makes the
DSMLs potentially usable or reusable by others. This in turn can make
it easier for developers to define reusable connections between tools to
support analysis (and hence capacity planning), thus enriching the auto-
mated capability for the capacity planning community in general.

163

8.3 Research Limitation

The limitations of the research are as follows:

i.

ii.

111

1v.

The limitation of the evaluation was the implementation of the proposed
MDE solutions with web applications running on single virtual machine
with limited physical resources. Several initiatives were taken to setup a
private cloud environment in order to have complete control of the infra-
structure. Initially, Eucalyptus and OpenStack were explored with three
servers. Due to technical constrains, setting up the environment was
time consuming so, as an alternative, VirtualBox was configured with
a server. The limited resources prevented the evaluation of application
running in more than a VM.

The resource requirement analysis (ReRA) was conducted to correlate
resource requirement for numbers of workloads being processed. The
formulas produced by using this process are dependent on a single para-
meter (number of concurrent workloads). An application’s workloads are
categorised by considering all the possible combinations of the workload’s
components. For example, nine categories of workload were identified to
analyse all of the possible workload combinations (3 filters x 3 file cat-
egories). The more components there are, the more ReRA analysis needs
to be conducted and as such, many formulas will be produced. Writing
the transformation program in ViRR is dependent on the formulas pro-
duced from the ReRA. Having many formulas makes the transformation
program extensive and complex. Therefore, these approaches are most
suitable for more manageable numbers of workload categories.

The thesis presents three-phase framework of capacity planning in vir-
tualised environments. The proposed ReRA and ViRR processes are
initial processes of the framework which integrate first two phases. Sev-
eral more detail processes to fully automate the three-phase framework
are not covered in this research.

Statistical analyses by calculate mean, median, maximum and minimum
resource utilisation were observed. In this thesis, mean value was se-
lected to produce resource requirements formulas for the interested re-
source metrics. Although the estimated resource requirements based on
produced formulas were significant, more precise statistical method is
possible to be implemented and this is proposed as future study.

164

8.4 Future Work

This section briefly describes potential extensions to the research.

Fully automated process. The ReRA process that we described in the
thesis is not yet fully automated: configuration data (e.g., number of CPUs
being used by the application, number of users) must be provided at the ap-
plication level. At present, this is achieved manually, by editing the models,
but automating this further by providing a bespoke editor (e.g., implemented
using update-in-place model transformations) might prove useful.

Applying a better statistical method for prediction. Although the
accuracy of the generated formula is beyond the scope of this research, using
better statistical methods such as machine learning is suggested in future
work to provide better resource requirement estimations. In this research
work, basic statistical analysis was used to produce the resource requirement
formulas. Machine learning methods normally include statistical analysis fea-
tures which can be used to analyse the resource requirement of the workloads.
The accuracy of resource requirements prediction depends on the statistical
analytic capability of the analytic method been used to produce the equa-
tions. Applying better statistical analysis methods such as machine learning
might provide more accurate prediction.

Usability evaluation on large scale and complex environments.
The implementation with three case studies demonstrates the usability of
the proposed approach in small virtualised environments. To evaluate further
the usability of the proposed MDE solutions, case studies with cloud-base
applications in large and complex virtualised environments are suggested.
Collaboration with industry is one option for implementing this evaluation.

FEvaluation with more than 1 VM. Further enhancement by implement-
ing the MDE solutions with multiple VMs is suggested, since many applica-
tions in the industry are run with several VMs.

Improvement in estimating storage requirement. Time taken to pro-
cess the workloads was captured in the related models. It may be possible to
estimate the storage requirement by considering the storage consumed after
processing each workload and time taken to complete the process. However,
this consideration needs further analysis, development and evaluation.

165

8.5 Closing Remarks

A framework to integrate the identified three phases in capacity planning
for visualisation was discussed in Chapter 4. The use of domain specific
modelling to facilitate the integration of identified processes in the initial
phases were proposed. The DSMLs and the model management techniques
for the suggested ReRA and ViRR processes were discussed in Chapter 5.
In Chapter 6, the implementation of proposed MDE solutions to perform ca-
pacity planning specifically for web applications running in VirtualBox visu-
alisation environment were conducted with media stream and speech tagger
web applications. Further, to evaluate the proposed MDE solutions, an ad-
ditional case study with an image filtering web application was presented in
Chapter 7. Finally, this chapter concluded the overall research work with
a discussion on research contributions and the limitations of the proposed
solutions. The potential future work to improve and extend the research
were also discussed.

166

Appendices

167

Appendix A

Web Servers Analysis

168

Analysis of Web Servers

The list of available web servers with the percentage of usage of various website can be retrieved
from “http://w3techs.com/technologies/overview/web_server/all” . Figures were selected from
the website. The list on the left was taken on 16 December 2013 and the right on 9 July 2014.

Apache I 65.4% Apache 60.4%
Nginx N 14.9% Nginx 21.0%
Microsoft-11S [N 14.7%
LiteSpeed W 2.0%

Microsoft-IIS 13.7%

LiteSpeed M 2.0%
Google Servers 11.3%
Gi I .3%
Tomcat | 0.4% oogle Servers J1.3%

Lighttpd] 0.3% Tomcat |0.4%

Yahoo Traffic Server] 0.3% Lighttpd] 0.3%
IBM Servers | 0.2% Yahoo Traffic Server | 0.2%
Tengine] 0.1% Tengine |0.1%

5
oracle Servers | 0.1% IBM Servers |0.1%

Resin ‘10.1% R

| Node.js |0.1%
Zeus |0.1%
Oracle Servers |0.1%

Zope ‘l 0.1%
Je 0.1%
Jetty |0.1% tty b
Node.js | 0.1% Zeus |0.1%
W3Techs.com. 16 December 2013 W3Techz.com, § July 2014
Percentages of websites using various web servers Percentages of websites using various web servers

Both listings show that Apache, Nginx, Microsoft-IIS, LiteSpeed, Lightttpd and Tomcat are among top
in the list. Along with this, the log files which capture the web request information of these web
servers were analysed. Table below shows the comparison and the proposed RequestLog DSML can
be used for these web servers.

Information From Web Server’s Request Parameters
Request Log
Apache Nginx 1S LiteSpeed lighttpd Tomcat

Time to process the %D, %T Srequest_time Time taken %D, %T %D, %T %D, %T

request

Request start time %t Stime_iso8601, | Time %t %t %t

Stime_local

Request %I Srequest_length | Request type, %r %r %I
Parameters

Request status %>s Sstatus Service status %>s %5 %S
code

Return data size %b Sbytes_sent Server bytes %b %b, %B %b, %B
sent

Receive data size - - Client bytes - %I -
sent

Appendix B

VBoxManage Resource
Parameters

170

Resource Metrics in VirtualBox : VBoxManage metrics list

Resources | Metrics Unit | Host VMs
CPU CPU/Load/User % Percentage of processor | Percentage of processor
(actual, time spent in user time spent in user mode
average, mode. by the VM process.
minimum CPU/Load/Kernel % Percentage of processor | Percentage of processor
& time spent in kernel time spent in kernel
maximum mode. mode by the VM process.
for each CPU/Load/Idle % Percentage of processor | X
metrics) time spent idling.
CPU/MHz MHz | Average of current X

frequency of all

processors.

Guest/CPU/Load/User % X Percentage of processor
time spent in user mode
as seen by the guest.

Guest/CPU/Load/Kernel % X Percentage of processor
time spent in kernel
mode as seen by the
guest.

Guest/CPU/Load/Idle % X Percentage of processor
time spent idling as seen
by the guest.

Memory RAM/Usage/Total kB Total physical memory | X
(actual, installed.
average, RAM/Usage/Used kB Physical memory Size of resident portion of
minimum currently occupied. VM process in memory.
& RAM/Usage/Free kB Physical memory X
maximum currently available to
for each applications.
metrics) RAM/VMM/Used kB Total physical memory | X
used by the hypervisor.
RAM/VMM/Free kB Total physical memory | X
free inside the
hypervisor.
RAM/VMM/Ballooned kB Total physical memory X
ballooned by the
hypervisor.
RAM/VMM/Shared kB Total physical memory | X
shared between VMs.

Guest/RAM/Usage/Total kB X Total amount of physical
guest RAM.

Guest/RAM/Usage/Free kB X Free amount of physical
guest RAM.

Guest/RAM/Usage/Balloon | kB X Amount of ballooned
physical guest RAM.

Guest/RAM/Usage/Shared | kB X Amount of shared
physical guest RAM.

Guest/RAM/Usage/Cache kB X Total amount of guest

(disk) cache memory.

171

Storage FS/{/}/Usage/Total mB Root file system size. X
(actual, FS/{/}/Usage/Used mB Root file system space X
average, currently occupied.
minimum FS/{/}/Usage/Free mB Root file system space X
& currently empty.
maximum | Disk/ua006-root/Load/Util | % Percentage of time disk | X
for each was busy serving 1/0
metrics) requests.
Disk/ua006- mB Disk size. X
root/Usage/Total
Disk/Usage/Used mB X Actual size of all VM disks
combined.
Guest/Pagefile/Usage/Tota | kB X Total amount of space in
| the page file.
Network Net/eth1/LinkSpeed mbit | Physical link speed. X
(actual, /s
average, Net/eth1/Load/Rx % Percentage of network | X
minimum interface receives
& bandwidth used.
maximum | Net/eth1/Load/Tx % Percentage of network | X
for each interface transmits
metrics) bandwidth used.
Net/eth0/LinkSpeed mbit | Physical link speed. X
Note: For /s
Host, ethl | Net/ethO/Load/Rx % Percentage of network | X
is primary interface receives
interface bandwidth used.
and eth0 Net/eth0O/Load/Tx % Percentage of network | X
might be interface transmits
vboxnet0 bandwidth used.
for local Net/Rate/Rx B/s X Network receive rate.
network). | Net/Rate/Tx B/s | X Network transmit rate.

172

Appendix C

Part-of-Speech Tagger Case
Study Graphs

C.1 Introduction

Presented in this appendix are the outcomes of implementing ReRA pro-
cess with proposed MDE solutions for the Part-of-Speech Tagger case study.
Mainly, the outcomes were presented with graphs which summarise the re-
source usage for the identified workloads. Three types of workloads were
defined to process three categories of file sizes. The ReRA process was con-
ducted and the outcomes were presented with three sets of graphs for each
workload. The first set shows the resource utilisation to process concurrent
workloads. The second set presents the correlation between workloads and
resource consumption for a selected statistical unit (mean, median, max-
imum and minimum). The third set shows the outcome of applying equation
extracted to produce formulas analysing the mean value.

C.2 Experiment with Large Files Size

This experiment involved a file size of 147,035 bytes with a 24,767 word count
and 100 similar files were generated, each with a unique name. The list of
100 files was processed for each concurrent request generated. The request
pattern is illustrated in Figure C.1. The time taken to process concurrent
requests of more than 4 was longer due to the CPU bottleneck as illustrated
in Figure C.2. The bottleneck occurs due to the resource constrain in the

173

Workload Rate

10.0 I I ”

75 |

I
5.0
|

) HH

0.0 ﬂm

46,000 46,500 47,000 47,500 48,000
time(s)

of Workloads

Figure C.1: Part-of-speech tagger requests pattern for large file size.

CPU_Kernal Utilization

100 F PG S p—

g 75 ™
™
E 50
EI
L] 25

0 J .I W (I Il 'l [j -

46,000 44 500 47 000 47 500 43 000
fime(s)

Figure C.2: The CPU usage (%) observation with VBoxManage for the
simulated requests to process large files.

experimental environment. The host used to set-up the virtualised envir-
onment only had 4 CPU units. Therefore, a VM runs in that virtualised
environment can only have maximum of 4 CPU units.

Observation of the application behaviour shows that the number of CPU

174

CPU Utilization

8,000
TI\:T 6,000 M
S
3
ke 4,000
2
O 2,000
0 ' U 1
46,000 46,500 47,000 47,500 48,000
time(s)

Figure C.3: The CPU usage of the simulated part-of-speech tagger requests
to process large files.

Memory Utilization

800
)
T a0
®
3 400
>
8]
& 200
3

0

46,000 46,500 47,000 47,500 48,000
time(s)

Figure C.4: The memory utilisation of the simulated part-of-speech tagger
requests to process large files.

units fully utilised is related to the number of concurrent requests. Since 4
CPU units were allocated to this VM, the application fully utilised the avail-
able CPUs when 4 concurrent requests were being processed. Therefore, the

175

Network Utilization: Receiving

16
12
m
2
F 08
o
=
0.4
0.0 J

46,000 46,500 47,000 47,500 48,000
time(s)

Figure C.5: The incoming network traffic received by the application based
on the simulated part-of-speech tagger requests to process large files.

Network Utilization: Transmitting
1.6

1.2
0.8
04 M
0.0 m
46,000 46,500 47,000 47,500 48,000
time(s)

Net Tx (MB)

Figure C.6: The outgoing network traffic transferred by the application
based on the simulated part-of-speech tagger requests to process large files.

time taken to process more than 4 concurrent requests is longer since addi-
tional requests are waiting for CPU availability. Figures C.3 to C.7 show the
utilisation of CPU, memory, incoming network, outgoing network and stor-

176

Storage Utilization

1,460

1,420

1,380

Disk Usage(MB)

1,340

1,300

46,000

46,500

47,000
time(s)

47,500

48,000

Figure C.7: The storage usage recorded based of the simulated part-of-speech
tagger requests to process large files.

age. The statistical analysis of these resource utilisations were synthesized
and a CSV file as presented in Figure C.8 was produced. The data from the
CSV file was used to generate a set of resource usage graphs as presented in

Figure C.9.
A
1 [Reguest
2 0
3 1
4 2
3 3
6 4
7 5
8 B
| 7
10 8
11 9
12 10

B

CPU
115.2727
1582.584
33860.723
5287.443
6822.052
6993.703

7116
7165.771
7281471
7323.729
7379.122

C

Memaory
76
109.26
167.5769
246.5391
293.2131
345.1039
394.9022
418.1429
448.9315
472.8182
500.6503

D

Storage
1303.131
1310.395
1317.533
1325.201
1331.783
1335.432
1346.349
1352.782
1360.676

1368.13
1375.0604

E

RxMet
0
127.86
242.2212
343.9652
420.6967
430.3052
433.5489
437.2143
445,9395
443.4109
441.4771

F

TxMet
0
150.4
360.0577
512.3217
626.3607
637.6039
641.9293
660.4143
659.3508
670.0651
666.7451

Figure C.8: Table structure of CVS file for the statistical analysis of average
reading of resource metrics to process large size files.

177

"So[1j 981 $59001d 07 9FesN 90INO0SAI JO SYNSAT [BIIISIIRIS () 2IN3I]

spopfiom aji4ebieT 1o #

8 9 14 c 0
— DOE'L
ove’L
o
“
ose'L =
xen [l M
i ozr'L
uesin [l
ueips osv'L
uoneziin abeiols Am_u
spopiom sjqjebie] jo # SPOpIOM Bli4abieT Jo #
8 9 14 c o g2 9 v 4 0
00 00
0 0
& &
go = g0 &
xe [l W xep [l m
LN zr un zL
uesiy [l uesiy [l
ueipay [l oL ueipsiy [l oL
Bunywisuell :uoieziiin ¥omisN An: Buiaieoay uoneziinn ¥omiaN AUu
spopiiom sjiebie Jo # SPOpIOM BliJaBIeT Jo #
2 9 4 4 0 g 9 4 4 0
0 —— 0
0002
00c = o
g]
3 =
oor S 000F —
e [l = xep [l 5
N
. 5 . N
uny o0s = uN 000°9
ueaiy [l uesiy [l
uepei 0og uetpsi 000°8 (v)
uonezinn Aowsiy (a) uonezinn Ndo2

178

"98esT 90IMOSAI (UeaUl) o3RIGAR UO Pase(sy adIe] sseooxd

0} POASLIJRI BRNMULIO :()T°)) 2In31

L ¥
0 g 9 _ < cocmr
leauy) —
+ abeio)s 40cEL
L 10PEL
TEOEL + X [BLL L= A
{09€L
. : - 0scl
(3)
els g g L ¢ %0z- ok g 9 L %0z
AGNY —
- 29Ny —
Hiompan BuicBing e 0 - yiomap Buiwoou| e 0
- 0oz
L9b LL - X,B0°09T + A L0QTE - KbEPEL = A oon T EZE L - XBOFLL + X69LLT - X8LEZ880 = A 00z
., 009 e — oo
L ; 008 : 009
(a) (2)
° 4 ¢ %

TLP9 +X.959°C + X LOSOF'0 + X IOPGLO - = A

00¢

00F

oog

179

Workload Rate

100 [T
I

75 H

L

I
>0 I

) H Iﬂl
43,600 44,000 44 400 44 800 45,200
time(s)

of Workloads

Figure C.11: Part-of-speech tagger requests pattern for medium file size.

C.3 Experiment with Medium Files Size

In this experiment, a list of 100 files with a size of 57,765 bytes and a 10,873
word count were used. The requests were simulated similar to the above
experiment and Figure C.11 shows the request pattern. The resource util-
isation graphs of each of the resource metrics are illustrated in Figures C.12
to C.16 respectively for CPU, memory, incoming network, outgoing network
and storage utilisation to process simulated workloads. The figures show
that, storage and memory utilisation grows linearly with the size of the work-
load and network utilisation is affected by the number of available CPUs.

180

CPU Utilization

8,000 #mmmwmw

6,000 por

4,000 ﬁ

2,000

CPU Used(MHz)

0 WoWwoyu A W I U
43,600 44,000 44,400 44 800 45,200
time(s)

Figure C.12: The CPU usage of the simulated part-of-speech tagger requests
to process medium files.

Memory Utilization

600
)
S 450
o
3
S 300
>
o
g 150
S

0
43600 44,000 44400 44,800 45200

time(s)

Figure C.13: The memory utilisation of the simulated part-of-speech tagger
requests to process medium files.

181

0.60
0.45

@

S

5 030

ko

=
0.15
0.00

Network Utilization: Receiving

"

43600 44000 44400 44,800 45200

time(s)

Figure C.14: The incoming network traffic received by the application based
on the simulated part-of-speech tagger requests to process medium files.

0.8
0.6
)
2
x 04
g
0.2
0.0

Network Utilization: Transmitting

"

43600 44,000 44,400 44800 45200

time(s)

Figure C.15: The outgoing network traffic transferred by the application
based on the simulated part-of-speech tagger requests to process medium

files.

182

Storage Utilization

1,380

1,360

1,340

Disk Usage(MB)

1,320

1,300
43600 44000 44,400 44,800 45200

time(s)

Figure C.16: The storage usage recorded based of the simulated part-of-
speech tagger requests to process medium files.

A B C D E F
Request CPU Memory 5Storage RxNet TxNet
127.4133 75.06667 1302.335 0 0
1715.311 103.25 1305449 63.51383 97.35556
3434.463 152.8158 1308.649 126.0921 195.3289
4879.893 223.561 1311.637 174.0976 264.7683

6536.4 266.5349 1315.083 218.3372 335.186
6704.957 314.6449 1317934 223.2523 346.26017
6858.338 353.2891 1320.255 227.6094 356.2266
7061.493 3724497 1324129 234.8591 361.2685
7153.209 391.1322 1327.212 238.8678 366.6034
7220.096 408.97 1330153 240.25 366.73
7231.376 424.9725 1333.449 237.8211 367.2523

1
2
3
4
3
]
7
8
9

10
11
12

L e = e R = e R T I L =

[
o]

Figure C.17: Table structure of CVS file for the statistical analysis of average
reading of resource metrics to process medium size files.

