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Abstract

The application of self-healing material in industrial systems has the potential
to improve reliability and save cost. This is because faults do occur in systems,
and for life critical or remote or difficult to access ones, current maintenance
practices may be insufficient. When such systems are self-healed, the materials
making up the systems regain some or all of its lost physical properties to keep
the systems functioning. However, a majority of self-healing approaches are
not yet at the level of industrial integration. These self-healing approaches are
passive and do not guarantee a match between the damage and healing rate.
A significant step in their advancement is the development of an integrated
sensing, fault diagnosis and active self-healing system, which is the focus of
this thesis.

A mathematical model based on a previously experimented electromechan-
ical self-healing process, whose healing mechanism combines piezoelectricity
and electrolysis is developed. The model demonstrates the poor match between
the damage and healing rate due to the ineffectiveness of the healing process
to counteract the onset of damage, the dominant effect of uncertainties and
disturbances on the healing process, the dependence of healing on the location
of the healing mechanism relative to the fault location, etc. In addition, non-
linearities, such as the inherent dead-zone of the chosen healing mechanism
affect the response of the healing process. The model also provides a benchmark
for the work in this thesis.

The model is then the foundation for the development of a novel active
self-healing system. This is a closed loop system that takes advantage of
sensing and adaptive sliding mode feedback control with the modelled healing
mechanism to achieve a desired response. Importantly, it is shown in simulation
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that adaptive feedback control (sliding mode control) can minimize the effect
of uncertainties, regulate the healing rate of a self-healing system to meet user
or environmental demands, such as the damage rate, and compensate for the
non-linear dead-zone associated with this healing mechanism.

Finally, a novel fault diagnosis method that combines the beam curvature,
proportional orthogonal decomposition, Hölder exponent and supervised re-
gression is presented as a step to define the environmental demands. This
essentially captures the effect of damage of a beam structure. It is combined
with the active self-healing system, leading to a novel framework for an inte-
grated sensing, fault diagnosis and closed loop active self-healing system. It
is shown through simulation that the proposed active system can potentially
estimate the damage rate, provide adequate actuation to match the healing
rate with the estimated damage rate and provide real time insight into the
healing dynamics.
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2.13 The applied 0.3 N force generates a voltage greater than Êrev. . 38
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Chapter 1

Introduction

1.1 Introduction

In-service engineering systems are constantly exposed to conditions that cause

gradual degradation of the material composition of the systems (Dash and

Venkatasubramanian, 2000; Venkatasubramanian, 2005). The conditions could

be environmental or physical, e.g. the turbulence, earthquake or unwanted

vibrations, collision with debris or other systems, human error etc.; it could

also be chemical or electrical conditions e.g. electric sparks, corrosion, fire,

etc. These eventually lead to faults such as cracks in systems like airliners,

ships, pipelines, bridges, satellites, buildings, etc. In order to prevent these

faults and extend the remaining useful life of engineering systems, maintenance

strategies are usually put in place. Traditionally, this includes schedule-based

and condition-based maintenance. These strategies improve reliability, pre-

vent environmental hazards and maximize profit returns on system utility. In

schedule-based maintenance, industries employ periodic assessment of engi-

neering systems to maximize system utility. Maintenance is carried out by

a team of specialists but this approach is quite passive because failure can

occur before the schedule period and may lead to damages as well as financial

loss. Condition-based maintenance is achieved by observing certain dynamics

of a system using different techniques like fault detection and diagnosis to
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make decisions as to when maintenance is carried out. This is a proactive

approach that dictates what, how, where and when to carry out maintenance;

and it potentially provides a closer to optimal solution. However, effective

and reliable implementation requires proven and tested sensing and signal

processing solutions.

Despite these maintenance strategies, systems still experience faults during

operation. This could be as a result of wear and tear, negligence on the

part of the maintenance team, disturbances, incipient faults that cannot be

easily identified or a newly developed fault during operations. The effect

of these faults (partial or total) can be minimal or catastrophic to normal

operations, environment or human lives. The implication of any downtime can

also lead to financial costs or inconvenience. Examples include fragmentation

of an in-flight China airline flight 611 aircraft caused by human negligence

(Aviation Safety Council, 2005); removal of Delta flight 2412 aircraft wing

panel due to undetected incipient fault (Smith and Janet DiGiacomo, 2014);

Rena Plaza Factory collapse caused by cracks (with over 1000 lives lost)

(BBC, 2013); pipeline oil spill caused by undetected incipient cracks and

human negligence, resulting to environmental hazard and high clean-up cost

(National Transportation Safety Board, 2010). The severity of fault may be

disastrous, particularly for systems that are life critical or are difficult and/or

remotely accessed. Examples include airliners, buildings, bridges, satellites,

ships, turbines, nuclear reactors, underground infrastructures such as tubes,

water or gas pipes, etc. This challenge indicates a need for a more robust

approach (temporary or permanent), particularly for systems that cannot

be easily stopped during operations. A way to do this is to introduce self-

healing, whereby materials or components of a system can recover full or partial

functionality in event of a fault through healing. This would be particularly

useful as composite materials have seen increased usage in these kinds of systems

because of its lightness, resistance to damage, cost efficiency, environmental

impact, etc. Composite material constitutes about 50% of the total material of
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a Boeing 787 Dreamliner (Hale, 2006) and composite turbine blades are starting

to replace metallic ones. The proposed self-healing material can potentially offer

economic and environmental benefits, improve reliability and avert disastrous

event that could be life threatening. Hence, a critical look at self-healing in

this thesis.

1.2 Literature Review on Self-healing Materi-

als

Self-healing materials are inspired by the healing capabilities of biological

organisms. For example, blood clots are formed around a cut in the skin before

triggering transportation of cells, oxygen and nutrients towards the cut. These

help to build new tissues and eventually heal the cut. In materials, healing

leads to improved material properties that have been affected by damage. A

vast range of material properties can be healed but notable ones are mechanical

properties such as Young’s modulus or stiffness, hardness, tensile strength etc.

Experimental investigation of self-healing includes the use of materials such as

polymers, metals and ceramics (Hager et al., 2010). With a few exceptions (e.g.

paints (Hager et al., 2010)), most reported self-healing works are in technological

readiness levels (TRL) 1 to 3, i.e. basic concept to laboratory use (Blaiszik

et al., 2010). Nonetheless, interest in self-healing materials is growing (Hall

et al., 2015; Huang et al., 2016; Huyang et al., 2016; Huyang and Sun, 2016;

Ivanov and Stabnikov, 2017; Kessler, 2007; Mignon et al., 2017b; Sherir et al.,

2016; Trask et al., 2013; Wang et al., 2016; Wen et al., 2016; Wu et al., 2016a,b).

For example, Burattini et al. (2009) demonstrated the capability of non-covalent

interaction of a polymer to self-heal after a fracture; Wu et al. (2015) developed

a self-healing dental composite that can heal cracks; Mignon et al. (2017a)

worked on developing materials with self-healing potential; Soroushian et al.

(2012) and Sayayr et al. (2014) investigated the potential of electromechanical

materials for self-healing, etc. Self-healing materials are generally categorised
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as intrinsic or extrinsic and can be autonomic or non-autonomic in the way

healing is initiated (Blaiszik et al., 2010; Frei et al., 2013; Hager et al., 2010).

1.2.1 Intrinsic Self-healing

In intrinsic self-healing, materials are healed through chemical reactions at the

vicinity of the damage. The reaction causes a fill-up at the area of interest e.g.

a melting thermoplastic flows to take up space and solidifies to complete the

healing. Typical reactions are thermally reversible reactions, thermoplastic,

hydrogen bond, ionomeric coupling, molecular diffusion and chain interlocking

(Blaiszik et al., 2010; Yue et al., 2014; Zhong and Post, 2015). Thermally

reversible self-healing involves a reversible reaction that leads to the polymeri-

sation of the damaged areas. Importantly, this self-healing approach is mostly

non-autonomic because the reaction can only be initiated by some form of

energy e.g. temperature, radiation, oxygen, electric current, change in pH, etc.

(Thakur and Kessler, 2015; Urdl et al., 2017; Zhong and Post, 2015). Commonly

used covalent reversible reactions are Diels-Alder (DA), retro-Diels-Alder (rDA),

alkoxymine group reaction, disulphide chemistry, etc. (Blaiszik et al., 2010;

Liu et al., 2013a; Urdl et al., 2017; Zhong and Post, 2015). Experiments have

been performed in temperature range of 100 − 150◦C to initiate self-healing

using DA or rDA reaction of multi-furan and multi-maleimide after a damage

had occurred (Blaiszik et al., 2010; Chen et al., 2002, 2003; Yuan et al., 2008).

Another high temperature triggered reversible reaction is the use of alkoxymine

group for self-healing; self-healing occurs at a temperature of 125−130◦C (Yuan

et al., 2011; Zhong and Post, 2015). The high temperature requirement may

not be practical in most applications and incorporation into existing materials

may be daunting. In an attempt to reduce the high energy limitation of a

thermally reversible reaction, a moderately driven thermal approach using

disulphide chemistry during covalent bonding to mend the damaged area was

presented at 60◦C (Canadell et al., 2011; Zhong and Post, 2015). Non-covalent

thermally reversible reaction like hydrogen bonding requires even lower temper-
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atures. Self-healing based on hydrogen bonding involves reassembling of broken

supramolecular networks after damage at room temperature. π− π stacking on

the other hand reseals supramolecular network at high temperature of about

80 − 100◦C during a self-healing process (Burattini et al., 2009; Wei et al.,

2014; Zhong and Post, 2015). These reversible reactions have found application

in ballistics where the heat generated from a fired bullet passing through an

elastomer is used to intrinsically mend the depleted region (Frei et al., 2013).

The self-healed polymer showed improved tensile and compressive strength

when compared with damaged polymer. Another typical application of intrinsic

self-healing based reversible reaction is hydrogel. Self-healing applications of

hydrogel are vast and are still emerging in different fields. For example, coating

and sealant in industrial processes as well as tissue adhesive, drug administering

and cell delivery in bioengineering (Wei et al., 2014).

Thermoplastic is another method of intrinsic self-healing where a ther-

moplastic acting as the healing agent is initiated in a polymeric composite

material by heat (Blaiszik et al., 2010). The melting thermoplastic flows to

the damage area to mix with the matrix material. This intrinsic approach has

shown that the healed damaged area experiences increased mechanical strength

in a thermosetting composite materials (Hayes et al., 2007, 2006; Luo et al.,

2009). A possible setback is the high viscosity of the selected thermoplastic

resin. The viscosity of the healing agent is very crucial in achieving material

stasis. Healing agent must flow as fast as possible to improve the healing rate

and subsequently negate the effect of the damage rate (Yue et al., 2014). One

way to overcome high viscosity is by increasing the temperature and choosing

healing agents with low viscosity. However, increasing temperature comes with

longer cooling and healing time.

Overall, intrinsic self-healing can be applied numerous times but has limited

applications because of its high energy requirement and suitability for small

damage areas (Zhong and Post, 2015). Also, a trigger which most times are
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externally supplied is required to initiate healing and does not necessarily make

this approach autonomous.

1.2.2 Extrinsic Self-healing

In extrinsic self-healing, capsules or vascules containing the healing agents are

physically placed in materials without altering the properties of the materials.

The capsules or vascules are inert to healing agents and materials (Blaiszik

et al., 2010). Damage to the material leads to rupture of the capsules or vascules

and the flow of healing agents to the damaged area. The healing agents take

up the void and solidify to complete the self-healing process. Materials may

also house catalysts to speed up the healing process. A demonstration of a

capsule based self-healing is shown in Figure 1.1.

Front view during healing
Front view after 
healing
Front view after 
healing

Front view of a 
damaged capsule 
based self-healing 
material

Front view of a 
capsule based self-
healing material 
before damage

Figure 1.1: A description of a capsule based self-healing approach.

This concept has been applied to composite materials to initiate self-healing

by different authors (Brown et al., 2003; Keller et al., 2007; Mergheim and

Steinmann, 2013; Yeom et al., 2002; Yeom and Oh, 2000).

In one study, microcapsules of calcium lactate (healing agent) and bacteria

(catalyst) were placed in a cementitious composite (Zemskov et al., 2012). The

process of self-healing begins when a crack occurs in the concrete, and with the

aid of water, the calcium lactate bleeds through and reacts with the bacteria

to form limestone in the cracked region. This is autonomic as no external

energy is required to initiate healing. In addition, investigation has shown how
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different pH levels affect the triggering and release of healing capsules placed in

concretes (Dong et al., 2015). The potential to reduce or prevent the collapse of

buildings and bridges has inspired research in producing self-healing concretes

(Huang et al., 2016; Ivanov and Stabnikov, 2017; Mignon et al., 2017a,b; Sherir

et al., 2016; Wang et al., 2016).

In clinical dentistry, dental composite materials with self-healing capabilities

are being investigated as an alternative to traditional dental materials (Huyang

et al., 2016; Huyang and Sun, 2016; Wen et al., 2016; Wu et al., 2016a, 2015,

2016b). This retains the filling and aesthetics properties of traditional dental

materials and adds capabilities to self-heal cracks and prevent bio-degradation.

Microcapsules containing a mixture of strontium fluoroaluminosilicate and

polyacrylic acids (Huyang and Sun, 2016) and another containing Triethylene

glycol dimethacrylate-N and N-dihydroxyethyl-p-toluidine (Wu et al., 2016b)

act as healing agents. While toxic concerns have been raised with some

microcapsule contents (Wertzberger et al., 2010; White et al., 2001), the latter

is deemed safe for dental application (Wu et al., 2016b).

The number of times healing can be initiated in capsule based self-healing is

dependent on the number of capsules placed in the material. This places a lim-

itation on applicability, particularly for materials exposed to continuous harsh

conditions. Nonetheless, healing agents such as calcium lactate, dicyclopen-

tadiene, rapeseed, fluorescent fluid, etc., have been stored in microcapsules

and used to heal cracked composite materials (Jones et al., 2007; Mirabedini

et al., 2015; Song et al., 2016; Zemskov et al., 2012). It is expected that more

functional applications will emerge particularly with the success in embedding

microcapsules in a polyelectrolyte multilayer (Zhu et al., 2016).

Alternatively, a vascular self-healing approach provides more flexibility to

the design of composite material (Bleay and Loader, 2001). The architectural

layout is such that a vascular network is formed by capillary tubes or hollow

tubes placed within a composite material. This arrangement does not alter

the mechanical properties of the material. The vascular networks are either
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Front view during healing Front view after 
healing

Front view of a 
damaged 
vascular based 
self-healing 
material

Front view of a 
vascular based 
self-healing 
material before 
damage

Figure 1.2: A description of a vascular based self-healing approach.

constructed in one, two or three-dimension and healing agents may be provided

by external supply; increased dimensionality adds higher degree of reliability

and flexibility because the damaged area enjoys multiple connectivity. An

illustration of the vascular self-healing can been seen in Figure 1.2. If connected

to an external source, the vascular network enjoys access to more healing

agent. The healing agent is externally fed into the network and flows to the

damaged area for repair. In the experiment carried out by Yue et al. (2014), a

thiol-alkyne click chemistry was chosen as the healing agent because of its high

product and expedient rate of reaction. The click reactant stored in a capillary

tube is placed in a rubber matrix to form a composite. During fracture, the

reactant bleeds to the damaged area where a reaction stimulated by UV light

quickens the healing rate. After 5 minutes of exposure, an increase of up to

30% was recorded for the modulus and 100% in 10 minutes compared to the

damaged composite. Other similar illustrations of vascular based self-healing

have been well documented (Hamilton et al., 2010; Hansen et al., 2009; Toohey

et al., 2009b).

1.3 Research Motivation and Related Work

The majority of self-healing mechanisms remain passive and reactive to dam-

age. This means that there is no measure of capturing the incipient cause
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Table 1.1: Some self-healing approaches with integrated sensing ca-
pabilities

Sensing Type Damage Detected Self-healing System Material Healed
Pressure Delamination, microcracks Vascular FRP(Norris et al., 2012; Trask et al., 2013)
Fibre Optics Delamination Vascular CFRP (Minakuchi et al., 2014)
Pressure Cracks, delamination, debonding Vascular CFRP(Trask et al., 2011)
Photo-resistor Cracks Intrinsic TP (Hurley and Huston, 2011a)
Acoustic emission Cracks Vascular Epoxy (Toohey et al., 2007, 2009a)
Acoustic emission Cracks Intrinsic TP (Hurley and Huston, 2011b)
Fibre Optics Cracks Intrinsic SMP (Garcia et al., 2010)

FRP - Fibre reinforced plastic CFRP - Carbon fibre reinforced plastic TP - Thermoplastic polymer
SMP - Shape memory polymer

of damage and healing is passively initiated only after damage. Nonetheless,

some progress has been reported in integrated sensing and self-healing with

the aim of improving the reliability of local detection, diagnosis and efficiency

of healing. Some of the progress is shown in Table 1.1. A damage detection

system was introduced into a pressurised channel of a vascular network (Trask

et al., 2013). This was a controlled system that monitored the pressure drop to

trigger an action. A low pressure sensor whose output was monitored through

a microprocessor was connected to the pressurized vascule. Once subjected to

an impact, the pressure in the pressurised vascule drops rapidly. This event

triggers a 12v pump that delivers resin from an external reservoir to the damage

zone. A distributed sensor has also been mounted on an optic fibre network

on a composite plate (Minakuchi et al., 2014). The vascular network and an

external channel supplying the healing agent are pressurised such that the

vascular network has a higher pressure. The distributed sensors are mounted at

different segments of the vascular network to measure the pressure and transmit

the measured signals via the fibre network for assessment. In this arrangement,

the distributed sensors help locate a pressure drop in any segment and initiates

the release of healing agent to the area of interest.

Perhaps, a more active way of utilising the advantage of integrated sensing

is to add control. Controlling the manner in which healing is triggered and the

materials are healed will go a long way to improving the structural reliability

of materials. To this effect, an experiment was performed to demonstrate a

coordinated self-healing approach (Hurley and Huston, 2011a). An intrinsically
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driven self-healing was developed by placing a high resistive alloy wire in an

ethylene vinyl acetate (EVA) thermoplastic material to act as the healing

agent. Unlike the other intrinsic approaches, a photo-resistive sensing gathers

information as the sensor reacts with light. Magnitude of the voltage drop

gathered from the sensor readings determines the extent of damage. With a

given voltage threshold four standard deviation less than the mean value of a

damaged free training set, analysis was carried out to determine outliers of the

gathered data using Stewhart’s technique. Based on the analysis, current is

passed through the wire to melt the EVA and seal a crack. Once the photo-

resistive sensor records a voltage at the same level as the set voltage threshold,

the current stops flowing and the healing process stops. This closed loop

approach introduces some form of controlled on/off regulation to activate or

deactivate the heating element but does not take advantage of feedback to

regulate the healing rate and can only detect the onset of abrupt faults.

An interesting approach is the potential of using electromechanical materials

in self-healing systems. These are materials that can convert mechanical energy

into electrical energy and vice-versa, such as piezoelectric materials. The

potential of such materials is that they can be used as actuators and sensors.

Polymers currently used that exhibit such characteristics are Lead Zirconate

Titanate (PZT), poly vinylidene fluoride (PVDF) and dielectric elastomers

(Wang and Wu, 2012; Zhong and Post, 2015). Such electromechanical materials

have been combined with the principle of electrolysis to demonstrate a self-

healing process (Sayayr et al., 2014; Soroushian et al., 2012). In this setup,

the electrical energy generated by the electromechanical material provides the

voltage needed by the electrolysis process to drive healing agent to the damaged

zone. A full description of the self-healing process is detailed in Section 2.2 of

Chapter 2. Like other self-healing approaches, this material faces the challenge

of balancing the healing and damage rate. Self-healing is only possible when

the piezo-induced potential energy is greater than the inherent over-potentials

of electrolysis. Only then is the charge sufficient to drive the electrochemical
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process. In practice, materials are exposed to varying stress level over time

and the stress may not generate enough potential energy to drive the healing

process. Also, another inherent problem is the duration of deposition of the

healing agent. The duration of the piezo-induced energy must be sufficient

to deposit the required healing agent during healing. Despite the obvious

potentials of the electromechanical material, this design does not benefit from

the advantages that embedded sensing or control systems design provides. The

arrangement is an analog open loop system with a unity gain in a forward path.

1.4 Problem Definition

A range of approaches through which different materials can be self-healed

from a chemical engineering perspective have been reviewed. The core of

these approaches is primarily focussed on proposing and understanding the

self-healing mechanism. A typical self-healing process is insensitive to the

propagation of faults and healing is passively triggered when damage occurs

(see Figure 1.3). These designs generally suffer from several inherent limitations

that restrict their applicability in the real world and have arguably prevented

technological progress past TRL 3 (Blaiszik et al., 2010; Kuponu et al., 2016).

These include:

1. Healing is initiated passively and does not take into account the prop-

agation of a fault to detect the damage at an early stage and initiate

healing.

2. Self-healing is typically an open loop process with no regulation of the

healing process to counteract the onset of damage. As a result, the

process is unable to achieve the desired healing response over a period of

time. Handling of uncertainty/disturbance is also poor.

3. The location of healing mechanisms determine the effectiveness of healing.

This means that maximum healing is not guaranteed at the fault location.
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Figure 1.3: Typical self-healing process of a composite material.

4. There is no monitoring of the current healing state. For example, the

healing state is unknown during the healing process and the only indication

is when the healing agent has stopped flowing into the damaged zone

(due to restriction in the flow healing agent).

The work presented in this thesis will address these inherent problems by

focussing on the following research questions:

1. Can the rate of healing be controlled by using an active healing system?

2. Can a self-healing system be developed that can pre-empt failure and

deliver healing such that the failure is prevented from onset?

The current self-healing approaches can certainly lead to further advances and

target the problems outline. However, an alternative is the need to integrate

sensing, actuation, computation and communication into materials (McEvoy
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and Correll, 2015). This is a multidisciplinary approach to self-healing that

will certainly enhance performance and help self-healing to progress to a level

that is commercially useful.

