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In this thesis, a comprehensive automated quantification process of some
of the features in electron energy-loss spectroscopy (EELS) is described.

For high-loss spectra, two algorithms have been proposed for automated
ionization core-loss edge onset detection and quantification. The robustness
of the edge detection by estimated exponent method is tested with respect to
various parameters for different values of such size of the detection window,
specimen thickness and an average white Gaussian noise. For quantification,
the pre-edge regions and the integration ranges are automatically chosen
based on the edges detected and elemental maps are calculated. A novel way
of modelling background in post-edge regions is explored for GaAs high-loss
spectra. However, simple post-edge background extrapolation tends to give
an overestimation of the net core-loss. Hence, an optimum background is
calculated from the error bars of the Poissonian statistics of net core-losses
subtended by backgrounds modelled from pre- and post-edge regions. The
Richardson-Lucy deconvolution method is explored at high-loss spectra to
iteratively reconstruct the single scattering distribution. The ringing arte-
facts are studied with respect to number of iterations. A baseline correction
to conventional linear least-squares method of core-loss quantification is pro-
posed. An example of a high-loss spectrum image (SI) from a Ge based solar
cell is used to test the relative quantification of Ga, As and Cu. The improve-
ment from ~ +8% to less than < +3% in the quantification of Cu, Ga and As
compared to other least-squares fit models are noticed. In some regions due
to overlapping of core-losses, the large errors produced by standard least-
squares methods was reduced from ~ +15% to < +9%.

The thesis has also explores the joint fitting of bulk plasmons (InN, GaN
and In,Ga;.«<N) and core-losses of 4d and 3d transitions of In and Ga respect-
ively in the low-loss range < 50eV. The effective In content in phase separ-
ated In,Ga;«N is quantified from two different fit ranges. A correction factor
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is proposed to correct the effects of a limited fit range arising due to inclusion
of a truncated In reference spectrum in joint fitting. In both short and trunca-
tion corrected extended fit ranges the values of effective In content has been
quantified ~ +10% with both bulk plasmons and core-losses. Chemical pro-
tiling of different regions in an EELS SI is done by mapping the positions of
bulk plasmons. The full width at half maximum (FWHM) of bulk plasmon,
W,, is also studied by fitting a Lorentzian function. Regions with (surface)
oxide formation or imperfection in the crystal structures due to formation of
Tb—O complexes revealed an increase in W,

The blind measurement of bandgap for a wide-bandgap material, GaN,
has also been studied. The bandgap onset detection is compared for different
methods such as by fitting a square-root function, derivative method and a
novel approach based on the centroids of clusters identified when fit ranges
are systematically varied. The square-root fitting and derivative method
was applied to density of state (DOS) region between 0eV to 12¢eV to vari-
ously modelled backgrounds such as exponential tail extrapolation of ZLP,
Richardson-Lucy and Fourier-log deconvolutions etc. The blind measure-
ment of bandgap with square-root fitting to ZLP subtracted GaN spectrum
was found to be at 3.28 eV with an R? of 0.91 and for derivative method it was
at 3.31eV which is in agreement with the literature. The square-root fit ap-
plied to different DOS background modelling was able to determine bandgap
at 3.52 + 0.91 eV where as from derivative method it was 3.52 + 0.41eV. The
bandgap measured using centroid of the highest R? in the clusters detected
using k-means clustering analysis was found to be at 3.52 & 0.91 eV which is
comparable to square-root fits. The blind measurement of bandgap was ap-
plied to test for GaAs spectrum. The determined values with derivative and
k-means cluster analysis was found to be at 1.40eV and 1.20 eV, respectively.
The precise measurement of bandgaps from EELS for an unknown material
is found to be difficult (< +0.41 eV) when compared to optical spectroscopy.
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Chapter 1

Introduction

1.1 Aim and Objectives

The aim of this work is automated electron energy-loss spectra (EELS)
quantification without user bias from the discrete objectives involved for
low /high energetic core-losses, bulk plasmon losses and valence electron
energy-loss spectra (VEELS).

Presently, techniques for quantification of EELS is subject to bias because
the quantification process involves user intervention and is not extensive in
a manner that thousands of spectra can be processed automatically. Manual
processing of multi-dimensional data is time consuming. Hence there is
a need for automatic, generic, objective and effective processing of spectra
from scanning transmission electron microscopy (STEM). Typically, an EELS
spectrum has a very large background. The intensity of ionization edges
compared to this background is very small. An automated detection of the
ionization onset would be required to model the spectra without human bias.
The traditional way of choosing pre-edge regions and integration ranges for
quantification manually are heavily biased and sometimes difficult to repro-
duce if these parameters aren’t mentioned. Modelling the background using
statistical tools such as least-squares fit, distribution fit and different signal
processing techniques can provide a very effective way for quantification and
mapping high-loss spectrum images (SIs). Effects of systematic and statist-
ical errors have been difficult to assess for core-loss quantification as there is
no single model that can determine the extent of systematic errors. Hence,
in high-loss least-squares modelling of ionization edges, a model accounting
for the systematic error needs to be proposed and should be compared to
the traditional quantification by background subtraction. The elimination of
plural scattering in the quantification process can lead to unforeseen errors
such as artefacts arising from Fourier based deconvolution methodologies.

However, some of the machine learning tools such as maximum likelihood
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estimation are seldom explored for high-loss EELS with regards to artefacts
or its convergence. Hence a model is needed to understand these artefacts.
In almost all the cases, the background is modelled in the pre-edge region.
An alternative approach of modelling the background in post-edge region
seems feasible. A baseline correction to traditional linear least-squares fits
is explored to minimize the systematic error arising due to background ex-
trapolation under the core-losses at higher energy. Sometimes a background
model chosen such as inverse power-law function or exponential function
may not be optimal. Hence, a linear baseline correction and small alterations
in the way of modelling could alter the quantification results further.

The quantification of phase separated ternary alloys such as In,Ga;.<N are
only studied in high-loss regions. But the low-energetic core-losses such as
In 4d and Ga 3d transitions along with the bulk plasmon could be used to
study the phase separation. The challenges in extracting reference spectra
for In 4d and Ga 3d transitions will be discussed. These reference spectra
do not have proper theoretical cross-sections (for 4d transitions) assigned
to them; extrapolating and/or fitting these reference spectra is challenging.
Also, the dependence of fit ranges in low-loss for determination of phase
separation needs to be addressed. The bulk plasmons can be modelled using
pure Lorentz functions or Voigt functions. The position of the bulk plasmon
can compliment the quantification of high-loss EELS, and maps of width of
bulk plasmons can sometimes reveal information on crystallinity.

Automated bandgap measurement is a challenging task. Visual determ-
ination of the onset is not a comprehensive way of determining the bandgap
in EELS. The apparent values of a bandgap heavily rely on the type of back-
ground subtraction and fit ranges for the density of states (DOS). There is
need to deal with the dominating zero-loss peak (ZLP) and bulk plasmons.
Hence a proper methodology is needed to reliably measure the bandgap with
error margins for an unknown material. A highly energy resolved spectra
from a monochromator could be a better way to determine the bandgap
onset. However, for a low-loss spectrum obtained in a normal TEM, the
bandgap computation is challenging. The measurement of bandgap from
a deconvoluted (1D) spectrum can be compared with the measurement of
bandgap from spatially resolved (2D) EELS. Apart from the square-root func-
tion fitting, other methods will be explored such as derivative and k-means

clustering.
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1.2 Structure of thesis

This thesis is divided into four technical chapters. Following a general liter-
ature review the analysis of EELS is discussed from higher to lower energy-
loss. Energy-losses > 100 eV can be considered as high-loss. The analysis of
low-loss spectra is more complex due to the presence of the ZLP, inter and
intra-band scattering, bulk and surface plasmon losses, core losses due to
edges with low ionization energies (eg. M and N shells), and plural scattering
due to finite thickness of the sample, which results in bulk plasmons being
replicated at higher energies. Low-loss spectra are usually dominated by ZLP
and plasmon losses. The quantification of ionization edges in high-losses
is relatively straight forward as they are superimposed on a monotonically
decaying background. This makes it possible to automatically identify the
core-loss ionization edges. Chapter 3 proposes two methods of automated
core-loss ionization edge detection. The improved edge detection algorithms
are applied to simulated spectra with varying window sizes, thickness, noise
and to a smoothed spectrum using simple averaging filter. The same method
is tested with different experimental EELS spectra such as high loss of mul-
tilayer heterostructure of a solar cell, In,Ga; N and AIN doped with Tb. In
chapter 4 various background fitting methods and the factors that affect the
quantification processes are discussed. Deconvolution methods are studied
and the limit of their efficiency is discussed. A baseline correction to the lin-
ear least-squares fit of the theoretical model to an experimental spectrum is
proposed. Hence, high-loss spectra (> 100eV) are analysed in chapters 3
and 4, followed by analysis of bulk plasmon and low-energetic core-losses
(10eV to 100eV) in chapter 5. The quantification of spectra from the tern-
ary semiconductor alloy In,Ga;N by jointly fitting bulk plasmons and 4d
transitions of In and 3d transitions for Ga are discussed with two different
fit ranges. A truncation correction factor that improves the quantification of
In core-loss in the extended fit ranges has been proposed. The reliability of
bandgap determination in low-loss (< 12eV) VEELS of InGaN and GaN is
analysed in chapter 6. The various methodologies are applied to determine
the bandgaps of GaN and In,Ga;.«N ternary alloys. Different methodologies
such as square-root function fitting, derivative method and cluster classific-
ation methods are applied and their reliability is studied. The effects of un-
derlying intensities of ZLP and bulk plasmons are discussed in chapter 6.
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1.3 Contributions

* Chapter 3:

— Proposal of two automated ionization core-loss edge onset detec-
tion algorithms. First algorithm uses look-up table to identify the
core-losses by counting positive slope-angle clusters. The second
algorithm uses the standard peak detection algorithms to detect
the peaks formed by the exponent of the background at each point

of the spectrum.

— The limits of the edge detection algorithm by peak detection is
tested by choosing different window lengths, specimen thickness,
additive white noise and effects of smoothing using an averaging
tilter.

— Automated quantification of dynamically selected pre-edge re-

gions for fitting and integration ranges is proposed.
e Chapter 4:

— The disadvantage of the most commonly used inverse power-law
function for high-loss EELS quantification is discussed with math-
ematical inferences. An alternative approach of background mod-
elling in post-edge regions is discussed in the case where the pre-
edge modelled background extrapolation is crossing the spectrum
at higher energy-losses. An optimal extrapolation of background
for an overestimated net core-loss from post-edge and underestim-
ated net core-loss from pre-edge background models using their

respective Poissonian error bars is proposed.

— Richardson-Lucy deconvolution (Maximum-Likelihood estima-
tion) is discussed for core-loss spectrum processing to retrieve
the single scattering distribution. The deconvolution algorithm is
tested for a simulated plural scattering distribution and the rela-
tionship between ringing artefacts and the number of iterations is

discussed.

— A large change in the quantification of EELS by slightly modify-
ing the least-squares model parameters is demonstrated for an ex-
ample case of overlapping Cu, Ga and As L-edges. A baseline



1.3. Contributions 5

corrected linear least-squares modelling of EELS spectrum is pro-
posed to handle the systematic error posed by background ex-
trapolation to higher energy-losses. The plural scattering is in-
cluded in the analysis by convolving the single scattering theoret-
ical cross-section from Hartree-Slater or hydrogenic models with
the low-loss EELS.

* Chapter 5

— Phase separation in In,Ga; <N is studied by fitting three bulk plas-
mons and low-energetic Ga Mys and In Nys edges for spectra of
In,Ga;«N , InN and GaN in two different fit ranges (from 13eV to
23eV and 13eV to 27eV).

— Due to experimental problems in recording the experimental ref-
erence spectrum of the In 4d transition over a sufficiently wide in-
terval, the quantification of core-losses with extended fit ranges
shows discrepancies. These were rectified by proposing a trunca-
tion correction parameter for extrapolation of the truncated InN

reference spectrum.

— The modelling of bulk plasmons by Lorentz functions and Voigt
functions is discussed to verify the quantification of high-loss
EELS. The position and width of bulk plasmons are analysed.

— A novel method of measurement of relative thickness of the mater-
ial from low-loss fitting is proposed and the results are compared

with the traditional log-ratio method.
e Chapter 6

— The reliability of bandgap measurement from VEELS is studied as-
suming the material under observation is unknown but has a dir-
ect bandgap. The modelling of background for DOS such as, tail of
ZLP and bulk plasmons, influences the measurement of bandgap.
Hence bulk plasmon and ZLP modelling by subtraction and de-
convolution in traditional 1D EELS and spatially resolved EELS
is studied by using multivariate statistical distribution modelling.
This modelling is compared with results from a simple extrapola-
tion of the tail of ZLP.

- Automated bandgap measurements are compared using different
square-root function fits and a derivative method for monochro-
mated low-loss EELS SI of In,Ga;_.,]N/GaN material.
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— Various methods are proposed for measurement of bandgap for
GaN. The statistics of the bandgap measured are tabulated. The
methodology is extended to lower bandgap material such as GaAs
to check the reliability of the method.

— A novel approach of measurement of bandgaps by cluster ana-
lysis is proposed based on k-means clustering. The relationship
between formation of clusters over various fit ranges and R? val-
ues are studied. The centroid, mean and median of the cluster with
the highest R? is found to approximate the bandgap.

1.4 Published work

1.4.1 Journal publications

Angadi, V. C,, Benz, E, Tischer, 1., Thonke, K., Aoki, T. and Walther, T. (2017).
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Appl. Phys. Lett. 110.22, p. 222102. DOI: 10.1063 /1.4984237.

Walther, T., Wang, X., Angadi, V. C., Ruterana, P., Longo, P. and Aoki, T,
(2017). ‘Study of Phase Separation in an InGaN Alloy by Electron Energy-
loss Spectroscopy in an Aberration Corrected Monochromated Scanning
Transmission Electron Microscope’. J. Mater. Res. 32.05, pp. 983-995. DOI:
10.1557 /jmr.2016.447.

Angadi, V. C., Abhayaratne, C. and Walther, T. (2016). ‘Automated Back-
ground Subtraction Technique for Electron Energy-loss Spectroscopy and
Application to Semiconductor Heterostructures’. J. Microsc. 262.2, pp. 157-
166. DOI: 10.1111/jmi.12397.

1.4.2 Conference proceedings

Angadi, V. C., Abhayaratne, C. Walther, T. ‘Determination of Bandgap Onset
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Chapter 2

Background literature

2.1 Microscopy

Before going in detail into EELS and its computational challenges due to its
complex structure, a very brief and generic background of electron scatter-
ing in electron microscopy and cross-section of transmission electron micro-
scopy (TEM) is discussed. Electrons are a form of radiation that can ionize
the material under observation. When a high-energy electron interacts with
the material, it produces a stream of secondary electrons by ionizing the ma-
terial. The secondary electrons produced are important in analysing some
of the properties of the material itself. When a beam of electrons is incident
on a thin specimen, the non-scattered electrons which do not undergo any
angular deviation and pass through the thin specimen in a straight direction,
are called direct beam. The scattered electrons which are reflected back in
almost the direction of incident beam are called backscattered electrons. The
incident electrons, when passing near-by a charged particle, will experience
a change in the kinetic energy which can lead to the emission of a photon or
secondary electron, hence preserving the law of conservation of energy and
momentum. This type of scattering is called bremsstrahlung scattering, as
indicated in fig. 2.1. This scattering has very high characteristic angle, 0,
and hence cannot be detected (Baier et al., 1999; Brydson et al., 2001; Fuggle
et al., 1991). Also it cannot ionize the inner-shell and hence does not contrib-
ute to core-losses. The bremsstrahlung scattering (Blumenthal et al., 1970) is
a continuous spectrum which extends across the axis in hyper-spectral data.
Some of the incident electrons from the beam may be absorbed by the mater-
ial in the specimen itself. Auger electrons (Jablonski, 1987) are an alternative
to the release of X-ray photons, when an ionized atom returns to the ground
state. This effect is used to study surface features and property of the sur-
faces (Harris, 1968). In semiconductor materials with direct band-gap, if an
electron beam is incident on it the formation of electron-hole pair takes place.
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FIGURE 2.1: Electron interaction with material producing other types of radiation

They recombine to give out light. This is called cathodoluminescence (CLS)
(Xie et al., 2012) and can also be used, among other types of radiation, in
hyperspectral data analysis of the material. The electrons in the microscope
can be classified as primary or secondary scattered electrons. The secondary
electrons are called so because they are released from the bound electrons of
the material. The primary electrons are the incident electrons and the second-
ary are the electrons produced by the interaction of primary electrons with
the material /specimen. The incident electron beam interacts with the outer
shell electrons, which require less energy to be ejected from valence band. If
the incident electron beam interacts with inner shell electrons which require
much higher energy to be released, the incident electron beam looses signi-
ticant energy. For slow secondary electrons the energy threshold is typically
around 50eV. In fig. 2.1, Auger electrons, Bremsstrahlung electrons, Cath-
odoluminescence etc are all secondary electron scattering effects. The other
classification of electron scattering is elastic vs inelastic scattering. The incid-
ent electron beam undergoes interactions with the atoms in the material. The
electron deviates from its incident path due to positively charged nucleus.
The deviation in its path could be from 0° to 180°. The incident beam with
fast electrons can also interact inelastically with the material producing the
secondary electrons or X-rays or Auger electrons. Phonon scattering is a type
of inelastic scattering in which secondary electrons can be produced due to
thermal vibrations of surface or bulk states of the material. Phonon scattering
has a very small energy-loss which is « 0.1eV and it cannot be resolved us-
ing usual typical electron spectrometer systems (Egerton, 2011b). But may be
with better spectrometers it can be resolved (Krivanek et al., 2013). Phonon
scattering along with elastic scattering constitutes the ZLP in EELS.
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FIGURE 2.2: Electron scattering

2.1.1 Transmission Electron Microscope

The TEM is a very important instrument in characterizing semiconductor
materials. This is useful in understanding the applications of nano struc-
tures of the semiconductor. The spatial resolution of the microscope can be
from a few pm down to ~A for high-resolution TEM (HRTEM) (Amari et al.,
2012; den Dekker et al., 2002). This makes it ideal for studying nano struc-
tures, defects etc. With the help of a wide variety of spectrometers, hyper-
spectral data can be acquired. A scanning transmission electron microscope
(STEM) of 60kV to 300kV are used to scan the specimen and produce maps
using detectors that collects intensity or a spectrum at each point. A STEM
with a spectrometer has the capability to analyse the ionized sample using
the scattered electrons and can provides chemical information of the sample.
State-of-the-art TEMs operate in several modes such as energy filtered TEM
(EFTEM) (Thomas et al., 2002), Bright field (BF) or Dark field (DF) imaging,
electron energy-loss spectroscopy (EELS), energy dispersive X-ray spectro-
scopy (EDXS), convergent beam electron diffraction (CBED) etc. A cross-
section of a TEM is shown in fig. 2.3. A high voltage of 60 keV-3 MeV is ap-
plied to a tip. Electrons are emitted from the electron gun by thermionic emis-
sion or field emission (Nion UltraSTEM 100) or combination of both effects
called Schottky field emission gun (FEG) (Otten et al., 1993) (JEOL 2010F).
Thermionic emission occurs when a material is heated at high enough tem-
perature it emit electrons and field emission occurs when an electric field is
applied to a small tip of the material it emit electrons due to tunnelling ef-
fect. Schottky emission is the combination of both and hence it is thermally
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FIGURE 2.3: A Cross-sectional diagram of TEM (Graham, 2009).

assisted field emission (a.k.a enhanced field emission). Inside the TEM, va-
cuum is maintained to facilitate electrons to move in the microscope without
the hinder from gas molecules. Liquid nitrogen and pumps are used to pump
out the air continuously to create and maintain the vacuum conditions. The
electrons emitted by the electron gun need to be focused to form a beam.
A combination of lenses and apertures are used to focus the beam on the
sample. The sample under observation is clamped to a specimen holder in-
serted in the TEM using an air-lock system. Three types of lens systems are
used in TEM,

¢ Condenser lens system : It is used to focus the electrons emitted by the

electron gun on to the specimen. The system has 2 or 3 single lenses.

* Objective lens system : These lenses are used to form a diffraction
pattern in their back focal plane. It is usually a split lens, so a system of
2 single lenses.
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FIGURE 2.4: GIF component interface to TEM and control path (Gatan, 1996).

* Projector lens system : It magnifies the image or diffraction pattern
onto screen or detector. It usually has 3 to 5 round lenses.

A fluorescent screen is used to see the electron beam interaction with the ma-
terial. In STEM, a Gatan imaging filter (GIF) interface could be used instead
of a 2D camera to record the image. In EELS spectrometer, a magnetic field
is used to form an image of the dispersed beam on a detector, based on the
dispersion of kinetic energy of the scattered electrons.

2.1.2 Gatan Imaging Filter

The GIF is attached to the imaging chamber of the TEM. The sophistication
of the GIF system allows to acquire TEM images or diffraction patterns into
energy-filtered images. It adds the additional capability of EELS and electron
spectroscopic imaging (ESI) to the TEM. The hardware interface of a GIF is
shown in fig. 2.4. The interface consists of 8 parts (Gatan, 1996):

1. Entrance aperture: The entrance aperture sizes are 3.0 mm, 2.0 mm or
0.6mm. The 3.0mm entrance aperture is typically used for energy-
filtered imaging, whereas the 2.0 mm and 0.6 mm apertures are typically
used for EEL spectroscopy.
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2. Pre-prism focusing and alignment coils: Comprising a dipole, two

quadrupoles and two sextupoles.

3. Magnetic prism: It has a 10 cm bending radius and the beam is bent by
90° to enter the charge-coupled device (CCD) camera.

4. Spectrum-magnifying quadrupole assembly: Comprising two quad-
rupoles (not present on GIF100).

5. Energy-selecting slit: It is pneumatically insertable and adjustable un-

der computer control.

6. Quadrupole-sextupole imaging assembly: Comprising four quadru-
poles and five sextupoles.

7. Pneumatically retractable TV-rate CCD camera: This interface is based
on Gatan Model 694 TV-rate Camera. It uses powdered phosphorous to
increase the sensitivity as compared to single crystal YAG scintillator.
It is used for alignment and can be pneumatically retracted to allow

images to be recorded on multi scan CCD.

8. Multi-Scan CCD camera: This interface is based on Gatan Model 694
Multi-Scan Camera. It has a 1024 x 1024 pixel CCD chip with 24 pm
square pixels. A vacuum is maintained to prevent damages to CCD
chip and scintillator. Note: R005 has 2048 x 2048 pixel with 14 pm square
pixels.

The software packages that run in collaboration with hardware,
¢ Filter control: Controls the operations of GIF electronics.

* Digital Micrograph: A software interface which can acquire images

from multi scan camera and display them.

* Image filter suite: It is one of the plug-ins for the Gatan Micrograph
Suite (GMS) in Digital Micrograph. It is used to automatically compute
ratio maps or can acquire EEL spectra and pass it on to EELS analyser
(Gatan, 2015).

With the help of a wide variety of spectrometers, hyperspectral data can be
acquired like EELS (Arenal et al., 2008), EDXS (Horita et al., 1989) and CLS
(Xie et al., 2012).
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2.2 Electron energy-loss spectroscopy (EELS)

EELS is ideal for quantification of the elements present in a material at near
atomic resolution (Reimer, 1995). The intensity of core-loss edges of an ele-
ment in EELS is via the ionization cross-section related to the number of
atoms of that element. The amount of kinetic energy that is lost by an incid-
ent electron to excite an electron inelastically from an inner atomic shell is the
cause for the formation of core-loss edges (Egerton, 2011b). The minimum in-
cident energy of an electron required to ionize an electron from a particular
shell produces the ionization edge onset for that shell. However, any excess-
ive incident energy will also cause the ionization and still retain excessive
kinetic energy. In EDXS where the edges are the difference between two ion-
ization shells and hence a detected electrons are of discrete energies. Hence in
EDXS, the ionization edges are peaks while in EELS it is an exponential decay
after the ionization edge. The EEL spectrometer sorts the scattered electrons
according to their kinetic energy. Some of the standard imaging techniques
used in acquisition of EELS are shown in fig. 2.5. The most common system is
a TEM fitted with magnetic prism. The beam entering the prism is elastic and
inelastic (energy-loss) that occurred in the specimen. The magnetic prism is
used to sort the electrons according to their kinetic energies and the electrons
are collected by a spectrometer at 90° to the optical axis. The instrumental
arrangement is shown in fig. 2.5(A). An alternative setting is to arrange the
spectrometer to be in the TEM column. To get the imaging stability there are
multiple prisms that bend the beam in the shape of Omega (€2). The image
is formed on the CCD camera. A slit can be introduced to act as an energy-
filter. The arrangement of the equipment is shown in fig. 2.5(B). A third kind
of system is based on STEM. A field emission source is used to form a probe
that can raster scan the specimen. A dark field image is generated by highly
scattered electrons that are collected at a ring-shaped (annular) detector. The
annular detector read-out should be synchronous to the scanning probe. The
system is shown in fig. 2.5(C). The spectrum is due to both multiple elastic
and inelastic scattering of the electrons by the sample. EELS spectra are com-
plex in nature due to the presence of the ZLP, energy-loss near edge struc-
ture (ELNES), extended electron energy-loss fine structure (EXELFS) (Ahn,
2005), plasmon inter-band transitions (Raether, 1980) and phonon scattering
etc. These influence the extraction of core-loss edges through background
subtraction. In the low-loss region (Browning et al., 2011) of an EELS the
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FIGURE 2.5: Standard procedures for EELS acquisition in TEM (A) TEM with a

magnetic-prism spectrometer below the viewing screen, (B) TEM incorporating

an in-column imaging filter and (C) scanning-transmission (STEM) system (Eger-
ton, 2009).
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predominant feature is the ZLP due to the combination of both elastic scat-
tering and phonon scattering. The energy-loss of phonon scattering is so low
that it is almost impossible to resolve in conventional spectrometers (Baden
et al., 1981) and only very recently highly stabilized spectrometers with en-
ergy resolution <30 meV have become available (Krivanek et al., 2013). In
recent years, phonon extraction from ZLP has been proposed (Egoavil et al.,
2014) by either subtracting or dividing the modelled ZLP to the experimental
spectra. The ZLP is mostly forward scattered and very intense so sometimes
it tends to saturate the CCD due to its high intensity. The other prominent
feature in the low-loss range is the plasmon loss as shown in fig. 2.6. This is

3 x10°
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Energy-loss (eV)

FIGURE 2.6: A low-loss electron energy-loss spectrum of polycrystalline Si. a)

ZLP b) bulk plasmon peak c) Si L, 3 ionization core-loss edge on top of exponen-

tial decaying background. Experimental conditions: voltage = 197kV, dispersion
= 0.5 eV per channel, spectrum offset = 0 eV, exposure time = 0.1s.

due to polarisation of the material by the passing high-energy electrons. The
typical range of energy-loss of bulk plasmon peaks is from 1¢V to ~30eV
(Williams et al., 1996). Multiple bulk plasmon losses can occur if the sample
is thicker. Also surface plasmons in very thin films can occur (Scholl et al.,
2012). Since the surface plasmon effects are only due to polarisation on sur-
face. Hence itis a 2D effect unlike bulk plasmon which is due to bulk material
(3D). This also mean the location of surface plasmon can be approximated if
bulk plasmon is known. i.e. E, ~ F, x v/2. The peak of a plasmon shifts with
respect to the dielectric properties of the material and the complex dielectric
constant can be extracted from the single scattering distribution via Kramers-
Kronig transform. The study of bulk plasmon peaks is important in the study
of shifts in bulk plasmons rather than actual peak positions in alloy (Williams
et al., 1996). The change in peak position with respect to composition, X, can
be modelled as shown in eqn. 2.1. Where, X, is the composition ratio in an
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alloy.

E,(x) = E,(x =0) + x - (%) (2.1)

The peak position of the bulk plasmon can be interpolated by least squares
tittings as was proposed by Hunt et al., (1995). The ELNES provides the bod-
ing information which can be used to calculate chemical shifts (Kimoto et al.,
1997; Mayer et al., 1996; Reimer, 1995; Wang et al., 2018) and the maps of
these shifts can be obtained (Thomas et al., 1999a, 2001a; Walther et al., 1995),
whereas the EXELFS provides the diffraction effects surrounding the ionized
atom due to excess energy of the ionized electron. In the high-loss region
EEL spectra have a background that is decaying almost exponentially. The
core-loss edges superimposed on this background can be extracted and the
influence of multiple plasmon scattering can be removed by Fourier-based
deconvolution (Thomas et al., 1999b, 2001b) with the low-loss function, yield-
ing single scattering distribution. The extracted core-losses can be mapped to
obtain relative concentration maps (Cooper et al., 2011; Muller et al., 2008) or
absolute atomic density distribution maps (Colliex et al., 1994; Colliex et al.,
2010; Pennycook et al., 2011).

2.3 EELS quantification

EELS has become a standard tool for identification and sometimes also quan-
tification of chemical elements in materials science. It is important for un-
derstanding the chemical and/or structural composition of natural or pro-
cessed materials. The elemental quantification in high-loss spectra is based
on ionization core-losses superimposed on an approximately exponentially
decaying background. The net ionization edges can be extracted by model-
ling the background in the pre-edge region below the ionization threshold
by an inverse power-law function (eqn. 2.2) or an exponential decay function
(eqn. 2.3) and then subtracting an extrapolated background from the post-

edge region.

f(E) = AE™" (2.2)
Ay ™
f(E)zZ Clexp|-| | E (2.3)
Jj= N

j Ty
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where A; and r; are fitting parameters with a constraint that »; > 0V;j. The
value of £ decides the number of exponentials used in the background mod-
elling (most studies use only k& = 1). The residual spectrum after subtracting
the modelled background contains the ionization core-loss intensity (/) in-
tegrated from edge onset over a window (A). The absolute quantification
of EELS core-loss edges (areal densities x in number of atoms/nm?) without

considering plural scattering is shown in eqn. 2.4 for a given collection semi-

angle (/).
1B
B IO(ﬁ)O-<E7 E07 B7 A)

where I is the intensity of the elastic peak. If the effect of plural scattering

(2.4)

is large due to sample thickness and the absolute quantification can only be
approximated without removing plural scattering by eqn. 2.5. Low-loss, I;o.,,
is integrated over a window of A eV to compensate for the redistribution of

the core-loss intensity.

1B
Ilow(/Ba A)U(E7 E07 67 A)

(2.5)

In a spectrum, relative quantification can be performed by calculating atomic
percentages (at.%). For example, if pure GaAs is being quantified then we
know that Ga should make up 50 at.% and As 50 at.% . Generally, EELS

quantification can be done using two procedures:
* background subtraction methods (Egerton, 1978),

¢ multiple linear (or non-linear) least-squares fitting methods. (Door et
al., 1995; Shuman et al., 1987; Steele et al., 1985; Wang et al., 1992)

In background subtraction methods, the x from eqn. 2.4 is calculated from
the residual spectrum after background subtraction with a differential cross-
section known from theory or experiment. In multiple linear least-squares
(MLLS) fitting (Hofer et al., 1993; Thomas et al., 2012), x is estimated by fit-
ting the theoretical differential cross-section calculated from either Hartree-
Slater or hydrogenic models or experimental calibration (model) spectra to
the spectrum, along with a modelled background. The model used for the
calculation of the integrated cross-section are taken from Egerton, (1989) as
shown in egn. 2.6.
4a2 R _

o(E, Bo,B,4) = =L f(A)-[ln(1+ﬁ2/§2E>+G(ﬁ,7,§E)] (2.6)
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. EO (]_ + Eo/zmQCQ)

(1 + Eo/moc®) 2.7)
E
v=1+ mOZQ (2.8)

where R is the Rydberg energy, a, is Bohr radius, E = [E.(E. + A)]"? is the
mean energy-loss in the energy range of integration for an ionization edge
(E.), £y is the kinetic energy of the incident electrons, m, is electron rest
mass and 0 = E/(29T) is the characteristic scattering angle. f(A) is the
integrated oscillator strength and its calculations depends on the atomistic
models (Reilman et al., 1979; Saloman et al., 1988) and G (8,7, ) is the re-
tardation term and is given by eqn. 2.9, where v is the velocity of the electron.