183

‘So[J wmnipota ssonoxd (04} o8esn 90IN0saI JO sjnsad [esnsijels Q1D @Mﬁw_m

SPOPLIOM BlIJLIMNIPBYY JO #

8 9 v z 0
— — oog'L
oze'l
o
(73
ore'L =
xew Il M
I
u e 09’}
ueain [l
vepsn [l oge'L
uoneziin sbeiols
SPOPLIOM B|IJUNIPSYY JO 3 SPOPLIOM BlIJUNIPSI JO #
8 9 4 z 0 8 g 4 z 0
00 000
z0 510
S g
vo = oco
xen Il IW., xew Il IW.,
. o . m
HIN g0 HIN ko
uesiyy [l uesiy [l
ueipsin [l 20 ueipaiy [l 090
Bupywsuel] :uoneziin HHoMPeN Buialaoay :uonezijnn ¥1ompaN
SPOPLIOM B|ILUNIPIYY JO # SPOPLIOM BIJLINIPSYY 4O #
8 9 4 z 0 8 g 4 z 0
0 — — — 0
05l 000'2
5 2
3 s
ooe S 000t =
xeln [l = xew [l ¥
unn Z w [. =
(o-14 000°9
ues [l uesiy Il
ueipsin [l 009 ueipaiy [l ooo'e

uonezin Atowsy

uoneziinn Ndd

184

"93BSTl 90IN0SAI (URAUI) 9FRISAR UO PIseq So[WNIPaW $s0001d 0} POAdLIJDl BNULIO 6T oINS

ol 2

Jeall| —
afeinls «

T DOEL

“0LEL

0zl
¥ ZOECL + %, LEB0E = A

10EEL
s s - - ‘oFEL
(3)
o 2 Y : %o1- 2 __ﬂ 2 %e-
— aIgno —
Hiomjap GuloBing e lomjap Bulwoou| e]
. oot i o
. : . . 00k
BPEL 6 - X UEPEL + XOFLGL - XP1O090 = K 1002
L ost
I 100 L 00z
. . Y
L . L L oot - . 4 ® N)) log
(a) f)
0]} 8 9 4 [o] oL g 9 ¥ 4 0
: T T (o] T T T 3
2qN0 — N0 — 000Z
(Howe o | Yoot ndo e

ooz

~00€

“00%
SPEPY + XPEBY + XCSEG06'0 + X AB9ET 0 - = A

. . : 00S

~oooZ

L LLPEL - X GBET + JLEE QST - K l8OP 8 = A Jooot

= 10009
Py P

! : . 0008

(v)

185

Workload Rate

100 Il

| I

Ll

50 m Il

25 H
41,800 42,100 42,400 42700 43,000
time(s)

of Workloads

Figure C.20: Part-of-speech tagger requests pattern for small file.

C.4 Experiment with Small Files Size

For the final experiment, a list of 100 smaller files were generated. The size
of the files was 21,291 bytes and the word count was 3,781. The requests
were simulated similar to the above experiment and Figure C.20 shows the
request pattern. The resource utilisation graphs of each resource metrics
are illustrated in Figures C.21 to C.25. Looking at the figures, storage and
memory utilisation grows linearly with the size of the workload and network
utilisation is affected by the number of available CPUs.

186

CPU Utilization

8,000

6,000 ﬂn\

4,000 ™

2000
OH.LL;.thJ. n I

41,800 42,100 42,400 42700 43,000
time(s)

CPU Used(MHz)

Figure C.21: The CPU usage of the simulated part-of-speech tagger requests
to process small files.

Memory Utilization

600
)
450
S
O
3
> 300
>
Q
E 150
=
0

41,800 42,100 42,400 42,700 43,000

time(s)

Figure C.22: The memory utilisation of the simulated part-of-speech tagger
requests to process small files.

187

Network Utilization: Receiving

0.24

0.18

0.12

Net Rx (MB)

0.06

0.00 H

41,800 42,100 42,400 42700 43,000
time(s)

Figure C.23: The incoming network traffic received by the application based
on the simulated part-of-speech tagger requests to process small files.

Network Utilization: Transmitting

0.4
0.3
o
2
x 02
2
0.1
0.0 H

41,800 42,100 42,400 42,700 43,000
time(s)

Figure C.24: The outgoing network traffic transferred by the application
based on the simulated part-of-speech tagger requests to process small files.

188

Storage Utilization

1,328

1,321

1,314

Disk Usage(MB)

1,307

1,300

41,800

Figure C.25: The storage usage recorded based of the

42,100

42,400
time(s)

speech tagger requests to process small files.

A
1 Reguest
2 0
3 1
4 2
5 3
] 4
7 5
8 6
9 7
10 8
1 9
12 10

B

cPU
73.4
1554.095
3036.055
4468.839
5858.012
6326.38
6520.206
6772336
6972.08
B963.12
7012.843

C

Memory

75
97.89091
142.7069
207.0968
247.2059
289.8148
329.4548
341.9469
354.5923
366.7655
379.1497

D

Storage
1302.321
1303.677
1305.098
1306.506
1307.81
1309.112
1310.48
1311.737
1313.085
1314.118
1315.8

42,700 43,000

E

RxMet

0
27.87273
53.55172
75.82258
95.02941
102.4444
105.4845
108.6549
113.1769
112.6069
112.5329

simulated part-of-

F

TxMet
0
40.96364
79.98276
113.7097
143.1471
156.284
158.3196
164.1593
170.4
169.1862
170.4671

Figure C.26: Table structure of CVS file for the statistical analysis of average
reading of resource metrics to process small size files.

189

"So rews $s0001d 03 9Fesn 90IN0SAT JO SHNSAI [BIIISIYRIS ()7 () 9IS

SPONIOM BliFI|BLS JO #

xew [l
A
uesiy [l
uepsiy [l

00E’L

L0€°L

vLEL

L2E'L

8ze'l

uonezinn abeiors

(am) ysia

SPOP{IOM S[I4[BWS JO #

SPOMIOM BfiH[jBWS JO #

. o v z o 9 ¥ I4 0
0o [s[s N}
o 900
= g
o 3 zio @
xon = xen [l B
i e unn i 210 -2
uesiy [l ueay [l
ueipa [l ¥0 vepen 7
Bunywisuell :uonezijnn ¥4omieN Buialesey :uonezinn 3omieN
SPOPLIOM BlIH|[BLIS JO # SPOPLIOM Bli4lIBWS JO #
g 9 4 [4 a ° 7 ‘ ’
0 . o °
oSl 000z
= [}
: &
(9]0 000'r —
o = xe [l 5
w1 ost un 000's
ueain uesiy [l
ueipsiy 009 ueipsi Il 000'g

uopezinn Adowsy

uoneziinn Nd2

190

"98esT 90IMOSAI (UeaUl) 88RIIAR UO Paseq So[l [[eWS $s9001d 0] PaASLIIal R[NULIO] 87 () 9IS

8] g 9

Jeau) —

OLEL

b'ZOEL + X962 = A SiEL
: ozl
(3)
oL 8 9 t z 0
oL g g v z 0 - : : 05
MR : ; oG- QR0 —
HGNI — i
siomaN BUIOBINO » o #iomaN Buiwoou| e | b
. 0 L 05
. . . . POSH'E - X bOL OF + KbBELE - K LLZLO =K
EBZEC - KPS PS + PPTEY'S - HLBOBL D = A oot
- {00t
oSt - -
b oSt
: : : : 0oz
(a) (2)
oL 8 9 v Z 0
T _ _ . o 8 o v ¢ %oo0z-
E%Em_z Jane —
* 3
L J oL ndo e
1000z
- 00z
- BBZ) - X.GBO0T + X658 - X.ZGLEG = A +{ooor
{oog
: . . . -{ooong
TP PO + X.PCSEF + X.EEEP | + X LTLETQ- =K
oow ; ; ; ooog
(a) (V)

191

Appendix D

Image Filter Case Study
Graphs

D.1 Introduction

Presented in this appendix are the outcomes of evaluating the ReRA pro-
cess with proposed MDE solutions for the image filter case study. Mainly,
the outcomes were presented with graphs which summarise the resource us-
age for the identified workloads. Nine types of workloads were defined to
process three categories of images, with three 3 types of filters. The ReRA
process was conducted and the outcomes were presented with three sets of
graphs for each workload. The first set shows the resource utilisation to pro-
cess concurrent workloads. The second set presents the correlation between
workloads and resource consumption for a selected statistical unit (mean, me-
dian, maximum and minimum). The third set shows the outcome of equation
extraction module which produce resource metrics formulas by analysing the
mean value.

D.2 Large Images

Three types of filters were used to process 200 large images and the logs re-
cordings were analysed. The following shows the output of the ReRA process
for the three experiments conducted respectively for default, grayscale and
negate image filters.

192

i. Experiment with Default Filter
The resource consumption for the workloads which process large images
with the default filter is presented in Figure D.1. Basic statistical ana-
lyses were performed and the outcome for the workload which process
large images with the default filter is presented in Figure D.2. Figure D.3
show the graphs and the formulas which correlate the number of work-
loads with the resource metrics.

193

wapf
ynofop Ynm sabvuir 9b6up) 10§ (J])urejjed peopyrom pejenuils pue (H{-y) sydeld worjesimn ooInosey :I°(] 9IS

(s)awn (s)auwin
00¥'Sy 008'PF 00ZT'vF 009'CF 000'Er 00F'SF 008'vF 00CT'vF O09'Cr 000'Ew
__ I o] 0sz'L
7__ ; =3 T+ oog'lL ©
S L
_ S &
0's < ose't &
=3 o
2 =
gL & oop't &
i ool fo=1- 1}
81ey PEROHIOM (4) uonezipn @beioys (E)]
(s)ewp (s)ewn
oor'sy 008'vr 00Z'PF 009'€r 000'tr 00OF'Sr 008'vP 00Tty O09'Er 000'Ed
o0 o
= z
5 3
oe ® ¥ 2
=
& &
=84 9
09 8
Bumiwisuell :uonRezijinn JJ4omlaN (a) Buialeoey :uonezijizn Y1oMieN &)
(s)ewp (s)ewn
0o¥'st 008'vF 00Z'vF 009'Ck 000'Sh 00F'Sy 002t 00T'vF 009tk 000'th
0 0
osz & oos'z O
3 o
o <
2 . &
00s — 000's @
2 2
o =
= T
05L& 00s'. &
000‘L 0000t
uonezijn Aowspy (@) uoneziinn Ndd (v)

194

uaf ynofop YIm sabvuir 2b4p) $s9201d 0} UOTYRSI[IIN 92INOSAI JO SISATRUR [€I1)SIPR)S 17 (] 2In3I

spopfiom jinejegebieT Jo #

9 14 0
0sz'L
— 0oe'L
S
o
) ose'L wqu
xew [l &
U 00v'L
uesiy [l
ueran Ml ost'L
uonezinn sbeiols
spopiom JnejagabieT Jo # spopyiom jnejegabie Jo #
9 14 4 o 9 14 F4 0
00 0
gL 4
z %
oe & y 2
xein [l W xew [l .W
A ey unN s
uesin [l ueain [l
ueipain [l 0o ueipaiy [l 5
Bumpiwisuely :uopeziin YiomiaN Buinieoay uoneziinn ¥lomieN
spopiiom jnejegebieT Jo # spopjiom ynejegaebie Jo #
9 14 c o 9 14 F4 0
o o}
0se 00S'T
g 9
3 . <
ala]=} 3 000°'s =
el [l = e [l X
un I uw [. o
} 0sL) 00s'L
uesn [l ueain [l
vepsi Il 000°t veren M 00004

uonezinn Aoway

uoneziinn Ndod

195

"98esT 90IMOSal (UeaUI) 88RIaAR U0 paseq La7)y nofop YIm sabvuir 264 ss9001d 0] POASLIJRT RNULIO] ¢ (] oINS

= g ¥ ¢ mumm_
ORI - losz
100€1
oLEL
10ZE1L
10EEk
10¥EL
1DGEL
- - - - - - 109EE
’ ‘oLEL .nm:
3 o g 9 L [4 [¢]
QL 2 L] ¥ [Coos- - : 3 i : hoz-
2N e— . nwﬁ”._ﬂﬂ_n_ —
Heowwlsh Buoiing » L |PHOMIBN Duluoo) e |
00T
005
BE5 bl - K66 19E + XT00SK - XLOFTR L= 4 e oo
WG ZL - Lk Nwhfﬂx.—Dﬁ@w.ﬂx.N@anuh - oot z T
00
D051 ooe
' 2 . -
ooz (a) . war (D)
ak] 9 t [1]
g ; : : ; 50 oL] 9 r Z Osaat-
Jeadl] —
r|fowsy e L aqna —|
. Ndd @ |

WE'9E + X.£0.'69 = A 1005

BOWER - XL ELLE + XEDTIE - MbELPL = A 1000€

196

ii. Experiment with Grayscale Filter

A set of graphs in Figure D.4 show the resource utilisation of resource
metrics and the number of concurrent requests being processed based
on time. Figure D.5 shows the outcome, along with statistical analyses,
which were performed with model management techniques in the ReRA
process and also the outcome for the workload to process large images
with the grayscale filter. The average resource consumption for the re-
source metrics were analysed to correlate the number of workloads with
resource requirement.

197

wapnf
2pogfinur) yym sabvwir abun) 103 ()ureryed peopyiom pajenuiis pue (H-y) sydeld UONesIIn 90Inosey] (] o8I

(s)awy (s)owun
009'st 00Z'sv 008l oov'Lv 000'L¥ 0098t 0oz'st 008'Lt ooV Lt 000'L¥
_ 1] 00 0sz'L
_ _ sz 1 ooge'L ©
=1 L
: =) I~
oS g ose'L m
=3 S
3 =
gL & cor'L B
=_|, ool osv'L
ajey PeoIXIoM (1) uonezinn abeliols @
(s)owin (s)ewun
oo9'st 00z'st 008 Ly oot Ly 000'L¥ 009'st ooz'st 00g'Lt 0oV Lt 000'LY
(1] o]
90 z
S 5
z1r = ¥ 2
& &
gl 9
v'Z 8
Bumuwisuel] :uonezijin ¥JlomiaN (a) Buialasay uonezijnn 31omiaN)
(s)ewiny (s)ewun
009'st ooz'st 008'Ly 0ot LY 000'L¥ 0098t ooz'str 008'L¥ 00v Lt 000°'L¥
0 0
00z ® E 0os'z Q
3 o
[s} | <
= . &
wor o 000's @
2 2
o =
= . X
00s 5 00s'. M
o
oos ooo‘ol
uonezipn Aowsp (8) uoneziinn Ndo (v)

198

uaf 21pagfinar) Ym sabvwir 2b4p) $$9001d 0} UOTYRSI[IIN 9DINOSAI JO SISATRUR [€II)SIPR)S (G (] 2INSI

spopiom sjesshelnsbie] jo g

9

14 4 0

0sg'L

o0oE’L

0se’L

xen [l
ui [
uesiy [l
ueipaiy [l

(gn) ¥sig

oor'L

0st'L

uonezinn sbeioys

spopriom sjeosAeinabied jo #

spopriom sjessAeinsbieT jo g

8 E] 14 4 0

0
4
g 5
2 4 3
xen Wl = xen =
o o
un = A =
9
uesiy [l uesiy [l
uelpsi [l ueipsi [l 8
Buiiwsuel] uonezN YIoMIeN Buialeosy :uoneziin ¥omiaN
spopriom sjeosAeinabied jo # spopriom sjessAeinsbieT jo g
9 14 4 0 8 9 ¥ c 0]
0 0
002 008'C
® 3
3 -
oor S 000's =
xen Ml 3 xen Ml s
: o uiA)
uw o0s - : — 008'L
uesiy [l uesiy [l
ueipai Ml 008 uepsi 00001

uoneziinn Aowsiy

uopezinn ndd

199

ak L]

"8RS 90INOSAI (IRl) 9FRISAR U0 PosR(491 9Jpo§finis) [IM sabpuir abun] ss0001d 0} PIASLIJSI R[NULIO 9 (] 9IS

[+ T
#IET4
zi

v

ok I} 9 4 z %oz
2918 —
| yromgapn BuoBing -

oL L] 9 Ld

™
=]

21gna —
Maomgap Buuoou| -

100
= 5 s - 1 DOt
2960715 - X.Z0'98F + XEET65 - X198 z=AKA lDog
|00 BSE'OL - KulSBLL + KabBBLE - KL LLGE = &
looe - {ocoL
10001
1005k
1D0C L
e (A) o)
oL g 9 v z 9, o 8 o y z Ooor-
; 2AqN0 —
Jeau) —
fowap e {0k Ndo » |
10001
|oae 0002
o= | £S'GLL - X.6'SO0E + KZBEE - HLLLEL = A o
00w I . 000
LIB'OL +%BLL8G = A {0aos
|oos 0008
1009 10004
or (9) oo ()

200

iii. Experiment with Negate Filter
Resource utilisation of each resource metric and the number of concur-
rent workloads which process large images with the negate filter is presen-
ted in Figure D.7. The outcome of statistical analysis for the workload
is presented in Figure D.8 and Figure D.9 shows a set of formula which
correlate number of workloads with resource requirement.