The research questions will be addressed by extending an existing self-

healing approach into an active healing and integrated sensing system as shown

in Figure 1.4. This essentially allows the self-healing mechanism to be measured,

modelled and controlled. By considering the self-healing mechanism as a system

in a closed loop, the healing rate can be controlled to meet user or environmental

demands, such as the damage rate. This arrangement is referred to in this

thesis as active self-healing. Active control is a process through which external

energy is applied to a process to achieve a desired response. Regulating the

healing rate involves controlling factors that can affect the reaction kinetics

of a healing process. Factors such as the speed of delivery/mass flow rate (Ye

et al., 2014), release mechanism, temperature, catalyst, pressure, concentration

and pH level of a self-healing system. For example, feedback control could be

applied to a vascular network to control the pressure release and flow rate of

healing agent from an external reservoir. The behaviour of the release and

flow of healing agent in such a system has previously been modelled (Hall

et al., 2015). In self-healing of a cementitious composite, the pH level has been

determined to affect the release rate of healing agents enclosed in microcapsules

(Dong et al., 2015) and can be controlled to give a desired response with respect

to the effect of damage. The intrinsic self-healing based on piezoelectricity and

electrolysis can be controlled with the aim of maintaining a sufficient chemical

kinetic.

In addition, the active self-healing can benefit from additional components

such as sensors for fault diagnosis. A fault diagnosis system helps to locate

the damage and to define a desired response by taking advantage of sensor

measurements to estimate a measure of the damage rate. Importantly, the

feedback control can regulate the healing process to match the estimated

measure of the damage rate. The advantages of this complete closed loop
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Figure 1.4: Proposed generic unified sensing, diagnosis and active
self-healing System.

system are that it allows for pre-emptive healing, regulation of the healing

process and a proper match between the damage and healing rate. This means

that a desired response can then be achieved regardless of any disturbance or

uncertainty that may affect the performance of the healing process. Active
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self-healing addresses some of the shortfalls of a typical self-healing process,

can guarantee a high degree of reliability and has the potential to improve the

level of confidence in accepting self-healing materials for everyday use.

This research will draw on the above self-healing literature to select a self-

healing mechanism. Subsequently, the self-healing mechanism will be modelled

based on what is obtained in literature (Feenstra et al., 2008; Lee et al., 2014;

Shen et al., 2011). The proposed active self-healing is addressed as a control

problem and different control strategies such as proportional-integral (PI),

adaptive inverse control and adaptive sliding mode control will be considered

from literature (Recker et al., 1991; Wang et al., 2004). Analysis of a cracked

beam will be detailed from literature to formulate a diagnosis technique (Dawari

and Vesmawala, 2013; Loutridis et al., 2004; Vakil-Baghmisheh and Peimani,

2008). The beam represents typical engineering systems such as bridges, turbine

blades,airliner wings, cranes, building elements, etc. Finally, the fault diagnosis

will be integrated with the active self-healing to demonstrate the proposed

unified sensing, diagnosis and active self-healing system from an application

point of view. For readability of the thesis, the description and background

research is developed and detailed in the appropriate chapters.

1.5 Novel Contribution

The work presented in this thesis is as follows:

• A mathematical model is developed to describe an experimented self-

healing process, and shows through simulations how some of the drawbacks

of passive self-healing lead to a poor match between the damage and

healing rate.

• A closed loop self-healing system (referred as active self-healing) is de-

signed and validated in simulation to regulate the healing rate to meet

user or environmental demands, such as the need to match the damage

rate. This work and the first contribution have been published in Journal
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of Smart Materials and Structures (Kuponu et al., 2016) and presented

in an International Conference of Smart and Multifunctional Materials,

Structures and Systems (Kuponu et al., 2017a).

• A new fault diagnosis algorithm is developed to estimate the crack depth

and location of two faulty beam types, that is, cantilever and fixed beam.

• A unified sensing, diagnosis and active self-healing system is developed

and validated in simulation to effectively show that self healing can be

more robust and potentially attractive to industrial applications. This

work has been submitted for publication in the Journal of Intelligent

Material Systems and Structures.

1.6 Publications

The work presented in this thesis has been published and submitted for publi-

cation in part in two journals and a conference paper.

• Kuponu, O.S., Kadirkamanathan, V., Bhattacharya, B. and Pope, S.A.,

2016. Using feedback control to actively regulate the healing rate of a self-

healing process subjected to low cycle dynamic stress. Smart Materials

and Structures, 25(5), p.055028 (Kuponu et al., 2016).

The journal paper incorporates elements from Chapter 2 and Chapter 3

• Kuponu, O.S., Kadirkamanathan, V., Bhattacharya, B. and Pope, S.A.,

2017. Integrating self-healing, control and fault diagnosis. Journal of

Intelligent Material Systems and Structures (Kuponu et al., 2017b). (Sub-

mitted)

The journal paper incorporates elements from Chapter 2 to Chapter 5.

• Kuponu, O.S., Kadirkamanathan, V., Bhattacharya, B. and Pope, S.A.,

2017. Integrated sensing, monitoring and healing of composite systems.
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In Advances in Science and Technology (Vol. 101, pp. 62-68). Trans

Tech Publications (Kuponu et al., 2017a).

This was presented at the 5th International Conference of Smart and

Multifunctional Materials, Structures and Systems, CIMTEC 2016, Italy.

The Conference paper incorporates elements from Chapter 2 and Chap-

ter 3.

1.7 Thesis overview

The remainder of this thesis is structured as follows:

In Chapter 2, a previously experimented self-healing process that is based

on piezoelectricity and electrolysis will be described and a novel mathematical

model will also be presented to describe the self-healing process. The model

parameter will be estimated from the experimental set-up of the electrolysis

of copper (II) sulphate. It will also be shown through simulations how the

identified drawbacks in Chapter 1 limits the performance of a self-healing

process.

In Chapter 3, a novel active self-healing system will be presented. The arrange-

ment takes advantage of sensing and feedback control to regulate the healing

rate to meet user or environmental demands, such as the need to match the

damage rate. This will include mathematical formulations of adaptive sliding

mode controller for two self-healing systems. Simulation results showing the

effectiveness of the closed loop self-healing system to matching the damage rates

will be demonstrated. More so, the effect of uncertainties and disturbances will

be investigated to show the effectiveness of the novel active self-healing system.

A comparison with the equivalent passive self-healing process will be shown.

In Chapter 4, a novel crack detection and diagnosis that can be applied to differ-
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ent types of beams will be formulated. It will then be shown through simulations

the effectiveness of the proposed diagnosis. Importantly, a sensitivity analysis

will be investigated to show the effect of uncertainties on the proposed technique.

In Chapter 5, a novel unified sensing, diagnosis and active self-healing system

framework will be presented. It will also be shown that faults can be pre-

dicted and healing can be monitored and maximized at the needed location.

Simulation results will be provided to show the effectiveness of the proposed

framework to regulating the healing process and matching the damage rate. A

comparison with an equivalent passive self-healing process will be demonstrated.

Finally, Chapter 6 will present concluding remarks on the work in this thesis.

Recommendations on future research directions will also be presented.



Chapter 2

Self-healing Model

2.1 Introduction

Most of the available self-healing works are experimental and lack mathematical

models. As such, this chapter presents a novel mathematical model describing a

self-healing mechanism. A mathematical model generally allows the underlying

dynamics of a system to be understood and creates a platform to improve on

existing applications. Based on the review from Chapter 1, the mathematical

model represents a composite material whose self-healing mechanism is based

on piezoelectricity and electrolysis; that is, a solid state electrolysis driven by

stress induced current from piezoelectric element. This is selected because

electromechanical polymers can inherently be used for sensing and actuating;

also the scarcity of literature in electromechanical polymers for self-healing

indicates an emerging technology (Zhong and Post, 2015).

A key attribute of the developed mathematical model in this chapter, as well

as throughout the research, is to show some of the drawbacks of a typical self-

healing material. The majority of self-healing materials are passive, unregulated

and may not effectively counteract the onset of damage. Disturbances and

uncertainties are also not accounted for during self-healing. This generally

affects the performance of self-healing and the match between the damage and

healing rate may not be guaranteed.
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The aims of this chapter are:

• Develop a mathematical model representing a self-healing mechanism

based of piezoelectricity and electrolysis.

• Highlight the drawbacks of a typical passive self-healing process using

the modelled healing mechanism.

• Present simulation examples of a composite self-healing material whose

healing mechanism is piezoelectricity and electrolysis.

In the following (Kuponu et al., 2016, 2017a,b), a theoretical framework

of the self-healing mechanism is presented in Section 2.2. In Subsection 2.2.1,

a mathematical model for a piezoelectric system and simulation example are

presented. Subsection 2.2.2 introduces a mathematical model of the electrolysis

process and highlights the inherent dead-zone non-linearity that can limit

the performance of the healing process. A linear approximation of the piezo-

electrolytic self-healing model is presented in Section 2.3. This is followed by

an electrolysis experiment to estimate the model parameters in Section 2.4. Ex-

ample simulations and a discussion of the self-healing mechanism are presented

in Section 2.5. A summary is given in Section 2.6.

2.2 Self-healing Mechanism Model

Experiments have previously been carried out to show the potential of using

an electromechanical material for self-healing (Sayayr et al., 2014; Soroushian

et al., 2012). In an effort to benefit from the sensing and actuation capabilities

of electromechanical materials, Sayayr et al. (2014) combined alternative layers

of carbon fibre reinforcement and poly vinylidene fluoride-co-hexafluropropylene

(PVDF-HFP) solid electrolyte to form composite laminates. The laminates

were held together by bolts, which act as electrodes. The PVDF-HFP solid

electrolyte material was prepared from a mixture of PVDF-HFP, zinc oxide and

copper nanoparticles. Investigations were conducted to assess the ability of the
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newly formed composite material to self-heal. The principle behind the healing

process is depicted in Figure 2.1 and Figure 2.2. A sustained stress applied

Figure 2.1: Open-loop representation of the healing mechanism of
a self-healing material. The electrolytic process is driven by the voltage
generated from the direct piezoelectric effect of the electromechanical material.

Figure 2.2: A diagram of the self-healing steps

on the electrode resulted in the deposition of copper nanoparticles around the

electrodes. This is due to the direct piezoelectric effect phenomenon of the elec-

tromechanical material that converts mechanical energy into electrical energy.

Voltage measurements around the vicinity of the electrode where the stress was

applied validated the direct piezoelectric effect. The generated voltage is used

to actuate the electrolysis process that deposits copper nanoparticles. The find-

ings effectively demonstrate a self-healing process, with the deposited copper

nanoparticles as the healing agent. Also confirmed was a negligible deposition

of zinc in neighbouring areas. A similar experiment by Soroushian et al. (2012)

demonstrated a self-healing process based on piezoelectricity and electrolysis.

The stressed area of the carbon fibre PVDF-HFP solid electrolyte material

effectively became the cathode and mass deposition of copper nanoparticles
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was evident within the area. Like Sayayr et al., a mechanical test measuring

the hardness of the material was carried out near and away from the deposition

area. The result showed increased material strength in the area where copper

nanoparticles was deposited. The self-healing process is however limited by the

dependency on the sustained stress and piezo-induced voltage. Hence, mass

deposition is only possible when the piezo-induced voltage is greater than the

inherent over-potentials of electrolysis.

As this open loop self-healing process is directly driven by a voltage, it is

particularly suitable to be developed into an active self-healing process that is

regulated by some form of digital feedback control and additional actuation is

not needed like the vascular system that is connected to an external pump. To

begin, the principle of operation behind the self-healing process is modelled

by two subsystems. The piezoelectric subsystem models the electromechanical

property of the material in Subsection 2.2.1, and the deposition of healing agent

is modelled through the electrolysis subsystem in Subsection 2.2.2.

2.2.1 Electromechanical Model of the Piezoelectric Sub-

system

Piezoelectric materials can be used in two ways. The direct piezoelectric effect

converts mechanical energy into electrical energy while the converse effect is the

reverse of this. In this research, the direct piezoelectric effect is used. Figure 2.3

shows a piezoelectric stack consisting of z layers of piezoelectric patch material

connected in parallel. The stack is used to enhance charge generation when

compared to a bulk piezoelectric. The constitutive relations in the transverse

direction of a piezoelectric stack are shown in Equations (2.1) - (2.2). These

couple the mechanical and electrical response of a stacked piezoelectric material

(Corr and Clark, 2002; Feenstra et al., 2008; Hou et al., 2012; Lee et al., 2014;

Liu and O’Connor, 2014; Satkoski, 2011).

D3(t) = d33T3(t) + ϵT
33E3(t) (2.1)
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Figure 2.3: Stacked piezoelectric material consisting of z layers of
piezoelectric patch.

S3(t) = sE
33T3(t) + d33E3(t) (2.2)

Mechanical energy applied to a piezoelectric material induces an electric field

E3 in the material. The direct piezoelectric effect defined in Equation (2.1)

describes the resulting electrical characteristics and their relation to an applied

mechanical stress. Similarly, Equation (2.2) is the piezoelectric converse effect

which defines the mechanical characteristics and their relation to an applied

electric field. S3 and D3 are the strain and electric displacement respectively,

sE
33 and ϵT

33 are the compliance constant and dielectric permittivity respectively,

d33 represents the piezoelectric coupling coefficient, T3 is the stress. The

relationships between the voltage Vp across each piezoelectric layer, the total

charge Qp generated from electric displacement and other parameters are given

in Equation (2.3) (Feenstra et al., 2008).

Vp = hpE3; Qp = zD3Ap; S3(t) = x(t)
Lp

; sE
33 = 1

Ep

; T3(t) = f

Ap

(2.3)

where f is the stack actuator force, Ep defines the Young’s modulus, Ap

is the cross-sectional area of the piezoelectric material, x(t) represents the

relative stack displacement, z is the number of piezoelectric layers, hp is the

thickness of a piezoelectric patch and Lp is the total height of the stack given

as Lp = zhp. Substituting Equation (2.3) into Equations (2.1) - (2.2) results
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in Equations (2.4) - (2.5):

Qp(t) = d33zfs(t) + zϵT
33Ap

hp

Vp(t) (2.4)

x(t) = Lp

EpAp

f(t) + d33zVp(t) (2.5)

The total capacitance, stiffness and applied force of the piezoelectric stack

are given as Cp = zϵT
33Ap

hp
, kp = EpAp

Lp
and f(t) respectively (Feenstra et al.,

2008). Equations (2.4) - (2.5) are rewritten to emphasize the direct rela-

tionship between the applied force and charge by reversing their polarities in

Equations (2.6) - (2.7).

−Qp(t) = d33zkpx(t) + CpVp(t) (2.6)

x(t) = − 1
kp

f(t) + d33zVp(t) (2.7)

On differentiation and substitution for Q̇p(t) = Vp

Rp
(where Rp is the total

resistance of the stack), Equation (2.6) becomes Equation (2.8).

V̇p(t) = − 1
RpCp

Vp(t) − d33zkp

Cp

ẋ(t) (2.8)

Equation (2.7) represents the mechanical model coupled with electrical signal

for a massless system. Taking into account the mass of the piezoelectric stack

Mp which is not negligible, the sum of the forces acting on the piezoelectric stack

is equal to the inertial force due to the mass. This assumes a simple lumped

mass single degree of freedom (SDOF) model and Equation (2.7) becomes

Equation (2.9), which leads to Equation (2.10) for the acceleration.

Mpẍ(t) = −kpx(t) + d33zkpVp(t) − f(t) (2.9)

ẍ(t) = − 1
Mp

kpx(t) − d33zkpVp(t) + f(t)
 (2.10)
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Equations (2.11) - (2.12) give the state-space representation of Equation (2.8)

and Equation (2.10).


ẍ

ẋ

V̇p

 =


0 − kp

Mp

d33zkp

Mp

1 0 0

−d33zkp

Cp
0 − 1

RpCp




ẋ

x

Vp

+


− 1

Mp

0

0

 f(t) (2.11)

y =
[

0 0 1
]

ẋ

x

Vp

 (2.12)

Figure 2.4 shows the frequency response between force and voltage of a typical

piezoelectric stack whose parameters are found in Table 2.1 (Feenstra et al.,

2008). The frequency response curves give a measure of the input to output
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Figure 2.4: Frequency response between the applied force and the
generated voltage.

relationship. This informs the operating frequency of any system application.
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Table 2.1: Mechanical properties of a piezoelectric stack (Feenstra
et al., 2008).

Parameters Values

Cross sectional area Ap 25 mm2

Number of layers z 130
Length Lp 16 mm
Mass Mp 2.3 g
Coupling coefficient d33 650 pC/N
Dielectric permittivity ϵT

33 6200 pF/m
Capacitance Cp 1.59 µF
Resistance Rp 9.72 KΩ
Young’s Modulus Ep 44 GPa

For example, the flat regions of the spectrum are usually suitable for systems

that require little or no change in magnitude over a frequency range. In

this case, piezoelectric stack will be operating in a flat frequency range of

100 − 2000 rad/sec, with a gain of 38.2 mV/N . This means that a sinusoidal

load of amplitude 0.2 N applied to the piezoelectric stack at a frequency of

138 rad/sec would generate an output of amplitude 7.64 mV .

2.2.2 Model of Electrolysis Subsystem

A setup for electrolysis in Figure 2.5 requires electricity, electrodes (anode and

cathode) and electrolyte. The electrolytic process is triggered by applying a

direct current (DC) voltage to the circuit. This causes ionic movements of

positive ions toward the negative electrode (cathode) and the negative ions

toward the positive electrode (anode), to form atoms. Ionic movement is

achieved when the voltage applied is at least equal to the barriers which are,

the sum of the reversible potential Erev, over-potential at cathode ηc and anode

ηa and ohmic resistance ηohmic. This is expressed in Equations (2.13) - (2.17)

(García-Valverde et al., 2012; Manage and Sorensen, 2014; Shen et al., 2011):

Vmin = Erev + ηa + ηc + ηohmic (2.13)
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Figure 2.5: Movement of positive ions (green crosses) and negative
ions (red dashes) towards the negative electrode (cathode) and pos-
itive electrode (anode) respectively, during an electrolytic process.

ηa = RT

F
ln
(

j

j(j,a)

)
(2.14)

ηc = RT

F
ln
(

j

j(o,c)

)
(2.15)

ηohmic = iRohmic (2.16)

Rohmic = tm
σm

(2.17)

with R representing the gas constant and T representing the absolute tem-

perature. The term i is the current flow, j is the current density while F is

the Faraday constant; j(o,a) and j(o,c) are the exchange current density at the

electrodes respectively. Rohmic, tm, σm are the membrane resistance, thickness

and conductivity respectively. The rate of deposition of ions at both electrodes

during electrolysis can be expressed as Equation (2.18) (García-Valverde et al.,

2012; Manage and Sorensen, 2014; Shen et al., 2011):

η̇rate = n
cell
i

neF
η

f
(2.18)

where n
cell

and ne are the number of cells and number of electron consumed

at the electrodes to produce a mole of atom respectively. η
f

is the Faraday

efficiency assumed to be greater than 99% for a polymer electrolyte membrane

(PEM) (García-Valverde et al., 2012; Ghribi et al., 2013).
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In this model, emphasis is on the current flowing through an electrolytic

process. This current is proportional to the deposition rate (Equation (2.18))

and can easily be measured during experiment. Applied voltage causes current

to flow through the circuit in Figure 2.5, and also results in ionic transportation

towards the electrodes. The relationship between the applied voltage and

current flowing during electrolysis that was modelled by Shen et al. (2011) is

adopted in this research. This has been selected because of its simplicity in

understanding the voltage-current relationship and to capture the dead-zone

non-linearity associated with electrolysis. If the ohmic resistance ηohmic, over-

potential at cathode ηc and anode ηa are coupled together to form ir, then

Equation (2.13) is rewritten as Equation (2.19).

Vmin = Erev + ir (2.19)

Given the applied voltage V , the power used during electrolysis becomes

Equation (2.20) (Shen et al., 2011).

P ∝ (V − Erev − ir)2 (2.20)

P = K(V − Erev − ir)2 (2.21)

Considering the power loss i2r due to the internal resistance of the material,

Equation (2.21) becomes Equation (2.22) (Shen et al., 2011).

iV − i2r = K(V − Erev − ir)2 (2.22)

i =
V + 2Kr(V − Erev) −

√
V 2 + 4KrErev(V − Erev)

2r(1 +Kr) (2.23)

Equation (2.23) gives a mathematical representation of the relationship between

the voltage applied and the actual current flowing during electrolysis. The

red line in Figure 2.6 illustrates the voltage-current relationship for a small

cell when Erev = 0.6 V , K = 1.83 Ω−1 and r = 0.95 Ω (Shen et al., 2004). A
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Figure 2.6: Relationship between applied voltage and current flowing
through the electrolysis process. This mimics a dead-zone non-linearity
behaviour when V (t) ≤ Erev.

voltage range of 0 to 10v is applied to drive the electrolytic circuit and it can be

seen that current begins to flow only after 0.6 V. The voltage must be sufficient

to generate enough current flow to initiate ionic transportation. This means

that the electrolysis process is insensitive at voltages less than or equal to Erev.

As a result, the circuit’s behaviour is that of a dead-zone non-linearity when

the voltage applied is less than or equal to Erev. Based on this behaviour, the

process can operate at any time within the two regions defined in Figure 2.6,

namely: region A: dead-zone region (V (t) ≤ Erev) and region B: current flow

region (V (t) > Erev).
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2.3 First Order Linear Approximation and Model

Parameter Estimation Using Least Squares

Method

Using a first order linear approximation about two operating points, the current

(Equation (2.23)) flowing through the electrolysis process becomes a piecewise

function written as:

î(t) =


mV (t) −mÊrev for V (t) > Êrev

0 for V (t) ≤ Êrev

(2.24)

where î is the estimate of current i, m is a positive slope and Êrev is the

estimate of Erev. Figure 2.7a shows the comparison between the first order

linear approximation (in blue line) and the actual model (in red line) of the

relationship between the voltage applied and the current flow during electrolysis.

The residuals (see blue line of Figure 2.7b) and the mean absolute error (MAE)

of 0.12 indicate that the model in Equation (2.24) is a good approximation of

the model in Equation (2.23) within the considered voltage range in Figure 2.7.

The approximate model also mimics the dead-zone non-linearity behaviour of

the actual model.