The retardation term has maximum effect when 5 ~ 0.

_ /62 4 92 2 Bz
60 =2 (5s) 5 () @9

In this thesis, the theoretical cross-section is calculated by numerically differ-
entiating the eqn. 2.6 with respect to £. The conventional method of quanti-
fication by manually selecting a pre-edge region to extract ionization edges
is exhaustive and leads to inconsistency for thousands of spectra. State-of-
the-art software tools like Hyperspy (de la Pefia et al., 2017b), Cornell Spec-
trum Analyser (CSI) (Cueva et al., 2011, 2012; Hovden et al., 2013), EELS-
Model (Bertoni et al., 2006, 2008; Verbeeck, 2015; Verbeeck et al., 2004, 2006,
2008a,b) and Gatan DigitalMicrograph™(Gatan, 2015) remove such incon-
sistency partly by applying manually selected quantification routines to en-
tire EELS SI data sets. Similarly, a model-based approach to EELS quantific-
ation has been presented by Verbeeck et al., (2004). The quantification para-
meters of the experimental data for the EELSMODEL software have been dis-
cussed by Verbeeck et al., (2008b). These authors later discussed standard-
less quantification of EELS, which they claim provided better results (Ver-
beeck et al., 2008a). None of these software packages, however, detects an
ionization edge and quantifies it automatically without any human interven-
tion: Hyperspy can perform an independent component analysis (ICA) (de
la Pefia et al., 2011) but the physical interpretation of the statistically signi-
ficant components in terms of element-specific core-losses still needs to be
provided by the user for any type of multivariate statistical analysis (Trebbia
et al., 1996). A multivariate analysis approach of end member hyperspectral
unmixing using Bayesian linear unmixing (BLU) was proposed by Dobigeon
et al., (2012). Both BLU and ICA algorithms need to know the number of
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end member. i.e. number of ionization core-loss edges in the high-loss spec-
tra. Principle component analysis (PCA) (Hardle et al., 2012; Ilin et al., 2010;
Jackson, 1991; Krzanowski, 2000) was used to get an initial guess of number
of ionization edges by observing variance plot (de la Pefia, 2010; Spiegel-
berg et al., 2017a). DigitalMicrograph™scripts such as Oxide Wizard (Yedra
et al., 2014) typically work on the basis of the user first assigning regions of
interest and identifying edges manually, which the algorithm can then track
and quantify in similar spectra of larger data sets. The aim is to subtract
the EELS background and provide elemental maps and profiles of thousands
of spectra in an extended SI without any prior knowledge of the ionization
edges. Noise and/or spikes due to X-rays or read-out errors of individual
detector pixels in the spectrum can lead to false positive detection of ioniz-
ation edges. Before proceeding to the quantification process, it is therefore
important to pre-process the spectrum.

2.4 Core-loss pre-processing

The noise in a spectrum arises due to a combination of low electron count
numbers and read-out noise of the CCD camera (Ishizuka, 1993). A further
problem arises as the detector point spread function (PSF) blurs the result-
ing shot noise over several adjacent pixels so it is often not directly apparent.
The objective is to detect and quantify the core-loss edges after the acquisi-
tion of the spectrum image in the presence of noise. The noise in the spec-
tra is a mixture of Poisson noise (or shot noise) and Gaussian noise (de la
Pefia, 2010). The ionization cross-section decreases with increasing energy-
loss. As the signal-to-noise ratio (SNR) decreases with energy-loss, the in-
tensity of high-loss ionization edges becomes comparable to the noise level.
This emphasises the necessity of preprocessing signals before calculating the
gradient of the spectra. An averaging filter is always inefficient (Boyle et al.,
1988; Davies, 2012; Justusson, 1981) as it does not consider the type of noise
and spikes (or pulses) are not completely removed (fig. 2.7). The number
of spectral channels selected as filter width, w, influences the residual noise
after smoothing but will also suppress the core-loss signal to some degree,
in particular for sharp edges. An averaging filter gives good noise suppres-
sion when multiple spectra are averaged, providing a collective represent-
ative spectrum with reduced noise. PCA is a form of multivariate analysis,
using orthogonal eigenfunctions (Fukunaga, 2013; Jolliffe, 2002; Lichtert et
al., 2013; Manly et al., 2016; Pearson, 1901; Potapov, 2016). A multivariate
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FIGURE 2.7: Comparison of noise suppression methods applied to an EEL spec-

trum. The term w describes the width (in pixels) of the filter mask. PCA is not

effective in suppressing spike noise as the reconstruction of spectrum based on

first 17 significant components (shown at the top) still contains noise. The me-
dian filter works best.

analysis tool (simply called pca () function in Matlab R2017b) has been used
to analyse datasets in an unsupervised manner. The dataset in this case is
the SI. The components of the PCA are spectral components ranked in order
of significance. The lower order components with high local variance rep-
resent all the components needed to describe most features of the spectrum
apart from the noise (low variance because it is present in all channels and
everywhere). Hence, PCA can in principle be used for denoising the spec-
trum, and a Poisson-weighted PCA algorithm that properly accounts for the
variance in shot noise has been used to reduce noise in Time-of-Flight Sec-
ondary Ion Mass Spectrum images (Keenan et al., 2004). Spiegelberg et al.,
(2017b) have proposed the singular value decomposition (SVD) to remove
noise from EELS spectra and to estimate the background. Although the au-
thors suggest that this should be applied as the last step after all the noise
removing algorithm have been applied. If the noise is Poissonian however, a
morphological filter such as a median filter is the most effective way of im-
proving the SNR (Ataman et al., 1980), as shown in fig. 2.7. In 2D (images),
a median filter has been proven to be best filter in case of ‘salt and pepper
noise’, which corresponds to Poisson noise in images (Ahmad et al., 1987;
Lim, 1990; Perreault et al., 2007; Pratt, 2007). Here, it preserves the shape of
the spectrum. Fig. 2.7 shows the performance of different filters in terms of
removing an artificial spike in a spectrum with a delayed In My s edge from
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InGaAs. As the SNR is decreasing with energy almost exponentially, a me-

dian filter is chosen as defined in eqn. 2.10.
S'(E) = exp (median (In ([Si_w, - , Sizw]))) (2.10)

where S is the spectrum, w is a window over which the median filter is ap-
plied. In the following, all spectra were median filtered first to help identify
the core-loss edges, then the quantification routines for background fit, extra-
polation and signal integration were applied to the unfiltered spectra. Me-
dian filtering will not remove noise due to CCD gain variations. This can
lead to false positive identification of apparent ionization edges. If the pre-
processing is needed only to remove spikes arising due to dead pixels in
the CCD detector of the spectrometer, a good outlier identifying filter can be
used. A hampel identifier (Liu et al., 2004; Suomela, 2014) uses median ab-
solute deviation to identify outliers and replaces the outlier with the median

value as shown in eqns. 2.11-2.14.

S = {817 S, 7STL} (211)

m; = median {8y, Si—w+1, Si—w+2, " Sis " Sigw) (2.12)

0; = K- median{’&—w - mi|a T, |Si - mi‘> Tty ‘Si-‘rw - mZ’} (213)
1

k= ——F—— ~ 1.4826 2.14
V2erfe 1 1/2 (214)

Given a spectrum of S, a local median (m;) in a window (w) and standard
deviation (o;) are calculated. The o,/ parameter is called median absolute
deviation. If a pixel in the spectrum |s; — m;| > n, x o;, then it will be con-
sidered as an outlier and will be replaced with a local median, m;. Usually,
the value of n, will be 3, which indicates the threshold for an outlier as 3
times the standard deviation, 3 x ;.

2.5 Modelling plural scattering

The residual spectrum after background subtraction includes systematic er-
ror at higher losses from the edge onset. Hence using a large integration
range (A) will affect the quantification of EELS. But using a small integra-
tion range means that the quantification is strongly affected by statistical er-
rors. Hence, there has to be a trade-off in using an optimal integration range

(A). The quantification (N.t%)) of EELS for a give collection semi-angle (3)



24 Chapter 2. Background literature

by background subtraction is a function of integration range, as shown in
eqn. 2.15. While calculating relative quantification, if the integration ranges
for two edges to be compared are not the same (for eg. A4 & Ap), then each
residual spectrum is affected by different statistical errors as well as the ef-

fects from the plural scattering.

IA((AA))
oa(A
NA (at%) = 7 A4 x 100 (215)
-0 A(A4) Ip(AB) .. In(An)
oa@a) T os@p) T T Gu@n)

The incident beam that scatters inelastically can be modelled by assuming
electrons undergo collisions independently. The probability, P (n,t/)), of a
number of inelastic scattering events (n) by an electron is given by the Pois-
son equation in eqn. 2.20 where ¢ is the thickness of the sample, \ is the mean
distance between successive inelastic scattering events (inelastic mean free

path for inelastic scattering) and is given by eqn. 2.16.

_106F (Ey/Ey)
" In(28Ey/E,)

(2.16)

Ep ~ T.6Z5F (2.17)

The atomic fraction, f;, of an atomic number, Z;, is used to calculate the ef-
fective atomic number, Z s as defined by eqn. 2.18.

Zi fiZz'lB

—ZZ I (2.18)

Zeft ™
The X calculation is approximated by Malis et al., (1988), where F' is the re-
lativistic factor defined by eqn. 2.19.
1+ Ey/1022 keV

F = . (2.19)
(1+ Ey/511 keV)

Hence t/) is the mean number of inelastic collisions by an electron through
the specimen. The probability, P (n,?/)), can also be defined as the ratio of
total intensity of n-fold inelastic scattering (/,,) to the total intensity of the

spectrum (I;) as shown in eqn. 2.20.

t I, 1 t\" t
P(n3) =7 () ) = (-5) 220

Hence, as the thickness of the sample increases the intensity is redistributed

from the edge onset to higher energies according to Poissonian statistics. A
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simulated low-loss spectrum is shown in fig. 2.8(A) with plasmon peak (£),)
at 20 eV, plasmon width (W,) of 0eV (in blue) & 10eV (in orange) and zero-
loss width (W) of 0eV (in blue) & 2 eV (in orange) as an example. As can be
observed from eqn. 2.20, as ¢/ increases the multiple plasmons start becom-
ing more dominant. This is replicated in higher losses as a convolution with
the low-loss spectrum. As higher order plasmons become dominant, the in-
tensity at ionization edge onset is shifted to higher losses as it is evident in
tig. 2.8(B). The integration range (A) affects the quantification as the intens-
ity is shifted. Fig. 2.8(C) demonstrates the reduction in intensity for lower
A ranges. The plural scattering will also affect the background modelling
for the consecutive ionization edges. Hence, the following points have to be
considered for quantification,

¢ Using same integration range (A) for all the core-loss edges. It is worth
noting that all the theoretical cross-section models such as Hartree-
Slater and/or Hydrogenic models assume single scattering distribu-
tion. Hence, using the same integration range would systematically

avoid errors in relative quantification.

* Using large integration ranges of at least 5 x E, for all the core-loss
edges. Plural scattering redistributes the intensity close to the edge on-
set towards higher energy, but the total integrated intensity will remain
unchanged, and the effects from higher order multiple plasmons are
typically very low. This approach has disadvantage of a large system-
atic error while integrating the residual spectrum due to the extrapola-
tion of the background to higher energy.

¢ Using deconvolution methods (Verbeeck et al., 2009) such as Fourier-
log (Johnson et al., 1974), Fourier-ratio deconvolution (Egerton et al.,
2008) methods. These methods recover the single scattering distribu-
tion of the spectrum through deconvolution with low-loss (a spread
function). Richardson-Lucy (RL) deconvolution method (Biggs et al.,

1997) is explored in high-loss region later in section 4.4.

2.6 Fourier-ratio deconvolution

Fourier-ratio deconvolution is a standard method of deconvolution in sig-

nal processing. From a spectrum with plural scattering, Spsp(E), the single
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scattering distribution, Sssp(£), can be retrieved as shown in eqn. 2.21.

(2.21)

Sssp(E) = F~' {f{SPSD<E>}}

F{Spsr(E)}

The notation F and 7! indicate Fourier and inverse Fourier transform op-
erator, respectively. Spgp(FE) is a low-loss spectrum with its total intensity
normalised to unity. This ensures conservation of total intensity as discussed
in eqn. 4.10. Fourier-ratio method heightens noise. This is because the val-
ues of high frequency Fourier coefficients are low in the denominator. Care
should be taken that values in the denominator are not exactly 0. Hence an
extremely small offset (~1 x 107! or even lower) is commonly added to the
denominator to avoid division by 0. The amplified noise can be suppressed
by re-convolving the Fourier-ratio with a smoothing kernel, R(E), such as a
Gaussian or the ZLP peak itself, as shown in eqn. 2.22. Sometimes this may
not sufficient. a modulus operator is applied to bring any negative values to
> 0.

R LR e e
The spectrum must be extrapolated to avoid kinks. Hence a Hann window as
described in eqn. 4.13 or an inverse power law extrapolation can be applied.
The length of extrapolation does not affect the ringing artefact as long as the
left and right side of the spectrum are at same level (~ 0). Many implement-
ations of the fast Fourier transform (FFT) the length of the spectrum must be
a power of 2. A Fourier transform is implemented in most software package
as an FFT, which uses vectorised versions of butterfly diagrams. An FFT is
usually referred to as N-point FFT.

N =2" VYneN' (2.23)

If the length of the spectrum is not equal to N, then by default some routines
pad zeros to make the length of the spectrum meet the next largest power of
2 criterion. But padding zeros would introduce a sharp kink in the spectrum
which is equivalent to a sinc function (ripples) in frequency domain. Hence,
whenever extrapolating, the extrapolation must be carried out to make the
length equal to N and try to minimise kinks in the spectrum. This has been
implemented by Egerton, (2011a) as Frat () routine'.

!Egerton, (2011a)’s Frat routine uses inverse cosine function as shown in eqn. 4.13 for
extrapolation to a length V.
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2.7 Fourier-log deconvolution

As the thickness of the sample increases the effect of plural scattering in-
creases as per eqn. 2.20. This implies that higher multiple bulk plasmons
become more prominent in the low-loss spectrum. In typical (S)TEM the ef-
fect of multiple bulk plasmons becomes prominent up to as high as 5 x £,
in energy-loss. Any core-losses that are present at low-losses are difficult
to quantify due to the fact that the background is not monotonic. Hence,
a single scattering low-loss spectrum is needed to extract and analyse the
core-losses. Johnson et al., (1974) proposed the Fourier-log deconvolution
method” as shown in eqn. 2.24.

. F{Spsr(E)}

Sssp(E) = F {f{R(E)} -In lF{T(E)}] } (2.24)
where the Z,(E) is the extracted ZLP from Spsr(E). Zy(F) is extracted un-
til the minimum point (£)) between the ZLP and the first plasmon of the
Spsr(FE), then the right tail is extrapolated by an inverse power-law func-
tion. Instead of extracting from Spsr(E), Zo(E) can be also be simulated as a
Gaussian function, N'(E, 0, Wy), with full width at half maximum (FWHM),
W, same as the ZLP in Spsp(E). The Gaussian can be scaled to the intensity
of ZLP (1) of Spsr(E), works only if the ZLP is symmetric, i.e. in case of

low-loss acquired in monochromator, as shown in eqn. 2.25.

Ey, Ey

Ey
Sese(E) = | ZE) = Lo | N(B.0.W) (2.25)

The log-ratio term in eqn. 2.24 calculates the single scattering distribution.
But due to the presence of Fourier coefficients that are close zero, the noise is
heightened. Hence, one needs to re-convolve the log-ratio with a smoothing
function R(E). The re-convolving function can either be a Gaussian kernel
or the ZLP itself, Z,(E). If the re-convolving function, R(E), is normalised to
unity then the intensity is preserved, as in case of eqn. 4.10. If the intensity of
Zy(E) is not normalised. The resulting single scattered distribution is abso-
lutely quantified. The removal of kinks and the extrapolation must be carried

out similar to Fourier-ratio deconvolution method described in section 2.6.

2Similar to Frat, Egerton, (2011a)’s routine for Fourier-log deconvolution is F1og. The
uses same methods for extrapolation.
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2.8 Angular convergence correction

The deconvolution methods discussed in section 2.5 assume that all the in-
tensity is captured by the spectrometer CCD. However, this is not the case.
The detected intensity is limited by a finite collection semi-angle (3). The
systematic study by Egerton et al., (1990), which showed the effects of 5 on
obtaining single scattering distribution and hence quantification of EELS. If
the angular spread defined by the convergence semi-angle (o) is limited by
a collection semi-angle (3) even more intensity is not recorded by the spec-
trometer CCD. A correction factor, F}, can be calculated from the ratio of
intensity of spectrum /(«, 8, A), with an o comparable with 3, and intensity
of spectrum (0, 5, A) where o ~ 0 or § >> a. With the help of Scheinfein
et al., (1984), the ratio can be solved analytically’as shown in eqn. 2.26.

=

0d0  (2.26)

[(o,$,A) 2/a? fl Y2+ (4 + 4026%)"?
10.6.0) ~ W[L+ (507 ) 207

where 0 is the characteristic scattering angle as defined in eqn. 2.27.

E. + A/Q
Op ~ (o) (2.27)
VP =a? + 0% —6° (2.28)

The F; is a function of characteristic scattering angle (6x), implying that it is
a function of energy-loss. Hence, the correction factor is different for all core-
loss edges. Itis also worth noting that 7 < 1as I(0,5,A) > I(a, 5,A). Hence
elemental quantification ratio from eqn. 2.15 can be corrected as shown in

eqn. 2.29.

11(187A1)
Ny (atr) = 2L 100 (2.29)

n
](ﬁ?AJ)
El o (B,8;) I,

For absolute quantification in eqn. 2.4, the convergence correction for low-
loss and high-losses are different. Hence, another convergence correction,
F, (eqn. 2.30), can be introduced for absolute quantification as shown in

eqn. 2.31.
Fi, :
B~y *<p (2.30)
(Oé/ﬁ) ’ F17 o= 6

N

3The routine for calculating the correction factors F}, F» and g* is Concor2 (Egerton,
2011a).
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1(3,A)
I(B) - o(B,A) - Fy

In eqn. 2.29, the term o (5, A) - F can be treated as the correction to theoretical

X = (2.31)

cross-section rather than to the intensity. Hence, an effective collection semi-
angle 3*(E) can be used as a correction to the collection semi-angle as shown

in eqn. 2.32.
UA(/B*aA> :O-A(/87A)'F1A : 6* </37 vaz/g (232)

This is useful in linear least-squares fitting as correction by lowering the g of
theoretical cross-section, increasing the fitting precision. This correction is ef-
fectively increasing the collection semi-angle of the spectrum. Figs. 2.9(A-C)
demonstrate the values of 5*, convergence corrected integral, o(E, A, 5*, Ey),
and differential (-50(E,A, 3, Ey)) cross-sections for o = 16.6mrad and
£ = 15mrad.



2.8. Angular convergence correction

31

£ in mrad

3500

do(E,A,BE)/dE

18

17

167

= 3 without convergence correction
——— 3 with convergence correction

15

12¢

11+

10

-

400

500 600 700 800 900
Energy-loss (eV)

(4)

1000

o without convergence correction

o with convergence correction

0
400

500 600 700 800 900
Integration range (A) in eV

(B)

1000

— do/dE without convergence correction

——— do/dE with convergence correction

0
400

500 600 700 800 900
Energy-loss (eV)

(©)

1000

FIGURE 2.9: (A) Effective collection semi-angle correction for 8 = 15mrad. (B,C)
are the convergence corrected integrated cross-sections, o(E, A, 5*, Ey), and dif-
ferential cross-sections, %J(E, A, 5*, Ep) from hydrogenic model for O K edge

at 532eV.
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Chapter 3

Automated ionization core-loss

analysis

3.1 Introduction

The process of automated ionization edge analysis can be explained in two
parts: ionization core-loss edge detection and background subtraction for
quantification of individual ionization edges detected. The quantification of
EELS used in this chapter follows the standard integration method (Eger-
ton, 1978). To quantify a spectrum there are a lot of challenges in terms of
artefacts, noise and gain correction problems of the CCD camera. Hence,
a pre-treatment of spectra is necessary before the process of edge detection
and background subtraction. If the background is exponentially decaying,
there is no ionization edge and the SNR is high, then the gradient of a spec-
trum should be negative everywhere. As the spectrum is preprocessed, pos-
itive gradients indicate the presence of core-loss edges. A look-up table can
be used to accurately identify the corresponding core-losses of the elements.
An inverse power-law (eqn.2.2) or exponential decay function (eqn.2.3) will
be used to fit a curve, B(FE), in the pre-edge region to fit, extrapolate and
subtract the background. The extracted core-loss edges are used for further
quantification using integration after background subtraction. All program-
ming was performed in Matlab using the current version, R2017b (Math-
Works, 2017). A spectrum S(FE) with ionization edges superimposed on a
background modelled by B(E) at higher losses as a function of energy-loss
(E) and integration range (A) is shown in eqn. 3.1. I is the intensity and o

the ionization cross-section for the j shell of i element in the spectrum.

S(E,B,A) Z A)oi (B, A) (3.1)
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3.2 Detection of ionization core-loss edges

For automation of background subtraction, a novel approach of core-loss
edge detection is proposed. For an EELS SI, S(z,y, E), the gradient of SI
can be defined as shown in eqn. 3.2.

0 0 0 -

S=|—2+—1 FE E .
v l&xw+0yy+6E S(z,y, F) (3.2)

where VS is the gradient of the SI (data cube) with regard to spatial z, § dir-
ections and energy-loss direction £. The gradient of the EELS SI, S(z, v, E),
in the direction of energy loss is determined by eqn. 3.3.

. 0
VS E = a—ES(:v,y, E) (3.3)

Numerically, a gradient is the central difference for the inner channels in the
E direction as shown in eqn. 3.4.

(VS)En ’ E = % ’ {S(Qf,y, En-i—l) - S<$7yaEn—1)} (34)

wheren e N; : 1 <n < N and N € Nis the number of channels (or length of
the spectrum). The gradient of the spectrum at the end of channels are single

sided differences as shown in eqn. 3.5 for n = 1 and eqn. 3.6 forn = N.
(VS)El E = S(Jf,y, E2) —S(I,y7 El) (35)

(VS)p, - B = S(z,y, Ex) — S(z,y, En_1) (3.6)

The gradient of EELS has to be negative for ranges beyond multiple plasmon
losses and without any core-losses, falling asymptotically towards zero. The
only points that are positive must be due to the presence of noise or ioniza-
tion edges. If the EELS SI is denoised, the probability of a positive gradient
being due to noise is low, although clearly dependent on the type of denois-
ing method used. The angle (¢) between the EELS and horizontal energy
axis is determined by eqn. 3.7 and can be plotted, as shown for an example

spectrum of Si with C in fig. 3.1.

§ = arctan {vs . E} , —g <0< g (3.7)

The arctan (a.k.a tan™!) function can bifurcate the gradients by flushing them
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FIGURE 3.1: Original spectrum of Si L, 3 edge and C K edge (in dark blue) and
angle as defined in eqn. 3.7 (in red) showing the presence of clusters in the latter
correlates with the onset of ionization edges.

far apart to —n/2 for background gradient and 7/2 for gradient at edge on-
set making the detection more reliable. Only positive angles are considered
further, as negative values are due to the background of EELS. A cluster of
positive angles is formed if a core-loss edge is present. Positive angle values
without a cluster are due to noise. A similar gradient approach of ionization
edge detection by applying derivatives to log of spectrum was proposed by
Kundmann et al., (1991) and was extended to EELS SI by Thomas, (2001).
The algorithm had problems with sever heightened noise level, ELNES and
EXELFS. Hence the it was unable to find the unique solution to the close by

ionization edges.

3.2.1 Cluster detection by counting positive slope angles

Clusters are detected by counting the positive angular data points within a
window, compared to the size of the window. The flow chart for the process
implemented in Matlab is shown in fig. 3.2. The mod (or modulo operator)
is defined in eqn. 3.8 (Knuth, 1973). If the length of the spectrum, V € N, is
not a multiple of the size of the window, w € N, there will be a few pixels
left at the end of last iteration. These reminder pixels, r € N, can be taken
as window size at the end of the spectrum, or they can be ignored. But if
the dispersion has been binned to a large value or the chosen window size is
larger, then the reminder pixels should not be ignored.

T=N—w-{ﬁ| (3.8)

w
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FIGURE 3.2: Flow chart for edge detection in spectra that consist of N channels.

c is the count of channels with positive gradient, i is the energy channel, j is the

loop count, w is the window width and mod is modulo operator (remainder after
division).
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The floored division operator | | gives the integer part of & € R. The size
of the window is chosen such that it should be comparable to the sharpness
of the onset of typical edges (a few eV for sharp hydrogenic and up to 10eV
for delayed edges). Similarly, the window size should not be too small (< 5
channels), to avoid false positives due to noise. Typically, the window sizes
selected in this study were between 5 and 25 channels wide (the default is
w = 15), and clusters are identified as intervals of that given width wherein
at least 2/3 of all channels have angular values # > 0. Due to near edge
structures or/and chemical shifts the edges detected may not be at the exact
location of the ionization onset predicted for free atoms. It may also happen
that 2 or 3 consecutive windows might detect positive angles. To refine the
results from ionization edge identification, a look-up table is used containing
onset values of some of the major ionization edges (Ahn et al., 1983; Egerton,
2011b) as shown in table 3.1'. The exact edge onset is identified from the
predicted edge positions (clusters) by finding the nearest ionization edge in
the look-up table that agrees with position of the beginning of the window,
as shown in eqn. 3.9:

Edge; = Ewin||E,—Cluster:|)) (3.9)

where £, is the list of all n ionization edges from the look up table, Cluster;
is the list of all predicted ionization edge onsets (numbered consecutively
by index). The ionization edge detection and correction can be visualized as
shown in fig. 3.3. Histograms of the detected edges in three different EELS SI
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——EELS
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FIGURE 3.3: The location of core-loss (here: Si L,3 edge) is detected from the
look-up table and fine-tuned to a value of 99 eV as per eqn. 3.9.

!Note: The table only lists some of the major semiconductor ionization onsets. Due to
anomalies in the CCD gain correction, some of the ionization onsets were wrongly detected.
Hence few of the uncommon and semiconductor material were not considered.
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TABLE 3.1: A look-up table used for edge detection.

Z Edges OnsetineV Edgeshape Edge type

5 BK 188 h K
6 CK 284 h K
7 NK 400 h K
8 OK 532 h K
9 FK 685 h K
13 AlK 1560 h K
13 AlL 118 h L
13 AlLg 73 d L
14 SiLs 100 h L
15 PL 189 h L
15 PL, 135 d L
16 SL 229 h L
16 SLs 165 h L
17 ClL 270 h L
17 ClLs 200 d L
19 KL 377 h L
19 KLg 204 w L
20 Culs 931 h L
30 ZnlL, 1020 d L
31 Gals 1115 d L
32 Gels 1217 d L
33 AsLs 1323 d L
47 AgMs 367 d M
49 InM; 443 d M
65 TbMs 1242 w M
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of a cross-sectioned multi-junction solar cell are shown in fig. 3.4. Although
edge onset identification may fail in individual spectra due to noise the histo-
grams clearly show that the identification of the edges is unambiguous when
thousands of spectra from all locations in SI are considered. The efficiency
of the edge detection is also dependent on the quality of the gain correction
of the CCD. Long exposures of the ZLP might yield artefacts in successively
acquired spectra due to gain changes induced by over exposures. This could
potentially lead to false positive detection of ionization edges in EELS ac-
quired with energy offsets. Such artefacts can, however, be identified by
varying the energy offset as they remain fixed at that channel (usually around
#100) where the ZLP had been placed before. A multi-junction solar cell is
used for the detection and quantification of all the ionization core-losses us-
ing cluster detection thorough counting later in section 3.4.

3.2.2 Cluster detection through peak detection

Another method of detecting the clusters is by predicting the kind of statist-
ics these clusters exhibit. As discussed in subsection 3.2.1, the clusters are
formed due to the presence of edge onsets and tend to have positive slope
angles. All the negative values are due to the presence of strong background.
This indicates that the mean value of the group of clusters is always higher
than the rest of the pixels and can be detected by an overlapping sliding win-
dow of size w € N. The implementation of this algorithm is shown in fig. 3.5
as a flowchart. Unlike 6 from eqn. 3.7, slope angles are calculated by es-
timating the exponent r from inverse power-law function (or exponent from
exponential decay function) at each channel if the pre-edge region is already

known (eqn. 3.11). The value of r is estimated as shown in eqn. 3.10.

(3.10)

0 = arctan {7} , —g <0< g (3.11)

0 can be viewed as the 6 value smoothed over a window of w. It is important
to apply a Hampel filter to remove single pixel noise which may be mis-
interpreted as an ionization edge prior to the above evaluation. Applying
a Hampel filter ensures that ¢ values only contain features from core-loss
edges. Consider the example of a spectrum as described in eqn. 3.1, with two

ionization edges o1 (E, 3) and 05 (E, 8) and an inverse power-law function as
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FIGURE 3.4: Histogram distribution of edge onsets detected for EELS SI from
semiconductor heterostructure shown in fig. A.1 for 80 eV offset (A), 250 eV offset
(B) and 950 eV offset (C). The edges are later identified in table 3.2.
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FIGURE 3.5: Flow chart for edge detection in spectra that consist of N channels.
0; is the mean value of angles, i is the energy channel, j is the loop count, w is the
window width and mod is modulo operator (remainder after division).
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a model for the background as described in eqn. 3.12.
S(E,8)=A-E7"+1,-01(E,B) + I - 02(E, B) (3.12)

The term —E~! in eqn. 3.13 provides the baseline for #(E) and it is almost
constant at high enough energy-losses. The term after the addition sign in
eqn. 3.13 provides the features describing the edge onset as shown in fig. 3.6
and fig. 3.7. The r term is the exponent of the background of the spectrum,

S(E, B).

