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Abstract 
The study of deformation and strain in soft tissues has always been important in the 

biomechanics field because it is part of understanding the mechanism on how human body 

perceives the external or environmental stimulation and also the main cause of superficial 

injuries or torn soft tissues. In addition, it is particularly challenging to investigate the strain 

behaviour of the soft tissue undergoing sliding interaction experimentally in real-time due to 

the limitations of the available measuring equipment. As such, this research introduced a 

range of high-speed imaging techniques to aim at developing and working towards real-time 

imaging of deformation and strain in soft tissue.  

The imaging techniques used were 3D-digital image correlation (3D-DIC), optical 

coherence tomography (OCT) and confocal tomography. 3D-DIC was used to find the 

surface strain profiles of the human skin and also to measure the apparent contact area of the 

finger pads on a glass plate. OCT was able to measure the roughness profile and the real-to-

apparent contact area ratio of the finger pads. Confocal microscopy was used to determine the 

orientation of the tissue fibres in the porcine aorta before and after the damage was inflicted. 

Confocal microscopy was not used on the human skin because there were high risks in using 

this imaging technique on the human skin in vivo tests.  

The frictional and the strain behaviour of the finger pad during a sliding interaction 

with a smooth glass plate are relatable because the normal load has shown to have a linear 

relationship with the average strain of the contact area in this study. In general, the 

predominant friction mechanism of the finger pad was adhesion and the edge of the contact 

area has higher surface strain values than the middle region. It was found that the apparent 

contact area has a power-law relationship with the normal load and a linear relationship with 

the shear force during sliding. The roughness profile of the finger pad was influence by the 

normal load and the sliding state of the finger pad as well. It was found that the moist finger 

pad had a moisture level similar to the dry finger pad after the acclimatisation period even 

though the frictional behaviours of the two finger pads were different, highlighting the 

importance of documentation of water application method. 

A batch of homogenous silicone hemi-spheres with different stiffness was 

manufactured to simulate finger pads. Some silicone hemi-spheres have similar frictional 

behaviours as the finger pads and the predominant friction mechanism was still adhesion. 
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Also, the dynamic coefficients of friction of the silicone hemi-spheres were directly 

proportional (with a negative gradient) to the stiffness of the silicone hemi-spheres. However, 

the silicone hemi-spheres experienced much higher surface strain than the finger pad during 

sliding, which is caused by the adhesion hysteresis effect. In addition, it could also due to the 

homogenous properties, size and geometry, and the surface roughness of the silicone hemi-

spheres. Furthermore, a theoretical strain model was used successfully to predict the strain 

distribution pattern of a silicone hemi-sphere.  

A study on the forearm skin showed that the surface strain and morphological change 

of human skin are relatable even when performing simple movements. 

A study on the porcine aorta tissue fibres found that the damage done on the porcine 

aorta might have permanently deformed the tissue fibres. It was unsure how the orientation of 

the tissue fibres changes during the damage application because the confocal microscopy was 

not able to monitor the tissue fibres orientation in real-time, hence, highlighting the 

importance of real-time imaging.   

Keywords: biotribology, 3D-Digital Image Correlation, Optical Coherence Tomography, 

friction, surface strain, human skin, soft tissue simulant. 
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Glossary 

Collagen fibres A type of protein fibre 

Elastase A pancreatic enzyme that digests elastin 

Elastin fibres A type of protein fibre  

Endothelium 
The tissue which forms a single layer of cells lining various 

organs and cavities of the body 

Eosin B A type of fluorescent dye for microscopy imaging 

Pathogen 
A bacterium, virus or other microorganism that can cause 

disease 

Stratum corneum The outermost layer of skin 

Stratum lucidum A thin, clear layer of dead skin cells in the epidermis 

Stratum granulosum A thin layer of cells in the epidermis 

Stratum spinosum A layer of epidermis  

Stratum basale Deepest layer of the five layers of epidermis 

Squamous 

epithelium 
A single layer of flat cells in contact with the epithelium 

Tunica intima The innermost layer of an artery or vein 

Tunica media The middle layer of an artery or vein 

Tunica adventitia The outermost layer of an artery or vein 

Histidine An  -amino acid that is used in the biosynthesis of proteins 

Lysine An  -amino acid that is used in the biosynthesis of proteins 

Arginine An  -amino acid that is used in the biosynthesis of proteins 
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Abbreviations 

3D-DIC 3D-Digital Image Correlation 

AU Arbitrary Unites 

CCD Charge-Coupled Device 

CM Confocal Microscopy 

COF Coefficient of friction 

DEj Dermal-Epidermal Junction 

DIC Digital Image Correlation 

JKR Johnson-Kendall-Roberts 

OCT Optical Coherence Tomography  

PMT Photomultiplier Tube 

RMSE Root Mean Square Error 

SC Stratum Corneum 

SD Standard Deviation 
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Nomenclature 
  Apparent contact area  [m

2
] 

      Real contact area [m
2
] 

  Radius of the circular contact area [m] 

  A contact area specific exponent  

   he right Cauchy-Green deformation tensor, 

  A unit distance 

  Reduced Young‟s modulus [Nm
-2

] 

      Young‟s modulus of skin [Nm
-2

] 

           Young‟s modulus of counter-face substance [Nm
-2

] 

  Strain tensor 

    Green-Lagrange strain in   direction 

    Green-Lagrange strain in   direction 

    Green-Lagrange shear strain  

   First principal strain 

   Second principal strain 

   Green-Lagrange strain tensor 

  Resultant friction force [N] 

          Friction force caused by adhesion mechanism [N] 

             Friction force caused by deformation mechanism [N] 

            Friction force caused by deformation hysteresis mechanism [N] 

              Friction force caused by interlocking mechanism [N] 

  The bulk modulus  

       The height of the ridge 

  the unit matrix 

  A contact area specific constant 

  A contact area specific constant 

  Normal load [N] 

     The normal load at which the deformation reaches a maximum 

  The number of ridges 

  A normal load specific exponent 

  The sample length (total image pixel number) 

  The normal load [N] 

       The nominal pressure [Nm
-2

] 

   The mean traction [N] 

      The Hertzian surface tangential traction profile 

  Radius of the spherical probe [m] 

  The radial position on the contact area of the traction profile [m] 

Ra Mean surface roughness [µm] 

Rz Mean maximum  height of the topographical profile [µm] 
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    the maximum profile height [µm] 

    the maximum profile height    for the i
th

 sampling length [µm] 

                  Real-to-apparent contact area ratio 

  A closed area in contact [m
2
] 

   Displacement is   direction [m] 

   Displacement is   direction [m] 

 ̅  Surface displacement is   direction [m] 

 ̅  Surface displacement is   direction [m] 

  Elastic work done [W] 

                        Work lost per unit distance [W] 

   
the vertical pixel distance from the mean line to the i

th
 data or 

image pixel point 

      Poisson‟s ratio of the skin 

           Poisson‟s ratio of the counter-face substance 

  The viscoelastic hysteresis loss fraction 

  Interfacial shear stress [Nm
-2

] 

  Constant fraction of the lost input elastic energy 

  The pressure coefficient 

     The eigenvalues of matrix E that is called the principal strains 

  Eigenvalues in the strain matrix 

  The distance between each ridge [m] 

  Dynamic coefficient of friction 

          Dynamic coefficient of friction caused by adhesion mechanism 

  The angular position of the radial position   on the contact area 

 ,   , 

  ,  ,  ,   ,   ,     
The potential functions 
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Introduction 
 

 

 

 

 

1.1 Introduction 

There is almost nothing in the world that does not require human interaction. From common 

actions such as people interacting with electronic devices that have touch screen to surgeons 

handing surgical blades that require absolute precision. This study could help understand and 

improve humans‟ comfort and ease of use during interaction with various applications that 

require gripping, manipulation and holding. Human skin would deform to grip or hold objects. 

In order to visualise deformation and strain, various real-time imaging systems are explored, 

such as, confocal microscopy, Optical Coherence Tomography (OCT) and 3D-Digital image 

Correlation (DIC). These imaging techniques can help to understand the strain behaviour and 

potential damage of soft tissues in the human body. 
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1.2 Deformation, strain and damage on human body 

By definition, deformation refers to the change in shape or size of an object due to the 

application of external force or environmental conditions. From the perspective of 

mechanical engineering, it is often represented by the term strain to show how an object 

deforms relatively to its un-deformed state. 

 Deformation could occur on a human body performing some simple movements. For 

example, when a person extends his/her arm, certain regions of the arm need to be in tension 

or compression in order to complete the movement. Small deformation also occurs on the 

surface of the skin when a person tries to grip or hold an object.  

Human skin has a big role in people‟s everyday life because it has the most 

interaction with all kinds of materials from consumer products, gadgets, sporting equipment 

etc. In people‟s daily life, hands and fingers are often used for gripping and holding things. 

Smartphones with touch screens were introduced to the public approximately two decades 

ago. Nowadays, a significant number of electronics come with a touch screen and huge 

percentage of the human population has at least one electronic gadget that has a touch screen, 

which highlights the fact that finger interaction has become increasingly important since. 

Sports that require the handling of sporting equipment also raises the importance of strain 

study on human body because efficient handling of the sporting equipment often leads to 

better performance, increase in comfort or less sports injuries. There is also an abundance of 

human body interactions in the medical field as medical staff often needs to interact with the 

human body of the patients to perform diagnoses, examinations and/or treatment. 

 However, excessive strain on the human body (or any materials in this sense) will 

often lead to damage human body, such as, bruises, cuts, dislocations and sprains to name a 

few. For example, cuts from skin and blade interaction could happen from time to time 

during a shave. Also, people with dry skin over the finger pad often have annoying 

experiences with carrying out daily life activities that involves in gripping and touching with 

different materials because it hinders the normal operation of the human skin. Therefore, 

health services or organisations often recommend the use of ointment or moisturisers. 

However, the application of ointment or moisturisers often leads to new problems such as the 

hand or finger being too greasy or uncomfortable. In sports, cyclists could gain skin irritation 

and rash at the sensitive areas from chafing due to long periods on the saddle during cycling 

tours or long endurance rides. As an example in the medical field, cardiac catheterisation will 



3 | P a g e  

 

always have potential tribological complications as the catheter interacts with the blood 

vessels, which could be perforated when mishandling happens.   

 This research may not be able to create a cure all solution in the short term. In the 

long term, however, the basic understanding of the deformation and strain of human body 

may open up different possibilities in the future that could mitigate discomfort or potential 

damage on the human body effectively.  

1.3 Real-time imaging 

As medical imaging keeps on improving, the real-time aspect in imaging has been gaining a 

lot of interest. The definition of real-time has been summarised by Kehtarnavaz & Gamadia 

(2006) into three groups. The first group is the real-time in a perceptual sense, which 

describes the near instantaneous response of the computer device perceived by the human 

user after the input into the device. For example, the algorithm of the photo enhancement 

effect (in digital cameras or app in smart phones) only needs to operate approximately for 

110ms on each photo frame to make the processing seem imperceptible to a human user.  

The second group is real-time in a software engineering sense. It is similar to the 

perceptual sense in terms of the concept of a bounded response time, provided that the result 

of processing is logically correct. In other words, the issue of real-time is not entirely focused 

on fast processing, but also the performance of the device. Laplante (2008) has further 

classified this group into three subgroups, which are hard real-time imaging systems, firm 

real-time imaging systems and soft real-time imaging systems, based on the strictness 

attached to the maximum bounded response time, also known as the deadline. Hard real-time 

systems cannot miss even one deadline in task completion as the failure to do so will lead to a 

complete system failure. For example, a robot that is not able to detect an obstacle like a rock 

in time (deadline) will result in the robot being toppled over. Then, the toppled robot will not 

be able to continue to move forward (complete system failure). Firm real-time systems allow 

a few missed deadlines because it will not constitute to complete system failure. For example, 

weather reporting, in which the wind speed is recorded every minute, may have a few errors 

on an overall 1 hour data acquisition, but this does not affect the average wind speed for the 

weather report. However, frequent errors will lead to the miss-representation of the wind 

speed during the weather report. Lastly, soft real-time systems are systems that have missed 

deadlines, however, this does not lead to complete system failure, but instead this is reflected 

as performance degradation. For example, it will take a longer time (performance degradation) 
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to obtain desired measurements by post-processing the images after acquiring the images 

from an imaging system.  

The third group is real-time in the signal processing sense. This is based on the 

concept of completing the processing of one input within the available time between two 

consecutive input samples.  

The main advantage of having a real-time aspect in imaging is the visual results can 

show the condition or reaction of the biological samples instantaneously in response to the 

changes of external stimuli or the environmental conditions, if any. This is especially useful 

in biomechanics related research, for example, the strain behaviour of soft tissues. The 

imaging techniques that had been used in this research are real-time systems. However, when 

the imaging techniques were coupled with experimental set-ups, the processes in measuring 

deformation or strain of the soft tissues were not necessary real-time as the information was 

obtained through post-processing after the acquisition of the images.  

1.4 Imaging in biomechanics 

“Biomechanics is the study of the structure and function of biological systems by means of 

methods of mechanics (Hatze, 1974)” 

Due to the fact that soft tissues such as aorta and skin are anisotropic, viscoelastic and non-

linear materials, the strain behaviour of the soft tissues tends to be complex and unpredictable. 

As a start, several studies started investigating the strain behaviour of soft tissues from a 

simple tensile test set-up (Jacquemoud et al., 2007; Annaidh et al., 2012; Lanir & Fung, 

1974). Currently, there is only one real-time imaging technique that can measure the strain of 

the biological samples, which is Digital Image Correlation (DIC). Further research 

successfully used DIC to look at the strain field of the in-vivo human skin at the region 

around the arm and joint experiencing deformation by performing basic exercise postures 

(Obropta & Newman, 2015; Wessendorf & Newman, 2012).  

Other than DIC, optical coherence tomography (OCT) is another common real-time 

imaging technique that images the cross sections of biological samples and is able to show 

the composition layers of the soft tissues. However, the post-processing of the images from 

OCT cannot be done while the sample is being scanned. 
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Various other medical imaging systems, like Computed Tomography (CT) scans and 

Magnetic Resonance Imaging (MRI) etc., are not considered in this study because the 

imaging systems may not be able to provide strain measurements of a dynamic sample. 

1.5 Imaging in biotribology 

“Biotribology is defined as a scientific field that studies the friction, wear and lubrication of 

the biological systems (Dowson & Wright, 1973)” 

Although imaging in biotribology is not as popular as in biomechanics, it definitely has 

started to attract more researchers to use imaging techniques like DIC, high speed cameras or 

OCT in biotribology experiments (Tomlinson et al., 2009; Liu, 2012; Liu et al., 2013; 

Delhaye et al., 2016). Liu et al. (2013) have used OCT to study the morphology of the finger 

pad when sliding against a glass while Delhaye et al. (2016) looked at the strain pattern 

within the contact area of the finger pad using a bespoke post-processing algorithm. 

1.6 Motivation of research 

A picture speaks a thousand words. As the imaging techniques have been advancing so much 

in the past decade, they are much more reliable, user friendly and commercially available. As 

such, it is interesting to explore biomechanics and, especially, biotribology problems with the 

current imaging techniques to discover what these imaging techniques can achieve and their 

limitations.  

Biotribology is emphasised in this context because only very few and limited imaging 

technique options can be used to study the strain behaviour of biological material in contact 

with other material experimentally. Most studies used finite element modelling simulating 

different biotribology problems, where the modelling is based on a theoretical model of 

contact mechanics (Johnson & Philllips, 1981; Dandekar et al., 2003; Sripati et al., 2006; 

Wang et al., 2012). The modelling often requires displacement inputs obtained in 

experimental studies.  

1.7 Aim and objectives 

The aim of this research was to develop a range of high-speed imaging techniques to move 

towards real-time imaging of deformation and strain in soft tissue. The project wanted to 

explore which imaging systems can be used to obtain strain measurements of a dynamic 

object in real-time. There are only a few imaging techniques where deformation or strain can 

be determined from the captured images of a moving object. These imaging techniques are 
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3D-DIC, OCT and confocal microscopy. An imaging technique is considered as high-speed if 

it can capture the deformation or strain response of a moving object due to external 

stimulation. For example, 3D-DIC can show how the strain distribution of the finger pad in 

contact evolves when a stationary glass plate in contact starts to move. 

The research is mainly focused on in-vivo human skin. However, confocal 

microscopy is used to study a different soft tissue, porcine aorta, because this imaging 

technique can damage in-vivo human skin.  

 The objectives were to: 

 Explore the available imaging techniques that can measure the deformation and strain 

of soft tissues and study what kind of information can be extracted from the visual 

results 

 Investigate how confocal microscopy can be used to study the deformation damage of 

tissue fibres 

 Investigate the frictional and strain behaviour of finger pad undergoing sliding 

interaction with a plate  

 Investigate if a silicone hemi-sphere experimental model undergoing sliding 

interaction with a plate with similar experimental conditions would have a similar 

frictional and strain behaviour to a finger pad 

 Investigate the morphological change of forearm skin from simple posture change 

 Compare the experimental strain behaviour of the silicone hemi-sphere to an 

analytical model 

1.8 Workflow 

The workflow chart shows how the project advanced in using different imaging techniques 

on different soft tissue-related experiments as shown in Figure 1-1. The experiments were 

performed to study the morphology and strain behaviour of soft tissues in response to 

different external stimuli. It also shows how the real-time aspect is connected with the 

experiments.  

 The project first started out using confocal microscopy as a pilot test to study the 

deformation of soft tissue. Due to the possible risk of permanent injuries on living test 

subjects using confocal microscopy, the project shifted from studying human skin to another 

tribological situation. As such, the confocal microscopy was used to study the catheterisation 
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damage on porcine aorta because cardiac catheterisation could cause complications and often 

discomfort to patients. Confocal microscopy work is shown in Chapter 8.  

 Then, it was found that the Optical Coherence Tomography (OCT) and 3D-Digital 

Image Correlation (DIC) were suitable to study human skin (finger pad region) deformation 

during tribological interaction on living test subjects, which is in Chapter 4. Human 

interaction experiments on living test subjects are known to have a large pool of data with 

high standard deviations. Therefore, the next study used the same imaging techniques on soft 

tissue simulants, which is in Chapter 5. This study also aimed to be the first step in 

manufacturing an experimental model that simulates a finger pad tribological interaction, 

which is shown in Chapter 6. The next study was done to model the strain behaviour of the 

soft tissue simulant by starting from a simple analytical model.  

OCT and 3D-DIC are traditionally designed for use in non-tribological tests such as 

tensile experiments, identification of different skin layers etc. So, non-tribological 

experiments were performed to investigate if the nature of the experiment or experiment type 

could affect the images quality. This work is shown in Chapter 7. High quality images are 

often easier to analyse and able to generate more accurate measurements.  

The imaging techniques – 3D-DIC, OCT and confocal microscopy are all hard or firm 

real-time imaging devices. “Hard” or “firm” real-time images of the biomechanics and 

biotribology experiment were obtained using OCT and 3D-DIC. However, the whole 

deformation or strain measurement system was considered to be “soft” real-time because the 

post-processing of the images to obtain strain measurement and morphological changes were 

done by analysing the “hard” real-time images after the image acquisition process. 

It should be noted that only 3D-DIC among the imaging systems is able to show the 

strain measurement during the image acquisition process, but this feature was not used as 

improving the strain result was a priority.  

In the case of confocal microscopy, the whole deformation measurement system for 

the biotribology experiment was not considered as a real-time experiment, both soft and hard, 

because this imaging technique was not able to capture images of the porcine aorta from 

before loading to after loading. 
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Figure 1-1, Workflow of the imaging techniques used on the experimental set-ups 

1.9 Research contribution and limitations 

This research hopes to offer novel methodologies for assessing deformation and strain in soft 

tissues using high speed imaging techniques. This research has also successfully documented 

the typical frictional and strain behaviour of the finger pad and silicone hemi-sphere. This 

will pave the way to studies researching more complicated experimental models such as 

silicone hemi-sphere with multiple layers or ridged silicone hemi-sphere and to see which 

experimental models has the most similar frictional and strain behaviour to the finger pad.  

As this research is intended as a case study in developing methodologies for assessing 

deformation and strain in soft tissues, the size of the sample is not intended to produce 

normative data. Future work will contribute to the gathering of high-quality normative data 

for the methods developed. 

1.10 Structure of the thesis 

This thesis is organised into nine chapters that address the key aspects of this research: 

Chapter 1 gives an overview, the background of this research study and the 

motivation driving this research.  

Chapter 2 presents a review of the current knowledge on the frictional and strain 

behaviour of soft tissues. It further discuss‟ the strain assessment methods that have been 

used in the literature. The latter part of the chapter discuss‟ the potential of using soft tissue 

simulants in biotribological experiment.  
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Chapter 3 demonstrates how the 3D-DIC (Correlated Solutions), OCT (Vivosight) 

and confocal microscopy (Leica) were used and set-up for the experiments in this research. 

The post processing and the interpretation of the data from respective imaging techniques are 

also discussed in this chapter. 

Chapter 4 presents one of the main research works that investigates the strain 

behaviour of human finger pad before, during and after the sliding interaction with a glass 

plate. 3D-DIC and OCT were used in this study to investigate the surface and sub-surface 

deformation respectively. In this chapter, there is also a very interesting pilot study that looks 

at how the ridges of the finger pad deform when slid against a grooved plastic plate. However, 

the sole purpose of this pilot study is to provide a visual result of the deformation of ridges of 

finger pad during sliding against grooved plate.  

Chapter 5 is a follow up of chapter 4 that studies the deformation and the strain 

behaviour of the silicon hemi-sphere during the interaction with a glass plate. This chapter 

will investigate if a silicone hemi-sphere is suitable to simulate the frictional and strain 

behaviour of a real life finger pad, so the results in this chapter are compared with those from 

chapter 4. 

Chapter 6 is a follow up from chapter 5 as this chapter compares the strain and 

displacement data of silicone hemi-sphere obtained from DIC to the theoretical model of 

hemi-sphere in contact mechanics. This can show if the experimental strain data is a good 

representative of the theoretical model.  

Chapter 7 presents different research work that studies the morphological change of 

human forearm skin when performing a simple posture change without any interactive 

material. This work proves that the visual result of the soft tissues, using the same imaging 

techniques and set-up in chapter 4, is easier to obtain without an interactive material.  

Chapter 8 presents research work done in Philips that studied the orientation of aortic 

tissue fibres subjected to different damaging loads using confocal microscopy. This work 

investigates the deformation behaviour of animal tissue at microscopic level.  

Chapter 9 discuss‟ the main connections of all the work packages done in previous 

chapters.  
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Chapter 10 brings a closure to this research by listing the key findings and the future 

work needed.  

  



11 | P a g e  

 

2 Chapter 2 

 

 

 

 

 

 

 

Literature Review 

 

 

 

 

 

2.1 Introduction 

This chapter starts by introducing the human soft tissues (human skin and aorta) and their 

morphology, and then the tissue fibres composition in the soft tissues. The next sections 

cover the frictional and strain behaviour of the soft tissues as described and documented in 

the literature. For example, the sliding mechanisms between human skin and other materials, 

and the strain distribution profile of the human skin when subjected to different types of 

loading. Next chapter shows how the strain behaviour of the soft tissues have been previously 

assessed, by means of mechanical tests, imaging techniques or finite element modelling. 

Then, it discuss‟ how soft tissue simulants have been used in attempts to imitate the human 

skin in biotribology experiments. The last section summarises and explains how each section 

in the literature is connected. It also outlines the gaps in the current literatures. 
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2.2 Soft tissues and their morphology   

2.2.1 Human skin 

Skin is the largest organ in a human body and it acts as the first line of defence of the human 

body to external damage. It is an anisotropic and viscoelastic material that is sensitive to 

environmental conditions. Skin is composed of three main layers: the epidermis, dermis and 

hypodermis (Gerhardt et al., 2012; Lamers et al., 2013; Weickenmeier & Jabareen, 2014).  

The epidermis, the top layer of the skin, consists of stratum corneum, stratum lucidum, 

stratum granulosum, and stratum spinosum and stratum basale as shown in Figure 2-1. The 

stratum corneum acts as a barrier for pathogens entering the skin and prevents unregulated 

loss of water (Proksch et al., 2008). The roughness and the thickness of the human skin varies 

across different body sites. Some body sites, like the foot sole, have thicker skin to protect 

against due the prolong interaction with other materials, while the face skin is thinner because 

it does not have a lot of interactions with other materials. Maiti (2017) has measured and 

quantified the roughness and the thickness of the human skin from various body sites using 

OCT, which is shown in Figure 2-3 and Figure 2-4. The resolution of the OCT used was 

7.5µm lateral and 5µm axial for an image of 1342×460 pixels. The work studied the 

morphological change (surface roughness and skin thickness) of the human skin across 

different body sites. This could be important in the study of human skin friction because 

surface roughness of the human skin may also have an effect on human skin friction.  

Mechanical properties of the skin are mostly dominated by the dermis, which is rich 

in collagen fibrils and other proteins like elastin. In addition, the tissue fibres are not 

unidirectional oriented.  Although the stratum corneum is relatively stiff, it is thin and 

strongly influenced by the environmental conditions, such as temperature and humidity 

(Hendriks et al., 2006). Therefore, the stratum corneum does not have big contribution to the 

overall stiffness of the skin (Brown, 1973). The mechanical properties of human skin are also 

influenced by a number of additional factors such as age, gender, ethnicity, anatomic region, 

physiological conditions, hormonal status, skin diseases and the use of different skin care 

products (Rigal et al., 1989; Escoffier et al., 1989; Gorodetsky et al., 1999; Vexler et al., 1999; 

Serrat et al., 2007; Hendriks et al. 2006). Skin is nearly incompressible with very low shear 

stiffness in comparison to its bulk modulus. It also exhibits a highly nonlinear stress-strain 

curve. When the human skin was studied in-vitro using a uniaxial test, the stress-strain 

relationship of the human skin is often split into three stages as shown in Figure 2-2 (Daly 
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1982; Holzapfel, 2000; Silver et al., 2001). In the first phase, human skin would behave as an 

isotropic material with low stiffness. Most work is done on the elastin fibres and the stress-

strain of the human skin follows a linear relationship. In the second phase, as the stress 

increases, the collagen fibres start to line up and stretch in the force direction. Then, the 

stress-strain relationship becomes non-linear. In the third phase, the collagen fibres are all 

lined up and stretched, which caused the stress-strain of the human skin to follow the linear 

relationship again. Holzapfel (2000) has presented a model suitable to predict the anisotropic 

elastic response of soft tissues in the last strain domain (phase 3) based on nonlinear 

continuum mechanics (Ogden, 1997). Also, Holzapfel & Gasser (2001) has presented a 

viscoelastic model for fibre reinforced material composite materials undergoing finite strains. 

This model could be more suitable for modelling human skin because human skin is made of 

mostly elastin and collagen fibres. In addition, human skin has also been modelled as a neo-

Hookean material, often termed as hyperelastic material.  Neo-Hookean model is normally 

used to predict the non-linear stress-strain behaviour of materials undergoing large 

deformations. Various studies have used neo-Hookean model to model the material behaviour 

of soft tissues (Delalleau et al., 2008; Luboz et al., 2014; Limbert & Kuhl, 2018). Delalleau 

(2008) showed that the standard linear elastic and neo-Hookean model could not be used to 

model an in vivo skin deflection from suction test.  

The Young‟s modulus elasticity of the human skin was tabulated in Table 2-1. Even 

though at the same localised region – the forearm, the Young‟s modulus of the human skin 

varies between different human beings, which could be affected by the gender, age and 

ethnicity of the human being (Liu, 2013).  
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Figure 2-1, Structure of human skin (http://histologyolm.stevegallik.org/node/353) 

 

Figure 2-2, The rearrangement of collagen fibres undergoing a tensile test (Holzapfel, 2000) 

http://histologyolm.stevegallik.org/node/353
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Figure 2-3, Roughness and thickness of the human skin at the front body site (Maiti, 2017) 

 Thickness (T) stated as Mean ± SD µm; TSC-SC thickness and TED-ED Thickness 

Average Roughness of SC-Epidermal Junction (R-SJN) stated as Mean ± SD µm 

Average Roughness of Epidermal-Dermal Junction (R-EJN) stated as Mean ± SD µm 

Average Roughness of Top Layer (R-TL) stated as Mean ± SD µm 

Red Box represents dorsal skin 
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Figure 2-4, Roughness and thickness of the human skin at the back body site (Maiti, 2017) 

 

 

 

 Thickness (T) stated as Mean ± SD µm; TSC-SC thickness and TED-ED Thickness 

Average Roughness of SC-Epidermal Junction (R-SJN) stated as Mean ± SD µm 

Average Roughness of Epidermal-Dermal Junction (R-EJN) stated as Mean ± SD µm 

Average Roughness of Top Layer (R-TL) stated as Mean ± SD µm 

Red Box represents dorsal skin 
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Table 2-1, Young‟s Modulus of elasticity for skin reported in literature 

Author Skin region Measurement technique 

Young’s 

Modulus 

(MPa) 

Bader & Bowker 

(1983) 
Forearm/thigh Indenter (20mm) 0.011 

Agache et al. 

(1980) 

Forearm 

 

Back 

Torsion (25mm) 

Young: 0.42 

Aged: 0.85 

SC: 2.1 

Barel et al. 

(1995) 

Forearm 

Forehead 
Suction (2mm) 

0.13 - 0.17 

0.20 - 0.32 

Diridollou et al. 

(2000) 
Volar forearm Suction (6mm) 0.153 

Hendriks et al. 

(2006) 
Forearm (dermis) Suction (6mm) 2100 

Sanders (1973) Doral side forearm Torsion (8.7mm) 0.02 - 0.1 

Grahame (1969) Forearm Suction 18 - 57 

Escoffier et al. 

(1989) 
Forearm (anterior) Torsion 1.1 - 1.32 

2.2.2 Aorta 

The aorta is the largest artery in the body. Its main role is to deliver oxygenated blood to all 

body systems. It is usually divided into 5 sections: the ascending aorta, the aorta arch, the 

descending aorta, the thoracic aorta and the abdominal aorta (Van De Graaff, 1998). 

There are 3 significant layers in the aorta, from innermost to outermost - tunica intima, 

tunica media and tunica adventitia, as shown in Figure 2-5. Firstly, the intima is made of a 
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layer of simple squamous epithelium known as the endothelium that is in direct contact with 

blood flow (Collins et al., 2014). The endothelium rests on a network of connective tissue 

membranes consisting of elastin and collagen fibres (Ross & Pawlina, 2006). The 

endothelium helps in prevention of blood clotting and may also help in regulating blood flow. 

It can also release nitric oxide to relax the smooth muscle of the vessel (Shier et al., 2010). 

The tunica media layer makes up most of the arterial wall including smooth muscle 

fibres and a thick elastic connective tissue layer (Ross & Pawlina, 2006). 

The tunica adventitia is thinner, in comparison to the tunica media layer, and is mostly 

made up of connective tissue with irregular fibres that are attached to the surrounding tissues 

(Ross & Pawlina, 2006). 

Mechanical properties of the aorta are dependent on the amounts of the aortic wall 

main constituents, spatial organization and the mechanical interactions among these 

constituents. The most important mechanical property of the aortic wall is its non-linear 

elasticity. Studies that investigated the elastic modulus of the human aorta have been 

tabulated in Table 2-2 (Choudhury et al., 2009; Azadani et al., 2012; Kim et al., 2013; Ferrara 

et al., 2016). This table goes on to show that the Young modulus of the human aorta could be 

difference with different human volunteers.  

 

Figure 2-5, Structure of porcine aorta (Tsamis et al., 2013) 
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Table 2-2, Elastic modulus of human aorta reported in literature 

Author Location Orientation 
Type of 

Test 

Elastic 

Modulus 

(MPa) 

Kim et al. 

(2013) 

Anterior, proximal thoracic aorta 

Posterior, proximal thoracic aorta 

Anterior, distal thoracic aorta 

Posterior, distal thoracic aorta 

Tangential 
Inflation 

test 

0.5 

0.75 

0.4 

1.0 

Azadani et 

al. (2012) 

Anterior, ascending aorta 

Posterior, ascending aorta 

Anterior, ascending aorta 

Posterior, ascending aorta 

Circumferential 

Circumferential 

Longitudinal 

Longitudinal 

Biaxial 

test 

0.81-1.42 

0.86-1.53 

0.79-1.39 

0.86-1.53 

Ferrara et 

al. (2016) 

Anterior, ascending aorta 

Posterior, ascending aorta 

Anterior, ascending aorta 

Posterior, ascending aorta 

Circumferential 

Circumferential 

Longitudinal 

Longitudinal 

Uniaxial 

test 

18.3 ± 9.0 

30.0 ± 13.9 

8.4 ± 4.2 

6.4 ± 2.6 

Choudhury 

et al. 

(2009) 

Anterior, ascending aorta 

Posterior, ascending aorta 
Circumferential 

Biaxial 

test 

0.45 

0.45 

2.2.3 Collagen and Elastin 

Collagen, made up of long and fibrous structural proteins, is the main protein of the 

connective tissue and represents about one-quarter of the total protein content in many 

animals (Berillis, 2013). The collagen network provides the overall tensile strength thus 

creating a strong construct that can withstand implantation and high burst pressures in vivo. 

Elastin is shown to be responsible for the initially compliant behaviour at lower 

strains and that collagen is responsible for stiffening behaviour at higher strains (Weisbecker 

et al., 2013). Figure 2-6 shows the network of collagen and elastin fibres. Experiments 

conducted by v wall in its original shape (Gundiah et al., 2007). Gundiah et al. (2007) 

reported that elastic fibres of porcine arteries are oriented axially in the intima and the 

adventitia, and circumferentially in the media. 
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In human skin, collagen fibres are the main component of the dermis layer, about 77% 

of the fat-free dry weight, and form an irregular network of wavy coiled fibres oriented 

almost parallel with the skin surface. This component has a high stiffness and a low 

extensibility. Elastin fibres are the second main component of the dermis, represent about 4% 

of the fat-free dry weight, are less stiff than the collagen and show reversible strains of more 

than 100% (Hendriks et al., 2006). 

In aorta, elastin and collagen are the principal components to determine the passive 

mechanical properties of the aortic wall while smooth muscle cells are responsible for the 

active mechanical properties and the production of extracellular matrix.  

 

Figure 2-6, Illustration of collagen and elastin fibres 

(https://www.boundless.com/biology/textbooks/boundless-biology-textbook/the-animal-

body-basic-form-and-function-33/animal-primary-tissues-193/connective-tissues-loose-

fibrous-and-cartilage-738-11968/images/fig-ch33_02_06/) 

2.3 Frictional behaviour of human skin 

Skin friction is a complex mechanism that involves several factors and conditions, especially 

due to the non-linear, viscoelastic material properties of human skin. An overview of recent 

papers shows that the coefficient of friction of human skin is affected by various factors 

including the skin condition, skin structural properties, surface properties, and the contacting 

material, as well as skin hydration, lipid film and intermediate layers of trapped substances 

(Adams et al., 20017; Derler et al., 2009; Tomlinson et al., 2011a; Tomlinson et al., 2011b; 

Adams et al., 2012; Derler  Gerhardt, 2013; Conttenden & Cottenden, 2013; Kuilenburg et al., 

2013; Tomlinson et al., 2013; Liu et al., 2015). 

The classical two-term non-interacting model can be used to describe the skin friction 

(Bowden & Tabor, 1954). This model assumes an additive decomposition of an adhesion and 

a deformation term, as shown in the equation 2-1, where   is the skin friction;           is 

https://www.boundless.com/biology/textbooks/boundless-biology-textbook/the-animal-body-basic-form-and-function-33/animal-primary-tissues-193/connective-tissues-loose-fibrous-and-cartilage-738-11968/images/fig-ch33_02_06/
https://www.boundless.com/biology/textbooks/boundless-biology-textbook/the-animal-body-basic-form-and-function-33/animal-primary-tissues-193/connective-tissues-loose-fibrous-and-cartilage-738-11968/images/fig-ch33_02_06/
https://www.boundless.com/biology/textbooks/boundless-biology-textbook/the-animal-body-basic-form-and-function-33/animal-primary-tissues-193/connective-tissues-loose-fibrous-and-cartilage-738-11968/images/fig-ch33_02_06/
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the adhesive force of the skin and counter-face material interface and             is the 

friction due to incomplete recovery of the energy dissipated by skin deformation. 

                          Equation 2-1 

The measurement of friction between skin and counter-face material can be classified 

into two experimental types. Firstly, a spherical probe is used to slide against the skin 

(Kwiatkowska et al., 2009). The second experimental type is one in which the skin is slid 

against a flat plate. For instance, previous studies have investigated the frictional behaviour 

and the mechanisms of a finger pad sliding against a plate (Liu et al., 2013; Tomlinson et al., 

2009; Tomlinson & Lewis et al., 2011).  

It is also worth mentioning that human skin also exhibits stick-slip behaviour under 

certain conditions (Derler & Rotaru, 2013; Adams et al., 2012; Carré et al., 2017). Adams et 

al. (2012) mentioned that stick-slip occurs when the friction decreases with increasing 

velocity provided that the system is not subcritically damped. Generally, the coefficient of 

friction varied more than ±25% of the mean value during stick-slip (Derler & Rotaru, 2013). 

However, major stick-slip behaviour may not occur in this project because the relative sliding 

speed is low (0.25mm/s).  

2.3.1 Adhesion 

During interaction with dry and smooth solid surfaces, the skin friction is normally assumed 

to associate only with the adhesion part of the friction mechanism while the deformation part 

is ignored (Wolfram, 1983; Johnson et al., 1993; Adams et al., 2007; Tomlinson & Lewis et 

al., 2011). However, the adhesion friction mechanism may be replaced by hydrodynamic 

effect when human skin is wet as the excess water accumulates on the surface (Adams et al., 

2007; Derler et al., 2009). 

The skin friction is suggested to follow a linear relationship with the normal load 

when dry human skin interacts with a dry and smooth counter-face. Therefore, it can be 

described using equation 2-2, where       is the real contact area of the skin and   is the 

interfacial shear stress (Johnson et al., 1993; Han et al., 1996; Adams et al., 2007). 

                     Equation 2-2 

The adhesive mechanism is governed by two factors. One of them is the surface 

energy of the counter-faces, which is the molecular nature of adhesive bonds like the Van der 
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Waals forces, electrostatic forces, hydrogen bonds etc. The second factor is the area of 

contact over which such adhesive bonds are formed (Tomlinson et al., 2009; Mossel & 

Roosen, 1994; Tang et al., 2008).  

Based on the Hertzian theory, the contact area between a hemispherical probe sliding on 

deformable materials (skin or rubber) is proportional to 2/3 power of the load as shown in 

equation 2-3, where   is the radius of the sphere,   is the applied normal load and   is the 

reduced Young‟s modulus. The description of reduced Young‟s modulus is shown in 

equation 2-4, where       and      are the Poisson Ratios with respect to skin and a 

substance in contact with the skin.       and            are Young‟s modulus of the skin and 

substance in contact respectively. A more detailed explanation of how contact area affects 

skin friction is discussed in section 2.4.3. This section also introduces alternative contact 

models. 

      
   

   
 
 

  Equation 2-3 

     
       

 

     
 

            
 

          
    Equation 2-4 

In general, the second part of the equation 2-4 (
            

 

          
) can be neglected when a 

soft surface material is in contact with a hard counter-face material because            is 

much larger than      .  

