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Abstract 

Spatio-temporal systems are non-linear dynamical systems which include both 

time and space information. Many natural phenomena and processes can be 

described by spatio-temporal models, such as pattern formation, chemical 

reactions and physical dynamics. The main focus of this thesis is on the 

investigation of analysis and identification methods for spatio-temporal systems 

and the application of these methods to the dynamics of slime mould.   

This thesis starts with a review of recent developments of spatio-temporal 

systems. Three general classes of spatio-temporal systems, Cellular Automata 

(CA), Coupled Map Lattices (CML) and Partial Differential Equations (PDE), 

which can be applied to modelling the behaviours of slime mould are discussed. 

Some basic problems associated with the identification of these models are 

addressed from various viewpoints. The main objective of this thesis is to develop 

the previous work in this area and to derive effective models from observed 

spatio-temporal data.  

The dynamics of slime mould at the aggregation stage can be viewed as a spatio-

temporal system. Three models which represent different types of spatio-temporal 

models respectively are introduced to model pattern formation of slime mould. 

All models can produce similar spirals and circle patterns with the observed 

patterns in experiments. 

For the identification problem of the above mentioned models, one commonly 

used method is the orthogonal least squares (OLS) algorithm or the orthogonal 

forward regression (OFR) algorithm. However, when this classical identification 

method is applied to spatio-temporal data it may select spurious model terms in 

some cases, so a new algorithm called Orthogonal Forward Regression using 

Mutual Information (OFR-MI) algorithm is proposed. A new criterion of 
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selecting model terms based on mutual information (MI) is employed in the new 

identification method and this effectively avoids the problem in the classical OLS 

or OFR algorithm.  

Inspired from a Reaction-Diffusion-Chemotaxis (RDC) model for the gathering 

problem of slime mould, a new CA model which is called probabilistic multi-rule 

CA model is proposed.  Unlike general CA models, this new model has two or 

more transition rules with associated probabilities, so that it has the potential to be 

used to model random processes in some spatio-temporal systems. 

The identification of the probabilistic multi-rule CA system is a challenging topic, 

because of the stochastic character of this model. Based on the OLS algorithm 

and statistical methods, a new identification algorithm for probabilistic multi-rule 

CA models is proposed. Simulation results show that this new algorithm can 

work well either on the noise-free patterns in one-dimensional and two-

dimensional cases or on spatio-temporal patterns with static noise or dynamic 

noise. 
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Chapter 1 

Introduction 

1.1 Background and Motivation 

Bacteria have exuberant vitality so that they exist everywhere on the planet. 

There are more and more studies in bacteria, because they have vast influences on 

human beings. For example, bacteria are responsible for plenty of diseases and 

also play an important role on the recycling processes in the life food chain. In 

this thesis, we are interested in slime moulds, whose name comes from their 

appearances as gelatinous "slime". They feed on microorganisms that live in any 

type of dead plant materials, so that they can usually be found on logs, fruits and 

in the soil. The research on slime moulds is essential. Take one common type of 

slime moulds- Dictyostelium discoideum for example. Many complicated 

experiments on human diseases are based on research of the cell behaviours of D. 

discoideum due to its analogous gene structures compared to humans. Individual 

cell behaviours such as cytokinesis, chemotaxis and phagocytosis, account for 

many phases of health and disease. Cytokinesis can be related to research on 

human immune response and tissue maintenance, especially to cancer research in 

the phase of cell proliferation; Chemotaxis is used to study inflammation and is 

usually associated with arthritis, asthma, and lymphocyte trafficking; 

Phagocytosis is commonly applied to immune surveillance and antigen 

presentation. Therefore, these organisms have been used to test anti-cancer drugs, 

immune-cell diseases, and bacterial intracellular pathogenesis.    

In order to better understand the mechanisms of bacteria and slime moulds, there 

are three fundamental questions that need to be answered: What are the vital signs  
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of slime moulds and what kind of patterns can slime moulds create? Why do 

these patterns form in the life cycle of slime moulds or what is the reason for cell 

movements? How can we deal with the problem of pattern formation and how 

can mathematical methods be used to decipher the mystery of slime moulds. 

Dictyostelium discoideum is a unicellular amoebae, which has attracted much 

attention as a model system. The life cycle of Dictyostelium discoideum is shown 

in Fig.1.1. At the initial phase with adequate nutrients, cells of Dictyostelium 

grow and divide individually. The more active stage of the life cycle can be 

caused by the starvation or lack of nutrients. Chemotactic cell movement is a key 

mechanism at this aggregation phase. cAMP (3'-5'-cyclic Adenosine 

Monophosphate) is a signal chemical as a second messenger in cell movement. 

By periodically producing and relaying cAMP signals, cells can form spiral 

waves and stream structures as shown in Fig.1.2. The cells then head towards the 

aggregation centre and pile up to form a three dimensional mound. In the late 

aggregation, the cells start to differentiate into prestalk and prespore cells. 

 

 

Figure 1.1: Life cycle of Dictyostelium discoideum [1-3] 
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Figure 1.2: Biological patterns in the aggregation of Dictyostelium cells [4]. Left: 
concentric spiral patterns; Middle and Right: cell streaming patterns. 

Prestalk cells form the tip on the top of the mound and act as a signalling source 

to direct migration and movement during slug formation. Prespore cells move to 

posterior ends, following the movement of signalling tips. The slug moves 

towards attractants such as light, heat and humidity. When the slug has reached a 

suitable environment, Dictyostelium will enter the final transformation of the 

developmental cycle, which is called culmination. The tip and end of the slug will 

form the stalk and spores of the fruiting body respectively [5].  

This thesis will focus on the aggregation phase of slime moulds. The pattern 

formation in this stage can be regarded as several dynamic systems with both 

time and space information. Hence, a spatio-temporal system is a good option to 

describe the dynamics of slime moulds. Spatio-temporal systems can represent a 

complex class of dynamic systems, which contain both time and space. If spatio-

temporal systems are analysed using a uniform lattice, the inputs and outputs can 

be represented by a set of states or values of all the cells in the lattice. The output 

or the state of each cell location in a spatio-temporal system not only depends on 

values of the inputs and the outputs in past time, but also have a strong 

relationship with the states at other spatial sites or cells within a neighbourhood.  

It is true that many classical control problems are expressed by temporal systems, 

where the current output is only related to values of input and output at previous 
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time. However, most observed phenomena in nature are much more complex. 

Spatio-temporal behaviours, which are difficult to be described by temporal 

systems alone are usually found in phenomena such as the weather, biological 

pattern formation, and some chemical reactions. In such systems, space and time 

cannot be separated. The formation of sea shell patterns is another typical 

example from biology. Different shells have individual features, so patterns 

become the criterion of differentiating shell types. Most shells produce their 

surface pattern in a one-dimensional way as time progresses. They grow with 

pigments by continual accretion of calcified material onto the margin, the 

growing edge, and follow some specific ‘rules’ to form regular strips and dots 

across the surface. The ‘rules’ record how the current output is affected by the 

pigmentation distribution of other sites at past times. There is another typical 

example in the field of chemistry, namely the Belousov-Zhabotinsky (BZ) 

reaction. The BZ reaction was first discovered by Russian Boris Belousov in 

1951. Basically the BZ reaction [6] is an oscillating process. In some widely 

studied experiments, ferroin was put in the oxidation of citric acid by bromate. 

The oscillation is manifested by the colour changes as the ferroin changes from 

Fe+2
 to Fe+3 and the colour changes from brick red to bright blue. The dramatic 

oscillatory and wavelike properties form spatio-temporal self-organisation 

patterns. These reactions can be described as reaction-diffusion systems. The 

advantage of reaction-diffusion systems is that the spatio-temporal pattern 

formation can often be described using simple equations relating the dynamics of 

the local concentrations of chemicals. Spatio-temporal systems analysis is more 

complex than for purely temporal systems, because both time and space domains 

have to be considered at the same time, rather than only time as in temporal 

systems. Hence, as an extension of temporal systems, spatio-temporal systems 

can be applied to more complicated natural processes which exist in most 

disciplines as diverse as physics, biology, chemistry, ecology, engineering, and 

even social sciences.  



Chapter 1. Introduction                       

5 
 

Modelling the pattern formation in spatio-temporal systems has received some 

attention recently. Basically, the natural language of patterns is mathematics, 

which enables us to understand and unravel the essence of pattern formation. 

Mathematics is also an efficient tool to describe the pattern formation process at 

the most fundamental level in order to determine how features can be reproduced. 

It has been found that some complex phenomena can be represented by simple 

mathematical forms or descriptions. Take the growth of a mollusc shell as an 

example, where a graceful spiralling pattern is formed as it grows. If this process 

is considered from an evolution or natural selection point of view, or how the 

surface cells get together to form such complex patterns, the problem will be very 

complicated. However, once it is recognised that the pattern on the shell follows a 

precise mathematical form leading to spiral growth patterns, the growth law 

seems to be nothing more than a simple and plausible mathematical description. 

The model is known as ‘a small-scale replica of the real thing’, but actually there 

is still a large gap between known mathematical pattern models and phenomena 

in the real world. Scientists always try to look for an exhaustive explanation for 

what has been observed, but most results are not as good as expected. That is 

because sometimes when some influences of little significance are added to the 

system or current equations, they will make the solution harder to obtain without 

altering the solutions. Also for some important factors, it is difficult to include 

them in the equations or to find a way to solve these equations. Hence, a good 

approximation which is easy to solve, is often a good compromise for modelling. 

In other words, models are scientific descriptions of phenomena, but they may not 

always fully capture reality perfectly, so that there is not a single or unique model 

that is completely ‘right’. Models are differed by choices of what to put in and 

leave out. Thus, some phenomena may be presented successfully by more than 

one model.  

Pattern evolution is viewed as a forward or direct problem in spatio-temporal 

system analysis. In this process, the output is recorded by putting the input into a 
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pre-known system whose model has already been confirmed. The model is used 

to simulate a real phenomenon to produce the output behaviours. 

The forward problem has been well-studied, but system identification, the reverse 

problem of pattern formation is still an open problem. System identification plays 

a vital role in system analysis, control and prediction. The aim of system 

identification is to construct a model from the experimental data from a given 

system of interest. For example, assume that a given system is represented by an 

equation ݕ ൌ ݂ሺईሻ , in which ई and ݕ are the n-dimensional input and output 

respectively. ݂  is a functional relationship between the output ݕ  and the input 

ई ൌ ሺईଵ, ईଶ, … , ई௡ሻT. The objective of system identification is to construct an 

approximation for the relationship ݂ using a set of input and output data. Once the 

relationship and rules have been obtained, the system can be investigated and 

analysed by figuring out how one thing leads to another or how the input affects 

the output. In addition, good predictions can be made using a good model based 

on the current states. Take the stock market for instance, if investors can find out 

the model of the stock market and know the tendency of stock prices, fortunes 

can be made by investing in the right stock at the right time. 

However, nobody can make long-term predictions of the stock market, because so 

many factors with complicated relationships are involved in such a complex 

dynamic system. For example even a rumour may be sufficient to trigger sales, 

lowering quotations suddenly. This example also shows the challenge in system 

identification. The difficulties of the reverse problems can be summarised as 

follows: 

a) Many reverse problems are ill-posed, because small fluctuations in the input 

may cause big differences in the output, or the outputs might not depend 

continuously on the inputs, or a solution may be nonunique, which violates 

Jacques Hadamard’s postulates of well-posed problems. 

b) For ill-posed problems, priori information is required sometimes even the 

observation data are enough. 
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c) A large number of candidate data are usually involved in identification, so 

that it is obvious to have an increase in computational complexity. 

1.2 Slime Mould Dynamics 

1.2.1 Migration Process of Slime Mould 

In the early aggregation stage, slime moulds are often studied at the cellular level. 

‘Talks’ between different cells begin under the condition of suffering starvation 

using the language of cAMP signals. The principle of the movement is resulted 

from three main competencies: 

a) The cAMP signal is generated periodically by the aggregation centre. 

b) The cAMP signal is relayed from cell to cell around the centre. 

c) Spiral waves with the rising phase are produced because of chemotaxis. 

Assume there are two forms of receptors, R (unbound and active) and D 

(unbound and inactive), located on the outer face of the membrane. Cells become 

sensitive to cAMP after the starvation, which triggers the secretion of cAMP in 

response to extracellular cAMP stimuli. Firstly, binding processes happen 

between the extracellular cAMP and the two outer receptors in different reactions, 

which is shown in Fig.1.3(a). The active complex (RP) from the covalent 

modification of R receptor and cAMP (P) binds to adenylate cyclase, which 

results in the activation of the enzyme. cAMP is produced by the enzyme from 

intracellular ATP and secreted to outside of the membrane, which can bind to 

outer receptors again. Therefore, this process in Fig.1.3(b) forms a positive 

feedback loop of cAMP production and amplification.  At the same time, the 

amount of cAMP decreases continuously by intracellular and extracellular 

phosphodiesterase. When the extracellular cAMP reaches some high 

concentration, cells start to enter a period of adaptation or desensitisation, which 

is a warning response to the persistent stimulation and causes adenylate cyclase 

no longer to be activated and then the extracellular cAMP levels are going to fall. 

In this way, the system is back to basal states and waiting for being activated 
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again, which results in a cAMP oscillation. More details can be found in  [7], [8], 

[9], [10] and [11]. 

R D

AC

extracellular
    cAMP

ATP

intracellular
   cAMP

membrane out
in

Diffusion field

                             
                            (a)                                                   (b) 

Figure 1.3: Model description of the production of cAMP. (a) are reactions between 
outer receptors and extracellular cAMP (P), where R is the unbound and active 
receptor which binds to the extracellular cAMP. D is the receptor cannot couple to 
the adenylate cyclase and represents an inactive and desensitised state. (b) shows 
the process of the cAMP production.  

The secreted cAMP of the aggregation centre diffuses and reaches to its 

neighbours. Cells in the neighbourhood are then activated in turn and begin to 

produce cAMP and stimulate their neighbours afterwards. Thus, cAMP waves 

can spread throughout all the cells, and finally form spiral waves because of the 

adaptation process which keeps the cAMP waves travelling unidirectionally. It is 

because those cells become refractory as soon as finishing the signal relay during 

desensitisation, that cannot be activated again until detecting the new stimulation 

[5]. 

cAMP makes cells become more and more excitable, and cAMP concentration 

conducts cells to move. All the cells show chemotaxis activities in which cells 

move towards the area with higher cAMP concentrations, while when cells detect 

the decrease of cAMP concentrations, they will slow down and then stop [12]. 

This chemotactic reaction, navigated by outward propagating cAMP waves, leads 

to the formation of spiral patterns by the cell periodically moving inwards the 

aggregation centre. In the spiral density waves of Fig.1.2, the light band shows 

excitable cells while the darker band represents desensitised cells with no 

P+R D+P

RP DP
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movements. Cell density waves also reflect periodic travelling cAMP signals 

indirectly [13]. 

Cells do not simply move straight to the aggregation centre, but are divided into 

domains where cells joined in branching streams moving to their centre, the 

sources of cAMP waves. Stream formation has been shown to result from the 

instability in the cAMP wavefront, which is caused by high cell density. Guided 

by the spiral cAMP signals, cells migrate towards the high density area, which 

hence raises the cAMP density and causes a deformation of the cAMP wave 

fronts. As an autocatalytic process, streaming dynamics will spread all over the 

population [14]. 

1.2.2 Maze Solving Problems in Slime Mould 

Intelligence and information processing are not exclusive to human and animals, 

but have also been observed in plants and microorganism. It is interesting to find 

several smart and intelligent behaviours of microorganisms for the sake of 

survival. Fungi in [15] show the excellent capacity of solving geometrical maze 

problems. The basidiomycetous fungi modulate their behaviours according to the 

geometrical change of the environment such as being stopped by physical 

obstructions. A long-range directional memory has also been shown in the route 

searching, which makes fungi find nutrients efficiently. There is another example 

of the amoeba-like slime mould Physarum polycephalum. In Nakagaki’s 

experiments [16], food sources were placed at the two exits of the maze and the 

slime mould can solve the labyrinth and connect the two food points by the 

shortest route. Similar researches have also been shown in [17], [18], [19] and 

[20]. These living organisms show surprisingly ‘smart’ behaviours in most 

complicated situations, which have triggered much attention of biologists, 

mathematicians, physicists and engineers. The ‘smartness’ of microorganism has 

been applied to other disciplines such as transport network design [21], robot 

control [22] and computer science [23]. 
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1.2.3 The Simulation of Slime Mould 

Due to the complicated intracellular biochemical reactions, the aggregation of 

slime moulds is more complex rather than a simple pattern formation. There is an 

unknown law controlling or conducting the movement of amoebae. How 

individual cells react upon one another; how active amoebae decide where to go 

and what the underlying law causing the formation of special patterns is, are still 

open questions. The theoretical study in the aggregative pattern formation 

suggests a better understanding of the cell-to-cell communication and provides a 

clear way to explore the directional cell movement.  

Keller and Segel [24] first proposed a cell density reaction-diffusion model based 

on the idea of the Turing pattern formation [25] to describe the aggregation of 

Dictyostelium as an instability. After then more and more researches have focused 

on the aggregation of slime moulds. There are two main basic methods to model 

slime mould aggregation. Modelling amoebae as discrete cells is one approach. 

For example, the chemotactic response of the cellular slime mould were 

simulated in one spatial dimension by Parnas & Segel [26]; Two dimensional 

simulation of Dictyostelium Discoideum was shown in Mackay’s study [27], 

which produced many primary observed patterns in the aggregation such as 

rotating spiral waves and branching stream patterns; The simulation of streaming 

formation using a discrete cell model is shown in [28]. The other modelling 

approach for aggregation is to use continuous models which describe the density 

of amoebae as a continuous variable. The modelling for the streaming stage 

discussed in [29-31] are examples of this continuous approach. 

During the later phase of the aggregation cells begin to heap up to form a mound 

structure and sort into two types, prestalk and prespore cells. Prestalk cells then 

form the tip on the top of the mound and prepore cells go to the bottom. When the 

tip elongates enough, it falls down and a slug is formed. The slug, guided by the 

front tip, migrates away and all the cells move together all the time. Thus slime 

mould is entering the slug stage. Previous studies of the cell sorting can be found 
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in [32-34]. Chemotaxis and the combination of excitation waves have also been 

found during this slug stage. Based on the model formulated by Savill and 

Hogeweg [14], Marée and Panfilov proposed a model using hybrid cellular 

automata and partial differential equations to describe the thermotactic motion of 

the Dictyostelium discoideum slug [35]. They also modelled the phototaxis of 

slime mould as an extension of the thermotaxis model [36]. Vasiev and Weijer 

presented a hydrodynamic model to describe the cell flow which is directed by 

propagating waves of the chemoattractant cAMP, so that experimentally observed 

movement behaviours of the Dictyostelium discoideum slug can be explained [37]. 

In addition,  a three-dimensional model based on the hybrid cellular automata and 

partial differential equations was first presented to describe the whole process 

from single cells to crawling slug at one time [14]. 

1.3 Objectives 

The main objective of this thesis is to model the aggregation and migration 

processes of slime mould, which can be split into two basic problems: the 

simulation and the identification. The simulation, defined as a forward problem, 

focuses on the investigation of characteristic properties and special patterns 

shown in the life cycle of slime mould through various statistical and analytical 

approaches. The simulation is to simulate the dynamic process or to evolve 

patterns which are similar to real biological features of slime mould. There have 

been many simulation methods in previous studies as mentioned in Section 1.2.3, 

for example using Cellular Automata (CA) models and Coupled Map Lattices 

(CML) models. However, the reverse problem of modelling slime mould has 

received little attention. The main aim of the reverse problems is to determine a 

particular mathematical model which can explain the movement of slime mould 

and can satisfy general sets of per-specified and special constraints or properties 

in slime mould dynamics. One of the most important problems in the reverse 

problem is the identification of the mathematical model or a set of equations from 
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a given set of spatio-temporal patterns produced by the observed spatio-temporal 

systems.   

In most cases the dynamics of slime mould belong to spatio-temporal behaviours. 

It is because slime mould aggregates and migrates when suffering the shortage of 

food, which causes the movement of slime mould and produces various patterns 

changing over time. Hence, such dynamic biological process can be described as 

a spatio-temporal system which is one of most important parts studied in this 

thesis. Among many spatio-temporal models, cellular automata (CA), coupled 

map lattices (CML) models, and partial differential equations (PDE) are the most 

often used in approximating the dynamical behaviours of slime mould. CA is one 

of the simplest spatio-temporal models, but can generate highly complicated 

spatio-temporal patterns from a very simple rule structure. Examples using CA to 

model the amoebae movement can be found in [38-40]. Using this cellular 

automata approach, biological patterns that resemble experimental observations 

can be produced but with the limited insight because of the lack of the 

consideration of the forces involved in cell–cell interactions and the cell–cell 

signalling. Yet another approach is to use continuous spatio-temporal models 

such as CML and PDE models in [41-43]. In the Palssona and Othmer model [41], 

cells can generate active forces, that interact via surface molecules, and can detect 

and respond to cAMP chemotactically. cAMP dynamics were also coupled with 

the movement of amoebae in the Nanjundiah model [43]. To better understand 

the dynamics of slime mould, the studies on spatio-temporal systems and how to 

apply these systems in modelling slime mould have carried out in this thesis. 

The identification is a core and still an open problem in modelling. The aim of 

identification in this thesis is to build up a mathematical expression to explain or 

reproduce the dynamic process of slime mould, which makes the manual 

intervention and the monitoring of such process possible. Besides, the 

‘philosophy’ of slime mould can also be a good reference for the studies on 
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similar processes with some same properties such as the infection, tumour growth 

and organ development.   

Model selection or model term selection is a fundamental task in identification, 

which is to select important model terms from a set of potential choices based on 

the training data in an attempt to obtain a best approximation model with the best 

inductive bias. Thus determining model terms is often linked directly to the 

model prediction, so the model term selection is one of most essential steps in the 

identification of spatio-temporal systems. Once the set of possible model terms 

has been selected, the model can be determined easily by mathematical 

approaches. Obviously selecting the wrong model terms into the model may 

cause big bias prediction results. Hence, a right set of model terms is the premise 

of optimal identified models, which can considerably reduce the complexity of 

the parameter estimation.  

In order to understand the Reaction-Diffusion-Chemotaxis aggregation scheme of 

slime mould, research has been carried on the Nazim Fatès model [44]. This 

model is efficient to exhibit self-organisation properties of slime mould using 

cellular automata. Though this model has simple descriptions and better 

simulation results, the identification of the model becomes a challenge because of 

some random processes involved in the model. For a typical cellular automata 

rule, the evolution is based on a specific rule all the time, which means it is a 

predictable and known process once the CA rule has been known. However, the 

random process in the Nazim Fatès model makes the process unpredictable and it 

is difficult to determine one CA rule to describe this randomness. Therefore, a 

probabilistic multi-rule cellular automata model has been inspired from the 

Nazim Fatès model and introduced to describe such random CA process. The new 

model is efficient to reduce the randomness in the unpredictable process.  

The problem of the identification of the probabilistic multi-rule CA model is then 

staring us in the face. Firstly, how to determine the rule for the probabilistic 

multi-rule CA model becomes a problem. The most commonly used method for 
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the identification of spatio-temporal systems is known as the orthogonal least 

squares (OLS) algorithm or a variant of this the orthogonal forward regression 

(OFR) algorithm [45, 46]. However, these methods can only identify one specific 

rule or one equation which may be difficult to describe highly complex 

probabilistic multi-rule CA patterns. Hence, a new identification method for the 

probabilistic multi-rule CA model has been developed. The identified model can 

help to uncover the underlying law of the probabilistic multi-rule CA patterns. 

This new method can also be extended to other similar dynamic systems with 

random processes, which benefits for the further study of some random systems. 

No real systems can be the same as an ideal theory system free from the 

disturbance of noise. The probabilistic multi-rule CA system is a discrete spatio-

temporal system so that the noise in these systems is different from that in the 

continuous systems such as partial differential equations (PDEs). The variables in 

the probabilistic multi-rule CA system rules can only involve two states normally 

0 and 1, so the noise corrupts the system by means of flipping cells from one state 

to another like from 0 to 1 or from 1 to 0. Maybe using the traditional signal-to-

noise ratio to measure the noise influence in these systems is not a good idea, 

since the magnitude of the noise is the same as the original signal so that the ratio 

is essentially 100%. Therefore, the measurement and effect of the noise in 

probabilistic multi-rule CA systems is worth studying, and the identification 

methods for noise-free models should be applicable to the noisy cases. 

1.4  Contents of This Thesis  

This thesis consists of eight chapters. Chapter 1 answers the question of what the 

project is and why this project is worthy of study. Chapter 2 to Chapter 7 are 

dedicated to how to solve important problems related to the slime mould. Chapter 

8 briefly summarises the work has been done in this thesis and also gives some 

discussion about further studies. 
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Chapter 2 briefly reviews spatio-temporal systems which are the main tool used 

in slime mould studies in this thesis. This chapter begins with a concise 

introduction to spatio-temporal systems and the connection with slime mould 

modelling. Three general classes of spatio-temporal systems are then introduced 

and models related to slime mould in previous studies are reviewed. The main 

identification methods for each spatio-temporal system are listed afterwards. 

In Chapter 3, three different spatio-temporal models are employed to simulate the 

patterns produced by slime mould at the first aggregation stage. The Greenberg-

Hasting Model (GHM) [47] is a CA model commonly used for excitable media, 

and here it can be applied to model slime mould because slime mould has similar 

features with excitable media. Followed by Solé’s model [48] and Kawasaki’s 

model [49], more simulations using continuous models are introduced. The 

simulation results demonstrate that patterns such as spirals and concentric circles 

which are observed in the slime mould aggregation can be generated by these 

models suggesting that modelling can be used as a basis to capture and analyse 

the properties of complex slime mould behaviours. 

Chapter 4 concentrates on the reverse problem-the identification based on some 

of the simulation results from Chapter 3. A new identification method, OFR-MI 

(Orthogonal Forward Regression using Mutual Information) algorithm, is derived. 

Previous studies on the model term selection using mutual information are 

reviewed and mutual information is used for first time as the criterion for 

selecting essential terms of spatio-temporal systems. The new algorithm is then 

tested on several benchmark spatio-temporal models including Cellular Automata 

(CA), Coupled Map Lattice (CML) and Partial Differential Equations (PDE) 

models. 

Chapter 5 focuses on the study of a Reaction-Diffusion-Chemotaxis model 

originally proposed by Nazim Fatès. This model can obtain good simulation 

results of cell movements in the slime mould aggregation. The chapter starts with 

a brief review of Reaction-Diffusion-Chemotaxis models in previous studies and 
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an introduction to the Nazim Fatès model. Next, a probabilistic CA model is 

formulated by simplifying the original Nazim Fatès model. Simulation studies are 

carried out for the original model and simplified models respectively to derive a 

representative model formulation for slime mould. Extracted from the Nazim 

Fatès model, a new type of spatio-temporal model, the probabilistic multi-rule 

CA model, is proposed with a specific definition and simulation examples. 

In Chapter 6, as a new CA model, the probabilistic multi-rule CA model is 

differentiated from other spatio-temporal systems by having more than one rule 

that operates in a model. The identification problems of these new models are 

discussed and a new algorithm for the identification of probabilistic multi-rule 

CA models is introduced. One-dimensional and two dimensional model examples 

are tested using the new identification method. 

Chapter 7 analyses two types of noise in probabilistic multi-rule CA models. 

They are static and dynamic noise. The measurement of these two categories of 

perturbations and their effects on probabilistic multi-rule CA models are 

explained first. The corresponding simulation and identification are studied. 

Finally, the new identification method for the probabilistic multi-rule CA models 

proposed in Chapter 6 is modified and enhanced so that it can be applied to noisy 

patterns. 

The conclusion Chapter 8 is a summary of the main work and contributions in 

this thesis, followed by the discussion and suggestion for further studies. 
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Chapter 2  

Overview of Modelling Spatio­temporal 
Systems 

2.1 Introduction 

A spatio-temporal system is a dynamical system that can model the behaviours of 

complex non-linear systems. Spatial-temporal models arise from the spatio-

temporal phenomena where data are collected across time and space. Spatio-

temporal phenomena where the dynamics at any point depends upon the time 

evolution and the dynamics at other spatial locations are ubiquitous. Hence, 

spatio-temporal systems can represent an enormous class of highly complex 

dynamical systems, and spatio-temporal modelling then becomes a crucial 

research area related to the statistical analysis of data arising from wide and 

various applications in nature such as ecology, biology, geology, epidemiology, 

and environmental health.     

The simulation of spatio-temporal systems produces patterns generated from 

complex interacting behaviours in real life. Spatial interactions and temporal 

dynamics need to be considered at the same time, so these systems are more 

difficult than purely temporal systems or spatial systems which are only time 

dependent or space dependent respectively.  

The identification of spatio-temporal systems, the reverse problem of simulation, 

has received considerably less attention up to now. However, it is essential to 

research on this problem because the identification is to explore the causes of the 

phenomenon and to obtain or compute a mathematical model from the data in real 

evolution cases or from simulation data. Once the model is known, it is easy  
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to control or add manual intervention into the real systems by adjusting 

corresponding parameters or variables in the model according to our expectations, 

thereby benefitting human beings. For example, infection can be regarded as a 

spatio-temporal dynamic process. If the reproduction and movement of 

microparasites like viruses and bacteria can be formulised by mathematical 

models, the reasons of the infection can be clarified and effective measures can be 

taken to deal with or control the infection. In this way, a big progress may be 

made on many difficult miscellaneous diseases such as cancers and the HIV 

infection.  

Owing to the characteristics of spatio-temporal systems detailed above, the slime 

mould behaviours can also be viewed as spatio-temporal systems. Slime mould 

seems to act with ‘a brain’, which is intelligently sensitive to an external stimulus. 

According to the movement and aggregation of cells, slime mould always can 

find the better environment for survival. The spatio-temporal behaviours of slime 

mould are the key problem discussed in this thesis and the spatio-temporal model 

is a good and effective tool to study this problem, which is reviewed and 

explained in detail in this chapter.  

2.2 Spatio­temporal Systems 

Three main elements in the spatio-temporal system are space, time and cell states. 

Generally, when classifying spatio-temporal systems by the state of individual 

cells, there are two main types, discrete models and continuous models. The 

discrete case is known as Cellular Automata or simply CA. These type of systems 

have finite values at each site and the rules are usually represented by the 

combination of different Boolean rules such as and, or, not etc. The class of 

systems that have continuous state values at each site can be described by Partial 

Differential Equations (PDE), or when based on a discrete lattice space as Lattice 

Dynamical System (LSD) or Coupled Map Lattices (CML). However, LSD, 

CML and CA models have the property of discrete time and space, but PDE 

models not only have a continuous state, but also continuous time and space. 
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These models mentioned above will be described in detail in the following 

sections. 

2.2.1 Cellular Automata 

Cellular Automata (CA) were conceived by von Neumann in the early 1950’s 

[50]. CA are dynamical systems in which space and time are both discrete. Each 

cell which is arranged in the form of a regular lattice structure has a finite number 

of states. All the states in the cells are updated synchronously by a specific 

transition rule based on the information of the individual states and of cells in a 

neighbourhood at past times.  

An n-dimensional cellular automata is defined on a lattice structure. For a two-

dimensional lattice, choices of a square lattice, a triangular lattice and a 

hexagonal lattice [51] are the common types. The selection of lattice type varies 

according to different investigation objectives and different lattice types lead to 

different CA rules in the evolution process. The typical lattice type which is 

widely used is a square lattice. This lattice can be represented as ሺௗሻ, where 

݀ ൌ ݎ2 ൅ 1, and ݎ  is a finite integer which determines the size of the 

neighbourhood.  is a finite set of states of all cells in the lattice.  

The neighbourhood is a cell set capable of directly influencing the evolution of 

the outputs. The cells involved in the neighbourhood can be from different spatial 

and temporal scales. For example the one-dimensional 3-site neighbourhoods in 

Fig.2.1(a), (b) and (c) are the cases that the neighbourhood of a cell at the position 

݆ and the time instant ݐ ൅ 1, denoted as ܿሺ݆, ݐ ൅ 1ሻ, are from the same time scale ݐ 

but with different space scales. Fig.2.1 (d) is an example of neighbour cells 

having two cells from different temporal scales at time step ݐ െ 1, ܿሺ݆ െ 1, ݐ െ 1ሻ 

and ܿሺ݆ ൅ 1, ݐ െ 1ሻ, as well as two other cells from different spatial scales of time 

step ݐ,  ܿሺ݆ െ 1, ሻ and ܿሺ݆ݐ ൅ 1,  .ሻݐ
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Figure 2.1: Examples of neighbourhoods for CA from different spatial and 
temporal scales. (a) von Neumann neighbourhood (b) right-shift neighbourhood (c) 
left-shift neighbourhood (d) the neighbourhood that involves cells both from 
different temporal and spatial scales. 

The dynamic of CA is then described by a neighbourhood function ݂: ௗ ՜ . 

For example, if ݀ ൌ 5, the neighbourhood in this case can be defined as the other 

four cells around the original one. Thus, the output of each cell is produced by 

following the rule ݂ . The transition function ݂  shows the interaction of cells 

which can be listed in a finite look-up table. A time shift operator then upgrades 

all the cells synchronously at each discrete time step when time passes. 

The transition rule  ݂ can be viewed as a logical function or Boolean function of  

݀  variables, because the transition function is equal to the transition table of 

length  2ௗ . For example, a 3-site CA rule with the neighbourhood set of       

ሼܿሺ ݆ െ 1, ,ሻݐ ܿሺ݆, ,ሻݐ ܿሺ݆ ൅ 1,  ሻሽ described by the Boolean equivalent isݐ

                         ܿሺ݆, ݐ ൅ 1ሻ ൌ ܿሺ݆, ሻݐ ש ሺܿሺ݆ െ 1, ሻݐ ר ܿሺ݆ ൅ 1,  ሻሻ                     (2.1)ݐ

where ‘ש’ denotes the OR operation and ‘ר’ denotes the AND operation. It has 

been shown in [52] that CA rules can be expressed in a polynomial form for the 

model in Eqn.(2.1), gives 

ܿሺ݆, ൅ ݐ  1ሻ ൌ   െ 2.0ܿሺ݆ െ 1, ,ሻܿሺ݆ݐ ሻݐ െ 2.0ܿሺ݆, ሻܿሺ݆ ൅ݐ  1, ሻݐ ൅ ܿሺ݆,    ሻݐ

 െ2.0ܿሺ݆ െ 1, ሻܿሺ݆ ൅ݐ  1, ሻݐ ൅ ܿሺ݆ െ 1,  ሻݐ

                                   ൅3.0ܿሺ݆ െ 1, ,ሻܿሺ݆ݐ ሻܿሺ݆ݐ ൅ 1, ሻݐ ൅ ܿሺ݆ ൅ 1,  ሻ                 (2.2)ݐ
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CA is one of the simplest spatio-temporal systems, but it can produce complex 

patterns even through a simple rule. It has been found that CA can be used to 

approximate some natural systems and give the general behaviours of these 

systems. Hence, there have been numerous applications of CA models in various 

areas including biology [53], chemistry [54], sociology [55], image processing 

[56], etc. 