201

a9y

abo N Yam sabpwi a6up) 10§ (J)urejjed peopylom pejenuiis pue (f-y) sydels uorjesimn ooImosay :)°(J 9ISl

(s)awn (s)awn
009°€S 00Z'ES ooe'zs oov'zg [alalalrd=] 009°ctS 00Z'ES [alol=3rd=] oor'zs 000’z
4 m _ 00 0sz'lL
v = =i . oog'LT o
S. e
= &
i 3 .
os g ose’l ,m
8 2
o =
IL g4 “ oor't 2
1] ool fol=1 0"
a1ey Peo|HIOM uonezinn abelols
(1) (1)
(s)ewn (s)ewn
009°'cS 0oZ'cs [ala}=Rrd= oot'zs 000°2S 009°cS 00Z'cS o0og'zs 0or'Zs 000°'2S
o} o
N
o
L z)
S g
z = ¢ 2
= =
5 &
€ 9
14]
Bumwsuely :uoneziin 310MaN (a) Buialaoay :uonezijin J10MmiaN (2)-
(s)ewn (s)ewin
009°'cS 00Z'cs 008°'zs oov'zs 000°2S 009°'cs 00z'cs 0og'zs 00¥'Zs 000°'2S
0 0
'l
00z = oos'z Q
3 o
o . Loy
2 . 7
0or o oo00's 8
2 S
=2 =
= . T
009 & 005'L &
008 000°0L
uonezinn Alowsw (9) uonezinn Ndo (v)

ualf 210ba N YIM sabpwir 2b4p) $s9001d 0} UOTYRSI[IIN 9DINOSAI JO SISATRUR [RIISIPR)S :Q°(] 2INSI]

9

spopjiom syebapabie] jo #

0sz’l

ooe’L

0se’lL

xew Il
Ul [
uesiy [l

(aw) ysig

00F'L

ueipai [l

0S¥l

uopezinn sbeiols

spopiiom ajebepnebieT jo g

spopiom ayebepnebie] Jo #

8 9 v 4 0
0]
L <
g z
z X v 2
xen [l IW/ xe [l \W;
. (53] . m
un e = i s =
uea uesy [l
uepsin [l v ueipsiy [l g
Bumwisuel] :uoiezinn Y10MieN Buialesay :uonezin ¥omeN
spopjiom sjebsepabieT jo # spopiiom syebapabieT jo #
8 9 14 [4 0 8 9 v 4 0
0 = 0
oozZ 00s'c
5 2
c
oot 8 0005 —
xew [l = xew [l W
unn = unn , =
. oo9 i 00s'L
uesin [l uesin
ueirsin Ml 00g veirsi Il 000°0L

uopez|nn Alowsy

uopeziin Ndod

203

"98esT 90IMOSal (UeaUl) 88RIaAR U0 paseq La7)y 29mboNr YItm sabnuir 2bu]) ss9001d 0] POASLIIRT RNULIO] (] oINS

Gozs

0EZL

0SEL

gL

o 8 El v z 0
T e—
{ saosngan] BuoBiINg e

at 12 a9 Ld (4 o
oaqne —
Rionmgan Bunuoou] -

L8790 - XOL VED + JXEBLLL - KFFLOE = A N PESTL - ¥EFOL + X.OTV'TE - JLOB0E = A
- o8
OO0k 000k
00ZE
00FE 005
0ooL
= (q) we (D)
at 8 2 L ¢ % ot g 9 Ld 4 Crol-
seau — | QM3 —
Aowap e | %01 Nndo =
000t
{00z
0002
00e L EE'ZST - %GLOE + FLELVELE - XALv¥L =K oooe
100F . oot
LOL'6L + %1885 = A 0005
[0009
1008 0002
. (9) wos (V)

204

D.3 Medium Images

Medium images in this case study were categorised with a size that was ap-
proximately half the size of the large image. The number of images were
doubled, as it took shorter time to process as the large images. Therefore,
500 images with a size of 247,539 bytes were used to simulated workloads
to process the images with the identified filters. The following are a graph-
ical representation of the output of the ReRA process for the experiments
conducted respectively for default, grayscale and negate image filters.

i. Experiment with Default Filter
Graphs in Figure D.10 show resource utilisation of each resource metric
and the number of concurrent workloads to process medium images with
default filter. The outcome of statistical analysis for the workload is
presented in Figure D.11 and Figure D.12 show a set of formula which
correlate number of workloads with resource requirement.

205

ynofap qamm sabvwir wnipaw 10§ ()ureyyed peop{Iom pajemuls pue (H-y) sydels uorjesyn 9oImnosey (O (] oINS

(s)awn (s)awn
00g'6E 009'6E 0OF'6E 00Z'6E 000'GE 008'6€ 009'6€ 0O¥'6E 006 00DO'6E
4 I __ 00 osz'L
| _ sz ey oog'L ©
S, <
[
oS W ose’L 8
= oy
8 =
=3 & oor'L B2
D 0oL oS’ L
a1ed PeOPIOM @) uonezinn 26eiols @)
(s)awiy (s)own
00g8'6€ 009'6E 0OF'6E 00Z'BE 00O'BE 008'6E 009'6E 0O¥'BE 00ZT'6E 000'6E
00 0
Sl L
z T =
oe = z 2
& &
St e
09 4
Bunywsuely :uonezijin 31o0maN () Buiniesay :uoneziin 3omaN (D)
(s)awn (s)ewn
00g8'6E 009'6E 0OF'6E 00Z'6E O00'BE 008'6€ 00968 0O¥'6E 00C'6E 00DO'6E
° T MMM, M °
og & I 000’z ©Q
3 2
3 c
(oo] A s 000'F @
3 a2
2 =
0zl ooo'e &
(53] Rl
&
T b :.r_ wadd la L
orL ooo's
uonezinn Alowaw (a) uonezinn Ndo (v)

206

o ynofop Ym sabvui wnipaws $s9201d 0 UOTYSI[II 92IN0SAI JO SISATRUR [eI1)sI)e}S T1°(] oINS

SPO[IOM JNELQUINIPSpY JO #

8 9 ¥ z 0
osz'L
0og'L
0sg’L

xen [l
i 00%' L

uesiy
uveirsi [l ost'l

uonezinn sbeiols

(an) ¥sig

SPOPLIOM JNBISTWNIPSHV 10 #

SPOPLIOM JNeisquunipsyy 40 #

8 9 4 4 0 8 9 4 4 0
— — 00 T 0
gL b
5 5
- o 3
) oe <) 4 =
xen [l = xen Il =
uN _— A e =
uesiy [l uesiy [l
ueipsiy [l 09 ueipsiy [l ¥
Bumiwsuely :uonezijin 310m}aN Buialeoay :uonezinn J1omisN
SPOpLIOM JNBJSTUINIPS) 4O # SPOPIOM JINBISTUUNIPSKY 40 #
8 9 14 4 0 8 9 4 4 0
02 0
08 000'Z
g 2
3 . c
0oL S 000t —
xen [l lW/ xen [l W
“uin 5 “ww o
- 0zL - 0009
uesy uesi
ueipsiy [l orL ueipsin [l ooo'e

uoneziin AowsA

uoneziinn Ndd

207

90INO0sal (Ueowl) a8RIoAR UO PISR] .a3JY Jnnfop UM sabpuir wnipows $se00I1d 0] PIASLIJST RINULIO]

'gT'@ om3tg

oL 8 9 Z [+ .
abeio)S o s
06T
00k
OLEL
OZEL
0EEL
ortlL
i e = . * e " e
- (1)
o g 9 v z Door- o g 9 v z e
2N — ogqne —
sionvgan Bucbing - pposgan Buiuoou] e
oo
oooL
. 69BLL - NP BBLL + LIS EBPL - X.L0L09 = 4 oo
€1'G8L - X.5'0T6L + HTHBET - X.S009°6 = o000z 0oGE
000z
005z
(D00
(a) (2)
0005 aose
oL L i Ld z %, ok g 9 ¥ (4 Oro01-
aigna — 21gne —
faowsa
I W e g ndo e
{pooL
10002
8G'9LL - XB'ELET + ;K.G9GHE - KELBVL =A loooe
{000t
{poos
looog
EB0EL + X.06F 9L + STIFE') - XFOBTLOO = A 10004
: . : ovl
(9) woe (V)

208

ii. Experiment with Grayscale Filter
Graphs in Figure D.13 show resource utilisation of each resource metric
and the number of concurrent workloads to process medium images with
grayscale filter. The outcome of statistical analysis for the workload is
presented in Figure D.14 and Figure D.15 show a set of formula which
correlate number of workloads with resource requirement.

209

429)1f 2008
~finar) yym sabvwir wnipaw 10§ (f)utejyed propIom pajemnuars pue (-y) sydels uorjesimn 90Inosay g1 (] o3I

(s)awn (s)awn
00L'L¥ 0S5 LY 00t Lt 05z 1P 0011t 00L'L¥ 055'LY 00 Lt 05z Lt coL'Ly
| [T °° osz't
: sz = ooe’l 9
S, <
= &
. 5 .
os g oset &
(=] _
g =
LL gz ° ooyt &
_.L ooL 051
s1eM peopHom uopezinn abelols
(1) (3)
(s)awn (s)awn
00L'L¥ 05S'LY 0ot L+ 0sz' It ooL'Lt 00L'L¥ 0S5 L 00F' Lt 05T L¥ 001 I¥
000)
620 z
z 5
oL = v =
& &
sz 9
W oW
w W oo'e &
BURIIWISUBIL (UCHEZIIIIN HOMISN (Q BulAIa09Y UOREZIIN }HOMIBN)
(s)awn (s)ewn
00L'Lt 0S5 Lt 00b' Lt 05z I 0oL Lt ooL'ty ossiy oovLw osciv oor v
09 TR P
= .
os 8 000z Q
o <
3 . S
oL § ooy
=2 =
5 ooo'e &
oz @ 5
W W WL _
ovL ooo0's
uopez|IRN Alowsi (a) uonezIRN NdD (v)

210

42911 2posfivir) YIIm

sabpwir wnapaw $s9001d 03 UOTYRSI[IIN 9OIN0SAT JO SISATeue [BO13S1YR}G] (] 9INSI]

SpopliomM ajeasAeiownpey| Jo #

8 9 14 0
0sg'L
00E'L
=]
g
ose't =
xen Il M
o
i oov'L
uesin [l
uersi [l ost'L
uopezinn abeiols
SpOpIoM S[BISARIDWINIPSYY JO # spopiiom ejeasAeiDnipepy Jo #
g 9 14 4 4]
7 o
4
5 3
= r @
xewn [l .W xen [l .W
uN = Ui 2
9
uesiy [l uesiy [l
ueipsin [l ueipsiy [l g
Bunjiwisuell UOHEZINIIN YIOMISN Buiniesey :uonezinn y1omeN
Spopiom 9/BISARIDUINIPSYY JO # spopjiom sjeaskeiunipsyy jo #
g 9 14 4 4] 8 9 v < v]
os o]
08 000'z
5 o
3 2
oo S 000’y —=
xen [l = xe Il W
N
. 551 . -
un oz & un 0009
uesi [l uesin Il
ueipsiy obL ueipon I ooo's
uonezijnn Adowsapy uoneziinn Ndo

211

ok &

‘98esn

90INO0SAI (URoW) 9FRIoAR U0 Pseq 49y 9jposfinir) [Im sabpwir wnpows ssed01d 0 POASLIJOT RNULIO :GT (] o3I

[aiild
abeicis - 0GZH
ooEk
OLEL
OZE!
DEE!
OFEL
. -
. 0SEL
- -
. ngEL
(3)
oL]] v z [s) z
e oL 8] v z o
slgne — NS — oot
omian BueBing e 3 |somian Bupoou| e
207701 - ¥L7EhLL + JEEET ML - X 80LLG =A 005 000k
000k TTEEL - %P OLLT + Kol TLT - JuGLEOL = K 000z
oSt = o00e
000Z
00GZ ﬁ .D “ ﬁ U W
000
ol g] 4 z O
jeaul] —
fowapw

G5E08 + X lbi9 v = A

212

iii. Experiment with Negate Filter
Graphs in Figure D.16 show resource utilisation of each resource metric
and the number of concurrent workloads to process medium images with
negate filter. The outcome of statistical analysis for the workload is
presented in Figure D.17 and Figure D.18 show a set of formula which
correlate number of workloads with resource requirement.

213

wapnf
a1bo T MM sabpwir wnipaw 10§ () uteyed peopsiom pajemuuls pue (-y) sydelsd UoresIin 90Inossy :91 ' I3

(s)owin (s)ewn
oolL'zé 0GS'z¥ 00F'TF 0GZ'TF OOL'Ek 00L'TF 0GS'ZTF 00V'ZF 0ST'ZF 00L'Zh
4 * # I 00 0sz'L
E 5z T oog’L 9
o <
= &
. 3 .
oS g [ol=1 ,m
& 2
gL & cor'L &
? ool 0st'L
aje BO |10 uonezijr abe.lo:
1ed PEOIHIOM &) nezinn 1S (1)
(s)ewipy (s)own
0ol'z¢ 0SS'z¥ 00F'ZF 0GZ'ZTF 0OL'ZH 00L'zT¢ 0SS'CTF 00v'ZF 0SZ'Zyr 00L'Zh
0 00
L L sl
& &
z = os &
8 &
€ Sv
14 o]
Buigiwisuea] :uonezijin J4omiaN An: Buialesay :uoneziin yiomiaN ﬂUu
(s)ewipy (s)own
00L'z¢ 0GS'Z¥ 00F'CTF 0GZ'ZTF OOL'EZH 00L'ZTF 0SG'TF 0OF'ZF 0ST'ZTF 00L'Zh
09 Y ™ ©
02 & 0oz Q
3 o
o <
2 v &
0oL < 000t B
8 2
=2 =
= . I
ozl & 000's N
el e
orl 000'8
uoneziin Aowsin (a) uopezinn Ndod (v)

214

wagpyf a3wba N Y sabvusr wnipows $$9001d 0F UOTYLSI[IILL 9IINOSII JO SISATRUR [€1YS1IRYS (LT (] 9INSL]

spopliom sjebepuwinipeyy Jo #

xew Il
unA

uesiy [l
ueipaiy [l

uonezinn abesols

0se'L

oog'L

[ol=1o

(am) ¥siq

oor'L

0S¥’

spopiiom ajebaNwnipap o #

) 4 c 0

spopliom sjebapwnipayy 40 #

9 4 4 0

n_ [s)s]
) Sl
z 5
- oe &
xen m xen [l w
unN [€ = N v
uesiy uesiy [l
wepon " uepsiv [l 09
Bumiwisuell uonezin JIoMiaN Buialesay :uoneziinn Y1omiaN
spopliom sjeBapwnipsyy Jo # SPOPHION SIEBINUIIDSN 0 #
. N . o g 9 ¥ [4 0
09 ?
0 0002
< 3
3 v 3
[o[o] A oY =
- = xew &
M uny [=
un ozL & ' 0009
uesiy [l uesiy [l
ueipsy [l ori veeen coo.w

uopezinn Aowsay

uoneziinn Ndd

215

"agesn
90INO0Sal (UeoW) a8vIoAR UO POseq .93y 2706a N YIM sa6DUL wnipows ss9001d 0] ParsLIjel RNULIO QT (] oINS

abelo)s - ok
I 108T1
el
oLEL

1021

1ol

10sEL
051 .ﬁuu
oL 8 9 L Z v}

hog- ol 8 a ¥ 4 e
agqny — e 05
yaowgay BuBing e [jJorgap Bunuoou] -

005 100G
o001 I 10001
G6'8C) - LI LSEL + XO8'68L - XZI05'8 = A i FFESE - %FEDL + 2L 10T - %.E98L 8 = £ l00S

Q002
ooz oose
oSz ooe
D0DOE 100GE
o () o (2)
o0r L loose
a 8 9 Ld Z O a g a ¥ z %00
seaul — ogno —]| 4
| Arowaly o

COTLLL - LELEEE + L6658 - XO0EFE = A

B6TBL + X lTLG =4

oFL ﬁmu . ’ ’ ’ bocs ﬁd_&

216

D.4 Small Images

In previous experiments for medium size images, the size of images was half
of the large size images. In the following experiments, small size images were
categorised as images which are approximately half of the size of the me-
dium image. The total number images to be processed increased since the
time needed to process these images was shorter than the medium images.
Therefore, 2000 images with the size of 81,809 bytes were used to simulated
workloads for the identified filters. The following are the graphical repres-
entation of the outputs of the ReRA process for the experiments conducted
respectively for default, grayscale and negate image filters.

i. Experiment with Default Filter

The resource utilisation of the resource metrics for the simulated work-
load of small images with the default filter is presented in Figure D.19.
Basic statistical analyses were performed and the outcome for the work-
load to process small images with the default filter is presented in Fig-
ure D.20. The average resource consumption for the resource metrics
were further analysed to get the correlation between the number of work-
loads with resource requirement. Figure D.21 show the graphs and the
formulas which correlate the number of workloads with the resource met-
rics.

217

wapf
ynofop YNM sabvuir pws 10§ (])utsjyed peopyiom pajenuils pue (H-y) sydels UOeSIN 90IN0saYy T (] @IS

(s)owin (s)ewyp
oos‘zt ose'zy ooz'zy 0s0'zy 006°Lt o0os‘ey oge'zh ooz'zy oso'zy 006'LY
il _ 00 09Z'1L
E sz T 0ze'L O
=1 <
o
oS W ose’L
= w
o <
2 =
sz & ory'L &
ool 005"k
21ey PEOOMM uoneziin abeioys
(1) (3)
(s)ewn (s)swyp
00s'gt ose'ey oog'zy 0502y 006°Lt 00set ose'er oog'ey o0so'ey 006° L
0 0
z z
z £
r = vy 9
= =
& &
9 9
f U W
g g
mz_uH_Eﬂcﬂn-nF suonezZijnn J4omMmiaN ﬂn—- m-.\-_\r_ﬂuu@m uonezinn y4omgeanN AUu
(s)owun (s)ewn
005'2H osc'zy 0o0z'zh 0502k 006" Lt 005 ose'eh 0o0z'zh 0502k 006" L
oL o
os 5 coo'z O
3 o
o <
< [
06 I~ ooo'vr &
2 E=3
= =
= .. T
0oL 5 000's &
S
oLL ooo's
uoneziin Alowsay (a) uopeznn Ndod (v)

218

o ynofop Ym sabvwi Jpws $s9001d 0) UOTYRSI[IIN 9DINO0SAI JO SISATeue [ed1Is1Ie)S (g (] 2InSI]

Spopfiom jinelsgiiews 40 #

8 9 14 4 0
09z'L
oze'L
=}
3
oge't 2
xe Il M
=
un B oyl
uesi [l
ueipsin [l 00S°L
uopnezinn obeiols
SPOIOM JINBJ8g|BwS 10 # Spopom Jinejedilews Jo #
0 4]
z 4
g 7
e = 7 2
xe Il W e [l W.
N [9 ~ unn [9 ~
uesyy [l ueay [l
uepsiy [l g ueipsy [l 2
Bumwisuely :uonezinn ¥4oMieN Buiai@oey :uoneziin ¥oMieN
SPOPIOM JNBISTIBUWS JO # Spopliom Jinejeqgilews Jo #
8 9 ¥ 4 o} 8 9 4 4 0
0L - 0
08 000’z
5 3
3 =
06 3 000y =
xew [l = e [l I
: & . &
i oL < W 000's
uesin [l uean 1l
ueipsiy [l oLL uepa [l 000°8
uonezijin Alowap uoneziinn Ndd

219

"93esn 92IN0SAI WNWIXRW U0 PIseq L7y nnfop YIm sabvwr)ppuis $s9201d 0} POASLIISI BNUWIIO :1g (] oInS1

oL 8 9 v z %ezL
(2beioiS @ !
. ool
ozel
orel
L]
. . e e OSEL
. . » .
. ogelL
(3)
0L 8 9 v z %00z- o 8 9 b 4
qna — ojespenb — . .
| ypomyap BuioBing e 0 yiomjan Buiwoou] e 500
t 10002 : : :
£TPLZ - XEOLLT + XZL'BSE - X.88001 = A VOBLE + X.GEL8L + XAYETL - = A looor
000t
10009 10009
o008 (Q) * oce (D)
0L 8 & y ¢ Ot ok g 9 b z Oo0z-
Jeaull — . oigno —
| [fiowaw o 08 L NdD e o

9ZF'v9 - %6918 + X.L9/8E - NGOL'LL = A

(v)

220

ii. Experiment with Grayscale Filter
Graphs in Figure D.22 show resource utilisation of the resource metrics
and number of concurrent workloads to process small images with the
grayscale filter. The outcome of statistical analysis for the workload is
presented in Figure D.23 and Figure D.24 show a set of formula which
correlate the number of workloads with resource requirement of resource
metrics.

