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Abstract 

Cellular senescence, characterised by the development of a toxic secretory phenotype in 

response to persistent DNA damage, has been studied in proliferating cells but is not well 

understood in post-mitotic neurones. Recent evidence showed a neuronal senescent-like 

state in response to persistent DNA damage in vivo, which could contribute to neuronal 

dysfunction in aging and neurodegeneration. The current study hypothesised that 

oxidative stress, a hallmark of neurodegeneration, activates a persistent DNA damage 

response and promotes neuronal senescence. To investigate this, activation of senescence 

in response to oxidative DNA damage was studied in human post-mitotic neurones in 

culture, as well as in the brains of control and ALS/MND donors.  

For the in vitro study, post-mitotic LUHMES were stressed with a double dose of 50 µM 

H2O2, which caused a persistent DNA damage in the form of double-strand breaks that 

was detectable 96 hours’ post-stress. Expression of the “classical” senescence marker SA-

β-gal and formation of senescence-associated heterochromatin foci (SAHF) were 

evaluated at the 96 hours-timepoint, using cytochemical methods.  A co-culture system of 

double stressed LUHMES and healthy LUHMES was developed to study DNA damage 

propagation; gene expression profiling was used to investigate changes in known 

senescence pathways in 96 hours-double stressed LUHMES. Results from this study 

revealed a highly variable SA-β-gal activity in healthy and double stressed LUHMES; 

SAHF were not present in these cells and propagation of DNA damage was not seen in 

the co-culture system. Transcriptomic analysis of double stressed LUHMES revealed 

dysregulation of the APC/C:Cdh1 cell cycle regulatory pathway, ATR signalling and 
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mitochondrial complex I activity, which could be related to oxidative stress but not to 

senescence.   

The current work also investigated the relevance of neuronal senescence in 

neurodegeneration. “Classical” senescence (SA-β-gal, p16 and p21) and oxidative DNA 

damage markers (8-OHdG and γH2AX) were investigated in the motor cortex, spinal 

cord and frontal association cortex of ALS/MND and control donors using 

immunohistochemistry. Transcriptome analysis of LCM neurones obtained from the 

frontal cortex of control and ALS/MND donors was used to investigate early changes in 

gene expression that could be linked to a senescent-like state.      

Transcriptomic analysis suggested dysregulation of DDR, cell cycle and oxidative 

phosphorylation pathways as a consequence of the persistent oxidative DNA damage, but 

no of “classical” senescence was found in the in vitro neuronal model.  In vivo, p21 

expression was found in neurones and glia, whereas p16 was exclusively expressed in 

glial cells. A significantly higher percentage of p21+ neurones was detected in the frontal 

association cortex of ALS/MND donors. Transcriptome analysis showed alteration of 

DDR pathways and mitochondrial function in these neurones, but did not reveal 

dysregulation of “classical” senescence pathways.  

Neurones may activate a senescent-like state in response to persistent DNA damage but 

signalling pathways involved in this mechanism may differ from the ones described in 

mitotic cells. Thus, “classical” senescence markers should be used cautiously when 

studying neuronal senescence, as they could reflect induction of related but different 

mechanisms in these cells. In order to study neuronal senescence, it is necessary to 

understand first the cell cycle regulatory mechanisms that occur in neurones as part of the 

DDR. 
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Chapter 1. General introduction 

1.1. The biology of cellular senescence 

Cellular senescence was first described by Hayflick and Moorhead in 1961; their 

experiments in human foetal lung fibroblasts provided strong evidence of the limited 

proliferative capacity of mitotic cells in culture (Hayflick and Moorhead, 1961). In a later 

study, Hayflick also reported that human foetal fibroblasts stopped dividing after a 

specific amount of time; their growth arrest was not caused by culture conditions but 

depended on the number of doublings that fibroblasts went through, rather than on the 

sub-culturing ratio. He referred to this mechanism as replicative senescence and 

suggested that limited proliferative capacity could be affected by the age of the cell’s 

donor (Hayflick, 1965). Even though Hayflick’s experiments did not confirm this last 

belief, research carried out by Hayflick and colleagues shed a light on what could be 

occurring to cells in vivo and proposed replicative senescence as a mechanism that could 

influence the lifespan of an organism.  

 

Telomere shortening was later described as the event causing replicative senescence in 

vitro, but it was soon revealed that oncogene expression and genotoxic stress were 

involved in the induction of a similar mechanism. This phenotype was characterised by a 

stable permanent cell cycle arrest and by the development of a senescence-associated 

secretory phenotype (SASP). Early studies of senescence suggested a main role as a 

tumour suppressor mechanism, but at the same time, evidence proposed senescence as a 

contributor to the gradual decline in organ function that characterises ageing.  More 

recent reports have also shown that cellular senescence plays a role in embryonic 
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development, tissue remodelling and wound healing  (Demaria et al., 2014; Muñoz-Espín 

et al., 2013; Storer et al., 2013)  

 

The biology of cellular senescence is very complex and it involves activation of 

signalling cascades that participate in the induction and maintenance of a senescent 

phenotype in the form of a permanent cell cycle arrest, and the reinforcement and spread 

of the senescent state through the SASP. These cascades and their intricate interactions 

are discussed in the following section.  

   

1.1.1. Characteristics of senescent cells: effector pathways and the SASP 

Senescence can be activated by different stimuli and is classified accordingly in 

replicative senescence, oncogene-induced senescence (OIS), and stress-induced 

senescence. Replicative senescence as described by Hayflick and Moorhead, was later 

linked to a telomere shortening dependent mechanism. Work conducted by Bodnar et al. 

in retinal pigment cells and foreskin fibroblasts in culture showed that the expression of 

the human telomerase reverse transcriptase catalytic subunit (hTRT) in these cells 

prolonged their lifespan in culture. Compared to hTRT- clones, cells expressing the 

enzyme had longer telomeres and were able to continue dividing in culture; this evidence 

suggested a link between telomere attrition and loss of replicative capacity in vitro 

(Bodnar et al., 1998). OIS was first described in human and mice fibroblasts in culture 

exposed to prolonged expression of oncogenic Ras, which caused a permanent cell cycle 

arrest in G1 (Gap 1 phase) (Serrano et al., 1997). Other studies have also shown that 

expression of BRAFV600E (serine/threonine-protein kinase B-Raf) oncogene (Cisowski et 

al., 2016; Michaloglou et al., 2005), as well as loss of tumour suppressor PTEN 

(phosphatase and tensin homolog) also activate senescence-associated growth arrest 
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(Alimonti et al., 2010; Chen et al., 2005b). Finally, stressed-induced senescence results 

from the exposure to sub-lethal stresses, including oxidative stress, UVB (ultraviolet B) 

light and ionising radiation (Barascu et al., 2012; Coleman et al., 2013; Liao et al., 2014; 

De Magalhães et al., 2002; Parrinello et al., 2003). While specific characteristics have 

been seen for each of these 3 mechanisms, one main event is involved in the induction of 

a permanent growth arrest in all of them: a persistent DNA damage and a DNA damage 

response (DDR). A persistent DDR orchestrates the permanent cell cycle arrest and 

promotes the development of the SASP through two main effector pathways, the p53/p21 

and the p16/pRB pathways (Figure 1.1).  

 

1.1.1.1. Senescence-associated cell cycle arrest induction via p53/p21 and p16/pRB 

signalling 

DNA damage, mainly in the form of double strand breaks (DSBs), activates a DDR and 

leads to repair, apoptosis or senescence, depending on the intensity of the damage. DSBs 

are detected by the highly conserved protein kinases ataxia-telangiectasia mutated (ATM) 

and ATM-and Rad3-related (ATR) (Bensimon et al., 2010; Kozlov et al., 2016; Matsuoka 

et al., 2007); this event initiates the DDR. After sensing DNA damage and in order to 

maintain genome integrity, ATM/ATR trigger a complex response through 

phosphorylation of their downstream targets Chk1 (checkpoint kinase 1), Chk2 

(checkpoint kinase 2) and MK2 (mitogen-activated protein kinase-activated protein 

kinase 2); this response involves the recruitment of the DNA repair machinery, control of 

cell cycle checkpoints and changes in gene expression (Han et al., 2014; Liu et al., 2007, 

2000; Sørensen et al., 2005). To allow for the damage to be repaired, a transient cell cycle 

arrest is mediated by stabilisation of p53 directly by ATM (ataxia telangiectasia mutated) 

or through Chk2 (Hirao et al., 2002; Mak, 2000), followed by activation of the cyclin-
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dependent kinase (cdk) inhibitor p21.    P21 induces the arrest at G1 thanks to the 

inhibition of cyclin-cdk2/4 complexes, E2F transcription factors that regulate expression 

of replication and cell cycle progression genes, and proliferating cell nuclear antigen 

(PCNA) (Chang et al., 2000; Wade Harper et al., 1993; Waga et al., 1994). This 

temporary growth arrest is necessary for cells to activate the appropriate repair 

mechanisms in response to DNA lesions and to prevent the propagation of the damage to 

the next generation of cells. However, under prolonged expression of p21, this arrest can 

turn into a permanent event, and promote the development of senescence.  

 

The mechanisms that control the transition from a temporary to an irreversible cell cycle 

arrest are still not well understood. However, it has been shown that activation of the 

p53/p21 axis alone is not enough to promote a state of permanent cell cycle and that 

activation of p16 is necessary to accomplish this important characteristic of the senescent 

phenotype. Cdk inhibitor p16 also prevents cell proliferation and participates in the 

maintenance of senescence. The role of p16 in cell cycle arrest is accomplished through 

inhibition of cyclin D/CDK4 and cyclin D/CDK6 complexes; this action prevents 

inactivation of the phosphorylated retinoblastoma protein (pRB) and results in the 

repression of E2F dependent-transcription of cell proliferation genes (Li et al., 1994). 

 

The interaction between p21 and p16 pathways in senescence is complex: they have 

differential roles in the induction and maintenance of the cell cycle arrest and the 

development of the SASP, but can also activate senescence independently. Stein et al. 

(1999) studied the role of both effector pathways in senescent human lung fibroblasts 

through the dynamics of the cell cycle arrest. Their experiments revealed different levels 

of accumulation of p16 and p21 in senescent fibroblasts as they halted proliferation. p53-
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dependent activation of p21 resulted in the initial and temporary cell cycle arrest, after 

which p21 levels started to decrease; in contrast, p16 expression increased after the arrest 

and remained elevated for a 2 months, suggesting that p21 is necessary for the induction 

of cell cycle arrest but p16 is crucial for its long term maintenance (Stein et al., 1999). In 

later studies, serial passageing and oncogene activation did not cause senescence in mice 

fibroblasts obtained from a p16/p21 double knock-down model, while some features of 

senescence were detected in p16 and p21 knock-outs and wild type fibroblasts, suggesting 

a cooperative action of p16/p21 in senescence in vitro (Takeuchi et al., 2010). More 

recent reports show the involvement of other pathways in maintaining an irreversible cell 

cycle arrest.  In vitro studies conducted by Demidenko et al. (2010) and Korotchkina et 

al. (2010) demonstrate that activation of mTOR signalling promotes p53-mediated 

irreversible senescence and that its inhibition leads to quiescence instead, despite p53 

being active (Demidenko et al., 2010; Korotchkina et al., 2010). A more in depth analysis 

of p53-mTOR signalling revealed an important role for Akt activation mediated by 

mTOR in the induction of an irreversible cell cycle arrest in vitro, as well as in the 

development of other features of senescence, including the SASP (Kim et al., 2017).   

 

In summary, a persistent DDR is the key mechanism required to induce a senescence-

associated cell cycle arrest through its effector cascades p53/p21 and p16/pRB. 

Interestingly, senescence can also be induced independently of these pathways, a 

phenomenon that has been mainly seen in oncogene-induced senescence in vitro models 

(Bryson et al., 2017; Olsen et al., 2002).   
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Figure 1.1 Senescence inductors and signalling pathways. 

Telomere-shortening, oncogenic signalling and genotoxic stress, such as oxidative stress, 

drive senescence through the activation of a persistent DDR. The p53/p21 and p16/pRb 

pathways are activated by the DDR and together promote an irreversible cell cycle 

arrest, which is accompanied by repression of proliferation genes and by the 

development of a toxic secretory phenotype.  
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1.1.1.2. The senescence-associated secretory phenotype (SASP) 

As part of the senescent program, cells develop a senescence-associated secretory 

phenotype (SASP) characterised by the secretion of cytokines, chemokines, growth 

factors and proteases. The SASP promotes a pro-inflammatory and pro-oxidant 

environment that can reinforce the senescent state in already damaged cells and can also 

spread DNA damage to neighbouring cells (Coppé et al., 2010; Kuilman and Peeper, 

2009). These characteristics may reflect the role that the SASP has in the ageing process 

and in the pathophysiology of age-related diseases (Figure 1.1 and Figure 1.2).   

 

Coppé et al. (2008) first described the SASP in cultured pre-senescent and senescent 

human fibroblasts from different strains and human prostate epithelial cells (PrECs).  

Conditioned media from these cells was analysed using modified antibody arrays and 

revealed secretion of high levels of inflammatory cytokines, immune modulators, growth 

factors, cell surface proteins and survival factors, by senescent cultures. The components 

of the SASP varied between strain and cell types, although the study identified a core 

group of molecules to be highly expressed in all senescent cultures, including interleukin-

6 (IL-6), interleukin-8 (IL-8) and CXCL1 (Coppé et al., 2008). Different studies have 

since then identified various molecules and pathways associated to the SASP. For 

instance, the retinoic-acid-inducible-gene-1 (RIG-1) signalling pathway, which is known 

to participate in the immune response against viruses, was shown to regulate expression 

of IL-6 and IL-8 in senescent human fibroblasts and umbilical vein endothelial (HUVEC) 

cells (Liu et al., 2011).  

 

It is of importance to consider that, despite a number of common SASP factors have been 

identified in different studies on senescence, its composition is highly dependent on the 
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type of cell and the time at which SASP expression is analysed. In a recent report, the 

heterogeneity of the SASP was investigated using a gene expression profiling approach in 

which whole-transcriptome datasets were used to identify transcriptomic signatures 

associated with specific senescence-inducing stresses in fibroblasts, keratinocytes and 

melanocytes. Interestingly, results showed a high variability in the expression of SASP 

components, such as IL1, IL6, IL11, IGFBP2, CXCL8, VEGFA, MMP1, CCL2 and CCL5, 

between cell types and time-points at which the experiments were performed, thus 

highlighting the relevance of time and cell identity in the composition of the SASP 

(Hernandez-Segura et al., 2017).  

 

Further studies have investigated the regulatory mechanisms of the SASP. These reports 

have shown that the SASP develops over several days, rather than being activated 

immediately after cell cycle arrest; most importantly, a DDR signalling is necessary for 

the initiation of the SASP and does not depend directly on the p53/p21 or p16/pRb 

pathways (Coppé et al., 2008, 2010; Rodier et al., 2009). Loss of ATM, NBS1 (nibrin, a 

component of the MNR complex that interacts with ATM) or CHK2 reduced the 

expression of core SASP components IL-6 and IL-8 in human fibroblasts in culture, 

whereas p53 deficient fibroblasts still induced a SASP in the absence of cell cycle arrest 

and p16 expression without DNA damage did not induce the phenotype (Rodier et al., 

2009). Thus, expression of the SASP is mainly dependent on the activation of a persistent 

DDR.  

 

Transcriptional regulation of the SASP components is linked to activity of the NF-κB and 

C/EBPβ transcription factors (Acosta et al., 2008, 2013; Chien et al., 2011). Kuilman et 

al. (2008) confirmed IL-6 and IL-8 to be a direct transcriptional target of C/EBPβ in 
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human senescent fibroblasts; together, IL-6 and C/EBPβ participated in a positive-

feedback loop that promoted the maintenance of a senescence-growth arrest and SASP. 

C/EBPβ depletion resulted in inhibition of IL-6 and IL-8 expression, while depletion of 

IL-6, C/EBPβ and IL-8 levels also showed a marked decrease; both events promoted 

senescence bypass and inhibited expression of SASP components (Kuilman et al., 2008). 

In a different study, ectopic expression of IL-1α was shown to trigger senescence by 

induction of oxidative DNA damage, a DDR and p53/p21 signalling activation, together 

with IL-6 and IL-8 expression (Acosta et al., 2013). More recent studies that explore the 

SASP have strengthened the evidence on NF-κB-dependent regulation of IL-6 and IL-8 

secretion as part of the SASP. Using a computational model and publically available gene 

interaction data, Meyer et al. (2017) were able to predict in-silico knock-outs that could 

inhibit IL-6 and IL-8 secretion in response to a persistent DNA damage. One of the 

principal knock-out candidates was the NF-κB Essential Modulator (NEMO); validation 

studies in murine dermal fibroblasts confirmed the depletion of NEMO inhibited 

expression of IL-6 and IL-8 at the messenger RNA (mRNA) and protein levels (Meyer et 

al., 2017).  

 

It has been shown that cells undergoing different forms of senescence (oncogene, 

replicative and drug-induced senescence) have the ability to promote reactive oxygen 

species (ROS)-mediated DNA damage and a DDR in neighbouring cells; as a 

consequence, bystander cells activate TGFβ/SMAD and IL-1/NF-κB signalling pathways 

that when inhibited, suppressed the DDR (Hubackova et al., 2012). Experiments 

performed in human lung fibroblasts showed increased ROS production after activation 

of the NADPH oxidase 4 (Nox4) enzyme as part of the oncogenic-induced senescence 

program (Kodama et al., 2013). Stimulation with IL-6 also caused a pro-oxidant effect on 
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human fibroblasts and the induction of senescence characterised by oxidative DNA, p53-

dependent growth arrest and up-regulation of IL-1α/β, IL-6 and CXCL8 transcripts 4 days 

after IL-6 stimulation (Kojima et al., 2012).  

 

Expression of SASP factors has been detected in senescent cells in vivo.  NF-κB, IL-1α 

and major SASP components (IL-6, IL-8, MCP-1, PAI-1, PAI-2 and TNFα) were up-

regulated in enriched populations of myeloid cells and osteocytes obtained from ageing 

mice (Farr et al., 2016). Gene expression analysis in samples from human breast cancer 

and prostate cancer tumours also showed expression of the SASP-related transcripts 

IL1A, IL1B, IL6, and IL8 (Capell et al., 2016). Furthermore, SASP cytokines such as IL-

6, IL-8, VEGF (vascular endothelial growth factor) and PAI-1 (plasminogen activator 

inhibitor), were detected in the vitreous humour of patients with proliferative diabetic 

retinopathy (Oubaha et al., 2016) and up-regulation of TNF and CCL2 mRNA, two pro-

inflammatory cytokines associated with the SASP, was detected in adipose tissue from 

diabetic patients (Minamino et al., 2009).    

 

All these data together suggest that SASP is not a homogeneous paracrine mechanism, as 

it varies between cell types and also depends on the conditions that trigger the DDR. The 

SASP program may not only be reinforcing the senescence state in already growth 

arrested cells, but it could also be promoting damage and senescence activation in 

surrounding cells through an oxidative and pro-inflammatory environment. 
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Figure 1.2 Autocrine and paracrine effects of the SASP. 

Through the increase in ROS production and the release of cytokines, chemokines, 

proteases, growth factors the senescent cells reinforce the senescent state (autocrine 

SASP) at the same time that they induce a senescent-associated growth arrest in 

neighbouring cells. These events are useful in the context of cancer and the anti-

tumorigenic role of senescence in young organisms, however, in an ageing context, the 

SASP promotes cellular dysfunction and contributes to degenerative processes.   
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1.1.2. Biomarkers of cellular senescence  

Cellular senescence in in vitro models is accompanied by morphological changes in the 

cells that are not seen in senescence in vivo. These changes are detectable as an enlarged 

and flattened cell body, vacuolisation and accumulation of stress granules (Muñoz-Espín 

et al., 2013; Serrano et al., 1997). Since these characteristics are exclusive of in vitro 

models of senescence, research has focused on the study of biomarkers that can facilitate 

in vitro and in vivo identification of senescence activation. To date, a specific marker of 

senescence is still lacking, thus investigation of this mechanism relies on a group of 

markers that are associated with the effector mechanisms of senescence and that in 

combination suggest senescence induction (Figure 1.3).  

 

1.1.2.1. DNA damage, DDR and cell cycle arrest markers 

Examination of the gene and protein expression mediators of the DDR and the p53/p21 

and p16/pRB signalling pathways can partially help in the identification of senescent cells 

in culture and in tissue. For instance, detection of DNA damage and activation of a DDR 

can be achieved using known DNA damage markers, such as phosphorylated histone 

H2AX (γH2AX), which correlates with the formation of DSBs (Mariotti et al., 2013; 

Rogakou et al., 1998). Analysis of the expression of ATM, p16, p53 and p21 has also 

been used to detect senescence-associated cell cycle arrest in response to DDR activation 

(Dungan et al., 2017; Herbig et al., 2004; Hewitt et al., 2012; Kim et al., 2017). 

Moreover, the use of proliferation markers, such as Ki67, and proliferation assays like 

bromodeoxyuridine (BrdU) labelling, can be used to confirm growth arrest in cells 

suspected of senescence activation (Biran et al., 2017; Lawless et al., 2010; Serrano et al., 

1997). 
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1.1.2.2. Senescence-associated- β-galactosidase 

One of the first markers to be described for the in vitro detection of senescent cells was 

the increased activity of a lysosomal β-galactosidase at pH6 (Dimri et al., 1995; Lee et al., 

2006). Senescence-associated-β-galactosidase (SA-β-gal) results from the expression of 

the GLB1 gene, which encodes for a β-D-galactosidase. The activity of this enzyme is 

optimal at pH4-4.5, but in senescent cells, increased expression of the mRNA and protein 

allows its detection at suboptimal pH conditions (Kurz et al., 2000; Lee et al., 2006). SA-

β-gal activity can be detected in vivo and in cultured cells by incubating fixed samples 

with the enzyme substrate, which results in either the precipitation of a coloured 

compound or in the emission of a fluorescent signal, both detectable by microscopy 

(Debacq-Chainiaux et al., 2009).  

 

The role of SA-β-gal in senescence is still not well understood, although it is known that 

its activity in senescent cells results from an increased lysosomal content (Kurz et al., 

2000; Lee et al., 2006) that could be linked to up-regulation of autophagy (Gerland et al., 

2003; Narita et al., 2011). To date, SA-β-gal activity is one of the main indicators of 

senescence and is usually included in the panel of markers used to identify replicative, 

oncogene and stress-induced senescence (Chan et al., 2016; Gao et al., 2016; Singh et al., 

2016). However, several reports, starting with early studies by Dimri et al. (1995), have 

suggested that SA-β-gal activity is not a universal marker of senescence, and that its 

activity could vary depending on the cell type or tissue that is being investigated (Dimri et 

al., 1995; De Magalhães et al., 2004; Piechota et al., 2016; Yegorov et al., 1998). These 

limitations will be discussed in more detail in Chapters 3, 5 and 6 of this thesis.  
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1.1.2.3. Senescence-associated heterochromatin foci (SAHF) 

Senescence is also characterised by changes in chromatin structure that can be identified 

as senescence-associated heterochromatin foci (SAHF). Narita et al. (2003) described 

SAHF formation in senescent human fibroblasts using electron and confocal microscopy 

to localise heterochromatin sites within the nuclei of the cells. Their studies showed 

formation of dense DAPI (4',6-diamidino-2-phenylindole) positive foci in replicative, 

oncogene-induced and stress-induced senescent cells in vitro but not in quiescent cells; 

SAHF development was dependent on activation of the p16/pRB signalling cascade, 

since inactivation of this pathway prevented SAHF formation (Narita et al., 2003). Each 

heterochromatin focus corresponds to one chromosome region that is identified by the 

accumulation of heterochromatin proteins and histone modifications known to be 

involved in gene repression. SAHF components include macroH2A, a histone variant 

known to participate in gene silencing, high mobility group A (HMGA) proteins, which 

induce SAHF formation through p16 activation, and the heterochromatin markers di- or 

tri-methylated lysine 9 histone H3 (H3K9Me2/3) and bound HP1 proteins (Funayama et 

al., 2006; Narita et al., 2003, 2006; Zhang et al., 2005). Taking this data into account, it 

has been suggested that SAHF could contribute to the irreversibility of the cell cycle 

arrest in senescent cells by silencing expression of proliferative genes, including E2F 

targets (Narita et al., 2003; Zhang et al., 2005).  

 

Detection of SAHF formation could be helpful in the detection of senescent cells (Aird 

and Zhang, 2013).   However, as it occurs with SASP components, SAHF formation 

could also depend on cell type and the stimuli that activates senescence (Kosar et al., 

2011; Di Micco et al., 2011), thus, SAHF development or absence in vivo and in vitro 

need to be interpreted carefully.  
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Figure 1.3 Classical markers of cellular senescence. 

Identification of senescent cells in vivo and in vitro relies in a panel of markers that in 

combination suggest activation of senescence. This panel comprises the detection of 

increased SA-β-gal activity, expression of the DDR markers γH2AX (red star) and/or 

ATM, confirmation of cell cycle arrest through proliferation marker Ki67 and BrdU 

assay, expression of the main proteins involved in the p53/p21 and p16/pRb signalling 

cascades, changes in chromatin organisation in the form of SAHF (senescence-

associated heterochromatin foci) (green star) and secretion of SASP-related cytokines 

and increased ROS.  
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1.2. Senescence in ageing and age-related diseases 

Ageing is characterised by the progressive loss of physiological functions that ultimately 

results in tissue dysfunction of an organism. Deterioration of the normal physiological 

processes increases our vulnerability to environmental factors, which can lead to the 

development of age-related diseases, such as cardiovascular disease, type 2 diabetes 

(T2D), cancer and neurodegenerative diseases (Loaiza and Demaria, 2016; Niccoli and 

Partridge, 2012; Stefanatos and Sanz, 2017). The underlying mechanisms of ageing are 

not clearly understood, however, several cellular and molecular hallmarks have been 

shown to contribute to this mechanism, including cellular senescence (López-Otín et al., 

2013).  

 

Cellular senescence is recognised as an anti-tumorigenic mechanism that prevents tumour 

development early in life (Braig et al., 2005; Chen et al., 2005b; Katlinskaya et al., 2016; 

Serrano et al., 1997). However, senescence can become detrimental with age and can 

contribute to the development of age-related pathologies. Hayflick and Moorhead 

findings on senescence were the first to suggest a link between senescence and ageing 

(Hayflick, 1965; Hayflick and Moorhead, 1961). Further work identified accumulation of 

senescent cells in tissue from ageing mammals. Krishnamurthy et al. (2004) assessed 

accumulation of p16+ cells in the tissue of young and old rodents; their results indicated 

an age-associated increase in the expression of p16 in different organs, which correlated 

with increased SA-β-gal activity (Krishnamurthy et al., 2004). Moreover, clearance of 

p16+ cells in a progeroid murine model delayed the onset of age-related phenotypes that 

are known to occur in this model, including cataract and sarcopenia development (Baker 

et al., 2011). In humans, accumulation of senescent cells has been implicated in various 

age-related pathologies, including pulmonary fibrosis (Minagawa et al., 2011; Schafer et 
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al., 2017), obesity, type 2 diabetes and metabolic syndrome (Aravinthan et al., 2014; Kim 

et al., 2006; Markowski et al., 2013), cardiovascular disease (Minamino et al., 2002) 

cancer (Demaria et al., 2017; Dou et al., 2017; Lugo et al., 2016)  and neurodegeneration 

(Al-Mashhadi et al., 2015; Bhat et al., 2012; Simpson et al., 2010, 2014). Telomere 

shortening is one of the factors that could be promoting senescence in ageing. Together, 

this evidence suggests an important role of senescence in the ageing and in the 

development and progression of age-related diseases. 

 

Telomere-attrition and oncogene activation could be implicated in the induction of 

senescence in ageing. It is known that a decrease in telomere-length occurs naturally as 

part of the DNA replication mechanism over continuous cellular divisions. This event 

leads to accumulation of un-repairable DNA damage, activation of a DDR and a 

senescence-associated cell cycle arrest (Fumagalli et al., 2012; Herbig et al., 2004; Hewitt 

et al., 2012). Oncogenes also trigger a DNA damage response as a consequence of 

replication stress and, interestingly, ROS accumulation, which leads to the activation of 

senescence pathways (Bartkova et al., 2006; Di Micco et al., 2006, 2011; Ogrunc et al., 

2014).  

 

Apart from age-related telomere shortening and oncogene expression, strong genotoxic 

stress, such as oxidative stress, can also damage telomeric and non-telomeric DNA 

regions, causing a persistent DDR response and driving senescence (Brandl et al., 2011; 

Crowe et al., 2016; Kurz, 2004; Venkatachalam et al., 2017). Accumulation of 

unrepairable DSBs in non-telomeric regions has been shown in senescent human and 

mice fibroblasts in culture (Sedelnikova et al., 2004); DNA damage accumulation could 

result from a constant exposure to an oxidative environment.  
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ROS are known signalling molecules that participate in physiological functions under 

normal conditions but are also the bypass products of cellular metabolism (Ray et al., 

2012; Schieber and Chandel, 2014). An imbalance between ROS production and the anti-

oxidant mechanisms of the cells can cause oxidative stress and promote oxidative damage 

to proteins, lipids and nucleic acids. Evidence of increased ROS and oxidative DNA 

damage has been reported in human ageing organs, including the brain (Al-Mashhadi et 

al., 2015; Guest et al., 2014; Massudi et al., 2012; Mecocci et al., 1999; Simpson et al., 

2014). The age-related increase in ROS could cause DNA damage accumulation and 

drive senescence. ROS have been implicated in the induction of senescence and in the 

autocrine and paracrine effects of the SASP. Both telomere-shortening and oncogenic 

signalling have been shown to promote senescence activation via ROS accumulation 

(Ameziane-El-Hassani and Dupuy, 2017; Lee et al., 1999; Passos et al., 2010) however, 

oxidative stress can directly cause oxidative DNA damage as well. For instance, sub-

lethal concentrations of H2O2 can cause oxidative DNA damage in myoblasts in vitro and 

drive senescence through the p53/p21 axis; moreover, senescence induction is 

accompanied by increased SA-β-gal activity and SAHF formation (Venkatachalam et al., 

2017). In a different report, persistent exposure to low levels of H2O2 caused long-term 

increased p21 expression in head and neck squamous carcinoma cells (Fitzgerald et al., 

2015).  Interestingly, long-term expression of p21 causes mitochondrial dysfunction and 

ROS accumulation, which reinforce the senescent phenotype by generating oxidative 

DNA damage and maintaining a persistent DDR (Passos et al., 2010).  

 

In summary, a persistent DNA damage response and the induction of senescence could be 

mediated by ROS accumulation, a hallmark of the ageing process. This event could 
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contribute to tissue dysfunction through the SASP and promote the development of age-

related pathologies, including neurodegeneration.  

   

1.2.1. Senescence in brain ageing and in neurodegeneration 

Cellular senescence could contribute to brain ageing and disease. In recent years, several 

reports have revealed evidence of cellular senescence in the brain, mainly in proliferation-

competent cells, but also in post-mitotic neurones. The implications of neuronal 

senescence in ageing and in the neuronal dysfunction that characterises disorders such as 

Alzheimer’s disease (AD), Parkinson’s disease (PD) and amyotrophic lateral sclerosis 

(ALS; or motor neurone disease, MND) are still not clear. However, investigation of this 

mechanism could reveal a novel pathogenic process involved in age-related brain 

dysfunction and could extend our understanding of neurodegenerative diseases.  

 

1.2.1.1. Senescence in astrocytes and microglia 

Astrocytes and microglia have been shown to senescence in culture and in vivo through 

activation of stress-induced or replicative senescence. Induction of replicative senescence 

has been described in rat microglial cells in vitro and in vivo (Flanary and Streit, 2003, 

2004). More recently, an age-dependent increase in myelin fragmentation in the white 

matter of ageing mice was reported, which caused formation of insoluble lysosomal 

microglial inclusions that contributed to microglial dysfunction and senescence, 

suggesting that microglia also activate a senescent program in response to stress 

(Safaiyan et al., 2016). Contradicting evidence was shown in a different study, where 

detection of SA-β-gal in the white matter of an ageing cohort did not colocalise with 

microglial marker CD68 (Al-Mashhadi et al., 2015); however, it is possible that 

senescence induction in microglia depends on whether these cells are in a quiescent state 
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or express a reactive proliferative phenotype.  Taking this into account, a more thorough 

study of the mechanisms that drive microglial senescence and its implications in 

neurodegeneration is still needed.  

 

Current evidence on astrocyte senescence is more compelling and suggests that astrocytes 

can activate senescence through the same signalling pathways that have been described in 

other cell types, including fibroblasts. For instance, cultured human and rat astrocytes 

developed a p21 and pRb-dependent senescence-associated growth arrest in response to 

oxidative stress; moreover, these cells underwent chromatin remodelling and increased 

ROS generation that probably related to gene silencing and the development of a SASP 

(Bitto et al., 2010). Subsequent studies confirmed these findings and expanded the 

evidence on astrocyte senescence in vitro and in vivo. Analysis of the transcriptome of 

senescent human astrocytes revealed downregulation of cell cycle genes and of transcripts 

implicated in the protective functions of astrocytes (Crowe et al., 2016). Moreover, 

presence of astrocytes expressing p16 and increased SA-β-gal activity was demonstrated 

in the white matter of the ageing human brain (Al-Mashhadi et al., 2015). This data 

suggest that age-related induction of senescence in astrocytes could affect their 

functionality and impact progression of neurodegeneration.  

 

1.2.1.2. The paradox of neuronal senescence 

Contrary to astrocytes and microglia, neurones exist in a state of natural cell cycle arrest 

and would not be predicted to activate senescence.  However, in the past few years, 

several studies have shown the induction of neuronal senescence both in vitro and in vivo 

and have challenged the idea of senescence being limited to proliferating cells and have 

proposed a role for neuronal senescence in age-related neuronal dysfunction.  
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In 2010, Uday Bhanu et al. reported increased SA-β-gal activity in long-term cultured rat 

cerebellar granule neurones. Their finding correlated with impaired base-excision (BER) 

and non-homologous end-joining (NHEJ) DNA damage repair mechanisms (Uday Bhanu 

et al., 2010), suggesting that accumulation of DNA damage could drive senescence in 

neurones in vitro. Increased SA-β-gal activity was also seen in rat hippocampal neurones 

kept in culture for up to 30 days; the increase in the enzyme activity was accompanied by 

a significant rise in ROS generation which originated from mitochondrial dysfunction 

(Dong et al., 2011). While these findings proposed a link between SA-β-gal activity and 

the accumulation of DNA damage and mitochondrial dysfunction, they did not confirm 

activation of senescence.  

 

In 2012, however, Jurk et al. provided evidence of senescent Purkinje and cortical 

neurones in the brains of old mice. These neurones showed increased lipid and protein 

peroxidation and γH2AX foci, confirming the involvement of a DDR in response to 

oxidative damage, and expression of p21 and macroH2A, markers of senescence 

signalling and SAHF formation, respectively; SA-β-gal activity and increased ROS 

production and IL-6 expression were also observed, suggesting activation of a p21-

dependent senescent-like state, accompanied by a SASP in mice post-mitotic neurones. 

Moreover, this phenotype was aggravated by telomere dysfunction (Jurk et al., 2012). 

Overall, this work suggested that accumulation of oxidative DNA damage and telomere 

dysfunction could result in the development of a senescent-like phenotype in post-mitotic 

neurones. More importantly, this phenotype could potentially contribute to neuronal 

dysfunction through a pro-inflammatory and pro-oxidant mechanism, similar to the 

SASP.  
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Despite this evidence, the activation of senescence in neurones seems contradictory. The 

fact that neurones are terminally differentiated questions whether they can actually induce 

senescence through the same mechanisms as mitotic cells do. A possible answer to this 

relates to the cell cycle regulatory mechanisms that have been implicated in the neuronal 

DDR and repair mechanisms. In recent reports, it has been shown that DNA damage 

causes re-activation of the neuronal cell cycle, which resulted necessary for the activation 

of the proper repair mechanisms. As part of this cell cycle reactivation program, cell 

cycle arrest occurs prior to S-phase transition, otherwise aberrant DNA replication could 

occur and lead the neurones to apoptosis (Kruman et al., 2004; Schwartz et al., 2007; 

Tomashevski et al., 2010). Taking this evidence into account, cell cycle reactivation in 

damaged neurones could resemble an active proliferative state as seen in mitotic cells. 

Under these circumstances, a persistent DNA damage could cause an aberrant cell cycle 

arrest, which instead of directing cells to re-enter a post-mitotic state or to die by 

apoptosis, it could promote activation of senescence pathways and the development of a 

senescent phenotype, including a SASP (Figure 1.4).   

 

Taking all this evidence into account, further work should be done to confirm Jurk et al. 

(2011) findings in human neurones and to determine the repercussions of a senescent-like 

phenotype in neurodegeneration. Part of this project focused on determining the relevance 

of neuronal senescence in vivo in the brains of ALS/MND donors. As it will be explained 

in the final section of this chapter, oxidative stress and cumulative DNA damage have 

been shown to be involved in ALS/MND, thus providing an interesting option to 

investigate activation of senescence in neurones in response to oxidative stress.  
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Figure 1.4 Hypothetical mechanism of neuronal senescence induction. 

DNA damage in neurones could re-enter their cell cycle as part of the DDR. Neurones 

would undergo G1 transition, activate repair mechanisms and arrest their cell cycle once 

the DNA damage is repaired. However, if neurones are undergoing a persistent DDR, 

these cell cycle arrest signals could induce expression of p16 and p21 senescence 

effector pathways and promote the development of a senescent phenotype, including a 

SASP. Paracrine SASP would generate a pro-inflammatory and pro-oxidant environment 

that would reinforce the DDR and contribute to neuronal dysfunction.   
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1.3. Amyotrophic Lateral Sclerosis 

Neurones are especially vulnerable to oxidative stress due in part to their post-mitotic 

nature, their high metabolic rate, their polyunsaturated fatty acids enriched cell membrane 

and their poor antioxidant mechanisms (Friedman, 2011). Therefore, oxidative stress 

could be the ideal culprit behind a persistent neuronal DNA damage response and 

senescence in the ageing brain and in neurodegeneration. Numerous evidence of 

oxidative damage in neurodegeneration has been shown in AD (Lee et al., 2013; Scheff et 

al., 2016), PD (Choi et al., 2005; Deas et al., 2016) and ALS/MND (Li et al., 2011; 

Nagase et al., 2016).  

 

Amyotrophic lateral sclerosis (ALS), also referred to as motor neuron disease (MND) or 

Lou Gehrig’s disease, is an adult-onset neurodegenerative disorder of rapid progression 

characterised by the degeneration of motor neurones from the motor cortex (MCx), 

brainstem and spinal cord (Sc) (Kiernan et al., 2011). Motor neuron dysfunction in 

ALS/MND leads to progressive muscle atrophy, weakness, paralysis, and death, usually 

by respiratory failure, within 2-5 years after diagnosis; although age and site of onset, as 

well as severity, are highly variable (Kiernan et al., 2011; Traxinger et al., 2013). 

ALS/MND cases are classified in sporadic (sALS/MND) and familial (fALS/MND) 

forms. The latter are associated with inheritable genetic mutations that are predominantly 

autosomal dominant, and account for approximately 5-10% of the cases, although some 

of these mutations are also present in sALS forms (Al-Chalabi et al., 2013).  

 

The gene encoding for the copper/zinc superoxide dismutase (Cu/Zn SOD, SOD1) was 

the first gene to be associated to fALS/MND, representing 20% of the familial cases of 

ALS/MND (Rosen et al., 1993). Currently, there are 29 known gene mutations that have 
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been linked to the disease and that alter proteins involved in a variety of cell functions. 

TARDBP, FUS/TLS, HNRNPA2/B1, ELP3, HNRNPA1, STX and ATXN2 are involved in 

RNA metabolism, while ALS2, VABP, CHMP2B, FIG4, OPTN are linked to vesicle 

trafficking and UBQLN2 and VCP to proteosonal function (Chen et al., 2013). The 

hexanucleotide expansion in C9orf72 has been implicated in the pathology of ALS-FTD 

(fronto-temporal dementia) (DeJesus-Hernandez et al., 2011; Mori et al., 2013; Renton et 

al., 2011). The most recent gene associated to fALS/MND is TBK1, which encodes for a 

TANK-binding kinase involved in autophagy and the immune response (Freischmidt et 

al., 2015, 2016).  

 

Due to its complexity, the exact processes through which ALS/MND originates, develops 

and progresses are still not well understood, however, several mechanisms have been 

suggested to contribute to the pathology. These mechanisms comprise defects in RNA 

processing, protein aggregation, excitotoxicity, endoplasmic reticulum (ER) stress, 

disrupted axonal trafficking, mitochondrial dysfunction and oxidative stress (Barber and 

Shaw, 2010).  

 

Numerous studies have shown increased oxidative nuclear and mitochondrial DNA 

damage in ALS/MND in vivo. This evidence suggests that oxidative DNA damage is 

involved in the pathogenesis of the disease and might reflect mitochondrial alterations 

and neuronal dysfunction. For instance, early studies by Ferrante et al. (1997) reported 

increased levels of 8-OHdG, a marker of DNA oxidation, in the MCx and Sc of sALS 

patients, while in fALS cases, this increase was only detected in the MCx (Ferrante et al., 

1997). In a different study, assessment of 8-OHdG levels in cerebrospinal fluid (CSF), 

urine and plasma of ALS/MND patients revealed significantly higher levels in patients 
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when compared to controls; additionally, a disease-severity dependent rate of increase in 

8-OHdG levels was detected in urine (Bogdanov et al., 2000). Studies in the SOD1G93A 

mutant mice have shown formation of single-strand (SSBs) and DSBs in neuronal and 

mitochondrial DNA, which increased with the progression of the disease (Martin et al., 

2007). A more recent study has measured 8-OHdG levels, along with other markers of 

oxidative stress such as malondialhehyde (MDA), as well as IL-6 and IL-8 levels in a 

cohort of 10 ALS donors and 10 controls. A significant increase in MDA and 8-OHdG 

was detected in ALS patients, together with increased concentrations of IL-6 and IL-8 

cytokines, which indicated alterations in the redox biology of ALS patients and 

alterations in the inflammatory response (Blasco et al., 2016). Accumulation of DNA 

damage in ALS/MND has also been linked to the C9orf72 hexanucleotide expansion. 

Lopez-Gonzalez et al. (2016) also showed an age-dependent increase in DNA damage in 

induced pluripotent stem cells (iPSCs) motor neurones derived from C9orf72 patients, 

which correlated with high levels of oxidative stress and was linked to an ATR/p53-

dependent DDR (Lopez-Gonzalez et al., 2016). Moreover, a recent report suggests 

C9orf72 hexanucleotide expansions disrupt ATM-mediated DNA damage repair in vitro 

and in vivo, in the spinal cord of C9orf72 patients, suggesting DNA damage accumulation 

and genomic instability as contributors to the disease (Walker et al., 2017).  

 

Overall, oxidative stress and DNA damage are both implicated in the pathogenesis of 

ALS/MND. More importantly, DNA damage has been shown to accumulate in the 

disease, which opens the possibility for neurones to activate a senescent-like state.  
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1.4. Hypothesis 

Neurones undergo a senescent-like state in response to oxidative DNA damage and a 

persistent DNA damage response. They also develop a secretory phenotype characterised 

by the release of pro-inflammatory and pro-oxidant factors that contributes to neuronal 

dysfunction in neurodegeneration.  

 

1.4.1. Aims 

Using two experimental approaches, this study aimed to determine: 

1. In vitro approach 

a. Whether cultured human neurones exposed to oxidative stress could 

develop a persistent DNA damage. 

b. Whether this damage caused activation of a “classical” senescent 

phenotype, including activation of senescence pathways, expression of 

senescence markers and development of a SASP. 

 

2. In vivo approach 

a. Whether senescent neurones were present in brains with 

neurodegeneration. For this project, ALS/MND was considered a 

paradigm of neurodegeneration.  

b. Whether senescent neurones in ALS/MND correlated with DNA damage 

and a DNA damage response.  

c. Whether senescent neurones in ALS/MND exhibited a senescent 

phenotype.  
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Chapter 2. Development and characterisation of an in vitro model 

of oxidative DNA damage in human neurones 

2.1. Introduction 

Normal cellular metabolism results in the formation of oxygen metabolites with oxidising 

potential, also known as reactive oxygen species (ROS) (Birben et al., 2012; Dringen et 

al., 2005; Mittal et al., 2014). The main endogenous oxidants are the hydroxyl radical 

(OH), the superoxide anion (O2
-), hydrogen peroxide (H2O2) and hypochlorous acid 

(HOCl), and they are predominantly generated by the mitochondrial electron transport 

chain (ETC) as well as by cytochrome P450 activity (Davalli et al., 2016; Mittal et al., 

2014).  H2O2 originates from superoxide, through the action of superoxide dismutases 

(SODs), and can generate OH through the Fenton reaction (Birben et al., 2012; Dringen 

et al., 1999, 2005). In neurones, low levels of H2O2, and ROS in general, have a role in 

cell signalling and inter-cellular communication (Hohnholt et al., 2015; Schieber and 

Chandel, 2014); however, an imbalance between the formation and breakdown of ROS 

can lead to accumulation of these molecules which then cause damage to lipids, proteins, 

RNA and DNA in the cell. Alteration of the balance between oxidant-antioxidant 

mechanisms is known as oxidative stress (Davalli et al., 2016). 

 

Oxidative stress is a common characteristic of ageing and has been widely investigated as 

a mechanism of neurodegeneration (Jiang et al., 2016; Schriner, 2005). Oxidative stress 

has also been linked to the induction of senescence in mitotic cells as a result of DNA 

damage (Pole et al., 2016; Zhang et al., 2017).  Oxidative stress related senescence has 

also been studied in the ageing brain; astrocytes have been shown to develop features of 

senescence, including a SASP, in response to chronic oxidative stress (Bitto et al., 2010; 
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Crowe et al., 2016), but whether a similar phenotype could develop in post-mitotic cells 

such as neurones is not known. 

 

To address this question, an in vitro model of neuronal oxidative DNA damage was 

developed using the Lund Human Mesencephalic (LUHMES) cell line. LUHMES are 

conditionally immortalised human dopaminergic neuronal precursor cells that can be 

differentiated into post-mitotic neurones through the addition of tetracycline and other 

specific factors. LUHMES are a subclone of the MESII(1)C2.10 cell line, which was 

obtained from an 8-week-old human embryo (Lotharius et al., 2002). LUHMES were 

immortalised with a LINX v-myc retroviral vector containing a tetracycline-controlled 

transactivator (tTA) (Hoshimaru et al., 1996; Lotharius et al., 2002). In this system, the 

absence of tetracycline (tet) allows tTA to activate transcription of the v-myc gene from a 

CMV promoter, thus maintaining LUHMES in a proliferative state. When tet is added to 

the culture media it binds to tTA and represses v-myc expression. This action induces cell 

cycle arrest and initiates differentiation. 

 

This chapter focuses on the optimisation of the culturing conditions for the LUHMES and 

the characterisation of their post-mitotic phenotype. To model oxidative DNA damage in 

LUHMES, H2O2 was used. This chapter also describes the experiments performed to 

establish the concentration of H2O2 that would induce DNA damage. The data suggest 

that a single bolus of H2O2 causes acute damage in the form of double strand breaks 

(DSBs) but is not enough to induce a persistent DNA damage in LUHMES.  A protocol 

was therefore developed using a repeat dosing of differentiated LUHMES with H2O2, 

which caused chronic DNA damage that was detectable 96 hours post-stress. 
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2.2. Aims and objectives 

1) Induce a persistent DNA damage response in human neuronal cells to determine if this 

could stimulate aspects of a senescent phenotype in post-mitotic neurones.  

a) Optimise the cell culture conditions for the LUHMES and confirm their successful 

differentiation into post-mitotic neurones.  

b) Characterise the response of post-mitotic LUHMES to an extracellular source of 

oxidative stress through incubation in different concentrations of H2O2.  

c) Determine the optimal conditions to cause a persistent oxidative DNA damage in 

LUHMES.  

 

2.3. Materials and Methods 

All chemicals were obtained from Sigma-Aldrich (St Louis, MO, USA) unless stated. 

Solutions required for the experiments described in this chapter were prepared as 

specified in Appendix A.  

 

2.3.1. LUHMES cell culture optimisation 

NunclonTM cell culture plastic flasks (ThermoFisher Scientific, Boston, MA, USA) and 

GreinerTM multiwell plates (Sigma-Aldrich, St Louis, MO, USA) were pre-coated with a 

solution of 50 μg/ml poly-L-ornithine hydrobromide (pLo) (Sigma-Aldrich) and 1 μg/ml 

fibronectin (Sigma-Aldrich) from human plasma in distilled water (dH2O). Flasks/plates 

were pre-coated with the pLo/fibronectin solution at 37 ºC for at least 3 hours.  After 

incubation, the coating solution was removed and culture flasks/plates were washed once 

with 1x sterile phosphate buffered saline (PBS) before cell seeding.  
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Optimisation of the LUHMES cell culture conditions involved the assessment of two 

types of media: GlutaMAX media (DMEM/F-12 [Dulbecco's Modified Eagle 

Medium/Nutrient Mixture F-12) Gibco®] GlutaMAX [ThermoFisher Scientific] + 1x N2-

supplement [ThermoFisher Scientific] + 1% Penicillin/Streptomicyn [Pen/Strep] [Lonza 

Group Ltd, Basel, Switzerland], and Advanced media (Advanced DMEM/F12 [Gibco®] + 

1x N2-Supplement + 2 mM L-glutamine [Lonza Group Ltd] + 1% Pen/Strep). For 

proliferating cells, 40 ng/ml of recombinant basic fibroblast growth factor (bFGF) 

(Peprotech EC Ltd, Rocky Hill, NJ, USA) was added to both versions of cell culture 

media just prior to cell seeding. For LUHMES differentiation protocol two media 

compositions were assessed. The first version (+/+) consisted of GlutaMAX or Advanced 

media with 1 μg/ml tetracycline hydrochloride (tet) (Sigma-Aldrich) and 2 ng/ml 

recombinant human GDNF (Peprotech EC Ltd); the second version (+/-) omitted the 

addition of human GDNF. Figure 2.1A contains a summary of the cell culture media and 

factors used for the optimisation of the LUHMES culturing conditions.  