2.2.2 Coupled Map Lattices 

Although CA have been widely applied in many disciplines, there are still some 

limitations when they are used in some continuous spatio-temporal systems. For 

example, when a continuous system is modelled using a CA model, the 

continuous states of the cells need to be discretised into discrete values. In this 

way, it is obvious that information, sometimes even important and useful data, 

can be lost. However, most of the problems mentioned above could be solved, 

using Coupled Map Lattice (CML) models which were introduced in a model 

simulation by K. Kaneko in the 1980s [57]. The model Kaneko used consists of a 

continuous sequence of logistic maps coupled to their neighbours and with 

parameters chosen to produce a chaotic behaviour. The system of coupled 

mappings was regarded as a CML model. The CML model is a typical model of 

extended dynamical systems with discrete time and space, but with continuous 

state variables. The CML model lies somewhere between CA and PDE models. 

CML models are convenient for computer simulations especially in theoretical 

physical analysis, for the interpretation of experimental results, and for 

mathematical analysis. Therefore, CML models have been applied in many fields 

including chemistry [58], biology [59], ecology [60], physics [61, 62] and so on. 

There are four key parts in CML models, that is, a lattice structure, the 

neighbourhood, the lattice states and a dynamical process. The process of a CML 

model can be defined by the following steps [63]: 

a) A lattice architecture 
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Let ܿ be a cell in a lattice , so that ܿ א . The neighbourhood can be described 

as  

                                             ݄ܰ݀ሺܿሻ ൌ ሼݔ, ௖ݕ
ఝሺ௖ሻሽ                                              (2.3)                       

where ݕ௖
ఝሺ௖ሻ  represents neighbouring cells corresponding to the cell ܿ . ߮ሺܿሻ 

represents the selection of neighbourhood cells and also specifies the size of the 

neighbourhood. 

b) Lattice state description 

The mapping for the state of the lattice is ߪ: ՜ ࣛ, where ࣛ describes the states 

in the lattice. Thus, the state of a cell ܿ in a lattice can be described as ߪሺܿሻ. 

c) Dynamic process 

There are two basic processes involved: isolated local processes and interaction 

processes. For an isolated local mapping ௖݂: ࣛ ื ࣧ, ࣧ is the set of all possible 

values of cells in a lattice, and ௖݂ሺࣵሻ shows the output value at point ܿ when the 

input value is ࣵ. Unlike the isolated process, the interaction process couples the 

states generated from the cells in the neighbourhood. This is represented 

by ݃௖: ࣧఝሺ௖ሻ ื ࣛ.  A global description of such a dynamic process was 

expressed by  [63] 

                                            ௖ܸ : ࣮ ൈ ሾ ՜ ࣛሿ ՜ ࣛ                                            (2.4) 

where ࣮ is a time delay matrix. ௖ܸሺ0, ሻߪ ൌ ݐ ሺܿሻ whenߪ ൌ 0, so for ݐ ൐ 0, 

௖ܸሺݐ ൅ 1, ሻߪ ൌ ݃௖ ቆ ௖݂൫ ௖ܸሺ0, ,ሻ൯ߪ ௬݂೎,భ ቀ ௬ܸ೎,భሺݐ, ሻቁߪ , … , ௬݂೎,കሺ೎ሻషభ ൬ ௬ܸ೎,കሺ೎ሻషభ
ሺݐ,  ሻ൰ቇߪ

                                                                                                                             (2.5) 

CML models are more complicated than CA models. They have continuous state 

variables instead of discrete states, so that the capability of local information 

production is enlarged. However, being discrete in time and space, they are 

simpler than Partial Differential Equations (PDE) which require a large amount of 
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information commonly described by a continuous function. Thus, for PDE, larger 

computational resources are involved. When the characteristics of these different 

models are well understood, it is very helpful for numerical analysis both in 

mathematical and physical aspects.  

2.2.3 Partial Differential Equations 

PDE models represent one of the most important parts of mathematical analysis. 

PDE models were originally developed in the areas of physics and mechanics, 

because some distinct physical phenomena such as the propagation of sound, 

fluid flow and electrodynamics seem to have identical mathematical formulations 

with PDEs. Due to more and more attention on these models, PDEs have already 

been extended into other fields such as biology, finance, computer science 

(especially in image analysis) and so on.  

PDEs demonstrate a relation between an unknown function with several 

independent variables and its partial derivatives. The general form of a PDE 

based on a function ݑሺݔଵ, ,ଶݔ … ,   ௡ሻ isݔ

,ଵݔ൫ܨ                              ,ଶݔ … , ,௡ݔ ,ݑ ,௫భݑ ,௫మݑ … , ,௫భభݑ … ൯ ൌ 0                         (2.6) 

where ݔଵ, ,ଶݔ … ,  is the unknown function, and ݑ ,௡ are the independent variablesݔ

௫೔ represent the partial derivative  డ௨ݑ
డ௫೔

. Generally, additional conditions such as 

initial conditions and boundary conditions are included. 

PDE models are not only continuous in the time and space domains, but also the 

state of each point. With these continuous properties, PDE models provide an 

effective tool to understand or reconstruct continuous spatio-temporal systems in 

the real world. It is because such models may easily be related to the original 

system parameters and there is a potential to provide a clear physical explanation. 

For example, a reaction-diffusion process can be represented by the following 

PDEs as 

                                            డ௬ሺ௫,௧ሻ
డ௧

ൌ ܦ பమ௬ሺ௫,௧ሻ
ப௫మ ൅ ܴሺݕሻ                                   (2.7) 
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,ݔሺݕ  ሻ represents the concentration of one chemical, when it is applied in anݐ

oscillatory chemical reaction. ܦ is a diagonal matrix of diffusion coefficients and 

ܴሺݕሻ accounts for all local reactions. 

There are many PDE models which have been applied in many different areas. 

For example, the Keller & Segel model [24] was introduced to model the 

chemotactic movements of bacteria. The FHN model [64] and the Oragonator 

models [65] were used in the analysis of the BZ reaction–diffusion system [6]. 

2.3 Identification of the Spatio­temporal Systems 

The identification of the spatio-temporal system can be viewed as a process of 

seeking and perceiving the essence of the system behaviour through the spatio-

temporal phenomena. This identification problem is of great important but still a 

challenging problem even today. Finding equations to describe the observed 

phenomena using an analytical modelling approach is not easy, because usually 

complex interactions are involved in real cases which are highly nonlinear.   

In system identification, there are two main objectives, model structure selection 

and parameter estimation. The model structure selection is very important in the 

identification, because simply increasing the number of the system terms will lead 

to much more complicated models, and the more complex the model structure is, 

the more expensive computation it will cause, as well as more limitations in 

practical implementation. Once the model structure, or which terms to be selected 

in the model has been determined, the rest of the identification is to estimate the 

parameters of the model. Parameter estimation can thus be regarded as a standard 

minimisation type problem which can be easily solved using various well-

developed numerical techniques.  

There are many types of non-linear models including radial basis function 

networks, wavelet networks, polynomial models, neural networks, and rational 

models. But how to select the variables and model terms is a key focus in the 

model structure determination whatever type of the model is selected. The model 
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terms and variables in non-linear systems can affect the system performance more 

than that in linear regression models. Take a simple non-linear system with three 

input variables for instance. The number of model terms will turn out to be ten in 

a second-degree case. Thus, the number of model terms will increase dramatically 

by adding more variables or increasing the system degree. Therefore, the ideal 

selection method should search over a significant set of variables and terms to 

achieve a relatively small set of terms which can construct the final prediction 

model with a desired accuracy. The system description and reviews of present 

identification methods will be discussed in detail in the sections below.  

2.3.1 Model Description 

In order to give an introduction of the identification algorithms, the NARMAX 

model, (Non-linear Auto Regressive Moving Average with eXogenous inputs) 

which can represent many non-linear dynamic systems [66] is defined as 

ሻݐሺݕ ൌ ࣠ሺݕሺݐ െ 1ሻ, … , ݐ൫ݕ െ ݊௬൯, ईሺݐ െ 1ሻ, … , ईሺݐ െ ݊ईሻ, ݁ሺݐ െ 1ሻ, … , ݁ሺݐ െ

                   ݊௘ሻሻ ൅ ݁ሺݐሻ                                                                                         (2.8) 

where ݕሺݐሻ ,  ईሺݐሻ  and  ݁ሺݐሻ  denote output, input and noise sequences 

respectively. When this model is extended to the multi-input multi-output (MIMO) 

case with ݉௬ variables in the system output and ݉ई variables in the input, the 

variables can be written as vectors ݕሺݐሻ ൌ ቂݕଵሺݐሻ ݕଶሺݐሻ ሻቃݐ௠೤ሺݕ …
்

, ईሺݐሻ ൌ

ൣईଵሺݐሻ ईଶሺݐሻ … ई௠ईሺݐሻ൧்
and ݁ሺݐሻ ൌ ሾ݁ଵሺݐሻ ݁ଶሺݐሻ … ݁௠೤ሺݐሻሿ் . ݊௬ , ݊ई  and ݊௘  are 

the maximum time delay. ݁ሺݐሻ is a zero mean independent sequence, and ࣠ is 

some non-linear function. The objective of system identification is to find a 

proper approximation with respect to ࣠. A common choice is to describe ࣠ by a 

polynomial representation with a given degree ݈, 

ሻݐሺݕ ൌ ଴ߠ ൅ ෍ ௜భߠ ௜ܶభ

௡

௜భୀଵ

ሺݐሻ ൅ ෍ ෍ ௜భ௜మߠ ௜ܶభሺݐሻ ௜ܶమሺݐሻ
௡

௜భୀ௜మ

௡

௜భୀଵ

൅  ڮ
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                                   ൅ ෍ ··· ෍ ௜భ…௜೗ߠ

௡

௜೗ୀ௜೗ିଵ

௡

௜భୀଵ
௜ܶభሺݐሻ ڄڄڄ ௜ܶ೗ሺݐሻ ൅ ݁ሺݐሻ                        ሺ2.9ሻ  

Where ݊ ൌ ݊௬ ൅ ݊ई ൅ ݊௘ and ܶሺݐሻ represents ݕ, ई or ݁ with time lags. Eqn.(2.9) 

can be written as a linear-in-parameters regression model, 

ሻݐሺݕ                                  ൌ ෍ ሻݐ௜߶௜ሺߠ
ெೞ

௜ୀଵ

൅ ݐ        ,ሻݐሺߦ ൌ 1, … , ܰ                         ሺ2.10ሻ 

where ܰ is the data length. ߠ௜ are unknown parameters to be estimated. ߶௜ሺݐሻ are 

important model terms which are generated from the input and output data using 

various basis functions. ܯ௦ is the number of final model terms which is selected 

from a set of candidate model terms ሼ߶௜ሽ௜ୀଵ
ெ .Generally, the set of candidate model 

terms is constituted by all the possible combinations of system variables up to 

degree ݈. ߦሺݐሻ is the modelling error. 

The linear-in-parameters model structure in Eqn.(2.10) can be used to express 

most parametric and non-parametric models, so that it is an effective tool to find 

an approximation to an unknown nonlinear function. 

2.3.2 Orthogonal Least Squares 

An optimised identified model should contain all the significant terms which are 

mentioned in Eqn.(2.10), and the redundant terms should have been removed 

from the model. Leaving out any significant terms may cause wrong model to be 

identified, meanwhile redundant terms can complicate the identification process 

and make the computation time consuming. Therefore, developing a good method 

for model structure determination becomes essential in the identification 

procedure. The orthogonal least squares (OLS) algorithm together with the Error 

Reduction Ratio (ERR) has proved to be one of the most efficient methods both 

for term selection and parameter estimation in nonlinear system identification [45, 

46]. The OLS algorithm is based on the orthogonalisation of the regressors which 

are the terms in the models. This method was initially applied to single-input 
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single-output (SISO) systems, but it has been widely extended to many MIMO 

systems.  

The OLS algorithm, developed by extending least squares theory, is efficient in 

the model term selection. This algorithm includes a stepwise orthogonalisation of 

regressors and a forward selection of terms according to their contributions to the 

overall model measured by the ERR [45]. The classical OLS algorithm results in 

a particularly simple estimation procedure which is described by the following 

steps: 

a) Orthogonalising all the regressors in a model so that the correlations between 

all the terms are removed. 

b) Determining significant terms by comparing the Error Reduction Ratios or 

ERRs with all the candidate model terms. 

c) Computing the corresponding parameters with respect to selected terms. 

To further understand the OLS algorithm, a simple description for the algorithm 

is shown mathematically as follows. The vector format of Eqn. (2.10) is  

                                                       ܻ ൌ ΦΘ ൅  (2.11)                                               ܍

where Φ is the regression matrix, Θ is the parameters vector and ܍ is the residual 

sequence. Eqn.(2.11) can be converted to another expression including orthogonal 

regressors using the orthogonalisation, say 

                                                       ܻ ൌ ܹ݃ ൅  (2.12)                                               ܍

where 

                     Φ ൌ ܹA, AΘ ൌ ݃                                         (2.13)    

and 

                                                 A ൌ ൮

1
0
ڭ
0

  

ܽଵ,ଶ
1
ڭ
0

  

ڮ
ڮ
ڰ
…

  

ܽଵ,ெೞ
ܽଶ,ெೞ

ڭ
1

൲                                   (2.14) 

In (2.12), ܹ is the orthogonal regression matrix. 
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2.3.3 Identification of CA 

As noted in Section 2.2.1, a CA system consists of three main elements: a discrete 

lattice, a neighbourhood and a transition rule. Similarly, the identification of CA 

includes the neighbourhood detection and the rule determination based on a 

lattice structure. Neighbourhood detection is part of the procedure of the model 

structure determination, and is also the crucial premise of the rule determination. 

A correct detected neighbourhood can provide the feasibility of producing the 

optimal model. For a simulation case, a candidate neighbourhood can be 

manually set in advance according to experience. But for a real system without 

any prior information about the model, the neighbourhood detection algorithms 

are necessary to be developed. After the candidate neighbourhood is obtained, 

CA rule can be identified using an estimator such as the orthogonal least squares 

based algorithm in this thesis, so that model structure is determined and 

coefficients are estimated.  

At present, there are a few methods for identifying cellular automata rules. Fred 

et al. [67] employed a learning algorithm-genetic algorithm (GA) to extract CA 

rules directly from observed spatio-temporal patterns with no a priori knowledge 

about the physical system. But there was not a clear neighbourhood structure or 

parsimonious explanation in this method. Yang and Billings [68] introduced an 

improved method which can extract precise Boolean rules from CA patterns by a 

multi-objective genetic algorithm, but the detection process was complicated and 

very time-consuming. Billings and Yang [69] then proposed a Cellular Automata 

Orthogonal Least Squares algorithm (CA-OLS). This was the first time an 

adapted orthogonal least squares algorithm was used in the identification of CA. 

In the CA-OLS algorithm, Boolean rules were mapped into a polynomial form, 

and the OLS algorithm was employed, resulting in an efficient method for the 

neighbourhood detection, term selection and parameter estimation even for 

complex CA patterns. A modified algorithm of CA-OLS with fast computing 

speed, named as FCA-OLS algorithm, was presented by Billings and Mei in 2005 
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[70]. However, all these algorithms need an initial candidate neighbourhood 

which contains, as a subset, all the correct neighbourhood cells. Candidate sets 

with insufficient cells or wrong cell members will cause an infeasible 

identification or an incorrect model. As part of the selection the ERR cut-off 

value also affects the results of the identification, because when the system is 

corrupted by noise, a slightly larger cut-off value can lead to a number of 

redundant terms in the model and contrarily a smaller cut-off value can cause the 

elimination of some vital terms [52]. In order to optimise CA-OLS, Zhao and 

Billings [71] introduced a new algorithm of neighbourhood detection, which 

provides an indication of the temporal and spatial range of the initial candidate 

terms based on mutual information (MI). Such a coarse-to-fine identification 

approach, including no a priori knowledge, significantly reduces the initial 

neighbourhood choices, so that the CA-OLS algorithm becomes more efficient 

when applied in system identification. In 2008, Guo, Billings, et al extended the 

CA identification method from binary cellular automata to n-state systems [72]. 

2.3.4 Identification of CML 

The basic idea of the identification of CML models is to find the model function 

with the knowledge of experimental input and output data. There are two 

commonly used approaches for the identification of CML models. One is to 

identify a global model constructed by local models based on the embedding 

theorem [73]. In the methods proposed by Parlitz and Merkwirth [74], as well as 

Mandelj, et al [75], models were predicted according to the values in a 

rectangular or triangular neighbourhood region. These results, however, are only 

suitable for some simple CML systems. The other approach is based on the 

NARMAX model which was described in Section 2.3.1. This method has been 

widely and successfully used to identify the CML model for a wide range of 

nonlinear dynamical systems. Methods which were introduced by Coca and 

Billings [76, 77], Guo and Billings [78] were based on a modified OLS algorithm 

to achieve a powerful method for model construction. But some prior information 
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such as empirical knowledge should be gained to determine a finite range of 

initialisation in the time and space domains. In addition, Pan and Billings [79] 

proposed a neighbourhood detection approach for CML model identification, 

which was based on embedding theory. The main idea of this method was to test 

the continuity property of the independent model function in order to obtain a 

reasonable neighbourhood size. Another improved method of neighbourhood 

detection was introduced by Guo, Mei et al. [80], which applied CA 

neighbourhood detection methods to preselect the initial neighbourhood before 

using CML identification methods to produce the final model. This coarse-to-fine 

strategy results in less expensive computations.  

2.3.5 Identification of PDEs 

Due to the continuous property of PDEs, these models may easily be related to 

the original variables in many real systems and can provide a mathematical 

expression with a clear physical explanation. Therefore, most physical, chemical 

processes and biology systems, such as thermal processes, and diffusion-reaction 

processes can be more easily described by a set of partial differential equations. 

However, the identification of these systems becomes a challenge because of their 

complex spatio-temporal nature. CML can provide a finite-dimensional model to 

approximate an infinite-dimensional system which is generally represented by 

partial differential equations, so the identification methods applied on CML 

models may also fit PDEs models through the discretisation step.   

To date the identification of PDEs models has been attracted many attentions. 

Voss et al [81] developed an identification algorithm for continuous PDE systems, 

in which the alternating conditional expectation algorithm (ACE) is used to solve 

an optimisation problem involved in the identification. This method is less 

efficient for high dimensional cases than for low dimensional ones. The 

algorithms introduced by Porcu, et al [82] and Xu et al [83] are two identification 

methods based on a statistical approach. Another method based on artificial 

neural network architectures was proposed by Gonzalez-Garcia et al in 1998 [84]. 
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One of the most widely used methods is the least squares method, which has been 

studied by many authors such as Coca and Billings [85, 86], Qi, Zhang, and Li 

[87], Guo and Billings [88, 89], and so on.  

In Qi, Zhang and Li’s study [87], the spatio-temporal modelling was reduced to a 

traditional temporal modelling problem using the Galerkin method, and both 

singular value decomposition and least squares estimation were applied in the 

estimation of the unknown parameters. Guo and Billings [89] proposed a method 

based on the orthogonal least-squares algorithm, in which the parameters were 

estimated consistently. This iterative algorithm based method can be implemented 

online easily. 

2.4 Conclusions 

Spatio-temporal systems have received more and more study recently, because 

most natural phenomena have spatio-temporal behaviours which can be described 

by spatio-temporal models. A brief review of spatio-temporal systems has been 

illustrated in this chapter, including the basic concepts, typical applications, 

forward and reverse problems of spatio-temporal systems and so on.  

The simulation and identification problem are two central and key tasks, but still 

challenging topics in the study of spatio-temporal behaviours in real life, since 

there is normally no priori information about the model structure in these 

practical applications. The case of slime mould is not an exception. Hence, this 

thesis will centre on these two problems related to slime mould and besides 

further discussion will be explained in the following chapters. 
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Chapter 3  

Modelling of Slime Mould Dynamics 

3.1 Introduction 

Slime mould dynamics have become a more and more popular research topic 

recently, because the dynamics of these systems exhibit unexpected intelligent 

behaviours which often form various interesting and beautiful patterns. For 

example, concentric rings or spirals can be found in the aggregation of the slime 

mould Dictyostelium Discoideum and branch structures are typical in the 

colonisation of physarum plasmodium. However, these organised patterns are not 

unique to slime mould, and can also be found in many other examples such as the 

Belousov-Zhabotinsky reaction (or BZ reaction) in chemistry, population 

dynamics in ecology and colonial phenomena found in other biological species. 

Research on the evolution of these similar patterns in different disciplines can 

promote the understanding of similar dynamical processes.   

The dynamics of slime mould can be regarded as a non-linear spatio-temporal 

system. In this chapter, three types of spatio-temporal models, Cellular Automata 

(CA), Coupled Map Lattices (CML) and Partial Differential Equations (PDEs), 

are used to model slime mould dynamics. The aggregating slime mould behaves 

as an excitable medium when food is scarce, so that the Greenberg-Hasting model 

(GHM) [47] as a CA model, which is commonly used for excitable media 

modelling, is employed to describe slime mould behaviours. In addition, a CML 

model based on Solé’s model [48] is also applied to modelling slime mould at the 

aggregation stage, which is able to capture typical reaction-diffusion features of 

slime mould. Also, Kawasaki’s model [49], a PDE model, is demonstrated to  
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describe the colonial behaviours of slime mould which is very similar to that of 

bacteria. The description of these three models is followed by several simulation 

examples. 

3.2 CA models­The Greenberg­Hasting Model 

Aggregating slime mould cells can be viewed as excitable media, so that they 

share certain characteristics with other excitable media such as chemical 

oscillating reactions [90], nervous and cardiac tissue [91], and intracellular 

calcium signalling [92]. Excitable media are commonly described by Cellular 

Automata (CA) and Partial Differential Equations (PDE). Therefore, A CA model 

- the Greenberg-Hasting model [47] is employed in this section to show by 

simulation that slime mould at the aggregation stage can be represented by this 

model class.   

3.2.1 Aggregating Slime Mould as Excitable Media 

Excitable media were first introduced by Wiener and Rosenblueth in the research 

of heart arrhythmia in 1946 [93]. Excitable media are one of the nonlinear and 

spatio-temporal dynamic systems, which propagate waves of excitation at a 

velocity which depends upon the properties of the medium. There are two main 

elements in excitable media, excitation and refractivity. During the excitable 

period, the medium begins with an excitable state as a stable equilibrium. Once 

the cells of the medium receive a stimulus which is above a certain fixed 

threshold, the cells become excited states and meanwhile generate unified signals 

to excite the cells in the neighbourhood so that neighbouring cells produce 

identical signals. Following excitation, excitable media enter the refractory period 

during which they cannot support wave propagation until a certain amount of 

time has passed. Excitation always alternates with refractivity, which forms 

travelling excitation waves of various geometries such as concentric circles and 

spiral waves.  
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It has been shown that the morphogenetic movement of slime mould at the 

aggregation stage is governed by a control system, which has similar properties 

with excitable media. Therefore, excitable media are capable of interpreting the 

investigated results obtained in experiments of the aggregation period of slime 

mould [94].  

The slime mould aggregation is caused by chemotaxis toward higher 

concentrations of the chemoattractant cAMP which acts as an intracellular 

messenger. At the beginning of the aggregation stage, slime mould is in a stable 

excitable state. When suffering short of food in the environment, slime mould 

cells begin to secrete cAMP. This extracellular cAMP then binds to its own 

receptors, which causes more production of cAMP, and meanwhile this excites or 

stimulates other cells in the neighbourhood to secrete cAMP. Thus all the cells in 

the neighbourhood are then in an excited state. However, a reverse process of 

inhibition is also involved at the same time, which slows down the cAMP 

secretion with the gradual increase of the cAMP concentration and at last stops 

the autocatalysis. In this way, cells become refractory states. When sensing the 

decline of the cAMP, slime mould recovers the capability of cAMP synthetisation. 

The excitation-and-inhibition cyclic process results in a travelling wave which 

diffuses cAMP isotropically and excites more cells to produce more cAMP.  The 

cAMP wave propagation guides the movement of amoebae and leads to the 

formation of ring patterns or spiral waves which are similar to these in excitable 

media. 

Cellular Automata are one of the main approaches to model excitable media. CA 

exhibit an excellent ability to produce complicated patterns at low computational 

cost, so that the CA can provide a relatively simple model to understand excitable 

media. For the case of slime mould, each cell in the CA can be occupied by an 

individual amoeba or a small group of slime mould cells. Each cell in the CA can 

be in one of three states: excitable, excited and refractory. The transitions 

between these three states are controlled by a CA rule, which updates the state of 
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a cell at the current time according to the states of the cells in its neighbourhood 

at previous time steps. A cell cannot be excited until one or more neighbouring 

cells are excited and the excited cells become refractory in the next time step. 

After a refractory period, cells go back to be excitable again. It is obvious that the 

CA rule is consistent with the physical explanation of the aggregating slime 

mould, which further explains the feasibility of the slime mould modelling using 

CA models. 

3.2.2 The Greenberg­Hasting Rules 

The Greenberg-Hastings Model (GHM), which was introduced by Greenberg and 

Hasting [47], is one of the most parsimonious models which has been proposed to 

capture reaction-diffusion phenomena. The GHM is in a CA form which was 

firstly used to model the neuron activities observed in a neurons network, and 

then it has been extended to model many other excitable media such as 

the Belousov–Zhabotinsky (BZ) reaction via generalising GHM to incorporate 

more detailed aspects of these excitable media [95]. 

The GHM normally emulates an excitable media on a lattice ୢ . A two-

dimensional square lattice ( ଶ) as the most common lattice type, is employed in 

all examples of this chapter. Each cell in the lattice can be represented as ܿ א ଶ, 

and at each time ݐ, the state of each cell has one of N possible values 0, … , ܰ െ 1, 

which also can be viewed as the way that each cell is painted with one of N 

different colours which are arranged in a cyclic ‘colour wheel’ and labelled 

0, … , ܰ െ 1  [96].  The update of a cell state is like the colour change by 

advancing one step at each time instant only in one direction around the wheel. 

The evolution of the GHM is determined by a transition rule with a finite 

neighbourhood ௖ሺ௜,௝,௧ሻ based on a discrete lattice structure. There are three main 

elements in the GHM rule:  a number ܰ of all possible colours, a number ܧ of 

colours in excited states, and a threshold number ܶ of cells in the neighbourhood 

௖ሺ௜,௝,௧ሻ needed for excitation. If writing the GHM rule in a CA form, the state of 

each cell at position ሺ݅, ݆ሻ  at time step ݐ  is denoted as ܿሺ݅, ݆, ሻݐ  and ܿሺ݅, ݆, ሻݐ א
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ሼ0, … , ,ܧ ܧ ൅ 1, … , ܰ െ 1ሽ, which means the cell state can be one of the integer 

values in the set of ሼ0, … , ܰ െ 1ሽ. When 0 is the excitable state, ሼ1, … ,  ሽ is theܧ

set of excited states and ሼܧ ൅ 1, … , ܰ െ 1ሽ represents the set of refractory states. 

For given ௖ሺ௜,௝,௧ሻ, ܧ, ܰ and ܶ, the evolution of the GHM starts from a initial 

setup and updates all the cells synchronously using the algorithm detailed as 

follows [95]. 

ܿሺ݅, ݆, ݐ ൅ 1ሻ ൌ  

ە
۔

ۓ
ሺܿሺ݅, ݆, ሻݐ ൅ 1ሻ ݉݀݋ ܰ,              if  1൑ܿሺ݅, ݆, ሻݐ ൏ ܰ;       
1,                                                    if ܿሺ݅, ݆, ሻݐ ൌ      ܦܰܣ 0

                                                    ൫ ௖ሺ௜,௝,௧ሻ൯ ൒ ܶ; 
0,                                                    otherwise.                     

         (3.1) 

where  ൫ ௖ሺ௜,௝,௧ሻ൯  denotes the number of excited cells in the neighbourhood 

௖ሺ௜,௝,௧ሻ of cell ܿሺ݅, ݆,  .ሻݐ

To date, GHM is widely and efficiently used to model many excitable media, 

because different complex patterns of reaction-diffusion systems can be generated 

using its simple rule. Here the application of the GHM is extended to model slime 

mould at the aggregation stage. Some simulation examples are given in the next 

section. 

3.2.3 Simulation Studies 

The simulation study of the GHM begins with a simple case which is applied on a 

square lattice 20×20 with a von Neumann neighbourhood. In this example, the 

initialisation of cell states is set at the time step of ݐ ൌ 1 as shown in Fig.3.1(a), 

in which black cells represent excited cells, the white are the cells in the excitable 

state, and others in grey colours indicate refractory cells. The parameters involved 

in this system Eqn.(3.1) are pre-set as ܰ ൌ ܧ ,3 ൌ 1 and ܶ ൌ 1. Fig.3.1(b)-(k) 

clearly shows the evolution process of this model from ݐ ൌ 2 to ݐ ൌ 11, which 

produces a simple pattern with two spirals diffusing towards the same direction.  
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            (a) t=1                    (b) t=2                       (c) t=3                     (d)t=4 

                       

             (e) t=5                    (f) t=6                      (g) t=7                     (h) t=8   

             

              (i) t=9                     (j) t=10                     (k) t=11 

Figure 3.1: The evolution of a GHM on a 20×20 lattice with the von Neumann 
neighbourhood and pre-set parameters of ࡺ ൌ ૜, ࡱ ൌ ૚ and ࢀ ൌ ૚.  

Fig.3.2-3.4 demonstrates different GHM simulation results developed from 

different initialisations, neighbourhoods and values of parameters. They are all 

configured with random initialisations, and finally can generate complex ring and 

spiral patterns, which are close to the patterns investigated in slime mould 

aggregation.  

              

           (a) t=1                      (b) t=2                      (c) t=5                        (d) t=7                    
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          (e) t=9                       (f) t=15                     (g) t=20                     (h) t=25 

             

         (i) t=30                     (j) t=35                      (k) t=40                     (l) t=45 

Figure 3.2:  The evolution of a GHM on a 100×100 lattice with the von Neumann 
neighbourhood and pre-set parameters of ࡺ ൌ ૠ, ࡱ ൌ ૚ and ࢀ ൌ ૚. 

 

              

          (a) t=1                        (b) t=5                     (c) t=10                     (d) t=15 

             

          (e) t=20                       (f) t=25                   (g) t=30                     (h) t=35 
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          (i) t=40                       (j) t=45                    (k) t=50                      (l) t=55 

Figure 3.3: The evolution of a GHM on a 50×50 lattice with the Moore 
neighbourhood and pre-set parameters of ࡺ ൌ ૚૚, ࡱ ൌ ૞ and ࢀ ൌ ૜. 

 

              

         (a) t=1                        (b) t=5                       (c) t=10                   (d) t=15 

             

         (e) t=20                      (f) t=25                      (g) t=30                    (h) t=35 

               

         (i) t=40                      (j) t=45                       (k) t=50                    (l) t=55 

Figure 3.4: The evolution of a GHM on a 100×100 lattice with the Extended Moore 
neighbourhood and pre-set parameters of ࡺ ൌ ૠ, ࡱ ൌ ૚ and ࢀ ൌ ૜. 
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3.3 CML Models­Solé’s Model 

The dynamics during the aggregation of slime mould can be regarded as a 

reaction-diffusion process which can be modelled using a discrete model of 

Coupled Map Lattices (CML). In this section, Solé’s model [48] is extended to 

model pattern forming dynamics of aggregating slime mould, which is detailed as 

follows. 

3.3.1 CML Models and Reaction­Diffusion Systems 

Coupled Map Lattices (CML), a nonlinear model of space-time discrete dynamics 

with continuous states, may provide an efficient and rigorous basis for 

understanding the spatio-temporal dynamics involved in reaction-diffusion 

systems via its symbolic dynamic description [97]. Reaction-diffusion systems 

were initially applied in chemistry, which can describe oscillatory behaviours and 

diffusion of one or more chemical substances which are distributed in space. The 

reaction process is to transform substances into each other, and the diffusion 

process is to spread substances out over surface space, which causes a travelling 

wave. 

Reaction-diffusion phenomena are common in physics, biology, geology and 

ecology, so that the study of the pattern formation in excitable reaction-diffusion 

systems has gradually become a research area of concern. The Belousov-

Zhabotinsky (BZ) reaction is a typical example of reaction-diffusion systems [58]. 

Another example in biology is the excitable phenomena exhibited in aggregating 

colonies of slime mould Dictyostelium Discoideum, which has attracted great 

interest from biologists to investigate basic mechanisms of cellular interactions in 

such a reaction-diffusion system [29].  

The traditional theoretical description of reaction-diffusion systems is usually in a 

continuous form of partial differential equations (PDEs). Generally, the 

bifurcation structure of PDEs is difficult to analyse, and the numerical solution is 

often time consuming, and sometimes even complicated to have an effective 
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solution. In order to study the dynamical pattern formation in reaction-diffusion 

systems, discrete models based on a spatially distributed media are taken into 

account to simplify the modelling method. Discrete dynamical systems are 

directly suitable for numerical calculations and implementation on conventional 

digital computers. Another advantage of the discrete model is its simplicity and 

easy use for the simulation. This model sometimes can also capture many 

essential features of real reaction-diffusion systems such as oscillatory and 

excitable dynamics, so that considered from this point, the performance of the 

discrete model in modelling can sometimes be as good as that of PDEs. Hence, it 

is preferable to employ lattice models such as CMLs, when discrete models are 

available for some reaction-diffusion systems.  

Several studies have applied CML approaches to approximate reaction-diffusion 

systems. For example, phase resetting dynamics are modelled using a coupled 

map model, which can faithfully generate the complex wave propagation process 

with major features in a relaxation oscillator reaction-diffusion system [98]. 

Another example shown in [99] is to use the CML model to investigate the phase 

transition and pattern formation of reaction-diffusion processes in chemical and 

biological systems. 

When the CML model is applied to modelling slime mould, the original 

continuous system needs to be discretised both in space and time domains first. A 

lattice is used as an approximate approach to describe the continuous medium and 

time is discretised by sampling at every fixed time interval. Equations of the 

model should have a reasonable continuous limit with decrease of the spatial step 

and temporal step. One of main purposes in this section is to investigate the slime 

mould dynamics utilising discretised space and time corresponding to the 

continuous description of the reaction-diffusion process.  
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3.3.2 The Description of Solé’s Model 

A general CML model can be defined on a d-dimensional and n-cell lattice d. 