221

wapf
2q0osfinar) yym sabvuir)ppwis 10§ ()utejyed profsIom peje[nuuls pue (H-y) sydels uorjesinn 90nosey] :gg ([98I

(s)ewiy (s)owmn
099'0% 0zs'ov 0se'ov orz'ov ooL'ov 099’0t ozs'ov 0se'0t orz'ov ooL'ov
_ L 00 09z'L
s sz * oze'L O
S L
. = LS
oS g ose'L 8
S =2
o =
gL & orp'L &
0oL 00s'L
ajey peopIomM uopezinn abeiols
(1) (3)
(s)owin (s)awmn
099'0% 0zs'oF 08€'0F orZ or 00L'0% 0990t 0ZS'0F 08€°0F 0¥z oF 00L'0F
) 0
z e
S 5
r = 9 2
= =
& &
9 6
] zL
Bunywsuel] uonezin JomsN (a) Buialesay tuonezinn }1oMmsN D)
(s)ewug (s)swm
099'0% 0zs'or ogc'or ore'or ooL'or 099'0F 0zZs'or 08€'0v orz'or 0oL'ov
oz 0
0e = o000’z ©
3 o
o <
<= [
06 o 000'vr @
3 2
o =
= o
0oL & ooo's N
]
oLl ooo's
uoneziin Alows (a) uonezinn Ndo (v)

222

el 2)pasfinar) UM sabpuwir ppws $sed01d 0) UOIYRSI[IIN 9DINOSAI JO SISATRUR [edIIS1IR)S ¢g (] 2INSI]

SPOPLIOM 8[BISABIONBUIS JO #

8

9

14 4 0
o0sg'h

e Il
wA
uesin [l
ueipsiy [l

ooe’L

0sg’}

(an) ysia

oo’

ost'L

uonezinn sbeioyg

spopiom sjeasheisews jo #

spopliom sjeasAeiews Jo #

8 9 ¥ 4 o}
— o o]
[<
& &
y = s 2
xen Il .W e Il W
uine 9 ~ Ui [5 ~
uesiy [l uesiy [l
ueipaiy [l a ueipaiy [l zL
Bumwisuely :uonezinn j}lomiaN Bulalesay uonezinn }lomisN
SPOPLIOM seaSABID|IBUIS JO # spopliom sfeasAeiDews Jo #
8 9 ¥ 4 0 8 9 4 0
9L s]
Z8 0002
£ 3
3 Lo
g8 3 000t —=
xew W xew [l W
unn [= wn o =
6 0oo's
uesiy [l ueay [l
ueipe [l 0oL ueipsiy [l ooo's

uopezinn Aowsi

uoneziinn Ndd

223

alL 8

"93esn 92IN0SAI WNWIXRW U0 PIseq L7y 9yposfiniy) Yym sabvwi Jpws $s9901d 03 paAdLIjel R[NULIO g (] oINS

_ _ 0SZL
-
g {00gl
. losel
™ o - L L] .
L]
: : : oovL (3)
oL g 9 L4 < %00z- 0L g 9 L (4 %aos-
21qna — aqnoe —
L ydoman BuloBing e s} slomjap Buiwoosu| e
P)) . 0002 0
SE'TST - XeL ETVT + PGETTE - XalSS WL =4 SE'LBE - X.L POLE + X.EQ'LBY - X661 22 =4
0oo¥
.. 000S
— P— 0009
L]
: _ 0008 0 « o _ 00001
() ()
9 ¥ z 0
_ 4 _ =7) oL 8 9 4 z %00z-
* AqNs —
108 ndd e
299'8. + X,QEL€ + X.L6GG 0 - X.B0PPEDO = A
*) _ . . 10002
. ‘8 OLZT'EL - XE'LBST + XLT LZE - KWBBL'EL = A
elalor'd
98 - 0009
- - []
_ _ . o8 0008
(a) (W)

224

iii. Experiment with Negate Filter

The graphs in Figure D.25 show the resource utilisation of the resource
metrics and number of concurrent workloads being processed based on
time. Figure D.26 shows the outcome, including statistical analyses
which were performed with model management techniques in the ReRA
process for the workload to process small images with negate filter. The
average resource consumption for the resource metrics were analysed to
correlate number of workloads with resource requirement. The relation
is presented in Figure D.27 for the resource metrics.

225

oy

abaN; ynm sabpwi ppws 10§ (J])wiejjed peop{Iom pejemuuls pue (Hf-y) sydeld UONesIin 9dImosay :Gg (] 9IS

(=)o (s)own
009'L 05t LY 00E‘LY 051 L 000°L¥ 009'L¥ ost'Ly 00€" Lt 0sL'L 000'L¥
Z.L I °° 0sz'L
E sc hig oog'L O
S, £
= . e
0'g S ose'l 8
= o
o 2
2 =
gL cor'L 3@
ook 0S¥l
s12y pEOIOM (1) uonezinn abeiors (1)
(=)o (s)own
009'L 05t L 00€'Lt 0SL L 000'L¥ 009 L¥ oSt LY 00" L 0SL'L 000'L¥
00 0o
5z sz
z z
og = og &
= =
& &
gL g2
_ W) WM .
ook ool
BunwsuelL (UCHEZIIIN ¥IOMISN (a) Buialeoey uonezInN 3oMeN (o)
(=)o (s)awn
009'L 05t L 00E'Lt 0SL L 000'L¥ 009 L¥ oSt LY 00€" L 0SL'L 000'L¥
oL _l)
08 & I{ oooz ©
3)
o <
2 . &
08 < 000t B
] 2
o =
= ¥
0oL 5 0009 &N
oLL ooo‘s
uonezinn Atowen (a) uopezinn Ndo (v)

226

ualf 210ba N YIM sabpwir Jpws $s9001d 0) UOTYRSI[IIN 9DINOSAI JO SISATeue [ed1IS1IR)S 97 (] 9IS

spopjiom sjeBapews Jo #

xew [l
un [
uesin [l
ueipsy [l

uonezinn sbeloys

oSz’

oog'L

ose’tL

(aw) ysig

oo’

ost'L

spopiom s1eBeNIBUWS JO #

spopiom sjeBeNIBWS JO #

8 9 14 4 o 8 9 4 4 0
r oo oo
sz =
z :
og 2 og &
= . -
xep [l S xe [l g
un sr i gL
ueay [l uesiy [l
ueips iy M 0oL ueipaiy [l ool
Bumwsueay :uonezin ¥lomieN Buiaieosy :uonezin ¥JomiaN
spopLiom a1eBaNBeWS JO # spopom sjeBaNiEWS JO #
8 9 14 < 0 8 9 14 4 0
0L 4]
os ooo'z
Ey 9
: . £
o5 8 000t —=
xen [l = e Il W
unn & uA g
- 00l - 0009
uespy uespy
ueipsin [l oLl ueipsy [l ooo's

uonezynn Aowspy

uoneziinn Ndd

227

"3RSl 90IN0SAI (UReWl) 93RISAR U0 Pase(La7]1Y 9ba] [IM sabDw 1)pwis $59001d 01 PoASLIJDI R[NULIO]

1LT @ 2m3tg

o] 8 g9 ¥ 4
abelolg e . . DomNr
®
- 100l
i 105l
* °] * * .
® ™ L)
- 1001
°
: _ ostL (3)
oL 2 9 t Z oL 8 9 ¥ 4
aigno —| ' _wc 21qno _ _ o.c
yiomjapy BuoBing e o000z Haomian Buiwoou| e oooeg
LLOSL + X.8'689C + XLl CEC 000F . SO8FL +X.ZL6C + NX-@D.NEN - mx«Wm@D.w =A {000t
0009 F 10009
J 00o0g ooog
_ _ 00001 T : 00001
() (2)
oL 8 9 ¥ 4 0., oL .
21gNs — agqno —
faows|y o ._D 8 Nndd e
' . X, 0 - X 0=~ i . . .
mNmm\.l+x.._.mm.vN+N £0S0L°0 ¢ ¥ LS000°0 - .v.wmmm+x«.vm,_‘wm+mx-wmmmmpmxﬂmmhmuh
I G8
06 [

S6

(9)

228

Appendix E

Sample of Log Recordings to

Log Models

Listing E.1: Sample of request log recording in access.log file in Apache web

server

1 192.168.56.1 — — [18/Jun/2014:11:49:58 +0100]
POST /imagefilter/index1.php HTTP/1.1” 200
Apache—HttpClient /4.2.3 (java 1.5)”

2 192.168.56.1 — — [18/Jun/2014:11:50:01 +0100
POST /imagefilter /index1.php HITP/1.1” 200
Apache—HttpClient /4.2.3 (java 1.5)”

3 192.168.56.1 — — [18/Jun/2014:11:50:05 +0100]
POST /imagefilter /index1.php HITP/1.1” 200
Apache—HttpClient /4.2.3 (java 1.5)”

4 192.168.56.1 — — [18/Jun/2014:11:50:09 40100
POST /imagefilter /index1.php HITTP/1.1” 200
Apache—HttpClient /4.2.3 (java 1.5)”

5 192.168.56.1 — — [18/Jun/2014:11:50:12 +0100]
POST /imagefilter /index1.php HITTP/1.1” 200
Apache—HttpClient /4.2.3 (java 1.5)7

6 192.168.56.1 — — [18/Jun/2014:11:50:16 +0100
POST /imagefilter /index1.php HTTP/1.1” 200
Apache—HttpClient /4.2.3 (java 1.5)”

7 192.168.56.1 — — [18/Jun/2014:11:50:20 +0100
POST /imagefilter /index1.php HITP/1.1” 200
Apache—HttpClient /4.2.3 (java 1.5)”

8 192.168.56.1 — — [18/Jun/2014:11:50:23 +0100]
POST /imagefilter/index1.php HTTP/1.1” 200
Apache—HttpClient /4.2.3 (java 1.5)”

9 192.168.56.1 — — [18/Jun/2014:11:50:27 +0100]
POST /imagefilter /index1.php HITP/1.1” 200

229

025764 3755927
1827717 7= 7

810923 3691593
1827716 7" 7

538371 3552740
1827716 7=" 7

105526 3579073
1827716 7" 7

694718 3717118
1827716 7=" 7

422656 3713344
1827716 7" 7

146139 3694977
1827716 7" 7

851114 3692522
1827716 7" 7

553377 3670565
1827716 7" 7

”

”

10

11

12

13

14

15

Apache—HttpClient /4.2.3 (java 1.5)”
192.168.56.1 — — [18/Jun/2014:11:50:31
POST /imagefilter /index1.php HTTP/1.
Apache—HttpClient /4.2.3 (java 1.5)”
192.168.56.1 — — [18/Jun/2014:11:50:34
POST /imagefilter /index1.php HTTP/1.
Apache—HttpClient /4.2.3 (java 1.5)”
192.168.56.1 — — [18/Jun/2014:11:50:38
POST /imagefilter /index1.php HTTP/1.
Apache—HttpClient /4.2.3 (java 1.5)”
192.168.56.1 — — [18/Jun/2014:11:50:41
POST /imagefilter /index1.php HTTP/1.
Apache—HttpClient /4.2.3 (java 1.5)”
192.168.56.1 — — [18/Jun/2014:11:50:45
POST /imagefilter /index1.php HTTP/1.
Apache—HttpClient /4.2.3 (java 1.5)”
192.168.56.1 — — [18/Jun/2014:11:50:49
POST /imagefilter /index1.php HTTP/1.
Apache—HttpClient /4.2.3 (java 1.5)”

+0100] 234672 3561506
17 200 1827716 7" 7

+0100] 807302 3560109
17 200 1827716 "7 "

+0100] 377371 3573324
17 200 1827716 7" 7

+0100] 960344 3574463
17 200 1827716 7=" 7

+0100] 545633 3564690
17 200 1827716 7" 7

+0100] 120301 3582029
17 200 1827716 7=" 7

230

Listing E.2: Example of the RequestLog model in XML form generated based
on request log in Listing E.1

1 <?xml version="1.0" encoding="ASCII"?>
2 <WebServer xmi:version="2.0" xmlns:xmi="http://www.omg. org /XMI
xmlns: xsi="http://www.w3.org /2001 /XMLSchema—instance”

xmlns="RequestLog”>

<machine xsi:type="Machine” name="ubuntu05”/>

<config xsi:type="Configuration” maxUser="150" maxLiveUser

="100" waitingTime="300.0" timeOut="5.0"/>

5 <logRecords xsi:type="LogRecord” startTime="42598.025764"
endTime="42601.781691" workloadName="LargeDefault”
responseCode="200" dataSizeReturn="1827717"/>

6 <logRecords xsi:type="LogRecord” startTime="42601.810923"
endTime="42605.502516" workloadName="LargeDefault”
responseCode="200" dataSizeReturn="1827716"/>

7 <logRecords xsi:type="LogRecord” startTime="42605.538371"
endTime="42609.091111" workloadName="LargeDefault”
responseCode="200" dataSizeReturn="1827716"/>

8 <logRecords xsi:type="LogRecord” startTime="42609.105526"
endTime="42612.684599” workloadName="LargeDefault”
responseCode="200" dataSizeReturn="1827716"/>

9 <logRecords xsi:type="LogRecord” startTime=7"42612.694718"
endTime="42616.411836" workloadName="LargeDefault”
responseCode="200" dataSizeReturn="1827716"/>

10 <logRecords xsi:type="LogRecord” startTime="42616.422656"
endTime="42620.136000000006” workloadName="LargeDefault”
responseCode="200" dataSizeReturn="1827716"/>

11 <logRecords xsi:type="LogRecord” startTime="42620.146139"
endTime="42623.841115999996” workloadName="LargeDefault”
responseCode="200" dataSizeReturn="1827716"/>

12 <logRecords xsi:type="LogRecord” startTime="42623.851114"
endTime="42627.543635999995” workloadName="LargeDefault”
responseCode="200" dataSizeReturn="1827716"/>

13 <logRecords xsi:type="LogRecord” startTime="42627.553377"
endTime="42631.223942”" workloadName="LargeDefault”
responseCode="200" dataSizeReturn="1827716"/>

14 <logRecords xsi:type="LogRecord” startTime="42631.234672"
endTime="42634.796178" workloadName="LargeDefault”
responseCode="200" dataSizeReturn="1827716"/>

15 <logRecords xsi:type="LogRecord” startTime="42634.807302"
endTime="42638.367411" workloadName="LargeDefault”
responseCode="200" dataSizeReturn="1827716"/>

16 <logRecords xsi:type="LogRecord” startTime=7"42638.377371"
endTime="42641.950695" workloadName="LargeDefault”
responseCode="200" dataSizeReturn="1827716"/>

17 <logRecords xsi:type="LogRecord” startTime="42641.960344"
endTime="42645.534807" workloadName="LargeDefault”
responseCode="200" dataSizeReturn="1827716"/>

S

231

18 <logRecords xsi:type="LogRecord” startTime="42645.545633"
endTime="42649.110323” workloadName="LargeDefault”
responseCode="200" dataSizeReturn="1827716"/>

19 <logRecords xsi:type="LogRecord” startTime="42649.120301"
endTime="42652.70233” workloadName="LargeDefault”
responseCode="200" dataSizeReturn="1827716"/>

20 </WebServer>

232

Listing E.3: Sample of VBoxMetrics resource usage log recording

© 00 N O Uk W N

R R R R B R R W W W W W W W W W W NN NN NN NN NN e e e e e
N O Ut R W N R O © 00NN OO REWN RO © 000NN O Ut WN RO OOt R WND = O

Time stamp Object Metric Value
10:49:57.454 ubuntu05 CPU/Load/User 0.50%
10:49:57.454 ubuntu05 CPU/Load/Kernel 0.00%
10:49:57.454 ubuntu05 RAM/Usage/Used 1321748 kB
10:49:57.454 ubuntu0b5 Disk /Usage/Used 2959 mB
10:49:57.454 ubuntu0b Net /Rate /Rx 0 B/s
10:49:57.454 ubuntu05 Net/Rate/Tx 0 B/s
10:49:57.454 ubuntu05 Guest /CPU/Load/User 0.00%
10:49:57.454 ubuntu0b Guest /CPU/Load /Kernel 2.00%
10:49:57.454 ubuntu05 Guest /CPU/Load/Idle 98.00%
10:49:57.454 ubuntu0b Guest /RAM/Usage/Total 2050900 kB
10:49:57.454 ubuntu0b Guest /RAM/Usage /Free 1957564 kB
10:49:57.454 ubuntu05 Guest /RAM/Usage/Balloon 0 kB
10:49:57.454 ubuntu05 Guest /RAM/Usage/Shared 0 kB
10:49:57.454 ubuntu0b Guest /RAM/Usage /Cache 292376 kB
10:49:57.454 ubuntu0b Guest/Pagefile /Usage/Total 2097148 kB
10:49:58.466 ubuntu05 CPU/Load/User 0.25%
10:49:58.466 ubuntu05 CPU/Load/Kernel 0.00%
10:49:58.466 ubuntu05 RAM/Usage/Used 1321732 kB
10:49:58.466 ubuntu0b Disk /Usage/Used 2959 mB
10:49:58.466 ubuntu0b Net /Rate /Rx 0 B/s
10:49:58.466 ubuntu05 Net/Rate/Tx 0 B/s
10:49:58.466 ubuntu05 Guest /CPU/Load/User 0.00%
10:49:58.466 ubuntu0b Guest /CPU/Load/Kernel 0.00%
10:49:58.466 ubuntu0b Guest /CPU/Load/Idle 100.00%
10:49:58.466 ubuntu0b Guest /RAM/Usage/Total 2050900 kB
10:49:58.466 ubuntu0b Guest /RAM/Usage /Free 1957572 kB
10:49:58.466 ubuntu05 Guest /RAM/ Usage/Balloon 0 kB
10:49:58.466 ubuntu05 Guest /RAM/Usage/Shared 0 kB
10:49:58.466 ubuntu0b Guest /RAM/Usage /Cache 292376 kB
10:49:58.466 ubuntu0b Guest/Pagefile /Usage/Total 2097148 kB
10:49:59.476 ubuntu05 CPU/Load/User 0.00%
10:49:59.476 ubuntu05 CPU/Load/Kernel 0.00%
10:49:59.476 ubuntu05 RAM/Usage/Used 1321716 kB
10:49:59.476 ubuntu0b5 Disk /Usage/Used 2959 mB
10:49:59.476 ubuntu0b Net /Rate /Rx 863647 B/s
10:49:59.476 ubuntu05 Net/Rate/Tx 6337 B/s
10:49:59.476 ubuntu05 Guest /CPU/Load/User 1.00%
10:49:59.476 ubuntu05 Guest /CPU/Load /Kernel 1.00%
10:49:59.476 ubuntu05 Guest/CPU/Load/Idle 98.00%
10:49:59.476 ubuntu0b Guest /RAM/Usage/Total 2050900 kB
10:49:59.476 ubuntu0b Guest /RAM/Usage/Free 1879640 kB
10:49:59.476 ubuntu05 Guest /RAM/Usage/Balloon 0 kB
10:49:59.476 ubuntu05 Guest /RAM/Usage/Shared 0 kB

233

48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

10:49:59.476 ubuntu0b Guest /RAM/ Usage /Cache 293300 kB
10:49:59.476 ubuntu05 Guest/Pagefile /Usage/Total 2097148 kB
10:50:00.486 ubuntu05 CPU/Load/ User 0.00%
10:50:00.486 ubuntu05 CPU/Load/Kernel 0.00%
10:50:00.486 ubuntu05 RAM/Usage/Used 1321700 kB
10:50:00.486 ubuntu05 Disk /Usage/Used 2959 mB
10:50:00.486 ubuntu05 Net/Rate/Rx 0 B/s
10:50:00.486 ubuntu0b Net/Rate/Tx 0 B/s
10:50:00.486 ubuntu0b Guest /CPU/Load/User 0.00%
10:50:00.486 ubuntu0b Guest /CPU/Load /Kernel 1.00%
10:50:00.486 ubuntul05 Guest /CPU/Load/Idle 98.00%
10:50:00.486 ubuntu05 Guest /RAM/Usage/Total 2050900 kB
10:50:00.486 ubuntu0b Guest /RAM/Usage/Free 1878636 kB
10:50:00.486 ubuntu0b Guest /RAM/Usage/Balloon 0 kB
10:50:00.486 ubuntu0b Guest /RAM/ Usage/Shared 0 kB
10:50:00.486 ubuntu0b Guest /RAM/ Usage /Cache 293304 kB
10:50:00.486 ubuntu05 Guest/Pagefile /Usage/Total 2097148 kB

67 .