 

2.3.1.1. LUHMES maintenance and differentiation: Optimisation of cell culture conditions 

LUHMES were cultured in GlutaMAX or Advanced proliferation media and maintained 

at 37 °C with 5% CO2. Cells were enzymatically dissociated using 1x trypsin versene 

(Lonza Group Ltd) and passaged when they reached 80% confluency. For differentiation, 

the two-step protocol developed by Scholz et al. was followed (Figure 2.1B) (Scholz et 

al., 2011). Briefly, proliferating LUHMES were seeded on to pre-coated T75 flasks at a 

density of 3x106 cells/flask in GlutaMAX or Advanced proliferation media. 

Differentiation was started 24 hours after seeding (Day 0) by changing to 

GlutaMAX/Advanced (+/+) or (+/-) differentiation medium. After 2 days of pre-

differentiation, cells were trypsinised and replated onto pre-coated 24 and 6-well plates, 
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as well as 10 cm dishes. Cell densities are specified in Table 2.1. Cells were maintained 

in differentiation media for further 3 days for cells to reach a fully differentiated state. A 

visual assessment of the cells during the differentiation protocol was performed to detect 

abnormal cell detachment and cell death under the culturing conditions already described.  

 

Plate or dish format Cell density (cells/well or dish) 

24-well plate 3.5x105 and 5x105  

6-well plate 1.5x106  

10 cm dish 2.5x106 

Table 2.1 Pre-differentiated LUHMES densities used for cell culture optimisation. 

Different plating formats were assessed for LUHMES cell culture. A visual assessment 

of cell health (proliferation, cell death, neurite development and morphology) was 

conducted in LUHMES plated in 6-well and 24-well plates, as well as in 10 cm dishes. 

Cells seeded in 24-well plates were used for the MTT assays described in this chapter.  
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Figure 2.1 Optimisation of LUHMES cell culture conditions. 

A. Two different media compositions (Advanced and GlutaMAX) were assessed for 

culturing LUHMES. In addition, 2 combinations of differentiation factors 

(tetracycline [Tet] and GDNF) were used to differentiate LUHMES into mature 

neurones. B. The 2-step differentiation protocol (Scholz et al., 2011) included a pre-

differentiation step, where proliferating LUHMES were incubated with 

differentiation media for 2 days, followed by a re-plating step at day 2. After re-

plating, LUHMES were kept in differentiation media for 3 more days 
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2.3.1.2. MTT reduction assay 

To determine the optimal cell culture conditions for LUHMES, their health was 

monitored under the conditions summarised in Figure 2.1A using the MTT reduction 

assay. The MTT reduction assay has been widely used to measure cell proliferation and 

cytotoxicity in cells in culture. Cell health was assessed in normal differentiated 

LUHMES as well as LUHMES incubated with 100 μM H2O2, to investigate vulnerability 

of LUHMES to an external stress when cultured in the 2 different culture medias.  

 

Differentiated LUHMES plated in 24-well plates were treated with 100 μM H2O2 for 24 

hours. Control cells were treated with the same volume of 1x sterile PBS (vehicle) and a 

medium-only control was included in all experiments (background). 24 hours after 

stressing the cells, 50 μl of MTT (Sigma-Aldrich, MA, USA) solution were added to each 

well and cells were incubated for 3 hours at 37 ºC to promote the formation of formazan 

crystals. To solubilise the crystals, 550 μl of SDS/DMF solution was added to each well 

and the plates were incubated for 30 minutes at room temperature (RT), in darkness and 

with constant agitation. The final solubilised solution was homogenised by pipetting it up 

and down gently; three 200 μl samples were taken from each well and transferred to a 96-

well plate. Absorbance was read at 595 nm in a PHERAStar microplate reader (BMG 

Labtech, Ortenberg, Germany). For data analysis, the absorbance value (AU) from the 

medium-only control (background) was substracted from the values of the control and 

treated samples. Data was expressed as percentage (%) of viable cells.  

 

2.3.2. Characterisation of differentiated neurones by immunocytochemistry 

Scholz et al. characterised differentiated LUHMES using several approaches, including 

quantification of mRNA of cell cycle control related genes, immunocytochemical 
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detection of neuronal differentiation markers and time-lapse microscopy to assess neurite 

outgrowth (Scholz et al., 2011). To confirm that we could successfully replicate the 

differentiation of LUHMES, we investigated the expression of neuronal and cell cycle 

markers in proliferating, differentiating and differentiated LUHMES by 

immunocytochemistry. All experiments from this point on were performed using 

Advanced proliferation media and using Advanced (+/+) media for differentiation.   

 

For immunocytochemistry experiments, cells were plated at a density of 2.5x105 

cells/well onto pre-coated glass coverslips, in 24-well plates. Cells were fixed with 4% 

paraformaldehyde (PFA) at days 0, 1, 2, 3, 4 and 5 of the differentiation process. Cells 

were permeabilised by incubating them in 0.3% Triton-X100 (Sigma-Aldrich) for 3 

minutes, followed by 3 washes with 1x PBS. Cells were then blocked in 3% bovine serum 

albumin (BSA) blocking solution for 30 minutes and then single labelled for β-III-tubulin, 

MAP-2 and PSD95. Details for the antibodies used as well as incubation conditions are 

described in Table 2.2. Cells were washed 3 times with 1x PBS and incubated with the 

corresponding secondary antibodies, as detailed in Table 2.3. Cells were washed 3 times 

with 1x PBS and incubated for 10 minutes in Hoechst 33342 dye (Sigma-Aldrich), 

followed by 3 further washes with 1x PBS. Coverslips were mounted in FlouromountTM 

Aqueous Mounting medium (Sigma-Aldrich). Omission of the primary antibody 

(Negative control) and incubation with rabbit/mouse isotype controls (IgG controls) were 

included in all experiments. Images of the cells were taken with a Nikon ECLIPSE Ni 

microscope (Nikon Instruments, Amsterdam, Netherlands).  

 

Dual labelling was performed for Ki67 and E2F1 (E2F transcription factor 1) with the 

cytoskeletal marker β-III-tubulin. For this, cells were fixed, permeabilised and blocked as 
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explained before. After incubation with the primary antibodies against Ki67 and E2F1 

(Table 2.2), cells were washed 3 times with 1x PBS and incubated with the respective 

secondary antibody, as described in Table 2.3. From this point on, the staining protocol 

was performed under darkness. Cells were washed 3 times with 1x PBS and blocked 

again, for 30 minutes. Cells were incubated with the primary anti-β-III-tubulin overnight 

at 4 ºC. Cells were washed 3 times with 1x PBS and incubated with the goat anti-chicken 

fluorescent secondary antibody (Table 2.3). Cells were washed 3 times with 1x PBS and 

incubated in Hoechst 33342 dye for 10 minutes, followed by 3 washes with 1x PBS. 

Coverslips were mounted and visualised as explained previously for the single labelled 

samples.  
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Antibody Species Clone 
Dilution and 

incubation conditions 
Source 

Catalog 

number 

Ki67 
Mouse 

monoclonal 
MM1 

1:50  

(overnight at 4 ºC) 

Leica Microsystems, 

Wetzlar, Germany.  

NCL-L-Ki67-

MM1 

E2F1 
Rabbit 

polyclonal 
- 1:100 (2 hours, RT) 

Proteintech, Rosemont, 

IL, USA 
12171-1-AP 

β-III- 

tubulin 

Chicken 

polyclonal 
- 1:1000 (2 hours, RT) 

Merck Millipore, 

Darmstadt, Germany. 
AB9354 

PSD95 
Mouse 

monoclonal 
K28/43 1:1000 (2 hours, RT) 

Merck Millipore, 

Darmstadt, Germany. 
MABN68 

γH2AX  

(Ser 139) 

Mouse 

monoclonal 
JBW301 1:1000 (2 hours, RT) 

Merck Millipore, 

Darmstadt, Germany. 
05-636 

Table 2.2 Primary antibodies used for immunocytochemistry.  

Primary antibodies, dilutions and incubation conditions used for single and double 

labelling of proliferating and differentiating LUHMES. 

 

Antibody Species 
Dilution and incubation 

conditions 
Source 

Catalog 

number 

488 Alexa Fluor ® 

anti-chicken 
Goat  1:1000 (1 hour, RT) 

Thermo Fisher Scientific, 

Waltham, MA, USA  

 

A-11039 

568 Alexa Fluor ® 

anti-rabbit 
Donkey 1:1000 (1 hour, RT) A10042 

568 Alexa Fluor ® 

anti-mouse 
Goat 1:1000 (1 hour, RT) A-11004 

Table 2.3 Fluorescent secondary antibodies used for immunocytochemistry.  

Secondary antibodies, dilutions and incubation conditions used for visualisation of 

proteins labelled by immunocytochemistry in proliferating and differentiating LUHMES. 
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2.3.3. Optimisation of H2O2 treatments 

Pre-differentiated LUHMES were re-plated into 24 well plates for the cell viability 

assays, and on to glass coverslips for the immunocytochemistry experiments, at a density 

of 3.5x105 cells/well. Cells were incubated for further 3 days before H2O2 exposure. On 

the 5th day after differentiation, cells were incubated with 10, 25, 50, 75 and 100 μM 

H2O2 for 1, 2, 4, 6 and 24 hours. Cell viability and induction of DNA damage were 

assessed as described next.  

 

2.3.3.1. Cell viability assays to assess H2O2-induced toxicity 

To assess cell viability and cell health under these conditions, metabolic activity of the 

cells was monitored using the MTT reduction and the Ethidium homodimer-1 (EthD-1) 

staining protocol. The MTT assay was performed as described in section 2.3.1.2. The 

EthD-1 staining protocol is described below.  

 

EthD-1 is a cell-impermeant fluorescent dye that binds to DNA and is used to label and 

detect dying or dead cells, since it can only enter cells with a compromised membrane. 

After treatment with H2O2 cell culture medium was removed and replaced with 250 μl of 

2 μM EthD-1 (Sigma-Aldrich) solution and 250 μl of Advanced (+/+) medium per well. 

Cells were incubated at 37ºC for 1 hour after which fluorescence was read on a 

PHERAStar spectrophotometer at Ex570/Em610. The plates were stored at -20 ºC 

overnight and then thawed to cause membrane rupture in all the cells. 500 μl of 2μ M 

EthD-1 solution were added to each well and the plates were incubated for 1 hour at 37 

ºC. Fluorescence was read using the same parameters as already described and the results 

were used to normalise the data to the number of total cells/well.  
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2.3.3.2. Immunocytochemical detection of double strand breaks (DSBs)  

Immunocytochemistry against γH2AX was performed to detect oxidative DNA damage 

in the form of DSBs in LUHMES exposed to H2O2. The formation of DSBs was 

investigated at 1, 2, 4, 6 and 24 hours after H2O2 treatment in order to study the kinetics 

of the formation of γH2AX foci and of the DNA repair machinery when LUHMES were 

exposed to the different H2O2 concentrations described previously. The fixation, 

immunocytochemistry and mounting protocols were performed as described in section 

2.3.2. The primary and secondary antibodies used for these experiments are listed in 

Table 2.2 and Table 2.3, respectively.  

 

2.3.4. Double stress model  

To develop a persistent oxidative DNA damage model, a double H2O2 stress protocol was 

established by exposing previously stressed LUHMES to a second H2O2 insult. Before 

doing this, the clearance rate of extracellular H2O2 was assessed in LUHMES incubated 

with 50 μM H2O2 to quantitatively determine the ability of LUHMES to remove H2O2 

from the culture media.    

 

2.3.4.1. H2O2 clearance: pHPA extracellular H2O2 assay 

Pre-differentiated LUHMES were replated onto pre-coated 96-well plates at 3 different 

densities: 2x104, 3x104 and 4x104 cells/well. Cells were kept in differentiation media for 3 

more days and H2O2 clearance assays were performed on day 5 of the differentiation 

protocol.  

 

H2O2 clearance rate was determined following the method described by Wagner et al. 

(2013). This assay allows for the determination of the rate of removal of extracellular 
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H2O2 by cells in culture. For this, cells were incubated with a known concentration of 

H2O2. Addition of H2O2 was done at intervals of 30 seconds - 5 minutes to consecutive 

wells; once H2O2 was added to the last set of wells, a stopping solution containing 

horseradish peroxidase (HRP) and pHPA was added to all wells. The HRP in the stopping 

solution reacts with the remaining H2O2 and active HRP oxidises pHPA, a reagent that 

emits fluorescence under these conditions. Under these conditions, fluorescence intensity 

(FI) is proportional to the concentration of H2O2 present in the culture media. A set of 

H2O2 standards was included in every experiment which were used to create a standard 

curve to calculate H2O2 concentration in the samples (Wagner et al., 2013).  

 

Prior to the start of experiments cells were washed and media was replaced with Gibco® 

Hank’s Balanced Salt Solution (HBSS; Thermo Fisher Scientific). Standard stock 

solutions of H2O2/HBSS were prepared before use at increasing concentrations of 0, 2, 4, 

8, 12, 16, 20, 24, 28, 32, 40, 48, 60, 70, 80 and 100 μM H2O2. These were then added to 

wells containing 50 μl of HBSS to make a final volume of 100 μl/well and final standard 

concentrations of 0, 1, 2, 4, 6, 8, 12, 16, 20, 24, 30, 35, 40 and 50 μM H2O2. All standards 

were run in triplicate and were used to create a standard curve of remaining H2O2 in the 

medium. Parallel to the preparation of standards, 50 μl of 0 μM and 100 μM H2O2 

solutions were added to wells containing cells, in triplicate, to make final concentrations 

of 0 μM and 50 μM in 100 μl/well. H2O2 was added at 5 minutes intervals for 30 minutes. 

Immediately after adding the H2O2 to the final wells, 100 μl of stopping solution were 

added to all the wells, including standards. The stopping solution was added to all wells, 

including standards. Blank wells (standards with no H2O2) were included in every plate. 

Fluorescence was then read using a PHERAStar multiplate reader (Ex345/Em425) at 

intervals of 5 minutes for 30 minutes. These readings were performed to ensure that 
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results remained stable over the specified period of time, but only one reading was used 

for the final analysis. Each experiment consisted of LUHMES samples and standards run 

in triplicate; 3 independent experiments were performed for the final analysis. 

 

For data analysis the mean value of the blanks was substracted from standards and 

LUHMES samples. A standard curve was created using the fluorescence intensity values 

from the H2O2 standards (Figure 2.2A) and this was then used to determine the remaining 

extracellular H2O2 concentration ([H2O2]/μM) in the LUHMES samples. A graphic 

depiction of the removal of extracellular H2O2 was obtained by plotting [H2O2]/μM 

versus time (minutes) (Figure 2.9). The observed first-order rate constant (kobs) was given 

by the slope of ln[H2O2] versus time (seconds) (Figure 2.2B). The observed rate constant 

for each cell (kcell) was obtained using the formula 

kcell = kobs/(cells L-1) 

where (cells L-1) is the number of cells in one well divided by the volume of media (in 

liters) in that same well (before the addition of the stopping solution). The rate of removal 

of extracellular H2O2 was then calculated with  

rate = -kcell [H2O2] (cells L-1) 

The half-life of 50 μM H2O2 was determined using the formula  

t1/2 = 0.693/(kcell (cells L-1)) 
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Figure 2.2 Removal of extracellular H2O2 by LUHMES: Examples of standard 

curves and plots used for kobs determination. 

A. Representative standard curve used for the pHPA H2O2 clearance assay. Standards 

(0 - 50 μM H2O2) were included in every experiment, in triplicate. Fluorescence values 

for the standards were used to calculate the concentration of H2O2 in the cell culture 

media of LUHMES samples.  B. Representative plot of ln[H2O2] versus time (seconds) 

in LUHMES samples with 4x104 cells/well. The slope provides the value of the first-

order rate constant kobs that is required to calculate the clearance rate for a specific cell 

density and sample volume. 
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2.3.4.2. Induction of a persistent oxidative DNA damage  

Based on H2O2 clearance results, as well as on results obtained from the MTT and EthD-1 

assays and the detection of DSBs, the second H2O2 insult was applied 6 hours after 

LUHMES were incubated in H2O2 for the first time. For this, differentiated LUHMES 

(3.5x105 cells/well) plated onto coated 24-well plates were incubated with 50 μM H2O2 

for 6 hours. After this time, the old media was removed and replaced with freshly 

prepared 50 μM H2O2 media. Cells were kept in culture for 96 hours. To ensure that the 

second stress did not cause considerable negative effects in LUHMES viability, 

LUHMES health was assessed with the MTT assay 6, 24, 48, 72 and 96 hours after the 

second stress and compared to LUHMES incubated once with 50 μM H2O2. The MTT 

assay was conducted as explained previously, in section 2.3.1.2.  

 

To investigate whether a second H2O2 stress caused persistent DNA damage, formation of 

γH2AX foci was assessed by immunocytochemistry in double stressed (DS) and single 

stressed (SS) LUHMES 6, 24, 48, 72 and 96 hours after stress, as described in sections 

2.3.2 and 2.3.3.2. A quantitative analysis of the percentage of neurones that were stained 

for γH2AX was performed to compare the effects of a double H2O2 challenge. For this, 

five images per coverslip were taken for every condition, from at least 3 coverslips per 

experiment. The number of γH2AX+ neurones per field was manually quantified, plus the 

number of total nuclei/field. A percentage was obtained by dividing the number of 

γH2AX+ neurones by the number of total nuclei per field. This result was multiplied by 

100 and data was expressed as % γH2AX+ LUHMES.  
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2.3.5. Statistical analysis  

Data obtained from the MTT, EthD-1 and H2O2 clearance assays was analysed with 

Prism 7.0c (GraphPad Software, Inc., CA, USA). All data is presented as mean ± 

standard error of the mean (SEM). 
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2.4. Results 

2.4.1. Optimisation of LUHMES culturing conditions 

To assess the best conditions for LUHMES cell culture, cells were grown in two different 

media formulations which were selected based on previous research on this cell line 

(Lotharius, 2005; Lotharius et al., 2002; Schildknecht et al., 2009, 2013; Scholz et al., 

2011) and the culturing conditions suggested by the supplier. Early observations of 

proliferating LUHMES in culture did not detect abnormal proliferation, cell death or 

morphology changes. During pre-differentiation, cells appeared healthy and there was no 

obvious difference in terms of neurite development between culturing conditions. The 

number of cells per ml (cells/ml) was determined each time cells were replated after pre-

differentiation. The mean number of cells/ml is reported in Figure 2.3A (3 independent 

counts). 

 

LUHMES pre-differentiated in GlutaMAX (+/-) medium had a lower mean number of 

cells/ml (2.4x106 ± 145,895) compared to the LUHMES in Advanced (+/-) (3.2x106 ± 

142,945) and Advanced (+/+) (3.5x106 ± 210,621) medias. Cells pre-differentiated in 

GlutaMAX (+/+), which contained recombinant GDNF, had significantly more cells/ml 

(3x106 ± 77,675) than the LUHMES grown in GlutaMAX (+/-); however, when compared 

to the cells grown in Advanced (+/+) media, the mean number of cells/ml was still 

significantly lower. There was no difference in the mean number of cells/ml between the 

LUHMES that were pre-differentiated in Advanced (+/-) and (+/+) medias (Figure 2.3A). 

 

Pre-differentiated LUHMES were replated onto coated 24, 12 and 6-well plates and 10 

cm dishes. Cell detachment was noticeable in the 10 cm dishes on day 4 of 
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differentiation, irrespective of cell culture conditions. At day 5, cells cultured in 10 cm 

dishes had detached completely, while the cells plated in multi-well plates showed only 

minor detachment (cells in the GlutaMAX medium) or no detachment at all (cells in the 

Advanced medium). Analysis of LUHMES differentiated in Advanced (+/-) or (+/+) 

revealed that the addition of GDNF during differentiation maintains cell health for further 

5 days (d10) after cells have completed the 5 days of differentiation (Figure 2.3B). 

LUHMES differentiated and maintained in Advanced (+/-) media until day 10 (d10) 

showed a marked decline in metabolically active, as measured by the MTT assay, 

compared to those that were maintained in GDNF enriched media. These results suggest 

that the addition of GDNF is not only necessary for the cells to develop a full 

dopaminergic phenotype, but it also enhances their overall health and survival in culture. 

 

To assess the viability of the cells and their vulnerability to an external stress under these 

different culturing conditions, LUHMES plated on to 24-well plates at two different 

densities were exposed to 100 M H2O2. Cell health as assessed by the MTT assay 

revealed a higher vulnerability of the LUHMES to 100 M H2O2 when cultured, 

differentiated and maintained in GlutaMAX (+/-) or (+/+) media (Figure 2.3C-D). A 

significant reduction of 57.73% (p<0.0001) in metabolically active cells was detected in 

LUHMES cultured in GlutaMAX (+/-) and of 56.1% (p<0.0001) in LUHMES cultured in 

GlutaMAX (+/+) when plated at 5x105 cells/well (Figure 2.3D). The effect of the H2O2 

was more intense when the cell density was reduced to 3.5x105 cells/well, with a 

reduction of 87.74% (p<0.0001) in metabolically active cells cultured in GlutaMAX (+/-) 

and of 89.4% (p<0.0001) in cells cultured in GlutaMAX (+/+) (Figure 2.3C). H2O2 did 

not have an effect on the metabolism of LUHMES cultured and differentiated in 

Advanced (+/-) and (+/+) when plated at a density of 5x105 cells/well (Figure 2.3D); 



 47 

however, there was a significant reduction in cell metabolism when the cells were less 

dense (Advanced (+/-), 60.3%, p<0.0001; Advanced (+/+), 66%, p<0.0001) (Figure 

2.3C).  Overall there was a greater impact of H2O2 on LUHMES metabolic activity in 

cells cultured in GlutaMAX media, regardless of the cell density, compared to the 

Advanced media. 
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Figure 2.3 LUHMES were cultured in 2 different cell culture media and differentiated using 

different protocols to determine the optimal culture conditions for future experiments. 

A. Determination of the number of cells/ml prior to the re-plating step (d2-LUHMES) showed that 

there were less cells per ml on average when cultured in GlutaMAX media than those cultured in 

Advanced media. [(+/+): GDNF and tetracycline; (+/-): only tetracycline]. One-way ANOVA with 

multiple comparisons, **p≤0.01, ***p≤0.001. B.  Metabolic activity of control differentiated 

LUHMES (d6-d10) was assessed using the MTT assay.  A significant decrease in metabolic activity 

over time was detected in control LUHMES differentiated only with tetracycline (Advanced (+/-)), 

compared to control LUHMES cultured with GDNF and tetracycline (Advanced (+/+)). Since data 

was obtained from control LUHMES, it was not normalised and is expressed in absorbance units 

(AU). Two-way ANOVA with multiple comparisons, *p≤0.05, **p≤0.01, ****p≤0.0001. C-D. 

Differentiated LUHMES (d6) cultured in 4 different media compositions and at different plating 

densities, were exposed to 100 M H2O2 to determine the vulnerability of the cells to an external 

stress under these conditions. H2O2 was significantly more toxic to differentiated LUHMES 

maintained in the GlutaMAX media and cells were more vulnerable to stress at lower plating 

densities. Data was expressed in % metabolically normal cells relative to controls. One-way ANOVA 

with multiple comparisons, **p≤0.01, ***p≤0.001, ****p≤0.0001. (Data represents mean ± SEM. 

For all experiments: n=3, at least 3 replicates/experiment). 
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2.4.2. LUHMES can be successfully differentiated into post-mitotic neurones following a 

two-step differentiation protocol 

To determine whether the 2-step protocol developed by Scholz et al. would result in fully 

differentiated neurones, proliferating and post-mitotic LUHMES were characterised by 

looking at cell cycle and neuronal markers over the course of the differentiation protocol. 

The most obvious change that proliferating LUHMES go through when they are 

differentiated into post-mitotic cells is a change in their morphology. In order to track 

these changes, cells were stained with an anti-β-III-tubulin (Tuj1) primary antibody, 

which is localised to the cytoskeleton and allowed the visualisation of morphological 

changes, including neurite development (Figure 2.4). β-III-tubulin was present in 

proliferating LUHMES as well as in 1 and 2-day pre-differentiated LUHMES. During 

pre-differentiation, the development of short projections was observed. These early 

structures gave rise to the long neuronal processes that can be identified from day 3 of the 

differentiation step. By day 3 of the differentiation protocol a reduction in the size of the 

cell body compared to proliferating cells was observed. Microtubule-associated protein 2 

(MAP2) is typically used as a marker of mature neurones as well (Harada et al., 2002; 

Lee et al., 2016b; Soltani et al., 2005). This protein is involved in the development of 

dendrites, even though it is found in the axonal projections of certain types of neurones 

(Binder et al., 1986) . Staining for MAP2 in proliferating and pre-differentiated LUHMES 

(Figure 2.4) revealed the formation of neurite precursor structures, although MAP2+ 

neurites in the proliferating LUHMES appeared shorter in length and fewer in number, 

compared to β-III-tubulin+ proliferating LUHMES. Following the replating step, MAP2+ 

staining localised to the long neurites as well. PSD95, a scaffolding protein abundant at 

the excitatory postsynaptic density (PSD) (Chen et al., 2005a, 2011) was also used as a 

marker of neuronal maturation in LUHMES. PSD95 expression increased significantly in 
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LUHMES as the differentiation protocol progressed. PSD95 was only present in the 

cytoplasm of LUHMES, both in the soma and newly formed neurites.  

  

Cell proliferation markers were also used to assess LUHMES at different stages of 

differentiation (Figure 2.5). A reduction in Ki67+ and a change in the localisation of 

E2F1 were observed in pre-differentiated and fully differentiated LUHMES, which 

confirmed exit from the cell cycle when LUHMES were cultured in differentiation media.  

Ki67 antigen is expressed in cycling cells and has been widely used as a proliferation 

marker; it has recently been shown to localise to heterochromatin and to participate in 

chromatin organisation (Sobecki et al., 2016). Expression of Ki67 could be detected in 

the nuclei of all proliferating LUHMES. One day after addition of differentiation media 

(d1) a number of cells were still Ki67+, suggesting they still had an active cell cycle. By 

day 2 (d2) all cells were negative to Ki67 and this state was maintained throughout the 

differentiation process. Expression of E2F1, a transcription factor that participates in the 

regulation of the cell cycle (Iwanaga et al., 2006), was also analysed. E2F1 was found in 

the nuclei of proliferating and d1 LUHMES; on d2, expression of E2F1 was still localised 

to the nucleus but by d3, a shift in its localisation, from the nucleus to the cytoplasm, was 

visible. Cytoplasmic E2F1 was only present in the axon hillock of differentiated 

LUHMES and its relocalisation was maintained for the rest of the differentiation process.  
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Figure 2.4 Successful differentiation of LUHMES into post-mitotic neurones using a 2-step differentiation protocol. 

LUHMES were differentiated in Advanced (+/+) media and fixed at multiple time points to assess changes in cell morphology and 

maturation. Immunocytochemistry for β-III-tubulin (green) and MAP2 (red) and PSD95 (red), nuclei are labelled with a nuclear dye 

(Hoechst H3342, blue). Scale bar represents 10 μm.  
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Figure 2.5 LUHMES successfully exit the cell cycle and differentiate into post-mitotic neurones using a 2-step differentiation 

protocol. 

Dual label immunocytochemistry using Ki67 and E2F1 was used to confirm the maturation of LUHMES into post-mitotic neurones. 

LUHMES were immunostained with Ki67 (red) and β-III-tubulin (green) or with E2F1 (red) and β-III-tubulin (green), nuclei are labelled 

with Hoechst H3342 (blue). E2F1 presence in the cytoplasm (white arrows) appears as an orange colour (merge) in d3-d5 LUHMES. Scale 

bar represents 10 μm. 
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2.4.3. Induction of oxidative stress in post-mitotic LUHMES in vitro  

Oxidative stress has been shown to cause DNA damage and activation of DNA damage 

response/senescence pathways.  A number of methods to model oxidative stress in vitro 

have been documented in the literature, including the use of H2O2 (Aksenova et al., 2005; 

Gille and Joenje, 1992; Lee et al., 2016a; Lehtinen and Bonni, 2006). To induce DNA 

damage in post-mitotic LUHMES, cells were stressed with H2O2.  To determine the ideal 

concentration of H2O2, that being one that induces DNA damage without significant cell 

death, a number of experiments were performed including cell viability, metabolic 

activity and induction of DNA damage.  

 

2.4.3.1. Assessing cell viability and metabolic activity in H2O2-treated LUHMES 

To determine the optimal concentration of H2O2 that would induce oxidative DNA 

damage in differentiated LUHMES without any significant cell death, LUHMES were 

treated with increasing concentrations of H2O2 and their cell viability and metabolic 

activity was assessed with the EthD-1 and MTT assays. EthD-1 is membrane-

impermeable and has a high affinity to the DNA; when the cell membrane has been 

compromised, this dye binds for DNA and emits fluorescence, which is proportional to 

the number of dead cells present in the sample. The EthD-1 assay results (Figure 2.6A) 

showed that 100 M H2O2 caused significant cell death after 2 hours (16.5% reduction of 

live cells compared to control, p≤0.01) and by 24 hours there was an 83.4% reduction of 

live cells compared to untreated control (p≤0.0001). Treatment with 75 M H2O2 induced 

a similar level of cell death at 24 hours (72.8% reduction of live cells compared to 

control, p≤0.0001); of the total number of cells had died after 24 hours under these 

conditions. Treatment with 50 M H2O2 had no significant impact on cell viability at the 
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earliest timepoint (2 hours) but significant cell death was observed by 24 hours (27.1% 

reduction compared to control, p≤0.01). There was no significant cell death when 

LUHMES were exposed to 10 and 25 M H2O2.  

 

The MTT assay measures the effect of the H2O2 on metabolic function of cells and this 

can be interpreted as a measure of cell health, although it does not reflect cell death. A 

significant dysfunction in LUHMES metabolism was seen in cells exposed to 75 and 100 

M H2O2 at all timepoints measured with viability declining over time (Figure 2.6B). 24 

hours after treatment there was a 96.7% and 96.9% reduction in viability compared to 

control for LUHMES treated with 75 M and 100 M respectively (p≤0.0001). 

Treatment with lower concentrations of H2O2 (10 M, 25 M) also significantly affected 

LUHMES viability at almost all timepoints measured, however at the 24 hour timepoint, 

more than 50% of the cells showed a normal MTT reduction under these conditions. 50 

M H2O2 also had a considerable effect on LUHMES viability, causing a decline in 

metabolic activity of 46.6% compared to control (p≤0.0001).  
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Figure 2.6 The effect of increasing concentrations of H2O2 on the viability of differentiated LUHMES. 

Differentiated LUHMES were treated with increasing concentrations of H2O2 and their viability was assessed with the EthD1 and MTT 

assays for a period of 24 hours. A. Results from the EthD1 assay show significant toxicity of H2O2 concentrations ≥ 75 µM in differentiated 

LUHMES; 50 µM has a significant detrimental effect on cell viability without being lethal after 24 hours. Results are expressed in % live 

cells relative to control. B. MTT results show a significant dysfunction in LUHMES exposed to the highest H2O2 concentrations; LUHMES 

viability was significantly affected by 50 µM H2O2 and lower concentrations, but to a lesser extent. Results are expressed in % of viable 

cells relative to controls. Data are mean ± SEM; 2-Way ANOVA with multiple comparisons, *p≤0.05, **p≤0.01, ***p≤0.001, 

****p≤0.0001 (N=3, at least 3 replicates, 3 experiments/replicate). 
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2.4.3.1.1. H2O2 induced oxidative DNA damage is repaired in differentiated LUHMES  

The effect of H2O2 was also assessed in terms of DNA damage by detecting the formation 

of DSBs after exposure to H2O2. To do this immunocytochemistry was carried out with 

an antibody against the phosphorylated form of histone H2AX. The kinetics of the 

formation and repair of the DSBs in the form of γH2AX foci were followed over a period 

of 24 hours in LUHMES exposed to different concentrations of H2O2 ( 

Figure 2.7 and Figure 2.8). DSBs were detectable 1 hour after treatment with H2O2 at all 

of the concentrations used. The number of γH2AX+ LUHMES declined over time in all 

cells exposed to H2O2 suggesting the activation of DNA repair mechanisms. In cells 

treated with 10 and 25 M H2O2 γH2AX foci disappeared 4 hours after treatment whilst in 

cells treated with 50 M H2O2 γH2AX+ foci were still present 6 hours after treatment but 

were not present after 24 hours. 75 and 100 M H2O2 solutions were confirmed as lethal, 

since apoptotic bodies were detected 4 hours after stress and no viable cells were seen 

after 24 hours. 

 

Together with the EthD-1 and MTT assays results, we confirmed that concentrations ≤ 50 

M H2O2 induced oxidative DNA damage without causing considerable cell death. Even 

though 50 M H2O2 caused a significant effect in LUHMES MTT reduction capacity, this 

concentration induced the formation of γH2AX foci for the longer period of time. 

Because of this, 50 M H2O2 was selected as the optimal concentration and was the one 

used in the double-stressed experiments, as described in the following section.  
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Figure 2.7 Formation and repair of DSBs after treatment with H2O2. 
Differentiated LUHMES were fixed at multiple timepoints after treatment with increasing concentrations of H2O2 and immunocytochemistry using an 

antibody against γH2AX (red) was used to identify DSBs. Nuclei were labelled with Hoescht H33342 (blue). Scale bar represents 10 μm 
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Figure 2.8. Formation and repair of DSBs after treatment with H2O2 (Higher 

power images).  

Differentiated LUHMES were fixed at multiple timepoints after treatment with 

increasing concentrations of H2O2 and immunocytochemistry using an antibody against 

γH2AX (red) was used to identify DSBs. DSBs were detectable 1 hour after stress and 

decreased in number and size over time. Nuclei were labelled with Hoescht H33342 

(blue). Scale bar represents 10 μm (n=3, at least 3 replicates/experiment).
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2.4.4. Development of a persistent DNA damage model in post-mitotic LUHMES 

The induction of senescence has been linked to the activation of a persistent DNA 

damage response in mitotic cells. Evidence suggests that activation of senescence 

pathways in neurones is also associated with chronic stresses that cause DNA damage and 

activate the DNA damage response. The induction of DSBs in LUHMES exposed to 

H2O2 was investigated by immunocytochemistry to γH2AX; however, the kinetics of the 

foci formation showed that the DNA damage induced by H2O2 was repaired 24 hours 

after exposure in LUHMES exposed to 50 M H2O2 and lower concentrations. Therefore, 

to promote a chronic oxidative DNA damage, which could potentially lead to the 

activation of senescence pathways, LUHMES were exposed to a second H2O2 dose 

(double-stress model). For this, the ability of LUHMES to clear extracellular H2O2 was 

assessed to determine how fast LUHMES removed H2O2 and to optimise the design of a 

double-stress model. The MTT assay was also used to assess effects on LUHMES 

viability when incubated with a second dose of H2O2. Finally, the induction of DNA 

damage was investigated in LUHMES challenged with a second dose of H2O2 to 

determine whether this caused a persistent DNA damage or not.   

 

2.4.4.1. H2O2 clearance by LUHMES 

H2O2 clearance experiments were performed to assess the ability of LUHMES to clear an 

external source of H2O2 from the culture medium. Different densities of differentiated 

LUHMES were exposed to 50 μM H2O2 and the concentration in the culture medium was 

then measured every 5 minutes for a period of 30 minutes. Removal of H2O2 can be 

determined by a first-order rate constant (Wagner et al., 2013).  In Table 2.4 the values 

for kobs, kcell and the half-life (t1/2) of H2O2 in the medium are presented. Both constants 

are a measure of the ability of the LUHMES to clear extracellular H2O2 from the culture 
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medium and the t1/2 indicates the time that is required for the original concentration of 

H2O2 to decrease by half, when added to a specific cell density.   

 

The capacity of LUHMES to remove extracellular H2O2 was dependant on cell density 

(Figure 2.9). Results showed that the rate constants for 50 μM H2O2 when added to 4x104 

cells/well were 1.4 times greater than that for the LUHMES plated at 3x104 cells/well and 

3.9 to 4 times greater than that of the LUHMES plated at 2x104 cells/well and (Table 

2.4). The half-life of extracellular H2O2 also increased as the number of plated cells is 

reduced. The t1/2 for H2O2 when added to 4x104 cells is 33.01 minutes; when the cell 

number is decreased to 3x104, the t1/2 increases to 48.53 minutes. The t1/2 for H2O2 when 

added to 2x104 cells increased to 132.88 minutes, as expected. 

 

 

Cell density 

(cells/well) 

[H2O2] 

(μM)  

Observed rate 

constant  

kobs (s
-1) 

Observed rate 

constant for each 

cell  

kcell=kobs/(cell L-1) 

Half life of H2O2 (min) 

(t1/2=(0.693/(kcell(cells L-1)/60)) 

2x104 

50 

0.00009 4.35x10-13 132.88 

3x104 0.00024 7.93x10-13 48.53 

4x104 0.00035 8.75x10-13 33.01 

Table 2.4 H2O2 clearance rates of differentiated LUHMES. 

Differentiated LUHMES seeded at 3 different densities were incubated with 50 μM 

H2O2. Changes in the H2O2 concentration were monitored every 5 minutes for a period 

of 30 minutes. The slope of ln[H2O2] vs time (seconds) provided the value of  kobs, which 

was used to calculate kcell. The value of kcell was calculated using the formula 

kcell=kobs/(cell L-1), where  (cell L-1) is cells/well divided by the total volume of 

media/well in litres. H2O2 half-life was determined using the formula t1/2=0.693/(kcell 

(cells L-1). 
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Figure 2.9 Clearance of extracellular H2O2 by LUHMES. 

Plot depicting the decrease in the extra-cellular H2O2 concentration. LUHMES were 

plated at differing densities (2x104, 3x104 and 4x104 cells/well, respectively) and H2O2 

concentration was measured over a period of 30 min. Data represents mean ± SEM (n=3, 

at least 3 replicates/experiment). 
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2.4.4.2. A second H2O2 treatment causes a persistent decrease in LUHMES’ viability for up 

to 96 hours  

The effect of this second stress was assessed on the LUHMES’ viability over a period of 

96 hours, using the MTT assay (Figure 2.10). In differentiated LUHMES exposed to a 

second stress of 50 M H2O2 there was a significant, persistent impact on metabolic 

activity as measured by MTT; 24 hours after the second H2O2 treatment there was a 

significant reduction of 30% (p≤0.0001) in LUHMES viability, which persisted over time  

(48 hours, 27.2% decrease; 72 hours, 26.1% decrease; 96 hours, 23.9% decrease; all 

p≤0.0001) compared to untreated control.  

 

Figure 2.10 A second H2O2 treatment induces a persistent decrease in metabolic 

activity. 

Differentiated LUHMES were stressed with a second dose of 50 M H2O2 6 hours after 

the first dose (the dotted arrow lines represent the times at which LUHMES were 

incubated with 50 M H2O2). The effect of this second H2O2 treatment on LUHMES 

viability was measured using the MTT assay at 6 (first challenge), 24, 48, 72 and 96 

hours. Data represent mean ± SEM; Two-Way ANOVA with multiple comparisons, 

***p≤0.001, ****p≤0.0001 (N=3, at least 3 replicates, 3 experiments/replicate). 
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2.4.4.3. A second H2O2 treatment causes persistent DSBs in differentiated LUHMES 

After assessing metabolic activity in the double H2O2 stress model and confirming that a 

second H2O2 challenge caused a persistent effect on LUHMES metabolism (as measured 

by MTT) the effect of the single and double stress on DNA damage induction was 

assessed. For this the formation of γH2AX foci was tracked over a period of 96 hours. 

The number of γH2AX+ cells 6, 24, 48, 72 and 96 hours after treatment was quantified 

and plotted (Figure 2.11). As shown previously ( 

Figure 2.7), there were γH2AX foci present 6 hours after treatment with 50 M H2O2 

stress, (55% γH2AX+ LUHMES compared to control). In single stressed LUHMES there 

was a significant reduction in γH2AX foci by 24 hours when compared to controls (5% 

γH2AX+ LUHMES and after 96 hours only 1% of LUHMES are 55% γH2AX+). In the 

double stress model 18% of the cells were γH2AX+ 24 hours after the second treatment 

(p≤0.01) compared to controls and this percentage of positive cells remained constant for 

the duration of the experiment. The mean percentage of γH2AX+ LUHMES was 12% 

after 48 hours (p≤0.01), 22% after 72 hours (p≤0.01) and 18% after 96 hours (p≤0.01), 

compared to controls. 
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Figure 2.11 γH2AX foci are detectable in the double stressed LUHMES for up to 96 hours after stress. 

Differentiated LUHMES were subjected to either a single 50μM H2O2 treatment or a double treatment where the cells were given another 

dose of H2O2 6 hours after the first.  Single and double stressed post-mitotic LUHMES were fixed at different time-points to assess the 

formation of DSBs in the form of γH2AX foci. Cells were stained with an anti- γH2AX antibody and fixed. The number of cells positive to 

γH2AX was quantified and plotted.  This graph represents the % of LUHMES that were stained for nuclear γH2AX per condition. (Data 

represent mean ± SEM; One-Way ANOVA with multiple comparisons, *p≤0.05, **p≤0.01, ***p≤0.001, ****p≤0.001 (N=3, at least 3 

replicates, 3 experiments/replicate).  

* 

** 

** 

*** 
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2.5. Discussion 

This chapter describes the optimisation of the LUHMES cell culture and the development 

of an oxidative stress model in neurones in vitro, by stressing LUHMES with H2O2. This 

model will be used to assess the effects of oxidative stress on the induction of senescence 

in the LUHMES.  

 

2.5.1. Optimisation of LUHMES cell culture 

The LUHMES cell line is a sub-clone of the MESC2.10 cells, which were obtained from 

the ventral mesencephalic tissue of an 8-week old human embryo (Lotharius et al., 2002) 

and were later characterised by Scholz et al. (2011). These cells can be differentiated into 

post-mitotic neurones in culture by adding tetracycline to the media, which switches off a 

v-myc transgene, inducing cell cycle arrest and differentiation (Hoshimaru et al., 1996; 

Lotharius, 2005; Lotharius et al., 2002) The phenotype of these cells is dopaminergic, 

although expression of dopaminergic markers and electrical activity depends on the 

differentiation stage of the cells as well as the factors that are used for their 

differentiation, together with tetracycline (Scholz et al., 2011).  

 

Due to their dopaminergic phenotype, LUHMES were originally used in PD research 

(Lotharius, 2005; Lotharius et al., 2002; Schildknecht et al., 2009, 2013; Xiang et al., 

2013; Zhang et al., 2014b). However, several recent studies report their use for the in 

vitro assessment of neuronal development, neuronal activity, toxicity assays, 

development of 3D cultures and high-throughput screening in other fields of neuroscience 

(Hughes et al., 2014; Ilieva et al., 2013; Kurowska et al., 2014; Smirnova et al., 2015; 

Stępkowski et al., 2017; Tong et al., 2017). The human origin and the ability of these 

cells to stay in a proliferative state make them advantageous over primary neuronal 
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murine cultures. Furthermore, because they are not a tumour-derived cell line like other 

available neuronal cell lines (SH-S5Y5, the NTERA-2 or hNT), they are a suitable model 

to study changes related to DNA damage and cell cycle regulation, mechanisms that are 

closely linked with the activation of senescent pathways in mitotic cells.  

 

Before establishing the oxidative stress models in the post-mitotic LUHMES, their 

culturing conditions were optimised. Studies in embryonic neuronal cells suggest the use 

of serum-free Dulbecco’s Modified Enriched Media (DMEM) with Ham’s F12 Nutrient 

Mixture (1:1) or Neurobasal media for their expansion and maintenance; the addition of 

supplements, such as N2, and mitogens, such as fibroblast growth factor (FGF) and/or 

epidermal growth factor (EGF), promote survival of these cell types. The use of N2-

supplement instead of 10% FBS (foetal bovine serum) is preferred for neuronal cell 

culture, since it has been shown that FBS components can reduce growth rate and affect 

neurite outgrowth of rat neuroblastoma B104 cells (Bottenstein and Sato, 1979). 

Furthermore, even though N2 also promotes proliferation, adding FGF and/or EGF to the 

serum-free media accelerates growth rate of neuronal progenitors (Kitchens et al., 1994).  

 

LUHMES cells have been successfully cultured and expanded in serum-free DMEM/F-12 

based mediums, containing N2 and basic recombinant human FGF (Ilieva et al., 2013; 

Lotharius, 2005; Lotharius et al., 2002; Schildknecht et al., 2009, 2013; Scholz et al., 

2011; Smirnova et al., 2015). Based on this, two media versions were assessed for 

LUHMES cell culture for this project: Advanced and GlutaMAX media. Both medias 

supported survival of proliferating LUHMES; however, an effect on cell proliferation was 

detectable in cells grown in GlutaMAX when pre-differentiated cells were replated. 

Quantification of the total number of cells/ml showed that cells cultured in Advanced 
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media had more cells/ml than cells cultured in GlutaMAX, even when cells for both 

conditions were seeded at the same density. A visual assessment of cell morphology and 

overall health during the last days of differentiation identified cell detachment in the 

GlutaMAX LUHMES, which suggested poor cell health. To confirm this, cells were 

exposed to H2O2 to investigate the vulnerability of post-mitotic LUHMES to an external 

stress when cultured in these two media. GlutaMAX-cultured LUHMES had less 

tolerance to H2O2 toxicity, as there was a significant reduction in cell health, while 

Advanced-cultured LUHMES were less susceptible or unaffected by treatment with 

H2O2, depending on their seeding density. This indicated that the Advanced media 

composition was optimal for LUHMES cell culture. This might be attributed to the extra 

supplementation of lipids and proteins (AlbuMAX II), insulin and transferrin that this 

media contains, since these have previously been shown to be crucial for proliferation and 

maintenance of neural progenitors (Erickson et al., 2008).  

 

The addition of GDNF to the differentiation media, in addition to tetracycline, had no 

effect on the number of differentiating cells/ml or in the cell health of post-mitotic 

LUHMES exposed to H2O2.  However, when the viability of differentiated LUHMES was 

assessed over a period of 96 hours, the addition of GDNF significantly enhanced cell 

survival compared to LUHMES differentiated with tetracycline only.  These results 

suggested that GDNF promoted neuronal health and survival, and therefore GDNF was 

added to the differentiation media for all subsequent experiments. This finding correlates 

with reports that evidence the neurotrophic nature of GDNF (Jin et al., 2002).  
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From this point on, proliferating LUHMES were grown in Advanced DMEM/F12 media 

supplemented with N2 and bFGF. For differentiation, LUHMES were cultured in 

Advanced DMEM/F12 media, supplemented with N2, tetracycline and GDNF.  

 

2.5.2. Following a 2-step differentiation protocol, LUHMES reach a complete post-mitotic 

phenotype 

Having determined the optimal cell culture conditions for LUHMES proliferation and 

differentiation, the expression of neuronal and cell proliferation markers was investigated 

to ensure proper differentiation of these cells.  

 

β-III- tubulin (Tuj1) and MAP2 have been widely used as neuronal markers in both in 

vitro and in vivo studies and antibodies against these proteins were used to identify the 

development of neurites in differentiating LUHMES cultures. β-III-tubulin is one of six 

tubulin isoforms expressed in the central nervous system (CNS), and is expressed by 

neurones where it is involved in microtubule assembly (Ludueña, 1998). MAP2 is a 

member of the MAP family of proteins, whose key function is the stabilisation of 

microtubules. MAP isoforms 1, 2 and tau are predominantly expressed in neurones, and 

MAP2 specifically is considered to be a dendritic marker (Caceres et al., 1984), however 

several reports indicate that this protein also localises to axonal projections. MAP2 axonal 

expression has been detected in rat hippocampal neurones prior to cell polarisation 

(Yamamoto et al., 2012), and this agrees with the findings of Scholz et al (2011) in 

differentiated LUHMES regarding MAP2 axonal expression (Scholz et al., 2011). Both β-

III-tubulin and MAP2 allowed the visualisation of the neuritogenesis process in 

LUHMES before and during differentiation into neurones. PSD95 is a scaffold protein 

which forms part of the excitatory postsynaptic density complex (Chen et al., 2005a; 
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Dosemeci et al., 2007) and has an important role in the development and maturation of 

synapses (Zheng et al., 2012). PSD95 was localised to both the soma and neurites of 

differentiating LUHMES as they entered into a post-mitotic state, suggesting its synthesis 

and posterior transport to developing dendrites (Yoshii and Constantine-Paton, 2014; 

Yoshii et al., 2011).  