The cells in the lattice are indexed as integer vectors ܿ௜ ൌ ሺܿ௜భ, … , ܿ௜೙ሻ א  d, 

݅ א Ժୢ. This CML can be written as [76] 

ܿ௜ሺݐሻ ൌ ௟݂ ൅ ݃௖     

          ൌ ௟݂൫ିݍ௡೎ܿ௜ሺݐሻ, ሻ൯ݐ௜ሺݑ௡ೠିݍ ൅ ݃௖ሺିݍ௡೎ܿ௜ሺݐሻ, ,ሻݐ௜ሺݑ௡ೠିݍ  ,ሻݐ௡೎ܿ௜ሺିݍ௠೎ݏ

 ሻሻ                                                                                  (3.2)ݐ௜ሺݑ௡ೠିݍ௠ೠݏ                    

where ௟݂  and ݃௖  represent the local mapping and the coupled function 

respectively. ௟݂ depends on the local state and input variables, and ݃௖ depends on 

local variables and the variables in a neighbourhood. ିݍ௡ is a backward time shift 

operator and ݏ௠  is a multi-valued spatial shift operator, both of which can be 

written as vectors, 

௡೎ିݍ                                            ൌ ሺିݍଵ, ,ଶିݍ … ,  ௡೎ሻ                                     (3.3)ିݍ

௡ೠିݍ                                            ൌ ሺିݍଵ, ,ଶିݍ … ,  ௡ೠሻ                                     (3.4)ିݍ

௠೎ݏ                                      ൌ ቀݏℓ೎
భ, ℓ೎ିݏ

భ, … , ℓ೎ݏ
೘೎ , ℓ೎ିݏ

೘೎ ቁ                                 (3.5) 

௠ೠݏ                                      ൌ ቀݏℓೠ
భ , ℓೠିݏ

భ , … , ℓೠݏ
೘ೠ , ℓೠିݏ

೘ೠ ቁ                               (3.6) 

Hence, 

ሻݐ௡೎ܿ௜ሺିݍ                          ൌ ൫ܿ௜ሺݐ െ 1ሻ, ܿ௜ሺݐ െ 2ሻ … , ܿ௜ሺݐ െ ݊௖ሻ൯                     (3.7) 

ሻݐ௜ሺݑ௡ೠିݍ                          ൌ ൫ݑ௜ሺݐ െ 1ሻ, ݐ௜ሺݑ െ 2ሻ … , ݐ௜ሺݑ െ ݊௨ሻ൯                  (3.8) 

ሻݐ௠೎ܿ௜ሺݏ                   ൌ ቀܿ௜ାℓ೎
భሺݐሻ, ܿ௜ିℓ೎

భሺݐሻ, … , ܿ௜ାℓ೎
೘೎ ሺݐሻ, ௜ିℓ೎ݔ

೘೎ ሺݐሻቁ                (3.9) 

ሻݐ௜ሺݑ௠ೠݏ                   ൌ ቀݑ௜ାℓೠ
భ ሺݐሻ, ௜ିℓೠݑ

భ ሺݐሻ, … , ௜ାℓೠݑ
೘ೠ ሺݐሻ, ௜ିℓೠݑ

೘ೠ ሺݐሻቁ          (3.10) 

where ℓ௖, ℓ௨ א Ժୢ are space shift indexes. 
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The CML model description in Eqn.(3.2) can be used to represent a wide range of 

nonlinear spatio-temporal dynamical systems, because the local reaction and the 

coupled function are both included in this model, so that the output depends on 

both local and coupling variables. 

Solé’s model, a CML model proposed by Solé and Valls [48], was initially 

employed to describe a ecosystem dynamic caused by the interaction between 

prey and predator populations. This mathematical model is  

ݐ௜ሺݔ                   ൅ 1ሻ ൌ ሻሾ1ݐ௜ሺݔߤ െ ሻሿݐ௜ሺݔ expሾെݕߚ௜ሺݐሻሿ ൅  ሻ          (3.11)ݐ௜ሺݔଶ׏ଵܦ

ݐ௜ሺݕ                         ൅ 1ሻ ൌ ሻሼ1ݐ௜ሺݔ െ exp ሾെݕߚ௜ሺݐሻሿሽ ൅  ሻ              (3.12)ݐ௜ሺݕଶ׏ଶܦ

where ݅ ൌ ሺ݅ଵ, ݅ଶሻ א  Ժଶ, ܦ is the diffusion coefficient and the Laplace operator 

 ,ଶ is a discrete diffusion operator׏

ሻݐ௜ሺݔଶ׏                                            ൌ ෍ ሻݐ௝ሺݔ
௡

௝

െ  ሻ                                       ሺ3.13ሻݐ௜ሺݔ݊

where ݆ ൌ ሺ݆ଵ, ݆ଶሻ א  Ժଶ  and ݔ௝ሺݐሻ  are ݊  neighbouring cells, usually taking 

݊ ൌ 4 or 8. In this case, ݊ ൌ 4, and then Eqn.(3.13) can be rewritten as 

ሻݐ௜భ,௜మሺݔଶ׏ ൌ ሻݐ௜భିଵ,௜మሺݔ ൅ ሻݐ௜భାଵ,௜మሺݔ ൅ ሻݐ௜భ,௜మିଵሺݔ ൅ ሻݐ௜భ,௜మାଵሺݔ െ  ሻݐ௜భ,௜మሺݔ4

    (3.14) 

According to Eqn.(3.9) and Eqn.(3.10), the neighbourhood of this model can be 

expressed using the spatial shift operator,  

ሻݐ௜ሺݔଶݏ                             ൌ ൫ݏℓభ, ,ℓభିݏ ,ℓమݏ  ሻݐ௜ሺݔℓమ൯ିݏ

                                               ൌ ሺݔ௜ାℓభሺݐሻ, ,ሻݐ௜ିℓభሺݔ ,ሻݐ௜ାℓమሺݔ  ሻሻ               (3.15)ݐ௜ିℓమሺݔ

when ℓଵ ൌ ሺ1 , 0ሻ and ℓଶ ൌ ሺ0 , 1ሻ, 

ሻݐ௜భ,௜మሺݔଶݏ           ൌ ቀݔ௜భିଵ,௜మሺݐሻ, ,ሻݐ௜భାଵ,௜మሺݔ  ,ሻݐ௜భ,௜మିଵሺݔ   ሻቁ              (3.16)ݐ௜భ,௜మାଵሺݔ 

Consider a small number of predators which appear at random positions initially 

and both populations are randomly generated as an initial condition, 
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                                 ߬ଵ ൏ ሻݐ௜బሺݔ ൏ ߬ଶ,      ݅׊଴ א  Ժଶ and ݐ ൌ 0                        (3.17) 

                                 ߬ଵ ൏ ሻݐ௜బሺݕ ൏ ߬ଶ,      ݅׊଴ א  Ժଶ and ݐ ൌ 0                        (3.18) 

Here, 0 ൏ ߬ଵ ൏ ߬ଶ ൏ 1. 

The examples demonstrated in [48] show the self-organisation caused by 

interacting populations of predators and preys under nonequilibrium conditions, 

which can produce chaotic spirals. This kinetic process is quite similar to that 

found in the aggregation of slime mould, which shares many properties with this 

predator-prey model, and similar patterns can also be found in this aggregation 

period. Hence, the model with two coupled equations of (3.11) and (3.12) can be 

extended to simulate the reaction-diffusion process of slime mould at the 

aggregation stage. The two variables in this CML model can respectively 

represent the normalised concentration of the chemoattractant cAMP which 

guides the movement of aggregating slime mould and activated receptors of slime 

mould cells. Spatial variation of the two species and diffusion of cAMP which are 

the two main processes of the reaction-diffusion system, are both included in this 

model. Some simulation examples of the model will be demonstrated in the next 

section. 

3.3.3 Simulation Studies 

When Solé’s model is applied to modelling slime mould, Eqn.(3.11) shows the 

changes of cAMP concentrations in space and Eqn.(3.12) shows the movement of 

slime mould. Consider simulations begin with 50 random seeds and every seed 

has two random values of ݔ௜బሺݐሻ and ݕ௜బሺݐሻ in the intervals of ߬ଵ ൏ ሻݐ௜బሺݔ ൏ ߬ଶ 

and ߬ଵ ൏ ሻݐ௜బሺݕ ൏ ߬ଶ . Here, A 256×256 Lattice is used with the periodic 

boundary condition. The first example takes ߬ଵ ൌ 0.2, ߬ଶ ൌ 0.4, ߤ ൌ 4.0, ߚ ൌ

4.0, ଵܦ ൌ 0.002, ଶܦ ൌ 0.2 and simulation results are shown in Fig.3.5. Another 

simulation in Fig.3.6 exhibits smaller spiral patterns than those in the first 

example in Fig.3.5 by taking the same initialisation and parameter settings except 

ߚ ൌ 5.0. 
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                   (a) ݔ௜భ,௜మሺݐ ൌ 50ሻ                                     (b) ݕ௜భ,௜మሺݐ ൌ 50ሻ 

          

(c) ݔ௜భ,௜మሺݐ ൌ 1000ሻ                                 (d) ݕ௜భ,௜మሺݐ ൌ 1000ሻ 

          

(e) ݔ௜భ,௜మሺݐ ൌ 2000ሻ                                 (f) ݕ௜భ,௜మሺݐ ൌ 2000ሻ 
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                  (g) ݔ௜భ,௜మሺݐ ൌ 4000ሻ                                (h) ݕ௜భ,௜మሺݐ ൌ 4000ሻ   

Figure 3.5: Simulations of the aggregating slime mould by a CML model on a    
256×256 lattice with parameters of ࣎૚ ൌ 0.2, ࣎૛ ൌ ૙. ૝, ࣆ ൌ ૝. ૙, ࢼ ൌ ૝. ૙, ૚ࡰ ൌ
૙. ૙૙૛, ૛ࡰ ൌ ૙. 

          

                   (a) ݔ௜భ,௜మሺݐ ൌ 50ሻ                                     (b) ݕ௜భ,௜మሺݐ ൌ 50ሻ 

          

                   (c) ݔ௜భ,௜మሺݐ ൌ 500ሻ                                  (d) ݕ௜భ,௜మሺݐ ൌ 1000ሻ 
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(e) ݔ௜భ,௜మሺݐ ൌ 2000ሻ                                   (f) ݕ௜భ,௜మሺݐ ൌ 2000ሻ 

          

                  (g) ݔ௜భ,௜మሺݐ ൌ 4000ሻ                                 (h) ݕ௜భ,௜మሺݐ ൌ 4000ሻ  

Figure 3.6: Simulations of the aggregating slime mould by a CML model on a 
256×256 lattice with parameters of ࣎૚ ൌ 0.2, ࣎૛ ൌ ૙. ૝, ࣆ ൌ ૝. ૙, ࢼ ൌ ૞. ૙, ૚ࡰ ൌ
૙. ૙૙૛, ૛ࡰ ൌ ૙. ૛ 

3.4 PDE models­Kawasaki’s Model 

As mentioned in Section 3.3, partial differential equations (PDEs) are an 

alternative method to formulate reaction-diffusion systems. It is a direct and 

original modelling method widely used to describe reaction-diffusion phenomena, 

because generally the continuity of PDEs is consistent with that of practical 

systems and variables in this mathematical model are commonly set with 

corresponding physical significances, so that the PDE model may have a better 

physical explanation. 
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Kawasaki’s model [49] is a reaction-diffusion model including a pair of PDEs. 

This model was constructed and designed to capture colonial features of a 

bacterium named Bacillus subtilis on the surface of thin agar plates, and to 

produce various morphological patterns observed in the colonial growth such as a 

dense-branching morphology (DBM) with a smooth circular envelope and disk-

like colony patterns, which are caused by different environmental conditions. 

Similar morphological patterns such as streaming patterns have also been found 

in the growth of slime mould physarum plasmodium [100]. When placed on a 

culture medium, the plasmodium extends and develops dendritic veins crawling 

freely away from the centre. In this way, the vein structure is formed with a sheet-

like structure in the periphery. Hence, Kawasaki’s model here is extended to 

explain characteristic patterns of colonial slime mould. 

3.4.1 The Mathematical Description 

Two coupled equations are involved in this model to represent cell movements 

with the consumption of nutrient and the change of nutrient concentration with 

cell proliferation respectively. Denote cell density at time step ݐ  and two-

dimensional spatial position ሺ݅ଵ, ݅ଶሻ  as ݓ௜ሺݐሻ  and concentration of nutrient as 

  ሻ, the mathematical model is written asݐ௜ሺݒ

                                            డ௩
డ௧

ൌ ݒଶߘ௩ܦ െ ݂ሺݒ,  ሻ                                          (3.19)ݓ

                                        డ௪
డ௧

ൌ ߘ · ሼܦ௪ݓߘሽ ൅ ,ݒሺ݂ߴ  ሻ                                   (3.20)ݓ

where ܦ௩ is the diffusion coefficient of nutrient and is set to be a constant, and 

 ௪ is the diffusion coefficient of slime mould cells which is determined by theܦ

cell density and the nutrient concentration, say  

௪ܦ                                            ൌ ߙ     ,ݓݒߙ ൌ ଴ሺ1ߙ ൅ ∆ሻ                                (3.21)  

where ߙ  is the agar concentration coefficient and ∆ is a stochastic fluctuation 

variable for the cell movement. ݂ሺݒ, ሻݓ  in Eqn.(3.19) indicates the nutrient 
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consumption and ݂ߴሺݒ,  ሻ in Eqn.(3.20) is the cell growth amount. When theݓ

nutrient concentration is low, ݂ሺݒ,  :ሻ can be described asݓ

                                                  ݂ሺݒ, ሻݓ ൌ  (3.22)                                               ݓݒߢ

where ߢ is the intrinsic consumption rate. Given ߴ ൌ 1, ߢ ൌ 1, ௩ܦ ൌ 1, Eqn. (3.21) 

and (3.22) are substituted into Eqn. (3.19) and (3.20), say 

                                                 డ௩
డ௧

ൌ ݒଶߘ െ  (3.23)                                                ݒݓ

                                           డ௪
డ௧

ൌ ߘ · ሼݓߘݓݒߙሽ ൅  (3.24)                                      ݓݒ

with the initial conditions of ݒ௜ሺ0ሻ ൌ ,଴ݒ ௜ሺ0ሻݓ ൌ  ଴, and the no-flux boundaryݓ

conditions, 

                                                డ࢜
డ঎

ൌ ݒ׊           0 א ߲Ω                                       (3.25) 

                                               డ࢝
 డ঎

ൌ ݓ׊           0 א ߲Ω                                        (3.26) 

where ঎ denotes the exterior normal to the boundary ߲Ω.  

3.4.2 The Numerical Simulation Method 

There are several computer simulation methods used in numerical analysis  such 

as the implicit method and the explicit method, but for this model better results 

can be obtained by using the explicit method. Thus, Eqn.(3.23) and (3.24) can be 

approximated explicitly as 

ሻݐ௜ሺݒ߲                    ൌ ௜ሺ0ሻݒ ൅ ሺ׏ଶݒ௜ሺݐ െ 1ሻ െ ݐ௜ሺݓ െ 1ሻݒ௜ሺݐ െ 1ሻሻ∆(3.27)           ݐ    

ሻݐ௜ሺݓ߲ ൌ ௜ሺ0ሻݓ ൅ ሺ׏ · ሼݒߙ௜ሺݐ െ 1ሻݓ௜ሺݐ െ 1ሻݓ׏௜ሺݐ െ 1ሻሽ 

                                         ൅ݒ௜ሺݐ െ 1ሻݓ௜ሺݐ െ 1ሻሻ∆(3.28)                                              ݐ 

Here ݅ ൌ ሺ݅ଵ, ݅ଶሻ א  Ժଶ and the two-dimension spatial expression of the Laplace 

operator  ׏ଶ can be described as 

ݐ௜భ,௜మሺݒଶ׏         െ 1ሻ ൌ ሺݒ௜భିଵ,௜మሺݐ െ 1ሻ ൅ ݐ௜భାଵ,௜మሺݒ െ 1ሻ ൅ ݐ௜భ,௜మିଵሺݒ െ 1ሻ                 

                                       ൅ݒ௜భ,௜మାଵሺݐ െ 1ሻ െ ݐ௜భ,௜మሺݒ4 െ 1ሻሻ/ሺ∆ݔሻଶ                    (3.29)  
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where ∆ݐ and ∆ݔ are the time interval for a time step and the width of a lattice 

unit respectively. ׏ · is the divergence operator and ׏ൌ ሺ ப
ப௜భ

, ப
ப௜మ

ሻ is the gradient 

operator.   

According to the product rule, ߘ · ሼݓߘݓݒߙሽ in Eqn.(3.24) can be derived as 

ߘ · ሼݓߘݓݒߙሽ ൌ ݒߙሺߘ · ሻݓ · ݓߘ ൅ ሺݒߙ · ߘሻݓ · ሺݓߘሻ 

                                        ൌ ݒߙሺߘ · ሻݓ · ݓߘ ൅ ݒሺߙ ·  (3.30)                     ݓଶߘሻݓ

For the approximation of the derivative, forward difference, backward difference 

and central difference are commonly used forms. In this model, a central-

difference approximation is applied as a more reasonable and better method. For 

example,  
                                                    డ௩

డ௜భ
ൌ  ௩೔భశ∆ೣ,೔మି௩೔భష∆ೣ,೔మ

ଶ∆௫
                                   (3.31) 

3.4.3 Simulation Studies 

Computer simulations for the model in Section 3.4.2 are employed on a lattice 

with the size of 400ൈ400 and no-flux boundary conditions. For the initialisation, 

slime mould cells are distributed in a round-shaped area in the centre of the lattice 

with the greatest density value in the centre and gradually reduced densities 

around, which can be formulated as, 

௜ሺ0ሻݓ                            ൌ ௜భ,௜మሺ0ሻݓ ൌ ெexp൛െ൫݅ଵݓ
ଶ ൅ ݅ଶ

ଶ൯/6.25ൟ                (3.32) 

where ݓெ is the maximum density. Initial nutrient is evenly distributed at a level 

ߙ ଴. Forݒ ൌ ଴ሺ1ߙ ൅ ∆ሻ, ߙ is random and normally distributed with the mean ߙ଴. 

The time and space units are fixed as ∆ݐ ൌ ݔ∆ ,0.2 ൌ 1. 

Simulation results of cell densities in Fig.3.7, 3.8 and 3.9 show different branches 

and dendritic patterns, which are close to the ones investigated in real 

experiments of slime mould, under different initial conditions and diffusion 

parameter settings. 
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                   (a) t=2000                                              (b) t=3000 

           

                    (c) t=4000                                              (d) t=6000 

          

                    (e) t=8000 

Figure 3.7: Streaming pattern revolutions with ࢝ࡹ ൌ ૙. ૠ૚, ࢜૙ ൌ ૙. ૞, ࢻ૙ ൌ ૛  
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                   (a) t=2000                                              (b) t=3000 

           

                   (c) t=4000                                                (d) t=6000 

Figure 3.8: Streaming pattern revolutions with ࢝ࡹ ൌ ૙. ૠ૚, ࢜૙ ൌ ૙. ૞, ࢻ૙ ൌ ૝  

 

          

                   (a) t=2000                                               (b) t=4000 
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                   (c) t=6000                                                (d) t=8000 

     

                  (e) t=12000 

Figure 3.9: Streaming pattern revolutions with ࢝ࡹ ൌ ૙. ૠ૚, ࢜૙ ൌ ૙. ૜૞, ࢻ૙ ൌ ૝  

It is shown from the simulation results that when ߙ  increases, the diffusion 

velocity increases. In addition, the higher concentration of the initial nutrition, the 

more branches and faster diffusion velocity the evolution has. 

3.5 Conclusions 

GHM and Solé’s model are discrete models which can produce similar patterns of 

concentric circles or spirals with that of the aggregating slime mould. 

Discreteness of both models makes numerical simulations easy to implement with 

a reduced computational complexity. However, discretisation on the other hand 

causes some problems for modelling as well. For example, GHM is good for 
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producing biological patterns with a simple rule, but it is only involved in the 

movement of slime mould cells and leaves out the information of the 

chemoattractant which functions essentially in chemotaxis of slime mould. For 

Solé’s model, though it shows a good reaction-diffusion property consistent with 

that of slime mould, the sampling in time and space domains may affect the 

accuracy of predicted models. The PDE model such as Kawasaki’s model is a 

continuous model which can provide better physical explanations corresponding 

to real systems than the other two spatio-temporal models - CA and CML, but it 

is more difficult for the computer simulation. Hence, these three models each has 

its advantages, so that all of them are widely used to model real systems in 

different areas such as chemistry, physics and biology. The simulation results in 

this chapter also proves that CA, CML and PDE models all have capabilities of 

modelling slime mould dynamics. Simulation studies can be summarised in Fig. 

3.10. 

The patterns
made up of

Concentric
circles Spiral waves Branches

CA models
(GHM in

Section 3.2)

CML models
(Solé's model
in Section 3.3)

PDE models
(Kawasaki's

model  in
Section 3.4)

 

Figure 3.10: The flow diagram for simulation examples. 
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Chapter 4  

Model Term Selection using Mutual 
Information for Spatio­temporal System 
Identification 

4.1 Introduction 

Spatio-temporal systems represent a class of complex dynamic systems, which 

contain both time and space information. The study of spatio-temporal systems 

may help to decipher many spatio-temporal phenomena and behaviours that 

appear in nature and to better understand and possibly control the formation of 

spatio-temporal patterns [6, 53, 61]. 

One of the key concerns in the analysis of spatio-temporal systems is system 

identification, the reverse problem of pattern formation, which is still an open 

problem. One of main tasks in spatio-temporal system identification is model 

structure selection which enables construction of a mathematical model from 

experimental data. The Orthogonal Forward Regression (OFR) algorithm is one 

of the effective methods for the identification for spatio-temporal systems. Given 

a large number of candidate model terms in an initial model, this algorithm can be 

used to determine which terms or regressors are significant and should be 

included in the model based on the Error Reduction Ratio (ERR) [45, 46]. 

However, the training data cannot be always ideal and often have some inherent 

problems such as data uncertainty and fast sampling rates, which can affect the 

selection of model structure in a spatio-temporal system identification. Hence, 

when applied to some spatio-temporal data sets with a not-so-good performance, 

the OFR algorithm can occasionally select some spurious model terms, which can 
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then result in a comparatively more complex model with some possible 

insignificant or redundant model terms. 

In this chapter, a new method, called the OFR-MI (Orthogonal Forward 

Regression using Mutual Information) algorithm is introduced for spatio-temporal 

system identification. Two previous studies of using the mutual information 

technique in nonlinear identification tasks are reviewed. For the new algorithm, 

mutual information is used as the criterion for detecting important terms in spatio-

temporal models for the first time. It has been shown that the OFR-MI algorithm 

can effectively avoid the high ERR value problems which seems to occur for 

some spatio-temporal systems. The new algorithm is tested on several benchmark 

spatio-temporal models including CA, CML and PDE models, and then identified 

models are validated by a model length determination method. 

4.2 Mutual Information 

Mutual Information (MI) which was initially proposed by Shannon in 1948 [101], 

is one of the effective measurements of the similarity between two variables. If 

two variables are strictly independent, the MI between the two variables should 

be zero. 

Consider ଵܻ  and ଶܻ  are two stochastic sequences with marginal probability 

density functions ݌ሺݕଵሻ and ݌ሺݕଶሻ respectively. ݌ሺݕଵ,  ଶሻ is the joint probabilityݕ

density function. The mutual information ܫሺݕଵ,  ଶሻ is defined asݕ

,ଵݕሺܫ ଶሻݕ ൌ ෍ ෍ ,ଵݕሺ݌ ଶሻlogݕ ൬
,ଵݕሺ݌ ଶሻݕ

ଶሻ൰ݕሺ݌ଵሻݕሺ݌
௬మא௒మ௬భא௒భ

                    ሺ4.1ሻ 

Take the NARMAX model as a linear-in-parameters regression form, which is 

mentioned in Section 2.3.1, Chapter 2, for example, 

ሻݐሺݕ                                  ൌ ෍ ሻݐ௜߶௜ሺߠ
ெೞ

௜ୀଵ

൅ ݐ        ,ሻݐሺߦ ൌ 1, … , ܰ                           ሺ4.2ሻ 
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where ݕሺݐሻ is the output and ߶௜ሺݐሻ is one of the orthogonal regressors in the 

model, the mutual information ܫሺ߶௜, ሻݕ  between ߶௜  and ݕ  measures how a 

knowledge of ߶௜ reduces the uncertainty about ݕ, or the information that ߶௜  and 

share. Hence, the regressor ߶௜ ݕ  with the biggest MI value may make the most 

contribution to the model. Thus, MI incorporated with an orthogonalisation 

procedure can be used as an alternative to the ERR term selection procedure in 

the classical OFR algorithm to aid the selection of significant model terms. 

Several algorithms have been developed to estimate mutual information from 

observed data, including the approach using a histogram based technique [102, 

103], methods based on kernel density estimators [104], and parametric methods 

[105]. In this work, the adaptive histogram-based method proposed in [102] is 

employed, because this method is applicable to any distribution and appears to be 

asymptotically unbiased and efficient [106]. In this estimator, adaptive 

partitioning is used to approximate probabilities in mutual information by 

calculating relative frequencies on appropriate partitions and the partition is 

refined until conditional independence has been reached on its cells.  

4.3 Previous Studies on Model Term Selection using 
Mutual Information 

Model term selection which is directly related to the model structure 

determination is key to the nonlinear dynamic system identification. A good 

identified model is definitely constructed by all the true model terms, so that 

selecting correct terms from a large set of candidate model terms is the premise of 

the correct model structure. The commonly used method for model term selection 

is the OFR algorithm which is based on the orthogonalisation and squared 

correlation. This term selection algorithm has been viewed as one of the most 

effective methods to solve identification problems, so more and more studies 

have aimed to optimise this algorithm or improve the efficiency of it.  

Following the description of the classic OFR algorithm, two previous studies of 

model term selection based on the OFR algorithm, are explained in this section. 
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Both of them adopted the mutual information technique which, however, is used 

in different stages of the identification. For the method employed by Zhao and 

Billings [71], MI is used in the neighbourhood detection which provides a smaller 

neighbourhood range for the later steps of the identification. Wei and Billings 

[107] took MI as the criterion for measuring the significance of candidate model 

terms in the identification for non-linear temporal systems. 

4.3.1 Identification of Non­linear Dynamic Models using the 
OFR Algorithm 

For a real system without any prior knowledge, the NARMAX model with a 

linear-in-parameters model structure can be expressed as 

ሻݐሺݕ                               ൌ ෍ ௜߶௜ߠ
ሻݐሺכ

ெ

௜ୀଵ

൅ ݐ        ,ሻݐሺߝ ൌ 1, … , ܰ                              ሺ4.3ሻ 

where  ߶௜
 ሺ·ሻ are all the candidate model terms which are different combinationsכ

of various input and output variables. ߠ௜  are the unknown parameters 

corresponding to terms  ߶௜
 ሻ. M is the number of all model terms and N is theݐሺכ

length of data.  ߝሺݐሻ is the modelling error.  

Not all the terms in Eqn.(4.3) are significant to the model and some redundant 

model terms can be removed in order to finally obtain optimised  model with low 

computational complexity as shown in Eqn.(4.2). The Orthogonal Forward 

Regression (OFR) algorithm is originally designed to determine the set of 

significant terms in the model and estimate corresponding unknown parameters 

[45, 46, 108-110]. As one of classical identification methods for non-linear 

systems, the OFR algorithm has been widely used to identify various dynamical 

systems such as radial basis function networks [111, 112], CML models [113], 

and CA models [114, 115]. The OFR algorithm is briefly describes as below [45]. 

According to Eqn.(2.11)-(2.14) in Section 2.3.2, Chapter 2, Eqn.(4.3) can be 

written as  
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                                   ܻ ൌ ሺΦିܣଵሻሺܣΘሻ ൅ ܍ ൌ ܹ݃ ൅  (4.4)                                   ܍

with 

       ܻ ൌ ൥
ሺ1ሻݕ

ڭ
ሺܰሻݕ

൩ , Φ ൌ ΦTሺݐሻ ൌ ൫߶ଵሺݐሻ, … , ߶ெሺݐሻ൯, Θ ൌ ൥
ଵߠ
ڭ

ெߠ

൩ , ܍ ൌ ൥
ሻݐଵሺߝ

ڭ
ሻݐேሺߝ

൩      

where ݃ ൌ ሾ݃ଵ, ݃ଶ, … , ݃ெሿT  is an auxiliary vector. ܹ  is a N ൈ  M orthogonal 

matrix because 

                        ܹTܹ ൌ ሺΦିܣଵሻTሺΦିܣଵሻ ൌ ࣞ ൌ Diagሾ݀ଵ, ݀ଶ, … , ݀ெሿ             (4.5) 

with  ݀௜ ൌ ,इ௜ۃ इ௜ۄ  = ∑ इ௜
ଶሺݐሻே

௧ୀଵ , where ۄ·,·ۃ  denotes inner product of two 

vectors. Hence, orthogonal regression matrix can be calculated recursively from  

                                             ܹ ൌ Φିܣଵ ൌ Φ െ ܹሺܣ െ  ሻ                                (4.6)ܫ

so  
                          इଵሺݐሻ ൌ ߶ଵሺݐሻ, 

                             इ௞ሺݐሻ ൌ ߶௞ሺݐሻ െ ෍ ܽ௜௞

௞ିଵ

௜ୀଵ

इ௜ሺݐሻ,        ݇ ൌ 2, … ,  ሺ4.7ሻ                   ܯ

where  

                        ܽ௜௞ ൌ
∑ इ௜ሺݐሻ߶௞ሺݐሻே

௧ୀଵ

∑ इ௜
ଶሺݐሻே

௧ୀଵ
,        ݇ ൌ 2, … , ݅ and ܯ ൏ ݇                   ሺ4.8ሻ 

because ൌ ࣞିଵܹTΦ. The auxiliary regressor इ௜ሺݐሻ can be used to help decide 

which terms are significant and should be included in the model. Assume the 

residual signals ߝሺݐሻ is independent and uncorrelated with any input and output 

variables at past times, which ensures ܹT܍ ൌ 0. Hence, the output variance can 

be represented as 

                               
1
ܰ ܻTܻ ൌ

1
ܰ ሺ݃TܹTܹ݃ ൅ ܍T܍ ൅ ݃TܹT܍ ൅  Tܹ݃ሻ܍

                                            ൌ
1
ܰ ሺ݃TܹTܹ݃ ൅  ሻ܍T܍
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                                            ൌ ෍ ൥݃௜
ଶ 1

ܰ ෍ इ௜
ଶሺݐሻ

ே

௧ୀଵ

൩
ெ

௜ୀଵ

൅
1
ܰ  ሺ4.9ሻ                                  ܍T܍

so that ݃௜
ଶ ଵ

ே
∑ इ௜

ଶே
௧ୀଵ ሺݐሻ  can be viewed as the contribution to the dependent 

variable variance introduced by इ௜ሺݐሻ and the Error Reduction Ratio (ERR) at ith 

step can be defined as a criterion for model structure selection, say 

௜ܴܴܧ                                      ൌ
ො݃௜

ଶۃइ௜, इ௜ۄ
,ܻۃ ۄܻ ൌ

ො݃௜
ଶ ∑ इ௜

ଶሺݐሻே
௧ୀଵ

∑ ܻଶሺݐሻே
௧ୀଵ

                            ሺ4.10ሻ 

 where ො݃ is the estimated ݃. 

׶                             ݃ ൌ Θܣ ൌ ࣞିଵܹTΦΘ 

                                   ൌ ࣞିଵܹTΦΦିଵሺܻ െ ሻ܍ ൌ ࣞିଵܹTሺܻ െ  ሻ܍

                                   ൌ ࣞିଵܹTܻ െ ࣞିଵܹT(4.11)                                                ܍ 

׵                             ො݃ ൌ ࣞିଵܹTܻ  

                                        ൌ ∑ इ೔ሺ௧ሻ௒ሺ௧ሻಿ
೟సభ
∑ इ೔

మሺ௧ሻಿ
೟సభ

,          ݅ ൌ 1, … , (4.12)                                  ܯ                       

In a forward-regression manner, a term corresponding to the maximum value of 

 .௜ is selected in the model of Eqn.(4.2) as the significant term at each stepܴܴܧ

This procedure is not terminated till at ܯ௦th step when 

                        1 െ ෍ ௜ܴܴܧ

ெೞ

௜ୀଵ

൏ a threshold value,   and ܯ௦ ൑  ሺ4.13ሻ                  ܯ

4.3.2 Zhao’s Neighbourhood Detection using Mutual 
Information 

Zhao and Billings [71] proposed a new neighbourhood detection approach for the 

identification of CA models. Based on mutual information, a coarse range of the 

candidate neighbourhood for a CA model can be detected without any a priori 

information about the model structure. According to the basic histogram method, 

marginal and joint probabilities in the MI which is defined in Eqn. (4.1) are 

approximated as, 
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ଵ௜ሻݕሺ݌ ൌ
௬భ೔ݏ

ܰ , ଶ௝൯ݕ൫݌ ൌ
௬మೕݏ

ܰ , ,ଵ௜ݕ൫݌ ଶ௝൯ݕ ൌ
௬భ೔,௬మೕݏ

ܰ .           ሺ4.14ሻ 

Here let ݕଵ௜ א ଵܻ ൌ ሼݕଵଵ, … , ଵ௠ሽݕ  and ݕଶ௝ א ଶܻ ൌ ሼݕଶଵ, … , ଶ௡ሽݕ ௬భ೔ݏ . ௬మೕݏ ,  and 

௬భ೔,௬మೕݏ   are counters when ݕଵ ൌ ଵ௜ݕ ଶݕ , ൌ ଶ௝ݕ  and ሺݕଵ ൌ ଵ௜ሻݕ ת ሺݕଶ ൌ  ଶ௝ሻݕ

respectively. N is the number of pairs ሺݕଵ,   ଶሻ, so that the MI can be rewritten asݕ

,ଵݕሺܫ                                ଶሻݕ ൌ ෍ ,ଵ௜ݕሺ݌ ଶ௝ሻlogݕ ቆ
,ଵ௜ݕሺ݌ ଶ௝ሻݕ

ଶ௝ሻቇݕሺ݌ଵ௜ሻݕሺ݌
௜,௝

 

          ൌ ෍ ෍
௬భ೔,௬మೕݏ

ܰ log ቌ

௬భ೔,௬మೕݏ

ܰ
௬భ೔ݏ
ܰ ڄ

௬మೕݏ

ܰ

ቍ
௡

௝ୀଵ

௠

௜ୀଵ

 

ൌ  ෍ ෍
௬భ೔,௬మೕݏ

ܰ log ቆ
௬భ೔,௬మೕݏܰ

௬మೕݏ௬భ೔ݏ

ቇ
௡

௝ୀଵ

௠

௜ୀଵ

                           ሺ4.15ሻ 

In order to obtain a smaller neighbourhood for later identification processes, 

Zhao’s algorithm is to test the correlation between the output and any sub-

neighbourhood which is constructed by combinations of neighbouring cells from 

an initial neighbourhood. If the selected neighbourhoods include all the right 

neighbouring cells, the MI between these neighbourhoods as the input and the 

output will be close to 1; On the contrary, if not all the right neighbouring cells 

are in the input, the MI should be close to 0. Thus a new criterion is introduced to 

rank each candidate neighbourhood, say 

ݎܥ ൌ ܫ െ ܧܱ ൌ ෍ ,ଵ௜ݕሺ݌ ଶ௝ሻlogݕ ቆ
,ଵ௜ݕሺ݌ ଶ௝ሻݕ

ଶ௝ሻቇݕሺ݌ଵ௜ሻݕሺ݌
௜,௝

െ
2௠

ܰ                 ሺ4.16ሻ 

where ݉  is the number of cells in the corresponding sub-neighbourhood. 

ܧܱ ൌ ଶ೘

ே
  is the over-estimation of the MI [116]. All the possible neighbourhoods 

are tested by this criterion and when the ݎܥ  reaches the peak value, the 

corresponding neighbourhood can be selected as the output.  
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This neighbourhood detection algorithm can narrow down the search range for 

the correct neighbourhood, which considerably reduces the computational 

complexity in the later steps of the model determination. However, this approach 

cannot always provide an exactly correct neighbourhood, especially for the 

neighbourhood with an asymmetrical space structure. Hence, the output 

neighbourhood of this algorithm can be used as the initial neighbourhood for the 

CA-OLS algorithm [69], which can finally obtain the correct neighbourhood and 

the model structure. More details can be found in [71]. 

4.3.3 Wei’s Identification Method using Mutual Information  

Wei and Billings [107] introduced an efficient integrated forward orthogonal 

search (IFOS) algorithm assisted by ERR and mutual information techniques. 

This algorithm was designed for nonlinear temporal systems, which have NARX 

(Nonlinear AutoRegressive with eXogenous inputs) model structures in a linear-

in-the-parameters form as Eqn.(2.10). The aim of this algorithm is to solve the 

model structure determination problem in the identification of nonlinear temporal 

systems. 

Model structure selection is essential to the nonlinear system identification. 

