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Abstract

Increasing the potassium use efficiency (KUE) of crops will be important in satisfy-

ing growing demand for food that is cost-effective and has minimal environmental

consequences. The work presented in this thesis contributes to this aim by explor-

ing the measurement of KUE and identifying drivers responsible for differences

in KUE between rice genotypes at the physiological and genetic levels. In Chap-

ter 2, a mathematical model was constructed based on growth experiments using

cv. IR64 rice plants. Subsequently, sensitivity analysis was used to assess how

best to measure KUE experimentally, showing how KUE could be comprehen-

sively measured using a small selection of metrics. KUE was then quantified in

over 300 rice genotypes in Chapter 3. From this, high performing rice genotypes

were identified along with associations between KUE metrics and physiological

traits. While key physiological drivers of differences between genotypes differed

with metrics, the replacement of potassium by sodium was consistently found to

aid KUE. In Chapter 4, differences in KUE between rice genotypes were then

explored at the genetic level, using genome-wide association studies (GWAS) to

describe the genetic underpinnings of KUE for the first time. This resulted in the

identification of KUE-relevant quantitative trait loci (QTLs) and candidate genes.

Both novel and previously described QTLs for KUE were found and links between

the sub-population structure present in rice and the genetic architecture of KUE

were uncovered. Furthermore, several genes coding for proteins with regulatory

functions were identified in GWAS analyses, as were genes for sodium transport

proteins. Taken together, the findings of the work presented in this thesis could

be used to inform future KUE studies as well as providing candidate physiological

traits and genetic loci for crop improvement.
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Chapter 1

Introduction

1.1 The Need to Improve Crop Potassium Fertiliser

Use Efficiency

Each year, over 30 million tonnes of potassium fertilisers are applied to agricultural

fields around the world (FAO, 2016). Commonly referred to as potash fertilisers

due to the historic use of wood ash in their production, these fertilisers comprise

several potassium salts including potassium sulphate (K2SO4) and potassium ni-

trate (KNO3), as well as the most commonly applied potassium chloride (KCl).

These salts are now predominantly produced by mining in the Northern hemisphere

(Ciceri et al., 2015). Global demand for potash fertilisers is expected to grow with

a compound annual growth rate (CAGR) of approximately 2.5% between 2014 and

2019. This increased demand is strongest in Africa (8.6% CAGR), while Western

and Southern Asia have predicted CAGRs of nearly 5% (FAO, 2016).

Part of the increasing demand for potash fertilisers is driven by population growth

and the need to replenish potassium off-take from increasing output. At the same

time, deficiency for potassium in agricultural soils is widespread around the world.
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Over half of the Southern Australian wheat belt and three quarters of Chinese rice

paddies have been described as lacking adequate potassium (Römheld and Kirkby,

2010). Many areas have endured historic under-fertilisation as well, but this varies

geographically (Rengel and Damon, 2008). For example, under-fertilisation is com-

monly reported in Asia (Dobermann et al., 1998; Sheldrick et al., 2003; Pathak et

al., 2010; Timsina et al., 2013) and a negative nutrient balance of approximately

20 kg ha−1 a−1 exists for potassium in African agriculture (Sheldrick and Lin-

gard, 2002). At the same time, over-fertilisation has occurred in much of Europe

(Bach and Frede, 1998; Foy et al., 2002; Spiess et al., 2011). Appropriate potash

application will undoubtedly be important in dealing with these issues.

The use of potash is not without drawbacks, however. The purchase and applica-

tion of potash presents a cost to agriculture. Furthermore, this cost is not constant

and can rise rapidly. Potassium chloride prices peaked in February 2009 at over

US$ 870 per tonne, having been under US$ 400 t−1 a year before and less than

US$ 200 t−1 in early 2007. One tonne of potash fertiliser currently costs US$ 218

(World Bank, 2017), but the fact remains that price instability can be an issue

with potash, as well as other fertilisers. Furthermore, over 95% of potash was

produced in the Northern hemisphere in 2016 (USGS, 2017). This, combined with

inefficient distribution, limits use in the Southern hemisphere (Manning, 2010; Ci-

ceri et al., 2015). The production and transportation of potash fertilisers also has

implications for carbon emissions (Brentup and Palliére, 2008; Ciceri et al., 2015)

and further environmental concerns are linked with potash use. While understand-

ing of the anthropogenic impacts of ecological potassium cycles is limited (Sardans

and Peñuelas, 2015), potassium inputs can influence plant community composition

(Chytrý et al., 2009; Huang et al., 2013).

In summary, there are clear incentives to increase crop potassium fertiliser use effi-

ciency. The need for greater agricultural output to satisfy demand from a growing

world population coupled with a legacy of under-fertilisation means that demand

for potash fertilisers is increasing. This leaves farmers vulnerable to fertiliser price
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fluctuations, as have been observed in the recent past. At the same time, there

is a need to decrease the environmental impact of agriculture. Increased fertiliser

use conflicts with this aim through carbon emissions from production as well as

transport and the ecological impacts of fertiliser application. Without improve-

ments in crop potassium fertiliser use efficiency, it is difficult to envisage a way to

achieve a sustainable agriculture that can meet global food demands.

1.2 Potassium in Plants

1.2.1 Roles of Potassium

Potassium has several inter-related roles in plants. It is the most abundant cation

in cells, with tissue concentrations of approximately 100 mM in potassium replete

plants (Clarkson and Hanson, 1980). Along with calcium, potassium is never

incorporated into biological compounds and so is only present in its ionic form

throughout plant tissues, in contrast to most other macronutrients including ni-

trogen and phosphorus (Amtmann and Blatt, 2009). Without adequate potassium

supply, plants become impaired in many processes such as long-distance transport

of nutrients, photosynthesis, and protein synthesis.

Ultimately, insufficient potassium supply limits yield (Sale and Campbell, 1986;

Abbadi et al., 2008; Ma et al., 2013; Fageria and Melo, 2014). Yield gaps at-

tributable to potash under-fertilisation have been described (Dai et al., 2013; Xu

et al., 2015; Yousaf et al., 2017) and maize yields in China were found to be de-

creased by 26% when potash was not applied (Dai et al., 2013). Despite yield loss,

the potassium concentrations of grains, such as wheat and barley, have been found

to be maintained at species-specific levels, regardless of the potash fertilisation

regime (Zörb et al., 2014). However, potassium deficiency can still cause yield

quality to suffer. A lack of potassium can result in shorter and weaker cotton fi-

bres (Pettigrew, 1999; Perevz et al., 2004; Yang et al., 2016) while greater amounts
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of the carcinogen and neurotoxin acrylamide can form when potassium-deficient

potatoes are fried (Gerendás et al., 2007).

Yield can be compromised by abiotic and biotic stresses and potassium is greatly

important in alleviating many of these. A strong supply of potassium can help

protect plants against a range of abiotic stresses such as high salt, ammonium,

cold, and drought (see reviews by Cakmak, 2005; Oosterhuis et al., 2013; Wang

et al., 2013; Zörb et al., 2014). For example, sodium can compete with potassium

for transport and binding sites on enzymes and one approach for coping with salt

stress is maintenance of high cytosolic ratios of potassium to sodium (Maathuis and

Amtmann, 1999; Shabala and Cuin, 2007). Ammonium toxicity may be associated

with several issues such as energetic costs arising from futile membrane cycling

(Britto et al., 2001; Kronzucker et al., 2001), carbon costs from its assimilation

(Schortemeyer et al., 1997), and competition with other cations (ten Hoopen et al.,

2010). Potassium can compete with ammonium for uptake and an adequate supply

of potassium is required for optimal function of enzymes involved in ammonium

assimilation (Balkos et al., 2010). The importance of potassium as an osmoticum

as well as its relevance to stomatal opening (see below) help plants use water when

it is limited (Zörb et al., 2014) and potassium supply has a stimulatory effect on

enzymes which help to reduce the oxidative damage which can result from chilling

(Farooq et al., 2008).

Potassium is also highly relevant to biotic stresses (reviewed by Amtmann et al.,

2008; Oosterhuis et al., 2013; Wang et al., 2013). Plants which are well supplied

with potassium have lower concentrations of low molecular mass compounds, such

as sugars, that can be targets for pests (Amtmann et al., 2008; Römheld and

Kirkby, 2010). Also, phytohormones, such as jasmonic acid, which increase under

potassium deficiency, may prime plant defences (Amtmann et al., 2008). While

high plant tissue potassium concentrations are often found to increase resistance

to pathogens and pests, this is not uniformly the case and some stresses, such

as nematode and possibly virus attacks, may be more severe at high potassium
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supply (e.g. Table 1 in Perenoud, 1990).

The influence of potassium on yield and stress response stems from its many roles

within plants and it should also be noted that potassium plays an important part

of how plants manage other elements. For example, potassium ions are needed to

chaperone nitrate (as well as other anions) in translocation from roots to shoots

via the xylem (Maathuis, 2009). Potassium is also important in the long-distance

transport of carbon. The loading of sucrose into the phloem is facilitated by the

movement of potassium ions across phloem cell membranes to prevent depolarisa-

tion resulting from proton and sucrose symport into phloem (Deeken et al., 2002).

In addition to energising the re-loading of photoassimilates into the phloem in

the absence of sufficient ATP (Gajdanowicz et al., 2011), potassium also balances

the charges of organic and amino acids present in phloem (Ahmad and Maathuis,

2014).

Potassium is of great importance in regulating stomatal aperture, a process that

influences both photosynthesis and transpiration (and therefore xylem-mediated

translocation of compounds and ions as well as water content). Influx of potassium

into guard cells surrounding stomata lowers their water potential resulting in an

influx of water, increased guard cell turgidity, and opening of stomata (see reviews

by Outlaw, 1983; Blatt, 2000; Schroeder et al., 2001). This process allows carbon

dioxide to enter the plant that can be incorporated into photoassimilates as well

as water vapour to exit the plant which maintains a water potential gradient that

drives xylem sap flow (Römheld and Kirkby, 2010).

As well as its role in guard cells, potassium is an important osmoticum in plant

cells more generally. The typically high concentration of potassium relative to

other osmotica means that it plays an important role in generating cell turgor

and expansive growth (Leigh and Wyn Jones, 1984; Johnston and Milford, 2012;

Oosterhuis, 2013). Furthermore, potassium is important in controlling turgor in

cells as required for movement of plant organs, such as leaves (Satter and Galston,
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1981; Ahmad and Maathuis, 2014).

While potassium can be replaced to some extent in its biophysical functions (e.g.

turgor generation and charge balancing), it is not replaceable in enzyme activation.

Over sixty enzymes require potassium for their activation, with concentrations in

the tens of millimolar neccesary for optimal function (Evans and Sorger, 1966;

Adams and Shin, 2014). While specificity for potassium varies among enzymes

(Evans and Sorger, 1966), potential replacements, such as sodium or ammonium

ions, are less efficient activators than potassium ions and can become toxic at rel-

atively low cytosolic concentrations (Clarkson and Hanson, 1980; Benito et al.,

2014). Enzymes that require potassium include the vacuolar proton-pumping py-

rophosphatase which transports protons into the vacuole (Davies et al., 1991),

pyruvate kinase, which catalyses the final step in glycolysis (Evans and Sorger,

1966), and starch synthetase (Murata and Akazawa, 1969; Nitsos and Evans, 1969).

Protein synthesis by ribosomes requires high potassium concentrations in keeping

with those observed in the cytosol (Flowers and Dalmond, 1992).

Taken together, potassium has several functions within plants and these can result

in diminished quantity and quality of agricultural output when potassium is lim-

ited. The diversity of roles for potassium influences how plants can utilise other

elements as well as osmotic regulation. Furthermore, many of the biochemical roles

of potassium are not replaceable by other cations and underpin several crucial pro-

cesses in plants. This therefore means that maintenance of potassium-dependent

processes when this nutrient is in limited supply is an important part of ensuring

plant growth and yield in agriculture.

1.2.2 Potassium Uptake

The potassium concentration of the soil solution generally ranges from approxi-

mately 0.1 to 1 mM (Maathuis, 2009; White, 2013) while plant tissue potassium
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concentrations are around 100 mM (Leigh, 2001). This accumulation of potassium

against its concentration gradient is mediated by proteins in the membranes of root

cells in exterior tissues, such as the cortex and epidermis (Ahmad and Maathuis,

2014; Nieves-Cordones et al., 2016). This process can take place with external

solution potassium concentrations that span several orders of magnitude, with ev-

idence for plants being able to deplete solutions below 1 µM (Mart́ınez-Cordero et

al., 2004).

Over the range of soil solution potassium concentrations that plants encounter, a

biphasic pattern of influx has been described (Epstein et al., 1963; Kochian and

Lucas, 1982). This consists of a high-affinity system which approaches saturation

as concentrations exceed 0.1 mM (Epstein et al., 1963; Maathuis and Sanders,

1996) and a low-affinity system. The latter dominates influx at higher external

potassium concentrations as well as exhibiting greater levels of efflux from roots

(Szczerba et al., 2006) and is believed to be carried out by ion channels (Epstein

et al., 1963; Kochian and Lucas, 1982; Maathuis and Sanders, 1995). Potassium-

proton symporters from the KT/HAK/KUP family of proteins such as AtHAK5

(Rubio et al., 2008) and OsHAK1 (Banuelos et al., 2002) mediate high-affinity up-

take. In rice, OsHAK1 has been found to be responsible for approximately half of

the potassium uptake between 0.05 and 0.1 mM external potassium concentrations

and this declined to nearly one-third of uptake at 1 mM (Chen et al., 2015). An-

other transporter, OsHAK5, has also been identified as carrying out high-affinity

potassium uptake in rice roots as well as aiding its export to the shoots (Yang et

al., 2014). The notion that channels are only relevant to low-affinity uptake is chal-

lenged by the shaker-type potassium channel AKT1, which can mediate potassium

influx across external concentrations that span the high- and low-affinity range,

i.e. 10 µM and above (Hirsch et al., 1998).

Proteins involved in the regulation of transport proteins have also been identi-

fied. When exposed to potassium deficient conditions, root cell membranes be-

come hyper-polarised and calcium ions enter the cytoplasm (Nieves-Cordones et
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al., 2014). This results in binding of the protein kinase CIPK23 with a calcium

sensor (e.g. CBL1 or CBL9) and the resulting complex moves to the plasma mem-

brane where it can increase AKT1 activity through phosphorylation (Li et al.,

2006; Xu et al., 2006; Lee et al., 2007). Such a complex can also phosphorylate

AtHAK5, resulting in greater affinity for, and maximal uptake rate of, potassium

(Ragel et al., 2015). Signal cascades that result from low-potassium conditions,

such as increased ethylene (Jung et al., 2009), reactive oxygen species (Shin et al.

2005; Hernandez et al., 2012), and jasmonic acid (Armengaud et al., 2004), induce

transcription factors which activate the transcription of genes for transporters such

as AtHAK5 (Kim et al., 2012; Hong et al., 2013). Also, AKT1 proteins can form

homotetramers or heterotetramers with AtKC1. Association with AtKC1 results

in a more negative activation potential for AKT1, meaning that it is gated shut in

low-potassium conditions and leakage out of the cell through AKT1 is prevented

(Wang et al., 2010; Wang et al., 2016).

Other root physiological and morphological characteristics also influence potassium

uptake. Exploiting a large soil volume through a greater root mass and volume

aids potassium uptake (Mengel and Steffens, 1985; Chen and Gabelman, 2000;

Høgh-Jensen and Perdersen, 2003; Jia et al., 2008; White, 2013). Furthermore,

over 90% of potassium in soils is in the non-exchangeable fraction, where it is held

in soil minerals (Römheld and Kirkby, 2010). Plants can mobilise this potassium

with organic acid exudates (Trehan et al., 2005; Wang et al., 2011). Transpiration

also results in soil solution mass flow and this results in delivery of potassium

to roots (Rengel and Damon, 2008; White, 2013). Interestingly, in contrast to

responses for patchy availability of nitrogen or phosphorus, plant roots appear to

be unable to preferentially proliferate in areas with high potassium supplies over

those which lack potassium (Drew, 1975).

The uptake of potassium by crops is therefore a complex process mediated and

influenced by processes at the molecular, tissue, and environmental level. While

the above shows that much is known about how plants source potassium from
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the soil solution, many processes still require further investigation, particularly

in the context of how cells sense and respond to low-potassium conditions. Such

knowledge may play an important role in future crop improvement.

1.2.3 Potassium Distribution

Given the many roles of potassium in plants (Section 1.2.1), it is important that

plants can effectively distribute this element among tissues and within cells. The

long-distance transport of potassium through the plant vasculature is therefore of

critical importance to move potassium to aerial tissues. Furthermore, potassium

must also be moved between cell compartments. The key processes involved in

this are outlined below and have also been reviewed by Ahmad and Maathuis

(2014).

Absorbed potassium in roots can move symplastically and apoplastically towards

the stele, although the symplastic route accounts for the majority of potassium

loaded into xylem (White and Karley, 2010). Potassium enters the xylem from

parenchymal cells via the action of outward rectifying channels, such as SKOR

(Gaymard et al., 1998). The concentration of potassium in the xylem sap can

range from less than 10 mM to as high as approximately 50 mM (Jeschke et al.,

1997; White, 1997; Peuke, 2010). Potassium is then unloaded from the xylem into

bundle sheath cells (Keunecke et al., 2001) and potassium can move symplastically

between adjacent cells (Botha et al., 2008).

A high proportion of the potassium delivered to the shoot can return to the root

via the phloem (Jeschke et al., 1997; Marschner et al., 1997; Peuke et al., 2002).

Furthermore, the phloem also allows potassium to be re-distributed to growing

leaves, fruits, and seeds (White and Karley, 2010; Ahmad and Maathuis, 2014).

This can help maintain growth and development even when potassium is limited.

The potassium channel AKT2/3 is important for the movement of potassium into
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and out of the phloem (Deeken et al., 2002). Further Shaker family potassium

channels are believed to be involved in the entry of potassium into the phloem.

For example, the channel KZM1 found in maize (which shows similarity to Ara-

bidopsis to KAT2) has been characterised as mediating phloem potassium loading

(Phillippar et al., 2003).

Potassium is also distributed on a sub-cellular scale. Vacuolar potassium con-

centrations can be greater than that of the cytosol in well-supplied plants, but

low-potassium stress can lead to the cytosolic concentration exceeding that of the

vacuole (Leigh and Wyn Jones, 1984; Walker et al., 1996). Accumulation of potas-

sium into the vacuole is believed to be mediated by CHX and NHX proton-cation

exchangers (Cellier et al., 2004; Ohnishi et al., 2005; Barragán et al., 2012). Chan-

nels, such as members of the TPK/KCO family (Gobert et al., 2007) or TPC1

(Peiter et al., 2005), can carry out the release of potassium from the vacuole into

the cytoplasm. Transporters from the HAK/KUP/KT family may mediate the

movement of potassium out of vacuoles when the vacuolar potassium concentra-

tion declines below that of the cytosol (Jaquinod et al., 2007; White and Karley,

2010; Ahmad and Maathuis, 2014).

Taken together, these processes allow plants to distribute potassium sourced by

roots from the soil solution around plant tissues. Furthermore, potassium can be

moved between the vacuole and cytoplasm, allowing cytoplasmic processes with a

strict requirement for potassium (Section 1.2.1) to be maintained. In the context

of potassium use efficiency, the potential for plants to direct potassium to where

it is required may present opportunities for crop improvement.
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1.3 Potassium Use Efficiency in Crops

1.3.1 Definition of Potassium Use Efficiency

Potassium use efficiency (KUE) can be defined in several different ways. Part of

this diversity is due to the complexity of KUE which subsumes the many roles of

this nutrient within plants (Section 1.2.1) as well as its uptake (Section 1.2.2) and

distribution (Section 1.2.3). For example, KUE can be dissected into the uptake

(sometimes described as acquisition) and utilisation efficiency (Rengel and Damon,

2008; White, 2013; Wang and Wu, 2015). However, the ways they are calculated

can differ between reports. For example, utilisation efficiency is often measured as

the ratio of biomass to potassium content (e.g. George et al., 2002; Yang et al.,

2003; White et al., 2010), while other authors have reported the biomass divided by

the tissue potassium concentration (e.g. Memon et al., 1985; Ju et al., 2014).

Metrics which are not exclusively uptake- or utilisation-related have also been used.

The ability of plants to maintain important characteristics such as mass and tissue

potassium concentrations have been reported (e.g. Yang et al., 2003; Damon and

Rengel, 2007; Damon et al., 2007; Fan et al., 2013) and can be influenced by both

the uptake and utilisation of potassium. Furthermore, maximised plant biomass

under low-potassium conditions can be considered to represent a high KUE (e.g.

Guoping et al., 1999; Liu et al., 2009; Fageria and Melo, 2014). The identification

of crop genotypes that can maintain adequate yield and quality in the face of

limited potassium availability is a key concern when measuring KUE.

However, there are many potential pitfalls in the way KUE is determined. Screens

typically take place on relatively young plants that are still in the vegetative phase

of growth and evidence is mixed as to how well different KUE metrics link with

economic output, such as grain yield. Using rice, Yang et al. (2003) found that the

utilisation efficiency (mass divided by potassium content) at the vegetative stage

of growth was good a predictor of grain utilisation efficiency across 134 genotypes.
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In contrast, vegetative measures of KUE were not found to link with yield in wheat

(Woodend and Glass, 1993; Damon et al., 2007). It has been suggested that the

reliability of KUE measured at the vegetative stage to yield may be compromised

by genotypic differences in how the harvest index (grain mass divided by above

ground mass) responds to potassium deficiency (Woodend and Glass, 1993; Rengel

and Damon, 2008).

Nevertheless, vegetative screens facilitate high throughput assessment of many

crop genotypes and can be used to identify important physiological drivers of

differences in potassium use. Screening studies often report multiple metrics that

relate to KUE to help address the complexity of this trait. However, the choice of

metrics that best summarise KUE is not clear. Analyses based on mathematical

models of potassium utilisation by Moriconi and Santa-Mar̀ıa (2013) were able to

identify different strengths and weaknesses of utilisation metrics. For example,

the commonly used formula of mass divided by potassium content was one of

the more reliable measures of utilisation, but could be flawed when the initial

potassium concentration of genotypes is an important source of variation.

The above suggests that the selection of KUE metrics in screening studies is not

a trivial matter. While it is clearly important to measure KUE in a way that cap-

tures the complexity of the trait while remaining experimentally tractable, further

research is required to properly inform metric choice. Furthermore, greater exper-

imental probing of links between vegetative and yield measures is also required.

At the same time, mathematical modelling poses an under-utilised method for

exploring the measurement of KUE.

1.3.2 Potential for Improving Potassium Use Efficiency

To improve crop KUE, it is important to identify efficient crop genotypes and

determine what causes efficiency differences at the genetic and physiological level.
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Previous screening studies have been able to identify variation in KUE within and

across crop species (see reviews by Rengel and Damon, 2008; White et al., 2013).

Such work, along with a knowledge of how potassium is sourced, distributed, and

used by plants (see above), makes it possible to propose putative approaches for

improving KUE (Rengel and Damon, 2008; White, 2013; Shin, 2014; Wang and

Wu, 2015).

Variation in KUE across genotypes can be vast. Yang et al. (2003) reported ap-

proximately six-fold variation in utilisation efficiency (mass divided by potassium

content) in 134 rice genotypes. Nearly twenty-fold variation has been described for

the uptake efficiency (plant potassium content) across 343 Brassica oleracea geno-

types (White et al., 2010). In wheat, the loss of grain mass due to low-potassium

stress was found to range from as low as approximately 30% to more than 60%

(Damon and Rengel, 2007) and similar ranges were apparent for shoot biomass

in canola, wheat, and watermelon (Damon and Rengel, 2007; Damon et al., 2007;

Fan et al., 2013). In general, variation in KUE at the genotype level is consistently

found regardless of the species or metric used (e.g. Table 1 in White, 2013 for a

summary of uptake and utilisation efficiency).