Then equation 2-3 can be rewritten as equation 2-5: 
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 Equation 2-5 

As such, friction coefficient due to adhesion,          , is expressed in equation 2-6 

by combining equation 2-2 and equation 2-5.  
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      Equation 2-6 

2.3.2 Hysteresis 

When the human skin is sliding against a counter-face material with spherical asperities of 

high roughness, skin friction is reported to depend on the adhesive mechanism and hysteresis. 
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In contrast with smooth surfaces, the influence of hysteresis in the friction significantly 

increases, resulting from the deformation of the skin due to the surface asperities sliding over 

the skin surface (Derler et al., 2009). The deformation friction can be expressed as shown in 

equation 2-7 (Greenwood & Tabor, 1958), where   is the radius of the circle of contact 

(equation 2-8) under a normal load,  .  

              
   

   
 Equation 2-7 

   
   

   
 
       

 

     
 Equation 2-8 

In moving forward a unit distance ( =1), the elastic work done ( ) in horizontal 

direction is expressed in equation 2-9 (Greenwood & Tabor, 1958) based on the work done 

formula,                 . 

   (
  

   
)  

   

    
       

 

     
 

   

      
       

 

     
 Equation 2-9 

Equation 2-9 helps to visualise that the spherical indenter expends the elastic energy 

on the skin with the amount of   for every unit distance it moved. If the skin is ideally 

elastic, then the skin behind the sphere would yield up to the same amount of elastic energy. 

Therefore, no net energy is lost in this case. However, in the case of hysteresis in the skin, it 

is assumed that a constant fraction   of the input elastic energy is lost. Parameter   is also 

called viscoelastic hysteresis loss fraction. As such, the work lost per unit sliding distance, is 

expressed in Equation 2-10 and the respective friction coefficient due to the deformation, 

            , is expressed in Equation 2-11.  

                            Equation 2-10 

              
  

 
 

   

     
       

 

     
        

    

 
 

   
 

     Equation 2-11 

2.3.3 Interlocking  

When the asperities of a high roughness counter-face are triangular shaped instead of 

spherical, the friction could be dominated by interlocking effect. The interlocking condition 

happens when the increase in friction that is caused by the asperities of the two materials 

interlocking with each other. Simply put, the ridges of the finger pad will interlock with the 
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uneven surface texture of the counter-face material, which will contribute to the friction that 

resists the sliding of finger pad. It is especially significant when both materials have passed 

through a certain level of roughness (Jerrams, 2004; Tomlinson et al., 2011a).  

A study done by Tomlinson et al. (2011a) has suggested that the skin friction can be 

analysed in terms of adhesive mechanism (         ) and hysteresis mechanism (           ) 

and interlocking mechanism (             ), described in equation 2-12, when the finger pad 

is sliding against materials with triangular ridged surface. The adhesive mechanism is related 

to the attractive forces at the skin-material interfacial region. The adhesion friction model of 

the human skin is the same regardless of the geometry of the asperities – spherical or 

triangular shaped. However, the hysteresis friction mechanism is affected by the geometry of 

the asperities. Therefore, the hysteresis coefficient of friction model in section 2.3.2 cannot 

be applied for the interaction between human skin and triangular ridges. Greenwood & Tabor 

(1958) derived a hysteresis coefficient of friction model for the interaction between human 

skin and triangular ridges. Tomlinson et al. (2011a) further expanded the coefficient of 

friction model to a friction model, which is shown in equation 2-15. Tomlinson et al. (2011a) 

found that the added friction model predicted that the friction mechanism was dominated by 

adhesion if the height of the ridges was less than 42.5μm. On the other hand, the interlocking 

effect started to dominate when the height of the ridge was higher than 42.5μm. 

Figure 2-7 illustrates the interlocking mechanism, which the skin surface ridges move 

over contact surface asperities.  

                                         Equation 2-12 

                   Equation 2-13 

Where   is the interfacial shear strength,       is the real contact area,   is the 

pressure coefficient and   is the applied normal force.  

                             Equation 2-14 

Where   is the applied normal force and θ is the angle of the ridge. 

             {
    

 

  
 
      

       
      

 

 
     

    
    

 
      

 

 
     

 Equation 2-15 
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Where   is the viscoelastic hysteresis loss fraction,   is the numner of ridges,   is the 

distance between each ridge,        is the height of the ridge and      is the normal load at 

which the deformation reaches a maximum.  

 

Figure 2-7, Schematic of a single ridge in contact with the finger pad, which N is the applied 

normal force, θ is the angle of the ridge, t is the distance from the centre line of the ridge, a is 

the largest distance from the centre line to contact of the ridge with the skin, p is the pressure 

along the contact area of the ridge and skin, dl is the length of the contact area, W is the 

resultant force due to the applied pressure and Fhysteresis is the deformation force (Tomlinson 

et al., 2011a) 

2.4 Parameters affecting friction 

2.4.1 Normal load 

Amontons‟ law of friction proposes that the ratio of friction force to normal force, known as 

coefficient of friction, was assumed to remain constant regardless of the applied normal load 

and it is independent of the apparent contact area of the material under dry contact conditions 

(Sivamani et al., 2003). However, Amontons‟ law of friction is not applicable to skin friction 

because human skin is categorised as a nonlinear, viscoelastic material (soft tissue). 

Therefore, the theoretical concepts of friction of elastomers are applied on human skin 

instead (Moore, 1972; Dowson, 1997). Several studies have performed sliding experiments 

and found that the static coefficient of friction of the human skin decreased initially as the 

normal load increased and would reach a plateau once the load reached a threshold value, 

which is approximate to be 3N (Comaish & Bottoms, 1971; Han et al., 1996). The studies 
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suggested that the decrease in coefficient of friction was due to the viscoelastic properties of 

the human skin that allows a non-linear deformation of the skin with increased normal load.  

A model that describes the relationship between coefficient of friction and normal 

load has been developed, shown in equation 2-16, where   is the coefficient of friction,   is 

the normal load and   is the exponent of the normal load (n<1). Several studies have 

suggested that the   value of skin is 0.3 (Comaish & Bottoms, 1971; Asserin et al., 2000; 

Sivamani et al., 2003). 

        Equation 2-16 

Some studies also show the type of counter-face material also plays a role in skin 

friction and found out that the coefficient of friction (between skin and all other materials) 

decreased with increasing normal load except for polyprolene (Tomlinson, 2009; Tang et al. 

2008). 

Tomlinson et al. (2009) described a detailed relationship between friction force and 

applied normal load, which was achieved by sliding the finger pad over different types of 

materials at various normal loads. It was observed that for a low normal load region, which 

ranges from 0N to 10 N, a two part linear relationship was observed as shown in Figure 2-8. 

The figure showed that the relationship between the normal load and friction force is linear 

from 0N to 2N normal load. Although the relationship between normal load and friction force 

is still linear when the normal load is higher than 2N (high normal load region), but the 

gradient of the relationship is smaller than the relationship in low normal load region. 

Ramalho et al., (2005) investigated the skin frictional behaviour at various anatomical sites of 

the body and had a similar finding that showed a double stage Amontons-Coulomb linear 

model at the forearm area.  
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Figure 2-8, Two-part relationship between friction force and normal load (Tomlinson et al., 

2009) 

2.4.2 Skin hydration 

The hydration of skin plays an important role in skin friction. The moisture of the human skin 

is highly dependent on environmental factors, the perspiration secreted by sweat glands, 

sebum layer, dust, food (after touch) and cosmetics. Therefore, a lot of studies investigated 

how hydration or moisture affects the skin friction (Comaish & Bottoms, 1971; Dinç et al., 

1991; Adams et al., 2007; Persson, 2008; Nonomura et al., 2009; Tomlinson et al., 2011b; 

Veijgen et al., 2013; Derler et al., 2015). 

When excess water was added on the contact between human skin and counter-face 

material, studies found that there was an increase in friction on the human skin (Comaish & 

Bottoms, 1971; Nonomura et al., 2009; Veijgen et al., 2013). Some studies suggested a linear 

correlation between finger pad moisture and friction (Cua et al., 1990; Gerhardt et al., 2008; 

Veijgen et al., 2012; Liu et al., 2015). On the other hand, Kwiatkowska et al. (2009) fitted an 

exponential relationship between the human skin moisture and coefficient of friction. 

Although linear correlation is more commonly used, both curve-fitting methods show 

positive relationship between human skin moisture and friction. Next, some studies also 

found a „bell curve‟ response in the coefficient of friction of the human skin against the skin 

hydration or the amount of water (Adams et al., 2007; André et al., 2009; Tomlinson et al., 

2011b). The coefficient of friction of the skin was gradually after a certain amount of water 

level was reached because the excess water would serve as a thin lubrication on the contact. 
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In order to explain the increase in friction when the water was added to the contact 

region, past studies suggested several different friction mechanisms. The first friction 

mechanism is the water absorption (Adams et al., 2007; Gerhardt et al., 2008; Liu, 2012). The 

human skin swells as the water absorption occurs. The contact area increases as a result, 

which will lead to the increase of friction on human skin. Secondly, a study by Dinç et al. 

(1991) suggests that viscous shearing of the liquid bridges could be a friction mechanism. A 

liquid bridge is formed when there is water that accumulates between the finger pad ridges 

(human skin) and the counter-face material. The liquid bridge will have some resistance 

against the sliding material due to the viscosity of the liquid. So, the viscous shear resistance 

will contribute towards the friction of human skin. Thirdly, Persson (2008) suggested the 

capillary adhesion as a friction mechanism. Capillary adhesion only occurs at narrow space. 

Persson (2008) found that the real contact area between two elastically hard materials when 

the narrow space is filled with just enough water. As for the interaction between an elastically 

soft material and a hard material, the capillary adhesion brings the two materials closer 

(increase in contact area) when the water level in the narrow space decreases. Many 

experiments have been carried out with respect to each mechanism, individually. In particular, 

Tomlinson et al. (2011b) designed various tests to investigate the relative contribution of each 

mechanism on the skin friction in moist conditions. After being fully examined, the water 

absorption was believed to be the major cause of the friction coefficient increase, followed by 

capillary adhesion. The viscous shear was found unlikely to affect friction due to the low 

water film thickness. Under low water film thickness, it is inferred that the capillary adhesion 

effect outweighs the viscous shear of the liquid bridge.  
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Figure 2-9, 'Bell curve' behaviour of the coefficient of friction when water was added and 

removed from the human skin (Adams et al., 2007) 

2.4.3 Contact area 

In section 2.3.1, equation 2-2 has shown that the adhesive friction force is proportional to the 

real contact area. This is why adhesive friction is the most dominant friction mechanism 

especially when skin is interacting with smooth surface materials. As such, it is essential to 

study the contact area between the materials during sliding interactions. 

According to Herzian theory, the contact area between the materials is proportional to 

the 2/3 power of the normal load when a hemispherical probe was slid against deformable 

materials such as rubber or skin (Johnson, 1985; Adams et al., 2007). However, this model is 

only applicable if the deformation of the material falls in the elastic region and, it is 

mentioned and shown in section 2.3.1 as equation 2-3. The contact area, in most experiments 

that involved in sliding a relatively high Young‟s modulus probe against the human skin, can 

be described by Herzian theory.  

However, this model is not suitable to describe the interaction of a finger pad sliding 

against a flat surface. Firstly, the finger pads are not made up of smooth surfaces but the 

finger pad ridges. Therefore, the finger pad will not experience a smooth spherical contact. 

Secondly, the finger pad is a nonlinear material due to its viscoelasticity. As such, Han et al. 

(1996) proposed that the contact area of the finger pad should be expressed as equation 2-17, 

where   is the contact area,   is the normal load,   and   are experimental constants.  

        Equation 2-17 
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Exponent constant b is often compared between studies. Han et al. (1996) reported it 

was between 0.2 and 0.4 for apparent contact between a human finger pad and a transparent 

acrylic board (Han et al., 1996). Soneda & Nakono (2010) presented the b value in terms of 

apparent contact area and real contact area, which is 0.54 and 0.66 respectively. Next, Liu et 

al. (2017) further classified the b value into apparent contact area in low normal load region, 

apparent contact area in high normal load region, real contact area in low normal load region 

and real contact area in high normal load region, which are 0.42, 0.14, 0.5 and 0.28 

respectively. Xydas & Kao (1999) has also reached a similar power law contact model as in 

Equation 2-17 that described the contact radius instead of the contact area. Both models are 

essentially the same because the spherical contact area is the product of pi and the square of 

contact radius. Xydas & Kao (1999) mentioned that the b value should be between 0 and 2/3. 

When b value is 2/3, then it is essentially the Hertz model. When b is 0, then the model 

corresponds to the case of an ideal soft finger pad because the full contact area is reached. 

Therefore, the increase in normal load will not further increase the contact area. This could be 

the reason why Liu et al. (2017) reported the b values from low normal load region and high 

normal load region separately.  

Several contact area measuring methods have been developed so far, such as the ink 

stamping method (Childs & Henson , 2007; Warman & Ennos, 2009; Tomlinson et al., 2011b; 

Liu et al., 2017), optical methods (like high speed cameras and Optical Coherence 

Tomography technique) (André et al., 2009; Tomlinson et al., 2009; Soneda & Nakano, 2010; 

Liu et al., 2013; Liu et al., 2015) etc.  

Among the methods, the ink stamping and the optical methods are able to show the 

morphology of the finger pad because these methods are able to produce the fingerprint of the 

finger pad in contact. By using the ink-stamping method, the black regions of the fingerprint, 

as shown in Figure 2-10, are the regions where the finger pad is actually in contact with the 

paper. However, the drawbacks of this method are the errors (due to the spreading of the ink), 

the noise level, and the threshold value to be set during image processing (Liu, 2013). One of 

the optical methods known as Optical Coherence Tomography, which works like ultrasound 

except it uses light as a medium, is able to capture the cross section of the finger pad in 

contact, as shown in Figure 2-11. However, this method is limited to the field of scan that is 

smaller than the apparent contact area of the finger pad, as shown in Figure 2-11 as well. It 

should also be noted that both methods (ink stamp and OCT) could only currently measure 

the area in contact when the finger pad is not in motion (dynamic state).  
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Tomlinson (2009) has tried to predict the contact area of the finger pad, based on 

Hertz Theory and JKR theory, and made a comparison with the experimental contact area 

obtained from the optical method, which is shown in Figure 2-12. The main difference 

between the two theories is that Hertz theory states that the contact area is proportional to the 

normal force with the power of 0.67 while JKR theory states that there is an attractive force 

acting between the finger pad and counter-face material, therefore having a contact area due 

to the surface energies of the contact surface. However, both theories have been built on the 

assumption that the Young‟s modulus of the finger pad remained constant, which is arguably 

wrong. So, Tomlinson (2009) plotted the contact area against normal force graph with varied 

Young‟s modulus that were obtained and post computed from using high-speed camera 

images of a finger pad compressed at differend normal loads.  

 

Figure 2-10, The ink stamping method (Liu et al., 2017) 
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Figure 2-11, Image of finger pad using OCT and the scanned skin region (Liu et al., 2017) 

 

Figure 2-12, The relationship between contact area and normal force (Tomlinson, 2009) 
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2.5 Strain behaviour of soft tissue  

Strain behaviour of soft tissue is important in the study of biomechanics because whenever a 

human body moves, changes postures, or interacts with consumer products, medical 

applications, and sports equipment, the soft tissues (human skin, muscles, blood vessels etc.) 

will experience deformation and hence introducing strain in the soft tissues. Extreme 

deformation may lead to skin irritation or damage. In terms of human skin friction 

(biotribology), strain distribution may help in identifying deformation friction mechanism 

because strain is a measurement of deformation. Delhaye et al. (2016) has mentioned that the 

interactions between human skin and external objects are translated into complex tactile 

information, which is connected to the spatial-temporal patterns of strain in the skin and 

subjacent soft tissues. However, no studies have looked into quantifying the relationship 

between strain and human skin damage to the author‟s knowledge because a reliable method 

for measuring and quantifying damage is required.  

The strain study of human skin can be categorised based on the two circumstances, 

which are the strain that occurs on human skin without the interaction with a counter-face 

material (non-contact type), like movement and exercise, and the strain that occurs on human 

skin due to the interaction with a counter-face material (contact type), like touching, gripping 

etc.  

2.5.1 Non-contact type  

This case focuses on the strain behaviour of the human skin when it is not in contact with 

another solid body, for instance, the study of localisation of strain of an excised human skin 

during uniaxial tensile test (Jacquemoud et al., 2007). From the literature, the non-contact 

strain behaviour of human skin can be summarised into (i) excise human skin (in vitro) and 

(ii) human skin as a whole (in vivo). 

Firstly, several studies investigated the strain of specimens under tensile loading until 

failure using conventional tensile machines (Jacquemoud et al., 2007; Annaidh et al., 2012; 

Lanir and Fung, 1974; Marcellier et al., 2001). In vitro tests can easily provide the stress-

strain relationship of human skin (or any other soft tissues). Brown (1973) demonstrated that 

a typical stress-strain graph of a skin is non-linear and the response can be described as a 

three-phase deformation as shown in Figure 2-2. The first phase of the deformation shows 

that the skin experiences high strain even at low load, which the fibres are largely unaligned 

at this state. The second phase shows a non-linear relationship between stress and strain as 
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the fibres are aligning themselves in the direction of the load applied. The third phase shows 

that the stress increases dramatically with increasing strain because the collagen fibres are 

mostly aligned at this state and the overall stress-strain response becomes dependant on the 

mechanical properties of the collagen fibres (Silver et al., 2001; Hendriks et al., 2006; 

Holzapfel, 2001). Jacquemoud et al. (2007) found a distinctive difference between ultimate 

global longitudinal strain (Green-Lagrange strain, 9.5%) and the ultimate local longitudinal 

strain (Green Lagrange strain, 24%), which were obtained from the LVDT of the tensile 

machine and the DIC respectively. 

Wan Abas & Barbenel, (1982) has performed a uniaxial tensile test on human skin as 

a whole by attaching two rectangular tabs on the human skin surface using double sided taped. 

The tabs were connected to a load application device that pulled the human skin. This study 

found that the strain distribution is non-homogenous with most high strains concentrated near 

area of load application. Was Abas & Barbenel (1982) also plotted a load-intensity against 

strain graph that has similar response to stress-strain relationship of excised human skin. 

The strain behaviour of the human skin as a whole can also be studied without 

performing tensile tests. A few studies have investigated how the strain changes in the human 

skin when adapting different postures by measuring the full strain field of the elbow joint and 

knee joint, which showed that the high strains are more concentrated at the joint region 

(Obropta & Newman, 2015; Wessendorf & Newman, 2012). Obropta & Newman (2015) 

found out that the first principal strain (E1) of a volunteer is 60% while the second principal 

strain (E2) was 44%. 

2.5.2 Contact type 

Several studies have tried measuring the stresses and strains in human skin with different 

loading profiles - point, load or flat surface loading (Johnson & Phillips, 1981; Sripati et al., 

2006; Srinivasan , 1989; Dandekar et al., 2003; Serina et al., 1998; Wu et al., 2004; Wang, 

2012). These studies predicted the skin deflection under different indentation profiles using 

theoretical continuum models like Timoshenko & Goodier (1970) or a revised version 

Johnson (1985). Some predictions were done using finite-element model simulations (FEM) 

based on additional conditions such as the skin is made of multi-layered materials or the 

finger pad is a structure of membranes filled with incompressible fluid.  

In terms of point loading, Kwiatkowska et al. (2009) has shown that the skin facing 

the direction of a sliding ball is compressed and forms a “bow wave” shape whereas the skin 
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behind the sliding ball is in high tension as shown in Figure 2-13. Although this study did not 

measure the strain in human skin, it can give an idea of how the strain is distributed in human 

skin during sliding interaction with a spherical ball indenter.  

In terms of line loading, Johnson & Phillips (1981) has studied how the strains in 

human skin changed when indented by a rectangular bar (line loading) and demonstrated that 

the strain in human skin is highest at the edges of the contact. This is especially obvious with 

a bar of longer width (Figure 2-14) where the strain profile computed shows two peak strains 

at either edges of contact between the rectangular bar and the human skin. It should be noted 

that the interaction between human skin and the indenter in this experiment was static.   

In terms of flat surface loading, Delhaye et al. (2015) has compared the surface strain 

of a finger pad in contact with a flat smooth glass plate at partial slip phase (the phenomenon 

when a region of the area in contact between finger pad and glass is stick while the other 

region is slipped) obtained from experimental data and a theoretical strain prediction. This 

study concluded that the theoretical model was in qualitative agreement with the 

experimental work at low strain, but not in high strain region as shown in Figure 2-15. 

Due to the fact that human skin is composed of multiple layers, the layers may 

experience different shear strain when the sample is subjected to shear load. As such, a study 

visualised the full field shear strain of a porcine skin under shear load to investigate how the 

shear strain changes by using 2D-digital image correlation (Gerhardt et al., 2012). This study 

found that the surface epidermal layer experienced approximately 4% shear strain, which 

decreased until the region between epidermal and dermal layer (3% shear strain). At the 

dermal layer, the shear strain increased again until middle region of the dermis layer where 

the highest strain (approximate 7-8%) was reached as shown in Figure 2-16.  

 

Figure 2-13, Sliding of a spherical indenter along human skin– near point loading 

(Kwiatkowska et al., 2009) 
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Figure 2-14, Line loading of different bar width on human skin (Johnson & Phillips, 1981) 

 

Figure 2-15, Experimental work (top) and theoretical model (bottom) of a finger pad partial 

slipped against flat smooth glass (Delhaye et al., 2016) 

 

Figure 2-16, Shear strain data along the epidermal to dermal tissue, obtained from DIC 

(Gerhardt et al., 2012) 

 

Epidermal layer 

Dermis layer 

Displacement profile [µm] Shear strain graph Shear modulus [kPa] 
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2.6 Strain assessment methods of soft tissues  

In general, strain has been associated with stress of a body. In non-contact mechanics, strain 

assessment is easier with measuring techniques readily available. For example, the strain 

behaviour of soft tissue can be studied from a simple tensile test to strain visualisation of 

human skin while certain body parts are performing different postures.  

On the other hand, strain study in contact mechanics is more complex and difficult. 

Unlike non-contact mechanics, very few studies have investigated the strain in soft tissue 

experimentally (Delhaye et al., 2016; Liu, 2013), although there are a lot studies that have 

investigated, developed and improved the theoretical models of soft tissue strain (Johnson & 

Phillips, 1981; Sripati, 2006; Dandekar, 2003; Wang, 2012).  

As such, this section by first introduces the common mechanical test set-ups that are 

possible for strain measurement. Then, it shows how the imaging techniques were used for 

respective mechanical tests. This part introduces other useful imaging techniques that have 

been widely used with soft tissue that can be related to the deformation of the soft tissue 

using different benchmarks such as the change in skin roughness when extending the forearm 

and also the orientation of tissue fibres after being slid with an indenter probe. The final part 

of this section will go through how the theoretical models of strain are applied to soft tissue.  

2.6.1 Mechanical tests 

The most direct approach for studying strain behaviour of soft tissue in non-contact 

mechanics is the tensile test. Most studies used tensile tests on excised soft tissue samples 

using conventional tensile machines (Jacquemoud et al., 2007; Annaidh et al., 2012). 

However, there is also one study that performed a tensile test on soft tissue (human skin) in 

vivo by pulling rectangular tabs attached on human skin (Wan Abas & Berbenel, 1982). In 

addition, a tensile test machine was also used in studying the shear strain behaviour of soft 

tissue (Gerhardt et al., 2012).  

In contact mechanics, the most standard tests in strain studies are indentation tests and 

sliding tests. Originally, indentation tests were to define mechanical properties of soft tissue 

such as Young‟s Modulus (Pailler-Mattei et al., 2008; Zahouani et al., 2009; Genovese et al., 

2015; Kao et al., 2016). In strain studies, indentation tests can be used to measure the surface 

deflection under a variety of indentation profiles (point, line, or flat surface loading), which 

will be used in theoretical modelling of strain and stress (Johnson, 2003; Sripati, 2006). It 
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should be noted that indentation tests mentioned in this part are limited only to normal load 

application and there is no tangential force interaction between the two bodies.  

Next, the sliding tests are used to study the frictional behaviour of the soft tissue with 

another solid body. The whole sliding process comprises of both static and dynamic states. 

During the static state, there are normal and tangential forces acting between the two 

interacting bodies, but the tangential force is not sufficient to cause sliding. By increasing the 

magnitude of the tangential force, it will reach a threshold value where the force holding the 

two bodies together preventing slip will be exceeded and sliding will occur. This is known as 

the dynamic state.  

Sliding tests on soft tissues can be generalised into two types, the first type utilises a 

probe (mostly spherical) to slide across the soft tissue (Bostan et al., 2016; Nachman & 

Franklin, 2016; Kiwiatkowska et al., 2009). This test type normally uses a tribometer. The 

second test type requires a flat plate (smooth or ridged) during sliding interaction with soft 

tissue. For instance, the sliding of a finger pad across a ridged plate was investigated to study 

the hyperlocking effect of human skin in human skin friction (Tomlinson, 2009). Other 

studies that can be categorised as second types are Liu (2012), Derler (2010) and Adams 

(2006). The main difference between first and second testing types is the relative shape and 

size of the solid body interacting with soft tissue. In addition to the sliding tests mentioned 

above, which require both normal and tangential loading, there was a study that focused 

solely on the effect of shear loading on soft tissue (Gerhardt et al., 2012).  

2.6.2 Imaging techniques 

Digital image correlation (DIC) is the most popular imaging technique in measuring and 

visualising the full strain field of soft tissues by tracking the position of the speckles applied 

on the soft tissues. The visualisation of full strain field of human skin has been gathering 

interests from biomedical researchers because this technique can show the location of the 

strain concentration and the changes strain patterns when subjected to different loading types 

(Jacquemoud et al., 2007; Obropta & Newman, 2015). This is especially useful because soft 

tissue is an anisotropic and inhomogeneous material, for which the strain behaviour is 

asymmetric and dependent on a variety of factors such as the body location of where excised 

skin is obtained, the moisture of human skin etc.  

 There are two types of DIC: 2D-DIC and 3D-DIC. The first DIC system uses only one 

camera. 2D-DIC can only capture planar strain and insensitive to of plane measurement. The 
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latter uses two cameras. Therefore, a 3D-DIC system can capture the surface topography and 

the surface curvature of the objects.  

Several studies have taken the advantage of full field strain on soft tissues (muscle, 

skin and organ parts) to determine the mechanical properties of the soft tissues (Jacqumond et 

al., 2007; Annaidh et al., 2012). For instance, Jacquamond et al. (2007) used image 

correlation technique on dead human skin undergoing tensile tests to investigate the failure 

mechanism of the human skin as Figure 2-17 shows.  

In addition to tensile tests, DIC was used to map the surface strain field from different 

parts of body (Obropta & Newman, 2015). Some optical methods can also capture the 3D 

surface strain field from parts of the body. Obropta & Newman (2015) used 3D DIC to 

visualise the natural strain of the elbow joint of a volunteer that changed his arm posture 

without using external loading on the elbow or hand, as Figure 2-18 shows.  

It should be noted that DIC is only able to visualise the strain distribution of the 

surface of the specimen and cannot determine the strain behaviour of the sub-surface of the 

specimen. This is unless the DIC is used to map the strain field of the specimen from the side 

of the specimen that can clearly show how strain changes across different layers of soft 

tissues (Gerhardt et al., 2012).  

Optical coherence tomography (OCT) is more popular in studying the morphology of 

human skin. OCT has a similar function like ultrasound except OCT uses light as a medium, 

therefore the penetration depth is limited and OCT is normally used on human skin. It has 

been used for study of vascular morphology using correlation mapping (Enfield et al., 2011; 

Zafar et al., 2014; Zhang, et al., 2014; Byers et al., 2016) and measuring epidermal thickness 

of various body skin sites (Barton et al., 2003; Neerken et al., 2004; Gambichler et al., 2006; 

Josse et al., 2011; Tsugita et al., 2013; Trojahn et al., 2015). In addition to the epidermal 

thickness, Egawa et al. (2002), Li et al. (2006), and Trojahn et al. (2015) measured the 

arithmetic mean roughness, Ra, and mean depth roughness, Rz, of the top skin surface 

(stratum corneum). Most of the forearm studies using OCT have never considered angular 

variations of the volar forearm relative to the biceps/upper arm, variations of the angle of the 

elbow joint. Although OCT cannot directly provide any results on strain behaviour of soft 

tissues, but the morphology of soft tissue can give some important information on 

deformation of soft tissue when deformed or strained.  
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In addition, OCT can also be used in a biotribological experiment. Liu et al. (2013) 

demonstrated this by investigating the morphology of finger pad ridges in contact with a 

counter-face material - a smooth glass plate as Figure 2-19 shows. OCT was able to show 

clearly how finger pad ridges morph in contact with the smooth glass plate, which the images 

were then used to estimate the real in-contact area of the finger pad.  

Confocal microscopy is an imaging technique that can image the fibres of soft tissues. 

It scans the samples with a focused beam of a specific wavelength, required to excite the 

fluorophore, which is the fluorescent chemical compound in fluorescent dye, and the 

fluorophore will re-emit the light signals with longer wavelength. The re-emit light signals 

are then collected by light detector and used to build up the image of porcine aortic tissue 

fibres point by point (Minsky, 1988). However, the main characterization of confocal 

microscopy is that there is a pinhole in front of the detector (a photomultiplier tube or PMT). 

Due to the small pinhole, only laser is able to give enough light energy into the small spot. 

Also, multiple lasers of different wavelengths can be used to give a range of wavelengths for 

multiple fluorescence. The main advantage of the pinhole is to smear out out-of-focus light 

from going through the PMT. Therefore a confocal image only contains in-focus information, 

increasing the resolution and quality of the images (Schatten & Pawley, 1988; White et al., 

1987). In addition, by collecting a series of images, a full three-dimensional representation of 

the specimen can be collected. By using respective software of the confocal microscopy, the 

3D images can be manipulated, controlled and provide different views on the specimen 

(Lichtman, 1994). 

 

Figure 2-17, Tensile test on human skin - dead (Jacquomond et al., 2007) 
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Figure 2-18, Full field strain of the elbow joint (Obropta & Newman, 2015) 

 

Figure 2-19, OCT image: finger pad skin in contact with smooth glass plate (Liu et al., 2013) 

2.6.3 Skin modelling  

Strain modelling is essential in contact mechanics of soft tissues due to the difficulties in 

strain measurement and visualisation in experimental studies. The stress and strain in 

numerical modelling and FE modelling required the surface deflection profile to start and 

compute (Johnson & Phillips, 1981; Sripati, 2006; Dandekar et al., 2003; Wang et al., 2012). 
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Delhaye et al. (2016) used the approach (details of the formula derivation of the 

approach is attached in the Appendix A) explained in Johnson (1985) that uses the 

Boussinesq-Cerruti Equation presented by Love (1952) and the Hertzian surface tangential 

traction profile as described in equation 2-18, in which    is the mean traction,   is the radius 

of the circular contact area and   is the radial position on the contact area of the traction 

profile. The traction profile is actually the shear stress distribution across a contact area.  
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 Equation 2-18 

Delhaye (2015) modelled the finger pad as an isotropic elastic sphere and the glass 

plate was modelled as a rigid surface. The contact area of the finger pad is assumed to be 

circular. As the study focused only on the surface strain, a simplified surface displacement 

model based on Hertzian traction model is obtained (within the circular contact area, 0≤r≤a) 

and showed as equations 2-19 and 2-20, where   is the Poisson‟s ratio of human skin and   is 

the angular position of the radial position   on the contact area. 
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The displacement models are then applied to Green-Lagrange strain as displacement 

gradients in the contact area as shown in equations 2-21, 2-22 and 2-23. 
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2.7 Soft tissue stimulants 

Studying soft tissue is difficult due to its complex nature, as soft tissue comprises of several 

layers of materials that have different mechanical properties. There are a number of factors 

that could influence the friction and strain behaviour of soft tissues such as age, ethnicity, the 

skin condition etc. (Liu, 2012). Experiments on human subjects have also proven to be a 
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difficult and lengthy process because human experiments require ethical approval and need to 

give extra care in designing experiments to not cause discomfort to volunteers. In addition, 

resourcefulness is required to get a group of volunteers for more accurate experimental 

results.  

As such, there has been increasing demand for developing tissue simulants to serve as 

an alternative for soft tissues in experimental studies. Some of the tissue simulants that are 

available commercially, like EpiDerm
TM

, EpiSkin
TM

 etc., are used in cosmetic industry for 

the application of cosmetic products or treatment of skin wounds. These tissue simulants are 

designed to imitate the biological properties of the human soft tissue but not the mechanical 

properties.  

In terms of mechanical properties, silicone rubbers and polyurethanes are the most 

popular materials of choice in imitating human soft tissues. However, these materials do not 

have the same biological properties as human soft tissues especially human skin. For instance, 

silicone rubber cannot absorb water like human skin due to its hydrophobic material 

properties.  

Two recent studies have investigated the frictional behaviour between tissue simulants 

and soft tissues. Nachman & Franklin (2016) found that the frictional behaviour of a multiple 

layer tissue simulant (top layer: silicone rubber; bottom layer: polyurethane gel) was similar 

to the human skin. Likewise, Boston et al. (2016) concluded that a reliable test platform could 

be achieved by using a tissue engineered skin as the top layer and a synthetic skin (SynDaver) 

as the bottom layer.  

2.8 Summary  

From the perspective of a mechanical engineer, soft tissue is a very complex material. Unlike 

other materials, it has mechanical properties that are very difficult to predict accurately due to 

the large amount of influential parameters. Yet, it is very important to our daily life because 

soft tissue is one of the most common materials as most multicellular organisms will be 

comprised of soft tissues.   

Imaging techniques are important in the study of soft tissues because imaging 

techniques are the common tools in measuring to obtain information regarding the 

mechanical properties of the materials. For example, DIC was generally used to investigate 

the tensile strength of the soft tissues or the natural strain of the human skin while performing 
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simple movements in several studies but seldom used to study the strain of soft tissues while 

interacting with a counter-face material. On the other hand, OCT and confocal microscopy 

are generally used to study the sub-surface morphology of the biological samples. Only very 

few studies have actually used OCT to study the roughness of the soft tissues during 

tribological interactions. It is similar for confocal microscopy as well. There are few studies 

that have investigated the structure of the soft tissue before and after damaging the soft tissue 

using friction (Barros et al., 2015; Bostan et al., 2017). The main disadvantage of this method 

is it cannot capture the soft tissue behaviour when damage is being applied in real-time.  

A lot of past literature has studied the frictional properties of human skin. These 

studies provided detailed information on the friction mechanism of a human skin and have 

quantified various parameters affecting the frictional behaviour of the human skin.  As the 

research on human skin tribology advances and becomes more complex, the friction on the 

human skin is often caused by adhesion, deformation or both. At the same time, recent 

studies have identified more and more parameters affecting the human skin friction (Adam et 

al., 2007; Derler & Gerhardt, 2012; Tomlinson et al., 2011a; Tomlinson et al., 2011b; Liu). 

The frictional behaviours of the human skin showed in section 2.3 are the most general and 

popular friction mechanisms. Only these frictional behaviours are listed because these could 

potentially occur in this study. One of the main objectives of this project was to find the link 

between the strain behaviour and the frictional behaviour of the human skin. So, it is 

important to understand the strain behaviour of the human skin. There have been a lot of 

previous studies done on the human skin strain as mentioned in section 2.5 (Wan; Gerhardt, 

holzapfel etc.). However, very few researchers have measured the strain and friction of the 

human skin in the same experiment because it is difficult to acquire the strain field profile of 

human skin in contact with a counter-face material experimentally. As such, many studies 

used the numerical modelling method to determine the strain field of human skin instead.   

The literature on the tactile of human skin is not focused because this study focuses 

more on studying the friction and strain behaviour of the human skin using imaging 

techniques. Also, unlike other studies that used counter-face material with a complex 

geometry, this study mostly focuses on a flat counter-face material during the imaging of the 

human skin sliding interaction (Tomlinson et al., 2011a; Kuilenburg et al., 2013). .  

Most contact models discussed in this chapter assume a linear elastic material because 

this model is used to test the feasibility of the imaging techniques. However, it should be 
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noted that the human skin is a viscoelastic material. This is important when the human skin is 

undergoing sliding interaction. After sliding has stopped, the contact area of the human skin 

would experience a slow recovery phase due to its viscoelasticity. Therefore, more in-depth 

work can be done in the future if the imaging methodologies can give useful measurements. 

In this study, the imaging techniques are particularly used to work towards studying 

the strain of soft tissue in real-time, especially when interacting with a counter-face material. 

Firstly, this study attempts to determine the strain field of human skin undergoing tribological 

interaction using 3D-DIC and combine with the OCT that studies the morphological changes 

of the human skin during sliding. Based on the previous studies, the mechanical properties 

and the condition of the human skin vary significantly depending on the internal and external 

parameters such as the gender, age, surrounding temperature, humidity etc. Therefore, a 

human skin simulant is manufactured and studied to minimise the gap between a human skin 

and a skin simulant. The next stage of this study will test the feasibility of a theoretical strain 

modelling by modelling the skin simulant used in this study. 

In addition, 3D-DIC and OCT are also used to study the natural strain of the forearm 

skin while performing simple movements to show that identical methodology can also be 

used on non-tribological experiments.  

The main reason 3D-DIC and OCT are used to study the strain of soft tissues because 

these imaging techniques can compute and visualise deformation and strain of the soft tissue. 

Although this research focuses mainly on 3D-DIC and OCT, confocal microscopy is also 

used to study the structural changes of a different soft tissue, which is the porcine aorta. 

Porcine aorta is used instead of human skin with the confocal microscopy because this 

imaging technique is detrimental to perform in-vivo human skin experiment. Total internal 

reflection imaging is not used in this study because this project is not focused on strain study 

at a cellular level.  
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3 Chapter 3 

 

 

 

 

 

 

 

Imaging Equipment Set-up 
 

 

 

 

3.1 Introduction 

Different work packages in this research have used different imaging techniques and each of 

these had different testing procedures, data and post-processing. So, this chapter will outline 

the principal, equipment and set-up used and the post-test analysis for the imaging techniques 

used in this research. 

  It first describes the approach used for the 3D-Digital Image Correlation (DIC) system 

that is able to measure the 3 dimensional shape, displacement and strain of a specimen. This 

section also includes the post-process analysis used on the DIC data in this research. Next, 

the chapter introduces the medical Optical Coherence Tomography (OCT) used to investigate 

the human skin structure. This section also describes the image analysis technique used to 

determine the roughness of the surface of the human skin and the thickness of the epidermal 

layer. Finally, confocal microscopy is introduced. This imaging technique can show the 

micron scale structure of the soft tissues such as elastin and collagen fibres. The final section 

demonstrates how the imaging software, ImageJ, is used to analyse and determine the 

orientation of the tissue fibres in the images.   
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3.2 Three-Dimensional Digital Image Correlation (3D-DIC)  

3.2.1 System Overview 

The principal of DIC relies on tracking the random and unique speckle pattern on the material 

surface by using DIC software. The speckle pattern will be assigned a series of subsets, as in 

Figure 3-2. Then, Figure 3-1 shows how DIC tracks the speckles via the deformed subset, 

where the displacement vector and displacement gradient can be extracted from the deformed 

subset. The displacement gradient will then be used to compute the strain field of the subject.  