A

ME)~r - —E '+ A E ]1%01(3 B) + 125%02(&@] (3.13)
If there is no knowledge of pre-edge regions, then ¢ can be calculated as pre-
viously described in eqn. 3.7. The window size is typically chosen from w = 5
to 35. At each sliding window a mean value of slope angles 6 is calculated
at each energy channel i. The window sliding is done one channel at a time.
A similar technique of including residue channels in subsection 3.2.1 are in-
corporated using the mod operator. The position of falling edge of the peak
in 0; is the nearest estimate of the onset of the core-loss ionization edge. The
robustness of the technique can be studied by simulating a GaAs high-loss
spectrum and applying the method described in fig. 3.5 with varying size of
the sliding window (w), relative thickness (¢/)\ ) and the noise level. A spec-
trum, S(E, ), is simulated by an inverse power-law function (AE~") and the
theoretical cross sections of Ga Ly3 and As L3>, To test the effect of varying
window size, w, a spectrum has been simulated with ¢/\ = 0 without noise.
Fig. 3.6(C) shows that the position of the peak which indicates the ioniza-
tion core-loss remains at the same position as the size of the window, w, is
increased from 5 to 35 channels. However, the peak is broadened towards
lower energy-loss with increase in w. This is because the window slides from
left to right of the energy-loss axis. A similar effect of peak spreading towards
higher energy-loss is observed when sliding the window instead from right
to left of the energy-loss axis. However, the falling edge of the peaks remain
approximately at the edge onset (Ga L at 1115eV and As L at 1323eV) and
rising edge for window sliding from right to left. In fig. 3.6 (C), it appears

as if, using a smaller w is better because the peak remains unambiguously

2Modelling of theoretical cross-section of ionization edges using least squares method is
discussed in section 4.6. The parameters of inverse power law background, A = 3.7 x 10%°,
r = 2.5 and scaling parameters for theoretical cross-sections were ~ 23 for both Ga L and As
L edges.
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FIGURE 3.6: Simulated GaAs spectra using two Hartree-Slater cross-sections for

Ga L and As L respectively with (A) t/A = 0 (B) t/A = 09, w = 25,4 =

3.75 x 10197 = 2.45,a = b = 25. Dependence of Ga L and As L edge detec-

tion (C) with variable size of the window, w for ¢t/A\ = 0. (D) as a function of
relative thickness.
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FIGURE 3.7: Simulated GaAs spectra using two Hartree-Slater cross-sections for

Ga L and As L respectively with (A) 30dB, (B) 30dB and smoothed using aver-

aging filter of window 10 twice. t/A = 0,w = 25,4 = 3.75 x 10, r = 2.45,a =

b = 25. Dependence of Ga L and As L edge detection (C) with addition of

white Gaussian (AWG) noise at varying SNR for w = 25 and ¢{/A = 0 and (D)

the smoothed AWG noisy spectrum filtered with an averaging filter of width 10
pixels at varying SNR.
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located at the edge onset. However, due to noise present in the experimental
spectrum, using smaller w will have a noises 6; and the detection of peak
becomes more unreliable. If the SNR of the spectrum is high, it is possible
to detect L, and L3 edges, as seen in fig. 3.6(C) for w = 5. To test the ef-
fect of varying relative thickness, t/)\ , the simulated GaAs single scattering
spectrum (with no noise added) is convoluted with a low-loss, fpSF(FE), to
simulate a spectra from thicker GaAs. The relative thickness, ¢/}, is varied
from 0 to 1.8, in steps of 0.3. The low-loss is simulated by a Gaussian for
ZLP and Lorentzian functions for bulk plasmon peaks weighed according to
Poissonian statistics’. Fig. 3.6(D) shows that for ¢/\ = 0, the peak detected
at ionization onset has same energy spread as the FWHM of ZLP. As t/\ is
increased to 1.8, the multiple peaks that appear in fig. 3.6(D) are peaks due
to multiple scattering. Hence for a thicker specimen, mere detection of max-
imum peak location is not a precise detection of edge onset. These peaks
due to multiple scattering are spaced at multiples of the bulk plasmon en-
ergy (£, = 15.7¢V). Hence, for a thicker sample the ionization edge detec-
tion might be off by multiples of £,. The single scattering spectrum can be
obtained by deconvolution which is discussed in section 2.5. The edge cor-
rection can be applied as discussed in previous subsection 3.2.1 at high-loss
ionization edges. This is because at high-loss the ionization edges are far
apart and the efficiency of the precise edge detection will be higher. The SNR
of the EELS spectrum decreases with increase in energy-loss. This will have a
large effect on detecting edges as the heights of the ionization edges become
comparable with the amplitude of noise. An additive white Gaussian noise
(AWGN), n(E), is added to the simulated spectrum to test the effect of noise
level on the detection of Ga L,3 and As L,35. The SNR is calculated using

eqn. 3.14.
S Si(E)?
Vi1 (Si(E) —m:(E))?

From fig. 3.7(C), it is evident that peak detection gets almost impossible for

> (3.14)

spectrum with SNR <30 dB. Once the simple averaging filter is applied the
peak detection can be made reliable up to ~25dB, as shown in fig. 3.7(D). To
make sure the spectrum has high enough SNR for detecting core-loss edges,
one way is to get the sum spectrum (or mean spectrum) from regions of EELS
SI and calculate the  as in eqn. 3.7. Getting sum spectrum can be automated
if the overview image has distinct contrasts. Then the sum spectrum can be
obtained from regions identified by image segmentation algorithms. This

3The detailed description of low-loss simulation is described in later sections in chapter. 5
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improves the counting statistics for the spectrum and reduces Poissonian
noise significantly. The edge detection by cluster method by means of finding
peak position has been applied to different semiconductors described in sec-
tion A.1, A.2 and A.3. The sum spectrum from regions 8, 5, 3 and region with
no material (all spectra above region 1) from multi-junction solar cell with SI
of 950 eV spectrum offset are considered in order to check if all the edges are
identified. The edges that are expected from 950 eV offset SI are Ga L, 3 edge
at 1115eV, As L, 3 edge at 1323eV and Al K edge at 1560eV. As expected
both Ga L,3 and As L, are identified from GaAs regions (regions 3 and 8).
Region 5 is expected to be AlGaInP. Hence no As L, 3 is identified. All the ¢
spectrum from fig. 3.8 show the features of ionization edge except for the
spectrum with no material. It is interesting to note the features shown in the
pink box in fig. 3.8 which are artefacts present in all regions of the SI. These
are specific to particular channels of the spectrum and probably due to anom-
alies in the gain correction. Minute changes in the  can be observed across
all the spectra in fig. 3.8 for all regions. But the large peaks are observed at
channel numbers 824, 898 and 939. These artefacts will also mask a possible
Al K edge at 1560 eV which is in close approximation. Hence, Al K edge
cannot be detected. The edge detection algorithm from fig. 3.5 is tested with

Artefacts

Region 8

Region 5

! 1 No Sample
i i

| I Ui | L | | | I I J
900 1000 1100 1200 1300 1400 1500 1600 1700 1800
Energy-loss (eV)

FIGURE 3.8: The edge detection by cluster method (w = 25) applied to sum spec-
trum from regions 8, 5, 3 and region without sample of multi-junction solar cell
described in section A.1. Each 6 spectra have vertical range between —7/2 to /2.

In,Ga;«N material with sum spectrum extracted separately from In and Ga
rich regions® to check the extent of variation in edge detection with varying
concentration of In and Ga. The @ spectra for both In and Ga rich are superim-

posed in fig. 3.9. Similar to previous findings, the § is affected by anomalies

“The In and Ga rich regions can be seen in elemental maps shown in fig. 3.15(B,C).
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in in the gain correction. It is noticeable in both spectra. In In,Ga;.IN mater-
ial, the percentage of N would be constant but the percentages of In and Ga
can change. This is also reflected in # spectra as N K edges overlap almost
perfectly in both spectra from In and Ga rich In,Ga;«N. The Ga L, 3 edge in
the In rich spectrum is difficult to identify due to effects from gain correction
and the intensity of the edge onset is very low. However, in Ga the rich re-
gion, the Ga L, ; edge is clearly identifiable and the In M, 5 intensity is lower.
Hence the stoichiometry also plays an important role in identifying the ion-
ization edges from clusters. It is also worth noting that if the ionization edge

N K InM

——In rich region GalL
—— Ga rich region

|
300 400 500 600 700 800 900 1000 1100 1200 1300
Energy-loss (eV)

FIGURE 3.9: The edge detection algorithm (w = 25) is applied to In,Ga;.xN phase
separated material. Sum spectrum is extracted from In rich and Ga rich region
from EELS SI. Each @ spectra have vertical range between —7 /2 to /2.

onset is hydrogenic (as in case of N K edge) or sharp is in single scattering
(as in shown in fig. 3.6(C)) then the edge onset is the falling edge of peaks
in 0 spectrum which was observed in fig. 3.6(C). However, if the edges are
delayed (as in In Mys) and/or plural scattered then the edge onset is rising
edge which was observed in fig. 3.6(D). The thicker the sample, the more in-
tensity is redistributed to higher energies hence the onset must be changed to
rising edge instead of falling edge. The algorithm has finally been applied to
Tb doped AIN material described in section A.3. Two sum spectra are extrac-
ted” from region 1 (AIN) and 2 (Si substrate) as shown in fig. A.4(B). The span
of the energy-loss is from 340.8 eV to 1614.8 eV. Hence, the large energy-loss
span is responsible visible background which is following —FE~! trend from
eqn. 3.13. The N Kand O K are sharp hydrogenic edges, hence the edge onset
is at the falling edge of the peaks. Tb Mys edge at 1242V is present but it is

5In the high-loss SI of AIN doped with Tb, first #10 and last #50 channels have been
distorted to zero value while acquisition. This could be due to the energy slit introduced.
Hence all the spectra are considered from channel numbers #11 to #467 only.
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not detectable due to the fact that its concentration in AIN is ~ 2 at.% (Benz
et al.,, 2013a) and the height of edge onset is comparable with noise at high-
loss. Also, during acquisition, the spectra were binned by a factor 4 to reduce
the size of data set in energy-loss direction from 2048 to 512 channels making
the dispersion to 2.8 eV /channel rather than 0.7 eV /channel. The white lines
from My s transition of Tb,O3; complex are at 1243 eV for M5 and 1274 eV for
M, about 30eV apart with FWHM of ~4eV. The energy dispersion of the
spectrum is 2.8 eV /channel. Benz et al., (2013a) have shown high-loss EELS
spectra with 800eV spectrum offset, 1eV/channel dispersion and 100s ex-
posure time for 2% Tb doped in AIN. The ionization edge height is still very
low for even 100s. Hence, for 2.8 eV /channel dispersion with 0.1s exposure
time, there is about 1 or 2 pixels that might describe the white lines. Also as
discussed earlier, the stoichiometry also plays major role in identifying the
edge onset. The algorithm detects the cluster not a single pixel. Hence, the
single pixels are treated as an outlier, i.e. noise. Apart from white lines, the
ionization edge property of Tb M5 is wide and delayed. Hence, Tb My is
not detectable in this particular SI. The sum spectrum from AIN region has
been obtained by averaging ~ 3741 spectra, whereas sum spectrum from Si
substrate is obtained by averaging ~ 1131 spectra. This means that the SNR
of the AIN sum spectrum should be higher than the one from the Si sum
spectrum. The noisy artefacts present for the latter in fig. 3.10 is evidence
of SNR being lower. In,Ga;.x\N and AIN doped with Tb are used to test the
cluster detection by finding the peak.

—— AIN:Tb region
— Si substrate
L L L L L L

400 600 800 1000 1200 1400 1600
Energy-loss (eV)

FIGURE 3.10: The edge detection algorithm is applied to Tb doped AIN EELS SI.

The sum spectrum (~ 3741 spectra) are taken from AIN region 1 as in fig. A.4(B)

and another sum spectrum (~ 1131 spectra) from Si substrate region which is
indicated as region 2.
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3.3 Quantification by background subtraction

The presence of the ZLP and plasmon losses in low-loss spectra makes it dif-
ficult to model the background for energies below about 100eV. The inverse
power-law is used to model the background in pre-edge regions for indi-
vidual ionization core-loss edges above this threshold. This may be justified
in our case as table A.1 demonstrates we have generally used high disper-
sions for lower energy losses and lower dispersions at higher offsets. So
wide regions extending from low to high energy losses, wherein the shape
of the background often departs significantly from the slope expected from
a simple inverse power-law function (Leapman, 2005), have been avoided.
A linear model of spectrum S(E) with ionization edges superimposed on
a background modelled by an inverse power-law at higher losses with an
error, ¢(E,A), as a function of energy-loss (E) and integration range (A) is

considered, as shown in eqn. 3.15.

S(E,B,A) = AE™" + > (8, A)ai (8, A) + (B, A) (3.15)
vJ

The pre-edge regions for the background modelling should be selected as
large as possible to minimize systematic errors. A larger pre-edge region
provides more data points for modelling of the background and chemical
shifts that could shift the edge onset by up to ~8eV are less prone to influ-
ence the background modelling. Due to the possible presence of near edge
structure, the pre-edge region should ideally end well before the edge on-
set. Hence, the pre-edge region is selected dynamically by the algorithm
over all the core-loss edges and across the EELS SI. The pre-edge region
extends typically from half the distance between two consecutive core-loss
edges to a few channels before the nominal edge onset. Standard integra-
tion methods are used for the quantification of background subtracted EELS
spectra (Egerton, 1978). If the integration window exceeded the experimental
energy-loss axis limit then the edge would be omitted (in the semiconductor
multilayer example presented later, the integration window for the P L,
edge was manually reduced to 37.4eV to avoid this). The selection of in-
tegration window and the systematic and statistical errors (Bevington et al.,
1969) influencing quantification have been discussed by Leapman, (2005).
Two core-loss edges close to each other will be partially overlapping and are
not accurately quantifiable by this integration method. The accuracy of the

quantification also depends on the shape of the ionization edges. If the onset
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of an ionization edge is delayed, small integration windows give high stat-
istical errors. Hence the initially specified integration window (A) is applied
only to hydrogenic edges. In case of delayed edge onsets, the spectrum is
integrated up to the next ionization edge onset, providing better statistics for
delayed maximum edge shapes, but at the cost of slightly higher systematic
errors. EELS is usually performed with a spectrometer entrance aperture,
and the integration of the spectrum intensity is a function of collection semi-
angle () and integration window (A) (Egerton, 2011b). The values of partial
cross-sections are evaluated from the sT1GMAK3, SIGMAL3 and SIGPAR Matlab
routines written by Egerton, (2011a). The overall process of core-loss edge
selection and background subtraction is shown in the form of a block dia-
gram in fig. 3.11. The implementation of the algorithm in Matlab R2017b
(MathWorks, 2017) means the code can be distributed not only to multiple
processing cores (presently a windows 10 PC with 4 cores and MacBook Pro
with 2 cores has been tested) but to multiple computers using the Matlab
parallel computing tool box as discussed in appendix B.

3.4 Results from multi-junction solar cell

Again, sum spectra are extracted from each individual region for quantific-
ation. Elemental concentrations (x) are calculated using eqn. 3.16. The con-
centrations (x;) are normalised to yield the at.% of all detected elements. The
normalised X values thus provide a relative quantification. The sum of all V,,
adds up to unity (or 100%) in eqn. 3.17. Quantification results for each region
are shown in table 3.2. Specimen thickness (t) values in terms of multiples of
the mean free path (\) of inelastic scattering can be extracted from the first
EELS SI which contains the ZLP and plasmon peaks. These t/\ values are
~ 1 (except in the top thin layer of region 1) indicating an average specimen
thickness around ¢ ~ 130 nm, which corresponds to the inelastic mean free
path calculated according to Egerton, (2011b) for GaAs under the conditions
listed in table A.1.

L8, A
= 118 8) (3.16)
gj - tj - T
N (et = —— x 100 (3.17)

n
X
=1

J
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FIGURE 3.11: Block diagram of ionization core-loss edge selection and back-
ground subtraction.
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TABLE 3.2: Quantification in atomic percent (at.%) of each region of the three SIs
recorded. The sum of all concentrations has been normalised to 100% according

toeqn. 3.17.
80 eV offset 250 eV offset 950 eV offset

w\\/ Si HLN\w Al H; P HLN\w CK In Z?m OK Cu H\N\w Ga Hkm\w As Hkm\w
Dispersion (eV /channel) 0.10 0.10 0.10 0.50 0.50 0.50 1.00 1.00 1.00
Exposure time (7) (s) 0.5 0.5 0.5 0.5 0.5 0.5 2 2 2
Integration range (A) (eV) 15 15 374 50 89 50 200 200 200
Region 1 0.52 144 322 547 44.09  2.37  43.40 0.00 0.00 0.00
Region 2 0.96 1.51  2.08 3.89 30.03  0.00  38.30 24.18 0.00 0.00
Region 3 0.95 7.87 0.00 6.26 9.29 0.00 2.41 0.00 41.46  32.72
Region 4 0.95 853 1.63 40.73 18.61 10.37  0.00 0.00 10.07  10.05
Region 5 1.01 0.00 3.99 4348 10.10  16.90  0.00 0.00 25.02 0.50
Region 6 1.04 3.82 1.62 29.97 4.84 3.61 0.00 0.00 22.80  33.35
Region 7 1.04 1.57  3.17 49.16 7.87 19.08  0.00 0.00 8.92 10.23
Region 8 1.11 8.07 0.00 1.92 0.00 0.00 1.50 0.00 42.94  45.57
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The values in table 3.2 are normalised with respect to relative thickness (t/\ )
and exposure time (7). The parameters in table A.1 are used for the calcula-
tion of partial cross-sections, o (3, A), using SIGMAK3, SIGMAL and SIGMAPAR
routines that take into account the finite collection semi-angle but neglect any
corrections due to the angular spread of the incident beam that may play a
role as soon as o % 3 (Egerton, 2011b) or due to multiple scattering. In the
sense that the index j runs over all elements detected, this performs what is
usually called a relative compositional quantification in at.% (rather than an
absolute quantification in terms of atomic areal density). As the scattering
cross-sections in eqn. 3.16 are for single scattering, whereas plural scattering
is known to affect the edge shape, moving intensity from the onset towards
higher energies, a reliable quantification would require either deconvoluting
each spectrum in the SI to recover the single inelastic scattering contribution
or integrating all net edge intensities over similar energy ranges so that all
edges would be affected by multiple (plasmon) scattering to the same degree
(Walther et al., 1995). Large integration windows can be used for edges at
high energy losses that typically lie far apart from each other (here, Ga L3
and As L, 3), whereas small integration windows must be used at lower en-
ergies (here, Si L3 and P L,3). Small integration ranges, A, tend to underes-
timate intensity considerably if thicknesses are large and the spectra are not
deconvolved for multiple inelastic scattering. This has indeed been observed
here, as deconvolution was not applied (see below). The algorithm generates
maps which provide the spatial distributions of the elements in the material.
The maps are generated by integration of background subtracted spectra at
each point according to eqn. 3.16. The background subtraction may not work
perfectly for some spectra due to high noise or near-edge structures which
would contribute to inferior curve-fitting. Also, the EELS SI with 80 eV offset
revealed an artefact at around channel #100 due to the previous exposure of
this area of the CCD to the ZLP. This is shown in fig. 3.12. Hence, the map of
the Al L, 3 edge can only be evaluated with caution. Some elemental maps in
tig. 3.13 are very noisy, but the overall spatial distribution of elements can be
clearly evaluated. Screen shots of the program outputs are shown in fig. 3.13
and 3.14. It can be observed that the algorithm automatically detects the core-
losses and dynamically selects pre-edge regions and integration windows for
each core-loss of the SI and that the output maps yield a quick visual feed-
back on the relative strengths of the chemical signals detected. The quanti-
fied values are compared with the standard background subtraction routines

such as Hyperspy and CSI as shown in table 3.3. The values were almost
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FIGURE 3.12: The persistence of an artefact at 72-85eV in spectra from all loc-

ations (3 single spectra are displayed) shows that the Al L3 edge (nominally

starting at 73eV) cannot be evaluated from spectra acquired with 80eV offset

after spectra without offset had been acquired previously with the ZLP located at
channel #100.

similar to the values quantified by our algorithms hence, only mean-squared
error (MSE) between our values and the standard routine values are shown

for x;. As expected the Al L, is affected due to the presence of artefact and

TABLE 3.3: Relative quantification of Cu, Ga and As elemental maps with Digit-
alMicrograph™in different regions shown in fig. 3.13(E) (GaAs).

80 eV offset
MSE AlL,; Sil,; AlL; PL,s
CSI 368.93 0.13 0.01 0.52
Hyperspy 1066.92  3.12 0.06 2.92
250 eV offset
MSE CK InM,;s; OK
CSI 1.20 0.17 1.21
Hyperspy 1.81 12.73 7.86
950 eV offset
MSE Cu L2,3 Ga L2,3 Ge L2,3 As L2,3 Al K
CSI 1.29 0.53 1.44 5.13 8.08

Hyperspy 2.36 1.24 3.14 18.56  151.46

different routines tend to give different results due to the inherent constraints
might have applied to deal with noise while fitting the background.
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FIGURE 3.13: (E) Definition of regions in the EELS SI. Regions indicated by blue
dotted lines are thicker regions, while red lines denote interfaces. A sum spec-
trum is extracted from each region for further quantification in table 3.2. Set of
maps generated with EELS SI of 80 eV offset (A-D), with 250 eV offset (F-H) and
with 950 eV offset (I-M). The elemental maps show the spatial distribution of Al
L2,3, Si L2/3, Al Ll, P L2/3, C K, In M4/5, @) K, Cu Lz/g,, Ga L2,3, Ge L2/3, As L2/3 and
Al K edges. Al Ly3 is a false positive detection due to an artefact. Maximum
intensity values in counts after background subtraction, integration and scaling
according to eqn. 3.16 with constant = 1. The minimum intensity in all the maps
is 0.
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(4)

Detected edges :

73 100 118 135 165
Delta for edge 165eV is exceeding energy-loss axis limit (172.4eV)
Edge considered for gquantification :

73 100 118 135
Pre-edge region

Range eV Begin eV End eV Onset eV

1 72 72.8 73

14 B6 99.8 100

9 109 117.8 118

k] 126 134.8 135
Integration region:

Onset eV Element Begin eV End eV Integration Range eV

73 ‘al-L3’ 73 100 27

100 ‘Si-L3" 100 115 15

118 Al-L1' 118 135 15

135 ‘P-L3" 135 172.4 37.4

(B)

Detected edges :

284 294 443 532 GBS
Delta is overlapping with next edge. Edge 294eV is omitted
Delta for edge 6856V is exceeding energy-loss axis limit [712eV)
Edge considered for quantification :

284 443 532

Pre-edge region

Range eV Begin eV End eV Onset eV
42 242 283 284
BO 363 442 443
45 487 531 532

Integration region
Onset eV Element Begin eV End eV Integration Range eV

284 ‘c-K' 284 334 50
443 ‘In-m5" 443 532 B9
532 O-K' 532 582 50

(c)

Detected edges :
931 951 1020 1115 1217 1323 1560
Delta is overlapping with next edge. Edge 951eV is omitted
Delta is overlapping with next edge. Edge 1020eV is omitted
Edge considered for quantification :
931 1115 1247 1323 1560
Pre-edge region

Range eV Begin eV End eV Onset eV
40 B91 929 931
92 1023 1113 1115
51 1166 1215 1217
53 1270 1321 1323
119 1441 1558 1560

Integration region:
Onset eV Element Begin eV End eV Integration Range eV

931 ‘Cu-L3’ 931 1031 100
1115 ‘Ga-L3' 1115 1217 102
1217 ‘Ge-L3 1217 1323 106
1323 ‘As-11’ 1323 1560 237
1560 ‘ALK 1560 1660 100

FIGURE 3.14: Screen shot of program output showing pre-edge regions and in-
tegration windows dynamically assigned by the algorithm for SI with 80 eV offset

(A), 250 €V offset (B) and 950 eV offset (C).



3.5. Results from InGaN 57

3.5 Results from InGaN

The images in figs. 3.15(B-D) are elemental maps of the distribution of the
three elements indium (from In Mys edge), gallium (from Ga L,3; edge)
and nitrogen (from N K edge) calculated by fitting the data, using pixel-
wise automated edge detection routines described in section 3.2 with inverse
power-law or exponential background fit, subtraction in the pre-edge regions
and net integration over certain ranges. Details of the fitting are reported in
table 3.4. The relative quantification has been normalised to a sum of unity

TABLE 3.4: Background fitting details. All numerical values are in eV.

SI edge  fitbegin fitend onset A fittype
NK 287 398 400 51 Pow!
high-loss In M, 410 441 443 247 Pow

Gal,s 600 1113 1115 189 Expl?

! Inverse power-law function (eqn. 2.2).
2 Exponential decay function (eqn. 2.3).

taking into account only these three elements. There was a very faint O sig-
nal (from O K) from the surface which has been neglected. The quantifica-
tion of the Ga content from the Ga L3 edge (15.2 + 5.9 at.%), which would
imply an average x value for In,Ga;«N of x = 0.7 + 0.1. The Ga L,; edge
starts at very high energy (1115 eV) so its intensity is weak and the maps will
be mainly limited by shot noise, while background subtraction is relative
straight-forward (due to large pre-edge region) and implies small system-
atic errors. For the quantification of the N K edge and the In M, s edge the
situation is reversed: these edges lie at lower energies and so have plenty
of intensity but they partially overlap (the N K edge starts at 400¢eV, the In
M, s edge at 443 eV) so they are more difficult to separate. A higher appar-
ent In signal would predicts less N in relative quantification. Deconvolution
of the spectra could change the relative quantification further but has not
yet been attempted here, as it would have been difficult to record low and
high-loss spectra without the dual-EELS option (Scott et al., 2008) and we
use integration ranges sufficiently wide for the N and Ga edges to include
plasmon replicas so (multiple) plasmon scattering would cancel out in the
ratio approach taken. However, it should be stated that the relative quanti-
fication of In,Ga;«IN is a real challenge, firstly, as it implies evaluating three
ionization edges of different types (K, L, and M) and, secondly, because two
edges of these overlap significantly. The standard deviations of the N map
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in fig. 3.15(D) is very small, as would be expected for a constant group-V
sub-lattice consisting of N only. The maps for In and Ga show much larger
scatter, with 2-3 times higher standard deviations. The lateral scale of the In-
rich regions visible in fig. 3.15(B) extends to only 0.5-3 nm, which would be
in agreement with findings by other groups (Jinschek et al., 2006). Given the
projection through the ~40nm thick specimen such In-rich clusters, should
they exist and not be an artefact from electron irradiation (Doppalapudiet al.,
1998; Lin et al., 2000; Park et al., 2005; Singh et al., 1997), must consist of al-
most pure InN. The low-loss EELS SI of In,Ga;_«N from table A.2 is quantified
by simultaneously fitting plasmon losses (those of InN, In,Ga;.«IN and GaN)
along with core-losses of In N edge (4d transition), Ga M edge (3d transition)
and ternary alloy In,Ga;. of group-III sub-lattice later in chapter. 5.

3.6 Results from AIN:Tb

AIN doped with Tb was studied in Angadi et al., (2017) and Benz et al.,
(2013a) with regards to the formation of Tb—O complexes. Similar rare-earth
doped AIN was studied by Wieg et al., (2015). The nominal concentration of
Tb in AIN is expected to be 2 at.%. The inelastic mean free path (\) values
in Si (substrate), AIN:Tb region and SiO, region at 60 kV are ~49 nm, ~52 nm
and ~54 nm, respectively. The values of the relative thickness (¢/\ ) map in
tig. A.4(C) and the mean free paths (\) calculated in table 3.5 (Craven et al.,
2016; Malis et al., 1988) can thus be directly related to absolute specimen
thickness (¢) in the range of 13-20 nm. Elemental maps are shown in figs. 3.16.

TABLE 3.5: Calculated mean free paths (\), mean atomic number ({(Z)), mean
atomic mass ((A)) and mean energy-loss ((E)).

Composition  AIN:Tb,O SiO, 5i:0

at.% 48 :49:2:1 33.3:66.7 99:1
(Z> 11.05 10.00 13.94
(A) 23.15 20.03 27.97
(E) (eV) 18.0 17.4 19.6
A (nm) 52.4 54.0 48.9

The background fitting details are listed in table 3.6 along with the integra-
tion ranges (A). The functions used to fit the background are exponential
decay (eqn. 2.3) or inverse power-law functions (eqn. 2.2). The value of k& = 1
from eqn. 2.3 for fit type ‘Exp1’, and k = 2 for fit types ‘Exp2” and ‘Pow’ as
indicated in table 3.6. The Si L,3 edge and Al L, 3 core-losses are extracted
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FIGURE 3.15: (A) Rotated HAADF-STEM image of cross-sectioned Ing s, Gag3sN
film at high magnification, about 10 nm above the GaN substrate, showing (0002)
lattice fringes. Growth direction points upwards. Elemental maps of (B) indium
from In My 5 edge, (C) gallium from Ga L, 3 edge and (D) nitrogen from N K edge
recorded at 100 kV and calculated using (B & D) integration after inverse power
law subtraction, (C) integration after exponential background extrapolation. All
intensities are normalized to a sum of unity to calculate at.%.



60 Chapter 3. Automated ionization core-loss analysis

Si L2,3

(E)

FIGURE 3.16: Background subtracted net intensities after the edge onsets have

been integrated and normalised with respect to the corresponding scattering

cross-sections and exposure times. Elemental maps of Al L3 (A) and Si L3 (B)

in the low-loss region. Elemental maps of N K (C), O K (D), and Tb My (E) in the
high-loss region. (F) HAADFE.
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from low-loss SI (table A.3). N K, O K and Tb Mys edges are extracted from

TABLE 3.6: Background fitting details. All numerical values are in eV.

SI edge fitbegin fitend onset A fittype

lowloss AlLs 238 70 728 273 Exp2!
Silys 41.3 98 99.4 105  Exp2
N K 343.6 385.6 385.6 112 Pow?

high-loss OK 427.6 517.2 5256 112 Expl®

Tb My 727.2 11472 1211.6 246.4 Expl

! Superposition of two exponential decay functions (eqn. 2.3).
2 Inverse power-law function (eqn. 2.2).
3 Exponential decay function (eqn. 2.3).

high-loss SI (table A.3). The integration range (A) for Al L3 is limited by
overlap with the Si L, 3 edge. The maps of Al L,3 and Si L, 3 in figs. 3.16(A,B)
are relatively noisy due to the low exposure time and hence low SNR. Large
negative values in the Si L, 3 map are due to poor background fitting in the
AIN region due to the preceding Al L 3 ionization edge. Deconvolution is not
applied because of the low SNR in the spectrum: deconvolution by Fourier-
ratio or RL methods would increase the noise even further. The interface in
the high-loss maps as in figs. 3.16(C-E) appears to be inclined with respect
to the horizontal by an angle of ~ 4.6° due to drift during the long time of
acquisition. Due to this mismatch in the interface, the at.% values have been
calculated only in the regions indicated in fig. A.4(B) and shown in table 3.7.

TABLE 3.7: Elemental quantification (at.%) in AIN:Tb and Si region for top 40
rows (Box 1) and lowest 15 rows (Box 2) respectively as shown in fig. A.4(B).

Box Region Al N Tb O Si
1 AIN:Tb 43.2 38.7 14 158 0.01
2 Si 17.2 0 0.8 20.3 62.3

3.6.1 Tb-O co-segregation in annealed AIN:Tb

In general, rare-earth metal dopants (Kenyon, 2002, 2003) produce narrow
optical emission lines almost insensitive to temperature. Hence, they find
application in cathode ray tubes (CRTs), optical fibres, electroluminescence,
etc.(Aitasalo et al., 2003) Tb is a very important rare-earth metal dopant in
semiconductors and is used for green emission. A common application of
Tb is tuning the green light component in incandescent lamps which give
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white light. Over the years, there has been a lot of research on creating UV
light emitting diodes (LEDs). In principle, AIN with a 6.2 eV bandgap should
be able to give an emission at ~200nm, but there are difficulties to over-
come to make such UV emitters commercially available. This large bandgap
makes AIN an ideal matrix for rare-earth ions which typically have emis-
sion wavelengths much longer than 200nm. AIN combines high thermal
conductivity with low electrical conductivity, which makes it ideal for cer-
tain electronic applications, e.g., as heat sinks and substrates for devices with
low leakage currents. The Tb—Tb ionic interactions in semiconductors can
be exploited to tune the emission from green to blue (Benz et al., 2013b).
While segregation of P dopants in Si can constitute a problem for electronic
devices, (Keizer et al., 2015) segregation of rare-earth atoms in lanthanide
doped semiconductors may be beneficial: Rutherford Back-Scattering (RBS)
has been used to show that Er ions in GaAs occupy displaced tetrahedral in-
terstitial sites, (Takahei et al., 1994; Zavada et al., 1995) and there has been
speculation about co-segregation with O and other impurities co-doping of
which is known to enhance the luminescence intensity in Si (Michel et al.,
1991), GaAs (Zavada et al., 1995), and AIN (Oliveira et al., 2004). For Er and
O co-doped (Al)GaAs, a structural model of the defect consisting of one Er**
and two O* ions with Coy symmetry has been suggested based on the num-
ber of emission lines observed (Takahei et al., 1994), but no direct evidence
could be put forward, and such complexes would need further vacancies to
remain electrically neutral. While Eu doped anatase (Pal et al., 2012) and Eu
doped magnesia (Rastogi et al., 2015) show series of strong luminescence
lines in the range of 550-720nm, Tb doped AIN (Penilla et al., 2013) and
Tb doped but otherwise pure AIN (Wieg et al., 2012) both display similar
emission triplets at around 490 nm and 540 nm. This differs from the seven
emission lines in CL we observe for Tb doped and annealed AIN where
we directly observe Tb and O co-segregation by STEM. The segregation of
Tb in AIN and the local cluster arrangements can be studied and observed
by spectroscopy methods like CL and EELS. The possible formation of Tb
complexes in Tb doped AIN has been conjectured based on CL (Benz et al.,
2013a). The concentration of Tb in our AIN sample is ~ 2 at.% as estimated
by inductive coupled plasma-optical emission spectroscopy (ICP-OES) and
energy dispersive X-ray spectroscopy (EDXS). A high resolution analytical
STEM is needed to confirm directly segregation of single atoms into small
complexes. In case of N Kand O K in figs. 3.16(C,D), the contrast of the maps
indicates anti-correlation, i.e. in the AIN region, O is replacing N (group V
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TABLE 3.8: Cross-correlation between elemental maps in AIN region marked by
box in fig. A.4(B).