Taken together, this provides strong evidence for a potential to improve crop KUE

but to do so, the reasons why such differences in KUE exist need to be better under-

stood. KUE is impacted by root potassium uptake from the environment, a process

that can be influenced by many root characteristics. For example, greater tran-

spiration rates can increase mass flow and delivery of potassium to roots (White,

2013). Strong proliferation of roots can result in large root masses that can exploit

a large soil volume, increasing potassium uptake (Mengel and Steffens, 1985; Chen

and Gabelman, 2000; Kellermeier et al., 2013). The proliferation of root hairs in

response to potassium deficiency has also been reported in several species to aid

absorption of potassium (Høgh-Jensen and Pedersen, 2003). Another potentially

important trait is the ability to mobilise the non-exchangeable pool of potassium

in soil (Wang et al., 2000; Trehan et al., 2005). This could be achieved using plant
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root exudates such as organic acids (Rengel and Damon, 2008; White, 2013). Fur-

thermore, the high-affinity potassium uptake system represents another target for

KUE improvement and studies using over-expression of transcription factors that

up-regulate AtHAK5 expression have been shown to improve plant tolerance to

low-potassium stress (Kim et al., 2012; Hong et al., 2013).

Engineering the activity of proteins involved in potassium distribution within

plants, such as SKOR or AKT2/3 (Section 1.2.3), may aid KUE (Shin, 2014) by

prioritising tissues which most require potassium. Effective distribution of potas-

sium has been identified as an important determinant of potassium utilisation

efficiency in rice, with potassium preferentially transferred to developing leaves

(Yang et al., 2004). Distribution of potassium at a sub-cellular level may also be

highly relevant, with more efficient release of vacuolar potassium into the cyto-

plasm under potassium stress implicated in greater utilisation efficiency in barley

(Memon et al., 1985). Replacement of potassium by other cations and osmotica

may be complementary to this. While the role of potassium in enzyme activation is

not fully replaceable (Section 1.2.1), other functions, such as charge balancing and

osmotic regulation, are less ion-selective. Large proportions of tissue potassium

can potentially be replaced, for example with sodium or other cations (Leigh et

al., 1986; Subbarao et al., 1995; Gattward et al., 2012) and sugars can be used as

replacement osmotica in many cells (White and Karley, 2010). The harvest index

of plants, and its maintenance under potassium stress, is also an important trait,

having been found to be a key determinant of potassium utilisation in economic

output (Fageria et al., 2001; Yang et al., 2004; Damon and Rengel, 2007).

The genetic architecture of KUE has also received some attention. Quantitative

trait loci (QTLs) in the context of potassium stress have been identified in Ara-

bidopsis (Prinzenberg et al., 2010), rice (Wu et al., 1999; Miyamoto et al., 2012;

Fang et al., 2015), and wheat (Guo et al., 2012; Kong et al., 2013; Zhao et al.,

2014). Co-localisation between potassium-relevant QTLs and genes involved in its

uptake and distribution have also been described. For example, Harada and Leigh
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(2006) found several potassium channels and transporters in the region of QTLs

in Arabidopsis such as AtAKT1, AtHAK5, and AtSKOR (Sections 1.2.2 and 1.2.3)

and an enrichment of transporters in the region of a marker identified in Brassica

oleracea genotypes (White et al., 2010). At the same time, the response of plants to

low-potassium stress has been examined at a transcriptional level (e.g. Maathuis

et al., 2003; Armengaud et al., 2004; Ma et al., 2012; Shankar et al., 2013; Zeng

et al., 2014). While genes encoding transport proteins, such as OsHAK1 (Ma et

al., 2012; Shankar et al., 2013) and its homologue AtHAK5 (Ahn et al., 2004;

Armengaud et al., 2004), are differentially expressed, evidence for a role of several

other processes is apparent. For example, important roles of phytohormones, such

as jasmonic acid (Armengaud et al., 2004) or auxin (Ma et al., 2012), has been

described, as well as protein modification, such as phosphorylation by kinases (Ma

et al., 2012; Zeng et al., 2014; Zhang et al., 2017).

From the above, it is apparent that the complexity of KUE means that several

credible mechanisms for improvement may exist. While the underlying mechanisms

of the uptake, distribution, and use of potassium in plants is increasingly well

understood, how this knowledge can best be used to optimise crop KUE is not clear.

Understanding of the response of plants to low-potassium stress at the molecular

level may provide key insights. Identification of candidate genomic regions and,

potentially, genes for improvement will aid molecular-based breeding efforts. To

this end, the relatively new technique of genome-wide association studies (GWAS)

has not been utilised in the context of KUE. Given datasets now available in rice

(Zhao et al., 2011; Eizenga et al., 2014; McCouch et al., 2016), GWAS offers a new

and potentially powerful approach to dissect the underlying genetic architecture

of KUE.
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1.4 Rice as a Model Organism

Asian rice (Oryza sativa, L., henceforth ‘rice’) is used as the model plant organism

for cereal crops. This species is of great importance to global agriculture. Each

year, over 700 million tonnes of rice is produced, the third highest in terms of

crop mass, behind only sugar cane and maize (FAO, 2017). Rice production is

dominated by Asia, but occurs across the globe and the crop is largely consumed

locally to where it is grown (GRiSP, 2013). Only 30 million tonnes of rice is

traded internationally each year (GRiSP, 2013) and the prices are in the region of

US$ 300 to 400 per tonne (FAO, 2017). Rice accounts for 19% of global human

calorie intake (GRiSP, 2013) and is a staple food for half of the global population.

It is of particular importance in many developing countries, such as Bangladesh,

Cambodia, and Vietnam, where it is the source of over half of the consumed calories

(IRRI, 2017).

Rice has been farmed for several thousand years (GRiSP, 2013). Over 40,000 vari-

eties currently exist (Kushwaha, 2016) which comprise two sub-species (Indica and

Japonica), each consisting of distinct sub-populations. While six sub-populations

were identified on the basis of isozyme analysis (Glaszmann, 1987), rice is now com-

monly referred to as having five sub-populations on the basis of subsequent genetic

work (Garris et al., 2005; Ali et al., 2011). The indica and aus sub-populations

are grouped into the Indica sub-species while the Japonica sub-species includes the

aromatic, temperate japonica and tropical japonica (Garris et al., 2005; Ali et al.,

2011; Travis et al., 2015). Admixtures between sub-populations and sub-species

also exist.

Rice is also of great scientific importance since it is the model monocotyledonous

plant species. It has a diploid genome made up of approximately 390 million base

pairs (IRGSP, 2005; McNally et al., 2009) and its genome was first sequenced

in 2002 (Goff et al., 2002; Yu et al., 2002). More recently, genome-wide single

nucleotide polymorphism (SNP) datasets have become available for rice genotypes
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that represent the breadth of rice diversity (Zhao et al., 2011; McCouch et al.,

2016; https://ricediversity.org/). This means that rice is now ideally suited to

agriculturally relevant analyses of how plant physiology and its genetic architecture

underpins mechanisms of low potassium stress response.

1.5 Thesis Overview

This work aimed to explore and analyse the mechanisms that underlie KUE using

rice as a model organism. The measurement of KUE is a crucial part of such studies

and a lot of variety exists in previously used KUE metrics (Section 1.3.1). It is

likely that a small subset of these metrics could be used to adequately summarise

KUE in screening studies. Exploration of how KUE metrics respond to differences

in plant physiology and how this could be used to find a suitable selection of KUE

metrics for screening formed the focus of Chapter 2. Based on this, a selection

of KUE metrics was used to quantify the variation in KUE present in rice as

well as to identify which physiological plant characteristics give rise to genotypic

differences in KUE (Chapter 3). The genetic underpinnings of differences between

rice genotypes was then examined in Chapter 4.
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Chapter 2

A Mathematical Model to

Identify the Physiological

Drivers of Potassium Use

Efficiency in Crops

2.1 Introduction

Potassium use efficiency (KUE) is an important crop trait that must be optimised

to secure adequate output in the future (Chapter 1). To this end, previous studies

have examined variation in KUE among genotypes of a variety of plant species

(e.g. Guoping et al., 1999; Yang et al., 2003; Trehan et al., 2005; Fageria and

Melo, 2014). It is notable that this literature uses a large variety of metrics to

measure KUE. The use of several metrics which explore different aspects of this

complex trait is recommended (Baligar et al., 2001; White, 2013), but the fact

remains that several measures exist for similar KUE-related traits, and that there

is no clear rationale as to which metric should be preferred. For example, the
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production of biomass for a given amount of potassium, commonly referred to

as utilisation, is often expressed as the shoot biomass divided by the potassium

content measured at some fixed point in time (e.g. Guoping et al., 1999; Yang

et al., 2003; White et al., 2010). In other studies, the biomass is divided by

the tissue concentration (e.g. Memon et al., 1985; Ju et al., 2014) and several

somewhat similar quotients can also be proposed and it has been suggested that

some metrics are more useful than others. For example, Moriconi and Santa-Mar̀ıa

(2013) found the nutrient productivity, accumulative productivity, and utilisation

ratio (see Table 2.1) were most appropriate for measuring utilisation efficiency in

plants starved of potassium. Instances where metrics could provide misleading

values were also described, such as when initial tissue potassium concentrations

can influence the utilisation ratio.

A further frequently used class of metric compares performance under low and

replete potassium supplies. Some studies have used the ratio of plant mass under

two different potassium treatments (Yang et al., 2003; Damon et al., 2007), while

others have reported the relative tissue potassium concentrations (Yang et al.,

2003; Fan et al., 2013) or content (Guoping et al., 1999; Yang et al., 2004). While

each of these ratios seeks to quantify how well plants cope with low potassium

relative to non-stressed conditions, it is unclear how they inter-relate. Specifically,

it may be the case that these metrics do not respond in the same way to differences

in plant physiological traits present in screen panels. This ultimately means that

important variation in KUE could be missed if an appropriate selection of metrics

is not used.

Another important issue is how well KUE measured during vegetative growth

relates to yield. Vegetative KUE measures have been reported as predictors of

eventual yield or harvest index in sweet potato (Georgeet al., 2002) and rice (Yang

et al., 2003). However, Woodend and Glass (1993) found little correlation between

vegetative utilisation efficiency measures with grain yield and negative correlation

between the shoot mass of three-week-old plants and the grain mass was reported.
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Damon and Rengel (2007) also found that the ratio of plant mass in two potassium

treatments did not accurately predict the ratio of seed yield at maturity in wheat.

Variability in the response of the harvest index (the proportion of above ground

biomass that is seed) between crop varieties has been suggested as an important

driver of a lack of correlation between vegetative- and grain yield-related measures

(Damon and Rengel, 2008). Furthermore, the economic output of crops goes be-

yond grain yield, and may include the shoot biomass in forage crops and straw

production.

Mathematical modelling of potassium in plants offers a novel method for examining

these important questions related to KUE. Some effort has gone into modelling

how plants source, distribute, and use nutrients (e.g. Thornley, 1969; Thornley,

1972; Ingestad and Ågren, 1988; Dewar, 1993; Roose et al., 2001; Chen et al., 2012;

Hills et al., 2012) and models offer a framework within which to explore nutrient

use efficiency. Mathematical exploration can facilitate the identification of plant

physiological characteristics that are principal drivers of differences KUE metrics

between crop genotypes.

In this study, a mathematical model of potassium uptake and distribution together

with the response of growth to tissue concentrations was constructed. Growth ex-

periments using IR64 cultivar rice plants were used to explore the dynamics of

potassium in plants in response to the external potassium supply, and to inform

model parametrisation. From this, the sensitivities of metrics from the KUE liter-

ature to model parameters were calculated. This was used to assess how different

metrics responded to differences in plant physiological traits and how these metrics

relate to each other and to yield. Key sensitivities of KUE metrics that would the-

oretically be most relevant to crop improvement efforts were also identified.
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2.2 Methods

2.2.1 Plant Growth Experiments

Rice (Oryza sativa, L. cv. IR64 ) seeds were germinated and grown in sand with

distilled water for two weeks prior to transfer to hydroponic treatments. Seedlings

were transferred to 335 x 210 x 140 mm black plastic boxes filled with 9 litres

of an adapted Yoshida nutrient solution (Yoshida et al., 1976). The culture so-

lution consisted of the following: (in mM) 1.4 NH4NO3, 0.3 NaH2PO4·2H2O,1

CaCl2, 1.6 MgSO4·7H2O, and 0.2 Na2O3Si·5H2O; (in µM) 9.5 MnCl2·4H2O, 0.07

(NH4)6Mo7O24·4H2O, 18 H3BO3, 0.15 ZnSO4·7H2O, 0.16 CuSO4·5H2O, 35.8 FeCl3

·6H2O, 71 citric acid monohydrate. Potassium was added as KCl to give solutions

with 10, 100, 500, 1,000, and 5,000 µM potassium concentrations. The solutions

had an initial pH of 5.5 and solutions were changed twice per week. Plants were

grown in a glasshouse with 12 hour day and night periods with temperatures of

32 and 28 ◦C in the day and night respectively and a relative humidity between

50 and 60%.

In the first growth experiment (henceforth Experiment 1), plants spent 103 days

in culture with three plants from each treatment randomly sampled at 21, 42, 63,

and 84 days after transfer to hydroponics. Seed development had begun by 69

days post-transfer, but plants died from diseases before harvesting was possible.

Experiment 2 was carried out to measure how grain yield responded to potassium

supply using the same external concentrations as in Experiment 1. Furthermore,

the short-term dynamics of plant responses to external potassium concentration

were quantified by sampling three plants from each concentration 2, 4, 6, and 9

days after transfer to hydroponics. Five plants in each treatment were then grown

to maturity and seeds were harvested after 234 days. Flowering was first noted

104 days after transfer in this experiment. In both experiments, five plants were

randomly sampled on the day of transfer to hydroponics.
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Sampled plants were separated into roots, shoots, and (where applicable) seeds

and their fresh weights were recorded before being oven dried at 80 ◦C for three

days. Dried tissues were then re-weighed and potassium concentrations were de-

termined for roots and shoots by suspending sub-samples of chopped tissues in

20 mM CaCl2 for 24 hours and measuring the potassium concentration of the

resultant solutions using a flame photometer (Sherwood Scientific, Cambridge,

Cambridgeshire, UK).

2.2.2 Model Description

A system of coupled ordinary differential equations was used to model potassium

uptake and distribution, as well as growth in response to tissue potassium concen-

trations. As an overview, plants were modelled as being made up of root and shoot

compartments. The root compartment could take up potassium from a solution

of fixed external potassium concentration. Translocation of potassium from roots

to shoots was modelled as a net movement, and the growth rate of each compart-

ment was governed by its internal potassium concentration. Yield was modelled

as a function of shoot mass after 63 days of growth. Each part of the model is

described in greater detail below.

The net uptake of potassium by plant roots has a saturating relationship with

the potassium concentration (Besford and Maw, 1974; Fageria, 1976; Spear et al.,

1978b; Szczerba et al., 2006). This can be captured using a Michaelis-Menten-type

relationship:

dQplant
dt

=
µS

κ+ S
Wroot (2.1)

where Qplant is the plant potassium content (µmol K+), t is the time since transfer

to hydroponics (d), Wroot is the root mass (g fresh weight, henceforth FW), µ is
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the theoretical maximal net potassium uptake rate per gram of root (µmol K+ (g

root FW)−1 d−1), S is the fixed external solution potassium concentration (µM

K+), and κ is the external solution concentration at which the net uptake rate per

gram of root is half of the maximum value µ (µM K+).

The net translocation of potassium from root to shoot serves to maintain the

shoot potassium concentration that would otherwise be diluted through growth.

Shoot potassium concentrations remain relatively stable except when the root

concentration has become depleted (Ahser and Ozanne, 1967; Spear et al., 1978a;

White, 1997). This suggests that net potassium translocation can be maintained

across a wide range of relatively high potassium concentrations before declining as

the root concentration becomes low. This relationship between the root potassium

concentration and net root to shoot translocation was captured using a Hill-type

function:

dQshoot
dt

=
χCθroot

φθ + Cθroot
Wshoot (2.2)

where Qshoot is the shoot potassium content (µmol K+), Wshoot is the shoot mass

(g FW), χ is the theoretical maximum net translocation rate from root to shoot per

gram of shoot per day (µmol K+ (g shoot FW)−1 d−1), Croot is the root potassium

concentration (µmol K+ (g root FW)−1), θ is a Hill-coefficient that controls how

rapidly the net translocation rate changes with Croot, and φ is the value of Croot

at which the net translocation rate per gram of shoot is half of χ (µmol K+ (g

root FW)−1).

The relationship between the growth rate of plants and their internal potassium

concentration is also saturating (Hommels et al., 1989; White, 1993; Trehan and

Claassen, 2000; Jordan-Meille and Pellerin, 2008). Furthermore, tissue or vacuolar

concentrations typically maintain a minimum level of approximately 10 mM, even

under extreme potassium stress (Leigh and Wyn Jones, 1984; White, 1993; Walker
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et al., 1998), suggesting that the growth rate may become extremely small in

such conditions. The relationship between the growth rate and tissue potassium

concentration can be represented using a Hill-type function:

dWi

dt
=

αiC
σi
i

βσii + Cσii
Wi (2.3)

where, for the ith tissue (i.e. root or shoot), W is the tissue mass (g FW), α is the

theoretical maximum relative growth rate (d−1), C is the tissue potassium concen-

tration (µmol K+ (g FW)−1), β is the tissue potassium concentration at which the

relative growth rate is half of α (µmol K+ (g FW)−1), and σ governs how quickly

the growth rate declines with the internal tissue potassium concentration.

To explore how the grain yield relates to vegetative metrics, a Hill-type function

is used to relate the grain yield to the shoot mass after 63 days of growth. A

sigmoidal relationship between grain and shoot mass has been found in safflower,

sunflower (Abbadi et al., 2008), and wheat (Ma et al., 2013) subjected to a range of

potassium concentrations. Data consistent with a non-linear relationship have also

been reported in rice (Brohi et al., 2000; Yang et al., 2004; Fageria et al., 2013).

Furthermore, increasing seed mass coincides with a near cessation in growth of rice

shoot mass (Sheehy et al., 2004) and so shoot mass at flowering time is likely to

be a reliable indicator of seed yield. This relationship is described using:

Y =
ηW λ

shoot

νλ +W λ
shoot

(2.4)

where Y is the grain mass (g), η is the theoretical maximum seed mass (g), Wshoot

is the shoot mass after 63 days of growth (g FW), λ is a Hill-coefficient that governs

how rapidly the seed yield changes with the shoot mass, and ν is the shoot mass

at which the seed yield is half of η (g FW).

Simulations were initiated with a plant mass, ω, (g FW), a root to plant mass
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ratio, δ, and initial root and shoot potassium concentrations, γroot and γshoot

respectively, (µmol K+ (g tissue FW)−1). The model was written in Python 3.4.4

(Python Software Foundation, 2017) and differential equations were solved using

Runge-Kutta fourth order approximation with the scipy.integrate.ode() (Jones et

al., 2001).

2.2.3 Parameter Estimation

Data from the growth experiments were used to generate physiologically relevant

estimates for model parameters. Net uptake rates per gram of root per day and

translocation rates per gram of shoot per day were calculated for each treatment

21, 42, and 63 days after transfer to hydroponics using the net assimilate rate

equation from Williams (1946). Relative growth rates were calculated using RGR

= (ln(W2) - ln(W1)) / (t2 - t1) (Hoffman and Poorter, 2002) using data from the

same time points as described above for net uptake (i.e. 0, 21, 42, and 63 days

post-transfer). Non-linear regression was used to fit model equations 2.1 to 2.4 to

data using the nls() function in R 3.3.3. Relevant rates were calculated using data

from Experiment 1 and time points were treated as independent samples in the

non-linear least squares regressions.

Estimates of model constants are presented with 95% confidence intervals in the

text below. For parameters from regression fits, confidence intervals were calcu-

lated using bootstrapping with the bootCase() function from the car R package

(Fox and Weisberg, 2011).

2.2.4 Sensitivity Analysis

The purpose of constructing and parametrising the plant growth models was to

allow the dependence of KUE metrics on the parameters governing plant growth

to be be calculated. Explicitly, by integrating Equations 2.1 to 2.3 forward in time,
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and by incorporating yield via Equation 2.4 where appropriate, each KUE metric

from Table 2.1 could be calculated. The response of these metrics to changes in

plant physiology and experimental conditions could then be assessed using sensitiv-

ity analysis. Each model parameter in turn was altered ± 10% and corresponding

changes in metrics were calculated. Experiments which lasted for 28 days with

external solution potassium concentrations of 10 and 100 µM were simulated. Re-

sults for simulations at 950 µM external potassium are presented in the Appendix

(Figure 6.1). Simulations were also carried out up to the 63 days time point to

calculate grain yield long-term tissue mass. Separate simulations at 1,000 µM were

used to calculate ratios between performance under potassium stressed and replete

conditions.

Table 2.1: Summary of potassium use efficiency metrics used in this study. Values
with a subscript 63 refers to a measurement taken after 63 simulated days, init
denotes a value taken at the start of a simulation, and HT denotes values taken
from the high treatment (1,000 µM external potassium concentration).

Metric Calculation Units Class Source(s)

Grain Yield,

GY

Wgrain g Yield Yang et al.

(2003),

Quampah et al.

(2011)

Harvest Index,

HI

Wgrain

Wgrain+Wshoot
- Yield Xia et al.

(2011)

Long-term

plant mass, PL

Wplant,63 g FW Yield -

Long-term

shoot mass, SL

Wshoot,63 g FW Yield Memon et al.

(1985), Fageria

and Melo

(2014)

Long-term root

mass, RL

Wroot,63 g FW Yield -
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Plant mass, P Wplant g FW Mass Spear (1978a)

Shoot mass, S Wshoot g FW Mass Damon et al.

(2007), Fageria

and Melo

(2014)

Root mass, R Wroot g FW Mass Fageria (2014),

Krishnasamy et

al. (2014)

Potassium

utilisation

ratio, KUtR

Wshoot

Qshoot
g FW

(µmol

K+)−1

Utilisation Memon et al.

(1985), Yang et

al. (2003)

Potassium

utilisation

index, KUtI

Wshoot

Cshoot
g2 FW

(µmol

K+)−1

Utilisation Memon et al.

(1985), Ju et al.

(2014)

Nutrient

productivity,

NP

dWshoot
dt

Qshoot
g FW

(µmol

K+)−1

d−1

Utilisation Moriconi and

Santa-Mar̀ıa

(2013)

Accumulative

productivity,

AP

LN

(
Wshoot

Wshoot,init

)
Cshootdt

g FW

(µmol

K+)−1

d−1

Utilisation Moriconi and

Santa-Mar̀ıa

(2013), Yang et

al. (2004)

Physiological

efficiency, PE

Wshoot,HT−Wshoot

Qshoot,HT−Qshoot
g FW

(µmol

K+)−1

Utilisation Moriconi and

Santa-Mar̀ıa

(2013)
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Shoot

potassium

concentration,

CS

Cshoot µmol K+

(g shoot

FW)−1

Tissue

Potassium

Trehan et al.

(2005), Jiang et

al. (2013)

Root potassium

concentration,

CR

Croot µmol K+

(g root

FW)−1

Tissue

Potassium

-

Plant

potassium

content, QP

Qplant µmol K+ Tissue

Potassium

Guoping et al.

(1999), White

et al. (2010)

Shoot

potassium

content, QS

Qshoot µmol K+ Tissue

Potassium

-

Root potassium

content, QR

Qroot µmol K+ Tissue

Potassium

-

Relative shoot

potassium

concentration,

RCS

Cshoot

Cshoot,HT
- Ratio Yang et al.

(2003), Fan et

al. (2013)

Relative root

potassium

concentration,

RCR

Croot

Croot,HT
- Ratio -

Relative plant

mass, RP

Wplant

Wplant,HT
- Ratio -

Relative shoot

mass, RS

Wshoot

Wshoot,HT
- Ratio Damon and

Rengel, 2007;

Damon et al.,

2007
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Relative root

mass, RR

Wroot

Wroot,HT
- Ratio -

Relative plant

potassium

content, RQP

Qplant

Qplant,HT
- Ratio -

Relative shoot

potassium

content, RQS

Qshoot

Qshoot,HT
- Ratio -

Relative root

potassium

content, RQR

Qroot

Qroot,HT
- Ratio -

Standardised sensitivity scores for each metric for every model parameter in each

potassium concentration were calculated using the equation:

s =
a

m

∆m

∆a
(2.5)

where s is the standardised sensitivity score of the KUE metric, a is the value of the

unaltered parameter, m represents the value of each KUE metric when the constant

is not changed, and ∆a and ∆m are the changes in a and m respectively when the

constant was altered ± 10% (Sauvage et al., 2003; Holt et al., 2006).