Experimental data can be fitted to the piecewise linear model by estimating

the unknown parameters m and Êrev using the least square method. For N

measurements and unknown coefficients no, Equation (2.24) can be rewritten

in a matrix form as Equation (2.25):

î(t) =
[
V (t) 1

]  m

−mÊrev

 (2.25)

Io = χϑ (2.26)
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Figure 2.7: Approximate model of the non-linear relationship be-
tween applied voltage and current flowing through the electrolysis
process. The approximate model also mimics the dead-zone non-linearity
behaviour of the actual model.

where Io contains N number of current samples generated from a monotonically

increasing voltage (i.e. Io has a dimension of N × 1), χ is N × no and ϑ is

no × 1. The least squares is obtained by minimising the sum of the square of

the model error ξ in Equation (2.27). As a result, the unknown parameters are

estimated as Equation (2.28).

ξ = 1
N

(
Io − χϑ

)T(
Io − χϑ

)

= 1
N

(
IT

o Io − IT
o χϑ− ϑTχT Io + ϑTχTχϑ

) (2.27)

ϑ = (χTχ)−1(χT Io) (2.28)

Figure 2.7a also shows the relationship between the voltage applied and the

current flow during electrolysis using the parameters estimated from the least
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square method. The residuals (see red line of Figure 2.7b) and the mean

absolute error (MAE) of 0.02 also confirm that model in Equation (2.24) is

a good estimator of the model in Equation (2.23). Equation (2.24) can be

expressed in the manner of Equation (2.29).

î(t) = mV (t) + ∆I(t) (2.29)

∆I(t) =


−mÊrev for V (t) > Êrev

−mV (t) for V (t) ≤ Êrev

(2.30)

In self-healing mode, the piezo-induced voltage Vp generated causes ionic

transportation of copper nanoparticles to the crack area. More so, this particular

self-healing process suffers additional inherent problem. Ionic transportation

only occurs when the generated piezo-induced voltage is sufficient to overcome

inherent barriers in electrolysis. While the system is operating in the dead-zone

region (Vp(t) ≤ Êrev), the self-healing process experiences a definite mismatch

between the damage and healing rate. In practice, composite materials are

subjected to varying stress levels and are often harmonic signals. Therefore,

they may not generate sufficient voltage to consistently initiate the self-healing

process. Insufficient piezo-induced voltage implies that the process becomes

insensitive to the input and generates no current. This inevitably affects the

self-healing performance. Since î(t) = Q̇a(t), the system is formulated in terms

of Q̇a(t) for the purpose of designing the controller in the next chapter. Also,

the piezo-induced voltage is represented as Vp. Hence, Equation (2.29) is

rewritten as Equation (2.31).

Q̇a(t) = mVp(t) + ∆I(t) (2.31)

The piezo-induced voltage Vp generated by the applied force is periodic and

does not effectively drive the electrolysis process because the process is more

effective when driven by DC voltage. Therefore, it is essential to model the

direct voltage requirement of the electrolysis process. A secondary circuit that
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Figure 2.8: Equivalent circuit diagram of the healing mechanism of
a self-healing material. This consist of the source representing the generated
voltage from the applied force, rectifier circuit that converts the alternating
current (AC) voltage to direct current (DC) voltage and the electrolysis process
represented as load.

converts the periodic alternative current (AC) signal to a DC signal is added

to the self-healing process and referred to as the rectifier circuit. In practice,

this addition would not be possible since the piezoelectric and electrolyte are

mixed in the polymer. However, the rectifier circuit has been included for

completeness of the electrolysis demands. The equivalent circuit diagram of the

self-healing mechanism for the chosen self-healing material is given in Figure 2.8.

Figure 2.9 shows the effect of the rectifier circuit. The AC signal is converted

into a pulsating DC signal (see blue line of Figure 2.9), that could potentially

damage the load. A capacitor C1 is added to smoothen the rectified pulsating

signal, the output is the black line of Figure 2.9. Equation (2.31) is re-expressed

as Equation (2.32) to account for the rectified piezo-induced voltage Vpr .

Q̇a(t) = mVpr + ∆I(t) (2.32)
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Figure 2.9: Conversion of AC voltage to DC voltage. The generated
DC voltage shown as blue line is pulsating and could potentially damage the
load. A capacitor is added to smoothing the pulsating DC voltage. This is
shown as the black line.

2.4 Experimental Setup

The objective of the electrolysis experiment is to acquire data and use the data

to estimate the model parameters of Equation (2.32) using the least squares

method. The components used in the acquisition of data are as follows:

1. Personal computer

2. National Instrument data acquisition (NI-DAQ)

3. Power supply and voltage regulator

4. Current transducer

5. Amplifier

6. Electrolyser

Figure 2.10 shows the set-up of the components. A computer based Lab-

VIEW application interacts with the NI-DAQ and facilitates the acquisition

of data from the electrolysis process. The NI-DAQ consists of NI-9201 DAQ

analog input voltage (±10 V ) module and NI-9263 DAQ analog output voltage
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Figure 2.10: Data acquisition set-up for an electrolytic process. (a)
The experimental set-up (b) A block diagram of the experimental process and
data acquisition.

(±10 V ) module. A voltage command from the LabVIEW is sent through the

NI-9201 DAQ to initiate a regulated DC power supply to the electrolyser. Since

the NI-9201 DAQ analog input voltage is ±10 V , an amplifier of gain equals

2 is used to increase voltage levels. The NI-9263 DAQ is used to acquire the

current readings measured by the transducer during the electrolysis process.

The electrolyser consists of a beaker, two copper electrodes of dimensions

15 mm by 165 mm placed 47 mm apart and a 600 ml solution containing 25 g

of copper (II) sulphate. This solution has been chosen because the healing agent

of interest is copper nanoparticles (same as the one used in the experiment

by Sayayr et al. (2014) and Soroushian et al. (2012)). In this arrangement,

the actuation command from the labVIEW was scaled down by a factor of 2
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Figure 2.11: Model fitting of the acquired experimental data. (a)
The voltage used to drive the electrolysis of aqueous copper (II) sulphate. (b)
The current flowing during electrolysis and the model fitting using least squares
method (c) The residual between the experimental data and the theoretical
model

such that voltage flowing through the electrolysis is as desired (i.e. the voltage

is doubled due to the amplification). Experimental data were acquired for

about 47 minutes as shown in Figure 2.11. The measured actuation voltage

in Figure 2.11a results in a current flow shown as black line in Figure 2.11b.

The outcome of the data fitting using least squares to estimate the unknown

parameters of Equation (2.32) is shown in red dashed line of Figure 2.11b. The

unknown parameters were estimated as Êrev = 0.1291 mV and m = 0.1291.

The performance of the model fitting can be evaluated using the residual (see

Figure 2.11c) between the experimental data and the theoretical model and

the mean absolute error of 0.01. These values indicate that the physical model

can be approximated by the theoretical model (Equation (2.32)).



2.5 Open Loop Example Simulations 37

2.5 Open Loop Example Simulations

The example simulations demonstrate a composite material with the modelled

healing mechanism and copper nanoparticles as the healing agent. This is

the same healing agent used by Soroushian et al. (2012) and Sayayr et al.

(2014) during their experiments. The model parameters m = 0.1291 and

Êrev = 9.3 mV used in these simulations were estimated from the experiment

carried out in Section 2.4.

Consider a composite material subjected to a concentrated stress level

equivalent to 0.2 N at a frequency of 138 rad/sec. This is simulated as a

sinusoidal input force to illustrate materials subjected to constant conditions.

A piezo-induced voltage of 7.34 mV is generated by the direct piezoelectric effect

and rectified to give smooth DC piezo-induced voltage Vpr shown in Figure 2.12a.

However, the 7.64 mV generated by the applied 0.2 N is not sufficient to cause
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Figure 2.12: The applied 0.2 N force generates a voltage less than
Êrev. Insufficient piezo-induced voltage implies that the process becomes
insensitive to the input and generates no current. The self-healing system
operates in the dead-zone region and no healing is achieved.
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Êrev = 9.3mV

0

0.1

0.2

0.3

0.4

C
u
rr
en
t
(m

A
)

Current Q̇a

(a)

(c)

(b)

Figure 2.13: The applied 0.3 N force generates a voltage greater than
Êrev. The self-healing process now operates in the current flow region. As
a result, ionic movement is triggered by the current flow leading to a mass
deposition of copper nanoparticles. The process demonstrates a composite
material exposed to constant environmental condition.

a self-healing process. The smooth DC piezo-induced voltage Vpr = 7.34 mV

shown as black line in Figure 2.12a is less than the estimated reversible potential

Êrev = 9.3 mV shown in red line of Figure 2.12a. Insufficient piezo-induced

voltage implies that the process becomes insensitive to the input and generates

no current(Figure 2.12b) to establish the chemical kinetic needed to deposit the

healing agent (Figure 2.12c). The process operates in the dead-zone region and

inevitably affects the self-healing performance. This highlights the inherent

dead-zone drawback of the healing mechanism. A piezo-induced voltage of

11.46 mV is generated when a concentrated stress level equivalent to 0.3 N

is applied. This voltage is sufficient to trigger the self-healing process since

Vpr > Êrev (see Figure 2.13a). The self-healing process now operates in the

current flow region. As a result, ionic movement is triggered by the current flow

shown in Figure 2.13b and this leads to the deposition of copper nanoparticles
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(see Figure 2.13c). The result suggests that the stress level applied must be

sufficient to initiate the self-healing process. An alternative arrangement is

the amplification of the piezo-induced voltage to drive the electrolysis process.

The piezoelectric and electrolytic components of the self-healing material are

considered as separate elements, while the addition of amplification leads the

system to operate more in an open-loop as opposed to a passive self-healing

mode. For example, the piezo-induced voltage generated by a concentrated

stress level equivalent to 0.2 N is amplified by a gain of 1.5 to generate the

same effect as that of a concentrated stress level equivalent to 0.3 N . The same

ionic transportation is achieved as shown in Figure 2.14 but amplification does

not necessarily guarantee a desired response. The fundamental issue with
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Figure 2.14: For less severe conditions, the piezo-induced voltage can
be amplified to establishes the chemical kinetic needed to deposit
copper nanoparticles. For example, a stress level equivalent to 0.2 N
produces the same effect as a stress level equivalent to 0.3 N . Amplification
leads the system to operate more in an open-loop as opposed to a passive
self-healing mode.
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Figure 2.15: The effect of uncertainties in constant environmental
conditions. The piezo-induced voltage is greater than Êrev but the healing
process operates in the dead-zone region from about 0.15 s. As a result, there
is a drop in mass of copper nanoparticles deposited.

this arrangement is that the piezoelectric and electrolyte are mixed in the self-

healing material and can not be considered as separate elements. Nonetheless,

this analysis shows the effect of amplification from a conceptual point of view.

To illustrate the effect of uncertainty or disturbance, the term Ansin (t)

defines unknown disturbances, uncertainties or unmodeled dynamics of a self-

healing process (where An represents the amplitude of the disturbance). The

term has been chosen primarily for analysis and in accordance with what is

found in literature (Jasim, 2013; Wang et al., 2004). A mathematical model

for this self-healing process is expressed in Equation (2.33).

Q̇a(t) = m
(
Vpr − Ansin (t)

)
+ ∆I(t) (2.33)
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The term An is chosen as 10 mV to capture a system influenced by high

disturbance. The simulation result for a stress level equivalent to 0.3 N is

shown in Figure 2.15. The smooth DC piezo-induced voltage is greater than

Êrev but the healing process operates in the dead-zone region between 0.15 and

1 second and results in no self-healing. The performance of the self-healing

process is poor when compared with the results achieved in Figures 2.13 and 2.14.

This is the effect of uncertainties, disturbances or unmodeled dynamics of a self-

healing process. Importantly, a typical self-healing process and its equivalent

open loop arrangement are unreliable and poor in handling disturbances or

uncertainties since there are no feedback mechanism to ensure a desired healing

response.
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Figure 2.16: In varying environmental conditions, different piezo-
induced voltages are generated at different time instants. This could
result in a dead-zone region at any time; e.g. between 0 to 75 seconds, the piezo-
induced voltage is less than Êrev. During this period, there is no current flow
and mass deposition of copper nanoparticles. At other times, the self-healing
process operates in the current flow region.
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More often than not, materials are exposed to varying environmental condi-

tions. For example, in-flight aircraft experience turbulence, civil constructions

experience shock in form of vibration, etc. An example simulation is the

stress levels applied at different time instants at 138 rad/sec. The stresses are

equivalent to forces of 0.2 N , 0.3 N and 0.4 N . These generate smooth DC

piezo-induced voltages of 7.64 mV , 11.46 mV and 15.28 mV respectively shown

in black line of Figure 2.16a. Figure 2.16b shows the corresponding current flow

during self-healing. The simulation does not consider the effect of uncertainties

or disturbances. Between 0 and 75 seconds, no current flow was recorded; this

is a pointer to the insufficient voltage. Beyond 75 second, there is enough

current flow to cause the chemical kinetics needed to deposit the healing agent.

The copper nanoparticles deposited during this time is shown in Figure 2.16c.

Similarly, the effect of uncertainties or disturbances is shown in Figure 2.17.

This causes a fluctuation in the current flow and results in a deposition drop

of 73.43%, when compared with the disturbance free self-healing process in

Figure 2.16.

In general, the performance of the self-healing process is poor because the

composite material does not generate sufficient voltage to consistently initiate

the self-healing process. More so, the examples simulated in Figures 2.12 - 2.17

show that a typical self-healing process is an unregulated process. This is

because the healing process does not guarantee that the onset of damage is

stopped. The process is unable to achieve the desired healing response over a

period of time and handling of uncertainty/disturbance is also poor. Given the

time frame of this research, experimental validation of the simulations was not

carried out because the material needs to be prepared by specialist in material

science.
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Figure 2.17: The effect of uncertainties in varying environmental
conditions. (a) The piezo-induced voltages are generated at different time
instants. (b) In addition to the dead-zone effect between 0 to 75 seconds, the
effect of uncertainties results in fluctuation in current flow. (c) This causes a
drop in the mass of copper nanoparticles deposited.

2.6 Summary

The chapter provides the first (to my knowledge) mathematical description of a

self-healing mechanism of an electromechanical composite material. The model

parameters were estimated from the experimental set-up of the electrolysis

of copper (II) sulphate. Example simulations are provided to show some of

the drawbacks of passive self-healing and an open loop self-healing system.

A typical self-healing process is an unregulated passive system that may not

effectively counteract the onset of damage and does not account for uncertainty

or disturbance or non-linearities in a system. As a result, the match between

the damage and healing rate may not be guaranteed. This generally affects the

performance of self-healing. Also, in an open loop arrangement, amplification
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does not necessarily guarantee a desired response. As this is a feed-forward

with gain, the arrangement is unreliable and does not benefit from feedback

mechanism to ensure the match between the damage and healing rate. More so,

this set-up is only possible when the piezoelectric and electrolytic process are

considered as separate element and not mixed within the self-healing material.

Lastly, preparation of the self-healing material requires expertise in material

science and as a result, experiments were not performed.

In the next chapter the passive self-healing will be extended to a closed

loop self-healing system to regulate and establish a match between user or

environmental demands, such as the damage rate.



Chapter 3

Active Self-healing

3.1 Introduction

In the previous chapter, a mathematical model description of a self-healing

mechanism was formulated. This demonstrated some of the drawbacks of

passive self-healing. A typical passive self-healing process is unregulated and

does not take into account uncertainties and disturbances. In addition, the

designed self-healing model in this research is associated with a non-linear

dead-zone that makes the self-healing process insensitive to actuation when

the voltage is less than the potential barrier Erev. This could adversely affect

the performance of the healing process. More so, as the match between the

damage and healing rate is not guaranteed.

In this chapter, a novel closed loop self-healing system- referred in this

research as “active self-healing” is presented. The arrangement takes advantage

of sensing and feedback control to regulate the healing rate to meet user or

environmental demands, such as the need to match the damage rate. The

majority of the control related works on electrolysis are incorporated into one

form of power generation management scheme or the other (Pérez-Herranz

et al., 2010; Valenciaga and Evangelista, 2010; Zhou and Francois, 2009). The

control objective is to convert excess power generated from renewable sources

such as wind energy, solar panel, etc. into hydrogen through the electrolysis
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of water and maintain the flow rate of hydrogen from the electrolyser to the

hydrogen storage tank. The energy management set-up assumes sufficient

power supply either from an energy source or an external battery to drive the

electrolysis process and maintain the production of hydrogen. In cases of scarce

energy supply or low battery state, the electrolyser shuts down until there is

sufficient energy supply (Kauranen et al., 1993; Valenciaga and Evangelista,

2010). The set-up is such that the control strategy does not account for the

inherent dead-zone non-linearity of an electrolytic process.

In the context of control, the inherent non-linear dead-zone identified in

section 2.2.2 undermines the performance of this self-healing mechanism. For

these kinds of non-linear systems, conventional feedback control will not produce

close to optimal performance (Isermann et al., 1992; Slotine and Li, 1991).

As the conventional feedback controller will be designed with fixed gains, it

is unlikely to achieve the desired performance when faced with a change in

dynamics resulting from the dead-zone, thus making it unsuitable for this

application. A robust control design can be implemented but outside the

designed bounds, unaccounted variation can affect the performance of the

system. However, adaptive control has been implemented for this class of

system and results have shown that a desired response can be achieved (Harris

and Billings, 1985; Isermann et al., 1992; Krstic et al., 1995; Slotine and Li,

1991). An adaptive controller evolves by generating new control gains over

time so as to drive the mismatch between a desired response and the actual

system response to zero. As such, adaptive control is suitable for the active

self-healing system. The contributions of this chapter are:

• Develop an active self-healing system to regulate the healing process to

meet user or environmental demands such as the damage rate.

• Demonstrate through simulation the effectiveness of the active self-healing

system.

In the following (Kuponu et al., 2016, 2017a,b), the design architecture

of adaptive control is presented in Section 3.2. Mathematical sliding mode
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control formulations and integration with two passive self-healing models in a

closed loop arrangement are presented in Section 3.3. The section also includes

example simulations and a discussion of the closed loop self-healing systems.

A sensitivity analysis of the proposed active self-healing system is detailed in

Section 3.4. This is followed by a summary in Section 3.5.

3.2 Adaptive Control Architectures

Generally, there are two architectures of adaptive control implementation,

namely: model reference adaptive control (MRAC) and model identification

adaptive control (MIAC) (Harris and Billings, 1985; Isermann et al., 1992;

Krstic et al., 1995; Slotine and Li, 1991).

3.2.1 Model Reference Adaptive Control (MRAC)

The setup of MRAC in Figure 3.1 consists of a reference model, controller,

system and adaptation law. The reference model represents an ideal system

Figure 3.1: Architecture of a model reference adaptive control
(MRAC).

that meets requirements of a desirable system performance and/or stability.

The system in this context is a mathematical model that represents an actual

physical process that is being controlled. The optimal goal of the controller is to

match the actual system output y with the reference model yref ; that is, to drive
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the error signal (e = yref − y) to zero. It is achieved by solving an optimisation

problem that evaluates new gains for the controller, particularly for a time

varying input signal. The new gains become the output of the adaptation law.

Unlike conventional feedback controllers, the adaptive controller continually

changes the gains but it is essential to keep the system stable while doing so.

This is a challenge but techniques such as Lyapunov theory, passivity theory,

hyperstability, etc. are used to ensure that the system remains stable.

3.2.2 Model Identification Adaptive Control (MIAC)

MIAC is also known as the self-tuning controller and eliminates the need for a

reference model. Its architecture in Figure 3.2 consists of a controller, a system

and a system identification tool. The principle behind its operation centres on

Figure 3.2: Architecture of a model identification adaptive control
(MIAC).

acquiring the current state of the system through system identification. System

identification techniques such as recursive least square, Kalman filter, etc. can

be used to estimate the states of the system and based on the estimate, new

controller parameters can be evaluated by an adaptive estimator and applied

to the controller to achieve the desired system response.
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3.3 Adaptive Sliding Mode Control (SMC)

A typical passive self-healing process is unregulated and does not take into

account uncertainties and disturbances. In addition, the designed self-healing

model in this research is associated with a non-linear dead-zone that makes

the self-healing process insensitive to actuation when the voltage is less than

the potential barrier Erev. This could adversely affect the performance of

the healing process in matching the healing rate and the damage rate. Like

engineering systems, controlling such systems with non-linearities and their

associated uncertainties can be challenging. Particularly as model linearisation

about an operating point does not capture all the dynamics of a real system.

These generally affect the overall performance of the control system to opti-

mally achieve a desired response. Conventional feedback controllers such as

proportional-integral-derivative (PID), proportional-integral (PI), etc. can be

designed with a level of robustness to accommodate the system non-linerities,

uncertainties or disturbances and known system variations. As the conventional

feedback controller is designed with fixed gains, it is unlikely to achieve a

desired performance in applications with a high degree to uncertainties. For

illustration, consider a case where the proposed self-healing scheme is used in

airliner wings. Airliner wings are subjected to turbulence and varying environ-

ments as a result of unpredictable weather conditions. The performance of a

feedback controller implemented with the proposed self-healing will vary and

may not achieve a desired healing response because the controller is designed

with fixed gains. A successful implementation of self-healing on a wide variety

of systems that are deployed to different conditions means that self-healing

must achieve a desired healing performance when there are non-linearities or

unknown variations in the operating conditions. For these systems, adaptive

controllers such as adaptive inverse controller, sliding mode controller, etc. are

most suitable because the gains change over time to ensure a control action that

would result in a desired response (Recker et al., 1991; Wang et al., 2004). More

so, adaptive controllers can handle system non-linearities such as dead-zone,
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backlash, hysteresis, etc. uncertainties or disturbances. The adaptive inverse

controller is implemented by constructs an inverse non-linearity to cancel the

effect of the system’s nonlinearity (Recker et al., 1991). This scheme has been

applied on systems that exhibit non-linearities like hydraulic actuators, electric

servomotors, piezoelectric translators, etc. (Cho and Bai, 1998; Recker et al.,

1991; Tao and Kokotovic, 1995a,b; Zhou et al., 2006).