 

Alongside the morphological changes that LUHMES undergo in order to reach a post-

mitotic phenotype, there are also cellular changes linked to cell cycle control and cellular 

proliferation. To confirm exit from the cell cycle after exposure to the differentiation 

factors, LUHMES were stained for the common proliferation and cell cycle markers Ki67 

and E2F1. Ki67 is a nuclear antigen that is commonly used in the cancer field, and 

participates in cell proliferation; however, its function was not well defined until a recent 

study which showed that Ki67 was involved in heterochromatin organisation and control 

of gene expression (Sobecki et al., 2016, 2017). The transcription factor E2F1 is a 

member of the E2F family which controls transcription of cell cycle regulatory genes 

involved in the G1/S transition in proliferating cells (Sharma et al., 2006; Wu et al., 

2001). Undifferentiated LUHMES expressed both markers, confirming their proliferative 

state. Expression of Ki67 decreased dramatically 2 days after addition of tetracycline and 

GDNF, indicating cell cycle arrest in these cells and their entry into a quiescent state 

(Sobecki et al., 2017). Expression of E2F1 re-located from the nucleus to the cytoplasm 

of the cells, which has been shown to occur during the differentiation of human and mice 

epidermal keratinocytes in vitro and is thought to be necessary to cease expression of 

genes that are required to maintain a proliferative state (Ivanova et al., 2006, 2007).   
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Immunocytochemical detection of neuronal and proliferation markers proved to be useful 

in the identification of neurite formation and to track the development of a post-mitotic 

phenotype in LUHMES. The use of technologies such as fluorescence-activated cell 

sorting (FACS) or high content imaging could have also been used to determine the 

percentage of differentiated LUHMES in the samples at the end of the differentiation 

process, as well as to track neurite development. For instance, BrdU labelling and FACS 

could be used to determine the fraction of proliferating cells present in LUHMES samples 

at different stages of differentiation and complement the information obtained by 

immunocytochemistry.  

 

2.5.3. Development of an in vitro model of oxidative stress in differentiated LUHMES 

This part of the study focused on investigating the effects of H2O2 on post-mitotic 

LUHMES. Different studies have used H2O2 to induce oxidative DNA damage in cultured 

neurones, including LUHMES. A range of concentrations, from 10 to 300 μM, have been 

assessed to determine the sensitivity of these cells to the peroxide (Fischer et al., 2011; 

Menges et al., 2017), but there are no reports of the capacity of the LUHMES to remove 

extracellular H2O2. This factor is crucial, since the initial concentration of H2O2 added to 

the cells will not only vary with time, depending on the clearance capacity of the cells, 

but will also be affected by cell density (Wagner et al., 2013). Extracellular H2O2 was 

efficiently removed from the media by differentiated LUHMES, an effect that was 

detected by the reduction in H2O2 concentration over time. Experiments also confirmed 

that the clearance rate of H2O2, and hence its half-life, was significantly affected by cell 

density, which correlates with data obtained from rat primary neurones incubated with 

100 μM H2O2, where the clearance rate was directly proportional to the number of cells 

present in the sample (Dringen et al., 1999). Even though only two concentrations of 
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H2O2 were assessed for clearance (25 and 50 μM) due to the detection limits of the assay, 

these results highlighted the importance of maintaining a constant cell density when 

investigating H2O2–induced oxidative stress in differentiated LUHMES.   

   

Exposure to H2O2 can affect cells in a number of different ways; although LUHMES 

were able to remove H2O2 from the media and reduce its initial concentration over time, 

the acute exposure and remaining concentration of H2O2 in the media could affect cell 

metabolism and induce DNA damage. MTT and EthD-1 experiments performed on H2O2 

treated LUHMES indicated a decline in their viability which was dependant on the 

concentration of H2O2. The MTT analysis is a measure of cell health, since it does not 

specifically measure cell death, but metabolic dysfunction (Präbst et al., 2017; Riss et al., 

2013). This colorimetric assay relies on the conversion of the tetrazolium compound 3-

(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide into its formazan 

product, resulting in the formation of a purple-blue precipitate within the cells (Riss et al., 

2013). Several studies have shown that reduction of the MTT tetrazolium salt provides 

information on cell metabolism rather than cell survival or cell proliferation, as usually 

expressed (Berridge et al., 2005; Galluzzi et al., 2009; van Tonder et al., 2015). It has 

been shown that mitochondrial succinate dehydrogenase participates in MTT reduction; 

however, NAD(P)H oxidoreductases present in the cytoplasm and non-mitochondrial 

membranes, such as the plasma membrane, also reduce the compound and to a greater 

extent when compared to mitochondrial dehydrogenase (Berridge and Tan, 1993; 

Stockert et al., 2012). So the MTT assay can reflect changes in any or all of these 

enzymes. For this reason, the EthD-1 assay, which measures cell death directly, was used 

in parallel with the MTT assay. Both the Eth-D1 and MTT assays reflected a similar trend 

in the effect of H2O2 in LUHMES viability. Concentrations of 50 μM H2O2 or lower 
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induced modest levels of toxicity (less than 50% reduction in cell metabolic activity after 

24  hours) whereas 75 and 100μM induced toxicity in the majority of cells. Other studies 

have reported similar H2O2 concentrations, ranging between 75 and 300 μM, to be lethal 

to mice primary neurones (Coombes et al., 2011) and rat primary cortical neurons 

(Whittemore et al., 1995); however, as mentioned before, this will vary depending on the 

time of exposure and the number of cells that are incubated with the peroxide.  

  

Although measures of H2O2 clearance and cell toxicity were critical in determining the 

tolerance range of differentiated LUHMES to oxidative stress, the aim of this study was 

to induce a persistent DDR. To measure this, the expression of γH2AX was examined in 

LUHMES exposed to H2O2.   Double strand breaks (DSBs) are one type of DNA lesion 

that if unrepaired, can compromise genome integrity (Lees-Miller and Meek, 2003). 

DSBs can be caused by oxidation of DNA bases under oxidative stress conditions (Shu et 

al., 2015; Woodbine et al., 2011).  In response to these lesions, the cell activates a DNA 

damage response (DDR) that senses DSBs and activates the appropriate signalling 

cascade to promote DNA repair, cell cycle arrest and senescence or apoptosis (Ciccia and 

Elledge, 2010). Phosphorylation of histone H2AX at serine 139 is one of the earliest 

changes to occur in response to DSBs formation; phosphorylated H2AX (γH2AX) 

recruits the DDR machinery to chromatin domains (foci) close to the site of lesion (Paull 

et al., 2000; Rogakou et al., 1998). γH2AX foci detection is a useful tool to investigate 

DSBs formation in response to a specific stress (Sharma et al., 2012). Exposure to 50 μM 

H2O2 induced detectable DNA damage after 1hr of exposure and this remained detectable 

for 6 hours after exposure. This suggests that H2O2 causes DNA damage soon after 

exposure and that the ability of the cells to repair depends on the concentration of the 

H2O2. Lethal concentrations are likely causing irreparable DNA damage and activating 
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apoptosis pathways, which is evidenced by the detection of apoptotic bodies in samples 

exposed to 75 and 100 μM H2O2 after 4 hours. 

  

Together the cell viability and metabolic activity assays and the kinetics of the DSBs 

generation in H2O2-treated LUHMES suggested that 50 μM H2O2 was the optimal 

concentration to use in order to alter cell metabolism and induce DNA damage without 

causing considerable cell death. However, DSBs in 50 μM H2O2-treated LUHMES were 

repaired after 24 hours and therefore this was not a suitable model to study a persistent 

DNA damage response and activation of senescence-related pathways and an alternative 

approach was sought.  

  

2.5.4. Establishment of a model of persistent DNA damage in LUHMES using H2O2 

Cellular senescence has been described as an anti-tumorigenic mechanism, which in 

response to persistent DNA damage, causes cell cycle arrest and prevents proliferation of 

damaged cells in cancer (Rodier et al., 2009). In ageing and age-related pathologies, 

senescence can be induced by chronic stresses such as the accumulation of ROS, and 

these become detrimental due to a loss of tissue-repair capacity and the development of 

the SASP (Childs et al., 2015; Davalli et al., 2016).  

 

A common feature of senescence is that it is preceded, activated and maintained by a 

persistent stress. As described above, an acute exposure to 50 μM H2O2 affected cell 

metabolism and caused DSBs in LUHMES, but this damage was repaired within 24 

hours. To model persistent DNA damage, LUHMES were exposed to a second H2O2 

stress 6 hours after the first treatment. This time-point was chosen based on the results 

obtained from the detection of γH2AX, which showed γH2AX foci were present up to 6 
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hours after H2O2 treatment. This second H2O2 treatment, at this timepoint, was intended 

to reinforce the DNA damage response that had already been activated.  MTT analysis of 

single and double stressed LUHMES over 96 hours revealed a gradual recovery of 

metabolic function in single stressed cells, while a sustained reduction of cell metabolic 

activity was found in double stressed cells. In addition, a significant number of double 

stressed LUHMES had detectable γH2AX foci 96 hours after treatment compared to 

single stressed LUHMES where no γH2AX foci could be detected at the 96 hr timepoint. 

Chronic oxidative stress models have been developed and investigated previously using 

H2O2 in different cell types, including mouse myoblasts (Santa-Gonzalez et al., 2016) and 

cerebellar granule rat neurones (Hohnholt et al., 2015), but most of the studies use a 

single dose of H2O2 to study the effects of oxidative stress in vitro. Double stressed 

LUHMES show evidence of chronic oxidative DNA damage and metabolic dysfunction; 

these characteristics could stimulate DNA damage response and cell cycle changes that 

could lead to the development of a senescent-like state in neurones, similar to the one that 

has been described in mitotic cells.  

 

It is important to establish that, even with the exposure to a second H2O2 challenge, the 

percentage of cells that showed persistent DNA damage 96 hours after was of only 18%, 

although significantly higher when compared to controls and single stressed LUHMES. 

The presence of γH2AX foci in less than 20% of neurones in the DS-samples could have 

limited the detection of changes linked to senescence that will be described in Chapter 4, 

and could be related to the validation issues faced in the gene profiling analysis, which 

are described and discussed in Chapter 4. Even though exposure of LUHMES to a double 

dose of H2O2 seemed as a simple approach to cause persistent oxidative stress in vitro, 

based on work previously done (), the use of a different stressor such as tert-butyl 
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hydroperoxide (TBHP), could have also been an option, especially since TBHP is more 

stable in solution, compared to H2O2.  

 

TBHP has been shown to cause lipid peroxidation and to promote ROS formation, 

leading to oxidative DNA damage (Park et al., 2003). This compound has also been used 

to induce senescence in vitro in human fibroblasts by exposing cells to a repeated sub-

lethal stress of 30 µM TBHP or to a single acute stress of 450 µM TBHP (Dumont et al., 

2000). Repeated stresses involved exposure of the cells to the TBHP sub-lethal 

concentration every day or every two days; this protocol resulted in an increase in the 

percentage of cells undergoing senescence, when compared to the single acute stress 

(Dumont et al., 2000). Knowing this, it would have been of interest to compare the 

oxidative effect of H2O2 and TBHP in the LUHMES model, especially in the kinetics of 

DSBs formation and repair. This comparison would have allowed the selection of the 

most appropriate oxidant and protocol, being this one that could cause DSBs formation 

and maintenance for 96 hours in at least half of the LUHMES population present in the 

experimental samples. Having a higher fraction of cells positive to γH2AX foci after 96 

hours would have allowed a more reliable study of changes related to this oxidative DNA 

damage and the investigation of senescence induction.  

 

2.6. Main conclusions 

 Advanced DMEM/F12 media, enriched with N2-supplement and bFGF is the 

optimal culture media for the maintenance of proliferating LUHMES.  

 The 2-step differentiation protocol developed by Scholz et al. (2011) successfully 

results in homogeneous cultures of post-mitotic neurones. Replacement of bFGF 
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with tetracycline is enough to promote full differentiation of LUHMES, however, 

the use of GDNF during differentiation promotes LUHMES health and survival  

 Hydrogen peroxide has a detrimental impact on LUHMES cell metabolic activity 

and induces DNA damage, depending on its concentration. Sub-lethal 

concentrations of H2O2 range from 10 to 50 μM and induce repairable DNA 

damage.  

 By challenging previously stressed LUHMES with a second dose of H2O2, a 

persistent DNA damage model can be achieved. A reduction in cell metabolic 

activity and the presence of DSBs 96 hours after the second stress confirmed this 

finding. 
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Chapter 3. Investigating induction of senescence in the LUHMES 

single and double stress models 

3.1. Introduction 

Work presented in Chapter 2 suggested that a second H2O2 challenge causes a persistent 

oxidative DNA damage in differentiated LUHMES, which can be detected 96 hours after 

stress. This type of damage has been linked to the induction of senescence in mitotic cells 

and results in cell cycle arrest, expression of SA-β-gal activity and the development of the 

senescence-associated secretory phenotype, or SASP (Brandl et al., 2011; Wang et al., 

2013). To investigate if LUHMES activate senescence when undergoing a persistent 

DNA damage, SA-β-gal activity, changes in heterochromatin organisation and the 

development of a secretory phenotype were assessed.  

 

To date, there is no single marker that can be used to identify senescent cells. The 

identification of senescent cells in vitro and in vivo relies on the use of different 

biomarkers to detect distinctive changes that senescent cells go through. These include 

the activity of a senescence-associated β-gal enzyme at a suboptimal pH, chromatin 

organisation alterations, and the activation of the p16 and p21 signalling pathways 

(Itahana et al., 2013; Narita et al., 2003; Stein et al., 1999). Senescence in mitotic cells is 

related as well to a secretory phenotype, which is characterised by the release of 

cytokines, chemokines, proteases and other molecules. This phenotype can act in an 

autocrine and paracrine manner to reinforce the senescent state and spread it to 

neighbouring cells (Rodier et al., 2009). Identification of senescent cells also involves the 

detection of some of the molecules that characterise the SASP, including interleukins IL-

6 and IL-8, among others.  
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This chapter focused on the assessment of two of the main senescence biomarkers in 

stressed LUHMES: SA-β-gal activity and heterochromatin re-organisation in the form of 

senescence-associated heterochromatin foci (SAHF). Development of a secretory 

phenotype was also investigated in single and double stressed LUHMES by evaluating 

the toxic effects of conditioned media from stressed LUHMES on healthy LUHMES. For 

this, cell metabolic activity and neurite outgrowth impairment were used as indicators of 

toxicity. Detrimental effects of a secretory phenotype were also analysed in a co-culture 

system of stressed LUHMES/healthy GFP-LUHMES.   

 

3.2. Aims and objectives 

The aim of the experiments performed for this chapter was to determine if the double 

stress model induced activation of senescence in differentiated LUHMES by: 

 Analysing the expression of common markers of senescence in the single and 

double stress models. 

 Determining whether double stressed LUHMES develop a secretory phenotype in 

response to persistent DNA damage.  

 

3.3. Materials and methods 

All chemicals were obtained from Sigma-Aldrich (St Louis, MO, USA) unless stated. 

Solutions required for the experiments described in this chapter were prepared as 

specified in Appendix A.  
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3.3.1. Double –stress model in post-mitotic LUHMES 

Proliferating LUHMES were differentiated as described in Chapter 2. Briefly, 

proliferating LUHMES were seeded on to pre-coated T75 flasks in Advanced 

DMEM/F12 + 1x N2-supplement + 2 mM L-glutamine + 40 ng/µl bFGF. LUHMES were 

left to settle overnight and proliferation media was replaced with Advanced (+/+) to start 

pre-differentiation. After 2 days, pre-differentiated LUHMES were replated on to pre-

coated glass coverslips, in 24-well plates, for immunocytochemistry/neurite outgrowth 

analysis, or 12-well plates for protein and RNA extraction (cell densities are specified for 

each experiment). LUHMES were left in differentiation media for 3 more days.  

 

To generate the single (SS) and double (DS) stressed models, post-mitotic LUHMES 

were stressed with a first dose of 50 µM H2O2; 6 hours after, a second challenge of the 

same H2O2 concentration was applied to the DS-LUHMES. SS, DS and untreated control 

LUHMES were kept in culture for further 96 hours. 

 

 

3.3.2. Detection of common senescence markers in single/double stressed LUHMES 

The identification of senescent cells in vivo and in vitro requires the use of a panel of 

markers, since currently there is no specific marker that indicates activation of senescence 

on its own. To investigate whether oxidative stress could induce senescence in the SS/DS 

models in differentiated LUHMES, expression of two established senescence markers 

was assessed.  
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3.3.2.1. Senescence associated – β – galactosidase (SA- β - gal) activity 

SA-β-gal activity can be detected in vivo and in cultured cells by incubating fixed 

samples with the enzyme substrate, which results in either the precipitation of a coloured 

compound or in the emission of a fluorescent signal, both detectable by microscopy 

(Debacq-Chainiaux et al., 2009). For this work, a method based on the cleavage of the 

chromogenic substrate 5-bromo-4-chloro-3-indolyl β-D-galactopyranoside (X-gal) was 

used to assess SA- β-gal activity. Briefly, Senescence Cells Histochemical Staining Kit 

(Sigma-Aldrich, UK) components were thawed on ice; the X-gal solution was warmed up 

at 37 ºC for 1 hour prior to the experiments. SS and DS-LUHMES were fixed with 1x 

Fixation Buffer 1, 6, 24 and 96 hours after stress. Fixed cells were incubated with the 

staining mixture (potassium ferricyanide (5 mM), potassium ferrocyanide (5 mM), X-gal 

solution (0.1mg/ml), 1x Staining Solution) at 37ºC, overnight. Cells were washed with 1x 

PBS and mounted with Fluoromount Mounting media (Sigma-Aldrich, UK).  Activity of 

the enzyme was identified as a blue, insoluble precipitate within cells and was assessed 

qualitatively in images captured at high magnification (40x objective).  

 

3.3.2.2. Immunocytochemistry 

3.3.2.2.1. Detection of senescence-associated heterochromatin foci (SAHF) 

To investigate senescence-heterochromatin foci (SAHF) formation in DS-LUHMES, 

expression of H3K9Me3, a histone modification associated with heterochromatin and one 

of the main components of SAHF, was explored. The immunocytochemistry protocol was 

described in detail in Chapter 1, section 2.3.2. In summary, SS and DS-LUHMES plated 

on to glass coverslips were fixed with 4% PFA at different time-points (1, 6, 24, and 96 

hours post-stress). After fixation, cells were washed with 1x PBS and permeabilised with 

0.3% Triton-X100. Cells were washed with 1x PBS and blocked with 3% BSA blocking 
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solution. Cells were incubated with a primary rabbit polyclonal antibody against 

trimethyl-Histone H3 (Lys9) H3K9me3 (Merck Millipore, MA, USA) for 1hr at RT. For 

nuclear staining, cells were incubated with Hoechst 33342 (Sigma-Aldrich, MA, USA). 

Coverslips were mounted with Fluoromount Mounting Media. 

 

3.3.3. Induction of a SASP 

3.3.3.1. Effect of stressed cells conditioned media on viability of healthy LUHMES 

To investigate whether DS-LUHMES developed a secretory phenotype, healthy 

LUHMES seeded at a density of 3.5x105 cells/well were incubated with conditioned 

media (CM) from 1, 6, 24, and 96 hours SS and DS-LUHMES. Cell health was assessed 

using the MTT assay as described in Chapter 1, section 2.3.1.2. Briefly, 24 hours after 

incubation with either SS-CM or DS-CM, 50 μl of MTT solution were added to each well 

and cells were incubated for 3 hours at 37 ºC. 550 μl of 20% SDS/DMF solution were 

added to each well to solubilise the formazan crystals and the plates were incubated for 

30 minutes at RT under darkness and constant agitation. The solubilised solution was 

homogenised by pipetting it up and down gently; three 200 μl aliquots/well were 

transferred to a 96-well plate and their absorbance was read at 595 nm in a PHERAStar 

microplate reader (BMG Labtech, Ortenberg, Germany). The absorbance value from the 

medium-only control (background) was substracted from the values of the control and 

treated samples for data analysis.  
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3.3.3.2. Effect of stressed cells conditioned media on neurite outgrowth of healthy 

LUHMES 

Neurite outgrowth impairment was also used to detect the release of SASP-soluble factors 

by DS-LUHMES. For this, CM from 1, 6, 24 and 96 hours SS and DS-LUHMES was 

transferred to 3-days differentiating LUHMES (1x104 cells/well). After 24 hours, cells 

were fixed with 4% PFA. Cells were immunostained for β-III-Tubulin following the 

immunocytochemistry protocol described in Chapter 1, section 2.3.2. LUHMES were 

incubated with a primary chicken anti-β-III-Tubulin (Merck Millipore, MA, USA, 

1:1000) for 2 hours at RT.  Nuclei were stained with Hoechst 33342. Five 

images/coverslip in a cross pattern were taken for each condition with the 20x objective 

of a Nikon Eclipse 80i microscope. Images were processed with the Image J Fiji plug-in 

“Simple Neurite Tracer”, which calculates the length of neurites in pixels. Data is 

presented as neurite length/soma (sum of neurite lengths/number of cell bodies per field). 

 

3.3.3.3. Healthy GFP-LUHMES/stressed LUHMES co-culture 

The toxic effects of the SASP are not limited to the soluble factors present in the 

surrounding cell environment. Cell-to-cell contact also plays a role in its detrimental 

consequences over surrounding cells. To study this in the DS-LUHMES model, a co-

culture system was developed.  

 

3.3.3.3.1. GFP-LUHMES production 

Generation of GFP-LUHMES was achieved by transducing low passage (P3) 

proliferating LUHMES with GFP-expressing lentivirus (GFP-LV, MOI=8). LUHMES 

(P3) were seeded at a density of 3.5x105 cells/flask on to a pre-coated T25 flask and 
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transduced for 24 hours. Media was changed after this time and GFP expression was 

detected 72 hours after transduction.  

 

3.3.3.3.2. GFP-LUHMES/non-transduced LUHMES co-culture optimisation 

Non-transduced proliferating LUHMES (3.5x105 cells/well) were differentiated on to pre-

coated glass coverlips following the 2-step differentiation protocol. Pre-differentiated 

GFP-LUHMES were replated on top of 5-day differentiated non-transduced LUHMES at 

3 different densities: 7.5x103, 1x104 and 5x104 cells/well. Once the GFP-LUHMES 

completed 5 days of differentiation, co-cultures were fixed with 4% PFA for 10 minutes 

at RT. Cells were washed 3 times with 1x PBS and incubated with Hoechst 33342 for 

10min at RT. After washing 3 times with 1x PBS, coverslips were mounted with 

Fluoromount Mounting Media. Images were taken with a Nikon Eclipse 80i microscope 

with the 20x and 40x objectives.  

 

3.3.3.3.3. Neurite outgrowth assays in GFP-LUHMES co-cultured with stressed 

LUHMES 

Non-transduced differentiated LUHMES (3.5x105 cells/well) were stressed with 50 μM 

H2O2 following the “single/double stress” protocol described before. Pre-differentiated 

GFP-LUHMES were plated on top of the SS and DS-LUHMES at different time-points, 

at a density of 1x104 cells/well. Co-cultures were fixed with 4% PFA (10 min, at RT) 24 

hours after pre-differentiated GFP-LUHMES were re-plated on top.  Nuclei were stained 

with Hoechst 33342 for 10 min, at RT. Coverslips were mounted with Fluoromount 

Mounting Media. Images from five fields/coverslip were taken with a Nikon Eclipse 80i 

microscope with the 20x and 40x objectives. Neurite outgrowth was analysed with the 

“Simple Neurite Tracer” plug-in from Image J Fiji as explained previously. 
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3.3.3.3.4. Detection of DSBs formation in GFP-LUHMES co-cultured with stressed 

LUHMES 

Induction of DNA damage was also assessed in the GFP-LUHMES/stressed LUHMES 

co-culture. Co-cultures were fixed with 4% PFA and immunodetection of γH2AX was 

performed as described in sections 2.3.2 and 2.3.3.2. For this, co-cultures were incubated 

with an anti-γH2AX mouse monoclonal antibody (1:1000; Merck Millipore, MA, USA) 

for 1 hour at RT and nuclei were stained with Hoechst 33342. Coverslips were mounted 

with Fluoromount Mounting media and analysed a Nikon Eclipse 80i microscope. The 

analysis focused on identifying γH2AX+ GFP-LUHMES.  

 

3.3.4. Statistical analysis  

Data obtained from the conditioned media (MTT and neurite outgrowth) and co-culture 

experiments (neurite outgrowth) was analysed with Prism 7.0c (GraphPad Software, Inc., 

CA, USA). All data is presented as mean ± standard error of the mean (SEM). 

 

3.4. Results 

3.4.1. SA- β-gal activity in differentiated LUHMES 

SS and DS-LUHMES were assessed for SA-β-gal activity. Analysis of the staining 

revealed unexpected high activity in untreated LUHMES. The blue precipitate was 

localised to the axon hillock from untreated controls of every time-point under 

assessment (Figure 3.1). The staining pattern was similar across untreated LUHMES 

samples, with all the neurones presenting SA-β-gal activity. SS and DS-LUHMES were 

also positive for SA-β-gal activity and the intensity of the blue precipitate was similar to 

that seen in untreated LUHMES. No change in the intensity or localisation of the staining 
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was identified with increasing time of incubation for both untreated and SS/DS-neurones, 

when assessed for the first 24 hours post-stress. However, more intense staining was 

observed in the 96-hour samples; the staining localised to the axon hillock and throughout 

the length of the axon. These changes were seen in the untreated and SS/DS-LUHMES, 

with no obvious difference between conditions.  

 

Further analysis revealed that SA-β-gal activity was highly variable in control 

differentiated LUHMES, and increased with passage number, as shown in Figure 3.2. 

Low passage (P4) differentiated LUHMES had a low level of enzyme activity, but a 

significant increase was noticeable in cells of medium passage (P9). In P9 LUHMES the 

activity was not localised just to the axon hillock but to most of the cytoplasm in the cell 

soma. Older passage cells (P14) were intensely stained and the activity of SA-β-gal was 

detected in the neurites.  

 

The staining protocol uses a mix of reagents to maintain a pH of 6-6.5 during incubation 

with the enzyme substrate; however, it is possible for acidification of the media to occur 

as a result of normal cellular metabolism. To prevent acidification and determine whether 

this would increase SA-β-gal activity under normal conditions, neurones were incubated 

with Bafilomycin A1 (BafA1). Incubation with BafA1 did not have an effect on SA-β-gal 

activity, as pre-treated cells showed similar staining as non-treated LUHMES (Figure 

3.2). 
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SS and DS-LUHMES at different timepoints were fixed and 

processed for SA-β-gal activity detection. Staining in untreated 

LUHMES revealed endogenous activity of the enzyme in these cells 

and no difference was found between  SS and DS-LUHMES. SA-β-

gal activity increased with time in culture, since a more intense 

staining was detected in 96 hours incubated untreated and SS/DS-

LUHMES. Scale bar represents 50 μm (N=3, at least 3 replicates, 3 

experiments/replicate).  

 

Figure 3.1 SA-β-gal activity in single/double stressed LUHMES. 
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Figure 3.2 SA- β-gal activity increases with passage number in differentiated 

LUHMES. A. 

SA-β-gal activity was investigated in low, medium and old passage differentiated 

LUHMES. The intensity and localisation of the enzyme activity varied with passage 

number. SA-β-gal activity in low passage LUHMES was restricted to the axon hillock, 

whereas medium and high passage neurones had widespread cytoplasmic activity that 

localised to the neurites as well. B. LUHMES were incubated with Bafilomycin A1 to 

prevent lysosomal acidification. The use of BafA1 did not affect SA-β-gal activity of 

low and old passage differentiated LUHMES. Scale bar represents 10 μm (N=3, at least 

3 replicates, 3 experiments/replicate).  
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3.4.2. Formation of heterochromatin foci (SAHFs) in single/double stressed LUHMES 

SAHFs are DNA-stained dense foci present in senescent cells that silence expression of 

proliferation-promoting genes, such as E2F1 target genes, contributing in this way to the 

irreversible cell cycle arrest that characterises senescence (Narita et al., 2003; Zhang et al, 

2007). Detection of SAHFs can be performed using immunocytochemistry against the 

SAHFs components macroH2A, HP1 proteins and H3K9me2/3, which are hallmarks of 

heterochromatin (Aird and Zhang, 2013). In the SS and DS-LUHMES model, formation 

of SAHFs was investigated through the detection of H3K9me3, an epigenetic marker 

associated with pericentric heterochromatin that has an important function in gene 

silencing and in the maintenance of genome stability (Peters et al., 2002: Muramatsu et 

al., 2016).  In senescent cells, H3K9me3 is localised to the core of SAHFs (Chandra et 

al., 2012) and H3K9me3 enriched sites are known to provide a docking spot for HP1 

proteins (Bannister et al., 2001).   

 

Formation of SAHFs was not seen in stressed LUHMES (Figure 3.3). Expression of 

H3K9me3 was present in the nuclei of untreated post-mitotic LUHMES. The staining 

pattern was diffuse and specific chromatin structures were not visible. Chromatin 

organisation was not altered in SS and DS-LUHMES according to H3K9me3 staining at 

any of the time-points assessed. To make sure H3K9me3 would detect heterochromatin 

foci formation, old passage human fibroblasts (P12) were stained as well. Staining in 

these cells confirmed localisation of H3K9me3 in small round nuclear structures in the 

fibroblasts.  
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Figure 3.3 H3K9me3 expression in stressed LUHMES. 

SS and DS-LUHMES were stained for H3K9me3 to detect formation of senescence-associated heterochromatin foci (SAHF) in response to oxidative DNA 

damage. SS and DS-LUHMES were fixed at different timepoints and stained for H3K9me3 by immunocytochemistry. H3K9me3 was present in the nucleus of 

control and stressed cells, but no specific chromatin structures were identified. Staining of old passage human fibroblasts was included as a positive control. 

H3K9me3 was localised to small foci within the nuclei of fibroblasts. Scale bar represents 10 μm (N=3, at least 3 replicates, 3 experiments/replicate).   
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3.4.3. DS-LUHMES have a detrimental effect on healthy LUHMES suggesting 

propagation of injury 

The development of a SASP occurs in mitotic cells when senescent pathways are 

activated. To investigate if a similar mechanism was triggered in neurones exposed to a 

persistent oxidative stress, healthy differentiated LUHMES were incubated with 

conditioned media (CM) from 1, 6, 24 and 96 hours SS and DS-LUHMES. Cell health 

using the MTT assay was measured in CM exposed neurones 24 hours after. A small (less 

than 10%) significant reduction in cell metabolic activity of healthy LUHMES was seen 

after incubation with SS and DS-CM compared to cells incubated with untreated-CM 

(Figure 3.4). Toxicity was not dependent on the time point of CM collection. SS-CM 

collected 1 and 6 hours after adding the bolus of 50 μM H2O2 had an effect on cell 

metabolic activity of healthy LUHMES comparable to the effect of the CM collected 24 

and 96 hours after. There was no difference in cell metabolic activity between cells 

incubated with SS and DS-CM.  

 

The toxic effects of SS- and DS-CM were evaluated on neurite outgrowth of healthy 

LUHMES as well (Figure 3.5). Healthy LUHMES incubated with untreated CM had a 

mean neurite length of 80 pixels/soma, except for the cells incubated with 96 hours 

untreated CM, which had a neurite length of 54 pixels/soma, in both SS and DS-CM 

incubation conditions. When incubated with 1-hour SS-CM, neurite length of healthy 

LUHMES was significantly reduced to 63 pixels/soma (p=0.0003). Incubation with the 6 

(p=0.3788) and 24 hours (p=0.1473) SS-CM did not have an effect on neurite outgrowth. 

The 96 hours SS-CM impaired neurite development significantly (p<0.0001). The mean 

neurite length for LUHMES under this condition was of 36 pixels/soma.  
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Incubation of healthy differentiating LUHMES in the DS-cells also caused significant 

neurite length reduction. Neurones incubated in untreated-CM for 24 hrs developed 

neurites with a mean length of 85 pixels/soma, whereas neurones in 24 hours DS-CM 

showed a reduction of almost 23 pixels/soma (p=0.0003). The 96 hours DS-CM also 

impaired neurite outgrowth of healthy LUHMES, causing a reduction in length from 54 

to 39 pixels/soma (p=0.0080).  

 

 

Figure 3.4 Incubation of healthy LUHMES with SS and DS-CM has a small 

significant effect on cell metabolism of healthy LUHMES. 

CM from SS and DS-LUHMES was collected at different timepoints. Healthy LUHMES 

were incubated with SS and DS-CM for 24 hours and its effect on LUHMES metabolism 

was assessed using the MTT assay. SS and DS-CM caused an effect on LUHMES 

metabolism. This effect was similar in cells incubated with SS and with DS-CM and it 

was not related to the CM time of collection. (Data represent mean ± SEM; Two-Way 

ANOVA with multiple comparisons (Tukey correction), *p≤0.05, N=3, 3 

experiments/replicate).
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Figure 3.5 Incubation in SS and DS-CM impaired neurite outgrowth of healthy 

differentiating LUHMES. 

Healthy differentiating LUHMES were incubated in SS and DS-CM collected at 1, 6, 24 and 96 

hours post-H2O2 stress. To assess cell health under these conditions impairment of neurite 

outgrowth was assessed. A. Representative images of differentiating LUHMES exposed to SS 

and DS-CM. B. A significant reduction in neurite length was seen when differentiating 

LUHMES were cultured in 24 hours SS and DS-CM, and in 96 hours DS-CM. Scale bar 

represents 20 μm (Data represent mean ± SEM; Two-Way ANOVA with multiple comparisons 

(Tukey correction), **p≤0.01, ***p≤0.001, ****p≤0.001, N=3, 3 experiments/replicate). 
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3.4.4. GFP-LUHMES/non-transduced LUHMES co-culture optimisation 

To investigate the effects of cell-to-cell contact by measuring neurite outgrowth, a co-

culture of healthy GFP-LUHMES/stressed LUHMES was designed and optimised. GFP-

LUHMES were obtained by transducing low passage proliferating LUHMES with a GFP-

expressing lentivirus, as described in section 3.3.3.3.1. The optimal seeding density of 

GFP-LUHMES for the neurite length measurement was found by assessing three different 

cell densities (Figure 3.6). 10,000 cells/well was the optimal plating density. Under this 

condition, single cell analysis was feasible, as cells were sparse enough to measure 

neurite outgrowth and the development of neurites appeared as expected. With a lower 

cell density (7,500 cells/well), GFP-LUHMES viability was compromised, as evidenced 

by very short, almost non-perceivable neurites, as well as by cell death in some of the 

samples assessed.  Even though a higher cell density allowed the growth of longer 

neurites, the fact that the GFP-LUHMES were more confluent facilitated the formation of 

GFP colonies, which precluded the measurement of single neurites.  

 

 
 

Figure 3.6 Optimisation of healthy GFP-LUHMES/stressed LUHMES co-culture. 

Representative images of differentiating GFP-LUHMES/post-mitotic LUHMES co-

culture. Differentiating (d2) GFP-LUHMES were replated on d6 differentiated 

LUHMES at 3 different densities: 7.5x104, 1.0x104 and 5.0x104 cells/well. The best cell 

density was chosen based on the presence of single cells, which would allow 

measurement of single neurites. Scale bar represents 100 μm.  
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3.4.5. Neurite outgrowth assays in GFP-LUHMES co-cultured with stressed LUHMES 

Neurite outgrowth from healthy GFP-LUHMES was assessed in a co-culture system with 

SS and DS-stressed LUHMES ( 

 

Figure 3.7). It was evident that neurite outgrowth in the control co-culture system was 

enhanced. Data presented in the previous section showed that the neurite length of 

LUHMES in monoculture under normal conditions was of 80 pixels/soma, while in co-

culture, neurites reached lengths of more than 300 pixels/soma.  When healthy LUHMES 

were co-cultured with 96 hours SS and DS-LUHMES, their neurite length was of 290 

pixels/soma and 269 pixels/soma, respectively.  
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SS-LUHMES incubated with H2O2 for 1,6 and 24 hours did not impair neurite outgrowth 

of healthy LUHMES.  Even though a reduction in neurite length was seen in neurones co-

cultured with 96 hours SS-LUHMES, the effect was not significant (p=0.0956). DS-

LUHMES had a greater effect on neurite outgrowth of GFP-LUHMES. 24 hours DS- 

LUHMES inhibited neurite outgrowth significantly, causing a reduction of almost half 

(222 pixels/soma, p=<0.0001) the length of cells in control co-cultures. 96 hours DS- 

LUHMES also caused a significant reduction in neurite length (162 pixels/soma, 

p=0.0029).
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Figure 3.7 DS-LUHMES impair neurite outgrowth significantly of differentiating GFP-LUHMES in a co-culture system.  

To assess the development of a SASP in DS-LUHMES, a co-culture system with healthy GFP-LUHMES was developed. Neurite length was used as a marker 

of cell health in this system. A. Representative images of GFP-LUHMES in a co-culture system with SS and DS-LUHMES. B. A significant impairment in 

neurite outgrowth was seen in GFP-LUHMES when co-cultured with 24 and 96 hours DS-LUHMES. Scale bar represents 20 μm (Data represent mean ± 

SEM; Two-Way ANOVA with multiple comparisons (Tukey correction), **p≤0.01, ****p≤0.001, N=3, 3 experiments/replicate). 



 97 

3.4.6. DNA damage under co-culture conditions 

SASP in mitotic cells promotes inflammation and oxidative stress, which reinforces the 

senescent state by causing chronic DNA damage in neighbouring cells (Acosta et al., 

2013). To investigate if stressed LUHMES could promote DNA damage in GFP-

LUHMES in the co-culture system, detection of γH2AX foci in these cells was conducted 

using immunocytochemistry. γH2AX+ GFP-LUHMES were not present in any of the 

conditions assessed (Figure 3.8).  
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Figure 3.8 96 hours DS-LUHMES did not cause DNA damage on healthy 

LUHMES. 

The ability of DS-LUHMES to induce DNA damage in surrounding cells as a result of a 

secretory phenotype was studied. GFP-LUHMES co-cultured with SS and DS-LUHMES 

were single labelled for γH2AX. Formation of γH2AX foci was not evident in GFP-

LUHMES under any of the conditions assessed. Scale bar represents 20 μm (N=3, at 

least 3 replicates, 3 experiments/replicate).  
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3.5. Discussion   

After establishing a model of persistent oxidative DNA damage in differentiated 

LUHMES, the expression of common senescence markers was investigated. Irreversible 

cell cycle arrest is one of the main characteristics of cellular senescence, but in vivo and 

in vitro evidence suggests that neurones express some of the senescence markers that are 

found in mitotic cells despite their post-mitotic nature. The data presented here suggests 

that, despite achieving a state of persistent DNA damage, senescence markers, such as 

increased SA-β-gal activity and changes in chromatin organisation are not a feature of the 

neuronal model under study.  At the same time, even though alteration in neurite 

development was detected in the healthy GFP-LUHMES that were co-cultured with DS-

LUHMES, results did not suggest propagation of injury, since DNA damage in the form 

of γH2AX was not seen in GFP-LUHMES.   

 

3.5.1. SA- β-gal activity is present in untreated and stressed LUHMES 

From its discovery, cytochemical detection of SA-β-gal has been used to identify 

senescent cells in culture and in tissue (Berkenkamp et al., 2014; Cohen et al., 2017; 

Debacq-Chainiaux et al., 2009; Itahana et al., 2013).  The work of Dimri et al. (1995) on 

human fibroblasts and keratinocytes demonstrated activity of a β-gal at pH6 in late but 

not in early passage cultures (Dimri et al., 1995).  Additionally, they reported an age 

dependent increase in SA-β-gal staining in skin biopsies but not in cultured skin 

fibroblasts, which only correlated with reduced cell replicative capacity (Dimri et al., 

1995). Despite this, Dimri et al. suggested the use of SA-β-gal activity at pH6 as a marker 

of ageing and senescence both in vivo and in vitro.  Later studies confirmed the origin of 

SA-β-gal as a lysosomal enzyme (Kurz et al., 2000). Its activity at a suboptimal pH was 
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shown to be, in part, product of increased mRNA and protein levels, but it was 

established that other conditions could also contribute to it (Lee et al., 2006).  

 

More recently and related to brain ageing and neurodegeneration, SA-β-gal activity was 

studied in murine neuronal primary cultures. Geng et al. published a paper in 2010 where 

they demonstrated a time-dependant increase in the number of SA-β-gal+ cells in cultures 

of rat hippocampal neurones (Geng et al., 2010). Another study conducted in primary 

cortical neurones from Balb/c mice also showed increased SA-β-gal staining after 20 days 

in vitro, and even reported morphological changes in neurones, such as increased size, a 

characteristic of senescence in mitotic cells; however, no clear evidence is presented for 

this last claim (Chernova et al., 2006). These findings correlate with what has been 

published on senescence in human mitotic cells, but not with what was seen in 

differentiated LUHMES. Other studies have also challenged the use of SA-β-gal staining 

as a marker of senescence both in proliferative and post-mitotic cells.  

 

Differentiated LUHMES showed endogenous SA-β-gal activity. Staining was localised in 

the axon hillock of the majority of cells and varied in intensity and localisation, 

depending on passage number and days in culture. Treatment with Bafilomycin A1 did 

not reveal any change in the intensity of the staining or in the number of stained cells and 

incubation with H2O2 did not seem to cause changes either, which indicated that SA-β-gal 

activity in LUHMES was not affected by lysosomal acidification. These results are 

similar to those reported by Piechota et al. (2016). Their study found SA-β-gal activity to 

be variable in 8-days cultured rat cortical neurones; this activity significantly increased 

after 30 days in vitro, but did not correlate with markers of DNA damage or DNA 

damage response (Piechota et al., 2016), suggesting that SA-β-gal in neurones in culture 
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could be linked to mechanisms other than senescence. SA-β-gal activity was also seen in 

differentiated HL60 and U937 cells and in Swiss 3T3 quiescent cultures (Yegorov et al., 

1998). This evidence and the findings shown in the LUHMES suggest that increased SA-

β-gal activity in vitro is not limited to senescent cells but can also be found in non-

proliferative cells. The exact role of this enzyme in differentiated cells is yet to be 

determined.  

 

The in vitro production of differentiated LUHMES involves the activation and silencing 

of cellular mechanisms that are necessary for neuronal development. Cell cycle exit, 

neurite growth and synapse formation are just some of the events that occur in neuronal 

maturation (Budnik and Salinas, 2011; Buttitta and Edgar, 2007; Sainath and Gallo, 

2014), and degradation and synthesis of macromolecules accompany these processes. In 

2000, Kurtz et al. confirmed that SA-β-gal activity resulted from an increase in lysosomal 

mass (Kurz et al., 2000). Even though the exact role of SA-β-gal in replicative senescence 

has not been described, its lysosomal origin suggests it may be related to autophagy 

(Gerland et al., 2003). It has been shown that autophagy plays an important role in 

neuronal differentiation in vitro (Vázquez et al., 2012; Zeng and Zhou, 2008). It is 

possible that differentiated LUHMES presented some residual lysosomal activity from 

the 5-days differentiation process and that this could be reflected in SA-β-gal activity. 

The 2-step differentiation protocol of Scholz et al. (2011) results in a stable post-mitotic 

phenotype in LUHMES in terms of cell cycle exit and expression of neuronal markers. 

However, after day 5, differentiated LUHMES still go through differentiation-related 

changes, including electrophysiological maturation, axodendritic polarisation, expression 

of dopaminergic markers and synapse development (Scholz et al., 2011). This could mean 

that differentiation-related autophagy could still be active after day 5, contributing to an 
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increase in lysosomal mass and SA-β-gal activity. Mitochondrial biogenesis and 

metabolic changes are also implicated in neuronal maturation (Agostini et al., 2016). 

These changes have not been described yet in the LUHMES model, but they could 

contribute to a potential differentiation stress and influence SA-β-gal activity.  

 

Finally, cell culture stress could also enhance SA-β-gal activity in differentiated 

LUHMES. pH changes and the use of tetracycline could increase ROS accumulation 

under normal conditions and stimulate lysosomal activity (Moullan et al., 2015).  

 

3.5.2. Heterochromatin foci (SAHFs) are not present in SS or DS-LUHMES  

 Formation of senescence associated heterochromatin foci (SAHFs) appears in certain 

senescent cell types (Narita et al., 2003). These nuclear domains are constituted by a type 

of facultative heterochromatin enriched in macroH2A, a transcription-silencing histone 

variant, and heterochromatin proteins, such as HP1 and di- or tri-methylated lysine 9 

histone H3 (H3K9me2/3) (Narita et al., 2003; Zhang et al., 2005, 2007). SAHFs have an 

important role in cell cycle arrest in senescent cells as well as in the maintenance of this 

state through the repression of proliferation-related E2F target genes (Narita et al., 2003).  

SAHF formation can be detected with DAPI/Hoechst staining, to localise the 

heterochomatin structures, complemented with the immunocytochemical detection of any 

of the heterochromatin related proteins, including H3K9me2/3 (Aird and Zhang, 2013).    

 

Immunocytochemistry for H3K9me3 in differentiated LUHMES did not reveal changes 

of its localisation within the nucleus of SS or DS-LUHMES. Staining was diffuse and 

foci formation was not detectable at any of the time-points assessed. This pattern for 

H3K9me3 is similar to the one presented for day-6 differentiated LUHMES maintained 
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under normal culture conditions (Weng, 2014). It is known that epigenetic modifications 

occur in post-mitotic neurones in response to DNA damage. Cell cycle re-entry is 

necessary for the activation of repair mechanisms in neurones (Tomashevski et al., 2010). 

This involves chromatin modifications that promote expression of E2F-regulated cell 

cycle related genes (Lui et al., 2005). It is interesting that the oxidative DNA damage 

model in LUHMES does not reflect chromatin changes at the level of H3K9 methylation. 

This had already been seen in day-4 differentiated LUHMES incubated with proliferation 

media up to day-6 to promote cell cycle re-entry (Weng, 2014). Weng (2014) showed that 

gene repression in differentiated LUHMES was supported by the formation of a specific 

chromatin structure enriched with the heterochromatin-specific histone modifications 

H3K27me3 and to a lesser level, H3K9me3. This structure was localised to the periphery 

of the nucleus and was not altered when LUHMES were induced to re-activate their cell 

cycle (Weng, 2014).  Weng suggests that this chromatin structure functions act as a 

barrier in neurones to prevent cell division in response to replicative stress. This would 

explain why there were no changes in H3K9me3 staining in SS or DS-LUHMES.  

 

The fact that H3K9 methylation could participate in a post-mitotic neuron-specific 

chromatin structure suggests that SAHF conformation could be different in these cells, if 

possible to form at all. For instance, macroH2A expression in neurones from young (4 

months) and old (32 months) mice varied between Purkinje cells and cortical and 

hippocampal neurones. While macroH2A foci were more prevalent in old mice cortical 

neurones than young mice, no difference was detected in Purkinje cells and the 

hippocampus (Jurk et al., 2012). macroH2A was also investigated in rat cortical neurones 

kept in culture for 30 days and no change on its expression or localisation was seen 

during this time (Piechota et al., 2016). This evidence corroborates how different the 
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organisation of chromatin is in post-mitotic cells, such as neurones, compared to 

proliferating cells. Even though Jurk et al. confirmed SAHF formation based on 

macroH2A expression in cortical neurones from old mice, it is important to clarify the 

role of SAHF proteins in neurones and evaluate the feasibility of SAHF formation in 

these brain cells, before any conclusions can be drawn.  

  

3.5.3. Do LUHMES develop a secretory phenotype in response to persistent DNA damage? 

The SASP has been extensively studied in vitro and in vivo in different cell types and 

under different conditions. In 2008 Coppé et al. investigated the components of the SASP 

in 5 different strains of pre-senescent and senescent fibroblasts. Senescent fibroblasts 

secreted significantly higher levels of different proteins compared to pre-senescent cells; 

among these proteins, growth and survival factors, cell surface molecules and 

inflammatory chemokines and cytokines were present (Coppé et al., 2008). Later studies 

have also characterised the SASP in endothelial cells, muscle cells, mesenchymal stromal 

cells, keratynocites and astrocytes (Hsu et al., 1999; Mombach et al., 2015; Muck et al., 

2008; Özcan et al., 2016) 

 

The analysis of conditioned media from senescent cells has been an important tool to 

examine the composition of the SASP, its regulation in senescence and the effects it 

exerts over the cellular microenvironment (Coppé et al., 2008, 2011; Freund et al., 2011; 

Kang et al., 2015; Maciel-Barón et al., 2016; Rodier et al., 2009). These studies have 

shown that the development of a SASP is independent of p16 and p21 activation; 

furthermore, the SASP results from a persistent DNA damage, and does not relate to cell 

cycle arrest and expression of other senescence markers, such as SA-β-gal (Coppé et al., 

2011; Rodier et al., 2009).  This evidence suggests that despite the post-mitotic nature and 
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the variable SA-β-gal activity found in the LUHMES it could be possible for these cells 

to develop a SASP in the DS model.  

 

Before trying to characterise the components of a secretory phenotype, it was important 

to determine if soluble toxic factors were being released by LUHMES in response to 

oxidative DNA damage. For this, conditioned media (CM) from SS and DS-LUHMES 

was collected at different time-points. Healthy differentiated LUHMES were incubated 

with the CM for 24 hours and their viability was assessed. A small, but significant 

decrease in cell metabolic activity was seen, except for the 24 hours CM from DS-

LUHMES. These results did not confirm if a secretory phenotype was being activated in 

the model. The percentage reduction of viability did not differ significantly between SS 

and DS conditions, suggesting that the effect was not enhanced by a persistent DNA 

damage. MTT cell metabolic activity assays presented in Chapter 2 showed that 

incubation of differentiated LUHMES with 50µM H2O2 caused mitochondrial 

dysfunction. This altered metabolic state could promote ROS accumulation in the culture 

medium and affect healthy LUHMES. Metabolic dysfunction in SS and DS-LUHMES, 

detectable even after 96 hours of being stressed could be an interesting condition to study; 

however, it does not suggest relation with a SASP.  

 

A different approach to assess neuronal health was used to further investigate the 

presence of SASP-related toxic molecules in DS-CM from LUHMES. Neurite outgrowth 

has been previously used to assess neuronal function and health under different 

conditions (Harrill et al., 2010; Radio et al., 2008). For these experiments, 2-day-pre-

differentiated LUHMES were replated and incubated for 24 hours in CM from SS and 

DS-LUHMES, collected at different time-points.  Results showed a marked reduction in 
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neurite length in the LUHMES incubated with 50µM H2O2 CM, from both SS and DS-

LUHMES. The 1hr SS-CM had a significant effect on neurite length, which could be 

related to the presence of a residual concentration of H2O2 and not to a secretory 

phenotype.  

