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Abstract

The ability to isolate specific cells from a heterogeneous population

using label-free methods, and subsequently extract these cells at

high throughput, is a key step in the advancement of autologous

cell-based therapies in the field of regenerative medicine. Surface

acoustic wave-based dielectrophoresis (SAW-DEP) utilises a standing

shear horizontal SAW to provide a non-uniform electric field in which

cells can be separated by dielectrophoresis. Due to the absence of

electrodes in contact with the solution, this method overcomes many

disadvantages of current dielectrophoretic technologies, allowing cell

separation at high continuous throughput (<500 cells/second) and in

high conductivity solutions (<0.4 S/m).

This thesis describes the design and application of several iterations

of SAW-DEP devices. After demonstrating the alignment of latex

beads (1 - 10 µm) by negative DEP, the force exerted on latex beads

is studied by particle tracking, and is shown to closely match a theo-

retical model for dielectrophoretic trapping.

Following this, the separation of viable from non-viable yeast cells and

mammalian cells is demonstrated. To ascertain whether SAW-DEP

has any adverse effect on cells, primary human mesenchymal stromal

cells (dental pulp stromal cells) are tested for viability and differen-

tiation capability following exposure to the SAW-DEP electric field,

with the results showing that the electric field had no effect, com-

pared to controls where the cells were not exposed to the electric field.



Finally, the ability to tune the liquid conductivity is investigated as a

means to separate live from dead mammalian cells to high fidelity (live

and dead cells were enriched into lines of 97% and 99% purity, respec-

tively), as well as separating live mammalian cells of different lineages.
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Chapter 1

Literature Review

This chapter summarises the motivation for this research, and describes why new

technologies must be developed in the field of medical cell sorting. An overview

of traditional cell-separation methods is presented, alongside a discussion of more

recent developments in microfluidic cell sorting techniques. Finally, a detailed

review of various eminent methods of dielectrophoretic cell sorting techniques is

presented, which have formed a basis for the research and technology presented

in this thesis.

1.1 Motivation

1.1.1 Definition and applications of cell sorting

Cell sorting refers to the separation of a heterogeneous mixture of biological

cells, generally human cells, into more defined sub-populations. The main uses

for this are as follows: (1) Isolation of specific cells for biological research, (2)

Identification of cell types for medical diagnostic purposes, and (3) Enrichment

of a desired cell type for therapeutic applications i.e. cell therapies.
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Isolation of specific cells for biological research

The most obvious application of this, as a researcher, is to isolate a specific cell

type from a raw tissue sample for analysis and research. Indeed, every cell cul-

ture currently growing in a cell biologist’s laboratory has been isolated originally

from a biopsy sample, which may include for example, cancer cells in a tumour,

dental pulp cells from an extracted tooth, mammary fibroblasts from breast

reduction surgery, white blood cells from a blood donation. Following extraction

and separation, these cells may be then genetically engineered such that they

can be expanded indefinitely, cryogenically stored, and sent to other labs - this

is particularly useful when a tissue is difficult to obtain, like neural matter.

Identification of cell types for medical diagnostics

Being able to identify the different cell types present in a sample is also im-

portant for some medical diagnostic procedures. For example, drug screening

requires cell sorting and analysis of large numbers of patient samples, typically

via flow cytometry (1). Scaling-down and simplifying the apparatus required for

flow cytometry, one could imagine, would be of great interest to pharmaceutical

companies.

Enrichment of specific cell types for cell therapies

Cell sorting will also be vital to the advancement of cell therapy, which is a focus

of this research thesis. Cell therapy is linked to the fields of regenerative medicine

and tissue engineering, and refers to treatments which involve the transplantation

of cells to the sites where they are needed. These may be the patients own cells

(an autologous graft) or someone else’s (allogeneic).

Cell therapy has long existed in the form of blood transfusions (Figure 1.1a); for

modern transfusions, the components of whole donor blood are separated into

its constituent parts (red blood cells, white blood cells, plasma, platelets, etc).

This is typically achieved through apheresis, a centrifugation-based cell sorting
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method that is discussed further in Section 1.2.1 (2).

Figure 1.1: Examples of donation/biopsy methods for cell therapy. a Blood

transfusions (3) and b bone marrow aspirate from iliac crest (4) are common

treatments, while c the first transplantation of olfactory (nasal) neuronal stem

cells to successfully treat spinal cord injury was performed in 2015 (5); d mes-

enchymal stromal cells can be found in the dental pulp, which have a range of

potential therapeutic applications (6).

Another established cell therapy is the use of stem cells harvested from bone

marrow aspirate (Figure 1.1b), known as hematopoietic stem cells, typically used

to repopulate a deficit of cells in patients suffering from blood or bone marrow

cancer (7). These multipotent stem cells can differentiate into a range of cell

types, and have recently been used in other new treatments, namely myocardial

regeneration in patients with heart disease (8), but also for anaemia, chronic

myelogenous leukaemia, and myodysplasia, amongst others (9).

Indeed, many treatments are on the horizon that utilise stem cells transplanted
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from one part of the body to another. In 2014, a man previously paralysed by a

knife injury to the spine gained the ability to walk again (5), a year after doctors

transplanted olfactory neuronal cells (taken from inside the nose) into his spine

(see Figure 1.1c) (10).

An alternative source of stem cells for cell therapy are those found within teeth,

dental pulp stromal cells (Figure 1.1d). These stem cells are predisposed to form

bone-like osteoblasts, making them a potential candidate for cell therapy in bone

regeneration; however, they have much the same differentiation capabilities of

mesenchymal stem cells, which appear early in embryonic development to differ-

entiate into a variety of cells/tissues including neurons (brain), cardiomyocytes

(heart), chondrocytes (cartilage), hepatocytes (liver), and islet β-cells (pancreas)

(11); thus, cells which are relatively easy to come by (due to the prevalence of

wisdom tooth extractions) could have a host of possible applications in regener-

ative medicine.

Having discussed the scope of the possible biotechnology and medical applications

of cell sorting, one specific application will be examined in more detail - the use

of sorting cells intra-operatively for bone graft surgery. The purpose and market

for the procedure will be discussed, followed by some technical considerations

and ways in which intra-operative cell sorting can improve the current technology.

1.1.2 Case study: Cell sorting in bone graft surgery

Bone grafting refers to a surgical procedure used to treat abnormalities or disease

in bones or joints (15). It is the most commonly transplanted tissue after blood,

with 2.2 million grafting procedures being carried out annually across the world1

(16).

1Given that these are largely in developed countries with an increasingly ageing population

(e.g. the USA and UK), we can expect this to increase massively in the next 20 years, not to

mention the potential for demand in emerging economies such as those in the Far East and

South America.
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Figure 1.2: Examples of medical treatments that involve bone grafting, includ-

ing a dental implants (12), b fibular shaft operations (13), c enhanced fracture

recovery (14).

The main areas for grafting are orthopaedics, neurosurgery, and dentistry (16).

The most common use of bone grafts is in dental implants (Figure 1.2a), where

bone must be grafted underneath the dental implant such that it will grow

round and support it (17). Bone grafts are also commonly used in fibular shaft

operations (Figure 1.2b), which aim to restore function in the long bones of the

limbs which may be affected by congenital defects, trauma, or malignant tumour

invasion (18).

Other procedures, which may become more common with greater streamlining

and understanding of stem cell therapy, include enhancing the recovery of broken

bones, particularly those which do not heal well naturally (19), such as injuries in

older people. With an aging population in many developed countries such as the

UK, there is also much interest in this therapy to treat age-related disease like

osteoporosis (20) and osteoarthritis (21). Ideally autologous bone from the iliac

crest is used (Figure 1.3), because this area is easy to access and provides a large

amount of tissue which is capable of both differentiating into bone-specialist cells

(osteogenic) and stimulating the surrounding host cells to do likewise (osteoin-

ductive) (16).

There are two typical issues when using harvested cells: 1.) Harvest methods are

traumatic and cause cell death in the tissue to be transplanted; 2.) harvested
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Figure 1.3: Schematic of pelvic girdle, with iliac crest in red (22).

cells are almost always a heterogeneous mix - as well as mesenchymal stem cells,

a sample from the iliac crest will invariably contain a high proportion of differ-

entiated cells and unnecessary cells, particularly adipose (fat) tissue. Typically,

1 ml of bone marrow aspirate will contain ∼ 10 million mononuclear cells (sub-

population that excludes cells with no or multiple nuclei) , of which only about

8,000 (0.08%) are mesenchymal stromal cells (23).

Issues with cell death in grafted cells

Typical death rates in bone marrow from iliac crest are ∼ 50 % (24). There has

also been concern regarding cell death in most other major grafting procedures,

including osteochondral grafts, neuronal grafts (25, 26), pancreatic islet cells

(27, 28), fat grafting for breast augmentation (29).

Not only are dead cells incapable of re-populating a diseased site and releasing

beneficial growth factors and bioactive molecules (30), but they can also cause

the release of harmful cytokine molecules which initiate an immune response;
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subsequently, this can lead to transplant rejection, contributing negatively to op-

eration success rates (31, 32). Some grafting procedures, such as taking adipose

tissue from the buttocks for breast augmentation, utilise a centrifugation step

to enrich a sample for viable cells (exploiting the lower density of dead adipose

cells). However, for many reasons (such as the presence of other cells of various

densities, or where the densities of viable/non-viable cells are too similar), this

is not possible for all grafting procedures. In the case of bone grafts, most effort

into improving sample viability has focussed on optimising the harvest technique.

However, these typically involve a very invasive drilling or scooping procedure,

for which it is difficult to minimise graft cell death and collateral tissue damage

(30).

1.1.3 Considerations for a minimally-manipulative, intra-

operative cell sorter

Within this context, this work aims to develop a technology that can rapidly

separate a target from a heterogeneous mixture of cells, in a time frame that

would not significantly increase the length of time of an operation. Another

consideration, which will be discussed more in the proceeding sections, is that

the cell separation step must not adversely affect cells (with regards to their

viability and subsequent differentiation potential) as many current technologies

are known to.

In the ideal case, the device developed can be classed as ‘minimally manipula-

tive, as described in EU directive No 1394/2007 (Advanced therapy medicinal

products) (33). This is because little is known about the medium and long-term

behaviour of cells that have been ‘manipulated’, and there is a concern they may

cause deleterious effects within the body. Deleterious effects may be caused, for

example, due to the addition of chemical labels used to sort cells that may be

potentially harmful in the body (label based sorting techniques are discussed

in Section 1.2.2), or an immune response triggered by poor graft cell viability.

For this reason, special consideration to the effect on cells must be made when
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considering methods for cell isolation and sorting.

Having outlined the motivation and goals for this work, the rest of the remainder

of the chapter will provide a technical analysis of current cell-separation methods

and of current research into the field of cell sorting, with reference to the con-

siderations necessary to develop a minimally-manipulative, intra-operative cell

sorter.
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1.2 Traditional methods of cell sorting

1.2.1 Density-based methods: Centrifugation

Differences in the density of different cell types can be exploited for various

fractionation-techniques, including sedimentation (34), and field-flow fractiona-

tion (Sections 1.3.3). The most commonly used density-based method is cen-

trifugation.

Centrifugation is used in the laboratory to concentrate cells. A cell solution in a

test tube is put into a fast rotor, typically spinning at ∼ 1000 rpm, depending on

rotor arm length (exerting accelerations of >200 g), such that the densest and

largest particles in the solution concentrate at the bottom of the tube. The rate

at which particles sediment determines how they can fractioned off from each

other, and is given by the following equation:

v = d
2(p −L) ⋅ g

18n
(1.1)

where v is the sedimentation velocity, d is the cell diameter, pandL are the den-

sities of the particle and the suspending liquid respectively, g is the graviational

force and n is the viscosity of the medium.

By experimenting with the spin speed and the density of the suspension medium

used (generally with sugar solutions), cell types with distinct size and density

profiles can be separated into different areas of the test tube and fractioned off

separately. Indeed, the separation of blood cells is commonly carried out by

such a method, known as aphaeresis (from the Greek “a taking away”) (Figure

1.4). This is because the relative constituents of blood (namely plasma, platelets,

white, and red blood cells) have distinct density profiles, making separation by

centrifugation relatively straightforward.

The advantages of differential centrifugation as a separation technique are that

the equipment is relatively cheap (∼ $10,000), it can process large volumes, and
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Figure 1.4: Schematic of a centrifuge tube containing a blood sample, that has

been fractionated into heavier and lighter portions following centrifugation.

that the reagent costs are very low. No labelling of cells is needed (see Section

1.2.2), and so the processing speed is relatively quick. For example, to fractionate

the red blood cells (as well as white blood cells and platelets) used in this thesis

(Appendix A.1), 10 ml of blood (∼ one billion white blood cells, ∼ fifty billion

red blood cells) was processed using normal tissue culture plastic tubes and a

benchtop centrifuge, by passing it through a density gradient medium at 300

g centrifugal force for 20 minutes, which can be regarded as an intra-operative

timescale (although further washing steps are often performed to increase purity).

However, one can appreciate that this technique only works for cells with very

distinct density profiles. Even for blood, with its massive differences in white

and red cells (∼ 1.06-1.08 g/cm3 (35) and ∼ 1.10-1.20 g/cm3 (36), respectively),

the best fully-automated aphaeresis procedures typically yield no greater than

90% purity for the target population (37).

1.2.2 Antibody-based

A very different and far more selective approach to detection and separation

of cell types is seen in antibody-based techniques, currently the gold standard
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method for research. Cells express a variety of proteins on their outer membrane,

with many unique to their particular cell type and gene expression, and these can

be thought of as cell-specific ‘markers’. By injecting quantities of these proteins

into model animals such as rats or rabbits, the animal’s immune system will gen-

erate molecules that specifically bind to these proteins (known as antibodies) as a

signal for its immune defence to get rid of it.1 (A schematic of antibodies binding

to surface markers on a cell can be seen in Figure 1.5.) Subsequently, animal

lymphocyte cells which secrete the antibody can be isolated and immortalised,

such that the antibody can be grown and harvested in vitro. These antibodies

can then be ‘tagged’ (often via secondary antibodies) with labels such as fluo-

rescent molecules or magnetic molecules (38), forming the basis for fluorescence-

and magnetic-activated cell sorting (FACS and MACS, respectively), which will

be explained in the proceeding paragraphs.

From this it can be surmised that antibody-based selection is both inherently

excellent for discerning biological phenotypes, but inherently manipulative to the

cells it sorts. The former is because surface protein expression presents a highly

variable landscape to use for discerning different cell types, resulting in exquisite

selectivity and specificity. However, labelling a cell with a fluorescent or magnetic

tag inherently modifies the cells (39) making their subsequent behaviour unpre-

dictable, and may interfere with subsequent expansion and differentiation of cells

(40). While it is possible to separate cells without physically attaching the tag

to them (for example, using negative selection, in which binders are used against

all the non-target cells in a heterogeneous population, thus enabling separation

without binding to the target cell), the cells will still have to be incubated in the

antibody solution (to tag the other cells), and this, therefore, would be unlikely

to meet guidelines on minimal manipulation.

1This is the basis of mammalian ‘adaptive immunity’, in which the immune system adapts

to specifically target a new pathogen. The ability of lymphocyte cells to rapidly mutate before

being able to secrete a molecule that is specific to the foreign surface marker is thought to have

been evolutionarily acquired through the insertion of a virus into a part of the mammalian

genome.
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Figure 1.5: Illustration of antibodies binding to antigens on a cell surface. The

purple cubes represent molecular labels (e.g. fluorescent or magnetic) attached

to antibodies which allow subsequent detection or extraction of cells.

This highlights a second issue: before cells are sorted, they require a labelling-

step in which they are incubated in the antibody solution, typically for around 30

minutes (41). This time must be added on to the time taken for actual sorting,

a consideration for assessing the duration of any procedure against accepted

intra-operative timescales.

Whilst there are other antibody-based methods which will be discussed in Section

1.2.3, the two main methods, FACS and MACS, are explained in detail below,

followed by a discussion on their relative advantages and disadvantages.

Fluorescence-activated cell sorting

A flow cytometer is a staple, if expensive, piece of equipment for many labora-

tories. The concept is shown schematically in Figure 1.6. Cells labelled with

fluorescent dyes are hydrodynamically focused into a single stream, such that
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each cell can be probed using lasers (typically one laser per dye). Their flu-

orescence emission is detected to give information as to what label they were

carrying. For traditional flow cytometry, this is the end of the story. For FACS,

however, a piezo crystal vibrates to break the fluidic stream carrying the cells

into one droplet per cell. Information from the detectors determines the charge

that the droplets are pulsed with, as shown in Figure 1.6, which is used to sort

the cells/droplets as they pass through charged deflection plates.

Figure 1.6: Schematic showing how a fluorescence-activated cell sorter operates

(42). A heterogeneous mixture of cells is labelled with cell-specific antibodies,

which fluoresce at different wavelengths (i.e. red, green, and yellow colours in the

diagram). Labelled cells are passed single-file in front of a laser that interrogates

the specific label/cell type. This is passed to a feedback loop, and cells receive

a charge downstream of the laser (+, -, or none, according to the interrogation

feedback). The presence of negative and positively charged deflection plates at

the collection phase determines where cells are collected.
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Magnetic-activated cell sorting

The apparatus required for MACS (Figure 1.7) is far simpler than that used for

FACS. In this method, cells are incubated with magnetic nanoparticles coated

with an antibody, following which they are passed through a column which is

subject to a strong magnetic field. Bound cells (positively selected) can be

washed out by removing the column from the magnetic field.

Figure 1.7: Schematic showing the concept behind magnetic activated cell sorting

(43). Magnetically-tagged antibodies are incubated to bind to a target cell type

(white). These are then passed into a column flanked by magnets, thus retaining

the target cell, and allowing other cells (blue) to pass through.

The ability of FACS to probe one cell at a time in conjunction with sophisticated

optical detection ports (whose sensitivity can be automatically or manually tuned

via a computer) makes it a more specific technique with capability to get more

analysis out of a sample while it is being sorted (44). However, the equipment

required for MACS is significantly cheaper, with basic separation columns for

manual starting out at £200 (45).

Importantly, MACS is considered to be far superior at providing high, therapeutically-

relevant throughput. While FACS is generally accepted as providing the highest

enrichment purity of the target cell type, MACS is simpler and quicker to carry
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out large-throughput separations (46), with standard benchtop equipment capa-

ble of carrying out throughput upwards of 109 cells per hour (47).
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1.2.3 Other methods

Whilst centrifugation and antibody-based separation methodologies are by far

the most prevalent cell sorting techniques available to cell biologists, affinity

chromatography, adherence, and panning are alternative established approaches,

which have been outlined below.

Affinity chromatography

Affinity chromatography is a column-based antibody-binding technique similar

to MACS, which is more commonly used for purifying smaller molecules like

proteins (48). For cell sorting, target cells are passed through a cryogel matrix

functionalised with an antibody. However, functionalising a matrix with an an-

tibody causes misorientation of the antibody which reduces the specificity (49).

Kumar et al. (2010) (49) improved the efficiency of this method by labelling

cells before passing them through the matrix, which was functionalised with a

less orientation-specific affinity molecule, ‘proteinA’ (see Figure 1.8). However,

the main problem arising from this method is that non-specific binding of cells

occurs, such that they are difficult to remove (50).

Adherence

Adherence is typically used in isolating cells from a raw biopsy sample (44).

In this method, a heterogeneous mixture of cells is seeded into a tissue culture

flask and incubated for a certain amount of time, typically 1-2 days (see Figure

1.9). Non-adherent cells can be washed off (and kept if they are of interest).

If left for longer, cell types which grow better on the surface will outcompete

other adherent cells, and thus further enrichment can be achieved. This is used,

for example, in the isolation of dental pulp stromal cells from the extracted

periodontal ligament (outcompeting cells like neurons and monocytes) (51), or

of monocytes from blood (52).
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Figure 1.8: Example protocol for antibody-based affinity chromatography proce-

dure (49). In this case, cells are labelled with an antibody prior to being passed

through the matrix (‘affinity cryogel column’). The matrix has been function-

alised with ‘Protein A’ which the antibody (already bound to target cells) binds

to, thus retaining the target cells.

Figure 1.9: Schematic showing adherence-based cell sorting. A heterogeneous

mixture of cells (red and blue) is plated onto a surface (green) (for example, a

surface-treated polystyrene tissue culture flask) onto which one cell type prefer-

ably adheres and proliferates (red cells, in this case).

Various surfaces can be used to select for a range of cell types. Polymer brushes

have been investigated for adherence-selection, because it is easy to tune the
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brush length to accommodate for the cell of interest. For example, Nagase et

al. (2012) (53) used this method to discern a variety of cells from endothelial,

dermal, and muscle origin.

Panning

Panning, also known as immunoabsorption, is a versatile antibody-based method

which is useful when commercial magnetic and fluorescent labels are not available

for the requisite antibody (54). A surface, typically gold, is functionalised with

an antibody, following which cells are flowed onto the surface and allowed to

sediment. After an incubation step for antibody-binding, the unbound cells are

washed off (see Figure 1.10.)

Figure 1.10: Schematic depicting “panning”/immunoabsorption (55). The sur-

face is functionalised with antibodies (green) that bind to surface markers (or-

ange) on the target cells (grey).

While this method is fine at negatively selecting cells which do not bind to the

antibody, detachment of bound cells (which are typically the target cell) gener-

ally requires undesirably forceful methods, such as scraping in ice cold buffer (56).
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1.3 Methods of cell sorting: Lab on a chip

1.3.1 Concept and central themes

Figure 1.11: Photograph of a LoC chemostat device (57).

Lab on a chip (LoC) is a technological device or platform which enables a lab-

oratory assay, that would normally require large equipment or facilities, to be

performed on a handheld chip. It is often envisaged that the assay can be car-

ried out away from a laboratory, for example in a GP clinic, operating theatre,

environmental sampling, or in the home. Typical procedures that are being

developed include chemical synthesis and analysis (58), biosensing for monitoring

the environment (59), and medical diagnostics (60).

The ability for academic and biomedical institutions to design and fabricate such

miniaturised devices has no doubt been spurred on by the computer industry,

and investment into development of smaller and smaller CMOS1 systems by

lithographic techniques (61). Techniques such as photolithography and electron

beam lithography allow electrodes of micrometre to nanometre dimensions to

be patterned onto the surface of a chip (typically a thin 0.5 mm-thick crystal

wafer, such as quartz or silicon) (62). As well as being able to scale down electric

circuits, this same technology can be used to pattern fluidic channels (often in

1complementary metal-oxide-semiconductor
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glass, PDMS, and plastic (63, 64)) that scales down the conventional test tubes

and other glassware common to most bioscience and chemical experiments.

There are several obvious advantages of developing devices on this hand-held

scale1, which are listed below:

1. The device is transportable and can be used in various out-of-lab settings,

including for medical applications

2. The scaling down of a reaction reduces the cost of both materials for the

devices and the cost of reagent

3. Reagents travel shorter distances, thus speeding up reaction times

4. Design and manufacture of such devices has been made simpler and cheaper

due to advances made in microfabrication by the computer chip industry,

namely via photolithography, and more recently by the advance of 3D print-

ing.

In reviews of the field, there has been some consternation that, while there has

been much research, there are still very few commercial products or devices which

are LoC. George Whitesides, a prominent researcher and proponent, asks “Why

is every biochemistry laboratory not littered with ‘lab on chips’? Why does every

patient not monitor his or her condition using microfluidic home-test systems?

The answers are not yet clear.” (65).

In the ten years since this statement, progress has still been rather slow. Most

biology and chemistry labs still run their assays on large equipment with many

tedious manual components (e.g. pipetting), with the exception of some inno-

vative groups, notably the de Mello group, currently in ETH Zurich (who run

large-scale chemical assays using automated microfluidic apparatus (58)).

1An added commercial incentive to investigating LoC alternatives is that it suits a central

trend in product development, of making things cheap and disposable
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Whilst it is rare that LoC options are seen as the ‘gold standard’ for a given test,

they have already found in use in developing world diagnostics (66, 67), where

often price is more of a limiting factor than accuracy and sensitivity.

In the commercial world, perhaps the largest (and one of the few) companies

utilising Lab on a chip technology for retail services is Theranos. This is a home

testing company, where customers can send minute swab and blood samples in

the post to the company’s laboratory, and await a notification of their disease

status via the internet. However, in the 2016, the firm (then worth $9 bn) was

prohibited from running a diagnostics lab for two years (having only received

FDA approval in 2015); this sanction was issued because the company was found

to be misleading investors, in that the technology was not working as well as

it was claiming (68). Now worth $800 m (and temporarily barred from retail

services), the company is focusing on developing its as-yet unproven Lab on a

chip technology (69, 70).

The only commercial point-of-care diagnostic platform is currently the Veritor

System, a flu-testing platform by Becton, Dickinson & Co, one of the two manu-

facturers of flow cytometers(71), currently sold to healthcare providers.

Figure 1.12: BD Veritor System (71).
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A possible reason for this slow progress is that LoC fabrication procedures and

innovation typically requires detailed engineering knowledge, while the end users

of such devices are often biologists and chemists. This cross-disciplinary field

therefore requires either engineers and microfabrication specialists to learn about

the biochemical experiments that would benefit from miniaturisation, or for the

biologists and chemists to learn the skills necessary to design and manufacture

the devices they need. Until these devices are prevalent in the laboratory, the

idea that medical testing can be done at home is probably still too big a leap of

the imagination for many investors.

To demonstrate how a cell sorting method can be scaled down to the microscale,

the following sections will describe novel LoC sorting methods which have been

made available through the advance of microfluidic and microelectronic technol-

ogy.

1.3.2 FACS on a chip

Several research groups have scaled down FACS technology onto a chip. The

earliest was by Stephen Quake’s group in the California Institute of Technology

in 1999 (72). Figure 1.13 shows the sorting chamber - the wells are 2 mm in

diameter, and the channels are 100 µm wide, narrowing to 3 µm at the sorting

junction, and a depth of 4 µm. However, the schematic showing the whole setup

(Figure 1.14) reveals this was far from a handheld device.

Since then, efforts have been made to further scale down the components. Re-

ductions in pump size have included using electro-osmotic flow and incorporating

mini-peristaltic pumps on the chip (73). Indeed, the need for small-scale pumps

is a limitation to all microfluidic/Lab on a chip systems. Similarly, effort has

been made to scale down the optical components, with LEDs and laser point-

ers being used to excite fluorescence, which is then collected used fibre optics (73).
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Figure 1.13: Photograph of the microfluidic component of the first ‘FACS on a

chip’ (72). The large circles show the tubing input holes (2mm), feeding into

100 µm wide (4 µm deep) microchannels, which narrow to 3 µm at the sorting

junction. This 3 µm channel sorts cells into single-file, without the need for the

hydrodynamic focusing applied in conventional FACS machines.

Figure 1.14: Schematic showing the experimental setup in (72).

It is worth noting that while academics make improvements to ‘FACS on a chip’,

any big advances in scaling down FACS is either going to be made by or bought

by one of the two major flow cytometer manufacturers, Beckman Coulter and
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Becton Dickinson (74). One of the smallest FACS machines currently available

is the benchtop BD FACSJazz (see Figure 1.15), taking up just 50 x 50 cm2 of

bench space (75), and selling for between $200,000 - $300,000, depending on the

number of lasers installed (76).

Figure 1.15: The new FACSJazz machine, available from BD Biosciences (75).

1.3.3 Field flow fractionation

The concept behind field flow fractionation (FFF) is that cells are flowed through

a channel, typically microfluidic, to which a field is applied perpendicular to the

fluid flow (Figure 1.16). Cell types react differently to the field and travel through

it at different speeds, such that they can be fractionated downstream. This can

be an external field such as magnetic, thermal, or electrical (77), but the most

commonly used are sedimentation-based methods, where the field comes from

gravitational pull. Thus, while FACS-on-a-chip is an example of how antibody-

based detection can be reduced to the microfluidic scale, field flow fractionation

(FFF) is an on-chip method for density-based separation, akin to centrifugation.

In the case of gravity separation, particles of different weight are flown into the

channel. Heavier particles experience greater gravitational force (in a direction

perpendicular to flow), while lighter particles are more affected by the flow; the
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Figure 1.16: Schematic illustrating the concept of Field Flow Fractionation-based

cell separation (78). Two cell types are flowed into a channel (green and blue,

‘Flow in’); they then experience a separation force which is perpendicular to

the direction of flow, and is stronger towards one cell type (blue in this case);

subsequently, this cell type travels more slowly through the perpendicular field,

and the other cell type (green) can be fractioned off from the outflow separately

before the (blue) cells.

lighter particles reach the end of the channel earlier and can be fractionated off.

Following conceptualisation by JC Giddings in the late 1960s, FFF was developed

gradually over the following 30 years to separate particles from 10 nm - 100 µm

(77, 79). This included the fractionation of human from animal red blood cells,

and red blood cells from HeLa (breast cancer) cells (80). While this method offers

(perhaps) greater sensitivity than centrifugation, the main limitations listed for

the latter remain (Section 1.2.1). Indeed, while gravity-based FFF was central

to most early FFF research due to simplicity and availability of the field, most

recent interest in the technique has been with a dielectrophoretic field, and this

will be discussed further in Section 1.4.7.
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Figure 1.17: Schematics of the three main types of micro-filter for size-based

exclusion of cells that are found in the literature, from (40). Wier-type and

Pillar-type filters are similar in concept, offering very simple size-based exclusion,

and one is typically favoured over the other depending on the fabrication facilities

of the research institute. Cross-flow filters are slightly more elaborate, offering a

route out for the larger ‘excluded’ cells so that the channel does not get blocked

up.

1.3.4 Size-exclusion

Various types of microscale filters have been used to separate cell types based

on their size (see Figure 1.17). Pillar-type filters have poor throughput (due to

clogging-up), but can also be used to separate cells based on deformability with

better sensitivity (40). Cross-flow methods are similar to pillar-type, but are

designed to reduce clogging up (40), and thus could offer the high throughput

necessary for therapeutic sorting applications.

These filters have been used primarily for blood-based sorting (40), due to the

relatively distinct size of blood cell types: red blood cells are ∼ 8 µm in diam-

eter, while white blood cells vary from 12-25 µm according to function/type

(81). Whilst the throughput is unlikely to ever exceed that of centrifugation for

blood-based separation, there is the possibility that devices such as these could

be used to filter out non-blood cells, such as circulating tumour cells, for sensitive

detection in blood samples (82).
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1.3.5 Hydrodynamic filtration

Figure 1.18: Schematic of particle separation by hydrodynamic focusing (83).

The dashed lines flanking the channel show the boundary of where the flowlines

flow into the side channels. For cells with a larger radius than this boundary

width, their centre will always trace the flow lines parallel to the main channel,

while smaller cells may get filtered through the side channels.

Hydrodynamic filtration exploits microfluidic phenomena, whereby at low Reynolds

number (i.e. in microfluidic channels) the centre of a particle will trace the flow-

lines in the fluid (40). Due to laminar flow, it is relatively straightforward to

achieve uniform patterning of the flowlines in such a channel (84). An example

for how this can separate particles based on their size is shown in Figure 1.18,

as used in (83), where smaller particles will follow the flow lines into the side

channels, to be separated from larger particles. In this case, if the centre of the

particle is on the wall-side of the dashed line, it will flow into the side channel;

the distance of the dashed line from the wall can be tuned by modulating the

flow rate, thus modulating the threshold size for cells to be directed into the

side channels. Yamada et al. (83), who invented this technique (40) used it

to demonstrate the enrichment of leukocytes from blood, and the separation of
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liver cells based on size (85). Variations include ‘pinched flow fractionation’,

put forward by the same group (86), whereby a constriction within the channel

‘pinches’ the flowlines. As a result, cells of different size travel different regions

within the channel, to be separated off downstream.

Hydrodynamic filtration is in fact very similar to the size-exclusion filters built

in the previous section (1.3.4), but for the fact that the size-exclusion filters in

this case are based on flow profile rather than mechanical channel geometry. The

advantage of hydrodynamic filtration is that the channel structural features can

be many times greater than the cells it separates (unlike for size-exclusion filters),

such that far better throughput can be achieved (85). However, the drawbacks

given in Section 1.3.4 still apply.

1.3.6 Optical tweezers

Differences in the refractive index of cells allows light-based separation, com-

monly known as ‘optical tweezers’. This harnesses the change in momentum

that light experiences as it is bent by an object (e.g. a cell with a characteristic

refractive index), to exert an equal and opposite change in momentum on the

object (due to conservation of momentum), thus giving rise to a force (87, 88).

Most optical tweezers use a focused Gaussian laser beam (see Figure 1.19) which

features a high electric field gradient in the beam waist, to which dielectric

particles are attracted (with force proportional to the displacement, x). Because

the laser focal point can typically be moved around in 2 or 3 dimensions, this

makes optical tweezers excellent as a single cell trap, and it is often a relatively

straightforward and delicate method of moving single cells on a chip when this

has been required (for example Hochstetter et al. (2015) (89) used the method

to transport individual trypanasome cells into chambers on a microfluidic chip

for drug testing).

With regards to cell sorting, Wang et al. (91) used optical tweezers for a FACS-

on-chip, in which a fluorescent label was detected (here using a CCD camera),
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Figure 1.19: Schematic depicting particle trapping in a Gaussian beam for ‘optical

tweezers (from (90)). Dielectric particles such as cells are attracted to high electric

field gradient in the beam waist, allowing them to be trapped.

sending a signal for the tweezers to put them in an appropriate channel down-

stream. However, it has also been used for label-free separation, most notably

by Macdonald et al. (2003) (92), who used a laser to pattern an optical lattice

onto a microchannel surface (Figure 1.20); two particle types (microbeads in this

case) could subsequently be separated based on differences in size and refractive

index through a fractionation approach in which particles were deflected more or

less depending on their refractive index and size. The research group published

a subsequent paper in 2005, in which they used an optical trap to separate

lymphocytes from red blood cells (93); however, the optical lattice/fractiona-

tion approach was discarded and exchanged for a more conventional single-cell

method. While optical trapping offers an interesting, creative solution, it can be

presumed that the refractive index difference between cell types is not sufficient

for consistent, high throughput cell sorting.
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Figure 1.20: Schematic depicting the optical lattice used to separate particles in

(92).

1.3.7 Acoustic sorting

Acoustic sorting involves coupling a mechanical wave into a fluidic channel, which

exerts a pressure on cells known as an acoustic radiation force (94). Acoustic

sorting methods are generally split up by the two basic methods used to couple

the acoustic wave into the fluid: bulk acoustic waves (BAWs) and surface acous-

tic waves (SAWs), principally Rayleigh surface acoustic waves (R-SAWs) (95).

Special attention will be paid to R-SAWs, because the technology is very similar

to that used for this research.

Bulk acoustic waves

A standard BAW acoustic trap involves putting a block of piezoelectric material

(commonly the ceramic lead zirconate titanate, PZT) at a liquid interface. Ap-

plication of an alternating electric field sends a BAW through the material, which

couples into the adjacent liquid to produce pressure waves of the same frequency

of the alternating field (96). Particle trapping is achieved by setting the length

of the chamber to match the frequency of the pulse (typically λ/2) such that it

resonates and creates a standing wave. Particle trapping occurs at the nodes of

the standing wave via acoustic radiation forces.
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Figure 1.21: Schematic showing a typical acoustic trap using BAWs (96). A

transducer sends a BAW pulse via an alternating electrical signal, which sends

a travelling wave into a channel. By locating a glass reflector at λ/2, a standing

wave is formed, which resonates with the frequency of the transducer. A pressure

node forms in the middle of the channel, which can be used to trap particles.

Surface acoustic waves

SAWs were first described by Lord Rayleigh in 1885 (97), and the most commonly

observed example would be that of earthquake seismic waves that propagate along

the surface similar to waves on water (98). A full description of SAW motion can

be found in Section 2.1.2.

SAWs can be generated on a chip by patterning electrodes on top of a piezo-

electric1 substrate (e.g. lithium niobate, lithium tantalate, gallium arsenide,

quartz) (see Figure 1.22) such that an electronic ac signal can be turned into a

mechanical propagation along the surface. These were first developed by the US

military in the 1970s to delay a pulse to improve the efficiency of radar, and have

subsequently been used as filters for receiving signals in televisions and phones

(99).

The two types of SAW that are predominantly used in engineering and research

are Rayleigh SAWs (R-SAWs) (Figure 1.22a) and shear horizontal SAWs (SH-

SAWs) (Figure 1.22b), which differ in that R-SAWs displace the substrate in the

1Defined fully in Section 2.1.2.
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Figure 1.22: Schematic of how IDTs on a piezoelectric substrate can produce

SAWs. a Rayleigh standing SAW, where the principle direction of mechanical

displacement is perpendicular to the plane of the substrate (with the substrate

surface moving up and down) b Shear horizontal standing SAW, where the prin-

ciple direction of mechanical displacement is within the plane of the substrate

(where the substrate moves from side to side)

vertical plane, while SH-SAWs displace it in the horizontal plane. Because of

this, R-SAWs cause mechanical coupling into the liquid, known as a ‘leaky SAW’,

and it is this that is utilised to manipulate particles (like cells) in the liquid.

(SH-SAWs, on the other hand, are not generally used for particle manipulation,

and instead are mainly used for biosensing applications.)

Similar to nodal trapping by BAWs, SAW IDTs form a standing wave on the

substrate, which couples to form a standing wave in the overlying liquid, with

regions and gradients of high and low pressure; particles are thus trapped by

acoustic radiation forces, similar to in BAWs.

The main advantage of using SAWs over BAWs for acoustic trapping is that

they are far lower power (the wave only propagates within one wavelength of

the surface - typically <100 µm), and also allow for neater integration for lab
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on a chip purposes. In this case, a standing wave is formed between the two

transducers, and this couples into the overlying fluid to form an array of pressure

nodes and antinodes according to the SAW wavelength.

First described to trap particles by Wood et al. (100) in 2008, it has since been

used to manipulate and separate cells based on differences in their size, with

larger cells moving faster due to the acoustic radiation force. Typical devices

(e.g. shown in Figure 1.23) consist of pressure node in the middle of the channel;

the cells are flowed through the acoustic field at such a rate that the larger/denser

particles align at the node, while the other particle type does not, such that they

can be directed into separate sub-channels downstream.

Figure 1.23: Schematic demonstrating particle separation by standing SAWs via

a time of flight method (101). Acoustic radiation forces direct particles into the

pressure node and the middle of the channel. Because larger particles experience

greater acoustic radation forces, the flow rate can be tuned such that only they

have time to move into the middle of the channels, so the smaller particles can

be separated out.

The shortcomings of acoustic trapping are comparable to those of centrifugation-

based cell sorting methods, namely that size and density are not often the best

ways of distinguishing cell types. On the other hand, the well-established mi-

crofabrication techniques used to make SAW-devices and their accompanying

microfluidics has the advantage of precision, such that time-of-flight based sepa-

ration methods can be finely tuned. It should also be noted that SAW devices

offer an excellent opportunity for general manipulation and control of cells on
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chips.
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1.4 Methods for cell sorting: Dielectrophoresis

Dielectrophoresis (DEP) is a label-free lab-on-a-chip method of sorting cells,

much like those discussed in the last section. However, since the technology

developed in this thesis exploits a novel, remote dielectrophoretic cell-sorting

technique, this section therefore provides a review of competing techniques which

utilise DEP-based separation. Whilst DEP has been used to separate many

diverse cell types, to measure biophysical characteristics, and to manipulate

single cells, the focus here will be on methods for cell sorting with potential

application in medical diagnostics or high-throughput cell selection. The chapter

concludes with a discussion of the principle limitations of DEP which have thus

far prevented clinical uptake, and which the work in this thesis aims to overcome.

1.4.1 Overview on dielectrophoresis for cell sorting

Dielectrophoresis is a way of separating cells based on their dielectric properties

using non-uniform electric fields (either DC or AC). The basic mechanisms for

DC and AC dielectrophoresis will be briefly described here, although a more

thorough description can be found in Section 2.2.2.

DC dielectrophoresis

Dielectric materials (electrical insulators) become polarised in the presence of an

electric field. Dielectrophoresis features two dielectric materials: a small particle

(dielectric 1) suspended in an aqueous electrolyte solution (dielectric 2), posi-

tioned within a non-uniform (asymmetric) electric field (see Figure 1.24, where

the field asymmetry is arises from the pin-to-plate electrode design, and blue and

red colours represent negative (-) and positive (+) potential/charge respectively).
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Figure 1.24: Schematic describing the differences beteen negative DEP (nDEP)

and postive DEP (pDEP) forces. The Figure shows a cell (light yellow) situated

in an aqueous electrolyte solution (light blue) within an asymmetric electric field,

whereby the field asymmetry arises from the pin-to-plate electrode design (blue

and red bars, respectively). The small blue and red dots represent ionic charges

both inside the cell and in the surrounding fluid, gathering at the cellular interface

in response to field-induced polarisation of the cell. Blue represents negative (-)

potential/charge, and red represents positive (+) charge. a pDEP: Due to more

charges inside the cell than the surrounding liquid, the electric field lines are

drawn towards the cell, pulling it towards the electrodes on both sides; because

the field intensity is higher on the left side (shown by higher density of field lines),

the cell moves towards the left electrode. b nDEP: This time, the liquid has more

charges than inside the cell, so the field lines bend around the cell and the cell

is repulsed from the electrodes. Again, the force is highest at the left side of the

cell due to the higher field intensity; because the force is now repulsive, the cell

travels to the right.
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As shown in Figure 1.24a, if the cell contains more polarisable entities than the

surrounding fluid, the electric field lines bend into the cell and it experiences an

attractive force towards either electrode. Because the force is stronger where the

field intensity is highest (i.e. the left side of the cell), the cell moves towards the

left electrode - this is known as positive DEP (pDEP). Conversely (Figure 1.24b,

if the cell is less polarisable than the surrounding liquid the electric field lines

bend around the cell and it experiences a repulsive force from the electrodes; the

net force pushes it to the right side, due to the field asymmetry.

AC dielectrophoresis

In the case for AC dielectrophoresis, it must be envisaged that the potentials

of the blue and red electrodes in Figure 1.24 are constantly changing between

positive and negative. The charges inside and around the cell are therefore

constantly switching sides.

In AC dielectrophoresis, the polarisability of different cell types and the sur-

rounding liquid is dependent not only on the density of charge carriers, but also

of the mobility of the charge carriers, i.e. how long it takes for them to switch

polarity according to the changing direction of the electric field. A more thorough

description of the nature of polarisation of different charge carriers at different

frequencies is given in Section 2.2.2.

Advantages of DEP as a cell-sorting method

DEP allows cell types to be separated by exploiting differences in their dielectric

properties - this is a characteristic which is dependent on many properties, includ-

ing the frequency of the applied electric field, the conductivity of the surrounding

liquid, conductivity and permittivity of the cell cytoplasm, and the thickness and

capacitance of the cell membrane1 (102). Because researchers can easily tune

1These are in fact all the properties which are taken into account when theoretically cal-

culating or predicting DEP behaviour based on the ‘single shell model’ (see Section 2.2.2). In
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the frequency of the electrical field (and, to an extent, the conductivity of the

surrounding fluid), the parameters can be set such that the permittivity of the

medium is less than that of one cell type, and more than that of the other, thus

enabling separation of the two cell types.

There are two reasons that make DEP a particularly good label-free sorting

method: Firstly, the ability to exert a positive or a negative force on cells, ac-

cording to type, makes it much easier to spatially separate two cell types on a chip

(compared to, say, acoustic sorting, density sorting, which works on the basis that

one cell or particle type gets slightly less force exerted on it). Secondly, the ability

to distinguish cells by dielectric properties has proven to be a more sensitive and

discerning method that other label-free approaches. In a review on LoC cell

sorting, Gossett et al. (40) suggest that this could be because the biological state

of a cell is typically defined by the presence of entities like large, charged pro-

tein complexes, dynamic ion gradients across a membrane, and internal organelle

structures, which consequently may heavily impact upon the dielectric properties.

Limitations of using DEP to sort cells

It can be argued that the dielectric properties of a cell population are just as

arbitrary as sorting cells based on other label-free characteristics such as size,

density, refractive index etc; that is to say, researchers are generally not inter-

ested in separating a cell because it is different in any physical characteristics,

but because of it’s unique function - for example, a stem cell compared to a

differentiated cell. This is defined generally by its protein expression profile,

and thus sorting cells by surface protein-specific antibodies (Section 1.2.2) is

therefore a more direct and specific approach to separation, while sorting cells

by an arbitrary physical characteristic is limited when cells of different biological

reality, many other factors play a part in influencing the polarisability of a cell; for example, the

nucleus to cytoplasm ratio is a key biophysical characteristic of a cell which will influence its

dielectric properties; however, it is accounted for in the calculation for cytoplasm conductivity.