Initial accounts of SMC were recorded in the old Soviet Union and has

over the decades evolved in many applications (Draženović, 1969; Korovin

and Utkin, 1974; Utkin, 1977). This includes flight control (González et al.,

2014; Spurgeon and Davies, 1993; Tasaltin and Jafarov, 2000), robotic control

(Cui et al., 2017; Feng et al., 2002; Man Zhihong et al., 1994; Nekoukar and

Erfanian, 2011), electric drives (Barambones and Alkorta, 2011; Utkin, 1993;

Zhang Yan and Utkin, 2002; Zheng et al., 2015), etc. In particular, SMC has

been implemented to ensure tracking position of robotic manipulator system

with dead-zone (Corradini and Orlando, 2003; Han and Lee, 2013; Jasim and

Plapper, 2013). Similarly, dead-zone non-linearity has been compensated with

SMC in servo system to ensure an optimal performance (Bessa et al., 2010;

Chen et al., 2016; Liu et al., 2013b; Zhonghua et al., 2006). In addition to the

advantages of adaptive control, this research uses the adaptive sliding mode

control because of its fast response and good transient performance.

An adaptive sliding mode control can be designed to achieve a desired

system response by following these two steps (Bartolini et al., 2003; Pisano and

Usai, 2011; Spurgeon, 2008; Young et al., 1996):

1. Define a switching manifold known as sliding surface.

2. Design a discontinuous control action such that the system trajectory

lies within the sliding surface. with the adaptive gains evaluated using

Lyapunov stability theory.

3. Evaluate the controller gains using Lyapunov stability theory. This step

introduces the adaptive feature of SMC.
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Figure 3.3: An isolated electrolytic process used to demonstrate
how a non-linear self-healing process can be regulated by adaptive
feedback control.

3.3.1 Design I: Adaptive SMC Design Implementation

for Electrolytic Self-healing Process

Consider an isolated electrolytic self-healing process (see Figure 3.3) given

as Equation (3.1) with a non-linear function defined in Equation (3.2) and

described in Subsection 2.3. The terms Q̇a, U , m, Erev and t define the actual

current flow during electrolysis, control input, material parameter, reversible

potential barrier and time respectively.

Q̇a(t) = mU(t) + ∆I(t) (3.1)

∆I(t) =


−mErev for U(t) > Erev

−mU(t) for U(t) ≤ Erev

(3.2)

This represents a composite material whose healing mechanism is based on

electrolysis, that is, mass is deposited to provide healing. An adaptive sliding

mode controller is implemented based on steps (1 - 2) in Section 3.3 above.
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This is based on a previous mathematical formulation (Jasim, 2013; Slotine

and Li, 1991; Su and Stepanenko, 2000; Wang et al., 2004) and follows the

MRAC architecture described in Subsection 3.2.1, since the damage rate of a

composite material can be used as the reference model to give an insight on

the expected healing rate. The essence of implementing an adaptive sliding

mode controller is to handle the inherent dead-zone non-linearity identified as

a drawback to this self-healing mechanism in Chapter 2. The control objective

is for the actual current (Q̇a) during electrolysis to track a desired current Q̇d

for the self-healing process. The desired current Q̇d is in effect a function of the

desired healing rate of the process. As such, the following assumptions hold

during the design of the adaptive SMC:

Assumption 3.1. The material parameter m is unknown but bounded by

m ∈ [mmin mmax].

Assumption 3.2. The reversible potential barrierErev is unknown but bounded

by Erev ∈ [Erevmin Erevmax].

Assumption 3.3. The term ∆I(t) is unknown but bounded. That is, |∆I(t)| ≤

ρc and ρc = mmaxErevmax.

Assumption 3.4. The reference model Q̇d is known.

Step 1: Surface Design

The sliding surface (s = 0) is usually a linear combination of the tracking error

and its derivatives. In the design stage, a sliding surface is selected in place of

the tracking error. This is because the tracking error is automatically driven

to zero once the surface is zero. By ensuring that the system trajectories slide

and remain on the surface (s = 0) as shown in Figure 3.4, the tracking error

between the desired and actual response is zero. To begin, Equation (3.3)

defines a surface s = 0.

s(t) = λcQ̃(t) (3.3)



3.3 Adaptive Sliding Mode Control (SMC) 53

Figure 3.4: The Sliding surface s = 0. The system trajectory slides on
the surface as the controller ensures a match between the reference and actual
model.

The term λc is a strictly positive constant, Q̃(t) = Qa(t) − Qd(t) and the

derivative of Q̃(t) is the tracking error. This suggests that the surface (s = 0)

has a unique solution Q̃(t) = 0.

Step 2: Control Design

The control objective is for the actual current (Q̇a) during electrolysis to track

a desired current (Q̇d) during the self-healing process. This is achieved by

designing a control input U(t) such that the system trajectory slides to the

surface (s = 0) defined in Equation (3.3). That is, the control input U(t) must

satisfy the condition in Equation (3.4), where η is a positive constant. This is

referred to as the reaching condition and implies that for all system trajectories,

the squared distance to the surface is non-increasing.

1
2
d

dt
s2 ≤ −η|s| (3.4)

Given that the system trajectory begins at an arbitrary position s(0), the

trajectory reaches the surface s(treach) at a finite time treach in Equations (3.5) -

(3.6).

s(treach) − s(0) ≤ −η(treach − 0)

0 − s(0) ≤ −ηtreach

(3.5)
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treach ≤ |s(0)|
η

(3.6)

To keep ṡ = 0, Equation (3.7) suggests an approximate control input Û in

Equation (3.8).

ṡ(t) =λc
˙̃Q(t)

=λc

[
Q̇a(t) − Q̇d(t)

]
=λc

[
mU(t) + ∆I(t) − Q̇d(t)

] (3.7)

Û = 1
m

[
− ∆I(t) + Q̇d(t)

]
(3.8)

Since the sliding mode controller is a variable structure controller, Equation (3.8)

is rewritten in a discontinuous form, such that the controller switches while

ensuring that the system trajectories slide to the surface. The control input

becomes Equation (3.9) and satisfies the condition expressed in Equation (3.4).

U(t) = Û −Kds(t) − ηsgn(s(t)) (3.9)

In Equation (3.9), the terms 1/m and ∆I(t) are unknown but bounded as

stated in the design assumptions above. Let φ̂ be the estimate of φ , [1/m]

such that φ̃ = φ̂− φ and the term Kd be a positive constant.

In practice, a discontinuous control designed in Equation (3.9) can be

damaging. As the controller switches between both sides of the surface s = 0, a

phenomenon called chattering occurs (Utkin and Hoon Lee, 2006). This occurs

when unmodelled high frequency dynamics are excited, leading to undesirable

oscillation shown in Figure 3.5. Thus, a limit on the performance of the control

action to drive the actual current (Q̇a) during electrolysis to a desired current

(Q̇d) in self-healing mode. To eliminate this phenomenon, a boundary is created

around the surface. One of the ways to achieve this is by replacing the sign

function with a saturation or hyperbolic tangent function (Slotine and Li, 1991;

Song and Smith, 2000). This ensures a continuous control action to drive a
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Figure 3.5: Chattering resulting from unmodelled dynamics of the
system. This could potentially limit the performance of the sliding mode
controller and have adverse effect on the self-healing process.

desirable performance. As a result, a tuning error sϵ in Equation (3.10) replaces

the surface s(t) in Equation (3.3).

sϵ = s− ϵsat

(
s

ϵ

)
(3.10)

sat(z) =



1 for z ≤ 1

z for −1 < z < 1

−1 for z ≤ −1

(3.11)

The control law U(t) becomes Equation (3.12).

U(t) = −Kds(t) + φ̂Q̇d(t) − k∗sat

(
s

ϵ

)
(3.12)

The term k∗sat(s/ϵ) in Equation (3.12) introduces robustness to compensate

for the unknown ∆I(t) and k∗ ≥ ρc/mmin.

Step 3: Adaptive Gain Evaluation

The attractive feature of adaptive control is the ability to use the adaptive

mechanism to re-evaluate its gain when there is variation in system dynamics

or conditions. It is essential that the re-evaluated gain does not cause the

controller to drive the system to instability at all times. Approaches such as

Lyapunov stability theory, hyperstability, passive theory, etc. can be used to

re-evaluate a stable update gain (Slotine and Li, 1991). Lyapunov stability
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theory is selected to evaluate the adaptive gain as it is the most commonly

used. The stability is established by Theorem 3.1.

Theorem 3.1. Consider the non-linear self-healing system, the surface s(t),

the tuning error sϵ and the control law U(t) expressed in Equations (3.1),

(3.3), (3.10) and (3.12) respectively. If the adaptive law ˙̂
φ is selected as

Equation (3.13), then the control design guarantees that the system trajectory

will converge to the sliding mode. This means that the the tracking error

converges to zero over time.

˙̂
φ = −γλcQ̇d(t)sϵ (3.13)

Proof. Consider the Lyapunov function Equation (3.14).

W (t) = 1
2

(
1
m
s2

ϵ + 1
γ
φ̃2
)

(3.14)

The derivative of W over time is given by Equation (3.15).

Ẇ (t) = 1
m
sϵṡ+ 1

γ
φ̃

˙̂
φ (3.15)

Equation (3.7), Equation (3.12) and φ̃ = φ̂ − φ are substituted into Equa-

tion (3.15) to give Equation (3.16).

Ẇ (t) = − λcKdsϵs+ λcsϵ

(
φ̂Q̇d(t) − k∗sat

(
s

ϵ

))

+ λcsϵ

(
∆I(t)
m

− φQ̇d(t)
)

+ 1
γ

(
φ̂− φ

)
˙̂
φ

(3.16)

To eliminate the terms with φ and φ̂ in Equation (3.16), the adaptive law ˙̂
φ is

selected as Equation (3.17). This is substituted into Equation (3.16) to give

the expressions in Equations (3.18) - (3.19).

˙̂
φ = −γλcQ̇d(t)sϵ (3.17)
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Ẇ (t) = − λcKdsϵs+ λcsϵ

(
φ̂Q̇d(t) − k∗sat

(
s

ϵ

))

+ λcsϵ

(
∆I(t)
m

− φQ̇d(t)
)

+ 1
γ

(
φ̂− φ

)
(−γλcQ̇d(t)sϵ)

(3.18)

Ẇ (t) = −λcKdsϵs− λck
∗sϵsat

(
s

ϵ

)
+ ∆I(t)

m
λcsϵ (3.19)

Equation (3.10) is substituted into Equation (3.19) to give Equation (3.20).

Ẇ (t) = − λcKdsϵ

(
sϵ + ϵsat

(
s

ϵ

))
− λck

∗sϵsat

(
s

ϵ

)

+ ∆I(t)
m

λcsϵ

(3.20)

When |s| ≤ ϵ, |sϵ| = 0 and Equation (3.20) becomes zero (Equation (3.21)).

Ẇ (t) = 0 ∀|s| ≤ ϵ (3.21)

When |s| > ϵ, |sϵ| = sϵsat(s/ϵ). By also taking into account k∗ ≥ ρc/mmin,

Equation (3.20) is expressed to give Equations (3.22) - (3.24).

Ẇ (t) = −λcKds
2
ϵ − (Kdϵ+ k∗)λc|sϵ| + ∆I(t)

m
λcsϵ (3.22)

Ẇ (t) ≤ −λcKds
2
ϵ −Kdϵλc|sϵ| −

(
k∗ − ∆I(t)

m

)
λc|sϵ| (3.23)

Ẇ (t) ≤ −λcKds
2
ϵ ∀|s| > ϵ (3.24)

Remark. Equation (3.21) and Equation (3.24) indicate that the surface s(t),

tuning error sϵ and adaptive law φ̃ are globally bounded and the tracking error

converges to zero over time.
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3.3.2 Active Self-healing Example Simulation I

In this section, the effectiveness of active self-healing is illustrated by simulation.

The model parameters are the same with the ones used in Section 2.5. The

control parameters can be found in Table 3.1. These parameters are primarily

chosen with the aim of verifying the concept of active self-healing.

Table 3.1: Control parameters of the Active Self-healing System.
(Kuponu et al., 2016)

Parameter Value

K∗ 2.5
λc 5
Kd 50
γ 0.5
mmin 0.01
ϵ 0.01
η 0.06
Sample rate 0.005

In order to match the healing rate with the user or environmental demands

(e.g. damage rate), a reference model that the adaptive controller will effectively

track is needed. A varying reference model is selected to capture the damage

rate. This is because the damage rate of a composite material varies over

time. The varying reference is assumed to have a direct proportionality to the

damage rate; thus, representing the extent of the damage rate. For an actual

system, this is obtained through appropriate fault diagnosis and identification

techniques; this is addressed in Chapter 5. An isolated electrolytic process that

represents a self-healing composite material whose healing mechanism is based

on electrolysis is simulated to show the concept of active self-healing. The

adaptive SMC is tasked with ensuring that the current flowing during healing

tracks a reference model. This action may lead to the chattering phenomenon

described in Subsection 3.3.1. An example is shown in Figure 3.6. As a result,

the actual current flow (see blue dashed line of Figure 3.6a) does not track

the reference model shown in red line of Figure 3.6a. Also, the performance
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Figure 3.6: The chattering phenomenon is evident as the adaptive
SMC poorly matches the reference and actual current. The defined
reference and actual current represent the damage rate and healing rate respec-
tively.

of the controller as it switches between the surface (Figure 3.6c) leads to an

undesirable oscillation between 200s and 300s in Figure 3.6.

To avoid the chattering effect, a tuning error was used in place of the surface.

The adaptive sliding mode controller produces a voltage greater than Erev (see

blue dashed line and red line of Figure 3.7a), that is, the system does not

operate in the dead-zone region. This control action ensures that the actual

current flow during healing (shown in blue dashed line of Figure 3.7b) tracks the

changing reference model (red line of Figure 3.7b). Also, as the reference model

changes, the adaptive law adjusts in order to achieve the primary tracking

objective and avoids the chattering phenomenon. In terms of the self-healing

process, achieving a desired current flow means that sufficient mass deposition

of the healing agent is guaranteed and the healing rate is regulated to match

the damage rate. The match ensures that the mass of copper nanoparticles
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Figure 3.7: Adaptive SMC applied to a case where a disturbance free
electrolytic self-healing process is regulated by a feedback control
law. (a) The control effort of the adaptive SMC. (b) The actual current flow
during electrolysis matches a defined reference current flow. The reference and
actual current represent the damage rate and healing rate respectively. (c)
The equivalent mass deposited over time for the closed loop active self-healing
process.

deposited is controlled to effectively take up the void in the damage area. In

this case, the controlled mass deposited is shown in Figure 3.7c. The blue

line of Figure 3.8a shows the tracking performance of the adaptive SMC. The

controller ensures fast convergence and a good tracking performance. The

corresponding tuning error is shown in Figure 3.8b and compared with the

surface in Figure 3.8c. Unlike the surface, the magnitude of the tuning error

as the adaptive controller switches is restricted to a region ≤ |2.71 × 10−20|,

that is, the tuning error is more or less zero. Thus, preventing poor control

performance and undesirable oscillations.

In practice, the performance of a self-healing process is affected by un-

certainties, disturbances or unaccounted dynamics. The effectiveness of the
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Figure 3.8: The control performance of the active self-healing pro-
cess (a) Relative error defined as the difference between the actual and reference
current divided by the reference current. (b-c) The sliding surface and the
tuning error of the adaptive SMC.

adaptive SMC is investigated in the presence of these deterring factors. The

self-healing model is defined as Equation (2.33) in Section 2.5. Since the uncer-

tainties, disturbances or unaccounted dynamics are unknown, the additional

term Ansin t in Equation (2.33) was excluded in the control design. Figure 3.9

shows the performance of the adaptive SMC. The control action in Figure 3.9a

ensures that the actual current flow during healing (shown in blue dashed line of

Figure 3.9b) tracks the reference model (red line of Figure 3.9b). The tracking

performance of the controller is shown in Figure 3.9c and the corresponding

sliding surface and tuning error can be found in Figure B.1 of Appendix B.

The mass of copper nanoparticles deposited in Figure 3.9d is the same with

the disturbance free self-healing process in Figure 3.7c. The results indicate

that the active self-healing process can perform optimally with or without

uncertainties.
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Figure 3.9: Adaptive SMC applied to a case where an isolated elec-
trolytic self-healing process with uncertainties is regulated by a feed-
back control law. (a) The control effort of the adaptive SMC. (b) The actual
current flow during electrolysis matches a defined reference current flow. The
reference and actual current represent the damage rate and healing rate re-
spectively. (c) Relative error defined as the difference between the actual and
reference current divided by the reference current. (d) The equivalent mass
deposited over time for the closed loop active self-healing process.

3.3.3 Design II: Adaptive SMC Design Implementation

for Piezo-electrolytic Self-healing Process

Consider a composite material system whose self-healing is driven by a piezo-

electrolytic process described in Chapter 2. The performance of self-healing is

limited by the inherent dead-zone non-linearity of the system and the insufficient

piezo-induced voltage Vpr(t) that drives the healing agent. An adaptive feedback

controller in Figure 3.10 is designed to regulate the self-healing process, to

overcome the inherent dead-zone and to ensure a proper match between damage

and healing rate. In practice, the control system can be implemented using
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either dSpace or National Instrument rapid control prototyping (RCP) hardware.

The voltage demands of the control system is added by a power supply unit

while a current transducer is attached to the electrodes to measure the current

during electrolysis. A full description of the practical realisation is detailed in

Section 5.2 of Chapter 5. The system model expressed in Equation (2.31) is

Figure 3.10: A piezo-electrolytic process to show how adaptive feed-
back control can regulate a non-linear self-healing process that is
exposed to constant and varying stress input.

modified by adding a feedback control law U(t) to give Equation (3.25).

Q̇a(t) = m(Vpr(t) + U(t)) + ∆I(t) (3.25)

Following the design from Section 3.3.1, the derivative of the surface ṡ(t) and

the control law U(t) are expressed as Equations (3.26) and (3.27) respectively.

ṡ(t) = λcm(Vpr(t) + U(t)) + λc∆I(t) − λcQ̇d(t) (3.26)

U(t) = −Kds(t) − V̂pr + φ̂Q̇d(t) − k∗sat

(
s

ϵ

)
(3.27)

Vpr(t) and φ are unknown during the control design but are estimated as V̂pr and

φ̂ respectively using the Lyapunov stability theory, such that, Ṽpr = V̂pr − Vpr

and φ̃ = φ̂ − φ. The stability is established by Theorem 3.2 and a detailed

proof of this formulation can be found in Appendix A.
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Theorem 3.2. Consider the non-linear self-healing system, the surface s(t),

the tuning error sϵ and the control law U(t) expressed in Equations (3.25),

(3.3), (3.10) and (3.27) respectively. If the adaptive laws ˙̂
φ, V̂pr are selected

as Equations (3.28) - (3.29) respectively, then the control design guarantees

that the system trajectory will converge to the sliding mode. The surface s(t),

tuning error sϵ and adaptive law φ̃, Ṽpr are globally bounded and the tracking

error converges to zero over time.

˙̂
φ = −γλcQ̇d(t)sϵ (3.28)

˙̂
Vpr = λcΓsϵ (3.29)

3.3.4 Active Self-healing Example Simulation II

Composite materials whose piezo-electrolytic self-healing mechanism are subject

to constant and varying conditions. The conditions are simulated as sinusoidal

input forces with constant and changing amplitudes respectively to represent

operating characteristics of structures, e.g. input from rotating machinery,

wind gust on turbine, turbulence on an aircraft, waves on a ship, footfall on a

bridge, etc. The effectiveness of the controller is investigated in the presence of

uncertainties, disturbances or unaccounted dynamics. These uncertainties have

not been considered in the control design. First, a material subject to constant

conditions is simulated as concentrated constant stress level equivalent to 0.2 N

at a frequency of 138 rad/sec. This generates a smooth DC piezo-induced

voltage of 7.64 mV that is less than Êrev = 9.3 mV as seen in the red lines

of Figure 3.11a. As a result, the system operates in the dead-zone region and

no healing or mass deposition is achieved. An adaptive SMC is implemented

and tasked with overcoming the dead-zone non-linearity as well as generating

sufficient voltage required to produce the desired mass transportation in the

presence of uncertainties. The controller adapts to both the piezo-induced

voltage and the varying reference, and accounts for the effect of uncertainties to
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Figure 3.11: Adaptive SMC applied to a case where the composite
material is subjected to constant load input in the presence of uncer-
tainties. This depicts a material exposed to constant environmental conditions.
(a) The piezo-induced voltage is insufficient to drive the healing process since
Vpr < Êrev. The feedback adaptive controller contribute an external input that
ensures that the current flow during electrolysis tracks the desired performance.
(b) The actual current flow during electrolysis matches a defined reference
current flow. The reference and actual current represent the damage rate and
healing rate respectively. (c) Relative error of the adaptive SMC defined as the
difference between the actual and reference current divided by the reference
current. (d) The equivalent mass deposited over time for the closed loop active
self-healing process.

ensure that the actual current (see blue dashed line of Figure 3.11b) tracks the

reference model (see red line of Figure 3.11b). It was observed that there was

a drop in the control effort (see blue line of Figure 3.11a) when compared with

the control effort of isolated electrolytic process in Figure 3.9a. This indicates

that the controller takes into account the effect of the generated piezoelectric

voltage. The performance of the adaptive SMC implementation can be seen in

Figures 3.11c. In terms of the self-healing process, achieving a desired current
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flow means that sufficient mass deposition of the healing agent is guaranteed

and the healing rate is regulated to ensure a match with the damage rate. The

match ensures that the mass of copper nanoparticles deposited is controlled to

effectively take up the void in the damage area. The controlled mass deposited

is shown in Figures 3.11d. In this sense, the piezoelectric acts as both a sensor

to measure the effect of fault and an energy harvesting device.