 

The study of the SASP in mitotic cells has revealed that its induction requires several 

days to occur (Acosta et al., 2013). This suggested that if a secretory phenotype were 

activated in DS-LUHMES, its effects would be detectable on the 96 hours-CM incubated 

neurones. Neurite length was impaired by the 24 hours DS-CM but not by the SS-CM 

collected at the same time-point. However, a significant decrease in neurite outgrowth 

was seen in differentiating LUHMES incubated with 96 hours SS and DS-CM. It is also 

important to consider that even the 96 hours-control-CM compromised neurite outgrowth. 

This evidenced the substantial influence that accumulation of products from the normal 

metabolism of LUHMES in the 96 hours-CM had on neurite outgrowth. Added to this, 

treatment with H2O2 could have enhanced accumulation of ROS and acidification of the 

culture media. Taking this into account, it is not possible to determine if the effects seen 

on the 24 and 96 hours DS-LUHMES were caused by SASP-related soluble factors, by 

the incubation in acidic cell culture media, or both.   

 

To address this issue, a co-culture system of healthy GFP-LUHMES with SS and DS-

LUHMES was designed. It has been shown that the SASP effects depend to a certain 

extent on cell-to-cell contact.  Acosta et al. (2013) investigated this in oncogene-induced 

(OIS) senescent IMR90 human lung fibroblasts. Co-cultures in a transwell format 

confirmed the release of soluble factors by senescent cells that could propagate the 

senescent state to normal fibroblasts (Acosta et al., 2013). Direct co-cultures also showed 
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cell-to-cell contact contributed to this observed paracrine senescence and more 

importantly, it depended on the proximity of normal cells to senescent ones (Acosta et al., 

2013). To investigate if this was also the case in the LUHMES model of persistent 

oxidative DNA damage, pre-differentiated GFP-LUHMES were co-cultured on top of SS 

and DS-LUHMES, at different time-points. Cell health was investigated indirectly 

through neurite outgrowth of GFP-LUHMES after 24 hours of incubation.  

 

Neurite outgrowth of GFP-LUHMES was significantly impaired when co-cultured with 

24 and 96 hours DS-LUHMES. A reduction in neurite length was also seen in the GFP-

LUHMES/24 hours-SS-LUHMES co-culture, but this did not reach significance. This 

reduction in neurite length indicated that stressed LUHMES had a detrimental effect over 

normal LUHMES. The fact that this reduction was significant only in the DS-LUHMES 

co-culture suggested a higher toxicity exerted under these conditions, which could be 

related to the persistent DNA damage state. As described before, expression of common 

senescence markers, including SA-β-gal activity and growth arrest, does not relate to the 

development of a SASP in mitotic cells (Coppé et al., 2011). Persistent oxidative DNA 

damage in LUHMES could induce a secretory phenotype, despite being a non-

proliferative cell type and having a variable pattern of SA-β-gal activity.  

 

Acosta et al. (2013) also found that propagation of senescence by OIS-fibroblasts caused 

cell cycle arrest, expression of the SASP-associated cytokine IL-8, p16 and p21 activation 

and DNA damage in normal cells. To investigate if this happened in the co-culture 

LUHMES model, formation of DSBs was assessed in GFP-LUHMES using 

immunocytochemistry for γH2AX. DSBs were expected to be present in the 96 hours-DS 

LUHMES co-culture, but no evidence of DNA damage was found in the GFP-LUHMES. 
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Earlier time-points were assessed as well, for both the SS and DS models, but all GFP-

LUHMES were negative for γH2AX under these conditions.  

 

Not seeing an effect on the DNA of neighbouring cells in the DS-LUHMES co-culture 

does not exclude the possibility of DS-LUHMES being capable of secreting toxic factors 

and affecting their microenvironment. There is only one report of a SASP-like 

mechanism in neurones in vitro. The study showed a time-dependent increase in IL-6 

mRNA levels, a SASP-associated cytokine, in rat neuronal cultures; a significant up-

regulation was first detected after almost 20 days in culture, and reached a 5-fold increase 

at day 30 (Piechota et al., 2016). Analysis of LUHMES co-cultures was restricted to 24 

hours after plating. A longer time in culture may be necessary for stressed LUHMES to 

cause detectable DNA damage in surrounding healthy LUHMES. Also, it is not possible 

to know whether the release of soluble factors by DS-LUHMES would be similar in 

composition, quantity and time with respect to fibroblasts, the model of senescence. In 

this section, the effects of paracrine senescence were only evaluated in terms of the 

propagation of DNA damage in DS-LUHMES co-cultures. To investigate if other 

common SASP factors were also being released and participated in the neurite length 

impairment presented previously, changes in the transcriptome of 96 hours DS-LUHMES 

vs SS-LUHMES and controls were analysed. This part of the project is presented and 

discussed in Chapter 4.  

 

Analysis of senescence markers and propagation of DNA damage to healthy neurones did 

not suggest activation of a senescence program in DS-LUHMES. This could be linked to 

the embryonic nature of this cell line, which does not reproduce the ageing conditions that 

cells are exposed to in vivo and that could contribute to the development of a senescent 



 109 

phenotype in mitotic cells. The direct conversion of fibroblasts into induced neurones 

(iNs) could be an alternative to LUHMES that would better represent the changes that 

neurones go through as we age. A recent report has shown that transcription factor-based 

conversion of fibroblasts from donors of different ages successfully results in iNs that 

express common neuronal markers and that are electrically active. Contrary to induced 

pluripotent stem cells (iPSCs), conversion of fibroblasts into iNs does not involve 

reprogramming of the cells into an embryonic-like state, and so iNs maintain age-related 

features that are list in iPSCs (Mertens et al., 2015).  These characteristics would make 

iNs ideal for the study of ageing and senescence related changes in neurones in vitro.       

 

3.6. Main conclusions  

 Differentiated LUHMES express endogenous SA-β-gal activity under normal 

conditions. This could result from lysosomal accumulation related to the 

differentiation process, as well as from a high vulnerability of the cells to standard 

cell culture conditions.  

 Changes in chromatin structure of DS-LUHMES in the form of SAHF formation 

were not detected. Chromatin organisation in response to a persistent DNA 

damage in LUHMES and neurones in general, could be regulated differently in 

comparison to mitotic cells.  

 CM and co-cultured experiments suggested a toxic effect based on neurite length 

impairment. This effect was contact dependent, since incubation in conditioned 

media did not alter healthy LUHMES viability. Based on these findings, neurones 

with persistent DNA damage can affect healthy neurones. The mechanism of this 

and whether it is due to a secretory phenotype similar to the SASP is unclear from 

this chapter.   
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Chapter 4. Transcriptome analysis of single and double stressed 

LUHMES 

4.1. Introduction 

In Chapter 3, induction of senescence in 96 hours DS-LUHMES was first investigated 

through the detection of two widely used senescence markers: SA-β-gal activity and 

SAHF formation. SA-β-gal activity in LUHMES under normal conditions was variable 

and H2O2 stress did not cause changes on its activity. SAHF formation was not present in 

DS-LUHMES. However, assessment of a SASP in DS-LUHMES in a co-culture system 

of GFP-LUHMES/stressed LUHMES suggested that DS-LUHMES could affect the 

viability of healthy LUHMES through a secretory phenotype that could resemble the 

SASP. To address this hypothesis, microarray analysis was used to assess changes in the 

transcriptome of control, SS and DS-LUHMES.  

 

Transcription profiling has been used for the study of senescence and the SASP in 

different cell types. Microarray analysis provides valuable information on changes in the 

expression of RNA transcripts both in vivo and in vitro. This information can be used to 

determine if there are specific pathways, functional groups or individual genes affected 

by specific experimental conditions, such as exposure to genotoxic agents. Investigating 

the transcriptome of senescent cells has revealed the involvement of several genes and 

pathways in senescence activation and the SASP, that were previously not known to be 

related to this mechanism. For instance, Nagano et al. identified PRODH and DAO, 

which encode for proline dehydrogenase 1 and D-amino acid oxidase respectively, to be 

up-regulated in senescent cells and to promote ROS-induced senescence when 

overexpressed (Nagano et al., 2016). Moreover, this experimental tool has provided 
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evidence of the heterogeneity of senescence by identifying expression of senescence and 

SASP components that are exclusive to specific cell types or senescence-induction 

mechanisms; at the same time, identification of common genes involved in senescence 

regardless of cell type or induction have been found (Hernandez-Segura et al., 2017; 

Nelson et al., 2014; Shelton et al., 1999).  

 

Despite the evidence available on expression of senescence markers in ageing neurones, 

the exact inductors and mechanisms by which senescent pathways are activated are not 

well understood. The expression and composition of a secretory phenotype by damaged 

neurones have also not been described. It is possible that the same pathways that activate 

senescence in cycling cells are present in neurones; however, their function and 

involvement in mechanisms such as DNA damage and cell cycle regulation could differ 

as a result of the post-mitotic nature of neurones. Taking this into account, we decided 

that a microarray profiling approach would be ideal to detect changes in LUHMES in 

response to H2O2. Analysis of the array data would focus on identifying genes and 

pathways linked to senescence and the SASP in mitotic cells. 
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4.2. Aims and objectives 

The aim of the work presented in this chapter was to perform a detailed characterisation 

of the transcriptomic profile of DS-LUHMES and identify specific gene expression 

changes in response to persistent DNA damage.  This was done by:  

 Characterising the gene expression profile of control, SS and DS-LUHMES using 

a microarray approach.  

 Performing pathway enrichment and functional grouping analysis of the 

microarray data to identify dysregulation of candidate genes and specific 

pathways linked to senescence and the SASP. 

 Validating expression of a panel of candidate, biologically relevant genes by qRT-

PCR (quantitative polymerase chain reaction) and interrogating their expression 

changes at a functional level. 
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4.3. Materials and methods 

4.3.1. Transcriptome analysis of stressed LUHMES 

To investigate if “classical” markers of senescence are expressed by neurones in response 

to a persistent DNA damage, a microarray analysis was performed in the 96 hours 

single/double stress LUHMES model; deregulation of “classical” senescence and SASP 

related pathways were studied, as well as pathways suggesting changes in the DNA 

damage response, cell cycle regulation and immune response.  

 

4.3.2. Trizol RNA extraction 

SS and DS-LUHMES (4.5x105 cells/well, in 12-well plates) were harvested 96 hours after 

stress. For this, cells were collected in 200 μl of TRIzol Reagent (ThermoFisher Scientific, 

MA, USA) per well; each condition was composed by extracts from 4 wells, giving a final 

volume of 800μl/condition TRIzol extract. RNA was purified using the Direct-zol RNA 

MiniPrep extraction protocol (Zymo Research, Irvine, CA, USA), following the 

manufacturer’s instructions. In summary, 800 μl of 100% ethanol were added to the 800 μl 

TRIzol extracts. After mixing thoroughly, the mixture was transferred into a Zymo-Spin 

IIC Column in a collection tube and centrifuged at 16,000xg for 30 seconds. Since the 

total sample volume was >700 μl, the sample was transferred and centrifuged in the 

column in two steps of 800 μl/step. The column was then washed with 400 μl of Direct-zol 

RNA PreWash and centrifuged at 16,000xg for 30 seconds. The flow-through was 

discarded and the pre-washing step repeated. 700 μl of RNA Wash Buffer were added to 

the column and it was centrifuged at 16,000xg for 2 minutes. The column was transferred 

into a 1.5 ml RNase free tube. RNA samples were eluted in 30 μl of RNase free water by 

centrifuging at 16,000xg for 30 seconds. The RNA concentration was determined by 
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analysing 1 μl of sample in the NanoDrop Spectophotometer (ThermoFisher Scientific, 

MA, USA) and RNA integrity assessed using the Agilent RNA 6000 Nano Chip (Agilent 

Technologies INC, CA, USA).  

 

4.3.2.1. RNA amplification and microarray hybridisation 

The RNA extracted from the 96 hours untreated control, SS and DS-LUHMES was used 

to investigate changes in their transcriptome. For this, RNA samples were amplified with 

the 3’ IVT Pico Reagent kit (ThermoFisher Scientific, MA, USA). Even though the 

quantity of TRIzol extracted RNA was sufficient and did not require amplification, 

LUHMES RNA samples were treated following the same protocol as the one described in 

Chapter 5 for the enriched neuronal samples obtained from frozen post-mortem tissue. 

This would allow for both sets of data to be discussed in conjunction without technical 

limitations in terms of pre-microarray sample treatments. In summary, LUHMES RNA 

samples were diluted 1:20 (Table 4.1) and the poly-A RNA control mix (5 μl/sample) was 

added to each sample.  This control mix was added to monitor the entire process and 

consisted of polyadenylated transcripts from B. subtilis that are not expected to be present 

in eukaryotic samples. RNA amplification started with the synthesis of first-strand cDNA 

from the RNA samples by reverse transcription, which resulted in single-stranded (ss)-

cDNA with a T7 promoter sequence at the 5’ end (primers containing a T7 promoter 

sequence were used). In a second reaction, a 3’- Adaptor was added to the ss-cDNA; this 

3’-Adaptor functioned as template in a third reaction and stimulated the synthesis of the 

double-stranded (ds)-cDNA. Following this, In Vitro Transcription (IVT) of the ds-cDNA 

was done, resulting in the synthesis of antisense RNA (complimentary RNA, cRNA), 

which was purified and quantitated in a NanoDrop Spectrophotometer (ThermoFisher 
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Scientific, MA, USA). The cRNA quality and concentration were also assessed with the 

Agilent 6000 Nano Chip (Agilent Technologies INC, CA, USA).  

 

Purified cRNA was used for sense-strand cDNA synthesis by reverse transcription; 

antisense-strand cDNA was then obtained from a second round of ds-cDNA synthesis, 

which contained dUTP at a specific ratio relative to dTTP. The cRNA template was 

removed from the samples by hydrolysis and the ds-cDNA was purified and then 

quantified by spectrophotometry, before preparing the sample for fragmentation and 

labelling.  

 

The ds-cDNA was fragmented at the dUTP residues by the enzymes uracil-DNA 

glycosylase (UDG) and apurinic/ apyrimidinic endonuclease 1 (APE 1); these fragments 

were labelled with the DNA Labeling Reagent (Affymetrix), which is linked to biotin, by 

a terminal deoxynucleotidyl transferase (TdT).  

 

GeneChip Human Genome U133 Plus 2 Arrays (ThermoFisher Scientific, MA, USA) 

(containing >54,000 probe sets for approximately 39,000 well-characterised human genes) 

were prepared for hybridization by pre-hybridizing the cartridges with Pre-hybridization 

mix for 30 minutes, at 45 ºC and 60rpm. This mix contained the Hybridization controls 

(bioB, bioC, bioD and cre) as well as the control Oligo B2. At the same time, the 

Hybridization cocktail was prepared by mixing 160 μl of Hybridization Master Mix and 

60 μl of the sample ds-cDNA. This mix was incubated for 5min at 99ºC and then for 5 

minutes at 45 ºC, followed by a brief centrifugation to collect tube contents. The Pre-

Hybridization mix was removed from the cartridge and 200 μl of Hybridization Mix were 

pipetted in, followed by a 16 hours incubation, at 45 ºC and 60rpm. Arrays were then 



 116 

washed with Wash Buffer A and placed in the Affymetrix GeneChip Command Console 

Fluidics Control (ThermoFisher Scientific, MA, USA) for staining. Arrays were stained 

using the Fluidics Protocol FS450_0001. 

 

4.3.2.2. Microarray data quality control 

Data was analysed in the Affymetrix Expression Console 1.4.1.46 and normalised using 

the Robust Multi-Array Average (RMA).  

 

4.3.2.3. Microarray data analysis 

The Qlucore Omics Explorer software (Qlucore, Lund, Sweden) was used for analysis of 

the normalised data. Two-group comparisons, setting p≤0.05 and a fold change ≥1.2, were 

performed (Single stressed LUHMES vs Controls; Double stressed LUHMES vs Controls; 

SS and DS-LUHMES). DAVID Functional Annotation Tool Version 6.7 (NIAID, NIH, 

USA) (Huang et al., 2009a, 2009b) and IMPaLA (Integrated Molecular Pathway Level 

Analysis) (Cavill et al., 2011; Kamburov et al., 2011) were used to perform the pathway 

analysis on thelists of significantly, differentially expressed genes. 

 

4.3.2.4. qRT-PCR validation of microarray genes of interest 

Validation of candidate dysregulated transcripts in DS-LUHMES was assessed by qRT-

PCR (quantitative real time polymerase chain reaction). For this, differentiated LUHMES 

were stressed following the SS/DS protocol, as previously described. TRIzol extracts from 

control, SS and DS-LUHMES were collected 96 hours after stress and RNA was purified 

using the Direct-zol RNA MiniPrep and the Zymo-Spin IIC Columns as described in 

section 4.3.2. cDNA was synthesized using the qScript cDNA Supermix (Quanta 
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Biosciences, MA, USA). The PrimeTime qPCR assays (Integrated DNA Technologies®) 

listed in Table 4.1 were used for the qRT-PCR. Each sample mix contained 60 ng of 

cDNA, 500 nM forward and reverse primer, and 250 nM probe, 2 x Brilliant III qPCR 

Master mix (Agilent Technologies, Sta Clara, CA, USA) and nuclease free distilled H2O. 

qRT-PCR was performed on a 2 step thermal profile on a Stratagene MX3000P™ Real 

Time Thermal Cycler (Agilent Technologies Ltd). The incubation was performed as 

follows: 10 minutes at 95°C then 40 cycles of 30 seconds at 95°C, 60 seconds at 60°C and 

60 seconds at 72°C. LMNB1 was used as housekeeping gene (HK) and was amplified on 

each plate. Expression levels were normalised to LMNB1 using the Ct calculation. 



 118 

 

Gene 
PrimeTime ® 

Assay ID 
Ref Seq 

Exon 

location 
Probe and Primer Sequence 

ATR 
Hs.PT.56a.399

57055 
NM_001184 18-19 

Probe: 5’-/56-FAM/AGCGAACAA/ZEN/AGCAGTCCCAAGC 3IABkFQ/-3’ 

Primer 1: 5’-CCCAGACAAGCATGATCCAG-3’ 

Primer 2: 5’-GAAGATGATGACCACACTGAGA-3’ 

RPA1 
Hs.PT.58.2293

974 
NM_002945 1-3 

Probe: 5’-/56-FAM/TCCTCCAAG/ZEN/TCATCAACATCCGTCC 3IABkFQ/-3’ 

Primer 1: 5’-TCATGAGCAGTCGATAACGC-3’ 

Primer 2: 5’-GCGGCCATCATGCAGAA-3’ 

CLSPN 
Hs.PT.58.7651

77 

NM_0011904

81 
1-2 

Probe: 5’-/56-FAM/TCATGACTT/ZEN/CTGCCTCCCCTGC/3IABkFQ/-3’ 
Primer 1: 5’-GACTATCTGCTTCCTCTTGTGA-3’ 

Primer 2: 5’-ACAGCTCCGTCCCTAGTG-3’ 

CDH1 
Hs.PT.58.3324

071 
NM_004360 6-7 

Probe: 5’-/56-FAM/TCTTCCCCG/ZEN/CCCTGCCAAT/3IABkFQ/-3’ 
Primer 1: 5’-GCTGTGGGGTCAGTATCAG-3’ 

Primer 2: 5’-GCCTGAAGTGACTCGTAACG-3’ 

CDC27 
Hs.PT.58.2053

47 
NM_001256 18-19 

Probe: 5’-/56-FAM/CCCAGGAGA/ZEN/GCAGCATGACAGATG/3IABkFQ/-3’ 

Primer 1: 5’-GCTGCATGAAGTTGTGTGTC-3’ 

Primer 2: 5’-GCCAATAACCCAAGAAGAACAG-3’ 

CCNB1 
Hs.PT.56a.395

64933 
NM_031966 4-5 

Probe: 5’-/56-FAM/ATGTTTCCA/ZEN/GTGACTTCCCGACCC/3IABkFQ/-3’ 

Primer 1: 5’-TGAACCTGTACTAGCCAGTCA-3’ 

Primer 2: 5’-TGTAGTGAATATGTGAAAGATATTTATGCT-3’ 

NDUFS8 
Hs.PT.58.2284

3831 
NM_002496 5-6 

Probe: 5’-/56-FAM/AGATGGCCT/ZEN/CGCAGAGCTTGC/3IABkFQ/-3’ 

Primer 1: 5’-TGCACTTGGTCATGTCGAT-3’ 
Primer 2: 5’-GGGAGGAGCGTTGCATT-3’ 

NDUFV3 
Hs.PT.58.2476

9161 

NM_0010015

03 
1-2 

Probe: 5’-/56-FAM/AGCATAGTC/ZEN/TTCAGCGCCCCG/3IABkFQ/-3’ 
Primer 1: 5’-GATTCCGCAGACAAAGAAACC-3’ 

Primer 2: 5’-CTGTGGCCCTGCTTGGT-3’ 

DDX58 
Hs.PT.58.4273

674 
NM_014314 15-16 

Probe: 5’-/56-FAM/AGAGGCAGA/ZEN/GGAAGAGCAAGAGGTA/3IABkFQ/-3’ 

Primer 1: 5’-CCAGCATTACTAGTCAGAAGGAA-3’ 

Primer 2: 5’-CCACAGTGCAATCTTGTCATCC-3’ 

LMNB1 
Hs.PT.58.4013

3522 

NM_0011985

57 
6-7 

Probe: 5’-/56-FAM/AGGCGAAGA/ZEN/AGAGAGGTTGAAGCTG/3IABkFQ/-3’ 

Primer 1: 5’-CTTGAGGATGCTCGGGATAC-3’ 

Primer 2: 5’-GGAAATCAGTGCTTACAGGAAAC-3’ 

Table 4.1 PrimeTime ® qPCR assays used for validation of the candidate gene expression changes in control, SS and DS-LUHMES. 

PrimeTime ® qPCR assays were resuspended in TE buffer to a 20x concentration. The final 1x concentration contained 500 nM primer (forward 

or reverse) and 250 nM probe. 
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4.3.2.5. Functional validation of microarray genes of interest 

4.3.2.5.1. Detection of Ki67 and MCM2 expression in DS-LUHMES 

To further investigate if transcriptional changes related to DDR and cell cycle regulation 

were indicative of cell cycle re-entry in 96 hours DS-LUHMES, expression of 

proliferation markers Ki67 and Mcm2 were assessed by immunocytochemistry.  For this, 

control, SS and DS-LUHMES were fixed with 4% PFA 96 hours after H2O2 incubation. 

Double labelling for Ki67/β-III-tubulin and Mcm2/ β-III-tubulin was conducted as 

described previously, in Chapter 2, section 2.3.3. Table 4.2 and Table 4.3 contain 

information for primary and secondary antibodies used for this experiments. Fixed 

proliferating LUHMES were included as positive controls, as due to their proliferative 

state, expression of Ki67 and Mcm2 was expected.  
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Antibody Species Clone 
Dilution and 

incubation conditions 
Source 

Catalog 

Number 

Ki67 
Mouse 

monoclonal 
MM1 1:50 (overnight at 4 ºC) 

Leica Microsystems, 

Wetzlar, Germany.  

NCL-L-Ki67-

MM1 

 

MCM2 
Rabbit 

polyclonal 
- 1:50 (1 hour, RT) 

Proteintech, Rosemont, IL, 

USA 
10513-1-AP 

β-III- 

tubulin 

Chicken 

polyclonal 
- 1:1000 (2 hours, RT) 

Merck Millipore, 

Darmstadt, Germany. 
AB9354 

Table 4.2 Primary antibodies used for immunocytochemistry.  

Primary antibodies, dilutions and incubation conditions used for single and double 

labelling of SS/DS-LUHMES. 

 

Antibody Species 
Dilution and incubation 

conditions 
Source 

Catalog 

Number 

488 Alexa Fluor ® 

anti-chicken 
Goat  1:1000 (1 hour, RT) 

Thermo Fisher Scientific, 

Waltham, MA, USA  

 

A-11039 

568 Alexa Fluor ® 

anti-rabbit 
Donkey 1:1000 (1 hour, RT) A10042 

568 Alexa Fluor ® 

anti-mouse 
Goat 1:1000 (1 hour, RT) A-11004 

Table 4.3 Primary antibodies used for immunocytochemistry.  

Secondary antibodies, dilutions and incubation conditions used for single and double 

labelling of SS/DS-LUHMES. 

 

4.3.2.5.2. Investigating Complex I activity in DS-LUHMES 

Complex I altered function in response to persistent oxidative DNA damage in DS-

LUHMES was assessed with the Complex I Enzyme Activity Microplate Assay Kit 

(Abcam, Cambridge, UK). Microplate wells are coated with antibodies specific for 

Complex I. These antibodies capture Complex I from cell lysates allowing for its activity 

to be determined by measuring oxidation of NADH to NAD+. Measurement of this 

reaction is possible thanks to the simultaneous reduction of a dye, which can be detected 

as an increase in absorbance at 450 nm.  
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Pre-differentiated LUHMES were seeded onto T75 flasks at a density of 9.5x106 

cells/flask and treated with 50 μM H2O2 following the SS/DS-LUHMES protocol. Protein 

lysates from control, SS and DS-LUHMES were collected 96 hours after incubation with 

H2O2. In order to get enough protein for the assay, 2 T75 flasks per condition were 

harvested with 500 μl of PBS per flask. Samples were centrifuged at 500xg for 5 minutes 

and the cell pellet was resuspended in 50 μl PBS. 5 μl of 10x detergent was added to each 

sample, which was followed by 30 minutes incubation in ice. Samples were centrifuged 

for 20 minutes at 16000 xg and 4 ºC. The supernatant was collected in a clean tube and 5 

μl of sample were saved for protein determination. 50 μl of sample were combined with 

150 μl of incubation buffer and the final 200 μl of were added to the multiplate wells; 200 

μl of incubation buffer were added to one of the wells to be used as blank. The plate was 

incubated for 3 hours at RT. Wells were then washed twice with washing buffer and the 

assay solution was prepared as follows: 0.835 ml of 1x Buffer, 42 μl of 20x NADH and 

8.5 μl of dye. The assay solution was added to each well (200 μl/well) and absorbance 

was read immediately after addition. For this, a PHERAStar microplate reader (BMG 

Labtech, Ortenberg, Germany) was used to measure absorbance at 450 nm, every 30 

seconds, for 30 minutes. For data analysis, the MARS Data Analysis Software (BMG 

Labtech, Ortenberg, Germany) calculated the slope based on 64 readings. This value was 

divided by the extinction coefficient (ε) of the dye (ε=25.9), which allowed for 

conversion of the data from mOD to mM oxidised NADH per minute. The values 

obtained were divided by the amount of protein in μg present in each sample. Data was 

normalised to controls.  
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4.4. Results 

4.4.1. Integrity of purified RNA from control and stressed LUHMES 

The RNA yield obtained from control and SS/DS-LUHMES was on average 217.17 ± 

12.93 ng/μl in a total volume of 30 μl nuclease free water. RNA quality was determined by 

the A260/280 ratio, which was on average 2.01±0.02. The RIN (RNA integrity number) 

value for the samples was of 8.18±0.16 and electropherograms from all samples showed 

two distinct 28S and 10S rRNA (ribosomal RNA) peaks (Table 4.4, Figure 4.1).  

 

Condition RNA concentration (ng/μl) 260/280 ratio 

Control-1 216.41 2.03 

SingleS-1 200.89 2.00 

DoubleS-1 217.08 2.00 

Control-2 215.49 1.98 

SingleS-2 224.95 2.03 

DoubleS-2 193.92 2.01 

Control-3 235.65 2.02 

SingleS-3 225.70 2.00 

DoubleS-3 224.43 2.00 

Mean ± SD 212.17± 12.93 2.01±0.02 

Table 4.4 Initial concentrations of RNA in untreated control, SS and DS-LUHMES 

samples. 

After TRIzol extraction, RNA concentration was measured in the Nanodrop and an 

initial assessment of RNA quality was done using the 260/280 ratio.  
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Figure 4.1 RNA integrity of control and SS/DS-LUHMES. 

Example of an electropherogram and electrophoresis gel obtained with the Agilent 2100 

Bioanalyzer from a DS-LUHMES RNA sample. Electropherograms were used to assess 

the RNA integrity of RNA samples extracted from control, SS and DS-LUHMES. Peaks 

represent the 18S and 28S rRNA and indicate good quality RNA (FU: fluorescence 

unit).  
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4.4.2. RNA preparation for microarray analysis 

RNA extracts from control, SS and DS-LUHMES were diluted 1:20 (Table 4.5) to be 

processed using the 3’ IVT Pico Reagent kit. Diluted samples contained 10.88±0.64 ng/μl 

RNA on average.  

 

Condition RNA concentration (ng/μl) Dilution 1:20 (ng/μl) 

Control-1 216.41 10.82 

SingleS-1 200.89 10.04 

DoubleS-1 217.08 10.85 

Control-2 215.49 10.77 

SingleS-2 224.95 11.24 

DoubleS-2 193.92 9.69 

Control-3 235.65 11.78 

SingleS-3 225.70 11.28 

DoubleS-3 224.43 11.22 

Mean ± SD 212.17± 12.93 10.88±0.64 

Table 4.5 Initial concentrations of RNA in untreated control, single and double 

stressed LUHMES samples. 

A 1:20 dilution of all samples was used for the RNA amplification protocol, prior to 

sample preparation for microarray hybridisation. 

 

Approximately 10 ng RNA per sample were used for the single-strand cDNA (ss-cDNA) 

synthesis. After purification, the yield of cRNA was measured by spectrophotometry with 

a NanoDrop 1000. Table 4.6 shows the concentration of cRNA obtained per sample. The 

mean concentration of cRNA was 3309.51±302.37 ng/μl and the mean 260/280 ratio was 

1.84±0.08.  
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Condition cRNA concentration (ng/μl) 260/280 ratio 

Control-1 3112.69 1.89 

SingleS-1 3627.35 1.70 

DoubleS-1 3498.12 1.77 

Control-2 2949.45 1.94 

SingleS-2 2769.25 1.87 

DoubleS-2 3617.18 1.80 

Control-3 3439.61 1.87 

SingleS-3 3461.16 1.82 

DoubleS-3 3310.81 1.93 

Mean ± SD 3309.51± 302.37 1.84±0.08 

Table 4.6 Initial concentrations of cRNA in untreated control, single and double 

stressed LUHMES samples. 

The cRNA yield was measured in the Nanodrop and an initial assessment of its quality 

was done using the 260/280 ratio.  
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For the 2nd – cycle double stranded cDNA (ds-cDNA) synthesis, 20 μg of cRNA were used 

for sense-strand and anti-sense strand DNA synthesis. The ds-cDNA was purified and 

measured by spectrophotometry. The mean ds-cDNA concentration was 630.87±37.7 

ng/μl  (Table 4.7) 

 

Condition ds-cDNA concentration (ng/μl) 260/280 ratio 

Control-1 608.8 1.89 

SingleS-1 671.2 1.70 

DoubleS-1 633.3 1.77 

Control-2 690.0 1.94 

SingleS-2 660.3 1.87 

DoubleS-2 625.3 1.80 

Control-3 619.2 1.87 

SingleS-3 600.4 1.82 

DoubleS-3 569.3 1.93 

Mean ± SD 630.87 ± 37.7 1.84±0.08 

Table 4.7 Initial concentrations of ds-cDNA in untreated control, single and double 

stressed LUHMES samples. 

The ds-cDNA yield was measured in the Nanodrop and an initial assessment of its 

quality was done using the 260/280 ratio.  

 

For the fragmentation step, 6.6 μg of ds-cDNA were used. Fragmentation of the ds-cDNA 

was done by UDG and APE 1 enzymes at the dUTP residues. To ensure that 

fragmentation was successful, this was assessed with the Agilent 2100 Bioanalyser 

(Figure 4.2). Labelling of the fragmented cDNA was done by a TdT using the Affymetrix 

proprietary DNA labelling reagent, which contains biotin. After labelling, samples were 

processed for cartridge array hybridisation, as explained in section 4.3.2.1.  
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Figure 4.2 Assessing fragmentation of ss-cDNA. 

Representative elctropherogram and electrophoresis gel showing ss-cDNA 

fragmentation. (FU=fluorescence unit). 

 

4.4.3. Microarray data quality control (QC) overview 

Standard quality control parameters for the MAS 5.0 algorithm data were assessed prior to 

the microarray data analysis. Affymetrix Expression ConsoleTM Software was used for the 

QC analysis and included parameters for the assessment of sample quality, hibridisation 

and signal quality and signal comparability.  

 

Overall, the QC analysis did not show evidence of an outlier. Some samples (Control 1, 

Control 3, DS 1, 2 and 3) had metric values that were outside of the trend, but no single 

sample differed consistently from the others. This reflected in the clustering analysis, 

which segregated the 9 samples in 3 well-differentiated groups and did not reveal samples 

that did not aligned consistently to these groups (section 4.4.4, Figure 4.9). Based on 

these results, no samples were deemed as being outliers that would skew the data and 

mask biologically relevant gene expression changes and so, all 9 samples were included in 

the pathway analysis.   
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4.4.3.1. Sample quality 

The quality of the RNA samples as well as of the amplification and labelling processes 

were monitored by assessing the signals obtained from labelling controls and internal 

controls (housekeeping genes) as described in the following sections.  

  

4.4.3.1.1. Labelling controls  

Labelling controls consisted of bacterial poly-A RNA controls that were added to each 

sample before the synthesis of the ss-cDNA and that allowed the monitoring of the entire 

process. The GeneChip Human Genome U133 Plus 2 contained probe sets from the B. 

subtilis genes lys, phe, thr and dap at different concentrations each (1:100,000, 1:50,000, 

1:25,000 and 1:6,667, respectively). The hybridisation intensity of these controls were 

used to evaluate the efficiency of the labelling process. All poly-A controls should be 

present in the samples and their signal values should increase in the order previously 

described. Results from the poly-A controls showed that all samples, except for Control 

1, labelled efficiently (Figure 4.3). The labelling efficiency for Control 1 was lower in 

the dap poly-A control when compared to the rest of the samples; however, signals from 

the rest of the controls were consistent with the other 8 samples.    
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Figure 4.3 Poly-RNA controls for 96 hours control and SS/DS LUHMES. 

Plot depicting the average signal intensity of poly-A controls lys, phe, thr and dap for 

each of the 9 samples (SS, single stressed LUHMES; DS, double-stressed LUHMES). 
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4.4.3.1.2. 3’/5’ ratio for β-actin and GAPDH 

GAPDH and β-actin probes function as internal controls to monitor the 2-cycle 

amplification and labelling process. The GAPDH and β-actin 3’ probe to 5’ probe ratios 

for the 96 hours control and SS/DS LUHMES arrays are shown in Figure 4.4. Affymetrix 

indicates that ratio values should be below 3 for 1-cycle assays, but 2-cycle assays can 

give higher values as a result of the additional amplification cycle. GAPDH and β-actin 

ratio values for the 96 hours control and SS/DS arrays were similar between replicates; β-

actin values were higher than 3, as expected for a 2-cycle assay.  

 

 

Figure 4.4 Housekeeping (HK) genes GAPDH and β-actin signal ratios for 96 hours 

control and SS/DS LUHMES arrays. 

HK genes GAPDH and β-actin were used as internal controls to assess the quality of the 

samples and the amplification and labelling process. The 3’ probe to 5’ probe ratio 

should be consistent between arrays. (SS, single-stressed LUHMES; DS, double-stressed 

LUHMES). 
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4.4.3.2. Hybridisation and signal quality 

Signal from the hybridisation controls and the percentage of probes present in the arrays 

are useful parameters to evaluate overall signal quality.  

 

4.4.3.2.1. Spike-in eukarytic hybridisation controls 

Hybridisation controls are included into the hybridisation cocktail and are composed by a 

mixture of biotin-labelled cRNA transcripts from E.coli and the P1 bacteriophage. These 

controls include BioB, bioC, bioD (E. Coli) and Cre (P1) transcripts in a concentration of 

1.5 pM, 5 pM, 25 pM and 100 pM, respectively. The concentration of BioB is at the level 

of array sensitivity and should be present at least 70% of the time. bioC, bioD and Cre 

should be present and show increasing signal values. Figure 4.5 shows signal for BioB in 

all 9 samples. Overall, hibridisation controls suggest a good hybridisation efficiency for all 

samples, although Control 3 had a lower signal for Cre. 

 

 

Figure 4.5 Eukariotic hibridisation controls for 96 hours control and SS/DS 

LUHMES. 

Plot depicting the average signal intensitites of hybridisation controls BioB, bioC, bioD 

and Cre  at increasing concentrations for each of the 9 samples (SS, single-stressed 

LUHMES; DS, double-stressed LUHMES). 
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4.4.3.2.2. Percent present (% P) 

The % P indicates the percentage of probes that are present in the arrays, relative to the 

total number of probes. This value depends on several variables, including array type, cell 

type, biological stimuli and RNA quality. Replicates should have similar % P values. In 

Figure 4.6, a plot for the % P in the 9 arrays is consistent between replicates and 

GeneChip arrays.  

 

Figure 4.6 Percentage of probes present in the 96 hours control and SS/DS 

LUHMES array. 

% P is the percentage of probes that are detected relative to the total number of probe 

sets that the array contains, which are 54,675 probes for the GeneChip Human Genome 

U133 Plus 2.0 Array.  
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4.4.3.3. Signal comparability 

Quality control metrics given by Affymetrix Expression ConsoleTM  also produce a signal 

histogram that shows the intensity of the signals from the probes in each array. This 

histogram allows comparison of the signals between GeneChip arrays. In Figure 4.7, 

signals from the 9 arrays (3 controls, 3 SS, 3 DS) are compared. The signal profile should 

be the same across samples, however there are some discrepancies between arrays. DS 1 

and DS 2 signal intensities are higher for some of the probes; the other 7 samples show 

comparable signal intensities.  

 

 

Figure 4.7 Signal histogram for the 96 hours control and SS/DS LUHMES arrays. 

The signal histogram was used to compare the signal intensities of the probe sets across 

the 9 arrays under analysis (TxS, single-stressed LUHMES; TxD, double-stressed 

LUHMES; number indicates replicate). 

The signal detected by each of the probe-sets present in the array can be compared to the 

median signal value of this same probe-set across all arrays in the experiment. This 

calculation is represented by the Relative Log Expression (RLE) values, which can be 

plotted as shown in Figure 4.8. The array quality can be assessed by looking at the spread 

of the data across samples: RLE values should be 0 or close to 0 on a log scale, otherwise, 

the array could have a poor quality and could be considered as an outlier. RLE values for 
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the 96 hours control and SS/DS arrays show a similar spread; the 9 arrays have RLE 

values of 0 or close to 0.  

 

 

Figure 4.8 Relative log expression (RLE) box plots for the 96 hours control and 

SS/DS LUHMES arrays. 

The RLE values of the 9 arrays are close to 0, except for the 3 DS replicates, which have 

higher RLE values (TxS, single-stressed LUHMES; TxD, double-stressed LUHMES).  

 

4.4.4. Microarray data analysis  

4.4.4.1. Clustering Analysis  

To identify differences in the transcriptome of 96 hours control, single stressed and double 

stressed LUHMES the array data was analysed with the Qlucore Omics Explorer (version 

3.0) software. The 9 data sets (3 controls, 3 SS-LUHMES and 3 DS LUHMES) were 

imported to Qlucore Omics Explorer and normalised using the RMA method. For the 

analysis, a fold change (FC) ≤ 1.2 and a significant value of p < 0.05 were set. Data was 

first analysed using a Multi Group comparison between control, SS and DS-LUHMES. 

The PCA (principal component analysis) plot for this analysis is shown in Figure 4.9A, 

where a clear separation of the 3 conditions can be seen: Control – blue, SS – yellow and 
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DS – pink. The difference in the signal between these 3 groups is also visible in the 

heatmap for the differentially expressed genes (Figure 4.9B).   The Multi Group analysis 

resulted in 4042 differentially expressed transcripts among the 3 groups.  

 

 

Figure 4.9 Clustering analysis of 96 hours control LUHMES compared to 96 hours 

SS and DS-LUHMES – Multi Group Comparison. 

A. The PCA plot of 96 hours control (blue) LUHMES and 96 hours SS (yellow)/DS 

(pink) LUHMES shows the separation of differentially expressed genes between the 3 

groups. B. Hierarchical clustering heat map of 96 hours control, SS and DS-LUHMES 

(red – up-regulated transcripts; green – down-regulated transcripts). 

  

A. B. 
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A Two Group comparison was also performed to identify significantly, differentially 

expressed genes in SS and DS-LUHMES when compared to controls, as well as in DS-

LUHMES when compared to SS-LUHMES. The PCA plots and heat maps for these 3 

analyses are shown in Figure 4.10. Heat maps help visualise how different the gene 

expression is between control and stressed LUHMES. Challenging stressed LUHMES 

with a second dose of H2O2 caused an important change in the transcriptome of these 

cells, as shown in Figure 4.10B and Figure 4.10F. 450 differentially expressed genes, 276 

up and 174 down-regulated, were identified in SS-LUHMES compared to controls 

(Figure 4.10A-B), while a larger number of genes were differentially expressed in DS-

LUHMES (1285 genes; 695 up and 590 down-regulated), compared to controls (Figure 

4.10C-D). 1607 genes were differentially expressed in DS-LUHMES compared to SS-

LUHMES (649 up and 958 down-regulated) (Table 4.8). The complete lists of 

differentially expressed genes can be found in the electronic version of this work, as 

described in Appendix C.  
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Figure 4.10 Clustering analysis of 96 hours control LUHMES compared to 96 hours SS and 

DS-LUHMES – Two Group Comparison. 

A-B. PCA plot and heat map for 96 hours control vs SS-LUHMES analysis. C-D.   PCA plot and 

heat map for 96 hours control vs DS-LUHMES analysis. E-F. PCA plot and heat map for 96 

hours DS-LUHMES vs SS-LUHMES analysis. Control – blue; SS – yellow; DS – pink.  

 

Two Group 

Comparison 

Total number of 

differentially expressed 

transcripts 

Number of up-

regulated 

transcripts 

Number of down-

regulated transcripst 

SS vs Control 450 276 174 

DS vs Control 1285 695 590 

 DS vs SS 1607 649 958 

Table 4.8 Number of differentially expressed transcripts for each of the 3 

comparisons computed by Qlucore Omics Explorer and used for the pathway 

enrichment analysis. 

  

A. C. E. 

F. D. B. 
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4.4.5. Candidate analysis 

Before conducting the enrichment analysis, the lists of differentially expressed transcripts 

were examined for the presence of dysregulated transcripts from common senescence and 

SASP markers, which were  p21 (CDKN1A), p16 (CDKN2A), SA-β-galactosidase 

(GLB1), IL-6 (IL6) and/or IL-8 (CXCL8), but none of these genes were altered in the SS 

or DS-LUHMES. A functional annotation analysis was then performed to identify 

dysregulated pathways in the SS and DS-LUHMES that could be related to the 

development of a senescence-like state.  

 

4.4.5.1. Functional Enrichment Analysis using DAVID Bioinformatics Tool 

The lists of probe IDs from the total number of differentially expressed transcripts for the 

3 comparisons computed by Qlucore Omics Explorer  (SS vs Control/DS vs Control/SS vs 

DS) were entered into DAVID (Database for annotation, Visualization and Integrated 

Discovery) Bioinformatics Tool (version 6.7). To identify dysregulated pathways 

changing in the same direction, the lists of up and down-regulated transcripts were 

inputted independently as well (Table 4.8). Results from the DAVID Functional 

Enrichment Analysis are summarised in Table 4.9, Table 4.10, and Table 4.11. The 

analysis focused on pathways (highlighted in green) that are known to be affected in 

senescence and that have been linked to DNA damage, a DDR and the SASP in mitotic 

cells.  

 

The dysregulated pathways idenfied by DAVID in the SS vs Control group included focal 

adhesion, type II diabetes mellitus and purine metabolism. A higher number of pathways 

were dysregulated in the DS vs Control group, which included adherens junctions, axon 

guidance, calcium signalling and TGF-β signalling. Pathways related to ubiquitin 
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mediated proteolysis, autophagy, regulation of actin cytoskeleton and JAK-STAT 

signalling were the most enriched when comparing DS vs SS conditions (Table 4.9).  

 

Analysis of the UP-REGULATED transcripts (Table 4.10) resulted in the identification of 

enrichment of axon guidance and MAPK signalling pathways in the SS vs Control group; 

whereas calcium signalling, adherens junctions, homologous recombination and TGF-β 

signalling where the most enriched pathways in the DS vs Control group. Comparison of 

the DS vs SS UP-REGULATED transcripts indicated RNA degradation, ubiquitin 

mediated proteolysis, autophagy and JAK-STAT signalling as the most enriched 

pathways.  

 

Analysis of the DOWN-REGULATED transcripts (Table 4.11) showed enrichment of 

genes linked to lysosome and focal adhesion pathways in the SS vs Control group; while 

in the DS vs Control group, the most enriched pathways were related to p53, homologous 

recombination and axon guidance signalling. Comparison of the DS vs SS conditions 

revealed enrichment of genes associated with ubiquitn mediated proteolysis, RNA 

degradation, cell cycle and Wnt signalling.  
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Two group 

comparison 
Pathway name 

Pathway 

source 

Differentially 

expressed genes 
p value 

FDR 

value 

SS vs Control 

(372 David IDs) 

Focal adhesion KEGG 9 5.7E-2 4.9E1 

Type II Diabetes Mellitus KEGG 4 7.4E-2 5.8E1 

Purine metabolism KEGG 7 9.9E-2 6.9E1 

DS vs Control 

(1052 David IDs) 

Adherens junction KEGG 12 1.7E-3 2.0E0 

Axon guidance KEGG 14 1.4E-2 1.6E1 

Calcium signalling 

pathway 
KEGG 16 3.5E-2 3.5E1 

Homologous 

recombination 
KEGG 5 5.2E-2 4.7E1 

Thyroid cancer KEGG 5 5.8E-2 5.1E1 

Drug metabolism KEGG 6 6.6E-2 5.6E1 

Acute myeloid leukemia KEGG 7 7.4E-2 6.0E1 

TGF-β signalling 

pathway 
KEGG 9 7.5E-2 6.1E1 

DS vs SS 

(1322 David IDs) 

RNA degradation KEGG 10 1.3 E-2 1.5E1 

Ubiquitin mediated 

proteolysis 
KEGG 17 2.1E-2 2.3E1 

Endometrial cancer KEGG 8 5.8E-2 5.2E1 

T cell receptor signalling 

pathway 
KEGG 13 5.8E-2 5.2E1 

B cell receptor signalling 

pathway 
KEGG 10 6.4E-2 5.5E1 

Endocytosis KEGG 19 6.9E-2 5.8E1 

Butanoate metabolism KEGG 6 7.5E-2 6.2E1 

Pathways in cancer KEGG 30 7.8E-2 6.3E1 

Regulation of autophagy KEGG 6 8.3E-2 6.5E1 

Regulation of actin 

cytoskeleton 
KEGG 21 8.7E-2 6.7E1 

JAK-STAT signalling 

pathway 
KEGG 16 9.8E-2 7.2E1 

Table 4.9 DAVID Functional Enrichment analysis of the total number of 

differentially expressed transcripts in stressed LUHMES.   

DAVID analysis was conducted in the SS vs Control, DS vs Control and DS vs SS 

groups. Pathways that could be linked to oxidative DNA damage, a DDR, and to 

senescence and the SASP in mitotic cells, are highlighted in green (KEGG - Kyoto 

encyclopedia of genes and genomes). 
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Two group 

comparison 
Pathway name 

Pathway 

source 

Differentially 

expressed genes 

P 

value 

FDR 

value 

SS vs Control 

(214 David IDs) 

Axon guidance KEGG 5 6.8E-2 5.4E1 

MAPK signalling pathway KEGG 7 9.9E-2 6.8E1 

DS vs Control 

(527 David IDs) 

Calcium signalling pathway KEGG 13 1.2E-3 1.4E0 

Vascular smooth muscle 

contraction 
KEGG 9 6.0E-3 6.8E0 

Adherens junction KEGG 7 1.1E-2 1.2E1 

Cell adhesion molecules 

(CAMs) 
KEGG 9 1.5E-2 1.7E1 

Melanoma KEGG 6 3.0E-2 3.0E1 

Thyroid cancer KEGG 4 3.3E-2 3.3E1 

Endometrial cancer KEGG 5 3.8E-2 3.6E1 

Retinol metabolism KEGG 5 4.3E-2 4.0E1 

Acute myeloid leukemia KEGG 5 5.3E-2 4.7E1 

Colorectal cancer KEGG 6 5.5E-2 4.8E1 

Hematopoietic cell lineage KEGG 6 6.0E-2 5.1E1 

Prostate cancer KEGG 6 6.7E-2 5.5E1 

Melanogenesis KEGG 6 9.6E-2 6.9E1 

DS vs SS 

(491 David IDs) 

Autoimmune thyroid disease KEGG 6 1.4E-2 1.5E1 

Neuroactive ligand-receptor 

interaction 
KEGG 14 2.8E-2 2.9E1 

Retinol metabolism KEGG 5 6.6E-2 5.5E1 

Cytosolic DNA-sensing 

pathway 
KEGG 5 6.9E-2 5.7E1 

Butanoate metabolism KEGG 4 7.0E-2 5.8E1 

Antigen processing and 

presentation 
KEGG 6 8.5E-2 6.5E1 

Metabolism of xenobiotics 

by cytchrom P450 
KEGG 5 8.9E-2 6.7E1 

Hematopoietic cell lineage KEGG 6 9.6E-2 6.9E1 

Drug metabolism KEGG 5 9.8E-2 7.0E1 

Table 4.10 DAVID Functional Enrichment analysis of the UP-REGULATED 

transcripts in stressed LUHMES.   