Similarly, the presence of ion channels or gradients in the membrane are accounted for by the

membrane capacitance of the cell.
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phenotypes have very similar physical characteristics. However, the range of clin-

ically useful cell types already separated by DEP method - including viable from

non-viable (103, 104, 105), stem cells from differentiated cells (106) and cancer

from non-cancer/other cancers (107), as well as the common model of blood cell

types (108) - is testament to the superiority of DEP in label-free separation.

In terms of building a practical, high-throughput cell sorting device, DEP has

been limited mainly by the fact that the electrodes are in contact with the fluid,

from which several problems arise:

Firstly, this limits the composition of buffers (i.e. the surrounding liquid) in

which the cells are suspended to those of very low conductivity, generally 0.001

- 0.03 S/m. A higher conductivity leads to significant coupling of the electric

current into the liquid, causing joule heating of the fluid, which damages cells

and disrupts trapping by convection currents. Because the conductivities of

physiological fluids are typically 0.5 - 2 S/m (109), this poses a concern as to the

viability and usefulness of cells after having been suspended in low-conductivity

liquids (110). This is investigated further in Section 5.4.

Another significant problem is that the cells are typically trapped on or around

the electrodes, such that the throughput of the device is limited by the area of

the electrodes (typically ∼ 500 cells per 1 mm2 of surface area). As well being

low-throughput, cells trapped at the electrodes (i.e. those attracted to areas of

high field gradient by pDEP) are subjected to a strong electric field for prolonged

periods, again raising concerns regarding the viability and usefulness of cells

following separation.

Furthermore, cells which are trapped at the electrodes are generally difficult to

remove afterwards (known as electrode fouling), which limits the device lifespan

and introduces contamination (111). Other reported issues include bubble for-

mation at the electrodes, disrupting trapping of cells (111).
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Major DEP designs are discussed in the remainder of this chapter, many of which

attempt to address the issues presented here. Early devices and typical electrode

designs are discussed in Sections 1.4.2 through to 1.4.7, continuous throughput

designs in Sections 1.4.9 and 1.4.10, followed by novel efforts to remove the

electrodes from the liquid (Sections 1.4.11 and 1.4.12). Finally, efforts to trap

particles by the novel method of SAW-DEP are described (Section 1.4.13 (a

variation of which is used in this work), before summarising the key issues that

will be addressed in the DEP designs used for this thesis (Section 1.4.14).
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1.4.2 Early DEP devices

Pohl in the 1950’s (112) showed that in a non-uniform electric field, cells sus-

pended in a liquid experience different forces depending on their dielectric prop-

erties and hence on their type. Pohl’s early experiments of particle separation in

the 1960s (113, 114) used simple designs such as the pin-plate design (Figure 1.25).

Figure 1.25: Schematic of the pin-plate design used in (114), the first demonstra-

tion of DEP to separate live and dead cells.

This is a practical realisation of the electrode design shown in Figure 1.24, so it

can be imagined where the field lines are. This setup was used by Pohl and Hawk

in 1966 (114) to separate live and dead yeast cells, which has since become a

model example to demonstrate DEP. Dead cells are significantly less polarisable

than live cells, due to ionic content being released from their more permeable cell

membrane. Thus, the dead cells are directed to the low gradient at the ‘plate’,

whereas live cells are attracted towards the ‘pin’. Pohl et al.’s work throughout

this period used relatively thick wires (0.258-1.59 mm diameter), for which elec-

trical biases up to 11 kV were required in order to generate sufficient electric field

strengths to produce the force necessary to locomote cells (102) (this value is

accepted to be about 10 V/m for a 10 µm cell (115)). The problem with having
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to use such high voltages is that this led to significant thermal effects within the

fluid, leading to disruptive currents, and potential damage to cells (102).

This led to a dry spell in DEP research throughout the 1980s, before microfabri-

cation techniques became readily accessible for academic groups in the 1990s. By

fabricating electrodes on a chip (using the microfabrication methods described

in Section 1.3), a reduction in spacing between electrodes from 10s of mm to 10s

of µm can lead to a 1000-fold increase in electric field intensity.

These advances, coupled with greater ease of delivery and extraction of cells af-

forded by microfluidics, allowed for researchers to separate a range of mammalian

cell types, as discussed previously. Notable proponents of DEP cell sorting in the

1990s include the Morgan group in Glascow (116, 117, 118, 119), the Gascoyne

group in Houston (108, 120, 121, 122), and the Pethig group in Bangor, Wales

(108, 123, 124, 125, 126).

Modern DEP-based LoC devices use electrodes in height range 50-100 nm, which

are typically fabricated using metallic vapor deposition. The electrode width is

usually chosen to be 5-10 times the diameter of the particles to be selected (e.g.

10 - 150 µm (102). The following sections introduce the more widely used elec-

trode designs, namely “polynomial”, “castellated”, and “interdigitated” (115),

before extending the discussion to more novel DEP device designs.

1.4.3 Electrode design: Polynomial

Polynomial electrodes are so-called because the electrical potential of any point in

the system can be defined by a polynomial that obeys Laplace’s equation (102).

The most common arrangement is that seen in Figure 1.26, which is typically

used for trapping single cells (in the middle) to measure their dielectric properties.

This is usually achieved through electrorotation, in which the alternating po-

tential applied to the electrodes is 90 degrees out of phase with the adjacent
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Figure 1.26: Schematic showing a cell trapped in a typical quadrupole electrode

design (102).

electrode, such that the resultant electric field at the centre of the electrodes

rotates either clockwise or anti-clockwise. The resultant DEP-force causes the

particle to spin with or against the field rotation, according to whether it is

experiencing positive or negative DEP. These experiments are typically carried

out such that the frequency of the applied bias is increased from low frequency

(where the cell experiences nDEP, 10-100 KHz) to medium frequency (where cell

experiences pDEP, 100 KHz - 100 MHz) to high frequency (where the cell again

experiences nDEP, >100 MHz (102), as shown in Figure 1.27.

1.4.4 Electrode design: Castellated

First used in 1992 by Pethig et al. (115, 125), the castellated electrode design

and the resulting trapping is shown in Figure 1.28. It features parallel wires with

43



1.4 Methods for cell sorting: Dielectrophoresis

Figure 1.27: Graph showing typical DEP response (positive or negative) of a

typical mammalian cell, as a function of frequency, (102), as can be found by

observing the direction of cellular rotation in polynomial electrodes. a Below

100 KHz, cells experience negative DEP (nDEP). b At about 100 KHz (though

this can vary greatly depending on the dielectric properties of the cell and fluid),

the cell experiences no DEP force and can be observed to stop rotating at all. c

Between 100 KHz and 100 MHz, the cell can be observed to rotate in the opposite

direction - it is now experiencing positive DEP (pDEP). d At 100 MHz the cell

stops rotating, and above 100 MHz the direction of rotation changes again, back

to nDEP.

‘teeth’ patterned at an even mark-to-space ratio. The field gradient is highest

between the corners of the teeth, and lowest in the space between teeth, resulting

in positive and negative DEP trapping at these areas, respectively. Separation

was first demonstrated by Markx et al. (1996) (115, 126) using live and dead

bacterial cells; this is typically achieved, as for most DEP devices, by trapping

one cell type (e.g. live cells) by positive dielectrophoresis, and flowing liquid to

dislodge negatively trapped cells (e.g. dead cells), which are repelled from the

field and so washed away more easily. Following this, the electric field can be
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switched off in order to release the pDEP cells.

Figure 1.28: Schematic showing typical castellated IDT electrode geometry (left),

and a microscope image showing typical positive/negative cell trapping in such a

device (right) (102).

The problem with these two-step separation techniques is that switching between

steps is often time consuming, and the throughput is limited by the area of the

electrodes; consequently scaling it up would defeat many of the key objectives of

LoC technology (see Section 1.3.1). Many DEP technologies attempt to combine

hydrodynamic force with DEP to allow for continuous throughput devices. For

example, Yasukawa et al. (127) aligned the teeth of castellated electrodes (Figure

1.29), and used nDEP to separate polystyrene beads based on their size (3 µm

and 10 µm).

By applying a 2 MHz frequency, both particles experience nDEP, however the

larger 10 µm particles are subject to a stronger force. This allows an enrichment

of smaller particles into ‘weaker’ nDEP lines (Line A) and larger into the stronger

nDEP regions (Line B). Despite the precedence this work was given by reviews

such as (102), the authors note that in practice line B still contained 35% if the

3 µm particles. Furthermore, although line A exhibited 100% enrichment of the

smaller particles, the flow rate was limited to only 10 particles/second.
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Figure 1.29: Microscope image showing the aligned IDT electrode geometry used

in (127). The asymmetry in the pattern (from top to bottom) is exploited such

that larger beads (10 µm) are repulsed most strongly into Line B, while some

smaller particles (3 µm) may flow into Line A (as well as Line B).

1.4.5 Electrode design: Interdigitated

The interdigitated electrode design is analogous to the transducer electrodes used

to generate surface acoustic waves. It is a very simple design in which alternating

bars of ground and signal electrodes are aligned alongside each other, such that

positive cells are trapped along the electrode edges, while negative cells levitate

between the electrodes where the electric field gradient is lowest (see Figure 1.30).

Due to negative cells being levitated rather than trapped between electrodes (in

castellated geometries), this configuration lends itself better to separation (115),

and its simplistic design is more readily combined with hydrodynamic forces and

gravity-based approaches in, for example, field flow fractionation (DEP-FFF)

and travelling wave DEP (twDEP), which shall be discussed in the next two

subsections.

1.4.6 Travelling wave DEP

Travelling wave DEP was first described by Hagedorn et al. (129), and is also

used frequently by the Morgan group (130, 131, 132, 133). In this approach,
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Figure 1.30: Schematic demonstrating particle trapping around electrodes (yel-

low/gold colour) by dielectrophoresis (128). One cell type (‘Target cell’) expe-

riences pDEP and is attracted to the high field gradient areas at the electrode

edges. Non-target cells are repulsed and may be flowed away without disrupting

the target cells.

individual interdigitated electrodes are subjected to sequentially phase-shifted

potentials to produce a travelling electric field. This allows nDEP-experiencing

particles to be moved along the array, with typical particle velocities of 10 µm/s

(although this is rather slow) (Figure 1.31).

Because of differences in the nDEP force experienced by particles, owing to

e.g., their size (131), the speed at which they travel can differ, thus allowing

fractionation to occur. An interesting advantage of this technique is that unlike

most LoC microfluidics, it does not require a syringe pump (or similar) because

particles can be transported independent of fluid flow (115).

1.4.7 DEP-FFF

DEP-FFF is a form of field flow fractionation (Section 1.3.3) in which the dis-

criminating field is an electric field. Cells are levitated away from the electrodes
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Figure 1.31: Schematic showing a typical travelling wave DEP electrode design

(to be fabricated using multilayer methods) (131). By having four different points

of electrical contact, the potential can be phase shifted along each finger to move

particles along the electrodes by nDEP.

(via nDEP), until the DEP-force is balanced by the sedimentary force commonly

used in FFF, as shown in Figure 1.32 (120). Thus cells which experience a

greater nDEP force (i.e. those that are less polarisable by the electric field) are

levitated higher into the faster fluid streams (at middle of the channel height),

such that they are fractionated downstream. This method is commonly used for

DEP separation by the Gascoyne group in Houston (120, 121, 122).

Again, this is a multi-step process; after being flown into the chamber, cells

are left for ∼ ten minutes (120) to reach their equilibrium height, before taking

a roughly equivalent amount of time to flow the separate cell populations out.

While Wang et al. (2000) (120) reported impressive enrichment of 92-99.99%,

recovery was only 55-75%, presumably due to electrode/channel fouling while

the cells are left in the chamber for an extended time period. Perhaps more

critically, the long amount of time that cells are exposed to the electric field is

concerning with regards to cell viability/manipulation, although this can be said

about many DEP methods where cells are fractionated off (i.e. not performed

under continuous flow). Indeed, one advantage that could be said of DEP-FFF

is that, by primarily exploiting nDEP (and therefore locating the cells at areas
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Figure 1.32: Schematic showing the operating principle for DEP-FFF (120). Due

to differences in dielectric properties, two particles types (left and right spheres)

are levitated to different heights within the channel. Because the flow profile

(shaded area) results in faster flow in the middle of the channel height, particles

which are levitated closest to this can be fractioned off early, and thus separated

from the other particle type.

lowest field gradient and intensity), and possible harm cause to cells experiencing

electric fields for prolonged periods is minimised (134).

One way to avoid the incubation step was demonstrated by Holmes et al. (2003)

(56, 135), whereby pre-separation electrodes focused cells into the middle of the

channel (Figure 1.33). Focusing cells in microfluidics systems is a common step,

though it is more often achieved using hydrodynamic or SAW-based methods

(136). Whilst the device shown in Figure 1.33 would efficiently collect cells into

separate bands on the chip (for example, to be counted), it is not suitable for

subsequent extraction of separated cell types because there is no way of flowing

off the two bands separately.
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Figure 1.33: Schematic showing the DEP-FFF used by (56, 135), whereby par-

ticles are focused by nDEP before separation. Separation occurs by cell types

experiencing different amounts of pDEP attraction to the second electrode (set

to a pDEP-inducing frequency), such that different cell types collect in different

bands along the chip.
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1.4.8 Funneling DEP

A variation on the nDEP-focusing method presented by Holmes et al. (56, 135)

can be seen in the work of Fiedler et al. (1998) (134). The authors used a

‘funnel’ electrode design (Figure 1.34), with the primary aim of focusing and

concentrating particles to the middle of the fluidic channel.

Figure 1.34: Schematic showing a funnelling electrode design to concentrate par-

ticles with nDEP. Particles (black spheres) are repelled by nDEP from electrodes

(black lines) within a microchannel, which are angled so as to focus them (102).

Due to the greater DEP force experienced by larger cells, this has also been

used for size-based sorting (by fractionating off smaller cells first) (137), again

similar to the capabilities of centrifugation. The typical cell velocities reported

by Fiedler et al. (134) were an impressive (for microfluidics) 10 mm/s; however,

it is still hard to envisage this technique as ever matching centrifugation for

throughput, though its specificity is likely to be roughly equivalent. It is also

worth noting that this method is very similar to travelling wave DEP (Section

1.4.6).

One obvious disadvantage of the techniques discussed thus far is that they are

not continuous-flow devices, i.e., sorted cells either have to be fractionated off in

repeated steps in order to achieve high throughput. This is in contrast to the

SAW-based sorting device presented by Shi et al. (101) (Figure 1.23), in which

the two cell types are continuously directed into two separate channels. This

51



1.4 Methods for cell sorting: Dielectrophoresis

brings us to two novel methods, ‘Hydrodynamic’ and ‘Isomotive’ DEP, which

offer similar continuous sorting capabilities.

1.4.9 Hydrodynamic DEP

Doh et al. (2005) proposed a ‘Hydrodynamic DEP’ sorter for continuous flow

and higher throughput particle separation (138). Electrodes flank the sides of

the channel in a similar way to Funneling DEP, and hydrodynamic focusing of

the cells as they enter is achieved by sheath flow (Figure 1.35).

Figure 1.35: Schematic showing the design used for continuous hydrodynamic

DEP by Doh et al., 2005 (138). Cells are directed into the middle of the chan-

nel by hydrodynamic focusing. As they travel through the channel, electrodes

flanking the channel attract one cell type by pDEP, such that they move into

‘Outlet 1’ regions. Conversely, cells experiencing negative DEP are repelled by

the electrodes and stay in the middle of the channel, to be extracted by Outlet

2.

This technique also makes use of both pDEP and nDEP, by tuning the param-

eters such as that one cell type (live yeast cells) receives pDEP and is attracted
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to the flanking electrodes, while the other (dead yeast cells) are repelled to the

centre. Thus, pDEP cells are collected by channels at the sides, and nDEP cells

in a central channel. This method demonstrated a good throughput of ∼650

cells/second, similar to FACS, and purity of 97% and 75% for pDEP and nDEP

cells, respectively.

1.4.10 Isometric DEP

Isomotive DEP is another continuous-throughput separation method, presented

by Li et al. (2007) (139). In their setup (Figure 1.36), the electrodes are designed

such that the magnitude of force experienced by a cell (whether experiencing

pDEP or nDEP) is the same irrespective of its position in the channel (hence

movement is ‘isomotive’ (140)). The cell moves to the left or right channel

depending on whether it receives positive or negative DEP.

Figure 1.36: Schematic showing the isomotive DEP channel and electrode design

used in (139). An electrode array at the base of the channel is designed such that

cells experience the same amount of force (pDEP or nDEP) throughout the chan-

nel, with pDEP-experiencing cells moving to the right, and nDEP-experiencing

cells moving to the left.
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This seems like an incredibly neat solution to give continuous flow, while utilising

the discretion of positive and negative DEP forces. However, the results of the

paper (139) were disappointing: enriching live yeast from a live/dead sample,

the target outlet only had a ∼ 10% greater proportion of the target cell (e.g.

live). It can only be speculated, for example, that the field produced is not

sufficiently non-uniform to exert a sizeable force on cells, as a possible reason

why the method was not more successful.

A major limitation of all the techniques considered so far is that the requirement

to have electrodes in contact with the fluid. This imposes limitations on the

medium conductivity, which must be kept low (0.001 - 0.03 S/m) for reasons

discussed in Section 1.4.1, such that cells are kept in potentially harmful buffer

conditions. Other problems also arise from the presence of the electodes, such as

fouling, and the observation that this requirement does not lend itself readily to

continuous-throughput designs. The remainder of this section will look at steps

researchers have taken to minimise the effect of, or remove, electrodes from the

fluid in DEP devices.

1.4.11 Electrodeless DEP

An electrodeless DEP device can be produced by passing the field directly into

the fluid if it is suitably ionic (such as that of a typical cell buffer or culture

medium) (102, 141). In order to create the asymmetry required to produce a

DEP force, the channel features constrictions made of insulating material, that

distort or warp the electric field. Figure 1.37 shows the constriction design used

by (141); in this case, the areas of high field gradient are at the centre of the

constriction, with low field gradient regions formed at either side.

The suggested application of this is more of a diagnostic tool rather than a high-

throughput separator. Cell sorting achievements have included the separation

of blood cells from E. coli (142), in which the E. coli cells are trapped in the
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Figure 1.37: Schematic showing an electrodeless DEP design, where constrictions

in an insulating material within the microchannel creates non-uniformity in the

electric field (thus exerting a DEP force on particles passing through it). A

current is passed directly into a high conductivity fluid, such that a field is formed

in the liquid; the field is subsequently shaped by dielectric obstacles etched into

a microchannel (in this case quartz) (141).

channel as the blood cells flow on.

While this is a novel and creative solution to removing the electrodes from the

liquid, it is difficult to see how cells can be differentially extracted afterwards, at

least with high throughput. Another issue with this method is that while some

problems caused by the electrodes are solved, passing the current directly into

the ionic fluid generates a substantial increase in temperature (111).

1.4.12 Contactless DEP

Contactless DEP was developed by Shafiee et al. in 2009 (111). In this case, the

electrodes are separated from the fluid by a thin dielectric material (see Figure

1.38), which capacitively couples the field from the electrodes into the main

channel.
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Figure 1.38: Schematic and dimensions for contactless DEP, from (111), in which

the electrodes are capacitively coupled to the cell solution by separating them

with a thin dielectric layer (i.e. the PDMS membrane), thus avoiding direct

contact of the electrodes.

This method was used to separate live and dead mammalian (leukaemia) cells

(143) as well as plasma from whole blood (144). While this may seem like a

simple solution to the problem of having electrodes in contact with the fluid,

the same issues of joule heating and hence the need for low conductivity fluids

remains; likewise, the electrodes can only be on either side of the channel, and

separation of cells depends on a fractionation technique, in which the throughput

is limited by the area of the (capacitive) electrode surface. The main advan-

tage of this technique is that the electrodes can be added separately and the
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intricate, micro-scale features of the device can be made through insulator-based

technologies with relative “ease of fabrication” (for example, commercial devices

could ultimately be made by injection-moulding). However, the claim that mak-

ing 30 µm wide microchannels in PDMS is any harder that vapour-depositing

microelectrodes is a contentious one, and it could be similarly argued that

micropatterning electrodes (particularly on a large scale) has been made rela-

tively straightforward thanks to its utility to the computer/smart phone industry.
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1.4.13 SAW-DEP

In the SAW devices mentioned in Section 1.3.7, a non-uniform electric field is

formed relative to the nodes and antinodes of the standing wave (high and low

electric field gradient, respectively). This is due to the compression and rar-

efaction of the charge centres within the crystal lattice of the substrate. Thus,

theoretically, cells can be lined up at the nodes and antinodes between the trans-

ducers by positive and negative DEP. In practice, however, the use of Rayleigh

SAWs to produce the standing wave means DEP forces are competing with much

stronger acoustic radiation forces, and cells will always tend to line up at the

nodal (low pressure) regions of the leaky SAW (Figure 1.39).

Figure 1.39: Schematic showing nanowire alignment by SAW-induced DEP, from

(145). The nanowires, which are made of a conductive material, experience di-

electrophoretic force that causes them to align at the antinodes of the underlying

SAW (the low gradient regions), in a formation parallel to the SAW propagation

axis. The dielectrophoretic force is sufficiently strong to overcome acoustic forces

from the leaky SAW pressure wave in the channel, which otherwise would cause

the nanotubes to align perpendicular to the SAW propagation axis at the nodes

of the pressure wave.

The DEP effect from SAWs has been used, however, to align particles with

enhanced conductivity, such as metallic microtubules (146). Kong et al. (2010)

used Rayleigh SAWs on LiNbO3 to align conducting microtubules (see Figure

1.40). As can be seen in this figure, the microtubes align along the SAW axis

of propagation; to prove this was caused by dielectrophoretic effects (not acous-

tic forces, for example, via misleading reflections in the channel), the field was

screened and no alignment was observed (146).
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Figure 1.40: Time series of Cr microtubules aligned using SAWs on a LiNbO3

substrate, from (147). The coloured triangles are markers on individual nan-

otubes.

A similar experiment was done by the Huang group in 2013 (145). This experi-

ment used a similar setup to generate arrays of nanowires at the SAW antinodes,

separated from microspheres at the nodes (see Figure 1.41).

Even for applications such as separating nanowires from microspheres, or simply

patterning nanowires, the acoustic forces are both strong, but also produce un-

predictable flow and can generate significant heat within the fluid. The position

of pressure nodes depends not only on the position of the standing wave in the

substrate, but also on the channel geometry, as the wave couples into the over-

lying liquid in the form of a leaky SAW which subsequently reflects according

to the channel geometry. This non-uniformity of patterning is evidenced by the

uneven arrangment of particles seen in Figure 1.41.
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Figure 1.41: Schematic showing nanowire alignment by SAW-induced DEP, from

(145).

1.4.14 Dielectrophoresis summary and considerations for

a SAW-DEP cell sorter

A corollary of the preceding section would be that if the acoustic effects could

be successfully removed from SAW-based devices, the dielectrophoretic forces

would dominate and possibly be sufficient to align cells. This thesis builds on

early work (by those mentioned in the Acknowledgements section) that suggests

the use of shear horizontal (SH-) SAWs to achieve this. SH-SAWs are similar to

Rayleigh SAWs, but with the displacement in the horizontal plane of the surface

(Figure 1.42), such that there is no mechanical coupling into the liquid. Lithium

tantalate (LiTaO3) is a common substrate to generate SH-SAWs for use, e.g. in

biosensing applications (148).

In this work, a method is proposed that could overcome several key issues with

DEP techniques discussed in this subsection (see Figure 2.6):
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Figure 1.42: Schematic showing a SAW chip with a shear horizontally-

propagating SAW standing wave, as opposed to the Rayleigh waves discussed

earlier.

• This method would allow sorting of cells into both positive and negative

dielectrophoresis, for high fidelity separation of cell types

• By placing the fluidic channel between the electrodes, the fluid can be

kept apart from the electrodes. Because the electric field effect arises from

static charges on the surface, there will be no current passed into the liquid,

meaning that high conductivity liquids can be used without negative effects

such as heating and convection currents

• Cells can be flown through the electric field and sorted, to be diverted into

separate channels. This would allow for both high-throughput, continuous

separation, and avoids fouling of electrodes.

A detailed and mathematical description of the mechanism behind our proposed

technology is described in the following section.
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Figure 1.43: Schematic showing cell separation of a SAW chip (149). IDTs either

side of a microfluidic channel produce a standing SH-SAW between them (red

arrows, side-to-side movement). This in turn produces a non-uniform electric

field (black lines). By flowing in a heterogeneous mixture of particles (green and

red spheres, left), the particles can be dielectrophoretically separated into dis-

crete lines by the induced non-uniform electric field, and flowed into structurally

separated sub-channels for subsequent extraction.
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Chapter 2

Theory of surface acoustic waves

and dielectrophoresis

2.1 SAWs

2.1.1 Description of mechanical waves

A mechanical wave can be described as a periodic oscillation of matter that

travels, and therefore transfers energy, through a medium. An illustration of the

most basic types of mechanical (or “acoustic”) wave can be seen in Figure 2.1.

Surface acoustics waves (SAWs) are a special subset of mechanical wave, in

which the travelling mechanical oscillations are confined to the interface between

two materials - in this case, at the surface of a piezoelectric crystal substrate.

Whilst a bulk acoustic wave (BAW) travels through the body of a material,

the mechanical perturbations of a SAW are generally confined to within one

wavelength of the substrate surface. Two of the most common types of SAW are:

the shear-horizontal SAW (SH-SAW), in which the mechanical oscillations are

parallel to the substrate surface and perpendicular to the direction of propagation

(analogous to Figure 2.1b); and the Rayleigh wave, which exhibits components

both along the direction of wave propagation, and normal to the surface plane

(a complex convolution of Figure 2.1a and c). The most well known SAWs

are the Rayleigh waves that propagate through the earth’s surface following a

seismic event. Both types of SAW are elastic waves, i.e. they propagate through
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Figure 2.1: Schematic of mechanical wave types propagating along a substrate.

Red arrows indicate the direction of propagation, and blue arrows indicate the

movement (i.e. the mechanical displacement) of individual particles (blue cir-

cle) within the substrate. a Pressure, or longitudinal, wave, where particles are

displaced parallel to the surface plane in the direction of propagation b Shear

(or “transverse”) horizontally polarized wave, where particles are displaced par-

allel to the surface plane, perpendicular to the direction of propagation c Shear

vertically-polarized wave, where particles are displaced perpendicular to the sur-

face plane, perpendicular to the direction of propagation (150).

a material without resulting in a permanent deformation.

2.1.2 Creating surface acoustic waves on a piezoelectric

substrate

Piezoelectric materials are those that become electrically polarized in response

to mechanical perturbation. For example, they are used for the spark-generating

components of cigarette lighters and gas cooker lighters, which discharge elec-

tricity when mechanical pressure is applied. For a material to exhibit the

piezoelectric effect, the unit cell of the material’s crystal structure must lack
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inversion symmetry (Figure 2.2). When mechanical pressure is applied along the

axis of asymmetry, the charge centres of the crystal are misaligned such that

there is a change in dipole, δP, caused by the movement of charge in the crystal,

which is exhibited by a change in charge density at the crystal suraces and a

corresponding electric field is established between the crystal faces. The larger

the applied force, the larger the generated field.

Similarly, applying a potential across a section of piezoelectric material can in-

duce an expansion or compression proportional to the applied bias. By applying

an alternating bias, the compression and expansion alternates with the electric

field, and propagates through the material as a travelling wave.

A typical transducer geometry for generating SAWs is shown in Figure 2.3. These

comb-like electrodes are known as interdigitated transducers (IDTs), where one

‘comb’ is grounded, while an AC voltage is applied to the other. These transduc-

ers must be made of a conductive material, generally gold or aluminium. Upon

application of the alternating bias, the electrical potential difference creates an

undulation of compressions and rarefactions of the underlying crystal that oscil-

late with the same period as the applied potential.

If the spacing between finger pairs is an integer number of SAW wavelengths

(e.g. for a 50 µm SAW wavelength, finger spacings of 50, 100, or 150 µm, etc),

then subsequent finger pairs will amplify the SAW as it propagates, allowing it

to travel further along the substrate beyond the IDT (typically <1 cm). The

SAW wavelength is described in Equation 2.1:

f = v
λ

(2.1)

where f is the applied frequency, v is the wave speed/speed of sound in the

substrate, and λ is the SAW wavelength.

For example, a 10 MHz acoustic wavelength in a lithium tantalate substrate

(LiTaO3) where the speed of sound is ∼ 4,000 m/s would have a wavelength of
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Figure 2.2: Schematic showing a face centred cubic unit cell a with and b without

inversion symmetry. Positive charges (+) are shown in green, negative (-) in red

(the charges of molecules are arbritrary). In a, the centres of positive and negative

charge are coincident, and there is no net polarisation; when force (or stress) is

applied, the crystal lattice becomes strained but the charge symmetry remains;

there is therefore no change in the polarisation of the crystal. In b an additional

charge (2+, black) means that the centres of positive and negative charge are

not perfectly coincident, such that there is a net polarisation. When a strain is

applied, the relative positions of the centres of negative and positive charge are

altered, generating a change in the dipole, δP, of the unit cell and therefore a

change in the electric field between the faces (151).

400 µm. In order to generate an acoustic wave at this frequency, the pitch of

the IDT would be designed to match the wavelength (i.e. 400 µm, λ in Figure 2.3).
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Figure 2.3: An example interdigitated transducer (IDT) design to produce SAWs.

An oscillating potential is applied to one set of transducers while the other set

is grounded, generating an acoustic wave that propagates along the surface of

the underlying piezoelectric substrate. The wavelength of the wave produced is

defined by the pitch of the IDTs indicated by λ.

By applying a phase-locked driving signal to transducers at both ends of the sub-

strate, two travelling waves travelling in opposite directions along the same axis

will overlap and combine to form a standing wave, as illustrated in Figure 2.4.

Figure 2.4 also depicts the two types of SAW that can be produced - Rayleigh
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(Figure 2.4a) or shear horizontal (Figure 2.4b) - according to the crystal cut of

the substrate.

The rest of this subsection will provide a mathematical description of the waves

that are formed in SAW devices. Detailed mathematical treatments can be found

in references (152, 153, 154, 155), from which the majority of the discussion pre-

sented here was derived.

Figure 2.4: Schematic of how IDTs on a piezoelectric substrate can produce

SAWs. a Rayleigh standing SAW, where the principle direction of mechanical

displacement is perpendicular to the plane of the substrate (with the substrate

surface moving up and down) b Shear horizontal standing SAW, where the prin-

ciple direction of mechanical displacement is within the plane of the substrate

(where the substrate moves from side to side)
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2.1.3 Terminology

Stress and Strain

Wave propagation in elastic media is described in terms of Stress andStrain

tensors within a Cartesian coordinate system. The stress (T ) is a measure of

the internal forces within a material (N/m2), while the strain (S) is a measure

of the deformation of the material per unit length (dimensionless). They are

both expressed as tensors, Tij and Skl respectively, where i, j, k, and l each have

x, y, and z coordinate directions. The second order stress tensor Tij is depicted

graphically within a Cartesian coordinate system in Figure 2.5.

Figure 2.5: Schematic depicting how stress forces in a material are represented

within a Cartesian coordinate system. The directions 1, 2 and 3 correspond to the

orthogonal coordinates x, y, and z. T represents the stress force on the substrate,

defined by force per unit area; X1, X2, and X3 correspond to the coordinate axes

x, y, and z, respectively.

Figure 2.5 shows the forces acting on a unit cube in three dimensions. The

stress tensor (or stress ‘state’) Tij can be decomposed into 9 components written

as a matrix (T11 etc in Figure 2.5). The subscripts i and j denote orthogonal
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directions; Tij, therefore, is the the force (per unit area) on the i-face in the j

direction. As can be seen in Figure 2.5, this leads to three normal stresses where

i = j (T11, T22, and T33), and six shear stresses where i ≠ k. To relate this to the

matrix in Figure 2.5, i (1,2, or 3) denotes the row number of the matrix, while

j denotes the column number. (A full example of one stress component is given

after a description of Strain.)

To describe the strain (S ) a particle (or point) is considered within the material

which is displaced from its equilibrium state by deformation by a distance U .

Strain is also described as a second order tensor, Skl, which is given by:

Skl =
1

2
(∂Uk
∂l

+ ∂Uk
∂l

) (2.2)

where k and l each have x, y, and z components.

Stress and strain are linearly proportional to one another by a constant tensor,

C. Stress and strain are both second order tensors, so their relationship must be

described by a fourth order tensor, denoted here with the subscripts i, j, k, and l:

Tij = CijklSkl (2.3)

Each of i, j, k, and l can have values for x, y, and z, such that there are therefore

(34 =) 81 stiffness constants. However, in elastic non-ferroelectric materials, the

stress matrix is symmetric and so Tij = Tjk, which in turn means that the stiffness

constants are related by:

Cijkl = Cjikl = Cijlk = Cklij (2.4)
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This reduces the number of stiffness constants to 21. Due the symmetry of the

tensors in question, the subscripts can be abbreviated as shown in Table 2.1.

Table 2.1: Abbreviation of subscripts

Label ij

1 xx

2 yy

3 zz

4 yz,zy

5 xz,xy

6 xy,yx

To illustrate, this is how the second order strain tensor can be represented in

matrix form (note the i = j symmetry):

S =
RRRRRRRRRRRRRR

Sxx Sxy Sxz
Syx Syy Syz
Szx Szy Szz

RRRRRRRRRRRRRR
=
RRRRRRRRRRRRRR

S1
1
2S6

1
2S5

1
2S6 S2

1
2S4

1
2S5

1
2S4 S3

RRRRRRRRRRRRRR

By notating the stress and stiffness constants in similar form, Equation 2.3 be-

comes:

RRRRRRRRRRRRRRRRRRRRRRRRRRRR

T1
T2
T3
T4
T5
T6

RRRRRRRRRRRRRRRRRRRRRRRRRRRR

=

RRRRRRRRRRRRRRRRRRRRRRRRRRRR

c11 c12 c13 c14 c15 c16
c12 c22 c23 c24 c25 c26
c13 c23 c33 c34 c35 c36
c14 c24 c34 c44 c45 c46
c15 c25 c35 c45 c55 c56
c16 c26 c36 c46 c56 c66

RRRRRRRRRRRRRRRRRRRRRRRRRRRR

⋅

RRRRRRRRRRRRRRRRRRRRRRRRRRRR

S1

S2

S3

S4

S5

S6

RRRRRRRRRRRRRRRRRRRRRRRRRRRR
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Stress component example

To illustrate, below is an example of one of the stress components:

Txx = CxxxxSxx +CxxxySxy +CxxxzSxz +CxxyxSyx +CxxyySyy
+CxxyzSyz +CxxzxSzx +CxxzySzy +CxxzzSzz

(2.5)

which, using the abbreviations of Table 1, becomes:

T1 = C11S1 +C12S2 +C13S3 + 2C14S4 + 2C15S5 + 2C16S6 (2.6)

The proceeding section will discuss how these terms fit into general equations for

motion in order to describe piezoelectric wave propagation.
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2.1.4 Wave propagation

Equation for motion

The total force exerted on a material (modelled as a cube, as in Figure 2.5) can

be described by:

F = ∂Tij
∂Xj

(2.7)

where F is the force density per unit volume, Tij is the stress tensor, and Xj is

the length in X1,X2, and X3. F must be equal to the mass (m = ρV , where ρ is

the density and V is the volume) times the acceleration (∂2Ui/∂t2); because F in

this case is per unit volume, Newton’s second law becomes:

F = ρ∂
2Ui
∂t2

(2.8)

This can be substituted into Equation 2.7 to give a wave equation to describe

displacements in isotropic media1, as well as elastic, homogenous anisotropic

media:

ρ
∂2Ui
∂t2

= ∂Tij
∂Xj

(2.9)

1Isotropic media has the same characteristics in all directions, while anisotropic media

exhibits different characteristics in different dimensions
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Relating to stress and strain

Recalling Equation 2.3, the Stress component (Skl) can be substituted for

∂Ul/∂Xk (where U is the displacement and X is the unit length) such that

Equation 2.3 becomes:

Tij = Cijkl
∂Ul
∂Xk

(2.10)

The wave equation (2.9) can now be re-written to include the stiffness constants

of a given material (Cijkl) by substituting Tij on the right side, and dividing the

left side by a further ∂X component:

ρ
∂2Ui
∂t2

= Cijkl
∂2Ul

∂Xj∂Xk

(2.11)

This gives a set of three equations (for Ux, Uy, and Uz). ijkl takes all possible

combinations of X,Y, and Z, and thus is related to how many stiffness constants

there are for the material.

2.1.5 Considerations for piezoelectric medium

Piezoelectric components

As described partially in Section 2.1.2, piezoelectricity is a phenomenon of certain

anisotropic materials that couples elastic stress and strain to electric fields. In

a piezoelectric material, the stress components Tij are therefore dependent not

only on the stiffness (C) and strain (S) components, but also the electric field,
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E, described by:

Di = εijEj (2.12)

where D is the electric displacement field vector, ε is the permittivity matrix,

and E is the electric field vector.

A mechanical wave propagating in a piezoelectric medium will partially dissipate

energy into an electric signal, described by (using Equation 2.3):

Tij = CijklSkl − ekijEk (2.13)

where ekij is the third order piezoelectric tensor, and Ek is the electric field in

three directions.

Similarly, an electric field dissipates energy into a mechanical stress (S), as shown

by (using Equation 2.12):

Di = eiklSkl + εikEk (2.14)

where Di is the component of the electric displacment, and εik is the symmetric

permittivity matrix.

Wave propagation in a piezoelectric medium

Using Equations 2.13 and 2.14 and substituting in the terms for the previously-

shown equation for wave motion (Equation 2.11), it is possible to get a system

of coupled wave equations to describe wave propagation in consideration of the

piezoelectric effects.

75



2.1 SAWs

Considering Equation 2.13, Tij and Skl can be substituted (as for Equation 2.11)

to give:

ρ
∂2Ui
∂t2

−Cijkl
∂2Uk

∂Xj∂Xl

− ekijEk (2.15)

In the case of acoustic waves, the electric field can be described as the negative

gradient of the scalar potential (153):

E = −∇φ (2.16)

The term −∇φ can be written as the differential ∂2φ
∂Xk∂Xj

. Substituting this for

Ek, Equation 2.15 becomes:

ρ
∂2Ui
∂t2

−Cijkl
∂2Uk

∂Xj∂Xl

− ekij
∂2φ

∂Xk∂Xj

= 0 (2.17)

Finally, the Skl and Ek components in Equation 2.14 can be substituted as for

the above, to give:

eikl
∂2Uk
∂Xi∂Xl

− εik
∂2φ

∂Xi∂Xk

= 0 (2.18)
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2.2 Dielectrophoresis

2.2.1 Formation of a non-uniform electric field by a stand-

ing SAW

A standing SAW formed on a piezoelectric substrate will oscillate the charge

centres back and forth so as to produce an electric field emanating from bound

charges in the substrate; because the degree of oscillation varies along the stand-

ing wave (i.e. more towards the antinodes, less towards the nodes), this electric

field will be non-uniform. The electric field associated with a piezoelectric

standing SAW is represented diagrammatically in Figure 2.6. A more thorough

description of this phenomena, with modelling and experimental results from

force tracking, will be presented in Section 4.4. The remainder of this section will

describe how non-uniform electric fields can be used to move particles by dielec-

trophoresis. A more thorough description of dielectrophoresis can be found in

the references (102, 115, 156), from which the majority of this section is based on.

2.2.2 Brief description of dielectrophoresis

DC dielectrophoresis

All the dielectrophoretic experiments used in this work (and most other works

pertaining to manipulation of cells by dielectrophoresis) pertains to AC dielec-

trophoresis, that is, the movement of dielectric particles in a non-uniform AC

electrical field. It is logical to begin by describing DC dielectrophoresis (i.e. the

movement of dielectric particles in a DC electric field), before explaining the

differences between it and AC dielectrophoresis.

Dielectric materials (electrical insulators) become polarised in the presence of an

electric field. Polarisation can be thought of as the movement of charged entities

within the dielectric material to maximise attraction or minimise repulsion in

their interaction with the surrounding electric field.
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Figure 2.6: Schematic showing how a standing SAW formed on a piezoelectric sub-

strate produces an associated non-uniform electric field. The mechanical move-

ment of a shear standing wave in the substrate is represented by red lines and

arrows; the black lines represent the associated electric field component. The

greatest compression and rarefraction of the substrate occurs at the standing

SAW nodes; these are the regions of highest electric field intensity (represented

by the widest point of the three black electric field lines). Similarly, the lowest

field intensity is found at the SAW antinodes. The green and red spheres repre-

sent cells in an overlying microchannel, flowing from the bottom left to the top

right of the image, which receive a dielectrophoretic force from the non-uniform

field.

Dielectrophoresis concerns the polarisation of two dielectric materials: a small

particle, such as a cell or latex bead, suspended in an aqueous electrolyte (such as

sodium chloride, NaCl). The polarisation of the two materials within a uniform

DC electric field (formed by two ‘plate’ electrodes) is shown diagramatically in

Figure 2.7.
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Figure 2.7: Schematic showing how a particle (yellow circle) and aqueous elec-

trolyte solution (pale green liquid surrounding the particle) become polarised in

a (uniform) DC electric field. The blue and red bars represent negative and pos-

itive (‘plate’) electrodes, respectively. Blue and red dots represent negative and

positive charge carriers (for example, Cl− and Na+ ions), respectively. The polar-

isation force is the same on both sides of the particle (because it is in a uniform

electric field), and so there is no net movement of the particle. a There is a greater

concentration of charge carriers in the surrounding liquid than in the the particle,

such that the liquid is more polarisable than the particle. Because of this, the

electric field lines bend around the particle. b There is a greater concentration

of charge carriers inside the particle than in the surrounding liquid, such that

the particle is more polarisable than the liquid; now, the field lines bend into the

particle.
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Figure 2.7 shows that, when in a DC electric field, the field lines will go through

whichever medium (the liquid or the particle) that has the highest concentration

of charge carriers. This figure shows the case for a uniform electric field, which

polarises dielectric particles such that a net dipole forms, but leads to no net

movement of the particle because the polarisation force is the same on both sides

of the particle.

Figure 2.8 shows a dielectric particle in an aqueous solution in a non-uniform

DC electric field. Similar to the case for a uniform field, the direction of the

net dipole of the particle depends whether it is more or less polarisable than the

surrounding liquid, such that the particle experiences a repulsive force from the

electrodes if it less polarisable than the surrounding liquid, or an attractive force

if it is more polarisable. However, because the field is non-uniform, there is a

stronger force (attractive or repulsive) from the regions of high field intensity (i.e.

the blue electrode in Figure 2.8). The result of this is that if the particle is less

polarisable than the surrounding liquid (Figure 2.8a), it is will be pushed away

from the regions of high field intensity (known as negative dielectrophoresis, or

‘nDEP’), while it is attracted towards the regions of highest field intensity if it

is more polarisable than the surrounding liquid (positive dielectrophoresis, or

‘pDEP’).

AC dielectrophoresis

AC dielectrophoresis can also be illustrated by looking at Figure 2.8, but it must

be considered that the electrode potentials (illustrated by blue and red colours)

are constantly alternating. In response to the alternating potential, the charge

carriers inside and outside of the particle are moving to alternating sides of the

particle, with a slight time delay that depends on the mobility of the charge

carriers. For AC dielectrophoresis, therefore, the direction of the net dipole of

the particle depends therefore not only on the density of charge carriers inside

and outside the particle, but also on the mobility of charge carriers. The types

of charge carriers and the factors that affect their mobility are discussed in the
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next sub-section.
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Figure 2.8: Schematic showing a particle surrounded by an aqueous electrolyte

solution, similar to Figure 2.7, only in the presence of a non-uniform electric field

instead of a uniform electric field. The black arrow represents the resulting direc-

tion of particle movement. a The particle is less polarisable than the surrounding

liquid, such that the field lines bend around the particle to travel through the

liquid. Because of the dipole formed by the electric field (where the red, positive

charge carriers group to the left of the particle, and blue, negative charge carriers

group to the right), opposite charge carriers in the liquid group round the outside

of the particle. This forms a net dipole across the particle such that there is a

repulsive force from either electrode; because there is a strong force from the re-

gions of higher field intensity (i.e. from the blue, negative electrode), the particle

is pushed in the direction away from the high field intensity regions. b Similar to

a, except the particle has a higher concentration of charge carriers such that it is

now more polarisable than the surrounding medium. As a result, the net dipole

is such that either side of the particle experiences attractive forces towards the

electrodes. Because there is a stronger force attracting it to the regions of high

field intensity/blue electrode, it moves towards these regions.
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2.2.3 Types of polarisation

It has been mentioned that by applying an electric field, a dielectric becomes

polarised. Polarisation can be thought of as when the negative and positive

charges in a dielectric are displaced in opposite directions. When the electric

field is turned off, it takes a certain amount of time for the charges to revert

back to their non-polarised state - this is known as the ‘relaxation time’, and is

a measure of the mobility of charge carriers. The types of polarisation that can

occur to various charge carriers in a dielectric are detailed below:

Electronic polarisation

Electronic polarisation occurs when the centre of charge of an electron cloud is

skewed by an electric field, such that it is displaced with respect to the charge cen-

tre of the nucleus (see Figure 2.9. The relaxation time for electronic polarisation

is on the order of 10−14 seconds.