Xeorr Al N Tb @) Si

Al 1.0000  0.0802  0.0337 0.0012 —0.0920
N 0.0802 1.0000  -0.0366 -0.3694 —0.0060
Tb 0.0337  —0.0366 1.0000 0.3466 0.0064
O 0.0012 —0.3694 0.3466 1.0000  0.0188
Si —0.0920 —0.0060 0.0064 0.0188  1.0000

sub-lattice). Tb must be replacing Al in the group III sub-lattice, although the
corresponding decrease in local Al contrast is too small to be clearly visible
in fig. 3.16(A). Table 3.8 lists the cross-correlation values (X.,,,) between the
elemental maps in the top half of AIN marked in fig. A.4(B), calculated us-
ing MATLAB function corr2 (x,y), where x and y are the elemental maps
from figs. 3.16(A-E) at region A marked in fig. A.4(B). The cross-correlation
of N and Tb map is negative. Similar observations can be made between
N and O. The cross-correlation between Tb and O maps is positive, indic-
ating the formation of Tb—O complexes. In conclusion, the STEM analysis
demonstrates co-segregation of the Tb ions together with O ions (which are a
common impurity of AIN) in AIN. These experimental results are consistent
with atomistic simulations by Benz et al., (2013a,b) (Angadi et al., 2017).

3.7 Summary

Apart from the traditional and well known methods of dealing with noise,
such as averaging, median filtering or PCA, an alternative approach to re-
move spikes arising due to dead pixels in the CCD detector is proposed. The
Hampel filter used performs median absolute deviation to identify outliers
locally and only replaces outliers with the local median whereas traditional
smoothing filters tend to smooth the ionization edges which would adversely
affect the ELNES. If the absolute residue between spectrum and the local me-
dian, |s; — m;|, is greater than three times the standard deviation (¢;), then the
local median, m;, is substituted in place of an outlier. Two novel ionization
edge detection algorithms are proposed to blindly detect core-losses even if
the material is unknown. In the first method, the clusters of points with pos-
itive gradients near edge onset are detected by counting them. The method
also makes use of a look-up table as in table 3.1 to make fine adjustment in
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the edges detected. Cluster detection can detect edges efficiently when the
core-loss has a clear, noise-free and positive onset. It was observed in case of
Al L3, that the edge overlapped with an artefact at channel number #100 due
to a previously acquired ZLP. In such cases, even though the edge is clearly
detected, the quantification maps will by noisy, as in fig. 3.13(A). At lower en-
ergies, ionization edge onsets are much closer. Hence, use of smaller count-
ing windows might lead to false positive detection of core-loss edge onsets.
The lookup table is modified in this particular case, where Al L, is added
even though there is no reliable partial cross-section available for quantific-
ation. This was done to get an approximate elemental map of Al. The Al
K elemental maps were showing large negative values due to the pre-edge
region fitting for Al K being severely affected by EXELFS of the preceding As
L,3 edge and the Al K intensity was extremely feeble. The ionization edge
was detected despite due to noise comparable to the Al K ionization onset
but quantification failed. A similar effect was observed for Ge L,3. The Ge
L, is falsely detected due to a combination of noise and the EXELFS from
the preceding Ga L, 3 edge. The look-up table method assumes the energy
calibration is done correctly before applying edge detection routine. If the
energy-loss is not well calibrated then there could be possible false positive
detection of edge onsets, especially at lower energies where the edge onsets
are close to each other. The P L, 3 quantification was affected by limited in-
tegration ranges. The edge detection method by counting the positive slope-
angle gradient is a novel approach but ineffective when the onset does not
have a definitive positive gradient at edge onset. Kundmann et al., (1991)’s
approach of log-derivative had similar drawbacks. Hence the second method
of edge detection was developed where the arctan function is applied to es-
timate the exponent for each channel of the spectrum, as in eqn. 3.11, rather
than calculating the gradient itself, as in eqn. 3.7. This is a robust way for
detecting edge onsets. The results from simulations used simulated or exper-
imental spectra. The efficiency of the edge detection was tested for a variety
of parameters, such as window length, noise, specimen thickness and simple
averaging filter applied to spectra of various noise level, calculated as shown
in eqn. 3.14. The detected edges were used to quantify the experimental EELS
SIs, with a channel width, w = 25 pixels. It was observed in figs. 3.8, 3.9 and
3.10 that the distortion in gain correction has a large impact on determination
of edge onset. Both edge detection algorithms work best when the high-loss
spectrum has high SNR (> 30 dB), with constant/linear CCD gain correction,
high dispersion (to reduce the effect of —E~! background in 6) and single
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scattering distribution (i.e. deconvolved spectra). The automated selection
of pre-edge regions and integration regions proposed avoids any user bias
and when an unknown EELS SI is used as as input, the output will be the
elemental maps (areal density, x;). The selection of pre-edge region is some-
times tricky at lower energies as the core-loss onsets are close to each other
and the background fitting is affected by EXELFS of underlying core-losses
as well as the long tails of the Poissonian distribution of bulk plasmon peaks.
The EELS quantification is applied to three different test materials, such as
GaAs (Ge-based) multi-junction solar cell (section A.1), In,Ga;N/GaN thin
films (section A.2) and AIN doped with Tb (section A.3). For the solar cell
sample, the core-losses were acquired in three different SIs of different spa-
tial sizes, as shown in table A.1. Sum spectra were extracted from each region
described in fig. 3.13(E) for quantification and results have been tabulated in
table 3.2. It is evident that regions 1, 2, 4, 6 and 7 are thin layers and data for
them are limited by statistics. Hence, for further detailed analysis only re-
gions 3, 5 and 8 were considered in table 3.2. Although the map of the Al L,
edge is affected by the artefact as described above and can only be evaluated
in so far as to rule out significant Al enrichment in any of the thicker regions,
the Al K edge at 1560 eV is rather noisy but yields an Al K map in fig. 3.13(M)
that indicates that Al may be present in parts of interfacial regions 4 and 6.
The Al L, edge is very weak and for quantification the corresponding map
in fig. 3.13(C) cannot be directly used. For computation of the Al fraction in
table 3.2 we tentatively applied a partial scattering cross-section to Al L; one
order of magnitude smaller than for Al L,5. The weak intensity in the Ge
L,z map is completely due to noise. The quantification of individual spectra
generally lacks statistics due to noise. Considering instead the sum of spectra
from sub-regions as labelled in fig. 3.13(E) not only provides better SNR but a
computationally viable method for quantification. Each inclined row marked
by red lines in fig. 3.13(E) consists of 24 spectra (for EELS SI_1) or 47 spectra
(for all other Sls), whereas the wider regions numbered 3, 5 and 8 all con-
tain several hundred spectra. Neglecting the signals from C (mainly surface
contamination) and O (due to surface oxidation) the nominal values from
table 3.2 for wider regions 3, 5 and 8 would indicate chemical compositions of
the underlying thin layers of compound semiconductors of GaAsgssP16:5i,
Al golng37Gags4P:As and GaAs:P, Si, respectively, where the elements listed
after the colon refer to minority elements in the detection range of 1 — 2 at.%,
which however seems somewhat high for dopants. If we check the ratio of

group III/V elements in these three compounds, that is, (Xa1 + Xm + Xca)/ (Xp
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+ Xas), the values of 1.06, 1.04 and 0.91 obtained from the above three regions
are in reasonably good agreement with the expected value of unity for a stoi-
chiometric III/V compound semiconductor. As previously stated, the pro-
posed method is mainly a demonstration of automated background subtrac-
tion by identifying core losses, and plural scattering has not been taken into
account in table 3.2. The effect from plural scattering could be pronounced
for Al, Si and P L, 3 edges as these display slightly delayed onsets while the
integration ranges are small. Hence the effect of plural scattering will move
intensity from the edge onsets to values beyond the range of the actual EELS
measurement (for P) or the integration range (for Al and Si), so the measured
intensities in the experiment may be significantly lower than the measured
cross-sections calculated for single scattering would predict. A quick estim-
ate based on the small widths of the integration ranges used here (15¢V for
Al and Si, and 37.4 eV for P) relative to the plasmon energy of GaAs (~16¢eV)
shows that plural scattering could have reduced intensities of the Al and
Si L5 edges over the measured interval by factors of up to 2 for t/\ ~ 1,
however, the concentrations for Al and Si are rather low anyway and so the
precise values are perhaps not so relevant here, whereas the effect on the P
L,3 edge will be much weaker. The effect of plural scattering could in prin-
ciple be minimised by deconvolution with the low-loss spectrum, which is
explored in chapter 4. The identification of the chemical composition in the
smaller regions and at interfaces is strongly limited by counting statistics as
well as a potential undersampling of the thinnest layers given the pixel sizes
reported in table A.1.



67

Chapter 4

Advanced automated high-loss
analysis of EELS

41 Introduction

The background modelling in EELS is predominantly done with an inverse
power-law function as in eqn. 2.2 (Egerton, 2011b). At higher energy-losses
an inverse power-law does not decay as rapidly as an exponential function.
Hence, it can be seen in fig. 4.1 that an inverse power-law function crosses the
spectrum. However, an exponential function, decays towards zero rapidly
and the extracted core-losses do not have large zero crossings (or large neg-
ative residues). It is evident from eqn. 2.2 that at higher energy-loss the ‘base’
increases whereas the ‘exponent’ is constant, resulting in the overall function
to flatten at higher energy whereas in exponential functions as in eqn. 2.3,
the overall exponent is decreasing more rapidly towards zero. In energy-loss
regions around ~100eV, Tenailleau et al., (1992) have looked into the op-
timal length of pre-edge fit range for the traditional inverse power-law and
exponential functions. Due to the presence of dominant bulk plasmon peak
and plural scattering, the error in quantification is large. Hence Tenailleau
et al., (1992) proposed a new background model, based on three parameters
(eqn. 4.1), of the form:

I(E) =expla In(E) +b+c f(F)] 4.1)

where a, b and c are fitting parameters. It is similar to inverse power-law
but an additional term, f(E) = E~!, within an exponential. If eqn. 4.1 is
reduced to shown in eqn. 4.2, it can be seen that an additional term added is
nothing but an exponential decay function multiplied by an inverse power-
law function:

I(E) = const. - E* - exp [c f(F)] 4.2)
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where constant term is expb, b < 0 < F and f(E) = E~'. Eqn. 2.3 is the sum
of exponentials, where the number of exponentials are defined by the value
of k. However, there are alternative models like n order log-polynomial
function as shown in eqn. 4.3. The function has total of n + 1 fitting para-

meters, where n is the number of exponent, 7, and one scaling parameter,

A.
I(E)y=A-exp(rp, E"+r, E" '+t BV + - 41 E) (4.3)

In higher energy-loss regions, typically greater that ~ 100eV, some con-
straints has to be made to make the background model not to cross the spec-
trum. If a pre-edge region fit range is greater than 100 channels and the begin-
ning channel number is below 25% of the length of the spectrum, then there is
less chance of an inverse power-law crossing the spectrum (because the rate
of decay is lower for inverse power-law function at high energy-losses), but
a definite and analytical model is needed to improve the background fitting
and quantification of the spectra. An example of this is shown in fig. 4.1.
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FIGURE 4.1: Power-law background fit crossing spectrum

4.2 Selection of background models

EELS is complex in nature due to the presence of the ZLP including phonons,
plasmon scattering, near-edge structures (ELNES) and extended fine struc-
tures (EXELFS). These influence the extraction and quantification of core-

loss edges through background subtraction. For extraction of core-losses

2000
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the conventional method of modelling the background only in pre-edge re-
gion is sometimes problematic and can even cross the spectrum, as shown in
fig. 4.1. Therefore, we need to explore and study the applicability of the in-
verse power-law background (AE~") models as a function of energy-loss. In
background subtraction, there is always a trade-off between systematic and
statistical errors in quantification of core-losses. In some cases, either due to
noise, near edge or extended fine structures in preceding edges, the extra-
polated background can cross the spectrum, which leads to a large system-
atic under-estimate of the core-loss intensity. Background subtraction tech-
niques with exponential fitting can be explored more systematically and a
new approach on how the quantification can be improved by choosing dif-

ferent functions to fit in pre-edge regions is explored.

4.3 Optimal fit

The precision of EELS quantification with respect to spectrometer entrance
aperture has been discussed by Bertoni et al., (2008). Modelling the back-
ground can also be explored more extensively by fitting an inverse power-
law or exponential fit to the post-ionisation edge and shifting the background
curve fitted downwards to pass though the edge onset. This leads to an over-
estimate of the core-loss intensity. The best background fit and its reliability
can be calculated from the error bars associated with the under and over-

estimated intensities.

4.3.1 Background model in pre-edge region

Inverse power-law fits are modelled in the pre-edge region (range >30¢V).
For the As L, ; edge, even though the R? values are good, the modelled back-
ground is crossing the spectrum as shown in fig. 4.2, due to the preceding Ga
L,z edge. A background crossing the spectrum predicts a negative core-loss
intensity, which would be un-physical, although the As L, 3 edge could still
be quantified by integrating only the positive core-loss range. The Ga L,3
edge is straight forward as it has a very wide pre-edge region and the extra-
polated background model will have negligible systematic errors. However,
the background fits in pre-edge region for As L, 3 are highly associated with

large systematic errors if the integration ranges are large.
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4.3.2 Background model in post-edge region

Inverse power-law fits can be extrapolated in the post-edge range from the
end of the spectrum and offset vertically to cross through the edge onset.
With post-edge background modelling, the As L,3 edge has very large ap-
parent cross-section, as shown in fig. 4.2. This indicates an over-estimate of
the core-loss edge intensity. The Poissonian statistical error bars are, how-
ever, large. The Ga L3 edge is not straight forward to deal with in this way
as it has very narrow post-edge region with varying gradient compared to
the pre-edge region. To extrapolate by inverse power-law the post-edge re-
gion of the Ga L, 3 edge from end of the spectrum, the As L, ; edge will have
to be subtracted from the spectrum first. The background fit in post-edge re-
gions are associated with large statistical errors if the integration ranges are
small but large systematic errors if the integration range are wide. For post-
edge modelling, statistical errors are difficult to asses from the knowledge of
R2.

4.3.3 Background model with optimal fit

The inverse power-law fits in pre-edge and post-edge regions provide under-
estimate (B,) and over-estimate (B5,) of the core-loss edge intensity, respect-
ively. The solution is to select backgrounds which are physically meaningful
(vield positive core-loss intensity) and have small error bars. Hence, an op-
timal background (B,,;) may be given by eqn. 4.4.

B, = Be=VLA) : (B, +/1,(8)) w4
A

I(A) = Y S(k) = Bu(k) (45)

L(A) = > S(k) = Bo(k) (4.6)

where VA € N, I,(A) and I,(A) are the cumulative intensity as a function of
A for the net core-losses after subtracting modelled background in pre-edge
and post-edge regions, respectively. +/1,(A) and 4/1,(A) are the statistical
error bars associated with under- and over-estimate, respectively. The upper

(e,) and lower (g;) error bars associated with optimal background fit are given
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by eqns. 4.7 and 4.8.
ew = (Bo+ VI(B)) = Bo (4.7)

et = B — (Bu — VI1.(2)) 4.8)

The error bars associated with optimal background are smaller than Poisso-
nian statistics. The quantification of the Ga/As ratio in GaAs is then close
to unity, with smaller systematic and statistical errors. The optimal back-
ground fitting yields Ga/As = 1.2759 when compared to 1.4101 with inverse
power-law fitting in fit ranges and integration ranges described in fig. 3.14
for Ga and As only. Hence, it indicates that the improvements in R? val-
ues do not guarantee more accurate quantification. The optimal background
can be used to extract core-losses from a spectrum and the underlying core-
losses can be quantified with better statistics using larger integration ranges.
The overestimated background is affected by thickness of the sample and
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FIGURE 4.2: Experimental EELS of GaAs with t/\ ~ 1 with different background
tits with error bars for As L, 3 (Ga L3 is more straight forward).

EXELFS. The optimal fit method is reliable for the thin sample (or single
scattered spectrum) and post-ionization edge decays monotonically. This is
the case for K edges. L and M edges are superposition of L,, Ly and M,,
Ms respectively. The plural scattering effects on top of superimposed par-
tial cross-section would mean that post-edge modelling other that K edges
would not be reliable.
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4.3.4 Considerations for background modelling

As discussed in section 4.1, the inverse power-law function is sometimes not
ideal in describing the decaying background. In a modelled background us-
ing inverse power-law function at high-loss spectra, the base of the function
(E, energy-loss) is increasing while the exponent is constant. This makes the
function not to decay rapidly at higher loss. However, in the exponential
decay functions, the exponent (—rE, from eqn. 2.3) is not constant. The mag-
nitude (| — rE|) of the exponent is increasing linearly with energy-loss, while
the base is constant, e. This is the reason why at energy-losses, exponential
decay functions describe core-losses more effectively after the extrapolation
when compared to the inverse power-law function. The EEL spectra are also
limited by the finite collection semi-angle (3). Hence the number of counts
in the spectra at higher-energies are lower than expected. This is another
reason why an inverse power-law function crosses the spectrum at higher
energy-losses as shown in figs. 4.1 and 4.2. There are some thumb rules that
to be followed to ensure better modelling of the EELS background and hence

reliable quantifications.

* Ina given spectrum with two or more ionization core-loss edges, a com-
bination of background models can be used, instead of using only in-
verse power-law (or other) functions to model background in pre-edge

regions.

* Inverse power-law function is reliable if the pre-edge region is large
(> 100 channels) and the pre-edge region is in the left most part of a
given high-loss spectra. For e.g. if the spectrum has 1024 channel, the
inverse power-law will be a reliable model in the first 256 channels,
while the length of pre-edge is > 100 channels.

* At higher energy-loss part of high-loss spectra, an exponential decay
function can be used to avoid, extrapolation crossing the spectrum. The
pseudo code for the selection of background models shown in pseudo

code.

4.4 Richardson-Lucy deconvolution

RL deconvolution is an iterative method of finding the maximum likelihood
solution. The plural scattering spectrum, Spsp(E), is due to the convolution

of the low-loss spectrum containing multiple bulk plasmons with the single
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b — model_begin_channel
e «— model_end_channel
E — energy_loss
S «— spectrum
N <« length_of_FE
procedure MODEL_SELECTION(b, e, E, S)
ife—b+1>100 A b< N/4then
back = iPower_law(E[b: e],S[b : €])
else
back = Exp_decay(E[b: €], S[b : €])
end if
end procedure

scattering distribution spectrum, Ssgp(E) as in eqn. 4.9. The normalised low-

loss spectrum can be considered as a PSE, Spsr(E), which satisfies eqn. 4.10.

SPSD(E) = SSSD(E) * Spsp(E) (49)
[ seseE) =1 — [ sps0(8) = [ sss(E) (4.10)

The maximum likelihood estimation, S, (E), of single scattering distribu-
tion is shown in eqn. 4.11. The value of j indicates the current iteration
number. The initial estimate, Ségz(E), can be initialised to plural scattered

edge, Spsp(E). The term S'pSF(E) is the spatially reversed PSF, Spsp(E).
The whole term in the parentheses is the error estimate at each iterations.

Spsp(E)
Se(il)f(E> * Spsr(E)

S&T(B) = SE(E) - * Spsp(B)| (411
The RL deconvolution method assumes the spreading function, Spsp(E),
complies with Poisson statistics. In implementations of RL deconvolution
in standard routines like Hyperspy v1.3 (de la Pefa et al., 2017b) or MAT-
LAB' (MathWorks, 2017), the deconvolved spectrum (or data) will not have
any negative values. All negative values are clipped at 0. Hence, the noise

statistics arising from the RL deconvolution is biased, eqn. 4.12.

0 0
f Sest(E) = J Sssp(E) +¢€,€¢=0 (4.12)

IThe standard routine in MATLAB for RL deconvolution is SSD = ...
deconvlucy (PSD, PSF, iter).
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There are ways to work around this by adding and subtracting an offset

before and after deconvolution, respectively but RL deconvolution works

best when the spreading function is pure Poisson statistics, as shown in

tigs. 4.3(A,B). In fig. 4.3(A), the description of simulation of three low-losses

are:
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FIGURE 4.3: (A) Simulated low-losses (black) pure Poissonian, (blue) mixture of
Gaussian and Lorentzians weighed according to Poisson statistics and (orange)
a pure Gaussian. (B) Saw-tooth (hydrogenic model) edge. The plural scatter is
generated by convolving the single scattered hydrogenic edge with pure Poisso-
nian low-loss. The RL deconvolution is applied to recover the single scattering

distribution.

Black line: Simulated low-loss, Spsr(E), with pure Poissonian statistics
as shown in eqn. 2.20 at every £/ = n - Ij, where n € Ny with relative
thickness, ¢t/A = 1, bulk plasmon width, W, = 0eV, plasmon position,
E, =20eV and ZLP FWHM, W, = 0eV?.

Blue line: Simulated low-loss, Spsr(FE), with relative thickness, t/\ = 1,
plasmon width, W, = 10eV, plasmon position, £, = 20eV and ZLP
FWHM, W, = 9.42eV. Atn = 0, Spsr(0) is a Gaussian with FWHM of
Wyand n € N, Spgp(n - E,) are Lorentz functions weighed according to
eqn. 2.20.

Orange Line: Simulated low-loss, Spsr(E), with a pure Gaussian func-
tion at Spsr(0) of FWHM, W, = 9.42eV. The low-loss has no bulk plas-
mon loss just to test the behaviour of RL deconvolution in the presence

of non Poissonian spreading functions.

2Note: The ZLP FWHM, W, = 9.42 eV is taken as wide as possible only to test the extreme

cases.
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FIGURE 4.4: (A) RL deconvolution method applied to the plural scattered saw-
tooth (hydrogenic) edge. The plural scattered saw-tooth is generated by con-
volving the single scattered hydrogenic edge with low-loss simulated from a mix-
ture of Gaussian and Lorentzian weighed according to Poissonian statistics. (B)
Trace of position and amplitude of the first 4 ringing artefacts with increase in
number of iterations during RL deconvolution of plural scattered edge in (A).
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FIGURE 4.5: (A) RL deconvolution method applied to a plural scattered saw-
tooth (hydrogenic) edge. The plural scattered saw-tooth is generated by con-
volving the single scattered hydrogenic edge with low-loss simulated from a pure
Gaussian. (B) Trace of position and amplitude of the first 4 ringing artefact with
increase in number of iterations during RL deconvolution of plural scattered edge

in (A).

10

amplitude (% of overshoot

amplitude (% of overshoot

relative to edge onset height)

relative to edge onset)



76 Chapter 4. Advanced automated high-loss analysis of EELS

In fig. 4.3(B), it is evident that the RL deconvolution almost perfectly recovers
the single scattering distributed spectrum (hydrogenic model). This is due
to the fact that the spreading function has pure Poissonian statistics. How-
ever, if other components are present in the spreading function, such as a
Gaussian, then the deconvoluted spectrum, S.s(E), is affected by ringing
artefacts, as can be observed in figs. 4.4(A) and 4.5(A). The position and
amplitude of the first 4 dominant ringing artefacts with respect to number
of iterations of RL deconvolution are shown in figs. 4.4(B) and 4.5(B). These
are the ringing artefacts present in figs. 4.4(A) and 4.5(A), respectively. As
the number of iterations increases the amplitude of the ringing artefacts in-
creases and their positions are closing in towards the edge onset. High fre-
quency components arising due to discontinuities at the end of the spectrum.
The standard extrapolations by any finite impulse response (FIR) filters like
Hann® (or cosine, eqn. 4.13) windows or inverse power-law can be used to

make the beginning and end of the spectrum converge to the same intensity

level (~ 0).
w(n) = % (1—005 <27TTTL)> :0<n<N (4.13)

The extrapolation (of both end of the spectrum) by inverse power-law or ex-
ponential function fails if the tails of the edge are ending at higher counts at
the end of the spectrum. Hence, the best way to extrapolate is by mirroring
the whole spectrum before applying the deconvolution. This way, the dis-
continuities at the end of spectrum can be avoided. This is valid irrespective
of the tail height of the edge and there is no complexity involved in select-
ing the size of the window as in case of extrapolation. Hence the ringing
artefacts during RL deconvolution are due to the presence of Gaussian com-
ponents which RL fails to model. Related to the ringing artefacts, a major dis-
advantage of the RL deconvolution method is the selection of an appropriate
number of iterations. The amplitude of the ringing artefacts are increasing
with the number of iterations. As it can be noted in figs. 4.4(B) and 4.5(B),
the 2" through 4™ artefact are very low until at least iteration #15. As the
number of iterations is increased beyond ~ #20, the artefacts are creeping
in towards the edge onset and their amplitude is also increasing. This is true
for any experimental spectrum, as the low-loss is a mixture of Poissonian and

Gaussian statistics.

3The standard routine in MATLAB for Hann window is w = hann (L), where L is the
length of the window and L = N + 1
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4.5 Considerations while applying deconvolution

The energy dispersion (eV/channel) of both plural scattered, Spsp(E), and
normalised low-loss function, Spsr(E), must be the same. If the dispersions
are not same then the normalised low-loss can be interpolated to match the
dispersion of the plural scattered spectrum. But while applying deconvo-
lutions, the lengths of Spsp(E) and normalised low-loss function, Spsr(E),
must be the same. This is because of element-wise division of Fourier coef-
ticients. This will be considered as an additional advantage of extrapolation.
The extrapolation of signal will not only remove discontinuities in the signal
but also help in matching the lengths of the spectra. As discussed in sec-
tions 4.4, 2.6 and 2.7, to minimise boundary discontinuities, multiplication by
an inverse cosine or inverse power-law function are common extrapolation
methods. These extrapolation functions, f.,:(£), are generally quite efficient
way to extrapolate because there is no discontinuity of the n'' derivative of
these function as described in eqn. 4.14. Other extrapolation functions can be
used such as a Gaussian, which approaches zero rapidly and its n derivat-

ive is also a Gaussian and continuous, as described in eqn. 4.14.

i () # £ (4.14)
If the length of the plural scattering distribution and normalised low-loss are
same, then instead of extrapolation, flipping both spectra is a better way to
avoid discontinuity and the computational complexity decreases. The situ-
ations where the intensity of the plural scattered core-loss is truncated due
to end of the spectrum (as is the case of P L,3 for 80eV offset EELS SI of
multi-junction solar cell), the mere extrapolation and deconvolution cannot
redistribute intensity from extrapolated part and recover the single scattering
signal. If the plural scattering distribution is flipped over, then the truncated
intensity can be recovered from the flipped spectrum. A continuous spec-
trum appended by its flipped version is always continuous. The point of
contact between the spectrum and flipped version can be smoothed with a
Gaussian to avoid any kink should it exists. The flipping extrapolation also
complies with eqn. 2.23.

F{Spsr(E — E})} = e P . F{Spsr(E)} (4.15)

In Spsp(E), conventionally the maximum of the spectrum (||Spsr(E)|, ) is

considered as the peak of the zero-loss. The ZLP must be rotated circularly
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to bring the position of the maximum to channel #1. This is because all
routines by default consider #1 (or #0) as the location of ZLP. If the zero-loss
is not shifted to channel #1, then as per discrete Fourier transform (DFT)
lateral-shift property* as in eqn 4.15, a complex exponential is multiplied to
the recovered single scattering spectrum, as shown in eqn. 4.15. Hence, there
is a need to ensure that while applying FFT, there is no energy-shift in the

deconvoluted spectrum.

4.6 Baseline correction to background fit

An alternative background subtraction method for quantification is by
linear /non-linear least-squares methods. In these methods a reference spec-
trum is used to model the experimental spectrum and the fitting (scaling)
parameters are used to express the relative weights in at.%. The reference
spectrum can either be obtained experimentally or can be modelled using
standard hydrogenic models or Hartree-Slater differential cross-sections. The
major advantage of least-squares fit methods of quantification is to avoid er-
rors due to deconvolution. As discussed in previous sections, the noise level
is always increased by deconvolution. The reference (or modelled) single
scattering spectrum can be convoluted with the low-loss spectrum to get the
spectrum modelled with plural scattering. This can be used to compensate
for the errors arising due to approximations used in eqn. 2.5 due to plural
scattering. The exponent of the background fit, which describes the rate at
which the background decays, is not same at every pixel in the SI. It is evident
from fig. 3.12 that each row of spectra in SI has a different decay rate of the
background even though all spectra have been acquired with same collection
semi-angle () and exposure time (7). However, the decay of the background
in the proximity of the ionization edge is influenced by the specimen thick-
ness. Various least-square fitting models can be used to quantify a spectrum.
However, not all the models are consistent and may not produce the same
results. In this section, we study five different models for GaAs along with
Cu edge to check the consistency of the models. The eqn. 4.16 fits only n € N
differential cross-sections, o, (E, A, 8, Ey), to the residual spectrum, S,.s(E),

“DFT is an infinite signal system. But FFT is an N-point spectrum. Hence shifting by Ej,
actually wraps the pixels at the end of the spectrum to the beginning of the spectrum.
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where p = [p1,- -+, ps] € R are the fitting parameters.

T
D1 01<E7B7E0>

Sres(E) = | Spsr(E) % = | (4.16)
Pk O'n<E7ﬁ7EO)

where £ is the number of fitting parameters and n is number of cross-sections.
The residual spectrum, S,.;, is obtained by subtracting the background from
the left most ionization edge. This indicates that the background needs to
be subtracted prior to the quantification. Hence a pre-knowledge of back-
ground region is necessary for the quantification. The disadvantage of mod-
elling with eqn. 4.16 is due to the presence of potentially large systematic
errors arising from extrapolation of modelled background, B(FE), based on
only small numbers of channels if the lowest ionization edge occurs close to
the left side of the spectra. The systematic errors add additional offsets to the
higher energy core-losses, hence, create an over- or under-estimates to the
quantification of all other ionization edges at higher energies.

T
D2 O-l(E7ﬁaE0)

S(E) =p1B(E) + Spsr(E) * =7 (4.17)
Pk Un(E7ﬁ>EO)

Eqn. 4.17 is similar to the eqn. 4.16, but in this case, a known background
in the pre-edge region, B(F), is used in the model to fit along with the ion-
ization core-losses. The fitting parameter p, is used as a scaling parameter
for B(E). This makes small improvements in minimizing the systematic
errors. The fitting parameters, [ps, - -- ,px], are used to quantify, ionization

core-losses in at.%.

T
P2 Ol(EaﬁvEO)

w0
0E

Dk—2 on(E, B, Ey)

S(E) =pB(E) + Spsr(E) + pp—1 B+ pi

(4.18)
The scaling of pre-modelled background, B(E), may not be reliable enough

to completely remove all systematic errors. Some alternative methods are
needed to deal with such problems. A baseline correction to modelling of
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spectra with least-squares fitting is proposed in eqns. 4.18-4.20. In eqn. 4.18
a simple linear baseline is added to the model. The parameter, p,, is scaling
parameter for the background, B(E). The fitting parameters to ionization
core-losses are [ps, - - - , pr—2]. The baseline given by p;_1 E+ py, is of the slope-
intercept linear form, ma + c. The terms p;,_; and p;, determines the slope and
intercept respectively.

T

Ps3 O-1<E757 EU)
: 0 :
S(E) = p1B(E)-EP*+ ' Spsr(E) * B . +pr—1E+py
Pk—2 O-n(E767EO)

Eqgn. 4.19 not only scales the background but multiplies it with the term
EP:. If B(E) is an inverse power-law function as in eqn. 2.2 the effective
exponent in the power-law background becomes (—r + p,). The parameters
[ps, -, pr—2] are the fitting parameters of reference spectra and can be used

to get relative quantification of the core-losses.