DAVID analysis was conducted in the SS vs Control, DS vs Control and DS vs SS 

groups. Pathways that could be related to oxidative DNA damage, a DDR, and to 

senescence and the SASP in mitotic cells, are highlighted in green.  
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Two group 

comparison 
Pathway name 

Pathway 

source 

Differentially 

expressed genes 

P 

value 

FDR 

value 

SS vs Control 

(157 David IDs) 

Lysosome KEGG 4 8.0E-2 5.8E1 

Focal adhesion KEGG 5 9.4E-2 6.4E1 

DS vs Control 

(533 David IDs) 

P53 signalling pathway KEGG 6 3.5E-2 3.4E1 

Homologous recombination KEGG 4 3.8E-2 3.6E1 

Axon guidance KEGG 8 5.8E-2 5.0E1 

Progesterone-mediated 

oocyte maturation 
KEGG 6 8.1E-2 6.2E1 

DS vs SS 

(831 David IDs) 

Ubiquitin mediated 

proteolysis 
KEGG 16 2.6E-4 3.1E1 

RNA degradation KEGG 10 3.2E-4 3.7E1 

Cell cycle KEGG 11 2.4E-2 2.5E1 

Spliceosome KEGG 11 2.5E-2 2.6E1 

Progesterone-mediated 

oocyte maturation 
KEGG 8 5.0E-2 4.6E1 

T cell receptor signalling 

pathway 
KEGG 9 6.0E-2 5.2E1 

Oocyte meiosis KEGG 9 6.5E-2 5.5E1 

Wnt signalling pathway KEGG 11 7.1E-2 5.8E1 

Chronic myeloid leukemia KEGG 7 7.2E-2 5.9E1 

Lysine degradation KEGG 5 9.2E-2 6.8E1 

Table 4.11 DAVID Functional Enrichment analysis of the DOWN-REGULATED 

transcripts in stressed LUHMES.   

DAVID analysis was conducted in the SS vs Control, DS vs Control and DS vs SS 

groups. Pathways that could be related to oxidative DNA damage, a DDR, and to 

senescence and the SASP in mitotic cells, are highlighted in green.  
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4.4.5.2. Pathway enrichment analysis using IMPaLA  

The lists of gene symbols of the differentially expressed genes from the 3 comparisons 

processed in Qlucore Omics Explorer (SS vs Control; DS vs Control; DS vs SS)  were also 

entered into IMPaLA (Integrated Molecular Pathway Level Analysis, version 9). As with 

the DAVID analysis, the total number of differentially expressed genes, as well as the 

separate lists of UP and DOWN-REGULATED transcripts were analyse and are presented 

in Table 4.12, Table 4.13 and Table 4.14. The pathways highlighted in yellow are related 

to oxidative DNA damage, a DDR and/or have been shown to be altered in mitotic cells, 

as part of the senescent program.  

 

Analysis of the total number of dysregulated transcripts (Table 4.12) revealed enrichment 

of cellular response to stress and IL-6 pathways in the SS vs Control group. Enriched 

pathways in the DS vs Control group related to gene expression, homology directed 

repair, DSB repair and cell cycle. Comparison of the DS vs SS conditions showed 

enrichment of inflammation and immune system related pathways, as well as cell cycle 

regulation.  

 

Analysis of the UP-REGULATED genes (Table 4.13) showed enrichment of pathways 

linked to TGF- β signalling and E3 ubiquitin ligases ubiquitinate target proteins SS vs 

Control group; of VEGF and VEGFR signalling, calcium signalling and ATR signalling 

in the DS vs Control group; and of T-cell antigen receptor signalling, cytokine-cytokine 

receptor interaction and INF-α signalling in the DS vs S group.  

 

Analysis of the DOWN-REGULATED transcripts (Table 4.14) showed enrichment of 

vesicle mediated transport, cellular responses to stress, membrane trafficking and electron 
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transport chain pathways in the SS vs Control group; of gene expression, trasncriptional 

regulation by TP53 and cell cycle pathways in the DS vs Control group; and of TGF-β, 

autophagy and cell cycle pathways in the DS vs SS group.  

 

Two group 

comparison 
Pathway name 

Pathway 

source 

Differentially 

expressed genes 
p value 

FDR 

value 

SS vs Control 

TGF-B Signalling pathway Wikipathways 7 0.00261 1 

Cellular responses to stress Reactome 10 0.00594 1 

IL-6 mediated signalling 

events 
PID 3 0.028 1 

Oxygen-dependent proline 

hydroxylation of HIF alpha 
Reactome 2 0.028 1 

DS vs Control 

Gene expression Reactome 103 3.81E-05 0.0834 

Generic transcription pathway Reactome 59 3.86E-05 0.0834 

HDR through homologous 

recombination (HR) or single 

strand annealing (SSA) 

Reactome 15 0.000343 0.494 

Homology Directed Repair Reactome 15 0.00055 0.523 

Transcriptional regulation by 

TP53 
Reactome 29 0.000606 0.523 

DNA double –strand break 

repair 
Wikipathways 8 0.00123 0.756 

Cell cycle checkpoints Reactome 14 0.00469 1 

APC/:Cdc20 mediated 

degradation of mitotic proteins 
Reactome 5 0.00762 1 

DS vs SS 

Antigen processing: 

Ubiquitination and proteosome 

degradation 

Reactome 35 1.98E-06 0.00855 

T-Cell antigen receptor (TCR) 

signalling pathway 
Wikipathways 17 1.2E-05 0.0196 

Class I MHC mediated antigen 

processing and presentation 
Reactome 38 1.36E-05 0.0196 

Adaptitve immune system Reactome 71 7.53E-05 0.0813 

Generic transcription pathway Reactome 74 0.000113 0.0976 

B cell receptor signalling 

pathway 
Wikipathways 15 0.000349 0.215 

TGF-beta signalling pathway Wikipathways 17 0.00112 0.285 

Autophagy KEGG 8 0.00146 0.333 

Cell cycle Wikipathways 24 0.00349 0.555 

Table 4.12 IMPaLA Pathway Analysis of the total number of differentially 

expressed transcripts in stressed LUHMES.   

IMPaLA analysis was conducted in the SS vs Control, DS vs Control and DS vs SS 

groups. Pathways linked to oxidative DNA damage, a DDR, and to senescence and the 

SASP in mitotic cells, are highlighted in yellow. Some of the pathways have very high 

FDR values. This suggests that a high percentage of the genes may be incorrectly 

identified as differentially expressed and subsequent validation experiments could be 

significantly affected.   
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Two group 

comparison 
Pathway name 

Pathway 

source 

Differentially 

expressed genes 
p value 

FDR 

value 

SS vs Control 

Atypical NF-kappaB pathway Wikipathways 3 0.00126 1 

TGF-B signalling in thryoid 

cells for epithelial-mesenchymal 

transition 

Wikipathways 2 0.00385 1 

DCC mediated attractive 

signalling 
Reactome 2 0.00442 1 

E3 ubiquitin ligases ubiquitinate 

target proteins 
Reactome 2 0.00503 1 

Glycosphingolipid biosynthesis-

neolactoseries 
Reactome 2 0.00503 1 

Activation of NF-kappaB in B 

cells 
Reactome 2 0.00503 1 

Protein-protein interactions at 

synapses 
Reactome 3 0.013 1 

DS vs Control 

VEGF and VEGFR signalling 

networks 
PID 3 0.000417 1 

Signalling by activin Reactome 3 0.000961 1 

Neural crest differentiation Wikipathways 7 0.00103 1 

Calcium signalling pathway KEGG 9 0.00218 1 

Immune system Reactome 43 0.00969 1 

ATR signalling pathway PID 3 0.0198 1 

DS vs SS 

T-cell antigen receptor 

signalling pathway 
Wikipathways 8 0.000201 0.397 

FGFR1c ligand binding and 

activation 
Reactome 3 0.000782 0.675 

VEGFA-VEGFR2 signalling 

pathway 
Wikipathways 11 0.00291 0.838 

Cytokine-cytokine receptor 

interaction 
KEGG 12 0.00242 0.838 

Cytosolic DNA-sensing 

pathway 
KEGG 5 0.0048 1 

IFN alpha signalling INOH 3 0.00554 1 

Table 4.13 IMPaLA Pathway Analysis of the UP-REGULATED transcripts in 

stressed LUHMES.   

IMPaLA analysis was conducted in the SS vs Control, DS vs Control and DS vs SS 

groups. Pathways linked to oxidative DNA damage, a DDR, and to senescence and the 

SASP in mitotic cells, are highlighted in yellow. Some of the pathways have very high 

FDR values. This suggests that a high percentage of the genes may be incorrectly 

identified as differentially expressed and subsequent validation experiments could be 

significantly affected. 
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Two group 

comparison 
Pathway name 

Pathway 

source 

Differentially 

expressed genes 
p value 

FDR 

value 

SS vs Control 

Vesicle-mediated transport Reactome 14 0.000158 0.534 

Binding and uptake of ligands 

by scavenger receptors 
Reactome 3 0.000247 0.534 

Membrane trafficking Reactome 11 0.00339 1 

Apoptosis induced DNA 

fragmentation 
Reactome 2 0.00358 1 

Extracellular matrix 

organisation 
Reactome 7 0.00587 1 

Electron transport chain Wikipathways 4 0.00695 1 

DS vs Control 

Gene expression Reactome 86 1.29E-10 5.56E-07 

Transcriptional regulation by 

TP53 
Reactome 14 5.28E-05 0.076 

Cell cycle Reactome 26 0.00127 0.486 

HDR through homologous 

recombination (HR) or single 

strand annealing (SSA) 

Reactome 10 0.0019 0.486 

Mitotic G1-G1/S phases Reactome 8 0.00205 0.486 

APC/C:Cdc20 mediated 

degradation of cyclin B 
Reactome 4 0.0027 0.486 

DS vs SS 

Gene expression Reactome 114 6.14E-09 2.65E-05 

Generic transcription pathway Reactome 64 2.58E-07 0.000556 

Antigen processing: 

Ubiquitination and proteasome 

degradation 

Reactome 29 4.55E-07 0.000655 

RNA polymerase II 

transcription 
Reactome 18 5.7E-05 0.0493 

TGF-beta signalling pathway Wikipathwyas 15 0.000182 0.0654 

Cell cycle Wikipathways 12 0.000628 0.172 

Table 4.14 IMPaLA Pathway Analysis of the DOWN-REGULATED transcripts in 

stressed LUHMES.   

IMPaLA analysis was conducted in the SS vs Control, DS vs Control and DS vs SS 

groups. Pathways linked to oxidative DNA damage, a DDR, and to senescence and the 

SASP in mitotic cells, are highlighted in yellow. Some of the pathways have very high 

FDR values. This suggests that a high percentage of the genes may be incorrectly 

identified as differentially expressed and subsequent validation experiments could be 

significantly affected. 
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4.4.6. Pathways of interest 

Several pathways were identified as dysregulated by the analysis perfomed using DAVID 

and IMPaLA in the SS and DS-LUHMES. Both DAVID and IMPaLA suggested changes 

in cell cycle signalling, but IMPaLA also detected alteration in other pathways directly 

related to DNA damage and cellular stress, including chromatin modification signalling 

pathways, inflammation and metabolism. A more detailed examination of the genes 

involved in these pathways is  described in the following sections.  

 

4.4.6.1. Cell cycle 

DAVID and IMPaLA identified dysregulation in cell cycle pathways in DS-LUHMES. 

The differentially expressed genes in the 3 different comparison groups are presented in 

Table 4.15. Dysregulation of cell cycle related transcripts was only identified in DS-

LUHMES and not in SS-LUHMES. The majority of the transcripts were linked to the 

anaphase promoting  (APC/C:Cdh1) complex (ANAPC10, CDC27, CCNB1, CDH1, 

ANAPC4, MAD2L1). Downregulation of genes implicated in the minichromosome 

maintenance (MCM) protein complex was also detected (MCM3 and MCM8) only in DS-

LUHMES.  
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Group 
Gene 

symbol 
Gene name FC 

p 

value 

SS vs 

control 
    

DS vs 

control 

CDH1 Cadherin 1, type 1 1.222 0.0051 

MAD2L1 MAD2 mitotic arrest deficient-like 1 1.350 0.0314 

ANAPC10 Anaphase promoting complex subunit 10 0.709 0.0282 

CDC27 Cell division cycle 27 0.828 0.0419 

CCNB1 Cyclin B1 0.827 0.0403 

RPS27A Ribosomal protein S27a 0.791 0.0087 

DS vs SS 

ANAPC10 Anaphase promoting complex subunit 10 0.742 0.0381 

ANAPC4 Anaphase promoting complex subunit 4 0.732 0.0064 

CDC27 Cell division cycle 27 0.811 0.0025 

PTTG1 Pituitary tumor-transforming 1 1.291 0.0360 

SMC1A Structural maintenance of chromosomes 1A 0.827 0.0458 

UBE2F ubiquitin-conjugating enzyme E2F (putative) 0.687 0.0135 

APC Adenomatous polyposis coli 0.732 0.0488 

RBL1 Retinoblastoma-like 1 0.829 0.0352 

SKP2 
S-phase kinase-associated protein 2, E3 ubiquitin 

protein ligase 
0.701 0.0327 

MCM3 
Minichromosome maintenance complex 

component 3 
0.829 0.0259 

MCM8 
Minichromosome maintenance 8 homologous 

recombination repair factor 
0.803 0.0113 

SMAD4 SMAD family member 4 0.752 0.0121 

HDAC8 Histone deacetylase 8 0.768 0.0083 

Table 4.15 Genes involved in cell cycle regulation in SS and DS-LUHMES. 

Transcripts linked to the APC/C:Cdh1 complex and replication licencing factors were 

identified as being differentially expressed in SS and DS-LUHMES compared to 

controls. (Red: up-regulated; Green: down-regulated, FC: fold change).  

 



 149 

4.4.6.2. DNA damage response  

DAVID and IMPaLa pathway analysis indicated dysregulation in DNA damage 

signalling transcripts that are known to participate in DSBs repair through the ATR-

dependent DNA damage response (ATR, PP2R2B, CLSPN, RPA1, TIPIN), and 

homologous recombination (HR) (RAD52, TOP3A, SPIDR) in both SS and DS-

LUHMES; however, a higher number of dysregulated transcripts linked to DNA damage 

response was identified in DS-LUHMES (Table 4.16).  

 

Group 
Gene 

symbol 
Gene name FC 

p 

value 

SS vs 

control 
ATR ATR serine/threonine kinase 1.32 0.0224 

DS vs 

control 

ATR ATR serine/threonine kinase 1.207 0.0168 

PPP2R2B 
Protein phosphatase 2, regulatory subunit B, 

beta 
1.404 0.0156 

CLSPN Claspin 1.235 0.0055 

RPA1 Replication protein A1 0.753 0.0209 

TIPIN TIMELESS interaction protein 0.782 0.0072 

RIF1 Replication timing regulatory factor 1 1.239 0.0346 

RAD52 RAD52 homolog, DNA repair protein 0.816 0.0247 

ERCC1 
Excision repair cross-complementation 

group 1 
0.745 0.0151 

TOP3A Topoisomerase (DNA) III alpha 0.725 0.0379 

SPIDR Scaffolding protein involved in DNA repair 1.326 0.0455 

DS vs SS     

Table 4.16 Genes involved in DNA damage response pathways in SS and DS-

LUHMES. 

Transcripts linked to ATR signalling and HR DNA repair were differentially expressed 

in SS and DS-LUHMES compared to controls. (Red: up-regulated; Green: down-

regulated, FC: fold change).  
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4.4.6.3. Metabolism  

IMPaLA analysis suggested dysregulation in the mitochondrial electron transport chain in 

SS and DS-LUHMES. The differentially expressed transcripts codify for Complex I 

(NDUFA2, NDUFA3, NDUFS8, NDUFV3, NDUFS1, NDUFA10), Complex III (UCP2, 

UQCR11) and Complex V (PPA2, ATP6VIG3) genes. These pathways were down-

regulated in SS-LUHMES, but some of the Complex I and III genes were also up-

regulated in DS-LUHMES (Table 4.17). 

Group 
Gene 

symbol 
Gene name FC p value 

SS vs 

Control 

NDUFA2 
NADH dehydrogenase (ubiquinone) 1 alpha 

subcomplex, 2, 8kDa 
0.815 0.0082 

NDUFA3 
NADH dehydrogenase (ubiquinone) 1 alpha 

subcomplex, 3, 9kDa 
0.772 0.0142 

UCP2 
Uncoupling protein 2 (mitochondrial, proton 

carrier) 
0.817 0.0275 

UQCR11 
Ubiquinol-cytochrome c reductase, complex III 

subunit XI 
0.807 0.0498 

ACO2 Aconitase 2, mitochondrial 0.794 0.0421 

DS vs 

Control 

NDUFS8 
NADH dehydrogenase (ubiquinone) Fe-S protein 

8, 23kDa (NADH-coenzyme Q reductase) 
1.309 0.0173 

PPA2 Pyrophosphatase (inorganic) 2 1.218 0.0403 

NDUFV3 
NADH dehydrogenase (ubiquinone) flavoprotein 

3, 10kDa 
0.753 0.0053 

IDH3G isocitrate dehydrogenase 3 (NAD+) gamma 0.812 0.0485 

DS vs 

SS 

NDUFS8 
NADH dehydrogenase (ubiquinone) Fe-S protein 

8, 23kDa (NADH-coenzyme Q reductase) 
1.334 0.0055 

ATP6VIG3 
ATPase, H+ transporting, lysosomal 13kDa, V1 

subunit G3 
1.339 0.0315 

NDUFS1 
NADH dehydrogenase (ubiquinone) Fe-S protein 

1, 75kDa (NADH-coenzyme Q reductase) 
0.830 0.0338 

NDUFA10 
NADH dehydrogenase (ubiquinone) 1 alpha 

subcomplex, 10, 42kDa 
0.811 0.0248 

Table 4.17 Genes involved in senescence and cellular responses to stress in SS and 

DS-LUHMES. 

Transcripts linked to Histone cluster 1 and the APC/C:Cdh1 complex  were down-

regulated in SS and DS-LUHMES compared to controls. (Green: down-regulated, FC: 

fold change). 



 151 

4.4.6.4. Inflammation and immune response  

There were several transcripts annotated to immune-like response pathways (Table 4.18). 

Only 3 transcripts were dysregulated in SS-LUHMES (SMAD2, IL5R, RNF125), but 24 

genes were differentially expressed in DS-LUHMES, from which 22 were up-regulated. 

From this group of transcripts, DDX3X, DDX58, TRAF6, IFNA16, IFNA4, SMURF1 have 

a role in the innate immune response that is related to the production of type 1 interferons 

and proinflammatory cytokines. Several cytokine and cytokine receptor transcripts were 

also up-regulated in the DS-LUHMES, including IL5RA, IL23A, IL2RA, IL20, IL25, 

IL1A, CCR3 and CRLF2. Transcripts that are known to participate in TGF-β signalling 

(ACVR1C, FST, INHBA) as well as VEGF signalling (VEGFA) were also up-regulated in 

DS-LUHMES. 
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Group 
Gene 

symbol 
Gene name FC p value 

SS vs 

Control 

SMAD2 SMAD family member 2 1.221 0.0180 

IL5R Interleukin 5 1.289 0.0374 

RNF125 
Ring finger protein 125, E3 ubiquitin protein 

ligase 
0.831 0.0297 

DS vs 

Control 

DDX3X 
DEAD (Asp-Glu-Ala-Asp) box helicase 3, 

X-linked 
1.206 0.0276 

SMURF1 SMAD specific E3 ubiquitin protein ligase 1 1.216 0.0077 

ACVR1C Activin A receptor type IC 1.376 0.0023 

FST Follistatin 1.382 0.0493 

INHBA Inhibin beta A 1.312 0.0125 

IL5RA Interleukin 5 receptor, alpha 1.399 0.0271 

IL23R Interleukin 23 receptor 1.255 0.0357 

CRLF2 Cytokin receptor-like factor 2 1.294 0.0263 

PDGFRA 
platelet-derived growth factor receptor, alpha 

polypeptide 
1.208 0.00208 

TNFSF15 
tumor necrosis factor (ligand) superfamily, 

member 15 
1.339 0.01844 

SMAD5 SMAD family member 5 0.622 0.0326 

DS vs SS 

DDX58 
DEAD (Asp-Glu-Ala-Asp) box polypeptide 

58 
1.293 0.0137 

IFNA16 Interferon, alpha 16 1.501 0.0406 

IFNA21 Interferon, alpha 21 1.228 0.0401 

IFNA4 Interferon, alpha 4 1.430 0.0334 

CCR3 chemokine (C-C motif) receptor 3 1.261 0.0453 

ITK IL2-inducible T-cell kinase 1.460 0.0189 

ACVR1C activin A receptor type IC 1.233 0.0365 

IL2RA Interleukin 2 receptor, alpha 1.231 0.0042 

VEGFA Vascular endothelial growth factor 1.267 0.0096 

IL20 Interleukin 20 1.222 0.0475 

TNFSF8 
tumor necrosis factor (ligand) superfamily, 

member 8 
1.540 0.0094 

IL25 Interleukin 25 1.225 0.0018 

IL1A Interleukin 1, alpha 1.216 0.0353 

TRAF6 
TNF receptor-associated factor 6, E3 

ubiquitin protein ligase 
0.755 0.0219 

Table 4.18 Genes involved in immune response in SS and DS-LUHMES. 

Transcripts related to cytokine production, interferon and TGF-β signalling were up-

regulated in DS-LUHMES. (Red: up-refulated; Green: down-regulated, FC: fold 

change).
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4.4.6.5. Cellular responses to stress  

Down-regulation of  pathways involved in stress responses was detected in SS and DS-

LUHMES. The majority of the transcripts linked to these pathways were histone cluster 1 

family members (HIST1H1E, HIST1H2BH, HIST1H4j, HIST1H3J, HIST1H2BM). Cell 

cycle and DNA damage response transcripts were also annotated to the cellular responses 

pathways, including some of the APC/C-Cdh1 related genes (CDC27, ANAPC10) (Table 

4.19).  

 

Group 
Gene 

symbol 
Gene name FC p value 

SS vs 

Control 

HIST1H1E Histone cluster 1, H1e 0.802 0.0233 

HIST1H2BH Histone cluster 1, H2bn 0.725 0.0014 

HIST1H1C Histone cluester 1, H1c 0.823 0.0117 

HIST1H4J Histone cluster 1, H4j 0.820 0.00059 

TCEB2 Transcription elongation factor B (SIII) 0.823 0.0431 

CBX2 Chromobox homolog 2 0.813 0.0464 

MAP2K7 Mitogen-activated protein kinase kinase 7 0.790 0.0383 

DS vs 

Control 

HIST1H3J Histone cluster 1, H3j 0.810 0.0207 

HIST1H4C Histone cluster 1, H4c 0.820 0.0315 

HIST1H2BM Histone cluster 1, H2bm 0.593 0.0406 

CDC27 Cell division cycle 27 0.828 0.0419 

RPA1 Replication protein A1 0.753 0.0209 

HDAC6 Histone deacetylase 6 0.821 0.0165 

RPS27A Ribosomal protein S27a 0.791 0.0087 

ANAPC10 Anaphase promoting complex subunit 10 0.709 0.0282 

DNAJB1 
DnaJ (Hsp40) homolog, subfamily B, 

member 1 
0.740 0.0380 

CBX2 Chromobox homolog 2 0.765 0.0317 

DS vs SS 

CDC27 Cell division cycle 27 0.811 0.0025 

HDAC8 Histone deacetylase 8 0.768 0.0083 

ANAPC10 Anaphase promoting complex subunit 10 0.742 0.0381 

Table 4.19 Genes involved in senescence and cellular responses to stress in SS and 

DS-LUHMES. 

Transcripts linked to Histone cluster 1 and the APC/C:Cdh1 complex  were down-

regulated in SS and DS-LUHMES compared to controls. (Green: down-regulated, FC: 

fold change). 
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4.4.7. Validation of candidate genes by qRT-PCR 

Overall, the enrichment anaysis detected dysregulation of genes involved in cell cycle 

regulation, DNA damage response, chromatin organisation, immune response and 

oxidative phosphorylation pathways in DS-LUHMES. Even though these changes do not 

specifically indicate induction of senescence and a SASP, they all result as a response to 

an oxidative environment and have been linked to the activation of senescence pathways 

in mitotic cells. Based on these pathways, it is possible that oxidative stress in DS-

LUHMES could be causing an ATR-dependent DNA damage response in order to repair 

the oxidative DNA damage caused by H2O2; at the same time, cell cycle dysregulation in 

DS-LUHMES could be linked to the activation of the DDR but also to replicative stress. 

H2O2 exposure could also have an effect on mitochondrial activity, which is reflected in 

the dysregulation of Complex I genes in DS-LUHMES. Finally, an obviously complex 

immune response was triggered by H2O2 in DS-LUHMES, however, DDX58 was the 

only transcript that had been previously linked to the SASP in mitotic cells. The genes 

that were selected for validation as a result of this analysis are listed in Table 4.20.  

 

Pathway Gene 

DNA damage response ATR 

CLSPN 

Cell cycle CDH1 

CCNB1 

CDC27 

Oxidative phosphorylation NDUFS8 

NDUFV3 

Immune response DDX58 

Table 4.20 Genes selected for qRT-PCR validation. 

Genes in red were up-regulated while genes in green were down-regulated according to 

the microarray data.  

 



 155 

 

Validation of the chosen genes was conducted on RNA extracts obtained from control, SS 

and DS-LUHMES folowing the same stress protocols as with the RNA extracts obtained 

for the microarray analysis. All conditions, including passage number and time of 

collection of trizol extracts were matched to the microarray sample conditions. Results 

are presented on Figures 4.11, 4.12, 4.13 and 4.14.  

 

4.4.7.1. Validation of DNA damage response genes 

qRT-PCR for ATR and CLSPN did not validate the up-regulation of these genes in DS-

LUHMES (Figure 4.11). A non-significant directional change for assessment of ATR in 

DS-LUHMES by qRT-PCR correlated with the up-regulation of ATR detected in the 

microarray. Eventhough significant changes in CLSPN expression were detected in both 

SS (p<0.01) and DS-LUHMES (p<0.001), the direction of change did not validate the 

microarray data.  
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Figure 4.11. Validation of DNA damage response genes by qRT-PCR. 

Differentiated LUHMES were stressed with H2O2 following the SS/DS protocol. 

Changes in DNA damage response genes ATR and CLSPN were validated by qRT-PCR. 

(One-Way ANOVA with multiple comparisons; data are means ± SEM; n=3 in 

duplicate).  
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4.4.7.2. Validation of APC/C:Cdh1 complex genes  

The genes CDH1, CCNB1 and CDC27 from the APC/C:Cdh1 complex were selected for 

validation of dysregulation in cell cycle control in DS-LUHMES (Figure 4.12). qRT-

PCR results showed a significant down-regulation of CDC27 (p<0.05) and CCNB1 

(p<0.01) in DS-LUHMES, which validated the findings of the microarray. CCNB1 

expression showed a trend towards a decrease in SS-LUHMES, but this did not reach 

significance. Amplification of CDH1 was not successful, as no Ct value was observed for 

any of the samples. Due to this, its validation was not pursued further.   
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Figure 4.12 Validation of APC/C:Cdh1 complex genes by qRT-PCR. 

Differentiated LUHMES were stressed with H2O2 following the SS/DS protocol. Changes 

in cell cycle genes CDC27 and CCNB1 were validated by qRT-PCR. (One-Way ANOVA 

wih multiple comparisons; data are means ± SEM; n=3 in duplicate).  

 

4.4.7.3. Validation of oxidative phosphorylation genes 

NDUFV3 and NDUFS8 were selected to validate the findings of the array in terms of 

mitochondrial dysfunction (Figure 4.13). NDUFV3 expression was down-regulated in 

DS-LUHMES according to microarray analysis; qRT-PCR findings showed the same 
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directional change in NDUFV3, but these results were not significant when compared to 

controls. On the other hand, a significant decrease in NDUFS8 was identified by qRT-

PCR in both SS (p<0.01) and DS-LUHMES (p<0.01). These findings correlate with the 

array results in DS-LUHMES, which also showed a decrease in mRNA expression; 

however,  down-regulation of NDUFS8 in SS-LUHMES was only detected by qRT-PCR 

analysis, but was not detected in the microarray.  
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Figure 4.13 Validation of oxidative phosphorylation genes by qRT-PCR. 

Differentiated LUHMES were stressed with H2O2 following the SS/DS protocol. 

Changes in the mitochondrial Complex I genes NDUFV3 and NDUFS8 were validated 

by qRT-PCR. (One-Way ANOVA wih multiple comparisons; data are means ± SEM; 

n=3 in duplicate).  

 

4.4.7.4. Validation of RIG-I-like signalling pathway genes 

qRT-PCR results indicated a significant decrease in the expression of DDX58, which 

codes for a RIG-I-like receptor that participated in the innate immune response. This 

down-regulation was detected in SS (p<0.05) and DS-LUHMES (p<0.01). qRT-PCR 

results are opposite to what was found in the microarray analysis, which suggested that 

DDX58 expression was up-regulated in DS-LUHMES (Figure 4.14).  
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Figure 4.14 Validation of RIG-I-like signalling pathway genes by qRT-PCR. 

Differentiated LUHMES were stressed with H2O2 following the SS/DS protocol. 

Changes in the DDX58 gene, which codes for a RIG-1-like receptor, were validated by 

qRT-PCR. (One-Way ANOVA wih multiple comparisons; data are means ± SEM; n=3 

in duplicate).  

 

4.4.8. Functional validation of dysregulated pathways 

Microarray findings were validated by qRT-PCR only for the cell cycle and oxidative 

phosphorylation genes. Down-regulation of APC/C:Cdh1 genes suggested re-activation 

of the cell cycle in response to DNA damage in DS-LUHMES; while down-regulation of  

mitochondrial Complex I genes in SS and DS-LUHMES indicated mitochondrial 

dysfunction as a result of an oxidative environment. To further investigate these changes 

in cell cycle and mitochondrial alteration, a functional validation was performed on SS 

and DS-LUHMES.  

 

4.4.8.1. Assessing cell cycle re-activation in DS-LUHMES 

To investigate cell cycle re-entry in DS-LUHMES, 96 hours control, SS and DS-

LUHMES were processed for Ki67 and MCM2 detection by immunocytochemistry. Both 
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antigens are commonly used as cell proliferation markers. Ki67 is known to participate in 

chromatin organisation during cell proliferation (Sobecki et al., 2016). MCM2 is a 

licencing factor, part of the MCM complex, which promotes DNA replication during S-

phase (Bochman and Schwacha, 2008). Ki67 and MCM2 expression were absent in 

stressed LUHMES (SS and DS), as shown in Figure 4.15. To ensure that the absence of 

the antigens in stressed LUHMES was not a result of a technical issue, a positive control 

was included. Proliferating LUHMES were used as a positive control and so expression 

of Ki67 and MCM2 was expected in these cells. Figure 4.15 also shows staining of 

proliferating LUHMES,  confirming that the antibodies detected Ki67 and MCM2 

successfully and the negative results seen in stressed LUHMES were genuine.  

 

 

Figure 4.15 Assessing expression of Ki67 and MCM2 in SS and DS-LUHMES. 

Functional validation of cell cycle re-entry in 96 hours SS and DS-LUHMES was done 

by investigating the expression of Ki67 and MCM2 cell cycle activation marker by 

immunocytochemistry. Ki67 and MCM2 nuclear expression is seen in red in the positive 

control panel, which consisted of proliferating LUHMES. There was no expression of 

either marker in SS or DS-LUHMES. Scale bar represents 20 μm.  
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4.4.8.2. Assessing complex I dysfunction in DS-LUHMES 

Complex I mitochondrial dysfunction was investigated by assessing NADH-activity 

dependent on Complex I. The down-regulation of NDUFV3 and NDUFS8 genes 

suggested that Complex I activity would be decreased in DS-LUHMES, and probably in 

SS-LUHMES as well. Results for the analysis of Complex I activity in stressed LUHMES 

is shown in Figure 4.16. Despite Complex I genes being down-regulated in the array 

study and qRT-PCR validation, assessment of its activity suggested otherwise. A 

significant increase in the activity of Complex I was detected in DS-LUHMES (p<0.01) 

compared to controls, while SS-LUHMES did not show any change in Complex I 

activity.  

 

 

Figure 4.16 Assessing mitochondrial Complex I activity in stressed LUHMES. 

96 hours SS and DS-LUHMES were processed for NADH-dependent complex I activity 

(One-way ANOVA with multiple comparisons; n=3; data represent means ± SEM).  
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4.5. Discussion 

Microarray analysis identified significant changes in the transcriptome of LUHMES as a 

result of exposure to H2O2. Changes in both SS and DS-LUHMES were investigated in 

order to determine whether a persistent oxidative stress (DS) would increase the 

expression of senescence genes. Overall, pathway analysis of microarray results did not 

indicate up-regulation of senescence or SASP-related pathways in DS-LUHMES. 

However, changes in signalling pathways linked to DNA damage response, cell cycle, 

metabolism and immune response were detected in DS-LUHMES when compared to 

controls. qRT-PCR and functional validation was conducted on a range of candidate 

genes from each of these pathways. Results confirmed dysregulation in the ATR-

dependent DDR response, as well as in cell cycle regulation and oxidative 

phosphorylation. These pathways have been involved in the development of a senescent 

state, but its relation to senescence in the DS-LUHMES model is still not clear.   

 

4.5.1. H2O2 induces changes in the transcriptome of DS-LUHMES 

Transcriptomic changes in stressed LUHMES (SS and DS) were identified using a 

microarray gene expression profiling approach. As demonstrated in Chapter 2 

challenging stressed LUHMES with a second H2O2 dose (DS-LUHMES) causes 

oxidative DNA damage in the form of γH2AX foci; this damage persisting for up to 96 

hours after stress when compared to SS-LUHMES and controls. Therefore, the research 

in the current chapter aimed to determine whether this persistent DNA damage promotes 

the activation of senescence mechanisms or alteration of related pathways in DS-

LUHMES. Microarray data analysis identified dysregulation of almost 3 times the 

number of transcripts in DS-LUHMES compared to SS-LUHMES confirming that a 

second H2O2 challenge has a more pronounced effect on differentiated LUHMES, in 
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terms of gene expression. Initially, before proceeding to the pathway analysis, a detailed 

search for senescence related genes in the lists of differentially expressed transcripts was 

conducted. Specifically, analyses to determine expression of senescence-associated 

CDKN1A (p21), CDKN2A (p16) and GLB1 (SA-β-galactosidase) were conducted. SASP-

related genes were also interrogated in these lists, including the most common cytokines 

known to be part of the SASP in mitotic cells, IL6 (IL-6) and CXCL8 (IL-8), but none of 

these transcripts were differentially expressed in either DS-LUHMES or SS-LUHMES.  

 

Functional annotation analysis was conducted with DAVID and IMPaLA bioinformatics 

tools. DAVID annotated 24.8% of the significant, differential expression of genes 

associated with dysregulation of axon guidance, Ca+2 signalling, DNA damage repair by 

homologous recombination and cell cycle in DS-LUHMES; while 28.8% of the 

differentially expressed transcripts in SS-LUHMES were annotated to a fewer number of 

KEGG pathways, including focal adhesion and axon guidance signalling. On the other 

hand, IMPaLA annotated a higher percentage of differentially expressed transcripts from 

both SS (57.9%) and DS-LUHMES (52.5%) to biological pathways of relevance to this 

study, which could result from IMPaLA annotation analysis being based on a greater 

number of databases, including Reactome, Wikipathways and KEGG. In contrast, 

DAVID annotation analysis was performed using the KEGG pathway database alone. 

Hence IMPaLA provided a more comprehensive and detailed pathway analysis, but it 

should be noted that some pathways were common to both DAVID and IMPaLA, 

including DNA damage repair and cell cycle regulation.  

 

The pathways of interest identified in the IMPaLA analysis were not directly related to 

senescence, but they were pathways that suggested activation and alteration of key 
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cellular functions as a result of the DNA damage exerted by H2O2 exposure, especially in 

the DS-LUHMES. These pathways included DNA damage repair signalling, cell cycle 

and chromatin regulation, oxidative phosphorylation and immune response. These 

findings and their relation of oxidative DNA damage and senescence are discussed in 

detail in the following sections.  

 

4.5.1.1. DNA damage response and cell cycle regulation 

4.5.1.1.1. ATR-signalling pathway 

DNA oxidation can result in DNA lesions such as single-strand (SSBs), double-strand 

breaks (DSBs), base modifications, DNA cross-links and deoxyribose modification. In 

mitotic cells, the main function of the DNA damage response (DDR) is to maintain 

genome integrity through the detection and repair of these lesions. At the same time, the 

DDR also controls the cell cycle through the activation of cell cycle checkpoints, which 

prevents damaged cells from proliferating and activates apoptosis in case the damage 

cannot be reversed. The main transducers of the DDR are ATM (ataxia-telangiectasia-

mutated), ATR (ataxia-telangiectasia-mutated and Rad3 related) and DNA-PK (DNA 

dependent kinase), all members of the phosphoinositide-3-kinase-related protein kinase 

(PIKK) family. ATM and DNA-PK recognise DSBs formation and activate downstream 

cascades to promote their repair, including the BER (base excision repair) and NHEJ 

(non-homologous end-joining) pathways. ATR, on the other hand, is not only activated 

by DSBs but also by lesions that generate single-strand DNA (ssDNA) (Zou, 2003).  

 

The DDR in neurones is involved in the maintenance of genome integrity; however, due 

to the post-mitotic nature of neurones, its function is executed differently. Differentiated 

neurones rest in a G0 phase under normal conditions, but exposure to genotoxic stress 
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induces re-activation of the cell cycle by the DDR, which is required for DNA repair or to 

induce apoptosis (Kruman et al., 2004; Schwartz et al., 2007; Tomashevski et al., 2010). 

Several studies have shown that ATM signalling is the main DDR pathway activated in 

neurones in response to DSBs caused by genotoxic stress, including oxidative stress 

(Alvira et al., 2007; Kruman et al., 2004; Otsuka et al., 2004). The ATM signalling 

cascade promotes transition from G0 to G1 phase and recruitment of the non-homologous 

end-joining (NHEJ) machinery to the site of the lesion (Schwartz et al., 2007). Although 

it has been shown that neurones do not undergo mitosis, they can progress through DNA 

synthesis (S-phase) and G2, in which case, activation of G2/M checkpoint could be 

caused by replication stress and prevent entry into mitosis (Schwartz et al., 2007).  

 

Previously discussed detection of γH2AX foci in SS and DS-LUHMES (Chapter 2) 

suggests activation of a DDR in response to H2O2, most probably related to ATM 

activation. H2AX phosphorylation is one of the first reactions to DSBs. Phosphorylation 

of H2AX is mainly executed by ATM (Burma et al., 2001), although ATR 

phosphorylates H2AX in response to replicational stress (Ward and Chen, 2001).  In 

LUHMES, detection of γH2AX foci 1 hour after incubation with H2O2 suggests induction 

of ATM-dependent DDR within the first hour of exposure to H2O2. It should be noted 

that the current study was conducted on DS-LUHMES following stress for 96h and it is 

highly likely that significant changes in the expression of ATM-related transcripts in SS 

and DS-LUHMES would have been detected in the first hours after H2O2 incubation.  

 

ATR-dependent signalling is not well described in neurones, but dysregulation in ATR-

signalling in DS-LUHMES could be related to cell cycle reactivation, S-phase 

progression and aberrant DNA synthesis. IMPaLA analysis identified up-regulation of the 
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ATR and CLSPN transcripts, whereas RPA1 and TIPIN mRNA levels were down-

regulated. ATR transcript encodes for the signal transducer ATR and CLSPN encodes for 

claspin, an adaptor protein that binds to ssDNA and facilitates interaction between ATR 

and Chk1 to induce cell cycle checkpoint signalling (Lee et al., 2003; Liu et al., 2007). 

RPA1 gene encodes for replication protein A1 (RPA1), which is part of the RPA complex 

that binds to ssDNA and activates ATR-dependent DDR (Zou, 2003). Finally, TIPIN 

encodes for TIMELESS Interacting protein (Tipin), which together with Timeless 

protein, participate in DNA synthesis and cell cycle checkpoint in S-phase (Smith et al., 

2009).  In cycling cells, ATR-dependent DDR signalling is triggered by lesions that cause 

ssDNA, specifically in response to replication stress during S-phase (Petermann and 

Caldecott, 2006). In these cases, ATR initiates DNA damage repair through homologous 

recombination (HR) and activates G2/M cell cycle checkpoints by phosphorylation of 

Chk1; this last step requires the assistance of claspin (Liu et al., 2006). Work done by 

Schwartz et al. (2007) in cortical rat neuronal cultures exposed to 5 and 100 μM H2O2 

confirmed that cell cycle re-entry in neurones is necessary for DDR activation. They 

showed that neurones incubated in 5 μM H2O2 for 24 hours, which caused repairable 

DSBs, would progress from G0 phase to G1; however, when exposed to non-repairable 

DSBs induced by 100 μM H2O2, neurones would transition from G1 to S-phase and 

eventually induce apoptosis (Schwartz et al., 2007).  This suggests that the intensity of the 

oxidative DNA damage will determine whether neurones transition up to G1 or S phases 

during cell cycle re-entry. S-phase activation would mean aberrant DNA synthesis and 

subsequent apoptosis.  

 

Taking into account that ATR has a specific role in DNA damage caused during S-phase 

in mitotic cells, up-regulation of ATR and CLSPN mRNA in DS-LUHMES suggests 
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progression into S-phase and an attempt to induce DNA synthesis. The latter would cause 

replication stress in DS-LUHMES and subsequent activation of ATR-dependent DDR. 

qRT-PCR validation of ATR expression in DS-LUHMES was not significant but had the 

same directional change as seen in the microarray analysis; however, CLSPN levels 

assessed by qRT-PCR did not correlate with the array data. Moreover, down-regulation of 

RPA1 and TIPIN are also not in accordance with what would be expected if ATR 

signalling was active in DS-LUHMES, since these two proteins participate in ATR 

signalling; however, validation was not conducted for this two transcripts and so further 

investigation on mRNA and protein levels needs to be done to be able to confirm these 

findings.  

 

Overall, the results of this study suggest a second H2O2 challenge in DS-LUHMES likely 

causes cell cycle re-entry and progression to S-phase. DNA synthesis under these 

circumstances would be abnormal, cause replication stress and probably end in apoptotic 

cell death; however, microarray data did not suggest activation of apoptotic pathways in 

DS-LUHMES. An exact mechanism of S-phase progression and replication stress in DS-

LUHMES cannot be determined with the information available, but would be of interest, 

since ATR-signalling and its specific circumstances in neurones are not well described. It 

is possible that a second H2O2 challenge caused cumulative DNA damage on already 

stressed LUHMES, inducing G1/S transition, inducing activation of ATR-dependent cell 

cycle checkpoint pathways to prevent DS-LUHMES from entering mitosis.  

 

It is not possible to say whether ATR signalling induces a senescent-like state in DS-

LUHMES either. In mitotic cells, an ATR-dependent DDR activates senescence 

pathways in response to replicative stress induced by oncogene expression. DNA damage 
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associated to oncogene-induced replicative stress in human fibroblasts activates ATR, 

causes cell cycle arrest and promotes formation of SAHF (Di Micco et al., 2011).  

 

4.5.1.1.2. Cell cycle regulation: APC/C-Cdh1 complex 

The APC/C-Cdh1 complex is a multimeric E3 ubiquitin ligase, member of the ring/cullin 

subfamily of ubiquitin ligases, and it is formed by 19 subunits (APC1-13, APC15-16) 

(Chang et al., 2015; Zhang et al., 2013). This complex targets cell-cycle regulatory 

proteins for ubiquitin mediated degradation under normal conditions, which requires 

binding to its co-activators Cdc20 or Cdh1. Interaction with Cdc20 occurs upon mitotic 

entry and remains until the metaphase-to-anaphase transition; at this point, Cdh1, which 

remains associated with APC/C until the initiation of G1, replaces Cdc20.  (Kramer et al., 

2000).   

 

Recent evidence indicates that the APC/C-Cdh1 complex also participates in the DDR in 

mitotic cells. Its ubiquitin activity is determined by the cell cycle stage at which the DDR 

activation is needed. Specifically, activation of APC/C-Cdh1 is important for G2-DNA 

damage cell cycle arrest (Bassermann et al., 2008; Sudo et al., 2001). In DS-LUHMES, 

several genes associated with the APC/C complex including CDC27 and CCNB1, were 

down-regulated; CDH1 mRNA levels, on the other hand, were up-regulated. CDC27 

encodes for the Cdc27 subunit of the APC/C complex, while CCNB1 codes for cyclin B1, 

one of the complex’ degradation targets.  CDH1 gene corresponds to the Cdh1 protein, a 

co-activator of APC/C. Cdh1 is part of the substrate recognition region of the APC/C 

complex, while Cdc27 is essential for Cdh1 interaction with APC (Kraft et al., 2005; 

Thornton et al., 2006; Vodermaier et al., 2003). It has been shown that Cdh1 is essential 

for neuronal survival (Almeida et al., 2005; Fuchsberger et al., 2016). Almeida et al. 
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(2005) showed expression of APC and Cdh1 in rat cortical neurones under normal 

conditions, as well as down-regulation of cyclin B1 protein levels; shRNA inhibition of 

Cdh1 led to apoptosis through accumulation of nuclear cyclin B1 (Almeida et al., 2005).  

 

Based on this evidence, up-regulation of CDH1 mRNA levels in DS-LUHMES suggests 

activation of the APC/C-Cdh1 as part of cell cycle re-activation, characterised by S/G2 

progression. This would correlate with dysregulation of the ATR signalling pathway 

linked to replication stress that has been discussed in the previous section and with 

downregulation of CCNB1 transcripts. However, qRT-PCR amplification of CDH1 was 

not successful and so it was not possible to confirm increased expression of this transcript 

in DS-LUHMES. Moreover, down-regulation of CDC27, which was also seen by qRT-

PCR, does not correlate with the APC/C-Cdh1 activation hypothesis.  

 

In addition to qPCR analysis, the current study examined the expression of cell cycle 

proliferation marker Ki67 and of replication licencing factor MCM2 in DS-LUHMES to 

determine whether re-activation of the cell cycle was occurring under these conditions. 

Ki67 is a nuclear protein that controls gene expression through a role in heterochromatin 

reorganisation (Sobecki et al., 2016). Ki67 protein levels peak during G2 and M phases, 

but decline from M to G1 (Sobecki et al., 2017). Mcm2 is a component of the replication 

licencing MCM (minichromosome maintenance) complex, a DNA helicase that is 

essential for DNA replication and that ensures regulation of replication origins as cell 

cycle progresses in order to avoid incomplete DNA replication or re-duplication during S-

phase (Bochman and Schwacha, 2008). Assembly of the MCM complex occurs in late 

mitosis and early G1 and its components (Mcm2-7) are present throughout the cell cycle, 

which make them good proliferation markers (Wharton et al., 2001). Expression of Ki67 
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and Mcm2 was not detected in DS-LUHMES and therefore, no cell cycle re-activation in 

these cells. The DDR and cell cycle regulation are very dynamic processes. Dysregulation 

of ATR and APC/C-Cdh1-related transcripts in DS-LUHMES may reflect an earlier 

response to oxidative DNA damage that involves these pathways. Changes in ATR and 

APC/C-Cdh1 mRNA levels in 96 hours DS-LUHMES could be residual effects from this 

early activation, which would also explain why proliferation markers were not present in 

DS-LUHMES at this time-point.  

 

The role of APC/C-Cdh1 complex in neurones is not restricted to cell cycle control and 

DNA damage. Recent evidence revealed the involvement of this complex in regulation of 

neuronal metabolism and oxidative status (Herrero-Mendez et al., 2009) and axonal 

growth (Konishi, 2004). Dysregulation of the APC/C-Cdh1-related genes in DS-

LUHMES could be linked to these mechanisms, but a more detailed investigation would 

be required to confirm this.  

 

4.5.1.2. Mitochondrial dysfunction 

 Pathway analysis in IMPaLA suggested dysregulation of mitochondrial transcripts in SS 

and DS-LUHMES. Transcripts encoding for mitochondrial Complex I subunits were 

down-regulated in both SS and DS-LUHMES, although these subunits differed between 

conditions. Other transcripts related to Complex III, Complex V, mitochondrial transport 

and the tricarboxylic acid (TCA) cycle were also dysregulated in SS and DS-LUHMES. 

To further investigate mitochondrial dysfunction in DS-LUHMES, the qRT-PCR and 

functional validation focused on Complex I activity under these conditions.  

 



 170 

NDUFS8 and NDUFV3 mRNA levels were significantly reduced in DS-LUHMES 

compared to controls and SS-LUHMES. NDUFS8 (NADH:Ubiquinone oxidoreductase 

core subunit S8) and NDUFV3 (NADH:Ubiquinone Oxidoreductase Subunit V3) encode 

for mitochondrial Complex I subunits. Complex I (NADH:ubiquinone oxidoreductase), is 

part of the mitochondrial electron transport chain (ETC), which produces ATP from 

electrons collected  from catabolic processes (glycolysis, fatty acid oxidation and TCA) 

(Sazanov, 2015) in a process known as oxidative phosphorylation. The mitochondrial 

electron transport chain is composed of proton-pumping multi-subunit protein assemblies, 

known as complexes (I-IV), that are embedded in the mitochondrial inner membrane. 

Complex I consist of 45 subunits and it catalyzes the first step of the ETC, where 

electrons are used to create a proton gradient across the mitochondrial membrane. 