A DIC system that uses two cameras is known as 3D-DIC. As a 3D-DIC system, it is 

able to give the three axial of the position of the speckles and the respective three axial 

displacement vectors. However, 3D-DIC cannot compute the tri-axial strain in three axes, it 

can only give the local surface strain, which the strain direction is tangential to the surface of 

the subject. This is due to the fact that the third axis strain computation, along z-axis for 

example, requires a displacement gradient along the z-axis, which the 3D-DIC algorithms is 

unable to compute because the 3D-DIC algorithm is built on the assumption of plane strain.  

In order to collect strain data using 3D-DIC, the user must have a sample that has 

speckles and a set-up with calibrated cameras. Images that are captured during the test will be 

analysed using a DIC software. These can be classified into 5 steps, which are sample 

preparation, camera set-up, calibration, data collection and post-processing.  

The surface strain measurement of the specimens (Chapter 4, 5 and 7) were performed 

using a 3D-DIC system, VIC-3D
TM

, from Correlated Solutions, Inc., which the set-up is 

shown in Figure 3-1. This system includes two Pike F505B cameras (Allied Vision 

Technologies GmbH, Germany) equipped with monochromatic CCD sensor (Sony ICX625; 

2/3″; 2452×2054 pixels) and 50mm lens objectives (XENOPLAN2.8/50-0902, Schneider, 

Kreuznach). There are two softwares available. The first, „Vic-Snap‟ is mainly used as a 

trigger to capture the images of the samples. Second, „VIC-3D‟ (version 7.2.4) is a 

commercially available software with the DIC algorithm.   
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Figure 3-1, Stereo DIC set-up 

 

 

Figure 3-2, Working principal of DIC - The tracking of the “blue box” subset (left), the 

region of subsets will eventually form a field of displacement vectors, “red arrows”, that will 

be used for strain computation (right) 

3.2.2 Sample preparation 

The first step in using stereo DIC system is to know how to apply speckles pattern on the 

specimens. There are several methods to apply speckles pattern on the experimental sample. 

The speckles pattern should be random and have good contrast against the background (Reu, 

2015). Some application methods are able to produce fine speckles with a size of less 1mm
2
, 

while some are only able to produce a large speckle pattern.  

Deformed subset Original subset 
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In this study, three methods were trialled, as shown in Figure 3-3. One of the methods 

is the airbrush method. An airbrush can produce very fine speckles, even on small specimens. 

Fine speckles on small specimens will improve the spatial resolution of the DIC data. The 

second method was to use an aerosol paint spray (black ink), which is commercially available. 

The aerosol paint spray method is able to produce very fine speckles for small specimens as 

well. The third method was the toothbrush method, in which the speckle pattern is applied 

through flicking the bristles of the toothbrush after dipping in ink. The size of the speckles is 

slightly larger using this method.   

The airbrush and toothbrush method require the preparation of the ink. The colour of 

the ink is essential, as the speckles on the specimen should form a good contrast during image 

correlation stage. In this study, the finger pad and forearm (Chapter 4 and 7) and silicone 

hemi-spheres (Chapter 5) have a light-coloured background. Therefore, a black water-based 

ink (crafters acrylic paint, DecoArt Inc., Stanford) was used, mixed with a paint thinner at a 

ratio of 1:3. Then, the paint was to first applied on a piece of paper from a distance, 

approximately 20-30cm and 3-5cm for the airbrush method and toothbrush method 

respectively. This was to test out if the speckles sizes were suitable for the sample. When the 

speckles sizes were satisfactory and consistent on the paper, the speckles could then be 

applied on the sample as Figure 3-3 shows. 

In summary, every speckles application method will be acceptable as long as the 

speckles applied form a good contrast with the background (Reu, 2015).  
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Speckles application 

method 
Outcome (Topview) Speckles relative size 

Airbrush 

 

Very Fine 

Aerosol paint spray 

 

Fine 

Toothbrush 

 

Least fine 

Figure 3-3, The size of the speckles using different speckle application methods (on a silicone 

hemi-sphere) 

3.2.3 Camera set-up 

To start using the stereo DIC system, the cameras should be correctly set-up based on the 

experiment set-up. Throughout the set-up, VIC-Snap (Columbia, Correlated Solution), an 

image acquisition software, was used to monitor the live image set captured by the cameras. 

There are a few set-up parameters that need to be considered before setting up the cameras.  

12mm 
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Firstly, the stereo angle between the cameras, illustrated in Figure 3-4. The stereo 

angle should be chosen between 20° and 60° (Reu, 2012). The out-of-plane measurement is 

more accurate with a wider stereo angle while a narrower stereo angle gives less projection 

errors.  

The next set-up parameter to be considered is the distance between the cameras and 

the specimen. Ideally, the specimen should roughly fill up the field of view of the cameras. If 

the distance between the cameras and the specimen is too short, then the specimen will be 

larger than the field of view of the cameras. This will cause the DIC data to be localised on a 

small region of the specimen. On the other hand, if the distance between the cameras and the 

specimen is too far, then the specimen will be smaller in the field of view of the cameras. In 

this case, the spatial resolution of the DIC data will be reduced. In addition, the deformation 

of the specimen should also be taken into account because the deformed specimen must 

remain in the field of view of the cameras. For instance, the silicone hemi-spheres (Chapter 5) 

with low Young‟s modulus will be more susceptible to high deformation. Therefore, the 

silicone hemi-sphere should only fill up roughly half of the field of view of the cameras.  

Before adjusting the focus of the cameras, the aperture of the lens should be turned to 

the largest possible. This will help in finding a good focus more easily. After the focal length 

has been fixed, then the aperture of the lens can be adjusted to the appropriate setting. This is 

illustrated in Figure 3-4.  

 

Figure 3-4, Stereo camera set-up terminology 

3.2.4 Calibration 

After the cameras are set-up, the next step is to perform the calibration for the cameras. 

Unlike the 2D-DIC, where the calibration only requires measuring the ratio of the actual 

Camera 2 Camera 1 

Stereo angle, θ Focal length 

Depth of field 

Silicone hemi-sphere 
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distance to the pixels dimension in the image, 3D-DIC requires a more sophisticated 

calibration. A calibration grid is required for the calibration of the stereo DIC. The calibration 

grid consists of an array of dots with fixed distance between each dot. Among the dots, there 

are three distinctive hollow marker dots (highlight using red circles), which the Vic-3D 

software will track during the calibration process, as shown in Figure 3-5. The calibration 

grid should also roughly fill up the field of view of the cameras at the same focal plane as the 

specimen that consist of all three hollow maker dots because the calibration algorithm is 

designed to track the three hollow marker dots before tracking other dots. Therefore, if the 

tracker dots are too small, then the Vic-3D software will not able to find the dots while if the 

tracker dots are too big then calibration will be unsuccessful.  

In the acquisition stage of the grid images, it is typical to acquire 15 to 20 sets of grid 

images. But, it is better to acquire abundant grid images because this allows poor images of 

high calibration score (red) to be discarded as shown in Figure 3-5. The grid images captured 

should consist of the grid in various poses that include significant grid rotation about all 3 

axes and moving closer and further away from the cameras. These will help in estimating the 

perspective information, aspect ratio and distortion accurately.  

The Vic-3D will give a calibration score, which is the standard deviation of residuals 

for all views (Vic-3D Testing guide v7). If the final calibration score is green, then the 

calibration can be accepted and the user can proceed with acquiring images of the specimen 

that under consideration.  

 

Figure 3-5, Calibration grid (11*10 dots with 2mm space between each dots) with three 

distinctive hollow marker dots (left) Calibration score (right) 

Calibration score 

Distinctive markers 

Calibration grid 
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3.2.5 Data Collection 

The next stage involves image acquisition of the specimen undergoing deformation in an un-

deformed state. For the Vic-3D system, the image acquisition of the specimen is achieved 

using Vic-Snap, which is an image acquisition software developed by Correlated Solutions. 

The only setting that required attention is the image acquisition rate or the frame rate. This is 

highly dependent on the type of camera. The maximum frame rate of the 3D-DIC system in 

this study is 8 frames per second.  

3.2.6 Image Correlation  

A 3D-DIC system gives two pair of images showing an undeformed and a deformed 

specimen. The image correlation algorithm will compute the position/displacement field of 

the specimen for each pair of images, which is similar to 2D-DIC. Then, the 3D-DIC 

algorithm could generate the 3D position/displacement data by triangulating the two pairs of 

images using the calibration that has been set-up previously. The 3D displacement field can 

then be used to compute the surface strain of the specimen. 

In order to correlate images using VIC-3D, an area of interest must be defined, as 

shown in the transparent red box in Figure 3-6. Then, the appropriate subset size and step size 

can be selected. The subset size controls the partial region of the image that is used to track 

the displacement between the images (Vic-3D reference manual, 2010). As such, the subset 

size has to be large enough to contain some distinctive speckles pattern. In addition, the 

subset size also directly affects the spatial resolution of the DIC data, which is shown in 

Figure 3-7.  

The step size controls the spacing of the points that are analysed during correlation 

(Vic-3D reference manual, 2010). If a step size of 1 is selected, then the correlation analysis 

will be performed at every pixel inside the area of interest. However, a lower step size has a 

very high correlation analysis time because the analysis time varies inversely with the square 

of the step size. As a trade-off, the step size selected is either half of the subset size selected 

or less.   

For the strain computation, the settings that require attention are the filter size and the 

strain tensor type. Filter size is required for smoothening of the strain data, which the total 

smoothing area is the multiplication of filter size and step size. The smoothened area is also 

known as the virtual strain gauge size. If the virtual strain gauge size is too small, the DIC 

data will become noisier. On the other hand, oversized virtual strain gauge will produce 
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erroneous strains for specimen with complicated geometries, for instance, a curved surface 

specimen such as silicone hemi-spheres. In this study, the Green-Lagrange strain tensor was 

chosen throughout the study because the spatial coordinates of the specimen change with 

time. If the correlation is successful, a full field displacement/strain DIC data can be 

presented, as shown in Figure 3-8.  

 

Figure 3-6, Area of interest selected 

 

Figure 3-7, Selected subset size within the area of interest (a) 41×41 pixels (b) 81×81 pixels 

(a)                                                            (b) 

Area of interest 

selected 

Silicone hemi-sphere 
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Figure 3-8, The first principal strain of a silicone hemi-sphere (Chapter 6) 

3.2.7 Strain Analysis 

There are generally two types of strain measure for hyperelastic material, which are Euler 

Almansi strain and Green-Lagrange strain. The first strain measure is Eulerian based while 

the latter is Lagrangian based. Eulerian based strain measure tracks a spatial point across at 

different time points while the Lagrangian based strain measure tracks a material point at 

different time points. Therefore, a Green-Lagrange strain tensor is chosen because the DIC 

software tracks the material points (speckles) on the specimen. 

The Green-Lagrange strain tensor, E, was calculated based on a deformation gradient 

tensor formulation for motion kinematics mapping from a reference to a deformed 

configuration (Parsons et al., 2004; Sutton et al., 2009).  

    
 

 
    

         
 

 
        Equation 3-1 

where    is the Green-Lagrange strain tensor of point i of the random pattern,    is the 

corresponding deformation gradient based on the reference frame,    is the right Cauchy-

Green deformation tensor,   is the unit matrix. 

The matrix components of tensor E are given by: 

 [ ]  [
      

      
]  Equation 3-2 
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Note that tensor components in the Equation above are referred to pattern surface and 

hence evaluated on two-orthonormal local axis X, Y tangent at each point of the pattern. Out-

of-surface strains are considered to be negligible versus computed membrane (surface) strains, 

according to the classical hypothesis of thin layer surface kinematics (Timoshenko & 

Woinowsky-Krieger, 1959).  

As the matrix [E] is symmetrical, by definition Eyx=Exy. By introducing eigenvalues λ 

in the strain matrix, which by mathematical definition are principal strains when the 

determinant of the matrix becomes zero, which is in associated principal strain directions, the 

shear components Exy are null.  

 [
        

        
]     Equation 3-3 

The principal strains E1 and E2 were computed from the characteristic polynomial, as 

shown in Equation 3-4. 

         (     )     
    Equation 3-4 

Solving the characteristic polynomial of Equation 3-4 will give:  

            
       

 
 √(

       

 
)
 

    
  Equation 3-5 

     are eigenvalues of matrix E and called principal strains.  

3.2.8 Post-processing 

Successful correlation can give the full field displacement data U, V and W of the specimen. 

Full field strain data Exx, Eyy, Exy, E1 and E2 can be presented in contour terms as well. 

However, due to the complex shape geometry of the specimen (curved surface) in this study, 

the 1
st
 principal strain and 2

nd
 principal strain are often used to describe the strain behaviour 

of the specimen. This is also due to the fact that the reference axes of the full field strain data 

are localised. The X, Y and Z-axes in Figure 3-8 are used only to plot the shape of the 

specimen.  

 As the 3D-DIC system captures images at real-time with a frame rate at 5fps, so this 

means that the strain behaviour of the specimen is registered every 0.2s. This could help 
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visualising the viscoelastic property of the soft material specimen especially when the soft 

material recovers from deformation.  

3.3 Optical Coherence Tomography 

3.3.1 System overview and set-up 

Optical Coherence Tomography (OCT) is a non-invasive imaging technique that can take 

images that show the surface and subsurface morphology of biological tissues. The working 

principal of the OCT technique is dominated by interferometric methods. Infrared light is 

split into two paths as shown in Figure 3-9. The first path launches into the sample and the 

second path goes to a reference mirror. The combination of lights scattering in the sample and 

the reference generates a two dimensional image (Fercher, 2010). Normally the OCT has a 

penetration depth of 1 - 2 mm in a sample with varying path length. 

The morphology and the structure of the human skin (Chapter 5 and 7) were imaged 

using clinically approved Vivosight from Michelson Diagnostics (Kent). The Vivosight 

system is a Fourier domain OCT with a 20kHz swept source diode laser at 1300 nm centre 

wavelength. OCT is able to present different image results depends on the types of scanning, 

which are known as A-scan, B-scan and C-scan. A-scan is the abbreviation for axial scan that 

shows the intensity of the reflected optical amplitude (described as gray value) along the 

distance (pixels) on the axis of the light propagation, as shown in Figure 3-10. A B-scan gives 

the cross-sectional images of the specimen whereas C-scan is a volumetric scan that uses 

multiple B scans to form a 3-dimensional scanned specimen, as shown in Figure 3-10.  

The Vivosight OCT has a 7.5µm lateral and 5µm axial resolutions with an A scan 

image capture rate of 20 frames per second with each image of 1342×460 pixels. The hand 

held probe of the Vivosight OCT system has a visible red spot that is used to position the 

scan on the required area of the skin. In addition, the live imaging of the OCT software can 

be used to further pin point the region for imaging. The probe was fixed in a microscope 

holder to improve the stability through the scanning process, as shown in Figure 3-11. There 

is a method to make sure that the resolution of the image is a correct representation of actual 

magnitude of the measurement. The user can first capture an image by aligning the scanning 

region to a small rectangular piece of paper with a set length of less than 6mm. Then, ImageJ 

can then be used to measure the length of the paper that had been scanned.  
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The hand held probe “standoff”, as shown in Figure 3-12, is removed to prevent a 

physical contact with the human skin (Chapter 4) as the contact will affect the natural 

stretching of the human skin at different postures. The probe standoff was removed in the 

finger pad glass interaction experiment (Chapter 7) because the physical contact between the 

standoff and the glass will affect the force behaviour and the surface strain of the finger pad. 

Therefore, the working distance between the probe and the specimen is adjusted using a 

microscope holder to get an optimum B-scanned OCT image.  

 

Figure 3-9, Working principal of an OCT system (Liu, 2013) 

 

Figure 3-10, Illustration of  A-scan, B-scan and C-scan (Kraus, et al., 2012) 
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Figure 3-11, Vivosight OCT set-up 

 

Figure 3-12, Removing the probe standoff 

3.3.2 OCT image analysis 

B-scan images obtained from OCT measurements were first converted to single tag image 

file format (tiff) file by using an image-processing-software ImageJ from ImageJ Developers. 

Next, a Matlab algorithm (Matlab version R2015a) was used to identify the boundary lines of 

the skin layer. The Matlab algorithm was developed by a post-doctoral researcher and a Ph.D. 

student (Maiti et al., 2016).  

The surface is identified in each image (yellow line in Figure 3-13(a)) and the dermal-

epidermal junction (DEj) (green line in Figure 3-13(a)). However, it should be noted that the 

layer between the surface boundary line and dermal-epidermal junction (DEj) is still under 

debate as to whether this layer is stratum corneum or epidermal layer. The boundary lines 

Probe 

“standoff” 
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identified are used to determine the roughness of the skin or the dermal-epidermal junction 

(DEj). It is then used to study the morphological change of the skin. This identification 

method is based on the change in the gray value in the light intensity profile from the A scan 

(Kraus et al., 2012).  

 

Figure 3-13, Procedure for determining the epidermis thickness (a) the boundary line 

detection for stratum corneum (yellow line) and dermal-epidermal junction (green line) (b) 

thickness determination of epidermis (in pixels) based on skin layers detection 

The Matlab algorithm uses anisotropic filtering to remove the speckle noises from the 

images, using priory knowledge of the multiple channel foci in the multi-beam OCT. A first 

mean filter is used to remove speckle noise from the images. First, a proprietary filter is used 

to blend the four multi-beam OCT channels, which maximises speckle suppression while 

maintaining resolution and contrast. A second mean filter is then used (chosen for simplicity 

and speed) which is not uniform in shape, having a greater size in and giving greater weight 

to pixels in the X and Y dimensions (i.e., laterally). This filter has been chosen to preserve 

resolution in the axial dimension and therefore minimise blurring of the interface between the 

epidermis and dermis.  
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The image is then processed using two separate algorithms, in which the first of these 

uses an edge filter designed to identify the boundary line between the air and the stratum 

corneum by targeting the edge spike combination caused by the sharp change in refractive 

index. Candidate edges exceeding a threshold (greater than 30 pixels in size) are recursively 

used to calculate a confidence value for each measurement based on surface smoothness and 

edge-fit. This confidence is used to negate the effect of surface artefacts caused by overlaying 

hairs or surface “flare” or reject measurements if no satisfactory solution can be found. 

Finally, the point in each image column with the greatest confidence factor is chosen. 

The second algorithm was designed to detect the contrast change at the dermal-

epidermal junction (DEj), where the image changes in character from the grainy 

keratinocytes of the spinosum to the smoother, mottled and brighter papillary dermis 

(Abignano et al., 2013). At the position of the meeting of these two skin layers, a hypo-

reflective region (typically visible as only a line in OCT images of this resolution) is present, 

due to the relatively high nuclear-cytoplasmic ratio within the basal membrane (Coleman et 

al., 2013). Detection of the candidates for this surface is selected in a similar manner to the 

algorithm used to detect the skin surface. 

No direct validation exists confirming the selection of the correct morphological 

feather in this step, but widespread consensus of its identity is present in literature, based on 

histology correlation (Coleman et al., 2013) and, in the case of pathological morphology, 

modification of the DEj in a manner predicted by knowledge of the condition as investigated 

by Pomerantz et al. (2011), Sattler et al. (2013), Alawi et al. (2015) and Ulrich et al. (2015).  

In addition to boundary segmentation of stratum corneum and DEj, the algorithms 

were programmed to determine epidermal thickness, skin surface roughness and geometrical 

parameters of the dermal-epidermal junction roughness. To account for any possible skin 

curvature in the OCT images, the epidermal thickness was calculated by measuring the 

perpendicular lines (approximately 224 lines per mm) between the 3
rd

 order polynomial fitted 

stratum corneum and fitted dermal-epidermal layer, as shown in Figure 3-13(b), on the basis 

of a locally weighted fit and a 5-point moving average filter (Matlab command loses with 

smoothing parameter of 0.1). Epidermal thickness distribution is shown in boxplots and data 

reported as mean thickness ± 1 SD.  

To remove the natural curvature from the surface topography, discriminate between 

waviness and true surface roughness (topography profile decomposition in waviness and 
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roughness) and be able to reliably determine the geometry change of DEj, the skin line 

profiles of SC and DEj layers were trend removed by subtracting a 3
rd

 order polynomial 

curve fit of the topographical profile from the full profile as shown in Figure 3-13. The 3
rd

 

order polynomial curve fits were selected based on sensitivity analysis of a close match to the 

trend, and removal of unnecessary undulation in the skin, not required for the trend 

calculation. A third polynomial fit was found to describe best the natural curvature of the 

OCT images. Higher order fits did not further improve the fitting.  

Then, after converting image pixels into distances by dividing the pixel numbers by 

the image resolution (230 pixels/mm), the skin surface roughness and geometry parameters 

were determined using DIN ISO 1302 standard definitions for arithmetic mean roughness Ra 

and 10 point roughness depth Rz as shown in Equation 6 and 7. 

The average surface roughness is defined as: 

    
 

 
∑ |  |

 
     Equation 3-6 

where   is the sample length (total image pixel number),    is the vertical pixel distance from 

the mean line to the i
th

 data or image pixel point  

Rz represents the average maximum height of the topographical profile over five 

equal and consecutive sample length periods, into which the full profile as shown in figure 32 

was divided per following definition. The roughness parameters are presented as mean ± 1sd.  

    
 

 
∑    

 
    Equation 3-7 

                       Equation 3-8 

where     is the maximum profile height    for the i
th

 sampling length 
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Figure 3-14, Extracting the roughness (red lines) from topographical skin profiles (blue lines)  

of (a) stratum corneum and (b) dermal-epidermal junction 

3.4 Confocal microscopy 

3.4.1 System overview 

A confocal microscope is a scanning microscope, similar to a scanning electron microscope, 

which scans the samples with a focused beam and builds up the image point by point as 

Figure 3-15 shows. However, the main characterization of confocal microscopy is that there 

is a pinhole in front of the detector (a photomultiplier tube or PMT). Due to the small pinhole, 

only laser is able to give enough light energy into the small spot. Also, multiple lases of 

different wavelengths can be used to give a range of wavelengths for multiple fluorescence.  

The main advantage of the pinhole is to smear out out-of-focus light from going 

through PMT. Therefore confocal image only contains in-focus information, increasing the 

resolution and quality of the images. In addition, by collecting a series of images, a full three-

dimensional representation of the specimen can be collected. By using respective software of 

the confocal microscopy, the 3D images can be manipulated, controlled and provide different 

views on the specimen. However, samples preparation is required before using the confocal 

microscope, which is the dyeing of the biological samples with fluorescent dyes. This can be 

done by immersing the biological samples in a fluorescent dye solution.  
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In this study, a fluorescent dye named Eosin B was used to dye the porcine aorta 

samples and the confocal microscopy used in this research is Spectral Confocal & 

Multiphoton System Leica TCS SP2. 

 

Figure 3-15, The structure of standard confocal microscopy (Rossetti et al., 2013) 

3.4.2 Eosin B and Amino Acid Composition of Porcine Aorta  

Eosin B is one of the derivatives of Eosin fluorescent dye. Although Eosin was used 

previously in a study to stain elastin fibres, however it was not mentioned which Eosin 

derivative was used (Megens et al., 2007). Moreover, Eosin B is used to stain cytoplasm and 

proteins like collagen, which contradicts the previous study. Therefore, it is important to 

know which type of fibre Eosin B stains. 

Based on Waheed‟s study, it is identified that Eosin B is able to target three types of 

amino acids, which are histidine, arginine and lysine (Waheed et al., 2000).  

Multiple studies show that collagen has a small portion of histidine, arginine and 

lysine across a range of amino acids tested while elastin on the other hand has less or none of 

the amino acids mentioned above. In addition, a porcine aorta wall has a sufficient amount of 

histidine, arginine and lysine as Table 3-1 shows (Stein & Miller, 1938; Zeeman et al., 1998; 

Grant, 1966).   
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It can be assumed that Eosin B is able to stain porcine aortic wall, which could 

comprise both collagen and elastin fibres. This would be further discussed in section 8.4.1.  

Eosin B was chosen for this study because it is commercially available and easy to get. 

There are more specific fluorescent dyes that targets collagen fibres. However, the supply 

was highly limited at the time of the experiment.  

Table 3-1, The amount of arginine, histidine and lysine in pig collagen, pig elastin and aortic 

wall represented as the number of residues per 1000 amino acids [n/1000] (Zeeman et al., 

1998) 

 Arginine Histidine Lysine 

Pig collagen (average) 49 5 33 

Pig elastin (average) 8 0 4 

Aortic wall 28 7 27 

 

3.4.3 Image Analysis Using Fiji (Directionality Plugin) 

In this study, Fiji software was used for image analysis. The area of interest from the images 

(tissue fibres) was the preferred direction of the tissue fibres, which serves to indicate the 

ability of the tissue fibres to recover to their undamaged state. As such, the directionality 

plugin was used at this stage to infer the preferred orientation of structures present in the 

input images. This plugin is able to compute a histogram indicating the amount of the 

structure in a given direction for one image, which is called “Directionality Histogram”, as 

shown in Figure 3-16. 

The software can also analyse the tissue fibres orientation in batch, as shown in 

Figure 3-17. This is especially useful when Z-stack scan is used where images are taken with 

vey small increment in z-axis. The plotted directionality histogram should represent the 

whole Z-stacked scan, as shown in Figure 3-17. The blue lines represent the images at or near 

surface section of the specimen, green lines are from the images in the middle section of the 

Z-stack scan and brown lines represent the lowest part of the Z-stack scan.  

There are two useful outcomes of the directionality plugin process for the later stage 

of analysis. First, the directionality histogram that shows the dominant orientation across the 

range of directionality angle of -90  to 90  under “direction” tab as shown in Figure 3-18. 

Second, a table that shows the peak directionality angle of the image, dispersion, amount and 
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goodness of the image as shown in Figure 3-16 and Figure 3-17. The particular sections of 

interest are peak directionality and the quality of the image. The quality of the image implies 

the quality of the fit, in other words, it shows how credible the result is. The highest quality 

value is “1” (highest credibility) and “0” for the lowest credibility.  

The main concept of using Fiji to analyse the confocal images in this project (Chapter 

8) was to determine the orientation of the tissue fibres before and after the friction induced 

damages were applied on the porcine aorta. The orientation of the fibres can be analysed as a 

whole value before and after damages and also how the orientation of tissue fibres changes at 

different layers of the porcine aorta specimen.  

 

Figure 3-16, Outcome of Fiji – directionality image analysis of one image 

 

Figure 3-17, Outcome of Fiji – directionality image analysis of a group of images (Z-stacked 

scan) 
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Figure 3-18, The orientation map of the outcomes 
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4 Chapter 4 

 

 

 

 

 

 

 

Interaction between finger pad and transparent glass 

plate 

 

 

 

 

4.1 Introduction  

To date, there have been very few studies that look into investigating biotribology problems 

using multiple imaging techniques. Additionally, even less studies have focused on obtaining 

the strain distribution profile of a finger pad in contact with another material experimentally. 

This work used two imaging techniques that give different visual results to study the finger 

pad sliding interaction with a glass plate. Firstly, Digital Image Correlation (DIC) is able to 

show the strain field on the finger pad throughout the sliding interaction while Optical 

Coherence Tomography (OCT) shows the subsurface morphology of the finger pad. This 

work will give some new insights on how the finger pad deforms and is strained in response 

to the sliding glass.   
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4.2 Aim and objectives 

The aim of this work was to determine if there is any correlation between the frictional 

behaviour and the strain behaviour of the finger pad during sliding interaction with a smooth 

glass plate.  

The main objective of this work was to investigate the feasibility of using 3D-DIC on 

sliding interactions. Other objectives include obtaining the coefficient of friction of the finger 

pad in response to the stiffness of the finger pad or the normal load applied, monitoring the 

change in moisture level of the finger pad of each experiment, obtaining the visual result of 

the strain on the finger pad while sliding and obtaining the visual result of the morphology of 

the sliding finger pad using OCT. 

Additionally, in order to understand the differences between a smooth and a grooved 

plate, a pilot study was done to investigate the morphological change of the finger pad when 

slid across a grooved plastic plate. 

4.3 Methodology 

4.3.1 Friction test set-up 

The friction test was done with 3D-DIC and OCT separately. In other words, the same 

friction test was repeated using different imaging techniques. The friction tests were carried 

out to study the frictional behaviour of the finger pad by means of coefficient of friction. 

Each friction test was done to determine how normal load, finger pad stiffness and moisture 

level would affect the coefficient of friction and other dependant variables. Other dependant 

variables were measured, such as the strain profile or distribution, surface roughness and 

contact area, using imaging techniques.  

The left index finger pad of a volunteer (age 25, male) was loaded against the glass 

plate from the experiment set-up (Figure 4-1) through a finger holding rig (Figure 4-2). The 

interaction forces between the finger pad and the glass plate (average thickness of 396µm) 

were recorded through a force plate (AMTI), which is shown in Figure 4-1. The normal loads 

applied on the glass plate were 0.5N, 1N, 2N and 3N, which were within the low normal load 

region (Liu, 2013). After the desired load had been achieved and stabilised, the glass plate 

was slid against the finger pad. The movement and the speed of the glass plate were 

controlled through the dynamic rig. The average speed of the sliding plate was 0.5mm/s. 

After the sliding had stopped, the set-up was left for more than 3 seconds or until there was 
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no significant change in force between the finger pad and the glass plate. The load would 

only be taken off after that. 

The finger pad sliding experiments were done for two types of finger condition: a 

finger pad in a natural state that was not treated with any water, ointment, hand cream etc. 

before the test and a soaked finger pad that was treated by immersion in a cup of water for 20 

minutes and left to acclimatise for 8 minutes.  

A thin glass plate was used in this finger pad sliding experiment so that the OCT 

could show scanned images of the finger pad interacting with the glass plate with higher 

quality. This is due to the properties of light that reflect and refract when passing through a 

transparent medium. As the glass material is highly reflective, thicker glasses will cause 

reflection of the glass or both glass and finger pad to overlay on the original image, which 

causes a drop in the quality of the images. 

In addition to the smooth glass plates, grooved plastic plates (made of polypropylene) 

were also investigated in this study. Different shape and size grooves were made to study its 

effect on the performance of the OCT and to see how the skin deformed around the grooves, 

which will be reflected on the quality of the images captured. The grooves were made by 

applying a certain amount of force on a cutting knife and sliding against the plastic plate. 

Sharp grooves were made by facing the edge of the cutting blade on the plate while facing the 

backside of the cutting blade on the plate made non-sharp grooves, which is summarised in 

Figure 4-3. The normal force and the friction force were not measured and investigated in the 

study of the interaction between the finger pad and the grooved plastic plate. 

The study protocol was approved by The University of Sheffield (Ethics Number 

002074). 

 

Figure 4-1, Illustration of the finger pad sliding experiment set-up 
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Figure 4-2, Finger holding rig 

Groove type OCT image 

Sharp groove 

 

Broken sharp groove 

 

Shallow groove 1 

 

Shallow groove 2 

 

Big groove 

 

Figure 4-3, OCT images obtained for a finger in contact with different types of grooves 

455µm 
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4.3.2 Water application to make a soaked finger pad 

In this study, the frictional behaviour of soaked finger pad was also investigated because skin 

hydration is one of the main interests in the biotribology study. It is important to know how 

the water was applied because different water application methods may yield different 

expectations on the skin moisture.  

The method of water application on the finger pad for the 3D-DIC test was slightly 

different to the other tests because 3D-DIC requires the application of speckles (black ink) on 

the finger pad to be able to track the displacement field of the finger pad. The moisture level 

of the finger pad was measured using a corneometer (Courage + Khazaka electronic GmbH). 

The illustration of the timeline of the water application during OCT and stiffness tests 

is shown in Figure 4-4 (a). The left index finger pad was first immersed into a glass of water 

for 20 minutes. The moisture level of the finger pad before and after the immersion was 

recorded. Then, dry and clean tissue was used to wipe off the excess water by dabbing on the 

finger pad. Next, the finger pad was left to acclimatise for 8 minutes and moisture level was 

measured. Finally, the soaked finger pad was ready for the OCT or the stiffness tests. After 

the tests, the moisture level of the finger pad was recorded again.  

The illustration of the timeline of the water application during 3D-DIC tests is shown 

in Figure 4-4 (b). The left index finger pad was similarly immersed into a glass of water for 

30 minutes. The moisture level of the finger pad before and after the immersion was obtained 

before using dry and clean tissue to wipe of the excess water. The speckles were applied 

immediately after the excess water had been removed. Then, the finger pad was left to 

acclimatise for 8 minutes. The moisture level of the finger pad before and after the speckles 

application was recorded. Finally, the soaked finger pad was ready for the OCT or the 

stiffness tests. After the tests, the moisture level of the finger pad was recorded again. 
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(a) OCT                                                            (b) 3D-DIC 

Figure 4-4, Timeline of the moisture measurement of (a) OCT and (b) DIC test 

4.3.3 Stiffness test 

The stiffness test was performed to measure the finger pad stiffness under a normal load. The 

current stiffness test set-up is meant to be convenient, portable and flexible to different 

experiments. The stiffness test set-up in this study is similar to an indentation test. However, 

the stiffness test uses a flat plate instead of an indenter probe in order to simulate the actual 

condition of the friction test as much as possible.  

The left index finger was located in the finger holder located and fixed on the MDD 

Manual Test Stand. A flat stainless steel plate was attached to a Mesmecin force gauge (500N) 

and the MDD Manual Test Stand (Figure 4-5). The face of the stainless steel plate was 

adjusted to be as close as possible to the tip of the finger pad without touching it, as shown in 

Figure 4-6. The force gauge and the displacement transducer were zeroed before acquiring 

the force magnitude every 0.10mm displacement increment. The stiffness of the finger pad 

was computed from the force-displacement graph obtained from the stiffness test. The first 
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test was done on a natural finger pad (temperature: 22.8°C, relative humidity: 47.5%) and the 

second test was done on a soaked finger pad (temperature: 22.8°C, relative humidity: 48.3%).  

 

Figure 4-5, The stiffness experiment set-up 

 

Figure 4-6, The relative position between the flat plate and finger pad 

4.3.4 3D-DIC camera set-up, calibration and data acquisition 

Detailed information regarding 3D-DIC set-ups and the development of the image analysis 

has been introduced in section 3.2.  

In the speckles preparation stage for the finger pad, droplets of black water-based ink 

(crafters acrylic paint, DecoArt Inc., Stanford) were distributed randomly on the finger pad 

through the flickering the bristles of an unused toothbrush as shown in Figure 4-8. The paint 

was left for approximately 1~2 minutes to dry.  

Next, the camera set-up included choosing the stereo angle of the cameras and the 

distance between the cameras and the object, which in this study, were 30° and 150mm 
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respectively (Figure 4-7). The details of the camera set-up can be referred to section 3.2.3 in 

this thesis. The distance was set between camera and the glass plate to ensure that the 

interaction between the finger pad and glass plate would not go out of focus.  

After the cameras were set, the next step is to calibrate the cameras to the DIC 

software. A grid size of 11×10 with 2mm spatial distance was selected in this study. The 

calibration score was 0.062 pixels which in in the green region. The calibration of 3D-DIC is 

done by placing the grid at the same focal plane of the material.  

The friction experiment was ready to start after the calibration. The acquisition rate 

was set to 5 frames per second. The acquisition was started before the finger pad came in 

contact with the glass and stopped after the finger pad was fully lifted from the glass. Then, 

the images were input into VIC 3D DIC software in which subset size, step size and filter size 

must be set (61×61, 7, and 15 respectively in this study) before running the software. The 

strain calculated was based on Lagrange.  

The DIC software correlates the deformed image and reference image that is un-

deformed and give the surface contour of the samples in terms of displacement and strain. 

During the post analysis, the strain along the X-axis or Y-axis can be extracted using the DIC 

software as well. 

It needs to be noted that using ink may have an effect on the surface properties of the 

human skin because ink can be treated as a third body layer or lubricant. Therefore, the ink 

applied in this study was minimised so that the ink has a lesser effect on the frictional and 

moisture data.  

The measurements were carried out at 26.6°C and 36-37% relative humidity.  
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Figure 4-7, Illustration of friction experiment set-up with 3D-DIC 

 

Figure 4-8, Finger pad with speckles 

4.3.5 Apparent contact area 

3D-DIC data gives a cloud of coordinates that represent the shape of the finger pad. When the 

finger pad is in contact with the plate, some coordinates change due to the deformation. So, 

the main concept of this measuring method is to find the coordinates at the boundary of the 

deformation. The collection of the coordinates will give us the shape and the apparent contact 

area of the finger pad. As the previous studies found, the real contact area of the finger pad is 

much smaller than the apparent contact area due to the finger pad ridges. The real contact 

area of the finger pad cannot be determined because the resolution of the coordinates is not 

fine enough to re-construct the geometry of the finger pad ridges. 
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The apparent contact area can be found using 3D-DIC imaging technique. It was 

determined by using a series of Matlab coding (attached in Appendix B) that is able to find 

the boundary line from the deformed shaped of the finger pad when in contact with the glass 

plate. The deformed shaped of the finger pad in contact with the glass plate is presented as 

Figure 4-9. The Matlab coding performs multiple differentiations and filtration to determine 

the two boundary points (the first and the last), for which the result is shown in Figure 4-10. 

Then the ellipse best-fit Matlab function can be used to determine the size of the contact of 

the finger pad in Figure 4-11.  

 

Figure 4-9, Illustration of (a) the deformed finger pad with slices and (b) a slice of position 

graph of deformed shape of the finger pad in contact with glass plate  

 

Figure 4-10, The process of finding the boundary points from Z position graph 

(differentiations and filtration) 
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Figure 4-11, The ellipse best fit of the boundary points of the contact area 

4.3.6 Optical Coherence Tomography 

Detailed information regarding OCT system and the development of the image analysis has 

been introduced in section 3.3.                      

The OCT system used in this study was a Vivosight (Michelson Diagnostics, Kent) 

and it was set-up as shown in Figure 4-12. In the data acquisition stage, A-scan (reflectivity) 

was used and the frame rate was set to 20 images per second. The images captured have a 

resolution of 1342×460 pixels. For stability, the hand held probe was fixed on the microscope 

holder.  

In the OCT experiment, the images were taken at two positions of the finger pad 

(Figure 4-13). The B-scan of the OCT was first used to scan the finger pad before it touched 

the finger pad. Then, the B-scan of the OCT was used continuously from the loading of the 

finger pad under the plate (no sliding at this point) to sliding and until the sliding stopped.   

The measurements were carried out at 20°C and 45-50% relative humidity.  
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Figure 4-12, Experimental set-up using OCT 

 

Figure 4-13, Scanning positions of the OCT on the finger pad 

4.3.7 Real to apparent contact area ratio 

By definition, the real contact area should always be smaller than the apparent contact area. 

Due to the limitation of the scanning range of the OCT, it cannot be used to determine the 

whole real contact area of the finger pad. Instead, Liu (2013) used OCT to determine the real-

to-apparent contact area ratio of the finger pad, as shown in Figure 4-14. The real-to-apparent 

contact area ratio is calculated by dividing dreal, which is the summation of d1, d2 and d3 in 

Figure 4-14, by dapparent.  
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Figure 4-14, Illustration of the finger pad loaded against a glass plate 

4.4 Results  

4.4.1 Stiffness of the a natural and a soaked finger pad 

The force-displacement graph of the finger pads shows a non-linear relationship as shown in 

Figure 4-15 (b) due to the viscoelasticity of the finger pads. The equation of best fit was 

applied as a polynomial function with a maximum power of 4. The condition of the finger 

pad has a direct effect on the force-displacement graph as the soaked finger pad requires a 

lower normal force to reach the same displacement as the natural finger pad. Additionally, a 

power equation of best fit was also applied on the normal load vs displacement data, as 

shown in Figure 4-16 (a). The differences between the polynomial equation relationship and 

the power equation relationship are discussed in section 4.5.3. 