68
69

234

Listing E.4: Example of the VBoxVMMetrics model in XML form generated
based on resource usage log in Listing E.3

1 <?xml version="1.0" encoding="ASCII"?>
2 <UtilisationLog xmi:version="2.0" xmlns:xmi="http://www.omg.
org /XMI” xmlns: xsi="http://www.w3.org /2001 /XMLSchema—
instance” xmlns="ResourceLog” xmlns: _1="VBoxVMmetrics”>

3 <machine xsi:type="_1:Machine” name="ubuntu05” cpuSpeed
=72000.0" cpuUnit="4" memory="2048.0"/>

4 <logRecords time=7"42597.454" CPU_Used="0.5" RAM_Used="91.0"

Disk_Used="2959" Net_Incoming="0.0" Net_Outgoing

="0.0"/>

5 <logRecords time=7"42598.466" CPU_Used="0.25" RAM_Used="91.0"
Disk_Used="2959" Net_Incoming="0.0" Net_Outgoing

="0.0"/>

6 <logRecords time=7"42599.476" CPU_Used="0" RAM_Used="167.0"
Disk_Used="2959" Net_Incoming="843.0" Net_Outgoing
="6.0"/>

7 <logRecords time="42600.486" CPU_Used="0" RAM_Used="168.0"
Disk_Used=7"2959" Net_Incoming="0.0" Net_Outgoing
="0.0"/>

8

9

10 .

11 </UtilisationLog>

235

Listing E.5: Sample of disk utilisation log recording with df utility

1 [TIME: 11:49:56.415] Output: Filesystem 1K—blocks Used
Available Use% Mounted on /dev/mapper/ubuntu05—root
8006820 1285588 6314500 17% / udev 1015908 4 1015904 1%
dev tmpfs 410180 320 409860 1% /run none 5120 0 5120 0%
run/lock none 1025448 0 1025448 0% /run/shm /dev/sdal
233191 26737 194013 13% /boot

2 [TIME: 11:49:57.434] Output: Filesystem 1K—blocks Used
Available Use% Mounted on /dev/mapper/ubuntu05—root
8006820 1285592 6314496 17% / udev 1015908 4 1015904 1%
dev tmpfs 410180 320 409860 1% /run none 5120 0 5120 0%
run/lock none 1025448 0 1025448 0% /run/shm /dev/sdal
233191 26737 194013 13% /boot

3 [TIME: 11:49:58.450] Output: Filesystem 1K—blocks Used
Available Use% Mounted on /dev/mapper/ubuntu05—root
8006820 1286400 6313688 17% / udev 1015908 4 1015904 1%
dev tmpfs 410180 320 409860 1% /run none 5120 0 5120 0%
run/lock none 1025448 0 1025448 0% /run/shm /dev/sdal
233191 26737 194013 13% /boot

4 [TIME: 11:49:59.490] Output: Filesystem 1K—blocks Used
Available Use% Mounted on /dev/mapper/ubuntu05—root
8006820 1286400 6313688 17% / udev 1015908 4 1015904 1%
dev tmpfs 410180 320 409860 1% /run none 5120 0 5120 0%
run/lock none 1025448 0 1025448 0% /run/shm /dev/sdal
233191 26737 194013 13% /boot

5 [TIME: 11:50:00.508] Output: Filesystem 1K—blocks Used
Available Use% Mounted on /dev/mapper/ubuntu05—root
8006820 1286400 6313688 17% / udev 1015908 4 1015904 1%
dev tmpfs 410180 320 409860 1% /run none 5120 0 5120 0%
run/lock none 1025448 0 1025448 0% /run/shm /dev/sdal
233191 26737 194013 13% /boot

6 [TIME: 11:50:01.530] Output: Filesystem 1K—blocks Used
Available Use% Mounted on /dev/mapper/ubuntu05—root
8006820 1286400 6313688 17% / udev 1015908 4 1015904 1%
dev tmpfs 410180 320 409860 1% /run none 5120 0 5120 0%
run/lock mnone 1025448 0 1025448 0% /run/shm /dev/sdal
233191 26737 194013 13% /boot

~

~

~

~

~

~

236

Listing E.6: Example of the DiskUsageLog model in XML form generated
based on disk usage log in Listing E.5

1 <?xml version="1.0" encoding="ASCII"?>

2 <DiskUtilisation xmi:version="2.0" xmlns:xmi="http://www.omg.
org /XMI” xmlns="DiskUsageLog”>

3 <machine name="ubuntu05”/>

4 <logRecords time="42596.415"> <filesystems name="/dev/mapper/
ubuntu05—root” usage="1285588.0"/> <filesystems name="
udev” usage="4.0"/> <filesystems name="tmpfs” usage
="320.0"/> <filesystems name="none” usage="0.0"/> <
filesystems name="none” usage="0.0"/> <filesystems name
="/dev/sdal” usage="26737.0"/> </logRecords>

5 <logRecords time=7"42597.434" > <filesystems name="/dev/mapper/
ubuntu05—root” usage="1285592.0"/> <filesystems name="
udev” usage="4.0"/> <filesystems name="tmpfs” usage
="320.0"/> <filesystems name="none” usage="0.0"/> <
filesystems name="none” usage="0.0"/> <filesystems name
="/dev/sdal” usage="26737.0"/> </logRecords>

6 <logRecords time=7"42598.45"> <filesystems name="/dev/mapper/
ubuntu05—root” usage="1286400.0"/> <filesystems name="
udev” usage="4.0"/> <filesystems name="tmpfs” usage
="320.0"/> <filesystems name="none” usage="0.0"/> <
filesystems name="none” usage="0.0"/> <filesystems name
="/dev/sdal” usage="26737.0"/> </logRecords>

7 <logRecords time="42599.49" > <filesystems name="/dev/mapper/
ubuntu05—root” usage="1286400.0"/> <filesystems name="
udev” usage="4.0"/> <filesystems name="tmpfs” usage
="320.0"/> <filesystems name="none” usage="0.0"/> <
filesystems name="none” usage="0.0"/> <filesystems name
="/dev/sdal” usage="26737.0"/> </logRecords>

8 <logRecords time="42600.508" > <filesystems name="/dev/mapper/
ubuntu05—root” usage="1286400.0"/> <filesystems name="
udev” usage="4.0"/> <filesystems name="tmpfs” usage
="320.0"/> <filesystems name="none” usage="0.0"/> <
filesystems name="none” usage="0.0"/> <filesystems name
="/dev/sdal” usage="26737.0"/> </logRecords>

9 <logRecords time="42601.53"> <filesystems name="/dev/mapper/
ubuntu05—root” usage="1286400.0"/> <filesystems name="
udev” usage="4.0"/> <filesystems name="tmpfs” usage
=7320.0"/> <filesystems name="none” usage="0.0"/> <
filesystems name="none” usage="0.0"/> <filesystems name
="/dev/sdal” usage="26737.0"/> </logRecords>

10

11

12 .

13 </DiskUtilisation>

237

Listing E.7: Example of the ResourceLog model in XML form generated
by merging DiskUsageLog and VBoxVMMetrics models that presented in
Listing E.6 and E.4 respectively

1 <?xml version="1.0" encoding="ASCII"?>
2 <UtilisationLog xmi:version="2.0" xmlns:xmi="http://www.omg.
org /XMI” xmlns: xsi="http://www.w3.org /2001 /XMLSchema—
instance” xmlns="ResourcelLog” xmlns: _1="VBoxVMmetrics”>
3 <machine xsi:type="_1:Machine” name="ubuntu05” cpuSpeed
=72000.0" cpuUnit="4" memory="2048.0"/>
4 <logRecords time="42597.454" CPU_Used="0.5" RAM_Used="91.0"
Disk_Used="1281.8876953125” Net_Incoming="0.0"
Net_Outgoing="0.0"/>
5 <logRecords time=7"42598.466" CPU_Used="0.25" RAM_Used="91.0"
Disk_Used="1282.6767578125" Net_Incoming="0.0"
Net_Outgoing="0.0"/>
6 <logRecords time="42599.476" RAM_Used="167.0" Disk_Used
="1282.6767578125” Net_Incoming="843.0" Net_Outgoing
="6.0"/>
7 <logRecords time=7"42600.486" RAM_Used="168.0" Disk_Used
=71282.6767578125” Net_Incoming="0.0" Net_Outgoing
="0.0"/>
8 <logRecords time="42601.498" RAM_Used="159.0" Disk_Used
="1282.6767578125” Net_Incoming="4.0" Net_Outgoing
="244.0" />
9
10
11 .
12 </UtilisationLog>

238

Appendix F

Reusability Analysis

239

suonnog N posodoiq Jo A[Iqesnay Jo sofeiuodiod 9SRIOAY :T° O[qRL,

uonedddy uonedddy o} ue|disanbayaninosay 01 propopjuonednddy gy [enbuysa]
0002 0z 01 2unadg 0002 0z Juadsg papusxg wawabeuep
papusixy = |20
. 00l h : 00l A ue|disanbayaainosay
EEEY 0 DEO[YION £eer 0 pPEOPHOA DDadS - I
19799 Juadg 19799 uonedddy =80
uoneaiddy /s|apowelap
00k e 00k M peopHioj\UoIedl|ddy
00l A 0ol M SJUa| 22In0say Jo senuuod Bunelsuag:] Zn
00l M 00l A wnos 15anbay S Wallalinbay a3mosay Wz
0ol M 0ol M [2PoW SIsAleuy 83npoldNZIN
0ol N 0ol M Buisuea|)
00l h 00l X [BPO PEOMIOASABIIN0SEY |0 UONRIBUSSY WZIN
00l ~ 001l A uonessuan ydeln Buuonuop Auoede) S ZW sanbiuyd |
00700} . 0006 L : uswabeuep
00l M ool A S|2poj 82nosay pue peoplop, by ¥ siedwo) ‘Uog PO
001 M 00l X sjapoy 821nosay o] sbo7 abesn a2nosay Wz L
0ol 0 22IN0S3Y B 0}
M S|opojy anosay -
0000k £€8. -nnpy sbeuep =y
0ol M 0ol M sjepo BoTpeopop 0} S0 OO NZL
0ol h 00l M sisfleuyuaWwaINbaya0inosay
0ok I 0ok M UIBNEPEOHIOAN
00l h 00l M DEOPHOANSASDIN0SEY
0ol e 0ol M awi| s/\JsanbaypeopPHOM s
0000+ [00L r 1999 0 SOUBWAAXOGA - a_wmn_v,_%%mz
00l [y 0 Boysbesnysia E
0ol h 0ol M Boaoinosay
001 Y 0 bofisanbay =
00l M 00l M Bopeopuopuonedddy
ssadold saliobaje) s)oBlaUY ss8%01d sapobajen sjoejaly
JoelaLY (pasnau- 1) PesUy (pasnai souobaEn
Apnyg ase -) salpmyg -
. n_mn_m‘_m_oh__“w__.,mhmo”omuu&mta. uopenjeay PejaYyY 3an ase) uonedddy IESUY 3AN 310D aumm”““_m _w__:q ss820.d
o ioj sjoejauy| 210D 0} paledwo] asNay Jo %, | gapN 10} SloBlAUY

0} paledwo] asnay Jo %,

240

Appendix G

Programs

Listing G.1: Complete DiskUtilToVbDisk.eol.

© 00 N O Ut W N

= = =
=W N = O

15
16

17
18
19
20
21
22
23
24
25

26
27

var vbLog = VBm! UtilisationLog.all. first ();
var diskLog = Disk!LogRecord. all;

var fs = Disk!FileSystem . all;

var totalDisk = 0.00;

var countRemove = 0;

var tempVL : Set = new Set; //[VBm!LogRecord];

fs.size () .println(” fs size is : 7);

[xxxrrrrerkk Details of Log Files skskskokskokororososom sk ko ok okok ok ok ok ko
vbLog.logRecords.size () .println ("vbm log count is : 7);
diskLog.size () .println(” disk log count is : 7);
diskLog.at (0) . filesystems.println (” disk log is : 7);
//rename the webserver request name to an identified request
name

for (vl in vbLog.logRecords){

var dl = diskLog.selectOne(1l|1.time. floor ()= vl.

time . floor ());

if (dl.isDefined ()){
//dl.at (0).println () ;
totalDisk = 0.00;
for (fs in dl.filesystems){
totalDisk = totalDisk + fs.usage;
}
totalDisk . println () ;
vl.Disk_Used = totalDisk /1024.00; // convert kilobyte
to megabyte
} else {

countRemove = countRemove + 1;

241

28
29
30
31
32
33
34
35
36
37
38

tempVL.add (vl);
vl.println (” is removed 7);
}
countRemove. println (” countRemove = 7);
//to remove the last object if possible

if (tempVL. size ()>0){

}

vbLog.logRecords.removeall (tempVL) ;

242

Listing G.2: Complete ETL Program with Rules to Transform the Media
Stream Application Workload to VM Resource Requirement Plan.

1 pre {

2 var myTubeRequest = S!MediaStreamRequest. all. first () ;
3 var dateTool = new Native(” tools.DateTool”);

4}

5

6 //Rule to transform the Media Stream Application Workloads to
VM Request Plan
7 rule MediastreamRequestToVmRequestPlan

8 transform s : S!MediaStreamRequest
9 to t : T!VmRequestPlan {
10

11 t.applicationName = s.applicationID ;

12 t.vmRequirements.addAll(s.timeSlotRequests.equivalent ());

13

14 var noOfDays : Integer;

15 var startDate : String;

16 var endDate : String;

17 var currentDate: String;

18

19 startDate = s.startDate.DD + ”/” 4+ s.startDate MM+ 7/” + s.
startDate .YYYY;

20 endDate = s.endDate.DD + ”/” + s.endDate MM+ ”7/” + s.
endDate . YYYY;

21

22 noOfDays = dateTool.countDays(startDate, endDate);
23 currentDate = startDate;

24

25 for (i in Sequence{1..n0oOfDays}){

26 //create daily request

27 var reqDate : T!Date := new T!Date;

28 reqDate .DD = currentDate.substring (0,2);

29 reqDate MM = currentDate.substring (3,5);

30 reqDate .YYYY = currentDate.substring (6,10) ;
31 t.createDailyRequest (reqDate) ;

32

33 for (timeSlotRequest in s.timeSlotRequests){
34 t.createSlots (reqDate, timeSlotRequest);

35 }

36 currentDate = dateTool.tomorrow (currentDate);
37}

38 //assign start and end date

39 t.startDate = t.requests.at(0).requestDate;

40 t.endDate = t.requests.at(noOfDays —1).requestDate;
41 }

42

43

243

44 //Rule to Transform the Media stream Application Workload Time
Slot to VM Resource Requirement .

45 rule TimeSlotRequestToVmRequirement

46 transform timeSlotRequest : S!MediaStreamTimeSlotRequest

47 to vm : T!Vm {

48

49 var duration : Integer;

50

51 duration := (timeSlotRequest.‘to‘ — timeSlotRequest.from)x
60 % 60; //seconds

52

53 //formula to calculate everage bandwidth (MegaByte)

54 vm.bandwidth = myTubeRequest.averageVideoSize =*
timeSlotRequest . numberOfVideos * timeSlotRequest .
averageVideoPercentageWacth;

55

56 //average mnetwork requirement (MB/s)

57 vm.network = vm.bandwidth/duration ;

58

59 //average CPU requirement (GHz per seconds)

60 vimn.CPU = (timeSlotRequest.numberOfVideos x
myTubeRequest . averageVideoSize * myTubeRequest.
decodingTimeRate * timeSlotRequest.
averageVideoPercentageWacth)/duration;

61

62 //average memory requirement (MegaByte)

63 vm.memory = (timeSlotRequest.numberOfVideos % myTubeRequest.

bufferTime * myTubeRequest.bitRate)/duration;

64 }

65

66

67 operation T!VmRequestPlan createDailyRequest(day : T!Date){

68 var r = new T!DailyRequest;

69 r.requestDate= day;

70 self.requests.add(r);

71}

72

73 operation T!VmRequestPlan createSlots (day : T!Date, ts : Any)

{

74 for (dayReq in self.requests){

75 if (dayReq.requestDate =— day){

76 var s = new T!Slot;

77 s.from = createTime(ts.from);

78 s.‘to‘ = createTime(ts. ‘to‘);

79 s.vmRequirement = ts.equivalent () ;
80 dayReq. slots .add(s);

81 }

82 }

83 }

244

84

85 operation createTime(i) : T!Time {
86 var time = new T!Time;

87 time . hour = i;

88 time . minutes = 0;

89 time .seconds = 0;

90 return time;

91 }

245

Listing G.3: Complete ETL Program with Rules to Transform the Part-of-
Speech Tagger Application Workload to VM Resource Requirement Plan.