Generally, a large set of candidate model terms or basis functions may be 

involved in the model structure selection at the beginning. The main task of the 

model structure selection is to determine which terms should be included in the 

model and which ones should be out of the model, and finally produce a 

parsimonious model. Insignificant model terms might result in a more complex 

model with a large number of parameters, which may become oversensitive to 

training data or exhibit poor generalisation properties. One of the most efficient 

model structure detection methods for these temporal systems is the OLS 

(Orthogonal Least Squares) or OFR (Orthogonal Forward Regression) algorithm, 

in which significant model terms can be ranked based on ERR values, and then 

according to the order, model terms are selected one at a time. However, it has 

been observed in some cases that the OLS-ERR algorithm may sometimes select 
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incorrect model terms which are redundant to the model because of the training 

data contaminated by certain noise sequences [117] or the poorly designed input 

[118]. To avoid selecting incorrect model terms using the OLS-ERR algorithm, a 

MI-based criterion for measuring the significance of model terms is introduced 

into the orthogonalisation procedure as a complementary approach to the ERR 

criterion. The integrated criteria are the core of the new IFOS algorithm. In order 

to gain an accurate model structure, this new IFOS algorithm then combines with 

a simple hypothesis test (t-test) and a general cross-validation (GCV) criterion, 

which enhances the capability of detecting any spurious model terms and 

suggests an appropriate number of model terms respectively. 

To solve the identification problem for nonlinear systems, an approach with four-

stage trial-and-error experiments was employed here. Firstly, five candidate 

model term dictionaries were selected. Secondly, the IFOS algorithm was applied 

over these five term dictionaries respectively, so that different model structures 

with different model terms could be obtained. The performance of these different 

identified models was compared and then the best model structure according to a 

specified criterion was selected. Finally, after a model refinement procedure with 

the t-test, the accurate model could be obtained with correct model terms and re-

estimated term parameters. More details can be found in [107]. 

4.4 The New OFR­MI Algorithm 

The new OFR-MI algorithm for the identification of dynamic spatio-temporal 

systems is introduced in this section, because the classic OFR algorithm shows a 

poor performance in some spatio-temporal identification cases. Assisted by a 

model length determination method, this new algorithm using mutual information 

has a capability of detecting the correct model structure efficiently. 

4.4.1 The Performance of the OFR Algorithm 

The OFR algorithm with the ERR criterion has been widely applied in model 

structure selection for dynamic spatio-temporal systems. Owing to its efficiency 
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in most identification cases such as nonlinear function approximation and neural 

network training [119-121], the OFR algorithm has already become a standard 

method for the model detection of spatio-temporal systems in the identification 

process. However, this algorithm cannot be always satisfied, especially when it is 

applied to some bad training data which usually include uncertainties, or to the 

case with not very persistently exciting input signal [117, 118]. 

It has been observed that some model term is nearly always selected as the first 

term with a very high ERR value which is close to 100%. Consequently, the ERR 

values of the rest of the model terms are small and thereby are sensitive to the 

noise [118]. This problem is mainly because of the slowly varying output signal. 

Assuming that the output signal ݕሺݐሻ is sampled at an oversampling rate, the 

signal ݕሺݐሻ  and the first few linear terms such as ݕሺݐ െ 1ሻ, ݐሺݕ െ 2ሻ, …  will 

become strongly correlated and cannot be distinguished from each other easily, 

which means ݕሺݐሻ ൎ ݐሺݕ െ 1ሻ ൎ ݐሺݕ െ 2ሻ ൎ  Hence, if for example the term .ڮ

ݐሺݕ െ 1ሻ  is in the initial candidate term set, its ERR values may be big as 

ܴܴܧ ൎ 1.0, so that this term will be firstly selected regardless of whether the 

term is included in the true model. Thus, there are chances that the OFR 

algorithm might select incorrect terms. Since the terms of the same cluster are 

indistinguishable due to the small sampling time, too small sampling time should 

not be chosen for a practical identification problem [122], which may be true for 

all identification algorithms.  

Noise may be another factor to affect the model structure selection. In some cases, 

while all correct terms are detected and included in the identified model, some 

redundant terms may also be selected into the final model even when the training 

data are sampled with an appropriate sampling rate. This might be caused by 

using data contaminated by noise. Generally, the identification of nonlinear 

dynamic systems can be viewed as a structure-unknown problem or a black box 

problem. Therefore, without any prior knowledge of the true model, the input and 

output are the only known data which can be used for model term selection. 
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Owing to this data-oriented characteristic, the aim of all model structure detection 

algorithms is to find a good approximated model which contains as much 

information as possible about the observed known data. Hence, if the model is 

learnt from the training data which is contaminated by noise, chances are that 

spurious or incorrect terms may be included in the identified model subset. 

However, a good model structure detection algorithm should try to avoid or 

reduce the effects of the ‘wrong’ information from the training data, and the 

identified model should include all true model terms without any spurious and 

redundant terms, which thus can capture the main underlying properties involved 

in the data. Model validation which can provide an independent assessment of the 

identified model has been often used to assist in the identification.  

The above discussion about the performance of the OFR algorithm suggests that 

it is necessary to improve this classical algorithm so that the correct model 

structure can be identified even when the training data are not good. Therefore, 

this motivates the development of the new OFR-MI algorithm assisted by MI 

criteria, which is described in the following section.  

4.4.2 The OFR­MI Algorithm 

The Orthogonal Forward Regression using Mutual Information (OFR-MI) 

algorithm is proposed for the identification of spatio-temporal systems. In this 

new algorithm, mutual information will be added into the orthogonalisation 

procedure of the OFR algorithm as a criterion to decide the significance of model 

terms instead of using the ERRs [107]. According to Eqn.(4.3) the algorithm can 

be described as follows. 

1. Model term selection procedure 

a)  Step 1. All the model terms Φଵ ൌ ߶௜ሺݐሻ, ݅ ൌ 1, … ,    are candidates for the ܯ

important term इଵሺݐሻ. For ݅ ൌ 1, … ,  ,ܯ

इଵ
ሺ௜ሻሺݐሻ ൌ ߶௜ሺݐሻ                                                                          (4.17) 
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ሾܫܯሿଵ
ሺ௜ሻ൫ݕሺݐሻ, ߶௜ሺݐሻ൯ ൌ ෍ ෍ ,ݕሺ݌ ߶௜ሻ

థ೔א஍భ௬א௒

log ൬
,ݕሺ݌ ߶௜ሻ

 ሺ߶௜ሻ൰        ሺ4.18ሻ݌ሻݕሺ݌

     Find the maximum of ሾܫܯሿଵ
ሺ௜ሻ, say, ሾܫܯሿଵ

ሺ௝ሻ ൌ max ቄቂሾܫܯሿଵ
ሺ௜ሻ, 1 ൑ ݅ ൑  .ቃቅܯ

The first significant terms can be इଵሺݐሻ ൌ इଵ
ሺ௝ሻሺݐሻ, ߶௝ሺݐሻ is selected with  

ሻݐଵሺݕ ൌ ሻݐሺݕ െ
ሻݐሻइଵሺݐሺݕ

इଵ
ଶሺݐሻ इଵሺݐሻ                                                 ሺ4.19ሻ 

ො݃ଵ ൌ
इଵሺݐሻݕሺݐሻ

इଵ
ଶሺݐሻ                                                                                ሺ4.20ሻ 

ܽଵଵ ൌ 1, ଵܫܯ ൌ ሾܫܯሿଵ
ሺ௝ሻ                                                            (4.21) 

           and the Error-to-Signal Ratio (ESR), which is used as the criterion to   

terminate the search procedure, is  

ԡݎଵԡଶ ൌ
ԡݕଵԡଶ

ԡݕԡଶ ൌ
൬ԡݕԡଶ െ ሺݕइଵሻଶ

इଵ
ଶ ൰

ԡݕԡଶ                                           ሺ4.22ሻ 

b) Step 2. All the rest of the terms Φଶ ൌ ߶௜ሺݐሻ, ݅ ൌ 1, … , ,ܯ ݅ ് ݆  form the 

candidate terms for इଶሺݐሻ. For ݅ ൌ 1, … , ,ܯ ݅ ് ݆, 

इଶ
ሺ௜ሻሺݐሻ ൌ ߶௜ሺݐሻ െ ܽଵଶ

ሺ୧ሻइଵሺݐሻ                                                   (4.23) 

where  

ܽଵଶ
ሺ௜ሻ ൌ

इଵሺݐሻ߶௜ሺݐሻ
इଵ

ଶሺݐሻ                                                                            ሺ4.24ሻ 

ሾܫܯሿଶ
ሺ௜ሻ൫ݕଵሺݐሻ, ߶௜ሺݐሻ൯ ൌ ෍ ෍ ,ଵݕሺ݌ ߶௜ሻ

థ೔א஍మ௬భא௒

log ൬
,ଵݕሺ݌ ߶௜ሻ

 ሺ߶௜ሻ൰        ሺ4.25ሻ݌ଵሻݕሺ݌

Find the maximum of ሾܫܯሿଶ
ሺ௜ሻ, ሾܫܯሿଶ

ሺ௞ሻ ൌ maxቄሾܫܯሿଶ
ሺ௜ሻ, 1 ൑ ݅ ൑ ,ܯ ݅ ് ݆ቅ. 

Then the second basis इଶሺݐሻ ൌ इଵ
ሺ௞ሻሺݐሻ, ߶௞ሺݐሻ is selected with 

ሻݐଶሺݕ ൌ ሻݐଵሺݕ െ
ሻݐሻइଶሺݐଵሺݕ

इଶ
ଶሺݐሻ इଶሺݐሻ                                            ሺ4.26ሻ 
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ො݃ଶ ൌ
इଶሺݐሻݕሺݐሻ

इଶ
ଶሺݐሻ                                                                                ሺ4.27ሻ 

ܽଶଶ ൌ 1, ܽଵଶ ൌ ܽଵଶ
ሺ௞ሻ, ଶܫܯ ൌ ሾܫܯሿଶ

ሺ௞ሻ                                          (4.28) 

and the ESR is  

ԡݎଶԡଶ ൌ
ԡݕଶԡଶ

ԡݕԡଶ ൌ
൬ԡݕଵԡଶ െ ሺݕଵइଶሻଶ

इଶ
ଶ ൰

ԡݕԡଶ                                        ሺ4.29ሻ 

c) This procedure is terminated as the ܯ௦th step when either ฮݎெೞฮଶ ൏  ߩ

or ܯ௦ ൌ  .is a desired stopping tolerance ߩ where ,ܯ

2. Compute the estimated parameters ߠ෠௜ 

෠ெೞߠ ൌ ො݃ெೞ                                                                                  (4.30) 

෠௜ߠ ൌ ො݃௜ െ ෍ ܽ௜௞ߠ෠௞

ெೞ

௞ୀ௜ାଵ

,    ݅ ൌ ࢙ܯ െ 1, … ,1                                    ሺ4.31ሻ 

4.4.3 Model Length Determination 

In practice, an identified model from real data can be either overfitting or 

underfitting, which may cause the model to lack good generalisation properties. 

Thus, the validation of selected model terms and the final model is important. 

One of the effective methods to refine the model is cross validation [123-126], a 

tool that can be used to determine model size. Generalised cross-validation (GCV) 

is one type of cross validation that is commonly and widely used. The GCV 

criterion used for linear regression model [127, 128] can be expressed, 

GCVሺ݇ሻ ൌ ൬
ܰ

ܰ െ ݇൰
ଶ

MSEሺ݇ሻ                                    ሺ4.32ሻ  

where ܰ is the length of the test data set, ݇ is the number of selected model terms 

and the Mean-Square-Error (MSE) is MSEሺ݇ሻ ൌ ԡݎ௞ԡଶ ܰ⁄  corresponding to a 
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model with ݇ terms [107, 129]. GCV will have a minimum value when ݇ is the 

effective number of model terms [130]. 

4.5 Simulation Studies 

In this section, several identification examples for spatio-temporal systems using 

both OFR and OFR-MI algorithms will be demonstrated. It is shown that the new 

OFR-MI algorithm works well for selecting correct terms for spatio-temporal 

model identification. 

4.5.1 CA Example 

Consider a one-dimensional 3-site CA model,  

ܿሺ݆, ݐ ൅ 1ሻ ൌ െ2.0ܿሺ݆ െ 1, ,ሻܿሺ݆ݐ ሻݐ െ 2.0ܿሺ݆, ሻܿሺ݆ݐ ൅ 1, ሻݐ ൅ ܿሺ݆, ሻݐ

െ 2.0ܿሺ݆ െ 1, ሻܿሺ݆ݐ ൅ 1, ሻݐ ൅ ܿሺ݆ െ 1, ሻݐ

൅ 3.0ܿሺ݆ െ 1, ,ሻܿሺ݆ݐ ሻܿሺ݆ݐ ൅ 1, ሻݐ ൅ ܿሺ݆ ൅ 1,   ሻ                       ሺ4.33ሻݐ

This model was simulated with the neighbourhood ሼܿሺ݆ െ 1, ,ሻݐ ܿሺ݆, ,ሻݐ ܿሺ݆ ൅

1,  ሻሽ and 100 initial data which are randomly valued 1 or 0. The data for theݐ

identification is from the simulation over 100 time steps, so the data length is 

100×100. Tables 4.1 and 4.2 show the identification results produced by both 

OFR and OFR-MI algorithms. 

Table 4.1 shows that a constant term is selected by the OFR algorithm with the 

highest ERR value. However, this term should not be in the model. Table 4.2 

shows the results produced by the new OFR-MI algorithm. All the seven selected 

terms are exactly consistent with the true model terms. In addition, it shows that 

identified model enables the GCV value to be minimised. 
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Table 4.1: Identified model structure for the CA model of Eqn.(4.33) using OFR 
algorithm 

Terms 
Parameters 

ERR(%) GCV 
True Estimated 

1 0 -5.4401E-15 35.71 0.6431 

ܿሺ݆ െ 1, ,ሻܿሺ݆ݐ  ሻ -2.0 -2.0 8.36 0.5595ݐ

ܿሺ݆ െ 1,  ሻ 1.0 1.0 7.6 0.4836ݐ

ܿሺ݆ െ 1, ሻܿሺ݆ݐ ൅ 1,  ሻ -2.0 -2.0 2.83 0.4554ݐ

ܿሺ݆ ൅ 1,  ሻ 1.0 1.0 7.0 0.3854ݐ

ܿሺ݆ െ 1, ,ሻܿሺ݆ݐ ሻܿሺ݆ݐ ൅ 1,  ሻ 3.0 3.0 4.82 0.3373ݐ

ܿሺ݆, ሻܿሺ݆ݐ ൅ 1,  ሻ -2.0 -2.0 14.18 0.1954ݐ

ܿሺ݆,  ሻ 1.0 1.0 19.51 0.0ݐ

 

Table 4.2: Identified model structure for the CA model of Eqn.(4.33) using OFR-MI 
algorithm 

Terms 
Parameters 

MI GCV 
True Estimated 

ܿሺ݆ െ 1, ,ሻܿሺ݆ݐ  ሻ -2.0 -2.0 0.1383 0.3571ݐ

ܿሺ݆, ሻܿሺ݆ݐ ൅ 1,  ሻ -2.0 -2.0 0.2114 0.3572ݐ

ܿሺ݆,  ሻ 1.0 1.0 0.3108 0.2916ݐ

ܿሺ݆ െ 1, ሻܿሺ݆ݐ ൅ 1,  ሻ -2.0 -2.0 1.5207 0.2830ݐ

ܿሺ݆ െ 1, ,ሻܿሺ݆ݐ ሻܿሺ݆ݐ ൅ 1,  ሻ 3.0 3.0 1.6856 0.2696ݐ

ܿሺ݆ െ 1,  ሻ 1.0 1.0 0.3008 0.1348ݐ

ܿሺ݆ ൅ 1,  ሻ 1.0 1.0 0.57 1.84E-16ݐ
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4.5.2 CML Example 

A Solé’s model which was described in detail in Section 3.3, Chapter 3, was 

simulated on a lattice of 256×256 with 50 random initial seeds of values between 

0.3 and 0.4. With pre-set parameters, this model can be written as 

ݐ௜ሺݔ              ൅ 1ሻ ൌ ሻሾ1ݐ௜ሺݔ4 െ ሻሿݐ௜ሺݔ expሾെ5ݕ௜ሺݐሻሿ ൅  ሻ          (4.34)ݐ௜ሺݔଶ׏0.001

ݐ௜ሺݕ              ൅ 1ሻ ൌ ሻሼ1ݐ௜ሺݔ െ exp ሾെ5ݕ௜ሺݐሻሿሽ ൅  ሻ                        (4.35)ݐ௜ሺݕଶ׏0.2

The identification was performed using data from eight points at locations 

(200,192), (200,193), (200,194), (200,195), (200,196), (200,197), (200,198), and 

(200,199) over 500 time steps. The data length is therefore 8 × 500. The final 

models identified from the data are detailed in Tables 4.3 and 4.4.  

 

Table 4.3: Identified model structure for the CML model of Eqn.(4.34) and (4.35) 
using OFR algorithm 

Output Terms 
Parameters ERR 

(%) 
GCV 

True Estimated 

ݐ௜ሺݔ ሻݐ௜ሺݔ െ 1ሻሾ1 െ ݐ௜ሺݔ െ 1ሻሿ 

    exp ሾെ5ݕ௜ሺݐ െ 1ሻሿ 
4.0 4.0 99.999988345 1.1661E-7 

 ௜ 0.001 0.001 1.1655E-5 0.0ݔଶ׏

ݐ௜ሺݔ ሻݐ௜ሺݕ െ 1ሻ 1.0 1.0 88.82 0.1119 

ݐ௜ሺݔ െ 1ሻexp ሾെ5ݕ௜ሺݐ െ 1ሻሿ -1.0 -1.0 10.78 0.004 

 ௜ 0.2 0.2 0.4 2.2238E-16ݕଶ׏

ݐ௜ሺݔ െ 1ሻexp ሾെ5ݕ௜ሺݐ െ 1ሻሿ 

 ௜ݕଶ׏   
0 3.2513E-14 4.0235E-30 2.2249E-16 

exp ሾെ5ݕ௜ሺݐ െ 1ሻሿ 0 6.0457E-17 2.1667E-30 2.2260E-16 

ݐ௜ሺݔ െ 1ሻ ׏ଶݕ௜ 0 -1.5438E-14 2.7343E-30 2.2271E-16 

exp ሾെ5ݕ௜ሺݐ െ 1ሻሿ׏ଶݕ௜ 0 -7.7381E-15 8.4522E-30 2.2283E-16 
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Table 4.4: Identified model structure for the CML model of Eqn.(4.34) and (4.35) 
using OFR-MI algorithm 

Output Terms 
Parameters 

MI GCV 
True Estimated 

ݐ௜ሺݔ ሻݐ௜ሺݔ െ 1ሻሾ1 െ ݐ௜ሺݔ െ 1ሻሿ 

    exp ሾെ5ݕ௜ሺݐ െ 1ሻሿ 
4.0 4.0 7.1866 1.4796E-8 

 ௜ 0.001 0.001 6.2765 0.0ݔଶ׏

ݐ௜ሺݔ ሻݐ௜ሺݕ െ 1ሻ 1.0 1.0 2.6799 0.0039 

ݐ௜ሺݔ െ 1ሻexp ሾെ5ݕ௜ሺݐ െ 1ሻሿ -1.0 -1.0 3.8430 1.3961E-4 

 ௜ 0.2 0.2 5.4032 8.7180E-18ݕଶ׏

 

In Table 4.3, the ERR values for the sub-model of ݕ௜ሺݐሻ show the first three terms 

are significant, and GCV reaches a minimum value at the third term indicating 

that these three terms should be included in the true model. From the selected 

terms for the sub-model of ݔ௜ሺݐሻ, it is noticed that the first item has a very high 

ERR value, very close to 1.0, and the other terms therefore have very small ERR 

values, which suggests that only the first term can describe the true model with a 

very small and acceptable error. In temporal systems modelling a high initial 

ERR value is often indicative of an over-sampled data set because adjacent 

samples then have almost the same amplitude because of the high sampling. This 

problem exists in the models studied here but reducing the sampling was not 

found to be an effective solution. 

However, the new OFR-MI algorithm can effectively avoid the problem of high 

initial ERR values. From Table 4.4, the estimated terms are identical to the true 

model terms. 
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4.5.3 PDE Example 

Computer simulations of a Kawasaki’s model expressed by Eqn.(4.36) and (4.37) 

were applied on the space domain ሺ0,1ሻ  ൈ ሺ0,1ሻ and over a lattice with the size 

of 400 ×400 and no-flux boundary conditions.  

                                           డ௩
డ௧

ൌ ݒଶߘ െ  (4.36)                                                      ݒݓ

                                           డ௪
డ௧

ൌ ߘ · ሼݓߘݓݒߙሽ ൅  (4.37)                                      ݓݒ

where ߙ ൌ ଴ሺ1ߙ ൅ ∆ሻ and ߙ is random and normally distributed with the mean 

value  ߙ଴ ൌ 4.0. The initial distribution can be described as below, 

௜ሺ0ሻݓ           ൌ ௜భ,௜మሺ0ሻݓ ൌ 0.71exp൛െ൫݅ଵ
ଶ ൅ ݅ଶ

ଶ൯/6.25ൟ, ௜ሺ0ሻݒ ൌ 0.35         (4.38) 

For this model, the identification procedure was applied on the data from the first 

1000 successive frames in the simulation. Eight successive points in each frame, 

located at (200,192), (200,193), (200,194), (200,195), (200,196), (200,197), 

(200,198), and (200,199), were selected to form the training data set. Therefore, 

the size of the data set is 8×1000. The results are illustrated in Tables 4.5 and 4.6. 

Table 4.5: Identified model structure for the PDE model of Eqn.(4.36) and (4.37) 
using OFR algorithm 

Output Terms 
Parameters ERR 

(%) 
GCV 

True Estimated 

ݐሺݒ ሻݐሺݒ െ 1ሻ 1.0 1.0 99.96 3.7533E-4 

ݐሺݓ െ 1ሻݒሺݐ െ 1ሻ -0.2 -0.2 2.5720E-2 1.1810E-4 

 1.1804E-2 1.4444E-15 0.2 0.2 ݒଶ׏

ݐሺݓ ሻݐሺݓ െ 1ሻ 1.0 1.0 99.99931422 6.8595E-6 

ݐሺݓߙ െ 1ሻݒሺݐ െ 1ሻ 0 -2.3822E-13 5.2959E-4 1.5627E-6 

ݐሺݓߙ െ 1ሻݒሺݐ െ 1ሻ׏ଶ1.0804 2.0 2.0 ݓE-4 4.8185E-7 

 4.1976E-5 6.1797E-8 2.0 2.0 ݓ׏ሻݓݒߙሺ׏

ݐሺݓ െ 1ሻݒሺݐ െ 1ሻ 2.0 2.0 6.1735E-6 0.0 
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Table 4.6: Identified model structure for the PDE model of Eqn.(4.36) and (4.37) 
using OFR-MI algorithm 

Output Terms 
Parameters 

MI GCV 
True Estimated 

 0.0033 3.9504 0.2 0.2 ݒଶ׏ ሻݐሺݒ

ݐሺݒ െ 1ሻ 1.0 1.0 6.2936 1.0237E-6 

ݐሺݓ െ 1ሻݒሺݐ െ 1ሻ -0.2 -0.2 13.3318 4.8288E-19 

ݐሺݒ ሻݐሺݓ െ 1ሻ׏ሺݓݒߙሻ5.2225- 0 ݓ׏E-13 6.388 0.5180 

ݐሺݒߙ െ 1ሻ 0 -1.6653E-16 8.0544 0.5139 

ݐሺݓ െ 1ሻݒሺݐ െ 1ሻ׏ଶ9.4502 0 ݓE-13 4.3195 0.5094 

ݐሺݓ െ 1ሻݒሺݐ െ 1ሻ 2.0 2.0 6.8711 0.4869 

ݐሺݓߙ െ 1ሻݒሺݐ െ 1ሻ׏ଶ0.4853 3.9573 2.0 2.0 ݓ 

ݐሺݓ െ 1ሻ 1.0 1.0 2.6855 2.9212E-8 

 0.0 1.2248 2.0 2.0 ݓ׏ሻݓݒߙሺ׏

 

From Table 4.5, the ERRs of the first terms, ݒሺݐ െ 1ሻ and ݓሺݐ െ 1ሻ, for both 

 ሻ are close to 1.0 using the OFR algorithm. As noted above this mayݐሺݓ ሻ andݐሺݒ

be caused by the high sampling frequency, so that the output values at the time 

step ݐ െ 1 are almost identical to the ones at step ݐ. Hence, the terms at ݐ െ 1  

time step are selected as the first term every time. If the spurious terms are 

included in the model, poor estimations may result. However, if the sampling 

frequency is reduced, the correct models may not be correctly detected. This 

problem appears to be especially important in spatio-temporal system modelling. 

The OFR-MI algorithm overcomes these problems and is applicable for spatio-

temporal system identification. However, the OFR-MI algorithm cannot always 

produce better results than the OFR algorithm. For example, the results in Table 

4.6, for the model of ݒሺݐሻ, all the right terms have been detected. But for the 

model of ݓሺݐሻ, the first three terms are spurious. 
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4.6 Conclusions 

The new OFR-MI algorithm provides an effective model term selection approach 

for spatio-temporal system identification. In some spatio-temporal system cases 

spurious terms may be detected using the classical OFR algorithm due to high 

initial ERR values. This means that the subsequent selection procedure based on 

ERR values can be affected by the spurious terms. However, by using the new 

OFR-MI algorithm, this problem can be overcome, because the mutual 

information is introduced as a criterion for term selection. The contributions of all 

the regressors to the model are tested using a MI value and regressors with large 

MI values are selected as significant model terms, this avoids selecting spurious 

terms successfully. The MI criterion in OFR-MI algorithm works as a 

replacement of the ERR procedure in the OFR algorithm and the new 

identification method works well on spatio-temporal models including CA, CML 

and PDE models. The OFR-MI algorithm is therefore a complementary method 

for the OFR algorithm, rather than a substitute. This new algorithm has the 

potential to be developed and to apply to more complicated spatio-temporal 

models and this and related problems will be studied in later research studies. 
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Chapter 5  

A Probabilistic CA Model Formulation of the 
Nazim Fatès Model   

5.1 Introduction 

Chemotaxis, defined as a chemically directed movement, is a common 

phenomenon for living organisms such as insects, animals (including humans) 

and microorganisms. Chemotaxis can convey information between species 

members, which is essential for their survival and reproduction. For example, the 

male silk moth flies to female moths, because of a chemical called bombykol as a 

sex attractant for the male, which is produced by the female. Chemotactic 

behaviours, which are also observed in the aggregation of slime mould, have been 

widely studied. The movement of single-cell amoebae is directed according to a 

chemoattractant cAMP in the environment. Unlike the diffusion process, 

amoebae move up a concentration gradient of cAMP which is secreted from the 

aggregation centre. In this way, interesting wavelike movements and spatial 

pattern formation are observed experimentally. Modelling chemotaxis involves 

employing mathematical expressions to describe chemotactic behaviours and 

pattern formations. 

The first model for the slime mould chemotaxis, which extended the reaction-

diffusion model with a convection term, is proposed by Keller and Segel [24, 

131]. Based on this model, many models have been developed especially for 

bacteria colonies [132-135]. These chemotaxis models based on the reaction-

diffusion model can be called Reaction-Diffusion-Chemotaxis (RDC) models or 

Reaction-Diffusion-Advection (RDA) models, which can be capable of 

investigating the effects of different cell movements on the generation of
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aggregation patterns and ubiquitous motion waves. The Nazim Fatès model [44]  

which will be discussed in this chapter is a discrete RDC model and is designed 

to solve the decentralised gathering problem of slime mould. 

The Nazim Fatès model is a spatio-temporal model with discrete time, space and 

state. It is basically a CA model including several stochastic processes, which can 

describe the interaction between the reaction-diffusion environment and the 

action of amoebae. The stochastic processes which are involved in this model 

make the modelling complicated, especially for the identification. Hence, a 

simplified Nazim Fatès-type CA model is introduced here to apply to one-

dimensional examples with a small number of environmental states. In this way, 

randomness in the original Nazim Fatès model can be reduced by introducing 

certain random variables. Inspired from this simplified CA model, a new class of 

CA models, the probabilistic multi-rule CA model, is proposed and validated with 

several simulation examples. 

5.2 Reaction­Diffusion­Chemotaxis Models 

The Reaction-Diffusion-Chemotaxis (RDC) system is one of the most common 

models for many pattern formation problems in chemistry and biology. These 

systems are important for computer simulations of chemical and biological 

processes. In this section, the study of the RDC model mainly focuses on its 

application to the clustering movement of slime mould at the aggregation stage. A 

mathematical form of the RDC model will be given, followed by an example of 

the Nazim Fatès model and simulation studies. 

5.2.1 RDC Models 

Assuming that there is a concentration gradient of a chemoattractant ܽ௖  in the 

environment, which causes an amoeba movement towards the high concentration, 

the flux of amoeba cells ࣤ will increase with the density of amoebae अ. In this 

chemotactic case, ࣤ  is contributed by both the diffusion flux ࣤୢ of amoebae 
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themselves and the chemotaxis flux ࣤୡ according to ܽ௖  [136]. Hence, ࣤ can be 

expressed as  

ࣤ ൌ  ࣤୢ ൅ ࣤୡ                                                  (5.1) 

and 

ࣤୢ ൌ െ׏ܦअ                                                           (5.2) 

   ࣤୡ ൌ अΧሺܽ௖ሻܽ׏௖                                             (5.3) 

where ܦ  is the diffusion coefficient and Χሺܽ௖ሻ  represents the chemoattractant 

concentration. The term Χሺܽ௖ሻ is determined from experiments, so the form of 

this term varies with different experiments. The general conservation equation for 

अ is  

߲अ
ݐ߲ ൅ ׏ · ࣤ ൌ ݄ሺअሻ                                              ሺ5.4ሻ 

Substituting Eqn.(5.1)-(5.3) into Eqn.(5.4) gives  

                    
߲अ
ݐ߲ ൅ ׏ · ሺࣤୢ ൅ ࣤୡሻ ൌ ݄ሺअሻ 

߲अ
ݐ߲ ൅ ׏ · ሺെ׏ܦअ ൅ अΧሺܽ௖ሻܽ׏௖ሻ ൌ ݄ሺअሻ     

߲अ
ݐ߲ െ ׏ · अ׏ܦ ൅ ׏ · ሺअΧሺܽ௖ሻܽ׏௖ሻ ൌ ݄ሺअሻ                             ሺ5.5ሻ 

where ݄ሺअሻ is the growth term for amoebae, Therefore, the general form of the 

RDC equation can be written as [136], 

߲अ
ݐ߲ ൌ ݄ሺअሻ െ ׏ · ሺअΧሺܽ௖ሻܽ׏௖ሻ ൅  अ                             ሺ5.6ሻ∆ܦ

Here, ܦ∆अ  is the diffusion term which describes random movement of slime 

mould cells with the positive diffusivity of ܦ. The chemotaxis term                     

׏ · ሺअΧሺܽ௖ሻܽ׏௖ሻ indicates directional movement oriented by the concentration 

gradient of the chemoattractant ܽ௖. For slime mould, ܽ௖ is a chemical which can 

be generated by amoebae, also has the diffusion capability, so ܽ௖  can be 

commonly written as  
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߲ܽ௖

ݐ߲ ൌ ݃ሺܽ௖, अሻ ൅  ௔೎∆ܽ௖                                           ሺ5.7ሻܦ

where  ܦ௔೎ is the diffusion coefficient of ܽ௖ and usually ܦ௔೎ ൐  In Keller and .ܦ

Segel’s model for slime mould [137], the kinetics term was given by ݃ሺܽ௖, अሻ ൌ

݄ଵअ െ ݄ଶܽ௖, where ݄ଵअ denotes the production of the chemoattractant which is 

proportional to the density of amoebae, and െ݄ଶܽ௖ represents the reduction of ܽ௖. 

Given there is no production of amoebae during the chemotactic process, so 

݄ሺअሻ ൌ 0. The term Χሺܽ௖ሻ can be set as a positive constant Χ଴. Thus the model in 

a simplified form can be expressed as 

߲अ
ݐ߲ ൌ अ∆ܦ െ ׏ · ሺअΧ଴ܽ׏௖ሻ                                      ሺ5.8ሻ 

߲ܽ௖

ݐ߲ ൌ ݄ଵअ െ ݄ଶܽ௖ ൅  ௔೎∆ܽ௖                                    ሺ5.9ሻܦ

5.2.2 The Nazim Fatès Model 

The Nazim Fatès model, which is a bio-inspired model with a RDC-based 

aggregation scheme, was proposed by Nazim Fatès [44] in 2010. This model was 

introduced to describe the decentralised gathering phenomena observed in the 

Dictyostelium discoideum cellular slime mould aggregation and to solve a 

problem where slime mould amoebae are initially randomly distributed on a 

lattice and then gather to form a compact cluster. According to two main 

phenomena found at the aggregation phase of slime mould: reaction-diffusion and 

chemotaxis, the gathering process can be described based on a lattice structure 

which includes active cells. Owing to the food shortage in the environment, the 

motion of the single-cell slime mould starts with no prior information of its own 

position and the positions of others. In order to group up to form a mound, 

amoebae will communicate with each other by sending the position information 

or messages which can be relayed by the lattice. During this chemotactic process, 

amoebae can move to a free and excited lattice cell in the neighbourhood step by 

step, and the clustering signal is propagated by the state changing of each cell in 

the lattice. Amoebae can trigger an excitation in the cells on which they are 
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located. The state of cell can also change according to the states of neighbouring 

cells, which can be viewed as a cellular automata rule if the state is discrete. 

Many previous studies have been found to address the similar decentralised 

gathering problem in different application areas. For example, Sugihara and 

Suzuki [138] proposed a decentralised algorithm to control a group of mobile 

robots to form simple shapes such as a circle, a convex polygon or a line segment. 

Christensen et al. [139] also introduced a simple language of SWARMORPH-

script to control morphology growth processes of self-assembling mobile robots. 

Further theoretical development of the decentralised gathering problem can be 

found in [140]. Based on some ideas from previous work as mentioned above and 

inspired by the aggregation mechanism of slime mould, the Nazim Fatès model is 

designed to present an aggregation scheme where amoebae can cooperate to 

cluster efficiently and to solve the decentralised gathering problem using fewer 

states for the message propagation and fewer rules to control the movement of 

amoebae.  

Unlike general continuous RDC models, the Nazim Fatès model is a discrete 

dynamical system with discrete time, space and state. In this model, Greenberg-

Hastings Model (GHM) [47] as a discrete reaction-diffusion model is employed 

to simulate the environment which relays clustering signals. Meanwhile, using the 

similar cellular automata approach in [141], the chemotaxis is formulated by 

assigning a preferred direction to each amoeba according to their neighbouring 

cells. Therefore, this model consists of three parts: the environment, the amoebae 

movement and the interaction process [44]. 

5.2.2.1 The Environment Description 

The model is simulated on a two-dimensional discrete lattice ଶ, where the state 

of the cell at position ሺ݅, ݆ሻ א ଶ and at time step ݐ is denoted as ܿሺ݅, ݆,  ሻ. Given aݐ

set of ሼ0, … , ௘ܰሽ are all the possible states, so ܿሺ݅, ݆, ሻݐ א ሼ0, … , ௘ܰሽ, the state 0 

represents the neutral state, ௘ܰ represents the excited state, and other states from 
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1 to ௘ܰ െ 1 are the refractory states. The neighbourhood of ܿሺ݅, ݆,  ሻ, which canݐ

be in the form of a von Neumann neighbourhood or other exotic neighbourhoods, 

is denoted as ௖ሺ௜,௝,௧ሻ or ௖. Let  ൫ ௖ሺ௜,௝,௧ሻ൯ be the number of excited cells in the 

neighbourhood ௖ሺ௜,௝,௧ሻ.  