T
p3 01(E7ﬂ7E0)

S(E) = p1B(E)P* + Spsr(E) % — + pp_1E + px

Pk—2 Un(Ea ﬂa EO)
(4.20)

Eqn. 4.20 has the additional fitting parameter p, used in a different way, as an
exponent to the background model, B(E). If B(E) is an inverse power-law
function as in eqn. 2.2, then its exponent are scaled by a factor p, i.e. (—r - p2).
The parameters [ps, - - - , py—2] are the fitting parameters to the reference ioniz-
ation core-losses and pj,_; and p; model the slope-intercept baseline. A list of
the above descriptions of eqns. 4.16—4.20 is shown in table 4.1. All the fitting
parameters, p;Vk, from eqns. 4.16—4.18, are linear in nature. Hence, these
models are commonly known as MLLS methods of quantification of EELS
(Leapman et al., 1988). However, models in eqns. 4.19 and 4.20 have a non-
linear fitting parameter p,. Hence, they are known as non-linear least-squares
(NLLS) method of quantification of EELS. The models all seem similar but,
surprisingly, the quantification of of ionization cross-section depends heavily
on the type of model chosen. This is illustrated in all three regions 3, 5 and 8
of the GaAs on Ge based multi-junction solar cell with 950 ¢V offset for joint
titting of Cu L, 3, Ga L, 3 and As L, 3 in tables 4.2—4.4. The Cu L, 3 is dominant

only in region 2, however, Since the edge detection algorithm would have
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TABLE 4.1: The attributes associated with each formulas from eqn. 4.16 to 4.19.

Eqn. SO Spe@ Scale Back®  Back Power®  pdfc® Baseline

4.16 v Y d

417 v v v

418 v v v d
v

419 v v (Add powers) g ’
v

420 v v (Multiply powers) 4 ’

@ Spectrum,; ) Residue Spectrum;
©) Scaled background; @) Non-linear background;
©) Plural scattered theoretical differential cross-sections.

detected all three ionization edges in the SI, it is necessary to include all of
them to fit the core-losses. In the three regions of the multi-junction solar cell
where Cu should not be present. It is expected that the quantification of Cu
in these region should have a mean value close to zero. Regions 3 and 8 are
GaAs doped with Si. Hence, it is expected that Ga and As should each reach
~ 50 at.%. Region 5 has AlGaInP doped with As Note that the Al K edge
at 1560 eV is very faint and therefore buried in the noise dominated by gain
correction irregularities of the CCD (ref: fig. 3.8). The Hartree-Slater ioniza-

TABLE 4.2: Relative quantification of elemental maps at region 3 as shown in
fig. 4.7(D) (GaAs).

Ean Cu L2,3 Ga L2,3 As L2,3 Cu L2,3 Ga L2’3 As L2,3
9 Mean Std Mean Std Mean Std at.% at.% at.%
416 —2.47 345 39.70 874 51.65 14.95 —2.78 44 .67 58.11
4.17 2,75 247 41.87 10.67 63.76 27.58 2.54 38.63 58.83
418 —-6.79 3.09 30.26 5.34 3871 &.72 —10.92  48.67 62.26
419 =242 149 3145 578 3795 8.84 —3.61 46.95 96.66
420 —0.28 1.17 2851 471 31.63 6.34 —0.47 47.63 52.84

tion cross-sections of Cu L, 3, Ga L, 3 and As L, 3 have been convoluted with
the low-losses and fitting parameters used according eqns. 4.16—4.20 to fit

these theoretical cross-sections to the experimental intensities. These terms
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TABLE 4.3: Relative quantification of elemental maps at region 5 as shown in
tig. 4.7(D) (GaAs).

Ean Cu L2,3 Ga L2,3 As L2,3 Cu L2,3 Ga L2,3 As L2,3
9 Mean Std Mean Std Mean Std at.% at.% at.%
416 —6.80 1.97 20.45 5.73 11.43 4.24 —27.11 81.54 45.57
417 —0.45 1.28 2347 6.40 2833 7.43 —0.88 45.70 55.18
418 —-297 1.75 19.58 6.13 6.58 2.63 —12.79 84.41 28.38
419 -1.63 1.17 1944 6.26 5.68 2.89 —6.95 R2.77 24.18
420 -1.79 1.25 19.16 6.66 5.11 3.38 —-7.96 85.24 22.72
TABLE 4.4: Relative quantification of elemental maps at region 8 as shown in
tig. 4.7(D) (GaAs).
Ean Cu L2,3 Ga L2,3 As L2,3 Cu L2,3 Ga L2,3 As L2,3
9 Mean Std Mean Std Mean Std at.% at.% at.%
416 —-6.16 3.09 33.04 446 51.55 3.61 —7.86 42.13 65.73
4.17 1.62 191 36.35 5.91 71.67 1227 1.48 33.15 65.37
418 —-6.44 230 26.99 585 41.14 2.99 —10.44  43.75 66.68
419 —-250 1.85 26.47 548 3894 3.11 —-3.98 42.07 61.90
420 —1.85 1.40 23.68 6.58 34.24 3.27 —-3.29 42.23 61.06
are deduced and are shown in eqn. 4.21.
T

D1 (,} UCuL2,3 (Ea/67EO)

P2 Spsr(E) * B OGaLys(E, B, Eo) (4.21)

ps Oasty 5 (E, B, Eo)

It is evident that the reliability of relative quantification among Cu, Ga and
As has increased from eqn. 4.16 through eqn. 4.20. Although, the relative
quantification of Ga and As is are not precisely at 50 at.%, the quantifica-
tion from are close to the expected at.% values and the error in quantification
of Cu has significantly reduced. This is due to minimization of systematic
errors. It is worth noting that eqns. 4.19 and 4.20 are similar and the only
difference is placement of the fitting parameter p,. However, the relative
quantification values from eqn. 4.20 in regions of GaAs are slightly better
with respect to eqn. 4.19. One can also argue that the overall coefficient of
residuals, R?, might have improved (including the background while calcu-
lating R?) but adjusted R?, (a.k.a R;) will drop. However, R’ values are

of consequence if the number of fitting parameters are comparable to the
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number of data points (number of channels). Fig.4.6 show individual fits
of all the models from eqn. 4.16 through eqn. 4.20 for pixel (35,21) in re-
gion 3 (GaAs) and 950 eV spectrum offset. It is important to note that the R?
mentioned below the images are calculated after subtracting the background.
Hence while calculating R?, only weighted Hartree-Slater cross-sections are
used from each models. The R? values are decreasing where as the quanti-
fication has improved through eqns. 4.16—4.20. This significantly suggesting
that only modelling net core-loss intensity to best R* would not produce best
results. The quality of background model plays significant role in determ-
ination of quantification. Modelling single background for one ionization
edge and stacking the theoretical models also would not consider the back-
ground successive ionization edges. The eqns. 4.16 and 4.17 are significantly
overestimating the Cu content (~ 6.5 at.%). The As edge intensity is under-
estimated (~ 33.7 at.%), while eqns. 4.18-4.20 have estimated Cu < 2.2 at.%
and Ga and As within 5 at.% error. The values are not ideal, but are signi-
ficant improvements over eqn. 4.16 and 4.17. The elemental maps calculated
by eqn. 4.20 with offsets of 80eV, 250eV and 950eV EELS SI are shown in
tig. 4.7. It is interesting to note that Al L, 3 map is not only noise (intensity in
region 2 is noise) even though a distortion (at channel number ~ #100 due
to ZLP which was acquired before) is present, as shown in fig. 3.12. When Al
L, 3 is included, the relative quantification in region 5 is Al 4gIng 31Gag 21 P:As.
In section 3.4, it was quantified using Al L, edge, which had underestimated
as Alylngs;GagssP:As.  The table 4.5, lists the relative quantification of re-
gion 3, 5 and 8 from GaAs multi-junction solar cell. As there is no model
reliable for partial cross-section for L; edges, Al L,3 edge is considered. In
all the regions listed in table 4.5, do not have any quantification value that
is going large negative or large positive as was the case in traditional back-
ground subtraction method. Hence in table 3.2, those outlying negative val-
ues were clipped at zero to calculate the relative quantification, however, this
was not the case here. The values again are not perfectly describing the stoi-
chiometry of the material, this is due to the fact that all the SI were acquired
independently with different exposure time (7), dispersion (e¢V /channel) and
pixel sizes. This causes, the background to be different in each SIs. This is the
major drawback in quantification of EELS. The core-losses are far apart and
to quantify the core-losses reliably, all the edges must be on the same back-
ground which is difficult to obtain when there are various edges at different
energy onsets. The errors in calculation of theoretical cross-section also plays

an important role in reliability of quantification in least-squares methods.
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FIGURE 4.6: Least-squares fits for all the proposed models. (A) eqn. 4.16. (B)
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FIGURE 4.7: Elemental maps obtained from baseline corrected eqn. 4.20. (A-C)
maps are from EELS SI with 80eV offset. (D-F) from EELS SI with 250 eV offset
and (G-I) from EELS SI with 950 eV offset.
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TABLE 4.5: Quantification in atomic percent (at.%) of region 3, 5 and 8 of the three
GaAs multi-junction solar cell SIs recorded as discussed in section A.1. The sum
of all concentrations has been normalised to 100% according to eqn. 3.17.

80 eV offset 250 eV offset 950 eV offset
w\y Si HLN‘w Al HLm\w P HLN\w CK In Z?m OK Cu HLN\m Ga HLm\w As HLN\w
Dispersion (eV /channel) 0.10 0.10 0.10 0.50  0.50 0.50 1.00 1.00 1.00
Exposure time (7) (s) 0.5 0.5 0.5 0.5 0.5 0.5 2 2 2
Region 3 0.95 11.92 6.65 8.21 9.16 5.12 15.49 —0.23 14.00 15.59
Region 5 1.01 —1.74 21.15 23.27 6.11 14.05 12.00 —0.92 9.20 2.66
Region 8 1.11 11.64 7.95 10.15 1.96 5.59 12.39 —1.03 11.62 17.35




4.6. Baseline correction to background fit 87

The error associated with K edges (hydrogenic models) is ~ 5%, L edges and
M and N edges (Hartree-Slater models) is ~ 10 — 20% and = 20% (Egerton
et al., 1979, 1993; Gatan, 2016; Rez, 1982).

4.6.1 Comparison with standard routines

The quantified values from eqn. 4.20 for Ga and As are still far from per-
fect 50 : 50 in regions 3 and 5. This is due to systematic errors are still get-
ting cascaded for overlapping edges. The values quantified by eqn. 4.20 are
compared with the standard available routines like Hyperspy and Gatan’s
DigitalMicrograph™. Thomas et al., (2012) have proposed that core-losses
can be independently fitted by dividing the spectrum into different regions.
Thomas et al., (2012)’s algorithm uses combination of MLLS as well as stand-
ard integral method. Their algorithm need pre-edge region for each edge
and integration range as in case of integral method of quantification. The
same is implemented in DigitalMicrograph™(Gatan, 2015). The values of
quantification in baseline corrected least-squares fitting are better in region
3 and region 5. However, DigitalMicrograph™provide better results for As
in region 8. However, in regions 5 As is a largely underestimated and large
error bars. The expected Ga content in region 5 with respect to Cu and As
is 100%. Hyperspy is not producing the results close to the expected value.
However, the baseline corrected least-squares fit is estimating Ga content at
~ 85% as shown in table 4.7 and not producing large outliers. ~When the

TABLE 4.6: Relative quantification of Cu, Ga and As elemental maps with Hy-
perspy, DigitalMicrograph™and EELSAnalyser in region 3 shown in fig. 4.7(D)

(GaAs).
Region 3 Culys Galy; AsL;s
(0:50:50) at.% at.% at.%
Hyperspy 876 +15.34  49.53+5.20 41.72 +14.04
DigitalMicrograph™  3.39 + 2.33 57.27+ 4.7 36.60 + 5.89
EELSAnalyser —0.47 +12.27 47.63 +13.09 52.84 + 13.76

relative quantification is applied to all the three SIs (80¢V, 250 eV and 950 eV
spectrum offsets as described in table A.1) for GaAs solar cell, as shown in

table 4.5 the values describe similar discrepancies as in table 3.2.
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TABLE 4.7: Relative quantification of Cu, Ga and As elemental maps with Hy-
perspy, DigitalMicrograph™and EELSAnalyser in region 5 shown in fig. 4.7(D)

(GaAs).
Region 5 Culys Galy; AsL;;
(0:100:0) at.% at.% at.%
Hyperspy 9.63 +362.14 301.31 +4885.24 —210.93 + 4587.24
DigitalMicrograph™  3.09 £+ 5.26 78.83 + 7.47 —40.95 + 25.06
EELSAnalyser —7.96 + 11.35 85.24 £ 13.10 22.72 £ 11.78

TABLE 4.8: Relative quantification of Cu, Ga and As elemental maps with Hy-
perspy, DigitalMicrograph™and EELSAnalyser in region 8 shown in fig. 4.7(D)

(GaAs).
Region 8 Cu L2,3 Ga L2,3 As L2,3
(0:50:50) at.% at.% at.%
Hyperspy —33.81 £25.86 52.92+12.34 80.89 + 15.99
DigitalMicrograph™ 2.25+1.73 43.46 + 3.18  52.37 + 3.72
EELSAnalyser —3.29+11.33 42.23 +13.03 61.06 +11.71

4.7 Summary

In chapter 4, the limitations of the traditional background model based on
an inverse power-law are shown. The mathematical inferences on why the
inverse power-law tends to cross the spectrum at high-loss are discussed in
section 4.1. A crossing of the background model will systematically underes-
timate the net core-loss intensity. Modelling the background by extrapolating
the inverse power-law function to the post edge region and shifting it down
to the ionization onset is giving an overestimate of the net core-loss intensity.
Hence, an optimal fit is proposed where the model passes through the inter-
section of error bars of both under- and over-estimated background extrapol-
ations. Some considerations for modelling the background without crossing
the spectrum are mentioned. If the Ga L, 3 and As L, 3 edges were quantified
only from the 950 eV offset GaAs sum spectrum in region 3 (without taking
into account other SIs with 250 eV and 80 eV offsets) using pre-edge regions
identified in fig. 3.14, the Ga to As ratio would be 1.41. After applying the op-
timal fit, the ratio has improved to 1.28. This just shows the disadvantages of
quantification using background subtraction methods. Quantifying overlap-
ping core-losses is always difficult in the traditional background subtraction
method. An inverse power-law is only considered if the pre-edge region lies
within the first #100 channels. Higher core-losses are modelled using an ex-
ponential decay function. The behaviour of RL deconvolution is tested for a
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simulated hydrogenic ionization core-loss as an example. The RL deconvolu-
tion perfectly recovers the single scattering distribution if the spreading func-
tion is pure Poissonian. The MSE calculated on the residue between original
and reconstructed hydrogenic edge is almost zero, as shown in fig. 4.3(B).
The artefacts associated with the RL deconvolution are studied with respect
to number of iterations on two different PSFs used to simulate the low-loss
function. The first is a ZLP only which is modelled using a pure Gaus-
sian kernel and the second a low-loss simulated as a mixture of a Gaussian
and several Lorentzians weighted according to Poissonian statistics (where
t/A = 1). Itis interesting to see that the amplitude and position of the ringing
artefacts become almost linear on a log-scale as a function of number of it-
erations and as the ringing artefacts can be modelled, they can be subtrac-
ted. Other causes of ringing artefacts are discussed, such as the intensity at
which tail is truncated. i.e where the core-loss is ending at the right (and
left) end of the spectrum abruptly for not having a wide enough detection
ranges. Apart from already existing extrapolation methods, such as Hann
window (cosine window) and inverse power-law, flipping over (mirroring
over the energy-loss axis) of the spectrum has been suggested. Mirroring of
the continuous core-loss and low-loss spectrum before applying deconvolu-
tion will make the spectrum and its derivatives continuous at both beginning
and end of the spectrum. If any kink is present, then a Gaussian filter can
be used so that its n'" derivative is also continuous. Baseline corrections to
improve quantification by a linear least-squares model has been proposed.
An example spectra from GaAs in regions 3 and 8 of the multilayer solar
cell are considered and all the models described in eqns. 4.16—4.20 are com-
pared. From table 4.2, 4.3 and 4.4, it is clear that the relative quantification
is improving from eqn. 4.16 to 4.20. The Ga:As quantification is approach-
ing 50 : 50 at.% in regions 3 and 8. The advantage of a baseline correction is
flexibility in modelling the background. From chapter 3, once the core-losses
are identified, a pre-edge region for the left-most ionization is sufficient to
model the background for an entire spectrum. The baseline correction model
proposed using eqn. 4.20 does not need a large pre-edge region either. The
pre-edge region can be as narrow as ~ 5 to 10 channels which is enough
to model and quantify the ionization edges. The baseline takes care of the
systematic errors due to extrapolation of background modelled either using
inverse power-law or exponential functions at higher energies. It is import-
ant to notice that the R? values calculated between background subtracted

residual spectrum and the weighted theoretical cross-section are decreasing
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from 0.9553 to 0.9486 (fig. 4.6(A-E)), while the relative quantification of Cu,
Ga and As are improving. This is an indication that the EELS quantification
is severely affected by the quality of the background model. The h-parameter
proposed Egerton, (1982) determines the extent of systematic errors and re-
commends the length of integration ranges based on the length of pre-edge
regions. However, if overlapping (plural scattered) edges, such as for Ga and
As, are present this parameter fails to quantify latter edges reliably. The pro-
posed baseline corrected quantification by least-squares modelling is a novel
approach of reliable quantification of overlapping core-loss edges. Applying
relative quantification to independently acquired Sls with different exposure
time (7), dispersion (e¢V/channel) and SI pixel size would not produce con-
sistent results. This is because the background on top of which the ionization
core-losses reside are different. The cross-section models for each ionization
edge type will have inherent approximation errors (K edges ~ 5%, L edges
~ 10 — 15% and M and N edges = 20)(Hofer, 1987; Hofer et al., 1988a,b).
The statistical noise differs because it depends on exposure times. Note that
in table 3.2, Al L, is used for the quantification whereas in table 4.5, Al L; is
used. This is also one of the major reasons why both results do not match. It
is interesting to observe the elemental map from the Al L; edge. Even though
there is an artefact present at channel number #100 (due to previous ZLP ac-
quisition), the baseline corrected model could produce an elemental map,
although its values might be biased and are noisy, as shown in fig. 4.7(A).
The same Al L3 data, when the traditional background subtraction method is
applied, produce an elemental map that is completely noise and has no clear

structure, as shown in fig. 3.13(A).
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Chapter 5

Automated low-loss analysis

5.1 Introduction

Phase separation in In,Ga;.<N (Ho et al., 1996) has been studied using high-
energy core-loss edges in chapter 3 for a field of view of ~7nm. Phase sep-
aration of In and Ga in a ternary alloy of In,Ga;«N is not desirable in man-
ufacturing of LEDs. The phase separation causes the device to emit light
at multiple wavelengths. Hence, a homogeneous ternary alloy is desirable.
The behaviour of In phase separation in In,Ga;.«N ternary alloy is extended
to larger field of view (ref: fig. A.3). The ADF image of the area investig-
ated is shown in fig. A.3(A). The phase separation is studied by jointly fit-
ting plasmons and core-losses of In Ny5, Ga Mys and the pure ternary alloy
at energies in the range of 13eV to ~ 23eV. Then the fit ranges are exten-
ded to check the reliability of quantification at higher fit ranges. However,
the experimental reference spectra of In N5 edge is only present until ~ 23
leading to inclusion of step function in the extended fit ranges from 13 eV to
27eV. Hence a truncation correction factor is later introduced to extrapol-
ate the missing experimental reference spectrum of In Ny5 edge to recover
the effect of fitting abnormalities in calculation effective In content in EELS
SI. In other EELS SI such as multi-junction solar cell (GaAs) where the bulk
plasmons and core-losses can be independently modelled. Hence the profile
of position and FWHM of bulk plasmons are studied to check the sanity of
quantification done in the high-loss quantification in sections 3.4 and 3.6 for
GaAs and AIN:Tb, respectively. The widening of FWHM of bulk plasmon
is studied due to formation of amorphous surface oxides on the surface and
due to formation Tb—O complexes in AIN crystal structures.
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5.2 Modelling In,Ga;«N low-loss EELS

5.2.1 Modelling bulk plasmons of In,Ga;«N

The bulk plasmon peaks can be modelled with a Lorentz function,
L(E, E,,W,,x), as shown in eqn. 5.1. E,(x) and W), (x) are the bulk plasmon
peak position and FWHM as a function of x. In a phase separated ternary
alloy like In,Ga;«N, the effective bulk plasmon will be a weighted sum of
three bulk plasmons due to InN, GaN and homogeneous In,Ga;.«N. Hence,
eqn. 5.2 describes the model for quantifying phase separation through only
plasmon peak positions.

(5.1)

Wy (x)

L(E, Ep, Wy, X) = — - (E — E,(x))? + W,(x)?2

2o

Ineqn. 52, x e R| 0 < x < 1 values in the Lorentz functions act as a fit-
ting parameter to determine the peak position of pure In,Ga;.<\N material.
[p1, P2, P3| are the free fitting parameters of the individual Lorentz functions.
These fitting parameters can later be normalised to weights that sum up to
unity. In L(E, E,, W,,x ), x monitors the concentration of In in the ternary
alloy In,Gai.«N. L(E, E,, W), 1) indicates the bulk plasmon model for InN.
Similarly, L(E, E,, W,,0) indicates the bulk plasmon model for GaN. Para-
meters [pi, p2, p3] and x are the unconstrained and constrained fitting para-
meters in eqn. 5.2. This is because the total intensity of Lorentz functions is
unity.
P1 ! L(E, Ly, Wy, 1)
Leps(E, Ep, Wp, x) = | pa L(E, E,,Wy,X) (5.2)
P3 L(E, E,, W, 0)

The plasmon peak position (£),) for In,Ga;«N is a function of In concentra-
tion, x. If x = 0, then ternary alloy is a pure GaN whose plasmon peak posi-
tionis known tolieat £,(x = 0) = 19.35¢eV. The value of E,(x = 0) = 19.35¢V
is valid when the ZLP of spectra is perfectly calibrated. The In,Ga; N low-
loss EELS Sl acquired using monochromator (Browning et al., 2006) as shown
in fig. A.3, the ZLP is distorted and does not have a bell shape to mod-
el/calibrate the spectra, as shown in fig. 5.1. However, the calibration from
plasmon peak of GaN can be achieved. Hence, while modelling MLLS fit,
E,(x = 0) ~ 19.35¢V and changes slightly (observed to be ~ 19.55¢eV) to
accommodate better calibration. Similarly, the value of plasmon peak pos-
ition for InN is E,(x = 1) = 15.5eV (Wang et al., 2015). These plasmon
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FIGURE 5.1: In,Ga;«N/GaN layers overview image with coloured boxes in (A)
indicating location of extracted spectra in (B).

peaks can be determined by applying fourier-log deconvolution to low-loss
spectra (Egerton et al., 1985). Wang et al., (2015) have compared the rela-
tionship between x and plasmon peak position and FWHM in ternary alloys
of In,Ga;.«N with the literature from Bosman et al., (2009), Egerton, (2009),
Jinschek et al., (2006), Kong et al., (2012) and Specht et al., (2006) and have
used a linear least-squares fit for the expression for E,(x ) as shown in eqn. 5.3
(ref: to fig. 3 from Wang et al., (2015)). A similar linear relation has also been

proposed by Trampert et al., (2014).
E,(x) = E,(x =0) —4.02-x (5.3)

Similarly, the FWHM of the plasmons for various x values has been
modelled by fitting the Lorentz functions, L(E, E,, W,,x) to ternary alloy
In,Ga;«N and plotting them against x, as shown in fig. 5.2. The FWHM of
bulk plasmon (V) for In,Ga;«N is observed to be maximal when x ~ 0.5
and lowest when x = 0 or 1. Hence, a 2" order polynomial of the form
a+b-x+c-x* can be used to model W, as a function of x, as shown in
eqn. 5.4.

W,(x) = 4.187 + 4.73727 - x — 5.09438 - x* (5.4)

The Lorentzian models for bulk plasmons of InN, GaN and In,Ga; N are
shown in fig. 5.3(A).
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FIGURE 5.3: (A) Lorentzian functions which model the bulk plasmons for InN

[Ep(x = 1) = 15.53eV, Wy(x = 1) = 3.83eV], GaN [E,(x = 0) = 19.55eV, W,(x

= 0) = 4.19eV] and In,Ga;«N [E,(x = 0.5) = 17.54eV, Wj(x = 0.5) = 5.28eV].

(B) Core-losses of In N5, Ga M5 and simulated Ings5Gag 5NN, as shown in eqn. 5.7.
The truncation of In Ny 5 and InGaj.xN core-losses can be observed.

28
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5.2.2 Modelling core-losses of In,Ga;«N

The reference low-energetic core-losses for Ga (3d transition) was acquired
from pure GaN region (ref: region 5 in fig. A.3(B)). However, the In reference
spectrum is extracted from In,Ga;.«N region and the onset is moved to 20 eV.
The extracted In is actually pure In,Ga;.\N reference and is only considered
until the onset of Ga 3d transition in In,Ga;«N core-loss spectrum. The pure
InN spectrum is then extracted from pure In,Ga;.<N spectrum by subtracting
the weighted (1 — x) Ga reference spectrum. Hence, the reference In core-loss
is available for analysis only until < 23 eV For both reference spectra the bulk
plasmon and ZLP are subtracted and are normalised for thickness and total
intensity of the low-loss spectra. To synthesis the In,Ga;«N core-loss, the In
and Ga core-losses are superimposed according to the weighting x for In and
(1—x) for GaN. The energetic difference (A E)) between plasmon peak position
and low-energetic ionization core-losses for a ternary In,Ga;«N alloy is not
linear as could be assumed. Wang et al., (2016) investigated the plasmon peak
positions for four In,Ga;N samples (x = 0,0.3,0.86 and 1). The difference
between the first core-loss and plasmon peak varied from ~4.14eV to ~5.3eV
as shown in fig. 5.4. A 2" degree polynomial (of the form a+bx +cx %) is used
to model the chemical shift AE(x) as a function of x, as shown in eqn. 5.5.

AE(X) = 4.136 + 0.143 - x + 1.036 - x* (5.5)
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Hence, the relationship between the ionization edge onset, £;(x), and x val-
ues can be parametrized as in eqn. 5.6. This determines the core-loss ioniza-

tion onsets for ternary alloy as a function of x.
Ei(x) = Ey(x) + AE(X) - x (5.6)

The Ga 3d (Ga My edge at 23.8eV and 28.5¢eV) (Keast et al., 2001, 2002) and
In 4d (In Nys5 edge at 20.0eV and 25.9¢V) (Cardona et al., 1970; Mkhoyan
et al., 2003) transitions are close to the plasmon peak. The plasmons and the
core-losses in an experimental spectrum of In,Ga;.«<N as one broad peak with
shoulders and are difficult to analyse individually. Modelling the superposi-
tion of bulk plasmons along with the corresponding core-loss spectra of pure
InN, pure GaN and In,Ga;«N can be used to decompose experimental low-
loss spectra of In,Ga;«N into components. However, in fig. A.3(A), the field
of view of SI does not have any area of pure InN. Hence, the In Ny5 edge
is extracted from In rich In,Ga; N ternary alloy and the core-losses are con-
sidered only until the onset of Ga Mys, as shown in fig. 5.3(B). The bottom
part in fig. A.3(A) is the GaN buffer layer indicated as region 5 in fig. A.3(B)
from which the Ga M, reference core-loss can be extracted by subtracting
the bulk plasmon and ZLP. The In,Ga; <N core-loss, Sican(E, X), can be con-
structed from reference core-losses of InN and GaN by using weight of (x)
and (1 — x), respectively, as shown in eqn. 5.7. This additive superposition of
core-losses and linear plasmon shifts are valid only in case of binary alloys

such as In,Ga;_ N.
SInGaN (E,X) =X- SInN(E) + (1 — X) . SGaN(E) (57)

All the reference spectra constructed are normalised to the low-loss intensity
and relative thickness. This makes sure that the cross-sections are normalised
and the fitting parameters can directly be used to calculate the weights and
hence, can be compared. Note that the In Ny 5 edge is present until ~ 23V,
whereas the Ga M, 5 edge is present in full range until ~27¢eV. This is due to
the fact that when extracting In reference spectrum, there was no pure InN
region present in the field of view. Hence, In 4d transition is extracted from In
rich region of Ing¢5Gag osIN core-loss until the onset of Ga 3d transition which
is at ~ 23eV. This will also affect the estimation of pure In,Ga; N core-
loss. This effect has not been considered by Walther et al., (2017) and Wang
et al., (2015, 2016), where the analysis of bulk plasmon and core-losses was
restricted to the range from ~13eV to ~23eV. This means that only near
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edge structures of Ga M5 (£;(x) = 23.8¢V) are considered along with In Ny
in the construction of the In,Ga;«N spectra. However, the contrast of the
InN core-loss distribution in the field of view are physical but not the quan-
tification of core-losses, as shown in fig. 5.8. The GaN buffer region had the
best R? but the range of fitting did not include all major components of refer-
ence core-losses, as seen in fig. 5.6(B). This also means that the quantification
of Ga content in GaN buffer region was only due to near edge structures
at ~ 23eV. Hence, there is a need to increase the fitting range to include
the complete Ga M5 edge. Also the steps of x for which In,Ga;«N reference
spectra have been calculated was Ax = 0.05. Hence, all the maps shown in
tigs. 5.8 have a quantization error due to finite step size of x. The experi-
mental spectra can be modelled with three reference spectra for In N5, Ga
M, 5 and pure In,Ga;«N over a larger fit range from 13 eV to 27 eV to include

all the components of GaN 3d transitions, as shown in eqn. 5.8.

.
P1 SInGaN(E>X = 1)

Screrr(E,X) = | pa StGan (E, X) (5.8)
D3 Stincan(E,x = 0)

Simcan(E,x) are the reference core-loss spectra constructed according to
eqn. 5.7. Hence, Simcan(E, X = 1) and Spcan(E, X = 0) are effectively In Ny
and Ga M, reference spectra. Parameters [p;, p2, p3] are free fitting paramet-
ers. The ionization edge onsets of In Ny 5 and Ga M, 5 are fixed. However, the
onset of In,Ga; 4N , E;(x) from eqn. 5.6, is a function of x. Hence, eqn. 5.5,
the chemical shift is incorporated in determination of ionization edge on-
set. E;(x = 0) is the edge onset of Ga M5 edge at 23.8eV. The onset of Ga
My, is at 28.5eV and is not recorded completely while conducting the experi-
ments due to the finite detector size (1024 channels) and the choice of disper-
sion (0.015 eV/channel) and the need to keep ZLP away from the CCD edges.
Hence, the Ga reference spectrum, Simcan (£, X = 0), only has the Ga M5 edge.

5.2.3 Joint fitting of bulk plasmons and core-losses

For the determination of phase separation in In,Ga;.\N ternary alloy, it is
almost impossible to determine solely through bulk plasmon fitting by three
Lorentz functions as in eqn. 5.2. Hence, there is a need to fit all six functions
(three bulk plasmon models and three experimental core-loss spectra). Each
function can act as a basis function in modelling by MLLS fitting, as shown
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in eqn. 5.9.

p| [ LB B, W,
Do L(E. E,,W,,x)
D3 L(E.E,, W,,0)
P4 Stcan(E, x = 1)
ps Stncan (£, X)

Ds _SInGaN(Ea X = 0)_

Seff(E,X) = (59)

Parameters [p, - - - , pg| are the MLLS free fitting parameters. Eqn. 5.9, is op-
timised with linear least-squares fit for best R? € [0,1]. The value of x is
changed to (x + Ax) Vx € [0, 1] and the process is repeated until the limit of
x is reached, i.e. 1. The simulated low-loss spectra for x € [0,1] | Ax = 0.1
is shown in fig. 5.5. Among R*(x) Vx € [0,1], the effective model that is
describing the experimental spectrum with highest R*(x) value is the best
solution.