Complex I structure is quite intricate and is composed by 7 core subunits, NDUFV1, 

NDUFV2, NDUFS1, NDUFS2, NDUFS3, NDUFS7 and NDUFS8, and 31 

supernumerary subunits, which activity is not yet fully described. Complex I dysfunction 

is associated with increased ROS in different cell types, including neurones (Gueguen et 

al., 2015; Taddei et al., 2012; Ward et al., 2017) and has been linked to PD (Parker et al., 

1989; Schapira et al., 1990) and AD (Fukuyama et al., 1996; Manczak et al., 2004).  

 

In DS-LUHMES, qRT-PCR confirmed down-regulation of NDUFS8 not only in DS-

LUHMES but also in SS-LUHMES, and suggested the same for NDUFV3, athough this 

last was not significant for either condition. This data suggested impaired function of 

Complex I in LUHMES exposed to H2O2, regardless of the number of H2O2 treatments. 

However, functional assessment of Complex I activity revealed hyperactivity of Complex 

I in DS-LUHMES, which was not consistent with down-regulation of NDUFS8 and 

NDUFV3 transcript levels.  As mentioned before, NDUFS8 is one of the core Complex I 
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subunits and is part of the hydrogenase module that directs electrons to ubiquinone 

(Bourges et al., 2004). Mutations in NDUFS8 lead to severe Complex I defficiency and 

are linked to development of Leigh Syndrome, a severe neurodegenerative disease that 

causes cognitive and motor decline (Loeffen et al., 1998; M€ et al., 2012; Procaccio and 

Wallace, 2004). NUDFV3 is one of the supernumerary subunits and its role has not been 

fully established, although it is thought that NDUFV3 and the other supernumerary 

subunits are involved in Complex I biogenesis and stability (Schulte et al., 1999). 

Incubation of LUHMES in H2O2 might cause mitochondrial dysfunction at different 

levels, as seen in SS and DS-LUHMES, which could explain dysregulation of mRNA 

levels of different subunits from complex I, III and V detected in the microarrary 

analysis. It is possible that Complex I is more susceptible to oxidative stress than the 

other complexes; this susceptibility could be related to the role of Complex I as the major 

site of ROS generation and to the low levels of Complex I present in the inner 

mitochondrial membrane compared to other complexes. A study on bovine heart 

mitochondria suggested that the ratios of Complexes I:II:III:IV:V were of 1:1.5:3:6, 

indicating that dysfunction of Complex I would have a greater impact on the ETC 

compared to altered function of Complexes II, III, IV and V (Schägger and Pfeiffer, 

2001). Mitochondrial hyperactivity has previously been described in mouse dopaminergic 

neuronal cultures (Pacelli et al., 2015) and more recently, in  pancreatic cells, in diabetes 

(Wu et al., 2017). This hyperactivity promotes ROS accumulation and contributes to 

oxidative stress. In pancreatic β-cells obtained from diabetic mice, Complex I 

hyperactivity caused an increase in ROS production, but a decrease in ATP, suggesting a 

dysfunctional ETC (Wu et al., 2017). It is evident that a second dose of H2O2 had a 

greater impact on mitochondrial function in DS-LUHMES compared to SS-LUHMES. A 

second H2O2 exposure could have caused Complex I hyperactivity, probably as a result of 
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redox imbalance, in DS-LUHMES. In an attempt to compensate for Complex I abnormal 

hyperactivity and prevent ROS formation and oxidative damage, DS-LUHMES could be 

reducing expression of Complex I genes NDUFS8 and NDUFV3. Compensatory 

mechanisms like this one have an impact on transcriptome analysis and demonstrate the 

importance of validation of microarray results at the protein and functional levels, since 

they do not always correlate with gene expression.     

 

Mitochondrial dysfunction is a feature of senescent cells. Increase in mitochondrial mass 

and accumulation of mitochondria with reduced membrane potential were seen in stress-

induced premature senescent (SIPS) human fibroblasts (Passos et al., 2010). Passos et al. 

proposed that mitochondrial dysfunction leading to increase ROS levels in senescent cells 

occurs through TGFβ via p21 (CDKN1) signalling; this pathway promotes ROS 

formation, oxidative DNA damage and persistent DDR activation that results in a stable 

senescent state (Passos et al., 2010).  It is not possible to determine whether 

mitochondrial dysfunction in DS-LUHMES is related to a senescent-like state. Further 

investigation on mitochondrial accumulation and morphology in DS-LUHMES, as well 

as expression of senescent mitochondrial proteins, including the ones participating in the 

p21- TGFβ signalling would need to be done.  

 

4.5.1.3. Immune response 

IMPaLA pathway analysis detected dysregulation of 23 immune response-related 

transcripts in DS-LUHMES when compared to control and SS-LUHMES. A more 

detailed investigation of this data revealed up-regulation of DDX58 in DS-LUHMES, 

which encodes for an immune response receptor known as retinoic acid-inducible gene I 

(RIG-1) receptor.  
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RIG-I is a member of the RIG-I-like receptors family, DExD/H RNA helicases 

characterised by a conserved Asp-Glu-Ala-Asp (DEAD) motif. As part of the innate 

immune response, RIG-I-like receptors act as cytoplasmic detectors of viral RNA 

(Yoneyama et al., 2004). This action triggers type I interferon (IFN) production and 

expression of an antiviral response through a pathway independent to Toll-like receptor 3 

(TLR3) (Kato et al., 2005). RIG-I has been also linked to inflammation and secretion of 

pro-inflammatory cytokines (Bogefors et al., 2011; Zhang et al., 2014a). 

 

More recently, RIG-I receptor was associated to senescence and the SASP in senescent 

HUVECs (Human umbilical vein endothelial cells) and WI-38 fibroblasts. This study 

showed increased RIG-I mRNA and protein levels when measured in these cells; 

increased RIG-1 receptor correlated with increased expression of IL-6 and IL-8 genes, 

cytokines that are known to be part of the SASP, but not with IFN-β. Knockdown of 

ATM in senescent HUVECs caused a reduction in RIG-1 and IL-6 mRNA levels, which 

confirmed an ATM-dependent expression of this two proteins (Liu et al., 2011). In vivo 

experiments in 60-week-old mice also revealed increased expression of RIG-1 and IL-6 

interleukin in brain extracts; these findings correlated with increased p16 (Liu et al., 

2011). Transcriptomic analysis suggested up-regulation of RIG-1 gene DDX58 in DS-

LUHMES, however qRT-PCR results were the opposite to what was detected by the 

microarray analysis. RIG-1 receptor has been reported in primary mice cortical neurones 

infected with Japanese encephalitis virus (JEV). Viral infection caused up-regulation of 

RIG-1 protein expression 12 and 24 hours post-infection, along with downstream targets 

IL-6, IL-2, TNF-α and MCP-1(Nazmi et al., 2011). This confirms that neurones can 

induce a pro-inflammatory response through the RIG-1 pathway, with IL-6 as one of the 
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cytokines that are released as a result of viral infection. Detection of DDX58 up-

regulation in DS-LUHMES could be indicative of activation of this pathway in response 

to oxidative stress, but its relation with senescence is not clear from these experiments. 
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4.6. Main conclusions 

Overall, transcriptome analysis of DS-LUHMES did not reveal dysregulation of 

“classical” senescence genes or pathways; however, a persistent oxidative DNA damage 

affected several neuronal functions, including DNA damage response, cell cycle 

regulation, oxidative phosphorylation and immune response, which could be linked to a 

senescent-like phenotype. Our data correlates with numerous reports indicating the 

involvement of cell cycle regulatory proteins, DDR and mitochondrial alterations in the 

pathology of neurodegenerative diseases (Höglinger et al., 2007; Silva et al., 2014) and 

provides further evidence on the involvement of oxidative stress and accumulation of 

DNA damage in neuronal dysfunction. To expand this work and to investigate whether 

these changes are linked to a neuronal senescent-like state it would be interesting to 

assess the neuronal response to oxidative DNA damage at different timepoints, since it is 

possible that important changes were missed by focusing on just the 96-hour timepoint. 

Changes in the immune response were not directly linked to known SASP-components, 

however, the SASP signature in post-mitotic neurones could differ from the one described 

for mitotic cells. Thus, investigating the involvement of some of the dysregulated 

immune response genes at the protein level could provide information on whether 

neurones also develop a secretory phenotype, specially taking into account that we also 

report a cell-to-cell contact mediated dysfunction in healthy LUHMES when co-cultured 

with DS-LUHMES.  
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Chapter 5. Relevance of neuronal senescence in vivo: DNA 

damage and senescence in the brain of ALS/MND patients 

5.1. Introduction 

The role of senescence in ageing and its contribution to degenerative diseases has been of 

increasing interest in recent years. The fact that senescent cells accumulate with age and 

that they can develop a toxic phenotype could contribute to the development of age-

related diseases, such as type 2 diabetes, osteoarthritis, atherosclerosis, cancer and 

neurodegeneration. Senescence in the brain has been mainly studied in non-neuronal 

cells, including astrocytes, microglia, oligodendrocytes, endothelial cells and neural stem 

cells (NSCs), but investigation of senescence in neurones has not been fully explored, 

mainly due to the idea that post-mitotic cells are not capable of activating senescence.  

 

Recent evidence obtained from a mouse model of ageing suggest that neurones can 

undergo a p21 dependent senescent-like state, which is linked to the release of IL-6, one 

of the main SASP cytokines (Jurk et al., 2012). SA-β-gal+ neurones were also found in 

the frontal cortex of cases with low levels of AD pathology (Simpson et al., 2014). These 

studies suggest that a mechanism similar to mitotic senescence could be developed by 

neurones in response to persistent DNA damage in vivo. Based on this evidence, this 

project focused on the detection of senescent neurones in ALS/MND, since it is known 

that oxidative stress and DNA damage are deeply involved in its pathology, which could 

potentially activate senescent pathways in neurones (Bogdanov et al., 2000; Lopez-

Gonzalez et al., 2016; Martin et al., 2007).   
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5.2. Aims and objectives 

The aim of the work presented in this chapter was to investigate expression of senescence 

markers in ALS/MND and control brains and to assess association of these markers with 

oxidative DNA damage and DNA damage response mechanisms activated in the disease.  

This was done by:  

 Identifying the expression of p16 and p21 cell cycle regulatory proteins and 

increased activity of SA-β-gal in neurones and glia of ALS/MND brains and 

controls. Differences between groups were assessed quantitatively.  

 Relating expression of senescence markers to oxidative DNA damage and DNA 

damage response mechanisms through the assessment of 8-OHdG and γH2AX 

expression 

 Investigating changes at the transcriptomic level of neurones expressing 

senescence markers in order to identify gene expression patterns indicative of a 

senescent-like state and the development of a SASP.  
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5.3. Materials and methods 

All chemicals were obtained from Sigma-Aldrich (St Louis, MO, USA) unless stated. 

Solutions required for the experiments described in this chapter were prepared as 

specified in Appendix A.  

 

5.3.1.1. Human Brain Tissue  

Post-mortem formalin-fixed paraffin-embedded (FFPE) and frozen brain tissue samples 

from ALS/MND and control donors were obtained from the Sheffield Brain Tissue Bank 

(SBTB; Ethical Committee Approval REC Ref. 08/MRE00/103) (Appendix B). FFPE 

samples from motor cortex (MCx), cervical spinal cord (Sc), frontal association cortex 

(FACx, Brodmann area 8/9) and occipital cortex (OCx) were used for 

immunohistochemistry experiments. Frozen sections were used for detection of SA-β-

galactosidase activity and for laser capture microdissection (LCM). Table 5.1 

summarises the number of cases available for each brain area under study.  

 

The cohort consisted of 17 male and 4 female control donors (mean age of 61.4 years, 

range 26-84) and 6 male and 4 female ALS/MND donors (mean age of 64.33 years, range 

48-80). Three cases were diagnosed with the familial form of the disease, while the rest 

were sporadic. Four cases, 1 sporadic and 3 familial, were positive for the C9orf72 

mutation. The mean post mortem delay (PMD) for controls was 28.92 hours (range 5-75 

hours) and for the ALS/MND group was 35.62 hours (range 9-96 hours). Detailed 

information about the disease and control donors is shown in Table 5.2.  
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Cases available for the FFPE 

samples 

Cases available for the frozen 

samples 

Brain 

region 
ALS/MND Control ALS/MND Control 

MCx 10 9 8 9 

FACx 10 10 8 6 

Sc 10 11 9 5 

OCx 10 10   

Table 5.1 Number of cases available for each brain region studied from controls 

and ALS/MND donors.  
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Group Case Sex Age (y) PMD (hours) 
Clinical diagnosis  

([+]: C9orf72 expansion) 

ALS/MND 

1 M 79 13 Familial ALS/MND [+] 

2 M 64 Not recorded Sporadic ALS/MND [+] 

3 M 48 23 Familial ALS/MND-PD [+] 

4 F 59 28 Familial FTD-ALS/MND [+] 

5 M Not recorded 9 Sporadic ALS/MND 

6 M 51 40 Sporadic ALS/MND 

7 F 69 40 Sporadic ALS/MND 

8 M 66 96 Sporadic ALS/MND 

9 F 80 Not recorded Sporadic ALS/MND 

10 F 63 36 Sporadic ALS/MND 

Control 

1 F 59 5 Myocardial infarction 

2 M 63 Not recorded Control 

3 F 63 Not recorded Control 

4 M 63 20 CVD 

5 M 67 63 HCC 

6 M 51 25 Mesothelioma 

7 M 55 24 Carcinoid tumour 

8 M 82 36 Carcinomatosis 

9 F 29 20 IHD 

10 M 54 8 IHD 

11 M 65 34 Bronchopneumonia 

12 M 72 31 IHD 

13 M 26 Not recorded Control 

14 M 69 Not recorded Control 

15 M 78 75 Basal ganglia calcification 

16 Not recorded Not recorded Not recorded Control 

17 M 84 Not recorded Age related atrophy 

18 M 54 8 Ischaemic heart disease 

19 M 75 27 Lewy body dysphagia 

20 M 53 Not recorded MS 

21 M 78 60 Pneumonia 

22 F 66 Not recorded Sensory motor neuropathy 

Table 5.2 Clinical and demographic data for the control and ALS/MND donors. 

For the current study, data from donors was anonymised but a list of the cases linked to 

the anonymised IDs is available. 
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5.3.1.1.1. Classification of ALS/MND cases based on p62 pathology in the FACx 

ALS/MND cases were classified based on their p62 staining in the FACx to investigate 

any correlation between p62 pathology and the expression of senescence and DNA 

damage markers. For this, p62 stained sections from the ALS/MND cases in our cohort 

were provided by the Sheffield Brain Tissue Bank. The FTLD pattern was established 

according to the new consensus criteria, which classifies patterns into FTLD-TDP A, B or 

C based on the presence of specific p62 structures, including neuronal cytoplasmic 

inclusions (NCI), dystrophic neurites (DN), neuronal intranuclear inclusions (NII) and 

glial cytoplasmic inclusions (GCI) (Mackenzie et al., 2011). ALS/MND cases were 

classified as FTD-0 when no pathology was found and FTLD-MC (minimal change) 

when occasional p62 structures were seen. The distribution of the p62 structures as well 

as any atypical features were indicated as well.  

 

5.3.1.2. Detection of senescence associated-β-galactosidase (SA-β-gal) activity in post-

mortem tissue  

The histochemical protocol used for this study was adapted from a previously published 

report, which investigated SA-β-gal activity in skin biopsies (Dimri et al., 1995). Briefly, 

histochemical detection of SA-β-gal activity in frozen tissue was performed using the 

Senescence Cells Histochemical Staining Kit (Sigma-Aldrich, UK), according to the 

manufacturer’s instructions. Briefly, all kit components were thawed on ice and the X-gal 

solution was warmed to 37 ºC for 1hr, prior to use. Frozen sections were warmed to RT 

for 3 min, fixed with 1x Fixation Buffer for 7 minutes and rinsed with 1x Phosphate 

Buffered Saline (PBS) 3 times prior to the addition of the staining mixture.  The staining 

mixture consisted of potassium ferricyanide (5 mM), potassium ferrocyanide (5 mM), X-

gal solution (0.1mg/ml) and 1x Staining Solution. The staining mix was added to the 
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tissue sections and these were covered with Parafilm (Sigma-Aldrich, St Louis, MO, 

USA), to prevent evaporation of the mixture and to ensure the tissue was in contact with 

an even layer of substrate. Sections were incubated overnight at 37 ºC, then rinsed with 

1x PBS, and counterstained with Nuclear Fast Red for 5 min. Sections were rinsed with 

deionized water before they were dehydrated, cleared and mounted in DPX mountant 

(Sigma-Aldrich, St Louis, MO, USA). SA-β-gal activity was identified as a blue, 

insoluble precipitate within cells and was assessed qualitatively in images captured at 

medium (20x objective) and high magnification (40x objective).  

 

5.3.1.3. Immunohistochemistry 

5.3.1.3.1. Senescence markers p16 and p21 

As mentioned previously, the detection of senescent cells requires the use of several 

markers. In addition to SA-β-gal activity, the identification of the proteins that are 

involved in the two pathways that activate senescence is also useful. The p16/pRb and 

p21/p53 pathways induce senescence in response to a persistent DDR and their study 

complements the information given by SA-β-gal activity.  

 

For the immunohistochemical detection of p16 and p21 in FFPE tissue sections, a 

standard biotin horseradish peroxidase enzyme complex method (ABC-HRP) was used. 

Primary antibodies and antigen retrieval methods used for each marker are described in 

Table 5.3. After antigen retrieval and incubation in 3% H2O2 in methanol for 5 minutes, 

sections were blocked in 1.5% normal serum for 30 min before incubation with the 

primary antibody. Sections were washed with 1x Tris-buffered saline (TBS) and 

incubated in 0.5% of the suitable biotinylated secondary antibody for 30 min. At the same 

time, the avidin-biotin complex solution (Vector Laboratories, CA, USA) was prepared, 
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as specified by the supplier, to be used in the next step. Sections were washed again with 

1x TBS and incubated with the avidin-biotinynilated complex-horse radish peroxidase 

solution (ABC-HRP solution) for 30 minutes. Following this incubation, excess of the 

ABC-HRP solution was removed by washing 1x TBS and the sections were incubated 

with the enzyme substrate DAB (Vector Laboratories, UK). The DAB solution was left 

for 5 minutes and peroxidase activity was quenched by washing with deionised water. 

Sections were counterstained with haematoxylin for 30 seconds – 1 min, dehydrated 

through a graded series of 70%, 95% and 100% ethanol and cleared in xylene. Finally, 

sections were mounted with DPX mountant and left to dry overnight. Negative controls 

consisted of sections incubated with omission of the primary antibody and relevant 

isotype controls. 

 

5.3.1.3.1.1. Double labelling to identify the cell type expressing p16 and p21 

To determine glial expression of p16 and p21, dual immunolabelling was performed.  

Following immunostaining for p16 or p21, sections were washed with 1x TBS, blocked 

with 1.5% normal serum for 30 minutes at RT and incubated with avidin/biotin blocking 

solution (Vector Laboratories, UK). To determine the association with astrocytes, 

sections were incubated with primary antibodies raised against glial fibrillary acidic 

protein (GFAP) (Table 5.3). Sections were washed with TBS and incubated with 0.5% 

relevant biotinylated secondary antibody for 1 hr at RT, followed by a TBS wash and 

incubation with 2% avidin biotinylated alkaline phosphatase enzyme complex (ABC-AP) 

(Vector Laboratories, UK). The signal was visualized using an alkaline phosphatase 

substrate, which produces a red precipitate.   
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Dual immunostaining to determine neuronal expression of p21 was performed using a 

fluorescence approach on frozen sections. Briefly, acetone-fixed sections were incubated 

with 0.2% glycine and blocked with normal serum (1.5%), followed by incubation with 

the anti-p21 primary antibody for 1 hr at RT. Sections were washed and incubated with a 

biotinylated secondary antibody (0.5%) for 30 min at RT, followed by incubation with 

streptavidin-TRITC complex (0.2%) for 1 hour. Sections were blocked with normal 

serum (1.5%) for 30 minutes at RT, followed by avidin/biotin blocking solution (Vector 

Labs) and overnight incubation with an anti-NeuN primary antibody, at 4 ºC (Table 5.3). 

Sections were washed and incubated with a biotinylated secondary (1%) antibody for 45 

min, followed by incubation with a streptavidin-FITC complex (0.2%) for 1 hour at RT. 

Sections were counterstained with Hoechst solution before mounting with Fluoromount 

Mounting Media (Sigma-Aldrich, St Louis, MO, USA).  

 

 

 Antibody Species 
Dilution and 

conditions 
Antigen retrieval Supplier 

Senescence 

markers 

p16 
Mouse 

monoclonal 

Prediluted 

O/N, 4 ºC 

Pressure cooker, 

Access Revelation 

Buffer pH 9.5 

BioGenex, UK 

p21 
Mouse 

monoclonal 

1:100 

O/N, 4 ºC 

MW 10 min 

TSC buffer pH 6 

Millipore UK Limited, 

UK 

DNA damage 

markers 

γH2AX 
Rabbit 

polyclonal 

1:500 

O/N, 4 ºC 

Pressure cooker, 

EDTA pH 8 
R&D Systems, UK 

8-OHdG 
Mouse 

monoclonal 

1:400 

1hr, RT 

Pressure cooker, 

Access Revelation 

Buffer pH6 

Abcam, Cambridge 

UK 

Microglial 

markers 

MHC class 

II α-chain 

Mouse 

monoclonal 

1:20, 1 hour, 

RT 

MW 15 min  

TSC buffer, pH 6 

DakoCytomation, Ely 

UK 

CD68 clone 

PG-M1 

Mouse 

monoclonal 

1:100, 1 hour 

RT 

MW 10 min 

TSC buffer, pH 6.5 

DakoCytomation, Ely 

UK 

Neuronal 

marker 
NeuN 

Mouse 

monoclonal 

1:100 

1 hr, RT 

NA (used for double 

labelling on frozen 

tissue) 

Chemicon-Millipore 

UK Limited, UK 

Astrocytic 

marker 
GFAP 

Rabbit 

polyclonal 

1:500 

1h, RT 

NA (used for double 

labelling) 

DakoCytomation, Ely 

UK 

Table 5.3 Antibodies used for immunohistochemistry experiments.  



 185 

Antibodies, antigen retrieval and incubation conditions used for the detection of 

senescence, DNA damage and cell specific markers in ALS/MND and control brains by 

immunohistochemistry. 

 

 

5.3.1.3.2. Oxidative DNA damage markers 8-OHdG and γH2AX 

Immunohistochemistry for 8-OHdG and γH2AX was conducted in the MCx and FCx of 

ALS and control donors. The primary antibodies, antigen retrieval and incubation 

conditions for 8-OHdG and γH2AX staining are listed in Table 5.3. The staining protocol 

was identical to the one described in section 5.3.1.3.1.  

 

5.3.1.3.3. MHC class II and CD68 staining 

SA-β-gal activity and a significantly higher proportion of p21+ neurones in the FACx of 

ALS/MND donors could be related to a senescent-like state in this cell type, which would 

involve the development of a SASP. To investigate this further, we decided to determine 

if a pro-inflammatory environment was present in this brain area of ALS/MND patients 

through the detection of activated microglia. For this, immunocytochemistry for MHC 

class II and CD68 microglial markers was performed following the same ABC-HRP 

method described in section 5.3.1.3.1. The antibodies used, as well as the antigen 

retrieval and incubation conditions are presented in Table 5.3.  
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5.3.1.4. Quantitative analysis 

5.3.1.4.1.  p21+, p16+ and 8-OHdG+ cells 

Glial and neuronal nuclear staining was assessed quantitatively for p21, p16 and 8-OHdG 

in the grey matter of the FACx and MCx sections of ALS/MND and control donors. 

Using the Nikon ECLIPSE Ni microscope (Nikon Instruments, Amsterdam, Netherlands), 

the region with the most intense staining was selected for each case. Images were taken 

from one cortical ribbon of grey matter, starting from the outer cortex up to the white 

matter border and excluding cortical layer 1.  Images taken with a 40x objective were 

imported into a Power Point file and a previously designed grid was overlaid on to each 

image to help with the quantification (Figure 5.1). Two independent observers (Irina 

Vázquez-Villaseñor and Julie Simpson) quantified the number of p16+, p21+ and 8-

OHdG+ glial and neuronal nuclei and total number of glial and neuronal nuclei in each 

image. The proportion of positive nuclei was determined by dividing the number of 

positive cells (neurones or glia) by the number of total cells (neurones or glia) per field. A 

percentage was obtained by multiplying the proportion by 100.  
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Figure 5.1 Grid used for quantitative analysis of p21, p16 and 8-OHdG staining. 

 

5.3.1.4.2. Quantification of γH2AX+ cells 

Quantification of the total number of γH2AX+ nuclei was performed in FACx and MCx 

sections of ALS/MND and control donors, using the Cell^R software (Olympus 

Biosystems, Watford, UK). Images were taken from one cortical ribbon of the grey 

matter, starting from the outer cortex up to the white matter border, using a 20x objective 

and uploaded into Cell^R. Detection of γH2AX+ neuronal nuclei was done using size 

exclusion (>500 pixels) and the number of positive small nuclei (glia) was determined by 

subtracting the number of pyramidal neuronal nuclei from the total number of positive 

nuclei. To assess the total number of cells (neurones and glia), the same detection 

protocol was applied to haematoxylin-only stained sections, which allowed the 

determination of the percentage of immunopositive cells (total number of positive 

neurones/total number of neurones; total number of positive glia/total number of glia) per 

case.  
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5.3.1.4.3. Quantification of MHC class II and CD68 staining 

Percentage (%) area of immunoreativity was calculated for MHC class II and CD68 

staining in FACx sections of ALS/MND and control donors with the Olympus Cell^R 

software. As with the other markers, images were taken from one cortical ribbon of grey 

matter, starting from the outer cortex up to the white matter border, using a 20x objective. 

Images were transferred to Cell^R software, which calculated the % area of 

immunoreactivity per image. For the data analysis, the mean % area of immunoreactivity 

was calculated based on the total number of images per case.  

 

5.3.1.5. Statistical analysis of immunohistochemical staining 

Statistical analyses were performed in IBM SPSS Statistics v22 (IBM, NY, USA). 

Comparisons between ALS/MND and control groups were done using the Mann U-

Whitney nonparametric analysis for independent samples. The effect size was calculated 

using the formula 

r = Z/√N 

where  r represents the effect size, as proposed by Cohen (Cohen, 1988); Z represents the 

Mann U-Whitney Z-score; and N represents the sample size. Cohen’s guidelines were 

used for the interpretation of the data (Table 5.4).   

 

Value for r Effect size 

0.1 Small 

0.3 Medium 

0.5 Large 

Table 5.4 Effect size Cohen’s guidelines. 

Cohen’s guide lines to determine the effect size of the Mann U-Whitney nonparametric 

analysis based on r (Fritz et al., 2012).  
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The relation between senescence markers expression and oxidative DNA damage and a 

DDR were assessed using Spearman’s correlation coefficient. Mann U-Whitney 

nonparametric analysis was also used when comparing expression of senescence and 

DNA damage markers in ALS/MND cases based on the FTLD-TDP type and the 

presence of the C9orf72 expansion.  

 

5.3.2. Transcriptome analysis of FACx neurones from ALS/MND and control donors 

5.3.2.1. Checking for RNA quality from tissue for microarray  

Before isolation of neurones by laser capture microdissection (LCM), the quality of the 

RNA obtained from frozen samples was assessed. RNA isolation was performed using 

the PicoPure RNA Isolation Kit (ThermoFisher Scientific, MA, USA). Briefly, two 5 μm 

sections from ALS/MND cases 1,2 and 3, and controls 1, 2, 4 and 5 were placed in a 0.5 

ml eppendorf and were incubated in Extraction Buffer, from the PicoPure RNA Isolation 

Kit, for 30 minutes at 42 ºC. Samples were centrifuged at 3000 xg for 2 minutes and the 

supernatant was collected in a sterile 0.5 ml eppendorf. The RNA Purification Column 

was pre-conditioned by incubating it with 250 μl of Conditioning Buffer for 5 minutes at 

RT. The column was centrifuged at 16000 xg for 1 minute. To prepare the sample, the 

supernatant was mixed with 50 μl of 70% Ethanol and added on to the column, which 

was centrifuged for 2 minutes at 100xg followed by a centrifugation at 16000 xg for 30 

seconds. The column was washed with 100μl of Wash Buffer (W1) and centrifugation for 

1 minute at 8000xg. 100 μl of Wash Buffer 2 (W2) were pipetted into the column and it 

was again centrifuged at 8000 xg for 1 minute. A last wash was performed by adding 100 

μl of W2, followed by centrifugation at 16000xg for 2 minute. To collect the extract, the 

column was transferred to a sterile 0.5 eppendorf. The RNA was eluted with 11 μl of 

Elution Buffer and centrifuged at 1000 xg, for 1 minute, followed by a final 



 190 

centrifugation at 16000xg for 1 minute. The RNA concentration was measured in a 

NanoDrop Spectrophotometer (ThermoFisher Scientific, MA, USA) and the RNA quality 

was assessed with an Agilent RNA 6000 Pico Chip (ThermoFisher Scientific, CA, USA) 

in an Agilent 2100 Bioanalyzer (Agilent, CA, USA).  

 

5.3.2.2. Laser capture microdissection (LCM) of neurones from the FACx 

LCM was used to isolate neurones from the FACx of ALS/MND and control donors. For 

this, freshly cut sections of 3 ALS/MND cases and 3 controls placed on to non-charged 

slides (Table 5.5) were warmed up at RT for 5 minutes and fixed in acetone at 4 ºC for 5 

minutes. Sections were stained with toluidine blue for 1 minute, washed in DEPC (diethyl 

pyrocarbonate) water for 5 seconds and dehydrated in a series of alcohols of increasing 

concentrations (70%, 95%, 100%). After clearing in xylene, sections were air-dried for at 

least 1 hour.  

 

Group Case ID 

Control 

1 Control 1 

2 Control 2 

3 Control 3 

ALS/MND 

1 ALS/MND 1 

2 ALS/MND 1 

3 ALS/MND 3 

Table 5.5 Control and ALS/MND cases that were selected for LCM isolation of 

neurones from the FACx. 

 

LCM was performed in the PixCell IIe Laser Capture Microdissection System 

(ThermoFisher Scientific, MA, USA) and using the Arcturus® CapSure® Macro LCM 

Caps (ThermoFisher Scientific, MA, USA). An approximate number of 2,000 neurones 

per case were isolated. After picking, the film was removed carefully using sterile 
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tweezers and incubated for 30 minutes at 42 ºC in Extraction Buffer, from the PicoPure 

RNA Isolation kit. Samples were stored at -80 ºC.  

 

5.3.2.3. RNA isolation from LCM samples  

RNA isolation was performed according to the PicoPure RNA Isolation kit instructions as 

explained in section 5.3.2.1. To confirm the success of the RNA extraction, a preliminary 

determination of the RNA concentration in the samples was performed in the NanoDrop 

Spectrophotometer, using 1 μl of the sample for the reading. RNA quality was determined 

with an Agilent RNA 6000 Pico Chip. 

 

5.3.2.3.1. Confirmation of neuronal enrichment 

To confirm that RNA samples represented an enriched neuronal population, amplification 

of neuronal and glial specific transcripts was assessed in all samples by standard PCR. 

For this, 5 μl of RNA template extracted from the samples obtained by LCM were mixed 

with 2 μl of 5x qScriptTM cDNA SuperMIX (Quanta Biosciences, Inc, MA, USA) and 3 

μl of nuclease free water. The reaction protocol consisted of 5 minutes’ incubation at 25 

ºC, followed by a 30 minutes’ incubation and 42 ºC and finally, 5 minutes’ incubation at 

85 ºC. After cDNA was synthesised, samples were prepared for PCR amplification of 

neuronal and glial markers. The primers used for NEUN, GFAP, OLIG2, CD68 and 

ACTNB amplification are listed in Table 5.6. Samples consisted of 1 μl of cDNA 

template, 10 μl of 2x DreamTaq Green PCR Master Mix, 1 μl of forward (F) primer, 1 μl 

(R) of reverse primer and 7 μl of nuclease free water. The amplification protocol is 

described in Table 5.7.  10 μl of each amplification product were loaded in a 3% agarose 

gel containing ethidium bromide (100 ng/ml) and ran at 80 V for 45 minutes. The gel was 

imaged in a GENI UV light imageing system (Syngene). 
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Gene Product size Primer Sequence 

NeuN 84 
F: 5’-ACG ATG GTA GAG GGA CGG AA 

R: 5’-AAT TCA GGC CCG TAG ACT GC 

GFAP 213 
F: 5’-GCA GAA GCT CCA GGA TGA AAC 

R: 5’ TCC ACA TGG ACC TGC TGT C 

CD68 135 
F: 5’- CGA GCA TCA TTC TTT CAC CAG CT 

R: 5’- ATG AGA GGC AGC AAG ATG GAC C 

OLIG2 474 
F: 5’-CCC TGA GGC TTT TCG GAG CG 

R: 5’-GCG GCT GTT GAT CTT AGA CGG 

ACTNB 100 
F: 5’- TCC CCC AAC TTG AGA TGT AAG 

R: 5’- AAC TGG TCT CAA GTC AGT GTA CAG G 

Table 5.6. Gene specific primers used to confirm neuronal enrichment of LCM 

samples. 

 

Step Temperature (ºC) Time Cycles 

Initial denaturation 94 1-3 min 1 

Denaturation 94 30 seconds 

25-40 Annealing 67 1 minute 

Extension 72 30 seconds 

Table 5.7 Amplification reaction protocol. 

Protocol used for amplification of neuronal and glial specific genes to confirm 

enrichment of LCM samples with a neuronal population. 

 

5.3.2.4. RNA amplification and microarray hybridisation 

Changes in the transcriptome of FACx neurones from ALS/MND donors were 

investigated using the enriched neuronal samples obtained by LCM. 3 control and 3 

ALS/MND cases were included in this analysis (Table 5.5). For this, RNA samples were 

amplified with the 3’ IVT Pico Reagent kit (ThermoFisher Scientific, MA, USA). The 

RNA amplification and microarray hybridisation protocol was described in detail in 

Chapter 4, section 4.3.2.1.  In summary, 10 ng of RNA per sample were mixed with 5 μl 

of poly-A RNA control mix. Complimentary RNA (cRNA) was synthetized by In Vitro 
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Transcription (IVT) of the ds-cDNA that was obtained from RNA. cRNA was purified and 

quantified in a NanoDrop Spectrophotometer. The cRNA quality and concentration was 

also assessed with an Agilent 6000 Nano Chip. Purified cRNA was used for sense-strand 

cDNA synthesis by reverse transcription; antisense-strand cDNA was then obtained from 

a second round of ds-cDNA synthesis, which contained dUTP at a specific ratio relative to 

dTTP. ds-cDNA was purified and quantified by spectrophotometry, before being 

fragmented at the dUTP residues. Fragments were labelled with the DNA Labeling 

Reagent (Affymetrix), which is linked to biotin.  

 

GeneChip Human Genome U133 Plus 2 Arrays (ThermoFisher Scientific, MA, USA) 

cartridges were pre-hybridised with Pre-hybridisation mix for 30 minutes at 45 ºC and 60 

rpm. The Hybridization cocktail was prepared by mixing 160 μl of Hybridization Master 

Mix and 60 μl of the sample labelled ds-cDNA. The mix was incubated for 5 min at 99 ºC 

and then for 5 min at 45ºC, followed by a brief centrifugation to collect tube contents. The 

Pre-Hybridization mix was removed from the cartridge and 200 μl of Hybridization Mix 

were pipetted in. Cartridges were incubated for 16 hours at 45ºC and 60 rpm. Arrays were 

then washed with Wash Buffer A and placed in the Affymetrix GeneChip Command 

Console Fluidics Control (ThermoFisher Scientific, MA, USA) for staining. Arrays were 

stained using the Fluidics Protocol FS450_0001. 

 

5.3.2.5. Microarray data quality control 

Data was analysed in the Affymetrix Expression Console 1.4.1.46 and normalised using 

the Robust Multi-Array Average (RMA).  
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5.3.2.6. Microarray data analysis 

The Qlucore Omics Explorer software (Qlucore, Lund, Sweden) was used for analysis of 

the normalised data. Two-group comparisons, setting p=0.05 and a fold change of 1.2, 

were performed (ALS/MND vs Controls) . DAVID Functional Annotation Tool Version 

6.7 (NIAID, NIH, USA) and IMPaLA (Integrated Molecular Pathway Level Analysis) 

were used to perform the functional group and pathway analysis on the lists of 

differentially expressed genes. 

 

5.3.2.7. qRT-PCR validation of microarray genes of interest 

Validation of dysregulated transcripts in ALS/MND FACx neurones was done by qRT-

pCR. Validation was conducted in the 6 cases included in the microarray analysis, plus 2 

additional control and 3 additional ALS/MND cases (Table 5.8). Enriched neuronal RNA 

samples for the validation experiments were obtained by LCM of FACx frozen sections. 

This protocol was described previously, in section 5.3.2.2. and section 5.3.2.3. cDNA was 

synthesized using the qScript cDNA Supermix (Quanta Biosciences, MA, USA). The 

PrimeTime qPCR assays (Integrated DNA Technologies®) listed in Table 5.9 were used 

for the qRT-PCR. Each sample mix contained 50 ng of cDNA, 500 nM forward and 

reverse primer, and 250 nM probe, 2 x Brilliant III qPCR Master mix and nuclease free 

distilled H2O. qRT-PCR was performed on a 2 step thermal profile on a Stratagene 

MX3000P™ Real Time Thermal Cycler (Agilent Technologies Ltd). The incubation was 

performed as follows: 10 minutes at 95°C then 40 cycles of 30 seconds at 95°C, 60 

seconds at 60°C and 60 seconds at 72°C. LMNB1 was used as housekeeping gene (HK) 

and was amplified on each plate. Expression levels were normalised to LMNB1 using the 

Ct calculation. 
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Group Case ID 

Control 

1 Control 1 

2 Control 2 

3 Control 3 

4 Control 4 

5 Control 5 

ALS/MND 

1 ALS/MND 1 

2 ALS/MND 2 

3 ALS/MND 3 

4 ALS/MND 4 

5 ALS/MND 5 

6 ALS/MND 6 

Table 5.8 Control and ALS/MND selected qRT-PCR validation.  

Control and ALS/MND cases selected for LCM isolation of neurones from the FACx. 

Samples were then processed for qRT-PCR validation of microarray results.  

 

 

Gene 
PrimeTime ® 

Assay ID 
Ref Seq 

Exon 

location 
Primer Sequence 

COX20 COX20 Set 1 
NM_1980

76 
1 

Probe: 5’-/56-

FAM/TGGTGACTT/ZEN/TGGGATGCTGGTTT

CA/3IABkFQ/-3’ 

Primer 1: 5’-GATGTTGGAGTAGGAGGGTTTAT-

3’ 

Primer 2: 5’-CTGGCAATTCTTTCCTGGATTC-3’ 

GADD45A 
Hs.PT.58.7651

77 

NM_0011

90481(

2) 

2-4 

Probe: 5’-/56-

FAM/ATCCATGTA/ZEN/GCGACTTTCCCGG

C/3IABkFQ/-3’ 

Primer 1: 5’-GGAGATTAATCACTGGAACCCA -3’ 

Primer 2: 5’-TGTACGAAGCGGCCAAG-3’ 

SLC25A37 
Hs.PT.58.3324

071 

NM_0043

60(1) 
6-7 

Probe: 5’-/56 

FAM/TGCTTCACC/ZEN/ACTTCTGCTGGATT/3I

ABkFQ/-3’ 

Primer 1: 5’-GTGCTGCGAGTTGTACATC-3’ 

Primer 2: 5’-GAAACAGCCACCTAGCCAA-3’ 

Table 5.9 PrimeTime ® qPCR assays used for validation of the transcripts of 

interest in control, SS and DS-LUHMES. 

PrimeTime ® qPCR assays were resuspended in TE buffer to a 20x concentration. The 

final 1x concentration contained 500 nM primer (forward or reverse) and 250 nM probe. 
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5.4. Results 

5.4.1. Classification of ALS/MND cases according to the p62 pathology is not linked to 

expression of senescence and DNA damage markers in ALS/MND cases 

First, ALS/MND cases were classified according to the p62 pathology present in the 

FACx, MCx and Sc. Table 5.10 shows the classification for each case according to the 

guidelines described in section 5.3.1.1.1. Figure 5.2 shows the different p62 structures 

identified in the FACx and MCx of ALS/MND cases. Four cases were identified as 

FTLD-TDP type B; these cases had moderate neuronal cytoplasmic inclusions (NCI) and 

few dystrophic neurites (DN) in all cortical layers. Two cases had minimal p62 pathology 

and were identified as FTLD-MC (minimal change). The remaining two cases did not 

show cortical p62 pathology and were identified as FTLD-0. For the statistical analysis, 

FTLD-MC and FTLD-0 cases were analysed as a single group (FTLD-MC/0).  

 

Case FTLD pattern 

LP8310 B (C9orf72+) 

LP5909 MC 

LP2408 0 

LP1411 MC 

LP6909 B (C9orf72+) 

LP6608 B (C9orf72+) 

LP9608 0 

LP4104 B (C9orf72+) 

Table 5.10 Classification of ALS/MND cases according to their p62 pathology. 

Following the guidelines proposed by Mckenzie et al. (2011), 4 ALS/MND cases were 

classified as FTLD-TDP type B. The other four cases were either classified as having 

minimal changes (MC) or no p62 pathology (0).   
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Figure 5.2. Classification of ALS/MND cases according to p62 pathology. 

Representative images of specific p62 structures in ALS/MND cases. A. Threads 

observed in the FACx. B. Diffuse neuronal reactivity in the FACx, C. NCI with 

ccasional DN in the FACx. D. GCI and DN in the MCx. E. NCI, GCI and DN in the 

MCx. F. GCI in the MCx. G. NCI in the MCx. H. NCI, GCI and DN in the MCx. Scale 

bar represents 50 μm.  
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5.4.2. SA- β-gal activity is a feature of brains from ALS/MND and control donors  

Histochemical detection of increased activity of SA-β-gal in ALS/MND and control 

donors revealed glial and neuronal activity in the FACx, MCx and Sc, which was 

identified as a blue cytoplasmic precipitate. The intensity and pattern of the blue 

precipitate that indicates enzyme activity was variable between brain regions and groups. 

Due to this variability, quantification of SA-β-gal positive cells was not pursued, but a 

thorough descriptive analysis was performed instead. Two of the 9 available control MCx 

cases had intense cytoplasmic staining in neurones as well as in glial cells from the grey 

and white matter (Figure 5.3B); however, the FCx sections from these same cases 

showed only weak granular cytoplasmic staining in both cell types (Figure 5.3D), or no 

staining at all. The remaining control cases (7 MCx and 4 FCx) had either weak or no 

detectable staining in neurones and glia (Figure 5.3A and Figure 5.3C). Sc sections from 

control donors showed various staining patterns as well: 1 case had intense neuronal 

cytoplasmic blue staining and widespread cytoplasmic glial staining; the remaining 4 

controls had a less intense, granular cytoplasmic staining in some neurones (Figure 5.3C 

and Figure 5.3F), while glial staining was very intense in some cases (2) and weak and 

localised (2) in others.  

 

A similar result was obtained from SA-β-gal staining in ALS/MND brains (Figure 5.4). 

Neurones with intense staining were detected in 3 cases in the MCx (Figure 5.4A and 

Figure 5.4D); the remaining 5 cases showed either weak or no neuronal staining at all. 

Analysis of the staining in the FACx revealed 3 cases with strong neuronal staining 

(Figure 5.4E), which were not necessarily the same cases with SA-β-gal+ neurones in the 

MCx. The remaining cases (5) showed weak and granular neuronal staining in the FACx 

(Figure 5.4B). SA-β-gal+ neurones were found in Sc sections from 3 ALS/MND donors; 
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these cases also showed intense glial staining (Figure 5.4C and Figure 5.4F). In the 

remaining 6 ALS/MND Sc sections neurones showed a weak granular staining or no 

staining at all. 
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Figure 5.3 Representative images of SA-β-gal activity in brains of two control donors. 

SA-β-gal activity was detected in the MCx (A-D), FACx (B-E) and Sc (C-F) of controls and ALS/MND donors following a histochemical 

protocol based on the cleavage of the SA-β-gal substrate X-gal. SA-β-gal activity was visualised as a blue precipitate and was localised to 

neurones and glia in the grey matter. Intense neuronal staining was seen in some control sections (D-E), however, it was also possible to 

detect neurones with faint granular staining (A, B, C and F).  Scale bar represents 100 μm. 



 201 

 

Figure 5.4 Representative images of SA-β-gal activity in brains of two ALS/MND donors. 

SA-β-gal activity was detected in the MCx (A-D), FACx (B-E) and Sc (C-F) of ALS/MND donors. SA-β-gal activity was present in 

neurones and glia in the grey matter, however the staining intensity and pattern differed between cases and brain regions. In the FACx of 

these two cases (B and E) it is possible to see very faint granular neuronal staining (B) against an intense neuronal staining.  Scale bar 

represents 100 μm. 
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Even though this study focused on detection of SA-β-gal+ neurones, a descriptive analysis 

of glial staining in the white matter of controls and ALS/MND donors was also 

conducted, since white matter staining exemplified perfectly the variability in the SA-β-

gal activity that could be seen within groups. Images of the white matter from 4 controls 

and 4 ALS/MND donors are shown in Figure 5.5.  The intensity of SA-β-gal staining 

was very variable, from non-existing (Figure 5.5A and Figure 5.5E) to a strong blue 

(Figure 5.5D and Figure 5.5H). The spread of the staining also varied. Some cases had 

sporadic SA-β-gal+ glial staining (Figure 5.5B-D and Figure 5.5F), while others showed 

a higher number of SA-β-gal+ glial cells throughout the white matter (Figure 5.5G-H). 
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Figure 5.5 Representative images of SA-β-gal activity in the white matter of control and ALS/MND donors. 

SA-β-gal activity was detected in the white matter of controls and ALS/MND donors. Blue staining was localised to the cytoplasm of glial 

cells of control (A-D) and ALS/MND donors (E-H). The intensity as well as the quantity of SA-β-gal+ cells was highly variable between 

cases and groups. Scale bar represents 100 μm. 
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5.4.3. Expression of p16 is exclusive to glial cells  

Immunohistochemistry for p16 resulted in nuclear and cytoplasmic staining of glial cells. 

The cytoplasmic staining was localised to the processes of cells resembling reactive 

astrocytes (Figure 5.6A-B and Figure 5.6D-E). The majority of controls and ALS/MND 

cases showed some level of p16+ glial staining in the grey matter of MCx and FACx 

sections (Figure 5.6A-B and Figure 5.6D-E). In the Sc, p16 was also localised to the 

nuclei of glial cells present in the anterior horn; however, cytoplasmic staining of motor 

neurones was detected in 6 of 11 controls and 4 of 10 ALS/MND cases. Cytoplasmic 

staining of motor neurones differed in intensity between cases.  (Figure 5.6C and Figure 

5.6F). Double staining for p16 and GFAP confirmed the expression of p16 in the nuclei 

of astrocytes and in some cases, in the cytoplasm of GFAP+ astrocytes. However, not all 

GFAP+ astrocytes were positive for p16 (Figure 5.7).  

 

The percentage of p16+ glial cells in the FACx sections was significantly higher in 

ALS/MND (p=0.015) donors compared to controls (Figure 5.8B). No difference was 

detected in the MCx (p=0.965) (Figure 5.8A). Calculation of Cohen’s r suggested a large 

effect size (r=0.541) of the difference in the percentage of p16+ glia in the FACx between 

groups.  
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Figure 5.6 Representative images of p16 staining in control and ALS/MND brains. 

Expression of p16 in MCx, FACx and Sc of control (A, B, C) and ALS/MND donors (D, E, F) was assessed by immunohistochemistry. 

Staining was predominantly localised to the nuclei of glial cells however, cytoplasmic staining was also present in some of these cells and in 

Sc motor neurones. Previously studied sections from the hippocampus and frontal cortex of AD patients were included as positive controls. 

Scale bar represents 50 μm.  
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Figure 5.7 Representative images of dual immunostaining for p16/GFAP. 

FACx and MCx FFPE sections were stained for p16 using an ABC-HRP method, which 

can be seen as a brown precipitate. GFAP staining was visualised using an ABC-alkaline 

phosphatase method, which results in a red precipitate. Arrows show colocalisation of 

p16 and GFAP, confirming expression of p16 in astrocytes. p16+/GFAP- glial cells 

(dotted arrows), as well as p16-/GFAP+ (arrowheads) cells were also detected. Scale bar 

represents 25 μm.  

 

Figure 5.8 Quantitative analysis of p16+ glial cells in control and ALS/MND brains. 

Box plots showing the percentage of p16+ glial cells in the MCx (A) and FACx (B) of 

ALS/MND and control donors. Quantitation of p16 staining revealed a significantly 

higher percentage of p16+ glial cells in the FACx of ALS/MND donors but not in the 

MCx (Mann Whitney-U Test; *p<0.05). 
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5.4.4. Expression of p21 is detected in glial and neuronal nuclei  

Immunohistochemistry for p21 revealed expression of this marker in both neurones and 

glia in the MCx, FACx and Sc of ALS/MND and control donors (Figure 5.9). The 

staining was mainly nuclear, although there were a few ALS/MND and control cases with 

neuronal and glial cytoplasmic staining, as seen in Figure 5.9A-B (MCx and FACx – 

control), and Figure 5.9D-E (MCx and FACx – ALS/MND). Glial cytoplasmic staining 

localised to the processes of what looked like reactive astrocytes. To confirm this, a 

double staining for GFAP and p21 was performed, resulting in co-localisation of both 

markers. Double immunohistochemistry also showed that not all GFAP+ astrocytes were 

positive for p21 and viceversa (Figure 5.10). Double labelling for p21/NeuN was also 

conducted and results confirmed expression of p21 in pyramidal neurones of the MCx 

and FACx of control and ALS/MND donors (Figure 5.11).  p21+ motor neurones were 

detected in Sc sections of ALS/MND and control cases; nuclear staining in neurones was 

seen in 2 ALS/MND cases and 8 controls (Figure 5.9C), but cytoplasmic staining was 

seen in 3 ALS/MND donors and 9 controls as well. (Figure 5.9F).  