 It should be noted that the stiffness values of the finger pads used in the remaining 

result sections are obtained from the polynomial equation relationship in Figure 4-15 (a). 

The stiffness of the finger pad, which is the gradient of a force-displacement graph, 

can be plotted against the change in normal load on the finger pad, as shown in Figure 4-15 

(b). The figure shows that there is a difference between the stiffness of a natural state finger 

pad and a soaked finger pad at the same normal load. However, this difference becomes 

smaller as the normal load increases. Both the natural and soaked finger pads have the same 

stiffness value when they are loaded at 5N. As this study only focused on the low normal load 

region (0N - 3N), it can be safely assumed that the stiffness of the natural finger pad is higher 

than the soaked finger pad throughout the experiments in this study.  
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Figure 4-15, (a) Force-displacement graph of the finger pads and (b) stiffness vs normal load 

graph using polynomial equation relationship 

 

 
Figure 4-16, (a) Force-displacement graph of the finger pads and (b) stiffness vs normal force 

graph using power equation relationship 

4.4.2 Force behaviour before, during and after sliding  

Figure 4-17 shows the changes in the behaviour of the normal forces applied and the 

frictional forces on the finger pad before, during and after being slid against a glass plate. The 

origin of the graph (when t=0s) was set at the time point when the glass was about to slide 

because the duration of the slide was the same for all finger pad experiments as the sliding 

distance and speed of sliding were fixed.  
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Three different states have been highlighted in Figure 4-17. The first state was set at 

the point where only normal load was applied and before the friction increased substantially 

due to sliding. The normal load was applied on the finger pad for a period of time to be 

stabilised. At this state, there should be minimal or no friction acting on the finger pad. There 

are some friction fluctuations before the state 1 due to involuntary finger pad movement. The 

second state is known as the steady sliding state, which only happens when the finger pad is 

fully slipped against the sliding glass. Before reaching the steady state, the friction increased 

sharply. After the whole contact has fully slipped, the friction would reach a steady friction 

value. The time used to achieve this state varies with the normal load applied, which ranges 

from 3s to 5s in DIC sliding experiments and 3s to 8s in the OCT sliding experiments. State 3 

is when the sliding stopped. When the sliding stopped, the friction tended to decrease because 

the finger pad was recovering from the sliding deformation due to its viscoelastic property. 

The normal load applied on the finger pad decreased initially after the sliding started 

and increased after a period of time. The main factor is due to the bending of the glass plate 

during sliding interaction. This curved parabolic normal load behaviour during sliding was 

not found in Liu‟s study (2013) and the normal loading in Liu‟s study was more consistent 

during sliding. As such, state 2 in the later sections was taken at t=19.5s, which was half of 

the sliding duration. The respective normal load at state 2 was recorded in Table 4-1.  

 

Figure 4-17, Force vs time graph of the finger pad in natural state loaded at 3N during the 

whole sliding interaction (3D-DIC) 
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Table 4-1, Instantaneous normal force at state 1 (static) and state 2 (dynamic) of finger pad 

 
State 1: Static  

(t=0s) 

State 2: Dynamic  

(t=19.5s) 

Natural finger 

DIC 

0.5 N 0.5 N 

1.0 N 0.9 N 

2.0 N 1.7 N 

3.0 N 2.3 N 

Soaked finger 

DIC 

0.5 N 0.6 N 

1.0 N 1.1 N 

2.0 N 1.7 N 

3.0 N 2.3 N 

Natural finger (Position 1) 

OCT 

0.5 N 0.6 N 

1.0 N 0.8 N 

2.0 N 1.6 N 

3.0 N 2.0 N 

Natural finger (Position 2) 

OCT 

0.5 N 0.4 N 

1.0 N 0.8 N 

2.0 N 1.4 N 

3.0 N 2.5 N 

Soaked finger (Position 1) 

OCT 

0.5 N 0.5 N 

1.0 N 0.7 N 

2.0 N 1.1 N 

3.0 N 2.0 N 

Soaked finger (Position 2) 

OCT 

0.5 N 0.4 N 

1.0 N 0.8 N 

2.0 N 1.6 N 

3.0 N 2.5 N 

 

4.4.3 Moisture level of the finger pad 

This section shows the overall change of the moisture level of the finger pad before and after 

of each test under a natural state or a soaked condition. For the soaked finger pad, Table 4-2 

also shows the moisture level before the application of water on the finger pad. The specific 

moisture levels of the finger pad are tabulated in Appendix D, like the moisture level of the 
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finger pad before and after the water application, and before and after the speckle application 

for a DIC test. 

Table 4-2 summarises the moisture levels of the finger pads throughout the test, which 

are the moisture level of the finger pad before water application, before the sliding 

experiment (after acclimatisation) and after the sliding experiment. The purpose of this table 

is to show how the moisture level of the soaked finger pad changed before the sliding 

experiment in comparison to a finger pad in natural state. This table shows that there is not 

much difference in the moisture level between the natural finger pad and the soaked finger 

pad. Even though the soaked finger pad had been immersed into a glass of water for 20 

minutes, the moisture level of the soaked finger pad before the experiment decreased after the 

acclimatisation of the finger pad. Then, the moisture level of the finger pad increased after 

the experiment regardless of the experiment type and the moisture state of the finger pad, 

which demonstrates the occlusion phenomenon of the finger pad (Adams, 2012). Occlusion 

occurs whenever the finger pad is pressed against a counter-face material and the water under 

the skin is forced onto the surface or sub-surface of the finger pad.   

It should be noted that the moisture level of the finger pad did become higher after the 

water application as the measurement was taken before the excess water was wiped off, 

which is shown in Appendix D. There was also a very small amount of wrinkling in the 

finger pad.  

It was expected previously that the natural finger pad and soaked finger pad would 

represent the dry and moist finger pads respectively. However, Table 4-2 shows that it is 

difficult to identify the dry and moist finger pads based on the moisture level measured 

before the experiment itself. Even though the moisture measurement was not able to properly 

distinguish a dry finger pad and a moist finger pad, the moisture level of the finger pad 

measured before the experiment could still be used as a benchmark in the post-analysis. 

Therefore, the moisture level of the finger pad was used to plot with the apparent contact area 

(measured from DIC data), real to apparent contact area ratio (measured from OCT data) and 

the shear force on the finger pad as shown in Figure 4-18 and Figure 4-19.  

Overall, the moisture level of the finger pad during the DIC test has a lower moisture 

values than the finger pad during the OCT test, where the natural finger pad has the most 

notable difference. On the other hand, the shear force on the finger pad seems to increase 
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with the increase of the moisture level of the finger pad if the shear data from both the Figure 

4-18 and Figure 4-19 are combined, although there are fluctuations in the shear data. 

In Figure 4-18, the apparent contact area of the finger pad decreases when a certain 

moisture level is reached. In Figure 4-19, the real-apparent contact area ratio might have an 

increasing correlation with the moisture level of the finger pad although the fluctuation or 

noise is quite obvious. Although it is difficult to draw a conclusion with certainty based on 

the dataset, this could be achieved by repeating the test with a wider population. 

Table 4-2, Moisture level of the stratum corneum of the finger pads in natural state or soaked 

condition in stiffness, 3D-DIC and OCT tests 

Test type 
Moisture 

state 

Static 

normal 

load [N] 

Moisture level of stratum corneum [AU] 

Before 

water 

application 

(After 

acclimatisation) 

Before experiment 

After 

experiment 

Stiffness 

test 

Natural - - 38.2±5.7 46±8.7 

Soaked - 46.8±7.3 30.6±3.1 42.6±3.3 

3D-DIC 

Natural 

0.5 - 17.4±1.7 18.2±3.1 

1 - 15.6±1.5 16.2±3.2 

2 - 14.8±1.3 17.8±2.2 

3 - 17.8±1.8 17.6±3.4 

Soaked 

0.5 44.8±4.3 25.0±4.9 28.0±6.4 

1 34.4±6.2 22.8±4.6 25.2±5.9 

2 38.4±1.8 16.4±4.8 16.0±2.5 

3 31.8±5.3 15.2±3.3 18.8±4.6 

OCT 

Natural 

0.5 - 35.8±4.2 42.4±6.4 

1 - 36.4±4.7 42.9±9 

2 - 36.7±5.3 44.3±8.3 

3 - 41.6±6.1 46.5±9.8 

Soaked 

0.5 34.9±3.8 23.7±4.7 27.6±5.3 

1 29.2±5.2 24.5±3.6 27.4±3.5 

2 29.2±3.8 26.5±2.4 32±5.2 

3 28.1±3.3 26±3.9 31±6 
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Figure 4-18, The relationship between the dynamic apparent contact area, friction force and 

the moisture level of the soaked finger pad before the sliding test with DIC 

  

 
Figure 4-19, The relationship between the dynamic apparent contact area, friction force and 

the moisture level of the soaked finger pad before the sliding test with OCT 

4.4.4 The influence of normal force and stiffness on the dynamic coefficient of friction 

Figure 4-20 (a) shows the relationship between the dynamic coefficient of friction and the 

normal load of the finger pad in both natural and soaked conditions using both imaging 

techniques (OCT and 3D-DIC). The overall pattern of the graph is similar to Derler & 

Gerhardt (2012), where there is a pool of coefficient of friction data that decreases with the 

normal load applied.  

 In general, both the shear force and dynamic coefficient of friction of the soaked 

finger pads from the OCT test is higher than the natural finger pads although there a few data 

points have fallen into the natural finger pad region. However, the dynamic coefficient of 

friction from all the soaked finger pad data points in 3D-DIC tests behaves like a natural 
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finger pad, as shown in Figure 4-20 (a) and (b). The moisture level of the finger pad could be 

the main cause of this behaviour because the soaked finger pad was drying out during the 

DIC test (see the moisture results in section 4.4.3) and the application of the speckle pattern 

applied on the finger pad during the sample preparation stage before the 3D-DIC test. This 

behaviour is further discussed in section 4.5.2.  

 In terms of the curve fitting, as the normal load is getting nearer to zero, the 

coefficient of friction increases. So, a power law equation is used for the curve fitting in this 

study. The curve fitting patter also looks similar to Derler & Gerhardt (2012) even though 

they expressed the coefficient of friction with the pressure applied. It is found that the 

exponent constant in the Figure 4-20  (b) is the subtraction of value 1 from the exponent 

constant in the Figure 4-20 (a).  

Next, the dynamic coefficient of friction was also plotted against the stiffness of the 

finger pads, as shown in Figure 4-20 (c). Similarly, this figure shows that the dynamic 

coefficient of friction decreases with the increase of the stiffness of the finger pads. In the 

case of the soaked finger during OCT test, the dynamic coefficient of friction decreases only 

after a certain stiffness value. 

 

 

  

 
Figure 4-20, (a) Friction force against normal load with the dynamic coefficient of friction 

(COF) against (b) normal load and (c) the stiffness of the finger pad  
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4.4.5 General strain and deformation behaviour  

Figure 4-22 show the 1
st
 principal strain E1 (tensile), 2

nd
 principal strain E2 (compressive) and 

shear strain Exy on the surface of the finger pad when loaded at 0.5N in static state. Figure 

4-21 is added to illustrate the global position axis of the finger pad and also the sliding 

direction of the glass plate while the finger pad was stationary. The irregular strain patterns or 

fluctuations in the strain distributions are caused by the involuntary or subconscious human 

motion during the experiment. The strain profile in the static and dynamic state were taken 

when t=0s and t=19.5s in the force vs time graph in section 4.4.2. They are state 1 and state 2 

of the force temporal evolution behaviour respectively.  

4.4.5.1 First principal strain, E1  

The strain distribution pattern shows that there is a pool of low 1
st
 principal strain field within 

the contact area that is near to the fingertip region, as shown in Figure 4-22. From the static 

state to the dynamic state, the size of the low strain field is smaller and nearer to the fingertip 

region.  

4.4.5.2 Second principal strain, E2 

Similarly, low 2
nd

 principal strain was more concentrated within the contact area, which is 

surrounded by high strain field in both the static and the dynamic states. The size of the low 

strain region increases from the static to the dynamic state.  

4.4.5.3 Shear strain, Exy 

In both the static and dynamic states, a shear strain pattern was formed by the negative and 

positive shear strain with each occupying one side of the finger pad. The negative and 

positive notions of the shear strain means that the surface of the finger pad was sheared in a 

clockwise and counter clockwise direction when viewed in the “+ ” direction.    

 

Figure 4-21, An illustration of the position reference axis (global) of the finger pad and the 

sliding direction of the plate 
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Figure 4-22, DIC result of the natural finger pad loaded at 0.5N with the respective strains 1
st
 

principal strain E1, 2
nd

 principal strain E2 and shear strain Exy 

4.4.6 The effect of normal load and the stiffness of the finger pad on the strain behaviour 

This section presents the strain line profile from a cross-section of the natural finger pad, 

along the   axis, to show how the normal load changes the surface strain behaviour of the 

finger pad, as shown in Figure 4-24. The remaining strain line profiles are shown in 
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Appendix C. The main advantage of the strain line profile is that it makes it easier to identify 

which region has a higher tendency to deform based on the change in strain values. The cross 

section of the finger pad is shown in Figure 4-23 and illustrates the top view of a finger pad 

in contact with a glass plate. The outermost boundary line (dark blue in colour) is the selected 

region of interest before the 3D-DIC correlation process. The area of the inner circle (pink 

region covered by dotted lines) is the area in contact between the finger pad and the glass 

plate. X, X‟, Y and Y‟ are the respective position points located at the intersections between 

the edge of the area in contact and   or   axes. In Figure 4-24, the most obvious change in 

strain distribution from static to dynamic state is the 2
nd

 principal strain. 

 Figure 4-26 presents the averaged strain values within the contact area of the finger 

pad that are plotted against the normal load and the stiffness of the finger pad. This figure can 

show the big picture in strain values between the natural and the moist finger pad. A linear 

equation with an intercept at y = 0 when x = 0 is used in describing the relationship between 

the average contact surface strain and the normal or the stiffness of the finger pad.  

4.4.6.1 First principal strain, E1 

The first principal strain, E1, is the maximum possible strain at a position point on a structural 

specimen. In the static state, there is a peak 1
st
 principal strain at the edge of the contact area 

near to the palm, as shown in Figure 4-24 (a). The peak strain value increases with the 

increase of normal load. In the dynamic state shown in Figure 4-24 (b), there is also a peak 1
st
 

principal strain at the edge of the contact area near to the palm but there are no considerable 

changes from the static state, which is also reflected in the change in average contact strain 

from a static state to a dynamic state, as shown in Figure 4-25 (a) and (b). The peak strain 

value still increases with higher normal load. 

4.4.6.2 Second principal strain, E2 

The second principal strain, E2, is the minimum possible strain at a point position on a 

structural specimen. In the static state, there is no obvious strain pattern in the 2
nd

 principal 

strain line profile of the finger pad Figure 4-24 (c). However, in the dynamic state, there is a 

negative peak strain value at the edge of the contact area near the fingertip. The peak strain 

value decreases with higher normal load, as shown in Figure 4-24 (d).  

 On the other hand, it is very difficult to see the average E2 has a straightforward 

relationship with the normal load or the stiffness of the finger pad in the static state and 

dynamic state, as shown in Figure 4-25 (c) and (d), and Figure 4-26 (c) and (d). 
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Figure 4-23 Illustration of finger pad from top view 

                                           Static State                         Dynamic State 

                                  

 

 

 

Figure 4-24, First principal strain E1 of the natural finger pad obtained along y axis in the (a) 

static and (b) dynamic state, second principal strain E2 of the natural finger pad obtained 

along y axis in the (c) static and (d) dynamic state, and the geometrical shape of the finger 

pad along y axis in the (e) static and (f) dynamic state 
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                                          Static State                                Dynamic State 

   

 

 
Figure 4-25, Average first principal strain E1 strain within the contact area of the finger pad 

from (a) static to (b) dynamic state, and average second principal strain E2 strain within the 

contact area of the finger pad from (c) static to (d) dynamic state when plotted against the 

normal load applied on the finger pads 
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                                            Static State                                Dynamic State 

  

  

 
Figure 4-26, Average first principal strain E1 strain within the contact area of the finger pad 

from (a) static to (b) dynamic state, and average second principal strain E2 strain within the 

contact area of the finger pad from (c) static to (d) dynamic state when plotted against the 

stiffness of the finger pads 
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magnitude of the normal load remains the same. On the other hand, the moisture level of the 

finger pad has increased after the sliding tests. 

Additionally, Figure 4-28 was plotted to show the linear relationship between the 

apparent contact area of the finger pad and the shear force acted on the finger pads. 

Static State                                             Dynamic State    

 
Figure 4-27, The relationship between the apparent contact area, moisture level of the finger 

pad and the normal load applied in (a) the static state and (b) the dynamic state  

 

 
Figure 4-28, The relationship between the shear force and the apparent contact area of the 

finger pads in the dynamic state 

4.4.8 Real to apparent contact area ratio of the finger pad 

It should be noted that the real-apparent contact area ratio of the finger pad can only be 

measured from the OCT data. A power-law equation can be used to describe the relationship 

between the real-to-apparent contact area ratio of the finger pad and the normal load, as 

shown in equation 4-1 (Liu, 2013). 
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       Equation 4-1 

where   is the real-to-apparent contact area ratio,   is the normal load,   is a constant and   

is an exponent. 

Figure 4-29 (a) and (b) show the change in real-apparent contact area ratio against the 

increase of the normal load applied on the finger pad in the static state and dynamic state 

respectively. In both states, the contact area ratios seem to increase with the normal load 

applied. Figure 4-29 also shows that the moisture level of the soaked finger pad was lower 

than the moisture level of the natural finger pad. Even though the moisture level of the finger 

pad whether “natural” or “soaked” is different, it is difficult to say for certain if the moisture 

level is affected by the sliding conditions. Therefore, more data is needed by performing tests 

on wider population.  

                                  Static state                                          Dynamic state 

 

Figure 4-29, The change of the ratio of the real against apparent contact area of the finger pad 

from the static state to the dynamic state with the normal load  
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decreases with the increase in normal load. Figure 4-30 (b) also shows that the roughness data 

is more concentrated at the low roughness region when the finger pad was at the dynamic 

state. This demonstrates that the sliding has made the finger pad flatter in the process. Finally, 

the figure goes on to show that the soaked finger pad has a higher roughness profile than the 

natural finger pad. This might mean that the water application has an effect that results in the 

change in roughness of the finger pad. 

                                          Static State                               Dynamic State 

     

  
Figure 4-30, The mean roughness, Ra, and mean roughness depth, Rz, against the normal 

load 
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Figure 4-31, OCT images of position 2 of the natural finger pad 

4.4.10 Morphological change of finger pad against grooved plate during sliding 

Figure 4-32 shows the morphological changes of the finger pad when the finger pad was slid 

against different types of grooved plastic plate. The white arrows are to show how the 

specific finger pad ridges move across the groove. It has shown that there was distinctive loss 

of visualisation of OCT images under the grooves for the “sharp groove”, “broken sharp 

groove”, “shallow groove 1” and “shallow groove 2”. The “broken sharp groove” OCT 
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images suffered the most loss of visualisation while the “big groove” suffered the least or no 

loss of visualisation.  

From the “big groove” OCT images, it can be seen how the ridge of the finger pad 

climbed up the groove before changing its morphology to suit the change of the geometry of 

the plate. Some OCT images from other grooves typed plates can somewhat show how the 

ridge of the finger pad get across the groove although the image quality is not as good as the 

“big groove”.   
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Figure 4-32, Sliding finger pad across different grooves 

4.5 Discussion 

4.5.1 Relationship between the frictional and the strain behaviour of finger pad  

In studying the friction interaction between a human skin and a counter-face material, various 

studies (Wolfram, 1983; Johnson et al., 1993; Adams et al., 2007) have suggested that the 

friction mechanism during the interaction of the two materials could be dominated by an 

adhesive mechanism (through shear stress) and/or deformation mechanism (through work lost 

or hysteresis). Adhesive mechanism that contributes towards the friction force is caused by 

the rupture of the interfacial junctions while the deformation mechanism is due to the 

hysteretic or interlocking effect that results from the deformation of the interacting material 

(Greenwood and Tabor, 1958; Adams et al., 2007; Derler et al., 2009; Tomlinson et al., 

2011a).  

In the case of the sliding a smooth plate across a finger pad, multiple studies 

concluded that the predominant friction mechanism is adhesion while the deformation 

friction is relatively small in comparison (Adams et al., 2007; Derler et al., 2009; 

Kwiatkowska et al., 2009; Tomlinson et al., 2011b; Liu, 2013). There are different methods 

in assessing the predominant friction mechanism. Firstly, Tomlinson (2009) had listed out the 

three conditions that will cause the deformation mechanism to be excluded as the 

predominant friction mechanism – low counter-face roughness, low normal load application 

(<3N) and no cyclic movements (backwards and forwards) during sliding, in which the 

current study has fulfilled all three of them. Alternatively, Derler et al. (2009) suggested a 

graphical method in assessing the predominant friction mechanism, which was to identify the 

exponents of the power-law relationship in the dynamic coefficient of friction against normal 

load graphs. Derler et al. (2009) found that the exponents of the adhesion mechanisms and 

deformation mechanism are -1/3 and 1/3 respectively. The range of the exponents in this 

study is -0.05 to -0.25 as shown in Figure 4-33, which could mean that the adhesion 

mechanism is the more dominant friction mechanism.  

 In the study of the strain behaviour of the human skin during sliding interactions, it is 

important to know which type of sliding test has been conducted. First testing type uses a 

rigid probe to slide across a human skin, forearm skin for instances, while the second type 

requires the human skin to slide across a rigid plate, for example, a finger pad, the side of the 
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hand etc. (Adams et al., 2007; Kwiatkowska et al., 2009; Tomlinson et al., 2011a; Liu, 2013; 

Derler et al., 2009; Delhaye et al., 2016).  

 In the case of the sliding a smooth plate across a finger pad in the direction away from 

the body, this study showed that the in contact region of the finger pad nearer to the palm has 

higher 1
st
 principal strain value while the opposite far end contact region near the finger tip 

has a higher 2
nd

 principal strain value, which corresponds to the finger pad in tension and in 

compression along the sliding direction. Delhaye et al. (2016) found that both strain 

amplitudes increased with the increase in normal force during sliding. Similarly, this study 

has found that the mean 1
st
 principal strain of the finger pad within the contact area (Figure 

4-26) increased with the magnitude of the normal load in both the static and the dynamic 

states. The mean 2
nd

 principal strain, however, only increased in the static state. In the 

dynamic state, the mean 2
nd

 principal strain remains at the same constant range regardless of 

the magnitude of the normal load. This is probably due to the increase of the 2
nd

 principal 

strain value at the edge of the contact area, which cancelled out the decrease of the 2
nd

 

principal peak strain values (Figure 4-24) in the dynamic state as the mean 2
nd

 principal strain 

averages the strain values within the contact area. From the static state to the dynamic state, 

the inputted shear load has a lesser influence on the strain behaviour of the finger pad than 

the normal load applied, which is evidenced from the small changes between the mean 

principal strain graphs in Figure 4-26. This might be caused by the surface condition of the 

finger pad, which will be further explained in the next section. For example, the speckles 

application and the moisture level of the finger pad.  

As such, this goes on to show that there are connections between the frictional and the 

strain behaviour of the finger pad as the normal load affects the strain behaviour of the finger 

pad whereas the shear load that caused sliding has a less notable effect on the change in the 

strain behaviour. However, more work is required to further understand the strain behaviour 

of the finger pad in response to a large range of normal loads during sliding as the current 

work only focuses on the low load region.  

Delhaye et al. (2016) also reported both the mean principal strain values (ranges from 

25% - 45% which the 2
nd

 mean principal strain values have been absolute) of the sliding 

finger pad, which are much higher than both the mean principal strain values in this study 

(ranges from 0.39% - 3.15%). This can be explained by the difference in the contact area in 

both studies as the finger pad contact area in Delhaye et al. (2016) study ranges from 100mm
2
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to 200 mm
2
 whereas the finger pad contact area in this study ranges from 80mm

2
 to 120mm

2
. 

As the adhesive friction force is proportional to the contact area of the finger pad (Liu, 2013), 

the finger pad will then have to undergo higher strain in order to gain enough horizontal force 

to break free from the adhesive friction force. Moreover, the finger pad in this study was 

applied with speckles whereas the finger pad in Delhaye et al. (2016) study did not. The next 

section will explain how the finger pad moisture and the speckles affect the frictional 

behaviour of the finger pad during sliding. Also, during the strain computation of the sliding 

finger pad in Delhaye et al.‟s study (2016), the un-deformed state of the finger pad was likely 

set as when the finger pad was in full contact with the plate before sliding, which is 

equivalent to the state 1 (Figure 4-17) of the finger pad in this study. It is important to know 

which finger pad state is set as the un-deformed state for the strain computation because the 

strain calculations are relative to the un-deformed state.  

 

 

Figure 4-33, Dynamic coefficient of friction against normal load of the natural and soaked 

finger pad 

4.5.2 Moisture level in human skin 

The moisture state of the finger pad plays a vital role in the sliding interaction between the 

finger pad and the glass plate because the frictional and the strain behaviour of the finger pad 

are influenced by the surface condition of the finger pad.  

This study shows that the soaked skin has higher dynamic COF than natural skin in 

OCT test. An outcome that is similar to the previous studies (Tomlinson, 2009; Adams et al., 

2012; Liu, 2013). However, the soaked skin behaves like a natural skin in 3D-DIC sliding test. 

The main reason could be that the bulk moisture level of the soaked finger pad has returned 

to the moisture level of a natural finger pad before the sliding experiment during the DIC test.  
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Although Table 4-2 has shown that the measured moisture level of the soaked finger pad 

before the experiment during the DIC test was somewhat similar to that of the OCT test. 

However, the measured moisture level only represents the moisture of the stratum corneum 

(the outermost layer of the human skin). This is further discussed later in this section. The 

time taken to prepare a soaked finger pad for the DIC test was longer (approximately 5 

minutes) than the OCT test because the soaked finger pad needed the speckles application. 

This period of time could be sufficient enough to increase the amount of water loss from the 

surface and sub-surface of the finger pad to the environment through evaporation. When a 

certain level of water loss amount is achieved, the soaked finger pad would behave like a 

natural finger pad during the sliding interaction. Also, the environmental conditions of the 

DIC test and the OCT test were different as well. The environmental temperature, where the 

DIC test was held, was 6.6°C higher and the difference in relative humidity was at least 8%. 

Therefore, the environmental conditions could have escalated the water loss rate of the 

soaked finger pad where the DIC test was held.  

Additionally, the frictional behaviour of the soaked finger pad during DIC test could 

due to the effect of the speckles pattern applied on the finger pad, which caused the surface 

condition of the soaked finger pad in 3D-DIC tests to be different from the soaked finger in 

OCT tests. The application speckles pattern has acted as a barrier between the finger pad and 

the glass plate. The region of the finger pad, where the speckles were applied, would behave 

like a natural finger pad because the black ink was hydrophobic. Therefore, this would 

prevent friction mechanisms, such as the capillary adhesion or the occlusion of the finger pad, 

from occuring during sliding (Dinç et al., 1991; Adams et al., 2012).  

 The monitoring of the moisture level of the finger pad throughout the sample 

preparation and the experiment has proven to be helpful as it shows how susceptible the 

moisture level of the stratum corneum layer is to the external and probably internal 

environment of the human skin, for example, the difference in the environmental temperature 

and the relative humidity when the tests were conducted and the period of acclimatisation that 

caused different amount of water lost from the finger pad in each test. 

This study also shows that the moisture level of a finger pad can be plotted with 

various variables that might influence the sliding interaction of the finger pad. Even though 

the moisture level of the finger pad cannot be measured in real time, using the measured 

moisture level before the experiment started has proven to be useful as a benchmark. The 
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main issue with the moisture level of the finger pad is nonetheless the methodology of the 

water application to control the moisture level of the finger pad because different 

methodologies may result in different frictional and strain behaviour. Past studies have had 

slight different approaches in applying water on the human skin. For example, Tomlinson et 

al. (2011b) used wet towels to achieve the moisture level desired before performing the 

friction test. On the other hand, Liu (2013) soaked the finger pads and performed the friction 

test without any acclimatisation period. Adams et al., (2007) also studied the effect of the 

soaked condition of the finger pad by dropping a few water droplets on the forearm skin 

while the spherical probe was still sliding across.  

In this study, the methodology of the water application focuses on the effect of long 

period of water soaking (20 minutes) in making a soaked finger pad and acclimatisation 

period (3 minutes) was included in the water application process to allow the surface 

condition of the finger pad to reach a steady state before the sliding tests. This study has 

found that the moisture level of the human skin after the acclimatisation would be lower than 

the initial state before the water application. The moisture measurements were measured 

using a corneometer (C+K, Germany) that has low measuring depth. Even so, both the 

stiffness and sliding test went on to show that this finger pad still behaved as a soaked finger 

pad, with the soaked finger pad from 3D-DIC tests being an exception. This means that the 

long water soaking process may have changed the bulk properties of the finger pad. So, the 

low moisture reading after the acclimatisation period may show that the water at the surface 

level of the finger pad evaporated during the acclimatisation period, without having a big 

effect on the bulk properties of the finger pad. Hence, this shows that the acclimatisation 

period is important in the study of the frictional behaviour of the soaked finger pad and this 

requires more work to further understand how the water evaporation during the 

acclimatisation period can affect the dynamic coefficient of friction to what extent. 

Figure 4-34 illustrates the main concept how the water is being transferred into/from 

the finger pad during the water application and the sliding test. This should explain the 

notable changes in the moisture level of the finger pad discussed previously. The current 

concept assumes the possibility of water being able to diffuse into deeper skin epidermal 

layer. Firstly, before the water soaking process, the finger pad is assumed to be a natural 

finger when a moisture reading is taken. Then the finger pad is soaked in the water for 20 

minutes and another moisture level is taken right after the finger pad was taken out from the 

water bath, which shows an increase in the moisture reading. However, the moisture level of 
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the human skin decreases after the acclimatisation period, and normally become lower than 

the moisture reading taken before the water application process. This has demonstrated that 

the water in the surface of the human skin is either evaporated into the atmosphere or further 

absorbed into deeper skin epidermal layer. Next, when the soaked finger pad was pressed 

down against the glass plate, the water in deep skin epidermal layer is being squeezed into the 

surface of the finger pad. Therefore, it will cause the increase of the friction on the finger pad 

through capillary adhesion or occlusion and the moisture reading at this point will be higher 

than the moisture level taken before the sliding test.  

There are also other studies that investigated the mechanisms of a wrinkly finger pad 

(Changizi  et al., 2011; Kareklas et al., 2013; Lin et al., 2015, Sáez & Zöllner, 2017). Even 

though the current study used the term “soaked finger”, the state of the finger was similar to 

that of a wrinkly finger because it was soaked for a long period of time. It is unknown why 

the finger pad of the current study did not exhibit a lot of wrinkles after a soaking period of 

20 minutes. So, this could belong to an individual case. By means of computational model, 

Sáez & Zöllner (2017) concluded that the wrinkly finger is potentially caused by both 

contraction of the deeper layer of the skin and also the swelling of the upper layer of the skin. 

Contraction of the deeper skin layer is often caused by the shrinking of the blood vessels 

while the swelling of the upper skin layer is often associated with the osmosis effect. Sáez & 

Zöllner (2017) justified the mechanisms of forming a wrinkly finger, it is not mentioned if it 

is possible for the water might diffuse into deeper skin layer.  

In the study of moisture of wrinkled skin, Lin et al. (2015) has measured the moisture 

of the finger pad before and after the soaking. It was found that the moisture level of the 

finger pad did not have much change from the soaking. However, the coefficient of friction 

of a soaked finger pad was higher than a dry finger pad. The study did not mention if the skin 

hydration was measured straight from the soaking or after the excess water was wiped off. 

Even if it is assumed that the excess water was wiped off, the moisture level of the finger pad 

in the current study still decreased by a considerable range in comparison to Lin et al. (2015). 

The only possible explanation could be the acclimatisation period in the current study 

because the finger pad was left to acclimatised for 8 minutes before performing the friction 

test.  

This study does not investigate a wet sliding condition because the DIC software is 

not able to track the movement of the speckles when there is a water film between the 
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interacting counter-faces. The images acquired would show a region of magnified speckles, 

normally at the edges of the contact, due to the properties of light travelling into a different 

medium. In addition, the speckles are very easy to fall off during the wet sliding.   

 

Figure 4-34, Moisture changes of the finger pad 

4.5.3 Force-displacement relationship of the finger pads 

Section 4.4.1 has shown that the force-displacement relationship of the finger pads can be 

described using either polynomial equation or power equation as shown in Figure 4-15 (a) 

and Figure 4-16 (a) respectively.  

From the perspective of the whole data set of the force-displacement graph of the 

finger pads, the polynomial equation can fit into the whole data nicely while the power 

equation can fit into the most part of the data as shown in Figure 4-35 (a) and (b) respectively. 

This is reflected in their respective R-squared values as well. The R-squared values of the 

polynomial equation fit are 0.99 for both types of finger pads and the R-squared values of the 

power equation fit are 0.96 and 0.98 for the natural finger pad and soaked finger pad 

relatively.  

When only low normal load region is investigated, both polynomial and power 

equation fits give similar stiffness prediction in response to the normal load applied on the 

natural finger pad. In the case of a soaked finger pad, the pattern of the stiffness prediction of 

the power equation is similar to that of a natural finger pad. On the other hand, by using 

polynomial equation fit, there is a region in the stiffness vs normal load graph where the 

stiffness of the soaked finger pad has a slow increase in response to the increase of the 

normal load, as shown in Figure 4-15 (b). The stiffness of the finger pad increases 

substantially if the normal load is increased further. 

The main advantage of using a polynomial equation fit is that it can fit the whole 

force-displacement data set, which the same reasoning was used in a study by Liu (2013) 

although the polynomial equation with the power of 2 was used. On the other hand, the power 

equation may have a better representation of the stiffness prediction in the low load region 
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because the pattern of the finger pad stiffness prediction is more consistent with the finger 

pads under different conditions (natural state or soaked condition). However, as discussed in 

section 4.5.2, the water application affects the bulk properties of the finger pad and the water 

loss starts from the surface of the finger pad, which is illustrated in Figure 4-34. Therefore, 

the region of the finger pad where the water is still trapped could have different stiffness from 

the region of the finger pad where the water is evaporated. If the soaked finger pad is further 

pressed during the stiffness test, the region of the finger pad where the water is still trapped 

will not further influence the overall stiffness of the finger pad. Therefore, the stiffness of the 

finger pad increases substantially again after a certain normal load value is achieved. 

 

Figure 4-35, The force-displacement graphs of the finger pads in a natural state and soaked 

condition using (a) a polynomial equation fit and (b) a power equation fit, which includes the 

data points in high normal load application 

4.5.4 Effect of stiffness on dynamic coefficient of friction of finger pad  

Previous studies have found that human skin friction is associated with the mechanical 

properties of the human skin itself (Johnson et al., 1993; Adams et al., 2007; Pailler-Mattei et 

al., 2007; Kwiatkowsa et al., 2009; Liu, 2013). Most importantly, various studies showed that 

the stiffness of the finger pad decreased with the increase of water in the human skin (Jemec 

& Serup, 1990; Hendriks et al. 2004; Boyer et al., 2009; Hendriks & Franklin, 2009). 

Therefore, a stiffness test was performed in this study to investigate how the stiffness would 

influence the dynamic coefficient of frictions of a finger pad.  

When the dynamic coefficients of friction were plotted against the stiffness, Figure 

4-20 (c) shows that the range of the dynamic coefficient of friction seems to converge to a 

certain value as the stiffness of the finger pad increases, which agrees with the results of 

0

2

4

6

8

10

12

14

0 2 4 6

N
o
rm

a
l 

lo
a
d

 [
N

] 

Displacement [mm] 

0

2

4

6

8

10

12

14

0 2 4 6

N
o
rm

a
l 

lo
a
d

 [
N

] 

Displacement [mm] 

0

2

4

6

8

10

12

14

0 2 4 6

A
x

is
 T

it
le

 

Axis Title 

Natural state finger Soaked finger

(a)                                                (b) 



108 | P a g e  

 

previous studies (Tomlinson, 2009; Liu, 2013; Derler & Gerhardt, 2012). However, in the 

case of soaked finger pad during OCT test, this study has found that the graphical pattern of 

the relationship between the dynamic coefficient of friction and the stiffness (and the normal 

load as well) was somewhat different, which the dynamic coefficient of friction increased 

sharply to a certain point at first. Then, it decreased similarly with other data sets (OCT 

natural finger, DIC natural and soaked finger), which the suggested a “power” relationship 

between the coefficient and the stiffness or normal load can be upheld. As shown in Figure 

4-20 (b) and (c), the dynamic coefficient of friction data points of the soaked finger pad 

during the OCT test fell below the natural finger pad region. Therefore, it could be an 

indication of severe water loss from the finger pad before or during the test, which caused the 

soaked finger pad to revert back as a natural finger pad.  

Undeniably, the dynamic coefficient of friction of the finger pad is not only 

influenced by the stiffness of the finger pad. So far, section 4.5.2 has shown that the water 

application method plays an important role where severe water loss during acclimatisation 

period could cause a soaked finger pad to behave as a natural finger pad in a matter of 

minutes. There are other potential factors as well, for instance, the environmental temperature, 

the relative humidity, the contact area (real or apparent) and the roughness of the finger pad, 

which will be discussed in later sections (4.5.5 and 4.5.6). 

It is also important to discuss the robustness of the stiffness test set-up. The system is 

easy and convenient to set-up and obtains a force-displacement graph. Then, the stiffness of 

the specimen can be extracted from the force-displacement graph. However, the current set-

up is limited because it is very difficult to determine the Young‟s modulus of the specimen. 

The results may not be repeatable due to the geometry of the sample, unless a very thin 

indenter is used. Currently, it is difficult to say if the stiffness data may vary against the 

direction of sliding. Therefore, a more comprehensive work is needed in the future to 

improve the current stiffness test set-up. 

4.5.5 Contact area of the finger pad 

It should be noted that, in this study, the apparent contact area of the finger pad could only be 

measured from the DIC data while the real-apparent contact area ration was measured from 

the OCT images. Although it is desirable to measure the real contact area of the finger pad, 

the limitation of the scanning range of the OCT only allows giving the real-apparent contact 

area of the finger pad throughout the sliding interaction in real time. However, there are also 



109 | P a g e  

 

other on going projects that aim to develop OCT systems with high scanning speed and wider 

scanning range. These bespoke OCT systems could potentially be used to determine real 

contact area of the finger pad in the future.  

The results showed that the apparent contact area of finger pad (both natural and 

soaked) in a dynamic state was very similar to the apparent contact area in a static state, with 

only a small increase. This outcome is in contrast with the findings from Liu (2012) and 

André et al. (2011) where the apparent contact area of the finger pad decreased from a static 

state to a dynamic state.  

 Various studies also showed that the real contact area of the finger pad increased 

when the finger pad was wetted, therefore having higher coefficient of friction (Adams et al., 

2007; André et al., 2008; Derler et al., 2009; Tomlinson et al., 2010). This study, however, 

found that there is an insignificant difference between the apparent contact area of the natural 

finger pad and the soaked finger pad. Similar findings were observed in the real-to-apparent 

contact area ratio calculated from OCT images.  