0 50 100 150 200 250 300
Time (s)

0

0.2

0.4

0.6

0.8

M
as
s
(m

g
)

Copper deposited

0

5

10

C
u
rr
en
t
(m

A
)

Reference current flow Q̇d

Actual current flow Q̇a

-1

-0.5

00.1

R
el
at
iv
e
er
ro
r

Relative error (SMC)

0

50

100

V
ol
ta
ge

(m
V
)

5

10

15

V
ol
ta
ge

(m
V
)

Control law U

Smooth DC Piezo-induced Voltage Vpr
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Figure 3.12: Adaptive SMC applied to a case where the compos-
ite material is subjected to different load inputs at different time
instants and in the present of uncertainties. This depicts a material
exposed to varying environmental conditions. (a) The piezo-induced voltage
is insufficient to drive the healing process during the first 75 seconds since
Vpr < Êrev. The feedback adaptive controller contributes an input and ensures
that the current flow during electrolysis tracks the desired performance. (b) The
actual current flow during electrolysis matches a defined reference current flow.
The reference and actual current represent the damage rate and healing rate
respectively. (c) Relative error of the adaptive SMC defined as the difference
between the actual and reference current divided by the reference current. (d)
The equivalent mass deposited over time for the closed loop active self-healing
process.
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Time varying conditions are demonstrated by applying stress levels equiva-

lent to forces of 0.2 N , 0.3 N and 0.4 N at different time instants. The frequency

is fixed at 138 rad/sec. These generate smooth DC piezo-induced voltages of

7.64 mV , 11.46 mV and 15.28 mV respectively as shown in red dashed line of

Figure 3.12a. In passive mode, the current flow and mass deposited are shown

in Figure 2.17b and Figure 2.17c of Section 2.5 respectively. It was observed

that the system suffers from dead-zone non-linearity between 0 and 75 seconds;

hence, no current flow or mass deposition during that time. Fluctuations in

the current flow and a drop in the mass deposited (when compared with the

disturbance free healing process in Figure 2.16) showed that the healing process

is affected by uncertainties. As a result, the performance of the healing process

is poor. The adaptive SMC is implemented and tasked with overcoming the

dead-zone non-linearity and adapting to changes in both the piezo-induced volt-

age and the reference in the presence of uncertainties. As seen in Figure 3.12a,

the controller adapts by dropping its effort while ensuring a proper tracking

of the reference in Figure 3.12b. The sudden changes in the piezo-induced

voltage produces transient spikes in the actual current flow, which eventually

fades away as the controller adapts. This can be seen in the tracking error

in Figure 3.12c. The corresponding sliding surface and tuning error can be

seen in Figure B.3 of Appendix B. The controlled mass of copper nanoparticles

deposited in Figure 3.12d can be compared with the corresponding open loop

mass of copper nanoparticles deposited in Figure 2.17c. An increase of about

6170% was recorded in 5 minutes for the controlled system. Similar plots for a

disturbance free active self-healing process can be found in Figures B.4 - B.7 of

Appendix B. The simulations effectively show how important the concept of

active self-healing can be to ensuring an optimal performance. In addition, the

control implementation shows that an active self-healing process can handle

uncertainties and the healing rate can be regulated to match the damage rate

in different operating conditions.



68 Active Self-healing

3.4 Sensitivity Analysis of Active Self-healing

This section further investigates the effect of uncertainties on the active self-

healing system. This is aimed at relating the proposed active self-healing to the

real world where the degree of uncertainties due to disturbances, sensor noise,

unmodelled dynamics, etc., are unknown, by investigating the performance of

the adaptive SMC in the presence of uncertainties. A self-healing system coupled

with uncertainties has been defined by Equation (2.33). The term An = 10 mV

in Equation (2.33) is maintained and the proposed active self-healing was put

to test by increasing the magnitude of the coupled uncertainties. Figures 3.13 -

3.14 show the outcome of the controller’s effort at different magnitude of

the defined uncertainties. Without any knowledge of the uncertainties, the
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Figure 3.13: The effect of different magnitude of the defined uncer-
tainties on the actual current flow during electrolysis.

controller adapts to guide the actual current flow on the reference profile. As the
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Figure 3.14: The equivalent mass deposition when exposed to differ-
ent magnitude of the defined uncertainties.

magnitude of the defined uncertainties increases, the controller works hard to

constrain the actual current flow Q̇a to track the reference profile Q̇d. However,

the influence of uncertainties on the healing system becomes pronounce as the

magnitude increases and the controller’s attempt to guide the current flow

on the reference profile leads to oscillations as shown in Figure 3.13. This

oscillation becomes undesirable as the magnitude of the uncertainty increases

and could potentially lead the self-healing system to instability. Figure 3.14

shows the mass deposited over a range of uncertainties; beyond a magnitude of

about 1000, a negligible increase in the mass deposited was recorded. While

this shows the robustness of the proposed active active self-healing system,

pronounce oscillation at a magnitude of 500 is undesirable.

Similarly, the effect of increasing the frequency of the sinusoidal noise was

investigated as shown in Figures 3.15-3.16. The test evaluates the performance

of the active self-healing system, particularly at higher frequencies. The result

of the adaptive controller in Figure 3.15 shows that the actual current flow

Q̇a to track the reference profile Q̇d, but begins to oscillate as the frequency

increases. The implication of this oscillation on the healing system as the

frequency increases is an undesirable performance and instability. Nonetheless,

the results show in adverse conditions resulting from increased noise frequency,
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Figure 3.15: The effect of increasing the frequency of the defined
uncertainties on the actual current flow during electrolysis.

Figure 3.16: The equivalent mass deposition when exposed to differ-
ent frequencies of the defined uncertainties.
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the proposed active self-healing ensures a close to optimal performance of the

healing process. In Figure 3.16, a negligible increase in the mass deposited was

recorded beyond 20 rad/s.

Further investigation on the sensitivity of the active self-healing to uncer-

tainties was performed. The proposed active self-healing was corrupted with

random sensor noise. This uses a passive self-healing mechanism defined in

Equation (3.30). The sensor noise w(t) represents a white Gaussian noise that

is drawn from a normal distribution with zero mean and variance σ2, that is,

(w(t) ∼ N (0, σ2)).

Q̇a(t) = m
(
Vpr + w(t)

)
+ ∆I(t) (3.30)

Also, a measure of the noise is defined in terms of the signal to noise ratio

(SNR) within a 99.7% confidence level. This is expressed in Equation (3.31);

and the terms V pr and σ are the mean value of the piezo-induced voltage Vpr

and the standard deviation of the additive noise.

SNR = 20 log10

V pr

6σ (3.31)

The results of different additive sensor noise are shown in Figures 3.17 - 3.18.

A decrease in SNR means an increase in the effect of sensor noise on the

self-healing system; which is potentially undesirable. However, the controller

adapts to each of different sensor noise and ensures a tracking of the reference

profile. The effect of noise was minimise by the controller, and as the SNR

decreases below 6dB, a negligible increase in the mass deposited was recorded

in Figure 3.18. Importantly, the results suggest that the active self-healing is

robust to these uncertainties.

3.5 Summary

The chapter presents a novel closed loop self-healing system- referred to as active

self-healing system. The system integrates the self-healing mechanism modelled
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Figure 3.17: The effect of different magnitude of signal to noise ratio
(SNR) during electrolysis.

Figure 3.18: The equivalent mass deposition when exposed to differ-
ent magnitude of signal to noise ratio (SNR).
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in Chapter 2 with feedback control. In contrast with the passive and open-loop

self-healing system in Chapter 2, the concept of active self-healing ensures that

a match between user or environmental demands like the damage rate, and the

healing rate is achieved. Adaptive sliding mode feedback control frameworks

were designed and implemented on an electrolytic self-healing process and a

piezo-electrolytic self-healing process, while taking into account the inherent

dead-zone non-linearity of this self-healing mechanism. Example simulations

are provided to investigate the effectiveness of active self-healing in different

operating conditions. These conditions are simulated as sinusoidal inputs

with constant and changing amplitudes and are representatives of operating

characteristics of structures, e.g. input from rotating machinery, wind gust on a

turbine, turbulence on an aircraft, waves on a ship, footfall on a bridge etc. The

control simulations effectively showed that the healing rate can be regulated to

match the damage rate. In practice, the performance of a typical self-healing

process is affected by uncertainties. Importantly, investigations show that

active self-healing process can handle some uncertainties or disturbance. A

comparison with results obtained in Chapter 2 indicates that active self-healing

can be effective in tackling some of the drawbacks of passive self-healing.

The implemented active self-healing can benefit from an additional secondary

component, that is, the inclusion of a fault diagnosis system. This is because

environmental demands like damage rate are best described using a fault

diagnosis system. It gives an accurate account of the damage rate and improves

the reliability of the active self-healing system. Hence, the next chapter will

focus on developing a fault diagnosis technique that can be used to estimate

the damage rate.





Chapter 4

Crack Detection and Diagnosis

4.1 Introduction

The mathematical model formulated in Chapter 2 showed how a typical passive

self-healing process is unregulated and does not guarantee a match with the

damage rate during healing. In Chapter 3, an active self-healing system was

formulated and simulated to demonstrate the effectiveness to matching the

healing and user or environmental demands like damage rate. More so, the

demonstration shows that regardless of the uncertainties and disturbances

surrounding the healing process, a desired self-healing response can be achieved.

While a match was achieved between damage and healing rate, the damage

rate cannot be assumed. This is because damage rate is dynamic and is a

function of several operational system parameters such as the atmospheric and

environmental conditions. Hence, a need for a fault diagnosis technique to

estimate the damage rate.

In this chapter, a novel fault diagnosis algorithm is proposed and applied

to a modelled beam to estimate the crack depth and location. This takes

advantage of sensor measurements to detect and quantify faults. A beam is

selected to demonstrate the application of self-healing because it represents a

wide range of structures such as bridges, turbine blades, airliner wings, cranes,

building elements, etc. The introduction of crack causes changes in the vibration
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response of the beam due to a drop in beam stiffness and increased damping.

This results in changes in natural frequencies, mode shapes and curvatures.

These indicators have been researched extensively along with experimental

validation (Amezquita-Sanchez and Adeli, 2016; Doebling et al., 1998; Fan and

Qiao, 2011; Goyal and Pabla, 2016; Hossain et al., 2016). However, changes in

natural frequency may prove insufficient in detecting the actual crack depth

since the changes are sensitive to environmental factors and may not be unique

to a particular crack depth or location (Fan and Qiao, 2011). On the other

hand, mode shape and beam curvature are less affected by the environment

but the beam curvature has been observed to be more sensitive than the

mode shape to damage (Dawari and Vesmawala, 2013; Fan and Qiao, 2011;

Pandey et al., 1991; Wahab and De Roeck, 1999). These vibration signals

have been processed with one or more of the change indicators using neural

network (Hossain et al., 2016), wavelet analysis (Hou et al., 2000; Jiang et al.,

2012; Loutridis et al., 2004; Robertson et al., 2003; Wang and Deng, 1999;

Yan and Yam, 2002), optimization (Hoseini Vaez and Fallah, 2017; Jena and

Parhi, 2015; Krawczuk, 2002; Vakil-Baghmisheh and Peimani, 2008), fuzzy logic

(Nanda et al., 2015),etc., to locate and quantify the damage. Depending on the

application, these techniques may come with some limitations. For example,

optimisation is limited by the need for computational time and resources, neural

network may suffer from over-fitting and wavelet analysis requires expertise

in signal processing. Nonetheless, these techniques have successfully been

implemented and investigation has shown that wavelet analysis can detect a

small crack depth (Yan and Yam, 2002). This makes wavelet analysis suitable

for this analysis as the crack depth decreases during healing.

The fault diagnosis algorithm in this research combines the beam curvature,

proportional orthogonal decomposition, Hölder exponent and supervised regres-

sion (Kuponu et al., 2017b). The beam curvature is selected in this research

because of its sensitivity to damage. Proportional orthogonal decomposition is

a feature extraction technique used to separate the components of the vibration
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signal that do not change from those that do and also to optimally reduce the

dimension of the signal (Buljak, 2011; Chen et al., 2013). This is applied to

the intact and damaged signals of the beam. The Hölder exponent is used to

examine changes in the extracted features by operating on the wavelet modulus

maxima of the extracted features. Finally, the crack depth is estimated using

supervised regression.

The aims of this chapter are:

• To present a new crack diagnosis technique to estimate the depth and

location of a crack.

• To demonstrate through simulation the effectiveness of the developed

crack diagnosis technique to different beam types.

In the following, various intact and damaged beams are modelled in Sec-

tion 4.2 and the diagnosis technique is presented in Section 4.3. Section 4.4

provides example simulations and discussion of the diagnosis technique while a

sensitivity analysis is presented in Section 4.5. The chapter concludes with a

summary in Section 4.6.

4.2 Beam Model

Beams are defined by their support, for example:

1. Fixed beam: Both ends of the beam are clamped with no form of rotation

allowed as shown in Figure 4.1a.

2. Cantilever beam: Only one end of the beam is fixed as shown in Fig-

ure 4.1b.

3. Simply supported beam: Figure 4.1c shows a simply supported beam

where both ends are supported with freedom to rotate.

The beams in Figure 4.1 of length L, width w and depth h can be modelled

using Euler-Bernoulli beam theory (Meirovitch, 2001). From the mathematical
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(a) A fixed beam. (b) A cantilever beam.

(c) A simply supported beam.

Figure 4.1: Some types of beam representing a wide range of struc-
tures.

preliminaries in Appendix C, the differential equation that governs free vibration

of a beam is expressed in Equation (4.1) as (Meirovitch, 2001):

EI
∂4y(x, t)
∂x4 + ρA

∂2y(x, t)
∂t2

= 0 (4.1)

where y(x, t) =
∞∑

n=1
Yn(x)sin (ωnt) is the displacement at location x, A is

the cross sectional area, I is the second moment of inertia, ρ is the density

and E is the Young’s modulus. Yn and ωn are the mode shape and natural

frequency in rad/seconds of the n
th

mode respectively. From Equation (4.1), the

general equation of the intact beam’s modal deflection Yn (neglecting structural

damping) is given by Equation (4.2), where λn = 4
√
ω2

nρAL
4/EI (Meirovitch,

2001).

Yn(x) = η
1
cosh

(
λn
x

L

)
+ η

2
sinh

(
λn
x

L

)
+ η

3
cos

(
λn
x

L

)
+ η

4
sin

(
λn
x

L

)
(4.2)

4.2.1 Boundary Conditions

The boundary conditions define the type of beam structure and can be applied

to evaluate the unknown constants η
1−4

of Equation (4.2) along x = 0 to x = L

of the beam. Table 4.1 shows the boundary conditions of some beam types. In
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Table 4.1: Boundary conditions of different beam types (Petyt,
2010).

Beam type Boundary conditions

Fixed Yn(0) = Y
′

n(0) = 0 Yn(L) = Y
′

n(L) = 0
Simply supported Yn(0) = Y

′′
n (0) = 0 Yn(L) = Y

′′
n (L) = 0

Cantilever Yn(0) = Y
′

n(0) = 0 Y
′′

n (L) = Y
′′′

n (L) = 0

general, a beam has no displacement (Yn = 0) and rotation (Y ′
n = 0) at the

fixed end while a free end has no moment (Y ′′
n = 0) and shear force (Y ′′′

n = 0).

A simply supported beam has no displacement (Yn = 0) and moment (Y ′′
n = 0).

Other beam types are a combination of any these boundary conditions.

The boundary conditions of the cantilever and the fixed beam in Table 4.1

results in Equation (4.3) - (4.4), respectively (Meirovitch, 2001; Petyt, 2010;

Vakil-Baghmisheh and Peimani, 2008).



1 0 1 0

0 1 0 1

cosh(λn) sinh(λn) −cos(λn) −sin(λn)

sinh(λn) cosh(λn) sin(λn) −cos(λn)





η
1

η
2

η
3

η
4


= 0 (4.3)



1 0 1 0

0 1 0 1

cosh(λn) sinh(λn) cos(λn) sin(λn)

sinh(λn) cosh(λn) −sin(λn) cos(λn)





η1

η2

η3

η4


= 0 (4.4)

4.2.2 Cracked Beam

Assuming a crack of depth a in Figure 4.2 divides the beam into two sections

at l1, the modal deflection on both sides of the crack can be defined as Yr and

Yl (right and left respectively).
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Figure 4.2: A cracked cantilever beam.

The general equations for both sections divided by the crack are represented

by Equations (4.5) - (4.6):

Yrn
(x) = α1cosh

(
λ

dn

x
L

)
+ α2sinh

(
λ

dn

x
L

)

+α3cos

(
λ

dn

x
L

)
+ α4sin

(
λ

dn

x
L

)
(4.5)

Y
ln

(x) = β1cosh

(
λ

dn

x
L

)
+ β2sinh

(
λ

dn

x
L

)

+β3cos

(
λ

dn

x
L

)
+ β4sin

(
λ

dn

x
L

)
(4.6)

where λ
dn

= 4
√
ω2

dn
ρAL4/EI and ω

dn
is the modal frequency of the damaged

beam.

The crack depth a is modelled as a local stiffness Θ given by Equation (4.7)

(Vakil-Baghmisheh and Peimani, 2008):

Θ = EI

6(1 − v2)h × 1
J(a, h) (4.7)

where

J(a, h) = 1.8224
(
a

h

)2

− 3.95
(
a

h

)3

+ 16.375
(
a

h

)4

− 37.226
(
a

h

)5

+ 76.81
(
a

h

)6

− 126.9
(
a

h

)7

+ 172
(
a

h

)8

− 143
(
a

h

)9

+ 66.56
(
a

h

)10

(4.8)
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The term v is the Poisson’s ratio. The crack introduces additional boundary

conditions into the model at l1 and are expressed in Equation (4.9) (Dong et al.,

2004; Vakil-Baghmisheh and Peimani, 2008):

Y
ln

(l1) = Yrn
(l1)

Y
′′

ln
(l1) = Y

′′

rn
(l1)

Y
′′′

ln
(l1) = Y

′′′

rn
(l1)

EI

Θ Y
′′

ln
(l1) + Y

′

ln
(l1) = Y

′

rn
(l1)

(4.9)

Similarly, the unknowns α1−4 and β1−4 can be solved by applying the boundary

conditions stated in Equation (4.9) and Table 4.1 to Equations (4.5) - (4.6).

This results in Equations (4.10) - (4.11) for a cantilever and a fixed beam

respectively.


AA BB

CC DD

BB Bc


 αc

βc

 = 0 (4.10)


AA BB

CC DD

BB Bf


 αc

βc

 = 0 (4.11)

where

AA =

 1 0 1 0

0 1 0 1

 BB =

 0 0 0 0

0 0 0 0

 (4.12)
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CC =



z4 z3 z2 z1

z4 z3 −z2 −z1

z3 z4 z1 −z2

ΘL
EIλ

z3 + z4
ΘL
EIλ

z4 + z3 − ΘL
EIλ

z1 − z2
ΘL
EIλ

z2 − z1


(4.13)

DD =



−z4 −z3 −z2 −z1

−z4 −z3 z2 z1

−z3 −z4 −z1 z2

− ΘL
EIλ

dn

z3 − ΘL
EIλ

dn

z4
ΘL

EIλ
dn

z1 − ΘL
EIλ

dn

z2


(4.14)

Bc =

 z5 z6 −z7 −z8

z6 z5 z8 −z7

 Bf =

 z5 z6 z7 z8

z6 z5 −z8 z7

 (4.15)

αc =



α1

α2

α3

α4


βc =



β1

β2

β3

β4


(4.16)

where z1 = sin

(
λ

dn

l1
L

)
, z2 = cos

(
λ

dn

l1
L

)
, z3 = sinh

(
λ

dn

l1
L

)
, z4 = cosh

(
λ

dn

l1
L

)
,

z5 = cosh(λ
dn

), z6 = sinh(λ
dn

), z7 = cos(λ
dn

), z8 = sin(λ
dn

).
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4.3 Detection and Diagnosis System

The practical illustration of the proposed fault diagnosis involves data ac-

quisition from sensors placed in strategic places on the beam. These sensor

measurements go through a data analysis process of the diagnosis system as

shown in Figure 4.3.

Figure 4.3: Data analysis process of the proposed diagnosis system

For example, sensor measurements from accelerometers capture the acceler-

ation of the beam. The data conditioning is a two stage process that involves

integrating the data twice to extract the beam deflection and converting the

deflections into curvatures. The beam curvature captures information that is

sensitive to damage and a full description is detailed in Subsection 4.3.1. Fur-

ther analysis of the curvature is carried out using the proportional orthogonal

decomposition to separate components of the signal that do not change from

those that do. The components of the signal that change are particularly useful

for detection and diagnosis. A baseline of the extracted changing component

of a healthy beam is compared with that of a faulty beam. The result of

the comparison provides information on location of the crack and is further

analysed by the Hölder exponent. The Hölder exponent provides a measure to

quantify the extent of the crack depth my operating on the wavelet transformed



84 Crack Detection and Diagnosis

of the resulting comparison stated above. The final stage of the data analysis

involves a supervised regression to estimate the actual crack depth based on

the Hölder exponent. A full description on the data analysis process is detailed

in Subsection 4.3.1 - Subsection 4.3.4.

4.3.1 Radius of Curvature

As stated earlier, the radius of curvature is more sensitive than its mode shape

to damage. The curvature κ is expressed in Equation (4.17) (Dawari and

Vesmawala, 2013; Fan and Qiao, 2011; Pandey et al., 1991; Wahab and De

Roeck, 1999):

κ(x) = M(x)
EI

(4.17)

with M(x) and the product of E and I representing the bending moment

and flexural stiffness of the beam respectively. A reduced flexural stiffness

introduced by damage at location x results in an increased curvature, which

is used as an indicator of abnormality. To transform the deflection into the

radius of curvature, Equation (4.17) can be approximated using the central

difference in Equation (4.18) at the ith node of q number of elements, with an

element length l (Dawari and Vesmawala, 2013; Fan and Qiao, 2011; Pandey

et al., 1991; Wahab and De Roeck, 1999):

κ(xi) ≈ Y
′′

i = Yi+1 − 2Yi + Yi−1

l2
(4.18)

For a particular mode shape, the approximate radius of curvature is Equa-

tion (4.19):

Y rad
n =

[
Y

′′
n2

Y
′′

n3
. . . . . . Y

′′
nq−1

]
(4.19)

The curvature of r number of mode shapes is combined to form a matrix Yrad

in Equation (4.20)):
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Yrad =


Y rad

1
...

Y rad
r


r×(q−2)

(4.20)

4.3.2 Proportional Orthogonal Decomposition (POD)

Unique features that are particularly important for detection and diagnosis can

then be extracted from Equation (4.20) using a proper orthogonal decomposition

(POD). This is employed to separate components of the signal Yrad that do

not change from those that do. For the purpose of diagnosis, this research is

interested in the components of the signal Yrad that change. A POD can be

used to optimally reduce and approximate a signal and is defined as the sum

of linear weightings expressed in Equation (4.21) (Buljak, 2011; Chen et al.,

2013):

Yrad ≈
r∑

k=1
c

k
ϕ

k
(4.21)

The term ϕ is the POD mode (spatial basis function) that does not change,

while the unknown amplitude c
k

represents the varying components of the

signal used for detection and diagnosis. To solve for c
k
, the basis functions ϕ

k

must be orthonormal (Equation (4.22)) and satisfy Equation (4.23):

∫
ϕiϕjdx ==


1 for i = j

0 for i ̸= j

(4.22)

min
(

||Yrad −
r∑

k=1
c

k
ϕ

k
||2
)

(4.23)

The algorithm to determine the POD is:

1. Compute the correlation matrix of signal Yrad given as C = YradY
T

rad.