1 pre {

2 var mySPWorkload = S!SpeechTaggerWorkload. all. first () ;
3 var dateTool = new Native(” tools.DateTool”);

1)

5

6 //Rule to transform the Part—of—Speech Tagger Application

Workloads to VM Request Plan

rule SpeechTaggerWorkloadToVmRequestPlan

8 transform s : S!SpeechTaggerWorkload

9 to t : T!VmRequestPlan {

10

11 t.applicationName = s.applicationID ;

12 t.vmRequirements.addAll(s.timeSlotWorkloads.equivalent ());

13

14 var noOfDays : Integer;

15 var startDate : String;

16 var endDate : String;

17 var currentDate: String;

18

19 startDate = s.startDate.DD + ”/” 4+ s.startDate MM+ 7/” + s.
startDate .YYYY;

20 endDate = s.endDate.DD + ”/” + s.endDate MM+ ”7/” + s.
endDate . YYYY;

-3

21

22 noOfDays = dateTool.countDays(startDate, endDate);
23 currentDate = startDate;

24

25 for (i in Sequence{1..n0oOfDays}){

26 //create daily request

27 var reqDate : T!Date := new T!Date;

28 reqDate .DD = currentDate.substring (0,2);

29 reqDate MM = currentDate.substring (3,5);

30 reqDate .YYYY = currentDate.substring (6,10) ;

31 t.createDailyRequest (reqDate) ;

32

33 for (timeSlotWorkload in s.timeSlotWorkloads){
34 t.createSlots (reqDate, timeSlotWorkload);

35 }

36 currentDate = dateTool.tomorrow (currentDate);
37 }

38 //assign start and end date

39 t.startDate = t.requests.at(0).requestDate;

40 t.endDate = t.requests.at(noOfDays —1).requestDate;
41 }

42

43

246

44 //Rule to Transform the Part—of—Speech Tagger Application
Workload Time Slot to VM Resource Requirement .
45 rule SpeechTaggerTimeSlotWorkloadToVmRequirement
S!SpeechTaggerTimeSlotWorkload

46
47
48
49
50

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71

72
73

74
75

76
"

78
79

80

transform timeSlotWorkload
to vin : T!Vm {

//hours to seconds
duration :=

60 x 60; //seconds

//declaration of variables

var duration Integer = 0;

var smallFileCPU : Any = 0.0;
var mediumFileCPU : Any = 0.0;
var largeFileCPU : Any = 0.0;

var smallFileMemory : Any = 0.0;
var mediumFileMemory : Any = 0.0;
var largeFileMemory : Any = 0.0;
var smallFileNetIn : Any = 0.0;
var mediumFileNetIn : Any = 0.0;
var largeFileNetIn Any = 0.0;
var smallFileNetOut Any = 0.0;
var mediumFileNetOut : Any = 0.0;
var largeFileNetOut : Any = 0.0;
var smallFileStorage : Any = 0.0;
var mediumFileStorage : Any = 0.0;
var largeFileStorage : Any = 0.0;

for (fileSize in timeSlotWorkload. fileSizes){
//formulas retrived from ReRA to process small files

used (Figure 6.47)

if (fileSize.size = SizeCategory#small){
smallFileCPU = (5.2152 % fileSize .numberOfFiles.pow(3))
— (188.59 x fileSize.numberOfFiles.pow(2)) + (2069.5

x fileSize .numberOfFiles) — 129.9;

(timeSlotWorkload . ‘to ¢ — timeSlotWorkload . from)x

are

smallFileMemory = (0.2727 % fileSize.numberOfFiles.pow
(3)) + (1.4333 % fileSize.numberOfFiles.pow(2)) +

(43.554x

fileSize .numberOfFiles) + 64.48;

smallFileNetIn = (0.1271 % fileSize .numberOfFiles.pow(3)
) — (3.7384 x fileSize.numberOfFiles.pow(2))+

(36.104 % fileSize.numberOfFiles)

— 2.1564;

smallFileNetOut = (0.1909 % fileSize.numberOfFiles.pow
(3)) — (5.6324 % fileSize.numberOfFiles.pow(2)) +
(54.541 % fileSize .numberOfFiles) — 3.8293;

247

81

82
83
84

85

86

87
88

89
90

91
92

93

94

95

96

97

98

99

(100
o1

102
103

104
105

(106
Lo

108

smallFileStorage = 1.3296 x fileSize.numberOfFiles +
1302.04 ;

//formulas retrived from ReRA to process medium files are
used (Figure 6.38)

else if (fileSize.size = SizeCategory#medium){

mediumFileCPU = (8.4681 x fileSize.numberOfFiles.pow(3))
— (250.38 % fileSize .numberOfFiles.pow(2)) + (2385.1
* fileSize.numberOfFiles) — 134.11;

mediumFileMemory = (0.23681 % fileSize.numberOfFiles.pow
(3)) + (0.90535 x fileSize.numberOfFiles.pow(2)) +
(49.94 x fileSize .numberOfFiles) + 64.345;

mediumFileNetIn = (0.40129 % fileSize.numberOfFiles.pow
(3)) — (10.302 % fileSize.numberOfFiles.pow(2)) +
(87.286 % fileSize.numberOfFiles) — 5.7723;

mediumFileNetOut = (0.60614 % fileSize.numberOfFiles.pow
(3)) — (15.746 % fileSize .numberOfFiles.pow(2)) + (
134.31 % fileSize.numberOfFiles) — 9.1949;

mediumFileStorage = 3.0931 % fileSize.numberOfFiles +
1302.4;

}

//formulas retrived from ReRA to process large files are
used (Figure 6.29)
else if (fileSize.size =— SizeCategory#large){
largeFileCPU = (11.008 x fileSize .numberOfFiles.pow(3))
— (97.25 % fileSize .numberOfFiles.pow(2)) + (2616.6
* fileSize.numberOfFiles) — 164.64;

largeFileMemory = (0.9467 x fileSize.numberOfFiles.pow
(3)) + (0.46501 % fileSize.numberOfFiles.pow(2)) +
(57.656 % fileSize.numberOfFiles) + 64.72;

largeFileNetIn = (0.88278 x fileSize.numberOfFiles.pow
(3)) — (21.769 % fileSize.numberOfFiles.pow(2)) +
(174.68 % fileSize .numberOfFiles) — 11.823;

largeFileNetOut = (1.3434 % fileSize.numberOfFiles.pow
(3)) — (32.601 = fileSize.numberOfFiles.pow(2)) +
(260.09 % fileSize.numberOfFiles) — 17.461;

largeFileStorage = 7.1797 % fileSize .numberOfFiles +
1303.2;

248

(109
110
11
112
113
114
115

116
117
118

119
120
121

122
123
124

125
126
127
128
129
(130
(131
132
133

134
135
136
137
138
(139
(140
141
142
143
144
145
146
147
148
(149
(150
151
152

//get CPU requirement (MHz)
v . CPU=getMaximum (smallFileCPU , mediumFileCPU , largeFile CPU) ;

//get memory requirement (MB)
vm. memory=getMaximum (smallFileMemory , mediumFileMemory ,
largeFileMemory) ;

//get incomming network requirement (MB)
vi. incomingNetwork=getMaximum (smallFileNetIn ,mediumFileNetIn
,largeFileNetIn);

//get outgoing network requirement (MB)
vm. outgoingNetwork=getMaximum (smallFileNetOut ,
mediumFileNetOut ,largeFileNetOut) ;

//get storage requirement (MB)
vm. storage=getMaximum (smallFileStorage ,mediumFileStorage ,
largeFileStorage);
}

operation T!VmRequestPlan createDailyRequest(day : T!Date){
var r = new T!DailyRequest;
r.requestDate= day;
self.requests.add(r);

}

operation T!VmRequestPlan createSlots(day : T!Date, ts : Any)
{
for (dayReq in self.requests){
if (dayReq.requestDate = day){
var s = new T!Slot;
s.from = createTime(ts.from);
s.‘to‘ = createTime(ts. to*);
s.vmRequirement = ts.equivalent () ;
dayReq.slots .add(s);

}

operation createTime (i) : T!Time {
var time = new T!Time;
time. hour = i;
time.minutes = 0;
time .seconds = 0;
return time;

}

249

153 operation getMaximum(x, y, z) : Any{
154 var max = X;

155 if (y > max) { max=y; }
156 if (z > max) { max=z; }
157 return max;

158 }

250

Listing G.4: Complete ETL Program with Rules to Transform the Image
Filter Application Workload to VM Resource Requirement Plan.

1 pre {

2 var mylFWorkload = S!ImageFilterWorkload. all. first ();
3 var dateTool = new Native(” tools.DateTool”);

4}

5

6 //Rule to transform the Image Filtering Application Workloads
to VM Request Plan

7 rule ImageFilterWorkloadToVmRequestPlan

8 transform s : S!ImageFilterWorkload

9 to t : T!VmRequestPlan {

10

11 t.applicationName = s.applicationID ;

12 t.vmRequirements.addAll(s.timeSlotWorkloads. equivalent ());

13

14 var noOfDays : Integer;

15 var startDate : String;

16 var endDate : String;

17 var currentDate: String;

18

19 startDate = s.startDate.DD 4+ ”/” 4+ s.startDate MM+ 7/” +
s.startDate . YYYY;

20 endDate = s.endDate.DD + 7 /” + s.endDate MM+ 7/” + s.
endDate .YYYY;

21

22 noOfDays = dateTool.countDays(startDate, endDate);

23 currentDate = startDate;

24

25 for (i in Sequence{1l..n0oOfDays}){

26 //create daily request

27 var reqDate : T!Date := new T!Date;

28 reqDate .DD = currentDate.substring (0,2);

29 reqDate MM = currentDate.substring (3,5);

30 reqDate .YYYY = currentDate.substring (6,10) ;

31 t.createDailyRequest (reqDate) ;

32

33 for (timeSlotWorkload in s.timeSlotWorkloads){

34 t.createSlots (reqDate, timeSlotWorkload);

35 }

36 currentDate = dateTool.tomorrow (currentDate);

37 }

38 //assign start and end date

39 t.startDate = t.requests.at(0).requestDate;

40 t.endDate = t.requests.at(noOfDays —1).requestDate;

41 }

42

43

251

44 //Rule to Transform the Image Filtering Application Workload
Time Slot to VM Resource Requirement.

45 rule ImageFilterTimeSlotWorkloadToVmRequirement

46 transform timeSlotWorkload S!ImageFilterTimeSlotWorkload

47 to vm : T!Vm {

48

49 //declaration of variables

50 var smallDefaultCPU Any = 0.0;

51 var smallNegateCPU Any = 0.0;

52 var smallGrayCPU Any = 0.0;

53 var mediumDefaultCPU Any = 0.0;

54 var mediumNegateCPU Any = 0.0;

55 var mediumGrayCPU : Any = 0.0;

56 var largeDefaultCPU Any = 0.0;

57 var largeNegateCPU Any = 0.0;

58 var largeGrayCPU Any = 0.0;

59 var smallDefaultMemory : Any = 0.0;
60 var smallNegateMemory : Any = 0.0;
61 var smallGrayMemory Any = 0.0;

62 var mediumDefaultMemory : Any = 0.0;
63 var mediumNegateMemory Any = 0.0;
64 var mediumGrayMemory Any = 0.0;

65 var largeDefaultMemory Any = 0.0;
66 var largeNegateMemory Any = 0.0;
67 var largeGrayMemory Any = 0.0;

68 var smallDefaultNetIn Any = 0.0;
69 var smallNegateNetIn Any = 0.0;

70 var smallGrayNetIn Any = 0.0;

71 var mediumDefaultNetIn: Any = 0.0;
72 var mediumNegateNetIn Any = 0.0;
73 var mediumGrayNetln : Any = 0.0;

74 var largeDefaultNetIn Any = 0.0;
75 var largeNegateNetln Any = 0.0;

76 var largeGrayNetIn Any = 0.0;

77 var smallDefaultNetOut Any = 0.0;
78 var smallNegateNetOut Any = 0.0;
79 var smallGrayNetOut Any = 0.0;

80 var mediumDefaultNetOut: Any = 0.0;
81 var mediumNegateNetOut Any = 0.0;
82 var mediumGrayNetOut Any = 0.0;

83 var largeDefaultNetOut Any = 0.0;
84 var largeNegateNetOut Any = 0.0;
85 var largeGrayNetOut Any = 0.0;

86

87

88 for (wl in timeSlotWorkload.workloads){
89 if (wl.size = SizeCategory#small){
90 if (wl.filter = Filter#‘default ¢){

252

91

92

93
94

95
96

97
98

99
(100
101
102

103

104
(L05

106
o7

108
(109

110
111
112
113

114

115
116

117

//formulas retrieved from ReRA to process small images
with default filter (Figure C.21)

smallDefaultCPU = (17.705 % wl.numberOFimages.pow(3))
— (387.67 % wl.numberOFimages.pow(2)) + (2816.9
* wl.numberOFimages) — 64.426;

smallDefaultMemory = (1.5066 x wl.numberOFimages) +
81.816;

smallDefaultNetIn = (123.41 % wl.numberOFimages.pow
(2)) + (1873.5 % wl.numberOFimages) + 379.64;

smallDefaultNetOut = (16.088 % wl.numberOFimages.pow
(3)) — (359.12 % wl.numberOFimages.pow (2))+
(2710.3 * wl.numberOFimages) — 214.23;

}

else if (wl.filter = Filter#negate){

//formulas retrieved from ReRA to process small images
with negate filter (Figure C.27)

smallNegateCPU = (9.7597 % wl.numberOFimages.pow(3))
— (272.64 * wl.numberOFimages.pow(2)) + (2413.4 =«
wl.numberOFimages) + 233.44;

smallNegateMemory = (0.00051442 x wl.numberOFimages.
pow(3)) — (0.10503 * wl.numberOFimages.pow(2)) +
(2.4851 % wl.numberOFimages) + 79.525;

smallNegateNetIn = (6.0596 * wl.numberOFimages.pow(3)
) — (262.06 * wl.numberOFimages.pow(2)) + (2912 x
wl.numberOFimages) + 148.05;

smallNegateNetOut = (4.5664 % wl.numberOFimages.pow
(3)) — (232.11 % wl.numberOFimages.pow(2)) +
(2689.8 % wl.numberOFimages) + 150.71;

}

else if (wl.filter = Filter#grayscale) {

//formulas retrieved from ReRA to process small images
with grayscale filter (Figure C.24)

smallGrayCPU = (13.199 % wl.numberOFimages.pow(3)) —
(321.27 % wl.numberOFimages.pow(2)) + (2597.3 x
wl.numberOFimages) — 13.216;

smallGrayMemory = (0.034408 % wl.numberOFimages.pow

(3)) — (0.5597 % wl.numberOFimages.pow(2)) +
(3.736 % wl.numberOFimages) + 78.682;

253

118

119
120

121
122
123
124

126

127
128

129
130

131
132

133
134
135
136

137

138

139

140

141

142
143

144
145

smallGrayNetIn = (22.199 % wl.numberOFimages.pow(3))
— (491.83 * wl.numberOFimages.pow(2)) + (3704.1 =«
wl.numberOFimages) — 381.35;

smallGrayNetOut = (14.557 % wl.numberOFimages.pow (3))
— (322.95 % wl.numberOFimages.pow(2)) + (2423.7
x wl.numberOFimages) — 252.35;

}

}

else if (wl.size == SizeCategory#medium) {
if (wl.filter = Filter#‘default ¢){

//formulas retrieved from ReRA to process medium
images with default filter (Figure C.12)
mediumDefault CPU = (14.873 * wl.numberOFimages.pow (3)
) — (365.65 * wl.numberOFimages.pow(2)) + (2913.9
* wl.numberOFimages) — 116.58;

mediumDefaultMemory = (0.072804 % wl.numberOFimages.
pow(3)) — (1.8412 % wl.numberOFimages.pow(2)) +
(16.496 * wl.numberOFimages) + 79.083;

mediumDefaultNetIn = (6.0701 * wl.numberOFimages.pow
(3)) — (148.56 * wl.numberOFimages.pow (2)) +
(1188.4 % wl.numberOFimages) — 118.69;

mediumDefaultNetOut = (9.6006 % wl.numberOFimages.pow
(3)) — (238.42 % wl.numberOFimages.pow (2))+
(1920.5 * wl.numberOFimages) — 185.13;

}

else if (wl.filter = Filter#negate){
//formulas retrieved from ReRA to process medium
images with negate filter (Figure C.18)
mediumNegateCPU = (14.206 * wl.numberOFimages.pow (3))
— (355.97 * wl.numberOFimages.pow(2)) + (2887.5
* wl.numberOFimages) — 111.02;

mediumNegateMemory = (5.121 * wl.numberOFimages) +
79.298;

mediumNegateNetIn = (8.1863 % wl.numberOFimages.pow
(3)) — (201.7 % wl.numberOFimages.pow(2)) + (1634
* wl.numberOFimages) — 153.41;

mediumNegateNetOut = (6.5072 % wl.numberOFimages.pow

(3)) — (165.86 % wl.numberOFimages.pow(2)) +
(1357.1 % wl.numberOFimages) — 128.99;

254

146
47

148

149
(150

151
152

153
154

155
156
157
158
(159
(160

161

162

163

164

165

166
67

168
1169
(L70
71

172

73
174

else if (wl.filter = Filter#grayscale) {

//formulas retrieved from ReRA to process medium
images with grayscale filter (Figure C.15)

mediumGrayCPU = (14.708 x wl.numberOFimages.pow(3)) —
(367.12 % wl.numberOFimages.pow(2)) + (2931.8 =x
wl.numberOFimages) — 116.45;

mediumGrayMemory = (4.6741 % wl.numberOFimages) +
80.359;

mediumGrayNetIn = (10.915 % wl.numberOFimages.pow (3))
— (272.7 * wl.numberOFimages.pow(2)) + (2170.4 =
wl.numberOFimages) — 194.22;

mediumGrayNetOut =(5.7108 * wl.numberOFimages.pow (3))
— (141.23 * wl.numberOFimages.pow(2)) + (1112.7
* wl.numberOFimages) — 104.07;

}

}

else if (wl.size = SizeCategory#large){
if (wl.filter = Filter#‘default ‘){

//formulas retrieved from ReRA to process large
images with default filter (Figure C.3)

largeDefault CPU = (14.134 % wl.numberOFimages.pow(3))
— (372.03 x wl.numberOFimages.pow(2)) + (3113.7
* wl.numberOFimages) — 434.08;

largeDefaultMemory = (69.763 x wl.numberOFimages) +
86.841;

largeDefaultNetIn = (1.8246 x wl.numberOFimages.pow
(3)) — (45.002 % wl.numberOFimages.pow(2)) +
(361.99 % wl.numberOFimages) — 44.558;

largeDefaultNetOut = (3.2162 % wl.numberOFimages.pow
(3)) — (86.301 % wl.numberOFimages.pow(2)) +
(722.14 % wl.numberOFimages) — 72.91;

}

else if (wl.filter = Filter#negate){

//formulas retrieved from ReRA to process large
images with negate filter (Figure C.9)

largeNegateCPU = (14.476 % wl.numberOFimages.pow(3))
— (373.13 % wl.numberOFimages.pow(2)) + (3075 x
wl.numberOFimages) — 252.33;

largeNegateMemory = (58.81 % wl.numberOFimages) +
79.101;

255

175
176

(\drd
178

(179
(180
(181
182

1183

184
185

186
187

188
(189

(190
191
192
193
194
195
196

197
198
1199

R0O
RO1
R02

largeNegateNetIn = (3.086 * wl.numberOFimages.pow(3))
— (82.426 % wl.numberOFimages.pow(2)) + (704.3 =«
wl.numberOFimages) — 72.934;

largeNegateNetOut = (3.0144 % wl.numberOFimages.pow
(3)) — (77.783 x wl.numberOFimages.pow (2)) +
(634.76 * wl.numberOFimages) — 66.487;

}

else if (wl.filter = Filter#grayscale) {

//formulas retrieved from ReRA to process large
images with grayscale filter (Figure C.6)

largeGrayCPU = (13.711 % wl.numberOFimages.pow(3)) —
(358.62 % wl.numberOFimages.pow(2)) + (3005.9 x
wl.numberOFimages) — 175.53;

largeGrayMemory = (58.718% wl.numberOFimages) +
76.977;

largeGrayNetIn = (3.511 % wl.numberOFimages.pow(3)) —
(87.991 % wl.numberOFimages.pow(2)) + (719.57 =
wl.numberOFimages) — 76.358;

largeGrayNetOut = (2.2861 x wl.numberOFimages.pow(3))
— (59.233 % wl.numberOFimages.pow(2)) + (486.02
* wl.numberOFimages) — 51.898;

//get CPU requirement (MHz)

vin.CPU = getMaximum (smallDefaultCPU ,smallNegateCPU ,
smallGrayCPU ; mediumDefault CPU , mediumNegateCPU ,
mediumGrayCPU , largeDefault CPU ,largeNegateCPU ,
largeGrayCPU) ;

//get memory requirement (MB)

vm.memory = getMaximum (smallDefaultMemory ,
smallNegateMemory ,smallGrayMemory , mediumDefaultMemory ,
mediumNegateMemory , mediumGrayMemory , largeDefaultMemory
,largeNegateMemory , largeGrayMemory) ;

//get incomming network requirement (MB)

vim.incomingNetwork = getMaximum (smallDefaultNetIn ,
smallNegateNetIn ,smallGrayNetIn , mediumDefaultNetIn ,
mediumNegateNetIn ,mediumGrayNetIn ,largeDefaultNetIn ,
largeNegateNetIn ,largeGrayNetlIn);

256

03
04
05

06
07
08
09
10
11
12
13
14
15
16
17

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

//get outgoing network requirement (MB)
vm. outgoingNetwork = getMaximum (smallDefaultNetOut ,

smallNegateNetOut ,smallGrayNetOut ,mediumDefaultNetOut ,
mediumNegateNetOut , mediumGrayNetOut , largeDefaultNetOut
,largeNegateNetOut ,largeGrayNetOut) ;

operation T!VmRequestPlan createDailyRequest(day : T!Date){

var r = new T!DailyRequest;
r.requestDate= day;
self.requests.add(r);

operation T!VmRequestPlan createSlots(day : T!Date, ts : Any)

for (dayReq in self.requests){

if (dayReq.requestDate = day){
var s = new T!Slot;
s.from = createTime(ts.from);
s.‘to‘ = createTime(ts.‘to*);
s.vmRequirement = ts.equivalent () ;
dayReq.slots .add(s);
}
}
operation createTime (i) : T!Time {
var time = new T!Time;
time . hour = 0;

time . minutes = 0;

time.seconds = 0;

if (i >= 3600) {
time.hour = (i/3600).ceiling ();
i =1 — (time.hour * 3600);

}

if (i >=60) {
time . minutes = (1/60).ceiling () ;

i =1 — (time.minutes * 60);

}

if (i>0){

257

48 time.seconds = i;

49 }

50

51 return time;

52 }

53

54

55 operation getMaximum(a,b,c,d,e,f,g,h,i) : Any{
56 var max = a;

57 if (b > max) { max = b; }
58 if (¢ > max) { max = ¢; }
59 if (d > max) { max = d; }
60 if (e > max) { max = e; }
61 if (f > max) { max = f; }
62 if (g > max) { max = g; }
63 if (h > max) { max = h; }
64 if (i > max) { max = i; }
65 return max;

66 }

258

List of Abbreviations

e G
w N = O

e R

PiP
ViP
MDE
DSM
DSML
SLA
VM
PM
ReRA

. ViRR
. M2M
. T2M
. M2T

Physical Infrastructure Provider.
Virtual Infrastructure Service Provider.
Model-Driven Engineering.