 It is irrefutable that the contact area plays an important role in the frictional behaviour 

of the finger pad. Therefore, it is essential to know which parameters that are influencing the 

contact area during the sliding interaction. This study showed that both the apparent contact 

area and the real-apparent contact area ratio have a strong correlation with the normal load. 

However, there is not enough experimental data to determine if the apparent contact area has 

a strong relationship with the moisture condition of the finger pad because the finger pad with 

larger apparent contact area did not have higher moisture level (measured before experiment). 

On the other hand, the moisture level of the finger pad in the OCT test shows increasing signs 

as the real-apparent contact area increases. This might mean that although the moisture level 

of the finger pad prior to the experiment has an insignificant effect on the apparent area. 

However, it may affect the real contact area of the finger pad, which is in good agreement 

with the findings by Liu et al. (2017), through the water absorption mechanism (Tomlinson et 

al., 2011b; Liu et al., 2017). Water absorption might cause the human skin to expand and 

therefore increase the real contact area of the finger pad.  

In terms of the sliding state of the finger pad (from static to dynamic state), more data 

is required to prove if the change of sliding state has a notable effect on the contact area 

because the change observed in Figure 4-27 and Figure 4-29 is minimal. As the results from 

this study were obtained from one volunteer, therefore it is not suitable to be used to 
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represent the whole human population. Even so, the contact area assessing methods 

developed in this study has shown that it is possible to measure the contact area of the finger 

pad in a real-time manner.  

4.5.6 Roughness of the finger pad ridges 

Finger pads are a very special human skin material because the finger pad skin has ridges that 

help people with gripping and holding objects with their daily life. Studying the roughness of 

these ridges can help in understanding the frictional behaviour because the ridge roughness 

could affect the contact area of the finger pad. Finger friction has always been associated with 

the contact area (Tomlinson et al., 2011b; Liu et al., 2015). The finger pad ridge roughness 

could also be linked with the strain behaviour because surface deformation always results in 

the change in surface roughness. 

There are only few studies that investigated the effect of the roughness of the finger 

pad on the sliding interaction (Nakajima & Nakasama, 1993; Egawa et al., 2002). This study 

has provided evidences that the roughness of the finger pad decrease with the increase in 

normal load. This supports the fact that when the high normal load pushes down the finger 

pad ridges, it deforms the finger pad ridge and makes the skin flatter that will result in the 

increase of the contact area as shown in Figure 4-31.  

Next, it seems that the overall roughness of the finger pad decreases from the static 

state to the dynamic state when sliding against a smooth flat plate in Figure 4-30. This may 

possibly due to the nature of the interaction between the finger pad and the smooth glass plate. 

As the surface roughness of the glass is very smooth (≈ 0μm), it will not cause interlocking 

effect on the finger pad that might further increase the roughness of the finger pad ridges. 

However, more work is required to validate the mechanism of this observation. Also, it 

should be noted that the term “overall roughness” is used in this context because there was a 

clear difference between the mean roughness measured in position 1 and position 2 of the 

finger pad, illustrated in Figure 4-13. Figure 4-36 is used to illustrate the change in roughness 

of a finger pad when it slid against the glass plate from the static state to the dynamic state. 

The mean roughness measured at each position of the finger pad at different conditions are 

tabulated in Appendix E.  

It is also found that the soaked finger pad has higher overall roughness than the 

natural finger pad. It may be possible that the water absorption through the finger pad skin 

has expanded the stratum corneum layer of the skin, which caused the increase in the 
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roughness of the skin. Figure 4-37 is shown in order to investigate the effect of the mean 

roughness of the finger pad on the real-apparent contact area of the finger pad. It shows that 

the ratio of the real-apparent contact area of the finger pad decreases as the mean roughness 

increases. In other words, the real contact area of the finger pad decreases as the roughness of 

the finger pad ridges increase due to the water absorption of the human skin. 

In terms of the sliding state of the finger pad, Liu et al. (2017) concluded that the 

apparent contact area in the dynamic state are always smaller than in the static state. However, 

Figure 4-27 has shown that the apparent contact area of the finger pad did not considerably  

decrease as observed in Liu et al.‟s (2017) study, where the apparent contact area of the 

finger pad decreased by approximately 20 mm
2
. The main reason of this conflict is that the 

material is held stationary during sliding. The finger pad in Liu et al.‟s (2017) study was 

moving along the glass plate while the finger pad in this study was held stationary throughout 

the sliding interaction. The main advantage of having a stationary finger pad during friction 

interaction is to minimise the uncontrolled vibration of the finger pad that could affect the 

force interaction measurement. It also helps to achieve and control the pre-decided normal 

load magnitude during the sliding tests. It was previously thought that the Matlab algorithm 

used to determine the apparent contact area from the DIC data (explained in section 4.3.5) 

could have overestimated the apparent contact area of the finger pad. However, this is ruled 

out because the overestimation could happen to the apparent contact in both the static and the 

dynamic states, so it should still be possible to reflect the decrease in apparent contact area in 

the post-analysis. 

On the other hand, the relationship between the roughness profile and the stiffness of 

the finger pad is much easier to be explained. It is known that the stiffness of the soaked 

finger pad is lower than the natural finger pad. Therefore, it could be that the water 

application the expanded epidermal layer of the skin. This in turn resulted in the decrease of 

the density of the top skin layer and the increase in roughness profiles. Then, after the 

stiffness measurement has taken place, it will show the decrease in the measured stiffness of 

the skin because the roughness of the skin will not affect the stiffness measurement.  

It is difficult to determine if the dynamic coefficient of friction of the soaked finger 

pad is decreasing with the increase of the mean roughness of the finger pad, as shown in 

Figure 4-37. Assuming the dynamic coefficient of friction decreases when the mean 

roughness of the finger pad increases is true. This means that the real contact area decreased 
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because the finger pad ridges did not flatten out during sliding. This could fit well to the 

frictional behaviour of the soaked finger pad in Figure 4-20 where the coefficient of friction 

decreases when the normal is near to “0”. On the other hand, Derler & Gerhardt (2012) 

mentioned that Egawa et al., (2012) found that the friction coefficient of females did not 

significantly correlate with the mean roughness of the forearm skin using a single regression 

analysis, similar to this study. Still, this study still requires more data input from the human 

population to validate this result. 

In the future study, it would be useful to make a comprehensive study in measuring 

skin roughness using various materials texture analysis.  

                          Static state                                              Dynamic state 

 
Figure 4-36, Illustration of the roughness distribution within the contact area of the finger pad 

 
Figure 4-37, The dynamic coefficient of friction against the mean roughness graph when the 

finger pad was sliding 

4.5.7 Feasibility of OCT in studying finger pad – grooved plated interaction 

Although this pilot study only looks at the visual results of the experiments, it has 

successfully shown that OCT can be used to study how the ridges of the finger pad move 

across the grooves of the plate. The video (approximately 300 of continuous real-time OCT 

images) is able to show the transition of the morphology of the finger pad from the static state 

to dynamic state as well.  

The images have shown that there were black out regions under the grooves (except 

for the “big groove”), with the “broken sharp groove” type plastic plate the most obvious. 
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These black regions were caused by the light diffraction phenomenon as OCT relies on the 

light reflection signal to produce the OCT images. It is also observed that the black regions 

normally occurred at the grooves that have a sharp change of plate thickness. In the case of 

the “big groove”, there are no black regions due to the fact that the thickness did not decrease 

as dramatically as other grooves that gave severe light diffraction.  

As the methodology in making the grooves is very crude, the future work will involve 

in testing different manufacturing methods because this directly affects the image quality of 

the OCT images. Only when the image quality of the OCT images is consistent and 

acceptable, the roughness of the groove and the finger pad can be accurately measured and 

post-processed.  

4.6 Conclusions 

This study investigated the frictional and strain behaviour of the finger pad in a natural state 

and soaked condition, which shows that there are connections between the frictional and the 

strain behaviour of the finger pad as the normal load affects the strain behaviour of the finger 

pad whereas the shear load that caused the sliding has less effect to change the strain 

behaviour of the finger pad. 

In terms of the water application of the finger pad, the acclimatisation period has an 

influence on the moisture reading of the finger pad even though the finger pad had been 

exposed to long period of water soaking. Therefore, various water application methods 

should be further researched and documented in the future.   

This study supports the relationship between the contact area and the normal load as a 

power-law equation for both the apparent contact area and the real-apparent contact area ratio 

of the finger pads. The moisture in the finger pad skin may not have direct influence on the 

apparent contact area, however, it reflects on the real-apparent contact area ratio instead.  

The roughness profile can also be used as a parameter in the sliding interaction 

between finger pad and the smooth glass plate because it has a relationship with the real-

apparent contact area ratio that affects the frictional behaviour of the finger pad. It was found 

that the roughness profile decreases with the increase of the normal load, the roughness 

profile also decreases when the finger pad was in a dynamic state and the soaked finger pad 

has a higher roughness profile than a natural finger pad. 
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The pilot study that investigates the sliding interaction between a finger pad and a 

grooved plate has proven that the study of sliding interaction between finger pad and a 

grooved plate to be feasible and it opens up possibilities to further investigate the sliding 

mechanism of human skin with other material textures to study interlocking 

It should also be noted that the tests in this study were conducted on one single 

volunteer. This can be solved either through the repeat of the testing on a wider human 

population. Based on the observation of previous studies on human related experiments, the 

correlation of results often exhibited a big pool of data. So, it should be expected that the 

results would have much higher standard deviation when using the same methodologies in 

the current study on a wider population. The main reason for only one subject was because 

this study aimed to develop a methodology that uses OCT and 3D-DIC on tribological 

experiment and to show which measurements can be measured during the test. When the 

methodology is ready, it can be used on a wider population.  

For a more controllable experiment, the utilisation of the silicone hemi-spheres to 

replace finger pad as the experimental samples. 
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5 Chapter 5 

 

 

 

 

 

 

 

Interactions between silicone hemi-spheres and glass 
 

 

 

 

 

5.1 Introduction  

This chapter investigated the frictional and strain behaviour of silicone hemi-spheres with 

different amount of deadener, which will vary the stiffness, when sliding against a glass plate.  

There are quite a few limitations when using volunteers in a study or research, which is why 

researchers have been trying to make or develop a material or a design that can simulate the 

human skin mechanical properties, physiology etc. This research work is aimed at further 

understanding and minimising the difference between human skin and a soft tissue simulant.   
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5.2 Aim and objectives 

The aim of this work was to determine if a homogenous silicone hemi-sphere is a suitable 

soft tissue simulant to simulate a finger pad in terms of friction and strain behaviour.  

One of the objectives was to obtain the frictional behaviour of the silicone hemi-sphere 

using friction tests and strain behaviour using the same methodology for 3D-DIC tests, as in 

Chapter 4. The OCT was not used in this study because the silicone hemi-spheres do not have 

ridges on the surface. The friction and strain profiles of both finger pad and silicone hemi-

sphere were compared and discussed.  

5.3 Methodology 

5.3.1 Manufacture of silicone hemi-sphere specimens 

The silicone hemi-spheres were developed using Room Temperature Vulcanizing (RTV) 

silicone rubber. Base and catalyst are required to make the silicone rubber with the ratio of 

1:1. “Deadener” is only added to soften RTV silicone rubber, and give different stiffness, in 

this study, the proportions of the deadener in the silicone fluid mixture were 0%, 10%, 15% 

and 20%.  

First, three syringes were used to measure the correct amount of silicone base, 

silicone catalyst and deadener required. The required volume of each was squeezed into a 

clean uncontaminated cup, as contamination in the silicone mixture will most likely have an 

effect on the stiffness of the final product. The base and deadener were added into the cup 

before the catalyst because the curing process will start when the catalyst is mixed with base. 

Then, a spatula was used to stir the mixture for 1 minute until all three liquid materials were 

mixed thoroughly. Then, the mixture was placed into a degassing chamber to remove the air 

bubbles in the mixture. When there were no more air bubbles in the mixture, it was poured 

into a spherical shaped mould of 6mm radius. It should be noted that the duration from 

mixing to pouring should not be longer than 15 minutes to prevent the mixture fully cured 

before pouring into the mould. After the pouring, flat plates were lightly put on top of the 

mould and the samples were left for one day to cure.   

5.3.2 Experimental set-up for the sliding interaction 

Figure 5-1 shows the set-up of the friction test for silicone hemi-spheres. Normal and shear 

forces between the silicone hemi-spheres and the glass plate with a thickness of 396 ± 6μm 

were recorded through a force plate (AMTI). The normal loads were applied at +z direction 



117 | P a g e  

 

before the sliding. The normal loads used were 0.5N, 1N, 2N and 3N. After the desired load 

was achieved and stabilised, the glass plate would move at –y direction and slid against the 

silicone hemi-sphere. The movement and the speed of the glass plate were controlled through 

Labview control software on the test-rig. The average speed of the sliding plate was 0.5mm/s 

because the cameras used in 3D-Digital Image Correlation (DIC) system were not high-speed 

cameras. Therefore, any higher speed than 0.5mm/s will result in capturing blurred images. 

After the sliding had stopped, the set-up was left for more than 3 seconds or until 

there were no significant changes in forces between the silicone hemi-sphere and the glass 

plate. Then, the normal load was removed.   

A thin glass plate was used in this study because the aim of this work was to replicate 

the exact experimental set-up as the finger pad-glass sliding experiment in chapter 4. The 

main reason the thin plate was used in the finger pad work was because thicker glasses will 

lead to overlay reflection of the glass plate and finger pad on the original OCT images.                          

                            

 

Figure 5-1, Front view (top) and side view (bottom) of the sliding experiment set-up of the 

silicone hemi-sphere 
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5.3.3 Stiffness test 

The stiffness of various silicone hemi-sphere samples was obtained from the force-

displacement graphs from a compression test as shown in Figure 5-2. The samples were 

placed and fixed under a flat stainless steel plate that was attached to the Mesmecin force 

gauge (500N). The force gauge, in turn, was attached to the Mecmesin MDD Manual Test 

Stand. The position of the stainless steel plate was placed as close as possible to the tip of the 

silicone hemi-sphere without touching it. The force gauge and the displacement transducer 

were zeroed before acquiring the force magnitude with every 0.1mm displacement increment, 

which were used to plot a force-displacement graph.  

 

Figure 5-2, Illustration of the stiffness experiment set-up on silicone hemi-sphere 

5.3.4 DIC camera set-up, calibration and data acquisition 

Detailed information regarding 3D-DIC set-ups and the development of the image analysis 

has been introduced in section 3.2. 

DIC is an optical numerical full field measuring technique that is able to compute 

displacement and deformation fields of the surface of the experimental object from the 

images of deformed and un-deformed specimen. Currently, increasing researchers used DIC 

in biomedical and experimental biomechanics field because it allows the characterisation of 

the deformation of biological tissues when subjected to different loading conditions.  

The working principal of DIC relies on the tracking the random and unique speckles 

pattern on the material surface by using complex computer algorithms, which some are 

available commercially. The main characteristic of the DIC system is the amount of cameras 

used. The DIC system that uses only one camera is identified as the 2D-DIC while the DIC 

system that uses two cameras is more commonly known as 3D-DIC. The working principal 

of both systems is the same. The only difference between the two systems is that the 3D-DIC 

is more insensitive to out-out-plane motions of the experimental object [28]. Therefore, 3D-
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DIC system is able to give more accurate strain results for a non-flat specimen such as the 

silicone hemi-sphere. VIC-3D Digital Image Correlation software (version 7.2.1, Correlated 

Solutions, USA) was used in the current study. 

There are a few steps required to use the 3D-DIC system: sample preparation, camera 

set-up, calibration, data collection and analysis. Firstly, droplets of black water-based ink 

(crafters acrylic paint, DecoArt Inc., Stanford) were distributed randomly on the silicone 

hemi-sphere through the flicking the bristles of an unused toothbrush. It was left for more 

than 1 hour before friction and DIC testing. Next, the camera set-up section required the 

adjustment of the stereo angle of the cameras and the distance between the cameras and the 

object, which in this study, were 30° and 150mm respectively [29]. Two Pike F505B cameras 

(Allied Vision Technologies GmbH, Germany) equipped with monochromatic CCD sensor 

(Sony ICX625; 2/3″; 2452×2054 pixels) and 50mm lens objectives (XENOPLAN2.8/50-

0902, Schneider, Kreuznach) were used in this study. After the cameras were set, the next 

step is to calibrate the cameras to the DIC software. A grid size of 11×10 with 2mm spatial 

distance was selected in this study. The calibration score was 0.064 pixels. The calibration of 

3D DIC is done by placing the grid at the same focal plane of the material. Different positions 

and angles of the calibration grid were placed relatively to give the DIC software a good 

volume sense.  

The sliding experiment was ready to start after the calibration. The acquisition rate 

was set to 5 frames per second. The image acquisition started before the silicone hemisphere 

came in contact with the glass and stopped after the glass plate was fully lifted from the 

silicone hemi-sphere. Then, the images were inputted into VIC 3D DIC software in which 

subset size, step size and filter size must be set (61×61, 7, and 15 respectively) before running 

the software. The strain calculated was based on Green-Lagrange strain because the silicone 

hemi-sphere sample as a whole rigid body. In the Lagrangian description, the strain evolution 

of the silicone sample with time is studied. The post-processing showed the surface contours 

of the samples in terms of displacement and strain.  

5.3.5 Determining the apparent contact area 

The contact area was determined by using Matlab codes. It was able to find the two boundary 

points, highlighted in red circles, from the deformed shape of the silicone hemi-sphere when 

in contact with the glass plate, as shown in Figure 5-3. The Matlab code performs multiple 

differentiations and filtration to determine the two boundary points. The result of this is 
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shown in Figure 5-4. The code was used to perform on multiple slices of the position graphs 

of the deformed silicone hemi-sphere as shown in Figure 5-3 (b) and the boundary points 

obtained are shown in Figure 5-5. Then the “ellipse best-fit” Matlab function can be used to 

determine the size of the contact, which is shown in Figure 5-5.  

 

Figure 5-3, Deformed shape of the silicone hemi-sphere in contact with glass plate from DIC 

position data and the cross section Z-position graph 

 

Figure 5-4, The process of finding the boundary points (differentiations and filtration) from 

the 45
th

 cross section Z-position graph  

 

Figure 5-5, Ellipse "best-fit" on the determined DIC position data from Matlab code 
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5.4 Results 

5.4.1 Stiffness of the silicone hemi-spheres 

Due to the viscoelasticity of the silicone hemi-spheres, the force-displacement graph of the 

silicone hemi-spheres is a non-linear relationship. The equation of best fit applied is a 

polynomial function with a maximum power of 4. The main reason polynomial equation fit is 

chosen because it can fit into the whole force-displacement data nicely while the power 

equation deviates from the data set when a certain displacement value is achieved, as shown 

in Figure 5-7. The amount of deadener in the silicone hemi-spheres has a direct effect on the 

stiffness of the silicone hemisphere as the compressive force to displace 1mm of the silicone 

hemisphere drops with the increasing amount of deadener as shown in Figure 5-6 (a).  

The specimen stiffness is defined as the gradient of a force-displacement graph and 

the relationship between the stiffness of a material and the normal force is shown in Figure 

5-6 (b). It is more convenient for determining the respective stiffness at different time points 

with different applied normal load during sliding. However, when the stiffness was plotted 

against normal force, it can be observed that the difference in stiffness between the silicone 

hemi-sphere with 0% deadener and the silicone hemi-sphere with 20% deadener steadily 

decreased with increasing normal force. As the normal force increases, the silicone hemi-

spheres will reach a critical point (approximately 4N) where the four silicone hemi-spheres 

will have the same stiffness. The critical loading point can be neglected because the normal 

loads used in this study were less than the critical normal load.  
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Figure 5-6, (a) Force-displacement graph of the silicone hemi-spheres and (b) stiffness vs 

normal load graph using polynomial equation relationship 

 
Figure 5-7, Force-displacement graph of the silicone hemi-spheres using power equation fit 

5.4.2 Friction force behaviour before, during and after 

Figure 5-8 shows the behaviour of the applied normal forces and the friction forces on a 

silicone hemi-sphere before, during and after being slid against a glass plate. The origin of 

the graph (when t=0s) was set at the time point when the glass was about to slide because the 

sliding duration was the same for all silicone hemi-spheres as the sliding distance and speed 

of sliding were constant.  
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Three different states have been highlighted in Figure 5-8. The first state was when 

the normal force applied on the silicone hemi-sphere was stabilised after a period of time. In 

this state, there should be minimal or no friction force acting on the silicone hemi-spheres. 

The second state is known as the steady sliding state, which only happens when the silicone 

hemi-sphere fully slips against the sliding glass. In this state, the friction force would have 

reached a steady state. The time used to achieve this state varied among the 4 silicone hemi-

spheres. The silicone hemi-sphere with 0% deadener took around 13s to achieve the steady 

state (normal load applied was 3N) while silicone hemi-sphere with 20% deadener took 

approximately 5s at the same load. Lastly, the third state was when the plate stopped sliding 

against the silicone hemi-sphere. After this state, the friction force on the silicone hemi-

sphere would decrease until it reached a steady value.  

The normal forces applied on the silicone hemi-sphere decreased initially after the 

sliding stated and increased after a period of time. This is due to the bending of the glass plate 

during sliding interaction. As such, state 2 in the later sections was taken at t=37.5s, which 

was half of the sliding duration. The respective normal load at state 2 was recorded in Table 

5-1. 

The bending stiffness of the glass plate is higher when the silicone hemi-sphere is in 

contact at the side of glass at state 1 and state 3 as the illustration in Figure 5-8 shows, which 

leads to higher normal force being applied on the glass. At state 2, the bending stiffness is 

lower and hence the applied normal force drops at state 2. This drop of applied normal force 

occurred because the relative position between silicone hemi-sphere and the support rig was 

fixed. Therefore, during the sliding interaction, the thin plate allows bending deformation that 

contributes to some relief in deformation of the silicone hemi-sphere. As result, the normal 

force between the two materials dropped. 
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Figure 5-8, Illustration of the bending mechanism of the glass plate 

Table 5-1, The instantaneous normal force at state 1 (static) and state 2 (dynamic) 

 
State 1: 

Static (t=0s) 

State 2: 

Dynamic (t=37.5s) 

Silicone Hemi-sphere with 

0% Deadener 

0.5N 0.4N 

1.0N 0.7N 

2.0N 1.3N 

3.0N 1.8N 

Silicone Hemi-sphere with 

10% Deadener 

0.5N 0.4N 

1.0N 0.8N 

2.0N 1.3N 

3.0N 2.0N 

Silicone Hemi-sphere with 

15% Deadener 

0.5N 0.4N 

1.0N 0.8N 

2.0N 1.4N 

3.0N 2.1N 

Silicone Hemi-sphere with 

20% Deadener 

0.5N 0.5N 

1.0N 0.9N 

2.0N 1.6N 

3.0N 2.4N 
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5.4.3 The influence of normal force and stiffness on the dynamic coefficient of friction 

The dynamic coefficient of friction of the silicone hemi-spheres decreased with increasing 

normal load as shown in Figure 5-9 (a). The figure also shows that the silicone hemi-sphere 

with higher deadener amount has higher dynamic coefficient of friction if the same normal 

force magnitude is applied. In addition, a common empirical approach is used to study the 

relationship between the dynamic coefficient of friction, μ, and the normal force N as shown 

in Equation 5-1, where k corresponds to the conventional friction coefficient at unit normal, 

n-1 is known as the exponent and n is termed the load index (Derler et al., 2009). The 

exponents of all four silicone hemisphere samples seem to average at -0.21 with a standard 

deviation of 0.02.  

         Equation 5-1 

 This dynamic coefficient of friction is plotted against the stiffness of the silicone 

hemi-spheres that shows a much more direct relationship between the mechanical properties 

and the tribological properties of the silicone hemisphere as shown in Figure 5-9 (b). Figure 

5-9 (right) shows a linear correlation between dynamic coefficient of friction and the stiffness 

of the silicone hemi-spheres with various deadeners, which can be described as   

             .  

  

 
Figure 5-9, Graph of dynamic coefficient of friction against (a) normal force and (b) stiffness 

of all 4 silicone hemi-spheres 

5.4.4 General strain and deformation behaviour 

Figure 5-10 shows the 1
st
 principal strain E1 (tensile) and the 2
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 principal strain E2 

(compressive) on the surface of the silicone hemi-sphere with 0% deadener. In both the static 

and dynamic states, the strain contour profile has shown that the edge of the contact area was 
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subjected to higher principal strain value while the principal strain in the middle region of the 

contact area is lower. As the glass plate slid in “–  ” direction, high 1st principal strain value 

is more concentrated at the “+ ” side of the contact while the high 2nd principal strain value 

is concentrated at the opposite side of the contact region.  

In both the static and dynamic states, the shear strain does not seem to concentrate 

along the edge of the contact. However, in the dynamic state, the negative and positive shear 

strains are concentrated at both “- ” and “+ ” side of the contact respectively, which shows 

that the surface of the silicone hemi-sphere was shearing at clockwise and counter clockwise 

direction when viewed in “+ ” direction.  
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Figure 5-10, DIC results of the silicone hemi-sphere of 0% deadener at 0.5N with the 

respective strains 1st principal strain E1, 2nd principal strain E2 and shear strain Exy 
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5.4.5 The effect of normal load and the stiffness of silicone hemi-sphere on the strain 

behaviour 

This section presents the strain line profile from a cross-section of the silicone hemi-sphere to 

show how normal force changes the strain behaviour and a graph that plots the average strain 

within the contact area to show how strain behaviour changes with different silicone hemi-

spheres. To note, this section shows only the strain line profiles of the hemi-sphere with 10% 

deadener along   axis, the remaining strain line profiles are attached in Appendix F.  

The main purpose of the strain line profile is to show the strain values across a certain 

region, which is a straight line in this case, and also to identify which region has a higher 

tendency to deform based on the change in strain values. The strain line profile in Figure 5-12 

was obtained along the x position axis as shown in Figure 5-11. Figure 5-11 shows the 

selected region for image correlation (outermost blue solid circle line) and the contact area 

region (innermost dotted circle line). The “O” point (x = 0, y = 0 and z = 0) of the position 

axes  ,   and   is set at the middle point of the contact area and lying on the surface of the 

silicone hemi-sphere. X, X‟, Y and Y‟ are the respective position points located at the 

intersections between the edge of the contact and   or   axes. The respective Z-positions 

(plotted against   or   axes) of the silicone hemi-sphere with 10% deadener are shown under 

the strain graphs to give a good visualisation which part of the surface strain profile lies 

within the contact region.  

Strain line profile is useful in identifying the changes in localised strain. However, it 

is difficult to show the difference in strain values from different silicone hemi-sphere samples 

as the line profiles mingled together. Therefore, the strain values within the contact area of 

each silicone hemi-sphere samples was averaged and plotted against the normal load applied 

or their own respective stiffness, as shown in Figure 5-13 and Figure 5-14 respectively.  

It should be noted that both the 1
st
 and 2

nd 
principal strain values of the silicone 

hemisphere with 20% deadener at the dynamic state in Figure 5-13 (b) and (d), and Figure 

5-14 (b) and (d) are invalid and misrepresented due to the severe data loss from unsuccessful 

image correlation process. In other words, the strain values obtained were not from a 

complete contact area.  

5.4.5.1 First principal strain, E1 

The first principal strain, E1, is the maximum possible strain at a position point on a structural 

specimen.  
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In the case of a silicone hemi-sphere sample with 10% deadener, Figure 5-12 shows 

that there are two peak strain values lying at the edge of the contact area in the static state. 

The increase in the normal force results in the increase of the peak strain values whereas the 

strain values in the middle region of the contact area do not have notable changes. Similar 

strain behaviour patterns have been observed with other silicone hemi-spheres. In the 

comparison with other silicone hemi-sphere samples in terms of stiffness with no regards on 

the amount of deadener in Figure 5-14 (a), there seems to be no direct correlation between the 

average strain values from within the contact area and the stiffness of the silicone hemi-

spheres. However, the higher the amount of deadener in the silicone hemi-sphere, the steeper 

the strain-to-stiffness gradient. Therefore, even at the same stiffness level, the silicone 

hemispheres do not necessarily experience the same average strain level. There could be 

other factors that effect the strain level like the size of the contact area. It should also be 

noted that the stiffness of the silicone hemispheres is dependent on the normal load, as shown 

in results in section 5.4.1. 

In the dynamic state, the 1st principal strain distribution changes with one peak strain 

values considerably higher than the other peak strain by more than three times. Even so, the 

strain values in the middle region remain unaffected. Similar to the static state, the increase in 

the normal force increases both the peak strain values as well in the dynamic state. In terms 

of the stiffness of the silicone hemi-sphere samples, there is no direct correlation between the 

average strain values from within the contact area and the stiffness. However, the strain-to-

stiffness gradient in the dynamic state is considerably higher than the static state.  

5.4.5.2 Second principal strain, E2 

The second principal strain, E2, is the minimum possible strain at a point position on a 

structural specimen.  

In the static state, Figure 5-12 shows that there are also two peaks of 2nd principal 

strain values near or at the edge of the contact area although one peak tends to be positive 

while the other is negative. The two peak strain values have shown to be increase in 

magnitude with the increasing normal force while the strain values in the middle region 

remain unaffected from the normal force. When the average strain values are plotted against 

the stiffness of the silicone hemi-sphere samples in Figure 5-14 (c), the graph shows that 

there are no direct correlations between the strain values and the stiffness. However, the 
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strain-to-stiffness gradient increases with the amount of deadener in the silicone hemi-sphere 

samples.  

In the dynamic state, the distribution of the two peak strain values have shifted to the 

negative strain region with one of the peak strains is higher in magnitude than the other peak. 

Increase of the normal force also increases the magnitude of the two peak strains but the 

strain values in the middle region are unaffected. Unlike the 1st principal strain, the strain-to-

stiffness gradient of the silicone hemi-spheres decreases and is nearer to zero gradients from 

static state to dynamic state. In other words, the averaged 2nd principal strain from the 

contact area may become constant after a certain stiffness has achieved a certain 2nd 

principal strain magnitude.   

 

Figure 5-11, The top view of silicone hemi-sphere that illustrates the position reference axis x 

and y with the hint of sliding direction of the glass plate 
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                                        Static state                                 Dynamic state 

                            

 

Figure 5-12, First principal strain E1 of a silicone hemi-sphere obtained along y axis in the (a) 

static and (b) dynamic state, second principal strain E2 in the (c) static and (d) dynamic state, 

and the geometrical shape of a silicone hemi-sphere along y axis in the (e) static and (f) 

dynamic state 
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                                           Static state                                 Dynamic state 

 

 

 
Figure 5-13, Average first principal strain E1 strain within the contact area of all 4 silicone 

hemi-spheres from (a) static to (b) dynamic state, and average second principal strain E2 

strain within the contact area of the finger pad from (c) static to (d) dynamic state when 

plotted against the normal load applied of the silicone hemi-spheres 

 

 

 

 

 

 

 

 

 

 

y = 0.5081x + 0.4268 

y = 0.7868x + 0.559 

y = 1.239x + 0.8992 

y = 2.5546x + 1.0188 

0

10

20

30

40

50

60

0 1 2 3

E
1

  
[%

]  
  

Normal force [N] 

y = 2.6316x + 6.8418 

y = 4.2053x + 16.619 

y = 4.2789x + 24.767 

0

10

20

30

40

50

60

0 1 2 3

E  
  *
 
+   

 

Normal force [N] 

y = 0.3203x - 0.4731 

y = 0.6207x - 0.5661 

y = 0.7532x - 0.439 

y = 1.3081x - 0.2432 

-20

-15

-10

-5

0

5

0 1 2 3

E
2
  
  

]  
  

Normal load [N] 

y = -0.2538x - 5.5835 

y = -0.121x - 10.226 

y = -0.1159x - 12.784 
-20

-15

-10

-5

0

5

0 1 2 3

E 2
  *
 
+   

 

Normal load [N] 

(a)                                                (b) 

(c)                                                 (d) 



132 | P a g e  

 

                                           Static state                                 Dynamic state 

 

 

Figure 5-14, Average first principal strain E1 strain within the contact area of all 4 silicone 

hemi-spheres from (a) static to (b) dynamic state, and average second principal strain E2 

strain within the contact area of the finger pad from (c) static to (d) dynamic state when 

plotted against the stiffness of the silicone hemi-spheres 

5.4.6 Contact area 

The apparent contact area of the silicone hemi-sphere samples in both static and dynamic 

states was measured from DIC data as shown in Figure 5-15. The apparent contact area at 

both states increases exponentially, which is similar to Han et al. (2008). Therefore, the 

contact area of the silicone hemi-spheres can be described by Equation 5-2, where   is the 

contact area,   is the normal load,   is an experimental constant that depends upon the 

assumed form of the surfaces and the elastic constants of the materials and   is also an 

experimental constant depends upon the form of the surfaces that ranges from 0.67 to 1.0 

(Archard, 1957). 
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In the static state, the   value (range: 12.5 – 32.9 mm
2
) increases while the   value 

(range: 0.52 – 0.65) decreases with the increase in the deadener amount in the silicone hemi-

sphere samples. The ranges are taken from 4 silicone hemi-sphere samples of varied stiffness.  

In the dynamic state, similarly, the   value (range: 12.4 – 32.9 mm
2
) increases while 

the   value (range: 0.54 – 0.74) decreases with the increase in the deadener amount in the 

silicone hemi-sphere samples. The ranges are taken from 3 silicone hemi-sphere samples of 

varied stiffness because the contact area of the silicone hemi-sphere sample with 20% 

deadener is incomputable due to incomplete DIC data. 

From the static to the dynamic state, both the   and   values of all silicone hemi-

sphere samples increased with the silicone hemi-sphere with 0% deadener sample the only 

exception. Therefore, the apparent contact area increases if the normal load does not change 

during sliding. For example, when the normal force is 2N, the contact areas of the silicone 

hemi-sphere with 10% deadener sample in static and dynamic states are 30.6mm
2
 and 

34.8mm
2
 respectively. In the case of the silicone hemi-sphere with 0% deadener sample, the   

value decreases and the   value increased from the static to the dynamic state. So initially the 

apparent contact area of this sample at the dynamic state is smaller than the contact area at 

static state. When the normal load is higher than 1.03N, then the apparent contact area of this 

sample in the dynamic state will be larger than the contact in the static state. 

Additionally, Figure 5-16 was plotted to show the linear relationship between the 

apparent contact area and the shear force on the silicone hemi-spheres. 

                                           Static state                                 Dynamic state 

 
Figure 5-15, The apparent contact area of silicone hemi-sphere in (a) static and (b) dynamic 

state 
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Figure 5-16, The relationship between the shear force and the apparent contact area of the 

silicone hemi-spheres 

5.5 Discussion 

5.5.1 Relationship between the frictional and strain behaviour of silicone hemi-spheres  

Friction mechanism is normally consisted of two mechanisms, which are the adhesion 

mechanism and the deformation mechanism (Bowden & Tabor, 1954). The adhesive 

mechanism that contributes towards the friction force is caused by the rupture of the 
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corresponds to the first principal strain, E1, and second principal strain, E2, respectively 

(Delhaye et al., 2016). Furthermore, Delhaye et al. (2016) found that both strain amplitudes 

increased with the increase in normal force. However, it should be noted that the un-

deformed state of the finger pad was likely when the finger pad in full contact with the plate 

before sliding in Delhaye et al.‟s study (2016). It is important to know which finger pad 

position is set as the initial or un-deformed state before strain measurement because the strain 

calculations are relative. Therefore, different strain results will most likely happen from 

setting different initial state, for example, the initial state of the current study was set as the 

position where the silicone hemi-sphere samples are not touching the plate.  

In the case of the sliding interaction between the silicone hemi-sphere samples and a 

smooth glass plate at low normal load region, the predominant friction mechanism is likely to 

be adhesion because the exponent (refer to Equation 5-1) of the silicone hemi-sphere samples 

(-0.2) is similar to that of adhesion mechanism. It was suggested that the exponents of the 

friction mechanisms by adhesion and deformation should be -1/3 and 1/3 respectively (Derler 

et al., 2009). Moreover, it is not difficult to imagine that dynamic coefficient of friction 

increases with the normal load because higher normal load increases the contact area of 

silicone hemi-spheres in contact with the glass plate and, therefore, require a higher friction 

force to rupture the additional interfacial junction adhered together. Despite the fact that the 

deformation hysteresis effect is not the predominant friction mechanism, it is still possible to 

contribute towards the total friction force although is relatively less influential. Hence, the 

strain of the silicone samples was measured during the tribological interaction because the 

deformation state of the samples is closely related to the deformation hysteresis effect. Both 

Figure 5-12 and Figure 5-14 have shown that there is a large change in surface strain of the 

silicone hemi-sphere samples from the static state to the dynamic state, which suggests there 

could be a large hysteresis loss for silicone hemi-sphere samples even though adhesion is 

probably the predominant friction mechanism. An additional issue Tomlinson et al. (2011b) 

mentioned is that the deformation of the finger pad during sliding does not contribute towards 

friction due to following three conditions – low counter-face roughness, low normal load 

application (<3N) and no cyclic movements during sliding, which the current study has 

fulfilled. Therefore, by expectations, the strain in the dynamic state should not have a 

considerable increase in value from the static state. Hence, assuming that there is little to no 

deformation occurred based on the friction mechanisms, interlocking for instance, then the 

considerable strain increase is probably due to the adhesive properties of the material or the 
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adhesion hysteresis. Adhesive hysteresis is defined as the phenomenon where taking apart 

two contact surfaces dissipates more energy than bringing both together (Qian & Yu, 2013), 

which is reasonable because the silicone material manufactured in this study is “stickier” than 

a finger pad. Therefore, more empirical and numerical works are required to find a clear 

relationship between the strain, the deformation hysteresis and the adhesion hysteresis. In 

addition, the future work should also explain the differences between deformation hysteresis 

and adhesion hysteresis. Detailed discussion on the E1 and E2 strain behaviour of the silicone 

samples at each static and dynamic state is discussed in the next paragraph. On the other hand, 

the interlocking effect is not considered in this study because the roughness of the glass plate 

is approximately 20μm (measured using optical coherence tomography). 

In the static state, the E1 strain line profile of the silicone hemi-sphere samples should 

theoretically show symmetric distribution where there are two peak E1 strains at the 

peripheral of the contact area. Although initially the two peak strains appear to be similar in 

magnitude when the normal load is 0.5N, but the difference between the two peaks started to 

manifest itself when the normal load increased. Similarly, it is observed for the E2 strain line 

profile. Firstly, the main cause could be the low bending stiffness of the glass plate, as higher 

normal load will further bend the thin glass plate. So, this has resulted in certain parts of the 

silicone hemi-sphere sample further deforming to accommodate the change and eventually 

lead to the uneven strain distribution. Secondly, it could be also due to the introduction of the 

static friction during normal loading phase even though it is assumed that there is no friction 

force acting at the contact region at static state. If the latter is held true, then this shows the 

potential of DIC in tracking where the hysteresis effect is occurring in the silicone hemi-

sphere samples or whether the hysteresis effect is caused by deformation or the adhesion. 