2. Solve the eigenvalue problem Cϕ
k

= λ
k
ϕ

k
to find the eigenvectors, which

correspond to the spatial basic functions.
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3. Solve for the unknown amplitudes c
k

= ϕT
k
Yrad .

The algorithm is applied to evaluate the unknown amplitudes for both undam-

aged (cu) and damaged (cd) systems, based on the undamaged signal (Y u
rad)

and damaged signal (Y d
rad). The undamaged amplitude cu remains fixed, while

the damaged amplitude cd changes as the fault progresses. The algorithm is

applied in real time in this research and a monitoring index indicating the

current state of the system is evaluated using Equations (4.24) - (4.25), where

δ is the margin within which the beam remains healthy and is selected by

investigation:

τ(t) =
∣∣∣∣∣||cu|| − ||cd(t)||

∣∣∣∣∣ (4.24)

index(t) =


0, if τ ≤ δ (no fault)

1, otherwise (fault detected)
(4.25)

The error E(x, t), defined in Equation (4.26), can be used to determine the

location lest and crack depth aest at every time instant.

E(x, t) = |cu(x) − cd(x, t)| (4.26)

4.3.3 Hölder Exponent

By transforming the error signal further using wavelet transform, the Hölder

exponent can be evaluated. The Hölder exponent examines changes in signal by

operating on the modulus maxima of the wavelet transform (Angrisani et al.,

1999; Douka et al., 2003; Loutridis et al., 2004; Robertson and Farrar, 2003).

The wavelet transform defined by Equation (4.27) is used to transform the error

signal E(x, t) into its equivalent wavelet function Wf using a mother wavelet

Ψ over a scaling parameter sw and translational parameter b (Isermann, 2006;

Polikar, 1996).

Wf (sw, b) = 1
√
sw

∫ +∞

−∞
E(x)Ψ∗

(
x− b

sw

)
dx (4.27)
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The scaling and translational parameters indicate the scale of the crack and

the point of interest on the beam. Examples of mother wavelets are Morlet,

Haar, Mexican hat, Daubechie, Symlets etc. (Rao, 1998). In this research, the

Morlet wavelet is used because it has similar components with faulty vibration

signals, thus, producing a better correlation with the vibration signals and

a larger wavelet coefficient (Rao, 1998; Zheng et al., 2002). This is given as

Equation (4.28) and shown in Figure 4.4.

ψ(x) = π−1/4e
−x2

2 cos(5x) (4.28)

Morlet Wavelet ψ

Figure 4.4: A Morlet mother wavelet used to transform a signal into
its equivalent wavelet function.

The Hölder exponent defines a signal f(x) approximated by a polynomial

Z(x) at a local point x0, such that the coefficient N and Hölder exponent α

exist (Equation (4.29)). This is written in terms of the modulus maxima of

the wavelet transform in Equation (4.30) (Angrisani et al., 1999; Douka et al.,

2003; Loutridis et al., 2004; Robertson and Farrar, 2003).

|f(x) − Z(x)| ≤ N |x− x0|α (4.29)

|Wf (sw, b)| ≤ Nsα
w (4.30)
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The coefficient N and α can be evaluated from the plot of the logarithm of

Equation (4.30). Different crack depths at the same location result in the same

Hölder exponent α but different coefficients N . The coefficient N therefore

represents the measure of crack depth at a particular location. This is extended

in this research to capture the normalised measure of the crack depth at different

locations by introducing the crack location, N
lpest

; where p is a positive term.

4.3.4 Supervised Regression

While the formulation in Subsection 4.3.3 gives the measure of the crack

depth at different locations, the actual crack depth remains unknown. To

estimate the crack depth, a supervised regression algorithm is implemented

(Equation (4.31)) with weights ζ obtained from prior knowledge of crack depths

at different locations.
aest

lpest

= [Xc][ζ]T (4.31)

Xc =
[
xc x2

c . . . . . . xr
c

]
1×rj

(4.32)

xc =
[ (

N
lpest

)
normalised

lest ∆f
]

1×j

(4.33)

∆f =


fu1

− f
d1...

fun
− f

dn


T

1×n

(4.34)

ζ =
[
ζ1 ζ2 . . . . . . ζrj

]
1×rj

(4.35)

The order r of the polynomial used to estimate the crack depth is selected

using k-fold cross validation (Pereira et al., 2009). xr
c defines the r number of

times an element wise multiplication of xc is performed. Equation (4.36) is

combined with changes in modal frequencies ∆f of all modes and the crack

location to give the term xc in Equation (4.33).
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(
N

lpest

)
normalised

=

N
lpest

−min

(
N

lpest

)

max

(
N

lpest

)
−min

(
N

lpest

) (4.36)

The frequency of the intact beam is represented by fui
for any ith mode while

f
di

represents the frequency of a cracked beam at the ith mode. n is the total

number of modes and j = 2 + n. The minimum and maximum values of N
lpest

are defined in this research over all possible values between the crack depth of

1 mm and 3 mm.

4.4 Numerical Results and Discussion

In this section, the effectiveness of the proposed diagnosis technique is illustrated

by simulation in Matlab. An aluminium cantilever beam of dimensions 820 mm

by 20 mm by 10 mm is modelled using a finite element model with 24 elements.

The beam’s mechanical properties include Young’s modulus of 70 GPA, density

of 2700 kg/m3 and Poisson ratio of 0.3 (Vakil-Baghmisheh and Peimani, 2008).

The parameters are selected for comparison with a genetic algorithm for crack

diagnosis proposed by Vakil-Baghmisheh and Peimani (2008).

The deflections of four modes of the intact and cracked beam with cracks

of 1 mm, 2 mm and 3 mm at location 196.8 mm are shown in Figure 4.5a-d.

The results do not indicate the presence of cracks. Unlike the deflections, the

radius of curvatures in Figure 4.5e-h give a significant distinction between the

intact and cracked beam. This justifies the selection of radius of curvature for

this analysis. Other mode shapes and curvatures at different crack locations

can be found in Figures D.1 - D.6 of Appendix D. The cracked cantilever

beam also results in changes in modal frequencies as shown by the red lines

of Figure 4.6. Other modal frequency changes at different crack locations and

depths are also shown in Figure 4.6. The figure indicates a decremental trend

in modal frequencies as the crack depth increases. Figure 4.7 shows that the

maximum peaks of the error between the unique features extracted from the
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Figure 4.5: Mode shapes (a-d) and curvatures (e-h) of the first four
modes of an intact and damaged cantilever beam of different crack
depths located at 196.8mm.

intact and cracked radius of curvatures by the POD algorithm indicate the

crack locations. The error is transformed into wavelets and used to determine

the Hölder exponent α and coefficient N by taking the logarithm plot of

Equation (4.30); this is captured in Figure 4.8. At each crack location, the
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Figure 4.6: Natural frequency of the first four modes of an intact
and a damaged cantilever beam of different crack depths at different
crack locations.

logarithm plots of Equation (4.30) for all crack depths between 1 − 3 mm are

parallel but have different vertical axis intercepts. Parallel plots are indicative

of the same gradient and suggest that the different cracks occur at the same

location; the gradient is referred to as the Hölder exponent α. Similarly, each

value of the vertical axis intercepts represents the coefficient N for the different

crack depths at a particular crack location. Thus, the use of N
lpest

for regression

captures a global coefficient at different crack location.

To avoid under and over fitting of the crack depth estimation, a cross-

validation was carried out to select the appropriate order for the polynomial

of Equation (4.31). Figure 4.9 shows the normalised root mean square error

(NRMSE) of the training and testing set to different orders of polynomials. An

order between 8 and 12 can be selected but this research uses the order with

the minimum NRMSE of the testing set as the preferred order for estimation,

that is, r = 12 and the corresponding weightings are found in Parameter (D.1)
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Figure 4.9: Cross-validation: The normalised root mean square
(NRMSE) of different polynomial order used to select the order num-
ber. This step avoids under and over fitting.

of Appendix D. The choice of order is in accordance with the cross validation

method in literature (Pereira et al., 2009). Other regression parameters used

are also in Parameter (D.2) of Appendix D. The results of estimated crack

depths and locations are shown in Figure 4.10a and Table 4.2. The algorithm

detects the crack location and gives a maximum deviation of −1.83% from

the actual crack depth. Further, Table 4.2 also shows a comparison of the

proposed crack diagnosis with a genetic algorithm used by Vakil-Baghmisheh

and Peimani (2008); the proposed crack diagnosis in this research resulted in

a better estimation of the crack depths and locations. The proposed crack

diagnosis was also applied to a fixed beam using the same beam parameters.

A maximum deviation of 2.18% from the actual crack depth was recorded as

shown in Table 4.3 and Figure 4.10b. Full analysis and results are shown in

Appendix D.

4.5 Sensitivity Analysis

Measurements are sometimes corrupted by sensor noise or disturbances and

could potentially reduce the reliability of fault diagnosis. Hence, the sensitivity
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Figure 4.10: (a) Outcome of the fault detection and diagnosis for
crack depths at different locations of the: (a) Cantilever beam (b) Fixed
beam

Table 4.2: Proposed crack diagnosis applied (highlighted in green)
and compared with genetic algorithm (GE) results obtained in Table
5 (Vakil-Baghmisheh and Peimani, 2008) using the same cantilever
beam parameters.

Crack location (mm) Crack depth (mm)

Actual Estimated Error(%) Estimated (GE) Error(%) (GE) Actual Estimated Error(%) Estimated (GE) Error(%) (GE)

98.40 98.40 0.00 99.12 0.73 1.00 1.00 -0.07 0.98 -2.00
98.40 98.40 0.00 97.74 -0.67 2.00 2.00 -0.05 2.01 0.45
98.40 98.40 0.00 99.93 1.55 3.00 3.00 0.01 2.97 -0.93
196.80 196.80 0.00 193.80 -1.53 1.00 1.00 -0.27 0.97 -2.60
196.80 196.80 0.00 194.75 -1.04 2.00 2.00 -0.02 1.99 -0.55
196.80 196.80 0.00 198.52 0.88 3.00 3.00 -0.14 3.02 0.70
295.20 295.20 0.00 298.56 1.14 1.00 1.00 0.03 1.02 2.10
295.20 295.20 0.00 289.79 -1.83 2.00 2.00 0.00 1.98 -1.25
295.20 295.20 0.00 294.13 -0.36 3.00 3.00 0.01 2.98 -0.77
393.60 393.60 0.00 400.74 1.81 1.00 1.00 0.34 0.99 -1.20
393.60 393.60 0.00 394.99 0.35 2.00 2.00 0.01 1.99 -0.45
393.60 393.60 0.00 395.08 0.38 3.00 3.00 0.00 2.99 -0.50
492.00 492.00 0.00 489.62 -0.48 1.00 1.00 0.22 0.99 -0.70
492.00 492.00 0.00 492.16 0.03 2.00 2.00 -0.06 1.97 -1.55
492.00 492.00 0.00 492.41 0.08 3.00 3.00 -0.02 2.98 -0.53
590.40 590.40 0.00 589.42 -0.17 1.00 0.99 0.74 0.99 -1.00
590.40 590.40 0.00 590.48 0.01 2.00 2.00 0.00 2.00 0.10
590.40 590.40 0.00 588.10 -0.39 3.00 3.00 0.00 3.02 0.80
688.80 688.80 0.00 681.99 -0.99 1.00 1.00 0.42 0.98 -1.90
688.80 688.80 0.00 692.98 0.61 2.00 2.00 0.02 2.04 2.00
688.80 688.80 0.00 686.83 -0.29 3.00 3.00 -0.01 2.96 -1.27

of the proposed fault diagnosis to uncertainties is analysed. This is achieved

by corrupting the beam deflections Yn with sensor noise such that Y ∗
n is the

corrupted modal deflection and w is a white Gaussian noise drawn from a

normal distribution with zero mean and variance, that is, σ2 (w(t) ∼ N (0, σ2)).
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Table 4.3: Crack depth outcome of the FDD at different locations
and the corresponding modal frequencies of a fixed beam

Crack location (mm) Crack depth (mm) Frequency (Hz)

Actual Estimated Actual Estimated %Error f1 f2 f3

98.40 98.40 1.00 1.00 0.20 77.81 214.56 420.59
98.40 98.40 2.00 2.00 0.15 77.72 214.56 420.47
98.40 98.40 3.00 2.99 0.35 77.57 214.54 420.25
196.80 196.80 1.00 1.00 -0.48 77.84 214.43 420.28
196.80 196.80 2.00 2.00 -0.17 77.84 214.05 419.29
196.80 196.80 3.00 3.00 0.05 77.83 213.38 417.59
295.20 295.20 1.00 0.99 1.34 77.81 214.40 420.64
295.20 295.20 2.00 1.99 0.34 77.72 213.96 420.63
295.20 295.20 3.00 3.02 -0.01 77.57 213.18 420.63
393.60 393.60 1.00 0.98 2.18 77.78 214.56 420.22
393.60 393.60 2.00 2.00 0.04 77.62 214.55 419.06
393.60 393.60 3.00 3.00 -0.02 77.33 214.52 417.06
492.00 492.00 1.00 1.02 -1.75 77.80 214.46 420.54
492.00 492.00 2.00 2.01 -0.44 77.67 214.18 420.28
492.00 492.00 3.00 3.00 0.06 77.46 213.68 419.83
590.40 590.40 1.00 1.04 -3.73 77.83 214.38 420.41
590.40 590.40 2.00 2.00 0.06 77.81 213.87 419.80
590.40 590.40 3.00 3.00 -0.01 77.78 212.98 418.74
688.80 688.80 1.00 0.99 1.01 77.83 214.55 420.42
688.80 688.80 2.00 2.01 -0.38 77.80 214.51 419.82
688.80 688.80 3.00 2.98 0.51 77.74 214.44 418.77

This is expressed in Equation (4.37):

Y ∗
n = Yn + w(0, σ2) (4.37)

Analyses of the proposed fault diagnosis to corrupt modal deflections are

shown Figure 4.11 and Table 4.4. The noisy measurements are defined by

their deviations from the uncorrupted measurements. Figures 4.11a-c highlight

the estimated cracks of a cantilever beam at location 196.8 mm. The actual

crack depths are shown in green lines of Figures 4.11a-c, while the upper and

lower bound are represented by red lines (in Figures 4.11a-c) depicting a 10%

error bound. Result shows that at higher crack depths, the estimated crack

depths fall within the 10% error bound, while the 1 mm crack depth is more

sensitive as the deviation is increased. Within the considered deviation, the

estimated crack location is 196.8 mm. Further investigation at different crack

locations was carried out and the results are shown in Table 4.4. Within a

standard deviation of [0.0001 0.002], the result confirms that the proposed
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Figure 4.11: Sensitivity analysis of the proposed diagnosis tech-
niques to uncertainties at a crack location 196.8 mm. (a) Analysis
at a crack depth of 1 mm. SD represents the standard deviation of the corrupt
signal. (b) Analysis at a crack depth of 2 mm. (c) Analysis at a crack depth of
3 mm.

fault diagnosis is not sensitive to corrupt sensor measurements at higher crack

depths but the effect of sensor noise and uncertainties at lower crack depth

(that is, 1 mm) is pronounce. Beyond a standard deviation of 0.0002, estimates

of a 1 mm crack depth falls outside the 10% error bound.



4.6 Summary 97

Table 4.4: Crack depth outcome of the FDD at different locations
and the corresponding modal frequencies of a fixed beam

Actual
location
(mm)

Actual
depth
(mm)

Estimation depth error %

SD = 0.0001 SD = 0.0002 SD = 0.0004 SD = 0.0007 SD = 0.0009 SD = 0.001 SD = 0.002

98.40 1.00 5.43 9.83 17.86 28.01 33.61 36.07 50.44
98.40 2.00 -0.15 -0.40 -0.79 -1.55 -2.15 -2.47 -6.44
98.40 3.00 -0.26 -0.53 -1.80 -2.78 -3.45 -3.78 -7.11
196.80 1.00 -0.44 -0.62 1.31 9.34 13.96 16.05 29.74
196.80 2.00 0.00 0.02 0.05 0.09 0.11 0.12 -2.67
196.80 3.00 -0.13 -0.12 -0.10 -0.08 -0.07 -0.06 -0.07
295.20 1.00 -0.04 -0.06 -0.09 1.56 1.91 0.82 12.29
295.20 2.00 0.01 0.02 0.05 0.10 -0.10 -0.25 1.06
295.20 3.00 0.01 0.02 0.03 0.07 0.10 0.11 0.07
393.60 1.00 0.88 -1.42 -3.94 -9.97 -14.36 -16.63 14.00
393.60 2.00 -0.24 -0.51 -0.13 0.79 1.01 1.12 2.97
393.60 3.00 -0.18 -0.37 -0.74 -0.61 -0.11 0.14 1.54
492.00 1.00 -0.82 -1.89 -9.18 -17.22 -17.28 -17.07 16.77
492.00 2.00 0.11 0.28 0.61 1.12 1.45 1.59 8.09
492.00 3.00 0.09 0.19 0.40 0.70 0.90 1.00 2.01
590.40 1.00 1.93 3.07 8.07 14.13 16.66 17.62 24.72
590.40 2.00 -0.16 -0.32 -0.64 -1.37 -1.72 -1.90 -6.88
590.40 3.00 -0.11 -0.22 -0.45 -0.91 -1.34 -1.55 -3.43
688.80 1.00 1.32 2.66 5.41 9.26 11.66 12.81 30.02
688.80 2.00 -0.05 -0.11 -0.25 -0.56 -0.80 -0.92 -2.19
688.80 3.00 -0.08 -0.15 -0.29 -0.49 -0.62 0.69 -1.63
SD: Standard deviation

4.6 Summary

This chapter detailed a novel crack diagnosis algorithm for a beam structure.

The diagnosis algorithm combines the beam curvature, proportional orthogonal

decomposition (POD), Hölder exponent and supervised regression. The intact

and damaged state of two beam types namely: cantilever and fixed beam, were

modelled and passed through the proposed diagnostic technique to locate and

quantify the extent of the crack. First, the mode shapes of the beam were

transformed into curvatures using the central difference. The beam curvature

of different modes were combined and passed through the POD for features

extraction. Changes between the intact and damaged beam features were

examined using the Hölder exponent. The Hölder exponent operates on the

equivalent wavelet modulus maxima of the changes. Finally, the crack depth

was estimated using a supervised regression. Simulation results presented for

crack depths between 1 mm and 3 mm at different locations showed that the

proposed crack diagnosis is effective at locating and quantifying the extent of

crack. The algorithm accurately detected the crack locations while the mean

and standard deviation of all the deviations from the actual crack depths of the
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cantilever beam are 0.06 and 0.22 respectively. For the fixed beam, the mean

and standard deviation of all the deviations from the actual crack depths are

−0.03 and 1.13 respectively. Further, a comparison with a genetic algorithm

used by Vakil-Baghmisheh and Peimani (2008) indicated that the proposed

crack diagnosis in this research performed better at estimating the crack depth

and location. Sensitivity analysis was carried out to investigate the effect of

sensor noise on the proposed diagnosis technique. The results show that the

proposed technique is less sensitive to noise at higher crack depth but at 1 mm

crack depth, the technique is sensitive as the deviation increases beyond 0.0002.

Importantly, the diagnosis provides an approach to estimate the damage

rate used by the adaptive sliding mode controller to regulate the healing rate

in the next chapter.



Chapter 5

Integrated Sensing, Diagnosis

and Active Self-healing

5.1 Introduction

The mathematical model formulated in Chapter 2 showed how a typical passive

self-healing process is unregulated and does not guarantee a match with the

damage rate during healing. In Chapter 3, an active self-healing system was

formulated and simulated to demonstrate the effectiveness of a regulated self-

healing process to matching the healing and the user or environmental demands

such as the damage rate. Chapter 4 presented a novel crack diagnosis for beam

structures. This essentially forms the basis for the formulation of the estimated

damage rate used by the control algorithm as a reference model in this chapter.

In this chapter, the active self-healing is integrated with fault diagnosis.

Importantly, the combined systems demonstrate the concept of a unified sensing,

diagnosis and active self-healing system shown in Figure 5.1. The integrated

system ensures a regulated healing process that will guarantee a match between

the estimated damage rate from diagnosis and the actual healing rate during self-

healing. Also for the chosen self-healing system (piezo-electrolytic self-healing),

deterring factors such as dead-zone non-linearity, disturbances, unaccounted
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Figure 5.1: Application of the proposed unified sensing, diagnosis
and active self-healing system.

uncertainties, etc. that may have adverse effect on the performance of self-

healing are accommodated to ensure an effective self-healing process.

The chapter presents:

• A unified sensing, diagnosis and active self-healing system as an alternative

to the passive self-healing system.

• A demonstration of the effectiveness of the proposed framework through

simulation.

In the following (Kuponu et al., 2017b), the practical realisation and math-

ematical formulation of the proposed work, i.e. a unified sensing, diagnosis

and active self-healing system, will be presented in Section 5.2 and Section 5.3

respectively. This will be followed by example simulations in Section 5.4 to

demonstrate the proposed integrated system. A comparison with the equivalent

passive self-healing system will also be demonstrated in this section. The

chapter will then conclude with a summary in Section 5.5.

5.2 Practical Realisation

The self-healing cantilever beam in Figure 5.2 is a practical example of the

unified sensing, diagnosis and active self-healing.
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Figure 5.2: Self-healing cantilever beam. The definitions of the colours
are: grey- piezo-electrolyte composite, black- electrically conductive material
acting as electrodes (e.g. steel bolt).