Domain Specific Modelling.

Domain Specific Modelling Language.
Service Level Agreement.

Virtual Machine.

Physical Machine.

Resource Requirement Analysis.
Virtual Resource Requirement.
model-to-model.

text-to-model.

model-to-text.

259

References

[1] Epsilon Model Connectivity. www.eclipse.org. URL http://
www.eclipse.org/epsilon/doc/emc/.

2] An Overview of Virtualization Techniques.
http://www.virtuatopia.com/, June 20009.
URL http://www.virtuatopia.com/index.php/

An Overview_of _Virtualization Techniques.

[3] Information technology - Object Management Group Meta Object Fa-
cility (MOF) Core. ISO/IEC 19508, April 2014. URL http://
www.omg.org/spec/MOF/.

[4] Bruno Abrahao, Virgilio Almeida, Jussara Almeida, Alex Zhang, Dirk
Beyer, and Fereydoon Safai. Self-Adaptive SLA-Driven Capacity Man-
agement for Internet Services. In 10th IEEE/IFIP Network Operations
and Management Symposium NOMS 2006, pages 557-568, April 2006.
doi: 10.1109/NOMS.2006.1687584.

[5] Keith Adams and Ole Agesen. A Comparison of Software and Hardware
Techniques for x86 Virtualization. SIGARCH Comput. Archit. News, 34
(5):2-13, October 2006. ISSN 0163-5964. doi: 10.1145/1168919.1168860.
URL http://doi.acm.org/10.1145/1168919.1168860.

=

John Allspaw. The Art of Capacity Planning. O’Reilly, 2008.

Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph,
Randy H. Katz, Andrew Konwinski, Gunho Lee, David A. Pat-
terson, Ariel Rabkin, Ion Stoica, and Matei Zaharia. Above the
Clouds: A Berkeley View of Cloud Computing. Technical Report
UCB/EECS-2009-28, Electrical Engineering and Computer Sciences
University of California at Berkeley, February 2009. URL http://
www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.html.

[8] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph,

=)

260

http://www.eclipse.org/epsilon/doc/emc/
http://www.eclipse.org/epsilon/doc/emc/
http://www.virtuatopia.com/index.php/An_Overview_of_Virtualization_Techniques
http://www.virtuatopia.com/index.php/An_Overview_of_Virtualization_Techniques
http://www.omg.org/spec/MOF/
http://www.omg.org/spec/MOF/
http://doi.acm.org/10.1145/1168919.1168860
http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.html

[10]

[11]

[13]

[14]

[15]

Randy Katz, Andy Konwinski, Gunho Lee, David Patterson, Ariel Rab-
kin, Ion Stoica, and Matei Zaharia. A view of cloud computing. Com-
munications of the ACM, 53(4):50-58, April 2010. ISSN 0001-0782.
doi: 10.1145/1721654.1721672. URL http://doi.acm.org/10.1145/
1721654.1721672.

Arshdeep Bahga and Vijay Krishna Madisetti. Synthetic Workload Gen-
eration for Cloud Computing Applications. Journal of Software Engin-
eering and Applications, 4(7):396-410, July 2011. doi: doi:10.4236/
jsea.2011.47046.

L.A. Barroso and U. Holzle. The Case for Energy-Proportional Com-
puting. IEEE Computer, 40(12):33-37, December 2007.

Steffen Becker, Heiko Koziolek, and Ralf Reussner. The Palla-
dio Component Model for Model-Driven Performance Prediction.
Journal of Systems and Software, 82(1):3 — 22, 2009. ISSN 0164-
1212. doi: https://doi.org/10.1016/j.jss.2008.03.066. URL http://
www.sciencedirect.com/science/article/pii/S0164121208001015.
Special Issue: Software Performance - Modeling and Analysis.

Jean Bézivin. On the unification power of models. Software and Sys-
tems Modeling, 4(2):171-188, May 2005. ISSN 1619-1366. doi: 10.1007/
s10270-005-0079-0. URL http://dx.doi.org/10.1007/s10270-005-
0079-0.

Jean Bézivin, Frédéric Jouault, Ivan Kurtev, and Patrick Valduriez.
Model-based DSL frameworks. In Companion to the 21st ACM SIG-
PLAN symposium on Object-oriented programming systems, languages,
and applications, OOPSLA 06, pages 602616, New York, NY, USA,
2006. ACM. ISBN 1-59593-491-X. doi: 10.1145/1176617.1176632. URL
http://doi.acm.org/10.1145/1176617.1176632.

Marco Brambilla, Jordi Cabot, and Manuel Wimmer. Model-Driven
Software Engineering in Practice. Synthesis Lectures on Software Engin-
eering, 1(1):1-182, 2012. doi: 10.2200/S00441ED1V01Y201208SWEQ01.
URL http://dx.doi.org/10.2200/S00441ED1V01Y201208SWE0O1.

Fabian Brosig, Nikolaus Huber, and Samuel Kounev. Modeling Para-
meter and Context Dependencies in Online Architecture-level Per-
formance Models. In Proceedings of the 15th ACM SIGSOFT Sym-
posium on Component Based Software Engineering, CBSE ’12, pages
3-12, New York, NY, USA, 2012. ACM. ISBN 978-1-4503-1345-2.

261

http://doi.acm.org/10.1145/1721654.1721672
http://doi.acm.org/10.1145/1721654.1721672
http://www.sciencedirect.com/science/article/pii/S0164121208001015
http://www.sciencedirect.com/science/article/pii/S0164121208001015
http://dx.doi.org/10.1007/s10270-005-0079-0
http://dx.doi.org/10.1007/s10270-005-0079-0
http://doi.acm.org/10.1145/1176617.1176632
http://dx.doi.org/10.2200/S00441ED1V01Y201208SWE001

[16]

[17]

[19]

[20]

[21]

doi: 10.1145/2304736.2304740. URL http://doi.acm.org/10.1145/
2304736.2304740.

Fabian Brosig, Nikolaus Huber, and Samuel Kounev. Architecture-level
software performance abstractions for online performance prediction.
Science of Computer Programming, 90:71 — 92, 2014. ISSN 0167-
6423. doi: https://doi.org/10.1016/j.scico.2013.06.004. URL http://
www.sciencedirect.com/science/article/pii/S0167642313001421.
Special Issue on Component-Based Software Engineering and Software
Architecture.

Rajkumar Buyya, Chee Shin Yeo, and Srikumar Venugopal. Market-
Oriented Cloud Computing: Vision, Hype, and Reality for Delivering I'T
Services as Computing Utilities. In High Performance Computing and
Communications, 2008. HPC'C ’08. 10th IEEE International Conference
on, pages 5—13, September 2008. doi: 10.1109/HPCC.2008.172.

Rajkumar Buyya, Rajiv Ranjan, and Rodrigo N. Calheiros. Inter-
Cloud: Utility-Oriented Federation of Cloud Computing Environments
for Scaling of Application Services. In Ching-Hsien Hsu, LaurenceT.
Yang, JongHyuk Park, and Sang-Soo Yeo, editors, Algorithms and
Architectures for Parallel Processing, volume 6081 of Lecture Notes
in Computer Science, pages 13-31. Springer Berlin Heidelberg, 2010.
ISBN 978-3-642-13118-9. doi: 10.1007/978-3-642-13119-6.2. URL
http://dx.doi.org/10.1007/978-3-642-13119-6 2.

Nicholas Carr. The Big Switch: Rewiring the World from Edison to
Google. W. W. Norton & Compan, 2008.

Brian J.S. Chee and Jr. Curtis Franklin. Cloud Computing: Technologies
and Strategies of the Ubiquitous Data Center. CRC Press, 2010.

Ludmila Cherkasova, Wenting Tang, and Sharad Singhal. An SLA-
Oriented Capacity Planning Tool for Streaming Media Services. In
Proceedings of the 2004 International Conference on Dependable Sys-
tems and Networks, pages 743-752, Washington, DC, USA, 2004. IEEE
Computer Society. ISBN 0-7695-2052-9. URL http://dl.acm.org/
citation.cfm?7id=1009382.1009790.

Vanea Chiprianov, Yvon Kermarrec, Siegfried Rouvrais, and Jacques
Simonin. Extending Enterprise Architecture Modeling Languages for
Domain Specificity and Collaboration: Application to Telecommunic-
ation Service Design. Software € Systems Modeling, 13(3):963-974,

262

http://doi.acm.org/10.1145/2304736.2304740
http://doi.acm.org/10.1145/2304736.2304740
http://www.sciencedirect.com/science/article/pii/S0167642313001421
http://www.sciencedirect.com/science/article/pii/S0167642313001421
http://dx.doi.org/10.1007/978-3-642-13119-6_2
http://dl.acm.org/citation.cfm?id=1009382.1009790
http://dl.acm.org/citation.cfm?id=1009382.1009790

23]

[24]

[25]

[27]

28]

[31]

2014. ISSN 1619-1374. doi: 10.1007/s10270-012-0298-0. URL http:
//dx.doi.org/10.1007/s10270-012-0298-0.

Tony Clark, Andy Evans, Stuart Kent, and Paul Sammut. The
MMF Approach to Engineering Object-Oriented Design Languages.
In Proceedings of the Workshop on Language Descriptions, Tools and
Applications, April 2001. URL http://eprints.mdx.ac.uk/6249/1/
clarkpatterns.pdf.

Krzysztof Czarnecki and Simon Helsen. Feature-based survey of
model transformation approaches. IBM Systems Journal, 45(3):
621 — 645, April 2006. URL http://ieeexplore.ieee.org/xpl/
freeabs_all.jsp?arnumber=5386627.

Christina Delimitrou and Christos Kozyrakis. Cross-Examination of
Datacenter Workload Modeling Techniques. In 81st International
Conference on Distributed Computing Systems Workshops (ICDCSW),
pages 72 —79, june 2011. doi: 10.1109/ICDCSW.2011.45.

Arie Van Deursen, Paul Klint, and Joost Visser. Domain-Specific Lan-
guages: An Annotated Bibliography. ACM SIGPLAN Notices, 35:
26-36, June 2000. ISSN 0362-1340. doi: http://doi.acm.org/10.1145/
352029.352035. URL http://doi.acm.org/10.1145/352029.352035.

Brian Dougherty, Jules White, and Douglas C. Schmidt. Model-driven
auto-scaling of green cloud computing infrastructure. Future Generation
Computer Systems, 28(2):371-378, 2012. ISSN 0167-739X. doi: 10.1016/
jfuture.2011.05.009. URL http://www.sciencedirect.com/science/
article/pii/S0167739X11000902.

Jorge Ejarque, Marc de Palol, Inigo Goiri, Ferran Julia, Jordi Guitart,
Rosa M. Badia, and Jordi Torres. SLA-Driven Semantically-Enhanced
Dynamic Resource Allocator for Virtualized Service Providers. In Fourth
IEEE International Conference on eScience, pages 8-15, December
2008. doi: 10.1109/eScience.2008.15.

Renee Elio, Jim Hoover, loanis Nikolaidis, Mohammad Salavatipour,
Lorna Stewart, and Ken Wong. About Computing Science Research
Methodology, 2011.

Matthew Emerson and Janos Sztipanovits. Techniques for Metamodel
Composition. In Proceedings of the 6th OOPSLA Workshop on Domain-
Specific Modeling, pages 123-139. ACM, ACM Press, 2006.

Jean-Marie Favre. Towards a Basic Theory to Model Model Driven

263

http://dx.doi.org/10.1007/s10270-012-0298-0
http://dx.doi.org/10.1007/s10270-012-0298-0
http://eprints.mdx.ac.uk/6249/1/clarkpatterns.pdf
http://eprints.mdx.ac.uk/6249/1/clarkpatterns.pdf
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5386627
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5386627
http://doi.acm.org/10.1145/352029.352035
http://www.sciencedirect.com/science/article/pii/S0167739X11000902
http://www.sciencedirect.com/science/article/pii/S0167739X11000902

32]

33]

[34]

[36]

[37]

[38]

Engineering. In Proceedings of the 3rd Workshop in Software Model
Engineering (WiSME), 2004.

Ian Foster, Yong Zhao, Ioan Raicu, and Shiyong Lu. Cloud Comput-
ing and Grid Computing 360-Degree Compared. In Grid Computing
Environments Workshop (GCE "08), pages 1-10, November 2008. doi:
10.1109/GCE.2008.4738445.

Roman Frigg and Stephan Hartmann. Models
in Science. Stanford ~ Encyclopedia of Philosophy
website, 2006. URL http://www.science.uva.nl/
~seop/archives/spr2009/entries/models-science/.
http://www.science.uva.nl/ seop/archives/spr2009/entries/models-
science/.

Archana Ganapathi, Yanpei Chen, Armando Fox, Randy Katz, and

David Patterson. Statistics-Driven Workload Modeling for the Cloud.
In IEEE 26th International Conference on Data Engineering Work-
shops (ICDEW), pages 87-92. IEEE, March 2010. doi: 10.1109/
ICDEW.2010.5452742.

Anshul Gandhi, Yuan Chen, Daniel Gmach, Martin Arlitt, and Manish
Marwah. Minimizing data center SLA violations and power consumption
via hybrid resource provisioning. In International Green Computing
Conference and Workshops (IGCC), pages 1-8, July 2011. doi: 10.1109/
IGCC.2011.6008611.

Saurabh Kumar Garg, Steve Versteeg, and Rajkumar Buyya. A
framework for ranking of cloud computing services. Future Genera-
tion Computer Systems, 29(4):1012-1023, June 2013. ISSN 0167-739X.
doi: 10.1016/j.future.2012.06.006. URL http://dx.doi.org/10.1016/
j.future.2012.06.006.

Daniel Gmach, Jerry Rolia, Ludmila Cherkasova, and Alfons Kem-
per. Capacity Management and Demand Prediction for Next Gener-
ation Data Centers. In IEEE International Conference on Web Ser-
vices, pages 43-50. IEEE, July 2007. doi: 10.1109/ICWS.2007.62.
URL http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=
4279581&tag=1.

Albert Greenberg, James Hamilton, David A. Maltz, and Parveen Patel.
The Cost of a Cloud: Research Problems in Data Center Networks.
SIGCOMM Comput. Commun. Rev., 39(1):68-73, December 2008. ISSN

264

http://www.science.uva.nl/~seop/archives/spr2009/entries/models-science/
http://www.science.uva.nl/~seop/archives/spr2009/entries/models-science/
http://dx.doi.org/10.1016/j.future.2012.06.006
http://dx.doi.org/10.1016/j.future.2012.06.006
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4279581&tag=1
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4279581&tag=1

[41]

[42]

[43]

[44]

[45]

0146-4833. doi: 10.1145/1496091.1496103. URL http://doi.acm.org/
10.1145/1496091.1496103.

Emily H. Halili. Apache JMeter. Pacckt Publishing, 2008.

John Hutchinson, Mark Rouncefield, and Jon Whittle. = Model-
Driven Engineering Practices in Industry. In Software FEngineer-
ing (ICSE), 2011 38rd International Conference on, pages 633-642,
May 2011. doi: 10.1145/1985793.1985882. URL http://dl.acm.org/
citation.cfm?doid=1985793.1985882.

John Hutchinson, Jon Whittle, Mark Rouncefield, and Steinar Kristof-
fersen. Empirical Assessment of MDE in Industry. In Proceedings of the
33rd International Conference on Software Engineering, ICSE "11, pages
471-480, New York, NY, USA, 2011. ACM. ISBN 978-1-4503-0445-
0. doi: 10.1145/1985793.1985858. URL http://doi.acm.org/10.1145/
1985793.1985858.

Sadeka Islam, Jacky Keung, Kevin Lee, and Anna Liu. Empirical Pre-
diction Models for Adaptive Resource Provisioning in the Cloud. Future
Generation Computer Systems, 28(1):155-162, 2012. ISSN 0167-739X.
doi: http://dx.doi.org/10.1016/j.future.2011.05.027. URL http://
www.sciencedirect.com/science/article/pii/S0167739X11001129.

Kris Jamsa. Cloud Computing: SaaS, Paas, laas, Virtualization, Busi-
ness Models, Mobile, Security, and More. Jones & Bartlett Learning,
2013.

Advocate Jim Elliott. The Evolution of IBM Mainframes and VM.
SHARE Session 9140, August 2004. URL http://www.linuxvm.org/
Present/SHARE103/59140jea.pdf.

Steven Kelly and Juha-Pekka Tolvanen. Domain-Specific Modeling:
Enabling Full Code Generation. Wiley-IEEE Computer Society Pr,
March 2008. ISBN 0470036664. URL http://www.worldcat.org/isbn/
0470036664.