Figure 2.9: Schematic showing the movement of the centre of an electron cloud

(simplified into a light blue circle) relative to the centre of charge of a nucleus

(red), in response to an electric field.

Atomic polarisation

In ionic lattices (such as crystalline NaCl), the ions move in opposite directions in

response to the electric field, as detailed in Figure 2.10. This is known as atomic
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polarisation, and has a relaxation time of 10−12 s.

Figure 2.10: Schematic showing atomic polarisation. Oppositely-charged ions

bound in a solid lattice move in different directions upon application of an electric

field.

Orientational polarisation

Orientational polarisation occurs when molecules with a permanent molecular

dipole (e.g. H2O) switch from a random alignment in the absence of an elec-

tric field, to orienting themselves parallel to an applied field (see Figure 2.11).

The relaxation time of this polarisation varies with temperature, and the size

and structure of the molecule in question. At room temperature, water has a

relaxation time of 2 × 10−10 s.

Interfacial polarisation

Interfacial polarisation happens at the interface between two dielectrics, for ex-

ample, a latex bead (dielectric 1) suspended in water (dielectric 2). This is

depicted in Figures 2.7 and 2.8. For particles like cells, the polarisation is caused

by the migration of solubilised ions; in stronger insulators like latex beads, it is

predominantly caused by migration of surface charges. In the case of interfacial

polarisation, the relaxation time is much longer, on the order of 10−2 to 10−4 s.
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Figure 2.11: Schematic of orientational polarisation. Molecules with permanent

molecular dipoles switch from a random to a unifom alignment, upon application

of an electric field.

Relationship between frequency of an alternating electric field and the

mechanisms of dielectric polarisation

When dealing with an alternating electric field, the mechanisms of polarisation

vary with the frequency of the field, and this has a corresponding effect on the

DEP response. It can be said that at low frequencies, the DEP force depends

on the conductivity properties of the dielectrics, while at higher frequencies the

values for permittivity are most important.

For example, imagine a latex bead suspended in de-ionised (low conductivity)

water. At low frequencies (e.g. < 104 Hz), migration of surface charges on

the latex beads makes it more polarisable than the water, and so the particle

experiences positive DEP. At higher frequencies, however (> 106 Hz), the mo-

bility of surface charges is too low to respond to the alternating field, and the

particle permittivity dominates the dielectrophoretic response (for instance, by

re-orientation of dipoles). For water, the relative permittivity is about 80, while

for latex it is about 2.5 (115). Thus, at higher frequencies, the liquid is now more

polarisable than the particle, and the latter experiences negative DEP.
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2.2.4 Mathematical description of dielectrophoresis

Dielectrophoretic force

The dielectrophoretic force on a spherical particle is described by:

F⃗DEP = 2πr3εmRe[FCM]∇E2
rms (2.2.19)

where r is the particle radius, εm is the permittivity of the liquid, Re[FCM] is the

real part of the Claussius-Mossotti factor (see below), E is the amplitude (root

mean square) of the electric field, and ∇ represents the gradient operator. For

this work, FCM is important because it can be tuned by modulating the frequency

of the field, and/or conductivity of the liquid, such that cell types have a distinct

FCM based on their dielectric signature.

Polarisability and complex permittivity

Polarisability is defined as the ability of a dielectric to become polarised in re-

sponse to an electric field, in order to reduce the total electric field in the medium.

Whether a particle experiences positive or negative dielectrophoresis depends on

its relative polarisability with respect to the surrounding medium. This is deter-

mined using the Clausius-Mossotti (or CM) factor, FCM :

FCM =
ε∗p − ε∗m
ε∗p + 2ε∗m

(2.2.20)

where ε∗ refers to the complex permittivity, and p, m denote the particle and

medium, respectively. By analysing Equation 2.2.20, it is clear that when the

permittivity of the particle is greater than that of the medium (it can also be
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said that “the polarisability of the particle is greater than that of the medium”),

0 < FCM ≤ 1 and the particle will experience positive dielectrophoresis. Con-

versely, when ε∗p < ε∗m, then −0.5 ≤ FCM < 0, and the particle will experience

negative dielectrophoresis.

Dependence of permittivity on conductivity and frequency

For AC fields, permittivity shows a frequency-dependent response. It is expressed

as a complex number because field-induced polarisation occurs after the appli-

cation of the field, such that there is a phase lag. The complex permittivity ε∗ is

given by:

ε∗ = ε + jσ
ω

(2.2.21)

where σ refers to the conductivity, ω the angular frequency, j is
√
−1, and ε

is the relative permittivity of the medium. It can be observed that at either

high conductivity or low frequency, the imaginary component of the complex

permittivity becomes dominant and vice versa. For example, when ω approaches

0 or infinity, FCM becomes, respectively:

FCM = σp − σm
σp + 2σm

, for ω → 0 (2.2.22)

FCM = εp − εm
εp + 2εm

, for ω →∞ (2.2.23)
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This indicates that at lower frequencies, the Claussius-Mossotti factor is domi-

nated by the conductivity of the particle and medium. As we increase frequency,

however, their respective permittivity begins to dominate.

2.2.5 Modelling FCM for microparticles and cells

To calculate FCM , εp must be calculated for the microparticles in question. Below

is a description of how the particles used in this work were modelled:

Latex beads

Latex beads are strong insulators, therefore their conductive properties are dom-

inated by their surface charge, Ks (157). The conductivity of these beads, σp is

given by:

σp =
2Ks

r
(2.2.24)

where r is the particle radius, and Ks is the particle surface conductivity, given

by:

Ks =
r

4
(−σm + [9σ2

m − 4((εp − εm)(εp + 2εm)(2πf0)2)]
1
2 ) (2.2.25)

in which f0 is the bead crossover frequency.

Using Equations 2.2.25 and 2.2.24 to calculate the particle conductivity for

Equation 2.2.20 can produce plots of the CM factor, FCM . Figure 2.12 shows

the CM factor for 1 µm latex beads as a function of frequency, in different liquid

conductivities.

By first examining the plots for low liquid conductivity in Figure 2.12, (e.g. 0.1

mS/m, red line), it can be observed that latex beads experience positive DEP
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Figure 2.12: Plot of CM factor of 1 µm latex beads as a function of frequency.

The different lines are for beads in different liquid conductivities, for 0.1 mS/m

to 1.6 mS/m.

(due to a positive FCM value) at lower frequencies of 1-100 KHz, but experience

negative DEP at frequencies above 100 KHz. As discussed in Sections 2.2.3 and

2.2.4, this is because the polarisability at lower frequencies is largely determined

by the mobile charge carriers of the latex beads (which are relatively polarisable

compared to those of 0.1 mS/m water), while at higher frequencies it is domi-

nated by their permittivity, which is far lower than that of water.

Figure 2.12 also shows that <10 MHz, increasing the conductivity of water from

0.1 mS/m to 1.6 mS/m produces a dramatically lower FCM value. This is because

the polarisability of water has increased through the addition of ions (which act

as charge carriers), thus the polarisability of the latex beads is lower relative to

the liquid.
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Mammalian cells

Mammalian cells are roughly spherical and generally 10-30 µm in diameter; they

consist of a lipid membrane ∼ 8 nm thick surrounding the cytoplasm (115). The

cytoplasm consists of an aqueous suspension of numerous organelles (the ‘organs’

or ‘machinery’ of the cell), which are in turn generally surrounded by their own

lipid membrane. Figure 2.13 shows a labelled cross-section of a cell cytoplasm.

Figure 2.13: Schematic of a mammalian cell (left) and a cross section (right). A

mammalian cell consists of a lipid membrane, surrounding a cytoplasm containing

the nucleus and other smaller organelles, in an aqueous suspension.

When modelling the polarisability of mammalian cells, it is therefore much

simpler to consider the dielectric properties (namely the permittivity and con-

ductivity) of only the membrane and the cytoplasm, known as the “Single-Shell

Model” (108). Strictly speaking, this does consider the organelles and other

cytoplasmic contents, but all averaged as one entity. Furthermore the cell is

modelled as a perfect sphere, as illustrated in Figure 2.14.
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Figure 2.14: In the Single Shell Model, a mammalian cell is considered as a

perfect sphere, constituting an insulating membrane and a conductive, aqueous

cytoplasm.

Because of the insulating nature of the cell membrane, it is more accurate to

measure the membrane capacitance (rather than the conductance), and use this

to give the permittivity (108, 158). The complex permittivity of the cell, εc is

given by:

ε∗c =
C∗

mem ⋅ r ⋅ ε∗cyt
C∗

mem ⋅ r + ε∗cyt
(2.2.26)

where C∗

mem is the complex membrane capacitance, r is the radius, and ε∗cyt is the

complex permittivity of the cytoplasm. C∗

mem is given by:

C∗

mem = Cmem + jGmem

ω
(2.2.27)
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where Cmem is the membrane capacitance, j is
√
−1, Gmem is the membrane

conductance, and ω is the angular frequency. Gmem is given by:

Gmem = σmem
d

(2.2.28)

where σmem is the membrane conductivity, and d is the membrane thickness.

For completeness, ε∗cyt is given by:

ε∗cyt = εcyt + j
σcyt
ω

(2.2.29)

where εcyt is the permittivity of the cytoplasm, σcyt is the cytoplasm conductivity,

and ω is the angular frequency.

These equations enable the calculation for the FCM of mammalian cells, while

accounting for biophysical differences between cell types, as shown in Figure 2.15.

By first examaning the plot for ‘normal’ mammalian cells in Figure 2.15, it can

be observed that, in 0.03 S/m conductivity liquid, the cells experience negative

DEP up to 100 KHz and after 100 MHz, but positive DEP at the intermediate

frequencies. This is because, firstly, at lower frequencies the DEP response of

cells is dominated by the properties of the cell membrane, because the electric

field does not penetrate into the cytoplasm at low frequencies (161), and the

polarisability of the cell membrane is typically less than that of the surrounding

liquid (at 0.03 S/m, for example). The FCM becomes positive above 100 KHz
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Figure 2.15: CM factor for mammalian cells as calculated with the single shell

model, in a liquid conductivity of 0.03 S/m. The biophysical values for ‘Normal

cell’ (magenta line) are derived from the reported values for erythrocytes (108),

with a ‘typical’ cytoplasm conductivity of 0.5 S/m (159), and a typical cell radius

of 15 µm. For ‘Low σcyt’ (i.e. low cytoplasm conductivity), this value was reduced

to 0.25 S/m (e.g. reported values for breast cancer cells (160); for ‘High Cmem’

(i.e. high specific membrane capicitance), the specific membrane capacitance was

increased from 9 mF/m2 (‘typical’ value) to 26 mF/m2 (e.g. reported value for

another cell type in (108)). The graph shows a clear distinction in the DEP

profile of cells with a high membrane capacitance at 10 -1,000 KHz. Conversely,

the cells with low cytoplasm conductivity (blue line) are similar to ‘normal’ cells

in this frequency range, but become more distinct at higher frequencies (above

1,000 KHz).

because the electric field can now penetrate into the cytoplasm, which is typically

more conductive than the surrounding medium. Finally, as the frequency exceeds

10 MHz, the permittivity increasingly dominates the DEP response more so than

the conductivity (discussed in Section 2.2.4), and the relatively high permittivity
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of water makes the liquid more polarisable than the cell, such that above 100

MHz the cells get negative DEP.

Figure 2.15 also illustrates how differences in the cytoplasm conductivity or

membrane capacitance of cells (blue and cyan lines, respectively), can alter the

FCM of cells at various frequencies. Just below 100 KHz, for example, it can be

observed that ‘normal’ cells get negative DEP, while cells with high membrane

capacitance get positive DEP. At this frequency (and 0.03 S/m liquid conductiv-

ity), therefore, the two cell types could be separated on a DEP device. Similarly,

it can be seen that at 100 MHz ‘normal’ cells would get positive DEP, while cells

of lower cytoplasm conductivity would get negative DEP.

The equations described in this section can also be used to plot the FCM of cells

as a function of liquid conductivity. This is shown in Figure 2.16.

Figure 2.16 shows that as liquid conductivity increases, the FCM of the cell

decreases, as it becomes less polarisable with respect to the liquid. Furthermore,

cells with a low cytoplasm conductivity (blue line) always have a lower FCM

than normal cells (magenta line). Between 0.23 S/m and 0.50 S/m (light blue

shading), normal cells will get positive DEP while cells with low cytoplasm con-

ductivity will get negative DEP, meaning that they can be separated in a DEP

device.

Yeast cells

Yeast cells differ to mammalian cells in that they have an additional cell wall

that surrounds the cytoplasm and membrane. To describe the dielectrophoretic

behaviour of yeast cells, a Dual Shell Model is often used (103). This considers

the nucleus, cell membrane and cell wall as separate entities. In this model, the

complex permittivity of the cell, ε∗c , is given by:
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Figure 2.16: FCM for mammalian cells using the same values described in Figure

2.15, but plotted as a function of liquid conductivity at 10 MHz frequency. The

plot shows that, at 10 MHz, increasing liquid conductivity leads to a lower FCM

of cells, as the polarisability of the cell decreases relative to the liquid. Cells with

a lower cytoplasm conductivity (blue line, 0.25 S/m) are always less polarisable

than ‘Normal cells’ (magenta line, 0.5 S/m).

ε∗c = ε∗1
( r1
r2
)3 + 2 ( ε∗23−ε

∗

1
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)
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and:
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where ε∗1,2,3 are the complex permittivities of the cell wall, cytoplasm and nucleus,

respectively. ε∗23 is the average complex permittivity of the cell wall + nucleus.

In this case, complex permittivity ε∗ is given by the more generic formula, as in

Equation 2.2.21.

These equations for yeast produces plots of FCM similar to those shown for

mammalian cells. Using biophysical values derived by Patel et al. (2012) (162),

the FCM as a function of conductivity of live and dead yeast cells (at 10 MHz) is

plotted in Figure 2.17. The figure shows that at 10 MHz, dead yeast cells always

get negative DEP (due principally to their low cytoplasm conductivity), while

live cells get positive DEP between 0 and 0.125 S/m liquid conductivity.

Figure 2.17: FCM for live and dead yeast cells as a function of liquid conductivity

(at 10 MHz). Dead yeast cells (green line) always get negative DEP at 10 MHz,

while live cells get positive DEP from 0 to 0.125 S/m liquid conductivity.
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Chapter 3

Methods

This methods chapter will introduce the reader to all the major investigative

techniques used in this work, as well as providing step by step instructions to

repeat any of the experimental results discussed in the further chapters. It will

begin with a description of the fabrication methods used to make SAW devices

and fluidic flow cells, before describing the investigative protocols in the order in

which they appear in the subsequent experimental chapters.

3.1 Fabrication

This section will discuss the fabrication of surface acoustic wave (SAW) devices,

the microfluidic component and the surrounding flow cells, as well as the electri-

cal and fluidic connections required for device operation.

3.1.1 Surface acoustic wave device fabrication

To summarise, SAW devices (Figure 3.1) were fabricated by standard cleanroom

photolithography methods. The general procedure is as follows: Firstly, a mask

of the microelectrode design is drawn up on CAD software and sent off to be made

by a manufacturer. Upon receiving the mask, it is used as a stencil to pattern

gold electrodes onto a substrate (LiTaO3 in this case). Patterning is done in a
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Figure 3.1: Schematic of a typical surface acoustic wave (SAW) device chip,

consisting of Au interdigitated transducers (IDTs) (gold colour) patterned on

top a LiTaO3 substrate (grey).

cleanroom, that is, a specialist electronics fabrication laboratory where the air

is kept free of particulates.1 The main reasons for this is that in semiconductor

manufacturing, if the substrate is dirty before electrodes are deposited (typically

Au), adherence and subsequent electrical connections are poor.

Designs

Background to the design consideration of SAW devices can be found in Section

2.1.2. The designs for 20 MHz and 10 MHz devices used in this work are shown

in Figure 3.2. A 1:1 mark to space ratio was used. Recalling that the speed of

sound in the LiTaO3 substrate is 4,022 m/s, the 20 MHz device finger pitch was

set to 50 µm (giving an anticipated resonant frequency of 20.11 MHz), and the 10

MHz device to 100 µm finger pitch (anticipated 10.055 MHz resonant frequency).

In general, the more finger pairs a device has, the greater the amplification. The

number of finger pairs was set to 15; this was because, considering the 10 MHz

device, more finger pairs would have required a larger chip to fit the transducers

on, which proves costly. The aperture (for acoustic manipulation) was set to 1

mm - this was chosen as a good dimension to image cells under 5X and 10X

1An ISO 5 cleanroom was used in this work, meaning that a maximum of 3,520 >0.5 µm

particles may be found per 1 m3 (a typical urban environment contains around 35,200,000

particulates per 1 m3). A full description of the maximum number of various particle sizes

permitted in different cleanroom classes (ISO 1, 2, etc) can be found in the literature (163).
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Figure 3.2: Schematic showing the mask design for the SAW devices used in this

work. Note that the masks were darkfield/negatives - that is, the background

of the mask was opaque, and the detail (of IDTs, etc) was transparent (380-780

nm) to allow UV through. a and b show the overall chip layouts for 20 and 10

MHz, respectively. IDTs can be seen in the centre, and alignment marks around

the outside for two different chip sizes). c and d show 20 MHz and 10 MHz

(respectfully) IDT designs, zoomed in.

microscope objectives. The gap between electrode pairs was 3 mm - this was

to allow a 1 mm channel flanked by 1 mm of PDMS either side to prevent fluid

contact with the electrodes.

Finally, electrodes were flanked by 1 mm-wide bond pads to allow straightforward

electrical contacts via wire-bonding or pogo-pins.
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Figure 3.3: Schematic showing the steps involved in SAW device fabrication on

LiTaO3. (1) Wafer (2) Al deposition (3) Dicing the wafer into chips (4) Adding

a photoresist layer (5) Exposing the photoresist through a mask to define the

pattern (6) Developing the resist (7) Au deposition (8) Lift off.

Fabrication protocol: LiTaO3

A fabrication protocol was developed just prior to this project by Richard O’Rorke

and Mark Rosamond. Figure 3.3 is a schematic showing the sequence of fabri-

cation steps. Cleanroom processing of LiTaO3 is made tricky by its pyroelectric

properties - that is, heating it up during processing steps generates an electrical

potential difference across the chip, which can lead to shattering (and painfully

discharging onto the researcher, as was discovered!).

To address this, the first step in processing was to deposit a 200 nm sacrificial

layer of Al over the wafer (1 and 2), to dissipate charge across the chip. This is

achieved by electrode beam evaporation - the wafer is put into a vacuum chamber
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with a crucible containing Al; an electron beam is steered into the crucible such

that the Al vapourises, coating the the wafer in an even layer. Following this,

the wafer is diced into chips by a wafer saw (3).

Overview

The process of photolithography begins by spreading a 1 µm layer of positive

photoresist via a vacuum chuck spinner (4) and exposing the resist to UV light

through the mask (5). The mask allows the UV light to expose certain regions

of the resist to define the electrode pattern. A solvent developer removes the

exposed regions of the photoresist (6). The exposed Al is then removed via an

etch solution and etched a little more to produce an undercut (for more effi-

cient subsequent deposition of Au) (also 6). The removal of selected regions of

the photoresist and Al layers means that part of the underlying substrate (the

LiTaO3 chip) is exposed, in the pattern of the prospective electrodes. A layer of

gold (80 nm) is deposited onto the chips by electron beam evaporation (8), and

the remaining resist and Al (along with the unwanted overlying Au) can then be

removed (8) with a ‘lift off’ solvent.

Detailed description

Full details of the procedure are as follows: (Note that the frequent steps of

sonicating in acetone and isopropanol, and plasma-ashing, are all too ensure the

substrate is kept clean.)

1. (Photomasks (darkfield) for interdigitated transducers were designed on

L-edit software, and ordered from JD Phototools, UK, as 4 x 4” Soda Lime

“Super High Resolution”.) LiTaO3 3” wafers, Y-axis 42○ rotated, were

purchased from PM Optics, MA.

2. Wafers were cleaned by sonicating at 50% power in acetone followed by

isopropanol, for ten minutes each, after which they were O2 plasma-ashed
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at 50W for ten minutes. A 200 nm layer of aluminium (Al) was deposited

by electron beam evaporation at < 2 x 10−6 mbar.

3. Before dicing up the wafer into chips, a protective layer of S1813 was spun

on at 3,000 rpm, then soft baked by ramping the temperature on a hot

plate, from room temperature to 115○C at 5○C per minute. It was then

cleaved into 18 x 20 mm chips (for Flow Cell Design 1: Perspex Lid)

or 36 x 20 mm chips (for Flow Cell Design 2: 3D-printed) (20 mm being

the axis perpendicular to SAW propagation) with a Microace 66 Wafer Saw.

4. Chips were cleaned by sonicating in acetone followed by isopropanol at 50%

power for ten minutes each time, then blow dried under N2. Microposit-

S1813 positive photoresist (Shipley, MA) was spun on at 5,000 rpm for 30

seconds, and soft baked by ramping the temperature to 115○C.

5. Chips were aligned and brought into contact with the mask, and UV-

exposed at ∼ 30 mW/cm2 for 2 s.

6. MF-319 was used to develop away the UV-exposed resist for 30-60 s, before

they were rinsed under a jet of DI water, then dried under N2. The Al

under the exposed photoresist was now exposed, and this was etched away

with a solution of 85% phosphoric acid, DI water, 70% nitric acid, and

100% acetic acid at a ratio of 50:10:2:2. This took ∼ 3 minutes to etch

down 200 nm to the LiTa03 substrate, and the chips were then left for a

further 3 minutes to develop an undercut.

7. Chips were plasma-ashed at 50 W for 40 s, before being deposited with 20

nm titanium and 80 nm gold in an electron beam evaporator at < 2 x 10−6

mbar.
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8. To lift off, the S1813 was stripped by leaving the chips in acetone for 15

minutes, and then the Al was stripped by leaving them in the etch solution

described above for ∼ 3 minutes, after which they were rinsed with DI water

and dried by N2. Chips were stored by coating in S1813 and leaving in a

cleanroom storage box.

Fabrication protocol: Black LiTaO3

Figure 3.4: Schematic showing the steps involved in SAW device fabrication on

Black LiTaO3. (1) Wafer (2) Dicing the wafer into chips (3) Adding a resist un-

derlayer (4) Adding a positive photoresist top layer (5) Exposing the photoresist

to UV light through a mask (6) Developing the photoresist and underlayer, to

expose the Black LiTaO3 substrate (7) Au deposition (8) Lift off.

Some devices were made when Black LiTaO3, when it became available from

a supplier - Black LiTaO3 has been doped to minimise pyroelectric discharge,
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which allows higher temperatures to be used in the fabrication process. A more

typical photolithographic fabrication protocol was used (see Figure 3.4: Wafers

(1) were diced up (2) and coated with a resist underlayer (3). As before, a

positive photoresist is then added (4) and this is exposed to UV light through

a mask (5). The top and bottom resist layers are then developed, exposing the

substrate (Black LiTaO3) (6) for subsequent deposition of Au (7). Finally, the

resist layers and overlying gold are lifted off by a solvent (8).

1. Black LiTaO3 4” wafers, Y-axis 42○ rotated, were purchased from PM Op-

tics, MA.

2. These was diced into chips by wafer SAW, as with normal LiTaO3.

3. Chips were cleaned in piranha solution (7:3 concentrated H2SO4: 35% H2O2

solutions) for 10 minutes, following which they O2-ashed for at 50W for 5

minutes, and dehydration-baked on a hot plate at 185 ○C (after ramping the

temperature up from 50 ○C for a total of 3 minutes). LOR resist (Shipley,

MA) was spun on at 4,000 rpm for 45 s and baked at 185 ○C for 3 minutes,

using the ramping method described previously.

4. After cooling the chips for 3 minutes, S1813 photoresist was spun on at

4,500 rpm for 45 s and baked at 115 ○C for 3 minutes, ramping the tem-

perature up from 50 ○C for 1 minute.

5. Chips were aligned and brought into contact with the mask, and UV-

exposed at ∼ 30 mW/cm2 for 2 s.

6. Following this they were developed in MF-319 for 60-70 s - typically the

first 45 s develops the S1813, and the rest develops the LOR and produces

an undercut. The chips were then rinsed in DI water and dried with N2.
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7. Chips were plasma-ashed at 50 W for 40 s, before being deposited with 20

nm titanium and 80 nm gold in an electron beam evaporator at < 2 x 10−6

mbar.

8. Metal lift-off was carried out using 1165 developer, heated to 80 ○C, follow-

ing which chips were rinsed in isopropanol and dried under N2, and stored

as mentioned previously.

Fabrication protocol: Non-SAW DEP device

For control DEP experiments, discussed briefly in Chapter 4.2.1, a non-SAW

DEP device was made by fabricating Au IDT electrodes onto a glass substrate

(these electrodes could thus be used for DEP without any SAW effect). The

protocol for these was the same as for the Black LiTaO3 described above (using

the 20 MHz IDT design), with two differences: (1) The substrate used was a

glass microscope slide, scribed to 20 x 20 mm with a diamond-tipped scribe and

a ruler; (2) Ramping the temperature was not necessary - e.g. after spinning on

LOR resist, chips were put straight onto a 185 ○C hotplate for 3 minutes.

Matching networks

After fabrication, SAW devices were characterised in a Network Analyzer (Agi-

lent, CA), using a Perspex Lid flow cell (Section 3.7) for electrical contacts. A

sample transmission parameter (S21), showing characteristic SAW peaks around

10 MHz is shown in Figure 3.5. The S-parameters were used to design matching

networks in AWR Environment software. Matching networks were made by sol-

dering SMD components (from Farnell, UK) onto a copper co-planar waveguide.

These constituted a 1.8 µH series inductor, and a 20-120 pF parallel variable

capacitor (aiming for 113 pF). This was shown to improve the insertion loss at

10 MHz from about - 30 dBm (unmatched) to about - 20 dBm (matched).
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Figure 3.5: S21 transmission parameters of a 10 MHz device, showing how much

power is transmitted between the device ports (i.e. the two sets of IDTs) from 1

MHz to 20 MHz. The two lines show a device without matching networks (purple

line) and a device with matching networks (red line).
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3.1.2 Cover slip prototype device

Figure 3.6: Photograph of the device used for early experiments - a 2 ul drop

of particle solution (e.g. latex beads) would be put between the transducers - a

thin strip of cover slip (typically 3 x 3 mm) would be laid on top of the droplet

to confine it to the surface (and therefore the electric field). NB the design of the

SAW chip in the photograph is slightly different to that used in this work.

Overview

Figure 3.6 shows the earliest device used to demonstrate Remote DEP. A SAW

chip is glued onto a copper-surface coplanar waveguide, and connections are made

by wire bonding the IDTs to the appropriate ground or conducting planes. For

experiments, a 2 µl droplet of latex bead solution was put in between transducers,

and confined to the surface by overlaying the droplet with a small strip of glass

cover slip (typically 4 x 10 mm).1 The movement of particles in response to the

1A note on the channel height: Supposing that 2 µl spreads out perfectly evenly under a

4 x 10 mm coverslip and does not flow out, the channel height would be 50 µm (4 mm x 10
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SAW-DEP field could then be imaged by an upright microscope.

The precise steps to mounting the chip in this way are as follows:

Waveguides

Waveguides were made by chopping Cu-epoxy PCB into 4 x 4 cm squares in a

workshop guillotine. Coplanar strips (the two etched lines visible in Figure 3.6)

were etched by coating PCBs in S1813 (5,000 rpm 30 s), soft-baking at 115 ○C

for 2 minutes, exposing through a home-made acetate mask (made using an office

printer) at ∼ 30 mW/cm2 for 2 s, and developed in MF319 for 30 s. Finally, the

exposed copper was etched away using Cu-etch solution.

Gluing the bond pads and chip

Four Au bond pads were glued to the PCB (ground and conducting plane, either

side of where the chip sits) using Ag-loaded epoxy (RS, UK). Devices were glued

into the middle of the waveguide with black wax - the black wax is left in the

middle of the waveguide, and melted at 100 ○C on a hotplate, after which the

SAW chip can be pushed on top and taken off the heat to set.

Electrical connections

The Au bond pads were wire bonded to the corresponding IDTs. To minimise

the chance of pyroelectric discharge, the wire bonder is set to room temperature

(the risk of discharge is increased by the wire bonder exerting force onto the

chip, therefore generating piezoelectric current). Finally, SMA connectors were

soldered on to the edges of the waveguide.

mm x 50 µm = 2 mm3/µl volume). This is, however, a rough approximation (experimental

observations indicated the height in this ‘channel’ was probably <50 µm).
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3.1.3 Flow Cell Design 1: Perspex Lid

Figure 3.7: Labelled schematic of ‘Perspex Lid’ flow cell design (left), and a

photograph of the device (right).

Overview

Figure 3.7 shows the first flow cell design. It consisted of a PDMS microchannel

that was temporarily sealed to the chip by pressing it down via a Perspex ‘lid’.

The Perspex lid was screwed down into a brass base, chosen for sturdiness and

reflectivity for imaging.

The lid had holes above the PDMS channel inlet and outlets, where silicone tub-

ing (18
′′ OD) could be pushed into. The tubing was connected to a 1 ml syringe

which could be filled with beads or yeast cells for delivery onto the chip; the

transparency of Perspex allowed for imaging of particle behaviour on the chip

surface.

This device had the advantage over the earlier coverslip device because the liquid

was properly confined from the electrodes by the PDMS microchannel, meaning

that higher fluid conductivities could be used without shorting the electrodes.
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The main drawback was Perspex did not provide a good fluidic seal to tubing

that was pushed into it, so it was difficult to get a steady flow rate and therefore

do investigations into throughput of particles.

Detailed procedure:

PDMS microchannel fabrication

Figure 3.8: Process of fabricating PDMS microchannels. A substrate (typically

a glass microscope slide) (1) is covered with a negative polymer resist (2) which

is exposed through a photomask (3) and developed to leave the channel defined

in the exposed resist (4), which can now be used as a mould. Liquid PDMS is

poured onto the mould and cured to solidify (5). After this, the PDMS is peeled

off, cut to fit the chip, and hole-punched for fluidic contacts (6).
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PDMS for microfluidics

Polymethoxysilane (PDMS) is a rubbery polymer which is one of the most com-

mon materials used for microfluidics, along with glass (SiO2). Both substances

are transparent, allowing imaging of the microchannel; PDMS microfluidics has

the advantage of being easier to fabricate because it can be patterned without

the need for dangerous hydrofluoric acid (HF)-etching.

SU8, a polymer negative photoresist, should also be mentioned as a possible

candidate material for constructing microfluidics. SU8 can be patterned onto a

chip using photolithography, at a range of heights suitable for microfluidics (e.g.

from 1 to 200 µm). The channel is then sealed by wafer-bonding another chip

on top, for example, a glass coverslip for transparency. This final processing

step is quite unsuitable for piezoelectric materials, because the bonding process

involves both heat and high mechanical pressure, leading to charge generation

and shattering of the piezoelectric substrate.

Because of its soft, rubbery nature, PDMS can be sealed reversibly to the sub-

strate by applying gentle pressure. This was used to seal this flow cell design

by screwing a Perspex lid on top of the PDMS channel while it was laid over

the substrate. A stronger fluidic seal can be achieved, however, by irreversibly

bonding the PDMS to the substrate, typically by plasma bonding, a process used

for the second flow cell design, described in Section 3.1.4.

Process overview

The process of fabrication (summarised in Figure 3.8) involves using cleanroom

photolithography to pattern a polymer resist with a photomask that defines the

channel geometry in x and y dimensions (the channel height, z, is defined by

the resist thickness). Instead of depositing metal at this stage, the chip with

patterned resist is used as a negative to pour liquid PDMS onto and cure. The

PDMS can then be peeled off and cut to fit the SAW chip. Holes for tubing can

be made with a leather punch.
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Adaptions to process - avoiding T-topping

When exposing a thick, negative resist like SU8-50, it is desirable to expose it

from the back to avoid T-topping. T-topping occurs when high energy photons

of ∼ 250 nm wavelength react particularly strongly with the first few nm of resist

layer. This generates acid, which spreads to the upper regions of non-exposed

resist regions, and results in unexposed regions in the upper resist becoming

cross-linked. By exposing from the back, the excess cross-linking occurs only in

the lower layers, which does not significantly deform the subsequent microfluidic

channel.

To expose from the back, the mask was directly patterned onto glass slides in

chrome (i.e. before Step 1 of Figure 3.8). Thus for the exposure step (Step 3), the

substrate was flipped upside down in the mask aligner, and the chrome pattern

ensured that the resist was selectively exposed.

The whole procedure in detailed is given below:

Patterning the glass slides in chrome

1. Photomasks (brightfield) for were designed in L-edit software. The designs

used in this work are shown in Figure 3.9. These were made into a 4 x

4′′ Soda Lime mask (“Super High Resolution”, from JD Phototools, UK).

2. Half microscope slides were cleaned by sonicating the slides in acetone, then

isopropanol, at 50% power for 5 minutes, drying under N2, then UVO for

five minutes, followed by a dehydration bake (5 minutes on a 175○ hotplate).

3. After cooling, S1813 was spun on at 3,000 rpm for 40 s, and soft baked at

110○C for three minutes.
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Figure 3.9: Mask design for the two microfluidic channels used with Perspex Lid

flow cell. The upper design is for a simple straight channel, which was used to

observed and photograph DEP behaviour of particles in the SAW-DEP aperture.

The lower design branches off into five separate sub-channels in the middle of

the channel (i.e. within the SAW-DEP aperture), and was used to demonstrate

how different cell types (namely live and dead yeast cells) could be directed into

different subchannels during SAW-DEP separation.

4. Slides were put in contact with the mask and UV-exposed at ∼ 30 mW/cm2

for 2 s.

5. After this, they were soaked chlorobenzene for five minutes (to harden the

upper layer of resist to the developer, so as to produce an undercut), and

rinsed with isopropanol.

6. The resist was developed in MF-319 for 60-90 s, rinsed in DI water and

dried under N2.
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7. The slides were then cleaned by plasma-ashing at 50 W for 40 s, before

being deposited with 70 nm of chrome by electron beam evaporation at <
2 × 10−6 mbar.

8. To lift off, slides were left in acetone for 15 minutes, then rinsed in iso-

propanol and dried. This produced the reverse of the mask (now darkfield)

on the glass slides, such that the moulds could be produced by spinning a

negative resist and exposing from the back.

SU8 mould fabrication

1. Chrome-plated slides were now cleaned by soaking in piranha solution (100

% H2SO4 and 35% H2O2 at a 7:3 ratio) for 30 minutes, followed by UVO

for five minutes, and then a dehydration bake (ten minutes on a hotplate

at 175○C).

2. The substrate was left to cool, before spinning on SU8-50 (500 rpm for 10

seconds, then 2,000 rpm for 40 seconds) to produce a 50 µm thick layer.

The resist was soft baked on a hotplate for 65○C for five minutes then 95○C

for fifteen minutes.

3. Slides were then UV-exposed from the back, at ∼ 30 mW/cm2 for 8 s. They

were post-exposure baked at 65○C for 1 minute and 95○C for 4 minutes.

4. The resist was then developed in EC solvent (6-8 minutes) or SU8 developer

(4-6 minutes), normally with two baths (a ‘dirty’ bath and a ‘clean’ bath).

5. To define the outer dimensions of the PDMS, gaskets were cut out of 2

mm Perspex in a laser cutter. This is to ensure that the dimensions of the

cured PDMS block are 12 x 18 x 2 mm. These were stuck onto the glass

slides (around the SU8 mould) with double-sided sticky tape.
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Casting PDMS

PDMS was mixed at a 10:1 ratio of elastomer:cross-linker, and degassed at ∼
5 mBar for 30 minutes, poured into the gaskets, and degassed for a further 15

minutes before being cured by baking on a hotplate at 70○C for 1 hour. The

PDMS, with microfluidic channels, could now be removed from the mould with

a scalpel. Finally, the fluid entry/exit holes were made with a 1.5 mm diameter

leather punch.

Flow cell assembly

Perspex lid and brass plate

The lid and brass plate was designed on SolidWorks 3D CAD software (Dassault

Systémes, France) and machined by Brian Gibbs (Physics and Astronomy Work-

shop, University of Leeds, UK).

Fluidic connections

Silicone tubing (1/8 ′′ OD, 1/16′′ ID) was purchased from Cole-Palmer, IL, as

were plastic hose-barb to luer connectors. The luer connector attaches to a sy-

ringes (generally 1 ml), which allows solutions to be infused into the microfluidics.

Electrical contacts

To provide electrical contacts to the SAW transducers, spring contacts (purchased

from Signalin, MA) measuring 7 mm long and 0.3 mm diameter were fitted into

specific holes in the Perspex lid. These were soldered to copper wire, which were

in turn soldered to SMA connectors that were glued onto the sides of the lid.
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3.1.4 Flow Cell Design 2: 3D-Printed

Figure 3.10: Photograph of a 3D-printed flow cell holding a SAW-DEP device.

This consisted of an ABS-plastic flow cell (ivory colour) with glued-in fluidic con-

nections (brown). Tubing was directed into a PDMS microchannel (transparent)

plasma bonded onto the SAW chip (with pink underlay). Electrical contacts were

made by wire-bonding the SAW chip to a PCB (green).

While the ‘Perspex Lid’ design was efficient at keeping fluid/particle suspensions

away from the electrical transducers, it was inadequate for both retrieval of cells

and maintaining a steady flow rate. This is mainly because of the poor fluidic

seal between the tubing and the Perspex lid. When the design was adapted so

tubing could be pushed directly into the PDMS (at a 45○-angle), it produced a

torque on the underlying PDMS such that the microchannel was deformed and

did not seal properly.

A new design was made to permanently seal PDMS microchannels onto the chip

surface by plasma bonding. The chip length was extended from 18 to 36 mm
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(note the two sets of alignment marks in Figure 3.2) to allow tubing to be pushed

in at a 90○-angle (thus minimising torque) with room for a microscope objective

to fit in between. New 3D printing facilities meant that the flow cell could be

designed for additive manufacturing methods, allowing greater flexibility (see

overhanging tube-holder protrusions in Figure 7.3).

A different 3D printer (for stereolithography) was also used to produce PDMS

moulds for the microchannels. This allowed adequate resolution ( 50 µm in XYZ)

at a cost of ∼ 100 x less than a standard photolithography mask and could be

rapidly made in-house.

Flow cell

Figure 3.11: Flow cell design.

The flow cell was designed on SolidWorks 3D CAD software (Dassault Systémes,

France) (see Figure 3.11). The key features were alignment studs for the PCB

and tubing holders to direct tubing into the correct part of the PDMS, and hold

it in place to minimise torque. PEEK fittings for 1/16th OD PTFE tubing were
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ordered from Upchurch Scientific, UK.

3D-printed microfluidic moulds

Figure 3.12: 3D-printed microfluidic mould design. PDMS is poured into the

gasket. The two pillars either end define where inflow and outflow tubing is

pushed into the PDMS. Between the two pillars is a slightly raised strip to define

the microfluidic channel.

Miicraft 3D printers offer a very high resolution with a smooth finish, thus mak-

ing excellent potential microfluidic moulds. However, the cured resin is reactive

with uncured PDMS, and so the latter does not cure properly when in contact

with Miicraft-resin mould (164). This can be fixed by passivating the surface

with a silane layer, as was investigated for this work.

Moulds were designed on SolidWorks 3D CAD software (see Figure 3.12) and

printed on a Miicraft 3D printer (Miicraft, Young Optics, Taiwan). To passivate

the surface, moulds were cleaned in isopropanol for 5 minutes, dried under N2

and cleaned further by UVO for 10 minutes, before transferring immediately into

a solution of 5% chlorotrimethylsilane solution (isopropanol solvent), which was

sealed with Parafilm® (Camlab, UK) and left for 30 minutes. Following this,

moulds were removed and dried under N2.
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PDMS was made from a Sylgard-184 kit (Dow Corning, MI) with a 10:1 ratio of

elastomer to cross-linker. This was poured into the moulds and degassed at ∼ 5

mBar for 30 minutes, before being cured by baking on a hotplate at 70○C for 1

hour. The PDMS, with microfluidic channels, could now be removed from the

mould with a scalpel.

PCBs

PCBs were designed on EAGLE software (Autodesk, CA) by Roberts Rimša and

made on copper PCB by the Leeds School of Electrical and Electronic Engineer-

ing Workshop. The SAW chips were glued onto PCBs with black wax, and wire

bonded as described previously (Section 3.1.2).
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3.1.5 Device setup

Electrical connections

Figure 3.13: Schematic showing how the devices were connected to an AC power

supply.

Figure 3.13 shows how the devices were connected to AC power supply. A

signal generator (Marconi, UK, model 2022E) was connected to an amplifier

(Mini-Circuits, NY, model ZHL-1-2W) with a 20V reference voltage (Agilent,

CA, model E3620A). The signal was split in a signal splitter (Minicircuits, model

2APD-30-s) and sent to each IDT. The 20V power supply (top) and signal gen-

erator are shown in Figure 3.15a.

Imaging

For imaging during experiments, an Olympus BX60 fluorescence microscope was

used (Figure 3.15b); the flow cell sat on the microscope stage as shown in Figure

3.15c). Figure 3.15d shows the syringe pump (Harvard PHD 2000) that was used

to push fluid through the system. Finally Figure 3.15e shows the layout of all

this equipment used in these experiments.

Fluidic connections

The sample was moved along the fluidics using Harvard PHD 2000 syringe pump

(Harvard Apparatus, MA) with a fluid-filled 2.5 ml syringe, connected to 0.75
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Figure 3.14: Schematic showing the fluidic connections used in most of this work.

The samples were pushed through by liquid, coming from a 2.5 ml syringe. This

was connected to PTFE tubing (0.75 mm �) directed to Valve 1, which worked

to re-direct any bubbles introduced when the syringe was changed. The sample

(a cell or bead suspension) was injected into a sample loop held by Valve 2.

A ‘stopper’ valve was placed between Valve 1 and 2 in order to stop flow when

required for imaging. From Valve 2, the sample was led to the chip via a narrower

(0.25 mm �) tube at a gentle incline (allowing a slow flow rate with minimal cell

sedimentation). From the chip, cells were directed into an outflow collection tube

(a 15 ml Eppendorf tube).

mm � ID PTFE tubing (Figure 3.14). Two Rheodyne PEEK HPLC valves

(model 9010, Sigma-Aldrich, UK) were inserted to the fluidic connection between

the syringe and the device (Figure 3.14). The purpose of the first valve was

to re-direct any air bubbles that got introduced when the syringe needed to be

changed. The second valve was an injection valve, so that an exact quantity of

liquid (25 µl) could be delivered per experiment (this was more important for

the experiments shown in subsequent experimental chapters). A stopper valve

(Upchurch Scientific, model V-101D, from Gilson Scientific, UK) was placed

before Valve 2 to stop the flow on the chip for imaging.