Principal component analysis (PCA) was used on sensitivity scores from each

external potassium concentration. The top two principal components (PCs) were

used for visualisation and interpretation of results. The prcomp() function in R

3.3.3 (R Core Team, 2017) was used to carry out PCA.
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2.3 Results

2.3.1 Plant Growth Experiments

The mass of IR64 rice plants was influenced by the external solution potassium

concentration and little growth occurred on average between 63 and 84 days after

transfer to hydroponics (Figure 2.1). The plant mass on transfer to hydropon-

ics had a mean average of 0.15 (0.13, 0.17; 95% confidence interval) g FW. The

root to plant mass ratio approximately halved during the first 21 days of growth,

declining from an initial value of 0.275 (0.266, 0.283) to an average across the

five potassium treatments of 0.173 (0.165, 0.1825). After 21 days, ratios remained

relatively stable (Figure 2.2). Root to plant mass ratios were statistically signifi-

cantly different between potassium treatments at 63 days (ANOVA, F 4,10 = 8.15,

P = 0.004). Post-hoc testing using Tukey’s range test revealed statistically signif-

icant (P <0.05) lower root to plant mass ratios for plants in the 10 µM treatment

compared to the 500 µM treatment.

The tissue potassium concentrations also varied in response to the external solution

potassium concentration (Figure 2.3). Root and shoot potassium concentrations

remained quite stable in the 500, 1,000, and 5,000 µM potassium treatments, but

concentrations declined in the lower potassium treatments. Shoot (ANOVA, F 4,10

= 20.4, P = 8.5 x 10−5) and root (ANOVA, F 4,10 = 22.6, P = 5.4 x 10−5) potas-

sium concentrations differed between treatments after 63 days of growth. Post-hoc

testing using Tukey’s range test revealed statistically significant (P <0.05) lower

shoot potassium levels in the 10 and 100 µM treatments compared to the highest

three. For roots, the tissue potassium concentrations were statistically significantly

lower when plants were grown with 10 µM external potassium compared to the
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Figure 2.1: Shoot (A) and root (B) fresh weights from Experiments 1 and 2. Each point
represent a mean of three plants. Error bars were not included on the plots to aid clarity.
For reference, standard errors were on average 10.5% and 10.2% of means for shoots
and roots respectively. Note the logarithmic scale on the vertical axis. Data are from
Experiments 1 and 2 with points at the sampling dates outlined in Section 2.2.1.
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Figure 2.2: Root to plant mass ratio of IR64 rice plants grown in nutrient solutions with
five different potassium concentrations. Each point represents a mean of three plants.
Error bars were not included on the plots to aid clarity. For reference, standard errors
were on average 7.0% of means. Data are from Experiments 1 and 2 with points at the
sampling dates outlined in Section 2.2.1.
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Figure 2.3: Shoot (A) and root (B) potassium concentrations from Experiments 1 and 2.
Each point represent a mean of three plants. Error bars were not included on the plots
to aid clarity. For reference, standard errors were on average 8.3% and 10.9% of means
for shoots and roots respectively. Data are from Experiments 1 and 2 with points at the
sampling dates outlined in Section 2.2.1.

other four treatments. The mean average shoot potassium concentration in the

highest three potassium treatments across the samples was 102 (99, 106) µmol (g

FW)−1 and the average root potassium concentration in the same treatments was

56 (54, 59) µmol (g FW)−1.

Average uptake rates per gram of root per day for plants sampled after 21, 42,

and 63 days are presented in Figure 2.4. A non-linear regression fit of the data

resulted in an estimated maximum uptake rate of 63.2 (55.6, 72.7) µmol (g root

FW)−1 d−1 and a half-saturation constant of 63 (42, 103) µM.

Data for the net translocation rate of potassium from roots to shoots and the
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Figure 2.4: Net uptake rates of potassium per gram of root per day relative to the external
solution potassium concentration. Points were calculated using the net assimilation rate
formula from Williams (1948) using the means of three plants for inputs. The curve
represents a non-linear regression fit to these data using a Michaelis-Menten-type function.
Data are from Experiments 1 with points at the sampling dates outlined in Section 2.2.1.
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Figure 2.5: Net translocation rates of potassium from roots to shoots relative to the
average root potassium concentration between consecutive samples (0, 21, 42, and 63
days post-transfer to hydroponics). Points were calculated using the net assimilation rate
formula in Williams (1948) and the means of three plants for inputs. The curve represents
a regression fit to these data using a Hill-type function. Data are from Experiments 1 with
points at the sampling dates outlined in Section 2.2.1.

results of a non-linear regression fit of a Hill-type function are shown in Figure 2.5.

This analysis found a maximum net translocation rate of 13.3 (11.3, 21.0) µmol (g

shoot FW)−1 d−1 and a half-saturation root concentration of 29 (22, 51) µmol (g

root FW)−1. The Hill coefficient was found to be 2.8 (1.6, 6.9).

For the growth rate of roots, a non-linear regression analysis using a Hill-type

function (Figure 2.6) found a maximum relative growth rate of 0.113 (0.085, 0.297)

d−1, a half-saturation concentration of 16 (9, 222) µmol (g root FW)−1, and the

Hill coefficient was found to be 1.0 (0.54, 5.8). For shoots, a maximum relative
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Figure 2.6: Root relative growth as a function of average root potassium concentrations
for plants sampled after 0, 21, 42, and 63 days in hydroponics. Each point represents a
value calculated using the mean mass of three plants and the curve represents a regression
fit to these data using a Hill-type function. Data are from Experiments 1 with points at
the sampling dates outlined in Section 2.2.1.

growth rate of 0.103 (0.095, 0.142) d−1, a half-saturation concentration of 40 (37,

61) µmol (g shoot FW)−1, and a Hill coefficient of 3.2 (1.4, 6.1) was found (Figure

2.7).

Finally, fitting a Hill-type function to yield data (Figure 2.8) resulted in a max-

imum yield of 3.7 (2.8, 7.6) g DW and a shoot mass at which the grain mass is

half of its maximum of 22.2 (18.2, 45.2) g DW. The Hill coefficient was found to

be 12.1 (1.8, 22.4).
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Figure 2.7: Shoot relative growth rates as a function of average shoot potassium con-
centrations for plants sampled after 0, 21, 42, and 63 days in hydroponics. Each point
represents a value calculated using the mean mass of three plants and the curve represents
a regression fit to these data using a Hill-type function. Data are from Experiments 1 with
points at the sampling dates outlined in Section 2.2.1.
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Figure 2.8: Grain mass relative to shoot mass of plants grown at five different external
potassium concentrations. Each point represents the grain and shoot mass of one plant.
The curve represents a non-linear regression fit to these data using a Hill-type function.
Data are from Experiments 2.
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2.3.2 Model Parametrisation

Parameter values used in this study are listed in Table 2.2. Maximum likelihood

estimates from the non-linear regressions carried out on IR64 growth data were

used for κ, φ, θ, βroot, σroot, βshoot, σshoot, ν, and λ (Section 2.3.1). An impor-

tant finding from the growth experiments is that the root to plant mass ratio

is not stable during vegetative growth, with a notable decline relatively early in

development (Figure 2.2). This is consistent with reports by White (1993) and

Yoshida (1981). At the same time, plants supplied with potassium concentrations

of 500 µM or greater maintained stable tissue potassium concentrations (Figure

2.3). Figures 2.5 to 2.7 suggest that net translocation from root to shoot was

unaffected by plant age and that the root, but not the shoot, relative growth rate

was lower early in growth. This is in keeping with the decline in root to plant mass

ratio in Figure 2.2. Taken together, this information suggests that the net uptake

rate of potassium per gram of root is temporally variable and Figure 2.4 supports

this. Roots were relatively inefficient at taking up potassium early in growth and

this is seemingly compensated for by the greater root to plant mass ratio. The

uptake rate per gram of root is also lower later in the growth cycle when growth

rates decline, as was found by Fageria (1976). Overall, it appears that differences

in root to plant mass ratio are compensated by how efficiently each gram of root

tissue can absorb potassium from the external solution, allowing tissue potassium

concentrations to remain stable under adequate potassium supply.

Using the point estimates of parameters from the regression analyses (Section 2.3.1)

resulted in simulated plants which failed to respect the empirical observations of

constant root and shoot potassium concentrations in plants exposed to potassium-

replete conditions (Figure 2.3). With the above in mind, the most parsimonious

explanation for this was the observed temporal variation in potassium uptake and
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use which was not accounted for in regression models. In order to address this

without increasing model complexity, plants were modelled as having a constant

root to plant mass ratio adopting the stable value of 0.17 that was reached 21 days

after transfer to hydroponics with potassium concentrations above 10 µM. Given

the parameter estimates from the regression analyses and assuming stable tissue

potassium concentrations of 56 and 102 µmol (g tissue FW)−1 (Figure 2.3) as well

as a relative growth rate of 0.1 (Section 2.3.1) with 1,000 µM external potassium,

the maximum rate constants (µ, χ, αroot, and αshoot) that account for the temporal

variability present in rice plant development were calculated (Appendix Section

6.1.1). All of these values fall within the relevant 95% confidence intervals from

the regression analyses (Section 2.3.1). The resultant set of parameter values

(Table 2.2) were used in the subsequent analyses.
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Table 2.2: Summary of model parameters used in this study.

Parameter Units Value

ω g FW 0.15

δ - 0.17

γroot µmol K+ (g root FW)−1 56

γshoot µmol K+ (g shoot FW)−1 102

µ µmol K+ (g root FW)−1 d−1 58.9

κ µM K+ 63

χ µmol K+ (g shoot FW)−1 d−1 11.8

φ µmol K+ (root FW)−1 29

θ - 2.8

αroot d−1 0.129

βroot µmol K+ (g root FW)−1 16

σroot - 1.0

αshoot d−1 0.105

βshoot µmol K+ (g shoot FW)−1 40

σshoot - 3.2

ν g seed DW 4

η g shoot FW 37

λ - 12

The regression analysis for seed yield used shoot dry mass at harvest to allow

meaningful comparison across potassium treatments. The maximum likelihood

mass at which seed yield was half of its highest value was found to be 22.2 g

which was 65% of the mean shoot dry weight of flowering rice plants (34.4 g DW).

The mean fresh weight of plants grown in the same treatments after 63 days of

hydroponics was 57.66 g and so ν was set at 37 g FW.
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2.3.3 Sensitivity Analysis

The largest two PCs for metric sensitivities to alterations in model parameters in

simulated rice plants grown with 10 and 100 µM fixed external potassium concen-

trations are displayed in Figure 2.9 and 2.10. In each case, the largest two PCs

explained over 85% of the variance in sensitivities of metrics to model parame-

ters. This means that the largest two PCs sufficiently summarise the findings from

the sensitivity analyses and that meaningful inferences can be made from plotting

metrics PCA scores.
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Figure continued on next page.
58



Figure 2.9: Metric scores in the largest two principal components which explain 75% (first)
and 17% (second) of the variation respectively with a fixed external potassium treatment
if 10 µM. Each dot represents a metric score and labels give the metric identities. Sub-
plot A shows the PCA scores of all metrics used in this study for the top two principal
components. B shows the loadings of model parameters superimposed on metric scores
and C is the same as sub-plot A, but zoomed in on the main cluster of metrics. Metric
abbreviations are as defined in Table 2.1.
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Yield Metrics

Seed yield-related metrics (HI and GY) are consistently distinct in their sensitivi-

ties from the rest of the metrics in the first PC (Figures 2.9 and 2.10). Under 100

(Figure 2.10) and 950 µM (Appendix Figure 6.1) conditions, these two metrics are

also different from the major cluster of KUE metrics in the second PC. Inspec-

tion of the parameter loadings (Figures 2.9B and 2.10B) reveals that the unique

sensitivities of HI and GY to η, ν, and λ are important causes of this distinction.

However, other model parameters are also highly relevant. In particular, βroot,

κ, and ω are important in both the 10 and 100 µM simulations. These point to

early growth vigour (ω) and the abilities to maintain root growth and potassium

uptake as being key drivers of maintaining seed yield under moderate stress. Un-

der more extreme stress, such as 10 µM external potassium (Figure 2.9B), several

other model parameters become important determinants of metric scores on the

first PC.

The maximum theoretical shoot RGR (αshooot) has a relatively small loading on

the largest principal component for both external potassium concentrations. Fur-

thermore, the theoretical maximum net translocation rate from root to shoot (χ)

either has little impact on PC1 (with 10 µM external potassium) or is negatively

associated with HI and GY with 100 µM external potassium. Taken together, this

suggests that maintenance of the root mass and root to shoot ratio are of primary

importance under potassium stress. The parameters in Equation 2.4 are the key

determinants of HI and GY being separate from the other metrics under higher

potassium treatments (Appendix Figure 6.1). However, this separation only oc-

curs in the second PC, which suggest that when potassium is non-limiting there

is greater similarity in response of yield and vegetative metrics to differences in
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Figure continued on next page.
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Figure 2.10: Metrics scores in the largest two principal components which explain 63%
(first) and 24% (second) of the variation respectively with a fixed external potassium treat-
ment if 100 µM. Each dot represents a metric score and boxes give the metric identities.
Sub-plot A shows the PCA scores of all metrics used in this study for the top two principal
components. B shows the loadings of model parameters superimposed on metric scores
and C is the same as sub-plot A, but zoomed in on the main cluster of metrics. Metric
abbreviations are as defined in Table 2.1.
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physiological traits.

Long-term plant mass metrics had more in common with the vegetative KUE

metrics in this study. In particular, the long-term root (RL), shoot (SL), and plant

(PL) mass had relatively similar sensitivities to content measures after four weeks

of treatment (QR, QS, and QP). Short term mass metrics (R, S, and P) showed

some similarity to their long-term counterparts, especially with 10 µM external

potassium. Potassium content metrics include tissue potassium concentrations as

well as mass which together is more relevant to the potential future growth of a

plant.

Utilisation Metrics

A relationship exists between utilisation efficiency metrics (KUtR, KUtI, AP, NP,

and PE; Table 2.1) and the uptake of potassium. All of these are negatively

associated with values of parameters related to greater uptake of potassium such

as αroot and µ (Figure 2.11). This is the case because the metrics relate biomass

production to tissue potassium concentration or content and limiting the uptake

of potassium makes the denominator smaller in the calculation of these metrics.

At the same time, these metrics are also increased through greater αshoot which

makes the numerator larger.

Among the utilisation efficiency metrics, PE is the least similar to the other utilisa-

tion metrics on the bi-plots (Figures 2.9A and 2.10A). PE responds in the opposite

direction to the rest of the utilisation metrics for γroot, γshoot, and βshoot. This

is due to PE comparing mass and potassium content between plants in stressed

and replete conditions. These differences in responses favour plants in replete con-

ditions that grow less well and this overrides the relationship between utilisation

efficiency under potassium stress. Furthermore, PE is generally more sensitive to
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Figure 2.11: Sensitivity profiles of potassium utilisation metrics simulated in a constant
10 µM external potassium solution for 28 days. Metric abbreviations are defined in Table
2.1.
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changes in model parameters than the other utilisation metrics (Figure 2.11).

KUtI is also somewhat distinct from KUtR, AP, and NP (Figure 2.11). It has

a relatively high sensitivity to the initial plant mass (ω) and is also responds

differently to decreasing the uptake capacity of plants. For example, the sensitivity

to µ is positive while it is negative for the other utilisation metrics. For αroot, the

sensitivity is much smaller for KUtI.

Ratio Metrics

The sensitivities of ratio metrics to changes in plant physiology are strongly influ-

enced by the external solution potassium concentration. These metrics have values

near unity when concentrations are high and respond very similarly to changes in

model parameters (Appendix Figure 6.1). However, once stressed for potassium,

the responses of these metrics to differences in physiology were less similar. At 10

and 100 µM external potassium concentrations, RCR and RQR become separate

from the main cluster of KUE metrics. This is primarily due to sensitivities that

relate to decreasing the root to shoot ratio and the movement of potassium to the

shoots (e.g. increased αshoot and χ or decreasing αroot).

Besides RCR and RQR, the remaining ratio metrics were grouped together at 100

µM external potassium, although RR was closer to utilisation measures than other

ratios, particularly KUtR and NP. More extreme stress at 10 µM resulted in the

PCA scores of this group splitting up. The shoot and plant mass ratios (RS and

RP) were clustered with tissue potassium metrics while the relative shoot and

plant potassium metrics (RCS, RQS, RQP) as well as RR respond to changes in

plant physiology similarly to utilisation metrics. The cause of this split appears

to be the different ways these two groups of ratio metric respond to alterations in

the shoot growth rate (Figure 2.9B and 2.12). RCR and RQR remained distinct

from the main group of metrics at both 10 and 100 µM external potassium.
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Figure 2.12: Sensitivity profiles of ratio metrics simulated in a constant 10 µM external
potassium solution for 28 days.
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Ratio metrics also had potentially troublesome sensitivities. Ratios of tissue potas-

sium (RCR, RCS, RQR, RQS, and RQP) were found to have negative associations

with the maximal uptake rate (µ) among other relationships that appear counter-

productive if the aim is to keep tissue potassium high. Similarly, the mass ratios

(RR, RS, and RP) have sensitivities which are negatively associated with strong

growth of these tissues (Figure 2.12). The reason for this is similar to the link

between better utilisation and worse uptake discussed above. Plants that perform

worse under replete conditions lose less under stress and so can attain higher values

for ratios with only moderate performance under low-potassium stress.

Tissue Potassium Metrics

The tissue potassium class of metrics mostly groups together across the potassium

treatments (Figures 2.9 and 2.10). The exceptions to this are CR and QR which

are separate from the major cluster of metrics once the external solution potassium

concentration approaches the millimolar range (Appendix Figure 6.1). Sensitiv-

ities in this group relate strong uptake but also slower growth in shoots (Figure

2.13). Improved uptake efficiency of the root system (e.g. greater µ) or through

a larger root mass (e.g. greater αroot) both aid the ability of a plant to source

potassium from the external solution. The strong sensitivity to a larger root to

plant mass ratio (δ) suggests that a larger root mass relative to the shoot mass is

also beneficial to these metrics. These notions are supported by sensitivities that

favour decreasing the net translocation of potassium from roots to shoots (e.g.

smaller χ and larger φ). This also serves to diminish the growth of the shoot mass

which can lessen the dilution of tissue potassium concentrations and also means

more potassium can be held in the roots under stress rather than needing to be

transported to the shoot.

The direction of responses in sensitivities is quite consistent across this class of
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Figure 2.13: Sensitivity profiles of tissue potassium metrics simulated in a constant 10 µM
external potassium solution for 28 days. Metric abbreviations are defined in Table 2.1.

metrics, although some small differences are apparent such as in γshoot and θ (Fig-

ure 2.13). There are more pronounced differences in the magnitude of responses to

alternations in model constants. For example, there was a split between the con-

centration (CR and CS) and content (QR, QS, and QP) metrics in their responses

to the initial plant mass, ω. The content metrics responded positively to a larger

value of ω at which the concentrations were essentially unaffected.

Plant Mass Metrics

Short-term plant mass metrics (R, S, and P) were consistently part of the major

cluster of metrics across simulated potassium treatments (Figures 2.9 and 2.10,
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Appendix Figure 6.1). S and P are more similar to each other than to R which is

due to the plant mass being predominantly derived from the shoot. This split is

apparent on bi-plots (Figures 2.9 and 2.10) and sensitivities profiles (Figure 2.14).

The root mass is aided by poorer growth of the shoots (e.g. lower αshoot or higher

βshoot) while the opposite is true for the shoot and plant mass. This is because a

greater shoot mass means that more potassium is required by the shoot, leaving

less for the root when potassium is limited. The responses to parameters for net

translocation (χ, φ, and θ) suggests that all three mass metrics are somewhat im-

proved by decreasing the flow of potassium to the shoot. In those circumstances,

shoots can gain potassium through having a larger root mass to source potassium

and supply them and so prioritising uptake over translocation which is especially

beneficial during potassium stress. Evidence in favour of this is that the sensitiv-

ities to these translocation parameters approach zero as the external potassium

concentration is increased. At an external potassium concentration of 950 µM, the

sensitivities of S to χ, φ, and θ were -0.014, -0.011, and 0.0034 respectively.

2.4 Discussion

2.4.1 Growth Experiments and Choice of Model

The finding that plant growth rates (Figure 2.1) and tissue potassium concentra-

tions (Figure 2.3) are similar when the external potassium concentration exceeds

100 µM is consistent with several previous studies (e.g. Asher and Ozanne, 1967;

Fageria, 1976; Spear et al., 1978a). Furthermore, a marked decline in the root to

shoot ratio has also been reported before (Fageria, 1976; Yoshida, 1981; White,

1993). The link between seed mass and shoot mass was also in keeping with

previous studies (Abbadi et al., 2008; Ma et al., 2013).
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Figure 2.14: Sensitivity profiles of plant mass metrics simulated in a constant 10 µM
external potassium solution for 28 days.
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The uptake of potassium by plant roots has previously received some attention in

modelling studies In these, saturating dynamics are typically described (Claasen

et al., 1986; Silberbush et al., 1993; Roshani et al., 2009; Samal et al., 2010).

Some of these models consider uptake from the soil which may require more com-

plex models than was necessary in this study which used idealised solutions with

fixed potassium concentrations. The impact of such added complexity on metric

sensitivities would form an interesting future direction and it would be of great

importance to know if KUE metrics respond differently in solution culture and

soil. Previous experimental work (Yang et al., 2003; Yang et al., 2004) suggests

that initial screening in hydroponics prior to field tests is a useful methodology,

but may rely on specific metric selection. In this study, more complex relationships

such as a Hill-type function for uptake or including the influence of internal tis-

sue concentrations as proposed by Siddiqi and Glass (1982) did not offer a better

model of the data from the growth experiments given the extra parameters required

based on the Bayesian Information Criterion (BIC; Schwarz, 1978) which can be

used to find parsimonious models. Figure 2.4 shows that a Michaelis-Menten-type

formalism adequately described the dynamics for net uptake as a function of the

external solution potassium concentration. However, there was some temporal

variation apparent when comparing the uptake rate at day 42 against 21 and 63

days post-transfer to hydroponics.

The root to plant mass ratio was not constant across the treatment period (Figure

2.2) but tissue concentrations (Figure 2.3) and growth rates (Figure 2.1) were

quite stable across the first 21 days post-transfer to hydroponics. This suggests

that the younger plants were relatively inefficient at potassium absorption and

have to invest in a relatively large root biomass (Figure 2.4).

The net uptake parameters (µ and κ) were assumed constant along with the root

to plant mass ratio in this study. As a result, the apparent temporal variation in

uptake (Figure 2.4) and root to plant mass ratio (Figure 2.2) were not modelled

explicitly. Future work could examine the impact of these factors on metric sensi-
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tivities, but if the variation in net uptake occurs for the reasons suggested above,

it is unlikely to have a large impact on results.

The translocation of potassium around a plant is a complex process and involves

movement of potassium through xylem and phloem vessels (Section 1.2.3). The

transport of nutrients in plants has been the subject of some prior theoretical

analysis and models range from relatively simple relationships (e.g. Thornley,

1969 and 1972) to more complex mechanistic models (e.g. Hölttä et al., 2009).

Figure 2.5 shows that the net translocation of potassium from roots to shoots

in IR64 plants closely followed a sigmoidal relationship with the root potassium

concentration. This is consistent with declines in shoot concentrations that tend

to lag those in root concentrations (Asher and Ozanne, 1967; Spear et al., 1978;

White and Karley, 2010) but does not reveal any insights into how potassium

translocation is controlled. Xylem (Jeschke et al., 1992; Jeschke et al., 1997; Peuke

et al., 2002) and phloem (Marschner et al., 1996; Peuke et al., 2002) fluxes have

been found to be influenced by several factors including potassium availability, the

presence of competing cations, and the plant status in relation to other nutrients.