R2;p = ||R?*(x)||,, = max R*(x) (5.10)

The effective R? for the best fit over all the x values chosen in L(E, E,, W,, x)
and Simcan(F, x). The step size of Ax determines the quality of quantification.
This is due to the fact that large step sizes, Ax, introduces quantization errors
and the R? values will be lower. To reduce quantization error, the value of
Ax should be as small as possible. All the individual fits in fig. 5.6 are fitted
in the range 13 eV to ~ 23 eV, which is the full available range for In core-loss.
The fits are very good with an R? = 0.9709 in fig. 5.6(A) and R?* = 0.9871 in
fig. 5.6(B). However, the fits do not include most of Ga My s edge. In fig. 5.7
for comparison, the fit range is 13eV to 27eV. Hence, these fits include Ga
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(41,16) (region 2 in fig. A.3(B)) with R? = 0.9709 and (B) GaN buffer layer at pixel
(60, 30) (region 5 in fig. A.3(B)) with R? = 0.9871.
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FIGURE 5.7: Model fit in the range of 13 eV to 27 eV and individual components of

three bulk plasmons and three core-losses in (A) InyGaj«N region at pixel (41, 16)

(region 2in fig. A.3(B)) with R? = 0.9709 and (B) GaN buffer layer at pixel (60, 30)
(region 5 in fig. A.3(B)) with R? = 0.9871.
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M;s edge. It is evident from the model fit in In,Ga;«N region from fig. 5.7(A)
that it includes step functions (discontinuities) in the MLLS basis functions.
This is due to truncated In N, 5 edge and constructed In,Ga;.«N edge. The
model fit in In,Ga; N region has R? = 0.87 and in GaN region R? = 0.99.
The weighting of each bulk plasmon needs to be normalised as shown in
eqns. 5.11-5.13. wpmn, Wpmcan and wpcan are the weighting factors for bulk
plasmons of InN, In,Ga;.\N and GaN respectively. [pi,p2,ps] are the free
titting parameters for bulk plasmon losses obtained by joint fitting of bulk
plasmons and core-losses obtained from eqn. 5.9.

p-§CL(E, E, W,,1)

WpInN = T > (511)
I {“ L(E, E,,W,,1)
D2 SE L(E7 Ep? WP7X>
D3 " L(E, E,,W,,0)
E
N L(E,E,, W, x
WpInGaN = pQTS L«E rr ) (5.12)
D1 S L<E7 E;D?Wpﬂl)
Do " L(E, E,,W,,X)
D3 SE L<E7EP7 Wpa 0)
E
N L(E,E,,W,,0
praN = psTX ]:E P P ) (513)
1 {“ L(E, E,,W,,1)
P ¥ L(B, E,,W,,x)
D3 " L(E, E,,W,,0)

The weightings for core-losses are also normalised to compare them with

weightings of bulk plasmons as shown in eqns. 5.14-5.16.

E
Y2 S SInGaN(E7X = 1)
WeInN = T

D4 SE Stmcan(E,x = 1)
Ds SE StnGan(E, X)
De SE SInGaN<E7 X = O)

(5.14)
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D5 - SE SInGaN(Ea X)

WeInGaN = - (5.15)
p1 §” Stmcan(E, x = 1)
Ps SE Stngan (£, X)
P6 §¥ Stacan(E, x = 0)
D6 - SE Stmcan (£, x = 0)
WeGaN = - (5.16)
P4 SE Simcan (£, x = 1)
Ds SE SInGaN(E ) X)
De SE Stncan(E,x = 0)

All the weightings calculated in eqns. 5.11-5.16 are normalised to be in the
interval [0,1]. Hence, the weightings calculated from bulk plasmons and
referenced core-losses can be compared to observe and verify the consistency
in the determination of phase separation in In,Ga; N ternary alloys. The
maps of all the weighting calculated at each pixel are shown in figs. 5.8 for
titting range from 13 eV to ~ 23 eV and figs. 5.9 for fitting range from13 eV to
27¢eV. The statistics of weightings in both short and extended fit ranges are
listed in tables 5.1 and 5.2, respectively.

5.3 Effective composition in In,Ga; (N /GaN

The phase separation in an In,Ga;.\N ternary alloy can be observed in spatial
distribution of plasmon peak positions. If at all there is a phase separation,
In is present as InN and In,Ga;N. Hence, the effective In content can be
determined by normalised weights calculated in eqns 5.11-5.13 from Lorentz
functions (which are determined by fitting parameters) as shown in eqn. 5.17.

Xp = WpInN * 1+ WpInGaN * X + WpGaN - 0 (517)

The determination of In content from plasmon peak positions is straight for-
ward as they can be modelled using Lorentz functions and the values can be
modelled at all energy-loss ranges. Hence, in joint fitting of plasmon peaks
and core-losses, the phase separation determined by plasmons can be com-
pared to that determined from low-energetic core-losses:

Xe = WeInN * 1+ WernGaN * X + WeGaN - 0 (518)
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FIGURE 5.8: Results from fitting each spectrum from the SI in fig. A.3(B) by a
linear superposition of three reference spectra, one for GaN, one for InGaN and
one for InN film. Shown are the weight parameters attributed to (A,D) GaN,
(B,E) InN and (C,F) InGa;xN where x was varied from 0.05 to 0.95 in steps of
0.05 (Ax = 0.05). Top row: fit for plasmons, middle row: fit for core losses. (G)
plots the best fitting x value of the ternary component only. (H) shows the R?
parameter of the fit for each spectral data point. (I) Rotated ADF image of the
area investigated where the apparent slight tilt from vertical growth is due to
drift during the acquisition of SI.
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FIGURE 5.9: Results from fitting each spectrum from the SI in fig. A.3(B) by a
linear superposition of three reference spectra, one for GaN, one for InGaN and
one for InN film. Shown are the weight parameters attributed to (A,D) GaN,
(B,E) InN and (C,F) In,Ga;.«N where x was varied from 0.001 to 0.999 in steps of
0.001 (Ax = 0.001). Top row: fit for plasmons, middle row: fit for core losses.
(G) plots the best fitting x value of the ternary component only. (H) shows the
R? parameter of the fit for each spectral data point. (I) Rotated ADF image of
the area investigated where the apparent slight tilt from vertical growth is due to
drift during the acquisition of SI.
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Similarly, the Ga content of In,Ga;.<N from bulk plasmons (1 — x,) and core-

losses (1 — x.) can be determined as shown in eqns. 5.19 and 5.20.
(1 — Xp) = WpInN ° 0+ WpInGaN (1 — X) + WpGaN - 1 (519)

(]- - Xc) = WeInN 0+ WelnGaN (1 - X) + WegaN - 1 (520)

The determination of phase separation from core-losses is similar to that
from plasmon losses if the reference spectra cover a sufficiently large
range. However, in this case, the reference spectra for InN and synthesised
In,Ga;«N spectra are truncated, as shown in fig. 5.3(B). As mentioned earlier
in subsection 5.2.3 smaller fitting ranges (13eV to ~23¢eV) can be used to
get the fits and the fitted model almost perfectly agree with experimental
spectrum, as shown by Wang et al., (2015, 2016) in fig. 5.8 (Walther et al.,
2017). However, the Ga M5 edge with an edge onset of 23.8eV (and Ga
My at 28.5¢eV) is almost not included in the fitting, the fitting range is from
13eV to 23eV. The determination of In content from core-losses (as shown
in fig. 5.10(B)) in In,Ga;«N region (and GaN buffer region) will always be a
slight overestimate of ~ 10% as shown in table 5.1. The In content determ-

In content from plasmon Ioss1 In content from core-loss 1 In content difference map

0.2

0.1

(a) (B) ()

FIGURE 5.10: Maps of In content, x, calculated for data from fig. 5.8(G) from
weights of fitting (A) plasmon losses, (B) low core-losses, (C) difference map
(B)~(A).

ined in Ga buffer layer are slightly biased as well due to almost non existence
of Ga My edge in the shorter fitting range from 13eV to ~ 23eV. However,
if the larger range of fitting is considered from 13eV to ~27¢eV, then due to
truncation of reference InN and synthesised In,Ga;.«IN references spectra (as
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TABLE 5.1: Comparison of effective In content from different regions identified
in fig. A.3(B) for fitting range from 13eV to ~ 23eV.

Regions
1 2 3 4 5
wpmn 018 £0.08 0.22+0.11 0.23+0.10 0.64+£0.03 0.12+0.01
WpmcaN 0.74 £0.09 0.67 £0.13 0.67£0.11 0.26 £0.02 0.85+0.15
wpcan  0.13£0.02 0.14+0.02 0.13+0.01 0.13£0.01 0.87+0.01
WeInN 0.33+0.13 043+0.13 0.60+0.12 0.85+0.11 -—0.02 4 0.02
Wemgan 0.56 £0.10  0.47+£0.10 0.34£0.10 0.08 £0.09 0.99 £0.18
wegan  0.12+£0.04 0.11+0.04 0.06+0.03 0.08+0.03 0.03+0.01
Xp 0.70 £0.03 0.69+£0.04 0.70+0.02 0.78 £0.02 0.14 £+ 0.02
Xe 0.72+0.06 0.754+0.07 0.84£0.05 0.89+0.05 0.02+0.01

shown in fig. 5.3(B)) the weighting for Ga is larger. The Ga content is over-
estimated and In content is underestimated from core-losses, as tabulated
in table 5.2 and shown in fig. 5.11(B), under the influence of dominant bulk
plasmon models on the left and Ga M5 at the right side in In,Ga;.«N region
as shown in fig. 5.7(A). In GaN buffer layer, the GaN content is more reliable

In content from plasmon Ios§| In content from core-loss 1 In content difference map

|

(A) (B) (©)

FIGURE 5.11: Maps of In content, X, calculated for data from fig. 5.9(G) from

weights of fitting (A) plasmon losses, (B) low core-losses, (C) difference map
(B)—~(A).

0.2

o

-0.2

as the predominant Ga M5 is included. The underestimation of In content
is systematic and a correction can be proposed. The phase separation calcu-
lated from core-losses can be compared with In content determined through

bulk plasmons.
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TABLE 5.2: Comparison of effective In content from different regions identified
in fig. A.3(B) for fitting range from 13 eV to 27eV.

Regions
1 2 3 4 5

WpInN 0.03+£0.01 0.02£0.03 0.01+£0.02 -0.08+0.02 0.03+0.01
Wpmcan 0.84 £0.02  0.84+0.04 085+0.02 095+£0.03 0.10+0.01
WpGaN 0.13+£0.02 0.14+£0.02 013£0.01 013+£0.01 0.87+£0.01

WeInN 028+001 028+£0.01 028+£0.01 0254+0.01 0.07+£0.01
Wancan  0.07+0.01  0.07+0.01 0.06+0.01 0.114+0.01 0.02+0.01
WeGaN 0.66 £0.01 0.66+0.01 066001 065£0.01 0.91£0.01

X

» 0.60+0.03 0.60+£0.05 061+0.03 0.70+0.01 0.11 £0.01

Xe 0.33+0.01 0.32+0.01 0.32+£0.01 034+0.01 0.09%0.01

5.4 Results from joint fitting

While jointly fitting the core-losses and bulk plasmons, the fitting ranges af-
fect the quantification. This is even more so when part of the reference In Ny 5
is not completely available in range considered (i.e. from 13 eV to 27eV). The
quantification of In content in regions as defined by fig. A.3(B) are shown
in table 5.2 for an extended fit range. It is worth noting that the R? values
of the fit are < 0.90 in fitting range of 13eV to 27eV, only In,Ga; N region
as shown in fig. 5.9(H). The lower R? is due to larger range and inclusion
of In Ny5 edge in the MLLS fit and has a step included in the fit as shown in
tig. 5.7(A). We need a model that relates the quality of quantification to good-
ness of fits, i.e. R? in the extended fit ranges. In previous model for shorter
fit ranges (i.e. 13eV to ~ 23eV), the R?* were > 0.90 in In,Ga;.«N region but
the Ga quantification might be unreliable. The quantification of effective In
content from bulk plasmons, x, is shown in table 5.2. The quantification of
In content from bulk plasmons, x,, in both ranges (shorter and extended) are
similar. From tables 5.1 and 5.2, a systematic error of ~ 10% in all regions
for x, is due to truncation of reference In N edge might cause error while
joint fitting. However, the changes of x,, in all regions for both fitting ranges
are same. But are offset by ~ 10%. The quantification of effective In content
from core-losses by extended fit range look completely erroneous as shown
in italicised row of table 5.2. But the source of error is known, which is the
truncation of In N,s edge. Hence, a truncation correction for the core-loss

quantification can be proposed.
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5.5 Truncation correction for core-losses

The quantification values of effective In for extended fit ranges in table 5.2
are indicating sever systematic errors. The reference spectrum for In was
generated by considering the first peak of the experimental core-loss as the
edge onset. There are no definite models present for the representation of
4d transitions. The left tail of the reference In core-loss is very much de-
pendent on the quality of background removal such as Fourier-log decon-
volution and bulk plasmon subtractions from Lorentz function fitting. The
low-loss joint MLLS fit applied by Wang et al., (2016) have chosen the value
of x manually to fit the model to the experimental spectra. However, the
proposed automated joint fitting here constructs the In,Ga;.x\N core-loss on
the fly while fitting for best R?. The best R? is chosen among all the models
constructed at a step size of Ax = 0.001. The truncated In and In,Ga;«N core-

losses at x = 0.5 are shown in fig. 5.12(A). The intensity that is lost by the In
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(x=0.5) I"o.seao.sN ' E 29
i
< . E
_ c E
Et(x=0.5) L ! 2t
[13ev SInGaN(E‘x_o'S) LN ._g 8
. o2
ey ! g2 18
- o i
5 '/QEt(x:D.S)f(E)r > :a;_o
8 1 c © 1.6+
€ : S Z,
< < I T 14
Et(x=1.0) _ 1 o ®
Jizev " Sincan(Ex=1-0) i g 0,‘
2V 1) s £ 12
i( Et(x=1.0) > \o-
= 1
. | I Il | I 0.8 L 1 I |
12 14 16 18 20 22 24 26 28 ] 0.2 0.4 0.6 0.8 1
Energy-loss (eV) X
(A) (B)

FIGURE 5.12: (A) In and constructed In,Ga;.xN at x = 0.5 reference spectra. The

constant extrapolation after the truncation is shown in orange dotted horizontal

line. The black dotted vertical line is bifurcating the available spectra and the
extrapolated spectra. (B) Truncation correction for In,Ga;«IN as a function of x.

reference core-loss spectrum can be retrieved by modelling an extrapolation
for the core-loss. The theoretical models do not describe well the 3d and 4d
transitions for Ga and In core-losses, respectively. Hence, a new strategy is
needed for extrapolation. The In Ny 5 and Ga My 5 edges do not possess sharp
onsets. A constant extrapolation, f(E) = constant, at the end of the In trun-
cation is the best approximation in the range from ~ 23 eV to 27eV. The total

intensity of the InN (Sfjgti)\(,:l) Smcan(E,Xx = 1)) and synthesised IngsGagsN
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(S%S\(/:M) Smcan (£, X = 0.5)) spectra are shown in fig. 5.12(A). The total ex-
trapolated intensity as a function of x is SZZX f(E), which is the area of a
rectangle of width from ~ 23 eV to 27eV and height Sigan(Ei(x = 1), x = 1).
A truncation correction is proposed which can be used to correct the weights
of the core-losses for InN, wy,y, and In,Ga;..IN , wr,cqn, core-losses and is

calculated as shown in eqn. 5.21.

27eV
[ 13eV SIHGaN(E x) + {g, (x) X)]

(5.21)
13ev SInGaN(E x)

fcor (X) =

The truncation correction, f.,.(x), is a function of x. This is because the total
intensity of the synthesised In,Ga;«N increases with decrease in x, as shown
in table 5.3. It means that as the value of x approaches 1, the total intensity
is that from GaN which has a full range from 13eV to 27eV. The trunca-

TABLE 5.3: The total intensity of the reference spectrum of InN, synthesised
In,Ga1«N and the extrapolated spectrum are used to calculate the truncation cor-
rection at each value of x.

Ey(x 27 eV
X 13 e\; SInGaN(E X) Ei(x) f(X) fcor (X)

1.0 0.127 0.153 2.204
0.9 0.131 0.132 2.008
0.8 0.135 0.113 1.837
0.7 0.138 0.095 1.684
0.6 0.142 0.078 1.549
0.5 0.146 0.063 1.433
0.4 0.150 0.049 1.327
0.3 0.153 0.035 1.231
0.2 0.157 0.023 1.145
0.1 0.161 0.010 1.064
0.0 0.163 0.000 1.000

tion correction factor is used to correct the weights of InN and constructed
In,Ga; N core-losses calculated in eqns. 5.14-5.15. The InN, Spmcan(E, X = 1),
reference core-loss has been truncated the most. Hence, it will have the
largest correction factor, f.,.(x = 1), as shown in fig. 5.12(B). However, the
truncation correction is not needed in GaN buffer layer as GaN reference
spectrum is available for fitting in full range till 27 eV. InN and In,Ga.,N will
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have almost no influence on the quality of fits in GaN buffer layer as is evid-
ent from fig. 5.7(B) but Ga Mys is overestimated in In,Ga;N layer to com-
pensate for In Ny 5 truncation. Hence, the weights in eqns. 5.14-5.16 can be
corrected as shown in eqns. 5.22-5.24 only in In,Ga; N region. Hence the
maps of f.,,(x) are shown in figs. 5.13. Note that the value of f,.(x) in GaN
buffer region is always unity.

feor(x=1) feor(X) feor(x=10)
2.2 2

1.1

=11

(A) (B) (©)

FIGURE 5.13: The maps of truncation correction factors for (A) reference InN
spectrum, feo(x = 1). (B) constructed InyGa;_«N spectrum, f.,(x) and (C) refer-
ence GaN spectrum, feor(x = 0).

wéInN = WecInN - fcor (X = 1) (522)

wéInGaN = WcInGaN * f cor (X) (523)
1

: = WeGaN * 7 7 3 24

WeGaN WeGaN fcor (X _ 1) (5 )

With these corrected weightings, as shown in figs. 5.14(A-C), the effective In
and Ga content from core-losses can be determined by eqgns. 5.25-5.26. The
truncation corrected effective In content is shown in fig. 5.15(B).

/

Xe = w;InN -1+ wéInGaN "X+ w;GaN -0 (525)

(1 =x0) = Wy - 04+ Weppgan - (1 = X) + Wgay - 1 (5.26)

The truncation factor value is higher in In rich region near the interface
because the local x value in that region is higher. Hence, the onset of the
synthesised In,Ga; N core-loss will be shifted towards InN core-loss. This
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FIGURE 5.14: Truncation corrected weights calculated in eqns. 5.22-5.24 for (A)
GaN (B) InN and (C) In,Gai_xN core-loss.

In content from plasmon Ioss1 In content from core-loss 1 In content difference map

0.8
0.6
0.4
0.2
0 0.2

(A) (B) (©)

FIGURE 5.15: Maps of In content, X, calculated for data from fig. 5.9(G) from
truncation corrected weights from fig. 5.14 of fitting (A) plasmon losses, (B) low
core-losses, (C) difference map (B)-(A).

TABLE 5.4: Comparison of effective In content from different regions identified
in fig. A.3(B) for fitting range from 13eV to ~ 23eV.

Regions
1 2 3 4 5
Wy 0624001 0.61+0.02 0.61+0.02 0.54+0.01 0.07+0.01
Wincan  0-124£0.01 0.124+0.02 0.11+0.02 0.20 +£0.01 0.02 +0.01
Wiy  0-30+£0.01 0.30+0.01 0.30+0.01 0.30+0.01 0.91+0.01
Xp 0.60 £0.03 0.60+0.05 0.61+£0.03 0.70£0.01 0.11£0.01
X; 0.69 £0.02 0.69+0.02 0.69+0.01 0.71+0.01 0.09+0.01

C
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indicates that more intensity is lost which needs a higher correction factor to
recover the correct value. Similar effects can be observed in weighting maps
from fig. 5.14(C). The w;,ny core-loss map from fig. 5.9(E) will have a con-
stant correction factor of f.,.(x = 1), as shown in fig. 5.13(A). The contrast of
Whaan cOre-loss map in fig. 5.14(C) in the In,Ga,N/GaN interface region is
higher. In fig. 5.9(H), the R* values in GaN bulffer layers are almost unity, in-
dicating that the model is almost perfectly describing the experimental spec-
trum as evident from fig. 5.7(B). Hence, the correction factor in GaN buffer
region should unity. This is indicated in truncation correction map, fe.(x), in
tig. 5.13(A-C). A similar analysis can be done with Ga content. The amount
of Ga that is overestimated in In,Ga;«N region is due to truncation of In Ny 5
core-loss. Hence, the weighting of GaN, wgan core-loss, must be divided by
the truncation factor, f.,.(x = 1). The step size, Ax, for reference spectra con-
sidered by Walther et al., (2017) was only 0.05. However, the larger Ax cause
quantization errors in the maps. Hence, introducing larger error bars in the
quantification in table 5.1. The proposed method introduces an automated
In,Ga <N reference spectra construction at a step size of Ax = 0.001. It is
also worth noting that without truncation correction the weighting of the Ga
M, 5 edge, wgan core-loss in fig. 5.9(A), was increased systematically to com-
pensate for truncated In Ny 5 edge. After corrections made in eqns. 5.22-5.24,
the quantification from core-loss and bulk plasmons are now comparable.
The advantage of using extended fitting ranges is to get In and Ga quantitic-

ation within a error bars.

5.6 Quantification from plasmon peaks

In previous sections, the quantification for In,Ga;.\IN/GaN layers has been
attempted by joint fitting of both bulk plasmons and core-losses of In and
Ga. The bulk plasmons are characteristic of a material and can be modelled
independently using Lorentz functions, L(E, E,, W,). The maps of plasmon
peak position, E,, and width, W, can be studied to cross check with the
quantification carried out using high-loss ionization edges. In some case, like
In,Ga«N, it is difficult to model the bulk plasmons independently due to
the overlap of the low-energetic core-losses and bulk plasmons and possible
broadening of bulk plasmon due to phase separation. However, in cases like
the multi-junction solar cell and Tb doped AIN, the bulk plasmons can be
quantified independently and quantification can be verified for high energy-
losses and vice-versa. The bulk plasmon modelling is done with Lorentz
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functions as shown in eqn.5.27. The parameters E, and W, define the peak
position and the FWHM of bulk plasmons.
A (Wy/2)

BB ) = BBy« (W,

(5.27)

where A, is a scaling factor. The Lorentz function, L(Z, E,, W,), can be fit-
ted to a bulk plasmon over the range from £, — W, /2 to E, + W, /2. How-
ever, sometimes core-losses overlap with the bulk plasmon peaks on the right
side and the tails of the ZLP with the left side shoulder of the bulk plas-
mons. Hence, the FWHM calculated without taking these other effects into
account will always be an overestimate. The fit range for bulk plasmon are
therefore chosen from (E, —0.2-W,) to (E, + 0.15-W,). The results from
Lorentz fits for bulk plasmons of layers in the multi-junction solar cell are
shown in fig. 5.16(B) and fig. 5.17. The maps of plasmon peak position, £,
and FWHM, W, are shown in figs. 5.18(A,C) and their profiles are shown
in figs. 5.18(B,D). The profiles of £, and W, shown in figs. 5.18(B,D) are ob-

TABLE 5.5: The modelled bulk plasmon position, E,, from Lorentz function
described in eqn. 5.27 for the low-loss EELS of multi-junction solar cell in
fig. 5.16(A).

Region 2 Region 3 Region 5 Region 8
E,[eV] 21.67+0.14 15.53+0.02 15.09 £0.02 15.53 4+ 0.02
W, [eV] 20.14+1.01 548+0.04 567+0.14 548+0.04

Size =90 x 44 pixel

6
x10 x10* Pixel (12,3) - Region 2

5

Rows (2.20pm)
Intensity

Columns (1.08um) 0 10 E20 | (3(\),) 40
nergy-loss (e'

(A) (B)

FIGURE 5.16: (A) The locations of random spectrum extracted from regions 2

(red), 3 (green) and 4 (blue) of multi-junction solar cell. (B) Spectrum extracted

from region 2 of multi-junction solar cell (Cu) and a Lorentz function is fitted to
the bulk plasmons. E, = 22.11eV and W, = 18.07eV.
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FIGURE 5.17: Lorentz function is fitted to the bulk plasmons from (A) region 3
(GaAs), (E, = 15.54eV and W, = 5.50eV) and (B) region 5 (AlGalnP), (E, =
15.08 eV and W, = 5.61 eV) of multi-junction solar cell.

tained by integrating over the map across the line marked on the maps. Itis a
clear indication of all regions having similar plasmon peak positions, £, and
FWHM, W,. Regions 3 and 8 thick are GaAs layers doped with Si, hence, only
one representative spectrum is taken from region 3. The values of E, and
W, for regions 2 (Cu was reported at £, = 20.40eV by Mikoushkin, (2012)
and Ngantcha et al.,, (2005)), 3 and 8 (GaAs was reported at E, = 15.66eV,
W, = 4eV by Stoger—Pollach et al., (2006), £, = 15.80eV by Egerton, (2011b)
and E, = 16eV, W, = 5.48eV by Ahn, (2005)) are in agreement with the
literatures within error margin of +£0.2eV for E,. The large FWHM of bulk
plasmon in region 2 is due to the formation of oxides on the top layer. The
oxides do not have proper crystal orientation to have resonance, hence, the
W, values are wider for oxides. A similar phenomenon is observed in the WV,
map of AIN doped with Tb as shown in fig. 5.18(F). Tb—O complexes formed
due to Tb and O co-segregation is observed (Angadi et al., 2017). The statist-
ics of £, and W, for AIN doped with Tb are shown in table 5.6. The values
of £, and W, for AIN reported at £, =~ 21.20eV, W, =~ 8.30eV by Magnan
et al., (1999) and Serin et al., (1998) and for Si reported at £, =~ 16.75¢V,
W, =~ 4.80eV by Batson, (1991), Cheynet et al., (2004), Pantel et al., (2006)
and Stoger—Pollach et al., (2006) and are within error of +0.04 for E,. The
W, map from fig. 5.18(F) of AIN doped with Tb can be correlated with O K
elemental map calculated from core-losses in fig. 3.16(D). The maps are posit-
ively correlated in AIN region which also confirms the wider FWHM of bulk
plasmons for oxides. At the interface of AIN and Si, SiO, has been formed.

This is reflected in the 1V, map, as well as the O K map at high-loss map in
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FIGURE 5.18: (A,C) maps and (B,D) profiles of bulk plasmon peak position, £, (in

eV), and FWHM, W, (in eV), determined by Lorentz fitting. (E) and (F) are maps

of bulk plasmon peak position, E, (in eV), and FWHM, W, (in eV), determined
by Lorentz fitting.
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TABLE 5.6: The modelled bulk plasmon position, E,,, from Lorentz function de-
scribed in eqn. 5.27 for the low-loss EELS of AIN doped with Tb in fig. A.4(B).

Box 1 Box 2

E,[eV] 20.99+0.17 16.82+0.08
W, [eV] 891 +£0.77 6.08 +0.24

fig. 3.16(D).

5.7 Relative specimen thickness from modelling

The relative specimen thickness is defined as the natural log of the ratio of

total intensity, I;, to intensity of ZLP, I, as shown in eqn. 5.28.

% =1In (%) (5.28)
where I, is approximately determined by integrating the intensity of spec-
trum from channel #1 until minimum point between ZLP and bulk plasmon
peak position. An alternative and more accurate ways to measure ¢t/\ would
include fitting the bulk plasmon with a Lorentz function, L(E, E,, W,),
(eqn. 5.27) and the ZLP with a Gaussian function, N'(E, Ey, W), (eqn. 5.29)
and then weighting both according to a Poisson distribution, P(n,t/\),
(eqn. 2.20) simultaneously, as shown in eqn. 5.30.

N(E, Eo, Wo) = [L] : (wm) exp <[_M] . @mf)

Wov2m 2W¢
(5.29)
S(E,t/\, Eo, Wy, E,,W,) = P(0,t/\) N (E, Ey, W)
+ ). P(k,t/)) L(E, k x E,,W,) (5.30)
k=1

wheren = | E,,.,/E,| € Nis the integer number of plasmon losses considered.
t/A, position (Ey) and FWHM (W}) of the ZLP, position (£,) and FWHM (1)
of bulk plasmon are the fitting parameters. Eqn. 5.28 can be used as an ini-
tial estimate of ¢/A in MLLS fitting of the low-loss in eqn. 5.30. The bulk

plasmon peaks are ideally Lorentzian function if the there is no spreading by
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the spectrometer. However, the detector of the spectrometer has its own PSF
which is convolved with the low-loss spectrum. Hence, instead of using pure
Lorentzian, a Voigt function can be used. Voigt function, V' (E, Ep, Wp, W0),
is the convolution of both a Gaussian and a Lorentzian function, as shown in

eqn. 5.31.
V(E,Ep,Wp,Wy) = A, - {N(E,0,Wy) % L(E, E,,W,)} (5.31)

where W), E, and W, are the fitting parameters along with A, (eqn. 5.29) and
A, (eqn. 5.27). The Gaussian kernel, N'(E,0,W)), is centred at 0eV, (hence,
Ey = 0). This is to avoid Sifting property of convolution. The Sifting property
convolution with a delta function, §(£), is shown in eqn. 5.32.

F(E) % 6(E — Ey) = J F(E—k)o(k — Eo)dk = f(E— o) (532)

k=—o0

Hence, the location of Voigt function, V(E, E,, W,, W), is entirely dictated
by the location of the Lorentz function, E,. Then, the low-loss model would

be as shown in eqn. 5.33.

S(E,t/\, By, W, E,,W,)) = P(0,t/)\) N (E, Eq, Wo)

+ 2 P(k,t/N) V(E, k x E,, W,, W) (5.33)
k=1

Modelling Voigt functions is computationally expensive. Hence, sometimes
an approximation of the Voigt function, called Pseudo-Voigt function, is
used. A pseudo-Voigt function, V,(E, E,, W,, W), is a weighted sum of a
Gaussian and a Lorentzian, as shown in eqn. 5.34, where 1 € [0, 1] is the
weighting factor as well as the fitting parameter.

Vo (E, E,,W,,Wo) = - N(E,0,Wo) + (1 — 1) - L(E, E,, W,) (5.34)

The modelled spectrum is shown in fig. 5.19, where the Voigt functions fit
for bulk plasmons is slightly broadened. However, the Lorentz functions fit
the bulk plasmons almost perfectly. The low-loss modelling can be extended
to an entire SI, which provides average ¢/\ values of t/\ = 0.31, (R? = 0.992)
based on multiple scattering statistics as shown in table 5.7. The relative
thickness map of AIN doped with Tb calculated using this method is shown
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FIGURE 5.19: The AIN:Tb spectrum from EELS SI in fig. A.4(A) is chosen as an

example and fits described in eqns. 5.30 & 5.33 are shown on log-scale. Orange

line: spectrum modelled using bulk plasmons as Lorentz functions. Yellow line:

Voigt function is used to model the bulk plasmons. In both cases, ZLP is modelled
using a Gaussian function.

TABLE 5.7: AIN doped with Tb

t/\ R? t/A R?
All region 1 2 1&2

Egn. 528 0.32 +£0.05 - 0.36 £ 0.03 0.26 + 0.01 -
Eqgn.5.30 0.31 4 0.04 ~1 0.35+0.02 0.25£0.01 0.99 £0.01
Egn.533 0.314+0.04 0.99+£0.01 0.3540.02 0.254+0.01 0.99 +0.01




118 Chapter 5. Automated low-loss analysis

in tig. A.4(C). The inelastic mean free paths (\) calculated in table 3.5 are relat-
ively constant in all regions. Hence, the ¢/ value can be directly related to ab-
solute thickness of the sample which we got ~ 16 nm. The R? map of Lorentz
function fits shown in fig. 5.20(D) indicate that the spreading from spectro-
meter will have very little effect of broadening of bulk plasmons. Hence, the
R? values are almost unity in fig. 5.20(D) when compared to fig. 5.20(F). The
t/X maps calculated from the three methods described by eqns. 5.28, 5.30 and
5.33 are almost the same within error bars. It is also worth mentioning that
t/X values calculated from eqn. 5.28 are always slight overestimates of 0.01 in
case of the AIN:Tb EELS SI. The I; values include ionization core-loss intens-
ity, DOS, Fowler-Nordheim and Maxwell-Boltzmann distributions, surface
plasmons and phonon scattering. The models described in eqns. 5.30 & 5.33
fit only the ZLP, bulk plasmon and multiple scattering. The ¢/\ values from
Lorentz and Voigt function are exactly the same, with a MSE of difference
between eqn. 5.30 and eqn. 5.33 are 0. However, the MSE of R? for the same
is 0.0064 + 0.0046.