When using a slow flow rate for cell alignment (typically 3µl/min) it was found

that cells were sedimenting. By using narrower tubing (0.25 mm � tubing) the

flow velocity increases from 0.1 to 1.0 mm/s, significantly reducing the effects of

sedimentation, and thus enabling an even flow rate and particle concentration

throughout the longer experiments.
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The PDMS microchannel on the chip was 1.5 µl, with approximately 1 µl of

dead space where the tubing comes in (the tubing - 1.5 mm OD - is cut at a

45 ○ angle to allow space for cells to flow onto the chip - see Figures 5.4b and

c). The outflow tube was angled downwards (after the flow cell) and into a 15

ml Eppendorf tube for collection. A tubing ID of 0.5 mm was chosen (between

0.25 and 0.75 mm to trade off between a fast flow velocity while minimising

resistance). At the end of the experiment, 60 µl - the length of the outflow tube

- would be collected at fast flow rate (200 µl), to dislodge any cells sedimented

post-chip.
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3.1 Fabrication

Figure 3.15: Photograph of equipment used in most SAW-DEP imaging exper-

iments. a Signal generator (bottom) and DC power supply (top), b Olympus

BX60 fluorescent microscope, c SAW-DEP device on microscope stage, d Har-

vard syringe pump, e equipment layout.
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3.2 Chapter 4 procedures and protocols

This section should be complimentary to Chapter 4, where the methods to the

experiments are described in the same order as in the experimental chapter.

3.2.1 Initial latex beads experiments

Theoretical calculation of DEP properties of latex beads

The DEP properties of latex beads was calculated by putting Equation 2.2.25

(157) into a NumPy (Numerical Python) script (see Appendix B.1). The value for

particle permittivity of 2.56 was obtained from the bead manufacturer datasheet.

Latex beads preparation

1 µm diameter carboxylate-modified latex beads (1 ml aqueous suspension, 1%

m/v) were purchased from Sigma, MO, and diluted 1:99 in DI water.

Conventional DEP experiments

The setup of equipment was the same as described in Section 3.1.5, but because

the signal only went to one set of IDTs (not two), the signal splitter was not

used. 79 mW power was applied to the transducers - less than for SAW-DEP

experiments (typically 1,000 mW). This is because SAW-DEP requires more

power because energy is lost coupling the current to the SAW, then into the

evanescent field.

Beads were applied to the surface by pipetting 2 µl of bead suspension onto

the IDTs, and this was overlaid with a coverslip before applying the signal. The

images shown were taken under Brightfield with a Penguin Pixera 150CL camera.
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Coverslip device experiments

The procedure was similar for SAW-DEP coverslip device experiments with latex

beads, however, the signal was split and 1,000 mW was given to each set of

IDTs. Different devices had slightly different resonant frequencies - these could

be identified by examining in the network analyser (see Section 3.1.1: Matching

Networks), but were ultimately fine-tuned by observing bead behaviour while

stepping the frequency in 0.05 MHz intervals around the target frequency (10 and

20 MHz). For example, 10 MHz devices typically were operated at 9.90 MHz or

9.75 MHz, etc, depending on which frequency showed the strongest force exerted

on particles.

Figure 3.16: Photographs of the two devices used in Chapter 4: A cover-slip

device (left), and Perspex-lid flow cell (right).

To observe bead behaviour, 2 µl of bead suspension was pipetted in between IDT

pairs and this droplet was overlaid by a strip of glass coverslip, before applying

the signal.

Images were taken using a Pixera Penguin camera, with blue filter excitation

(SWB filter on the microscope). The droplet tended to evaporate after ∼ 60 sec-

onds. After this, latex beads were cleaned off the chips using cleanroom cotton

swabs dipped in acetone, followed by cotton swabs dipped in isopropanol
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Perspex lid flow cell experiments

Roughly 100 µl of latex bead suspension was taken up in a 1 ml syringe, and

pushed (by air) through the tubing until it reached the chip. Images were taken

with a Hamamatsu Orca camera (Japan), under blue excitation. Experiments

typically lasted ∼ 30 minutes before the surface became fouled or the device

started leaking, after which the flow cell was disassembled and the chip was

cleaned with acetone and a cleanroom cotton swab.

3.2.2 Effect of fluidic conductivity on insertion loss

To test the effect of fluid conductivity of the device insertion loss, the device

was connected directly to an Agilent network analyzer (i.e. no additional signal

input). Saline solutions of various concentrations had been made and their con-

ductivities measured. The insertion loss at the resonant frequency (of a 20 MHz

device) was noted; after this, 1 ml of DI water was flushed through the device

and the insertion loss was noted again. The process was repeated for increasing

concentrations of saline.

3.2.3 Latex beads force measurements

These experiments were conducted using the 3D-printed flow cell, with the equip-

ment setup described in Section 3.1.5.

Latex beads of 3, 5, and 10 µm diameter were ordered (green fluorescent

polystyrene, 1% m/v solutions) from Fisher Scientific, MA. These were sus-

pended in 0.1% Triton solution to aid bead dispersion1, at ratios of 50:1, 19:1,

and 9:1 for 3, 5, and 10 µm beads, respectively.

1Triton is an anionic surfactant, however, it still increases the conductivity a little. The

conductivity of 0.1% Triton solution was measured to be 0.00023 S/m.
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Beads were delivered to the device via the fluidic setup shown in Section 3.1.5.

The syringe was filled with 0.1% Triton solution to push the bead suspension

through.

After delivery to the chip, a range of power settings were investigated, as detailed

in the results1. Videos were recorded on a Hamamatsu Orca camera, generally

at 16 fps (2x binning) and the quickest videos (i.e. 10 µm beads at 0.5 and 0.35

mW) were recorded at 30 fps (4x binning).

Post-analysis

The tracks of beads were recorded using the TrackMate plugin for ImageJ image

analysis software (165). An overview of the particle tracking process is shown in

Figure 4.13, and a basic guide to TrackMate can be found at (166). Beads were

detected with the LoG detector setting, and tracks were made with the Simple

LAP tracker. Tracks were exported to XML files.

A Javascript programme was made courtesy of Christoph Wälti (see Appendix,

Section B.5). The programme measured the speed of beads (and therefore the

DEP force) according to their spatial position. This finds not only the DEP force

of beads, but also maps out the electric field in the channel. More detail of this

process is given in Section 4.4.3.

3.2.4 Yeast cell separation experiments

Theoretical calculation CM factor for yeast cells

The DEP properties of yeast cells was calculated by putting Equations 2.2.30

and 2.2.31 ((103)), along with the biophysical values for yeast from (103) into a

Python script (see Appendix B.2).

1the aim of these measurements was to compare the DEP force for different applied powers,

as well as different bead sizes.
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Figure 3.17: Overview of particle tracking in Trackmate. (a.) Sample of raw

image sequence (NB full image sequences were 100-500 frames, depending on

alignment time (taken at 16 or 30 fps) (b.) Processing sequence, from (165) (c.)

Screenshot of particle (bead) tracks taken during processing of videos in Track-

Mate. Beads (white) are shown pictured at the end of the video sample; the

coloured ‘tails’ show their path from the start of the video (typically a few sec-

onds). Beads which do not have a pink ring or tail attached have been de-selected

from analysis, normally because they were observed to not move throughout the

video, presumably because they are stuck to the PDMS channel.

Culture of yeast cells

Dormant (yet to be activated) baker’s yeast granules were bought from a super-

market. The culture medium was made by dissolving 3 g of Sabouraud dextrose
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Figure 3.18: Sample raw output data from the Javascript, after processing the

particle movement data for one video sample. The antinodes at which beads align

by nDEP correspond to 20, 220, 420, and 620 µm on the x axis, which in turn

correspond to the red, yellow, cyan, and blue final bead positions in Figure 4.13c,

respectively.

broth (Sigma-Aldrich, UK) (as used in (103)) in 100 ml of DI water, with the

aid of a magnetic stirrer. This was heated to 37○C (to ensure yeast activation)

before adding 1 g of yeast. The activated yeast in sugar/nutrient solution was

then transferred onto a magnetic stirrer at room temperature, and left to multiply.

After 24 hours, the 100 ml was separated into four separate 25 ml Falcon tubes

and taken to a centrifuge, where they were pelletted at 10,000 g for ten minutes.

The supernatant was discarded and replaced with 24 ml of 0.85 % NaCl into each

of the four Falcon tubes, and the yeast were re-suspended by pipette mixing.

They were left in NaCl solution for up to five days before experimenting (a simple

0.85% NaCl solution keeps yeast in an activated state, while not providing any

nutrients to grow further). Fresh batches were made every five days to ensure

high viability of yeast.
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Figure 3.19: Bakers yeast used in these experiments (left), and Trypan blue

(right), which selectively stains dead yeast.

Preparation and staining of yeast cell solutions

Separate populations of live and dead yeast

In order to generate separate populations of both live and dead cells, the yeast

suspended in NaCl were concentrated by pelletting at 10,000 g for ten minutes

and resuspending in 2 ml of 0.85 % NaCl. Of this, 1 ml was pipetted into 24

ml of isopropanol (IPA) (for dead cells), and 1 ml was pipetted into 24 ml of

0.85 % NaCl (live cells). The cells were incubated for an hour, then pelletted at

10,000 g for ten minutes, before each sample (live and dead) was resuspended in

2 ml 0.85 % NaCl. 1 ml of this suspension was added to 1.7 ml minicentrifuge

tubes. The samples were then washed (mainly to remove any residual IPA) by

minicentrifuging at 6,700 g for one minute, then re-suspending in 1 ml of 0.85 %

NaCl. This was repeated twice.

Staining yeast cells

To stain the cells, 15 µl of live cell solution and 50 µl of dead cell solution1 was

added to the same 1.7 ml centrifuge tube, followed by 435 µl of 100 % PBS

1Because dead cells are lighter and fragment, a higher proportion are lost during centrifu-

gation steps. Thus, a ratio of 15:50 live:dead suspensions resulted in an even concentration of

live and dead cells
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solution (of physiological conductivity), to make up 500 µl. 500 µl of 0.04 %

Trypan blue cell stain in physiological saline solution was added to this (a 1:1

dilution), and this was incubated at room temperature for five minutes. Trypan

blue selectively stains the cytoplasm of dead cells blue, but is excluded from live

cells. This is because the dead cell membrane becomes permeable during the

apoptotic and necrotic cell death pathways, a process of gradual disintegration

(167).

The stain was washed out by centrifuging the solution, pouring out the super-

natant, and re-suspending in 10% PBS solution (measured to 0.16 S/cm). This

was repeated twice.

Device surface preparation and experiment

Devices were functionalised by flowing 1% BSA solution and incubating for >30

minutes before the experiment. This was in order to form a blocking layer on the

surface (of nonspecifically-bound BSA protein), to prevent fouling by yeast cells.

BSA solution was removed before flowing the stained yeast solutions. Pictures of

yeast were taken in Brightfield (with the Pixera Penguin camera) for no longer

than two hours after staining.
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3.3 Chapter 5 procedures and protocols

This section will discuss the experimental procedures used in Chapter 5. In

summary, human dental pulp stromal cells (DPS cells, a candidate cell type for

cell therapies1 were grown by standard tissue culture methods. A number of tests

were carried out on the DPS cells to see if SAW-DEP and related procedures

(DEP buffer, microfluidics) had any adverse effects on cells (which could limit

the medical applications of the technology). The tests consisted of FACS to

assess cell viability, and biochemical assays to assess the differentiation potential

of cells following SAW-DEP.

3.3.1 Tissue culture

General Procedure

Growth conditions

Tissue culture is so called because studying animal cells in vitro normally involves

growing them as a tissue or layer of cells. Mammalian cells are typically grown in

a 37○C incubator with 5% CO2, so as to mimic the conditions of the human body.

Most ‘adherent’ cells (cells which are ‘anchored’ to tissue within the body) will

readily adhere to the bottom of a polystyrene plastic culture flask (Figure 3.20a),

by applying them into the flask within a suspension of liquid culture medium,

containing food for the cells.

Cell density

Researchers typically add a sufficient concentration of cells to cover 10-30% of the

surface (i.e. 10-30% ‘confluency’), after which cells will continue to multiply and

expand across the surface. The growth medium is changed typically 2-3 times

per week to provide fresh food (Figure 3.20b). Typical doubling times are 1-4

days. When the surface is >80% covered (confluent), the growth phase of cells

often changes through extra-cellular signaling, and cells may change phenotype

or differentiate. For example, when dental pulp stromal (DPS) cells reach high

1Discussed in Section 1.1
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Figure 3.20: Photographs of tissue culture apparatus. a Tissue culture flask,

175 cm2 b Aspirating medium out of flask (e.g. when changing medium to feed

cells) c Positive pressure sterile hood for handling cells d 37○C, 5% CO2 standard

incubator.

confluency, they will increase alkaline phosphatase expression, an early marker

for differentiation into bone tissue.

Passaging cells

Unless differentiation is the end goal, it is often desirable to reduce the density of

cells before a change in phenotype occurs, for consistency between experiments.
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The adherent cell layer is released from the surface by applying ‘trypsin’, an

enzyme often found breaking down food in the stomach, which severs the cellu-

lar anchors to the surface. Researchers can then transfer a fraction of this cell

suspension to a fresh flask and begin the expansion process again. This transfer

of cells is known as ‘passage’ (168).

Because a cell’s phenotype often changes during subsequent passages (either due

to differentiation, or possible mutation in the case of cell lines) it is desirable to

only keep cells up to a certain number of passages (generally ∼ 5 for DPS cells

from donors, more for engineered cell lines). Cells of an early passage are stored

in liquid nitrogen (-196 ○C) as a bank for future use.

Figure 3.21: Microscope image of adherent DPS cells growing in a tissue culture

flask (10x objective).

Maintaining sterility

One of the key concepts to tissue culture researchers is that of sterility - out

of the body, cells do not have the benefit of the immune system and protective

layers, so contamination with bacteria and yeast is a general concern which can

result in loss of work and ruined experiments. For this reason, tissue culture

flasks contain sterile pores (less than 0.2 µm, too small for bacteria etc) for gas

exchange in the lids; whenever the lid is removed to transfer cells or media, this
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must be carried out in a sterile hood (Figure 3.20d). Air flow in a sterile hood

ensures positive pressure, such that microparticle (including microorganisms)

cannot be blown in from outside. Anything that the researcher transfers into the

hood (e.g. flasks, media bottles, their gloved hands and arms) must be sprayed

in a mist of ethanol (typically 70% in water) to sterilise them.

Protocol - dental pulp stromal cells

Dental pulp stromal cells were harvested, courtesy of Matt Tomlinson, from

extracted impacted third molars obtained with consent from three donors, both

male and female aged between 21-46 years, through the Leeds School of Dentistry

Skeletal Tissues Research Tissue Bank (07/H1306/93+5) and were cultured in

basal medium. DPS cells were isolated using collagenase I (3 mg/ml) (Invitrogen,

UK)/dispase (4 mg/ml) (Roche, Germany) digestion and selected using plastic

adherence and colony formation (169).

Cultured cells were maintained in a basal medium comprised of -MEM, 10%

foetal calf serum (FCS) (Sigma-Aldrich, UK), 100 units/ml penicillin, 100 g/ml

streptomycin solution (Sigma-Aldrich, UK) and 1% of 200 mM L-glutamine

(Sigma-Aldrich, UK). Cultures were incubated at 37○C, 5% CO2 until 70-80%

confluency, after which they would be split 1 in 5. DPS cells at passage 3 to 5

were used in all experiments.

3.3.2 FACS experiments - effect of SAW-DEP on cell vi-

ability

Composition of DEP buffer

Considerations

DEP is typically performed in low conductivity buffer (<0.01 S/m). This rules

out typical cell buffers such as culture media and PBS (phosphate buffered
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saline, ∼ 1.5 S/m). In order to ensure the solution is osmotically balanced1 (∼
300 mOsm) researchers typically use a sugar-based solution (typically 8.5-9 %

m/v) which is topped up with NaCl to fine tune the conductivity. To buffer

the pH (to keep it in the suitable range for cells, pH 6.8-7.4) researchers often

use the low-conductivity HEPES buffer. Lastly, because mammalian cells are

notoriously sticky in microfluidics, researchers try to counter this with EDTA,

typically 0.02% m/v and BSA 0.5 - 2%. EDTA chelates Ca2+ ions, which prevents

cells attaching from each other (Ca2+ is necessary to form cell-cell junctions; BSA

coats the surface of both the fluidics (as used in earlier yeast experiments) and

cells, reducing non-specific binding of the cell to surfaces.

Because a relatively high conductivity of 0.15 S/m was chosen to perform exper-

iments, the concentration of sugar was dropped slightly lower to 7.5% to ensure

osmolarity of 300 mOsms. Osmolarity was calculated using a Python script (Ap-

pendix, Section B.4), which assumed 1 Osmol/mol for sucrose, dextrose, EDTA,

BSA, HEPES, and 2 Osmol/mol for NaCl (because one mole of NaCl dissociates

completely into 1 mol of Na+ and 1 mol of Cl−.

Composition and storage

The DEP buffer used was therefore 7.5% sucrose (all % are m/v), 0.3% dextrose,

2% BSA, 0.02% HEPES. After adding HEPES the pH was adjusted (from ∼ 5.8

to 7.0-7.2) by adding 10-15 drops of 5 M KOH. Finally the conductivity would

be adjusted to 0.15 S/m by adding NaCl (∼ 0.05%).

To minimise risk of buffer contamination, buffers were filtered by passing them

through a 0.2µm sterile filter (Merck Millipore, Germany) on the end of a syringe

into sealed aliquots in 7ml Bijou tubes (Thermo Fisher, MA) in a sterile tissue

1The osmotic potential is determined by the concentration of solute molecules both inside

and outside the cell. If there is a much lower concentration of solute outside the cell (for

example, in a low-conductivity buffer that has not been osmotically boosted with sugars), then

water will osmotically diffuse into the cell due to its higher potential, leading to swelling and

rupture.
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culture hood. These were frozen at -4 ○C, and used within two months.

A further eight ‘DEP’ buffers, based on that used in the literature, were made

to assess their effect on cell viability. The constituents, along with those of the

previously mentioned media, are listed in Table 5.2.

SAW-DEP and FACS procedure

Device functionalisation

The fluidic setup (described in Section 3.1.5, Figure 3.15) was stored overnight in

5% (v/v) Decon90 surfactant solution (Camlab, UK) to dissolve cellular residues

from the previous experiment. These, along with soap residues, were removed

prior to the experiment by flowing ethanol and functionalised by flowing DEP

buffer into the channel (at least 500 µl to remove residual ethanol). DEP buffer

would be left for >30 minutes while cells were prepared, to ensure a monolayer

of BSA formed on the surfaces.

Cell preparation

Culture medium would be aspirated from one 175 cm2 flask of cells (containing

∼ 4 x 106 cells), and adherent cells would be washed in PBS (add 10 ml of PBS,

swirl, aspirate off) before incubating in 5 ml trypsin for 4 minutes. Any cells still

adherent would be detached by gently tapping the side of the flask. Trypsin was

inactivated by adding 5 ml of culture media (the FCS blocks trypsin’s active site),

and the suspension (10 ml total) was transferred to a 15 ml Falcon tube (Fisher

Scientific, MA), whereupon it was pelleted by centrifugation (each centrifugation

step was for 5 minutes at 200 g). The supernatant was discarded and the pellet

resuspended in 1 ml DEP buffer, and passed through a 50 µm cell filter and into

a fresh 15 ml Falcon tube (this removes any large cellular debris that can block

microfluidics). The suspension was centrifuged and resuspended a further two

times to remove residual culture medium. The final suspension was in 400 µl of

DEP buffer for a concentration of ∼ 1 x 106 cells per 100 µl.
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Table 3.1: Buffer constituents

Buffer Constituents (in mass/volume), conductivity at 20
○C

Culture media Significant components are 10% fetal bovine serum1,

0.68% NaCl, ∼ 0.08% other salts, 0.1% amino acids

(170). 1.25 S/m (171).

PBS Significant components are 0.8% NaCl, and 0.115%

phosphate buffer (Na2HPO4) (172). 1.5 S/m.

Remote DEP

buffer

0.02% EDTA, 2% BSA, 0.595% HEPES buffer (25

mMol), 7.5% sucrose, 0.3% dextrose, pH adjusted to

7.1-7.4 with 5 M KOH. 0.15 S/m.

1 8.5% sucrose, 0.3% glucose, 0.725% (v/v) RPMI media

stock(143). 0.01 S/m.

2 8.5% sucrose, 0.3% glucose, 6mMol HEPES. 0.0096 S/m.

3 8.5% sucrose, 0.3% glucose, 0.02% EDTA, 2% BSA, 10

mMol HEPES, 0.044 S/m.

4 8.5% sucrose, 0.3% glucose, 27 mMol HEPES, 0.030

S/m.

5 9% sucrose, 0.3% glucose, 0.03% EDTA, 0.8% BSA,

topped up with HEPES to 0.030 S/m.(56).

6 9.5% sucrose, 0.3% dextrose, 2.1% 1 x stock PBS solu-

tion, 0.03 S/m. (122)

7 8.5% sucrose, 0.3% dextrose, 2% BSA, 0.025 S/m.

8 8.5% sucrose, 0.3% dextrose, 2.1% stock saline solution
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SAW-DEP procedure

A 25 µl sample of cell suspension (containing ∼ 2.5 × 105 cells) was used to fill

the injection loop. Cells were flown to the chip, and subjected to SAW-DEP at a

flow rate of 3 µl/min at 3.2 mW of applied power (this was the maximum power

output of this device - 3 µl/min was the fastest flow rate at which cells would

properly align/become separated). To check that cells were properly undergoing

SAW-DEP during the whole process, a picture was taken of cell alignment in the

aperture every 30 seconds. Cells were collected via the flow cell outflow tube into

a 15 ml Falcon tube.

For the “Fluidics control” cell sample: these underwent the same procedure as

outlined above, the only difference being the SAW-DEP field was never turned

on (n = 9 for both SAW-DEP and Fluidics Control samples).

SAW-DEP Controls

To gauge how much cell death was not attributable to either SAW-DEP (e.g.

electric field intensity) or the Fluidics (shear forces), controls were carried out

by leaving cells in basal medium, PBS, and DEP buffer in Eppendorf tubes at

the lab bench while SAW-DEP was being carried out (30 minutes total). These

were prepared in parallel to preparing cells for SAW-DEP (or Fluidics Control),

but substituting basal medium/PBS for DEP buffer (n = 18 for each of these

controls).

FACS preparation and procedure

All samples were prepared for FACS in parallel. 200 µl of each sample (2-5 × 104

cells) was topped up with 1 ml of PBS and centrifuged, whereupon the super-

natant was discarded and the pellet was re-suspended in 100 µl of PBS. 5 µl of PI

solution (BioLegend, CA) was added to stain cells. After 12 minutes, the concen-

tration of cells was adjusted by adding 250 µl of PBS (giving a final volume of 355

µl), ready for the flow cytometer. A BDTM LSRII instrument was used for flow

cytometry. Samples were excited with a blue 488 nm laser, and fluorescence was

collected via a 500 nm long pass dichroic mirror and a 575/26 nm band pass filter.
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Figure 3.22: Photograph of the flow cytometer model used in these experiments

(173).

Figure 3.23: FACS overview. (Left) Schematic of flow cytometer flow cell (174).

The cell sample is hydrodynamically focused such that cells can be probed one

at a time. Each cell is interrogated with a laser beam, and data is collected for

its fluorescence and light scatter. (Right) Sample contour plot of ∼ 10,000 cells,

exhibiting two populations off PI fluorescence - i.e. highly-fluorescent population

has taken up more PI because they are dead cells.

Forward scatter (FSC) and side scatter (SSC) were measured simultaneously on

a contour plot to define a population of intact cellular bodies. A gate was drawn

around the first definable population above the background (caused by electrical

noise and particulate matter, including cellular debris) such that only intact cel-
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lular bodies were examined. This gate was used for all experiments, and 10,000

- 20,000 events were counted per experiment (generally 60-70% of which were

intact cellular bodies). Forward scatter and PI fluorescence (logarithmic scale)

were measured simultaneously on a contour plot to define viability. The positive

control showed two separate populations, one of which was heavily fluorescent

with PI and was assumed to be the dead fraction. The live/dead gate was drawn

between these two populations, at a PI fluorescence intensity of 103, to give a

realistic viability for the positive control, which was an average of 96.7% (n=18).

This gate was kept the same for all experiments.

Verification of live/dead gate - incubator experiments

For these experiments (n = 3) (Section 5.3.4, Figure 5.11), the first part of

the experiment consisted of cells undergoing SAW-DEP and FACS as described

before. The second part of the experiment was conducted straight after (all in

one day) with a flask of cells of the same donor and passage number - for these

cells, an extra step was added: After SAW-DEP, the cells were centrifuged and

resuspended in 1 ml of basal medium and left for 1 hour in the incubator, before

being prepared for FACS as described before.

Assessing effect of DEP buffer composition experiments

For these experiments, no sample underwent SAW-DEP, and preparation and

analysis was the same as for ‘SAW-DEP controls’, described earlier, with the

only difference being the precise buffer they were suspended in. The buffer com-

positions are listed in Table 5.2.

Statistical analysis

To determine whether there was statistical difference in the viability between

various samples (most important, SAW-DEP vs cells which had not undergone

SAW-DEP), significance tests were carried out via IBM SPSS Statistics 21 soft-

ware. Initial Kolmogorov-Smirnov and Shapiro-Wilk tests showed that the data

was not normally distributed. Therefore, Mann-Whitney U (non-parametric)

tests were performed between each of the five conditions (SAW-DEP, Fluidics,
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DEP buffer, Basal Medium, PBS), with p-values >0.05 deemed as significant.

3.3.3 Effect of SAW-DEP on differentiation ability of stem

cells

Figure 3.24: Picture of a 24 well tissue culture plate. The top two rows contain

monolayers of cells, grown for 10 days (the bottom two rows are empty). The

monolayers have been fixed in ethanol, and stained (blue) for alkaline phosphatase

expression, an early marker in osteogenic differentiation of DPS cells. The fourth

pair in is a negative control (not expected to be undergoing differentiation) which

explains why it is far more weakly stained.

Overview

To test the effect SAW-DEP has on stem cells differentiation ability, DPS cells

were subjected to SAW-DEP in a similar manner to the FACS experiments, after
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which they were cultured in 12 or 24 well plates (see Figure 3.24). Growing

cells in these removable-lid plates allows for easy access to cells for staining and

biochemical assays. This consisted of (1) alkaline phosphatase (ALP) activity

assay (ALP is a marker for osteogenic lineage differentiation), (2) ALP stain,

and (3) a mineralisation stain (after 3-4 weeks, cells pushed down an osteogenic

lineage should begin forming mineral deposits, the precursor of bone).

A more detailed introduction to the induction of differentiation of DPS cells can

be found in Section 5.5.1.

SAW-DEP procedure

The device used for this experiment had a lower coupling coefficient (∼ 1.6 mW

at full power) so a lower flow rate of 1.5 µl/min was used to ensure full alignment.

Cells were prepared for SAW-DEP as before, but using BSA buffer adjusted to

0.15 S/m (8.5% sucrose, 0.3% dextrose, 2% BSA, NaCl to 0.15 S/m) instead of

the previous DEP buffer. A 50 µl injection loop was filled with cells concentrated

to ∼ 106 cells per 100 µl, and this was delivered to the chip at 1.5 µl/min before

being collected (recovery was measured to be 75%).

Preparation of controls

The ‘Fluidics’ control was prepared the same as the SAW-DEP sample, but

was delivered through the device with the SAW off. The DEP buffer and basal

medium controls were prepared in the same manner (basal medium control sus-

pended in basal medium, not DEP buffer) and left on the lab bench for the

experiment time (45 minutes). Positive and negative controls were prepared

from a fresh flask of cell from the incubator.
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Seeding and growth in osteogenic media

Cells were re-suspended in basal medium by centrifugation, counted by haemo-

cytometer, and seeded at a density of 4 × 104 cells/cm2 (24 or 12 well plates for

ALP/mineralisation tests, respectively) in basal medium. Cells were then left

overnight (for full attachment to surface) before the basal medium was aspirated

and replaced with osteogenic media (Complete StemPro® Osteogenesis Differ-

entiation Medium by GibcoTM from Thermo Fisher, MA, supplemented with

1% (v/v) Penicillin-Streptomycin antibiotic solution (100 units/ml penicillin,

100 g/ml streptomycin solution, from Sigma-Aldrich, UK)). The medium was

changed every four days.

ALP stain

After 8 days in osteoinductive medium, cells were washed 3 times in Ca2+ PBS

(Sigma Aldrich, UK), before being fixed in chilled 70% ethanol for 15 minutes.

Cell monolayers were then washed three times with distilled water, before being

immersed in stain solution: napthol AS-MX phosphate aqueous solution with

fast blue RR salt (85L1) (Sigma-Aldrich, UK), passed through a .22 µm syringe

filter. Monolayers were left in the dark for 30 minutes to stain. Following this,

the samples were washed three times in distilled water, leaving for 5 minutes in a

gentle shaker (60 rpm) with each washing step, before being photographed with

a Nikon Coolpix P610 camera.

ALP activity assay

The ALP assay was also performed following 8 days in osteoinductive medium.

Cells were washed twice in Ca2+-free PBS and immersed in 0.1% Triton-X100

(Sigma-Aldrich, UK) solution to lyse cells. To fully break up cells and release

DNA, the samples were frozen in a -80 ○C freezer for 5 minutes, before each

sample monolayer was scraped and mixed methodically by pipette for 1 minute,

and this process was repeated twice.
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The assay was carried out in 96 well plates. 10 µl of each cell sample was added

into the appropriate well. Calibration standards were made of 4-nitro phenol

solution (Sigma Aldrich, UK) in concentrations of 10, 50, 100, and 200 nmol/ml.

To start the reaction, 90 µl of substrate solution was added (4-Nitrophenol

Phosphate substrate liquid system - Sigma Aldrich, UK) to each well. This was

incubated at 37 ○C for 30 minutes, before the reaction was stopped by adding

100 µl of 1 M NaOH solution. Following this, plates were excited at 405 nm using

a Varioskan Flash model microplate reader (Thermo Fisher, MA) to quantify

fluorescence.

Figure 3.25: Photograph of a typical microplate reader (175). It is essentially a

UV-vis spectrophotometer, containing a laser that probe cells at various wave-

lengths, measuring the absorption or excited emission of the sample, typically to

detect for photolabels, similar to the flow cytometer discussed in Section 3.3.2.

To calculate the ALP activity per cell (thus discounting lower ALP activity

in samples with less cells, or vice versa), DNA assays for standardisation were

carried out in parallel to ALP activity assays (see below).

145



3.3 Chapter 5 procedures and protocols

ALP assay - DNA assay for standardisation

10 µl of each cell sample was added into the appropriate well, as well as 10 µl of

DNA standard solution. DNA standards were made from DNA Standard 1ug/ml

solution (Cambio, UK) into concentrations of 1, 10, 100, and 500 ng/ml. Wells

were topped up with 90 µl of 1 X TE buffer solution, and 100 µl of working Pico

Green solution was added (working Pico Green solution was made by diluting

Pico GreenTM DNA Assay solution (Cambio, UK) 1:199 in TE buffer). After dark

incubation for 5 minutes, plates were read in a Varioskan Flash microplate reader

(Thermo Fisher, MA), using 480 nm excitation and 520 nm emission wavelengths.

Data for ALP activity and DNA quantification was exported and analysed in

Microsoft Excel 2010.

Mineralisation stain

For the mineralisation stain, cells were cultured in osteoinductive medium for

16-19 days (as specified in Results). Cells were washed 3 times in Ca2+-free PBS

(Sigma Aldrich, UK), before being fixed in chilled 70% ethanol for 15 minutes.

Cell monolayers were then washed three times with distilled water, before be-

ing immersed in Alizarin red stain solution (Millipore, UK) in the dark for 15

minutes. Following this, the samples were washed three times in distilled water,

leaving for 5 minutes in a gentle shaker (60 rpm) with each washing step, before

being photographed with a Nikon Coolpix (model P610) camera.
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3.4 Chapter 6 procedures and protocols

In summary of Chapter 6, the DEP properties of three cell types was examined

under SAW-DEP. The cell types were DPS cells (described previously), 16HBE

cells (a bronchial epithelial cell line), and MCF7 cells (a breast cancer cell line).

Firstly, DPS cells were fluorescently stained to visually discriminate live and

dead cells, and the optimal conductivity for separation was investigated.

Following this, the DEP properties of live DPS, 16HBE, and MCF7 cells were

analysed by seeing whether they underwent nDEP or pDEP at various conduc-

tivities. There was also a preliminary experiment in separating 16HBE and DPS

cells under SAW-DEP. Finally, the DEP properties of DPS cells as a function of

age was examined, in a similar manner.

3.4.1 Live and dead DPS cell staining and separation

Staining mechanism background

Different dyes were used to discriminate dead and live cells (see Figure 3.26).

Dead cells were stained with propidium iodide, which permeates the membrane

of dead cells (but not live cells) to intercalate between DNA bases. When bound,

it fluoresces in the ‘red’ range.

Live cell stains are generally more expensive, with more elaborate molecules

manufactured to permeate the intact cell membrane. Calcein-AM consists of the

fluorescent, charged molecule calcein ‘capped’ by acetoxymethyl which supresses

both fluorescence and charge (the latter quality allowing the molecule to cross

the membrane). Once inside, serum esterases (found in live, metabolically active

cells, but not in dead cells) will cleave off the AM cap. This leaves a fluorescent

(green), charged molecule which is now retained in the membrane.
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Figure 3.26: Schematic showing mechanism of selective dead/live cell staining

by propidium iodide/calcein AM, respectively. (Left) Propidium iodide is per-

meable to the dead cell membrane, but not the live cell membrane (due to the

former’s diminished integrity and function). Once inside, it binds to DNA and flu-

oresces in the red spectrum. (Right) The fluorescent calcein molecule is ‘capped’

with acetoxymethyl (calcein-AM), which prevents fluorescence and neutralises

the molecule, such that it can cross both live and dead cell membranes. When

inside live cells, the -AM is cleaved off by the active esterase metabolic proteins

within the cell; the resulting calcein molecule is strongly fluorescent (green), and

moreover, cannot diffuse back across the membrane because it is now charged.

Conversely, calcein-AM is not cleaved by dead cells (or cleaved far less) due to

the lack of active enzymes, such that it will diffuse back out of the cell without

fluorescing (176, 177).

Separation at 0.15 S/m

DPS cells were cultured as in the previous section. Two flasks of cells were used

per experiment, with a flask for live and a flask for dead cell populations. Cells

in both flasks were detached simultaneously by 5 ml trypsin, topped up with 5
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ml of basal medium, and centrifuged at 200 g for 5 minutes in 15 ml Falcon tubes.

For live cells, one tube of cells was washed once in PBS by centrifugation, to

remove residual serum that would occupy esterase activity. Cells were then

re-suspended in a 10 µM working dilution of Calcein-AM (ThermoFisher, UK)

and incubated in the dark to allow staining. After 30 minutes, the cell pellet was

washed twice in low conductivity DEP buffer (8.5% sucrose, 0.3% dextrose, 2%

BSA) and topped up with 10% v/v propidium iodide (PI) solution (Biolegend,

UK). The final volume of cell suspension is ∼ 400 µl, aiming for 106 cells per

100 µl. Adding 10% PI solution not only ensures any dead cells are accordingly

stained, but also adjusts the final conductivity to 0.15 S/m. (PI solution is made

up of 0.04% m/v PI diluted in PBS solution.)

While the live cells were incubated in the stain solution (for 30 minutes), the

dead cells were prepared. For this, the other tube of cells was washed twice in

low-conductivity DEP buffer and topped up with 10% v/v PI solution. To kill

the cells, the final suspension of cells was left (in a 15 ml Falcon tube) in a 60 ○C

water bath for 12 minutes, a method described in an earlier DEP-based live/dead

separation paper (143), following which they were cooled in a 4 ○C fridge for >2

minutes.

Finally, dead cell and live cells fractions were mixed in a 1:2 ratio (live cells spread

out more due to the pearl chaining effect, so a higher concentration was used for

even distribution). They were injected into the same fluidic setup described in

the previous section, pushed through with 0.15 S/m DEP buffer.

Imaging

To image, the flow was stopped with the stopper valve (to completely stop flow,

the outflow tube was plugged with blue tack and taped upright to the side of

the microscope). The SAW was excited at 5 mW per IDT (by applying 500 mW

to each transducer) as in previous experiments, and alignment occurred in <1

149



3.4 Chapter 6 procedures and protocols

second. An image was taken (with the Hamamatsu Orca camera) under the SWB

filter (blue light, to excite calcein in live cells), and immediately after another

was taken through the WIG filter (green light, to excite propidium iodide in

dead cells). Cells were flown on and more pictures were taken, typically for up

to 30 minutes, after which a large proportion of the cell population is dead and

aligning in the nDEP region only.

Following the experiment, images were opened in ImageJ. For simplicity, images

were thresholded (all pixels made either 1 or 0) and coloured artificially according

to the excitation filter used. Adjacent SWB and WIG images were combined by

the ‘Merge Channels’ function.

Separation at 0.0625 S/m

Because experiments at 0.15 S/m showed that many live-stained cells were align-

ing in the dead, nDEP regions (although pDEP regions were generally up to

100% live cells), further experiments were conducted to try get a binary split of

live and dead cells within the channels. For this, the concentration of PI solution

in the final suspension was lowered from 10% until 3.5% was found to show good

binary separation.

To ensure that 3.5% PI solution was still a sufficient concentration to stain all

dead cells, a control experiment was done with dead-only cells suspended in 3.5%

PI solution. This, overlayed with a brightfield image to define cells, showed that

all cells were stained.

3.4.2 Conductivity-stepping experiments

Cell culture

DPS cells: DPS cells were cultured as discussed earlier, and cells of passage 3-5

were used for experiments. (Cells of later passage were found to have altered
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Figure 3.27: Microscope image from control experiment to show that 3.5% (v/v)

PI solution still stained all the cells (the manufacturer’s instructions are to use

10%). NB the overlay is imperfect because the fluorescent image was taken a few

seconds after the brightfield, and there is some cell movement.

crossover characteristics, discussed later.)

MCF7 cells: MCF7 cell line was kindly donated by James Beattie (School of

Dentistry, University of Leeds). Those used for these experiments were on pas-

sage 37-41. They were cultured in the same way as DPS cells, described earlier.

16HBE cells: 16HBE cell line was donated from Shane McGettrick (School of

Dentistry, University of Leeds) and cultured in the same as DPS cells described

earlier. Those used for experiments were on passage 15-21.

Composition of buffer solutions

The different conductivity buffers were made by diluting PBS with low conduc-

tivity DEP buffer (8.5% sucrose, 0.3% dextrose, 2% BSA (conductivity 0.025

S/m)). These were typically 3.5% PBS, 7.5%, 9%, 10%, 15%, 20%, 25%, 30%.
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Conductivity was checked with a conductivity meter (ECTester 11+ multirange,

Cole Parmer, UK) calibrated to 0.1413 S/m (Hi-7031L calibration solution, Han-

nah Instruments, UK), and was typically ∼ 0.065 S/m for 3.5%, and ∼ 0.37 S/m

for 30%.

Cell preparation - DPS cells

Instead of checking all 8 conductivities in one run, each experiment was split into

two parts, so that cells were not left for >30 minutes following preparation (after

which the increased cell death complicates the results).The same flow cell setup

was used as for the previous experiment; prior to the experiment, the fluidics and

channel were filled with 7.5% PBS dilution DEP buffer (the first conductivity to

be tested).

1. For the first part of the experiment, three T175 flasks of cells were

trypsinised as described earlier, split into 5 labelled falcon tubes (3.5%,

7.5%, 9%, 10% and 15%) and washed twice in the appropriate buffer, re-

suspending to give a final concentration aiming for ∼ 106 cells per 100 µl,

typically ∼ 200 µl of final cell suspension per conductivity buffer.

2. Following preparation, the 7.5% sample was injected into the (25 µl) in-

jection loop and flown into the channel. A SAW power of 5 mW (as for

previous experiments) was applied to each IDT and flow was halted using a

stopper valve, with images taken under brightfield. For each conductivity,

3-5 images were taken, to give a statistically-relevent sample size of gen-

erally >1,000 cells, with a minimum of 500 (a note was made of samples

with <1,000 cells). Only the first 5-10 µl fraction of the sample was used

for experiments, for consistency.

3. After 7.5% had been imaged, the flow cell was flushed with 100 µl of the next

conductivity, 9% PBS in DEP buffer, and the process was repeated with

the 9% PBS conductivity cell suspension. If the channel became fouled

midway through an experiment, the channel would be flushed with 10%

152



3.4 Chapter 6 procedures and protocols

NaOH solution (to dissolve organic matter) and 70% ethanol (to remove

any air bubbles), before running at least 150 µl of the next conductivity

solution.

4. The order was 7.5%, 9%, 10%, 15%, and finally 3.5%. This is because

3.5% was previously shown to give a good indication of the % of cell death

(by counting proportion of cells aligning in nDEP regions), and thus could

indicate the maximum amount of cell death during an experiment. (This

number was subtracted from cells aligning in nDEP regions in subsequent

analysis, so that dead cells in the sample could be ignored.) Cell death,

after <30 minutes of experiment time, was generally 3-5%, maximum 7%.

5. For the second part of the experiment, three flasks were trypsinised as

before, and cells were suspended in 3.5%, 15%, 20%, 25%, and 30% con-

ductivities. The experiment started on 15%. Because this 15% sample had

been tested at the start of (the second part of) the experiment (0 minutes)

and the 15% sample in the first part of the experiment was tested in the

final 20-25 minutes, the difference between the crossover % of these two

samples could be used as an indication for error attributable to cell death

variation from the start to finish of the experiment; this was typically 2-10%.

Cell preparation - differences

Because 16HBE cells and MCF7 cells do not stretch out on the adherent plastic

like DPS cells, they grow at a higher population density. Thus, to get a similar

final concentration of cells (∼ 106 per 100 µl), only 1 flask of MCF7 cells, and 2

flasks of 16HBE cells were used in their experiments.

Because MCF7 cells have a habit of clumping far worse than the other cell types,

each conductivity sample was filtered through a 50 µm filter (Celltrics, Wolf

Laboratories, UK) immediately prior to being injected into the microfluidics.

Researchers should be warned that they foul the microchannel much more read-

ily, and 10% NaOH solution is recommended as the best way found to dissolve
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them quickly.
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Chapter 4

Device characterisation with

latex beads and yeast cells: Proof

of concept experiments and DEP

force measurements

4.1 Introduction and chapter summary

4.1.1 Aims of chapter

As discussed in Section 1.4.14, the goal of the experimental work in this thesis

was to develop a SAW-DEP cell sorter that would allow high fidelity separation

of different cell types, at high throughput and physiologically-relevant conduc-

tivities.

This chapter focuses on the use of SAW-DEP device (Figure 4.1a) to align latex

spheres in the size range 1 µm 10 µm, followed by trial separations of live from

dead yeast cells. The key questions addressed in this chapter, together with a

summary of findings, are listed below:

1. Can the spacing of bead alignment (Figure 4.1b) be predicted according
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Figure 4.1: a Photograph of an early device iteration. b Fluorescent micro-

scope image: Proof-of-concept image from the first device iteration, showing

fluorescently-labelled 1 µm latex beads being aligned by forces exerted by the

device. The scale bar is 100 µm.

to the applied frequency/wavelength, thereby allowing tunable control of

particle manipulation?

• Section 4.2: Early experiments consisted of pipetting a droplet of la-

tex beads solution onto the surface of a SAW-DEP chip between the

transducers, and confining the beads to the surface by overlaying a

coverslip. Beads were observed to align by nDEP at a periodicity that

matched the SAW device wavelength; however, because the system

was not well sealed, alignment was often disturbed due to evapora-

tion. Furthermore, if conductive solutions were used (such as those

more relevant to cell separation in clinical settings), alignment was far

less uniform, presumably due to convection currents caused by Joule

heating by the electrodes, which were (unintentionally) in contact with

the fluid.

2. Is the SAW-DEP device still effective at higher, physiologically-relevant

fluid conductivities?

• Section 4.3: To address this, a new flow cell was designed wherein the

particle solution could be confined away from the electrodes within a
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microfluidic channel defined in PDMS. With the electrodes now pro-

tected from the fluid, an experiment was carried out to test whether

the device dissipated energy into the surrounding fluid, by measuring

the device’s insertion loss as a function of fluidic conductivity within

the channel.

3. Can the electrical field gradient and associated force of the SAW-DEP sys-

tem be mapped out analytically, and supported by experimental evidence?

Is particle movement definitely caused by DEP forces and not by acoustic

forces (as would be the case for Rayleigh SAW devices)?

• Section 4.4: To show that the force exhibited on the beads was due

to DEP and not acoustic forces, bead movement was measured and

analysed using particle tracking software, to calculate the force as a

function of applied power, bead size, and position in the SAW-DEP

field. This was compared to a simple DEP system model, and they

were shown to closely match. The low force exerted, while able to

achieve alignment, also reinforced the method’s potential as being used

for a minimally-manipulative cell sorter.