Nevertheless, the Hill-type function displayed in Figure 2.5 adequately summarises

the partitioning of potassium between roots and shoots.

The growth of plant tissues in response to their internal potassium concentration

follows a saturating relationship based on the data collected in this study (Figure

2.6 and 2.7) and others (Hommels et al., 1989; White, 1993; Jordan-Meille and

Pellerin, 2008). Interestingly, the data from this study point to root and shoot

tissues responding differently to their internal potassium concentrations. While

the maximal recorded relative growth rates appear quite similar (in the region of

0.1 g g−1 d−1), the half-saturation points for these relationships were 16 µmol (g

FW)−1 for roots and 40 µmol (g FW)−1 for shoots. These values are consistent

with the data of White (1993) using rye and may reflect a wider phenomenon

found in many plant species. Further support for this is the fact that root potas-

sium concentrations are generally reported to be lower than the shoot potassium
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concentration, regardless of the external potassium treatment (Asher and Ozanne,

1967; Spear et al. 1978a; Ma et al., 2013; Ahmad et al., 2016).

Figures 2.6 and 2.7 show relative growth rates as a function of shoot and root

potassium concentration respectively. In both cases the experimental data were

fitted using a Hill-type function, but while the maximum likelihood Hill coefficients

for roots was 1, it was 3.2 for shoots. This difference may point to a physiolog-

ical difference or it could indicate that root growth rates also follow a sigmoidal

relationship with the tissue concentration and that the sample size in this study

was not sufficient to resolve this relationship. Figure 2.6 shows that the measured

relative growth rates remained high when root potassium concentration was ap-

proximately 30 µmol (g root FW)−1 or higher but rates rapidly declined in the

presence of less than 20 µmol (g root FW)−1. However, further data points with

extremely low root potassium concentrations would help to further explore this

trend.

The correlation between seed and shoot mass was best described by a sigmoidal

function (Figure 2.8). This is consistent with several other reports across several

species (Brohi et al., 2000; Yang et al., 2004; Abbadi et al., 2008; Fageria et al.,

2013; Ma et al., 2013) but a relatively high Hill coefficient was observed in this

study compared to the previous literature. It was noted that the 95% confidence

interval was quite wide for this parameter. The data are also quite spread out

around the line of best fit and the true underlying relationship between shoot and

grain mass may well decline more slowly. A further issue is experimental variability.

For example, the flowering time was around 69 days in Experiment 1 and 104 days

in Experiment 2. Repeating the analyses presented here with a smaller λ did not

alter the results from the sensitivity analysis qualitatively (not shown).

Taken together, the data collected from IR64 rice growth experiments is consistent

with the broader literature and the relationships presented adequately describe

the key dynamics of this system. It is therefore suitable to use the resultant
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parameters in a model of potassium use efficiency in crop plants. Furthermore,

the broad agreement between experimental results in this study and others across

a number of plant species suggests that the model can be applied to crops other

than rice.

2.4.2 Sensitivity Analysis of Potassium Use Efficiency Metrics

Sensitivity analysis on the model developed in this study revealed how metrics pre-

viously used in the literature to study KUE inter-relate across different external

potassium concentrations. In doing so, it was revealed that the classes of met-

ric, as defined by their calculation (Table 2.1), are often meaningful and, within

the same class, tend to have similar sensitivities to changes in plant physiology.

Therefore, using one metric from most of these classes would be sufficient to fully

explore KUE, a notion that agrees well with the previous literature (Baligar et al.,

2001; Good et al., 2004; White, 2013). Indeed, the commonly reported utilisation

metrics had quite similar sensitivities to altered physiological processes. However,

exceptions to this existed. PE was the most distinct from the other utilisation

metrics, but these differences are relatively small compared to differences between

classes. The ratio group showed strong differences in sensitivities and these were

not constant across potassium treatments (Figures 2.9 and 2.10).

The ratio metrics have highly similar sensitivities at relatively high external potas-

sium concentrations (Appendix Figure 6.1) but metrics within this class become

increasingly distinct as potassium becomes more limiting (Figure 2.9 and 2.10 and

Section 2.3.3: Ratio Metrics). Ratios of root potassium concentration and content

were distinct from both the other ratios and from other metrics. The relative shoot

and plant mass after 28 days of treatment was somewhat distinct from ratios of

shoot potassium concentrations (RCS) as well as the relative root mass (RR) at 10

µM external potassium, but not at 100 µM. As screen studies often use nutrient

solutions which have potassium concentrations up to 100 µM for a stress treatment
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(Yang et al., 2003; Fan et al., 2013; Ju et al., 2014), the use of three metrics such

as RP, RCS, and RCR would cover the diversity of the ratio metrics observed in

this study (Figure 2.9A).

This study also highlighted potential weaknesses in metrics. Plants with worse

maximal uptake rates per gram of root per day (µ) scored better for most utilisation

(Figure 2.11) and ratio metrics (Figure 2.12). This negative association between

uptake and utilisation is in agreement with empirical results (White et al., 2010;

Chapter 3) and reflects how utilisation and uptake can conflict. More generally,

scores for ratio metrics were improved when parameters were changed such that

plants performed poorly under potassium replete conditions (e.g. lower αroot for

most of the ratios and αshoot for RS and RP). Such sensitivities have important

implications for screening studies since genotypes that are found to be highly

efficient do not necessarily show growth and yield traits that are agriculturally

desirable.

Undesirable associations between metrics and physiology can potentially be ame-

liorated. Inclusion of physiologically relevant measures as co-factors in statistical

analyses could be used to control for unwanted associations. Some of the pa-

rameters in this model are relatively simple to measure experimentally, such as

the initial plant mass or root to shoot ratio, while others can be estimated. The

amount of potassium a plant contains divided by the root mass under potassium

replete conditions could be used as a proxy of the maximal uptake rate, for exam-

ple. Other parameters would be more challenging to measure, such as the separate

determination of relative growth rates of roots and shoots. While a whole plant rel-

ative growth rate can be calculated, some metrics respond oppositely to increases

in root and shoot relative growth rates (e.g. Figures 2.11, 2.12, and 2.14).

It was noted that KUtI responded differently to alterations in potassium uptake

parameters (µ and κ) compared to the other utilisation metrics. This could be a

reason to use KUtI because it would appear to not select for poor uptake. However,
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KUtI is sensitive to differences in the initial shoot potassium concentration (γshoot)

and plant mass (ω). Depending on the study, these two parameters could be used

as co-variates with KUtI in statistical analyses, but collecting the necessary data

may be intractable in large scale screens. Furthermore, of the utilisation metrics,

AP, NP and KUtR grouped closely and these represent the most reliable utilisation

metrics found by Moriconi and Santa-Mar̀ıa (2013).

Previous studies have found conflicting evidence for a link between vegetative

metrics used in KUE studies and yield (Woodend and Glass 1993; George et al.,

2002; Yang et al., 2003; Damon and Rengel et al., 2007). This study shows that

grain yield-related metrics are distinct from vegetative metrics and this is partly

due to how the production of seeds responds to potassium stress (i.e. parameters

in Equation 2.4), much as suggested by Damon and Rengel (2008). However,

under more extreme potassium stress (cf. Figures 2.9 and 2.10, B sub-plots), the

influence of other physiological processes become relatively more important. This

points to a relevance for both strong uptake and high utilisation of potassium. In

the context of this study, there was little similarity between vegetative metrics and

HI and GY on the first principal component. In the second PC, ratios of shoot

potassium concentration and content as well as plant content were most similar

in 10 µM conditions (Figure 2.9A). With an external potassium concentration of

100 µM potassium, ratios of root potassium concentration and content were most

similar to seed yield-related metrics (Figure 2.10A). This suggests a difference in

optimal strategy where, depending on the severity of potassium stress, potassium is

directed towards the shoot unless it is extremely limited, at which point preserving

root potassium levels is more beneficial.

In future modelling of plant responses to potassium stress and measuring KUE,

the relevance of metrics for experimental design could be explored. For example,

studies where plants are starved of a nutrient have been recommended to measure

utilisation without a distorting effect from uptake (Rose et al., 2011; Santa-Mar̀ıa

et al., 2015) and this study has shown that metric sensitivities can change in
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response to potassium supply. The length of time of a study is also potentially

important and a cursory analysis of this using the methods outlined above found

that little change in metric sensitivities occurred as long as an experiment lasted

long enough for tissue potassium concentrations to decline (i.e. a few days at

least). One notable exception was the relationship between long-term mass (RL,

SL, and PL) with their short term counterparts and potassium contents. R, S,

and P became increasingly reliable predictors of RL, SL and PL respectively and

outperformed QR, QS, and QP as the treatment time approached the flowering

time. One interesting avenue for research would be to examine how altering several

physiological parameters at once influences sensitivities and plant performance.

An exploratory analysis of this using the model presented in this study and a

Markov chain Monte Carlo technique found that metrics tended towards imposed

extremes in the same directions as found in sensitivity profiles (Figures 2.11 to

2.14) reported here. Furthermore, there is a potential to define new metrics which

may be useful in screening KUE. Geometric means of metrics used in this study

are one potential option. This study used changes of ± 10% of parameter values to

explore the sensitivities of metrics as responses were approximately linear in this

range. Large changes can elicit non-linear relationships between metrics and their

responses to changes in model parameters which are not adequately captured by

Equation 2.5. Exploration of the impacts of larger changes to plant physiology may

prove to be a profitable way to further explore how KUE can best be optimised

beyond what has been shown in this work.

2.4.3 Conclusions

In summary, this study used a simplified model for the uptake and distribution of

potassium in plants parametrised based on growth experiments in IR64 rice. The

sensitivities of metrics to changes in the external potassium concentration and a

range of physiological processes were determined and in doing so, key physiological

influences were revealed. Furthermore, principal components analysis showed how
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various metrics compared with each other and the links between vegetative metrics

and yield were explored and revealed how suitable metrics can change in response

to external potassium availability. Based on these outcomes, a more informed

selection of metrics can be made which more fully addresses the complexity of

KUE in screening studies.
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Chapter 3

Characterisation of Potassium

Use Efficiency in Rice (Oryza

sativa L.) and its Underlying

Physiology

3.1 Introduction

Rice is a major crop with approximately 500 million tonnes of milled grain pro-

duced each year from over 160 million hectares of agricultural land worldwide

(FAO, 2015). It is considered a crucial food source for over three billion people

(Ali et al., 2011; McCouch et al., 2016) because rice supplies a large proportion

of calories consumed in many countries, including over half of those consumed

in Bangladesh, Cambodia, and Vietnam (IRRI, 2017). At the same time, agri-

cultural soils around the world are increasingly subject to widespread potassium

deficiency. For example, 75% of Chinese rice paddies are believed to suffer potas-

sium exhaustion (Römheld and Kirkby, 2010) and potassium is considered to be
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the most limiting nutrient in rice production (Yang et al., 2005). A lack of potas-

sium can result in lost yield. For example, 26% of yield was lost with insufficient

potassium fertilisation in maize (Dai et al., 2013). Off-take of potassium that was

not balanced by intakes has caused soil potassium levels to deplete (Dobermann

et al., 1998; Hoa et al., 2006; Pathak et al., 2010).

To meet future food demand in the face of a growing global population, it is

imperative that gains in agricultural output are secured. While potash is not a

limited resource, and will without doubt help to raise and maintain soil potassium

levels, the uneven distribution of its production between the Northern and South-

ern hemispheres (USGS, 2016) is an issue due to cost and environmental impacts

of transport. Furthermore, deep-leached soils are often found in the Southern

hemisphere which can limit the effectiveness of potash fertilisers (Leonardos et al.,

2000). Another risk factor is price spikes similar to the one observed between 2008

and 2010, when the price of potassium chloride more than quadrupled from under

US$ 200 in June 2007 to over US$ 870 in February 2009 (World Bank, 2017).

Furthermore, the transport, mining, and application of potash fertilisers can have

negative environmental consequences (Ciceri et al., 2015; Sardans and Peñuelas,

2015). Taken together, these issues may limit the effectiveness of increased potas-

sium fertilisation.

A complementary approach is to improve the potassium use efficiency (KUE) of

crops so that they require lower potash inputs but still yield adequately (see Chap-

ter 1 for a discussion of KUE definitions). Evidence exists for variation in KUE

within and across plant species (e.g. Trehan et al., 2005; Damon et al., 2007; Fan

et al., 2013; Fageria and Melo, 2014), suggesting that natural variation may be

exploited in the production of new elite cultivars. Links between KUE and phys-

iological traits that can improve it have been proposed. For example, improved

uptake capacity could be achieved through increasing the root surface area with

root hairs (Høgh-Jensen and Pedersen, 2003), greater root length (Samal et al.,

2010, or mobilisation of soil potassium using root exudates (Liebersbach et al.,
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2004; Trehan et al., 2005). Better utilisation of potassium within plant tissues

could be achieved through more efficient distribution at the tissue and cellular

level, replacement of potassium in biophysical processes with other cations and

osmotica, and maintenance of key physiological processes such as water use and

photosynthesis during potassium stress (see reviews by Rengel and Damon, 2008;

White, 2013; Wang and Wu, 2015).

In rice, evidence exists for considerable variation in KUE among cultivars. Yang

et al. (2003) found that grain utilisation efficiency (the ratio of grain mass to

potassium content, g DW (mg K+)−1) was approximately 40 % lower in ineffi-

cient varieties when compared to the most efficient, while seven-fold variation in

grain yield efficiency index was described by Fageria et al. (2013). Similar levels

of variation in potassium uptake rate have been reported by Liu et al. (2009).

Potassium utilisation by shoots has been found to have 1.5-, and 6-fold variation

in indica (Liu et al., 2009) and lowland (Yang et al., 2003) rice cultivars respec-

tively. Greater utilisation efficiency at the seedlings stage was found to correlate

positively with grain utilisation efficiency and efficient genotypes were found to

be better able to maintain their tillering, photosynthetic, and grain filling rates

(Yang et al., 2004). Such diversity could be exploited in breeding programmes to

improve crop KUE.

In this study, KUE in rice genotypes from all major sub-populations was char-

acterised for the first time for cultivars from the Rice Diversity Panel 1 (RDP1;

Zhao et al., 2011; Eizenga et al., 2014). This panel is made up of cultivars and

landraces from the five rice subpopulations (aus, indica, temperate japonica, tropi-

cal japonica, and aromatic) as well as admixtures (Eizenga et al., 2014). KUE was

assessed using six metrics which capture different aspects of the plant response

to low potassium stress based on a mathematical analysis of KUE measurement

(Chapter 2). Metrics include plant mass, potassium utilisation, and the amount

of potassium a plant contains after four weeks of low-potassium conditions as well

as ratios of plant mass and tissue potassium concentrations under low and re-
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plete potassium conditions. Evidence for differences in KUE at the genotype and

sub-population levels was found. The links between these differences and plant

physiological parameters were also explored and revealed key drivers of variation

in rice KUE.

3.2 Methods

3.2.1 Plant Growth

Five seeds from each of 324 cultivars (see Supplementary Information file “riceGeno-

types.xlsx”) were germinated in sand flooded with deionised water. Seedlings were

grown for two weeks prior to transfer to hydroponics. The two most visually sim-

ilar seedlings were weighed before placement in 335 x 210 x 140 mm black plastic

boxes filled with 9 litres of an adapted Yoshida nutrient solution (Yoshida et al.,

1976) as described in Section 2.2.1. Potassium was added as KCl and the solution

had an initial pH of 5.5. One seedling from each cultivar was placed in a solution

with either 0.1 mM potassium (‘stress treatment’) or 1 mM initial potassium con-

centration. Each box held fifty-four plants arranged according to an alpha lattice

design (Patterson and Williams, 1976; Patterson et al., 1978). The hydroponic so-

lution was changed weekly and the plants were grown for four weeks in a glasshouse

with 12 hour day and night periods with temperatures of 32 and 28 ◦C in the day

and night respectively and a relative humidity between 50 and 60%. Growth trials

were repeated five times.

3.2.2 Trait Measurements

At the end of a four week treatment period, plants were separated into roots and

shoots and weighed. Plant tissues were then dried at 80 ◦C for 72 hours in a fan

oven and re-weighed.
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Root and shoot potassium and sodium concentrations were measured for each plant

by suspending dried tissue sub-samples in 20 mM CaCl2 for twenty-four hours.

The relevant cation concentrations of the resultant solutions were measured using

a flame photometer (Sherwood Scientific, Cambridge, UK).

3.2.3 Trait Calculations

Six KUE metrics were used in this study and are outlined in Table 3.1. These were

all calculated using data from the growth experiments outlined above. Physiolog-

ical traits for use in regression analyses were also calculated from experimental

measurements and are outlined in Table 3.2.

3.2.4 Statistical Analyses

Genotypes with fewer than three measurements for a given trait were excluded from

analyses. Associations between the cultivar and traits were tested by using one-way

multivariate analysis of variance (MANOVA) and analysis of variance (ANOVA)

using the Anova function from the car R package (Fox and Weisburg, 2011). When

the data failed to meet the assumptions of the tests, appropriate Box-Cox power

transformations were calculated using the boxcox() function from the MASS R

package (Venables and Ripley, 2002). Where values for traits are presented, the

values have been back-transformed to the original scale. Post-hoc testing was

carried out using t-tests to identify statistically significant differences between

the individual cultivar means and the grand mean of all genotypes. Multiple

testing was accounted for using a 5% false discovery rate (Benjamini and Hochberg,

1995).

Associations between KUE metrics and physiological traits were identified using

best subsets regression with the regsubsets command in the leaps R package (Lum-

ley, 2017). The physiological traits are listed in Table 3.2. The most parsimonious
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model was selected using the Bayesian information criterion (BIC; Schwarz, 1978).

Where necessary, values used to calculate the KUE metric were removed from each

analysis to avoid redundant correlations. For example, KUtR (Table 3.1) was cal-

culated using the shoot potassium concentration obtained in the potassium stress

treatment and therefore this parameter would not be included as a potential pre-

dictor in the multiple regression analysis of KUtR. The relative importance of each

predictor in the multiple regression model with the lowest BIC was assessed by de-

composing the model coefficient of determination (R2) using the booteval.relimp()

function from the relaimpo R package (Grömping, 2006). Relative importance of

predictors is presented as a percentage of the model R2 (Tables 3.3 to 3.8). Ad-

justed R2 values are also reported. When these two values are similar, it suggests

that there is little redundancy in a model (i.e. explanatory power would be lost

by removing any of the predictors from the model).

All calculations and analyses were carried out using R 3.3.3 (R Core Team, 2017).

Table 3.2: Summary of physiological traits used in multiple regression analyses.

Trait Units Calculation

Initial plant fresh weight,

W0

g plant FW -

Low treatment root

potassium concentration,

KRLT

µmol K+ (g root

DW)−1

-

High treatment root

potassium concentration,

KRHT

µmol K+ (g root

DW)−1

-

Low treatment shoot

potassium concentration,

KSLT

µmol K+ (g shoot

DW)−1

-
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High treatment shoot

potassium concentration,

KSHT

µmol K+ (g shoot

DW)−1

-

Low treatment root

sodium concentration,

NaRLT

µmol Na+ (g root

DW)−1

-

High treatment root

sodium concentration,

NaRHT

µmol Na+ (g root

DW)−1

-

Low treatment shoot

sodium concentration,

NaSLT

µmol Na+ (g shoot

DW)−1

-

High treatment shoot

sodium concentration,

NaSHT

µmol Na+ (g shoot

DW)−1

-

Low treatment potassium

uptake per gram of root,

ULT

µmol K+ (g root

DW)−1

Plant potassium content /

DW

High treatment potassium

uptake per gram of root,

UHT

µmol K+ (g root

DW)−1

Plant potassium content /

root DW

Low treatment potassium

distribution index, KDILT

- shoot potassium content /

root potassium content

High treatment potassium

distribution index,

KDIHT

- shoot potassium content /

root potassium content

Low treatment root to

shoot ratio, RSRLT

- Root DW / shoot DW
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High treatment root to

shoot ratio, RSRHT

- Root DW / shoot DW

Low treatment relative

growth rate, RGRLT

d−1 (ln(Wfinal)-ln(W0))/28

High treatment relative

growth rate, RGRHT

d−1 (ln(Wfinal)-ln(W0))/28

Low treatment fresh

weight to dry weight

ratio, FWDWLT

- plant FW / plant DW

High treatment fresh

weight to dry weight

ratio, FWDWHT

- plant FW / plant DW

3.3 Results

3.3.1 Growth and Cation Concentrations

The solution potassium concentration had a large impact on the growth of rice

plants as well as on the tissue potassium and sodium concentrations. With respect

to growth, the initial plant fresh weight on transfer to hydroponics did not have a

statistically significant difference between treatments (Paired t-test, t633 = -0.33,

P = 0.74). However, the final mass of plants in the 0.1 mM potassium treatment

was on average 60% of the mass of plants in the 1 mM treatment (Paired t-test,

t517 = -17.73, P <2.2 x 10−16 ; Figure 3.1). The root to shoot mass ratio after four

weeks in treatment was statistically significantly higher in the 0.1 mM potassium

treatment (Paired t-test, t631 = 3.16, P = 0.0017), although this difference was
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Figure 3.1: Least squares means for whole plant dry mas of 318 rice genotypes grown in
nutrient solutions with initial potassium concentrations of 0.1 or 1 mM.

small with 0.1 mM potassium plants having an average root to shoot ratio of 0.20

compared 0.19 for those in the 1 mM treatment.

Tissue potassium concentrations were lower when plants were grown in a 0.1 mM

external potassium concentration compared to 1 mM potassium nutrient solutions.

Root concentrations were 70% lower on average in the 0.1 mM potassium treatment

and this was statistically significantly different (Paired t-test, t347 = -35.83, P

=<2.2 x 10−16; Figure 3.2A). Shoots exhibited a greater decline in potassium

concentration across the two treatments, with plants in the lower treatment found

to have only 23% of the potassium concentration found in high treatment plants

(Paired t-test, t360 = -68.75, P =<2.2 x 10−16; Figure 3.2B).
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Figure 3.2: Least squares means for root (A) and shoot (B) potassium concentrations of
318 rice genotypes grown in nutrient solutions with initial potassium concentrations of 0.1
or 1 mM.
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Conversely, tissue sodium concentrations were increased when plants were culti-

vated in the lower external solution potassium concentration. Root sodium con-

centrations were on average 1.9 times greater in 0.1 mM potassium solutions com-

pared to plants given 1 mM potassium (Paired t-test, t479 = 22.26, P =<2.2 x

10−16; Figure 3.3A). This effect was considerably larger in shoots where a 7.1 times

greater average sodium concentration was recorded in the low potassium treatment

compared to the 1 mM external potassium treatment (Paired t-test, t328 = 33.62,

P =<2.2 x 10−16; Figure 3.3B). However, the change in tissue sodium was not

uniform across genotypes. Dividing the root sodium concentrations under low and

high potassium supplies for each genotype revealed that 16 genotypes actually had

a lower root sodium concentration in the 0.1 mM potassium treatment compared

to the 1 mM treatment.