5.8 Summary

In chapter 5, a novel approach of measuring phase separation in In,Ga;. N by
jointly fitting bulk plasmons and low energetic core-losses is described. The
values of bulk plasmon width, peak positions, core-loss onsets and chemical
shifts of InN, GaN and In,Ga;.«N ternary alloys are interpolated from Wang
et al., (2015, 2016). Pure InN was not present in our acquired EELS SI, hence
the In 4d core-loss was extracted from a specimen of known x value in the
area of In rich In,Ga;.«N region. The extracted core-loss onset was moved to
In 4d transition onset and normalised to thickness and total intensity of low-
loss as described by Wang et al., (2016). Initially, the range of 13 eV to ~ 23 eV
had been used to jointly fit six basis functions (three bulk plasmons and three
core-losses for GaN, InN and In,Ga;.xN) with a step size of Ax = 0.05. The
weighted maps of bulk plasmon and core-losses shown in figs. 5.8 indicate
high noise (~ +10%) as tabulated in table 5.1. This is due to the large step
size chosen for increments of x for ternary phase. The effective In content
measured from both bulk plasmons and the core-losses are comparable. The
In content is overestimated by core-loss weightings by < 10% with respect to
the In content calculated by weightings from bulk plasmons. This could be
due to the fact that in the fitting range from 13 eV to ~ 23 eV, the reference for
Ga M, 5 is not completely included, leading to an overestimation of overall In
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FIGURE 5.20: (A) HAADE. ¢/ values calculated using (B) eqn. 5.28, (C) low-loss

fitting as described in eqn. 5.30 and the R? values of both the fit using Lorentzian

and Voigt as bulk plasmons are described in (D). Similarly, (E, F) are the ¢/\ and
R? values calculated from low-loss fit using eqn. 5.33.
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content by core-losses. To include the full Ga 3d (M,) transition, the fitting
range was increased from ~ 23 eV until 27eV. However, as the experimental
reference spectrum for InN only extended until ~ 23V, it was necessary to
include a step function in our fitting from 13 eV to 27eV, as shown in figs. 5.7.
The weight maps thus obtained in figs. 5.9 by increasing the fit range could
not be interpreted physically as the values of In and In,Ga;«<N maps were
completely different from those from the smaller fit range e.g. the mean value
of In content in different regions identified in fig. A.3(B) where in the range of
~ 0.32 £ 0.01. This is almost half the value of estimated by the quantification
from bulk plasmons. Hence, a truncation correction has been proposed to
compensate for the intensity that is lost by the experimental reference spec-
trum for InN not fully covering the In Nys edge from ~ 23eV to ~ 27eV. Itis
also important to note that there are no models present in the literature to ex-
trapolate a 4d transition, so a simple horizontal extrapolation was assumed.
The truncation corrected maps showed contrast in agreement with the exten-
ded fit ranges, however, the correct In content can be recovered only within
~ 7% error considering the In content quantified by bulk plasmon for short
tit range as the reference. The In content quantified in both fit ranges using
bulk plasmons differ by ~ 10% (observe x,, in both table 5.1 and 5.4). This dif-
ference in quantification is because of the step function being present in the
fitting which will affect the fitting coefficients of Lorentz function, and the
truncation correction is not applied to x, but only to x.. The difference in the
contrast of weights in short and larger fit ranges in figs. 5.8 and 5.9 are only
due to different fitting ranges and the anomalies in the fitting coefficients
due to inclusion of a step function. However, when the In content is calcu-
lated the results are comparable. Hence, it can be concluded that while fit-
ting low-loss spectra with low energetic core-losses and bulk plasmon losses
for quantification, it is always preferable to have reference spectra covering
the same energy ranges for fitting. In other materials (such as solar cell and
AIN:Tb) the bulk plasmons have been individually modelled using Lorentz
functions. Since the bulk plasmon peak position is characteristic for a given
material, and in the systems considered shifts with stoichiometry the initial
quantification can be estimated from the bulk plasmon peak position, E, or
the can be used to verify with the already quantified core-losses. It was in-
teresting to note that the width of the bulk plasmon was increased near the
interface of AIN and Si substrate. This is presumably due to the formation of
SiO, which has a plasmon peak both higher and wider in energy. The form-
ation of Tb and O co-segregation by forming Tb—O complexes as suggested
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by Benz et al., (2013b). A novel approach of determining relative thickness
by distribution fitting to low-loss is proposed. The ZLP and bulk plasmon
are modelled using a Gaussian and several Lorentzian functions weighed ac-
cording to Poissonian statistics, the ¢/ in the Poisson function being a fitting
parameter which provides the relative thickness. The Lorentz functions were
replaced with Voigt functions to check the variation in the estimation of ¢/A.
The t/)\ values from both techniques were found to be identical and are com-
pared with ¢/\ estimated using Egerton’s method. The values are found to
be similar within error margin. The elemental quantification based purely
on bulk plasmon peak position is impossible. If the end-members are well
defined, as was in case of In,Ga;«IN, x can be quantified. The same method
can be extended to study the other ternary and quaternary alloys, when the
end-members are well defined.
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Chapter 6

Automated VEELS for bandgap

measurements

6.1 Introduction

Precise determination of the electronic bandgap is important for semicon-
ductor research. It is possible but not straight-forward to determine the loca-
tion of the onset of the DOS from low-loss EELS rather than by optical spec-
troscopy. For example determination of bandgap from Tauc plot (Davis et
al., 1970; Dolgonos et al., 2016; Stenzel, 2005; Tauc, 1968; Tauc et al., 1966)
that describes the optical absorption spectrum and the onset of a linear on-
set provides the direct bandgap of the semiconductor material. The problem
with the Tauc plot is the linear extrapolation is very subjective and slight
variation in the fit window for linear extrapolation will alter the bandgap
determination. The other computational methods such as support vector re-
gression computational intelligence (SVRCI) based model for estimation of
direct bandgap of ZnO is proposed by Owolabi et al., (2016). A square-root
function fit to the low-loss EELS spectrum may work for direct bandgaps
(Rafferty et al., 1998) but will be affected by the presence of a strong and
asymmetric ZLP (Lazar et al., 2003; Rafferty et al., 2000; van Benthem et al.,
2001), phonons (Stoger—Pollach et al., 2007), Cerenkov effects (Hordk et al.,
2015; Stoger—Pollach, 2008; Stoger—Pollach et al., 2006), guided light modes
and possibly even surface plasmons. One solution (Erni et al., 2005) would
be to use a monochromator where the energy-resolution can be as good as
~ 0.015eV (Krivanek et al., 2013). Deconvolution methods can be applied
to remove or reduce effects from ZLP tails (Egerton, 2011b). Also, the tail
of the bulk plasmon will affect the determination of bandgap (Walther et al.,
2017). The determination of DOS onset for wide-bandgap materials has been
studied extensively (Amari et al., 2011; Bangert et al., 1997b; Lakner et al.,
1999; Park et al., 2009) still the reliability required for electronics (« 0.1eV)
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is difficult to achieve quantitatively when the material is unknown. Fourier-
log and RL deconvolution methods are routinely used for one-dimensional
(1D) spectra but they tend to enhance noise. However, with proper pre-
processing by extrapolation of tails at both ends and embedding the spec-
trum into twice as wide empty spectrum and padding both ends, noise can
be reduced. Lot of work has been done qualitatively in analysing the low-loss
region by applying Fourier-log deconvolution (Hage et al., 2013). The de-
convoluted spectrum can then be used to get the energy-loss function using
Kramers—Kronig analysis to reveal the complex dielectric function (Dorneich
et al., 1998; Morales-Rodriguez et al., 2012; Pokrant et al., 2005; Potapov et
al., 2009; Schamm et al., 2003; Stoger—Pollach, 2008). Morales-Cruz et al.,
(2017) have used the energy-loss function to determine bandgap onset for
Bi,Mo,W;.,Os by manually selecting the fit ranges. An alternative method is
two-dimensional (2D) deconvolution of a spatially resolved EELS (Gloter et
al., 2003). In this method the deconvolution is applied to a spatially (Walther,
2003; Walther et al., 1999) or angular resolved EELS or 2D EELS, reducing the
size of the extended ZLP to almost a single point. By this way of deconvolu-
tion, even weak information which is hidden by the wide PSF of the ZLP can
be made visible. In this study, different ways to determine the bandgap of
wide-bandgap materials such as GaN are compared using RL deconvolution
of 1D and 2D EELS. For this, starting from the same 2D EELS, the effect of
changing the sequence of projection (from 1D to 2D) and deconvolution is
compared. A Gaussian model of the ZLP is considered as an initial PSF in
both cases.

6.2 Limitations in determination of bandgap onset

The DOS onset is usually buried between the tails of the dominant ZLP on
the left and the bulk/surface plasmon on the right. To identify the bandgap,
the underlying background must be subtracted. The latter can be modelled
pretty straight forward using Lorentz functions from eqn. 5.27. In ternary
alloy systems, like In,Ga;«N, the bulk plasmons can be modelled along with
core-losses using joint fitting from eqn. 5.9 (Walther et al., 2017). Eccles
et al., (2008) and Gu et al., (2007) have discussed the difficulty in measur-
ing bandgap using a monochromator in the presence of Cerenkov effects

and have also discussed the effects of specimen thickness in measuring the
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bandgap. However, modelling of ZLP is not straight forward as it is a com-
bination of elastic scattering, phonon scattering, Fowler-Nordheim distribu-
tion in the case of FEG- emitters (Fowler et al., 1928) and Maxwell-Boltzmann
distribution combined with the PSF of the spectrometer. A ZLP acquired us-
ing a monochromator can have a FWHM of W, ~ 0.015e¢V. However, the
ZLP of the In,Ga;«N low-loss SI from table A.2 which has been acquired
with monochromator are distorted as shown in fig. 5.1, probably due to mis-
alignment while acquisition. It will be difficult to model the ZLP with a single
Gaussian or Lorentzian functions. The fit above FWHM of the ZLP will have
the highest R? values. But fail to model the tails of ZLP (Bangert et al., 1997a).
(Bangert et al., 1997b) have modelled Fowler-Nordheim distribution along
with a Gaussian or a Lorentzian to model the energy-loss side tail of the ZLP,
but fitting an entire ZLP with two functions only will create fitting errors in
the very low intensity tails side of the ZLP. Voigt function seems ideal as it has
Lorentzian like tail with Gaussian like FWHM. The expression described by
Rafferty et al., (2000), includes Gaussian (instabilities in the spectrometer),
Poissonian (electron scattering model) and Fowler-Nordheim due to cold-
FEG emission. The fit optimization R* will not be very meaningful if the
model is crossing the spectrum at low intensities. This will then have un-
certainties at the tail side of the ZLP due to insensitivity of fit optimization
parameters, which is where the presumed DOS is expected to rise. In liter-
ature there isn’t much work done on automated determination of bandgaps.
Although there are studies more or less successfully who have fitted square-
root functions to multiple semiconductor crystals whose direct bandgap on-
set was known a-priori, the fit quality and the fitting parameters such as
fit-ranges were often not mentioned. Figs. 6.1 show the bandgap onset, F,
plotted vs R? for GaN. Short fit ranges of 0.5¢eV to 3eV with 0.5V incre-
ments have been chosen and calculated every 0.5eV between 0eV to 10eV.
All the determined E, values are plotted against their respective R*. It is
clear that the spread of E, values is large and does not converge to ~ 3.44¢eV.
There are few E, values at E, ~ 3.44¢eV but the R? is no better. Hence there
are no criteria to determine which F, measurement is best without previous
knowledge of the material. Short fitting ranges with best R? will obviously
not provide the most accurate F,. Hence, investigating various generic meth-

odologies is important for a reliable determination of bandgaps.
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FIGURE 6.1: Clusters of E, vs. R? for EELS of GaN Series 1. The square-root

titting is applied to the raw experimental spectrum in fig. A.5(B) with varying fit

ranges from 0.5eV to 3 eV between 0-10eV at every 0.5 eV increment, (A) without
subtracting any background and (B) and with bulk-plasmon subtraction.

6.3 Modelling ZLP

For any iterative deconvolution methods, a good estimation of the PSF is
needed. In EELS, the PSF can be approximated by a broadened ZLP. For
the ZLP of a spectrum acquired using a cold-FEG, one needs to consider

modelling it by a superposition of a Fowler-Nordheim distribution for field

emission (taking into account tunneling of the slowest electrons through

the surface states), a Maxwell-Boltzmann distribution for thermal emission

(taking into account a tail of high-energy electrons due to thermal fluctu-

ations at high temperatures) and Gaussian instrument broadening due to

the spectrometer and instabilities in the high voltage supply (Arslan et al.,
2006). Bangert et al., (1997b) have demonstrated a model for ZLP fitting us-
ing a Fowler-Nordheim distribution for electron distribution from the gun,

a Lorentzian function for the PSF due to lens aberrations (Egerton et al.,

1995) and a Gaussian function for instrument instabilities. Gloter et al., (2003)

have applied, for the first time, RL 2D deconvolution to improve the energy-

resolution to observe ELNES at ionization edge structures and compared the

results with a set of standard spectra. A similar approach can be utilized to

compare the reliability of bandgap determination in 2D deconvoluted spec-

tra.
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6.3.1 Modelling ZLP in 1D

For a standard 1D spectrum of intensity vs. energy-loss, the top half of
the ZLP can be approximated by a Gaussian function, N (E, Ey, W), as in
eqn. 5.29. This can be used to calibrate the energy-loss axis to sub-channel
accuracy by way of interpolation to a finer sampling grid. A pure Gaus-
sian function cannot model the tails of ZLP, although a Voigt function,
V(E, E,, Wy, W,), (eqn. 5.31) can provide better approximation of ZLP, as
shown in fig. 6.2. Due to the complexity of ZLP, a simple but sufficient model
can be an extrapolation of the right tail of the ZLP (Batson et al., 1987). This
could probably be the best possible way to remove background for determ-
ining the DOS. The combination of Gaussian and Fowler-Nordheim distribu-
tion is a simple exponential at higher energies. The simple extrapolation of
the right tail of the ZLP is shown in fig. 6.2. The range of fitting for the expo-
nentials was 3 x W to 3.3 x W,, where W, is the FWHM of the ZLP, which
means that only the right most tail end of the ZLP has been used to extrapol-
ate the ZLP. It is observed that, approximately 3.5 x W) is usually near the
energy where a spectrum from the JEOL 2010F will have a minimum point
between bulk plasmon and ZLP. Whereas in UltraSTEM (a monochromator),
the energy resolution is superior. Hence the local minima at 3.5 x W, may not
be true for that particular case. Hence, we need to model the exponentials left
of that minima. That is also the approximate region where the DOS rises in
many wide-bandgap semiconductors. If the FWHM of ZLP, W, is too large
then it is possible that the DOS is buried deep inside and cannot be retrieved.
Hence while acquiring the low-loss spectrum for determination of bandgap,
ideally Wy « 1eV. There are alternative frugal method used by DigitalMi-
crograph™software (Gatan, 2015) that can be reliable in subtracting ZLP in
case of monochromated spectra. The method uses flipping the left shoulder
of the ZLP on to right side and extrapolating the right tail with an inverse
power-law function (eqn. 2.2) or an exponential function (eqn. 2.3). The mir-
roring of ZLP works best when the ZLP is symmetric and the contributions of
Fowler-Nordheim and Maxwell-Boltzmann distributions are either minimal
(which is the case for spectra acquired using monochromator) or of similar
extension. From fig. 6.2 it is clear that, a Gaussian distribution decays too
rapidly towards zero and does not fit the tails of a ZLP, while a Voigt func-
tion can follow the tails of ZLP more closely. The simple two-exponential
term extrapolation (eqn. 2.3, where k£ = 2), however, provides almost perfect

approximation of the background.
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FIGURE 6.2: 1D modelling of ZLP of EELS for (GaN from fig. A.5(B) and ¢t/\ =
0.25) by distribution fitting of Gaussian (R?> = 0.995) and Voigt (R? = 0.998)
functions in the fitting range —5eV to 5eV or exponential tail extrapolation.

6.3.2 Modelling ZLP in 2D

A 2D EELS or spatially resolved EELS use 2 detector and retain image or re-
ciprocal co-ordinate in non-dispersive direction operating TEM in imaging
or diffraction mode. In this case, the image was operated at imaging mode
for GaN material using 0.6 mm aperture. The details of the experimental
conditions conducted by Dr. Thomas Walther are described in section A.4.
For deconvolution, we need an improved approximation of the multivariate
function (2D PSF). Similar to a 1D spectrum, a 2D spectrum can be mod-

elled using a multivariate normal (MVN) distribution function as described

in eqn. 6.1.
N %) = o (<30 = x-)) (6)
o |2 (2m)? 2 .
where x = [11, -, 23],k € NT is a k-dimensional random vector, p € R*

are the mean values and ¥ € R"** values are the square-root of the covari-
ance matrix. Mean values of the distribution from a multivariate Gaussian fit
are subtracted from the 2D spectrum to get calibrated axes in both dispersive
and non-dispersive direction. The energy-loss axis can be calibrated in 2D by
using multivariate Gaussian distribution. The modelled ; and X for 2D SI
of GaN Series 1 from table A.4 are shown in table 6.1. These pixel values of
e are used as reference to calibrate the ZLP to 0 eV in the energy-dispersive
axis. A multivariate Voigt function as shown in eqn. 6.2 can be used to model
the ZLP tails, however a standard Voigt function is computationally expens-

ive. Hence, some software routines tend to use modified approximations
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TABLE 6.1: Modelling multivariate Gaussian function to experimental 2D EELS
of GaN. The values of ;1 and X are in pixels and not in eV.

0 3
Series 1 64.66 836 0
73.80 0 7.15

of the multivariate Voigt function called multivariate pseudo-Voigt function
which lends different weights to both Gaussian and Lorentzian as described

in eqn. 6.3. The expression for a 2D modelled ZLP with multivariate pseudo-
Voigt function is shown in fig. 6.3.
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FIGURE 6.3: (A) Modelled 2D ZLP with multivariate pseudo-Voigt function

(Counts on log-scale), V,(x,u,3,C) to experimental GaN 2D EELS Series 1

shown in fig. A.5(A). (B) Profiles of spectrum and multivariate pseudo-Voigt func-

tion model. (C) Non-dispersive axis profile of multivariate pseudo-Voigt function
model to ZLP.

V<X7 Hs 27 C) =D1- {N(X7 Hs 2) * ‘L(X7 C)} (62)

VZD(X,/L,E,C) =P 'N(X,M,E) + D2 L(X7 C) (63)
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where, L(x, C) is the multivariate Lorentz function. There is no straightfor-
ward form of a multivariate Lorentzian function. A Student ¢-distribution
(a.k.a multivariate ¢-distribution) as shown in eqn. 6.4 with a special case of
one degree of freedom in 2D takes the form of a multivariate Cauchy-Lorentz
distribution, eqn. 6.5. i.e. L(x,C) = M,(x, 1, C,v = 1,k = 2).

T (2th) 1 -5
M,(x, 1, C,v, k) = 2 1+ —(x—p)TCHx — ]
t(x, 1, C, v, k) T (%) Jk/2 k]2 |C|1/2 y(X 1) (x —p)
(6.4)
1
L(x,C) = (6.5)

27 |C| 7! (1 + xTC-1x)?
For Cauchy distribution, mean and standard deviation are not defined. C
is the £ x k symmetric matrix and not a covariance matrix. The diagonal
elements of the C contains the half-width at half maximum (HWHM) of the
distribution in £ dimensions. I' is a Gamma function of integers, which is a
factorial function shifted down by 1 and is given by I'(n) = (n — 1)!,Vn e N*
and for R[z] > 0, it is defined as shown in eqn. 6.6.

T(z) = J v e~ dz (6.6)

6.3.3 Deconvolution of 1D ZLP

The RL deconvolution method has been consistently used in improving the
energy resolution of low-loss EELS. As discussed in subsection 4.4, RL de-
convolution works perfectly if the spreading function has pure Poissonian
statistics, but it cannot make the ZLP to a §-function. The iterative method is
used only to improve energy resolution at the expense of heightened noise.
The major disadvantage of any iterative deconvolution method is the need
for an initial estimate of the PSF, S§§2 (E'), which determines the rate of decon-
volution per iterations. The rate of deconvolution is attributed to the number
of iterations it takes to get an estimated PSF. If the initial estimate is far from
the actual PSF, then more number of iterations are required for the desired
deconvolution. All standard implementations of RL deconvolution methods
in MATLAB R2017b and Hyperspy v1.3 assume that the spreading function
is positive and pure Poissonian in nature. Hence if the number of iterations
is increased, then any intensity counts that could become negative will be
replaced by zeros. A work around could be by adding and subtracting a

large positive offset before and after applying RL deconvolution. However,
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this contradicts the principle of RL deconvolution. RL deconvolution is only
designed to deal with Poissonian spread function (Fish et al., 1995; Laas-
maa et al., 2011; Lucy, 1974; Richardson, 1972; Shepp et al., 1982). It is also
worth noting in fig. 6.4(A) that the deconvoluted spectrum with 20 iterations
is getting clipped very close to the bandgap onset region. Hence it is best
to avoid higher iterations for RL deconvolutions. Ringing artefacts then also

start to creep in and will affect the determination of bandgap. The tails of the

150 150 5
. ——— Series1 Spectrum
Series1 sf’ec‘r_um ) ——RL deconv (3 iterations)
—— Exponential tail extrapolation Exponential tail extrapolation
RL deconv (3 iterations) —— RL deconv - Extrapolated tail model j
——RL deconv (20 iterations) ——— Fourier-log deconv
100 100 -
= -
c c
3 3
o o
[$] [$)
50 [ 50 [
0 0
-5 0 5 10 15 -5
Energy-loss (eV) Energy-loss (eV)
(A) Bulk plasmon subtracted (B) Bulk plasmon is not subtracted

FIGURE 6.4: (A) RL deconvolution applied to bulk plasmon subtracted to GaN
low-loss EELS from fig. A.5(B) at different iterations to demonstrate the effects of
ringing artefacts and non-negative nature due to Poissonian statistics. (B) ZLP
background removal for DOS using RL and Fourier-log deconvolution. RL de-
convolution is applied for 3 iterations then an exponential function is used to
extrapolate the tail and subtract with RL deconvoluted spectrum.

Lorentz function modelling the bulk plasmon do not decay towards zero as
fast as a Gaussian would. Hence whenever subtracting the background for
bandgap onset determination, it is important to always subtract the plasmon
tirst before modelling the contribution of the ZLP. After RL deconvolution,
the tails of ZLP are close to 0. The remaining background that is left after
deconvolution can be removed by modelling the ZLP again by tail extrapol-
ation method. An alternative deconvolution method of removing the ZLP is
standard Fourier-log deconvolution. Fig. 6.4(B) compares ZLP background
removal for DOS using RL and Fourier-log deconvolution methods.

15
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6.4 Determination of Bandgap from 1D Spectra

The direct bandgap can be modelled with a square-root function. The square-
root model to fit the DOS for direct bandgap can take different forms depend-
ing upon the type of pre-processing done to the low-loss EELS to model the
background. The various models considered are listed in eqns. 6.7 and 6.8.

D(E) =a-(E - E,)" 6.7)

D(E)=a-(E—-E,)" +¢ (6.8)

where a is a scaling parameter, c is the offset or a constant and E, is the
location of bandgap onset. All a, cand F, are fitting parameters. The function
D(FE) € C, i.e. these models are only defined for £ > F,. Hence for fitting the

DOS a discontinuous function, f(E, E,) € R, is defined as shown in eqn. 6.9.

f(E, E,

a-(E—E,)", :E>E,
) = (6.9)

0, B < B,

The eqn. 6.8 has an additional constant term, c. It is used when the EELS
still has some background, the offset parameter modelling a constant back-
ground. Determination of bandgap onset for very wide-bandgap materials,
such as AIN or AlGaN, is mostly forward as the effects of Cerenkov radi-
ation will be minimum at higher energy and the tails of the ZLP be less at
higher energy-losses. The authors Amari, (2011) and Amari et al., (2011)
have studied the relation between R? and E, by fitting a straight line to the
squared spectrum near bandgap region without removing ZLP or bulk plas-
mons. As the bandgap tends to narrow, their fitting of the EELS starts to
become affected by dominant ZLP. Hence, a monochromator is needed to get
better energy resolution. Walther et al., (2017) have observed that the DOS
of the region wasn’t exactly square-root function in shape as expected. The
bandgap onset had a steep rise and flattened at higher energy-loss, as shown
in figs. 6.5. The authors have determined the bandgap onset by using three
different methods: first, by extracting the low-loss spectrum between 0.7 eV
(onset of InN direct bandgap) to 4eV (>3.4eV, onset of GaN direct bandgap),
smoothing the spectrum with spline functions and get the peak position of
the first derivative (or gradient), as described in eqn. 3.3. In a second method,
the background was modelled purely by an offset and the residue spectrum
was modelled using eqn. 6.7 in the range 0.7¢eV to 5eV, which is equivalent
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FIGURE 6.5: (A) The background is by three exponentials extrapolation and the
bulk plasmon by a Lorentz function. (B) The difficulty in choosing the fit range
for reliable determination of bandgap is illustrated by fitting a 300 x /E — E,

function fit at onset and a square-root function after the edge.

to eqn. 6.8. The third method was fitting a square-root function as in eqn. 6.7
in the same range as the second method but after ZLP and plasmon had been
subtracted. The ZLP was subtracted by fitting three exponential functions
to the tail of ZLP before 0.7eV. The bulk plasmons were subtracted by joint
titting as described in eqn. 5.9. The maps of bandgap determined from mono-
chromated low-loss are presented in figs. 6.6. If the data had been acquired
in the non-monochromator, the energy resolution is limited. However, with
the proper methodologies listed in the following subsections, the bandgap
onset can be determined reliably. The fit ranges from 0eV to 12eV, hence
covering a range suitable for both narrow and wide bandgap materials. In
the following, 5 methods of background, ZLP and bulk plasmon removal are

compared.

6.4.1 Method I

1. model ZLP by exponential tail extrapolation (method);

2. subtract the modelled ZLP from the experimental low-loss EELS;

3. fit a square-root function as in eqn. 6.7 to the residual spectrum.
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FIGURE 6.6: Bandgap maps of In,Ga;«N determined by (A) derivative method.
(B) modelling background as an offset and fitting eqn. 6.7. (D) Rotated ADF image
of the area investigated where the apparent slight tilt from vertical growth is due
to drift during the acquisition of SI. (E) subtracting ZLP and bulk plasmons, and

modelling the residual spectrum with eqn. 6.7. (C,F) are R? maps of eqn. 6.7
fitting (B,E) respectively.




6.4. Determination of Bandgap from 1D Spectra 135

6.4.2 Method II

1. model bulk-plasmon peak using Lorentz function and subtract it from
the spectrum;

2. model ZLP by exponential tail extrapolation method and subtract it
from the spectrum;

3. fit a square-root function as in eqn. 6.7 to the residual spectrum.

6.4.3 Method III

1. model ZLP by exponential tail extrapolation method;
consider modelled ZLP as initial estimate, apply RL deconvolution;

model ZLP again and subtract from the spectrum;

SIS

fit a square-root function as in eqn. 6.7 to the residual spectrum.

6.4.4 Method IV

1. apply Fourier-log deconvolution;

2. fit a square-root function as in eqn. 6.7 to the deconvoluted spectrum.

6.4.5 Method V

1. model bulk-plasmon peak using Lorentz function and subtract it from
the spectrum;

2. apply Fourier-log deconvolution;

3. fit a square-root function as in eqn. 6.7 to the residual spectrum.

6.4.6 Discussion of 1D spectrum processing

The tail extrapolation by fitting multiple exponentials has been used as de-
fault to model the ZLP in all the proposed methods in subsections 6.4.1-6.4.5.
The distribution modelling of ZLP discussed in subsection 6.3.1 leaves a re-
sidual background which will severely affect the determination of bandgaps.
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TABLE 6.2: Bandgap determined by all the proposed methods for 1D GaN spec-
trum.

Square-root fit Differential Method

E, R?
Method I 3.28 0.91 3.31
Method IT  2.72 0.91 3.26
Method ITI 4.12 0.98 3.56
Method IV 4.78 0.98 4.21
Method V. 2.71 0.89 3.26

Hence, the extrapolation method is ideal as it will leave almost no back-
ground contribution from the ZLP for the DOS. Method I is a very simple
model where only ZLP is subtracted. The bandgap values determined for
GaN Series 1 through method I are in close proximity of the theoretical
bandgap value of ~ 3.44 eV (Brockt et al., 2000; Davydov et al., 2002a,b; Dav-
ydov et al.,, 2002c; Manuel et al., 2016; Schamm et al., 2003)Method I also
gave an E, = 3.28eV with an R? = 0.91. Since the E, values are the fitting
parameters in square-root functions, the error margin can be related to R?
values. However, in this situation, we cannot compare R? as a measure of
error in the determined bandgap value. It is merely stating the quality of
fit. The quality of E, lies in the quality of background subtraction and not
on the square-root fitting. This indicates that method I in this experimental
spectrum describes the background well. In method II and method V, bulk
plasmon has been subtracted and a square-root function modelled from 0 eV
to 12eV. The bandgap onset values obtained for this range are an underes-
timate of the true bandgap, as shown in table 6.2. The plasmon subtracted
residual spectrum in figs. 6.7(B,E) is dipping at ~ 10eV. The R? values are
lower because the residual spectrum dips after ~ 10eV and the £, values are
underestimated due to the overall fitting flattens. However, if the fit range is
adjusted from 0 eV to peak position of the residue around ~ 10eV, then bet-
ter E, and R? values are obtained for methods I and V, as shown in table 6.3.
It is worth noting that the quality of fit is increased as R? values have been
increased and E, values are in proximity to the theoretical value of bandgap
for GaN. It is also interesting to know that any deconvolution (RL or Fourier-
log) that is applied to low-loss EELS without subtracting the plasmon (i.e.
methods IIT or IV) is giving an overestimate of the bandgap onset. How-
ever, applying deconvolution after the bulk plasmon has been subtracted



138 Chapter 6. Automated VEELS for bandgap measurements

TABLE 6.3: Bandgap determined for method II and method V for adjusted fit
range of 0eV to 10eV for 1D GaN spectrum.

Square-root fit Differential Method

E, R
Method IT 3.01  0.97 3.26
Method V. 3.01  0.95 3.26

(i.e. method V with fitting range 0eV to 10eV) is giving an underestimate
of values, E, = 3.01eV. The differential method is a very simple but reliable
form of bandgap determination. This is evident even for In,Ga;.xN as shown
in fig. 6.6(A). The bandgap determination by square-root functions heavily
relies on the quality of background subtraction. If a bandgap onset is clearly
visible, then the differential method can detect it quite reliably. Although this
hasn’t been the case in method IV. The apparent onset of the bandgap after
applying Fourier-log deconvolution has been diminished until ~ 4.5eV. This
could be due to bulk plasmon not being subtracted. In all other methods,
determination of the bandgap onset by differentiation is superior to fitting
square-root functions. Note that RL deconvolution is not applied to plas-
mon subtracted spectrum, because RL deconvolution cannot be applied to
a spectrum whose intensity (in this case near bulk plasmon which has been
subtracted) has negative values. Hence, only Fourier-log deconvolution is
considered for plasmon subtracted spectrum. It will be difficult to determine
the onset of any small bandgap with precision, using a square-root function.
If the spectrum is acquired using a monochromator, this should be straight-
forward. Consider the case of GaAs where the direct bandgap is ~ 1.42eV
(Xiang et al., 2017), and EELS have been acquired in JEOL 2010F FEG-TEM
in diffraction mode (beam energy = 197keV, o = 10 mrad, § = 20 mrad, dis-
persion = 0.05 eV /channel, exposure time= 1s, condenser aperture = 20 mm
and entrance aperture = 0.6 mm). The FWHM of ZLP, W, was 0.93eV. This
means that the onset of the DOS is completely buried in ZLP. Hence, the
only method that is suitable for determination of bandgap for GaAs would
be Fourier-log deconvolution, as shown in fig. 6.8. However, the deconvo-
luted spectrum is not following a square-root function although there is an
onset at ~ 1.4eV. For direct bandgap semiconductors the square-root func-
tion seems not ideal for determining the onset, however, with differential
method applied to method IV in subsection 6.4.4, the onset of DOS for GaAs
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is found to be exactly at 1.40 eV' which is in closest proximity to theoretical
value of ~ 1.424eV (El Allali et al., 1993; Kolhatkar et al., 2014; Shan et al.,
1999; Vatanparast et al., 2017).