 

Quantitative analysis of p21+ glia and neurones focused on nuclear staining only. The 

percentage of p21+ glial cells was not significantly different in the MCx of ALS/MND 

donors when compared to controls (p=0.515), but a significantly higher percentage of 

p21+ glia was detected in the FACx (p=0.019) (Figure 5.12A and Figure 5.12C). 

Calculation of Cohen’s r suggested a medium to large effect size (r=0.477) of the 

difference in the percentage of p21+ glia in the FACx between groups.  

 

Quantification of p21+ neuronal nuclei resulted in a significantly higher percentage in the 

FACx (p=0.035) as well, but not in the MCx of ALS/MND donors (p=0.360) (Figure 
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5.12B and Figure 5.12D). Calculation of Cohen’s r suggested a large effect size 

(r=0.524) of the difference in the percentage of p21+ neurones in the FAcx between 

ALS/MND and control donors.  



 209 

 

Figure 5.9 p21 staining on controls and ALS/MND brains (Mcx, Fcx, Sc). 

Expression of p21 in MCx, FACx and Sc of control (A, B, C) and ALS/MND donors (D, E, F) was assessed by immunohistochemistry. 

Staining was localised to the nuclei of glial (red arrows) and neuronal cells (black arrows). Cytoplasmic staining was also detected in some 

neurones and glia (most probably reactive astrocytes). Expression of p21 was seen in motor neurones; some cases exhibited nuclear staining 

(C) while others also had cytoplasmic staining (F). Scale bar represents 50 μm. 
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Figure 5.10 Representative images of dual immunostaining for p21/GFAP. 

FACx and MCx FFPE sections were stained for p21 using an ABC-HRP method, which 

can be seen as a brown precipitate. GFAP staining was visualised using an ABC-alkaline 

phosphatase method, which results in a red precipitate. Arrows show colocalisation of 

p21 and GFAP, confirming expression of p21 in astrocytes. p21+/GFAP- glial cells 

(arrowheads), as well as p21-/GFAP+ (dotted arrows) cells were also detected. Scale bar 

represents 25 μm. 

 

 

Figure 5.11 Representative images of double fluorescence immunostaining for 

p21/NeuN. 

FACx and MCx frozen sections were stained for p21 and NeuN using double 

fluorescence approach. p21 expression (red) colocalised with NeuN+ neurones (green) 

(arrows in Merge). Nuclei were stained with Hoechst. Scale bar represents 50 μm. 

p21 NeuN Merge
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Figure 5.12 Quantitative analysis of p21+ glial and neuronal cells in control and 

ALS/MND brains. 

A-B. Box plots showing the percentage of p21+ glial cells in the MCx (A) and FACx (B) 

of ALS/MND and control donors. Quantitation of p21 staining revealed a significantly 

higher percentage of p21+ glial cells in the FACx of ALS/MND donors but not in the 

MCx.  C-D. Box plots showing the percentage of p21+ neurones in the MCx (A) and 

FACx (B) of ALS/MND and control donors. Quantitation of p21+ neurones indicated a 

significantly higher percentage of p21+ neurones in the FACx of ALS/MND donors but 

not in the MCx (Mann Whitney-U Test; *p<0.05).  
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5.4.5. Expression of p16 and p21 in the occipital cortex of ALS/MND and control donors 

Detection of p16 and p21 senescence markers was also conducted in the occipital cortex 

(OCx). This brain region was included in the study as a comparison region not 

pathologically involved in ALS/MND, even in late stage disease.  Results revealed 

expression of p16 in glial cells (Figure 5.13A) and expression of p21 in glia and 

neurones (Figure 5.13B) in both control and ALS/MND cases. These results correlated 

with what was seen in the MCx and FACx. Quantitation of p16+ glial cells and p21+ 

glia/neurones did not reveal a significant difference in the percentage of immunoreactive 

glia to p16 and glia/neurones to p21 in ALS/MND cases when compared to controls 

(Figure 5.14).  

 

 

Figure 5.13 Representative images of p16 and p21 staining in the OCx of 

ALS/MND and control donors. 

Expression of glial (arrows) p16 (A) and glial (arrows) and neuronal (dotted arrows) p21 

(B) in the OCx of ALS/MND and control cases was detected by immunohistochemistry.  

Scale bar represents 50 μm.  

 

A B 
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Figure 5.14 Quantitative analysis of p16 and p21 immunohistochemistry in the 

OCx. 

Box plots indicating the percentage of p16+ glia (A), p21+ glia (B) and p21+ neurones (C) 

in the OCx of ALS/MND and control donors. Even though expression of both markers 

was present in this brain area, there was no significant difference in the percentage of 

positive p16 glia and p21 glia/neurones in ALS/MND donors (Mann Whitney-U Test).  
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5.4.6. Detection of DNA damage and DNA damage response markers  

5.4.6.1. γH2AX expression in ALS/MND and control brains 

After identifying the expression of p16 and p21 cell cycle checkpoint proteins in the brain 

of ALS/MND and control donors, markers of oxidative DNA damage and of a DDR were 

assessed in the same brain areas. γH2AX immunohistochemical detection showed 

expression of this marker in the nuclei of neurones and glia. The presence of γH2AX+ 

cells was localised in both ALS/MND and control donors, in the MCx (Figure 5.15A) 

and FACx (Figure 5.15B).  Quantification of γH2AX+ glia in the MCx and FACx did not 

show a significant difference in the percentage of positive glia between ALS/MND and 

control cases (Figure 5.16A-B).  Moreover, quantification of γH2AX+ showed no 

difference in the percentage of positive neurones in ALS/MND cases either (Figure 

5.16C-D).  

 

 

Figure 5.15 Representative images γH2AX staining in the MCx and FACx of 

ALS/MND donors. 

Phosphorylation of H2AX was detected in neurones and glial cells of ALS/MND cases 

and controls in both the MCx (A) and FACx (B) brain areas. Arrows indicate γH2AX+ 

glia and arrowheads indicate γH2AX+ neurones. Scale bar represents 50 μm.  

A  B
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Figure 5.16 Quantitative analysis of γH2AX+ cells. 

The percentage of γH2AX+ glia and neurones in the MCx and FACx was assessed using 

the image analysis software Cell^R. Box plots A and C show no difference in the 

percentage of γH2AX+ glia and neurones in the MCx between ALS/MND and control 

donors. Box plots B and D indicate no significant difference in the percentage of 

γH2AX+ glia and neurones in the FACx of ALS/MND cases when compared to controls 

(Mann Whitney-U test).  
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5.4.6.2. 8-OHdG expression in ALS/MND and control brains 

Immunohistochemical detection of oxidative DNA damage was done using an antibody 

against 8-OHdG, one of the main products of nucleic acids oxidation. 8-OHdG was 

present in the cytoplasmic and nuclear compartments of glia and neurones, which would 

account for both RNA and DNA oxidation  (Figure 5.17). The percentage of 8-OHdG+ 

nuclei of pyramidal neurones in ALS/MND and control donors did not differ significantly 

in the MCx (p=0.968) (Figure 5.17A) and in the FACx (p=0.165) (Figure 5.17B).  

 

 

Figure 5.17 Representative images of 8-OHdG in ALS/MND and controls. 

Immunohistochemistry for 8-OHdG was performed on MCx (A) and FACx (B) sections 

from ALS/MND and control donors. Cytoplasmic and nuclear staining was detected in 

glia and neurones in both brain areas; also, some neurones exhibited only cytoplasmic 

staining (A) but the quantitative analysis focused on neuronal nuclear staining. Scale bar 

represents 100 μm.  

 

A B 
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Figure 5.18 Quantitative analyses of 8-OHdG+ neurones. 

The percentage of 8-OHdG+ nuclei of pyramidal neurones in the MCx and FACx was 

assessed using the image analysis software Cell^R. Box plots show no difference in the 

percentage of 8-OHdG+ neurones in the MCx (A) and FACx (B) between ALS/MND 

and control donors (Mann Whitney-U Test).  
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5.4.6.3. Association between DNA damage and senescence markers in neurones 

To determine the relationship between the expression of p21 and the DNA damage 

markers 8-OHdG and γH2AX in neurones, a statistical dependence analysis between 

these variables was conducted. Figure 5.19 shows scatterplots displaying the relationship 

between 8-OHdG+ and γH2AX+ neurones in the MCx (Figure 5.19A) and FACx (Figure 

5.19B) of ALS/MND donors. No significant correlation was found between 8-OHdG and 

γH2AX markers in neurones in the MCx (rho=-0.115, p=0.751) or the FACx, (rho=-

0.297, p=0.405) of ALS/MND donors. The association analysis between the percentages 

of p21+ and γH2AX+ did not show a significant correlation in the MCx (rho=-0.067, 

p=0.855) (Figure 5.20A) or the FACx (rho=-0.176, p=0.627) (Figure 5.20B) brain 

regions either. Finally, determination of the relationship between p21+ and 8-OHdG+ 

neurones did not indicate a significant correlation between these two markers in MCx 

neurones (rho=0.224, p=0.533) (Figure 5.21A) or in the FACx neurones (rho=0.479, 

p=0.162) of ALS/MND donors (Figure 5.21B). 
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Figure 5.19 Association between 8-OHdG+ and γH2AX+ neurones in ALS/MND 

brains. 

Scatterplots showing no significant correlation between the percentages of 8-OHdG+ and 

γH2AX+ neurones in the MCx (A) and FACx (B) of ALS/MND cases. Correlation was 

determined using Spearman’s rank correlation coefficient (rho).  

 

 

Figure 5.20 Association between p21+ and γH2AX+ neurones in ALS/MND brains. 

Scatterplots showing no significant correlation correlations between the percentages of 

p21+ and γH2AX+ neurones in the MCx (A) and FACx (B) of ALS/MND cases. 

Correlation was determined using Spearman’s rank correlation coefficient (rho).  
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Figure 5.21 Association between p21+ and 8-OHdG+ neurones in ALS/MND 

brains. 

Scatterplots showing no significant correlation between the percentages of p21+ and 8-

OHdG+ neurones in the MCx (A) and FACx (B) of ALS/MND donors. Correlation was 

determined using Spearman’s rank correlation coefficient (rho).  
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5.4.7. Microglial activation in the FACx of ALS/MND cases 

To investigate whether the significantly higher expression of p21 in neurones and glia and 

p16 in glia in the FACx were related to a SASP-like phenotype in the brain of ALS/MND 

donors, microglial activation was assessed by looking at the expression of MHC class II 

and CD68 in this brain region. CD68 immunoreactive microglia was present in the FACx 

of both controls and ALS/MND cases. The morphology of CD68+ microglia was mainly 

ramified in both control and ALS/MND cases (Figure 5.22A-B), and no amoeboid 

microglia were detected. Quantification of the % immunoreactive area for CD68 

expression confirmed no significant difference between ALS/MND cases and controls 

(Figure 5.24A). MHC class II staining was also present in controls and ALS/MND cases 

and it was not evident if there was up-regulation of MHC class II expression in 

ALS/MND donors (Figure 5.23). The quantitative analysis showed no difference in the 

% area of immunoreactivity to MHC class II in the FACx of ALS/MND cases when 

compared to controls (Figure 5.24B).  

 

Figure 5.22 Representative images of CD68+ microglia in the FACx of ALS/MND 

and control donors. 

Immunohistochemistry for CD68 revealed the presence of immunopositive microglia 

with a ramified phenotype in the FACx of controls (A) and ALS/MND (B) cases. Scale 

bar represents 100 μm. 
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Figure 5.23 Representative images of MHC II+ microglia in the FACx of 

ALS/MND and control donors. 

Immunohistochemistry for MHC class II revealed the presence of immunopositive 

microglia in the FACx of controls (A) and ALS/MND (B) cases. Scale bar represents 

100 μm. 

 

 

Figure 5.24 Quantitative analysis of CD68 and MHC class II expression in the 

FACx of controls and ALS/MND donors. 

Box plots showing no significant difference in the % area of immunoreactivity for CD68 

(A) and MHC class II (B) in the FACx of ALS/MND cases when compared to control 

donors (Mann Whitney-U Test). 
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5.4.8. p62 pathology is not linked to the of senescence and DNA damage markers in 

ALS/MND cases 

Differences in the percentage of p16/p21+ glia and p21+ neurones between FTLD-TDP 

type B and FTLD-MC/0 cases were assessed for both the MCx and FACx brain areas. 

There was no significant difference in the percentage of p16+ glia in the MCx (p=0.686) 

or FACx (p=0.886) (Figure 5.25A-B) and in the percentage of p21+ glia in the MCx 

(p=0.686) or FACx (p=0.886) between FTLD-TDP B and FTLD-MC/0 cases (Figure 

5.25C-E). Analysis of the percentage of p21+ neurones in the MCx (p=0.114) and FACx 

(p=1.00) of FTLD-TDP B cases compared to FLD-MC/0 cases was not statistically 

significant either (Figure 5.26A-B).  

 

Differences in the percentage of γH2AX+ and 8-OHdG+ neurones between FTLD-TDP 

type B and FTLD-MC/0 cases were also investigated. There was no significant difference 

in the percentage of γH2AX+ neurones in the MCx of FTLD-TDP B cases when 

compared to the FTLD-MC/0 group (p=0.486) (Figure 5.27A), but the percentage of 

γH2AX+ neurones in the FACx was significantly higher in the FTLD-MC/0 group 

(p=0.029) (Figure 5.27B). Differences in the percentage of 8-OHdG+ neurones between 

FTLD-TDP B and FTLD-MC/0 cases were not statistically significant (MCx, p=0.343; 

FACx, p=0.686) (Figure 5.27C-D).  

  



 224 

 

Figure 5.25 Analysis of p16 and p21 expression in glial cells of FTLD-TDP B cases. 

Box plots showing the percentage of p16+ and p21+ glial cells in the MCx (A and C) and 

FACx (B and D) of FTLD-TDP B and FTLD-Minor changes/0 cases. No significant 

difference was found between groups for either one of the senescence markers (Mann 

Whitney-U Test). 

 

Figure 5.26 Analysis of p21 expression in neurones of FTLD-TDP B cases. 

Box plots showing the percentage of p21+ neurones in the MCx (A) and FACx (B) of 

FTLD-TDP B and FTLD-Minor changes/0 cases. There was no significant difference in 

the percentage of p21+ neurones between groups (Mann Whitney-U Test). 
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Figure 5.27 Analysis of γH2AX and 8-OHdG expression in neurones of FTLD-TDP 

B cases. 

Box plots showing the percentage of γH2AX+ and 8-OHdG+ neurones in the MCx (A 

and C) and FACx (B and D) of FTLD-TDP B and FTLD-Minor changes/0 cases. The 

percentage of γH2AX+ neurones in the FACx of FTLD-TDP B cases was significantly 

lower when compared to the FTLD-Minor changes/0 group; no significant difference 

was found in the MCx. No significant difference in the percentage of 8-OHdG+ neurones 

was found between groups (Mann Whitney-U Test).   

  

* 
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5.4.9. Microarray analysis of the neuronal transcriptome in the frontal cortex of MND 

patients.  

5.4.9.1. Integrity of purified RNA from frozen tissue 

Previous to the LCM isolation of neuronal cells from the FACx of ALS/MND and control 

donors, an assessment of the RNA quality from the available frozen sections was 

performed. Results from the Nanodrop readings are presented in Table 5.11. The yield 

and RNA quality of the samples extracted from control and ALS/MND FACx frozen 

sections had an RNA yield of 35.22±22.72 ng/μl on average. RNA determined by the 

A260/280 ratio, was on average 2.46±0.5. The RIN value for the samples was of 5.68±2.7. 

and electropherograms from all samples showed two distinct 28S and 10S rRNA peaks 

(Figure 5.28).  

 

Condition RNA concentration (ng/μl) 260/280 ratio RIN value 

Control 1 8.79 3.47 2.5 

Control 2 25.26 2.30 5.4 

Control 3 27.18 2.26 7.7 

ALS/MND 1 59.06 2.21 8.2 

ALS/MND 2 67.16 2.22 7.8 

ALS/MND 3 23.85 2.29 2.5 

Mean ± SD 35.22±22.72 2.46±0.5 5.68±2.7 

Table 5.11 Initial concentrations of RNA in FACx frozen tisue samples. 

Before proceeding to the isolation of neurones by LCM, the overall quality of the RNA 

obtianed from frozen FACx sections was assessed. 260/280 and RIN values suggested 

RNA was of an acceptable quality.  
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Figure 5.28 RNA integrity from FACx frozen tissue. 

Example of two electropherograms and electrophoresis gels obtained with the Agilent 

2100 Bioanalyzer from two RNA samples from FACx frozen human tissue with low (A) 

(RIN=5.4) and high (B) (RIN=7.8) RIN values. Electropherograms were used to assess 

the RNA integrity. Peaks represent the 18S and 28S rRNA and confirm the presence of 

non-degraded RNA in the samples (FU: fluorescence unit). 

 

  

A.

B.
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5.4.9.2. RNA integrity from LCM neurone enriched RNA samples 

After confirming that RNA could be successfully exracted from FACx frozen samples and 

that its quality was acceptable for the subsequent experiments, FACx neurones from 3 

control donors and 3 ALS/MND donors were isolated using LCM. RNA was eluted in 15 

μl of RNAse free water and the RNA yield and quality were assessed. Nanodrop results 

are presented in Table 5.12 and an example of an electropherogram is presented in Figure 

5.29. The yield of RNA extracted from the 6 FACx neurone enriched samples was of 

13.85±15.62 ng/μl on average. The average A260/280 ratio was of 1.51±0.19 and the 

average RIN value was of 3.62±0.71. All samples showed 28S and 10S RNA peaks in the 

electropherograms (Figure 5.29). 

 

Condition RNA concentration (ng/μl) 260/280 ratio RIN value 

Control 1 45.30 1.52 2.8 

Control 2 5.05 1.52 3.4 

Control 3 6.47 1.52 3.7 

ALS/MND 1 5.19 1.53 4.9 

ALS/MND 2 9.51 1.19 3.2 

ALS/MND 3 11.60 1.8 3.7 

Mean ± SD 13.85±15.62 1.51±0.19 3.62±0.71 

Table 5.12 RNA concentration and quality in neurone enriched samples. 

RNA obtained from FACx neurones isolated by LCM from control and ALS/MND 

donors was assessed. 260/280 ratios and RIN values confirmed RNA samples were of an 

acceptable quality to use for microarray experiments.  
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Figure 5.29 RNA integrity from FACx frozen tissue. 

Example of an electropherogram and electrophoresis gel obtained with the Agilent 2100 

Bioanalyzer for an RNA sample from FACx neurones isolated by LCM. 

Electropherograms were used to assess the RNA integrity. Peaks represent the 18S and 

28S rRNA and indicate intact RNA (FU: fluorescence unit). 
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5.4.9.3. Confirmation of neuronal enrichment in LCM samples 

The expression of the neuronal marker NEUN was used to assess enrichment of LCM 

samples with a neuronal population. Expression of GFAP, OLIG2 and CD68 was also 

investigated to identify contamination of astrocyte, oligodendrocyte and microglial 

populations, respectively. Expression of NEUN was detected in the 6 samples obtained 

from LCM isolated neurones from the FACx (Figure 5.30). GFAP expression was 

detected in Control 1, Control 3 and ALS/MND 1 indicating astrocytic contamination in 

these samples; however, OLIG2 and CD68 expression was not found in any of the 

samples. Amplification of ACTNB was included as control. Expression of ACTNB was 

present in all samples, as expected. These results confirmed that isolation of neurones 

from the FACx by LCM indeed produced samples enriched with a neuronal population.  

 

Figure 5.30 Enrichment of LCM samples with a population of neuronal cells. 

DNA gel showing expression of NEUN and confirming enrichment of neuronal 

population following RNA extraction from LCM isolated FACx neurones. GFAP 

expression was present in 3 of the 6 samples (Control 1, Control 3 and ALS/MND 1), 

but OLIG2 and CD68 products were not detected.   
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5.4.9.4. RNA preparation for microarray analysis 

RNA extracts obtained from neurone enriched samples were processed with the 3’ IVT 

Pico Reagent kit, which prepares low concentrated RNA samples for gene expression 

profiling. Approximately 10 ng RNA per sample were used for the single-strand cDNA 

(ss-cDNA) synthesis. After purification, the yield of cRNA was measured by 

spectrophotometry with a NanoDrop 1000. Table 5.13 shows the concentration of cRNA 

obtained per sample. The mean concentration of cRNA was 3132.80±681.05 ng/μl and the 

mean 260/280 ratio was 1.92±0.18.  

 

Condition cRNA concentration (ng/μl) 260/280 ratio 

Control 1 3520.82 1.87 

Control 2 3614.78 1.74 

Control 3 3403.06 1.95 

ALS/MND 1 1985.56 2.10 

ALS/MND 2 3659.31 1.70 

ALS/MND 3 2613.29 2.15 

Mean ± SD 3132.80± 681.05 1.92±0.18 

Table 5.13 Concentrations of cRNA obtained after ss-cDNA synthesis. 
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Next, 20 μg of cRNA were used for the synthesis of sense-strand and anti-sense strand 

DNA in a 2nd – cycle. The ds-cDNA was purified and measured by spectrophotometry. 

The mean ds-cDNA concentration was 630.87±37.7 ng/μl (Table 5.13) 

 

Condition ds-cDNA concentration (ng/μl) 260/280 ratio 

Control 1 743.98 1.98 

Control 2 580.90 1.99 

Control 3 708.28 1.96 

ALS/MND 1 497.05 1.94 

ALS/MND 2 672.59 1.97 

ALS/MND 3 564.28 2.30 

Mean ± SD 627.85 ± 95.2 2.02±0.14 

Table 5.14. Concentration of ds-cDNA obtained after the 2nd amplification cycle. 

 

For the fragmentation step, 6.6 μg of ds-cDNA were used. Fragmentation of the ds-cDNA 

was done by UDG and APE 1 enzymes at the dUTP residues. To ensure that 

fragmentation was successful, this was assessed with the Agilent 2100 Bioanalyser 

(Figure 5.31). Labelling of the fragmented cDNA was done by a TdT using the 

Affymetrix proprietary DNA labelling reagent, which contains biotin. After labelling, 

samples were processed for cartridge array hybridisation. To ensure accurate comparison 

between microarrays, spike-in controls bioB, bioC, bioD (E. Coli) and Cre (P1) were used 

to normalise hybridisation measurements. Biotin labelled cRNA transcripts of bioB, bioC, 

bioD and cre were spiked in the Hybridisation Cocktail in different concentrations (1.5 

pM, 5 pM, 25 pM, and 100 pM final concentrations for bioB, bioC, bioD, and cre, 

respectively). 
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Figure 5.31 Assessing fragmentation of ss-cDNA. 

Representative elctropherogram and electrophoresis gel showing ss-cDNA 

fragmentation. (FU=fluorescence unit). 

 

5.4.9.5. Microarray data quality control (QC) overview 

Standard quality control parameters for the MAS 5.0 algorithm data were assessed prior to 

the microarray data analysis, as done with the LUHMES microarray data (Chapter 4, 

section 4.3.2.2).  The QC analysis was done using the Affymetrix Expression ConsoleTM 

Software and sample quality, hibridisation, signal quality and signal comparability were 

the parameters assessed.  

 

In summary, the QC analysis identified Control 3 as an outlier. This sample consistently 

showed values for the standard quality control parameters that were outside of the trend. 

The clustering analysis segregated the ALS/MND and control groups in two well defined 

groups, however, Control 3 did not conform (section 5.4.9.6.1). Based on these results, 

Control 3 was excluded from the functional and pathway enrichment analysis.  
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5.4.9.5.1. Sample quality 

5.4.9.5.1.1. Labelling controls  

Bacterial poly-A RNA controls from the B. subtilis genes lys, phe, thr and dap were 

present at different concentrations each (1:100,000, 1:50,000, 1:25,000 and 1:6,667, 

respectively) in all samples. Samples Control 1 and Control 3 showed a higher signal 

intensity compared to the rest of the samples, which had a similar labelling efficiency for 

all poly-A RNA controls (Figure 5.32). In summary, all poly-A RNA controls were 

called as present in increasing concentrations in the 6 arrays.  

 

 

Figure 5.32 Poly-RNA controls for neurone RNA enriched samples from controls 

and ALS/MND cases. 

Plot depicting the average signal intensity of poly-A controls lys, phe, thr and dap for 

each of the 6 samples. 
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5.4.9.5.1.2. 3’/5’ ratio for β-actin and GAPDH 

The GAPDH and β-actin 3’ probe to 5’ probe ratios for the FACx neurone arrays are 

shown in Figure 5.33. Affymetrix indicates that ratio values should be below 3 for 1-

cycle assays, but 2-cycle assays can give higher values as a result of the additional 

amplification cycle. GAPDH and β-actin ratio values for the FACx neurones arrays were 

similar between replicates, except for Control 3, which differed from the other samples. 

β-actin values were higher than 3, as expected for a 2-cycle assay.  

 

 

 

Figure 5.33 Housekeeping (HK) genes GAPDH and β-actin signal ratios. 

HK genes GAPDH and β-actin were used as internal controls to assess the quality of the 

samples and the amplification and labelling process. The 3’ probe to 5’ probe ratio 

should be consistent between arrays.  
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5.4.9.5.2. Hybridisation and signal quality 

5.4.9.5.2.1. Spike-in eukaryotic hybridisation controls 

Average signals for the hybridisation controls BioB, bioC, bioD (E. Coli) and Cre (P1) 

transcripts are shown in Figure 5.34. The concentration of BioB is at the level of array 

sensitivity and should be present at least 70% of the time. bioC, bioD and Cre should be 

present and show increasing signal values. Signals for all hybridisation controls show 

increasing values in all samples, as expected. Signal for Control 3 was higher, compared 

to the rest of the samples that had similar signal values between them. Overall, all 

eukaryotic hybridisation controls were called as present in increasing concentrations in the 

6 arrays, which suggests a good hybridisation efficiency for all samples.  

 

 

Figure 5.34 Eukariotic hibridisation controls for FACx neurone arrays. 

Plot depicting the average signal intensitites of hybridisation controls BioB, bioC, bioD 

and Cre at increasing concentrations for each of the 6 FACx neurones arrays.  
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5.4.9.5.2.2. Percent present (% P) 

In Figure 5.35, the % P indicates the percentage of probes that are present in the arrays, 

relative to the total number of probes. Replicates should have similar % P values. The 

values for the % P in the 6 FACx neurones arrays is consistent between replicates and 

GeneChip arrays.  

 

 

Figure 5.35 Percentage of probes present in the 96 hours control and SS/DS 

LUHMES array. 

% P is the percentage of probes that are detected relative to the total number of probe 

sets that the array contains, which are 54,675 probes for the GeneChip Human Genome 

U133 Plus 2.0 Array.  
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5.4.9.5.3. Signal comparability 

The signal histogram shown in Figure 5.36 shows the signal intensities from the probes in 

each array, which allows comparison of the signals between GeneChip arrays. The signal 

profile should be the same across samples, however the profie for Control 3 (Irina 6)  

indicates higher signal intensities for some of the probes; the other 5 samples show 

comparable signal intensities.  

 

 

Figure 5.36 Signal histogram forALS/MND and control FACx neurones arrays. 

The signal histogram was used to compare the signal intensities of the probe sets across 

the 6 FACx neurones arrays under analysis (Irina 1=ALS/MND 1; Irina 2=ALS/MND 2, 

Irina 3=ALS/MND 3; Irina 4=control 1; Irina 5=control 2; Irina 6=control 3). 

 

  



 239 

The Relative Log Expression (RLE) values compares the signal detected for each of the 

probe sets present in the array to the median signal value for each probe set across all 

arrays. RLE values should be 0 or close to 0 on a log scale. RLE values for the FACx 

neurones arrays show a similar spread between them, except for array Control 3 (Irina 6) 

(Figure 5.37). 

 

 

Figure 5.37 Relative log expression (RLE) box plots for the ALS/MND and control 

FACx neurones arrays. 

The RLE values of the 6 arrays are close to 0, except for the Control 3 (Irina 6) array, 

which has a higher RLE value (Irina 1=ALS/MND 1; Irina 2=ALS/MND 2, Irina 

3=ALS/MND 3; Irina 4=control 1; Irina 5=control 2; Irina 6=control 3).  
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5.4.9.6. Microarray data analysis  

5.4.9.6.1. Clustering Analysis  

Differences in the transcriptome of control and ALS/MND FACx neurones were analysed 

with the Qlucore Omics Explorer (version 3.0) software. Initially, the 6 data sets (3 

controls and 3 ALS/MND FACx neurones) were imported to Qlucore Omics Explorer and 

normalised using the RMA method. For the analysis, a fold change (FC) ≤ 1.2 and a 

significant value of p < 0.05 were set. Data was analysed using a Two-group comparison 

between Control FACx neurones and ALS/MND FACx neurones. The PCA plot for this 

analysis is shown in  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.38A.  A clear separation of the 2 conditions can be seen: Control FACx 

neurones– blue, ALS/MND FACx neurones - yellow.  However, Control 3 (indicated in 

red, in  
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Figure 5.38A) was not as well aligned with the other 2 control arrays. These results are 

consistent with the quality control parameters obtained for this sample and presented in 

section 5.3.9.5. Due to these results a second PCA analysis was performed excluding 

Control 3 ( 
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Figure 5.38B), which resulted in a better differentiation of the ALS/MND and control 

groups.  

 

The two-group comparison identified 820 differentially expressed genes, 358 up and 462 

down-regulated, in ALS/MND FACx neurones (Table 5.15). Exclusion of Control 3 from 

the analysis reduced the number of differentially expressed genes from 1371 to 820 (40% 

reduction). The complete list of differentially expressed genes can be found in the 

electronic version of this work, as specified in Appendix C.   
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Figure 5.38 Clustering analysis of ALS/MND FACx neurones compared to Control 

FACx neurones – Two groups analysis. 

A. PCA plot of ALS/MND FACx neurones (yellow) and Control neurones (blue) shows 

the separation of differentially expressed genes between the 2 groups. B. PCA plot of 

ALS/MND FACx neurones (yellow) and Control neurones (blue) excluding Control 3 

(identified with the red circle in Panel A).  

  

Control (2) 

ALS/MND (3) 



 244 

Two Group 

Comparison 

Total number of 

differentially expressed 

transcripts 

Number of up-

regulated 

transcripts 

Number of down-

regulated 

transcripst 

ALS/MND vs 

Control  

FACx neurones 

(excluding Control 

3) 

820 358 462 

ALS/MND vs 

Control  

FACx neurones 

(including all 6 

array data sets) 

1371 500 871 

Table 5.15 Number of differentially expressed transcripts in ALS/MND FACx 

neurones.  

Contrary to what was expected, exclusion of Control 3 from the analysis resulted in the 

reduction in the number of differentially expressed genes, which could correlate with 

Control 3 gene expression profiling being similar to the profile of ALS/MND neurones.  

 

5.4.9.6.2. Functional annotation and pathway enrichment analysis 

A functional annotation analysis was conducted to group genes according to their 

function and to identify dysregulated pathways in ALS/MND FACx neurones that could 

be linked to a DDR and the development of a senescence like-state. Previous to this 

analysis, a manual examination of the list of differentially expressed genes was done to 

identify dysregulated transcripts from common senescence and SASP markers: p21 

(CDKN1A), p16 (CDKN2A), SA-β-galactosidase (GLB1), IL-6 (IL6) and/or IL-8 

(CXCL8). This examinaiton did not identify alteration in any of these genes in the 

ALS/MND FACx neurones.  

 

5.4.9.6.2.1. Functional Enrichment Analysis using DAVID Bioinformatics Tool 

The list of probe IDs from the total number of differentially expressed transcripts 

computed by Qlucore Omics Explorer were entered into DAVID Bioinformatics Tool 
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(version 6.7). To identify functional groups and altered pathways changing in the same 

direction, the lists of up and down-regulated transcripts were inputted independently as 

well. Results from the DAVID Functional Enrichment Analysis are summarised in Table 

5.16, Table 5.17 and Table 5.18. 

 

Differentially expressed transcripts in ALS/MND FACx neurones were categorised in 

alternative splicing, phosphoprotein, calcium, ATP and cell adhesion functional groups. 

The dysregulated pathways idenfied by DAVID included calcium signalling pathway and 

p53 signalling pathway (Table 5.16).  

 

Analysis of the UP-REGULATED transcripts (Table 5.17) resulted in enrichment of 

alternative splicing, phosphoprotein, calcium and synapse functional groups. Pathway 

analysis suggested dysregulation of dilated cardiomyopathy, calcium signalling, GAP 

junction regulation of actin cytoskeleton and p53 signalling pathways in the ALS/MND 

FACx neurones.  

 

Functional grouping of DOWN-REGULATED transcripts (Table 5.18) resulted in 

enrichment of immunoglobulin domain, DNA binding, alternative splicing, ATP, calcium 

and cell adhesion functions. DAVID identified enrichment of the KEGG pathway linked 

to metabolism of lipids in the ALS/MND FACx neurones.  
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Two group 

comparison 
Functional group 

Differentially 

expressed 

genes 

p value 
FDR 

value 

ALS/MND vs 

Control 

(FACx 

neurones) 

(318 David IDs) 

Alternative splicing 317 3.2E-8 4.5E-5 

Phosphoprotein 294 3.6E-3 2.2E-2 

Calcium 45 1.3E-1 1.2E0 

Immunoglobulin domain 29 2.4E-1 3.2E0 

SH2 domain 10 6.8E-1 1.6E1 

DNA binding 20 7.9E-1 2.5E1 

Metal-binding 119 7.6E-1 2.6E1 

Cell adhesion 23 7.9E-1 3.1E1 

ATP 15 7.7E-1 3.2E1 

Lipid-binding 8 7.9E-1 3.7E1 

Pathway name 
Pathway 

source 

Differentially 

expressed 

genes 

p value 
FDR 

value 

Calcium 

signalling 

pathway 

KEGG 12 5.3E-2 4.7E1 

p53 signalling 

pathway 
KEGG 6 9.9E-2 7.0E1 

Table 5.16 DAVID Functional and Pathway Enrichment analysis of the total 

number of differentially expressed transcripts in the ALS/MND FACx neurones 
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Two group 

comparison 
Functional group 

Differentially 

expressed 

genes 

p value 
FDR 

value 

ALS/MND vs 

Control 

(FACx 

neurones) 

(318 David 

IDs) 

Alternative splicing 159 2.1E-7 2.8E-4 

Phosphoprotein 152 1.6E-6 2.1E-3 

Calcium 22 1.2E-2 1.6E1 

Zinc-finger 39 1.4E-2 1.7E1 

Synapse 9 1.7E-2 2.1E1 

Nucleus 82 2.0E-2 2.4E1 

Metal-binding 60 2.1E-2 2.4E1 

Duplication 9 2.5E-2 2.9E1 

Citrulline 2 3.0E-2 3.4E1 

Zinc 45 3.7E-2 4.0E1 

Pathway name 
Pathway 

source 

Differentially 

expressed 

genes 

p value 
FDR 

value 

Dilated 

cardiomyopathy 
KEGG 6 1.7E-2 1.7E1 

Calcium signalling 

pathway 
KEGG 8 2.4E-2 2.4E1 

GAP junction KEGG 5 5.7E-2 4.8E1 

Regulation of actin 

cytoskeleton 
KEGG 8 6.0E-2 5.1E1 

GnRH signalling 

pathway 
KEGG 5 7.5E-2 5.9E1 

p53 signalling 

pathway 
KEGG 4 9.9E-2 6.9E1 

Table 5.17 DAVID Functional and Pathway Enrichment analysis of the UP-

REGULATED transcripts in the ALS/MND FACx neurones. 
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Two group 

comparison 
Functional group 

Differentially 

expressed 

genes 

p value 
FDR 

value 

ALS/MND vs 

Control 

(FACx neurones) 

(402 David IDs) 

Immunoglobulin domain 20 9.2E-4 1.3E0 

DNA binding 16 1.3E-3 1.8E0 

Alternative splicing 160 4.3E-3 5.8E0 

ATP 10 2.7E-2 3.2E1 

Calcium 23 3.4E-2 3.8E1 

Pyroglutamic acid 4 5.0E-2 5.1E1 

SH2 domain 6 5.0E-2 5.1E1 

Acetyllysine 2 5.3E-2 5.3E1 

Thyroid gland 2 7.0E-2 6.3E1 

Cell adhesion 13 8.2E-2 6.9E1 

Pathway name 
Pathway 

source 

Differentially 

expressed 

genes 

p value 
FDR 

value 

Metabolism of 

lipids 
KEGG 7 3.3E-2 2.6E1 

Table 5.18 DAVID Functional and Pathway Enrichment analysis of the DOWN-

REGULATED transcripts in the ALS/MND FACx neurones.  
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5.4.9.6.2.2. Pathway enrichment analysis using IMPaLA  

IMPaLA (version 9) was also used to investigate dysregulated pathways in ALS/MND 

FAcx neurones. As with the DAVID analysis, the total number of differentially expressed 

genes, as well as the separate lists of UP and DOWN-REGULATED transcripts were 

analysed.  

 

IMPaLA output for the total number of dysregulated transcripts (Table 5.19) indicated 

enrichment of Beta-agonist/Beta-blocker pathway, proteoglycans in cancer, integrin and 

leptin signalling pathways. Analysis of the UP-REGULATED genes (Table 5.20) showed 

enrichment of pathways linked to regulation of CDC42 activity, integrin and glutamatergic 

synapse, among others. Analysis of the DOWN-REGULATED transcripts (Table 5.21) 

showed enrichment of aromatase inhibitor pathway, Arf6 signalling events, nuclear 

receptors and retinoic acid biosynthesis pathways.  

  



 250 

Two group 

comparison 
Pathway name 

Pathway 

source 

Differentially 

expressed 

genes 

p value 
FDR 

value 

ALS/MND 

vs Control 

(FACx 

neurones) 

Beta-agonist/Beta-

blocker Pathway, 

Pharmacodynamics 

PharmaGKB 8 0.000465 0.969 

Proteoglycans in 

cancer – Homo 

sapiens 

KEGG 15 0.000616 0.969 

Integrin INOH 11 0.000675 0.969 

Hemostasis Reactome 34 0.000897 1 

Regulation of nuclear 

SMAD2/3 signaling 
PID 8 0.00142 1 

Leptin NetPath 7 0.0016 1 

BMAL1:CLOCK, 

NPAS2 activates 

circadian gene 

expression 

Reactome 4 0.00164 1 

Signaling of 

Hepatocyte Growth 

factor Receptor 

Wikipathways 5 0.00232 1 

Arf6 signaling events PID 5 0.00264 1 

NCAM1 interactions Reactome 5 0.00339 1 

Table 5.19 IMPaLA Pathway Analysis of the total number of differentially 

expressed transcripts in ALS/MND FACx neurones.  
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Two group 

comparison 
Pathway name 

Pathway 

source 

Differentially 

expressed 

genes 

p value 
FDR 

value 

ALS/MND 

vs Control 

(FACx 

neurones) 

Regulation of CDC42 

activity 
PID 4 0.000586 1 

Integrin INOH 7 0.00118 1 

Circadian entrainment KEGG 6 0.00158 1 

Beta-agonist/Beta-

blocker pathway, 

Pharmadodynamics 

PharmGKB 5 0.00167 1 

Hemostasis Reactome 19 0.00169 1 

BMAL1:CLOCK, 

NPAS2 activates 

circadian gene 

expression 

Reactome 3 0.00503 1 

Glutamatergic synapse KEGG 6 0.00376 1 

Transcriptional 

regulation of white 

adipocyte differentiation 

Reactome 4 0.00403  

Regulation of nuclear 

beta catenin signaling 

and target gene 

transcription 

PID 5 0.00409 1 

Cross-presentation of 

particulate exogenous 

antigens (phagosomes) 

Reactome 2 0.00449 1 

Table 5.20 IMPaLA Pathway Analysis of the UP-REGULATED transcripts in 

ALS/MND FACx neurones.  
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Two group 

comparison 
Pathway name 

Pathway 

source 

Differentially 

expressed 

genes 

p value 
FDR 

value 

ALS/MND 

vs Control 

(FACx 

neurones) 

Aromatase inhibitor 

pathway, 

Pharmcodynamics 

PharmaGKB 2 0.00129 1 

Signaling of hepatocyte 

growth factor receptor 
Wikipathways 4 0.00154 1 

Arf6 signaling events PID 4 0.00172 1 

MET activates PTPN11 Reactome 2 0.00213 1 

Nuclear receptors Wikipathways 4 0.00235 1 

MET activates 

PI3K/AKT signaling 
Reactome 2 0.00317 1 

Pelp1 modulation of 

estrogen receptor 

toxicity 

BioCarta 2 0.00317 1 

Thyroxine production Wikipathways 2 0.00317 1 

POU5F1 (OCT4), 

SOX2, NANOG 

repress genes related to 

differentiation 

Wikipathways 2 0.00439 1 

RA biosynthesis 

pathway 
Reactome 3 0.00459 1 

Table 5.21 IMPaLA Pathway Analysis of the DOWN-REGULATED transcripts in 

ALS/MND FACx neurones.  
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5.4.9.6.2.3. Summary of DAVID and IMPaLA results  

Functional and pathway analysis of the differentially expressed genes in ALS/MND FAcx 

neurones did not reveal dysregulation of pathways directly linked to senescence or the 

SASP; however,  DAVID analysis identified dysregulation of p53 pathway, which is 

related to DNA damage, stress response and apoptosis. Table 5.22 contains the 

dysregulated transcripts that were located to this pathway. A represention of the pathway 

is shown in Figure 5.39.  

 

Gene 

symbol 
Gene name FC 

p 

value 

GADD45 growth arrest and DNA-damage-inducible, alpha 2.63 0.042 

FAS Fas cell surface death receptor 2.49 0.033 

RCHY1 
ring finger and CHY zinc finger domain containing 1, E3 

ubiquitin protein ligase 
1.41 0.033 

PMAIP1 phorbol-12-myristate-13-acetate-induced protein 1 1.34 0.026 

Table 5.22 Genes involved in p53 pathway in ALS/MND FACx neurones. 

Transcripts linked to p53 signalling pathway were differentially expressed in FACx 

neurones from ALS/MND cases when compared to controls. (Red: up-regulated; Green: 

down-regulated, FC: fold change). 
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Figure 5.39 p53 signalling pathway (KEGG pathways). 

Dysregulation of p53 signalling pathway was identified by DAVID analysis in the FACx neurones of ALS/MND cases. Differentialy 

expressed genes are indicated with a red star.  
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5.4.9.6.3. Analysis of single dysregulated transcripts with fold change FC ≥ 2.0  

Manual assessment of the list of dysregulated transcripts in ALS/MND FACx neurones 

was conducted in order to identify candidates linked to neurodegeneration, DNA damage 

oxidative stress and cell cycle dysregulation. Only the genes with a FC ≥ 2.0 were 

investigated.  The dysregulated transcripts with FC ≥ 2.0 are listed in Table 5.23 and 

Table 5.24. For this part of the study, the GeneCards ® Human Genome Database and 

the Gene Ontology Consortium Database were used.  

 

This analysis identified up-regulation of several genes involved in stress response, 

including the DNA damage response linked transcripts GADD45 and FAS, which were 

detected by DAVID pathway analysis as part of the p53 signalling pathway. GASL2L3, 

SMG1 and XRCC5 transcripts were also identified. GASL2L3 is involved in the 

maintenance of the cytoskeleton integrity and plays a role in neuronal survival; SMG1 

codes for a serine/threonine protein kinase involved in mRNA surveillance and genotoxic 

stress response pathways; and XRCC5 is a single-stranded DNA-dependent ATP-

dependent helicase involved in DSBs repair through DNA non-homologous end joining 

(NHEJ). 

 

A second group of transcripts involved in mitochondrial function, autophagy and 

ubiquitination were dysregulated in the ALS/MND FACx neurones. Up-regulation of 

NDUFAF7, COX20, ENOSF1 and AK2, and down-regulation of SLC25A37 and SLC9B1 

were associated to mitochondrial function. NDUFAF7 codes for an assembly factor of 

mitochondrial Complex I; COX20 is also an assembly factor of cytochrome C oxidase 

and participates in the stabilistaion of mitochondrial complex IV; ENOSF1 codes for a 

mitochondrial enzyme that participates in the catabolism of L-fucose; and AK2 codes for 
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adenylate kinase 2, which plays a role in adenine nucleotide metabolism and cellular 

energy homeostasis. CISD2 codes for a zinc finger protein localised to the endoplasmic 

reticulum and mitochondria, where it plays a role in the regulation of autophagy. Finally, 

down-regulated transcripts SLC25A37 and SLC9B1 code for mitochondrial solute carrier 

proteins. UBE2G2 codes for a ubiquitin conjugating enzyme from the E2 family that is 

mainly present in the endoplasmic reticulum; it catalises ubiquitin covalent attachment to 

other proteins.  
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Gene symbol Gene name 
p 

value 
FC 

PPP2R5C protein phosphatase 2, regulatory subunit B', gamma 0.029 4.03 

TSHZ2 teashirt zinc finger homeobox 2 0.011 3.87 

WNT2B wingless-type MMTV integration site family, member 2B 0.032 3.79 

RHOQ ras homolog family member Q 0.041 3.36 

TUBA1B tubulin, alpha 1b 0.015 3.30 

PAX8-AS1 PAX8 antisense RNA 1 0.037 3.21 

PCDH11X /// 

PCDH11Y 
protocadherin 11 X-linked /// protocadherin 11 Y-linked 0.046 3.15 

SH3BP2 SH3-domain binding protein 2 0.011 3.14 

FAM126A family with sequence similarity 126, member A 0.010 3.13 

COL12A1 collagen, type XII, alpha 1 0.030 3.00 

RAB3B RAB3B, member RAS oncogene family 0.011 2.98 

AHR aryl hydrocarbon receptor 0.008 2.97 

HTR2C 
5-hydroxytryptamine (serotonin) receptor 2C, G protein-

coupled 
0.032 2.95 

LLPH LLP homolog, long-term synaptic facilitation (Aplysia) 0.038 2.95 

ALG13 ALG13, UDP-N-acetylglucosaminyltransferase subunit 0.047 2.86 

TBL1X transducin (beta)-like 1X-linked 0.031 2.75 

MAP3K3 mitogen-activated protein kinase kinase kinase 3 0.028 2.68 

DUXAP8 /// 

LINC01296 

double homeobox A pseudogene 8 /// long intergenic non-

protein coding RNA 1296 
0.030 2.66 

GAS2L3 growth arrest-specific 2 like 3 0.038 2.63 

GADD45A growth arrest and DNA-damage-inducible, alpha 0.042 2.63 

GBP1 guanylate binding protein 1, interferon-inducible 0.032 2.60 

ERV3-2 endogenous retrovirus group 3, member 2 0.021 2.59 

ST8SIA4 
ST8 alpha-N-acetyl-neuraminide alpha-2,8-

sialyltransferase 4 
0.007 2.58 

CLIC4 chloride intracellular channel 4 0.038 2.58 

CISD2 CDGSH iron sulfur domain 2 0.010 2.57 

RDX radixin 0.044 2.56 

NME9 NME/NM23 family member 9 0.012 2.54 

THAP1 THAP domain containing, apoptosis associated protein 1 0.030 2.52 

DGKG diacylglycerol kinase gamma 0.030 2.51 

WRAP73 WD repeat containing, antisense to TP73 0.038 2.51 

GCH1 GTP cyclohydrolase 1 0.029 2.51 

FAS Fas cell surface death receptor 0.034 2.49 

DNHD1 dynein heavy chain domain 1 0.031 2.45 

TAF1A-AS1 TAF1A antisense RNA 1 0.048 2.44 

INHBA-AS1 INHBA antisense RNA 1 0.033 2.42 

INTU inturned planar cell polarity protein 0.044 2.39 

RNF180 ring finger protein 180 0.048 2.37 
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CNOT7 CCR4-NOT transcription complex subunit 7 0.035 2.36 

HTR2C 
5-hydroxytryptamine (serotonin) receptor 2C, G protein-

coupled 
0.004 2.31 

RORA RAR-related orphan receptor A 0.035 2.29 

SMG1 SMG1 phosphatidylinositol 3-kinase-related kinase 0.010 2.27 

C18orf54 chromosome 18 open reading frame 54 0.026 2.26 

MED7 mediator complex subunit 7 0.012 2.25 

XRCC5 
X-ray repair complementing defective repair in Chinese 

hamster cells 5 (double-strand-break rejoining) 
0.030 2.24 

NCF2 neutrophil cytosolic factor 2 0.034 2.23 

DOPEY1 dopey family member 1 0.023 2.17 

LINC00551 long intergenic non-protein coding RNA 551 0.044 2.17 

EXT1 exostosin glycosyltransferase 1 0.023 2.17 

AP5M1 adaptor-related protein complex 5, mu 1 subunit 0.029 2.13 

SCAF11 SR-related CTD-associated factor 11 0.030 2.11 

LARGE like-glycosyltransferase 0.031 2.10 

TWISTNB TWIST neighbor 0.012 2.08 

ERCC6L2 excision repair cross-complementation group 6-like 2 0.029 2.08 

NDUFAF7 
NADH dehydrogenase (ubiquinone) complex I, assembly 

factor 7 
0.046 2.08 

COX20 COX20 cytochrome c oxidase assembly factor 0.031 2.07 

ZNF717 zinc finger protein 717 0.013 2.04 

PRKCQ-AS1 PRKCQ antisense RNA 1 0.039 2.03 

ENOSF1 enolase superfamily member 1 0.043 2.02 

WDYHV1 WDYHV motif containing 1 0.026 2.01 

AK2 adenylate kinase 2 0.018 2.01 

BOK BCL2-related ovarian killer 0.014 2.00 

ANKRD13A ankyrin repeat domain 13A 0.023 2.00 

Table 5.23 UP-REGULATED transcripts with FC ≥ 2.0 in the ALS/MND FACx 

neurones. 