3.3.2 Genotypic Variation in Rice Potassium Use Efficiency

Genotype was statistically significantly associated with KUE (MANOVA, Λ316,1896

= 0.06, P <2.2 x 10
−16

) and the distributions of least squares means for each

metric are displayed in Figure 3.4. P, KUtR, and QP showed 6.6-, 4.6-, and

14-fold variation respectively between the largest and smallest values. For the

three ratio metrics, 3.4-, 19.3-, and 7.6-fold variation was observed for RP, RCR,

and RCS respectively. Statistically significant correlations were found in pairwise

comparisons between several metrics (Figure 3.5). Most of these correlations were

relatively weak (r <0.3), but a strong positive correlation was observed between P

and QP. Moderately strong negative correlations existed between KUtR and RCS

as well as KUtR and QP.
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Figure 3.3: Least squares means for root (A) and shoot (B) sodium concentrations of 318
rice genotypes grown in nutrient solutions with initial potassium concentrations of 0.1 or
1 mM.
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Figure 3.4: Summary of least squares means for each of 318 rice genotypes for six measures
of potassium use efficiency. Genotype was a statistically significant predictor of: (A) the
plant dry weight under potassium stress, P (ANOVA, F 317,1198 = 5.1, P <2.2 x 10−16);
(B) the potassium utilisation ratio, KUtR (ANOVA, F 317,1197 = 1.5, P = 7.8 x 10−6);
(C) the plant potassium content, QP (ANOVA, F 317,1196 = 2.8, P <2.2 x 10−16); (D) the
relative plant dry mass, RP (ANOVA, F 317,1170 = 1.5, P = 1.0 x 10−6); (E) the relative
root potassium concentration, RCR (ANOVA, F 317,1155 = 1.4, P = 2.4 x 10−5); (F) the
relative shoot potassium concentration, RCS (ANOVA, F 316,1153 = 1.3, P = 7.1 x 10−4).
All six tests had a false discovery rate <5%.
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Figure 3.5: Pairwise Pearson’s correlation coefficients (r) between potassium use efficiency
metrics. Asterisks denote statistically significant correlations with a false discovery rate
<5%.
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Figure 3.6: Least squares means for the potassium utilisation ratio (KUtR, A) and the rel-
ative plant dry mass (RP, B) for each rice sub-population. Letters denote statistically sig-
nificant differences between sub-populations at a 5% false discovery rate. Sub-population
abbreviations are as follows: ADM for admixed, AUS for aus, IND for indica, ADI for
admixed indica, ARO for aromatic, TEJ for temperate japonica, TRJ for tropical japonica,
and ADJ for admixed japonica. Error bars are the 95% confidence interval of the mean.

The sub-population membership was also statistically significantly associated with

KUE metrics (MANOVA, Λ7,1368 = 0.74, P = 2.91 x 10−5). However, this was

not the case for all KUE metrics and sub-population was a statistically significant

factor for KUtR (ANOVA, F 7,297 = 2.4, P = 0.02) and RP (ANOVA, F 7,297 =

2.02, P = 7.0 x 10−5) only (Figure 3.6).
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Table 3.3: Summary of the lowest BIC model from a best subsets regression anal-
ysis for the whole plant dry mass (P) for plants grown in nutrient solutions with
a 0.1 mM initial potassium concentration. The bootstrapped 95% confidence in-
tervals for the percentage of variation in P explained by each predictor are listed
in parentheses. The model R2 and R2 adjusted were 0.73.

Predictor Coefficient P
% Variance Ex-
plained

High treatment rel-
ative growth rate,
RGRHT

6.5 <2.2 x 10−16 39.6 (33.6, 44.9)

Initial plant mass, W0 2.1 <2.2 x 10−16 28.2 (23.4, 33.2)

Low treatment shoot
sodium concentration,
NaSLT

0.00016 1.4 x 10−10 3.4 (1.4, 6.2)

Low treatment fresh
weight to dry weight
ratio, FWDWLT

-0.034 5.8 x 10−6 2.1 (1.3, 3.4)

3.3.3 Links Between Potassium Use Efficiency and Physiology

Regression models which most parsimoniously described associations between the

six metrics used in this study and plant physiology based on BIC are summarised in

Tables 3.3 to 3.8. For P, the high treatment relative growth rate (RGRHT ) was the

most important predictor (Table 3.3) while the initial plant mass (W0) explained

approximately 30% of the variation in P. Smaller proportions of the model R2

were attributed to the shoot sodium concentration (NaSLT ) and the fresh weight

to dry weight ratio (FWDWLT ) in the 0.1 mM potassium concentration nutrient

solutions. All associations were positive except for FWDWLT . The low potassium

treatment relative growth rate (RGRLT ) was not included in this analysis as P was

used in its calculation and a strong positive correlation exists between RGRLT and

P (Appendix Figure 6.2).

The most important correlation of the potassium utilisation ratio (KUtR) was with

the potassium uptake per gram of root in the low potassium treatment (ULT ) which
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Table 3.4: Summary of the lowest BIC model from a best subsets regression analy-
sis for the potassium utilisation ratio (KUtR) for plants grown in nutrient solutions
with a 0.1 mM initial potassium concentration. The bootstrapped 95% confidence
intervals for the percentage of variation in KUtR explained by each predictor are
listed in parentheses. The model R2 and adjusted R2 were 0.84.

Predictor Coefficient P
% Variance Ex-
plained

Low treatment potas-
sium uptake per gram
of root, ULT

-7.3 x 10−6 <2.2 x 10−16 55.0 (50.4, 59.1)

Low treatment potas-
sium distribution in-
dex, KDILT

-3.0 x 10−5 0.0005 14.2 (10.6, 17.8)

Low treatment root to
shoot ratio, RSRLT

-0.033 <2.2 x 10−16 13.7 (10.8, 17.1)

Initial plant mass, W0 0.021 <2.2 x 10−16 1.4 (0.4, 3.1)

explained 55% of the variation in KUtR (Table 3.4). The potassium distribution

index (KDILT ) and root to shoot ratio (RSRLT ) were both in the lowest BIC

model, but explained only a relatively small proportion of the variation in KUtR

than ULT . The initial plant mass was also included in the model but explained only

a small amount of the variation in KUtR. The low treatment shoot concentration

(KSLT ) was not included in this analysis as it was used to calculate KUtR.

The plant potassium content in 0.1 mM initial potassium concentration solutions

(QP) was associated with several physiological traits. The most important cor-

relates of QP were with W0 and RGRLT (Table 3.5). KDILT was also positively

associated with QP and explained just over 10% of the variation in this metric.

Small portions of the variance were explained by positive correlations with the low

potassium treatment shoot and root sodium concentrations (NaSLT and NaRLT re-

spectively), and root to shoot ratio (RSRLT ) as well as potassium uptake per gram

of root in the 1 mM potassium treatment (UHT ). On the other hand, FWDWLT

was negatively associated with QP. KRLT , KSLT , and ULT were not included in
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Table 3.5: Summary of the lowest BIC model from a best subsets regression anal-
ysis for the potassium content (QP) for plants grown in nutrient solutions with a
0.1 mM initial potassium concentration. The bootstrapped 95% confidence inter-
vals for the percentage of variation in QP explained by each predictor are listed in
parentheses. The model R2 and adjusted R2 were 0.77 and 0.76 respectively.

Predictor Coefficient P
% Variance Ex-
plained

Low treatment relative
growth rate, RGRLT

1236 <2.2 x 10−16 30.4 (24.5, 35.5)

Initial plant mass, W0 333.7 <2.2 x 10−16 23.5 (17.9, 29.0)

Low treatment potas-
sium distribution in-
dex, KDILT

1.6 <2.2 x 10−16 12.1 (7.3, 18.0)

Low treatment shoot
sodium concentration,
NaSLT

0.015 0.0003 4.2 (1.5, 7.8)

Low treatment fresh
weight to dry weight
ratio, FWDWLT

-9.1 1.1 x 10−13 2.3 (1.7, 3.3)

High treatment potas-
sium uptake per gram
of root, UHT

0.0015 0.008 2.2 (0.7, 5.2)

Low treatment root
sodium concentration,
NaRLT

0.058 1.45 x 10−6 1.3 (0.9, 2.5)

Low treatment root to
shoot ratio, RSRLT

96.7 1.9 x 10−6 0.7 (0.5, 1.5)

this analysis due to overlaps in their calculations with QP.

The relative plant mass (RP) was positively associated with the shoot sodium

concentration in both the 0.1 and 1 mM potassium treatments (Table 3.6). A

negative association with FWDWLT was also found. Relative growth rates in both

potassium treatments were not included in this analysis as the plant mass was used

to calculate them. However, weak correlations were observed between these traits

and RP. RGRLT was positively associated while RGRHT was negatively correlated

with RP (Appendix Figure 6.2).
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Table 3.6: Summary of the lowest BIC model from a best subsets regression anal-
ysis for the relative plant mass (RP) between 0.1 and 1 mM potassium treatments.
The bootstrapped 95% confidence intervals for the percentage of variation in RP
explained by each predictor are listed in parentheses. The model R2 and adjusted
R2 were 0.20 and 0.19 respectively.

Predictor Coefficient P
% Variance Ex-
plained

Low treatment shoot
sodium concentration,
NaSLT

3.3 x 10−4 3.02 x 10−10 9.3 (5.1, 13.6)

Low treatment fresh
weight to dry weight
ratio, FWDWLT

-0.088 7.0 x 10−10 7.5 (3.9, 11.7)

High treatment shoot
sodium concentration,
NaSHT

0.0012 0.002 3.2 (0.6, 7.1)

The relative root potassium concentration (RCR) was found to be correlated with

the distribution of potassium between root and shoots (KDIHT and KDILT ) and

the uptake of potassium per gram of root in both potassium treatments (UHT

and ULT ; Table 3.7). However, these correlations differed between treatments.

For example, with 1 mM potassium, UHT was negatively linked with RCR while

KDIHT associated positively. Other traits included in the best regression model

were the high treatment root sodium concentration (NaRHT ) and the initial plant

mass (W0). Of all these traits, KDIHT explained the most variation in RCR.

The root potassium concentrations in both treatments were not included in this

analysis as they were used to calculate RCR, but a strong negative correlation

between KRHT and RCR was noted (Appendix Figure 6.2).

The relative shoot potassium concentration between the two treatments (RCS)

shared many of the same associations as RCR, although differences were apparent.

For RCS, the uptake traits ULT and UHT were found to be the most important
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Table 3.7: Summary of the lowest BIC model from a best subsets regression anal-
ysis for the relative root potassium concentration (RCR) between 0.1 and 1 mM
potassium treatments. The bootstrapped 95% confidence intervals for the percent-
age of variation in RCR explained by each predictor are listed in parentheses. The
model R2 and adjusted R2 were 0.84.

Predictor Coefficient P
% Variance Ex-
plained

High treatment potas-
sium distribution in-
dex, KDIHT

0.014 <2.2 x 10−16 44.9 (38.4, 50.7)

Low treatment potas-
sium distribution in-
dex, KDILT

-0.017 <2.2 x 10−16 13.8 (10.2, 18.0

High treatment uptake
per gram of root, UHT

-8.5 x 10−5 <2.2 x 10−16 10.3 (7.8, 13.9))

High treatment root
sodium concentration,
NaRHT

2.5 x 10−4 0.0004 9.1 (5.5, 13.4)

Low treatment uptake
per gram of root, ULT

3.2 x 10−4 <2.2 x 10−16 5.5 (4.2, 7.6)

Initial plant mass, W0 -0.029 0.015 0.7 (0.3., 2.2)

drivers (Table 3.8) as opposed to the potassium distribution traits which explained

most of the variation in RCR. Furthermore, RCS responded positively to KDILT .

Further positive associations of RCS were found with RSRLT , NaSLT , and KRHT

while negative links were observed with RSRHT and NaRHT also existed.

3.4 Discussion

In this study, over 300 rice genotypes were grown under potassium stressed and re-

plete conditions. A thorough exploration of the complex KUE trait was facilitated

by using six metrics which were previously (Chapter 2) found to reflect different

physiological aspects of growth and development at different external potassium

concentrations. This served to quantify the scope of variation in rice KUE as
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Table 3.8: Summary of the lowest BIC model from a best subsets regression anal-
ysis for the relative shoot potassium concentration (RCS) between 0.1 and 1 mM
potassium treatments. The bootstrapped 95% confidence intervals for the percent-
age of variation in RCS explained by each predictor are listed in parentheses. The
model R2 and adjusted R2 were 0.85.

Predictor Coefficient P
% Variance Ex-
plained

Low treatment uptake
per gram of root, ULT

2.7 x 10−4 <2.2 x 10−16 29.4 (22.9, 34.7)

High treatment uptake
per gram of root, UHT

-6.6 x 10−5 <2.2 x 10−16 26.3 (18.8, 34.1))

Low treatment potas-
sium distribution in-
dex, KDILT

0.0014 <2.2 x 10−16 10.5 (6.3, 15.9

High treatment root to
shoot ratio, RSRHT

-1.43 <2.2 x 10−16 8.8 (6.5, 11.5)

Low treatment root to
shoot ratio, RSRLT

1.17 <2.2 x 10−16 5.3 (3.9, 7.2)

Low treatment shoot
sodium concentration,
NaSLT

4.9 x 10−5 0.0002 2.1 (0.5, 4.7)

High treatment root
potassium concentra-
tion, KRHT

1.5 x 10−4 2.1 x 10−6 1.4 (0.2, 4.8)

High treatment root
sodium concentration,
NaRHT

-2.4 x 10−4 0.0008 1.4 (0.44, 3.0)
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well as examine the links between physiological characteristics of rice plants and

KUE.

The mostly weak associations found between these six metrics (Figure 3.5) sug-

gests that there was little redundancy in the metric selection and even when the

correlation between metrics was strong, as was the case for P and QP, they were

not found to have the same key physiological drivers (Tables 3.3 and 3.5). As

would be expected, low potassium treatment plants had lower growth rates and

tissue potassium concentrations in comparison to those in the 1 mM treatment

(Figures 3.1 and 3.2). Furthermore, tissue sodium concentrations were generally

higher under potassium stress (Figure 3.3) and this is consistent with sodium being

used as a partial replacement for potassium, as has been reported (Subbarao et

al., 1999; Horie et al., 2007; Gattward et al., 2012). Positive association between

tissue sodium concentration and P, QP, RP, and RCS provide further evidence for

a beneficial impact of sodium in potassium stressed plants.

Large scale variation was observed across rice genotypes for all six metrics. Varia-

tion in metrics across genotypes ranged from just over three-fold for RP to nearly

twenty-fold differences for RCR. Variation in KUE values reported in the litera-

ture are comparable: around two-fold differences between highest and lowest values

have been reported for biomass (Woodend and Glass, 1993; Liu et al., 2009), util-

isation efficiency (Liu et al., 2009), and plant potassium content (Guoping et al.,

1999; Yang et al., 2003; Damon et al., 2007; Liu et al., 2009). The relatively high

levels of variation described for rice in this study are likely to be at least partially

due to the large and diverse dataset used. Notably higher levels of variation were

found in KUtR by Yang et al. (2003) using 134 rice genotypes and by White et

al. (2010) who found over 35-fold variation in potassium content across Brassica

species. Ratio metrics (RP, RCR, and RCS) reported here also had similar values

to those of other studies (e.g. Damon et al., 2007; Fan et al., 2013) with treatment-

dependent growth reductions between zero and over 60% (Figure 3.4).
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Statistically significant differences for all metrics were observed at the genotype

level but only for KUtR and RP at the sub-population level (Section 3.3.2). Greater

variety within than between sub-populations has been found for a wide variety of

agricultural traits in rice (e.g. supplementary information of Zhao et al., 2011;

Crowell et al., 2016) and variation at the genotype level is typically reported in crop

species (e.g. Guoping et al., 1999; George et al., 2002; Damon et al., 2007; Fageria

and Melo, 2014; Ju et al., 2014). Taken together, this abundant variation and

its relationship to population structure points to there being substantial scope to

improve KUE in rice, but that differences in average performance is small between

sub-populations (Figure 3.6).

It is important to understand which physiological processes are key determinants of

KUE, both to better understand this complex trait and for breeding purposes. Sev-

eral potentially important physiological traits can been proposed such as replace-

ment with other cations and osmotica, more efficient (re-)distribution of potas-

sium, and enhanced root architecture (e.g. White, 2013; Shin, 2014; Wang and

Wu, 2015). Furthermore, the relevance of some traits has been identified ex-

perimentally, such as greater photosynthetic and tillering rates being linked with

better KUtR in rice (Yang et al., 2004). Traits such as sub-cellular distribution of

potassium between the vacuole and cytoplasm (Memon et al., 1985) and substi-

tution with sodium (Subbarao et al., 1999) have also been linked with improved

potassium utilisation. Low-potassium stress can also be tackled with greater root

hair length (Høgh-Jensen and Pedersen, 2003), root mass (George et al., 2002),

and high-affinity uptake (Trehan and Claassen, 1998) for example. Multiple re-

gression, as used in this study, provides a method to simultaneously assess the

relevance of several physiological traits to KUE, although this approach is not

without potential pitfalls.

A key problem that can confound multiple regression analyses is co-linearity be-

tween predictors. Correlation coefficients between predictor variables in this study

were generally weak, although some moderate to strong relationships existed, such

102



as between potassium uptake (ULT ) and distribution (KDILT ) in the 0.1 mM

potassium treatment (Appendix Figure 6.2). Removal of highly co-linear variables

based on their variance inflation factor, (VIF) is a commonly applied method to

deal with this problem (Zuur et al., 2010). However, this approach is not guar-

anteed to provide an optimal analysis (O’Brien, 2007) and in the context of this

study, would result in the removal of physiologically distinct traits. It was noted

that the same drivers of differences in KUE were identified using least absolute

shrinkage and selection operator (LASSO) regression (Tibshirani, 1996; Friedman

et al., 2010), a similar technique which does not require VIF-based removal of cor-

related predictors. This suggests that the results of the analysis as presented here

are robust to methodological choice. Nevertheless, the model selection procedure

described in this study revealed several models with similar but slightly larger BIC

values. These models identified the same key drivers but showed weaker associa-

tions with the metrics. As a result, traits which explain only small percentages of

the variability in metrics (such as <5%) should be regarded with caution. How-

ever, the aim of this analysis was to identify key drivers and the outcomes were

consistent in this respect regardless of methodology.

As may be expected, several traits impacted on multiple KUE metrics. The initial

plant mass (W0), shoot sodium concentration under potassium stress (NaSLT ), and

potassium distribution index in the 0.1 mM treatment (KDILT ) were all associated

with four metrics, the highest number observed. KDILT explained more than 10%

of the variation in its associations with KUtR, QP, RCR, and RCS. W0 explained

over 20% of the variation in P and QP, while NaSLT was the predictor which

explained the most variation in RP (9.3%). However, best regression model for RP

explained the least variation in the six metrics with a model R2 of 0.26 compared

to 0.73 to 0.85 in the other five lowest BIC regression models. This relatively low

R2 for RP may be as a result of the true physiological drivers of this metric not

being measured in this study.

The key drivers of the metrics identified in this work suggest that some metrics
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respond most strongly to traits that are not explicitly linked to potassium stress.

For example, P responds positively to W0 and the relative growth rate in the

potassium replete (1 mM) treatment (RGRHT ). Therefore, short-term studies

based on vegetative plants mass may select for plants which have innately strong

growth rather than KUE-specific traits. Furthermore, the key traits that would

improve some metrics may not be compatible with agricultural demands. For

example, high KUtR was primarily linked with plants that have a poor potassium

uptake (Table 3.4) in this screen. An example is the genotype Arias which had the

lowest potassium content (QP) but was in the top ten best genotypes for KUtR

(Appendix Table 6.2). Similarly, the aus genotype Sathi had the third highest

KUtR and the lowest ULT of all the genotypes tested (Appendix Table 6.2). Such

trade-offs could be deleterious in plants grown to maturity as they may struggle

to absorb sufficient potassium to maintain growth and ultimately yield. However,

it should be noted that this metric has been previously found to be a predictor of

grain yield under potassium stress in rice (Yang et al., 2003).

Furthermore, the ratio metrics (RP, RCR, and RCS) favour plants that perform

poorly under replete conditions because they are correlated negatively with traits

measured under replete conditions (RGRHT , KRHT , or KSHT ). At the same time,

they are also positively correlated with strong performance under low-potassium

stress. For example, RCR is positively linked with KDIHT and negatively with

UHT , meaning that there is a relatively low potassium concentration in the roots

and consequently less is lost under stress. UHT is also negatively linked with

RCS which again serves to minimise the amount of tissue potassium that is lost

under stress. Although a low tissue potassium requirement could be considered a

positive trait in the context of KUE, a root system that is inefficient at using its

mass for potassium absorption would seem an unlikely candidate for optimal KUE.

Thus, an important conclusion can be drawn: genotypes that are deemed to be

efficient according to some KUE metrics do not necessarily select for agriculturally

beneficial traits. This is exemplified by the KUE metric RP. For example, the
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highest RP genotype (Okshitmayin) had an average plant mass of 0.42 g DW

under low-potassium stress (P) that was approximately half of the mass of the

highest P genotype (0.83 g DW for Zerawchanica Karatalski). More broadly, none

of the top ten highest RP genotypes were among the top ten genotypes for P

(Appendix Tables 6.1 and 6.4).

Identification of physiological traits that are most important to metrics can help

to reveal useful targets for crop improvement. The aforementioned positive associ-

ations of KUE metrics with the shoot sodium concentration not only points to this

as a potential focus for high KUE crops, but also suggests that moderate fertilisa-

tion with sodium salts could generate savings in production costs. Crop plants can

use sodium as a replacement cation under low-potassium stress (Leigh et al., 1986;

Subbarao et al., 1999; Gattward et al., 2012) and sodium fertilisers offer a cheap

alternative to potash (Benito et al., 2014). However, plant stress resulting from

excess sodium in soils is a growing global problem (Yamaguchi and Blumwald,

2005; Shabala and Cuin, 2007) and the proportion of variation in KUE metrics

explained by the shoot sodium concentration was always less than 10% (Tables 3.3,

3.5, 3.6, and 3.8). Therefore, the risks associated with the use of sodium fertilisers

need to be considered alongside the potential benefits of replacing potassium with

sodium in crops.

While RGRLT and RGRHT have a strong positive correlation (Appendix Figure

6.2), it is the low treatment relative growth rate that is most important to QP and

this metric, as well as RCS, is positively associated with KDILT . This indicates

an importance of maintaining an adequate supply of potassium to the shoot when

under stress. The fresh weight to dry weight ratio in the 0.1 mM potassium treat-

ment was negatively associated with P, QP, and RP, although it never explained

more than 10% of the variation in these metrics. This may indicate a small advan-

tage for plants which decrease their water content under potassium stress and this

could help to maintain potassium concentrations on a fresh weight basis.
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Future work could explore whether the key associations identified here are con-

sistent across species. It may be the case that crop species differ in their key

physiological drivers of coping with low-potassium stress. A related issue would

be to determine the relative importance of traits not measured in this study. For

example, Yang et al. (2004) described how the re-distribution of potassium from

older to younger leaves could result in difference in KUE between rice genotypes,

while the ability to mobilise non-exchangeable potassium from soil has been im-

plicated in potato KUE (Trehan et al., 2005). For the traits that were measured,

the exact underlying physiology is often unknown. For example, the uptake per

gram of root is likely to be influenced by root architecture and transporter activ-

ity. Furthermore, though partitioning of potassium between roots and shoots was

examined, details of distribution between and in other organs and tissues remains

to be explored, as is intracellular allocation of potassium. The importance of traits

identified at the vegetative stage for grain yield in rice also warrants further in-

vestigation and would further inform breeding efforts. The genetic underpinnings

of metrics and their component physiological traits is also highly relevant to crop

improvement and can be explored using the results of this work in conjunction

with genome-wide association studies as exemplified in Chapter 4.

In conclusion, this study has characterised the response of diverse rice genotypes to

low potassium stress and revealed much of the physiology that underlies differences

in performance. From this it is apparent that rice germplasm holds considerable

variation in KUE which could be exploited in crop development. Furthermore,

analysis of the component traits that define KUE revealed that some metrics have

greater agronomic relevance than others.
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Chapter 4

Genetic Architecture of the

Response to Potassium

Deficiency in Rice Oryza sativa

L.

4.1 Introduction

Potassium use efficiency (KUE) is an important trait for crop improvement (see

Section 1.1) and so knowledge of its genetic underpinnings is important. While

some target genes can been proposed, particularly those involved in potassium

transport and its regulation (Shin, 2014; Wang and Wu; 2015), a more complete

understanding of the genetics of KUE is required. Studies conducted with a range

of species have identified quantitative trait loci (QTLs) associated with plant re-

sponses to potassium deficiency (e.g. Wu et al., 1998; Prinzenberg et al., 2010;

Kong et al., 2013; Zhao et al., 2014) and the transcriptome has also been examined

(Maathuis et al., 2003; Armengaud et al., 2004; Wang et al., 2012; Zeng et al.,
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2014).