The rule for the reaction-diffusion environment can be described as below: 

a) A neutral cell (0) changes to an excited ( ௘ܰ) cell, if one or more than one 

neighbouring cell is excited, or the cell remains neutral; 

b) An excited cell ሺ ௘ܰሻ reduces its state value by 1 to be a refractory cell with 

the state of ௘ܰ െ 1 at one step; 

c) At each step, the refractory cell decreases its state by 1 till 0 (the neutral state). 

The mathematical expression for this GHM-based CA transition rule is 

ܿሺ݅, ݆, ሻݐ ൌ ቐ
 ௘ܰ                              ݂݅ ܿሺ݅, ݆, ݐ െ 1ሻ ൌ ൫ ൣ ܦܰܣ 0 ௖ሺ௜,௝,௧ିଵሻ൯ ൐ 0 ൧; 
ܿሺ݅, ݆, ݐ െ 1ሻ െ 1     ݂݅ ܿሺ݅, ݆, ݐ െ 1ሻ א ሼ1, … , ௘ܰሽ;                                   
0                                 otherwise.                                                                   

 

(5.10) 

5.2.2.2 The Amoebae Movement 

Given a lattice cell can only accommodate a limited number of amoebae at one 

time, for example the limit is two, so ܣ௖ሺ݅, ݆, ሻݐ ൑ 2 , where ܣ௖ሺ݅, ݆, ሻݐ  is the 

number of amoebae that a cell ܿሺ݅, ݆,  Consider .ݐ ሻ contains at the time instantݐ

that the number of amoebae is kept identical at all times, which means no birth or 

death process is involved in chemotaxis. Amoebae can move randomly to a free 

excited neighbouring cell which contains fewer amoebae than the limit with a 

probability ݌஺, otherwise they stay in the same place.  

5.2.2.3 The Interaction Process 

Coupling the environment and the amoebae movement is the key step to this 

RDC model, because it links environmental changes to the motion of amoebae 

and makes amoebae move as the environment changes. The rule for the 
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interaction is that the excitation of a neutral cell may also come from the amoebae 

by which the cell is occupied, and the probability of this transition is set as ߣ. 

Denote ܤሺߣሻ as the Bernoulli random variable of parameter ߣ. The interaction 

transition rule combined to the local environment rule can be represented in 

Fig.5.1 and can be described mathematically as 

ܿሺ݅, ݆, ሻݐ ൌ

ە
۔

,௘ܰ                           ݂݅ ܿሺ݅ ۓ ݆, ݐ െ 1ሻ ൌ ሾ ൫ ܦܰܣ 0 ௖ሺ௜,௝,௧ିଵሻ൯ ൐ 0         
                                                  ܱܴ ሺܣ௖ሺ݅, ݆, ݐ െ 1ሻ ് ሻߣሺܤ ݀݊ܽ 0 ൌ 1ሻሿ;
ܿሺ݅, ݆, ሻݐ െ 1         ݂݅ ܿሺ݅, ݆, ݐ െ 1ሻ א ሼ1, … , ௘ܰሽ;                                       
0                             otherwise.                                                                       

 

(5.11) 

0 1 Ne-1 Ne...

At least one excited neighbour cell

Or  with the probability λ for non-empty neutral cells

 

Figure 5.1: The cell state transition rule of the Nazim Fatès model. The arrow 
expresses the transition from one state to another. 

5.2.3 Simulation of the Nazim Fatès Model 

The Nazim Fatès model is simulated on a 20×30 lattice with 30 initially randomly 

distributed amoebae. The von Neumann neighbourhood and the Moore 

neighbourhood are applied to two simulation examples respectively with no flux 

boundaries. Here, let each lattice cell accommodate only one amoeba at a time, so 

0 ൑ ,௖ሺ݅ܣ ݆, ሻݐ ൑ 1 . There are three possible states {0, 1, 2} for the cell, so 

௘ܰ ൌ  is set to be 0.1. The evolutions of the chemotactic gathering are shown ߣ .2

in Fig.5.2 and 5.3. 
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                   (a) Amoebae t=10                                                  (g) Cells t=10 

          

                   (b) Amoebae t=30                                                  (h) Cells t=30 

          

                   (c) Amoebae t=50                                                  (i) Cells t=50 

          

                  (d) Amoebae t=100                                                (j) Cells t=100 
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                  (e) Amoebae t=150                                                (k) Cells t=150 

         

                  (f) Amoebae t=250                                                (l) Cells t=250 

Figure 5.2: The evolution of the Nazim Fatès model with the 4-site von Neumann 
neighbourhood. The amoebae distributions at different time steps are shown in (a)-
(f), and the corresponding environment states are shown in (g)-(l), where darkest 
grey cells are excited cells, lighter grey are refractory cells and white are neutral 
cells. 

 

           

                   (a) Amoebae t=10                                                  (g) Cells t=10 
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                   (b) Amoebae t=30                                                  (h) Cells t=30 

          

                   (c) Amoebae t=50                                                  (i) Cells t=50 

          

                  (d) Amoebae t=100                                                (j) Cells t=100 

          

                  (e) Amoebae t=150                                                (k) Cells t=150 
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                  (f) Amoebae t=250                                                (l) Cells t=250 

Figure 5.3: The evolution of the Nazim Fatès model with the 8-site Moore 
neighbourhood. The amoebae distributions at different time steps are shown in (a)-
(f), and the corresponding environment states are shown in (g)-(l), where darkest 
grey cells are excited cells, lighter grey are refractory cells and white are neutral 
cells. 

From Fig.5.2 and 5.3, the simulation results show the gathering process of 

amoebae which are randomly distributed at first and then gradually group up to 

form a cluster on a reaction-diffusion lattice. 

5.3 A Probabilistic CA Model Formulation 

The discrete Nazim Fatès model with a simple rule can simulate the chemotaxis 

of slime mould. There are two random processes which are involved in the 

original Nazim Fatès model. One is the current state of a considered cell may 

change from neutral (0) to excited ( ௘ܰ ) with a probability ߣ when this cell is 

occupied by amoebae. The other random process which exists in the movement of 

the amoebae is that amoebae can move randomly into any free excited 

neighbouring cell. These random processes can be easy to be achieved in the 

forward problem, but it makes the reverse problem complicated and difficult to 

solve. Hence, the identification as the most important part in the reverse problem 

becomes a challenge, especially for the two-dimensional case. In order to find an 

effective way to solve this problem, the Nazim Fatès model can be simplified and 

applied to the one-dimensional case. Therefore, using the Boolean representation 

a simplified Nazim Fatès model is described in this section. Inspired from this 
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simplified CA model, a new probabilistic multi-rule CA model is introduced with 

several simulation studies. 

5.3.1 A simplified Nazim Fatès­type CA Model 

Given there are only two possible states {0, 1} for each environment cell, and 0 

represents the neutral state and 1 is the excited. Each lattice cell can 

accommodate only one amoeba at one time so that ܣ௖ሺ݆, ሻݐ א ሼ0,1ሽ. Therefore, 

the law for the environment layer of the Nazim Fatès model in one-dimensional 

examples is simplified as  

ܿሺ݆, ሻݐ ൌ

ە
۔

,ሺ݆ܿ ݂݅      1 ۓ ݐ െ 1ሻ ൌ ሾ ൫ ܦܰܣ 0 ௖ሺ௝,௧ିଵሻ൯ ൐ 0                   
                              ܱܴ  ሺܣ௖ሺ݆, ݐ െ 1ሻ ൌ ሻߣሺܤ ݀݊ܽ 1 ൌ 1ሻሿ;

0      otherwise.                                                                            

        (5.12) 

where ܿሺ݆,  A neutral .ݐ ሻ is the state of the cell at 1-D position ݆ and time stepݐ

cell becomes an excited cell, if at least one neighbouring cell is excited, or there 

is a probability ሺλሻ  for such transition if the considered cell is occupied. An 

excited cell turns to the neutral automatically at each time step. This transition 

rule thus can be described using a Boolean representation as 

ܿሺ݆, ሻݐ ൌ ,௖ሺ݆ܣ௣భߜൣ ݐ െ 1ሻ ש ܿሺ݆ െ 1, ݐ െ 1ሻ ש ܿሺ݆ ൅ 1, ݐ െ 1ሻ൧ ר ܿሺଔ, ݐ െ 1ሻതതതതതതതതതതതതത   (5.13)      

where ‘ש’ denotes the OR operation and ‘ר’ denotes the AND operation. ߜ௣భ is a 

random variable which obeys a binomial distribution or a Bernoulli distribution 

as ߜ௣భ ൌ 1 with the probability of  λ, and  ߜ௣భ ൌ 0 with the probability of  1 െ λ. 

Hence, ߜ௣భ can be expressed as  

௣భߜ ൌ ൜1,              λ          
0,             1 െ λ                                            (5.14) 

For the one-dimensional case, the rule of the amoebae movement can also be 

written in a Boolean form. Due to only two neighbouring cells of each cell in the 

one-dimensional lattice, amoebae can randomly move right or left at each time if 

both neighbouring cells are free and excited, and if only one neighbouring cell is 

free and excited, amoebae will definitely occupy this one at next time step, 
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otherwise the amoebae will stay at the same place. From the point of view of 

whether a lattice cell is occupied by amoebae, the rule of the amoebae movement 

can be described by three processes, that is, a lattice cell changes from occupied 

to free, from free to occupied, and stays the same state as that at last time step. 

Hence, this rule can be formulated by two Boolean expressions. 

a) An empty and excited cell becomes occupied, or stays free 

,௖ଵሺ݆ܣ ሻݐ ൌ ൛ൣ൫ܣ௖ሺ݆ െ 1, ݐ െ 1ሻ ר ܿሺଔ െ 2, ݐ െ 1ሻതതതതതതതതതതതതതതതതതത൯ ש ൫ܣ௖ሺ݆ െ 1, ݐ െ 1ሻ ר

                     ܿሺ݆ െ 2, ݐ െ 1ሻ ר ௣మሻ൧ߜ ש ൣ൫ܣ௖ሺ݆ ൅ 1, ݐ െ 1ሻ ר ܿሺଔ ൅ 2, ݐ െ 1ሻതതതതതതതതതതതതതതതതതത൯ ש

                     ൫ܣ௖ሺ݆ ൅ 1, ݐ െ 1ሻ ר ܿሺ݆ ൅ 2, ݐ െ 1ሻ ר ௣మߜ
തതതത൯൧ൟ ר ,௖ሺଔܣ ݐ െ ଓሻതതതതതതതതതതതതതത ר

                     ܿሺ݆, ݐ െ 1ሻ                                                                                      (5.15) 

and                                  ߜ௣మ ൌ ൜1,               ݌ଶ        
0,              1 െ ଶ݌

                                          (5.16) 

Here, ߜ௣మ is a random variable which obeys a binomial distribution and can be 

used to describe the action of amoebae. ݌ଶ  is the probability of ߜ௣మ ൌ 1 . If 

௣మߜ ൌ 1 , amoebae move into the right neighbouring cell, and ߜ௣మ ൌ 0  means 

amoebae move left. Eqn.(5.15) can also be explained using a diagrammatic 

representation as shown in Fig.5.4.    
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(a) ࢉ࡭ሺ࢐ െ ૚, ࢚ െ ૚ሻ ר ሺଚࢉ െ ૛, ࢚ െ ૚ሻതതതതതതതതതതതതതതതതതതത           (b) ࢉ࡭ሺ࢐ െ ૚, ࢚ െ ૚ሻ ר ሺ࢐ࢉ െ ૛, ࢚ െ ૚ሻ ר  ૛࢖ࢾ
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(c) ࢉ࡭ሺ࢐ ൅ ૚, ࢚ െ ૚ሻ ר ሺଚࢉ ൅ ૛, ࢚ െ ૚ሻതതതതതതതതതതതതതതതതതതത           (d) ࢉ࡭ሺ࢐ ൅ ૚, ࢚ െ ૚ሻ ר ሺ࢐ࢉ ൅ ૛, ࢚ െ ૚ሻ ר ૛࢖ࢾ
തതതതത 

Figure 5.4: The diagrammatic representation of Eqn.(5.15) 

b) An occupied cell becomes free, or keeps occupied 

,௖ଶሺ݆ܣ ሻݐ ൌ ሼሾ൫ܿሺଔ െ 1, ݐ െ 1ሻ ר ௖ሺଔܣ െ 1, ݐ െ 1ሻതതതതതതതതതതതതതതതതതതതത ר ௣మߜ
തതതത൯  തതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതש
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                   ൫ܿሺଔ ൅ 1, ݐ െ 1ሻ ר ௖ሺଔܣ ൅ 1, ݐ െ 1ሻതതതതതതതതതതതതതതതതതതതത ר ௣మ൯ሿߜ  തതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതש

                   ൫ܿሺଔ ൅ 1, ݐ െ 1ሻ ר ௖ሺଔܣ ൅ 1, ݐ െ 1ሻതതതതതതതതതതതതതതതതതതതത ר ܿሺଔ െ 1, ݐ െ 1ሻതതതതതതതതതതതതതതതതതത൯    തതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതש

                   ൫ܿሺଔ ൅ 1, ݐ െ 1ሻതതതതതതതതതതതതതതതതതത ר ܿሺଔ െ 1, ݐ െ 1ሻ ר ௖ሺଔܣ െ 1, ݐ െ 1ሻതതതതതതതതതതതതതതതതതതതത൯തതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതሽ ר ,௖ሺ݆ܣ ݐ െ 1ሻ         

(5.17) 

The diagrammatic representation for each combination in Eqn.(5.17) is shown in 

Fig.5.5. 

0 1

1c(t-1)

j-1 j j+1

j-1 j+1jj-2 j+2

2
0pδ =

0

Ac(t-1)

                  

1 0

1c(t-1)

j-1 j j+1

j-1 j+1jj-2 j+2

2
1pδ =

0

Ac(t-1)

 

(a)ࢉሺଚ െ ૚, ࢚ െ ૚ሻ ר ሺଚࢉ࡭ െ ૚, ࢚ െ ૚ሻതതതതതതതതതതതതതതതതതതതത ר ૛࢖ࢾ
തതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതത(b)൫ࢉሺଚ ൅ ૚, ࢚ െ ૚ሻ ר ሺଚࢉ࡭ ൅ ૚, ࢚ െ ૚ሻതതതതതതതതതതതതതതതതതതതത ר  ૛൯തതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതത࢖ࢾ

1 0

0 1c(t-1)

j-1 j j+1

j-1 j+1jj-2 j+2

0

Ac(t-1)

                      

(c) ࢉሺଚ ൅ ૚, ࢚ െ ૚ሻ ר ሺଚࢉ࡭ ൅ ૚, ࢚ െ ૚ሻതതതതതതതതതതതതതതതതതതതത ר ሺଚࢉ െ ૚, ࢚ െ ૚ሻതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതത 

0 1

1 0c(t-1)

i-1 i i+1

i-1 i+1ii-2 i+2

0

Ac(t-1)

 

(d) ࢉሺଚ ൅ ૚, ࢚ െ ૚ሻതതതതതതതതതതതതതതതതതതത ר ሺଚࢉ െ ૚, ࢚ െ ૚ሻ ר ሺଚࢉ࡭ െ ૚, ࢚ െ ૚ሻതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതത 

Figure 5.5: The diagrammatic representation of Eqn.(5.17) 

c) The distribution of amoebae ܣ௖ሺ݆,  ሻ can be described asݐ

,௖ሺ݆ܣ ሻݐ ൌ ,௖ଵሺ݆ܣ ݐ െ 1ሻ ש ,௖ଶሺ݆ܣ ݐ െ 1ሻ                      (5.18) 

Eqn.(5.13) and (5.18) construct the simplified Nazim Fatès model in one 

dimension, which is a CA model and can be expressed by the Boolean expression. 

Meanwhile, random processes in the original Nazim Fatès model can be 

simplified by adding random variables ߜ௣భ  and ߜ௣మ  in the model. Values of ߜ௣భ 

and ߜ௣మ  may change at every time step according to their probabilities, and 
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different values of ߜ௣భ  and ߜ௣మ  lead to different mathematical equations for the 

model. Hence, unlike the classical CA model, the transition rule of this simplified 

Nazim Fatès model may vary at different time steps, which makes the output at 

each time step unpredictable. Inspired from the stochastic features of the 

simplified Nazim Fatès model, a new type of CA models will be created and will 

be discussed in the following section. 

5.3.2 A New Probabilistic Multi­rule Cellular Automata Model 

In this section, a new type of CA model, which will be called a Probabilistic 

Multi-rule Cellular Automata model, is introduced. The probabilistic multi-rule 

CA model is a CA-based model with random variables, and it can be used to 

describe spatio-temporal phenomena with random processes. Using classical one-

rule CA models, it is difficult to describe random processes, because the classical 

CA can only output specific and unchanged results at each time step once the 

transition rule and initialisation are determined. Therefore, if two or more rules 

with given probabilities respectively can be involved in a CA model and different 

rules guide the evolution at different time steps, several different outputs can be 

obtained under the same initial conditions. The probabilities of different outputs 

depend on the probabilities of different rules in the model. Thus, the evolution 

can act as a ‘random’ process using the probabilistic multi-rule CA models. These 

systems which are different from the deterministic CA with fixed rules can 

produce more complicated patterns or can be used to describe more complex 

phenomena. 

There are three key elements in the classical CA: a lattice structure, a 

neighbourhood and a CA transition rule. Generally, the transition function can be 

described by a finite look-up table. Take a rule of a one-dimensional binary CA 

with the von Neumann neighbourhood for example. Table 5.1 shows the update 

outputs corresponding to all the possible states of cells in the neighbourhood. 

This rule can be defined as ሼݎ଴, ,ଵݎ … , ଻ሽݎ , where ݎ௜  is the output state of the 

concerned cell when the states of all its neighbourhood cells are at the ݅௧௛ case as 
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shown in Table 5.1. The rule label can be computed as ∑ ௜2௜଻ݎ
௜ୀ଴ , so that this rule 

is called as Rule60 = (111100) [142].  

Table 5.1: Rule60 for the one-dimensional 3-site CA. 

݅ ܿሺ݆ െ 1, ݐ െ 1ሻ ܿሺ݆, ݐ െ 1ሻ ܿሺ݆ ൅ 1, ݐ െ 1ሻ ܿሺ݆,  ௜ݎ ሻݐ

0 0 0 0  ଴ݎ 0

1 0 0 1  ଵݎ 0

2 0 1 0  ଶݎ 1

3 0 1 1  ଷݎ 1

4 1 0 0  ସݎ 1

5 1 0 1  ହݎ 1

6 1 1 0  ଺ݎ 0

7 1 1 1  ଻ݎ 0

 

The CA rule in a truth table can also be formulated as a logical function or 

Boolean function of neighbouring cells [68, 143, 144]. For a one-dimensional CA, 

the rule can be expressed as 

                                          ܿሺ݆, ሻݐ ൌ ௕݂൫ ௖ሺ௝,௧ሻ|ݐ൯                                            (5.19) 

where ௖ሺ௝,௧ሻ|ݐ includes neighbouring cells at previous times and ௕݂ is a Boolean 

function. For example, a 3-site CA rule with the neighbourhood set of  ሼܿሺ ݆ െ

1, ݐ െ 1ሻ, ܿሺ݆, ݐ െ 1ሻ, ܿሺ݆ ൅ 1, ݐ െ 1ሻሽ  can be represented by a Boolean 

equivalent with AND (denoted as ‘ר’) and XOR (denoted as ‘ْ’)  operators [52] 

as 

ܿሺ݆, ሻݐ ൌ ܽ଴ ْ ܽଵܿሺ݆ െ 1, ݐ െ 1ሻ ْ ܽଶܿሺ݆, ݐ െ 1ሻ ْ … ْ ܽ଻൫ܿሺ݆ െ 1, ݐ െ 1ሻ ר

                 ܿሺ݆, ݐ െ 1ሻ ר ܿሺ݆ ൅ 1, ݐ െ 1ሻ൯                                                             (5.20)                       

where ܽ௜ are binary numbers. The term is included in the model if ܽ௜ ൌ 1, or it 

can be removed from the model if ܽ௜ ൌ 0. Thus the general CA rule with an       
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݊ -site neighbourhood ௖ሺ௝,௧ሻ|ݐ ൌ ሼሺܿଵ|ݐሻ, ሺܿଶ|ݐሻ, … , ሺܿ௡|ݐሻሽ  can be written in a 

Boolean form as 

    ܿሺ݆, ሻݐ ൌ ܽ଴ ْ ܽଵሺܿଵ|ݐሻ ْ ܽଶሺܿଶ|ݐሻ ْ … ْ ܽே൫ሺܿଵ|ݐሻ ר ר … ሺܿ௡|ݐሻ൯       (5.21) 

and ܰ ൌ 2௡ െ 1. ሺܿ|ݐሻ are states of the cells in the neighbourhood at time steps 

before ݐ. The rule of Eqn.(5.21) can also be rewritten in a polynomial equation by 

substituting  polynomial representations for logical functions [52], say, 

          ܿሺ݆, ሻݐ ൌ ଴ߠ ൅ ሻݐ|ଵሺܿଵߠ ൅ ሻݐ|ଶሺܿଶߠ ൅ ڮ ൅ ሻݐ|ே൫ሺܿଵߠ · … · ሺܿ௡|ݐሻ൯            

ൌ ෍ ሻ                                                                                     ሺ5.22ሻݐ|௜߶௜ሺܿߠ
ே

௜ୀ଴

 

where ߶௜ሺܿ|ݐሻ is the model term from the combination of different variables in 

the neighbourhood and ߠ௜ is the coefficient for the corresponding model term.  

The probabilistic multi-rule CA is defined to share most basic features with the 

classical CA. The same discrete lattice structure and neighbourhood are included 

in the probabilistic multi-rule CA model, which, however, has two or more 

probabilistic transition rules. Using a polynomial expression, the new 1-D 

probabilistic multi-rule CA model including ݉ rules can be formulated as  

ܿௌ஼஺ሺ݆, ሻݐ ൌ ௙భߜ ଵ݂ ש ௙మߜ ଶ݂ ש ڮ ש ௙೘ߜ ௠݂                          (5.23) 

here, ܿௌ஼஺ሺ݆, ሻݐ  is the output state. ௜݂ሺ݅ ൌ 1, … , ݉ሻ  is a basic CA rule, so this 

model can be rewritten as  

         ܿௌ஼஺ሺ݆, ሻݐ ൌ ௙భߜ ෍ ሻݐ|ଵ௜߶ଵ௜ሺܿߠ
ேభ

௜ୀ଴

ש ௙మߜ ෍ ሻݐ|ଶ௜߶ଶ௜ሺܿߠ
ேమ

௜ୀ଴

ש …  

ש                                                  ௙೘ߜ ෍ ሻݐ|௠௜߶௠௜ሺܿߠ
ே೘

௜ୀ଴

                                             ሺ5.24ሻ 

where ߜ௙೔ א ሼ0,1ሽ. According to the probability of each rule ݌௜ and ∑ ௜݌ ൌ 1௠
௜ୀଵ , 

only one rule is selected out to guide the evolution at each time step, so that in 

Eqn.(5.24), only one ߜ is 1 and others are zero at each time step. 
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෍ ௙೔ߜ

௠

௜ୀଵ

ൌ 1                                                     ሺ5.25ሻ 

௜ܰ  is the number of model terms in each rule, which may vary according to 

different rules. ߶௜ሺܿ|ݐሻ are model terms of each rule and ߠ௜ are term coefficients.  

For example, at a specific time step ݐ ൌ  ௩ the probabilistic multi-rule CA rule isݐ

ܿௌ஼஺ሺ݆, ௩ሻݐ ൌ ௙భߜ ෍ ௩ሻݐ|ଵ௜߶ଵ௜ሺܿߠ
ேభ

௜ୀ଴

൅ ڮ ൅ ௙ೡషభߜ ෍ ௩ሻݐ|ሺ௩ିଵሻ௜߶ሺ௩ିଵሻ௜ሺܿߠ
ேೡషభ

௜ୀ଴

 

                                 ൅ߜ௙ೡ ෍ ௩ሻݐ|௩௜߶௩௜ሺܿߠ
ேೡ

௜ୀ଴

൅ ௙ೡశభߜ ෍ ௩ሻݐ|ሺ௩ାଵሻ௜߶ሺ௩ାଵሻ௜ሺܿߠ
ேೡశభ

௜ୀ଴

൅  ڮ

൅ߜ௙೘ ෍ ௩ሻݐ|௠௜߶௠௜ሺܿߠ
ே೘

௜ୀ଴

                                                           ሺ5.26ሻ 

Given the rule ௩݂  is selected at this time step, so that ߜ௙ೡ ൌ 1 and  ߜ௙భ ൌ ڮ ൌ

௙ೡషభߜ ൌ ௙ೡశభߜ ൌ ڮ ൌ ௙೘ߜ ൌ 0. Eqn.(5.26) can be rewritten as  

ܿௌ஼஺ሺ݆, ௩ሻݐ ൌ ෍ ௩ሻݐ|௩௜߶௩௜ሺܿߠ
ேೡ

௜ୀ଴

                                      ሺ5.27ሻ 

According to the probability of each rule, the evolution of a probabilistic multi-

rule CA model at every time step may have a different rule. Hence, different 

output patterns can be produced by the same probabilistic multi-rule CA rule even 

with the same initialisations. Several examples of simulations will be 

demonstrated in Section 5.3.3.   

5.3.3 Simulation Studies 

5.3.3.1 The  Probabilistic Multi­rule  CA with  One­dimensional  Rule27 

and Rule42 on A 3­site Neighbourhood 

The spatio-temporal patterns produced by the probabilistic multi-rule CA with 

one-dimensional Rule27 and Rule42 on a 3-site neighbourhood are shown in 

Fig.5.6. All of them are developed on a 1ൈ100 lattice over 100 time evolution 
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steps from top to bottom, and a periodic boundary condition. These evolutions 

begin with a same initialisation of a randomly generated binary vector. The 

neighbourhood of the cell ܿሺ݆ሻ is ሼܿሺ݆ െ 1ሻ, ܿሺ݆ሻ, ܿሺ݆ ൅ 1ሻሽ and the probabilities 

of Rule27 and Rule42 for Fig.5.6 (a)-(d) are {50%, 50%}, {50%, 50%}, {20%, 

80%}, and {20%, 80%} respectively. 

Although the patterns in Fig.5.6 (a) and (b) are produced from the same 

probabilistic multi-rule CA rule, the diversity between these two patterns is clear. 

The same goes for the patterns in Fig.5.6 (c) and (d). It is because that the CA 

rule at each time step may be different. Fig.5.6 also shows different outputs can 

be induced by the different probabilities associated with the individual rule in the 

probabilistic multi-rule CA model.    

5.3.3.2 The Probabilistic Multi­rule CA with One­dimensional Rule110 

on Two Different 3­site Neighbourhoods 

The spatio-temporal patterns produced by the probabilistic multi-rule CA with 

one-dimensional Rule101 on two different 3-site neighbourhoods are shown in 

Fig.5.7. Here, the probabilistic multi-rule CA rule consists of two rules: Rule101 

on the neighbourhood of ሼܿሺ݆ െ 1ሻ, ܿሺ݆ሻ, ܿሺ݆ ൅ 1ሻሽ  and Rule101 on the 

neighbourhood of ሼܿሺ݆ െ 2ሻ, ܿሺ݆ െ 1ሻ, ܿሺ݆ሻሽ. Fig.5.7 (a) and (b) show the patterns 

produced from the probabilistic multi-rule CA rule with these two rules with the 

probabilities of 30% and 70% respectively. The pattern in Fig.5.7 (c) is generated 

from the same rules with different probabilities as 50% and 50% respectively. 

Other conditions are the same as that in the examples in Section 5.3.3.1. 
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(a)                                                         (b) 

         

                                     (c)                                                              (d) 

Figure 5.6: Evolutions of the one-dimensional probabilistic multi-rule CA including 
Rule27 and Rule42 with various probabilities of (a){0.5, 0.5}, (b){0.5, 0.5}, (c){0.2, 
0.8}, (d){0.2, 0.8} on the same von Neumann neighbourhood. 

 

       

(a)                                            (b)                                            (c) 

Figure 5.7: Evolutions of the one-dimensional probabilistic multi-rule CA including 
two sub-rules on two different neighbourhoods respectively. The probabilities of 
sub-rules are (a){0.3, 0.7}, (b){0.3, 0.7}, (c){0.5, 0.5}. 
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5.3.3.3 One­dimensional  Probabilistic Multi­rule  CA with  Rule27  and 

Rule42 on Different 3­site Neighbourhoods 

Fig.5.8 shows the evolution produced by the one-dimensional probabilistic multi-

rule CA with two rules: Rule27 on the neighbourhood of ሼܿሺ݆ െ 1ሻ, ܿሺ݆ሻ, ܿሺ݆ ൅

1ሻሽ  and Rule42 on the neighbourhood of ሼܿሺ݆ െ 2ሻ, ܿሺ݆ െ 1ሻ, ܿሺ݆ሻሽ . The 

probabilities of these two sub-rules are set to 40% and 60% respectively. 

Evolutions in Fig.5.8 (a) and (b) start from the same initial settings as those in the 

examples in Section 5.3.3.1 and 5.3.3.2.  

5.3.3.4 Two­dimensional Probabilistic Multi­rule CA  

Two-dimensional (2-D) probabilistic multi-rule CA models are more complex 

than one-dimensional cases, and can produce more complicated patterns. That is 

because the 2-D probabilistic multi-rule CA model usually includes several 2-D 

CA rules with 2-D neighbourhoods. There is an example of the 2-D probabilistic 

multi-rule CA which is developed on the lattice of 50ൈ50 over 100 time steps 

with a periodic boundary condition. Fig.5.9 (a)-(h) show some snapshots of the 

evolution at different time steps. Fig.5.9 (a) is the initialisation in which each cell 

is randomly assigned to 0 or 1. There are two 2-D CA rules in this model. One is 

Rule2770298 on the neighbourhood of ሼܿሺ݅ െ 1, ݆ሻ, ܿሺ݅, ݆ െ 1ሻ, ܿሺ݅, ݆ሻ, ܿሺ݅, ݆ ൅ 1ሻሽ 

with the probability of 40% and the other is Rule83254 on the neighbourhood of  

ሼܿሺ݅ ൅ 1, ݆ሻ, ܿሺ݅, ݆ െ 1ሻ, ܿሺ݅, ݆ሻ, ܿሺ݅, ݆ ൅ 1ሻሽ with the probability of 60%. 
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(a)                                                                  (b) 

Figure 5.8: Evolutions of the one-dimensional probabilistic multi-rule CA including 
Rule27 and Rule42 on two different neighbourhoods respectively. The probabilities 
of sub-rules are {0.4, 0.6}. 

 

             

           (a) t=1                         (b) t=10                       (c) t=30                       (d) t=50  

             

            (e) t=65                       (f) t=80                        (g) t=90                      (h) t=100  

Figure 5.9: Snapshots of the evolution of a 2-D probabilistic multi-rule CA 

5.4 Conclusions 

The Nazim Fatès model, which is a reaction-diffusion-chemotaxis model with 

discrete time, space and state, can provide an effective solution to the 

decentralised gathering problem and has been successfully employed to describe 

the chemotaxis of slime mould at its aggregation stage. The forward problem of 

this model can be solved easily, but the reverse problem such as the identification 



Chapter 5. A probabilistic CA Model Formulation of the Nazim Fatès Model  

97 
 

problem is still an open question, because there are some random processes in this 

spatio-temporal model.  

The Nazim Fatès model is then simplified to a one-dimensional CA model which 

can be represented by Boolean equations. Inspired from this simplified Nazim 

Fatès-type CA model, a new probabilistic multi-rule CA model is introduced in 

this chapter. This new type of CA model shares some basic features with the 

classical CA models but has two or more transition rules with associated 

probabilities. According these properties, probabilistic multi-rule CA models 

appear to have the potential to produce many interesting patterns and textures 

which can be applied to simulate spatio-temporal behaviours.  
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Chapter 6   

Identification of Probabilistic Multi­rule CA 
Models 

6.1 Introduction 

Cellular Automata (CA) are spatially extended dynamical systems with discrete 

space-time and a finite number of states, which are commonly used to describe 

spatio-temporal dynamics. CA models have been widely studied recently because 

many spatio-temporal phenomena in the natural world can be described by CA 

models. Simple CA rules can produce complex dynamical spatio-temporal 

patterns. Specifically  CA’s  have been used to model pattern formation such as 

crystal growth [145] and tumour growth [146]. CA based models have also been 

used for pattern recognition [147], block ciphers and stream ciphers [148], and for 

modelling computer networks [149]. 

Many classes of cellular automata have been proposed and studied, most of which 

are deterministic such as binary automata, mobile automata and linear hybrid 

cellular automata [150]. Another class of CAs are probabilistic CA. Probabilistic 

CAs considered in [69] for example, can be viewed as deterministic CAs 

corrupted by noise. Other types of CA such as fuzzy CAs, hierarchical CAs, and 

exotic CAs have been proposed in [151]. Typically the evolution of the CA 

considered in the literature is described by a single rule at all times. 

Most of the literature in this field is concerned with simulation and analysis of 

different classes of CA models. In contrast, the identification problem has 

received less attention. The identification of the CA models has been considered  
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in a number of papers [46, 79, 124, 152, 153]. Central to the identification 

approaches developed in these papers is the orthogonal forward regression 

algorithm [71, 154], which has been applied successfully for the identification of 

classical CA models.   

A new class of probabilistic multi-rule CA models has been introduced in 

Chapter 5. This chapter addresses the problem of identifying such probabilistic 

multi-rule CA models from data. In this case, the existing identification methods 

developed for the classical CA have to be modified to deal with this class of CAs. 

This chapter introduces a new method for inferring both the rules and the 

associated transition probabilities of a probabilistic multi-rule CA model. 

6.2 The CA­OLS Algorithm  

As shown in [52], a binary CA rule can be formulated as a Boolean function, 

which in turn can be mapped onto a polynomial equation which has a linear-in-

the-parameters model structure. Consider a 2-D ݊-site neighbourhood CA model 

for example. Denoting the state of the cell at position ሺݔ,  by ݐ ሻ and time stepݕ

ܿሺݔ, ,ݕ ,ݔሻ and its ݊-site neighbourhood by ࣨ൫ܿሺݐ ,ݕ ሻ൯ݐ ൌ ሼܿଵሺݐ െ 1ሻ, … , ܿ௡ሺݐ െ

1ሻሽ, the polynomial function of ܿሺݔ, ,ݕ   ሻ can be expressed asݐ

               ܿሺݔ, ,ݕ ሻݐ ൌ ଴ߠ ൅ ݐଵܿଵሺߠ െ 1ሻ ൅ ݐଶܿଶሺߠ െ 1ሻ ൅ ڮ ൅ ݐே൫ܿଵሺߠ െ 1ሻ ൈ

                                    … ൈ ܿ௡ሺݐ െ 1ሻ൯                 

                                ൌ ෍ ௜߶௜ߠ

ே

௜ୀ଴

ሺݐ െ 1ሻ                                                                         ሺ6.1ሻ 

and model terms ߶௜ሺݐ െ 1ሻ can be written as 

                                            ߶଴ሺݐ െ 1ሻ ൌ 1; 

                                            ߶ଵሺݐ െ 1ሻ ൌ ܿଵሺݐ െ 1ሻ; 

  ڭ                                         

                                            ߶ேሺݐ െ 1ሻ ൌ ܿଵሺݐ െ 1ሻ ൈ … ൈ ܿ௡ሺݐ െ 1ሻ.                    (6.2) 
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where ܿሺݔ, ,ݕ ሻݐ א ሼ0,1ሽ  and the coefficient ߠ௜ א Ժ ሺ݅ ൌ 0, … , ܰ, ܰ ൌ 2௡ െ 1ሻ . 