The cantilever beam consists of layers of piezo-electrolyte composite held to-

gether by an electrically conductive material. Such materials have already been

demonstrated to possess self-healing properties (Sayayr et al., 2014; Soroushian

et al., 2012). The electrically conductive material acts as electrodes and in an

open loop passive mode, the piezoelectric properties of the material converts

induced stress from a vibration shaker on one of the electrodes into electrical

energy. This converted energy drives the deposition of healing agent (copper

nanoparticles) in the vicinity of the electrode. In the proposed active self-

healing mode, additional components are added on the beam. Accelerometers

are placed in strategic places on the beam to measure the beam’s acceleration

for the purpose of diagnosis. The control system and fault diagnosis can be

implemented using either dSpace or National Instrument rapid control proto-

typing (RCP) hardware. The voltage demands of the control system is added

by a power supply unit while a current transducer is attached to the electrodes

to measure the current during electrolysis. An induced fault in form of a cut

on the surface of the electrode changes the local stiffness of the beam. In the

active self-healing mode, the desired healing rate is a function of the fault

condition and is determined by the vibration analysis of the proposed fault

diagnosis. Given that the cantilever beam is held together by more than one

bolt (electrode), the diagnosed location determines the electrode to be activated.

The control system demands a voltage from the power supply unit based on

the output of the fault diagnosis (that is, the desired healing rate). Essentially,

the controller adds to the vibration input (piezo-induced voltage) to ensure

a desired current flow that will deposit a mass of the healing agent (copper

nanoparticles) to seal the cut during self-healing process.
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5.3 Mathematical Preliminaries

Figure 5.3 shows a cantilever beam with an induced fault in form of a cut on

the surface of the electrode. This is analysed by the proposed fault diagnosis

from Chapter 4 to estimate the crack depth and location.

Figure 5.3: A cracked cantilever beam.

Given that the control system activates the electrode used to supply the voltage

demands, the activation status sact of ro number of electrodes is defined as

Equation (5.1):

sact =

 b1 b2 b3 ... bro

0 0 0 ... 0


2×ro

(5.1)

where bio captures the position of the electrode and io ∈ [1 ro]. The second

row of Equation (5.1) represents the corresponding electrode status, given that

a 0 implies a deactivated electrode and a 1 indicates an activated electrode.

The estimated fault location lest can be compared with the electrode locations

to determine which element in the second row of Equation (5.1) to be flagged

as 1. That is:

sact(2, io) =


1 if lest = bio

0 otherwise
(5.2)

The estimated crack depth can be used to formulate a reference model for

the control input to match. Equation (5.3) defines a normalised estimated crack

depth such that aest

h
= 0 implies no crack and aest

h
= 1 indicates maximum

crack depth; where h is the beam height.

aest

h
∼ [0, 1] (5.3)
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The reference model Q̇d is defined by the normalised crack estimate and a gain

g in Equation (5.4). The gain g adds the flexibility of increasing the control

effort and reducing the self-healing time.

Q̇d(t) = g
aest(t)
h

(5.4)

A crack can form different shapes but in this research, the shape formed is taken

to be an equilateral triangle and shown in Figure 5.3. This shape has been

chosen primarily to demonstrate the proposed concept and may not necessarily

represent all possible shapes of a propagated crack. Equation (5.5) defines the

volume to be filled at the first instance of a crack.

Vfest =
√

3
3 aest(tf )2w (5.5)

The term aest(tf) is the estimated crack depth at the fault time tf , w is the

beam width. Since the width of the beam remains unchanged, equation (5.5)

implies that the estimated volume Vfest to be filled and the square of the

estimated crack depth a2
est are in direct proportionality. Equation (5.5) is

expressed in terms of the estimated mass Mcest to fill the crack because of the

choice of self-healing mechanism considered in this research. The estimated

mass is defined as Equation (5.6).

Mcest =
√

3
3 ρshaest(tf )2w (5.6)

Figure 5.4: A step by step visual of the copper nanoparticles coating
during healing.

During self-healing, it is assumed that surface coating is even to retain

the equilateral shape of the reduced crack (see Figure 5.4). This is again for
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simplicity and for the purpose of demonstrating the proposed concept. In

practice, even coating may not necessarily represent the actual healing process

since the ions move randomly during electrolysis. Thus, leading to an uneven

coating of the crack surface (Sayayr et al., 2014; Soroushian et al., 2012), and

this can be obtained experimentally. The healing agent with a density ρsh

deposits a mass
∫ th

tf
Ṁh(t)dt between the fault time tf and the healed time th

until the total depth filled ash(th) is equal to the estimated crack depth aest(tf ).

Also, ρsh is not necessary equal to the density ρ of the material. To achieve

ash(th) = aest(tf ), equation (5.7) must hold.

∫ th

tf

Ṁh(t)dt = Mcest (5.7)

In self-healing mode, the fault monitoring index in Equation (4.25) is redefined

as Equation (5.8).

index(t) =


0, if

∫ th
tf
Ṁh(t)dt = Mcest (fault healed)

1, otherwise (fault mode)
(5.8)

Similarly, the second row of Equation (5.1) is reset to zero.
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5.4 Active Self-healing Example Simulations

The self-healing system is modelled as a carbon-fibre/PVDF-HFP composite

cantilever beam of dimensions 820 mm by 20 mm by 10 mm using a finite

element model with 25 elements. The mechanical and electrical properties are

presented in Table 5.1 while the control parameters are in Table 5.2. The density

of the healing agent is ρsh=8950 kg/m3, that is, the copper nanoparticles used

in the experiments carried out by Sayayr et al. (2014) and Soroushian et al.

(2012). All simulations and analyses are carried out in Matlab. These system

properties are chosen to demonstrate the conceptual idea of a unified sensing,

diagnosis and active self-healing system.

Table 5.1: Properties of a composite cantilever beam (Krawczuk
et al., 1997; Kuponu et al., 2016; Reverchon and Cardea, 2006;
Sayayr et al., 2014).

Properties Matrix Carbon-Fibre PVDF-HFP

Young’s Modulus E 3.43 GPa 275.6 GPa 44 GPa
Poisson ratio v 0.35 0.2 0.33
Density ρ 1250 kg/m3 1900 kg/m3 1780 kg/m3

Volume fraction 17 45 38
Piezoelectric coupling d33 - - −24 pC/N
Number of layers z - - 130
Resistance R - - 19.2 kΩ
Capacitance C - - 1.59 µF

Table 5.2: Control and other system parameters. (Kuponu et al.,
2017a)

Parameter Value

K∗ 2.5
λc 5
Kd 50
γ 0.5
mmin 0.01
ϵ 0.01
g 1
δ 8.4 × 10−7

The deflections and radius of curvatures of four modes of the intact beam

and a 3 mm cracked beam at location 295.2 mm are shown in Figure 5.5.
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Figure 5.5: Mode shape (a-d) and radius of curvature (e-h) of the
first four modes of an intact and a 3mm cracked beam at location
295.2mm

Similarly, the presence of a crack in the beam results in changes in the

modal frequencies as seen in Table 5.3. The POD algorithm is applied to

extract unique features associated with the intact curvature and the cracked

curvature. According to Figure 5.6a, the difference between the extracted
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Figure 5.6: (a) Difference between the unique features extracted by
POD from an intact and the cracked beam curvatures. (b) Cross-
validation: The normalised root mean square (NRMSE) of different
polynomial order used to select the order number. This step avoids
under and over fitting.

features suggests that the point of maximum peak is the crack location. The

order of the polynomial expressed in Equation (4.31) is selected as r = 10 based

on the cross-validation carried out in Figure 5.6b. This ensures that under

and over fitting of the regression is avoided. The corresponding weightings are

found in Equation (E.4) of Appendix E. The performance of the crack diagnosis

to different crack depths and locations is shown in Table 5.3.

An open loop passive self-healing system is investigated when a 3 mm crack

located at 295.2 mm (i.e., second electrode) is introduced at 10 seconds. Forces

of 1 N and 0.6 N are applied continuously at a frequency of 100 rad/sec to

the electromechanical composite material at 10s and 150s respectively. These

forces are representative of the normal operating characteristics of a structure,

for example, input from rotating machinery, footfall on a bridge, turbulence on

an aircraft, waves on a ship, etc. This takes advantage of the piezoelectric effect

of the electromechanical material to generate equivalent voltages of 1.86 mV

and 1.11 mV respectively. The voltages are rectified to drive the electrolytic

process. The results of the passive healing process are shown in Figure 5.7 to

highlight the inherent drawback of this process. The healing process is not

initiated because the chemical kinetic needed to deposit the healing agent i.e.
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Table 5.3: Crack depth outcome of the FDD at different locations
and the corresponding modal frequencies of a cantilever beam

Crack location (mm) Crack depth (mm) Frequency (Hz)

Actual Estimated Actual Estimated %Error f1 f2 f3 f4

- - - - - 15.51 97.21 272.20 533.40
98.40 98.40 1.00 1.00 0.28 15.49 97.18 272.19 533.34
98.40 98.40 1.50 1.50 0.05 15.46 97.13 272.19 533.28
98.40 98.40 2.00 2.00 -0.24 15.43 97.07 272.18 533.19
98.40 98.40 2.50 2.49 0.22 15.38 97.00 272.17 533.07
98.40 98.40 3.00 2.99 0.48 15.32 96.90 272.16 532.92
196.80 196.80 1.00 1.00 0.04 15.50 97.21 272.03 532.95
196.80 196.80 1.50 1.50 0.00 15.48 97.21 271.83 532.42
196.80 196.80 2.00 2.00 0.04 15.46 97.21 271.55 531.70
196.80 196.80 2.50 2.49 0.21 15.43 97.20 271.19 530.76
196.80 196.80 3.00 3.02 -0.78 15.39 97.20 270.73 529.57
295.20 295.20 1.00 1.00 0.12 15.50 97.16 272.00 533.40
295.20 295.20 1.50 1.50 0.01 15.49 97.11 271.77 533.39
295.20 295.20 2.00 2.00 -0.13 15.48 97.03 271.45 533.39
295.20 295.20 2.50 2.50 -0.04 15.46 96.92 271.03 533.39
295.20 295.20 3.00 2.97 1.11 15.44 96.79 270.50 533.39
393.60 393.60 1.00 1.01 -0.73 15.51 97.11 272.19 532.88
393.60 393.60 1.50 1.50 0.06 15.50 97.00 272.19 532.27
393.60 393.60 2.00 2.00 -0.01 15.50 96.84 272.18 531.44
393.60 393.60 2.50 2.50 -0.01 15.49 96.63 272.17 530.34
393.60 393.60 3.00 3.01 -0.36 15.48 96.37 272.16 528.95
492.00 492.00 1.00 1.01 -0.67 15.51 97.12 272.04 533.29
492.00 492.00 1.50 1.50 0.11 15.51 97.01 271.86 533.16
492.00 492.00 2.00 2.00 0.06 15.51 96.86 271.62 532.99
492.00 492.00 2.50 2.50 0.10 15.50 96.66 271.29 532.76
492.00 492.00 3.00 3.01 -0.47 15.50 96.41 270.88 532.46
590.40 590.40 1.00 1.01 -0.79 15.51 97.17 271.88 533.06
590.40 590.40 1.50 1.50 -0.05 15.51 97.11 271.51 532.68
590.40 590.40 2.00 2.00 0.15 15.51 97.03 271.00 532.15
590.40 590.40 2.50 2.50 -0.00 15.51 96.93 270.32 531.45
590.40 590.40 3.00 2.96 1.17 15.51 96.80 269.46 530.57
688.80 688.80 1.00 0.99 0.85 15.51 97.20 272.08 532.91
688.80 688.80 1.50 1.50 -0.23 15.51 97.19 271.94 532.33
688.80 688.80 2.00 2.00 0.03 15.51 97.18 271.74 531.53
688.80 688.80 2.50 2.50 -0.11 15.51 97.16 271.48 530.48
688.80 688.80 3.00 2.96 1.31 15.51 97.13 271.14 529.11

copper nanoparticles, is not present. The generated piezo-induced voltages are

less than Erev, and as a result, no current flow to deposit the healing agent (see

Figures 5.7a - 5.7c). Figures 5.7d - 5.7e show a current flow when the voltages

are amplified by a gain of 6. The piezoelectric and electrolytic components of

the self-healing material are considered as separate elements, while the addition

of amplification leads the system to operate more in an open-loop as opposed
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Figure 5.7: Illustration of an open loop self-healing process for a
3mm crack depth located at 295.2mm and introduced at 10seconds:
(a-c) The electromechanical material converts applied force of 1 N and 0.6 N
to 1.86 mV and 1.11 mV respectively. This causes a dead-zone i.e. no current
flow because the voltages are less than Erev. Thus no healing and no mass
deposited to reduce the crack depth. (d-f) The amplified voltages produce
current flow for mass deposition and the crack depth is reduced during healing.

to a passive self-healing mode. At 150 seconds, the system again experiences a

dead-zone because the amplified voltage drops below Erev (see black dashes in

Figure 5.7d) as the crack is healed. The chemical kinetic produced between

10 and 150 seconds deposits a mass, leading to a reduction in the crack depth

(see Figures 5.7f). However, a complete healing was not achieved because

the crack depth does not reduce to zero. This is a result of the duration the

applied stress and the inherent dead-zone of the self-healing mechanism. More

so, amplification does not necessarily guarantee a desired response. An open

loop system is unreliable and does not benefit from a feedback mechanism to

achieve a desired response. The fundamental issue with this arrangement is

that the piezoelectric and electrolyte are mixed in the self-healing material

and can not be considered as separate elements. Nonetheless, this analysis

shows the effect of amplification from a conceptual point of view. Similarly, the

effect of uncertainties or disturbances defined in Section 2.5 of Chapter 2 was

investigated on the self-healing system and shown in Figure 5.8. The voltage

between 10 and 150 seconds is greater than Erev but the system operates in



110 Integrated Sensing, Diagnosis and Active Self-healing

the dead-zone region; hence no self-healing. This shows that uncertainties have

an adverse effect on the self-healing process.
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Figure 5.8: The effect of uncertainties on an open loop self-healing
process for a 3mm crack depth located at 295.2mm and introduced
at 10seconds: The voltage between 10 and 180 seconds is greater than Erev

but the system operates in the dead-zone region; hence no self-healing. This is
due to the effect of uncertainties on the self-healing system.

In comparison, real time monitoring of the self-healing system in the presence

of uncertainties or disturbances is presented to demonstrate the concept of

unified sensing, diagnosis and active self-healing in Figures 5.9 - 5.11. Figure 5.9

shows an electrolytic self-healing process driven by the control input. Up until

10 seconds, the monitoring index indicates a healthy system shown as the blue

dash-dotted line in Figure 5.9a. At 10 seconds, a crack is detected at location

295.2 mm and flagged by the monitoring index (see blue line in Figure 5.9a)The

estimated crack location also allows the control system to trigger the second

electrode based on Equations (5.1) - (5.2). The fault diagnosis quantifies and

estimates the crack depth as 2.97 mm; that is, a deviation of 1.11% from the

actual 3 mm crack depth. The adaptive controller gets information from the

fault diagnosis algorithm and induces a matching external stimuli (black line

of Figure 5.9b) that ensures a match between the damage and the healing rate

(see red dashed line and blue line in Figure 5.9a). During healing, the crack

gradually reduces (see red dotted line in Figure 5.9c) as the estimated required

mass (Equation (2.8) and Figure 5.9d) is attained. However, poor estimates at

lower crack depths cause the controller to supply the wrong external energy
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Figure 5.9: Integrated sensing, diagnosis and active self-healing sys-
tem illustrated for a 3mm crack depth located at 295.2mm and in-
troduced at 10 seconds. This ignores the piezoelectric effect and drives the
electrolytic process with the control only. The control produces an external
energy that matches the diagnosed estimated damage. This ensures that a de-
sired healing response is achieved but as the crack decreases, the fault diagnosis
becomes inaccurate in estimating the damage rate.

(see black line of Figure 5.9b and red dotted line of Figure 5.9c) from about 40

seconds. This is evident in Figure 5.9a where the measure of damage and the

matching response abruptly jumps to zero and the monitoring index indicates

the fault healed status (blue dotted line in Figure 5.9a). Other examples of poor

estimates for different crack depths and locations can be found in Figure E.1

of Appendix E.

5.4.1 Active Self-healing with Modified Weightings

Despite the poor crack estimates at lower depth, the current flow during

electrolysis achieved the estimated required mass. However, the effectiveness of

the adaptive control to supply the correct external input for the self-healing

process depends on the accuracy of the fault diagnosis. Hence, the need for an

improved diagnosis. To estimate the crack depths as close as possible to zero,

the weightings in Equation (4.35) are adapted as the crack depth reduces; this

is expressed as Equation (5.9):
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Figure 5.10: Integrated sensing, diagnosis and active self-healing
system illustrated for a 3mm crack depth located at 295.2mm and
introduced at 10 second with the adapted weightings. The diagnosis at
lower crack depth becomes more accurate and the control produces an external
energy that matches the diagnosed estimated damage rate. This ensures that a
desired healing response is achieved all through the healing process.

ζ =



[
ζ1i ζ2i . . . . . . ζrji

]
1×rj

if a > 0.75mm

[
ζ1ii ζ2ii . . . . . . ζrjii

]
1×rj

if a > 0.1mm & a ≤ 0.75mm

[
ζ1iii ζ2iii . . . . . . ζrjiii

]
1×rj

if a > 0.03mm & a ≤ 0.1mm

[
ζ1iv ζ2iv . . . . . . ζrjiv

]
1×rj

if a > 0.008mm & a ≤ 0.03mm

[
ζ1v ζ2v . . . . . . ζrjv

]
1×rj

if a ≤ 0.008mm

(5.9)

Figure 5.10 shows the result of the proposed self-healing framework with

the adapted weightings. The corresponding adapted weightings are found

in Equations (E.4) - (E.8) of Appendix E. Smaller crack depths are better

estimated and the appropriate external energy is supplied by the control. The

results in Figure 5.10 can be compared with its equivalent passive self-healing

in Figures 5.7(d-f). The passive self-healing reduced the crack depth to less
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Figure 5.11: Integrated sensing, diagnosis and active self-healing
system is demonstrated for a composite self-healing material whose
healing mechanism is driven by piezoelectricity and electrolysis. The
electromechanical material produces insufficient voltages when forces of 1 N
and 0.6 N are applied. This leads to in a dead-zone and no healing but the
adaptive control compensates and ensures that a desired healing response that
is based on a diagnosed output is achieved.

than three quarters of the initial crack depth while the proposed self-healing

framework achieved a crack depth that is closer to zero. This demonstrates

some of the challenges faced by passive self-healing that the unified sensing,

diagnosis and active self-healing system can overcome. However, the inclusion

of secondary systems, sensors and actuators increases the complexity and

cost of the self-healing system; and can potentially make the system unstable.

Other example simulations of the proposed self-healing system at different

crack locations are shown in Figures E.2 - E.3 of Appendix E. Figure 5.11

demonstrates a composite self-healing material whose healing mechanism is

driven by piezoelectricity and feedback controlled electrolysis. Like with the

open loop process in Figure 5.7a, the piezo-induced voltages are insufficient to

drive the healing process. The adaptive controller supplies external energy to

compensate for the insufficient voltages and to match the estimated damage

rate. Also, the match between the estimated damage rate and the healing

rate was achieved in the presence of uncertainties. The gradual decrease of

the crack depth during the active self-healing process is shown in Figure 5.12.
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The induced crack depth at 10 seconds begins to decrease at the healing agent

(copper nanoparticles) is deposited over time.
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Figure 5.12: The effect of healing at a crack location using the differ-
ence between the unique features extracted by POD from an intact
and a cracked beam of curvatures.

5.5 Conclusion

This chapter presents a novel concept of a unified sensing, diagnosis and

active self-healing system framework as an alternative to a passive self-healing

system. The framework integrates the self-healing mechanism modelled in

Chapter 2, the feedback control formulation of Chapter 3 and the new fault

diagnosis algorithm of Chapter 4. This ensures that a proper match between

the estimated damage rate and the healing rate is achieved while taking into

account the inherent dead-zone non-linearity of the self-healing mechanism,

disturbances and uncertainties that may be encountered during self-healing. Self-

healing composite materials were modelled and simulated as cantilever beams

to represent a range of applications in engineering systems like footbridges,

airliner wings, turbine blades, etc. The healing mechanisms demonstrated

were that of an isolated electrolytic process and a piezo-electrolytic process.

Simulation results successfully showed that:
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1. Real-time condition monitoring and diagnosis enables early prediction of

fault and current healing state.

2. Effective healing can depend on the condition monitoring and diagnosis

to maximize healing at the fault location.

3. The self-healing process can be regulated and an effective match between

the healing rate and the estimated damage rate (defined by the fault

diagnosis) can be achieved. This was achieved in constant and chang-

ing environment particularly as the self-healing systems are exposed to

uncertainties and disturbances.

Overall, the work presented in this chapter is an important milestone to

the successful implementation of self-healing in industrial applications. The

next chapter summarises and gives a conclusion on all the investigations made

in this research. Possible future research directions are also recommended.





Chapter 6

Conclusion and Future Work

In this closing chapter, a conclusion of the current work are presented in

Section 6.1 and future research directions are discussed in Section 6.2.

6.1 Conclusion

The emphasis of the work in this research was on addressing some of the technical

drawbacks in self-healing. These include: (i) the passive way healing is initiated;

(ii) the unregulated nature of the healing process; (iii) no monitoring of the

current healing state or dynamics; (iv) The location of healing mechanisms

determine the effectiveness of healing. This means that maximum healing is

not guaranteed at the fault location. More importantly, the effect of these

drawbacks is a mismatch between the healing rate and damage rate.

This research investigated how the rate of healing can be controlled and

optimized with active self-healing. In Chapter 2, a mathematical model of

a self-healing mechanism was formulated. The model is based on previous

experimental works by Soroushian et al. (2012) and Sayayr et al. (2014), which

proposed an electromechanical material system whose intrinsic self-healing

mechanism is based on a piezo-electrolytic drive. The piezoelectric direct

effect transforms an induced stress into electrical energy, which drives the

healing agent (copper nano-particles) through an electrolysis process to the
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damaged region. Importantly, the formulation laid the foundation to investigate

the healing rate of a typical passive self-healing process and to develop the

active self-healing system in subsequent chapters. In addition to the listed

drawbacks above, this particular self-healing system suffers from an inherent

non-linear dead-zone which limits the performance of self-healing. The analysis

carried out on the passive self-healing system revealed that the healing process

does not guarantee that the onset of damage is stopped. Also, the process

is unable to achieve the desired healing response over a period of time and

handling of uncertainty/disturbance is also poor. More so, amplification of

the piezo-induced voltage was investigated from a conceptual point of view.