Transcriptomics studies using rice roots have found many genes to be differentially

expressed when plants experience low-potassium stress. Genes for membrane pro-

teins as well as those involved in transport and transcriptional regulation are com-

monly reported (Ma et al., 2012; Shankar et al., 2013; Takehisa et al., 2013; Zhang

et al., 2017), although the genes identified in these studies come from a wide vari-

ety of functional groups and are quite variable between studies. Despite this, some

genes are typically found to be differentially expressed with potassium deficiency.

For example, the high-affinity potassium transporter OsHAK1 was found to be

up-regulated under potassium stress (Miyamoto et al., 2012; Shankar et al., 2013)

and also down-regulated on potassium re-supply (Shankar et al., 2013). Surpris-

ingly, Zhang et al. (2017) found this gene to be down-regulated in response to

potassium deficiency. The Arabidopsis homologue of OsHAK1, AtHAK5, has also

been found to be up-regulated with low-potassium stress and down-regulated with

potassium re-supply (Ahn et al., 2004; Armengaud et al., 2004) providing evidence

for the importance of these homologues in the response of plants to low-potassium

conditions.

Genes which code for HKT sodium transporters are also often found to be differ-

entially expressed during low-potassium stress in rice. OsHKT2;4 was found to

be down-regulated in both the absence of potassium and its re-supply (Shankar

et al., 2013) while OsHKT2;1 has been found to be up-regulated in response

to low-potassium stress (Ma et al., 2012; Takehisa et al., 2013). Furthermore,

OsHKT2;1 has been implicated in helping rice plants cope with low-potassium

stress through replacement of potassium with sodium (Horie et al., 2007; Miyamoto

et al., 2015).

While transcriptomics studies help to explore the response of gene expression to

low-potassium stress, they have seldom been used to analyse the mechanistic basis

of KUE, let alone to show what drives differences in KUE between genotypes
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of a species. For this, studies which associate genomic regions with a particular

phenotype have been used. Hybrid populations, derived from parental genotypes

known to differ for a phenotype and which have been genotyped for genetic markers

spread across the genome provide one method for identifying quantitative trait

loci (QTLs; e.g. e.g. Wu et al., 1998; Harada and Leigh, 2006; Prinzenberg et al.,

2010; Miyamoto et al., 2012; Fang et al., 2015). In rice, QTLs for several traits,

including potassium uptake and tissue potassium concentration and content in

salt- and non-stressed plants, have been found (Koyama et al., 2001; Lin et al.,

2004; Garcia-Oliveira et al., 2009). Furthermore, QTLs in the context of potassium

deficiency have also been reported (Wu et al., 1998; Miyamoto et al., 2012; Fang et

al., 2015), although little overlap between studies in the identified genomic regions

was apparent. However, both Miyamoto et al. (2012) and Fang et al. (2015)

described associations in a region approximately 24 to 31 Mb along chromosome

6, although these associations were found for different phenotypes: Miyamoto et

al. (2012) found this region to be linked with the shoot sodium concentration

while Fang et al. (2015) found it to be associated with the shoot potassium and

calcium concentrations. While this region is large, evidence that it may contain

an important gene (or genes) relevant to low-potassium stress is strengthened by

being identified in separate studies.

A complementary technique for identifying genetic associations with a phenotype

is the genome-wide association study (GWAS). First used to implicate complement

factor H in human age-related macular degeneration (Haines et al., 2005; Klein et

al., 2005), this technique compares the phenotypes of individuals to their genotypes

for markers spread across the genome. The genetic markers used are typically single

nucleotide polymorphisms (SNPs). A statistical test is used to determine whether

a specific marker has a statistically significant association with the phenotype.

This results in a P -value for each marker that can be used to identify genomic

regions and potentially genes that gave rise to the observed phenotypic differences

between individuals.
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Diversity panels exist for crop species, such as the Rice Diversity Panel 1 (RDP1;

Zhao et al., 2011; Eizenga et al., 2014) which has over 300 diverse rice genotypes

genotyped for 700,000 SNPs (McCouch et al., 2016). Studies using the RDP1

have examined abiotic stresses such as aluminium (Famoso et al., 2011) and salt

(Kumar et al., 2015; Campbell et al., 2017; Patishtan et al., 2017) and were able to

detect novel loci as well as a priori candidates. For example, GWAS was used in

conjunction with characterisation studies to identify OsHKT1;1 as important in

greater sodium accumulation in Indica genotype rice roots compared to Japonica

genotypes under salt stress (Campbell et al., 2017). However, the response of rice

to potassium deficiency has yet to be examined using GWAS.

In this study, GWAS was therefore used to explore the genetic architecture of

low-potassium stress in rice for the first time using the RDP1. In doing so, novel

QTLs were detected as well as genomic regions which co-localised with those in the

previous literature. Furthermore, genes within QTLs were also found which have

been reported to be differentially expressed under potassium deficiency. This,

as well as the known functions of genes within QTLs from this study and co-

localisation of genes with SNPs associated with phenotypes, made it possible to

propose candidate genes for improvement of KUE.

4.2 Methods

4.2.1 Trait Measurement

Least squares means of 318 diverse rice genotypes for the metrics and traits (hence-

forth phenotypes) used in the regression analyses in Chapter 3 (Tables 3.1 and 3.2)

were used in this study. The rice genotypes had been previously genotyped for

700,000 SNPs distributed across the rice genome (McCouch et al., 2016). Growth

experiments and the calculation of least squares means were described in detail

in Section 3.2. Briefly, each rice genotype was grown in potassium deficient (0.1

110



mM) and replete (1 mM) nutrient solutions (adapted from Yoshida et al., 1976)

for four weeks (see Section 3.2.1). Root and shoot mass as well as potassium and

sodium concentrations were measured (see Section 3.2.2). Phenotype values were

calculated for each genotype from these data (see Section 3.2.3). These values were

then used in GWAS analyses outlined below.

4.2.2 Genome-Wide Association Studies

GWAS was carried out using the GenABEL package (Aulchenko et al., 2007) in

R 3.3.3. Linear mixed models (LMMs) were used to test the statistical significance

of SNP genotype to a phenotype as they have previously been found to effectively

control for the population structure present in rice (Zhao et al., 2011). LMMs were

of the form:

y = µ+XBX + gBg + u + e (4.1)

where y is a (nx1, where n is the number of genotypes) vector of phenotype values,

µ is the intercept, X is the (nxk, where k is the number of covariates) matrix of

covariates (principal components, PCs, calculated from kinship matrices for each

grouping of genotypes), BX is a (kx1) vector of covariate (PC) effects, g is a (nx1)

vector of SNP genotypes, Bg is the fixed effect of the SNP genotype, u is a (nx1)

vector of random polygenic effects, and e is a (nx1) vector of random residuals

(Svishcheva et al., 2012).

Sub-species- or sub-population-specific associations have been found for many phe-

notypes in previous studies (e.g. Zhao et al., 2011; Crowell et al., 2016). In addition

to analyses across all genotypes, separate GWAS analyses were therefore carried

out for different sub-species (i.e. Indica or Japonica) or sub-populations (aus, in-

dica, temperate japonica, or tropical japonica). The aromatic sub-population was
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not analysed on its own due to having only 9 members in the dataset. For each

analysed group of genotypes, SNPs with a minor allele frequency (MAF) <0.05

as well as a call rate <0.9 were removed from analyses to minimise the risk of

spurious associations.

PCs were not included for analyses at the sub-population level, but were used for

sub-species and analyses which used all of the genotypes as sub-population and

sub-species clusters exist within these groupings (Zhao et al., 2011; McCouch et

al., 2016). However, PCs were not used when their inclusion resulted in deflation of

test statistics measured using the genomic inflation factor (λ; Devlin and Roeder,

1999). The model with λ nearest to 1 was used for each analysis.

Associations between SNPs and phenotypes were declared significant if their P -

value was <1 x 10−5 (a threshold used by Crowell et al., 2016) and their false

discovery rate (Benjamini and Hochberg, 1995) was <10%.

4.2.3 Identification of Quantitative Trait Loci and Candidate Genes

Quantitative trait loci (QTLs) were defined as genomic regions ± 100 kbp either

side of a significantly associated SNP. This window size was used because linkage

disequilibrium in rice declines rapidly (on average) over the first 100 kbp (Zhao et

al., 2011; McCouch et al., 2016). If two QTLs from the same association (i.e. one

that used the same phenotype and group of genotypes) overlapped, the QTls were

grouped into a single QTL.

Genes within QTLs were found from the Rice Genome Annotation Project website

(http://rice.plantbiology.msu.edu/pub/data/Eukaryotic Projects/o sativa/annotation

dbs/pseudomolecules/version 7.0/). Candidate genes were identified based on con-

taining a non-synonymous SNP statistically significantly associated with a trait

(identified using the Rice Diversity Allele Finder: http://rs-bt-mccouch4.biotech.

cornell.edu/AF/), known and putative functions of genes related to low-potassium
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stress, or evidence that genes are differentially expressed under low-potassium

stress in rice (based on studies by Ma et al., 2012; Shankar et al., 2013; Takehisa

et al., 2013; Zhang et al., 2017).

4.3 Results

4.3.1 Quantitative Trait Loci Associated with Potassium Defi-

ciency in Rice

GWAS analyses identified 208 SNPs as statistically significantly associated with

phenotypes. Manhattan plots (e.g. Figure 4.2 and 4.3A) which summarise the

results of each GWAS analysis are provided in the Supplementary Information

file “gwasPlots.pdf”. These statistically significantly associated SNPs resulted in

98 QTLs (Table 4.1), of which twenty were for analyses using all genotypes and

the remaining QTLs were for sub-population and sub-species level analyses. Co-

localisation between the 98 QTLs found in this work and previously identified

QTLs was apparent (Figure 4.1).

Thirteen genomic regions were found for which two or more QTLs from the GWAS

analyses carried out in this study overlapped. These were spread across all chromo-

somes except 3, 5, 11, and 12 (Table 4.1) and several were for the same phenotype

but at different levels of the population hierarchy. An example of this was for

the potassium content (QP) in the Japonica sub-species and the temperate japon-

ica sub-population where the QTLs QP.JAPONICA-7.2 and QP.tej-7.3 spanned

the same region on chromosome 7 (Table 4.1). Some of these were also in the

same regions as QTLs from other potassium deficiency studies using rice, such as

on chromosome 6 (QTLs NaR.lt-6.1 and NaS.lt-6.1), as well as KUtR.ALL-9.1,

KUtR.INDICA-9.1, and KR.ht.ALL-9.1 on chromosomes 9 (Figure 4.1). Novel

associations were found for several phenotypes in other parts of the genome, for

example at approximately 13 Mbp along chromosome 3 and approximately 20 Mbp

113



along chromosome 8 (Figure 4.1).

Table 4.1: Summary of quantitative trait loci (QTLs) identified in this study
using genome-wide association studies of rice under potassium deficiency. QTL
names begin with the phenotype the QTL was associated with, followed by the
group of genotypes it relates to (i.e. the sub-species, sub-population, or all of the
genotypes). The chromosome and a count to distinguish between QTLs on the
same chromosome for the same analysis are then given. The abbreviations are as
follows: LT for low treatment (0.1 mM solution potassium concentration), HT for
high treatment (1 mM solution potassium concentration); P for whole plant mass,
KUtR for the potassium utilisation ratio, QP for plant potassium content, RP
for relative plant mass, RCR for relative root potassium concentration, RCS for
relative shoot potassium concentration, KR for root potassium concentration, KS
for the shoot potassium concentration, NaR for root sodium concentration, NaS
for shoot sodium concentration, U for potassium uptake per gram of root, KDI
for potassium distribution index, RSR for root to shoot ratio, FWDW for fresh
weight to dry weight ratio, RGR for relative growth rate. Further information on
the metrics and traits is available in Tables 3.1 and 3.2. For genotype groupings,
ALL means the genome-wide association study used data from every rice genotype
in this study, INDICA and JAPONICA refer to associations using the respective
sub-species, and aus, ind, tej, and trj symbolise associations which used the aus,
indica, temperate japonica, and tropical japonica sub-populations respectively.

Quantitative Trait

Locus

Chromosome Start

(bp)

End

(bp)

Notes

KDI.ht.JAPONICA-1.1 1 3,054,419 3,254,419 -

RCR.tej-1.1 1 13,257,732 13,457,732 -

RCR.tej-1.2 1 14,514,661 14,714,661 -

P.JAPONICA-1.1 1 18,867,813 19,067,813 -

RGR.lt.INDICA-1.1 1 22,259,080 22,484,204 >1 SNP

RGR.lt.ALL-1.1 1 22,260,180 22,463,799 >1 SNP

QP.JAPONICA-1.1 1 22,594,881 22,794,881 -

RSR.ht.ALL-1.1 1 32,476,423 32,676,423 -

KR.lt.trj-1.1 1 33,210,677 33,410,677 -

KUtR.ALL-1.1 1 34,363,159 34,563,159 -

U.lt.INDICA-1.1 1 38,400,811 38,600,811 -

RCR.ALL-1.1 1 42,940,025 43,140,025 -
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KUtR.INDICA-2.1 2 2,586,991 2,786,991 -

RCS.trj-2.1 2 10,641,216 10,841,216 -

QP.tej-2.1 2 23,908,600 24,267,552 >1 SNP

RCR.JAPONICA-2.1 2 24,814,028 25,014,028 -

QP.tej-2.2 2 25,866,610 26,239,961 >1 SNP

KDI.lt.trj-2.1 2 27,324,500 27,524,500 -

KR.ht.ALL-2.1 2 27,364,358 27,564,358 -

QP.tej-2.3 2 27,843,200 28,043,200 -

KDI.lt.trj-3.1 3 3,580,300 3,780,300 -

RCS.JAPONICA-3.1 3 4,041,814 4,241,814 -

RP.JAPONICA-3.1 3 12,707,870 12,907,870 -

RCS.JAPONICA-3.2 3 12,837,754 13,148,789 >1 SNP

RCS.trj-3.1 3 12,837,754 13,037,754 -

KR.ht.ALL-3.1 3 13,079,729 13,279,729 -

NaS.ht.trj-3.1 3 13,639,419 13,839,419 -

RCS.JAPONICA-3.3 3 19,568,515 19,768,515 -

RCS.trj-3.2 3 20,096,338 20,296,338 -

QP.trj-3.1 3 27,317,271 27,517,271 -

KR.lt.trj-1.3 3 32,320,151 32,520,151 -

KUtR.INDICA-3.1 3 35,067,724 35,267,724 -

RCS.JAPONICA-4.1 4 890,270 1,090,270 -

RCS.trj-4.1 4 890,270 1,090,270 -

RCS.JAPONICA-4.2 4 2,502,716 2,702,716 -

KR.ht.ALL-4.1 4 12,255,015 12,455,015 -

FWDW.lt.JAPONICA-

4.1

4 18,840,302 19,040,302 -

RCR.tej-4.1 4 31,645,530 31,845,530 -

KR.ht.ALL-4.2 4 33,156,379 33,356,379 -
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RGR.ht.tej-4.1 4 33,193,193 33,393,193 -

KUtR.INDICA-4.1 4 34,278,649 34,478,649 -

KR.lt.JAPONICA-5.1 5 10,983,374 11,183,374 -

KS.lt.ind-5.1 5 13,526,636 13,726,636 -

RCS.JAPONICA-5.1 5 17,080,084 17,280,084 -

KDI.ht.JAPONICA-5.1 5 17,540,601 17,74,0601 -

U.lt.ALL-5.1 5 18,375,248 18,575,248 -

KDI.ht.JAPONICA-5.2 5 27,268,520 27,468,520 -

RCS.trj-6.1 6 0 126,034 -

FWDW.lt.JAPONICA-

6.1

6 8,391,304 8,591,304 -

QP.tej-6.1 6 12,112,734 12,312,734 -

QP.JAPONICA-6.1 6 21,591,579 21,791,579 -

P.ALL-6.1 6 21,754,339 21,954,339 -

RCR.tej-6.1 6 22,216,793 22,416,793 -

RCR.tej-6.1 6 22,216,793 22,416,793 -

KR.lt.JAPONICA-6.1 6 24,887,468 25,087,468 -

QP.JAPONICA-6.2 6 26,841,219 27,041,219 -

NaR.lt.ALL-6.1 6 29,440,164 29,640,591 >1 SNP

NaS.lt.ALL-6.1 6 29,440,164 29,640,591 >1 SNP

KDI.ht.JAPONICA-7.1 7 1,820,065 2,020,065 -

QP.tej-7.1 7 5,219,318 5,462,586 >1 SNP

QP.JAPONICA-7.1 7 9,387,632 9,587,632 -

QP.tej-7.2 7 12,692,645 12,892,645 -

QP.JAPONICA-7.2 7 20,494,818 20,694,818 -

QP.tej-7.3 7 20,494,818 20,694,818 -

RCS.JAPONICA-7.1 7 22,716,173 22,916,173 -

KR.ht.ALL-7.1 7 22,949,108 23,149,108 -
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RCS.JAPONICA-7.2 7 23,278,661 23,478,661 -

RCS.trj-7.1 7 23,278,661 23,478,661 -

QP.tej-7.4 7 24,628,157 25,052,100 >1 SNP

QP.JAPONICA-7.3 7 24,655,435 24,962,827 >1 SNP

KR.lt.trj-7.1 7 26,562,735 26,762,735 -

QP.tej-7.5 7 28,842,868 29,165,544 >1 SNP

RCS.JAPONICA-8.1 8 5,378,001 5,578,001 -

RCS.JAPONICA-8.2 8 7,416,036 7,616,036 -

RCS.JAPONICA-8.3 8 13,397,546 13,597,546 -

RCS.JAPONICA-8.4 8 14,032,648 14,232,648 -

RCS.JAPONICA-8.5 8 19,801,229 20,385,187 >1 SNP

RCS.trj-8.1 8 20,180,990 20,942,059 >1 SNP

RCR.JAPONICA-8.1 8 20,484,968 20,684,968 -

RCS.trj-8.2 8 22,823,792 23,175,801 >1 SNP

KUtR.ALL-9.1 9 3,721,410 3,921,410 -

KUtR.INDICA-9.1 9 3,721,410 3,921,410 -

KR.ht.ALL-9.1 9 3,894,822 4,094,822 -

QP.tej-9.1 9 7,775,589 7,975,589 -

KR.ht.ALL-9.2 9 13,367,729 13,567,729 -

RCS.trj-9.1 9 13,958,209 15,088,238 >1 SNP

KS.lt.ind-10.1 10 5,539,043 5,739,043 -

RCS.ind-10.1 10 5,539,043 5,739,043 -

KS.lt.INDICA-10.1 10 7,238,220 7,438,220 -

RCS.trj-10.1 10 13,658,426 13,858,426 -

P.ALL-10.1 10 16,425,036 16,625,036 -

FWDW.ht.JAPONICA-

11.1

11 2,341,192 2,541,192 -

QP.trj-11.1 11 16,933,927 17,133,927 -
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NaR.lt.ALL-11.1 11 22,044,534 22,244,534 -

RCS.trj-12.1 12 8,988,538 9,188,538 -

KUtR.ALL-12.1 12 10,586,529 10,786,529 -

KR.ht.ALL-12.1 12 10,793,826 10,993,826 -

RCS.trj-12.2 12 17,981,301 18,830,926 >1 SNP

Most of the QTLs identified in these analyses have only 1 SNP that satisfied the

significance criteria. However, some contained several SNPs such as RCS.trj-9.1

(Table 4.1) which spans a 1.1 Mb window that includes 53 statistically significantly

associated SNPs (Figure 4.2). The relative shoot potassium concentration (RCS;

shoot potassium concentration in the 0.1 mM potassium solution divided by the

shoot potassium concentration in the 1 mM potassium solution) had the most

QTLs with 26. These were primarily found for the Japonica sub-species (13)

and the temperate japonica sub-population (12) while the indica sub-population

had one QTL (Table 4.1). Overlapping QTLs between sub-species and their sub-

populations were often found (e.g. between the Japonica and tropicical japonica

for RCS on chromosomes 3, 4, 7, and 8), although several sub-population specific

QTLs were also observed (Table 4.1). The Japonica sub-species had the most

QTLs across phenotypes with 32 compared to 21 for GWAS analyses using all

genotypes. Conversely, associations involving the Indica sub-species and the sub-

populations within it returned few QTLs, with seven for the sub-species and three

QTLs for the indica sub-population. No QTLs were detected for the aus sub-

population. Furthermore, no statistically significant association was found for the

phenotypes initial plant mass (W0), shoot potassium concentration (KSHT ), root

sodium concentration (NaRHT ), and uptake per gram of root (UHT ) in the 1 mM

potassium treatment as well as the root to shoot ratio in the 0.1 mM potassium
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Figure 4.1: Summary of quantitative trait loci (QTLs) identified in this study. QTL loca-
tions are shown using points to the left of black bars which represent rice chromosomes.
Each point represents the phenotypes associated with the QTL and these are listed in the
legend. The abbreviations are as follows: LT for low treatment (0.1 mM solution potas-
sium concentration), HT for high treatment (1 mM solution potassium concentration);
P for whole plant mass, KUtR for the potassium utilisation ratio, QP for plant potas-
sium content, RP for relative plant mass, RCR for relative root potassium concentration,
RCS for relative shoot potassium concentration, KR for root potassium concentration,
KS for the shoot potassium concentration, NaR for root sodium concentration, NaS for
shoot sodium concentration, U for potassium uptake per gram of root, KDI for potassium
distribution index, RSR for root to shoot ratio, FWDW for fresh weight to dry weight
ratio, RGR for relative growth rate. Further information on the metrics and traits is
available in Tables 3.1 and 3.2. Coloured rectangles represent QTLs and markers iden-
tified in previous studies in rice under potassium deficiency (Wu et al. 1998 in white;
Miyamoto et al., 2012 in yellow; Fang et al., 2015 in red). Marker positions were found at
http://archive.gramene.org/db/markers.
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Figure 4.2: Genome-wide association study for relative shoot potassium concentration
(RCS) in 86 tropical japonica rice genotypes. Each point represents the −log10(P ) for
an association between a SNP with RCS. There were 121,085 SNPs used in this analysis
(minor allele frequency > 0.05 and call rate>0.9). The dashed line represents a significance
threshold above which all SNPs have a P -value <1 x 10−5 and a false discovery rate <10%.
Peaks, (e.g. on chromosome 9, represent regions of the rice genome for which several
physically close SNPs had strong statistical associations with the phenotype.

treatment (RSRLT ) across all groups of genotypes.

4.3.2 Genes in Quantitative Trait Loci

The 98 QTLs identified in this study contained 3,034 unique genes (listed in Sup-

plementary Information file “genesList.xlsx”). Of these genes, 1,251 of which were

not annotated as ‘(retro)transposons’, ‘hypothetical proteins’, or ‘expressed pro-

teins’ without further annotation on the Rice Genome Annotation Project Website.
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Twenty-eight genes were found among the full list of genes which were involved in

cation transport. These included three genes with gene ontology (GO) terms for

potassium transport. The potassium channel KAT2 (LOC Os04g02720) was as-

sociated with the relative shoot potassium concentration in Japonica rice (QTLs

RCS.JAPONICA-4.1 and RCS.trj-4.1) and is primarily expressed in guard cells

and has been suggested to be the rice functional orthologue of AtKAT1 (Hwang et

al., 2013). A putative potassium transporter (LOC Os08g36340) was also related

to the same trait, but only in the tropical japonica. The latter gene was found to

be expressed relatively highly in the stem and panicle compared to other tissues in

cv. Minghui 63 rice (Wang et al., 2010; http://rice.plantbiology.msu.edu/cgi-bin/

ORF infopage.cgi) Furthermore, B4-BTB1 (LOC Os02g39910) was found to have

a GO term related to potassium transport. This gene has been described as coding

for a potassium channel tetramerisation domain-containing protein (Hirose et al.,

2007).

However, GO singular enrichment analysis of this collection of genes revealed no

GO terms that were statistically significantly (false discovery rate <5%) enriched

relative to their background abundance in the rice genome (using Fisher’s exact

test with a Yekutieli adjustment for multiple testing using the AgriGO gene ontol-

ogy analysis tool kit: http://bioinfo.cau.edu.cn/agriGO/analysis.php). Therefore,

identifying genes as candidates based on their GO terms is problematic as they

may be chance associations.