150

—— GaAs Spectrum

—— Fourier-log deconv
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Energy-loss (eV)
(A)

FIGURE 6.8: Fourier-log deconvolution applied to GaAs low-loss spectrum. The
onset of DOS could be seen at ~ 1.40eV.

6.5 Determination of bandgap from 2D SI

In modelling the background from 2D SI, the tail extension method cannot
be used due to the presence of large noise in spectrum at different non-
dispersive locations where the count in the spectrum are low. Hence the
only way to model the background is by multivariate distributions as dis-
cussed in subsection 6.3.2. The first step in Methods I and II is ZLP mod-
elling. However, a 2D ZLP modelled by pseudo-Voigt function cannot be
subtracted straight away. The residual spectrum would still have a large off-
set remaining. Hence, deconvolution is the only way to model ZLP in 2D. RL
deconvolution is applied for 3 iterations with the initial estimate of the 2D
ZLP being pseudo-Voigt function model as shown in fig. 6.9(A). It is evident
from the profiles of the 2D deconvoluted spectra, shown in fig.6.9(B), that
the tails of the ZLP are not precisely modelled. If the number of iterations
increased to more than 3, then the deconvoluted spectrum is clipping off at

zero. Hence even only 3 iterations used.

IThe dispersion for the GaAs spectrum is 0.05eV/channel. Hence with differential
method, the bandgap determination is limited by the energy dispersion. This method cannot
interpolate the values between pixels as was in case of square-root fit. Hence £, = 1.40eV
is the closest one could get with differentiation method with 0.05 eV /channel energy disper-
sion.
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FIGURE 6.9: (A) 2D RL deconvolution applied to 2D EELS SI of GaN Series 1. (B)
Profiles of GaN Series 1, pseudo-Voigt function model to ZLP and 2D deconvo-
luted spectrum.
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6.5.1 Discussion of 2D spectrum processing

Applying 2D RL deconvolution as in fig. 6.9(B), it can be seen that the
bandgap region was unaffected. However, the ZLP was sharpened from
0.81eV to 0.78eV. Although this is not a significant increase in energy res-
olution, higher iterations are introducing artefacts by clipping the deconvo-
luted spectrum to zero near the DOS. Further, the profile of the 2D decon-
voluted spectrum was again subjected to all the methods described in sub-
sections 6.4.1-6.4.5. The resulting values of the bandgap were exactly the
same. This was because the deconvoluted and original spectra are same at
the bandgap region. Hence as per the extensive investigation, it is difficult to
observe the improvements in energy resolution near the DOS as was carried

out in high-loss region by Gloter et al., (2003).

6.6 Bandgap determination by cluster analysis

It is evident from figs. 6.1 that a smaller fit window for square-root func-
tion does not clearly give a unique solution for bandgap. However, there
are clusters that appear to converge to certain values close to the known
bandgap value of ~ 3.44¢eV for GaN. The clustered F, values may not have
the highest R? values. A standard k-means clustering algorithms can be ap-
plied assuming there are 4 clusters. Higher number of clusters can be as-
sumed. Assuming lower number of cluster results in centroid value calcu-
lated at lower value. Also note later in the section that there is always one
cluster detected at zero. The negative E, values determined by ill condi-
tioned fitting were clipped at zero. Hence it is always assumed that number
of clusters must 3 — 6. Clustering of E, values is shown in figs.6.10(A,C,E)
for the GaN 1D spectrum. Each data point in the plots is an E, value de-
termined by square-root fitting as shown in eqn. 6.7. The square-root fit
in the window, w, is moved between 0eV to 10eV for all combinations of
tit window size increased at every 0.5eV and moved at every 0.5¢V step
across the energy-loss axis. This is to comprehensively analyse the bandgap
values for every possible fit window. While applying k-means clustering,
only £, > 0 are considered. Four k-means algorithm classifies the clusters
of I, based on Euclidean distances. A centroid for each clusters can be
determined. Among the 4 centroids (due to 4 clusters), the centroid with
highest R? value could be considered the best estimation of the bandgap. In
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FIGURE 6.10: k-means cluster assignments and centroids for bandgap determina-
tion by square-root fits for all possible fit windows with a change in step window
of 0.5eV for GaN 1D (A) raw (B) plasmon subtracted (C) Fourier-log deconvo-
luted spectrum. The limits of the fit range are 0eV to 10eV. The similar fitting
analysis is used to get the cluster for (D) Fourier-log deconvoluted GaAs spec-

trum.

TABLE 6.4: The co-ordinates of the centroids with highest R2.

EELS Process R?*  E,(eV)
raw spectrum 0.98  3.40

GaN Series 1 plasmon subtracted 0.65  2.68
Fourier-log deconvolution 0.95  4.48

GaAs Fourier-log deconvolution 0.93  1.20
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tigs. 6.10(A), the spectrum was not processed, i.e. only a profile of 2D spec-
trum was taken and no ZLP or plasmon subtracted or deconvolved. It can
be seen that in such cases, £, values calculated for smaller fit windows are
forming clusters close to bandgap. The centroid with highest R? gives an
estimate of the GaN bandgap of 3.40eV with R? = 0.98 (median = 3.35¢V,
mean = 3.38¢V and std = 0.33¢eV). For plasmon subtracted GaN Series 1
1D spectrum, there are no dense clusters are formed (fig. 6.10(B)), though k-
means has identified four clusters based on Euclidean distances. Clearly, the
estimated bandgap, F, ~ 2.68¢V (median = 2.68¢V, mean = 2.64¢V and
std = 0.40eV), is not close to the expected value. This could be due to the
presence of Cerenkov effects which makes it difficult to determine bandgaps
for smaller fit windows. For Fourier-log deconvoluted spectra of GaN Series
1 (fig. 6.10(C)), the estimated bandgaps are a strong overestimate as was the
case in method IV in subsection 6.4.4. In case of GaAs 1D spectrum, since
the initial energy-resolution of the spectrum is of the order of the bandgap,
the bandgap is submerged in the ZLP. Hence, determining E, by square-root
function and clustering on unprocessed and plasmon subtracted spectrum
would not provide any meaningful estimate. For any low energy-resolution
spectrum with narrow(er) direct bandgap, Fourier-log must be applied to
remove the ZLP first. The Fourier-log deconvoluted GaAs spectra is used
to estimate the bandgap using clustering process as shown in fig. 6.10(D).
The value of bandgap based on the centroid with highest R? is E, ~ 1.20eV
(median = 1.20eV, mean = 1.19eV and std = 0.19eV), which underestim-
ates the expected direct bandgap of GaAs by ~ 0.22eV.

6.7 Summary

In chapter 6, the reliability of bandgap measurement in EELS is studied. This
means to determine the onset of the DOS. Some studies based on square-root
titting claim to be able to measure the onset to a precision of < 0.1eV (Eljarrat
et al.,, 2012). However, the the semiconductor under observation is already
known (Eljarrat et al., 2016; Granered et al., 2018). Here, a generic solution to
blindly measure the bandgap of an unknown material by EELS is proposed.
The traditional square-root fitting is applied to ZLP subtracted or ZLP de-
convoluted and bulk plasmon subtracted EELS of GaN. A spatially resolved
EELS was also used to check if it could be used for any improvements in the
measurement of bandgap. For a normal EELS (1D spectrum), the bandgap
measured from a residue spectra are tabulated in table 6.2. The statistics of
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the measured bandgap with square-root fitting gave 3.52 &+ 0.91eV and the
approach using derivative method 3.52 + 0.41eV. Although the mean value
of the bandgap determined is correct to < 0.1eV with respect to the theor-
etical value of 3.44 eV, the spread of the statistics is too large (+0.91eV and
1+0.41eV) to be useful in practice. There was no significant improvement in
measurement of bandgap observed in deconvolution applied to 1D and 2D
EELS spectra. Large outliers were produced by Fourier-log deconvolution
(E, = 4.78eV, R* = (.98 for square-root fitting and E, = 4.21eV for deriv-
ative method) applied to GaN low-loss EELS spectrum. Considering only
the rest of the methods for wide-bandgap material, the bandgap was meas-
ured at £, = 3.37 £ 0.70eV for square-root fitting and £, = 3.38 + 0.14eV
for derivative method. Hence, for determination of the bandgap for wide-
bandgap semiconductors, the derivative method applied to ZLP subtracted
spectrum is more suitable as it can give precision within < 0.14eV. However,
for bandgap onset values that are too low and are partially submerged in the
dominant ZLP (ie. E, < W,, where W, is FWHM of ZLP), then Fourier-
log methods provide much better statistics. An example of GaAs was used
whose nominal bandgap is at 1.424eV. The onset cannot be retrieved by
any ZLP subtraction methods, hence, Fourier-log deconvolution method has
been used to remove the ZLP. The deconvoluted spectrum in fig. 6.8 does
not resemble a square-root function. Hence, the only available derivative
method is used to determine the onset and gives a bandgap measurement of
1.40eV. A novel approach of bandgap measurement using k-means cluster-
ing is proposed and bandgap measurement from cluster analysis was found
to be showing similar statistics as determination by square-root fitting. The
k-means cluster measured bandgap centroid with highest R? for raw spec-
tra of GaN gave F, = 3.40 + 0.33eV with an R* = 0.98. Again bandgap
measurement with k-means cluster analysis for wide-bandgap materials us-
ing Fourier-log methods are providing outliers. Hence for wide-bandgap
materials, k-means should be applied to raw spectra without removing any
background for DOS. However for GaAs, the k-means cluster analysis ap-
plied to Fourier-log deconvoluted spectra gives an apparent bandgap value
of £, = 1.20 + 0.19eV which is an under-estimate of ~ 0.22eV. Hence in
general, if the energy resolution of the low-loss EELS spectrum (FWHM of
ZLP) is 2 1eV (with bandgap assumed to be hidden in ZLP), then all three
proposed methods (square-root fitting, derivative and cluster analysis) ap-
plied to Fourier-log deconvoluted spectra will provide relatively reliable res-

ults. But the precision with which EELS can measure bandgaps is not good
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enough for applications in electronics where optical spectroscopy methods
can provide more reliable results and precision to typically +£0.02eV. In low-
loss EELS, if a direct bandgap can be measured with more precision then the

doping levels can be measured as shifts in the onset of the bandgap.
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Chapter 7

Conclusion

Automated and unbiased EELS quantification has been carried out for high
and low energy-losses. Various EELS example spectra such as from a GaAs
based multilayer solar cell on a Ge substrate, In,Ga;.«N ternary alloy depos-
ited on top of GaN substrate and AIN doped with Tb have been considered.
The tested methodologies include non monochromated as well as monochro-
mated spectra.

In chapter 3, two novel automated ionization core-loss edge detection al-
gorithms have been proposed. The detected core-losses are then used for
automated pre-edge and post-edge regions for modelling background and
integrating residue intensity respectively.

In chapter 4, an alternative modelling of background in post-edge re-
gion is explored for quantification of overlapping edges such as GaAs. An
improvement in Ga/As quantification ratio from 1.41 to 1.28 is observed
(ideally ~ 1) w.r.t to traditional pre-edge region background fitting with an
inverse power-law. RL deconvolution has been proposed to core-loss edges
to retrieve single scattering distribution when the low-loss is spectra is not
present. An NLLS fitting with baseline correction model is proposed to
quantify core-losses. The quantification of simultaneous fitting for Cu L, 3,
Ga L3 and As L,3 show significant improvement within +3 at.% and the
values are close to the expected values (0:50:50) are achieved (—0.5:47.6:52.8)
when compared to standard packages such as Hyperspy (8.8:49.5:41.7) and
DigitalMicrograph™ (3.4:57.3:36.6).

In chapter 5, quantification of In,Ga;«N is studied in low-loss region by
jointly fitting of bulk plasmons and low-energetic core-losses. The In con-
tent quantified from both bulk-plasmons and low-energetic core-losses agree
within £0.2 error. A novel method of measuring relative thickness, ¢/}, is
proposed by fitting the low-loss with Gaussian and Lorentzian (or Voigt)
functions weighed according to Poissonian statistics. The proposed meas-
urements agree with the traditional log-ratio method with +0.01.
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In chapter 6, a novel direct bandgap measurement method is proposed
by k-means clustering for GaN (E, ~ 3.44¢eV) and the measurement has a
spread of 3.40 + 0.33 eV when compared to similar measurements by deriv-
ative method (3.52 + 0.41 eV) and square-root fitting (3.52 & 0.91eV).

7.1 Future work

A fresh signal processing and machine learning perspective of EELS is ex-
plored. An automated, unbiased and improved EELS quantification meth-
odologies of EELS at different energy-losses is studied.

The automated ionization edge detection by counting positive slope-
angles uses look-up table to detect ionization edge onset. The look-up table
needs to be more comprehensive and should include all semiconductors and
their ionization edges. The edge detection by peak detection could be im-
proved so that its sensitivity to gain correction anomalies and EXELFS can
be minimized.

The background modelling at post-edge region could be extended to mul-
tiple overlapping ionization edges to study the statistics of the quantification.
The NLLS fittings can be extended to fit for energy shifts of onset of the core-
loss ionization edges.

Low-loss modelling of bulk plasmon and low-energetic core-losses can
be extended to study phase separation in other alloys. Fowler-Nordheim
and Maxwell-Boltzmann distributions can be modelled along with sur-
face plasmon and phonons as a pre-processing step before measuring dir-
ect bandgaps. More advanced clustering techniques such as DBSCAN al-
gorithms which are density based clustering can be explored to measure the

bandgaps.
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Appendix A

EELS experiments

EELS SI data have been acquired from a germanium (Ge) based multiple
junction solar cell test sample (Angadi et al., 2016), indium gallium nitride
(InyGa;«N) thin films with islands (Walther et al., 2017, Wang et al., 2015,
2016), terbium (Tb) doped aluminium nitride (AIN) films (Angadi et al., 2016;
Benz et al., 2013b) and spatially resolved EELS from gallium nitride (GaN).
The details of the preparation of these materials and experimentations have
been described in Angadi et al., (2016, 2017) and Walther et al., (2017), re-
spectively. The summary of all the experimentation carried out by Dr. Thomas
Walther and Dr. Toshihiro Aoki (for In,Ga;IN) are stated in following sec-
tions with overview ADF images, relative thickness maps and the regions of

interest in each material.

A.1 Multi-layer solar cell

Four EELS SIs using different energy offsets and dispersions were acquired
from the same area of a cross-sectioned semiconductor heterostructure de-
signed to be used for multi-junction solar cells. On top of a Ge substrate (not
shown due to limited field of view) several GaAs based layers of different
thicknesses had been deposited. The SIs have been acquired in a JEOL 2010F
field emission transmission electron microscope operated in STEM mode at
197kV and equipped with a Gatan Imaging Filter (GIF200) with parameters
as shown in table A.1. Fig. A.1(A) is an ADF overview image of the hetero-
structure obtained with 55-170 mrad collection semi-angle () in which the SI
and spatial drift regions used are indicated. The SI shows eight distinctive
regions as labelled in fig. A.1(B). The thicker layers labelled by numbers 3, 5
and 8 clearly differ in their scattering power due to their different chemistry,
which are of interest and are investigated further in the chapters.


https://www.sheffield.ac.uk/eee/staff/t_walther
https://www.sheffield.ac.uk/eee/staff/t_walther
https://www.researchgate.net/profile/Toshihiro_Aoki
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FIGURE A.1: (A) An ADF image showing an overview of the layer structure ana-

lysed and indicating the rectangular regions selected for spatial drift (yellow) and

SI acquisition (green). (B) Definition of regions in the EELS SI. Regions indicated

by blue dotted lines are thicker regions, while red lines denote interfaces. A sum

spectrum is extracted from each region for further quantification in table 3.2. (C)
Relative thickness map (¢/X ).
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TABLE A.1: EELS data acquisition parameters for the four SIs acquired from the same

area, indicated by the green rectangle in fig. A.1(A).

Attributes EELSSI_ 0 EELSSI_1 EELSSI 2 EELSSI 3
Spatial image size (pixels) 90 x 44 45 x 22 90 x 44 92 x 43
Real-space pixel size (nm) 24.4 48.8 24.4 23.9
Spectrum channels 1024 1024 1024 1024
Dispersion (eV /channel) 0.2 0.1 0.5 1
Height of FoV (um) 2.2 2.2 2.2 2.2
Width of FoV (um) 1.1 1.1 1.1 1.1
Conv. semi-angle (a)(mrad) 16.6 16.6 16.6 16.6
Coll. semi-angle (5)(mrad) 15 15 15 15
Spectrum offset (eV) 0 80 250 950
Exposure time (s) 1x107t  5x107'  5x107t 2
Acceleration voltage (kV) 197 197 197 197
Total acquisition time (min) ~ 9 ~ 11 ~ 44 ~ 176

Note: Actual acquisition commenced in reverse order, starting with the highest energy
losses. The Sl sizes give pixel numbers along rows x columns directions and channel number
along the energy-loss coordinate. FoV is abbreviation for field of view.

A.2 InGaN thin films

The EELS experiments for In,Ga;N were carried out using a Nion Ul-
traSTEM 100 (Nion Co., Kirkland, Washington) with Gatan Enfinium ER
energy-loss spectrometer, aberration corrector and HERMES™ monochro-
mator (Krivanek et al., 2009, 2013, 2014, 2015) installed within the LeRoy
Eyring Center for Solid State Science at Arizona State University, Tempe, AZ,
USA. The microscope was operated with 30 mrad convergence semi-angle
() at 100kV (not monochromated for high core-losses, with 0.5 eV /channel
dispersion) or 60 kV (monochromated for low-losses, with 0.015eV /channel
dispersion). The collection semi-angle (3) was >90 mrad for high-angle ADF
imaging, 30 mrad with 2 mm entrance aperture for EELS (used at 60kV), and
45 mrad with 3mm entrance aperture for EELS (used at 100kV). The en-
ergy resolution was better than 0.35eV without and ~0.15eV with mono-
chromator (FWHM values, including the PSF of the detector). A ~ 0.12nm
probe size with ~300 pA beam current (20-30 pA after monochromation) was
set up and spectra were acquired with the CCD detector in single read-out
vertical integration mode and binning for fast acquisition to avoid electron
beam-induced damage of the sample. The apparent waviness of the lattice
planes at high resolution is due to slight thermal drift using the acquisition.
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TABLE A.2: EELS data acquisition parameters for the two SIs
acquired from InGaN, indicated by fig. A.2(A) and fig. A.3(A).

Attributes High loss SI  Low-loss SI
Spatial image size (pixels) 128 x 128 60 x 30
Real-space pixel size (A) 0.547 20
Spectrum channels 1024 2048
Dispersion (eV /channel) 1 0.015
Height of FoV (nm) 7 120
Width of FoV (nm) 7 60

Conv. semi-angle (a)(mrad) 30 30

Coll. semi-angle (8)(mrad) 45 45
Spectrum offset (eV) 280 0
Exposure time (ms) 50 500
Acceleration voltage (kV) 100 60

Total acquisition time ~ 13min40s ~ 15min

Note: The Sl sizes give pixel numbers along = and y directions and
channel number along the energy-loss coordinate.

Drift correction was not used as this would have necessitated additional ref-
erence image collection and thus would have slowed down acquisition and
increased the total dose. All images and maps shown were acquired and ro-
tated through almost 90° so that the growth direction points upwards, and
the fine vertical stripes visible in parts of fig. A.2(A) are due to emission
fluctuations typical of the cold field emitter. Fig. A.2(B) is a relative thick-
ness map of the area calculated from the intensity log-ratio of the ZLP to the
total intensity, and when we use a value of A = 55 £ 9 nm for the inelastic
mean free path extrapolated from tabulated semiconductor values recorded
at 100kV for different acquisition angles (table 5.2 on page 296 of Egerton,
2011b) the value of t/\ = 0.69 + 0.03 measured for this sample region would
indicate the specimen area investigated here is slightly less than 40 nm thin.
The above inelastic mean free path is smaller than typical values for most
semiconductors at 100kV or 200kV because of the large entrance aperture
used (45 mrad reduces A to 3/4™ of the value for 10mrad listed in Egerton,
2011b), and the heavy In atoms in Ing sGay 4N reduce it even further.
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FIGURE A.2: (A) Rotated HAADF-STEM image of cross-sectioned Ing s, Gag3sN

film at high magnification, about 10 nm above the GaN substrate, showing (0002)

lattice fringes. Growth direction points upwards. (B) Relative thickness map
(t/X\) in multiples of the inelastic mean free path, \.
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FIGURE A.3: (A) Rotated ADF image of the area investigated where the apparent
slight tilt from vertical growth is due to drift during the acquisition of SI. (B)
Definition of regions 1-4 in the InGaN and region 5 in the GaN buffer used later
in analysis. (C) Relative thickness map for spectrum imaging at 60 kV, with mean
values of t/\ = 1.52+0.14 in the top carbon region, 0.43 +0.02 in the InGaN layer
(which is, hence, almost uniformly thin) and 0.59 + 0.13 in the GaN bulffer.
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A.3 AIN thin film doped with Tb

Further STEM experiments were carried out using the Nion UltraSTEM 100.
The microscope was operated at 60 kV with 30 mrad beam convergence semi-
angle (o). No energy-selecting slit in the dispersive plane of the monochro-
mator was used, providing 0.12nm probe size (nominal spot size of 20i),
with ~300 pA beam current at an energy resolution better than 0.35¢V, as
given by the characteristics of the cold field emitter electron gun (cold-FEG).
The collection semi-angle (3) was >90 mrad for high-angle annular dark field
(HAADF) imaging and <45mrad with 3mm entrance aperture for EELS.
Spectra were acquired with the CCD detector in single read-out, vertical in-
tegration mode and a binning factor of 2 for fast acquisition to avoid electron
beam-induced damage of the sample. This gave an effective energy disper-
sion of 0.7 ¢V /channel where the apparent width of the ZLP was limited by
the detector PSF rather than the actual energy spread of the electrons. The
acquisition parameters of two EELS SI are listed in table A.3. The acquired

TABLE A.3: EELS data acquisition parameters for the two SIs acquired from the

same area.
Attributes Low-loss SI High loss SI
Spatial image size (pixels) 100 x 87 100 x 87
Real-space pixel size (A) 7 7
Spectrum channels 2048 512
Dispersion (eV/channel) 0.7 2.8
Height of FoV (nm) 70 70
Width of FoV (nm) 61 61
Conv. semi-angle (a))(mrad) 30 30
Coll. semi-angle (8)(mrad) 45 45
Spectrum offset (eV) 0 310
Acceleration voltage (kV) 60 60
Exposure time (s) 8 x 107° 1 x 107!
Total acquisition time ~700ms ~14min 30s

SI has a field of view of 70 nm and has been rotated through ~90° so that the
growth direction in all maps points upwards (AIN on top of Si). A HAADF
image is shown in fig. A 4(A). The vertical lines in the HAADF image are arte-
facts due to emission current fluctuations of the cold-FEG. A relative thick-

ness map is shown in fig. A.4(C).
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FIGURE A.4: (A) HAADEF. (B) Box 1 area in AIN used for the calculation of cross-
correlation between elemental maps. Box 2 includes the Si substrate. (C) Relative
thickness map (t/\ ).
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A4 GaN

A spatially resolved EELS spectrum of GaN has been acquired in the JEOL
2010F, where the horizontal direction is the dispersive energy-loss axis (in
eV) and the vertical direction is a non-dispersive axis which can be a real
or reciprocal space co-ordinate depending on whether the electron micro-
scope is operated in imaging or diffraction mode. Since the spatially resolved
EELS is acquired in TEM mode, the non-dispersive direction is a real space
co-ordinate. By integrating along (profile) the vertical non-dispersive direc-
tion, a standard 1D spectrum can be obtained. Hence a spatially resolved
EELS spectrum as shown in fig. A.5, can be viewed as a stack of 1D spec-
tra along the non-dispersive direction. The dispersion along the energy-loss
axis was measured by offsetting the ZLP using drift-tube (40eV). The dis-
persion was found to be uniform (0.0502 + 0.0002 eV /channel) along the CCD
energy-loss axis. The spatially resolved EELS has been acquired in a JEOL
2010F field emission TEM operated in TEM and image mode at 197kV and
equipped with a Gatan Imaging Filter (GIF200) with parameters as shown in
table A.4. The spatially resolved EELS low-loss, called Series 1, was acquired
using 0.6 mm entrance aperture, 20 mrad objective aperture. Initially, the ac-
quired image size was 1024 x 1024. However, to reduce noise while applying
deconvolution (which is discussed later in chapter 6), only 141 pixels along
non-dispersive axis are considered (retaining the ZLP as centre as shown in
tig. A.5(A)). While integrating (or taking profile of spatially resolved EELS),
only 40 rows of non-dispersive axis were considered. Hence, the 1D spec-
trum shown in fig. A.5(C) has higher SNR. The data has been acquired in
series, i.e. spatially resolved EELS data were acquired by adding 25 images
with exposure time of 1, acquired every 7s interval.
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TABLE A.4: EELS low-loss data acquisition parameters for the 2D SI acquired in

TEM mode.

Attributes Series 1
Spatial image size (pixels) 141 x 1024
Spectrum channels 1024
Dispersion (eV /channel) 0.0502 + 0.0002
Entrance aperture (mm) 0.6

Condenser aperture (mm) 20

Conv. semi-angle («)(mrad) 10
Coll. semi-angle (8)(mrad) 20

0 2 4 6
I T
(A)
2 x10*

Drift tube offset (eV)
Exposure time (s)

Acquisition interval time (s)

Acceleration voltage (kV)
Total acquisition time

197
~3min 20s

Counts in log-scale
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FIGURE A.5: The spatially resolved EELS (Counts on log-scale) acquired with a
drift tube offset of (A) 10eV with a 0.6 mm entrance aperture. (B) is the profile of
spatially resolved EELS integrated across 40 non-dispersive channels from (A).
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Appendix B

User manual for the
EELSAnalyser

EELSAnalyser is aset of MATLAB codes (.m files) to visualise and quantify
EELS data. The codes are available to use on GitHub (url : https://
github.com/vcangadil/EELS_Matlab).

B.1 Import EELS data into EELSAnalyser

1 EELS = readEELSdata ('/path/to/file');

The supported files are .dm3, .msa, .mat, .hd£f5, .hspy. The .hdf5 and
.hspy are data exported from Hyperspy (de la Pefa et al., 2017a). This
makes it flexible to work with Gatan’s DigitalMicrograph and Hyperspy.
readEELSdata () is combines the codes written by Robert McLeod (for . dm3

format).

1 si_struct = DM3Import ('/path/to/file');

and Joshua Taillon (for .hdf5 and .hspy).

1 [data, ax_scales, ax_units, ax_names, ax_sizes, ax_offsets,

ax_navigates] = readHyperSpyH5('/path/to/file'");

EELS data could be SI, ADF image or a 1D spectrum. The EELS data structure
from readEELSdata () contains following fields:

¢ EELS Spectrum Image (3-D Spectrum Image)



https://github.com/vcangadi1/EELS_Matlab
https://github.com/vcangadi1/EELS_Matlab
http://hyperspy.org/
http://www.gatan.com/products/tem-analysis/gatan-microscopy-suite-software
http://hyperspy.org/
https://uk.mathworks.com/matlabcentral/fileexchange/29351-dm3-import-for-gatan-digital-micrograph
https://github.com/jat255/readHyperSpyH5
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B.2 Visualization in EELSAnalyser

The visualization of EELS Sl is inspired by Hyperspy. link. The command in
EELSAnalyser for plotting EELS data is:

1 plotEELS (EELS)

Simply plots the EELS data irrespective of whether the data is EELS SI,

Image or a spectrum.

o0 @ plot_EELS
BRSS9 9OE

Size = 90 x 44 pixel x10* Pixel = (53,23)
- L T

Rows (2.20pm)
Counts

e

-50 [ 50 100 150 200
Columns (1.08um) Energy-loss (eV)

Step size = 0.02um

1 plotEELS (EELS, 'stem')

plots only the image of EELS SI by integrating the spectrum.

1 plotEELS (I, 'map')

Elemental map I can be visualised as an image. The colour maps can be
changed as per the standard MATLAB documentation for e.g. colormap jet
or colormap gray. The limits of colormaps can be changed using command
colormapeditor in the command window of MATLAB.

The additional advantage of visualizing EELS SI in EELSAnalyser is
that there are navigational advantages using arrow keys. The location of the
spectrum being displayed is the red box on the image. Use following keys to
navigate , , , , \V[Home” , UEndU , VWPage T” , and [Page g Use
[Esc| key to close the image object.

The spectrum axes can be put on hold to observe a particular energy-loss

axis range in the spectrum.



http://hyperspy.org/hyperspy-doc/current/user_guide/visualisation.html
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* Press [g to hold the energy-loss axis. This makes sure the energy-loss
axis limits will remain same even after navigating to different locations
in the SL

e Similarly, Press [ﬂ to hold the count axis.

1 1 = EELS.energy_loss_axis; % Squeeze spectrum from EELS ST
data cube

2 S = squeeze (EELS.SImage(10,20,:)); % Or simply use
EELS.S(ii, jj) anonymous function to extract spectrum

3 S = EELS.S(10,20);

4 plotEELS(1,S)

B.3 Quantification of EELS Spectrum Image

EELS SI can be quantified using background subtraction method using
routine stem_map_back_sub () and.stem_map_mlls_fit_modified&) for
least-squares fit method.

1 Map = stem_map_back_sub (EELS, ...

2 model_begin_eV, model_end eV, ...
3 edge_onset_eV, a_eV, ...

4 background_model_options);

The inputs for stem_map_back_sub () are:

EELS EELS structure obtained from readEELSdata ().
* model_begin_eV background model begin in ev.

* model_end_eV background model end in ev.

* edge_onset_eV ionization edge onset value.

® »_eVintegration range in eVv.

* background_model_options options such as ‘pow’, ‘expl” or ‘exp2’.
Default is inverse power-law function, ‘pow’. ‘expl” and ‘exp2’ are one

and two exponential decay functions respectively.

Map = stem_map_mlls_fit _modified(EELS, ...
model_begin_eV, model_end_eV, ...
Diff_cross_sections, Fit_Type, ...
Optional_ EELS_low_loss);

W N e
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The inputs for stem_map_mlls_fit_modified() are:

e eELS EELS structure obtained from readEELSdata ().
* model_begin_eV background model begin in ev.

* model_end_eV background model end in ev.

® Diff cross_sections Differential cross-sections models for the re-

spective ionization core-loss edges.

* Fit_Type provide options form modelling methods described in sec-
tion 4.6. The inputs A to E uses models from eqns. 4.16 to 4.20.

® Optional_EELS_low_loss low-loss EELS structure obtained from
readEELSdata ().

A similar MATLAB routine has been developed by Schmidt et al., (2017)
called ‘Spectrum image analysis tool” which has a MATLAB GUI to visu-
alise EELS and cathodoluminescence (CL) SIs. But the advantage of
EELSAnalyser is in its capability of multitasking the work on to multi-core
processors. The routine stem_map_back_sub.m uses MATLAB parallel com-
puting toolbox to distribute the code among multi-core processor. It also
matricises the all the spectra in the rows. The task scheduling (Martin, 2016)
of quantification of Ga elemental maps from multi-junction solar cell EELS SI
on to two physical core of the CPU with respect to time is shown in fig. B.1.
Each chunk of the bar shows row number along with the total number of

Rows of EELS SI
1 10 20 30 40 50 60 70 80

4+5 28 + 22 72+10 88+2 91+1
K<}
£
=
-4
5 1+2 10+ 17 51+20 83+4
x
h
o
! BN

Time (s)

FIGURE B.1: Visual time report of distributed tasks using two workers on Mac-
Book Pro.

rows assigned to a particular worker for quantification (r + Ar, where 7 is
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the row number and Ar is the number of rows). In fig. B.1 at time zero, the
scheduler assigns first 3 rows from row numbers #1 till #3 to worker A and
next 5 rows from #4 till #9 to worker B. The worker A finishes its task ahead
of worker B and gets the next 17 bulk of rows to quantify from row number
#10 till #27. Meanwhile worker B gets task from row number #28 till #50.
This can be extended to high performance computing for larger data sets of
EELS SL
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