Based on the polynomial form of CA rules, Yang and Billings [52] introduced an 

identification algorithm called CA-OLS to determine the model structure of the 

CA model. By applying a modified Gram-Schmidt orthogonalisation procedure, 

the CA-OLS algorithm can determine which terms are important or which should 

be included in the CA model. The Error Reduction Ratio (ERR) was used to 

estimate the contribution which each candidate term makes to the updated output, 

which means the bigger contribution a term makes, the bigger ERR value it has. 

The ERR criterion is used to rank the contribution of each candidate model term. 

The model terms are subsequently then selected in accordance with this ranking. 

The selection procedure terminates when the mean-square error of the model is 

less than a pre-specified cut-off value. The cut-off value can be set-to zero for a 

noise-free CA model.  

The algorithm can be summarised as  

1) Step 1. The set of candidate model terms is denoted by Φଵ ൌ ሼ߶௜, ݅ ൌ

1,2, … ,   .஼ is the length of the candidate model term setܯ ஼ሽ, whereܯ

For ݅ ൌ 1,2, … ,  ,஼ܯ

इଵ
௜ ൌ ߶௜                                                   (6.3) 

ො݃ଵ
௜ ൌ

,ܿۃ इଵ
௜ۄ

इଵۃ
௜, इଵ

௜ۄ
                                           ሺ6.4ሻ 

ሾܴܴܧሿଵ
௜ ൌ

,ܿۃ इଵ
௜ۄଶ

,ܿۃ इଵۃۄܿ
௜, इଵ

௜ۄ
                                  ሺ6.5ሻ 

where इ  represents orthogonal regressors. ܿ  stands for the updated 

ܿሺݔ, ,ݕ  ሿ denotes theܴܴܧdenotes inner product of two vectors. ሾ ۄ·,·ۃ .ሻݐ

contribution of each term. The term which has the largest ERR value is 

selected first. 

                    ݈ଵ ൌ ሿଵܴܴܧሼሾݔܽ݉݃ݎܽ
௜ , 0 ൑ ݅ ൑  ஼ሽ                            (6.6)ܯ

ො݃ଵ ൌ ො݃ଵ
௟భ                                                 (6.7) 

ሾܴܴܧሿଵ ൌ ሾܴܴܧሿଵ
௟భ                                         (6.8) 
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इଵ ൌ इଵ
௟భ                                               (6.9) 

2) Step m. ݉ െ 1 significant terms have been selected out and have been 

excluded from the candidate term set at the ሺ݉ െ 1ሻ th step, so for 

݅ ൌ 1, … , ,஼ܯ ݅ ് ሼ݈ଵ, … , ݈௠ିଵሽ.  

 

इ௠
௜ ൌ ߶௜ െ ෍ ቆ

,௜߶ۃ इ௞ۄ
,इ௞ۃ इ௞ۄ इ௞ቇ

௠ିଵ

௞ୀଵ
                  ሺ6.10ሻ 

ො݃௠
௜ ൌ

,ܿۃ इ௠
௜ ۄ

इ௠ۃ
௜ , इ௠

௜ ۄ
                                      ሺ6.11ሻ 

ሾܴܴܧሿ௠
௜ ൌ

,ܿۃ इ௠
௜ ଶۄ

,ܿۃ इ௠ۃۄܿ
௜ , इ௠

௜ ۄ
                            ሺ6.12ሻ 

As before, the term with the maximum ERR value is selected by 

݈௠ ൌ ሿ௠ܴܴܧሼሾݔܽ݉݃ݎܽ
௜ ሽ                                   (6.13) 

ො݃௠ ൌ ො݃௠
௟೘                                              (6.14) 

ሾܴܴܧሿ௠ ൌ ሾܴܴܧሿ௠
௟೘                                      (6.15) 

The ݉th orthogonal basis can be selected as 

 इ௠ ൌ इ௠
௟೘                               (6.16) 

and the corresponding significant term ߶௟೘ is selected out from the ݉th 

candidate term set. 

3) This process is terminated when 1 െ ∑ ሾܴܴܧሿ௜
ெೞ
௜ୀଵ ൏ ߩ  and ܯ௦ ൏ ௖ܯ or 

when ܯ௦ ൌ  .is the cut-off parameter ߩ ௖, whereܯ

4) The estimated parameters are computed by 

෠ெೞߠ ൌ ො݃ெೞ                                                  ሺ6.17ሻ 

෠௞ߠ ൌ ො݃௞ െ ෍
,௞߶ۃ इ௜ۄ
,इ௜ۃ इ௜ۄ

ெೞ

௜ୀ௞ାଵ

݇         ,෠௜ߠ ൌ ௦ܯ െ 1, … ,1   ሺ6.18ሻ 

Hence the identified model can be written as  

ܿሺݐሻ ൌ ෍ ௞ߠ ൈ ߶௞

ெೞ

௞ୀଵ

ሺݐ െ 1ሻ                                     ሺ6.19ሻ 
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6.3 A New Identification Algorithm for Probabilistic 
Multi­rule Cellular Automata 

A 2-D probabilistic multi-rule CA model defined in a square lattice with a 

periodic boundary [155] can be expressed by 

ܿௌ஼஺ሺݔ, ,ݕ ሻݐ ൌ ௙భߜ ଵ݂ ש ௙మߜ ଶ݂ ש ڮ ש ௙೘ߜ ௠݂                   ሺ6.20ሻ 

where ܿௌ஼஺ሺݔ, ,ݕ ,ݔሻ is the state of the cell at the position ሺݐ  ’ש‘ .ݐ ሻ at time stepݕ

is the OR operator. The ݉ possible rules define the space ॲ ൌ ሼ ଵ݂, … , ௠݂ሽ. It is 

assumed that the probability of the elementary event { ௜݂ሺ݅ ൌ 1,2, … , ݉ሻ} is ݌௜ 

and that 

෍ ௜݌

௠

௜ୀଵ

ൌ 1                                                    ሺ6.21ሻ 

The rule  ௜݂ is a basic CA rule. Essentially, this means that each iteration step as 

single rule is selected and that the probability of selecting a particular rule ௜݂ is ݌௜.   

In Eqn.(6.20), 

௙ሺ݂ሻߜ ൌ ሾߜ௙భሺ݂ሻ, … ,  ௙೘ሺ݂ሻሿ                                 (6.22)ߜ

denotes a vector random variable associated with each rule ௜݂ such that 

௙ሺߜ ௜݂ሻ ൌ ሾߜ௙భሺ ௜݂ሻ, … , ௙೘ሺߜ ௜݂ሻሿ                               (6.23) 

and                                  

௙ೕሺߜ ௜݂ሻ ൌ ൜1          ݅ ൌ ݆
0          ݅ ് ݆                                     (6.24) 

At each time step the rule is determined by the value of ߜ௙೔, so that if ߜ௙ ൌ ௙ሺߜ ௝݂ሻ 

for ݐ ൌ  ௞ାଵ will be given byݐ ௞, the state of the cell atݐ

ܿௌ஼஺ሺݔ, ,ݕ ௞ାଵሻݐ ൌ ௝݂ሺݐ௞ሻ ൌ ෍ ௞ሻݐ௜,௝߶௜,௝ሺߠ
ேೖ

௜ୀ଴

                   ሺ6.25ሻ 

where ௞ܰ denotes the number of model terms in the rule ௝݂ሺݐ௞ሻ. ߶௜,௝ are model 

terms for the rule ௝݂. 
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For example, if a 1-D probabilistic multi-rule CA model is composed of two CA 

rules with the probabilities of ݌ோ௨௟௘ ଵ ൌ 0.6 and ݌ோ௨௟௘ ଶ ൌ 0.4 respectively. The 

schematic diagram of one possible output over ݐ௡ time steps for this probabilistic 

multi-rule CA model is shown in Figure 6.1. 

t=1

Rule 1

Rule 2

Rule 2

Rule 1

Rule 1

Rule 1

c(1,0) c(2,0) c(3,0) c(4,0) c(5,0) . . . c(n,0)

c(j,t)

t=0

c(1,1) c(2,1) c(3,1) c(4,1) c(5,1) . . . c(n,1)

c(1,2) c(2,2) c(3,2) c(4,2) c(5,2) . . . c(n,2)t=2

c(1,3) c(2,3) c(3,3) c(4,3) c(5,3) . . . c(n,3)t=3

c(1,4) c(2,4) c(3,4) c(4,4) c(5,4) . . . c(n,4)t=4

c(1,5) c(2,5) c(3,5) c(4,5) c(5,5) . . . c(n,5)t=5

c(1,tn) c(2,tn) c(3,tn) c(4,tn) c(5,tn) . . . c(n,tn)t=tn  

Figure 6.1: The schematic diagram of one possible output over ࢚࢔ time steps for a  
1-D probabilistic multi-rule CA model with two CA sub-rules. 

The data length at each time step should be long enough to guarantee the correct 

identified result. Usually 500 iterations are sufficient to estimate the rules and the 

associated probabilities. 

The new identification algorithm for the probabilistic multi-rule CA based on the 

CA-OLS algorithm can be described as following steps. 

a) For any time step ݐ௞, ݇ ൌ 1, … , ܰ െ 1, where N is the number of time samples 

Apply the CA-OLS algorithm to determine the rule ௞݂ such that 

ܿሺݔ, ,ݕ ௞ାଵሻݐ ൌ ௞݂ሺݐ௞ሻ ൌ ෍ ௞௜߶௞௜ߠ

ேೖ

௜ୀ଴

ሺݐ௞ሻ                         ሺ6.26ሻ 
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b) If ݇ ൌ ܰ, determine the number ݉ of distinct rules in ॲ which are involved in 

the evolution of the probabilistic multi-rule CA model. 

Determine the number of occurrences of each event ݊௜ and the probability of each 

event  

௜݌ ൎ
݊௜

ܰ , ݅ ൌ 1, … , ݉                                        ሺ6.27ሻ 

6.4 Simulation Studies 

The new identification algorithm for probabilistic multi-rule CA models will be 

tested on one-dimensional and two-dimensional examples. The probabilistic 

multi-rule CA rules can include several rules which can share the same 

neighbourhood but different CA rules, or share the same CA rule with different 

neighbourhoods, or have different rules in different neighbourhoods. Four 

simulations will be demonstrated in this section.  

6.4.1 One­dimensional Probabilistic Multi­rule CA Model 

6.4.1.1 Different Rules in the Same Neighbourhood 

To begin with a simple example, the simulation and identification were employed 

on a one-dimensional 3-site probabilistic multi-rule CA model with two different 

rules. Given the rules in the model are Rule22 and Rule54 which are shown in 

Table 6.1 and 6.2, the probability of each rule is set to 0.5. Both rules are in the 

von Neumann neighbourhood. 

The simulation with a periodic boundary condition started from 500 random data 

with the value of 0 or 1. The evolution was applied over 100 time steps, which is 

shown in Fig.6.2. 
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Figure 6.2: 1D probabilistic multi-rule CA model evolution over 100 time steps. The 
red cells represent 0 and the yellow ones represent 1.    
  

Table 6.1: Rule 22 for the one-dimensional 3-site probabilistic multi-rule CA   
example 

݅ ܿሺ݆ െ 1, ݐ െ 1ሻ ܿሺ݆, ݐ െ 1ሻ ܿሺ݆ ൅ 1, ݐ െ 1ሻ ܿሺ݆,  ሻݐ

0 0 0 0 0 

1 0 0 1 1 

2 0 1 0 1 

3 0 1 1 0 

4 1 0 0 1 

5 1 0 1 0 

6 1 1 0 0 

7 1 1 1 0 

 

Table 6.2: Rule 54 for the one-dimensional 3-site probabilistic multi-rule CA 
example 

݅ ܿሺ݆ െ 1, ݐ െ 1ሻ ܿሺ݆, ݐ െ 1ሻ ܿሺ݆ ൅ 1, ݐ െ 1ሻ ܿሺ݆,  ሻݐ

0 0 0 0 0 

1 0 0 1 1 

2 0 1 0 1 

3 0 1 1 0 

4 1 0 0 1 

5 1 0 1 1 

6 1 1 0 0 

7 1 1 1 0 
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Using the proposed algorithm, two polynomial rules were identified, which are 

listed in Table 6.3 and 6.4. 

Table 6.3: Identified polynomial terms for the Rule22 

Terms Parameters ERR(%) 

ܿሺ݆ െ 1, ݐ െ 1ሻ 1.0 11.98 

ܿሺ݆ െ 1, ݐ െ 1ሻܿሺ݆, ݐ െ 1ሻ -2.0 15.24 

ܿሺ݆, ݐ െ 1ሻ 1.0 12.29 

ܿሺ݆, ݐ െ 1ሻܿሺ݆ ൅ 1, ݐ െ 1ሻ -2.0 5.78 

ܿሺ݆ ൅ 1, ݐ െ 1ሻ 1.0 15.55 

ܿሺ݆ െ 1, ݐ െ 1ሻܿሺ݆, ݐ െ 1ሻܿሺ݆ ൅ 1, ݐ െ 1ሻ 3.0 7.08 

ܿሺ݆ െ 1, ݐ െ 1ሻܿሺ݆ ൅ 1, ݐ െ 1ሻ -2.0 32.08 

 

Table 6.4: Identified polynomial terms for the Rule54 

Terms Parameters ERR(%) 

ܿሺ݆ െ 1, ݐ െ 1ሻ 1.0 22.97 

ܿሺ݆ െ 1, ݐ െ 1ሻܿሺ݆, ݐ െ 1ሻ -2.0 25.97 

ܿሺ݆, ݐ െ 1ሻ 1.0 12.45 

ܿሺ݆, ݐ െ 1ሻܿሺ݆ ൅ 1, ݐ െ 1ሻ -2.0 5.79 

ܿሺ݆ ൅ 1, ݐ െ 1ሻ 1.0 18.06 

ܿሺ݆ െ 1, ݐ െ 1ሻܿሺ݆, ݐ െ 1ሻܿሺ݆ ൅ 1, ݐ െ 1ሻ 2.0 6.44 

ܿሺ݆ െ 1, ݐ െ 1ሻܿሺ݆ ൅ 1, ݐ െ 1ሻ -1.0 8.32 

 

The identified rules can be written as  

ଵ݂ሺݐ െ 1ሻ ൌ ܿሺ݆ െ 1, ݐ െ 1ሻ ൅ ܿሺ݆, ݐ െ 1ሻ ൅ ܿሺ݆ ൅ 1, ݐ െ 1ሻ

െ 2ܿሺ݆ െ 1, ݐ െ 1ሻܿሺ݆, ݐ െ 1ሻ െ 2ܿሺ݆ െ 1, ݐ െ 1ሻܿሺ݆ ൅ 1, ݐ െ 1ሻ

െ 2ܿሺ݆, ݐ െ 1ሻܿሺ݆ ൅ 1, ݐ െ 1ሻ

൅ 3ܿሺ݆ െ 1, ݐ െ 1ሻܿሺ݆, ݐ െ 1ሻܿሺ݆ ൅ 1, ݐ െ 1ሻ                            ሺ6.28ሻ 
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ଶ݂ሺݐ െ 1ሻ ൌ ܿሺ݆ െ 1, ݐ െ 1ሻ ൅ ܿሺ݆, ݐ െ 1ሻ ൅ ܿሺ݆ ൅ 1, ݐ െ 1ሻ

െ 2ܿሺ݆ െ 1, ݐ െ 1ሻ ܿሺ݆, ݐ െ 1ሻ െ ܿሺ݆ െ 1, ݐ െ 1ሻܿሺ݆ ൅ 1, ݐ െ 1ሻ

െ 2ܿሺ݆, ݐ െ 1ሻܿሺ݆ ൅ 1, ݐ െ 1ሻ

൅ 2ܿሺ݆ െ 1, ݐ െ 1ሻܿሺ݆, ݐ െ 1ሻܿሺ݆ ൅ 1, ݐ െ 1ሻ                             ሺ6.29ሻ 

The next step is to identify the probabilities of these two distinct rules. By 

counting how many times each rule occurs over 100 time steps and determining 

the relative frequency, the probabilities of ܴ22݈݁ݑ in Eqn.(6.28) and ܴ54݈݁ݑ in 

Eqn.(6.29) are ݌ோ௨௟௘ଶଶ ൌ 0.49  and ݌ோ௨௟௘ହସ ൌ 0.51 . Better estimates for the 

probabilities of rules can be obtained if the CA evolution is observed over a 

longer time interval. For example, the same identification algorithm can be 

employed to over 100×100 time steps. 

6.4.1.2 The Same Rules in Different Neighbourhoods 

In this example, a simulation was applied on a one-dimensional probabilistic 

multi-rule CA model with two same rules of Rule22, but in different 

neighbourhoods. One is in the von Neumann neighbourhood and the other is in 

the exotic 1 neighbourhood. 500 random binary data were used to set as the 

initialisation with a periodic boundary. The probability of Rule22 in the von 

Neumann neighbourhood was set to 0.3 and the other rule was set to 0.7. In 

Fig.6.3, the pattern was developed from the evolution of this model over 100 time 

steps. 

 

Figure 6.3: The simulation of the 1D probabilistic multi-rule model with two rules 
in different neighbourhoods over 100 time steps. The red cells represent 0 and the 
yellow cells represent 1.  
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Table 6.5: Identified polynomial terms for the Rule22 in the von Neumann 
neighbourhood 

Terms Parameters ERR(%) 

ܿሺ݆ െ 1, ݐ െ 1ሻ 1.0 14.34 

ܿሺ݆ െ 1, ݐ െ 1ሻܿሺ݆, ݐ െ 1ሻ -2.0 14.50 

ܿሺ݆, ݐ െ 1ሻ 1.0 9.77 

ܿሺ݆, ݐ െ 1ሻܿሺ݆ ൅ 1, ݐ െ 1ሻ -2.0 6.34 

ܿሺ݆ ൅ 1, ݐ െ 1ሻ 1.0 17.09 

ܿሺ݆ െ 1, ݐ െ 1ሻܿሺ݆, ݐ െ 1ሻܿሺ݆ ൅ 1, ݐ െ 1ሻ 3.0 6.43 

ܿሺ݆ െ 1, ݐ െ 1ሻܿሺ݆ ൅ 1, ݐ െ 1ሻ -2.0 31.53 

 

Table 6.6: Identified polynomial terms for the Rule22 in the exotic 1 neighbourhood 

Terms Parameters ERR(%) 

ܿሺ݆, ݐ െ 1ሻ 1.0 8.56 

ܿሺ݆ െ 1, ݐ െ 1ሻܿሺ݆, ݐ െ 1ሻ -2.0 9.28 

ܿሺ݆ െ 1, ݐ െ 1ሻ 1.0 15.08 

ܿሺ݆ െ 2, ݐ െ 1ሻܿሺ݆, ݐ െ 1ሻ -2.0 7.87 

ܿሺ݆ െ 2, ݐ െ 1ሻܿሺ݆ െ 1, ݐ െ 1ሻܿሺ݆, ݐ െ 1ሻ 3.0 8.54 

ܿሺ݆ െ 2, ݐ െ 1ሻܿሺ݆ െ 1, ݐ െ 1ሻ -2.0 16.41 

ܿሺ݆ െ 2, ݐ െ 1ሻ 1.0 34.25 

 

Based on the simulation data in Fig.6.3, two polynomial rules were detected using 

the proposed identification algorithm, which are given in Table 6.5 and 6.6. 

Eqn.(6.30) and (6.31) are the polynomial expressions of the rules in Table 6.5 and 

6.6 respectively. 
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ଵ݂ሺݐ െ 1ሻ ൌ ܿሺ݆ െ 1, ݐ െ 1ሻ ൅ ܿሺ݆, ݐ െ 1ሻ ൅ ܿሺ݆ ൅ 1, ݐ െ 1ሻ

െ 2ܿሺ݆ െ 1, ݐ െ 1ሻܿሺ݆, ݐ െ 1ሻ െ 2ܿሺ݆ െ 1, ݐ െ 1ሻܿሺ݆ ൅ 1, ݐ െ 1ሻ  

െ 2ܿሺ݆, ݐ െ 1ሻܿሺ݆ ൅ 1, ݐ െ 1ሻ

൅ 3ܿሺ݆ െ 1, ݐ െ 1ሻܿሺ݆, ݐ െ 1ሻܿሺ݆ ൅ 1, ݐ െ 1ሻ                             ሺ6.30ሻ 

ଶ݂ሺݐ െ 1ሻ ൌ ܿሺ݆ െ 2, ݐ െ 1ሻ ൅ ܿሺ݆ െ 1, ݐ െ 1ሻ ൅ ܿሺ݆, ݐ െ 1ሻ

െ 2ܿሺ݆ െ 2, ݐ െ 1ሻܿሺ݆ െ 1, ݐ െ 1ሻ െ 2ܿሺ݆ െ 2, ݐ െ 1ሻܿሺ݆, ݐ െ 1ሻ

െ 2ܿሺ݆ െ 1, ݐ െ 1ሻܿሺ݆, ݐ െ 1ሻ

൅ 3ܿሺ݆ െ 2, ݐ െ 1ሻܿሺ݆ െ 1, ݐ െ 1ሻܿሺ݆, ݐ െ 1ሻ                             ሺ6.31ሻ 

As same as the method shown in Section 6.4.1.1, the probability of each rule can 

be estimated by calculating the frequency of its occurrence over 100 time steps. 

The estimated probability of Rule22 in the von Neumann neighbourhood is 

௩௢௡݌ ൌ 0.28 and the one of Rule22 in the exotic 1 neighbourhood is ݌௘௫௢௧௜௖ ൌ

0.72.  

6.4.1.3 Different Rules in Different Neighbourhoods 

The identification algorithm was then tested on a more complicated 1-D model, 

which contains two different rules in different neighbourhood radiuses 

respectively. The simulation, shown in Fig.6.4, started from 800 random binary 

data with the periodic boundary condition. The probability of Rule22 in the von 

Neumann neighbourhood is set to 0.4 and Rule54 in the exotic 1 neighbourhood 

is 0.6. 

In the identification, two rules with different model structures were identified 

from the data in Fig.6.4. According to the identified polynomial terms in Table 

6.7 and 6.8, rules can be described as polynomials in Eqn. (6.32) and (6.33). 
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Figure 6.4: The simulation on the 1D CA probabilistic multi-rule model over 100 
time steps with two rules: one is Rule22 in a von Neumann neighbourhood and the 
other is Rule54 in an exotic 1 neighbourhood. The red cells represent 0 and the 
yellow cells represent 1. 

 

Table 6.7: Identified polynomial terms for Rule22 in the von Neumann 
neighbourhood 

Terms Parameters ERR(%) 

ܿሺ݆ ൅ 1, ݐ െ 1ሻ 1.0 9.08 

ܿሺ݆, ݐ െ 1ሻܿሺ݆ ൅ 1, ݐ െ 1ሻ -2.0 9.08 

ܿሺ݆, ݐ െ 1ሻ 1.0 15.84 

ܿሺ݆ െ 1, ݐ െ 1ሻܿሺ݆, ݐ െ 1ሻ -2.0 8.0 

ܿሺ݆ െ 1, ݐ െ 1ሻܿሺ݆, ݐ െ 1ሻܿሺ݆ ൅ 1, ݐ െ 1ሻ 3.0 8.0 

ܿሺ݆ െ 1, ݐ െ 1ሻܿሺ݆ ൅ 1, ݐ െ 1ሻ -2.0 15.93 

ܿሺ݆ െ 1, ݐ െ 1ሻ 1.0 34.08 
 

Table 6.8: Identified polynomial terms for Rule54 in the exotic 1 neighbourhood 

Terms Parameters ERR(%) 

ܿሺ݆ െ 2, ݐ െ 1ሻ 1.0 24.63 

ܿሺ݆ െ 2, ݐ െ 1ሻܿሺ݆ െ 1, ݐ െ 1ሻ -2.0 24.63 

ܿሺ݆ െ 1, ݐ െ 1ሻ 1.0 12.19 

ܿሺ݆ െ 1, ݐ െ 1ሻܿሺ݆, ݐ െ 1ሻ -2.0 6.16 

ܿሺ݆, ݐ െ 1ሻ 1.0 17.88 

ܿሺ݆ െ 2, ݐ െ 1ሻܿሺ݆ െ 1, ݐ െ 1ሻܿሺ݆, ݐ െ 1ሻ 2.0 6.16 

ܿሺ݆ െ 2, ݐ െ 1ሻܿሺ݆, ݐ െ 1ሻ -1.0 8.36 
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ଵ݂ሺݐ െ 1ሻ ൌ ܿሺ݆ െ 1, ݐ െ 1ሻ ൅ ܿሺ݆, ݐ െ 1ሻ ൅ ܿሺ݆ ൅ 1, ݐ െ 1ሻ

െ 2ܿሺ݆ െ 1, ݐ െ 1ሻܿሺ݆, ݐ െ 1ሻ െ 2ܿሺ݆ െ 1, ݐ െ 1ሻܿሺ݆ ൅ 1, ݐ െ 1ሻ  

െ 2ܿሺ݆, ݐ െ 1ሻܿሺ݆ ൅ 1, ݐ െ 1ሻ

൅ 3ܿሺ݆ െ 1, ݐ െ 1ሻܿሺ݆, ݐ െ 1ሻܿሺ݆ ൅ 1, ݐ െ 1ሻ                             ሺ6.32ሻ 

ଶ݂ሺݐ െ 1ሻ ൌ ܿሺ݆ െ 2, ݐ െ 1ሻ ൅ ܿሺ݆ െ 1, ݐ െ 1ሻ ൅ ܿሺ݆, ݐ െ 1ሻ

െ 2ܿሺ݆ െ 2, ݐ െ 1ሻܿሺ݆ െ 1, ݐ െ 1ሻ െ ܿሺ݆ െ 2, ݐ െ 1ሻܿሺ݆, ݐ െ 1ሻ

െ 2ܿሺ݆ െ 1, ݐ െ 1ሻܿሺ݆, ݐ െ 1ሻ  

൅ 2ܿሺ݆ െ 2, ݐ െ 1ሻܿሺ݆ െ 1, ݐ െ 1ሻܿሺ݆, ݐ െ 1ሻ                             ሺ6.33ሻ 

By computing the frequency of its occurrence over 100 time steps, the estimated 

probability of Rule22 in the von Neumann neighbourhood is ݌ோమమכ ൌ 0.4 and the 

one of Rule54 in the exotic 1 neighbourhood is ݌ோఱరכ ൌ 0.6.  

6.4.2 Two­dimensional Probabilistic Multi­rule CA Model 

A 2-D probabilistic multi-rule CA model was simulated on a lattice of 50×50 

with a periodic boundary condition. The simulation developed over 100 time 

steps with the initialisation of 50×50 random binary data. Two rules are included 

in this model, one is Rule338314618 with the probability of 0.75 and the 

neighbourhood shown in Fig.6.5(a) and the other is Rule1091913014 with the 

probability of 0.25 and the neighbourhood of Fig.6.5(b). 

Two rules were identified from the 100 time step simulation data. The identified 

polynomial terms are shown in Table 6.9 and 6.10. The models can be written in 

integer-parameterized polynomials as Eqn. (6.34) and (6.35).  

Based on the evolution data over 100 time steps, the estimated probabilities of the 

rules which are included in this 2D probabilistic multi-rule CA model are  

ோయయఴయభరలభఴ݌ ൌ 0.76  for the Rule338314618 and ݌ோభబవభవభయబభర ൌ 0.24  for the 

Rule1091913014.  
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c(i+1,j)

c(i,j+1)

 

(a)                                                            (b)                                      

Figure 6.5: The neighbourhoods of rules in the 2D probabilistic multi-rule CA 
model. (a) is for Rule338314618 and (b) is for Rule1091913014 

 

Table 6.9: Identified polynomial terms for Rule338314618 in the neighbourhood of 
Fig.6.5(a) 

  Terms (at the ݐ െ 1 time step) Parameters ERR(%) 

ܿሺ݅, ݆ െ 1ሻ 1.0 27.36 

ܿሺ݅ െ 1, ݆ሻܿሺ݅, ݆ െ 1ሻܿሺ݅, ݆ ൅ 1ሻ 2.0 8.82 

ܿሺ݅, ݆ ൅ 1ሻ 1.0 7.05 

ܿሺ݅, ݆ െ 1ሻܿሺ݅, ݆ሻܿሺ݅, ݆ ൅ 1ሻ -1.0 6.60 

ܿሺ݅ െ 1, ݆ሻܿሺ݅, ݆ ൅ 1ሻ -2.0 6.81 

ܿሺ݅ െ 1, ݆ሻ 1.0 12.14 

ܿሺ݅ െ 1, ݆ሻܿሺ݅, ݆ െ 1ሻ -2.0 11.29 

ܿሺ݅ െ 1, ݆ሻܿሺ݅, ݆ െ 1ሻܿሺ݅, ݆ሻ 1.0 13.07 

ܿሺ݅, ݆ െ 1ሻܿሺ݅, ݆ ൅ 1ሻ -1.0 6.84 
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Table 6.10: Identified polynomial terms for Rule1091913014 in the neighbourhood 
of Fig.6.5(b) 

Terms (at the ݐ െ 1 time step) Parameters ERR(%) 

ܿሺ݅, ݆ െ 1ሻ 1.0 16.10 

ܿሺ݅, ݆ െ 1ሻܿሺ݅ ൅ 1, ݆ሻ -2.0 16.44 

ܿሺ݅ ൅ 1, ݆ሻ 1.0 13.49 

ܿሺ݅, ݆ ൅ 1ሻܿሺ݅ ൅ 1, ݆ሻ -2.0 7.10 

ܿሺ݅, ݆ ൅ 1ሻ 1.0 10.46 

ܿሺ݅, ݆ െ 1ሻܿሺ݅, ݆ ൅ 1ሻܿሺ݅ ൅ 1, ݆ሻ 2.0 7.25 

ܿሺ݅, ݆ሻܿሺ݅, ݆ ൅ 1ሻ -2.0 2.05 

ܿሺ݅, ݆ሻܿሺ݅, ݆ ൅ 1ሻܿሺ݅ ൅ 1, ݆ሻ 2.0 2.05 

ܿሺ݅, ݆ െ 1ሻܿሺ݅, ݆ሻܿሺ݅, ݆ ൅ 1ሻ 3.0 1.18 

ܿሺ݅, ݆ െ 1ሻܿሺ݅, ݆ሻ -2.0 2.55 

ܿሺ݅, ݆ሻ 1.0 9.28 

ܿሺ݅, ݆ െ 1ሻܿሺ݅, ݆ ൅ 1ሻ -1.0 1.87 

ܿሺ݅, ݆ െ 1ሻܿሺ݅, ݆ሻ ܿሺ݅, ݆ ൅ 1ሻܿሺ݅ ൅ 1, ݆ሻ -3.0 1.80 

ܿሺ݅, ݆ െ 1ሻܿሺ݅, ݆ሻ ܿሺ݅ ൅ 1, ݆ሻ 2.0 3.74 

ܿሺ݅, ݆ሻ ܿሺ݅ ൅ 1, ݆ሻ -1.0 4.64 

 

ଵ݂ሺݐ െ 1ሻ  ൌ ܿሺ݅, ݆ െ 1, ݐ െ 1ሻ ൅ ܿሺ݅, ݆ ൅ 1, ݐ െ 1ሻ ൅ ܿሺ݅ െ 1, ݆, ݐ െ 1ሻ

െ 2ܿሺ݅ െ 1, ݆, ݐ െ 1ሻܿሺ݅, ݆ ൅ 1, ݐ െ 1ሻ

െ 2ܿሺ݅ െ 1, ݆, ݐ െ 1ሻܿሺ݅, ݆ െ 1, ݐ െ 1ሻ  

െ ܿሺ݅, ݆ െ 1, ݐ െ 1ሻܿሺ݅, ݆ ൅ 1, ݐ െ 1ሻ

൅ 2ܿሺ݅ െ 1, ݆, ݐ െ 1ሻܿሺ݅, ݆ െ 1, ݐ െ 1ሻܿሺ݅, ݆ ൅ 1, ݐ െ 1ሻ

െ ܿሺ݅, ݆ െ 1, ݐ െ 1ሻܿሺ݅, ݆, ݐ െ 1ሻܿሺ݅, ݆ ൅ 1, ݐ െ 1ሻ

൅ ܿሺ݅ െ 1, ݆, ݐ െ 1ሻܿሺ݅, ݆ െ 1, ݐ െ 1ሻܿሺ݅, ݆, ݐ െ 1ሻ                      ሺ6.34ሻ 
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      ଶ݂ሺݐ െ 1ሻ ൌ ܿሺ݅, ݆ െ 1, ݐ െ 1ሻ ൅ ܿሺ݅ ൅ 1, ݆, ݐ െ 1ሻ ൅ ܿሺ݅, ݆ ൅ 1, ݐ െ 1ሻ

൅ ܿሺ݅, ݆, ݐ െ 1ሻ െ 2ܿሺ݅, ݆ െ 1, ݐ െ 1ሻܿሺ݅ ൅ 1, ݆, ݐ െ 1ሻ

െ 2ܿሺ݅, ݆ ൅ 1, ݐ െ 1ሻܿሺ݅ ൅ 1, ݆, ݐ െ 1ሻ

െ 2ܿሺ݅, ݆, ݐ െ 1ሻܿሺ݅, ݆ ൅ 1, ݐ െ 1ሻ െ 2ܿሺ݅, ݆ െ 1, ݐ െ 1ሻܿሺ݅, ݆, ݐ െ 1ሻ

െ ܿሺ݅, ݆ െ 1, ݐ െ 1ሻܿሺ݅, ݆ ൅ 1, ݐ െ 1ሻ

െ ܿሺ݅, ݆, ݐ െ 1ሻܿሺ݅ ൅ 1, ݆, ݐ െ 1ሻ

൅ 2ܿሺ݅, ݆ሻܿሺ݅, ݆ ൅ 1, ݐ െ 1ሻ  ܿሺ݅ ൅ 1, ݆, ݐ െ 1ሻ

൅ 2ܿሺ݅, ݆ െ 1, ݐ െ 1ሻܿሺ݅, ݆ ൅ 1, ݐ െ 1ሻܿሺ݅ ൅ 1, ݆, ݐ െ 1ሻ

൅ 3ܿሺ݅, ݆ െ 1, ݐ െ 1ሻܿሺ݅, ݆, ݐ െ 1ሻܿሺ݅, ݆ ൅ 1, ݐ െ 1ሻ

൅ 2ܿሺ݅, ݆ െ 1, ݐ െ 1ሻܿሺ݅, ݆, ݐ െ 1ሻ ܿሺ݅ ൅ 1, ݆, ݐ െ 1ሻ

െ 3ܿሺ݅, ݆ െ 1, ݐ െ 1ሻܿሺ݅, ݆, ݐ െ 1ሻܿሺ݅, ݆ ൅ 1, ݐ െ 1ሻܿሺ݅ ൅ 1, ݆, ݐ െ 1ሻ 

ሺ6.35ሻ 

6.5 Conclusions 

With the development of CA, CA models have wider and wider applications so 

that the identification of CA becomes more and more important. The 

identification is a key component in the CA modelling, but it is still a hard and 

challenging topic which few investigators have studied.  