4.3.3 Single Nucleotide Polymorphisms Associated with Traits

and Within Genes

Of the 208 unique statistically significantly associated SNPs across all associations,

85 were within 67 different genes. Twenty SNPs were found to result in in non-

synonymous substitutions in 16 different genes and are listed in Table 4.2, with

one resulting in a nonsense mutation in a hypothetical protein (LOC Os09g24280).
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Eleven of the sixteen non-synonymous SNPs fell within the 1.1 Mb wide QTL

on chromosome 9 for the relative shoot potassium concentration in the tropical

japonica noted above (RCS.trj-9.1; Table 4.2).

122



Table 4.2: Non-synonymous single nucleotide polymorphisms (SNPs) identified
using genome-wide association studies (GWAS). Chromosome is abbreviated to
Chrom.

Quantitative Trait

Locus

Gene Chrom. SNP

Position

(bp)

Amino

Acid

Change

RCR.tej-1.2 LOC Os01g25810:

prenyltransferase

1 18,967,813 Gly to

Asp

RGR.lt.INDICA-1.1;

RGR.lt.ALL-1.1

LOC Os01g39640:

retrotransposon

protein

1 22,360,981 Pro to

Leu

KR.lt.trj-1.3 LOC Os03g56920:

expressed protein

1 32,420,151 Ile to

Val

QP.tej-6.1 LOC Os06g21140:

glycine-rich cell

wall structural

protein precursor

6 12,212,734 Gly to

Arg

RCR.tej-6.1 LOC Os06g37670:

S-locus-like

receptor protein

kinase

6 22,316,793 Thr to

Ser

KR.lt.trj-7.1 LOC Os07g44680:

expressed protein

7 26,662,735 Asp to

His

RCS.trj-9.1 LOC Os09g23660:

ZIM motif family

protein

9 14,058,209 Val to

Ala

RCS.trj-9.1 LOC Os09g24190:

expressed protein

9 14,359,383 Ala to

Glu

RCS.trj-9.1 LOC Os09g24240:

pentatricopeptide

9 14,391,529 Asp to

Val
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RCS.trj-9.1 LOC Os09g24240:

pentatricopeptide

9 14,392,003 Asp to

Val

RCS.trj-9.1 LOC Os09g24240:

pentatricopeptide

9 14,392,186 Met to

Thr

RCS.trj-9.1 LOC Os09g24280:

hypothetical

protein

9 14,426,745 Met to

Val

RCS.trj-9.1 LOC Os09g24280:

hypothetical

protein

9 14,426,787 Gln to

Stop

RCS.trj-9.1 LOC Os09g24290:

agenet domain-

containing

protein

9 14,440,057 Val to

Ile

RCS.trj-9.1 LOC Os09g24310:

expressed protein

9 14,449,786 Ser to

Phe

RCS.trj-9.1 LOC Os09g24310:

expressed protein

9 14,451,402 Arg to

His

RCS.trj-9.1 LOC Os09g24440:

expressed protein

9 14,536,300 Asn to

Ser

QP.trj-11.1 LOC Os11g29360:

pentatricopeptide

11 17,033,927 Ile to

Thr

KR.ht.ALL-12.1 LOC Os12g18810:

expressed protein

12 10,

893,826

Asp to

Gly

RCS.trj-12.2 LOC Os12g30630:

transposon

protein

12 18,396,339 Arg to

Lys
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4.3.4 Genes Identified in Previous Transcriptomics Studies

A total of 42 genes was identified in this study which had been previously found to

be differentially expressed in rice under potassium deficiency (Table 4.3). These

genes had a statistically significantly high proportion of regulatory and transcrip-

tional GO terms (Fisher’s exact test, false discovery rate <0.05; http://bioinfo.

cau.edu.cn/agriGO/analysis.php).
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Table 4.3: Summary of 42 genes within quantitative trait loci (QTLs) identified
from genome-wide association studies which have been previously found to be
transcriptionally regulated by potassium.

Quantitative Trait Locus Gene Reference

KDI.ht.JAPONICA-1.1 LOC Os01g06640:

putative basic

helix-loop-helix

Zhang et al.,

2017

QP.JAPONICA-1.1 LOC Os01g40070:

expressed protein

Ma et al., 2012

QP.JAPONICA-1.1 LOC Os01g40094:

putative protein

phosphatase 2C

Ma et al., 2012

KUtR.ALL-1.1 LOC Os01g59530:

OsCML1 -

Calmodulin-related

calcium sensor protein

Shankar et al.,

2013

RCR.ALL-1.1 LOC Os01g74410:

putative MYB family

transcription factor

Takehisa et al.,

2013

QP.tej-2.1 LOC Os02g39910:

B4-BTB1 - Bric-a-Brac,

Tramtrack, Broad

Complex BTB domain

with B4 subfamily

conserved sequence

Ma et al., 2012

RCR.JAPONICA-2.1 LOC Os02g41510:

putative MYB family

transcription factor

Takehisa et al.,

2013
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RCR.JAPONICA-2.1 LOC Os02g41510:

putative MYB family

transcription factor

Takehisa et al.,

2013

RCR.JAPONICA-2.1 LOC Os02g41670:

putative phenylalanine

ammonia-lyase

Takehisa et al.,

2013

RCR.JAPONICA-2.1 LOC Os02g41680:

putative phenylalanine

ammonia-lyase

Takehisa et al.,

2013

QP.tej-2.3 LOC Os02g45770:

OsMADS6 - MADS-box

family gene with MIKCc

type-box

Takehisa et al.,

2013

QP.tej-2.3 LOC Os02g46030:

putative MYB family

transcription factor

Shankar et al.,

2013

KDI.lt.trj-3.1 LOC Os03g07226:

putative thioredoxin

Ma et al., 2012

RCS.JAPONICA-3.1 LOC Os03g07940: AP2

domain containing

protein

Shankar et al.,

2013

RCS.JAPONICA-3.1 LOC Os03g08320:

putative ZIM domain

containing protein

Takehisa et al.,

2013

RCS.JAPONICA-3.2;

RCS.trj-3.1

LOC Os03g22590:

putative nodulin MtN3

family protein

Takehisa et al.,

2013

NaS.ht.trj-3.1 LOC Os03g24220:

putative villin protein

Ma et al., 2012
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RGR.ht.tej-4.1 LOC Os04g56030:

putative glycine-rich cell

wall structural protein

precursor

Takehisa et al.,

2013

RCS.JAPONICA-5.1 LOC Os05g29750:

putative cytochrome

P450 71E1

Takehisa et al.,

2013

QP.tej-6.1 LOC Os06g21210:

putative glycine rich

protein family protein

Ma et al., 2012

NaR.lt.ALL-6.1;

NaS.lt.ALL-6.1

LOC Os06g48800:

OsHKT2;4 - Na+

transporter

Shankar et al.,

2013

NaR.lt.ALL-6.1;

NaS.lt.ALL-6.1

LOC Os06g48810:

OsHKT2;1 - Na+

transporter

Takehisa et al.,

2013

QP.tej-7.2 LOC Os07g22680:

putative SKP1-like

protein 1B

Takehisa et al.,

2013

QP.tej-7.2 LOC Os07g22730: AP2

domain containing

protein

Takehisa et al.,

2013

QP.JAPONICA-7.2;

QP.tej-7.3

LOC Os07g34400:

putative lipase class 3

family protein

Takehisa et al.,

2013
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RCS.JAPONICA-7.1 LOC Os07g37990:

putative

glycosyltransferase

sugar-binding region

containing DXD motif

Ma et al., 2012

RCS.JAPONICA-7.2;

RCS.trj-7.1

LOC Os07g38810:

putative lectin

receptor-type protein

kinase

Takehisa et al.,

2013

QP.tej-7.3;

QP.JAPONICA-7.4

LOC Os07g41240:

putative cytochrome

P450

Takehisa et al.,

2013

QP.tej-7.4 LOC Os07g41694:

putative acidic

leucine-rich nuclear

phosphoprotein

32-related protein 1

Ma et al., 2012

QP.tej-7.5 LOC Os07g48340:

OsCML24 -

Calmodulin-related

calcium sensor protein

Takehisa et al.,

2013

QP.tej-7.5 LOC Os07g48490:

putative stress responsive

protein

Takehisa et al.,

2013

QP.tej-7.5 LOC Os07g48680: zinc

finger, C3HC4 type

domain containing

protein

Takehisa et al.,

2013
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RCS.JAPONICA-8.1 LOC Os08g09640:

OsFBL43 - F-box domain

and LRR containing

protein

Takehisa et al.,

2013

RCS.JAPONICA-8.5 LOC Os08g32080:

CPuORF27 - conserved

peptide uORF-containing

transcript

Zhang et al.,

2017

RCS.JAPONICA-8.5 LOC Os08g32520:

expressed protein

Ma et al., 2012

RCS.JAPONICA-8.5;

RCS.trj-8.1

LOC Os08g32750:

putative bifunctional

monodehydroascorbate

reductase and carbonic

anhydrasenectarin-3

precursor

Takehisa et al.,

2013

RCS.trj-9.1 LOC Os09g24370:

expressed protein

Ma et al., 2012

RCS.trj-9.1 LOC Os09g24710:

putative alpha/beta

hydrolase fold

Ma et al., 2012

RCS.trj-9.1 LOC Os09g25060:

WRKY76

Takehisa et al.,

2013

RCS.trj-12.1 LOC Os12g16010:

putative sex

determination protein

tasselseed-2

Ma et al., 2012

RCS.trj-12.2 LOC Os12g31160:

putative MLA10

Takehisa et al.,

2013
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Two of the genes listed in Table 4.3 also contained a SNP that was statistically

significantly associated with a phenotype. One of these was a putative bifunc-

tional monodehydroascorbate reductase and carbonic anhydrasenectarin-3 precur-

sor (LOC Os08g32750) which was in two QTLs for the relative shoot potassium

concentration for the Japonica sub-species and tropical japonica sub-population

(RCS.JAPONICA-8.5 and RCS.trj-8.1). The associated SNP was in the 3’ un-

translated region of the gene.

The gene for the sodium transporter HKT2;1 contains two synonymous SNPs

that were statistically significantly associated with the root and shoot sodium

concentrations for all genotypes (NaR.lt.ALL-6.1; NaS.lt.ALL-6.1; Figure 4.3).

OsHKT2;1 is positioned close to OsHKT2;4, another sodium transporter, on chro-

mosome 6 (Figure 4.3B). However, no statistically significantly associated SNPs

were found within OsHKT2;4 although several SNPs in this region were in rela-

tively high linkage disequilibrium with each other (Figure 4.3C).
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4.4 Discussion

In this study, the genetic architecture of rice in response to potassium treatment

was explored using GWAS for the first time. A total of 98 QTLs was identified

across traits and groupings of genotypes. Most of these were associated with phe-

notypes of plants in potassium stressed conditions or ratios between stressed and

replete conditions, suggesting that a lot of genetic variation exists for potassium

stress, but less was apparent when plants were not stressed. Furthermore, rice has

extensive population structure (Garris et al., 2005; Zhao et al., 2010) and many

QTLs were found that were sub-population and/or sub-species specific. Several

of these showed overlaps between sub-species and their relevant sub-populations.

This sub-population specificity could have important repercussions in an agro-

nomic context. For example, strategies for improving KUE may not be the same

for all sub-populations. Furthermore, it may also mean that crosses between groups

of rice genotypes can benefit crop improvement.

It should be noted that QTLs were found much more readily in the Japonica than

Indica rice. This may be as a result of statistical power as the dataset contained

195 Japonica genotypes compared to only 110 Indica genotypes that passed the

quality control criteria. On the other hand, previous GWAS using the RDP1

appear to have been able to find many associations in the aus and indica sub-

species for several different phenotypes (Famoso et al., 2011; Zhao et al., 2011).

A recent dataset which combines the RDP1 and Rice Diversity Panel 2 (RDP2)

greatly increases the number of available genotypes for such analyses (McCouch et

al., 2016) and this larger dataset could be used to re-assess the genetic architecture

of KUE in the Indica.
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Figure continued on next page.
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Figure 4.3: Summaries of genome-wide association studies (GWAS) for root (blue) and
shoot (black) sodium concentrations in 318 rice genotypes. Manhattan plots for both
phenotypes are shown in sub-plot A where the dashed lines indicate the 10% false discovery
rate threshold in for roots and shoots in their respective colours. Sub-plot B shows an
enlargement for the top of the peaks on chromosome 6 in A in relation to the positions
of OsHKT2;1 and OsHKT2;4. The linkage disequilibrium (LD) across the quantitative
trait loci NaR.lt.ALL-6.1 and NaS.lt.ALL-6.1 identified from the GWAS results is depicted
in sub-plot C. The GWAS results for the shoot sodium concentration are shown on the
Manhattan plot above a triangle depicting the pairwise linkage disequilibrium between
single nucleotide polymorphisms (measured using R2) where darker shading represents
stronger LD.
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The presence of several different QTLs across many phenotypes in the context of

low potassium supply is in keeping with previous QTL studies which used crosses

between small numbers of rice genotypes (Figure 4.1). In particular, Fang et

al. (2015) reported QTLs which together spanned a large expanse of the rice

genome, although the QTLs described in the present study were generally much

narrower regions of the rice genome. Nevertheless, some QTLs from the GWAS

analyses could still be in the range of one million base pairs wide when several

closely situated SNPs were found to be statistically significantly associated with a

phenotype (e.g. RCS.trj-9.1, see Table 4.1).

Co-localisation of QTLs identified in different studies has been relatively rare for

potassium deficiency in rice (Figure 4.1). One reason for this is that the iden-

tification of QTLs can be sensitive to differences in environmental conditions, as

was the case for comparisons between glasshouse and field conditions in Brassica

oleracea (White et al., 2010). Nevertheless, seventeen QTLs found in this study

overlapped with previously described rice potassium deficiency QTLs (Figure 4.1).

Additionally, QTLs have also been described for potassium concentration in salt

stressed rice plants and the QTL KDI.ht.JAPONICA-7.1 co-localises with a QTL

for root potassium concentration and content found by Lin et al. (2004) located

on chromosome 7. QTLs that are repeatedly found across different studies may

represent more promising candidates for crop improvement.

Of great potential importance to crop improvement is knowledge of which genes

within QTLs are the drivers of differences in KUE. It should be noted that there

were no statistically significantly over-represented GO terms relative to the back-

ground in the rice genome for all of the genes found within QTLs in this study

and so candidate genes should be treated with appropriate caution. For example,

while the discovery of three genes with GO terms relating to potassium transport

may appear highly relevant, the number of genes coding for proteins involved in

cation transport is no more than would be expected by chance.
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Identification of genes found within QTLs in this study and those known to be

differentially expressed in potassium stressed rice roots could provide an approach

for identifying more robust candidates (Table 4.3). However, comparison with

previous transcriptomics studies is not without limitations. As with QTLs, a lot

of variation exists in the genes identified as differentially expressed between stud-

ies. Despite this, genes which co-occur in this and previous transcriptomics studies

may prove to be good targets for crop improvement. Interestingly, the genes which

have been found to be differentially expressed and which occur within QTLs (Ta-

ble 4.3) tend to be involved in regulatory roles, pointing to a potential importance

of proteins such as transcription factors (for example) rather than transporters

for improving KUE. Furthermore, genes within QTLs which co-localised with the

previous literature and that were also found to be differentially regulated under

potassium stress were present. The QTL QP.tej-7.5 was in the same genomic re-

gion as a QTL for shoot dry weight, plant dry weight, and height found by Fang

et al. (2015). This QTL encompassed the genes LOC Os07g48340 (OsCML24

- Calmodulin-related calcium sensor protein, expressed), LOC Os07g48680 (zinc

finger, C3HC4 type domain containing protein, expressed), and LOC Os07g48490

(stress responsive protein, putative, expressed) which were found to have a tran-

scription level response to potassium deficiency (Takehisa et al., 2013). Further-

more, a putative expressed thioredoxin (LOC Os03g07226) was present within the

QTL KDI.lt.trj-3.1 and it was also found to be down-regulated under potassium

(Ma et al., 2012) as well as nitrogen and phosphorus (Cai et al., 2013) deficiency

in rice.

The statistically significantly associated SNPs themselves may also point to can-

didates for crop improvement. While GWAS does not guarantee that a causative

SNP will be identified (Korte and Farlow, 2013), the presence of SNPs associated

with traits that are within genes should not be ignored as they may influence

KUE and linkage disequilibrium is (on average) strongest over short distances.

Sixty-seven genes contained statistically significantly associated SNPs from the
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GWAS analyses. Sixteen of these (Table 4.2) contained non-synonymous SNPs

that could be causative of differences in phenotypes (e.g. Chao et al., 2014; Hart-

ley and Maathuis, 2016). Seven of these exist within a single QTL (RCS.trj-9.1)

and a single gene within this QTL (LOC Os09g24240: pentatricopeptide) con-

tains three non-synonymous SNPs. Interestingly, not only can there be several

non-synonymous SNPs within a QTL, several genes reported to be differentially

expressed can also be found within single QTLs. This may be indicative of QTLs

containing several genes relevant to KUE. However, linkage disequilibrium in rice

complicates fine-mapping of QTLs from GWAS studies and this may be a par-

ticular problem in the Japonica sub-species, where linkage disequilibrium can re-

main relatively high over several hundred kbp (Zhao et al., 2011; McCouch et al.,

2016).

Two synonymous SNPs exist within the gene for the root sodium-selective trans-

porter OsHKT2;1 (Figure 4.3). This gene was also identified in a QTL found by

Miyamoto et al. (2012) and it is expressed more strongly in roots than shoots (Mi-

ayomoto et al., 2015), with particularly strong expression in peripheral root tissues

(Jabnoune et al., 2009). Its expression is increased under potassium deficiency (Ma

et al., 2012) and positively associated with sodium accumulation in rice, although

over-expressing lines only accumulated sodium in shoots under potassium deficient

conditions (Miyamoto et al., 2015). Another class II HKT gene, OsHKT2;4, is ad-

jacent to OsHKT2;1 in the rice genome. This gene is expressed more strongly in

shoots than roots (Miyamoto et al., 2015) and its expression is not up-regulated by

low-potassium stress (Shankar et al., 2013). This would point to OsHKT2;1 be-

ing the more promising candidate for improving rice tolerance of potassium stress

through partial replacement with sodium.

In summary, GWAS was used for the first time to explore the genetic architecture

of KUE in a crop. Several QTLs were identified, many of which co-localised with

previously identified QTLs for potassium deficiency in rice. Furthermore, many

novel QTLs were described and some of these were specific to sub-species and
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sub-populations in rice. Candidate genes relevant to KUE could be proposed from

within QTLs based on containing SNPs identified in GWAS analyses as well as

previously identified transcription-level response to potassium deficiency in rice.

Among these, the gene encoding a sodium-selective OsHKT2;1 transporter pro-

vides a compelling target for improving tolerance of rice to KUE based on the

findings in this study and previous characterisation in the literature.
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Chapter 5

General Discussion

5.1 Potassium Use Efficiency in Crops and Targets for

Improvement

Potassium use efficiency (KUE) is an important agricultural trait that needs to

be optimised in order to ensure adequate yield for future food demand (Section

1.1; Rengel and Damon, 2008; Römheld and Kirkby, 2010; White, 2013; Wang

and Wu, 2015). Large areas of agricultural land around the world are currently

deficient for potassium (Römheld and Kirkby, 2010) and potash fertilisers need to

be applied to soils to balance agricultural off-take and compensate historical under-

fertilisation (Dobermann, et al., 1998; Pathak et al., 2010; Timsina et al., 2013).

While potash reserves are plentiful (USGS, 2017), the geographical distribution

of their production (Ciceri et al., 2015), potential for price spikes (World Bank,

2017), and environmental consequences of potash production, distribution, and

use (Ciceri et al., 2015; Sarands and Peñuelas, 2015) mean that increasing crop

KUE would be highly beneficial (see Section 1.1).

This work set out to address important issues in improving crop KUE. Firstly,
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details of how KUE is best measured were addressed (Chapter 2), before KUE

itself was measured and linked to physiological traits in rice (Chapter 3). The

genetic underpinnings of these differences in KUE were then explored (Chapter

4). The results and implications of the work presented in this thesis are discussed

below.

5.1.1 The Measurement of Potassium Use Efficiency

The way in which KUE is measured is of great importance when attempting to

identify efficient crop genotypes. To this end, many potential metrics have been

proposed (e.g. Baligar et al., 2001; Good et al., 2004; Moriconi and Santa-Maŕıa,

2013) and papers routinely report several different metrics. Given the multitude

of processes involved in potassium acquisition, distribution, and use in plants (see

Section 1.2), the use of a selection of metrics that explore different facets of KUE

can be useful. However, it is still the case that different metrics can measure

apparently similar processes and so optimal metric selection in screening studies

is therefore not a trivial issue.

In Chapter 2, a model of potassium in plants was constructed based on observations

from growth experiments using cv. IR64 rice exposed to a range of external solution

potassium concentrations (10 to 5,000 µM). Sensitivity analysis on this model was

then used to reveal which plant physiological parameters were theoretically the

most important in causing genotype-specific differences in metrics. Summarising

this information using principal component analysis provided a way to explore how

similarly different metrics responded to changes in plant physiology.

The model presented in Chapter 2 provided a powerful tool with which to explore

the implications of differences in plant physiological parameters on KUE measure-

ment without experimental constraints or potentially limited variation within a

selection of rice genotypes. At the same time, in summarising key aspects of the
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uptake, distribution, and use of potassium by plants using relatively simple mathe-

matical functions, some potentially important nuances of potassium in plants were

not modelled explicitly. For example, the re-distribution of potassium from older

to younger leaves has been found to increase utilisation efficiency in rice (Yang et

al., 2004), but the mathematical model used here considered the shoot as a uniform

compartment. Despite this, the impact of efficient distribution of potassium in the

shoot could be observed through the parameters βshoot and σshoot, which governed

how the shoot growth rate responded to its internal potassium concentrations.

However, parameters such as redistribution in the shoot would also apply for the

impacts on growth of replacement of potassium by sodium, for example, and so a

full mechanistic explanation of KUE was not present in the model. Nevertheless,

relatively simple models of potassium in plants have been used successfully be-

fore to explore potassium utilisation efficiency (Moriconi and Santa-Maŕıa, 2013)

and the model presented in Chapter 2 both captured key features of potassium

in plants (Figures 2.4 to 2.8) and contained enough complexity to distinguish the

importance of several relevant physiological parameters to KUE metrics (Figures

2.11 to 2.14).

This work showed that the classes of metrics that were defined based on their

calculation (e.g. utilisation or ratio metrics) are generally good indicators of how

a metric responds to physiology. However, exceptions existed. Examples of this

were ratio metrics for root potassium concentration or content (RCR and RQR)

which showed diverging responses compared to other ratio metrics at lower ex-

ternal potassium concentrations. The latter shows that metrics can respond to

experimental conditions as well as physiology and this is an important consider-

ation since external potassium concentrations can vary greatly over the length of

an experiment.

Another important question is how well KUE metrics measured at the vegetative

stage of plant growth related to economic outputs such as grain yield. Screening

often takes place on young plants due to lower costs and time considerations, but
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the evidence has been mixed as to how useful this may be for predicting yield under

potassium stress (e.g. Woodend and Glass, 1993; Yang et al., 2003; Damon et al.,

2007). Results from this work suggest that vegetative metrics cannot be relied

upon to predict grain yield if the harvest index varies in response to stress. This

is in agreement with Rengel and Damon (2008) who suggested that the response

of the harvest index to potassium stress may be a dominant determinant of KUE

in terms of economic output, although the importance of this may vary between

species. Previous evidence in rice suggests that vegetative measures of utilisation

efficiency were linked with yield (Yang et al., 2003), suggesting that while the

model identifies large theoretical influence of harvest index response to potassium

stress, this may not manifest itself in cultivars.