4. Can the device exert both positive and negative DEP forces on particles

(namely cells) to produce a binary separation?

• Section 4.5: After characterising the system with beads, the device

was used on yeast cells. The device was shown to effectively separate

live from dead yeast cells based on differences in their conductive prop-

erties, with live cells being enriched into separate lines of 98.7% purity

(from a 50:50 starting mix). In addition, modifications to the microflu-

idic channel were implemented to syphon off SAW-DEP separated cells

into separate regions on the device.
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Figure 4.2: Schematic showing the first device iteration. The device consisted of

a SAW chip (red) mounted on top of a PCB (orange), with IDTs wirebonded to

the PCB. Particle solutions were pipetted onto the chip between the two sets of

IDTs, and confined to the surface by overlaying with a glass coverslip (blue).

4.2 First device iteration

4.2.1 DEP properties of latex beads in DI water

Initial experiments consisted of observing latex bead behaviour in a 20 MHz

SAW-DEP device (Figure 4.2, fabrication described in Section 3.1.2). To predict

latex bead behaviour at the set frequency, a theoretical CM factor of 1 µm latex

beads suspended in DI water (10−4 S/m) was calculated using Equation 2.2.25

(see Section 2.2.4) (assuming a relative permittivity of latex of 2.56), and this is

plotted in Figure 4.3a. This graph shows that latex beads are expected to exhibit

positive DEP (pDEP) at frequencies below 10 KHz, with crossover at 100 KHz,

and negative DEP (nDEP) after 1 MHz. Because the initial device was designed

to operate at 20 MHz, any observed alignment would presumably be due to nDEP.

To verify the theoretical calculation of latex bead CM factor at 20 MHz, a basic

‘interdigitated transducer’ DEP device (i.e. conventional DEP, not SAW-DEP)

(see Literature Review 1.4.5) was fabricated using the same electrode design
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Figure 4.3: a Plot of latex bead CM factor against frequency, in DI water. The

graph shows that below 100 KHz, particles will experience pDEP, because the

CM factor is positive - the particles are more electrically polarisable than the

surrounding liquid (DI water) at this frequency, and the electrical field prefers

to pass through the particles instead of the liquid; at 100 KHz the CM factor is

0 and the particles will experience no DEP force (i.e. they are at ‘crossover’ -

their polarisability matches that of the liquid at this frequency); and above 100

KHz, the particles are less polarisable by the electric field than the liquid, and

experience nDEP. b Latex beads on an interdigitated transducer DEP device at

100 KHz (no DEP force). The light areas are the metal (Au) electrodes. c Latex

beads on an ‘interdigitated transducer’ DEP device at 20 MHz, exhibiting nDEP

(moving to the area of lowest field gradient).

as the 20 MHz SAW device, but patterned onto a glass substrate instead of

LiTaO3 (Methods 3.1.1). To test the behaviour of beads, a droplet of latex bead

suspension (0.01% m/v) was pipetted onto a set of IDTs and overlaid with a

glass coverslip to confine the beads/liquid to the substrate. Immediately after, a

signal was applied (from 100 KHz - 100 MHz1) and the behaviour of beads was

1The signal generator used for this work did not go below 100 KHz frequency. Below this,

one could expect to observe positive DEP behaviour, where particles align at the edges of the

electrodes.
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observed. In such a device, bead alignment by pDEP is expected to occur at the

edges of the electrode (highest field gradient), and bead alignment by nDEP is

at the top centre of the electrodes (lowest field gradient).

Using this device, as predicted at 100 KHz no DEP behaviour (i.e. no positive

or negative alignment) was observed by the beads (i.e. CM factor of 0) (Figure

4.3b), and above 1 MHz the beads exhibited nDEP behaviour. This can be

observed in Figure 4.3c, where beads align at the top centre of the electrodes.

For SAW-DEP experiments, a droplet of solution of 1 µm-diameter latex beads

was pipetted between the two electrode pairs, and confined to near the surface

using a coverslip (see schematic in Figure 4.2).1 SAW-DEP behaviour was ob-

served in the 1 mm2 between the two sets of IDTs in the middle of the chip;

Figure 4.4a shows some typical early results demonstrating alignment of beads

in the device.

These results showed, firstly, that the pitch of the alignment was very close to

the expected wavelength of the SAW, assuming the alignment represented two

adjacent antinodes along the standing SAW (see Figure 4.5). At 20 MHz the

observed pitch was 107 µm, suggesting a wavelength of 214 µm. At 20 MHz, at a

speed of 4,022 m/s, the wavelength would theoretically be expected to be 201.1

µm (using ν = f ⋅ λ), so the experimental findings were 2.7% higher than our

theoretical calculation. This is close enough to assume the alignment was due

to the effects of a standing SAW, such a discrepency (i.e. a marginally longer

experimental wavelength compared to the design wavelength) is found in almost

all SAW devices, due to the mass loading effects of the transducers.

The SAW-DEP devices fabricated in this work tended to have a practical working

1A very rough calculation of the channel height was estimated to be ∼ 20 µm. This was

based on the observation that a 2 µl droplet (i.e. 2 mm3) spreads out to ∼ 10 mm2, thus the

height remaining would be 0.02 mm (0.02 mm x 10 mm x 10 mm = 2 mm3).
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Figure 4.4: a Microscope image showing 1 µm beads aligning by nDEP in a

SAW-DEP device. The scale bar is 100 µm. b Graph showing the measured

wavelength of the alignment (i.e. across two antinodes, e.g. between the top and

bottom green lines in a), at the three separate applied frequencies.

bandwidth of ∼ ± 1 MHz around the target frequency1. That is, while the highest

transmission peak for a 10 MHz-designed device would be found at 10 MHz

(measured by S21 scattering parameters, typically ∼ -20 dB, matched), several

secondary peaks (e.g. of >-23 dB) could be found within the 9-11 MHz range.

This allowed alignment of beads at different frequencies/wavelengths within this

range, as measured in Figure 4.4b. It should be noted that the force on particles

becomes much attenuated farther from the resonant frequency, because the in-

sertion loss is larger and thus less power is being coupled into the SAW.

Discussion on observations from first device iteration

One initial observation of beads aligning in the device was that the alignment

was very regular and uniform compared with acoustic alignment of microparticles

(100, 101, 145), where various (acoustic) standing waves of different wavelengths

(‘overtones’) form within the channel and fluidic streaming disrupts alignment.

1The size of the bandwidth in SAW devices is inversely proportional to the number of finger

pairs, i.e. in this work 15 pairs for all devices.
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Figure 4.5: Schematic of standing SAW electric field (178), showing where par-

ticles align by nDEP. For example, within a SAW wavelength of 200 µm (such

as that in a 20 MHz device on LiTaO3), there would be two antinodes (AN)

and two nodes (N) per period of the standing wave. The associated electric

field is analogous in periodicity to the SAW (acoustic) field, with the regions

of highest and lowest field gradient at the nodes and antinodes of the standing

wave, respectively. The latex beads, in this case, would align by nDEP at the

antinodes/regions of lowest field gradient (shown by red dotted line).

However, the lines were still noticably sinuous, particularly away from the centre

of the droplet/coverslip, and this was thought to be mostly due to evaporation

currents which were evident at the edges of the droplet.

With regards to conducting further experiments, the limitations of the early

device were that (a.) it was not a closed system and so evaporation occurred

continuously, disrupting flow in the channel, and (b.) the electrodes were not

kept separate from the fluid. This latter issue is a primary problem with most

conventional DEP devices. Indeed, the effect of higher conductivities was in-

vestigated using this device - while some alignment was observed at the higher,

physiologically-relevant conductivities (i.e. up to 0.1 S/m), it became progres-

sively poorer and unclear to see what was happening to the particles (see Figure

4.6).
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Figure 4.6: Fluorescent microscope image of bead alignment at 0.1 S/m (20 MHz

device, scale bar is 100 µm. The uniformity of alignment is noticably poorer than

at lower conductivities, and this is thought to be due to disruptive convection

currents emanating from the SAW-IDT electrodes, which are not fully confined

away from the fluid in this early device.

In summary, these experiments showed that the initial SAW-DEP device was suffi-

cient to produce relatively neat alignment of latex beads in DI water. However, in

order to align (and eventually separate) particles in more physiologically-relevant

(i.e. higher conductivity) solutions, it was clear that a more sophisticated flow

cell design was necessary, to control the flow of liquid, and confine the liquid

away from the electrodes; this is discussed in the proceeding section.
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4.3 Second device iteration: Flow cell and early

findings

4.3.1 Improvements to the device: Acrylic lid design

A second device was designed to address the practical problems manifest in

the initial device - namely that the liquid needed to be confined away from the

electrodes (i.e. between the two sets of IDTs), and also to administer particle

solutions in a more controlled manner. The design for the second device iteration

can be seen in Figure 4.7a, and a photograph of the device is shown in Figure 4.7b.

The device consisted of a 2 mm-thick section of PDMS (polydimethylsiloxane,

a transparent, rubbery polymer) placed on top of the SAW chip, with a mi-

crochannel defined in the PDMS running between the two sets of IDTs (Figure

4.7). A perspex lid was clamped onto a brass plate, sandwiching the PDMS

channel in between, and thus applying pressure to seal the channel. While this

conformal sealing technique for PDMS cannot withstand as high fluidic pressure

as, for example, fabrication techniques like plasma bonding (∼ 5 psi compared

with ∼ 30-50 psi for irreversible sealing like glue and plasma bonding (179)), the

advantage was that different channels could be used without having to fabricate

new devices; this made it favourable for the rapid prototyping that was being

carried out at this stage.

The microchannel cross-section was 50 µm high and 1 mm wide. A height of 50

µm was chosen because it is small enough to confine particles to the surface of

the chip (in contact with the electric field), but not too small that large particles

like mammalian cells (typically 10-20 µm diameter) would get stuck or block up

the channel. The channel was 10 mm in length (between the tubing inflow and

outflow holes), although cells were only exposed to the SAW-DEP field for a 1

mm section within the SAW aperture defined by the IDT design (see Section

3.1.1).
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Figure 4.7: a Schematic showing the second device iteration. A microchannel

defined in PDMS was placed to run between the two sets of IDTs. This is held in

place/fluidically sealed by clamping the PDMS onto the chip between a transpar-

ent acrylic lid and a brass plate. The lid has holes for fluidic tubing to be pushed

into. There are also holes in the lid for electrical contacts, made using pogo

pins that pressed onto the IDTs, which were in turn soldered to SMA connectors

glued into the side of the lid (shown in Figure 4.7b). b Photograph of the second

device iteration, with a penny coin (1p) for scale. As well as that discussed in

Figure 4.7a, the picture also shows SMA connectors glued into the lids, with wires

(red and blue) soldered to pogo pins (inserted into ‘Holes for electrical contacts’

detailed in a) which made direct contact to the IDTs on the SAW chip.

4.3.2 Experimental observations from Perspex lid device:

Improved bead alignment, and effect of fluid con-

ductivity of insertion loss

As expected, early results from the device showed that it had successfully over-

come the initial limitations of the previous device. Figure 4.8a shows significantly

improved alignment of 1 µm beads in a device operating at 9.9 MHz (using a 10
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MHz IDT design), unhindered by evaporation or convection currents1.

Figure 4.8: a Fluorescent microscope image of 1 µm latex beads aligning at 10

MHz, in the acrylic lid flow cell. The scale bar is 200 µm. b S21 values at 10 MHz

as a function of liquid conductivity inside the channel. The graph shows that

there is no decrease in SAW transmission (i.e. due to power loss to the liquid) as

the liquid conductivity is increased. Note that S21 can be converted to insertion

loss by simply switching “−” to “+”, such that the graph would be mirrored above

the x axis.

To verify that higher conductivities did not lead to fluid heating (which as well

as generating disruptive convection currents, is also harmful to cells for clini-

cal applications), the effect of fluid conductivity in the channel was measured

against the insertion loss of the device in a network analyser (Figure 4.8b). If the

device was heating up the surrounding liquid, there would be a corresponding

increase decrease in SAW transmission, as measured by the S21 (or S12) scatter-

ing parameter (as less power was transmitted between the two ports due to heat

dissipation). Because Figure 4.8b shows that there is no significant change in

insertion loss/S21 due to conductivity, this suggests that, as predicted, no electric

current is passed from the SAW field into the surrounding substrate.

1The spacing of the lines was 207 µm giving the wavelength to be 414 µm. At 9.9 MHz, the

expected wavelength is 406 µm, so the discrepancy is +2.0%.
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The insertion loss data gave good evidence that no significant energy from the

electric field resulting from the SAW is dissipated into the solution, for example,

as a current. We note that the electric field is produced from static, bound

charges in the substrate, in contrast to excess highly mobile charges in metal

electrodes. However, there was not yet convincing evidence to show that the

observed alignment of beads was due to an electric field/DEP force, and not in

fact the mechanical/acoustic forces that researchers normally exploit in SAW de-

vices. Because force on particles as a function of applied power scales differently

for acoustic and DEP forces, this (and other parameters) were investigated in

the next section, in order to characterise the force that was being exerted on the

particles.
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4.4 DEP force measurements on latex beads

4.4.1 Introduction to DEP force measurements

Aim of section

In this section, the movement of latex beads in a SAW-DEP device was tracked

by camera in order to quantify the force that was acting on the particles. The

purpose of this work was (1) to verify whether the force acting on particles was

DEP or acoustic in nature, and (2) to quantify the strength of the force acting

on the particles.

Differences between DEP and acoustic forces

DEP and acoustic radiation forces can be distinguished from each other by ob-

serving how the force scales to the input power. This can be inferred from the

following key equations for DEP and acoustic radiation forces, respectively:

F⃗DEP = 2πr3εmRe[FCM]∇E2
rms (4.4.1)

where r is the particle radius, εm is the permittivity of the liquid, Re[FCM] is

the real part of the Clausius-Mossotti factor, and ∇E2
rms is the gradient of the

square of the electric field. This equation was given previously in Theory Section

2.2.2, Equation 2.2.19.

And:

Fx =
4πr3

3

δP

δx
(4.4.2)

where F is the acoustic radiation force (ARF), x is the direction of SAW

propagation, r is the particle radius, and P is the pressure as a function of wave
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position.

In the case for DEP force (Equation 4.4.1), it can be seen that F⃗DEP ∝ ∇E2.

Because E = −∇φ (where φ is the electrostatic potential - see Section 2.1.5, Equa-

tion 2.16), E scales to the applied voltage, u. Due to the fact that F⃗DEP ∝ ∇E2,

then F⃗DEP ∝ u2. Because the applied power (e.g. in watts), P , is ∝ u2, then it

should then be observed that, in the case of DEP, F⃗DEP scales linearly with the

applied power, P .

On the other hand, in acoustic-based trapping systems, the acoustic radiation

force is proportional to the mechanical force, F of the fluid, where F⃗ARF = −∣∇E∣
(180). Thus, F⃗ARF ∝ u∝

√
P , and it should be observed that F⃗ARF scales to the

square root of the applied power, P .

Typical DEP forces on particles

Cells and other particles (generally 1-15 µm latex beads) have been shown to be

trapped by DEP at sub-piconewton (>0.1 pN) forces (181, 182), however, this

force can be increased (generally by increasing the applied power) for systems

designed to maximise output by increasing the speed or rate of cell trapping,

with up to 430 pN reported (183). The amount of force used to trap cells by

DEP can generally be tuned by adjusting the voltage applied to the system.

To put these force levels into context, the force on cells by centrifugation is ∼
1.96 nanonewtons (nN) (using F = mass of a cell [1 ng] × acceleration [200 g,

where g = 9.8 m/s/s]), to which cells are subjected for >5 minutes. While this

is considered a safe, non-harmful technique for enriching cells in tissue culture

procedures, it far exceeds the natural forces cells experience in the body, typically

in the order of piconewtons, pN. For example, the force exerted by myosin on

actin (in the process of muscle contraction) averages ∼ 8 pN, and the isometric

force of a single kinesin molecule (a common motor protein) is ∼ 1.9 pN (184).
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Quantifying DEP forces - theoretical and experimental

The DEP force on cells can be calculated analytically using Equation 4.4.1 and

assumed values for the DEP device in question (one for this particular system is

discussed in Section 4.4.2). These show force maps for how the electric potential

(and resulting DEP force) varies across the non-uniform electric field.

It is also desirable to quantify force experimentally by tracking the movement

of particles in a DEP device. Major prior studies have tended to simply obtain

the average velocity of cells or particles in a system (115, 185), rather than

mapping velocity (and extrapolated DEP force) as a function of particle position

across the non-uniform electric field.1 However, the work described in Section

4.4.3 details how a relatively new (2016) particle tracking software (in this case,

the Trackmate plugin in ImageJ (165)) was used to map out the movement of

individual particles as function of position in the electric field, and subsequently

fitted to an analytical model to quantify the DEP force.

The remainder of this section will discuss an analytical model of the DEP system

used in this work, followed by experimental results from particle tracking to fully

map out the force/electric field at different regions across the channel.

4.4.2 Theoretical modelling of DEP force

An analytical expression for the electric field gradient, and thus the electric field,

was calculated by modelling the ‘virtual electrodes’ on the LiTaO3 substrate as

interdigitated electrodes. While this is clearly not an accurate description of the

actual experimental situation, it is nevertheless useful as an initial approximation

of the resulting DEP force, such that it can be compared with the empirically

measured forces. An analytical expression for the electric field generated by inter-

digitated electrodes has already been described by Morgan et al. (115, 132, 186),

1The likely reason for this is that because the majority of these studies took place from

1987-1999 (115), computing power was not sufficient, given that today’s commercial computers

struggle with the particle tracking software.
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and the equations used for this work were adapted from these sources.

Modelling the virtual electrodes

The experimental system was modelled using a 2D cross-section model along

the channel, i.e. perpendicular to the direction of alignment. As mentioned,

the virtual electrodes were modelled as interdigitated electrodes, where the pitch

matched the wavelength of the standing SAW. The dimensions of the virtual

electrodes were the same as the physical IDTs that generated a 10 MHz SAW

on LiTaO3 - i.e. a pitch of 100 µm with a 1:1 mark to space ratio (see Figure

4.9). Analogous to the physical IDTs, an AC potential of 10 MHz is applied to

the driven electrodes, while alternative electrodes are grounded. The system was

considered to be infinitely high, such that the electric field was not constrained

in the positive z-direction. However, the channel height over the electrodes was

set to 50 µm, which constrained the movement of the particles in the z-direction.

Figure 4.9: Schematic showing the 2D cross-section used to model this work,

with the appropriate dimensions used in the calculations. The schematic shows

a cross-section of interdigitated transducers (gold colour) in a 50 µm channel,

which are alternatingly grounded and driven. Not to scale.

The electric potential along the y-axis was set as constant on the electrode

surfaces, and assumed to vary linearly between neighbouring electrodes. If we

assume the number of finger pairs to be large, then the potential becomes ap-

proximately periodic and can be written as a Fourier series:
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φ(y, z) =
∞

∑
n=0

An cos(kny)e−knz (4.4.3)

where φ(y, z) is the potential in y (horizontal) and z (vertical) directions,

kn = (2n + 1)π/2d where d = 50 µm is the width of the electrodes, and An

are the Fourier coefficients. The Fourier coefficients can be worked out and are:

An =
8V0

π2(2n + 1)2 cos((2n + 1)π
4

) (4.4.4)

where V0 is the amplitude of the applied voltage. The quantity of interest to

calculate the DEP force resulting from the potential φ when it is oscillating with

ω is the electric field, which is given by

E(y, z, t) = −∇φ(y, z) cos(ωt) (4.4.5)

where t is time.

Morgan et al. (132) have derived a closed form for the electric field, which in

component form is given by:

Ey(y, z) = V0
πd

(tan−1 ( sin(ỹ)
sinh(z̃)) − tan−1 ( cos(ỹ)

sinh(z̃))) (4.4.6)

Ez(y, z) = V0
2πd

ln((cosh(z̃) + cos(ỹ))(cosh(z̃) + sin(ỹ))
(cosh(z̃) − cos(ỹ))(cosh(z̃) − sin(ỹ))) (4.4.7)

where ỹ and z̃ are the normalised coordinates given by

ỹ = πy

2d
+ π

4
(4.4.8)

z̃ = πz

2d
(4.4.9)

The derivatives of the electric field components can now be calculated and are

given by:
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∂Ey
∂y

= −∂Ey
∂y

= V0
d2

( sinh(z̃) cos(ỹ)
cosh(2z̃) − cos(2ỹ) +

sinh(z̃) sin(ỹ)
cosh(2z̃) + cos(2ỹ)) (4.4.10)

∂Ey
∂z

= ∂Ez
∂y

= V0
d2

( cosh(z̃) cos(ỹ)
cosh(2z̃) + cos(2ỹ) −

cosh(z̃) sin(ỹ)
cosh(2z̃) − cos(2ỹ)) (4.4.11)

As discussed in Section 4.4.1, the DEP force is proportional to ∇∣E2∣ which can

now be expressed by

∇∣E2∣ = ∇(E2
y +E2

z) = 2ŷ (Ey
∂Ey
∂y

+Ez
∂Ez
∂y

) + 2ẑ(Ey
∂Ez
∂y

+Ez
∂Ez
∂z

) (4.4.12)

where ŷ and ẑ are the unit vectors in the y and z direction, respectively.

Results from analytical approximation

The DEP force resulting from the virtual electrodes when modelled as inter-

digitated finger electrodes can now be calculated using Equation 4.4.12. The

amplitudes of the horizontal (y) and the vertical (z) components of the expected

DEP force experienced by a 5 µm diameter latex bead at different positions along

the SAW path and at different heights above the surface of the electrodes are

shown in Figure 4.10. The applied voltage on the interdigitated finger electrodes

was 1 V, the DEP frequency set to 10 MHz, and the surrounding liquid was

water, which led to a CM factor for the latex beads of −0.45. The positions of

the electrodes are indicated by black bars underneath the figure. It can be seen

from the figure that both components of the DEP force decrease with increasing

height above the surface of the electrodes.

The component of the DEP force in the y direction has distinct minima at the

position where the standing SAW wave features nodes, i.e. at the centre between

two electrodes at ±100µm, and, at least above a height of 40 µm, is strongest at

positions above the edges of the electrodes (± 50 µm and ± 150 µm, see Figure

4.10).
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Figure 4.10: Force plot showing the amplitudes of the horizontal (y, top) and

vertical (z, bottom) components of the expected DEP force experienced by a 5

µm diameter latex bead at various heights (z position) and horizontal (y position)

locations along the SAW path.

In addition, two other types of minima can be observed, the first above the centre

of the electrodes, i.e. the positions of the antinodes of the standing SAW. A third

type of minima can be observed from the edge of the electrode towards the nodal

position. Interestingly, this minima only exists up to a certain height above the

channel of just under 40 µm, which corresponds to half the pitch d. As will be

discussed below, the third minima can in fact be observed experimentally and

leads to distinct shoulders in the measured force profile.

The situation for the vertical component of the DEP force is significantly simpler.

It can be seen that the vertical component of the force is, in general, significantly

stronger than the horizontal component. This can be seen clearly from Figure
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4.11 which shows the vertical and the horizontal component of the DEP force as

a function of height above the channel, and at the position y = 50 µm across the

channel.
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Figure 4.11: Vertical (z) and horizontal (y) components of the DEP force as a

function of height above the channel and at y = 50 µm, i.e. where the horizontal

DEP force is strongest.

Given that the vertical component is significantly bigger than the horizontal

component, it can be expected that the latex beads would be pushed up to

the top of the channel where they then subsequently align. This fact could be

exploited experimentally by using fluidic channels of different height where the

beads would then experience a different force profile during alignment. This is

illustrated in Figure 4.12 which shows the horizontal component of the DEP

force, i.e. the component which leads to bead trapping or alignment, at different

heights above the surface of the electrodes. Here, the effect of the third minima

becomes apparent. The inset of Figure 4.12 shows a magnification of the area

between 50 µm and 150 µm, and for the lowest height, 20 µm (red curve), three
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distinct roots exists, but they gradually merge into one as the height is increased,

and at a height of 50 µm, only a slight shoulder-like feature is left.
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Figure 4.12: Horizontal component of the DEP force at different heights (20, 30,

40, and 50 µm) above the surface of the electrodes. The inset shows a magnifica-

tion of the area between 50 µm and 150 µm.

This work focused on a height of 50 µm, where only a single nDEP trapping

position is expected, while at the same time still reasonably large DEP forces

exist.
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4.4.3 Experimental determination of DEP force on latex

beads

How the data was gathered

The full methodology for this section is given in the Theory Chapter 3.2.3. The

DEP force acting on latex beads of various sizes — 3, 5, and 10 µm — was

determined at a range of input powers (0.03 to 1 mW), in order to characterise

the SAW-DEP device. To do this, videos were recorded of latex beads aligning

in a device featuring a 50 µm-high channel and at an applied ac voltage of 10

MHz. Particle tracking software (Trackmate, together with ImageJ) was then

used to track the position of several hundred beads per condition frame-by-frame

to establish the position of the beads as a function of time.

Four separate snapshots from a raw video of bead alignment before the Track-

mate analysis are shown in Figure 4.13a - n.b. the full videos contained 100 –

500 frames, at 16 or 30 frames per second (fps). The steps by which Trackmate

tracks particles’ positions is shown in Figure 4.13b. Figure 4.13c is a snapshot

from the Trackmate process, which shows how the software has drawn the path

that each individual bead has taken over the course of the video. From here, a

datasheet can be exported (e.g. in the form of a .xml file) which has information

on each bead’s position in x and y over every frame of the video.

How the data was analysed

The tracks of each bead’s position over time were analysed to extract the force

acting on the beads, using a custom-developed software. The steps to finding the

DEP force were as follows:

1. For an individual bead, its y-position as a function of time, obtained via the

constant frame-rate of the recorded video, was fitted locally at each time

point with a quadratic polynomial. Ten points either side of the consid-

ered time point were used for the local fit, and from the fitted quadratic
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Figure 4.13: Overview of particle tracking in Trackmate. (a.) Sample of raw

image sequence (NB full image sequences were 100-500 frames, depending on

alignment time (taken at 16 or 30 fps). The frame size is 650 x 850 µm. (b.)

Processing sequence, from (165) (c.) Screenshot of particle (bead) tracks taken

during processing of videos in TrackMate. Beads (white) are shown pictured at

the end of the video sample; the coloured ‘tails’ show their path from the start

of the video (typically a few seconds). Beads which do not have a pink ring or

tail attached have been de-selected from analysis, normally because they were

observed to not move throughout the video, presumably because they are stuck

to the PDMS channel. The frame size is 650 x 850 µm.

polynomial the velocity at each time-point was obtained via the derivate of
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the local fit. This yielded the velocity in y as a function of time, i.e. v(t).
We note that the x-component of the particle movement was a result of the

fluid-flow with which the beads were injected into the fluidic channel and

hence assumed to be irrelevant for extracting the DEP force.

2. The same process as for the y-position as a function of time was repeated

for the velocity in y as a function of time to obtain the acceleration of the

bead first as a function of time, and then, via t(y), i.e. the inverse of y(t),
as a function of y.

3. To calculate the DEP force (FDEP ), it was assumed that the only forces

acting on the particle in the y direction are the DEP force and the drag

force (which act in opposite direction), and hence:

Ftotal =ma(y) = FDEP − Fdrag (4.4.13)

where m is the mass of the bead, and a(y) the acceleration at each position.

The drag force is given by the Stokes drag, Fdrag(y) = 6πrηv(y), where η is

the fluid viscosity and r the Stokes radius of the particle (which we assume

to be the bead radius). Both the mass and the acceleration were found to

be very small, and ma was several orders of magnitude lower than the drag

force, and hence

FDEP = Fdrag = 6πrηv(y) (4.4.14)

Therefore, FDEPi
(y), where i refers to the ith particle analysed, could be

calculated for each tracked particles.

4. Typically 200 – 1,000 particles were tracked per parameter set (i.e. ∼ 50

particles for larger (10 µm) beads, ∼ 1000 particles for smaller (3 µm) beads

per video, and typically 3–4 videos were per bead size and power level, to

get a large sample size), and all FDEPi
(y) functions for each condition were

then averaged to yield FDEP (y).
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Results from particle tracking analysis

Figure 4.14a depicts a representative image of 5 µm diameter latex beads in water

aligned into several lines using SAW-DEP at an applied power of 4 dBm. The

coloured ‘tails’ show the motion paths of the beads, as tracked by the software.

Figure 4.14b shows the DEP force experienced by the latex beads measured by

analysing the tracks of 286 beads (red solid circles). The positions where the

beads aligned taken from a are indicated by blue arrows, and correspond to

positions in the force profile where the force is zero as expected.

The maximum force experienced by the particles is approximately 5 pN. Interest-

ingly, at the positions where the beads align, the force profile exhibits a distinct

shoulder, reminiscent of the shoulder that is predicted by the analytical model

presented above. Indeed, a fit of the model to the experimentally determined DEP

force data, shown as a dotted line in the figure, represents the data surprisingly

well, including the shoulder in the force profile. This is remarkable, given that

the employed model is very basic. For example, the model assumes the virtual

electrodes generated by the standing SAW to be analogous to physical electrodes

with constant potentials (and thus zero electric field) across the entire electrode.

In addition, the model is assumed to be semi-infinite, i.e. the acoustic aperture

is infinitely wide, and the dielectric layer above (water) is infinitely thick. Both

assumptions are not an accurate representation of the actual experimental sit-

uation, but nevertheless, the model is capable of representing the data sufficiently.

To characterise the system in more detail, the DEP force experienced by particle

of different size (3, 5, and 10 µm diameter) were investigated under different

applied powers (-11 dBm – 4 dBm; not all powers were used for all beads as for

example for the 3 µm the lowest power settings did not produce enough force to

lead to any meaningful alignment, and for the 10 µm the highest powers led to

very fast alignment which could not be temporally resolved with the equipment

used).
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Figure 4.14: a Representative image of 5 µm latex beads in water aligned into

several lines using SAW-DEP at an applied power of 4 dBm. The coloured ‘tails’

show the motion paths of the beads, as tracked by the software. b Force mea-

surements from tracking bead movement at various positions along the SAW

standing wave. Blue lines mark where beads finally aligned, corresponding to the

alignment seen in a.

The results for 5 µm beads at various power levels are shown in Figure 4.15a

(similar results for 3 µm and 10 µm beads can be found in the Appendix C.1,

Figure C.1). Note that the force profiles for the different applied powers are

all vertically centred around zero force, but are offset vertically for clarity of

presentation. The analytical model was fitted to each experimentally measured
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force profile with V0 as the only free parameter, and all fits are shown as solid

lines in the respective graphs. It can be seen that the model fits the behaviour of

all beads at all employed powers reasonably well, in particular when taking into

account the limitations of the model.

Figure 4.15b shows the voltages obtained from the fitting for the three different

bead-sizes as a function of the applied power to the SAW transducers. As can be

seen, the correlation of the obtained voltages between the different bead sizes is

very high.
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Figure 4.15: a Force measurements from tracking movement of 5 µm beads at

various positions along the SAW standing wave, for various power input levels

(different colours). b Voltages obtained from the fitting for the 3, 5, and 10 µm

beads as a function of the applied power to the SAW transducers.
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4.4.4 Section summary

The results provided in Figure 4.15 show that SAW-DEP can align latex beads

in a consistent and predictable manner, such that the analytical expression can

now be used to reliably predict DEP force for a range of bead sizes (3-10 µm)

and applied voltages.

Figure 4.16 shows the peak DEP force (in the y direction) experienced by 5 µm

beads at a range of power levels. The data was fitted to a square root equation

and a linear equation, to verify whether the force is acoustic or DEP in nature,

respectively.

It can be seen that in the case of the square root equation, the line is not within

the error margin of a single point (1/χ2 = 0.0003), while the linear fit equation is

within the error margin of seven out of the nine datapoints (1/χ2 = 0.545). This

shows that there is a far better fit to a linear equation rather than a square root

equation and therefore, a propos the discussion in Section 4.4.1, the experimental

data strongly indicitates that particles are subjected to a DEP force and not an

acoustic force.

While the forces in the y direction measured by particle tracking were all <10

pN (and therefore likely to be suitable for cell manipulation), the analytical ex-

pression did imply that the force experienced by particles in the z direction was

approximately an order of magnitude higher (i.e. up to 100 pN), and so particles

are rapidly pushed upwards in z before aligning in the y axis. To track this

movement in z empirically would have required a radically different experimental

setup, and so this was not investigated in this work due to time constraints.
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Figure 4.16: Line graph showing the peak DEP force in the y direction expe-

rienced by 5 µm latex beads as a function of applied power, with a linear fit

line.
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4.5 Positive and negative DEP separation of live

and dead yeast cells

4.5.1 Overview

Following on from characterising the device by manipulation of latex beads,

separation of live from dead yeast cells was investigated to demonstrate that

the technology could be used on living cells. This also afforded the opportunity

to show positive DEP in the device, because latex beads will only experience

negative DEP in the 10 and 20 MHz devices used in this work.1

The separation of live from dead yeast cells is a classic demonstration of separating

two cell types by positive and negative dielectrophoresis (103, 114, 124, 185, 187),

having been done first by Pohl and Hawk in 1966 (114). Live and dead cells

are dielectrophoretically distinct due to differences in cytoplasm conductivity -

in dead or dying cells, the cell membrane starts structurally disintegrating, such

that the electrolytes it normally holds in the cell cytoplasm start to diffuse out

into the surrounding fluid.

The advantages of using yeast cells (generally Saccharomyces cerevisiae, otherwise

known as baker’s yeast) are that they are ∼ 5 µm in diameter and easily imaged

using a reflection light microscope (unlike bacterial cells, which are typically ∼
1 µm diameter). Secondly, they can be flowed into microfluidics in simple salt

solutions without badly fouling the microchannel or apoptosing, which are issues

when using mammalian cells. Thirdly, they are very easy to culture (after which

they can be stored for several days before use), and lastly they are incredibly

cheap, with one tub of Allinson’s Yeast from Morrisons (£2.80) (Figure 4.17a)

lasting the entirety of this research.

1Latex beads will demonstrate pDEP below 10 KHz; however, a SAW device chip on LiTaO3

at this frequency would have to be 1,000 times longer than the current 10 MHz devices, assuming

the same number of finger pairs was used.
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The CM factor as a response to frequency for live and dead yeast cells is shown

in Figure 4.17b (188). This is calculated using the Dual Shell Model described in

Section 2.2.4. By plotting the CM factor as a function of frequency, researchers

can use this to find the optimum frequency at which the separation of two cell

types (into pDEP and nDEP) can be achieved (for example in the beige-shaded

regions in Figure 4.17b).

Figure 4.17: a Tub of commerical baker’s yeast used for the research b Example

DEP response of live and dead yeast cells, as a function of frequency (188).

In SAW-DEP, the frequency is fixed to that at which the device was designed to

operate (i.e. the devices used in this work could only be operated at close to 10

or 20 MHz). Although this restriction could be considered to be a disadvantage

compared to conventional DEP, a key advantage of SAW-DEP is that it can be

performed at much higher fluid conductivities; therefore, variation of the fluid

conductivity can be used to tune DEP behaviour, much as altering the operating

frequency is used in conventional DEP. Figure 4.18 shows the DEP response of

live and dead yeast (S. cerevisiae) cells as a function of conductivity. Calculations

were made using a Dual Shell Model (see Section 2.2.4) and biophysical values

for yeast from (103), with altered cytoplasm conductivity (0.515 S/m for live

yeast, 0.075 S/m for dead yeast) to match experimental findings.
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Figure 4.18: DEP response of live and dead yeast cells, as a function of conduc-

tivity. From 0 to 0.05 S/m liquid conductivity, both live and dead cells (red and

green lines, respectively) will experience pDEP. From 0.05 to 0.21 S/m (light blue

highlighted region) live yeast cells will experience pDEP, while dead yeast cells

will experience nDEP; thus, between these conductivities, the two cell types can

become physically separated in a 10 MHz DEP system. Above 0.21 S/m, both

cell types will experience nDEP.

4.5.2 Separating live and dead yeast cells at 10 MHz and

20 MHz

A liquid conductivity of 0.15 S/m was chosen to separate live and dead cells in

10 and 20 MHz devices. This was made by diluting PBS solution in DI water

to a 0.1x PBS solution. Live and dead yeast cells were prepared as described in

Section 3.2.4, with dead yeast cells finally being stained (blue) using Trypan blue

solution. Separation was achieved, as shown in Figure 4.19. Figures 4.19a and

4.19b show separation of live and dead yeast cells at 10 and 20 MHz, respectively.

As a demonstration, a multi-channel separator channel was also designed for 10

MHz devices (design and fabrication described in Section 3.2.4), which enabled

live and dead cells to be directed into physically separated sub-channels following
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SAW-DEP separation.

Figure 4.19: a and b Separation of live from dead yeast cells at 10 and 20 MHz,

respectively. Scale bars 100 µm. c overview (scale bar 500 µm) and d close

up (scale bar 100 µm) - directing live and dead cells into separate channels via

SAW-DEP (10 MHz).

By analysing pictures of separation occuring within the channel (examples of

which are provided in Figures 4.19a and b), 9,209 cells were counted (credit to

Roberts Rimša) to verify what proportion of live and dead cells aligned in either

the pDEP or nDEP regions. Enrichment was found to be 97% and ∼ 99% for live

and dead cells, respectively.

To show that raising or lowering the fluid conductivity could cause both cell types

to experience negative or positive DEP, respectively, the effect of the SAW-DEP
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electric field was examined when cells were suspended in 0.75 S/m (0.5x PBS)

and 0.015 S/m (0.01x PBS) solutions. This is shown in Figures 4.20a and b,

where both cell types (live, white and dead, blue) are seen to align together

and are not spatially separated. The presence of pearl chaining in the 0.015

S/m experiment (b) indicates that the cells are undergoing pDEP, while the lack

thereof in the 0.75 S/m experiment (a) is indicative of nDEP.

Tests were also carried out to make sure that the Trypan blue stain was not in

any way influencing the DEP behaviour of the cells. Unstained live and dead

cells were flowed in separately, and the images were spliced together, as shown in

Figure 4.20c, to show that they still aligned in separate regions of the channel.

Figure 4.20: a Live and dead yeast cells (white and blue, respectively) experienc-

ing nDEP at a conductivity of 0.75 S/m (10 MHz, scale bar is 200 µm). b Live and

dead yeast cells experiencing predominantly pDEP (regions of pearl chaining) at

0.015 S/m (20 MHz, scale bar is 100 µm). Some dead cells (blue) also experience

nDEP - there also appear to be some white (live) cells in these regions, however,

these are actually reflections of the dead cells. c Unstained dead cells (left) and

live cells (right) undergoing nDEP and pDEP, respectively, at 0.15 S/m, to show

that the Trypan blue stain had no effect on the DEP behaviour of the cells (10

MHz, scale bar is 100 µm).

4.5.3 Section summary and end of chapter conclusions

In summary, the work separating live and dead yeast cells provided further proof

that the force exerted on particles was in fact a DEP force. This is demonstrated
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by the observation of both positive and negative DEP, where cells of different

polarisabilities aligned in different regions, thus confirming that it was DEP,

and not acoustic forces that were responsible for alignment. This notion can

also be reinforced by considering that acoustic forces would never result in pearl

chaining; simarly, using the CM factor calculations to predict where cells would

align when the conductivity was modulated can only be achieved through DEP,

not acoustic forces.

The nature of the cell separation shown in Figure 4.19 provided proof that SAW-

DEP can be used to sort cells in a precise, efficient manner. The potential of

SAW-DEP in the field of cell sorting was further emphasised by the statistical

evidence of 97-99% separation efficiency. The next logical step was to investigate

separation of a more clinically-relevant cell type, and this is addressed in the

following two experimental chapters.

One major limitation of the Perspex-lid flow cell setup was that it performed

poorly when attempting to achieve continuous throughput of cells. This was

mainly because the tubing was too large (1/16”) such that cells tended to sedi-

ment when flowed through at a rate slow enough to allow cell alignment, and also

because the Perspex lid formed a poor seal with both the tubing on top, and the

PDMS, meaning that leaking often occurred in these regions during experiments.

As a continuation from this work, the next chapter will primarily address the

following two questions: 1.) Is the throughput that can be achieved with this

device sufficient for that required in clinical applications? 2.) Is the electric field

associated with SAW-DEP likely to cause harm to cells during sorting procedures?
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Chapter 5

Cell viability and differentiation

potential of dental pulp stromal

cells following SAW-DEP:

Assessing for detrimental effects

5.1 Introduction and chapter summary

Following the device characterisation and the separation of live and dead yeast

cells as described in the last section, the next steps were to use the technology

to separate clinically-relevant cells, and determine if this had any detrimental

effects on cell viability and differentation ability. Before this could be addressed,

however, it was necessary to adapt the device flow cell to provide a better fluidic

seal for continuous throughput and post-SAW-DEP cell collection.

The questions to be answered in this Chapter included:

1. Can the device flow cell be adapted to efficiently sort live and dead mam-

malian cells at a clinically-relevant rate, for subsequent extraction and test-

ing of the cells following exposure to SAW-DEP?
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• Section 5.2: Improvements were made to the flow cell design to allow

for better fluidic sealing. The main adjustment was to plasma-bond

the PDMS microchannel onto the chip, and push PTFE tubing directly

into the PDMS for delivery of cells. A stable assembly was made by 3D-

printing an ABS-plastic flow cell. At the maximum power setting (1

mW applied power to the IDTs), live and dead cells could be separated

at a flow rate of 3 µl/min, ∼ 500 cells/second. The recovery rate

(extraction of inflowed cells) was 75%, with 25% of cells lost due to

fouling or sedimentation within the fluidics.

2. Does exposure to SAW-DEP adversely affect cell viability?

• Section 5.3: Dental pulp stromal cells were chosen as a clinically-

relevant cell type to model the technology; these cells are from the

mesenchymal lineage, are similar to bone marrow stromal cells and

contain cells that are capable of differentiating along the ostogenic lin-

eage. Cells were separated by SAW-DEP under settings that enrich for

live cells, and afterwards assessed for viability by flow cytometry. The

effect of the SAW-DEP electric field was found to have no statistical

significance on the viability of the cells.

3. Is cell viability affected by any factors other than the electric field in the

SAW-DEP procedure?

• Section 5.4: Other factors were found to have a significant effect on

cell viability, namely the microfluidic procedure (subjecting cells to

shear forces), time spent out of the incubator/appropriate tissue cul-

ture medium, and the constituents of the DEP buffer medium. The

latter factor was investigated more thoroughly, to find that adding

bovine serum albumin (BSA) to the DEP buffer led to greatly im-

proved cell viability.

4. Are dental pulp stromal cells that are separated by SAW-DEP still capable

of undergoing normal osteogenic differentiation?
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• Section 5.5: As well as remaining viable, it was important that the

differentiation ability of stem cells was not adversely affected by SAW-

DEP. Dental pulp stromal cells were separated by SAW-DEP and then

cultured in an osteogenic medium. Various tests were carried out dur-

ing culture, namely for alkaline phosphatise expression and mineral-

isation (Figure 5.1). These tests showed no change in differentiation

ability of cells that had undergone SAW-DEP separation.

Figure 5.1: Photograph of mineralisation stain (red colour), for illustrative pur-

poses (full description in Section 5.5.3).
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5.2 Third device iteration: Adaptions for con-

tinuous throughput and extraction

A full description of the fabrication methods to produce the third device it-

eration are provided in Section 3.1.4. This subsection aims to summarise the

key improvements made to this device (Figure 7.3) compared with the previous

‘Perspex lid’ design (Figure 5.3), in order to permit more advanced SAW-DEP

experiments to be carried out in this chapter.

Figure 5.2: Photograph of the device used for this chapter. A PDMS microchan-

nel was plasma-bonded onto the LiTaO3 chip, which was mounted onto a PCB.

Fluidic tubing was held in place via a 3D printed flow cell.

5.2.1 PDMS to chip: Improvements to fluidic sealing

The flow cell design used in the previous chapter, seen in Figure 5.3, was suitable

for flowing cells onto a SAW-DEP chip where they could be separated and pho-
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tographed. However, when trying to perform SAW-DEP while cells were flowed

through at a continuous rate, and attempting to extract the cells afterwards,

issues with poor fluidic sealing led to inconsistent flow rates and inadequate

recovery of cells. The main points of leakage came from the interfaces where the

(silicone) tubing was pushed into the fluidic tubing ports in the Perspex lid, and

the interface of the underside of the fluidic tubing ports met the PDMS. Even

if these interfaces are eliminated (for example, by pushing tubing directly into

PDMS), the fluidic seal of a PDMS microchannel that has been ‘conformally

sealed’ to the chip in this way (i.e. pressure-sealed, not chemically bonded) is

far inferior to that of PDMS that has been chemically bonded (e.g. by glue or

plasma-bonding). While chemically-bonded interfaces can withstand pressures of

2 - 3.5 Bar, those which have been conformally sealed can only withstand about

0.35 Bar (179).

Figure 5.3: Schematic of the flow cell design described in the previous chapter.