Transcripts in pink are related to stress responses and DNA damage. Transcripts in light 

blue are linked to mitochondrial function and autophagy.  
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Gene symbol Gene name 
p 

value 
FC 

LINC01619 long intergenic non-protein coding RNA 1619 0.02 0.50 

BICD1 bicaudal D homolog 1 (Drosophila) 0.03 0.48 

FERMT1 fermitin family member 1 0.02 0.48 

KANK4 KN motif and ankyrin repeat domains 4 0.02 0.48 

SLC25A37 
solute carrier family 25 (mitochondrial iron 

transporter), member 37 
0.02 0.45 

SLC51A solute carrier family 51, alpha subunit 0.05 0.45 

WARS2 
tryptophanyl tRNA synthetase 2, 

mitochondrial 
0.03 0.44 

UBE2G2 ubiquitin conjugating enzyme E2G 2 0.04 0.42 

RBM43 RNA binding motif protein 43 0.01 0.41 

IPO11 /// LRRC70 
importin 11 /// leucine rich repeat containing 

70 
0.05 0.41 

FERMT1 fermitin family member 1 0.00 0.40 

WDR78 WD repeat domain 78 0.00 0.36 

SLC9B1 
solute carrier family 9, subfamily B (NHA1, 

cation proton antiporter 1), member 1 
0.03 0.30 

RNF144A-AS1 RNF144A antisense RNA 1 0.04 0.22 

LOC101930105 zinc finger protein 839-like 0.04 0.17 

Table 5.24 DOWN-REGULATED transcripts with FC ≥ 2.0 in the ALS/MND 

FACx neurones. 

Transcripts in light blue are linked to mitochondrial function and autophagy.  
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Overall, manual assessment of the genes with a FC ≥ 2.0 did not reveal dysregulation of 

genes directly linked to senescence or the SASP; however, there were several 

dysregulated transcripts that are known to participate in mitochondrial function and cell 

stress responses, including DNA damage, autophagy and ubiquitination. From these, 3 

transcripts were chosen to validate the microarray findings. These are listed in Table 

5.25.  

 

 Gene 

DNA damage response GADD45A 

Mitochondrial function 
COX20 

SLC25A37 

Table 5.25 Genes selected for qRT-PCR validation. 

Genes in red were up-regulated while genes in green were down-regulated according to 

the microarray data.  

 

Validation of the chosen genes was conducted on RNA extracts obtained from 

ALS/MND and control FACx neurones by LCM. Results are presented on Figure 5.40. 

Due to the low RNA yield obtained from the LCM neurones samples, only one repeat of 

the qRT-PCR validation was performed. This limitation is examined in the Discussion 

section of this chapter. For GADD45, Ct values were only detected for 2 control and 4 

ALS/MND cases; no difference was found in the expression of GADD45A between 

ALS/MND and control FACx neurones (p>0.9999), which did not validate the 

microarray data. Ct values for COX20 were detected for all control (5) and ALS/MND (6) 

samples but qRT-PCR did not validate the microarray findings (p=0.2273), which 

suggested up-regulation of COX20 in ALS/MND FACx neurones. Ct values for 

SLC25A37  were detected for 4 control and for all (6) ALS/MND cases; qRT-PCR 

detection of this gene did not validate the microarray findings (p=0.7619) that suggested 

downregulation of SLC25A37 in ALS/MND FACx neurones.  
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Figure 5.40 Validation of candidate genes by qRT-PCR. 

Changes in GADD45, COX20 and SLC25A37 were validated by qRT-PCR. A. Ct values 

for GADD45 were only detected for 2 controls and 4 ALS/MND cases. This gene was 

not validated. B. Ct values for COX20 were detected for 5 control and 6 ALS/MND 

cases. This gene was not validated. C. Ct values for SLC25A37 were only detected for 4 

control and 6 ALS/MND cases. This gene was not validated. (Mann U-Whitney analysis, 

data are means ± SEM; n=1). 
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5.5. Discussion 

This chapter focused on the detection of senescence markers in neurones in a paradigm of 

neurodegeneration. Increased SA-β-gal activity, as well as expression of p16 and p21 was 

assessed in the brain of ALS/MND and control donors. SA-β-gal activity was identified 

in glial cells and neurones in the MCx, FACx and in the anterior horn of the Sc. p16 was 

exclusively expressed by glial cells and was significantly higher in the FACx of 

ALS/MND donors. Expression of p21 was found in both neurones and glia and was 

significantly higher for both cell types in the FACx of ALS/MND cases. Based on these 

results, microarray analysis was used to identify changes in the transcriptome of FACx 

neurones from ALS/MND donors that could be linked to senescence. Overall, pathway 

analysis of microarray results did not find dysregulation of senescence or SASP-related 

pathways in FACx neurones of ALS/MND donors. A more in depth discussion of these 

results is presented in the following sections.  

 

5.5.1. Oxidative DNA damage, DDR and senescence in ALS/MND  

Neurones are especially vulnerable to DNA insults as a result of their limited capacity for 

cell replacement and high metabolic rate. These conditions promote the formation of ROS 

and the induction of oxidative DNA damage, which accumulate with age. Oxidative 

stress and DNA damage are important players in the development of neurodegenerative 

diseases, including ALS/MND. Increased levels of oxidative stress have been shown in 

ALS/MND patients, although it is still not clear if this stress is a cause or a consequence 

of the pathological process. Mitochondrial oxidative damage, as measured by oxidised 

CoQ10, and oxidative DNA damage, as measured by 8-OHdG, is higher in the 

cerebrospinal fluid of fALS patients compared to controls; oxidised CoQ10 inversely 

correlates with illness duration, suggesting an early involvement of oxidative stress in the 
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disease (Murata et al., 2008). A more recent study found that the binding of Poly (GR) to 

mitochondrial ribosomal proteins results in mitochondrial dysfunction in iPSC-

derived C9ORF72 motor neurones, which promotes oxidative stress and DNA damage 

(Lopez-Gonzalez et al., 2016). Together, this data evidences the contribution that 

oxidative stress and DNA damage make to the initial stages of ALS/MND. Taking this 

into account, it is possible that a senescent-like state could develop in neurones in 

ALS/MND patients in response to early oxidative stress and DNA damage. To investigate 

this, the expression of a panel of senescence markers was assessed in ALS/MND and 

control brains and their relation to DNA damage and DNA damage response markers was 

analysed. The brain areas that were investigated included the anterior horn of the Sc and 

the grey matter of the MCx, which are directly affected by the pathogenesis of the 

disease. This study also included the FACx, which is known can develop neuroglial 

inclusions, but are less prevalent compared to the motor areas. In addition, the OCx was 

included as a comparison region not involved in the disease.  

 

5.5.1.1. SA-β-gal activity is present in neurones and glia of ALS/MND and control brains  

To study the activation of senescence in ALS/MND neurones, a panel of markers, 

including SA-β-gal activity at pH 6, was used.  The detection of SA-β-gal in vivo has 

been widely used to identify the accumulation of senescent cells in different tissues. Early 

characterisation studies of SA-β-gal in skin biopsies resulted in the identification of an 

age-dependent increase in the enzyme activity (Dimri et al., 1995). Following this initial 

report, several studies have investigated the activation of senescence in relation to cancer, 

ageing and genotoxic stress. Increased SA-β-gal activity has been demonstrated in diverse 

human tissues and organs, including articular cartilage (Gao et al., 2016), upper intestinal 

tract  (Going et al., 2002), coronary arteries of patients with atherosclerosis (Minamino et 
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al., 2002) and tumorigenic tissue. SA-β-gal activity has also been found in the human 

brain. In a recent study, increased SA-β-gal activity in oligodendrocytes and GFAP 

positive astrocytes has been reported in the brain of donors with and without age-

associated white matter lesions (Al-Mashhadi et al., 2015). Moreover, SA-β-gal activity 

has also been detected in human and murine neurones in vivo. SA-β-gal+ neurones have 

been demonstrated in the FACx of an ageing cohort with low levels of Alzheimer’s type 

pathology; in this cohort, SA-β-gal staining in neurones correlated weakly with the 

expression of DNA-PKcs, a marker of DDR (Simpson et al., 2014). Staining for SA-β-gal 

activity in the hippocampus of ageing rats (Geng et al., 2010) and Purkinje neurones of 

ageing mice (Jurk et al., 2012) has also been shown, suggesting the increase in SA-β-gal 

activity in neurones in vivo could also be linked to the activation of a senescent-like state 

as a response to a persistent DNA damage.  

 

The current study demonstrates SA-β-gal activity in glia and neurones in both ALS/MND 

and control brain donors, which suggest activation of senescence in both cell types. SA-β-

gal+ neurones and glia were not exclusively detected in a specific brain region, since 

different levels of staining were present throughout the MCx, FACx and Sc sections of 

ALS/MND and controls. Due to the variable quality of staining, quantification of this 

marker was not possible and a difference between groups or brain areas was not 

determined. Previous studies have also faced difficulties when analysing detection of SA-

β-gal in vivo and in vitro, and despite its use as one of the main markers of senescence 

induction, its activity could be related to other cell processes, different to senescence. For 

instance, staining for SA-β-gal has been reported in follicles, sebaceous glands and 

eccrine glands in skin biopsies; this staining being independent of the age of the donors, 

which ranged between 20 and 90 years old (Dimri et al., 1995; Severino et al., 2000). 
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Recently, the study of senescence in neurones revealed a non-senescence related activity 

of SA-β-gal in the hippocampus of young and old mice. In this report, the number of SA-

β-gal+ hippocampal neurones did increase with the age of the mice, a phenomenon that 

was related to the expansion of lysosomes as a result of oxidative stress and protein 

aggregation (Piechota et al., 2016). Taking this evidence into account, the possibility that 

increased SA-β-gal activity is, in part, associated with age or other non-senescence 

related cellular mechanisms cannot be excluded.  

 

5.5.1.2. Expression of p16 and p21 in ALS/MND and control brains 

5.5.1.2.1. Expression of p16 and p21 in astrocytes suggests activation of glial senescence 

in ALS/MND and control brains 

Assessment of p16/p21 expression offers a more sensitive approach to study the 

activation of senescence signalling cascades in ALS/MND, compared to SA-β-gal activity 

detection.  The current study demonstrated astroglial expression of p16 and p21, which 

was confirmed by co-localisation with the astrocytic marker GFAP in ALS/MND and 

control brains. Previous data has demonstrated that astrocytes activate senescence 

pathways in vitro and develop a SASP when exposed to different stresses, including 

oxidative stress (Bitto et al., 2010). Further investigation revealed accumulation of p16+ 

astrocytes as a feature of normal ageing in the human brain; additionally, the assessment 

of frontal cortex sections from AD patients and aged-matched controls showed a 

significantly higher percentage of p16+ astrocytes in AD patients, which suggests 

activation of senescence under pathological conditions (Bhat et al., 2012). More recently, 

expression of p16 in astrocytes has been reported in the white matter of the ageing human 

brain (Al-Mashhadi et al., 2015).  Overall, this data correlates with the expression of p16 

exclusively associated with astrocytes in ALS/MND and control donors that is described 
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in this chapter. The presence of p16+ astrocytes in control brains could suggest astrocytic 

senescence as a normal feature of the ageing process, which could be exacerbated by the 

pathology in a neurodegenerative disease such as ALS/MND.   

 

Activation of senescence in astrocytes is further supported by the identification of p21+ 

astrocytes in ALS/MND and control brains. It is known that the p16 and the p21 

pathways have a different role in the activation and maintenance of a senescent state in 

mitotic cells. A study conducted in human lung fibroblasts found that p21 is required for 

the G1-cell cycle arrest that characterises senescence in response to DNA damage, while 

p16 accumulation is necessary for the long-term maintenance of a senescent state (Stein 

et al., 1999). However, the interplay between p16 and p21 pathways is more complicated 

than described by Stein et al. For instance, it has been suggested that p16 is not necessary 

for the induction of telomere shortening dependent-senescence in human fibroblasts, but 

is rather dependent on the ATM-p53-p21 axis (Herbig et al., 2004). A different study 

described a p21-dependent cell cycle arrest in normal fibroblasts exposed to ionising 

radiation and replicative senescence; this pathway was affected in p53-defficient Li-

Fraumeni syndrome (LFS) fibroblasts, which instead activated senescence through the 

p16 pathway (Mirzayans et al., 2010). Together, this evidence suggests that, apart from 

participating at different stages of senescence activation, the p16 or p21 senescence-

effector pathways are triggered depending on the type of stress that the cells are exposed 

to. Expression of p16 and p21 cell cycle regulatory proteins in astrocytes of ALS/MND 

and control brains could reflect a pool of cells at different stages of the senescent 

program, a pool of cells that have entered senescence as a consequence of different types 

of stress, or both.  
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5.5.1.2.2. Expression of p21 in neurones of ALS/MND and control brains 

The expression of p21 and other cell cycle regulatory proteins in post-mitotic neurones is 

not well understood. It has been suggested that p21 has a role in neuronal cell cycle 

regulation during DNA damage response and repair mechanisms.  Cell cycle re-entry is 

necessary for neurones to repair DNA damage or to activate apoptosis (Kruman et al., 

2004; Schwartz et al., 2007; Tomashevski et al., 2010).   Exposure of rat cortical 

neurones to a sub-lethal oxidative stress causes G0 to G1 transition and triggers DNA 

repair through the NHEJ pathway; blocking cell cycle re-entry under these conditions 

does not promote NHEJ activation and the damage is left unrepaired. Moreover, 

suppression of p21 in the absence of DNA damage is sufficient to cause cell cycle re-

entry and NHEJ activation (Tomashevski et al., 2010), which suggests that  p21 is linked 

to maintaining neurones in the G0 phase. In a different study, induction of DNA damage 

using ionising radiation in vivo caused an increase in the mRNA and protein levels of p21 

and cyclin D in sensory ganglion neurones; this increase occurred 1 day after IR exposure 

and persisted for 15 days before starting to gradually decrease (Casafont et al., 2011). 

This data demonstrates that neuronal DNA damage promotes G0 to G1 transition, 

confirmed by cyclin D up-regulation, but at the same, entry into S-phase and cell death is 

prevented by activation of the cell cycle inhibitor p21. Taking all this into consideration, 

it is possible that minimal basal levels of p21 are expressed in post-mitotic neurones 

under normal conditions in order to maintain a quiescent state; however, these levels can 

be altered when neurones face DNA damage and require activation of repair mechanisms. 

Expression of nuclear p21 in ALS/MND and control cases, in the MCx, FACx, SC and 

OCx, could be in part related to a normal response to age-related DNA damage that 

requires nuclear p21 induction to prevent aberrant S-phase transition and apoptosis.  
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Cell cycle and senescence are intimately related, since activation of senescent pathways is 

preceded by cell cycle arrest in response to a persistent DNA damage. Even though the 

neuronal cell cycle rests in G0 phase naturally, the fact that DNA damage promotes cell 

cycle re-entry suggests that, under specific circumstances of persistent unrepaired DNA 

damage, neurones could also activate a senescent-like response through the p21 pathway.  

To date, there is one report suggesting a p21-dependent senescent-like mechanism in 

neurones in vivo. Examination of brains from 1-year-old mice compared to their wild type 

litter mates confirmed increased γH2AX+ Purkinje cells and cortical neurones, along with 

increased expression of p-p38MAPK and IL-6; when p21 was knocked out, a significant 

reduction in these senescence markers was seen, suggesting a p21-dependent activation of 

senescence in these cells in response to DNA damage (Jurk et al., 2012). The presence of 

p21+ neurones in ALS/MND and control brains may also indicate activation of a 

senescent-like state in some of these cells, which would correlate with the presence of 

SA-β-gal+ in neurones described previously.  

 

5.5.1.2.3. Expression of senescence markers is significantly higher in the FACx of 

ALS/MND brains 

Interestingly, quantification of p16/p21+ glia and p21+ neurones resulted in a significantly 

higher percentage of positive cells only in the FACx of ALS/MND cases when compared 

to controls, but not in the MCx. Brettschneider et al. (2013) studied the distribution 

patterns of phosphorylated TDP-43 inclusions in the brain of ALS/MND cases in order to 

define stages that described the sequential spread of the pathology, similar to the use of 

Braak neurofibrillary tangle stages for AD neuropathology. This assessment revealed a 

sequential spread of the pTDP-43 pathology in the brain of ALS/MND cases and staging 

of this spread resulted in 4 main stages, with stage 1 and 2 consisting of pTDP-43 
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pathology in motor areas and brainstem, and stages 3 and 4 consisting of pTDP-43 spread 

to prefrontal cortex, striatum, post-central neocortex, temporal lobe and hippocampal 

formation (Brettschneider et al., 2013). Thus, the FACx in this ALS/MND cohort could 

be representative of the early stages of the disease that occur in the motor areas. The 

significantly higher expression of p16/p21+ glia and p21+ neurones could reflect DNA 

damage-related cell cycle dysregulation and probably a senescent-like mechanism in early 

stages of ALS/MND.  

 

5.5.1.3. Oxidative DNA damage and the DNA damage response in ALS/MND 

The expression of 8-OHdG, a biomarker of oxidative stress in neurodegeneration 

confirms that oxidative DNA damage is a prominent feature of both control and 

ALS/MND cases, where it localises to the nuclei and cytoplasm of pyramidal neurones, 

small neurones and glial cells, suggesting the oxidation of nuclear DNA, mitochondrial 

DNA and RNA. Several studies have identified increased oxidative stress in ALS/MND, 

which contributes to the pathology of the disease (Blasco et al., 2016; Chang et al., 2008; 

Ferrante et al., 1997; Ikawa et al., 2015; Shaw et al., 1995). The high proportion of 8-

OHdG+ neurones in control donors may be attributed to the accumulation of ROS due to 

ageing and other disease processes. It remains possible that the degree of neuronal DNA 

oxidation could be different between ALS/MND cases and controls, but the 

immunohistochemical detection of 8-OHdG provides only limited, non-linear, 

quantification. As DNA oxidation induces a DDR, levels of γH2AX were also 

investigated. No difference in the expression of γH2AX was detected in ALS/MND 

compared to control donors. The phosphorylation of the histone variant H2AX at Ser139 

is an important event in the initiation of the DNA repair response and correlates well with 

the formation of DSBs (Kinner et al., 2008). The pattern of variation in the expression of 
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γH2AX was more pronounced in the MCx of ALS/MND patients but not in the FACx, 

where the highest levels were detected in controls. Interestingly, a significantly lower 

percentage of γH2AX+ neurones was found in FTLD-TDP type B (all C9orf72+) cases 

when compared to FTLD-Minor changes/0 cases that suggests the DDR could be affected 

by p62 accumulation. Previous research has proposed that a defective DDR and 

accumulation of DNA damage could contribute to motor neuron degeneration in 

neuromuscular disorders such as ALS/MND (De Waard et al., 2010). Moreover, a recent 

study showed that C9orf72 repeat expansion causes a defective ATM signalling in 

response to DNA damage through a mechanism that involves p62 accumulation and 

increase in R-loop structures formation (Walker et al., 2017). The DDR activated in 

response to DSBs involves an ATM-dependent phosphorylation of H2AX (Burma et al., 

2001); a lower percentage of  γH2AX+ neurones in the FACx of ALS/MND could reflect 

ATM dysfunction and therefore, a reduction in H2AX phosphorylation. Again, the fact 

that this difference was only detectable in the FACx might indicate that DDR impairment 

could be involved from early stages of the disease.  It is important to consider that the 

number of FTLD-TDP type B cases assessed was very low (4 cases) and so, it would be 

interesting to investigate expression of these markers specifically in relation to C9orf72 in 

a bigger cohort. 

 

No significant correlation was detected between the expression of 8-OHdG and γH2AX+ 

neurones, and between 8-OHdG/γH2AX+ and p21+ neurones in the MCx and FACx of 

ALS/MND. This could be related to the heterogeneity of the cohort, which has been 

shown to affect the detection of neuronal γH2AX, to the cohort size, and to the expression 

of high levels of both γH2AX and nuclear 8-OHdG in neurones of control cases that 

could be linked to the ageing process. 
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5.5.1.4. No evidence of microglial activation in the FACx of ALS/MND donors 

One way to examine if the higher levels of p21+ neurones and p16/p21+ glia in the FACx 

of ALS/MND were related to a senescence-like state was to look at the development of a 

SASP through the activation of a microglial response in this brain area. The SASP is 

characterised by the release of cytokines, chemokines, growth factors and proteases that 

promote inflammation and cause changes in the microenvironment of tissues (Coppé et 

al., 2008); in this context, activation of a SASP in the FACx of ALS/MND cases would 

promote recruitment of reactive microglia to this brain region. CD68, a microglial 

marker, is present in lysosomes and the cell membrane (Smith and Koch, 1987). 

Expression of CD68 aids in the identification of the microglia phenotype, as shown by 

Hendrickxs et al. (2017). CD68 is expressed by resting ramified microglia, amoeboid 

microglia and large foamy macrophages; an amoeboid phenotype in microglia indicates 

phagocytic reactivity (Hendrickx et al., 2017). There was no evidence of amoeboid 

microglia in the FACx of ALS/MND donors; detection of CD68 showed only the 

presence of resting ramified microglia. This result was confirmed by the detection of 

MHC class II, which is involved in presenting processed extracellular antigens to 

CD4+ helper T lymphocytes and is up-regulated in response to immune activation 

(Collawn and Benveniste, 1999). MHC class II was not up-regulated in the FACx of 

ALS/MND controls, and together with the CD68 data, indicated no microglial activation.  

 

 

5.5.2. Microarray analysis of the transcriptome of FACx neurones in ALS/MND 

An interest in the FACx neurones of ALS/MND cases was developed based on the results 

obtained from the immunohistochemistry experiments, which revealed a significantly 
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higher expression of p21+ neurones in this brain region.  Gene profiling analysis was used 

to identify changes in the transcriptome of FACx neurones from ALS/MND and control 

donors that could relate the expression of p21 with dysregulation of cell cycle and 

senescence pathways.   

 

Quality control analysis of the microarray data revealed an outlier in the control group. 

Removal of this array from the final analysis was done to improve the detection of 

differentially expressed genes. After removal, a total of 820 differentially expressed 

transcripts were identified in the ALS/MND FACx neurones; from these transcripts, 358 

were up-regulated while 462 transcripts were down-regulated. Functional and pathway 

analyses did not show dysregulation of senescence or cell cycle pathways, but identified 

changes in the p53-signalling pathway (GADD45, FAS, RCHY1 and PMAIP1). GADD45 

has been implicated in neuronal survival both in vivo and in vitro. Detection of the protein 

in AD brain tissue indicated expression of GADD45 in neurones associated with the 

expression of the anti-apoptotic protein Bcl-2; moreover, HEK 293 cells transfected with 

GADD45 are more resistant to camptothecin induced apoptosis (Torp et al., 1998). FAS 

encodes for the Fas Cell Surface Death Receptor, which participates in the activation of 

the extrinsic apoptosis pathway. RNA-interference silencing of this gene in SOD1-G93A 

mice motorneurones in vivo and in vitro significantly delays the onset of disease and 

promotes cell survival (Locatelli et al., 2007). Overall, these results suggest activation of 

apoptosis and cell survival signals in the FACx neurones of ALS/MND donors and could 

be linked to the expression of p21 and cell cycle reactivation in response to DNA 

damage.  
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Manual examination of the dysregulated transcripts with the higher FC values identified 

differential expression of mitochondrial function related genes, including up-regulation of 

NDUFAF7, COX20, ENOSF1 and AK2, and down-regulation of SLC25A37 and SLC9B1.  

None of these genes have been previously reported to be involved in ALS/MND 

pathogenesis; however, they could reflect mitochondrial alterations in the FACx neurones 

of ALS/MND donors, which are known to occur as part of the disease. Wiedeman et al. 

(2000) demonstrated reduced capacity of the ETC complexes (I, II, III and IV) in spinal 

cords of sporadic ALS/MND patients (Wiedemann et al., 2002) and reduced complex IV 

activity, specifically, has been seen in  spinal cord of 17-week old symptomatic SOD1 

G93A transgenic mice and in mitochondria isolated from the forebrain of 

presymptomatic, symptomatic and end-stage SOD1G93A transgenic mice (Kirkinezos, 

2005; Mattiazzi et al., 2002)- Contrary to these reports, increased mitochondrial activity 

has also been detected in vivo. Increased complex I activity is found in the frontal cortex 

of fALS cases with a SOD1 AV4 mutation (Bowling et al., 1993); this complex I 

hyperactivity has also been reported in the forebrain of SOD1 G93 transgenic mice 

(Browne et al., 1998). It is possible that the changes in mitochondrial function indicating 

increased or impaired activity depend on the stage of the disease, as well as on the 

mutations involved and the model of study. Up-regulation of NDUFAF7 and COX20 in 

the FACx neurones of ALS/MND donors would suggest increased ETC activity, 

however, it could also reflect a mechanism of compensation in the case of impaired 

mitochondrial activity.  Down-regulation of SLC25A37 and SLC9B1 points to 

mitochondrial defective solute transport. SLC25A37 encodes for mitoferrin-2, a solute 

carrier that transports iron into the mitochondrial matrix and that is necessary for the 

proper functioning of other mictochondrial enzymes (Haitina et al., 2006).  
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Overall, transcriptome analysis of FACx neurones from ALS/MND patients revealed up-

regulation of apoptotic pathways and alteration of mitochondrial function. qRT-PCR 

validation of GADD45, COX20 and SLC25A37 did not confirm these findings. These 

results could be related to a number of limitations. Ideally, validation would have been 

performed in at least 3 enriched neuronal RNA samples obtained by LCM from each of 

the control and ALS/MND cases available. This was not done due to time constraints and 

tissue availability. Validation could have also been affected by the case-to-case variability 

of the ALS/MND and control cases within the cohort, especially in the control group, 

which was composed of both diseased and non-diseased cases due to limited availability 

of the latter. qRT-PCR results showing a high variability in the expression of GADD45, 

COX20 and SLC25A37 within the controls could reflect changes linked to pathological 

changes in the diseased-controls. And finally, RNA quality could have been compromised 

by storage conditions; even though all samples were tested for RNA quality, this factor 

could still have an effect on gene expression and validation experiments.   

 

Aging itself promotes activation of senescence in mitotic cells as a result of mechanisms 

such as telomere shortening, DNA damage and oxidative stress; however, an extra burden 

of senescent cells could be generated under certain pathological conditions characterised 

by increased ROS production, increased DNA damage and protein aggregation, for 

example. The identification of SA-β-gal+ neurones in the frontal association cortex of 

ageing brains and its weak correlation with DNA damage markers suggested a possible 

senescent-like state in these cells that could be contributing to neuronal dysfunction 

(Simpson et al., 2015). Based on this, we decided to look for senescent neurones in a 

neurodegenerative disease, such as ALS/MND, which is characterised by stresses that are 

known to trigger senescence in mitotic cells. However, immunohistochemical and 
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transcriptomic analysis of controls vs ALS/MND cases evidenced several limitations of 

the study, including the identification of dysregulated pathways linked to the disease 

itself, rather than to a mechanism that could be linked to senescence.  The heterogeneity 

of the cohort could have also affected the results, since in included young and old donors, 

and both sALS and fALS cases. To avoid these interferences, it would have been better to 

start by analysing the transcriptomic neuronal signature of young and old donors. This 

would have given us the opportunity to identify dysregulated pathways in LCM neurones 

from old brains and a higher probability of identifying changes linked to cellular 

senescence and cell cycle regulation.  

 

5.6. Main conclusions 

Expression of the senescence markers SA-β-gal, p16 and p21 was detected in control and 

ALS/MND brains. Expression of p16 was exclusively seen in glial cells, mainly 

astrocytes, while p21 was found in both neurones and glia. The expression of p16 and p21 

in astrocytes of ALS/MND and control donors could reflect activation of senescence 

pathways related to ageing. However, a significantly higher percentage of p16/p21+ glia in 

the FACx of ALS/MND patients could indicate a contributing role of this mechanism to 

the disease.  Further assessment of the contribution of senescent astrocytes in ALS/MND 

would be required. 

 

Transcriptome analysis of FACx neurones from ALS/MND patients did not show 

dysregulation of senescent pathways; however, a more general mechanism of apoptosis 

and mitochondrial dysregulation was revealed in these cells. This could explain in part the 

significantly higher percentage of p21+ neurones detected in FACx, which could reflect 

cell cycle dysregulation in response to DNA damage. Even though transcriptomic analysis 
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did not reveal dysregulation of “classical” senescence pathways, we cannot discard that 

some level of neuronal p21 may be linked to senescence.  

 

A significantly higher expression of p21+ neurones and p26/p21+ glia in the FACx of 

ALS/MND suggests the FACx is a brain area of importance to investigate early 

pathological changes in ALS/MND. 
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Chapter 6. General discussion 

6.1. Summary of major findings and limitations of the study 

The neuronal dysfunction that characterises neurodegenerative diseases is caused by a 

myriad of mechanisms, whose interactions remain poorly understood. One of the most 

studied mechanisms that participate in the pathophysiology of neurodegenerative diseases 

is the accumulation of ROS and the alteration of antioxidant mechanisms that result in 

oxidative stress. Neurones are highly vulnerable to imbalances in redox states; one of the 

many consequences of oxidative stress is the formation of lesions at the DNA level. 

Neurones detect oxidative DNA damage through finely orchestrated mechanisms that 

lead to either activation of repair signalling pathways or apoptosis. Recently, a third 

option has been proposed to occur in response to persistent genotoxic stress in neurones; 

this suggested mechanism known as senescence, could contribute to neurodegeneration 

via the development of a toxic secretory phenotype in neurones exposed to persistent 

DNA damage, resulting in cellular propagation of injury. Even though evidence of 

senescent neurones has been shown in ageing mice and in ageing human brain tissue 

(Jurk et al., 2012; Simpson et al., 2014), the mechanisms through which senescence is 

induced in post-mitotic neurones and  its relevance to neurodegeneration is yet to be 

revealed. In the current study, activation of senescence was investigated in human 

neurones in vitro that were exposed to persistent oxidative DNA damage. At the same 

time, evidence of neuronal senescence in neurodegeneration was studied in vivo, in 

ALS/MND brains.  

 

The first part of this study focused on the development of a robust model to investigate 

oxidative DNA damage in human neurones in vitro. LUHMES have several advantages 
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over primary rat cortical neurones or cancer-derived cell lines: their human origin, the 

ability of these cells to remain in a proliferative state, and their relatively short and simple 

differentiating protocol. Nevertheless, working with LUHMES also has some 

disadvantages. LUHMES are very vulnerable to cell culture stress; besides, cell density, 

pH and temperature changes can alter LUHMES proliferation, differentiation and neurite 

development. For toxicity assays, cell density is determinant in the effect that the toxic 

substance/condition will cause in differentiated LUHMES. This was confirmed when 

different densities of differentiated LUHMES were exposed to various H2O2 

concentrations: sub-confluent cultures were more vulnerable to oxidative stress, and were 

able to clear extracellular H2O2 less efficiently compared to confluent differentiated 

LUHMES.  

 

Assessment of different concentrations of H2O2 suggested 50 μM H2O2 as the best 

concentration to cause repairable DNA damage in differentiated LUHMES. DNA damage 

was tracked through the detection of γH2AX foci formation, which resulted in DNA 

damage repair 24 hours after the cells were incubated with H2O2. This discovery posed a 

new challenge in the attempt to study senescence activation in response to a persistent 

DNA damage, since a single H2O2 challenge caused an acute response rather than chronic 

damage in differentiated LUHMES. Consequently, a different approach was used to 

induce a persistent neuronal DNA damage, which involved the exposure of already 

stressed LUHMES to a second dose of H2O2. Results presented in Chapter 2 demonstrate 

that this second challenge causes oxidative DNA damage in the form of DSBs in 

differentiated LUHMES that can be detected 96 hours post-H2O2 incubation. The election 

of H2O2 was based on different studies that have evaluated the oxidative effects of H2O2 

in primary neurons in culture (Morelli et al., 2014; Park et al., 2016; Tomashevski et al., 
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2010; Whittemore et al., 1995). These reports suggested a simple method to induce 

detectable oxidative DNA damage in neurones in culture using H2O2 concentrations 

ranging from 5 μM to 1 mM with different results in terms of cell viability. One of the 

drawbacks of using H2O2 is its relatively low stability in solution; this, added to the 

normal processing of extracellular H2O2 by the LUHMES, could have certainly caused a 

gradual decrease of its initial concentration after a few hours. The gradual decrease of 

extracellular H2O2 concentration was demonstrated by the clearance assays, and could 

have had and effect on the level of DNA damage that was caused with a single dose of 50 

μM H2O2.  

 

Confirmation of a persistent oxidative DNA damage in differentiated LUHMES was 

followed by the detection of SA-β-gal and H3K9me3 as a marker for SAHF formation. 

SA-β-gal detection revealed variable staining in differentiated LUHMES under normal 

conditions. This unexpected finding questioned the validity of SA-β-gal for the 

identification of senescent cells in vitro and in vivo. Several reports have expressed 

concerns regarding the use of SA-β-gal as a universal marker of senescence (Piechota et 

al., 2016; Severino et al., 2000; Yegorov et al., 1998). Although the lysosomal origin of 

SA-β-gal has been characterised and up-regulation of mRNA levels and enzymatic 

activity have been seen in human fibroblasts in culture, it is yet not known if SA-β-gal 

plays a role in the induction of senescence. Most importantly, it is not known if its 

activity reflects activation of senescent pathways in all cell types. In this study, detection 

of SA-β-gal activity in normal LUHMES suggests that the increased activity of this 

enzyme could be involved in other mechanisms in neurones; interestingly, staining for 

SA-β-gal in ALS/MND and control brains was not localised to all neuronal cells. This 

could be due to the enzyme activity being affected by the conditions used to collect and 
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store the brain tissue. It is known that poor storage conditions and cycles of freezing and 

defrosting can alter the activity of several enzymes and SA-β-gal might not be the 

exception (Meijer et al., 1977). However, it is also probable that SA-β-gal activity is 

altered by the conditions under which LUHMES are differentiated and maintained in 

culture, and that increased SA-β-gal activity does not reflect the normal behaviour of the 

enzyme in vivo. It would be interesting to evaluate SA-β-gal at different levels, including 

its activity, protein and mRNA expression, in normal proliferating and differentiating 

LUHMES. This would help to establish whether the stress caused by the differentiation 

process, cell density or days in culture, for example, have an effect on SA-β-gal activity 

in this cell model.  

 

H3K9me3 expression in control and SS/DS LUHMES also suggested a different role for 

this marker in post-mitotic cells. Methylation of H3K9 occurs as part of several 

chromatin modifications in senescent cells that have a role in cell cycle arrest and that can 

be detected in the form of nuclear foci known as SAHF (Aird and Zhang, 2013; Zhang et 

al., 2005, 2007). Previous data suggested SAHF formation in mice neurones in vivo, 

which correlates with accumulation of DNA damage, increases SA-β-gal activity and IL-

6 secretion (Jurk et al., 2012). In contrast, detection of SAHF in SS/DS LUHMES did not 

indicate activation of senescence and suggested that chromatin organisation in response to 

DNA damage in neurones could participate in prevention of aberrant cell cycle re-entry 

and cell death. These results suggest that SAHF components could have specific 

functions in the neuronal DDR although it is not clear if they reflect activation of classical 

senescence.  
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Gene expression profiling of SS and DS LUHMES identified novel changes at the mRNA 

level that were linked to the oxidative DNA damage caused by single and double 

incubation of LUHMES in H2O2. Microarray analysis did not reveal up-regulation of 

senescence genes in the LUHMES model of persistent DNA damage, but showed 

dysregulation of DDR and cell cycle regulation pathways, as well as mitochondrial 

dysfunction and immune response activation. Dysregulation of ATR signalling and 

APC/C complex related genes in DS-LUHMES shows the effect that persistent oxidative 

DNA damage has on neuronal cell cycle regulation. It is possible that cell cycle events, as 

part of the neuronal DDR, are triggered just moments after DNA lesions are caused by 

oxidation; however, it is noteworthy that these changes are still detectable at the mRNA 

level 96 hours after stress. These findings have a potential implication in neuronal 

dysfunction in vivo, since they suggest that a persistent DNA damage can induce changes 

in neuronal cell cycle that can also persist for a longer period of time, compared to an 

acute stress. These abnormal cell cycle events in neurones exposed to an oxidative 

environment could contribute to neurodegeneration.  

 

Even though microarray analysis in DS-LUHMES did not confirm up-regulation of 

classical senescence pathways, this does not exclude the possibility of neurones being 

capable of activating a senescent-like state under chronic DNA damage conditions. 

Evaluation of the transcriptome of 96 hours DS-LUHMES could have excluded valuable 

information concerning the neuronal response to oxidative stress occurring prior to this 

time-point; at the same time, limiting the H2O2 incubation time of SS and DS-LUHMES 

to 96 hours might not have been sufficient to cause induction of a senescent-like 

phenotype. Moreover, stressed LUHMES/GFP-LUHMES co-cultures suggested the 

development of a cell-to-cell contact-dependent toxic phenotype in DS-LUHMES, which 
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could resemble the SASP seen in mitotic cells. In this regard, microarray analysis did not 

confirm up-regulation of SASP molecules; however, as with other senescence markers 

assessed in this study, it is possible that the components of the toxic phenotype in 

neurones are not necessarily the same as the ones linked to the SASP.  

 

Detection of senescence markers in neurones in vivo revealed significantly higher 

expression of p21+ neurones and p16/p21+ glial cells in the FACx of ALS/MND cases. 

These results suggest that alteration of the levels of both p21 and p16 could be linked to 

the pathological process in ALS/MND; they do not confirm, however, senescence 

induction in these cells, specially considering that there was no correlation between the 

expression of senescence markers and 8-OHdG/γH2AX expression in neurones of 

ALS/MND cases. An important point to reflect on is the probability of p16 and p21 cell 

cycle regulators having differential roles in neurones compared to mitotic cells. There is 

not much information available on how these two proteins are regulated in post-mitotic 

neurones, which limits the conclusions that can be drawn from studies showing neuronal 

expression of these markers. Characterisation of the role of p16 and p21 in neurones 

under normal conditions would help in the interpretation of these results and would aid in 

the study of senescence in neurones in vivo and in vitro. The FACx in ALS/MND 

represents a brain area with minimal no end-stage pathology. Findings in the FACx could 

reflect changes that occur early in the disease in motor areas and propose the FACx as a 

relevant region to understand early pathology in ALS/MND, although more evidence is 

needed to support these findings.   

 

Several limitations should be acknowledged from the in vivo study. First, the ALS/MND 

group was composed of familial and sporadic ALS/MND cases, which could have had an 
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impact on the results. A relatively small cohort likely restricted the information that was 

obtained from the immunohistochemistry experiments; however, analysis of effect size, 

which is not dependent on sample size, revealed a medium to high effect of the 

differential expression of neuronal p21 and glial p16/p21 in the FACx of ALS/MND 

donors when compared to controls, thus confirming that the results obtained are 

statistically significant and of such a size as to be of likely biological relevance.  

 

The use of LCM to isolate neurons from ALS/MND and control frozen sections has some 

limitations as well. Even though it is feasible to obtain samples with enriched neuronal 

populations using this technique, some level of contamination with glial cells, specifically 

astrocytes, was demonstrated by the detection of GFAP transcripts in 3 of the 6 samples 

obtained by LCM. Nevertheless, enrichment of neuronal cells still enables significant 

information on transcriptomic changes in neurones to be identified.  

 

6.2. Conclusions 

The current study describes the successful implementation of an in vitro model of 

persistent oxidative DNA damage in human neurones. Changes related to the 

APC/C:Cdh1 cell cycle regulatory complex, to the ATR-mediated DDR and to oxidative 

phosphorylation were linked to the effects caused by this persistent oxidative DNA 

damage. No evidence of classical senescence was shown in this model, as assessed by 

SA-β-gal activity and SAHF formation, but a toxic phenotype, similar to a SASP, may be 

developed under these conditions.  

 

The study also demonstrated increased expression of nuclear p21 in neurones and of p21 

and p16 in glial cells in the FACx of ALS/MND patients. Microarray analysis did not 
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suggest p21 neuronal expression to be linked to up-regulation of classical senescent 

pathways. However, expression of p21 in neurones could be part of a general response to 

DNA damage in these cells. In vivo results also propose the FACx as a brain area of 

importance in the study of early pathological changes in ALS/MND.  

 

6.3. Future work 

6.3.1. Characterisation of the ATR and the APC/C:Cdh1 complex in DS-LUHMES 

Dysregulation of the ATR signalling pathway and of the APC/C:Cdh1 complex in DS-

LUHMES could have implications in neuronal function in vivo, and could have a role in 

neurodegeneration. Further characterisation of these pathways in the DS-LUHMES 

model would provide valuable information in the mechanisms implicated in the neuronal 

response to a persistent DNA damage. Had time allowed, the ATR signalling pathway 

and the APC/C:Cdh1 complex activation would have been assessed at the mRNA and 

protein levels in SS/DS-LUHMES at different time-points, under the time frame of 96 

hours . Tracking their kinetics would provide a better understanding of their role in the 

neuronal DNA damage response mechanisms. Moreover, it would provide new and 

valuable information on the function of the APC/C:Cdh1 complex in neurones, which is 

not yet fully understood.  

 

6.3.2. Investigating a toxic secretory phenotype in DS-LUHMES 

Evidence of an effect of DS-LUHMES on healthy differentiated GFP-LUHMES was 

observed, and it suggested that a secretory phenotype could be developed by neurones 

exposed to persistent oxidative DNA damage. Nevertheless, microarray results did not 

reveal dysregulation of senescence-linked immune response transcripts, except for 
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DDX58, which was not validated. However, it is important to take into account that 

transcripts identified by the microarray does not always relate to translation. Thus, 

detection of specific cytokines and chemokines using a cytokine array would help to 

confirm at the protein level whether these molecules, for instance IL-6 and IL-8, are up-

regulated by DS-LUHMES in response to a persistent DNA damage or not.  

 

6.3.3. Confirmation of qRT-PCR validation results for the in vivo study 

Limited time and the limited availability of suitable frozen samples did not allow for 

qRT-PCR validation to be conducted in a larger cohort and in triplicate. In order to 

confirm the findings presented in this work, qRT-PCR validation of the candidate genes 

GADD45A, COX20 and SLC25A37 should be conducted in enriched neuronal samples 

obtained by LCM to complete an N of 3 and if possible in an extended cohort of a 

minimum of 10 cases, given the case-to-case variation of human subjects. Expression of 

these genes would be evaluated in samples from the FACx and the MCx of ALS/MND 

and control donors. This would allow an interesting comparison of the mechanisms 

altered in neurones from both brain regions in ALS/MND.  

 

6.3.4. Investigating the origin of p21 expression in ALS/MND 

Expression of nuclear p21 in neurones in ALS/MND could result from cell cycle changes 

linked to a DNA damage response. In order to advance this hypothesis, 

immunohistochemical detection of cell cycle re-entry markers could be conducted in the 

ALS/MND and control cases. Expression of cell proliferation markers, such as Ki67, and 

proteins implicated in the G0-G1 and G1-S transitions, such as cyclin D and cyclin E, 

would inform whether cell cycle re-entry occurs in ALS/MND neurones and would partly 

explain the presence of p21+ neurones.  The same approach could be taken to determine if 
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some level of neuronal p21 expression in ALS/MND could result from the activation of 

the p21 senescence pathway. Double staining for p21 and p53, ATM and CHK2, three 

proteins that are involved in p21-dependent senescence, would suggest induction of this 

pathway in neurones in ALS/MND brains.  

 

6.3.5. Investigating astrocyte senescence in ALS/MND  

Expression of p16 and p21, as well as increased SA-β-gal activity in the cytoplasm of 

glial cells, suggests the presence of senescent glia in ALS/MND cases. Further 

investigation of these findings could inform on the involvement of glial senescence in the 

progression of the disease. Using immunohistochemistry and LCM we could determine 

whether p16/p21+ astrocytes are linked to increased expression of DDR and senescence 

signalling pathways proteins, such as ATM and p53 at the protein and mRNA levels. 

Also, assessment of cell cycle arrest in these cells could be investigated through the 

expression of cell cycle regulation and proliferation markers. Finally, based on available 

data on astrocyte senescence and the SASP (Mombach et al., 2015; Salminen et al., 2011) 

the expression candidates SASP-related genes could be investigated in LMC astrocyte 

enriched samples.  

 

6.3.6. Directly reprogrammed human neurones to study ageing and senescence in vitro 

The embryonic nature of LUHMES proved to be a limitation in the identification of age 

related changes in neurones in vitro, including the activation of a senescent-like state 

under persistent DNA damage conditions. For future studies on senescence and ageing, 

the use of directly reprogrammed human neurones (iNs) from fibroblasts of different aged 

donors would be a more appropriate model of study, since iNs retain the donor’s ageing 

signature. It would be of interest to characterise and study changes in cell cycle control in 
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iNs from young and old donors, as well as changes in the DNA damage response 

mechanisms, to identify the effect that normal ageing can have in these pathways in 

neurones and if these effects relate to senescence.   

 

6.3.7. Transcriptomic analysis of LCM neurones from young and old donors 

Gene expression profiling of control and ALS/MND LCM neurones revealed changes 

linked to the pathology but not directly related to senescence. A better way to analyse 

activation of senescence in neurones would be by comparing changes in the transcriptome 

of neurones isolated from young and old brains. Data obtained from this analysis could be 

compared to the data obtained from iNs in vitro, which would allow for a more efficient 

identification of changes in neurones related to ageing, and could provide better evidence 

on whether neurones can activate a senescent-like state or not.  
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Appendices 

Appendix A. Solutions 

All chemicals were obtained from Sigma-Aldrich (St Louis, MO, USA) unless stated. 

 

BSA Blocking solution for immunocytochemistry 

3% Bovine serum albumin, lyophilized powder, crystallized, ≥98.0% 

0.01% Tween 20 

1x PBS  

 

Blocking solution for immunohistochemistry 

1.5% (v/v) normal goat serum or 15% (v/v) normal horse serum (Vector Laboratories 

UK, antibody dependent) 

50mM TBS 

 

DEPC water 

0.1% Diethylpyrocarbonate (DEPC)  

1 L distilled water 

 

3% H2O2/methanol solution 

1% (v/v) H2O2 

50mM Methanol 

 

Hoechst staining solution  

10 mg/ml Bisbenzimide H 33342 trihydrochloride  

Distilled water 

 

Hydrogen peroxide solutions 

0.1 M 30% w/w hydrogen peroxide (H2O2)  

1x sterile PBS 
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Ethylenediaminetetraacetic acid (EDTA) (x1) pH 8 

10 mM Tris-base  

1.26 mM EDTA  

0.1% Tween-20  

 

EThD-1 solution 

2 μM Ethidium homodimer, suitable for fluorescence, ~90%  

Sterile distilled water 

 

MTT solution 

5 mg/ml 3-(4,5- Dimethyl-2- thiazolyl)-2,5- diphenyl-2H- tetrazolium bromide  

1x PBS 

 

Nuclear Fast Red 

0.1% nuclear fast red, 

5% aluminium sulphate  

Deionized water 

 

4% Paraformaldehyde 

95%  powder paraformaldehyde  

1x PBS  

 

Permeabilising Solution  

0.03% Triton – X100  

1x PBS  

 

Poly-L-ornithine and fibronecting coating solution 

50 μg/ml poly-L-ornithine hydrobromide 

1 μg/ml fibronectin from human plasma 

Sterile distilled water 

 

50mM Phosphate buffered saline (PBS) pH 7.4 

3.2mM Na2HPO4  

0.5mM KH2PO4  
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1.3mM KCl  

135mM NaCl, pH 7.4 

 

SDS/DMF solution 

20% Sodium dodecyl sulphate, purity >99% (SDS; Melford Laboratories Ltd, UK) 

50% N, N-dimethylformamide, pH 4.7 (DMF; Acros Organics, NJ, USA) 

 

Stopping solution (clearance assays) 

20 ml HBSS 

20 μl 1 M 4(-2- hydrocyethyl)-1- piperazineethansulfonic acid (HEPES), pH7.2-7.5 

10 mg sodium bicarbonate (NaHCO 3, 3mM)  

5 mg para-hydrophenilacetic acid (pHPA, 0.8mM)  

2 mg horseradish peroxidase (HRP) 

 

50 mM Tris-buffered saline (TBS) pH 7.6 

50 mM Tris  

150 mM NaCl 

 

TE buffer, pH 8 

10 mM Tris, 

0.1 mM EDTA  

 

Tetracycline 

1 μg/ml tetracycline 

Sterile distilled water 

 

Trisodium Citrate buffer (TSC) pH 6.5 

3 g of Na3C6H5O7 

Deionized water (1 L) 
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Appendix B. Ethical approval form for the current study.  
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Appendix C.  

 

The lists of dysregulated transcripts obtained from the LUHMES microarray analysis are 

attached in the electronic version of this work under the name 

“LUHMES.microarray.data”.  

 

The list of dysregulated transcripts obtained from the microarray analysis on the FACx 

neurones from ALS/MND and control donors is attached in the electronic version of this 

work under the name  “ALS/MND.microarray.data”.  

 