Then, in the dynamic state, there is a clear shift in both the E1 and E2 strain distribution where 

the magnitude of the peak strain at one side of the contact is considerably higher than the 

other. Moreover, the magnitude of the E1 and E2 strain increased considerably from static 

state. So, in order to have a comparison in strain values between different silicone hemi-

sphere samples, the strain value of each sample is quantified and averaged within the contact 

area, which the results are shown in Figure 5-14. The range of the E1 strain values of the 

silicone samples at static and dynamic state is 0 to 10% and 8 to 52% respectively while the 

range difference of the E2 strain at static and dynamic state is 0 to 4% and -6 to -16% 

respectively. These average strains within the contact increase proportionally with the normal 

force at the low normal load region, which can be described using a linear relationship. In the 
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static state, the linear gradient of both the E1 and E2 strains increases with silicone hemi-

sphere samples of lower Young‟s modulus. In the dynamic state, however, only the linear 

gradient of the E1 strain increases with lower Young‟s modulus samples whereas the gradient 

of the E2 strain remains the same low values. This could suggest that the compressive side of 

the contact region has been compressed to a point in which further compression makes no 

difference, which also shows the potential of 3D-DIC in the study of tribological interactions. 

5.5.2 Significance of stiffness test 

In order to study the effect of the Young‟s modulus on the friction and the strain behaviour of 

the silicone hemi-sphere samples, deadener was added in the silicone mixture to vary the 

mechanical properties of the silicone samples. The greater the amount of deadener in the 

silicone mixture, the less stiff the silicone hemi-sphere sample is. As such, the degree of 

stiffness is often labelled as silicone hemi-sphere sample with “n%” amount of deadener.  

However, there are also various external factors that could affect the softness of the 

silicone hemi-sphere samples. One of the factors is the uneven mixing of the silicone base, 

catalyst and deadener in the process of the manufacture of the silicone samples. This 

normally occurs when the chemical reaction (silicone solidifying) has started in some parts of 

mixtures without properly mixed with the designated ratio. Secondly, contamination may 

occur before or during the mixture process where there are unwanted particles or 

contaminants that became mixed with the silicone mixture. Depending on the amount of 

contaminants, the stiffness of the silicone hemi-sphere samples may change substantially or 

having no effects at all. The third factor is the “curing” time of the silicone hemi-spheres. 

When the silicone hemi-sphere sample is left for a long period of time, it will become stiffer 

because it will continue to be cured.  

As such, a stiffness test is designed, the main purpose of which is to measure and 

label the stiffness of the silicone hemi-sphere samples. In order to simulate the actual normal 

loading condition with a glass plate, a flat plate indenter, larger than the size of the silicone 

samples, was used to carry out the stiffness test. The limitation of this test method is that the 

geometrical shape of the silicone hemi-sphere samples will influence the measured stiffness. 

Unless the geometrical shape is similar in the repeated experiments, the measure stiffness of 

the current study might not be comparable to the future experiments.  

 Friction is often associated with the contact area due to adhesion mechanism. The 

lower the stiffness (or the higher compliance) of the silicone hemi-spheres, the easier the 
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silicone hemi-spheres deform at contact. Larger contact area results in higher friction upon 

sliding. Therefore, the current stiffness test able to show that the dynamic coefficient of 

friction of the silicone samples is directly proportional with the stiffness with a negative 

gradient as shown in Figure 5-9 (b). This result is obtained despite of the amount of deadener 

in the silicone samples. So, one could suggest that the silicone samples should have similar 

dynamic coefficient of friction under the same sliding conditions if the silicone hemi-spheres 

reach the same stiffness level while in contact and have the same shape.  

On the other hand, the strain behaviour (average strain within the contact area) of the 

silicone samples in Figure 5-14 is still dependent on the amount of deadener instead of the 

measured stiffness. This could mean that there could be other parameters that may affect the 

average strain of the silicone samples.  

5.5.3 Contact area of silicone hemi-sphere in both static and dynamic states 

Based on the Hertz theory, the contact area of a smooth elastic sphere pressed against a rigid 

plate can be related to the normal load with the experimental constant   value as 2/3 (please 

refer to Equation 5-2) while the experimental constant   value is dependent on the local 

radius of curvature and the elastic constant of the material, assuming that the deformation is 

truly elastic (Archard, 1957). He instead suggested a more general contact area equation 

using a power-law model as described in Equation 5-2 because the Hertz model is only 

limited to linear elastic material with a constant and homogeneous Young‟s modulus (Xydas 

& Kao, 1999; Tomlinson, 2009; Liu et al., 2017; Han et al., 2008).  

In a static state, Xydas & Kao (1999) have found that the corresponding exponent 

values of their experiments were found to be 0.51 for silicone fingers, which seems not far off 

for the silicone hemi-sphere samples (0.57±0.06) in this study. In terms of the real finger pads, 

Liu et al. (2017) has compared the exponent values of the real contact area measured using 

OCT and an ink printing method, which are 0.16±0.03 and 0.29±0.11 respectively. It should 

be noted that the measured exponents of real contact area by Liu et al. (2017) were sampled 

from 4 smaller regions within the apparent contact area, due to the limited the scanning area 

of the OCT (4×0.8 mm
2
). Additionally, Liu et al. (2017) also measured the full contact area 

of the finger pad using ink printing method, which gives an exponent value of 0.42 and 0.5 

for apparent and real contact area respectively. Thus, the silicone hemi-sphere sample is more 

comparable to the finger pad when the contact area is sampled as a whole. 
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In a dynamic state, Liu et al. (2017) and Delhaye et al. (2014) found that the contact 

area of the finger pad decreases from a static state to a dynamic state. This is in good 

agreement with the silicone hemi-sphere samples with higher amount of deadener as the 

contact area of the silicone samples during the test also decreased from a static to dynamic 

state, disregarding the change of the normal force during the sliding. The only exception is 

the silicone hemi-sphere sample with 15% deadener as it‟s contact area increased during 

sliding. However, the contact area of the silicone hemi-sphere samples actually increases 

from the static to the dynamic state if the normal force remains constant, which contradicts to 

the findings for the finger pad (Liu et al., 2017; Delhaye et al., 2014). The main reason the 

initial analysis shows a decrease in the contact area is due to the bending of the glass plate 

during sliding. As the silicone hemi-sphere sample travelled to the middle point of the whole 

glass plate where the bending stiffness is the lowest, the silicone samples were allowed to 

have some amount of recovery due to its higher stiffness. The recovery would then reduce the 

contact area between the glass plate and the silicone samples. In the case of the silicone hemi-

sphere sample with 15% deadener, the increase in the contact area is likely due to the slow 

recovery of the silicone sample because the slow recovery of the silicone sample allows the 

region in contact with the glass plate to stay in contact even when the bending of the glass 

allows the recovery of the silicone sample, provided the sliding speed is high enough. At the 

same time, the “in tension” part of the silicone hemi-sphere came into contact with the glass 

during sliding, hence, increasing the contact area. This situation is very similar to the 

definition of adhesive hysteresis, which more energy is required to separate the adhered 

material than adhering the material to the counter-face material. It is known that the silicone 

hemi-spheres with higher percentage of deadener are stickier than the silicone hemi-spheres 

with low or no deadener. 

It is not clear if the contact area of the silicone hemi-sphere samples will decrease if 

the normal force is remained constant, as such, future work may investigate the difference in 

sliding interaction with a thick, rigid glass plate and a thin, flexible glass plate. Meanwhile, 

additional work should also focus on improving the Matlab coding because the Matlab 

coding is unable to accurately determine the boundary points of the contact area when the 

cross-sectional slice is nearer to the edge of the contact. As the cross-sectional slices get 

nearer to the edge of contact, the gradient change at the boundary point decreases as well. 

The gradient change is vital because the Matlab coding determines the boundary points by 

tracking the most substantial change in gradient throughout the shape profile of the cross-



140 | P a g e  

 

section slice. As such, it is possible that the contact area is overestimated. However, this 

problem could be improved if the boundary points identification process is performed on the 

shape profile along both   and   axes. 

5.5.4 The comparison between the finger pads and silicone hemi-spheres 

This section will discuss‟ the main aim of this study, which is to justify if a homogeneous 

silicone hemi-sphere is suitable to be simulate a human finger pad in tribological experiments. 

It should be noted that the silicone hemi-spheres with varied stiffness are specifically studied 

to simulate the mechanical behaviour of the finger pad. The biological and chemical 

behaviour of the skin are not studied.  

In the study of these two materials, identical friction experiment had been set-up and 

the same 3D-DIC imaging technique was used. This experiment had been designed so that 

the silicone hemi-spheres were tested under the same conditions as the finger pads. The only 

difference is that the OCT imaging technique was opted out from the silicone hemi-sphere 

study because the silicone hemi-spheres do not have ridges. Therefore, it is not useful to use 

OCT imaging technique because both the roughness profiles, Ra and Rz, of the silicone hemi-

sphere will be zero.  

 Firstly, it appears that the frictional behaviour of the silicone hemi-sphere is quite 

similar to the finger pads, which the soaked finger pad fits with the silicone hemi-sphere with 

20% deadener and the natural finger pad fits with the silicone hemi-sphere with 0% deadener, 

as shown in Figure 5-17. Therefore, the homogeneous silicone hemi-spheres can be used to 

simulate the frictional properties of the finger pads, if the dynamic coefficient of friction is 

plotted against the respective normal load.  

 In terms of stiffness, however, Figure 5-18 (a) shows that the stiffness of the silicone 

hemi-spheres is substantially higher than the stiffness of the finger pads when the normal load 

is higher than 1.4N. On top of that, Figure 5-18 (b) shows the dynamic coefficient of friction 

and the stiffness relationship for both materials, which there is still a gap to be shortened 

between the two data pools. Therefore, the silicone hemi-spheres are not suitable to be used 

to predict the finger pads in this study if the dynamic coefficients of friction of the materials 

are to be plotted against the stiffness of the materials. It should be noted that there are extra 

data points for silicone hemi-spheres plotted in Figure 5-18 (b). These extra data points were 

obtained from different silicone hemi-spheres that were used in this chapter. However, the 
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testing conditions, such as the friction test and the stiffness test, for these extra silicone hemi-

spheres were the same as the main silicone hemi-spheres used in this chapter.  

 In the case of the comparison of the strain behavior between the finger pads and the 

silicone hemi-spheres, it is also difficult to find the common ground between the finger pads 

and the silicone hemi-spheres, especially in the dynamic state. In the static state, the strain of 

the finger pad is still within the range of the strain values of the silicone hemi-spheres. 

However, when the materials are in the dynamic state, the silicone hemi-spheres were shown 

to endure a much higher strain than the finger pads. This demonstrates that the silicone hemi-

sphere was much more flexible and stretchable than the finger pad.  

In terms of the contact area, the apparent contact area of the finger pad is much larger 

than the apparent contact area of the silicone hemi-spheres, as shown in Figure 5-20 (a) and 

(b). However, it should be noted that the real contact area of the finger pad is much smaller 

than the apparent contact area of the finger pad while the real contact area of the silicone 

hemi-spheres is the same with its apparent contact area. This is due to the fact that the finger 

pad has ridges that produce air gaps within the apparent contact area while the smooth 

surface silicone hemi-sphere does not have air gaps within the apparent contact area based on 

the OCT images. When the real-to-apparent contact area ratio is applied on the apparent 

contact area of the finger pad, the range of the real contact area of the finger pads is from 

39.7mm
2
 to 126mm

2
 whereas the range of the apparent contact area of the finger pads is from 

80.3mm
2
 to 130mm

2
. Although the range of the real contact area of the finger pad is still not 

the same with the range of the real contact area of the hemi-spheres (6.6mm
2
 – 56.1mm

2
), but 

the difference is much smaller. Additionally, Figure 5-21 shows the relationship between the 

shear force and the apparent contact area for both materials is linear even though the two 

pools of data are separated.  

To summarise, the current silicone hemi-spheres used in this study can be used to 

simulate a finger pad, especially in terms of frictional behaviour, which the silicone hemi-

sphere with 20% deadener is more suitable for soaked finger pad while the silicone hemi-

sphere with 0% deadener for the natural finger pad. As for the strain behaviour, the stiffness 

profile and the apparent contact area, there are still rooms for improvement. In the case of the 

stiffness profile, the silicone hemi-spheres were homogeneous in this study while the finger 

pad skin is made of multi-layers of tissues with different mechanical properties. Silicone 

hemi-spheres can have the same stiffness profile as the finger pad in Figure 5-18 (a). This 
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would however jeopardise the simulation of the strain behaviour of the finger pad because 

silicone hemi-sphere with high deadener will experience high strain during sliding interaction, 

as shown in Figure 5-19 (b). Manufacturing a multi-layered silicone hemisphere can probably 

solve this issue. In order to manufacture a multi-layered silicone hemi-sphere, a glass or 

metal plate is still used as the innermost layer to imitate a bone structure. Then, the middle 

layer will be made of a silicone material with high percentage of the deadener to imitate the 

overall stiffness profile of the finger pad. Next, the outermost layer will be made of a stiffer 

silicone material that prevents the silicone hemi-sphere from over-stretching, in order to 

imitate the strain profile of the finger pad. A simple approach is to first make a few silicone 

layers independently. Then the layers are clamped down under a plate with a hole of pre-set 

diameter.  

On top of that, the geometry and size of the silicone hemi-sphere should be 

considered as well. The strain profile of the silicone hemi-spheres may be much more similar 

to the strain profile of a finger pad if the silicone sample is made to be identical to a finger 

because the size of the silicone hemi-spheres is made to imitate the finger pad only. So, the 

smaller silicone hemi-sphere would have to experience higher strain than the finger pad even 

though the work input during the sliding process is the same for both material samples.  

The third improvement is to manufacture a ridged silicone hemi-sphere. It does not 

require a sophisticated finger pad ridge but a controllable ridge size will be a good first step. 

This could probably be achieved by having a custom made hemi-sphere mould with 

integrated ridges shape. This issue arises due to the difference in surface roughness between 

the silicone hemi-spheres and the finger pad as the silicone hemi-spheres had a smoother 

surface in comparison to the finger pad ridges. The finger pad ridges are very important to 

human finger pads as it improves the gripping and handling of everyday objects.  

This study is achieved its first step towards making a better version of the silicone 

hemi-spheres that may able to simulate finger pads with different mechanical properties in 

the future.  
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Figure 5-17, Dynamic coefficient of friction with respective to the normal load for of the 

silicone hemi-spheres and the finger pads 

   
Figure 5-18, The stiffness profile and the respective frictional behaviour of the silicone hemi-

spheres and the finger pads 

                                           Static state                                 Dynamic state 

 

 

 
Figure 5-19, The average E1 strain with respective to the normal load for both the silicone 

hemi-spheres and the finger pads 
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                                           Static state                                 Dynamic state 

  

 

 
Figure 5-20, Apparent contact area with respective to the normal load of the silicone hemi-

spheres and the finger pads from the static state to the dynamic state 

 

Figure 5-21, The shear force against the apparent contact area of the silicone hemi-spheres 

and the finger pads in the dynamic state (from DIC tests only) 

5.5.5 Robustness of using 3D DIC on highly deformable material interaction 

The 3D-DIC system is very useful in measuring the surface strain of the silicone hemi-sphere 

samples. However, some data loss aroused when the system was used to study the dynamic 

state of highly elastic silicone hemi-sphere samples (those with high amount of deadener) 

undergoing sliding interaction. The data loss manifests itself in the strain distribution profile 

as “holes” and often occurs at the edge of the contact area. The most severe case, however, 

will result in a complete failure in image correlation where no strain profile can be shown. 

The main cause of the data loss is due to the intense deformation that leads to the speckles 

either being too far apart or tightly squeezed together. It will reach a point when the 3D-DIC 

algorithms are not able to find and track the original speckles in the deformed images. So far, 

0

20

40

60

80

100

120

140

0 1 2 3

A
p

p
a
re

n
t 

co
n

ta
ct

 a
re

a
 [

m
m

2
] 

Normal load [N] 

0

20

40

60

80

100

120

140

0 1 2 3

C
o

n
ta

ct
 a

re
a

 [
m

m
2
] 

Normal load [N] 

0

2

4

6

8

10

0 0.5 1 1.5 2 2.5 3

E
1

 [
%

] 

Normal load [N] 

0% Deadener 10% Deadener 15% Deadener 20% Deadener DIC, Dry finger DIC, Moist finger

0

2

4

6

8

10

0 0.5 1 1.5 2 2.5 3

E
1

 [
%

] 

Normal load [N] 

0% Deadener 10% Deadener 15% Deadener 20% Deadener DIC, Dry finger DIC, Moist finger

y = 0.02x - 1.18 

R² = 0.95 

y = 0.03x + 0.15 

R² = 0.72 

0

0.5

1

1.5

2

0 50 100 150

S
h

ea
r 

fo
rc

e 
[N

] 

Apparent contact area [mm2] 

y = -0.14x + 1.36 

R² = 0.74 

y = -0.17x + 0.95 

R² = 0.06 
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 2 4 6

D
y

n
a

m
ic

 C
O

F
 [

A
U

] 

Stiffness [kN/m] 

Silicone

hemi-spheres

Finger pad

Linear

(Silicone

hemi-

spheres)

(a)                                                 (b) 



145 | P a g e  

 

failed image correlation only occurred for the silicone hemi-sphere sample with 20% 

deadener. 

5.6 Conclusions 

This study had investigated both the frictional and strain behaviour of the silicone hemi-

sphere samples with different stiffness. The frictional behaviour of the silicone hemi-sphere 

with a smooth glass plate is dominated by the adhesion mechanism based on the exponent (-

0.2) from a power-law relationship between the coefficient of friction and the normal force. 

Deformation mechanism (hysteresis effect) may have a notable contribution in the friction 

force based on the high average surface strain values (E1 strain: 8 to 52%, E2 strain: -6 to -

16%) on the silicone hemi-sphere samples. However, more work is needed to determine the 

relationship between strain and hysteresis loss during sliding. Lastly, the deformation 

mechanism due to the interlocking effect is insignificant. 

The silicone hemi-sphere samples can be labelled using the stiffness instead of the 

amount of deadener. It is found that the coefficient of friction is directly proportional to the 

stiffness of the silicone samples with a negative gradient regardless of the amount of 

deadener in the mixture. However, there is no direct relationship between the average strain 

and the stiffness of the silicone samples without the consideration of the amount of deadener 

although the relationship between the strain and the stiffness can still be described as a linear 

relationship. 

The contact area of the silicone hemi-spheres and the normal load applied can be 

related by using power-law relationship. In addition, the shear force is shown to have a linear 

relationship with the contact area in the dynamic state. The contact area of the silicone hemi-

sphere samples with higher stiffness decreases during sliding is due to the recovery of the 

silicone sample, as the bending stiffness of the glass decreases. On the other hand, the 

silicone sample with 15% deadener increases is likely due to the slow recovery of the silicone 

hemi-sphere at the compression part of the contact while the “in tension” part of the silicone 

hemi-sphere got into contact with the glass during sliding. 

The silicone hemi-spheres used in this study can imitate the frictional behaviour of the 

finger pads. However, improvements are required to imitate the strain behaviour of a finger 

pad due to the homogeneous properties of the silicone hemi-spheres used in this study, the 

size and geometry of the silicone hemi-spheres and the surface roughness of the silicone 

hemi-spheres. Therefore, a multi-layer silicone hemi-sphere is suggested.  
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6 Chapter 6 

 

 

 

 

 

 

 

Theoretical model – surface strain on silicone hemi-

spheres 
 

 

 

 

 

6.1 Introduction 

The experimental model of the finger pad, which was a silicone hemi-sphere, has shown 

consistent strain profiles when in contact with a flat glass plate. Although the silicone hemi-

sphere does not fully simulate the strain profile of a finger pad, it has been served as a 

starting point to further understand the gap between a soft tissue simulant and finger pad. 

Therefore, this chapter looks into developing a strain theoretical model to estimate the strain 

profile of the silicone hemi-sphere to be used as a comparison with the experimental strain 

profiles of a silicone hemi-sphere in Chapter 5.  
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6.2 Aim and objectives 

The aim of this work was to investigate if a theoretical strain model can accurately estimate 

the strain profile and strain values within the contact region between the silicone hemi-sphere 

with 10% deadener and a glass plate. 

The objectives of this work include derivation of the theoretical strain model; a 

comparison between the DIC experimental strain data and the theoretical strain model, and 

performing sensitivity tests on the theoretical strain modelling.  

6.3 Methodology 

The numerical strain model is obtained and derived from contact mechanics by Johnson 

(1985). The strain model is dependant on the traction profile at the contact because part of the 

displacement model is modelled from the traction profile. The strain model is modelled 

specifically to the surface strain from the 3D-DIC data. Therefore, DIC strain data will not 

have components from other directions that are not present in the numerical model.  

The traction profile equation, as shown in Equation 6-1, is modelled from Hertz 

contact by assuming the silicone hemi-sphere as an isotropic elastic sphere and the glass plate 

as a rigid surface. In addition, the contact surface is assumed to be circular. Equation 6-2 is 

the traction coefficient that is modelled as the sliding case. Next, the traction profile equation 

is then used to derive the surface displacement field with respect to the   and   axes, as 

Equations 6-3 and 6-4, where   is the bulk modulus of the silicone hemi-sphere,   is the 

radius of the area is contact between silicone hemi-sphere and the glass plate,   is the 

Poisson‟s ratio of the silicone hemi-sphere,   is the dynamic coefficient of friction and   is 

the normal force applied. The bulk modulus (G) is relatable to Young‟s modulus (E) by the 

following equation, E = 3(1-2v)G.  

           (  
     

  )
   

 Equation 6-1 

    
   

    
 Equation 6-2 

  ̅  
   

    
      Equation 6-3 

  ̅  
   

    
 {                         } Equation 6-4 
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The surface displacements are then differentiated to obtain the displacement gradient 

field, which will then be substitute in Equations 6-5 and 6-6. Equations 6-5 and 6-6 are as per 

definition of Lagrange strain with the assumption of incompressible layer are described as 

below.  
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] Equation 6-5 
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] Equation 6-6 

 The numerical strain models for Exx and Eyy with respect to the   and   axes are as 

shown in Equations 6-7 and 6-8. 
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 [                ]-  Equation 6-8 

The numerical strain model is used to model a tribological situation, where a silicone 

hemi-sphere with 10% deadener sample is slid against the glass plate at steady state. The 

required input parameters for the numerical strain model in Equations 6-7 and 6-8 are the 

normal force, contact area radius, Young‟s modulus, dynamic coefficient of friction and 

Poisson‟s ratio, which the values inputted are tabulated in Table 6-1. Although the silicone 

hemi-sphere sample was applied with a normal force of 2N at static state, but an input normal 

force of 1.3N is chosen instead because the normal force decreased from 2N to 1.3N at state 2 

due to the bending of the glass plate. The radius of the contact area is obtained from the DIC 

data in section 5.4.6. The inputted Young‟s modulus is obtained from a Dynamic Mechanical 

Analysis (DMA) strain sweep test performed in the mechanical engineering department in the 

University of Sheffield by Dr D. Tasron. The dynamic coefficient of friction inputted is 

obtained from section 5.4.3 of the current study. Poisson‟s ratio is set to be 0.3.  

Typical Young‟s modulus of elastomers falls between 0.1 to 100 MPa (Ashby, 2011). 

Silicone rubber compounds from more specific studies ranged between 0.5 to 29 MPa 

(Suzuki et la., 2012; Ansorge & Papailiou, 2016; Wang et al., 2016). Unlike the silicone 

rubber in this study, the silicone rubber compounds have additional materials mixed in to 

increase its mechanical properties. The Young‟s modulus of the silicone specimens tested by 

Dr D. Tasron ranged between 0.094 and 0.77 MPa depending on the amount of deadener used 

(Tasron, 2016). The silicone rubber with no deadener has the highest Young‟s modulus. It 
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should be noted that the process and the components used to manufacture the silicone rubber 

specimen in this study were the same as those made by Dr D. Tasron (Tasron, 2016).  

Graphs that present both the numerical strain model and the DIC strain data were 

plotted to study the strain difference quantitatively. Afterwards, the strain values along the   

and   position axes (along red and blue dash lines respectively in Figure 6-1) were extracted 

from the strain field and compared with the DIC strain values to study the strain difference 

numerically. In addition, a sensitivity test is performed on the numerical strain model by  

varying one of the three input parameters, such as, the normal force, Young‟s modulus or the 

dynamic coefficient of friction while the other input parameters remained the same values as 

in Table 6-1. The percentage changes of the each input parameter are -90%, -50%, 50% and 

90%. The numerical model with initial input parameter values and the sensitivity test are 

plotted under the same graphs in the comparison with DIC strain data in Figure 6-3 and 

Figure 6-4. Root mean squared error (RMSE) is determined from the averaging of the square 

difference between the numerical strain and the experimental strain along the   and   

position axes individually.  

 

Figure 6-1, The top view of silicone hemi-sphere that illustrates the position reference axis x 

and y with the hint of sliding direction of the glass plate 

Table 6-1, Input parameters for the numerical modelling 

Specimen type Silicone hemi-sphere with 10% Deadener 

Normal force applied 1.3N 

Radius of contact area 0.00293m 

Young‟s Modulus 637988Pa 

Dynamic CoF 0.84 

Poisson‟s ratio 0.3 
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6.4 Results 

6.4.1 Strain field profile of the silicone hemi-sphere 

It should be noted that the strains presented in the result section are Exx and Eyy, not the 

principal strains E1 and E2.  

Figure 6-2 shows the surface strain distribution within the contact area of the silicone 

hemisphere with 10% deadener sample from both DIC data and the numerical modelling. In 

the case of Exx, the strain distribution pattern from the numerical modelling seems to be 

similar to the strain distribution pattern from DIC data as the Exx strain increases horizontally 

along   axis from the top of the contact area (  = 0mm,   = 2.9mm) and also in the direction 

of glass plate along   axis (refer to Figure 6-1). In the case of Eyy, both DIC data and the 

numerical modelling have borne similarities in terms of the strain distribution pattern as well. 

The Eyy strain appears to have similar strain values along   axis and it increases along the   

axis in the direction of the sliding glass plate.   

Exx strain line profile is extracted along   and   position axes as shown in Figure 6-3. 

Initial observation shows that the numerical model with initial input parameter values does 

not predict the experimental strain accurately. The sensitivity test shows that almost none of 

the predicted Exx strain line profile fits the experimental strain data perfectly. However, 

among the three input parameters, Young‟s modulus parameter is more sensitive as the same 

percentage change in the parameter has reflected a considerable strain response in the low 

Young‟s modulus region (approximately 0.06MPa). On the other hand, the other two input 

parameters, normal force and coefficient of friction, have similarly low sensitivity in response 

to the respective percentage change.  

Table 6-2 shows that the variations in the percentage change, from -90% to 90%, of 

the input parameters do not substantially effect the RMSE of the Exx strain model. Meanwhile, 

the RMSE of both the normal force and coefficient of friction parameters, along both   and   

position axes, have shown to decrease with positive percentage changes.  

Eyy strain line profile along   and   position axes are shown in Figure 6-4. Initial 

observation shows that the numerical model with 0% change in input parameters does not 

give the correct strain prediction as well. The sensitivity test is able to show that the Eyy strain 

numerical model along   axis is also more sensitive to the Young‟s modulus parameter. 

Other input parameters have shown steady response under the same percentage change in 



151 | P a g e  

 

input values. From -90% to 90% change along y axis, the normal force with 90% changes, 

Young‟s modulus with -50% changes and coefficient of friction with 90% changes have the 

lowest RMSE value. Contrastingly, the Eyy strain numerical model along   axis does not seem 

to be affected by the variation of input parameters, which mostly are 9.5%.  
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Figure 6-2, Comparison of strain distribution profile between DIC data and the numerical 

modelling 
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Figure 6-3, Sensitivity test of input parameters: normal force, Young's modulus and 

coefficient of friction of Exx 
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Figure 6-4, Sensitivity test of input parameters: normal force, Young's modulus and 

coefficient of friction of Eyy 
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Table 6-2, Root mean square error (RMSE) of the numerical strain model 

  Exx [%] Eyy [%] 

    axis   axis   axis   axis 

Initial parameters 0% 9.0 9.2 9.5 12.4 

Normal force 

 

-90% 9.2 9.5 9.5 15.5 

-50% 9.1 9.3 9.5 14.1 

50% 8.8 9.0 9.5 10.9 

90% 8.6 8.9 9.5 9.8 

Young’s modulus 

 

-90% 8.1 6.4 9.6 31.1 

-50% 8.6 8.8 9.5 9.6 

50% 9.1 9.3 9.5 13.5 

90% 9.1 9.3 9.5 14.0 

Coefficient of 

friction 

-90% 9.2 9.5 9.5 15.5 

-50% 9.1 9.3 9.5 14.1 

50% 8.8 9.0 9.5 10.9 

90% 8.6 8.9 9.5 9.8 

6.5  Discussion 

6.5.1 The feasibility of the theoretical strain model 

To date, Delhaye et al. (2016) has used an analysed strain model based on a Hertz traction 

profile (Johnson, 1985) to predict the surface strain rate of the finger pad with a smooth glass 

plate during the partial slip phase of the sliding interaction. This study found that the 

numerical model was able to predict the regions in tension or compression, but it failed to 

generate similar strain rate distribution as observed in the experimental strain rate distribution. 

Hence, it concluded that the substantial error in the full-field strain prediction was due to the 

assumption of the finger pad as an isotropic elastic material as finger pad skin is composed of 

multiple soft tissue layers of different mechanical properties. Secondly, the unsuccessful 

prediction is likely due to the assumption of the contact area as a circular region as the 

contact area of the finger pad strain rate data was clearly elliptical.  

The current study also used the same analytical model, but it is used to predict the 

strain of the silicone samples instead of the strain rate. The Johnson model was used in this 
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study because it is relatively easy and straightforward to predict the strain distribution of the 

silicone hemi-sphere during steady sliding state. It also helps to validate the Johnson model in 

addition to the Delhaye et al. (2016) study. Therefore, it is suggested to use an FE approach 

in the future to model the silicone hemi-sphere experimental model and the finger pad to test 

its flexibility between the models. 

In terms of the strain distribution pattern, the numerical strain model seems is in good 

agreement with the experimental strain data of the silicone hemi-sphere sample because the 

silicone hemi-sphere samples have a circular contact area due to their spherical shape. The 

homogeneity and isotropic property of the silicone hemi-spheres might also be a factor that 

contributes towards the similarity of the modelled strain distribution. This is due to the 

pattern or shape of the modelled strain line profile is somewhat similar to that of DIC strain 

data.  

However, a more in-depth investigation shows that the average RMSE from both Exx 

and Eyy strain prediction (initial parameter values) along both   and   axes is 10.0 ± 1.6%, 

which is fairly high considering the strain range of approximately -20% to 20%. Then, the 

sensitivity tests were performed, which the result shows the average RMSE will decrease 

(≈9.1 – 9.2%) when the normal force or the coefficient of friction has a 90% increase or a 50% 

decrease of the Young‟s modulus. Considering that the normal force and the coefficient of 

friction were obtained from the sliding experiment of the current study, it is very unlikely that 

these input parameters cause a relatively high prediction error unless the force measuring 

plate is broken. Therefore, the most probable cause is the Young‟s modulus input may not a 

good representative of the actual Young‟s modulus of the silicone hemi-sphere sample, as the 

strain sweep test was not done on the same silicone hemi-sphere sample in the current study. 

But, a more reasonable cause may be due to the shift of the point “O” (where x = 0, y = 0 and 

z = 0) on the silicone hemi-sphere sample during sliding as evidenced from the constant 

RMSE of Eyy along   axis regardless of the percentage change in the input parameters. In 

addition, another potential problem that needs to be considered is the possibility of uneven 

change of the Young‟s modulus of the silicone sample because the silicone hemi-sphere 

sample experiences both tension and compression during sliding that might result in one 

region has a higher Young‟s modulus than the opposite region.  

Therefore, the future work will need to readjust/realign the dynamic point of origin to 

the static point of origin in Figure 6-1, assuming the point of origin of the contact shifts when 
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sliding occurs. This can be achieved by tracking the zero strain regions in the DIC strain data.  

Additionally, the numerical strain model should be employed on the other silicone hemi-

spheres of different Young‟s modulus to determine if the viscoelastic properties of the 

material affects the RMSE of the model. In the case of numerical model for finger pad, a 

numerical model that is modelled for elliptical contact area could be found in Johnson‟s 

Contact Mechanics (Johnson, 1985). As for the homogeneity and isotropy of the finger pad 

issue, van Kuilenburg (van Kuilenburg, 2013) has proposed that the mechanical behaviour of 

the skin can be described by a single parameter that is the effective elastic modulus, if the 

contact modelling involves in a relatively small deformations. This could be helpful in the 

numerical model that only has one input parameter for the Young‟s modulus.  

It is also possible to use the average strain within a contact area method to have a 

more quantitative study. This could help in visualising the modelling of strain behaviour of 

the silicone hemi-spheres with different stiffness.  

6.6 Conclusions 

The numerical strain model based on Hertz traction profile acting on a circular contact area 

has high potential in predicting the surface strain of the silicone hemi-sphere sample because 

the pattern of the strain distribution profile of the numerical strain model is very similar to the 

strain distribution profile from the experimental data. The next step is to improve the result of 

the numerical model to lower the RMSE values, by performing the sensitivity test and 

readjusting the initial parameter values.  
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7 Chapter 7 

 

 

 

 

 

 

 

Natural strain of forearm skin at different postures  
 

 

 

 

 

7.1 Introduction 

The human skin is the main part of the body that interacts with a variety of materials. The 

human skin deforms when in contact with a counter-face material as shown in chapter 4, but 

the human skin can deform as well as simple movements or exercises are performed. So, this 

chapter will look into the strain behaviour of human skin when performing simple 

movements or posture changes by using 3D-digital image correlation and optical coherence 

tomography.  
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7.2 Aim and objectives 

The aim of this case study was to investigate the feasibility of using OCT to reliably quantify 

morphological changes in the upper skin layers and sub-surface (stratum corneum, epidermis, 

and dermal-epidermal junction) due to natural forearm skin stretching and to correlate the 

results with surface strains measured by stereo digital image correlation. 

The objectives of the study were to measure surface strain using DIC induced by 

changing the arm angle and also to determine epidermal thickness and through-plane skin 

layer deformation (e.g., flattening of the dermal-epidermal junction) and change in skin 

surface roughness from analysing OCT images. 

7.3 Methodology and Experimental Set-up 

7.3.1 Test subjects 

This work focused on the right forearm of a 38 year old Caucasian male. The forearm was 

shaved in the evening before the experiment to avoid interference of the hair follicles in the 

OCT experiment. Then, the skin was cleaned with an alcohol wipe before the start of the 

experiment. Next, the right arm of the volunteer was placed in the arm holder set-up that has 

a vacuum pillow to minimise the sudden movement of the arm or body due to human 

physiology. The set-up is shown in Figure 7-1 (b) and Figure 7-2 (a). The experiment started 

with the initial position of the forearm at 90° flexion to the final position of the forearm at 

full 180° extension. OCT and DIC were used separately and further described in the 

following sub sections. The study protocol was approved by The University of Sheffield 

(Ethics Number 002074). The volunteer signed informed consent before any tests were 

started. 

7.3.2 Stereo Digital Image Correlation (DIC) set-up 

The principal of the digital image correlation has been introduced in Chapter 3.  

In this study, the cameras were set-up as the Figure 7-1(b) shows. The speckles were 

applied on the forearm using black water-based ink (Crafters Acrylic Paint, DecoArt Inc., 

Stanford), which is shown in Figure 7-1(a). It was applied through the flicking of the bristles 

of a toothbrush. The DIC system used in this study was the VIC-3D from Correlated 

Solutions (version 7.2.1). The stereo angle between the two cameras used was 30° and the 

distance between the cameras and the volar forearm was about 350mm. This gave a field of 

view of 47×39 mm
2
 with spatial pixel resolution of 0.02mm/pixel. The calibration grid 
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pattern used was a 2mm grid with 11×10 grid points. The outcome of the calibration score 

was 0.037 pixels. At the stage of data acquisition, the system was set to capture 5 images per 

second. For the 3D-DIC experiment, the full flexion-extension motion was monitored. In the 

analysis stage, subset size of 81×81 pixels was chosen, with step size set as 7 and filter size 

was set to 15. The noise level in the strain analysis was about 0.03-0.04%. The measurements 

were carried out at 20-22°C and 40-50% relative humidity.  

 
Figure 7-1, (a) The forearm with the spray pattern shown along with superimposed X-Y 

coordinate system defined for surface strain measurements, (b) 3D-DIC set-up showing the 

positioning of the cameras relative to the forearm position 

7.3.3 Optical Coherence Tomography (OCT) set-up 

An outline of the OCT measurement method and image analysis has been introduced in 

Chapter 3. 

The OCT system used in this study was a Vivosight (Michelson Diagnostics, Kent) 

and it was set-up as shown in Figure 7-2 (a). In the data acquisition stage, A-scan (reflectivity) 

was used and the frame rate was set to 20 images per second. The images captured have a 

resolution of 1342×460 pixels. For stability, the hand held probe was fixed on a microscope 

holder.  

In the OCT experiment, the images were taken at two quasi-static arm positions, at 90° 

flexion and 180° full extension. The OCT was used to scan ten regions of interest (ROIs) on 

the forearm, which are 50mm away from the arm bend, and shown in Figure 7-2 (b). The ten 

regions were located in an area of 25×40 mm
2
 with distance of 5mm between them. The OCT 

images give a volume of 6×6×2 mm
3
 (width × length × depth). The measurements were 

carried out at 20°C and 45-50% relative humidity.  
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Figure 7-2: (a) OCT set-up, (b) Schematic of volar forearm: regions of interest and scan 

dimensions 

7.4 Results  

7.4.1 Surface strain behaviour of the forearm skin based on DIC data 

The skin surface strain behaviour of the volar forearm at 90° flexion and 180° extension are 

shown in Figure 7-3. It should be noted that the surface strain data (from 3D-DIC) was 

determined from one undeformed image and one deformed image. Therefore, whichever 

image that is used as the undeformed image will be set as a “no strain” state. This would 

neglect the pre-strain effect on the in-vivo skin.  

Figure 7-3(a) shows the initial condition of the arm at 90° flexion. At 180° full 

extension of the forearm, Lagrange strain (Eyy) was found to be highest towards the arm bend 

as shown in Figure 7-3(b).  

The skin towards the elbow joint generally showed higher surface tensile strains Eyy > 

30% as compared to the skin closer to the wrist (Eyy <20 %). Average Lagrange strains (Eyy) 

were about 23 %.  

The percentage change in compressive, tensile, shear and the principal Lagrange (E1, 

E2) strains upon skin stretching are tabulated in Table 7-1. The strain in   and   direction are, 

respectively, compressive (Exx = -5.6 ± 1.0 %) and tensile strains (Eyy=23.3 ± 2.2 %) as 

compared to the 90° arm angle position. DIC showed that natural arm bending from 90° 

flexion (reference configuration) to full extension is characterised by a multiaxial surface 

strain distribution/state; however, compressive and shear strains were found to be relatively 

small (6-8%) compared to Eyy (>20-30%), implying that the tensile component may dominate 

the overall skin deformation behaviour. As shown in Table 7-1, repeatability standard 
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deviations were low (<2.3%), indicating a high repeatability of the strain measurements. 

Standard deviations within each repeated experiments (i.e., of 3 consecutive stationary 

images) were considerably lower (<0.2%) compared to repeatability standard deviations.  