The major problem with the design was that leaking occured on top of the Per-

spex lid, at the interface between the silicone tubing and the tubing ports, and

underneath the lid where the tubing ports mated with the PDMS.
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The main adaption decided upon was to irreversibly seal PDMS microchannels

by plasma-bonding to the chip, and to push tubing directly into the PDMS.

This can be seen in Figure 5.4a. It should be noted that by irreversibly sealing

the PDMS, the chip could not be disassembled to wipe clean the surface of

devices after the experiment, as was the procedure for earlier devices. However,

the ability to withstand far greater fluid pressures without leaking meant that

the microchannel could be cleaned instead by flushing the channel with various

cleaning solutions (typically 70% ethanol solution or 5% Decon90 solution (a

surfactant)).

To accomodate these adaptions, the width of SAW devices (the fluidic channel

axis) was increased from 18 mm to 38 mm. This was to allow room for a micro-

scope objective to fit above the device whilst being able to focus on the channel

(Figure 5.4b).1 To avoid tubing being pushed flat onto the SAW-DEP surface

(and blocking flow), the tubing was cut at a 45○ angle (Figure 5.4c).

5.2.2 Device assembly: Practical considerations

The chip and plasma-bonded PDMS were mounted on top of a PCB to which the

IDTs were wire-bonded, similar to that used for the first device iteration (Section

4.2). In order to hold tubing in place (which was important for minimising the

pressure and subsequent deforming that the tubing might exert on the channel)

a flow cell was manufactured out of ABS plastic by 3D printing (Figure 5.5).

In terms of practical considerations, this additive manufacturing process was

also far cheaper than the subtractive manufacturing process used to machine the

Perspex lid flow cell, bringing the price down from ∼ £500 to £5.2 (A similar

saving in cost and processing time was made by 3D-printing the moulds for

1The fluidic ports in the Perspex lid design (Figure 5.3) allowed tubing to be pushed in at

a 45○ angle, such that the chips could be smaller (to save costs) while still allowing space for

a microscope objective. However, creating 45○ inlet holes directly in PDMS is difficult to do

in a consistent manner, and stress from the tubing can deform the channel, compromising the

fluidic seal.
2Later flow cells were manufactured on a 3D printer that was built in-house, where the cost

of manufacture reflected mainly just the raw material value, of around £0.50 per device.
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Figure 5.4: a Schematic of a PDMS channel bonded onto a SAW LiTaO3 mi-

crochip. b Schematic of PTFE tubing going into a fluidic inlet/outlet in the

PDMS. c Close up to show how tubing was cut at a 45 ○ angle; cutting the tub-

ing flat would have risked blocking the flow if the tubing was pushed against the

substrate.

the PDMS microfluidic channel, as opposed to using cleanroom techniques - see

Section 3.1.4.)
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Figure 5.5: Snapshots from the design file for the 3D-printed flow cell. The file

was converted into a .stl file and sent directly to a 3D printer.

199



5.2 Third device iteration: Adaptions for continuous throughput and
extraction

5.2.3 Fluidic setup: Continuous throughput and minimis-

ing sedimentation

A fluidic setup was used that allowed for continuous throughput and collection

of cells, shown in Figure 5.6. A full description, together with photographs of

the setup can be found in Section 3.1.5. In brief, care was taken to minimise the

tubing inner diameter (ID) so as to increase the flow velocity of cells and min-

imise the effects of sedimentation. For example, the sedimentation velocity for

mammalian cells in aqueous buffers is typically 0.020-0.040 mm/s (34), while the

flow velocity in the 1/16′′ ID silicone tubing used for the ‘Perspex lid’ experiments

was only 0.025 mm/s, at the 3 µl/min flow rate used in this chapter to sepa-

rate cells; this is not sufficient to overcome the sedimentation velocity of the cells.

Cells were delivered to the chip via an injection port on Valve 2 (see Figure 3.1.5),

thus minimising the amount of tubing that they had to be flowed through before

reaching the chip. The tubing had an ID of 0.25 mm, such that the flow velocity

at 3 µl/min was 1 mm/s. This was sufficient to overcome the sedimentation

velocity of cells, and also matched the ID of the PDMS microchannel. The chip

was positioned at a gentle incline (∼ 5○) from the injection port (in Valve 2),

which further minimised the the chance of cells sedimenting and getting stuck in

the tubing before reaching the chip.

5.2.4 DEP buffer solutions: Adaptions for mammalian

cells

A summary of the buffer solution constituents and their role in the solution is

given in Table 5.1. The solution in which cells are suspended has a considerable

impact on how much fouling occurs within the fluidics, as well as the viability of

cells during and after the experiment. The adaptions made to the DEP buffer

solution are outlined below.
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Figure 5.6: Schematic showing the fluidic connections used in this chapter. The

cell suspension was injected into a sample loop held by Valve 2. From Valve 2,

the sample was led to the chip via 0.25 mm � tubing at a gentle incline. From

the chip, cells were directed into an outflow collection tube (a 15 ml Eppendorf

tube). A full description of the fluidic setup shown here is given in Section 3.1.5.

The first consideration was to adjust the osmotic potential of the solution to

match that inside the cells, ∼ 300 mOsm/l. This is not an issue for yeast cells,

which are surrounded by a mechanically robust cell wall that can withstand high

osmotic pressures. For example, the 0.1X PBS solution (∼ 30 mOsm/l) used in

the yeast cell experiments (Section 4.5) would have been strongly hypotonic to

the yeast cell, causing water to diffuse into it. If this occured in a mammalian

cell, which lacks the strong cell wall support structure, the cell would swell and

burst.

For DEP buffer solutions, researchers typically add the sugar, sucrose, to the

solution (8-10% m/v), which has the effect of isotonically balancing the solution

to ∼ 300 mOsm/l without significantly raising the conductivity of the solution,

which needs to be kept low to maximise DEP efficiency (56, 107, 143, 189).

To minimise cells sticking together, many groups add the chelating agent EDTA

(ethylenediaminetetraacetic acid) (0.02-0.03% m/v) to the solution (e.g. (56)),

which acts to chelate Ca2+ ions, which otherwise facilitate the forming of cell-cell

junctions, causing cells to clump together. Similarly, adding the serum protein,

bovine serum albumin (BSA) (0.05-2% m/v) to solutions coats the surface of the

microfluidics and the cells themselves, therefore blocking non-specific binding
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sites, and further minimising clumping and fouling.

HEPES (4-[2-hydroxyethyl]-1-piperazineethanesulfonic acid) buffer is often added

(0.25-0.6% m/v) (56) to keep the pH stable (ideally 6.8-7.4) and minimise stress

on cells. HEPES is used over, for example, TRIS or phosphate buffers because

it is zwitterionic and therefore only minimally raises the net conductivity of the

solution.

Finally, NaCl is added (typically <0.01% m/v) to adjust the conductivity to

the desired value. The precise proportions of EDTA, BSA, and HEPES were

picked based on various influential papers (56, 107, 143, 189); NaCl was then

added to adjust the conductivity to 0.15 S/m (chosen to enrich live cells from

a heterogenous mixture of live and dead), and sucrose was added to adjust the

osmolarity to 300 mOsm/l (the osmolarity of the solution was calculated used a

Numerical Python (NumPy) script - see Appendix B.4).
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Table 5.1: SAW-DEP buffer solution constituents

Constituent Proportion,

m/v (molar-

ity)

Role

EDTA 0.02% (0.68

mM)

Chelating agent, binds Ca2+ to prevent

cell-cell junction formation and subse-

quent clumping

BSA 2% (0.3 mM) Serum protein, blocks non-specific

binding sites on device surfaces

HEPES buffer 0.59% (25 mM) Keep pH stable, without significantly

raising solution conductivity

KOH (∼ 100 µM) Potassium hydroxide (strongly alka-

line). To adjust the pH to 7.2-7.4 after

addition of HEPES (which is typically

∼ pH 5.8)

NaCl ∼ 0.05% To adjust the conductivity to modulate

DEP-behaviour of cells

Sucrose 7.5% (219 mM) To adjust the osmotic potential, with-

out significantly raising the conductiv-

ity of the solution

Dextrose (D-

glucose)

0.03% (1.7 mM) Food source for cells. (N.b. sucrose it-

self cannot be taken up by cells unless

it is digested into glucose and fructose,

typically by stomach enzymes.)
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5.3 Investigating mammalian cell viability fol-

lowing SAW-DEP separation

5.3.1 Section overview

In this section, the viability of cells after having undergone SAW-DEP separation

was assessed to determine whether the procedure had a harmful effect on cells.

Because the proposed application of this technology is for separated cells to

be re-introduced back into a patient during surgery, maintaining high levels of

viability is paramount to its efficacy (for reasons discussed in Literature Review

1.1.2).

5.3.2 Previous work examing the effects of DEP on cell

viability

Two major studies have previously examined the effects on DEP separation/ex-

posure on the subsequent health characteristics of cells (110, 190). The study

by Archer et al. (190) studied cells (a fibroblast - i.e. connective tissue/skin

- cell line) which had been trapped by positive DEP (pDEP) at 5 MHz for

15 minutes. Compared to a positive control (same conditions, except with no

electric field/DEP-trapping), the authors found that trapping the cells had no

effect on cell metabolism, as measured by an MTT (3-[4,5-dimethylthiazol-2-yl]-

2,5-diphenyltetrazolium bromide) assay.

As well as the electric field/DEP-trapping itself, Puttaswarmy et al. (2010) (110)

noted three key factors likely to cause damage to cells during DEP separation,

summarised as:

1. The effect of charging the cell via the electric field

2. Suspending the cells in a non-physiological medium

3. Shear stresses on cells induced by the microfluidic flow
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Specifically, Puttaswarmy et al. (2010) (110) examined the effect of buffer com-

position (i.e. point 2) on an hepatocyte (liver cell) cell line. Cells were trapped

by negative DEP (nDEP) for 15-120 minutes, following which the viability was

assessed by fluorescent staining (live/dead) and subsequent image analysis. The

authors found that cells held in the optimised buffer (containing DMEM culture

medium) for 120 minutes had 80% viability compared with 0% viability for cells

held in a standard DEP buffer (HEPES and sucrose).

Further questions addressed in this work

One of the key differences in the work presented here is that primary human

cells were used, as opposed to cell lines. Cell lines are genetically engineered

to produce ‘immortal’ cells that can be expanded almost indefinitely, and are

regarded to be more robust than actual primary donor/patient cells; therefore,

using primary cells gives a more definitive answer to the likely effects of DEP

separation in a clinical setting.

Another difference is that the work presented here used flow cytometry to count

viable to non-viable cells, processing roughly ∼ 1 million cells to give a statistically

significant dataset. Finally, the effect of all three factors listed by Puttaswarmy et

al. (2010) (110) (electric field, microfluidic shear forces, and buffer composition)

were addressed in one experiment.

5.3.3 Experimental design

Choice of cells

Dental pulp stromal cells (DPS cells) were chosen as a clinically-relevant primary

cell type to investigate viability (see Figure 5.7). These are mesenchymal cells

which are found in the tooth stroma, and, due to the presence of a significant

proportion of stem cells, are capable of differentiating into a number of tissue

types, with the capability of differentiating into bone tissue the most important

for this research. As a practical consideration, it is easy to obtain primary DPS

205



5.3 Investigating mammalian cell viability following SAW-DEP
separation

cells from donors (compared with bone marrow stem cells, for example), because

of the large numbers of patients who get teeth extracted.

Figure 5.7: Phase contrast microscope image of adherent primary DPS cells grow-

ing in a culture flask.

Experimental Procedure

Before assessing viability, cells were subjected to SAW-DEP just long enough for

clear alignment into pDEP and nDEP lines. At 0.15 S/m, this was shown to

enrich live cells in the pDEP lines to >98% purity (see Figure 5.8), thus, a similar

procedure could be used in a clinical setting. For simplification, however, pDEP

and nDEP lines were not extracted as seperate populations downstream, and

the overall viability of the cell sample was assessed relative to various controls
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(detailed below).

Samples of DPS cells were suspended in DEP buffer (Section 5.2.4) and flowed

through the SAW-DEP apparatus (Section 5.2.3) at 3 µl/min, the fastest flow

rate at which clear separation could be observed. To obtain statistically-relevant

sample numbers, cells were flowed through the apparatus for 15 minutes. Several

controls were prepared:

Figure 5.8: Microscope images of dental pulp stromal cells undergoing SAW-DEP

at 0.15 S/m. Brightfield image (left) and fluorescent image (right), with viable

(cyan) and non-viable (magenta) staining. The fluorescent image shows how live

cells could be purified from dead cells (by aligning into separate lines), although

some live cells remained in the ‘dead cell’ line regions. Scale bar 100 µm.

• Microfluidics: Cells flowed through the microfluidics but with the SAW-

DEP electric field turned off - to assess the effect of the electric field

• DEP buffer: Cells kept in DEP buffer at room temperature for the same

amount of time as the separation procedure - to assess the effect of the

microfluidic shear forces

• Culture medium: Cells kept in culture medium at room temperature for

the same amount of time as the separation procedure - to assess the effect

of DEP buffer
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• PBS: Cells kept in PBS at room temperature for the same amount of time

as the separation procedure - to compare the effect of DEP buffer with

another common experimental (i.e. non-culture) medium

Determining cell viability

A complete description of the experimental procedure can be found in Methods

Chapter 3.3. Flow cytometry (Figure 5.9) was chosen to measure cell viability

because of its ability to analyse large numbers of cells (in this work, samples of

∼ 10,000 cells were processed in five minutes). Cells were incubated in propid-

ium iodide to stain the nuclei of dead cells (similar to the use of Trypan blue

in yeast cell experiments, Chapter 4.5), following which the number of stained

(non-viable) vs non-stained (viable) cells was counted by the flow cytometer.

Figure 5.9: Photograph of the flow cytometer model used in this chapter (173),

for illustrative purposes.

5.3.4 Experimental results

Qualitative analysis of contour plots

Figure 5.10 shows the flow cytometry contour plots for the five experimental

conditions. A contour plot visualises the spread of data in two dimensions - in

this case, this is propidium iodide (the stain for non-viable cells, x axis) and
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Figure 5.10: Scatter plots from one experiment (out of n=9) investigating the effects of SAW-

DEP on cell viability. Samples are cells which: a Underwent the full SAW-DEP procedure; b

Underwent the full procedure except without the SAW/electric field on; c Held in DEP buffer

for the experiment time; d Held in culture medium for the experiment time; e Held in PBS

solution for the experiment time. A viable/non-viable gate (vertical black line) is drawn to

distinguish viable and non-viable cells, based on their fluorescence intensity (x axis). Forward

scatter is plotted on the y axis; cells exhibiting greater forward scatter can be assumed to be

larger in size. Both scales (forward scatter and fluorescence intensity) are arbitrary.
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forward scatter (a rough indicator of cell size1, y axis). A gate was drawn at a

certain fluorescence intensity (n.b. arbitrary scale) to determine whether cells

were viable or non-viable, and this gate was kept at the same fluorescence inten-

sity for all experiments; cells which had taken up a sufficient amount of PI stain

to fall to the right of the line were deemed non-viable, while those that fell left

of the line were deemed viable.

The data is plotted in this way in order to see distinct populations within the

data, that is, apices where the density of cells is highest, indicated by the smallest

of a series of concentric irregular circles. For example, looking at 5.10a (the key

sample, which underwent SAW-DEP), there are two distinct populations, with

one population apex in the middle-left of the data set (live cells, green contour

colour), and one to the bottom right (dead cells, blue contour colour). From the

forward scatter measurements, it can be observed that cells which take up more

PI (due to reduced membrane integrity) tend to shrink somewhat in size, as can

be assumed from the reduced forward scatter values. This is in keeping with

many observations of mammalian cells shrinking during the process of apoptosis

(191).

Verification of the viable/non-viable gate

For the ‘Culture medium’ control (Figure 5.10d), the two populations are fully

separated by the viable/non-viable gate; however, for all other samples the line

falls within the distinct ‘live population’, making the viable/non-viable gate

appear somewhat arbitrary. A smaller, third population (less distinct than the

other two) can be seen in these samples, with an apex just to the bottom right

of the viable/non-viable gate. These were presumed to be in a ‘pre-apoptotic’

state, where those to the left of the gate were assumed to remain alive if moved

back into stress-free culture conditions (i.e. in an incubator in culture medium),

1Forward scatter measures the extent of low-angle scattered light resultant from the incident

laser beam probing the cell. In general, larger cells will produce more forward scatter, although

it is affected by other factors such as cell orientation and granularity.
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while those to the right would die, joining the far-right cell population.

To verify that the viable/non-viable gate had been placed in the correct place,

the experiment was repeated (n = 3), and half of samples were measured for via-

bility (using the same gate settings) following re-introduction into normal tissue

culture conditions (i.e. incubated in culture medium) for 60 minutes following

the SAW-DEP procedure. This was shown to eliminate the ‘pre-apoptotic’ cell

popuation, as shown in Figure 5.11b, where incubated cells exhibit two fully-

distinct populations either side of the viable/non-viable gate. Figure 5.11c is a

bar graph that shows there is no significant change in cell viability (according to

the viable/non-viable gate) before and after the incubation period, hence, from

this we can assume that the gate is set accurately.
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Figure 5.11: Contour plots showing viable/non-viable cell ratios measured by

flow cytometry immediately after SAW-DEP (a) and after being re-introduced to

normal tissue culture conditions (‘Incubated’) for 60 minutes following SAW-DEP

(b); c A bar graph, with standard deviation bars, showing that the proportion of

viable cells immediately following SAW-DEP, and after the 60 minute incubation,

are not significantly different.
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Figure 5.12: Bar graph comparing the viability of cells following SAW-DEP with

various controls, with standard deviation bars. Statistical analysis was carried out

to determine whether the viability of cells exposed to SAW-DEP was significantly

different to the control sample: NS - no significant difference, * - Significant

difference (p <0.05), *** - Significant difference (p <0.001).

Statistical analysis of the effect of SAW-DEP on cell viability

After verifying that the position of the viable/non-viable gate was placed effec-

tively, data was pooled for nine experimental samples (three repeats for cells

from three different donors) and statistical analysis was carried out to determine

whether there was a significant difference between the viability of cells following

SAW-DEP compared with that of the controls. The results are shown in Figure

5.12.

Figure 5.12 shows that the viability of cells after SAW-DEP was 86.6%. Com-

pared with the ‘Microfluidics’ control (90.3% viability), where cells were not

subjected to an electric field, this showed a 4.1% decrease in viability due to the

electric field. However, this decrease was deemed as ‘not significant’ (p >0.05)
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by the statistical analysis, a Mann-Whitney U test.

There is a significant difference (p <0.05), however, between the SAW-DEP sam-

ple and the ‘DEP buffer’ control - where cells had not undergone the microfluidic

procedure or the electric field. It can therefore be concluded that the DEP electric

field and microfluidic procedure of the technique combined lead to a significant

decrease in viability. While there was also a significant difference (p <0.001) be-

tween the ‘Culture medium’ sample (i.e. cells left in culture medium, not having

undergone the electric field or microfluidic procedure) and the SAW-DEP sam-

ple, the latter did not show a significant difference between cells which had been

left in PBS buffer (‘PBS’ sample) for the same time as the SAW-DEP experiment.

The data suggests that the key novel aspect of this work, the SAW-DEP electric

field, on its own does not cause a significant decrease in viability of cells as used

in this experiment; however, combined aspects of the electric field, microfluidic

shear forces, and the DEP buffer composition (compared to culture medium)

can combine to produce a significant decrease in cell viability which needs to be

addressed and optimised before it can be further considered for use in its pro-

posed clinical setting. A promising aspect, however, is that the full SAW-DEP

procedure (electric field, microfluidic procedure and DEP buffer combined) did

not show significantly lower viability than for cells which were held in PBS, a

commonly-used experimental buffer, for the same amount of time.

It is worth noting that the statistical analysis also showed that cells held in DEP

buffer (but did not undergo the DEP electric field or microfluidic procedure)

showed a significant decrease in viability compared with cells held in culture

medium (p <0.05). A preliminary study was therefore conducted to address

which constituents can be added to DEP buffers to increase cell viability, and

this is discussed in the proceeding section.
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5.4 Assessing the effect of DEP buffer composi-

tion on cell viability

5.4.1 Aims and experimental design

Having found that the electric field associated with the SAW-DEP separation

procedure did not significantly affect cell viability, a preliminary study was carried

out to find how the DEP buffer solution could be modified to improve cell viabil-

ity. The experimental procedure was the same as that described in the previous

section (5.3.3), but without running cells through the SAW-DEP or microfluidics.

Cells were incubated in eleven different solutions for 30 minutes, and the via-

bility of cells afterwards was tested by flow cytometry as in Section 5.3. The

experiments were repeated for n = 5, and the statistical significance between key

samples was found by Mann-Whitney U test, as described in Section 3.3.2.

The different DEP buffer solutions were modified to compare the effects of solu-

tion conductivity, pH buffer, and BSA, as well as three DEP buffer formulations

picked from the literature. The effects of sugar concentration and osmotic po-

tential were not investigated in this work - the concentration of sucrose was

varied slightly between solutions (7.5%-9.5%) to ensure the osmotic potential

remained between 290-310 mOsm/l. Similarly, the effect of EDTA, another key

constituent of the SAW-DEP buffer, was not investigated due to time constraints.

A tabular key of the components of the various buffers is given in Table 5.2. All

solutions were of pH 7.1-7.4 (adjusted using 5 M KOH when HEPES buffer (pH

∼ 5.8) was used).

5.4.2 Results

Effect of solution conductivity

The key difference between typical cell buffers and those used in DEP is that the

latter must be tailored to far lower conductivities (<0.03 S/m compared with
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Table 5.2: Buffer constituents

Buffer: Key

feature

Constituents (% mass/volume), conductivity at 20 ○C

PBS Significant components are 0.8% NaCl, and 0.115% phosphate

buffer (Na2HPO4) (172). 1.5 S/m.

Low PB-

S/Vykoukal

et al. (2008)

(122)

9.5% sucrose, 0.3% dextrose, 2.1% 1 x stock PBS solution,

0.03 S/m.

Culture

medium

Significant components are 10% fetal bovine serum1, 0.68%

NaCl, ∼ 0.08% other salts, 0.1% amino acids (170). 1.25 S/m

(171).

27mMol

HEPES

buffer

8.5% sucrose, 0.3% glucose, 27 mMol HEPES, 0.030 S/m.

2% BSA 8.5% sucrose, 0.3% dextrose, 2% BSA, 0.025 S/m.

SAW-DEP

buffer

0.02% EDTA, 2% BSA, 0.595% HEPES buffer (25 mMol),

7.5% sucrose, 0.3% dextrose. 0.15 S/m.

Shafiee et al.

(2010)(143)

8.5% sucrose, 0.3% glucose, 0.725% (v/v) RPMI media stock

(192). 0.01 S/m.

Holmes et al.

(2003) (56)

9% sucrose, 0.3% glucose, 0.03% EDTA, 0.8% BSA, topped

up with HEPES to 0.030 S/m.
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Figure 5.13: Bar graph showing mean values with standard deviation bars, com-

paring the effect of solution conductivity on cell viability. * - Significant difference

(p <0.05).

1.25 - 1.5 S/m for typical cell buffers) to avoid joule-heating in the solution; the

lack of ions available to cells may therefore pose a detriment to cell viability.

To investigate, the viability of cells incubated in PBS buffer (1.5 S/m) was com-

pared to cells held in ‘Low PBS’ buffer (containing 2.1% v/v PBS in osmotically-

balanced sucrose solution, 0.03 S/m), a buffer used in a relatively recent article

by a major DEP research group (122). As shown in Figure 5.13, cells held in

‘Low PBS’ buffer showed a considerably low viability (48.9%) compared with

cells held in normal PBS (78.9%).

Figure 5.13 also shows that cells held in PBS exhibited significantly lower viabil-

ity compared with cells held in culture medium (96.6%, 1.25 S/m), and this extra

cell death cannot be attributed to low conductivity (PBS is higher conductivity,

at 1.5 S/m).

The high conductivity/ionic concentration of PBS is largely attributable to it

being 0.68% (m/v) NaCl (137 mM). However, the ‘phosphate’ (PO3− component

is also significant (0.115%, 10 mM) because it is responsible for keeping the pH
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stable (‘buffering’ the pH) between 7.2-7.4. This is therefore a limitation of this

particular experiment, because the decrease in cell viability could also have been

attributed to the lack of effective pH buffer molarity. The effect of pH buffer on

cell viability was examined further for the next experiment.

Effect of pH buffer

To buffer the pH in DEP experiments, HEPES (4-(2-hydroxyethyl)-1-piperazine-

ethanesulfonic acid) tends to be used, because it dissolves as a zwitterion and

therefore does not raise the conductivity of the solution as significantly as other

common pH buffers like phosphate or TRIS. In tissue culture, the optimum

concentration of HEPES buffer is 25 mM, for example, as found in the GIBCO®

DMEM medium (193). For this experiment, a buffer was made composed of

osmotically-balanced sucrose and 27 mMol HEPES, to give a final conductivity

of 0.03 S/m (27 mMol HEPES); this was compared to the ‘Low PBS’ buffer (also

0.03 S/m) described in the prior experiment, where the pH (phosphate) buffer

component was 0.21 mMol, ∼ 50 times lower than its optimum concentration of

10 mMol.

Figure 5.14 shows that cells incubated in the solution with low pH buffer osmo-

larity (Low PBS) actually showed no significant difference in viability compared

with those held in the solution with the optimal concentration of pH buffer

(27 mMol HEPES buffer) (48.9% and 42.0%, respectively). This indicates that

the contribution of pH buffer is insignificant. However, because both solutions

showed very poor cell viability compared to the positive control (Culture medium,

96.6%), it cannot be ruled out that the addition of pH buffer may still have a role

in maintaining viability when used with other ‘viability-optimising’ constituents.

Effect of BSA

BSA (bovine serum albumin) was a key component of the initial SAW-DEP

buffer (2% m/v). A buffer was made of osmotically-balanced sucrose solution
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Figure 5.14: Bar graph, with standard deviation bars, comparing the effect of pH

buffer molarity conductivity on cell viability. NS - No significant difference (p

>0.05).

with 2% BSA (final conductivity of 0.025 S/m), and this was compared to the

‘Low PBS’ buffer (which had a similar conductivity of 0.03 S/m).

Figure 5.15 shows that the buffer containing 2% BSA had significantly higher

cell viability than the comparable buffer without BSA (‘Low PBS’), showing that

adding BSA to a DEP buffer consirably improves cell viability (93.7% compared

with 48.9% viability). This was not an anticipated result, because BSA was only

added to the initial SAW-DEP buffer in order to ensure cells travelled smoothly

through the microfluidics, and this set of experiments was not performed using

the microfluidic apparatus. The cell viability-effects of BSA appear to be of-

ten overlooked when formulating DEP buffers, however, its role in maintaining

healthy cell cultures has been well-documented in the scientific literature con-

cerning general tissue culture (194); its key function appears to be as carrier

molecule for transporting ligands within the cell, although it also plays a role in

maintaining pH and osmotic pressure in the surrounding liquid (194).

It can also be observed that the viability of the 2% BSA buffer was similar to

that of Culture medium, and stronger than that of cells held in SAW-DEP buffer
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Figure 5.15: Bar graph, with standard deviation bars, examining the effect of

BSA on cell viability. * - Significant difference (p <0.05).

(86.7% for these experiments, see Figure 5.16). It is worth noting that Culture

media is typically supplemented with 10% ‘Bovine Calf Serum’, which contains

roughly 2% m/v BSA (194, 195). The final concentration of BSA in Culture

medium is therefore ∼ 0.2%, and total serum proteins are 0.35%.

Comparison of SAW-DEP buffer with DEP buffers in the literature

Within this experiment, the viability of cells in the initial SAW-DEP buffer was

compared with that of several DEP buffers mentioned in the literature. These

included two of the more recent DEP papers by influential DEP research groups,

the Morgan group at the University of Glascow, UK (56), and the Gascoyne

group at the University of Texas, USA (122) (‘Low PBS’), as well as that used

by the Davalos group at Virginia Tech, USA (111), a paper which was influential

to this thesis.

Figure 5.16 shows that SAW-DEP buffer was the most effective DEP buffer at

maintaining cell viability (86.7%), which was found to be significantly higher

than for all other DEP buffers investigated (though still significantly lower than

Culture medium). While cells incubated in the Morgan group buffer ((56), 78.8%
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Figure 5.16: Bar graph, with standard deviation bars, comparing the viability of

cells held in various DEP buffers, including three from the literature: Morgan et

al. (56), Davalos et al. (111), Gascoyne et al. (122). * - Significant difference (p

<0.05).
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viability) showed significantly lower viability than cells held in SAW-DEP buffer,

this was still found to be significantly (p <0.05) higher than for cells incubated

in buffers of the Davalos and Gascoyne groups (51.7% and 48.9%, respectively).

It should be noted that both the SAW-DEP and Morgan group buffers contain

a significant amount of BSA, as well as EDTA, and HEPES, all of which could

contribute to the improved cell viability.

5.4.3 Conclusions

The most significant finding of these experiments was that BSA can be used to

dramatically increase the viability of cells held in a typical DEP buffer (consist-

ing merely of an osmotically-balanced sucrose solution). While the viability of

cells incubated in the ‘2% BSA’ buffer did still not quite match that of those

incubated in ‘Culture medium’ (93.7% compared to 96.6%), the simplicity of its

composition and low conductivity make it a promising choice for future DEP

experiments. While the initial ‘SAW-DEP’ buffer was continued to be used for

the rest of this chapter for consistency, work in the next chapter (6) utilised the

‘2% BSA buffer’, to limit the effects of cell death during experiments.
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5.5 Assessing the effect of SAW-DEP on the dif-

ferentiation ability of dental pulp stromal

cells

5.5.1 Introduction to osteogenic differentiation

After examining the effects of the SAW-DEP procedure on the viability of cells,

an investigation was carried out to find out if exposure to SAW-DEP adversely

affected the differentiation ability of dental pulp stromal cells cells. Because the

technology in this thesis is being proposed as a tool for autologous cell therapies,

the focus of this particular investigation was the ability of dental pulp stromal

cells (DPS cells) to differentiate into osteogenic tissue following the SAW-DEP

procedure.

DPS cells contain cells that have a mesenchymal stem cell (MSC) phenotype,

and are therefore capable of differentiating into a range of different cell types

(see Figure 5.17), including bone, neuronal, cardiac, and liver cells, making them

a strong candidate for autologous cell therapies and other forms of regenerative

medicine (11). By culturing DPS cells in the right balance of growth and tran-

scription factors, for example, it is possible to differentiate them along a number

of lineages (11). This work will focus on osteogenic lineage differentiation, and

subsequent mineral deposition, which are key to the bone forming process.

To differentiate DPS cells (and similar mesenchymal stem cells) into cells of

an osteogenic lineage, the general method is to grow cells in an osteoinductive

medium at high density - this involves simply allowing cells to become fully con-

fluent in a tissue culture flask or well plate, before adding osteoinductive media.

Osteogenic differentiation can be tested for by determining ALP expression at

1-2 weeks, which is a marker that signals the start of the differentiation process

(11). At 3-4 weeks the cells can be tested for mineral deposition, generally with

Alizarin red or von Kossa staining (205) and imaged under a microscope to show

the presence of the formation of mineral nodules (see Figure 5.18).
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Figure 5.17: Potential differentiation routes for mesenchymal stem cells (196, 197,

198, 199, 200, 201, 202, 203, 204).

5.5.2 Experimental design

To see whether SAW-DEP and/or associated factors (microfluidics and DEP

buffer) affected DPS cell osteo-differentiation, an experiment was designed using

similar controls to those used in the viability studies. A full description of the

materials and methods used for these experiments can be found in Methods 3.3.3.

Because the device used for this experiment had a slightly lower coupling coeffi-

cient than the device used before, a lower flow rate of 1.5 µl/min was used instead

to ensure cells were experiencing sufficient DEP force. Because an even greater

number of cells was needed for this experiment (2-4 ×105 cells), to get a sufficient
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Figure 5.18: Nodule formation (dark rosette shapes) from DPS cells differentiated

into osteoblasts (205).

seeding density, the cells were flowed through the fluidics for 45 minutes, such

that the total time on the lab bench was 60 minutes as opposed to 30 minutes

for the previous viability studies.

Samples of cells were exposed to SAW-DEP as described in Section 5.3.3, along

with the same control procedures as for ‘Microfluidics’ (cells which went through

the microfluidics without exposure to SAW-DEP), ‘DEP buffer’ (cells held in

DEP buffer in lab bench conditions for the experiment time) and ‘Culture medium

(cells held in culture medium on the lab bench for the experiment time). Two

additional controls were made: a ‘Positive’ control, which was osteoinducted

straight from a fresh tissue culture, and a ‘Negative’ control, also straight from a

fresh tissue culture, which was grown in the same conditions as the other samples,

but in normal αMEM culture medium with no osteoinductive supplements.

In an initial experiment, an osteoinduction medium was made in-house by sup-

plementing αMEM with 100 nM dexamethasone, 2 mM β-glycerophosphate, and

280 µM ascorbic acid. However, not even the positive controls showed evidence

of osteoinduction in this experiment, and so it was decided thereafter to use
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StemPro®, a proprietary medium by GibcoTM (206) containing a formulation of

various different osteoinductive supplements, and can be thought to give more

reliable and repeatable results.

Cells were tested for ALP expression by biochemical assay and staining after

eight days of culture on 24-well plates. The surface area of these plates (1.9 cm2)

is thought to be too small to grow osteoinductive cultures for more than 2 weeks

because the cell monolayer has a tendency to peel off for want of attachment

space; accordingly, cells stained for mineral deposition (after 18-21 days) were

cultured in 12-well plates (surface area 3.8 cm2).

5.5.3 Results

Alkaline phosphatase expression

Alkaline phosphatase (ALP) is a metalloenzyme present in tissues throughout

the human body, but is particularly concentrated in the liver, bone, and kidneys.

It is covalently attached to the outer face of the plasma membrane where, in

the case of bone formation, it is hypothesised to be responsible for initiating

the mineralisation process by hydrolysing inorganic pyrophosphate (PPi) to give

phosphate molecules, which are incorporated into hydoxyapatite, that forms bone

and dental enamal (207).

While mineralisation does not typically occur in cell culture for differentiating

osteoblasts until 3-4 weeks, elevated levels of alkaline phosphatase expression

appear much earlier, after 1-2 weeks of osteoinductive culture. In fact, when

dental pulp stromal cells are cultured at high density, they are known to express

alkaline phosphatase without the need for a special osteoinductive medium (205).

The presence of elevated alkaline phosphatase expression after 1-2 weeks would

therefore not necessarily confirm cells are fully capable of producing a mineralised

matrix; however, a lack of alkaline phosphatase expression compared to controls

would confirm that cells have been affected by the SAW-DEP procedure.
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Staining for alkaline phosphatase expression

To detect alkaline phosphatase expression by staining, cell monolayers can be

‘fixed’ in ethanol and incubated in a solution containing naphthol AS-MX phos-

phate (208); if ALP is present, the phosphatase activity cleaves the phosphate,

liberating naphthol AS-MX, which reacts with another molecule in the staining

solution1 to form a coloured precipitate. The staining results, after eight days of

culture, are shown in Figure 5.19.2

Figure 5.19: ALP staining following eight days of osteoinduction for two donors.

Cells are positively stained by a blue precipitate that forms in the presence of

alkaline phosphatase.

There were no qualitative observable difference between all samples that were

1‘Fast Blue RR’, a diazonium salt
2Results for a third donor sample, ‘Donor 3’, were lost due to experimental error.
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kept in the osteoinductive medium (i.e., all except ‘Negative’). There is, however,

a striking difference between the two donors; while the osteoinducted samples for

Donor 1 all show high levels of ALP expression when compared to the negative

control, the opposite is true for Donor 2.

The results for Donor 1 are what could have been expected; the cells in os-

teoinductive media all strongly express ALP and so appear to be on the lineage

pathway to osteogenic differentiation. This contrasts with a lack of ALP expres-

sion in the Negative control, indicating the cells are not differentiating (yet, at

least).

To explain the results for Donor 2, however, it must be considered that ALP

expression tends to peak early on in differentiation, before tailing off; for example

Choi et al. (2011) (209) observed peak expression at 7 days, followed by a 4-fold

reduction in ALP levels by 14 days. It could be the case, therefore, that the cells

began the differentiation pathway faster than those of Donor 1, such that the cells

in osteoinductive media had already peaked and tailed off after eight days. The

negative control cells, which we expect to express ALP without osteoinductive

media when grown at high density, reached the high ALP expression-stage at

8 days (while the Negative control cells in Donor 1 had not reached this stage yet).

It is possible to quantify ALP activity via a spectrophotometric assay. This

involves lysing cell membranes such that the constituent chemicals and enzymes

inside the cells can be added into a solution. An ALP substrate is added to the

solution (similar to that used for the stain) which becomes fluorescent after it is

cleaved by ALP. The fluorescence can then be quantified by a ‘plate reader’, a

type of UV-vis spectrophotometer.

As well as measuring the ALP activity of the different samples, the DNA content

of the samples is also quantified, by intercalating DNA with a molecule that

can also be quantified by fluorescence. This ensures that ALP activity can be

standardised according to the amount of DNA present in each sample, to permit
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comparisons of samples containing different cell numbers.

Quantitative assay

Figure 5.20: Bar chart showing the DNA content (an indicator of cell number-

s/volume) in the wells used for the quantitative ALP assay (n = 2 wells, x 3

repeats, for three different donors). The samples were as follows: SAW-DEP

Cells which underwent the full SAW-DEP procedure, Microfluidics Cells which

underwent the full procedure except the SAW/electric field was not turned on,

Positive Positive control: Cells which were cultured in the osteoinductive di-

rectly from normal tissue culture conditions, Negative Negative control: Cells

which were cultured in a normal, non-osteoinductive culture medium (αMEM),

DEP buffer Cells which were held in DEP buffer for the time taken to perform

the SAW-DEP experiment (45 minutes), Culture medium Cells which were

held in a normal culture medium (αMEM) for the time taken to perform the

SAW-DEP experiment.

Figure 5.20 shows how DNA content varied between donors and experimental

samples. Two consistant observations are that (1) DNA content was always lower

in Donor 3 compared to the other two donors, and (2) DNA content was always
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lower for the Negative control sample. With regards to (1), this is likely to be

due simply because of donor variation, with Donor 3’s cells growing more slowly

than those of other two donors.1

A slower growth rate of cells in the Negative control would also explain (2);

this indicates that cells were growing much faster in the StemPro® medium

when compared with the normal Culture medium. This is likely to be because

StemPro® is manufactured with various supplements and growth factors de-

signed to enhance growth and speed up the differentiation process. Other studies

have had similar results comparing cell growth in StemPro® and ‘MEM’ media

(210).

Figure 5.21: ALP activity in various samples for three donors (n = 2 wells, x 3

repeats).

1Because cells were seeded at the same density (see Methods 3.3.3), it can be assumed

that any significant difference in DNA content was due to faster or slower cell growth between

samples.
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The results from the ALP assay are shown in Figure 5.21. Donors 1 and 2 in

these results are the same as Donors 1 and 2 in the staining results (Figure 5.19);

however, the cell samples the data is derived from were cultured separately on

different days, so the two datasets are not directly comparable to each other.

The most obvious observation is that, intra-donor, ALP activity was always

highest in the negative control. Again, this is thought to be because the ALP

activity of the osteoinducted (StemPro®-cultured) samples had already peaked

and tailed off by Day 8, at which point the Negative control sample has just

reached peak ALP activity. The ALP activity in the SAW-DEP sample (intra-

doner) is similar to all other controls, with no discernable differences or trends.

Mineralisation stain

A key test for osteogenic differentiation is a stain to determine whether the cell

monolayer has begun depositing a mineralisable matrix, which in an in vivo

system would be the beginning of the bone-forming or repairing process. Alizarin

red staining is a common qualitative test for mineral deposition by putative

osteoblasts, where alizarin is a simple organic compound which stains red when

it chelates with calcium, a principal component of the mineral matrix.

It was planned to perform an alizarin red stain following 21 days of culture.

However, while refreshing the medium of one of the three samples (which was

just 18 days old), it was noticed that some of the cell monolayers had started de-

taching from the well plate,1 meaning that they were now unsuitable for accurate

staining. For fear of losing more experimental samples, all the samples (between

16-19 days old) were stained on that day, and the results are shown in Figure 5.22.

1Detachment of cell monolayers in a common problem in osteogenic differentiation experi-

ments, and is generally attributed to cells becoming over-confluent (i.e. too dense) with limited

surface area, such as that in a well-plate (211). Thus, the longer they are cultured, the greater

the risk of this occuring.
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Figure 5.22: Alizarin red staining for various donors and samples at different

timepoints. The ‘16 days’ sample merely shows counter staining (purple) of the

cells, to provide a contrast to show that there is no (red) staining of calcium

deposits. Strong, deep red staining is shown for the 18 and 19 days samples,

however, in all but the Negative controls. (The cell monolayers in Positive and

Culture medium samples for ‘18 days’ have peeled up, so the wells are empty.)
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After 16 days, Donor 4 showed no evidence of calcification (i.e. red staining) in

any of the samples, as could be expected after only 16 days of osteoinduction.

(The Negative control shows far weaker colouration by the purple counterstain -

this is likely to be indicative of a far lower cell density due to the lower growth

rate for that culture medium.)

The change for the samples at 18 and 19 days is dramatic, with definitive red

staining across all the samples that were grown in the osteoinductive medium.

The extent of staining cannot be distinguished as being less or greater across

the osteoinduced samples. The cell monolayer of the 19 days ‘Culture medium’

sample started peeling off during the staining process, as can be seen in the Figure.

Another test to verify that the osteoinduction process has begun in osteoinduced

cell cultures is to examine samples under a microscope to check for nodule for-

mation. This was performed on the samples following alizarin red staining, and

can be seen in Figure 5.23.

The microscope images showed that rosette-like mineralised nodules had begun

forming over the surface of all the osteoinducted samples, but not the negative

control.

5.5.4 Section summary and end of chapter conclusions

Throughout all the ALP and mineralisation tests, the differentiation profiles of

samples exposed to SAW-DEP showed no significant difference to the other posi-

tive controls, showing that none of the key factors (DEP buffer, microfluidics, and

SAW-DEP electric field) produced a noticable impediment to DPS cells’ abilities

to undergo osteogenic differentiation. This was consistent with the findings in

Section 5.3, where the SAW-DEP electric field did not cause cell viability to

decrease significantly.
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Figure 5.23: Microscope images of osteoinduced samples stained for alizarin red,

with two of the mineralised nodules indicated by blue arrows. Note that the key

evidence here (when comparing positive and negative controls) is the presence

of rosette-like nodules, not the overall colour difference (although the latter is

attributable to the presence of calcium). Scale bar 100 µm.
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The negative control used for the differentation experiments, however, was evi-

dently inappropriate. This was because the basal medium of the negative control

was different from the positive controls (StemPro vs MEM), not just the osteo-

inducing supplements. As was shown in the DNA content assay (Figure 5.20),

the negative controls had roughly half as many cells as the positive controls. Due

to the critical effects of cell density on differentiation this meant it was therefore

not a fair test to compare these with the promising controls.

Together, these results indicate that SAW-DEP may be used to isolate clinically-

relevant cells while retaining their key physiological and therapeutic capabilities.

This chapter also addressed some practical considerations for SAW-DEP devices,

resulting in a device design capable of outputting ∼ 20,000 cells per minute,

and highlighting the importance of BSA in maintaining high cell viability in low

conductivity buffer solutions.
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Chapter 6

Discerning different cell types

using SAW-DEP

6.1 Introduction and chapter summary

The research described in the previous chapters has detailed how the electrical

effect of SAW-DEP was characterised, how it could be used to enrich live from

dead cells, and whether exposure caused harm to clinically-relevant human cells.

This final experimental chapter of the thesis will discuss later work which aimed

to look in greater detail at the fidelity with which SAW-DEP can separate live

and dead mammalian cells, and whether SAW-DEP can be used to seperate

different cell lineages.