Hamzeh Khazaei, Jelena Misic, and Vojislav B. Misic. Modelling of
Cloud Computing Centers Using M/G/m Queues. In 31st International
Conference on Distributed Computing Systems Workshops (ICDCSW),
pages 87-92, June 2011. doi: 10.1109/ICDCSW.2011.13.

Dimitrios Kolovos, Louis Rose, and Richard Paige. The Epsilon
Book. www.eclipse.org/epsilon/, 2011. URL http://www.eclipse.org/
epsilon/doc/book/.

265

http://doi.acm.org/10.1145/1496091.1496103
http://doi.acm.org/10.1145/1496091.1496103
http://dl.acm.org/citation.cfm?doid=1985793.1985882
http://dl.acm.org/citation.cfm?doid=1985793.1985882
http://doi.acm.org/10.1145/1985793.1985858
http://doi.acm.org/10.1145/1985793.1985858
http://www.sciencedirect.com/science/article/pii/S0167739X11001129
http://www.sciencedirect.com/science/article/pii/S0167739X11001129
http://www.linuxvm.org/Present/SHARE103/S9140jea.pdf
http://www.linuxvm.org/Present/SHARE103/S9140jea.pdf
http://www.worldcat.org/isbn/0470036664
http://www.worldcat.org/isbn/0470036664
http://www.eclipse.org/epsilon/doc/book/
http://www.eclipse.org/epsilon/doc/book/

[48]

[49]

[52]

[53]

[54]

[55]

Dimitrios S. Kolovos, Richard F. Paige, and Fiona A.C. Polack. The Ep-
silon Object Language (EOL). In Arend Rensink and Jos Warmer, edit-
ors, Model Driven Architecture Foundations and Applications, volume
4066 of Lecture Notes in Computer Science, pages 128—-142. Springer
Berlin Heidelberg, 2006. ISBN 978-3-540-35909-8. doi: 10.1007/
11787044_11. URL http://dx.doi.org/10.1007/11787044 11.

Dimitrios S. Kolovos, Richard F. Paige, and Fiona A.C. Polack. The
Epsilon Transformation Language. In Antonio Vallecillo, Jeff Gray, and
Alfonso Pierantonio, editors, Theory and Practice of Model Transform-
ations, volume 5063 of Lecture Notes in Computer Science, pages 46—
60. Springer Berlin Heidelberg, 2008. ISBN 978-3-540-69926-2. doi:
10.1007/978-3-540-69927-9 4. URL http://dx.doi.org/10.1007/978-
3-540-69927-9 4.

Jonathan G. Koomey. Estimating Total Power Consumption by Serv-
ers in The U.S. and the World. Technical report, Stanford University,
February 2007.

Samuel Kounev, Fabian Brosig, and Nikolaus Huber. The Descartes
Modeling Language. Technical report, Department of Computer Science,
University of Wuerzburg, October 2014. URL http://www.descartes-
research.net/dml/.

Ivan Kurtev, Jean Bézivin, Frédéric Jouault, and Patrick Valduriez.
Model-based DSL Frameworks. In Companion to the 21st ACM SIG-
PLAN symposium on Object-oriented programming systems, languages,
and applications, pages 602-616. ACM, 2006.

Horacio Andrés Lagar-Cavilla, Joseph Andrew Whitney, Adin Mat-
thew Scannell, Philip Patchin, Stephen M. Rumble, Eyal de Lara, Mi-
chael Brudno, and Mahadev Satyanarayanan. SnowFlock: Rapid Vir-
tual Machine Cloning for Cloud Computing. In Proceedings of the
4th ACM FEuropean Conference on Computer Systems, EuroSys 09,
pages 1-12, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-482-
9. doi: 10.1145/1519065.1519067. URL http://doi.acm.org/10.1145/
1519065.1519067.

Ming Mao, Jie Li, and M. Humphrey. Cloud auto-scaling with dead-
line and budget constraints. In Grid Computing (GRID), 2010 11th
IEEE/ACM International Conference on, pages 41-48, Oct 2010. doi:
10.1109/GRID.2010.5697966.

C.C.T. Mark, D. Niyato, and Tham Chen-Khong. Evolutionary Op-

266

http://dx.doi.org/10.1007/11787044_11
http://dx.doi.org/10.1007/978-3-540-69927-9_4
http://dx.doi.org/10.1007/978-3-540-69927-9_4
http://www.descartes-research.net/dml/
http://www.descartes-research.net/dml/
http://doi.acm.org/10.1145/1519065.1519067
http://doi.acm.org/10.1145/1519065.1519067

[58]

[59]

[60]

[61]

[62]

timal Virtual Machine Placement and Demand Forecaster for Cloud
Computing. In IEEE International Conference on Advanced Informa-
tion Networking and Applications (AINA), pages 348-355, March 2011.
doi: 10.1109/AINA.2011.50.

Joaquin Miller and Jishnu Mukerji. MDA Guide Version 1.0.1. Technical
report, Object Management Group (OMG), June 2003. URL http:
//www.omg.org/cgi-bin/doc?omg/03-06-01.

Rafidah Pakir Mohamad, Dimitrios S. Kolovos, and Richard F. Paige.
Modeling Workloads, SLAs and their Violations in Cloud Computing.
In Christopher M. Poskitt, editor, Fourth York Doctoral Symposium on
Computer Science. Department of Computer Science, The University
of York, UK, October 2011. URL http://www.cs.york.ac.uk/ftpdir/
reports/2011/YCS/468/YCS-2011-468.pdf.

Rafidah Pakir Mohamad, Dimitrios S. Kolovos, and Richard F. Paige.
Cloud Computing Workload and Capacity Management Using Domain
Specific Modelling. In CloudMDE Workshop, co-located with ECMFA
2012. CEUR Proceedings, July 2012. URL http://www2.imm.dtu.dk/
conferences/ECMFA-2012/workshops/?page=CloudMDE.

Rafidah Pakir Mohamad, Dimitrios S. Kolovos, and Richard F.
Paige. Resource Requirement Analysis for Web Applications Run-
ning in a Virtualised Environment. In Cloud Computing Techno-
logy and Science (CloudCom), 2014 IEEE 6th International Confer-
ence on, pages 632-637, Dec 2014. doi: 10.1109/CloudCom.2014.134.
URL http://www.computer.org/csdl/proceedings/cloudcom/2014/
4093/00/40932632-abs.html.

Greg Nordstrom, Janos Sztipanovits, Gabor Karsai, and Akos Le-
deczi. Metamodeling-rapid design and evolution of domain-specific
modeling environments. In Engineering of Computer-Based Systems,
1999. Proceedings. ECBS °99. IEEE Conference and Workshop on,
pages 68-74, Mar 1999. doi: 10.1109/ECBS.1999.755863. URL http:
//ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=755863.

Richard F'. Paige and Louis M. Rose. Lies, Damned Lies and UML2Java.
Journal of Object Technology, 12(1), 2013. URL http://blog.jot.fm/
2013/01/25/1ies-damned-lies-and-uml2java/.

Richard F. Paige, Phillip J. Brooke, and Jonathan S. Ostroff.
Metamodel-based Model Conformance and Multiview Consistency
Checking. ACM Transactions on Software Engineering and Methodo-

267

http://www.omg.org/cgi-bin/doc?omg/03-06-01
http://www.omg.org/cgi-bin/doc?omg/03-06-01
http://www.cs.york.ac.uk/ftpdir/reports/2011/YCS/468/YCS-2011-468.pdf
http://www.cs.york.ac.uk/ftpdir/reports/2011/YCS/468/YCS-2011-468.pdf
http://www2.imm.dtu.dk/conferences/ECMFA-2012/workshops/?page=CloudMDE
http://www2.imm.dtu.dk/conferences/ECMFA-2012/workshops/?page=CloudMDE
http://www.computer.org/csdl/proceedings/cloudcom/2014/4093/00/4093a632-abs.html
http://www.computer.org/csdl/proceedings/cloudcom/2014/4093/00/4093a632-abs.html
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=755863
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=755863
http://blog.jot.fm/2013/01/25/lies-damned-lies-and-uml2java/
http://blog.jot.fm/2013/01/25/lies-damned-lies-and-uml2java/

[65]

[68]

[70]

logy, 16(3), July 2007. ISSN 1049-331X. doi: 10.1145/1243987.1243989.
URL http://doi.acm.org/10.1145/1243987.1243989.

Freeman Parkhill. The Challenge of the Computing Utility. Addison-
Wesley, 1966.

Luis Pedro, Matteo Risoldi, Didier Buchs, and Vasco Amaral. De-
veloping Domain-specific Modeling Languages by Metamodel Semantic
Enrichment and Composition: A Case Study. In Proceedings of the
10th Workshop on Domain-Specific Modeling, DSM ’10, pages 16:1—
16:6, New York, NY, USA, 2010. ACM. ISBN 978-1-4503-0549-5.
doi: 10.1145/2060329.2060364. URL http://doi.acm.org/10.1145/
2060329.2060364.

Diego Perez-Palacin, Radu Calinescu, and José Merseguer. log2cloud:
Log-based Prediction of Cost-Performance Trade-offs for Cloud Deploy-
ments. In Proceedings of the 28th Annual ACM Symposium on Ap-
plied Computing, SAC ’13, pages 397-404, New York, NY, USA, 2013.
ACM. ISBN 978-1-4503-1656-9. doi: 10.1145/2480362.2480442. URL
http://doi.acm.org/10.1145/2480362.2480442.

Matthew Portnoy. Virtualization FEssentials. Wiley, 2012. ISBN
978-1-118-17671-9. URL http://www.amazon.co.uk/Virtualization-
Essentials-Matthew-Portnoy-ebook/dp/BO07RT24QK/.

Andres Quiroz, Hyunjoo Kim, Manish Parashar, Nathan Gnanasamban-

dam, and Naveen Sharma. Towards Autonomic Workload Provisioning
for Enterprise Grids and Clouds. In Proceedings of the 10th IEEE/ACM
International Conference on Grid Computing. IEEE & ACM, 2009.

Louis M. Rose, Richard F. Paige, Dimitrios S. Kolovos, and FionaA.C.
Polack. The Epsilon Generation Language. In Ina Schieferdecker and
Alan Hartman, editors, Model Driven Architecture Foundations and Ap-
plications, volume 5095 of Lecture Notes in Computer Science, pages
1-16. Springer Berlin Heidelberg, 2008. ISBN 978-3-540-69095-5. doi:
10.1007/978-3-540-69100-6_1. URL http://dx.doi.org/10.1007/978~
3-540-69100-6_1.

Nilabja Roy, Abhishek Dubey, and Aniruddha Gokhale. Efficient Auto-
scaling in the Cloud Using Predictive Models for Workload Forecast-
ing. In IEEE International Conference on Cloud Computing (CLOUD),
pages 500-507, July 2011. doi: 10.1109/CLOUD.2011.42.

Douglas C. Schmidt. Guest Editor’s Introduction: Model-Driven En-

268

http://doi.acm.org/10.1145/1243987.1243989
http://doi.acm.org/10.1145/2060329.2060364
http://doi.acm.org/10.1145/2060329.2060364
http://doi.acm.org/10.1145/2480362.2480442
http://www.amazon.co.uk/Virtualization-Essentials-Matthew-Portnoy-ebook/dp/B007RT24QK/
http://www.amazon.co.uk/Virtualization-Essentials-Matthew-Portnoy-ebook/dp/B007RT24QK/
http://dx.doi.org/10.1007/978-3-540-69100-6_1
http://dx.doi.org/10.1007/978-3-540-69100-6_1

[71]

[73]

[76]

[77]

gineering. Computer, 39(2):25-31, February 2006. ISSN 0018-9162. doi:
10.1109/MC.2006.58. URL http://dx.doi.org/10.1109/MC.2006.58.

Bran Selic. The Pragmatics of Model-Driven Development. Soft-
ware, IEEE, 20(5):19-25, September 2003. ISSN 0740-7459. doi:
10.1109/MS.2003.1231146. URL http://staffwww.dcs.shef.ac.uk/
people/A.Simons/remodel/papers/SelicPragmatics.pdf.

Bran Selic. What will it take? A view on adoption of model-based
methods in practice. Software & Systems Modeling, 11(4):513-526,
2012. ISSN 1619-1366. doi: 10.1007/s10270-012-0261-0. URL http:
//dx.doi.org/10.1007/s10270-012-0261-0.

Shane Sendall and Wojtek Kozaczynski. Model Transformation:
The Heart and Soul of Model-Driven Software Development. Soft-
ware, IEEFE, 20(5):42-45, Sept 2003. ISSN 0740-7459. doi:
10.1109/MS.2003.1231150. URL http://ieeexplore.ieee.org/xpl/
articleDetails.jsp7arnumber=1231150.

Barrie Sosinsky. Cloud Computing Bible. Wiley Publishing, 2011.

Shekhar Srikantaiah, Aman Kansal, and Feng Zhao. Energy aware
consolidation for cloud computing. In Proceedings of the 2008 con-
ference on Power aware computing and systems, HotPower’08, Berke-
ley, CA, USA, 2008. USENIX Association. URL http://dl.acm.org/
citation.cfm?7id=1855610.1855620.

Thomas Stahl, Markus Vglter, Jorn Bettin, Arno Haase, and Simon
Helsen. Model-Driven Software Development: Technology, Engineering,

Management. Wiley, 2006.

Dave Steinberg, Frank Budinsky, Marcelo Paternostro, and Ed Merks.
EMF Eclipse Modeling Framework. The Eclipse Series. Addison-Wesley,
second edition, 2009.

Xin Sun, Sen Su, Peng Xu, Shuang Chi, and Yan Luo. Multi-dimensional
Resource Integrated Scheduling in a Shared Data Center. In 31st In-
ternational Conference on Distributed Computing Systems Workshops

(ICDCSW), pages 7-13, June 2011. doi: 10.1109/ICDCSW.2011.27.

Yifeng Sun, Yingwei Luo, Xiaolin Wang, Zhenlin Wang, Binbin Zhang,
Haogang Chen, and Xiaoming Li. Fast Live Cloning of Virtual Machine
Based on Xen. In High Performance Computing and Communications,
2009. HPCC' °09. 11th IEEE International Conference on, pages 392—
399, June 2009. doi: 10.1109/HPCC.2009.97.

269

http://dx.doi.org/10.1109/MC.2006.58
http://staffwww.dcs.shef.ac.uk/people/A.Simons/remodel/papers/SelicPragmatics.pdf
http://staffwww.dcs.shef.ac.uk/people/A.Simons/remodel/papers/SelicPragmatics.pdf
http://dx.doi.org/10.1007/s10270-012-0261-0
http://dx.doi.org/10.1007/s10270-012-0261-0
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=1231150
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=1231150
http://dl.acm.org/citation.cfm?id=1855610.1855620
http://dl.acm.org/citation.cfm?id=1855610.1855620

[80]

[81]

[85]

[86]

Jian Tan, P. Dube, Xiaoqgiao Meng, and Li Zhang. Exploiting Resource
Usage Patterns for Better Utilization Prediction. In 31st International
Conference on Distributed Computing Systems Workshops (ICDCSW),
pages 14-19, June 2011. doi: 10.1109/ICDCSW.2011.53.

Matias Ezequiel Vara Larsen and Arda Goknil. Railroad Crossing Het-
erogeneous Model. In GEMOC workshop 2013 - International Workshop
on The Globalization of Modeling Languages, Miami, Florida, United
States, September 2013. URL https://hal.inria.fr/hal-00867316.
This research was supported by ANR GEMOC project.

Paola Inverardi Vittorio Cortellessa, Antinisca Di Marco. Model-Based
Software Performance Analysis. Springer, 2011. doi: 10.1007/978-3-
642-13621-4.

Martin Ward. Proving Program Refinements and Transformations.
PhD thesis, Oxford University, 1989. URL http://www.cse.dmu.ac.uk/
~mward/martin/thesis/index.html.

Sanford Weisberg. Applied Linear Regression. New York
Wiley, 1985. doi: ISBN0471879576. URL http:

//yorsearch.york.ac.uk/primo_library/libweb/action/

dlDisplay.do?docId=44YORK_ALMA_DS21197277240001381.

James R. Williams. A Nowel Representation for Search-Based Model-
Driven Engineering. PhD thesis, Department of Computer Science,
University of York, September 2013.

Jingqi Yang, Chuanchang Liu, Yanlei Shang, Bo Cheng, Zexiang
Mao, Chunhong Liu, Lisha Niu, and Junliang Chen. A cost-aware
auto-scaling approach using the workload prediction in service clouds.
Information Systems Frontiers, 16(1):7-18, 2014. ISSN 1387-3326.
doi: 10.1007/s10796-013-9459-0. URL http://dx.doi.org/10.1007/
s10796-013-9459-0.

270

https://hal.inria.fr/hal-00867316
http://www.cse.dmu.ac.uk/~mward/martin/thesis/index.html
http://www.cse.dmu.ac.uk/~mward/martin/thesis/index.html
http://yorsearch.york.ac.uk/primo_library/libweb/action/dlDisplay.do?docId=44YORK_ALMA_DS21197277240001381
http://yorsearch.york.ac.uk/primo_library/libweb/action/dlDisplay.do?docId=44YORK_ALMA_DS21197277240001381
http://yorsearch.york.ac.uk/primo_library/libweb/action/dlDisplay.do?docId=44YORK_ALMA_DS21197277240001381
http://dx.doi.org/10.1007/s10796-013-9459-0
http://dx.doi.org/10.1007/s10796-013-9459-0

	Abstract
	Contents
	List of Tables
	List of Figures
	List of Listings
	List of Algorithms
	Acknowledgements
	Declaration
	Introduction
	Background
	Motivation
	Research Scope
	Research Hypothesis
	Research Objectives
	Research Methodology
	Research Outcomes
	Thesis Structure

	Literature Review
	Introduction
	Data Centres
	Resource Management
	Software Performance Engineering
	Chapter Summary

	Model Driven Engineering
	Introduction
	Models in MDE
	MDE Technologies
	Chapter Summary

	Domain Analysis
	Introduction
	Capacity Planning Phases
	Analysis of Research Scope
	Benefits of DSM
	Technical Challenges
	Research Contribution
	Chapter Summary

	Design of the MDE Solutions
	Introduction
	Resource Requirement Analysis
	Virtual Resource Requirement
	Chapter Summary

	Applications of MDE Solutions
	Introduction
	Implementation Plan
	System Requirements
	Virtualised Environment
	Extension of ReRA
	First Case Study: Media Stream
	Second Case Study: Part of Speech Tagging
	Chapter Summary

	Evaluation
	Evaluation Plan
	Third Case Study: Image Filtering
	Evaluation of Modularity
	Evaluation of Reuse
	Evaluation of Extensibility
	Evaluation of Completeness
	Predictive Capability Evaluation
	Evaluation of the System Requirements
	Chapter Summary

	Conclusion
	Introduction
	Research Contribution
	Research Limitation
	Future Work
	Closing Remarks

	Appendices
	Web Servers Analysis
	VBoxManage Resource Parameters
	Part-of-Speech Tagger Case Study Graphs
	Introduction
	Experiment with Large Files Size
	Experiment with Medium Files Size
	Experiment with Small Files Size

	Image Filter Case Study Graphs
	Introduction
	Large Images
	Medium Images
	Small Images

	Sample of Log Recordings to Log Models
	Reusability Analysis
	Programs
	List of Abbreviations
	References