 

Figure 7-3: Contour plot of the skin surface strain field (Eyy) at (a) 90° (natural strain) and (b) 

induced strain through full extension at 180° arm angle 

Table 7-1, Mean skin surface strains at full arm extension at 180. The values listed are mean 

values of 5 repeated experiments, in each of which 3 stationary images were analysed from 

which an average strain or area was calculated 

Strain Exx [%] Eyy [%] Exy [%] E1 [%] E2 [%] Area [cm
2
] 

Mean -5.6 23.3 -7.6 26.1 -8.4 5.9 

S.D. 1 2.2 1.7 2.3 1.2 1.1 

7.4.2 The sub-surface change of the forearm skin based on OCT images 

Two examples of images taken during flexion (90°) and full extension (180°) are shown in 

Figure 7-4. The topography of stratum corneum and dermal-epidermal junction layers can be 

seen in the image of 90° arm angle. Compared to 90° flexion, both layers were smoothened 

during 180° full extension arm angle.  
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Following natural stretching and strain induced by changing the arm angle, the 

epidermal layer thickness reduced significantly (p=0.001) by 20% when the arm angle was 

changed between 90° flexion (108 ± 14 µm; median: 107 µm) and 180° full extension (90 ± 

12 µm; median: 89 µm) as shown in Figure 7-5.  

Skin roughness parameters (Ra and Rz) of the stratum corneum and dermal-epidermal 

junction significantly decreased by up to 45% (p=0.001) when the arm angle changed from 

90° flexion arm angle to 180° full extension, as shown in Table 7-2 and Table 7-3. For 

instance, Ra changed from 14.2 ± 2.6 µm and 15.3 ± 3.1 µm to 8.4 ± 2.2µm and 8.4 ± 3.5 µm 

for stratum corneum and dermal-epidermal junction respectively during 180° full extension 

arm angle. 

 
Figure 7-4: OCT images of unstretched skin (90 flexion - top) and stretched forearm skin 

(180 full extension - bottom), which the qualitatively smoothening of skin surface (stratum 

corneum) and flattening of dermal-epidermal junction can be observed. 
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Figure 7-5: Box plot of epidermal thickness measured before and after stretching at 90° and 

180°. The boxplots are made out of thickness value of in total up to 600 images, each which 

contains 1342 individual thickness values. 

Table 7-2, Roughness parameters of stratum corneum at 90° flexion and 180° full extension. 

Data determined from 30 images are shown as means ± 1S.D 

Stratum Corneum Ra [µm] Rz [µm] 

90
o
 Flexion 14.2 ± 2.6 75.7 ± 16.7 

180
o
 Full Extension 8.4 ± 2.2 38.4 ± 11.0 

%Change of mean -40.7 -49.3 

 

Table 7-3, Roughness parameters of dermal-epidermal junction at 90° flexion and 180° full 

extension. Data determined from 30 images are shown as means ± 1S.D. 

Dermal-epidermal Junction Ra [µm] Rz [µm] 

90
o
 Flexion 15.3 ± 3.1 81.4 ± 18.6 

180
o
 Full Extension 8.4 ± 3.5 40.4 ± 15.3 

% change of mean -45.5 -50.4 

7.5 Discussion  

7.5.1 Skin surface strains and epidermal thickness change 

This study aimed to investigate the feasibility of using OCT to reliably quantify, in vivo, the 

topographical and morphological changes in upper skin layers (stratum corneum, epidermis, 

dermal-epidermal junction) due to natural forearm skin stretching, measured by DIC. While 
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several papers report on the measurements of epidermal thickness based on image analysis of 

OCT measurements (Neerken et al., 2004; Weissman et al., 2004; Gambichler et al., 2006; 

Josse et al., 2011; Hojjatoleslami & Avanaki, 2012; Abigano et al., 2013; Tsugita et al., 2013; 

Trohjan et al., 2015), none of these studies linked skin surface strains to epidermal layer 

thickness and undulation geometry change of the dermal-epidermal junction.  

In the current study, upon natural stretching by changing the volar arm angle from 90° 

to 180° full extension, the principal tensile strain E1 of the volar forearm increased by 26%, 

as shown in Figure 7-3 and Table 7-1. These volar forearm strain values are lower than skin 

surface strains measured in the crease of the elbow by Obropta & Newmann (2015), with 

principal strain values ranging from 36-60%. Differences in the anatomical region (crease of 

elbow), in the average age (23 year old subjects) and body composition of the subjects, or the 

general test procedure (Obropta & Newmann, 2015) performed an extension-flexion cycle) 

can be possible explanations for the higher principal skin strains measured by Obropta & 

Newman (2015).  

In this case study with one test subject, it was found that the average epidermal 

thickness of the volar forearm decreased from 108 to 90µm when the arm angle was changed 

from flexion to extension, thereby experiencing an increase in average skin surface strains (E1) 

of 26%. To our knowledge there is surprisingly no detailed quantitative data available on the 

effect of in vivo or in vitro skin stretching on epidermal layer thickness and undulation 

geometry change of the epidermal-dermal junction. Therefore, more extended research is 

needed to be able to fully validate and generalise our findings. For example, it would be 

interesting to know the correlation with uniaxial tensile tests on ex vivo human skin, 

measuring the change in epidermal thickness upon fixing the tissue at a certain strain, or the 

imaging the epidermis in real time during tensile testing.  

In general, the observed OCT image derived epidermal thickness values (90-108µm) 

from this case study were in fairly good in agreement with published data ranging from 60-

128µm. Different experimental procedures (e.g. arm angle), study populations and definitions 

of epidermal thickness, as well as different image processing algorithms (Neerken et al., 2004; 

Weissman et al., 2004; Gambichler et al., 2006; Josse et al., 2011; Hojjatoleslami and 

Avanaki, 2012; Abigano et al., 2013; Tsugita et al., 2013; Trohjan et al., 2015) can have 

influence on the measured thickness and partially explain the relatively large range of 

epidermal thickness determined from OCT images.  
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In this study, the thickness of the epidermis was determined using speckle noise 

reduced images, boundary tracking of stratum corneum and dermal-epidermal junction, 

locally weighted moving average filtering of boundary traced curved, and orthogonal vector 

matching between both fitted curves. Neerken et al. (2004) measured the epidermal thickness 

based on analysis of OCT image intensity profiles, and in this case the determination of the 

epidermal thickness was strongly dependant on the definition of reference markers (e.g., on 

top or in the valleys of dermal papillae as arbitrarily chosen by the authors such as Neerken et 

al., 2004). Therefore, due to the undulation of the dermal-epidermal junction, large 

differences can be obtained in epidermis layer thickness. For example, Weissman et al. (2004) 

used a novel shapelet-based image processing technique for the automatic identification of 

the upper and lower boundaries of the epidermis in living human skin tissue. These 

boundaries were used to determine epidermal thickness, with values ranging between 60 and 

110µm (Weissman et al., 2004). Although being beyond the scope of this work, it would be 

interesting to compare the robustness and performance of the algorithm used with the various 

image algorithms reported in the literature and compare all the results which histological 

analyses.  

7.5.2 Skin topography and dermal epidermal junction geometry and undulation change 

In this case study, upon changing the forearm angle from 90° bending to 180° extension, the 

main skin surface roughness Ra decreased from 14.2 µm to 8.4 µm, as shown in Table 7-2 

and Table 7-3. The roughness Ra was found to be lower than averages values (20.5-100.2 µm 

in Chapter 2) measured by Egawa et al. (2002), Jacobi et al. (2004), Kampf & Ennen (2006), 

Li et al. (2006), Bloemen et al. (2011), Luther et al. (2012) and Tojahn et al. (2015). Different 

experimental techniques, such as laser scanning microscopy of silicone rubber based skin 

replicas in Egawa et al. (2002) and Li et al. (2006), study populations, test protocols and 

roughness profile algorithms (e.g. different filtering methods) used can explain this difference. 

The measured skin roughness Ra at full forearm extension, however, was similar to 

roughness (7.2 ± 1.3µm) reported by Kottner et al. (2013). 

Moreover, the mean roughness depth Rz of the dermal-epidermal junction decreased 

from 81.4 µm to 40.4µm during the forearm angle change from flexion posture to extension 

posture, as shown in Table 7-3. Based on the definition (Equation 3-7 in Chapter 3), the mean 

roughness depth Rz represents the average maximum height of the derma-epidermal-junction 

roughness profile and concerns maximum height variations (peak-to-valley). Therefore, Rz 

probably overestimates a typical dermal-epidermal-junction average thickness. For example, 
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in a study by Neerken et al. (2004), the mean thickness of the dermal-epidermal-junction of 

the forearm was found to be 25 and 41µm in older and younger skin respectively, but the Rz 

of both groups was lower than the Rz values measured in this case study in the 90° arm 

bending position.  As mentioned before, due to the undulation of the dermal-epidermal 

junction, large differences can be obtained in epidermis layer thickness (Neerken et al., 2004) 

which in return will also affect the calculation of the dermal-epidermal junction thickness and 

undulation geometry parameters being defines by standard roughness parameters Ra and Rz 

in this article.  

In this flexion-to-extension forearm posture study, upon changing the forearm angle 

from 90° bending to 180° extension, the main skin surface profile and dermal-epidermal 

junction geometry parameters (Ra, Rz) decreased to a similar extent by about 41-50% as 

shown in Table 8-1. The observed similar percentage reduction in skin surface roughness and 

epidermal-dermal junction flatness/undulation (between 41-50%) upon natural skin stretching 

from 90° to 180° seems to be in agreement with the fact that these skin layers have the same 

in-plane strain because they are mechanically and structurally connected with each other. In 

this context, it should be pointed out that a systematic roughness offset may have been 

introduced into the measurement result due to the fact that the skin was compressed and 

folded up, causing wrinkling, in 90° bending posture, whereas the 180° full extension posture 

may have led to pronounced skin stretching and epidermis flattening.  

Skin is a hierarchical functionally graded multiplayer composite in which different 

skin layers are firmly connected with each other and via tendons, fascia and muscles 

mechanically connected to bony structures (Gerhardt et al., 2012; Lamers et al., 2013). As 

skin is firmly connected to the underlying body tissue structures, when the multilayer 

composite is subjected to body movements and global stretch, it will consequently 

accommodate for the exposed strain and respond in such a way that both the epidermal-

dermal junction flatten and skin surface asperities smoothen out.  

According to Ferguson & Barbenel (1981), during stretching of the skin the 

undulations of the epidermal surface and epidermal-dermal junction are flattened before 

elongation of the epidermal cells occurs. Moreover they suggested that the surface folds 

provide a reserve of tissue, allowing the epidermis to stretch without stretching or disrupting 

the epidermal cells. If this is true there should be a relationship between the skin extensibility 

and the grooves and ridges of the skin surface pattern, which produce the functional 
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epidermal reserve. Therefore, Ferguson & Barbenel (1981) measured forearm skin roughness 

at varying strain and quantified how skin stretching reduces the roughness along the stretch 

direction. They found a gradual decrease in surface roughness Ra from 14µm to 6µm at 10-

30% strain. This result is fully in line with the observations here and data in Table 7-1, Table 

7-2 and Table 7-3, showing a tendency to skin smoothing with increasing strain. Though, due 

to the limited strain and roughness data (only at 90° flexion and 180° extension) a 

mathematical correlation cannot be established in a sensible and reliable way.  

It should be noted that although the epidermal and dermal-epidermal junction layer 

thickness detection algorithm developed has not been fully validated using for example 

histology, qualitative assessment of OCT images by several skin experts and authors of the 

present paper showed that the developed image code is sufficiently robust and sensitive to 

reliably identify and determine epidermis and dermal-epidermal junction thickness by 

automatic identification of skin structural features. Even if the code has not been fully 

validated, it allows reliable relative comparisons of skin layer thickness and geometry change 

during a flexion-extension experiment. However, as both the dermal-epidermal junction 

(basement membrane) and the papillary dermis are signal poor; whereas reticular is signal 

intense (Welzel, 2014) it cannot be ruled out that some minor contributions of the papillary 

dermis are included in the epidermal thickness and dermal-epidermal junction flatness 

determination.  

7.6 Conclusions  

This work has shown the feasibility to quantify the morphological skin parameters from OCT 

images and also the method to combine two non-invasive techniques that are 3D-DIC and 

OCT to investigate skin surface strain and sub-surface layer deformation of volar forearm. 

This study demonstrated that even simple movements such as changing arm postures, by 

extending the arm from natural flexion to full extension, can cause a significant change in 

skin surface strain, by typically 25%, and caused morphological changes in the upper skin 

layers – reduction of epidermal layer thickness around 20%, decrease of the dermal-

epidermal junction undulation roughness between 45%-50% and also skin surface roughness 

between 40% - 50%. The morphological change of the skin and the strain may be connected 

because they are the result of the deformation of the human skin while the arm was extended.   
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In brief, this further demonstrates that the methodology of using high-speed imaging 

techniques to assess the deformation and strain in soft tissue in real-time is not limited to the 

study of biotribology, but both biomechanics and biotribology.  
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Disorientation of aortic tissue fibres subjected to 

different loads 
 

 

 

 

 

8.1 Introduction 

This chapter investigates the potential of using confocal microscopy in biotribology 

experiments. As such, this research work studied the deformation of porcine aorta when 

damaged by a catheter tip during cardiac catheterisation procedure. Although major 

catheterisation damage is rare, there are certain risks in performing this procedure that might 

damage the blood vessel though rubbing or sliding of the catheter tip. Therefore, a damage 

evaluation method is needed to identify and estimate the amount of damage on porcine aorta 

from the deformation it sustained from the sliding of catheter tip.  
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8.2 Aim and objectives 

The aim of this study was to investigate the possibility of and to demonstrate in-situ catheter 

tissue interaction using confocal microscopy on ex-vivo porcine aorta tissue.  

The objectives of this study also involved determining which fluorescent dyes are more 

suitable for staining porcine aorta. Also, this study involved designing a feasible in-situ 

experimental set-up with available equipment at that time for real-time monitoring.  

8.3 Methodology and experimental set-up 

This section will show the methodology used to prepare the experimental set-up for the main 

experiment. Few pilot studies have conducted to determine the suitability of Eosin B and 

feasibility of in-situ tribometer.  

8.3.1 Preparation of Porcine Aorta 

All tissue preparation was undertaken within the fume hood according to the Human Tissue 

Interaction (HTI) lab protocol, no tissue was handled outside the fume hood and all tissue 

was transported out of the fume hood either in the tissue holder, in a petri dish or in a sealed 

red disposal bag 

The porcine aorta had to be cut in strips of 8cm length and 3cm width, as the porcine 

aorta received from Hemolab, Technological University of Eindhoven, was one whole uncut 

porcine aorta. During preparation, the aorta was handled with care so that the innermost layer 

of the aorta received as little damage as possible. 

The porcine aorta strips were then immersed in an Eosin B fluorescent dye solution of 

100µM concentration overnight at 4°C. After the incubation time, the aorta strips were fixed 

onto a tissue holder and pre-stretched circumferentially to 15% of the original length before 

imaging. 

8.3.2 Imaging using confocal microscopy 

Detailed information regarding confocal microscopy working principal, sample preparations 

and the development of the image analysis has been introduced in section 3.4.  

The confocal microscopy used was Spectral Confocal & Multiphoton System Leica TCS SP2.  

The main experiment was to investigate two of the most important factors in 

contributing to catheterisation damage, which were the magnitude of force and the amount of 

passes. The main experiment conducted was to compare the differences of Z-stacked scan 
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images between undamaged porcine aorta and damaged porcine aorta across time based on 

the orientation of tissue fibres of porcine aorta.  

The experiments conducted were divided into “Cases” of which there were 9 in total 

and each case had different catheterisation damage conditions. 

 Case 1: 0.5N force with 1 catheterisation pass 

 Case 2: 0.5N force with 5 catheterisation pass 

 Case 3: 0.5N force with 10 catheterisation pass 

 Case 4: 2.0N force with 1 catheterisation pass 

 Case 5: 2.0N force with 5 catheterisation pass 

 Case 6: 2.0N force with 10 catheterisation pass 

 Case 7: 5.0N force with 1 catheterisation pass 

 Case 8: 5.0N force with 5 catheterisation pass 

 Case 9: 5.0N force with 10 catheterisation pass 

Based on previous pilot studies, thickness of the dyed section of porcine aorta was 

approximately between 50 to 80μm. The working range of the Z-stacked scan must exceed 

the thickness of dyed section. As such, the Z-stacked scan setting was set to have a working 

range of 100μm. Secondly, the Z scan was set to have 1μm interval between 2 consecutive 

images. In other words, each Z scan will give 101 images each 1μm apart going into porcine 

aorta (positive z direction) as Figure 8-1 shows. 

 

Figure 8-1, Front view of the experimental set-up 

Firstly, the prepared porcine aorta sample underwent the first Z-stacked scanning, 

which is the undamaged Z-stacked scan. Then the   and   position values of the stage that 

supporting the petri dish were noted so that the lens could focus on the same area of focus as 

the undamaged Z-stacked scan.  
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The sample was then moved away from the lens by adjusting the stage in order to 

perform catheterisation damage on the sample. Based on case 1, force of magnitude of 0.5N 

was applied from point A to point B, which was considered as 1 catheterisation pass as 

shown in Figure 8-2. Then, the stage was moved back to its previous position as noted before 

within 10 seconds and turned on the live-scanning to double check if the area of focus was 

the same as undamaged Z-stacked scan.   

Z-stacked scanning settings, which were set to run 8 separate Z-stacked scans 

continuously, were started after the after 10 seconds. Each Z-stacked scan that was set to scan 

100 images with 1μm required approximately 1.88 minutes to finish. As such, relatively, first 

Z-stacked scan will finish at 1.88 minutes, and then, second Z-stacked scan will start from 

1.89 minutes and end in 3.76 minutes. Eventually, the eighth Z-stacked scan will start from 

13.16 minutes and end in 15.04 minutes as shown in Figure 8-3. 

After the above procedure was finished, the sample was taken off from tissue holder 

and safely disposed. Then the next sample was prepared for case 2: 0.5N, 5 passes. The above 

processes were repeated from case 2 to case 9. This experiment was repeated 5 times. The 

experiments were then labelled as Set 1, Set 2, Set 3, Set 4 and Set 5.  

The images collected from the main experiment were re-arranged and grouped as 

undamaged Z-stacked scan, damaged Z-stacked scan at T0, damaged Z-stacked scan at T1, 

damaged Z-stacked scan at T2, damaged Z-stacked scan at T3, damaged Z-stacked scan at T4, 

damaged Z-stacked scan at T5, damaged Z-stacked scan at T6 and damaged Z-stacked scan at 

T7 for case 1 to case 9 of all 5 set of experiments. Each Z-stacked scan has 100 images. 

However, only approximately 50 to 80 images had imaged tissue fibres due to the dyed 

thickness being approximately 50μm to 80μm. Therefore, the remaining images that were not 

able to show the tissue fibres were deleted prior the image analysis. Fiji is able to run 

directionality image analysis on a single image or the whole Z-stacked images. Therefore, a 

total of 9 histograms were obtained for one case and 81 histograms in total for one 

experiment. The histograms were required to study the directionality angle of tissue fibres at 

different Z-stacked height across the dyed section. Blue lines represented the surface section 

of the sample (surface where was in contact with in-situ tribometer and the innermost part of 

porcine aorta), green lines represented the middle part of dyed section and brown lines 

represented the deepest dyed section, as shown in Figure 8-5. 



173 | P a g e  

 

 

Figure 8-2, Top view and front view of the experimental set-up 

 

 

Figure 8-3, Timeline of 8 separate Z-stacked scanning 

 

Figure 8-4, The actual experimental set-up 

 

Figure 8-5, Outcome of Fiji – directionality image analysis of the Z-stacked images 

1st Z-stacked     2nd Z-stacked    3rd Z-stacked   4th Z-stacked    5th Z-stacked    6th Z-stacked   7th Z-stacked    8th Z-stacked   Scanning finished  
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8.4 Results 

8.4.1 Directionality histogram of Z-stacked scan 

There are three types of colours in the histograms shown: blue, green and brown, which 

resembles from the top layers to the bottom layers of the porcine aorta sample. 

Each line in the histograms represents the dominant directionality angle of the specific 

image and the histogram represents the Z-stacked scan took place. As example, histograms in 

Figure 8-6 to Figure 8-8 were from the same experimental attempt. Histogram in Figure 8-6 

is the first Z-stacked scan done on an undamaged porcine aorta sample, while histograms in 

Figure 8-7 and Figure 8-8 are the Z-stacked scans took place after damaged was done on the 

same porcine aorta sample at different time points. 

8.4.2 Unique pattern of directionality histogram of each case 

Every histogram groups contain 9 histograms (undamaged Z-stacked scan, damaged Z-

stacked scan at T0, damaged Z-stacked scan at T1, damaged Z-stacked scan at T2, damaged Z-

stacked scan at T3, damaged Z-stacked scan at T4, damaged Z-stacked scan at T5, damaged Z-

stacked scan at T6 and damaged Z-stacked scan at T7) for each case that have their own 

unique pattern, which were characterised by their peak value (Y-value), position of the peak 

value at X-axis and the distribution curve. These could be shown by the histogram groups of 

Set 3, case 1: 0.5N, 1 pass (Figure 8-6, Figure 8-7, Figure 8-8), Set 1, case 4: 2N, 1 pass 

(Figure 8-10, Figure 8-11, Figure 8-12) and Set 1, case 7: 5N, 1 pass (Figure 8-12, Figure 

8-13, Figure 8-14). Figure 8-6-Figure 8-14 show that the confocal microscopy lens was 

scanning at the same area of focus (620×620μm) for both undamaged Z-stacked scans and 

damaged Z-stacked scans.  

These histogram patterns are important because the possibility of confocal 

microscopy lens not scanning on the same area of focus after conducting the catheterisation 

damage can be opted out. More importantly, these histogram patterns could also mean that 

the direction of orientation of tissue fibres of porcine aorta is random and different from 

sample to sample.  

8.4.3 Inability of aortic wall tissue fibre to recover to undamaged state  

Comparison of directionality histograms between undamaged aorta and damaged aorta shows 

that the elastin of porcine aorta is unable to recover to the undamaged state regardless of the 

force applied within 15 minutes, in other words, the pattern of directionality histograms of the 
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damaged aorta do not return to the pattern of directionality histogram of undamaged aorta. 

Taking Set 3, case 1: 0.5N, 1 pass (Figure 8-6 to Figure 8-8) as an example, the difference in 

positions between the peaks of blue and green lines are not distinctive and there are no 

obvious peaks for brown lines in undamaged directionality histogram as shown in Figure 8-6. 

However, both damaged directionality histograms at different time points (Figure 8-7, Figure 

8-8) showed that the peaks of the blue lines have higher position than the peaks of green lines 

while there is one small peak for brown lines. 

The same happens on Set 1, case 7: 5N, 1 pass (Figure 8-12-Figure 8-14) with the 

position of the blue lines drops below the peaks of green lines while the position of the peaks 

of the green lines is unchanged. 

However, there are very few exceptions like Set 1, case 4: 2N, 1 pass (Figure 8-9-

Figure 8-11) which shows that there was hardly any distinctive changes or differences 

between damaged histograms and undamaged histograms. 

 

Figure 8-6, Undamaged directionality histogram for Set 3 Experiment (0.5N, 1 pass) 

Blue and Green 
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Figure 8-7, Damaged directionality histogram for Set 3 Experiment at 1.88 minute after 

catheterisation process (0.5N, 1 pass) 

 

 

Figure 8-8, Damaged directionality histogram for Set 3 Experiment at 15 minutes after 

catheterisation process (0.5N, 1 pass) 

Blue 

Gree

n 
Brown 

Blue 

Green 

Brown 
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Figure 8-9, Undamaged directionality histogram for Set 1 Experiment (2.0N, 1 pass) 

 

Figure 8-10, Damaged directionality histogram for Set 1 Experiment at 1.88 minutes after 

catheterisation process (2.0N, 1 pass) 
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Figure 8-11, Damaged directionality histogram for Set 1 Experiment at 15 minutes after 

catheterisation process (2.0N, 1 pass) 

 

Figure 8-12, Undamaged directionality histogram for Set 1 Experiment (5.0N, 1 pass) 

Blue 

Green 
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Figure 8-13, Damaged directionality histogram for Set 1 Experiment at 1.88 minutes after 

catheterisation process (5.0N, 1 pass) 

 

Figure 8-14, Damaged directionality histogram for Set 1 Experiment at 15 minutes after 

catheterisation process (5.0N, 1 pass) 

8.4.4 Comparison of mean directionality angle of each set 

This section examines the comparison of mean directionality angle of each histogram 

between undamaged Z-stacked scan and damaged Z-stacked scan at undamaged Z-stacked 

scan T0, T1, T2, T3, T4, T5, T6 and T7. Figure 8-15 gives an overview of change in mean 

directionality angles for case 1. The change of the directionality angle against the time points 

of each is presented in Appendix G. In general, the change in mean directionality angle of 

Blue 

Green 

Blue 

Green 
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every case does not converge. In other words, the mean directionality angle of most of the 

cases does not have considerable change at T0 and does not show any converging signs. One 

of the two possibilities is that porcine aorta samples did not undergo a recovery progress. A 

second possibility is that the mean directionality angle method is not suitable to represent the 

recovery progress of porcine aorta tissue samples. However, there are few cases that have 

considerable change in mean directionality angle (>5°) but the change does not converge to 

the undamaged mean directionality angle.  

In addition, case 9: 5N, 10 passes is a special case whereby most of the samples were 

perforated during the application of damage and only 2 samples from Set 2 and Set 4 were 

not perforated as shown in Figure G-9 in Appendix G.  

 

Figure 8-15, Comparison of mean directionality angle of 5 sets of experiments for case 1: 

0.5N, 1 pass 

8.4.5 Recovery progress of tissue fibres based on the direction angle difference (θundamaged 

- θTn) for each case  

As mentioned in section 8.3.4, the difference in directionality angle was used to study the 

recovery progress of porcine aorta tissue fibres. Therefore, it was predicted that porcine aorta 

would have recovered when time point, |∆θTn|, is equal to or near to 0 for consecutive time 

points. However, this prediction was not achieved as shown in Table 8-1. 

The values of mean directionality angle difference, |∆θTn|, in Table 8-1 were taken 

from all 5 sets of experiments. By assuming that porcine aorta tissue fibres will deform and 

recover to its original state, Table 8-1 gives an overview of recover progress for different 



181 | P a g e  

 

damage conditions. Table 8-1 also shows that the recovery progress of all 9 damage 

conditions are not consistent, not showing any pattern or trend to imply how porcine aorta 

tissue fibres would recover. This might give a hint that there are other factors governing the 

recovery progress of porcine aorta tissue fibres.  

Table 8-2, Table 8-3 and Table 8-4 show the mean and standard deviation of 3 

different time points, T0, T4, T7, and how they were obtained from all 5 sets of experiments. 

Among all 9 damage conditions, standard deviation of Case 3: 0.5N, 10 pass, Case 4: 2N, 1 

pass, and Case 9: 5N, 10 pass are larger than other 6 damage conditions. Case 3: 0.5N, 10 

pass and Case 4: 2N, 1 pass was more likely had been influence by the human errors, while 

Case 9: 5N, 10 pass was due to the perforation of porcine aorta tissue samples.  

Table 8-1, Recovery progress based on the amount of mean directionality angle change 

 |    
| |    

| |    
| |    

| |   | |    
| |    

| |    
| 

Case 1 0.5N 1 pass 2.3  2.9  2.7  3.1  3.0  4.2  3.2  4.1  

Case 2 0.5N 5 pass 1.4  1.2  1.2  1.2  1.7  1.3  1.8  1.8  

Case 3 0.5N 10 pass 8.8  6.6  6.4  8.1  6.5  8.1  7.4  6.6  

Case 4 2N 1 pass 5.9  5.9  5.6  6.4  6.2  8.1  6.8  6.0  

Case 5 2N 5 pass 1.9  1.5  2.3  3.0  2.2  1.2  1.0  1.6  

Case 6 2N 10 pass 2.5  1.9  2.2  2.1  2.7  2.0  2.4  2.3  

Case 7 5N 1 pass 2.4  3.0  2.8  2.7  3.2  3.0  3.5  3.7  

Case 8 5N 5 pass 2.3  1.1  2.3  1.5  3.1  3.9  4.7  3.9  

Case 9 5N 10 pass 26.2  28.9  25.8  25.6  7.6  10.0  9.1  9.8  

 

Table 8-2, Amount of mean directionality angle change at T0 with respect to Tundamaged 

   Set 1 Set 2 Set 3 Set 4 Set 5 

 

Mean S.D. 

Case 1 0.5N 1 pass 7.4  1.0  2.2  0.7  0.1  2.3  2.9  

Case 2 0.5N 5 pass 1.0  3.8  0.6  1.5  0.1  1.4  1.4  

Case 3 0.5N 10 pass 9.2  8.3  23.6  2.0  0.7  8.8  9.1  

Case 4 2N 1 pass 24.2  2.3  2.3  0.6  0.3  5.9  10.3  

Case 5 2N 5 pass 6.6  0.2  2.0  0.2  0.7  1.9  2.7  

Case 6 2N 10 pass 8.6  0.4  1.9  0.3  1.4  2.5  3.5  

Case 7 5N 1 pass 2.5  3.8  0.8  2.4  
 

2.4  1.2  

Case 8 5N 5 pass 7.3  0.2  0.4  1.4  
 

2.3  3.4  

Case 9 5N 10 pass 64.2  13.3  
 

1.1  
 

26.2  33.5  
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Table 8-3, Amount of mean directionality angle change at T4 with respect to Tundamaged 

   Set 1 Set 2 Set 3 Set 4 Set 5 

 

Mean S.D. 

Case 1 0.5N 1 pass 4.2  3.4  2.4  3.7  1.5  3.0  1.1  

Case 2 0.5N 5 pass 2.3  3.7  0.2  2.0  0.2  1.7  1.5  

Case 3 0.5N 10 pass 10.8  6.7  12.7  2.0  0.4  6.5  5.3  

Case 4 2N 1 pass 24.1  1.8  2.5  0.5  2.1  6.2  10.0  

Case 5 2N 5 pass 7.6  0.3  2.7  0.0  0.6  2.2  3.2  

Case 6 2N 10 pass 9.7  0.3  2.2  0.4  1.0  2.7  4.0  

Case 7 5N 1 pass 4.3  4.9  1.0  2.7  
 

3.2  1.7  

Case 8 5N 5 pass 10.0  0.3  1.5  0.6  
 

3.1  4.6  

Case 9 5N 10 pass 
 

14.9  
 

0.3  
 

7.6  10.3  

 

Table 8-4, Amount of mean directionality angle change at T7 with respect to Tundamaged 

   Set 1 Set 2 Set 3 Set 4 Set 5 

 

Mean S.D. 

Case 1 0.5N 1 pass 

 

8.3  2.6  5.1  0.5  4.1  3.3  

Case 2 0.5N 5 pass 0.5  4.8  0.8  0.8  2.0  1.8  1.8  

Case 3 0.5N 10 pass 

 

6.1  16.9  2.3  1.3  6.6  7.1  

Case 4 2N 1 pass 23.1  0.3  0.2  0.6  
 

6.0  11.4  

Case 5 2N 5 pass 2.9  1.0  3.3  0.3  0.6  1.6  1.4  

Case 6 2N 10 pass 7.2  0.6  2.2  0.7  0.9  2.3  2.8  

Case 7 5N 1 pass 5.2  5.4  1.4  2.7  
 

3.7  2.0  

Case 8 5N 5 pass 7.9  1.0  6.2  0.4  
 

3.9  3.8  

Case 9 5N 10 pass 

 

17.6  
 

2.1  
 

9.8  10.9  

8.5 Discussion 

8.5.1 Suitability of Eosin B in Imaging Surface or Subsurface of Porcine Aorta 

Waheed‟s study suggests that Eosin B is capable of staining arginine, lysine and histidine 

(Waheed et al., 2000). These proteins do not exist in elastin fibres or exist in a very small 

amount. However, these proteins exist in collagen fibres although they are not as abundant as 

other proteins, in the porcine aorta wall. This suggests that the tissue fibres stained are not 

elastin fibres in this study, which contradicts Megen‟s study that used Eosin to stain elastin 

fibres (Megens et al., 2007)  

  

In addition, Figure 8-17 that was obtained from Tsamis‟s study also showed that the 

inner layer (intima) is comprised of mainly a single layer of endothelial cells, a thin basal 
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membrane and a sub-endothelial layer fill of collagen fibrils (Tasmis et al., 2013). Therefore, 

this might suggest that the tissue fibre imaged could be collagen fibrils. However, it is 

unknown if the aortic wall of porcine aorta is composed of collagen or elastin fibres or both. 

Zeeman et al. (1998) confirmed that Eosin B is able to stain the collagen in the aortic wall, 

but elastin is less likely. But the middle part of porcine aorta sample shown in Figure 8-16, 

which is composed mostly of collagen fibres, is not stained with Eosin B. This could be 

supported by another study that stated elastic fibres are stained with Eosin probably due to 

the high density and low permeability of these structures (Goldstein, 1969).  

From these, it can be concluded that Eosin B is able to stain the tissue fibres of the 

porcine aortic wall, which could comprise of both elastin and collagen fibres. 

Additionally, during the initial experiments, the results were able to show the 

endothelial cells on the intima layer as shown in Figure 8-18 due to the ability of Eosin B to 

stain cytoplasm of cells. In addition, the shape of the cells images in Figure 8-18(a) and (b) 

are similar to endothelial cells illustrated in Figure 8-17. 

 
Figure 8-16, The stained porcine aorta sample that is cut open to investigate the depth of 

Eosin B stain 
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Figure 8-17, The detailed structure of the layers of porcine aorta (Tsamis et al., 2013) 

 
Figure 8-18, (a) The endothelial cells stained with Eosin B imaged using standard confocal 

microscopy (b) The endothelial cells were magnified 

8.5.2 Recovery of aortic wall tissue fibre 

Based on the directionality histograms of tissue fibres for case 1 to case 9 of 5 sets of 

experiments show that the respective directionality histograms pattern of each and every case 

are unique and therefore this has ruled out the assumption that the orientation of porcine aorta 

tissue fibres is the same across all samples. It was previously hypothesized that the 

directionality angle of tissue fibres should remain constant due to the pre-stretch of aorta 

samples throughout the experiment. However, directionality histograms and the images 
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obtained from confocal microscope have shown that the directionality of the tissue samples 

vary for every different tissue sample used.  

The first method of analysing the recovery of the tissue sample was through 

directionality histograms, which show the directionality of the tissue samples before and after 

the rubbing of a catheter. There are slight to moderate changes on the directionality angle and 

the amount of the tissue fibres at that direction. The tissue samples are known to be able to 

recover when the damaged directionality histograms of tissue samples are identical or similar 

to their respective undamaged directionality histogram however the damaged directionality 

histograms do not show even the slightest recovery even after approximately 15 minutes.  

The no-recovery progress also can be observed using the comparison of figures of 

mean directionality angle for every case and experimental sets. In brief, the figure of 

comparison of mean directionality angle for all 9 cases and 5 experimental sets show that the 

mean directionality angle of the tissue fibres of the 8th damaged Z scan is not the same as the 

undamaged directionality angle of the tissue fibres. In addition, the trend lines of the figures 

do not show any recovery signs. There are 2 possibilities explaining this situation. Firstly, it 

could be that the orientation of tissue fibres would take a longer period to recover, which was 

more than 15 minutes. Second possibility is that it could be that the tissue fibres had already 

recovered the instant the in situ tribometer finished applying the catheterisation damage on 

the samples.  

These methods show that the aortic wall fibres might not be a suitable mean to 

measure the recovery of porcine aorta after catheterisation process. Even if aortic wall tissue 

might recover to an undamaged state, it definitely takes longer than 15 minutes. It is also 

uncertain if the deformation will have an effect on the directionality of the tissue fibres, but 

deformation will have an effect on the amount of tissue fibres of specific directionality. This 

could explain why there are changes in the amount of tissue fibres in the directionality 

histograms. When deformation occurs, the tissue fibres will be either being pushed away or 

go further down due to the pressing normal force, as such, the amount of tissue fibres of 

specific directionality will change. 

8.5.3 Real-time monitoring of porcine aorta tissue fibres 

The main result showed that the porcine aorta tissue fibres did not recover within 15 minutes. 

However, it is uncertain whether the tissue fibres had recovered or returned to their original 
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orientation the instant after the application of catheterisation damage finished and before the 

Z-stacked scanning took place.  

Therefore, it was of interest to investigate how the porcine aorta tissue fibres behaved 

or recovered in the period between the application of catheterisation damage and the first 

damaged Z-stacked scanning. However, it was very difficult to achieve due to two main 

problems.  

Firstly, confocal microscope is not able to obtain any image of tissue fibres when 

there is an object between the tissue sample and the lens. Therefore, it is impossible to use 

confocal microscope to obtain any images during the application of catheterisation damage. 

Secondly, confocal microscope is not able to automatically focus at the same layer of the 

porcine aorta as porcine aorta sample will deform during the application of catheterisation 

damage due to the normal force, and will take time to return to undeform state. Therefore, it 

requires confocal microscopy to run a Z-stacked scan on the porcine aorta sample, however, 

Z-stacked scan will not give accurate real time monitoring as each Z-stacked scan takes 1.88 

minutes to finish scanning. As such, confocal microscopy will take 1.88 minute to scan the 

same layer with every consecutive scans.  

Y-stacked scanning of confocal microscope was previously used to scan the porcine 

aorta sample from the side view to give more accurate real time monitoring on the change of 

orientation of tissue fibres without concerning the deformation of porcine aorta samples. 

However, the images obtained were blurred and were not able to improve by changing 

various scanning settings.  

In regards to subsurface real time monitoring, Optical Coherence Tomography (OCT) 

is a good alternative that can be used to study the subsurface condition of porcine aorta 

sample. However, OCT is not able to produce imaged that can show such details of tissue 

fibres in comparison to confocal microscopy.  

Therefore, further research should focus if tissue fibre is really a necessary to study the 

recovery progress of porcine aorta, and also to discover if there are alternatives that can be 

used to measure and represent the recovery progress of damaged porcine aorta.  

8.6 Conclusions 

Throughout this study, it is shown that the directionality of the aortic wall fibres might not be 

a suitable scale to measure the recovery progress of porcine aorta. Firstly, it is time 
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consuming for the recovery progress to finish considering if the ex-vivo tissue samples do 

recover. In addition, it is unsure if the porcine aorta had recovered the instant before the Z-

stacked scan took place. Secondly, confocal microscopy is not able to provide accurate real 

time monitoring on the changes of orientation of porcine aorta tissue fibres.  

Further improvements on the experiment results and experiment set-up are limited as 

there are currently no appropriate equipment (2-Photon Confocal Fibre Scanner) and 

materials (Fluorescent Dyes that can stain the whole porcine aorta). Therefore, accurate real 

time imaging on en-vivo experiment is difficult to achieve currently. However, this study still 

shows that the results obtained from real time imaging are of great value. 
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9 Chapter 9  

 

 

 

 

 

 

 

Discussion 
 

 

 

 

 

9.1 Introduction 

This research has so far covered and studied several different studies, which are the strain 

behaviour of finger pad and silicone hemi-sphere while in contact with a counter-face 

material, the strain behaviour of the forearm while performing simple movements without 

interacting with a counter-face material and the deformation of the porcine aorta from 

catheterisation process. Therefore, this chapter aims to look at the bigger picture and discuss 

the connections between the work packages in this research from chapter 4 to chapter 8. As 

this research was more focused in exploring the usage of different imaging techniques in 

biotribology and biomechanics experiments, a summary of the imaging techniques used and 

their respective limitations are shown in this chapter. In addition, this chapter will summarise 

the strain behaviour of the human finger pad skin in contact with a counter-face material. 
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9.2 A summary of real-time imaging techniques in studying the deformation of soft 

tissues 

One of the main outputs of the current project is to explore how various imaging techniques 

can be used in bio-tribology because these imaging techniques are not traditionally designed 

for bio-tribological experiments.  