The key drivers that were identified by the sensitivity analyses as underlying dif-

ference in KUE metrics warrant some attention. While it is tempting to define

any plant that scores well for a given metric as a good genotype to use under

potassium stress, evidence from this work shows how such a notion can be poten-

tially misleading. For example, the ratio metrics were highly responsive to poor

performance under potassium replete conditions, allowing moderately performing

plants to appear highly efficient in response to low-potassium stress. This was ob-

served in the screen (see Section 3.4), where, for example, the highest performing

genotypes for the relative plant mass (RP) were not among the genotypes with the

largest average plant mass under potassium stress. Similarly, utilisation efficiency

metrics have a risk of selecting for plants that take up relatively small amounts

of potassium rather than having optimised use of potassium in tissues. Indeed,

the apparent trade-off between uptake and utilisation found in experiments is not

unique to potassium, with evidence for a similar relationship for nitrogen (Chardon

et al., 2010) and phosphorus (Rose et al., 2011) use efficiency.

Both the mathematical and empirical analyses of KUE presented in Chapters 2

and 3 highlight how great care should be taken in interpreting KUE metrics. Dif-

ferent experimental design has been suggested as a way to alleviate the problem
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of a trade-off between uptake and utilisation, such as growing plants in separate

nutrient solutions with very low amounts of a nutrient available (Rose et al., 2011).

While this may have some impact for utilisation metrics, other issues, such as the

potential for ratio metrics to select for unremarkable performance under stress cou-

pled with poor performance under replete conditions would not be solved through

alterations in experimental procedures. A solution to such problems could be sta-

tistical correction by including agronomically deleterious correlates as co-factors

when calculating use efficiency metrics. In this way, agronomically unappealing

aspects of metrics may be controlled as long as the correlates could be measured

experimentally.

Ultimately, work presented in Chapter 2 was able to explore how different ways of

measuring KUE inter-relate and respond to difference in plant physiology. From

this, it was possible to classify metrics and suggest a selection of metrics that rep-

resents each of these groups. Using such a selection of metrics enables studies to

explore KUE fully while minimising the risk of redundancy in metric choice. At

the same time, potential drawbacks of KUE metrics were found that could be al-

leviated through experimental or analytical techniques. Taken together, the study

described in Chapter 2 was able to advance understanding of KUE measurement

and inform metric choice.

5.1.2 Quantification of Potassium Use Efficiency in Rice

The identification of potassium efficient crop genotypes is a crucial step in the

development of new elite lines for use in agriculture. Rice is a good crop to use for

such work as it is both highly important to agriculture and relatively tractable ex-

perimentally and genetically (Section 1.4). Some previous work has explored KUE

in rice (Yang et al., 2003; Liu et al., 2009), but studies with a comparable diversity

and number of genotypes as available in the Rice Diversity Panel 1 (RDP1) have

not previously been carried out. The aim of Chapter 3 was to utilise the RDP1

143



resource and experimentally explore the underlying physiology of differences in

rice KUE.

Over 300 rice cultivars were analysed in this study using a selection of KUE metrics

based on the results of Chapter 2. Large scale variation at the genotype level was

found for these metrics, suggesting that there is plentiful genetic variation in rice

for future crop improvement. The scale of the variation was quite high across the

traits compared to the previous literature and this may result from the large scale

and diversity of the panel used in this study.

The high levels of variation in KUE observed in the RDP1 lends support to the

belief that germplasm diversity can be mined for future crop improvement (Rengel

and Damon, 2008; Hawkesford, 2012; Wang and Wu, 2015). Furthermore, varia-

tion in KUE is generally high between genotypes of other crops besides rice (e.g.

Woodend and Glass, 1993; Fageria et al., 2001; Trehan et al., 2005; Damon et al.,

2007; White et al., 2010). To effectively exploit germplasm diversity, the causes

of the variation need to be known so that the traits which give rise to enhanced

KUE can be bred for. While the importance of traits may vary between species,

many key drivers of differences in the six KUE metrics used in Chapter 3 were

identified.

Multiple regression models which associated the KUE metrics with physiological

parameters generally explained high proportions of the variation in these traits

(R2 > 0.7), except for the relative plant mass between low- and replete-potassium

conditions (RP; R2 = 0.19). For this metric, the shoot sodium concentration was

the most important predictor and was positively correlated with RP. Indeed, the

shoot sodium concentration was found to be positively associated with four of the

six metrics analysed. This suggests that replacement of potassium by sodium may

offer a broadly beneficial target for KUE improvement in rice and there is evidence

to suggest that other crop species also benefit from moderate sodium uptake in

the absence of potassium (Leigh et al., 1986; Subbarao et al., 1999; Gattward et
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al., 2012).

The key physiological drivers of variation in KUE between rice genotypes differed

between the various metrics but generally agreed with those identified by sensi-

tivity analyses as presented in Chapter 2. For example, the importance of a high

translocation rate of potassium from root to shoot for a high relative root potas-

sium concentration (RCR) was found in rice (Table 3.7) and in the model presented

in Chapter 2 (Figure 2.12). The link between a high potassium utilisation ratio

(KUtR) and low rates of potassium uptake, as described in Chapter 2, was found

to be a key driver of differences in rice KUtR at the genotypic level (Table 3.4),

lending support for the validity of the findings of Chapter 2. Given the potential

for metrics to select for agronomically deleterious traits as observed in Chapters 2

and 3, it may be the case that future work could have greater benefit to agriculture

by focussing on physiological traits that can benefit KUE rather than metrics for

KUE.

Many of the traits identified as key drivers of differences in rice KUE agree with

plant characteristics previously proposed as candidates for crop improvement, such

as early growth vigour and efficient uptake of potassium (Rengel and Damon, 2008;

White, 2013). Several of these are likely to be beneficial for use efficiencies of other

elements too (Hawkesford, 2012; White 2013). For example, root systems that can

exploit large areas can aid nitrogen and phosphorus uptake as well as potassium.

It may be that greater overall benefit to agriculture is gained through targeting

crop traits that are generic to the use efficiencies of several nutrients, but this

does not mean that nutrient-specific traits should be ignored. Replacement of

potassium by sodium is an example of a trait that is more KUE-specific. However,

sodium could also act as a counter ion to nitrate, aiding the delivery of nitrogen

to the shoot. Indeed, the importance of potassium to the use and distribution of

other nutrients and water (Clarkson and Hanson, 1980; Zörb et al., 2014) means

that even apparently potassium-specific crop improvements could be more broadly

beneficial to plants.
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Taken together, data from Chapter 3 not only quantified the large scale variation

in KUE present across the rice diversity panel, but also empirically identified key

physiological traits that give rise to this variation. Many of these traits could form

targets for crop improvement.

5.1.3 The Genetic Architecture of Potassium Use Efficiency in

Rice

Knowledge of the genetic underpinnings of KUE is an important resource for crop

improvement. However, the identification of reliable and robust markers can be

challenging. Previous work to identify potassium related quantitative trait loci

(QTLs) in rice has yielded little overlap in genomic regions and the use of tran-

scriptomics studies has shown that differential expression of genes in response

to low-potassium stress is also highly variable. Genome-wide association studies

(GWAS) provide a complementary technique which can identify QTLs that are

typically narrower than those previously described, usually resulting in genomic

regions with tens of genes rather than hundreds. This greater resolution facilitates

subsequent analysis of specific markers for their relevance to KUE. Furthermore,

the use of large populations allows identification of QTLs that are specific to sub-

species or sub-populations.

The application of GWAS to KUE in the RDP1 yielded 98 QTLs across all phe-

notypes and population sub-structure level combinations (Chapter 4). The pres-

ence of QTLs specific to only parts of rice population sub-structure may seem

contradictory with the results in Chapter 3 where differences in KUE between

sub-populations were small or non-existent. However, it may be the case that

different sub-populations achieve similar levels of KUE through different means

at the genetic level. Potassium deficiency can be found across Asia (Tanaka and

Yoshida, 1965) and it is likely that ancestral rice plants from both the Japonica

and Indica sub-species were required to cope with low-potassium conditions and
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still yield adequately. This may provide an explanation for why similar KUE levels

across the RDP1 genotypes are associated with different QTLs.

Some of the QTLs identified in this study either co-localised with previously iden-

tified QTLs and/or with genes found to be differentially expressed when potassium

is in limited supply. Among these was the sodium transporter OsHKT2;1. The

function of HKT2;1 (Horie et al., 2007; Miyamoto et al., 2015) in combination with

GWAS and transcriptomics data (Takehisa et al., 2013) make it a compelling candi-

date for crop improvement. The QTL containing the gene that encodes this protein

was associated with root and shoot sodium concentration, while the shoot sodium

concentration was positively associated with four of the six KUE metrics used in

Chapter 3. Sodium can replace potassium in many of its functions within plants

(Subbarao et al., 1999; Gattward et al., 2012; Benito et al., 2014) and was found

to accumulate to greater concentrations in the low-potassium treatment compared

to the potassium replete treatment (Figure 3.3). Furthermore, characterisation

studies on this gene confirm its relevance as a method for sodium entry into plants

(Horie et al., 2007; Miyamoto et al., 2015), facilitating the replacement of potas-

sium. Interestingly, Oomen et al. (2012) identified a new root-expressed HKT

isoform, No-OsHKT2;2/1, in a study which utilised natural polymorphisms. This

isoform was implicated in salt tolerance as it maintains high potassium permeabil-

ity, even when external sodium concentrations are high, unlike OsHKT2;1.

Apart from HKT2;1, comparison of the genes identified in this study with those

that have been found to be differentially expressed under low-potassium stress

revealed few transport proteins. In fact, only three genes encoding proteins with

annotations relating to potassium transport were found within QTLs from this

study, a number no higher than would be expected by chance. However, genes

encoding proteins with regulatory roles were abundant among those identified in

this study and previous transcriptome analyses. This may point to regulatory

processes being a more promising target for crop improvement than transport

proteins.
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An important issue in seeking genetic improvement in crop characteristics is the

heritability of important characteristics (i.e. how much of the observed variation

is a result of genetic as opposed to environmental causes). The environment can

have an important influence on genomic regions identified as related to a trait.

For example, the flowering time of rice was found to have different regions of the

genome associated depending on where the rice plants were grown (see supplemen-

tary information of Zhao et al., 2011). The narrow-sense heritability varied greatly

among the six KUE metrics. The potassium utilisation ratio (KUtR) had a low

heritability of 0.06 (on scale of 0 to 1, estimated using the polygenic() function

in GenABEL; Aulchenko, 2007). The relative shoot potassium concentrations

(RCS) also had a very low heritability of 0.006. The other ratio metrics for root

potassium concentration (RCR) and plant dry mass (RP) had a greater heritabil-

ity, with values of 0.31 and 0.36 respectively. The whole plant potassium content

(QP; 0.40) and plant mass (P; 0.56) had the highest heritability values. This sug-

gests that RCS and KUtR may be poor candidates for genetic improvement of rice

KUE, while P and QP are more promising. The lack of especially high heritability

values for KUE may be a reason for limited progress in improving crop KUE. Her-

itability for phosphorus use efficiency has also been described as low (van der Wiel

et al., 2016), and so a lack of genetic basis to variation observed in screens may

pose a problem to attempts to improve nutrient use efficiency in general.

However, KUE can still be considered a heritable property, even if environmental

variation can have an important influence on study results. As a result, the iden-

tification of QTLs and candidate genes remains a valid approach for improving

crop KUE. To this end, the study presented in Chapter 4 used a novel approach

to contribute to the collection of KUE studies at the genetic level (e.g. Wu et al.,

1998; Miyamoto et al., 2012; Fang et al., 2015). Along with several novel loci,

the relevance of sub-population structure to the genetics of KUE was explored

for the first time. Evidence has been reported for sub-population-specific associ-

ations for many traits in rice (Famoso et al., 2011; Zhao et al., 2011; Crowell et
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al., 2016) and several were found for KUE (Table 4.1). Re-discovery of QTLs and

genes previously identified as relevant to low-potassium stress adds confidence that

these associations could be causative as opposed to spurious links that arose from

environmental factors or physical linkage.

In summary, having applied GWAS for the first time to study KUE in rice, several

novel QTLs were identified including many which co-localised with those described

in the literature. Many QTLs were found to be sub-population or sub-species

specific, suggesting that the genetic diversity in rice could be mined for future

crop improvement. Furthermore, candidate genes could be proposed from this

work that may prove to be credible targets for improvement of crop KUE.

5.2 Concluding Remarks

The improvement of KUE in crops is required to ensure agricultural output that

meets food demand while also being economic and minimising environmental im-

pacts. Therefore, understanding the mechanisms by which KUE differs at a phys-

iological and genetic level is of great importance to the development of new elite

cultivars. The work presented in this thesis aimed to address key issues in this

process. Firstly, the way in which KUE is measured in experiments was explored

and metric selection was based upon the results of Chapter 2. Next, KUE was

measured in rice and the scope of variation in this trait was quantified along

with empirical identification of drivers of differences in KUE between genotypes

(Chapter 3). Finally, the genetic underpinnings giving rise to these differences was

explored and revealed a rich genetic architecture as well as potential targets for

improvement of crop KUE. Exploitation of the results of this work could both aid

further exploration of this important trait and may eventually lead to crops with

improved KUE.
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Chapter 6

Appendices

6.1 Appendix for Chapter 2

6.1.1 Calculation of Model Parameters

Maximal Theoretical Uptake Rate

Assuming a constant root to plant mass ratio, δ, with a replete external solution

potassium concentration of 1,000 µM, the root and shoot compartments must

grow with the same realised relative growth rate, R. Furthermore, the root, γroot,

and shoot, γshoot, tissue potassium concentrations are assumed constant under

these conditions. As a result, the whole plant demand for potassium per day

(
(
dQplant

dt

)∗
), which is satisfied by root uptake, can be expressed as:

(
dQplant
dt

)∗
= RγrootWroot +RγshootWshoot (6.1)

where all parameters are as defined above and in Chapter 2.
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Equation 6.1 can be substituted into Equation 2.1 to give:

RγrootWroot +RγshootWshoot =
µS

κ+ S
Wroot (6.2)

which can be re-arranged, expressing the mass of root and shoot as a proportion

of the whole plant mass, to give:

RγrootδWplant +Rγshoot(1 − δ)Wplant

δWplant
=

µS

κ+ S
(6.3)

and this can be simplified to give:

R(γshoot + δ(γroot − γshoot))

δ
=

µS

κ+ S
(6.4)

and re-arranged to make µ the subject as follows:

µ =

(
R(γshoot+δ(γroot−γshoot))

δ

)
(κ+ S)

S
(6.5)

from which the maximal uptake rate, µ, can be calculated. Using values from

Table 2.2 for δ, κ, γroot, and γshoot, as well as 0.1 for R (Section 2.3.1) and 1,000

µM for S results in a value of µ of 58.9 (to 3 significant figures) µmol (g root

FW)−1 d−1.

Maximal Theoretical Net Translocation Rate of Potassium to the Shoot

A value for maximal rate of net potassium supply to the shoot per gram of shoot

per day that is consistent with the above assumptions can be calculated in a similar

fashion to the maximal net uptake rate described above. The shoot demand for
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potassium under the outlined conditions
(
dQshoot
dt

)∗
can be expressed as:

(
dQshoot
dt

)∗
= RγshootWshoot (6.6)

This can be substituted into Equation 2.2, with the root potassium concentrations

expressed as γroot, as follows:

RγshootWshoot =
χγθroot

φθ + γθroot
Wshoot (6.7)

This can be re-arranged and simplified to give:

χ =
(Rγshoot)(φ

θ + γθroot)

γθroot
(6.8)

From this, a value of 11.8 (to 3 significant figures) µmol (g shoot FW)−1 d−1 for χ

could be calculated using the values for φ, θ, γroot, and γshoot from Table 2.2 and

0.1 for R.

Maximal Theoretical Relative Growth Rates

Maximum theoretical relative growth rates (αroot and αshoot) were calculated as

outlined below given the conditions and assumptions outlined above. For the ith

tissue (i.e. root or shoot), the growth rate in under the conditions outlined above

(
(
dWi
dt

)∗
) is:

(
dWi

dt

)∗
= RWi (6.9)

and this can be substituted into Equation 2.3, with the tissue potassium tissues
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represented with γi, as follows:

RWi =
αiγ

σi
i

βσii + γσii
Wi (6.10)

which can be re-arranged and simplified to give:

αi =
R(βσii + γσii )

γσii
(6.11)

and using the values in Table 2.2 for βroot, σroot, γroot and using 0.1 for R resulted

in a values of αroot of 0.129 (to 3 significant figures) d−1. For αshoot, a value of

0.105 (to 3 significant figures) d−1 using values from Table 2.2 for βshoot, σshoot,

γshoot and using 0.1 for R.

6.1.2 Potassium Use Efficiency Metrics with Potassium Replete

Conditions

The results of applying sensitivity analysis to the model (described in Chapter 2)

with a fixed external potassium concentration of 950 µM are summarised in Figure

6.1.
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Figure continued on next page.
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Figure 6.1: Metrics scores in the largest two principal components which explain 69%
(first) and 18% (second) of the variation respectively with a fixed external potassium
treatment if 950 µM. Each dot represents a metric score which and labels give the metric
identities. Sub-plot A shows the PCA scores of all KUE metrics used in this study for the
top two principal components. B shows the loadings of model parameters and C is the
same as sub-plot A, but zoomed in on the main cluster of metrics.
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6.2 Appendix for Chapter 3

Figure 6.2: Correlation matrix of metrics and physiological characteristics of rice geno-
types.
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Table 6.1: The top ten genotypes for plant dry mass (P).

Name Sub-population Mean Dry Mass (g)

Zerawchanica

Karatalski

temperate japonica 0.86

WIR 3764 temperate japonica 0.75

Sathi aus 0.71

Nira indica 0.66

Goria aus 0.65

Bombilla temperate japonica 0.65

Yodanya indica 0.64

Agusita temperate japonica 0.64

Tropical Rice temperate japonica 0.64

Italica Carolina temperate japonica 0.63
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Table 6.2: The top ten genotypes for the potassium utilisation ratio (KUtR).

Name Sub-population Mean KUtR (g

mmol−1)

O-Luen-Cheung indica 13.7

PTB 30 aus 13.5

Sathi aus 13.4

PR 304 tropical japonica 12.6

Sadri Belyi aromatic 11.5

Arias tropical japonica 11.2

Victoria F.A. temperate japonica 11.2

TOg 7178 admixed indica 11.1

Keriting Tingii admixed japonica 10.7

DM 59 aus 10.6
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Table 6.3: The top ten genotypes for the plant potassium content (QP).

Name Sub-population Mean QP (µmol)

WIR 3764 temperate japonica 147

Zerawchanica

Karatalski

temperate japonica 130

Goria aus 120

Lady Wright Seln tropical japonica 116

Agusita temperate japonica 108

NSFTV-362 tropical japonica 103

Nira indica 94

Aijiaonante indica 94

Peh-Kuh-Tsao-Tu indica 93

M. Blatec temperate japonica 93
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Table 6.4: The top ten genotypes for the relative plant mass (RP).

Name Sub-population Mean RP (-)

Okshitmayin admixed japonica 1.04

OS6 tropical japonica 1.03

Leuang Hawn temperate japonica 1.02

Kiuki No. 46 temperate japonica 1.01

Sitpwa temperate japonica 1.00

Wanica tropical japonica 1.00

Jambu tropical japonica 0.99

Guineandao admixed japonica 0.98

Tainan Iku 487 temperate japonica 0.97

O-Luen-Cheung indica 0.97

161



Table 6.5: The top ten genotypes for the relative root potassium concentration
(RCR).

Name Sub-population Mean RCR (-)

Djimoron admixed japonica 1.25

Geumobyeo temperate japonica 0.93

Leuang Hawn temperate japonica 0.92

YRL-1 admixed japonica 0.81

Nortai admixed japonica 0.78

B6616A4-22-Bk-5-4 tropical japonica 0.75

Sigadis indica 0.75

WC 521 admixed japonica 0.72

OS6 tropical japonica 0.71
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Table 6.6: The top ten genotypes for the relative shoot potassium concentration
(RCS).

Name Sub-population Mean RCS (-)

Peh-Kuh-Tsao-Tu indica 0.68

IITA 135 tropical japonica 0.60

Cybonnet tropical japonica 0.58

Kaybonnet tropical japonica 0.57

IR64 indica 0.53

Ghorbhai aus 0.51

R 101 tropical japonica 0.50

Goria aus 0.48

Jasmine85 indica 0.46

NSFTV-116 tropical japonica 0.45
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Abbreviations

ADI: admixed indica

ADJ: admixed japonica

ADM: admixed

ANOVA: analysis of variance

AP: accumulative productivity

ARO: aromatic

BIC: Bayesian Information Criterion

bp: base pairs

CAGR: compound annual growth rate

Chrom.: chromosome

CR: root potassium concentration

CS: shoot potassium concentration

DW: dry weight

FAO: Food and Agricultural Organization of the United Nations
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FW: fresh weight

FWDWHT : high treatment fresh weight to dry weight ratio

FWDWLT : low treatment fresh weight to dry weight ratio

g: grams

GO: gene ontology

GRiSP: Global Rice Science Partnership

GWAS: genome-wide association study

GY: Grain yield

HI: harvest index

IND: indica

IRGSP: International Rice Genome Sequencing Project

IRRI: International Rice Research Institute

KDIHT : high treatment potassium distribution index

KDILT : low treatment potassium distribution index

KRHT : high treatment root potassium concentration

KRLT : low treatment root potassium concentration

KSHT : high treatment shoot potassium concentration

KSLT : low treatment shoot potassium concentration

KUE: potassium use efficiency

KUtI: potassium utilisation index
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KUtR: Potassium utilisation ratio

LMM: linear mixed model

NaRHT : high treatment root sodium concentration

NaRLT : low treatment root sodium concentration

NaSHT : high treatment shoot sodium concentration

NaSLT : low treatment shoot sodium concentration

NP: nutrient productivity

P: plant mass

PC: principal component

PCA: principal component analysis

PE: physiological efficiency

PL: long-term plant mass

QP: plant potassium content

QR: root potassium content

QS: shoot potassium content

QTL: quantitative trait locus

RDP1: rice diversity panel 1

RDP2: rice diversity panel 2

R: root mass

RCR: relative root potassium concentration
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RCS: relative shoot potassium concentration

RGRHT : high treatment relative growth rate

RGRLT : low treatment relative growth rate

RL: long-term root mass

RP: relative plant mass

RQP: relative plant potassium content

RQR: relative root potassium content

RQS: relative shoot potassium content

RR: relative root mass

RS: relative shoot mass

RSRHT : high treatment root to shoot ratio

RSRLT : low treatment root to shoot ratio

USGS: United States Geological Survey

S: shoot mass

SL: long-term shoot mass

SNP: single nucleotide polymorphism

t: time

TEJ: temperate japonica

TRJ: tropical japonica

UHT : high treatment potassium uptake per gram of root
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ULT : low treatment potassium uptake per gram of root

W: plant mass

W0: initial plant mass
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Moriconi, J. I. and Santa-Maŕıa, G. E. (2013) A theoretical framework to study
potassium utilization efficiency in response to withdrawal of potassium. Journal
of Experimental Botany, 64: 4289-4299

Murata, T. and Akazawa, T. (1969) Stimulative effect of potassium ion on starch
synthetase of different plant origins. Plant and Cell Physiology, 10: 457-460

Nieves-Cordones, M., Alemán, F., Martinéz, V., and Rubio, F. (2014) K+ up-
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Phillipar, K., Büchsenschütz, K., Abshagen, M., Fuchs, I., Geiger, D., Lacombe,
B., and Hedrich, R. (2003) The K+ channel KZM1 mediates potassium uptake in
the phloem and guard cells of the C4 grass Zea mays. The Journal of Biological
Chemistry, 278: 16973-16981

Prinzenberg, A. E., Barbier, H., Salt, D. E., Stich, B., and Reymond, M. (2010)
Relationships between growth, growth response to nutrient supply, and ion content
using a recombinant inbred line population in Arabidopsis. Plant Physiology, 154:
1361-1371

Python Software Foundation (2017) https://www.python.org/ [accessed 13th March
2017]

Quampah, A., Wang, R. -M., Shamsi, I. H., Jilani, G., Zhang, Q., Hua, S., and
Xu, H. (2011) Improving water productivity by potassium application in various
rice genotypes. International Journal of Agriculture and Biology, 13: 9-17

R Core Team (2017) R: a language and environment for statistical computing.
https://www.R-project.org/ [accessed 25th July 2017]
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