This chapter proposed a new algorithm for the identification of a probabilistic 

multi-rule CA based only on observations. This new method, which is based on 

the CA-OLS algorithm can be used to determine the model structure as well as 

estimate the probabilities associated with each individual rules. This new 

algorithm has been demonstrated through numerical simulations involving 

examples of one- and two-dimensional CAs.  
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Chapter 7  

Probabilistic Multi­rule CA Models with Noise  

7.1 Introduction 

Noise is an unwanted perturbation for dynamical systems in signal processing. In 

practice, seldom processes or systems can be free of noise. In the study of 

modelling natural phenomena, noise cannot be ignored, because it may change, 

influence or perturb the pattern formation process or may affect the system 

identification process. In an ecological system for example, noise can be caused 

by inherent uncertainties such as inhomogeneous distribution of food, or can be 

caused by human activities including pollution, resource exploitation and land-

use change [156]. Noise can disturb the dynamics of an ecosystem making future 

predictions difficult. It is very important that the effect of noise is taken into 

account when modelling a dynamical system.  

When modelling a discrete-state spatio-temporal system, such as a Cellular 

Automata (CA), two categories of random perturbations can be considered, static 

noise and dynamic noise. Generally, CA systems disturbed by noise can be 

regarded as probabilistic cellular automata (PCA). The forward (simulation) 

problem of PCAs has been investigated in [151, 157, 158]. The problem of 

identifying binary PCA from noisy data was addressed in [69]. 

In this chapter, the probabilistic multi-rule cellular automata corrupted by static 

and dynamic noise will be discussed respectively. The definitions of these two 

categories of perturbations are given in Section 7.2. Also, the effect of static and 

dynamic noise on the probabilistic multi-rule CA pattern formation and 

identification are compared. Section 7.3 proposes an extension to the
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identification method for probabilistic multi-rule CA models which were 

proposed in Chapter 5. Section 7.4 includes the conclusions to this chapter. 

7.2 Types of Noise Involved in Probabilistic Multi­
rule CA models 

A number of quantitative measures will be proposed to characterise the effect of 

static and dynamic noise on the evolution and identification of probabilistic 

multi-rule CA systems. Several numerical examples will be used to investigate to 

what extent static and dynamic noise affect the evolution of probabilistic multi-

rule CAs in this section. 

7.2.1 Static Noise 

In pattern formation, static noise as an external perturbation can be added to the 

model pattern after the evolution is over, which means static noise is not involved 

in the evolution of CA patterns. Thus, for a binary CA, the pattern corrupted by 

static noise can be obtained by randomly flipping a limited number of states in the 

noise-free pattern according to a specified probability ݌௦ ൌ ݊ଵ/ܰ, where ݊ଵ is the 

number of states to be flipped and N is the number of cells in the lattice.  

A CA system which is corrupted by static noise can be expressed as 

ሻݐሺݕ ൌ ࣠ሺݕሺݐ െ 1ሻ, … , ݐ൫ݕ െ ݊௬൯, ईሺݐ െ 1ሻ, … , ईሺݐ െ ݊ईሻሻ ൅ ݁௦ሺݐሻ     ሺ7.1ሻ 

where ࣠  is a CA rule. ݕሺݐሻ,ईሺݐሻ and ݁௦ሺݐሻ are system output, input and static 

noise sequences respectively. A simulation example is given in Fig.7.1, where the 

transition rule is a probabilistic two-rule CA with one-dimensional Rule27 and 

Rule42 on a 3-site von Neumann neighbourhood. Rule27 and Rule42 are shown 

in Table 7.1and 7.2 respectively. 

Table 7.1: Rule 27 for the 1-D 3-site probabilistic multi-rule CA  

000 001 010 011 100 101 110 111 

1 1 0 1 1 0 0 0 
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Table 7.2: Rule 42 for the 1-D 3-site probabilistic multi-rule CA  

000 001 010 011 100 101 110 111 

0 1 0 1 0 1 0 0 

 

Fig.7.1(a) shows the original noise-free pattern (݌௦ ൌ 0), and Fig.7.1(b)-(d) show 

the patterns contaminated by static noise with probabilities ݌௦ ൌ ௦݌ ,0.06 ൌ 0.12, 

and ݌௦ ൌ 0.25 respectively. All the patterns in Fig.7.1 were developed on a lattice 

of 1ൈ100 over 100 time steps with a periodic boundary condition. The system 

was simulated using the same initial condition of a randomly generated binary 

vector and was based on the same probabilistic two-rule CA model in which 

probabilities of Rule27 and Rule42 are 50% and 50% respectively.  

 

           

(a) ࢙࢖ ൌ ૙                                        (b) ࢙࢖ ൌ ૙. ૙૟ 

           

(c) ࢙࢖ ൌ ૙. ૚૛                                       (d) ࢙࢖ ൌ ૙. ૛૞ 

Figure 7.1: Probabilistic two-rule CA patterns contaminated by various levels of 
static noise 
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In Fig.7.1, the red cell represents the state of 0 and the green one is the state of 1, 

which is the same in all other patterns in following sections. 

7.2.2 Dynamic Noise 

Unlike static noise, dynamic noise is directly involved in the evolution of the 

pattern formation and is commonly introduced by internal factors, so that 

dynamic noise needs to be added into the evolution of the pattern formation 

process. Thus, the state of each cell at current time step is determined by the 

noisy data at previous time steps. Dynamic noise can be measured in the same 

way as static noise.  

A CA system which is corrupted by static noise can be expressed as 

ሻݐሺݕ ൌ ࣠ ቀݕሺݐ െ 1ሻ, … , ݐ൫ݕ െ ݊௬൯, ईሺݐ െ 1ሻ, … , ईሺݐ െ ݊ईሻ, ݁ௗሺݐ െ 1ሻ, … , ݁ௗሺݐ െ

݊ईሻቁ                                                                                                            ሺ7.2ሻ                        

where ݁ௗሺݐሻ are dymanic noise sequences. 

Fig.7.2 gives evolutions of the probabilistic 1-D two-rule CA patterns corrupted 

with several levels of dynamic noise. In order to facilitate comparison of dynamic 

and static noise, the original noise-free evolution which is shown in Fig.7.2(a) is 

the same as Fig.7.1(a), and all other initial settings of the evolutions in Fig.7.2 are 

the same as the example in Fig.7.1 including the lattice size, time steps, periodic 

boundary condition and initialisation. The same probabilistic CA rule with 

probabilistic Rule27 and Rule42 is also employed here. 

           

(a) ࢊ࢖ ൌ ૙                                        (b) ࢊ࢖ ൌ ૙. ૙૟ 
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(c) ࢊ࢖ ൌ ૙. ૚૛                                       (d) ࢊ࢖ ൌ ૙. ૛૞ 

Figure 7.2: Probabilistic two-rule CA patterns contaminated by various levels of 
dynamic noise 

7.2.3 Effects of Noise 

For traditional dynamical systems, the signal-to-noise ratio is one of the 

commonly used measurements for the effect of noise on a designed signal. 

However, the signal-to-noise cannot be applied to qualify the noise in CA 

systems, because the magnitude of the noise in the CA system is equal to that of 

the designed signal, so that the ratio of the signal power to the noise power is 

always 1, that is, the signal-to-noise ratio is 1. An alternative measure of the noise 

effect is defined as 

௘ଵܬ ൌ
1
ܰ ෍ሺܿ௡ െ ܿ௢ሻଶ

௖א

                                            ሺ7.3ሻ 

where ܰ is the total number of cells in the lattice  on which the pattern evolves; 

ܿ௡ and ܿ௢ represent states of cells in the noisy and noise-free patterns respectively. 

Consider the examples of Fig.7.1(b) and Fig.7.2(b) in Section 7.2.1 and 7.2.2. 

The errors between the noisy and noise-free patterns are shown in Fig.7.3. 
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                           (a)                                       (b)                                       (c) 

                                                       

                                                                       (d)                                       (e) 

Figure 7.3: Effect measurements of static and dynamic noise in a 1-D probabilistic 
two-rule CA pattern. (a) the original noise-free pattern (b) the pattern with 6% 
static noise (c) the error pattern between the statically noisy and noise-free patterns 
(d) the pattern with 6% dynamic noise (e) the error pattern between the 
dynamically noisy and noise-free patterns. 

Fig.7.3 shows that the effect of dynamic noise on the evolution of a 1-D 

probabilistic two-rule CA system is much stronger than that of static noise. In 

order to quantify the difference between the effects of these two categories of 

perturbations in Fig.7.3, the number of cells disturbed by noise in the evolution 

on a 1×100 lattice over 100 time steps can be calculated, that is, 600 for the 6% 

static noise and 4201 for 6% dynamic noise.  

However, negative effect of static noise on the identification process of the 

underlying rules can be more significant than that of dynamic noise.  

The effect of the dynamic noise can be characterised by the following function: 

௘ଶܬ ൌ
1
ܰ ෍ሺܿ௡ െ ܿ௢௦௔ሻଶ

௖א

                                           ሺ7.4ሻ 
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where  ܰ is the total number of cells in the lattice . ܿ௡ and ܿ௢௦௔ represent states 

of cells in the noisy pattern and the one-step-head (OSA) output respectively. In 

the OSA prediction, all the cells are updated by strictly complying with the 

underlying rule according to the data from the noise corrupted pattern. Take a 1-D 

probabilistic two-rule CA pattern corrupted by noise for example. The pattern 

corrupted by 10% static noise, its corresponding OSA output and the error pattern 

are shown in Fig.7.4. Another example of the pattern corrupted by 10% dynamic 

noise is shown in Fig.7.5. All the patterns are evolved on a 1×100 lattice over 500 

iteration steps from a same original initial vector and periodic boundary condition. 

 

(a) The pattern with 10% static noise 

          

(b) The OSA output 

  

 (c) The error pattern between (a) and (b) 

Figure 7.4: Effects of 10% static noise on the identification of a probabilistic two-
rule CA system.  

 

 

(a) The pattern with 10% dynamic noise 
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(b) The OSA output 

 

(c) The error pattern between (a) and (b) 

Figure 7.5: Effects of 10% dynamic noise on the identification of a probabilistic 
two-rule CA system. 

 

Table 7.3: Effect Measurements of dynamic and static noise on the identification 

 
Number of cells disturbed by 

noise in the identification 
 ௘ଶܬ

10% static noise pattern 13066 0.2613

10% dynamic noise pattern 8533 0.1707

 

The results in Fig.7.4, Fig.7.5 and Table 7.3 show that adding the same amount of 

static and dynamic noise separately into the noise-free pattern can have different 

effects on the identification process. Static noise has greater influence on the 

identification process than dynamic noise. This means compared with dynamic 

noise, static noise makes the identification of a probabilistic multi-rule CA system 

more difficult and challenging, because the cells affected by dynamic noise can 

continue to follow the transition rule instead of providing worse training data to 

the identification as static noise dose.  
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7.3 Identification of Probabilistic Multi­rule CA 
Models with Noise 

In Chapter 6, a new identification method for probabilistic multi-rule CA systems 

was introduced. Based on the CA-OLS algorithm, this new method can 

effectively determine the rules which are included in the probabilistic multi-rule 

CA model. Simulation studies in Chapter 6 showed that the method had a good 

performance on the identification using noise-free data. In this section, this 

method will be tested on the patterns corrupted by static and dynamic noise 

respectively. 

7.3.1 Identification of CA Patterns Corrupted by Static Noise 

In the noise-free case, the identified CA rules in a probabilistic multi-rule CA 

model can be described by several polynomials, in which the parameter of each 

model term is integer. Owing to effects of noise, estimated term parameters may 

be biased and cannot necessary integers. This is because the discrete noise in the 

CA model may not have expectation zero, or may not be uncorrelated and 

homoscedastic, which may cause biased parameter estimation using the ordinary 

least squares (OLS) algorithm according to Gauss-Markov theorem. To deal with 

this problem, the parameters are rounded up to the nearest integers. However, this 

method may not be the best, because this method cannot always work fine for any 

level of noise. Hence, there could be a better solution for mapping the real 

coefficients to integers in the future work. 

In this section, several examples based on a single CA model or a 1-D 

probabilistic two-rule CA model will demonstrate the identification of different 

CA models contaminated by static noise.  

For the single rule example, a 1-D CA is simulated with a random initialisation 

and the periodic boundary condition on a 1×500 lattice over 10 time steps. The 

CA rule is Rule 22 with the von Neumann neighbourhood, which is shown in 

Table 7.4. Fig.7.6 shows the patterns corrupted by 0%, 3% and 5% static noise. 



Chapter 7. Probabilistic Multi-rule CA Models with Noise  

124 
 

Using the CA-OLS algorithm, identified model terms based on the noisy data in 

Fig.7.6 are shown in Table 7.6 and 7.7. Table 7.5 shows the list of identified 

model terms. After the rounding-up process, the identified model can be express 

by Eqn.(7.5) for the case of 3% noise and Eqn.(7.6) for the 5% noise. 

ܿሺ݆, ሻݐ ൌ ܿሺ݆ െ 1, ݐ െ 1ሻ ൅ ܿሺ݆, ݐ െ 1ሻ ൅ ܿሺ݆ ൅ 1, ݐ െ 1ሻ

െ 2ܿሺ݆ െ 1, ݐ െ 1ሻܿሺ݆, ݐ െ 1ሻ െ ܿሺ݆ െ 1, ݐ െ 1ሻܿሺ݆ ൅ 1, ݐ െ 1ሻ

െ 2ܿሺ݆, ݐ െ 1ሻܿሺ݆ ൅ 1, ݐ െ 1ሻ

൅ 2ܿሺ݆ െ 1, ݐ െ 1ሻܿሺ݆, ݐ െ 1ሻܿሺ݆ ൅ 1, ݐ െ 1ሻ                        ሺ7.5ሻ 

ܿሺ݆, ሻݐ ൌ ܿሺ݆ െ 1, ݐ െ 1ሻ ൅ ܿሺ݆, ݐ െ 1ሻ ൅ ܿሺ݆ ൅ 1, ݐ െ 1ሻ

െ 2ܿሺ݆ െ 1, ݐ െ 1ሻܿሺ݆, ݐ െ 1ሻ െ ܿሺ݆ െ 1, ݐ െ 1ሻܿሺ݆ ൅ 1, ݐ െ 1ሻ

െ 2ܿሺ݆, ݐ െ 1ሻܿሺ݆ ൅ 1, ݐ െ 1ሻ

൅ ܿሺ݆ െ 1, ݐ െ 1ሻܿሺ݆, ݐ െ 1ሻܿሺ݆ ൅ 1, ݐ െ 1ሻ                         ሺ7.6ሻ 

 

Table 7.4: Rule 54 for the 1-D 3-site CA model 

000 001 010 011 100 101 110 111 

0 1 1 0 1 1 0 0 

  

 

(a) The original pattern 

 

(b) The pattern with 3% static noise 

 

(c) The pattern with 5% static noise 

Figure 7.6: The evolution of 1-D CA pattern corrupted by static noise 
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Table 7.5: Identified model terms in the identification result  

ࣘ Identified Model Terms 

ࣘ૚ ࢉሺ࢐ െ ૚, ࢚ െ ૚ሻ 

ࣘ૛ ࢉሺ࢐, ࢚ െ ૚ሻ 

ࣘ૜ ࢉሺ࢐ ൅ ૚, ࢚ െ ૚ሻ 

ࣘ૝ ࢉሺ࢐ െ ૚, ࢚ െ ૚ሻࢉሺ࢐, ࢚ െ ૚ሻ 

ࣘ૞ ࢉሺ࢐ െ ૚, ࢚ െ ૚ሻࢉሺ࢐ ൅ ૚, ࢚ െ ૚ሻ 

ࣘ૟ ࢉሺ࢐, ࢚ െ ૚ሻ ሺ࢐ࢉ ൅ ૚, ࢚ െ ૚ሻ 

ࣘૠ ࢉሺ࢐ െ ૚, ࢚ െ ૚ሻࢉሺ࢐, ࢚ െ ૚ሻࢉሺ࢐ ൅ ૚, ࢚ െ ૚ሻ 

 

Table 7.6: Identified model terms for the 1-D CA corrupted by 3% static noise  

 ߶ଵ ߶ଶ ߶ଷ ߶ସ ߶ହ ߶଺ ߶଻ 

߶ 0.9319 0.8727 0.8865 -1.7214 -0.9055 -1.6739 1.6562

Rule54 1 1 1 -2 -1 -2 2 

 

Table 7.7: Identified model terms for the 1-D CA corrupted by 5% static noise 

 ߶ଵ ߶ଶ ߶ଷ ߶ସ ߶ହ ߶଺ ߶଻ 

߶ 0.8598 0.8008 0.8642 -1.5389 -0.8771 -1.5290 1.4927

Rule54 1 1 1 -2 -1 -2 2 

 

The identified result of Eqn.(7.6) shows when the static noise reaches 5%, it is 

challenging for CA-OLS algorithm to identify the correct model. 

For a 1-D two-rule CA model, the new CA-OLS based identification method 

proposed in chapter 6 is tested on the statically noisy data. This probabilistic two-

rule CA model includes Rule 22 and Rule 54 with probabilities of 70% and 30% 

separately on a 3-site von Neumann neighbourhood. Rule 22 and Rule 54 are 

shown in Table 7.8 and 7.4.  
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Table 7.8: Rule 22 for the 1-D 3-site probabilistic two-rule CA  

000 001 010 011 100 101 110 111 

0 1 1 0 1 0 0 0 
 

With the 1.5% static noise, the simulation is evolved on a 1×500 lattice over 10 

iteration steps with a random initial vector and the periodic boundary condition. 

The evolution results are shown in Fig.7.7, and all rules using at these 10 time 

steps are shown in Table 7.9. 

 

 

(a) The original pattern 

  

(b) The pattern with 1.5% static noise 

Figure 7.7: The evolution of a probabilistic two-rule CA pattern corrupted by 1.5% 
static noise 

 

Each rule in this probabilistic two-rule CA model is a basic CA rule which can be 

expressed as a linear combination of model terms, that is,  ଴݂ሺܿሻ  ൌ ∑ ௜߶௜ሺܿሻேߠ
௜ୀ଴ , 

where ܿ is the state of the cell in the lattice, ߶௜ሺܿሻ are model terms which are 

constructed by the cells in a neighbourhood, and ߠ௜ are the parameters of terms to 

be estimated. For this one-dimensional case, the neighbourhood is set as ሼܿሺ݆ െ

1, ݐ െ 1ሻ, ܿሺ݆, ݐ െ 1ሻ, ܿሺ݆ ൅ 1, ݐ െ 1ሻሽ, where ܿሺ݆, ݐ െ 1ሻ represents the state of the 

cell at the position ݆ at time instant ݐ െ 1. Table 7.10 shows the identification 

result based on the noisy pattern of Fig.7.7(b). 
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Table 7.9: CA Rules involved in the evolution of the statically noisy pattern 

Time steps Rules 

t=1 Rule54 

t=2 Rule22 

t=3 Rule54 

t=4 Rule22 

t=5 Rule22 

t=6 Rule22 

t=7 Rule54 

t=8 Rule22 

t=9 Rule22 

t=10 Rule22 

 

Table 7.10: The identification result based on the pattern with 1.5% static noise 

 ߶ଵ ߶ଶ ߶ଷ ߶ସ ߶ହ ߶଺ ߶଻ 

t=1 1.0 1.0 0.9857 -1.9848 -1.0061 -1.9857 2.0458 

t=2 0.9474 0.9184 0.9737 -1.8273 -1.6811 -1.8344 2.5140 

t=3 0.9231 0.9714 1.0 -1.8756 -0.9231 -1.9337 1.8682 

t=4 0.9398 0.9394 0.9157 -1.8488 -1.7304 -1.8248 2.6274 

t=5 0.8939 0.9211 0.9394 -1.8150 -1.7281 -1.8392 2.6278 

t=6 0.9559 0.9167 0.9559 -1.8185 -1.8529 -1.8455 2.6885 

t=7 0.9683 0.9706 0.9524 -1.8972 -0.9206 -1.8813 1.8079 

t=8 0.9535 0.8923 0.9651 -1.7458 -1.8075 -1.8241 2.5665 

t=9 0.9492 0.8696 0.9661 -1.7610 -1.8127 -1.7780 2.5891 

t=10 0.9683 0.9444 0.9206 -1.8719 -1.7525 -1.8243 2.6759 

Rule22 1 1 1 -2 -2 -2 3 

Rule54 1 1 1 -2 -1 -2 2 
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It is found in Table 7.10 that most estimated parameters are not integers because 

not all the data in the statically noisy pattern obey the underlying transition rule, 

which introduces error in the identification result. After rounding all the 

parameters to the nearest integers, the identified rules can be written as  

ܿሺ݆, ሻݐ ൌ ܿሺ݆ െ 1, ݐ െ 1ሻ ൅ ܿሺ݆, ݐ െ 1ሻ ൅ ܿሺ݆ ൅ 1, ݐ െ 1ሻ

െ 2ܿሺ݆ െ 1, ݐ െ 1ሻܿሺ݆, ݐ െ 1ሻ െ 2ܿሺ݆ െ 1, ݐ െ 1ሻܿሺ݆ ൅ 1, ݐ െ 1ሻ 

െ 2ܿሺ݆, ݐ െ 1ሻ ܿሺ݆ ൅ 1, ݐ െ 1ሻ

൅ 3ܿሺ݆ െ 1, ݐ െ 1ሻܿሺ݆, ݐ െ 1ሻܿሺ݆ ൅ 1, ݐ െ 1ሻ 

ܿሺ݆, ሻݐ ൌ ܿሺ݆ െ 1, ݐ െ 1ሻ ൅ ܿሺ݆, ݐ െ 1ሻ ൅ ܿሺ݆ ൅ 1, ݐ െ 1ሻ

െ 2ܿሺ݆ െ 1, ݐ െ 1ሻܿሺ݆, ݐ െ 1ሻ െ ܿሺ݆ െ 1, ݐ െ 1ሻܿሺ݆ ൅ 1, ݐ െ 1ሻ

െ 2ܿሺ݆, ݐ െ 1ሻܿሺ݆ ൅ 1, ݐ െ 1ሻ

൅ 2ܿሺ݆ െ 1, ݐ െ 1ሻܿሺ݆, ݐ െ 1ሻܿሺ݆ ൅ 1, ݐ െ 1ሻ 

(7.7) 

Table 7.11: The identification result based on the pattern with 3% static noise 

 ߶ଵ ߶ଶ ߶ଷ ߶ସ ߶ହ ߶଺ ߶଻ 

t=1 0.9714 1.0 0.9857 -1.9411 -0.9571 -1.9857 1.9268 

t=2 0.9351 1.0 0.9221 -1.8973 -1.6667 -1.8089 2.5592 

t=3 0.8281 0.7838 0.8438 -1.5378 -0.7459 -1.5535 1.3977 

t=4 0.9024 0.9194 0.9146 -1.7107 -1.6921 -1.7784 2.4448 

t=5 0.8571 0.9118 0.8730 -1.7272 -1.5723 -1.7014 2.4215 

t=6 0.7826 0.7917 0.8696 -1.4204 -1.3188 -1.5843 1.8797 

t=7 0.9394 0.7857 0.8939 -1.6164 -0.9697 -1.6144 1.6467 

t=8 0.9186 0.9365 0.9419 -1.7162 -1.5528 -1.6839 2.1559 

t=9 0.8621 0.8974 0.9310 -1.6868 -1.7098 -1.7194 2.4879 

t=10 0.7812 0.7381 0.8594 -1.3917 -1.4406 -1.5336 2.0517 

Rule22 1 1 1 -2 -2 -2 3 

Rule54 1 1 1 -2 -1 -2 2 
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Table 7.11 shows the identification result based on the pattern contaminated by 3% 

static noise. The rules at time steps t=3,4,5,6,8,9,10 cannot be identified correctly, 

even after rounding. This shows that increasing static noise will eventually lead to 

wrong models being identified. Compared to the single CA rule example, the 

identification algorithm for the 1-D probabilistic two-rule CA is more sensitive to 

static noise. In order to solve this problem, some special denoising algorithms can 

be explored to employ on the noisy data before it is used to the identification in 

further studies.  

7.3.2 Identification of CA Patterns Corrupted by Dynamic 
Noise 

This section investigates the identification of CA patterns corrupted by dynamic 

noise. The first two examples are the identification based on 1-D Rule 54 CA 

model corrupted by 15% and 20% dynamic noise respectively. The rule of other 

examples is a 1-D probabilistic two-rule CA model, where the probabilities 

associated with rules Rule 22 and Rule 54 are 40% and 60% respectively. Other 

settings are the same as those in the examples in Section 7.3.1, including the 

lattice size, iteration steps, neighbourhood, and boundary conditions. 

Fig.7.8 shows the patterns which are evolved from the 1-D Rule 54 CA model 

with no noise and dynamic noise. Table 7.12 and 7.13 shows the identified model 

terms based on the dynamically noisy data in Fig.7.8. 

 

 

(a) The original pattern 

 

(b) The pattern with 15% dynamic noise 
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(c) The pattern with 20% dynamic noise 

Figure 7.8: The evolution of 1-D CA pattern corrupted by dynamic noise 

 

Table 7.12: Identified model terms for the 1-D CA corrupted by 15% dynamic noise  

 ߶ଵ ߶ଶ ߶ଷ ߶ସ ߶ହ ߶଺ ߶଻ 

߶ 0.8660 0.8339 0.8468 -1.5810 -0.8759 -1.5392 1.5718

Rule54 1 1 1 -2 -1 -2 2 

 

Table 7.13: Identified model terms for the 1-D CA corrupted by 20% dynamic noise 

 ߶ଵ ߶ଶ ߶ଷ ߶ସ ߶ହ ߶଺ ߶଻ 

߶ 0.8121 0.8144 0.8343 -1.4445 -0.8159 -1.4459 1.4379

Rule54 1 1 1 -2 -1 -2 2 

 

The results in Table 7.12 and 7.13 shows CA-OLS algorithm works fine for the 

single CA rule model with the dynamic noise up to 15%. 

Using the same identification method which was employed to the two-rule CA 

models with static noise in Section 7.3.1, the two-rule CA model corrupted by 

different levels of dynamic noise can be identified and results are shown in Table 

7.15-7.17. 

From the evolution data, all the rules for 10 iteration steps can be known and are 

listed in Table 7.14 for making them comparable with identification results. 
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Table 7.14: CA Rules involved in the evolution of the dynamically noisy pattern 

Time steps Rules 

t=1 Rule22 

t=2 Rule54 

t=3 Rule22 

t=4 Rule54 

t=5 Rule54 

t=6 Rule54 

t=7 Rule22 

t=8 Rule22 

t=9 Rule54 

t=10 Rule54 

 

Table 7.15: The identification result based on the pattern with 3% dynamic noise 

 ߶૚ ߶૛ ߶૜ ߶૝ ߶૞ ߶૟ ߶ૠ 

t=1 0.9063 0.9630 0.9844 -1.8375 -1.8906 -1.9315 2.8476 

t=2 0.9531 1.0 0.9844 -1.9318 -0.9375 -1.9631 1.8949 

t=3 0.9620 1.0 0.9747 -1.9350 -1.9367 -1.9747 2.9360 

t=4 0.9464 0.9737 0.9464 -1.8181 -0.8929 -1.8997 1.7441 

t=5 0.9600 0.9400 0.9733 -1.9 -1.0 -1.8633 2.0011 

t=6 0.9875 0.9474 1.0 -1.9349 -0.9875 -1.9066 1.9248 

t=7 0.9429 1.0 0.9857 -1.9044 -1.8941 -1.9473 2.8279 

t=8 1.0 0.9565 0.9839 -1.9181 -1.9839 -1.9404 2.9769 

t=9 1.0 0.9200 0.9437 -1.8973 -0.9437 -1.8409 1.8426 

t=10 0.9730 0.9815 0.9459 -1.9306 -0.9189 -1.8798 1.8540 

Rule22 1 1 1 -2 -2 -2 3 

Rule54 1 1 1 -2 -1 -2 2 
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Table 7.16: The identification result based on the pattern with 10% dynamic noise 

 ߶૚ ߶૛ ߶૜ ߶૝ ߶૞ ߶૟ ߶ૠ 

t=1 0.9310 0.8909 0.9655 -1.7324 -1.7716 -1.7818 2.6339 

t=2 0.9200 0.8824 0.9333 -1.7062 -0.8890 -1.7195 1.6648 

t=3 0.9028 0.8621 0.8889 -1.7072 -1.6601 -1.6356 2.5157 

t=4 0.8657 0.9608 0.9254 -1.7688 -0.8466 -1.8092 1.8156 

t=5 0.8933 0.9385 0.8667 -1.6829 -0.8141 -1.6987 1.5842 

t=6 0.8696 0.8571 0.8551 -1.6553 -0.7802 -1.6586 1.5830 

t=7 0.9420 0.8704 0.8986 -1.6948 -1.7572 -1.7101 2.5640 

t=8 0.8308 0.9388 0.9538 -1.6495 -1.6964 -1.8726 2.5518 

t=9 0.8767 0.8814 0.9041 -1.6444 -0.9142 -1.6718 1.6735 

t=10 0.8714 0.9444 0.8714 -1.6677 -0.8218 -1.7233 1.6034 

Rule22 1 1 1 -2 -2 -2 3 

Rule54 1 1 1 -2 -1 -2 2 

 

The identification result based on the pattern with 3% dynamic noise in Table 

7.15 shows that all parameters of selected model terms are consistent with these 

in the original model after rounding. Compared with the system which is 

corrupted with 3% static noise, the dynamic noise at the same level has no 

significant influence on the identification result. In order to evaluate the level of 

dynamic noise that will affect the identification process, simulations were carried 

out where the level of dynamic noise was 6%, 8%, 10% and 12%. Simulation 

results show that the identification based on the data disturbed by no more than 

10% dynamic noise can achieve good identification results. Here, only the 

identification results from the pattern with 10% and 12% dynamic noise are 

shown in Table 7.16 and 7.17. Examples with 6% and 8% noise lead to the same 

results with the 10% one. It is also found that the dynamic noise makes the 

system identification more difficult than that for the single CA rule model.  
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Table 7.17: The identification result based on the pattern with 12% dynamic noise 

 ߶૚ ߶૛ ߶૜ ߶૝ ߶૞ ߶૟ ߶ૠ 

t=1 0.9474 0.8276 0.8596 -1.6438 -1.6619 -1.5889 2.3652 

t=2 0.9333 0.8718 0.8267 -1.7218 -0.8626 -1.6429 1.7306 

t=3 0.8235 0.8824 0.8824 -1.6211 -1.5392 -1.6122 2.2752 

t=4 0.8356 0.8689 0.9452 -1.5908 -0.8746 -1.6777 1.6330 

t=5 0.9155 0.8983 0.9014 -1.7096 -0.8725 -1.6955 1.7106 

t=6 0.9275 0.9 0.8551 -1.6875 -0.9116 -1.5951 1.5838 

t=7 0.8 0.8889 0.8769 -1.5735 -1.5207 -1.5927 2.1687 

t=8 0.9028 0.8333 0.9444 -1.6045 -1.6934 -1.6725 2.3565 

t=9 0.8182 0.9184 0.8485 -1.6765 -0.6970 -1.6269 1.5497 

t=10 0.8788 0.9388 0.8939 -1.5723 -0.9116 -1.6818 1.5465 

Rule22 1 1 1 -2 -2 -2 3 

Rule54 1 1 1 -2 -1 -2 2 

7.4 Conclusions 

This Chapter investigated the effect of static noise and dynamic noise on the 

identification of probabilistic multi-rule CA. Simulation results showed that while 

the number of states perturbed by noise is significantly smaller for static noise 

than for dynamic noise, in identification even relatively modest levels of static 

noise can prevent the identification of a correct model from data. In contrast, the 

identification algorithms are more robust to dynamic noise. 

The new identification method for the probabilistic multi-rule CA system, which 

was introduced in Chapter 6, was modified by rounding-off the estimated 

parameters and tested on examples with static and dynamic noise respectively. 

Simulation results illustrated that this identification method has a good 

performance on the data with no more than 1.5% static noise or 10% dynamic 

noise. These identification results also gave a further explanation of different 

effects of static and dynamic noise on the identification process. 
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Chapter 8  

Conclusions 

The ever-changing world always gives us loads of surprises such as beautiful 

pattern formation and interesting natural processes which follow the underlying 

laws of nature. Most phenomena can be viewed as spatio-temporal systems, 

which represent an essential class of complex dynamical systems with both space 

and time information. These spatio-temporal phenomena may orientate humans 

towards the study and understanding of their essence aided by modelling.  There 

are limits to employ universal models to simulate some patterns because of their 

diversity. Therefore, system identification becomes more and more important in 

the study of spatio-temporal systems. The identification can provide an effective 

and potential method to find the intrinsic mechanism behind the complex 

dynamics from the observed spatio-temporal data. 

The aim of the work presented in this thesis is to have a deeper insight into 

spatio-temporal systems and explore more analysis methods for them. In the 

mean time, applications of the spatio-temporal system have been extended to 

model the behaviours of slime mould and the pattern formation during its 

aggregation process.  

8.1 Main Contributions in this thesis 

The work of this thesis begins with a brief review of spatio-temporal systems, and 

then aggregative patterns of slime mould have been simulated using three typical 

types of spatio-temporal systems. A new model term selection technique based on 

mutual information (MI) for the identification problem has been developed. In 

addition, a new type of spatio-temporal system, which is inspired from a
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probabilistic model for slime mould movement, has been introduced. The 

corresponding identification method has also been proposed and tested on both 

noise-free and noisy data. The main contributions of this thesis can be 

summarised as below. 

Slime mould is a ‘smart’ organism and can respond to changing environments 

intelligently. Hence, interesting patterns such as spirals and concentric circles can 

often be observed at the aggregation stage in the life cycle of slime mould.  

Numerical simulations of pattern formation of slime mould have been achieved 

using three typical spatio-temporal systems, Cellular Automata (CA), Coupled 

Map Lattices (CML) and Partial Differential Equations (PDE). The Greenberg-

Hasting Model (GHM) as a CA model and Solé’s model as a CML model, which 

were used to describe excitable media and the dynamics in ecosystems 

respectively, have first been extended to simulate pattern formation and 

evolutions of slime mould. It has been found that these three models have their 

respective pros and cons. For the CA model, numerical simulations can easily be 

realised due to the relatively simplicity of the rule. However, some important 

information may not be easily included in the model. For example, GHM can 

produce similar biological patterns of slime mould with no chemoattractant 

information which is an essential element in experiments. Thus these models may 

have limits to describe more complex dynamics. For CML and PDE models with 

continuous states, they can provide better physical explanations corresponding to 

real systems, but they may make the computer simulation more complicated. 

Simulation results have proven that CA, CML and PDE models all have 

capabilities of modelling slime mould dynamics in the aggregation phase. 

The reverse problem of pattern formation or system identification is one of the 

key concerns in the study of spatio-temporal systems, which is still an open 

question. The aim of spatio-temporal system identification is to determine a 

mathematical model from observed experimental data. The orthogonal least 

square (OLS) or the orthogonal forward regression (OFR) has been proved to be 
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one of the most effective algorithms for spatio-temporal system identification. 