Therefore, various imaging techniques introduced in this study have been useful in 

revealing the morphology of the soft tissues. For example, OCT was able to capture the 

interaction between finger pad and transparent counter-face materials such as glass plate or 

plastic plate without much loss on the image quality. This imaging technique could even 

show the interaction between a finger pad and a transparent material with lubrication, as 

shown in Figure 9-1. This could lead to potential research opportunities in human skin 

biotribology in the future, which will be further discussed in section 9.3. Most importantly, 

these imaging techniques are able to produce real-time images that can monitor and show 

how the finger pad or soft tissues behave or react to different stimulations, such as a sliding 

test or a simple posture changing test. Also, the imaging techniques used in this research are 

non-invasive to the human body.  

 However, the imaging techniques that use light as a medium are also limited in the 

study of biotribology mainly due to the properties of light. In this research, for OCT and 

confocal microscopy, it was difficult to produce high quality images without trade-offs.  For 

instance, due to the fact that OCT and 3D-DIC can only be used with a transparent counter-

face material, the scope of research on interacting materials is limited to either transparent 

glass or plastic material although human skin has different touch perception when come into 

contact with all kinds of materials like metal, ceramics, woods etc. The study in Chapter 7 

that focused on the change in morphology of forearm skin by changing its posture is an 

example, proved that the same imaging methodology was easier to use on an experiment 

without interacting materials and high quality images were easier to obtain. Another 

limitation is the properties of light, like reflection, refraction and diffusion. This is the main 

reason why a thin plate was used as the interacting material with finger pad in this research. 

The study on water lubrication during the interaction between finger pad and glass was not 

pursued as well, due to the severe light refraction during 3D-DIC experiments.  
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Figure 9-1, OCT image of finger pad, plastic glass and water layer 

9.2.1 3D-Digital Image Correlation (DIC) 

3D-Digital Image Correlation has been used to study the strain of the human skin in 

biotribology experiment (sliding interaction between glass plate and finger pad) and 

biomechanics experiment (posture change of the forearm). There are several stages in using 

3D-DIC in the experiment, which are the samples preparation, cameras set-up and calibration, 

images acquisition and post-processing. After the post-processing, the 3D-DIC will show 

how the surface strain profile of the finger pad and the forearm changes in response to the 

change in the external environment in real-time. 

The limitation of this imaging technique is that it is only able to look at the surface 

deformation of the soft tissues. Research work that is particularly interested in the subsurface 

deformation of soft tissues can consider using Optical Coherence Tomography or Digital 

Volume Correlation (DVC). DVC works similarly to DIC, however, this image technique 

analyses the cross sectional images (tomographic images) of the soft tissues to visualise the 

strain profile of the soft tissue in three axes. 3D-DIC is only able to visualise the surface 

strain profile of the soft tissue in two axes.  

The other limitation, which is more specific to biotribology experiment, is the change 

of the surface properties during a sliding experiment. As 3D-DIC requires black speckles to 

be painted on the soft tissues during the sample preparation stage, it will have an effect on the 

sliding performance of the finger pad on the glass plate. This effect was reduced in this 

research by not applying the white background paint that was popularly done in other DIC 

experiments, which was deemed possible because the human skin used in this study has a 

light colour background in comparison to the black speckles. In the silicone hemi-sphere and 

glass plate study, the white background of the silicone hemi-sphere was done by mixing a 

tiny drop of white paint with the silicone mixture during the manufacturing stage instead of 

painting a white paint on the silicone hemi-sphere.   
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9.2.2 Optical Coherence Tomography (OCT) 

Optical Coherence Tomography (OCT) is a non-invasive imaging technique that can show 

the surface and subsurface morphology of biological tissues. In this research, it is able to 

show the epidermal and dermal region of the human skin and their morphologic changes in 

response to the change in external environment in real-time. Commercially available OCT is 

a user-friendly imaging technique that does not require any camera calibration or set-up. 

However, complicated settings can be changed accordingly for advanced users. The software 

that comes with the OCT can only show and capture the condition of the skin without any 

post-processing features. So the OCT images captured are post-processed by using different 

software in this research, which is Matlab. After the post-processing, the OCT images can 

show the surface roughness of the human skin and the roughness of the dermal-epidermal 

junction of the skin.  

The only limitation of using this imaging technique is that it is not possible to extract 

the strain values from the images. The OCT images had been previously analysed using DIC 

software, but no useful results were obtained because the speckles in the OCT images were 

too small and not unique, so the DIC software was not able to track the movement of the 

speckles from the OCT images.  

The second limitation, which is more specific to biotribology experiments, the 

interacting material must be transparent in nature so that the light can travel through it. In 

addition, only thin glass plate can be used in the finger pad and glass sliding experiment. This 

is due to the fact that the thick glass has a striking effect on the laser light that is detrimental 

to the quality of the OCT images. This effect is still reflected on the thin glass, but to a lesser 

amount.  

9.2.3 Confocal microscopy  

Confocal microscopy scans the soft tissues with a focused beam and builds up the image 

point by point. Sample preparation is required in using this imaging technique on soft tissue. 

The soft tissue is required to be stained with a fluorescent dye overnight so that the 

fluorescent material can be attached on the tissue fibres during the imaging. Therefore, due to 

the potential health hazards on human skin using this method, porcine aorta was used instead 

in the biotribology experiment.  

 Confocal microscopy was the first imaging technique used in this project. Due to the 

difficulty of getting real-time deformation measurements and lengthy sample preparations, 
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confocal microscopy was not further pursued. On the other hand, OCT and 3D-DIC were 

suggested and investigated extensively in the remaining of the project.   

Similar to OCT, confocal microscopy is only able to show and capture the condition 

of the tissue fibres without advanced post-processing features. So the confocal images were 

analysed using Fiji software and the orientation of the tissue fibres was extracted from the 

confocal images.  

The limitation of the confocal microscopy is that it cannot show the strain of the tissue 

fibres before and after the sliding of the catheter tip on the porcine aorta. Therefore, the 

deformation or the damages of the tissue fibres can only be assessed by the orientation of the 

tissue fibres.  

A study by Hendriks et al. (2011) had designed a portable miniaturised confocal 

microscopy, which could be attached on a tribo-meter. However, this was not successful 

because the device has a very short focal length - 100µm, so the device touching the sample 

during image acquisition was unavoidable. This performance of the device is being further 

improved, which there will be a possibility that the confocal microscopy can still be used in 

real-time recording of the tribological experiment in the future. 

9.3 From human skin to soft tissue simulant to theoretical model 

The imaging techniques, as discussed in previous section, were all used to study the 

deformation and strain behaviour of the soft tissue during tribological interaction with other 

material. Confocal microscopy was used on porcine aorta and catheter tip. Optical Coherence 

Tomography and 3D-Digital Image Correlation were used on human finger pad and glass 

plate. Additionally, OCT and 3D-DIC were also used on non-tribological experiment, which 

is the forearm study in Chapter 7.  

This research was initially focused on the measurement of strain on the finger pad 

undergoing sliding with a glass plate, in which Chapter 5 has shown that the strain profile of 

the finger pad would change from static to dynamic state. Although the finger pad surface 

strain behaviour does not seem to correlate with its frictional behaviour, the dynamic state 

strain profile has clearly shown that a region of finger pad was in tension while the other was 

in compression. However, this experiment was limited by the small measured strain values, 

which was easily affected by the unintentional self-vibration of the finger pad of the 
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volunteer. Therefore, this led to the testing of a more stable experimental sample, which was 

the soft tissue simulant – silicone rubber.  

A silicone hemi-sphere was a stable experimental sample, which the strain profile 

showed almost no noisy strain values. However, the silicone hemi-spheres made in Chapter 6 

were not a perfect simulation of the finger pad due to a few reasons. Firstly, the silicone 

hemi-sphere did not have ridges. Finger ridges played a very important role in interaction 

with other materials as shown in finger pad friction studies from Liu (2012) and Tomlinson 

(2009). Secondly, the silicone hemi-sphere made was a homogeneous isotropic material, but 

the human skin was composed of different layers of materials with different mechanical 

properties. Thirdly, the amount of the silicone in the hemi-sphere sample was limited and the 

size was smaller in comparison to the size of the finger pad. Therefore, a small size sample 

tends to experience a larger amount of strain because there is a limited amount of the material 

to share the strain. Despite the limitations of the silicone hemi-sphere, the strain profiles of 

the silicone hemi-spheres still served as a good reference and a starting point in 

understanding the strain behaviour of the finger pad under tribological interactions.  

As the next step after the experimental soft tissue simulant, a study was conducted to 

investigate the feasibility of using the theoretical strain modelling, based on contact 

mechanics by Johnson (1987), to predict the strain profile and values of the silicone hemi-

sphere under tribological interactions. The pilot study showed that the theoretical strain 

modelling was adequate to predict the strain profile of the silicone hemi-sphere but it was not 

used to compare with the strain profile of the finger pad due to certain limitations. The 

limitations are similar to why silicone hemi-sphere was not suitable to represent finger pad 

during tribological interaction. Firstly, the theoretical strain model was modelled under the 

assumption of homogeneous isotropic material, which human skin was not a homogenous 

material. Secondly, the theoretical strain model was modelled for a sphere in contact, 

however the shape of the finger pad in contact was elliptical. A study on strain profile of 

finger pad by Delhaye (2016) has also concluded that the theoretical strain modelling, based 

on Hertzian contact, was not suitable to predict complex strain profiles such as the finger pad 

during tribological interaction.  

9.4 Strain study of soft tissue 

Although the deformation of human skin does not play a significant role in tribological 

interactions with a smooth plate, a human always can feel the pulling sensation on the finger 



194 | P a g e  

 

pad even when a smooth plate is sliding. The previous studies have already built up the fact 

that one side of the human skin will be in tension while the other side is in compression 

against a sliding plate (Kwiatkowska et al., 2009, Delhaye et al, 2016). However this research 

is one of the earlier works that can clearly visualise the strain distribution of the human skin 

during tribological interactions in real-time by using 3D-DIC. It is shown that although strain 

distribution of the finger pad in contact is complex and may have slight variation with each 

experimental attempt but the overall strain profile is similar, especially the locations of the 

human skin in tension and compression, which is always aligned with the direction of the 

sliding of the plate (Delhaye et al., 2016).  

The main problem with a non-uniform strain distribution is the method to quantify the 

strain values. The most straightforward method is to average the strain values as in a study by 

Delhaye et al. (2016), which has quantified the strain by reporting the average strain in within 

the contact region. However, strain averaging might lead to the misrepresentation of the 

strain condition because a study done by Jacquemoud et al. (2007) discovered that there is a 

distinctive difference between ultimate global longitudinal strain (Green-Lagrange strain, 

9.5%) and the ultimate local longitudinal strain (Green Lagrange strain, 24%), which were 

obtained from the LVDT of the tensile machine and the DIC respectively. Averaging the 

strain within contact area is a good starting point to show the big picture of the strain changes 

against the normal load, however, essential information on the effects from other parameters, 

like relative humidity, external temperature, sliding speed, age, gender, ethnicity etc. may be 

lost (Liu, 2013). Therefore, this study had shown the general strain distribution profile, the 

strain profile along position axis and also the averaging of strain within the contact area of the 

finger pad to perform a detailed analysis on the strain changes of the finger pad during a 

sliding interaction. 

It is known that the condition of the finger pad can vary vastly as human skin is 

highly dependent on the internal and external environment (Liu, 2012; Tomlinson, 2009; 

Adams, 2007). This will be reflected in the strain behaviour of the finger pad as well. 

However, this research was a starting point to develop imaging methodologies for obtaining 

the strain profile of the finger pad consistently and reliably, which is why there were only few 

parameters altered during experiments. Future work will involve investigating more 

parameters and the consistency of the strain profiles by repeating the experiments.  
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In addition to the strain of human skin during sliding on the smooth glass, a pilot 

study in Chapter 4 has looked into the study of human skin while sliding against plates of 

uneven surfaces. So, in order to increase the friction between the finger pad and interacting 

material, one of the methods include increase the roughness of the interacting material to a 

roughness threshold that introduces an interlocking mechanism between the human skin and 

the interacting material. Tomlinson (2009) has particularly investigated the interlocking 

mechanism between the finger pad and the ridged plate (R = 1.19 - 98.42μm) during sliding 

interaction. In addition, Derler et al. (2009) have shown that how finger pad frictional 

behaviour changes with the roughness of the interacting material. The pilot study in Chapter 

4 has opened up the possibility to capture and record the motion of the human skin interacting 

with materials of different roughness in real-time. Although there will be limitations as 

discussed in section 4.5.7, but the effect of the interlocking mechanism on the human skin 

can be further investigated and, most importantly, visualised using the imaging technique - 

optical coherence tomography.  
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10 Chapter 10  

 

 

 

 

 

 

 

Conclusions and Future work 

 

 

 

 

 

10.1 Introduction 

This final chapter first lists the key findings of each imaging techniques used throughout the 

research. Then it goes through the main highlights of the deformation and strain behaviour of 

the soft tissues and the tissue simulant undergoing tribological interactions or just plain 

simple movement. The final section of the chapter shows the next steps of this research that 

could help in further developing the understanding of deformation and strain of soft tissues in 

various circumstances.  
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10.2 Conclusions 

10.2.1 Real-time imaging techniques 

10.2.1.1 3D-Digital Image Correlation 

3D-DIC is very useful in computing real-time full-field surface strain of the experimental 

subject that shows how the strain varies in response to different internal and external 

conditions. It can be used on both soft tissues and tissue simulants undergoing tribological 

interaction with a counter-face material, although it is limited only to smooth transparent 

materials.  

Traditional 3D-DIC system is not suitable for determining strain of finger pad ridges 

and it is also not suitable for use on highly deformable viscoelastic materials, for instance 

silicone hemi-sphere with 20% deadener, due to extreme shearing that occurs in the middle 

region of the contact 

It is feasible to measure the contact area of soft tissue or tissue simulants in contact 

with the glass plate using the 3D-DIC position data. 

10.2.1.2 Optical Coherence Tomography  

OCT is useful in the study of morphological changes of human skin, like the change in skin 

roughness and the thickness of the epidermal-dermal layer of human skin, in response to 

different internal and external conditions. It is a real-time imaging technique although post-

processing is required to accurately determine the mean and standard deviation of skin 

roughness and thickness.  

This research shows that the OCT can be used in a tribological study between human 

skin and grooved plates in addition to smooth transparent glass 

10.2.1.3 Confocal microscopy 

Confocal microscopy is useful in looking at the microscopic deformation of tissue fibres of 

soft tissues. However, fluorescent dyes are required for the imaging. It is the most difficult 

imaging technique to achieve real-time imaging of deformation of soft tissue due to the 

scanning distance and the scanning speed 
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10.2.2 Frictional behaviour, strain behaviour, morphological changes and surface 

moisture changes of finger pad with tribological interactions 

Based on the study done on one experimental subject, there are connections between the 

frictional and the strain behaviour of the finger pad as the average strain within the contact 

area has a linear relationship with the normal load applied. The power-law relationship 

between the dynamic coefficient of friction and the normal load of the finger pad shows that 

the adhesion is the predominant friction mechanism in the sliding interaction of a finger pad 

with a smooth glass plate. Soaked finger pad has a higher dynamic coefficient of friction than 

the natural finger pad, however, the soaked finger from the 3D-DIC test has similar dynamic 

coefficient of friction with the natural finger pad due to the longer acclimatisation period, 

different environmental conditions and the change in surface conditions by the speckles 

application. The general principal strain profile of the finger pad in contact was able to show 

which region was in tension or in compression and also the surface strain at the edge of the 

contact area was higher than the middle region of the contact area. 

The methodology of water application on the finger pad is essential in the future study 

as the surface moisture level of the finger pad was highly affected by the acclimatisation 

period even though the finger pad had been exposed to long period of water soaking. 

The relationship between the apparent contact area of the finger pad and the normal 

load can be described using a power-law equation. Moreover, the friction has a linear 

relationship with the apparent contact area of the finger pad. The real-apparent contact area 

ratio has hints of relationship with the moisture condition, although the apparent contact area 

does not seem to influence it. The sliding state of the finger pad appears to have a minimal 

effect on the contact area.  

The roughness profile has the potential to be used as a parameter in the sliding 

interaction between the finger pad and a smooth glass plate. It is expected to be relatable to 

the real contact area that affects the frictional behaviour of the finger pad. However, it needs 

more experimental data to be validated. 

10.2.3 Frictional behaviour and strain behaviour of silicone hemi-sphere with tribological 

interactions and its theoretical modelling  

The frictional and the strain behaviour of the silicone hemi-spheres are relatable because the 

normal load has a linear relationship with the average strain of the contact area and the shear 

load in the dynamic state has caused a substantial change in the strain behaviour of the 
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silicone hemi-spheres. The frictional behaviour of the silicone hemi-sphere with a smooth 

glass plate is dominated by the adhesion mechanism based on the exponent from a power-law 

relationship between the dynamic coefficient of friction and the normal force. Further work 

shows that the coefficient of friction is directly proportional to the stiffness of the silicone 

samples with a negative gradient regardless of the amount of deadener in the mixture. The 

strain behaviour of the silicone hemi-spheres in contact is largely characterised by the high 

strain at the edge of the contact and low strain in the middle of the contact, similar to the 

finger pad. High average surface strain values (E1 strain: 8 to 52%, E2 strain: -6 to -16%) on 

the silicone hemi-sphere samples may be explained by the adhesive hysteresis effect, which is 

defined as the phenomenon where taking apart two contact surfaces dissipates more energy 

than bringing both together (Qian & Yu, 2013).  

The contact area of the silicone hemi-spheres and the normal load applied can be 

related by using power-law relationship. Additionally, the shear force is shown to have a 

linear relationship with the apparent contact area in the dynamic state. The contact area of the 

silicone hemi-sphere samples with higher stiffness decreases during sliding is due to the 

recovery of the silicone sample, as the bending stiffness of the glass decreases. On the other 

hand, the silicone sample with 15% deadener increases is likely due to the slow recovery of 

the silicone hemi-sphere at the compression part of the contact while the “in tension” part of 

the silicone hemi-sphere got into contact with the glass during sliding. 

The homogenous silicone hemi-spheres used in this study are able to simulate the 

frictional behaviour of a finger pad at different moisture conditions. However, there are 

rooms for improvements in simulating the strain behaviour, the stiffness profile and the 

apparent contact area of the finger pad. The main challenges are the homogeneous properties, 

the size and geometry, and the surface roughness of the silicone hemi-spheres.  

The theoretical strain modelling of contact mechanics (Johnson, 1982) is able to 

predict the pattern of the strain distribution profile of the silicone hemi-sphere although it still 

requires more work to accurately predict the strain values due to limitations such as the 

bending effect of the plate and the change of material properties when one region is in tension 

and the other in compression. 
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10.2.4 Strain behaviour and morphological changes of forearm movement without 

tribological interactions 

It is feasible to quantify the morphological skin parameters from OCT images and also the 

method to combine two non-invasive techniques that are DIC and OCT to investigate skin 

surface strain and sub-surface layer deformation of volar forearm.  

Simple movements such as extension and flexion of the arm will cause considerable 

strain on the forearm region, approximately 25%, and caused morphological changes in the 

upper skin layers, which result in the decrease of skin surface roughness between 40% - 50%, 

the decrease of epidermal layer thickness approximately 20% and the decrease of the dermal-

epidermal junction undulation roughness between 45%-50%. 

10.2.5 Deformation of porcine aorta tissue fibres due to catheterisation damage 

Porcine aorta tissue fibres were unable to recover to their undamaged state after tribological 

damage in 15 minutes, which could be explained by two possibilities. Firstly, the tissue fibres 

needed a longer time to recover. Secondly, the tissue fibres have recovered as much as they 

could the moment the tribological interaction was finished. Therefore, aortic wall fibres 

might not be a suitable mean to measure the recovery of porcine aorta that experienced 

damage from catheterisation process 

10.3 Future work 

10.3.1 Real-time imaging techniques 

10.3.1.1 3D-Digital Image Correlation 

More work/experiments are needed to understand why 3D-DIC is not able to compute 

dynamic strain profiles of high viscoelastic materials like silicone-hemispheres with a high 

percentage of deadener. 

The use of high-speed camera for 3D-DIC to study the effect of relative sliding speed 

on the strain profile of finger pad or silicone hemisphere can prove advantageous as the 

sliding speed is one of the main factors in biotribology. For the particular interests in the 

study of surface strain of the finger pad ridges, 3D-DIC system with higher magnification 

cameras, such as VIC-3D Micro
TM

, can be explored. 

10.3.1.2 Optical Coherence Tomography 

Much higher C-scan scanning speed is required to study the contact condition of finger pad 

during sliding in real-time. More importantly, more ideas are required to optimise the OCT 
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system in capturing the whole contact area of the finger pad. The main purpose is to validate 

the connection of the real contact area with other variables, such as, the moisture level and 

the stiffness of the finger pad. A more feasible approach may focus on imaging smaller 

contact area that fits into the scanning range of the OCT system during the sliding interaction 

with the glass plate in static or dynamic state. Monitoring the real and apparent contact area 

of the finger in real time may prove to be difficult unless a more advanced OCT system is 

designed and manufactured.   

10.3.1.3 Confocal microscopy 

Look into a more reliable imaging method to obtain real-time tissue damage visualisation 

data. Regardless, the miniaturised confocal microscopy can still be explored if the scanning 

speed is increased and the vulnerability to environmental disturbance, such as the vibration 

from the surrounding, is improved. 

10.3.2 Frictional and strain behaviours of finger pads and silicone hemi-spheres 

A study that performs the stiffness test and sliding tests using the imaging methodologies in 

this study on more volunteering subjects to investigate the frictional and strain behaviours of 

the finger pads from a wider human population, which different gender, age, ethnicity groups 

etc. may have a certain effect on the behaviours. In the meantime, additional work is needed 

to increase the strain profile database of the finger pad, which can be achieved by exploring 

the effect of various other parameters, such as the high normal load region, relative sliding 

speed, moisture level before the sliding test, the environmental temperature etc. 

A multi-layered silicone hemi-sphere should be studied next to investigate if the gap 

difference in the strain profiles between a finger pad and a silicone hemi-sphere can be 

reduced without jeopardising the successful simulation of the frictional behaviour in this 

study. A silicone replica of a finger pad can be explored as well after the study on the multi-

layered silicone hemi-sphere. 

10.3.3 Theoretical strain model of the silicone hemi-sphere 

More work is needed to improve the theoretical strain of the silicone hemi-sphere that can 

predict a relatively accurate strain profile of the homogenous silicone hemi-sphere, a multi-

layered silicone hemi-sphere and the silicone replica of a finger pad. 
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10.3.4 Morphological change of finger pad 

Further investigation of the morphology of finger pad ridges when sliding against grooved 

plate by exploring a variety of patterned glass and corrugated plastic sheets, which a 

visualisation database of morphological change of finger pad can be built. In addition, the 

study of the lubrication on finger pad can be included in the visualisation database of 

morphological change of finger pad. 

10.3.5 Moisture level of the finger pad 

Further investigations required to study the effect of different water application methods and 

also the length of acclimatisation period on the finger pad. Also, a study is needed to 

standardise the water application method to efficiently control the moisture level of the finger 

pad before the sliding test. It could be very advantageous if a device or a method can be 

manufactured or designed to monitor the moisture level of the finger pad in real time.  

10.3.6 Contact area measuring method 

Additional work is required to improve the apparent contact area measurement from the 3D-

DIC data in order to get a more accurate contact area reading. This can be compared to the 

experimental data obtained using OCT (refer to section 10.3.1.2). Uncertainty and errors 

quantification test should be performed in the future work as well.
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A. Appendix A: Derivation of the theoretical strain model 

Love (1952) proposed that the three axial elastic displacement at any point, as shown in 

Figure A-1, can be described below using the potential functions defined in equation A-4, 

equation A-6, equation A-7 and equation A-8. 
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               Equation A-12 

                     Equation A-13 

 

Figure A-1, Illustration of tractions on the circular contact region (Johnson, 2004) 

To simulate a smooth homogenous silicone hemi-sphere in contact with a smooth 

rigid plate, only the tangential traction         acting over loaded area S is investigated, so 

the traction         and pressure        are 0. 

             Equation A-14 

    
   

  
 Equation A-15 

   
    

    
 Equation A-16 

    
 

   
 ,  

    

    
  

    

      
- Equation A-17 

    
 

   
 , 

    

   
   

    

   
  

    

     
- Equation A-18 

    
 

   
 ,      

    

    
   

    

     
- Equation A-19 

Differentiate    accordingly 

    ∬         {           }
 

      Equation A-20 
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∬         ,

          

         
          

       
-

 
       Equation A-21 

    
 

   
∬         ,

 

 
 

    

   
 

      

  
 

            

       
-

 
       Equation A-22 

    
 

   
∬         ,

      

   
           

      
-

 
       Equation A-23 

To investigate the surface condition on the contact surface,   is equal to 0. At this 

point, only    and    are focused 

  ̅  
 

   
∬         ,  

          

  
-

 
       Equation A-24 

  ̅  
 

   
∬         ,

   

 
 

       

  -
 

      Equation A-25 

The surface traction profile was as described below 

           (  
     

  )
   

 Equation A-26 

    
   

     Equation A-27 

Further integrate to the area   (within the circle) 

  ̅  
   

    
      Equation A-28 

  ̅  
   

    
 {                         }  Equation A-29 

Green-Lagrange strain as defined below,  

     
   

  
     [(

   

  
)
 

 (
   

  
)
 

]  Equation A-30 

     
   

  
     [(

   

  
)
 

 (
   

  
)
 

] Equation A-31 

         *
   

  
 

   

  
+      *

   

  
 
   

  
 

   

  
 
   

  
+  Equation A-32 
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Substitute the differentiation into Green-Lagrange strain 

    
   

    
 ,        

   

    
 [               ]-      Equation A-33 

    
   

    
 ,              

   

    
 [                ]-   Equation A-34 

        
   

    
 ,       

   

    
 [                    ]-  Equation A-35 



219 | P a g e  

 

B. Appendix B: Measuring the apparent contact area from 

3D-DIC data 

Firstly, a “.txt” file was saved from the VIC-3D software that showed the x, y coordinates of 

the finger pad or the silicone hemi-sphere and their respective Z-position value, as shown in 

Figure B-1. The three columns in the figure were comprised of 100 slices of cross sectional 

data in one silicone hemi-sphere at a specific time point. In this example, the data was 

obtained when the silicone hemi-sphere was in the static state. 

 Then, the “.txt” file was imported into Matlab as a “numerical matrix” with a variable 

named as “t”, as shown in Figure B-2. It is important to replace the blank cells in the variable 

with “0” value.  

 The Matlab script file 1 (shown in this section) was then used to separate the whole 

column of  ,  ,   data (10000×3) into 100 cross sectional slices of  ,  ,   data (100×3). Then, 

another Matlab scrip file named “start_finish” was used to find the 2 boundary points from 

each cross section, as shown in Figure B-3. The boundary points were then plotted in a new 

excel file and an elliptical equation of best fit was used to describe the size of the apparent 

area of the silicone hemi-sphere.  

 

Figure B-1, a “.txt” file that has the three axial coordinates for the shape of a silicone hemi-

sphere 
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Figure B-2, Importing ".txt" file into Matlab 

 

Figure B-3, The process of finding the 2 boundary points from the 33
th

 cross section of the 

silicone hemi-sphere 

 

Matlab script file 1: “code_image_z1.m” 

 

l = length(t) 
count = l/100; % 100 refers to how many data points per column 
for i = 1:count 
    new(:,:,i) = t( ((i-1) *100 + 1) : (i*100) ,: ); 
end 
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save('S10_3_dynamic','new') 

 

Matlab script file 2: “start_finish” 

clear 
clc 

  
for count_o = 1:100   % 1:100 -> start at 30th fig and finish at 100th 
    hold off 

     
    load S10_3_dynamic; 
    count2 = []; 
    new1 = new(:,:,count_o); 
    new1 = [new1(:,1),new1(:,3)]; 

     
    i1 = 1; 
    for i = 1:length(new1) 
        if new1(i,2) == 0 
            count2 (i1) = i; 
            i1 = i1+1; 
        end 
    end 
    new1(count2,:) = []; 

     
    new_3 = sortrows(new1,1); 

     
    new_4 = diff(new_3(:,2))./diff(new_3(:,1)); 

     
    count3 = 1000; 
    count2 = 1; 

     
    for i3 = 1:length(new_4) 
        if isinf(new_4(i3)) 
            count3(count2) = i3; 
            count2 = count2+1; 
        end 
    end 
    new_5 = [new_3(1:end-1,1),new_4,new_3(1:end-1,2)]; 

     
    if count3 == 1000 
        count7 = 1; 
    else 
        new_5(count3,:) = []; 
    end 

     
    count6 = 1000; 
    count2 = 1; 
    for i3 = 1:length(new_5) 
        if isnan(new_5(i3,2)) 
            count6(count2) = i3; 
            count2 = count2+1; 
        end 
    end 
    if count6 == 1000 
        count8 = 1; 
    else 
        new_5(count6,:) = []; 
    end 
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    t = new_5(:,1); 
    shear = new_5(:,2); 

     
    samplingfreq = 1/mean(diff(t)); % calculate the sampling frequency 

     
    cutoff_freq = 0.5;   % input your cut off frequency 
    [b a] = butter(2,cutoff_freq/samplingfreq*2); % butterworth filter 
    shear_fil = filtfilt(b,a,shear); % define the filtered data 

     
    plot(t,shear_fil) 

     
    shear_fil1 = diff(shear_fil)./diff(t); 

     
    for i6 = 1:length(t) 
        if abs(shear_fil1(i6)) < 0.1 
            start_point = i6; 
            break 
        end 
    end 

     
    for i6 = 1:length(t) 
        i7 = length(t) - i6; 
        if abs(shear_fil1(i7)) < 0.1 
            end_point = i7; 
            break 
        end 
    end 

     
    plot(t(start_point:end_point),shear(start_point:end_point),'o') 
    hold on 
    plot(t,shear) 
    title(num2str(count_o)) 
    pause 

     
    start(:,count_o) = [t(start_point) new_5(start_point,3)]; 
    finish(:,count_o) = [t(end_point) new_5(end_point,3)]; 
end 
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C. Appendix C: Strain line profile of the finger pads 

                                       Static State                         Dynamic State 

                               

 

 

 

Figure C-1, Surface strains of the dry finger pad along   axis 
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                                           Static State                         Dynamic State 

                                  

 

 

 

Figure C-2, Surface strains of the dry finger pad along   axis 
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                                           Static State                         Dynamic State 

                                        

 

 

 

Figure C-3, Surface strains of the moist finger pad along   axis 
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                                           Static State                         Dynamic State 

                                

 

 

 
Figure C-4, Surface strains of the moist finger pad along   axis 
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D. Appendix D: The moisture levels of the finger pads at 

different tests 

Table D-1, Moisture level of the natural finger pad during stiffness test 

Natural finger pad Moisture level [AU] 

Before experiment 38.2±5.7 

After experiment 46±8.7 

 

Table D-2, Moisture level of the soaked finger pad during stiffness test 

Soaked finger pad Moisture level [AU] 

Before treated 46.8±7.3 

After treated 56.8±13.3 

Before experiment 30.6±3.1 

After experiment 42.6±3.3 

 

Table D-3, Moisture level of the natural finger pad during 3D-DIC sliding experiment 

Natural finger pad Moisture level [AU] 

0.5N 
Before experiment 17.4±1.7 

After experiment 18.2±3.1 

1N 
Before experiment 15.6±1.5 

After experiment 16.2±3.2 

2N 
Before experiment 14.8±1.3 

After experiment 17.8±2.2 

3N 
Before experiment 17.8±1.8 

After experiment 17.6±3.4 
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Table D-4, Moisture level of the soaked finger pad during 3D-DIC sliding experiment 

Soaked finger pad Moisture level [AU] 

0.5N 

Before water application 44.8±4.3 

After water application 26.0±2.9 

Before painting 25.0±5.6 

After painting 20.8±5.4 

Before experiment 25.0±4.9 

After experiment 28.0±6.4 

1N 

Before water application 34.4±6.2 

After water application 26.4±3.0 

Before painting 26.6±3.6 

After painting 19.8±6.0 

Before experiment 22.8±4.6 

After experiment 25.2±5.9 

2N 

Before water application 38.4±1.8 

After water application 31.0±4.1 

Before painting 25.2±4.4 

After painting 17.8±1.8 

Before experiment 16.4±4.8 

After experiment 16.0±2.5 

3N 

Before water application 31.8±5.3 

After water application 29.2±2.7 

Before painting 19.6±2.4 

After painting 14.2±2.0 

Before experiment 15.2±3.3 

After experiment 18.8±4.6 
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Table D-5, Moisture level of the natural finger pad during OCT sliding experiment 

Natural finger pad 
Moisture level [AU] 

Position 1 Position 2 

0.5N 
Before experiment 37.4±3.5 34.2±2.4 

After experiment 40.4±5.1 44.4±3.8 

1N 
Before experiment 40.4±4.1 32.4±2.3 

After experiment 44.0±5.7 41.8±7.0 

2N 
Before experiment 36.6±2.3 36.8±4.8 

After experiment 43.2±6.0 45.4±5.7 

3N 
Before experiment 39.2±4.8 44.0±3.7 

After experiment 48.2±6.7 44.8±7.2 

 

Table D-6, Moisture level of the soaked finger pad during OCT sliding experiment 

Soaked finger pad 
Moisture level [AU] 

Position 1 Position 2 

0.5N 

Before water application 42.2±3.6 27.6±1.1 

After water application 46.0±9.4 40.6±9.3 

Before experiment 23.6±1.8 23.8±4.3 

After experiment 31.0±4.8 24.2±2.2 

1N 

Before water application 33.8±4.3 24.6±3.0 

After water application 32.2±3.7 47.6±8.6 

Before experiment 23.4±2.6 25.6±2.5 

After experiment 27.4±1.3 27.4±3.2 

2N 

Before water application 33.0±3.4 25.4±1.7 

After water application 41.8±8.1 41.0±3.9 

Before experiment 24.0±1.9 29.0±1.4 

After experiment 29.4±2.6 34.6±4.5 

3N 

Before water application 28.6±2.1 27.6±2.5 

After water application 43.2±7.4 36.4±5.4 

Before experiment 21.8±2.4 30.2±3.1 

After experiment 30.2±4.4 31.8±4.1 
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E. Appendix E: Roughness profiles of the finger pads 
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Figure E-1, OCT images of position 1 of the natural finger pad 
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Figure E-2, OCT images of position 1 of the natural finger pad 

Table E-1, The roughness of the position 1 and position 2 of natural finger pad 

 Ra [µm] Rz [µm] 

Position 1 Position 2 Position 1 Position 2 

N
o
rm

a
l 

lo
a
d

 

0
.5 N
 Static 4.07±0.32 7.84±0.39 13.65±0.92 26.64±1.86 

Dynamic 2.28±0.04 7.64±0.52 9.37±0.67 26.17±1.00 

1
N

 Static 3.11±0.31 2.90±0.12 12.77±0.67 14.39±0.45 

Dynamic 2.60±0.33 3.44±0.11 10.52±0.60 14.55±1.05 

2
N

 Static 3.33±0.14 2.91±0.20 14.58±0.93 13.18±1.19 

Dynamic 2.29±0.21 3.55±0.30 9.92±0.73 14.91±0.21 

3
N

 Static 2.07±0.32 3.76±0.10 8.81±1.59 14.68±0.61 

Dynamic 1.54±0.15 3.12±0.16 8.04±1.07 13.21±0.62 
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Figure E-3, OCT images of position 1 of the soaked finger pad 
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Figure E-4, OCT images of position 2 of the soaked finger pad 

Table E-2, The roughness of the position 1 and 2 of soaked finger pad 

 
Ra [µm] Rz [µm] 

Position 1 Position 2 Position 1 Position 2 

0.5N 
Static 4.29±0.09 8.86±0.90 17.28±0.77 41.48±9.43 

Dynamic 4.07±0.15 10.86±0.38 16.15±0.75 38.60±0.93 

1N 
Static 4.38±0.07 5.40±0.36 17.87±0.82 16.77±1.48 

Dynamic 4.08±0.14 5.10±0.43 17.26±0.82 18.97±0.70 

2N 
Static 3.90±0.33 7.74±0.47 17.70±0.78 27.90±0.66 

Dynamic 3.63±0.17 4.96±0.26 17.30±1.75 20.47±0.91 

3N 
Static 2.36±0.19 3.91±0.29 12.65±1.19 18.73±1.11 

Dynamic 2.59±0.20 3.43±0.34 12.36±1.37 15.02±0.97 
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F. Appendix F: Strain line profiles of the silicone hemi-

spheres 

                                   Static State                              Dynamic State 

 
Figure F-1, Strain line profile of silicone hemi-sphere with 0% deadener along   axis 
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                                     Static State                              Dynamic State 

                 

 
Figure F-2, Strain line profile of silicone hemi-sphere with 0% deadener along   axis 
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Static State                          Dynamic State 

          

 
Figure F-3, Strain line profile of silicone hemi-sphere with 10% deadener along   axis 
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   Static State                            Dynamic State 

         

 
Figure F-4, Strain line profile of silicone hemi-sphere with 10% deadener along   axis 
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   Static State                             Dynamic State 

           

 
Figure F-5, Strain line profile of silicone hemi-sphere with 15% deadener along   axis 
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   Static State                             Dynamic State 

          

 
Figure F-6, Strain line profile of silicone hemi-sphere with 15% deadener along   axis     
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Static State                              Dynamic State 

             

 

Figure F-7, Strain line profile of silicone hemi-sphere with 20% deadener along   axis     
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Static State                            Dynamic State       

         

 

Figure F-8, Strain line profile of silicone hemi-sphere with 20% deadener along   axis 
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G. Appendix G: Temporal evolution of the orientation of 

the porcine aorta tissue fibres 

 

Figure G-1, Comparison of mean directionality angle of 5 sets of experiments for case 1: 

0.5N, 1 pass 

 

Figure G-2, Comparison of mean directionality angle of 5 sets of experiments for case 2: 

0.5N, 5 passes 
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Figure G-3, Comparison of mean directionality angle of 5 sets of experiments for case 3: 

0.5N, 10 passes 

 

Figure G-4, Comparison of mean directionality angle of 5 sets of experiments for case 4: 

2N, 1 pass 
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Figure G-5, Comparison of mean directionality angle of 5 sets of experiments for case 5: 

2N, 5 passes 

 

Figure G-6, Comparison of mean directionality angle of 5 sets of experiments for case 6: 

2N, 10 passes 



245 | P a g e  

 

 

Figure G-7, Comparison of mean directionality angle of 4 sets of experiments for case 7: 

5N, 1 pass 

 

Figure G-8, Comparison of mean directionality angle of 4 sets of experiments for case 8: 

5N, 5 passes 
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Figure G-9, Comparison of mean directionality angle of 3 sets of experiments for case 9: 

5N, 10 passes 

 

 

 

 

 

 