The key questions addressed in this chapter, together with a summary of findings,

are listed below:

1. Can SAW-DEP produce high-fidelity separation of live and dead mam-

malian cells?

• Section 6.2: The separation of DPS cells at 0.15 S/m that was used

for the experiments in Chapter 5 was shown to produce pDEP lines

of 98% live cells. However, due to some live cell alignment into nDEP
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regions, 14% of the total viable cell population was aligning in the

nDEP regions, meaning this significant portion would be wasted in a

real setting (being in the ‘waste’ stream). To increase the selectivity

(i.e. fidelity) of the separation, the conductivity was adjusted from

0.15 S/m to 0.065 S/m, which was shown to give pDEP and nDEP

alignment of 97% live cells and 99% dead cells, respectively (Figure

6.1).

2. How can SAW-DEP be used to examine the dielectric signatures of different

mammalian cell types?

• Section 6.3: SAW-DEP was used to discern the differences between

the DEP behaviour characteristics of three mammalian cell types -

primary DPS cells, 16HBE cells, and MCF7 cells. This was achieved by

counting the proportion of cells that experience pDEP vs nDEP, as the

conductivity of the solution was progressively increased - a technique

named ‘conductivity stepping’.

3. Can SAW-DEP be used to separate different lineages of cells?

• Section 6.4: The aforementioned conductivity stepping method was

used to find the best conductivity to separate two cell types. A pre-

liminary study implied that a 1:1 mixture of DPS cells and 16HBE

cells could be separated at a conductivity of 0.34 S/m to give seperate

populations of 83% (16HBEs cells, pDEP) and 80% purity (DPS cells,

nDEP).

4. Does the dielectric signature of DPS cells change as a function of passage

number/age?

• Section 6.5: The final experiment of this thesis utilised the conductiv-

ity stepping method to compare the DEP characteristics of DPS cells

as a function of age/passage number. The results of this preliminary

study suggested that the DEP characteristics changed as a function of

passage number, indicating that it may be possible to separate older,

differentiated cells from younger undifferentiated cells.
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6.1 Introduction and chapter summary

Figure 6.1: Dental pulp stromal cells undergoing SAW-DEP at 0.065 S/m, with

live/dead stain, showing complete binary separation between live (cyan) and dead

(magenta) cells. Scale bar is 100 µm.
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6.2 High fidelity mammalian live/dead cell sep-

aration by SAW-DEP

6.2.1 Fidelity of live/dead cell separation at 0.15 S/m

Discrepency between cell viability and observed pDEP cell separation

at 0.15 S/m

As discussed fully in Section 5.3, the focus of this experiment was to compare the

viability1 of cells after undergoing SAW-DEP separation with control samples. A

conductivity of 0.15 S/m was chosen to ensure enrichment of live cells into pDEP

regions. While the viability of the cell samples (n = 9) was found by FACS to

be 87%, analysis of microscope images taken during the experiment showed that

only 75% of cells aligned in the pDEP regions; this suggested that a significant

portion of viable cells were aligning in the nDEP region. A comparison of %

viability and % pDEP alignment for each of the three donors (n = 3 per donor)

is shown in Figure 6.2.

As shown in Figure 6.2, the data for Donors 1 and 3 suggests the pDEP alignment

is ∼ 8% lower than the number of viable cells as counted by FACS, suggesting

that ∼ 8% of live cells are aligning in the nDEP regions. Because the proportion

of viable cells is likely to be higher during the SAW-DEP separation than for the

subsequent flow cytometry assessment (by which time a greater number of cells

will have become non-viable due to stress in the experimental conditions), it is

likely that more than 8% of live cells are aligning in the nDEP regions.

Donor 2 shows a larger discrepancy of 21% between viability and pDEP align-

ment. This is possibly indicative of the age of the cells (passage 9, compared

with passage 3-5 for the other two donors) (149), a concept which is investigated

further in Section 6.5.

1A note on terminology: ‘Viable’ and ‘live’ are taken to mean the same thing, as are ‘non-

viable’ and ‘dead’. However, the different synonyms are used to distinguish cells deemed ‘viable’

by FACS (a traditional method) and those deemed ‘live’ by SAW-DEP.

239



6.2 High fidelity mammalian live/dead cell separation by SAW-DEP

Figure 6.2: Column chart comparing cell viability (with standard deviation bars,

n = 3), as measured by flow cytometry in Section 5.3, with the % cells aligning

by pDEP, counted using pictures from the corresponding experiments.

It must also be noted that these interpretations of the data are based on the

assumption that all of the remaining cells aligning in the pDEP were ‘live’ (based

on previous results with yeast cells in Section 4.5). However, a far more certain

way to investigate this would be differentially stain live and dead cells before

analysing the alignment images, and this was carried out next.

Proportion of live and dead cells aligned by positive and negative DEP

Live and dead cells were stained different colours (the full protocol is given in

Section 3.4.1) and imaged as they underwent SAW-DEP separation in a fluid

conductivity of 0.15 S/m. Microscope images to illustrate typical cell separation,

and to compare brightfield with fluorescent images, are shown in Figure 6.4.

Having counted >1,000 live cells and >1,000 dead cells, 86% of live cells were

found to align in pDEP regions, with 14% in nDEP regions, while 98% of dead

cells aligned in nDEP regions, with 2% in pDEP regions. The concentration of
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6.2 High fidelity mammalian live/dead cell separation by SAW-DEP

Figure 6.3: Microscope images of dental pulp stromal cells undergoing SAW-

DEP separation in a fluid conductivity of 0.15 S/m. Brightfield image (left) and

fluorescent image (right), with viable (cyan) and non-viable (magenta) staining.

The fluorescent image shows how live cells could be purified from dead cells (by

aligning into separate lines), although some live cells remained in the ‘dead cell’

line regions. Scale bar is 100 µm.

live cells in pDEP regions and dead cells in nDEP regions was therefore 98% and

88%, respectively. To avoid confusion, the concentration of target cells in pDEP

or nDEP lines (e.g. live cells in pDEP regions) will be described described as the

‘line purity’, and will be expressed as a ratio; thus the line purity for live cells in

the pDEP line was 49:1, and the line purity for dead cells in the nDEP regions

was 44:6. This is shown graphically in Figure 6.4.

The 2% of dead cells found to align in the pDEP regions was thought to be

due to some dead cells becoming stuck to live cells, as was observed during

experiments. The 14% of live cells aligning by pDEP is presumably because at

0.15 S/m, their polarisability is less than that of the liquid. This could be due

to, for example, heterogeneity within the population, or due to cells becoming

stressed/pre-apoptotic. The next experiments aimed to enrich live cell alignment

in pDEP regions by lowering the liquid conductivity such that all live cells ex-

hibited greater polarisability than the liquid.
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6.2 High fidelity mammalian live/dead cell separation by SAW-DEP

Figure 6.4: Schematic showing the fidelity of live/dead DPS cell separation at

0.15 S/m. If a 50:50 mixture of live:dead cells undergoes SAW-DEP at 0.15

S/m, 98% of dead cells align by nDEP, and 2% by pDEP. As for live cells, 86%

experience pDEP, while 14% experience nDEP. Thus the enrichment factors for

live and dead cells are 86% and 98%, respectively, and the purity of the nDEP

and pDEP lines is expressed as a ratio.

6.2.2 Finding the optimal conductivity for high fidelity

live/dead separation

In the previous experiment, the final buffer for suspension of cells consisted of

DEP buffer (0.025 S/m) supplemented with 9% (v/v) propridium iodide stain

solution (1.5 S/m), to give a final fluid conductivity of 0.15 S/m. In this exper-

iment, the proportion of PI was reduced from 9% to 3.5% (conductivity 0.065

S/m), which was found to give near-perfect separation of live and dead cells, as

shown in Figure 6.5.

This time, cell counting (1,000 live cells, 1,000 dead cells) showed 99.7% and

0.3% of live cells aligned in pDEP and nDEP regions respectively, a massive

improvement (Figure 6.6). The 0.3% of misaligned live cells is possibly also due

to cells sticking. Dead cells showed a similar distribution to 0.15 S/m, where 97%

aligned in nDEP regions, and 3% aligning in pDEP regions. Again, misalignment

of dead cells was presumed to be due to some dead cells being stuck to live cells.
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6.2 High fidelity mammalian live/dead cell separation by SAW-DEP

Figure 6.5: Dental pulp stromal cells undergoing SAW-DEP at 0.065 S/m, with

live/dead stain, showing complete binary separation between live (cyan) and dead

(magenta) cells. Scale bar is 100 µm.

Figure 6.6: Schematic showing the fidelity of live/dead DPS cell separation at

0.065 S/m. If a 50:50 mixture of live:dead cells undergoes SAW-DEP at 0.065

S/m, misalignment of live and dead cells was shown to be 0.3% and 3%, respec-

tively.

This level of enrichment showed that SAW-DEP is capable of separating live and

dead mammalian cell types with great accuracy. It is postulated that greater ac-

curacy, perhaps up to 100%, may be possible by flowing in a lower concentration

of cells such that they are more sparsely distributed in the microchannel, and
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therefore less likely to stick together.

After showing that SAW-DEP could separate live and dead mammalian cells

with high efficiency, the remainder of this chapter was dedicated to investigating

the ability of SAW-DEP to discern different cell lineages.
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6.3 Determining DEP characteristics of cells by

SAW-DEP: Conductivity stepping

6.3.1 Introduction to finding DEP characteristics of cells:

Electrorotation method

After characterising and optimising the separation of live and dead cells, a logical

next step was to use SAW-DEP to separate different cell types from each other.

Other DEP methods, which should have similar selective capability to SAW-

DEP, have been shown to separate a range of mammalian cell types, including

different types of cancer cells (212), blood cell types (108), and stem cells from

differentiated cells (106). Before attempting to separate two cell types, it is often

necessary to perform some DEP characterisation of the cell types in question,

typically by electrorotation.

Electrorotation, described in greater detail in Literature Review 1.4.3 is a method

of observing the DEP behaviour of cells as they are trapped in a polynomial elec-

trode design (see Figure 6.7). Whether a cell experiences positive or negative

DEP can be determined by the direction in which the cell is spinning (clockwise

or anti-clockwise). By gradually increasing the frequency throughout the experi-

ment and noting both the speed and direction of the rotation, an electrorotation

spectrum can be obtained for each cell (108) (Figure 6.8a). The information from

this spectrum can then be used to extrapolate various dielectric parameters of

the cells, namely the specific membrane capacitance, cytoplasm conductivity, and

cytoplasm permittivity (108), and generate a graph of normalised DEP response

(i.e. the Clausius Mossotti factor) as a function of frequency (Figure 6.8b) (108).

The method of using electrorotation to determine the DEP characteristics of cells

is useful as a sensitive method for determining the DEP force, and extrapolating

biophysical characteristics from that based on the applied frequency. This is

because different biophysical aspects (generally simplified to membrane capaci-

tance, cytoplasm conductivity, and cytoplasm permittivity (108)) dominate the

DEP response according to what frequency is applied to the field (213). For
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Figure 6.7: Schematic showing a cell trapped in a typical quadrupole electrode

design (a type of polynomial electrode) (102). The phase the four electrodes are

set to 0○, 90○, 180○, and 270○, such that the dielectric force the cell experiences

causes it to rotate.

example, at 10 MHz (the frequency used in most of this work) differences in

dielectric response are due almost entirely to cytoplasmic conductivity (214).

A potential drawback of this method, however, is the inability to process large

numbers of cells at once; the typical data given in research papers are drawn from

spectra of only ∼ 20 cells, giving standard deviations of ∼ 10% (108). Depending

on cell type, we can expect significant heterogeneity within a cell population,

with differentiation (106), cell death (215), and stage of cell-cycle (216) all factors

which can effect dielectric parameters and cause this heterogeneity.

The issue of measurement throughput was addressed in the next section, which

describes developing a SAW-DEP-based method to gauge the DEP characteris-

tics of different cell types.
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Figure 6.8: Example data from electrorotation measurements (108). a Electro-

rotation spectra for MDA231 breast cancer cells (◇), T lymphocytes (type of

blood/immune cells) (○), and erythrocytes (red blood cells) (△). b The CM re-

sponse as a function of frequency (at 0.01 S/m liquid conductivity) of MDA231

cells (—), T lymphocytes (---), and erythrocytes (—-—).
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6.3.2 SAW-DEP for finding DEP characteristics of cells:

Conductivity stepping method

The primary aim of investigating the DEP characteristics of different cell types

in this thesis was to find the best conductivity at which to separate two cell

types at 10 MHz. Instead of building an electrorotation device, which measures

DEP response at a range of frequencies, a more direct method of probing was

developed, which simply observed whether cells underwent positive or negative

DEP at a range of conductivities.1

The procedure for the method (known as ‘conductivity stepping’) is outlined

below; a full description of the protocol can be found in Methods 3.4.2.

• Aliquots of cells (initially dental pulp stem cells, DPS cells) were suspended

in fluids of various (lower) conductivities (0.01-0.225 S/m) and stored tem-

porarily in a 4○C refrigerator (<30 minutes).

• Starting at low conductivity, the different aliquots were flowed into the

SAW-DEP apparatus and pictures were taken as they were separated. The

number of dead cells were estimated in the experiment by flowing a cell

aliquot at 0.065 S/m, which was found previously to separate live and dead

cells (Section 6.2.2.

• More aliquots of cells were made, this time in (higher) conductivities from

0.225-0.4 S/m, and the experiment was repeated. (The experiment was

carried out in two ‘halves’ like this to ensure that cells were not kept out of

the incubator for >30 minutes at a time, thus minimising cell death which

convolutes the results.)

• After the experiment, microscope images were analysed to determine the

number of cells undergoing positive and negative DEP. Figure 6.9 shows

sample images, together with a reference digital mask (blue and green bars)

1Building an electrorotation device would still have been useful to this work, not least

because the results of one method could be verified against the other.
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applied to indicate areas of positive and negative DEP. The percentage of

cells recieving nDEP and pDEP was counted, at >1,000 cells per conduc-

tivity. Using the pictures of 0.065 S/m, the proportion of dead cells was

estimated, and this proportion was subtracted from the ‘nDEP’ regions

of the other conductivities, to give a more accurate representation of the

alignment of live cells (the cells of interest).

6.4 DEP characteristics of DPS cells, 16HBE

cells, and MCF7 cells

6.4.1 Measuring DEP characteristics of DPS cells, 16HBE

cells, and MCF7 cells

Using the conductivity-stepping method, the DEP characteristics of DPS cells

were compared with those of 16HBE cells and MCF7 cells. 16HBE cells are

a cell line derived from human bronchial epithelial cells (the ‘16’ comes from

the fact that they were the 16th human bronchial epithelial cell line to become

commercially available). They were chosen for this work because epithelial cells

come from a distinct embrological origin (endodermal), compared to dental pulp

stem cells (mesodermal origin) (see Figure 6.10).

The DEP characteristics of MCF7 cells were also investigated. MCF7 cells are

a cell line derived from a breast ductal cell carcinoma (218), and are ectodermal

in origin (219) (see Figure 6.10). Furthermore, these cells have previously been

characterised by DEP electrorotation measurements, with Coley et al. (2007)

(160) finding them to have a significantly lower cytoplasm conductivity than typ-

ical mammalian cells, (0.2 S/m, compared with 0.5 S/m for typical mammalian

cells (159)), the dominant characteristic at 10 MHz (214).

Figure 6.11 shows the results for a typical conductivity sweep experiment with

DPS cells. At the first two conductivities (0.060 and 0.115 S/m) no live cells

experience nDEP, however, this increases to 70% by the final reading, 0.375 S/m.
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Figure 6.9: Example pictures used for analysis in conductivity-stepping experi-

ments. Images are cropped to show only the channel and the acoustic aperture.

Green bars are put at the edge of the channel (nothing is counted here due to

inconsistency because of channel edge effects), and blue bars serve as a reference

for pDEP. Conductivities are A - 0.065 S/m; B - 0.135 S/m; C - 0.27 S/m; D -

0.33 S/m. Frame sizes are 1.1 ×1.0 mm.

Readings were not carried out above ∼ 0.4 S/m because such high conductivities

were found to have a considerably weaker DEP force on cells, such that the

alignment was slower and cell alignment was less uniform and therefore more
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Figure 6.10: Schematic showing the three primary germ layers (ectoderm, meso-

derm, and endoderm) in the developing embryo (217). DPS cells are derived from

mesoderm, which forms the connective tissue of the body. In contrast, bronchial

epithelium is derived from endoderm, a separate germ layer.

difficult to interpret.1

Figure 6.11 also shows that two readings were taken at 0.220 S/m - that is, one

at the end of the first ‘run’ of samples (the higher % nDEP), and one at the

start of the second run. The former sample of cells would have been stored in a

refrigerator for ∼ 20-25 minutes during the course of the experiment, while the

latter sample will be ‘fresh’ (0-5 minutes), such that the sample contains less

non-viable cells, leading to a greater proportion of pDEP-to-nDEP. As mentioned

in Section 6.3.2, the proportion of dead cells (at 25-30 minutes) is substracted

from all previous measurements; therefore, the first measurement (with higher

% nDEP) is likely to be more accurate because it was measured just before the

viability-determining sample. The gap between the two readings at 0.220 S/m

(10% in this case) gives an indication of the margin of error from the start of a

1While SAW-DEP was still shown in this work to work well at much higher conductivities

than conventional DEP methods, low performance at higher conductivities was a limiting factor

of the device’s capabilities. However, even at high conductivities, it is not anticipated that SAW-

DEP produces joule heating, which is one of the main drawbacks for conventional DEP at high

conductivity. The decrease in performance is thought to occur because ions in the solution

‘screen’ the static charges of the SAW-DEP substrate, leading to a lower force on cells. By

making devices capable of coupling more power into the substrate from the IDTs (currently at

1 mW for the devices used in this work) it may be possible to use SAW-DEP at even higher

conductivities.

251



6.4 DEP characteristics of DPS cells, 16HBE cells, and MCF7 cells

Figure 6.11: Results graph for a typical conductivity sweep experiment. As

indicated by the legend, this sample comprised DPS cells at passage 3. The

number 180814 is a reference number for the specific donor of the cells, followed

by the date the experiment took place. The graph shows that the % of cells

experiencing nDEP increases from 0% to 70% between 0.060 and 0.375 S/m.

There are two readings at 0.220 S/m - one is from the end of the first ‘half’ of the

experiment (where cells had been stored in a refridgerator for ∼ 20-25 minutes),

and one is from the start of the second ‘half’, where cells are freshly prepared (∼
0-5 minutes). This latter reading is the lower of the two in terms of % nDEP,

because there is a lower proportion of non-viable cells, which all receive nDEP.

run to the end.

Figure 6.12 shows the data from several experiments (n = 3 or 4) plotted onto

a single graph for each cell type, with fitted curves. The data was fitted to

a simple sigmoidal curve equation, which was found to provide a statistically

significant fit for the DPS cell crossover data, with an R-squared value of 0.952

(with >0.950 deemed to be statistically significant). For consistency, the same

curve was fitted to MCF7 and 16HBE cells, although the significance test failed
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for both of these due to the wide spread of the data (R-squared values of 0.651

and 0.602, respectively). The curves for MCF7 and 16HBE cells therefore can

only be viewed as an indication for how the curves may look if more data is

gathered.

The strong variance within the datasets does not necessarily mean the results

gleaned from conductivity stepping are inaccurate - they come from a strong

sample size of ∼ 1,000 cells counted per datapoint, and care was also taken to

ensure factors like confluency of cells (7-80%), passage number (within two pas-

sages for DPS cells [i.e. p4-p5], four passages for cell lines), and time spent out of

the incubator (25-30 minutes), were kept relatively constant. Massive variance,

for example, in MCF7 cells at a conductivity of 0.270 S/m is likely to be because

cells are around a delicate tipping point in polarisability relative to the liquid

(i.e. close to the crossover), such that small changes in the factors mentioned

may tip a significant portion of the population from positive to negative DEP

(or vice versa). Rather than suggesting that conductivity stepping is inaccurate

as a technique, it more suggests that heterogeneity of DEP characteristics (e.g.

cytoplasm conductivity) between cell sample preparations - at least of MCF7 and

16HBE cells - may make it instrinsically difficult to consistently separate them

via DEP. Despite this variance, the data suggested it would at least be possible

to significantly enrich different cell lineages with SAW-DEP (if not separate with

high fidelity), and this was investigated next.
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Figure 6.12: Fitted curves with raw datapoints for conductivity sweeps of DPS

cells (n = 4 experiments), MCF7 cells (n = 3) and 16HBE cells (n = 3).
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6.4.2 Separation of DPS cells and 16HBE cells by SAW-

DEP

Figure 6.13 shows the fitted curves of all three cell types plotted onto one graph

for comparison. A key reason for representing the data in this way is to indicate

the possible degree of fidelity of separation between two cell types at a given

liquid conductivity. The graph implies that a significant separation between DPS

cells and 16HBE cells should occur where the curves of these cell types diverge,

namely between 0.25 S/m and 0.35 S/m (pink shaded region). At 0.3 S/m, for

example, the graph suggests that if a 1:1 mixture of DPS cells and 16HBE cells

were were flowed in, 65% of DPS cells would align in the nDEP regions, and

therefore 35% would align in the pDEP regions; as for 16HBE cells, 30% would

align in nDEP regions, and 70% in the pDEP regions, such that a significant

enrichment of either cell type can be made at this conductivity.

Based on this observation, a preliminary experiment was carried out to attempt

to separate a mixture of DPS cells (at passage 4) and 16HBE cells; a sample

microscope image from this experiment is shown in Figure 6.14. The figure shows

significant separation of DPS cells and 16HBE cells (cyan and orange, respec-

tively). The fidelity of this separation was estimated by counting the alignment

of cells in pictures from this experiment, showing that 85% of DPS cells aligned

in the nDEP region (726 total DPS cells counted), while 76% of 16HBEs aligned

in the pDEP region (563 total 16HBE cells counted). Supposing even numbers

of cells were flowed in, pDEP lines would be 83% 16HBEs, with nDEP lines

containing 78% DPS cells. This is represented graphically in Figure 6.15.

It must be noted that two previous experiments (data not shown) had shown no

significant separation, but this was presumed to be due to initial inconsistencies

with the developing technique.1 Even so, the results presented here require fur-

ther verification to reliably conclude that SAW-DEP can be used to separate the

1A new staining procedure was developed using another dye, Resazarin (ThermoFisher,

UK), to stain DPS cells a different colour to live 16HBEs (the latter stained by Calcein, as

described previously).
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6.4 DEP characteristics of DPS cells, 16HBE cells, and MCF7 cells

Figure 6.13: Fitted curves with raw datapoints for conductivity sweeps of DPS

cells (n = 4 experiments) (p3-p5, different donors), MCF7 cells (n = 3) and

16HBE cells (n = 3).

two cell types at the stated fidelity. However, this was an experiment undertaken

in the last few weeks of the experimental research conducted for this thesis,

and time constraints limited the possibility of further consolidation. The results

presented here, therefore, merely indicate that it may be possible to achieve

significant separation of DPS cells and 16HBE cells.
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6.4 DEP characteristics of DPS cells, 16HBE cells, and MCF7 cells

Figure 6.14: Fluorescent microscope image of 16HBE cells and DPS cells un-

dergoing DEP at 0.34 S/m. The 16HBE cells (orange) are shown to exhibit

predominantly pDEP while the DPS cells (cyan) exhibit predominantly nDEP.

Scale bar is 150 µm.

Figure 6.15: Schematic showing the fidelity of separation of DPS cells and 16HBE

cells at 0.34 S/m. If a 50:50 mixture of DPS cells:16HBE cells undergo SAW-

DEP, ‘correct’ alignment of DPS cells and 16HBE cells was shown to be 85% and

76%, respectively.
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6.5 DEP characteristics of DPS cells as a function of passage number

6.5 DEP characteristics of DPS cells as a func-

tion of passage number

The final experiment conducted during this research was another preliminary

study, examining whether the DEP characteristics of DPS cells changed as they

grew older. This was investigated partly due to an observation made in Section

6.2.1 that cells of a high passage number (P9) aligned with a significantly greater

proportion in nDEP regions (38%) at 0.15 S/m, compared with those at passage

3-5 (∼ 20%) (see Figure 6.2).

Figure 6.16: Schematic illustrating how the change in nucleus-to-cytoplasm (NC)

ratio typically changes as cells mature, and how this effects overall ‘cytoplasm

conductivity’ (which for DEP single-shell model calculations encompasses the

nucleus within the cytoplasm). Typical values for cytoplasm and nucleus con-

ductivity and NC ratios are from Pethig et al. 2010 (220).

Decreasing polarisability as a cell population ages has already been experimen-

tally observed (220, 221). A key marker of ageing cells is their nucleus-to-

cytoplasm (NC) ratio, which shrinks typically from 0.8 to 0.2 as cells mature

and differentiate (220, 221). This reduction leads to a significant decrease in
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6.5 DEP characteristics of DPS cells as a function of passage number

cell polarisability, due to the fact that the cytoplasm has a significantly lower

conductivity (typically modelled as 0.32 S/m) compared to the nucleus (modelled

as 1.35 S/m) of the cell (220). This is represented visually in Figure 6.16. It

must be stressed that the precise NC ratio of DPS cells (or similar cells like bone

marrow stem cells) is not present in the literature, so 0.2-0.8 should only be

considered as a rough guide.

Figure 6.17: Fitted curves from conductivity sweep experiments to show change

in % nDEP (at a given conductivity) as a function of passage number (P3,5-

9). From P3, the ‘crossover conductivity (at which 50% of cells have crossed

over/experience nDEP - see red line) decreases from ∼ 0.27 to ∼ 0.18 at P7.

However, this trend then reverses, with increasing crossover conductivities for P8

and P9 (∼ 0.20).

The results from Section 6.2.1, however, are from different donors, so it was

important to conduct a systematic study using the same donor to verify if po-

larisability of the cells did indeed decrease with passage number. Conductivity
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6.5 DEP characteristics of DPS cells as a function of passage number

sweeps were therefore performed with cells from passage 3-91 (except passage 4

which was lost due to user error), and the results are shown in Figure 6.17. Simi-

lar to Section 6.4.1, simple sigmoidal curves were fitted to the data (see Appendix

C.2), this time for single experiments (no repeats at the same conductivities).

The R-squared values for the fits mostly fell below 0.95, meaning that the data

is not statistically significant, and these curves should merely be viewed as an

indication of how curves might look if more data is gathered.

Figure 6.17 shows that from P3 to P7, the conductivity sweep curve moves from

right to left, indicating decreasing cell polarisability, as was expected for ageing

cells. However, P8 and P9 appear to show slightly increasing cell polarisability.

To simplify the interpretation of the results, the crossover conductivity (i.e. the

conductivity at which 50% of cells experience nDEP, and 50% experience pDEP)

was plotted together with a fitted curve in Figure 6.18.

The results, if repeated consistently, would suggest that DPS cell overall cyto-

plasm conductivity decreases from P3 to P7, whereupon it starts to increase again

up to P9. However, to be verified, these results would need to be repeated at each

passage (at least n = 3), and ideally a comparison made between 3 or more donors.

6.5.1 Chapter conclusions

The focus of this chapter was on gauging the specificity of SAW-DEP for sepa-

rating cell types. The most convincing data was that showing the separation of

live and dead DPS cells, at 98% purity of both populations from a 1:1 mixture

(Section 6.2). This is favourable compared with other cell separation methods in

the literature; a review by Gao et al. 2013 ((222)) gives live/dead mammalian

cell separation by DEP at 87% (live cells). The efficiency for MACS, the current

‘gold standard’ cell separation platform, ranges from 85% to 96% depending on

1At P8-P9 the growth rate of DPS cells slows considerably, making it harder and increasingly

more time consuming to culture.
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6.5 DEP characteristics of DPS cells as a function of passage number

Figure 6.18: Crossover conductivity (the conductivity at which 50% of cells get

nDEP/50% get pDEP) as a function of passage number. This is essentially plot-

ting the points at which the curves in Figure 6.17 intersect the red (50% nDEP)

line.

cell type and ligand binding strength (222).

While the separation efficiency for DPS cells and 16HBE cells is promising

(Section 6.4.2), this result should not be analysed without being validated by

further experimentation. This leads on to a shortcoming of this chapter, which

is that the work separating live cell types gave very variable results. This is

partly because time ran out, being conducted at the tail-end of the studentship,

and inconsistency could perhaps be improved if experimental procedures were

optimised. Nevertheless, the preliminary results also point to a possible inherent

shortfall of DEP-selection based on cytoplasm conductivity, which is that there

is a lot of variation in cytoplasm conductivity within cell types, even if average
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6.5 DEP characteristics of DPS cells as a function of passage number

conductivities are somewhat distinct between two cell types (at least those stud-

ied). The consequence of this is reduced specificity as the range of cytoplasm

conductivities overlap between two cell types. Even so, better purity of the target

cell can be achieved at the expense of recovery by raising or lowering the buffer

conductivity used to exclude more of the non-target cell; thus, it is very possible

that DEP (and SAW-DEP in particular) can achieve efficiencies approaching

those of MACS for 16HBE cells and DPS cells, if the preliminary results are

accurate.
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Chapter 7

Conclusions and Outlook

This thesis concerns the development of a type of dielectrophoresis (DEP)-based

technology known as SAW-DEP, from early proof-of-concept experiments to the

separation and differentiation of clinically-relevant stem cells. The proceeding

section (7.1) will summarise the key milestones discussed in the previous chap-

ters. Following this, the advantages and limitations of SAW-DEP compared with

traditional DEP methods shall be discussed (Section 7.2), after which will come

a discussion on the suitability of SAW-DEP to be used to enrich live cells for

autologous bone grafting procedures (Section 7.3.1), a key goal of this work.

Finally, three separate branches of possible future directions for the work in this

thesis will be briefly summarised (Section 7.3.2).

7.1 Summary of key achievements of thesis

7.1.1 Chapter 4

• By videoing the movement of latex beads (various sizes) in the device to

map the force experienced at various regions within the microchannel, ex-

perimental data were found to closely match an analytical model for the

electric field in a similar DEP system. This verified that shear horizon-

tal surface acoustic wave (SH-SAW) devices could be used to produce a

well-characterised DEP force on microparticles.
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7.1 Summary of key achievements of thesis

• To demonstrate the potential of SAW-DEP, a classic DEP experiment of

separating live and dead yeast cells (103, 114, 124, 185, 187) was replicated

using SAW-DEP, showing very precise and uniform separation of the two

cell types (Figure 7.1).

Figure 7.1: Microscope image of live and dead yeast cell separation (Section 4.5).

The live yeast cells (white) can be seen to be clearly spatially separated from the

dead yeast cells (blue), with both cell types arranged into precise, uniform lines.

7.1.2 Chapter 5

• A flow cell was designed and manufactured to allow mammalian cells to

be delivered to the chip and subsequently extracted in a precise, controlled

manner (Figure 7.3), with output of ∼ 20,000 cells/minute.

• The viability of primary human mesenchymal stem cells (dental pulp stem

cells) was tested after undergoing a SAW-DEP live cell enrichment proce-

dure, designed to be similar to what could be used in a clinical setting.

Statistical analysis showed that the SAW-DEP electric field did not cause

cell viability to decrease significantly; however, a statistically-significant
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7.1 Summary of key achievements of thesis

drop in viability (from 96.7% to 91.3% was observed for cells held in DEP

buffer rather than culture medium.

• The effect of DEP buffer composition was assessed, with the conclusion

that adding 0.8-2% m/v BSA to a solution led to a significant increase

in viability. An optimised buffer showed 93.7% cell viability, compared to

96.6% for a positive control (culture medium).

• Finally, undergoing SAW-DEP and all associated factors (shear stress of

microfluidics, being held in DEP buffer) were shown to have no significant

effect on the ability of DPS cells to undergoing osteogenic lineage differen-

tiation.

Figure 7.2: Photograph of the final flow cell iteration made during this work,

included for illustrative purposes (from Section 5.2).

7.1.3 Chapter 6

• By tuning the conductivity of the fluid, SAW-DEP was shown to achieve

very high fidelity separation of live and dead primary human cells (DPS

cells), with negative and positive alignment regions containing 99% dead

cells and 97% live cells, respectively (see Figure 6.1).
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7.2 Summary of the advantages and limitations of SAW-DEP
compared to other DEP methods

• ‘Conductivity-stepping’ was developed as a method to screen large num-

bers of cell populations for their DEP characteristics. Preliminary studies

suggested differences between different cell lineages (DPS cells, MCF7 cells,

and 16HBE cells) and differences between DPS cells of different passage

number. This suggests it may be possible to use SAW-DEP to enrich cer-

tain cell-types from a heterogeneous sample of two or more of these cell

types.

Figure 7.3: Microscope image of fluorescently-stained live cells (cyan) and dead

cells (magenta), separated by SAW-DEP (from Section 6.2).

7.2 Summary of the advantages and limitations

of SAW-DEP compared to other DEP meth-

ods

A full discussion of the shortfalls of traditional DEP methods that SAW-DEP was

developed to address can be found in Literature Review 1.4. Below is a summary

of key advantages that SAW-DEP has over traditional DEP approaches:
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7.2 Summary of the advantages and limitations of SAW-DEP
compared to other DEP methods

Advantages of SAW-DEP

1. Continuous throughput - Most DEP approaches involves at least one cell

type being trapped at the electrodes by pDEP. These means that DEP sep-

aration must be carried out in batches that are limited by the size of the

electrodes, such that they generally have low throughput (223). SAW-DEP,

on the other hand, allows cells to be continously directed into separated

channels, mainly due to the fact that electrodeless systems are less suscep-

tible to cell-fouling. At a current flow rate of ∼ 30,000 cells per minute (with

75% recovery), it is anticipated that this could be greatly improved by in-

creasing the power input to the system (currently 1 mW) without having

to increase the device’ chip size.

2. Conductive solutions - While traditional DEP experiments must be per-

fomed in low-conductivity solutions (<0.03 S/m) to prevent Joule heating

from the electrodes, the SAW-DEP field shows no signs of heating up to

10 S/m (Chapter 4.3.2). It must be noted, however, that device perfor-

mance (i.e. time taken for cells to align) significantly decreases above ∼ 0.3,

although good alignment/separation can be observed up to 0.4 S/m and

possibly higher. One key advantage of being able to use higher conductiv-

ity DEP buffer solutions is that more constituents can be added too ensure

enhanced cell viability.

3. Enhanced cell viability - The viability of cells is expected to be far better

in SAW-DEP systems than traditional DEP. This is due primarily due to

points 1. (i.e. exposure to the electric field is brief), and 2. (i.e. more

favourable cell buffer solutions can be formulated).

Two key disadvantages of SAW-DEP are also summarised below:

Limitations of SAW-DEP

1. Device tunability - The operating frequencing for a SAW-DEP device is rela-

tively confined to a ∼ 10% bandwidth around the device operating frequency

(10 MHz and 20 MHz for the devices used in this work). The selectivity of
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7.3 Current status of the technology and future directions

the device (i.e. to be used for a variety of cell types) can still be tuned by

adjusting the conductivity of the buffer solution, however, this is thought

to be more cumbersome than tuning the selectivity of traditional DEP de-

vices, by simply modulating the applied frequency (which avoids having to

prepare a variety of different buffers, etc).

2. Selectivity - On a related point, SAW-DEP can only practically be used on

mammalian cells between 5 - 40 MHz. This is because below 5 MHz, the

chip length would have to be greater than ∼ 40 mm to accomodate larger

IDTs, thus making it impractical from a fabrication/lab on a chip point of

view. At 40 MHz, the wavelength (on LiTaO3) is 100 µm, such that the

separation between pDEP and nDEP is only 25 µm - roughly the diameter

of a cell. The consequence of limiting devices to the 5 - 40 MHz range is

that cells can be selected based on differences in cytoplasm conductivity

(i.e. including cytoplasm-to-nucleus ratio), but not for other factors such

cytoplasm permittivity and membrane capacitance which must be selected

for at lower frequencies (214). This limits the cell types which can be

seperated by DEP; for example, T lymphocytes and MDA231 breast cancer

cells have similar cytoplasm conductivities, but distinct membrance capaci-

tances, such that they can only be efficiently separated at lower frequencies

(108).

7.3 Current status of the technology and future

directions

7.3.1 Discussion on the suitability of SAW-DEP for au-

tologous tissue grafting

In brief, this thesis has provided solid evidence to show that the SAW-DEP

technology developed was capable of efficiently separating live and dead dental

pulp stem cells (DPS cells), a mesenchymal stem cell similar to the ultimate goal

of bone marrow stem cells (BMS cells). Furthermore, viability studies showed

strong evidence that SAW-DEP did not adversely affect cells, although viability
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7.3 Current status of the technology and future directions

could be improved, say, by improving the buffer composition and reducing the

experiment time.

To reduce the experiment time, the sorting rate must be increased dramatically

if the sorting is meant to be achieved within an ‘intra-operative’ timescale of

<30 minutes; the typical number of cells used in cell therapeutics and grafts

is 10 million - 1 billion (224). Current rates described in this work are on the

order 900,000 cells per 30 minutes, recovering 675,000. Increasing the power

coupling of the device (currently 1 mW) may allow much faster flow rates (as

cells align at a greater force). Other approaches to improving throughput in-

clude using a wider channel and improving recovery by minimising fouling (for

example, by functionalising devices with a defined PEG-layer, rather the current

BSA-functionalisation approach).

7.3.2 Future work

Clinical applications - testing on mice

A grant was awarded to look in greater detail at the clinical applications of the

SAW-DEP technology by using a mouse model to see if it could enhance grafting

procedures. The proposed research is to transplant scaffolds into mice with a

cranial defect. The scaffolds will be seeded with cells separated by SAW-DEP,

and compared to those seeded with cells separated by MACS (currently consid-

ered a ‘gold standard’ for cell separation (223), Chapter 1.2.2).

7.3.3 Yeast viability counter

Another grant was awarded, based mainly on the results from Chapter 4.5, to

make a commercial diagnostic device to probe the viability of yeast cultures in

breweries. Breweries currently outsource diagnosing the viability of yeast cul-

tures, which is done off-site by biotech firms which stain and count the number
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7.3 Current status of the technology and future directions

of dead cells.

The grant was used to design an automated, mass-producible viability counter

that could be used in-house with no expertise and no need for staining cells. The

device consisted of a flow cell component, which can be seen in Figure 7.4, and

an automated graphical user interface for simplified operation. This technology

works by the user injecting a small sample of yeast suspension, whereupon the

device automatically flows it to the SAW-DEP aperture and takes a picture

of live and dead cell separation. A photograph is taken via a camera built

into the device, and a computer algorithm counts the proportion of cells aligning

in pDEP (‘live’) and nDEP (‘dead’) regions, to tell the user the % viability of cells.

Figure 7.4: Photograph of injection-moulded flow cell used to assess yeast culture

viability.

7.3.4 Device capability - high fidelity separation of other

key cell types

While this was addressed to a certain extent in Chapter 6, the research presented

here woulc do well to be supported by a comprehensive investigation into the

range of cell types that can be selected for using SAW-DEP, starting with the
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7.3 Current status of the technology and future directions

typical model cells used in DEP. These include live/dead cells, which are well

covered here; however, future cell types to separate include blood cells (e.g.

T-lymphocytes from red blood cells (108)), and cancerous from other cancerous

or non-cancerous cells (108, 212).

Particularly relevant to the work presented here is the prospect of using SAW-

DEP to separate stem cells from non-stem cells (i.e. which has many applications

within regenerative medicine/cell therapies), and there is some work of DEP

separation of stem cells in the literature that can be built on (106). Another

opportunity relevant to this work is the prospect of separating mesenchymal stem

cells (MSCs) from bone marrow aspirate, with MSCs only constituting 0.08%, and

the rest being mainly blood cells ((23), Chapter 1.1.2). This is a key focus of a

new PhD studentship that follows on from this work (225).
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Appendix A

Supplementary information -

multimedia

This Appendix describes each of the four short videos featured on the supple-

mentary CD; each video is a different slide on the Powerpoint presentation.

A.1 Red blood cell alignment by SAW-DEP

The video (in GIF format) shows red

blood cells before and after turning

the electric field on (1 mW applied

power, 10 MHz device). It can be seen

that most cells align immediately (<1

second) into pearl chains by positive

DEP, although some cells take longer,

presumably due to their being situ-

ated near zero-gradient regions (see

Section 4.4) upon application of the

SAW-DEP electric field. Red blood

cells showed a slightly quicker DEP response than other mammalian cells studied,

despite their smaller size (5 µm diameter compared with 15 µm diameter) - this
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A.2 1 µm diameter latex beads aligning by SAW-DEP

is presumably due to their high iron (Fe) content, making them more polarisable.

Red blood cells were supplied courtesy of Dr. Erica Watson from the Leeds

Institute of Cancer and Pathology. For scale, the width of the microchannel

(defined by thick black horizontal lines at the top and bottom of the frame) is 1

mm.

A.2 1 µm diameter latex beads aligning by

SAW-DEP

The video shows 1 µm latex beads

aligning by negative DEP (1 mW ap-

plied power, 10 MHz device). For

scale, the frame size is 0.65 mm x 0.85

mm; the spacing between the lines is

∼ 200 µm.
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A.3 Frequency-stepping with dental pulp stromal cells

A.3 Frequency-stepping with dental pulp stro-

mal cells

This video shows DPS cells

trapped by positive DEP in

a 10 MHz device (1 mW ap-

plied power). Every 1-2 sec-

onds, the researcher changes

the applied frequency within

the 9.5-10.5 MHz range (for

example, 9.6 MHz to 10.1

MHz, etc). For scale, the

frame size is 1.3 x 1.7

mm.

A.4 Separation of live and dead dental pulp

stromal cells

The video shows dental pulp stromal

cells (DPS cells, unstained) being sep-

arated into live and dead cells in a 10

MHz device (1 mW applied power),

at a x4-slowed frame rate. For scale,

the frame size is 0.65 mm x 0.85 mm.

The electric field is applied immedi-

ately after the video starts. The live

cells can be distinguished because

they are in focus (aligning at the bot-

tom of the channel, nearest to the

piezoelectric chip from which the electric field emanates) and so are a darker
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A.4 Separation of live and dead dental pulp stromal cells

colour, compared with the more translucent (due to being out of focus) dead cells.
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Appendix B

Scripts

This Appendix features several scripts (four in Python and one in Java) used for

calculations in this work.

B.1 CM factor for latex beads

This is the Python script used to calculate the CM factor for latex spheres, using

equations from (149, 157).