The piezoelectric and electrolytic component of the self-healing material were

considered as separate elements, rather than as a mixture in the self-healing

material. In this arrangement, the system operates more in an open-loop as

opposed to a passive self-healing mode but remains unreliable and does not

guarantee a desired healing response; since the system does not benefit from

any feedback mechanism.

An active self-healing system was presented in Chapter 3. This was a closed

loop system that takes advantage of sensing and feedback control to regulate

the healing rate to meet user or environmental demands, such as the need

to match the damage rate. Adaptive sliding mode controllers were designed

and implemented to overcome the unknown dead-zone, as well as to ensure a

proper match between the healing and damage rate. By using sinusoidal stress

inputs with constant and changing amplitudes, the effect of controlled self-

healing system to constant and varying conditions was investigated. The control

simulations successfully showed that the healing rate can be effectively regulated

and matched with environmental demands (damage rate). In particular, the

effect of uncertainties or disturbances was investigated and results revealed

that the active self-healing system can potentially minimize this effect, while

ensuring a desired healing response. In contrast, the passive self-healing

performs poorly in the presence of uncertainties and a desired healing response
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was not guaranteed. The active self-healing results are an important milestone in

regulating the healing rate, with reference to an estimated damage rate, of a self-

healing system. Also, an active self-healing system can benefit from a secondary

fault diagnosis system to estimate the damage rate. Thus, Chapter 4 focussed

on developing a fault diagnosis system for beam structures. This benefits

from sensor measurements to detect and quantify faults. A beam structure

was selected because it represents many industrial systems such as helicopter,

airliner wings, bridges, turbine blades, etc. Precisely, the fault diagnosis system

combined the beam curvature, proportional orthogonal decomposition, hölder

exponent and supervised regression to estimate the crack depth and location

associated with a faulty beam. Simulation results showed a high degree of

accuracy in detecting the crack depth and location of cantilever and fixed beams.

In particularly, a sensitivity analysis carried out shows the robustness of the

fault diagnosis system to uncertainty / disturbance. Similarly, the proposed

fault diagnosis system in this research was compared with the genetic algorithm

implemented by Vakil-Baghmisheh and Peimani (2008); comparison affirmed

the high degree of accuracy of the proposed fault diagnosis system.

Importantly, the works presented thus far formed the basis for which a unified

sensing, diagnosis and active self-healing system was formulated in Chapter 5,

as an alternative to the passive self-healing. This essentially combined sensing,

monitoring and diagnosis, feedback control and self-healing to regulate the

healing process. From a practical perspective, a beam was considered as a

self-healing composite material, and the healing mechanisms demonstrated

were that of an isolated electrolytic process and piezo-electrolytic process. The

fault diagnosis system was used to estimate the damage rate of a cracked

beam. The unified system was simulated and results revealed that real-time

condition monitoring enabled early prediction of fault and current healing state

of the process. Also, the effectiveness of healing depends on the condition

monitoring and diagnosis; thus, maximizing healing at the fault location. The

self-healing process is regulated, while the diagnosis system ensured that the



120 Conclusion and Future Work

needed energy or effort required by the feedback controller to match the healing

and estimated damage rate was achieved. These results were compared with

those obtained from a passive self-healing system, and comparison showed

a significant discrepancy between the two systems. Importantly, the unified

self-healing system suggests an efficient way to counteract the effect of damage

and improve the performance of self-healing, particularly as the materials are

exposed to uncertainties.

In conclusion, improving the rate of healing of self-healing systems is one

of key contributions of this research. System complexities and consumer re-

quirements have resulted in a rise in the use of composite materials (Hale,

2006); hence, systems can potentially benefit from self-healing. More so as

this contribution is an important milestone to successful implementation of

self-healing in industrial applications. Hence, the proposed unified self-healing

system potentially offers economic and environmental benefits, improved relia-

bility and aversion of a disastrous event that could be life threatening. The

unified self-healing system also overcomes some of the drawbacks of passive

self-healing but has its challenges. The inclusion of secondary systems, sensors

and actuators increases the complexity and cost of the self-healing system;

and can potentially make the system unstable. Nonetheless, this research sets

a theoretical framework for other research works on self-healing to develop

into industrial application and improve the technological readiness. Other key

contributions are set out in the following section.

6.2 Future Work

Below is a list of suggested future research directions.

i The unified sensing, diagnosis and active self-healing system presented in

this research has been analysed and simulated using a computer aided

tool, that is, Matlab. However, experimental validation of the proposed

work is essential. This would give more insight into the findings and
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help improve the mathematical formulations presented in this research.

Assumptions such as the crack shape, the shape formed and the coating

during self-healing will be well formulated with experimental validation.

ii This work has demonstrated a unified sensing, diagnosis and active self-

healing system using two intrinsic self-healing mechanisms, that is, the

electrolytic and the piezo-electrolytic self-healing mechanisms. Be that

as it may, a variety of self-healing methods and mechanisms exist and

the proposed work can be extended to other methods. This will validate

the flexibility and adaptability of unified sensing, diagnosis and active

self-healing system to other self-healing methods and mechanism.

iii While the current work suggests a maximum healing at a location de-

tected by the fault diagnosis system, a distributed network of sensors

and actuation can be considered for further exploration. This should

investigate how healing can be more effective by channelling energy from

the distributed actuation to the point of maximum need.

iv In the absence of experimental validation, a comparison of the presented

fault diagnosis system with the works of Vakil-Baghmisheh and Peimani

(2008) was made for validation. However, the fault diagnosis system can

benefit from experimental validation and an extension to other beam

structures such as a simply supported beam.
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Appendix A

Proof of Stability

Proof. The Lyapunov candidate W is given by Equation (A.1).

W (t) = 1
2

(
1
m
s2

ϵ + 1
γ
φ̃2 + 1

Γ Ṽ
2

pr

)
(A.1)

The derivative of W along the system trajectory is expressed in Equation (A.3).

W (t) = 1
2

(
1
m
s2

ϵ + 1
γ
φ̃2 + 1

Γ Ṽ
2
)

(A.2)

Ẇ (t) = 1
m
sϵṡ+ 1

γ
φ̃

˙̂
φ+ 1

Γ Ṽ
˙̂
V (A.3)

Equation (3.26) and Equation (3.27) are substituted into Equation (A.3) to

give Equation (A.4).

Ẇ (t) = −λcKdsϵs+ λcsϵ

(
V (t) − V̂ + φ̂Q̇d(t) − k∗sat

(
s
ϵ

))

+λcsϵ

(
∆I(t)

m
− φQ̇d(t)

)
+ 1

γ
φ̃

˙̂
φ+ 1

Γ Ṽ
˙̂
V (A.4)

From Equation (A.4), the adaptive laws become Equation (A.5) and Equa-

tion (A.6).
˙̂
φ = −γλcQ̇d(t)sϵ (A.5)

˙̂
V = λcΓsϵ (A.6)



138 Proof of Stability

Substituting the adaptive laws Equation (A.5) and Equation (A.6) into Equa-

tion (A.4) gives the expression in Equation (A.7).

Ẇ (t) = −λcKdsϵs− λck
∗sϵsat

(
s

ϵ

)
+ ∆I(t)

m
λcsϵ (A.7)

Ẇ (t) = −λcKdsϵ

(
sϵ + ϵsat

(
s

ϵ

))
− λck

∗sϵsat

(
s

ϵ

)
+ ∆I(t)

m
λcsϵ (A.8)

When |s| ≤ ϵ, |sϵ| = 0 and Equation (A.8) is zero Equation (A.9).

Ẇ (t) = 0 ∀|s| ≤ ϵ (A.9)

When |s| > ϵ, |sϵ| = sϵsat(s/ϵ). By also taking into account k∗ ≥ ρ/mmin,

Equation (A.8) is expressed to give Equation (A.12).

Ẇ (t) = −λcKds
2
ϵ − (Kdϵ+ k∗)λc|sϵ| + ∆I(t)

m
λcsϵ (A.10)

Ẇ (t) ≤ −λcKds
2
ϵ −Kdϵλc|sϵ| −

(
k∗ − ∆I(t)

m

)
λc|sϵ| (A.11)

Ẇ (t) ≤ −λcKds
2
ϵ ∀|s| > ϵ (A.12)

The above formulations in Equation (A.9) and Equation (A.12) indicate

that sϵ, φ̃ and Ṽ are globally bounded. This also means that s(t) is bounded

and the control design guarantees that the system trajectory will converge to

the sliding mode.



Appendix B

Simulation Results of Active

Self-healing

The following figures are the simulation results of the active self-healing proposed

in Chapter 3.
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Figure B.1: (a) The sliding surface s = 0 of the adaptive Sliding
mode controller. (b) The tuning error sϵ used during the control
design in place of the sliding surface s to avoid chattering.
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Figure B.2: (a) The sliding surface s = 0 of the adaptive Sliding
mode controller in constant environmental conditions. (b) The tun-
ing error sϵ used during the control design in place of the sliding
surface s to avoid chattering.
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Figure B.3: (a) The sliding surface s = 0 of the adaptive Sliding mode
controller in varying environmental conditions. (b) The tuning error
sϵ used during the control design in place of the sliding surface s to
avoid chattering.
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Figure B.4: Adaptive SMC applied to a case where the composite
material is subjected to constant load input in the presence of uncer-
tainties. This depicts a material exposed to constant environmental conditions.
(a) The piezo-induced voltage is insufficient to drive the healing process since
Vpr < Êrev. The feedback adaptive controller contribute an external input that
ensures that the current flow during electrolysis tracks the desired performance.
(b) The actual current flow during electrolysis matches a defined reference
current flow. The reference and actual current represent the damage rate and
healing rate respectively. (c) Relative error of the adaptive SMC defined as the
difference between the actual and reference current divided by the reference
current. (d) The equivalent mass deposited over time for the closed loop active
self-healing process.
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Figure B.5: (a) The sliding surface s = 0 of the adaptive Sliding
mode controller in constant environmental conditions. (b) The tun-
ing error sϵ used during the control design in place of the sliding
surface s to avoid chattering.
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Figure B.6: Adaptive SMC applied to a case where the compos-
ite material is subjected to different load inputs at different time
instants and in the present of uncertainties. This depicts a material
exposed to varying environmental conditions. (a) The piezo-induced voltage
is insufficient to drive the healing process during the first 75 seconds since
Vpr < Êrev. The feedback adaptive controller contributes an input and ensures
that the current flow during electrolysis tracks the desired performance. (b) The
actual current flow during electrolysis matches a defined reference current flow.
The reference and actual current represent the damage rate and healing rate
respectively. (c) Relative error of the adaptive SMC defined as the difference
between the actual and reference current divided by the reference current. (d)
The equivalent mass deposited over time for the closed loop active self-healing
process.
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Figure B.7: (a) The sliding surface s = 0 of the adaptive Sliding mode
controller in varying environmental conditions. (b) The tuning error
sϵ used during the control design in place of the sliding surface s to
avoid chattering.



Appendix C

Beam Preliminary Mathematics

Figure C.1: An element of a beam acted upon by forces.

Consider the forces acting on an element of a beam of length dx in Figure C.1.

F (x, t), q, and M represent the concentrated force, shear force and moment

acting on the element respectively. Equation (C.1) gives the balanced moments.

M − f(x, t)dxdx2 − (M + dM) + (q + dq)dx = 0 (C.1)

Given that dq = ∂q
∂x
dx and dM = ∂M

∂x
dx, Equation (C.1) can be expressed as:

− f(x, t)dx
2

2 − ∂M

∂x
dx+ qdx+ ∂q

∂x
dx2 = 0 (C.2)

Disregarding the second order terms of dx gives:

q = ∂M

∂x
(C.3)
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Equation (C.4) gives the balance forces in the vertical direction, given the cross

sectional area A, density ρ, shear force q, moment of inertia I and Young’s

modulus E.

F (x, t)dx+ q − (q + dq) − ρAdx
∂2y(x, t)
∂t2

= 0 (C.4)

F (x, t)dx− ∂q

∂x
dx− ρAdx

∂2y(x, t)
∂t2

= 0 (C.5)

F (x, t) − ∂q

∂x
− ρA

∂2y(x, t)
∂t2

= 0 (C.6)

Substituting Equation (C.3) in Equation (C.6) gives Equation (C.7).

F (x, t) = ∂

∂x

(∂M
∂x

)
+ ρA

∂2y(x, t)
∂t2

(C.7)

Since M = EI ∂2y(x,t)
∂x2 , Equation (C.7) becomes Equation (C.8).

F (x, t) = EI
∂4y(x, t)
∂x4 + ρA

∂2y(x, t)
∂t2

(C.8)

When F (x, t) = 0, Equation (C.8) can be written as Equation (C.9).

EI
∂4y(x, t)
∂x4 + ρA

∂2y(x, t)
∂t2

= 0 (C.9)

Equation (C.8) and Equation (C.9) are the Euler-Bernoulli beam’s differential

equations for a forced and free vibration respectively, while neglecting damping.

Given the displacement of a beam at x location as y(x, t) = Y (x)sin(ωt),

the following expressions are derived from Equation (C.9) to express the general

solution.
∂4Y (x)
∂x4 − ρAω2

EI
Y (x) = 0 (C.10)

The general solution for the fourth order ordinary differential equation

becomes:

Y (x) = η1cosh

(
λ
x

L

)
+ η2sinh

(
λ
x

L

)
+ η3cos

(
λ
x

L

)
+ η4sin

(
λ
x

L

)
(C.11)
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Where λ = 4
√
ω2ρAL4/EI.





Appendix D

Other Simulation Results of

Crack diagnosis

Cantilever beam parameters

The following represents the fault diagnosis parameters used in Chapter 4 to

evaluate the crack depth:

p = 0.001, min

(
N

lpest

)
= 0.448260839514567

max

(
N

lpest

)
= 6.854110199159990 (D.1)

ζ =



−0.00759980609749430 0.00832618944773892 0.0271956645747414 0.0393925075913558

0.00700148483014249 0.00363881893359507 0.0339472366522346 − 0.277785191084162

−0.328746524887996 − 0.431469259177307 − 0.0247307359288862 − 0.00766393683413206

−0.0108751062429764 2.00663053781348 1.74706886637574 2.85655063224483

0.0346856626431481 0.0173092954273048 − 0.410118174343845 − 4.85936664784864

−3.50347550929267 − 11.9171728494472 0.00433895303359672 − 0.0300621203306145

1.84527983074886 0 0 31.0061038368959 − 0.0900378848550543 0.0356592886451499

−4.02851417549175 11.2335887743531 0 − 47.4746976509623 0.146816839904475

−0.0289424366038142 4.32005229973420 0 0 34.9672153576652 − 0.122983721284062

0.0162944535149795 0 − 15.8193661633137 0 0 0.0591028971195407 − 0.00637157444294319

−6.17764269732311 0 0 − 12.1308856361644 − 0.0150982312704148 0.00170021015480035

7.80336110982638 0 0 0 0.00113826177211712 − 0.000295623928407927 − 4.29188049825062

0 0 0 0.000305850286591823 3.02140394729395 × 10−05 0.924541679195303

14.5141765439079 0 3.68575991045567 − 5.53494346103474 × 10−05

−1.37784853516319 × 10−06



T

(D.2)

Figures D.1 - D.6 depict the deflection and curvature of an intact and cracked

cantilever beam.
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Figure D.1: Deflections (a-d) and curvatures (e-h) of the first four
modes of an intact and damaged cantilever beam of different crack
depths located at 98.4mm.



149

0 200 400 600 800 1000
0

0.5

1

1.5

2

2.5

M
od

e
sh
ap

e

Intact modeshape
1mm crack depth
2mm crack depth
3mm crack depth

(a)

Mode I

0 200 400 600 800
-5

0

5

10

15

C
ur
va
tu
re

Intact approx. curvature
1mm crack depth
2mm crack depth
3mm crack depth

(e)

Mode I

0 200 400 600 800 1000
-3

-2

-1

0

1

2

M
od

e
sh
ap

e

(a)

Mode II

0 200 400 600 800
-100

-50

0

50

100

C
ur
va
tu
re

(f)

Mode II

0 200 400 600 800 1000
-1.5

-1

-0.5

0

0.5

1

1.5

2

M
od

e
sh
ap

e

Mode III

(c)

0 200 400 600 800
-200

-100

0

100

200

C
ur
va
tu
re

Mode III

(g)

0 200 400 600 800 1000
Beam length (mm)

-1.5

-1

-0.5

0

0.5

1

1.5

M
od

e
sh
ap

e

(d)

Mode IV

0 200 400 600 800
Beam length (mm)

-400

-200

0

200

400

C
ur
va
tu
re

Mode IV

(h)

Figure D.2: Deflections (a-d) and curvatures (e-h) of the first four
modes of an intact and damaged cantilever beam of different crack
depths at location 295.2mm.
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Figure D.3: Deflections (a-d) and curvatures (e-h) of the first four
modes of an intact and damaged cantilever beam of different crack
depths located at 393.6mm.
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Figure D.4: Deflections (a-d) and curvatures (e-h) of the first four
modes of an intact and damaged cantilever beam of different crack
depths located at 492mm.
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Figure D.5: Deflections (a-d) and curvatures (e-h) of the first four
modes of an intact and damaged cantilever beam of different crack
depths located at 590.4mm.
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Figure D.6: Deflection (a-d) and radius of curvature (e-h) of the first
four modes of an intact and damaged cantilever beam of different
crack depths located at 688.8mm.
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Fixed beam
An aluminium fixed beam of dimensions 820mm by 20mm by 10mm is mod-
elled using a finite element model with 24 elements. The beam’s mechanical
properties include Young’s modulus of 70 GPA, density of 2700 kg/m3 and
Poisson ratio of 0.3. Equation (D.3) - (D.4) are the parameters used for the
crack diagnosis.

p = 0.001, min

(
N

lpest

)
= 0.428667496955623

max

(
N

lpest

)
= 6.974021712690253, r = 12 (D.3)

ζ =



−0.00759980609749430 0.00832618944773892 0.0271956645747414 0.0393925075913558

0.00700148483014249 0.00363881893359507 0.0339472366522346 − 0.277785191084162

−0.328746524887996 − 0.431469259177307 − 0.0247307359288862 − 0.00766393683413206

−0.0108751062429764 2.00663053781348 1.74706886637574 2.85655063224483

0.0346856626431481 0.0173092954273048 − 0.410118174343845 − 4.85936664784864

−3.50347550929267 − 11.9171728494472 0.00433895303359672 − 0.0300621203306145

1.84527983074886 0 0 31.0061038368959 − 0.0900378848550543 0.0356592886451499

−4.02851417549175 11.2335887743531 0 − 47.4746976509623 0.146816839904475

−0.0289424366038142 4.32005229973420 0 0 34.9672153576652 − 0.122983721284062

0.0162944535149795 0 − 15.8193661633137 0 0 0.0591028971195407 − 0.00637157444294319

−6.17764269732311 0 0 − 12.1308856361644 − 0.0150982312704148 0.00170021015480035

7.80336110982638 0 0 0 0.00113826177211712 − 0.000295623928407927 − 4.29188049825062

0 0 0 0.000305850286591823 3.02140394729395 × 10−05 0.924541679195303 14.5141765439079

0 3.68575991045567 − 5.53494346103474 × 10−05 − 1.37784853516319 × 10−06



T

(D.4)
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Figure D.7: Modeshapes (a-c) and curvatures (d-f) of the first four
modes of an intact and damaged fixed beam of different crack depths
located at 196.8mm.
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Figure D.8: Natural frequency of the first four modes of an intact
and a damaged fixed beam of different crack depths at different crack
locations.
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Figure D.9: Difference between the unique features extracted by
POD from an intact and the cracked beam curvatures of all crack
depths at different locations.
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Figure D.10: Logarithm plot of the scale and Wavelet maxima of
different crack depths at the same location.
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Figure D.11: Cross-validation: The normalised root mean square
(NRMSE) of different polynomial order used to select the order num-
ber. This step avoids under and over fitting.





Appendix E

Other Simulation Results of

Integrated Sensing, Diagnosis

and Active Self-healing

The following parameters are used in Chapter 5 to evaluate the integrated
sensing, diagnosis and active self-healing. The results are also presented in this
appendix.

min

(
N

lpest

)
=



0.225288903540750 if a > 0.75mm

0.006407108948543 if a > 0.1mm & a ≤ 0.75mm

0.001038031929001 if a > 0.03mm & a ≤ 0.1mm

3.319022474065476 × 10−05 if a > 0.008mm & a ≤ 0.03mm

4.725889910130049 × 10−07 if a ≤ 0.008mm

(E.1)

max

(
N

lpest

)
=



6.777170820806177 if a > 0.75mm

0.514706858179394 if a > 0.1mm & a ≤ 0.75mm

0.011527105382106 if a > 0.03mm & a ≤ 0.1mm

0.003401138722255 if a > 0.008mm & a ≤ 0.03mm

0.004858371372370 if a ≤ 0.008mm

(E.2)

p =

0.001 if a > 0.75mm

0.1 if a ≤ 0.75mm
(E.3)
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Other Simulation Results of Integrated Sensing, Diagnosis and Active

Self-healing

ζ
i

=



−0.00900655941376520 0.0234955176645215 0.0204180404290648 0.0310112615957771

0.00694225506134393 0.00282785801494934 0.0593321444685955 − 0.510773848518792

−0.248650671283095 − 0.350741113529932 − 0.0331990630793342 − 0.00461172462528490

−0.0671670949606370 3.76874481746282 1.16138443162369 2.25128005201025

0.0819976949152733 0.00685524083274062 − 0.654998739357619 − 12.1950552414492

−1.34613190741654 − 8.79513766349179 − 0.125580397213464 − 0.00804434144125601

3.62754944619229 15.7046298634835 − 2.72524280276304 20.8742611705238
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Figure E.1: Crack depth estimation becomes less accurate as crack
close up during healing. This is the result of poor diagnosis at lower
crack depth
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Figure E.2: Illustration of integrated sensing, diagnosis and active
self-healing system for (a-b) 1mm crack depth introduced at location
98.4mm. (c-d) 2mm crack depth introduced at location 196.8mm.
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Figure E.3: Illustration of integrated sensing, diagnosis and active
self-healing system for (a-b) 1.5mm crack depth introduced at location
393.6mm. (c-d) 2.5mm crack depth introduced at location
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