However, using the classical OFR algorithm applied to spatio-temporal systems 

spurious terms may be detected due to high initial Error Reduction Ratio (ERR) 

values of these terms in some cases. In order to solve this problem, a new 

Orthogonal Forward Regression using Mutual Information (OFR-MI) algorithm 

based on the MI for spatio-temporal system identification was first proposed in 

this thesis. The MI was introduced as a criterion for measuring the contributions 

of all the regressors in the orthogonal process where the criterion is the ERR in 

the OFR algorithm. This new method can effectively avoid selecting spurious 

terms and work as a complementary method for the OFR algorithm. The method 

has been successfully tested on various spatio-temporal models including CA, 

CML and PDE models.  

Following a study on a discrete reaction-diffusion-chemotaxis model-the Nazim 

Fatès model which can be used to describe the chemotactic behaviour of slime 

mould in its aggregation period, a new class of CA models which are called 

probabilistic multi-rule CA models was introduced in this thesis. This new CA 

model is different from the classical one-rule CA in including two or more basic 

CA transition rules with associated probabilities. Random variables in the 

probabilistic multi-rule CA model make it possible to simulate many interesting 

patterns and textures which are produced by some random processes and 

transitional phenomena in nature.  

The forward problem of the probabilistic multi-rule CA system can be solved 

easily, but the identification of this new CA model directly from an observed 

pattern is a challenge. That is because most classical identification methods for 

the one-rule CA model such as the CA-OLS algorithm cannot be directly applied 

to the probabilistic multi-rule CA model with random variables and a multi-rule 

structure. Hence, a new identification algorithm for this new CA model was 

proposed in this thesis. Based on the CA-OLS algorithm and statistical methods, 

the new method is able to identify the model structure and the probability of each 
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sub-rule which is involved in the probabilistic multi-rule CA model. Simulation 

studies show that this new identification algorithm worked well on one-dimension 

and two-dimension examples. 

In this thesis, noise in the probabilistic multi-rule CA system was studied. Two 

types of spatio-temporal noise, static and dynamic noise, were discussed from the 

perspective of the description and effects on the probabilistic multi-rule CA 

model. Unlike the signal-to-noise-ratio in the traditional temporal system, the 

noise level in the probabilistic multi-rule CA system can be described as the 

proportion of cells to be flipped in the evolution lattice due to noise. Two 

methods for measuring noise effects were designed. From the simulation result, 

an important conclusion was obtained, that is, the effect of static noise on the 

evolution process is less than that of dynamic noise at the same noise-level, but 

from the point of view of the identification static noise makes the identification 

process more challenged than dynamic noise.  

The new identification method for the probabilistic multi-rule CA model was, for 

the first time, tested on the patterns corrupted by static and dynamic noise 

respectively. The simulation result showed that this identification method has a 

good performance on both noise-free and noisy data. 

8.2 Discussion and Suggestions for Future Research 

Although there has been an increasing interest devoted to the study of spatio-

temporal systems, it is appropriate to say that the current research in this area is 

still in its infancy because of the diversity and complexity of real applications 

related to spatio-temporal systems. Based on the works which have been done in 

this thesis, the following topics may be worth considering in future research. 

a) Most observed natural phenomena have high complex spatio-temporal 

dynamics. Take slime mould for example, after the aggregation phase of its life 

cycle, slime mould will pile up to form a mound structure and then become a slug 

which moves chemotactically. One-dimensional and two-dimensional spatio-
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temporal models cannot be competent for the task of modelling the dynamics 

which is observed in the mound and slug stage of slime mould. Hence, 3D spatio-

temporal systems can be considered to capture the underlying dynamics of these 

processes. The identification of 3D spatio-temporal systems may become more 

difficult because more complex spatio-temporal neighbourhood and more highly 

correlated model terms will be involved in the identification process. Therefore, it 

is a challenge to develop an effective identification method for the spatio-

temporal systems in three dimensions or higher dimensions. 

b) Why the OLS algorithm fails when it applied to spatio-temporal systems in 

some cases also needs further studies. In Chapter 4, the new OFR-MI algorithm is 

a complementary method for the classical OFR algorithm, rather than a substitute. 

This is because the new identification algorithm cannot always have correct 

identified results as the classical algorithm does. Hence, the method can be 

modified by adding more criterions for selecting model terms or be assisted by 

some effective neighbourhood detection algorithms.   

c) The identification of the Nazim Fatès model is still an open problem. Although 

a new probabilistic multi-rule CA model which can be used to describe random 

dynamics in some spatio-temporal systems was introduced in this thesis, this is 

far from satisfactory for solving the identification problem of the Nazim Fatès 

model. It is because random processes which are included in the Nazim Fatès 

model increase the uncertainty in the data for the identification and make the 

underlying transition rule more complicated to be identified. To solve this 

problem, a more powerful identification algorithm needs to be designed. 

d) As mentioned in Chapter 7, the estimated parameters in the identified 

probabilistic multi-rule CA model may be biased because of spatio-temporal 

noise, which may not be uncorrelated and homoscedastic. Hence, a more complex 

algorithm for estimating the parameters should be developed to fit for the 

identification from spatio-temporal noisy patterns. 



 

139 
 

References 

[1] Gilbert, S.F., Developmental Biology, 6th edition. 2000: Sinauer 
Associates. 

[2] Nagano, S., Modeling the model organism Dictyostelium discoideum. 
Development, Growth & Differentiation, 2000. 42(6): p. 541-550. 

[3] Life Cycle of Dictyostelium Discoideum.   [cited; Available from: 
http://comp.uark.edu/~mlehmann/simple_systems.pdf. 

[4] Höfer, T. and P.K. Maini, Streaming Instability of Slime Mold Amoebae: 
An Analytical Model. Physical Review E, 1997. 56(2): p. 2074-2080. 

[5] Dormann, D., B. Vasiev, and C.J. Weijer, Becoming Multicellular by 
Aggregation; The Morphogenesis of the Social Amoebae Dicyostelium 
discoideum. Journal of Biological Physics, 2002. 28(4): p. 765-780. 

[6] Rotstein, H.G., et al., Canard phenomenon and localization of oscillations 
in the Belousov-Zhabotinsky reaction with global feedback. Journal of 
Chemical Physics, 2003. 119(17): p. 8824-8832. 

[7] Parent, C.A. and P.N. Devreotes, Molecular Genetics of Signal 
Transduction in Dictyostelium. Annual Review of Biochemistry, 1996. 
65(1): p. 411-440. 

[8] Martiel, J.-L. and A. Goldbeter, A Model Based on Receptor 
Desensitization for Cyclic AMP Signaling in Dictyostelium Cells. 
Biophysical Journal, 1987. 52(5): p. 807-828. 

[9] Devreotes, P., Cell-cell interactions in Dictyostelium development. Trends 
in Genetics, 1989. 5: p. 242-245. 

[10] Tyson, J.J. and J.D. Murray, CYCLIC-AMP WAVES DURING 
AGGREGATION OF DICTYOSTELIUM AMEBAS. Development, 1989. 
106(3): p. 421-426. 



 

140 
 

[11] Dormann, D. and C.J. Weijer, Chemotactic cell movement during 
development. Current Opinion in Genetics & Development, 2003. 13(4): p. 
358-364. 

[12] Varnum-Finney, B., N.A. Schroeder, and D.R. Soll, Adaptation in the 
motility response to cAMP in Dictyostelium discoideum. Cell motility and 
the cytoskeleton, 1988. 9(1): p. 9-16. 

[13] Tomchik, K.J. and P.N. Devreotes, Adenosine 3',5'-monophosphate waves 
in Dictyostelium discoideum: a demonstration by isotope dilution--
fluorography. Science, 1981. 212(4493): p. 443-446. 

[14] Savill, N.J. and P. Hogeweg, Modelling Morphogenesis: From Single 
Cells to Crawling Slugs. Journal of Theoretical Biology, 1997. 184(3): p. 
229-235. 

[15] Hanson, K.L., et al., Fungi Use Efficient Algorithms for the Exploration of 
Microfluidic Networks. Small, 2006. 2(10): p. 1212-1220. 

[16] Nakagaki, T., H. Yamada, and A. Toth, Intelligence: Maze-solving by an 
amoeboid organism. Nature, 2000. 407(6803): p. 470-470. 

[17] Nakagaki, T., H. Yamada, and Á. Tóth, Path finding by tube 
morphogenesis in an amoeboid organism. Biophysical Chemistry, 2001. 
92(1-2): p. 47-52. 

[18] Nakagaki, T., et al., Obtaining multiple separate food sources: 
behavioural intelligence in the Physarum plasmodium. Proceedings of the 
Royal Society of London. Series B: Biological Sciences, 2004. 271(1554): 
p. 2305-2310. 

[19] Nakagaki, T., H. Yamada, and M. Hara, Smart network solutions in an 
amoeboid organism. Biophysical Chemistry, 2004. 107(1): p. 1-5. 

[20] Adamatzky, A., Physarum machines: encapsulating reaction–diffusion to 
compute spanning tree. Naturwissenschaften, 2007. 94(12): p. 975-980. 

[21] Bebber, D.P., et al., Biological solutions to transport network design. 
Proceedings of the Royal Society B: Biological Sciences, 2007. 274(1623): 
p. 2307-2315. 



 

141 
 

[22] Tsuda, S., K.-P. Zauner, and Y.-P. Gunji, Robot Control with Biological 
Cells, in Proceedings of the Sixth International Workshop on Information 
Processing in Cells and Tissues. 2005: St. William's College, York. p. 
202-216. 

[23] Aono, M., et al., A Model of Amoeba-Based Neurocomputer. Journal of 
Computer Chemistry, Japan, 2010. 9(3): p. 143-156. 

[24] Keller, E.F. and L.A. Segel, Initiation of slime mold aggregation viewed 
as an instability. Journal of Theoretical Biology, 1970. 26(3): p. 399-415. 

[25] Turing, A.M., The Chemical Basis of Morphogenesis. Philosophical 
Transactions of the Royal Society of London. Series B, Biological 
Sciences, 1952. 237(641): p. 37-72. 

[26] Parnas, H. and L.A. Segel, Computer evidence concerning the chemotactic 
signal in Dictyostelium discoideum. J Cell Sci, 1977. 25(1): p. 191-204. 

[27] MacKay, S.A., Computer simulation of aggregation in Dictyostelium 
discoideum. J Cell Sci, 1978. 33(1): p. 1-16. 

[28] Kessler, D.A. and H. Levine, Pattern formation in Dictyostelium via the 
dynamics of cooperative biological entities. Physical Review E, 1993. 
48(6): p. 4801. 

[29] Vasiev, B.N., P. Hogeweg, and A.V. Panfilov, Simulation of Dictyostelium 
Discoideum Aggregation via Reaction-Diffusion Model. Physical Review 
Letters, 1994. 73(23): p. 3173. 

[30] Höfer, T., J.A. Sherratt, and P.K. Maini, Dictyostelium discoideum: 
Cellular Self-Organization in an Excitable Biological Medium. 
Proceedings of the Royal Society of London. Series B: Biological 
Sciences, 1995. 259(1356): p. 249-257. 

[31] van Oss, C., et al., Spatial Pattern Formation During Aggregation of the 
Slime Mould Dictyostelium discoideum. Journal of Theoretical Biology, 
1996. 181(3): p. 203-213. 

[32] Meinhardt, H., A model for the prestalk/prespore patterning in the slug of 
the slime mold Dictyostelium discoideum. Differentiation, 1983. 24(1-3): p. 
191-202. 



 

142 
 

[33] Pate, E.F. and H.G. Othmer, Differentiation, cell sorting and proportion 
regulation in the slug stage of Dictyostelium discoideum. Journal of 
Theoretical Biology, 1986. 118(3): p. 301-319. 

[34] Sekimura, T. and Y. Kobuchi, A spatial pattern formation model for 
Dictyostelium discoideum. Journal of Theoretical Biology, 1986. 122(3): p. 
325-338. 

[35] Marée, A.F.M., A.V. Panfilov, and P. Hogeweg, Migration and 
Thermotaxis of Dictyostelium discoideum Slugs, a Model Study. Journal of 
Theoretical Biology, 1999. 199(3): p. 297-309. 

[36] Marée, A.F.M., A.V. Panfilov, and P. Hogeweg, Phototaxis during the 
slug stage of Dictyostelium discoideum: a model study. Proceedings of the 
Royal Society of London. Series B: Biological Sciences, 1999. 266(1426): 
p. 1351-1360. 

[37] Vasiev, B. and C.J. Weijer, Modelling of Dictyostelium discoideum slug 
migration. Journal of Theoretical Biology, 2003. 223(3): p. 347-359. 

[38] Glazier, J.A., et al., Simulation of the differential adhesion driven 
rearrangement of biological cells. Physical Review E, 1993. 47(3): p. 
2128. 

[39] Goude, K. and S. O'Keefe, A Cellular Automata model for Dictyostelium 
Discoideum. Science, 2005: p. 1-69. 

[40] Graner, F., et al., Simulation of biological cell sorting using a two-
dimensional extended Potts model. Physical Review Letters, 1992. 69(13): 
p. 2013. 

[41] Palsson, E. and H.G. Othmer, A model for individual and collective cell 
movement in Dictyostelium discoideum. Proceedings of the National 
Academy of Sciences of the United States of America, 2000. 97(19): p. 
10448-53. 

[42] Dallon, J.C. and H.G. Othmer, A discrete cell model with adaptive 
signalling for aggregation of Dictyostelium discoideum. Philosophical 
Transactions of the Royal Society of London. Series B: Biological 
Sciences, 1997. 352(1351): p. 391-417. 



 

143 
 

[43] Nanjundiah, V., Chemotaxis, signal relaying and aggregation morphology. 
Journal of Theoretical Biology, 1973. 42(1): p. 63-105. 

[44] Fatès, N., Solving the decentralised gathering problem with a reaction–
diffusion–chemotaxis scheme. Swarm Intelligence, 2010. 4(2): p. 91-115. 

[45] Billings, S.A., S. Chen, and M.J. Korenberg, Identification of MIMO non-
linear systems using a forward-regression orthogonal estimator. 
International Journal of Control, 1989. 49(6): p. 2157-2189. 

[46] Chen, S., S.A. Billings, and W. Luo, Orthogonal least squares methods 
and their application to non-linear system identification. International 
Journal of Control, 1989. 50(5): p. 1873-1896. 

[47] Greenberg, J.M., B.D. Hassard, and S.P. Hastings, Pattern formation and 
periodic structures in systems modeled by reaction-diffusion equations. 
Bulletin of The American Mathematical Society, 1978. 84: p. 1296-1328. 

[48] Solé, R., V., J. Valls, and J. Bascompte, Spiral waves, chaos and multiple 
attractors in lattice models of interacting populations. Physics Letters A, 
1992. 166(2): p. 123-128. 

[49] Kawasaki, K., et al., Modeling Spatio-Temporal Patterns Generated 
byBacillus subtilis. Journal of Theoretical Biology, 1997. 188(2): p. 177-
185. 

[50] von Neumann, J., The general and logical theory of automata. In: 
Cerebral mechanisms in behavior:The Hixon symposium, ed. Jeffries. 
1951: New York: John Wiley. 

[51] Pagnutti, C., M. Anand, and M. Azzouz, Lattice geometry, gap formation 
and scale invariance in forests. Journal of Theoretical Biology, 2005. 
236(1): p. 79-87. 

[52] Billings, S.A. and Y. Yang, Identification of the neighborhood and CA 
rules from spatio-temporal CA patterns. IEEE Transactions on Systems, 
Man, and Cybernetics, 2003. 33(2): p. 332-339. 

[53] Alarcon, T., H.M. Byrne, and P.K. Maini, A cellular automaton model for 
tumour growth in inhomogeneous environment. Journal of Theoretical 
Biology, 2003. 225: p. 257-274. 



 

144 
 

[54] Zhu, M.F. and C.P. Hong, A Modified Cellular Automaton Model for the 
Simulation of Dendritic Growth in Solidification of Alloys. ISIJ Int, 2001. 
41(5): p. 436-445. 

[55] Yeh, A.G.O. and X. Li, A cellular automata model to simulate 
development density for urban planning. Environment and Planning B: 
Planning and Design, 2002. 29(3): p. 431-450. 

[56] Rosin, P.L., Training cellular automata for image processing. Image 
Processing, IEEE Transactions on, 2006. 15(7): p. 2076-2087. 

[57] Kaneko, K., Spatiotemporal Intermittency in Coupled Map Lattices. 
Progress of Theoretical Physics, 1985. 74(5): p. 1033-1044. 

[58] Jahnke, W., W.E. Skaggs, and A.T. Winfree, Chemical vortex dynamics in 
the Belousov-Zhabotinsky reaction and in the two-variable oregonator 
model. The Journal of Physical Chemistry, 1989. 93(2): p. 740-749. 

[59] Tabuchi, E., et al., Spatio-temporal dynamics of brain activated regions 
during drinking behavior in rats. Brain Research, 2002. 951(2): p. 270-
279. 

[60] White, S.M. and K.A.J. White, Relating coupled map lattices to integro-
difference equations: dispersal-driven instabilities in coupled map lattices. 
Journal of Theoretical Biology, 2005. 235(4): p. 463-475. 

[61] Sakaguchi, et al., A coupled map lattice model for oscillatory growth in 
electrodeposition. Vol. 75. 2006, Tokyo, JAPON: Physical Society of 
Japan. 

[62] Reiter, C.A., A local cellular model for snow crystal growth. Chaos, 
Solitons & Fractals, 2005. 23(4): p. 1111-1119. 

[63] Holden, A.V., et al., Coupled map lattices as computational systems. 
Chaos: An Interdisciplinary Journal of Nonlinear Science, 1992. 2(3): p. 
367-376. 

[64] FitzHugh, R., Mathematical models of threshold phenomena in the nerve 
membrane. Bulletin of Mathematical Biology, 1955. 17(4): p. 257-278. 

[65] Koros, E. and R.M. Noyes, Oscillations in chemical systems. II. Thorough 
analysis of temporal oscillation in the bromate-cerium-malonic acid 



 

145 
 

system. Journal of The American Chemical Society, 1972. 94(25): p. 8649-
8664. 

[66] Leontaritis, I.J. and S.A. Billings, Input-output parametric models for non-
linear systems Part II: stochastic non-linear systems. International Journal 
of Control, 1985. 41(2): p. 329-344. 

[67] Fred, C.R., P.M. Thomas, and H.P. Norman, Extracting cellular 
automaton rules directly from experimental data, in Cellular automata, G. 
Howard, Editor. 1990, MIT Press. p. 189-202. 

[68] Yang, Y. and S.A. Billings, Extracting Boolean rules from CA patterns. 
Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions 
on, 2000. 30(4): p. 573-580. 

[69] Billings, S.A. and Y. Yang, Identification of probabilistic cellular 
automata. Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE 
Transactions on, 2003. 33(2): p. 225-236. 

[70] Billings, S.A. and S.S. Mei, A new fast cellular automata orthogonal 
least-squares identification method. International Journal of Systems 
Science, 2005. 36(8): p. 491-499. 

[71] Zhao, Y. and S.A. Billings, Neighborhood detection using mutual 
information for the identification of cellular automata. Systems, Man, and 
Cybernetics, Part B: Cybernetics, IEEE Transactions on, 2006. 36(2): p. 
473-479. 

[72] Guo, Y., S.A. Billings, and D. Coca, Identification of n-State Spatio-
Temporal Dynamical Systems Using A Polynomial Model. International 
Journal of Bifurcation and Chaos, 2008. 18(7): p. 2049-2057. 

[73] Packard, N.H., et al., Geometry from a Time Series. Physical Review 
Letters, 1980. 45(9): p. 712. 

[74] Parlitz, U. and C. Merkwirth, Prediction of Spatiotemporal Time Series 
Based on Reconstructed Local States. Physical Review Letters, 2000. 
84(9): p. 1890. 

[75] Mandelj, S., I. Grabec, and E. Govekar, Statistical approach to modelling 
of spatiotemporal dynamics. International Journal of Bifurcation and 
Chaos, 2001. 11(11): p. 2731-2738. 



 

146 
 

[76] Coca, D. and S.A. Billings, Identification of coupled map lattice models of 
complex spatio-temporal patterns. Physics Letters A, 2001. 287(1-2): p. 
65-73. 

[77] Coca, D. and S.A. Billings, Analysis and reconstruction of stochastic 
coupled map lattice models. Physics Letters A, 2003. 315(1-2): p. 61-75. 

[78] Guo, L.Z. and S.A. Billings, Identification of coupled map lattice models 
of stochastic spatio-temporal dynamics using wavelets. Dynamical 
Systems, 2004. 19(3): p. 265-278. 

[79] Pan, Y. and S.A. Billings, Neighborhood Detection for the Identification 
of Spatiotemporal Systems. Systems, Man, and Cybernetics, Part B: 
Cybernetics, IEEE Transactions on, 2008. 38(3): p. 846-854. 

[80] Guo, L.Z., S.S. Mei, and S.A. Billings, Neighbourhood detection and 
identification of spatio-temporal dynamical systems using a coarse-to-fine 
approach. Intern. J. Syst. Sci., 2007. 38(1): p. 1-15. 

[81] Voss, H., et al., Identification of continuous, spatiotemporal systems. 
Physical Review E, 1998. 57(3): p. 2820. 

[82] Porcu, E., et al., Modelling spatio-temporal data: A new variogram and 
covariance structure proposal. Statistics & Probability Letters, 2007. 
77(1): p. 83-89. 

[83] Xu, K. and C.K. Wikle, Estimation of Parameterized Spatio-Temporal 
Dynamic Models. 2005. 

[84] González-García, R., R. Rico-Martínez, and I.G. Kevrekidis, Identification 
of distributed parameter systems: A neural net based approach. 
Computers & Chemical Engineering, 1998. 22(Supplement 1): p. S965-
S968. 

[85] Coca, D. and S.A. Billings, Direct parameter identification of distributed 
parameter systems. International Journal of Systems Science, 2000. 31(1): 
p. 11-17. 

[86] Coca, D. and S.A. Billings, Identification of finite dimensional models of 
infinite dimensional dynamical systems. Automatica, 2002. 38(11): p. 
1851-1865. 



 

147 
 

[87] Qi, C., H.-T. Zhang, and H.-X. Li, A multi-channel spatio-temporal 
Hammerstein modeling approach for nonlinear distributed parameter 
processes. Journal of Process Control, 2009. 19(1): p. 85-99. 

[88] Guo, L. and S.A. Billings, Identification of Partial Differential Equation 
Models for Continuous Spatio-Temporal Dynamical Systems. Circuits and 
Systems II: Express Briefs, IEEE Transactions on, 2006. 53(8): p. 657-661. 

[89] Guo, L.Z., S.A. Billings, and D. Coca, Consistent recursive parameter 
estimation of partial differential equation models. International Journal of 
Control, 2009. 82(10): p. 1946-1954. 

[90] Woltering, M. and M. Markus, Oscillations and turbulence induced by an 
activating agent in an active medium. Physical Review E, 2001. 64(4): p. 
045601. 

[91] Davidenko, J.M., et al., Stationary and drifting spiral waves of excitation 
in isolated cardiac muscle. Nature, 1992. 355(6358): p. 349-351. 

[92] Berridge, M.J., P. Lipp, and M.D. Bootman, The versatility and 
universality of calcium signalling. Nat Rev Mol Cell Biol, 2000. 1(1): p. 
11-21. 

[93] Wiener, N. and A. Rosenblueth, The mathematical formulation of the 
problem of conduction of impulses in a network of connected excitable 
elements, specifically in cardiac muscle. Arch Inst Cardiol Mex, 1946. 
16(3): p. 205-265. 

[94] Durston, A.J., Dictyostelium discoideum aggregation fields as excitable 
media. Journal of Theoretical Biology, 1973. 42(3): p. 483-504. 

[95] Fisch, R., J. Gravner, and D. Griffeath, Metastability in the Greenberg-
Hastings Model. The Annals of Applied Probability, 1993. 3(4): p. 935-
967. 

[96] Fisch, R., J. Gravner, and D. Griffeath, Threshold-range scaling of 
excitable cellular automata. Statistics and Computing, 1991. 1(1): p. 23-
39. 

[97] Pethel, S.D., N.J. Corron, and E. Bollt, Deconstructing Spatiotemporal 
Chaos Using Local Symbolic Dynamics. Physical Review Letters, 2007. 
99(21): p. 214101. 



 

148 
 

[98] Chee, M.-N., R. Kapral, and S.G. Whittington, Phase resetting dynamics 
for a discrete reaction-diffusion model. Vol. 92. 1990: AIP. 7315-7322. 

[99] Jiang, Y., Phase transitions in two-variable coupled map lattices. Physical 
Review E, 1997. 56(3): p. 2672. 

[100] Nakagaki, T., H. Yamada, and T. Ueda, Interaction between cell shape 
and contraction pattern in the Physarum plasmodium. Biophysical 
Chemistry, 2000. 84(3): p. 195-204. 

[101] Shannon, C.E., A Mathematical Theory of Communication. Bell System 
Technical Journal, 1984. 27: p. 379-423. 

[102] Darbellay, G.A. and I. Vajda, Estimation of the information by an adaptive 
partitioning of the observation space. Information Theory, IEEE 
Transactions on, 1999. 45(4): p. 1315-1321. 

[103] Moddemeijer, R., A statistic to estimate the variance of the histogram-
based mutual information estimator based on dependent pairs of 
observations. Signal Processing, 1999. 75(1): p. 51-63. 

[104] Moon, Y.-I., B. Rajagopalan, and U. Lall, Estimation of mutual 
information using kernel density estimators. Physical Review E, 1995. 
52(3): p. 2318-2321. 

[105] Endres, D. and P. Foldiak, Bayesian bin distribution inference and mutual 
information. Information Theory, IEEE Transactions on, 2005. 51(11): p. 
3766-3779. 

[106] Wen, P., et al., Estimation of Mutual Information: A Survey, in Rough Sets 
and Knowledge Technology. 2009, Springer Berlin / Heidelberg. p. 389-
396. 

[107] Wei, H.-L. and S.A. Billings, Model structure selection using an 
integrated forward orthogonal search algorithm assisted by squared 
correlation and mutual information. International Journal of Modelling, 
Identification and Control, 2008. 3(4): p. 341-356. 

[108] Billings, S.A., M.J. Korenberg, and S. Chen, Identification of non-linear 
output-affine systems using an orthogonal least-squares algorithm. 
International Journal of Systems Science, 1988. 19: p. 1559-1568. 



 

149 
 

[109] Korenberg, M., et al., Orthogonal parameter estimation algorithm for 
non-linear stochastic systems. International Journal of Control, 1988. 
48(1): p. 193-210. 

[110] Billings, S.A. and Q.M. Zhu, A structure detection algorithm for nonlinear 
dynamic rational models. International Journal of Control, 1994. 59(6): p. 
1439-1463. 

[111] Chen, S., C.F.N. Cowan, and P.M. Grant, Orthogonal least squares 
learning algorithm for radial basis function networks. Neural Networks, 
IEEE Transactions on, 1991. 2(2): p. 302-309. 

[112] Eng-Siong, C., H.H. Yang, and S. Bos, Orthogonal least-squares learning 
algorithm with local adaptation process for the radial basis function 
networks. Signal Processing Letters, IEEE, 1996. 3(8): p. 253-255. 

[113] Yifan, P., A.B. Stephen, and Z. Yifan, The Identification of Coupled Map 
Lattice Models for Autonomous Cellular Neural Network Patterns. I. J. 
Bifurcation and Chaos, 2008. 18(4): p. 985-996. 

[114] Zhao, Y., S.A. Billings, and A.F. Routh, Identification of the Belousov-
zhabotinskii Reaction Using Cellular Automata Models. I. J. Bifurcation 
and Chaos, 2007: p. 1687-1701. 

[115] Zhao, Y. and S.A. Billings, The Identification of Cellular Automata. 
Journal of Cellular Automata, 2007. 2: p. 47-65. 

[116] Li, W., Mutual information functions versus correlation functions. Journal 
of Statistical Physics, 1990. 60(5-6): p. 823-837. 

[117] Mao, K.Z. and S.A. Billings, Algorithms for minimal model structure 
detection in nonlinear dynamic system identification. International Journal 
of Control, 1997. 68(2): p. 311-330. 

[118] Piroddi, L. and W. Spinelli, An identification algorithm for polynomial 
NARX models based on simulation error minimization. International 
Journal of Control, 2003. 76(17): p. 1767-1781. 

[119] Haykin, S., Neural Networks: A Comprehensive Foundation (2nd Edition). 
1998: Prentice Hall. 



 

150 
 

[120] Nelles, O., Nonlinear system identification: from classical approaches to 
neural networks and fuzzy models. 2001: Springer. 

[121] Harris, C., X. Hong, and Q. Gan, Adaptive modelling, estimation, and 
fusion from data: a neurofuzzy approach. 2002: Springer. 

[122] Billings, S.A. and L.A. Aguirre, Effects of the sampling time on the 
dynamics and identification of nonlinear models. International Journal of 
Bifurcation and Chaos, 1995. 5: p. 1541-1556. 

[123] Stoica, P., et al., Model-structure selection by cross-validation. 
International Journal of Control, 1986. 43(6): p. 1841-1878. 

[124] Billings, S.A. and Q.M. Zhu, Model validation tests for multivariable 
nonlinear models including neural networks. International Journal of 
Control, 1995. 62(4): p. 749-766. 

[125] Aguirre, L.A. and S.A. Billings, Validating identified nonlinear models 
with chaotic dynamics. International Journal of Bifurcation and Chaos, 
1994. 4(1): p. 109-125. 

[126] Aguirre, L.A. and S.A. Billings, Dynamical effects of overparametrization 
in nonlinear models. Physica D: Nonlinear Phenomena, 1995. 80(1-2): p. 
26-40. 

[127] Miller, A.J., Subset selection in regression. 1990: Chapman and Hall. 

[128] Mark, J.L.O., Regularization in the selection of radial basis function 
centers. Neural Comput., 1995. 7(3): p. 606-623. 

[129] Billings, S.A. and W. Hua-Liang, Sparse Model Identification Using a 
Forward Orthogonal Regression Algorithm Aided by Mutual Information. 
Neural Networks, IEEE Transactions on, 2007. 18(1): p. 306-310. 

[130] Moody, J.E., The Effective Number of Parameters: An Analysis of 
Generalization and Regularization in Nonlinear Learning Systems. Neural 
Information Processing Systems, 1991: p. 847-854. 

[131] Keller, E.F. and L.A. Segel, Model for chemotaxis. Journal of Theoretical 
Biology, 1971. 30(2): p. 225-234. 



 

151 
 

[132] Ben-Jacob, E., et al., Modeling branching and chiral colonial patterning 
of lubricating bacteria. in Mathematical Models for Biological Pattern 
Formation, K. M. Philip and G. O. Hans, Eds. The IMA Volumes in 
Mathematics and Its Applications, 2001. 121: p. 211-254. 

[133] Tyson, R., S.R. Lubkin, and J.D. Murray, Model and analysis of 
chemotactic bacterial patterns in a liquid medium. Journal of 
Mathematical Biology, 1999. 38(4): p. 359-375. 

[134] Budrene, E.O. and H.C. Berg, Complex patterns formed by motile cells of 
Escherichia coli. Nature, 1991. 349(6310): p. 630-633. 

[135] Budrien, E.O., A.A. Polezhaev, and M.O. Ptitsyn, Mathematical modelling 
of intercellular regulation causing the formation of spatial structures in 
bacterial colonies. Journal of Theoretical Biology, 1988. 135(3): p. 323-
341. 

[136] Murray, J.D., Mathematical biology: An introduction. 2002: Springer. 

[137] Keller, E.F. and L.A. Segel, Traveling bands of chemotactic bacteria: A 
theoretical analysis. Journal of Theoretical Biology, 1971. 30(2): p. 235-
248. 

[138] Sugihara, K. and I. Suzuki. Distributed motion coordination of multiple 
mobile robots. in Intelligent Control, 1990. Proceedings., 5th IEEE 
International Symposium on. 1990. 

[139] Christensen, A.L., R. O'Grady, and M. Dorigo, SWARMORPH-script: a 
language for arbitrary morphology generation in self-assembling robots. 
Swarm Intelligence, 2008. 2(2-4): p. 143-165. 

[140] Prencipe, G., Impossibility of gathering by a set of autonomous mobile 
robots. Theoretical Computer Science, 2007. 384(2-3): p. 222-231. 

[141] Simpson, M.J., et al., Simulating invasion with cellular automata: 
Connecting cell-scale and population-scale properties. Physical Review E, 
2007. 76(2): p. 021918. 

[142] Ilachinski, A., Cellular Automata: A Discrete Universe. 2001, London: 
World Scientific. 



 

152 
 

[143] Burton, H.V., Computational analysis of one-dimensional cellular 
automata. 1996: World Scientific. 

[144] Wolfram, S., Cellular automata and complexity: collected papers. 1994: 
Addison-Wesley Pub. Co. 

[145] Zhao, Y., S.A.Billings, and D.Coca, Cellular automata modelling of 
dendritic crystal growth based on Moore and von Neumann 
neighbourhoods. International Journal of Modelling, Identification and 
Control 2009. 6(2): p. 119-125. 

[146] Piotrowska, M.J. and S.D. Angus, A quantitative cellular automaton 
model of in vitro multicellular spheroid tumour growth. Journal of 
Theoretical Biology, 2009. 258(2): p. 165-178. 

[147] Niloy, G., et al., Design and characterization of cellular automata based 
associative memory for pattern recognition. Systems, Man, and 
Cybernetics, Part B: Cybernetics, IEEE Transactions on, 2004. 34(1): p. 
672-678. 

[148] Nandi, S., B.K. Kar, and P.P. Chaudhuri, Theory and Applications of 
Cellular Automata in Cryptography. IEEE Trans. Comput., 1994. 43(12): 
p. 1346-1357. 

[149] Mardiris, V., et al., A CAD System for Modeling and Simulation of 
Computer Networks Using Cellular Automata. Systems, Man, and 
Cybernetics, Part C: Applications and Reviews, IEEE Transactions on, 
2008. 38(2): p. 253-264. 

[150] Cattell, K., et al., 2-by-n hybrid cellular automata with regular 
configuration: theory and application. Computers, IEEE Transactions on, 
1999. 48(3): p. 285-295. 

[151] Adamatzky, A., Identification of Cellular Automata. 1994: 
Taylor&Francis. 

[152] Aguirre, L.A. and S.A. Billings, Dynamical effects of overparametrization 
in nonlinear models. Physica D: Nonlinear Phenomena, Jan.1995. 80(1-2): 
p. 26-40. 



 

153 
 

[153] Billings, S.A., S. Chen, and M.J. Korenberg, Identification of mimo 
nonlinear systems using a forward-regression orthogonal estimator. 
International Journal of Control, 1989. 49(6): p. 2157-2189. 

[154] Billings, S.A. and Y. Yang, Identification of the neighborhood and CA 
rules from spatio-temporal CA patterns. Systems, Man, and Cybernetics, 
Part B: Cybernetics, IEEE Transactions on, 2003. 33(2): p. 332-339. 

[155] Rapaport, D.C., The art of molecular dynamics simulation. 2004: 
Cambridge University Press. 

[156] Folke, C., et al., Regime Shifts, Resilience, and Biodiversity In Ecosystem 
Management. Annual Review of Ecology, Evolution, and Systematics, 
2004. 35(1): p. 557-581. 

[157] Bandman, O., et al., Simulating Spatial Dynamics by Probabilistic 
Cellular Automata Cellular Automata. 2002, Springer Berlin / Heidelberg. 
p. 10-19. 

[158] Nobe, A. and et al., From cellular automaton to difference equation: a 
general transformation method which preserves time evolution patterns. 
Journal of Physics A: Mathematical and General, 2001. 34(25): p. L371-
L379. 

 
 
 
 