#S c r i p t to p l o t FCM as a func t i on o f l i q u i d conduc t i v i ty .
I t can a l s o p l o t FCM as a func t i on o f f r equenc ing , by
s u b s t i t u t i n g Line 10 with Line 9 , and Line 16 with Line

15 .

import numpy
import matp lo t l i b . pyplot as p l t

#General va lue s

#f r e q = numpy . arange (1 e3 , 1e9 , 1 e3 )
f r e q = 10 e6 #Applied f requency
omega = 2∗numpy . p i ∗ f r e q

eps 0 = 8.854 e−12 #vacuum p e r m i t t i v i t y
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B.1 CM factor for latex beads

r = 25e−7 #rad iu s o f p a r t i c l e
#sig m = numpy . arange (1 e −5 , 1 . 2 , 1e −3) #conduc t i v i ty o f

medium
sig m = 5e−4
eps p = 2.56∗ eps 0 #p e r m i t t i v i t y o f p a r t i c l e
eps m = 78∗ eps 0 #p e r m i t t i v i t y o f medium
f 0 = 100 e3
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

#s i g p = 0.0604

#Sur face conductance

K s = ( r /4) ∗( − s ig m + (9∗ s ig m ∗∗2 − 4 ∗ ( ( eps p −
eps m ) ∗( eps p + 2∗ eps m ) ∗(2∗numpy . p i ∗ f 0 ) ∗∗2) ) ∗∗0 .5 )

#P a r t i c l e conduc t i v i ty

s i g p = (2∗ K s ) / r

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

ceps p = numpy . v e c t o r i z e ( complex ) ( eps p , s i g p /omega )
ceps m = numpy . v e c t o r i z e ( complex ) ( eps m , s ig m /omega )

FCM = ( ceps p −ceps m ) /( ceps p+2∗ceps m )

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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B.2 CM factor for yeast

# Plo t t i ng

p l t . r c ( ’ font ’ , ∗∗{ ’ sans − s e r i f ’ : ’ Ar ia l ’ , ’ fami ly ’ : ’ sans
− s e r i f ’ } )

p l t . p l o t ( f r eq ,FCM. r e a l )

p l t . h l i n e s (0 ,1 e3 , 1 e9 , l i n e s t y l e =’dashed ’ )

p l t . x l a b e l ( ’ Frequency , Hz ’ )
p l t . y l a b e l ( ’CM Factor ’ )
p l t . t i t l e ( ’DEP response o f 1 micron diameter l a t e x beads ’ )
p l t . show ( )

p r i n t K s

p r i n t FCM

B.2 CM factor for yeast

This is the Python script used to calculate the CM factor for (live) yeast cells,

using biophysical values from (162) (this paper also has values for dead cells

which were used in this work).

import numpy
import matp lo t l i b . pyplot as p l t

# gene ra l va lue s

f r e q = numpy . arange (1 e4 , 1 e9 , 1 e5 )
#f r e q = 1e7
omega = 2∗numpy . p i ∗ f r e q
vacperm = 8.854 e−12
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B.2 CM factor for yeast

cond med = 0.021
#cond med = numpy . arange ( 0 . 0 0 1 , 2 . 0 , 0 . 0 0 1 )

# r = radius , c = conduct iv i ty , e = p e r m i t t i v i t y 1 , 2 , 3 =
c e l l wal l , membrane , nuc leus r e s p e c t i v e l y

r1 = 3e−6
c1 = 140e−4
e1 = 60∗vacperm
r2 = 2.78 e−6
c2 = 2 .5 e−7
e2 = 6∗vacperm
r3 = 2.772 e−6
c3 = 2000e−4
e3 = 50∗vacperm

e med = 80∗vacperm

#complex p e r m i t t i v i t i e s . NB numpy . v e c t o r i z e takes two
ar rays and combines them to produce the r e a l and
imaginary par t s o f a complex number , r e s p e c t i v e l y

eps1 = numpy . v e c t o r i z e ( complex ) ( e1 , c1/omega )
eps2 = numpy . v e c t o r i z e ( complex ) ( e2 , c2/omega )
eps3 =numpy . v e c t o r i z e ( complex ) ( e3 , c3/omega )

#complex p e r m i t t i v i t y o f the medium

eps med = numpy . v e c t o r i z e ( complex ) ( e med , cond med/omega )

#complex p e r m i t t i v i t y o f the p a r t i c l e

eps23 = eps2 ∗ ( ( r2 / r3 ) ∗∗3+2∗(( eps3−eps2 ) /( eps3+2∗eps2 ) ) ) / ( (
r2 / r3 ) ∗∗3 −(( eps3−eps2 ) /( eps3+2∗eps2 ) ) )
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B.2 CM factor for yeast

e p s c e l l = eps1 ∗ ( ( r1 / r2 ) ∗∗3+2∗(( eps23−eps1 ) /( eps23+2∗eps1 )
) ) / ( ( r1 / r2 ) ∗∗3 −(( eps23−eps1 ) /( eps23+2∗eps1 ) ) )

# f i n a l l y , the c l a u s i u s mossot t i f a c t o r

FCM = ( e p s c e l l −eps med ) /( e p s c e l l +2∗eps med )

# Found two X va lues which the root ( f ( x ) = 0) i s
conta ined with in

i s P o s i t i v e = (FCM[ 0 ] . r e a l > 0)
exactRoot = None # index o f exact root ( i f i t ’ s a c t u a l l y

found )
le ftBound = 0 # index o f the l e f t bound on the root
rightBound = 0 # index o f the r i g h t bound o f the root
f o r i in range (1 , l en ( cond med ) ) :

i f FCM[ i ] . r e a l == 0 : # we ’ ve found the exact root
exactRoot = i
break

e l i f FCM[ i ] . r e a l > 0 : # r e a l part i s p o s i t i v e
# We’ ve passed through the root ! Stop here
i f not i s P o s i t i v e :

rightBound = i
break

e l s e : # r e a l part i s negat ive
i f i s P o s i t i v e :

rightBound = i
break

# Update l e f t bound −− only ge t s c a l l e d i f root
not found !

le f tBound = i
# Display l e f t and r i g h t bounds o f root , UNLESS EXACT ROOT

FOUND
i f exactRoot :

p r i n t (” Root :\n\tCondMed={} CMFactor={}”. format (
cond med [ exactRoot ] , FCM[ exactRoot ] . r e a l ) )

e l s e :
p r i n t (” Le f t Bound :\n\tCondMed={} CMFactor={}”.

format ( cond med [ le ftBound ] , FCM[ le ftBound ] . r e a l
) )
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pr in t (” Right Bound :\n\tCondMed={} CMFactor={}”.
format ( cond med [ rightBound ] , FCM[ rightBound ] .
r e a l ) )

# Plo t t i ng

p l t . p l o t ( cond med ,FCM. r e a l )
p l t . x l a b e l ( ’Medium conduct iv i ty , S/m’ )
p l t . y l a b e l ( ’CM Factor ’ )
p l t . t i t l e ( ’ Live Yeast c e l l CMF’ )
p l t . show ( )

B.3 CM factor for mammalian cells

This is the Python script used to calculate the CM factor for mammalian cells.

Mammalian cells were modelled using the erythrocyte biophysical values from

(108) (the dominant value being the cytoplasm conductivity, 0.5 S/m - this was

decreased for dead cells to fit the data.

#This s c r i p t p l o t s FCM as a func t i on o f l i q u i d
conduc t i v i ty f o r two c e l l types ( c u r r e n t l y s e t to ‘ l i v e
’ and ‘ dead ’ g e n e r i c mammalian c e l l ) .

import numpy
import matp lo t l i b . pyplot as p l t

p l t . rcParams [ ’ axes . c o l o r c y c l e ’ ] = [ ’m’ , ’ k ’ , ’ k ’ ]

vacperm = 8.854 e−12

de f mamcell cap model ( c e l l t y p e , f r eq , cond med , rad , memthick
, cap mem , perm cyt , cond cyt ) :
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#General va lue s
cond cm = 3e−6
omega = 2∗numpy . p i ∗ f r e q
e cy t = perm cyt∗vacperm
g mem = cond cm/memthick
perm med = 80∗vacperm

#complex p e r m i t t i v i t i e s . NB numpy . v e c t o r i z e takes two
ar rays and combines them to produce the r e a l and
imaginary par t s o f a complex number , r e s p e c t i v e l y

comcap mem = numpy . v e c t o r i z e ( complex ) ( cap mem ,
g mem/omega )

comperm cyt = numpy . v e c t o r i z e ( complex ) ( e cyt ,
cond cyt /omega )

#Complex p e r m i t t i v i t y o f the c e l l and medium
comperm cel l = (comcap mem∗ rad∗comperm cyt ) /(

comcap mem∗ rad+comperm cyt )
comperm med = numpy . v e c t o r i z e ( complex ) ( perm med ,

cond med/omega )

#FCM c a l c u l a t i o n

FCM = ( comperm cel l −comperm med ) /( comperm cel l+2∗
comperm med )

# Set t i ng up

p l t . p l o t ( cond med ,FCM. rea l , l a b e l=c e l l t y p e )

re turn FCM. r e a l

# Cal l the func t i on

xValues = numpy . arange ( 0 . 0 0 1 0 0 , 1 . 0 , 0 . 0 0 1 )
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#Reminder : de f mamcell cap model ( c e l l t y p e , f r eq , cond med ,
rad , memthick , cap mem , perm cyt , cond cyt ) :

a = mamcell cap model ( ’ Live c e l l ’ , 9 .75 e6 , xValues , 7 . 5 e
−6 ,8 e −9 ,9 e −3 ,57 ,0 . 5 )

#I d e n t i c a l to ‘ l i v e ’ c e l l , but with lower cond cyt

b = mamcell cap model ( ’ Dead c e l l ’ , 9 .75 e6 , xValues , 7 . 5 e
−6 ,8 e −9 ,9 e −3 ,57 ,0 .12)

#p l t . x l a b e l ( ’Medium conduct iv i ty , S/m’ )
#p l t . y l a b e l ( ’DEP response ’ )
#p l t . t i t l e ( ’ Breast c e l l DEP response @ 10 MHz’ )
#p l t . axh l ine (0 , c o l o r = ’ black ’ )

#p l t . l egend ( )
#p l t . show ( )

#numDataPoints = len ( xValues )
#f o r i in range ( numDataPoints ) :
# x = xValues [ i ]
# pr in t ”%f ,%f ,% f ” % (x , a [ i ] , b [ i ] )

p l t . r c ( ’ font ’ , ∗∗{ ’ sans − s e r i f ’ : ’ Ar ia l ’ , ’ fami ly ’ : ’ sans
− s e r i f ’ } )

p l t . h l i n e s ( 0 , 0 , 0 . 5 , l i n e s t y l e =’dashed ’ )

p l t . x l a b e l ( ’ Liquid conduct iv i ty , S/m’ )
p l t . y l a b e l ( ’DEP response ’ )
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#p l t . t i t l e ( ’DPSC DEP response @ 10 MHz’ )
p l t . axh l ine (0 , c o l o r = ’ black ’ )
p l t . g r i d ( )

p l t . l egend ( )
p l t . show ( )

B.4 Osmotic potential script

This is the Python script used to check the molarity remained between 300 and

330 mOsm/l when different DEP buffer solutions were made.

import numpy
import matp lo t l i b . pyplot as p l t

# Molar i ty c a l c u l a t i o n s ; % mass

BSA mass = 20.00000
EDTA mass = 0 .2
sucrose mass = 75
dextrose mass = 3
NaCl mass = 0 .9 #lowish conduc t i v i ty used e a r l i e r
HEPES mass = 5.9575

BSA M mass = 68000
EDTA M mass = 292.24
sucrose M mass = 342.30
dextrose M mass = 180.16
NaCl M mass = 58.44
HEPES M mass = 238 .3

BSA M = BSA mass/BSA M mass
EDTA M = EDTA mass/EDTA M mass
sucrose M = sucrose mass / sucrose M mass
dextrose M = dextrose mass / dextrose M mass
NaCl M = NaCl mass/NaCl M mass
HEPES M = HEPES mass/HEPES M mass
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BSA O = BSA M
EDTA O = EDTA M
sucrose O = sucrose M
dextrose O = dextrose M
NaCl O = NaCl M∗2
HEPES O = HEPES M

Buffer O = BSA O+EDTA M+sucrose O+dextrose O+NaCl O+
HEPES O

pr in t ( Buffer O )
p r i n t ”BSA”
pr in t (BSA M)

B.5 Java script to calculate DEP force based on

.xml output files from Trackmate particle

tracker

This is the script for a programme made by Christoph Wälti to calculate DEP

force from experimental data with beads (see Chapter 4.4). After tracking the

frame-by-frame trajectories of latex beads in a DEP system by Trackmate (an

ImageJ plugin (165)), the .xml output file is read by the programme, which

calculates the DEP force at every location in the video for every bead, using the

equations for Newton’s Second Law of Motion and Stoke’s Drag, which it itself

outputs as a .csv file.

package p a r t i c l e t r a c k i n g ;

import java . i o . F i l e ;
import javax . xml . p a r s e r s . DocumentBuilder ;
import javax . xml . p a r s e r s . DocumentBuilderFactory ;
import org . w3c .dom. Document ;
import org . w3c .dom. Element ;
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import org . w3c .dom. Node ;
import org . w3c .dom. NodeList ;
import java . awt . BorderLayout ;
import java . awt . Dimension ;
import java . awt . GridLayout ;
import java . awt . Too lk i t ;
import java . awt . event . ActionEvent ;
import java . i o . FileNotFoundException ;
import java . i o . Pr intWriter ;
import java . i o . UnsupportedEncodingException ;
import java . u t i l . l o gg ing . Leve l ;
import java . u t i l . l o gg ing . Logger ;
import javax . swing . AbstractAct ion ;
import javax . swing . JButton ;
import javax . swing . JFi leChooser ;
import javax . swing . JFrame ;
import javax . swing . JOptionPane ;
import javax . swing . JPanel ;
import javax . swing . JTextFie ld ;
import javax . swing . UIManager ;
import javax . swing . UnsupportedLookAndFeelException ;
import org . j f r e e . chart . ChartFactory ;
import org . j f r e e . chart . ChartPanel ;
import org . j f r e e . chart . JFreeChart ;
import org . j f r e e . chart . p l o t . P lo tOr i enta t i on ;
import org . j f r e e . data . xy . XYSer i e sCo l l e c t i on ;
import org . j f r e e . data . xy . XYSeries ;

/∗∗
∗
∗ @author Chris
∗/

pub l i c c l a s s Par t i c l eTrack ing extends JPanel {

// parameters which need ad ju s t i ng

// number o f frame when SAW was switched on ;
frames be f o r e t h i s are ignored

s t a t i c i n t t S t a r t = 0 ;
// minimum number o f frames a t r a c e must have to

be cons ide r ed ; note , t h i s i n c l u d e s the t S t a r t
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f rames as we l l (60)
s t a t i c i n t minPoints = 60 ;
// v i s c o s i t y o f b u f f e r
s t a t i c double v i s c o s i t y = 1e −3; // S i

un i t s
// rad iu s o f p a r t i c l e in meters
s t a t i c double p a r t i c l e R a d i u s = 2 .5 e −6;
// dens i ty o f p a r t i c l e s ; note , t h i s probably doesn

’ t matter very much as the t o t a l f o r c e i s
u n l i k l y to be r e l e v a n t

s t a t i c double p a r t i c l e D e n s i t y = 1.05 e3 ; //kg/m3
// to convert the time−va lues from frames to

seconds
s t a t i c double tConvers ion = 0 . 0 6 1 2 ; // in seconds /

frame to convert t to s
// to convert the x and y−va lues from p i x e l s to

meters
s t a t i c double xyConversion = 1.28 e −6; // in m/

p i x e l to convert x and y to m

// number o f po in t s used e i t h e r s i d e o f the ac tua l
time po int f o r f i t t i n g ; f i t s t−wPoints to t+

wPoints (10)
s t a t i c i n t wPoints = 10 ;
// th r e sho ld by how much each f i t t e d parameter can

vary , o the rwi se po int d i smi s sed : not c u r r e n t l y
used ( 0 . 0 2 )

s t a t i c double aThresh = 0 . 0 2 ;

// arrangement f o r showing i n d i v i d u a l curves .
s t a t i c i n t showCurvesCols = 3 ;
s t a t i c i n t showCurvesRows = 2 ;

// Folder where t rack f i l e s ( xml ) are saved
f i n a l s t a t i c S t r ing t rackFo lder = ”/ Users / Chris /

Data/SAW−DEP P a r t i c l e Tracking /” ;
// t rackFo lder = ”D:\\Alban ” ;

// Folder where f o r c e f i l e s ( csv ) are saved
f i n a l s t a t i c S t r ing f o r c e F o l d e r = ”/ Users / Chris /

Data/SAW−DEP P a r t i c l e Tracking /” ;
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// f o r c e F o l d e r = ”D:\\Alban ” ;

// end o f parameters which need ad ju s t i ng

/∗∗
∗ @param args the command l i n e arguments
∗/

pub l i c i n t e r f a c e LMfunc {

pub l i c Object [ ] parameters ( ) ; // get the
parameters

pub l i c void parameters ( Object [ ] param ) ; // s e t
the parameters

pub l i c double va l ( double [ ] x , double [ ] a ) ; //
t h i s g i v e s the value at x

pub l i c double grad ( double [ ] x , double [ ] a , i n t a k
) ; // t h i s g i v e s df /dAMP at pos x

pub l i c double [ ] [ ] t e s tda ta ( ) ;
}

pub l i c s t a t i c void main ( S t r ing [ ] a rgs ) {

double par t i c l eMass = p a r t i c l e D e n s i t y ∗ 4 / 3 ∗
3 .1415 ∗ Math . pow( par t i c l eRad iu s , 3) ;

Object [ ] pa r t i c l eParamete r s = new Object [ 1 0 ] ;
pa r t i c l eParamete r s [ 0 ] = v i s c o s i t y ;
pa r t i c l eParamete r s [ 1 ] = p a r t i c l e R a d i u s ;
pa r t i c l eParamete r s [ 2 ] = p a r t i c l e D e n s i t y ;
pa r t i c l eParamete r s [ 3 ] = par t i c l eMas s ;
pa r t i c l eParamete r s [ 4 ] = tConvers ion ;
pa r t i c l eParamete r s [ 5 ] = xyConversion ;
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LMfunc f = new Quadratic ( ) ;
double [ ] [ ] data ;
double [ ] [ ] x ;
// i n t nPts = 0 ;
// i n t nCols = 0 ;
boolean useTestData = f a l s e ;

t ry {
UIManager . setLookAndFeel ( UIManager .

getSystemLookAndFeelClassName ( ) ) ;
} catch ( ClassNotFoundException |

I n s t an t i a t i onExcep t i on | I l l e g a l A c c e s s E x c e p t i o n
| UnsupportedLookAndFeelException ex ) {
Logger . getLogger ( Par t i c l eTrack ing . c l a s s .

getName ( ) ) . l og ( Leve l .SEVERE, nu l l , ex ) ;
}

t ry {

JFi leChooser f i l e C h o o s e r = new JFi leChooser ( ) ;
System . se tProper ty (” user . d i r ” , t rackFo lder ) ;
f i l e C h o o s e r . s e tCur rentDi r ec to ry (new F i l e (

System . getProperty (” user . d i r ”) ) ) ;
i n t r e s u l t = f i l e C h o o s e r . showOpenDialog (

f i l e C h o o s e r ) ;
F i l e fXmlFi le = n u l l ;
i f ( r e s u l t == JFi leChooser .APPROVE OPTION) {

fXmlFi le = f i l e C h o o s e r . g e t S e l e c t e d F i l e ( ) ;
}
DocumentBuilderFactory dbFactory =

DocumentBuilderFactory . newInstance ( ) ;
DocumentBuilder dBui lder = dbFactory .

newDocumentBuilder ( ) ;
Document doc = dBui lder . parse ( fXmlFi le ) ;
// opt iona l , but recommended
// read t h i s − http :// s tackove r f l ow . com/

que s t i on s /13786607/ normal i zat ion − in −dom−
pars ing −with− java −how−does− i t −work

doc . getDocumentElement ( ) . normal ize ( ) ;
// System . out . p r i n t l n (” Root element : ” + doc .

getDocumentElement ( ) . getNodeName ( ) ) ;
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JTextFie ld part ic leDiameterTF = new JTextFie ld
( ) ;

part ic leDiameterTF . setText ( Double . t oS t r i ng (
p a r t i c l e R a d i u s ∗2 e6 ) ) ;

Object [ ] message = {
” P a r t i c l e Radius (um) : ” ,

part ic leDiameterTF
} ;

i n t opt ion = JOptionPane . showConfirmDialog (
nu l l , message , ” P a r t i c l e s used ” ,
JOptionPane .OK CANCEL OPTION) ;

i f ( opt ion == JOptionPane .CANCEL OPTION) {
r e turn ;

}
p a r t i c l e R a d i u s = Double . valueOf (

part ic leDiameterTF . getText ( ) ) /2∗1e −6;
pa r t i c l eParamete r s [ 1 ] = p a r t i c l e R a d i u s ;
//System . out . p r i n t l n ( p a r t i c l e R a d i u s ) ;

NodeList nL i s t = doc . getElementsByTagName (”
p a r t i c l e ”) ;

System . out . p r i n t l n (”Number o f Tracks : ” +
nLi s t . getLength ( ) ) ;

Pa r t i c l eTrace [ ] t r a c e s = new Par t i c l eTrace [
nL i s t . getLength ( ) ] ;

// ana lyse a l l u s e f u l t r a c e s
f o r ( i n t i P a r t i c l e = 0 ; i P a r t i c l e < nLi s t .

getLength ( ) ; i P a r t i c l e++) {
// f o r ( i n t i P a r t i c l e = 0 ; i P a r t i c l e < 100 ;

i P a r t i c l e++) {
Node iNode = nLi s t . item ( i P a r t i c l e ) ;
i n t nSpots = In t e g e r . pa r s e In t ( ( ( Element )

iNode ) . g e tAt t r ibut e (” nSpots ”) ) ;
i f ( nSpots > minPoints ) {

System . out . p r i n t f (” P a r t i c l e %d ( nSpots
: %d) ” , i P a r t i c l e , nSpots ) ;

Pa r t i c l eTrace iTrace = new
Par t i c l eTrace ( i P a r t i c l e , nSpots ,
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tStar t , pa r t i c l eParamete r s ) ;
iTrace . f i t T r a c e ( iNode , wPoints ) ;
t r a c e s [ i P a r t i c l e ] = iTrace ;
System . out . p r i n t f (” . . . ana lysed \n”) ;

}
}

// s e t up Jpanel f o r p l o t t i n g char t s e t c
JFrame frame = new JFrame (” P a r t i c l e Tracking ”)

;
frame . s e tDe fau l tC loseOperat i on ( JFrame .

EXIT ON CLOSE) ;
// show the menu conta in ing the buttons f o r

showing the t race s , f o r c e , and f o r sav ing
the f i l e

showMainMenu (0 , showCurvesCols , showCurvesRows
, nL i s t . getLength ( ) , t race s , frame ) ;

} catch ( Exception e ) {
e . pr intStackTrace ( ) ;

}

}

p r i v a t e s t a t i c void showMainMenu( i n t i S ta r t , i n t
showCurvesCols , i n t showCurvesRows , i n t nPar t i c l e s ,

Pa r t i c l eTrace [ ] t race s , JFrame frame ) {
frame . getContentPane ( ) . removeAll ( ) ;
frame . getContentPane ( ) . r epa in t ( ) ;
frame . r e v a l i d a t e ( ) ;
frame . setLayout (new BorderLayout (0 , 5) ) ;

JPanel panel = new JPanel ( ) ;
panel . setLayout (new GridLayout (1 , 3) ) ;

panel . add ( createShowTraces ( showCurvesCols ,
showCurvesRows , nPar t i c l e s , t race s , frame ) ) ;

panel . add ( createShowFDEP ( showCurvesCols ,
showCurvesRows , nPar t i c l e s , t race s , frame ) ) ;
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panel . add ( createSaveTraces ( nPar t i c l e s , t race s ,
frame ) ) ;

// panel . setBounds (0 , 0 , 100 , 20) ;

frame . add ( panel , BorderLayout .CENTER) ;
frame . v a l i d a t e ( ) ;
frame . pack ( ) ;
// Dimension s c r e e n S i z e = Too lk i t . g e tDe fau l tToo lk i t

( ) . g e tSc r e enS i z e ( ) ;
// frame . setBounds (0 , 0 , s c r e e n S i z e . width ,

s c r e e n S i z e . he ight ) ;
frame . s e t V i s i b l e ( t rue ) ;

}

p r i v a t e s t a t i c void plotCurves ( i n t i S ta r t , i n t
showCurvesCols , i n t showCurvesRows , i n t nPar t i c l e s ,

Pa r t i c l eTrace [ ] t race s , JFrame frame ) {
i n t n P a r t i c l e s P l o t = showCurvesCols ∗

showCurvesRows ;
frame . getContentPane ( ) . removeAll ( ) ;
frame . getContentPane ( ) . r epa in t ( ) ;
frame . r e v a l i d a t e ( ) ;
frame . setLayout (new BorderLayout (0 , 5) ) ;

JPanel p lotPane l = new JPanel ( ) ;
p lotPane l . setLayout (new GridLayout ( showCurvesRows ,

showCurvesCols ) ) ;

i n t k = 0 ;
i n t i = i S t a r t ;
whi l e ( ( i < n P a r t i c l e s ) && ( k < n P a r t i c l e s P l o t ) ) {

// f o r ( i n t i=i S t a r t ; i<( i S t a r t+n P a r t i c l e s ) ; i
++) {

Par t i c l eTrace iTrace = t r a c e s [ i ] ;
i f ( iTrace != n u l l ) {

XYSer i e sCo l l e c t i on datase t = new
XYSer i e sCo l l e c t i on ( ) ;

XYSeries s e r i e s 1 = new XYSeries (” data ”) ;
f o r ( i n t j = 0 ; j < iTrace . tData . l ength ; j

++) {
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s e r i e s 1 . add ( iTrace . tData [ j ] , iTrace .
yData [ j ]∗1 e6 ) ;

}
datase t . addSer i e s ( s e r i e s 1 ) ;
XYSeries s e r i e s 2 = new XYSeries (” f i t ”) ;
f o r ( i n t j = 0 ; j < iTrace . tData . l ength ; j

++) {
s e r i e s 2 . add ( iTrace . tData [ j ] , iTrace .

yfData [ j ]∗1 e6 ) ;
}
datase t . addSer i e s ( s e r i e s 2 ) ;
JFreeChart chart = ChartFactory .

c r e a t e S c a t t e r P l o t (” P a r t i c l e ” + i , ” t ( s
) ” , ”y ( t ) (um) ” , dataset ,
P lo tOr i enta t i on .VERTICAL, true , true ,
t rue ) ;

ChartPanel chartPanel = new ChartPanel (
chart ) ;

// chartPanel . add ( chart , BorderLayout .CENTER
) ;

chartPanel . setLayout (new BorderLayout (0 ,
5) ) ;

chartPanel . setDomainZoomable ( t rue ) ;
chartPanel . setMouseWheelEnabled ( t rue ) ;
JPanel panel = new JPanel ( ) ;
panel . setLayout (new BorderLayout (0 , 5) ) ;
panel . add ( chartPanel , BorderLayout .CENTER)

;
JPanel cont ro lPane l = new JPanel ( ) ;
cont ro lPane l . add ( createZoomOut ( chartPanel )

) ;
cont ro lPane l . add ( c r e a t e I g n o r e ( i , t r a c e s ) ) ;
panel . add ( contro lPane l , BorderLayout .SOUTH

) ;
// frame . add ( chartPanel ) ;
p lotPane l . add ( panel ) ;
k++;

}
i ++;

}
frame . add ( plotPanel , BorderLayout .CENTER) ;
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JPanel cont ro lPane l = new JPanel ( ) ;
cont ro lPane l . add ( createShowMain ( showCurvesCols ,

showCurvesRows , nPar t i c l e s , t race s , frame ) ) ;
i f ( i<n P a r t i c l e s ) {

cont ro lPane l . add ( createNextCurves ( i ,
showCurvesCols , showCurvesRows , nPar t i c l e s ,

t race s , frame ) ) ;
} e l s e {

cont ro lPane l . add ( createShowMain ( showCurvesCols
, showCurvesRows , nPar t i c l e s , t race s , frame
) ) ;

}
frame . add ( contro lPane l , BorderLayout .SOUTH) ;
frame . v a l i d a t e ( ) ;
frame . pack ( ) ;
Dimension s c r e e n S i z e = Too lk i t . g e tDe fau l tToo lk i t ( )

. g e tSc r e enS i z e ( ) ;
frame . setBounds (0 , 0 , s c r e e n S i z e . width , s c r e e n S i z e

. he ight ) ;
frame . s e t V i s i b l e ( t rue ) ;

}

p r i v a t e s t a t i c void plotFDEP( i n t showCurvesCols , i n t
showCurvesRows , i n t nPar t i c l e s , Pa r t i c l eTrace [ ]
t race s , JFrame frame ) {

double yMaxD = 0 ;
double yMinD = 1e6 ;
f o r ( i n t i P a r t i c l e = 0 ; i P a r t i c l e < n P a r t i c l e s ;

i P a r t i c l e++) {
i f ( t r a c e s [ i P a r t i c l e ] != n u l l ) {

double yMaxThis = t r a c e s [ i P a r t i c l e ] .
getYmax ( ) ;

i f ( yMaxThis > yMaxD) {
yMaxD = yMaxThis ;

}
double yMinThis = t r a c e s [ i P a r t i c l e ] .

getYmin ( ) ;
i f ( yMinThis < yMinD) {

yMinD = yMinThis ;
}

}
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}
i n t yMax = ( i n t ) Math . c e i l (yMaxD) ;
i n t yMin = ( i n t ) Math . f l o o r (yMinD) ;

System . out . p r i n t l n (”Ymax=” + yMax + ” p i x e l s ;
Ymin=” + yMin+” p i x e l s ”) ;

System . out . p r i n t l n (”Ymax=” + yMax∗ t r a c e s [ 0 ] .
xyConversion ∗1 e6 + ” um; Ymin=” + yMin∗ t r a c e s
[ 0 ] . xyConversion ∗1 e6+” um”) ;

i n t ySpread = yMax − yMin + 1 ;

System . out . p r i n t l n (” ySpread ” + ySpread ) ;

double [ ] yForce = new double [ ySpread ] ;
double [ ] fForce = new double [ ySpread ] ;
double [ ] vForce = new double [ ySpread ] ;
double [ ] aForce = new double [ ySpread ] ;
double [ ] nForce = new double [ ySpread ] ;

f o r ( i n t i = 0 ; i < ySpread ; i++) {
yForce [ i ] = (yMin + i ) ∗ t r a c e s [ 0 ] .

xyConversion ;
fForce [ i ] = 0 ;
vForce [ i ] = 0 ;
aForce [ i ] = 0 ;
nForce [ i ] = 0 ;

}

f o r ( i n t i P a r t i c l e = 0 ; i P a r t i c l e < n P a r t i c l e s ;
i P a r t i c l e++) {

i f ( t r a c e s [ i P a r t i c l e ] != n u l l ) {
f o r ( i n t j = t r a c e s [ i P a r t i c l e ] . t S t a r t ; j <

t r a c e s [ i P a r t i c l e ] . nSpots ; j++) {
i n t f Index = ( i n t ) Math . f l o o r ( ( t r a c e s [

i P a r t i c l e ] . ypData [ j ] − yMin) ) ; //
note : yMin and yMax are in p i x e l s ,
so use ypData

i f ( f Index < 0) {
System . out . p r i n t l n (” negat ive : ” +

fIndex ) ;
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}
i f ( f Index >= ySpread ) {

System . out . p r i n t l n (” too big ”) ;
}
fForce [ f Index ] += t r a c e s [ i P a r t i c l e ] .

fDEPData [ j ] ;
// f o r c e in N

vForce [ f Index ] += t r a c e s [ i P a r t i c l e ] .
vData [ j ] ;

// v in m/ s
aForce [ f Index ] += t r a c e s [ i P a r t i c l e ] .

aData [ j ] ;
// a in m/ s ˆ2

nForce [ f Index ]++;
}

}
}

f o r ( i n t i = 0 ; i < ySpread ; i++) {
i f ( nForce [ i ] !=0) {

fForce [ i ] = fForce [ i ] / nForce [ i ] ;
vForce [ i ] = vForce [ i ] / nForce [ i ] ;
aForce [ i ] = aForce [ i ] / nForce [ i ] ;

}
}

frame . getContentPane ( ) . removeAll ( ) ;
frame . getContentPane ( ) . r epa in t ( ) ;
frame . r e v a l i d a t e ( ) ;
frame . setLayout (new BorderLayout (0 , 5) ) ;

XYSer i e sCo l l e c t i on datase t = new
XYSer i e sCo l l e c t i on ( ) ;

XYSeries s e r i e s 1 = new XYSeries (””) ;
f o r ( i n t i = 0 ; i < ySpread ; i++) {

i f ( nForce [ i ] !=0) {
s e r i e s 1 . add ( yForce [ i ]∗1 e6 , fForce [ i ]∗1 e12 )

;
}

}
datase t . addSer i e s ( s e r i e s 1 ) ;
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JFreeChart chart = ChartFactory . c r e a t e S c a t t e r P l o t
(”DEP Force ” , ”y (um) ” , ”FDEP( y ) (pN) ” , dataset
, P lo tOr i en ta t i on .VERTICAL, true , true , t rue ) ;

ChartPanel chartPanel = new ChartPanel ( chart ) ;
chartPanel . setLayout (new BorderLayout (0 , 5) ) ;
chartPanel . setDomainZoomable ( t rue ) ;
chartPanel . setMouseWheelEnabled ( t rue ) ;
JPanel panel = new JPanel ( ) ;
panel . setLayout (new BorderLayout (0 , 5) ) ;
panel . add ( chartPanel , BorderLayout .CENTER) ;
JPanel cont ro lPane l = new JPanel ( ) ;
cont ro lPane l . add ( createZoomOut ( chartPanel ) ) ;
cont ro lPane l . add ( createShowMain ( showCurvesCols ,

showCurvesRows , nPar t i c l e s , t race s , frame ) ) ;
cont ro lPane l . add ( createSaveForceCurves ( ySpread ,

yForce , fForce , vForce , aForce , nForce ) ) ;
panel . add ( contro lPane l , BorderLayout .SOUTH) ;
frame . add ( panel ) ;
frame . v a l i d a t e ( ) ;
frame . pack ( ) ;
Dimension s c r e e n S i z e = Too lk i t . g e tDe fau l tToo lk i t ( )

. g e tSc r e enS i z e ( ) ;
frame . setBounds (0 , 0 , s c r e e n S i z e . width , s c r e e n S i z e

. he ight ) ;
frame . s e t V i s i b l e ( t rue ) ;

}

p r i v a t e s t a t i c void saveTraces ( i n t nPar t i c l e s ,
Pa r t i c l eTrace [ ] t race s , JFrame frame ) {

// export f i t t e d t r a c e s to csv f i l e
F i l e f i l e = n u l l ;
JFi leChooser f i l e C h o o s e r = new JFi leChooser ( ) ;
System . se tProper ty (” user . d i r ” , f o r c e F o l d e r ) ;
f i l e C h o o s e r . s e tCur rentDi r ec to ry (new F i l e (

System . getProperty (” user . d i r ”) ) ) ;
f i l e C h o o s e r . s e t S e l e c t e d F i l e (new F i l e (”

P a r t i c l e T r a c e s . csv ”) ) ;
i f ( f i l e C h o o s e r . showSaveDialog ( f i l e C h o o s e r ) ==

JFi leChooser .APPROVE OPTION) {
f i l e = f i l e C h o o s e r . g e t S e l e c t e d F i l e ( ) ;
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}

PrintWriter w r i t e r = n u l l ;
t ry {

w r i t e r = new PrintWriter ( f i l e , ”UTF−8”) ;
} catch ( FileNotFoundException |

UnsupportedEncodingException ex ) {
Logger . getLogger ( Par t i c l eTrack ing . c l a s s .

getName ( ) ) . l og ( Leve l .SEVERE, nu l l , ex ) ;
}
// Pr intWriter w r i t e r = new PrintWriter (”

Part i c l eTrack ingData . csv ” , ”UTF−8”) ;
w r i t e r . p r i n t l n (” PartNo , FrameNo( t ) , x , y , yFit ,

vFit , vFitFit , aFitFit , Fdrag , FTotal ,FDEP\n”) ;

f o r ( i n t i P a r t i c l e = 0 ; i P a r t i c l e < n P a r t i c l e s
; i P a r t i c l e++) {

i f ( t r a c e s [ i P a r t i c l e ] != n u l l ) {
t r a c e s [ i P a r t i c l e ] . wr i teOutputFi l e (

w r i t e r ) ;
}

}
w r i t e r . c l o s e ( ) ;

}

p r i v a t e s t a t i c void saveForceCurves ( i n t ySpread ,
double [ ] yForce , double [ ] fForce , double [ ] vForce ,
double [ ] aForce , double [ ] nForce ) {

// export f i t t e d t r a c e s to csv f i l e

JTextFie ld pa r t i c l eD iamete r = new JTextFie ld ( )
;

JTextFie ld appliedPower = new JTextFie ld ( ) ;
JTextFie ld repeatNumber = new JTextFie ld ( ) ;
pa r t i c l eD iamete r . setText ( I n t e g e r . t oS t r i ng ( ( i n t

)Math . f l o o r ( p a r t i c l e R a d i u s ∗2 e6 +0.1) ) ) ;
Object [ ] message = {

” P a r t i c l e Diameter (um) : ” ,
par t i c l eDiameter ,

” Applied Power (dB) : ” , appliedPower ,
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” Repet i t i on Number : ” , repeatNumber
} ;

i n t opt ion = JOptionPane . showConfirmDialog (
nu l l , message , ”Experiment S e t t i n g s ” ,
JOptionPane .OK CANCEL OPTION) ;

i f ( opt ion == JOptionPane .CANCEL OPTION) {
r e turn ;

}
St r ing expId = par t i c l eD iamete r . getText ( )+”um

”+appliedPower . getText ( )+”dB ”+repeatNumber
. getText ( ) ;

F i l e f i l e = n u l l ;
JFi leChooser f i l e C h o o s e r = new JFi leChooser ( ) ;
System . se tProper ty (” user . d i r ” , f o r c e F o l d e r ) ;
f i l e C h o o s e r . s e tCur rentDi r ec to ry (new F i l e (

System . getProperty (” user . d i r ”) ) ) ;
f i l e C h o o s e r . s e t S e l e c t e d F i l e (new F i l e (”

ForceCurve ”+expId +”. csv ”) ) ;
i f ( f i l e C h o o s e r . showSaveDialog ( f i l e C h o o s e r ) ==

JFi leChooser .APPROVE OPTION) {
f i l e = f i l e C h o o s e r . g e t S e l e c t e d F i l e ( ) ;

}

PrintWriter w r i t e r = n u l l ;
t ry {

w r i t e r = new PrintWriter ( f i l e , ”UTF−8”) ;
} catch ( FileNotFoundException |

UnsupportedEncodingException ex ) {
Logger . getLogger ( Par t i c l eTrack ing . c l a s s .

getName ( ) ) . l og ( Leve l .SEVERE, nu l l , ex ) ;
}
// Pr intWriter w r i t e r = new PrintWriter (”

Part i c l eTrack ingData . csv ” , ”UTF−8”) ;

w r i t e r . p r i n t l n (” y (m) [”+ expId +”] ,FDEP (N) [”+
expId +”] ,v (m/ s ) [”+ expId +”] , a (m/ s2 ) [”+
expId +”]”) ;

f o r ( i n t i = 0 ; i < ySpread ; i++) {
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i f ( nForce [ i ] !=0) { //
w r i t e r . p r i n t l n ( yForce [ i ] + ” ,” +

fForce [ i ] + ” ,” + vForce [ i ] + ” ,” +
aForce [ i ] ) ;

}
}
w r i t e r . c l o s e ( ) ;

}

p r i v a t e s t a t i c JButton createZoomOut ( f i n a l ChartPanel
chartPanel ) {

f i n a l JButton auto = new JButton (new
AbstractAct ion (” Reset Zoom”) {

@Override
pub l i c void act ionPerformed ( ActionEvent e ) {

chartPanel . restoreAutoBounds ( ) ;
}

}) ;
auto . setBounds (10 , 10 , 10 , 10) ;
r e turn auto ;

}

p r i v a t e s t a t i c JButton createShowTraces ( f i n a l i n t
showCurvesCols , f i n a l i n t showCurvesRows , f i n a l i n t

nPar t i c l e s , f i n a l Pa r t i c l eTrace [ ] t race s , f i n a l
JFrame frame ) {

f i n a l JButton auto = new JButton (new
AbstractAct ion (”Show Traces ”) {

@Override
pub l i c void act ionPerformed ( ActionEvent e ) {

plotCurves (0 , showCurvesCols ,
showCurvesRows , nPar t i c l e s , t race s ,
frame ) ;

}
}) ;
auto . setBounds (10 , 10 , 10 , 10) ;
r e turn auto ;

300



B.5 Java script to calculate DEP force based on .xml output files
from Trackmate particle tracker

}

p r i v a t e s t a t i c JButton createShowFDEP ( f i n a l i n t
showCurvesCols , f i n a l i n t showCurvesRows , f i n a l i n t

nPar t i c l e s , f i n a l Pa r t i c l eTrace [ ] t race s , f i n a l
JFrame frame ) {

f i n a l JButton auto = new JButton (new
AbstractAct ion (”Work out FDEP”) {

@Override
pub l i c void act ionPerformed ( ActionEvent e ) {

plotFDEP( showCurvesCols , showCurvesRows ,
nPar t i c l e s , t race s , frame ) ;

}

}) ;
auto . setBounds (10 , 10 , 10 , 10) ;
r e turn auto ;

}

p r i v a t e s t a t i c JButton createSaveTraces ( f i n a l i n t
nPar t i c l e s , f i n a l Pa r t i c l eTrace [ ] t race s , f i n a l
JFrame frame ) {

f i n a l JButton auto = new JButton (new
AbstractAct ion (” Save Traces ”) {

@Override
pub l i c void act ionPerformed ( ActionEvent e ) {

saveTraces ( nPar t i c l e s , t race s , frame ) ;
}

}) ;
auto . setBounds (10 , 10 , 10 , 10) ;
r e turn auto ;

}

p r i v a t e s t a t i c JButton c r e a t e I g n o r e ( f i n a l i n t
ignoreTrace , f i n a l Pa r t i c l eTrace [ ] t r a c e s ) {

// f i n a l JButton auto = n u l l ;
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f i n a l JButton auto = new JButton (new
AbstractAct ion (” Ignore Trace ”) {

@Override
pub l i c void act ionPerformed ( ActionEvent e ) {

t r a c e s [ ignoreTrace ] = n u l l ;
}

}) ;
auto . setBounds (10 , 10 , 10 , 10) ;
r e turn auto ;

}

p r i v a t e s t a t i c JButton createShowMain ( f i n a l i n t
showCurvesCols , f i n a l i n t showCurvesRows , f i n a l i n t

nPar t i c l e s , f i n a l Pa r t i c l eTrace [ ] t race s , f i n a l
JFrame frame ) {

f i n a l JButton auto = new JButton (new
AbstractAct ion (”Show Main Menu”) {

@Override
pub l i c void act ionPerformed ( ActionEvent e ) {

showMainMenu (0 , showCurvesCols ,
showCurvesRows , nPar t i c l e s , t race s ,
frame ) ;

}
}) ;
auto . setBounds (10 , 10 , 10 , 10) ;
r e turn auto ;

}

p r i v a t e s t a t i c JButton createNextCurves ( f i n a l i n t
i S ta r t , f i n a l i n t showCurvesCols , f i n a l i n t
showCurvesRows , f i n a l i n t nPar t i c l e s , f i n a l
Par t i c l eTrace [ ] t race s , f i n a l JFrame frame ) {

f i n a l JButton auto = new JButton (new
AbstractAct ion (” Next . . . ” ) {

@Override
pub l i c void act ionPerformed ( ActionEvent e ) {
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plotCurves ( i S ta r t , showCurvesCols ,
showCurvesRows , nPar t i c l e s , t race s ,
frame ) ;

}
}) ;
auto . setBounds (10 , 10 , 10 , 10) ;
r e turn auto ;

}

p r i v a t e s t a t i c JButton createSaveForceCurves ( f i n a l i n t
ySpread , f i n a l double [ ] yForce , f i n a l double [ ]

fForce , f i n a l double [ ] vForce , f i n a l double [ ]
aForce , f i n a l double [ ] nForce ) {

f i n a l JButton auto = new JButton (new
AbstractAct ion (” Export Force Curves ”) {

@Override
pub l i c void act ionPerformed ( ActionEvent e ) {

saveForceCurves ( ySpread , yForce , fForce ,
vForce , aForce , nForce ) ;

}
}) ;
auto . setBounds (10 , 10 , 10 , 10) ;
r e turn auto ;

}

}
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C.1 Fitted curves for DEP force measurements

of latex beads at various power levels
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C.1 Fitted curves for DEP force measurements of latex beads at
various power levels

Figure C.1: Force measurements from tracking movement of 3 µm beads (a) and

10 µm beads (b) at various positions along the SAW standing wave, for various

power input levels (different colours).
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C.2 Fitted curves with raw datapoints for con-

ductivity sweeps of DPS cells as a function

of passage number

Figure C.2: Fitted curves with raw datapoints for conductivity sweeps of dental pulp

stromal cells (DPS cells), for cells at Passage 3 and 5 (Section 6.5). The graphs show

that as the liquid conductivity is increased (at 10 MHz frequency), a progressively

higher proportion of DPS cells experience nDEP, as their polarisability becomes lower

relative to that of the liquid. The conductivities (x-axis) at which the red line passes

through the point nDEP = 50% (y-axis) was used to plot Figure 6.18 in the main text.
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C.2 Fitted curves with raw datapoints for conductivity sweeps of
DPS cells as a function of passage number

Figure C.3: Fitted curves with raw datapoints for conductivity sweeps of dental

pulp stromal cells (DPS cells), for cells at Passage 6-9 (Section 6.5). The graphs

show that as the liquid conductivity is increased (at 10 MHz frequency), a pro-

gressively higher proportion of DPS cells experience nDEP, as their polarisability

becomes lower relative to that of the liquid. The conductivities (x-axis) at which

the red line passes through the point nDEP = 50% (y-axis) was used to plot

Figure 6.18 in the main text.
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